33 RD EDITION + 1956

THE STANDARD MANUAL OF AMATEUR RADIO COMMUNICATION

PUBLISHED BY THE AMERICAN RADIO RELAY LEAGUE

THE RADIO AMATEUR'S HANDBOOK

By the HEADQUARTERS STAFF of the
AMERICAN RADIO RELAY LEAGUE
west hartrord, CONN., U.s.A.

1956
Thirty-third Edition

COPYRIGHT 1956 BY
 THE AMERICAN RADIO RELAY LEAGUE, INC.

Copyright secured under the Pan-American Convention

International Copyright secured

This work is Publication No. 6 of The Radio Amateur's Library, published by the League. All rights reserved. No part of this work may be reproduced in any form except by written permission of the publisher. All rights of translation are reserved. Printed in U. S. A.

Quedan reservados todos los derechos

Library of Congress Catalog Card Number: 41-3345

Thirty-third Edition
$\$ 3$ in U. S. A. proper
$\$ 3.50$ in U. S. Possessions and Canada \$4 elsewhere

Foreword

In thires years of continuous publication The Radio Amatear's /fandbook has become as much of an institution as amateur radio itself. Produced by the amateur's own organization, the American Ravio Relay League, and written with the needs of the practical amateur constantly in mind, it has earned universal acceptance not only by amateurs but by all segments of the technical radio world, from students to engineers, serviremen to onerators. This wide dependence on the IIandbook is founded on its practical utility, its treatment of wadio communication problems in terms of how-to-do-it rather than by abstract diselussion and abstruse formulas.

But trere is :nother factor as well: Dealing with a fast-moving and progressive science, sweeping and virtually continuous moxification has been a feature of the IIandbook - always with the objective of presenting the somudest and best aspects of current practice rather than the merely new and novel. Its annalal rewriting is a major task of the headpuatens gromp of the League, participated in by skilled and experienced amateuss well acquaineed with the practical problems in the art.

In contrast to most publieations of a eomparable nature, the II andbook is printed in the format of the League's monthly magazine, QST. This, togethe" with extensive and usefully-appropriate catalog advertising by manufanturers producing equipment for the radio amateur and industry, makes :t possible to distribute for a very modest charge a work which in volume of subject matter and profusion of illustration surpasses most available radio texts selling for several times its price.

This thirty-third edition takes note of the changes in terhnical practice that have occurred in recent years. A considerable amount of new equipment in all eategories appears throughome the book. Continuing the trend of recent years, all transmitting equipment has been designed with the reduction of harmonics in the telecasting bands as a primary feature. A new chapter on semiconductors has been addel, in consonance with their growing importance in the art. And the always informative datil chapter on vacuum tubes and semicondur-tors continues to list all useful types, with additions being made right up, to press time.
The IIandbook has long been considered an indispensable part of the amateur's equipment. We earnestly hope that the present edition will suceed in bringing as much assistance and inspiration to amateurs and woulthe amateurs as have its predecessors.

General Manager, A.R.R.L.

CONTEENTS

The Amateur's Code 8
Chapter 1 -Amateur Radio 9
2 - Electrical Laws and Circuits 15
3 - Vacuum-Tube Principles 58
4-Semiconductor Devices 77
5-High-Frequency Receivers 82
6-High-Frequency Transmitters 138
7-Power Supplies 208
8-Keying and Break-In 230
9 - Speech Amplifiers and Modulators 240
10-Amplitude Modulation 268
11 - Frequency and Phase Modulation 287
12-Single-Sideband 293
13-Transmission Lines 309
14-Antennas 334
15-Wave Propagation 367
16-V.H.F. Receivers 375
17-V.H.F. Transmitters 396
18-V.H.F. Antennas 426
19 - Mobile and Portable-Emergency Equipment 438
20 - Construction Practices 475
21 - Measurements 484
22 - Assembling a Station 515
23-BCI and TVI 521
24-Operating a Station 542
25-Miscellaneous Data 557
26-Vacuum Tubes and Semiconductors V1
Catalog SectionIndex

THE
 AMATEUR'S CODE

- ONE.

The Amateur is Gentlemanly... He never knowingly uses the air for his own amusement in such a way as to lessen the pleasure of others. He abides by the pledges given by the ARRL in his behalf to the public and the Government.

-TWO•

The Amateur is Loyal... He owes his amateur radio to the American Radio Relay League, and he offers it his unswerving loyalty.

- THREE -

The Amateur is Progressive ... He keeps his station abreast of science. It is built well and efficiently. His operating practice is clean and regular.

- FOUR •

The Amateur is Friendly ... Slow and patient sending when requested, friendly advice and counsel to the beginner, kindly assistance and coöperation for the broadcast listener; these are marks of the amateur spirit.

- FIVE -

The Amateur is Balanced ... Radio is his hobby. He never allows it to interfere with any of the duties he owes to his home, his job, his school, or his community.

- SIX •

The Amateur is Patriotic ... His knowledge and his station are always ready for the service of his country and his community.

Amateur Radio

Amateur radio is a sciontific hobby, a means of gaining personal skill in the fascinating art of electronies and an opportunity to communicate with follow eitizens by private shortwave radio. Scattered over the giobe are over 200,000 amateur radio operators who peiform a service defined in international law as one of "self-training, interommunieation and trehniral investigations carriadon by . . . duly atathonized persons interested in radio techniquer soldy with a personal aim and without peromiary interest."

From a humble begiminig at the turn of the contury, amateur radio has grown to berome an established institution. Today the American followers of amateme ratio number over 110,000 , trained communicators from whose ranks will eome the professional communieations specialists and executives of tomorrow just as many of today's radio leaders were first attracted to radio by their carly interest in amateur radio communication. A powerfai and prosperous organization now provides a bond between amateurs and protects their interests; an internationally-respected magaaine is published solely for their benefit. The Army and Navy seek the cooperation of the amateur in developing communications reserves. Amateur radio supports a manufacturing industry which, by the very demands of amateurs for the latest and best equipment, is always up-to-date in its designs and production techniques - in itself a national asset. Amateurs have won the gratitude of the nation for their heroie performances in times of natural disaster. Through their organization, amateurs have cooperative working agrements with such agencies as the United Nations and the Red Cross. Amateur ratio is, indeed, a magnificently useful institution.

Although as old as the art of radio itself, amateur radio did not always enjoy such prestige. Its first enthusiasis were private (itizens of at experimental turn of mind whose imaginations went wild when Marconi first proved that messages artually could be sent by wireless. They set about learning enough about the new scientifie marvel to build homemade stations. By 1912 there were numerous Government and commercial stations, and hundreds of amateurs; regulation was needed, so laws, licenses and wavelength specifications for the various services appeared. There was then no amateur organization nor spokesman.

The official viowpoint toward amateurs was something like this:
"Amateurs". . Oh, yes. . . . Well, stick 'em on 200 meters and below; they'll never get out of their backyards with that.."

But as the yoars rolled on, amateurs found out how, and i) N' (distance) jumped from local to $500-\mathrm{mile}$ and even oceasional 1,000 -mile twoway contacts. Because all long-disfance messages had to be relayed, relaying developed into a fine art - an ability that was to prove invaluable when the Govermment suddenly ealled hundreds of skilled amaters into war servier in 1917. Meanwhile U. S. amateurs began to wonder if there were amateurs in wher eonntries across the seas and if, some day, we might not span the Atlantic on 200 meters.

Most important of all, this period withessed the birth of the American Radio Relay League. the amateur radio organization whose name was to be virtually synonymous with subsequent amateur progress and shont-wave dovelopment. Conccived and formed by the famous inventor, the late Hiram Perey Maxim, ARRL was formally laumehed in carly 1914. It had just begun to cxert its full foree in amatemr activities when the ITnited states declared war in 1917, and by that act sounded the knell for amateur radio for the next two and a half years. There were then over 6000 amateurs. Over 4000 of them served in the armed forces during that war.
'loday, fow amatmus realion that World

HRAM PERCY MAXIM
J'resident IRRI. IOIt-1936

War I not only marked the close of the first phase of amateur development but came very near marking its end for all time. The fate of amateur radio was in the balance in the days immediately following the signing of the Armistice. The Government, having lada a taste of supreme authority over communications in wartime, was more than half inclined to keep it. The war had not been ended a month before Congress was considering legislation that would have made it impossible for the amateur radio of old ever to be resumed. ARRL's President Maxim rushed to Washington, pleaded, argued, and the bill was defeated. But there was still no amateur radio; the war ban continued. Repeated representations to Washington met only with silence. The League's offices had been elosed for a year and a half, its records stored away. Most of the former amateurs had gone into service; many of them would never come back. Would those returning be interested in such things as amateur radio, Mr. Maxim, determined to find out, called a meeting of the old Board of Directors. The situation was discouraging: amateur radio still banned by law, former members scat tered. no organization, no membership, no funds. But those few determined men financed the publication of a notice to all the former amateurs that could be located, hired Kenneth 13. Warner as the League's first paid secretary, floated a bond issue among old League menbers to obtain money for immediate running expenses, bought the magazine QST T to be the League's official organ, started activities, and dunned officialdom until the wartime ban was lifted and amateur radio resumed again, on October 1, 1919. There was a headlong rush by amateurs to get back on the air. Gangway for King Spark! Manufact urers were hard put to supply radio apparatus fast enough. Each night saw additional dozens of stations erashing out over the air. Interference? It was bedlam!

But it was an era of progress. Wartime needs had stimulated technical development. Vacuum tubes were being used both for receiving and transmitting. Amatcurs inmediately adapted the new gear to 200 -meter work. langes promptly inereased and it became possible to bridge the continent with but one intermediate relay.

TRANS-ATLANTICS

As DX became 1000, then 1500 and then 2000 miles, amateurs began to dream of transAtlantic work. Could they get across? In December, 1921, ARRL, sent abroad an expert amateur, Paul F. Godley, 2ZE, with the best reeeiving equipment available. Tests were run. and thiriy American stations were heard in Europe. In 1922 another trans-Atlantic test was carried out and 315 American calls were logged by European amateurs and one French and two british stations were heard on this side.

Everything now was centered on one objective: two-way amateur communication across the Atlantic! It must be possible - but somehow it couldn't quite be done. More power: Many already were using the legal maximum. Better receivers? They had superheterodynes. Another wavelength? What about those undisturbed wavelengths below 200 meters? The angineering world thought they were worthless - but they had said that about 200 meters. So, in 1922. tests between Hartford and Boston were made on 130 meters with encouraging results. Early in 1923, ARRL-sponsored tests on wavelengiths down to 90 meters wero sucessful. Reports indicated that as the warelength dropped the results were better. A growing excitement began to spread through amateur ranks.

Finally, in November, 1923, after some months of careful preparation, two-way amafour trans-Atlantic communication was accomplished, when Schnell, 1 MO , and Reinartz, 1NAM (now W9CZ and K63.J, respectively) worked for several hours with Deloy, 8AB, in France, with all three stations on 110 meters! Additional stations dropped down to 100 meters and found that they, too, could easily work two-way across the Atlantic. The exodus from the 200 -meter region had started. The "short-wave" era had begun!

13y 1924 dozens of commercial companies had rushed stations into the 100 -meter region. Chas threatened, until the first of a series of national and international radio conferences partitioned off various bands of frequencies for the different services. Although thought still centered around 100 meters, League offirials at the first of these frequency-determining conferences, in 1924, wisely obtained amateur bands not only at 80 meters but at 40,20 , and even 5 meters.
Eighty meters proved so successful that "forty" was given a try, and QSOs with Australia, New Zealand and South Africa soon became commonplace. Then how about 20 meters? This new band revealed entirely unexpeeted possibilities when 1NAM worked 6Ts on the West Coast, direct, at high noon. The dram of amateur radio - daylight DX! was finally true.

PUBLIC SERVICE

Amateur radio is a grand and glorious hobby but this fact alone would hardly merit such wholehearted support as is given it by our Government at international conferences. There are other reasons. One of these is a thorough appreciation by the Army and Navy of the value of the amateur as a source of skilled radio personnel in time of war. Another asset is best described as "publie service."

About 4000 amateurs had contributed their skill and ability in '17-18. After the war it was only natural that cordial relations should provail between the Army and Navy and the amateur. These relations strengthened in the next
few years and, in gradual steps, grew into cooperative activities which resulted, in 1925. in the extabtishment of the Naval Communications Reserve and the Army-Amateur Radio, System (now the Military Affiliate Radio system). In World War II thousands of amateurs in the Naval Reserve wore allhed to atetive duty, where they served with distinction. while many other thousambls served in the Army. Air Forres. Coast Guarel and Marine Corps. Allogether, more than 25,000 radio anateurs served in the armed fores of the Enited States. Other thousands were engaged in vital civilian electronie researeh. development and manufacturing. They also organized and maned the War Emergeney Radio Servire, the communications section of OCD).

The "publie-service" record of the amateur is a brilliant tribute to his work. These activities can be roughly divided into two classes. expeditions and emergencies. Amateur cooperation with expeditions began in 1923 when a League member, Don Mix, ITSA, of Bristol, Conn. (now assistant technieal editor of Qs'T), aceompanied Madillan to the Aretic on the sehooner Boudoin with an amateur station. Amaterus in Canada and the IT. si. provided the home contacts. The success of this venture was such that other explorers followed suit. During subserpuent years a total of perhaps two hundred voyages and expeditions wore assisted by amateur radio, and for many years no expedition has taken the fiold without such plans.

Since 1913 amateur radio has been the principat, and in many eases the only. means of outside communication in soveral humedred storm, flood and carthguak cmorgencies in this country. The 19336 and 19137 castern states floods, the Southern Californat food and loong Island-Now lingland hurricane disaster in 19:38. the Florida-(inlf Coast hurricanes of 10$)+\overline{7}$, and the $195 \overline{5}$ flood disasters ealled for the amateur's greatest emergeney effort. In these disasters and many othors - tornadoes, sleet storms, forest fires, blizzards - amateurs played a major rolle in the reliof work and earned wide commenelation for their resouredfulnose in dfeeting communication where all other means had failed. Imang 19:38 ARRL inaugurated a now emer-goner-preparedness program, registering personnel and equipment in its \lim ergenoy Corps and putting into (iffect a comprehensive program of coopporation with the Red (ross, and in 19-47 a National Vimergency Coürdinator was appointed to full-time duty at 1 sague headeguaters.

The amateur's outstanding record of organizat preparation for emergency communications and briformance under fire hats been largely responsible for the decision of the Federal Govermment to set up special regulations and set aside spectial frepuencies for use be amateurs in providing auxiliary communications for civil defense purposes in the event of war. linder the banner, "Radio Amateur ('ivil Emergeney Sorvice," amateurs are setting up and manning eommunity and area networks integrated with civil defense func-
fions of the municipal governmonts. Should at war canse the shut-down of routine amateur activities, the RACLS will be immediately availabhe in the national defense.

TECHNICAL DEVELOPMENTS

Throughout these many years the amatern was careful not to slight experimental development in the enthusiasm incident fo international DN. The experimenter was eonstantly at work on ever-higher frequeneies, devising improved apparatus, and learning how to cram several stations where previously there was room for only onc! In particular. the amateur pressed on to the devclopment of the very high frequencies and his experience with five meters is especially representative of his initiative and resourcefulness and his ability to make the most of what is at hand. In 192.4, first amateur experiments in the vicinity of $5(\mathrm{Mc}$. indicated that band to be practically worthless for DN. Nonetheress, great "short-hath" activity eventually came about in the band and new gear was developed to meet its special problems. Begimbing in 1934 a serion of investigations by the hailliant experimonter, Ross IIull (hater QST": calitor), developed the theory of v.h.f. Wave-bending in the lower atmosphere and Ied amateurs to the attamment of better distanes: while occasional manifestations of iomospheric propagation, with still greater distanees, gave the hand uniguely erratic performance. By Pearl Itarbor thousands of a mateurs were spending much of their time on this and the noxt higher band, many having worked hundreds of stations at distances up to several thousand miles. Transeontinental 6meter DX is not uncommon; during solar peaks, even the oceans have been bridged! It is a tribute to these indefatigable amateurs that today's concept of v.h.f. propagation was developed largely through amateur rescarch.

The amateur is constantly in the forefrent of fechnical progross. His incessant curiosity, his eagerness totry anything new, are two reasons. Amother is that ever-growing amatear radio continually overcoowds its frequcney assignments, spurring amateurs to the development and adoption of new techniques to permit the

A corner of the ARRI. laboratory.
accommodation of more stations. For examples, amateurs turned from spark to c.w., desigued more selective receivers, adopted erystal control and pure d.e power supplies. from the ARIRI's own laboratory in 1932 came James lamb's "single-signal" superheterodyne - the world's most advanced high-frequency radiotelegraph receiver and, in 1936 , the "noise-silencer" circuit. Amateurs are now turning to speech "clippers" to reduce bandwidths of 'phone transmissions and "single-sideband suppressed-carrier" sustems as well as even more selertivity in receiving equipment for greater efliciency in spectrum use.

During World War 11, thousands of skilled amateur's contributed their knowledge to the development of seeret radio devices, both in Government and private laboratories. Equally: as important, the prewar technical progress by amateurs provided the keystone for the development of modern military communications equipment. Perhaps more important today than individual contributions to the art is the mass coopperation of the amateur body in Government projects such as propagation studies; cach participating station is in realits. a separate fied laboratory from which reports are made for correlation and analysis.

Emergeney relief, expedition contact, experimental work and countless instances of other forms of public servieo - rendered, as they always have been and always will be, without hope or expectation of material reward - made amateur radio an integral part of our peacetime national life. The importance of amateur participation in the armed forces and in other aspects of national defense have emphasized more strongly than ever that amateur radio is vital to our national existence.

THE AMERICAN RADIO RELAY LEAGUE

The ARRL is today not only the spokesman for amateur radio in this country but it is the largest amateur organization in the world. It is strictly of, by and for amatcurs, is noncommercial and has no stockholders. The members of the league are the owners of the ARRL and Q心T.

The League is pledered to promote interest in two-way amateur communication and experimontation, It is interested in the rolaying of messages by amateur radio. It is conererned with the advanement of the radio art. It stands for the maintemane of fratomatism and a high standard of comduct. It represents the amateur in legislative matters.

One of the la agues principal purposes is to keep amateur aetivities so woll conducted hat the amateur will continue to justify his existence. Amateur radio offers its followers coumtess pleasures and unending satisfaction. It also calls for the shouldering of responsibilitics - the maintenance of bigh standards,

The operating room at W'1 IW.
a coopperative loyalty to the traditions of amateur radio, a dedication to its ideals and principles, so that the institution of amaterur radio may continue to operate "in the public interest, convenience and necessity."

The operating territory of ARIRL is divided into one (amadian and fifteen ['. A. divisions. The affairs of the League are managed by a Board of Directors. One director is elected every two years by the membership of cach IS. S. division, and one by the Canadian membership. These directors then choose the president and viecopresident, who are also members of the board. The secretary and treasurer are also appointed by the Board. The directors, as represontatives of the amateurs in their divisions, meet ammally to examine current amateur problems: and formulate AlRRL policies thereon. The directors appoint a general manager to superviso the operations of the League and its headquarters, and to carry out the policies and instructions of the Board.

ARRI. owns and publisher the monthly magazine, QST. Acting as a bulletin of the League's organized activities, $Q S T$ also serves as a medium for the exchange of icleas and fosters amateur spirit. Its technical articles are renowned. It has grown to be the "amateur's bible," as well as one of the foremost radio magazines in the world. Membership dues include a subscription to $Q S T$.

AlRIR maintains a model headquarters amateur station, known as the liram l'ercy Maxim Memorial Station, in Newington, Conn. Its call is W1AW, the call held by Mr. Maxim until his death and later transferred to the League station by a special FCC action. separate transmitters of maximum legal power on each amateur band have permitted the station to be heard regularly all over the world. More important, W'IW transmits on regular schedules bulletins of general interest to amateurs, conducts code practice as a I raining feature, and engages in two-way work on all popular bands with as many amateurs as time permits.

At the headquarters of the league in West llartford, Conn., is a well-equipped laboratory to assist staff members in preparation of technical material for QST and the Ralio Amateur's Kandbook. Among its other ac-
tivities, the League maintains a Communications Department coneerned with the operating aetivities of League members. A large field organization is headed by a Section Communications Manager in each of the League's sevent y threc sections. There are appoint ments: for qualified members as Oflicial Relay Station or Oflicial 'Phone Station for traffic handling; as Oflicial Ohserver for monitoring frequencies and the quality of signals; as Route Manager and 'l'hone Aetivities Manager for the extablishment of trunk lines and networks; as Emergency Coördinator for the promotion of amateur preparedness to cope with natural disasters; and as Official Experimental Station for those pioncering the frequencies abowe 50 Mc. Mimeographed bulletins keep appointees informed of the latest developments. Special activities and contests promote operating skill. A special section is reserved rach month in QST for amateur news from every section of the country.

- amateur licensing in the UNITED STATES

lursuant to the law, FCC has issued detailed regulations for the amateur serviee.

A radio amateur is a duly authorized person interested in radio technique solely with a personal aim and without peeuniary interest. Amateur operator licenses are given to U. S. citizens who pass an examination on operation and apparatus and on the provisions of law and regulations affecting amateurs, and who demonstrate ability to send and receive code. There are four available elasses of amateur license - Novire, Technician, (ieneral (called "Comlitional" if exam taken by mail), and Amateur Dxtra Chass. Each has different requirements, the first two being the simplest and consequently conveying limited privileges as to frequencies available. Exams for Novire, Terhnician and Conditional classes are taken by mail under the supervision of a volunteer examiner. Station licenses are granted only to lieensed operators and permit commurication between such stations for amat teur purposes, i.e., for personal noneommereial aims flowing from an interest in radio technique. An amateur station may not be used for material compensation of any sort nor for broadeasting. Narrow bands of frequencies are allocated exclusively for use by amateur stations. Transmissions may be on any frequency within the assigned bunds. All the frequencies maty be used for c.w. telegraphy; some are avatiable for radiotelephone, others for special forms of trinsmission such as teletype, facsimile, amateur television or radio control. The input to the final stage of amateur stations is limited to 1000 watts and on frequencies below 144 Me, must be ade-quately-filtered direct eurrent. Emissions must be free from spurious radiations. The licensee must provide for measurement of the transmitter frequency and establish a procedure for checking it regularly. A complete log of station operation must be maintained, with specified data.

The station license also authorizes the holder to operate portable and mobile stations subject to further regulations. An amateur station may be operated only by an amateur operator licensee, but any licensed amateur operator may operate any anateur station within the scope of privileges conveyed by the licenses. All radio licensees are subject to penalties for violation of regulations.

Amateur licenses are issued entirely free of charge. They can be issued only to citizens but that is the only limitation, and they are given without regard to age or physical condition to anyone who successfully completes the examination. When you are able to copy code at the reguired speed, have studied basic transmitter theory and are familiar with the law and amateur regulations, you are ready to give serious thought to securing the Government amateur licenses which are issued you, after examination by an FC (C engineer (or by a volunteer, depending on the license elass), through FCC at Washington. A complete up-to-the-minute disrussion of lieense reguirements, and study guides for those preparing for the examinations, are to be found in an ARRI, publication, The Radio Amutcur's Lirense. Manual, available from the Americun Radio Relay League, West Hartford 7, (omin., for 5) (post paid.

LEARNING THE CODE

In starting to learn the code, you should consider it simply another means of conveying

A didah	N dahdit
B dahdididit	O dahdahdah
C dalididahdit	P didahdahdit
D dahdidit	Q dahdahdidah
E dit	R didahdit
F dididahdit	S dididit
G dahdahdit	T dah
H didididit	U dididah
I didit	V didididah
J didahdahdah	W didahdah
K dahdidah	X dahdididah
L didahdidit	Y dahdidahdah
M dahdah	Z dahdahdidit
1 didahdahdahdah	6 dahdidididit
2 dididahdahdah	7 dahdahdididit
3 didididahdah	8 dahdahdahdidit
4 dididididah	9 dahdahdahdahdit
5 dididididit	0 dahdahdahdahdah

Period: didahdidahdidah. Comma: dahdahdididahdah. Question mark: dididahdahdidit. Error:didididididididit. Doubledash:dahdidididah. Wait: didahdididit. End of message: didahdidahdit. Invitation to transmit: dahididah. End of work: didididahdidah. Fraction bar: dahdididahdit.

Fig. 1.1 - The Continental (International Morse) eode.
information. The spoken word is one method, the printed page anothor, and typewriting and shorthand are additional examples. Learning the code is as easy - or as difficult -.. as learning to type.

The important thing in beginning to study. code is to think of it as a language of sommi, never as combinations of dots and dashes. It is easy to "speak", code equivalents by using "dit" and " loh," so that A would be "did/h" (t he " t " is dropped in such combinations). The sound "di" should be staceato; a code character such as " 5 " should sound like a machinegun burst: dididididit! Stress rach "duh" equally; they are underlined or italicized in this text because they should be slightly accented and drawn out.

Take a few characters at a time. Learn them thoroughly in didah language before going on to new ones. If someone who is familiar with code ean be found to "send" to you, either by whistling or by means of a buzzer or code oscillator, enlist his coöperation. Learn the code by listening to it. Don't think about speed to start; the first requirement is to learn the characters to the point where you can recognize each of them without hesitation. Concent rate on any diflicult letters. Learning the code is not at all hard; a simple booklet treating the subject in detail is another of the begimer publications available from the League, and is entitled, Learning the Ratiotelegraph Code, bod postpaid.

- THE AMATEUR BANDS

Amateurs are assigned bands of frequencies at approximate octave intervals throughout the speetrum. Like assignments to all servieces. they are subject to modification to fit the changing picture of world communications needs. Modifications of rules to provide for domestic needs are also occesionally issued by FCO, and in that respert cach anmateur should keep) himself informed by W1AW bulletins, QST reports, or by communiation with ARIRL IIq. concerning a specifice point.

In the adjoining tatble is a summary of the U. S. amateur bands on which operation is permitted as of our press date, Figures are megracycles, A0 means an unmodulated carrier, Al means e.w. telegraphy, A2 is tone-modulated e.w. telegraphy, A3 is amplitude-modulated 'phone, A4 is facsimile, A5 is television, n.f.m. designates narrow-band frequencer- or phase-modulated radiotelephony, and f.m. means frequency modulation, 'phone (including n.f.m.) or telegraphy, F 1 is frequency-shift keying.

80	$3.300-4.000-.41$
meters	3.500-3.800-1.1
	3.800-4.000-. 43 and n.f.m.
	7.000-7.300- A 1
40 ml	7.000-7.200-1.1
	7.200-7.300- ${ }^{\text {d }} 3$ and $n . f . m$.
	14.000-14.350 - . 11
20 m .	$14.000-14.200-\mathfrak{F l}$
	14.200-14.300-A.3 and n.f.m.
	$14.300-14.350-1.1$
	$21.000-21.450-\mathrm{A}$
1.5 m .	$21.000-21.250-11$
	$21.250-21.450-133$ and st.f.m.
11 m .	20.000-27.230-.14. A , A2, A3, A4.f.m.
	$28.000-29.700-.11$
$10 \mathrm{m}$.	$28.500-29.700-13$ and n.f.m.
	29.000-29.700-f.11.
	50-54 - A1, A2, A3, A4, и.f.m.
(i) 11.	$51-54-.13$
2 m .	144-148) A6, A1, A2, A3, A4. f.m.
	220-225) Ab, A1, A2, A3, At. f.til.
	$\left.\begin{array}{c}420-450 \\ 1.215-1.300\end{array}\right\} \quad \backslash 0, A 1, A 2, A 3, A 4, A 5$,
	$1,215-1,300$ $2,300-2,450$
	3,300-3,500
	B,650-5,925 A6, A1, A2, A3, A4, A5,
	10,000-10,500 f.m., pulse
	$21.000-22.000$
	All abowe 30,000

: Input powror must not exceed 50 watts.
In addition, A1 and A: on portions of 1.800-2.000, an follows:

| Area | | Power (inntes) |
| :--- | :---: | :---: | :---: |
| Mund, ke. | Day Night | |

* Bxeent in state of Washington where daytime nower limited to 200 watts and nighttime power to 50 watts.

Novice licensees may use the following frequencies transmitters to be crystal-controlled and have a maximum power input of 75 watts.

$3.700-3.750$	$A 1$	$21.100-21.2 .50$	$A 1$
$7.150-7.200$	$A 1$	$115-147$	$A 1, A 2$,
			$A 3, f .11$.

Technician lieonsees are permitted ath amateur privileges in 50 Me. and in the binds 220 Mc. and above.

Electrical Laws and Circuits

- ELECTRIC AND MAGNETIC FIELDS

When something orrurs at one point in spate bocause something else happened at another point, with no visible means by which the "cause" can be related to the "effece", we saty the two events are comered be a field. The fields with which we are roncemed are the electric and magnetic, and the eombination of the two called the electromagnetic field.

A field has two important propertios, intensity (magnitude) and dirertion. The field exerts a force on an object immersed in it; this force represents potential (rady-to-be-used) energy, so the potential of the field is a measure of the field intensity. The direction of the field is the direction in which the object on which the force is exerted will tend to move.

An electrically-charged objecet in an elecetrie, field will be acted on by a force that will tend to move it in a diredion determined by the dirertion of the field. Nimilarly, a magnet in a magnetie field will be subjert to a force. Hererone has seen demonstrations of magnetic fields with porket magnets, so intensity and direction are not hard to grasp.

I "statie" field is one that neither moves nom" (hanges in intensity. such a field (an be set up by a stationary electric charge (electrostatic field) or be a stationary magnet (magnetostatic field). But if either an eloctric or magnetic field is moving in space or changing in intensity, the motion or change sets up the other kind of field. That is, a changing eloctric fiold sets up a magnotic field, and a changing magnetio field gen(rates an electrin field. This intervelationship) botween mannetic and electric fields makes possible such things as the electromagnet and the electric motor. It also makes possible the electromagnetic waves by which radion communication is carried on, for such waves are simply traveling fields in which the energy is alternately handed back and forth between the electric and magnetie fields.

Lines of Force

Athough no one knows what it is that composes the field itself, it is usoful to invent a picture of it that will help in visualizing the forees and the way in which they ant.

I field can be pietured as being made up of lines of force, or flux lines. These are purely imagimary threads that show, bey the direction in which they lie, the dieection the objeret on
which the forer is exerted will move. The number of lines in a chosen eross section of the fioh is a measure of the intersit! of the force. The momber of lines por square inch, or per square centimeter, is called the flux density.

- ELECTRICITY AND THE ELECTRIC CURRENT

liverything physical is built up of atoms, particless son small that they cannot be seen even through the most powerful microseope. But the atom in turn consists of several different kinds of still smaller partieles. One is the electron, crsentially a small particle of electricity. The puantity or charge of electricity represented by the electron is, in fact, the smallest quantity of electricity that can exist. The kind of electricity insociated with the electron is ealled negative.

In ordinary atom eonsists of a central core ralled the nucleus, around which one or more electrons circulate somewhat as the earth and other planets eirculate around the sun. The nucleus has an electric charge of the kind of electricity called positive, the amount of its charge being iust exactly equal to the sum of the negative charges on all the electrons associated with that nucleas.

The important fact about these two "apposite" kinds of electricity is that they are strongly attracted to each other. Aso, there is a strong force of repulsion botween two charges of the same kind. The positive nurleus and the negative electrons are attracted to each other, but two electrons will be repelled from each other and so will two nuclei.

While in a normal atom the positive charge on the nurleus is exactly halanced by the negative charges on the electrons, it is possible for an atom toluse one of its electrons. When that happens the atom has a little less negative charge than it should - that is, it has a net positive rharge. such an atom is said to be ionized, and in this case the atom is a positive ion. If an atom picks up an extra electron, as it sometimes does, it has a net negative charge and is called a negative ion. A positive ion will attract any stray clectron in the vicinity, including the extra one that may be attached to a nearby negative ion. In this way it is possible for electrons to travel from attom to atom. The movemont of ions or electroms constitutes the electric current.

The amplitude of the current (that is, its intensity or magnitude) is determined by the rate at which oleretrie wharge - an accumblation of elec-
trons or ions of the same kind - moves past a point in a circuit. Since the charge on a single clectron or ion is extremely small, the number that must move as a group to form even a tiny current is almost inconceivably large.

Conductors and Insulators

Atoms of some materials, notably metals and acids, will give up an electron readily, but atoms of other materials will not part with any of their electrons even when the electric force is extremely strong. Materials in which electrons or ions can be moved with relative case are called conductors, while those that refuse to permit such movement are called nonconductors or insulators. The following list shows how some common materials divide between the conductor and insulator classifications:

Conductors	Insulaturs			
Metals	Dry Air			
Carbon	Wood			
Aeids	Porcelain			
	Textiles			
	Glass			
	Rulber			
	Resins			
Electromotive				Force

The electric force or potential (called electromotive force, and abbreviated e.m.f.) that canses current flow may be developed in several ways. The action of certain chemical solutions on dissimilar metals sets up an e.m.f.; such a combination is called a cell, and a group of cells forms an electric battery. The amount of current that such cells can carry is limited, and in the course of current flow one of the motals is caten away. The amomit of electrical energy that can be taken from a battery eonsequently is rather small. Where a large amount of energy is needed it is usually furnished by an clectric generator, which develops its c.m.f. by a combination of magnetic and mechanical means.

In pieturing current flow it is natural to think of a single, constant foree causing the clectrons to move. When this is so, the electrons always move in the same direction through a path or circuit made up of conductors eonnected together in a continuous chain. Such a curront is ealled a direct current, abbreviated d.c. It is the type of current furnished by batterios and by certain types of gencrators. However, it is also possible to have an e.m.f. that periodically reverses. With this kind of c.m.f. the current flows first in one direction through the cireuit and then in the other. Such an e.m.f. is called an alternating e.m.f., and the current is called an alternating current (ab)beviated a.c.). The reversals (alternations) may occur at any rate from a few per second up to several billion per second. Two reversals make a cycle; in one cyele the foree ants first in one direction, then in the other, and then returns to the first direction to begin the next evele. The number of cyeles in one second is called the frequency of the altemating current.

Direct and Alternating Currents

The difference between direet current and alternating current is shown in Fig, 2-1. In these graphs the horizontal axis measures time, increasing toward the right away from the vertical axis. The vertical axis represents the amplitude or strength of the current, increasing in either the up or down direction away from the horizontal axis. If the graph is above the horizontal axis the current is flowing in one direction through the circuit (indicated by the $+\operatorname{sign}$) and if it is below the horizontal axis the current is flowing in the reverse direction through the eircuit (indicated by the - sign). Fig. 2-1 1 shows that, if wr close the circuit - that is, make the path for the current eomplete - at the time indicated by x, the current instantly takes the amplitude indicated by the height A. After that, the current continues at the same amplitude as time goos on. This is an ordinary direct current.

In Fig. 2-1B, the current starts flowing with the amplitude A at time X, continues at that. amplitude until time Y and then instantly ceases. After an interval $Y Z$ the current again begins to flow and the same surt of start-and-stop performance is repeated. This is an intermittent direct current. We could get it by altemately closing and opening a switeh in the circuit. It is a direct current because the direction of current flow does not change; the graph is always on the + side of the horizontal axis.

In Fig. 2-1C the eurent starts at zero, inreases in amplitude as time goes on until it reaches the amplitude A_{1} while flowing in the + direstion, then deereases until it drops to zero amplitude once more. At that time (X) the

(B)

(C)

Fig. 2.1 - Three types of current flow. A - direct rurrint: B - intermittent direct current; (: - altermat. ing current.
direction of the eurrent flow reverses; this is indicated by the fact that the next part of the graph is below the axis. As time goes on the amplitude increases, with the current now flowing in the direction, until it reaches amplitude A_{2}. Then the amplitude docreases until finally it drops to zero ($\%$) and the direction reverses once more. This is an altermating current.

Waveforms

The type of altemating current shown in lig. $2-1$ is known as a sine wave. The variations in many a.e. waves are not so smooth, nor is one half-cycle necessarily just like the preceding one in shape. However, these complex waves can be shown to be the sum of two or more sine waves of frequencies that are exact integral (whole-mumber) multiples of some fower frequency. The lowest frequency is called the fundamental frequency, and the higher frecpuencies (2 times, 3 times the fundamental frequency, and so on are called harmonics.

Fig. 2-2 shows how a fundamental and a second harmonie (twice the fundamental) might add to form a complex wave. Simply be changing the relative amplitudes of the two wabes, as well as the times at which they pass through zero amplitude, an infinite mumber of waveshapes can be constructed from just a fundamental and second harmonic. Wiaves that are still more complex can be constructed if more harmonics are used.

Electrical Units

The unt of electromotive force is called the volt. An ordinary flashlight rell gencrates an e.m.f. of about 1.5 volts. The e.m.f. commonly supplied for domostio lighting and power is 11.5 volts, usually a.c. having a frequenery of 60 cyeles per second. The woltages used in madio rereiving and transmitting circuits range from a few volts (usually a.c.) for filament heating to as high as a few thousand d.e. volts for the operation of power tubes.

The flow of electric current is measured in amperes. One ampere is equivalent to the movement of many billions of electrons past a point in the eireuit in one serond. Currents in the woighborhood of an ampere are reguired for heating the filaments of small power tubes. The direat currents used in amateur radio equipment usually are not so large, and it is customary to measure such currents in milliamperes. Onc milliampere is equal to one one-thousindth of an ampere, or 1000 milliamperes equals one ampore.

A "d.e. ampere" is a measure of a storady corrent, but the "ace. ampere" must measure a current that is comtinually varying in amplitude and periodieally reversing direction. To put the two on the same basis, an a.c. ampere is defined as the amount of current that will cause the same hating effect (see later section) as one ampere of steady direct rument. For sine-wate a.c., this effective (or r.m.s.) value is equal to the marimam amplitude (A_{1} or A_{2} in Fig. 2-1C) multiplied by 0.707 . The instantaneous value is the value

Fip. 2-2 - A complex waveform. A fumdamental (top) and second harmonie (eenter) added together, point by print at earh instant, result in the waveform shown at the botiom. When the two components hat ve same polarity at a selected instant. The rosultant is the simple sum of the two. When they have oprosite polarities, the resultant is the difference; if the megative-polarity comproment is farger, the resulatat is negative at that instant.
that the current (or voltage) has at any selerted instant in the cyrle.

If all the instantaneous values in a sine wave are averared over a lulf-corle, the rosulting figure is the average value. It is equal to 0.636 times the maxinum amplitude. The nverage value is useful in commertion with rectilier systems, as desmibed in a later chapter.

- FREQUENCY AND WAVELENGTH

Frequency Spectrum

Frequencies ranging from about 15 to 15,000 eycles per second are called audio frequencies, berause the vilmations of air particles that our ears recognize as sounds oceur at a similar rate. Tudio frequencies (abbreviated a.f.) are used to artuate loudspeakers and thus ereate sound waves.

Prequencies above about 15,000 cocles are called radio freguencios (r.f.) because they are useful in radio transmission. Frequencies all the way up to and beyond $10,000,000,000$ (eves have been used for radio purposes. It radio froquencies the mumbers berome so large that it becomes convenient to use al larger unit that the cye. Two such units are the kilocycle, which is egulal to 1000 (eycles and is abbreviated kc., and the megacycle, which is equal to $1,000,000$ eyrles or 1000 kilorycles and is abbreviated Mc.

The various radio frequencies are divided off into rlassifications for ready identification. These classifications, listed below, constitute the frequency spectrum so far as it extends for radio purposes at the present time.

Frequency	Classification	Abbreriation
10 to 30 kc .	Very-low frequencies	v.l.f.
30 to 300 kc .	Low fryumenes	1.f.
300 to 3000 kc .	Medium freguencies	m.f.
3 to 30 Me .	High frequencies	h.f.
30 to 300 Mre .	Very-high frequencies	v.h.f.
300 to 3000 Mc.	L'ltrahigh frequencies	u.h.f.
3000 to $30,000 \mathrm{Mc}$.	Superhigh frequencies	s.h.f.

Wavelength

Radio waves travel at the same speed as light - 300,000,000 meters or about 186,000 miles a second in space. They can be set up by a radiofrequency current flowing in a circuit, because the rapidly-changing current sets up a mannetic field that changes in the same way, and the varying magnetic field in turn sets up a varying electric field. And whenever this happens, the two fields move outward at the speed of light.
suppose an r.f. current has a frequeney of $3,000,000$ cycles per seeond. The fields will go through complete reversals (one cycle) in $1 / 3,000,000$ second. In that same period of time the fields - that is, the wave - will move $300,000,000 / 3,000,000$ meters, or 100 meters. ley the time the wave has moved that distance
the next cycle has begun and a new wave has started out. The first wave, in other words, rovers a distance of 100 meters before the beginning of the next, and so on. This distance is the wavelength.

The longer the time of one cycle - that is, the lower the frequency - the greater the distance occupied by each wave and hence the longer the wavelength. The relationship between wavelength and frequency is shown by the formula

$$
\lambda=\frac{: 300,000}{f}
$$

where $\lambda=$ Wavelength in meters
$f=$ Frequency in kilocycles
or

$$
\lambda=\frac{300}{f}
$$

where $\lambda=$ Wavelength in meter:
$f=$ Frequency in megacycles
Example: The wavelength corresponding to a frequency of 3650 kilocyeles is

$$
\lambda=\frac{300,000}{36.50}=8.2 .2 \text { meters }
$$

Resistance

Given two eonductors of the same size and shape, but of different materials, the amount of current that wiil flow when a given e.m.f. is applied will be found to vary with what is called the resistance of the material. The lower the resistance, the greater the current for a given value of e.m.f.

Resistance is measured in ohms. A eireuit has a resistance of one ohm when an applied e.m.f. of one volt rauses a current of one ampere to flow. The resistivity of a material is the resistanee, in ohms, of a cube of the material measuring one entimeter on ach edge. One of the best concluctors is eopper, and it is frequently ronvenient, in making resistance calculations, to compare the resistance of the material under consideration with that of a copper ronductor of the same size and shape. Table 2-I gives the ratio of the resistivity of varions conductors to that of copper.

The longer the path through which the current flows the higher the resistance of that emoductor. For direct current and low-frequency alternating

(urrents (up to a few thousand cycles per second) the resistance is inversely proportional to the cross-sectional area of the path the current must travel; that is, given two conductors of the same material and having the same length, but differing in eross-sectional area, the one with the larger area will have the lower resistance.

Resistance of Wires

The problem of determining the resistance of a round wire of given diameter and length - or its opmosite, finding a suitable size and length of wire to supply a desired amount of resistancecan be casily solved with the help, of the copperwire table given in a later chapter. This table gives the resistance, in ohms per thousand feet, of eath standard wire size.

$$
\begin{aligned}
& \text { dixample: Suphose a resistance of 3.5 ohms is } \\
& \text { needed and some No. } 28 \text { wire is on hand. The } \\
& \text { wire table in (hapter } 20 \text { shows that No. } 28 \text { has } \\
& \text { a resistance of } \mathbf{i f f . 1 7} \text { ohtus per thousaml fert. } \\
& \text { Since the desired resistance is 3.5 ohms, the } \\
& \text { length of wire required will be } \\
& \frac{3.5}{66.17} \times 1000=5.2 .89 \mathrm{fent} .
\end{aligned}
$$

Or. suppose that the resistance of the wire in the eireuit must not exceed 0.05 ohm and that the length of wire required for making the connections totals its feet. Then

$$
\frac{14}{1000} \times R=0.05 \text { ohm }
$$

where R is the maximum allowable resistance in ohms per thousand feet. Rearranging the formula gives

$$
R=\frac{0.05 \times 1000}{14}=3.57 \mathrm{ohms} / 1000 \mathrm{ft} .
$$

Reference to the wire tahbe shows that No. 15 is the smallest size having a resistance less than this valua
When the wire is not copper, the resistance values given in the wire table should be multi-

Typen of resistors used in radio equipment. 'Those in the forexroum with wire leads are carlon types, ranging in sige from $1 / 2$ watt at the left to 2 watt- at the right. 'Ilwe larger resistors use resistanee wire woum on ceramic tubes: sizes shown ranue from is wat ts to 100 watts. 'Three are of the adjustalle type, having a sliding contact on an expored section of the resistance winding.

plied by the ratios given in Table $2-1$ to ohtain the resistance.

Dxample: If the wire in the first example were iron instead of copmer the length reguired for 3.5 ohtus would be

$$
\frac{3 . \overline{3}}{66.17 \times 5.65} \times 1000=9.35 \text { feet. }
$$

Temperature Effects

The rexistance of a conductor changes with its temperature. Although it is seldom necessary to consider temperature in making resistance raldalations for amateur work, it is well to know that the resistance of practically all metallie ronductors increases with increasing temperature ('arbon, howeror, ads in the opposite way; its resistance decreases when its temperature risers. The temperature colfort is important when it is neressary to maintain al constant resistance under all ronditions. Special materials that have little or no change in resistance over a wide temperature range are used in that case.

Resistors

A "package" of resistance made up into a single unit is called a resistor. Resistors having the same resistance value may be considerably different in size and construetion. The flow of current through resistance causes the eonductor to become heated; the higher the resistance and the larger the current, the greater the amount of heat developed. Ikexistors intended for camying large currents must be physically large so the heat can be madiated quickly to the surrounding air. If the resistor does not get rid of the heat quirkly it may reuch a temperature that will canse it to melt or burn.

Skin Effect

The resistance of a conductor is not the same for alternating current as it is for direct current. When the current is alternating there are internal efferts that tend to force the current to flow mostly in the outer parts of the conductor. This derreases the effective cross-sectional area of the conductor, with the result that the resistance increases.

For low audio frequencies the morase in resistance is umimportant, but at radio frequencoss this skin effect is so great that practically all the current flow is confined within a few thowsandths of an inch of the conductor surface. The r.f. resistance is consequently many times the d.e. resistance, and incroses with increasing frequency. In the ref. range a condurtor of thin tubing will have just as low resistance an a solid conductor of the same diameter, bereate material not elose to the surfare carries practically no current.

Conductance

The reciprocal of resistante (that is, $1 / R$) is called conductance. it is usually represented by the symbol (i. A circuit having large combluctane has low resistance, and vice versa. In radio work the term is used chiefly in connection with vacuum-tube characteristies. The unit of conductance is the mho. 1 resistance of one ohm has a conductance of one mho, a resistance of 1000 ohms has a conductance of 0.001 mho, and so on. A unit frequently used in comertion with vachum tubes is the micromho, or one-millionth of a mho. It is the conductance of a resistance of one megohm.

OHM'S LAW

The simplest form of electric circuit is a battery with a resistance eomerted to its tommals, is shown by the symbols in Fig. $2-3$. A complete circuit must have an unbroken path so current

Fig. 2-3- A simple circuit consisting of a bat. tery and resistor.

can flow out of the battery, through the apparatus connected to it, and back into the battery. The circuit is broken, or open, if a comection is removed at any point. A switch is a chevice for making and breaking eonmections and thereby elosing or opening the circuit, either allowing current to fow or preventing it from flowing.

TABLE 2-II Conversion Factors for Fractional and			
To change from	To	irive by	Muhiply by
1 nits.	Niara-anits Milli-mits Kilo-anits Mrga-umit	$\begin{gathered} 1000 \\ 1.000 .000 \end{gathered}$	$\begin{gathered} 1,12061,000 \\ 10000 \end{gathered}$
Micro-units	$\underset{\substack{\text { Milli-mits } \\ \text { Inits }}}{\text { nin }}$	$\begin{aligned} & 1000 \\ & 1,049,0000 \end{aligned}$	
Milli-units	Micrormits Inits	1000	1000
Kilo-units	Inits Drea-units	1000	1000
Mewa-units	Inits Kilu-units		$\begin{gathered} 1,000,000 \\ 1000 \end{gathered}$

The values of current, voltage and resistance in a circuit are by no means independent of earh other. The relationship between them is known as Ohm's Law. It can be stated as follows: The current flowing in a circuit is directly proportional to the applied e.m.f. and inversely proportional to the resistance. Fxpressed as an equation, it is

$$
I \text { (amperes })=\frac{E(\text { volts })}{R(\text { ohms })}
$$

The equation above gives the value of eurrent when the voltage and resistance are known. It may be transpesed so that each of the three quantities may be found when the other two are known:

$$
E=I R
$$

(that is, the voltage acting is equal to the eurrent in amperes multiplied by the resistance in ohms) and

$$
R=\frac{E}{I}
$$

(or, the resistance of the circuit is equal to the applied voltage divided by the current).

All three forms of the equation are used almost eonstantly in radio work. lt must be remenbered that the quantities are in volts, ohms and anpres; other units c:mnot be used in the equations without first being eonverted. For example, if the current is in milliamperes it mast be changed to the equivalent fraction of an ampere before the value can be substituted in the equations.

Table 2-11 shows how to convert between the various units in common use. The prefixes attarhed to the basio-unit mame indicate the nature of the unit. These prefixes are:

$$
\begin{aligned}
& \text { micro - one-millionth (abbreviated } \mu \text {) } \\
& \text { milli - one-thousandth (abbreviated } m \text {) } \\
& \text { kilo - one thousand (abbreviated } / \text {) } \\
& \text { mega - one million (abbreviated } l \Gamma \text {) }
\end{aligned}
$$

For example, one microvolt is one-millionth of a volt, and one megohm is $1,000,000$ ohms. There are therefore $1,000,000$ microvolts in one volt, and 0.000001 megohm in one ohnı.

The following examples illustrate the use of Ohm's Law:

The eurrent flowing in a resistanee of 20,000 ohms is 150 milliamperes. What is the voltare? Since the voltage is to be found, the erpation to use is $E=I R$. The eurrent uust first be eonverted from milliamperes to aluperes, and reference to the table shows that to do so it is necessary to divide by 1000 . Therefore,

$$
E=\frac{150}{1000} \times 20,000=3000 \text { volts }
$$

When a voltave of 150 is apmlied to a circuit the eurrent is motsured at 2.5 amperes. What is the resistance of the circuit? In this ease l is the unknown, so

$$
h=\frac{E^{\prime}}{I}=\frac{150}{2.5}=60 \mathrm{ohms}
$$

No conversion was neeessary because the voltage and current were wiven in volts and amperes.

How much current will flow if 250 volts is applied to a 5000 -ohm resistor? Since I is unknown

$$
I=\frac{E}{R}=\frac{250}{5000}=0.05 \text { ampure }
$$

Aliliampere units would te more convenient for the eurrent, and 0.0 an anf. $\times 1000=50$ milliatuperes.

SERIES AND PARALLEL RESISTANCES

Very few actual electric circuits are as simple as the illustration in the preceding section. Commonly, resistances are found connected in a

Fig. 2-4-Resistors connected in series and in parallel.

variety of ways. The two fundamental methods of connecting resistances are shown in Fig. 2-4. In the upper drawing, the current flows from the source of e.m.f. (in the direction shown by the arrow, let us say) down through the first resistance, R_{1}, then through the second, R_{2}, and then back to the source. These resistors are conneated in series. The current everywhere in the eircuit has the same value.

In the lower drawing the current flows to the conmon cormection point at the top of the two resistors and then divides, one part of it flowing through R_{1} and the other through R_{2}. At the lower eonnection point these two currents again combine; the total is the same as the current that flowed into the upper common connection. In this case the two resistors are connected in parallel.

Resistors in Series

When a circuit has a number of resistances connerted in series, the total rexistance of the rireuit is the sum of the individal iesistances. If these are numbered R_{1}, R_{2}, R_{i}, ete., then $R \quad($ total $)=R_{1}+R_{2}+R_{3}+R_{4}+$ where the dots indieate that as many resistors as nocessary may be added.

Fxample: Sumpse that three resistors are commeted to a somre of e.m.f. as shown in $1 \% j r$. $2-$-). The e.m.f. is 2.50 wolts, K_{1} is 5000 ohms, liz is 20,000 ohms, and l_{1}^{3} is 8000 ohms. The total resistance is then

$$
\begin{gathered}
R=R_{1}+R_{2}+R_{3}=5000+20,000+8000 \\
=33,0000 h_{1} \mathrm{~ms}
\end{gathered}
$$

The enrrent flowing in the rireuit is then

$$
I=\frac{E}{R}=\frac{2,50}{33,000}=0.007 .57 \mathrm{amp} .=7.57 \mathrm{ma}
$$

(We need not carry calculations beyond three significant figures, and often two will suffice becanse the aceuraty of measurements is sedion better than a few per cent.)

Voltage Drop

Ohm's Law applies to an! part of a cireuit as well as to the whole cirruit. Dithough the rurrent is the same in all three of the resistanmes in the example, the total voltage divides among them. The voltage appearing across each resistor (the voltage drop) can be found from (Ohm's Jaw.
Example: If the voltare across $R_{1}\left(\right.$ Hig. $_{2} 2-i$)
is casled E_{1}, that arross R_{2} is called E_{2}, and that
across R is is ealled $E 3$, then
$E_{1}=I R_{1}=0.00757 \times 5000=37.9$ volts
$E_{2}=I R_{2}=0.00757 \times 20,000=1.51 .4$ volts $E_{3}=I R_{3}=0.007 .77 \times 8000=60.6$ volts.

The apmbied voltage must equal the sum of the individual voltage drops:

$$
\begin{aligned}
E=E_{1}+E_{2} & +E_{3}=37.9+151.4+(60.6 \\
& =249.9 \text { volts }
\end{aligned}
$$

The answor would have bern more nearly exact if the eurrent had been calculated to more decimal places, but as explained abowe a very high order of aceuracy is not neressary

In problems such as this considerable time and trouble can be saved, when the current is small enough to be expressed in milliamperes, if the

resistance is expressed in kilohms rather than ohms. When resistance in kilohnss is substituted directly in Ohm's lan the current will be in milliamperes if the e.m.f. is in volts.

Resistors in Parallel

In a circuit with resistances in parallel, the total resistance is less than that of the lorest value of resistance present. This is because the
total current is always greater than the current in any individual resistor. The formula for finding the total resistance of resistances in parallel is

$$
R=\frac{1}{\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}+\frac{1}{R_{1}}+\cdots \cdot}
$$

where the dots again indieate that any number of rexistors can be combined by the same methoil. for only two resistances in parallel (a very common case) the formula becomes

$$
R=\frac{R_{1} R_{2}}{R_{1}+R_{2}}
$$

Example: If a 500 -ohm resistor is paratleled with one of 1200 ohms, the total resistance is

$$
\begin{aligned}
R=\frac{R_{1} R_{2}}{h_{1}+R_{2}} & =\frac{.00 \times 1200}{.500+1200}=\frac{600, \mathrm{co0}}{1700} \\
& =3 \overline{53} \text { ohms }
\end{aligned}
$$

It is probably easier to solve practical problems by a different method than the "reciprocal of reciprocals" formula. Suppose the three re-

Fig. 2-6 - An example of resistors in parallel. The solu. tion is worked out in the text.
sistors of the previous example are connected in parallel as shown in Fig. 2-6. The same e.m.f., $2: 50$ volts, is applied to all three of the resistors. The current in each can be found from Ohm's Law as shown bolow, f_{1} being the current through $R_{1}, I_{\text {: }}$ the current through R_{2} and I_{3} the rurrent through R_{s}.

For convoniame. the resistance will the expressed in kilohms so the courrent will be in uilliamperes.

$$
\begin{aligned}
& I_{1}=\frac{E}{R_{1}}=\frac{2.50}{7}=50 \mathrm{ma} \\
& I_{2}=\frac{E}{R_{2}}=\frac{2.50}{20}=12.5 \mathrm{ma} \\
& I_{3}=\frac{E}{R_{3}}=\frac{.2 .50}{8}=31.25 \mathrm{ma}
\end{aligned}
$$

The total eurrent is

$$
\begin{gathered}
I=I_{1}+I_{2}+J_{3}=50+12.5+31.25 \\
=03.7 .3 \text { ma. }
\end{gathered}
$$

'I'he total resistance of the cirenit is therefore

$$
\mathrm{R}=\frac{E}{I}=\frac{250}{(3.75}=2.66 \text { kilohms }(=2660 \mathrm{olin} \mathrm{~m})
$$

Resistors in Series-Parallel

In actual circuit may have resistances both in parallel and in series. To illustrate, we use the same three resistances again, but now conneeted as in Fig. 2-7. The method of solving a cireuit such as Fig. $2-\overline{7}$ is as follows: Consider R_{2} and R_{3} in parallel as though they formed a single resistor. Find their equivalent resistance. Then this resistance in series with R_{1} forms a simple series circuit, as shown at the right in Fïg. 2-7.

Fig. 2-7-An example of resistors in series-parallel. The equivalent cirenit is at ther right. The solution is worhed out in the text.

Example: The first step is to find the equivalent resistance of R_{2} and R_{3}. From the formula for two resistances in parallel.

$$
\begin{aligned}
R_{\mathrm{cq} .}= & \frac{R_{2} R_{3}}{R_{2}+R_{3}}=\frac{20 \times 8}{20+8}=\frac{160}{28} \\
& =5.71 \text { kilohuss }
\end{aligned}
$$

The total resistanee in the eireuit is then

$$
\begin{aligned}
\mathrm{R}=R_{1} & +R_{\text {eq. }}=5+5.71 \text { kilolms } \\
& =10.71 \text { kilohms }
\end{aligned}
$$

The current is

$$
I=\frac{E}{R}=\frac{250}{10.71}=23.4 \mathrm{ma}
$$

The voltage drops across R_{1} and $R_{\text {el }}$ are
$E_{1}=I R_{1}=23.4 \times 5=117$ volts
$E_{2}=I R_{\mathrm{eq}}$. $=23.4 \times 5.71=133$ volts
with sufficient aceuracy, These total 250 volts, thus checking the calculations so far, becanse the sum of the voltage drons must equal the applied voltage. sinere E_{2} appears across both R_{2} and R_{3},

$$
\begin{aligned}
& I_{2}=\frac{E_{2}}{R_{2}}=\frac{133}{20}=6.75 \mathrm{ma} \\
& I_{3}=\frac{E_{2}}{R_{3}}=\frac{133}{8}=16.6 \mathrm{ma}
\end{aligned}
$$

where $I_{2}=$ Current through R_{2}
$J_{3}=$ Current through R_{3}
The total is 23.35 mat, which cheeks closely enough with 23.4 ma., the current through the whole circuit.

POWER AND ENERGY

Power - the rate of doing work - is equal to voltage multiplied by current. The unit of electrical power, called the watt, is equal to one volt multiplied by one ampere. The equation for power therefore is

$$
I^{\prime}=E I
$$

where $P^{\prime}=$ P'ower in watts
$E=$ E.m.f. in volts
$I=$ Current in amperes
Common fractional and multiple units for power are the milliwatt, one one-thousindth of a watt, and the kilowatt, or one thousand watts.

> Example: The plate voltage on a transmitting vacum tube is 2000 volts and the phate eurrent is 350 milliameres. ('The eurrent must be changed to amperes hefore substitution in the formula, and so is 0.35 amp.) Then

$$
P=E I=2000 \times 0.35=700 \text { watts }
$$

By substituting the Ohm's Law equivalents for E and I, the following formulas are obtained for power:

$$
\begin{aligned}
& P=\frac{E^{2}}{R} \\
& P=I^{2} R
\end{aligned}
$$

These formulas are useful in power calculations
when the resistance and either the current or voltage (but not both) are known.

Fxample: How much power will be used up in a 4000 -ohn resistor if the voltage applied to it is "200 volts." From the equation

$$
I=\frac{E^{2}}{R}=\frac{(200)^{2}}{4000}=\frac{40,000}{4000}=10 \text { watts }
$$

Or, suppose it eurrent of 20 milliamperes flows through a 300 -ohm resistor. Then

$$
\begin{gathered}
P=I^{2} R=(0.02)^{2} \times 300=0.000 .1 \times 300 \\
=0.12 \text { watt }
\end{gathered}
$$

Note that the current was changed from milliamperes to amperes before substitution in the formula.
Filectrical] [rower ith a resistabue is turnorl into heat. The greater the power the more rapidly the hat is generated. Resistors for radio work are made in many sizes, the smallest being rated to "dissipate" (or carry safely) about $1 / 4$ watt. The largest resistors used in amateur equipment will dissipate about 100 watts.

Generalized Definition of Resistance

Electrical power is not always turned into heat. The power used in running a moter, for example, is converted to mechanical motion. The power supplied to a radio transmitter is largely converted into radio waves. Power applied to a loudspeaker is changed into sound waves. But in every awe of this kind the power is completely "used up" - it camot be recovered. Also, for proper operation of the devier the power must be sup)plied at a definite ration of voltage to current. Both these features are charaeteristies of resistance, so it ran be said that any device that dissipates power has a definite value of "resistance." This concelt of resistance as something that absorbs power at a definite voltage/curent ratio is very useful, since it permits substituting a simple resistance for the load or power-eonsuming part of the device receiving power, often with considerable simplification of calculations. Of course, every electrical device has some resistanee of its own in the more narrow sense, so a part of the power supplied to it is dissipated in that resistance and hence appears as heat even though the major part of the power may be converted to another form.

Efficiency

In devices such ats motors and vacum tuber, the object is to obtain power in some other form than heat. Therofore power used in heating is considered to be a loss, becunse it is mot the useful power. The efficiency of a device is the useful power output (in its converted form) divided by the power input to the deviere. In a vacuum-tube transmitter, for example, the object is to convert power from a d.e. source into a.c. power at some radio frequency. The ratio of the r.f. power outpit to the d.e. input is the efficiency of the tube. That is,

$$
E f f .=\frac{P_{0}}{P_{1}}
$$

where $E f f$. $=$ bifficiency (as a decinal)
$I_{0}=$ Power output (watts)
$l_{\mathrm{i}}=$ Power input (watts)

$$
\begin{aligned}
& \text { Wxample: If the d.c. input to the tube is } 100 \\
& \text { watts and the r.f. power ontput is GO wat ts, the } \\
& \text { efficinney is } \\
& \qquad E f f .=\frac{P^{\prime}}{P_{1}}=\frac{60}{100}=0.0
\end{aligned}
$$

Eflienoney is ustably expressed iss a promentage; that is. it toells what per eent of the innut power
 in the above example is former eent.

Energy

In rewidences, the power eompmay's bill is for electric energy, wot for power. What vou pay for is the "ork that olertrivity does for you, wot the rate at which that work is domer.

Wlertrical work is equal to power multiplied by time: the common unit is the watt-hour, which means that a power of one watt has been used for one hour. That is,

$$
W=P T
$$

where $I^{\circ}=$ Energy in watt-hours
$I=$ P'ower in watts
$T=$ Time in hours
Other energy units are the kilowatt-hour and the watt-second. These units should be selfexplamatory.
linergy units are soldom used in amateur practiere, but it is obvious that a small amount of porior used for a long time ran eventually result in a "pmor" bill that is just as large as though a large amount of powor had been used for a very short time.

Capacitance

Suppose two flat motal plates are placed comer to (ach other (but mot touchmg) as shown in Fig. $2-8$. Nommally, the phates will be electrically "neutral"; that is, to electrical charge will be evident on wither phate.

Now suppene that the plates are eommeted to a battery through a switeh, as shown. At the

instant the switeh is rlosed, electrons will be attracted from the upper phate to the positive terminal of the battery, and the same number will be repelled into the lower plate from the negative batery terminal. This electron mowement will eontinue until enough electrons move into one plate and out of the other to make the e.m.f. between them the same as the e.m.f. of the battery.

If the switeh is oprolud after the plates have been rharged, the top phate is left with a doficiency of cectrons and the bottom pate with an exeess. In other words, the plates remain charged despite the fact that the battery no longer is connected. However, if a wire is toluched between the two plates (short-circuiting them) the excess chectrons on the bottom plate will flow through the wire to the upper plate, thus restoring electrical neutrality to both plates. The plates have then been discharged.

The two plates constitute an electrical capacitor or condenser, and from the discussion above it should be clear that a capacitor possesses the property of storing electricity. It should also be clear that during the time the electrons are moving - that is, while the calacitor is being charged or discharged -a current is flowing in the cireuit even though the cirait is "broken" by the gap between the capacitor plates. However, the current flows only during the time of
change and discharge, and this time is usually very shont. There can be no continuous flow of direct emrent "through" a capsector.

The wharge or quantity of electricity that ran le plated on a capasitor is proportional to the applied voltage and to the capacitance or capacity of the eomenser. The larger the plate area and the smaller the spating between the pater the greater the raparitance. The capacitance also depends upon the kind of insulating material between the plates; it is smallest with air insulation, but substitution of other insulating materials for air may increase the capacitance many times. The ratio of the rapacitance with some material other than air between the plates, to the rapacitance of the same condenser with air insulation, is ralled the specific inductive capacity or dielectric constant of that particular insulating material. The material itself is called a dielectric. The dielectrice constants of a number of materials commonly used as dielectries in

TABLE 2-III		
Dielectric Constants and	Breakdown	Voltages
Material	Diclectris Constant	Puncture Voltage*
. ir	1.0	19.8-29.8
Inimag A ${ }^{196}$	5.7	210
Bakrlite (paper-hase)	3.8-5.5	6.01)-750
Bakrlite (mica-filled)	5-6	4.5-600
Ciclunoid	4-16	
Ciellulose aretate	$6-8$	300-10001
l'iber	5-7.5	150-180
F゙ormira	4.6-4.9	450
(Bass (window)	7.0-8	$200-250$
('lass (photographie)	7.5	
Class (lyrex)	4.2-4.9	335
lucite	$2.5-3$	430-500
Mica	$2.5-8$	
Mioa (clear India)	6.4-7.5	600-1500
Draalex	7.1	250
Paper	$2.0-2.0$	1250
Polyothylene	2.3-2.4	1000
Polystyrene	$2.4-2.9$	$5(1)-2500$
Porvelain	6. $2-7.5$	40-100
Rablere (hard)	2-3.5	4.50
Stratitr (low-lowa)	4.4	1.50-315
W ond (dry wak)	$\because .86$	

capacitors are given in Table 2-III. If a sheet of photographic glass is substituted for air between the plates of a capacitor, for example, the eapacitance will be increased 7.5 times.

Units

The fundamental unit of capacitance is the farad, but this unit is much too large for practical work. ('apacitance is usually measured in microfarads (abbreviated $\mu \mathrm{f}$.) or micromicrofarads ($\mu \mu \mathrm{f}$.). The mirrofarad is one-millionth

Fig. 2.9-A multiple-plate capacitor. Alternate platess are connected together.
of a farad, and the micromicrofarad is one-millionth of a mierofarad. Capacitors nearly alwats have more than two plates, the altemate platios being connected together to form two sets as shown in Fig. 2-9. This makes it possible to attain a farly large capacitance in a small space, since several plates of smalker individual area can bo stacked to form the equivalent of a single large plate of the same total aroa. Also, all platers, except the two on the ends, are exposed to plates of the other group on both sules, and so are twice as effective in incroasing the cuparitance.

The formula for calculating cepacitane is:

$$
C=0.224 \frac{K A}{d}(n-1)
$$

where ${ }^{\prime}=($ (inparitance in $\mu \mu \mathrm{f}$.
$K=$ Dielertric constant of material hetween plates
$A=$ Area of one side of one plate in square inches
$d=$ Separation of plate surfues in inches
$u=$ Number of platess

If the plates in one gronp do not have the same area as the plates in the other, use the area of the smaller plates.

Example: A "variable" cajneitor has a semicirentar plates on its rotor, the dianeter of the semicirele being 2 inches. The stator has 6 roetangular plates, with a semicireular eut-out to elear the rotor shaft, but otherwise large enough to face the entire area of a rotor plate. The dianeter of the eut-ont is $1 / 2$ inch. The distance between the adjacent surfaces of rotor and stator phates is $1 / 8$ ineh. The dielectric is air. What is the capacitance with the plates fully meshed?
In this cime, the "effective" area is the area of the rotor plate minus the surea of the ruteout in the stator plate. The area of either semieirele is $\pi r^{2} / 2$. where r is the radins. The area of the rotor plate is $\pi / 2$, or 1.57 sipuare inches (the radius is 1 ineh). The areat of the eut-ont is $\pi(1 / 4) 2 / 2=\pi / 32=0.10$ s(fuare inch, ablroximately. The "effective" atrea is thercfore $1.57-$ $0.10=1.47$ shatare inches. 'lhe rapateitathee is thercfore

$$
\begin{gathered}
C=0.224 \frac{K .1}{d}(n-1)=0.221 \frac{1 \times 1.47}{0.125}(13-1) \\
=0.29 .4 \times 11.76 \times 12=31.6 \mu \mu \mathrm{dd} .
\end{gathered}
$$

(The answor is only approximate, because of the difliculty of accurate measurement, plus a "fringing" effect at the edges of the plates that makes the actual capacitancer a little highor.)
The usofulness of a rapacitor in electrical rireuits lios in the fact that it rem be changed with electricity at one time and then diseharged at a later time. In other worls, it is capable of storing electrical energy that con be released later when it is needed; it is ann "electrical reservoir."

Capacitors in Radio

The types of capacitors used in radio work differ considerably in phesieal size, construction, and caparitance. Some representative types are shown in the photograph. In variable caparitors (almost ahays constructed with air for the (lielectric) one set of plates is made movable with respert to the other set so that the rapacitance can be varied. Fixed condensers - that is, having fixed capacitance - also can be made with metal plates and with air as the diolectric, but usuatly

 brithon row includes, lel't to, right, a high-waltage mica fixed e'apsacilor. a tubular electrolytic. tubular paper. two sizes of "postage"-stamp" micas. a small ceramie type (tomperature compensating), an adjustable capacitor with reramie insulation (for neoutralizing in transmitters). a "Intton" ceramie eanaritor, and an aljustablle "padding" rapacitor. frour sizes of variablife capacitors are shown in the second row. The twoplate capacitor with the mierometer adjustment is used in transmiters. The capacitor enclosed in the metal case is a high-voltage paper type used in poweresupply filters.
are construeted from plates of metal foil with a thin solid or liquid dielectric sandwiched in between, so that a relatively large capacitance can be secured in a small unit. The solid dielectrics commonly used are mica, paper and special ceramics. An example of a liquid dielectric is mineral oil. The electrolytic caparitor uses alumi-num-foil plates with a semilicuid conducting chemical compound between them; the atual dielertric is a very thin film of insulating matterial that forms on one set of plates through electrochenical artion when a d.c. voltage is applied to the eapacitor. The rapacitance obtained with a given phate area in an electrolytio capacitor is very large, compared with capacitors having other dielertries, because the film is so extremely thin - much less than any thickness that is practicable with a solid dielectric.

Voltage Breakdown

When a high voltage is applied to the plates of a capacitor, a considerable fore is exerted on the electrons and nuclei of the dielectrie. Beatuse the dielectric is an insulator the clectrons do not become detached from atoms the way they do in conductors. However, if the force is great enough the dielectric will "break down"; usually it will puncture and may char (if it is solid) and permit current to flow. The breakdown voltage depends upon the kind and thickness of the dielectric, as shown in Table 2-11I. It is not directly proportional to the thickness; that is, doubling the thickness does not quite double the breakdown voltage. If the dielectric is air or any other gas, breakdown is evidenced by a spark or are between the plates, but if the voltage is remowed the are conses and the rapacitor is ready for use again. brakdown will oceur at a lower voltage between pointed or sharp-edged surfaces than betwen rounded and polished surfaees; ronsequently, the breakdown voltage between metal plates of given spacing in air can be increased by buffing the edges of the plates.

Since the dielectric must be thick to withstand high voltages, and since the thicker the dielectric the smaller the caparitance for a given plate area, a high-voltage capacitor must have more plate area than a low-voltage one of the same capacitance. High-voltage high-cupacitanee condensers are physically large.

- CAPACITORS IN SERIES AND PARALLEL

The terms "parallel" and "series" when used with reference to caparitors have the same circuit meaning as with resistances. When a number of raparitors are connected in parallel, as in Fig. $2-10$, the total capacitance of the group is equal to the sum of the individual caparitaneses, so
$C^{\prime}($ total $)=\left(C_{1}+C_{2}+r_{3}+C_{4}+\cdots \cdots \cdots \cdot\right.$
However, if two or more capacitors are commected in serics, as in the seeond drawing,

the total capacitance is less than that of the smallest capacitor in the group. The rule for finding the capacitance of a number of seriesronnerted capacitors is the same as that for finding the resistance of a number of parallelronnected resistors. That is,

$$
C^{v}(\text { total })=-\frac{1}{\frac{1}{r_{1}}+\frac{1}{r_{2}}+\frac{1}{r_{3}}+\frac{1}{C_{4}}}+
$$

and, for only two capacitors in series,

$$
C^{\prime}(\text { total })=\frac{C_{1} C_{2}}{C_{1}+C_{2}^{\prime}}
$$

The same units must be used throughout: that is, all capacitances must be expressed in cither $\mu \mathrm{f}$. or $\mu \mu \mathrm{f}$; you camot use both units in the same equation.

C'apacitors are commented in parallel to obtain a larger total capacitance than is available in one unit. The largest voltage that ean be applied safely to a group of capacitors in parallel is the voltage that can be applied safely to the one having the lurest voltage rating.

When capacitors are connected in series, the applied voltage is divided up among them; the situation is much the same as when resistors are in series and there is a voltage drop across each. However, the voltage that appears across each capacitor of a group connected in series is in inverse proportion to its eapacitance, as compared with the capacitance of the whole group.

Example: Threc eapacitors having capaci-
tances of 1,2 and $4 \mu \mathrm{fd}$., respectively, are con-

Fig. 2-11 - An example of capacitors connected in series. The solution to this arrangement is worked out in the text.
nected in series as shown in Fig. 2-11. The total capburitance is

$$
C=\frac{1}{\frac{1}{C_{1}}+\frac{1}{C_{2}}+\frac{1}{C_{3}}}=\frac{1}{\frac{1}{1}+\frac{1}{2}+\frac{1}{4}}=\frac{1}{\frac{7}{1}}=\frac{4}{7}
$$

$$
=0.571 \mu \mathrm{f}
$$

The veltage across each capacitor is proprortional to the tonal capacitance divided by the capacitance of the condenser in ruestion, so the whate across C_{1} is

$$
E_{1}=\frac{0.771}{1} \times 2000=1142 \text { volts }
$$

Nimbarty. the woltages incross Ce and Campe

$$
E_{2}=\frac{0.571}{2} \times 2000=.571 \text { volts }
$$

$$
E_{3}=\frac{0.531}{4} \times 2000=281 ; \text { volta }
$$

totaling approximately 2000 volts, the applied voltage.
(aphatitors are frequently ambertod in serios fo enable the group to withstand a larger voltage (at the expense of chereased total (atuacitance) than any individual condenser is rated to stand. lowever, as shown by the previous example, the applied voltage does mot divide equally among the caperitors (exaph when all the raperatameres are the same so care must be taken lo see that the voltage rating of no eatpatitor in the group is exceroled.

Inductance

It is possible to show that the flow of current through a comducetor is aceompanied by magnotic effects; a compass needle brought near the eonduetor, for example, will be defleoted from its normal north-south position. The rurrent, in other words, sets up a magnotio field.

If a wiro condactor is formed into a eoif, the stme curbont will set up a stronger numgetia fiold than it will if the wire is straight. Also, if the wire is wound aromad an iron or steol core the field will be still stronger. The relationships betwen the strength of the field and the intensity of the rumpont cansing it is expmessed by the inductance of the comductor or roil. If the same current flows through two roils, for examplo, and it is found that the maguetia field set up by one roil is twice as strong as that set uphe the othor, the fist coil has twioe as murh induretare as the serobal. Inductance is a property of the condactor or eoil and is determined hy its shape and dimernsions. 'The unit of inductance (correxponding to the ohn for rosistance and the fionem for (eapacitume) is the henry. The general tome for a component having indurdanme as its primejpal property is inductor.

If the eurment through a comduretor on ail is made to valey in intensity, it is fomme that an
(.mı.f. will appear aceross the terminals of the conductor or coil. This e.m,f, is entirely separate from the e.m.f, that is rausing the eurrent to flow. The strength of this induced e.m.f. beromes greater, the greater the intonsity of the magnetic fiold and the more rapidy the current (and hemee the field) is made to vary. since the intensity of the mangetic field depends upon the induetance, the indured voltage (for a given cumont intomsity and rate of variation) is proportional to the induetance of the eonduetor or coil.

The induced a.m.f. (sometinoss called back e.m.f.) tends to sond a current through the rireuit in the opposile direetion to the rument that flows because of the external e.m.f. so long as the latter rurrent is incressing. Jowever, if the current absed be the applied e.m.f. decrensis, the induced a.m.f. tends to send rament through the circuit in the same dirertion as the cument from the applied 0. nn.f. The effere of inductance, therefore, is to oppose any change in the current flowing in the eircuit, regardless of the nature of the change. It acoomplishes this by storing energy in its magnetic field when the ceurrent in the cireuit is being increased, and by releasing the stored energy when the current is being decreased.

Indintors for power and radio frefuencies. The two iron-rore coils at the upper left are "chokes" for power-supply filters. 'The three "pie". wound roils at the lower right are usid ats chokes in radio-freguenes cirenits. 'The othar mils are for rif. thom circuits ranging in power from 2.5 watts (o) kilewatt.

The values of inductance used in radio equip)ment vary over a wide range. Inductance of several henrys is required in power-supply (ircuits (see chapter on Power supplies) and to obtain such values of inductance it is necessary to use roils of many turns wound on iron cores. In radio-frequency circuits, the induetance values used will be measured in millihenrys (a millihenry is one one-thousandth of a henry) at low frequencies, and in microhenrys (one one-millionth of a henry) at medium frequencies and higher. Although eoils for radio frequencies may be wound on sperial iron cores (ordinary iron is not suitable) most r.f. coils made and used by ammateurs are of the "air-eore" type: that is, wound on an insulating support consisting of nommagnetio: material.

Pivery conductor has inductance, even though the conductor is not formed into a coil. The inductance of a short length of straight wire is small - but it may not be nogligible, because if the current through it changes its intensity rapidly enough the induced voltage may be appreciable, This will be the case in even a few inches of wire when an alternating current having a frequeney of the order of 100 Mc . or higher is flowing. However, at much lower frequencies the inductance of the same wire could be left out of any calculations because the induced voltage would be negligibly small.

Calculating Inductance

The inductance of air-tome coils may be calculated from the formula

$$
L(\mu \mathrm{~h} .)=\frac{0.2 a^{2} n^{2}}{3 n+3 b+10 c}
$$

where $L=$ Inductance in microhenrys
$n=$ Average diameter of coil in inthes
$b=$ Length of winding in inches
$c=$ Radial depth of winding in inches
$n=$ Number of turns
The motation is explained in Fig. 2-12. The

Fig. 2-12-Coil dimensions used in the inductance formula.

quantity $10 c$ may be neglected if the coil only has one layer of wire.

$$
\begin{aligned}
& \text { Pxample: Assume a coil having 35 tums of } \\
& \text { No. } 30 \text { d.s.c. wire on a form } 1.5 \text { inches in diam- } \\
& \text { eter. Consultinu the wire table, } 35 \text { turns of No. } \\
& 30 \text { d.s.e. will oceupy } 0.5 \text { inch Therefore, } \\
& \text { a }=1.5, b=0.5, n=3.2 \text { and } \\
& \quad L=\frac{0.2 \times(1.5)^{2} \times(3.5)^{2}}{(3 \times 1.5)+(9 \times 0.5)}-11.2 .5 h_{1}
\end{aligned}
$$

To caleulate the number of turns of a singlelaver coil for a required value of inductance:

$$
N=\sqrt{\frac{3 a+9 b}{0.2 u^{2}} \times L}
$$

Fxample: Suppose an inductance of 10 microhenrys is refulired. The form on which the coil is
to be wound has a diameter of one inch and is long enough to areommodate a coil length of $11 / 4$ inches. Then $a=1, b=1.25$, and $L=10$. Sulstituting.

$$
\begin{aligned}
N & =\sqrt{\frac{(3 \times 1)+(9 \times 1.25)}{0.2 \times 12} \times 10} \\
& =\sqrt{\frac{11.2 .5}{0.2} \times 10}=\sqrt{71 \overline{2.5}} \\
& =2(6.0 \text { turns. }
\end{aligned}
$$

A 27-turn coil would be close enough to the required value of inductance, in practical work. Since the eoil will be l.2: inches long, the number of turns per inch will be $27 / 1,25=21.0$. Consulting the wire table, we find that Nis. 18 entamed wire (or any smaller size) can be used. The proper indu-tane is obtained by winding the required number of turns on the form and then adjusting the spacing between the turis to make a unformly-spaced eoil 1.2 inches long.

Inductance Charts

Most inductance formulas lose aceuraty when applied to small eoils (wuch as are used in v.h.f. work and in low-pans filters built for reducing harmonie interference to television) because the conductor thickness is no longer negligible in eomparison with the size of the eoil. Fig. 2-1:3 shows the measured inductance of v.h.f. roils, and may be used as a hasis for rircuit design. Two curves are given: curve 1 is for coils wound to an inside diameter of $1 / 2$ inch; curve B is for coils of $3 / 4$-inch inside diameter. In both curves the wire size is No. 12, winding piteh 8 turns to the inch ($1 / 8$ inch center-to-center turn spacing). The inductance values given include leads $1 / 2$ inch long.

The charts of Figs. 2-14 and 2-15 are useful for rapid determination of the indectance of coils of the type commonly used in radio-frequency circuits in the range $3-30 \mathrm{Me}$. They are hased on the formula above, and are of suffieient aceuracy for most practical work. Given the eoil length in inehes, the curves show the multiplying factor to he applied to the induetance value given in the table below the curve for a eoil of the same ditmeter and number of turns per inch.

Fis. 2-13 - Measured inductance of coils wound with No. 12 bare wire, 8 turns to the ineh. 'Whe salues inclate half-inch leads.

Example: A coil 1 inch in diameter is $11 / 4$ inches long and has 20 turns. Therefore it has 16 turns per inch, and from the table under loig. $2-15$ it is found that the reference inductance for a coil of this diameter and number of turns per inch is $16.8 \mu \mathrm{~h}$. From curve B in the figure the multiplying factor is 0.3 .5 , so the inductance is

The charts also can be used for finding suitable dimensions for a coil having a required value of inductance.

Example: A coil having an inductance of 12 ph. is reguiced. It is to be wound on a form having a diameter of 1 inch, the length a a ailable for the winding being not more than $11 / 4$ inches. From líig. 2-15, the multiplsing factor for a 1-inch diameter coil (curve (3) having the maximan possible lenath of $11 / 4$ inches is $0.3 \overline{5}$. Hence the

Fig. 2-14- lactor to be applied to the inductanee of coils listed in the table below, for coil lengths up to 5 inches.

Coil diameter, Inches	No. of furns per inch	Induclance in μ h.
1!4	4	2.75
	6	6.3
	8	11.2
	10	17.5
	10	42.5
11/2	4	3.9
	6	8.8
	8	15.6
	10	24.5
	16	63
13/4	4	5.2
	6	11.8
	8	21
	10	33
	16	85
2	4	6.6
	6	1.7
	8	26.5
	10	42
	10	108
$21 / 2$	4	10.2
	6	23
	8	41
	10)	1i4
3		
	6	31.5
	8	56
	10	89

number of turns per inch must be chosen for a reference inductance of at least $12 / 0.35$, or $34 \mu \mathrm{~h}$.
From the "Table under Fip. 2-1.5 it is seen that 16 turns per inch (reference inductance $16.8 \mu \mathrm{~h}$.) is too small. C'sing 32 turns per inclı, the multiplying factor is $12 / 68$, or 0.177 , and from curve If this corresponds to a coil length of $3 / 4$ inch. There will be 24 turns in this length, since the winding "pitch" is 32 turns per inch.

Fig. 2-15 - Factor to be applied to the inductance of coils listed in the table helow, ats a function of coil lengoth. Ise curve A for coils marked A. curve B for coil marked B.

Coil diameler. Inches	No. of lurns per inch	Inductaner in μ h.
$\begin{aligned} & 1 / 2 \\ & (.1) \end{aligned}$	4	0.18
	6	0.40
	8	0.78
	10	1.12
	16	2.9
	32	12
$\begin{aligned} & 5 / 8 \\ & (-1) \end{aligned}$	4	0.28
	6	0.62
	8	1.1
	10	1.7
	16	4.1
	32	18
$\begin{aligned} & 3 / 4 \\ & (A) \end{aligned}$	4	0.39
	6	0.87
	8	1.57
	10	2.15
	16	6.4
	3:	20
	4	1.0
(B)	6	2.3
	8	4.2
	10	6.6
	16	16.8
	32	68

IRON-CORE COILS

Permeability

Suppose that the eoil in Fig. 2-16 is wound on an iron core having a cross-sectional area of 2 square inches. When a rertain current is sent through the coil it is found that there are 80,000 lines of force in the core. Since the area is 2 square inches, the flux density is 40,000 lines per square inch. Now suppose that the iron rore is removed and the same curent is maintained in the eoil, and that the flux density without the iron core is found to be 00 lines per square inch. The ratio of the flux density with the given core
material to the flux density (with the same coil and same current) with an air core is called the permeability of the material. In this case the permeability of the iron is $40,000 / 50=800$. The inductance of the coil is increased 800 times by inserting the iron core, therefore.

The permeability of a magnetic material varies with the flux density. At low flux densities (or with an air core) increasing the current through the coil will cause a proportionate increase in flux. but at very high flux densities, increasing the current may cause no appreciable change in the flux. When this is so, the iron is said to be saturated. "Saturation" causes a rapid decrease in permeability, because it decreases the ratio of flux lines to those obtainable with the same current and an air core. Obviously, the inductance of an iron-core inductor is highly dependent upon the current flowing in the eoil. In an air-core coil, the inductance is independent of current because air does mot "saturate."

In amateur work, iron-rore mils such as the one sketehed in Fig, "-16 are used chicefly in power-supply equipment. They usually have direct current flowing through the winding,

Fig. 2-16- I'ypical ennsiruc* tion of an iron-core inductor. The sinall air gap prevents mag. netic saturation of the iron and thus maintains the inductance at high curronts.
and the variation in indurtane with current is usually undesirable. It may be overome by kecping the flux density below the saturation point of the iron. This is done by cutting the rore so that there is a small "air grap," as indicoted by the dashed lines. The magnetie "resistance" introduced by such a gatp is so large - even though the gap, is only a small fraction of an inch - compared with that of the iron that the gat, rather than the iron, controls the flux density. This naturally reduces the inductance compared to what it would be without the air gap, but the inductance is practically constant regardless of the value of the current.

Eddy Currents and Hysteresis

When alternating current flows through a coil womd on an iron core ath e.m.f. will be indheed, as previously explained, and since iron is a eonductor a current will flow in the core. Such currents (ealled eddy currents) represent a waste of power bectuse they flow through the resistance of the fron and thus culuse heating. Eddycurrent losses cim be reduced by laminating the core; that is, by cutting it into thin strips. These strips or laminations must he insulated from each other by painting them with some insulating material such as varnish or shellac.
There is also another type of energy loss in an iron core: the iron tends to resist any change in its magnetic state, so a rapidly-changing
current such as a.e, is fored continually to supply energy to the iron to overcome this "inertia." Losses of this sort are called hysteresis losses.

Eddy-current and hysteresis losses in irm increase rapidly as the frequency of the alternating current is increased. For this reason, we can use ordinary iron cores only at power and audio frequencies - up to, say, 15,000 cycles. liven so, a very good grude or iron or strel is necessary if the core is to perform well at the higher audio frequencies. Iron cores of this type are completely useless at radio frequencies.

For radio-frequency work, the losses in iron eores can be reduced to a satisfactory figure by grinding the iron into a powder and then mixing it with a "binder" of insulating material in such a way that the individual iron partieles are insulated from cach other. By this means cores can be made that will function satisfactorily (ven through the v.h.f. range - that is, at frequencies up to perhaps 100 Me. Bectuse a large part of the magnetic path is through a nommagnetic material, the permeability of the iron is low compared with the valucs obtained at power-supply frequencies. The core is usually in the form of a "slug" or cylinder which fits. inside the insulating form on which the eroil is wound. Despite the fact that, with this eonstruetion, the major portion of the magnetic path for the flux is in the air surrounding the coil, the slug is quite effective in increasing the coil inductance. By pushing the slug in and out of the coil the inductance can be varied over a considerable ringe.

- INDUCTANCES IN SERIES AND PARALLEL

When two or more inductors are commeded in series (Fig. 2-17, left) the total inductince is

equal to the sum of the individual inductances, prorided the coils are sufficientl! separoted se thet "I" coil is in the mergnetic field of another. That is,

$$
L_{\text {total }}=L_{1}+L_{2}+L_{3}+L_{4}+\ldots \ldots
$$

If inductors are connexted in pratalle (Fig . -17 , right), the total inductance is

$$
L_{\text {total }}=\frac{1}{\frac{1}{L_{1}}+\frac{1}{L_{4}}+\frac{1}{L_{43}}+\frac{1}{L_{4}}+\ldots .}
$$

and for two inductances in parallel.

$$
L_{\Delta}=\frac{L_{1} L_{2}}{L_{1}+L_{2}}
$$

Thus the rules for combining inductances in series and parallel are the same as for resistances, if the coils are far enough apart so that earh is unalfected by another's magnetir field. When this is not so the formulas given above camnot be used.

Mutual inductance

If two coils are arranged with their axes on the same line, as shown in Fig. $2-18$, a current sent through Coil 1 will cause a magnetic fied which "euts" Coil 2. Consequently, an c.m.f. will be indured in Coil ! whenever the fied strength is changing. This induced e.m.f. is similar to the e.m.f. of self-induction, but since it appears in the second coil because of current flowing in the first, it is a "mutual" effert and results from the mutual inductance between the two coils.

If all the flux set up by one coil cuts all the turns of the other coil the mutual inductance has its maximum possible value. If only a small part of the flux set up by one coil cuts the turns of the other the mutual inductance is relatively small. Two coils having mutual inductance are said to be coupled.

The ratio of actual mutual inductance to the maximum possible value that could theoretically be obtained with two given roils is called the coefficient of coupling between the coils. It is

Fig. 2-18 - Mutual inductane. When the switeh, S, is elosed carrent flows through coil No. I. secting up a magnetie field that induers an c.m.f. in the turns of coil No. 2.
frequently expressed as a pereatage. (doils that have nearly the maximum possible (eroeflicient $=$ 1 or 100%) mutual inductance are said to tre closely, or tightly, coupled, but if the mutual inductance is relatively small the eoils are said said to be loosely coupled. The degree of eoupling depends upon the physical sparing between the roils and how they are placed with respeet to each other. Maximum coupling exists when they have a common axis and are as close together as possible (one wound over the other). The roupling is least when the coils are far apart or are placed so their axes are at right angles.

The maximum possible coefficient of coupling is elosely approached only when the two coils are wound on a closed iron core. The coefficient with air-core coils may run as high as 0.6 or 0.7 if one coil is wound over the other, but will be much less if the two coils are separated.

Time Constant

Capacitance and Resistance

In Fig. ©-10A a battery having an c.m.f., b, a switch, S, a resistor, R, and capasitor, $($, are comnected in series. Suppose for the moment that R is short-circuited and that there is no other resistance in the cirruit. If S is now cosed, condenser C will charge instontly to the battery voltage; that is, the electrons that constitute the charge redistribute themselves in a time interval so small that it ran be considered to be zero. For just this instant, therefore, a very large current flows in the eireuit, beranse all the electricity needed to charge the capacitor has

Fig. 2-19 - Schematic illustrating the time constant of an $R C$ circuit.
moved from the battery to the raparitor at an extremely high rate.

When the resistane R is put into the eireuit the caparitor no longer can be charged instantancously. If the battery e.m.f. is 100 volts, for example, and h is 10 ohms, the maximum eurrent that can flow is 10 amperes, and even this much ean flow only at the instant the switch is closed. But as soon as $a n y$ current flows, caparitor C begins to acquire a charge, whieh means that the voltage between its plates rises. Since the upper plate (in Fig. 2-19.) will be positive and the lower negative, the voltage on the catpacitor tries to send a current through the eircuit in the opposite direstion to the current from the battery. Inmediately after the switch is closed, therefore, the current drops below its initial Ohm's Law value, and as the capacitor continues to acquire charge and its potential or e.m.f. rises, the current becomes smaller and smaller.

The length of time required to complete the charging process depends upon the capacitance and the resistance in the cireuit. Theoretically, the charging process is never really finished,
but remotually the charging emrent drops to a value that is smaller than anything that can be measured. The time constant of such a cireuit is the length of time, in seconds, reguired for the voltage arross the capacitor to reach $6 ; 3$ por cont of the applied e.m.f. (this figure is chosen for mathematical reasoms). The voltage across the ratacitor rises logarithmically, as shown by lig. 2-20.
The formula for time cometant is

$$
T=r h
$$

where $T=$ Time eonstant in secends $\prime^{\prime}=$ (hupacitance in farads $R=$ Resistance in whms

If f is in microfarads and R in megohms, the time constant also is in seronds. These units bsually are more empenient.

Fiample: The time constant of a $2-\mu$. camacitor and a 250.000 -ohtm (0.25 megohim) resistor is

$$
T=C R=2 \times 0.25=0.5 \text { serond }
$$

If the applied e.m.f. is 1000 volts, the voltage across the caparitor plates will be bi30 volts at the end of $1 / 2$ second.

If a charged capateitor is discharged through a resistor, as indicated in lig. 2-1913, the same time constant applies. If there were no resistame, the eapacitor would diseharge instantly when

Fig. 2.20- llow the voltage across a capacitor rises, with time. when charged through a resistor. 'The lower curve shows the way in which the voltage derreases arroses the rapacitor terminals on dispharging through the same resistor.
S was closed. I Lowever, since R limits the current flow the ababitor voltage cammot instantly go to zero, but it will decrease just as rapidly as the capacitor can rid itself of its charge through R. When the caparitor is discharging through a resistance, the time constant (calculated in the same way as alowe) is the time, in seconds, that
it tukes for the caparitor to lose $6: 3$ per cent of its voltage: that is, for the voltage to drop to 37 per cent of its initial value.

Abstract

Example: If the rapacitor of the example abover is charged to 1000 volts, it will discharge oliol rexisfor.

Inductance and Resistance

A comparable situation exists when resistance and it ductance are in semes. In Fig. 2-21, first comsider L to have no resistance and alse assume that R is zero. Then elosing h^{\prime} would tend

Fig. 2-21 - 'lime constant of an $L R$ circuit.
to send a current through the circuit. However, the instantaneous transition from no current to a finite value, however small, represents a very rapid change in rurent, and a back e.m.f. is developed by the self-inductance of L that is practically equal and opposite to the applied e.m.f. The result is that the initial current is very small.

The back e.m.f. depends upon the change in current and woukd cease to offer opposition if the current did not continue to increase. With no resistance in the circuit (which would lead to an infinitely-large eurrent, by Ohm's Law) the durrent would increase forever, always growing just fast enough to keep the r.m.f. of self-induetion equal to the applied e.m.f.

When resistance is in series, Ohm's Law sots a limit to the value that the current can reach. In such a circuit the current is small at first, just as in the case without resistance. But as the current grows the voltage drop iucross R becomes larger. The back e.m.f. generated in L has only to equal the difference between E and the drop arross R, berause that difference is the voltage anctually applied to L. This difference beeomes smaller as the current approaches the final Ohm's Law value. Theoretirally, the back e.m.f. never quite disappears (that is, the current never quite reaches the Ohm's Law value) but pratically it boromes ummeasurable after a time. The difference between the actual current and the Ohm's law value also beromes undetertable. The time constint of an indurtive rircuit is the time in seconds required for the current to reach $6: 3$ per cent of its final value. The formula is

$$
T=\frac{L}{R}
$$

where $T=$ Time eonstant in semonds
$L=$ Inductance in henrys
$K=$ Resistance in ohms

Fig. 2-22-Voltare across capacitor terminals in a discharging (R circuit, in terms of the initial charged voltake. To obtain time in seronds. multiply the factor t/C R by the time constant of the circuit.

The rexistance of the wire in a coil acts as thongh it were in series with the inductance.

Example: A coil having an inductance of 20 henrys and a resistance of 100 ohms has a titme eonstant of

$$
T=\frac{L}{R}=\frac{20}{100}=0.2 \text { second }
$$

if there is no other resistance in the eireuit. If a d.e. e.m.f. of 10 wolts is applied to surh a eoil, the final eurrent, by Ohmis Law, is

$$
I=\frac{E}{R}=\frac{10}{100}=0.1 \mathrm{innf} \text { or } 100 \mathrm{na}
$$

The eurrent would rise from zero to 633 millitmprese in 0.2 second aftor closing the switel.
An inductor camot be discharged in the same way as a condenser, bealuse the magnetie field disappears as soon as curvent flow ceases. Opening is does not leave the inductor "charged." The energy stored in the magnetic field instantly returns to the circuit when is is opened. The rapid disappearance of the field causes a very large voltage to be indured
in the coil - ordinarily many times larger than the voltage applied, because the induced voltage is proportional to the speed with which the field changes. The common result of opening the switch in a circuit such as the one shown is that as spark or are forms at the switch contacts at the instant of opening. If the inductance is large and the current in the circuit is high, a great deal of energy is released in a very short period of tine. It is not at all unusual for the switeh contacts to burn or melt under such circumstances.

Time constants play an important part in numerous devices, such as electronic kers, timing and control circuits, and shaping of keying characteristics by vacuum tubes. The time constants of circuits are also important in such applications as automatic gain control and noise limiters. In nearly all such applications a caparitance-resistance ($C R$) time constant is involved, and it is usually necessary to know the voltage across the capacitor at some time interval larger or smaller than the actual time constant of the cirauit as given by the formula above. Fig. 2-22 can be used for the solution of such problems, since the curve gives the voltage across the eapacitor, in terms of percentage of the initial charge, for percentages between 5 and 100, at any time after diseharge begins.

Hxample: A 0.01-mf, capacitor is charged to 150 volts and then allowed to discharge through a $0.1-m e g o h n$ resistor. How long will it take the voltage to fall to 10 volts? In percentage, $10 / 150=6.7 \%$. From the chart, the factor corresponding to 6.7% is 2.7 . The time eonstant of the rirenit is efutal to $\mathrm{Ch}=0.01 \times 0.1=$ 0.001 . The time is therefore $2.7 \times 0.001=$ 0.0027 second, or 2.7 milliseconds.

Fxample: An $h^{\prime} C$ circuit is desired in whish the voltage will fall to 50% of the initial value in 1 second. From the rhart, $t / C R=0.7$ at the 50%-voltage point. Therefore $C R=1 / 0.7$ $=1 / 0.7=1.13$. Any combination of resistance and capracitance whose product $1 / 2$ in megohms and C in mirrofarads) is equal to 1.43 can be used; for examile. C could be 1μ. and $R 1.43$ megohnis.

Alternating Currents

PHASE

The torm phase esentially menns "time," on the time interval between the instant when one thing oceurs and the instant when a seoond related thing takes place. When a baseloall pitcher throws the ball to the catcher there is a definite interval, reprevented by the time of flight of the ball, between the act of throwing and the art of catching. The throwing and catching are "out of phase" because they do not oceur at exactly the same time.

Simply saying that two events are out of phase does not tell us which one accurred first. To give this information, the later event is said to lag the earlier, while the one that ocrurs first is said to lead. Thus, throwing the ball "leads" the catch, or the catch "lags" the throw.

In a.c. cireuits the current amplitude changes contimuously, so the concept of phase or time beromes important. Phase can be measured in

Fig. 2-2.3 - An a.c. evele is divided off into 360 degrees that are used as a measure of time or phase.
the ordinary time units, such as the second, but there is a more convenient method: Since each a.e. cycle occupios cxactly the same amount of time as every other cyrle of the same frequency, we can use the cycle itself as the time unit. I'sing

Fig. 2-2. - When two waves of the same frefuency start their cyeles at slightly different times, the time difference or phase difference is measured in degres. In this drawing wave B starts 4.5 degrees (one-righth (eve) Iater than wave A, and so lag. 15 degrees behind A.
the cerele as the time unit makes the specifieation or measurement of phase independent of the frequency of the current, so long as only one frequency is under consideration at a time. If there are two or more frequencies, the measurement of phase has to be modified just as the measurements of two lengths must be reconciled if one is given in feet and the other in meters.

The time interval or "phase difference" under consideration usually will be less than one cyele. Phase difference could be measured in decimal parts of a cycle, but it is more convenient to divide the recle into 360 parts or degrees. A phase degree is therefore $1 / 360$ of a cycle. The reason for this choice is that with sine-wave alternating current the value of the current at any instant is proportional to the sine of the angle that corresponds to the number of degrees - that is, length of time-from the instant the cycle began. There is no actual "angle" associated with an alternating current. Fig. 2-23 should help make this method of measurement clear.

Measuring Phase

To compare the phase of two currents of the same frequency, we monsure between conresponding parts of cycles of the two currents. This is shown in lig. 2-2.4. The current labeled A leads the one marked B by $4 \overline{5}$ degrees, since A 's ceveles begin 45 degrees sooner in time. It is equally eorreet to say that $B l$ lags A by 4 degrees.

Two important special cases are shown in Fig. 2-25. In the upper drawing B lags 90 degrees behind A; that is, its cyrle begins just onequarter cycle later than that of A. When one wave is passing through zero, the other is just at its maximum point.

In the lower drawing A and B are 180 degrees out of phase. In this case it does not matter which one is to lead or hag. B is always positive while A is negative, and vioe versa. The two waves are thus completely out of phare.

The waves shown in Figs. 2-24 and $2-25$ rould represent current, voltage, or both. A and B might be two currents in separate circuits, or A might represent voltage white B represented
current in the same circuit. If A and B represent two eurrents in the stme circuit (or two voltages in the same circuit) the total or resultant current (or voltage) also is a sine wave, because adding any number of sine waves of the same frequency always gives a sine wave also of the same frequency.

Phase in Resistive Circuits

When an alternating voltage is applied to a resistance, the current flows exactly in step with the voltage. In other words, the voltage and current are in phase. This is true at any fraquency if the resistance is "pure" - that is, is free from the reactive effects discussed in the next section. I'ractically, it is ofter difficult to obtain a purely resistive circuit at radio frequencies, because the

Fig. 2-25-Two important special cases of phase difference. In the upper drawing, the phase differonce between A and B is 90 degrees; in the lower drawing the phase difference is 180 degrees.
reactive effects become more pronounced as the frequency is increased.

In a purely resistive circuit, or for purely resistive parts of circuits, Ohm's Law is just as valid for a.c. of any frequency as it is for d.c.

- REACTANCE

Alternating Current in Capacitance

Suppose a sine-wave a.c. voltage is applied to a capacitor in a circuit containing no resistance, as indicated in Fig. $2-26$. In the period $0 . A$, the applied voltage increases from zero to 38 volts: at the end of this period the caparitor is charged to that voltage. In interval $A B$ the voltage increases to 71 volts; that is, $3: 3$ volts additional. In this interval a smaller quantity of charge has been added than in $O A$, because the voltage rise during interval $A B$ is smaller. Consequently the average current during $A B$ is smaller than during $O A$. In the third interval, BC', the voltage rises from 71 to ! 2 volts, an increase of 21 volts. This is less than the voltage increase cluring $A B$, so the quantity of electricity added is less; in other words, the average current during interval $B C$ is still smaller. In the fourth interval, $C D$, the voltage increases only 8 volts; the
charge added is smaller than in any preceding interval and therefore the current also is smatler.

Thus as the instantaneous value of the applied voltage increases the current decreases.
l3y dividing the first quarter cucle into a very large number of intervals it could be shown that the current charging the capacitor has the shape of a sine wave, just as the applied voltage does. The current is largest at the begimning of the cycle and becomes zero at the maximum value of the voltage (the capacitor cannot be charged to a higher voltage than the maximum applied, so no further current can flow) so there is a phase

Fig. 2-26-Voltage and current phase relationships when an alternating voltage is applied to a condenser.
difference of 90 degrees between the voltage and current. During the first quarter eycle of the applied voltage the current is flowing in the normal direction through the circuit, since the capacitor is being charged. Hence the current is positive during this first quarter cycle, as indicated by the dashed line in Fig. 2-26.

In the second quarter eycle - that is, in the time from D to l, the voltage applied to the capacitor decreases. During this time the eapacitor loses the charge it acquired during the first quarter eycle. Applying the same reasoning, it is plain that the current is small in interval $D E$ and continues to increase during each succeding interval. However, the current is fowing against the applied voltage beause the capacitor is discharging into the circuit. Hence the current is urgative during this quarter cyele.

The third and fourth quarter cycles repeat the events of the first and second, respectively, with this difference - the polarity of the applied voltage has reversed, and the current changes to correspond. In other words, an alleruthing curremt flous "throngh" a capacitor when an a.c. vollage is applied to it. (Actually, current never fiows "through" a condenser. It flows in the associated circuit because of the altemate charging and discharging of the (apacitance.) As shown by Fig. 2-26, the current starts its cyole 90 degrees before the voltage, so the current in a condenser leads the appied vollage by 90 deyrces.

Capacitive Reactance

The amount of charge that is alternateiy stored in and released from the capacitor is proportional to the applied voltage and the rapacitance. Consequently, the current in the circuit will be proportional to both these quantities, since current is simply the rate at which charge is moved. The
current also will be proportional to the frequency of the a.c. voltage, because the same charge is being moved back and forth at a rate that is proportional to the number of eycles per second.

The fact that the current is proportional to the applied voltage is important, because it is the same thing that Ohm's Law says about current. flow in a resistive circuit. That leing the case, there must be something in the capacitor that corresponds in a general way to resistance something that tends to limit the current that can flow when a given voltage is applied. The "something" clearly must include the effects of capacitance and frequency, since these also affect the amount of current that flows. It is called reactance, and its relationship to capacitance and frequency is given by the formula

$$
X_{\mathrm{C}}=\frac{1}{2 \pi f C}
$$

where $X_{C}=$ Capacitive reactance in ohms
$f=$ Frequency in cycles per second
$C=$ Capacitance in farads
$\pi=3.14$
Reactance and resistance are not the same thing, but because they have a similar currentlimiting efferet the same unit, the ohm, is used for both. Cnlike resistance, reactance does not consume or dissipate power. The encrgy stored in the capacitor in one quarter of the crele is simply returned to the circuit in the next.

The fundamental units (cycles per second, farads) are too large for practical use in radio circuits. However, if the eapacitance is in microfarads and the frequency is in megacyoles, the reactance will come out in ohms in the formula.

$$
\begin{aligned}
& \text { Example: The reactance of a capacitor of } 470 \\
& \mu \mu \mathrm{f} .(0.00047 \mu \mathrm{f} .) \text { at a frequency of } 71.50 \mathrm{ke} \text {. } \\
& (7.15 \mathrm{Mc} .) \text { is } \\
& \mathrm{X}=\frac{1}{2 \pi f C}=\frac{1}{6.28 \times 7.15 \times 0.00047}=47.4 \mathrm{ohms} \\
& \text { Inductive Reactance }
\end{aligned}
$$

When an alternating voltage is applied to a cireuit containing only inductance, with no resistance, the current always changes just rapidly enough to induce a back e.m.f. that equals and opposes the applied voltage. In Fig. $2-27$, the cucle is again divided off into equal intervals. Assuming that the current has a maximum value of 1 ampere, the instantaneous current at the end of each interval will be as shown. The value of the induced voltage is proportional to the rate at which the current changes. It is therefore greatest in the intervals 0.1 and $G M$ and least in the intervals ($D D$) and $D E$. The induced voltage actually is a sine wave (if the current is a sine wave) as shown be the dashed curve. The appied voltage, because it is always equal to and opposed by the induced voltage, is equal to and 180 degrees out of phase with the induced voltage, as shown by the second dashed charve. The result, therefore, is that the current flowing in an inductance is 90 degrees out of phase with the applied voltage, and lags behind the applied

Fig. 2-27-Phase relationships between voltage and current when an alternating voltage is applied to an inductance.
voltage. This is just the opposite of the capacitive case.

Since the value of the induced e.m.f. is proportional to the rate at which the current changes, a small eurrent changing rapilly (that is, at a high frequency) can gencrate a large back c.m.f. in a given indurtance just as well as a large current changing slowly (low frequency). Consequently, the current that flows through a given inductance will decrease as the frequency is raised, if the applied e.m.f. is held constant. Also, when the applied voltage and frequeney are fixed, the value of current required becomes less as the inductance is made larger, because the induced e.m.f. also is proportional to inductance.

When the frequency and inductance are constant but the applied e.m.f. is varied, the necessary rate of eurrent change (t o induce the proper bark e.m.f.) (an be obtained only if the amplitude of the current is directly proportional to the voltage. This is Ohm's law again, and again the current-limiting effect is similar to, but not identical with, the effect of resistance. It is called inductive reactance and, like capacitive reactance, is measured in ohms. There is no energy loss in inductive reartance; the energy is stored in the magnetic field in one quarter cycle and then returned to the circuit in the next.

The formula for inductive reactance is

$$
X_{\mathrm{L}}=2 \pi f L
$$

where $X_{L}=$ Inductive reactance in ohms
$f=$ Frequency in cycles per second
$L=$ Inductance in henrys

$$
\pi=3.14
$$

Example: 'The reactance of a coil having an inductance of 8 henrys, at a frequency of $1: 0$ cycles, is

$$
X_{\mathrm{L}}=2 \pi f L_{2}=6.28 \times 120 \times 8=6029 \text { ohms }
$$

In radio-frequency circuits the inductance values usually are small and the frequencies are large. If the inductance is expressed in millihemrys and the frequency in kilocycles, the conversion factors for the two units cancel, and the formula for reactance may be used without first converting to fundamental units. Similarly, no conversion is necessary if the inductance is in microhenrys and the frequency is in megacycles.

Bxample: The reactance of a 15 -microlenry coil at a fropuency of 14 Me , is
$\lambda_{L_{H}}=22_{\pi} / L_{L}=6,28 \times 14 \times 15=1319$ ohms
The resistance of the wire of which the coil is wound has no (ffect on the reactance, but simply acts as though it were a separate resistor conneeted in series with the coil.

Ohm's Law for Reactance

Ohm's Law for an a.c. circuit containing only reactance is

$$
\begin{aligned}
I & =\frac{E}{X} \\
E & =I X \\
X & =\frac{E}{I}
\end{aligned}
$$

Where $E=\mathrm{E} . \mathrm{m} . \mathrm{f}$. in volts
$I=$ Current in ampercs
$X=$ Reactance in ohms
The reactance may be cither inductive or capacitive.

Example: If a current of 2 amperes is flowing through the capacitor of the previous example (reactance $=47.4$ ohms) at $7150 \mathrm{kr} .$. the voltage drop across the capacitor is

$$
E=I X=2 \times 47.4=94.8 \text { volts }
$$

If 400 volts at 120 cyeles is applied to the 8 henry inductor of the previous example. the current through the coil will be

$$
I=\frac{E}{X}=\frac{400}{6029}=0.0663 \mathrm{amp} .(66.3 \mathrm{ma})
$$

When the circuit consists of an inductance in series with a capacitance, the same current flows through both reactances. However, the voltage across the inductor leads the current bis 90 degrees, and the voltage across the capacitor lags hehind the current by 90 degrees. The voltages therefore are 180 degrees out of phase.

A simple circuit of this type is shown in Fig. 2-28. The same figure also shows the current (heavy line) and the voltage drops across the inductance (E_{L}) and capacitance (E_{C}). It is assumed that X_{L} is larger than X_{C} and so has a larger voltage drop). Since the two voltages are completely out of phase the total voltage (that is, the applied voltage E_{Ac}) is equal to the difference between them. This is shown in the drawing as $E_{\mathrm{L}}-E_{\mathrm{C}}$. Notice that, because E_{L} is larger than $E_{\text {C }}$, the resultant voltage is exactly in phase with E_{L}. In other words, the circuit as a whole simply acts as though il were an inductance - an inductance of smaller value than the actual inductance present, since the effect of the actual inductive reactance is reduced by the capacitive reactance in series with it. If X_{C} is larger than X_{L}, the arrangement will behave like a caparitance - again of smaller reactance than the actual capacitive reactance present in the circuit.

The "equivalent" or total reactance of any circuit containing inductive and capacitive reactances in series is equal to $X_{\mathrm{L}}-X_{C}$. If there are several coils and condensers in series, simply
add up all the inductive reactances, then add up all the capacitive reactances, and then subtract the latter from the former', It is customary to call inductive reactance "positive" and capacitive reactane "negative." If the equivalent or net reartance is positive, the voltage leads the current by 90 degrees; if the net reartance is negative, the voltage lags the current by 90 degrees.

Fig. 2-28 - Current and voltages in a circuit having inductive and capacitive reactances in scries.

Reactive Power

In Fig. 2-28 the voltage drop across the inductor is larger than the voltage applied to the circuit. This might seem to he an impossible condition, but it is not; the explanation is that while energy is being stored in the inductor's magnetic field, energy is being returned to the circuit from the capacitor's electrie field, and vice versti. This stored energy is responsible for the fact that the voltages aeross reactanees in series can be larger than the voltage applied to them.

In a resistance the flow of eurent causes hating and a power loss cqual to $I^{\prime \prime} R$. The power in a reactance is equal to $l^{2} \mathrm{Y}$, but is not a "loss"; it is simply poner that is transferred back and forth between the field and the circuit but not used up in heating anything. To distinguish this "nondissipated" power from the power which is actually consumed, the unit of reactive power is ealled the volt-ampere instead of the watt. Raactive power is sometimes called "wattless" power.

IMPEDANCE

The fact that resistance, inductive reactance and capacitive reactance all are measured in ohms does not indicate that they can be combined indiseriminately. Voltage and current are in phase in resistance, but differ in phase by a quarter cycle in reactance. In the simple circuit shown in Fig. 2-29, for example, it is not possible simply to add the resistance and reactance together to obtain a quantity that will indicate the opfosition offered by the combination to the flow of current. Inasmueh as both resistanee and reactance

Fig. 2-29-Resistance and inductive reactance conneeted in serics.
are present, the total effect can obviously be neither wholly one nor the other. In cireuits containing both reactance and resistance the opposition effect is called impedance (Z). The unit of impedaner is also the ohm.

The term "impedance" also is generalized to include any quantity that ean be expressed as a ratio of voltage to current. Pure resistance and pure reartance are both included in "impedance" in this sense. A cireuit with resistive impedance is either one with resistance alone or one in which the efferts of any reactance present have beell eliminated. Nimilarly, a reactive impedance is one having reactance only. I complex impedance is one in which both resistance and reactance efferts are observable.

It can be shown that resistance and reactance can be combined in the same way that a rightangled triangle is constructed, if the resistance is laid off to proper seale as the base of the triangle and the reactance is laid off as the altitude to the same seale. This is also indeated in Fig. $2-29$. When this is done the hypotenuse of the triangle represents the impedane of the rircuit, to the same scale, and the angle between Z and R (usually called θ and so indicated in the drawing) is equal to the phase angle between the applied e.m.f. and the current. By geometry,

$$
Z=\sqrt{R^{2}+\lambda^{2}}
$$

In the case shown in the drawing,

$$
Z=\sqrt{(75)^{2}+(100)^{2}}=\sqrt{15,625}=125 \mathrm{ohms} .
$$

The phase angle can be found from simple trigonometry. Its tangent is equal to X / R; in this case $N / R=10075=1.33$. From trigonometric tables it can be determined that the angle having a tangent equal to 1.33 is approximately 33 degrees. In ordinary amateur work it is seldom necessary to give much consideration to the phase angle.

A circuit containing resistance and eapacitance in series (lig. 2-30) (an be treated in the same way. The difference is that in this case the current

Fig. 2-30-Resistance and capacitive reactance in serics.

Fig. 2-31 - Voltage drops around the rircoit of l'ig. 2.29 . Because of the whase relationships, the applied voltage is less than the arithmetical sum of the drops across the resistor and inductor.
leals the applied e.m.f., while in the resistanceinductance case it lags behind the voltage.

If either X or R is small compared with the other (say $1 / 10$ or less) the impedance is very nearly equal to the larger of the two quantities. For example, if $R=1$ ohm and $X=10$ ohms,

$$
\begin{aligned}
Z=\sqrt{R^{2}+\lambda^{2}} & =\sqrt{(1)^{2}+(10)^{2}} \\
& =\sqrt{101}=10.0 ; \mathrm{ohms} .
\end{aligned}
$$

IIence if either X or R is at least 10 tinues as large as the other, the error in assuming that the impedance is cqual to the larger of the two will not exceed $1 / 2$ of 1 per cent, which is usually negligible.

Since one of the components of impedance is reactance, and since the reactance of a given eobl or condenser changes with the applied frequency, impedance also changes with frequency. The change in inpedance as the frequency in changed maty be very slow if the resistance is considerably larger than the reactance. However, if the impedance is mostly reactancea change in frequency will catuse the impedance to change prartically as rapidly as the reactance itself changes.

Ohm's Law for Impedance

Ohn's Law can be applied to circuits containing impedance just as readily as to cireuits having resistance or reactance only. The formulas are

$$
\begin{aligned}
I & =\frac{E}{Z} \\
E & =I Z \\
Z & =\frac{E}{I}
\end{aligned}
$$

where $E=$ Lim.f, in volts
$I=$ Current in amperes
$Z=$ lmpedance in ohms
Example: Assume that the e.mif. applied to the circuit of lig. $2-29$ is 250 volts. Then

$$
I=\frac{E}{Z}=\frac{250}{125}=3 \text { : imperes. }
$$

The same eurrent is flowing in both R and X_{L}, and Ohm's Law as applied to either of these quantities says that the voltage drop across R
should equal / R and the voltage drop across I_{L} should edual $/ X_{\mathrm{L}}$. Bulustituting. $^{\text {sen }}$

$$
\begin{aligned}
& E_{\mathrm{R}}=I R=2 \times 75=150 \text { volts } \\
& E_{\mathrm{X}_{\mathrm{L}}}=I X_{\mathrm{L}_{4}}=2 \times 100=200 \text { volts }
\end{aligned}
$$

The arithmetical sum of these voltages is greater than the applied voltaze. However, the actual sum of the two when the phase relationship: is taken into aceomm is equal to 250 volts r.m.s., as shown by Fig. 2-31, where the instantaneous values are added throughout the eyele. Whenever resistance and reactance are in saries. the individual voltage elrops ablways add np, arithnuetically, to more than the applied voltage. There is nothing fictitious about these voltage drops; they can be measured readily by suitathe instruments. lt is simply an illustration of the importance of phase in a.c. circuits.
A more complex series circuit, containing resistunce, inductive reactance and capacitive reactance, is shown in Fig. 2-32. In this case it is necessary to take into acrount the fact that the phase angles between current and voltage differ

Fig. 2-32- Resistance. inductive reactance, and capacitive reactance in series.
in all three elements. Since it is a series circuit, the current is the same throughout. Considering first just the inductance and capacitance and neglecting the resistance, the net reactance is
$X_{1}-X_{C}=150-50=100$ ohms (inductive)
Thus the impedance of a circuit containing resistance, inductance and caparitance in series is

$$
Z=\sqrt{R^{2}+\left(X_{\mathrm{L}}-X_{\mathrm{c}}\right)^{2}}
$$

Example: In the cirenit of lig. 2-32, the impedance is

$$
\begin{aligned}
Z= & \sqrt{R^{2}+\left(N_{1}-X_{1}\right)^{2}} \\
= & \sqrt{(20)^{2}+(150-50)^{2}}=\sqrt{(20)^{2}+(100)^{2}} \\
& =\sqrt{\prime} \overline{10,400}=102 \text { ohms }
\end{aligned}
$$

The phase angle can be found from N / R, where $X=X_{L}-X_{c}$.

Parallel Circuits

Suppose that a resistor, condenser and coil are eonnected in parallel as shown in Fig. 2-33 and

Fip. 2-3.3- Resistance, inductance and capacitance in parallel. Instruments connected as shown will read the total current, I, and the individual currents in the three branches of the circhit.
an a.c. voltage is applied to the combination. In any one banch, the current will be unchanged if one or both of the other two branches is discomerted, so long as the applied voltage romains unchanged. Hence the current in each branch ean be calculated quite simply by the Ohm's Law formulas given in the preceding seations. The total current, I, is the sum of the eurents through all three branches - not the arithmetical sum, but the sum when phase is taken into acromint.

The rurents through the various branches will be as shown in Fig. 2-ist, assuming for purposes of illustration that X_{L} is smaller than X_{C}. and that λ_{C} is smaller than R, thus making I_{L} larger than I_{C}, and $I_{\mathbf{C}}$ larger than $I_{\mathbf{R}}$. The current through (' leads the voltage by 90 degrees and the current through L lags the voltage by 90 degrees, so these two currents are 180 degrees: out of phase. Is shown at E , the total reactive current is the difference between $/ e$ and I_{1}. This resultant current lags the voltage by 90 degrees, because I_{L}, is larger than I_{C}. When the reactive current is added to I_{n}, the total current, I, is as shown at F . It can be seen that $/$ laus the applied voltuge by an angle smaller than 90 degrees and that the total current, while less than the simple sum (neglecting phase) of the three branch rurrents, is larger thin the eurrent through R alone.

The impedance looking into the parallel circuit from the souree of voltage is equal to the applied voltage divided by the total or line current, I.

Fig. 2-34- Phase relationships hetween branch cur* rents and applied voltage for the cirmit of lrig. 2-33, 'lhe total current through L and C in parallel ($/ \mathrm{L}+\mathrm{C}$) and the total eurrent in the entire circuit ($/$) also are shown.

In the case illustrated, I is greater than I_{12}, so the impedance of the cireuit is less than the resistance of R. How much less depends upon the net reative current flowing through h and (" in patallel. If X_{L} and X_{c} are very nearly equal the net reactive current will be quite small because it is equal to the difference between two nearly equal currents. In such a case the impedance of the rircuit will be almost the same as the resistance of R alone. On the other hamd, if X_{L} and X_{0} are quite different the net reactive current ("an be relatively large and the total current also will be appreciably larger than I_{R}. In such a ase the circuit impedance will be lower than the resistance of R atone.

Power Factor

In the cirruit of Fig. 2-29 an applied e.m.f. of 2.50 volts results in a current of 2 amperes. If the cireuit were purely resistive (containing no reactance) this would mean a power dissipation of $250 \times 2=500$ watts. However, the circuit actually consists of resistance and reactance, and only the resistance consumes power. The power in the resistance is

$$
I^{\prime}=I^{n} R=(2)^{2} \times 75=300 \text { watts }
$$

The ratio of the power consumed to the apparent power is called the power factor of the circuit, and in the rase used as an example would be $: 00$: $00=0.6$. Power factor is frequently expresed as a perentage; in this case, the power fartor would be 60 per cent.
"Real" or dissipated power is measured in watts; apparent power, to distinguish it from real power, is measured in volt-amperes (just like the "wattless" power in a reactance). It is simply the product of volts and anperes and has no direct relationship to the power actually used up or dissipated umless the power factor of the eircuit is known. The power factor of a purely resistive circuit is 100 per rent or 1 , while the power fartor of a pure reactance is zero. In this illustration, the reartive power is

$$
V A(\text { volt-amperes })=I^{2} X=(2)^{2} \times 100
$$

$=400$ volt-amperes.

Complex Waves

It was pointed out carly in this chapter that a complex wave (a "nonsinusoidal" wave) can be resolved into a fundamental frequency and a series of harmonic frequencies. When such a complex voltage wave is applied to a circuit containing reactance, the current through the circuit will not have the same waveshape as the applied voltage. This is because the reactance of an inductor and capacitor depend upon the applied frequency. For the second-harmonic component of a complex wave, the reactance of the inductor is twice and the reactance of the capacitor onehalf their values at the fundamental frequency; for the third harmonie the inductor reactance is three times and the capacitor ractance onethird, and so on.

Just what happens to the current waveshape
depends upon the values of resistance and reactance involved and how the circuit is arranged. In a simple rircuit with resistance and inchuctive reactance in series, the amplitudes of the harmonics will be redured berause the indurtive reartance incresses in proportion to frequency. When capacitance and resistance are in series, the harmonic current is likely to be acecotuated because the rapasitive reatance beomes lower as the frequency is raised. When both inductive
and raparitive reartance are present the shape of the current wave can be altered in a variety of ways, depending upon the circuit and the "eonstants," or values of L, C and R, selected.

This property of nonuniform behavior with respect to fundamental and harmonies is an extremely useful one. It is the hasis of "filtering," or the suppression of undesired frequencies in favor of a single desired frequency or gront) of surh frequencies.

Transformers

Two coils having mutual inductance constitute a transformer. The coil connected to the source of energy is called the primary coil, and the other is called the secondary coil.

The usefulness of the transformer lies in the fact that electrical energy can be transferred from one circuit to another without direct connection, and in the process can be readily changed from one voltage level to another. Thus, if a device to be operated requires, for example, 115 volts and only a 440 -volt source is available, a transformer can be used to change the source voltage to that required. I transformer can be used only with a.c., since no voltage will be induced in the secondary if the magnetic field is not changing. If d.c. is applied to the primary of a transformer, a voltage will be induced in the secondary only at the instant of closing or opening the primary circuit, since it is only at these times that the field is changing.

The Iron-Core Transformer

As shown in Fig. 2-35, the primary and secondary coils of a transformer may be wound on a core

Fig. 2-35 - The transformer. Power is transferred from the primary woil to the seemdary hy means of the magnetic field. The upper symbol at right indicates an ironcore transformer, the lower one an airecore transformer.
of magnotic material. This increases the inductance of the coils so that a relatively small number of turns may be used to induce a given value of voltage with a small eurrent. A closed core (one having a continuous magnetic path) such as that shown in Fig. 2-35 also tends to insure that prartieally all of the field set up by the curent in the primary coil will cut the turns of the secondary coil. However, the rore introduces a power loss boratuse of hysteresis and eddy currents so this type of construction is praticat)le only at power and andio frecuencios. The dirnssion in this sertion is confined to transformers operating at such frequencies.

Voltage and Turns Ratio

For a given varying magnetic field, the voltage induced in a coil in the field will be proportional to the number of turns on the coil. If the two coils of a transformer are in the same field (which is the case when both are wound on the same closed core) it follows that the induced voltages will be proportional to the number of turns on each coil. In the primary the induced voltage is practically equal to, and opposes, the applied voltage. IIence,

$$
E_{\mathrm{s}}=\frac{n_{\mathrm{s}}}{n_{\mathrm{p}}} E_{\mathrm{p}}
$$

where $E_{\mathrm{s}}=$ Secondary voltage
$E_{1}=$ lrimary applied voltage
$n_{8}=$ Number of turns on secondary
$n_{1}=$ Number of turns on primary
The ratio n_{s} / n_{p} is called the turns ratio of the transformer.

Example: A transformer has a primary of 400 turns and a secondary of 2800 turns, and 115 volts is applied to the primary. The secondary voltage will be

$$
\begin{aligned}
E_{\mathrm{s}}=\frac{n_{\mathrm{s}}}{n_{\mathrm{b}}} E_{\mathrm{B}} & =\frac{2800}{400} \times 115=7 \times 115 \\
& =805 \mathrm{volts}
\end{aligned}
$$

Also, if 805 volts is applied to the 2800 -turn winding (which then becomes the primary) the output voltage from the 400 -turn winding will be 115 volts.

Fither winding of a transformer can be used as the primary proridiny the winding has enough turns (enough inductance) to indure a voltage enual to the applied voltage withont requiring an expessive current flow.

Effect of Secondary Current

The current that flows in the primary when no current is taken from the semondary is called the magnetizing current of the transformer. In any properly-designed transformer the primary inductance will be so large that the magnetizing current will be quite small. The power consumed by the transformer when the secondary is "open" - that is, mot delivering power - is only the amount neressary to supply the losses in the iron core and in the resistinme of the wire of which the primary is wound.

When power is taken from the secondary winding, the secondary current sets up a magnetic field that opposes the field set up by the primary
current. But if the induced voltage in the primary is to equal the applied voltage, the original field must be maintained. Consequently, the primary must draw enough additional current to set up a field exactly equal and opposite to the field set up by the secondary current.

In practical calculations on transformers it may be assumed that the entire primary current is caused by the secondary "load." This is justifiable because the magnetizing current should be very small in comparison.

If the magnetic fields set up by the primary and secondary currents are to be equal, the primary current multiplied by the primary turns must equal the secondary current multiplied by the secondary turns. From this it follows that

$$
I_{\mathrm{p}}=\frac{n_{\mathrm{s}}}{n_{\mathrm{p}}} I_{\mathrm{s}}
$$

where $I_{\mathrm{p}}=$ Primary current
$I_{\mathrm{s}}=$ Secondary current
$n_{\mathrm{p}}=$ Number of turns on primary
$n_{\mathrm{s}}=$ Number of turns on secondary
Fxample: Suppose that the secondary of the transformer in the previons example is delivering a current of 0.2 ampere to a load. Then the primary eurrent will be
$I_{\mathrm{p}}=\frac{n_{\mathrm{B}}}{n_{\mathrm{p}}} \Gamma_{\mathrm{s}}=\frac{2800}{400} \times 0.2=7 \times 0.2=1.4 \mathrm{amp}$,
Although the secondary bollage is higher than the primary voltage, the secondary current is lower than the primary eurrent, and by the same ratio.

Power Relationships; Efficiency

A transformer cannot ereate power; it can only transfer and transform it. Hence, the power taken from the secondary camot exceed that taken by the primary from the source of applied e.m.f. There is always some power loss in the resistance of the coils and in the iron core, so in all practical cases the power taken from the source will exceed that taken from the secondary. Thus,

$$
P_{\mathrm{o}}=n P_{\mathrm{i}}
$$

Where $P_{o}=$ Power output from secondary
$P_{i}=$ Power input to primary
$n=$ Efficiency factor
The efficiency, n, always is less than 1 . It is usually expressed as a percentage; if n is 0.65 , for instance, the efficiency is 6 b per cent.

$$
\begin{aligned}
& \text { Example: A transformer has an eflicioncy of } \\
& 85 \% \text { at its fall-lowd output of } 150 \text { watts. The } \\
& \text { power input to the primary at full secondary } \\
& \text { load will be } \\
& \qquad P_{i}=\frac{P_{0}}{n}=\frac{150}{0.85}=176.5 \text { watts }
\end{aligned}
$$

A transformer is usually designed to have its highest efficiency at the power output for which it is rated. The efficiency dereases with either lower or higher outputs. On the other hand, the losses in the transformer are relatively small at low output but incretse as more power is taken. The amount of power that the transformer can handle is determined by its own losses, because these heat the wire and core and raise the operating temperature. There is a limit to the tempera-
ture rise that can be tolerated, because too-high temperature either will melt the wire or cause the insulation to break down. A transformer always can be operated at reduced output, even though the efficiency is low, because the actual loss also will be low under such conditions.

The full-load efficiency of small power transformers such as are used in radio receivers and transmitters usually lies between about 60 per cent and 90 per cent, depending upon the size and design.

Leakage Reactance

In a practical transformer not all of the magnetic flux is rommon to both windings, although in well-designed transformers the amount of flux that "cuts" one coil and not the other is only a small perrentage of the total flux. This leakage flux causes an e.m.f. of self-induction; consequently, there are small amounts of leakage inductance associated with both windings of the transformer. leakage inductance acts in exactly the same way ats ant equivalent amount of ordinary inductance inserted in series w ith the circuit.

Fig, 2.36 - The equivalent circuit of a transformer in. chades the effects of leakare inductamee and resistance of loth primary and secombary windings. The resistance R_{C} is an erpuivalent resistance representing the core losises, which are essentially constant for any given applied voltage and fromeney. Sine these are comparatively small, their effeet may be negleeted in many approximate ealeulations.
It has, therefore, a rertain reartance, depending upon the amount of leakage inductance and the frequency. This reartance is called leakage reactance.

Current flowing through the leakage reactance causes a voltage drop. This voltage drop increases with increasing current, hence it increases as more power is tiken from the secondary. Thus, the greater the secondary current, the smaller the scondary terminal voltage beromes. The resistances of the transformer windings also cause voltage drops when current is flowing; although these voltage drops are not in phase with those caused by leakage reactance, together they result in atower secondary voltage under load than is indicated by the turns ratio of the transformer.

At power frequencies (60 cyeles) the voltage at the secondary, with a reasonably well-designed transformer, should not drop more than about 10 per rent from open-cireuit conditions to full load. The drop in voltage may be considerably more than this in a transformer operating at audio frequencies berause the leakage reatance increases directly with the frequency.

Impedance Ratio

In an ideal transformer - one without losses or leakage reactance - the following relationshin is true:

$$
Z_{\mathrm{p}}=Z_{\mathrm{s}} N^{2}
$$

where $Z_{p}=$ Impedance looking into primary terminals from source of power
$Z_{\mathrm{a}}=$ Impedance of load connected to secondary
$N=$ Turns ratio, primary to secondary
That is, a load of any given impedance connected to the scandary of the transformer will be transformed to a different value "looking into" the primary from the source of power. The impedance transformation is proportional to the square of the primary-to-secondary turns ratio.

Example: A transformer has a primary-tosecondary turns ratio of 0.6 (prinary has $i / 10$ as many turns as the secondary) and a load of 3000 ohms is connerted to the secondary. The impedanec looking into the primary then will be

$$
\begin{gathered}
Z_{\mathrm{p}}=Z_{\mathrm{s}} N^{2}=3000 \times(0.6)^{2}=3000 \times 0.36 \\
=1080 \text { ohms }
\end{gathered}
$$

By choosing the proper turns ratio, the impedance of a fixed load can be transformed to any desired value, within practical limits. The transformed or "reflected" impedance has the same phase angle as the actual load impedance; thus if the load is a pure resistance the load presented by the primary to the source of power also will be a pure resistance.

The above relationship may be used in practical work even though it is based on an "ideal" transformer. Aside from the normal design requirements of reasonably low internal losses and low leakage reartance, the only requirement is that the primary have enough inductance to operate with low magnetizing current at the voltage applied to the primary.

The primary impedince of a transformer as it looks th the source of pouer - is determined wholiy by the load commerted to the secondary and by the turns ratio. If the characteristios of the transformer have an appreciable effect on the impedance presented to the power source, the transformer is either poorly designed or is not suited to the voltage at which it is being used. Most transformers will operate quite well at voltages from slightly above to well below the design figure.

Impedance Matching

Many devies require a sperific value of load resistance (or impedance) for optimum operation. The impedance of the actual load that is to dissipate the power may differ widely from this value, so a transiomer is used to transform the actual load into an impedance of the desired value. This is called impedance matching. From the preceding,

$$
N=\sqrt{\frac{Z_{8}}{Z_{\mathrm{p}}}}
$$

where $N=$ Required turns ratio, secondary to primary
$\boldsymbol{Z}_{\mathrm{s}}=$ Impedance of load connected to secondary
$Z_{10}=$ Impedance required

Example: A vacuum-tube a.f. amplifier reguires a load of 5000 ohms for optimum performance, and is to be connected to a loucspeaker having an impedance of 10 ohms. The turns ratio, secondary to prinary, required in the coupling transformer is

$$
N=\sqrt{\frac{\overline{Z_{8}}}{Z_{\mathrm{B}}}}=\sqrt{\frac{10}{5000}}=\sqrt{\frac{1}{300}}=\frac{1}{22.4}
$$

The primary therefore must have 22.4 times as many turns as the secondary.
Impedance matching means, in general, adjusting the load impedance - by means of a transformer or otherwise - to a desired value. However, there is also another meaning. It is possible to show that any source of power will deliver its maximum possible output when the impedance of the load is equal to the internal impedance of the somre. The impedance of the source is said to be "matched" under this condition. The efliciency is only $\overline{5} 0$ per cent in such a case; just as much power is used up in the source as is delivered to the load. Because of the poor efficiency, this type of impedance matching is limited to eases where only a small amount of power is available and heating from power loss in the source is not important.

Transformer Construction

Transformers usually are designed so that the magnetif path around the core is as short as possible. A short magnetic path means that the transformer will operate with fewer turns for a given applied voltage, than if the path were long. It also helps to redure flux leakage and therefore minimizes leakage reactance. The number of turns required also is inversely proportional to the eross-sectional area of the core.

Two core shapes are in common use, as whown in lig. 2-37. In the shell type both windings are placed on the imner leg, while in the core type the primary and secondary windings may be placed on separate legs, if desired. This is sometimes done when it is necessary to minimize capacitive effects between the primary and secondary, or when one of the windings must opcrate at very high voltage.

Core material for small transformers is usually silicon steel, called "transformer iron." The core is built up of laminations, insulated from each

Fig. 2-37 - Two common types of transformer construetion. Core pieces are interleaved to provide a contimuous magnetic path.
other (by a thin coating of shellac, for example) to prevent the flow of eddy currents. The laminations owerlap at the ends to make the magnetie path as continuous as possible and thus reduce flux leakarge.

Fip. 2-38 - The antotransformer is based on the transformer principle, hut uses only one winding. The line and load currents in the common winding (A) flow in opposite directions, so that the resultant current is the differene between them. The voltage across A is proportional to the turns ratio.

The number of turns required on the primary for a given applied e.m.f. is determined by the size, shape and type of core material used, and the frequency. As a rough indication, windings of small power transformers frequently have about six to eight turns per volt on a core of 1 -square-inch cross section and have a magnetic path 10 or 12 inches in length. A longer path or
smaller cross section requires more turns per volt, and vice versa.

In most transformers the eoils are wound in bavers, with a thin sheot of treated-paper insulat tion between each layer. Thieker insulation is used between eoils and between eoils and core.

Autotransformers

The transformer principle can be utilized with only one winding instead of two, as shown in Fig. 2-38; the principles just discussed apply equally well. I one-winding transformer is called an autotransformer. The current in the common section (.1) of the winding is the difference between the line (primary) and the load (secondary) currents, since these currents are out of phase. Hence if the line and load currents are nearly equal the common section of the winding may be wound with comparatively small wire. This will be the case only when the primary (line) and secondary (load) voltages are not very different. The autotransformer is used chiefly for boosting or reducing the power-line voltage by relatively small amounts.

Radio-Frequency Circuits

RESONANCE

Fig. 2-39) shows a resistor, capacitor and inductor comected in series with a soure of alternating current, the frequency of which can be varied over a wide range. At some hou frequens: the capacitive reactance will be much larger than the resistance of R, and the inductive reactance will be small compared with either the reactance

Fif. 2-39-A series circuit containing L, C and R is "resenant" at the applied freffurney when the reactance of C is equal to the reactance of 1. .
of C or the resistance of R. (R is assumed to be the same at all frequencies.) (on the other hand, at some very high frequency the reactance of (' will be very small and the reactance of L, will be very large. In either of these cases the current will he small, because the reactance is large at cither low or high frequencies.

At some intermediate frequency, the reactanes of (' and L will be equal and the voltage drops arross the coil and condenser will be equal and 180 degrees out of phase. Therefore they cancel eatch other completely and the current flow is determined wholly by the resistance, R. It that frequency the current has its largest possible value, assuming the source voltage to he constant regardless of frequency. A series circuit in which
the inductive and capacitive reactances are equal is said to be resonant.

Although resonance is possible at any frequencr, it finds its most extensive application in radio-frequency circuits. The reartive effects associated with even small indurtances and capacitances would place drastic limitations on r.f. eireuit operation if it were not possible to "cancel them out" by supplying the right amount of reactance of the opposite kind - in other words, "tuming the circuit to resonance."

Resonant Frequency

The frequency at which a series circuit is resonant is that for which $X_{L}=X_{6}$. Substituting the formulas for inductive and capacitive reactance gives

$$
f=\frac{1}{2 \pi \sqrt{L C}}
$$

where $f=$ Frequency in eycles per second
$L=$ Inductance in henrys
$C^{+}=$Caparitance in farads
$\pi=3.14$
These units are inconveniently large for radiofrequency circuits. I formula using more appropriate units is

$$
f=\frac{10^{6}}{2 \pi \sqrt{L C}}
$$

where $f=$ Frequency in kilorycles (ke.)
$L=$ Inductance in mierohenrys ($\mu \mathrm{h}$.)
$C=$ (apacitance in micromicrofarads ($\mu \mu \mathrm{f}$.
$\pi=3.14$

PER CENT CHANGE FROM RESONANT FREQUENC,
Fig. 2-40 - Current in a series-resonant circuit with varions values of series resistance. The values are arbitrary and would not apply to all circuito, but represent a ty pical case. It is assumed that the reactances (at the resonamt fropuenc) are 1000 ohms (minimum $(Q=10$). Wote that at frequencies more than phas or minus ten per cent away from the resonant frepuency the current is substantially unaflected by the resistance in the circuit.

Example: The resonant freguency of a serics circuit containing a $\mathbf{j}-\mu \mathrm{h}$. inductor and a 35 $\mu \mu \mathrm{f}$. capacitor is

$$
\begin{aligned}
& =\frac{10^{6}}{2 \pi \sqrt{L C}}=\frac{10^{8}}{6.28 \times \sqrt{5 \times 35}} \\
& =\frac{10^{8}}{6.28 \times 13.2}=\frac{10^{8}}{8.3}=12.050 \mathrm{kc}
\end{aligned}
$$

The formula for resonant frequency is not affected by the resistance in the circuit.

Resonance Curves

If a plot is drawn of the current flowing in the circuit of Fig. 2-39 as the frequency is varied (the applied voltage being ronstant) it wouk look like one of the curves in Fig. 2-40. The shatpe of the resonance curve at frequencies near resonance is determined by the ratio of reactance to resistance.
If the reactance of either the coil or condenser is of the same order of magnitude as the resistance, the current decreases rather slowly as the frequency is moved in either direction away from resonance. Such a curve is stid to be broad. On the other hand, if the reatance is eonsiderably larger than the resistance the current decreases rapidly as the frequency moves away from resonance and the circuit is said to be sharp. A sharp circuit will respond a great deal more readily to the resonant fregueney than to frequencies quite close to resonance; a broad arruit will respond almost equally well to a gromp or hame of frequencies contering around the resomant frequeney.

Both types of resomance curves are useful. A sharp circuit gives good selectivity - the ability
to respond strongly (in terms of current amplitude) at one desired frequency and discriminate against others. A broad circuit is used when the apparatus must give about the same response over a band of frequencies rather than to a single frequency alone.
Q
Most diagrans of resonant circuits show only inductance and capacitance; no resistance is indicated. Nevertheless, resistance is always present. At frequencies up to perhaps 30 Me . this resistance is mostly in the wire of the coil. Above this frequency energy loss in the capacitor (principally in the solid dielectric which must he used to form an insulating support for the capacitor plates) becomes appreciable. This energy loss is equivalent to resistance. When maximum sharpness or selectivity is needed the object of design is to reduce the inherent resistance to the lowest possible value.

The value of the reactance of either the inductor or capacitor at the resonant frequency of a series-resonant circuit, divided by the resistance in the circuit, is called the Q (quality factor) of the circuit, or

$$
Q=\frac{X}{R}
$$

where $Q=$ Quality factor
$X=$ Reattince of either coil or condenser, it ohms
$R=$ Resistance in ohms
Lxample: The inductor and caparitor in a series ejrcuit each have a reactance of 350 ohms at the resonant frectuency. The resistance is 5 ohms. Then the Q is

$$
Q=\frac{X}{i}=\frac{350}{i}=70
$$

Fig. 2-11 -- Current in mries-resonant circuits having differont (5. In this graph the current at resonance is assamed to the the same in all cases. 'The lower the Q, the more slowly the current decreases as the applied frequency is moved away from resonance.

The effect of Q on the sharpness of resonance of a circuit is shown by the curves of Fig. 2-41. In these curves the frequency change is shown in percontage above and below the resonant frequency. (s of $10,20,50$ and 100 are shown; these values eover much of the range commonly used in radio work.

Voltage Rise

When a voltage of the resonant frequency is inserted in series in a resonant circuit, the voltage that appears across either the inductor or capacitor is considerably higher than the applied voltage. The current in the eircuit is limited only by the resistance and may have a relatively high value; however, the same current flows through the high reactances of the inductor and capacitor and causes large voltage drops. The ratio of the reative voltage to the applied voltage is equal to the ratio of reactance to resistance. This ratio is the Q of the circuit. Therefore, the voltage across either the inductor or capacitor is equal to Q times the voltage inserted in series with the circuit.

Example: The inductive reactanec of a circuit is 200 ohms, the cameitive reactance is 200 ohms, the resistance 5 ohms, and the applied voltage is 50 . The two reactaness cancel and there will be but σ^{2} olmos of pure resistance to limit the current flow, Thus the current will be $50 / 5$, or 10 amperes. The voltage developerd across either the inductor or the mpacitor will be equal to its reactance times the current, or $200 \times 10=2000$ volts. An ailtemate method: The (2 of the rircuit is $X / R=200 / 5=40$. The reactive voltage is equal to Q times the applied voltage, or $40 \times 50=2000$ volts.

Parallel Resonance

When a variable-frequency source of constant voltage is applied to a parallel circuit of the type shown in Fig. 2-42 there is a resonance effect

Fig. 2.42-Circuit illustrating parallel resonance.
similar to that in a series circuit. However, in this case the "line" current (measured at the point indicated) is smallest at the frequency for which the inductive and capacitive reactances are equal. At that frequency the current through L is exactly canceled by the out-of-phase current through C, so that only the current taken by R flows in the line. At frequencies below resonance the current through L is larger than that through C, because the reactance of L is smaller and that of C higher at low frequencies; there is only partial cancellation of the two reactive currents and the line current therefore is larger than the current taken by R alone. At frequencies above resonance the situation is reversed and
more current flows through C than through L, so the line current again increases. The current at resonance, being determined wholly by R, will be small if R is large and large if R is small.

The resistance R shown in Fig. 2-42 is not necessarily an actual resistor. In most cases it will be an "equivalent" resistance that represents the energy loss in the circuit. This loss can be inherent in the coil or condenser, or may represent energy transferred to a load by means of the resonant circuit. (For example, the resonant circuit may be used for transferring power from a vacuum-tube amplifier to an antenna system.)

Parallel and series resonant circuits are quite alike in some respects. For instance, the eircuits given at A and 13 in Fig. 2- 13 will behave identically, when an external voltage is applied, if (1) L and C are the same in both cases; and (2) $R_{\text {p }}$

(A)

(B)

Fig. 2-43-Series and parallel elpivalents when the two circuits are resonant. The series resistor, R_{s}, in it can be replaerl liy an equivalent parallel resistor, R_{p}, in 13 , and vice versa.
multiplied by R_{s} equals the square of the reactance (at resonanee) of cither L or C. When these conditions are mot the two circuits will have the same (Qs. ('These statements are approximate, but are quite accurate if the (Q is 10 or more.) The circuit at A is a series circuit if it is viewed from the "inside" - that is, going around the loop formed by L, C and R - so its () can be found from the ratio of X to R_{s}.

Thus a circuit like that of Fig. 2-43A has an equivalent parallel impedance (at resonance) equal to R_{p}, the relationship between R_{n} and R_{p} being as explained above. Although R_{1} is not an actual resistor, to the source of voltage the parallel-resonant circuit "looks like" a pure resistance of that valuc. It is "pure" resistance beause the intuctive and capacitive curents are 180 degrees out of phase and are equal; thus there is no reactive current in the line. At the resonant frequency the parallel impedance of a resonant eircuit is

$$
Z_{\mathrm{r}}=Q \mathrm{X}
$$

where $Z_{r}=$ Resistive impedance at resonance $Q=$ Quality factor
$X=$ Reactance (in ohms) of either the inductor or capacitor
Example: The paralkel impedance of a cireuit having a Q of 50 and having inductive and eapacitive reactances of 300 ohms will be

$$
Z_{\mathrm{r}}=Q X=50 \times 300=15,000 \text { ohnns. }
$$

At frequencies off resonance the impedance is no longer purely resistive because the inductive

PER CENT CHANGE FROM RESONANT FREQUENCY
Fig. 2-4.1 - Relative impelance of parallel-resonant circuits with different Qs. 'Ihese curves are similar to those in lige. $2-41$ for current in a serics-resonant circuit. The effeet of O on impedance is most marked near the resonant frequeney.
and capacitive currents are not equal. The offresonant impedance therefore is complex, and is lower than the resonant impedance for the reasons previously outlined.
The higher the Q of the circuit, the higher the parallel impodance. Curves showing the variation of impedance (with frequeney) of a parallel rircuit have just the same shape as the curves showing the variation of current with frequency in a series circuit. Fig. 2-4t is a net of such rurves.

Parallel Resonance in Low-Q Circuits

The preceding discussion is accurate only for Qs of 10 or more. When the Q is below 10 , resonamee in a parallel circuit having resistance in series with the coil, as in Fig. 2-43.1, is not so easily defined. There is a set of values for L and C that will make the parallel impedance a pure resistance, but with these values the impedance does not have its maximum possible value. Inother set of values for L and C will make the parallel impedance a maximum, but this maximum value is not a pure resistance. Wither condition could be called "resonance," so with low-() circuits it is necessary to distinguish between maximum impedance and resistive impedance parallel resonance. The lifference between these values and the equal reactances of a series-resonant circuit is appreciable when the Q is in the vicinity of 5 , and becomes more marked with still lower Q values.

Q of Loaded Circuits

In many applications of resonant circuits the only power lost is that dissipated in the resistance of the cireuit itself. It frequencies below :30 Mc. most of this resistance is in the coil. Within limits, increasing the number of turns on the
coil increases the reactance faster than it raises the resistance, so coils for circuits in which the Q must be high may hisve reactances of 1000 ohms or more at the frequency under consideration.

Howner, when the circuit delivers energy to a load (as in the rase of the resonant rircuits, used in transmitters) the energy consumed in the circuit itself is usually negligible compared with that consumed by the load. The equivalent of such a circuit is shown in Fig. 2-45i, where the parallel resistor represents the load to which power is delivered. If the power dissipated in the load is at least ten times as great as the power lost in the inductor and capacitor, the parallel impedance of the resonant circuit itself will be so high compared with the resistance of the load that for all practical purposes the impedance of the combined circuit is equal to the load resistance. Under these conditions the Q of a parallelresonant circuit loaded by a resistive impedance is

$$
Q=\frac{R}{X}
$$

where $Q=$ Quality fartor
$R=$ larallel load resistance (ohms)
$X=$ Reactance (ohms) of either the indurtor or capacitor
Example: A resistive load of 3000 ohms is conneeted aeross a resonant eireuit in which the inductive and caparitive reactances are each 250 ohms. The circuit Q is then

$$
Q=\frac{R}{X}=\frac{3000}{250}=12
$$

The "effective" Q of a circuit loaded by a parallel resistance becomes higher when the reactances are decreased. A circuit loaded with a

Fif. 2-45 - The equivalent eircuit of a resonant circuit delivering power to a load. The resistor R represents the load resistance. At B the load is tapped across part of I. which by transformer action is equivalent to using a higher load resistance across the whole circuit.
relatively low resistance (a few thousand ohms) must have low-reactance elements (large capacitance and small inductance) to have reasonably high $($).

Impedance Transformation

An important application of the parallelresonant circuit is as an impedance-matching device in the output circuit of a vacuum-tube r.f. power amplifier'. As described in the chapter on vacuum tubes, there is an optimum value of load resistance for each type of tube and set of operating conditions. However, the resistance of the load to which the tube is to deliver power usually is considerably lower than the value required for proper tube operation. To transform the actual load resistance to the desired value the load may
be tapped across part of the coil, as slown in Fig. 2-4513. This is equivalent to connecting a higher value of load resistance across the whole circuit, and is similar in principal to impedance transformation with an iron-core transformer. In high-frequency resonant circuits the impedance ratio does not vary exartly as the square of the turns ratio, because all the magnetic flux lines do not, cut every turn of the coil. A desired reflected impedance usually must be obtained by experimental adjustment.

When the load resistance has a very low value (say below 100 ohms) it may be connerted in series in the resonant circuit (as in Fig. 2-43.1, for example), in which case it is transformed to an equivalent parallel impedance as previously described. If the () is at least 10, the equivalent parallel impedance is

$$
Z_{\mathrm{r}}=\frac{\mathrm{X}^{2}}{R}
$$

where $Z_{r}=$ Resistive impedance at resonance
$X=$ Reartance (in ohms) of either the coil or condenser
$R=$ Load resistance inserted in series
If the () is lower than 10 the reactance will have to be adjusted somewhat, for the reasons given in the discussion of low-Q circuits, to obtain a resistive impedance of the desired value.

Reactance Values

The charts of Figs. 2-46 and 2-47 show reactance values of inductances and eapacitances in the range commonly used in r.f. tuned rircuits for the amateur hands. With the exception of the 3.5-4 Mc. band, limiting values for which are shown on the charts, the change in reactance over a hand, for either inductors or capacitors, is small

Fig. 2-fo- Reactame rhart for inductance values commonly used in amateur hands from 1.75 to $2: 0$ Mc.

Fig. 2.17-Reactance chart for capacitance values commonly used in amatear bands from 1.65 to 220 Mc .
enough so that a single curve gives the reatance with sufficient accuracy for most practical purposes.

L/C Ratio

The formula for resonant frequency of a circuit shows that the same frequency always will be obtained so long as the product of L and C is constant. Within this limitation, it is evident that L can be large and C small, L small and C large, ete. The relation between the two for a fixed frequency is called the L / C ratio. A high- C circuit is one that has more capmitance than "nommal" for the frequence; a low-C eireuit one that has less than normal capacitance. These terms depend to a considerable extent upon the particular application considered, and have no exaet numerical meaning.

LC Constants

It is frequently convenient to use the numerical value of the $L C$ constant when a number of calenlations have to be made involving different L / r^{\prime} ratios for the same frequency. The constant for any frequency is given by the following equation:

$$
L C=\frac{25,3: 30}{f^{2}}
$$

where $L=$ Inductance in mierohenrys ($\mu \mathrm{h}$.)
$c^{\top}=$ Capaeitance in nieromicrofarads ($\mu \mu \mathrm{f}$.)
$f=$ Frequency in megaryoles
Example: Find the inductance reguired to resonate at 36 B 0 ke (3.6 i Me.) with eapucitances of 25, 50,100, and $500 \mu \mu \mathrm{f}$. The $L C$ constant is

$$
\begin{aligned}
& L C=\frac{25,330}{(3.65)^{2}}=\frac{25.330}{13.35}=1400 \\
& \text { With } 25 \mu \mu \mathrm{f}, L=1!(0) / C=1900 / 25 \\
& =76 \mu \mathrm{~h} . \\
& 50 \mu \mu \mathrm{f} . L=1900 / C=1900 / 50 \\
& =38 \mu \mathrm{~h} . \\
& 100 \mu \mu \mathrm{f} . L=1900 / C=1900 / 100 \\
& =19 \mu \mathrm{~h} \text {. } \\
& 500 \mu \mu \mathrm{f} . L=1900 / C=1900 / 500 \\
& =3.8 u \mathrm{~h} \text {. }
\end{aligned}
$$

COUPLED CIRCUITS

Energy Transfer and Loading

Two circuits are coupled when energy can be transferred from one to the other. The cirruit delivering power is called the primary circuit; the one receiving power is called the secondary circuit. The power nay be practically all dissipated in the secondary circuit itself (this is usmally the case in receiver circuits) or the secondary may

Fïg. 2-48 - Four methods of cireuit coupling.
simply act as a medium through which the power is transferred to a load. In the latter case, the coupled circuits may act as a radio-frequency impedance-matching device. The matching can be accomplished by adjusting the loading on the secondary and by varying the amount of coupling between the primary and secondary.

Coupling by a Common Circuit Element

One method of coupling between two resonant circuits is through a circuit element common to both. The three variations of this type of coupling shown at A, B and C of Fig. 2-48, utilize a common inductance, capacitance and resistance, respectively. Current circulating in one $L C$ ' branch flows through the conmon element (L_{c}, C_{c} or R_{c})

(B)

Fig. 2-49 - Single-tuned induetively-coupled circuits.
and the voltage developed across this element causes current to flow in the other $L C$ branch.

If both circuits are resonant to the same frequency, as is usually the case, the value of coupling reactance or resistance requirel for maximum energy transfer is generally quite small compared with the other reartances in the circuits. The common-circuit-element method of coupling is used only occasionally in amateur apparatus.

Capacitive Coupling

In the circuit at D the coupling increases as the capacitance of C_{c}, the "coupling capacitor," is made greater (reactance of C_{o} is decreased). When two resonant circuits are coupled by this means, the capacitance required for maximum energy transfer is quite small if the Q of the secondary circuit is at all high. For example, if the parallel impedance of the secondary circuit is 100,000 ohmis, a reartance of 10,000 ohms or so in the capacitor will give ample coupling. The corresponding capacitance required is only a few micromicrofarads at high frequencies.

Inductive Coupling

F'igs. 2-4) and 2-50 show inductive coupling, or coupling by means of the mutual inductance between two coils. Circuits of this type resemble the iron-core transformer, but because only a part of the magnetic flux lines set up by one coil cut the turns of the other coil, the simple relationships between turns ratio, voltage ratio and impedance ratio in the iron-core transformer do not hold.

Two types of inductively-coupled circuits are

Fig. 2-50 - Inductively-coupled resonant cireuits. Circuit A is used for high-resistance loads (reactance of either L_{2} or C_{2} comparable with the load resistance at the resonant frefueney). Circuit B is suitable for low resistance loads where the reactance of either L_{2} or C_{2} is of the same order as the load resistance.
shown in Fig. 2-49. Only one circuit is resonant. The circuit at A is frequently used in receivers for coupling between amplifier tubes when the tuning of the circuit must be varied to respond to signals of different frequencies. Circuit 13 is used principally in transmitters, for coupling a radiofrequency amplifier to a resistive load.
In these circuits the coupling between the primary and secondary coils usually is "tight" that is, the coefficient of coupling between the coils is large. With very tight coupling either circuit operates nearly as though the device to which the untuned coil is connected were simply tapped across a corresponding number of turns on the tuned-circuit coil, thus either circuit is approximately equivalent to Fig. 2-47B.

By proper choice of the number of turns on the untuned coil, and by adjustment of the coupling, the parallel impedance of the tuned circuit may be adjusted to the value required for the proper operation of the device to which it is connected. In any case, the maximum energy transfer possible for a given coefficient of coupling is obtained when the reactance of the untuned coil is equal to the resistance of its load.

The Q and parallel impedance of the tuned circuit are reduced by coupling through an untuned coil in much the same way as by the tapping arrangement shown in Fig. $2-17 \mathrm{~B}$.

Coupled Resonant Circuits

When the primary and secondary circuits are both tuned, as in lig. 2-50, the resonance effects in both circuits make the operation somewhat more complicated than in the simpler circuits just considered. Imagine first that the two circuits are not coupled and that each is independently tuned to the resonant frequency. The impedance of each will be purely resistive. If the primary circuit is connected to a source of r.f. energy of the resonant, frequency and the secondary is then loosely coupled to the primary, a current will flow in the secondary circuit. In flowing through the resistance of the secondary circuit and any load that may be comected to it, the current causes a power loss. This power must come from the energy source through the primary circuit, and manifests itself in the primary as an increase in the equivalent resistance in series with the primary coil. Hence the Q and parallel impedance of the primary circuit are decreased by the coupled secondary. As the coupling is made greater (without changing the tuning of either circuit) the coupled resistance becomes larger and the parallel impedance of the primary continues to decrease. Also, as the coupling is made tighter the amount of power transferred from the primary to the secondiry will increase to a maximum at one value of coupling, called critical coupling, but then decreases if the coupling is tightened still more (still without changing the tuning).

Critical coupling is a function of the Qs of the two circuits. A higher coefficient of coupling is required to reach critical coupling when the (as are low ; if the (as are high, as in receiving applica-
tions, a coupling coefficient of a few per cent may give eritical coupling.

With loaded circuits such as are used in transmitters the Q maty be too low to give the desired power transfer ceven when the coils are coupled as tightly as the physical construction permits. In such case, increasing the () of either circuit will be helpful, although it is generally better to increase the Q of the lower- Q circuit rather than the reverse. The Q of the parallel-tuned prinary (input) circuit can be increased by decreasing the L / C ratio because, as shown in comection with Fig. 2-45, this circuit is in effect loaded by a parallel resistance (effect of coupled-in resistance). In the parallel-tuned secondary circuit, Fig. 2-50.A, the (Q can be increased, for a fixed value of load resistance, either by decreasing the L / C ratio or by tapping the load down (see lig. $2-47$). In the series-tuned secondary cirenit, Fig. 2-5013, the Q may be increased by increasing the L / C ratio. There will generally be no difficulty in securing sufficient coupling, with practicable coils, if the product of the $Q s$ of the two tuned circuits is 10 or more. A smaller product will suffice if the coil construction permits tight coupling.

Selectivity

In lig, 2-49 only one cireuit is tuned and the selectivity curve will be essentially that of a single resonant circuit. As stated, the effective Q depends upon the resistance commected to the untuned coil.

In Fig. 2-50, the selectivity is the same as that of a single tuned circuit having a () equal to the prowluct of the (S s 2 of the individual circuits - if the coupling is well below critical (this is not the condition for optimum power transfer diseussed immediately above) and both circuits are tuned to resonance. The $Q s$ of the individual circuits are affected by the degree of coupling, becatuse each couples resistance into the other; the

Fig. 2-5I - Showing the effect on the output voltage from the secondary circuit of changing the coseflieient of coupling lnotween two resonant eircuits independently tuned to the same frepuency. 'The voltage applied to the primary is held constant in amplitule while the frequency is varied, and the output voltage is measured across the secondary.
tighter the coupling, the lower the individual Qs and therefore the lower the over-all selectivity:

If both rircuits are independently tuned to resonance, the over-all selectivity will vary about as shown in Fig. 2-in as the coupling is varied. With loose coupling, A, the output voltage
(across the secondary circuit) is small and the selectivity is high. As the coupling is increased the secondary voltage also increases until critical coupling, B, is reached. At this point the output voltage at the resmant frequency is maximum but the selectivity is lower than with looser eoupling. At still tighter coupling, (', the output voltage at the resonant frequency decreases, but as the frequency is varied either side of resonance it is found that there are two "humps" to the curve, one on cither side of resonance. With very tight coupling, I, there is a further decrease in the output voltage at resonance and the "humps" are farther away from the resonant frequency. Curves such as those at (' and D are called flattopped because the output voltage does not change much over an appreciable band of frequencies.

Note that the off-resonance humps have the same maximum value as the resonant output voltage at critical coupling. These humps are caused by the fact that at frequencies off resoname the scondary circuit is reactive and couples reactance as well as resistance into the primary. The coldpled resistance decreases off resonance and the humps represent a new condition of critictil coupling, at a frequency to whieh the primary is tuned by the additional coupled-in reactance from the secondary.

Band-Pass Coupling

Over-coupled resonant circuits are useful where substantitlly uniform output is desired over a continuous band of frequencies, without readjustment of tuning. The width of the flat top of

Fig. 2-52-Link coupling. The mutual inductanees at both ends of the link are equivalent to mutual induetance between the tuned circuit, and serve the same purpose.
the resonance curve depends on the $Q s$ of the two circuits as well as the tightness of coupling; the frequency separation between the humps will increase, and the curve become more flat-topped, as the (ss are lowered.

Band-pass operation also is secured by tuning the two circuits to slightly different frequencies, which gives a double-humped resoname curve even with loose coupling. This is called stagger tuning. However, to secure adequate power transfer over the frequency band it is usually necessary to use tight eoupling and experimentally adjust the circuits for the desired performance.

Link Coupling

A modification of inductive coupling, called link coupling, is shown in Fig. 2-52. This gives the effect of inductive coupling between two coils that have no mutual inductance; the link is simply a means for providing the mutual inductance. The total mutual inductance between two
coils coupled by a link cannot be made as great as if the coils themselves were coupled. This is because the coefficient of coupling between aircore coils is considerably less than 1 , and since there are two coupling points the over-all coupling

$$
\begin{aligned}
x_{L} & =\sqrt{R R_{i n}-R^{2}} \\
x_{c} & =\frac{R R_{i n}}{x_{L}}
\end{aligned}
$$

$$
x_{c}=R \sqrt{\frac{R_{\text {in }}}{R-R_{\text {in }}}}
$$

$$
\begin{equation*}
x_{L}=\frac{R R_{\text {in }}}{x_{c}} \tag{B}
\end{equation*}
$$

Fig. 2.5.3 - The L network for transforming a desired resistive load, R, inter) a desired value of resistance, $h_{\text {is }}$. (1) is for transforming to a higher value of resistance, (13) for transforming to a lower salue.
coefficient is less than for any puir of coils. In partice this need not be disadvantageous becanse the power transtor can be nade great enough by making the tuned circuits sufficiently high-(e. limk coupling is conveniont when owdinary inductive coupling would be impracticable for constructional reasons.

The link coils usually have a small number of turns compared with the resomant-cireuit coils. The number of turns is not greatly important, because the roeflicient of coujling is relatively independent of the number of turns on either coil; it is nore important that both link ecils should have about the same inductanco. The lergth of the link betwen the roils is not criticoll if it is very small compared with the wavelength, but if the length is more than about one-t wentieth of a wavelengt the link operates more as a transmission line than as a means for providing mutual indurtance. In such case it should be treated by the methods deseribed in the chapter on Transmission Lincs.

Impedance-Matching Circuits

The coupling circuits discussed in the preceding section have been based either on indactive coupling or on coupling through a eommon eircuit element between two resonant circuits. These are not the only circuits that may be used for transferring power from one device to another. There is, in fact, a wide varicty of such circuits available, all of them being classified generally as impedance-matching networks. Two such networks frequently used in amateur equipment are the L network and the pi network, shown, in the form commonly used, in Figs. 2-5:3 and 2-54.

The L Network

The L network is the simplest possible im-pedinne-matching circuit. It closely resembles an ordinary resonant circuit with the load resistance, R, Fig. 2-53, either in series or parallel. The arrangement shown in Fig. 2-53A is used when the desired impedance, $R_{\text {IN }}$, is karger than
the actual load resistance, R, while Fig. 2-5.3B is used in the opposite case. The design equations for eath case are given in the figure, in terms of the circuit reactances. The reactances may be converted to inductance and (eipheitamee by means of the formulas previously given or taken directly from the charts of Figs, 2-46 and 2-47.

When the impedance transformation ratio is large - that is, one of the two impedances is of the order of 100 times or more larger than the other - the operation of the circuit is exactly the same as previously discussed in connection with impedance transformation with a simple $L C$ resonant circuit.

The Q of an L network is found in the same way as for simple resonant circuits. That is, it is equal to X_{L} / R or $R_{\mathrm{IN}} / X_{\mathrm{C}}$ in Fig. 2-53A, and to $X_{\mathrm{L}} / R_{\mathrm{IN}}$ or R / X_{C} in Fig. $2-5313$. The value of Q is determined by the ratio of the impedances to be matched, and cannot be selected independently. In the equations of Fig. 2-533 it is assumed that both R and $R_{\text {in }}$ are pure resistances.

The Pi Network

The pi network, shown in Fig. 2-54, offers more flexibility than the L since the operating Q may

$$
\begin{gathered}
X_{C_{1}}=\frac{R_{1}}{Q} \\
X_{C_{2}}=R_{2} \sqrt{\frac{R_{1} / R_{2}}{Q^{2}+1-\left(R_{1} / R_{2}\right)}} \\
X_{L}=\frac{Q R_{1}+\left(R_{1} R_{2} / X_{C_{2}}\right)}{Q^{2}+1}
\end{gathered}
$$

Fig. 2-54 - The pi network, for matching any two values of purely resistive impedances. R_{1} and \dot{R}_{2}. In the definition of the Q of the network it is assumed that R_{1} is the higher of the two resistances, and should be so chosen in using the equations.
be chosen practically at will. The only limitation on the circuit values that may be used is that the reactance of the series arm, the inductor L in the figure, must not be greater than the square root of the product of the two values of resistive impedance to be matched. As the circuit is applied in amateur equipment, this limiting value of reactance would represent a network with an undesirably low operating $(Q$, and the circuit values ordinarily used are well on the safe side of the limiting values.

In its principal application ats a "tank" cireuit matehing a transmission line to a power amplifier tube, the load R_{2} will generally have a fairly low value of resistance (up to a few hundred ohms) while R_{1}, the required load for the tube, will be of the order of a few thousand ohms. In such a case the Q of the cireuit is defined as $R_{1} / X_{C 1}$, so the choice of a value for the operating Q immediately sets the value of $X_{C 1}$ and hence of C_{1}. The values of $X_{C_{2}}$ and X_{L} are then found from the equations given in the figure.

Graphical solutions of these equations for the most important pratical cases are given in the chapter on tramsmitter design in the discussion of plate tank rireuits. The L and 6 values may be calculated from the reactances or read from the charts of Figs. 2-46 and 2-47.

PIEZOELECTRIC CRYSTALS

A number of crystalline substances found in nature have the ability to transform mechanical strain into an elertrical charge, and vice versa. This property is known as piezoelectricity. Λ small plate or bar eut in the proper way from a quartz crystal, for example, and plared between two conducting electrodes, will be mechanically strained when the electrodes are comnected to a source of voltage. Conversely, if the crystal is squeezed between two electrodes a voltage will develop between the electrodes.
liezoelectric erystals can be used to transform merhanical energy into electrical energy, and vice versa. They are used, for example, in microphones and phonograph pick-ups, where mechanical vibrations are transformed into alternating voltages of corresponding frequency. They are also used in headsets and loudspeakers, transforming electrical energy into mechanical vibration. Crystals of Rochelle salts are used for these purposes.

Crystal Resonators

Crystalline plates also are mechanical resonators that have natural frequencies of vibration ranging from a few thousind cycles to several megacyeles per serond. The vibration frequency depends on the kind of crrstal, the way the plate is cut from the natural crystal, and on the dimensions of the plate. Becaluse of the piezoelectric effect, the erystal plate can be coupled to an electrical circuit and made to substitute for an $L C$ resonant circuit. The thing that makes the crystal resonator valuable is that it has extremely high Q, ranging from is to 10 times the (s obtainable with good $L C$ resonant cirruits.

Analogies can he drawn between various mechanical properties of the crystal and the elec-

Fig.2-55- Fquivalent circuit of a crystal resonator. L, C and R are the electrical equivalents of mechanical properties of the erystal; C_{1} is the caparitance of the electrodes with the crystal plate between them.

trical characteristics of a tumed eireuit. This leads to an "equivalent circuit" for the crystal. The electrical coupling to the erystal is through the electrodes between which it is sandwiched; these electrodes form, with the rrystal as the dielectric. a small condenser like any other condenser constructed of two plates with a dielectric between. The crystal itself is equivalent to a series-resonant circuit, and together with the capacitance of the electrodes forms the equivalent circuit shown in Fig. 2-55. At frequencies of the

Fig. 2-56- Reactance and resistance re. frequency of a circuit of the type shown in l'ig. 2-.35. Actual values of reactance, resistance and the separation between the series- and parallel-resonant frequencies, f_{1} and f_{2}, respectively, depend on the circuit constants.
order of 450 ke., where erystals are widely used as resonators, the equivalent L may be several henrys and the equivalent C only a few hundredths of a mieromicrofarad. Although the equivalent R is of the order of a few thousand ohms, the reactance at resonane is so high that the Q of the erystal likewise is high.

A circuit of the type shown in Fig. 2-55 has a series-resonant frequenc: when viewed from the circuit terminals indicated by the arrowheads,
determined by L and C only. At this frequency the circuit impedance is simply equal to R, providing the reatance of C_{h} is large compared with R (this is generally the case). The circuit also has a parallel-resonant frequeney determined by L and the equivalent capacitance of C and C_{i} in series. Since this equivalent capacitance is smaller than C alone, the parallel-resonant frequence is higher than the series-resonant frequency. The separation between the two resonant frequencies depends on the ratio of C_{h} to C, and when this ratio is large (as in the case of a crystal resonator, where C_{h} will be a few $\mu \mu \mathrm{f}$. in the average case) the two frequencies will be quite close together. A separation of a kilocycle or less is typucal of a quartz erystal.

Fig. $\grave{2}-56$ shows how the resistance and reactance of such a circuit vary as the applied frequency is varied. The rantance passes through zero at both resonant frequencies, but the resistance rises to a large value at parallel resonance, just as in any tuned circuit.
(Quartz crystals may be used either as simple resonators for their selective properties or as the freguenew-eontrolling elements in oscillators as described in later chapters. The series-resonant frequency is the one principally used in the former ase, while the more common forms of oscillator cireuit use the parallel-resonant frequeney.

Practical Circuit Details

COMBINED A.C. AND D.C.

Most radio circuits are built around varcum tubes, and it is the nature of these tubes to require direct current (usually at a fairly high voltage) for their operation. They convert the direct eurrent into an alternating current (and sometimes the reverse) at frequencies varying from well down in the audio range to well up in the superhigh range. The conversion process almost invariably requires that the direct and alternating currents meet somewhere in the circuit.

In this meeting, the a.ce and d.e are actually combined into a simgle eurrent that "pualsates" (at the ace. frequeney) about an average value equal to the direct current. This is shown in Fig. $2-57$. It is convenient to consider that the alternating current is superimposed on the direct current, so we may look upon the actual current as having two components, one d.e. and the other ace.

In an alternating current the pasitive and nega-

Fig. 2-57 - Pulsating d. c., composed of an alternating current or voltage superimproad on a steady dirent current or boltage.
tive alternations have the same average amplitude, so when the wave is superimposed on a direct current the latter is alternately increased and decreased bin the same amm,mi. There is thus no average ehange in the direct current. If a d.c. instrument is being used to read the current, the reading will be exartly the same whether or not the a.ce. is superimposed.
Ilowever, there is actually more power in such a combination current than there is in the direct current alone. This is because power varies as the square of the instantaneous value of the current, and when all the instantaneous squared values are averaged over a cycle the total power is greater than the d.e. power alone. If the a.c. is a sine wave having a peak value just equal to the d.e., the power in the circuit is 1.5 tines the d.e. power. An instrument whose readings are proportional to power will show such an increase.

Series and Parallel Feed

Fig. 2-58 shows in simplified form how d.c. and a.c. may be combined in a vacuum-tube circuit. In this case, it is assumed that the a.c. is at radio frequency, as suggested by the coil-andcamacitor tuned circuit. It is also assumed that r.f. current can easily flow through the d.e. supply; that is, the impedance of the supply at radio frequencies is so small as to be negligible.
In the circuit at the left, the tube tuned circuit,

Fig. 2.58 - Illustrating series and parallel feed.
and d.e. supply all are commerted in series. The direct current flows through the r.f. coil to get to the tube; the r.f. current generated by the tube flows through the d.c. supply to get to the tuned circuit. This is series feed. It works berause the impedance of the ale. supply at radio frequencies is so low that it does not affert the flow of $r . f$. current, and because the d.e. resistance of the eoil is so low that it does not affect the flow of direct current.

In the circuit at the right the direct current does not flow through the r.f. tuned cireuit, but, instead goes to the tube through a serond coil, $R F^{\prime}$ ((radio-frequency choke). Direct current cannot flow through L because a blocking capacitance, C, is placed in the circuit to prevent it. (Without (", the d.c. supply would be shortcircuited by the low resistance of $/$..) (on the other hand, the r.f. current generated by the tube can easily fow through C, to the tuned cireuit because the capacitance of $C^{\prime \prime}$ is intentionally chosen to have low reactance (compared with the impedance of the tuned (ircuit) at the radio frequency. The r.f. current cannot flow through the d.c. supply because the inductance of $R F^{\prime}{ }^{\prime}$ is intentionally made so large that it has a very high reartince at the radio frequency. The resistance of $R F^{\prime} C$, however, is too low to have an appreciable effect on the flow of direct current. The two currents are thus in parailel, hence the name parallel feed.

Fither type of feed may be used for both n.f. and r.f. circuits. In parallel feed there is no d.c. voltage on the a.c. circuit, a desirable feature from the viewpoint of safety to the operator, because the voltages applied to tubes - particularly transmitting tubes - are dangerous. (n) the other hand, it is somewhat difficult to make an r.f. choke work well over a wide range of frequencies. Series feed is often preferred, therefore, because it is relatively easy to kecp the impedance between the a.c. circuit and the tube low.

By-Passing

In the series-feed circuit just discussed, it was assumed that the d.c. supply had very low inpedance at radio frequencies. This is not likely to be true in a practical power supply, partly because the nomal physical separation between the supply and the r.f. circuit would make it necessary to use rather long connecting wires of
leads. At radio frequencies, even a few feet of wire can have fairly large reactance - too large to be considered a really "low-impedance" connection.

In actual circuit would be provided with a by-pass capacitor, as shown in Fig. 2-59. Capacitor (" is chosen to have low reactance at the operating frequency, and is installed right in the circuit where it can be wired to the other parts with quite short comnerting wires. Hence the r.f. current will tend to flow through it rather than through the d.e. supply:
To be effective, the reactance of the by-pass eaparitor should not he more than one-tenth of the impedance of the by-passed part of the circuit. Very often the latter impedance is not known, in which case it is desirable to use the largest capacitance in the by-pass that circumstances permit. To make doubly sure that r.f. current will not flow through a non-r.f. circuit such as a power supply, an r.f. choke may be comnected in the lead to the latter, as shown in F"ig. ?-j9.
The same type of by-passing is used when audio frequencies are present in addition to r.f. Because the reactance of a eapacitor changes with frequency, it is readily possible to choose a capacitance that will represent a very low reactance at

Fip. 2-59-Typical use of a by-puss capacitor in a series-feed circuit.

radio frequencies but that will have such high reactance at audio frequencies that it is practically an open circuit. A capacitance of $0.001 \mu \mathrm{f}$. is practically a short circuit for r.f., for example, but is almost an open circuit at audio frequencies. (The actual value of capacitance that is usable will be modified by the impedances concerned.) By-pass capacitors also are used in audio eircuits to carry the audio frequencies around a d.c. supply.

Distributed Capacitance and Inductance

In the discussions earlier in this chapter it was assumed that a capacitor has only capacitance and that an inductor has only inductance. Unfortunately, this is not strietly true. There is always a certain amount of inductance in a conductor of any length, and a capacitor is bound to have a little inductance in addition to its intended capacitince. Also, there is always capacitance between two conductors or between parts of the same conductor, and thus there is appreciable capacitance between the turns of an inductance coil.

ELECTRICAL LAWS AND CIRCUITS

This distributed inductance in a caparitor and the distributed capacitance in an inductor have important practical effects. Aetually, every capacitor is a tuned circuit, resonant at the frequeney where its cenpencitance and distributed inductance have the same reactance. The same thing is true of a coil and its distributed capoucitance, At frequencios woll below these natural resonances, the mataitor will act like a nomal rapacitance and the roil will act like a nomal inductance. Near the natural resonant points, the coil and capacitor act like self-tuned eirenits. Above resonance, the capacitor atets like an inductor and the inductor acts like a capacions. Thus there is a limit to the amount of caparitance that can be used at a given frequene: There is a similar limit to the inductance that can be used. At audio frequencies, capacitances measured in microfarads and indurtances measured in henrys are procticable. . It low and medium radio frequencies, inductances of a few millihenres and capacitances of a few thousand micromicrofarads are the largest practicable. It high radio frequencies, usable iuductance values drop to a few midrohenrys and rapacitances to a few hundred micromicrofarads.

Distributed eapacitance and inductance are important not only in r.f. tuned circuits, but in by-passing and choking as well. It will be appreciated that a by-pass eaparitor that actually acts like an inductance, or an r.f. choke that acts like a low-reantance capacitor, camot work as it, is intended they should.

Grounds

Throughout this book there are frequent references to ground and ground potential. When a eomertion is said to be "grounded" it does not mean that it actually goes to earth (although in many cases such carth connections are used). What it means is that an actual earth comnertion to that proint in the eircuit should not disturb the operation of the cireuit in any way. The term also is used to indicate a "common" point in the circuit where power supplies and metallic supports (such as a metal chassis) are electrically tied together. It is eustomary, for example, to "ground" the negative terminal of a d.e. power supply, and to "ground" the filament or heater power supplies for vacuum tubes. Since the cathode of a vacuum tube is a junction point for grid and plate voltage supplies, it is a matural point to "ground." Ako, since the various circuits connected to the tube elements have at least one point connected to cathode, these points also are "returned to ground." "(iround" is therefore a common reference point in the radio circuit. "(iround potential" means that there is no "difference of potential" - that is, no voltage - between the circuit point and the earth.

Single-Ended and Balanced Circuits

With reference to ground, a circuit may be either single-ended (umbalanced) or balanced. In a single-monded circuit, one side of the circuit is connected to ground. In a balanced
circuit, the electrical midpoint is connected to ground, so that the rircuit has two ends each at the same voltage "above" ground.

Typieal single-ended and balanced cireuits are shown in Fig. 2-60. R.f. circuits are shown in the upper row, while iron-core transformers (such as are used in power-supply and audio circuits) are shown in the lower row. The r.f. circuits may be balanced oither by connecting the center of the coil to ground or by using a "balanced" or "split-stator" capacitor and connecting its rotor to ground. In the iron-core transformer, one or both windings may be tapped at the center of the winding to provide the ground comection.

Shielding

Two circuits that are physically near each other usually will be coupled to cach other in some degree even though no coupling is intended. The metallic parts of the two circuits form a small capacitance through which energy can be transferred by means of the electric field. Also, the magnetic field about the coil or wiring of one circuit can couple that rireuit to a second through the latter's coil and wiring. In many coses these unwanted couplings must be prevented if the circuits are to work properly.

Capacitive compling may readily be prevented by enclosing one or both of the circuits in grounded low-resist:nce metallic containers, ealled shields. The electric field from the eircuit components doos not nenetrate the shield. A metallic plate, called a baffe shield, inserted between two components also may suflice to prevent electrostatic compling between them. It should be large enough to make the components invisible to earh other.

Similar metallic shielding is used at radio frequencies to prevent magnetic coupling. The

Fig. 2.60 - Single-ended and balaneed circuits.
shiclding effert increases with freouency and with the conductivity and thickness of the shielding material.

A closed shield is required for good magnetic shielding; in some rases separate shields, one about each coil, may be required. The baflle shield is rather ineffective for magnetic shielding, although it will give partial shielding if placed at right angles to the axes of, and between, the coils to be shielded from each other.

Shielding a coil reduces its inductance, because part of its field is canceled by the shield. Also, there is always a small amount of resistance in the shield, and there is therefore an energy loss. This loss raises the effective resistance of the coil. The decrease in inductance and increase in resistance lower the Q of the coil, but the reduetion in inductance and Q will be small if the spacing between the sides of the coil and the shield is at least half the coil diameter, and the
spacing at the ends of the coil is at least equal to the coil diameter. The higher the conductivity of the shield material, the less the effect on the inductance and Q. Copper is the best material, but aluminum is quite satisfactory.

For good magnetic shielding at audio frequencies it is necessary to enclose the coil in a container of high-permeability iron or steel. In this case the shield can be quite close to the coil without harming its performance.

U.H.F. Circuits

RESONANT LINES

In resonant circuits as employed at the fower frequencies it is possible to consider each of the reatance components as a separate entity. The fact that an inductor has a certain amount of self-capacitance, as well as some resistance, while a capacitor also possesses a small selfinductance, can usually be disregarded.

It the very-high and ultrahigh frequencies it is not readily possible to separate these components. Also, the connerting leads which, at lower frequencies, would serve merely to join the capacitor and coil now maty have more inductance than the eoil itself. The required inductance coil may be no more than a single turn of wire, yet even this single turn may have dimensions comparable to a wave-length at the operating frequency. Thus the energy in the field surrounding the "coil" may in part be radiated. At a sufficiently high frequency the loss by radiation may represent a major portion of the total energy in the circuit.
For these reasons it is common practice to utilize resonant sections of transmission line as tuned circuits at frequencies above 100 Mc . or so. A quarter-wavelength line, or any odd multiple thereof, shorted at one and and open at the other, exhibits large standing waves, as deseribed in the chapter on transmission lines. When a voltage of the frequency at which such a line is resonant is applied to the open end, the response is very similar to that of a parallel resonant circuit. The equivalent relationships are shown in Fig. 2-61. At frequencies off resonance

rig. 2-bI - Equivalent rompling circuits for parallelline, coaxial-line and conventional resonant circuits.
the line displays qualities comparable to the inductive and capacitive reactances of a conventional tuned circuit, so sections of transmission line can be used in much the same manner as inductors and cepaceitors.

To minimize radiation less the two ronductors of a parallel-conductor line should not be more than about one-tenth wavelength apart, the spateing being measured between the conductor axes. On the other hand, the spacing should not be less than about twice the conductor diameter berause of "proximity effert," which callses eddy eurrents and an increase in loss. Above 300 Me. it is difficult to satisfy both these requirements simultaneously, and the radiation from an open line tends to become excessive, reducing the (. In such case the coaxial type of line is to be preferred, since it is inherently shielded.

Fip. 2-62 - Methods of tuning coaxial resonant lines.

Representative methods for adjusting coaxial lines to resonance are shown in Fig. 2-62. At the left, a sliding shorting disk is used to reduce the effective length of the line by altering the position of the short-cireuit. In the center, the same effect is accomplished by using a telescoping tube in the end of the inner eonductor to vary its length and therehy the effective length of the line. At the right, two possible methods of using parallelplate condensers are illustrated. The arrangement with the loading calpacitor at the open end of the line has the greatest tuning effect per unit of capacitance; the alternative method, which is equivalent to tapping the condenser down on the line, has less effeed on the Q of the rivenit. Lines with eapacitive "loading" of the sort illustrated will be shorter, physically, than ant unlonded line resonant at the same fropuences.
'Two methods of tuning parallel-conductor lines are shown in lig. 2-ti3. The sliding shortcircuiting strap can be tightened by means of
screws and nuts to make good electrial contart. The parallel-plate condenser in the second drawing maty be plated antwhere along the line the funing offert beroming less as the condenser is located nearer the shorted end

frig.2-6.3-Methods of tuning parallel. type resomant lines.

of the line. Although a low-raparitance variat ble condenser of ardinary ronstruction can be used, the circular-plate type shown is symmetrical and thus does not unbalane the line. It also has the further advantage that uo insulating material is required.

- wave guides

A wave guide is a conducting tube through which energy is transmitted in the form of electromagnetic waves. The tube is not considered as carrying a current in the same sense that the wires of a two-conductor line do, but rather as a boundary which confines the waves to the enclosed space. Skin effect prevents any electromagnetic effeets from being evident outside the guide. The energy is injected at one and, either through caparitive or inductive coupling or by radiation, and is received at the other end. The wave guide then merdy confines the

Fig. 2-64 - Field distribution in a rentangular wave guide. The TEi,0 mode of propagation is depieted.
energy of the fields, which are propagated through it to the receiving end by means of reflections against its inner walls.

Analysis of wave-guide operation is hased on the assumption that the guide material is a perfect conductor of electricity. Typical distributions of electric and magnetic fields in a rectangular guide are shown in Fig. 2-64. It will be olserved that the intensity of the elertric field is greatest (as indicated by closer spacing of the lines of force) at the center along the x dimension, Fig. 2-6413, dininishing to zero at the end walls. The latter is a necessary condition, since the existence of any electric field parallel to the walls at the surface would cause an infinite current to flow in a perfect conductor. This represents an impossible situation.

Modes of Propagation

Fig. 2-64 represents a relatively simple distribution of the electric and magnetic fields. There is in general an infinite number of ways in which the fields can arrange themselves in a guide so long as there is no upper limit to the frequency to be transmitted. Each field configuration is called a mode. All modes may be separated into two general grolips. One group, designated TM (transverse magnetic), has the magnetic fied entirely transverse to the direction of propagation, but has a component of electric firld in that direction. The other type, designated TE (transverse electric) has the electric ficld entirely transverse, but has a connponent of magnetic fiedd in the direction of propagation. $7 . M$ waves are sometimes called E waves, and $T E$ waves are sometimes called $I I$ waves, but the T / M and $T^{\prime} E$ designations are preferred.

The particular mode of transmission is identified by the group letters followed by two subscript numerals; for example, $T^{T} E_{1}, 0$, $T \cdot /_{1,1}$, ete. The number of possible modes inreases with frequency for a given size of guicle. There is only one possible mode (called the dominant mode) for the lowest frequency that can be transmitted. The dominant mode is the one generally used in practical work.

Wave-Guide Dimensions

In the reetangular guide the critical dimension is x in Fig. 2-6t; this dimension must be more than one-half wavelength at the lowest frequency to be transmitted. In practice, the y dimension usually is made about equal to $1 / 2 x$ to avoid the possibility of operation at other than the dominant mode.

Other cross-sectional shapes than the rectangle can be used, the most important being the rireular pipe. Much the same considerations apply as in the rertangular case.

Wavelength formulas for rectangular and circular guides are given in the following table, where x is the width of a rectangular guide and r is the radius of a circular guide. All figures are in terms of the dominant mode.

	Rectangular	Circ
Cut-off wavelength	$2 x$	3.
Longest wavelength transmitted with little attenuation.	- $1.6 x$	$3.2 r$
Shortest wavelength before next mode becomes possible.	- $1.1 x$	2.8

Cavity Resonators

Another kind of circuit particularly applicable at wavelengths of the order of centimeters is the cavity resonator, which may be looked upon as a section of a wave guide with the dimensions chosen so that waves of a given length can be maintained inside.

Typical shapes used for resonators are the cylinder, the rectangular box and the sphere, as shown in Fig. '2-65. The resonant frequeney depends upon the dimensions of the aivity and the mode of oscillation of the waves (compar-

SQUARE PRISM

CYLINDER

Fig. 2-65 - Forms of cavity resonators.
able to the transmission modes in a wave guide). For the lowest modes the resonant wavelengths are as follows:

Cylinder	$2.61 r$
Stuare box.	1.411
Suhere.	$2.28 r$

The resonant wavelengths of the eylinder and square box are independent of the height when the height is less than a half-wavelength. In other modes of oscillation the height must be a multiple of a half-wavelength as measured inside the cavity: A rylindrical cavity can be tuned by a sliding shorting disk when operating in such a mode. Other tuning methods include plaring adjustable tuning paddles or "slugs" inside the cavity so that the standing-wave pattern of the electric and magnetic fields fan be varied.

A form of cavity resonator in practical use is the re-entrant eylindrical type shown in Fig.

CROSS-SECTIONAL VIEW

Fig. 2-66 - Re-entrant cylindrical cavity resonator. $2-i 6$. In construction it resembles a concentric line closed at both ends with capacitive loading at the top, but the actual mode of oscillation may differ considerably from that occurring in consial lines. The resonant frequency of such a cavity depends upon the diameters of the two cylinders and the distance d between the ends of the inner and outer cylinders.

Compared with ordinary resonant circuits, cavity resonators have extremely high Q. A value of Q of the order of 1000 or more is readily obtainable, and Q values of several thousand can be secured with good design and construction.

Coupling to Wave Guides and Cavity Resonators

Energy may be introduced into or abstracted from a wave guide or resonator by means of either the electric or magnetic field. The energy transfer frequently is throngh a coaxial line. two methods for coupling to which are shown in Fig. 2-67. The probe shown at A is simply a short extension of the inner conduetor of the coaxial line, so oriented that it is parallel to the electric lines of forec. The loop shown at B is arranged so that it eneloses some of the magnetic lines of force. The point at which maximum coupling will be secured depends upon the particular mode of propagation in the guide or cavity; the coupling will be maximum when the coupling device is in the most intense field.

Fig. 2-67 - Coupling to wave guides and rexonators.
Coupling (an be varied by turning either the probe or loop through a 90 -degree angle. When the probe is perpendicular to the electric lines the coupling will be minimum; similarly, when the plane of the loop is paralled to the magnetic lines the coupling will have its least possible value.

Modulation, Heterodyning and Beats

Since one of the most widespread uses of radio frequencies is the transmission of speech and music, it would be very convenient if the audio spectrum to be transmitted could simply be shifted up to some radio frequency, transmitied as radio
waves, and shifted back (lown to the audio spectrum at the receiving point. Suppose the atudio signal to be transmitted by radio is a pure 1000cerele tone, and we wish to transmit it at some frequency around 1 Mc . (1,000,000 cycles), One
possible way might be to add $1,000,000$ eycles and 1,000 eycles together, thereby ohtaining a radio frequency of $1,001,000$ eycles. No simple method for doing such a thing directly has ever been devised, although the effect is obtained and used in advanced communications techniques.

Actually, when two different frequencies are present simultaneously in an ordinary circuit (specifically, one in which Ohm's Law holds) each behaves as though the other were not there. It is true that the total or resultant voltage (or current) in the circuit will be the sum of the instantaneous values of the two at every instant. This is hecause there ean be only one value of eurrent or voltage at any single point in a cireuit at any instant. Fig, e-68.t and B show two such frequencies, and C shows the resultant. The amplitude of the $1,000,000$-cycle current is not afferted by the presence of the 1000 -cyele current, but morely has its axis shifted back and forth at the 1000-eycle rate. An attempt to transmit surh a combination as a radio wave would result simply in the transmission of the $1,000,000$-cycle freguency, since the 1000-eycle frequency retains its identity as an audio frequency and hence will not be radiated.

There are devies, however, whirh make it possible for one frequency to centrol the amplitude of the other. If, for example, a 1000 -aycle tone is used to control a 1-Mc. signal, the maximum r.f. output will be obtained when the 1000-cycle signal is at the peak of one alternation and the minimum will occur at the peak of the next alternation. The process is called amplitude modulation, and the effert is shown in Fig. ©-681). The resultant signal is now entirely at radio frequency, but with its amplitude varying at the modulation rate (1000 eycles). Recriving equipment adjusted to reecive the $1,000,000$-eyele r.f. signal can reproduce these changes in amplitude, and thus tell what the audios signal is, through a process called detection or demodulation.

It might be assumed that the only radio freguency present in such a signal is the original $1,000,000$ cyeles, but such is not the casc. It will be found that two new frequencios have appeared. These are the sum $(1,000,000+1000)$ and difference ($1,000,000-1000$) frequencies, and hence the radio frequencies appearing in the cirenit after modulation are $999,000,1,000,000$ and 1,001,000 eycles.

When an audio frequency is used to control the amplitude of a radio frequency, the process is generally called "implitude modulation," as mentioned previously, but when a radio frequeney modulates another radio frequeney it is called heterodyning. However, the processes are identical. A general term for the sum and differener frequenciss generated during heterodyning or amplitude modulation is "beat frequencies," and a more sperific one is upper side frequency, for the sum frequency, and lower side frequency for the difference frequency.

Fig. 2-68-Amplitude-ts-time and amplitude-ts.frequency plots of various signals. (A) $1 \frac{1}{2}$ eycles of a 7000 -rycle signal. (13) i $1,000,(000$-eycle signal plotted to the same seale as A. Berause there are 1500 cycles during this time, they cannot be shown accurately. (C) The signals of A and 13 flow ing in the same circhit. (D) The siknals of A and 13 combined in a cirenit where A cath control the amplitude of 13 , The $1,000,000$-evele signal is moduluted by the 1000 -evcle signal. (F), (F), (G), (II) Amplitude-ve.-frepuency plots of the signals in $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D .

In the simple example, the modulating signal was assumed to be a pure tone, but the modulating signal ean just as well be a band of frequencies making up speech or music. In this cuse, the side frequencies are grouped into what are called the upper sideband and the lower sideband. In any case, the frequency that is modulated is called the carrier frequencs.

In A, 13, (and D) of Fig. 2-68, the sketches are olstained by plotting amplitude against time. Ilowever, it is cqually help, ful to be able to visualize the spectrum, or what a plot of amplitude es. frequency looks like, at any given instant of time. E, F, (i and II of Fig. 2-(88 show the signals of Fig. e-68.1, 13, (; and D on an amplitude-vs.frequency basis, Any one frequency is, of course, represented by a vertical line. Fig. 2-681I shows the side frequencios appearing as a desult of the modulation process.

Amplitude modulation (AM) is not the only possible type nor is it the only one in use. This and other types of modulation are treated in detail in later chapters.

CHAPTER 3

Vacuum-Tube Principles

- CURRENT IN A VACUUM

The outstanding difference between the vacuum tube and most other electrical devices is that the electric current does not flow through a conductor but through empty space - a vacuum. This is only possible when "free" clectrons - that is, electrons that are not attached to atoms - are somehow introduced into the vacuum. Free electrons in an evaruated suace will be attracted to a positivelycharged object within the same space, or will be repelled by a negatively-charged object. The movement of the electrons under the attraction or repulsion of such charged objects constitutes the current in the vacuum.

The most practical way to introduce a suffi-riently-large number of electrons into the evacuated space is by thermionic emission.

Thermionic Emission

If a thin wire or flament is heated to incandescence in a varuum, electrons near the surface are given enough energy of motion to fly off into the surrounding space. The higher the temperature, the greater the number of electrons emitted. A more general name for the lilament is cathode.

If the eathode is the only thing in the vicuum, most of the emitted electrons stay in its immediate vicinity, forming a "cloud" about the rathode. The reason for this is that the electrons in the spare, being negative electricity, form a negative charge (space charge) in the region of the cathode. The space charge repels

Representative tulse types. 'The miniature, metalenvelope and small slass tulues in the forcoground are reveiving types. 'The two tuhes with comections at the top of the bulb, lying down, are transmitting triodis of moderate power ratings. 'Those in the rear are trans-mitting-type beam tetrodes.
those electrons nearest the cathode, tending to make them fall back on it.

Now suppose a second conductor is interoduced into the varum, but not commerted to anything else inside the tube. If this second condurtor is given a positive rharge by comnerting a source of em.f. between it and the

Fig. 3-1 - Condurtion by thermionie emission in a vacomm tulse. One battery is used to heat the filament to a temperature that will eanse it to emit electrons. 'Ihe other battery makes the plate positise with respeet 10 the filament, thereby cansing the cmitted eleetrons to be attracted to the plate. Electrons captured loy the plate flow back through the battery to the filament.
cathode, as indicated in Fig. 3-1, elertrons emitted by the cathode are attracted to the positivelycharged condurtor. An electric current then flows through the circuit formed by the cathode, the charged conductor, and the source of e.m.f. In lig. $3-1$ this e.m.f. is supplied by a battery ("B" battery); a second battery ("A" battery) is also indicated for heating the rathode or filament to the proper operating temperature.

The positively-rharged conductor is usually a metal plate or rylinder (survounding the cathode) and is called an anode or plate. Like the other working parts of a tube, it is a tube element or electrode. The tube shown in liig. $3-1$ is a two-element or two-electrode tube, one element being the cathode or filament and the other the anode or plate.
since electrons are negative elertrinity, they will be attrated to the plate oull! when the plate is positive with respect to the cathode. If the phate is given a negative charge, the electrons will be repelled bark to the cathode and no current will flow. The vacuum tube therefore can conduct omly in ane direction.

Cathodes

I e fore elertron emission an orour, the cathode must be heated to a high temperature. However, it is not essential that the heating cur-

Fif. 3-2-'Iypes of mathode consimbetion. Directly heated rathodes or filamemsare shown at A, B, and C. 'The inverted V filament is raed in small reediving tubse, the M in both reweiving and transmitting fubes, The spiral filament is a transmitting. tube type. The indirectly-heated eathodes at I) and E show two types of heater eonstruetion, one a twisted loop and the other bunched heater wires. Both types tend to cancel the magnetic fields set up by the current through the heater.
rent flow through the artual material that does the cmitting; the filament or heater can be electrically separate from the emitting cathode. such a eathote is called indirectly heated, while an emitting filament is called directly heated. Fig. 3-2 shows both types in the forms in which they are commonly used.

Much greater electron emission can be obtained, at relatively low temperatures, by using special cathode materials rather than pure metals. One of these is thoriated tungsten, or tungsten in which thorium is dissolved. Still greater efficiency is achieved in the oxide-coated rathode, a eathode in which rare-earth oxides form a coating over a metal base.

Although the oxide-coated cathode has much the highest efficiency, it can be used successfully only in tubes that operate at rather low phate voltages. Its use is therefore confined to receiv-ing-type tubes and to the smaller varieties of transmitting tubes. The thoriated filament, on the other hand, will operate well in high-voltage tules.

Plate Current

If there is only a small positive voltage on the plate, the number of electrons reaching it will be small beatuse the space charge (which is negative) prevents those electrons nearest the cathode from being attracted to the plate. As the plate voltage is increased, the effect of the spare charge is increasingly overome and the number of eleatrons attracted to the phate becomes larger. That is, the plate current incorises with increasing phate voltage.

Fig. 3-3 shows a typical plot of plate current vs. plate voltage for a two-element tube or diode. A curve of this type can be obtained with the circuit shown, if the plate voltage is increased in small steps and a current reading taken (hy means of the current-indicating instrument - a milliammeter) at each voltage. The plate current is zero with no plate voltage and the curve rises until a saturation point is reached. This is where the positive charge on the plate has sub)stantially overcome the space charge and
almost all the electrons are going to the plate. At higher voltages the plate current stays at practically the same value.

The plate voltage multiplied by the plate current is the power input to the tube. In a circuit like that of Fig. 3-3 this power is all used in heating the plate. If the power input is large, the plate temperature may rise to a very high value the plate may become red or (even white hot). The heat developed in the plate is radiated to the bulb, of the tube, and in turn radiated by the bulb to the surrounding air.

RECTIFICATION

Since current can flow through a tube in only one direction, a diode can be used to change alternating current into direct current. It does this by pernitting current to flow when the plate is positive with respect to the eathode, but by shutting off current flow when the plate is negative.
lig. :3-4 shows a representative circuit. Alternating voltage from the secondary of the transformer, T, is applied to the diode tube in series with a load resistor, R. The voltage varies as is usual with a.c., but current flows through the tube and $l R$ only when the plate is positive with respect to the cathode - that is, during the half-cycle when the upper end of the transformer winding is positive. During the negative half-cycle there is simply a gap in the current flow. This rectified alternating current therefore is an intermittent direct current.

The load resistor, R, represents the actual circuit in which the rectified alternating current does work. All tubes work with a load of one type or another; in this respect a tube is much like a generator or transformer. A circuit that did not provide a load for the tube would be like a short-circuit across a transformer; no useful purpose would be accomplished and the only result would be the generation of heat in the transformer. so it is with vacuum tubes; they must caluse power to be developed in a load in order to serve a useful purpose. Also, to be efficient most of the power must do useful work in the load and not be used in heating the plate of the tube. This means that most of the voltage should appear as a drop across the load rather than as a drop between the plate and cathode.

Fig. 3-3 - 'The diode, or two-element tube, and a typical curve showing how the plate current depends upon the voltage applied to the plate.

With the diode connered as shown in Fig. 3-4, the polarity of the voltage drop across the load is such that the end of the load nearest the cathode is positive. If the connertions to the diode clemonts are reversed, the direction of rectified current flow also will be reversed through the load.

Fig. 3-4-Rectification in a diode. Current flows only when the plate is positive with respect the cathode, so that only half-cycles of current flow through the load resistor, R.

Vacuum-Tube Amplifiers

TRIODES

Grid Control

If a third element - called the control grid, or simply grid - is inserted between the cathode and plate as in Fig. 3-5, it can be used to control the effert of the space charge. If the grid is given a positive voltage with respect to the cathode, the positive rharge will tend to neutralize the negative space charge. The

Fig. 3-5 - Construction of an elementary triode vacum tube, showing the filament, grid (with an end view of the grit wires) and plate. The relative density of the space charge is indieated roughly liy the dot density.
result is that, at any selected plate voltage, more electrons will flow to the phate than if the grid were not present. On the other hand, if the grid is made negative with respert to the cathode the negative charge on the grid will add to the space charge. This will reduce the number of electrons that can reach the phate at any selected phate voltage.

The grid is inserted in the tube to control the space charge and not to attract elertrons to it self, so it is made in the form of a wire mesh or spiral. bilectrons then can go through the open spares in the grid to reach the plate.

Characteristic Curves

For any particular tube, the effect of the grid voltage on the plate current can be shown by a set of characteristic curves. A typical set of curves is shown in Fig. 3-6, together with the cireuit that is used for getting them. For each value of plate voltage, there is a value of negative grid voltage that will reduce the plate curnent to zero; that is, there is
a value of negative grid voltage that will cut off the plate current.

The curves could be extended by making the grid voltage positive as well as negative. When the grid is negative, it repels electrons and therefore none of them reaches it; in other words, no current flows in the grid circuit. However, when the grid is positive, it attracts electrons and a current (grid current) flows, just as current flows to the positive plate. Whenever there is grid current there is an accompanying power loss in the grid cireuit, but so long as the grid is negative no power is used.

It is obvious that the grid can act as a valve to control the flow of plate current. Actually, the grid has a much greater effert on plate current flow than does the plate voltage. A small change in grid voltage is just as effective in bringing about a given change in phate current as is a large change in plate voltage.

The fact that a small voltage arting on the grid is equivalent to a large voltage acting on the plate indicates the possibility of amplification with the triode tube. The many uses of the electronic tube nearly all are based upon this amplifying feature. The amplified output is not obtained from the tube itself, but from the source of e.m.f. comnected between its plate and rathode. The tube simply controls the power from this souree, changing it to the desired form.
'Io utilize the controlled power, a load must be ronnected in the plate or "output" eirenit, just as in the diode case. The load may be

Fig 3-6- Crid-voltage-ts,-plate-current curves at various fixed values of plate voltage ($E_{\text {b }}$) fon a typiral mall triode. Characteristic curves of this type can be taken by varying the hattery voltages in the circuit at the right.
either a resistance or an impedance. The term "impedance" is frequently used even when the load is purely resistive.

Tube Characteristics

The physical construction of a triode determines the relative effectiveness of the grid and plate in controlling the plate current. If a very small change in the grid voltage hats just as much effect on the plate current as a very large change in plate voltage, the tube is said to have a high amplification factor. Amplification factor is commonly designated by the (ireck letter μ. An amplification factor of 20 , for example, means that if the grid voltage is changed by 1 volt, the elfect on the plate current will be the same as when the plate voltage is changed by 20 volts. The amplifieation factors of triode tubes range from 3 to 100 or so. A high- μ tube is one with an amplification factor of perhaljs 30 or more; medium- μ tubes have anıplification factors in the approximate range 8 to 30 , and low- μ tubes in the range below 7 or 8 .

It would be natural to think that a tube that has a large μ would be the best amplifier, but to obtain a high μ it is neressary to construct the grid with many turns of wire per inch, or in the form of a fine mesh. This leaves a relatively small open area for elections to go through to reach the plate, so it is difficult for the plate to attract large numbers of electrons. Quite a large change in the plate voltage must be mado to effect a given change in phate current. This means that the resistance of the plate-cathode path - that is, the plate resistance - of the tube is high. Since this resistance acts in series with the load, the amount of current that can be made to flow through the load is relatively small. On the other hand, the plate resistance of a low- μ tube is relatively low.

The best all-around indication of the effectiveness of the tube as an amplifier is its transconductance - also called mutual conductance. This charateristic takes account of both amplifieation factor and plate resistance, and therefore is a figure of merit for the tube. Transeonductance is the change in plate current divided be the change in grid voluge that causes the platecurrent change (the plate voltage being fixed at a desired value). Since current divided by voltage is conductance, transeonductance is measured in the unit of conductance, the mho. Practical values of transconductance are very small, so the micromho (one-millionth of a mho) is the commonly-used unit. Different types of tubes have transconductances ranging from a few hundred to several thousand. The higher the transconductance the greater the possible amplification.

AMPLIFICATION

The way in which a tube amplifies is best shown by a type of graph called the dynamic characteristic. Such a graph, together with the
circuit used for obtaining it, is shown in Fig. 3-7. The curves are taken with the plate-supply voltage fixed at the desired operating value. The difference between this circuit and the one shown in lig. :3-6 is that in Fig. 3-7 a load resistance is comected in series with the plate of the tube. Fig. :3-7 thus shows how the plate current will vary, with different grid voltages, whea the plate current is mode to flow through a load and thus do useful work.

Fig. 3.7-Dynamic characteristics of a small triode with various load resistances from 5000 to 100,000 ohms.

The several curves in lig. 3-7 are for varions values of load resistance. When the resistance is small (as in the case of the 0000 -ohm load) the pate current changes rather rapidly with a given change in grid voltage. If the load resistance is high (as in the 100,000 -ohm curve), the change in plate current for the same grid-voltage change is relativcly small, so the curve tends to be straighter.

Fig. $3-8$ is the same type of curve, but with the circuit arranged so that a source of alternating voltage (signal) is inserted between the grid and the grid battery ("C" battery). The voltage of the grid battery is fixed at -5 volks, and from the curve it is seen that the plate current at this grid voltage is '2 milliamperes. This current flows when the load resistance is 50,000 ohms, as indicated in the circuit diagram. If there is no a.e. signal in the grid circuit, the voltage drop in the load resistor is $50,000 \times 0.002=100$ volts, leaving 200 volts between the plate and cathode.

When a sine-wave signal having a pak value of 2 volts is applied in series with the bias voltage in the grid circuit, the instantaneous voltage at the grid will swing to --3 volts at the instant the signal reaches its positive peak, and to -7 volts at the instant the signal reaches its negrative peak. The maximum plate current will occur at the instant the grid voltage is -3 volts. As shown by the graph, it will have a value of 2.6 milliamperes. The minimum plate current occurs at the instant the grid voltage is -7 volts, and has a value of $1.3 \overline{3}$ ma. At intermediate values of grid voltage, intermediate plate-current values will oceur.

The instantaneous voltage between the plate

Fi.g. 3-8 - Amplifier operation. When the plate current varies in response th the signal applied to the grid, a varying voltage drop apmars across the load, $R_{\text {m }}$ as shown hy the dashed curve, $F_{\text {ip }} I_{\mathrm{p}}$ is the plate current.
and cathode of the tube also is shown on the graph. When the phate current is naximum, the instantancous voltage drop in R_{p} is 00,000 $\times 0,00265=133.5$ volts; when the plate current is minimum the instantaneous voltage drop in R_{1} is $50,000 \times 0.00135=67.3$ volts. The actual voltage botween pate and cathode is the difference between the plate-supply potential, 300 volts, and the voltage drop in the load revistance. The plate-to-cathode voltage is therefore 167.5 volts at maximum phate current and 232.5 volts at minimum plate current.

This varying plate voltage is an a.c. voltage superimposed on the steady plate-rathode potential of 200 volts (as previously determined for no-signal conditions). The peak value of this a.e. output voltage is the difference between either the maximum or minimum phate-eathode voltage and the no-signal value of 200 volts. In the illustration this difference is $2: 32.5-200$ or $200-$ 167.5; that is, 32.5 volts in either case, Sine the grid signal voltage has a peak value of 2 volts, the voltage-amplification ratio of the amplifier is $32.5 / 2$ or 16.25 . That is, approximately 16 times as much voltage is obtained from the plate circuit as is applied to the grid circuit.

As shown by the drawings in Fig. 3-8, the altermating component of the phate voltage swings in the negative direction (with reference to the no-signal value of plate-cathode voltage) when the grid voltage swings in the positive direction, and vice versa. This means that the alternating component of plate voltage (that is, the amplified signal) is 180 degrees out of phase with the signal voltage on the grid.

Bias

The fixed negative grid voltage (ablled grid bias) in Fig, $3-8$ serves a very useful purpose. One object of the type of amplification shown in this drawing is to obtain, from the plate circuit, an alternating voltage that has the same waveslape as the signal voltage applied to the grid. To do so, an operating point on the straight part of the curve must be selerted. The curve must be straight in both directions from the operating point at least far enough to accommodate the maximum value of the signal applied to the grid. If the grid signal swings the plate current back and forth over a part of the eurve that is not straight, as in Fig. 3-9, the shape of the a.c. wave in the phate circuit will not be the same as the shape of the grid-signal wave. In such a case the output waveshape will be distorted.

A second reason for using negative grid bias is that any signal whose peak positive voltage does not exceed the fixed negative voltage on the grid cannot cause grid current to flow. With no current flow there is no power consumption, so the tube will amplify without taking any pouer from the signal source. (However, if the positive peak of the signal does exceed the negative bias, current will flow in the grid circuit during the time the grid is positive.)

Distortion of the output waveshape that results from working over a part of the curve that is not straight (that is, a nonlinear part of the curve) has the effect of transforming a sine-wave grid signal into a more complex waveform. As explained in an earlier chapter, a complex wave can be resolved into a fundamental and a series of harmonies. In other words, distortion from nonlinearity causes the generation of harmonic frequencies - frequencies that are not present in the signal applied to the grid. Harmonic distortion is undesirable in most amplifiers, althongh

Fig. 3.9- Iarmonic distortion resulting from choice of an operating point on the curved part of the tube characteristic. The lower half-eycle of plate current does not have the same shape as the upper half-cycle.
there are oreasions when harmonics are deliberately generated and used.

Amplifier Output Circuits

The useful output of a vacuum-tube amplifier is the alternating component of plate current or plate voltage. The d.c. voltage on the plate of the tube is essential for the tube's operation, but it almost invariably would cause difficulties if it were applied, along with the a.c. output voltage, to the load. The output circuits of vacuum tubes are therefore arranged so that the a.c. is transferred to the load but the d.c. is not.
Three types of coupling are in common use at audio frequencies. These are resistance coupling, impedance coupling, and transformer coupling. They are shown in Fig. 3-10. In all three cases the output is shown coupled to the grid circuit of a subsequent amplifier tube, but the same types of circuits can be used to couple to other devices than tubes.
In the resistance-coupled circuit, the a.c. voltage developed across the plate resistor R_{p} (that is, between the plate and cathode of the tube) is applied to a second resistor, R_{g}, through a coupling condenser, C_{e}. The condenser "blocks off" the d.c. voltage on the plate of the first tube and prevents it from being applied to the grid of tube B. The latter tube has negative grid bias supplied by the battery shown. No current flows in the grid circuit of tube B and there is therefore no d.c. voltage drop in R_{5}; in other words, the full voltage of the bias battery is applied to the grid of tube B.
The grid resistor, R_{g}, usually has a rather high value (0.5 to 2 megohms). The reactance of the coupling condenser, C_{c}, must be low enough compared with the resistance of R_{g} so that the a.c. voltage drop in (${ }^{\circ} \mathrm{c}$ is negligible at the lowest frequency to be amplified. If R_{g} is at least $0 . \overline{\text { on }}$ megohm, a $0.1-\mu \mathrm{fd}$. condenser will be amply large for the usual range of audio frequencies.

So far as the alternating component of plate voltage is concerned, it will be realized that if the voltage drop in C_{c} is negligible then R_{p} and R_{g} are effectively in parallel (although they are quite separate so far as d.c. is concerned). The resultant parallel resistance of the two is therefore the actual load resistance for the tube. That is why R_{g} is made as high in resistance as possible; then it will have the least effect on the load represented by R_{p}.

The impedance-coupled circuit differs from that using resistance coupling only in the sul)stitution of a high-inductance coil (usually several hundred henrys for audio frequencies) for the plate resistor. The advantage of using an inductance rather than a resistor is that its impedance is high for alternating currents, but its resistance is relatively low for d.c. It thus permits obtaining a high value of load impedance for a.c. without an excessive d.e. voltage drop that would use up a good deal of the voltage from the plate supply.

The transformer-coupled amplifier uses a transformer with its primary connected in the plate

Fig. 3-10 - Three basic forms of coupling between vaeuum-tube amplifiers.
circuit of the tube and its secondary connected to the load (in the circuit shown, a following amplifier). There is no direct comection between the two windings, so the plate voltage on tube A is isolated from the grid of tube B. The trans-former-coupled amplifier has the same advantage as the impedance-coupled circuit with respect to loss of voltage from the plate supply. Also, if the serondary has more turns than the primary, the output voltage will be "stepped up" in proportion to the turns ratio.

Resistance coupling is simple, inexpensive, and will give the same amount of amplification - or voltage gain - over a wide range of frequencies; it will give substantially the same amplification at any frequency in the audio range, for example. lmpedance coupling will give somewhat more gain, with the same tube and same plate-supply voltage, than resistance coupling. However, it is not quite so good over a wide frequency range; it tends to "peak," or give maximum gain, over. a comparatively narrow band of frequencies. With a good transformer the gain of a trans-former-coupled amplifier can be kept fairly constant over the audio-frequency range. On the
other hand, transformer eoupling in voltage amplifiers (see below) is best suited to triodes having amplification fitetors of about 20 or less, for the reason that the primary indurtance of a practicable transformer cannot be made large enough to work well with a tube having high plate resistance.

An amplifier in which voltage gain is the primary consideration is called a voltage amplifier. Miximum voltage gain is sceured when the load resistance or impedance is made as high as possible in comparison with the plate resistance of the tube. In such a case, the major portion of the voltage gencrated will appear across the load and only a relatively small part will be "lost" in the plate resistance.

Voltage amplifiers belong to a group ealled Class A amplifiers. A Chass a amplifier is one operated so that the waveshape of the output voltage is the same as that of the signal voltage applied to the grid. If a Class A amplifier is biased so that the grid is always negative, even with the largest signal to be handled by the grid, it is culled a Class A_{1} amplifier. Voltige amplifiers are ahous Class λ_{1} amplifiers, and their primary use is in driving a following Class A_{1} amplifier.

Power Amplifiers

The end result of any amplification is that the amplified signal does some rorth. For example, an audio-frequency amplifier usually drives a loudspeaker that in turn produces sound waves. The greater the amount of a.f. porer supplied to the 'speaker, the louder the sound it will produce.

Fig. 3.11-An elementary power-amplifier circuit in which the powereconsuming load is conpled to the plate circuit through an impedance-matehing transformer.

Fig. 3-11 shows an elementary power-amplifier circuit. It is simply a transformer-coupled amplifier with the load connerted to the secondary. Although the load is shown as a resistor, it actually would be some device, such as a loudspeaker, that employs the power usefully. livery power tuhe requires a specifie value of load resistance from phate to cathode, usually some thousands of ohms, for optimum operation. The resistance of the actual load is rarely the right value for "matching" this optimum load resistance, so the trinsformer turns ratio is chosen to reflect the proper value of resistance into the primary. The turns ratio may be either step-up or step-down, depending on whether the actual load resistance is higher or lower than the load the tube wants.

The power-amplification ratio of an amplifier is the ratio of the power output obtained from the plate circuit to the power required from the a.c. signal in the grid cireuit. There is mo power lost in the grid circuit of a Class Λ_{1} amplifier, so such an implifier has an infinitely large power-amplification ratio. However, it is quite possible to operate a Class amplifier in such a way that current flows in its grid circuit during at least part of the cycle. In such a cise power is used u_{p} in the grid cirenit and the power amplification ratio is not infinite. A tube operated in this fashion is known as a Class A_{2} amplifier. It is necessary to use a power amplifier to drive a C'lass A_{2} amplifier, berause a voltage amplifier eannot deliver power without serious distortion of the wave-shape.

Another term used in connection with power amplifiers is power sensitivity. In the case of a (llass λ_{1} amplifier, it means the ratio of power output to the grid signal voltage that caluses it. If grid current flows, the term usially means the ratio of plate power output to grid power input.

The ace power that is delivered to a load by an amplifier tube has to be paid for in power taken from the source of plate voltage and current. In fact, there is always more power going into the plate circuit of the tube than is coming out as useful output. The difference between the input and ontput power is used up, in heating the phate of the tube, as explained previonsly. The ratio of useful power output to d.e. plate input is called the plate efficiency. The higher the plate efficiency, the greater the amount of power that can be taken from tabe having a fixed plate-dissipation rating.

Parallel and Push-Pull

When it is necessary to obtain more power output than one tube is capable of giving, two or more similar tubes may be connected in parallel. In this case the similar clements in all tubes are eomerted together. This method is shown in Fig. :3-12 for a transformer-coupled amplifier. The power outpat is in proportion to the number of tubes used; the grid signal or exciting voltage required, however, is the same as for one tube.

If the amplifier operates in such a way as to consume power in the grid circuit, the grid power required is in proportion to the number of tubes used.

An increase in power ontput also can be secured by connecting two tubes in push-pull. In this case the grids and plates of the two tubes are eomected to opposite ends of a balanced circuit as shown in Fig. 3-1?. At any instant the ends of the secondary winding of the input transformer, T_{1}, will be at opposite polarity with respert to the cathode connection, so the grid of one tube is swung positive at the same instant that the grid of the other is swung negative. Hence, in any push-pull-eomerted amplifier the voltages and currents of one tube are out of phase with those of the other tube.

Fig. 3-12 - P'arallel anl push-pull a.f. amplifier circuits.
In push-pull operation the even-harmonia (second, fourth, ete.) distortion is balanced out in the plate cireuit. This meins that for the same power output the distertion will be less than with parallel operation.

The exciting voltage measured between the two grids must be twiee that required for one tube. If the grids consume power, the driving power for the push-pull amplifier is twice that taken by either tube alone.

Cascade Amplifiers

It is readily possible to take the output of one amplifier and apply it as a signal on the grid of a second amplifier, then take the second amplifier's output and apply it to a third, and so on. liach amplifier is called a stage, and stages used sucressively are said to be in cascade.

Class B Amplifiers

Fig. 3-1:3 shows two tubes comnecterl in a push-pull circuit. If the grid bias is set at the point where (when no signal is applied) the plate current is just cut off, then a signal can canse plate current to flow in cither tube omly when the signal voltuge applied to that particular tube is positive with resperet to the eathode. Since in the balanced grid cirouit the signal voltages on the grids of the two tubes always have opposite polarities, plate current flows only in one tube at a time.

The graphs show the operation of such an amplifier. The plate current of tube B is drawn inverted to show that it flows in the opposite clirection, through the primary of the output trinsformer, to the plate current of tube A. Thus each half of the output-transformer primary works altemately to induce a half-eyde of voltage in the serondary. In the semondary of T_{2}, the original waveform is restored. This type of operation is called Class B amplification.

The Class 13 amplifier has considerably higher plate efficiency than the Class A amplifier. Fur-
thermore, the d.c. plate current of a Class Bamplifier is proportional to the signal voltage on the grids, so the power input is small with small signals. The d.e. plate power input to a Class a amplifier is the same whether the signal is large, small, or alsent altogether; therefore the maximum d.e. plate input that ean be applied to a (hass 1 :mplifier is equal to the rated plate dissipation of the tube or tubes. Two tubes in a Class Is amplifier can deliver approximately twelve times as much audio power as the same two tubes in a Class A amplifier.

I Class 13 amplifier usually is operated in such a way as to secure the maximum possible power output. This recuires rather large values of plate current, and to obtain them the signal voltage must completely overcome the guid bias during at least part of the evele, so grid current flows and the grid eirenit consumes power. While the power requirements are fairly low (as compared with the power output), the fact that the grids are positive during only part of the crele means that the load on the preceding amplifier or driver stage varies in magnitude during the rorle; the effective load resistance is high when the grids are not drawing current and relatively low when they do take current. This must be allowed for when designing the driver.

Certain types of tubes have been designed speritically for Class 13 service and can be operated without fixed or other form of grid bias (zero-bias tubes). The amplification factor is so high that the plate current is small without signal. l because there is no fixed bias, the grids start drawing current immediately whenever a signal is applied, so the grid-current flow is continuons throughout the cyrde. This makes the load on the driver mush more constant than is the case with tubes of lower μ biased to platecurrent rut-off.

Chass 13 amplifiers used at radio frequencies are known as linear amplifiers because they are

Fig. 3-13 - Class B amplifier operation.
adjusted to operate in such a way that the power output is proportional to the square of the r.f. exciting voltage. This permits amplification of a modulated r.f. signal without distortion. 'ushpull is not required in this type of operation; a single tube can he used equally well.

Class AB Amplifiers

A Class AB amplifier is a push-pull :mplifier with higher bias than would be normal for pure Class A operation, but less than the mat-off bias required for' 'lass B. At low sighal levels the tubes operate practically ats (hass A amplifiers, and the pate current is the same with or without signal. At higher signal levels, the plate current of one tube is cut off during part of the negotive' cyale of the signal applied to its grid, and the phate current of the other tube rises with the signal. The plate current for the whole amplifier also rises above the no-signal level when a large signal is applied.

In a properly-designed (lass $A 13$ amplifier the distortion is as low as with a Class i stage, but the efliciency and power output are considerably higher than with pure Class I operation. A Class AB amplifier can be operated either with or without driving the grids into the positive region. A Class $A B_{1}$ amplifier is one in which the grids are never positive with respert to the cathode; therefore, no driving power is required - only voltage. A Class AB_{2} amplifier is one that has grid-current flow dhring part of the cycle if the applied signal is large it takes a small amount of driving power. The (Hass Al_{2} amplifier will deliver somewhat more power (using the same tuhes) but the (lass . MB_{1} amplifiet avoids the problem of designing a driver that will deliver power, without distortion, into a load of highly-variable resistance.

Operating Angle

Inspertion of Fig, 3-1:3 shows that either of the two tubes actually is working for only half the a.e. cyole and idling during the other half. It is conveniont to describe the amonnt of time during which plate current flows in terms of eleretrical degrees. In Fig. :3-1:3 each tube has "180-degree" expitation, a hall-cyole being equal to 180 degrees. The number of denrees during which plate current flows is culled the operating angle of the amplifier. From the descriptions given above, it should be clear that a Class A amplifier has 360 -degree exeitation, because plate current flows during the whole cyole. In a Class AB amplifier the operating angle is between 180 and 360 degrees (in each tabe) depending on the particular operating conditions chosen. The greater the amount of negative grid bias, the smaller the operating angle becomes.

An operating angle of less than 180 degrees leads to a considerable amount of distortion, becumse there is no way for the tube to reprodure even a half-rycle of the signal on its grid. Ising two tubes in push-pull, as in Fig. $3-13$, wonld merely put together two distorted half-cycles. An operating angle of less than 180 degrees
therefore cannot be used if distortionless output is wanted.

Class C Amplifiers

In power amplifiers operating at radio frequencies distortion of the r.f. waveform is relatively unimportant. For reasons described later in this chapter, an r.f. amplifier must be operated with tuned circuits, and the selertivity of surh circuits "filters out" the r.f. harmonies resulting from distortion.
A radio-frequency power amplifier therefore can be used with an operating angle of less than 180 degrees. This is called Class C operation. The advantage is that the plate efficiency is increased, because the loss in the plate is proportional, among other things, to the amount of time during which the plate current flows, and this time is reduced by decreasing the operating angle.

Depending on the type of tube, the optimum load resistance for a Class C amplifier ranges from about $1: 00$ to 5000 ohms. It is usually secured by using tuned-circuit arrangements, of the type described in the chapter on circuit fundamentals, to transform the resistance of the actual load to the value required by the tube. The grid is driven well into the positive region, so that grid current flows and power is consumed in the grid circuit. The smaller the operating angle, the greater the driving voltage and the larger the grid driving power required to develop full output in the load resistance. The best compromise between driving power, plate efficiency, and power output usually results when the minimum plate voltage (at the peak of the driving ovele, when the plate current reaches its highest value) is just equal to the peak positive grid voltage. Cnder these conditions the operating angle is usually bet ween 150 and 180 degrees and the plate efficiency lies in the range of 70 to 80 percent. While higher plate efficiencies are possible, attaining them requires excessive driving power and grid bias, together with higher plate voltage than is "normal" for the particular tube type.

With proper design and adjustment, a Class C amplifier can be made to operate in such a way that the power input and output, are proportional to the square of the applied plate voltage. This is an important consideration when the amplifier is to be plate-modulated for radiotelephony, as described in the chapter on amplitude modulation.

FEED-BACK

It is possible to take a part of the amplified energy in the plate circuit of an amplifier and insert it into the grid circuit. When this is done the amplifier is satid to have feed-back.

If the voltage that is inserted in the grid cineuit is 180 degrees out of phase with the signal voltage arting on the grid, the feed-hack is called negative, or degenerative. (on the other hand, if the voltage is fed back in phase with the grid signal, the feed-back is called positive, or regenerative.

Negative Feed-Back

With negative feed-back the voltage that is fed back opposes the signal voltage. This decreases the ampiitude of the voltage arting between the grid and cathote and thus has the effert of reducing the voltage amplification, That is, a larger exriting voltage is required for obtaining the same output voltage from the plate circuit.

The greater the amount of negative feed-hack (when properly applied) the more independent the amplification becomes of tube characteristies and circuit conditions. This tends to make the frequener-response chararteristic of the amplifier flat - that is, the amplification tends to be the same at all frequencies within the range for which the amplifier is designed. . Iso, any distortion generated in the plate circuit of the tube tends to "buck itself out." Amplifiers with negrative feed-bark are therefore comparatively free from haumonic distortion. These advantages are worth while if the amplifier otherwise has enough voltage gain for its intended use.

Fig. 3.14-Simple circuits for produeing feed-back.
In the circuit shown at A in Fig. 3-14 resistor R_{c} is in series with the regular plate resistor, R_{p}, and thus is a part of the load for the tube. Therefore, part of the output voltage will appear across R_{c}. llowever, R_{c} also is eonnerted in series with the grid circuit, and so the output voltage that appears across R_{c} is in series with the signal voltage. The output voltage across R_{c} opposes the signal voltare, so the actual a.c. voltage between the grid and cathode is equal to the difference between the two voltages.

The circuit shown at I3 in Fig. :3-14 can be used to give either negative or positive feed-back. The secondary of a transformer is comnected back into the grid circuit to insert a desired amount of feed-back voltage. Reversing the terminals of either transformer winding (but not both simultancously) will reverse the phase.

Positive Feed-Back

Positive feed-back increases the amplification because the feed-bick voltage adds to the original
signal voltage and the resulting larger voltage on the grid causes a larger output woltage. The amplifiration tends to he greatest at ame frequener (which depends upon the particular cir(ouid armagement) and harmonis distortion is increased. If enough energy is fed bark, a selfsustaining oscillation - in which encrgy at essentially one frequency is gencrated by the tube itself - will be set up. In such case all the signal voltage on the grid ran be supplied from the plate cirenit; no extermal signal is needed becane any small irregularity in the plate current - and there are always some such irregularitien - will he amplified and thus give the oscillation an opportunity to build up. Positive feed-back finds a major application in such "oscillators," and in addition is used for selective amplification at both audio and radio frequencies, the feed-back being kept below the value that causes self-oscillation.

INTERELECTRODE CAPACITANCES

Each pair of elements in a tube forms a small canacitor, with each element ating as a capacilor "blite." There are three such caparitances in a triode - that between the grid and cathode, that between the grid and phate, and that between the plate and cathode. The capacitances are very small - only a few micromicrofarads at most - but they frequently have a very pronounced effect on the operation of an amplifier circuit.

Input Capacitance

It was explained previously that the a.c. grid voltage and a.ce plate voltage of an amplifier having a resistive load are 180 degrees out of phase, using the cathode of the tube as a reference point. However, these two voltages are ill phase going around the circuit from plate to grid as shown in Fig. 3-15. This means that their sum is arting between the grid and plate; that is, across the grid-plate capacitance of the tube.

As a result, a capacitive current flows around the circuit, its :mplitude being directly proportional to the sum of the a.c. grid and plate voltages and to the grid-plate capacitance. The source of grid signal must furnish this amount of current, in addition to the capacitive current that flows in the grid-cathode caparitance. IIence the signal source "sees" an effective capacitance that is larger than the grideathode capacitance. The greater the voltage amplification the greater this effective input capacitance. The input capaci-

Fif, 3-15 - The a.c. voltage appearing between the grid and plate of the anplifier is the sum of the signal voltage and the ontput woltage, as shown by this simplilied circuit. Instantancous polarities are indicated.
tance of a resist:nce-coupled amplifier is given by the formula

$$
C_{\text {inpuat }}=C_{k k}+C_{k \mid 1}(A+1)
$$

where (${ }_{\mathrm{kk}}$ is the grid-to-cathode rapacitance, $G_{i p p}$, is the grid-to-plate capacitance, and A is the voltage amplification. The input capacitance may be as much as several hundred micromierofarads when the voltage amplifieation is large, even though the interelectrode caparitances are quite smatl.

Output Capacitance

The principal component of the output capacitance of an amplifier is the actual phate-tocathode capacitance of the tube. The output capacitance usually need not be considered in audio amplifiers, but becomes of importance at radio frequencies.

Tube Capacitance at R.F.

At radio frequencies the reactances of even very small interelectrode capsucitances drop to very low values. A resistanee-coupled amplifier gives very little amplification at r.f., for example, because the reactances of the interelectrode "capacitors" are so low that they practically shortcircuit the input and output cirreuits and thus the tube is unable to amplify. This is overcome at radio frequencies by using tuned circuits for the grid and plate, making the tube capacitances part of the tuning capacitances. In this way the circuits can have the high resistive impedances necessary for satisfactory amplification.

The grid-plate capacitance is important at radio frequencies because it is, in effect, a coupling condenser between the grid and plate circuits. Nince its reactance is relatively low at r.f., it offers a path over which energy can be fed back from the plate to the grid. ln practically every case the feed-back is in the right phase and of sufficient amplitude to cause self-oscillation, so the circuit beromes useless as an amplifier.

Sperial "neutralizing" circuits can be nsed to prevent feed-back but they are, in general, not too satisfictory when used in radio receivers. They are, however, used in transmitters.

SCREEN-GRID TUBES

The grid-plate capaeitance can be reduced to a negligible value by inserting in second grid between the control grid and the plate, as indiated in lig. 3-16. The seeond grid, called the screen grid, acts as an electrostatic shield to prevent capacitive coupling between the control grid and plate. It is made in the form of a grid or course screen so that electrons con pass through it.
l Because of the shielding action of the screen grid, the positively-charged plate camot attract electrons from the cathode as it does in a triode. In order to get electrons to the plate, it is also necessary to apply a positive voltage (with respect to the cathode) to the screen. The sereen then attracts electrons much as docs the plate in a triode tube. In traveling toward the screen the electrons acquire such velocity that most of them
shoot between the sereen wires and then are attrabed to the phate. A certain proportion do strike the sereen, however, with the result that some current also flows in the sereen-grid circuit.

To be a good shield, the sereen grid must be commerted to the athode through a cireuit that has low impedance at the frequence being amplified. A by-pass caparitor from sereen grid to rathode, having a reactance of not more than a few hundred ohms, is generally used.

A tube having a cathode, control grid, sereen grid and plate (four elements) is called a tetrode.

Fig. 3-16- Representative arrangemont of clements in a sareengrid tube, with front part of plate and screen grid cut away. In this drawing the control-grid connection is made through a cap on the top of the tube, thus climinating the capacitamer that would exist betwern the plate-and reid-leat wirce if both pasised through the base. "Single enmede" tubes that have both leads gaing through the hase use special shield. ing and construction to eliminate interlead eapaeitance.

Pentodes

When an electron traveling at approciable velocity though a tube strikes the plate it dislodges other electrons which "splash" from the plate into the interelement suace. This is called secondary emission. In a triode the negative grid repels the secondary electrons back into the plate and they cause no disturbance. In the screen-grid tube, however, the positively-charged sereen attracts the secondary electrons, ausing a reverse current to flow between sereen and phate.

To overeome the effects of secondary emission, a third grid, called the suppressor grid, may be inserted between the screen and plate. This grid, which usually is comected directly to the cathode, repels the relatively low-velocity secondary electrons. Ther are driven back to the plate withont appreciably obstructing the regular plate-current flow. A five-clement tube of this type is called a pentode.

Although the screen grid in either the tetrode or pentode greatly reduces the influence of the plate upon plate-current flow, the control grid still can control the plate current in essentially the same way that it does in a triode. Consequently, the grid-plate transconductance (or mutual conductance) of a tetrode or pentode will be of the same order of value as in a triode of cor-
responding structure. On the other hand, since a change in plate voltage has very little effert on the plate-current flow, both the amplification factor and plate resistance of a pentode or tetrode are very high. In small recoiving pentodes the amplification factor is of the order of 1000 or higher, while the plate resistance may be from 0.5 to 1 or more megohms. Because of the high plate resistance, the artual voltage amplification possible with a pentode is very mueh less than the large amplification factor might indicate. A voltage gain in the vicinity of 50 to 200 is typical of a pentode stage.

In practical screen-grid tubes the grid-plate capucitance is only a small fraction of a micromicrofarad. This capacitance is too small to cause an appreciable increase in input caparitance as described in the preceding section, so the input capacitance of a screen-grid tube is simply the sum of its grid-cathode capacitance and control-grid-to-screcn capacitance. The output capacitance of a screen-grid tube is equal to the capacitance between the plate and screen.

In addition to their applications as radiofrequence amplifiers, pentodes or tetrodes also are used for audio-frequency power amplification. In tubes designed for this purpose the chiof function of the screen is to serve as an aceelerator of the electrons, so that large values of plate current can be drawn at relatively low plate voltages. Such tubes have quite high power sensitivity compared with triodes of the same power output, although harmonic distortion is somewhat greater.

Beam Tubes

A beam tetrode is a four-element screen-grid tube comstructed in such a way that the electrons are formed into concentrated beams on their way to the plate. Additional design features overcome the effects of secondary emission so that a suppressor grid is not needed. The "beam" construction makes it possible to draw large pate currents at relatively low pate voltages, and increases the power sensitivity.

For power amplification at both audio and radio frequencios beam tetrodes have largely supphanted the pentode type because large power outputs can be secured with very small amounts of grid driving power.

Variable- μ Tubes

The mutual conductance of a vacuum tube decreases with inereasing negative grid bias, assuming that the other electrode voltages are held constant. Since the mutual conductance controls the amount of amplification, it is possible to adjust the gain of the amplifier by adjusting the grid bias. This method of gain control is universally used in radio-frequency amplifiers designed for receivers.

The ordinary type of tuhe has what is known as a sharp cut-off eharacteristic. The mutual conduetance decreases at a uniform rate as the negative bias is increased. The amount of signal voltage that such a tube can handle without causing distortion is not sufficient to take care of
very strong signals. To overcome this, some tubes are made with a variable- μ characteristic - that is, the amplification factor decreases with increasing grid bias. The variable- μ tube con handle a much larger signal than the sharp cut-off type before the signal swings either beyond the zero grid-bias point or the plate-current eut-off point.

OTHER TYPES OF AMPLIFIERS

In the amplifier circuits so far diseussed, the signal has been applied between the grid and cathode and the amplified output has beon taken from the plate-to-cathode circuit. That is, the cathode has been the meeting point for the input and output eireuits. Ilowever, it is possible to use any one of the three principal elements as the common point. This leads to two different kinds of amplifiers, commonly called the grounded-grid amplifier (or grid-separation circuit) and the cathode follower.

These two circuits are shown in simplified form in Fig. 3-17. In both eireuits the resistor R repre-

Fip. 3.17-In the upper circuit, the grid is the junction point between the input and output circuits. In the lower drawing, the plate is the junction. In either case the ontput is developed in the load resistor, $R_{\text {, and }}$ may he coupled to a following ampli. fier by the usual methods.

sents the load into which the amplifier works; the actual load may be resistance-eapacitancecoupled, transformer-coupled, may be a tuned circuit if the amplifier operates at radio frequencies, and so on. Aso, in both cireuits the batteries that supply grid bias and plate power are assumed to have such negligible impedance that they do not enter into the operation of the circuits.

Grounded-Grid Amplifier

In the grounded-grid amplifier the input signal is applied between the cathode and grid, and the output is taken between the plate and grid. The grid is thus the common element. The plate current (including the a.c. component) has to flow through the signal source to reach the eathode. The source of signal is in series with the load through the plate-to-eathode resistance of the tube, so some of the power in the load is supplied by the signal souree. In transmitting applications
this fed-through power is of the order of 10 per cent of the total power output, using tubes suitable for grounded-grid service.

The input impedance of the grounded-grid amplifier consists of a capacitance in parallel with an equivalent resistance representing the power furnished by the driving soure to the grid and to the load. It is of the order of a few humdred ohms. The output impedance, neglecting the interelectrode conacitances, is equal to the plate resistance of the tube. This is the same as in the case of the grounded- wathode amplifier.

The grounded-grid amplifier is widely used at v.h.f. and u.h.f., where the more conventional amplifier circuit fails to work properly. With a triode tube designed for this type of operation, an r.f. amplifier can be built that is free foom the type of feed-bark that causes oscillation. This requires that the grid act as a shied between the eathode and plate, reducing the plate-cathode caparitance to a very low value.

Cathode Follower

The athode follower uses the plate of the tube as the common element. The input signal is :upplied between the grid and phate (assuming negligible impedance in the batterics) and the output is taken from between cathode and plate. This cireuit is degenemtive; in fact, all of the output voltage is fed back into the input circuit - out of phase with the grid signal. The input sigual therefore has to be larger than the output voltage; that is, the cathode follower gives a loss in voltage, although it gives the same power gain as other circuits.

An important feature of the cathode follower is its low output impedance, which is given by the formula (neglecting the grid-to-cathode capacitance)

$$
Z_{\text {output }}=\frac{r_{\mathrm{p}}}{1+\mu}
$$

where r_{0} is the tube plate resistance and μ is the amplification factor. This is a valuable characteristic in an amplifier designed to eover a wide band of frequencies. In addition, the input catpacitanes is only a fraetion of the grid-to-cathode capacitance of the tube, a feature of further benefit in a wide-band amplifier. The cathode follower is useful as a step-down impedance transformer, since the input impedance is high and the output impedance is low.

CATHODE CIRCUITS AND GRID BIAS

Most of the equipment used by amateurs is powered by the a.e. line. This includes the filaments or heaters of vacuum tubes. Although supplies for the plate (and sometimes the grid) are usually rectified and filtered to give pure d.c. - that is, direct current that. is constant and
without a suprerimposed a.c. component - the relatively large currents required by filaments and heaters usually make a rectifier-type d.c. supply impracticable.

Filament Hum

Nternating current is just as good as direct furrent from the heating standpoint, but sone of the a.c. voltage is likely to got on the grid and cause a low-pitched "i.c. hum" to be staperimposed on the output.

Hum troubles are worst with directly-heated cathodes or filaments, because with such cathodes: there hats to be a direct eonnection between the source of hating power and the rest of the circuit. The hum can be minimized by either of the connections shown in Fig, 3-18. In both cases the grid- and plate-return circuits are connered to the electriacal midpoint (center-tap) of the filament supply. Thus, so far as the grid and plate are concerned, the voltage and current on one side of the filament are babineed by an equal and opposite voltage and current on the other side. The balance is never quite perfect, however, so filament-type tubes are never completely humfree. For this reason directly-heated filaments are employed for the most part in power tubes, where the amomet of hum introduced is extremely smatl in eomparison with the poweroutput level.

With indirectly-heated cathodes the chief problem is the magnetic field set up by the heater. Oceasionally, ako, there is leakure between the heater and cathode, allowing a small are. voltage to get to the grid. If hum appears, grounding one side of the heater supply usually will help to reduce it, although sometimes better results are obtained if the heater supply is center-tapped and the center-tap grounded, ass in lig. 3-18.

Cathode Bias

In the simplified amplifier circuits discussed in this chapter, grid biat has been supplied ber a batters: However, in equipment that operates from the power line cathode bias is very frequently used.

The cathode-hias method uses it resistor (rathode resistor) connerted in series with the cathode, as shown at R in Fig. 3-19. The direction of platecurrent flow is such that the end of the resistor nearest the cathode is positive. The voltage drop
across R therefore places a negative voltage on the grid. This negative bias is ohtained from the steady d.e. plate current.

If the alternating component of plate current flows through R when the tube is amplifying, the voltage drop caused by the a.c. will be degenerative (note the similarity between this rircuit and that of Fig. $3-14 \lambda$). To prevent this the resistor is by-passed by a rapacitor, C, that has very low reatance compared with the resistane of R. Depending on the type of tube and the particular kind of operation, l may be betweon about 100 and 3000 ohms. For good by-passing at the low audio frequencios, ${ }^{\prime}$ "should be 10 to s0 microfarads (electrolytio mondensers are used for this purpose). At radio frequencies, capacitances of about $100 \mu \mu \mathrm{fd}$. to $0.1 \mu \mathrm{fd}$. tre used; the small values are sufficient at very high frequencies and the largest at low and medium frequencies. In the range 3 to 30 megacereles a eetpacitance of $0.01 \mu \mathrm{fl}$. is satisfactory.

The value of rathode resistor for ath amplifier having negligible d.e. resistance in its phate cirruit (transformer or impedance roupled) can easily be ealeulated from the kuown operating conditions of the tube. The proper grid bias and plate eument always are sperified by the manufarturer. Kinowing these, the required resistanee con be found by applying Ohm's law.

Example: It is found from tube tables that the tube to be used should have a negative grid bias of 8 volts and that at this bias the plate current will be 12 millianperes (0.012 amp.). The required cathode resistance is then

$$
R=\frac{E}{I}=\frac{8}{0.012}=667 \text { ohms. }
$$

The mearest standard value, 680 ohms, would be close enough. l'he bower used in the resistor is

$$
P=E I=8 \times 0.012=0.096 \text { watt. }
$$

A $1 / 4$-watt or $1 / 2$-watt resistor would have ample rating.

The current that flows through R is the cotal eathode current. In :on ordinary triode amplifier this is the same as the pate current, but in a sereen-grid tube the cathode current is the sum of the plate and sereen currents. Honere these two purvents must be added when calculating the value of eathode resistor required for a sereengrid tube.

> Example: A receiving pentode requires 3 volts negative bias. At this bias and the reeommended plate and sereen voltares, its plate emerent is 9 matand its s.reen eurrent is 2 mat The cathode eurrent is theroford 11 ma. (0.011 amp.). The required resistance is

$$
R=\frac{E}{I}=\frac{3}{0.011}=272 \text { ohus. }
$$

A 270 ohm resistor would be satisfactory. The power in the resistor is

$$
P=E 1=3 \times 0.011=0.0333 \text { watt. }
$$

The cathode-resistor mothod of biasing is selfregulating, beause if the tulo characteristies vary slightly from the published values (as they do in practice) the bias will increase if the plate
eurrent is slightly high, or deerease if it is slightly low. This tends to hold the plate current at the proper value.

Calculation of the eathode resistor for a re-sistance-coupled amplifier is ordinarily not practicable by the method deseribed above, because

Fig. 3.19- C:athode biasing. R is the cathode resig. tor and (C is the cathode by-pass capacitor.
the plate current in such an amplifier is usually murh smaller than the rated value given in the tube tables. Ilowever, representative data for the tubes commonly used as resistance-coupled amplifiess are given in the chapter on audio amplifiers, including cathode-resistor values.

Screen Supply

In pratical rireuits using tetrodes and pentodes the voltage for the sereen frequently is taken from the plate supply through a resistor. A typical eireuit for an r.f. amplifier is shown in Fig. :3-20. Resistor R is the screen dropping resistor, and (${ }^{~}$ is the screen by-pass capacitor, In flowing through R, the sereen current causes a voltage drop in R that reduces the plate-supply

Fig. 3-20 - Screen-voltage supply for a pentode tule through a dropping resistor, R. 'The sereen by-pass capacitor, C., must have low enough ratctance to bring the sarean to gromme potential for the frequency or frequencies being amplified.
voltare to the proper value for the sereen. When the plate-supply voltage and the sereen current are known, the value of R can be calculated from Ohm's Law.

Example: An r.f. receiving pentode has a rated screen current of 2 milliamperes (0.002 amp .) at normal operating conditions. The ratederen voltage is 100 volts, and the plate supply gives 250 volts. 'fo pit 100 volts on the screen, the drop across R must be equal to the difference between the plate-supply voltage and the sereun voltage; that is, $250-100=150$ volts. Then

$$
R=\frac{E}{1}=\frac{150}{0.002}=75,000 \text { ohuns. }
$$

The power to be dissipated in the resistor is

$$
P=B I=150 \times 0.002=0.3 \text { watt. }
$$

A $1 / 2$ - or 1 -watt resistor would be satisfactory.

The reactance of the screen br-pass capacitor, C, should be low compared with the screen-tocathode impedance. For radio-frequency applications a capacitance in the vicinity of $0.01 \mu \mathrm{fd}$. is amply large.

In some vacuum-tube circuits the screen voltage is obtained from a voltage divider connected across the plate supply. The design of voltage dividers is discussed at length in the chapter on Iower Supplies.

Oscillators

It was mentioned earlier in this chapter that if there is enough positive feed-back in an amplifier circuit, self-sustaining oscillations will be set up. When an amplifier is arranged so that this condition exists it is called an oscillator.

Oscillations normally take place at only one frequency, and a desired frequency of oscillation can be obtained by using a resonant circuit tuned to that frequency. For example, in Fig. 3-21A the circuit $L C$ is tuned to the desired frequency of oscillation. The cathode of the tube is connected to a tap on coil L and the grid and plate are connected to opposite ends of the tuned circuit. When an r.f. current flows in the tuned circuit there is a voltage drop across L that increases progressively along the turns. Thus the point at which the tap is connected will be at an intermediate potential with respect to the two ends of the coil. The amplified current in the plate cireuit, which flows through the bottom section of $L_{\text {, }}$, is in phase with the current already flowing in the circuit and thus in the proper relationship for positive feed-back.

Oscillator Operating Characteristics

When an oscillator is delivering power to a load, the adjustment for proper feed-back will depend on how heavily the uscillator is loaded - that is, how much power is being taken from the circuit. If the feed-bark is not lange enough grid excitation too small - a small increase in load may tend to throw the cireuit out of oscillation. On the other hand, too much feed-back will make the grid current excessively high, with the result that the power loss in the grid cireuit is kager than necessary. Since the oseillator itself supplies this grid power, excessive feed-back lowers the over-all efficiency because whatever power is used in the grid circuit is not available as usefud output.

One of the most important considerations in oscillator design is frequency stability. The prinripal factors that cause a change in frequence are (1) temperature, (2) plate voltage, (3) loading, (t) mechanical variations of circuit elements. Temperature changes will cause vacuum-tube clements to expand or contract slighty, thus causing variations in the interelectrode capacitances. Since these are unavoidably part of the tuned circuit, the frepuency will change correspondingly. Temperature changes in the coil or the tuning capacitor will alter the inductance or capacitance slightly, again causing a shift in the resonant froquence. These effects are relatively slow in operation, and the frequency change caused by them is called drift.

A change in plate voltage usually will cause the frequency to change a small :monnt, an effect called dynamic instability. Dynamic instability can be reduced by using a tuned circuit of high effective Q. The energy taken from the

Fig. 3-22 - The tuned-plate tuned-grid oscillator.
circuit to supply grid losses, as well as energy supplied to a load, represent an increase in the effective resistance of the tuned cireuit and thus lower its (). For highest stability, therefore, the coupling between the tuned circuit and the tube and load must be kept as loose as possible. Preferably, the oscillator should not be required to deliver power to an external circuit, and a high value of grid leak resistance should be used since this helps to raise the tube grid and plate resistances as seen ber the tuned circuit. Loose coupling can be effected in a variety of ways - one, for example, is by "tapping down" on the tank for the conncetions to the grid and plate. This is done in the "series-tumed" Colpitts circuit widely used in variable-frequency oscillators for amaterur transmitters and described in a later chapter. Alternatively, the L / C ratio may be
made as small as possible while sustaining stable oscillation (high C) with the grid and plate conneeted to the ends of the cirenit as shown. Using relatively high plate voltage and low plate current also is dasirable.

In general, dynamic stability will be at maxinum when the feed-back is adjusted to the least value that permits reliable oscillation, The use of a tube having a high value of transeondructance is dosirable, since the higher the transconductance the looser the permissible coupling to the tuned circuit and the smaller the feed-barek required.

Load variations aet in much the same way as plate-voltage variations. I temperature change in the load may also result in drift.

Mechanical variations, usually caused by vibration, cause changes in inductance and/ or capacitance that in turn cause the frequency to "wobble" in step with the vibration.

Methods of minimizing frequency variations in oscillators are taken up in detail in later chapters.

Ground Point

In the oseillator cireuits shown in Figs. 3-21 and $3-22$ the cathode is comected to ground. It is not artually essential that the radiofrequency circuit should be grounded at the cathode; in fact, there are many times when an r.f. ground on some other point in the circuit

Fig. 3-2.3 - Showing how the plate may be grounded for r.f. in a typical oscillator circuit (Hartley).
is desirable. The r.f. ground can be placed at any point so long as proper provisions are made for feeding the supply voltages to the tule elements.
liig, $3-23$ shows the Hartley circuit with the plate end of the circuit grounded. Nor.f. choke is needed in the plate circuit because the plate already is at ground potential and there is no r.f. to choke off. All that is necessary is a by-pass condenser, Cb, across the plate supply. Direct current flows to the rathode through the lower part of the tumed-circuit coil, L. In advantage of such a circuit is that the frame of the tuning capacitor can be grounded.

Tubes having indirectly-heated cathodes are more casily adaptable to cireuits grounded at other points than the cathode than are tubes having directly-heated filaments. With the latter tubes sperial precautions have to be taken to prevent the filament from being bypassed to ground by the capacitance of the filament-heating transformer.

U.H.F. and Microwave Tubes

At ultrahigh frequencies, interclectrode capacitances and the inductance of intermal leads determine the highest possible frequency to which a vacuum tube can be tuned. The tuibe usually will not oscillate up to this limit, however, because of dielectric losses, "transit time" and other effects. In low-frequency operation, the actual time of flight of electrons between the cathode and the anode is negligible in relation to the duration of the cycle. At 1000 kc ., for example, transit time of 0.001 microsecond, which is typical of

Fig. 3-24-Sectional view of the "lighthouse" tube's construction. Close clectrode spacing reduces transit time while the disk electrode connections reduce lead inductance.
conventional tubes, is only $1 / 1000$ eyde. But at 100 Mc ., this same transit time represents $1 / 10$ of a cycle, and a full cyole at 1000 Mc . These limiting factors establish about 3000 Ne, as the upper frequener limit for negative-grid tubes.

With most tubes of conventional design, the upper limit of useful operation is around 150 Mc . For higher frequencies tubes of special construction are required. About the only means available for reducing interelectrode capabeitances is to roduce the physical size of the clements, which is practical only in tubes which do not have to handle appreciable power. However, it is possible to reduce the internal lead inductance very materially by minimizing the lead length and by using two or more leads in parallel from an electrode.

In some types the electrodes are provided with up to five separate leads which mar be connected in parallel externally. In double-lead types the plate and grid elements are supported by heavy single wires which rum entirely through the envelope, providing terminals at either and of the bulb. With linear tank circuits the leads become a part of the line and have distributed rather than lumped constants.

In "lighthouse" tubes or disk-seal tubes, the plate, grid and cathode are assembled in parallel planes, as shown in Fig. 3-24, instead of coaxially. The disk-seal terminals practically eliminate lead inductance.

Velocity Modulation

In conventional tube operation the potential on the grid tends to reduce the electron velocity
during the more negative half of the eyele, while on the ot ther half-cyele the positive potential on the grid serves to aceelerate the elcetrons. Thus the electrons tend to separate into groups, those keaving the cathode during the negative halfcycle being collectively slowed down, while those leaving on the positive half are accelerated. After passing into the grid-plate space only a part of the electron stream follows the original form of the oscillation cycle, the remainder traveling to the plate at differing velocities. Since these contribute nothing to the power output at the operating frequency, the efficiency is reduced in direct proportion to the variation in velocity, the output reaching a value of zero when the transit time approaches a half-cycle.

This effect is turned to advantage in velocitymodulated tubes in that the input signal voltage on the grid is used to change the velocity of the electrons in a constant-current electron beam, rather than to vary the intensity of a constantvelocity current flow as is the method in ordinary tubes.

The velocity modulation principle may be used in a number of ways, leading to several tube designs. The major tube of this type is the "klystron."

The Klystron

In the klystron tube the electrons emitted by the cathode pass through an electric field established by two grids in a cavity resonator called the buncher. The high-frequency electric field between the grids is parallel to the electron stream. This field accelerates the electrons at one moment and retards them at another, in accordance with the variations of the r.f. voltage ap-

Fig. 3-25-Circuit diagram of the klystron oscillator, showing the feed-back loop coupliog the frequency-controlling eavities.
plied. The resulting velocity-modulated beam travels through a field-free "drift spate," where the slower-moving eleatrons are gradually overtaken by the faster ones. The electrons energing from the pair of grids therefore are separated into gromps or "bunched" along the direetion of motion. The velocity-modulated electron stream then gors to a catcher rhumbatron. Again the loam passes through two parallel grids, and the r.f. current ereated by the hunching of the electron beam induces an r.f. voltage bet ween the grids. The catcher cavity is made reson:ant at the frequency of the velocity-modulated eleetron beam, so that an oscillating field is set up within it the the passage of the elect ron bunches through the grid abperture.

If a feed-buck loop is provided between the two cavitics, as shown in Fig. 3 -25, oscillations will oecur. The resonatht frequeney depends on the electrode voltages and on the shape of the cavities, and may be aljusted by varying the supply voltage and altering the dimensions of the gavitics. Athough the bunched beam current is rieh in harmonirs the output wave form is remarkably pure berebuse the high Q of the catcher cavity suppresses the unwanted harmonics.

Magnetrons

A magnetron is fundimentally a diode with ralindrical electrodes placed in a uniform matynetic field, with the lines of nagnetie force parallel

Fis, $3-26$ - Cimmontional maynetrons, with muivalent *chematic symbols at the ripht. A. simple colindrical magnetron, i , split anodenegative-resistane magnetron.
to the elements. The simple cylindrieal magnet ron consists of a filamentary cathode surromuded by a concentric exlindrical anode. In the more effirient split-anode magnetron the exlinder is divided lengthwise.

Magnetron oseillators are operated in two different ways. lilectricably the cireuits are similar. the difference being in the relation between eletron transit time and the freegueney of oseillation.

In the negative-resistane or chation t.epe of magnetron osejlator. the edement dimensions and anode voltage are such that the tramsit time is short compared with the period of the osediation frequency. Electrons emitted from the eathode aredriven toward looth halves of the anote. It the potentials of the two halves are unequab, the
effect of the magnetie field is such that the matjority of the electrons travel to the half of the anode that is at the lower potential. That is, a decrease in the potential of either half of the anode

results in an incrase in the electron current flowing to that half. The magnetron eonsequently exhibits negative-resistanee eharabertertias. Nega-tive-resistance matguetron oscillators are useful beween 100 and 1000 Me. Under the best operating conditions efficiencies of 20 to 25 per cent maty be olstained.

In the transit-time magnetron the frequency is determined primarily be the tube dimensions and by the electric and matgetio field intensitios rather than be the tmang of the tank eirenits. The intensity of the mangetic field is adjusted so that, under statieconditions, clectrons leatving the (athonde move in eurved pathe which just fail to reach the anode. All electrons are therefore deflectod back to the cathode, and the anode current is zero. An alternating voltage applied between the two halves of the anode will rause the potentials of these halves to vary about their average positive values. If tho period (time required for one cucle) of the alternating voltane is made equal to the time required for an eledron to make one complete rotation in the magnetir field, the a.c. component of the anode voltage reverses direction twice with each electron rotation. Some elestrons will lose energy to the electric field, with the result that they are unable to reach the cathode and continue to rotate about it. Meanwhile other electrons gain energy from the field and are returned to the cathode. Since those electrons that lose energy remain in the interelectrode spare longer than those that gain energy, the net effect is a transfer of energy from the clectrons to the electric field. This energy can be used to sustain oscillations in a resonant transmission line conneet ed between the two halves of the anode.

Split-anode magnetrons for u.h.f. are constructed with a eavity resonator built into the tube structure, as illustrated in Fig. 3-27. The assembly is a solid block of copper which assists in heat dissipation. At extremely high frequenreies operation is improved by subdividing the anote structure into from 4 to 16 or more segments, the resonant aivities for eath anode being coupled by slots of eritical dimensions to the common cathode region.

The efficiency of multisegment matgnetrons reaches (a5) or 70 per cent. Notited-anode magnetrons with four segments function up to 30,0 o() Ms. (1 rm.), delivering up to 100 wittis at officiomeies greater than 50 per cent. Lising labger multiples of anodes and higher-order modes, performance can be attaned at 0.2 cm .

Fig. 3-28 - Schematic drawing of a travelingwave amplifier tube.

Traveling-Wave Tubes

Gains as high as 23 db . over a bandwidth of 800 Mc . at a center frequency of 3600 Mc . have been obtained through the use of a travelingwave amplifier tube shown schematically in Fig. 3-28. An electromagnetic wave travels down the helix, and an electron beam is shot through the helix parallel to its axis, and in the direction of propagation of the wave. When the electron velocity is about the same as the wave velocity in the absence of the elentrons, turning on the electron beam causes a power gain for wave prop-
agation in the direction of the electron motion.
The portions of Fig. 3-28 marked "input" and "output" are wave-guide sections to which the ends of the helix are coupled. In practice two electromagnetic focusing coils are used, one forming a lens at the electron gun end, and the other a solenoid running the length of the helix.

The outstanding features of the traveling-wave amplifier tube are its great bandwidth and large power gain. However, the efficiency is rather low. Typical power output is of the order of 200 milliwatts.

Semiconductor Devices

Certain materials whose resistivity is not high enough to classify them as grood insulators, but is still high compared with the resistivity of common metals, are known as semiconductors. These materials, of which germanium and silicon are examples, have an atomio structure that normally is associated with insulators. However, it is possible for free electrons to exist in them and to move through them under the influence of an electrie field. It is also possible for some of the atoms to be deficient in an electron, and these electron deficiencies or holes can move from atom to atom when urged to do so by an applied electric force. (The movement of a hole is actually the movement of an electron, the electron becoming detached from one atom, making a hole in that atom, in order to move into an existing hole in another atom.)

Electron and Hole Conduction

Material which conducts by virtue of a deficiency in electrons - that is, he hole conduction - is called P-type material. In N-type material, which has an excess of electrons, the conduction is termed "electronic." If a piece of 1'type material is joined to a piece of N-type material as at A in Fig. 4-1 and a voltage is applied to the pair as at B, current will flow across the boundary or junction between the two (and also in the external rireuit) when the battery has the polarity indicated. Eilectrons, indieated by the minus symbol, are attracted across the junction from the N material through the l' material to the positive terminal of the battery, and holes, indicated by the plus symbol, are at tracted in the opposite dirertion across the junction by the negative potential of the battery. Thus current flows through the circuit by means of electrons moving one way and holes the other.

If the battery polarity is reversed, as at C , the excess electrons in the N material are attracted away from the junction and the holes in the P material are attracted by the negative potential of the battery away from the junction. This leaves the junction region without any current carriers, consequently there is no conduction.

In other words, a junction of P- and N-type materials constitutes a rectifier. It differs from the tubo dionde rectifier in that there is a measurable, although compara-
tively very small, reverse current, since the operation of the device is not as perfect as assumed in this simplified description.
lelectrons and holes do not move as rapidly through the solid materials as electrons do in a varuum. Also, the holes move more slowly than the electrons. This, together with the fact that the junction forms a eapacitor with the two plates separated bey practically zero spacing and hence has relatively high capacitance, places a limit on the upper frequency at which semiconductor devices of this construction will operate, as compared with vacuum tubes. Also, the number of excess electrons and holes in the material depends upon temperature, and siuce the conductivity in turn depends on the number of excess holes and electrons, the device is more temperature sensitive than is a vacuum tube.

Capacitance may be reduced by making the contact area very small. This is done by means of a point contact, a tiny P-type region being formed under the contact point during manufacture when N-type material is used for the main body of the device.

SEMICONDUCTOR DIODES

Diodes of the point-contact type are used for many of the same purposes for which tube diodes are used. The construction of such a diode is shown in Fig. 4-2. (remmanium and silicon are the most widely used materials, the latter principally in the u.h.f. region.

As compared with the tube diode for r.f. appplications, the erystal diode has the advantages of very small size, very low interelectrode capacitance (of the order of $1 \mu \mu$ f. or less) and reduires no heater or filament power.

Fig. 4-I - A P-N junction (A) and its behavior when conducting (B) and nonconducting (C).

SYMBOL

Fia, 4-2- (ionstruction of a germaniom-point-contact dionde. In the circuit symbol for a contact rectifier the arrow points in the direction of minimum resistance measured by the conventional methor - that is. going from the positise terminal of the voltage source throuph the rertifier to the negative terminal of the sonaree. 'I'lee arrow thas corresponds to the plate and the har to the eathode of a tube diode.

Characteristic Curves

The germanium crystal diode is chameterized by relatively large current fow with small applied voltages in the "forward" direction, and small, although finite, current flow in the reverse or "back" direction for much barger applied voltages. A typical characteristice curve is shown in Fig. $4-3$. The dymamic resistance in either the forwand or back direction is determined by the change in current that oceurs, at any given point. on the curve, when the applied voltage is changed by a small amount. The forward resistance shows some variation in the region of very small applied voltages, but the curve is for the most part quite straight, indicating fairly constant dyamide resistanere. For smatl atpplied voltages, the forward resistanere is of the order of 200 ohms in most such diodes. The batk resistance shows considerable variation, depending on the particular voltige chosen for the measurement. It may rum from : fow hundred thousand ohms to over a mogohm. In applieations such as meter rectifiers for r.f. indiating instruments (r.f. voltmeters, wave-meter indicators, and so on) where the load resistance may be smatl and the applied voltige of the order of several volts, the resistanees vary with the value of the applied voltage and are considerably lower.

Junction Diodes

Junction-type diodes made of germanium are employed principatly as power rectifiers, being useful for applications similar to those in which solenium reetifiers are used. Depending on the design of the particular diode, they are capable of reectifying currents up to severibl hundred milliamperes. The sate inverse peak voltage of a junction is relatively low, so an atppropriate number of rectifiers must be connected in series to operate safely on a given it.c. input voltage.

Ratings

Crystal diodes are rated primatrily in terms of maximum safe inverse voltage and maximum average rectified current. Inverse voltage is a voltage applied in the direction opposite to that which catuses maximum current flow. The average fourent is that which would be read by a d.e. meter connected in the current path.
lt is also customaty to sperify standerds of performance with respect to forward and back current. I minimum value of forward current is usuablly sperified for one volt appliced. The voltarge at which the maximum tolerable batek eurrent is sperified varins with the tspe of diode.
F̈д. 14-3-I'ypical wermanium diode chararteristie curve. Becanse the back eurrent is much smaller than the forward current, for murh larser applied voltager. a diffirent seale is used for hack voltage and curront than for forward voltage and current.

Transistors

Fig, $4-4$ shows a "sandwich" made from two Layers of $\mathrm{l}^{\text {-type }}$ semieonductor material with a thin laver of N-type betwern. There atre in effect two P-N junctions back to back. If a

Fig. A-I-I'lu busic arrangement of a iransistor. 'llois represemts a junetion-type P-N-P unit.
positive hias is applied to the p-type material at the loft as shown, current will flow through the left-hand junction, the holes moving to the right and the electrons from the N-type material moving to the left. Some of the holes moving into the X-type material will eombine with the electrons there and be neutralized, but some of them also will travel to the region of the righthand junction.

If the $\mathrm{l}^{\prime}-\mathrm{N}$ combination at the right is biased nergatively, as shown, there would normally he no current flow in this areuit (see Fig. f-1 () However, there are now additional holes available at the junction to travel to point B and electrons can travel toward point A, so a current can flow even though this section of the sundwich
considered alone is biased to prevent conduction. Most of the eurrent is hetween A and B and does not flow out through the eommon connedtion to 1We N-type material in the sandwieh.

A semiconductor eombination of this type is called a transistor, and the three sertions are known as the emitter, base and collector, respectively. The amplitude of the collector current depends principally upon the amplitude of the emitter current; that is, the collector eurrent is controlled by the emitter current.

Power Amplification

Because the collector is biased in the bark diretion the eollector-to-hase resistanee is high. On the other hand, the emitter and collertor currents are substantially equal, so the power in the collector eircuit is larger than the power in the amitter eirecuit ($P=I^{2} R$, so the powers are proportional to the respective resistances, il the eurrent is the same). In prantical transistors the eollector resistance is hundreds or thousands of times the emitter resistance, so power gains of 20 to 40 dh, or even more are possible.

Types

The transistor may be either of the pointcontact or junction tipe, as shown in Fig. $4-\overline{\mathrm{s}}$. Also, the assembly of P - and N-type materials may be reversed; that is, N-type material may be used instead of P'tupe for the enitter and collector, and P-trpe insteud of N-type for the base. The type shown in Fig. $4-4$ is known as a P-N-P transistor, while the opposite is the N-P-N.

Point-Contact Transistors

The print-contact transistor, shown at the left in lig. 4-5, has two "catwhiskers" placed very close together on the surface of a germanium wafer, usually N-type material. Simall P-type areas are formed under each point during manufacture. This type of construction results in quite low interelectrode caparitances, with the result that some point-contact transistors gan be used at frequencies up to the v.h.f. region.

The point-eontact transistor was the first tyen
invented, but is probably on the way to being superseded by the junction type for practically: abl abplications. It is diflicult to manufacture, since the two contabe points must be extremely: close together if gool chabiateristics are to be secured, particularly for high-frequency work.

The Junction Transistor

The junction transistor, the essential construction of which is shown at the right in Fig. 4-5, has higher capacitances and higher powerhandling eapacity than the proint-contact type. The "electrode" areas and thickness of the intermediate layer have an important effect on the upher frequency limit. At the present time junction transistors having eut-off frequencies (see next section) up to 20 Mc , or so are available, and the frequeney limit is eonstantly being extended. The types used for abdio and low radio frequencies usuably have eut-off frequencies ranging from 500 to 1000 kc .

Jixperimental work now under way with "diffused" junctions indicates that junction-type transistors (eabjable of satisfactory operation in the v.h.f. region are possible. It is to be expected that further development will make the construction of such transistors commercially practicable.

TRANSISTOR CHARACTERISTICS

An important characteristic of a transistor is its current amplification factor, usually designated by a. This is the ratio of the change in collector current to a small change in emitter current, and is comparable with the voltage amplification factor (μ) of a vacuum tube. The current amplification factor is almost, but not quite, 1 in a junction transistor. It is larger than 1 in the point-contact type, values in the neighborhood of 2 being typical.

The a cut-off frequency is the frequency ist which the current amplification drops 3 db . below its low-frequency vablue. Cut-off frequencies range from 500 ke. to high freduencies in the v.h.f. region. The cut-off frequency indicates in ib general way the frepuency spread over which the

Fig. 4-j - Point-contact and junction-type transistors with their circuit symbols. 'Ihe mas and mints signs associated with the symbols indicate polarities of voltages, with respert to the base, to In applied to the elements.

POINT-CONTACT TYPE

SYMBOL

SYMBOLS
transistor is useful.
laach of the three elements in the transistor has a resistance associated with it, the emitter and collector resistances having heen diseussed earlier. There is akso a certain amount of resistance associated with the base, a value of a few hundred to 1000 ohms being typical of the base resistance.

The values of all three resistances vary with the type of transistor and the operating voltages. The collector resistance, in particular, is sensitive to operating conditions.

Characteristic Curves

The operating characteristics of transistors can he shown ber a series of characteristice curves. One such set of curves is shown in Fig. 4-6. It

Fig. 4-6- A typical collector-current ts. collectorvoltage characteristie of a jumetion-type transistor, for various emitter-current values. The circuit shows the set-up for taking such monsuroments. Since the emitter resistance is lon, a current-limiting rexistor, R, is connected in series with the souree of current. 'I'le emitter eurrent can le set at a desired value by adjustment of this resistance.
shows the collector current is. collector voltage for a number of fixed values of emitter current. Practically, the collector current depends amost entirely on the emitter current and is independent of the collector voltage. The separation between curves representing equal steps of emitter current is quite uniform, indicating that almost distortionless output can be obtained over the useful operating range of the transistor.

Another trpe of curve is shown in Fig. 1-7, together with the circuit used for obtaining it. This also shows collector eurrent rs. collector voltage, but for a number of different values of base current. In this case the emitter element is used as the common point in the circuit. The collector eurrent is not independent of collector voltage with this type of connertion, indicating that the output resistance of the device is faing low. The base current also is quite low, which means that the resistance of the base-emitter

Fig. 4-7-Collector eurrent es. colleetor voltage for various values of hase current, for a junction-type transistor. The values are determined by means of the circuit shown.
circuit is moderately high with this method of connection. This may be contrasted with the high values of collector current shown in Fig. 4-6.

Ratings

The principal ratings applied to transistors are maximum collector dissipation, maximum collector voltage, maxinum collector current, and maximum emitter current. Except possibly for eollector dissipation, the terms are self-explanatory:

The collector dissipation is the power, usuably expressed in milliwatts, that can safely be dissipated by the transistor as heat. With some types of transistors provision is made for transferring heat ripidly through the container, and such units usuably require installation on a heat "sink" or mounting that can absorb heat from the transistor.

The amount of undistorted output power that can be ohtained depends on the collector voltage, although the collector current is practically independent of the voltage. Increasing the collector voltage extends the range of linear operation with a given swing in collector current, but camot be carried beyond the point where either the voltage or dissipation ratings are exeeded.

TRANSISTOR AMPLIFIERS

Amplifier eircuits used with transistors fall into one of three types, known as the groundedbase, grounded-emitter, and grounded-collector circuits. These are shown in Fig. 4-8 in elementary form. The three circuits correspond approximately with the grounded-grid, grounded-c:athode and cathode-follower circuits, respectively, used with vacuum tubes.

Grounded-Base Circuit

The input eircuit of a grounded-hase amplifier must be designed for low impedance, since the emitter resistance is of the order of a few hundred ohms. The optimum output load impedance, however, is high, and may range from a few thousand ohms to 100,000 or so, depending upon the requirements.

The resistor R_{1} in the grounded-base circuit is used to limit the emitter current to a desired value and thus establish the operating point when the emitter voltage is fixed. It is by-passed by C_{1}, the capacitance of which should meet the usual requirements for by-passing. The limiting resistor is necessary in this circuit to prevent damaging the transistor, since without such limiting, relatively large currents will flow with quite small voltages on the emitter.

In this circuit the phase of the output (collector) current is the same as that of the input (emitter) current. The parts of these currents that flow through the base resistance are likewise in phase, so the circuit tends to be regenerative and will oscillate if the current amplification factor is greater than 1. A junction transistor is stable in this circuit since a is less than 1, but a point-contact trunsistor will oscillate.

SEMICONDUCTORS

Grounded-Emitter Circuit

The grounded-emitter circuit shown in Fig. 4-8 corresponds to the ordinary grounded-wathode vacuum tube amplifier. As indieated by the curves of Fig. $4-\overline{7}$, the base current is small and the input impedance is therefore fairly high several thousand ohms in the average case. The collector resistance is of the same order, or somewhat higher than, the base resistance in this circuit. The grounded-emitter circuit gives the highest power gain of any and, as indicated in Fig. 4-7 hy the fact that a base current of a few hundred microamperes results in collector current of several milliamperes, gives a rather large current gain as well.

In the grounded-emitter circuit shown the base hias is olntained through R_{2} and only a single current source is needed. R_{2} may be of the order of 100,000 ohms.

In this circuit the phase of the output (collector) eurrent is opposite to that of the input (base) current so such feed-back as oocurs through the small emitter resistance is negative and the amplifier is stable with either junction or pointcontact transistors.

Fig. 4-8- Basic transistor amplifier circuits. T_{1}, T_{2} and T_{3} are transformers hav ing turns ratios suitable for the impedances involved; these impedances are discussed in the text. Other types of coupling may be sulostituted.

Fig. 4-9- 'I'ransistor oscillator circuits. Component values are disensied in the text.

Grounded-Collector Circuit

Like the cathote follower, the grounded-collector transistor amplifier has high input impedance and low output impedance. The latter is approximately equal to the impedance of the signal input source multiplied by $(1-a)$. The input resistance depends on the load resistance, being approximately equal to the load resistance divided by $(1-a)$. The fact that input resistance is directly related to the load resistance is a disadvantage of this type of amplifier if the load is one whose resistance or impedance varies with frequency.

TRANSISTOR OSCILLATORS

Since more power is avalable from the output circuit than is necessary for its generation in the input circuit, it is possible to use some of the output power to supply the input circuit and thus sustain self-oseillation. Two representative oscillator circuits are shown in Fig. 4-9. The circuit at A uses inductive coupling to supply a feed-back current in the proper phase, the grounded-emitter arrangement being used. The resistor R usually will be in the $50,000-100,000$ ohm region. The frequency is determined by $L_{1} C_{1}$. In order to sustain oscillation, the current fed back through C_{2} to the base must be larger than the nonoscillating base current.

The circuit at 13 uses capacitive voltage division for feed-back with a grounded-base transistor. The resonant frequency is determined by $L C_{1}{ }^{\prime}{ }^{\prime}{ }_{2}$. (The battery in the collector circuit is assumed to have negligible impedance.) The ratio of C_{1} to C_{2} for self-sustaining oscillation depends on the current amplification and must be greater than $(1-a) / a$, approximately.

High-Frequency Receivers

A good receiver in the amateur station mates the difference between nediocre contarts and solid (2NOs, and its importance camot be overemphasized. In the uncrowded v.h.f. bands, sensitivity (the ability to bring in weak signals) is the most important factor in areceiver. In the more rowded amateur hands, good semsitivity must be combined with selectivity (the ability to distinguish between signals sepmated by only a small frequency differenee). 'To receive weak signals, the receiver must furnish emongh amplification to amplify the minute signal power delivered by the antemia up to a useful amomet of pwer that will operate a loudspaker or set of headphones. Before the amplified signal ean operate the 'speaker or 'phones, it must be converted to audio-frequency power by the process of detection. The sequence of amplification is not too important - some of the amplifiation can take place (and ushally does) bofore detertion, and some can be used after detertion.

There are major differences between receivers for 'phone reception and for cow, reception. An AM 'phone sigual has sidebands that make the signal take up about (6 or 8 kc . in the hand, and the audio quality of the received signal is impaired if the bandwidth is less than half of this. A e.w. signal owopies only a few hundred eycles at the most, and consequently the bandwidth of a cow. receiver can be smatl. A single-sideband phone signal takes anf 3 to +kc ., and the audio quality can be impaired if the bandwidth is mueh less than 3 ke. although the intelligibility will hold up down to around 2 ke . In any case, if the bandwidth of the receiver is more than nes-
essary, signals adjacent to the desired one cam be heard, and the selectivity of the receiver is less than maximm. The detertion process delivers directly the andio frequencies present as modulation on an AM 'phone signal. There is no modulation on a $(\cdot w$. signal, and it is necessary to introduce a seecond radio frequence, differing from the signal frequeney by a suitable andio frequenes, into the detector circuit to produce an audible beat. The frequency difference, and hence the beat note, is generally made on the order of 500 to 1000 eycles, since these tones are within the range of optimum response of both the ear and the headset. There is no carrier frequency present in ansisls signal, and this frequency must he furnished at the receiver before the audio an be recovered. The same somec that is used in e.w. reception can he utilized for the purpose. If the souree of the locally-generated radio frequency is a separate oscillator, the sistem is known as heterodyne reception: if the detector is made to oseillate and produce the frequency, it is known as an autodyne detcctor. Modern superheterodyne receivers generally use a separate oscillator (beat oscillator) to supply the locally-generated frequency. Summing up the differences, 'phone recoivers con't use as much selectivity as c.w. receivers, and c.w. and sisb receivers require some kind of locally-generated frequency to give a readahle signal. Broadeast receivers can receive only AM 'phone signals berause no beat oscillator is included. Communications receivers include beat oscillators and often some means for varying the selectivity:

Receiver Characteristics

Sensitivity

In commereial circles "sensitivity" is defined as the strength of the signal (in microvolts) at the input of the receiver that is reguired to produre a specified audiopower output at the 'speaker or headphones. This is a satisfactory definition for broadcast and communioations receivers operating below about 30 Mc., where atmospheric and man-made clectrical noises normaily mask any nowe genemated by the reviver itself.

Inother conmercial measure of sonsitivity defines it as the signal at the input of the rereiver recuired to give an andio output some stated anount (generally 10 db.$)$ above the noise output of the receiver. This is a more useful sensitivity measure for the amateur, since it indicates how well a weak signal will be heard and
is not merely a measure of the over-all amplificittion of the receiver. However, it is not an absolute method for eomparing two receivers, becanse the bandwidth of the recoiver plays a large part in the result.

The random motion of the molecules in the antenna and receiver circuits generates small voltures called thermal-agitation noise voltares. The frequency of this moise is random and the noise exists across the entire radio spectrum. Its amplitude increases with the temperature of the circuits. Only the noise in the antenna and first stage of a reveiver is normally significant, since the noise developed in later stages is masked by the amplified noise from the first stage. The only noise that is amplified is that which is accepted by the receiver, so the
noise appearing in the reeceiver output is less when the bandwidth is reduced. Noise is also generated by the current flow within the first tube itself; this effect can be combined with the thermal noise and called receiver noise.

The limit of a recoiver's ability to detect wak sigmals is the thermal mise generated in the input aireuit. Even if a profect noise-free tube were developed and used throughout the receiver, the limit to reception would be the thormal noise. (Atmospheric- and man-made mose is a practical limit below 20 Ma .) The degree to which a receiver approwhes this ideal is called the noise figure of the recoiver, and it is expressed as the ratio of noise power at the imput of the recoiver required to increase the nome out put of the receiver 3 db . Nince the noise power passed by the receiver is dependert on the bendwidth, the figure shows how far the reereiver departs from the ideal. The ration is generally expressed in db., ind runs around 6 to 12 d). for a good reeceiver, although figures of 2 to $t(\mathrm{~d})$. have beren obtained. Comparivons of noise figures e:un be made be the amateur with simple equipment.

Selectivity

Nelectivity is the ability of a recenver to discriminate against signals of frequencies differing from that of the desired signal. The over-all selectivity will depend upon the selectivity of the individual tuned rirenits and the number of such cireuits.

The selectivity of a receiver is shown graphically by drawing a curve that gives the ratio of signal strength required at various freguenrics off resonance to the signal strength at resomance, to give constant output. I resonance curve of this type is shown in lige. j-1. The bandwidth is the width of the resonanee curve (in eveles or kilecerdes) of a receiver at a sperified ratio: in Fig. $\bar{b}-1$, the bandwidthe ate indicated for ratios of response of 2 and 10 (" 0 dh. down" and "20 (ll). down").
The bundwidth at (id dh. down must bersulfieient (1) pass the sighal and its sidehands if fathoul reproduction of the signal is desired. However, in the crowded amateur bands, it is generally advisahe to sacrifice fidelity for intelligibilits: The ability to reject adjacent-chamel signals depends upon the skirt selectivity of the receiver, whirh is determined by the bandwidth at high attenuttion. In a receiver with good skirt selectivity, the

Fig. 5.1-Typical selectivity curse of a monlern superheteronlyne rewiser. Relatise response is photied afainat dwiations atheve and helow the resonance frequency. The srale at the left is in torms of woltage ration, the corresponding deested sten: are sluwn at the right.
ration of the (i-dh. beadwidth to the ($60-\mathrm{d}$). bandwidth will be about (0.25 for e.w. and 0.5 for 'phone. The minimum usable bandwidth at (i-d). down is about 1 bo ceres for ew. reception and about 2000 areles for phone.

Stability

The stability of a recoiver is its ability to "stay put" on at sigual under varving monditions of gatin-entrol setting, temperature, supplyvoltage changes and merhanical shork and distortion. The term "unstable" is akso applied to at reseiver that breaks into osedilation or a regenerative eondition with some settings of its controls that are not specilically intended to control such a condition.

Fidelity

Fidelity is the relative ability of the recoiver to reproduce in its output the moduation carried by the incoming signal. For perfect fidelity, the relative amplitudes of the various components must not be changed by phsing through the receiver. However, in amitteur communication the important requirement is to transmit intelligence and not "high-fidelity" signals.

Detection and Detectors

i)etection is the proaess of recowering the modulation from a signal (sere "Modulation, Heterodyning and Beats"). Any device that is "monlincer" (i.e., whese output is mot exactly proportional to its input) will ant as a detertor. It can be used ase a detector if an impedance for the desired modulation frequency is ronnected in the output circuit.
Detector sensitivity is the ratio of desired
detector output to the input. Detecter linearity is a measure of the ability of the detector to reproduce the exact form of the modulation on the incoming sigual. The resistane or impedance of the detector is the resistance or impedanere it presents to the circuits it is connerted to. The input resistance is important in receiver design, since if it is relatively low it means that the detector will consune power,
and this power must be furnished by the preceding stage. The signal-handling capability meins the ability to arept signals of a sperified amplitude without overloading or distortion.

Diode Detectors

The simplest detector for a.m. is the diode. A galena, silicon or germanium crystal is an imperfect form of diode (a small current ran pass in the reverse direction), and the principle of detection in a crystal is similar to that in a vacuum-tube diode.

Circuits for both half-wave and full-wave diodes are given in Fig. $\bar{\sigma}-2$. The sinplified half-wave eircuit at $\overline{5}$-2d includes the r.f. tuned circuit, $L_{2} C_{1}$, a coupling eoil, L_{1}, from which the r.f. energy is fed to $L_{2} C_{1}$, and the diode, l, with its load resistance, R_{1}, and bypass condenser, C. The flow of rectified r.f. current causes a d.e. voltage to develop across the terminals of R_{1}. The - and + signs show the polarity of the voltage. The variation in amplitude of the r.f. signal with modulation

Fig. 5-2 - Simplified and practical diode detector circoits. A, the elementary half-wave diode detector: B, a practical cireuit, with r.f. filtering and audio output coupling: C., full-wave diode detector, with output conpling indicated. 'We cirouit, $L_{2}\left(C_{i}\right.$, is tuned to the signal frequency; typical values for C_{2} and R_{1} in A and Ciare 2 ar $250 \mu \mu$. and 250,000 ohms. respectively: in 13 , $C 2$ and C_{3} are $100 \mu \mu$. each; $R_{1}, 50,000$ ohms: and $R_{2}, 250,000$ ohms. C_{4} is 0.1μ. and R_{3} may be 0.5 to 1 megohm,
causes corresponding variations in the value of the de. voltage across R_{1}. In andio work the foad resistor, R_{1}, is usually 0.1 megohm or higher, so that a fairly large voltage will develop from a small reatified-current flow.

The progress of the signal through the detertor or rectifier is shown in Fig. 5-3. A typical modulated signal as it exists in the tuned

Fig. 5-3- Diagrams showing the detection process.
circuit is shown at A. When this signal is applied to the rectifier tube, current will flow only during the part of the r.f. cycle when the plate is positive with respect to the cathode, so that the output of the rectifier consists of half-rycles of r.f. These current pulses flow in the load circuit comprised of R_{1} and C_{2}, the resistance of R_{1} and the caparity of C_{2} being so proportioned that ('2 charges to the peak value of the reatified voltage on each pulse and retains enough charge between pulses so that the voltage across R_{1} is smoothed out, as shown in C. C_{2} thus acts as a filter for the radio-frequency eomponent of the output of the rectifier, leaving a d.c. component that varies in the same way as the modulation on the original signal. When this varying d.e. voltage is applied to a following amplifier through a coupling rondenser (C_{4} in Fig. $\overline{5}-213$), only the variations in voltage are transferred, so that the final output signal is a.c., as shown in D.

In the rircuit at $5-2 B, R_{1}$ and C_{2} have been divided for the purpose of providing a more effective filter for r.f. It is important to prevent the appearance of any r.f. voltage in the output of the detector, because it may cause overloading of a succeeding amplifier tube. The audiofrequency variations can be tramsferred to another circuit through a coupling condenser, C_{4}, to a load resistor, R_{3}, which usually is a "potentiometer" so that the audio volume can be adjusted to a desired level.

Coupling to the potentiometer (volume control) through a condenser also avoids any flow of d.c. through the control. The flow of d.c. through a high-resistance volume control often
tends to make the control noisy (scratchy) after a short while.

The full-wave diode circuit at $5-2 \mathrm{C}$ differs in operation from the half-wave cireuit only in that both halves of the r.f. cycle are utilized. The full-wave circuit has the advantage that r.f. filtering is easier than in the half-watve circuit. As a result, less attenuation of the higher audio frequencies can be obtained for iny given degree of r.f. filtering.

The reactance of C_{2} must be small compared to the resistance of l_{1} at the radio frequency being rectified, but at audio frequencies must be relatively large compared to R_{1}. If the rapacity of C_{2} is too large, response at the higher audio frequencies will be lowered.

Compured with other detectors, the sensitivity of the diode is low, normally rumning around 0.8 in audio work. Since the diode consumes power, the Q of the tuned cireuit is reduced, bringring about a reduction in selertivity. The loading effect ol the diode is close to one-half the load resistance. The detertor linearity is good, and the signal-handling cippability is high.

Plate Detectors

The plate detector is arranged so that reetification of the r.f. signal takes place in the plate

Fig. 5-4- Cireuits for plate detection. A, triode; B, pentode. The input circuit. $L_{1} C_{1}$, is tuned to the signal frequency. Typical values for the other eomponents are: Com-
ponent Circuit A Circuit B

(i2	0.5μ f. or larger.	0.5μ f. or large
(3)	0.001 to $0.002 \mu \mathrm{f}$.	250 In 500 推.
(4	0.1μ f.	$0.1 \mu \mathrm{f}$.
Cis_{5}		$0.5 \mu \mathrm{f}$, or larger.
R_{1}	25,000 to 150,000 ohms.	I0,000 to 20,000 ohms.
R_{2}	50,000 to 100,000 ohms.	100,010 to $2.50,000$ ohms.
13_{3}		$50,(00)$ (\%) $\mathrm{m}^{\text {ms. }}$
R_{4}		20,000 ohms.
RFC	2.5 mh.	2.5 min .

Plate voltages from 100 to 250 volts may be used. Effective serecn voltage in B should be ahout 30 volts.
circuit of the tube. Sufficient negative bias is applied to the grid to bring the plate current nearly to the cut-off point, so that application of a signal to the grid circuit causes an increase in average plate current. The average plate current follows the changes in signal in a fashion similar to the rectified current in a diode detector.

Cireuits for triodes and pentodes are given in Fig. 5-4. C_{3} is the plate by-pass condenser, and, with RFC, prevents r.f. from appearing in the output. The cathode resistor, R_{L}, provides the operating grid bias, and C_{2} is a by-pass for both radio and audio frequencies. R_{2} is the plate load resistance and C_{4} is the output coupling condenser. In the pentode circuit at $1, R_{3}$ and R_{4} form a voltage divider to supply the proper screen potential (about 30 volts), and C_{5} is a by-pass condenser. C_{2} and C_{5} must have low reactance for both radio and audio frequencies.
In general, transformer coupling from the plate circuit of a plate detector is not satisfactory, because the plate impedance of any tube is very high when the bias is near the platecurrent cut-off point. Inmedance coupling may be used in place of the resistance coupling shown in Fig. j-4. ['sually 100 henrys or more inductance is required.

The plate detector is more sensitive than the diode because there is some amplifying action in the tube. It will handle large signals, but is not so tolerant in this respert as the diode. Linearity, with the self-biased circuits shown, is good. (1) to the overload point the detector takes no power from the tumed circuit, and so does not affect its Q and selectivity.

Infinite-Impedance Detector

The circuit of Fig. 5-5 combines the high signal-handling capabilities of the diode detector with Jow distortion and, like the plate detertor, does not load the tuned circuit it comerts to. The circuit resembles that of the plate detector, except that the load resistance, R_{1}, is comnerted between eathode and ground and thus is common to both grid and plate rircuits, giving negative fecd-back for the audio frequencies. The cathode resistor is by-passed for r.f. but not for audio, while the plate circuit is by-passed to

Fig. 5-5 - The infinite-impedance detector. The input circuit, $L_{2} \mathrm{C}_{1}$, is tuned to the signal frequency. 'Typical values for the other componemts are:
$\mathrm{C}_{2}-250 \mu \mu \mathrm{f} . \quad \mathrm{R}_{1}-0.15$ megohm.
(33-0.5 $\mu \mathrm{f} . \quad \mathrm{R}_{2}-25,000$ ohms.
$\mathrm{C}_{4}-0.1 \mu \mathrm{f} . \quad \mathrm{R}_{3}-\mathbf{0 . 2 5}$-megohm volume control.
A tuhe having a medium amplification factor (ahout 20) should be used. Plate voltage should be 250 volts.

(B)
ground for both audio and radio frequencies. R_{2} forms, with C_{3}, an $R C$ filter to isolate the plate from the "l3" supply. An r.f. filter, consisting of a series r.f. choke and a shunt condenser, can be connerted betweon the cathode and ('4 to climinate any r.f. that might otherwise appear in the output.

The plate current is very low at no signal, increasing with signal as in the cose of the plate detector. The voltage dropacross $/ R_{1}$ consequently increases with signal. leamuse of this and the large initial drop across R_{1}, the grid usually camot be driven positive by the signal, and no grid current can be drawn.

Product Detector

The "product detertor" "ireuit of Fig. 5-6 is useful in SSB and (e.w. reception because it minimizes intermodulation at the detector and doesn't requice a large b.f.o, injertion voltage. In lig. $5-6 \mathrm{~A}$, two triodes are used as cathode followers, for the signal and for the b.f.o., working into: : common cathode resistor (680 ohms). The third triode also shares this cathode resistor, but has an audio load in its plate circuit. The grid of this third triode is grounded for signal hut has an adjustable negative bias obtained from the 5000 ohm potentiometer. The signals and the b.f.o, mix in this third triode, but its adjustable grid hias permits setting the bias on the signal cathote follower (through the common resistor) to the point where minimum internodulation takes place in the cathode follower. Thus if the b.f.o. is turned off, a modulated signal passing through the signal cathode follower will rield no audio output from the detector at one setting of the so00-ohm potentiometer. Turning on the b.i.o. brings in the aludio, heratuse now the deteretor output is the product of the two signals.

The negative bias supply should be well filtered and have no hom, hecanse ans a.e. on the grid of the third triode will appear in the output.

The circuit in Fig. $5-6 \mathrm{~B}$ is a simplification
requiring one less tube, lut it does not provide for arljustment of the signal follower operating point exeept through selection of the eatholeresistor value.

If a signal-level indicator eirenit is connected to the grid of the signat-circuit eathode follower (left-hand triode), it will not indicate the b.fo. voltage, so the simeter will read the same with the b,f.o. on or off.

REGENERATIVE DETECTORS

By providing controllable r.f. feed-bark (regeneration) in a triode or pentode detector circuit, the incoming signal can be amplified many times, thereby greatly increasing the sensitivity of the detector. Regeneration also increases the effertive Q of the circuit and thus the selectivity. The grid-leak type of detector is most suitable for the purpose.

The grid-leak detector is a combination diode rectifier and audio-frequener amplifier. In the circuits of Fig. $\overline{5}-\overline{7}$, the grid corresponds to the diode plate and the rectifying action is exactly the same as in a diode. The d.e. voltage from rectified-current flow through the grid leak, R_{1}, binses the grid negatively, and the audiofrequency variations in voltage across R_{1} are amplified through the tube as in a normal a.f. amplifier. In the plate circuit, T_{1}, L_{4} and L_{3} are the plate load resistances, C_{3} is a by-pass condenser and $R F C$ an r.f. choke to eliminate r.f. in the output circuit.

A grid-leak detertor has considerathy greater sensitivity than a diode. The sensitivity is further increased by using a sereen-grid tube instead of a trionde, ats at $\bar{i}-\mathrm{F} 13$ and 0 . The operation is equivalent to that of the triode circuit. The sereen bypass eondenser, (${ }_{5}$, should have low reactance for both radio and audio froquenries. R_{2} and R_{3} constitute a voltage divider on the plate supply to furnish the proper sereen voltage. In both circuits, C_{2} must have low r.f. reactince and high a.f. reactance compared to the resistance of R_{1}.

Although the regenerative grid-leak deteator is more sensitive than any other type, its many disadvantages commend it for use only in the simplest receivers. The linearity is rather poor, and the signal-handling rapability is limited. The signal-handling capability (atn be improved by reducing R_{1} to 0.1 megohm, but the sensitivity will be decreased. The degree of antemba coupling is oftern critical.

The rireuits in Fig. :-7 are regenerative, the feed-back being obtained by feeding some signal to the grid back from the plate eirenit. The amount of regeneration must be controllable, because maximum regenerative amplification is secured at the eritical point where the eireuit is just about to oscilate. The eritieal point in turn dejends upon circuit conditions, which may vary with the frequency to which the detector is tuned. In the oscillating condition, a regenerative detector can be detuned slightly from an incoming e.t. signal to give autorlyne rereption.

The dircuit of lig. $\mathrm{b}-\mathrm{7} \mathrm{A}$ uses a variable by-pass condenser, Co, in the plate circuit to control regeneration. When the raparity is small the tube does not regenerate, but as it increases toward maximum its reactance becomes smaller until there is sufficient feed-back to catuse oscillation. If L_{2} and L_{3} are wound end-to-end in the same direction, the plate connection is to the outside of the plate or "tickler" coil, L_{3}, when the grid connection is to the ontside of L_{2}.

The circuit of $\%$ - 7 B 3 is for a pentode tube, regeneration being controllod by adjustment of the sereen-grid voltage. The tickler, L_{3}, is in the plate circuit. The portion of the control resistor between the rotating contart and ground is by-passed by a large condenser (0.5 $\mu \mathrm{f}$. or nore) to filter out scratching noise when the arm is rotated. The feed-back is adjusted by varying the number of turns of L_{3} or the coupling between L_{2} and L_{3}, until the tube just goes into oscillation at a sereen potential of approximately 30 volts.

Circuit (is identical with B in principle of operation. since the sereen and plate are in parallel for r.f. in this circuit, only a smatl smount of "tickler" - that is, relatively few turns between the (athode tap) and ground - is required for oscillation.

Smooth Regeneration Control

The ideal regeneration control would permit the detector to go into and out of oscillation smoothly, would have no effect on the frequence of oscillation, and would give the same value of regeneration regardless of frequency and the loading on the cireuit. In pratice, the effects of loading, particularly the loading that ocrurs when the detector cirenit is coupled to an antenna, are difficult to overoome. Likewise, the regeneration is usually afferted by the frequeney to which the grid circuit is tuned.

In all circuits it is best to wind the tiekler at the ground or cathode end of the grid coil, and to use as few turns on the tickler as will allow the detector to oscillate easily over the whole
tuning range at the plate (and sereen, if a pentode) voltage that gives maximum sensitivity. Should the tube break into oscillation suddenly as the regeneration control is advaneed, making a click, it usually indicates that the coupling to the antenna (or r.f. amplifier) is too tight. The wrong value of grid leak plus too-high plate and sereen voltage are also frequent causes of lack of smoothness in going into oscillation.

Fig. 5.7-Triode and pentode regenerative detector circuits. The innut circuit. $L_{2} \mathrm{C} 1$, is tuned to the signal frequency. The grid condenser, C_{2}, should have a value of about $100 \mu \mu$. in all circuits; the grid leak, R_{1}, may range in value from 1 to 5 megohms. The tickler coil, L_{3}, ordinarily will have from 10 to 25 per cent of the number of turns on L_{2}; in C, the cathode tap is about 10 per cent of the number of turns on L_{2} above ground. Regeneration-control condenser Ca in A should have a maximum capacity of 100 puf, or more; by-pass condensers C_{3} in B and C are likewise $100 \mu_{\mu} \mathrm{f}$, C_{5} is ordinarily 1μ f. or more; R_{2}, a 50,000 -ohm potentiometer; $R_{3}, 50,000$ to 100,000 ohms. L_{4} in $13\left(L_{3}\right.$ in C) is a 500 henry inductance, C_{4} is $0.1 \mu \mathrm{f}$, in both circuits, T_{1} in A is a conventional audio transformer for coupling from the plate of a tube to a following grid. $R F C$ is 2.5 mh . In A, the plate voltake should be about 50 volts for hest sensitivity, l'entode circuits require about 30 volts on the screen; plate potential may be 100 to 250 volts.

Antenna Coupling

If the detector is coupled to an antenna, slight changes in the anteman (as when the wire swings in a breoe) affeet the frequerney of the oseilations generated, and therehy the beat frequency when c.w, signals are being received. The tighter the antemna coupling is made, the greater will be the feedback required or the higher will be the voltage necessary to make the detertor oscillate. The amberna coupling should be the maximum that will allow the detector to go into oscillation smoothly with the correet voltages on the tube. If eapacity eoupling to the grid cond of the coil is used, generally only a very small amount of capareity will bo needed to couple to the antemua. Increasing the capacity increases the coupling.

At frequencies where the antennat system is resonant the absorption of energy from the oseillating detertor circuit will be greater, with the consequence that more regeneration is neoded. In extreme anses it may not be possible to make the detector oscillate with normal voltages. The remedy for these "dead spots" is to loosen the antenna coupling to a point that permits normal oscillation and smooth regeneration control.

Body Capacity

A regenerative detector occasionally shows a tendency to change frequency slighty as the hand is moved near the dial. This condition (body capacity) can be corrected by botter shielding, and sometimes by r.f. filtering of the phone leads. A good, short ground conneetion and loosening the eoupling to the antema will help.

Hum

Hum at the power-supply frequency, even when using battory plate supply, may result from the use of a.c. on the tube heater. Effects of this type normally are troublesome only when the rircuit of $\mathrm{lig} .5-\mathrm{F}$ is used, and then only at $1+\mathrm{Me}$, and higher. Comnecting one side of the heater supply to ground, or grounding the eentertap of the heater-transformer winding, will reduee the hum. The heater wiring should be kept as far as possible from the r.f. circuits.

House wiring, if of the "open" type, may cause hum if the detector tube, grid lead, and grid condenser and leak are not shielded. This type of hum is casily reeognizable because of its rather high pitch.

Tuning

For e.w. reception, the regencration control is advanced until the detector breaks into a "hiss," which indicates that the detector is oscillating. Further advancing the regeneration control after the detector starts oscillating will result in a slight decrease in the strength of the hiss, indicating that the sensitivity of the detector is decreasing.
The proper adjustmont of the regeneration control for best reception of c.w. signals is where the detector just starts to oscillate. Then
c.w. signals ean be tuned in and will give a tone with each signal depending on the setting of the tuning control. As the receiver is tuned through a signal the tone first will be heard as a very high pitch, then will go down through "zero beat" and rise again on the other side, finally disappearing at a very high pitch. This behavior is shown in Fig. 5-8. A low-pitehed beat-note cannot be obtained from a strong signal because

Fif. 5-8 - As the cuning dial of a receiver is turned past a c.w. signal, the beat-note varies from a hiyh tone down through "zero leat" (no andible frequency difference and back up to a high tone, as shown at i, 13 and C. The curve is a graphical representation of the artion. The leat exists past 8000 or 10,1000 cycles but usually is not heard becanse of the limitations of the andio sysiem.
the detector "pulls in" or "blocks"; that is, the signal forees the detector to oseillate at the signal frequency, aven though the circuit may not be tuned exactly to the signal. This phenomenon, is also called "locking-in"; the more stable of the two frequencies assumes control over the other. It usually can be corrected by advancing the regeneration control until the beat-note is heard again, or by reduring the input signal.

The point just after the detector starts oseillating is the most sensitive condition for c.w. reception. Further advancing the regeneration control makes the receiver less susceptible to blocking by strong signals, but also loss sensitive to weak signals.

If the detector is in the oscillating condition and a 'phone signal is tuned in, a steady audible beat-note will result. While it is possible to listen to 'phone if the receiver can be tuned to exart zero beat, it is more satisfactory to reduce the regeneration to the point just before the receiver goes into oscillation. This is also the most sensitive operating point.

Single-sideband phone signals can be received with a regenerative detector by advancing the regeneration control to the point used fore,w, reception and tuning carefully across the SSB signal. The tuning will be very critical, however, and the operator must be prepared to just "ereep" aeross the signal. A strong signal will pull the detector and make reception impossible, so either the regeneration must be advanced far enough to prevent this condition, or the signal must be reduced by using loose antenna coupling.

Tuning and Band-Changing Methods

Band-Changing

The resonant circuits that are tuned to the frequency of the incoming signal constitute a special problen in the design of amateur receivers, since the amateur frequency assignments consist of groups or bands of frequencies at widely-spaced intervals. The same coil and tuning condenser cannot he used for, say, 14 Me . to 3.5 Me., because of the impracticable maxi-munn-to-minimum capacity ratio required, and also berause the tuning would be excessively critical with such a large frequency range. It is necessary, therefore, to provide a means for changing the circuit constants for various frequency bands. As a matter of convenience the same tuning condenser usually is retained, but new coils are inserted in the circuit for cach band.
One method of changing inductances is to use a switch having an appropriate number of contacts, which connerts the desired coil and disconnects the others. The unused coils are sometimes short-circuited by the switch, to avoid the possibility of undesirable self resonances in the unused coils. This is not necessary if the coils are separated from each other by several coil diameters, or are mounted at right angles to each other.

Another method is to use coils wound on forms with contacts (usually pins) that can be plugged in and removed from a socket. These plug-in coils are advantageous when space in a multiband receiver is at a premium. They are also very useful when considerable experimental work is involved, because they are casier to work on than coils clustered around a switeh.

Bandspreading

The tuning range of a given cuil and variable condenser will depend upon the inductance of the coil and the change in tuning capacity. For case of tuning, it is desirable to adjust the tuning range so that practically the whole dial scale is occupied by the band in use. This is called bandspreading. Because of the varying widths of the bands, sperial tuning methods must be devised to give the correct maximumminimum caparity ratio on each band. Several of these methods are shown in Fig. 5-9.
(A)

(B)

Fig. 5.9-Fssentials of the three basic bandspreal tuning systems.
(c)

In A, a small bandspread condenser, C_{1} (15)to $2 i-\mu \mu \mathrm{f}$. maximum capacity), is used in par-
allel with a condenser, C_{2}, which is usually large enough (100 to $140 \mu \mu \mathrm{f}$.) to cover a 2 -to-1 frequency ringe. The setting of (' 2 will determine the minimum capacity of the circuit, and the maximum capacity for bandspread tuning will be the maximum caparity of ($_{1}$ plus the setting of C_{2}. The inductance of the coil can be adjusted so that the naximumminimun ratio will give adequate bandspread. It is almost impossible, because of the nonharmonic relation of the various band limits, to get full bandspread on all bands with the same pair of condensers. C_{2} is variously called the band-setting or main-tuning condenser. It must be reset each time the band is changed.

The method shown at B makes use of condensers in series. The tuning condenser, C_{L}, may have a maximum capacity of $100 \mu \mu$ f. or more. The minimum capacity is determined principally by the setting of C_{3}, which usually has low eapacity, and the maximum capacity by the setting of C_{2}, which is of the order of 25 to $50 \mu \mu \mathrm{f}$. This method is capable of close adjustment to practically any desired degree of handspread. Fither C_{2} and C_{3} must be adjusted for each band or separate preadjusted condensers must be switched in.

The circuit at C also gives complete spread on each band. C C_{1}, the bandspread capacitor, may have any convenient value; $50 \mu \mu \mathrm{f}$. is satisfactory. C_{2} may be used for continuous frequency coverage ("general coverage") and as a bandsetting cipacitor. The effective maximum-minimum c:upacitance ratio depends upon C_{2} and the point at which C_{1} is tapped on the coil. The nearer the tap to the bottom of the coil, the greater the bandspread, and vice versa. For a given coil and tap, the bandspread will be greater if C_{2} is set at higher capacitance. (r2 may be connected permanently across the individual induetor and preset, if desired. This requires a separate capacitor for cach band, but eliminates the necessity for resetting C_{2} each time.

Ganged Tuning

The tuning condensers of the several r.f. circuits may be eoupled together mechanically and operated by a single control. However, this operating convenience involves more complicated construction, both electrically and merhanically. It becomes necessary to make the various circuits track - that is, tune to the same frequency at each setting of the tuning control.

Truc tracking can be obtained only when the inductance, tuning condensers, and circuit inductances and minimum and maximum capacities are identical in all "ganged" stages. A small trimmer or padding condenser may be connected across the coil, so that variations in ninimum capacity can be compensated. The fundamental circuit is shown in Fig. $\overline{\text { jo}}$-10, where C_{1} is the trimmer and C_{2} the tuniug condenser. The use of the trimmer necessarily increases the
minimum circuit capacity, but it is a necessity for satisfactory tracking. Midget condensens having maximum capacities of 15 to $30 \mu \mu \mathrm{fd}$. are commonly used.

Fig. $\mathbf{5}-10$ - Showing the use of a trimmer condenser to set the minimum eircuit capacity in order to obtain true tracking for gang-tuning.

The same methods are applied to bindspread circuits that must be tracked. The circuits are identical with those of Fig, 5-9. If both general-ooverage and bandspread tuning are to be available, an additional trimmer condenser must be connerted across the coil in each circuit shown. If only amateur-band tuning is desired, however, then ('3 in Fig. 5-913, and ('2 in Fig. $\%$ - 9 (), serve as trimmers.
The coil inductance (:im be adjusted by starting with a larger number of turns than
necessary and removing a turn or fraction of a turn at a time until the cireuits track satisfactorily. An alternative method, provided the inductance is reasonably elose to the correct value initially, is to make the coil so that the last turn is variable with respect to the whole coil.

Another method for trimming the indurtame is to use an adjustable brass (or copper) or powdered-iron core. The brass eore acts like a single shorted turn, and the inductance of the coil is derreased as the brass eore, or "slug," is moved ints the coil. The powdered-iron core has the opposite effect, and increases the indurtance as it is moved into the eoil. The () of the coil is not affected materially by the use of the brass slug, provided the brass slug has a clean surface or is silverplated. The use of the powdered-iron core will raise the () of a coil, provided the iron is suitable for the frequency in use. (iood pow-dered-iron cores can be obtained for use up to about 50 Mc.

The Superheterodyne

For many years (up to about $19: 32$) practically the only type of receiver to be found in amateur stations consisted of a regenerative detector and one or nore stages of audio amplification. Receivers of this type can be made quite sensitive but strong signals block them easily and, in our present crowded bands, they are seldom used except in emergencies. They have been replaced by superheterodyne receivers, generally called "superhets."

The Superheterodyne Principle

In a superheterodyne receiver, the frequency of the incoming signal is heterodyned to a new radio frequency, the intermediate frequency (abbreviated "if."), then amplified, and finally detected. The frequency is changed by modulating the output of a tumable oseillator (the high-frequency, or local, oscillator) by the incoming signal in a mixer or converter stage (first detector) to produce a side frequency equal to the intermediate frequency. The other side frequency is rejected by selective circuits. The audiofrequency signal is obtained at the second detector. C.w. signals are made audible by autodyne or heterodyne reception at the second detector.

As a numerical example, assume that an intermediate frequency of $4 \pi \mathrm{~m}$ ke is chosen and that the incoming signal is at 7000 ke . Then the high-frequency oseillator frequency nay be set to $74 \pi \bar{j}$ ke., in order that one side frequency (7405 minus 7000) will be $45 \overline{5} \mathrm{kr}$. The high-frequency oscillator could also be set to 654\% ke. and give the same difference frequency. To produce an audible c.w. sighal at the second detector of, saty, 1000 cycles, the autodyning or heterodyning oscillator would be set to either 454 or 456 kc .

The frequency-conversion process permits
r.f. amplification at a relatively low frequeney, the i.f. IIigh selectivity and gain can be obtained at this froquency, and this selectivity and gain are constant. The separate oscillators can he designed for good stability and, since they are working at frequencies considerably removed from the signal frequencies (percentare-wise), they are not normally "pulled" by the incoming signal.

Images

Each h.f. ascillator frequency will cause i.f. response at two signal frequencies, one higher and one lower than the oscillator frequency. If the oscillator is set to 745 ke , to tune to a $7000-\mathrm{ke}$, signal, for example, the reeceiver can respond also to a signal on 7910 ke ., which likewise gives a tion-ke, beat. The undesired signal is called the image. It can canse unnecessary interference if it isn't climinated.

The radio-frequency circuits of the receiver (those used before the signal is heterodyned to the i.f.) normatly are tuned to the desired signal, so that the selectivity of the circuits reduces or eliminates the response to the imuge signal. The ratio of the receiver voltage output from the desired signal to that from the image is called the signal-to-image ratio, or image ratio.

The image ratio depends upon the selectivity of the r.f. tuned circuits preceding the mixer tube. Also, the higher the intermediate frequeney, the higher the image ratio, since raising the i.f. increases the frequency separation between the signal and the image and places the latter further away from the resonance peak of the signal-frequency imput circuits. Most receiver designs represent a compromise between economy (few r.f. stages) and image rejection (large number of r.f. stages).

Other Spurious Responses

In addition to images, other signals to whirh the recoiver is mot ontensibly tumed may bo heard. llarmonias of the high-fregueney ascitlator may beat with signals far removed from the desired frequency to produre ontput at the intermediate frequency; such spurious responses can be reduced by adequate selectivity before the mixer stage, and by asing sufficient shielding to prevent signal pirk-up by any means other then the antemal. When a strong signal is recoived, the hammoniss generated by rectification in the second detector may, by stray compling, be introduced into the raf. or miver encuit and converted to the intermediate frequener, to go theough the reeciver in the same way ats ardinary signal. These "birdies" appear" as a heterodyne beat on the desired signal, and are prindipatly hothersome when the frequency of the incoming signal is not greatly different from the intermediate frequency. The cure is proper circont isolation and shicelding.

Hamonics of the beat ascilator also may be converted in similar fashion and amplified through the recoiver; these responses ran be reduced by shielding the beat uscillator and operating it at low power level.

The Double Superheterodyne

At high and very-high frogueneies it is difficult to secure an adequate image ratio when the intermediate frequency is of the order of 4 4is ke. To reduce image response the signal frequently is converted first to a rather high (1500, 5000, or even $10,000 \mathrm{ke}$.) intermediate frequency, and then - sometimes after further amplification - reconverted to a lower i.f. where higher adjacent-channel selectivity can be obtained. Such a receiver is called a double superheterodyne.

- FREQUENCY CONVERTERS

A eireuit tuned to the intermediate frequency is placed in the plate circuit of the mixer, to offer a high impedanee load for the i.f. voltage that is developed. The signal- and oseillator-frequenes voltages anpearing in the plate eivent are rejeeted bey the selectivity of this rireuit. The i.f. tuned rireuit should have low impedince for these frequencies, at condition easily mot if they do not apposech the intermediate frequeners.

The conversion efficiency of the mixer is the ratio of i.f. outpat voltage from the plate circuit to r.f. signal woltage applied to the grid. High ronversion efficiency is desirable. The mixer tube noise also should be low if a good signal-to-noise ratio is wanted, particularls if the mixer is the first tube in the recoiver.

A change in oscillator frequency cauned by tuning of the mixer grid circuit is called pulling. Pulling should be minimized, berause the stability of the whole receiver depends reritieally upon the stability of the h.f. oscillator. Pulling docreases with separation of the signal and h.f.oscillator frequencies, being less with high in-
termediate frequencies. Another type of pulling is caused by regulation in the power supply. Strong signals ause the voltage to change, whieh in turn shifts the oscillator frequeners.

Circuits

If the first detector and high-frequency oscillator are separate tubes, the first detertor is called a "mixer." If the two are combined in one envelope (as is often done for reasons of economy or efficiency), the first detector is called a "converter." In either case the function is the same.

Typical mixer circuits are shown in Fig. j-11. The variations are chiefly in the way in which the owillator voltage is introduced. In $5-11 \mathrm{~A}$, a pentode functions as a plate detector; the oscillator voltage is capacity-coupled to the grid of the tube through (' 2 . Inductive coupling may be used instead. The conversion gain and input selectivity generally are good, so long as

Frig. 5-11 - Typical circuits for separately -ex cited mixers. Grid injection of a pentode mixer is shown at A, rathode injection at 1 B, and separate excitation of a pentagrid eonverter is given in C . Ty pieal values for C will be found in 'Table .-1 - the values below are for the pentode mixer of A and B .
(1 - I0 to $50 \mu \mu \mathrm{fAl}$.
(2)-5 $1010 \mu \mu \mathrm{fd}$.

$\mathrm{K}_{2}-1.0$ megohm.
$13_{1}-6800$ ohms.
lositive supply voltage can be 250 volts with a $6 \mathrm{~A}: \stackrel{7}{ }, 150$ with a 0.1 K 5 .
the sum of the two voltages (signal and oscillator) inmpressed on the mixer grid does not exreed the grid bias. It is desirable to make the oscillator voltage as high as possible without exceeding this limitation. The oscillator power required is negligible. If the signal frequency is only is or 10 times the i.f., it may be difficult to develope enough oscillator voltage at the grid (because of the selectivity of the tuned input rireuit). However, the circuit is a sensitive one and makes a good mixer, particularly with high-transconductance tubes like the 6AC7, 6AL5 or 6U8 (pentode section). A good triode also works well in the circuit, and tubes like the 7 F 8 (one section), the 6.56 (one section), the 12AT' (one section), and the 6.J4 work well. When a triode is used, the signal frequency must be short-circuited in the plate circuit, and this is done beonnerting the tuning capacitor of the i.f. transformer directly from plate to cathode.
The circuit in Fig. 5-1113 shows cathode injection at the mixer. Operation is similar to the grid-injection case, and the same considerations apply.

It is difficult to avoid "pulling" in a triode or pentode mixer, and a pentagrid mixer tube provides much better isolation. A typieal circuit is shown in Fig. 5-11C, and tubes like the 65.17 , $7(27$ or 613166 are commonly used. The oscillator voltage is introduced through an "injection" grid. Measurement of the rectified current flowing in R_{2} is used as a check for proper oscillator-voltage amplitude. Tuning of the signal-grid circuit can have little effect on the oscillator frequency berause the injection grid is isolated from the signal grid by a screen grid that is at r.f. ground potential. The pentagrid mixer is much noisier than a triode or pentode mixer, but its isolating characteristics make it a very useful device.

Many receivers use pentagrid converters, and two typical circuits are shown in Fig. :-12. The circuit shown in Fig. $5-12 \mathrm{~A}$, which is suitable for the 6K8, is for a "triode-hexode" converter. A triode oseillator tube is mounted in the same envelope with a hexode, and the control grid of the oscilator portion is connerted internally to an injection grid in the hexode. The isolation between oseillator and converter tube is reasomably good, and very little pulling results, except on signal frequencies that are quite large compared with the i.f.

The pentagrid-converter circuit shown in Fig.

Fïg. 5-12 - Typical circuits for triode-hexode (A) and pentagrid (B) converters. Values for R_{1}, R_{2} and R_{3} can be found in 'Table 5-1; others are given below.
$\mathrm{C}_{1}-4 \mathrm{C}_{\mu} \mathrm{fd}$.
$\mathrm{C}_{3}-0.01 \mu \mathrm{fd}$.
$\mathrm{C}_{2}, \mathrm{C}_{4}, \mathrm{C}_{5}-0.001{ }_{\mu} \mathrm{fd} . \quad \mathrm{K}_{4}-1000$ ohms.

5-1213 can be used with a tube like the 6SA7, 6S137Y, 613.17 or 613156. (ienerally the only rare necessary is to adjust the feed-back of the oscillator rircuit to give the proper aseillator r.f. voltage. This condition is cherked by measuring the d.c. current flowing in grid resistor R_{2}.

A more stable receiver generally results, particularly at the higher frequencies, when separate tubes are used for the mixer and oscillator. Practially the same number of circuit components is required whether or not a combination tube is used, so that there is very little difference to be realized from the cost standpoint.
Typical circuit constants for converter tubes are given in Table $j-1$. The grid leak referred to is the oseillator grid leak or injection-grid return, R_{2} of Figs. $5-11 \mathrm{C}$ and $5-12$.

The effertiveness of converter tubes of the type just desaribed becomes less as the signal froquency is increased. Some oseillator voltage will

(c) Hallmark Cards, Inc.
$\square \square \square \square \square$
$\square \square \square$
be coupled to the signal grid through "spacecharge" coupling, an effert that increases with frequency. If there is relatively little frequendy difference between oseillator and sigmal, as for example a 14 - or 28-M $\%$, signal and an i.f. of 4% ke ., this voltage can beeme considerable beranse the selectivity of the signal circuit will be unable to rejert it. If the signal grid is not returned directly to ground, but instead is returned through a resistor or part of an a.v.c. system, considerable bias a an be developed which will cut down the gain. For this reason, and to reduce image response, the i.f. following the first converter of a receiver should be not less than is or 10 percent of the signal frequency, for best results.

Audio Converters

Converter circuits of the type shown in Fig. $5-12$ coun be used to advantage in the reception of c.w. and single-sideband suppressed-cureer signats, by introducing the local oseilator on the No. 1 grid, the signal on the No. 3 grid, and working the tube into an audio load. Its operation can be visualized as heterodyning the incoming signal into the audio range. The use of such circuits for andio conversion has been limited to seiective i.f. amplifiers operating below 500 kc , and usually below 100 ke. In ordinary atm. signal (ammot be received on such a detector unless the tuning is adjusted to make the local oscillator zero-beat with the incoming carrier.

Since the beat oscillator modulates the electron stream completely, a large beat-oseillator component exists in the plate circuit. To prevent overload of the following audio amplifier stages, an adequate i.f. filter must be used in the output of the converter.

The "product detector" of Fig. 5 - 6 is also a converter eircuit, and the statements above for audio converters apply to the product detector:

THE HIGH-FREQUENCY OSCILLATOR

Stability of the receiver is dependent chiefly upon the stability of the h.f. oscillator, and particular care should be given this part of the receiver. The frequency of oscillation should be insensitive to mechanieal shoek and changes in voltage and loading. Thermal effects (slow change in freques.ey bectuse of tube or circuit heating) should be minimized. They ran be reduced by using ceramic instead of bakelite insulation in the r.f. circuits, a lirge cabinet relative to the chassis (to provide for good radiation of developed heat), minimizing the number of high-wattage resistors in the receiver and putting them in the separate power supply, and not mounting the oscillator coils and tuning condenser too close to a tube. l'ropping up the lid of a receiver will often reduce drift by lowering the terminal temperature of the unit.

Sensitivity to vibration and shock can be minimized by using good mechennical support for coils and tuning condensers, a heavy chassis, and by not hanging any of the oscillator-circuit components on long leads. Tie-points should be used
to avoid long leads. Stiff short leads are excellent because they can't be made to vibrate.
smooth thming is a great convenionce to the operator, and can be olstaned by taking pains with the mounting of the dial and tuning condensers. They should have good alignment and no back-lish. If the condensers are mounted off the chassis on posts instead of brackets, it is almost impossible to avoid some back-lash unless the posts have extra-wide bases. The condensers should be selected with good wiping contacts to the rotor, since with age the rotor

Fig. 5-13 - IIigh-Irequency oscillator circuits. A, pentode grounded-plate oscillator; 13, triode grounded-plate owcillator; ($:$, triode osrillator with tichler circuit. (ionpling to the mixer may be taken from point: X and $)^{\prime}$. In A and 13, coupling from Y will reduce pulling effects, hut gives less voltage than from X; this type is hest adapted to mixer circuits with small oscillator-voltage requirements. Typical values for components are as follows:

	Circuit A	Circuit B	Circuit C
Cl_{2}	$100 \mu \mu \mathrm{fd}$.	$100 \mu \mu \mathrm{fd}$.	$100 \mu \mu \mathrm{fl}$.
Ci2-	$0.1 \mu \mathrm{fd}$,	$0.1 \mu \mathrm{fd}$.	$0.1 \mu \mathrm{fd}$.
$\mathrm{C}_{3}-$	$0.1 \mu \mathrm{fd}$.		
R_{1} -	4,0000 ohins.	47,000 ohms.	47,000 ohms.
R_{2} -	47,000 ohms.	$\begin{aligned} & 10,000 \text { to } \\ & 25,000 \text { ohms. } \end{aligned}$	$\begin{aligned} & 100,000 \text { to } \\ & 25,000 \text { ohms. } \end{aligned}$

The plate-supply voltage should tre 250 volts. In circuits B and C, \dot{R}_{2} is used to drop the supply voltage to $100-150$ volts; it may be omitted if voltage is obtained from a voltage divider in the power supply
contacts can be a source of erratic tuning. . Ill joints in the oseillator tuning ribeuit should be carefully soldered, berause a loose comedtion or "rosin joint" "an develop, trouble that is sometimes hard to locate. The chassis and panel materials should be heavy and rigid enough so that pressure on the tuning dial will not conse torsion and a shift in the frequency.

In addition, the oscillator must be capable of furnishing sufficient r.f. voltage and power for the particular mixer circuit chosen, at all frequencies within the range of the reaciver, and its hamonic output should be as low as possible to reduce the possibility of spurious responses.

The oscillator plate power should be as low as is consistent with adequate output. Low plate power will reduce tube heating and thereby lower the frequency drift. The oscillator and mixer circuits should be well isolated, preferably by shielding, sine coupling other than by the intended means may result in pulling.

If the h.f.-oscillator frequency is affected by changes in plate voltage, a voltage-regulated plate supply (VR tube) can be used.

Circuits

Several oseillator cireuits are shown in Fig. 5-13. Circuits A and 13 will give alout the same results, and require omly one roil. However, in these two dircuits the cathode is above ground potential for r.f., which often is a cause of hum modulation of the asciltator output at 14 Me . and higher frequencies when a.c.-heated-cathode tubes are used. The circuit of Fig, 5-1:3C reduces hum beause the cathode is grounded. It is simple to adjust, and it is also the best circuit to use with filament-type tubes. With filament-type tubes, the other two circuits would require r.f. chokes to keep the filament above r.f. ground.

Besides the use of a farly high (Y / L ratio in the tuned circuit, it is necessary to adjust the feed-bark to ohtain optimum results. Tow much feed-hack mayc cause "squegging" of the oscillator and the generation of several frequencies simultameonsly; too little feed-hack will canse the output to be low. In the tapped-eoil eircuits (A, B), the feed-batek is increased by moving the tap toward the grid end of the eoil. In C, feed-back is obtained be inceresing the number of turns on L e or by moving L_{2} closer to L_{1}.

The Intermediate-Frequency Amplifier

One major advantage of the superhet is that high gain and selectivity (:un be ohtained by using a good i.f. amplifier. This can be a onestage affair in simple receivers, or two or three stages in the more elaborate sets.

Choice of Frequency

The selection of an intermediate frequency is a compromise between conflicting factors. The lower the i.f. the higher the selectivity and gain, but a low i.f. brings the image nearer the desired signal and hence derreases the image ratio. A low i.f. also increases pulling of the oscillator frequency. On the other hand, a high i.f. is beneficial to both image ratio and pulling, but the selectivity and gain are lowered. The difference in gain is least important.

An i.f. of the order of $4 \overline{2} \mathrm{kc}$. gives good selectivity and is satisfartory from the standpoint of image ratio and oscillator pulling at frequencies up to 7 Me. The image ratio is poor at 14 Me. when the mixer is eomerted to the antema, but adequite when there is a tuned r.f. :mplifier between antenna and mixer. At 28 Me . and on the very-high frequencies, the image ratio is very poor unless several r.f. stages are used. . Dbove 14 Mc., pulling is likely to be had without very loose coupling between mixer and oscillator.

With an i.f. of about 1600 kr ., satisfactory image ratios can be secured on 14,21 and 28 Mc. but the i.f. selectivity is considerably lower. For frequencies of "8 Mc. and higher, the hest solation is to use a double superheterodyne, choosing one high i.f. for imatge redurtion (i) and 10 Nc . are frequently used) and a lower one for gain and selectivity.

In chowsing an i.f. it is wise to avoid frequencies on which there is considerable activity by the various radio services, since such signals may be picked up direatly on the i.f. wiring. Shifting the i.f. or better shielding are the solutions to this interference problem.

Fidelity; Sideband Cutting

Modulation of a currier auses the generation of sideband frequencies numerically equal to the currier frequency plus and minus the highest modulation frequency present. If the rereiver is to give a faithful reproduction of moduatation that rontains, for instance, audio frequencies up to :000 cyeles, it must at least be capable of amplifying equally all frequencies contained in a band extending from solo eycles above or below the carrier frequency. In a superheterodyne, where all carrier frequencies are changed to the fixed intermediate frequence, the i.f. amplification must be uniform over a band 5 ke . wide, when the carrier is set at one edge. If the earrier is set in the center, a 10-ke. bund is required. The signal-frequency eircuits usually do not have enough over-all selectivity to affert materially the "iudjarentchannel" selectivity, so that only the i.f.-amplifier selectivity need be considered.

If the selectivity is too great to permit uniform amplifiation over the band of frequencies occupied by the mochlated signal, some of the sidelands are "eut." While sidehand cutting reduces fidelity, it is frequently preferable to sarrifice naturalness of reproduction in faver of communications effectiveness.

The selectivity of an i.f. amplifier, and hence
the tendency to cut sidebands, increases with the number of amplifier stages and also is greater the lower the intermediate frequency. From the standpoint of eommunication, sideband eutting is never serious with two-stage amplifiers at frequencies as low as $45 \% \mathrm{ke}$. A two-stage i.f. amplifier at 8.5 or 100 ke . will be sharp enough to cut some of the higher-frequency sidebands, if good transformers are used. However, the cutting is not at all serious, and the gain in selectivity is worthwhile in crowded amateur bands.

Circuits

I.f. amplifiers usually eonsist of one or two stages. At 455 ke . two stages gencmally give all the gain usable, and also give suitable selectivity for 'phone reception.

A typical circuit arrangement is shown in Fig. $5-14$. A second stage would simply duplicate the coireuit of the first. The i.f' amplifier practieally ahways uses a remote eut-off pentode-type tube operated as a Class A amplifier. For maximum selectivity, double-tuned transformors are used for interstage roupling, although single-tuned cireuits or transformers with untuned primaries can be used for coupling, with a eonsequent loss in selectivity. All other things being rqual, the selectivity of an i.f. amplifier is proportional to the number of tuned eireuits in it.

In l'ig. $\overline{\mathrm{o}}-14$, the gain of the stage is reduced by introducing a negative voltage to the lead marked "AVC" or a positive voltage to R_{1} at the point marked "manual gain control." In either case, the voltage increases the hias on the tube and redures the mutaal condurtance and hence the gain. When two or more stages are used, these voltages are generally obtained from common sources. The deooupling resistor, R_{3}, helps to prevent unwanted interstage coupling. (2 and K_{4} are part of the automatio volumecontrol (ircuit (described later); if no a.v.e. is used, the lower end of the i.f.-transformer secondary is connected to chassis.

Tubes for I.F. Amplifiers

Variable- μ (remote cut-off) pentodes are almost invariably used in i.f. amplifier stages. since grid-bias gain control is practically always applied to the i.f. amplifier. Tubes with high plate resistance will have least cffect on the selectivity of the amplifier, and those with high mutual conductance will give greatest gain. The choice of i.f. tubes has practically no effect on the

TABLE 5-II Cathode and Screen-Dropping Resistors for R.F. or I.F. Amplitiers				
Tube	$\begin{aligned} & \text { Pute } \\ & \text { Volts } \end{aligned}$	Srreen V Volts	Cathode Resistor	Scren Resistor
6AB71*	300		200 ohms	33,000 ohms
6.10, ${ }^{\text {a }}$	300		160	62,000
6.4186^{2}	300	150	160	$62.00 \square$
6. AK^{2}	180	120	200	27,000
6.11962	250	150	68	33,000
633A6 ${ }^{\text {² }}$	250	100	68	33.000
6BH192	250	150	100	33,000
$613 \mathrm{~J} 6^{2 *}$	250	100	82	47,000
6 J 71	250	100	1200	270,000
6157*	250	125	240	47,000
6S(i7\%	250	125	68	27,000
6SJi\%*	250	150	200	47,000
6s: 177	250	150	18	39,000
6 NJT	250	100	820	180,010
6SK7*	250	100	270	56,000
${ }^{1}$ Octal base, metal. ${ }^{2}$ Miniature tube * Remonte cut-off tyse.				

signal-to-moise ratio, since this is determined by the preceding mixer and r.f. amplifier.

Typical values of cathode and sereen resistors for common tubes are given in Table 5-II. The
 work beaause they have desirable remote cut-off eharacteristics. The indicated sereen resistors drop the plate voltage to the correct sercen voltage, as R_{2} in Fig. 5-14.

When two or more stages are used the high gain may tend to cause instability and oscillation, so that good shielding, by-passing, and careful circuit arrangement to prevent stray coupling hetween input and output eircuits are necessary.

When single-ended tubes are used, the plate and grid leads should be well separated. With these tubes it is advisable to mount the sercen by-pass capacitor directly on the bottom of the socket, crosswise between the plate and grid pins, to provide additional shielding. If a paper caparitor is used, the outside foil should be groundel to the chassis.

I.F. Transformers

The tuned circuits of i.f. amplifiers are built up as transformer units consisting of a metal shield container in which the coils and tuning capacitors are mounted. Both air-rore and powdered iron-core universal-wound coils are used, the latter having somewhat higher Q_{S} and hence greater selectivity and gain. In umiversal windings the coil is wound in layers with each turn traversing the length of the coil, back
lig. 5.14-Typical intermediatr-froquency amplifier circuit for a superheterodyne receiver. Representative salues for components art as follows:
 $0.01 \mu \mathrm{fd}$ at louloke, and higher. $\mathrm{C}_{2}-\mathbf{0}, \mathbf{0 1} \mu \mathrm{fl}$.
$\mathrm{h}_{1}, \mathrm{H}_{2}$ - SreTable \boldsymbol{J}-II
$\mathrm{H}_{3}, \mathrm{R}_{5}-1500$ ohms.
$\mathrm{h}_{4}-0.22$ megohm.

and forth, rather than being wound perpendicular to the axis as in ordinary single-layer coils. In a straght multilatyer winding, a fairly large (apacitance cam exist hetween layors. ["niversal winding, with its "eriss-russed" turns, tends to reduce distributed-capacity effects.

For tuning, air-diclectric tuning capacitors are preferable to mica compression types because their capacity is practically unaffected by ehomges in temperature and humidity. lron-eore transformers may be the by varying the inductance (permeability tuning), in which case stability comparable to that of variable air-capmator tuning eam be obtained by use of high-stability fixed micat or ceramic capacitors. Such stability is of great importance, since a circuit whose frequeney "drifts" with time eventually will be tuned to a different frequency than the other circuits, thereby reducing the gain and selectivity of the amplifier. Typical i.f.-transformer const ruction is shown in Fig. 5-15.

The normal "interstage" i.f. transformer is loosely eoupled, to give good selectivity consistent

Fig. 5-15 - Representative i.f.-transformer ronstruction. Coils are supported on insulating dubing or (in the air-thned type) on wax-impregnated wooden dowers. The shich in the air-tuned transformer prevents capacity compling between the tuning capacitors, In the permeability-tuned transformer the rores remsist of finely-divided iron particles supported in an insulating binder, formed into eylindrical "plugs." The tuning caparitance is fised, and the induetances of the roils are varied by noving the iron plugs in and out.
with adequate gain. A somalled "diode transformer" is similar, but the coupling is tighter, to give sufficient transfer when working into the finite load presented loy a diode detertor. ['sing a diode transformer in plawe of an interstage transformer would result in loss of selectivity; using an interstage transformer to eouple to the diode would result in loss of gain.

Besides the type of i.f. transformer shown in Fig. :)-15, spectial units to give desired selectivity characteristics are available. For higher-than-ordinary adjacent-chamel selertivity tripletuned transformers, with thed tuned circuit inserted between the input and output windings, are sometimes used. The energy is transferred from the input to the output windings via this tertiary winding, thus adding its selectivity to
the over-all selectivity of the transformer.
A method of varying the selectivity is to vary the coupling between primary and secondary, overcoupling being used to broaden the selectivity eurve. Special cirenits using single tuned rircuits, eoupled in any of several different ways, are used in some applications.

Selectivity

The over-all selectivity of the r.f. amplifier will depend on the frequency and the number of stages. The following figures are indicative of the bendwidths to be experted with grodquality transformers in :mp) ifiers so (eonstructed as to keep regenemation at a minimum:

Intermediate Firequency	Bunduidth in Kilocycles		
	6 db .	$\left.2^{0}\right)^{\text {d }}$.	40 db .
	dorn	down	down
	0.8	1.4	2.8
One stagr, 4is kr. (air core)	8.7	17.8	32.3
Onostage, 4.s.ske (iron core)	4.3	10.3	20.4
Twostages, bas) kr . (iron core)	2.9	6.4	10.8
Twostages, 1600 ke	11.0	16.6	27.4

- THE SECOND DETECTOR AND BEAT OSCILLATOR

Detector Circuits

The serond detector of a superheterodyne receiver porforms the same function as the detector in the simple receiver, hut usually operates at a higher input level beculuse of the relatively great amplifiention ahead of it. Therefore, the ability to hande large signals without distortion is proferable to high sensitivity. I'late detection is used to some extent, but the diode detector is most popular. It is especially adapted to furnishing automatic gain or volume control. The basie circuits have beon deseribed, although in many enses the diode elements are incorporated in a multipurpose tube that contains an amplifier seetion in addition to the diode.
Aurlio-eonverter cireuits can be used for c.w. or SSB detertors.

The Beat Oscillator

Any standard oscillator circuit may be used for the beat oscillator required for heterodyne reception. Suecial beat-oscillator transformers are avaibable, usuably consisting of a tapped eoil with adjustable tuning; these are most ronveniently used with the airenits shown in Fig. j-13. 1 and 13, with the output taken from Y. A variable cupacitor of about $25-\mu \mu \mathrm{fd}$. capacitance can he commested between gathode and ground to proville fine adjustment of the frequency. The beat oscillator usually is compled to the seeonddetector tuned circuit through a fixed capacitor of a few $\mu \mu \mathrm{d}$ d.
The beat ascilator should be well shielded, to prevent coupling to any part of the receiver except the second detector and to prevent its hamonics from getting into the front end and being amplified along with desired signals. The b.f.o. power should he as low as is consistent with sufficient audio-frequency output on the strongest

Fig. 5-16- Delayed automatic volume control cirouits using a iw in diodr. (1) and a dual-diode triote. 'The circuits are essentially the same and differ only in the method of hiasing the il rectifirr. 'The AVC control voltage is applied to the rontrolled sames as in (C). For these circuits, typical values are:
(i, ($2_{2}, \mathrm{Cin}-100 \mu \mu \mathrm{f}$.
Ci, (is. (iz. (is - 0.0) μ.
(: $: 5-\mu$ f. electrolytie:
$R_{1}, R_{1,}, R_{10}-0.1$ nergohm.
$\mathrm{R}_{2}-0.2 \overline{\mathrm{c}} \mathrm{m}$.kolim.
$\mathrm{H}_{3}-2$ mequhms.
$\mathrm{R}_{4}-0.47$ mugohin.
$\mathrm{K}_{5}, \mathrm{~K}_{6}$ - Voltage divider to pive 2 to 10 volts bias at 1 to 2 ma. Irain.
18:-0.5-mequim volume rontrol.
l_{s} - Ciorrect bian rewistor for trionle sertion of dual-dionde triode.
of the sigual, the gain is reduced as the signal strength becomes greater. The control will he more complete and the output more constant as the number of stages to which the a.v.e. bias is applied is increased. Control of at least two stages is advisable.

Circuits

Although some receivers derive the a.v.c. voltage from the diode detector, the usual practice is to use a separate a.v.c. rectifier. Typieal circuits are shown in Figs. 5-16.A and $5-1613$. The two restifiers can be combined in one tube, as in the 6156 and 6.41 .5 . In Fig. $\overline{\mathrm{j}}$-16A l_{1} is the diode detertor; the signal is developed across $R_{1} R_{2}$ and coupled to the audio stages through $C_{3} . C_{1}, R_{1}$ and ('2 are included for r.f. filtering, to prevent a large r.f. component being coupled to the audio circuits. The a.v.e. rectifier, l_{2}, is coupled to the last i.f. transformer through (' 4 , and most of the rectified voltage is developed across R_{3}. V_{2} does not rectify on weak sigmals, however; the fixed hias at R_{5} must be exceded before rectification can take place. The developed negative a.v.c. bias is fed to the controlled stages through R_{1}.

The circuit of lig. $5-16 B$ is similar, except that a dual-diode triode tube is used. Since this has only one common cathode, the circuitry is slightly different but the principle is the same. The triode statge serves as the first audio stage, and its bias is developed in the eathode eircuit across Rs. This same bias is applied to the a.v.c. rectifier by retuming its load resistor, R_{3}, to ground. To avoid placing this bias on the detector, V_{1}, its load resistor $R_{1} R_{2}$ is returned to athode, thus avoiding any hias on the detector and permitting it to iespond to weak signals.

The developed negative a.v.e. hias is applied to the controlled stages through their grid circuits, as shown in $\mathrm{Fig} . \mathbf{5}-\mathbf{1 6 C}$. ('i R_{9} and ('s h_{10} serve as filters to avoid common eoupling and possible feed-back and owillation. The a.v.e. is disabled by rlosing switch S_{1}.
The a.v.e. rectifier bias in Fig. 5 -1613 is set by the hias required for proper operation of V_{3}. If less bias for the a.v.c. rectifier is refuired, R_{3} can be tapped up on R_{s} instead of heing returned to chassis ground. In Fig. 5-16A, proper choice of bias at h_{5} depends upon the over-all gain of the receiver and the number of controlled stages. In general, the hias at R_{5} will be made higher for receivers with more gatu and more stages.

Time Constant

The time constant of the resistor-raparitor combinations in the a.v.e. circuit is an important part of the system. It must be high enough so that the modulation on the signal is completely filtered from the d.c. outpoat, leaving only an average d.e. emponent which follows the rela-
tively slow carrier variations with fading. Audiofrequency variations in the a.v.e. voltage apmed to the amplifier grids would redure the perentage of modulation on the incoming signal. But the time constant must not be too great or the a.v.c. will be unable to follow rapid fading. The capacitance and resistance values indieated in Fig. $\overline{5}-16$ will give a time constant that is satisfactory for average reception.

C. W. and SSB

A.v.e. can be used for c.w. and SSB reception but the circuit is more complicated. The a.v.c. voltage must he derived from a rertifier that is isohated from the beat-frequency oscillator (other-
wise the rectified $\mathrm{b} . \mathrm{f} .0$. voltage will reduce the receiver gain even with no signal eoming through). This is generally done by using a separate a.v.e. (channel connected to am i.f. amplifier stage ahead of the second detector (and b.f.o.). If the selectivity ahead of the a.v.c. rectifier isn't good, strong adjacent signals will develop a.v.e. voltages that will reduce the receiver gain while listening to weak signals. When clear chanels are available, however, e.w. and SSB a.v.e. will hold the receiver output constant over a wide range of signal input. A.v.e. sustems designed to work on these signals must have fairly long time constants to work satisfactorily, and often a selection of time constants is made available.

Noise Reduction

Types of Noise

In addition to tube and cirruit noise, much of the noise interference experienced in reception of high-frequency signals is caused by domestic or industrial electrical equipmont and by automohile ignition sustems. The interference is of two types in its effects. The first is the "hiss" type, consisting of overtapping pulses simitar in nature to the receiver noise. It is largely reduced by high selectivity in the receiver, espe"ially for code reception. The second is the "pistol-shot" or "machine-gun" type, consisting of separated impulses of high amplitude. The "hiss" type of interference usually is mused by commutator sparking in d.e. and serios-wound a.c. motors, while the "shot" type results from separated spark discharges (a.c. power leaks, switch and key clicks, ignition sparks, and the like).

The only known approach to reducing tube and circuit moise is through better "front-end" design and through more over-ill selectivity.

Impulse Noise

Impulse noise, because of the short duration of the pulses compared with the time between them, must have high amplitude to contain much average energy. Hence, noise of this type strong conogh to cause much interference generally has an instantaneous amplitude much higher than that of the signal heing reecived. The general principles of devices intended to redure such noise is to allow the desired signal to pass through the receiver unaffected, but to make the receiver inoperative for amplitudes greater tham that of the signal. The grater the amplitude of the pulse compared with its time of duration, the more successful the noise reduction.

Another approach is to "silence" (render inoperative) the receiver during the short duration time of any individual pulse. The listener will not hear the "hole" berause of its short durat tion, and very effective noise reduction is obtained. Such devices are called "silencers" rather than "limiters."

In passing through selective receiver circuits, the time duration of the impulses is increased, becaluse of the () of the circuits. Thus the more solectivity shead of the noise-reducing deviee, the more difficult it becomes to secure good pulse-type noise suppression.

Audio Limiting

A considerable degree of noise reduction in code reception can he acomplished by am-plitude-limiting arrangements applied to the audio-output circuit of a receiver. Such limiters also maintain the signal output nearly constant during fading. These output-limiter sistems are simple, and adaptable to most recoivers. However, they cannot prevent moise peaks from overlouding previous stages.

Fig. 5-17 - Series.valve noise-limiter cireuits. 1, as used with an infinite-impedance detcetor: B, with a diode detector. 'Typical salues for components are as follows:
$\mathrm{H}_{1}-0.2 \mathrm{Z}$ mexohm. $\mathrm{R}_{4}-20,000$ to 47,000 ohms. $\mathrm{R}_{2}-17.000$ dimis. $\quad \mathrm{C}_{1}-270 \mu \mu \mathrm{fd}$.
$R_{3}, R_{\text {in }}-10,000$ olms. $\quad C_{2}, C_{3,}^{-} C_{4}-0.1 \mu \mathrm{fd}$.
All other diode-cirenit constants in IS are conventional.

Fig. 5-18-Self-aljusting series (A) and shme (B) moise limiters. The functions of H_{1} and l_{2} can le combined in one tulve like the 6 H 6 or ($\mathrm{a}: \mathrm{AL}$.
$\mathrm{Ci}_{1}-100{ }_{\mu} \mathrm{fet}$.
$\mathrm{Ci}, \mathrm{C}_{3}-0.05 \mathrm{H}_{\mathrm{fl}}$.
$R_{1}-0.27$ meg. in $A: 47,000$ ohms in B.
$\mathrm{R}_{2}-0.2$ - mer. in $1 ; 0.15$ meg. in 13 .
$R_{3}-1.0$ megohm.
$\mathrm{R}_{4}-0.82$ megolim.
$\mathrm{K}_{5}-68010$ ohms.

SECOND-DETECTOR NOISE LIMITER CIRCUITS

The circuit of Fig. 5-17 "chops" noise peaks at the second detector of a sumerhet receiver by means of at biased diode, which beromess noneonducting above at predetormined signal level. The andio output of the detector must pass through the diode to the grid of the amplifier tube. The diode nommally would be noncondurting with the comnections shown were it not for the fart that it is given positive bias from a 30 -volt source through the adjustable potentiometer, R_{3}. Resistors R_{1} and R_{2}, must he fairly lage in value to prevent loss of atudio signal.

The audio signal from the detertor ran be considered to modulate the stemy diode current, and conduction will take place so long as the diode plate is positive with respert to the cathode. When the signal is sufficiently large to swing the cathode positive with resporet to the plate however, conduction ceases, and that portion of the signal is cut off from the audio amplifier. The point at which cut-off occurs ran be selerted by adjustment of R_{3}. By setting R_{a} so that the signal just passes through the "valve," noise pulses higher in amplitude than the sigmal will be rut off. The circuit of lig. $5-17 \mathrm{~A}$, using an infinite-impedance detector, gives a positive voltage on rectifiration. When the rectified voltage is negative, as it is from the usual diode deteretor, the rireuit arrangement shown in lig. $5-1713$ must be used.

An audio signal of about ten volts is required for good limiting action. The limiter will work on either c.w. or 'phone signals, but in either' case the potentiometer must be set at a point determined by the strength of the incoming signal.

Second-detector noise-fimiting arcuits that automatically adjust themselves to the reoriver earrier level are shown in Fig. $\%$ - 18 . In either circuit, V_{1} is the usual diode second detector,
$R_{1} R_{2}$ is the diode lond resistor, and C_{1} is an r.f. by-pass. A negative voltage proportional to the carrier level is developed across C_{2}, and this voltage cannot change rapidly beause R_{3} and C_{2} are both large. In the circuit at A, diode leats ats a condurtor for the andio signal up to the point where its anode is negative with respect to the eathode. Noise peaks that exceed the maximum carrier-modulation level will drive the anode negative instantancously, and during this time the diode does not conduct. The lange time constant of $C_{2} R_{3}$ prevents any rapid change of the reference voltage. In the circuit at B, the diode V_{2} is inactive until its cathode voltage exceeds its :mode voltage. This condition will obtain under noise peaks and when it does, the diode l_{2} short-eireuits the signal and no voltage is passed on to the audio amplifier. Diode rectifiers such as the 61I6 am 6.115 gan be used for these topes of noise limiters. Neither circuit is useful for c.w. reception, but they are both quite effective for 'phone work. The scries circuit (. 1) is slightly better than the shunt rireuit.

SIGNAL-STRENGTH AND TUNING INDICATORS

An indicator that will show relative signal strength is a usoful receiver acossory. It is an aid in giving reports to transmitting stations, and it is helpful in aligning the reediver cirenits, in conjunction with a test oscillator or other steady signal.

Two trpes of indicators are shown in Fig. - -19 . That at I uses an clectron-ray tube, several types of which are avaibable. The grid of the triode section is romereted to the a.v.e. line. The particutar type of tube used depends upon the voltage available for its grid; where the a.v.e. voltage is large, a remote cut-off type

Fig. 5-19 - Tuning-indicator or S-meter cirenits for muperheterodyne receivers, A. electron-ray indisator; 13, bridue circuit for ass.c.controlled tube.
MA-0-1 or 0-2 milliammeter. R_{1} - See text.
 ence to the sharp cut-off type (6 L 5 5).

The system at 13 uses a milliammeter in a bridge circuit, arranged so that the meter readings increase with the signal strongth. The voltage developed by the a.v.e. circuit is approximately a logarithmic fumetion of the signal, so if the plate current of the tube is proportional to the grid voltage, the meter will read aceording to a linear deribel scale and will not be "crowded" at some point.

To adjust the system in liig. $\bar{j}-1913$, pull the tube out of its socket or otherwise break the cathode circuit so that no plate current flows, and adjust the value of resistor R_{1} across the meter until the seale reading is maximum. The value of resistance required will depend on the internal resistance of the moter, and must be datermined by trial and error (the eurrent is
approximately 2.5 ma.). Then replace the tube, allow it to warm up, turn the a.v.e.switeh to "off" so the grid is shorted to ground, and adjust the 3000 -ohm variable resistor for zero meter eurrent. When the i.v.c. is "on," the meter will follow the signal variations up to the point where the voltage is high enough to cut ofl the meter tube's plate current. This will oecur in the noighborhood of 15 volts with a 6.5 or orsiont and represents a rather high-amplitude signal.

The bridge eircuit, while not exactly linear, is quite satisfactory from a practical standpoint. It will handle a signal range of well over 80 db. The meter cinnot be "pinned"' heeause the maximum reading oceurs when the tube plate current is driven to zero, at which point futher increases in a.v.c. hias cause no change.

Improving Receiver Selectivity

INTERMEDIATE-FREQUENCY AMPLIFIERS

Is mentioned eartier in this chapter, one of the big advantages of the superheterolyue receiver is the improved selectivity that is posibe. This selectivity is obtained in the i.f. amplifier, where the lower frequency allows more selectivity per stage than at the higher signal frequency. For 'phone reception, the limit to useful selectivity in the i.f. amplifier is the point where so many of the sidebands are cut that intelligibility is lost, although it is possible to remove completely one full set of side-binds without impairing the quality at all. Misximum receiver selectivity in 'phone reception requires good stability in both transmitter and receiver, so that they will both remain "in tune" during the transmission. The limit to useful selectivity in code work is around 100 or 200 cyeles for hand-key speods, but this much solectivity requires good stability in both transmittor and receiver, and a slow receiver tuning mote for case of operation.

Single-Signal Effect

In heterodyne c.w. reception with a superheterolyne receiver, the beat oscillator is set to give a suitable andio-frequency beat note when the incoming signal is converted to the intermediate frequency. For cxample, the beat oscillator may be set to 4 in ke . (the i.f. being $45 \mathrm{j} . \mathrm{k}^{\text {. }}$ to give a 1000 -cycle beat note. Now, if an interfering signal appears at 4.5 kr ., or if the receiver is tuned to heterodyne the incoming signal to 457 ke ., it will also be heterodyned by the beat oscillator to produce a 1000 acle beat. Hence every signal can be tuned in at two plares that will give a 1000 orole heat (or any other low audio frequency). This audiofrequency image effert can be reduced if the i.f. selectivity is such that the incoming signal,
when heterodyned to $4.5 \mathrm{k} \cdot$., is attenuated to a bery low level.

When this is done, tuning through a given signal will show a strong response at the desired beat note on one side of arro beat only, insteal of the two beat notes on either side of zero beat (hatacteristic of less-selective reception, hence the name: single-signal reception.

The necessary selectivity is not ohtained with nonregenerative amplifiers using ordinary tuned circuits unless a low i.f. or a large number of circuits is used.

Regeneration

Regeneration can be used to give a singlesignal effert, particularly when the i.f. is tin $k e$. or lower. The resonance curve of an i.f. stage at rritical regeneration (just below the oscillating point) is extremely sharp, a bandwidth of 1 kc . at 10 times down and $\overline{5} \mathrm{ke}$. at 100 times down being obtainable in one stage. The audio-frequence image of a given signal thas can be reduced by a fictor of nearly 100 for a 1000 -cycle beat note (image 2000 eycles from resonance).

Regeneration is easile introduced into an i.f. amplifier by providing a small amount of capacity coupling between grid and plate. Bringing a short length of wire, comected to the grid, into the vicinity of the plate lead usually will suffice. The feed-back mat be controlled by the regular cathode-resistor gain control. When the i.f. is regenerative, it is proferable to operate the tube at reduced gain (high bias) and depend on regeneration to bring up the signal strength. This type of operation prevents overloading and increases selectivity.

The higher selectivity with regeneration redures the over-all response to noise generated in the earlier stages of the receever, just as does high solectivity produced be other means, and therefore improves the signal-to-noise ratio. However, the regencrative gain varies with signal
strength, being less on strong signals, and the selectivity varies.

Crystal Filters

Irobably the simplest means for obtaining high selectivity is by the use of a piezoelectrie quart\% crystal as a selective filter in the i.f. amplifier. Compared to a good tumed circuit, the Q of such a erystal is extremely high. The crystal is ground to be resonant at the desired intermediate frequency. It is then used as a selective coupler between i.f. stages.

Fig. \%-20 gives a typical erystal-filter resonance curve. For single-signal reception, the audio-frequency image (an be reduced by a factor of 1000 or more. Besides practically eliminating the a.f. image, the high selertivity of the crystal filter provides good diserimination against signals very close to the desired signal

Fïg. 5-20-Graphical representation of single-signal seleetivity. The shaded arra indicates the over-all bandwidth, or region in which response is oltainable.
and, by reduring the band-width, reduces the response of the receiver to noise.

Crystal-Filter Circuits; Phasing

Two erystal-filter circuits are shown in Fig. $5-21$. The circuit at A (or a variation) is found in many of the current communications receivers. The erystal is connected in one side of a bridge rircuit, and a "phasing" capacitor, C_{1}, is connected in the other. When C_{1} is set to balance the erystal-holder eapacitane, the resonance curve of the filter is pructically symmetrical; the erystal acts as a series-resonant circuit of very high Q and allows signals over a narow hand of frequencies to pass through to the following tube. More or less caparitance at G_{1} introduces the "rejection noteh" of Fig. $5-20$ (at $46: 3 \mathrm{ke}$, as drawn). The ($)$ of the load circuit for the filter is adjusted by the setting of R_{1}, which in turn varies the landwidth of the filter from "sharp" to a

Fia. 5-21 - A variable-selectivity erystal filter (A) and a bandpass erystal filter (B).
bandwidth suitahle for 'phone reception. Since some of the components of this filter are special and not generally available to amateurs, home construction of the filter is usually out of the question.
The "bandpass" ervstal filter at 1) uses (wo erystals separated slightly in frequeney to give a bandpass characteristic to the filter. If the frequencies are removed only a few hundred cyeles from ach, the characteristic is an excellent one for e.w. reception. With crastals about 2 ke . apart, a good 'phone characteristic is obtained.

Additional I.F. Selectivity

Many commercial eommuniations receivers do not have sufficient selectivity for amateur use, and their perfomance can be improved by adding additional selentivity. One popular method is to couple a $13(-4$ as: arroraft receiver (war surplus, tuning range 190 to 500 ke .) to the tail end of the 46%-ke. i.f. amplifier in the communications receiver and use the resultant output of the BC-453. The aireraft receiver uses an 85 -ke. i.f. amplifier that is sharp for voice work -

Fig. 5-22 - Typical radio-frequency amplifier einouit for a supreheterodyme receiver. Representative values for eomponents are as follows:
$\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C}_{4}-0.01 \mu \mathrm{fl}$. below $15 \mathrm{Mc}, 0.001 \mu \mathrm{fl}$, at (30 Me
R_{1}, R_{2} - See rlable i-II.
$1 \mathrm{R}_{3}-1800$ ohms.
R_{4} - 0. $\boldsymbol{2}$ - megohm.
6.5 ke . wide $\mathrm{at}-60 \mathrm{db}$. - and it helps considerably in separating 'phone signals and in backing up crystal filters for improved c.w. reception. (See QST, January, 1948, page 40.)

If a BC-453 is not available, one can still enjoy the benefits of improved selectivity. It is only necessary to heterodyne to a lower frequency the 465 -ke. signal existing in the receiver i.f. amplified and then rectify it after passing it through the sharp low-frequency amplifier. The Hammarlund Company and the J. W. Miller Company both offer 50 -ke, transformers for this application.

QS'T' references on high i.f. selectivity include: Mestaughlin, "Selectable Single Sideband," April, 1948; Githens, "Super-Selective C.W. Ieceiver," Aug., 19.18.

RADIO-FREQUENCY AMPLIFIERS

While selectivity to redure audio-frequency inages can be buitt into the i.f. amplifier, discrimination against radio-frequency images can only be obtained in circuits ahead of the first detector. These tuned circuits and their assoriated vacuum tubes are called radio-frequency amplifiers. For top performance of a communications receiver on frequencies above 7 Mr ., it is mandatory that it have one or two stages of r.f. amplification, for image rejection and improved sensitivity.

Receivers with an i.f. of 45 ke. can be expected to have some r.f. image response at a signal frequency of 14 Mc. and higher if only one stage of r.f. amplification is used. (Regeneration in the r.f. amplifier will redure imatge response, but regeneration usually requires frequent readjustment when tuning arross a band.) With two stages of r.f. amplification and an i.f. of 45.5 ke ., no images should be apparent at 14 Mr., but they will show up on 28 Me. and higher. Three stages or more of r.f. amplification, with an i.f. of 45:5 ke., will reduce the images at 28 Mr., but it really takes four or more stages to do a grod job. The better solution at ' 28 Me. is to use a "triple-detection" superheterodyne, with one stage of r.f. amplification and a first i.f. of 1600 ke . or higher. A normal receiver with an i.f. of 45:) ke. can be converted to a triple superhet by connecting a "converter" (to be deseribed later) ahead of the receiver.

For best selectivity, r.f. :mplifiers should use high- Q circuits and tubes with high input and output resistance. Variable- μ pentodes are practically always used, although triodes (neutralized or otherwise comected so that they won't oscillate) are often used on the higher frequeneies berause they introduce less noise. Pentodes are betar where maximum inatge rejection is desired, because they have less loading effect on the tuned circuits.

FEED-BACK

Feed-back giving rise to regeneration and oscillation ran oceur in a single stage or it may appear as an over-all feed-hack through several stages that are on the same frequency. To avoid
fered-back in a single stage, the output must be isolated from the input in every wity possible, with the vacuum tube furnishing the only ceupling between the two circuits. An oscillation can be obtained in an r.f. or i.f. stage if there is any undue capacitive or inductive coupling between output and input circuits, if there is too high an impedance between cathode and ground or screen and ground, or if there is any appreriable impedance through which the grid and plate currents can flow in common. This means good shielding of coils and tuning capacitors in r.f. and i.f. circuits, the use of good hy-pass capacitors (mica or ceramic at r.f., paper or ceramic at i.f.), and returning all bepass (apacitors (grid, cathorle, plate and sercen) for a given stage with short leads to one spot on the chassis. If single-ended tubes are used, the sercen or cathode by-pass eapacitor should be mounted across the sorket, to serve as a shield between grid and plate pins. Less care is required as the frequency is lowered, but in high-impedance circuits, it is sometimes necessary to shield grid and plate leads and to he careful not to ron them close together.

To avoid over-all feed-back in a multistage amplifier, attention must be paid to avoid rumning any part of the output circuit back near the input circuit without first filtering it carefully. Since the signal-carrying parts of the cireuit (the "hot" grid and plate leads) can't be filtered, the best design for any multistage amplifier is a straight line, to keep the output as far away from the input as possible. For example, an rif. amplifier might run along a chassis in a straight line, run into a mixer where the frequence is changed, and then the i.f. amplifier could be run bank parallel to the r.f. amplifier, provided there was a very large frequency difference bet ween the r.f. and the i.f. amplifiers. However, to avoid any possible coupling, it would be better to run the i.f. amplifier off at right angles to the r.f.amplifier line, just to be on the satie side. (Good shielding is important in preventing over-all oscillation in high-gain-por-stage amplifiers, but it beromes less important when the stage gain drops to a low value. In a high-gain amplifier. the power leads (including the heater circuit) are common to all stages, and they can provide the over-all coupling if they aren't properly filtered. Good be-passing and the use of series isolating resistors will generally eliminate any possibility of coupling through the power leads. R.f. chokes, instead of resistors, are used in the heater leads where necerssary.

CROSS-MODULATION

Since a one- or two-stage r.f. amplifier will have a bandwidth measured in hundreds of kc. at 14 Mc. or higher, strong signals will be amplified through the r.f. amplifier even though it is not tuned exactly to them. If these signals are strong enough, their amplified magnitude may be measurable in volts after pasing through several r.f. stages. If an undesired signal is strong enough after amplification in the r.f. stages to
shift the operating point of a tube (by driving the grid into the positive region), the undesired signal will modulate the desired signal. This effert is called cross-modulation, and is often encommtered in receivers with several r.f. stages working at high gain. It shows up as a superimposed modulation on the signal heing listened to, and often the effert is that a signal can be tuned in at several points. It can be reduced or eliminated by greater selectivity in the antema and r.f. stages (difficult to obtain), the use of variable- μ tubes in the r.f. amplifier, redued gain in the r.f. amplifier, or reduced antenna input to the recoiver. The filiJf, GilsA6 and GDC(6 are recommended for r.f. amplifiers where cross-modulation may be a problem.

A receiver designed for minimum cross-modulation will use as little gain as possible ahead of the high-solectivity stages, to hold strong unwanted signals below the overload point.

Gain Control

To avoid cross-modulation and other overload effects in the first detector and r.f. stages, the gain of the r.f. stages is usually made adjustable. This is arcomplished by using vari-able- μ tubes and varying the d.c. grid bias, either in the grid or cathode cireuit. If the gain control is automatic, as in the case of a.v.e., the bias is controlled in the gride circuit Manmal control of r.f. gain is generally done in the cathode circuit. A typiral r.f. amplifier stage with the two types of gain control is shown in sehematio form in Fig. $\%$-22.

Tracking

In a recoiver with no r.f, stage, it is no ineonvenience to adjust the high-frequeney oscillator and the mixer cirruit independently, beause the mixer toming is broad and requires little attention over an amateur band. However, when r.f. stages are added ahead of the mixer, the r.f. stuges and miser will require retuning over an entire amateur band. Hence most receivers with one or more r.f. stages gang all of the tuning controls to give a single-tuning-control receiver. Obviously there must exist a constant difference in frequency (the i.f.) between the oscillator and the mixer/r.f. rirruits, and when this condition is ahieved the rircuits are said to track.

In amateur-hand receivers, tracking is simplified by choosing a bandspread rircuit that gives practically straight-line-frequency tuning (equal frequeney change for each dial division), and then adjusting the ossillator and mixer tunced eireuits so that both cover the same total number of kiloeycles. For example, if the i.f. is $\left.45^{5}\right)^{2} \mathrm{kc}$. and the mixer circuit tunes from 7000 to 7300 kr . between two given points on the
dial, then the oscillator must tune from 74:5 to Tinj ke. hetween the same two dial readings. With the bandspread arrangement of Fig $\bar{i}-9 . \lambda$, the tuning will be practically straight-line-frequency if ('2 (bandset) is 4 times or more the maximum caparity of (" (bandspread, as is usually the case for strictly amateur-band coverage. ("1 should be of the straight-line-capacity type (semicircular plates).

Squelch Circuits

An audio squelch eircuit is one that cuts off the receiver output when no signal is coming through the receiver. It is useful in mohile or net work where the no-signal receiver noise may be as

Fig. 5.23-A practical squeleh circuit for cutting off the receiver output when no signal is present.
loud as the signal, eausing undue operator fatigue during no-signal periods.

A practical squelch circuit is shown in Fig. 5-2:3, When the a.v.r. voltage is low or zero, the 6S.J7 draws plate current. Voltage drop across the 47,000 -ohm resistor in its plate circuit outs off the 6.55 and $n o$ receiver signal or noise is passed. When the a.v.c., voltage rises to the cut-of value of the $6 \mathrm{~S} . \mathrm{J} 7$, the pentode no longer draws current and the hias on the 6.55 is now only the operating bias, furnished by the $1000-\mathrm{hm}$ cathode resistor. The triode now functions as an ordinary amplifier and passes signals. By varving the screen voltage on the 6S.j7 through R_{t}, the pentode's cut-off bias can be varied, so that the relation between a.v.c. voltage and signal cut-off pint of the amplifier is adjustable.

Connections to the receiver consist of two a.f. lines (shiehded), the a.v.c. lead, and chassis ground. The squelch eircuit is normally inserted between detector output and the audio volume control of the receiver. Since the circuit is used in the low-level audio point, its plate supply must he free from a.c. or ohjectionable hum will be introdured.

Improving Receiver Sensitivity

The sensitivity (signal-to-noise ratio) of a receiver on the higher frequencies above 20 Mc. is dependent upon the bandwidth of the re-
ceiver and the noise contributed by the "front end" of the receiver. Neglecting the fact that image rejertion may be poor, a receiver with no
r.f. stage is generally satisfactory, from a sensitivity point, in the 3.5 - and $7-\mathrm{Mc}$. bands. However, as the frequency is increased and the atmospheric moise beromes less, the advantage of a good "front end" hecomes apparent. Hence at It Mr, and higher it is worth while to use at least one stage of r.f. amplification ahead of the first detertor for best sensitivity as well as image rejoetiom. The multigrid converter tubes have very poor noise figures, and aven the hest pentodes and triodes are three or four times noisier when used as mixers than they are when used as amplifiers.

If the purpose of an r.f. amplifier is to improve the receiver noise figure at 14 Mr . and higher, at high-g.in pentode or triode should be used. Among the pentodes, the best tabes are the $6.1(7,6: N K 5$ and the $6 \times(i 7$, in the order named. The 6AK゙5 takes the lead around 30 Mc . The 6.J4, 6.J6, 7 F8 and triode-comected 6.1155 are the best of the triodes. For best noise figure, the antenna circuit should be coupled a little heavier than optimum. This camot give best selectivity in the antemm cireuit, so it is futile to try to maximize sensitivity and selectivity in this eireuit.

When a receiver is satisfactory in every respert (stability and selortivity) exrept sensitivity on 14 through 30 Mr ., the best solution for the ampteur is to add a preamplifier, it stage of r.f. amplification designed expressly to improve the sensitivity. If image rejection is larking in the receiver, some selectivity should be built into the preamplifier (it is then called a preselector). lf, however, the recoiver operation is poor on the higher frequencies but is satisfartory on the lower ones, a "eonverter" is the best solution.
some rommercial receivers that appear to lack sensitivity on the higher frequencies can be improved simply by tighter coupling to the antema. Since the recoiver mamufarturer has no way to predict the type of antema that will he used, he generally designs the input for some compromise value, usually around 300 or 400 ohms in the high-frequency ranges. If your antemat looks like something far different than this, the receiver effectiveness can be improved by proper matching. This can be aceomplished by changing the antema feed line to the right value (as determined from the receiver instruction book) or by using a simple matehing device
as deseribed later in this chapter. Overouphing the input circuit will often improve sensitivity but it will, of course, always reduce the imagerejection contribution of the intenna circuit.
(dommercial receivers can also be "hopped up", by sulstituting a high- q_{m} tube in the first r.f. stage if one isn't already there. The amateur must be prepared to take the consequenoes, however, since the stage may oscillate, or not track without some modification. A simpler solution is to add the "hot" r.f. stage ahead of the rereiver.

Regeneration

Regeneration in the r.f. stage of a receiver (where only one stage exists) will often inprove the sensitivity beause the greater gain it provides serves to mask more completely the firstdetertor noise, and it also provides a measure of automatic matehing to the antenna through tighter roupling. Ilowever, accurate ganging becomes a problem, because of the increased selectivity of the regenerative r.f. stage, and the receiver almost invariably beromes a two-handedtuning device. Regeneration should not be overlooked as an expediont, however, and amateurs have used it with ronsiderable suceres. Migh-f.n tubes are the best as regenerative amplifiers, and the feed-back should not be controlled by changing the opreating voltages (which should be the same as for the tube used in a high-gain amplifier) but by changing the loading or the feod-bark coupling. This is a tricky process and another reason why regeneration is not too widely used.

Gain Control

In a receiver front end designed for best signal-to-noise ratio, it is advantageous in the reception of weak signals to eliminate the gain control from the first r.f. stage and allow it to run "wide open" all of the time. If the first stage is controlled along with the i.f. (aud other r.f. stages, if an \boldsymbol{w}°, the signal-to-noise watio of the receiver will suffer. As the gain is reduced, the g_{m} of the first tube is reduced, and its noise figure becomes higher. A good receiver might well have two gain controls, one for the first radio-frequency stage and another for the i.f. and other r.f. stages.

Extending the Tuning Range

As mentioned curlier, when a receiver doesn't cover a particular frequency range, either in fact or in satisfactory performance, a simple solution is to use a converter. A converter is another "front end" for the receiver, and it is made to tune the proper range or to give the neressary performance. It works into the receiver at some frequency between 1.6 and 10 Mc . and thus forms with the reaver a "triple-detertion" superhet.

There are several different types of converters in vogue at the bresent time. The commonest
type, since it is the oldest, uses a regular tumable oscillator, mixer, and r.f. stages as desired, and works into the rereiver at a fixed frequencer. A second type uses broad-banded r.f. stages in the r.f. and mixer stages of the converter, and only the oscillator is tumed. Sime the frequency the converter works into is high (7 Me . or more), little or no trouble with images is experienced, despite the broad-band r.f. stuges. A third type of converter uses broad-banded r.f. and output statges and a fixed-frequency oseillator (self- or erystal-controlled). The tuning is done with
the receiver the converter is connected to. This is an excellent system if the receiver itself is well shielded and has no external pick-up of its own. Many war-surplus receivers fall in this category. A fourth type of converter uses a fixed oscillator with ganged mixer and r.f. stages, and requires two-handed tuning, for the r.f. stages and for the receiver. The r.f. tuning is not critical, however, unless there are many stages.

The broal-handed r.f. stages have the advantage that they can be built with short leads, since no tuning capacitors are required and the unit can be tuned initially by trimming the inductances. They are more prone to eross-modulation than the gang-tuned r.f. stages, however, because of the lack of selectivity. The fourth type of converter is probably the most satisfactory, particularly if a erystal-controlled high-
frequency oseillator is used. It not only has the advantage of the best selectivity and prosection against images and cross-modulation, bat the erystal gives it a stability unobtainable with selfcontrolled oscillators. . Imateurs who specialize in operation on 28 and 50 Me. generally use good converters ahead of conventional communications receivers, and it pays off in better performance for the station.

While converters can extend the operating range of an existing receiver, their greatest advantage probably lies in the opportunity they give for getting the best performance on any one band. By selecting the best tubes and techniques for any particular band, the amateur is assured of top receiver performance, With separate converters for each of several bands, changes can be made in any one without disabling or impairing the receiver performance on another band.

Tuning a Receiver

C. W. Reception

For making code signals audible, the beat oscillator should be set to a frequency slightly different from the intermediate freguency. To adjust the beat-oscillator frequency, first tune in a moderately-weak but steady carrier with the beat oseillator turned off. Adjust the receiver tuming for maximum signal strength, as indicated by maximum hiss. Then turn on the beat osicillator and adjust its frequeney (leaving the receiver tuning unchanged) to give a suitable beat note. The beat oscillator need not subsequently be tourhed, except for occasional checking to make certain the frequency has not drifted from the initial setting. The b.f.o. may be set on either the high- or low-frequency side of zero beat.

The best receciver condition for the reception of c.w. signals will have the first r.f. stage rumming at maximum gain, the following r.f., mixer and i.f. stages operating with just enough gain to maintain the signal-to-moise ratio, and the audio gain set to give comfortable headphone or speaker volume. The audio volume should be controlled hy the audio gain control, not the i.f. gain control. Cinder the above conditions, the selectivity of the receiver is being used t:) best advantage, and cross-modulation is minimizod. It procludes the use of a reeceiver in which the gain of the first r.f. stage and the i.f. stages are controlled simultanemusly:

Tuning with the Crystal Filter

If the receiver is cquipped with a crystal filter the tuning instructions in the preceding paragraph still apply, hut more care must be used both in the initial adjustment of the beat oscillator and in tuming. The beat oseillater is set as deseribed above, but with the erystal filter set at its sharpest position, if variable selertivity is available. The initial adjustment should be made with the phasing control in an intermediate position. Onee adjusted, the beat oscillator should
be left set and the receiver tuned to the other side of zero beat (audio-frequency image) on the same signal to give a beat note of the same tone. This beat will be considerably weaker than the first, and may be "phased out" almost completely by careful adjustment of the phasing control. This is the adjustment for normal operation; it will be found that one side of zero beat has practically disappeared, leaving maximum response on the other.

An interfering signal having a beat note differing from that of the anf. image can be similarly phased out, provided its frequency is not too near the desired signal.

Depending upon the filter design, maximum selectivity may cause the dots and dashes to lengthen out so that they seem to "run together." It must be emphasized that, to realize the benefits of the crystal filter in reducing interference, it is necessary to do all tuning with it in the circuit. Its high selectivity often makes it difficult to find the desired station quickly, if the filter is switehed in only at times when interference is present.

'Phone Reception

In reception of 'phone signals, the normal procedure is to set the r.f. and i.f. gain at maximum, switeh on the a.v.e., and use the audio gain control for setting the volume. This insures maximum effectiveness of the a.v.e. system in eompensating for fading and maintaining constant audio output on either strong or weak signals. On occasion a strong signal close to the frequency of a weaker desired station may take control of the a.v.c., in which case the weaker station may disappear because of the reduced gain. In this case better reception may result if the a.v.c. is switched off, using the manual r.f. gain control to set the gain at a point that prevents "blocking'" by the stronger signal.

When roceiving an AM signal on a frequency within $\overline{5}$ to 20 ke . from a singlo-sideband sigmal
it may also be necessary to switch off the a.v.e. and resort to the use of manual gain control, unless the receiver has excellent skirt selectivity. No ordinary a.v.c. circuit can handle the syllabic bursts of energy from the SSB station, beeause the time constant is too short.

A crystal filter will help reduce interference in phone reception. Although the high selectivity cuts sidebands and reduees the audio output at the higher audio frequencies, it is possible to use quite high selectivity without destroying intelligibility. As in c.w. reception, it is advisable to do all tuning with the filter in the circuit. Variableselertivity filters permit a choice of selectivity to suit interference conditions.

An undesired currier close in frequency to a desired carrier will heterodyne with it to produce a beat note equal to the frequency difference. Such a heterodyne can be reduced by adjustment of the phasing control in the crystal filter.

A tone control often will be of help in reducing the effects of high-pitched heterodynes, sideband splatter and noise, by cutting off the higher audio frequencies. This, like sideband cutting with high selectivity circuits, reduces naturalness.

Spurious Responses

Spurious responses can be recognized without a great deal of difficulty. Often it is possible to
identify an image by the nature of the transmitting station, if the frequency assignments applying to the frequency to which the receiver is tuned are known. However, an image also can be recognized by its behavior with tuning. If the signal causes a heterodyne beat note with the desired signal and is actually on the same frequener, the beat note will not change as the receiver is tuned through the signal ; but if the interfering signal is an image, the beat will vary in piteh as the receiver is tuned. The beat oscillator in the receiver must be turned off for this test. lising a crystal filter with the beat oscillator on, an image will peak on the side of zero beat opposite that on which desired signals peak.

Harmonic response can be recognized by the "tuning rate," or movement of the tuning dial required to give a specified change in beat note. Signals getting into the i.f. via high-frequency oscillator harmonies tune more rapidly (less dial novement) through a given change in beat note than do signals reccived by normal means.

Larmonies of the beat oscillator can be recognized by the tuning rate of the beat-oscillator pitch control. I smaller movement of the control will suffice for a given change in beat note than that necessary with legitimate signals. In poorlyshielded receivers it is often possible to find b.f.o. harmonics below 2 Me., but they should be very weak at higher frequencies.

Narrow-Band Frequency- and Phase-Modulation Reception

FM Reception

In the reception of NFM (narrow-band FM) by a normal A.M recoiver, the a.v.e. is switched off and the incoming signal is not tuned "on the mose," as indicated by maximum reading of the S-meter, but slightly off to one side or the other. This puts the carrier of the incoming signal on one side or the other of the i.f. selectivity characteristic (see Fig. 5-1). As the frequeney of the signal changes back and forth over a smatl range with modulation, these variations in frequency are translated to variations in anpplitude, and the consequent $1 . X$ is detected in the normal manner. The signal is tuned in (on one side or the other of maximum carrier strength) until the audio quality appears to be best. If the audio is too weak, the transmitting operator should be advised to increase his swing slightly, and if the audio quality is bad ("splashy" and with serious distortion on volume peaks) he should be advised to reduce his swing. Coüperation between transmitting and receiving operators is a necessity for best audio quality. The transmitting station should always be advised immediately if at any time his bandwidth exceeds that of an AM signal, since this is a violation of $\mathrm{FC}(\mathrm{C}$ regulations, except in those portions of the bands where wideband FMI is permitted.

If the receiver has a discriminator or other
detector designed expressly for FM reception, the signal is peaked on the receiver (as indicated by maximum S-meter reading or minimum background noise). There is also a spot on cither side of this tuning condition where audio is recovered through slope detection, but the signal will not be :ts loud and the noise will be higher.

PM Reception

Phase-modulated signals can be received the same as NFM signals are, except that the audio output will appear to be lacking in "lows," because of the differences in the deviation-r's.-atudio characteristies of the two systems. This can be remedied some by advancing the tone control of the receiver to the point where more nearly: normal speech output is obtained.

IPM signals can also be received on communiations receivers by making use of the crystal filter. The erystal filter should be set to the sharpest position and the carrier should be tuned in on the crystal peak, not set off to one side. The phasing condenser should be set not for exact neutralization but to give a rejection noteh at a side frequency about 1000 cyeles off resonance. There is attenuation of the side bands with such tuning, but it can be made up by additional audio gain. NFM signals received through the crystal filter will have a "boomy" characteristic.

Reception of Single-Sideband Signals

Single-sidehand signals are generally transmitted with little or no carrior, and it is nocessary to furnish the carrier at the receiver before proper reception can be obtained. Because little or no carrior is tramsmitted, the a.v.e. in the reroiver has nothing that indicates the average signal level, and manual variation of the r.f. gatin control is required.

A single-sideband signal ran be identified by the absence of a strong carrier and by the severe variation of the s-meter at a syllabie rate. Whon such a signal is encomitered, it should first be praked with the main tuning dial. (This centers the signal in the i.f, passband.) After this operation, do not touch the main tuning dial. Then set the r.f. gain control at a very low level and switeh off the a.ver. Increase the audio volume control to maximum, and bring uf, the r.f. gain control until the sigmal can be heard weakly. Switeh on the beat oscillator, and carefully adjust the frequency of the beat oscillator until proper speech is heard. If there is a slight amount of carrier presont, it is only necessary to zeroberat the beat oscillator with this weak carrior. It will be noticed that with incorrect tuning of an SSll signal, the speerh will sound high-or low-pitched or cven in-
verted (very garbled), but no trouble will be had in getting the correct setting once a little experience has been obtained. The use of minimum r.f. gain and maximum audio gain will insure that no distortion (overload) oceurs in the receiver. It may require a readjustment of your tuning habits to tune the receiver slowly enough during the first few trials.

Once the proper setting of the b.fo. has been established by the procedure above, all further tuning should be done with the main tuning control. However, it is not unlikely that SSB stations will be encountered that are transmitting the other sideband, and to receive them will requiro shifting the b,f.o. setting to the other side of the receiver i.f. passhand. The initial tuning proredure is exactly the same as outlined above, except that you will end up with a considerably different b.f.o. setting. The two b.f.o. settings should be noted for future reference, and all tuning of SSll signals can then be done with the main tuning dial. After a little experience, it beromes a simple matter to determine which way to tune the receiver if the receiver (or transmitter) drifts off to make the received signal sound low- or high-pitchoed.

Alignment and Servicing of Superheterodyne Receivers

Abstract

I.F. Alignment

A calibrated signal genorator or test oseillator is a useful deviec for alignment of an i.f. amplifier. some means for measuring the output of the receiver is required. If the recoiver has a tuning moter, its indications will serve. lacking an s-meter, a high-resistance voltmeter or a vacuumtube voltmeter can be connected across the sec-ond-detertor load resistor, if the second detertor is a diode. Alternatively, if the signal generator is a modulated type, an ace voltmoter can be connereded across the primary of the transformer fording the 'speaker, or from the plate of the last audio amplifior through a $0.1-\mu \mathrm{fl}$. blocking condenser to the receiver chassis, Lacking an ane. voltmoter, the audio output can bo judged by ear, although this method is not as accurate as the others. If the tuning meter is used as an imdication, the a.v.e. of the recoiver should be turned on, but any other indieation requires that it be turned off. Lacking a test oscillator, a steadysignal tuned through the input of the receiver (if the joh is one of just touching up the i.f. amplifier) will he suitable. However, with no oscillator and tuning an amplifier for the first time, one's only recourse is to try to prak the i.f. transformers on "noise," a diflicult task if the transformers are badly off resonanee, as they are apt to be. It would be much better to spend a little time and haywire together a simple oscillator for test purposes.

Initial alignment of a new i.f. amplifer is as follows: The test oscillator is set to the correct frequency, and its output is coupled through a condenser to the grid of the last i.f. amplifier tube. The trimmer condensers of the transformer feeding the second detector are then adjusted for maximum output, as shown by the indicating device bring used. The oscillator output lead is then clipped on to the grid of the next-to-the-last i.f. amplifier tube, and the second-from-the-last transformer trimmer adjustments are peaked for maximum output. This process is continued, working back from the second detector, until all of the i.f. transformers have been aligned. It will be necessary to reduce the output of the test oscillator as more of the i.f. amplifier is brought into use. It is desirable in all cases to use the minimum signal that will give useful output readings. The i.f. transformer in the plate cireuit of the mixer is aligned with the signal introduced to the grid of the mixer. Since the tuned circuit feeding the mixer grid may have a very low impedance at the i.f., it may be necessary to boost the test generator output or to disconnect the tuned circuit temporarily from the mixer-stage grid.

If the i.f. amplifier has a crystal filter, the filter should first be switched out and the alignment carried out as above, setting the test oscillator as chosely as possible to the crystal frequency, When this is completed, the erystal
should be switehed in and the oseillator frequency varied back and forth over a small range either side of the crystal frequency to find the exart frequeney, as indicated by a sharp rise in output. Leaving the test oscillator sot on the erystal peak, the i.f. trimmers should be realigned for maximum output. The necessary readjustment should be small. The oscillator frequeney should be chereked frequently to make sure it has not drifted from the erystal peak.

A modulated signal is not of much value for aligning a erystal-filter i.f. amplifier, since the high selectivity cuts sidebands and the results may be inaccurate if the audio output is used as the tuning indication. Lacking the a.v.e. tuning meter, the transformers may be conveniently aligned bse ear, using a weak unmodulated signal aljusted to the crystal peak. Switch on the beat oscillator, adjust to a suitable tone, and align the i.f. transformers for maximum audio output.

An amplifier that is only slightly out of alignment, as a result of normal drift or aging, can be realigned by using any steady signal, such as a local broadeast station, instead of the test oseillator. One's 100-ke, stambard makes an excellent signal source for "touching up" an i.t. amplifier. Allow the receiver to warm up thoroughly, tune in the signal, and trim the i.f. for maximum output.

If you bought your receiver instead of making it, be sure to read the instruction book carefully bofore attempting to realign the recoiver. Most instruction books include alignment detaik, and any little special tricks that are peculiar to the receiver will also be deseribed in detail.

R.F. Alignment

The objective in aligning the r.f. cireuits of a gang-tuned receiver is to secure adequate traking over each tuning range. The adjustment may be earried out with a test oseilator of suitable frequency range, with harmonics from your 100-ke. standard or other known osrillator, or even on noise or such signals as may be heard. First set the tuning dial at the high-frequeney end of the range in use. Then set the test oscillator to the frequency indicated by the receiver dial. The test-oscillator output may be connected to the antenna terminals of the receiver for this test. Aljust the oscillator trimmer condenser in the receiver to give maximum fesponse on the test-oscillator signal, then reset the receiver dial to the low-frequency end of the range. Set the test-osidlator frequeney near the frequene indiated by the recoiver dial and tume the test oscillator until its signal is heard in the receiver. If the frequency of the signal as indicated by the test-oscillator calibration is higher than that indicated by the receiver dial, more inductance (or more capacity in the tracking eondenser) is needed in the receiver oscillator circuit: if the frequeney is lower, less inductance (less tracking capacity) is required in the recoiver oseillator:

Most commercial receivers provide some means for varying the inductance of the coils or the capacity of the tracking condenser, to permit aligning the receiver tuning with the dial calibat tion. Set the test oscillator to the frequence y indieated by the recciver dial, and then adjust the tracking eapacity or inductance of the receiver oscillator coil to obtain maximum response. After making this adjustment, recheck the high-froquency end of the scale as previously described. It may be necessary to go back and forth between the ends of the range several times before the proper combination of inductance and eapacity is secured. In many cases, better over-all tracking will result if frequencies near but not actually at the ends of the tuning range are selected, instead of taking the extreme dial settings.

After the oscillator range is propery adjusted, set the receiver and test oscillator to the highfrequency end of the range. Adjust the mixer trimmer condenser for maximum hiss or signal, then the r.f. trimmers. Reset the tuning dial and test oscillator to the low-frequency end of the range, and repeat; if the circuits are properly designed, no change in trimmer settings should be necessary. If it is necessary to increase the trimmer capacity in any circuit, it indicates that more inductance is meeded; conversely, if less caparity resonates the circuit, less inductance is required.

Tracking seldom is perfect throughout a tuning range, so that a check of alignment at intermediate points in the range may show it to be slightly off. Normally the gain variation from this cause will be small, however, and it will suffice to bring the circuits into line at both ends of the range. If most reception is in a partieular part of the range, such as an amateur band, the vircuits may be aligned for maximum performance in that region, even though the ends of the frequency range as a whole may be slightly out of alignment.

Oscillation in R,F, or I,F. Amplifiers

Oscillation in high-frequency amplifier and mixer circuits shows up as squeals or "birdies" as the tuning is varied, or by complete lack of autible output if the oscillation is strong enough to cause the a.v.c. system to reduce the receiver gain drastically. Oscillation can be caused by poor connections in the common ground circuits. Inadequate or defective by-pass condensers in eathode, plate and screen-grid circuits also can cause such oscillation. A metal tube with an ungrounded shell may cause trouble Improper srreen-grid voltage, resulting from a shorted or too-low screen-grid series resistor, also may he responsible for sueh instability

Oseillation in the i.f. cireuits is independent of high-freguency tuning, and is indicated by a continuous squeal that appears when the gatin is advanced with the c.w. beat oscillator on. It can result from defects in i.f.-amplifier circuits similar to those above. Inalequate surem or plate by-pass capacitance is a common cause of such oscillation.

Instability

"Birdies" or a mushy hiss orcurring with tuning of the high-frecuency oweillator may indicate that the owsillator is "squegging" or oseillating simultaneously at high and low frequencios. This: may be caused by a dofective tube, too-high oscillator plate or sereen-grid voltage, exeossive feed-back, or too-high grid-leak resistance.

A varying beat note in cew. reception indicates instability in either the h.f. oseillator or beat oscillator, usually the former. The stability of the beat oscillator can be checked be introducing a signal of intermediate frequency (from at test oseillator) into the i.f. amplifier; if the beat note is unstable, the trouble is in the beat oscillator. Poor connections or defective parts are the likely. cause. Instability in the high-frequener oscillator may he the result of poor circuit design, loose eonnertions, defective tubes or circuit eomponents, or poor voltage regulation in the oscillator plate- and, or sereco-supply circuits. Mixer pulling of the oscillator circuit also will catuse the
beat note to "chirp" on strong cew. signals.
In phone recoption with a.v.e., a pecular type of instability ("motorboating') may appear if the h.f.-oseillator frepuency is sensitive to changes in plate voltage. As the a.v.c. voltage rises the currents of the controlled tubes decrease, decreasing the load on the power supply and causing its output voltage to rise. Since this inrreases the voltage appliod to the oscillator, its fredueney changes correspondingly, throwing the signal off the peak of the i.f. resonance curve and reducing the a.v.e. voltage, thus tending to restore the original conditions. The process then repeats itself, at a rate determined by the signal strength and the time constant of the powersupply circuits. This effect is most pronounced with high i.f. selectivity, as when a erystal filter is used, and can be cured by making the oscillator insensitive to voltage changes or ber regulating the plate-voltagesupply. The better recedvers use VR-type tubes to stabilize the oseillator voltage - a defective VIR tube will cause trouble with oscillator instability.

Improving the Performance of Receivers

Frequently amateurs unjustly eriticize a rereiver's performanere when actually part of the trouble lies with the operator, in his latek of knowledge about the receiver's operation or in his inability to recognize a readily-curable fault. The best example of this is a complaint about "lack of selectivity" when the receiver contains an i.f. reystal filter and the operator hasn't bothered to learn how to use it properly. "lamk of sensitivity" maty be nothing more than poor adignment of the r.f. and mixer tuning. The cures for these two eomplaints are obvious, and the details are treated both in this chapter and in the receiver instruction book.

Ilowever, many complaints about solectivity, sensitivity, and other points are justified. Inexpensive, and most second-hand, rereivers cannot be experted to measure up to the performance standards of some of the current and toppriced receivers. Nevertheless, many amateurs overlook the possibility of improving the performanee of these "hargains" (they may or may not be bargains) by a fow simple additions or modifications. From time to time articles in QS'T describe improvements for sperific receivers, and it may repary the owner of a newlyaequired second-hand rereiver to examine past issues and see if an applicable article was published. The ammal index in each Derember issure is a help in this respect.

Where no applicable article can be found, a few general principhes can be laid down. If the complaint is the inability to separate stations, botter i.f. (and occasionally audio) solectivity is indicated. The subject has been treated earlier in this chapter, and several eonstructional artides follow. The answer is not to be found in better bandspread funing of the dial as is sometimes erroneously conduded. However, with the addition of more i.f. selectivitr, it may be
found that the receiver's tuning rate (number of kr . tuned per dial revolution) is too high, and consequently the tuning with good i.f. solectivity hecomes too rritical. If this is the case, a 5 -to-1 reduction planetary dial drive merhanism may be added to make the tuning rate more favorable. These drives are sold by the larger supply houses and can usually be added to the reeceiver if a suitable mounting bracket is made from sheet motal. If there is alreaty some backlash in the dial mechanism, the addition of the planetary drive will magnify Its effect, so it is necessary to minimize the hacklash before attempting to improve the tuning rate. While this is not possible in all cases, it should be investigated from every angle before giving up. Replacing a small tuning knob with a larger one will add to ease of tuning.

In many of the inexpensive receivers the frequence calibration of the dial is not very aceurate. The recoiver's usefulness for determining band limits will be greatly improved by the addition of a $100-\mathrm{ke}$. erystab-controlled frequeney standard. These units can be built or purchased complete at very reasonable prices, and no amateur station worthy of the name should be without one.

Some receivers that show a considerable frequency dritt as they are warming up cat be improved by the simple expedient of furnishing more ventilation, by propping up the lid or by drilling extra ventilation holes. In many cases the warm-up drift can be cut in half.

Receivers that show frequeney changes with line-voltage or gain-control variations can be greatly improved by the addition of regulated voltage on the oseillators (high-frecquener and BF()) and the sereen of the mixer tube. There is usually room in any receiver for the addition of a VR tube of the right rating.

A One-Tube Regenerative Receiver

The receiver shown in Figs. 5-24, 5-26, and $5-27$ represents close to the minimum refuirements of a useful short-wave receiver. ['nder suitable conditions, it is capable of receiving signals from many foreign countries. It is a good receiver for the begimer, because it is

While the title indicates that the recoiver has one tuhe, actually it uses two tubes in one envelope - envelope meaning the glass enclosure. The 6 LT8 4 is a triode-pentode, and in this receiver the pentode section is used as a regenerative detector and the triode as an andio amplifier.

Reforring to Fig. 5-25, the antenna

Fig. 5-24 - Front view of the one-tube regencrative receiver and power supply. The control at the upper left is the general-coverage tuning, center is bandspread, lower left the regeneration control. and the bottom center the antenna trimmer.
casy to build and the components are not expensive.

With this recciver it is possible to hear amateur and commercial stations in the $2-t_{0} 20-\mathrm{Mc}$. range This tuning range will enable the buider to listen to the two low-frequency Novice bands, Also, if one is interested in oltaining code practice, W1AW, the ARRL Hq. station, can be tured in for its nightly code-practice sessions. coil, L_{1}, couples the signal to the detector tumed circuit $L_{2} \mathrm{C}_{2} \mathrm{C}_{3}$. The cat pacitor, C_{2}, is larger than C_{3} and is used as the "bandset" capacitor once C_{2} is set for a particular frequency range, C_{3} is used as the "handspread" tuning control. To facilitate using manufactured coils, the coil L_{2} is tapped to obtain a feedback or "tickler" winding. Regeneration in the detector is controlled by changing the screen voltage obtained at the potentiometer R_{1}. An r.f. filter, using two capacitors and an r.f. choke, is placed in the plate cireuit of the pentode detector to reduce r.f. appearing at the grid of the triode audio amplifier. Still further attemuation of r.f. at the grid is obtained through the use of a series resistor and a shunt eapacitor right at the grid of the audio stage. The audio coupling choke, L_{3}, is made from an interstage audio transformer with the two windings connected in series. A high-inductance choke could be used here, but the series-connected transformer is less expensive.

The headphones are connected directly in the plate circuit of the audio stage, and eonsequently the plate voltage appears at the terminals you can get an electrical shock here if you aren't careful. Some receivers eliminate this hazard by feeding the plate through an audio choke and

AUDIO AMP.

GUB

Fig. 5-25-Circuit diagram of the one-tube regenerative receiver. See parts list for further information.

Parts List for Regenerative Receiver

$2100-\mu \mu \mathrm{f}$. midget variables (Millen 20100) ($C_{1} . C_{2}$)
$11 i-\mu \mu$ f. midget variable (Millen 20015) (Css)
1 $100-\mu \mu \mathrm{f}$. mica or ceramie caparitor
$30.001-\mu \mathrm{f}$, disk ceramic capacitors
10.01- $\mathbf{\mu}$. disk ceramic capacitor
$10.01-\mu \mathrm{f}$. 250 -wolt paper capacitor
$110-\mu \mathrm{f}, 2 \overline{2}$-volt electrolytie caparitor
$216-\mu \mathrm{f}$. 250)-volt electrolytic (or dual $1(\mathrm{i}-\mu \mathrm{f}$.)
$1470-0 h m 1 / 2$-watt carbon resistor
168.000 -ohm 1 -watt carbon resistor
10.1 -megohm $1 / 2$-watt carbon resistor
10.5 -megohn $1 / 2$-watt earbon resistor
11.0 -megohm $1 / 2$-watt carlon resistor

1. 20,000 -ohm potentioneter

2 1-mh. r.f. chokes (National R-is)
80-40-, and 20-meter Barker \& Williamson Baby Inductors MEI. (L.L.L.2)
1 interstage transformer ((stancor A-53-(") (L.3)

1 power transformer, 120 -volt secondary at $5(\mathrm{t}$ ma.; 6.3 volt at 1 amp, (Werit IP3045 or 1P30.46)

1 aluminum chassis. $7^{\prime \prime} \times 7^{\prime \prime} \times 2$ "
1 aluminum panel, $7^{\prime \prime} \times 0^{\prime \prime}$
I piece of aluminum for power-supply chassis. $3^{\prime \prime}$ hy $10^{\prime \prime}$ (the banel and this piece are obtainable at any shect-metal shop,
I O-pin miniature tube socket, bakelite or mien filled
1 i-pin socket for coils L_{1} amil $/ 2$, , bakediteor isolantite
43 -terminal tie wints
7 8/8' rubber grommets
1 Panel bearing assembly, ower-all length $6^{\prime \prime}$
1 insulated shaft coupler
1 terminal strip:, os terminals
2 pin jacks, insulated tyre
Miscellancous 6-32 marhine screws and nuts
6 gromed lugs
25 feet of hook-(1]) wire
4 knols for controls
1618 tube
1 length of spaghetti wire covering
Line cord and plug
coupling to the headphones through a capacion, but in the interest of saving a few dollars this: protective feature was not included. Be sure to use "high-impedance" headphones witl this receiver - the low-impedance headphones that have theen available in surplus will not work well in this particuatar circuit.

The rereiver is built on a $7 \times 7 \times$ 2 -inch aluminum chassis. with the power supply mounted on a separate chassis. In order to minimize hum piekup and vibuation from the power transformer, it is not advistble to mount the power

R'ig, 5.26-- Rear vich of receiver and power supply showing the placement of parts. 'The variable eapacitor on the left is for bandspread and the one on the right for general roverage, The leads from the two capacitors are run through rubber grommets to atveid shorting to the chassis top.
supply on the same chassis as the receiver. An aluminum chassis is easy to work; a $1 / 8$ - and $1 / 4-$ inch drill, plus a small rattail file and hack-saw blade are all the tools needed for the job, although two socket punches will save some work.

The first step, is to mount the coil and tube sorkets. They are spaced 2 inches from the sides at the center of the chassis. (iround lugs should be mounted under the nuts that hold the tube sorket and also moder the rear mut holding the eoil socket. Next, the panel holes are drilled.

Looking at lig. 5-24, front, the knols at the lower left is the regeneration control, lower center is the antenna trimmer, and the headphone tips arre at the lower right. The knol at the upper left is for the generab-ovarage capacitor, and the one at the right the handspread tuning. The dial shown in the photograph is the National type K.

After the holes are drilled in the panel, it is held in place against the ehassis and the four holes along the bottom are used as atemphate for the chassis holes. A small right-angle bracket to hold the antennat-trimmer eapacitor is made from a piece of abluminum. The hole in the bracket should be large enough to clear the rotor of the capacitor, since both the rotor and stator are insulated from the rhassis. The trimmer is mounted to the brated by serews and the insulated mats on the capacitor frame. The bracket, tie points, and audio choke La can now be mounted in place.

The two capacitors, $C_{2} 2$ and ('3, should then be installed on the pand. When the potentiometer R_{1} and the pin jacks are mounted in place, they will hold the pancel to the chassis. Bu sure to insulate the pin jacks from the panel and chassis with fiber washers. The through-shatit bushing is then measured and cut to size, making allowance for the insulated coupler.

If this is your first construction project, soe the chapter on Construction lratetres for tips on wing and soldering before stanting this job.

It is important that a sparate ground lead be comerted to the rotors of C_{2} and C_{3} and the lead brought below the chassis to at eommon grounding

point at the tube sorket. This will help make the receiver stable and reduce hand capacity.

There are five leads roming from the interstage transfomer: red, blue, black, and two green. The red lead and green lead that are directly opposite earh other are connceted togother. After the leads are soldered and taped, the end of the black lead is also taped. These bads ate then rolled up and turked in the comer of the chassis. The remaining blue and green leads then become those used for wiring the seriescomected transformer into the cireuit. One is connected to the junction of the $0.01-\mu \mathrm{f}$. disk rapacitor and the $1-\mathrm{mh}$. r.f. choke and the other lead is connected to the $\mathrm{B}+$ voltage terminal.

The Barker \& Williamson coils are mounted on five-prong plugs, although only four of the contacts are used. The link mounted at one end of the coil is L_{1} and the coil proper is L_{2}. To make the tickler tap, a short piece of hook-up wire approximately 3 inches long is soldered to the fifth prong on the plug. The piere of wire is then run through the middle turns of the coil and soldered to the tap point. For the 80 -meter coil, the tap) is connerted to the 8th turn in from the link end. To get the tap wire through the middle turns of the coil, it will be necessary to bend two or three turns of the coil in towards the center of the coil. This will provide sufficient rearance for the tap lead. It is also necessary so bend in the 8th turn to make the tap eomertion. Be sure that none of the bent turns tourhes adjacent turns.

For maximum bandspread on to moters, it is neressary to remove nine turns from the fometer coil. The turns are taken from the end opposite the link end of the roil. The tiokler tap is made on the th turn end from the link end.

To bandspread the 20 -meter coil, two turns are removed from the end opposite the link end. The tap is placed on the the turn from the link end. In all thee coils, the tap lead should be insulated where it passes through the coil turns.

The power-supply components can now be wired. There are two important points that begimners should keep in mind when wiring the
supply. The first is that the olectrolytie caparitors should be wired with the leads marked with a minus sign, or negative, comerted to the chassis. The plus sign, or positive, connerets to the choke loads. Likewise, the selenium reetifier is marked with a plus sign, and this lead is comected to the rhoke lead. Four leads are brought out from the power supply to connect to the reediver: the two heater leads, the B + lead, and the B - lead.

When the power supply is wired and the leads connected to the remiver, the unit is ready to test.

If you already have an antemat strung up, romert the end of it to Terminal 2 - the one connerted to the rotor of ('t. If you don't have an antenna, any wire 20 to 40 feet long or longer, can be strung up. An outside antenna will perform better than one indeors. although you'll hear many signals with just a wire in the room.

Comect your headphones to the tip, jacks and plug in the 80 -meter coil. l'lug the power cord into the 115 -volt a.r. line and wateh the 6U8 to see if the heater lights up. If it doesn't, turn off the power and check wiring from the power supply to the heater pins on the (iC8 socket.

The receiver will only take at minute to warm up. Turn the regeneration eontrol and, at one point, you should hear a change in the characteristic of the noise. This is the point where the rereiver starts to oscillate. Tune the generalcoverage condenser slowly and you should hear signals. Leave the atparitor set at or near one of the signals and then tume the bandspread catpacitor. This eapacitor gives a slower tuning rate, making it mueh easier to tome in signals.

With a signal tuned in, rotate the antennattrimmer control and the signal should get louder at one point. If it doesn't. change the antemato terminal number 1 and short terminals 2 and 3 together with a short piece of wire. Try the antennat trimmer again, and you should find that the signal will peak up. The regeneration eontrol setting may have to be changed to maintain oscillation.

Locating the amateur Novice bands is simple Tune the recoiver until you find an amatear 'phone station. The Novice band on both 80 and 40 meters is immediately below the 'phone bands. To tune lower in frequener than the 'phonc hands. the bandspread eapmator is turned so thes the plates mesh more.

Fif. 5-27- Bottom view of the two anits. It the lower left in the receiver is the interstage transformer L_{3}. To the right of L_{3} is the antema-trimmer caparitor momented on a rizht-angle bracket. Inmediately in front of the bracket is the insulated shaft coupler which conneet: the thromph-shaft bushing to the antenna trimmer.

The selenium rectifier in the power supply is visible betwern the two electrolytic capactors.

A Two-Band Three-Tube Superheterodyne

The threr-tule superheterodyne shown in Figs. 5-28, 5-30 and 5-31 might he catled a "minimum" recoiver, since it probably represents the minimum in receiving equipment that will give a good aceount of itself under present hand conditions. By using an i.f. of 1700 ke. it is possible to use an oseillatior that tumes 5.2 to 5. 7 Me and provides receiver cov(rage of the 80- and 40 -meter bands without switching. To listen on higher frequencies, it crystablcontrolled converter can be usod ahesul of the set, working into it at 80 metcres.

Referring to the cirenit in Fig. 5 -2!, it can be seen that adjustable input coupling is provided (variable eoupling between L_{1} and L_{2}). White the sigmal level rath be reduced by detuning the $140-\mu \mu$. ANT cabacitor, C C_{1}, the adjustable coupling is e:sy to construct and permits reducing the imput level without detuning. The high-frequener oseillator output is coupled to the cathode of the pentode mixer, to provide a low-noise mixer and a minimum of "pulling." Changing the setting of the DNT rapacitor does not pull the oscillator frequeney appreciahly unless the mixer input cireuit is tuned close to the osciliator frequency,

Fig. 5-28 - This two-hand superheterodyne receiver uses an autodyne second detector and adjustable antemia compling. 'The dial pointer and hlack trims stripe are made of hack Sowth 'lape, 'The control marked "Feed-back" is the regeneration control.

Fig. 5-29 - Schematic diagram of the two-hand superbeterodyne.
$\mathrm{C}_{1}-140-\mu_{\mu} \mathrm{f}$. midxet variable (IIammarhend HF$110)$.
C_{2} - $15-\mu \mu \mathrm{f}$. midge! variahle (Hammarlund HFF-15).
R_{1} - 10,0100 -ohn 2 -watt wire-wound motentiometer (Clarnstat $1.43-10 \mathrm{~K}$).
 diam., 32 turns per inch, No. 22 wire.
$\mathrm{L}_{1}-12$ turns.
1.2-26 $\mathbf{2}$ urns.

La-8 turns.
$L_{4}-21$ turns, separated from L_{3} by one (remoned) turn.
that have berome popular rearntly. They have the twin virtues of low cost and quite adequate Q for this joh. The regenerative detector uses the Colpitts rireuit to eliminate the need for

Ddjacent turns on L_{3} and L_{4} go to 0.001μ f. and chassis respertively.
 \therefore - Monted on 500 K volume control.

III resistors $1 / 2$ watt umless aperified otherwise. III capacitances in $\mu \mu$ f. moless otherwise noted. All fixed capacitors except two acrows $L_{\text {fi, }}$ one across L_{4}, and the electrolytics (polarity marked) are ceramie. Fixed ea pacitors acroses I_{4} and L_{6} are silver mica.

Power transformer is K night (Alied Radio) (02-G-0. 4 , filter ehoke is Knight (6)-(;-137, filter capacitor is Alal lory $2 \mathrm{~N}-\mathrm{3} 3 \mathrm{i}$.
tapping the coil or adding a tirkler winding. An electrolytic eapacitor across the regeneration rontrol eliminates the noise produced by varying the wire-wound potentiometer. This potentiometer was selected instead of a composition affair because of a personal preference for such eontrols Wherever any significant current is involved.
The two-stage audio amplifier is conventional, except that we started out with no cathode bypass capacitors and found that the one shown on the first stage reduced some a.e. hum. Switeh S_{1} is mounted on the audio volume control.

An $8 \times 12 \times 3$-inch aluminum chassis plus a 7×13-ineh panel provides enough motal for the recoiver, with the single exception of the sarap of aluminum needed for the bracket that supports the $15-\mu \mu$ f. tuning eapacitor, Ce. The panel is held to the chassis by the two shaft bearings and the regencration-control potentiometer, as cun be seem in lig. $5-31$. It will pay off to take a little care in the location of the holes for the National type k dial, in the interests of a smooth-tuning receiver. Buikl the tuning-capacitor bracket first, then line up the eapacitor shaft against the pand to mark the dial bushing hole, and finally locate the drive bushing hole. Replace the small knob that comes with the Type K dial with a larger one. and use a couple of drops of oil to lubricate the drive bushing.
l'ractically everything efse it the reroiver an be located from the photographe. The adjustable antemateroupling roil is mounted on the end of a longth of $1 / 4$-inch diameter lucite rod by rutting the end of the rod at to degress and cementing a small seratp of polystyrene sheet to this face. The serap is then filed to fit inside the coil and secured with a few drops of Duco coment. Four smatl holes are drilled through the rod: two for the coil ends (which also serve as tie points for the flexible antematand ground leads), one through which the antemat and ground leads are threaded and remented, and the fourth through which a piece of No. 20 wire is pushed and bent bark atound the rod. This last
wire serves as a shoulder that bears against a filser (or metal) washer that in turn bears against a large rubber grommet with a $1 / 4-\mathrm{inch}$ hole, ats shown in Fig. 5-32. The other side of the grommet has another washer between it and the panel bushing. The rod is pushed through the bushing, two more washers are added, and then the knob) is put on. 13y pushing the rod out through the panel as the knob is tightened, the rubber grommet is left in compression, and it serves as a simple friction lock for the control.

The two eoils L_{5} and L_{6} are mounted on 1-inch separated centers. The "phones" jack is insulated from the chassis by fiber washers. Plate voltage will appear at this point, so always use an insulated phone plug. Both C_{2} and C_{1} (alpuritors are insulated from the chassis - the former by mounting it with short bushings on the mounting bracket, and the latter by fastening it to the chassis with a machine screw through small extruded fiher washers. Clearance holes for leads from both stators and rotors of these capacitors are provided, as can be seen in Figs. 5-30 and 5-31.

To minimize hum, shield the leads to and from the volune eontrol. These pass through a grommet in the chassis and make connection to the chassis only at the 12AN7 rhatssis. Also shield the lead from the arm of three generation control.

Assuming that the wiring is correct, that the tube heaters light when you turn on the set, and that the power supply delivers 250 to 300 volts, the first step is to rheek the detector. This is conveniently done with the 6U8 out of its socket - then if something is wrong in the "front end" it won't confuse the detector cherking. With headphones plugged in and the receiver (less 6U8) warmed up, advancing the volume control should give a hissing sound in the headphones. Advancing the regeneration control (inereasing the voltage on the 6B31)6 screen) you should find a point where the hiss increases appreciably and perhaps a very slight hum is heard. This is the point where the deteetor "oscillates" - below this point you
 won't get a beat note with e.w. signals, and beyond it you will. The detector works - the next step is to get it on 1700 ke. (lf it doesn't work,

Fiд. $\boldsymbol{\pi - 3 0}$ - ${ }^{\text {Fike }}$ miniature tubres. from left to rinht, are 6(i8, 013l)6 (in shicld) and 1AN:. The left-hand variahe caparitor tomes the miner input eircuit, and the small one in the center tunes the hish-frequensy oseillator. Note the phono-jack antenna terminal and headphone output jack on the wall of the chassis. The tuning eapacitor at rear center is mounted on an aluminum bracket.

Fig. 5-31 - The mixer input and high-frequency oseillator coils are monnted on tic moints, as shown here. 'thes antenna coil. 1.1 , is monnted on the end of a piece of lueite rood, as shown here and in liz. 5-32. The leads to it are wrapped several times around the rod, to provide a "pig tail" connection.
rheck your wiring and the voltages at the $6 B \dot{D}(6$ and $12 A .57$ pins.) If you cat beg, borrow or steal a test gemerator, put the detector on 1700 ke . hy adjusting the slug in L_{6} until the $17(0)-\mathrm{ke}$, signal is heard. The test signal need ouly be leosely coupled to L_{6} - a wire plabed a foot from the coil and connerted to the test generator should suffice. lateking the test generator, you maty be able to use a b.c. receiver by tuning it to around 1245 ke . If the recciver hats a $4.55-\mathrm{kr}$. i.f., the oscillator will be close to 1700 ke ., and if the b.e. receiver is placed within a fow frot of the receiver under test, there will be enough radiation from the b.e. reeciver to ant as the test

Fig. 5-32 - I etails of the adjustahle antemna coupling coil. Part of the coil has been ent away to show the support.
signal. Don't go by the calibration on the b.e. receiver: make a new one from known stations.

When the autodyne detector is working sutisfactorily and you have acquainted yourself a little with its operation, plug in the 6 18 and lat it warm up. Trim L_{5} until you find a point where it pulls the detector out of oscillation, and detume it slightly until regeneration starts about 10 or 15 degrees farther along the regeneration rontrol, R_{1}, than it did when L_{5} was tuned well off the frequency. Check again to make sure that you are still on or close to 1700 ke .

Now connect an antemat (any wire 20 feet long or more) and swing the ANT (apacitor, C_{1}, across its range. The receiver noise should inrease at two points - one near minimum on the caparitor (40 moters) and one around $3 / 4$ moshed (80 meters). The $3-30-\mu \mu$ f. compression oseillator trimmer should be set at about $1 / 2$ turn bark from its tightest setting. Leaving the ANT capacitor on 80 or 40 meters, tune around with the TUNE capacitor, C_{2}, until you locate some amateur signals. If you lark a frequency standard or the ability to borrow one, you have no alternative but to identify the bands by the limits of 'phone or c.w. signals in the various subbands.

In any event, once you have found the signals, you cin move the binds on the 'TCNl: sale by changing the setting of the mica compression trimmer. However, muless the i.f. is exactly on 1700 ke., the $7.0-$ and $3.6-$ - Me. points, 7.1 and 3.7 Me., rte., won't erincide as they do on the homemade scale shown in Fig. 5-28. ()bserving the aror, however, you rem bring the i.f. to 1700 ke . easily. The homemade seake is simply a shoet of white patper hold down with batak Scoteh 'Gape, with a sliver of tape on the dial to serve as a pointer. The pointer laps over the " 0 " end, and the (0-100) seale of the dial catn still be used for logging by referting it to the upper alge of the lower black strip on the right-hand side.

For the reception of c.w. signals, the regemeration rontrol is advanced far enough for the detertor to oscillate, as indicated by the sudden increase in hiss. It mat be noticed that on strong signals it is impossibibe to tune in a signal at a low beat note (200 to 300 (evedes). This indieates that the sigmal is too strong and is "pulling" or "blocking" the detector. To overcome this, increase the regeneration control or reduce the antenna coupling. After you have used the rereiver for a while, you will get used to the "feel" of it and you will find the settinge that work best for various QRAI levels.

When receiving a.m. 'phone, the regeneration control is maintained just below the oscillation point. This is the most sensitive point for 'phone reception, since the gain of the detector derreases as you back off the regeueration rontrol still more. The selertivity of the receiver for 'phone reception is not as great as can be expected from a smatl superheterodyne using several tuned rireuits in a 455 -ke, i.f amplifer. However, vou can make up a lot of this selectivity by decreasing the antenna coupling and rumning the deteetor just. under the oscillation point. A strong signal decreases the selectivity of the regenorative detector, hence the need for reduring the signal by decreasing the antenna coupling. S.s.b. 'phone is recoived the same as a c.w. signal, by advancing the regeneration control past the oscillation point and tuning carefully about the signal until it beromes intelligible. Overload is again the enemy here, so rum the antenna coupling at a value eonsistent with grod signal, 'noise ratio.

A Two-Band Five-Tube Superheterodyne

The five-tube superheterodyne shown in ligs. 5-33, 5-35 and $5-36$ is a doublereonversion receiver tuning the 3.is- and 7 -Mc. amateur bands. It is not difficult to build, and it has stability and solectivity not surpassed hy fartory-hailt reoderers rosting much more.

As can be sern in Fig. 5-34. the cireuit diagram, the receiver uses intermediate frequeneries of 1700 and 100 ke . The $1700-\mathrm{ke}$. first i.f. permits using an oscillator that tumes only one range for the two bands. Tuning the oscillator from 5.2 to 5.5 Me. gives an i.f. of 1700 ke . for the $3.5-\mathrm{to}+.0-\mathrm{Mc}$. range and the same i.f. for the 6.9- to $7.4-$ Mc. range. The oscillator eomponents are soldered in place (no switching or plug-in coils) and the dial catibration is made onere and can then be redied upon. To change hands, it is only neeressary to swing the input condenser, (1 , to the 80- or tometer band. The 1700-ke. i.f. climinates any pulling on the oseillator. in either range.

With no r.f. stage, the recoiver's signat-tonoise ratio is determined hey the mixar. The $6.1\left(\begin{array}{c} \\ \hline\end{array}\right.$ is the best tube available for the purpose. To minimize spurious responses, two tuned circuits are used in the input lotwern anteman and converter grid. The stator plates of the dual eondenser, C_{1}, are shiodded from eath other, as are the two coils L_{2} and L_{23}, and the roupling between circuits is ohtained by the $0.001-\mu \mathrm{fl}$. condenser.

The 1700 -ke. signal from the first converter is converted in the (ikis seromd converter to 100 ke . The use of at laoo-ke. erystal for the oseillator at this point permits using an r.f. gain control that has no affert on the frefuence. No frequency change with gain-control setting is a desiratile chatanteristio of any gook receriver, so the 1600)ke. crystal at s2.万5 is not a luxury. Whike the 1600-ke. oscillator could be mate selfonontroled,
it would be almost certain to "pull" with gaincontrol changes.

The sperified $1700-k$ e. transformer, T_{1}, is a relatively expensive item, hut there can be no compromise at this point, berause a poor transformer will not have enough rejection to avoid the secondary images (200 ke, away) that might ot herwise ride through.

The 100 -ke. output from the 6 k 8 is filtered through three tuned rireuits and feeds a triode plate detector ($1 / 2$ GSN7). This detector is regenerative, but the regencration is fixed and doesn't have to be bothered with by the operator unless he changes tubes and the new tube has considerably different characteristics. The regenerittion in the 100 -ke. detector gives the recciver its single-signal ew, reception characteristic, sinee there aren't enough tuned cireuits to give it otherwise. The b.f.o. uses the other triode in the GSNT anvelope, and st ray coupling is used for the b, f.o. injection. No panel control of b.f.o. piteh is available, becanse the selertivity is not adjustable and the variable-pitch feature is not essential.

I 1 , to this point the gain of the receiver is not too high, and two stages of audio amplification are used. Omitting the cathode by-pass condensers still leaves more than enough audio for any pair of high-impedance headphones.

By kerping the signal level low up to and through the selective stages, there is a minimum opportunity for overloading and aross-modulation, and the gain meed be kept only high enough to prevent degrading the signal-tomoise ratio. Purther, a regenerative stage has at tendeney to "flatten out" with strong signals, so the regenerative detertor is somewhat protereded by holding the gain down. However, the reereiver has quite adequate sensitivity - in any normal location

Fip. 5.33 - The five-tule donble-ronversion sumerhetcrodyne tunes the 3.5- and 7Me. bands without handswitehing. 'The controls on the left are audio wolume (upper) and h.fo. switch, and those on the right are antema tuning (upper) and i.f. gain.

Fig. 5-34 - Wiring diagram of the five-tule receiver.

($\mathrm{a}-\mathrm{l}(0) \cdot \mu \mu \mathrm{fd}$. midget variable (National PSR-100).
K_{5} - 1000 -ohm wirewouml potentioneter (Mallory AlMP).
All resistors $1 / 2$-watt unless speeified otherwise.
I. 1 - 8 turns No. 30 d.c.e. ctose-wound over grimind end of L. 2 .
$\mathrm{I}_{2}, \mathrm{I}_{3}-35$ turns No. 30 d.c.c. dose-wound on National XR-50 slugtuned form.
$\mathrm{I}_{4}-23$ turns No. 24 hare space-wound 32 turns per inch, $5 / 8$-inch
dian. 'lickler is $13 / 4$ turns spaced 1 turn from L_{4}. See text.
(Made from IS \& W 3008 Miniductor.)
I.s - 20-mb. (approx.) slug-tuned coil (R(:A 205R1).
$\mathrm{I}_{6}-20$ henry, 15 ma. choke (Staneor (:1515).
' l_{1} - 1700-k'. i.f. transformer, modified (Villen 62161).
${ }^{\prime} \mathrm{I}_{2},{ }^{\prime} \mathrm{I}_{3}$ - 100-ke. transformers made from 'I'V components (IRCA 205R1). Sec text.
' l_{4} - Small 3:1 andio transformer (Stancor A-63-C).
RFCC ${ }_{1}$ - $\mathbf{- 5 0} \mu \mathrm{h}$. (Vational R-33).
The 1600-ke. arystal is a Peterson Radio type \%-2.

Fig. $\quad 5-35-\mathrm{A}$ top view of the five-tube superbeterodyne shows how an aluminum and a stexl chassis are eomblined for wreater weisht and strength. 'The 6e: oscillator and 6:16:7 mixer are at the left, and the two 6SNT: are at the extreme right. Note the shichal between the stator seetions of the condenser on the left.
on the bracket can be found after the dial-and-chassis assembly has been completed. It is imperative to the smooth operation of the tuning condenser that the shaft of the condenser be correctly aligned with the coupling of the dial.
and with a fair to good antenna, any signal that can be heard by a large reeriver can be heard by. this ond, exerpt in rate cases whore the largerereiver's superior selertivity makes the differemere.

Construction

The construction of the receiver is unconverntional in that two chassis are used, as shown in Figs, $\overline{5}-33$ and $\overline{5}-35$, and the pand is mounted away from the chassis, All of the electribal components are mounted on the aluminum $\overline{7} \times 11 \times$ 2 -ineh ehassis, and this sits on an inverterd $\bar{\sigma} \times 11$ $\times 2$-inch steel chassis that serves as a base and bottom cover. The bottom chatssis hats rubber feret (grommets) at its corners that prevent its slipping on the table. The 8×12-inch panel is supported away from the atuminum chassis on 1/2-imch-long brass collats, secured by suitable washers and (6-32 sorews, as shown in Fig. 5-36. The panel is supported by two such collars at each end of the chassis and by two more that make up to two of the mounting serews of the National $A(N$ dial at the renter. The two renter collars add to the strength of the assembly. by furnishing additional support for the panel and dial, and they should not be omitied.

The aluminum rhassis is bolted to the streel chassis by two $41 / 4$-inch lengths of $1 / 8$-inch diameter brass rod, threaded 6 -32 at rach and. These rods pass through holes in the top and lip of each chassis. The only holes that are required in the strel chassis are those for the two tie rods, the four holes for the rubber feet, and a $1 \frac{1}{4}$-inch diameter hole to rlear the headphone jack.

In the oscillator eircuit, the $35-\mu \mu \mathrm{fl}$. tuning condenser, C_{2}, is supported by a small aluminum bracket. The corrert location of the condenser

The $1000-\mu \mu \mathrm{fil}$. trimmer, ${ }^{*}{ }_{3}$, is mounted under the chassis with its shaft extending through to the top, so that the capacitor is adjustathle from above the chassis. Neither (${ }_{2}$ nor C_{3} is grounded to the chassis through its mounting-leads from the rotors are grounded to the chassis at one point near the $6 . \mathrm{AC}^{7}$ tube sorket. The oscillator coil, L_{4}, is mounted by its leads on a small multiple tie point.

The shiold bot ween the input coils, L_{2} and L_{3}, is made of thin aluminum. It has a noteh in the edge that goes against the chassis side, to clear the antenna-roil loads, and it has a hole through it for the lead between the bottoms of L_{2} and L_{3}. The dual condenser, C_{1} is fastened to the chassis by a single 6 -32 serew, and the head of this srrew has a copper shield soldered to it for minimizing coupling betwoen $C_{1 A}$ and $\mathrm{C}_{1 \mathrm{~B}}$. The shield is casily cut out from copper flashing and soldered to the screw head. The rotor assembly of ('1 must be removed to put the shield in place, but this is just a mattor of loosening four screws. Don't touch the stator plates. The screw with the shicld on it, which holds C' 1 to the chassis, also holdis the eoil shield in plate underneath the chatssis.

The $1700-\mathrm{kr}$, i.f. transformer is made by momnting the two "Loopsticks" I inch apart on the chassis, as shown in Figs, 5-3:3 and 5-35. The $100-\mu \mu$ fle caparitors are mounted on the coils.

The looke. circuits use a TV component, the RCA 205R 1 Horizontal Oscillator coil. As purchased, they have the soldering lugs and tuning serew out of the top of the ean, but they are easily reversed by unerimping the can and reversing the assembly, Bofore reassembly, however, there are a few things to be done. The large coil is used for the $100-\mathrm{ke}$, tuned circuit by comecting a 100 -
$\mu \mu \mathrm{Fl}$. micat condenser between l'ins A and F and lifting the center-tap) from l'in C. Don't break the center-tap - the easiost way is to scrape the two wires first to remove the insulation, flow a drop of solder on the seraped portion, and then cut the two wires away at the pin. The other winding is used as the primary in T_{2} and the tickler in T_{3}. The primary in T_{2} can be tuned from the top, becanse there is also an iron slug in this smatler coil.

In wiring the set, use tie points liberally so that no components will be floppes. The on! shelded wires are the one rumning from the volume control to l'in 1 of the audio amplifier and the leads from T_{3} to l'ins t and $\overline{5}$ of the deteretor. The whieds are grounded to the chassis at the emds and any other eonvenient points.

The oscillator eoil, L_{4}, is made from 13 d W° Miniductor. To separate the two eoils of L_{4}, push the 3 red or the turn from one end of the piece of Miniductor through toward the center of the coil. suip this wire with a pair of eutters and push the two enels back out. Fiuch end is then poeded around for $1 / 2$ turn. The two coils are adjusted to the right number of turus by working in from the out side ends.

The rotor of r_{1} is commerted underneath the chassis to the $0.001-\mu \mathrm{ft}$. coupling condenser bey rumbing a wire from the front support of the rotor through a $\frac{1}{4}$-inch clearane hole in the chassis. The 0.001- μ fof. coupling condensor and $/ L_{2}$ and L_{3} atre grounded to the lug under L_{s}.

Adjustment

There are two types of adjustment that must be made to get the receiver working: adjusting the circuits to the proper frequencies and adjusting the oscillators and the regenerative detector to the proper :mplitudes. To this latter end, leave the eathode end of R_{1} disconnected in the original wiring, and lightly solder (so that it cean be changed later) the lead from l'in 5 of the detector to Terminal C of T_{3}. Resistors R_{2}, ind R_{3} may require changing, so don't solder them too well at first.

Connert a power supply to the receiver and see that the tubes light and that the power-supply voltages are approximately correct. The 250 volts ran he anything 25 volts either side of 250), and the 105 volts, coming from a VIR tube, will be mothing to worry about if the VIR tube lights.

Next connert a low-range milliammeter between R_{1} and cathode (+ lead to aithode) and apply power again. The gride eurrent should read about 0.0 mata. (50 ma.). If it rads much more than this, try a slightly larger resistor at R_{2}, or a smatler one if the grid current is too low. Make these adjustments with the rotor arm of the r.f. gain control at the grounded end.

Next cheek the oseriltation of the $6(4)$ highfrequency oseillator. To do this, commect at (0-10) voltmeter across the 1700 -oim resistor in the plate eireuit of the $8 \mathrm{C}=\mathrm{t}(+$ terminal to
 ner, near where the power leads leave the ehasis. The $6 \mathrm{SN}_{\mathrm{F}}$ socket nearer the panel is the detector-b.f.o. scetion.

+105 side, -1 erminal to the $0.001-\mu \mathrm{d}$. cont denser). (Hserve the voltage reading and then touch your finger to the stator of ('2 or ('3. If the oscillator is working, the voltmeter reading will increase. If you get no change, it means the oweillator isn't working. With both coils of L_{4} wound in the same direction (as they will be

3650 ke , , you know that the first 100 -ke. harmonic you hear on the high-frequency side will be 3700 ke ., and the tirst one on the low side will tee 3600 ke . The second harmonic of the $3650-\mathrm{ke}$. signal will furnish a rheck point at 7300 ke . (2×3650). so swinging C_{1} to about $1 / 3$ meshed (where it will pat the T-Me. signals) will allow you to locate

Fig. .3.37--suggested circuit dia. gram for the receiver power supply. 'T1 - Staneor PD.8.tor or equiva. lent. S_{1} - S.jp..t. togple switch.
if Miniductor is used), the stator of the tuning condenser should be connected to the outor end of the larger coil, and lin 5 of the $6(\cdot 4$ should be connereded to the outside tum of the smaller coil.

If wou can borrow a survicemann's test oscillator that will give a modulated signal at 1700 kc ., this signal can be introduced at the grid of the blis and the 100-ke, i.f. circuits cen be peaked (b.f.o. turned off), listoning in the headphones for maximum response. The $1700-\mathrm{ke}$. signal can then tre transferred to the grid of the GaC: and the trimmers peaked on T_{1}. Lacking the signal generator, the alternative is to provide a modulated signal in the 80- or 40-meter band and couple it to the stator of $C_{13,}$. If the signal is from a erystal oscillator or VFe at $3 \overline{0} 0 \mathrm{kc}$. (for example), running from an unfiltared power supply to furnish the modulation, set the tuning dial vertical. If the signal is at 3500 ke ., set the tuning condenser C_{2} at almost full capacity. Rock ('3 slowly until the signal is heard. Then patak the $100-k e$. transformers T_{2} and T_{3}, reducing the signal input as neressary to avoid overloading. Next turn on the b.f.o. and adjust the slug in L_{5} until a beat note is heard. Then peak the trimmers in T_{1}.

With the initial tuning of the $100-\mathrm{ke}$. chanmel done, the slugs of L_{2} and L_{33} can be adjusted for maximum sighal, with no antema connerted. Sot C'i at almost full capacity, the signal near 3.5 Mc., and adjust the iron slugs for maximum in the headphones. If a VFO or crestal oscillator is furnishing the signal, there will probably be crough pick-up without any apparent coupling, but a short (6 -inch wire connerted to the antemna terminal may be required to piek up the output from a low-powered signal source.

It is not likely that the $100-\mathrm{ke}$. eircuits will be tuned to the exact frequency that makes the calibrations coincide on 80 and 40 meters. While this isn't neeressary, of course, it does make the dial look eleaner. To bring the calibrations iato line, bog or borrow a frequeney standard that will give signals at 100 -kre. intervals. First locate the $4.0-$ and $7.0-\mathrm{Me}$. points on the receiver dial, by referring the harmonies from the $100-\mathrm{ke}$. standard to the original signal you used for alignment. If, for example, the 80 -meter signal you used was at
the 7 -Me. points. Thus you will have 100-ke. intervals on the dial from 3.5 to 4.0 Me , and from 6.9 to 7.4 Mc., but not neeessarily coinciding. To make them coincide, some slight retuning of the 100)-ke. transformers is required. li, for example. the $7.0-$ Ne point oceurs to the right of the 3.6 Me. point, the 100-ke. amplifier is tuncd low, and the slugs should be turned out slightly. A fow trials will bring the circuits into place.

Now check the regeneration of the detector by connerting the lead from Pin 5 of the detertor to 1) on T_{3}. If a steady beat is heard, indicating that the detector is oscillating, tume both circuits of To and sere if they will kill the oscillation. Their awtion is to load the regenerative detector to whore it won't oscillate - if the action persiste. try a 700 -ohm resistor at R_{3} as a last resort. These cireuits should be peaked on a modulated signal, with the b.f.o, turned off.

Ifter the detector has been made regenerative, the calibration can again be chereked as in a precoding paragraph, and any minor changes in tuning made as are found newessary. Onee the 100-ke. circuits have beren aligned the 9 can be loft alone, and if the $3.5-$ and $4.0-\mathrm{Mc}$. points don't come where you want them on the tuning dial, at slight adjustment of C_{3} will correct it.
(oonnect at $140-\mu \mu \mathrm{fd}$. variable in sorios between antenna and the antenna post. ()n 80 meters, peak C_{1} on a signal and rock the adjust ment slug of L_{2}. If it tumes fairly sharp, the antemat coupling is not too tight on that band. Swing ('y out until you are listening on 40 (to a signal) and again rock the slug on L_{2}. If it tunes broad, reduce the rapacity of the 140 - $\mu \mu \mathrm{fl}$. antema condenser until L_{2} shows a definite peak. Note the settings of the condenser for the two bands.

The input condenser, ('y, will tune sharply on (ither band, and it should alwas be peaked when listening to a weak sighal. Detuning it slightlywill attenuate abnormally loud signals.

The powor-supply requirements for the receiver are slight: about 15 ma . at 250 volts and 25 mat at 105. a 60 -ma. power supply will take care of this and the extrat $10-12 \mathrm{mal}$ for a $1 \mathrm{lR}-10 \mathrm{~m}$. A rircuit diagram with suggested values is shown in Fig. 5-37,

A Selective Converter for 80 and 40 Meters

Many inexpensive "communications" receivers are lacking in selectivity and bandspread. The 80 - and 40 -moter performance of such a receiver fan be improved considerabls by using ahead of it the converter shown in Figs. 5-38 and 5-40. This ronverter is not intended to be used ahead of a broadrast receiver exeept for phone reception, becaluse the bor. set has no BFO or manual

Fig. $5-38-1$ sed ahead of a small receiver that tunes to 1 700 ke., this ronverter will add tuning ease and selectivity on the 80 - and $f 0$-meter hands. The input capacitor is the dual section unit at the upper left-hand corner. "The crystal and the tuning slug for Lif are mear the erenter at the foreground edge.
gain control, and both of these fratures are neerssury for good e.w. reception. The converter ran le built for less than $\$ 20$, and that cost can be cut apprectiably if the power "an be "borrowed" from another source.

The converter uses the tuning prineiple emplowed in the two-hand superheterodynes desoribed e:trlier in this rhatpter. A double-tunod in-
put circuit with large abacitors avers both 80 and 40 meters without switehing, and the oscillator tunes from 5.2 to 5.7 Me. Consequently with an i.f. of 1700 kr . the tuming range of the converter is 3.5 to 4.0 Mc . and 6.9 to 7.4 Me . Which band is being heard will depend upon the setting of the input cirenit tuming (C_{1} in Fig. $5-39)$. The converter output is amplified in the receiver, which must of course be set to 1700 ke . To add selectivity, a $1700-\mathrm{ke}$. quartz erystal is used in series with the output connection. A small power supply is shown with the converter, and some expense can be eliminated if 300 volis d.e. at 15 mas. and 6.3 volts a.e. at 0.45 ampere is available from an existing supply.

Construction

The unit is built on a $\overline{7} \times 11 \times 2$-inch aluminum chassis. The front panel is made from a 6×7-inch piece of aluminum. The power supply is mounted to the rear of the chassis and the converter components are in the center and front. The layout shown in the bottom view should be followed, at least for the placement of L_{1}, L_{2}, L_{3} and L_{4}.

The input and oscillator coils are made from a single length of $\mathrm{B} \& \mathrm{~W}$ Miniductor stock, No. 3016. Count off 31 turns of the coil stock and bend the 32 nd turn in toward the axis of the coil. Cut the wire at this point and then unwind the 32 nd turn from the support bars. Using a hacksaw blade, carefully cut the polystyrene support bars and separate the 31 -turn coil from the original stock. Next, count off 9 turns from the 31 -turn eoil and cut the wire at the 9 th turn. At the ent unwind a half turn from eabch coil, and also unwind a half turn at the outside ends. This will

Fig. 5-40- Bottom view of the converter showing placement of parts. 'The coil at the lower left is $/ 3.3$ and the input coil. $L_{1} L_{2}$, is just to the right of l.3. The owitlator coil. $L_{4} L_{50}$ is at the left near the center, The output coil, I, is near the top center.
leave two eoils on the sume support bars, with half-turn leads at their ands. (One coil has 21 tums and the other has 8 tums, and they are separated by the space of one turn. These coils are L_{4} and L_{5}.

The input coils L_{1} and L_{2} are made up in the same manmer. Standard bakelite tie points twe used to mount the roils. Two 4 -terminal tie points are needed for $L_{1} L_{2}$ and $L_{4} L_{5}$, and a oneterminal unit is required for $L_{3,}$. The plate load inductance L_{6} is a $10.5-200 \mu \mathrm{~h}$. variable-inductane coil (North Hills 120H). The eoupling coil $L_{;}$is 45 turns of No. 32 d.e.r. seramblewound adjarent to L_{6}. If the constructor should have difficulty in obtaining No. 32 wire, any size small enough to allow 45 turns on the coil form can be substituted.

The input calpacitor. (1 , is a 2 -gang t.r.f. variable, $365 \mu \mu$ f. per section. As both the stators and rotor must be insulated from the chassis, extruded fiber washers should be used with the screws that hold the unit to the chassis. The panel shaft hole should be made large enough to clear the rotor shaft.

A National type o dial assembly is used to tume Cs. ©ne word of advire when drilling the holes for the dial assembly: the template furnished with the unit is in error on the 2 -inch dimension (it is slightly short) so. use a ruler to measure the hole spating.

In wiring the unit, it is important that the output lead from the erystab socket be run in shielded wire. A phono jark is mounted on the back of the chassis. and a piecer of shiolded lead connects from the jack to the erystal socket terminal. The leads from the stators of C_{1} and C_{3} are insulated from the chassis by means of rubber grommets.

Testing and Adjustment

A length of shielded wire is used to connect the converter to the reseiver: the imer conductor of the wire is connected to one antenna terminal; the shield is commeeted to the other terminal and grounded to the recoiver chassis. The use of shielded wire helps to prevent pick-up of un-
wanted 1700-ke. signals. Turn on the converter and receiver and ablow them to warm up. Tune the receiver to the $5.2-\mathrm{Mc}$. region and listen for the oscillator of the converter. The b.f.o. in the receiver should be turned on. Tune around until the oseilator is heard. Onee you spot it, tume (${ }_{3}$ to maximum rabacitance and the receiver to as dose to 5.2 Mc as you can. Adjust the oscillator trimmer capabitor, C_{2}, until you hear the oscillator signal. Pat your receiving antemat on the converter, set the receiver to 1700 ke ., and tune the input caparitor, C_{1}, to near maximum capabitance. At one point you'll hear the background moise eome up. This is the 80 -meter tuning. The point near minimum caparitance - where the noise is loudest - is the $t(0$-meter tuning.

With the input tuning set to 80 meters. turn on your transmitter and than in the signal. By spotting your erystal-controlled frequency you'll have one sure calibration point for the dial. By listening in the evening when the band is crowded yon should be able to find the band edges for calibration points. If you have abeess to a signal gencrator, it is a simple matter to calibrate the diàl.

You'll find by expermenting that there is one point at or near 1700 ke . on your receiver where the backeground noise is the loudest. Set the rereiver to this point and adjust the shag on L_{6} for maximum noise or signal. When you have the reaciver tuned exartly to the frequency of the erystal in the converter, you'll find that you have quite a bit of selectivity. Tune in as $6 \cdot N$: signal and tune slowly through gero beat. You should notiee that on one side of zero beat the signal is strong, and on the other side fou won't hear the signal or it will be very weak (if it isn't, off-set the b.f.o. a hit). This is known as single-signal c.w. recepfion, because the "audio image" of the c.w. signal is reduced.

When listening to phone signals, it may be found that the use of the quartz erystal destroys some of the naturalness of the voice signal. It this is the case, the crystal should he umplugged and replaced by a $10-$ or $20-\mu \mu$ f. capacitor.

Converters for 7, 14, 21 and 28 Mc.

The errstal-aontrolled eonverters shown in Figs. $\overline{5}-41,5-4: 3$ and $5-46$ are intended to be used ahead of a recoiver or receiving sustom that will tume 3.5 to t.0 Mr.., exrept the 28 - Me. converter which requires that the receriver tume 3.5 to 5.2 Me. if the entire 10 -meter hathed is to be tuned. The $1+$ and $21-\mathrm{Mc}$. converters ean be used to extend the tuning ranges of the two $80+40$-meter receivers deseribed earlier in this chapter. While many rrystab-rontrolled eonverters use handpass r.f. circuits that need mo tuning other than the initial adjustment, the r.f. "irenits of these converters are manuably tuned, to give the best scleetivity and image rejection. Adjustable antemat coupling is abso provided, to facilitate matrhing to the antematand also to extend the signal-handling cabpabibities.

With two exceptions, the rireuits for these converters are the same, differing only in the tuning range of the signal cireuits and the frequeney of the erystal. The exeeptions ean be found in the $7-$ and 28 -Me. eonverters. In the former, the 3 foo-ke. errestal is farly close to one limit of the mixer output range, so at trap is inchaded to attemuate the $3+100-\mathrm{ke}$. signal that appears in the mixer output and might tend to overlosd the following receiver. The other exception can be found in the 28 -Mc: mit, where a switch and additional errestal were added to permit eovering the $2 \overline{7}$ - Al s. Wiand. It would not be necessary il the following rereiver could tome as low as 2.5 Me., and eould be omit ted in such at case.

The basid cireuit is shown in Fig. 5-42, with the miver plate-circuit trap, (L_{6} and $1.5 \mu \mu \mathrm{f}_{\text {. }}$) in place but not the s.p.d.t. cerstab switeh for the highest-frequency converter. Following the adjustable coupling between L_{1} and L_{2}, the signabl goes to the 6 BJJti r.f. amplifier and thon to a ser:ond inductively-coupled cireuit and to the gride of the mixer. The mixer is the pentode section of a 6 NN 8 ; the erystal oscillator is the triode soction of the 6AN8, and part of its output is applied to the mixer eathode via a eaparitame divider, (${ }_{5}$ ' ' $_{6}$. 13 y using high-frequency erystals that are
now available, no overtone oscillator circuit is required. Since the 1500 -ohm cathode resistor of the mixer is the load for the oscillator, the caparcitance divider, $C_{5} \mathrm{C}_{6}$, is required to avoid overlouding the oscillator and consequent nonoscillation. In the oscillator in the $10 / 11$ meter converter, a single setting of the oscillator coil, L_{5}, suffices for the two cristals. In the r.f. stage, provision is included for introducing a v.e. voltage ats well ats manually-eontrolled eathode bias.

Construction

Although these converters are shown as separate units eath assemblod in a $5 \times 915 \times 3$-inch chassis, they might also lor built as one large unit with sub shielding. In the design shown, and it is important in any design, partieudar attention was paid to see that the chassis grounds for the ref. stage were all at one point, next to the socket. Since rather large diameter (for receivers) high-(ℓ eoils are usod, a shield was used betweon the coils to minimize the chances for stray conpling. The shied straddles the $613 . J 6$ socket. The tuning eapabeitors. (${ }_{1}$ and C, are ganged mechanicably by a length of $1 / 8$-inch diameter rod and two of the Millen MoOs miniaturized shatf eouplings. The Hammarlund MAPC-B capabitor has a standaud $1 / 4-\mathrm{inch}$ shatt at the front and a $1 / 8$-inch shaft at the reatr. To make room for the shaft couplers, two rotor and two stator plates were removed from eath $\ 1.1 P(--35-B \quad 35-\mu \mu$. variable.

Dimensions for the sub-chassis are shown in Fig. :3-4, as well as the location of most of the holes. Partitions A and 13 :are held to the chassis hy 6 - -32 hardware: partition a has mounting holes for the variable capaceitor simiar to those in the front view exeept that the two smatl holes are on the horizontable enter line. Partition A als, carries the crystal socket and two clearance holes for the stator and rotor leads from the variable rapabitor. I'artition 13 has a fleabance hole for the variable ceaparitor shasft. The dasued hole on the front view is for the crystal switeh shaft on the 10 -meter converter; this switeh mounts on
fig. $5 \cdots 11$ - A - Mc. erys. tal-controlled converter. 'The two silafte extending to the right are (lower) adjustable antenna conpling and (upper) siznalcircuit thming. 'Ihe resstal holder is the dark object in the center section, just behind the coils.

Fig. S. 42 - Schematic diagram of a crsstal-controlled converter. The Hate trap. Iti amithe li-mpf. capatitor, is used only in the T. Mc. converter. The IO-meter converter uses two erystals, switehed by a s.f.ol.t. rotary in the "cold" lead from chassi- ground.

All fixed capacitors are ceramic: all resistors are $1 / 2$-watt.

 removed). ($\mathrm{A}-9$.
partition A and is turned by the Lucite "ratakshaft" shown in Fig. $\mathbf{5}-43$. It is a simple matter to soften a lengt of $1 / 4$-inch diameter lucite rod by rolling it on a soldering iron. When it is suitably soft, it is then bent and helal in position until rool. The insulating erankshaft is used to eseape rumning metal near or through the coil. As mentioned above, it isn't necessary to switch crystats if the tuning range of the receiver following the converter includes 2.5 Me.

The variable antema coupling is made hy rumning a piece of $1 / 4$-inch Lucite rod through a shaft bushing and using a rubber grommet botween fiber washers as a frietion look. A serew through the shaft serves as a stop for the washer on one side of the grommet, and the shatt bearing serves as the stop on the other. (ompression is maintained by using a solid shaft coupler on the other side of the bearing. Using a long set-serew on the solid shaft coupler provides an arm that can hit cither of two stops (smatl serews) and thus limit the travel of the eoil.

In wiring a converter, shielded wire was used for the heater and d.e. leads that ran past partition A up toward the r.f. stage. The antemat lead is a length of R(i-59/I roaxial cable. Input and output eonnertions are brought to phono jacks at the rear of the unit; power and control leads atre terminated in a Cinch-Jones 1-304-AB plug.

Coils L_{2} and L_{4} are supported by No. 14 wire leads extending from the tuning cipacitors. The $\mathrm{B}+$ end of L_{3} is cemented to the ground and of L_{4} with ${ }^{\text {Wheo or Ambroid cement. This gives an }}$ improvement in minimizing spurious responses over that obtainable with mounting L_{3} over L_{4}. but on the two lower-frequeney ranges it requires the use of padding caparitors, C_{2} and C_{4}, berause otherwise the $L_{3} L_{4}$ assembly beromes too long. The 3- to $30-\mu \mu$. compression capacitor weross C_{1} is mounted on the leads of the variable caparitor.

Wires from the rotors of C_{1} and C_{3} are brought to the grounding lugs at the sockets, in kerping with the "single stage ground" polier mentioned earlier. The lead from the stator of C_{3} to Pin 8

Fic. 5-43- The 10-11. meter converter remioved from it: caace. 'The lucite "cranhshaft" for swith. ing erystale can be seen in the right-hand compart. ment.

TABLE 5-IV
Component Values for the Crystal-Controlled Converters

Band	$I_{\text {- }}$	$L_{\text {L }} . L_{4}$	I. 3	L_{5}	C.	C	C. 5	Cos	R_{1}	X_{1}
7 Mc .	$12 t^{4}$	$28 t^{1}$	$18 \mathrm{t}^{1}$	$\underset{(12-1(0-1))^{3}}{9 h}$	$2.5 \mu \mu \mathrm{f}$	$50 \mu \mathrm{f}$	$1500 \mu \mu \mathrm{f}$	$150 \mu \mu \mathrm{f}$	4\%K	3.4 Mc .
14	$5 \mathrm{t}^{2}$	$19 t^{2}$	$15{ }^{1}$	$\begin{aligned} & 3-5 \mu \mathrm{~h} \\ & \left(12(-\mathrm{B})^{3}\right. \end{aligned}$	$1.5 \mu \mu \mathrm{f}$	$25 \mu \mu \mathrm{f}$	$3300 \mu \mathrm{ff}$	$33 \mu \mu \mathrm{f}$	27 K	10.5 Mc.
21	$12 t^{1}$	$17 t^{2}$	$15 \mathrm{t}^{1}$	$\begin{aligned} & 2-3 \mu h \\ & (120-8)^{3} \end{aligned}$	-	-	$330 \mu \mu \mathrm{f}$	$33 \mu \mu \mathbf{S}$	33K	17.5 Mc.
28	$8{ }^{1}$	$10 t^{2}$	$10 t^{1}$	$\begin{aligned} & 2-3 \mu \mathrm{~h} \\ & (120-A)^{3} \end{aligned}$	-	-	150 \% f	$15 \mu \mu \mathrm{~S}$	18K	$\begin{aligned} & 11 \text { meters: } 23.4 \mathrm{Mc} \text {. } \\ & 10 \text { meters: } 24.5 \mathrm{Mc} . \end{aligned}$

132 t.p.i. No. 24, 5/8-inch diam. (B \& W 3008).
${ }^{2} 16$ t.p.i. No. 18, $5 / 8$-inch diam. ($\mathrm{B} \& \mathrm{~W} 3011$).
${ }^{3}$ North Hills Electria ('o. designation.
of the 6A.N8 is brought through a smath hole in prutition A.

In wiring the oseillator portion of the (6.N.N8. it is convenient to run a lead from L_{5} to P'in 1 of the GAN8 socket, and then mount C_{5}, C_{6} and the 150() -ohm cathode resistor on the soeket pins and the chassis grounding lug. Theye are two unused soldering lugs on L_{5}, and one of these is used ats the junction point for the (88.000)-ohm resistor, the 2200 -ohm resistor, the $5(0-\mu \mathrm{h}$. r.f. choke and the . $01-\mu$ f. capacitor.

Adjustment

The first step in eherking at converter, after the wiring has been cheeked and a power supply and receiver have been connerted, is to check the oscillator and mixer. With only the 6ANs in its sorket, turn on the power and losk around the crystal frequeney with your receiver to see if the erystal oscillator is working, as indieated by a strong signal. If the oscillator doesn't work, tune L_{5} until it does. Then put the receiver in the range 3.5 to 4.0 Mr . and tume C_{3}. At some setting you should hear an increase in noise, indicating that the mixer input circuit is tuned to resonance. If the inerease in noise is quite sharp, it indicates regeneration in the mixer, and the value of R_{1} should be reduced. This mixer-oseillator combination is basically regenerative, and with R_{1} re-
moved the mixer will oscillate.
Cnder normal operation of the niver and oweillator, the voltage at l'in 7 will ren around 50 to 60 velts, and around 3 volts at l'in 9.

When the \mathbf{T}-. Me converter is being tested, the following receiver can be tuned to 3.4 Me, where the loud signab from the erystal oseillator will be rereived. The slug in L_{6} is then tuned for minimum signal in the receiver. Don't expeet this minimum to be around S 1 or S 2 - it may still be enough to "pin the meter" with the receiver gain wide opern.

Leave the ginged cabpaitors (${ }_{1}$ and C_{3} at the setting that gatve the noisc peate, connert a $2500-$ ohm wirewound potentiometer in the manual gain circuit to ehassis ground, short the AVC' connection to chassis, and plug in the GBJ6. Coment an antematand, with the gain control at maximum gain (minimum resistance), adjust the rompression trimmer abross C_{1} for maximum noise. The two circuits are now tracking and shoukd tume together over the band. Tuning 3.5 to 4.0 Me. with the receiver should now bring in signals from the band tor which the converter is designed. Ioosening the antemme coupling by swinging L_{1} away from L_{2} should reduce the strength of incoming signats. If it doesn't, or if the sharpmess of ' $_{1} \mathrm{C}_{3}$ tuning ehanges with the gatin-control setting, it indieates that the r.f. stage is regonerative. You shouldn'i have any trouble with is regenerative r.f. stage, however, if the stage grounds are brought to one point on the

P'ig. 5-.fi - Dreails of the sub chassis and partitions. The hottom lips of the front and of piece 13 rest on $1 / 4$-inch bars at tho bottomi.

 power supply is to be used with onlv one converter, the switches can be eliminated from the rircatit.

1R1 - Virewomm potentiometer (IR(: N K2Som).
S_{1} - 2-section 4-pole rotary switch. Sections not shown switol anterna inputs and comserter ontput through eoaxial line. (©entralah PA-2015, one
(mole not used).
It - Replacement-type choke (K night 62 (137).
' 1 - Replacement-type transformer, 325-0-325 v. (Knight 62 (; 042).
chassis, as mentioned owherr.
To got a wide range ol gatin control from the 2500 (0hm gatin control, abled curtent of 8 or 9 mat. should pass through it. A ty pical power supply and gain-control dibeuit is shown in lig. j-45, although this is more claborate than neres. sary if only one converter is used. Where only one eonverter is used, the switehes can be eliminated, and at smaller transformer can be used for 'Th. They are abl included in the unit shown in liys. $\overline{5}-46$, which was desigued to take four converters. In this unit . S_{1} is a 3 -section rotary switeh that switches the plate power as shown in Fig. 5-45 in one sextion, the antemman inputs in the serond seretion, and the converter ontputs in the thire seretion. Converters that are to be used during an operating period have their heater power applied through the appropriate toggle switch, se through S_{5}. It is not neressary to switch the gain control or a.v.e. leads, beause only one converter will be working at a time, as selected by St. An arrangement like this permits keeping all ronverters warm during a rontest, or the use of only one during aasual operation. It also permits the rady comparison of two converters on the same band (if some later developments show up or if

Fou want to (ompatre different (rircuits), and if the two rerstals are on the same frequenery no retuning of the following receiver will be required.

These converters have very low response to the r.f. image frequence, and no trouble with images should be encountered. It is possible that under some (ireumstances you may hear 80meter signals when tou are using a converter, and this is usually an indication of a poorlyshiedded recoiver or a fadty installation. The receiver should have no response to 80 -meter signals when mo antemai is connected to it if it has, it indicates that better shielding is required - and it should have no response to 80 -meter signals when the cable used for connecting the converter to the receiver is connected to the receiver and loft open at the converter end (bood shielded wire or coasiableable (R(i-58/L or R(i-59/C) should be used between converters and reecivers, and a minimum of inner conductor should be exposed at the rereiver antema posts. The outer eonductor or shield should connert to the ground terminal at the receiver and to one of the antennat posts, and the inner eonductor should connect to the other antema post.

Fis. $5-46$ - Several erystal-controlled converters can he installed on a chassis with a common power supply. llere the 20 - and 15 -meter converters are shown in place. On the panel, the lower left-hand knoh is the common gain control, and the right-hand knob controls the switeh that seleets the converter to be used. The toggle switches control the heater circuits separately.

Variable-Coupling Antenna Tuning Unit

A variable-coupling antenna tuning mit connected between antema and receiver is useful for three reasons. In many instances it will improve reception slightly by providing a better mateh between antenna and receiver, Where trouble from r.f. images is encomentered, as is often the

Fig. 5.47-Schematic of the variable eoopling antenna thning unit.
(.i - $1.10 \cdot \mu \mu \mathrm{f}$. midget variable (H ammarlund HF .140). $s_{1}, s_{2}-\underline{2}$-pole miniature rotary switch (i, omeralah) PA-2003).
$1_{1}-72$ turns ($21 / 4$ inches).
1,2, 1.4-20 turns ($5 / 8$ inches).
1:3-4 turns (1/v inches).
lis- 12 turns ($3 / 8$ inches).
1.6-2 turns.

111 coils l-inch diameter 32 turns fer inch (B \& W $3016)$.
case on the higher frequencies with simple receivers, an antenna unit will provide additional selectivity. The unit shown on this page improved image rejertion 15 db , at 10 Mc . and 12 db . at 25 Me. in a typical case, The third uselul feature of this unit is the variable compling, which provides an anxiliary gain control that is useful on strong local signals as well as permitting a wide range of matching.

Fig. 5 -48 - View inside the case of the antenna tuning unit. The input terminals are a Natinnal FWH strip, and the output jack is a shielded phono jack.

As can be seen in Fif. $\bar{j}-4 \overline{7}$, the unit provides for series or parallel tuning of the tunce cirenit, handswitching over the retnge 1.8 to 30 Me. 13:mad I tunes 1.8 to 4.9 Mc.. Band 2 eovers 4.9 to 1:3 Me., and Band 3 humes 12 to 30 Mc.

The antemna funing unit is built in a $3 \times 10 \times$ 5-inch alumimum chassis. 'To aid in shielding, a side phate for the box is made from a piece of flat aluminum stock. The four operating controls are mounted on one end of the box with the antennat terminal and ontput jack on the other, Three coils, L_{1}, L_{2} and L_{3}, wre bonded to a lucite bar with Dued rement, and the bat is in turn supported by there ceramis cone insulators. The three coils shombld be spared about one coil diamoter from earh other and from the ends of the box. Three variable coupling links, $L_{4} L_{5} L_{6}$,

Fig. 5.49 - Front view of the antenna tuner.
are soldered to small marchine serews that have been bolted to a length of $1 / 4$-inch diameter hucite rod. The rod extends the full length of the boxand is supported at the emds bey a bushing and a paned boaring. An insulated coupling is used to join the panel bearing shaft and the lucite rod. Commetions to the links are made by soldering the leads to the machine sarews in the rod. The "pianel" cand of the box ean be finished off with deceals indieating the kuoh functions.

In oproation, the tuner is comnested between the antennat and the reecoiver. With some antemat systems the parablel comnection will give the botter results, while with other antennass and other frequencies the opposite will be true. It is a simple mattere to switch between the two conditions and see which gives the sharper peati or louder signabls at resonance.

An Antenna-Coupling Unit for Receiving

It will often be found advantageous on the 14- and 28 -Mc. bands to tume (or match) the reeciving-antemat feed line to the receiver, in order to get the most out of the antemata. One way to do this is to use, in reverse, any of the line-coupling devices advocated for use with a transmitter. Naturally the components can be small, because the power involved is negligi-

Fig. 5-50 - Cirenit diagram of the compling unit. $\mathrm{C}_{1}-140-\mu \mu \mathrm{fal}$ miduet varialle ($\left.\mathrm{Millen} 221 \mu\right)$). (:2-100- - μ fid, midget variahle (Millen 22100).
 1 inch on 1 -ind diampler form (Millen 4.5006), tapped at 3, 5,12 and 18 turns.
$S_{1}-2$-circuit \bar{z}-pocition sinkle wection erramic wafrer swith (Mallory 1:36).
ble, and small recoiving combensers and moils are quite satisfactory. Some provision for adjustable coupling is recommembed, as in the transmitting ease, because the signal-to-moise ratio at 14 and 28 Mo. is dependent, to a large extent, on the degree of compling to the antemma system. The tuning unit can be built on a smatl chassis loeated mear the receiver, or it can bo mounted on the wall and a piece of $\mathrm{RG}(\mathrm{i}-\mathrm{b} 9 / \mathrm{C}$ run from the unit to the recerver input, in the manner of a link line in transmithing practice. For case in changing betuds, the enils ean be switched or plugged into a suitable socket. Adjustable coupling not only offers an opportumity to adjust for hest signal-to-noise ratio, hut the coupling ean be derreased when a strong loceal
signal is on the air, to eliminate "blocking" and cross-modulation effects in the receiver.

One convenient type of antema-coupling unit for receivers uses the familiar pi-section filter circuit, and can be used to mateh a wide range of antenna impedances. The diagram of a compart unit of this type is shown in Fig. j-50. Through proper selection of condensers and inductances, a match can be obtained over a wide range of values. The device can be placed close to the receiver and left comereded all of the time, since it will have little or no effect on the lower frequencies. A short langth of $300-0 h m$ Twin-Lead is convenient for ronnecting the antenna coupler to the recoiver.

The antenna coupler is built in a $5 \times 7 \times 2$ inch metal chatsis. All of the components exrept the two coils are mounted on the front and rear faces. The condensers are mounted of the pand by the spacers furnished with the eondensers, and a dearance hole for the shaft prevents any short-circuit to the panel. The coils, wound on Millen t5000 phenolic forms, are fastened to the chassis with brass sorews, and the roils should be wound on the forms as far away as possible from the mounting end. The switch should be wired so that the switching sequence puts in, in math eoil, 3 turns, 7 turns, 12 turns, 18 and 25 turns.

The unit is adjusted for maximum signal by switching to different coil positions and adjusting ('1 and ('2. It will not be necessary to retrim the condensers except when going from one fond of a band to the other, and when the unit is not in use, as on 7 and 3 . $\overline{5}$ Me., the coils should be sot at the minimum number of turns and the condensers set at minimum. The small reatances remaining have a negligible defert. The eoil in the grounded side should be shorted if romxial-lime fered is used.

Fig. 5.51 - A combatat coupling nelwork for matehing a laalaned line to the receiver on 14 and 28 Mr .

The "Selectoject"

'lhe seledoped is a reerever adjumet that ram be used as a shatp amplifier or as a single-frequency rejection filter. The frequency of operation maty be set to any point in the atudio range by turning a single knob. "The degree of selectivity (or depth of the null) is continuously adjustable and is independent of tuning. In 'phone work, the rejoetion noteh can be used to reduce or eliminate a heterolvoe. In rew. recemion, interforing sigmals may be rejoeted or, altermatively, the desimed signal may be pirked out and amplified. The Solectojoet may also be operatod as a low-distortion variable-frequencer audio oseillator suitable for amplifior freguency-response measurements, modulation tesis, and the like, by andancing the "splertivity" control far chough in the selertiveamplifier comelition, The Solertojere is ronnereted in a recoiver betwern the detertor and the first atudio stage. Its powor reguirements are 4 mat. at 1.00 volts and 6.3 wolts at 0.6 ampere. For proper operation, the 1 Bo volts should he ohtained from actose a Vla-1:0 or from a supply with an output caparity of at least 20 mld .

The witing diagram of the Rolededied is shown in I'ig. $\overline{\mathrm{j}}$-52. Revistors R_{2} and R_{3}, and R_{4} and R_{5}, an be within ${ }^{10}$ per went of the neminal value but
they should h_{x} as chose to cach other as possible. An ohmmeter is quite satisfactory for doing the matehing. One-watt resistors are used berause the larger ratings are usually more stable over a long period of time.

If the station receiver has an "accessory sorket" on it, the cable of the Selectoject ran be mate up to match the comoertions to the soeket, and the numbers will not neressarily mateh those shown in Figg. :-52. The load between the seeond detector and the receiver gain control should be broken and run in shieleded leads to the two pins of the socket corresponding to those on the plug marked "A.F. Input" and "A.F. Output." If the recolver has a 1 रh-1 00 included in it for voltage stabilization there will be no problem in getting the plate volage - otherwise a suitable voltage divider should be ineorporated in the receiver, with a $20-$ to $40-\mu \mathrm{fd}$. encerolvitie condenser conmerted from the $+1,00$-volt tap to ground

In operation, worload of the receiver or the Selerefojeet should be avoided, or all of the possible seloetivity may mot be realized.

The Felectojert is useful as a means for ohtaining much of the performanoe of a ersatal filter from a receriver lacking a filters.

Fip. $5-5 \ddot{2}$ - Complete sehrmatic of Selerinject using 12 1X 7 tubes.
C. - 0.01- $\mu \mathrm{fd}$. mica, 400 volts.
($\therefore_{2}, \mathrm{C}_{3}-0.1$ - fd . paper. 200 volts.
(4 , (is - 0.003- μ fil, papre 100 volts.
(B - 0.0. $\mathrm{B}-\mathrm{pd} \mathrm{d}$, paper, 100 volts.
($\mathrm{C},-16-\mu \mathrm{fd}$. I ($)$-iolt electrulytic.
(. $7-0.00012^{-\mu}$ fol. mie:a.
\mathbf{R}_{1} - 1 megohm, 1 watt.
$R_{2}, R_{3}-1000$ ohms, l watt, mateled as closely as possible (see test).
$R_{4}, R_{5}-2000$ ohmu, I watt, matched as closely as gosaille (see text).
K_{f} - 20.000 ohms. $1 / 2$ watt,
$\mathrm{K}_{\text {: }}$ - 2000 nhms, $1 / 2$ watt.
lis - 10.0000 ohms, 1 watt.

$R_{10}-20,000$ olmms. $1 / 2$ watt.
$R_{11}-0.5$-megohm $\frac{1}{2}$-watt potentiometer (selectivity).
$\mathrm{R}_{12}, \mathrm{l}_{13}$ - Ganged 5-megohm potentiometers, standard audio taper (tuning eontrol).
$1 \mathrm{~K}_{14}-0.12 \mathrm{~m}$ - gohm, $1 / 2$ watt.
$S_{1}, \mathrm{~S}_{2}-1$.p.d.t. toggle (can the ganged).

A Clipper/Filter for C.W. or 'Phone

The clipper/filter shown in Fig. $\overline{5}-54$ is plugged into the receiver headphone jack and the headphones are plugged into the limiter, with no work required on the reeceiver. The limiter will cut down serious noise on 'phone or e.w. signals, it

The cireuit is shown in Fig. 5 -5:3. The eonstants are not too critical, and have been adjusted for operation at the signal levels ordinarily available from the headphone jack on a receiver. The elipper output circuit is heavily by-passed by ('G

Fig. 5-53 - Circoit diagram of the andio clipper unit. Power
reguirements are 16 ma, at 2.30 v. d.0., 1.2 amp. at 6.3 v . a.c.
$\left.\mathrm{Ci}_{1}, \mathrm{C}_{4}, \mathrm{C}_{7}-47\right)_{-\mu \mu \mathrm{fd}}$, mira.
(:2-0.01- $\mathbf{2}$ fd. paper.
($: 3-0.1-\mu \mathrm{fl}$. papur.
($8_{5}-8-\mu \mathrm{fd}$. 450 -voli dectrolvtic.
$\mathrm{C}_{6}-0.003-\mu \mathrm{fd}$. paper.
(is - $10-\mu \mathrm{fid} .25$-volt clectrolvic.
$\mathrm{S}_{6}-0.25-\mu \mathrm{fd}$. paper.
$\mathrm{H}_{1}, \mathrm{H}_{3}-1$ megohm, $\frac{1}{2}$ watt.
$\mathrm{l}_{2}, \mathrm{H}_{0}-1.500$ ohms, $1 / 2$ watt.
$\mathrm{R}_{4}-10,(0) 0$ ohms, $1 / 2$ watt.
$\mathrm{K}_{5}-22,0100$ ohms, $1 / 2$ watt.
$\mathrm{R}_{\mathrm{g}}-45,000$ olms, 1 watt.
$R_{7}-33,000$ olmes, $1 / 2$ watt.
H_{8} - 1-megohm volume cont ool.
1.1-250-mh, choke (Millen 34100-2:0)
J_{1} - 'Phone jark, single circuit.
S_{1} - 2-circuit 3 -position switeh.
will keep the strength of c.w. signals at a constant level, and it will add selectivity to your receiver for c.w. reception. It will do much to relieve the operating fatigue caused by long hours of listening to static crashes, key clicks eneountered on the air and with break-in operation. and the like.
to reduce the amplitude of the harmonics gencrated in the elipping process, and additional bypassing by C_{9}, across the headset, is used for the same purpose. Cathode-follower input and output circuits allow the unit to be used with any recoiver output and any headphones, and they also

Fig. 5-5.t - The andin clipper unit includes input and output amplifiers of the eathodefollower type, a dual-triode elipper circuit, and a selertive andio system. It is built in a small utility box, with a cable for power-supply connections and a cord and plug to pick up audio from the receiver's beadphone jack.

Fig. 5.5.5 - Inside view of the rlipper unit. 'The yain control, switch, headphone jack, and the larger fixed romdensers are monnted on the walls of the bex. The two tuhers and the selective audion circuit arn monnted on the removable patel. The silledtive circuit, consisting of the choke coil and two tulmbar condensers, serupies the up. per half of the panel in this diew. The sorket at the left is for the input and output amplifiers: the right-hand soeket is for the double-triode clipper.
contribute to the rfectiveness of the audio filter, $L_{1}{ }^{\prime}{ }_{2}{ }^{\prime}{ }^{\prime}{ }^{3}$. A threr-position switoh, s_{1}, is provided so that the unit "at be cut out entirely, used with straigh limiting and mo selectivity, or with both selectivity and limiting. "The "off" prosition is usefu! prinembally fo convince the skeptical, and the limiting without selectivity is useful for impulse moiser, when ancountered. High selectivity and good moise suppression do not go hand in hand.

The unit, shown in liges in- 5 t and $\overline{5}-5.5$, is built on one pathel and the sides of a 3 by 4 by ot utility bos. The parts on the pane! and the box proper are commerted through cabled lowds mate long ronogh so the pathel ean be surung out as shown. diny trpe of construction can be used, sine there is nothing eritical in the layout. One precation to obsorve is to use a shieded lead between the "hot" input derminal and the switeh, to prevent possible stray eoupling betwern the input and later high-imperdane eireuits heratse of the (abled leads.

The selective atodio cireuit chosen gives a trpe of frequene $y^{-r e s p e n s e}$ curve that is quite useful. The peak at 800 cyeles is broad onough to avoid tuning difficultiess, avern when used in empunction with the erystal filter in the reeciver. Nevertheless, the response drops off rapidly cough, pariecularly wo the high-frequences side, to make a marked differener in respoed th the "eapturing" of the limiter be streng off-resonanere signals. There is a "notel" at 1700 cercles.

There is a wide latiturde in choiere of inductaneres for L_{1}. The Millen coil listed under lig. 5-5:3 was

the bost of available low-prioed units tried, in terms of sharpuess of the response curve and the depth of the rejection noteh. Some of the small filter chokes such as the staneor (-15 F) and 'Jhordarson 'l'20) (53 also work reasonably well. The formor will resenate at approximately the same frectuencies as given above with $330 \mu \mu \mathrm{fol}$. at ('2 and $470 \mu \mu \mathrm{ft}$. at ('3; the latter choke reguires (0.001 $\mu \mathrm{fd}$, at C'2 and $0.002 \mu \mathrm{fd}$, at C C_{3}. With any roil the values of eaparitance required to plate the peak and moteh at frequencies that best fit one's taste in beat noters can casily and quickly be determined by simple eut-and-try. Other types of selertive audio cireuits can, of course, also be sul)stituted.

In use, the receiver's gain controls should be set so that only the stomger sugnals are elipped; tow-decep elipping will make the reeceiver soumd as though praetieally avery sigmal overloads it. Once the proper settings for dipping level are determined, the ace ual audio volume is adjusted by the gain control on the unit. A little juggling back and forth between the reeciver rontrols and the output control in the clipper unit will eventually result in the receiver's sounding very much like it does without the clipper present. The difference is that the signals and moise, ineluding one's own transmitter sigual, don't rise above the level set as a reiling.

A Bandswitching Preselector for 14 to 30 Mc ．

The performance of many recoivers begins to drop offi at 14 and 30 NI ．The signal－to－ nowe ratio is reduced，and trouble with r．f．－ intage signals becomes apparent．The preselec－ tor shown in Figs．$\overline{-}$－ib and $\overline{5}-58$ can be added ahead of any receiver without making any changes within the receiver，and a self－con－ tained power supply climinates the problem of furnishing heater and plate power．

As can be seenfrom the wiring diagram，Fig． 5－5̄，a $6 . \mathrm{K}^{5}$ r．f．pentode is used in the pre－ selector．Both the grid and plate eirenits are tuned，but the tuning condensers are ganged and only one control is required．The gain through the amplifier is controlled be changing the eathode voltage，through R_{3} ．I selenium rectifier is used to supply plate power，and the heater power comes from a step－down trans－ former．The chassis is at r．f．ground but the d．e．cirenit is isolated，to prevent short－ rircuiting the a．c．line through external eon－ nections to the presedecter．

I two－section ceramic swit ch selects either the 14－to 21－Mte．or the 2s－Me．coil，or the antena can be fed through directly to the re－ eriver input．When operating in an amateur band betwern 14 and 30 Me．，switching to the hamd not in use will attenuate one＇s own signal sutficiently to permis direct monitoring，in most cases．

Is shown in lige i－5en，the ganged condensers are controlled from the fromet paned by a Nationaly $M(N$ dial，and a small knob to the right of this diad is comberted to the antema trimmer，（is，for praking the tuning with varions athennas．The a．e．lime is combrolled by se，a toggle switel mounted on the pancl．

The preselector is huilt on a $3 \times 5 \times 10-$ inch chassis，and a $6 \times$（b－ineh plate of thin metal is used for a pand．A $1^{3}{ }_{4} \times 3$－inch aluminum bracket mounted about 3 ＇关 inehes behind the front panel supports the tuning
 Silten 3900．5 flexithe couplings are required to haudle the ofise shaft of C＇s．Both C_{5} and （＇s are mounten on the chassis with 6－32 serews，but the chassis should be seraped free of paint before installation，to insure good contact．

The shield partition betwern the two switel sections（Fig．i－j8）stradthes the tube socket and shields the grid from the plate circuit． The switched ends of all eoils are supported by their respective switch points，and the other ends are soldered to tie points monnted on the

COIL TABLE FOR THE PRESELECTOR

$L_{1} \quad 5 \mathrm{t}$ ．No．24．＂復－inch diameter （B\＆IV 3012）
La 5 t ．No， 24 ， 1 －inch diameter （13 心11 3016）
 （13 心析3012）
$L_{4} \quad 7 \mathrm{t}$ ．Nis．20，1－iluch diameter

$L_{5} \quad 7 \quad$ 1．No．20，3／4inch diameter （13 \＆ 11 3010）
$L_{6} \quad 3 \mathrm{t}$ ．No，21，1－inch diameter （13 必㖪3015）
$L_{7} 11$ t．Nin． 21 d．c．e．，dusi－wound， ${ }^{1}$－2inch diameter
$L_{8}+\mathrm{t}$ ．No．2s d．c．e．，flosi－wound， ${ }^{1}$ 2－inch diameter
L_{i} and L_{x} are wound adjac＇rnt on a $\frac{1 / 2}{}$－inch diame ter polasturene form N：Nimal PlRJ－2）
chassis．The mica trimmers．（＂9 and C_{10} ，are supported on short lengtis of stilf wire，and a hole in the sicle of the chassis is required to reach（＇ıl with an aligning tool．

The power－supply components are mounted as near the rear of the chassis as possible．The selenium roetifier must be insulated from the chassis．

 ing preselector for 11 and 28 N1c．A sinme GAK．ampli－ fier is used，and the power supply is included in the unit． The antenna－trimming con－ denser is monnted on the small aluminum partition．

The coils are made from 13 \& ${ }^{(1)}$ "Miniducfors," as shown in the eoil table, with the exception of onc plate and coupling eoil which are wound on a polvistrene form. The ground returns for the cathoule amd platio by-pass comdensers are made to a common terminal, a soldering lug under one of the monnting serews for ('s.

When the wiring has beon completed amd chereded, the antemata is eomenered to J_{1} and a rable from I_{2} is run to the receriver inpht. Tume the reereiver to the $1 t-M$. hand and set sta 10 the proper point. Thate turn the matin tuning dial unt il the monse or signal increases to a maximum. This should ocreur with ('s and 'rs sot at rlose to maximum rapateity. Then para the noise by adjusting ('ro and ('4.

The 28-Me. range is adjusted in the same
19.4-1700 , olims.

Kis-18,000 ohms, 2 walts.
Rs, R- 170 ohms.
I.1-I. - Sereot tallde.
$1.9 \quad$ Ellheury 30-mat. lilt+r chohe.

Sll - 511 ma, seleninm rectifier.
' I_{1} - 6.3 -volt tranaformer.

Way, with the exreption that r_{0} is touched up. It may be found neressary to touch up C"4 when difterent antemas are used. The presclector may oseillate with no antemat connected, but with suse trpe of wire or ford line the operation of the amplifier should ordinarily be perfectly stathe.

As shown, the preselector is intended for use with eoraxial-line feed to the antenna and fo the reediver. It a balatered 1 wo-wire line is used from the antemna, it is reeommended that a suitable two-wire combertor be substituted for J_{1}. The grounded sides of L_{1} and L_{2} should be disconnerted from ground and returned to one side of the conneretor. The out put connertor can be left as shown, since at the bwer frequencies the proper antemat connection isn't so important.

Fiz. $5.58-\mathrm{A}$ view mender. neath the chassis of the bandswitching presclactor, showing the shicld partition between switch seretions and the sele. nimm rectibitr and assoriated filter.

An All-Purpose Super-Selective I.F. Amplifier

The amplifier shown in Figs. 5-(i) and 5-61 is designed to eoment to any receriver at the grid of the first i.f. tube, to give superior selectivity for either 'phone or cew. reception. The signals at 455 ke are heterodyned to 50 ke . and filtered through either or both of two selective amplifiers. One of the amplifiers uses 11 high- Q tuned rireuits to give a selectivity chararteristic that is about 350 eveles wide at 6 db . down and 1300 eveles wide at 60 db . down. The other amplifier uses 9 "stagger-tumed" circuits that give a 2300 -cyede bandwidth at 6 db . down and 5 ke . at 60 d$)$. down. The broader amplifier has its tuning adjusted so that it is rentered about 1700 reveles higher in frequency than the sharp one. Thus, when a 'phone carrier is tumed to fall in the ceenter of the sharp amplifier, one sideband falls in the broader amplifier. The outputs of the amplifiers
are fed to a common detector, and the relative amplitude of carrier and sideband at the detector (:in be changed by controlling the gains through the two amplifiers. By emphasizing the carrior at the detector, "exalted-carrier" reception is obtained, which has the advantage that fewer distortion products are generated on a signal in the presence of QRM. For ew. reception, only the shary amplifier is used, while the reception of NSiB signals requires only the broad amplifier.

The complete circuit of the amplifier is shown in Fig. 5-59. Recoiver output at 455 ke , at as low a level as possible (to avoid overloading), is fed into the GBLE 6 converter stage, where a erystal-controlled oseillator is selected either 50 ke. higher or lower, to use the selectable-sideband principle. ${ }^{1}$ A third position of the switch, S_{1},
${ }^{1}$ McLaughlin, "1exit IIeterody'ne QRM," QST, Oct., 1947.

Fig. 5-59 - W'iring diagram of the 50-ke: selective amplifir.
C_{1} - $0.005-\mu \mathrm{fl}$ ceramic.
$\mathrm{C}_{2}, \mathrm{C}_{6}, \mathrm{C}_{11}, \mathrm{C}_{12}, \mathrm{C}_{13}, \mathrm{C}_{18}, \mathrm{C}_{19}, \mathrm{C}_{20}, \mathrm{C}_{22}, \mathrm{C}_{26}, \mathrm{C}_{30}, \mathrm{C}_{31}$,
$\mathrm{C}_{32}, \mathrm{C}_{38}, \mathrm{C}_{37}, \mathrm{C}_{38}, \mathrm{C}_{39}, \mathrm{C}_{42}, \mathrm{C}_{44}, \mathrm{C}_{45}, \mathrm{C}_{59}-0.1$. $\mu \mathrm{fl}$. 40 O -voll.
 (4)- $T-\mu \mu \mathrm{fd}$. ceramir.
$\mathrm{C}_{-}, \mathrm{C}_{8}, \mathrm{C}_{9}, \mathrm{C}_{14}, \mathrm{C}_{15}, \mathrm{C}_{16}, \mathrm{C}_{22}, \mathrm{C}_{23}, \mathrm{C}_{24}-2.1-\mu \mu \mathrm{fl}$, mica (two $4, \overline{-}-\mu \mu \mathrm{fl}$, in series if lower value not avail alle).
$\mathrm{C}_{25}-100-\mu \mathrm{ffd}$ ceramuc.
$\mathrm{C}_{27}, \mathrm{C}_{28}, \mathrm{C}_{33}, \mathrm{C}_{34}, \mathrm{C}_{40}, \mathrm{C}_{44}-4.7-\mu \mathrm{fd}$ mica.
C46, C.51- $16-\mu \mathrm{fd}$. 500 -volt eleetrolytic.

$\mathrm{C}_{40}-0.001$ - $\mu \mathrm{fl}$. ceramic.
$\mathrm{C}_{50}, \mathrm{C}_{53}-10$ - ffl . 50 ()-volt electrolytic.
C.54-170- $\mu \mu \mathrm{fl}$. ceramic.
(is.5-35- $\mathbf{3} \mu \mathrm{fd}$. midget variable.
C.56-2:0- $2 \mu \mathrm{fd}$. silver mica.
($\mathrm{C}_{57}, \mathrm{C}_{5 \kappa}-3300$ - $\mu \mu \mathrm{fl}$. silver mica.

Cin2-10- $\mu \mu$ fol. ceramic.
$\mathrm{R}_{1}-0.1 .5$ megohm.
$R_{2}, R_{9}, R_{13}, R_{19}, R_{23}, R_{32}, R_{40,}-0.1$ megolim.
$R_{3}, R_{5}-0.12$ megohm.
$R_{4}, R_{6}-3.30$ ohmes.
Ro, Rs - 2700 ohms.
$R_{10}, R_{14}, R_{20}, R_{24}, R_{48}-100$ ohms.
$R_{11}, K_{12}, R_{15}, R_{16}, R_{21}, R_{22}, R_{27}, R_{28}-10,000$ ohms.
$R_{17}, R_{2 i}-2000-0 h_{m}$ wire-wound potentioneter.
$\mathrm{R}_{1 \times}, \mathrm{K}_{25}-{ }^{2} \mathbf{T}, 000$ ohms, 1 watt.
$R_{20}-1500$ ohms.
permits ruming both erystals at onee, for alignment purposes, as deseribed later.

The two i.f. amplifiers follow the converter, and two Gl3J variable- μ pentodes are used in each channel. There are isolation resistors and condensers in each power lead to prevent any over-all feed-back.

The resistor, R_{50}, between gain control, R_{17}, and ground, is used to bring the relative maximum gains of the two chamels to approximate equality. The gain of the broad channel will vary with the degree of stagger-tuning, so R_{50} should be inserted only after the alignment proeedure has been completed. Its value, of course, may work out differently than that shown,

The detector uses two 12:AU7 dual triodes in in the "product detector" circuit. The advantage of the circuit is that it minimizes intermodulation at the detector and doesn't require a big b.f.o. signal for exalted-carrier reception. A signal-level indieator circuit connected to the sharp amplifier
doesn't indicate b.f.o. voltage, so the signallevel meter reads the same with the b.f.o. either on or off.

The signal-level rireuit, labeled "A.V.C.Rect." in fig. 5-59, ronsists of a rathode follower driving a diode. In three positions of S_{2}, the reetified current simply works the meter, hut an a.v.e. voltage is applied throughout the amplifier in the fourth position.

The tuning meter is important. It pernits the operator to center the carrier in the sham amplifier, and also warns him when the amplifier is in danger of overloading. Overloading will tend to nullify the advantages of high selectivity, soit is important that the unit always be operated below this point. The manual gain controls will take rare of about ($60-\mathrm{d}$), range.

The series trap, $R F C_{5} C_{4 x}$, is tuned to 50 ke . to by-pass the r.f. and prevent its getting on the audio grids. A choier of two low-impedance outputs is provided, for 'phones and loudspeaker.

 plifier uses two channcls in parailel a sharp one for cow, or for "plone carrier, and a broad ome for a "phome sideliand.

The sharp i.f. is the strip at the rear of the chassis. and the loroad one is just in front of it. 'lhe two tubes at the rishthand end of the bread amplifirr are the "product detertor." 'The" b.f.a. cant is at the front right, next to the tube, and the near-by tube and ran are in the signal-metoring circoit.

The controls, from left to riglat, are sileband selector switch, andios vol. ume, hroad i.f. gain, sharb i.f. kain, function switoh, and b.f.o. pitth momtrol.

Construction

There are ontre fow departures from comvont tional eonstruetum teremigue in this amplifier. Miniature tubes were used only to provide rom for the thund cireuits - on a larger chassis or with a differont layout, motal tubes should be perfertly satisfiatory. llowever, no attempt should be made ta save space by mounting the tuned cireuits in anything but a straight line. The shield cans de not provide complete mannetie shielding at 50 ke , athe it is posible to couple right through the thin aluminum.

The i.f. strips proper are huilt on aluminum ehammels. Ill power hads are brought out through shicddod wires, to minimize couphing via the common power cirenits. Wsing the shielded wire is also an aif to eonstruction, because the shields are soldered to lugs at points near the tube sockets, and the isokting resistors are then mounted betweren tube socket (or eoil terminal) and the expose ed ends of the shimbed wires. The Itallireafters ceils leave no room for the associated shunt condens res, so they are commered directly arross the terminats.

The RCA roils, us:rd in the browd amplifier, must be reworked slight! ! before using. Is supplied, the terminals aome out the top of the can, so the coil must be removed by untwisting four small tahs. The eoil to be used is commerted to Terminals A and F , and anothereoil comerted to Terminals (and I) should have its leads snipped. The 390- $\mu \mu$?d. silver-mier condenser can then be soldered to Terminals A and F before the assembly is replared in the shioh ran.

The b.f.o. coil, L_{1}, uses both eoils of the ROA 205 R 1 comectat in stries. This is done by lifting the single wire from 'Terminal C and connereting it to Terminad F'. Externally, Terminals A and I) are used.

The main chassis is aluminmm, 12 hy 17 hy 2 inches, and the front panel is a standard relayrack affair 7 inches high The shislded leads from the i.f. strips proper are brought out through holes to tie points ronveniently located away from signal eireuits. Two short pirers of R(;-5!/U
coaxial ablbe atre used - one from the input jack at the retu of the chassis up to the (ible: gride, :und the other from the output of the sharp i.f. :amplifier to the gride of the $12 . \ 1^{\circ} 7$ a.v.e.rectificr. The inpul and output signal leads from the i.f. annplifiers atre ford through Millen 32150 reramic hushings, where the projerting wire servers as a tic point. The deteretor hias control, R_{39} is monanted at the rear of the chassis, since it neod not be touched alter the original adjustment for minimum detection in a single channel. exeept when one of the 12.1 L 7 detertor tubes is replised.

Alignment

The best point in a receiver to take off the signal for this i.f. amplifier is at the grid of the first i.f. stage in the reereiver. If the reeriver has a revstal filter lotwern mixer and i.f. stage, it wort be used normally. The ervistal filter can be userd, but it requires getting two oscillator rrostals for the sharp i.f. amplifier of just the right frecpuency.

Thar fresuency to which the selective amplifier is aligned is determined hy the fregueneres of the two erystals in the GRB6 converters. Assume that the nominal i.f. frequener of the communiations receiver is tōn ke., and that the available (rystals are 408 and 505 kc . The shat) i.f. will then be aligued to half the difference, or 48.5 kc . $(408+48.5)$, but the fare that this is 1.5 ke . highor than the nominal $+5 \overline{5}$ is nothing to worry abrout.

Sot a signal gincrator or test oscillator to hatf the ervatal-oscillator difference (r.g., 18.5 ke .) and align the shawp channel by working back from the deteretor, introducing the signal first at the grid of the serond (ib3.J6, and aligning the following circuits. and then introducing the signal at the first 6B.J6 and then the 6B1E6 mixer. The final touching up of the sharp amplifier is done by switehing S_{1} to the point where both Gh3\%s are oparative and tuning a signal at 455 ke. until it "zoro beats" with itself, as heard in the output. The sharp circuits are then given a fi-
nal praking. as intieated by the tuning metere During alignment procedures, alwas work with a minimum signal and with the gain control, R_{1}, advanced to maximum gain.

The b.f.o. is aligned ber switehing it on, setting ${ }^{(}{ }_{55}$ to the center of its range, and adjusting the slug in L_{1} to zerolnat on a signal paraed through the shatrp amplifier.

The broad i.f. amplifier is "stagger-tuned," which means that alternate circuits are tumed to the same frequeney. First, pate eireuits L ('12 through $L C_{20}$ to a slightly higher (1.5 kc.$\left.\right)$ frequeney than the sharp chamel. While doing this, the lead from the meter cireuit can be transferred from $L C_{11}$ to $L C_{20}$, and the signal introduced to the grid of a 6 blize. Then set the signal souree to a frequency $\overline{7} 0$ reves higher than the freguence at which the sharp chameld was peaked, and peak circuits $L C^{\prime \prime}{ }_{12}, L C_{14}{ }_{14}, L C_{16}{ }_{16}$, $L C_{18}$ and $L C^{\prime 2}$, as indieated by the meter, Then set the signal soure to a frecqueney 2750 eveles higher than the sharp-channel fregueney, and prak eircuits $L C_{13}^{\prime}, L C_{15}, L C_{17}^{\prime}$ and $L C_{19}$. Now, varying the freguency of the signal sourer, the response indicated by the meter will show a response that has two unecgual peaks. The peaks can be erguatized, or nearly so, by readjust ment of $L C^{\prime}$. The lead from the meter cireuit ean now be returned to $L C_{11}$

If an audio output metor is avaiable, get a final check on the response of the broad amplifier be setting the b.for. to the midfrectuener of the sharp amplifier and, with the sharp amplifier turned down, swing the input signal areoss the range and wateh the atudio response. It should be fairly flat from about 500 to 2700 cyeles or so,

Without access to a signal generator, it mary be neesssary to rig up a 50 or a the-ke. oscillator with grood stability and a slow tuning rate.

Operation

The operator has his choier of several tapes of operation with this amplifior. For highly-selective c.w. reereption. use switeh s_{2} in the "(W)." position, with the b, f.o. oftset to give the favorite biat-mote frequeney. signals will drop in and out rapidly as ont tumes across a band, and a slow tuning rate is highly desirathe. For less critical reception of cow, or for net operation, switch to "sisi"" and use the broad i,f. chatacteristie, redueing the gain in the sharp ehamel to a minimum. The same settings mantain for the reception of SSB 'phone signals - the b f.o. is set to the midfrequency of the sharp ehamel and all tuning is dome with ther main tuning dial of the receiver.

Regular . L / 'phome siguals are meeceived with Se set cither to "MAN." or "A.V.C.," depending upon the QRXI conditions. In either ease, the carrier is pataed on the meter for accurate tuning, and the two gain controls are set for best listening. In "M.IN." operation this will usually mean riding gain on the sharp ehatmel so that the meter never goes beyond half-scale, and with the broad-amplifier gain control backed off proportionately. In ".S.V.C.," both controls "an be run wide opern, but as one tumes areoss some signals the set maty overload until the tuning is centered on the desired carrier. A heterodyne on one sideband will be eliminated by switrhing s_{1}. "Practice" is the only advice one can give on handling the i.f. amplifier to its greatest capabilities, always remembering that Fon have the choice of two sidebands to listen to plas the ability to vary the relative amplitudes of (arrior and sidebands.

As in all selective amplifiers, overlond is the big enomer, and it is genorally bost to run the atudio volume at or near meximum and the i.f. gain at the lowest usable value.

Fig, $5-61$ - Ihis view underneath the ehassis shows the two oscillator frystals al ilhe lower right. Most of the inielded leads are power leads to the i.f. strips, althoush some of the lowlevel audio leads are also run in shithled wire. The cight holes across the center are for ancess to the tuning slugs of the lorosad i. f. strip.

High-Frequency Transmitters

The principal requirements to be met in c.w. transmitters for the amateur hands between 1.8 and 30 Mc . are that the frequency must be as stable as grod practice permits, the output signal must be free from modulation and that harmonies and other spurious emissions must be eliminated or reduced to the point where they do not canse interference to other stations.

The over-all design depends primarily upon the bands in which operation is desired, and the power output. A simple oscillator with satisfactory frequency stability may be used as a transmitter at the lower frequencios, as indicated in Fig. 6-1.1, but the power output obtainable is small. As a general rule, the output of the oseillator is fed into one or more amplifiers to bring the power fed to the antenna up to the desired level, as shown in B .

An amplifier whose output frequener is the same as the input frequency is called a straight amplifier. A buffer amplifier is the term sometimes applied to an amplifor stage to indicate that its primary purpose is one of isolation, rather than powergain.

Because it becomes increasingly difficult to maintain oscillator frequeney stability as the frequency is increased, it is most usual practice in working at the higher frequencies to operate the oseillator at a low frequency and follow it with one or more frequency multipliers as required to arrive at the desired output frequency. A frequency multiplier is an amplifier that delivers output at a multiple of the exciting frequency. A doubler is a multiplier that gives output at twice the exciting frequency; a tripler multiplies the exciting frequency by three, ete. From the viewpoint of :my particular stage in a transmitter, the preceding stage is its driver.

As a general rule, frequency multipliers should not be used to feed the antenna system directly, but should feed a straight amplifier whith, in turn, feeds the antenna system, as shown in Fig. 1-C, D and E. As the diagrams indicate, it is often possible to operate more than one stage from a single power supply.
(Good frequency stability is most easily obtained through the use of a crystal-controlled oscillator, although a different crystal is needed for each frequency desired (or multiples of that frequency). A self-controlled oscillator or VFO (variable-frequency ascillator) may be tuned to any frequency with a dial in the manner of a
receiver, but requires great care in design and construction if its stability is to compare with that of a crystal oscillator.

In all types of transmitter stages, screen-grid tubes have the advantage over triodes that they require less driving power. With a lower-power exeiter, the problem of harmonic reduction is made casier. Most satisfactory oseillator cireuits use a sereen-grid tube.

Fig. 6.1 - Blork diagrams showing typical combina. tions of oscillator and amplifiers and powersupply arrangements for transmitters. A wide selection is possible, depending upon the number of bands in which meration is desired and the power output.

Oscillators

Crystal Oscillators

The frequeney of a erystal-controlled oseillator is held constant to a high degree of accurary b y the use of a quartz arystal. The frequency dopends ahmost entirely on the dimensions of the crystal (essentially its thickness); other circuit values have comparatively negligible effect. However, the power obtainable is limited by the heat the crystal will stand without fracturing. The amount of heating is dependent upon the r.f. crystal current which, in turn, is a function of the amount of feed-back required to provide proper excitation. Crystal heating short of the danger point results in frequency drift to an extent depending upon the way the crystal is cut. Excitation should always be adjusted to the ninimum necessary for proper operation.

Crystal-Oscillator Circuits

The simplest crustal-oscillator eirenit is shown in Fig. 6-2A. An equivalent is shown at 13. It is a Colpitts circuit (ser chapter on vacuum-tube principles) with the tube tapped across part of the tuned circuit. The crestal has been replaced by its equivalent - a series-tuned circuit $L_{3} C_{4}$. (See chapter on electrical laws and cireuits.) C_{5} and Cow are the tube griderathode and plate-
cirenit in the actual plate circuit. Although the maillator itself is not entirely independent of adjustments made in the plate tank circuit when the later is tumed near the fundamental frefuency of the crystal, the effects can be satisfiactorily minimized by proper choice of the oscillator tube.

The circuit of Fig. 6-3A is known as the Tritet. The oseillator cireuit is that of Fig. 6-2C. Excitation is controlled by adjustment of the tank $I_{1} C_{1}$, which should have a low L / C ratio, and be tuned considerably to the high-frequencev side of the crystal frequency (approximately 5 If. for a 3.5-Mc. crystal) to prevent over-cxcitation and high erystal carrent. Onee the proper adjustment for average erystals has been found, C_{1} may be replaced with a fixed capacitor of equal value.

The oscillator cireuit of Fig. 3-13 is that of Fig. 6-2A. Exeitation is controlled by C_{9}.

The oseillator of the grid-plate circuit of Fig. 6 -3C is the same as that of Fig. 6-313, except that the ground point has been moved from the cathode to the plate of the oscillator (in other words, to the screen of the tubre). Excitation is adjusted by proper proportioning of C_{6} and C_{7}.

When most types of tubes are used in the cirruits of Fig. (i-3, oseillation will stop when the output plate circuit is tumed to the ervestal fro-

 discussed in the text. Co and L a should the to the erystal fumdamental frequency. R_{i} is the grid leak.
rathode caparitaners, respectively. In best prartieal form, C_{5} or C_{6}, or both, would be augmented by external capacitors from grid to cathode and plate to eathode so that foed-back could be idjusted properly.

The circuit shown in Fig. 6-2C is the equivalent of the tuned-grid tumed-phate circuit discussed in the chapter on vacuum-tube principles, the crystal replacing the tumed grid circuit.

The most commonly used ervstal-oseillator circuits are based on one or the other of these two simple types, and are shown in Fig. 6-3. Although these circuits are somewhat more complicated, they combine the functions of osfillator and amplifier or frequency multiplier in a single tube. In all of these circuits, the sereen of a tetrode or pentode is used as the plate in a triode oscillator. Power output is taken from a separate tuned tarik
quencry, and it is neerssary to oprote with the plate tank rireuit critically detuned for maximum output with stability. However, when the 6. 1 (i7, 5763 , or the lowrr-power 6.1146 is used with proper adjustment of excitation, it is possible to tume to the crystal frequency without stopping oseillation. The plate tuming characteristic should then be similar to Fig. 6-4. These tubes also operate with less erystal current than most other types for a given power output, and less frequency change oceurs when the pate circuit is tumed through the crystal frequency (loss than 25 eveles at 3.5 Mr .).

Crystal curvent may be estimated by observing the relative brilliance of a $60-\mathrm{ma}$. dial lamp connected in sorios with the ervistal. Current should be held to the minimum for satisfactory output by eareful adjustment of excitation. With the
oprobting voltages shown. satisfactory output should be ohtained with ervatal aurents of to mat. or hess.

In these cirouits, butput may lu ohtaimed at multiples of the erystal frecueney bey tuning the plate tank cireuit to the dexired harmonic. the output dropping off, of course, at the higher hatr-

Fig. 6.3- Commonly-used rystal-controlled oscillator cireuits. Values are those reeommended for a $6.10 ;$ or 576.3 tube. (See reference in text for other tubes.)
(i, - Feed-batek-control capacitor-3.7-Mc. crystals - approx. $2:(0) \mu \mu \mathrm{fd}$, mica - - . 1 c c. crystals approx. $1 \mathbf{N} 0-\mu \mu$. mica.
C.2- Output tank capacitor-100- $\mu \mu$ f. variable for single-band tank; $250-\mu \mu \mathrm{f}$, variable for twoband tank.
($3_{3}-$ Screen hy-pass- $0.001-\mu \mathrm{f}$. disk eeramie.
(4 - Plate hy-pass - 0.0 () 1- μ f. disk ceramic.
(: O- Output roupling capacitor - $\mathbf{5 0}$ to $1000_{\mu} \mathrm{f}$,
(ifi - Excitation-romtrol calpacitor - 30- $\mu \mu \mathrm{f}$, irimmer.
C: - Excitation capacior - 220- μ f. mica for 610;: 100- $\mu \mu$ f, for 5.63.
(is - D.s. blocking capacilor - 0.00)l- f . mica.
(90 - Excitation-control capacitor - 220 ($-\mu \mu$. mica.
(ion- Heater hy-pass - 0.0) $01-\mu$ f. disk ceramic.
R_{1} - Grid leak - 0.1 megolun, $1 / 2$ watt.
K_{2} - Screen resistor - $4 \overline{\text { F. }} 0000$ olms, 1 watt.
1.1-Excitation-eontrol inductance - $3.5-11 \mathrm{c}$. erystals - approx. f_{μ} h.: :- Me. crystals - approx. $2 \mu \mathrm{~h}$.
I_{2} - Ontput-rircuit coil-single-band:-3.5 Me.
 - $1 \mu \mathrm{~h}$, Two-band operation: 3.5 N : Me. --5 $5 \mathrm{~h}, 7 \mathrm{~F} 14 \mathrm{Mc}$ - $-2.5 \mu \mathrm{~h}$.
RFC. $-2,5-m h, 50-m a$, r.f. choke.
monies. Fisperially for harmonir operation, a low('plate tank cireuit is desimable.
 values given under Fige. (i-is shomld be followed rlosely. (For at discussion of values for ather

VARIABLE-FREQUENCY OSCILLATORS

The frequency of a VF() depends entirely on the values of inductance and capacitance in the rireuit. Therefore, it is neressary to take cureful steps to minimize changes in these values not under the control of the operator. is examples, even the minute changes of dimensions with temperature, particularly those of the coil, may result in a slow but noticeable change in frequency called drift. The effective input capacitance of the oscillator tube, which must be connected across the circuit, changes with variations in clectrode voltages. This, in turn, causes a change in the frequency of the osrillator. To make use of the power from the oscillator, a load, usually in the form of an amplifier, must be coupled to the osellator, and variations in the load may refleet on the frequency. Very slight mechanieal movement of components may result in a shift in frerfuency, and vibution can eause modulation.

VFO Circuits

Fig. 6-5 shows the most commonly used eirrnits. They arre all designed to minimize the reffects mentioned ahove. All are similar to the rerstal oseillaters of Fig. ($6-3$ in that the sereen of a tetrode or pentode is used as the oscillator plate. The oscillating circuits in Figs. 6-5A and 13 are the Hartley type; those in C and 1) are (Colpitts circuits. (See rhapter on vacuum-tube principles.) In the rireuits of A and C, all of the above-mentioned effects, exrept changes in inductance, are minimized by the use of a high-() tank cireuit obtained through the use of large tank capacitanees. Any uncontrolled ehanges in capacitance thus become a very small percentage of the total cireuit manacitance.

In the series-tumed Colpitts circuit of Fig. (6-5I) (sometimes called the Clapp circuit), a high-Q eircuit is obtained in a different manner. The tube is tapped across only a small portion of the oseillating tank circuit, resulting in very loose coupling between tube and circuit. The taps are provided by a series of three capacitors across the coil. In addition, the tube caparitances are shunted by large capacitors, so the effects of the tube - changes in electrode voltages and, loading - are still further reduced. In contrast

Fig. 6.4-Plate tuning characteristic of cireuits of Fig. 6.3 with preferred types (see text). The pate-eurrent dip at resonance broadens and is less pronounced when the circuit is loaded.
to the precoding rimonits the resulting tank rimuit has at high L / C^{4} ratio and therefore the tank current is muth lawer than in tho eirenits usiug lighor tanks. As a result, it will metally he found that, other thinge being equat, drift will be less with the low-e cirruit.
 (13 or (14 (which atre usually equat) shoud be as high as possible without stopping oseillation. The permissible ratio will be higher the higher the $(d$ of the coil and the mutual conductance of the tube. If the cireuit does not oscillate over the desired range, a roil of higher () must be used or the cuparitance of C_{13} and C_{14} reduced.

Load Isolation

In spite of the precautions already diswissed, the tuming of the output plate circuit will cause a
noticeable change in frequency, particularly in the region aromed resomance. This effect can be redured considerably he designing the oscillator for half the desired frequency and doubling frequency in the output cirent, although there will be some sadrifier in output.

It is desirable, although not a strict necessity if detming is reeognized and taken into aceoment, to approach as closely as possible the fondition where the adjustment of tuming controls in the transmitter, berond the VFO frequency control, will have negligible effert on the frequency. This can be done by substituting a fixed-tuned cirruit in the output of the owillator, and adding isolating stages whose tuning is fixed between the oscillator and the first tumable amplifier stage in the transmitter. Fig. (0 - 6 shows such an arrangement that gives good isolation. In the first stage,

Fig. 6.5 - VFO circuits. Approximate value for 3.5 Me. are given below. For 1.7.5 Mc, all tank-cirenit valnes of capacitance and inductance, all tuning capacitances and C_{13} and C_{14} should be doubled; for 7 Mc., they should be eut in half.
(i)- Oseillator handspread tuning capacitor-1.00). ${ }_{\mu} \mu$ fld, variable.
(: 2 - Output-circuit tank capacitor - $\mathbf{I}(0)-\mu \mu \mathrm{fl}$.
(:3-0)scillator tank capacitor - $\mathbf{5 (0)}$ - $\mu \mu \mathrm{fd}$. wero-tem-perature-coeflicient mica.
Ci_{4} - Grid coupling capacitor - 100 - $\mu \mu \mathrm{fd}$. zern-tem-perature-roefficient mica.
(is - Heater by-pass - $0 .(6) 1-\mu$ fil. disk reramio.
(: S-Screen by-puss - $0.001-\mu \mathrm{fl}$. disk ceramic.
(:7 - Plate by-pasis - 0.001- $\mu \mathrm{ff}$. disk ceramic.
Cs - Output coupling capacitor - 50 to $100-\mu \mu \mathrm{fl}$. micis.
 prature-cofficient mica.
 temperature-eneflicient mica.
(in - Oseillator bandepread padier - $50-\mu \mu$ fil. variable air.
C: 12 - Oscillator bandspread tuning capacitor - 25${ }_{\mu}$ fd. variable.
Ci3, C:14-Tube-coupling capacitor - 0.001 - $\mu \mathrm{fd}$. zero-temperature-coreflicient miea.
$13_{1}-4 \overline{4}, 000$ ohms, $1 / 2$ watt.
1.: O-cillator tank coil - $1.3 \mu \mathrm{~h}$. , tapped ahrout one-third-way from yrounded end.
L. 2 - Output-circuit tank coil - $22 \mu \mathrm{~h}$.
1.3-Oscillator tank coil - $4.3 \mu \mathrm{~h}$.

14-O Oceilator tank coil - 33μ h. (B \& W JFLL-80).
$\mathrm{RFC}_{1}-2.5-\mathrm{mh}$. 50 -ma. r.f. choke.
$1:-610,5,563$ or 6 All 6 preferred: other types usable. $\mathrm{V}_{2}-6 \mathrm{AC}, 5 \mathrm{~S} 63$ or 6 All 6 required for fecd-back capacitances shown.
a 6 Ct is connceted as a cathode follower. This drives a 5763 buffer amplifier whose input rircuit is fixed-tuned to the approximate band of the VF() output. For best isolation, it is important that the 6 Ct does not draw grid current. The output of the 1 FF), or the cethode resistor of the (BC_{C} should be aljusted until the voltage across the cathode resistor of the 6C. (as moasured with a high-resistanee d.e. voltmeter with an r.f. choke in the positive lead) is the same with or without excitation from the VFO. L_{1} should be adjusted for most constant output from the 5763 over the band.

Chirp

In all of the circuits shown there will be some change of frequency with changes in sereen and plate voltages, and the use of regulated voltages for both usually is necessary. One of the most serious results of voltage instability occurs if the oscillator is keyed, as it often is for brak-in operation. Although voltage regulation will supply a steady voltage from the power supply and therefore is still desirable, it camot alter the fart that the voltage on the tube must rise from zelo when the key is open, to full voltage when the key is closed, and must fall back again to zero when the key is opened. The result is a chirp each time the key is opened or closed, unless the time constant in the kering circuit is reduced to the point where the chirp tak's place so rapidly that the receiving operator's ear cammot detect it. Unfortunately, as explained in the chapter on keying, a extain minimum time constant is necessary if key clicks are to be minimized. Therefore it is evident that the measures neerssary for the reduction of chirp and clicks are in opposition, and a compromise is necessary. For best keving characteristics, the oscillator should be allowed to run continuously while a subsequent amplifier is keyed. However, a keyed amplifier represents a widely variable load and unless sufficient isolation is provided between the oscillator and the keyed amplifier, the keying characteristics may be little better than when the oseillator itself is keyed.

Frequency Drift

Frequency drift is further reduced most easily by limiting the power input as much as possible and by mounting the components of the tuned circuit in a separate shielded eompartment, so that they will be isolated from the direct heat from tubes and resistors. The shielding also will
eliminate changes in frequency caused by movement of nearby objects, such as the operator's hand when tuning the VFO. The circuit of Fig. 6-iJ) lends itself well to this arrangement, since relatively long leads between the tube and the tank circuit have negligible effect on frequency berause of the large shunting capacitances. The grid, athode and gromed leads to the tube can be buncherd in a cable up to several feet long.

Variable capacitors should have ceramie insulation, good bearing contacts and should preferably be of the double-bearing type, and fixed capacitors should have zero temperature coefficient. The tube socket also should have ceramie insulation and sperial attention should be paid to the selection of the eoil in the oscillating section.

Oscillator Coils

The Q of the tank coil used in the oscillating portion of any of the circuits under discussion should be as high as circumstances (usually space) permit, since the losses, and therefore the heating, will be less. With recommended care in regard to other factors mentioned previously, most of the drift will originate in the coil. The coil should be well spaced from shickling and other large metal surfaces, and be of a type that radiates heat well, such as a commercial air-

Fig. 6-6 - Circuit of an isolating amplifier for nse between VPO and first tomable stage. All eapacitances below $0.001 \mu\left[\right.$. are in $\mu \mu$ f. All resistors are $1 / 2$ watt. L_{1}, for the $3.5-\mathrm{Ne}$. band, consists of $9: 3$ turns No. 36 enam., $1 . / 32$ inch long. $1 / 2$ inch diameter, elose-wound on National XR-.50 iron-shug form. Intuctanee 6) to $13.4 \mu \mathrm{~h}$. All capacitors are disk ceramic.
wound type, or should be wound tightly on a threaded ceramic form so that the dimensions will not change readily with temperature. The wire with whieh the eoil is wound should be as large as practicalle, esperially in the high- C circuits.

Mechanical Vibration

To eliminate mechanical vibration, components should be mounted securely. Particularly in the circuit of Fig. 6-5I), the capacitor should preferably have small, thick plates and the coil braced, if necessary, to prevent the slightest mechanical movement. Wire connections between tank-cirenit components should be as short as possible and flexible wire will have less tendency to vibrate than solid wire. It is advisable to cushion the entire oseillator unit by mounting on sponge rubber or other shock mounting.

Tuning Characteristic

If the eircuit is oscillating, touching the grid of the tube or any part of the circuit connerted to it will show a change in plate current. In tuning the plate output cireuit without load, the plate crirrent will be relatively high until it is tuned near resonance where the plate current will dip to a low value, as illustrated in Fig. 6-4. When the output circuit is loaded, the dip should still be found, but broader and much less pronounced as indicated by the dashed line. The circuit should not be loaded beyond the point where the dip is still recognizable.

Checking VFO Stability

A VFO should be checked thoroughly before it is placed in regular operation on the air. Since succeeding amplifier stages may affect the signal characteristics, final tests should be made with the complete transmitter in operation. Almost any VFO will show signals of good quality and stability when it is running free and not connected to a load. A well-isolated monitor is a necessity. Perhaps the most convenient, as well as one of the most satisfactory, well-shielded monitoring arrangements is a rereiver combined with a rystal oscillator, as shown in Fig. 6-7. (Sre "Crystal Oscillators," this chapter.) The crystal frequency should lie in the band of the lowest frequency to be checked and in the frequeney range where its harmonies will fall in the higher-frequency bands. The recover b.f.o. is turned off and the VF() signal is tunod to beat with the signal from the crastal oseillator instead. In this way any recoiver instability caused by overloading of the input circuits, which may result in "pulling" of the h.f. oscillator in the receiver, or by a change in line voltage to the receiver when the transmitter is keyed, will not
affect the reliability of the check. Most erystals have a sufficiently-low temperature coefficient to give a check on drift as well as on chirp and sigmal quality if the are not overloaded.

Harmonies of the erystal may be used to beat with the transmitter signal when monitoring at the higher frequencies. Since any chiry at the lower frequencies will be magnified at the higher frequencies, accurate checking can best be done by monitoring at a harmonic.

The distance between the crystal oscillator and receiver should be adjusted to give a good beat between the crystal oscillator and the transmitter signal. When using harmonies of the erystal oscillator, it may be necessary to attach a piece

Fig. 6.7 -Set-up for checking VFOstability, 'I'hereceiver should be tuned preferably to a harmonic of the VFO frequency. 'The crystal oseillator may operate somewhere in the band in which the V1 ${ }^{\prime}()$ is operating. The receiver b.f.o. should be turned off,
of wire to the oscillator as an antomat to give sufficient signal in the rereiver. Checks may show that the stability is sufficiently good to permit oscillator keying at the lower frequencios. where break-in operation is of greater value, but that chirp becomes objectionable at the higher frequencies. If further improvement does not seem possible, it would be logical in this case to use oscillator keving at the lower frequencies and amplifier keving at the higher frequencies.

R. F. Power Amplifiers

IR.f. power amplifiers used in amateur transmitters usually are operated under Class C conditions (see chapter on vacuum-tube fundamentals). Fig. 6-8 shows a screen-grid tube with the required tuned tank in its plate cireuit. liquivalent cathode connections for a filamenttype tube are shown in Fig. 6-9. It is assumed that the tube is being properly driven and that the various electrode voltages are appropriate for Chass C operation.

- plate tank Q

The main objective, of course, is to doliver as much fundamental power as possible (or as desired) into a load, R, without exceeding the tube ratings. The load resistance R may be in the form of a transmission line to an antema, or the grid circuit of another amplifier. A further objective is to minimize the harmonic cnergy (alwats generated by a Class C amplifier) fed into the load circuit. In attaining these objectives, the Q of the tank circuit is of importance. When a load is coupled inductively, as in Fig. 6-8A, the Q of the tank circuit will have an efferet on the coeffi-
cient of coupling neesssiry for proper loading of the amplifier. In respect to all of these factors, a tank Q of 10 to 20 is usually considered optimum. A much lower Q will result in lass efficient operation of the amplifier tube, greater harmonic output, and greater difficulty in coupling inductively to a load. A much higher Q will result in higher tank current with increased loss in the tank roil.

The Q is determined (see chapter on eleetrical laws and cireuits) by the L / C ratio and the load resistance at which the tube is operated. The tube load resistance is related, in approximation, to the ratio of the d.c. plate voltage to d.c. plate rurrent at which the tube is operated and can be computed from

$$
R_{\mathrm{L}}=\frac{\text { Plate volts } \times 500}{\text { I'late ma. }}
$$

The amount of C that will give a Q of 12 for various ratios is shown in Fig. 6-10. For a given plate-voltate/plate-current ratio, the Q will vary directly as the tank eapacitance, twice the caparitance doubles the Q etc. For the same Q,
the eaparitance of each section of a split-stator caparitor in a balanced eireuit should be half the value shown.

These values of caparitance include the output capacitame (plate-cathode) of the amplifier tube, the input eaparitanee (grid-rathode) of a following amplifier tube if it is eoupled eipacitively, and all other stray cupacitances. At the higher plate-voltage. pate-eurrent ratios, the chart may show values of eapacitanee, for the higher frequencies, smaller than those attainable in practice. In such a case, a tank (Q higher than 12 is unavoidabla.

In low-power exciter stages, where eaparitive coupling is used, very low-() circuits, tuned only by the tube and stray areuit apacitances are sometimes usod for the purpose of "broadbanding" to avoid the necessity for retuning a stage arross a band. Higher-order hamonies generated in such a stage can usuablly be satisfactorily attenuated in the tank eircuit of the final output amplifier.

OUTPUT COUPLING SYSTEMS

Coupling to Flat Coaxial Lines

When the load R in Fig. (i-S. 1 is located for convenience at some distance from the amplifier, or when maximum harmonic redurtion is desired, it is advisable to feed the power to the load through a low-impedance convial cable. The shiedded construction of the cable prevents. radiation and makes it possible to install the line in any eonvenient manner without danger of unwanted coupling to other circuits.

If the line is more than a small fration of a wavelength long, the load resistanee at its output end should be adjusterl. by a matehing cimenit il

F'ig. 6-9 - F'ilament renter-tap connertions to be substituted in place of cathode connertions shown in diagrams when filament tive tubers are substituted. T_{1} is the filament trans. former. Filament by-parses, C_{i}, the 0.001- μ fd. diak ceramic capacitors. If a self-hiasing (cathode) resistor is used, it should be placed between the center tap and ground.
neressary, to matela the rhararteristio impedance of the cable. This reduces losses in the cable to a minimum and makes the coupling adjustments at the transmitter independent of the cable length. Matching cireuits for use between the cable and another transmission line are disenssed in the rhapter on transmission lines, while the matching adjustments when the load is the gride cireuit of a following amplifier are described elsewhere in this chapter.

Assuming that the cable is properly terminated. proper louding of the amplifier will be assured, using the circuit of lig. $6-11 \mathrm{C}$, if

1) The plate tank cireuit has reasonably high value of (Q. A value of 10 or more is usuatly sufficient.
2) The inductance of the piek-up or link coil is close to the optimum value for the frequency and type of line used. The optimum coil is one whose self-indurtanee is such that its reactanee at the operating frequeney is equal to the characteristie impedanese, Z_{0}, of the line.
3) It is passible to make the coupling betwern the tank and piek-up eoils very tight.

The sereond in this list is often hard to meret. Frw manulactured link eoils have adequate inductance evern for coupling to a E(0)-ohm line at low frequencies.

If the lime is operating with it low s.w.r., the system shown in l'ig. 6-11C will require tight compling bet weren the two coils. Since the secondary (piek-up) coil) (irruit is not resonant, the leakage reactance of the pirk-up eoil will cause some detuning of the amplifier tank riceut. This detuning effer inereases with increasing coupling. but is usually mot sorious. Howrver, the amplifier tuning must be adjusted to resonance, as indieated by the plate-current dip, ouch time the coupling is changed.

Tuned Coupling

The design diffirulties of using "untuned" pick-up coils, mentioned above, cam be avoided by using a compling eireuit tuned t.o) the operating frecpuency. This contributes additional selereivity. as well, and henre aids in the sup)pression of spurious radiations.

Fig. 6-l0 - (Chart showing plate tank rapacitancerequired for a 0 of 12. Wo use the chart, divide the tube plate soltage by the plate current in milliamperos. Select the vertical line corresponding to the answer ohtained. Fiollow this vertical line to the diagonal line for the hand in question, and thence loorizontally to the Ieft to read the caparitance. For a given ratio of platevoltage/plate current, doubling the capacitance shown donliles the () ete. When a split-stator rapaciar is used in a halanowl circnit, the caparitance of resh sertion may be one hatf of the value given hy the chart.

If the line is flat the iuput impedanee will be essentially resistive and equal to the Z_{0} of the line. With coaxial cable, a cireuit of reasomable (a) ran be obtained with practicable values of inductanter and raparitaner conueded in serios with the line's inpot terminals. suitable eireuits are given in Fige 6-11 at I and B. The Q of the coupling rirouit often may be as low as 2 , without running into difficulty in getting adecuate coupling
(0) at tomk cireuit of proper design, harger values of Q ean be used and will result in inereased aise of coupling, but as the () is increased the Trequener range over which the cireuit will operate without radjustment beeomes smatler. It is usually good pratidee, therefore, to use a couplingriveuit (0 just low enough to permit operation. over as much of a hand as is normally used for a particular type of communication, without requiring retuning,
Capacitanee values for a () of 2 and line impedances of 52 and 75 ohms are given in the atompanying table. These are the maximum values that should be used The inductanec in the rircuit should be adjusted to give resonatnee at the operating frequence. If the link roil useal for a paticular band does not have enough indurtance tor rewonate, the additional inductance maty be romered in series as shown in Fig, G-11B.
In practice, the amont of inductance in the arauit should he chosen so that, with somewhat loose coupling between L_{1} and the annplifier tank eoil, the amplifier plate current will increase when the variable capacitor, C'i, is tuned through the value of eapacitance given by the table. The roupling between the two coils should then be increased until the amplifier loads normatly, without changing the setting of ('1. If the transmission line is flat over the entire frequener band under consideration, it should not be neressary to readjust r^{\prime} when changing frequencer, if the values given in the table are used. llowever, it is unlikely that the line atotally will be flat over sudh a range, so somer reuljustment of C_{1} may be needed to compensate for changes in the input impedine of the line If the input imperdanee variations are not large, ('i may be used as a loading eontrol, no changes in the conpling betwern L_{1} and the tank eoil being meerssory.

Capacitance in $\mu \mu$. Required for Coupling to Flat Coaxial Lines with Tuned Coupling Circuit		
F'rumener	Churucteristie	Improhince if lime
Brand	-3	\%
11\%.	olim,	whms ${ }^{1}$
1.8	9100	610)
3.5	1510	300
7	-311	1.010
14	11.5	7.7
28	(0)	I)

1 (abacitance values are mantmom thalole.
Vafr: Imluctance in cirenit must le adjusted to menomate at operating frequency.

Fig. 6.11 - With flat transmission lines power transfer is obtaned with boser rompling if the line input is tuned

The degree of coupling between L_{1} and the anplifier tank coil will depend on the couplingcircuit Q. With a Q of 2 , the coupling should be tight-- comparable with the coupling that is typical of "fixed-link" manufactured coils. With a swinging link it may be necessary to increase the Q of the coupling circuit in order to get sufficient power transfer. This can be done by increasing the L / C ratio.

Pi-Section Output Tank

A pi-section tank circuit may also be used in coupling to a low-impedance transmission line, as shown in Fig. 6-12. The value of C_{1} in relation to the tube load resistance determines the Q of the circuit. An operating Q between 10 and 20 is considered good practice. For a Q of 12 , capacitance values may be taken directly from Fig. 6-10. Capacitive-reactance values for other values of Q are shown in Fig. 6-13. The tube load resistance is found by using the formula given earlier in this section. Values of capacitive reactance may be converted to terms of capacitance by

$$
C_{\mu \mu \mathrm{f} .}=\frac{159,000}{f_{\mathrm{Me}_{\mathrm{c}}} \mathrm{X}_{\mathrm{C}}}
$$

where λ_{C} is the reactance in ohms taken from Fig. 6-13.
The chart of Fig. 6-14 shows the value of inductive reactance that should be used at L_{1} when

Fig. 6-12 - Pi-section output tank circuit.
C_{1} - Input capacitor. See Fig. 6-13 for reactance. Voltage rating sloould be equal to d.c. plate voltage for c.w.: double this value for plate modulation.
C_{2} - Output capacitor, See Fig. 6-15 for reactance. See text for voltage rating.
C_{3} - Heater by-pass - $0.001-\mu \mathrm{f}$. disk ceramic.
C_{4} - Screen by pass. See Fig. 6-8.
C_{5} - Plate by-pass. See Fig. 6-8.
C_{6} - Plate blocking capacitor - $0.001-\mu \mathrm{f}$. disk ceramic or mica. Voltage rating same as C_{1}.
L_{1} - Sce Fig. $6-14$ for reactance.
RFC_{1} - See later section on r.f. chohes.
$1 R F C_{2}-2.5-\mathrm{mh}$. receiving type (essential to reduce peak voltage across both input and output capacitors).
working into 52 - or 72 -ohm resistive loads. Inductive reactance may be converted to terms of inductance by

$$
L_{\mu \mathrm{h},}=\frac{0.159 \mathrm{X}_{\mathrm{L}}}{f_{\mathrm{Mc}}}
$$

where X_{L} is the reactance taken from Fig. 6-14. Coil dimensions for a given inductance may be calculated from the formula given in the chapter of electrical laws and circuits, or determined by means of the ARRL Lightning Calculator Type A.

Fig. 6-13 - Reactance of input capacitor, C1, as a function of tube load resistance, R_{1}, for pi networks.

The output capacitive reactance required to match 52- or 72 -ohm resistive loads are shown in Fig. 6-15.

It should be borne in mind that the values shown in Fig. 6-14 and 6-15 apply only in the case where the load is resistive, i.e., where the line and antenna have been matched. The voltage rating of the output capacitor will also depend upon the s.w.r. If the load is resistive, receivingtype air capacitors should be adequate for amplifier input powers up to 1 kw . with plate modulation when feeding 52 - or 72 -ohm loads. In obtaining the larger capacitances required for the lower frequencies, it is common practice to switch fixed capacitors in parallel with the variable air capacitor. While the voltage rating of a mica or ceramic capacitor may not be exceeded in a particular case, capacitors of these types are limited in current-carrying capacity. The type of capacitor to be selected depends upon the frequency as well as the amplifier power. Postagestamp silver-mica capacitors should be adequate for amplifier inputs over the range from about 70

Fig. 6-14 - Reactance of tank coil, L_{1}, as a function of loid resistance. K_{1}, for pi networks.

Fig. 6-15 - Reaetance of bading capacitor, C_{2}, as a function of tube load resistance, R_{1}, for pi networks.
watts at 28 Mc. to 400 watts at 14 Mc , and lower. The larger mica capacitors (C.M-45 ease) having voltage ratings of 1200 and 2500 volts are usually satisfactory for inputs varying from about 350 watts at 28 Mc . to 1 kw . at 14 Mc. and lower. Because of these current limitations, particularly at the higher frequencies, it is advisable to use as large an air capacitor as practicable, using the micas only at the lower frequencies. Broadcast-receiver replacement-type capacitors can be obtained very reasonably. They are available in triple units totaling about $1100 \mu \mu \mathrm{f}$., or dual units totaling about $900 \mu \mu$. Their insulation should be sufficient for inputs of 500 watis or more. Air capacitors have the additional advantage that they are seldom permanently damaged by a voltage break-down.

Sereen-grid amplifier using a pi-met work output cireuit may be neutralized by the system shown in Figs. 6-25B and C. The plate-grid caparitance of a triode, however, is too great to be neutralized in this manner. Triodes must be provided with a balanced input circuit, similar to Figs. 6-30C and D. The neutralizing cipacitor should be connected botween the plate, and the end of the tank circuit opposite to that connected to the grid, i.e., to the end of the tank shown comeeted to the second grid in a push-pull cireuit.

Multiband Tank Circuits

Multiband tank circuits provide a convenient means of covering several bands without the need for changing roils. Tuners of this type eonsist essentially of two tank circuits, tumed simultaneously with a single control. In a tuner designed to cover 80 through 10 meters, earh circuit has a suffieiently large capacitance variation to assure an approximately 2 -to- 1 frequeney range. Thus, one circuit is designed so that it covers 3.5 through 7.3 Me., while the other covers 14 through 29.7 Me.

A single-ended, or unbalanced, cireuit of this type is shown in lig. 6-16A. In principle, the reactance of the high-frequency coil, L_{2},
is small enough at the lower frequencies so that it can be largely neglected, and C_{1} and C_{2} are in parallel arross L_{1}. Then the circuit for low frequencies becomes that shown in Pig. (i-16ib, At the high frequencies, the reactance of L_{1} is high, so that it may be considered simply as a choke shunting C_{1}. The high-frequency eireuit is essentially that of lig. $6-16 \mathrm{C}, L_{2}$ being tuned by C_{1} and C_{2}^{2} in series.

In practice, the effect of one circuit on the other cannot be neglected entirely. L_{2} tends to increase the effertive caparitance of C_{2}, while L_{1} tends to decrease the effective capacitance of C_{1}. This effert, however, is relatively small. Hach circuit must cover somewhat more than a 2-to-1 frequency range to permit staggering the two ranges sufficiently to avoid simultaneous responses to a frequency in the low-frequency range, and one of its harmonics lying in the range of the high-frequency circuit.

In any circuit covering a frequency range as great as 2 to 1 by capacitance alone, the eircuit Q must vary rather widely. If the circuit is designed for a Q of 12 at 80 , the Q will be 6 at 40 , 24 at 20,18 at 15 , and 12 at 10 meters. The increase in tank current as a result of the increase in Q toward the low-frequency end of the highfrequency range may make it necossary to design the high-frequency coil with care to minimize loss in this portion of the tuning range. It is generally found desirable to provide separate output coupling coils for each cireuit.

Fig. 6-16- Multiband tuncr cirenits. In the unbalaneed circuit of A, C_{1} and $C_{i 2}$ are scetions of a single splitstator capacitor. In the halaneed cirenir of D , the two split-stator eapacitors are ganged to a single control "ith an insulated shaft coupling between the two. In I), the two scetions of L_{2} are wound on the same form, with the inner ends connected to C_{2}. In 1 , each section of the capacitor should have a voltage rating the same as Fig. 6-34A. In I), Ci should have a rating the same as Fig. $6-341 \mathrm{l}$ (or Fig. 6-34E if the feed system corre. sponds). (e2 may have the rating of lix. $6-34 \mathrm{E}$:o long as the rotor is not grounded or by -passed to ground.

Fig. 6-16D shows a similar tank for balaneed circuits. The same principles apple.

Serics or parallel feed may be used with cither batanced or unbalanced circuits. In the balanced (ircuit of Fig. 6-161), the series feed point would be at the eenter of L_{1}, with an r.f. choke in series
(For further discussion of multiband tuners, see (SSTM, July, 1954.)
R.F. AMPLIFIER-TUBE OPERATION

Driving Power, Efficiency, Dissipation and Power Input

Gue of the most signifieant tube ratings is the maximum platedissipation rating. This is the power that can be safely dissipated in the tube

Fig. 6-17- Curves showing the relationshin of powr output (I_{1}.), power input (l_{i}), plate disipipation (I_{a}) and efficiensy according th clase of amplifier.
as heat. It is the difference betwern r.f. power output and the d.e. power input to the plate. For a given dissipation rating, the theoretieal power output from a tube depends on the offirienery with which it can be made to operate. The P_{0} / I_{d} curve of Fig, $6-17$ shows the theoretical power output obtainable at various officiencics in terms of the plate-dissipation rating. For instance, at an efficienery of 60 per erent, the rurve shows that the output will be 1.5 times the dissipation rating, while at an efficience of 90 per cent a power of 9 times the dissipation rating might be obtained. However, the Γ_{i} / Γ_{d} curve shows that the power input at ! 10 per cent would have to be 10 times the dissipation rating. An input of this magnitude would exered the power-input rating (plate voltage \times plate current) of the tube, which is based on cathode emission and electrode insulation. Also, referring to Fig. 6-18, it is seen that the higher efficiencies are obtainable only by the use of an inordinate amount of driving power. In other words, the power amplification derreases rapidly. The typical operating conditions given in the tube tables represent a compromise of these fartors. Fig. 6-17 shows the usual prarti-
cal efficioncies attainable for varions chassus of tube opration At an eflicioney of Th per cont. a Class ('amplifior conded nomally be oprated at a prow input of 1 times its plate dissipation. A doubler. howerer. normally operating at abont 3.5 per erent efficience, could handle an inputs of only about l. $\begin{gathered}\text { a times its dissipation rating. The }\end{gathered}$ efliciencies shown for (lass B amplifiers are for full excitation and full input.

The figures for driving power listed in the tube tables do not include coupling-circuit loses and to assure adequate excitation, the driver tube whould be capable of an output power three or four times the rated driving power of the amplifier. For normal operation, proper excitation is indicated when rated d.e. grid current is obtained at rated bias (see tube tables).

Depending on the material from which the plate is made, the plate will show no color, or varying degrees of redness, when operating at rated dissipation. This can be cheeked by operating the tube without excitation, bat with plate and seren voltages applied, for a period approximating normal opration. lixed bias should be applied to bring the plate current to some low value at the start. The bias should be gradually redued until the input to the tube (plate voltage X plate current in derimal pate of an ampere) equals the rated disipation. The color of the plate at this input should be noted so that it ran be compated with the color showing in nomal operation. A brighter color in operation would indicate that the dissipation rating is being exeeeded. Ilowever, most tubse of recent design do not show color at rated dissipation.

Maximum Grid Current

Maximum grid dissipation usually is ceppresed in terms of the maximum grid current at which the tube shonld be operated to prevent damage to the tube. A common result of exeessive grid heating is a rondition where the grid current gradaally falls off. If the bias is supplied

Fig. 6-18 - Curves showing relationship of driviay power. power amplification and plate-eirenit efliciency of an r.f. power-amplifier stage.
largely by grid-leak action, the bias drops and the tube draws execssive plate rument. The total effect is one in which the temperature of the tube rapidly rises fo the danger point. Nometimes, but not always, the tube will restore itself to mormal if all power, exept filamont, is turned off for several minutes. If the owerload has heren serious or prolonged, with a thoriated-

Bias and Tube Protection

The portion of the cxeitation cerele ower which the amplifier draws plate grid current (omerating angle) is gowornd hy applying a negative biasing voltage belwerngrid and wathode. Recommended values will be found in the tube tables. Several methods of ohtaining bits are shown in Fig. 10-19. In A, bias is oltained bey the voltage drop across

Fig. 6-19 - Various systems for ohtining protective and operating hias for r.f. amplifiers, I - Grid-leak. B - Bat. tery. C - Combination battery and grid leak, D - Grid leak and adjusted-voltage bias pack. E - Combimation mrid leak and voltage-regulated prack, \mathbf{F} - Cathode bias.
filament tube, it may be possible to reactivate the filament, as deseribed below, bat sometimes the tube will be permanently damaged.

Filament Voltage

The filament voltage for the indirectly-heated rathode-type tubes found in low-power elassififations may vary 10 per eant above or below rating without seriously reducing the life of the tube. But the voltage of the higher-power fila-ment-type tubes should be held closely between the rated voltage as a minimum and $\overline{5}$ per cent above rating as a maximum. Make sure that the plate power drawn from the power line does not cause a drop in filament voltage below the proper value when plate power is applied.

Thoriated-type filaments lose emission when the tube is overloaded appreciably. If the overload has not been too prolonged, emission sometimes may be restored by operating the filament at rated voltage with all other voltages removed for a period of 10 minutes, or at 20 per cent above rated voltage for a few minutes.
a resistor in the grid d.c. return eircuit when rectified grid current flows. The proper value of resistance may be determined by dividing the required biasing voltage be the d.e. grid eurrent at which the tube will be operated. The tube is hiased only when exeitation is applied, since the voltage drop across the resistor depends upon griclecurrent flow. When excitation is removed, the bias falls to zoro. At zero bias most tubes draw power far in exeess of the plate-diesipation rating. So it is advisable to make provision for protecting the tube when exatation faik by accident, or hy intent as it does when a preceding stage in a c.w. transmitter is keyed.

If the maximum cow, ratings shown in the tube tables are to be used, the input should be cut to zero when the key is open. Aside from this, it is not necessary that plate current be cut off completely but only to the point where the rated dissipation is not execoded. In this case platemodulated phone ratings should be used for e.w, operation, however.

This protection cin be supplied by obtaining
all hias from a source of fixed voltage, as shown in Fig. 6-1913. It is preforable, however, to use only sufficient fixed bias to protect the tube and obtain the balanee needed for operating bias from a grid leak, as indicated in (C. The grid-leak resistance in this case is calculated as above, exerept that the fixed voltage used is subtrated first.

Fised bias may be obtamed from dry batterios or from a power pack (see power-supply chapter). If dry batteries are used, they should be checked periodically, since even though they may show normal or above-normal voltage, they eventually develep) a high internal resistance. Grid-current flow through this battery resistance maty increase the bias considerably above that anticipated. The life of batteries in bias service will be approximately the same as though they were subject to a drain equal to the grid current, despite the fact that the grid-current flow is in sueh a direction as to charge the battery, rather than to discharge it.

In Fig. 6-19F, bias is obtained from the voltage drop across a resistor in the cathode (or filament (enter-tap) lead. Protective bias is obtained by the voltage drop across R_{5} as a result of plate (and sereen) current flow. Since plate current must flow to obtain a voltage drop across the resistor, it is obvious that cut-off protective bias cannot be obtained by this system. When excitation is applied, phate (and screen) current inereases and the grid current also contributes to the dropacross R_{5}, thereby increasing the bias to the operating value. Since the voltage betweon plate and cathode is reduced by the amount of the voltage drop, across R_{5}, the over-all supply voltage must be the sum of the plate and operat-ing-bias voltages. For this reason, the use of athode bias usuatly is limited to low-voltage tubes when the extra voltage is not difficult to obtain.

The resistance of the cathode biasing resistor R_{5} should be adjusted to the value which will give the correct operating hias voltage with rated grid, plate and screen eurrents flowing with the amplifier loaded to rated input. When excitation is removed, the input to most types of tubes will fall to a value that will prevent damage to the tube, at least for the period of time required to remove plate voltage.

A disadvantage of this biasing system is that the cathode r.f. comnertion to ground depends upon a by-pass capacitor. From the eonsideration of v.h.f. harmonies and stability with highperveance tubes, it is preferable to make the cathode-to-ground impedance as close to zero as possible.

Protecting Screen-Grid Tubes

Sereen-grid tubes camot be cut off with hias unkss the sereen is operated from a fixed-voltage supply. In this case the cutoff bias is approximately the sereen voltage divided by the amplification factor of the screen. This figure is not ahways shown in tube-data shects, but cut-off voltage may be determined from an inspection of tube curves, or by experiment.

When the sereen is supplied from a series dropping resistor, the tube an be protexted by the use of a screcorelamper tube, as shown in Fig. 6-20. The grid-leak bias of the amplifier tube with excitation is applied also to the grid of the clamper tube. This is usually suffieient to eut off the clamper tubs. However, when exritation is

Fig. 6-20 - Sereen clamper cirenit for protecting srreenkrid power tubes. The VR tube is needed only for complete cut-off.
$\left.C_{1}-0.00\right) 1-\mu$ fld disk ceramic. $R_{1}-100$ ohms.
renoved, the clamper-tube bias falls to zero and it draws enough current through the sereen dropping resistor usually to limit the input to the amplifier to a sate value. If complete sereenvoltage eut-off is desired, a VR tube maty be inserted in the sereen lead as shown. The Viktube voltage rating should be high enough so that it will extinguish when cexitation to the amplifier is removed. One VR tube should be used for each 40 ma. of sereen current, other tubes being added in parallel if needed.

Screen Considerations

Since the power taken by the serven doc's not contribute to the r.f. output, it is dissipated entirely in heating the sereen, so the dissipation can be calculated simply by multiplying the sereen voltage bey the sereen current.

It should be kept in mind that screen current varies widely with both excitation and loading. If the sereen is operated from a fixed-voltage source, the tube should never be operated without plate voltage and load, otherwise the sereen may be damaged within a short time. Supplying the screen through a series dropping resistor from a higher-voltage sourer, such as the plate supply. affords a measure of protection, since the resistor causes the sereen voltage to drop as the current increases, thereby limiting the power drawn by the screen. However, with a resistor, the sercen voltage may vary considerably with excitation, making it necossary to check the voltage at the sereen terminal under actual operating conditions to make sure that the sereen voltage is normal. Reducing excitation will cause the sereen current to drop. increasing the voltage; increasing exeitation will have the opposite elfect. These changes are in addition to those
caused by changes in bias and plate loading, so if a screen-grid tube is operated from a series resistor or a voltage divider, its voltage should be cherked as one of the final adjustments after excitation and loading have been set.

An approximate value of resistance for the screen-voltage dropping resistor may be obtained by dividing the voltage drop required from the supply voltage (difference between the supply voltage and rated serem voltage) be the rated sereen current in decimal parts of an ampere. Some further adjustment may be necessary, as mentioned above, so an adjustable resistor with a total resistance above that caleulated should be provided.

- feeding excitation TO THE GRID

In coupling the grid input circuit of an amplifier to the output circuit of a driving stage the objective is to load the driver plate circuit so that the desired amplifier grid excitation is oltaned without exceeding the plate-input ratings of the driver tube.

As explained earlier, the grid of a Class C amplifier must be driven positive in respert to cathode over a portion of the excitation crele, and rectified grid current flows in the grid-athode circuit. This represents an average resistance across which the exiting voltage must be developed by the driver stage. In other words, this is the load resistance into which the driver plate circuit must be coupled. The approximate grid imput resistance is given by:

$$
\begin{aligned}
& \text { Input impedance (ohms) } \\
& =\frac{\text { driving power }(\text { watts })}{\text { d.c. grid current }(\mathrm{ma})^{2}} \times 622 \times 10^{3} \text {. }
\end{aligned}
$$

For normal operation, the values of driving power and grid current may be taken from the tube tables.

Fip. 6-21 - Coupling excitation to the grid of an r.f. power amplifier hy means of a low-impedance coasial line.
$\mathrm{C}_{1}, \mathrm{C}_{3}$, $\mathrm{L}_{1}, \mathrm{I}_{3}$ - See corresponding components in Fig. 6-8.
C_{2} - Amplifier grid tank capacitor - see text and Fig. $6-22$ for capacitance, Fig. 6-3.5 for voltage rating.
C_{4} - $0.001-\mu \mathrm{fd}$. disk ceramic.
1.2-Toresonate at operating frequeney with C_{2}. See $L C$ chart in miscellane-ous-data chapter and inductance formula in clectrical-laws chapter, or use ARRI. Likhtning Calculator.
I. 4 - Reactance equal to line impedance - see reatance chart in miscel. laneous-data chapter and inductance formula in electrical-laws chapter, or use ARRI, Lightning C'alculator.
R is used to simulate grid impedance of the amplifier when a low-power s.w.l. indicator, sueh as a resistance bridge, is used. See formula in text for caleolating alue. Standing-wave indicator Sif R is inserted in line only while line is made flat.

Since the grid input resistance is a matter of a few thousand ohms, an impedance step-down is necessary if the grid is to be fed from a lowimpedance transmission line. This can be done by the use of a tank as an impedance-transforming device in the grid circuit of the amplifier as shown in Fig. (i-21. This coupling system may be considered either as simply a means of obtaining mutual inductance between the two tank coils, or as a low-impedance transmission line. If the line is longer than a small fraction of a wavelength, and if a s.w.r. bridge is available, the line is more easily handled by adjusting it as a matehed transmission line.

Inductive Link Coupling with Flat Line

In adjusting this type of line, the object is to make the s.w.r. on the line as low as possible over as wide a band of frequencies as possible so that power can be transferred over this range without retuning. It is assumed that the output coupling considerations discussed earlier have been observed in connertion with the driver plate rircuit. So far as the amplifier grid circuit is conermed, the controlling factors are the Q of the tuned grid circuit, $L_{2} C_{2}$, (see Fig. (i-22) the inductance of the coupling coil, L_{4}, and the degree of coupling between L_{2} and L_{4}. Variable coupling between the coils is convenient, but not strictly necessary if one or both of the other factors can be varied. An sw.w. indicator (shown as "Sll " " in the drawing) is essential. An indirator such as the "Mieromatch" (a commercially available instrument) may be connected as shown and the adjustments made under actual operating conditions; that is, with full power applicd to the amplifier grid.

Assuming that the coupling is adjustable, start with a trial position of L_{4} with respect to L_{2}, and adjust C_{2} for the lowest $\mathrm{s}, \mathrm{w}, \mathrm{r}$. Then change the coupling slightly and repeat. Continue until the s.w.r, is as low as possible; if the circuit constants are in the right region it should not be difficult to get the s.w.r. down to 1 to 1 . The Q of the tuned grid circuit should be designed to be at least 10 , and if it is not possible to get a very low s.w.r. with such a grid eireuit the probable reason is that L_{4} is too small. Maximum coupling, for a given degree of physical coupling between the two coils, will occur when the inductance of L_{4} is such that its reactance at the operating frequence is equal to the characteristic impedance of the link line. The reactance can be ealculated as described in the chapter on electrical fundamentals if the inductance is known; the inductance can either be calculated from the formula in the same chapter or

CHAPTER 6

measured as deseribed in the chapter on measurements.

Once the s.w.r. has beren brought down to 1 to 1, the frequeney should te shifted over the band so that the variation in s.w.r. can be olserveal, without changing (" or the roupling between L_{2} and L_{4}. If the s.w.r. rises rapidly on either side of the original frequency the cireuit can be made "flatter" be redueing the () of the tuned grid cirruit. This may le done by dereasing C_{2} and correspondingly increasing L_{2} to maintain resonance. and by tightening the compling between L_{2} and L_{4}, going through the same adjusiment process again. It is possible to set up the system so that the s.w.r. will not exeed 1.5 to 1 over, for example. the entire 7 -Mc. band and proportionately on other bands. Cuder these cirremstanees a single setting will serve for work anywhere in the land, with cessentially eonstant power transfer from the line to the power-amplifier grids.

If the coupling between L_{2} and L_{4} is not adjustable the same result may be serured by varying the L / C ratio of the tumed grid circuit - that is, by varying its (). If any diffeulty is encomtered it can be overeome by danging the number of turns in L_{4} until a match is serured. The two coils should be tighty coupled.

When a resistance-bridge type s.w.r. indiaton (see measuring-equipment chapter) is used it is not possible to pat the full power through the line when making adjustmonts. In such case the operating eonditions in the amplifier grid circuit

Fig. 6.22 - (hart showing retuired mrid tank capacitance for a 0 of 12. To use, divide the driving power in wates hy the square of the d.e. grid current in milliamperes and proneed an described under l"ig. (o-10). 1)riving power and grid corront may lie taken from the tube tables. When a split-stator eapacitor is used in a halanced grid eirchit, the capacitance of each section may lie half that shown ly the chart.
can be simulated by using a carbon resivior ($1 / 2$ or 1 watt size) of the same value as the calculated amplifier grid impedance, connerted as indicated hy the arrows in Fig. (6-21. In this rase the amplifier tube must be operated "cold" - without filament or heater power. The adjustment proerss is the same as describod above, but with the driver power reduced to a value suitable for operating the s.w.r. bridge.

When the grid coupling system has been adjusted so that the s.w.r. is close to 1 to 1 over the desired frequeney range, it is eertan that the power put into the link line will be delivered to the grid circuit. Coupling will be facilitated if the line is tuned as deseribed under the earlier section on output eoppling systems.

Link Feed with Unmatched Line

When the system is to be treated without regard to transmission-line efferets, the link line must not offer appreciable reartance at the operating frequency. Unless the constants happen to tume the link near resonance, any appreciable reactance, inductive or capacitive, will in effeet reduce the coupling, making it impossible to transfer sufficient power from the driver to the amplifier grid circuit. Coaxial eables especially have fonsiderable eapacitance for even short lengths and for this reason it may be more desirable to use a spaced line, such as Twin-Lead, if the radiation ean be tolarated.

The reactance of the line can be nullified only by making the link resonant. This may require changing the number of turns in the link coils, the length of the line, or the insertion of a tuning capacitance. The disadvantages of such a resonant link are obvious. Since the s.w.r. on the link line may be quite high, the line losses increase berause of the greater current, the voltage increase may be suflicient to cause a break-down in the insulation of the cable and the added tuned eireuit makes adjustment more eritical with relatively small changes in frequency.

These troubles may not be cencountered if the link line is kept very short for the highest frequeners. A length of 5 feet or more may be toleraibe at 3.5 Mc., but a lengeth of a foot at 28 Me. may be enough to cause serious effects on the functioning of the system.

Adjusting the coupling in such a system depernds so much on the dimensions of the link line used that it must nocessarily be largely a matter of cut and iry. If the line is short enough so as to have negligible reactance, the coupling between the two tank cireuits will increase within limits by adding turns to the link coils, maintaining as elose as possible equal inductances in each coil, or by coupling the link coils more tightly, if possible, to the tank eoils. If it is impossible to change either of these, a variable capaeitor of $300 \mu \mu \mathrm{fd}$. may be connereted in series with or in parallel with the link eoil at the driver end of the line. depending upon which eomeretion is the most effective. If coaxial line is used, the caparitor should be connerted in series with the inner eomeluctor. If the line is long enough to

Fig. 6.23 - Caparitive-enubled amplifiers. A - Simple capaeitive coupling. IS - Pi-sertion coupling.
C, - Driver plate tank rapacitor - see teat and fig. 6-8 for capacitance, Fig. 6-34 for voltage rating.
(2 - Compling rapacitor - 50 to 1.00 effe. mica, as neesesary for desired compling. Woltage rating sum of driver plate and amplifier biasing voltages, plus safety factor.
(a- Oriver plate by-pass capacitor - 0.001- $\mu \mathrm{fl}$. disk reramic or miea. Woltage rating same ats piate voltage, plus safoty factor.
C_{4} - Grid by-pass - $0.001-\mu \mathrm{fd}$. disk ceramic.
C
Ch - Driver plate bocking capacitor - O.001- f fo. disk exramio or mica. \oltage rating same as C_{2}.
(:- - Pi-section input rapactitor - see tevt and fïg. 6-10 for capacitance. Voltake rating - see Fig. 6-34 :
Cs - libecetion output capacitor - 100 - $\mu \mathrm{ffe}$. mica. Voltage rating same as driver plate voltage plas safety factor.
L_{4} - To resonate at operating frequeney with Ci. See $I \cdot C$ chart in miserllancous-data chapter and inductance formula in Hectrical-laws chapter, or use IRRI, Li\&htming Caltulator.
1.2-P'i-section inductor - See text. Approxinately same as h_{1}.
RFC_{1} - Grid r.f. rhohe - $\mathbf{2 . 5} \mathbf{5} \mathrm{mh}$. (Current rating alove prid current to be expected.
RFF_{2} - Driser plate r.f. ehoke - 2.5 mh . Current rating above of plate current expected.
more frefucntly than any ot her sustem, it is less flexiblo amd has certain limitations that must be taken intoromsideration.

The two slages ranmot be separated physically any approciable distance without involving loss in transferred power, radiation from the coupling lead and the danger of feed-back from this lead. Since both the output rapacitance of the driver tube and the imput ceapactitance of the amplifier are acress the single cirenit, it is sometimes difficult to obtain a tank rirenit with a sufficiently low (Q to provide an efficient circuit at the highor frecurnoies. The rousling ean be varied by altering the apacitance of the reoupling capuator, ('2, but no impedance transforming is possible. The driver load impedance is the sum of the amplifier grid resistance and the reatatnere of the compling caparitor in series, the eompling eaparitor serving simply as a series reator. Wriver load resistance increases with a dereense in the celpuritance of the coupling eat paritor.

When the amplifier grid impedance is lower than the optimum load resistance for the driver, a transforming action is possible by tapping the grid down on the tank coil, but this is not recommended beranse it invariably causes an increase in v.h.f. hamonies and sometimes sets up a pamsitic circuit.

So lar as coupling is concerned, the Q of the rirenit is of little significance. However, the other considerations disrussed earlier in connection with tankcircuit () should be ohserved.

Pi-Section Tank as Interstage Coupler

A pi-section tink circuit, as shown in Fig. 6-2:313, may be used as a coupling device betwern serven-grid amplifier stages. The circuit is actually a capacitive couphing arrugement with the grid of the amplifier tapped down on the rircuit by means of a eapacitive divider. In contrast to the tapped-coil method mentioned previously, this system will be very effertive in reducing v.h.f. harmoniss, because the output capacitor, ('s. provides a dired eapacitive shmot for harmonies arross the amplifier grid circuit.

To be most effertive in rocluring v.h.f. harmonies, ('s shoukd be a mica capacitor connected directly across the tube-socket terminals. Tiapping down on the circuit in this manner also helps to stabilize the amplifier at the operating frequency because of the grid-circuit loading provided by Cs. For the purposes both of stability and harmonie reduction, experience has shown that a value of $100 \mu \mu \mathrm{fl}$. for C_{8} usuatly is suflicient. In general, C_{7} and L_{2} should h:ive values approximating the eapacitance and in-
ductance used in a conventional tank circuit. A reduction in the inductance of L_{2} results in an increase in coupling bectuse (${ }_{7}$ must be increased to retume the cirouit to resonance. This changes the ratio of C_{7} to C_{8} and has the effect of moving the grid tap up on the circuit. Since the roupling to the grid is comparatively loose under any condition, it may be found that it is impossible to utilize the full power capability of the driver stage. If sufficient excitation camnot be obtained, it may be necessary to raise the plate voltage of the driver, if this is permissible. Otherwise a larger driver tube may be required. As shown in Fig, $6-23 \mathrm{~B}$, parallel driver phate feed and amplifier grid feed are neeessary:

STABILIZING AMPLIFIERS

External Coupling

A straight amplifier operates with its input and output circuits tuned to the same frequence. Therefore, unless the coupling between these two circuits is brought to the neeessary minimum, the amplifier will oscillate as a tuned-plate tuned-grid circuit. Care shonld be used in arranging components and wiring of the two cireuits so that there will be negligible opportunity for coupling external to the tube itself. Complete shielding between input and output circuits usually is required. All r.f. leads should be kept as short as possible and particular attention should be paid to the r.f. return paths from phate and grid tank rireuits to cat thode. In general, the best arrangement is one in which the eathode (or filament center tap) comection to ground, and the plate tank (ircuit are on the same side of the chassis or other shielding. Then the "hot" lead from the grid tank (or driver plate tank) should be brought to the socket through a hole in the shielding. Then when the grid tank capacitor, or ly-pass is grounded, a return path through the hole to cathode will be encouraged, since transmissionline characteristics are simulated.

A check on external coupling between input and output circuits can be made with a sensitive indicating deviee, such as the one diagrammed in Fig. 6-24. The amplifier tube is removed from its socket and if the plate terminal is

Fik. 6-24- Cireuit of sensitive neutralizing indicator, Wtal is a 1 N 31 erystal detector, Ma $0-1$ direct-current milliammeter and f a $0.001-\mu \mathrm{fil}$. mina by-pase capacitor.
at the socket, it should be discommeted. With the driver stage running and tuned to resonanee, the indicator should be couphed to the output tank coil and the output tank (aparitor tuned for any indication of r.f. feed-through. Experiment with shielding and rearrangement of parts will show whether the isolation can be improved.

Neutralizing Circuits

The phate-grid capacitance of screen-grid tubes is reduced to a fraction of a micro-microfarad by the interposed grounded sereen. Nevertheless, the power sensitivity of those tubes is so great that only a very small amount of feed-back is

Fig. 6.25 - Sureen-grid noutralizing circuits. A - In. ductive neutralizing. 13-C - Capacitive nentralizing.
(:) - Grid by-pass capacitor - approx. $0.001-\mu \mathrm{fd}$. mica. Voltage rating same as liasing voltage in 13, same as driver plate voltage in C.
Cis - Ventralizing capacitor - approx. 2 to $10 \mu \mathrm{ff}$. - see text. Voltage rating same as amplifier plate voltage for c.w., I wiee this value for plate modulation.
$\mathrm{L}_{1}, \mathrm{~L}_{2}$ - Neutralizing link - usually a turn or two will be sufficient.
neressary to start oseillation. To assure a stable amplifier, it is usually necessary to load the grid cirenit, or to use a meutralizing cireuit. A neutralizing circuit is one external to the tube that balanees the voltage fed back through the grid-plate capacitance, by another voltage of opposite phase.
Fig. 6-25A shows how a screen-grid amplifier may be neutralized by the use of an inductive link line coupling the input and output tank circuits in proper phase. The two eoils
must be properly polarized. If the initial connedetion proves to be incorrect, connections to one of the link roils should be reversed. Neutralizing is adjusted by changing the distance bet wean the link coils and the tank coils. In the case of rat pacitive eoupling between stages, one of the link roils will be roupled to the plate tank coil of the driver stage.
A rapacitive neutralizing sistem for screengrid tubes is shown in Fig. (i-25I), ('2 is the meutralizing eapacitor. The caparitance should be chosen so that at some adjustment of C_{2}, the ratio of C_{2} to C_{1} equals the ratio of the tube grid-plate capacitance to the grid-cathode capacitanere. If C_{1} is $0.001 \mu \mathrm{fd}$., then the neutralizing capacitance may be found by

$$
C_{2}=\frac{1000}{C_{\mathrm{gk}}} C_{\mathrm{tp},} .
$$

The grid-cathode caparitance must include all strays directly across the tube eaparitance, including the caparitance of the tuning-eaparitor stator to ground. This may amount to $\overline{\bar{j}}$ to 20 $\mu \mu \mathrm{fd}$. In the case of caparitance roupling, as shown in Fig. 6-25C, the output eapacitance of the driver tube must be added to the gridcathode capacitance of the amplifier in arriving at the value of Co, If (cz works out to an impractically large or small value, Ci can be changed to compensate by using combinations of fivel miea capacitors in parallel.

Neutralizing Adjustment

The procedure in neutralizing is essontially the same for all types of tubes and circuits. The filament of the amplifier tube should be lighted and excitation from the precoding stage fed to the grid circuit. There should be no plate voltagr applied to the amplifier.

The immediate objective of the neutralizing process is reducing to a minimum the r.f. driver voltage fed from the input of the amplifier to its output circuit through the grid-plate capacitance of the tube. This is done by adjusting carefully. bit by bit, the neut rabizing capacitor or link coils until an r.f. indicator in the output circuit reads minimum.

The device shown in Fig. 6-24 makes al sensitive neutralizing indicator. The link should the coupled to the output tank coil at the low-potential or "ground" point. Care should be taken to make sure that the coupling is loose enough at all times to provent burning out the moter or the reetificr. The plate tank capacitor should be readjusted for maximum reading after each change in neutralizing.

A simple indicator is a flashlight bulb (the lower the power the more sonsitive) commerted at the center of a turn or two of wire coupled to the tank coil at the low-potential point. However, its sensitivity is poor compared with the milliam-metor-rectifier.

The grid-current moter may also be used as a neutralizing indicator. If the amplifier is not neutralized, there will be a large dip in grid current as the plate-tank tuning passes through
resonance. This dip reduces as neutralization is approathed until at exact neutralization all change in grid current should disappear.

When neutralizing an amplifier of medium or high power, it may not be possible to bring the reading of the rectifier indicator down to zero, but a minimum point in the adjustment of the neutralizing eontrol should be found where higher readings are obtained on either side.

Grid Loading

The use of a neutralizing circuit may often be avoided by loading the grid circuit if the driving stage has some power eapability to spare. Loading by tapping the grid down on the grid tank coil (or the plate tank coil of the driver in the case of (apacitive coupling), or by a resistor from grid to cathode is effective in stabilizing an amplifier, but either deviee may increase v.h.f. harmonics. The best loading system is the use of api-section filter, as shown in lig. 6-2:3B. This circuit places a capacitance direstly betwean grid and cathode. This not only provides the dexirable loading, but also a very effertive capacitive short for v.h.f. harmonies. A $100-\mu \mu \mathrm{d}$ d. mica catpacitor for C_{s}, wired dirertly between tube terminals will usually provide sufficient loading to stabilize the amplifier.

V.H.F. Parasitic Oscillation

Unless steps are taken to prevent it, parasitic oscillation in the v.h.f. range will take plate in almost every r.f. power amplifier. To test for v.h.f. parasitic oscillation, the 28 -Mc. tank roil should he plugged into the grid tank eireuit (or the plate tank cireuit of the driver stang if caparitive coupling is used) and the 3.5 - Me. roil in the plate tank circuit. This is to prevent any possible t.g.t.p. oscillation at the operating frequency which might lead to confusion in identifying the parasitic. Any fixed bias should be replaced with a grid leak of 10,000 to 20,000 ohms. In a capaci-tive-roupled stage, the driver should be eoupled in the normal way, but all load on the output of the amplifier should be disconnected. If the stage is an intermodiate amplifier, the tube in the following stage should remain in plate, but with its filament turned off. Plate and serreen voltage should be reduced to the point where the rated dissipation is not exceeded. If a Viariat is not available, voltage may be reduced by a 115 -volt clectric lamp in series with the primary of the plate transformer. A 150 -watt size is about right for a medium-power transmitter.

With power applied only to the amplifier under test (not the driver), a areful search should be made he adjusting the input tank eaparitor to several settings, espercially including minimum and maximum, and turning the plate tank caparitor through its range for each of the grid(alparitor settings. Any grid current, or any dip) or Hicker in plate current at any point, indicates oscillation. This can be contirmed by an indicating absorption wavemeter (see measurements chapter) tuned to the frequency of the para-
sitic and held close to the phate lead of the tube.
The heavy lines of Fig. (i-26. l show the usual parasitic tank cireuit, which resomates, in most cases, bet ween 150 and 200 Mr . For each type of tetrode, there is a region, usually above the parasitie frequency, in which the tube will be solfneutralized. Therefore a v.h.f. parasitic oseillation may be suppressed by adding sufficient inductance, L_{p}, to tume the circuit into this region. Ilowever, to avoid TVI, the self-neutralizing fre-

Fig. 6.26-A - l'sual par:sitic circuit. 13-Resistive loading of parasitic circuit. (: - Indurtive coupling of loading resistance into parasitic espuit.
queney must not be above 100 Ne., preferably 120 Mr . When it is lower. the cirenit must be limited to 100 or 120 Me, and the parasitic suppressed by loading the cireuit with resistance, R_{p}, A eoil of 4 or $\overline{5}$ turns, $1 / 4$ inch in diameter, is a good starting size. With the tank raparitor turned to maximum (:upacitance, the circuit should be cherked with a g.el.o. to make sure the resonature is above 100 Me . Then, with the shortest possible leads, a nomindurtive 100 -ohm 1 -watt resistor should be comected aress the rentire coil. The amplifior should be tuned up to its highest-frequencer band and operated at low voltage. The tap should be moved a little at a time to find the minimum number of turns required to suppress the parasitic. Then voltage should be increased unt il the resistor legins to feel wam after several minuter of operation, and the power imput noted. This input should be eompared with the normal input and the poner rating of the resistor inereased be this proportion: i.e., if the power is half nommat, the wattage rating should be doubled. This increase is hest mate by comnecting 1 -wat t carboun resistors in patrallel to give a resultant of about 100 ohms. Is power input is increased, the parasitic mate start up again, so power shouth be applied only momentarily until it is made cortain that the parasitic is still supmerssed. If the parasitio starts up again when voltage is raised, the tap must be moved to include more turns. So bong as the patrasitio is suppressed, the resistors will hat up onty from the operatingfrepurney eurrent.

Sine the resistor can be placed arross only that portion of the parasitic circuit represented by L_{p},
the latter should form as large a portion of the circuit as possible. Therefore, the tank and herpass capacitors should have the lowest possible indurtance and the leads shown in heavy lines should ter as short as possible and of the heaviest practical conductor. This will permit L_{p} to be of maximum size without tuning the circuit below the $100-\mathrm{Mc}$. limit.

Anothor arrangement that has been used successfully is shown in Fig. (i-26C. A small turn or two is inserted in place of L_{p}, and this is coupled to a circuit tuned to the parasitio frequeney and loaded with resistance. The heavy-line cireuit should first be cheeked with a g.d.o. Then the loaded circuit should be tuned to the same frequency and coupled in to the point where the parasitic ceases. The two coils can be wound on the same form and the eoupling varied by sliding one of them. Slight retuning of the loaded circuit may be required after coupling. Start out with low power as before, until the parasitic is suppressed. Since the loaded cirenit in this case carries much less operating-frequency eurrent, a single 100 -ohm 1 -watt resistor will often be sufficient and a $: 30-\mu \mu \mathrm{fd}$. mica trimmer should serve as the tuning capacitor. C",

Low-Frequency Parasitic Oscillation

The screening of most transmitting screen-grid tubes is sufficient to prevent low-frequency parasitic oscillation cansed ber resonamt cireuits set up be r.f. chokes in grid and plate circuits. Should this type of oscillation (usually between 1200 and 200 ke .) occur, see section under triode amplifiers.

PARALLEL-TUBE AMPLIFIERS

The cireuits for parallel-tube amplifiers are the same as for a single tube. similar terminals of the tubes being connected together. The grid impedance of two tubes in parallel is half that of a single tube. This means that twiee the grid tank eaparitinnee shown in Fig. 6-22 should be used for the same (Q. The plate load resistance is halved so that the plate tank caparitance for a single tabe (Fig. (6-10) also should be doubled. The total grid eurrent will be doubled, so to maintain the same grid bias, the grid-leak resistance should be half that used for a single tube. The required driving power is doubled. The eapacitance of a neutralizing caparitor, if used, shoukd be doubled and the value of the sereen dropping resistor should be cut in half. In treating parasitic oscillation, it maty he necessary to use chokes in earh plate and grid lead, rather that one in the common leads. Input and output capacitances are doubled, which may be a factor in affienent operation at higher frequencies.

PUSH-PULL AMPLIFIERS

Circuits for push-pull amplifiers are shown in Fig. (i-2. With this arrangement both gridinput impedance and optimum plate load resistance are dobblod. For the same (), each section of the split-stator tank wapeator should

Fïs. 6.2\%-Pu*-pull suren-grid amplifier circuits.

A - Inductive-link coupling. B - Capacitive coupling.
Ci-Split-stator grid tank capacitor - ser test and lig. 6-O-2 for caparitance, Fig. 6-3.5 for voltage rating.
C: - Split-stator phate tank capacitor - sec lent and fïg. 6-10 for capacitance. Fing. 6-34 for voltage rating.
(3_{3} - Grid by-pase mapator - $0.001-\mu \mathrm{fd}$. disk ceramic.
C_{4}, C_{5} - Filament ley-pass - $0.001-\mu \mathrm{fl}$. disk ceramic.
($6,6,7$ - Scrcen by-pass - 0.001 - μ fld. disk ceramic or miea. Woltage rating depends on maximum voltage to which sercen may soar, depending on how it is supplied. Voltage rating equal to plate voltage will be safe in any case.
Cos - Plate by-pass - $0.001-\mu \mathrm{fd}$. disk caramic or mica. Voltage rating same as plate voltage for c.w.; twice this value for plate modulation.
Cs - Driver plate tank capacitor-see section on simple capacitive coupliag "ith single tube. For same Q. each section should have half the eapacitance shown in lif. 6-16). Voltage rating of cach section shonald be twiee d.e. plate voltage of driver.

Cio, (in-Coupling capacitor - $\mathbf{5 0}$ - to $150-\mu \mu \mathrm{fl}$. micat. Voltage rating twice Jriver plate whage.

C:3-ser text.
 chapter and inductance formula in electical lans eltapter.

 taws inhapter.
Ias. If - Neutralizing links - usually a turn or two will be sulficient.

RHCe - 2.5-mil. r.f. wohe to carry wate current.
have half the capacitance for a single tube drawing the same total plate current and having the same grid impedance shown by Figs. (6-10 and 6-22. This means that the total tankrireuit capacitance is onequarter that for a single tube and that the induetances of the tank coils must be quadrupled to resonate at the same frequency. Other values remain the same, except that the total grid, sereen and pate currents will be twice the values for a single tube and the stage will require twice the driving power.

In Fig. (i-27A, indurtive link roupling is shown. The neutralizing cireuit is shown in heavy lines and may not be necessars. Fig. (i-2;13 shows capacitive coupling to the grids. The driver in this case must be provided with a balanced output circuit. To maintain balanced excitation, it may be necessary to plate ${ }^{\prime}$ 13, shown in dashed lines, arross the lower portion of the circuit to balance the driver-tube output capacitance aross the upper half. The remainder of cirruit 13 is the same as A. If a heutralizing link is needed. it should be eoupled at the renter of the driver plate tank coil.

It is advisable to use separate screen and heater by-pass capacitors, especially when TVI is a factor. Fig. ib-23 shows eguivalent "eathode" commestions to be substituted when filament-tope tubes are used. Also, individual v.h.f. parasitic chokes will be necessary.

Balance in Push-Pull Amplifiers

l'roper push-pull operattion reguires an arcurate b:ander between the two sides of the "ireuit. Otherwise the dixsipation will not be distributed evenly betwern the two tubers, one being overtowded if an attempt is made to oper-
ate the amplifier at full rating. Unbalance is indicated when the grid and/or plate currents are not equal and, if serious, is accompanied by a visible difference in the color of the tube plates. If interchanging the tubes does not change the umbalance, the circuit is not symmetrical electrically.

If the coil center-tap in split-stator tank rir-

Fig. 6-28-Conncctions for tubes in push-pull when filament types are used. The by-pass capacitors, C1, should be 0.001- $\mu \mathrm{fd}$. dish ceramic, one placed close to each filament terminal. Ti is the filament transformer.
cuits issufficiently well-isolated from ground, the batance will depend upen the aceuratey of eapatitive balance in the tank capacitor, the length of leads connecting the tubes to the capacitor (including the return lead from rotor to filament) and the settings of the neutralizing capacitors. Unbalance in the plate circuit will seldom influence the balance in the grid circuit, but the opposite may not be true. Lengthening one or the other of the leads between the tubes and the tank caparitor will alter the balance, particularly in the plate eircuit. In extremes it may be necessary to place a trimmer across one section of thesplit-stator capacitor. Small differencesoften may be taken care of by a readjustment of the neutralizing capacitors, possibly to slightly unequal settings. Otherwise, the neutralizing eapacitors are adjusted together, keoping the rapacitanes as equal as possible at earh step.

FREQUENCY MULTIPLIERS

Single-Tube Multiplier

Output at a multiple of the frequency at which it is being driven may be obtained from an amplifier stage if the output eireuit is tuned to a harmonic of the exriting freguency instead of to the fundamental. Thus, when the frequency at the grid is 3.5 Me., output at 7 Me , 10.5 Me., 14 Me., ate., may be obtaned by tuning the plate tank circuit to one of these frequencies. The cireuit otherwise remains the same as that for a straight amplifier, although some of the values and operating conditions
may require change for maximum multiplier efficiency.

Efficiency in a single- or parallel-tube multiplier comparable with the efliciency obtainable when operating the same tube as a straight amplifier involves decreasing the operating angle in proportion to the increase in the order of frequency multiplication. Obtaining output comparable with that possible from the same tube as a straight amplifier involves greatly increasing the plate voltage. A practical limit as to cfficiency and output within normal tube ratings is reached when the multiplier is operated at maximum permissible plate voltage and maximum permissible grid current. The plate current should be reduced as necessary to limit the dissipation to the rated value by increasing the bias. High efficiency in multipliers is not often required in practice, since the purpose is usually served if the frequency multiplication is obtained without an appreciable gain in power in the stage.

Multiplications of four or five sometimes are used to reach the bands above 28 Mc . from a lower-frequency crystal, but in the majority of lower-frequency transmitters, multiplication in a single stage is limited to a factor of two or three, because of the rapid dectine in practicably obtainable efliciency as the multiplication factor is increased. Screen-grid tubes make the best frequency multipliers because their high power-sensitivity makes them easier to drive properly than triodes.

Since the input and output circuits are not tuned close to the same frequency, neutralization usually will not be required. Instances may be encountered with tubes of high transconductance, however, when a doubler will oscillate in t.g.t.p. fashion, requiring noutralization. The link neutralizing system of Fig. $6-25 . \mathrm{A}$ is convenient in such a contingeney.

Push-Pull Multiplier

A single- or parallel-tube multiplier will deliver output at either ever or odd multiples of the exciting frequency. A push-pull multiplier

Fig. 6-29 - Cirruit of a push-push frequeney multiplier for even harmonies.
$C_{1} L_{1}$ and $C_{2} L_{2}$ - See text.
C_{3} - Plate by-pass - $0.001-\mu \mathrm{fd}$. disk ceramic or mica, Voltage rating equal to plate voltage plus safety factor.
RHC - 2.5-mh. r.f. clooke.

Fig. 6-30-Triode amplifier circuits, A - Link coupling, single tube, 13 - Caparitive coupling, single tube. C-Link coupling, push-pull. I) - Capacitive coupling, push-pull. Aside from the neutralizing circuits, which are mandatory with triodes, the circuits are the same as for screen-grid tubes, and should have the same values throughont. The neutralizing capacitor, C_{1}, should have a caparitance somewhat greater than the grid-plate capacitance of the tuhe. Joltage rating shonld be twiee the d.c. plate voltage for c.w., or four times for plate modulation, phes safety factor. The resistance R_{1} should be at least 100 ohms and it may consist of part or preferably all of the grid leak. For other component values, see similar sereen-grid diagrams.
does not work satisfactorily at even multiples because even harmonics are largely canceled in the output. On the other hand, amplificrs of this type work well as triplers or at other odd harmonics. The operating requirements are similar to those for single-tube multipliers.

Push-Push Multipliers

A two-tube circuit which works well at even harmonics, but not at the fundamental or odd harmonics, is shown in Fig. 6-29. It is known as the push-push circuit. The grids are connected in push-pull while the plates are connected in parallel. The efficiency of a doubler using this circuit may approach that of a straight amplifier under similar operating conditions, because there is a plate-current pulse for each cycle of the output frequency.

This arrangement has an advantage in some applications. If the heater of one of the tubes is turned off, making the tube inoperative, its grid-plate capacitance, being the same as that of the remaining tube, serves to neutralize the circuit. Thus provision is made for either straight amplification at the fundamental with a single tube, or doubling frequency with two tubes as desired.

The grid tank circuit is tuned to the frequency of the driving stage and should have the same
constants as the grid tank circuit of a push-pull amplifier (see Fig. 6-27). The plate tank cireuit is tuned to an even multiple of the exciting frequency, usually the second harmonic, and should have the same values as a straight amplifier for the harmonie frequency (see Fig. 6-10), bearing in mind that the total plate current of both tubes determines the C to be used.

TRIODE AMPLIFIERS

Circuits for triode amplifiers are shown in Fig. 6-30. Neglecting references to the screen, all of the foregoing information applies equally well to triodes. All triode straight amplifiers must be neutralized, as Fig. 6-30 indicates. From the tube tables, it will be seen that triodes require considerably more driving power than screengrid tubes. However, they also have less power sensitivity, so that greater feed-back can be tolerated without the danger of instability,

Low-Frequency Parasitic Oscillation

When r.f. chokes are used in both grid and plate circuits of a triode amplifier, the splitstator tank eaparitors combine with the r.f. chokes to form a low-frequency parasitio circuit, unless the amplifier circuit is arranged to prevent it. In the circuit of Fig. $6-30 \mathrm{~B}$, the amplifier grid is series fed and the driver plate is parallel fed.

For bow freguencies, the r.f. choke in the driver bate circuit is shorted to gremend through the tank coil. In Figs. 6-30(C and 1), a resistor is sul)stituted for the grid r.f. choke. This resistance should be at least 100 ohms. If any grid-leak resistance is used for biasing, it should be sulstituted for the 100 -ohm resistor.

TUNING A TRANSMITTER

Fig. ($6-31$ shows where milliammeters and voltmeters may be connected to obtain desired readings. Metering of all stages is usually not necessary exaept for initial adjustments. . After prereding stages hatve heen adjusted for proper operating conditions, a transmitter can often be tuned up using only grid- and plate-current. milliammeters in the final-amplifier circuit.

While cathode metering often is used for reatsons of safety to the operator and meter insulation, it is frequently difficult to interpret readings that are the resultant of three currents, one of which may be falling while the other two are inereasing. Pig. fo-32 shows a commonly-msorl system for switohing a single moter to read current in any of several different circuits. The resistors, R, are comnected in the varions eirenits in plare of the milliammeters shown in Fig. 6-31. Since the resistance of R is several times the intermal resistane of the milliammeter, it will have no practical effect upon the reading of the meter.

When the meter must read currents of widely differing values, a meter with a range sufficiently low to arcommodate the lowest values of current to be measured may be solected. In the rirenits in which the current will be above the sate of the moter, the resistance of R ban be adjusted to a lower value which will give the meter reading a multiplying factor. (See chaptor on measurements.) (are should be taken to clsarve proper polarity in making the connertions botween the resistors and the switeh.

The first step in adjusting each stage is to check for parasitie os illation as discussed carlier. The serond step is to adjust neutralizing, if required.

While it is usually possible to make all initial tuning adjust ments of lowpower stages with plate voltage applied, it is preferable to disconnect the plate voltage until adjustments of exritation have been marle. Starting with the oscillator, its ontput tank circuit should be resonated as indicated by a dip in the plate-current rading (sore Fig. (i-t), or by a maximum rading of grid current to the following stage if it is coupled caparitively. Both readings should oceur simmitaneously. The frequency of the oscillator output should be checked with an absorption wave-
moter to make sure that it is tumed to the desired band. If transmission-line compling is used, the coupling to the grid of the amplitier should first be adjusted for minimum standing-wave ratio as described earlier. After this adjustment, the coupling at the oscillator end of the line only should be altered. If the amplifior grid current is much above rated valure, the coupling to the oscillator should be reduced. Conversely; if the amplifier grid current is low. coupling should bo incroased. As the compling is increased, the oscillator should draw more plate current and the dip at resonance should become less promounced, as indieated in ligg. 6-1. If it is possible to increase the roupling to the point where the oseillator plate current is up to the rated value and fet the required gride current is not up to rated value, the biasing voltage should be measured with a high-resistance (20,000 ohms per volt) voltmeter. If the stage has a simple biasing resistor from grid to ground, connect a 2.j-mh. r.f. choke in serios, with the voltmoter prod going to the grid. The hias should be measured with the stage operating under excitation. If the biasing voltage measures too high, any fixed bias should be reduced and then, if necessary, the grid-loak resistance. If the driver is operating up to rated plate current and rated

Fig. 6-31 - Diagrams showing placement of voltmeter and milliammeter to obtain desired measurements. A - Series grid feed, parallel plate ferd and series screen voltape-dropping resistor. 13 - l'arallol grid feed. series plate frad and wroen voltage divider.
grid current cannot be obtained with the required bias, the indication is that the sereen and/or plate voltage of the oscillator must be raised if this can be done with salety to the oscillator tube. However, it should be borne in mind

Fig, 6.32-Switehing a single milliammeter. The resistors, R, should be 10 to 20 times the internal resistance of the meter: 47 ohms will usually be satisfactory. s_{1} is a 2 -section rotary switch. It insulation should be coramic for high voltakes, and an insulating conpling should always be used between shaft and control.
that even if an intermediate stage is underdriven, it still may furnish the required driving power for the following stage. Therefore, it is, of course, advisable to check this before making any drastic changes in the oscillator.
The same process is followed in tuning up following amplifier stages, step by step. If there is any difficulty in obtaining the desired exeitation to any particular stage, be sure that the sereen voltage of the driver stage is up to normal as discussed earlier in the section on screen-grid considerations. If the expitation is adjusted first without plate and sereen voltages it may be found that the grid current will change when these voltages are applied and the stage is loaded. It is nomal for grid current to drop somewhat when these voltages are applied and still further when the load is coupled, especially with triodes. When this occurs, excitation should be increased, to bring the grid current back to rated value.

If grid current increases when the plate tank circuit is tuned slightly to the high-fremeney side of resonance, this indicates regeneration. In the final amplifier, esperially if it is to be modulated, this is a condition to be avoided by better shielding or more accurate neut ralization.

The main objective in the cond, of course, is to obtain adequate excitation to the final amplifier and, in general, any adjustment of earlier stages that will produce this result without overloading anywhere along the line will be satisfactors. In conservative design, the full power capability
of the exriter stages may not be needed. In the interests of v.h.f. harmonic reduction, it is desirable to provide an excitation control so that the excitation to the final amplifier can be limited to that nevessary for satisfactory operation. This can be in the form of a potentiometer control of the screen voltage of the first stage after the oscillator. Then reduction in screen voltage of this stare will reduce excitation all along the line, which is desirable.

- MEASURING POWER OUTPUT

The power output of any transmitter stage can be checked with reasonable accuracy by simply coupling an ordinary lamp to the output tank circuit and comparing its brilliance with that of another tamp of the same size operating from a.c. Since it is difficult to judge power accurately when the lamp is over or under normal brilliance, the lamp selected should have a wattage rating as close as possible to that expected from the amplifier. Flashlight bulbs ean be used for low power. At frequencies above 7 Mr. sufficient coupling usually is obtamed by comecting the lamp in series with a few turns of wire that can be slipped over or inside the tank coil, as shown in

Fig. 6.33 - Using a lamp bulb for an approximate check on the output of an ascillator or amplifier. The coupling should tee adjusted to make the stage draw rated plate current when tuned to resonance. Sperial caution should be used in tapping the lamp directly on the coil when series plate feed is used. Aherays turn off the poter before making a change in the tap.
Fig. 6-33A. But at 3.5 and 7 Me, it is usually necessury to tap the bull directly across a portion of the tank coil, as shown at 13. WARNING! 'Turn off the high rollage when tappiny a series-fed tank rircuit. The roupling should be adjusted until the plate current at resonance is the rated loaded value for the tube. A more accurate dummy load is described in QS'T for March, 1951.

COMPONENT RATINGS AND INSTALLATION

Plate Tank-Capacitor Voltage

In selecting a tank eapacitor with a spacing between plates sufficient to prevent voltage breakdown, the peak r.f. voltage across a tank circuit mder load, but without modulation, may be taken conservatively as equal to the d.c. plate voltage. If the d.c. plate voltage also appears arross the tank capacitor, this must be added to the peak r.f. voltage, making the
total peak voltage twice the d.c. plate voltage. If the amplifier is to be plate-modulated, this last value must be doubled to make it four times the d.e. plate voltage, because both d.e. and r.f. voltages double with 100 -per-cent plate modulation. At the higher plate voltages, it is desirable to choose a tank cireuit in which the d.c. and modulation voltages do not appear arross the tank eaparitor, to permit the use of a smaller capacitor with less plate spaeing. Fig. 6-34 shows the peak voltage, in terms of d.e. plate voltage, to be expected ateross the tank capacitor in various circuit arrangements. These paak-voltage values are given assuming that the amplifier is loaded to rated plate curent. Without load the peak r.f. voltage will rum mueh higher. Since a c.w. transmitter may be operated without load while adjustmonts are being made, although a modulated amplifier never should be operated without load, it is sometimes considered logieal io select a capacitor for a cw. transmitter with a peak-voltage rating equal to that required for a phone transmitter of the same power. However, if minimum cost and space are considerations. a capacitor with half the spacing required for 'phone operation can be used in a c.w. transmiterer for the same earrier output, as indicated under Fig. 6-34, if power is reduced temporarily while tuning up without load.

In the circuits of Fig. ($6-3+\left({ }^{\prime}\right.$, , and 1 ; the rotors are deliberately connected to the positive side of the high-voltage supply, eliminating any difference in d.e. potential between the rotors and stators.

The plate sparing to be used for a given peak voltage will depend upon the design of the variable eapacitor, influencing factors being the mechanical construction of the unit, the dielertric used and its placement in respect to intense fields, and the caparitor plate shape and degree of polish. Capacitor manufacturers usually rate their prohlucts in terms of the peak voltage between plates.

Plate tank eaparitors should be mounted as close to the tule as temperature eonsiderations will permit to make possible the shortest capacitive path from plate to eathode. bispecially at the higher frequencies where minimum cirenit caparitance becomes important, the caparitor should be mounted with its stator

(E)

(G)
 control.

Fig. 6-34-Diagrams showing the reak voltage for whieh the plate tank capacitor should be rated for c.w. operation with various circuit arrangements. E is equal to the d.e. plate voltage. The salues should be doubled for plate modulation. The circuit is asamed to be fully loaded. (ircuits $\lambda, 6$, and Fi require that the tank capacitor he insulated from chassis or gromen, and from the
maximum power level for which the coil is designed. Therefore in the majority of cases, the eapmeitance shown by Figs. $6-10$ and $6-22$ will be greater than that for which the coil is designed and turns must be removed if a Q of 12 or more is needed. At 28 Me., and somotimes 14 Me., the value of capacitance shown by the chart for a

Fij, 6.35-The voltage rating of the grid tank capacitor in A should be equal to the biasing voltage plus about 20 per rent of the plate voltage. 'This same rating should be applied to each section of the split-stator capacitor in 13 .
high plate-voltage/plate-eurrent ratio may bo lower than that attainable in practice with the components available. The design of manufartured coils usually takes this into consideration also and it may be found that values of caparitance greater than those shown (if stray caparitance is included) are required to tune these coils to the band.

Manufartured coils are rated according to the plate-power input to the tube or tubes when the stage is loaded. Since the circulating tank eurrent is much greater when the amplifier is unloaded, care should be taken to operate the amplifier conservatively when unloaded to prevent damage to the coil as a result of excessive heating.

Tank coils should be mounted at least their diameter away from shickling to prevent a marked loss in Q. Except perhaps at 28 Mc ., it is not important that the coil be mounted quite: close to the tank capacitor. Leads up to 6 or 8 inches are permissible. It is more important to keep the tank capacitor as well as other components out of the immediate field of the coil. For this reason, it is preferable to mount the coil so that its axis is parallel to the capacitor shaft, either alongside the capacitor or above it.

Plate-Blocking and By-Pass Capacitors

Plate-blocking rapacitors should have low inductance; therefore capacitors of the miea type are preferred. For frequencies between 3.5 and 30 Mc ., a capacitance of $0.001 \mu \mathrm{f}$. is commonly used. The voltage rating should be 25 to 50 per cent above the plate-supply voltage.

Wherever their voltage rating will permit (500 volts), 0.001- μ. disk ceramic capacitors should be used as by-passes, since, when applied correctly (see TVI chapter), they are series resonant in the $T V$ range and therefore are an important measure in filtering power-supply leads. For higher voltages, use $0.001-\mu f$. mica by-passes.

R. F. Chokes

The chariuteristics of any r.f. choke will vary with frequency, from characteristics resembling those of a parallel-resonant circuit, of high impedince, to those of a series-resonant circuit, where the impedance is lowest. In between these extremes, the choke will show varying amounts of inductive or capacitive reactance.

In series-feed cireuits, these characteristics are of relatively small importance because, in a correctly-operating circuit, the r.f. voltage across the choke is nogligible. In a parallelferel circuit, however, the choke is shunted across the tank circuit, and is subject to the full tank r.f. voltage. If the choke does not prosent a sufficiently high impedance, enough power will be absorbed by the choke to canse it to burn out. With chokes of the usual type, wound with small wire for compantness, a relattively small amount of power loss in the ehoke will cause excessive heating.

To avoid this, the choke must have a suffiriently high reactance to be effective at the lowest frequency, and bet have no serics resonamees near the higher-frequency bands. This is not difficult to accomplish for a frequency range of 2 to 1 or less. But the design of a choke that meets requirements over a range as wide as 3.5 to 30 Me. at the higher voltages is quite critical.

Cniversal pie-wound chokes of the "receiver" type (2.5 mh ., 125 ma .) are usually satisfiwtory if the plate voltage does not exceed 500 . The same is true of most of the commercial "transmitting" type chokes of similar design, provided that the plate voltage does not exceed 1000 to 1500 volts, For higher voltages, a single-layer solenoid-type choke of correct design has been found satisfactory. The National type R-175A is a representative manufactured type. An example of a satisfactory homemade choke for voltages up to at least 3000 consists of 112 turns of No. 26 wire, spaced to a lengeth of $37 / 8$ inches on it l-inch ceramic form (Centralab stand-off insulator, type X30221I). A ceramic form is advisable from the consideration of temperature. This choke has only one series resoname (near 24 Mc.), and exhibits an equivalent parallel resistance of 0.25 megohm or more in all of the amateur bands from 80 through 10 meters.

Since the characteristics of a choke will be affected by any metal in its field, it should be checked when mounted in the position in which it is to be used, or in a temporary set-up simulating the same conditions. The plate end of the choke should not be connected, but the power-supply end should be ronnected directly, or by-passed, to the chassis. The g.d.o. should be coupled as close to the ground end of the choke as possible. Scries resonamces, indicating the frequencies of greatest loss, should be cherked with the choke short-circuited with a short piece of wire. Parallel resonanees, indicating frequencies of least loss are checked with the short removed.
(For further discussion of r.f. choke's, see QST, May, 1954.)

A One-Tube Two-Band Transmitter for the Novice

Figs. 6-36, 6--37, and 6-38 show the details of a low-power crystal-oscillator transmitter covering the 3.5 - and 7 -Me. bands. It is complete with power supply, and an output circuit that will feed directly into a simple antenna without the need for an antenna tuner. The circuit diagram appears in Fig. 6-37. A 6.AG7 pentode is used in an oscillator of the grid-plate type., The output circuit, consisting of C_{10}, C_{11} and L_{1}, is in the form of a pi-section network that will couple into a wire of random length. The circuit is keyed in the cathorle circuit.
J_{1} is an octal tulse socket that is used as a conbination ervestal socket and key jack. R_{1} is the grid leak. C_{1} and C_{2} are excitation-control capacitors. $R F C_{1}$ is necessary to prevent shortcircuiting C_{2} for r.f. when the key is closed. R_{2} is the screen voltage-dropping resistor that reduces the voltage to the soreen, $R F^{\prime}(2$ is the plate feed choke. Plate current is measured by the milliammeter, $M . A_{1} . C_{7}$ is the plate blocking caparitor, and C_{3}, C_{5} and (${ }_{6}$ are hy-pass capacitors.

The power supply is a simple one delivering about 350 volts. "The smoothing filter, consisting of C_{8}, C_{9} and the 8 -h. $40-\mathrm{ma}$. choke, is of the capacitive-input type. R_{3} is the bleder resistor. S_{1} turns the power supply on and off.

Construction

The parts are assembled on a $7 \times 12 \times 3$-inch aluminum chassis. In the placement of parts, the power-supply section is kept in a line at the batek of the chassis. The rif. components are mounted toward the front of the chassis. As can be seen in the photographs, there are three octal sockets - one for the $5 \mathrm{l}: 3 \mathrm{~B}$ T rectifier, one for the 6 alit osdillator, and the third which is used ats a crystal socket and key jatek.

With the exception of the three sockets and
the neter, all the mounting holes can be mate with an ordinary hand drill. For the socket holes, one can purchase, or borrow, a socket punch. The meter hole can be started with the socket punch and then enlarged with a half-round or rattail file. The variable capacitors are mounted directly agrainst the under side of the chassis. In placing them, be sure that their shafts extend far enough out from the front of the chassis to accommodate the tuning knobs. These capacitors are of the broadrast-receiver replacement type, and can be purchased locally, or from one of the large mailorder houses. They are usuatly listed as singlegang midget t.r.f. capacitors and have a maximum capacitince of more than $300 \mu \mu$.

The power transformer is mounted in such a manner that the high-voltatge leads and the 5 -volt rectifier leads are brought out at a point closest to the $5 \mathrm{Y}: 3$ rectifier socket. A threc-terminal tie point is mounted close to the transformer llavolt leads to furnish terminals for the power switch iund transformer loads. After the sockets, a.c. switeh, meter, and feed-through bushings for holding L_{1} are all mounted in phace, the wiring can be started.

Wiring

Connert the two 11 -volt tramformer primary leads (back), each to one of the tie points. Then also connect one of the power-cord wires to one of these tie points, and one terminal of the power switch, S_{1}, to the other. Connect the remaining side of S_{1}, and the remaining power-cord wire to the third tie point. Fasten one of the 6.3 -volt transformer leads (green) to a soldering lug under the tio-point mounting serew. The remaining 6.3volt transformer wire (green) is connected to l'in 7 on the $6 \mathrm{~A}(\mathrm{i} 7$ socket.

For the high-voltage wiring, the center-tap

Fig. 6-36- Top view of the Novice 2-hand transmitter. \dot{L}_{1} at the top right-hand side is shown with the elip in the 80 -meter position. It is clipped to the feed-through bushing. The lead to the key is a short piece of 300 -ohtn I'win-lead whicls is terminated in a Willen 300 ohm plug. This type of plug is the correct size for octal socket Pins 2 and 4.

Fig. 6-37- (ircuil diagram of the brgimocrs transmilter.

wire of the high-voltage serondary (red and wellow) is connected to ground, one of the highvoltage leads (red) is connereted to lint of the 5 YBC'T socket, while the other red lead groes to Pin 6. (One of the 5 -volt reetifier-filament leads (vellow) is comected to l'in 8 of the $5 \mathrm{Y}^{\mathrm{Y}} \mathrm{B}$ ('T socket, and the ot her vollow lead is rum to lin 2 . Also ronnerted to lin 2 of the $5 \mathrm{Y}: 3 \mathrm{BT}$ sorket is a lead from the choke, and the load marked + from (8 . The other side of C_{8}^{\prime}, or the mumtion side, is grounded. The remaining lead of the choke, the plus side of C_{9}, and a lead from R_{3}, are all rim 10 a terminal on a tie point. The nemative side of ('g and the other lead from R_{3} are groumbed. This eompletes the power-supply wiring.
lins 1, 2, and 3 of the $6 A(37$ socket are connected together with a bare wire and the wire run to ground. Also, one side of ("2 must be grounded, so it ran be connerted to one of these pins. The other side of C_{2}^{\prime} is run to l'in $\overline{5}$. A lead to $R F C_{1}$ is also connected to Pin 5. One side of C_{1}, one side of R_{1}, and a lead to l'in 8 of J_{1} are all soldered to P'in 4 of the 6.1 (it socket. The other side of R_{1} is grounded, while the rematining side of ('1 goes to l'in 5 . Pins 4 and 6 of the arratal socket are ako grounderl. The remaining side of $R F C_{1}$ is connerted to l'in 2 of J_{1}. Also comnerted to I'in 2 is one side of C_{3}. The other side of C_{3} is grounded.

The sereen resistor, R_{2}, is connerted betwern the $13+\left(+\right.$ terminal of $\left.C_{9}\right)$ terminal and I Pin 6 of the GA(i s socket. Also connected to Pin 6 is one side of C_{5}. The other side of C_{5} is grounded. A lead is connected between the $B+$ terminal and the + side of the meter. The other teminal of the meter is conmeeted to one side of $R F^{\prime} C_{2}$. Also connerted to this point on $R W^{\prime}$ '2 is one side of C_{6}, the other side of C_{6} being grounded. The remaining side of $R F C_{2}^{\prime}$ is commected to lin 8 of the 6AG7 socket and (${ }_{7}$ is eonnected between this side of $R P C_{2}$ and the stator section of C_{10} is also connected to the nearest of the two feedthrough bushings holding L_{1}. The stator of C_{11} is connected to the other feed-through bushing, and a lead is run from this bushing to the trans-
mitter output terminal mounted on the back side of the chassis. This should complete all wiring below the chassis.

Coil

As shown in the parts list, L_{1} is a Barker \& Williamson stock No. 3016 coil with 13 turns removed from each end. For 40 -meter operation, it is needsary to short out a large part of the coil. This is accomplished by use of a short elip lead. (Jne cond of the lead is connected along with one ond of L_{t} to the output bushing (the one connerted to $\left(C_{11}\right)$. The other end of L_{1} is soldered to the input bushing. To operate on 10 meters, it is necessury to attach the elip to the 30th turn of L_{1}, from the input side. In order not to short out the 29th and 31st turns, they ain be bent in toward the axis of the coil.

Testing

An 80-meter crystal between 3700 and 3750 ke . will be needed for 80 -meter operation. For 40meter work, one hetween 3588 and 3598 ke will be required. (The erystal frequeney is doubled for 7 -Me, operation.)

In tuning up on 80 meters, insert the erystal in lins 6 and 8 of the octal socket. The key icads are inserted in lins 2 and 4 . A 115 -volt 10 - or 15 watt light bulls will serve as an artificial loand for testing purposes. Connect the bull) to the output of the rig by soldering a piece of wire to the center terminal in the hase of the bulb, and one to the screw shell portion. One of the wires is then connected to the output terminal of the transmitter and the other to the chassis. The 115 -volt a.e. switch is turned on and the tubes allowed a minute or so to warm up. After the rig has been on for a minute, close the key. Tune the station receiver to the crystal frequency and the transmitter's signal should be heard. The input eapacitor, C_{10}, is slowly tuned through its range. Two things should happen - the dummy load lamp should light and the meter should show a dip, or lower reading, at the point where the bulb lights. Also, the signal should be louder at this point. Now
thme the output capmitor, ('1, ateross its range and the bulb, should beighten at one proint, and the rignal get louter in the reerever. Also. the moter should show a greater meding than before switching bark and forth betwern the two raparitors. always thate for maximm billiance in the bulb.

Antenna

In antemat mas now be subsituted for the lamp. The type of output circuit used in the rig will load with almosi :my length of wire. However, it will loud with: : io-foot longth of wime on both 80 and 40 moters a great deal easior thato with some lengethes One cod of the wire should be connered to the output temminal and the other rand susperded on an insulator attarherd to a cord or repe slung trom the highest available support. (See the andema chapter for mothods of bringing the wire in to the tramsmiture.)

Output Indicator

The trinsmitter com he tumed up by the meter, but sometimes a brgimber may berome confused trying to interpert the madings he gets. A simple device to show that the :utema is taking power consists ol t wo pioces of wire, about two leret long, and at 2-volt (o. Mi-ampere flashlight bull), wither No. 48 or 49 . The bulb is romereterl between the two pieces of wire, one leal to the tip of the bulb, base and the other lead to the shell of the base, making a four-foot length of wire with the bulb in the center. One end of this wine is comereded to the output terminal, while the other end is clipped on the antema, there or four fere up. Siscape the wire at this point if it is insulated. When the transmitter is turned on and the eaparitors are tunced, a point will be rearhed in the tuning where the bulb will glow, or light up. Tume the (etipacitors for maximum brilliane in the bult: this is an indication that maximam power is groing into the antema.

Forty-meter tunc-up procedure is the same as

Shopping List for Novice Transmitter

2:- $2 \mu \mathrm{f}$. mira capacitor.
$\geq 20-\mu \mu 5$. miea (apacitor.
$40,0,11-\mu f$. disk ceranic capacitors.
2S- fi . ono-volt midget electrolytic caparitors.
(if.(0) () - (thm resistor, $3 / 2$ watt.
20. (0.0)-ohth resistor. 1 wast.
0.1 -mucolmu resistor. 2 watt.

22 2-mher.f. clowes (National R100s or Millen $34102)$.
2 variahle rapacitors (midget type t.r.f. one-ranar brodeant receive: rablament.
To turns of No. 24 wire, 1 -inch diam., $21 / 4$ inches long (18 \& W : 3016 with $1: 3$ turns whand iron carta cond.
8-h. (1)-nata, filder choke (Thordarson TVOC 52).
Power transformer: 3:0-0-350 volte r.m.s., 70 ma.; 5.. 2amp,: 6.3 r., $2^{2 / 2}$ amp. (Therdarson Ts-24R(2).
3 oxtal sockeres.
*ingh-pold wingle-throw theste switeh.

Tip jark (Amplenal teloe 7818).
2 theremont terminal strizw.
0-50 or 0-100 d.e. milliammeter (shanter).
Ahmimum chaspis 3 by 7 by 12 indirs.
tifere of hook-11), wire.
1: 1197 tulns.
sis ture.
is solder luys.
186.32×1 Two tuning knobs to fit $1 / 4$-inch shaft. (ressal.
for 80 with the exception of using the corrert rrystal, and shorting out the sertion of L_{1}. Remember to listen on the receiver when tuning up the transmitter on 40 or 80 . When tuning up on 10, the sigmal should be definitely louder on fo Whan on 80 meters, and vier versa for 8 (hmeter tume-up.

When the oscillator is fully lowled and tuned to resonatice, the phate current should run be1 ween 20 and 30 mal., representing a power input of 7 to 10 watts.
(This unit originally deseribed in the November, 1953 , issue of QST.)

Fiд. 6-38-- Bothom vien of the 才osice one-tube transmit. ter showing the wiring of barls. The power anpply components are mounted atong the barh side while the r.f. seretion runs atong the front. The nutput lead from the feedthrough hushimg is clearly visible on the right-land side. The only npenings at the back are the output terminal and the 11.5-wolt a.c. leads.

A Sweep-Tube Transmitter for 3.5 and 7 Mc .

Figs. (i-39 through fi-12 show a lew-jower transmitter using a single TV-reroiver swerp-tube friode. It will deliver ala ontput of ebout 10 watts on 80 or 10 metrys Power sulply and antenna tumer are included.

As shown be l'ig. 6-4l, the aseillato utilizes one section of a GBLar. J_{1} is the keying batek, and

also serves as the owillator motering jark. The plate tank, (' ${ }_{1} L_{1}$, woverz the frequency range of 3.75 to $!.2 \mathrm{Mc}$.

Plate voltage for the oscillator is hodd to approximately 200 volts by a series-dmpping resistor, R_{1}, and output from the stage is eapacitively coupled to the fimal through (e2.

The amplifier amplots grid-ieak bias, has a split-stathor plate direuit, and is neutralized by
moans of $C_{3} . J_{2}$ is the amplifier metering jack and S_{1} is the plate-voltage on-ofi switch. With excitation applied and with S_{1} opern, a moter phaged into J_{2} will registor amplifier grid current. When the switch is dosed, the meter will indieate the combined plate and grid currents.

Output from the amplifier is link-coupied to

F'iд, 6.39 - "he sweep-tube trans. mitter is homied in a hinged-cover metal rabinet. 'Ihe knoths across the loottom of the $7 \times 10-$ inch panel, from left to right, control the oseillit tor, amplifier and the antenna eonpler. S: is Iocated diremty above J_{1} and to the left of the panel indicator. Sis is mounted above the amplifier metering jack, J_{2}.
the intenna tuner, $C_{5} L_{4}$. The tuner components have been wired to feed-through bushings and the antenna ferder terminals in a manner whirh promits adjustment of the $L C$, ration for either series or parallel tuning. An areompanying chart lists the jumper comertions which should be used for setting up the tuncer cirenit.

The power supply emplows a caparitive-input filter and delivers approximately 330 volts when

Fig. $6-10$ - 'Jhis interiar virw shews the antemna coil centered at the leftedge of the $2 \times \overline{ } \times$ G-inch aluminum chassis. Vive feed-through bustuing for the antenna cirenit are lecated to the right of the coil and the feeder terminals are at the rear of the base. L_{2}, the inseilator tube, and the cristal are at the front right-hand section of the chassis and the 5) 3 ("I' is on the center line just to the left of the power transformer. I Figinch hole, equipped with a rubber grommet, to the friat of T, provides through-rhatiois ch-arance for a nentralizing trol. The a.e. ingmt conncetor is located on the rear wall of the chassis.
loaded b_{y} the transmitter. S_{2} is the on-off switch for the supply.

Construction

Three photographs of the transmitter show how the components are laid out on the chassis and the panel. The jacks, switches, and the panel indicator are the only parts actually mounted on the panel of the Bud type C-993 cabinet. Tuning caparitors for the oscillator and the amplifier are mounted on the front wall of the chassis and C_{5} of the coupler is mounted on small pillars at the right side (rear view) of the base. C_{5} must be insulated from ground. An insulated shaft coupling between the capacitor and a panel bearing assembly is provided. Quarter-inch metal pillars space the panel and base at either end of the unit. Three-righths-inch holes are drilled in the panel for the tuning shafts of the three capacitors, and $11 / 8$-inch openings are punched in the front wall of the chassis to provide clearance for the panel-mounted jacks.

No. 16 tinned is used for the r.f. wiring, and Belden shielded wire No. 8885 is used for the leads rumning to the switehes and the pilot lamp. The strip of fashing copper that supports the neutralizing capacitor, C_{3}, is $1 / 2$-inch wide at one end and tapers down to $1 / 8$ inch at the tube socket end. (3_{3} is mounted in a $1 / 4$-inch hole, drilled at the wide end of the strip.

The three jumpers for the antenna cireuit are made with ordinary hook-up wire and Millen type 36021 grid connectors. The holes in the connectors must be enlarged by reaming so that they will fit over the small National twe Tl'l3 polystyrene bushings that serve as Terminals 1 through 5 of Fig. 6-41.

Testing

A 15 -watt lamp lonlb equipped with short wire leads, a 0-100-ma. meter. a key and a voltmeter should be available for testing the transmitter. The first test is made with the kes plugged into J_{1}, with S_{1} set at the open position and with the

Fig. 6-41 - Circuitof thesweeptube transmitter. 'The ascillator and amplifier sections of the circont are operated at the erystal frembeney.

All caparitances less than 0.001 μ f. are in $\mu \mu$ f. IIf 0.00) $-\mu$ f. rapacitors are disk ceramic. Ill resistors $1 / 2$ watt unless otherwise specified.
C_{1} - It ammerlund IIF-110,
C_{2} - Mica.
(:3-'Iuhular trimmer (Eiric).

$1,1-11$ h. - 33 turns No. 24, 3/4-ituls diam., $1 / 1 / 2$ inches long (13 \& W Miniduetor No. 301:3).
$\mathrm{I}-3.5 \mathrm{Mc} .-10 \mu \mathrm{~h}$. - 46 turns No. $2 . \mathrm{f}, 11 / 4$-inch diam., $1 \frac{1}{2}$ inches long, center-tapped (B \& 11 80NCL). 7 Mc. $-14 \mu \mathrm{~h} .-26$ turns No. $29,11 / 4$-inch diam.. 1 '自 inches lomq, center-tapped (B N N 10M(1).
L.3-3.5 and 7 Me. - Wach 3 turns No. 18, wound with turns spaced wire diam. oner center of L_{2}.

diam.. P后 inches long. Wound in 2 sections with Tif-inch space at center for $L_{5}(13 \mathbb{N} W 80 J 1$.
 diam., $2{ }^{5}$ is in-hes long. - sections with ${ }^{16}$-inch space at center for 15 (B \& W H0, VI).
$1_{55}-3.5$ and 7 Mc . Wach 3 turns Vo. $16,13 / 4$-inch diam.. turns spaced wire diam.
 11_{1} - 6.3-volt panel-iadivator assembly.
$\mathrm{J}_{1}, \mathrm{~J}_{2}$ - Chosed-circuit jack.
RFF: RFC: - National R-so.
RFC: National R-100S.
$\mathrm{S}_{1}, \mathrm{~S}_{2}-\mathrm{S}$ p.s..t. oggle witeh.
li- Power transformer: 3.10 volts r.m.s. each wide of center tap. C^{0} ma.: 5 volts, 2 amp.; 6.3 volts, 2.5 amp. (Stancor PC8408).

Antenna-Coupler Connection Chart			
Tuniug	Iumper Commerfinus		
	I.on-C	Med.ol	/Iigh-C
I'arnllel	1-3	1.7 $3-4$	1-5
Serics	1-2	1-4	1-4
			2-5

voltmeter romered across he. The supply output should exeed 400 volts when S_{2} is closed.

Next, turn off the supply and insert a $3 . \overline{5}-$ Mc.
 amplifier. The meter should be plugged into J_{2} and S_{1} must be open for the time being. Now, tum on the power, close the key and tune the oscillator plate capacitor, $(1$, for an amplifier grid current of approximately 10 mat. If the erystal kieks out as the maximum caparitance of ('1 is reached, the plate tank is tuned too relose to the crystal frequency and it is necessary to retume to the high frequency side of resoname. Make certain that the oscillator is not tuned for marimom output inasmuch as this results in excessive crastal current. If the metor is transferted to $/ J_{1}$, it should show a eathode current of :30 ma.
The next step is that of neutralizing the amplifier. Start with C3 set for minimum cetpacitance (slug all the way out) and then increase the (apacitance until the amplifier plate mapator, C_{4}, can be swung through resonanee without affeeting the amplifier grid aurent. S_{1} must be open during this adjustment.

If the 15 -wat.t lamp is to be used as the test load, connect it to the antenna terminals and insert the 7 - Mes coil in the coupler. Start the loading adjustments with very loose coupling between $L_{\text {a }}$ and L_{5} and with the oseillator adjusted for an amplifier grid current of 5 or 6 ma. Now, close S_{1} and tume ('4 for resonance. The amplifier rathode current should be approximately 25 mat. with the stage lightly loaded and may be increased to 5 or (6) ma. be increasing the roupling between L_{44} and L_{5} and by adjustment of C_{5}. Is the loading is increased, make eertain that the amplifier and the tumer are kept at resonance ber retuming both C_{4} and C_{5}.

With the amplifier fully loaded, the power supply output voltage will drop to approximately 325 volts and, as a result, the cathode curvent for the owillator section of the 6BLat will be lower than that recorded earlier. About 15 mat. is correct for the oscillator and this eurrent may be cheeked by inserting the meter plug into J_{1}. ()f course, with the amplifier in opration, it is necessary to subtract the amplifer cathode current from the reading registered at J_{1} in orter to determine the true oscillator drain.

The set-up for testing the transmitter at 7 Me. is identical to that used at the lower fregueney exept for the antemat coupler comections. At 7 Me., the bulb loads best with the coupler cireuit adjusted for low-C operation. One preration must be observed with the 7 -Me. crestal in use. Alurags start the osciltator adjustment with the tank capacitor, ('1, set for minimmm capacitance and then tunc for an amplifier grid current of not more than 5 or 6 ma.

For adjustment of the coupler for a particular antenna, see the transmission-line chapter.
(Original description, QST, April, 1953.)

Fig. 6-42- Bottom view showing L_{1} and $R F^{\circ} C_{2}$ mounted on tie-joint strips to the left and the rear of the GBl.7 twhe wocket, respertisely. RFO is parallel with the left wall of the chassis and $R F^{\circ}\left(c_{3}\right.$ stands up to the left of C.4. R_{1} and R_{2} are in front of lof and the filter capacitors at the rear of the chassis. 'lhe neut ralizing rapacitor, (is, is supported loy the rear stator terminal of (.4 and by a strip of flashing ropper which also serves as the ra-pacitor-to-grid lead. Holer, $11 / 8$ inches in diameter, punched in the chassis just below the centers of C4 and C.s, provide clearance for the coil-socket wiring.

A Beginner's 35-Watt Transmitter

Figs. 6-4:3 through 6-45 illustrate a 35-watt two-stage transmitter for the 40 - and 80 -meter bands. The necessary power supply is included. The circuit is shown in l户ig. $6-43$. A 6.1 G 7 piere erystal oscillator operating at 3.5 Me. drives a 616 , either as a straight amplifier on 80 , or as a doubler to to meters. $R F C_{1}$ is resonant at about 5 Mc . - sufficiently close to either bind to provide the required drive to the amplifier, yet far enough removed to prevent oscillation in the 6 L 0 stage. The output tank circuit, $C_{5} L_{1}$, has sufficient tuning range to include both bands without changing coils; the sooket and plug-in form are merely a convenient means of mounting the coil. The output link is designed to feed an antenna tuner through a cons line. Both stages have parallel plate feed, and are keyed simultaneously in the cathode circuit. I_{1} is a dial lamp, used here as a tuning indieator. If desired, it maty be replaced with a 150 -ma. d.e. milliammeter, either mounted on a bracket on top of the chassis, or set in the front exlge.

With the components sperified, the power supply should deliver a voltage of 350 or more under load. A caparitive-input filter is used. (Although a metal-cam dual filter caparitor, mounted on top of the chassis, is shown, card-
board tubular capacitors, mounted under the chassis may be substituted if desired.)

Wiring

Details of construction are covered in the photographs and their captions.

The power supply is wired first, using insulated tie points as junctions wherever a transformer or filter-rapacitor will not conveniently reach a desired terminal. (All power wiring should be kept close against the chassis, while r.f. wiring should be spaced well away from the chassis.) The heaters of the $6 A\left(\mathrm{i}^{7}\right.$ and 6 L .6 are wired next.
l'in 8 of the 6L6 and Pin 5 of the 6AG7 are wired together and C_{1} and C_{3} are installed. A lead is then run from lin 5 of the 6 AG 7 to the key jack and C_{6} is installed across the key jack, keeping the leads of C_{6} as short as possible. This completes the cathode keying circuit.

The square afacitor appearing over the 6.106 socket is C_{2} and is connected between Pin 6 and ground. R_{1}, the screen dropping resistor, is connected from l'in 6 to the tie print between the tubes. The $B+$ lead is run to this tie point, and both R_{1} and R_{2} are tied to it. $R F C_{1}$ goes from I'in 8 of the $6 \mathrm{AC}^{7}$ to the tie point of the $\mathrm{I} 3+$ lead. The capacitor below $R F C_{2}$ is C_{4} - it is coll-

Fif. 6-4:3- Circuit diagram of the Novice 35-watt transmitter

All capacitances less than $0.001 \mu_{\mu}$. are in $\mu \mu$. All $0.001-\mu$ f. caparitors are diak ceramic. All resistors are $1 / 2$ watt unkess otherwise specified.
$\mathrm{C}_{5}-\mathrm{Bud}$ IC. 1850 .
1.1-3.i-7.0 Ite.- 18 turns No. 18 enamei, $11 / 4$-imelh diam. dose-wound (16 : A 1108 B coil form).
I_{g} - 5 -turn link No. 18 enamel, close-wound below tank coil $/ \mathrm{s}$.
L_{3} - Filter choke, 10.5 henrys, $110 \mathrm{ma}, 290$ ohms (Merit C.2993).
I_{1} - So. to pilot-lamp bulb, 6-8 volts, 250 ma , blue treat.
J_{1} - (losed-eirmit jack.
J_{2} - Coas connector, chassis-mounting type.
RF: $: 1$ - 100 , sh, r.f. chohe (Villen 34300).

s_{1} - S.p.s.t. toyple switeh.
' I_{1} - Power transformer, $3 \stackrel{\rightharpoonup}{0} 0$ volts r.m.s. each side of center, 120 ma.; 6.3 volts, 4.7 amp.; 5 volts, 3 amp. (Merit P.2953).
 chassis is $\overline{5} \times 1 \underline{9} \times 3$ ind Poner－suphly components are alonge the reare edere，while the restal sechet．6（C；．（old．／ 1 and the shielded eoil are in line al the froms．（ienterod alones the front edge atre whe hey jath， ponar switath and tha single thming emotrol．VII sorhets ard submounted．F＇lur rectitior amd the roil tahe l－promg wohet－： the two thers lake wetal sork－ ets．＇Ihe coit hithl i－IC：I tyre 1．i．19．＂The subatiotion of an un－ right transformar will aboid cuttinge al laren bole in the －ウ：はーが．

Hered from l＇in 3 of the didi to at tie point and then to the stator of（ ${ }^{5}$ ．The limk ontput temmi－ mats on the eobl somet are eommented to the comex comberter with a short tregeth of erax cablas．The

Testing

The transmitter mas be toind lyy emmerting

 power is turned on，and the key elosed，the indi－ cator lamp，I_{1} ，shomhd light up）brightly：Thern，
starting at maximum caluaritanere slowly adjust the tuning eababitor，tow：trd minimum rapati－ tancer motil the indicator lamp dims．This is resonance at so metrors，and the 2 b－watt hamp should light up．Rowdjustment of the tmang c：a－ pacitor toward minimum（alp：atitatere shoud show a serothe resontane point，this time at to meters，and th：e 25－watt lamp should light again．
latiomation on the construation and adjust－ mont of athtemata complers will be found in the chapter on trathmiswion limes．The fidi may be loaded up to a maximum of 100 ma plate current．

A Single-Tube 75-Watt Novice Transmitter

Figs. 6-46 through 6-50 show a 75 -watt c.w. transmitter using a 6146 in a erystal oscillator'. The power supply uses an ordinary replacementtype transformer in a bridge cireuit. In the cirenit diagram, Fig. 6-48, the trinstormer rating is 360 volts each side of center tap, but the supply will doliver 500 volts at 140 mat. For tume-up purposes, the output of the power supply fan be switched from high to low voltage. The low potential output is 280 volts.

In order to limit the input to 75 watts, the screon voltage is held to 125^{5} volts by $R_{1} R_{2}$. With the supply output switched to low voltage, the screen drops to 80 volts for tume-up purposes.
The crystal current is monitored by a 2 -volt 60-ma. bulb connected between the ervistal and chassis ground. The bull) also serves as a fuse, in the event the arystal cument should ane identally rise above a safe value.
To avoid coil changing, a portion of the plate coil is shorted out for 4 ()-meter operation.

Construction

The transmitter is louit on an $11 \times 7 \times 3$ inch ahumimum chassis and the 6146 and r.f. components above deck are shiclded by a $6 \times$ 6×6-imeh thminum box.
The power trinsformor, T_{2}, and reetifiers are mounted on the chassis top at one end. The other power supply eomponents, T_{1}, L_{4}, the $8-\mu$. electrolytie capacitors and the 20,000 -ohm 10watt resistors, are mounted below deck.

The 6146 socket is mounted $11 / 2$ inches in from the front of the chassis and $41 / 2$ inches from the end. Two 1 -inch isolantite standolfs are used to support $L_{2} L_{3}$, and they are mounted $21 / 4$ inches apart. The rear one is $21 / 8$ inches from the chassis
back and 2 inches from the righthand emel.
I row of $1 / 4$-inch holes is drilled ne:u the bottom on both sides of the cover box to permit ventilation. Soweral $1 / 4$-ind holes are also made in the box top directly over the 6116 .

Wiring

The power supply is wired first. The center taps of T_{1} and the high-voltage winding of T_{2} are combered together and soldered to the lowvoltage terminal of S_{3}. d lead is comerted from one of the 5 yisa'r filament terminals to the highvoltage terminal on S_{3}. Gne lead from L_{4} is connereded to the :urm of x_{3}.

Next. the below-rhassis portion witing of the r.f. sertion is rompleted. No socket shouk be used for the 2 -volt (0 (0-mat. dial lamp in series with the erystal. A 5 -inch rubber grommet is used to hold the dial lamp in place. Connections are made to the lamp by soldering leads to the base point and to the metal shell. The lead from the shall eomerts to the chassis.

St indad coil stork (B\& Wr 39000, 2-inch diam., 8 turns per inch, No. 14 wire) is used for $L_{2} L_{\text {N }}$. A total of 38 tums is eut from the original stock. At one end of the piece, a single turm is unwound from the support bars. From this end, count up $7 \frac{1}{2}$ turns and aut the seventh turn. The cut should be made at the support bar opposite the bar from which the first lead extends. The leads from the cut point are separated from the side support batrs and brought around to the same bur as the first lead. . It the other emed of the roil, which wild be the top, a lead is unwound from the support hars and extended from the bar opposite the one with the three leads. This eoil is shown in one of the photographs.

Fig. $0.40-$ lietured is the comm pleted 6116 rig. The plate-rurrent indicator lamp is to the left of the tuning kiob, In areas where ilI is likely to be a problem, a metal bontom plate should be used on the ehassis in allition to the $6 \times 6 \times 6$ aluminum lom shown.

Fig. 6.:17-13ottom view of the one-tube transmitter. 'The 6.3volt filament transformer is mounted on the side of the chassis at the upper righthand corner. To the left of the transformer is one of the $8-\mu$ f. electrolytirs; the other electrolytic is not visilik, being mounted belind the power-supply chohe coil.

Counting from the top, the 15 th and 17 th turns itre bent in, allowing access to the 16 th turn. This is for the 00 -meter tap. A four-inch length of wire can be soldered to this point. The othor cond
should be connected to the switch terminal on S_{4}.
The coil is supported on the isolantite standolfs by two soldering lugs. The small ends of the lugs are first bent around the bottom turn. Before

Fik. 6. 18 - Cirenit diagram of the 6116 oweillator.
T.1-1.8 $\mu \mathrm{h}$. ((Mmite 7.-111) chooke.
I.2, 1.3 - Sere text and photopraph.
I. 4 - $10 . \overline{5}$ henry, 110 ma, 925 olims.
S_{3} - I-pole (o-position (2 uzed) waler switch, nomshorting (Centralab 1401).
$S_{4}-1$-pole o-position (2 uaed) stratite wafer suitch, nonsiorting (Centralal, $\boldsymbol{m 0}$) .
'I' - Vikament transformer, 6.3 volt, 1.2 amperes.
'J': - I'ower transformer, $360-10-360$ volts, 120 ma., 6.3 volts 3 . i amperes, 5 volts 3 amperes (Stancor P(8410).
Indess otherwise specified, all capacitor values are given in mierofarads. Fixed capacitors except 8 - μ f. electrolytics and C_{1} are alise ceramic.
soldering them in place, the large holes in the lugs should be located over the holes in the standoffs for proper alignment.

A coax receptacle is mounted on the back of the shield box and positioned so that the terminal is opposite the ungrounded cond of link La3. The switeh and capacitor wan be monnted in the box first and then wired. However, it wilt probably be easier for the begimer to wire all the components first, and then mount them in the box. Three holes are needed in the front of the shield box. The capmeitor and switch holes are $11 / 2$ inches in from the side of the box and $21 /$ and 4 to inches from the bottom, respertively. The hole for the $5 / 8$-inch grommet is 2 inches to the left of the capacitor hole. With the holes cut in the box, it is easy to fit the box over the wired parts.

When mounting the glass bull of the plate rircuit 6 -volt dial lamp in its grommet, he careful that none of the metal parts of the halb batse come in contact with the motal of the box. If the builder desires. a 200 - or 250 -mat. milliammeter can be substituted for the bulb.

Testing the Transmitter

The r.f, rhokes and capacitors at the key comprise a click filter, which should be connested directly at the key terminals (not the plug).

For testing purposes, a dummy antenna should be connerted to the output terminal. Use a 40- or 60-watt electric lamp for the dummy load. The key plug is inserted in its jack and the key is left open. With the 115 -volt line conneeted to the rig, S_{1} is turned on and the 6 X 5 filaments are allowed to warm up for a minute or so. Then S_{2} is turned on and the 5 Y3CiT allowed to warm up for another few minutes. The power supple is switched to the low-voltage output. The key is

Fig, 6-50 - Close-nap siew of the enil eonstruction.
then chased and the plate eaparitor thaned for resontare t sindieated be minimum brilliance in the plate dial lame. The dummy lamp should also light up at this point,

For to-moter operation, at 40 -meter eristal should be inserted in the erystal socket and S_{4} switrhed to short out the unused protion of the plate coil. Tuneup procedure is the same ats on 80 moters.
(From QST: Aug., 1955.)

Fif. 6-49 - Takohing down into the oscillator compartment.

A Novice Transmitter for 7 and 21 Mc.

The tratusmitter shown in Figs. (i-5) through 6-54, designed primarily for the Noviere, operates on the f()- and 15 -meter hands. The transmitter will work into a half-wave $\overline{\text { I }}$-Mc. antennat fed with coaxial line on cither 7 or 21 Mc . Normal power input is about 40 watts.

The Circuit

The cireuit diagram of the transmitter is shown in lig. (i-51. A 6 ('la grid-plate type oscillator drives a 6 BQ6-(iA amplifier. Bither 80 or 40 meter crystals cam be used in the oscillater. If 3.5-Mc. Crystals are used for 21-Mc. operation, the oscillator output will be on 7 Me . and the amplifier must triple in frequeney to give out put in the 21-Mc. band.

To change bands from 7 to 21 Me., turns on the oscillator plate coil and the amplifier plate coil are shorted out by small jumper plugs.

The double-pole double-throw toggle switeh. S_{1}, is used to switeh the meter to read either grid curvent or plate eurrent of the final. When R_{4} is in the meter circuit, the full scale reading is approximately: 10 mas: when R_{6} is switched in, full sealo reading is about 200 ma .

In addition to the shiclding, extra TVI procautions have been taken by installing Con and

C'm to by-pass the power supply leads and C_{4} at the key jaek to by-pase the key leads. Tests have shown that these precations are sufficient for cven weak-signal areas.

A single-pole double-t hrow switeh, S_{2}, is used to ground the sereen of the amplifier tube during adjustment, protecting the tube against damage from overload.

Construction

The various eomponents are laid out on the chassis bottom plate as shown in the photograph of Fig. 6-54. There is nothing eritical about the layout, but a half inch of clearance around the edge of the plate should be provided so that the completed mint will fit into the chassis. Nounting holes for the tube-socket brackets should be measured with the tubes in the sockets to take care of the cleatamere.

The $3 / 4$-inch stand-olfs that support the coils are mounted exactly two inches apart. The erystal sorkets, J_{3} and J_{4}, which aceommodate the 300-ohm-line shorting plugs, are monnted between the coil stand-offs.

Fonr holes, to take No. 6 sheet metal serews, are drilled at the four corners of the plate and in the chassis. In areas where one is likely to en-

Fig. 6.51 - Circuit of the $7 / 21-31$. Vowice rig. All capacitances less than 0.001μ f. are in $\mu \mu$ f. All 0.001 . and $0.01-\mu \mathrm{f}$. capacitors are disk ceramic, ii - Vica. T- Mica trimmer. All resistors are $1 / 2$ watt umbess otherwise specifiel.
$\mathrm{J}_{1} . \mathrm{J}_{3}, \mathrm{~J}_{4}$ - Crystal socket.
J_{2} - O_{pe} en-rircuit jack.
J_{5} - shielded phono jack.
MA - $21 / 2$-inch sifuare milliammeter.
RFC, $1 \mathrm{RFC}, \mathrm{RFC}_{3}, ~ R F C_{4}-$ National R-100s.
S_{t} - D. p. dit. toggle switeh.
S_{2}-S.p.d.t. toggle switeh.
53 - S.pari. toggle switeh.
${ }^{11}$ - 720 volts r.m.s., c.t., 110 ma.; 5 volts, 2 amp.; 6.3 volts, 3.5 amp . (Stancor P'C. 8410).

Fïp. 6.52 - liront view of the complete unit. The honsing is a $12 \times 7 \times 3$-inch aluminum chatssis fitted with a bollom cover. sit is immediately bulow the encter, followed by the control for G, and the shorting plug in J_{3}. To the left are so and controls for C_{15} (below) and G_{12} (athowe), with the shorting plug in J_{4} in between. Crystal, pilot lamp and key jack are to the right. The holes in the chassis are for ventilation.

counter TVI, the plate should be fastened to the box with serews set not more than three ine hes apart, to insure tight shiolding.

Wiring

The power supply is mounted on a $3 \times \overline{0} \times$ 7 -inch chassis which can be bolfed to the batek of the transmitter chassis. Leads from the power supply are brought through the rear of the transmitter chassis to a two-trminal tie point inside.

In the supply shown in the photegraphs, the transformer power leads come olf the bottom of the transformer (Fig. 6-jis). A 1 -ineh hole will be large enough to pass all the leads. The two by-pass capacitors, ('on and C on, should lne mounted at the point where the 1 bevolt a.e. line enters the supply. Two leads are brought through holes in the side of the power supply chassis that fastens against the tramsmitter ehassis, to a two-
terminal tie point mounted inside the latter. One lead is the 13 -plus and the other the "hot" side of the 6.3 -volt heater line. Both of these leads are by-pased to the chassis at the two-terminal tire point by ('19 and ('on- B-minms and the other side of the 6.3 -volt line is the common ground comeretion obtaned bey folting the two chatsis together. However, there leads are brought from the fwo-terminal tie point to the transmitter bottom plate the 13 -phas leads, the 6.3 -volt lead. and a ground lead which comecte the chassis to the bottom plate.

The oscillator and amplifier plate roils, L_{1} and La, ronsist of 22 tums of Barker \& Williamson No. 3015 . Miniductorsterk. These coils are available in there-ind lengeths and one length will be sufficiont for both L_{1} and L_{2}. For $L_{2} 3.2+$ turns of No. 3011 Miniductor coil stock is required.

The coils L_{1} and L_{2} atre mounted in the follow-

Fip. 6.5.3-Botlom view of the mower sumply. 'llie 115. volt acc. input pluy io tivil) on the lefthand side. The by-pass capacitors. (21 and Ci2. appear on cither side of the plug, inside the chas mis.

Fig. 6.54 - This view shows the completed transmitter. The two-terminal tie point for the leads from the nower supply is seen on the left side, inside the chassis box. 'The metal shield for the oscillator tube is not shown but should be put over the tube for actual operation.
The input circuit of the 6 BQ 6 -C A is shielded from the coutput side by means of a metal shield which ran be made from a piece of tin or alumimum. The piece of metal is forned as showin in the photograph and hedd in plate by one
ing mamer: A coating of Duco cement is applied to the cuds of one of the coils' insulating strips. A soldering hug is then laid in the cement. with the large hole of the lug beyond the end of the insulating strip. The cement is allowed to dry and then another coat is applied.
The coils cam then be mounted with $1 / 4$-inch 6 -32 serews on the 3 -inch stand-offs. The oscillator plate coil is tapped down 4 turns from one end. The 3 rd and 5 th turns are bent in to allow arcess to the 4 th turn. The tap is connected to one side of the two-prong socket and the other side of the soeket is grounded. The same procedure is followed with L_{2} exrept that the tap is on the Gith turn. Millen type 37412300 -ohm-line plugs are used for shorting the unused sections of the coils when operating on 21 Me. The plugs are made up by simply inserting a piece of hare wire through one pin of the plug and out the other and then soldering the ends.

The link L_{3} is slid inside L_{0} and held in place by a small piece of eardboard or paper. Be sure that the lind is positioned so that it does not short out to L_{2}.

Operation

1符g a key into the koy jack. Turn the amplifier screen grounding switch, S_{2}, to the position that grounds the screen. A $2 \overline{5}$-watt lamp bulb can be used as a dummy antenna. It should be connected between the output jack, J_{5}, and ground.
With a crustal in J_{1} and the key open, the 115 volt switch is turned on. Allow a few minutes for the tubes to warm up. The meter is switched to
read the grid current in the $613 Q 6$-G.A. On 4) meters, using either a 3.5- or 7 -Mre. crystal, the meter should read 6 or 7 mal . when the key is closed and C_{9} is tumed to resonance. Tune for maximum meter reading, open the key, and then switch the meter to read the plate current of the final amplifier. Switeh S_{2} to its uperate position, close the key and ture C_{12} for minimum current reading. This point will indicate resonance in the final amplifier tank circuit. The dummy antema should show some light. If it does not. tune C_{15} until the lamp lights up. The plate current can be brought up to read 100 mal., or approximately half scale. Be sure to have C_{12} tuned to show minimum current.
The same procedure can be followed for 1,5 meters. It may be necessary to adjust C_{4} to oltain the maximum amount of grid current for a particular crystal. Some erystals oseillate better than others, and by adjusting C_{2} it may be possible to get more output. When using a 7 -lle. erystal and tripling in the oscillator, one can expect to get at 2 - to 3 -ma. reading in the grid position.

A simple antenna that works well on 21 Mc. as well as on 7 Me . is a half-wave 40 -meter doublet, fed at the center with RG-59/U 72 -ohm conxial calle. Each half of the antenna should be $331 / 2$ feet long. The coaxial cable may be of any length. The station end of the cable should be ronnected to a phono plug to fit the output jack. The tuning procedure will be the same as for the dummy load. Plate current should be limited to 100 ma. by adjustment of the output link.
(From QST', December, 1954.)

A Parallel 807 Amplifier

The :mplifier shown in Figs. (6-5.5 through 6-58 was designed to cover all hands from 3.5 to 30 Me . It can he operated at in input of 150 watts on c.w., or 120 watts on 'phone. However, it will operate efficiently at $\overline{6} 5$ watts input for Novice use.

A pair of 807 s in parallel is shown in the cirruit diagram of Fig. (6-57. A pair of 1625 may be suthstituted if a 12.6 -volt filament transformer is provided. The amplifier is capanitively coupled to the driver through the $100-\mu \mu \mathrm{f}$. miva rapacitor, $C_{1} . L_{1}$ and L_{2} are smatl inductors which, in conjunction with R_{2} and R_{3} in the sereen leads, are used for the suppression of v.h.f. purasities.

A combination of battery and grid-leak hias is used. Since the sereens aro operated from a lowvoltage souree, the fixed bias provided by the battery will cut the input to the 807 s to zero when excitation is removed. as in keying preceding stages for c.w. opreration. When the srrems are supplied through a dropping resistor from the plate supply, as recuired for plate-sereen modulation, the battery will hold the input to a sate level in case of exeitation failure, although the imput will not be reduced to zero.
A pi-section tamk cireuit is used in the output, and parallel plate feed is therefore neecssary. Either a rotary induct or from a surplus BC-375- F antenna-tuning unit or a Johnson type 22!-201 inductor may be used as the variable inductor, $L_{4} . L_{3}$ is as seprate inductor for lo-meter operat tion. This roil will not be needed if the Johnson variable indurtor is used, or it the surplus induc-
tor is used and 10 -moter operation is not required.
The required output capacitance is furmished b_{y} a combination of a variable eapacitor, C_{5}, and several fixed capacitors that may be switehed in parallel with the variable. A total of about $2000 \mu \mu \mathrm{f}$. should be provided. For a continuous range of rapacitance, each of the fixed capuritors should have a caparitance not greater than the maximum of the variable. As an example, a 500$\mu \mu \mathrm{f}$. variable and three $500-\mu \mu \mathrm{f}$. fixed cappatitors may be used. A $250-\mu \mu$ f variable, on the other hand, will require seven $2500-\mu \mu \mathrm{f}$. fixed capacitors and a switeh to aceommodate them.
('6 may' be useful in localitics where TVI is bothersome on one particular v.h.f. chamel. In this ease, the caparitor can be series-resonated to the particular chamel by adjusting its lead lengt h (represented by L_{5}). It should be comerted directly aceross the output coax connector.

Plate and grid milliammeters are not included in the unit, but are mounted externally on another panel to keep them ont of r.f. fields. J_{2} is provided for phaging in a cord from the grid milliammeter while checking grid current. The plate meter is wired in permanontly through terminals at the rear of the chassis. If desired, the jack can be omit ted and the grid milliammeter wired in permanently, also.

Construction

An inverted $10 \times 17 \times 4$-inch aluminum chassis is used as a shielding endosure for the amplifier. A standard bottom cover is used as the

Fif. 6.55 - Top siew of the parallel 80 : amplifier. 'Whe variable output capacitor is at the upper left with the fixed mica capacitors and switth in the corner. The ariable input capacitor is to the right of the variable inductor. The r.f. choke and by-pass fastened to the rear wall of the chassis are in the plate circuit. The biasing battery can be seen in the eompartment to the right which also houses the input-cireuit components.

Fig. 6-56 - Panel riew of the 1.50 -watt amplifier showing the srid-meter jack. and control for the pi-section input capacitor, variable inductor, wariable output cabacitor and fixed-caparitor swith.
top cover. The chassis ind the rover are perforated in the area near the thates to provide ventilation. Ioles in addition to those provided are drilled in the rover and along the lips of the chassis so that the cover may be secured tightly to the chassis with No. 6 self-tapping serews. The chassis is centored behind a standard $51 / 4$-inch aluminum rack penel.

The 867 s are mounted horizontally from a partition spanning the chassis. This partition is made from : piere of ahuminum cot $43 / 8$ inches wide by 10 inches long. Hali-inch lips are bent over at the front end and along the bottom edge for fastening it with machine serews to the front wall and bottom of the chassis. The partition is spaced 2 inches from the end of the chassis. The tubes are provided with aluminum shield cans, and the sockets placed sufficiently far to the rear to leave spate for the input eaparitor, C. 4.

Most of the assembly and wiring to the sockets coun be done before the purtition is fastened permanently in place. bins t and 5 of cuch socket should be grounded right at the sooket. The No. 2
pins are joined hy the t wo mistors R_{2} and R_{3} in
 model, with an insulating mounting. It is placed centrally between the two sockets and between the partition and the and of the chassis. It is eventually fastened against the botiom of the chassis. Horrever, until the assembly is ready to be fastenod in place, it is suspended by its leads. The two parasitic suppressor chokes, L_{1} and L_{2}, are connerted betwren the No. 3 pins on the sockets and the top of $R P C_{1}$. If C_{1} is usend, it should be connected between the top of the r.f. choke and the excitation input comector, J_{1}. Otherwise, a short pirce of wire should he substituterl. The grid leak, R_{1}, is mounted leetween the bottom end of $R P C_{1}$ and in insulated tie peint, and the grid by-piss, C_{2}, is connected between the bottom end of the choke and a ground on the partition. The negative terminal of the biasing battery is also commerted to this tie point, while the positive terminal groes to J_{n}.

Three shiolded and hy-passed leads are prepared as described in the chapter on TVI and

AMPLIFIER

Fig. 6-57-Cirenit of the parallel 807 amplifier.
C_{1} - Not meded if driure hats ouput coupling capacitir.
 PMS-30\%) Bud CE-200: or similar, 0.03-inch plate spacinge. Se text.
(5 - 200$)_{\mu}$ for larerr. Sere text. For low-impedance output, recris ine "pacing adequate. (Johnson I 10RII, Bud M(:-1800. M(:-94) or M(C.010.
 32.-5. 111 .

$\mathrm{L}_{3}-3$ turns No. $10,3 / 4$-inch diant., $3 / 4$ inely Long (see teat).
1.a - Rotary induetor (see sext).
$1-$ - See text.
I_{1} - RCD-type shielded plamo jach.
J_{2} - Closed-circuait phour jack.
J_{3} - Coax connector.
\therefore - I'rogresivively-shorting rotary -witeh (Campalal)

III caparitances lezs than 0.001 af are given in maf. All fixed capacitors lisk erramic muless otherwise sperified. All resistors $\frac{1}{2}$ watt unless of herwise indirated.

BCI . One lead is comnected to the junction of R_{2} and R_{3}. The other two leads are fastened to the No. 1 pins of the sockets. After the partition has been fastened in plater, the lead from the junction of the resistors should be comnected to the sereen-voltage input terminal. The other two leads hoth are rum together to the ungrounded heater input terminal. The shiedds of these three leads are grounded at both conds. to each other, and to the chassis at several points.

The plate blocking capacitor, (33 , is mounted with one of its teminals central in resperet to the two 807 plate caps to permit plate leads of equat length. The $1-\mathrm{mh}$. 300 -ma. parallel-fered plate choke is mounted off the rear wall of the chassis, with its cold end elose to the high-voltage input terminal. The phate bepals, ($\%$, is fastemed agatinst the rear watl of the chassis, and is conneeted between the cold end of the r.f. choke imd the high-voltage input terminal with the shortest possible leads.

The variable inductor camot be mounted centrally in the chassis without interfering with the removal of the 807s. It is phened an inch or so away from the plate caps of the tubes, and the inpuit and variable output caparitors are spaced symmetrically on either side. The fixed capawitors in parallel with r_{5} wre stacked up and fastened to a gromeding bracket attawhed to the leftthand end of the chassis. The front terminals of these eapacitors are commeded to the terminals of S_{1} mounted immerliately in front.

Adjustment

The values of input and output caparitance and the value of the induetance to be used in the pi network will depend upon the voltage and carrent at which the amplifier is operated. For lull input on c. N^{\prime}. a voltage of 750 at 200 ma . is reguired for the plates, and 250 volts at 12 mat. for the screen grids. In this cose, sereen voltage is best obtained from the exeiter plate supply. For full input on phone, a supply delivering (ion volts at 200 ma , is needed. and $2 \overline{7} 5$ volts at $1: 3$ mat. for the sereens. For phome work, the seren voltage should be taken from the plate supply through at 25,000-ohm 20-with resistor.

For Novier operation, the amplifier ean be operated, for instance, at 500 volts, $\overline{5} 0$ mat.

Fig. 6-58 - The amplifier is enclosed in an inverterl aluninum chascis in which the bottom plate serves as the top coser. Along the rear edge are the output coax connector, sround post. tip jacks for heater, serecol and plate voltages, and r.f. input jack.

OUTPUT-CIRCUIT VALUES						
'and (Mc.)	3.)	3.5	7	14	21	28
\% 50 rolls, 100 ma . (3750 ohms)						
('is fuuf.)	150	2301	75	38	25	20
('ort (uuf.)	910	1700	450	225	150	110
L (uh.)	14.8	10.0	7.4	3.7	2.5	1.8
\% 5 \% colts. 200 ma. (1875 ohms)						
Cis (unf.)	300	250 :	150	75	50	37
('out (uuf.)	1570	1160	785	390	260	195
L. (uh.)		9.3	4.0	2.0	1.3	1.0
500 rolts, 150 ma . (1666 ohms)						
('is (uul.)	310	2500^{3}	170	85	55	10
Cout (uul.)	16×0	$11 \% 0$	810	420	2×0	210
L (uh.)		9.3	3.5	1.8	1.2	0.9
(9\% rolls, 300 ma, (150\% ohms)						
(バ fuuf.)		2504	190		63	17
('ol't (unf.)	1520	1000	910	455	300	227
L (uh.)	64	9.3	3.2	1.6	1.1	0.8
1 () $=19 \quad 2($) $=10 \quad 3$ ($)=9 \quad 4 Q=8 \quad$ All others $Q=12$						

with both tabes in use, or at 750 volts, 100 mat. with one of the tubes removed.

An aceompanying table shows the values of input and ontput caparitance and the inductance required for at tank-cireuit () of 12 and 50 -ohm output under the four operating conditions described above. The Johnson inductor does not have sufficient inductance for a (2 of 12 under the $\overline{\sin }(0)$ volt 100 -mat. condition. In this ease, with maximum inductance in use, the ($)$ will rum aromed 17 or 18. Also, the values of input eapacitance shown in the table include tube output (:apmatame and other stray capacitaneos, so that input cappacitances of less than ahout 50 $\mu \mu$. will probably be unattainable. Where the table shows less than $50 \mu \mu \mathrm{f}$. input capacitance, ('f should be operated as close to minimum cabowitance as practicable.

In exciter should be ronnected to J_{1}, and the coupling :udjusted to give about 7 mal . of grid current. With a 5 ofohm load commected, the input and output caparitancess slould be set as closely as possible to the values indicated in the table, and the variable inductor should be adjusted for resonamee as indicated by the customary dip in phate corvent. Decreasing the output rapaceitance or the indurtance while maintaining resonamer with the input capacitor should increase loading.
(From QST, Iugust, 195\%.)

A 7-Band 90-Watt Transmitter

 circuit diagrams of a ! (N-watt bandswitehing transmitter eovering all hands from 160 (if a 1 (io)moter oscillator is provided, of couse) through 10 meters. The r.f. circuit is shown in Fig. 6-60. A string of four multiplier stages drives a 6116 final amplifior. A woll-sarerned tube (6.AK6) is used in the first stage, whose output is in the 8()-meter band, so that the stage will be stable when driven be an osseillator operating in the same band. For simplicity, triodes (6 C 4 s) atre used in the remaining multiplier stages. The third stage of this section operates wither as a doubler to $1+$ Me., or as a tripkre to 21 Mc ., the change being made as the band switch operis or closes a short across a portion of the tank inductor. Tuning adjustments are simplified by ganging the tuning capacitors of all four multiplier stages to a single control. The 80-meter tank circuit, $C_{1 A}-L_{1}$, is designed to cover only the required tuning range - 350) to 4000 ke . However, when the band switch is furned to the 7 -. Me and higher-frequency positions, the $47-\mu \mu \mathrm{f}$. calparitor across the input of the first GCt adds roough aparitance to shift the tank cirrait's lowest frequency to about 3350 kr . so that the hatrmonies will include the 11 -moter band. 'This is permissible, of course, since the frequencies at the high end of the 80 -meter band are not needed for multiplying into the other bands.

A pi-section tank circuit is used in the output of the (6146 . It is designed to work into lowimpedance coaxial cable. In order to obtain better operation on 10 mothers, and to cover 160 moters, the tank inductor, L_{6}, is broken up into three sections. $L_{6 \mathrm{~A}}$ is the only inductance in the circuit when operating on 10 meters, the roller contact on $L_{6 B}$ being run all the way to one end to short $L_{6 \mathrm{~B}}$ out. In its last position, S_{213} opens the short across L_{66}, adding its intductance for 160 meters.
L_{5} is a v.h.f. pamasitic supprossor. L_{7} and ('s comprise a sericos-romant cirent that may be adjusted to attenuato TVI in the most susceptible chamel. $R F^{\prime}{ }_{2}$ provides a d.e. short arross C_{7} so that the latter nerd have only
approximately half the voltage rating that might ot herwise be required.

The milliammeter, $M A$, may be switched to read total excitor phate current, amplifier grid current, or amplifier cathode current. L_{3} and I_{4} are shunts that multiply the meter reading by 10 when reading exeiter eurront, and by 20 when reading amplifier cathode current.

Construction

The shielding enclosure is made up of two $8 \times 17 \times 3$-inch aluminum chassis, fastened together with top surfaces one agilinst the other. At the right-hand end, the chassis tops are cut away to provide an opening 7 inches deop by 8 inches wide. Into this opening the "dish" of Fig. ($;-62$ is fastened to provide a well for the final-amplifier components. A series of latinch ventilating holes should be drilled in the bottom of the well, and in both top and bottom covers in the area above and below the 6146 .

The components should be mounted so that the six control knobs on the panel come at the same lovel, using sparers under the eomponents where neressary to accomplish this. The three controls at the left, and the three at the right are grouped with equal spacing. The moter is mounted at the "onter line, and the tuning chart is eentered over the exriter tuning control. A combination of ge:us (soe lig. ($j-6: 3$), operating from the shaft of the rotary inductor, was used to drive a surplus turns-counter dial, but the Groth (R. W. Groth Mig. Co., 1000!) Franklin Ave, Franklin Pk., III.) counter should be equally compact.

In the exeiter section, the four tube sockets are limed up between the tuning-capacitor gang and the band switch. The $6.1 \mathrm{~F}_{6}$ is towand the front, with the 6 C 4 multipliers following in logiden sequance to the rear.

The capacitor gang, C_{1}, is made up of two Hammartund HFD-100 dual units whose shafts are joined with a Millen $3900: 3$ rigid brass coupling. Siace the tail shaft of the llammarlund unit is rather short, it may be neecessary to grind down the front end of the Millen coupling almost to the set-serew hole to allow the set sorew to

bear on the tail shaft.
The capacitor sections must be modified as follows: $C_{1 A}$ - remove the last 5 rotor plates; ('1a - remove the first 4 rotor plates; ('ac.remove all rotor plates except the first four, and remove the fourth stator plate; ('11)renove all rotor plates exeept the last four. After the modification is complete, test ach section to make sure that no phates are shorting. I'se an ohmmeter, or use a lamp in series with the ate. line.

The band switeh, S_{1}, is made up of Centralab Switchkit parts. The index assembly is trpe

P-12:3; the ceramie wafers are trpe N. For short leads, the wafers are spaced out so as to come approximately half-way between the tube sockets. Vertically-mounted r.f. chokes are used, since they occupy a minimum of chassis space.
L_{1} is wound on a Millen 15000 form, 1 inch in diameter. It is mounted to the left of ('1a, and can be seen in the bottom-view photograph. The other multipler roils are supported by their leads, soldered to the eapacitor terminals. The t atp lead on L_{3} should the a pieer of wire about 3 inches long. The length of this tap is adjusted later for tracking over the 21-Mc, band.

AMPLIFIER

Fig. 6-61 - Top view of the amplifier compartment, showing the pi-section tank eapasitor, the rotary inductor with separate ! 10 -meter coil, and the output rapactor switeh. The 160 -meter loading coil, remosed for this picture. mormally is momited letweem, the stand-off imsulator off the rixht rear eorner of the rotary inductor and the rear rotary-inductor terminal Fixdter tules are to the left.

The mica trimmer calacitors are mounted in such pasitions that they can le adjusted through holes drilled in the chassis and in the bottom rover.
The socket for the 6146 is mounted near the inside watl of the well by means of an h hracket attarhed to the rear wall of the chassis. Heles are drilled in the wail of the well for wires comecting to the sorket terminals. Since working space is limited, all nerecsary hy-passing and other wiring at the 6ithe soeket should be dome before the socket is mounted.
The output caparitor switch is assembled on a Centralal, P - 121 index had

The rear of the meter is shielded with an IC'A tepe 1 beto shicld can cut down to a depth of 2 inches. Shichded lrads are brought out through
notrches in the wall of the can, elose to the panel. Tha metce shunts, P_{3}^{\prime} and R_{4}, are wound with copper wire as descritnd in the measurements chapter: R_{3} should be adjusted to increase the fult-scale reading to $1(1)$ nat., and R_{4} to inerease the range to $2(k)$ ma.

Following standard practice (see chapter on BCI and TYI atl d.c: and filament wiring is done with shimeded wire.

The diagram of a suitable power supply is shown in Fig. 6-6.f. A pair of voitage-regulator tulues regulates the voltage drop across the f(O) (A)-ohm. 25-watt series resistor that drops the voltage (6) 3(a) for the exciter. The $6.1\left(e^{5}\right.$ is a screen elamper which, in comblination with the ta volts of battery hias. kerps the input to the 61-46 at \% (ro) when excitation is remosed.

Fig. 6 -6it - 11 iring diagram of the F-hand 90-watt transmitter. All resistors watt untess otherwioe sureified. Capacitor valuce low $11.001 \mu \mathrm{f}$. are in $\mu \mu \mathrm{f}$. $\mathrm{M}=$ mica, $S \mathrm{M}=$ silver mica. $\mathrm{I}=$ micat timmer. vll other fixed capacitors are dish ceramic.
(ifa - Apirox. fin $\mu \mu$ f. (sere text).
Cit- Approx. 3.5 $\mu \mu \mathrm{f}$. (nede text).
(:1e, (in- 1pprox. 2.) $\mu \mu$ f. (are text).
C. 7 - $300-\mu \mu \mathrm{f}$. N.026-inch plate pacing (Vational 1 1 115-300).
K_{1} - Two 4 200-ohim 1-watt resistors in parallel.
R_{2} - 4 :00 - and 3300 -ohm 1 -watt resistors in parallel.
$\mathrm{K}_{3}, \mathrm{~K}_{4}$ - Neter shmes (ere tixt).
 rlose-wound.
$\mathrm{L}_{2}-4.2 \mu \mathrm{~h} .-15 \mathrm{turn}$, $3 / 4 \mathrm{inch}$ diam., $1: / 32 \mathrm{inch}$ long (B \& IV 301? Miniductor).
$L_{3}-1.8 \mu \mathrm{~h}$. - 12 turns, $3 / 4$ inch diam., $3 / 4$ inch long,
tapped bl:2 turns from ground and ($B \mathbb{X}$ W 301111 iniductor).
 (13 \& IV 3003 Vinithectar).

l.fat-0.3 ph. - 4 turns. ${ }^{2}$ ind diam., 1 inch long (B 太 $\ 1 / 3009$ Minidnctor).
$1.6 \mathrm{~B}-10-\mu \mathrm{h}$. variable (Johman 229-201).
I.n- -11μ h. - 18 turne Vin. 16.2 inches diam., 13 4 inctes long (13 \& 113900° inductor).
$\mathrm{L},-\mathrm{S}$ - se text.
J_{1}, J_{2} - Cowa comector.
111 - 3 -ineh. 10-ma meter.
si- Cramic rotary switeh, a sections, 6 positions (-vetext).
$\therefore 2 \mathrm{~A}$ - (entralall Pla segtiom (aee text).
$\mathrm{Sin}_{2 \mathrm{k}}$ - (ientralalr X sertion (ece text).
S_{3} - Bakelite rotary.

Fig. 6-62- The "dish" for the final amplifier. It is hent from aluminum sheet.

Adjustment

Until the exciter has been tumed up, sereen and high-voltage lines should be diseomeneted from the transmitter, and the GAQ: clamp tube should be removed from its socket. The meter switeh should be turned to its grid-eurrent position, and the (6146 heater turned on.

If an oscillator with lotometer output is available, turn the band switch to the 160 -meter position, and adjust the coupling to the oseillator until the neter reads a grid current of 3 ma.

Then with an oseillator delivering output on either 160 or 80 meters, turn the band switeh to the 80 -meter position, and aljust C_{1} for maximum grid current. This should be at least 3 ma . If it is less, try readjusting the coupling to the oseillator. If a VFO is used, the multiplier should be chereked at both 3500 and 4000 ke . to make sure that it is eovering the proper frequency range. It may be necessary to spread out the last few turns on L_{1} to get the circuit to hit both ends of the band. If the output from the $V F($ is reasonably constant, the grid current should remain (ssentially constant over the band.

With the 80-meter stage working properly, the switeh should be turned to the $4(1-m e t e r$ position. Set the V' ${ }^{\prime}$ () to 3500 ke , and adjust ('i for maximum grid-current reading. If there is no indiea-

Fig. 6-63-Sketch of drive and indicator for the final-tank variable inductor. 'The gears are standard Boston Gear Works items.
tion of drive to the amplifier, it may be neressary to adjust the \mathbf{T}-Me. trimmer, (${ }_{2}$, a little bit at a time, retuning $\left({ }_{1}\right.$, mutil an indication of output, is whtained. As an aid, the meter, when switched to read exciter plate current, should show a slight (lip) when ('2 is tuned through resonanee. When an indieation of gride enrrent is obtained, tune ('1 for peak drive, and then readjust (2 to inerease the peak. The correct adjustment is the one where no readjustment of either C_{1} or C_{2} will increase the drive. Now tume the oscillator to $37 \overline{0} 0 \mathrm{ke}$. (half this frecpuency, of course, if the oseillator output is in the 1 f(i)-meter band) and retune (' ${ }_{2}$. The drive to the 6146 should remain essent tally unchanged.

Now tume the oscillator back to 3500 ke . and ret une C_{1} for maximum drive. Leave the oscillator and ('s at this point, and turn the band switch to $1+$ Me. Adjust first C_{4}, and then C_{3} for maxinum grid current. It may take a little juggling back and forth between these two before a naximum reading is obtained. The meter, when turned to read exeiter current should show a dip when C_{4} is tuned through resonance.

Leaving all tuming adjustments fixed, turn the switeh to the 21-Mc. position. Adjust Ci4 carefully, and note whether an increase or a decrease in capatitance causes an increase in drive to the 6146. If it is an increase, fengthen the tap wire slightly. Then turn the switch back to It Me. and readjust C_{4} for maximum drive. Then switeh back to 21 Me. and cheok carefully again. By adjusting the length of the tap wire carefully, it, should be possible to arrive at a condition where maximum drive is obtained at both 14 and 21 Me. at the sume setting of ("4. Remember, after (areh adjustmont of the tap) length. first go bark to $1+$ Me. and retune, then switch to 21 Mc .

Adjustment for 28 Me. is similar to that for 11 Me., although it will be more critical. Careful adjustment of C_{5} and C_{6} will be necessary for maximum drive. The 11 -meter band is covered by tuning ('i to resonance with the switch in the 28 -Me. position. The various circuits should bo checked with an absorption wavemeter to make sure that they are tuning to the right multiple.

When the above adjustments for the lowfrequeney ends of the various bands have been completed as deseribed, it should be found that the output will be essentially the same at any point within any selected bind. Although sueh aceuracy in lining up is not necessary, it should be possible to resonate ('1 for maximum drive at 7ooo ke. and then, without retuning, switeh to 14,21 and 28 Mc . and find that the stages are delivering maximum drive. As mentioned previously, a different frequency range is used for 80 meters, so it is always necessary to retune C_{1} when changing to this band.

The harmonie trap, $L_{i}-C_{8}$, is adjusted to resonate at the frequeney of the TV chamel most susceptible to TVI, with the coax-commector torminals shorted. The frequency should be checked with a grid-dip meter. As an example, 3 turns of No. 18, $1 / 4$ inch diameter for L_{7} and $100 \mu \mu$ f. for Cos resonates in Channel 6 , by proper

Pig. 6. 6.1 - Power.supply and clamp-tube cirenit.
1.1 - Swinging cloke, $5-25 \mathrm{~h}$., $20-200$ ma. (Trial ($0-311$).
I_{2} - Smonthing choke. 10 h., 200 ma. ('Trial (:-16.t).
S_{3} - 3-pole Y-position rotary ceranic switch (Centralab 2505).
adjustment of the turus sparing of L_{7}.
The 80-meter band is tuned with all of L_{661} in the circuit, 10 is tuned with about 12 turns in the circuit, 20 meters with about 7 turns, and 15 meters with about 5 turns. For 10 meters, L_{613} is shorted out entirely ber running the eontactor all the way to the end of the coil. In earh case,
$\mathrm{h}_{1}, \mathrm{I}_{2}-11 . \overline{\text { - ont pilot lamp. }}$
J_{1} - Plate transformer: $\mathbf{- 5 0}$ volts d.c., 205 ma . (Werit P-3159).
T_{2}-Filament transformer: 5 volts, 3 amp.; 6.3 volts, 6 amp. (Staneor P'5009).
the incluctor is set, and the circuit resonated br means of ($\%$. Then the loading is adjusted by S_{2}, rerosonating with ('z for each position of S_{2}. The output eircuit is designed to couple into a matehed low-impertance line feeding an antema tuner or comefed antenna.
(0rigimally deseribed in QST for May, 1955.)
 suitch. 'The r.f. choke nrar tope center is the amplifier grid choke. Temtilating holes in the hotom of the amplifier "dish" are duplieated in the trottom plate which was removed for this picture.

75 to 300 Watts with VFO Control

Figs. (0-6t) through 6-7t show rirenits and constauctional details of a VFO band-switching transmitter that covers all bands from 80 through 10 moters. Depending on the plate voltage used, the final may be operated efficiently at inputs from 75 to 300 watts. A differential break-in keying system is included.

The circuit of the rif. section is shown in Jig. 6-68. The VFO follows the series-tuned Colpitts, or Clapp, circuit. It is remotely tumed through a length of rown cable to minimize frequency dritt. Output from the oscillator is in the 80)-meter band. A switch, si, changes the frequency range. One range covers approximately 3.5 to $3 . \overline{5}$ Mc. This range is used to cover the c.w. portion of the 80 -meter band, and to drive multipliers covering the higher-frequenes bamds. The seeond range is from 3.7.5 to + Me., and is used only for rovering the 80 -meter phone band.

Good isolation between the VFO and following stages is provided by a $6 C+1$ rathode follower and : 6.VKib butfor.

The outpert of the buffer may be switehed $\left(\aleph_{2 A}\right)$ to drive cither the 5763 driver stage or a series of there maltiplier stages using $6 \mathrm{C} \% \mathrm{~s}$, and covering the $7-, 1+$ - and $21-\mathrm{Me}$ e bands. The $57(3)$ is used as a doubler from it to 28 Me. for output on 10 moters. Bandpass couplers are used betwern stages in the multipler section. After initial adjustment, no thaitug of these stages is reouired. A multiband tumor in the output of the 5 and covers all bands by adjust ment of its tuning ralpacitor, (${ }_{14}$. Bxatitation to the final amplifier maty be controlled ber R_{1} which varios the 5063 sereen voltage.

A $4-65.1$ is used in the final amplifier. Its dataterisitios are such that it operates officiently over a wide range of plate voltages, extemding from (30t to 2000 volts. By proper choice of tank capacitor, a Novice may limit the input to 75 watts be using low plate voltage. and later increase the power input up to 300 watts by raising plate voltage. A pi network is used in the ontput of the final stage. It is designed to work into a low-imperdane coax line. C C_{15} is the input (apacitor. L_{14} is a variable inductor, used for all bands exerept the $1(0$-meter band. ()n 28 . Ic., L_{14} is sherted out by ruming the shorting contact to the and of the coil, and L_{13} alone suppliss the neressary inductance. The output capacitance is furmished by a group of fixed mica capacitors that maty be comeectod in marallel ancording to the need for each band, or operating condition, by S゙3. L_{15} and ('16 form a seriesresonant circuit that may be adjusted to resonate at the frequency of the tehevision chamel most likely to be interfered with in a given locality. It consists of a $100-\mu \mu \mathrm{f}$. mica capacitor in series with a few turns of wire.

Keying

The VFO and the 506 (6) stage are keyed. A 6W6(iT clamper, and a ()B2 voltage-regulator tube (the latter used here as an electronio switeh) hold the input to the + (i5. to a low level during koving intervals. The other unkeyed stages are proterted by cathode bias.

A differential kever provides clean amplifier keying with all the conveniences of oscillator krying for hreak-in work. The ribenit eonsists of a 12.10^{-7} twin-triode vacuum-tube switch for

Fig. 6-60-The 1-6,5 transmitterof W $8 \mathrm{~F}^{\prime} \mathrm{l}^{\prime} \mathrm{U}$ in a rack cabinet with romote V Jo and comtrol unit to the right. Along the bottom of the main pane! are the bandswitch. the grid meter and the excitation control. Juose are the controla for the multibaml tuner, the plate tank capacitor, the rotary imbuctor, and the ontput-capareitor switeh. The plate milliammeter is at the top.
fuming the lifoon and off as the key is operated,
 fathode of the batio. and a simple power supply to provide biasing voltages for the system. The ace. voltage for the selenium reetifer is supplied by a small (i-volt filament transtormer, operating in reverse from the f-volt transformer that supplies filament voltage for the t-6ind. wheler and oblafirt. The primary, used here as a serondary, delivers 110 volts d . m s.

When the key is open, a blocking voltage is applied to the grid of the SFO tabe so that it will not draw plate emrrent. The GBLatiot is also biased to cut-off so that it will not pass the 57 (i3) rathode rurrent. When the key is closed, blocking bias is removed first from the IFO, and then, an instant later. from the kever tube: Athough the V'f() may chirp when it is furned on, the chirp does not appear on the ontput signal beranse of the delay in the keying of the 5atial by the keyar tulne.

The reverse action takes place when the key is opened. The amplifier is turned off firs! and
then the VF(), masking any oseillator chirp. The values of R_{3}, R_{4} and r_{17} determine the keying characteristic of the 5 ati.3. With a fixed value for $C_{1 \pi}, R_{3}$ controls the make characteristie, and R_{4} the break charactoristic. Inctoasing resistance softens the keying. The interval betwern oseillattor and amplifier keying is rontmolled by Re. The farther that the tap is advanced toward the ground end. the faster the oscillator will turn off after the key is openerd. However, if it is advanced too far, the break keying chatructeristie: may be clipped berause the oseillator is turned off too quickly.
Separate milliammeters are used in the grid and plate diruits of the final amplifier. This is the only motering required.

Construction

The r.f. section of the transmitter is assembled on a $13 \times 17 \times 3$-inch ahminum dhassis fitted with a $101 / 2 \times 19$-inch rack pand. The amplifier is enclosed in a box constracted of angies stock and aluminum sheet. l'eriorated sheet will pro-

 tumer ares symetrical in respert to the tank-caparitor control. The turns comber for the rotary inductor is peared to the enil drive shaft, x_{s} and the mica output capacitore are off the left rear comer of the inductor, Whe v, h, seriesresonated cirenit is monnted against the rear wall, adjacent to the output conneet.

Fïp. $6-68$ - All raparitances lese than $0.001 \quad \mu$. are in ${ }_{\mu \mu}$ f. All (0.00] - and 10.003- μ f. capacitors are disk eeramic. M-Mira. SM-Silver mica. Cl:ll - Ceramic. see teat and Trable II for output capacitors.
C_{1} - Milget variable.
 (:14-Midget dual variahle. If 10 f. per section.
Cirn-ser text and F^{2} able II.

 13 N W 30\%-1 (coil stoch).
1:2-00 turns No. 30 enam., on !2-ind irom-slur form. 13-1.n-Se Trable 6-1.
1.11 - 202 turns No. 18 cham., I insh diam.. floser-nomend.

12 - 8 turns No. 18 enam., I inch diam., 1 inch long.
las- 4 turns Ao. 14. 2 inche diam.. 2% ine has home.
Iat- Rotary inductor, 25 μ h. (Johnem 229-203).
1.15-Sere text.
L.16-Paranitie suppressor -- Appros. Sturns \o. Io, 3/8 inch diam.. 1o inch longe shunted be loading resistor (see section on paravitie suppression).
($: R_{1}$ - Selenium rectifier.
$\mathrm{J}_{1}, \mathrm{~J}_{2}$ - Imphenal 83 - 202 R comnector.
Ja-Amphenol 83-1lh coas comeretor.
$M X_{1}-2-2$-inch simare meter.
$\mathrm{MA}_{2}-3$-inch stmare meter.
RFC, National R-1\%ist.

S_{1}-S.p.s.i. toggle.
S_{2} - Ceramic rotary witch: 3 sections, 1 circuit pre section, 1 mositions (Cemeralab 2044).
s_{3} - Progressively-shorting witels, 10 positions (Contralabl l'ti2l index heall with tym l'ls wafer).
T1-6.3-volt 6 amp. filament transformer.
' $\mathrm{I} 2-6.3$-volt 1.2 -amp. filament transformer.

TABLE 6-I					
Bandpass Coupler Data					
Coil	Brend	Turns	IVire	Sparimi	的 ${ }^{\text {No }}$
La	80	4.4	30 enatm.	1/'	
L. 1	80	37	$30 \text { enam. }$	1	
L.	40	21	30) enam.	7/16 ${ }^{\prime \prime}$	
Lai	40	16	$\underline{20}$ cram.	$7 / 10$	
1.7	20	1.7	24 timmed	$9 / 16^{\prime \prime}$	3012
L-x	$\because 0$	10	24 tinnod	-10	3012
Las	I. ${ }^{\text {a }}$	9	24 timmed	1/2"	3012
I. 10	1.7	(24 tintred	/2	3012

TABLE 6-II						
Approximate Pi-Section Values for Resistive 50- or 70 ohm Loads (80 -meter band)						
Input		Tank	C_{15}		$L_{\mu 13}+L_{1,2}$	Out mal $\mu \mu f^{2}$
Volts	Ma.		$\underline{\mu \mu} f^{2}$	Tolls		
00	140	10	$20:{ }^{2}$	600	12	1000
(6)0	12.51	10	200	600	12	100
1000	1,50	11	1.50	1000	17	1000
1.500	170	10	100	1.00	23	500
2000	1:0)	1.4	100	2000	23	700

1 Suggested for Novice operation.
2 One half this value for to meters, whe quater for 20 meters, one sixth for 1.5 meters, and one eighth for 10 meters.

Fig. 6-69 - Bottom view of the main chassis showing the grouping of the bandpass couplers around the bandswiteh in the upper left-hand cormer. R_{2}, the hias-adjinsting potentiometer for the v.t. swith circuit, is to the left of the grid-eurrent milliammeter, top renter. 'Ihe 0B2 in the $4-0.3$ sereen circuit is mounted on a bracket below the meter. Filament and bias transformers are to the right. All power wiring is done with slijelded wire.

vitle boter ventilation. The dimensions of the enelosure are approximatoly 10 inches spuare by 7 inches high, but may to varied somewhat to accommodate the components selected.
The multiband tuner in the outpat of the 5763 is built into a $3 \times+\times$-inch atuminum box (see detail photograph of lig. (i-70) attached to the amplifier enclostare. A vernier morhanism, such as the National AN or AVI), or a type AM diad, is recommended. The components are latid out so that. on the panel, the control for the multiband tuner is balaned bey the control of the variable inductor, with the eontrol for the input capacitor, ('15, central. A turns counter is garared to the shart of the rotary inductor. (A rontrol with a buil-in turns counter, such

Fig. 6.70 - The multiband tuner usid between the driver and final amplifier is housed in a $3 \times+\times 3$. inch box fastened to the side wall of the amplifier enclosure. The 5:6:3 and GBLI: have been removed in this viow.
as the Groth - R. W. Groth Mfg. Co., 1000!) Franklin dve., Franklin Pk., Ill., may be substituted.) In lig. (i-(i), the 4 -(i5.A is in the lower right-hand corner of the amplifier enclosure, with the plate r.f. choke between it and the rear of ('15. The mica output capacitors are stacked in the opposite corner, close to the selector switch. $\mathrm{N}_{3} . L_{15}$ and ('16 are against the rear wall, close to the coan output connector.

Underneath the chassis, the band switch is placed so as to allow room betwern it and the end of the chassis for the biAKtitad the 20 -meter (0C) and their bandpass couplers. The to-meter and 15 -meter $6 C \cdot 4$, and their couplers are similarly placed on the other side of the switch. L_{2} and the 6AIG VFO tube are forward from the

Fig. 6-71 - Poner-supply cireuit for the $4-6.54$ transmitter. S_{1} is an antomohile ignition switch, controlling all primary power. st turns on line voltave to the transmitter filament transformers and atso turns on the low-voltage supply. S_{2} turns on the 866 rectifier filaments, and s_{3} controls the high-voltage transformer.
6.AK6. The cathode follower is in front of the fo-meter (o'd. with the $12: \ 57$ to the left in Fig. $6-6$ (6 . In this view, the 5763 is in the rear left-hand corner, with the bilsiac (il kever tube in front. The 6 Whe il' clamper tube is between the amplifier enclosure and the patnel. near the induetor turas counter. The ()B2 VR tube is placed undernosth the rhansis, on a bracket to the rear of the grid milliammeter. The excitation ronton, R_{1}. is plamed so as to batane the eontrol for the banel switeh on the panel. $T_{1}, T_{9,}$, the selenium rectifier, and the "omponents for the keyer bias-supply filter are assembled against the right-hand end watl of the chassis in lig. (6-6)

All power wiring is dome with shioded wire. hy-passed as deseribed in the chapter on BCI and TVI.

Bandpass Couplers

The bundpass complers shown were construeted using the air thaing eapacitors and monntings from disearded i.f. transformers. The arrangemont shown in the tetail photograph of Fig. 6-72 mas be duplicated closedy using a poly-stareno-strip base and midget air trimmers. The coil forms shown are polystyreme, 1 inch in
 fook mix be sulstituted. A hole is drilled through the fottom of the form so that it can be mounted on a spacer or bracket betwern the two caparitors.

Winding dimensions are shown in Table $6-\mathrm{I}$. The primary windings of the 80 - and 40 -meter coils are wound at the bottom ends of the forms. and cemonted in place with coil dope. After the dope hats driod, the rest of the eroil form should tre sprinklod with takeum powder, and at laver of rellophane tape wombly wound it, with the adhesive side out. (On the stieky side. the seremdity turns should be womed firmly, but not so tightly that the winding cannot be slid along the form for adjustment. The ends of the sereondary winding are hedd in place with eoil dope applied rarefully s. that the serombary dons not berome cemenned the therm so that it catnnot be moved. The emds of the windings stomald now be solderad to the capacitor terminals, completing the assombly.

The 20- and 1 b-metar couplars ate mate from Barker and Williamson Minidurtors. longths of whioh are slid inside the eooil forms. The forms should first le slit with a fine satw to permit the ents ol the windings to come out radially. The primary windings should be inserted in the form first, and the secondaries slid in and out as needed for adjust ment.

VFO Construction

The remote tuned aireuit for the $\mathrm{VF}(0)$ is assemblad in a $5 \times 6 \times$! 9 -inch alumiaum box. The National AOS dial is centered on one of the eovers. The inductor is cemented to a strip) of polystyreme, and the strip is supported on sections of prolystrene rod that have been tapped for manhine serews at each end. Air trimmers
('y and C's are moment on a pand so that they maty tre adjusted with a serewdriver throngh holes in the end of the box. The frequency-ratge switeh, \dot{S}_{1}, and the coax output connecior, J_{1}, are mounted at this end.

The box is fitted with shock mometiogs atturched to a base mate of two $7 \times 9 \times 2$-inch chassis. bottom to bottom, and fitted with an aluminum parel. The base is used as a control box, and contains the switehes and inelicator lamps shown in the power-supply diugam of lig. ($;-71$. The main power switelh is an atutomobile ignition switch. With the key removed, the transmitter eamot be turned on. A torminal strip at the rear provides comedenons to power supply alld transmitter". A longth of R(a-22/U two-conductor catble is usod between the output connector of the tmang mait, and the input comertor at the transmitter.

Fig. (6 - $\overline{1} 1$ shows the eireuit of the power supply used with the transmitter. It was assumbled on at $1: 3 \times 17 \times 3$-inch sted chassis.

Pi-Section Values

Table ($6-1 I$ shows apmoximate values for masimum rated phate current for ew. operation at plate voltages ranging from 600 to 2000 volts on 80-metors. The bion-volt, 12 j -mat rating provides 75 watts input for Novice opration. To maintain the same valucs of Q at the higher frequencios. the values of capacitanee and inductatere shown in the table should be cut in hatf cach time frequency is dombled (12 for 40 ,
 and possibly on $21 . \mathrm{Mr}$., minimum cireuit rapacitance maty make it impossible to reduer the Q

Fig. 6- 22 - This photograph shows the meihud of assembling the handpass couple's as eleseribed in the text.
to the values indiated by the table. This will mean that less inductance and greater output capacitance will be required.

If 80 -meter operation over the romplete range of inputs shown in Table 6 -II is desired, the input cupacitor C_{15} must have a voltage rating for the highest voltage (2000 volts) and sufficient capacitance for the lowest voltage (200) $\mu \mu$ f.). (Johnson 250 F 20 has suitable dimensions.) ()therwise, a capacitor of voltage and capacitance ratings shown in the table mat be used.

The output caparitance selector switeh, ${\underset{3}{3}}^{2}$ has 10 contacts. The output capacitance required over the voltage range of 600 to 2000 volts for all bands will be satisfactorily approximated if $50-\mu \mu \mathrm{f}$. eapacitors are comnerted to each of the first six positions, $100-\mu \mu$ f. units to the next two positions, and $250-\mu \mu$ f. units to the last two positions. It should be possible to compensate for minor departures from the needed values by readjustment of the other two elements, C15 and L_{14}. To take aare of operation at maximum power input, the output capauitors should be mica units rated at 2500 volts, such as hipatgue type 9F.I.

Tuning U_{p}

After all wiring is rherked, the oseillator tuber and cathode follower are phagged into thoir sockets, and the exater power turned on. If all is well, the signal will be heard in a receiver, in the vieinity of the 80 -meter band. Next, S_{1} is opened, C_{1} set at minimum (abpacitance, and C_{2} adjusted until the signal is heard slightly above 4 Me. When C_{1} is set at maximum capabitanes,
the signal should be found in the vicinity of 3.75 Me. S_{1} should now be elosed, and C_{3} adjusted until the signal is heard at slightly below 3.5 Me. Some slight proning of the tuned circuits may be necessary, but it should be possible to get the oscillator to operate from below 3.5 Mc. to over 4.0 Me., with a slight overlap around 3.75 Me .

Now the bandpass couplers ran be tuned. Set the bandswiteh in the 80 -meter position, the excitation control at zero, and plag in the rest of the tubes in the exciter section. Temporarily ground the rathode of the 5763 , and connect a highresistance voltmeter arross the 5763 grid-leak resistor. All bandpass-roupler secondary windings should be pulled as far away from the primaries as possible. The VF() is now set at 3.75 Me., and (' 6 and C_{7} tuned for maximum indication on the voltmeter. The seeondiry winding, L_{4}, should now be moved toward L_{3}, until the spacing is that given in the coil table. This spacing should be set very carefully in all cases, since a small deviation will result in a change in the bandpass wharacteristic. It is also to be noted that the coupler tuning capacitors are to be adjusted only when the windings are at the maximum spacing.

Next, move the high-resistance voltmeter to read the drop across the baki grid-leak resistor and set the VFO) frequency at 4 Mc. Now adjust L_{2} for maximum grid voltage, and swing the VF() through its entire range. If the grid voltalge increases when the frequency is lowered, decerease the induetance of L_{2}. Correct indjustment of L_{2} will result in nearly constant drive to the 6AK6 throughout the entire VFO ringe.

The rest of the bandpass couplers can now

Fis. 6-73 - 'The VFO remote tuning unit and control box. The tuning unit is enclosed in a $5 \times 6 \times 9$-inch aluminum low mounted on shock absorbers. The control-unit enclosure is made up of two $-\times 9 \times 2$-inch alumimum chassis, bottont to bottom. 'The rangecontrol switoh and remote cable conneetor are mounted on one end of the thining unit, i fuse holder projects from the end of the control unit.
be adjusted, following the procedure deseribed above for the 3.5-Mc. coupler, and with the voltmeter once again reading driver grid voltage. The to-meter coupler should be adjusted with the VFO set at 3.6 Me.. the 20 -meter coupler should be adjusted at 3.6 Mc . and the 15 -meter coupler at 3.55 Me . It should be possible to tune through any of the bands with less than ten per cent variation in drive to the 5763.

The Multiband Tuner

The multiband tumer can now be checked, with the $4-65 \mathrm{~A}$ in its socket, and heater voltage applied. It is suggested that a grid-dipper be used to aseertain that the grid circuit is tuning to the proper frequency and not to a hamonice. (irid tuning-dial settings should be logged for future reference, and note taken if two bands resonate at the same dial setting. If, for example, the 80 and 20 -meter resonance points oceur at or near the same dial setting, pruning of one of the coils will be necessary. For best separation betweon the two frequency ranges, the low-frequency inductor, L_{11}, should be adjusted so that 7300 ke . eomes elose to the minimum capacitance of \boldsymbol{r}_{14}, and the high-frequency inductor, L_{12}, adjusted so that If Me, comes close to maximum capacitance. The dial settings in this unit were $95,2: 3,82,15$, and 5 , respectively for the $80-10-$ - $20-$, $15-$, and 10-meter hands.
Adjustment of the kever can now be made after removing the ground from the 576.3 cathode. R_{2} is advaneed toward its positive end (ground) until the voltage at Pin 1 of the $12 . \mathrm{AU} 7$ is -15 volts. The keying characteristic can be adjusted
to individual taste later by adjusting the value of C_{17}.

Pi-Tank Adjustment

The final amplifier is lest tested at reduced plate voltaure. bither a 50 -ohm dumny load or an antema known to present a resistive load of 50 ohms should be used for initial tune-up. Adjustment of the excitation control, R_{1}, will provide the correct grid eurrent of 15 mat. to the final. With the bandswiteh set in its 80 -meter position, and the grid tank resonated, the plate tank capacitor, C_{15}. should be set at about 90 per cent of its maximum value, and the rotary inductor set at near-maximum inductance. A grici-dipper could be used here to establish a near-resonance point. The plate voltage should be applied, and Cis quickly tuned for a plate-enrent dip. If an appreciable change in capacitance is necessary to establish resonance, a new setting of the variable induetor should be tried, until the plate circuit resonates at :3.5 Mc. with almost all of the capocitance of C_{15} in the circuit. Full plate voltage can now be applied, and loading adjusted for a plate current of 150 ma . Now is a good time to check the $4-65$ A screen voltage, which should be 250 volts.

Adjusting the final amplifier on the other bands is carried on in much the same manner. setting the final tank capacitor to approximately the correct value (see Table6-II), adjusting the rotary inductor for resonance with a grid dipper, and finally resonating the circuit with power on. All settings should be logged for future deference.
(From QST', October, 1955.)

Fig. 6-74-Rear view of the tming unit showing the mounting of the induetor on polystyrene sheet and rods and the arrangenent of other components. (ieranic trimmers, monnted on the insulating panel at the left. were later replaced with air trimners (C_{2} and C_{3}).

A 500-Watt Multiband VFO Transmitter

Figs. (6-7.5 through ($\mathbf{6}-81$ show the circuit and other details of a 500 -wat tramsmitter with $\mathrm{CH}^{\circ} \mathrm{F}$ frequency control, eapable of operation in amy band from 3.5 to 28 Mc . It is completely shielded and all tuning adjustmonts, induding band chamging, mat he done with the panel controls.

As the circuit of Fig. 6-8 8 shows, the VFO uses a $5^{-6} 63$ in : Clapp cirenit operating over a range of $3: 350$ to $4000 \mathrm{ke} .$, split into there handspreal ranges, tuned by' (', which is fitted with at collibrated dial. These ranges, selected by proper set-
 (for 11-meter operation) and 3450 to 4000 ke , for To-meter 'phone work.

The oseillator circuit is followed by two isolating stages. The first is a $6 \mathrm{C}+\mathrm{t}$ eomerted as a cathode follower, which is very etfortive in reducing reartion on the oscillator by subequent stages. The restalt is a keyed VFO with good chanatoristies, even on 10 meters. Since the output of the cathode follower is ruite smatl, it is followed by a $57(0,3$ in an amplifier fixed tumed in the :3.0-Nte. region.

Frequency multiplying to reach the higherfreguener binds is done in the next two stakes. the first using a 5 adia, while the serond employs the larger 61 fi to drive the final :mplifier. These two stages are thued with multihend tumers cirents which hate at tuning range that includes all necessiry hands. Thus no switehing or phug-in coils ate needed. Neither of these 1 wo stages is operated ats a straight amplifier, exorpt on so meters. Firequeney is doubled in the tiltis stape for output on 10, 20 and 10 moters, and tripled for output on 15 meters. The 5afis) stage is operated at 3.5 Mc . for 80 - :and 40 -meter output, donblas
 quabruples to $1+$ No for 10 -moter output. Axcitation to the final is adjusted by the potentiometer in the sereen ritenit of this stage.

The $81: 3$ in the final amplifier also uses a multiband tuner to cover all hames. This state is always operated as a statight amplifier, and should le entirely stahbe without neutralization. The only switehing neressin? is in the output

link cireuit in changing between high- and lowfrequency bands. Ioading is adjusted by $C_{\text {ro }}$.

A 50 -mat. meter may be switched to read plate current in the exciter stages, grid current in the driver and final-amplifier stages, or sereon current to the $81: 3$. The 1 -ohm resistor in the $61+(6$ highvoltage leat multiples the moter-seale reading by three. A separate 0 (0)-mat. meter is used to check plate current to the 813.

The tworedreuit rotary switch, S_{1}, is used to bits the surerens of the 6146 and 813 negative While tuning up the proceding stages and setting the VFO to frequency. In the first position, both screcos are hiased; in the second position, only the 813 sereen is hiased, while positive voltage from a voltane divider is applied to the sercen ol the (iffo so that this stage may be tumed up. In the third and fourth positions, positive voltage is applied to both sereens. Inut in the last position, it is applied to the $81: 3$ sereen through an audio choke so that the stage may be screen-plate modulated.

Two bitse rectifiers are included in the unit, to supply fised hias to the 6146 and 813 , so that the wate curronts will be cut off during keving intervals. Both reetifior systems operate from a single (i.3-volt filament transformer eonnered in reverse. The bias transtomer, Ta, is operated from the $6.3-$-wht wimbing of the filament transformer. T_{1}

T'wo a.s. outhets are provided for commerting the primaries of external high- and low-voltage supplies into the rontrol rimerit consisting of there togyld switehes. β_{1} is the sembating blower 1hat starts oprorating as som as the filament switeh is elosed. The blower is essential where so much pewer is confined in at small space. The jack, J_{3}, provides a means of keysing the final :mplifier. rather that the osedlator, if desired. It also permits phagging in a simple rathode modulator of the tereedeseribed in the chatpter on sperehamplifiers and modulaters.

It is highly important that the $\mathrm{IF}^{\circ}()$ box make grood contare with the chassis: otherwise the VI() may be adveractly affected by leed-back from the adjacent final tank when working on 80 meters. Monnting serows spaced an inch around the bottom lip of the box, and correspondingly in the top (rover, shouded diminate this completely.

Fig. (-i5 - Thue standard-rack panel is $121 / 4$ inches highl. Curtrols (Xational Iths) along the hottom, centers spaced at inters als of $21 / 8$ inehers evither side of renter. are. left to riyht, for $\mathrm{C}_{4} \mathrm{~S}_{3}$. $\mathrm{C}_{5}, \mathrm{C}_{2}$, S_{1} (Cientralal), $140.5) . \mathrm{Sa}_{2}$ and Cio. Power toggles are liclow at the center. spaceil l inch alart. The calibrated WFO dial (National space) for $(1,1$ is at the criter, with the excitation control (Sational P'dial) w the left, and the dial (Sational AD) for Ge th the risht. \ational CFt chart frames outline the rectangular opmongs: for the reeressed meters, 50-ma. tu the left. ant-ma, to the riwht. The shielding enclosure is hailt up using aluminum ankle. perforated sheet (also used for the lootoon date), and self-tapping serews.

Fig.6.i6 - Ther compomentsare assembled on a $1: \times 12 \times 3$-inch aluminum chassir. The meters are honsed in $4 \times 4 \times 2$-ineh heress, the 1 WO enclesure is $6 \times 6 \times 6$, while the box porlosing L_{3} and $I_{\text {at }}$, to the right, measures $3 \times+\times$ in inches. The special plate choke, RFCi, to the left of the 813, is close-womil with 130) turns Xo. 20 , d.e.e. wire, on a Millen 31004 Whatinch ceramic pillar. Cs is fastened to the top of the choke, while C_{-7} is memmed below narar the h.a. feed-thromkh. (Both Cif and cis are Sprague emblit's.) The small comes. fastened to the capacitor frame by drilling hedes in the assemblas rods, supure Ia. 1 stren, taphed into the same romb, anehors the krounded end of L_{7}, whase outar and commects to the rear stator terminal helow. The 813 sochet is momited on $1 / 2$-inch pillars, ower a $21 / 4$-inch hole in the chassis. Alons the rear aprom are $J_{3}, I_{2},+$ h.s. (Millem 3-(0)1) and pround terminals. a.e. power-input comnector, two ate. outhets, low-voltage input terminals, and hry connertor.
\bullet

$L_{1}(35 \mu \mathrm{~h}$.) is a 13 \& \mathbb{N} 80-13(1) coil with the link and base removed. L_{2} is given under Fig. (i-sin. $L_{3}\left(2.6 \mu \mathrm{~h}\right.$.) is 31 tums of 13 de $1 \mathrm{I}^{3} 300: 3$ minidu*tor, while $L_{4}(5.3 \mu \mathrm{~h}$.) is 30 turns of Trpe 30 O 1 l . $L_{5}\left(1.5 \mu \mathrm{~h}\right.$.) consists of 1 l turns of No. 16. ${ }^{3}{ }_{4}$ inch diameter, ${ }^{13}{ }_{16}$ inch long. $L_{6}(8.9) \mu$ h.) has $291 / 2$ turns of 13 © $W^{\prime}: 3015$ minidurtor. $L_{9}(1.6 \mu$. $)$ hats 6 turns of $1 / 4$-inch copper tulning, $2^{1}{ }_{4}$ inches inside diameter, $23 / 4$ inches long.
$L_{-5}\left(\overline{5} .1 \mu h_{1}\right)$ and $L_{8}(-4.2 \mu \mathrm{~h}$.$) are made as follows$ from Bedl 300\%-1 strip coil: Count off $10^{\frac{1}{4}}$ turns, rlip the wire without breaking the support bas Bend the last quarter turn out. This port ion is L_{i-}. Remove the next 3_{4} turn to make a $/$ - - inch spare between L_{i} and $L_{\text {as }}$. Coment off 10 turns more, wut the remainder of the coil stock off. Cuwind the last turn on L_{8} to make the neressary la ad to that stator of ('9. Tap) L_{x} at the 8 th hurn from $L_{-}-$

Adjustment

A 400 -volt $250-m$ at. supply is recpuired for the exeiter and the sereen of the final amplifior For full rated output from the 813 , a smphly delivering 2000 to 2200 volts at 300 mat. (incelud-
ing bleder current) is needed. The amplifier may, of course, be operated at lower plate voltage with lese power input. The diagram of at suitable power unit is shown in Fig. it-81.

The V'fo thang ranges should first be adjusted. Sot sit to the first position, biasing the sarexel of the (il+ti. Adjust the sereren potentiometer in the 5 atias multiplier stage to zero, and tum on the filaments and the low-voltage supply. Sot ('1 at 95 degrees on the dial (near minimmm
 Thron, histening on a ceilibutated reereiver, adjust C_{3} until the Vro signal is heard at 3700 ke.

Xow, tune the rerediver to 3500 kc ., and turn (') toward maximum caparitance until the VFO sigatal is heard. This should be close to the fower cond of the dial. By carefully bonding the reamost stator plate of (a toward the rear, it should he bosible to adjust the range of 3500 to 3750 ke . so that it covers from on to !as degrees on the dial. Some slight readjust mont of ('3 may be onecesary during the plate-bending proeses to keep the band arentered on the dial.

Now, set C_{1} at about 15 degrees. Set the re-

Fi\&. 6.77-The VFO bex is plared with its fromt wall lokti inches back of the panel, central on the chassis. I_{1} is monnted on - -inch cones to conter it in the bex. The shaft of Ci (Carduell PI -(6)0) minus last rotor phate) is (entral on the hox fromt, at a height to mateh that of C_{9}. C_{2} (Carl)well Plo-(0102) is momeded, betwen (hamd the coil, shaft downward, to engage the richt-angledrive helow. Ca (Garduell PI, (0109) is similarly mounted, to the left of $(\%$. Grouped to the left are I_{4}, I_{2}, and I_{3} in front, with $!_{5}$ and I_{1} to the rear, and I_{2} in the center. Fied-hhronghs in the bottom of the coil bex to the rear connert L_{3} and L_{4} to C_{4} helow. The ventilating holes are over the 6146. C9 (Johnson 2001) J) 3.5) is placed with its shaft $21 / 4$ inches from the end of the chassis, and its rear end wate $15 / 8$ inehes in from the bark edge. The three feed-throukhs to the left momert L, to S_{2}.

cciver at 3750 kc . and reduce the capacitance of C_{2} until the VFO signal is heard. Then, tuning the receriver to 4000 ke ., the VF() signal should be heard when its dial is set at about 85 degrees. Mark this setting of ('2 aceurately.

If it is desired to center the 11 -meter band on the dial, set C_{1} at midscale. Incerse the capacitance of C_{2} until the VFO signal is heard at $3: 387$ ke. Mark this setting of C_{2} also accurately.

The next step can be done most easily with a high-resistance voltmeter eomected across the grid leak of the $576 ;$ huffer amplifier. Set C_{1} and ('2 at minimum caparitance, and adjust

Tuning Chart for the 813 Transmitter					
(hutput Band (Mc.)	$\text { Dial } 1$	$\begin{aligned} & \text { Cit } \\ & \text { Band (. } \mathrm{Mc} .) \end{aligned}$	Pmal	$\begin{aligned} & \mathrm{Cs} \\ & \text { Band (Mf.) } \end{aligned}$	$\begin{gathered} \text { C's } \\ \text { Dial? } \end{gathered}$
3.5	8.8	3.5	6.1	3.5	77
7	8.8	3.5	0.5	7	$!$
14	1.5	7	9.5	11	82
21	1.5	7	3.7	21	26
27-28	4.7	14	1.8	28	7
${ }^{1} 10$-division dial -10 max. capacitanee. ${ }^{2} 100$-division diai - 100 max. capacitance.					

the slug in L_{2} for maximum grid voltage. Then wateh the grid voltage as C'2 is swung through its range. If there is appreciable inerease in grid voltage as ('z is turned toward maximum caparitance, tune L_{22} to a higher frequeney by moving the slug out more. By correct adjustment of the slug, the grid voltage should remain assentially constant over the entire usable frequency range.

Now readjust ('2 to midsale and turn the meter switch to read 6146 grid current, and turn the excitation control to give a reading of 2 or 3 ma. Resonate the output tank rireuit of the 57 (i) 3 frequency multiplier at 80 meters (near maximum capacitance) as indicated by maximum 6146 grid current.

Next, turn si to the serond position, so that sereen voltage is applied to the 6146 , but not to the 813 . Turn the meter switch to read 6146 plate current, and resonate the 6146 output tank circuit as indicated by the plate-current dip (near maximum capacitance). Turning the meter switeh to read 813 grid current, adjust the exeitation eontrol to give is final-amplifier grid-current

rearling of about 25 milliamperes.
The 813 should be tested inititlly at redued plate voltage. Plate voltage can be redured hy inserting a 150 -watt lamp in series with the highvoltage transformer primars. A 300 -watt lamp bulb comected across the output commector can be used as a dummy load for testing. Make sure that S_{2} is tumed to the low-frerpuency position. This position is used for $3 . \tilde{0}$ - and 7 - Me operation. The other position is used for 14.21 and 25 Mr. Tum x_{1} to the third position to apply serom voltage to the 813 , apply phate voltane and resonate the output tank circuit (near maximum (eaparditune as indieated by a dip in plate rurrent. loull plate voltage maty now le applied and ('10 adjusted to give moper lowling (220 mat. maximum). Adjust the excitation ront rol to give a final-:mplifier grid courent of 15 to 20 ma .

Tuning up on the other bands is done in a similar manner, by adjusting the tuncrs in comb fircuit to the correct band to obtain the desired multiplication. The table shows the approximate dial setting for each band, but rach should be checked with an absorption wavemoter and the sotting loged for future reference.

A suitable antema tuner should be used between the transmitter output and the antemma.

Antenna tuners are described in the chapter on transmission lines.
(D)weribed in QST' for Jinuary and June, 1954.)

Fig. 6 - 80 - The panel drops 3 is inch below the botom edge of the chassis. The National RAD righteangle drive for C_{z} is at the renter. The other controls along the bottom are placed $11 / 2$ inchery u from the botom edge of the chassis, and the corresponding components mounted so that their shafts line up with the controls. Panel bushings should be provided for the shafts of Cio (Cardwell Pl,--ionfo), and the right-angle drive; panel-hearimg shaft units
 $5 \times 2 \frac{1}{4}$-inch bracked het wen C_{4} and C_{5}, whose shafts are fitted with insulating couplings. C_{5} is mounted on epacers, while C_{4} is mounted on its side on a brachet. T_{1} (Triad F -18A) and T_{2} ('Triad $F-11 \mathrm{X}$) are mounted on another bracket at the center. La and $L_{f \text {, at }}$ right angles, are soldered between the terminalsof $C 5$ and Pin 4 of the 813 sochet,

 slotied shaft of G may the seen between the shaft of \mathcal{C}_{5} and the shielded power wires to the left. ill power wiring is dane with shieldel wire (Belden 86.56, Birmbarh 1820, or shielded ignition wire for the 20010 -s olt line; 13elden 888.) for the rest). 12 , behind Σ_{s} (Centralab 1411), is a National $A R-50$ slug-tuned form close-womed with 93 turns No. 36 enampled wire.

Fig. $6-81$ - (Gircuit of a suitable power supply for the 813 transmitters.

$\mathrm{C}_{1}, \mathrm{C}_{2}-\mathrm{A}-\mu \mathrm{fal} .2(\mathrm{OHO}$-vall oil-filled. C:i, $\mathrm{C}_{4}, \mathrm{C}_{3}-\mathrm{t}-\mu \mathrm{fl}$. 601)-vell electrulytie.

$12: 15.1060$ ohms, 2.5 watts.

$\mathrm{I}_{2} \mathrm{z}$ - $20-\mathrm{h} .300$-ma. smonthing.
$\mathrm{L}=1.4-8-\mathrm{h}, 300$-ma. filter choke. 1, - 100 -watt lamp (Tine ul) $S_{1} . S_{2}$ - 10 -amp. swizeh.
s-3-amp. switch.
$T_{5}-2.5$ volts, 10 amp.
$T_{2}-200$ volts d.c., 300 ma .
'r:-400-0 - 400 r.mıs.. 230 ma.: 5 volts, 3 amp. (L'TC S.40)

A Single 813 Amplifier

IFigs. in-8: through (i-815 illustrate a multil)and single-tube 3.1 . amplifier using $\tan 813$. The cirevit diagram is shown in Fig. 6-84. The bands, 3.5 through 28 Ml ., are changed in the grid circuit by switrhing coils. A $100-\mu \mu \mathrm{f}$. capacitor, C_{1}, is added to the capacitance of the grid tuning ca-
vialue when excitation is removed, or if stages ahead of the $81: 3$ are keved.
separate meters are provided for reading grid and phate current. A voltmeter is included to permit a continuous check on filament voltage. Filament transformers are mounted in the unit,

Fig. 6.82 - A multiband bandswitching 813 amplifier with a shidding enclosure made up of standard chassis and bottom plates. To the right of the meters are the controls for s_{1} (alowe) and (c. At the cemter are the controls for cia and L_{13}. To the right are controls for sin_{2} (above) and Clu. (Designed by Wokev.)
pacitor, C_{2}, when the bandswitch, S_{1}, is in the 80-meter position.

A pi-section tank is used in the plate circuit. ('is is the input capacitor'. The output capacitance is made up of a group of four $3 \overline{5}-\mu \mu \mathrm{f}$. vaniable caparitors, ('14. ganged to a single control shaft, plas : $0.001-\mu f^{\prime}$. fixed capacitor, (15 . The three positions of S_{2} provide a means of changing the maximum capacitance in the eireuit over a wide range for matehing various load resistances. The variabke inductor. L_{13}, is a rotary coil taken from a surpius BC-375. However, the 13 \& 11 type $38: 52$ rotary coil has sufficient inductance ($15 \mu h_{1}$.) to be used as a substitute, although the coil requires somewhat greater space. L_{12} is a separate roil for 10 meters, L_{13} being turned so that it is shorted ouf on this band.
L_{11} and R_{2} constitute a v.h.f. parasitic suppressor. The amplifier is neutralized by the caparitive-hridge method, C_{6} being the meutralizing capacitor. A 6 (${ }^{2} 6 \mathrm{G}$ clamper tube is used in the sereen circuit to reduce the input to the $81: 3$ to a safe

Fig. 6.83 - lind view of the 813 anplifier, showing the grid-circuit assembly and filament transformers
ant all power leads are by-passed for v.h.f. as they enter the shielding enclosure. Meters are also similarly by-patsocd.

Construction

The construction of a shielding enclosure for the :mplifier is simplified by the use of standard alumirum chassis and chassis bottom plates. Two $8 \times 12 \times 3$-inch chassis, with their tops towand the inside, are used as the sides. They are fistened to the $83 / 4$-inch relaty-rack pinel with the 8 -inch sides against the pandel. The one at the left is pataed with its outer adge $33 / 4$ inches from the end of the pinnel, while the one at the right is positioned with its outer edge $11 / 8$ inches from the right-hand end of the pancl. This leaves an open space of $81 / 8$ inches between the two chassis.

Fig. 6.81 - Cirenit of the 813 amplifier. All capacitances below $0.001 \mu \mathrm{f}$. are in $\mu \mu \mathrm{f}$.

C_{1} - Ni trimmer.

(.2- $0.02 \overline{2}-\mathrm{inch}$ plate spacing.
C. C_{12}, (15 - Mira.
 $\mathrm{C}_{22} \mathrm{C}_{23}, \mathrm{C}_{24}, \mathrm{C}_{25}, \mathrm{C}_{26}$ - (ieramic.
C_{6} - Neutralizing rapacitor (Johnson N-250, 0.25inch spacing).
C_{13} - 0.0 O-incli plate spacing.
C_{14} - Fonar-section variable gang, $374 \mu \mu \mathrm{f}$. Prar section, 0.025 -ineh plate spacing,
12_{2} - Five 680-ohm l-watt carbon resistors in parallel, tapied across 3 turns of L_{11}.
$\mathrm{L}_{1}-32$ turns No. 24 enam., closewound, $3 / 4$-incla diam.
J. $2-3$ turns No. 22 hook-up wire over colel end of L_{11}, L. 3 - 20 turns No. 20 enam, close-woumd, $3 / 4$-inch diam.
1.4-3 turns No. 22 look-up wire over cold end of $L_{\text {Li3. }}$
1.5 - 14 turns No. 20 enam., close-wound. $5 / 8$-inch diam. $1.0-2$ turns No. 22 hook-up wire over cold end of Lon.
 Ls - 2 turns No. $2: 2$ hooh-up wire over cold end of $l_{\text {I. }}$

The bottom, top and rear are closed with ahminum plates that maty be cut from chassis bottom plates if no other material is available. However, from the consideration of ventilation, perforated ahuminum sheet is preferable. If solid sheet is used, top, bottom and biack should be drilled with several holes not larger than $\frac{1}{4}$ inch in diameter, partienalaly in the arcas in the vicinity of the 813 tube. Cracks in the shielding, where the top and bottom covers meet the rear eover and panel, are avoided by the use of strips of ahominum angle attached to the pand and rear eover. The shielding is rompleted by bottom covers to fit the two chassis.

The output capauitors and the switch, sis. are enclosed in the ehassis to the right. The chassis at the left rontains the gride coils, the bundswiteh, s_{1}, and the two filament transformers, T_{1} and T_{2}.
 $1.10-2$ turns Xo. 22 hook -ul, wire over colld end of L_{9}. L_{11} - P'arasitic suppresour - $5!\frac{1}{2}$ turns No. 1 , $1 / 4$-inch diam.

1. 1 $\mathrm{J}_{1}, \mathrm{I}_{2}-$ Coax combector.
$\mathrm{M}_{1}, \mathrm{M}_{3}$ - D.c. milliammetre, $\boldsymbol{2}$-inch.
$\mathrm{H}_{2}-\mathrm{A} \cdot \mathrm{e}$ voltmeter, 2 -inch.
RFG - 125 ma.
RFG: National R-155.
$S_{1}-2$-aircuit 5 -position ceramic rotary switeh (Centralab RR wafer).
$S_{2}-3$-position progresivelyhorting ceramic rotary switch (Contralab Pis wafer).
T1 - Filament transformer: 0.3 volts, 1.2 amp.
T_{2} - Filament transformer: 10 volte, 5 amp.
4 The 13 \& 1 type 38% or Johnson igue $229-202$ rotary (oil ($1.5 \mu \mathrm{~h}$.) has sufticient inductance to be ased as a substitute, although it requires somewhat more space.

Most of the rematining components are mounted in the main rompartment at the eenter. The rotary inductor, L_{13}, and the pi-nctwork input capacitor, ('l3, are fastened to the panel. The latter is mounted on "eramic pillars. The only ground commetion is at the rear of the capacitor, where the motal end plate is connered to the adjacent chatsis with the shortest possible lead. This climinates multiple paths to groumd. Insulated flexible rouplings are used between the shafts of the eaparitor and coil and their panel controls.

As shown in the bottom viow of Fig. (i-8i), the sl: 3 is momented toward the rear, and near the bottom of the right-hand ehasisis. The sorket is supported on motal pillars to spare it $1 / 2$ inch from the chatsisis, and is so oriented that the filatment will lie in a vertioth plathe. (irid, sereen and filament wires are run through holes to the grid-

Fig. $0-85-$ In this view, the 813 amplifier has been turned upside down to show the horizontallymonnted 813, and (13. 'The rotary inductor, L:33, is partially hidden. Also shown in the wheldinge conprartmant at the left is the ganged sariable, (it. A suitable sulstitute is a 2-or 3-gang hroadcast t.r.f. cabaritor with more fixed capaciters at s_{2}.

circuit compartment. loilament and sereen hypass capacitors are groundod inmodiatal on tho socket side of the enclosuter.

The plate r.f. choke, $R F^{\prime}{ }_{2}$, and the nentralizing eapacitor, (s. are mounted above the sis3. ass shown in the top view of Fig. (i-sts. The plate. br-pass, Cut is mounted close to the hase of the choke. The placement of the 6yibl clampe. is also shown. The socket is submounted with its terminals inside the griderireuit compartument.

The three moters are mounted on the pander one above the other, in the space to the left. dll power wiring is done with shielded wire, sind input and output connections atre brought to coavial fittings at the rear of the two chassis.

The plate spacing of the pi-sertion input cespacitor, (As, should be adeduate for a patate voltage of about 2000 for cew. operation, or ahout 1000 volts with plate modulation, provided that. the amplifier is fully loaded. Provision should hio made for reducing voltage during preliminary tune-up. A 2.j-mh. r.f. choke (not shown in the cirenit diagram) comeeted aroses (1iss is a mocoution worth adding, since this, in effect, removes the d.e. plate voltage from aross both input and output capacitors, thereby decreasing

Fip. 6.86-I Iooking down into the main compartment of the 813 amplifier, showing the plareement of the pi-section components, neutralizing rapacitor. plate r.f. choke, and the 61 6 danuer tulic.
any tendency for the capacitors to are over.
The cireuit of the high-voltage-supply circuit shown in Fig. 6-81 shamald be suitable for this amplifier. With phone operation with plate-sereen modulation, the sereen should be supplied through an external serias resistor. The resistor should have at total resistance of 50.000 ohms (150 watts) and be equipped with an adjustable slider so that it cin be set to give as sereen voltage of 350 or 400 under actual operating conditions.

Adjustment

The amplifier is nentralized by applying exeitation, but no sereen or plate voltage, and fhen adjusting the neutradizing caparitor, C $_{6}$, antil the kick in grisl current, as the plate cireuit is thuned through resonance, is brought to a minimum. Later, when fate voltage and load are applied, the adjustment shonld be touched up so that the grid-curren: peak and the plate-current dip oceur at the stme setting of C_{13}.

Assuming that the amplifier will be loaded to the maximum rated plate current (200 mas.) , the approximate capacitance for the pi-section input rapacitor, Ciz, for a (a of 12 will depend on the plate voltase. When the 813 is operated at 1000 volts, this catpacitanee should be approximately $200 \mu \mu f^{\prime}$. for $80,100 \mu \mu \mathrm{i}$. for $40,50 \mu \mu \mathrm{f}$, for 20,37 $\mu \mu$ f. for $1 \overline{5}$, and $25 \mu \mu$ f. for 10 . For 1500 volts, the approximate eapacitantes should be $140 \mu \mu \mathrm{f}$. for $80,70 \mu \mu$ f. for $40,3.5 \mu \mu$ f. for $20,2.5 \mu \mu$ f. for 15 , and $18 \mu \mu \mathrm{f}$. for 10 . For 2000 volts, the input captatitunce should the $100 \mu \mu$ f. for $80,50 \mu \mu$ f. for $40,25 \mu \mu$ f. for 20), $19 \mu \mu$ f. for' 15 , and $1: 3 \mu \mu$ i. for 10 . In ease the $13 \&$ Weoil is used, the maximum inductance should be ased on 80 meters for plate voltages in excess of 1000 , and the circuit should be resontied with the capacitor, C_{13}, abone. Since the capacitances !isted above include tule and other stray capacitances, amounting to at least $25 \mu \mathrm{f}$., \dot{C}_{13} shoullit be set at or near minimum for the higher frerfuencies, and the coil adjusted for resonatnee.

The output capacitance should be adjusted for proper loading. Variation of the output capacitance will require restljustment of C_{13}, or L_{13}. (Origitally described in (SバT', Nov., 105-1.)

Parallel Tetrodes in a High-Power Amplifier

Figs. (i-S7 through (i-9) show ronstruetional details and witug diourrims of a high-power amplifier for at patir of $4-125 \mathrm{As}$ in parablel. It rovers all hands from 80 through 10 moters, and plug-in coils are not used.

The cireuit of the amplifier is shown in Fig. (i-88. A National M13-40-L multiband tumer is used in the grid circuit. This tumer covers all bands without coil changing. It may be replaced by the later-model AlB-40-NL, with little, if any, rearrangement of components. L_{1}, L_{2} and L_{3}, with theid shunting resistors, are v.h.l. parasitistuppressors. L_{3} consists of $4 \frac{1}{2}$ turns of No. It wire wound around a (ilohar resistor. These units have a resistature of between 20 :und bo ohms, and are obtainable from any Ceneral Flectric tele vision-parts supplier.
l'arallel plate ford and a pi-soction tatuk are used in the output eirenit. C_{12} is the input cotpabitor. The variable inductor, L_{4}, is at Johmsen type $220-3$ rotary roil having a maximum inductince of 13,5 is $\mu \mathrm{h}$. A combintation of a $500-\mu \mu \mathrm{f}$. vatriable cipuatiter, ('13, and capmetitors ('14, ('15 and C'i6, conmerted in paratlel hy S_{2}, gives a ratuge of output (eupacitance up to $2000 \mu \mu$ l.

The amplifier is neutralized by the capacitivebridge method. The value of C_{1}^{\prime} is fairly ariticol, since it dietates the cenpacitunce range over which ('10, the adjustable uentralizing caparitor, musi work. $R P C_{3}$, in effect, removes the d.e voltage from the imput and output raparitors.
L_{5} :und (92 will not always be neressary, but. when advisable, they cem he series-resonated to a local TV chanme to further the redertion of hammonis on that chamel.

All hias, filamont, and phato-supply leads are
v.h.f.filtered, and all power wiring is done with shiched wire to reduce harmonie radiation.

A blower is included to provide ventilation. Meters are included for reading grid current and plate current.

The input and output circuits are well shiclded from euch other to keep coupling to at minimum, and atl power leads are shielded and terminate in a shielded compartment housing the v.h.f. filter components for the bias, serren-voltage and highvoltage leads. The moters are mounted on panels that insulate them, and are shielded with $+x+$ $\times 2$-inch :ctuminum boses, and the openings in the panel are rimmed with National chart frames.

The sereon lead is brought out to a separate terminal so that the buider com use the system he chooses for applying voltage to it. If the amplifier is going to be used primatily for ew. opration, a separite low-voltage serem supply serms logical, simee the tabes ean then be protered simply by the use of suffieront fixed bits to limit the input. With this sort of supply, however, it is important not to apply wereen voltage and exeitation in the absence of pate voltate, because the serreat eurrent will rum to exessive proportions, with dinger of ruming the tube. For this reason, it is a good idea to have a sereen supply delivering a voltage someWhat higher that the sereen operating voltage, and use a dropping resistor in sories with the screen. This will tend to limit the sereen current in case of failure of the plate supply:

Construction

The construetion illustrated in the photographs permits short comnerting leads, yot there is no

Fip. 0-87-Front view showing the pamed layent. (omentrolone the bottom are ine (exarse conpling), filament switeh and pridetming. Alowe the window are the controls for (has (fine conoling) and plate thoning. Between the meters is the connter dial on $L_{\text {a }}$. line innut and ontput connertors are along the left drop of the chassis. The lole in the center of the perforated top cover is for ateess to Cio. The elirome strips eower the $6-32$ marhine sorens that fasten the angle to the panel. \ational C.'A chart frames are used to mover the meter openings, and one is placed hetween the plate and output controls to use as a tuning ehart. The Inotom of $R P^{\prime} C_{2}$ shows between the talee batis, through the sereened oproning.

Fig. 6-88 - Circuit of the parallel-tetrode amplifier.

All capacitances less than 0.001 are in $\mu \mu \mathrm{f}$.
C_{1} - Mica.
$\mathrm{C}_{2}, \mathrm{C}_{4}, \mathrm{C}_{5}, \mathrm{C}_{6}, \mathrm{C}_{21}, \mathrm{C}_{22}, \mathrm{C}_{23}, \mathrm{C}_{24}, \mathrm{C}_{25}, \mathrm{C}_{26}-500$ wolt disk ceramic.
$\mathrm{C}_{3}, \mathrm{C}_{7}, \mathrm{C}_{8}, \mathrm{C}_{9}, \mathrm{C}_{10}, \mathrm{C}_{20}$ - Two $500-\mu \mathrm{f}$. 3000 -volt disk ceramies in parallel if screen voltage from platedropping resistor; 500-wolt disk ceramic for 350-400-volt sereen supply.
$\mathrm{C}_{10}-1.4-10.6 \mu \mu \mathrm{f}, \mathrm{l}, \mathrm{kv}$. (Jolimson N .250).
$\mathrm{C}_{11}, \mathrm{C}_{14}, \mathrm{C}_{15}, \mathrm{C}_{16}, \mathrm{C}_{17}, \mathrm{C}_{18}, \mathrm{C}_{28}$ - T 'V doorknoh eramic.
C_{12} - Johnson 1501)90,9000-volt rating.
C13-Johnsen 500:20, 2000 -volt rating.
C27-See text.
$\mathrm{I}_{1}, \mathrm{~L}_{2}-1$ turns No. 14 on 1-watt 100 -ohne resistor.
I.3-See text.
1.4 - $13.5-\mu \mathrm{h}$. rotary inductor (Johnson 226-3).

Ls-See text.
Blower - Newark Electric $28 \mathrm{F996}$ motor, 28 F 997 fan; or Allied Radio $22 \mathrm{P}^{2} 02$ motor, 22 P 03 fan,
MB-40-L - National multiband tuner (see text).

RFC2-National li-125A.
V,h.f. filter chokes - Thh. (Ohmite $7,-50$).
S_{1} - Toryle.
s_{2} - Ceramic rotary.
' ${ }^{\prime}$ - Filament transformer: 5 volts, 12 amp. (Merit 1•29:12).
capbeitors. $51 / 4$ inches in from the edges and 9 inches from the top. An 8×3-inch opening is cut, with the bottom edge $+3 / 4$ inches from the bottom of the pancl. Three $3 / 4$-inch holes are spaced $21 / 2$ inches from the bottom of the chassis, for the roarseroupling, grid-tuning and the filamentswiteh controls. The tube sorkets are mounted 2 inches behind the opening with the grid terminals to the rear. The $\mathrm{MI} 13-40-\mathrm{I}$ is nounted on $3 / 4$-inch rone stand-offs directly behind the tube sockets. The shaft is comerted through a Johnson insulated coupling and National right-angle drive to the front control knob. A $3 / 4$-inch cone stand-off is phaced between the grid terminals as a tie point for the parasitic chokes and grid-tuner lead. The filament transformer and a cooling fan are placed in a line behind the grid tank, and a 3 -inch hole is cut in the rear drop of the chassis behind the fin and covered with copper screen. S_{2} and C_{14}, Cis and C_{16} are mounted on a $4 \times+\times+$-inch l-shaped shield phaced in the rear left-hand corner in the hottom view. The switch shat is comereted to the front control knol, with a length of $1 / 4-$ ineh

Fif, o-89 - "Top , ie" stowine the ehassis layout. 'Hho two meter-shiehl hoxes are sere al the hottom of the photomeraph withthe comiter-dial merdamism betwern them. (:12 is to the right. the rotars inductor in the cemer, and tia in upper laft. Gin is in fromt of C_{13} and just th the left of the retars inductor. The tope of the two tules ran
 ter of the chaseis. 'Ihe whater.f. chobre, RFCe, is loetwerm the theses and slightly to the ratr. hideden lay the from end plate of the rotary-coil frame.
rod. A (i) $\times 2 \times 4$-inelh shim is plamed in the opposite eromer sumounding the line-filter eom-
 ate mounted batck to batek 63 supple tie puint:
 in the power leads.

The : whe sorkels should be wired ratefully. using as short hate as presthe. The fitament trominals: are emomedent hagether with strips
 other plated in a wertaral position. The filament

 inis underechasesis latant. The whar sochots are tol remtor showing tha melood of commer tion and by-passinge. The grid tamh is in the renter of the chassis with its drive shaft minge to the rizht. 'The tilament transformor is lowtom centor, and the combing fan just below it. St the lower left is siz and its asesciated capactors and slaidla homsing. It the lower right is the shiedd drmtatining all incom-ing-lead filters.
cally no lead length. The four soren tommads will be in a line and can be vers conveniently connected together with atrip of copper. Four by-pass capacitors are used on the screen strip, one at each terminal, and the soreen-voltage lead is soldered to the exact center of the strip.

All of the shielded leads are run in the fold of the chassis, and are held down with solder lugs. A $3 / 4$-inch remanio fered-through is planed in the lower left-hand comer of the chassis: (bottom view) to bring the output lead through the chassis to \mathscr{S}_{2} and the output romertor. I short piere of coax is run from the input connector to the link on the MB3-40-1. A $3 /$-inch ceramic feed-through is placed near the neutralizing catpacitor to bring a lead through to (is and the center tap on the M13-40-L.

Adjustment

Fig. 6-91 is the eircuit of a suitable power supply.
Before any high voltages are applied, the amplifier should be neutralized. This ran bro done by using a fixed resistor of approximately. 7000 ohms for grid bias, and r,f, applied to the grids with the grid tank tuncd to resontance. The input should be adjusted to give 20 ma . of grid current. A gried-dip mater or indicating wavemeter is couphed to the rotary coil, and the cireuit tuned to resonathere. This should not be hard to find beratuse there will lee r.f. in the output cireuit at resonance, ('bo should now be adjusted to bring this r.f. to a minimum. If a minimum cannot in
reathed in the normal range of C_{10}, the value of C_{1} should be rhanged to bring neutrabization midway in the range of C_{10}. At this petint, a dummy load can be connereded to the output, and reduced plate and sereen voltages applied. A cheek should be made now for parasitie oscillattions. If any are found, they will probably be in the v.h.f. range, and adjustment of L_{3} should get rid of them.
When it is reasonably sure that the rig is stabilized, full voltage can be applied and the final tests carriod out.
The $4-125$ As should be run at about 2500 volts for the best average tank () for I-kw, input. The input caparitor and coil will have to he set very close to maximum for 80 . The capacitor should be set close to minimum for 14 Me. and higher, loor 7 Me. it should be set at approximately half (atpacitatnce. In each of these cases, the eoil should be adjusted to resonate after the capacitor has been set. The output rapacitance then should be adjusted to give proper loading, mantaining resonance with the coil. The input capateitor may also be used to reëstablish resonamer as the output calparitance is changed, provided its setting does not depart abperemiably from the one suggested above, A wavemoter should low used to make sure that the rimuit is tuned up on the desired bemed. An antemnat tuning unit of some sort is strongly reeommended with this amplifier unloss the fine imperdance is very low.
(Originally doseriled in (2st for .Lugust, l95t.)

Fig. $0-91$ - Cireuit diagram of a power-supply system for the highpower tetrode amplifier.
(:1-8- $\mu \mathrm{fd}$, 450 -volt electrolytic.
(:2, $\mathrm{C}_{3}-4-\mu \mathrm{fl} .600$ - volt electrolyis.
($4-2-\mu \mathrm{fd}$, oil-fillet, voltage rating same as transformer r.m.s.
C $i_{5}-4-\mu \mathrm{fd}$. oil-filled, voltage rating same as transformer r.ins.
$1 \mathrm{R}_{1}-2.5,090$ ohme, 25 wats.
$1 R_{2}-25,000$ ohms, 50 watts.
$K_{3}-50,000$ ohme, 50 watts.
$\mathrm{R}_{4}, \mathrm{R}_{5}-25,000$ ohms, 100 watts.
1.1 - 30-h. 50-ma. filter choke.
$1.2-5 / 25-h .150-\mathrm{ma}$, swinging.

1. 3 - 20-h. 150-ma. smoothing.
$14-5 / 25-\mathrm{h} .500-\mathrm{ma}$. swinging.
1.5 - 20-h. 500 -ma. smoothing.
I_{1} - 115-volt lamp of suitable size to reduce voltage for tune-up.
S_{1}-20-amp. s.p.s.t, switch.
$\mathrm{sin}_{2}, \mathrm{~s}_{3}, \mathrm{~s}_{4}-15$-amp, s.p,sit. switch.
\dot{S}_{5} - Ceramie s.p.s.t. rotary switeh.
T_{1}, ' I_{3} - Filament transformer: 5 volts, 3 amp.
\mathbf{T}_{2} - Plate iransformer: 400 volts $1 . \mathrm{c}, 100 \mathrm{ma}$.
'l'4 - lïlament transformer: 2.3 volts, 10 amp., 10,000 -volt insulation.
' l 's-llate transformer: 2500 volts d.e., 500 ma .

VR-VR-150-30.

S_{1} turns on all filaments and the bias supply, . S_{2} turns on the screen supply and \dot{S}_{3} the high-voltage supply. With \dot{H}_{4} open, a 115 -volt lamp is inserted in series with the high-voltage-transformer primary to lower plate voltage for adjustment. Opening is likewise reduces sereen voltage. With all switches exeept \dot{S}_{2} alosed, S_{2}
becomes the main control switch. The tap on R_{3} should be adjusted to give the desired sereen voltage under operating eondtions with S.5 closed. Bias is ohtained from the parallel-conneeted $5 \% 3$ half-wave rectifier. 'The tap on k_{1} should be adjusted until the VR tube just ignites without excitation to the amplifier.

A Remotely-Tuned VFO

The VFO shown in Figs, (i-92 through (i-96 is a series-tuned Colpitts (Clapp) cireuit built in two sections. The large compartment contains only the tuned eirenit (Fig. (i-uB. A), while the other contans the $576: 3$ tube and at pair of (0132 voltage regulators (Fig. 6-9313). The two are connected with a piece of double-conductor eotaial able that may be of ay length up to 10 fere on so. The advatutuges of such it system abe, lirst, that the tuned direuit is well removed firom hatat generating equipment, including the oseillator tube itself, and seromd, that it forms at emo venient means of remote fremueney control. White this arrangement was desigued primatily as a driver for the frequencr-multiplier unit deseribed later in this whopter, in many cases the existing arystal-oswillator tube of a transmitter can be substituted for the serond unit mentioned,
 revstal-oseillator circuit is in use in the tramsmitter, it should be possible to feed the tumed eireuit direetly through the 2 -comduetor cable to grid, eathode and ground without modifying the crostal circuit in any way. R(i-22/U is reommended for the connereting (at)le.

The oseillator operates in the $3.5-$ Me. region and the bandspread tuning system, consisting of C_{1}, C_{2} and C_{3}, is designed to cover the desifed frequency ranges in three steps, when C_{1} and ''2 $_{2}$ are altered as deseribed under Fig. $(6-9) 3$, With one setting of C_{2}, the tuning ceupacitor C_{1} spreads the range of 3500 to 3750 ke. out over 95 per cent of the National ACN dial. Sinee this fundemental range covers the most-used 80 -meter ew. frequencies, and harmonies of this range cover at! of the higher-frequency hands, exerpting only
the 11 -meter band, this range will usually suffice for 90 per cent of all operating. By shifting the setting of C_{2}, the range of 3750 to 4000 kc is spreal out over about 75 per cent of the dial. 'The 11 -moter ham is provided for bey athird setting of ('s.

Tuned-Circuit Unit

The tumed eireuit is housed in a $5 \times 6 \times 9$-inch aluminam box, An enclosure of this size is needed not only to provide mounting for ath adequate dial, but also to permit :bacing the enoll well awaty from the sides of the box so that its (8 will not be atristically redured bey the shiolding in its fiede.

The dial is first mounted centrally on one of the $5 \times$!-inch sides of the box. The tuning eapacitor, (1 , is then eoupled to the dial and the mounting step at the rear of the raparitor is supported agatinst the bottom of the box with a heavy metal spareer cut to fit. The band-set eilpacitor, Ca, is shaft-hole mounted 1 inch in from the left side and bottom of the box. This necessitates drilling the shatit hole through the edge of the dial frame. (3 is soldered directly arcoss the terminals of (\because. The kuoh is : National IIRS-5.

The 13 \& $I I$ coil is removed from its mounting by first drilling out the rivets in the phag-in base, loaving tho metal angle pieces at each end attawhod to the coil, and unsoldering the leads from the pins. The link winding is carefully removed by suipping the turns and prying the spabeing blocks loose with a knife. One turn is removed from the eoil itself. The coil is then mounted on Nitional (is-l pillar insulators so that it will be centrally located in the box in both directions.

The three-contat jacek for the remote-tuning

 nector is at the end opposite the eable comnertions.

in one of the eovers, below the shalf lavel, and the power eomeretor is mounted at one emol and the jark for the ernex rableat theother. 'Theradiusiable resistor is mounted on top of the shelf, alongside the tubes, on the same siale of the box as the keving and output jarks. This makes it possible to remove the tubes and adjust the slider her removing the blank cover of the box. The resistor is supproted he-
tworen two small angle pieres joined with at piere of threaded rod (or a long if: 32 serew) through the resistor form.

Sll wiring, with the exeeption of the commestions to the keving and ontput jateks and the cable eommector, citn be done before the shat is phaced in the box. This includes comeretions to the power eomector which mounts fron the inside. In the bottom view of Fig. $6-96$, the phate choke, $R F^{\prime}$ (2 is to the lower laft, soldered between Pin of ol the ätoiz socket and Pin 5 of the socket of the first 0132 regulater. The cathothe choke,
 of the antias sorket, while the other end is left free entil the rover blate comruing the key jack is beady to be put in plater. A $0.001-\mu \mathrm{f}$, cerpacitor is soldered dieretly armas. /3. Leals of proper length are made for the jateks and cable eomeretor, and therse combertions atm be made after the shelf has been put in parer and just before the eover is put on. Chere should be used in plaring the tubes in Their sorkets. sine there is little height to spare. If neresesury, the tips of the tubes ram be rum up theough the vontilating holes in the topen the box forblow the pins for wear the somets.

Power Supply

Ans pown supply delivering hewern 300 and Holl volls at 50 mat. or more maty be used to operate this VPO.
cable is set in the back of the box, and ('a and ("5 sure soldered to its terminals.

Tube Unit

The photographes show the exsent ial detatils of the asembly of the tube unit. "The endosure is it standard $2 \times 2 \times 4$-ind almmimum box. The threer tubes are mounted on it shelf spared l!? inches from the top of the box. This dimension is eritieal if the tubes are tobe removerl withen difficulty. The keving ind output jateks are mounted

Fig. 6.93 - Cirenit of the remotelyetuned NFO .
All caparitances less than 0.00$) \mu_{\mu}$. are in $\mu \mu$. III $0.001-\mu$ C. "apacitors are disk ceramie. 11 - Mira, S Silser mida. All resistors are $\frac{2}{2}$ wall unlese wherwise specified.
Ci- Ilammarlund IIF-I.., rear stalor phate removed, rear rotor plate bent: see tevt.
(i2- Ilammarlund IIF'-3.3. last stator and last (wo rotor plates removed.
R_{1} - Adjustable slider.
 inches diam. (13 \& W JELA-80), I turn and link remored).
 Ja - Key jack - phone inpus jack.
J. - Insulated phome-tip jack.
$\mathrm{J}_{\mathrm{i}}-1$-emiract male commetor (C.J 1 - $30 \mathrm{~A} \cdot \mathrm{C} .1 \mathrm{~B}$).
RFC1, RF'C - National R.o.
 with Amphemol gl-MPM. 30 male rommedor of fit J_{1} and J_{2}.

Adjustment

Adjustment of the frequeney range for maximum bandspread is quite simple. Set (${ }_{1}$ to a dial reading of 5 . Then adjust C_{2} until the oseillator signal is heard on the receiver at $3 \overline{5} 0$) ke. Set the receiver to 3750 kc . and adjust C_{1} until the signal is heard. If this occurs with the dial set at less than 100, carefully bend the reamost rotor plate of C_{1} away from the adjacent stator phate, making sure that the plates do not touch and short the capacitor in any position of the rotor. Turn Cl again to a dial reading of $\overline{5}$, reset ('2 for 350 on$) \mathrm{kr}$., and check again for the point where (' 1 tunes to 3750 kc . By proper adjustment of the rotor plate on C_{1}, the $3500-\mathrm{to}-3750-\mathrm{ke}$. range can be made to cover the entire dial, or as much of it as desired.

Phone Band

After this initial range has been set, tune the receiver to 3875 ke . Set (${ }_{1}$ to midseale and adjust. C_{2} until the VFO signal is heard. Then the range of 3750 to $f(H)$ ke, should be approximately centtered on the dial with a coverage of about 75 divisions. The range can be shifted one waty or the other hy simply shifting C_{2} slightly.

11-Meter Band

If it is desired to center the 11-meter bind on the dial, set C_{1} to midscale, set the receiver to $3338{ }^{7} \mathrm{ke}$. and adjust C_{2} until the VFO is heard. All three settings of C_{2} should be plainly marked so that they can be returned to when desired.

The cathode current may vary from about 28 ma. with both C_{1} and C_{2} set at maximum capacitance to $: 37 \mathrm{ma}$. with both at minimum.

In using the VFO, the tube unit should be placed rlose to the stage to be driven and fastened serurely to the chassis. A short lead should be used to connert the output terminal to the grid of the stage to be driven. If the driven stige has no geid capacitor, a 100)- $\mu \mu \mathrm{fd}$, mica eapacitor shoukd he connected between the output terminal and the grid of the driven stage. If more tham adequate drive is obtained, the sereen of the osrillator tube ein be connected to the junction between the two VR tubes, rather than to the end of the adjustable resistor as shown in Fig. (i-9:3). This unit is not a power device, and adequate gain in the way of a errstat-oscillator tube or other butfer amplifier should be provided.
(Originally described in QST', Jinn. 195:3.)

Fig. 0.96 - Boltom view of the tube-unit shelf. $R F C_{1}$ is above, $R F C_{2}$ below. A $0.001-\mu$ f. capacitor is soldered in J_{3} on the rover plate. The two leads going to the left solder to the cable connector. The one to the left above goes to J_{4}, the lead to the right In J_{3}.

Power Supplies

Fssentially pure direct-current plate supply is required to prevent serious hum in the output of receivers, speceh amplifiers, modulators and transmitters. In the case of transmitters, d.c. plate supply is also dictated by government regulation.
The filaments of tubes in a transmitter or modulator usually may be operated from a.e However, the filament power for tubes in a receiver (excepting power audio tuhes), or those in a speceh amplifier may be a.e. only if the tubes are of the indi-rectly-heated-cathode type, if hum is to be avoided.

Wherever commercial a.c. lines are available, high-voltage d.e. plate supply is most ehoaply and conveniontly obtained by the use of a transformer-rertifier-filter system. An example of such a system is shown in Fig. $7-1$.

In this circuit, the plate transformer, T_{1}, steps up the a.c. line voltage to the required high voltage. The a.c. is changed to pulsating d.e. by the rectifiers, V_{1} and V_{2}. Pulsations in the d.e. appearing at the output of the rectifier (points A and B) are smoothed out by the filter composed of L_{1} and $O_{1} . R_{1}$ is a bleeder resistor. Its chiof function is to discharge (C_{1}, as a safety measure, after the supply is turned off. By proper seleetion of value, \dot{R}_{1}
also helps to minimize ehanges in output voltage with ehanges in the amount of current drawn from the supply. T_{2} is a step-down transformer to provide filament voltage for the rectifier tubes. It inust have sufficient insulation between the

filament winding and the eore and primary winding to withstand the peak value of the reetified voltage. T_{3} is a similar transformer to supply the filaments or heaters of the tubes in the equipment operating from the supply. Frequently, these three transformers are combined in a single unit having a single 115 -volt primary winding and the required three secondary windings on one core.

Rectifier Circuits

Half-Wave Rectifier

Fig. $7-2$ shows three rectifier circuits rovering most of the common applirations in amateur equipment. Fig. 7-2A is the circuit of a half-wave rectifier. During that half of the a.c. eycle when the reetifier plate is positive - with respect to the cathode (or filament), current will flow through the rectifier and lowl. But during the other hatf of the evele, when the plate is negative with respect to the cathode, no curront ean flow. The shape of the output wave is shown in (A) at the right. It shows that the current always flows in the same direction but that the How of eurrent is not continuous and is pulsating in amplitude.

The average output voltage - the voltage read by the usual d.c. voltmeter - with this circuit is 0.45 times the r.m.s. value of the a.e. voltage delivered by the transformer secondary. Because the frequency of the pulses in the output wave is relatively low (one pulsation per cycle), considerable filtering is recuired to
provide adequately smooth d.e. output, and for this reason this circuit is usually limited to applications where the current involved is small, such as in supplies for eathode-ray tubes and for protective bias in a transmitter.

Another disadvantage of the half-wave rectifier circuit is that the transformer must, have a considerably higher primary volt-ampere rating (approximately 10 per cent greater), for the same d.e. power output, than in other rectifier cireuits.

Full-Wave Center-Tap Rectifier

The most universally-used reetifier eircuit is shown in Fig. 7-213. Being essentially an arringement in whieh the outputs of two halfwave rectifiers are combined, it makes use of both halves of the ace. cuele. A transformer with a center-tapped secondary is required with the cireuit. When the plate of V_{1} is positive, eurrent flows through the load to the center tap. Current cannot flow through V_{2} because at this
instant its mathole (or filament) is positive in respect to its plate. When the polarity reverses, l_{2} comducts and current again flows through the load to the conter-tap, this: time through lo.

The average output voltage is $0 . t 5$ times the rem.s. voltage of the entire trans-former-seeondary, or 0.! times the voltage arouss helf of the transformer secondary. For the same total soeondary voltage, the average output voltage is the same as that delivered with a half-wave rectificr. However, as dan be seen from the sketches of the output waveform in (13) to the right, the fresurney of the output pulses is twice that of the hatl-wave rectifier. Therotore much less filtering is required. Since the rectifiers work alternately, each hambles half of the avorage load eurrent. Therefore the load-arrent rating of each rectifier mod be only half the total load current drewn from the supply.

Two separate transformers, with their primaties conmerted in paralleb and secondarides connected in series (with the proper polarity may be used in this cireuit. However, if this substitution is made, the primary volt-ampere rating must be redued to about to per cent less than twier the rating of one transformer.

Full-Wave Bridge Rectifier

Another full-wave rectifier rircuit is shown in Fig. $\overline{-}-2(\%$. In this arrangement, two reetifiers operate in series on awh hatf of the cercle one reetifier lemen in the lead to the loat, the other being in the return lead. Over that portion of the egele when the upper exad of the transformer secondary is positive with respert to the other end, current flows through V_{1}, through the load and thence through Izs. Daring this period current canmot flow through reetifier l° b becamse its plate is megalive with respere to its cathode (or filament). ()ver the other hatle of the eyele. eurrent flows through V_{3}, through the load and thenere though $\mathrm{l}_{\text {t. }}$. Three filament transionmers

Fig. 7.2-Fumdamental vacumotule rectifier cirenits. A- Half-wave. 13 - Fill-wave \mathbb{C} - Full-wave bridge. A.e-input and pulating-d,e ontpot wave forms are shown at the right. Ontput-voltage values indicated do not include reetifier ilrops. Gher types of rectifiers may lee substituted.
are needed - ond for l^{\prime}, and V^{2} and one each for V^{2} and V_{4}. The output waveshape (C), to the right, is the same as that from the simple center-tap, rectifier rircuit. The output voltange ohtanable with this rireuit is 0.9 times the rim.s. voltage delivered by the transformer sorondary. For the same total transformersecondary voltage, the average output voltaige when using the bridge rectifier will be twice that obtainable with the conter-tap rectifior ciruit. However, when comparing reetifier cirruits for use with the same lionsformer, it should be remembered that the power which a given transiomer will handle remains the same regardless of the reetifier cireuit used. If the output voltage is doubled by substituting the londere cirevit for the center-tap rectifier eireuit, only half the rated load current ran be takem from the tramsormer without exereding its normal rating. Fiach rectifier in a bridge rireuit should have a minimum load-curvent rating of one half the total load current to be drawn from the supply.

Rectifiers

Cold-Cathode Rectifiers

Tube rectifiers fiall into three general classifications as to type. The cold-wathote type is a diode which reguires no cat hode heating. Certain types will handle up to 350 mat at 200 volts d.e. output. The internal drop in most types lies hetween (60 and 90 volts. Rectifiers of this kind are
produced in both half-wave (single-dionte) and full-wave (double-diode) types.

High-Vacuum Rectifiers

High-vacuum redifiers depend entirely upon the thermionic emission from a heated filament and are characterized by a relatively high
internal resistance. For this reason, their application usually is limited to low power, although there are a few types designed for medium and high power in cases where the relatively high internal voltage drop may be tolerated. This high internal resistance makes them less susceptible to damage from temporary overload and they are free from the bothersome chectrical moise sometimes associated with other tepes of rertifiers.

Some rectifiers of the high-varoum full-wave type in the so-called recriver-tube class will handle up to 250 ma. at $f(0)$ to 500 volts d.c. output. Those in the higher-power class can be used to handle up to 500 mat. at 2000 volts d.e. in fullwave cireuits. Nost low-power high-vacuum tertificrs are produced in the full-wave tope while those for greater power are invariably of the halfwave type two tubes heing rectuived for a fullwave rectifier cirenit. A few of the lower-voltage types have indirertly hataded rathodes, but are limited in heater-to-rathode voltage rating.

Mercury-Vapor Rectifiers

In mercury-vapor rectifiers the internal resistance is reduced hy the introduction of a small amount of mercury which vaporizes under the heat of the filament, the vapor ionizing upon the appliation of voltage. The voltage drop through a rectifier of this type is practically constant at approximately 15 volts regardless of the load current. For high power they have the ardvantage of rheapness. Recetifiers of this typer, however, have a tendeney toward a type of oseillation which produces noise in near-ly recoivers, somotimes diffieult to climinate. R.f. filtering in the primary circuit and at the rectifier plates as woll as shielding may be reguired. As with high-vacuum rectifiers, full-wave types are available in the lower-power ratings only. For higher power, two tubes are required in a full-wave cirenit.

Selenium Rectifiers

Solenium rectifiess are available which make it possible to design a power supply capable of delivering up to 400 or 450 volts, 200 ma. These units have the advantages of compactness, low internal voltage drop (about 5 volts), and the fact that no filament transformer is needed. Ilowever, to limit the charging current with capacitive input, a resistance of 25 to 100 ohms should be used in series with the rectificr. They may he sub)stituted in any of the basie circuits shown in Fig. $7-2$, the terminal marked "+" or "cathode" corresponding to the filament in these cireuits. Cireuits in which the selenium rectifier is particularly adaptable are shown later in Figs. 7-22 through $7-24$. Since they develop little heat if operated within their ratings, they are esperially suitable for use in equipment requiring minimum temperature variation. Typieal ratings are listed at the end of this chapter.

Rectifier Ratings

Vacuum-tube reatifiers are subject to limitations as to breakdown voltage and current-han-
dling eapability. Some typer are rated in terms of the maximum r.m.s. voltage which should be applied to the rectifier pate. This is sometimes dependent on whether a choke- or capacitiveinput filter is used. ()thers, particularly mereuryvapor types, are rated acoording to maximum invorse peak voltage - the pak voltage between plate and cathode while the tube is not condurting. In the cirruits of Fig. $7-2$, the inverse peak voltage arross carh rectifier is 1 . 4 times the r.m.s. value of the voltage delivered by the entire transformer secondary.

All rectifior tubes are rated also ats to maximum d.c. load current and many, in auldition, carry prak-rurrent matings, all of which should be carefully observed to assure nomal tule life, With a ceapacitive-imput filter, the peak enrent may run several times the d.c., eurrent, while with a chokeinput filter the peak value maty not rum more than a few per cent above the d.c. load current.

Operation of Rectifiers

In operating rectifiers requiring filament or eathote heating, care should be taken to provide the eorrect filament voltage at the tuine terminals. Low filament voltage can rause exressive voltage drop in high-vacoum reetifiers and a considerable reduction in the inverse peak-voltage rating of a morrurp-vapor tube. Filament commedions to the reetifier socket should be firmly soldered, partieularly in the case of the larger mercury-vapor tabes whose filaments operate at low roltage and high current. The sorket should be sodected with care, not only as to contart surface but also as to insulation, sine the filament usually is at full output voltage to ground, Bakelite sockets will serve at voltages up to 500 or so, but reramic sookets, well spaced from the chassis, always should be used at the higher voltares. Sperial filament transformers with high-voltage insulation between primary and seromelary are required for rectifiers operating at potentials in excess of 1000 volts inverse peak.

The rectifice tubss should be placed in the equipment with adequate spare surromoling them

Fig. 7-3-Connerting mornury-vapor rectifiers in parallel for heavier carrents. R_{1} and R_{2} should have the same value, between 50 and 100 ohms, and corresponding filament terminals should lo eonnerted together.
to provide for ventilation. When mercury-vapor tubes are first phaced in sorvire. and gach time after the mercury has been disturbed, as by removal lirom the sorket to a horizontal position, they should be rum with filament voltage only for 30 minutes before applying high voltage. Alter
that, a delay of 30 seronds is recommended each time the filament is turned on.

Rectifiers may be comected in parallel for current higher than the rated current of a single unit. This includes the use of the seretions of a
double diode for this purpose. Equalizing resistors of 50 to 100 ohms should be comected in series with each plate, as shown in Fig. $7-3$, to help maintain an equal division of eurrent between the two rectifiers, with mereury-vapor tepes.

Filters

The pulsating d.e. wave from the rectifiers shown in Fig. 7-2 are not sufficiently constant in amplitude to prevent hum corresponding to the pulsations. Filters consisting of capacitances and inductances are required between the reetifier and the load to smooth out the pulsations to an essemtially constant d.e. voltage. Also, upon the design of the filter depends to a large extent the moltrge. regulation of the power supply and the maximum load current that can be drawn from the supply without exceeding the peak-voltage rating of the rectifier.

Power-supply filters fall into two classifications, depending upon whether the first filter element following the rectifier is a caparitor or a choke. Capacitive-input filters are charaterized by relatively high outpat voltage in respert to the tramsformer voltage, but poor voltage regulation. ('hoke-imput filter: result in much better regulation, when properly designed, but the output voltage is less than would be obtamed with : capacitive-input filter from the sime transformer.

Voltage Regulation

The output voltage of a power supply always derreases as more current is drawn, not only because of increased voltage drops in the transformer, filter chokes and the rectifier (if highvacuum rectifiers are used) but also because the output voltage at light loads tends to soar to the peak value of the transformer voltage as a result of charging the first capacitor. By proper filter design the latter effect can be eliminated. The change in output voltage with load is called voltage regulation and is expressed as a pereontage.

$$
\begin{aligned}
& \text { Per cent regulation }=\frac{100\left(E_{1}-L_{2}\right)}{E_{2}} \\
& \text { Example: No-load voltage }=E_{1}=1.500 \text { volts. } \\
& \text { Full-load voltage }=E_{2}=1230 \text { volts. } \\
& \text { Percentaye regulation }=\frac{100(1.550-1230)}{1230} \\
& =\frac{32,000}{1230}=26!14 \cdot \mathrm{rentr} .
\end{aligned}
$$

Regulation may be as grat as 100% or more with a caparitive-input filter, but by proper design com be held to 20% or less with a choke-input filter.

Good regulation is desirable if the load current varies during operation, as in a keyed stage or a (lass B modulator, hecause a large change in voltage may increase the tendency toward key clicks in the former case or distortion in the latter. On the other hand, a steady load, such as is represented by a receiver, speech amplifier or unkeyed stages in a transmitter, does not require good regulation so long as the proper voltage is ohtained under load conditions. Another eon-
sideration that makes grool voltage regulation desirable is that the filter capacitors must have a voltage rating safe for the highest value to which the voltage will soar when the extermal load is removed.

When essentially constant voltage, regardless of current variation is required (for stabilizing an oscillator, for example), special voltage-regulating eircuits doseribed rlsewhere in this chapter are used.

Load Resistance

In discussing the performance of power-supply filters, it is convenient to express the loud connected to the output terminals of the supply in terms of resistance. The load resistance is equal to the output voltage divided by the total current drawn, including the current drawn by the bleoder resistor.

Input Resistance

The sum of the transformer-winding resistanee and the rectifier resistance is called the input resistance.

Bleeder

A bleder resistor is a resistance connected across the output teminals of the power supply (see Fig. $\mathbf{7 - 1}$). Its functions are to discharge the filter capacitors as a safety measure when the power is turned off and to improve voltage regulation by providing a minimum load resistance. When voltage regulation is not of importance, the resistanee may be as high as l(0) ohms per volt, The resistance value to he used for voltageregulating purposes is discussed in later seetions. From the consideration of safety, the power rating of the resistor should be as conservative as possible, since a burned-out bleeder resistor is more dangerous than none at all!

Ripple Frequency and Voltage

The pulsations in the output of the rectifier can be considered to be the resultant of an alternating current superimposed upon a steady direct current. From this viewpoint, the filter maty be considered to consist of shmenting capateitors which short-circuit the a.c. eomponent while not interfering with the flow of the d.c. component, and sories chokes which pass d.e. reatily but which imperde the flow of the a.c. component.

The alternating component is called the ripple. The effectiveness of the filter can be expressed in troms of per cent ripple, which is the ratio of the r.m.s. vaiue of the ripple to the d.c. value in terms of pereantage. For c.w. tramsmitters, the output ripple from the power supply should not ex-
reed 5 per cent. The ripple in the output of supplies for voice transmitters should not exceed 1 per cent. VFOs, high-gain speech amplifiers, and receivers may require a reduction in ripple to as little as 0.01 pereent or less.

Ripple frequency is the freruency of the pulsations in the rectifier output wave - the number of pulsations per scomel. The frequeney of the ripple with half-wave rectifiers is the same as the frequencer of the line supply - 60 eycles with 60cycle supply. Since the output pulses are doubled with a full-wave rectifier, the ripple frequeney is doubled - to 120 eveles with 60 -evele supply:
The amount of filtering (values of inductance and (apacitance) required to give adequate smoothing depends upon the ripple frequency, more filtering being reduired as the ripple frequenery is lowered.

CAPACITIVE-INPUT FILTERS

C'apacitive-input filter sustems are shown in lig. 7-4. Disregarding voltage drops in the chokes, all have the same characteristies excopt

Fig. 7-4 - Capacitive-input filter cirenits. A-Simple capacitive. B - Single-section. C - Double-scetion.
in respect to ripple. Better ripple reduetion will be obtained when $L C$ sections are added, as shown in Figs. $7-4 B$ and C.

Output Voltage

To deternine the approximate d.e. voltage output when a capacitive-input filter is used, referenee should be malle to the graph of Fig. 7-i.

[^0]
lig. 7-5 - Chart showing approximate ratio of d.c. output voltage across filter input capacitor to transformer r.m.s. seomdary voltage for different load and input resistances.

From Fig. $\overline{7}-\overline{5}$, for a load resistance of 2000 ohms and an input resistance of 200 ohms, the d.c. output voltage is given as slightly over 1 times the transformer r.m.s. voltage, or about 350 volts.

Regulation

If a bleoder resistance of 50,000 ohms is used, the d.c. output voltage, as shown in Fig. 7 -5, will rise to about 1.35 times the transformer r.m.s. value, or about 470 volts, when the external load is removed. For greater accuracy, the voltage drops through the input resistance and the resistance of the chokes should be subtrated from the values determined above. For best regulation with a capacitive-input filter, the bleeder resistance should be as low as possible without exceeding the transformer, rectifier or choke ratings when the external load is connected.

Maximum Rectifier Current

The maximum load current that can be drawn from a supply with a capacitive-inpot without exceeding the peak-current rating of the rectifier may be estimated from the graph of Fig. 7-6. Itsing values from the preceding example, the ratio of peak rectifier current to d.c. load current for 2000 ohms, as shown in Fig. 7-6 is 3. Therefore, the maximum load current that can be drawn without exceeding the rectifier rating is $1 / 3$ the peak rating of the rectifier. For a load current of 175 ma., as above, the rectifier peak current rating should be at least $3 \times 175=525 \mathrm{ma}$.

With bleeder current only, Fig. 7-6 shows that

Fig. 7-6-Craph showing the redationship herween the d.e. load eurrent and the ereotifier poak plate current with raparitior inpat for various values of load and input resistance.
the ratio will inerease to owor 8. But siner the bleoder draws loss than 10 mat. d.c., the rectifier peak current will be only 90 mat or lass.

Ripple Filtering

The approximate ripple preentage after the simple caparitive filter of Fig. $\overline{-}-4.1$ may be determined from Fig. 7-7. With a load resistance of 2000 ohms, for inst:ume, the ripple will be approximatrly 10% with :un $8-\mu \mathrm{fd}$. cupuritom or

Fif. $\mathbf{7 - 7}$ - Showing appoximate 120-cy+le mroentage ripple arross filer input capacior for yarions loads.
tances, the ripple will be in inverse proportion to the capacitance, e.g., 5% with $16 \mu \mathrm{fd} ., 40 \%$ with $2 \mu \mathrm{fd}$., etc.

The ripple can be reduced further by the addition of $L C$ sections as shown in Figs. $7-4 \mathrm{~B}$ and C . IFig. 7-8 shows the factor by which the ripple from any preceding section is redueed depending on the product of the capacitence and inductance added. For instance, if a section composed of a choke of 5 hys. and a capacitor of 4μ id. were to be added to the simple espaceitor of Fig. $7-4 \mathrm{~A}$, the product is $4 \times i=20$. Fig. $7-8$ shows that the original ripple (10 /, as abow with 8μ fll for example) will be redued by a factor of about 0.08. Therefore the ripple percentage after the new sestion will te

Fig. 7.8 - Ripple-reiluction factor for varions values of 1. and (: in filter section. Output ripple $=$ input ripple \times ripple factor.
 tion is added to the filter, its reduction factor from lig. $7-8$ will be applied to the 0.8% from the preceding section, rete.

CHOKE-INPUT FILTERS

Much beeter voltage regulation results when a chokr-input filter, as shown in Fig. 7-9, is used. ('hoke iuput also permits better utilization of the rectifior, since a higher lowd current usually can be drawn without exceeding the peak current rating of the reetifier.
If the first choke has a value equal to or greater that

$$
L_{\text {(hy.) }}=\frac{\text { Load rexistance (ohms) }}{1000}
$$

the output voltage will not soar above the average value of the rectified wave at the input of the choke when the losd current is small. This is in contrast to the performane of the caparitiveiuput filter where the output voltage tends to soar toward the peak value at light current loads. This value of induetaner is known as the critical value.

If the first choke has a value equal to or greater thitn

$$
\left.L_{(\mathrm{ln} .0}\right)=\frac{L_{\text {and }} \text { resistaner }(\text { ohmm })}{500}
$$

the peak rectifier current will not exered the d.e. load current by more than 10 per cent when the

Fig. 7.9 - Choke-input filter rircuits. A - Single-section. B - Inoublemection.
load current is large. This is in contrast to the eaparitive-input filter where the peak reetifico current may run 2 to $\overline{5}$ times the d.e. load rurrent. This value of inductance is known as the optimum value.

Both of the above conditions will usually be satisfied for all values of load current drawn from the supply if the choke has at least the eritical value of inductance for the minimum erment load (usually the bleseder resistance only) and doess not fall below the optimum value for the greatest current load to be drawn.
surecially-designed input ehokes, catled swingmat chokes, are available. 'These chokes are usuadly rated in terms of maximum d.e. current and the range of inductance over which they are designed to "swing" with different Joad cuments. For instance, a choke may have a rating of ato 2.) hy., 250 mat 'This means that the inductance is 5 hy. with 250 ma . d.c. flowing through it.

From the formula for optimum inductance, 5 hy: is optimum for a minimum load resistance of $5 \times 500=2500$ ohms. (At 250 mat. this resistance means at mimimm voltage of $2500 \times 0.2 \% 0$ $=625$ volts - at higher voltages than (i25, at the same rurrent, the resulting load resistame will be higher. Therefore, the choke will have at least optimum indurtande for all higher voltages.)

Bleeder Resistance

Also, 25 hy is the crilical inductance for $25 \times 1000=25,000$ ohms. Therefore the bleeder resistance should be not greater than $2 \overline{5}, 00()$ ohms.

In the case of supplies for higher voltages in particular, the limitation on maximum load resistance may result in the wasting of an apprecialite portion of the transformer pown catpacity in the bleeder resistance. Two input chokes in series will permit the use of a bleder of twice the resistance, cutting the wasted current in half. Another alternative that can be used in a c.w.
triunmitter is to use a very high-resistatuen hbeder for protective purposes and only sufficient fixad bias on the tubes operating from the supply to bring the total current drawn from the supply, when the key is open, to the vallue of current that the required bleoder resistance should draw from the supply. Operating bias is brought bark up to normal by increasing the grid-loak resistance. Thus the entire current $\times \mathrm{a}-$ pacity of the supply (with the exerption of the small drain of the protective bleeder) can be used in operating the tramsmitter stages. With this sustem, it is advisable to operate the tubes at phone, rather than e.w., rating, sinee the average dissipation is increased.

Output Voltage

Provided the input-choke inductance is at least the critical value, the output voltage maty be ralculated quite closely by the following equation:

$$
E_{\mathrm{o}}=0.9 E_{\mathrm{t}}-\frac{\left(I_{\mathrm{n}}+I_{\mathrm{t}}\right)\left(R_{1}+R_{2}\right)}{1000}-E_{\mathrm{r}}
$$

where A_{0} is the output voltage; E_{t} is the r.m.s. voltage applied to the rectifier (r.m.s, voltage between eenter-tap and one end of the sermendary in the case of the ecoter-tap rectificr): $I_{\text {a }}$ and I_{1} are the beoder and load currents, resperetively, in milliamperes; R_{1} and R_{2} are the resistances of the first and seeond filter chokes; and E_{r} is the drop between reetifier plate and rathode. The various voltage drops are shown in Frig. 7-1 I. At no load I_{L} is zero, hence the no-load voltage may be calculated on the basis of bleeder current only. 'The voltage regulation may be determined from the no-load and full-load voltages using the formula previously given.

Ripple with Choke Input

The pereontage ripple output from a singlesection filter (Fig. 7-9A) may be determined to

Fig. 7-10 - Graph slowing combinations of inchuctance and capacitance that may be used to rednce ripple with a single-section choke-input filter.
a close approximation, for a ripple frequency of 120 cucles, from Fig. 7-10.

$$
\text { Eximule: } L=5 \text { h.. } r^{\prime}=4 \mu \text { fil., } L r^{\prime}=20 \text {. }
$$

l'rom lig. $7-10$, preantare ripple $=\bar{j}$ peremt.
Dxample: $L=5 \mathrm{hy}$, What capacitance is noeded to reduce the ripple to 1 per cent? Following the b-per-cent line to the right to its: intersection with the diagonal, thenere downward to the $I . C$ wale, riad $L C=100.100 / 5=$ $20 \mu \mathrm{fd}$.

In selecting values for the first filter section. the inductance of the choke should be determined by the considerations discussed previously. Then the apateitor shoud be selected that when combined with the choke inductance (minimum inductance in the ease of a swinging choke) will bring the ripple down to the desired value. If it is found impossible to bring the ripple down to the desired figure with practical values in a single section, a second soction can be added, as shown in Fig. 7-913 and the reduction factor from F'ig. 7-8 applied as diseussed under capacitive-input filters. The second choke should not be of the swinging type, but one having a more or less constant inductance with changes in current (smoothing choke).

OUTPUT CAPACITOR

If the supply is intended for use with in audio-frequency amplifier, the reactance of the last filter capacitor should be small (20 per (ent or less) compared with the other audiofrequency resistance or impedance in the circuit, usually the tube plate resistance and load resistance. On the basis of a lower a.f. limit of 100 ereless for sperch amplification, this condition usually is satisfied when the output capacitance (lant filter capacitor) of the filter hats a capacitance of 4 to $8 \mu \mathrm{fl}$., the higher value of capacitance lobing used in the case of lower tube and load resistances.

RESONANCE

Resonance effects in the series cireuit ateross the output of the rectifier which is formed by the first choke (L_{1}) and first filter capacitor $\left(C_{1}\right)$ must be avoided, since the ripple voltage would build up to large values. This not only is the opposite action to that for which the filter is intended, but also may cause excessive rectifier peak currents and abmormally-high inverse peak voltures. For full-wave rectification the ripple frequency will be 120 cyeles for a (60 -evele supply, and resonance will oceur when the produet of choke inductance in henres times capacitor capacitance in microfarads is equal to 1.77. The corresponding figure for so-cevele supply (100 -evele ripple frequener) is 2.53 , and for 25 -cycle supply (50-cyele ripule frequency) 13.5. At least twice these products of inductance and capacitance should be used to ensure against resonance effects. With a swinging choke, the misimum rated inductance of the choke should be used.

RATINGS OF FILTER COMPONENTS

Although filtor eapacitors in a rhoke-input. filter are subjected to smatler variations in ale. voltage than in the capaceitive-input filter, it is aldvisable to use aupacitors rated for the paak transformer voltage in case the bleder resistor should burn out when there is no load on the powor supply, since the voltage then will rise to the same maximum value as it would with a filter of the eapacitive-input tive.

In a capacitive-input filter, the capacitors should have a working-voltage rating at least, as high, and preforably somewhat highor, than the peak-voltage rating of the transformer. Thus, in the case of a center-tip, rectifier having a transformer delivering 550 volts each side of the center-tap, the minimum safe capatitor voltage rating will be 550×1.41 or 775 volts. An 800 -volt capacitor should be used, or preferably a 1000 -volt unit.

Filter capacitors are made in several different types. Electrolytie capacitors, which are available for peak voltages up to about 800 , combine high caparitance with small size, since the dielectric is an extremely-thin film of oxicle on aluminum foil. Capacitors of this trpe may be connered in series for higher voltages, although the filtering eapacitance will be reduced to the resultant of the two capacitances in series. If this arrangement is used, it is important that each of the capacitors be shunted with a resistor of about 100 ohms per volt of supply voltage, with a power rating adequate for the total resistor current at that voltage. These resistors may serve as all or part of the bleeder resistance (see choke-input filters). Citpacitors with highervoltage ratings usuatly are made with a diclectrie of thin paper impregnanted with oil. The working voltage of a capacitor is the voltatge that it will withstand continuously.

The input choke may be of the swinging type, the required minimum no-load and full-load inductance values being calculated as deseribed above. For the scoond choke (smoothing choke) values of 4 to 20 hemres ordinarily are used. Since chokes usually are plated in the positive leads, the negative being grounded, the windings should be insulated from the core to withstand the full d.e. output voltage of the supply and be capable of handling the recpuired load current.

Filter chokes or inductances are wound on iron cores, with a small gap in the core to prevent magnetic saturation of the fron at high currents. When the iron beomes saturated its permeability decreases, consequently the inductance also decreases. Despite the air gap, the inductance of a choke usually varies to some extent with the direet current flowing in the winding; hence it is necessary to specify the inductance at the current which the choke is intended to carry. lts inductance with little or no direct, current flowing in the winding may be considerably higher than the value when full load current is flowing.

Plate and Filament Transformers

Output Voltage

The output voltage which the plate transformer must deliver deponds wom the reefuired d.e. load voltage and the tyere of filtor cirenit.

With a choke-input filter, the reguired r.m.s. secondary voltage (each side of renter-tap) for a (enter-tap rectifire (can br calculated by the equation:

$$
E_{1}=1.1\left[E_{0}^{\prime}+\frac{I\left(R_{1}+R_{0}\right)}{1000}+E_{\mathrm{r}}\right]
$$

where E_{0} is the required d.c. output voltage, l is the lomel current (indurling berder eurrent) in milliamperes, R_{1} and R_{0} arre the d.e. pesistances of the chokes, and $L_{\mathrm{r}}^{\circ} \mathrm{i}$ is the voltage (toop in the rertifier. E_{1} is the full-load ram.s. secondary voltage; the open-cireuit voltage usually will be is to 10 per cent higher than the full-load value.

The approximate transformer output voltage repuired to give a desired d.e. output voltage with a given load with a capacitive-inpot filter system can be calculated with the holp of Fig. 7-1 1.

Example:
Reguired d.c. output volts - 500
Load current to be drawn - 100 mat.
Lowd resistance $=\frac{-60!1}{0.1}=5000$ ohans.
If the rectifier resistance is: 200 ohms. l"ige $7-5$ shows that the ratio of d.c. volts to the rederied transformur r.mas. voltane is aproximately l.i.i.

The reguired trinsformer torminal voltage under load with chokes of 200 and 300 ohnus is

$$
\begin{aligned}
E_{\mathrm{t}} & =\frac{E_{11}+I\left(\frac{R_{1}+R_{2}+R_{r}}{10\left(R_{\mathrm{r}}\right)}\right)}{1.1 \%} \\
& =\frac{500+100\left(\frac{200+300+200}{1000}\right)}{1.15} \\
& =\frac{570}{1.1 .5}=14.5 \text { volts. }
\end{aligned}
$$

Volt-Ampere Rating

The volt-ampere rating of the transformer depends upon the tripe of filter (capacitive or (hoke input). With a eapacitive-input filter the heating offect in the secondary is higher because of the high ratio of peak to average current, consequently the volt-amperes consumed by the transformor may be several times the watts delivered to the load. With a choke-input filter, provided the input ehoke has at least the critical
imeductaner, the seomdary volt-amperes can be calculated quite elosely by the equation:

$$
\text { Sec. } 1^{\circ} .1=0.00075 E I
$$

where E is the total rim.s. voltage of the secondary (between the outside ends in the case of a (onter-tapped winding) and $/$ is the d.e. output current in milliamperes (load eurrent phas bleder eurvent). The primary volt-amperes will be 10 to 20 per cent higher because of transformor losses.

Filament Supply

1:xerpt for tulnes designed for battery operatfion, the filaments or heaters of vacuum tubes used in both tramsmitters and receivers are universally operated on alternating current obtamed from the power line through a stepdown transformer delivering a secondary voltage equal to the rated voltage of the tubes used. The transformor should be designed to carry the current taken by the number of tubes which may be comented in parallel across it. The filament or heater transformer generally is conter-tapped, to provide a balanced cireuit for eliminating hum.

For medium- and high-power r.f. stages of transmitters, and for high-power audio stages, it is dosirable to use a separate filamerit tramsformer for each section of the transmitter, installed near the tube sockets. This avoids the necessity for abnormally large wires io carry

Fip. 7.11 - Diagram showing various volage drops that must be taken into consideration in determining the required transformer voltage to deliver the desired output voltage.
the total filamont current for all stages without appreciable voltage drop. Maintenance of rated filament voltage is highly important, reseceially with thoriated-filament tubes, since under- or over-voltage may reduce filament life.

Typical Power Supplies

Figs. $7-12$ and $7-1: 3$ show typical powersuphly circuits. Fig. $7-12$ is for use with thansformers commonly listed as broadeast- or telovision replacement power transiomers. In addition to the high-voltage winding for plate supply, these transformers have windings that supply filament voltages for both the rectifier
tube and the 6.3 -volt tubes in the receiver or fow-power transmitter or exiter. Transformers of this type may be obtained in ratings up to (ion) volts r.m.s. eath side of renter tap, 200 d.c. mat. output.

Fig. 7-12 shows a two-section filter with capacitor input. However, depending upon the maxi-

TABLE 7－I																
Capacitor－Input Power Supplies																
TI Rating		V_{1} Tube Type	C		L		R		Approximate F＇ull－load d．c． lolesat			Approximate Ripple \％ al			A pprox． Output rolis Bleeder Load	Useful Outpul Ma．＊
$\begin{gathered} \text { Volls } \\ \text { R.U.N. } \end{gathered}$	$\begin{aligned} & \text { Ma. } \\ & D . C . \end{aligned}$		μf.	Volts	II．	Ohms	Ohms	IVatls	A	B	C	A	B	C		
32．5	40	Wriscic	8	600	8	400	90 K	$\overline{5}$	37.5	360	34.5	2.7	0.08	0.002	4.50	36
325	40	5v4c	8	600	8	400	OOK ।	5	410	$30: 3$	37.	2.5	0.08	0.002	4.30	36
350	90	593670	8	600）	10	20：	46 K	10	370	3.50	3330	6	0.1	0.002	460	82
350	90	5V4	8	600	10	205	46 F	10	410	390	370	6	0.1	0.002	460	82
37.5	150	il 0^{+}（	8	700	8	14.	2．）	10	37.5	3.30	330	9	0.2	0.006	300	136
375	150	i） 4 ¢	8	700	8	14.5	2．）に	10	425	4110	380	4	0.2	0.006	800	1：36
400	200	5046	8	700	\checkmark	120	ここに	20	37.	3．50	3：	12	0.3	0.008	520	184
						oke－In	nput P	Power	Supp	lies						
32.5	40	5130 C	8	4.5	1.5	420	18K	10	－	240	20.5	－	0.8	0.01	265	25
325	40	5 V 4 C	8	450	15）	420	18 K	10	－－	2%	240	－－	0.8	0.01	280	25
350	90	5Y3GT	8	4.50	10	2.5	11K	10	－	210	220	－－	1.25	0.02	$2 \overline{0} 0$	68
350	90	5V．di	8	4.50	10	20：	11 K	10	－－	270	2.0	－－	1.25	0.02	280	68
375	150	51：3C＇T	8	450	12	1.50	13K	20	－	2105	345	－－	1	0．015	32.5	12.5
375	150	ぶ4	8	430	12	150	13K	20	－－	280	26	－	1	0.01 .5	340	125
400	200	5 C	8	4.80	12	140	14に	20	－	27.5	250	－	1	0.015	350	175
＊Balance of transformer current caparity consumed by bleder resistor．																

num hum level that may be allowable for a partieutar application，the last capacitor and choke maty not be neded．In some low－edurent applications，the first abatitor alone may pro－ vide adeguate filtering．Table $\overline{-}$ I shows the ap－ proximate full－load and bleder－load output voltages and ice．ripple pereentages for several representative sots of components．Voltage and ripple values are given for three points in the rircuit－P＇oint A（first（＂upacitor only used）， Point 13 （last capacitor and choke omitted），and Point C（complete two－section filter in use）． In each case，the beeder resistor R should be used arross the output．

Table $\overline{7}-1$ also shows approximate output volt－ ages and ripple pereentages for choke－imput filters （first filter catparitor omitted），for Point 13 （last （ap）atitor and choke omitted），and l＇oint C（com－ plete two－section filter，first＂etpatitor omitted）．

Actual full－loud output voltages may be some－ what lower that those shown in the table，since
the voltage drop through the resistance of the transformer secondary has not been included．

Fig． 7 －1：3 shows the conventional cireuit of a transmittor plate supply for higher powers．A full－wave reetifier circuit，hatf－wave rectifier tubes，and separate transformers for high voltage， rectifier filaments and transmitter filaments are used．The high－voltage transformers used in this cireuit are usually rated directly in terms of d．e．output voltage，assuming rectifiers and filters ol the trpe shown in Fig． $7-13$ ．Table 7 －II shows typical values for representative supplies，based on commonly－a vailable components．Transformer voltages shown are representative for units with dual－voltage secondaries．The bleeder－load volt－ ages shown may be some what lower than actually found in pratiece，becanse transformer resistance has not boon included．Ripple at the output of the first filter section will be approximately 5 per cont with a $t-\mu$ f．capacitor，or 10 per cent with a 2－μ ．capacitor．

Fig．7－12－＇＇ypical a．c． power－suphly circuit for re． ceivers．encitcrs，or low－ power transmitters．Repre－ sentalive rahues－will be fonad in Table－－1．The ．－rolt winding of T_{1} shoudd hase a currollt rating of at leact $\underset{y}{2} \mathrm{mp}$ for types
 amp，for 5L4C．

Fig. 7-13-Conventional power-wipply circuit for higher.poner transmitters. $\mathrm{Ci}_{1}, \mathrm{C}_{2}-1 \mu \mathrm{f}$. for approximately 0.5 's output ripple: 2μ f. for approsimately $1 . .{ }^{\circ} \%$ output ripple. (is shomild be $4 \mu \mathrm{f}$. if supply is for modulator.
$\mathrm{R}-2 . \mathrm{J}, \mathrm{(O)}$) ohmis.
$1_{1,1}$ - Swingink clonke: 5/25 h., current rating same as T_{2}
1.2-Smoothing rhoke: current rating same as T_{2}.
T1-0.5 volts, 4 amb. for type 810: 2.5 volls, 10 amp. for 8661.
$\mathrm{I}_{2}-\mathrm{D} . \mathrm{c}$. voltage rating same as output voltage.
T_{3} - Voltage and current rating to suit transmitter-tuhe requirements.
V_{1} - Type 816 for $100 /$ 500-volt supply: 8661 for others shown in "rable 7-11.
See Table T-II for other values.

Table 7-II							
		$\begin{aligned} & \text { Tuing } \end{aligned}$		$\frac{L_{2}}{I_{1}}$	$\underset{\text { lolls }}{C_{1} C_{2}}$	$\underset{\text { Walts }}{R}$	Approx. BlecderLoad OupulI'plls
lools	.1/n.		. $1 / \mathrm{a}$.				
400/500	330	T20/61.	200	4	700	20	440/540
(600/7.0)	2(1)	7.00/4.00	300	8	1000	50	650/800
12:0/3.506)	240	8.500/17.0)	300	s	20010	1.00	1300/1600
12.50/1.500	4.40	1.500/18.00	. 000	6	з\%\%	1.010	1315/1615
2000/ 25000	201	2400/2400	300	8	8000	3208	2059/2550
2000/2-30)	160	$2100 / 2000$.00\%	6	3000	$320{ }^{2}$	206.5/256.5
$2 \mathrm{~F} 01 / 30000$	380	2.000/31:0)	-00	6	4000	500^{3}	256.5/3005

${ }^{1}$ Balane of transformor courrent rating consumed hy bleder resistor.
\% Cse two 160-watt, I2.500-chm mits in series.
3 L'se five 100-watt, 5000-ohtu units in sories.

Voltage Dropping

Series Voltage-Dropping Resistor

Certain phates and sepors of the vailions tubes in a transmitter or receiver often require a varicty of operating voltages differing from the output voltage of available power supplies. In most (ases, it is not economically fousible to provide a separate power suphly for eath of the rectuired voltages. If the currean drawn by an electrode, or combination of alectrodes operating at the same voltage, is reasonatly constant under normal operating conditions, the reguired voltage may be obtaned from a supuly of higher voltage be means of a voltagedropping resistor in series, as shown in Fig. 7-1+A. The value of the serios, resistor, R_{1}, maty be obtained from Ohm's Iaw, $R=\frac{L_{1}}{I}$, where E_{a} is the voltage drop required from the supply voltage to the desired voltage and I is the total rated cument of the load.

Example: 'lhe plate of the thate in one stage and the sereens of the tubes in two other stages refuire an operating voltage of 2.50 . The nearest available supply voltuge is 400 and the total of the rated plate and screon currents is 7.7 ma, the reguired resistance is

$$
R=\frac{400-250}{0.075}=\frac{150}{1.075}=2000 \text { ohms }
$$

The power rating of the resistor is obterined from $\mathrm{I}^{\prime}($ watts $)=1^{2} h=(0,07.5)^{2}(2000)=11.2$ watts. A 20 -wat mesistor is the nearest safe ratting to be used.

Voltage Dividers

The regulation of the voltage olbtained in this manner obviously is poor, since any change in aurent through the resistor will aase a di-rectly-proportional change in the voltage drop aceoss the resistor. The regulation an be improved somewhat by ronnerting a socond resistor from the low-voltage end of the first to the negative power-supply terminal, as shown in Fig. $7-1+13$. such an arrangement constitutes a voltage divider. The socond rosistor, R_{2}, ats as it constant loud for the first, R_{1}, so that any varitation in current from the tap becomes a smaller percentage of the total eurrent through R_{1}. The heavier the current drawn by the resistors whem they alone are rommeded across the supply, the better will be the voltage regulation at the tap.

Such a voltage divider may have more than a single tap for the purpose of obtaining more than one value of voltage. A topical arrangement is shown in Fig. $7-14 \%$. The terminal voltage is E, and two taps are provided to give

Fig. 7-14 - A - Series voltage-dropping resistor. B Simple voltage divider. C - Muhtiple divider eircuit.

$$
R_{3}=\frac{E_{1}}{I_{\mathrm{b}}} ; R_{4}=\frac{E_{2}-E_{2}}{I_{\mathrm{b}}+I_{\mathrm{I}}} ; R_{5}=\frac{E-E_{2}}{I_{\mathrm{b}}+I_{1}+I_{2}}
$$

lower voltages, E_{1} and E_{2}, at currents I_{1} and I_{2} respectively. The smaller the resistance betweentaps in proportion to the total resistance, the smaller the voltage between the taps. For convenience, the voltare divider in the figure is considered to be made up of separate resistances R_{3}, R_{4}, R_{5}, between taps. R_{3} carries only the bleeder current, I_{1}; I_{4} carries I_{1} in addition to $I_{1} ; R_{5}$ carries I_{2}, I_{1} and $I_{1 .}$. To ealculate the resistanees required, a bleoder current, I_{l}, must be assumed; generally it is low

compared with the total load current (10 per cent or so). Then the required values can be calculated as shown in the caption of Fig. 7 - 14 (\%, I being in decimal parts of an ampere.

The method may be extended to any desired number of taps, each resistance sedetion being cealealated by (ohm's Law using the needed voltage dropareross it and the total current throumh it. The power dissipated by eath section may be calculated either by multiplying I and E or I^{2} and R.

Voltage Stabilization

Gaseous Regulator Tubes

There is frequant med for mantaining the voltage applied to a low-voltare low-current circuit at a practically constant value, regardless of the voltage regulation of the power supply or variations in load current. In such applications, gaseous regulator tubes (VR10530, VR150-30, etc.) can be used to good advantage. The voltage drop across such tubes is constant over a moderately wide current range. Tubes are available for regulated voltages near $150,105,90$ and $\overline{7} 5$ volts.

The fundamental eireuit for a gaseous regulator is shown in Fig. $7-15 \mathrm{~A}$. The tube is con-

Fig. 7-15 - Voltage-stabilizing eircuits using VR thbes.
neeted in series with a limiting resistor, h_{1}, across a source of voltage that must be higher than the starting voltage. The starting voltage is about 30 per cent higher than the operating voltage. The load is connered in parallel with the tube. For stable operation, a minimum tube current of $\overline{5}$ to 10 ma . is re-
guired. The maximum permissible current with most types is $t 0$ ma.; consequently, the load corrent cannot exeed 30103.5 mat if the voltage is to be stabilized over a range from zero (o) maximum load current.

The value of the limiting resistor must lie between that which just permits minimum tube current to flow and that which just passes the maximum permissible tube current when there is no load eurrent. The latter value is generally used. It is given by the equation:

$$
R=\frac{1000\left(E_{\mathrm{s}}-E_{\mathrm{r}}\right)}{I}
$$

where R is the limiting resistance in ohms, E_{s} is the voltage of the souree arross which the tube and resistor are ecomerted. $E_{\mathrm{r}}^{\mathrm{r}}$ is the rated voltage drop a aross the regulator tube, and I is the maximum tube current in milliamperes (usually 40 mat.).

IVig. $7-1013$ show how two tubes may be used in serics to give a higher regulated voltage than is obtamable with one, and al:o to give two values of regulated voltage. The limiting resistor may be calculated ax above, using the sum of the voltage drops across the two tubes for $E_{\text {r. }}$. Since the upper tuhe must carry more current than the lower, the load eonnected to the low-voltage tap must take small current. The total current taken by the loads on both the high and low taps should not exeeced 30 to 3 3 milliamperes.

Fig. 7-16 - Electronic voltage-regulator circuit.
$\mathrm{C}_{1}-0.1-\mu \mathrm{fd} .400$-volt paper.
$\mathrm{H}_{1}-160$-ohm 10 -watt potentiometer (balance).
$\mathrm{R}_{2}, \mathrm{R}_{5}-12,000$ ohms, 2 watts.
$R_{3}, R_{4}-0.47$ megohn, $1 / 2$ watt.
$\mathrm{R}_{6}-68,000$ olims, 1 watt.
$1_{7}-15,000$ olims, 2 watts.
R_{8} - $\mathbf{1 0 . 0 0 0}$-ohm potentiometer (output control).
$\mathrm{R}_{9}-1$ megohm, $1 / 2$ watt.

Voltage regulation of the order of 1 per cent can be obtatined with these regulator circuits.

A single VR tube maty also be used to regulate the voltage to a load current of almost any value so long is the variation in the current does not exeed 30 to 35 mat. If, for eximple, the average load current is 100 mat., a VIR tube maty be used to hold the voltage constant provided the current does not fall below 85 mat. or rise above 115 mat. In this ease, the resistame should be caleulated to drop the voltage to the VR-tube rating at the maximum load current to be expereded plas about 5 ma. If the load resistance is constant, the efferts of variations in line voltage maty be eliminated by hasing the resistame on the load carrent plus is mat. Voltage-regulator tubes may also be connected in parallel as described later in this chapter.

Electronic Voltage Regulation

Several circuits have been developed for regulating the voltage output of a power supply electronically. While more complicated that the VIRtule circuits, they will handle higher voltages and currents and the output voltage may be varied entimuonsly over a wide range. In the careuit of lig. 7 -16, the 565! regulator tulbe supplies the grid (f) of the (sila with a constant reference voltage. When the load eonnected across the output terminals inerenses, the output volture tends to derrase. This derreases the plate (5) voltage. Since grid (1) is comnected directly to plate (i) , grid (1) becomes less positive and that triode draws less plate current. The voltage drop ateross R_{3} being less, the bias on the grids of the GAsta is reduced, deereasing the voltage drop across the

Fig. 7.17-Circuit diagram of an electronically -regu-
lated power supply rated at 300 volts max., 150 ma, max.
$\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{5}-16-\mu \mathrm{fd} .600$-volt electrolytic.
$\mathrm{C}_{3}-0.015-\mu \mathrm{fd}$. paper.
$\mathrm{C}_{4}-0.1$ - fd . paper.
$\mathrm{R}_{1}-0.3$ megohm, $3 / 2$ watt.
$R_{2}, R_{3}-100$ ohms, $1 / 2$ watt.
R_{4} - 510 ohms, $1 / 2$ watt.
$\mathrm{R}_{5}, \mathrm{R}_{8}-30,000$ ohms, 2 watts.
R_{g} - 0.24 megohm,, $1 / 2$ watt.
$1 k_{7}$ - 0.15 megohm, $1 / 2$ watt.
$\mathrm{R}_{9}-9100$ ohms, 1 watt.
$\mathrm{R}_{10}-0.1$-megohm potentioncter.
$\mathrm{R}_{11}-43,000$ ohms, $1 / 2$ watt.
I_{1} - 8-hy., 40 -ma, filter choke.
St-S.p.s.t. togele.
Ti - P'ower transformer: 375-375 volts r.m.s., 160 ma.; 6.3 volts, 3 amps; 5 volts. 3 amps.
(1'hor. 221833).

Table of Performance for Circuit of Fig. 7-17			
I	11	111	Output montage - 30\%
4.00 v .	$2 \because \mathrm{ma}$.	3 ms .	150 ma. 2.3 mv.
425 v	1.5 mac	$4 \mathrm{ms}$.	10.5 max. 3.8 mv .
400 v .	Fioma	6 mv .	106 ma.
37.5	97.	8 mı.	
3.50 v.	12 l ma.	9.5mv.	50 ma. 3.0 mv .
32.50	1.50 ma.	3 mv .	9.5 ma. 3, 0 mw.
300% v.	1.50 ma.	2.3 mv.	10 ma. 2.5 mv.

6.15:G and thereby mantaining the original output voltage.

For a maximum regulated voltage output of 250 , the filtered d.e. input voltage should be 325 volts at 225 man. For a constant line voltage the output voltage will remain constant within th. 2 volt over a load-current range of 0 to 225 ma . With a lime-voltage variation of plus or minus 10
per cent, the output voltage will vary less than 0.1 volt.

Another similar regulator cireuit is shown in Fig. $7-17$. The principal difference is that sereengrid regulator tubes are used. The fact that a sorcen-grid tube is relatively insensitive to changes in plate voltage makes it possible to obtain a reduction in ripple voltage adequate for many purposes simply by supplying filtered d.e. to the sererns with it conserpuent saving in weight and cost. The accompanying table shows the performance of the circuit of Fiig. 7-17. Column I shows various output voltages, while Column II shows the maximum current that cin be drawn at that voltage with negligible variation in output voltage. Column III shows the measured ripple at the maximum current. The second part of the table shows the variation in ripple with load eurrent at 300 volts output.

Bias Supplies

As diseussed in the dhapter on high-frecgueney transmitters, the chiof function of a bias supply for the ref. stages of a transmitter is that of providing protective bias, although mader certain

Fig. 7 - 18 - Simple hias-supply circuits. In A, the peak transformer voltane nuat not exceed the oprating value of hias. The circoits of I (half-wave) and (: (full-wave) may be used to reduce transformer voltage to the reati. fier. R_{1} is the rerommended griddeak resi-itance.
circumstances, a hias supply, or pack, as it is sometimes called, can provide the operating bias if dexired.

Simple Bias Packs

Fig. 7-18A shows the diugram of a simple bias supply, R_{1} should be the recommended grid leak for the amplifier tube. No grid leak shonld be used in the transmitter with this type of supply. The output voltage of the supply, when amplifier grid current is not flowing, should be some value botwedn the bias reguired for plate-current cut-off and the recommended operating bias for the amplifior tube. The transformer parak voltage ($1, \frac{t}{}$ times the r.m.s. value) should not exceed the recommended operating-bias value, otherwise the ontput voltage of the pack will soar above the operating-hias value with rated grid current.

This soaring can be reduced to a considerable extent by the use of a voltage divider ancoss the transfomer serondary, as shown at B. Such a system can be used when the transomer voltage is higher than the operating-bias value. The tap, on R es should be adjusted to give amplifier cut-off bias at the outpuat terminals. The lower the total value of R_{2}, the less the soaring will be when grid current flows.

A full-wave cirenit is shown in Fig. 7-ISC. R_{3} and R_{4} should have the same total resistance and the taps should be adjusted symmetricallys. In all cases, the transformer must be designed to furnish the rurrent drawn by these resistors plus the current drawn by R_{1}.

Regulated Bias Supplies

The inconvenionce of the emedits shown in Fig. $7-18$ and the difficulty of predicting values in practical application can be avoided in most cases by the use of gaseous voltageregulator tubes across the output of the bias supply, as shown in Fig. 7-19A. A VR tube with a voltage rating anywhere between the

Fig. 7-19 - Illustrating the use of VR tubes in statoiliz. ing protective-bias supplier. R_{1} is a resistor wheser value is adjusted to limit the eurrent throush eath VR tube to 5 ma. before amplifier excitation is applied. R and R_{2} are currat-epualiging resizuri of 50 to low ohms.
biasing-voltage value which will reduce the input to the amplifier to a safe level when exeitation is removed, and the operating value of bias, should be chosen. R_{1} is adjusted, without ampliter cextation, until the V'la tube ignites and draws about 5 mat. Dditional voltange to bring the bias up to the oprating value When excitation is applied ean be whatamed from a grid leak resistor, as diswased in the transmitter chapter.

Lach VR tube will handle 10 ma. of grid eurrent. If the grid eurvent exaceds this value under any eondition, similar VR tubesshould beaddedin parallel, asshown in Fig. 7-19B, for eath 40 mit., or less, of additional grid eurrent. The resistors R_{2} are for the purpose of helping to maintain equal currents through each VR tube, and should hatve a value of 50 to 1000 ohms or more as required.

If the voltage rathing of a single VR tube is not sufficiently high for the purpoze, other VI tubes may be used in series (or seriesparallelif required to satisly grid-aurent requirements) as shown in the diagrams of Fig. $7-19 \mathrm{C}$ and 1$).$

Fig. 7-20 - Circuit diagram of an clectronically-regulated bias supply.
C_{1} - 20- $\mu \mathrm{fl}$. 1.00 -volt ele etrolstio.
$\mathrm{C}_{2}-20-\mu \mathrm{id}$. 150 -volt eleetrolvtic.
$\mathrm{R}_{1}-5100$ ohmis, 2.5 watts.
$\mathrm{R}_{2}-23,000$ ohms, $1 / 2$ watt.
R_{3} - $\mathbf{6 8}, \mathbf{0} \mathbf{(O)}$ olims, $1 / 2$ watt.
R_{4} - 0.27 megohm, $1 / 2$ watt.
$1 \mathrm{R}_{5}-30100$ ohms. 5 watts.
$R_{0}-0.12$ megohm, $1 / 2$ watt.
R_{7} - 0.1 -megolun iwtentiometer.
Rs - 27,0106 ohm:. ' $\underline{6}$ watt.

T_{1} - Power tranformer: $3 \mathbf{3} 0$ volts r.mos. eallow vide al emter, 50 ma.: 5 volts, 2 amp.; 6.3 volts, 3 amp.

If a single value of fixed bias will serve for more than one stage, the biasing terminal of rach such stage may fre connected to a single supply of this type, provided only that the total grid current of all stages so connected does not exced the curront rating of the V'R tube or tubes. Alternativels, other sebarate Vli-tube branches maty be added in any desired eombination to the same supply, as shown
in Fig. 7-19F, to adapt them to the needs of each stage.

Providing the VIR-tube current rating is not exceeded, a series arrangement may be tapped for lower voltage, as shown at F.

The circuit diagram of an electronicallyregulated bias-supply is shown in Fig. 7-20. The output voltage may be adjusted to any value between 20 volts and 80 volts and the unit will handle grid currents up to 200 ma. over the range of 30 to 80 volts, and 100 ma . over the remainder of the range. This will take care of the bias requirements of most tubes used in Class B amplifier service. The regulation will hold to about 0.001 volt per millitmpere of grid current.

Other Sources of Biasing Voltage

In some cases, it may be convenient to obtain the biasing voltage from a source other than a separate supply. A half-wave rectifier may be connected with reversed polarization to obtain biasing voltage from a low-voltage plate supply, as shown in Fig. 7-21A. In another arrangement, shown at B , a spare filament winding ean be used to operate a filament transformer of similar voltage rating in reverse to obtain a voltage of about 130 from the winding that is customarily the primary. This will be suffieient to operate a VR75 or V1R90 regulator tube.

Fig. 7-21-Convenient means of ohtaining biasing voltage. A - From a low-voltape plate supply. 13From spare filament winding. T_{1} is a filament transformer, of a voltage ontpout similar to that of the spare filament winding, connected in reverse to give 115 volts r.m.s. output. If cold-cathode or selenium rectifiers are used, no additional filament supply is required.

A bias supply of any of the types discussed requires relatively little filtering, if the outputterminal peak voltage does not approach the operating-bias value, because the effect of the supply is entirely or largely "washed out" when grid current flows.

Selenium-Rectifier Circuits

While the eircuits shown in Figs. 7-22, 7-2:3 and $7-24$ may be used with any type of rectifier, they find their greatest advantage when used with selenium rectifiers which require no filament transformer. These circuits must be used with ceution, olserving line polarity in the rircuits so marked, to avoid shorting the line, since the negative output terminal should always te grounded. In eircuits showing isolating transformers, the trinsformer is a requirement.

Fig. 7.22-Simple half-wave cirenit for seleninm reatifier.
$\mathrm{C}_{1}-0.0 .5+\mu \mathrm{fd}$, 600 - voll paper.
$\left(i_{2}-40-\mu \mathrm{fi}, 200\right.$-volt electrolytic.
$R_{1}-25$ to 100 olams.
Fig. 7-22 is a straightforward half-wave rectifier circuit which may be used in applications where 115 to 130 volts d.e is desired. It can be used for bias supply, for instance.
lig. 7-23 shows several voltage-doubler circuits, Of the three, the one shown at A is the most desirable since there is no serias capacitor. It is a full-wave circuit and there will be very little ripple voltage appearing at the output. The arrangement of circuit B is such
that one side of the output may be grounded. In circuit C, the point X is common to both citpacitors in the rectifier and filter, and a single-unit

Fris. $7-23$ - Voltage-doubling circuits for use with seleminnt revtiliera.
Cis-0.0.7- μ fil. 600 -volt paper.
$(: 2-10-\mu \mathrm{fl} .2010$-colt electrolytic.
C - Fijler rondenser.
$R_{1}-2.5(1) 100$ ohms.
L_{1} - F Pilter choke. $\mathrm{I}_{1}-1$ sobation transformer.

Fig. 7-24 - A Tripler eireuit. B - Half-wave quadrupler. C - full-wave quadrupler.
$\mathrm{C}_{1}-0.05-\mu \mathrm{fd} .600$-volt paper.
$\mathrm{C}_{2}-40-\mu \mathrm{fd}$. 450 -volt eleetrolytic.
$\mathrm{C}_{3}-100$ - md . 150 -volt eleetrolytic.
$h_{1}-25$ to 100 ohms. l_{1}-Isolating transformer.

3 -section capacitor can be used to save space. If the load eurrent is less than 100 ma., this is the best circuit.
Fig. $7-24.1$ shows a voltage tripler, and 13 and C quadruplers.

All components are standard. C_{1} in all cireuits is for "hash" filtering and its value is not critical. A $0.05-\mu$ fd. 600 -volt-working capaeitor should serve. All other capacitors should be $40-\mu \mathrm{fd}$. 200 -volt units, exeept those in the tripler and quadrupler circuits. Those in the cireuit of Fig. $7-24$ should have a rating of 450 volts working. In the voltage multipliers and in other eircuits where a capacitor is passing the full eurrent, good eipacitors should be used because the a.e. ripple mentioned above appears aeross the eapacitor and increases as the load increases. If the eurrent is allowed to become too high, it will eause heating and deterioration of the eapacitor. This ean be kept to a minimum by using a capacitor of high value and making sure it is of good make. R_{1} should be 25 ohms, but if it is found that the rectifier units are running a little too warm, this value may be increased to as high as 100

ohms, with a corresponding drop in output voltage, of course. A single-section filter, as shown in Fig. 7-2:3C, will provide suffieient smoothing for most applications.

Power-Line Considerations

POWER-LINE CONNECTIONS

If the transmitter is rated at much. more than 100 watts, special consideration should be given to the a.c. line running into the station. In some residential systems, three wires are brought in from the outside to the distribution board, while in other systems there are only two wires. In the three-wire system, the third wire is the neutral which is grounded. The voltage between the other two wires normally is 230 , while half of this voltage (115) appears between each of these wires and neutral, as indicated in Fig. 7-25A. In systems of this type, usually it will be found that the 115-
volt household load is divided as evenly as possible between the two sides of the cireuit, half of the load being connected between one wire and the neutral, while the other half of the load is connected between the other wire and neutral. Heavy applianees, such as electrie stoves and heaters, normally are designed for 230 -volt operation and therefore are comected across the two ungrounded wires. While both ungrounded wires should be fused, a fuse should never be used in the wire to the neutral, nor should a switeh be used in this side of the line. The reason for this is that opening the neutral wire does not disconneet the equip-

Fig. 7.25 - Three-wire power-line circuits. A - Normal 3 -wire-line termination. No fuse should be used in the grounded (nentral) line, 13 - Showing that a switeh in the neutral does not remove voltage from either side of the line. C - Conneetions for both 115 - and 230 -volt transformers. D- (Merating a 115 -volt plate transformer from the $\mathbf{2 3 0}$-volt line to avoid light blinking. T_{1} is a $2-10.1$ step-down transformer.
ment. It simply leares the equipment on one side of the 230 -volt circuit in series with whatever load may be across the other side of the eircuit, as shown in Fig. 7-25B. Furthermore, with the neutral open, the voltage will then be divided between the two sides in proportion to the load resistance, the voltage on one side dropping below normal, while it soars on the other side, unless the loads happen to be equal.

The usual line running to baseboard outlets is rated at 15 amperes. Considering the power eonsumed by filaments, lamps, motulator, rereiver and other auxiliary equipment, it is not unusual to find this 15 -ampere rating exreeded by the requirements of a station of only mod-

Fig. 7.26 - 'Two methods of transfurmer primary eontrol. At A is a tapped toy trinsformer whieh may he connected so as to hoost or buek the line voltage as required. At B is indieated a variable transformer or autotransformer (Varias) which feeds the transformer primaries.
erate power. It must also be kept in mind that the same branch maty be in use for other household purposes through another outlet. For this reason, and to minimize light blinking when keying or modulating the transmitter, a separate heavier line should be run from the distribution board to the station whenever possible. (A threc-volt drop in line voltage will eause noticeable light blinking.)
If the system is of the three-wire type, the three wires should be brought into the station so that the load can be distributed to keep the line balaneed. The voltage across a fixed load on one side of the circuit will increase as the load current on the other side is increased. The rate of increase will depend upon the resistance introdured by the neutral wire. If the resistance of the neutral is low, the increase will be correspondingly small. When the currents in the two circuits are balanced, no current flows in the neutral wire and the system is operating at maximum efficiency.

Light blinking can be minimized by using transformers with 230 -volt primaries in the power supplies for the keyed or intermittent part of the load, comerting them arross the two ungrounded wires with no connection to the neatral, as shown in Fig. $7-2 \overline{0} \mathrm{C}$. The same can be accomplished by the insertion of a step-
down transformer whose primary operates at 230 volts and whose secondary delivers 115 volts. Conventional $11 \overline{5}$-volt transformers may be operated from the scoondary of the step-down transformer (see Fig. 7-25D).

When a special heavy-duty line is to be installed, the local power company should be consulted as to local requirements. In some localities it is necessary to have such a job done by a licensed electrician, and there may be sperial requirements to be met in regard to fittings and the manner of installation. Some amateurs terminate the special line to the station at a switch box, while others may use electric-stove receptacles as the termination. The power is then distributed around the station by means of conventional outlets at convenient points. All circuits should be properly fused.

LINE-VOLTAGE ADJUSTMENT

In certain communities trouble is sometimes experienced from fluctuations in line voltage. Usually these fluctuations are caused by a variation in the load on the line and, since most of the variation comes at certain fixed times of the day or night, such as the times when lights are turned on at evening, they may be taken care of by the use of a manuallyoperated compensating device. A simple arrangement is shown in Fig. $7-26 \mathrm{~A}$. A toy transformer is used to boost or buek the line voltage as required. The transformer should have a tapped sccondary varying between 6 and 20 volts in steps of 2 or 3 volts andits secondary should be capable of carrying the full load current of the entire transmitter, or that portion of it fed by the toy transformer.

The secondary is connected in series with the line voltage and, if the phasing of the windings is correet, the voltage applied to the primaries of the transmitter transformers can be brought

Fig. 7-27-With this circuit, a single adjust ment of the tap switeh S_{1} plates the eorrect primary voltage on all transformers in the transmitter. Information on eonstructing a suitable anootransformer at negligible eost is contained in the text. 'The light winding represents the regolar primary winding of a revamped transformer, the heavy winding the voltage-adjusting section.
up to the rated 115 volts by setting the toytransformer tap switch on the right tap. If the phasing of the two windings of the toy transformer happens to be reversed, the voltage will be reduced instead of increased. This connection may be used in cases where the line voltage may be above 115 volis. This method is preferable to using a resistor in the primary of a power transformer since it does not alfect the voltage regulation as seriously. The circuit of 7-2613 illustrates the use of a variable transformer (Variac) for adjusting line voltage to the desired value.

Another scheme by which the primary voltage of each transformer in the transmitter may be adjusted to give a desired secondary voltage, with a master control for compensating for changes in line voltage, is shown in Fig. $7-2 \overline{7}$.

This arrangement has the following features:

1) Adjustment of the switch S_{1} to make the voltmeter read 105 volts automatically adjusts all tansformer primaries to the predetermined correct voltage.
2) The necessity for having all primaries work at the same voltage is eliminated. Thus, 110 volts can be applied to the primary of one transfomer, 115 to another, ete., as recpuired to obtain the desired output voltage.
3) Independent control of the plate transformer is afforded by the tap switel S_{2}. This permits power-input control and does not require an extra autotransformer.

Constant-Voltage Transformers

Although comparatively expensive, special transformers called constant-voltage transformers are available for use in cases where it is neeessary to hold line voltage and/or filament voltage constant with fluctuating supply-line voltage. They are rated over a range of 17 va. at 6.3 volts output, for small tube-heater demands, up to several thousand volt-amperes at 115 or 230 volts. In average figures, such transformers will hold their ontput voltages within one per eent under an input-voltage variation of 30 per cent.

Construction of Power Supplies

The length of most leads in a power supply is unimportant, so that the arrangement of components from this consideration is not a factor in construction. Nore important are the points of good high-voltage insulation, adequate conductor size for filament wiring, proper ventilation for rectifier tubes and most important of all - safety to the operator. lixposed high-voltage terminals or wiring which might be bumped into arcidentally should not be permitted to exist. They should be covered with adequate insulation or placed inaccessible to contact during normal operation and adjustment of the transmitter. Powersupply units should be fused individually. All negative terminals of plate supplies and positive

Fig. 7-28-A typical simple receiver power supply. Filament and plate voltages are taken from the multicontact tube sneket which serves as an outlet.
terminals of bias supplies should be securely grounded to the chassis, and the chassis connected to a waterpipe or ratiator ground. All transformer, choke, and eaparitor cases should also be grounded to the chassis.

Rectifier filament leads should be kept short to assure proper voltage at the rectifier socket, and the sockets should have good insulation and adequate contact surface. l'late leads to mercury-vapor tuhes should be kept short to minimize the radiation of noise.

Where high-voltage wiring must pass through a metal chassis, grommet-lined clearance holes will serve for voltages up to 500 or 750, but ceramic feed-through insulators should be used for higher voltages. Bleeder and

Fig. 7.29- Botiom view of the simple receiver power supuly showing the cat onul for the flush-mounting transformer.

Fig. 7-30 - A typical highvoltage transmitter power supply. 'The transformers, chokes and capacitors are inverted so that no terminals are exposed to accidental contact. 'The caps of the 866 rectifiers are the insulated type.
volt:uge-dropping resistors should be placed where they are open to air circulation. Placing them in eonfined space reduces the rating.

It is highly preferable from the standpoint of operating convenience to have separate filament transformers for the rectifier tubes, rather than to use combination filament and plate transformers, such as those used in receivers. This permits the ransmitter plate voltage to be switched on without the necessity

Fig. 7-31-Bottom view of the transmitter power supply showing the cut-outs for the terminals. Separate power plugs are used for the rectifier-filament and plate transformers so that they may be switched independently from the control position.
for waiting for rectifier filaments to come up to temperature after each time the high voltage has been turned off. When using a combination power transformer, high voltage may be turned off without turning the filaments off by using a switch between the transformer center tap and chassis. This switch should be of the rotary type with good insulation between contacts. The shaft of the switeh must he grounded.

SAFETY PRECAUTIONS

All power supplies in an installation should be fed through a single main power-line switch
either hefore working on the equipment, or in case of an accident. Spring-operated switches or relays are not sufficiently reliable for this important service. Foolproof devices for cutting off all power to the transmitter ind other equipment are shown in Fig. 7-32. The arrangements shown in Fig. 732 A and 13 are similar circuits for two-wire ($115-$ volt) and thres-wire (230-volt) ssestems. S is an enclosed double-throw knife switch of the sort

Fig. 7-32 - Reliable arrangements for cutting off all power to the transmitter. S is an enclosed double-pole ponife-type switch, J a standard a.c. outlet, P a shorted plug to fit the outlet and I a red lamp.

A is for a two-wire 115 -volt line, 13 for a three-wire 230 -volt system, and \mathbb{C} a simplified arrangement for low-power stations.
usually used as the entrance switch in house installations. J is a standard a.e. outlet and P a shorted plug to fit the outlet. The switeh should he located prominently in plain sight and members of the household should he instructed in its location and use. I is a red lamp located alongside the switch. Its purpose is not so much to serve as a warning that the power is on as it is to help in iclentifying and quickly locating the switch should it become neerssary for someone else to cut the power off in an emergeney.

The outlet J should be placed in some corner out of sight where it will not be a temptation for children or others to play with. The shorting plug an be removed to open the power circuit if there are others around who might inadvertently throw the switeh while the operator is working on the rig. If the operator takes the plug with him, it will prevent someone from turning on the power in his absence and either injuring themselves or the equipment or perhaps starting a fire. Of utmost importance is the faret that the outlet J must he placed in the ungrounded side of the line.
Those who are operating low power and feel that the expense or complication of the switeh isn't warranted can use the shorted-phug idea as the main power switch. In this case, the outlet should be located prominently and identified by a signal light, as shown in Fig. $7-32 \mathrm{C}$.

The test bench ought to lo fed through the main power switeh, or a similar arrangement at the beneh, if the bench is located remote from the trausmitter.

A bleeder resistor with a power rating giving a considerable margin of safety should be used across the output of all transmitter power supplies so that the filter condensers will be discharged when the high-voltage transformer is turned off. To guard against the possibility of danger to the operator should the bleeder resistor burn out without his knowledge, and also to protert him in case he neglects to turn off the power supply before opening a cabinet transmitter enclosure, one of the devices shown in Fig. 7 - 33 is recommended. In A, a grounded pivoted metal lever drops by gravity against a contact connected to the positive high-voltage terminal when the eabinet door is opened, shorting the power supply. When the door is closed, it pushes against the end of the lever protruding through the door opening and the short is removed automatically. In another scheme, shown at B, a metal hall, suspended on a cord, drops into a triangle of contacts, one of whieh is grounded, while the other two go to positive

Fig. 7-3.3 - Two schemes for shorting the high-voltage supply automatically for safety purposes when the transmitter door is opened.
terminals of power supplies. The wedge mounted on the door pushes against the suspending cord, lifting the ball when the door is closed. The power supplies should he equipped with suitable fuses to save the equipment in case the device is ever called upon to perform its duty.

[^1]
Keying and Break-In

Offhand it would appear that keying a transmitter is a simple matter, since on the face of it nothing more is involved than turning the transmitter output on and off to correspond to the code characters being sent. Unfortunately, it is not this simple, and perfect keying of a c.w. rig is as difficult to come by as perfect voice quality is with a 'phone transmitter. The problem cannot be dismissed lightly.

Although the operation is basically that of turning the transmitter output power on and off, it is complieated by the fact that it nust not be turned on and off instantaneously. Instead, the output must be made to rise to (and fall from) maximum in some finite period of time, if key clicks are to be avoided. These clicks are the inescapable result of changing the power level rapidly, and they appear in the radio spectrum adjarent to the signal proper. The more rapidly the output is varied, the farther the clicks will extend in frequency and the greater will be their amplitude. They interfere unnceessarily with other signals and, if severe enough, can be cause for a discrepaney report by the FCC.

Another effect of improper keying of a transmitter is the introduction of chirp, a change in frequency at the instant of making or breaking the signal. A chirp of 50 cycles is enough to make a signal unpleasant to copy, and a chirp of several hundred cycles may render the signal difficult to eopy or a target for an FC(discrepancy report. Much depends, of course, upon the selectivity and beat note being used at the receiver, but the safest procedure is to aim for no detectable chirp.

A third keying fault is backwave, which consists of power leaking through and radiating when the key is "up." A strong backwave makes the signal unpleasant or difficult to copy.

In code transmission, there are intervals between dots and dashes, and slightly longer intervals between letters and words, when no power is being radiated by the transmitter. If the receiver ean be made to operate at normal sensitivity during these intervals, it is possible for the receiving operator to signal the transmitting operator, by holding his key down. This is useful during the handling of messages, since the receiving operator can immediately signal the transmitting operator if he misses part of the message. It also reduces the time necessary for calling in answer to a "C(Q." The ability to hear signals during the short "key-up" intervals is called break-in operation.

selecting the stage to key

It is often desirable from an operating standpoint to design the c.w. transmitter for breakin operation. This requires that the oscillator be keyed, or turned off between characters, since a continuously-running oscillator will create interference in the receiver and prevent break-in near one's own frequency, unless the oscillator is well shielded. ${ }^{\text {. Chirpless and clickless keying }}$ of an oscillator is difficult to obtain, since the necessary slow turning on and off of the oscillator (for cliek elimination) shows up any oscillator frequency-vs.-voltage changes. It is easy to key an oscillator without chirps or without elicks but not without both. The effect of a chirp is multiplied with frequency, and it is difficult to obtain ehirpless oscillator keying at an output frequency of 14,21 or 28 Mc .

The best-sounding keying (and the simplest to adjust) is usually obtained by keying the output or driver stage, or both. With the oscillator running continuously and "buffered" by several intermediate stages, its frequency remains constant throughout all parts of the keying eycle. The only problem in keving then becomes that of properly "shaping" the keying to reduce or climinate clicks. When keying several stages away from the output amplifier, it is necessary to bias the stages following the keyed stage so that they draw little or no plate current when the key is up, to avoid excessive plate dissipation. If the stages are biased too heavily, however, these subsequent amplifiers tend to shorten the rise and fall times and thus reintroduce clicks. This should always be borne in mind when a multistage transmitter is used with low-level keying.

The power broken by the key is an important consideration, both from the standpoint of safety to the operator and that of sparking and sticking at the key contacts. Keying of the oscillator or a low-power stage is favorable on both counts. The use of a keying relay or keyer tube is recommended when a high-power circuit is keyed.

Because transmitters vary widely in design, there is no specific recommendation that can be made about choosing the stage to key. If the oscillator alone keys satisfactorily (no chirps or clicks), even when listening to its

[^2]harmonics on 21 or 28 Mr ., the transmitter should be keyed there, but the effect of adding the additional multipliers and amplifiers should be carefully checked, to see that clicks are not reintroduced. Methods for checking will be given later. If the oscillator cannot be keyed satisfactorily by itself or with the following stage added, a stage near the output should be
keyed, using the VR tube break-in keying system (described later in this chapter) to turn the oscillator on and off. A close approaeh to breakin operation can be obtained by using a convenient and fast "on-off"' switch for the oscillator. This can be a toggle switeh, or perhaps a footactuated switch. L'se of the latter leaves both hands free.

Keying Circuits

The plate circuit is a good one to key in an oscillator or low-voltage amplifier, because it is easy to shape the keying properly in this circuit. When plate-circuit keying is used, it is usually done in the negative lead, since this permits one side of the key to be grounded. The stage can be keyed in the positive lead, but both sides of the keyed circuit will be "hot," and a keying relay is advisable. Fig. 8-1 shows the general circuit for negativelead keying in either an oscillator or an amplifier. Two examples are shown using tetrodes, but triodes can be used just as readily by ignoring the sereens shown in the diagram. Pate-rirenit keying is recommended only for low-voltage circuits if no keying relay is used, since a large portion of the supply voltage can appear across the open key.

Shaping circuits applicable to this and later circuits will be discussed in this chapter under "Testing Your Keying."

Somewhat closely related to plate-circuit keying is screen-grid keying, shown in Fig. $8-2$. The only basic difference is that the screen grid is pulled down to a negative voltage when the key is up, to avoid the backwave that may be present when the screen goes only to zero volts. The negative supply ran be small, since its current demand is only a few milliamperes. If the screen voltage is taken from the plate supply, it should come from a voltage divider rather than a simple dropping resistor.

Fig. 8-1 - Negative plate-lead keying for rathode- or tilament-type tubes. These circuits are useful for oscillator or low-power stages, where the voltage across the open hey is not very dankerous. When tetrode or pentode stages are keyed in this manner, the screen circuit shoold be stabilized with VR tubes or a heavy voltage divider. R_{1} is the normal grid leak, C_{i} and C_{2} are r.f. by-pass capacitors.

Fig. 8-2 - Screen-grid keying, suitable for ossillator or amplifier keying. R_{1} is the normal grid leak, R_{2} should be alrout 200 to 500 ohms per screen volt, and $C i$ is a normal by-pass capacitor.

Grid-circuit, or blocked-grid, keying is shown in Fig. 8-3. With the key up, a negative voltage is applied to the grid sufficient to cut off the tube and prevent current flow. With the key closed, the grid circuit develops normal grid bias through R_{2}. The drain on the negative-voltage supply is small, since it is limited by the size of R_{1}. Grid-circuit keying is generally used with low-power stages or where the voltage necessary to cut off the amplifier is only a few hundred volts. The value of C_{1} determines the keving characteristic, together with the ratio of R_{2} and R_{1}, and will be discussed later.

By placing the key in the cathode (or center tap) circuit of an oscillator or amplifier, both the grid and plate (and screen, if any) circuits are opened by the key. Cathode keying is good for use with amplifiers, because the proper shaping can be accomplished readily. It is also widely used with oscillators, but here the shaping is often complicated by the grid-

Fif. 8-3-13locked-grid keying. R_{1}, the currentlimiting resistor, should have a value of about 50,000 oims. Ci may have a capacitance of 0.1 to $1 \mu \mathrm{ft}$., depending mpon the keying characteristic desired. R_{2} is the normal value of grid leak for the tube. If a tetrode or pentode is keyed, the sereen supply should be stabilized.

Fig. 8.4-Cathode and center-tap keying. The capacitors C_{1} and C_{2} are r.f. hy-pass capacitors. 'Their capacitanee is not critical, values of 0.001 to $0.01 \mu \mathrm{fd}$. ordinarily being used. For triodes, disregard the sereen grids.
circuit time constant. Cathode keying is shown in Fig. 8-4. It is popular

Fig. 8-5-The basic keyer-tube eircuit for cathode or negative-lead keying. for use in low- and me-dium-power stages, although a keying relay or keyer tube should be used where the plate voltage is more than 300.

A popular method of keying involves using one or more tubes as keyer tubes, in place of a relay. A keyer tube (or tubes) can be used in the negative-lead or cat hodekeying circuits of Figs. $8-1$ and 8-4. One advantage of tule keying is that the voltinge across
the key is limited by large resistors, and so the operator has no chance for anything but the slightest electrical shock. A further advantage is that the shaping is done in the grid cireuit of the keyer tube with inexpensive parts. The basie keyer tube cirruit is shown in Fig. 8-5-- it is similar to the grid-cirenit keying of lig. 8-3.

A keying relay can be substituted for a key in any of the keying eircuits shown in this chapter. Most keying relays operate from 6.3 volts a.e., and ther should be selected for their speed of operation and adequate insulation for the job to be done. Adequate current-handing

Fig. 8.6-A keying relay can always be substituted for the key, to provide hetter isolation from the keyed eircuit. An r.f. filter is generally required at the key, and the heying filter is connected in the keyed eirenit at the relay contacts.
capability of the contacts is also a factor. A typieal cireuit is shown in Fig. 8-6.

The relay-coil current that is broken by the key will cause clicks in the receiver, and an r.f. filter (see later in this chapter) is often neeessary across the key. The normal keying filter connects at the relay armature contacts in the usual manner. Vibration effects of the keying relay upon the oseillator circuit should be avoided.

Testing Your Keying

The choice of a keying circuit is not as important as its complete testing. Any of the circuits shown in this section can be made to give satisfactory keying, but they must be adjusted properly.

The casiest way to find out what your keyed signal sounds like on the air is to trade stations with a near-by ham friend some evening for a short QSO. If he is a half mile or so away, that's fine, but any distance where the signals are still S 9 will be satisfactory.

After you have found out how to work his rig, make contaet and then have him send slow dashes, with dash spacing. (The letter " T " at about 5 w.p.m.) With the crystal filter out, cut the r.f. gain back just enough to avoid receiver overloading (the condition where you get crisp signals instead of mushy ones) and tune slowly from out of beat-note range on one side of the signal through to zero and out the other side. Knowing the tempo of the dashes, you can readily identify any clicks in the vicinity as yours or someone else's. A good signal will have a thump on "make" that is pereeptible only where you can also hear the beat note, and the
click on "break" should be practically negligible at any point. Fig. 8-7. shows how it should sound. If your signal is like that, it will sound good, provided there are no chirps. Then have him run off a string of 35 - or $40-\mathrm{w} . \mathrm{p} . \mathrm{m}$. dots with the bug - if they are easy to copy, your signal has no "tails" worth worrying about and is a good one for any speed up to the limit of manual keying. If the receiver has poor selectivity with the erystal filter out, make one last cherk with the filter in (Fig. 8-7 B), to see that the clicks off the signal are negligible even at high signal level.

If you don't have any convenient friends with whom to trade stations, you can still check your keying, although you have to be a little more careful The first step is to get rid of the r.f. cliek at the key, because if you don't you cannot make further observations. Locally (meaning in your own receiver) this elick will coincide in time with elicks that may or may not be on your signal, so there is just no way to observe your signal without first eliminating the r.f. click. And unless you have a keying system that breaks no current, you have a

\because Iig. $8-7$ - liepresentations of a elean e.w. signal as a receiver is tuned through it. (A) shows a receiver with no crystal filter and the b.f.o. set in the center of the passloand, and (I3) slows the crystal filter in and the receiver adjusted for single-signal reception. The variation in thickness of the lines represents the relative signal intensity. The audiofrequency where the signal disappears will depend upon the receiver selectivity characteristic and the strength of the signal.
click at the key. bven the current broken by the key in a vacuum-tube keyer circuit (which is sometimes only 0.1 ma . or so) will cause r.f. clicks that can be heard in your receiver and often in the b.e. set. If you key with a relay, the key opens the relay-coil circuit and clicks are gencrated at the key as well as at the relay contacts. Don't make the very common mistake of thinking these rlicks are the same as the on-the-air clicks discussed earlier - they are not! They are simply local clicks that you must eliminate before you can observe your signal in your receiver. These clicks are the same as the ones you get when you turn an electric light on or off - when you suddenly start or stop current flow, no matter how little, you generate r.f. and that's the elick.

Getting rid of this little click is generally no trick at all, unless you're breaking a lot of current. All it requires is a small r.f. filter, as shown in Fig. 8-8. Sometimes just a small (0.001- $\mu \mathrm{fd}$.) (:ipacitor mounted right at the key terminals will do it, and sometimes it will require the full treatment complete with r.f. chokes and second cabacitor. Measure the normal current through the key leads, remove the transmitter leads, and then connect a de. power supply and resistor to give the same current through the key. When your key will break this current with no elick, as observed in your receiver and the b.c. set (tuned off any station), you have a suitable r.f. filter at the

Fig. 8-8 - A filter for eliminating the r.f. elick at the key. First try (i, then add the two r.f. chokes, and then C_{2}. This filter does not eliminate on-the-air clicks, but it is necessary if yon are trying to check keying in your own receiver. It should be mounted right at the key.
Ci, ($i_{2}-0.01$ to $0.001 \mu \mathrm{frl}$, not critical.
RFC. $\mathrm{H}_{1}, \mathrm{RFC}_{2}-1$ - to 2.5-inh. r.f. choke.
key and you can reconnect the transmitter. If you use a vacuum-tube keyer, just don't turn on the transmitter but key the normal keyer grid current. If you use a keying relar, first climinate the click at the key by just keying the relay and adding filter across the key, and then eliminate the click at the relay contacts with another r.f. filter in the relay-keyed circuit. The filter should be mounted right at the key or relay contacts. The objective is to be able to make or break normal key current without generating a local click, and the filtering is usually so simple that the junk box will yield the parts and the process takes longer to describe than to apply.

So far you haven't done a thing for your signal on the air and you still don't know what it sounds like, but you may have cleaned up some clicks in the b.c. set. Now disconnect the antenna from your receiver and short the antenna terminals with a short piece of wire. Tune in your own signal and reduce the r.f. gain to the point where your receiver doesn't overload. Detune any antenna trimmer the receiver may have. If you can't avoid overload within the r.f. gain-control range, pull out the r.f. amplifier tube and try again. If you still can't avoid overload, listen to the second harmonic as a last resort. Since an overloaded recciver can generate clicks, it is casy to realize the importance of eliminating overload during any tests or observations.

Describing the volume level at which you should set your receiver for these "shack" tests is a little difficult. The r.f. filter should be effective with the receiver running wide open and with an antenna connected. When you turn on the transmitter and take the other steps mentioned to reduce the signal in the receiver, run the audio up and the r.f. down to the point where you can just hear a little "rushing" sound with the b.f.o. off and the receiver tuned to the signal. This is with the crystal filter in. At this level, a properly-adjusted keying circuit will show no clicks off the rushing-sound range. With the b.f.o. on and
the same gain setting, there should be no clicks outside the beat-note range. When observing clicks, make the slow-dash and fast-dot tests outlined previously.

Now you know how your signal sounds on the air, with one exception. If keying your transmitter makes the house lights blink or the dial light in your receiver flicker, you may not be able to tell too accurately about any chirp on your signal. However, if you are satisfied with the absence of chirp when tuning either side of zero beat, it is safe to assume that your receiver isn't chirping with the light flicker and the observed signal is a true representation. No chirp either side of zero beat is fine - some chirp can be either in your transmitter or your receiver, when the lights flicker. But don't try to make these tests without first getting rid of the r.f. click at the key, because clicks can mask a chirp.

In some instances, particularly if the transmitter power is several hundred watts or more, you may find that a small click still persists on all frequencies. If such a click is observed, pull out the last i.f. amplifier tube in your receiver and listen again. If the click is still there, it indicates rectification in the audio system of your receiver, the same type of BCI we condemn cheap midget receivers for. You can cure it with the usual resistor-capacitor filter used for curing such BCl cases, or you can leave it in and make mental compensation for it. Any click you hear on your signal should reduce to this minimum click immediately off the signal.

Another unavoidable click can be encountered by r.f. pick-up on the lead from a receiver i.f. amplifier to an "outrigger" selective i.f. amplifier ("(25-cr"). Here again the click will be present at any setting of the receiver tuning control. The solution here is to make your checks with the (25-er disconnected and the lead removed from the receiver.

Key clicks are caused by the key turning your transmitter on and off too fast - and sometimes by parasitic oseillations in an amplifier - and all a key-click filter does is to slow down the turning-on and turning-off processes. I'arasitic clicks occur at points 25 to 100 kc . either side of the signal, and are caused by low-frequency parasitic oscillations triggered by the keving. The cure consists of eliminating the oscillation, not adding key-click filters.

Plate, screen or cathode keying requires a key-click filter of the type shown in Fig. 8-9. Adjustment of such a filter is a simple matter. If the signal has too heavy a click or thump on "make," L should have more inductance. If the click is too heavy on "break," C should have more capacity. The "break" characteristic is also influenced by the value of L, so start with a value of C that reduces the clicks noticeably on "break," adjust the value of L for best "make" characteristic, and then clean up the "break" by further modification of $($ ". Since you may have only a few stray inductances around the shack, you may not find just
the value you want for L. In this case, use a value that gives too soft a "make" and then shunt the induetor with resistance to reduce its effect. Transformer windings will often serve as well as standard chokes in this application, so try everything around the shack until you find what you need. For a given voltage, high-current circuits will require more C and less L than will low-current ones.

In the screen-grid keving circuit (Fig. 8-2), the value of K_{2} will also affect the "break" characteristic. If R_{2} is too large the "break" will tail off too gradually, if it is too small it may introtuce a click on "break." In general it is hest to start with a value as suggested in Fig. $8-2$ and adjust C (lig. 8-9) for the proper "break" characteristic.

Fif. 8-9-A key-click filter for cathode, negativelead or sereen keying. It can be located anywhere in the keying line. The values of L and $C:$ will vary widely with different currents and voltages, and must be found by cut-and-try. For screen keying, the resistor R_{2} (Fig. 8-2) should connect to the screen side of C.
$\mathrm{C}-0.05$ to $2.0 \mu \mathrm{fd}$.
$\mathrm{L}-0.5$ to 30 henrys.
Adjustment of control-grid or keyer-tube keying characteristics is simple, since the important components are (' $1, R_{1}$ and R_{2} (Figs. 8-3 and $8-5)$. For a given value of C_{1}, increasing the value of R_{2} will soften the "make" characteristic, and increasing the value of R_{1} will soften the "break." The value of R_{1} will be many times the value of R_{2}. With grid-block keying, the value of R_{2} is determined already if the tube runs grid current, because this will be the normal grid leak, and so the value of C_{1} must be adjusted for proper "make" characteristic and then the "break" made satisfactory by adjustment of R_{1}. Tubes running heavy grid current are not too suitable for grid-block keying because the value of R_{1} generally ends up comparatively low and the negative supply must furnish too much current when the key is down.

If you are keying in a low-level stage, don't overlook the clipping action of subsequent stages that are fixed-biased beyond cut-off. It can reintroduce clicks. ${ }^{2}$ And if you key your oscillator, don't be too disappointed in the chirp that shows up when you have clickless keying, particularly on the higher-frequency binds. For oscillator keying to be clickless and chirp-free requires an oscillator in which the frequency is completely independent of everything except the setting of the tuning dial. No such oscillator has as yet been devised - they all show some frequency change with voltage, current or load changes. Amplifier keying is the answer.

[^3]
Vacuum-Tube Keyers

The practieal tube-keyer circuit of Fig. 8-10 can be used for keying any stage of any transmitter. Depending upon the power level of the keyed stage, more or fewer Type 6B+G tubes can be connected in parallel to handle the necossary current. The voltage drop through a single 6 bl-G varies from about 70 volts at 50 mas. to 50 volts at 20 ma. Tubes added in parallel will reduce the drop in proportion to the number of tubes used.

When connecting the output terminals of the keyer to the circuit to be keved, the grounded output terminal of the keyer must be connected to the transmitter ground. Thus the keyer can be used only in negative-lead or cathode keying. When used in cathode keying, it will introduce
associated resistors and condensers, since they are incorporated only to allow the operator to select the combination he prefers. But once the values have been selected, they can be soldered permatnently in place. The rule for adjusting the keying characteristic is the same as for blocked-grid keying.

「A Low-Power Keyer

If a low-level stage running only a few watts is to be keyed, the tube-kever circuit of Fig. 8-11 offers a simple solution. By using a 117 L 7 type tube, which incorporates its own rectifier, it is only necessary to connect to some existing power

Fig. 8.1才 - Wiring diagram of a practical vacnumıtule keyer.
cathode bias to the stage and reduce the output. This can be compensated for by a reduction in the grid-leak bias of the stage.

The negative-voltage supply can be eliminated if a negative voltage is available from some other source, such as a bias supply. A simplified version of this circuit could eliminate S_{1} and S_{2} and their

Fig. 8.11 - Simple low-power vacam-tube keyer. Conneet keyer to a low-voltage power supply at point "X".
supply at the point marked " X ". The keying characteristic will vary with many factors, so the values of R_{1} and R_{2} only represent starting points for experimentation.

When the key or keying lead has poor insulation, the resistance may become low enough (particularly in hamid weather) to reduce the blocking voltage and allow the kerer tube to piss some current. This may cause a slight backwave, but it can he cured by better insulation, or by reduced values of R_{3} and R_{4} in Fig. 8-10 or R_{1} in Fig. 8-11.

Monitoring of Keying

In general, there are two common methods for monitoring one's "fist" and signal. The first, and perhaps more common type, involves the use of an audio oscillator that is keyed simultaneously with the transmitter.

The second method is one that permits receiving the signal through one's receiver, and this generally requires that the receiver be tuned to
the transmitter (not always convenient unless working on the same frequency) and that some method be provided for preventing overloading of the receiver, so that a good replica of the transmitted signal will be received. Except where quite low power is used, this usually involves a relay for simultaneously shorting the receiver input terminals and reducing the recciver gain.

"Little Oskey"- A Monitoring Oscillator and Keyer

Without modifying a receiver or cathodekeyed transmitter in any way, the unit shown in Figs. 8-12 and 8-14 blanks the receiver output and injects a sidetone in the headphones when the key is down. It can also be used as a code-practice oscillator. No changes are required whem frequency or band is changed.

Referring to the schematic in Fig. 8-13, the left-hand section of the 12AU7 amplifier mixer handles the receiver output and delivers it to the phones jack. Its grid return is the 4.7 -megohm resistor and the 0.27 -megohm resistor. When the key is closed a negative voltage is placed across the 0.27 -megohm resistor, and this bias ruts off the signal from receiver to phones jack. At the same time the voltage is applied to the audio oscillator section of the lower $12 \mathrm{AU7}$, and any desired amount of the developed tone is applied to the phones jasek via the right-hand section of the 12AU7 amplifier-mixer. The desired amount is controlled by the setting of the 0.5 -megohm oseillator gain control. Two power supplies are used; plate voltage for the oscillator-mixer is provided by a selenium rectifier in athelf-wave reetifier cireuit, and the negative supply for the bias and oscillator is furnished by a voltage tripler using a section of a $12 . \mathrm{C}^{\mathbf{7}}$ and two erystal diodes. Two small 6-volt filament transformers connected "back to batek" are used for obtaining the necessary operating voltages. A switel, S2, permits keying the transmitter without blanking the receiver or introducing the audio sidetone, should this be required for frequency spotting or monitoring.
No special precautions are necessary in laying out the unit. In fact, the monitor may be built in a cabinet and placed alongside of the receiver. When wiring the unit, it is a good idea to keep the leads carrying a.c. awaty from the amplifier input to prevent hum. Care should also be taken
when soldering the erystal diodes. Holding the diode leads with a pair of long-nose pliers while soldering is good insurance against ruining a erystal. Terminal strips can be used conveniently for mounting parts such as the selenium rectifier and to serve as tie points for resistors, capacitors, ate.

The frequeney of the sidetone audio oseillator can be adjusted by ehanging the grid cabaritor, C_{1}. If the audio oscillator fails to oscillate, the primary leads of the interstage transformer should be reversed.

It is a very simple matter to insert the monitor into an existing station. The cable from the unit is plugged into the keyed circuit and the receiver output and head-phones are plugged into the unit. Switch S_{1} is used to turn the unit off and on. If for some reason it is desired to operate temporarily without the unit (such as when zerobeating) the toggle switch, s_{2}, may be opened and the unit becomes inoperative.

With S_{2} closed, everything is roady. When the key is up the receiver is heard; when the kev is down a sidetone is heard and the transmitter is keyed. The oseilator tone level can be adjusted with the gain control on the unit, while the receiver level is controlled at the receiver. If the station being worked wishes to break in, his signals can be heard between the characters being transmitted.

Since the receiver is actually on during keydown eonditions (even though in the heatphones it appears to be off), care should be taken not to damage the receiver by r.f. overloading. The monitor has been used suecessfully with a cathode-keyed transmitter running is high as 200 watts imput but separato transmitting and receiving antennas were used. The unit cannot he used with grid-hloek keved trinnmitters - it is designed for cathode-keyed ligs only. How-

Fig. 8.12-1 combination c.w, monitor and code-practice oscillator that can be used without modification of the receiver or transnitter.

Fig. 8-13 - Sehematic diagram of "I.ittle Oskey." All resistors $1 / 2$ watt. All capacitors in $\mu \mu \mathrm{f}$. unless speeified otherwise. The the heaters get their power from the 6.3 -volt line between T_{1} and T_{2}.
S_{1} - S.p.s.t. on oscillator gain control. $\mathrm{T}_{1}, \mathrm{~T}_{2}-6.3$-volt 1.2 -amp. filament transformer (U'TC FT-2).
ever, it is usually a simple matter to change the keying circuit of a transmitter. "Little Oskey" does nothing to the keying of the transmitter, and it must still be shaped by the methods outlined elsewhere in this chatpter. In some installations it maty not be possible to work full break-in beciuse the receiver does not recover fast enough from the overload the transmitter places on it. In such cases it may be helpful to use a

SR - Low-current selenium rectifier (Federal 1002). T'S - literstage andio transformer, secondary-toprimary ratio $2: 1$ (Thordarion' 1 -20A|6).
smaller receiving antemmar one that is farther from the transmitting antenna, to reture the triansmitter pick-up and the reveiver averload that is causing the long recovery time.

If the transmitter and receiver are turned off the monitor can be koyed and used as a codepractice oscillator. The sidetone will appear in the headphones as the unit is keyed.
(From QS'', October, 1955.)

Fig. 8-14-Under-ehassis view of the monitor, showing the plug and cord that run to the transmitter key jack. the monitor key jack, and the phono jack where the receiver output is applied.

Break-In Operation

Break-in operation requires a separate receiving antenna, since none of the available antenna change-over relays is fist enough to follow keying. The receiving anterna should be installed as far as possible from the transmitting antenna. It should be mounted at right angles to the transmitting antenna and fed with low pick-up lead-in material such as coaxial cable or $300-\mathrm{ohm}$ Twin-Lead, to minimize piek-up.

If a low-powered transmitter is used, it is often quite satisfactory to use no special equipment for break-in operation other than the separate receiving antenna, since the transmitter will not block the receiver too seriously. Even if the transmitter keys without cliclss, some clicks will be heard when the receiver is tuned to the transmitter frequency because of overload in the receiver. An output limiter, as described in Chapter Five, will wash out these clicks and permit good break-in operation even on your transmitter frequency.

When powers above $2 \overline{5}$ or 50 watts are used, special treatment is required for quiet break-in on the transmitter frequency. A means should
receiver as close to the antemia terminals as possible, and the leads shown heavy in the diagram should be kept short, since long leads will allow too much signal to get through into the receiver. A good high-speed keying relay should be used. If a two-wire line is used from the receiving antema, another r.f. choke, $R F C_{4}$, will be required. The revised portion of the schematic is shown in Fig. 8-16.

- VR TUBE BREAK-IN

In many instances it is quite difficult to key an oscillator without clieks and chirps. Most oseillators will key without apparent chirp if the rise and decay times are made very short, but this introduces key clicks that cannot be avoided. The system shown in Fig. 8-17 avoids this trouble hy turning on the oscillator quickly, keying an :mplifier in the grid circuit or with : vacuum-tube keyer, and turning of the oseillator after the amplifier keving is finished. The oscillator is turned on and off without lag, but the resultant clicks are not passed through the transmitter.
The values shown in Fig. 8-17 are for use with

Fif. 8-1: - Viring diagram for smooth break-in operation. The learl shown as a heavy line and the lead from bottom relay contact to AN'I posi on recciver should be kept as short ats posisible for minimum pick-up of the transmitter signal.
R1 - Reeeiver mamual gain control. $\mathrm{H}_{2}-5000$) or $10,0000_{-0 h m}$ wire-wound poteniometer.
Ry-S.p.d.t. keying relay,
be provided for shorting the input of the receiver when the code characters are sent, and a means for reducing the gain of the receiver at the same time is often necessary. The system shown in lig. 8-15 permits quiet break-in operation for higher-powered stations. It requires a simple operation on the receiver but otherwise is perfectly straightforward. R_{1} is the regular receiver r.f. and i.f, gain control. The ground lead is lifted on this control and rum to a rheostat, R_{2}, that goos to ground. A wire from the junction runs outside the receiver to the keving relay, $R y$. When the key is up, the ground side of R_{1} is connected to ground through the relay arm, and the receiver is in its normal operating eondition. When the key is closed, the relay closes, which breaks the ground connection from R_{1} and applies additional bias to the tubes in the reeciver. This bits is controlled hy R_{2}. When the relay closes, it also closes the rircuit to the transmitter oscillator. A filter at the key suppressers the clicks eauaed by the relity eurrent.

The leying relay should be mounted on the
 modifiations the cireuit can be applied to a wide variety of combinations. The 0.1 -megohm grid hatis for the oscillator could ter smaller if that were neressary - the important value is R_{3}, which must show sufficient voltage drop when the key is up to rut off the owilhtor tube. Resistor R_{1} is the normal grid lak for the keved amplifier stage - the values of C_{1} and R_{2} are dependent upon R_{1}, as described earlier under the adjustment of eontrol-grid keying. If a keyer tube is used its grid cirenit is the sume as in the amplifier tube in Fig. 8-17, exeept that the choke and coupling condenser are not neecessary - the values are adjusted as described eardiar ander the adjustment of tube kering.

The first requisite for the break-in circuit is a transmittor that ran be keyed satisfactorily by rontrol-grid or kever-tube keying in the output or driver stage, Then all that is required is the addition of the 6J5 and V'R-150 as shown. The +100 volts can be "stolen" from the transmitter, since only a few milliamperes of current is

Fig. 8-16 - Vecessary circhit revision of Fig. 8.15 if a two-wire lead from the receiving antenna is used. $K H^{\prime} C_{4}$ is a $2.5 \cdot \mathrm{mh}$. r.f. choke - other values are the same as in Fig. 8-15.
required, and the negative supply is required by the control-grid or keyer-tube kering in any event.

In erses where the operating lias and neressary cut-off voltage of the keved stage are higher than shown in Fig. 8-17, it will be necessary to use two or more Vle tubes in series and, in some ctsese, raise the negative souree voltage, For any given

Fig. 8-17-The VIR tube break-in keying eireuit uses grid-block heying of an amplifier stage combined with IR tube switching of the oscillator. 'The oseillator turns on before and off after the amplifier. The 655 heater should be connected to its own transformer and not to the heater cireuit of the transmitter.
set of conditions and transmitere, increasing the number of the tubes will increstee the "hohd-in" time of the oscillator. 'lhis is pointed out if cetse you run into conditions where the oseillator doesn't hold in long enough and even the largest values of R_{2} still give a elick on "break."

By using a relay in phace of the key, the circuit catn be combined with that of lig. 8-15 or 8-16 to combine receiver protection and gain reduction with the excellent keying of the VR tube break-in systom. (For further dotails, see Goodman, "VR Break-In Leying," QST, F'abruary, 1954.)

Full descriptions of alliod systems for break-in operation can be found in the following (QS'I articles:
Mays, "Sclenium l3reak-In Keving," July, 1955.
Miller and Meichner, "TV(; - An did to BreakIn," Miarch, 195:3.
Puckett, "'De Luxe' Lieying Without Relays," September, 195:3; Part 11, Dec., 1953.
I'uckett, "C.W. Man's Control Unit," Foh., 1955.

- ELECTRONIC KEYS

Flectronic keys, as contrasted with mochaniobl atutomatic keys, use vacum tubes or rolays (or both) to form atomatic dashes as well as atutomatic dots. Full descriptions of electronic keys can be found in the following QS'T articles:
Brann, "In Sourch of the Ideal Eilectronic Key," F以., 1951.
Turrin, "Debugging the İlectronic Bug," Jan., 1!50.
Montgomery, "Corkey" - A Tubeless Automatic Key," November, 1950.
Bartlett, "Compact Automatic liey Drsign," Dees, 1951.
Turrin, "'The 'Tur-Key'", Deember, 19x̃2. Correction, Fobruary, 1953.
Kaye, All-Electronic "Ultimatic" Keyer, April, May, 195\%.
Bramn, ". I Dot Anticipator for the lelectronic Key," July, 1953.
Turrin, "The 'Tur-Key' in Miniature," Septeniber, 1054.

Speech Amplifiers and Modulators

The audio amplifiers used in radiotelephone transmitters operate on the principles outlined earlier in this book in the chapter on vacuum tubes. The design requirements are determined principally by the type of modulation system to be used and by the trpe of microphone to be emploved. It is necessary to have a clear understanding of modulation principles before the problem of laying out a speech system can be approached suceessfully. Those principles are discussed under appropriate chapter headings.

The present chapter deals with the design of audio amplifior systems for communication purposes. In voice communication the primary objective is to obtain the most effertive transmission; i.e., to make the message be understood at the receiving point in spite of adverse conditions created by noise and interference. The methods used to accomplish this do not necessarily coincide with the methods used for
other purposes, such as the reproduction of music or other program material. In other words, "naturalness" in reproduction is distinctly secondary to intelligibility.

The fact that satisfactory intelligibility can be maintained in a relatively narrow band of frequencies is particularly fortunate, because the width of the channel occupied by a phone transmitter is directly proportional to the width of the audio-frequency band. If the channel width is reduced, more stations can occupy a given band of frequencies without mutual interference.

In speech transmission, amplitude distortion of the voice wave has very little effect on intelligibility. Its importance in communication lies almost wholly in the fact that many of the audiofrequency harmonics caused by such distortion lie outside the channel needed for intelligible speech, and thus will create unnecessary interference to other stations.

Speech Equipment

In designing speech equipment it is necessary to know (1) the amount of audio power the modulation system must furnish and (2) the output voltage developed by the microphone when it is spoken into from normal distance (at few inches) with ordinary loudness. It then becomes possible to choose the number and type of amplifier stages needed to generate the required audio power without overloading or distortion anywhere in the system.

- Microphones

The level of a microphone is its electrical output for a given sound intensity, Level varies greatly with microphones of different types, and depends on the distance of the speakers lips from the microphone. Only approximate values based on averages of "normal" speaking voices can be given. The values given later are hased on close talking; that is, with the microphone about an inch from the speaker's lips.

The frequency response or fidelity of a microphone is its relative ability to convert sounds of different frequencies into alternating current. For understandable speech transmission only a limited frequency range is nevessary, and intelligible speech can be obtained if the output of the microphone does not vary more than a few decibels at any frequency within a range of about 200 to 2500 cycles. When the variation expressed in terms of decibels is small between two fre-
quency limits, the microphone is said to be flat between those limits.

Carbon Microphones

The carbon microphone consists of a metal diaphragm placed against an insulating cup containing loosely-parked carbon granules (microphone button). Current from a hattery flows through the granules, the diaphragm being one connection and the metal backplate the other. Fig. 9-1 A shows comections for carbon microphones. A variable resistor is included for adjusting the button current to the value as specified with the microphone. The primary of a transformer is connected in series with the battery and microphone.

As the diaphragm vibrates, its pressure on the granules alternately increases and decreases, causing a corresponding increase and decrease of current flow through the circuit, since the pressure changes the resistance of the mass of granules. The resulting change in the current flowing through the transformer primary causes an alternating voltage, of corresponding frequency and intensity, to be set up in the transformer secondary.

Good-quality carbon microphones give outputs ranging from 0.1 to 0.3 volt across 50 to 100 ohms; that is, across the primary winding of the microphone transformer. With the step-up of the transformer, a peak voltage of between 3 and 10 volts can be assumed to be available at the grid of the
amplifier tube. The usual button current is 50 to 100 ma .

Piezo-electric Microphones

The crystal microphone makes use of the piezoelectric propertios of Rochelle salts crystals. This type of microphone requires no battery or transformor and can be connected directly to the grid of an amplifier tube. It is the most popular type of microphone among amateurs, for these reasons as well as the fact that it has good frequency response and is availatble in incxpensive models. The input cireuit for the crystal microphone is shown in Fig. 9-113.

Although the level of crystal microphones varies with different models, an output of 0.03 volt or so is representative for communication types. The level is affected by the length of the cable connecting the microphone to the first amplifier stage; the above figure is for lengths of 6 or 7 feet. The frequency characteristic is unaffected by the cable, but the load resistance (amplifier grid resistor) does affect it; the lower frequencies are attenuated as the value of load resistance is lowered. A grid-resistor value of at least 1 megrohm should be used for reasonably flat response, 5 megohms being a customary figure.

The ceramic microphone utilizes the piezoelectric effect in certain types of ceramic materials to achieve performance very similar to that of the crystal microphone. It is less affected by temperature and humidity. Output levels are similar to those of crystal microphones for the same type of frequency response.

Velocity and Dynamic Microphones

In a velocity or "ribbon" microphone, the element acted upon by the sound waves is a thin corrugated metallic ribbon suspended between the poles of a magnet.

Velocity microphones are built in two types, high impedance and low impedance, the former being used in most applications. A high-impedance microphone can be directly connerted to the grid of an amplifier tube, shunted by a resistance of 0.5 to 5 megohms (Fig, 9-1C). Lowimpedance microphones are used when a long connecting cable (75 feet or more) must be employed. In such a case the output of the microphone is coupled to the first amplifier stage through a suitable step-up transformer, as shown in Fig. 9-1D.

The level of the velocity microphone is about 0.03 to 0.05 volt. This figure applies directly to the high-impedance type, and to the low-impedance type when the voltage is measured across the secondary of the coupling transformer.

The dynamic microphone somewhat resembles a dynamic loudspeaker. A light-weight voice eoil is rigidly attached to a diaphragm, the coil being suspended between the poles of a permanent magnet. Sound causes the diaphragm to vibrate, thus moving the coil back and forth between the magnet poles and generating an alternating voltage.

The dynamic microphone usually is build with high-impedance output, suitable for working directly into the grid of an amplifier tube. If the connecting cable must be unusually long, a lowimpedance type should be used, with a step-up tramsformer at the end of the cable.

THE SPEECH AMPLIFIER

The audio-frequency amplifier stage that causes the r.f. carrier output to be varied is called the modulator, and all the amplifier stages preceding it comprise the speech amplifier. Depending on the modulator used, the speech amplifier may be called upon to deliver a power output ranging from practieally zero fonly voltage required) to 20 or 30 watts.

(A) S B CARBON

Fig. 9.1 - Speceh input cirenits used with various types of mierophones.

(B) CRYSTAL

(C) Hi-z velocity

Before starting the design of a speech amplifier, therefore, it is necessary to have selected a suitable modulator for the transmitter. This selection must be based on the power required to modulate the transmitter, and this power in turn depends on the type of modulation system selected, as described in other chapters. With the modulator picked out, its driving-power requirements (audio power required to excite the modulator to full output) can be determined from the tube tables in the last chapter. Generally speaking, it is advisable to choose a tube or tubes for the last stage of the speech amplifier that will be capable of

Fig. 9-2-Resistance-eoupled voltage-amplifier circuits. A, pentode; B, triode. Desiqnations are as follown: C_{1} - Cathode by-pass capactitor.
C_{2} - Plate by-pass capacitor.
C_{3} - Output couplink capacitor (blocking capacitor).
C_{4} - Sereen by-pass capacitor.
R_{1} - Cathode resistor.
R_{2} - Grid resistor.
R_{3} - Mate resistor.
R_{4} - Vext-stage grid resistor.
R_{5} - Plate decompling resistor.
R_{6} - Screen resistor,
\checkmark alues for suitable tuhes are kiven in 'Table 9-I. Values in the deconalink circuit, $C_{2} R_{50}$ are not critical. R_{5} may le about 10% of R_{3}; an 8 - or $10-\mu$ f.electrolytic capaeitor is usually large enough at Ca.
developing at least 50 per cent more power than the rated driving power of the modulator. This will provide a factor of safety so that losses in coupling transformers, cte., will not upset the calculations.

Voltage Amplifiers

If the last stage in the speech amplifier is a Class $\mathrm{Al3}_{2}$ or Class 13 amplifier, the stage ahead of it must be capable of sufficient power output to drive it. However, if the last stage is a Class AB_{1} or Class A amplifier the preceding stage can be simply a voltage amplifier. From there on bark to the microphone, all stages are voltage amplifiers.

The important characteristics of a voltage amplifier are its voltage gain, maximum undistorted output voltage, and its frequency response. The voltage gain is the voltage-amplification ratio of the stage. The output voltage is the maximum a.f. voltage that can be secured from the stage without distortion. The amplifier frequency response should be adequate for voice reproduction; this requirement is easily satisfied.

The voltage gain and maximum undistorted output voltage depend on the operating conditions of the amplifier. Data on the popular types of tubes used in speerh amplifiers are given in Table ()-I, for resistanereoupled amplification.

The output boltage is in terms of peak voltage rather than rems.s. this makes the rating independent of the waveform. lixeeeding the peak value causes the amplifier to distort, so it is more useful to consider only prak values in working with amplifiers.

Resistance Coupling

Resistance coupling generally is used in volt-age-amplifier stages. It is relatively inexpensive, good frequency response can be secured, and there is little danger of hum pick-up from stray magnetic fields associated with heater wiring. It is the most satisfactory trpe of coupling for the output circuits of pentodes and high- μ triodes, because with transformers a sufficiently high load impedance cannot be obtained without considerable frequency distortion. Typical circuits are given in Fig. 9-2 and design data in Table 9-I.

Transformer Coupling

Transformer coupling between stages ordinarily is used only when power is to be transferred (in such a case resistance coupling is very inefficient), or when it is necessary to couple between a single-ended and a push-pull stage. Triodes having an amplification factor of 20 or less are used in transformer-coupled voltage amplifiers. With transformer coupling, tubes should be operated under the Class A conditions given in the tube tables at the end of this book.

Representative circuits for coupling singleended to push-pull stages are shown in Fig. 9-3. The circuit at A combines resistance and transformer coupling, and may be used for exciting the

Fig. 9.3-Transformer-coupled amplifier circuits for Iriving a push-pull amplifier. A is for resistance-transformer couplink: 13 for transformer coupling. Designations correspond to those in Fig. 9-2. In A, values can Le taken from Table 9-I. In B, the cathode resistor is calculated from the rated plate current and grid bias as given in the tube tables for the particular type of tube used.

TABLE 9-1 - RESISTANCE-COUPLED VOLTAGE-AMPLIFIER DATA
Data are given for a plate supply of 300 volts. Departures of as much as 50 per cent from this supply voltage will not materially change the operating capacitor or the voltage gain, but the output voltage will be in proportion to the new voltage. Vollage gain is measured at 400 cycles; condenser values given arre based on 100 -cycle cut-off. For increased low-frequency response, all capacitors may be made larger than specified (cut-off frequency in inverse proportion to capacitor values provided all are changed in the same proportion). A variation of 10 per cent in the values given has nesligible effect on the performance.

	Plate Resistor Megohms	Next-Siage Grid Resistor Megohms	Screen Resistor Megohms	Cathode Resistor Ohms	Screen By-pass μ.	Cathode By-pass μ.	Blocking Capacitor μ.	Output Volts (Peak) ${ }^{1}$	Voltage Gain ${ }^{2}$
6SJ7,19SJ7	0.1	$\begin{aligned} & 0.1 \\ & 0.25 \\ & 0.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.35 \\ & 0.37 \\ & 0.47 \\ & \hline \end{aligned}$	$\begin{array}{r} 500 \\ 530 \\ 590 \\ \hline \end{array}$	$\begin{aligned} & 0.10 \\ & 0.09 \\ & 0.09 \end{aligned}$	$\begin{array}{r} 11.6 \\ 10.9 \\ 9.9 \end{array}$	$\begin{aligned} & 0.019 \\ & 0.016 \\ & 0.007 \end{aligned}$	$\begin{array}{r} 72 \\ 96 \\ 101 \\ \hline \end{array}$	$\begin{array}{r} 67 \\ 98 \\ 104 \end{array}$
	0.25	0.25 0.5 1.0	0.89 1.10 1.18	$\begin{aligned} & 850 \\ & 860 \\ & 910 \end{aligned}$	$\begin{aligned} & 0.07 \\ & 0.06 \\ & 0.06 \end{aligned}$	8.5 7.4 6.9	$\begin{aligned} & 0.011 \\ & 0.004 \\ & 0.003 \end{aligned}$	$\begin{aligned} & 79 \\ & 88 \\ & 98 \end{aligned}$	$\begin{aligned} & 139 \\ & 167 \\ & 185 \end{aligned}$
	0.5	$\begin{aligned} & 0.5 \\ & 1.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & \hline 2.0 \\ & 2.2 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 1300 \\ & 1410 \\ & 1530 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.06 \\ & 0.05 \\ & 0.04 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 5.8 \\ & 5.2 \end{aligned}$	$\begin{aligned} & 0.004 \\ & 0.002 \\ & 0.0015 \end{aligned}$	$\begin{aligned} & 64 \\ & 79 \\ & 89 \end{aligned}$	$\begin{aligned} & 200 \\ & 238 \\ & 263 \end{aligned}$
$\begin{aligned} & \text { 6J7, 7C7, } \\ & \text { 12J7-GT' } \end{aligned}$	0.1	$\begin{aligned} & 0.1 \\ & 0.25 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 0.44 \\ & 0.5 \\ & 0.53 \end{aligned}$	$\begin{aligned} & 500 \\ & 450 \\ & 600 \end{aligned}$	$\begin{aligned} & 0.07 \\ & 0.07 \\ & 0.06 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.3 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 0.02 \\ & 0.01 \\ & 0.006 \end{aligned}$	$\begin{aligned} & 55 \\ & 81 \\ & 96 \end{aligned}$	$\begin{aligned} & 61 \\ & 82 \\ & 94 \end{aligned}$
	0.25	$\begin{aligned} & 0.25 \\ & 0.5 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 1.18 \\ & 1.18 \\ & 1.45 \end{aligned}$	$\begin{aligned} & 1100 \\ & 1200 \\ & 1300 \end{aligned}$	$\begin{aligned} & 0.04 \\ & 0.04 \\ & 0.05 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 5.4 \\ & 5.8 \end{aligned}$	$\begin{aligned} & 0.008 \\ & 0.005 \\ & 0.005 \end{aligned}$	$\begin{array}{r} 81 \\ 104 \\ 110 \end{array}$	104 140 185
	0.5	$\begin{aligned} & 0.5 \\ & 1.0 \\ & 2.0 \end{aligned}$	2.45 2.9 2.95	$\begin{aligned} & 1700 \\ & 2200 \\ & 2300 \end{aligned}$	$\begin{aligned} & 0.04 \\ & 0.04 \\ & 0.04 \end{aligned}$	$\begin{aligned} & 4.9 \\ & 4.1 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 0.005 \\ & 0.003 \\ & 0.0025 \end{aligned}$	$\begin{array}{r} 75 \\ 97 \\ 100 \\ \hline \end{array}$	$\begin{aligned} & 161 \\ & 200 \\ & 230 \end{aligned}$
$\begin{gathered} \text { 6AU6, 6SH7 } \\ \text { 12AU6, 12SH7 } \end{gathered}$	0.1	$\begin{aligned} & 0.1 \\ & 0.22 \\ & 0.47 \end{aligned}$	$\begin{aligned} & 0.2 \\ & 0.24 \\ & 0.96 \end{aligned}$	$\begin{aligned} & 500 \\ & 600 \\ & 700 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.13 \\ & 0.11 \\ & 0.11 \\ & \hline \end{aligned}$	$\begin{aligned} & 18.0 \\ & 16.4 \\ & 15.3 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.019 \\ & 0.011 \\ & 0.006 \end{aligned}$	$\begin{array}{r} 76 \\ 103 \\ 129 \\ \hline \end{array}$	$\begin{aligned} & 109 \\ & 145 \\ & 168 \\ & \hline \end{aligned}$
	0.22	$\begin{aligned} & 0.29 \\ & 0.47 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 0.42 \\ & 0.5 \\ & 0.55 \end{aligned}$	$\begin{aligned} & 1000 \\ & 1000 \\ & 1100 \end{aligned}$	$\begin{aligned} & \hline 0.1 \\ & 0.098 \\ & 0.09 \end{aligned}$	$\begin{aligned} & 12.4 \\ & 12.0 \\ & 11.0 \end{aligned}$	$\begin{aligned} & 0.009 \\ & 0.007 \\ & 0.003 \end{aligned}$	$\begin{array}{r} 92 \\ 108 \\ 122 \end{array}$	$\begin{aligned} & 164 \\ & 230 \\ & 262 \end{aligned}$
	0.47	$\begin{aligned} & 0.47 \\ & 1.0 \\ & 2.2 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.1 \\ & 1.2 \end{aligned}$	$\begin{aligned} & 1800 \\ & 1900 \\ & 2100 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.075 \\ & 0.065 \\ & 0.06 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 7.6 \\ & 7.3 \end{aligned}$	$\begin{aligned} & 0.0045 \\ & 0.0098 \\ & 0.0018 \end{aligned}$	$\begin{array}{r} 94 \\ 105 \\ 122 \\ \hline \end{array}$	$\begin{aligned} & 948 \\ & 318 \\ & 371 \end{aligned}$
$\begin{gathered} \text { 6AQ6, 6AQ7, } \\ \text { 6AT6, 6Q7, } \\ \text { 6SL7GT, 6SZZ, } \\ \text { 6T8,12AT6, } \\ \text { 12Q7-GT, } \\ \text { 12SL7-GT } \\ \text { (one triode) } \end{gathered}$	0.1	$\begin{aligned} & 01 \\ & 0.22 \\ & 0.47 \end{aligned}$	-	$\begin{aligned} & 1500 \\ & 1800 \\ & 2100 \end{aligned}$	-	$\begin{aligned} & 4.4 \\ & 3.6 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 0.027 \\ & 0.014 \\ & 0.0065 \end{aligned}$	$\begin{aligned} & 40 \\ & 54 \\ & 63 \end{aligned}$	$\begin{aligned} & 34 \\ & 38 \\ & 41 \end{aligned}$
	0.29	$\begin{aligned} & 0.29 \\ & 0.47 \\ & 1.0 \end{aligned}$		$\begin{aligned} & 2600 \\ & 3200 \\ & 3700 \\ & \hline \end{aligned}$	-	2.5 1.9 1.6	$\begin{aligned} & 0.013 \\ & 0.0065 \\ & 0.0035 \end{aligned}$	51 65 77	$\begin{aligned} & 49 \\ & 46 \\ & 48 \end{aligned}$
	0.47	$\begin{aligned} & 0.47 \\ & 1.0 \\ & 8.2 \\ & \hline \end{aligned}$		$\begin{aligned} & 5200 \\ & 6300 \\ & 7200 \end{aligned}$	-	$\begin{aligned} & 1.2 \\ & 1.0 \\ & 0.9 \end{aligned}$	$\begin{aligned} & 0.006 \\ & 0.0035 \\ & 0.002 \\ & \hline \end{aligned}$	$\begin{aligned} & 61 \\ & 74 \\ & 85 \\ & \hline \end{aligned}$	48 50 51
$\begin{gathered} \text { 6AV6, 12AV6, } \\ 12 A \times 7 \\ \text { (one triode) } \end{gathered}$	0.1	$\begin{aligned} & \hline 0.1 \\ & 0.29 \\ & 0.47 \end{aligned}$		$\begin{aligned} & 1300 \\ & 1500 \\ & 1700 \end{aligned}$	-	4.6 4.0 3.6	$\begin{aligned} & 0.027 \\ & 0.013 \\ & 0.006 \end{aligned}$	$\begin{aligned} & 43 \\ & 57 \\ & 66 \end{aligned}$	45 59 57
	0.22	$\begin{aligned} & 0.29 \\ & 0.47 \\ & 1.0 \\ & \hline \end{aligned}$		$\begin{aligned} & 2200 \\ & 9800 \\ & 3100 \\ & \hline \end{aligned}$		3.0 2.3 2.1	$\begin{aligned} & 0.013 \\ & 0.006 \\ & 0.003 \end{aligned}$	54 69 79	59 65 68
	0.47	$\begin{aligned} & 0.47 \\ & 1.0 \\ & 2.2 \end{aligned}$		$\begin{aligned} & 4300 \\ & 5200 \\ & 5900 \end{aligned}$	二	1.6 1.3 1.1	$\begin{aligned} & 0.006 \\ & 0.003 \\ & 0.002 \end{aligned}$	$\begin{aligned} & 69 \\ & 77 \\ & 92 \end{aligned}$	69 73 75
$\begin{gathered} \text { 6SC7, 12SC7 } \\ \text { (one tiode) } \end{gathered}$	0.1	$\begin{aligned} & 0.1 \\ & 0.25 \\ & 0.5 \\ & \hline \end{aligned}$	\bar{Z}	$\begin{array}{r} 750 \\ 930 \\ 1040 \\ \hline \end{array}$	-	-	$\begin{aligned} & 0.033 \\ & 0.014 \\ & 0.007 \end{aligned}$	$\begin{aligned} & 35 \\ & 50 \\ & 54 \\ & \hline \end{aligned}$	29 34 36
	0.25	$\begin{aligned} & 0.25 \\ & 0.5 \\ & 1.0 \\ & \hline \end{aligned}$		$\begin{aligned} & 1400 \\ & 1680 \\ & 1840 \\ & \hline \end{aligned}$		-	$\begin{aligned} & 0.012 \\ & 0.006 \\ & 0.003 \end{aligned}$	45 55 64	$\begin{aligned} & 39 \\ & 42 \\ & 45 \end{aligned}$
	0.5	$\begin{aligned} & 0.5 \\ & 1.0 \\ & 2.0 \\ & \hline \end{aligned}$		$\begin{aligned} & 2330 \\ & 2980 \\ & 3280 \end{aligned}$	-	-	$\begin{aligned} & 0.006 \\ & 0.003 \\ & 0.002 \end{aligned}$	$\begin{aligned} & 50 \\ & 62 \\ & 72 \end{aligned}$	45 48 49
$\begin{gathered} \text { 6J5, 7A4, } \\ \text { 7N1, 6SN7GT, } \\ 12 J 5-G T \\ 12 S N 7-G T \\ \text { (one triode) } \end{gathered}$	0.047	$\begin{aligned} & 0.047 \\ & 0.1 \\ & 0.22 \\ & \hline \end{aligned}$		$\begin{aligned} & 1300 \\ & 1580 \\ & 1800 \\ & \hline \end{aligned}$	-	3.6 3.0 2.5	$\begin{aligned} & 0.061 \\ & 0.032 \\ & 0.015 \end{aligned}$	$\begin{aligned} & 59 \\ & 73 \\ & 83 \\ & \hline \end{aligned}$	14 15 16
	0.1	$\begin{aligned} & 0.1 \\ & 0.22 \\ & 0.47 \\ & \hline \end{aligned}$		$\begin{aligned} & 2500 \\ & 3130 \\ & 3900 \\ & \hline \end{aligned}$	-	1.9 1.4 1.2	$\begin{aligned} & 0.031 \\ & 0.014 \\ & 0.0065 \end{aligned}$	68 82 96	$\begin{aligned} & 16 \\ & 16 \\ & 16 \end{aligned}$
	0.22	$\begin{aligned} & 0.29 \\ & 0.47 \\ & 1.0 \\ & \hline \end{aligned}$	\square	$\begin{aligned} & 4800 \\ & 6500 \\ & 7800 \\ & \hline \end{aligned}$	-	$\begin{aligned} & 0.95 \\ & 0.69 \\ & 0.58 \end{aligned}$	$\begin{aligned} & 0.015 \\ & 0.0065 \\ & 0.0035 \\ & \hline \end{aligned}$	$\begin{aligned} & 68 \\ & 85 \\ & 96 \\ & \hline \end{aligned}$	16 16 16
$\begin{gathered} \text { 6C4 } \\ 12 A U 7 \\ \text { (one triode) } \end{gathered}$	0.047	0.047 0.1 0.22		$\begin{array}{r} 870 \\ 1800 \\ 1500 \\ \hline \end{array}$	二	4.1 3.0 2.4	$\begin{aligned} & 0.065 \\ & 0.034 \\ & 0.016 \end{aligned}$	$\begin{aligned} & 38 \\ & 52 \\ & 68 \end{aligned}$	12 12 12
	0.1	$\begin{aligned} & 0.1 \\ & 0.29 \\ & 0.47 \\ & \hline \end{aligned}$		$\begin{aligned} & 1900 \\ & 3000 \\ & 4000 \\ & \hline \end{aligned}$	——	1.9 1.3 1.1	$\begin{aligned} & 0.032 \\ & 0.016 \\ & 0.007 \\ & \hline \end{aligned}$	$\begin{aligned} & 44 \\ & 68 \\ & 80 \\ & \hline \end{aligned}$	12 12 12
	0.22	$\begin{aligned} & 0.22 \\ & 0.47 \\ & 1.0 \end{aligned}$	\square	$\begin{array}{r} 5300 \\ 8800 \\ 11000 \end{array}$	——	$\begin{aligned} & 0.9 \\ & 0.52 \\ & 0.46 \end{aligned}$	$\begin{aligned} & 0.015 \\ & 0.007 \\ & 0.0035 \end{aligned}$	$\begin{aligned} & 57 \\ & 82 \\ & 92 \end{aligned}$	$\begin{aligned} & 12 \\ & 12 \\ & 12 \end{aligned}$

[^4]grids of a Class A or AB_{1} following stage. The resistance coupling is used to keep the d.c. plate current from flowing through the transformer primary, thereby preventing a reduction in primary inductance below its no-current value; this improves the low-frequency response. With low- μ triodes ($6 \mathrm{C} 5,6 \mathrm{~J} 5$, etc.), the gain is equal to that with resistance coupling multiplied by the sec-ondary-to-primary turns ratio of the transformer.

In B the transformer primary is in series with the plate of the tube, and thus must carry the tube plate current. When the following amplifier operates without grid current, the voltage gain of the stage is practically equal to the μ of the tube multiplied by the transformer ratio. This circuit also is suitable for transferring power (within the capabilities of the tube) to a following Class AB_{2} or Class B stage.

Phase Inversion

Push-pull output may be secured with resistance coupling by using "phase-inverter" or "phase-splitter" "ircuits as shown in lig. 9-4.

The circuits shown in Fig. 9-4 are of the "solfbalancing" type. In A, the amplified voltage

Fig. 9-4 - Self-halancing phase-inverter circuits. V_{1}
 $6 \mathrm{~S}_{1} 7 \mathrm{C}^{\prime} \mathrm{I}$. V_{3} may he any of the triodes listed in Table $9-1$, or one section of a donble triode.
h_{1} - Cride resistor (1 megohm or less).
Π_{2} - Cathode resistor; use one-half value given in Table 9-1 for tube and operating conditions chosen.
$\mathrm{R}_{3}, \mathrm{~T}_{4}$ - Plate resistor; select from Trable 9-I.
$\mathrm{R}_{5}, \mathrm{R}_{6}$ - Following-stage grid resistor (0.22 to 0.47 megohm).
$\mathrm{K}_{7}-0.22$ megohm.
Rs - Cathode resistor; select from Table 9-I.
$\mathbf{R}_{0}, \mathbf{R}_{10}$ - Each one-half of plate load resistor given in 'rable 9-I.
$\mathrm{C}_{1}-10-\mu \mathrm{f}$. electrolytie.
$\mathrm{C}_{2}, \mathrm{C}_{3}-0.01$ to $0.1-\mu \mathrm{f}$. paper.
from V_{1} appears across R_{5} and R_{7} in series. The drop across R_{7} is applied to the grid of V_{2}, and the amplified voltage from V_{2} appears across R_{6} and R_{7} in series. This voltage is 180 degrees out of phase with the voltage from V_{1}, thus giving push-pull output. The part that appears across R_{7} from V_{2} opposes the voltage from V_{1} across R_{T}, thus reducing the signal applied to the grid of V_{2}. The negative feed-back so obtained tends to regulate the voltage applied to the phaseinverter tube so that the output voltages from both tubes are substantially equal. The gain is slightly lews than twice the gain of a single-tube amplifier using the same operating conditions.
In the single-tube circuit shown in Fig. ?)-4B the plate load resistor is divided into two equal parts, R_{9} and R_{10}, one being connected to the plate in the normal way and the other between cathode and ground. Since the voltages at the plate and cathode are 180 degrees out of phase, the grids of the following tubes are fed equal a.f. voltages in push-pull. The grid return of V_{3} is made to the junction of R_{3} and R_{10} so normal bias will be applied to the grid. This circuit is highly degencrative beeause of the way R_{10} is connected. 'The voltage gain is less than 2 even when a high- μ triode is used at V_{3}.

Gain Control

A means for varying the over-all gain of the amplifier is necessary for keeping the final output at the proper level for modulating the transmitter. The common method of gain control is to adjust the value of a.e. voltage applied to the grid of one of the amplifiers by means of a voltage divider or potentiometer.

The gain-control potentiometer should be near the input end of the amplificr, at a point where the signal voltage level is so low there is no danger that the stages ahead of the gain control will be overloaded by the full microphone output. With carbon microphones the gain control may be placed directly across the microphone-transformer secondary. With other types of microphones, however, the gain control usually will affect the frequency response of the mirrophone when comected directly across it. Also, in a high-gain amplifier it is better to operate the first tube at maximum gain, since this gives the best sigual-to-hum ratio. The control therefore is usually placed in the grid circuit of the secomd stage.

DESIGNING THE SPEECH AMPLIFIER

The steps in designing a speech amplifier are as follows:

1) Determine the power needed to modulate the trinsmitter and select the modulator. In the case of plate modulation, a Class 13 amplifier may be required. Select a suitable tube type and determine from the tube tables at the end of this book the grid driving power required, if any.
2) As a safcty factor, multiply the required driver power by at least 1.5 .
3) Select a tube, or pair of tubes, that will deliver the power determined in the second step. This is the last or output stage of the speechamplifier. Receiver-type power tubes can be used (beam tubes such as the 6 L 6 may be needed in some cases) as determined from the receiving-tube tables. It the speed amplifier is to drive a Class B modulator, use a Class A or AB_{1} amplifier, in preference to Class AB_{2}, if it will give enough power output.
4) If the speech-amplifier output stage must operate Class AB2, use a medium- μ triode (such ats the 6.J5 or corresponding types) to drive it. In the extreme case of driving 6L6s to maximum output, two triodes should be used in push-pull in the driver. In either case trunsformer coupling will have to be used, and transformer manufacturers' catalogs should be consulted for a suitable type.
5) If the speech-amplifier output stage operates Class A or Al_{1}, it may bedriven by a voltage amplifier. If the output stage is push-pull, the driver may be a single tube coupled through a transformer with a balanced secondary, or may be a dual-triode phase inverter. Determine the signal voltage required for full output from the last stage. If the last stage is a singlo-tube Class a amplifier, the peak signal is cqual to the grid-hias voltage; if push-pull Class A, the peak signal voltage is equal to twice the grid bias; if Class $A B_{1}$, twice the bias voltage when fixed bias is used; if cathode bias is used, twice the bias figured from the cathode resistance and the maxi-mum-signal cathode current.
6) From Table $9-I$, select a tube capable of giving the required output voltage and note its: rated voltage gain. A double-triode phase inverter (Fig, 9-4A) will have approximately twice the output voltage and twiee the gain of one triode operating as an ordinary amplifier. If the driver is to be transformer-coupled to the last stage, select a medium- μ triode and calculate the gain and output voltage as deseribed earlier in this chapter.
7) Divide the voltage required to drive the output stage by the gain of the preceding stage. This gives the peak voltage required at the grid of the next-to-the-last stage.
8) Find the output voltage, under ordinary conditions, of the microphone to be used. This information should be ohtained from the manufacturer's catalog. If not available, the figures given in the section on microphones in this chapter will serve.
9) Divide the voltage found in ($\overline{1}$) by the output voltage of the microphone. The result is the over-all gain required from the microphone to the grid of the next-to-the-last stage. To be on the safe side, double or triple this figure.
10) From Table ! -I , select a combination of tubes whose gains, when multiplied together, give approximately the figure arrived at in (9). These amplifiers will be used in cascade. If high gain is required, a pentode may be used for the first spech-implifier stage, but it is not arlvisable to use a second pentode because of the possibility
of feed-back and self-oscillation. In most cases a triode will give enough gain, as a second stage, to make up the total gain required. If not, a medium- μ triode, may be used as a third stage.

A high- μ double triode with the sections in cascade makes a good low-level amplifier, and will give somewhat greater gain than a pentode followed by a medium- μ triode. With resistancecoupled input to the first section the cathode of that section may be grounded, which is helpful in reducing hum.

SPEECH-AMPLIFIER CONSTRUCTION

Once a suitable circuit has been selected for a speech amplifier, the construction problem resolves itself into avoiding two difficulties excessive hum, and unwanted feed-back. For rasonably humless operation, the hum voltage should not exceed about 1 per cent of the maximum audio output voltage - that is, the hum should be at least 40 db . below the output level.
linwanted feed-back, if negative, will reduce the galin below the calculated value: if poritive, is likely to cause self-oscillation or "howls." Feedback can be minimized by isolating each stage with "decoupling" resistors and capacitors, by avoiding layouts that bring the first and last stages near eath other, and by shielding of "hot" points in the circuit, such as grid leads in lowlevel stages.
Speech-amplifier equipment, especially voltage amplifiers, should be constructed on strel chassis, with all wiring kept below the chassis to taine advantage of the shielding afforded. Exposed leads, particularly to the grids of low-level high-gain tubes, are likely to pick up hum from the clectric field that usually exists in the vicinity of house wiring. liven with the chassis, additional shielding of the input circuit of the first tube in a highgain amplifier usually is nocessary. In addition, such circuits should be separated as much as possible from power-supply transformers and chokes and also from any audio transformers that operate at fairly-high power levels; this will minimize magnetic coupling to the grid circuit and thus reduce hum or audio-frequeney feed-back. It is always safe, although not absolutely necessary, to separate the speech amplifier and its power supply, building them on separate chassis.

If a low-level microphone such as the erystal type is used, the microphone, its connecting cable, and the plug or connector by which it is attached to the speech amplifier, all should be shielded. The microphone and cable usually are constructed with suitable shielding: this should be connected to the speech-amplifier chassis, and it is advisable - as well as usually necessary - to conned the chassis to a ground such as a water pipe. With the top-cap tubes, complete shielding of the grid lead and grid cap is a necessity.

Heater wiring should be kept as far as possible from grid leads, and either the center-tap or one side of the heater-transformer secondary winding should be connected to the chassis. If the center-
tap is grounded, the heater leads to each tube should be twisted together to reduce the magnetic field from the heater current. With either type of connection, it is advisable to lay heater leads in the corner formed by a fold in the chassis, bringing them out from the corner to the tube socket by the shortest possible path.

When metal tubes are used, always ground the shell connection to the chassis. Glass tubes used in the low-level stages of high-gain amplifiers must be shieldcd; tulee shields are obtainable for that purpose. It is a good plan to enclose the entire amplifier in a metal box, or at least provide it with a cane-metal cover, to avoid fced-back diffculties caused by the r.f. field of the transmitter. R.f. picked up on exposed wiring, leads or tube elements causes overloading, distortion, and self-oscillation of the amplifier.

When using paper condensers as by-passes, be sure that the terminal marked "outside foil" is connected to ground. This utilizes the outside foil of the condenser as a shield around the "hot" foil. When paper condensers are used for coupling between stages, always connect the outside-foil terminal to the side of the circuit having the lowest impedance to ground. Usually, this will be the plate side rather than the following-grid side.

increasing the effectiveness OF THE 'PHONE TRANSMITTER

The effectiveness of an amateur 'phone transmitter can be increased to a remarkable extent by taking advantage of speech characteristics. Measures that may be taken to make the modulation more effective include band compression (filtering), volume compression, and speech clipping.

Compressing the Frequency Band

Most of the intelligibility in speech is contained in the medium bund of frequencies; that is, between about 500 and 2500 cycles. On the other hand, the major portion of speech power is normally concentrated below 500 cycles. It is these low frequencies that modulate the transmitter most heavily. If they are attenuated, the frequencies that carry most of the actual communication can be increased in amplitude without exceeding 100 -per-cent modulation, and the effectiveness of the transmitter is correspondingly increased.

One simple way to reduce low-frequency response is to use small values of coupling capacitance between resistance-coupled stages, as shown in Fig. 9-5A. A time constant of 0.0005 second for the coupling capacitor and following-stage grid resistor will have little effect on the amplification at 500 cycles, but will practically halve it at 100 cycles. In two cascaded stages the gain will be down about 5 db . at 200 cycles and 10 db . at 100 cycles. When the grid resistor is $1 / 2$ megohm a coupling capacitor of $0.001 \mu \mathrm{f}$. will give the required time constant.

The high-frequency response can be reduced by using "tone control" methods, utilizing a ca-

Fig. 9-5 - A, use of a stnall coupling capacitor to reduce low-frequency response; 1 , tone-control circaits for reducing high.frequency response. Values for C and R are discussed in the text; $0.01 \mu \mathrm{f}$. and 25,000 ohms are typical.
pacitor in series with a variable resistor connected across an audio impedance at some point in the speed amplifier. The best spot for the tone control is across the primary of the output transformer of the speech amplifier, as in Fig. 9-513. The capacitor should have a reactance at 1000 cycles about equal to the load resistance required by the amplifier tube or tubes, while the variable resistor in series may have a value equal to four or five times the load resistance. The control can be adjusted while listening to the amplificr, the object being to cut the high-frequency response as much as possible without unduly sacrificing intelligibility.
Restricting the frequency response not only puts more modulation power in the optimum frequency band but also reduces hum, because the low-frequency response is reduced, and helps reduce the width of the channel occupied by the transmission, because of the reduction in the amplitude of the high audio frequencies.

Volume Compression

Although it is obviously desirable to modulate the transmitter as completely as possible it is difficult to maintain constant voice intensity when speaking into the microphone. To overcome this variable output level, it is possible to use automatic gain control that follows the average (not instantancous) variations in speech amplitude. This can be done by rectifying and filtering some of the audio output and applying the rectified and filtered d.c. to a control electrode in an early stage in the amplifier.

A practical circuit for this purpose is shown in Fig. 9-6. V_{1}, a medium- μ triode, has its grid connected in parallel with the grid of the last speech amplifier tube (the stage preceding the power stage) through the gain control R_{1}. The
amplified output is coupled to a full-wave rectifier, V_{2}. The rectified audio output develops a nogative d.e. voltage across $C_{1} R_{3}$, which has a sufficiently long time constant to hold the voltane at a reasonably steady value between syllables and words. The negative d.c. voltage is applied as control bias to the suppressor of the first tube in the speech amplifier (this circuit requires a pentode first stage), effecting a reduction in gain. The gain reduction is substantially proportional to the microphone output and thus tends to hold the amplifier output voltage at a constant level.

An adjustable bias is applied to the cathodes of V_{2} to cut off the tube at low levels and thus prevent rectification until a desired output level is reached. R_{2} is the "threshold control" which sets this level. R_{1}, the gain control, determines the rate at which the gain is reduced with inereasing signal level.

The hold-in time can be increased by increasing the capacitance of $C_{1} . C_{2}$ and R_{4} may not be necessary in all cases; their function is to prevent too-rapid gain reduction on a sudden voice peak. The "rise time" of this circuit can be increased by increasing C_{2} and/or R_{4}, and vice versa.

The over-all gain of the system must be high enough so that full output can be secured at a moderately low voire level.

Speech Clipping and Filtering

In speech waveforms the average power content is considerably less than in a sine wave of the same peak amplitude. Since modulation percentage is based on peak values, the modulation or sideband power in a transmitter modulated 100 per cent hy an ordinary voice waveform will be considerably less than the sideband power in the same transmitter modulated 100 per cent by a sine wave. In other words, the modulation perrentage with voice waveforms is determined by peaks having relatively low power content.

If the low-energy peaks are clipped off, the remaining waveform will have a considerably higher ratio of power to peak amplitude. More sideband power will result, therefore, when such a elipped wave is used to modulate the transmitter 100 per cent. Although clipping distorts the waveform and the result therefore does not

Fig. 9-6-Speceh-amplifier ontput limiting circuit.
V_{1} - 6C4, 6C5, 6J5, 12 NL^{2}, etc.
$\mathrm{V}_{2}-615,6 \mathrm{AL}$, etc.
'I' - Interstage audio, single plate to p.p. grids
sound exactly like the original, it is possible to secure a worth-while increase in modulition power without sacrificing intelligibility. Once the system is properly adjusted it will be impossible to overmodulate the transmitter because the maximum output amplitude is held to the same value no matter what amplitude signal is applied.

By itself, clipping generates the same highorder harmonics that overmodulation does, and therefore will cause splatter. To prevent this, the audio frequencies above those needed for intelligible speech must be filtered out, after clipping and before modulation. The filter required for this purpose should have relatively little attenuation at frequencies below about 2500 cycles, but high attenuation for all frequencies above 3000 eveles.

It is possible to use as much as 25 db , of elipping lefore intelligibility suffers; that is, if the original peak amplitude is 10 volts, the signal can be clipped to such an extent that the resulting maximum amplitude is less than one volt. If the original 10 -volt signal represented the amplitude that caused 100 -per-cent modulation on peaks, the clipped and filtered signal can then be amplified up to the same 10 -volt peak level for modulating the transmitter.

There is a loss in naturalness with "deep" clipping, even though the voice is highly intelligible. With moderate clipping levels (6 to 12 db .) there is almost no change in "quality" but the voice power is increased considerably.

Before drastic clipping can be used, the speech signal must be amplified several times more than is necessary for normal modulation. Also, the hum and noise must be much lower than the tolerable level in ordinary amplification, heeause the noise in the output of the amplifier increases in proportion to the gain.
One type of clipper-filter system is shown in block form in Fig. 9-7A. The elipper is a peaklimiting rectifier of the same general type that is used in receiver noise limiters. It must clip both positive and negative peaks. The gain or clipping control sets the amplitude at which elipping starts. Following the low-pass filter for eliminating the harmonic distortion frequencies is a second gain control, the "level" or modulation control. This control is set initially so that the amplitude-limited output of the elipper-filter cannot modulate more than 100 per cent.

It should be noted that the peak amplitude of the audio waveform actually applied to the modulated stage in the transmitter is not neeessarily held at the same relative level as the peak amplitude of the signal coming out of the clipper stage. When the clipped signal goes through the filter, the relative phases of the various frequeney components that pass through the filter are shifted, particularly those components near the cut-off frequency. This may cause the peak amplitude out of the filter to exceed the peak amplitude of the elipped signal applied to the filter input terminals. Similar phase shifts ean orcur in amplifiers following the filter, especially if these amplifiers, including the modulator, do

Fig. 9.7-(A) Block diagraun of speech-elipping and filtering amplifier. (B) Practical speech elipper circuit with low-pass filter. Capacitances below 0.001μ f. are in $\mu \mu$. Resistors are $1 / 2$ watt.
$\mathrm{L}_{1}-20$ henrys, 900 ohms (Staneor C-151.5).
$\mathrm{S}_{1}-\mathrm{I}$.p.d.t. toggle or rotary.
not have good low-frequency response. With poor low-frequeney response the more-or-less "square" waves resulting from clipping tend to be changed into triangular waves having higher peak amplitude. Best prartice is to cut the lowfrequency response before clipping and to make all amplifiers following the clipper-filter as flat and distortion-free as possible.

The best way to set the modulation control in such a system is to check the actual modulation pereentage with an oscilloseope comeeted as described in the chapter on modulation. With the gain control set to give a desired elipping level with normal voice intensity, the level control should tre adjusted so that the maximum modulation dors not exceed 100 per cent no matter how much sound is applied to the mierophone.

A practical clipper-filter cirenit is shown in Fig. !)-7B. It may be inserted bet ween two speechamplifier stages (but after the one having the gain control) where the level is mormally a few volts. The cathode-coupled elipper circuit gives some overall voltage gain in addition to performing the clippling fumetion. The filter comstants are such as to give a cut-off characteristic that combines reasonably good fidelity with adequate high-frequency suppression.

High-Level Clipping and Filtering

Clipping and filtering also can be done at high level - that is, at the point where the modulation is applied to the r.f. amplifier - instead of in the low-level stages of the speceh amplifior. In one rather simple but effective arrangement of this type the clipping takes place in the $\mathrm{Clamsin}^{-13}$ modulator itself. This is accomplished by carefully adjusting the plate-to-p)ate load resistance for the modulator tubes so that they saturate or clip peaks at the amplitude lovel that represents 100 per rent modulation. The load adjustment can be made by choice of output transformer ratio or by adjusting the plate-voltage/plate-
current ratio of the modulated r.f. amplificr. It is best done by examining the output waveform with an oseilloscope.

The filter for such a system consists of a choke and condensers as shown in Fig. 9-8. The values of L and C should the chosen to form a low-pass filter section having a cut-off frequency of abrout 2500 cyeles, using the modulating impedance of the r.f. anplifier as the load resistance. For this cut-off frequency the formulas are

$$
L_{1}=\frac{R}{7850} \quad \text { and } \quad C_{1}=C_{2}=\frac{63.6}{R}
$$

Where R is in ohms, L_{1} in henrys, and C_{1} and C_{2} in microfarads. For example, with a plate modulated amplifier operating at 1500 volts and 200 mat. (modulating impedance 7500 ohms) L_{1} would be $7500-7850=0.96$ henry and C_{1} or C_{2} would he $63.6 / 7500=0.0085 \mu \mathrm{f}$. 13 y -pass capacitors in the plate circuit of the r.f. amplifier

Fig. 9-8- Splatter-suppression filter for use at high level, shown here eonnected het ween a Class 13 modulator and plate-modulated r.f. amplifier. Values for L_{1}, C_{1} and C_{2} are determined as described in the text.
would be $6: 3.6 / 7500=0.0085 \mu$. By-pass capacitors in the plate eircuit of the r.f. amplifier should be ineluded in C_{2}. Voltage ratings for C_{1} and C_{2} when connected as shown must be the same as for the plate blocking capacitor - i.e., at least twice the d.c. voltage applied to the plate of the modulated amplifier. L and C values can vary 10 per ent or so without seriously affecting the operation of the filter.

Bewides simplicity, the high-lcvel system hats the alvantage that high-frequency components of the audio signal fed to the modulator grids, whether present legitimately or ans a result of amplitude distortion in lower-level stages, are suppressed along with the distortion components that arise in clipping. Also, the undesirable offects of poor low-frequency response following elipping and filtering, mentioned in the preeeding sertion, are avoided. Phase shifts can still oreur in the high-level filter, however, so adjustments preferably should be made by using an oscilloscope to eherk the actual modulation percentage under all conditions of speech intensity. (For further discussion see Bruene, "IIigh-Level Clipping and Filtering", (QST, November, 1951.)

SPEECH AMPLIFIERS AND MODULATORS
 249

 Speech Amplifier with Push-Pull Triode Output

 Speech Amplifier with Push-Pull Triode Output}

Fig. 9-9 is the circuit of a speech amplifier that is well suited to use as a driver for a push-pull triode Class B modulator. An output of about 13 watts can be realized with the power supply circuit shown (or any similar well-filtered supply delivering 300 volts under load). This is sufficient for driving most of the power triodes commonly used as modulators. The output stage uses pushpull 6B4Gs, which are especially suitable as Class B drivers because of their low plate resistance. The 6B4Gs are operated Class $\mathrm{AB} \mathrm{B}_{1}$. The cireuit provides several times the voltage gain needed for communications-type erystal or ceramic microphones.

The two sections of a 12AX7 tube are used in the first two stages of the amplifier. These are resistance coupled, the gain control being in the grid circuit of the second stage. Although the cathode of the first stage is grounded and there is no separate bias supply for the grid, the grid bias actually is about one volt beeause of "eontact potential." The coupling capacitances between stages are chosen to cut off the lower voice frequencies for the reasons discussed earlier in this chapter. The higher frequencies are not attenuated in this amplifier since it is assumed that this will be done at the modulation transformer as recommended later in con-
nection with the design of Class B moduators.
The third stage uses a medium- μ triode which is coupled to the $6 B 4 \mathrm{G}$ grids through a transformer having a push-pull secondary. The ratio may be of the order of 2 to 1 (total secondary to primary) or higher; it is not critical since the gatin is sufficient without a high step-up ratio.
The output transformer, T_{2}, should be selected to couple liet ween push-pull 6134Gs (or 2A: is) and the grids of the particular modulator tubes used.

The power supply has a condenser-input filter the output of which is applied to the 6B4G plates through T_{2}. For the lower-level stages, additional filtering is provided by suceessive RC filters which also serve to prevent audio feed-back through the plate supply.
Grid bias for the 6B4Gs is furnished by a separate supply using a small selenium rectifier and a TV "booster" transformer, T_{4}. The bias may be adjusted by means of R_{1}, which should be set to -62 volts or to olotain a total plate current of 80 mal . (as measured in the lead to the primary center-tap of T_{2}) for the (iBAGs.
In building an amplifier of this type the eonstructional precuations outlined earlier should be observed. The Class $A B_{1}$ modulators deseribed subsequently in this chapter are representative of good constructional practice.

Fig. 9.9 - Speech-amplifier driver for $10-15$ watts output. Capacitances in μ f. lesistors $1 / 2$ watt unless specilied otherwise.

C R_{1} - Selenium rectifier, 20 ma .
$h_{1}-50,400$-ohm motentioneter, preferably wire wound.
I_{1} - Interstaye audio transformer, single plate to push-pull grids, turns ratio 2 to 1 or 3 to 1 , totad secondary to primary.
T_{2} - Class-B driver transformer, 3000 ohms plate-to-
plate to secondary impedance as repuired by (l ass-13 tubes used; 15 watt rating.
' T_{3} - P'ower transformer, $\mathbf{T} 00$ volts c.t., 110 ma.; 5 volts, 3 amp.; 6.3 volts, 4 amp.
T_{4} - P'ower transformer, 125 volts, 20 ma.; 6.3 volts, 0.6 amp .

A Simple Grid Modulator

The modulator circuit shown in Fig. 9-11 is capable of modulating any c.w. transmitter from about 100 watts input up to the maximum power limit, to about 80 per cent with low distortion. It requires no power supply other than heater power for the tubes, since it gets plate power from the cathode cireuit of the r.f. amplifier. Although the modulator output is connected in series with the r.f. amplifier cathode, the modulat tion is essentially of the grid-bias type (see chap-

Fig. 9-10-A simple modulator of the grid-bias type, usable with transmitters having c.w. plate inputs up to a kilowatt. Plate power for the unit is obtained antomatically from the r.f. amplifier supply.
ter on amplitude modulation). A useful characteristic of the system is that it deres not require a fixed source of grid bias for the modulated amplifier.

The speech amplifier uses a high- μ double triode to give two stages of resistance-coupled amplification. This gives sufficient gain for a crystal microphone. Resistors R_{3}, R_{7} and R_{10},
together with C_{1} and C_{3}, provide decoupling and additional fitering of the d.c. obtained from the r.f. amplifier cathode circuit.

The output stage uses one or more 616Gs in parallel; in determining the number of tubes required to modulate a particular amplifier, use one 6 l 6 G for each 200 ma . of amplifier plate current based on the operating conditions for c.w. work. The audio output voltage is developed across L_{1} and R_{11} in series; R_{11} may be omitted if the d.c. voltage between the screen and cathode of the 6 66 G does not exceed the rated value of 135 volts.

No special constructional precautions need be observed in laying out the amplifier. The unit shown in Fig. $9-10$ is built on a homemade chassis folded from a sheet of aluminum, but a small standard chassis may be used instead. A filament transformer may be included in the unit in case the heater power cannot conveniently be obtained from the transmitter itself.

To use the modulator, first tune up the transmitter for ordinary c.w. operation with the modulator disconnected. Then connect the modulator output terminals in series with the amplifier cathode as indicated in Fig. 9-11. (Make certain that the modulator cathodes are up to operating temperature before applying plate voltage to the r.f. amplifier.) The amplifier plate current should drop to approximately one-half the c.w. value. If the plate current is too high, increase the value of R_{9} until it is in the proper region; if too low, decrease the resistance at R_{9}. Once this adjustment is made the system is ready for 'phone operation. The r.f. amplifier plate current should show no change with speech input, except for a slight upward kick on voice peaks.

The carrier power output with this system is somewhat less than would be obtained with conventional grid molulation because the d.c. voltage drop in the $6 \mathrm{Y}^{6} 6 \mathrm{G}$ modulators subtracts from the amplifier plate voltage. The difference is small with r.f. tubes operating at 1000 volts or more.

Fig. 9.1l-Cirenit diagram of the speech amplifier and modulator.

Ci, Ca, C $\mathrm{C}_{\mathrm{B}}-8 . \mu$. electrolytic, 150 volts.
(.2-0.00. ${ }^{2}$ f, 100 volti.
$\left(i_{4}-0.01 \mu \mathrm{f} .400\right.$ volts.
($: 50-50$ f. electrilytic, 50 volts.
$11_{1}-2.2$ megohms, $1 / 2$ watt.
$1\}_{2} \ldots 0.22$ megohm, $1 / 2$ watt.
$\mathrm{l}_{3}, \mathrm{R}_{7}, \mathrm{l}_{10}-22,000$ ohms, $1 / 2$ watt.
R_{4} - $0 . \overline{\mathrm{T}}$-megohm volume control.
$\mathrm{R}_{5}-2200$ ohms, $1 / 2$ watt.
$\mathrm{K}_{\mathrm{B}}, \mathrm{R}_{\mathrm{x}}$ - O .1 megohm, $1 / 2$ watt.
$\mathrm{K}_{9}-50$ ohms, 2 watts (see text).
$R_{11}-2000$ ohms, 2 watts (see text).
J_{1} - Small filter choke, "a.c.-cl.c." type satisfactory.

Screen Modulator Circuit

Fig. 9-12 is a representative circuit for a modulator for the screen grid of a beam tetrode. Most r.f. tubes of this type require very little modulating power in the screen cireuit, so a receivingtype audio power amplifier usually is sufficient. The circuit shown has ample gain for a crystal microphone and will fully modulate a screen grid that does not require an average audio power of more than three or four watts. It can also be used for modulating a pair of r.f. tubes where these requirements are not exceeded. The chapter on amplitude modulation should be consulted for information on determining the voltage swing and modulating power for a particular tube type. The turns ratio required in T_{1}, primary to secondary, will range from 1 to 1 to 0.8 to 1 for various r.f. tubes, since the peak output voltage of the tube across the primary of the transformer is about 200 volts. An inexpensive driver transformer, of the type used for coupling a triode or pentode to Class AB_{2} tetrodes of the 6 L .6 class, will be satisfactory. It should preferably have two or three primary taps so the turns ratio can be adjusted. Transformer coupling is used in preference to direct coupling (i.e., "elamp-tube" modulation of the sereen) because of simpler adjustment, case of modulating 100 per cent, and because it permits using a low-voltage supply for the sereen grid of the modulated r.f. amplifier.

The speed input stage uses a 6s.J7 pentode and is followed by a 6.55 voltage amplifier. Miniature tabe equivalents may be substituted if desired. The $6 V^{6}$ output stage uses negative feed-back, the feed-back voltage being taken from the plate circuit by means of the voltage divider $R_{10} R_{11}$ and applied in series with the plate resistor, R_{7}, of the
preceding stage. Negative feed-back in the modulator is very desirable when a screen or control grid is to be modulated because the load on the modulator varies over the audio-frequency cycle, and feed-back reduces the distortion that arises from this cause. In this circuit the percen feedback is chosen to be as large as possible while still retaining enough voltage gain for normal voice intensity into a crystal microphone.

The lead between the microphone connector and the 6SJ7 grid should be shielded, as should also the first-stage grid-resistor, R_{1}. Such shielding prevents hum pick-up on the grid lead. Aside from this, no special precautions need be observed in construeting the amplifier, beyond keeping the heater leads well away from the plate and grid leads of the tubes.

The heater requirement for the unit is 1 ampere at 6.3 volts. Plate-supply requirements vary from about 70 to 85 ma . at 250 volts, depending on the screen current taken by the tube being modulated. R_{13} should be adjusted, by means of the slider, to give the proper d.c. voltage at the sereen of the modulated stage. This voltage will, in general, be approximately half the d.c. screen voltage recommended for c.w. operation, as deseribed in the chapter on amplitude modulation. The method of adjustment for linear modulation is also covered in that chapter.

The same circuit, omitting the d.c. screen supply through R_{3} and substituting a suitable bias supply, may be used for control-grid modulation of either triode or tetrode r.f. amplifiers. The method of adjustment is described in the ehapter on amplitude modulation.

Fif. 9.12 - Modulator circuit for sercen or control grid modulation.
$\mathrm{C}_{1}, \mathrm{C}_{4}-10-\mu \mathrm{f}$. 25 -volt electrolytic.
$\mathrm{C}_{2}-0.1-\mu \mathrm{f}$.
$\mathrm{C}_{3}, \mathrm{C}_{5}-0.01-\mu \mathrm{f}$.
C. $-50 . \mu \mathrm{f}$. 50 -volt electrolytic.
$\mathrm{C}_{7}, \mathrm{C}_{8}, \mathrm{C}_{9}-10-\mu \mathrm{f}$. 450 -volt electrolytic.
$\mathrm{R}_{1}-2.2$ megohms, $1 / 2$ watt.
$R_{2}, R_{B}-1500$ ohms, $1 / 2$ watt.
$\mathrm{R}_{3}-1$ megohm, $1 / 2$ watt.
$\mathrm{R}_{4}-0.22$ megohm, $1 / 2$ watt.
R_{5} - 1-megohm potentiometer, audio taper.
$\mathrm{R}_{7}, \mathrm{R}_{8}-0.1 \mathrm{megohm}, 1 / 2$ watt.
$\mathrm{R}_{9}-270$ ohms, 1 watt.
$\mathrm{R}_{10}, \mathrm{R}_{12}-47,000$ ohms, 1 watt.
$\mathrm{R}_{11}-27,000$ ohms, 1 watt.
$\mathrm{R}_{13}-25,000$-ohm adjustable, 25 watts.
J_{1} - Microphone jack.
T_{1} - Audio driver transformer (see text).

25-Watt Modulator using Push-Pull 6BQ6GTs

The speech amplifier-modulator shown in Figs. 9-13 to $9-15$, inclusive, can be used for plate modulation of low-power transmitters running 25 to 50 watts input to the final stage. As shown, it is capable of an audio output of 25 watts, but this can be inereased to 30 watts by a simple modification. The $6 B Q 6$ s in the output stage are operated in Class AB_{1}. Inexpensive receiver-type replacement components are used throughout, except for the modulation transformer.

Circuit

The speech amplifier uses a pentode first stage resistance-coupled to a triode second stage. This combination gives suflicient gain for a erystal microphone. The pentode and triode are the two
keved, $S_{2 B}$ may be used to control the transmitter plate voltage, usually by being connected in the 115 -volt circuit to the plate-supply transformer.

The "phone-c.w." switch, S_{3}, short-circuits the secondary of the modulation transformer, T_{3}, when the transmitter is to be keyed, and also opens the center-tap of T_{1} so plate voltage cannot be applied to the modulator.

The power supply uses a reeeiver replacementtype transformer with a condenser-input filter. Additional filtering for the speech-amplifier stages is provided by the $10-\mu f$. capacitors and the series resistors in the plate circuits. Hum is also reduced by the VR-150 used to regulate the modulator sereen voltage. Note that the regulator

Fig. 9-1.3 - A modulator for transmitters operating at plate input up to 50 watts. The speech amplifier and modulator are at the left in this view; power supply components are at the right.
sections of a dual tube, the 6AN8. Transformer coupling is used between the triode and the modulator tubes, in order to get push-pull voltage for the fl3Q6-G'T grids. Cathode bias is used on the final stage.

A low-caparitance coupling caparitor is used between the first and second stages to reduee the low-frequency response, and the primary of the output transformer is shunted by C_{2} to reduce the amplification at the high-frequener end. C_{1}, on the first stage, also tends to reduce highfrequeney response in addition to by-passing any r.f. that might be picked up on the mierophone cord. These measures confine the frequencer response to the most useful portion of the voire range.
S_{2} is the "send-recrive" switch. (ne section opens the power transformer center-tap, thus cutting off the plate voltage during receiving periods. The other section can be eonnerted to the key terminals on the transmitter, as indieated in the circuit diagram, to turn the transmitter on and off along with the modulator. If the transmitter is one in which the oscillator is not
tube is connected between the screens and cathodes so that the actual sereen voltage is 150) and is not reduced by the drop in the cathode bias resistor. Maintaining full screen voltage is important if the rated output is to be secured.

Operating

The $6 B Q 6-G T$ amplifier requires a plate-toplate load of 4000 ohms, and the output transformer ratio must be chosen to reflect this load to the plates (see later section on matching a modulator to its load). For most small tramsmitters running 30 to 50 watts input to the final stage a 1-to- 1 transformer ratio will be satisfactory, since the modulating impedance of such transmitters usually is in the neighborhood of 4000 ohms. The secondary of T_{3} is conneeted in series with the d.e. lead to the plate (and screen, if a sereen-grid tube) of the (laass C amplifier to be modulated. For further details, see the chapter on amplitude modulation.

For cherking the modulator operation a milliammeter ($0-200$ range satisfactory) may be connected in the lead to the center-tap of the

Fig. 9.If-Circoit diagram of the 25-watt modulator. Capacitances below 0.001μ. are in $\mu \mu$. Capacitors up to 0.01μ. are ceramic. Resistors are $1 / 2$ watt unlens otherwise simerified.
$\mathrm{I}_{1}-8$ henrys, 150 ma.
$S_{1}-$ S.p.s.t. toggle.
S_{2} - I).p.i.t. toggle.
S_{3}-2-pole 2-position rotary (Centralah P ($\mathrm{A}-2003$).
'l' - I'ower transformer, 650 volts e.t., 150 ma. .
volts, 3 amp.; 6.3 volts, 5 amp.
' ${ }^{2}$ - Interstage andio, siogle plate to p.p. grids, pri. to total sec. ratio I to 3 .
' ${ }^{\prime} 3$ - Modulation transformer, multimateh type (U'ГC S-19).
primary of T_{3}. Without voice input to the microphone the plate eurrent should be approximately 50 ma. When modulating the transmitter, the current should "kiek" to 60 or 70 ma.; this will usually represent 100 per cent modulation. If the amplifier can be tested with a single-tone signal replacing the microphone, the plate current will be about 165 ma . at full output.

The audio power output can be increased to
about 30 watts, sufficient for modulating an 807 at its full phone rating, if the 6BQ6-GT cathodes are grounded and bias of about 30 volts from a fixed source such as a small battery is applied to the grids. The battery may be substituted for the eathode resistor if the ground connection is moved from the center tap of the secondary of T_{2} to the cathodes of the 6BQG-GTs.
(From QST, December, 1955.)

Fig. 9.15- Lider-chassis view of the 6BQ6-G'I' modulator. The two large (apacitors at the right are the filter capacitors in the power supply. The modulator bias resistor and by-pass capacitor $\left(R_{1} C_{3}\right)$ are at lower left. Leads from the modulation transformer go through the three holes in the chassis. Shielded wire is used for heater, mierophone imput, and gain-control leads.

40-Watt Class AB $_{1}$ Modulator

The modulator unit shown in Figs. 9-16 to $9-18$, inclusive, has an undistorted power output of somewhat better than 40 watts. It uses a pair of 807 s as Class $\mathrm{A} 3_{1}$ power amplifiers and is complete with an inexpensive type of power supply. It may be used to modulate any Class C amplifier operating at a d.c. plate power input of 80 watts or less.

Speech Circuit

The speech amplifier uses a high $-\mu$ dual triode as a two-stage resistance-coupled amplifier, followed by a medium- μ triode. The latter is transformer-coupled to the modulator grids. The gain from the microphone input to the 807 grids is more than ample for crystal and other mierophones of similar output level. Battery bias is used for the modulator grids since it is the simplest method and a small battery such as those made for hearing-aids can be used. Since no current is taken from the battery, its life is the same as the normal shelf life.
The frequency response of the amplifier is adjusted to put maximum energy in the range where it contributes most to speech intelligilility; that is, the output is highest between 500 and 1200 eycles and drops off gradually on cither side. The lower frequencies are reduced by low values of coupling apacitance between the resistancecoupled stages, and the high-frequeney end is attenuated by C_{l}. Further high-frequency attenuation, with particular reference to such components generated in the modulator itself, is provided by capacitor Con eonnerted across the output terminals of the modulation transformer.

Power Supply

The power supply uses a replacement-type transformer with a bridge rectifier to obtain dual output voltages, nominally 250 and 600 volts. The bridge reguires four rectifier elements but makes it possible to obtain twice the d.c. output
voltage that would be secured from a simple center-tap rectifier. The power transformer is not overloaded, however, partly because of the choke-input filter and partly because of the low average current drain of the modulator in normal voice operation.

A separate filament transformer is used for the two 6 N 5 GT rectifiers, with its secondary connected to the center tap of the high-voltage winding of the power transformer. With this arrangement the peak heater-cathode voltage on each tube is about 500 volts, slightly over the rating for these tubes but not excessively so.

The higher output voltage from the bridge rectifier necessitates using filter capacitors having higher working ratings than the ordinary electrolytic, so two 450 -volt units are connected in series for the high-voltage filter. A single-section filter is used for this voltage. The bleeder consists of two resistors connected as shown in order to divide the voltage equally between the two electrolytic capacitors.

The d.c. voltage at the center tap of the highvoltage winding of the power transformer is approximately half the d.e. output voltage from the bridge rectifier (with the 6 K 5 GTs , the transformer secondary forms an "inverted" centertap rectifier system) and so offers a convenient means for taking off a low voltage to operate the speech amplifier, the driver, and the modulator sereens. This tap is more extensively filtered than the high-voltage supply, since better smoothing is needed for the low-level stages. Only the 8 -henry, 100 -mat choke is common to both filters.

With the values shown in Fig. 9-17 the hum level (measured in the absence of signal) is about 40 db . below the full output of the modulator.

Control Circuits

With this type of power supply rircuit it is important that the 6X5GT heaters be permitted

l'ig. 9-16-Class AB1 modulator using 80° s for 40 watts andio output. The power-supply transformer and rectifier tubes occupy the left-hand scction of the chassis. The speech amplifier is in the center and the modulator tubers and output transformer are at the right.
'l'he controls, left to right, are the power switches, s_{2} and s_{3}, the sendrecejve switch. Si, microphone input connector. J_{1}, gain control, R_{1}, and at the far right, the pilot light.

Fif. 9-17- Circuit diagram of the 40 -watt modulator. Capacitances below 0.001μ f. are given in $\mu \mu \mathrm{f}$; capacitors other than electrolytic may he either paper or ceramic, 600 -volt rating. Resistors are $1 / 2$ watt unless otherwise indicated.
C. $2-0.002$ to $0.004 \mu \mathrm{f} ., 600$ volts. U'se higher value with lower Class C load resistances.
C a - Dual electrolytic, $10-10 \mu \mathrm{f} ., 450$ volts.
(.4-1)ual electrolytic, $8-16 \mu \mathrm{f}, \mathrm{4} 5$) volts.
R_{1} - Carbon potentimmeter, ausio taper.
J_{1} - Microphone connector (Amphenol P(C131).
T_{1} - Interstage audio transformer, plate to push-pull grids; 10 -ma. primary; 3 to 1 turus ratio, total secondary to primary.
$\mathrm{T}_{\mathbf{2}}$ - Monduation transformer, adjustable ratio, app. 30-watt rating (LTC CJM-1).
T_{3} - Filament transformer, 6.3 volts at 1.2 amp.
T_{4} - Power transformer, 350 volts each side c.t., 90 ma.; 5 volts at 2 amp.; 6.3 volts at 3 amp.
s_{1} - D.p.d.t. togale.
$\mathrm{S}_{2}, \mathrm{~S}_{3}-\mathrm{S} . \mathrm{p} . \mathrm{s} . \mathrm{t}$. toggle.
$13 \mathrm{I}_{1}-22.5$-volt battery (hearing aid type satisfactory)
to come up to full operating temperature before plate voltage is applied. I'ower can be applied to the 6 X 5 GT heaters by means of S_{2}; then after 10 or 15 seconds S_{3} may be elosed. Both swit ches are then left closed during the operating period.

Send-receive switching is accomplished by S_{1}. ${ }^{1}$)uring receiving, S_{1} is open so that $S_{1 A}$ removes the plate voltage from the speech-amplifier stages and the screen voltage from the 807 s . This makes the modulator inoperative. $S_{1 B}$ can be used to control any suitable circuit in the transmitter; for example, it can substitute for the kev, or can be used to turn the 115 -volt cirenit of the transmitter plate supply on and off.

Construction

The modulator is built on a $4 \times 17 \times 3$-inch steel chassis, the 17 -inch length being selected so
that a standard 19-inch relay-rack panel can be used for mounting the unit if desired. Other chassis sizes and layouts may be used if the builder prefers.

The principal constructional precaution to be observed is that the output transformer, T_{2}, should not be too close to the low-level speech amplifier circuits. Adequate separation will reduce feed-back through stray coupling and thus reduce any possible tendency toward self-oscillation. The interstage transformer, T_{1}, should be kept well separated from the power transformer, to minimize hum pick-up.

The power transformer is mounted on top of the chassis with its leads rumning through holes with rubber grommets. The two chokes and the filament transformer are secured to the botiom and sides of the chassis, with the small (4.5-

Fip. 9-18 - Bottom view of the 40 -watt modulator. The 8 -henry input choke of the power supply is at the extreme left, mounted on the chassis wall. Lnder it (not visible) is the 4.5 -henry ehoke for the low-voltage supply. The dual
 voltage filter eapacitors and hleeder resistors. Just below them is the filament transformer, T_{3}, mounted on the rear chassis wall.
'The soekets for the speceh-anplifier tubes are in the center, with the dual audio by-pass capacitor, Cia, just to the left. The leads coming through the grommets are from the interatage transformer, T_{1}. The bias fattery and its mounting strap are to the right of the 80^{-}sockets. C_{2} is mounted on the modulation transformer terminals, at the right. Audio output and the leads from sis are conneeted to the external eireuit through the four-prong chassisnounting connector at the right-hand end of the rear chassis wall.
henry) choke held in place by two of the screws that mount the power transformer. It is necessary to cut a large hole - about 3 inches in diameter - for mounting the modulation transformer; all of the comneting lugs on this transformer are on the bottom of the case, so the hole must be large enough to allow the leads to be connected.
When mounting the two series-connected filter capacitors and their 20,000 -ohm voltage-equalizing resistors, care should be taken to keep the resistors from physical contact with other components. These resistors operate at relatively high temperature and could damage other components by direct contact.

The hearing-aid battery that furnishes the $221 / 2$-volt bias for the 807 s is fastened under the chassis by a small strap, made from buass or aluminum, held in place by the same serews that hold the 807 tube sockets.

In wiring the speech-amplifier section, leads to grids and plates should be kept short and separated as much as possible from heater wiring. The heater leads should be run along the chassis corner except where they must be brought out to reach the tube sockets. Shiclded wire should be used for the lead from J_{1} to the first grid, and also for the gain-control leads. All these measures help reduce stray hum pick-up in the low-level stages.

Operating Values

The optimum plate-to-plate load resistance for 807 s operating Class AB_{1} with 600 volts on the plates and 250 volts on the sereens is approximately 12,500 ohms. At full drive - peak value of signal between the grids equal to twice the bias voltage - the peak power output has a sinewave equivalent of 48 watts. Not all of this can be realized, since there is some loss in the modula-
tion transformer, but the nominal 40 -watt rating is conservative.

The modulation-transformer tap numbers indicated in Fig. 9-17 are recommended (assuming that the type of transformer specified is to be used) for use with transmitters having either a single 6146 or single 807 in the stage to be modulated. Although the reflected load resistance at the modulator plates is a little high in the case of either tube, the power output is still ample for plate-and-screen modulation of either the 6146 or 807 at their maximum phone ratings.

For other r.f. tubes or different voltages and currents, or for a different type of modulation transformer, the load resistance should be calculated as described in the chapter on amplitude modulation and the transformer tips chosen accordingly.

The d.e. power supply voltages in the modulator unit (line voltage 120) should measure 690 and 260 for the high and low supplies with no audio input. The voltages at full output are indieated on the diagram. The modulator idling current is about 50 ma . with a new 22.5 -volt (actual voltage 24.5 volts) battery for bias. With tone input and the gain adjusted for maximum undistorted output, the modulator plate current is about 100 ma . (This current may be measured by inserting a milliammeter at point X in the diagram.) However, with speech the modulator plate current should not kick beyond 60 to 65 mal. on voice peaks; this represents full output on modulation peaks because of the lower average power content of voice waveforms ats compared with a pure tone.

If e.w. as well as phone operation is to be employed, it is desirable to make provision either in the modulator or the r.f. unit for shortcireuiting the modulation transformer secondary when the transmitter is being keyed.

SPEECH AMPLIFIERS AND MODULATORS

The modulator shown in the arcompanving photographs uses a pair of 6146 s in $\mathrm{AB} 3_{1}$, and with the exereption of the preamplifier unit is complete with power and bias supplies on a $7 \times 17 \times$ 3-inch chassis. The preamplifier is a soparate unit so that the mirrophone input and getin eontrol can be within easy reach at the operating position.
the plate to get at the wiring. Rubber feet are mounted on the other removable side of the box, which beeomes the bottom when the unit is in use.

The preamplifier is comected to the modulator through a 10 -foot length of cable (Alpha Wire Co. No. 1242) having one shielded and two unshielded conductors. The shielded wire, connected

Fig. 9.19 - 'I'his (Jass Al3 modulator is complete with all supplies. Lsing two 6146 s , it is capable of audio outputs up to 120 watts, depending on the plate voltage selected. The first two stages of speech amplification arr buili into a small box that may be used at the operating position while the main chassis is installed in any convenient location.

Components on the chassis are, left to right, power transformer and 816 reetifiers, filament transformer and plate filtar choke, 61.46s and V'R tubes, modalation transformer and, in the right foremround, the 6 C 4 final speech amplificr stage.

The modulator and power supply have no controls that need be manipulaterl, so can be installed in any converient spot. The modulator-power supply unit ineludes one stage of speech :mplification, and also is equiperd with a splatter filter and :n :undio takeoff for 'scope monitoring.

The audio power that can be obtained (hased on measurements) is as follows:

.'ominal

 'late l"ollaur
500) volts

(i0) volts
750 volt:

Jourer Oufpul
75 watts
(1.) watts

120 watts

Plate-to-I'lute lonad Resistance $42(0)$ ohums 5200 ohans 67(0) ohans

Suitable sets of romponents for all three of the voltages listed above are readily availathle, so the power level ritn be seloceted to suit the (lass C amplifier to be modulated. The modulator shown in the photographs is set up for (600)-volt operation, but sutlicient chassis area has been atssigned to the power and modulation transformers to ancommodate the next larger size of the sume style. Other thath these two transformers, all other components are the simme regurdess of the voltage level.

Preamplifier

The presmplifier cirruit, shown in Fig. !-22, is built in : 2 hy + by + oluminum bex. It uses : $12 . \mathrm{XT}$ in two resistancereoupled triode stages. The $12: X 07$ is mounted on a smatl bracket fisstened to one removable side of the box. With the exerption of the mierophone connector and gain rontrol. which are on one edge of the box. and the comeretor, f_{2}, on the opposite adye, all compoments ate on this sime plate, moment betwere appropriate tubr-socket pins and tio-point strips. Enough lead length is allowed from the romponents on the box itwolf to permit teking off
to Pin 3 of J_{2} in Fig. 9-22, is used for the audio output. The shield is the common ground conneection through the able. One of the other two wires is used for plate current and the last for filament current. The capacitance of the shielded

Fig. 9-20 - The preamplifier removed from its 2 by 4 by 4 box.
wirr shunts the output eircuit and thus reduces the high-frequency reponse. This is compensated for in the modulator unit.

Modulator and Power Supply

The cireuit diagram of the modulator and power supply soction is given in Fig. 9-2:3. The "high-boost" cireuit, consisting of the two resistors and $270-\mu \mu$ f. condenser associated with the grid of the (iCt spech amplifier, compensates for the drop in highs in the eable coming from the preamplifier. 'The modulation transormer is a multimate'h type delivering output to the load through a splatter filter. The three 1 -megohm resistors form a voltage divider for delivering about $1 / 3$ of the total audio output voltange direect to the horizontal plates of a monitoring 'scope for

Fig. 9-21-Buttom view of the modulator and power supply. The soekets at the upper left are for the 816s. The splatter filter choke is mounted on the lefthand chassis wall, using small cone stand-offs as tic points for the highvoltage connections. The large resistor to the left of the filter condenser is the dropping resistor for the low-voltage cirenit: the filter condenser is supportell from the rear (lower, in this picture) chassis wall. The 6 C. 4 speed amplifier eircuit is at the upper right, with a shielded lead earrying the andio input to it from the four-prong soeket, J_{3}, mounted on the rear wall of the chassis. T_{1}, the interstage audio transformer, is to the left of the 6 C .4 soehet.

Bias-supply eomponents, with the siception of the output potentiometer, R_{1}, are mounted on the right hand ehassis wall. R_{1} is on the rear wall, near the lowest of the four sockets in a vertieal line. The 'seope take-off circuit is at the lower right.
forming a trazezoidal pattern without amplifiers in the 'seope. The resistor values can be varied, if necessary, to secure the proper pattern width, although the total resistance should be maintained in the neighborhood of 3 megohms for a $0.005-\mu \mathrm{f}$. coupling condenser. This condenser should have a voltage rating equab to at least twiee the d.e. plate voltage or the modulated amplifier; 6000volt paper condensers in this capacitance are readily available and inexpensive.

Plate power for all tubes is supplied from one transformer. A single-section chake-input filter is used for the high voltage applieal to the plates of the 6146 s . This is droped through a resistor and a pair of VR-105s (0C:3) in series to provide a regulated voltage of 210 for the 6146 screens. This voltage also is applied to the plate of the

Fig. 9-22 - Preamplifier circuit. Fixed resistors are $1 / 2$ watt. Comdenser capacitances in μ f.
J_{1} - Microphone connector.
J_{2} - Four-prong conneetor, chassis mounting, male.

6Ct speech amplifier and, with further filtering by the $4700-o h m$ resistor and $8-\mu \mathrm{f}$. condenser, to the preamplifier tube plates through Pin 2 of J_{3}. The dropping resistor, R_{2}, should be aljusted to approximately 5000 ohms with a 500 -volt supply, 7000 ohms for 600 volts, and 10,000 ohms for 750 volts. This iuljustment can be checked when the modulator is in operation by observing whether the VR tubes go out on voice peaks. linough current should be bled through the regulators so that they staty ignited at all voice levels.

A pair of terminals is provided for connecting a milliammeter in series with the plate lead to the 6146 s . The meter itself can be placed in my convenient spot. If it is not used, a jumper nutst be connected aross the terminals. This circuit is fused to protect the meter.

The bias supply uses a small filiment transformer, ' ${ }_{4}$, operating from the reguar filament transformer, T_{3}, to provide 115 volts for the bias rectifier and filter. Bias is adjusted to the proper value by means of R_{1}.

Separate ace input connectors are used for the filament and plate supplies; when S_{1} and S_{2} are closed these can be controlled by remote switches. The bias supply goes on with the filaments, and since there is no time lag in the selenium rectifier the 6146 are always protected.

Splatter Filter

The splatter filter constants should
bo baved on the modulating impedance of the Class C amplifier as described earlier in this chapter.

The choke is a "television" power supply filter thoke modified to obtain the desired inductance by widening the air gap, using paper and cardhoard spacers. Measured values of inductance with various air gaps are shown in Table 9-II. In reassembling the choke do not use the "finishing" laminations that overlap the I sections on each side of the core. The choke in the photograph is held together by clamps made from tempered Presdwood. The i'resdwood mounting also serves to insulate the core from the chassis.

Operating Data

With sine-wave input, the plate eurrent at full output is 240 mat, when the load is adjusted to the aupropriate value for the plate voltage in use, as listed eartier. This maximum current is practically the same at all plate voltages listed, since the plate dissipation rating of the 61.16 does not permit using a bias value that gives a very large value of no-signal plate current. The grid bias

TABLE 9-II

Measured inductane values for various air-gat, spacings. " 1-henry 300-ma," filter choke (Stancor C-2326) with 7 layers (approxinately 30 per cent of thris) removed.

Air aap, inches	Induclance, henrys
0.003	0.71
0.010	0.62
0.020	0.48
0.02 .5	0.46
0.050	0.36
0.075	0.31
0.100	0.28
0.125	0.26
0.15	0.24

should be adjusted for a total plate current that represents a no-signal input of slightly under 50 watts at the particular plate voltage usef.

The voltage gain from the microphone input to the modulator grids is such that full output can le secured with an input voltage of about 3 millivolts, r.m.s.
(Originally deseribed in QST for Devember, 1954.$)$

JUMPERS IN VR TUBES
($i_{1}, \mathrm{C}_{2}-1600$-volt paper. See text.
R_{1} - (l3ias control) $\mathbf{5 0}, \mathbf{0} 00$-ohm potentiometer, preferably wire-wound.
$R_{2}-10,000$ ohms, 50 watts, adjustable.
l.1-See text.
(:R - Selenium rectifier, 20 ma, or larger, for 11.7-volt operation.
$J_{3}-$ Four-prong connector, chassis monnting, female. J_{4} - Phono connector.
$J_{5}, J_{6}-115$-volt ronnector, chassis mounting, male.
$\mathrm{s}_{1}, \mathrm{~s}_{2}$ - S.p.s.t. toggle switel.

Fig. 9.23 - Modulator and power supply, Capacitances in μ f. unless otherwise specified. Fixed resistors are $1 / 2$ watt except as noted.
' F ' - Interstage audio, sce./pri. ratio 3:1, push-pull secondary ("llbordarson 'T'20419).
${ }^{\prime}{ }^{\prime}{ }_{2}$ - Multimatifh modulation transformer (UTPC
 power level).
I_{3} - Filament transformer, 6.3 volts at 8 amp.; 5 volts at 3 amp. ('riad F゚-30A).
'T4-Filament transformer, 0.3 volts at $1 / 2$ amp. ('líad F-14X).
'ls- Plate transformer. For 500 volts d.c.: 1235 v . r.t., 310 ma . ("'riad P- F) : for 600 volts d.c.: 1.5 .5 v, c.t., 310 ma . (Triad P-I1A): for 750 volts d.c.: 1 : 880 c.t., 310 ma. (l'riad type 1'131).

Modulators and Drivers

CLASS-AB AND -B MODULATORS

Class AB or B modulator eireuits are basically identical no matter what the power output of the modulator. The diagrams of Fig. 9-24 therefore will serve for any modulator of this type that the amateur may elect to build. The triode circuit is given at A and the circuit for tetrodes at B3. When small tubes with indirectly-heated eathodes are used, the cathodes should be connected to ground.

Modulator Tubes

The audio ratings of various trpes of transmitting tubes are given in the chapter containing the tube tables. Choose a pair of tubes that is (rapable of delivering sine-wave audio power equal to somewhat more than half the d.c. input to the modulated Class C amplifier. It is sometimes convenient to use tubes that will oprate at the same plate voltage as that applied to the Class C stage, becanse one power supply of adequate current capacity may then suffice for both stages.
In estimating the output of the modulator, remember that the figures given in the tables are for the tube output only, and do not include out-put-transformer losses. To be adequate for modulating the transmitter, the modulator should have

Fir. 9.24- Modulator rircuit diagrams. 'Tubers and circuit considerations are discussed in the lext.
a theoretical power capability about 25 per cent greater than the artual power needed for modulation.

Matching to Load

In giving audio ratings on power tubes, manufacturers specify the plate-to-plate load impedance into which the tubes nust operate to deliver the rated audio power output. This load impedance seldom is the same as the modulating imperlance of the Class C r.f. stage, so a mateh must be brought about by adjusting the turns ratio of the coupling transformer. The required turns ratio, primary to secondary, is

$$
x=\sqrt{\frac{Z_{\mathrm{p}}}{Z_{\mathrm{m}}}}
$$

where $N=$ Turns ratio, primary to secondary
$Z_{\mathrm{ml}}=$ Modulating impedane of Class C r.f. amplifier
$Z_{0}=$ Plate-to-plate load impedance for Class B tubes

Example: The modulated r.f. amplifier is to operate at 1250 volts and 250 ma . The power ingut is

$$
P=E I=1250 \times 0.25=312 \mathrm{watts}
$$

so the modulating power rexpired is $312 / 2=$ 150 watts. Increasing this by 25% to allow for losses and a reasonable operating margin gives $150 \times 1.2 \%=19 \%$ watts. The molulating im wetance of the (lass C stage is

$$
Z_{\mathrm{m}}=\frac{E}{I}=\frac{12.50}{0.2 .5}=5000 \text { oluns. }
$$

Froms the tube tables a pair of Class B tubos is selected that will give 200 watts output when working into a banoobm load, pate-to-ghate. The נrimaryotosecondary turns ratio of the modulation transformer therefore should be

$$
N=\sqrt{\frac{Z_{1}}{Z_{\mathrm{m}}}}=\sqrt{\frac{6 ;(00}{6(0) 0}}=\sqrt{1.38}=1.17 .3: 1
$$

The required transformer ratios for the ordinary range of imperdances are shown graphically in Fig. 9-25.

Many modulation transformers are provided with primary and secondary taps, so that various turns ratios can be obtatined to meet the reguirements of particular tube combinations.

It may be that the exact turns ratio required eamot be secured, even with a tapped modudation transformer. Small departures from the proper turns ratio will have no serious effect if the modulator is operating well within its capabilities: if the artual turns ratio is within 10 per cent of the ideal value the system will operate satisfactorily. Where the discrepaney is larger, it is usually possible to choose a new set of operating conditions for the Class C stage to give a modulating impedance that

Fig. 9-25- Transformer ratios for matrhing a (.Jas (: modulating impedance to the reguired flate-to-plate load for the Class IS modulator. 'I be ration given on the curves are from total primary to secomdary, Resistanere values are in kilolans.
can be matched by the turns ratio of the available transformer. This may require operat ing the Class (C amplifier at higher voltage and less phate rurrent, if the modulating impedanee must be increased, or at lower voltage and higher eurrent if the modulating impedance must be deereased. However, this process camot be carried very far without execeding the ratings of the Class (tubes for either plate voltage or plate current, even though the power input is kept at the same figure.

Suppressing Audio Harmonics

Distortion in either the driver or Class 13 modulator will cause a.f. hamonics that may lie outside the fropuency band needed for intelligible speerh transmission. While it is almost impossible to avoid some distortion, it is possible to cut down the amplitude of the higher-frequency harmonies.
The purpose of condensers C_{1} and C_{2} ancross the primary and secondary, respeetively, of the Class IS output transformer in Fig. !-2.4 is to reduce the strength of harmonies and unneressary highfrequency components existing in the modulation. The rondensers ace with the leakage inductane of the transformor winding to form a rulimentary low-pass filter. The values of caparitance required will depend on the load resistance (modulating impedance of the (lass C amplifier) and the leakage inductance of the particular transformer used. In gencral, capacitances between about 0.001 and $0.01 \mu \mathrm{f}$. will be required; the larger values are neersary with the lower values of load resistance. The voltage rating of earh condenser should at least be equal to the d.e. voltage at the transformer winding with which it is associated. In the case of (2, part of the total daparitancere re quired will be supplied be the plate by-pass or
blocking (aparitor in the modulated amplifier.
A still better arrangement is to use a low-pass filter as shown in Fig. 9-9, aven though elipping is not deliberately emphoyed.

Grid Bias

Certain triodes designed for Class B audio work (an be oproated without grid bias. Besides eliminating the grid-bias supply, the fact that grid current flows over the whole audio cycle represents a more constant load resistance for the driver. With these tubes the grid-return lead from the renter-tap of the input transformer serondary is simply connerted to the filament center-tap) or cathore.

When the modulator tubes require bias, it should always be supplied from a fired voltage source. Cathode bias or grid-lak bias cammet be used with a (lass Bamplifier: with both types the bias changes with the amplitude of the signal voltage, whereas proper operation demands that the bias voltage be unvarving no matter what the strength of the signal. When only a small amount of bias is required it can be obtained conventently from a few dry rells. When greater values of hias are required, a heavy-duty " 13 " battery may be used if the grid current does not exeed t() or 50 milliamperes on voice peaks. Fven though the batteries are charged be the grid eurrent rather than discharged, a battery will deteriorate with time and its internal resistance will increase. When the incrase in internal resistance beeomes appreriable, the battery temols to are like a gridleak resistor and the bias varies with the applied signal. Batterios should be checked with a voltmeter orcasionally while the amplifier is operating. If the bias varies more than 10 per cent or so with voice excitation the battery should be rephared.

As an alternative to batteries, a regulated bias supply may he used. This type of supply is desoribed in the power supply chapter.

Plate Supply

In addition to adequate filtering, the voltage regulation of the pate supply should be as good as it can be made. If the d.e. output voltage of the supply varies with the load eurrent, the voltage at maximum current determines the arnount of power that can be taken from the morlulator without distortion. A supply whose voltage drops from 1500 at no load to 1250 at the full modulator plate current is a 1250 -volt supply, so far as the modulator is coneromed, and anyestimate of the power output available should be based on the lower figure.

Good dynamic regulation-i.e., with sud-denly-applied loads - is equally as important as good regulation under steady loads, since an instantaneous drop in voltage on voice peaks adso will limit the output and cause distortion. The output condenser of the supply should have as much eapacitance as conditions permit. A value of at least 10μ. should be used, and still larger values are desirable. It is better to use all the available capacitance in a single-section filter
rather than to distribute it between two sections. It is particularly important, in the case of a tetrode Class 13 stage, that the sereen-voltage power-supply source have excellent regulation, to prevent distortion. The sereen voltage should be set as exactly as possible to the recommended value for the tube. The audio impedance between screen and cathode also must be low.

Overexcitation

When a Class 13 amplifier is overdriven in an attempt to secure more than the rated power, distortion inereases rapidly. The high-frequeney harmonies which result from the distortion modulate the transmitter, producing spurious sidebands which ean cause serious interference over a band of frequencies several times the chanmel width required for speech. (This can happen even though the modulation preentage, as defined in the chapter on amplitude modulation, is less than 100 per cent, if the modulator is incapable of delivering the audio power required to modulate the transmitter.)

As stated earlier, such a condition may be reached by deliberate design, in case the modulator is to be adjusted for peak elipping, But whether it happens by accident or intention, the sphatter and spurious sidebands can be eliminated by inserting a low-pass filter (lig. ()-9) between the modulator and the modulated amplifier, and then taking are to see that the acetual modulation of the r.f. amplifier does not exceed 100 per rent.

Operation Without Load

Excitation should never be applied to a Class 13 modulator until after the Class C: amplifier is turned on and is drawing the value of plate current required to present the rated load to the modukator. With no load to absort the power, the primary inpedance of the transformer rises to a high value and exressive audio voltages are developed across it - frequently high enough to break down the transformer insulation. If the modulator is to be tested separately from the transmitter, a resistance of the same value as the modulating impedance, and capable of dissipating the full power output of the modulator, should he conneeted arross the serondary.

DRIVERS FOR CLASS-B MODULATORS

Class AB_{2} and Class I3 amplifiers are driven into the gridcurrent region, so power is con-
sumed in the grid cirruit. The preceding stage or driver must be capable of supplying this power at the required peak audio-frequener grid-to-grid voltage. Both of these quantities are given in the manufacturer's tube ratings. The grids of the Chass B tubes represent a variable load resistance over the audio-frequency cyele, because the grid current does not increase diree tly with the grid voltage. To prevent distortion, therefore, it is necessary to have a driving source that will maintain the waveform of the sighal without distortion even though the load varies. That is, the driver stage must have grod regulation. To this end, it should be capathle of delivering somewhat more power than is consumed by the Class 13 grids, as previously described in the discussion on speed amplifiers.
'The driver transformer, T or T_{2} in Fig. 9-26, may couple directly between the driver tubes and the modulator grids or may be designed to work into a low-impedance ($200-$ or 500 -ohm) line. In the latter case, a tube-to-line output transformer must be used at the output of the driver stage. This tupe of coupling is recommended only when the driver must be at a considerable distance from the modulator: the second transformer not only introduces additional losses but also impairs the voltage regulation of the diver stage.

Fig. 9.26 - Triode driver circuits for Class B modulators. A, resistance coupling to grids; B, transformer coupling. R_{1} in A is the plate resistor for the preceding stage, value determined by the type of tube and operat. ing conditions as given in T'able 9.I. C_{1} and K_{2} are the coupling condenser and grid resistor, respertively; values also may be taken from Table 9.I.

In both circuits the output transformer, $T, T{ }_{2}$, should have the proper turns ratio to couple between the driver tubes and the Class 13 grids. T_{1} in 13 is usually a 2 : 1 transformer, seeondary to primary, R, the cathode resistor, shomld be caleulated for the partieular tubes used. The value of C, the eathode by -pass, is determined as deseribed in the text.

Driver Tubes

To secure good voltage regulation the internal impedance of the driver, as seen by the modulator grids, must be low. The principal romponent of this imperlance is the plate resistance of the driver tube or tubes as reflected through the driver tramsformer. Henee for low driving-source impedance the effective plate resistance of the driver tubes should be low and the turns rat io of the driver transformer, primary to secondary, should be as large as possible. The maximum turns ratio that can be used is that value which just permits developing the motulator grid-to-grid a.f. voltage required for the desired power output.

Low- μ triodes such as the 6 Bl ti have low phate resistance and are therefore good tubes to use as drivers for Clans Al_{2} or Class 13 modulators. Tetrodes such as the 61.6 make very poor drivers in this respect when used without negative fred-back, but with such fred-back the effertive plate resistance can be reduced to a value comparable with low- μ triodes

In seloeting a driver stage always choose Chass A or $A B_{1}$ operation in preference to Class AB_{2}. This not only simplifies the speech-amplifier design but also makes it easior to apply negrative feed-back to tetrodes for reduction of plate resistance. It is possible to obtain a tube power output of approximately 25 watts from 6Ldis without going beyond Class $A B_{1}$ operation; this is ample driving power for the popular Class B modulator tubes, even when a kilowatt transmitter is to be modulaterl.

The rated tube output as shown by the tube tables should be reduced by about 20 per rent to allow for losses in the Class B input transformer. If two transformers are used, tube-to-line and lino-to-grids, allow about 35 por cent for transformer losses. Another 25 per erent should be allowed, if possible, as a safety factor and to improve the voltage regulation.

Fig. ! 26 shows reprosentative rireuits for a push-pull triode driver using cathode bias. If the amplifier operates (lass a the cathode resistor need not be by-passed, because the aff. currents from each tube flowing in the cathode resistor are out of phase and cancel each other. However, in Class AB operation this is not true: considerable distortion will be generated at high signal levels if the cathorle resistor is not by-passed. The br-pass caparitanee required can be calculated by a simple rule: the cathode resistance in ohms multiplied by the by-pass capacitance in microfarids should equil at least 25,000. Tie voltage rating of the condenser shoald be equal to the maximum bias voltage. This can be found from the maximum-signal plate current and the cathode resistance.

Fig. 9.27 - Negative feed-back cirenits for drivers for Class B modulators. A - Single-ended heam-tetrode driver. If V_{1} and J_{2} are a 6.5 and $6 \mathbf{6}$, respertively, the following values are suggested: $R_{1}, 47,000$ ohms: $R_{2}, 0,47$ megohm; $R_{3}, 250$ olms; $R_{4}, R_{3}, 22,000$ ohms; $\left.C_{1}, 0.0\right] \mu \mathrm{f} .: \mathrm{C}_{2}, 50 \mu \mathrm{f}$.

IS - Push-pull beam-tetrode driver. If V_{1} is a 6.5 and V_{2} and J_{3} 61.63, the following values are suguested: R_{1}, 0.1 megohm; R_{2}, 22,000 ohms; $R_{3}, 250$ ohms; C., $0.1 \mu \mathrm{f} .: \mathrm{C}_{2}, 100 \mu \mathrm{f}$.
tionship betwern R_{4} and R_{5}. Circuit values for a typical tube combination are given in detail in Fig. 9-27.

The push-pull circuit in Fig. 9-2713 requires an audio transformer with a split secondary. The feed-back voltage is obtained from the plate of each output tube by means of the voltage divider. R_{1}, R_{2}. The blocking condenser, C_{1}, prevents the d.c. plate voltage from being applied to $R_{1} R_{2}$: the reactance of this comdenser should be low, compared with the sum of R_{1} and R_{2}, at the lowest audio frequency to be amplifiod. Also, the sum of R_{1} and R_{2} should be high (ten times or more) (ompared with the rated loud resistance for V_{2} and V_{3}.

In this circuit the feed-back voltige that is developed across R_{2} appears at the grid of V_{2} (or V_{3}) through the transformer secondary and grid-athode eircuit of the tube, provided the tubes are not driven to grid current. The per eent feed-back is

$$
n=\frac{R_{2}}{R_{1}+R_{2}} \times 100
$$

where n is the fred-bark percentage, and R_{1} and R_{2} are connected as shown in the diagram. The higher the feed-bark percentage, the lower the effective plate resistance. However, if the percentage is made too high the preceding tube, V_{1}, nay not be able to develop enough voltage, through T_{1}, to drive the push-pull stage to maximum output without itself generating harmonie distortion. Distortion in V_{1} is not compensated for by the feed-back cireuit.

If V_{2} and V_{3} are (ildis operated self-biased in Clanss $.1 B_{1}$ with a load resistance of 9000 ohms, V_{1} is a 6 J 5 , and T_{1} has a turns ratio of 2 -to-1,
total sceondary to primary, it is possible to use over 30 per cent feed-back without going bevond the output-voltage capmbilities of the 6 J 5 . Twenty per cont feed-back will reduce the effective plate resistance to the point where the output voltage regulation is better than that of 6 B 4 Hs or 2 A 3 s without fred-hack.

If the grid-athode impedance of the tubes is relativel low, as it is when grid current flows, the foed-back voltage decreases because of the voltage drop through the transformer secondary. The rircuit should not be used with tubes that are operated Class AB_{2}.

- SPEECH-AMPLIFIER CIRCUIT WITH NEGATIVE FEED-BACK

A circuit for a speech amplifier suitable for driving a Class 13 modulator is given in Fig. 9-28. In this amplifier the 6L6is are operated Class $\mathrm{A} 3_{1}$ and will deliver up to 20 watts to the grids of the Class Bamplifier. The feed-back cireuit requires no adjustment, but does require an interstage transformer with two separate secondary windings (split secondary).

Any convenient chassis layout may be used for the amplifier provided the principles outlined in the section on speech-amplifier construction are observed. The over-all gain is ample for a com-munications-type crystal microphone.

The output transformer, 7_{2}, should be selected to work between a 9000 -ohm plate-to-plate load and the grids of whatever Class B tubes will be used. The power-supply requirements for this amplifier are 145 ma . at 360 volts and 2.7 amp . at 6.3 volts.

$\mathrm{C}_{1}, \mathrm{C}_{5}, \mathrm{C}_{8}-20-\mu \mathrm{f}$. 25-volt electroletic.
$\mathrm{C}_{2}, \mathrm{C}_{9}, \mathrm{C}_{10}-0.1$ - f . 100 -volt paper.
$\mathrm{C}_{3}, \mathrm{C}_{6}-0.01-\mu \mathrm{f}$. (0)0-volt paper.
$\mathrm{C}_{4}, \mathrm{C}_{5,}, \mathrm{C}_{12}-10-\mu \mathrm{f}$. 1.00 -volt electrolytic.
(.11 - 100 - μ f. . 30 -volt electrolytic.
$111-2.2$ megohms, $1 / 2$ walt.
R2. $\mathrm{R}_{7}-1500$ ohms, 16 watt.
$\mathrm{R}_{3}-1.5$ mequhms, $1 / 2$ watt.
$1 h_{4}-0.22$ megolam, $1 / 2$ watt.
$\mathrm{H}_{5}, \mathrm{R}_{8}-47,0100$ ohms, $1 / 2$ watt.
R_{6} - 1 -megohn volume control.
$\mathrm{R}_{9}-0.47$ megohm, $1 / 2$ watt.
R_{10} - 1500 ohms, 1 watt.
$1_{11}-10,0100$ ohme. ${ }^{1} \frac{1}{2}$ watt.
$\mathrm{R}_{12}, \mathrm{~K}_{13}-0.1$ megohm, 1 watt.
$\left.\mathrm{R}_{44}, \mathrm{R}_{15}-22,0 \mathrm{~m}\right)_{\text {ohms, }} 1 \frac{1}{2}$ watt.
$1816-250$ ohms, 10 watts.
$\mathrm{R}_{17}-2000$ ohms, 10 watts.
T_{1} - Interstake audion with split secondary winding

T_{2} - Class is input tran-former to suit modulator tules.

Class B Modulator with Filter

Representative (lass IB modulator const ruction is illustrated beg the unit shown in Figs. (9-29) and !-31. This modulator includes a splatter

Fig. 9-29 - A typical Class 13 modulator arrangement. 'This unit uses a pair of 811 As, capable of an audio power ontput of 3.10 watts, and includes a splatter filter. The modulation transformer is at the left and the splatter choke at the riyht. All high-valtare terminals are covered so they camon he touched areidentally.
filter, $C_{1} C_{9} L_{1}$ in the cireuit diagram, Fig. ()-30, and also has provision for shopl-rifruiting the modulation transformer arondier when e.w. is to ine used.
The autio input tramsionmer is not built into this unit. it hoing assumed that Uis transormer with be induded it the driver assembly as is customary. If the modulator and aifeech amplifier-

Fiag. 9-30 - C Cirenit diawram of the Class 13 modulator.
 SR-300.)
K_{1} - D.p.d.t. relay, hightobltayr insulation (Advance tspe for).

'IT - Vabiable-ratio modulation transformor (Chicago Franaformer tspe CNIS-I).
I':- Vilament transoformer. fo. 3 ve, 8 ampo. It - 6.3 -vnit pilot lizht.
$\mathrm{X}_{1}, \mathrm{X}_{2}$ - Chasisisive its-volt phas, male.

$S_{1}-S_{0} p, \bar{n} t$, loggle.
driver are mounted in the same rack or eabinet, the length of leads from the driver to the modulator grids presents no problem. The bias required by the modulator tubes at their higher platevoltage ratings should be fed through the centertap on the serondary of the driver transformer. At a plate voltage of 1000 or less no bias is needed and the center-tap comeretion on the transformer ean be grounded.

The values of C_{1}, C_{2} and L_{1} depend on the modulating impedance of the ('lass ('r.f. amplifier. They can be determined from the formulas given in this chapter in the sedtion on high-level clipping and filtering. The splatter filter will be effertive regardless of whether the modulator operating conditions are chosen to give high-level dipping. but it is worth-while to design the systom for clipping at 100 per eent modulation if the tube curves are available for that purpose. The voltage ratings for C_{1} and C_{2} should at least equal the d.r. voltage applied to the modulated r.f. amplifier.

A relay with high-voltage insulation (artanally an antenna relay) is used to short-eircuit the

Fig. 9-31 - The filament transformer is mounted below the chassis. 'lhe relay is used as described in the text. C_{1} and \boldsymbol{C}_{2} are mounted on small stand-off insulators on the ehassis wall.
serondary of T_{1} when the relay coil is not energized. A normally-elosed contact is used for this: purpose. The other arm is used to close the primary areuit of the modulator plate supply when the relay is energized. Shorting the stansformer serondary is necessary when the r.f. amplifier is keyod, to prevent an inductive discharge from the transformer winding that would put "tails" on the keved characters and, with cathode keying of the amplifier, would catuse excessive sparling at the key rontats. The control rireuit should be arranged in such a waty that K_{1} is not energized during $r \cdot w$. operation but is energized by the send-receive switeh during 'phone operation.

Careful attention should be paid to insulation since the instantaneous voltages in the secondary rireuit of the transformer will be at least twide the d.e. voltage on the r.f. amplifier. Stand-off insulators are used in this unit wherever necessary, imeluding the mounting for the relay.

Checking Amplifier Operation

An adequate job of checking speeeh amplifiers can be done with equipment that is neither elaborate nor expensive. A simple set-up is shown in Fig. 9-32. The construction of aimple audio oscillator is deseribed in the chapter on measuremonts. The audio-frequency voltmeter can be either at vacuum-tube voltmeter or a multirange volt-ohn-milliammeter that has a rectifier-t ype a.c. range. The headset is included for aural checking of the amplifier performance.

An audio oseillator usually will have an output control, but if the maximum output voltage is in excess of a volt or so the output setting may be rather eritical when a high-gain speoch amplifier is being tested. In such gases an attonuator such as is shown in Fig. 9-32 is a eonvenience. bach of the two voltage dividers roduces the voltage by a factor of roughly 10 to 1 , so that the over-all attenuation is about 100 to 1 . The relatively low value of resistance, R_{4}, across the input terminals of the amplifier also will minimize stray hum pick-up) on the conneeting leads.

As a preliminary check, cover the microphone input terminals with a metal shied (with the audio oscillator and attenuator disconnested) and, while listening in the headset, note the hum level with the amplifier gain control in the off position. The ham should be very low under these conditions. Then inerease the gain-control sotting to maximum and observe the hum; it will no doubt increase. Next connert the audio orrillator and attenuator and, starting from minimum signal, increase the audio input voltage until the voltmeter indicates full power output. (The voltage should equal $\sqrt{P R}$, where P is the experted power output in watts and R is the load resistance - R_{6} in the diagram.) While increasing the input, listen carefully to the tone to see if there is any change in its character. When it begins to sound like a musical oetave instead of a single tone, distortion is beginning. Assuming that the output is substantially without audible distortion at full output, substitute the microphone for the audio oscillator and speak into it in a normal tone while watching the voltmeter. Reduce the gain-control setting until the meter "kicks" nearly up to the

Fig. 9.32 - Simple test set-up for cheching a speed amplifier. It is not necessary that the frequency range of the audio oscillator be continuously variable: one or more "spot fre(fuencies" will be satisfactory, Suitable resistor values are: R_{1} and $R_{3}, 10,000$ ohms: R_{2} and R_{4}. 1000 ohans: $R_{\text {fo }}$ rated load resistance for amplifier output stage; R_{5}. determine lystrial for comfortable headphone level (25 to 100 ohms, ordinarily); use two or more resistors in parallel as a safety precontion. V is a high-resistance a.c. voltmeter, multirange rectifier type.
full-power reading on voice peaks. Note the hum level, as read on the voltmeter, at this point; the hum level should not exceed one or two per cent of the voltage at full output.

If the hum level is too high, the amplifier stage that is causing the trouble can be located by temporarily short-cireuiting the grid of each tube to ground, starting with the output amplifier. When shorting a particular grid makes a marked decrease in hum, the hum presumably is coming from a precerding stage, although it is possible that it is getting its start in that particular grid circuit. If shorting a grid does not decrease the hum, the hum is originating cither in the plate circuit of that tube or the grid circuit of the next. Aside from wiring errors, a defective tube, or

Fig. 9.3.3-'Test set-up using the oseillosenpe to check for distortion, These connertions will result in the type of pattern shown in Fig. 9.3 . the horizontal sweep being provided by the audio input signal. For waveform patterns, omit the comection between the audio ospillator and the horizontal amplifier in the scope, and use the horizontal linear sweep.
inalequate plate-supply filtering, objectionable hum usually originates in the first stage of the amplifier.

If distortion occurs below the point at which the expected power output is secured, the stage in which it is oceurring ean be located by working from the last stage toward the front end of the amplifier, applying a signal to each grid in turn from the audio oseiliator and adjusting the signal voltage for maximum output. In the case of push-pull stages, the signal may be applied to the primary of the interstage transformer - after disconnecting it from the plate-voltage source. Assuming that normal design principles have been followed and that all stages are theoretically working within their capabilities, the probatble eauses of distortion are wiring errors (such as accidental short-cireuit of a eathode resistor), defective components, or use of wrong values of resistance in eathode and plate eireuits.

Using the Oscilloscope

Speeeh-amplifier checking is facilitated considerably if an oscilloscope of the type having amplifiers and a linear sweep circuit is available. A typical set-up for using the oscillosoope is shown in Fig. !-3:3. With the connections shown, the sweep eireuit is not required but horizontal and vertical amplifiers are necessary. Audio voltage from the oseillator is
fed direatly to one oncilloseope amplifier (horizontal in this case) and the output of the speed amplifier is connected to the other. The seope amplifier gains should be adjusted so that each signal gives the same line length with the other. signal shut off.

Conder these conditions, when the input and output signals are applied simultaneously they are compared directly. If the speedh amplifier is distortion-free and introduces no phase shift, the resulting pattern is simply a straight line, as shown at the upper left in Fig. !--3!, making an angle of about 15 degrees with the horizontal and vertical axes. If there is no distortion but there is phase shift, the pattern will be a smonth collipse, as shown at the upper right. The greater the phase shift the greater the tendency of the ellipse to grow into a circle. When there is evenharmonic distortion in the amplifior one end of the line or ellipse becomes curved, as shown in the second row in Fig. 9-34. With odd-harmonie distortion such as is charactoristic of overdriven push-pull stages, the line or ellipse is curved at both ends.

Patterns such as these will be obtained when the input signal is a fairly good sine wave. They will tend to become complicated if the input waveform is complex and the speech amplifier introduces appreciable phase shifts. It is therefore advisable to test for distortion with an input signal that is as nearly as possible a sine wave. Also, it is best to use a frequency in the 500-1000 cycle range, sinee improper phase shift in the amplifier is usually least in this region. Phase shift in itself is not of great importance in an audio amplifier of ordinary design because it does not change the character of spech so far as the ear is concerned. However, if a complex signal is used for testing, phase shift may make it difficult to detect distortion in the oscilloscope pattern.

In amplifiers having negative feed-back, exeessive phase shift within the feed-hack loop may cause self-oscillation, since the signal fed back may arrive at the grid in phase with the applied signal voltage instead of out of phase with it. Such a phase shift is most likely to be assoriated with the output transformer. ()scillation usually oceurs at some frequency above 10,000 reves, although occasionally it will oreur at a very low frequency. If the pass-band in the stage in which the phase shift occurs is deliberately restricted to the optimum voiec range, as deseribed carlier, the gain at both very high and very low frequencies will be so low that self-oseillation is unlikely, even with large amounts of feed-back.

Generally speaking, it is easier to detect small amounts of distortion with the type of pattern shown in Fig. 9-34 than it is with the waveform pattern obtained by feeding the output signal to the vertical plates and making use of the lincar sweep in the scope. However, the waveform pattern can be used satisfactorily if the signal from the audio oscillator is a reasonably good sine wave. One simple method is to examine the output of the oscillator alone and trace the pattern on a sheet of transparent paper. The pattern

Fig. 9-3.4-1'ypical patterns ohtained with the connections shown in Fig . 9-33. Wepending on the number of stages in the amplifier, the pattern may slope upward to the right, as shown, or upward to the left. Also, depending on where the distortion originates, the curvature in the second row may appear either at the top or bottom of the line or ellipse.
given by the output of the amplifier can then be compared with the "standard" pattern by adjusting the oseilloseope gain to make the two patterns coincide as closely as possible. The pattern discrepancies are a measure of the distortion.

In using the oseilloscope eare must be taken to avoid introducing hum voltages that wili upset the measurements. Hum pick-up on the 'seope leads or other exposed parts such as the amplifier load resistor or the voltmeter can be detected by shutting off the audio oseillator and spech amplifier and commecting first one and then the other to the vertical plates of the 'soope, setting the internal horizontal sweep to an appropriate width. The trave should be a straight horizontal line when the vertical gain control is set at the position used in the actual measurements. Waviness in the line indicates hum. If the hum is not in the 'scope itself (cheek by diseonnecting the leads at the instrument) make sure that there is a good ground connection on all the equipment and, if necessary, shield the hot leads.

The oseilloseope can be used to good advantage in stage-by-stage testing to check waveforms at the grid and plate of each stage and thus to determine rapidly where a source of trouble may be located. When the 'scope is connected to circuits that are not at ground potential for d.e., a condenser of about $0.1 \mu \mathrm{ft}$. should be connected in scries with the hot oscilloscope lead. The probe lead should be shielded so that it will not piek up hum.

Amplitude Modulation

The type of modulation most commonly employed in amateur radiotelephony is called amplitude modulation (AM). The name arises from the fact that the methods of generating a modulated wave of a particular type all acomplish the desired result by varying the instantaneous amplitude of the r.f. output of the transmitter. As described in the chapter on circuit fundamentals, the process of modulating a signal sets up groups of frequencies called sidebands, which appar symmetrically above and below the frequency of the unmodulated signal or carrier. An amplitude-modulated signal actually consists of a carrier whiph does mol vary in amplitude plus sets of side frequencies or sidebands which in turn may or may not vary in amplitude. Modulation by a single-frequency, constantamplitude tone, for example, sets up side frequencies that do not vary in amplitude. Modulation by voice sets up bands of side frequencies that vary with the average spech amplitude.

Amplitude motulation is frequently deseribed as a process of "varying the amplitude of the carrier." A variation in amplitude does take place, when the composite signal as a whole is viewed in a circuit that accepts equally well all frequencies, carrior and sidebands, contained in the signal. The total r.f. output amplitude varies at the modulation-frequencey rate becaluse it is the resultant of the instantaneous amplitudes of the carrier and all side frequencies, which continually vary (at radio freguency) in both amplitude and phase relationships. Misunderstanding often oecurs because commonly no distinction is made between the carrier, which does not vary in amplitude at modulation frequener, and the signal as a whole, which does vary in amplitude with modulation. In this chapter the term "sigmal" is used for the composite effect of carrier plus sidebands.

It is illuminating to consider amplitude moduLation as a process of frequeney conversion or mixing, in which case the relationship between the carrier, modulating frequencies, and sidebands is straightforwand (sere chapter on fundamentals). The amplitude variations in the signal arise as a result of the mixing process. These amplitude variations are highly important from a design standpoint, since they set up cortain power requirements that must be met, so they are considered in detail in this chapter.

AM Sidebands and Channel Width

As described in the chapter on fundamentals, combining or mixing two frequencies in an appropriate circuit gives rise to sum and difference freguencies. Speech can be electrically reproduced, with high intelligibility, in a band of fre-
quencies lying between approximately 100 and 3000 cyeles. When these frequencies are combined with a radio-frequency carrier, the sidebands occupy the frequency spectrum from about 3000 cycles below the carrior frequency to 3000 cyeles above - a total band or "channel" of about 6 kilocycles. Actual speceh frequencios extend up to 10,000 eycles or so, so it is possible to occups a 20 -kc. chamel if no provision is made for reducing its width. For communication purposes such a chamel width represents a waste of valwable spectrum space, sinee a 6 -ke. chamel is fully adeguate for intelligibility. Oecupving more than the minimum chamel ereates unnecessary interference, so speceh equipment and transmitter adjustment and operation should be pointed toward maintaining the channel width at the minimum.

- THE MODULATED SIGNAL

In lig. 10-I, the drawing at A shows the unmodulated r.f. signal, assumed to be a sine wave of the dosired radio frequency. The graph can be taken to represent rither voltage or current.

In 1 , the signal is assumed to be modulated by the audio-frecpuency shown in the small drawing abowe. This frequeney is much lower than the carrier frequency, a necessary condition for good modulation, and alwatys the case in radiotelephony because the audio frequencies used are vary low empared with the radio frequency of the carrier. When the moklalating voltage is "positive" (above its axis) the signal amplitude is inereased abore its umodulated amplitude; when the modulating voltage is "negative" the signal amplitude is decreased. Thus the signal grows larger and smaller with the polarity and amplitude of the modulating voltage.

The drawings at (' shows what happens with stronger molalation. The amplitude is doubled at the instant the moluating voltage reaches its positive peak. On the negative peak of the modulating voltage the amplitude just reaches zero; in wher worts, the signal is completely modulated.

Percentage of Modulation

When a modulated signal is detected in a reeciver, the detector climinates the carrier and takes from it the modulation. The stronger the modulation, therefore, the greater is the useful receiver output. Obviously, it is desirable to make the modulation as strong or "heavy" as possible. A wave modulated as in lig. 10 -l C would produce considerably more useful audio output than the one shown at B .

The "depth" of the modulation is expressed
as a perentage of the ummodulated carrier amplitude. In either 13 or (:, Fig. 10-1, X represents the ummodulated carrier amplitude, Y is the maximum amplitude on the modulation up-peak, and Z is the minimum amplitude on the modulation downpeak.

The outline of the modulated wave is called the modulation envelope. It is shown by the thin line outlining the patterns in Fig. 10-1. In a properly-operating modulation system either side of this outline is an accurate reproduction

Fif. 10 - $/$ - Graphical representation of (A) r.f. output ummodulatod, (B) modulated 50%, (C) modulated 100%.
of the modulating wave, as can be seen in Fig. 10-1 at 13 and (; by comparing the upper outline of the modulation envelope with the waveshape of the modulating wave. The lower outline duplicates the upper, but simply appears upside down in the drawing.

The percentage of modulation is
$\%$ Mod. $=\frac{Y-X}{X} \times 100$ (upward modulation) or
$\%$ Mod. $=\frac{\Sigma-Z}{X} \times 100$ (downward modulation)
If the waveshape of the modulation is such that its peak positive and negative amplitudes are equal, then the modulation pereentage will be the same both up and down. If the two percentages differ, the lager of the two is customarily specified.

Power in Modulated Wave

The amplitude values shown in lig. $10-1$ correspond to current or voltage, so the drawings may be taken to represent instantaneous values of either. Now power varies as the square of either the current or voltage, so at the paak of the modulation up-swing the instantaneous power in the signal of Fig. 10-1C is four times the unmodulated carrier power (because the current and voltage both are doubled). At the peak of
the down-swing the power is zoro, since the amplitude is zero. These statements are true of 100 per cent modulation no matter what the waveform of the modulation. The instantaneous power in the modulated signal is proportional to the square of its amplitude at every instant. This fact is highly important in the operation of every method of amplitude modulation.

It is convenient, and customary, to describe the operation of modulation systens in terms of sine-wave modulation. Although this waveshape is seldom actually used in practice (voice waveshapes depart very considerably from the sine form) it lends itself to simple calculations and its use as a standard permits comparison between systems on a common hasis. With sine-wave modulation the averuge power in the modulated signal over any number of full cyeles of the modulation frequency is found to be $11 / 2$ times the power in the ummodulated carrier. In other words, the power output increases 50 per cent with 100 per eent modulation by a sine wave. This relationship is very useful in the design of modulation systems and modulators, because any such system that is capable of increasing the average power output by 50 per cent with sinewave modulation automatically fulfills the requirement that the instamtaneous power at the modulation up-peak be four times the carrier power. Consequently, systems in which the additional power is supplied from outside the modulated r.f. stage (e.g., plate modulation) usually are designed on a simewave basis as a matter of convenience. Modulation systems in which the additional power is scrured from the modulated r.f. amplifier (c.g., grid modulation) usually are more conveniently designed on the basis of peak power rather than average power.

The extrat power that is contained in a modulated signal goes entirely into the sidebands, hatf in the upper sideband and half in the lower, As a numerical rexample, full modulation of a 100 watt carmior by a sine wave will add 50 watts of sideband power, 25 in the lower and 25 in the upper sideland. Supplying this additional power for the sidebands is the object of all of the various systems devised for amplitude modulation.

No such simple relationship exists with complex waveforms. Complex waveforms such as speech do not, as a rule, contain as much average power as a sine wave. Ondinary spoch waveforms have about half as much avorage power as a sine wave, for the same peak: amplitude in both waveforms. For the same modulation perentage in hoth cases, the sideband power with ordinary speech will average only about half the power with sinc-wave modulation, since it is the peak amplitude, not the average power, that determines the percentage of modulation.

Unsymmetrical Modulation

In an ordinary electrie circuit it is possible to increase the amplitude of current flow indefnitely, up to the limit of the power-handling capability of the components, but it cannot very well be decreased to less than zero. The same

Fig. 10.2-Modalation by an unsymmetrical waveform. This drawing shows 100% downward modulation along with 300% upward mudulation. There is no distortion, since the modalation envelope is an arearate reproduction of the waveform of the modulating voltage.
thing is true of the amplitude of an r.f. signal; it can be modulated upuard to any desired extent, but it cannot be modulated douneard more than 100 per eent.

When the modulating waveform is unsymmetrical it is possible for the upward amd downward modulation percentages to be different. A simple case is shown in Fig. 10-2. The positive peak of the modulating signal is about 3 times the amplitude of the negative peak. If, as shown in the drawing, the modulating amplitude is adjusted so that the prak downward modulation is just 100 per eent $(Z=0)$ the peak upward modulation is 300 per cent ($Y=4, N$). The carrier amplitude is represented by X, as in Fig. 10-1. The modulation anselope reproduces the waveform of the morlulating signal accurately, hence there is no distortion. In such a modulated signal the increase in power output with modulation is considerably greater than when the modulation is symmotrical and has to be limited to 100 per cent both up and down. However, the peak amplitude, Y, is four times the earrier amplitude, X, so the prak pouer is 16 times the catrier power. When the upward modulation is more than 100 per eent the peak power capacity of the morlulating system obviously must be increased sufficiently to take care of the much larger peak amplitudes.

Overmodulation

If the amplitude of the modulation on the downward swing becomes too great, there will be a period of time during which the output is entirely cut off. This is shown in Fig. 10-3. The shape of the downward half of the modulating wave is no longer accurately reproduced by the modulation envelope, consequently the modulation is distorted. Operation of this type is called overmodulation. The distortion of the modulation envelope causes new frequencies to be generated (hamonies of the modulating frequency, which combine with the carrier to form new
sidebands correspondingly spaced from the carrier frequency) that widen the chamel occupied by the modulated signal. These spurious frequencies are commonly called "splatter."

It is important to realize that the chamel occupied be an amplitude-modulated signal is dependent on the waveshape of the modulation envelope. If this waveshape is complex and can be resolved into a wide band of audio freguences, then the ehamel oceupied will be correspondingly. large. The modulation-envelope waveshape shown in Fig. 10-3 will contain a large number of harmonics of the original sine-wave frequency of the modulating wave because of the sharp corners in the waveshape when it is "elipped" at the zero axis. However, if the origimal modulating wave had had exactly this same shape the channel oceupied be the modulated signal would be exactly the same. Basically, it is not the fact that the signal camot be modulated more than 100 per cent downward that causes splater, but the fact that any distorted waveshape contains higher frequencies than were present in the original undistorted wave. A wave that is efficiently clipped, as is the case with the waveshape shown in Fig. 10-3, will contain a wider range of spurious frequencies than one in which there are no highly abrupt changes in amplitude.

Fie. 10-3 - An overmodulated signal. The modulation envelope is not an accurate reproduction of the waveform of the modulating voltage. 'This or any type of distertion occurring daring the modatation process generates spurious sidebands or "splatter."

Because of this clipping action at zoro amplitude, it is important that care be taken to prevent applying too large a modulating signal in the downward direction. Overmodulation results in more splatter that is caused by most other types of distortion in a phone transmitter.

GENERAL REQUIREMENTS

For proper operation of an amplitude-modulated transmitter there are a few general requirements that must be met no matter what particular method of molulation may be used. Failure to meet these requirements is accompanied be distortion of the modulation envelope. This in turn increases the chamel width as compared with that required by the legitimate frequeneics contained in the original modulating watve.

Frequency Stability

For satisfactory amplitude modulation, the carrier frequency must be entircly unaffected by modulation. If the application of modulation causes a change in the carrier fiequeney, the frequeney will wobble back and forth with the modulation. This causes distortion and widens the channel taken by the signal. Thus unnceessary interference is caused to other tranmissions.

In practice, this undesirable frequency modulation is prevented by applying the modulation to an r.f. amplifier stage that is isolated from the frequenco-controlling oscillator by a buffer amplifier. Amplitude modulation applied direetly to an oscillator always is acompanied by frequency modulation. Inder existing PCO regulations amplitude modulation of an oseillator is permitted only on frequencias above $1.4 t$ Me. Below that frequency the regulations require that an amplitude-modulated transmitter be completely free from frequency modulation.

Linearity

At least up to the limit of 100 per cent upward modulation, the amplitude of the r.f. output should be directly proportional to the amplitude of the modulating wave. Fig. $10-4$ is a graph of an ideal modulation characteristic, or curve showing the relationship between r.f. output amplitude and instantaneons modulation amplitude. The modulation swings the r.f. amplitude back and forth along the curve A, as the modulating voltage altermately swings positive and negative. Assuming that the negative peak of the modulating wave is just sufficient to reduce the r.f. output to zero (modulating voltage equal to -1 in the drawing), the same moduating voltage peak in the positive direction $(+1)$ should cause the r.f. amplitude to reach twice

Fig. 10-4 - The modulation characteristic shows the relationship betwern the instantaneous amplitude of the r.f. output current (or voltage) and the instantaneous amplitude of the modulating voltage. The ideal characteristic is a straight line, as shown by carve A.
its ummodulated value. The ideal is a straight line, as shown by curve A. Such a modulation characteristic is perfectly linear.

A nonlinear chararteristic is shown by curve B. The r.f. amplitude does not reach twice the unmodulated carrier amplitude when the modulating voltage reaches its positive peak. A modulation characteristic of this type gives a modulation envelope that is "flattened" on the uppeak; in other words, the modulation envelope is not an exact reproduction of the modulating wave. It is therefore distorted and harmonies are generated, cousing the transmitted signal to orcupy a wider channel than is neressary. . I nonlinear modulation characteristic can easily result when a transmitter is not properly designed or is misadjusted.

The modulation capability of the transmitter is the maximum perrentage of modulation that is possible without objectionable distortion from nonlinearity. The maximum capability (an never exceed 100 per cent on the down-peak, but it is possible for it to be higher on the up-poak. The modulation capability should be as close to 100 per rent as possible, so that the most effective signal ean be tramsmitted.

Plate Power Supply

The d.e. power supply for the plate or plates of the modulated amplifier should be well filtereal; if it is not, phat (r-supply ripple will modulate the carrier and caluse amoying hum. The ripple voltage should not be more than about 1 per cent of the d.e. output voltage.

In amplitude modulation the plate current varies at an atudio-frequency rate; in other words, ant altcrating current is superimposed on the d.e. plate eurrent. The output filter condenser in the plate supply must have low reactanee, at the lowest audio freduency in the modulation, if the transmittor is to modulate equally well at atl audio frequencies. 'The condenser capatitance required depends on the ratio of d.e. phate current to plate voltage in the modulated amplifier. The reguirements will be met satisfactorily if the capacitance of the output condenser is at least equal to

$$
C=25 \frac{l}{E}
$$

where $C=$ Cipmacitance of output condenser in $\mu \mathrm{f}$.
$I=$ D.e. plate current of modulated amplifier in milliamperes
$L^{\prime}=$ Plate voltage of modulated amplifier

Example: A modulated amplifier operates at 1250 volts and 27.5 ma. The eapacitance of the output condenser in the plate-supply filter should be at least

$$
C=2.5 \frac{I}{E}=2.5 \times \frac{275}{12.50}=25 \times 0.22=5.5 \mu \mathrm{f}
$$

Modulation Systems

An amplitude-modulated signal can be generated by a variety of methods, the only pres-ently-used ones being those in whieh a modulat-
ing voltage is applied to one or more tube elemonts in an r.f. amplifier. The proper objeet of all methods is to generate an r.f. signal having a modulation envelope which reproduces the waveform of the modulating voltage with as little distortion as possible.

The methods described in this chapter are the basic ones. There are many specialized variations, usually involving some form of grid modulation
with the object of inereasing the rather low plate efficieney that is an inherent characteristic of grid modulation. Such systems, when they actually aehieve substantially distortionless modulation, are rather complicated circuitwise, are difficult to adjust and are not well adapted to rapid frequency chiuge. They have so far had little or no lasting application in amateur communication.

Amplitude Modulation Methods

PLATE MODULATION

The most popular system of amplitude modulation is plate modulation. It is the simplest to apply, gives the highest efficieney in the modulated amplifier, and is the easiest to adjust for proper operation.
lig. 10-5 shows the most widely-used system of plate modulation, in this case with triode r.f. tubes. A balanced (push-pull Class A, Class AB or (lass 13) modulator is transformer-coupled to the plate circuit of the modulated r.f. amplifier. The audio-frequency power generated by the modulator is combined with the d.c. power in the modulated-amplifier plate circuit by transfer through the coupling transformer, T. For 100 per cent modulation the audio-frequency output of the modulator and the turns ratio of the coupling transformer must be such that the voltage at the plate of the modulated amplifier varies between zero and twiee the d.c. operating plate voltage, thus causing corresponding variations in the amplitude of the r.f, output.

Fig. 10.5 - Ilate modulation of a Class C r.f. amplifier. The r.f. phate by pass condenser, C., in the amplifier stage should have reasonably high reactance at audio frequencies. A value of the order of $0.001 \mu \mathrm{f}$, to $0.005 \mu \mathrm{f}$. is satisfactory in practically all cases. (Sce chapter on modulators.)

Audio Power

As stated earlier, the average power output of the modulated stage must increase during modulation. The modulator must be capable of supplying to the modulated r.f. stage sine-wave audio power equal to 50 per cent of the d.c. plate input. For example, if the d.c. plate power input to the r.f. stage is 100 watts, the sine-wave audio power output of the modulator must be 30 watts.

Modulating Impedance; Linearity

The modulating impedance, or load resistance presented to the modulator by the modulated r.f. amplifier, is equal to

$$
Z_{\mathrm{m} 1}=\frac{E_{\mathrm{b}}}{I_{\mathrm{b}}} \times 1000 \mathrm{ohms}
$$

where $E_{b}=1$.e. plate voltage

$$
I_{\mathrm{p}}=\text { D.e. plate current (ma.) }
$$

E_{b}, and I_{1} are messured without modulation.
Tlhe power output of the r.f. amplifier must vary as the square of the instantancous plate voltage (the rif. voltage must be proportional to the plate voltage) in order for the modulation to be linear. This will be the case when the amplifier operates under Class (' eonditions. The linearity depends upon having sufticient grid excitation and proper bias, and upon the adjustment of circuit constants to the proper values.

Adjustment of Plate-Modulated Amplifiers

The general operating conditions for Class (' operation are deseribed in the chapter on transmitters. The grid bias and grid current required for plate modulation usually are given in the operating data supplied by the tube manufacturer; in general, the bias should be such as to give an operating angle of about 120 degrees at the d.c. plate voltage used, and the grid excitation should be great enough so that the amplifier's phate efficiency will stay constant when the pate voltage is varied over the range from zero to twiee the ummodulated value. For best linearity, the grid lias should be obtained partly from a fixed souree of about the cut-off value, and then supplemented by grid-leak bias to supply the remainder of the required operating bias.

The maximum permissible d.e. plate power input for 100 per cont modulation is twice the sine-wave audio-frequener power output available from the modulator. This input is obtaned hy varying the loading on the amplifier (keeping its tank circuit tuned to resonance) until the
product of d.c. plate voltage and plate current is the desired power. The modulating impedance umder these conditions must be transformed to the proper value for the modulator by using the correct output-transformer turns ratio. This point is considered in detail in the chapter on modulator design.
Neutralization, when triodes are used, should be as nearly perfect as possible, since regeneration may cause nonlinearity. The amplifier also must be completely free from parasitie oseillations.

Although the total power input (l.c. plus audio-frequenes a.c.) increases with modulation, the d.e. plate current of a plate-modulated amplifier should not change when the stage is modulated. This is beause each increase in plate voltage and plate current is balanced by an equivalent decrease in voltage and eurrent on the next. half-evele of the modulating wave. I.c. instruments camot follow the a.f. variations, and since the average d.c. plate current and plate voltage of a properly-operated amplifier do not change, meither do the meter readings. A change in plate current with modulation indicates nomlinearity. On the other hand, a thermoeouple r.f. ammeter comnected in the antemat or transmission line will show an increase in r.f. current with modulation, because instruments of this type respond to power rather than to current or voltage.

Screen-Grid Amplifiers

Screen-grid tubes of the pentode or beamtetrode type can be used as Class C Clate-modulated amplifiers by applying the modulation to both the plate and sereengrid. The usual method of feeding the sereen grid with the necessary d.e. and modulation voltage is shown in Fig. 10-(i), The dropping resistor, R, should the of the proper value to apply normal d.e. voltage to the sereen under steady earrier conditions. Its value can be: ealculated by taking the difference between plate and sereen voltages and dividing it by the rated screen current.

Fip. 10-6 - Plate and screen modulation of a (lass C r.f. amplifier using a serren-grid tube. The plate r.f. by-pass condenser, C_{i}, should have reasonably high reactance at all audio frequencies: a value of 0.001 to $0.005 \mu \mathrm{f}$. is generally satisfattory. The sareen by-pass, \hat{C}_{2}, should be $0 .(0) 2 \mu$, or less in the usual case.
When the modulated amplifier is a beam tetrode the suppressor connection shown in this diagram may be ignored. If a hase terminal is provided on the tube for the beam-forming plates, it shonld be connected as reconmended by the manufacturer.

The modulating impedance is found by dividing the d.c. plate voltage by the sum of the plate and sereen currents. The plate voltage multiplied by the sum of the two currents gives the power input to be used as the basis for determining the audio power required from the modulator.

Fig. 10.7-Plate modulation of a beam tetrode, using an audio imperlance in the serern circuit. The value of L_{1} is discussed in the text. See Fig. 10-6 for data on bypatss capacitors (it and (6.

Modulation of the sereen along with the plate is necessary because the sereen voltage hasa much greater effect on the plate eurrent than the plate voltage does. The modulation characteristic is nonlinear if the plate alone is modulated. However, beam tetrodes can be modulated satisfactorily by applying the modulating power to the plate circuit alone, prowided the sereen is "floating" at audio fremuencies - that is, is not grounded for a.f. but is comected to its d.c. supply through an audio impedance. Tho circuit is shown in Fïg. 10-7. The choke eoil L_{1} is the audio impedance in the sereen circuit; its inductance should be large enough to have a reactance (at the lowest desired audin frequeney) that is not less than the impedance of the sereen. The latter can be taken to be approximately erfual to the d.c. serren voltage divided by the d.e. sereen current.

Choke-Coupled Modulator

One of the oldest types of modulation system is the choke-coupled (lass A modulator shown in Fig. 10-8. Because of the relatively low power output and plate efficiency of a Class A amplifier, the method is selthom used now exeept for a few special applientions. The audio power output of the modulator is combined with the d.e. power in the plate circuit, just as in the case of the tramsormer-coupled modulator. However, there is considerably less freedom in adjustment, sinec no transformer is available for matching impedances.

The modulating impedance of the r.f. amplifer must be adjusterl to the value of load impedance required by the particular modulator tube used, and the prower input to the r.f. stage must not exceed twice the rated at.f. power output of the modulator. A complication is the fact that the plate voltage on the modulator must be higher than the phate voltage on the r.f. amplifier, for 100 per cent modulation. This is because the a.f.

Fig. 10-8-Choke-poupled Class A modulator. The cathode resistor, R_{2}, should have the normal value for operation of the modulator tube as a Class A power amplificr. 'The modulation ehoke, L_{1}, should be 5 henrys or more. A value of 0.001 to $0.005 \mu \mathrm{f}$. is satisfactory at C.2, the r.f. amplifier plate by-pass eondenser. See text for disension of C_{1} and R_{1}.
voltage developed by the modulator cannot swing to zero without a great deal of distortion. R_{1} provides the neerssary d.c. voltage drop between the modulator and r.f. amplifire, but its value camot be ealculated without using the published plate family of curves for the modulator tube used. The voltage drop through R_{1} must equal the minimum instantaneous plate voltage on the modulator tube under normal operating conditions. C C_{1}, an audio-froquency by-pass across R_{1}, should have a capacitance such that its reactance at 100 cereles is not more than about one-tenth the resistance of R_{1}. Without $R_{1} C_{1}$ the percentage of modulation is limited to 70 to 80 per cent in the average case.

GRID MODULATION

The principal disadvantage of plate modulation is that a considerable amount of audio power is required. This requirement can be avoided by applying the modulation to a grid element in the modulated amplifier. However, the convenience and economy of the low-power modulator must be paid for, sinee no modulation s.stem gives something for nothing. The increased power output that accompanies modulation is paid for, in the case of grid modulation, by a reduction in the carrier power output obtainable from a given r.f. amplifier tube, and by more rigorous operating requirements and more complicated adjustment.

The term "grid modulation" as used here appplies to all types - control grid, screen, or suppressor - since the operating principles are exactly the same no matter which grid is actually
modulated. With grid modulation the plate voltage is constant, and the increase in power output with modulation is ohtained by making both the plate current and plate efficiency vary with the modulatiag signal as shown in Fig. 10-9. For 100 per cent modulation, both plate current and efficiency must, at the peak of the modulation up-swing, be twice their carrier values. Thus at the modulation peak the power input is doubled, and since the plate efficiency also is doubled at the same instant the peak output power will be four times the carrier power. 'The efficiency obtainable at the peak depends on how carefully the modulated amplifier is adjusted, and sometimes can be as high as $\mathbf{8 0}$ per cent. It is generally less when the amplifier is adjusted for good linearity, and under average conditions a round figure of $2 / 3$, or 66 per eent, is representative. Since the earrier efficiency is only half the poak efficioner, the cffieiency for carrier conditions, without modulation, is only about 33 per cent. Thus the carrier output is about one-fourth the power obtainable from the same tube in c.w. operation, and about one-third the carrier output ohtainable from the tube with plate modulation.

The modulator is reguired to furnish only the audio power dissipated in the modulated grid under the operating conditions chosen. A sperech amplifier capable of delivering 3 to 10 watts is usually sufficient.

Cencrally speaking, grid modulation does not give as linear a modulation characteristic as plate modulation, even under optimum operating conditions. When misadjusted the nonlinearity maty be severe, resulting in bad distortion and splatter. Ilowever, with careful adjustment it is capable of quite satisfactory results.

Fig. $\mathbf{1 0 - 9}$ - In a perfect grid-modulated amplifier both plate current and plate efficiency would vary with the instantancexis modulating voltage as shown. When this is so the modulation characteristic is as given by curve A in Fig. 10-t, and the peak sutput power is four times the unmodulated carrier power. The variations in plate current with modulation, indicated above, do not register on a d.e. meter, so the plate meter shows no change when the signal is modulated.

Plate-Circuit Operating Conditions

The d.c. plate power input to the modulated amplifier, assuming a round figure of $1 / 3$ (33 per cent) for the plate efficiency, should not exceed $11 / 2$ times the plate dissipation rating of the tube or tubes used in the modulated stage. It is generally best to use the maximum plate voltage permitted by the manufacturer's ratings, because the optimum operating conditions are more pasily achieved with high plate voltage and the lincarity also is improved.

Fxample: Two tubes having phate dissipation ratings of is watts each are to be used with grid modulation.
The maximum permissible power input, at 33% efficiency, is
$l=1 . \bar{i} \times(2 \times 5 i 5)=1.5 \times 110=165$ watts The maximum recommended phate voltage for these tubes is lago volts. (lsing this figure. the average plate curront for the two thbes will be

$$
I=\frac{P^{\prime}}{E}=\frac{165}{15(0)}=0.11 \mathrm{amp}=110 \mathrm{ma}
$$

At 33% efliciency, the carricr output to be expected is 5.5 wathe.

The plate-voltago/platocurront ration at trice carrier pate current is

$$
\frac{1.300}{2.20}=6.8
$$

The tank-cireuit L / C ratio should be chosen on the hasis of twice the average or carrier plate current. If the L / C ratio is based on the plate voltage/plate current ratio under carrier conditions the Q maty be too low for good coupling to the output eirenit.

Control-Grid Modulation

('ontrol-grid modulation may be used with any type of r.f. amplifier tube. A typical triode circuit is given in lig. 10-10. The same circuit can be used with sereen-grid tubss merely bex suphling the normal value of sereen voltage by any convenient means; however, the sereen should be by-passed for audio ($1 \mu \mathrm{f}$. or more) ats well as radio frequencies. The audio signal is inserted, by means of transformer T, in series with the grid-hias lead. In a push-pull amplifier the transformer is conmerted in the common bias lead.

In control-grid modulation the dee grid bias is the same as in normal (lass ('amplifier service, but the r.f. grid excitation is somewhat smaller. The audio voltage superimposed on the d.e. bias changes the instantaneous grid hias at an audio rate, thus varying the operating conditions in the grid cirenit and controlling the output and eflieiency of the amplifier.
The change in instantaneous bias voltage with modulation causes the rectified grid current of the amplifier to vary, which places a variable load on the modulator. To reduce distortion, resistor R in Fig. 10-10 is connected in the output circuit of the modulator as a constant load, so that the over-all load variations will be minimized. This resistor should be equal to or somewhat higher than the load into which the modulator tule is rated to work at normal audio output. It is also recommended that the modulator aircuit incorporate as much negative feed-back as

Fig, $10 \cdot 10$ - (imentrol-grid modulation of a Class C am. plifier. The r.f. grid by-pass condenser, C.. should have high reactance at audio froguencies ($0.00 \mathrm{~F} \mu \mathrm{f}$. or less).
possible, as a further aid in redueing the internal resistance of the modalator and thus improving the "regulation" - that is, reduring the effect of load variations on the audio output voltage. The turns ratio of transtomer 'I' should be about 1 to 1 in most cases.

The load on the r.f. driving stage also varies with modulation. This in turn will cause the excitation voltage to vary which may cause the modulation characteristic to be nonlinear. To overeome it, the driver should be capable of two or three times the r.f. power output actually required to drive the amplifer. The excess power may be dissipated in a dummy load (such as an incandescent lamp of appropriate power rating) that then performs the same function in the r.f. circuit that resistor R does in the audio eircuit.

The d.e. bias source in this system should have fow internal resistance. Batteries or a voltageregulated supply are suitable. Grid-leak bias should not be used

Adjustment

A control-grid modulated amplifier should be arljusted with the aid of an oscilloscone conneeted as shown in lig. 10-11. A tone source for modulating the transmitter is a convenience, since a stomedy tone will give a steady pat tern on the oseilloscope. A steady pattern is easier to study than one that fliekers with voice modulation.

Having determined the permissible carvier plate current as previously described, apply r.f. excitation and plate voltage and, without modulation, adjust the plate loading to give the required plate current (keeping the plate tank circuit tuned to resonance). Next, apply modulation and increase the modulating voltage until the modulation chamacteristic shows curvature (see later section in this chapter for use of the oscilloseope). If eurvature oreurs well below 100 per cent modulation, the plate efficiency is too

Fig. 10-11 - I sing the oscilloscope for adjustmant of a grid-modulated amplifier. The connections shown are for grid-bias modulation. With screen or suppressor modulation the connertion to the horizontal plates of the scope shond be taken from the grid being modulated; the r.f. piek-up arrangement remains unchanged.
L and C should tune to the operating frequency, and may the coupled to the transmitter tank circuit through a twisted pair or coax, using single-turn links at each end. The 0,01- μ f, boeking condenser that couples the audio voltage to the horizontal plates of the oscilloscope should have a voltage rating egual to at least twice the d.e. voltage on the grid that is being modulated.
high. Inerease the plate loading slightly and reduce the excitation to maintain the same plate eurrent; then apply modulation and check the eharacteristic again. Continue this process until the eharacteristie is as linear as possible from the horizontal axis to twice the carrier amplitude.

Screen Modulation

Power tubes of the beam tetrode type have very good modulation characteristics when the modulating voltage is superimposed on the d.e. sereen-grid voltage. The efficieney and plate current should varr with the modulating voltage as shown in Fig. 10-9.

In many ways screen modulation is more satisfactory than control-grid modulation, since the system does not recquire a fixed-bias supply for the eontrol grid, and is not highly eritical as to excitation voltage. Ilowever, the operating principles are identieal, and the earrier output is limited to about one-half the plate dissipation rating of the tube or tubes used in the modulated amplifier.

The most satisfactory way to apply the modulating voltage to the sereen is through a trans-

Fig. 10-12 - Screen-grid modulation of beam tetrode. Condenser C is an r,f, by-pass condenser and should have high reactance at andio freduencies. I value of $0.002 \mu \mathrm{f}$. is satisfactory. 'The grid leak can have the same value that is used for e.w. operation of the tube.
input to the sereen under aw power varies somewhat with the operating conditions. A receiving-type audio power amplifier will suffice as the modulator for most transmitting

Fig. 10-13 $\rightarrow 1$ typical screen voltage-purrent carve of a bean tetrole adjusted for optimum conditions for screen modulation.
tubes. Because the relationship between screen voltege and screen current is not linear (a trpical curve giving this relationship is shown in Fig. 10-13) the load on the modulator varies over the audio-frequency exche, and it is therefore highly advisable to use negative feed-back in the modulator cirruit. If exeess audio power is available, it is also advisathe to load the modulator with a resistance corresponding to R in Fig. 10-10, the value of R being adjusted to dissipate the execess power. Confortunately, there is no simple way to determine the proper resistanee exerpt experimentally, by observing the effect of different values on the waveshape with the aid of an oseilloseope.

On the assumption that the modulator will be fully baded by the sereen plus the additional load resistor R, the turns ratio required in the
coupling transformer may be calculated as follows:

$$
N=\frac{E_{\mathrm{d}}}{2.5 \sqrt{\rho R_{\mathrm{L}}}}
$$

where N is the turns ratio, secondary to primary; r_{a} is the rated screcn voltage for e.w. operation; l ' is the rated audio power output of the modulator; and R_{L}, is the rated load resistance for the morlulator.

The best method of adjustment is to use an oscilloscope (the connections of Fig. 10-11 may be used, execpt that the audio sweep voltage is taken from the sereen instead of the control grid) and adjust plate loading, grid excitation, and modulating voltage for the greatest output compatible with geod linearity at 100 per cent modulation. The amplifier should be loaded heavily. and the grid current should be kept at the point where a further reduetion deereases the r.f. output. Cnder proper operating conditions the platecurrent dip as the amplifier plate circuit is tuned through resonance will be little more than just disecruible.

In an alternative adjustment method not requiring an oscilloseope the r.f. amplifier is first tuned up for maximum output without modulation and the rated d.c. sereen voltage (from a fixed-voltage supply) for e.w. operation applied. Use hoavy loading and reduce the grid excitation until the output just starts to fal! off, at which point the resomance dip in plate current should be small. Note the plate current and, if possible, the ref, antennat or feeder carrent, and then reduce the d.c. sereen woltage until the phate current is one-half its previous value. 'lhe ref. output eurrent should also be one-half its previous valur at this sereen voltage. The amplifier is then ready for modulation, and the modulating voltage maty be inereased until the plate current just starts to shift upward, which indicates that the amplifier is modulated 100 per eent. With voice modulation the phate current should remain steady, or show just an oecasiona! small upward kiek on intermittent peaks.

It is desirable to operate with the grid current as low as possible, since this reduces the sereen current and thas reduces the amount of power required from the modulator. With proper adjustment the linearity is good up to about 90 per cent modulation. When the sereen is driven negative for 100 per eent modulation there is a kink in the modulation chatacteristie at the zerovoltage point that introduces a small amount of distortion. The kink can be removed and the over-all linearity improved by applying a small amount of modulating voltage to the control grid simultaneously with sereen modulation, but this requires adjustment with the oscillaseope.

"Clamp-Tube" Modulation

A method of sereen-grid modulation that is convenient in transmitters provided with a screen protective tube ("clamp" tube) is shown in l"ig. 10-14. Basically, the idea is that an :andio-frequener signal is applied to the grid of the clamp tube, which then becomes a modulator. The
simplieity of the circuit is somewhat deceptive, since it is considerably more difficult from a design standpoint than the transformer-coupled arrangement of Fig. 10-12.

For proper modulation the elamp tube must be operated as a triode Class A amplifier, and it will be recognized that the mothod is essentially identical with the choke-coupled (Class A plate modulator of ligg, 10-8 with a rewistance, R_{2}, substituted for the choke. R_{2} in the usual case is the screen dropping resistor normally used for e.w. opera-

Fig. 10-14-Sireen modulation by a "clamp" tube. The gried leah is the normal value for c.w. operazion and Cos should be 0.002 μ f. or less, See text for discussion of C_{1}, R_{1}, R_{2} and R_{3}. R_{3} should have the proper value for Class A opration of the modulator tube, but cannot be calculated unless triode curves for the tube are available.
tion. Its value should be at least two or three times the load resistance required bes the (lass A modulator tube for optimum audio-frequency output. Unfortunately, relatively little informattion is available on the triode operation of the tubes most frequently used for screon-protective purposes.

Like the choke-coupled modulator, the clamptube moduator is incapable of modulating the r.f. stage 100 per cent unless the dropping resistor, R_{1}, and audio by-pass, $\left({ }_{1}\right.$, are incorporated in the cireuit. The samedesign considerations hold, with the addition of the fact that the sereen must be driven nexative, not just to zero voltage, for 100 per cent modulation. 'The modulator tude must thus be operated at a voltage ranging from 20 to 40 per eent higher than the sereen that it modulates. Proper design requires knowledge of the sereen characteristies of the r.f. amplifier and a set of plate-voltage plate-current curves on the modulator tube as a triode.

Adjustment with this system, once the design voltages have been determined, is carried out in the same way as with transformer-coupled screen modulation, preferably with the oscilloscope. Without the oseilloseope, the amplifier may first be adjusted for ew, operation as described carlier, but with the modulator tube removed from its
socket. The modulator is then replaced, and the cathode resistance, R_{3}, adjusted to reduce the amplifier plate current to one-half its c.w. value. The amplifier plate current should remain constant with modulation, or show just a small upward flicker on oceasional voice peaks.

Controlled Carrier

As cxplained earlier, a limit is placed on the output obtainahlo from a grid-modulation system be the low r.f. amplifier plate efficiency (approximately $3: 3$ per cent) under ummodulated carrier

Fig. 10-15 - Circuit for carrier control with screen modulation. A small triode such as the 6 J 5 can be used as the control amplifier and a 6Y6G is suitable as a carrier-eontrol tuhe. T is an interstage andio transformer having a 1 -to-l or larger turns ratio. R_{4} is a 0.5 -megohm volume control and also serves as the grid resistor for the modulator. I germanium crystal may be usexl as the rectifier. Other values are discussed in the text.
conditions. The plate efficieney inereases with modulation, since the output inereases while the d.e. input remains constant, and reaches a maximum in the neighborhood of 50 per cent with 100 per cent sinc-wave modulation. If the power input to the amplifier can be reduced during periods when there is little or momodulation, thus reducing the plate loss, advantage can be taken of the higher efficiency at full modulation to ohtain highor effective output. This can be done by varying the power input to the modulated stage, in aceordance with average variations in voice intensity, in such a way as to maintain just suffirient carrier power to keep the modulation high, but not exceeding 100 per cent, under all conditions. Thus the carrier amplitude is controlled by the voie intensity. Iroperly utilized, controlled carrier permits increasing the effective carrier output at maximum level to a value equal to the rated plate dissipation of the tube, or twice the output olstainable with constant carrier.

It is desirable to control the power input just enough so that the plate loss, without modulation, is safely below the tube rating. Ficessive control is disadvantageous because the receiver's a.v.c. system must continually follow the varia-
tions in average signal level. "he cireuit of figg. 10-15 permits adjustment of both the maxinum and mininum power input, and although somewhat nore complicated than some circuits that have been used is actually simpler to operate because it separates the functions of modulation and carrier control. A portion of the adio voltage at the modulator grid is applied to a Class A "control amplifier" which drives a rectifier eireuit to produce a d.e. voltage negative with respect to ground. C1 filters out the audio variations, laving a d.c. voltage proportional to the average voice level. This voltage is applied to the grid of a "clamp" tube to control the d.e. sereen voltage and thus the r.f. carrier level. Maximum output is obtained when the carrier-control tube grid is driven to eut-off, the voice level at whieh this oceurs being determined by the setting of R_{4}. Minimum input is set to the desired level (usually about equal to the phate dissipation rating of the modulated stage) by adjusting $R_{2} . R_{3}$ may be the normal sereen-dropping resistor for the modulated beam totrode, but in case a soparate sereen supply is used it meed be just large enough to give sufficient voltage drop to reduce the no-modulation power input to the desired value.
('1 R_{1} should have a time constant of about 0.1 second. The time constant of (${ }_{2} R_{3}$ should be no larger. Further details may be found in (SS'F for April, 1951, page 6.4 . An oseilloscope is required for proper adjustment.

Suppressor Modulation

Pentode-type tubes do not, in general, modulate well when the modulating voltage is applied to the sereen grid. However, a satisfactory modulation characteristice can be obtained by applying the modulation to the suppressor grid. The circuit arrangement for suppressor-grid modulation of a pentode tube is shown in lig. 10-16.

The method of adjustment cosoly resembles that used with sereen-grid modulation. If an oscilloseope is not available, the amplifier is first adjusted for optimum c.w. output with zero bias on the suppressor grid. Negative bias is then applied to the suppressor and increased in value until the plate current and r.f. output current drop to half their original values. When this condition has been obtained the amplifier is ready for modulation.

Fig. 10-16-Suppressor-grid modulation of an r.f. amplifier using a pentode-type tube. The suppressorgrid r.f. by pass condenser, C, should be the same as the grid by-pass condenser in control-grid modulation,

Since the suppressor is always negatively biased, the modulator is not required to furnish any power, so a voltage amplifier can be used. The suppressor bias will vary with the type of pentode and the operating conditions, but usually will he of the order of -100 volts. The peak a.f. voltage recpuired from the modulator is equal to the suppressor bias.

CATHODE mODULATION

Circuit

The fundamental circuit for cathode modulation is shown in Fig. 10-17. It is a combination of the plate and grid methods, and permits a carrier efficiency midway between the two. The audio power is introduced in the cathode circuit, and both grid bias and plate voltage are modulated.

Fip. 10-17 - Circuit arrangement for cathode modulation of a Class C. r.f. amplifier. Values of be-pass condensers in the r.f. circuits should be the same as for other modulation methods.

Because part of the modulation is by the control-grid method, the plate efficiency of the modulated amplifier must vary during modulation. The carrier efficiency therefore must be lower than the efficiency at the modulation peak. The required reduction in efficiency depends upon the proportion of grid modulation to plate modulation; the higher the percentage of plate modulation, the higher the permissible carrier efficiency, and vice versa. The audio power required from the modulator also varies with the percentage of plate modulation, being greater as this percentage is increased.

The way in which the various quantities vary is illustrated by the curves of Fig. 10-18. In these curves the performance of the cath-ode-modulated r.f. amplifier is plotted in terms of the tube ratings for plate-modulated telephons; with the percentage of plate modulation as a base.

Fig. 10-18 - Cathode-modulation performaner curves, in terms of percentage of plate modulation plotted against percentage of Class C: telephony tube ratings. $W_{\text {in }}$ - D.c. plate input watts in terins of percentage of plate-modulation rating.
W。- Carrier output watts in per cent of plate-modulation rating (based on plate efficiency of $\mathbf{7 . 5 \%}$).
Wa - Audio power in per cent of d.e. watts input.
N_{b} - Plate efficiency of the amplifier in percentage.
As the percentage of plate morlulation is decreased, it is assumed that the grid modulation is increased to make the over-all modulation reach 100 per cent. The limiting condition, 100 per cent plate modulation and no grid modulation, is at the right (A); pure grid modulation is represented by the left-hand ordinate (B and C).
> dixample: Assume that the r.f. tube to be used has a 100% plate-modulation rating of 250 watts inpmt and will give a carrier power output of 190 watts at that input. Cathode modulation with 40% plate modulation is to be used. From lity, 10-18, the carrier effieiency will be 50% with 40% plate modulation, the permissible d.c. input will be 65% of the plate-modulation rating. and the r.f. output will be 48% of the plate-modulation rating. That is,

> Power input $=2.50 \times 0.65=162.5$ watts
> Power output $=190 \times 0.48=91.2$ watts
> The required audio power, from the chart, is equal to 20% of the d.c. input to the modulated amolifier. Therefore

> Audio power $=162.5 \times 0.2=32.5$ watts
> The modulator should supply a small amount of extra power to take care of losses in the grid circuit. These should not exceed four or five watts.

Modulating Impedance

The modulating impedance of a cathodemodulated amplifier is approximately equal to

$$
m \frac{E_{\mathrm{b}}}{I_{\mathrm{b}}}
$$

where $m=$ Percentage of plate modulation (expressed as a decimal)
$E_{\mathrm{b}}=$ D.c. plate voltage on modulated amplifier
$I_{\mathrm{b}}=$ D.c. plate eurrent of modulated amplifier
Example: Assume that the modilated amplifier in the example above is to operate at a plate potential of 12.50 volts. Then the d.c. plate current is

$$
I=\frac{P}{E}=\frac{162.5}{12.50}=0.13 \mathrm{amp} .(130 \mathrm{ma})
$$

The modulating impedance is

$$
m \frac{E_{\mathrm{b}}}{I_{\mathrm{b}}}=0.4 \frac{12.50}{0.13}=3846 \mathrm{ohms}
$$

The modulating impedance is the lond into which the modulator must work, just ase in the case of pure plate modulation. This load must be matched to the load required by the modulator tubes by proper choice of the turns ratio of the modulation transformer, as described in the chapter on specech equipment.

Conditions for Linearity

1R.f. excitation requirements for the cathodemodulated amplifier are midway between those for plate modulation and control-grid modulation. More exeitation is required as the percontage of plate modulation is increased. Grid bias should be considerably bevond cut-off; fixed bias from a supply having good voltage regulation is preferred, especially when the pereentage of plate modulation is small and the amplifier is operating more nearly like a grid-biats modulated stage. At the higher percentages of plate modulation a combination of fixed and grid-laak bias ean be usod, since the variation in rectified grid current is smader. The grid loak should be be-passed for audio frequencies. The percentage of grid moxluation may be regulated be choice of a suitable tap on the modulation-transformer secondary.

The cathode circuit of the modulated stage
must be independent of other stages in the transmitter. When directly-heated tubes are modulated their filaments must be supplied from a separate transformer. The filament by-pass condensers should not be larger than about 0.(0)2 μf., to avoid by-passing the audio-frequenery morulation.

Adjustment of Cathode-Modulated Amplifiers

In most respects, the adjustment procedure is similar to that for grid-bias modulation. The eritical adjustments are antenna loading, grid bias, and excitation. The proportion of grid-lias to plate modulation will determine the operating conditions.

Adjustments should be made with the aid of an oscilloseope connected in the same waty ator griel-bias modulation. With proper antema loading and excitation, the normal wedge-shaped pattern will be oltatined at 100 per cent modulattion. As in the catse of grid-bias modulation, too-light antenna loading will cause fattoning of the upward peaks of modulation as also will too-high exeitation. The cathode current will be practically constant with or without modulation when the proper oferating conditions have bern established.

Checking AM 'Phone Operation

- USING THE OSCILLOSCOPE

Proper adjustment of a 'phone transmitter is aded immeasurably by the oscilloseone. The scope will give more information, more aceurately, than almost any collection of other instruments that might be mamed. Furthermore, an oscilloscope that is entirely satisfactory for the purpose is not necessarily an expensive instrument; the cathode-riy tube and its power supply are about atl that are needed. Amplifiers and linear sweop circuits are by mo means neessary.

In the simplost 'soope circuit, radio-frepuenery voltage from the modulated amplifior is applied directly to the vertical deflection plates of the tube, and atudio-freduency voltage from the modulator is applied to the horizontal deflection plates. As the instantaneous amplitude of the audio sigmal varies, the r.f. output of the tramsmittor likewise varies, and this produces a wedgeshaperd pattern or trapezoid on the sereen. If the oseilloseope has a built-in horizontal sweep, the r.f. voltage is applied to the vertical plates as before (never through an amplifier) and the swerp will produce a mattern that follows the modulation envelope of the transmiter output, provided the swerp frequeney is lower that the modulation frequence: This profluces a waveenvelope modulation pattorn.

The Wave-Envelope Pattern

The connections for the wave-envelope pattern are shown in Fig. 10-19A. The vertical defleetion plates are coupled to the amplifier tank coil (or an antenna coil) through a twisted-pair line and pick-up coil. As shown in the alternative drawing,
a resonant circuit tumed to the operating frequence may be comeded to the vertical plates, using link eoupling between it and the transmitter. 'This will eliminate r.f, hamonics, and the tuning control provides a eonvenient means for adjustment of the pattern height.

The prosition of the pick-up coil should be varied until an unmodulated carrier pattern, Fig. 10-2013, of suitable height is ohtained. 'The horizontal sweep voltage should be adjusted to make the width of the pattern somewhat more tham half the diameter of the screen. When voice modutation is applied, a rapidly-changing pattern of varring height will be obtained. When the maximum heright of this pattern is just twice that of the carrier alone, the wave is being modulated 100 per (ent. This is illustrated hy Fig. 10-201), where the point X represents the horizontal sweep line (referene line) alone, $Y Z$ is the carrier height, and $P Q$ is the maximum height of the morlulated wave.

If the height is greater than the distance $P($? as illustrated in E, the wave is overmodulated in the upward direction. Overmodulation in the downward direction is indicated by a gatp in the pattern at the roforence axis, where a single bright line appears on the sereen. Overmodulation in cither direction may take place even when the modulation in the other direction is less than 100 per cent.

The Trapezoidal Pattern

Connections for the trapezoid or wedge pattern as used for checking plate modulation are shown in lig. 10-1913. The vertical plates of the e.r. tube are coupled to the transmitter tank through

Fig. 10-19 - Methods of eonnecting the oscilloseope for modulation ehecking. A - connections for wave-enve. lope pattern with any modulation method; B - connections for trapezoidal pattern with plate modulation. See Fig. 10-11 for 'scope connections for trapezoidal pattern with grid modulation.
a piek-up loop, preferably using a tuned circuit, as shown in the upper drawing, adjustable to the operating frequenes. Audio voltage from the modulator is applied to the horizontal plates through a voltage divider, $R_{1} R_{2}$. This voltage should be adjustable so a suitable pattern width can be obtained; a $0.2 \overline{2}-\mathrm{meg}$ ghm volume control ean be used at R_{2} for this purpose, with e.r. tubes up to the 3 -inch size.
The resistance required at l_{1} will depend on the d.c. plate voltage on the modulated amplifier. The total resistance of R_{1} and R_{2} in series should be about 0.25 megohm for each 100 volts of die. plate voltage. For example, if the modulated amplifier operates at 1500 volts, the total resistance should be 3.75 megohms, 0.25 megohm at R_{2} and the remainder, 3.5 megohms, in $R_{1} . R_{1}$ should the composed of individual resistors not larger than 0.5 megohm each, in which case 1-watt resistors will be satisfactory.

For good low-frequency coupling the capacitance, in microfarads, of the blocking condenser, (', should at least equal $0.00 \mathrm{t} / R$, where R is the total resistance ($R_{1}+R_{2}$) in megohms. In the example above, where R is 3.75 megohns, the canalcitance should be at least $0.004 / 3.75=0.001$
μ f., approximately. The voltage rating of the condenser should be at least twice the d.e. voltage applied to the modulated amplifier. The capacitance can be made up of two or more similar units in series, so long as the total capacitance is equal to that required, in case a single unit of suflicient voltage rating is not available. Two or more units may be used in parallel if condensers having aderfuate voltage rating but insufficient capacititure are available.
The eorresponding 'seope connections for grid modulation were given in Fig. 10-11. This circuit will be satisfactory for checking screen-grid modulation (the audio connertion of course being made to the sereen grid rather than to the control grid) for d.c. screen voltages up to 200 volts or so, which will include most beam tetrodes. If the d.c. screen voltage, adjusted for proper modulation, exceeds 200 volts a voltage divider similar to that shown in Fig. 10-19 should be used, the values bring calculated as described above using tho sereen voltage instead of the plate voltage.
Trapezoidal patterns for various conditions of modulation are shown in Fig. 10-20 at F to J, each alongside the corresponding wave-envelope pattern. With no signal, only the cathode-
(A)

(F)
(B)

CARRIER ONLY
(G)

(H)

(I)
100% MODULATION
(E)

(J)

Fig. 10.20-Wave-envelope and trapezoidal patterns representing different conditions of modulation.
ray spot appears on the sereen. When the unmodulated carrier is applied, a vertical line appears; the length of the line should be adjusted, by means of the pick-up coil coupling, to a convenient value. When the carrier is modulated, the wedge-shaped pattern appears; the higher the modulation percentage, the wider and more pointed the wedge becomes. At 100 per cent modulation it just makes a point on the axis, X, at one end, and the height, $P()$, at the other end is equal to twice the carrier height, $Y Z$. Overmodulation in the upward direction is indicated by increased height over $P^{\prime}(Q$, and in the downward direction by an extension along the axis X at the pointed end.

Checking Transmitter Performance

The trapezoidal pattern is far more useful than the wave-envelope pattern for checking the operattion of a 'phone transmitter. The latter type of pattern is of use principally. for cheoking modulation percentage, and even when the speceh system is fed with a sine-wave tone for close examination of the pattern it is difficult to tell with sufficient accuracy whether the transmitter is operating linearly. Also, even when distortion is evident in the wave-envelope pattern there is no clue as to whether it is oceurring in the modulated amplifier or is caused by a defect in the spereh equipment.

On the other hand, the trapezodal pattern is aetually a graph of the modulation characteristie of the modulated amplifier. The sloping sides of the wedge show the r.f. amplitude for every value of instantaneous modulating voltage, exactly the tape of curve plotted in Fig. 10-4. If these sides are perfertly straight lines, as drawn in Fig. $10-20$ at H and I , the modulation characteristic is linear. If the sides show curvature, the characteristic is nonlinear to an extent that is shown by the degree to which the sides depart from perfect straightness. This is true regardless of the waveform of the modulating voltage.

If the speech system can be driven by a good audio sine-wave signal instead of a microphone, the trapezoidal pattern also will show the presence of even-harmonie distortion (the most eommon typer, especially when the modulator is overhaded) in the speech amplifier or motulator. If there is no distortion in the audio system, the trapezoid will extend horizontally equal distances on each side of the vertical line representing the unmodulated carrier. If there is even-harmonic distortion the traperoid will extend farther to one side of the ummodulated-carrier position than to the other. This is shown in Fig. 10-21. The probable cause is inadequate power output from the modulator, or incorrect load on the modulator.

An audio oscillator having reasonably good sine-wave output is highly desirable for testing both speech equipment and the 'phone transmitter as a whole. A very simple single-tone oscillator such as is shown in the chapter on measurements is quite adequate. With such an oseillator and the 'seope, the pattern is steady and can be studied elosely to determine the effects of various operating adjustments.

The patterns shown in Figs. 10-21 and the top four groups of Fig. 10-22 show both correct and ineorrect transmitter adjustments. The object. of modulated-amplifier adjustment is to obtain a pattern elosely resembling that in Fig. 10-22A, whieh shows excellent linearity (sides of wedge pattern quite straight) over the whole characteristic at 100 per cent modulation. Since no modulated amplifier is perfeet, the sides will never be perfectly straight, but a close approach is possible. Different methods of modulation give different characteristic results. Fig. 10-22A is typical of correctly-operated plate modulation. With control-grid modulation the sides usually are somewhat concave, particularly near the point of the traperoid, whild sereen modulation gives the characteristic pattern shown in Fig. 10-21. As mentioned earlier, it is neessary to drive the soreen somewhat hugative in order to reach complete phate-curent cut-off and thas modulate 100 per cent downward.

Aside from overnodulation downward, Fig.

Fig. 10-2l - Top - a typical trapezoidal pattern obtained with screen modulation adjusted for optimmom conditions. The sudden change in slope near the point of the wedge oecurs when the soreen voltage passes through zero. Center - If there is no audio distortion, the unmodulated carrier will have the height and position shown by the white line superimposed on the sinewave modulation pattern. Bottom - Even-harmonie distortion in the audio system, when the audio signal applied to the speech amplifier is a sine wave, is indicated by the fact that the modulation battern does not extend equal distanees either side of the unmodulated earrier.

Λ
Properly-operated 'phone transmitter modulated 100 per cent,

B

Overmodalation of a trans* mitter having high mobulation capalility. Ifistortion ot-* curs only on the down-peaks.

C

Nomlinearity in modulated r.f. stage. frequently cansed by insuffacient excitation of a plate-modulated amplifier or overexcitation of a grid. Lias modulated amplilier. The amplitier modulates linearly in the downward direction but the up-prahs are flattened.

D

Overmondulation and nonlincar operation (insufficient modulation capability). 'These patterns are similar to those directly above, but with the nombatation carried beyond 100 per cent in the downward direction.

E

Overmodulation and para. sitio, oscillations in the modulated amplifier. 'The trapezoidal pattern also shows phase distortion caused by insorreet coupling between the oscilloseope and audio system.

F

Left - Phase distortion caused by incorreet eoupling between audio system and nerilloscope. Kight - Multiple pattern cansed by incorrect setting of oscilloseope time-base control. In both cases the wave is modulated 100 per cent.

Fig. 10-22 - PIOTOGRAPIS OF TYPICAI, OSCILLOSCOPE PATTERNS
These photographs show various conditions of modulation as display ed by the wedge or trapezoidal patterns in the left-hand eolumn and the wave-envelope patterns in the right-hand column.
(Photographs reproduced through courtesy of the Allen B. DuMont Laboratories, Juc., I'assaic, N. J.)
should be turned off and the b.f.o. turned on; then the r.f. gain should be set to give a moderately strong beat note with the carier. The intensity of side frequencies can be estimated from the relative strength of the beats as the reeciver is tuned through the spectrum adjacent to the carrier.

R.F. in Speech Amplifier

A small amount of r :f, eurrent in the speceh anplifier - particularly in the first stage, which is most susceptible to such r.f. piek-up - will cause overloading and distortion in the low-level stages. Frequently also thore is a rogenorative cffect which causes an audio-frequency oscillation or "how" to be set up in the audio system. In such cases the gain control camot be advanced very far before the how builds up, even though the amplifier may be perfectly stable when the r.f. section of the transmitter is mot turned on.

Complete shichding of the micerophone, mierophone cord, and speech amplifier is nocessary to prevent r.f. pick-up, and a ground comnection separate from that to which the transmitter is connected is advisable.

MODULATION MONITORING

It is always desimble to modulate as fully as possible, but 100 per cent modulation should not be execeded - particularly in the downward direction - becanse harmonic distortion will be introduced and the channel width increased. This causes unneressary interference to other stations. The oscilloseope is the best instrunent for continuously checking the morlulation. However, simpler indicators may be used for the purpose, once calibrated.
A convenient indicator, when a Class 13 modulator is used, is the plate milliammeter in the Class B stage, since plate current of the modulator fluctuates with the voice intensity. lising the oseilloscope, determine the gain-control setting and voice intensity that give 100 per cent modulation on voiee peaks, and simultancously observe the maximum Class 13 plate-milliammeter reading on the peaks. When this maximum reading is obtained, it will suffice to adjust the gain so that it is not exceeded.

A high resistance (1000 -ohms-per-volt or more) rectifier-type voltmeter (copper-oxide or germanium type) also can be used for modulation monitoring. It should be connected across the output circuit of an audio driver stage where the power level is a few watts, and similarly calibrated against the oscilloseope to determine the reading that represents 100 per eent modulation.

The plate milliammeter of the modulated r.f. stage also is of value as an indicator of overmodulation. As explained carlier, the d.e plate current stays constant if the amplifier is linear. When the amplifier is overmodulated, especially in the downward direction, the operation is no longer linear and the average plate current will
change. A flicker of the pointer may therefore be taken as an indication of overmodulation or nonlinearits: However, since it is possible that under somo operating conditions the plate current will remain constant even though the amplifier is considerably overmodnlated, an indicator of this type is not wholly reliable unless it has been checked against an oscilloscope.

Overmodulation Indicators

Overmodulation on negative peaks is usually the worst type, as explained carlier in this chapter. The milliammeter in the negative-poak indicator of lig. 10-23 will show a reading on each prak that earries the instantanoous voltage on at plate-modulated amplifier "below zoro" - that is, negative. The rectifier, V°, eamot conduct so long as the negative half-cyele of audio output voltage is less than the d.c. voltage applied to the r.t. tube.

The inverse-peak-voltage rating of the rectifier tube must be at least twice the d.e. plate voltage of the modulated amplifier. The filament transformer likewise must have insulation rated to withstand twice the d.e. plate voltare. lither mercury-vapor or high-vacuum rectifiers can be used. The 15 -volt breakelown voltage of the former will introduce a slight error, since the plate voltage must go at least 15 volts negative bofore the rectifier will ionize, but the error is inconsequential at plate voltages above a few hundred volts.

The effectiveness of the monitor is improved if it indicates at somewhat less than 100 per cent modulation, as it will then warn of the danger of overmodulation before it actually occurs. It can ho adjusted to indieate at any desired modulation percentage by making the meter return to a point on the power-supply bleeder as shown in the alternative diagram. The by-pass condenser, C, insures that the full audio voltage appears across the indicator circuit.

Fip. 10-23 - Negative-peak overmodulation indicator. The milliammeter MA may be any low range instrument (up to ($0-50$ ma, or so). The inverse-peak-voltage rating of the rectifier, F, munt be at least twice the d.e. voltage applied to the plate of the r.f. amplifier. The alternative meter-return circuit can be used to indicate modulation in excess of any desired value below 100 per cent. The reactance of the by-pass enndenser, C., at 100 rycles should he small rompared with the resistance across which it is conncoted. An 8-pf. electro. lytic condenser will be satisfactory if the resistance it shunts is 1000 ohms or suore.

CHAPTER 11

Frequency and Phase Modulation

It is possible to eonvey intelligence by modulating any property of a carrior. These properties are amplitude, frequency and phase. Amplitude modulation (AM) is deseribed in another chapter. When the frequency of the carrier is varied in accordance with the variations in a modulating signal, the result is frequency modulation (FM). similarly, varying the phase of the carrier current is called phase modulation (PM).

Frequency and phase modulation are not independent, since the frequence cannot be varied without also varring the phase, and vice versa. The difference is largely a matter of definition.
The effectiveness of FM and PM for communication purposes depends almost entirely on the receiving methods. If the receiver will respond to frequency and phase changes but is insensitive to amplitude changes, it will diseriminate against most forms of noise, particularly impulse noise sueh as is set up by ignition systems and other sparking devices. Special methods of detertion are required to accomplish this result. Since most amateur receivers do not incorporate the proper circuits, the noise-reducing properties of liM or PM reception are seldom realized in amateur work.

Modulation methods for FMI and PM are simple and require practically no audio power. There is also the advantage that, since there is no amplitude variation in the signal, interferenee to broadcast reception of the type resulting from rectification in the audio circuits of the b.e. recoiver is substantially eliminated. These two points represent the primeipal reasons for the use of IVM and PM in amateur work. Infortunately, the user of FM or PM is unable to got the benefit of the inherent noise-reducing advantages of the system, and is furthermore at a considerable disadvantage with respect to AMI of the same power, because most of his communication will be with amateurs using recoivers designed specifically for AM.

Frequency Modulation

Fig. 11-1 is a representation of frequency modulation. When a modulating signal is applied, the carrier frequency is increased during one half-cycle of the modulating signal and decreased during the half-cycle of opposite polarity. This is indicated in the drawing by the fact that the r.f. cycles occupy less time (higher frequency) when the nodulating signal is positive, and more time (lower frequency) when the modulating signal is negative. The change in the earrier frequency (frequency deviation) is proportional to the in-
stantaneous amplitude of the modulating signal, so the deviation is small when the instantaneous amplitude of the modulating signal is small, and is greatest when the modulating signal reaches its peak, rither positive or negative. That is, the frequeney deviation follows the instantaneous changes in the amplitude of the modulating signal.

As shown by the drawing, the amplitude of the signal does not change during modulation.

Phase Modulation

To understand the difference between FM and PM it is necessary to appreciate that the frequener of an alternating current is determined by the rate at which its phase changes.

If the phase of the current in a circuit is changed there is an instantaneous frequency change during the time that the phase is being shifted. The amount of frequeney change, or deviation, depends on how rapidly the phase shift is accomplished. It is also dependent upon the total amount of the phase shift. In a properlyoperating PMI system the amount of phase shift is proportional to the instantaneous amplitude of the modulating signal. The rapidity of the phase shift is directly proportional to the frequeney of the modulating signal. (onsequently, the frequency deviation in P'M is proportional to both the amplitude and frequeney of the modulating signal. The latter represents the outstanding difference between FM and PM, since in F'M
(A)

(B)

(C)

Fig. 11-1-Graphical representation of frequency modulation. In the unmodulated carrier at A. each r.f. cycle oceupies the same amonnt of time. When the modulating signal, 13 , is applied, the radio frequency is increased and decreased according to the amplitude and polarity of the modulating signal.
the frequency deviation is proportional only to the amplitude of the modulating signal.

Modulation Depth

Percentage of modulation in FMI and 1'M has to be defined differently than for AMI. Practically, " 100 per cent modulation" is reached when the transnitted signal occupies a channel just equal to the bandwidth for which the receirer is designed. If the frequency deviation is greater than the receiver can aceept, the receiver distorts the signal. However, on another receiver designed for a different bandwidth the same signal might be equivalent to only 25 per cent modulation.

In amateur work "narrow-hand" FM or PM (frequently abbreviated XFM) is defined as having the same chamel width as a properlymodulated AM signal. That is, the chamel width does not exceed twice the higbest audio frequency in the nodulating signal. AFMI transmissions based on an upper audio limit of 3000 cyeles therefore should occupy a channel no wider than 6 kc .

$F M$ and $P M$ Sidebands

The sidebands set up by FM and P'M differ from those resulting from $\mathrm{A} M$ in that they occur at integral multiples of the modulating frequeney on cither side of the carrier rather than, as in AMI, consisting of a single set of side frequencies for each modulating frequency. An FM or PM signal therefore inherently oceupies a wider channel than AM.
The number of "extra" sidebands that occur in FM and PM depends on the relationship between the modulating frequency and the frequency deviation. The ratio between the frequency deviation, in cycles per second, and the modulating frequency, also in cycles per second, is called the modulation index. That is,
Morlulation index $=\frac{\text { Carrier frequency deviation }}{\text { Moblulating frequency }}$
Example: The maximnm frequency deviation in an lian transmitter is 3000 cyclas either side of the carrier frequency. The modulation index when the modulatiting frequeney is 1000 eycles is

$$
\text { Modukation index }=\frac{3000}{1000}=3
$$

At the same deviation with 3000 -cyele modulation the index would be 1 ; at 100 cycles it would be 30 , and so on.
In IM the modulation index is constant regardless of the modulating frequency; in FMI it varies with the modulating frequency, as shown in the previous example. In an FM system the ratio of the maximum carrier-frequency deviation to the highest modulating frequency used is called the deviation ratio.

Fig. 11-2 shows how the amplitudes of the carrier and the various sidebands vary with the modulation index. This is for single-tone modulation; the first sideband (actually a pair, one above and one below the carrier) is displaced from the

Fig. 11-2 - How the amplitude of the mirs of sideloands varies with the modulation index in anllll or lil signal, If the carves were extended for greater valnes of modulation index it would be seen that the carrier amplitule goess through zero at several points. The same statement also applies to the sidebands.
carrier by an amount equal to the modulating frequener, the second is twice the modulating frequency away from the carrier, and so on. For example, if the modulating frequeney is 2000 reves and the carrier frequency is $29,500 \mathrm{kc}$., the first sideband pair is at $29,498 \mathrm{kc}$. and $29,502 \mathrm{kc}$., the second pair is at $29,496 \mathrm{kc}$. and $29,504 \mathrm{kc}$., the third at $29,494 \mathrm{ke}$, and $29,506 \mathrm{ke}$., etc. The amplitudes of these sidebands depend on the modulation index, not on the frequeney deviation. In . .M, regardless of the pereentage of modulation (so long as it does not exceed 100 per cent) the sidebands would appear onl! at 29,498 and $29,502 \mathrm{kc}$. under the same conditions.

Note that, as shown by Fig. 11-2, the carrier strength varies with the modulation index. (In amplitude modulation the carrier strength is constant; only the sideband amplitude varies.) At a modulation index of approximately 2.4 the carrier disappears entirely. It then becomes "negative" at a higher index, meaning that its phase is reversed as compared to the phase without modulation. In F'M and PM the energy that goes into the sidebands is taken from the earrier, the total power remaining the same regardless of the modulation index.

Frequency Multiplication

Since there is no change in amplitude with modulation, an FM or PM signal can be amplified by an ordinary Class C amplifier without distortion. The modulation can take place in a very low-level stage and the signal can then be amplified by either frequency multipliers or straight amplifiers.

If the modulated signal is passed through one or more frequency multipliers, the modulation index is multiplied by the same factor that the carrier frequency is multiplied. For example, if modulation is applied on 3.5 Mc . and the final output is on 28 Me . the total frequency multiplication is 8 times, so if the frequency deviation is 500 cycles at 3.5 Mc. it will be 4000 cycles at 28 Me. Frequency multiplication offers a means for obtaining practically any desired amount of frequency deviation, whether or not the modulator itself is eapable of giving that much deviation without distortion.

Narrow-Band FM and PM

"Narrow-band" FM or PM, the only tepe that is authorized for use on the lower frequencies where the 'phone bands are crowded, is defined as FMI or PM that does not occupy a wider channel than an AMI signal having the same audio modulating frequencies. Narrow-band operation requires using a relatively small modulation index.

If the modulation index (with single-tone modulation) does not exceed about 0.6 the most important extra sideband, the second, will be at least 20 db . below the unmodulated carrier level, and this should represent an affective chamel width about equivalent to that of an $A M$ signal. In the case of speech, a somewhat higher modulation index can be used. This is because the energy distribution in a complex wave is such that the modulation index for any one frequency component is reduced, as compared to the index with a sine wave having the same peak amplitude as the voice wave.

The chief advantage of narrow-hand FM or 1'M for frequencias below 30 Mc. is that it eliminates or reduces certain types of interference to broadeast reception. Also, the modulating equip)ment is relatively simple and incexpensive. However, assuming the same unmodulated carrior power in all cases, narrow-hond FM or PM is not as effective as AM with the methods of reception used by most amateurs. As shown by Fig. 11-2, at an index of 0.6 the anppliturle of the first sideband is about 25 per cent of the un-modulated-carrier amplitude; this compares with a sideband amplitude of 50 per cent in the ease of a 100 per cent modulated AMI transmitter. That is, so far as effectiveness is concerned, a nar-row-band FM or PMI transmitter is about equivalent to a 100 per cent modulated AMI transmitter operating at one-fourth the carrier power.

Comparison of $F M$ and $P M$

Frequency modulation eannot be applied to an amplifier stage, but phase modulation can. PM is therefore readily adaptable to transmitters
employing oscillators of high stability such as the erystal-controlled type. The amount of phase shift that can be obtained with good lincarity is such that the maximum practicable modulation index is about 0.5. Because the phase shift is proportional to the modulating frequency, this index can be used only at the highest frequeney present in the modulating signal, assuming that all frequencies will at one time or another have equal amplitudes. Taking 3000 eveles as a suitable upper limit for voice work, and setting the modulation index at 0.5 for 3000 ceyeles, the frequeney response of the spereh-amplifier system above 3000 avoles must be sharply attenuated, to prevent sideband splatter. Also, if the "tinny" quality of PM as received on an FMI receiver is to he avoided, the PMI must be changed to FM, in which the modulation index decreases in inverse proportion to the modulating frequency. This requires shaping the speechamplifier frequency-response curve in such a way that the output voltage is inversely proportional to frequency over most of the voice range. When this is done the maximum modulation index can only be used at some relatively low audio frequerrey, perhaps 300 to 400 cyeles in voice transmission, and must decrease in proportion to the increase in frequency. The result is that the maximum linear frequeney deviation is only one or two hundred cyeles, when l'M is changed to F.M. To increase the deviation for NFMI requires a frequency multiplication of 8 times or more.
It is relatively easy to secure a fairly large frequency devitation when a self-controlled osrillator is frequency-modulated directly. (True frequeney modulation of a crystablentrolled oscillator results in only very small deviations and so requires a great deal of frequeney multiplication.) The chicf problem is to maintain a satisfactory degree of carrier stability, sinee the greater the inherent stability of the oscillator the more difficult it is to secure a wide frequency swing with linearity.

Methods of Frequency and Phase Modulation

FREQUENCY MODULATION

The simplest and most satisfactory devire for amateur FM is the reactance modulator. This is a vacuum tube connected to the r.f. tank circuit of an oscillator in such a way as to act as a variable inductance or capacitance.

Fig. 11-3 is a representative cireuit. The control grid of the modulator tube, M, is comnerted across the oscillator tank circuit, $C_{1} L_{1}$, through resistor R_{1} and blocking condenser $C_{2} . C_{8}$ represents the input capacitance of the modulator tubs. The resistance of R_{1} is made large compared to the reactance of C_{8}, so the r.f. current through $R_{1} C_{8}$ will be practically in phase with the r.f. voltage appearing at the terminals of the tank circuit. However, the voltage across C_{8}
will lag the current by 90 degrees. The r.f. current in the plate circuit of the modulator will be in phase with the grid voltage, and consequently is 90 degrees leehind the current through (8 , or 90 degrees behind the r.f. tank voltage. This lagging current is drawn through the oscillator tank, giving the same effert as though an inductance were connected across the tamk. The frequency increases in proportion to the amplitude of the lagging plate current of the modulator. The audio voltage, introduced through a radio-frequency choke, $I F C=$, varies the transconductance of the tube and thereby varies the r.f. plate current.

The modulated oseillator usually is operated on a relatively low frequency, so that a high order of carrier stability can be secured. Frequency

Fis. 11.3- Ractance modulator osing a high-transeonductance pentode ($6.5(; 7,0.1(; 7$, etc.).
$C_{1}-$ R.f. tank capacitanes (see text).
(.2, ©

(: - $10-\mu \mathrm{f}$. alectrolvtic.
C_{8} - Tube input eapacitance (see text).
$R_{1}-47,000$ ohms.
$\mathrm{K}_{2}-0.17$ megohm.
R_{3} - Screen dropping resistor; select to give proper sercen voltage on type of modulator tube used. R_{4} - Cathode bias resistor; select as in ease of R_{3}.
I.I - IS.f. tank inductance.

I\& I'C - 2.5-mh. r.f. choke.
multipliers are used to ratise the frequency to the final frequency desired. The frequency deviation increases with the number of times the initial frequeney is multiplied: for instance, if the oscillator is operated on (6.5 Mr. and the output frequener is to be 52 . Mr., an oseillator frequency deviation of 1000 areles will be raised to 8000 cycles at the output frequences.

A reactance modulator can be ronnertod to a aristal osciliator as well as to the self-controlled type. IIowever, the result ing signal is more phasemodulated than it is frequencemodulated, for the reason that the frequener deviation that can be secored by varying the tuning of a crystal oscillator is quite small.

Design Considerations

The sensitivity of the modulator (frequency change per unit change in grid voltage) depends on the trinseonductane of the modulator tube. It increases when R_{1} is mate smatler in comparinon with ('x. It also increases with an increase in $L_{/} / \mathbf{C}$ ration in the oscillator tank cireuit. Since the earrier stability of the oseillator depends on the L/C ratio, it is desirable to use the highest tank eaparitane that will permit the desired deviation to be secured while kecping within the limits of linear operation.

A change in amy of the voltages on the modulater tube will ratuse a change in r.f. plate earrent, and consequently a frequeney change. Therefore it is advisable to use a regulated plate power supply for both modulator and owrillator. At the low voltages used (250) volts) the required stabilization can be secured by means of gaseous regulator tubes.

Speech Amplification

The speech amplifier preceding the modulator follows ordinary design, except that no power is required from it and the a.f. voltage taken by the
modulator grid usually is small - not more than 10 or 15 volts, even with large modulator tubes. Berause of these modest requiremonts, only a few speerh stages are needed; a two-stage amplifier consisting of a pentofe followed hy a triode, both resistance-coupled, will more than suffice for crystal mierophones.

- PHASE MODULATION

The stme type of reactance-tube circuit that is used to vary the tuming of the oscillator tank in FM can be used to vary the tuning of an amplifier tank and thus vary the phase of the tank current for PM. Hence the modulator cireuit of Fig. $11-3$ can be used for PMI if the reartance tube works on an amplifier tank instead of directly on a self-controlled oseillator.

The phase shift that oecurs when a cireuit is detuned from resonance depends on the amount of detuning and the $(Q$ of the circuit. The higher the (), the smaller the amount of detuning needed to secure a given number of degrees of phase shift. If the (2 is at least 10 , the relationship botween phase shift and detuning (in kilocecles either side of the resonant frequency) will be substantially linear over a phase-shift range of about 2.5 degrees. From the standpoint of modulator semsitivity, the (Q of the tuned circuit on which the modulator operates should be as high as possible. (nn the other hand, the efferetive () of the eireuit will not be very high if the amplifier is alelivering power to a load since the load resistance reduces the (Q. There must therefore be a compromise between modulator sensitivity and r.f. power output from the modulated amplifier. An optimum figure for (Q appors to be about 20 ; this allows reasonable loading of the modulated amplifier and the necessary tuning vartation can be serured from a reactance modulator without difficulty. It is advisable to modulate at a very low power level - preferably in a stage where receiving type tubes are used.

Reatanee modulation of an amplifier stage usually also results in simultaneous amplituale modulation becatise the modulated stage is detuned from resonance as the phase is shifted. This must he climinated by feeding the modulated signal through an amplitude limiter or one or more "saturating" stages - that is, amplifiers that we operated Class C and driven hard enough so that variations in the amplitude of the grid excitation produre no appreciable variations in the final output amplitude.

For the same type of reactance molulator, the speech-amplifior gain required is the same for PM as for FM. However, as pointed out earlier, the fact that the actual frequency deviation increases with the modulating audio frequency in I'M makes it neressary to cut off the frequencies above about 3000 ceres before modulation takes plice. If this is not done, unnecessary sidebands will be gemerated at frequencies considerably away from the carrier.

Checking FM and PM Transmitters

Accurate checking of the operation of an FMI or PM transmitter requires different methods than the corresponding checks on an AM set. This is because the common forms of measuring devices either indicate amplitude variations only (a d.c. milliammeter, for example), or because their indications are most easily interpreted in terms of amplitude. There is no simple measuring instrument that indicates frequency deviation in a modulated sigmal directly.

However, there is one favorable feature in FM or PM checking. The modulation takes plare at a very low level and the stages following the one that is modulated do not affect the linearity of modulation so long as they are properly tuned. Therefore the modulation may be checked without putting the transmitter on the air, or even on a dummy antenna. The power is simply cut off the amplifiers following the modulated stage. "This not only avoids umecessary interference to other stations during testing periods, but also keeps the signal at such a

Fig. 11-4- D.e. method of checking freguency deviation of a reactance-tube-modulated oseillator. A 500or 1000 ooling potentioneter may be used at R.
low level that it may be observed quite easily on the station receiver. A good receiver with a erystal filter is an essential part of the checking equipment of an FM or PM transmitter, particularly for narrow-band FM or PM.

The quantities to be checked in an FM or PM transmitter are the linearity and frequency deviation. Because of the essential difference between FM and I'M the methods of checking differ in detail.

Reactance-Tube FM

It was explained earlier that in FM the frequeney deviation is the same at any audio modulation frequency if the audio signal amplitude does not vary. Since this is true at any audio frequency it is true at zero frequency. Consequently it is possible to calibrate a reactance modulator by applying an adjustable d.c. voltage to the modulator grid and noting the change in oscillator frequency as the voltage is varied. A suitable circuit for applying the adjustable voltage is shown in Fig. 11-4. The battery, B, should have a voltage of 3 to 6 volts (two or more dry eells in series). The arrows indicate clip connections so that the battery polarity can be reversed.

The oscillator frequeney deviation should be measured by using a receiver in conjunction with an aceurately-calibrated frequeney meter,
or loy any means that will permit accurate measurement of frequency differences of a few hundred eveles. One simple method is to tune in the oscillator on the receiver (discomecting the receiving antenna, if necessary, to keep the signal strength well below the overload paint) and then set the receiver b.f.o. to zero beat. Then increase the d.c. voltage applied to the modulator grid from zero in steps of about $1 / 2$ volt and note the beat frequency at each change, Then reverse the battery terminals and repeat. The frequency of the beat note masy be measured by comparison with a calibrated audio-frequency oseillator. Sote that with the battery polarity positive with respect to ground the radio frequence will move in one direction when the voltage is increased, and in the other direction when the battery terminals are reversed. When several readings have been taken a curve may be plotted to demonstrate the relationship between grid voltage and frequency deviation.

A sample curve is shown in Fig. 11-5, The usable portion of the curve is the center part which is essentially a straight line. The bending at the ends indicates that the modulator is no longer linear' this departure from linearity will canse harmonic distortion and will broaden the channel occupied by the signal. In the example, the characteristic is linear 1.5 kc . on either side of the center or carrier frequency. This is the maximum deviation permissible at the frequency at which the measurement is made. At the final output frequency the deviation will be multiplied by the same number of times that the measurement frequency is multiplied. This must be kept in mind when the check is made at a frequency that differs from the output frequency.

A good modulation indicator is a "magieeye" tube such as the GLis. This should be eonnected across the grid resistor of the reactance modulator as shown in Fig. 1I-6. Note its deflection (using the d.c. voltage method as in Fig. 11-4) at the maximum deviation to be used. This deflection represents " 100 per cent

Fig. 11.5-A tynical curve of frequency deviation ws. modulator grid voltage.
modulation" and with speech input the gain should be kept at the point where it is just reached on voice peaks. If the transmitter is used on more than one band, the gain control should be marked at the proper setting for each band, because the signal amplitude that gives the correct deviation on one band will be either too great or too small on another. For narrow-band FM the proper deviation is approximately 2000 eycles (based on an upper at.f. limit of 3000 cycles and a deviation ratio of 0.7) at the final output frequency. If the output frequency is in the $29-$ Nc. band and the oscillator is on 7 Me ., the deviation at the oscillator frequency should not exceed 2000/4, or 500 eycles.

Checking with a Crystal-Filter Receiver

With I'M the d.e. method of checking just described cannot be used, because the frequency deviation at zerofrequency also is zero. For narrow-band IM it is necessary to eheck the actual width of the channel occupied by the transmission. (The same method also can be used to check FM.) For this purpose it is necessary to have a crystal-filter receiver and an a.f. oscillator that generates a 3000 -cycle sine wave.

Fig. 11-6-6E5 modulation indicator for FM or P'M modulators. 'l'o insure sufficient grid voltage for a good deflection, it may be necessary to connect the gain control in the modulator gride cirenit rather than in an carlier speech-amplifier stage.

Feeping the signal intensity in the receiver at a medium level, tune in the carrier at the output frequency. Do not use the a.v.c. switeh on the beat oscillator, and set the erystal filter at its sharpest position. Peak the signal on the crystal and adjust the b.f.o. for any convenient beat note. Then apply the 3000-cycle tone to the speech amplifier (through an attenuator, if necessary, to avoid overloading; see chapter on audio amplifiers) and increase the audio gain until there is a small amount of modulation. Tuning the receiver near the carrier frequency will show the presence of sidebands 3 ke. from the carrier on both sides. With low audio input, these two should be the only sidebands detectable.

Now increase the audio gain and tune the receiver over a range of about 10 ke on both sides of the carrier. When the gain becomes high enough, a second set of sidebands spaced 6 kc . on either side of the carrier will be detected. The signal amplitude at which these sidebands become detectable is the maximum speech am-
plitude that should be used. If the 6E5 modulation indicator is incorporated in the modulator, its deflection with the 3000 -cycle tone will be the " 100 per cent modulation" deflection for speech

When this method of checking is used with a reactance-tube-modulated FM (not I'M) transmitter, the linearity of the system can be checked by observing the carrier as the a.f. gain is slowly increased. The beat-note frequency will stay constant so long as the modulator is linear, but nonlinearity will be accompanied by a shift in the average carrier frequency that will cause the beat note to change in frequency. If such a shift occurs at the same time that the 6 -kc. sidebands appear, the extra sidebands may be caused by modulator distortion rather than by an excessive modulation index. This means that the modulator is not capable of shifting the frequency over a wideenough range. The $6-\mathrm{kc}$. sidebands should appear before there is any shift in the carrior frequency.

R.F. Amplifiers

The r.f. stages in the transmitter that follow the modulated stage may be designed and adjusted as in ordinary operation. In fact, there are no special requirements to be met except that all tank circuits should be carefully tuned to resonance (to prevent unwanted r.f. phase shifts that might interact with the modulation and thereby introduce hum, noise and distortion). In neutralized stages, the neutralization should be as exact as possible, also to minimize unwanted phase shifts. With FM and PM, all r.f. stages in the transmitter can be operated at the manufacturer's maximum c.w.-telegraphy ratings, since the average power input does not vary with modulation as it does in AM 'phone operation.

The output of the transmitter should be checked for a mplitude modulation by observing the antenna current. It should not change from the unmodulated-carrier value when the transmitter is modulated. If there is no antenna ammeter in the transmitter, a flashlight lamp and loop can be coupled to the final tank coil to serve as a current indicator. If the carrier amplitude is constant, the lamp brilliance will not change with modulation.

Amplitude modulation accompanying FM or PM is just as much to be avoided as frequency or phase modulation that accompanies AM. A mixture of AM with either of the other two systems results in the generation of spurious sidebands and consequent widening of the channel. If the presence of $A M$ is indicated by variation of antema current with modulation, the cause is almost certain to be nonlinearity in the modulator. In very wide-band FM the selectivity of the transmitter tank circuits may cause the amplitude to decrease at high deviations, but this condition is not likely to occur on amateur frequencies at which wide-band FM would be used.

CHAPTER 12

Single Sideband

The most significant development in amateur radiotelephony in the past several years has been the inereased use of single-sidehand suppressedcarrier transmissions. This system has tremendous potentialities for inereasing the effertiveness of 'phone transmission and for redueing interference. Becatase only one of the two sidebands normally produced in modulation is transmitted, the chamel width is immediately cut in half. Itowever. when only one sidehand is transmitted, the carrier - which is essential in double-sideband transmission - no longer is necessary; it can be supplied without too much diffieulty at the receiver. With the carrier diminated there is a great saving in powre at the transmiter-or. from anothor viewpoint, a great increase in efferetive power output. Assuming that the same finalamplifier tube or tubos are used either for normal AM or for single-sideband, carrier suppressed, it can be shown that the use of sisll cath give an effective gain of up to 9 (t). over AM - equivarlent to increasing the transmitter power 8 times. Diminating the carrier also climinates the heterodyne interference that wrecks so much eommunication in congested 'phone bands.

SUPPRESSING THE CARRIER

The carrier can be suppressed or nearly eliminated by an extremely sharp filter or by using a balanced modulator. The basie primeiple in any balanced modulator is to introduce the carrier in such a way that it does not appear in the output but so that the sidebands will. This requirement is satisfied by introducing the audio in push-pull and the r.f. drive in parallel, and eonnecting the output (plate cirruit) of the tubes in push-pull, as shown in Fig. 12-1A. Balanced modulators (ain also be donnected with the r.f. drive and audio inputs in push-pull and the output in parallel (Fig. 12-113) with cqual effectivencoss. The choice of a batanced modulator circuit is generally determined by constructional considerations and the method of modulation preferred by the builder. Soreen-grid modulation is shown in the examples in Fig. 12-1, but control-grid or plate morlulation can be used equally as well. Isalancedmodulator eireuits using forur reetifiers (germanium, copper oxide, or thermionic) in "bridge" or "ring" cireuits are oftern used, particularly in commereial applications. Two-rectifier circuits are also available, and they are widely used in amateur SAB equipment. Dxamples of rectifiertype balanced modulators are shown in liig. 12-2.

In any of the varcuum-tube circuits, there will be no output with no audio signal beeause the eircuits are batanced. The signal from one tube is balaned or cancelled in the output cireuit by the signal from the other tube. The rireuits are thas balanced for any value of parallel audio signal.

When push-pull audio is applied, the modudating voltages are of opposite polarity, and one tube will conduct more than the other. Since any modulation process is the same as "mixing" in rereivers, sum and difference frequencies (sidehands) will be generated. The modulator is not batanced for the sidebands, and they will appear in the output.

The amount of carrier suppression is dependent upon the matehing of the two tubes and their associated circuits. Normally two tubes of the same type will balance closely enough to give at least 15 or $20(\mathrm{dt}$. carrier suppression without any adjustment. If further suppression is required, trimmer capacitors to balance the grid-plate capacities and separate bias adjustments ior setting the operating points can be used.

Fig. 12.1 - T'wo examples of balanced-modulator circuits using screen-grid modulation. In A the r.f. excitation is in parallel in both tulbes, and the audio and output are in push-pull. In 13 the excitation and audio are in push-pull, the ontput is in parallel. In eit her case, the carrier frepuency, f, does not appear in the output cirauit - only the two sideband frequencies, $f+F$ and $f-f$, will appear. The bias fed to the servens is a practical requirement with all screen-mrid tubes for proper linear operation, and is not a secial requirement of halanced modulators.

In the rectifier-tupe lalanded modulators shown in Fig. 12-2, the diode rectifiers are comected in such a mamer that, if they have equal forward resistances, no r.f. can pass from the carrier soure to the output circuit vial either of the two possible paths. The net effeet is that no r.f. energy appears in the output. When audio is appliexl, it unbalances the circuit by biasing the diode (or diodes) in one path, depending upon the instantaneous polarity of the audio, and hence some r.f. will appear in the output. The r.f. in the output will appear as a double-sideband suppressedearrier signal. (For a more complete description of diode-modulator operation, see "Diode Modulators," QST, April, 195.3, page 39.)

In any diode modulator, the r.f. voltage should be at least 6 or 8 times the peak audio voltage. for minimum distortion. The usual operation involves

Fig. 12-2 - Typical rectifier-type halaneed modulators.
The circuit at A is called a "bridge" balanced modulator and has been widely nsed in commercial work.

The balanced modulator at 13 is shown with eonstants suitable for operation at 450 ke . It is useful for worhing into a erystal handpass filter. T_{1} is a transformer designed to work from the audio source into a 600 oohm load, and T_{2} is an ordinary i.f. transformer with the trimmer reconnected in scries with a $0.001-\mu \mathrm{fd}$. capacitor, for impedance-matehing purposes from the modulator. The capacitor C_{1} is for carrier halance and may be found unnccessary in some instances - it should be tried connected on either side of the carrier input eircuit and used where it is more effeetive. The $\mathbf{2 5 0}$-ohm potentiometer is normally all that is required for carrier balance. The carricr input should be sufficient to develop several volts across the resistor string.

The halanced modnlator circuit at C is shown with constants suitable for operation at 3.9 Me. T_{3} is a small step-down output transformer (U'C $1 \mathrm{R}-38 \mathrm{~A}$), shumt-fed to eliminatc d.c. from the windings. I_{1} can be a small coupling eoil wound on the "cold" cnd of the carrieroscillator tank coil, with sufficient coupling to give two or three volts of r.f. across its output. L_{2} is a slug-tuncd coil that resonates to the carrier frequency with the effective $0.001 \mu \mathrm{fd}$. aeross it. The 1000 -ohm potentiometer is for carrier balance.
a fraction of a volt of audio and several volts of r.f. The diodes should be matehed as closely as possible - ohmmeter metsurements of their forward resistances is the usual test.
(The circuit of Fig. 12-2 B is described more fully in Weaver and Brown, "Crystal Lattice Pilters for 'Transmitting and Receiving," QS'T, August, 1951 . The cireuit of Fig. $12-2 \mathrm{C}$ is suitable for use in a double-balanced-modulator circuit and is so described in "SSB, Jr.," General Electric Ham Neurs, September, 1950.)

SINGLE-SIDEBAND GENERATORS

Two basie systems for generating SSB signals are shown in Fig. 12-3. One involves the use of a bandpans filter having sufficient selectivity to pass one sidfound and rejeet the other. Filters having such charateristics can only be constructed for relatively low frequencies, and most filters used by amateurs are designed to work somewhere between 10 and 20 kc . Good sideband filtering ean be done at frequeneies as high as 500 ke . by using multiple-crystal or electromechanical filters. The low-frequency oscillator output is combined with the audio output of a speech amplifier in a balanced modulator, and only the upper and lower sidebands appear in the output. One of the sidebands is passed by the filter and the other rejected, so that an SSB signal is fed to the mixer. The signal is there mixed with the output of a high-frequency r.f. oscillator to produce the desired output frequency. For anditional amplification a linear r.f. amplifier (Class A or Class B) must be used. When the SSBB signal is generated at 10 or 20 ke ., it is generally first heterodyned to somewhere around 500 ke . and then to the operating frequency. This simplifies the problem of rejecting the "image" frequencies resulting from the heterodyue process. The problem of image frequencies in the frequency conversions of SSB signalls differs from the problem in receivers because the beating-oscillator frequency becomes important. Either balaneed modulators or sufficient selectivity must be used to attenuate these frequencies in the output and hence minimize the possibility of unwanted radiations.

The second system is based on the phase relationships between the carrier and sidebands in a modulated signal. As shown in the diugram, the audio signal is split into two eomponents that are identical except for a phase difference of 90 degrees. The output of the r.f. oscillator (which may be at the operating frequence, if desired) is likewise split into two separate components having a 90 -degree phase difference. One r.f. and one audio component are combined in cach of two separate balaneed modulators. The carrier is suppressed in the modulators, and the relative phases of the sidebands are such that one sideband is balanced out and the other is aceentuated in the combined output. If the output from the balaneed modulators is high enough, such an SSB exciter can work dircetly into the antenna, or the power level can be inereased in a following amplifier.

Properly adjusted, either system is capable of good rosults. Arguments in favor of the filter sys-

Fig. 12-3-Two hasie systems for generating single-sideband suppressed-carrier simnals. Representations of a typical envelope pieture (as seen on an oseilloscope) and sperirum pieture (as seen on a very selective panoramie receiver) are shown above and below the connecting links.
tom are that it is somewhat casier to adjust without an oscilloscope, sine it requires only a reeeiver and a v.t.v.m. for alignonent, and it is more likely to remain in adjust ment over a long period of time. The ehief argument against it, from the amateur viewpoint, is that it requires quite a few stages and at least one frequency eonversion after modulation. The phasing system requires fewer stages and can be dexigned to require no frequency conversion, but its alignment and adjustment are often considered to be a little "trickier" than that of the filter system. This probably stems from lack of familiarity with the system rather than amy actual difficulty, and now that commercially-available preadjusted audio-phasing networks are available, most of the alignment difficulty has been eliminated. In most cases the phasing system will cost less to apply to an existing transmitter.

Regardless of the method used to generate a SSB signal of 5 or 10 watts, the minimum cost will be found to be higher than for an AM transmitter of the same low power. However, as the power level is inereased, the SSB transmitter becomes more economical than the AM rig, both initially and from an operating standpoint.

AMPLIFICATION OF SSB SIGNALS

When an SSB signal is generated at some frequeney other than the operating frequency, it is necessary to change frequency by heterodyne
methods. These are exactly the same as those used in receivers, and any of the nommal mixer or converter circuits can be used. One excention to this is the case where the original signal and the heterodyning oscillator are not too different in frequency (as when heterodyning a 20 -ke. signal to 500 kc .) and, in this case, a balanced mixer should te used, to eliminate the heterodyning oscillator frequency in the output.

To inerease the power level of an SSB signal, a linear amplifier must be used. The simplest form of lincar amplifier (r.f. or audio) is the Class A amplifier, which is used almost without exception throughout receivers and low-level specer equipment. While its linearity can be made relatively good, it is inefficient. The theoretical limit of efficiency is 50 per cent. and most practical amplifiers run 25-35 per cent efficient at full output. At low levels this is not worth worrying about, but when the 2 - to 10 -watt level is exceeded something else must be done to improve this efficiency and reduce tube, powersupply and operating costs.

Class AB_{1} amplifiers make excellent linear amplifiers if suitable tubes are selected. Primary advantages of Class $A B_{1}$ amplifiers are that they give much greater output than straight Class A amplifiers using the same tubes, and they do not require any grid driving power (no grid current drawn at any time). Although triodes can be used for Class AB_{1} operation, tetrodes or pentodes are
usually to be preferred, since (lats $A B_{1}$ operation requires high peak plate current without grid current, and this is casier to obtain in tetrodes and pentodes than in most triodes.
To obtain maximum output from tetrodes, pentodes and most triodes, it is necessary to operate them in Class AB2. Although this produces maximum peak output, it increases the drivingpower requirements and, what is more important, requires that the driver regulation (ability to maintain waveform under varying load) be good or excellent. The usual mothod to improve the driver regulation is to add fixed resistors acerose the grid circuit of the driven stage, to offer a load to the driver that is modified only slightly by the additional load of the tube when it is driven into the grid-current region. This increases the driver's output-power requirements. Further, it is desirable to make the grid rireuit of the Class $A B_{2}$ stage a high-C circuit, to improve regulation and simplify coupling to the driver. A "stiff" bias souree is also required, sime it is important that the bias remain constant, whether or not grid current is drawn.

Class 13 amplifiers are theoretically eapable of 78.5 per cent efficience at full output, and practieal amplifiers run at $60-70$ per cent efficiency at full output. Tubes normally designed for Class B audio work cinn be used in r.f. linear amplifiers and will operate at the same power rating and efficiency provided, of course, that the tube is capable of operation at the radio freguener. The operating conditions for r.f. are substantially the same as for audio work - the only difference is that the imput and output transformers are replaced by suitable r.f. tank circuits. Further, in r.f. circuits it is readily possible to operate only one tube if only half the power is wanted - pushpull is not a necessity in Class 13 r.f. work. llowever, the r.f. harmonies may be higher in the case of the single-ended amplifier, and this should be taken into consideration if TVI is a problem.

For proper operation of Class B amplifiers, and to reduce harmonics and facilitate coupling, the input and output eireuits should not have a low C-to- L ratio. A grood guide to the proper size of tuming capacitor will be found in Chapter six: in case of any doubt, it is well to be on the higheapacitanee side. It zero-bias tubes are used in the Class 13 stage, it may not be necessary to add much "swamping" resistance aeross the grid circuit, beeause the grids of the tubes load the eireuit at all times. Itowever, with other tubes that require bias, the swamping resistor should be such that it dissipates from five to ten times the power required by the grids of the tubes. This will insure an almost constant foad on the driver stage and grood regulation of the r.f. grid voltage of the Class 13 stage.

Before going into detail on the adjustment and loading of the linear amplitier, a few general considerations should be kept in mind. If proper operation is expected, it is essential that the amplifier be so constructed, wired and neutralized that no trace of regeneration or parasitie
instability remains. Neredess to say, this also applies to the stages driving it.

The bias supply to the Class IS linear amplifier should be quite stiff, such as batteries or some form of voltage regulator. If nonlinearity is noticed when testing the unit, the bias supply maty be checked by means of a large electrolytic capacitor. Simply shunt the supply with $100 \mu \mathrm{fd}$. or so of caparit y and see if the linearity improves. If so, rebuild the bias supply for better regulation. Do not rely on a large condenser alone.

Where tetrodes or pentodes are used, the sereem supply should have good regulation and its voltage should remain constant under the varying eurrent demands. If the maximum sereen current does not exceed 30 or 35 ma., a string of VIR tubes in series can be used to regulate the screen voltage. If the current demand is higher, it may be necessary to use an electronically-regulated power supply or a heavily-bled power supply with a current rapacity of several times the current demand of the sereen circuit.

Where VR tubes are used to regulate the screen supply, they should be selected to give a regulated voltage as close as possible to the tube's rated voltage, but it does not have to be exact. Minor differences in idling plate current can be made up by readjusting the grid bias.

From the standpoint of ease of adjustment and availability of proper operating voltages, a linear amplifier with Class AB_{1} tetrodes or pentodes or one with zero-bias Class I 3 triodes would be first choice. The Class 13 amplifier would require more driving power. (For examples of Chass $A B_{1}$ tetrode amplifiers, see Russ, "The 'Little Firecracker' Lincar Amplifier," QST, Heptember, 1953, and Eekhardt, "The single Side-saddle Linear," QST, November, 1953.)

Table 12-I lists a few of the more popular tubes commonly used for SSB linear-amplifier operattion. Except where otherwise noted, these ratings are those given by the manufacturer for atadio work and and as such are based on a sine-wave signal. These ratings are adequate ones for use in SSB amplifier design, but they are conservative for such work and hence do not necessarily represent the maximum powers that can be obtained from the tubes in voice-signal SSB service. In no case should the average plate dissipation be exceeded for any considerable length of time, but. the nature of a SSB signal is such that the average plate dissipation of the tube will run well below the peak plate dissipation. Henee in SSB operation the peak plate dissipation may exreed the average by several times.

Getting the most out of a lincar amplifier is done by increasing the peak power without exreeding the average plate dissipation over any appreciable length of time. This can be done by raising the plate voltage or the peak current (or both), provided the tube can withstand the inarease. For example, the 6146 is shown with 750 volts maximum on the plate, and it is quite likely that this ran be inereased to 300 or 1000 volts without any appreciable shortening of the life of the tube. Ilowever, the manufacturers have not

TABLE 12-I-LINEAR-AMPLIFIER TUBE-OPERATION DATA FOR SINGLE SIDEBAND

Tub	Class	Plate Valtage	Screen Voltage	D.C. Grid Valfage	Zero-Sig. D.C. Plate Current	Max.-Sig. D.C. Plote Current	Zero-Sig. D.C. Screen Current	Max.-Sig. D.C. Screen Current	Peok R.F. Grid Valtoge	Max.-Sig. Avg. Grid Current	Max.-Sig. Avg. Driving Power	Max.-Rated Screen Dissipation	Max.-Roted Grid Dissipation	Avg. Plote Dissipotion	Max.-Sig. Useful Power Output
$2 E 26$	A_{1}	250	200	-14	35	42	7								
	$A^{1} \mathrm{~B}_{2}$	$\begin{aligned} & 400 \\ & 500 \end{aligned}$	$\begin{array}{r} 125 \\ 125 \\ \hline \end{array}$	$\begin{aligned} & -15 \\ & -\quad 15 \end{aligned}$	$\begin{aligned} & 10 \\ & 11 \end{aligned}$	$\begin{aligned} & 75 \\ & 75 \end{aligned}$		$\begin{aligned} & 16 \\ & 16 \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \end{aligned}$		$\begin{aligned} & .2 \\ & .2 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \\ & 2.5 \end{aligned}$		$\begin{aligned} & 10 \\ & 10 \\ & 125 \end{aligned}$	$\begin{array}{r} 5 \\ 21 \\ 27 \end{array}$
6146	$A^{\prime} \mathbf{B}_{1}$	$\begin{array}{r} 600 \\ 750 \end{array}$	$\begin{array}{r} 200 \\ 200 \\ \hline \end{array}$	$\begin{aligned} & -50 \\ & -\quad 50 \end{aligned}$	$\begin{aligned} & 26 \\ & 29 \end{aligned}$	$\begin{aligned} & 120 \\ & 114 \end{aligned}$	$\begin{aligned} & .6 \\ & .5 \end{aligned}$	$\begin{aligned} & 13 \\ & 14 \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \end{aligned}$	—	$\stackrel{3}{0}_{0}^{.2}$	$\begin{aligned} & 2.5 \\ & 3 \\ & 3 \end{aligned}$		12.5	$\begin{array}{r} 27 \\ 47 \end{array}$
	AB_{2}	$\begin{aligned} & 600 \\ & 750 \end{aligned}$	$\begin{aligned} & 185 \\ & 165 \end{aligned}$	$\begin{array}{r} 50 \\ -\quad 45 \\ \hline \end{array}$	$\begin{aligned} & 21 \\ & 18 \end{aligned}$	$\begin{aligned} & 135 \\ & 120 \end{aligned}$	$\begin{aligned} & .5 \\ & .3 \end{aligned}$	$\begin{aligned} & 14 \\ & 15 \\ & 11 \end{aligned}$	$\begin{aligned} & 50 \\ & 57 \\ & 51 \end{aligned}$	$\begin{aligned} & -4 \\ & .4 \end{aligned}$	$\begin{aligned} & 0 \\ & .02 \\ & .02 \end{aligned}$	$\begin{array}{r} 3 \\ 3 \\ 3 \end{array}$		$\begin{aligned} & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & 60 \\ & 58 \end{aligned}$
$\begin{aligned} & 807 \\ & 1625 \end{aligned}$	AB_{2}	$\begin{array}{r} 600 \\ 750 \\ 1000 \end{array}$	$\begin{aligned} & 300 \\ & 300 \end{aligned}$	$\begin{array}{r} 30 \\ -\quad 32 \\ \hline \end{array}$	$\begin{aligned} & 30 \\ & 26 \end{aligned}$	$\begin{aligned} & 100 \\ & 120 \end{aligned}$	$.4$	$\begin{array}{r} 11 \\ 6 \\ 8 \\ \hline \end{array}$	$\begin{aligned} & 51 \\ & -39 \\ & 46 \end{aligned}$	$\text { . } 4$	$\begin{gathered} .02 \\ .1 \\ .1 \end{gathered}$	$\begin{aligned} & 3 \\ & 3.5 \\ & 3.5 \end{aligned}$		$\begin{aligned} & 25 \\ & 25 \\ & 30 \end{aligned}$	$\begin{aligned} & 65 \\ & 40 \\ & 60 \end{aligned}$
$811 . A$	B	$\begin{aligned} & 1000 \\ & 1250 \\ & 1500 \\ & \hline 1500 \end{aligned}$	二	$\begin{array}{r} 0 \\ 0 \\ -\quad 4.5 \end{array}$	$\begin{aligned} & 22 \\ & 27 \\ & 16 \\ & -30 \end{aligned}$	175 175 157	$=$		$\begin{aligned} & 93 \\ & 88 \\ & 85 \end{aligned}$	13	$\begin{aligned} & 3.1 \\ & 3.8 \\ & 3.2 \end{aligned}$	3.5		$\begin{aligned} & 65 \\ & 65 \\ & 65 \\ & \hline \end{aligned}$	$\begin{array}{r} 60 \\ -124 \\ 155 \\ 170 \end{array}$
4-65A	AB_{1}	$\begin{aligned} & 2000 \\ & 2500 \\ & \hline \end{aligned}$ 1000	$\begin{array}{r} 480 \\ 450 \end{array}$ 405	$\begin{array}{r} -1051 \\ =1001 \\ -\quad 90 \\ \hline \end{array}$	$\begin{aligned} & 30 \\ & 22 \\ & 17 \end{aligned}$	90 $(70)^{\prime}$ 80 $(60)^{\prime}$ 70 $(50)^{\prime}$		$\begin{gathered} 13(4.2) \\ 11(3.0) \\ 8.5(2.5) \end{gathered}$	$\begin{array}{r} 105 \\ 100 \\ 90 \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \end{aligned}$			$\begin{array}{r} 75 \\ 100 \\ 115 \end{array}$
	AB_{2}	$\begin{aligned} & 1000 \\ & 1500 \\ & 1800 \end{aligned}$	$\begin{array}{r} 250 \\ 250 \\ 250 \end{array}$	-301 $-\quad 351$ $-\quad 351$	$\begin{aligned} & 30 \\ & 30 \\ & 25 \end{aligned}$	$\begin{aligned} & 150 \\ & 125 \\ & 110 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 23 \\ & 15 \\ & 13 \end{aligned}$	$\begin{array}{r} 105 \\ 100 \\ 90 \end{array}$		$\begin{aligned} & 2.5 \\ & 1.6 \\ & 1.1 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 65 \\ & 63 \\ & 63 \end{aligned}$	$\begin{array}{r} 85 \\ 125 \\ 135 \end{array}$
	B2	$\begin{aligned} & 1500 \\ & 2000 \\ & 2500 \end{aligned}$	$\begin{array}{r} 300 \\ 400 \\ 500 \end{array}$	$\begin{aligned} & =\mathbf{5 0 1} \\ & =751 \\ & -1001 \end{aligned}$	$\begin{aligned} & 33 \\ & 25 \\ & 20 \end{aligned}$	$\begin{aligned} & 200 \\ & 270 \\ & 230 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 353 \\ & 50{ }^{3} \\ & 35^{2} \end{aligned}$	$\begin{aligned} & 190 \\ & 270 \\ & 300 \end{aligned}$	$\begin{aligned} & 13 \\ & 17 \\ & 6 \end{aligned}$	$\begin{aligned} & 2.4 \\ & 4.6 \\ & 1.8 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 60 \\ & 65 \\ & 65 \end{aligned}$	$\begin{aligned} & 135 \\ & 150 \\ & 300 \end{aligned}$
813	AB_{2}	$\begin{aligned} & 2000 \\ & 2250 \\ & 2500 \\ & \hline 2000 \end{aligned}$	$\begin{aligned} & 750 \\ & 750 \\ & 750 \\ & \hline 615 \end{aligned}$	(-90 -90 -95 $-105:$	$\begin{aligned} & 20 \\ & 23 \\ & 18 \\ & 40 \end{aligned}$	158 158 180 $135(100)^{\prime}$	$\begin{aligned} & .8 \\ & .8 \\ & .6 \end{aligned}$	$\begin{aligned} & 29 \\ & 29 \\ & 28 \end{aligned}$	$\begin{array}{r} 115 \\ 115 \\ 118 \end{array}$		$\begin{array}{r} 1.8 \\ .1 \\ .1 \\ .2 \end{array}$	$\begin{aligned} & 22 \\ & 22 \\ & 22 \end{aligned}$		$\begin{array}{r} 65 \\ -100 \\ 100 \\ 125 \end{array}$	$\begin{array}{r} 325 \\ 228 \\ 258 \\ \mathbf{3 2 5} \\ \hline \end{array}$
4.125A	AB_{1}	$\begin{array}{r} 2000 \\ 2500 \\ 3000 \\ \hline 1500 \end{array}$	$\begin{aligned} & 615 \\ & 555 \\ & 510 \\ & \hline 350 \end{aligned}$	$\begin{array}{r} -1051 \\ -1001 \\ -\quad 951 \\ \hline \end{array}$	$\begin{aligned} & 40 \\ & 35 \\ & 30 \end{aligned}$	$\begin{array}{cc} 135 & (100)^{\prime \prime} \\ 120 & (85){ }^{\prime} \\ 105 & (75)^{\prime} \\ \hline 200 \end{array}$	\bar{Z}	$\begin{array}{cc} 14 & (4.0) \\ 10 & (3.0) 1 \\ 6.0(1.5) 1 \end{array}$	$\begin{array}{r} 105 \\ 100 \\ 95 \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \\ & 20 \end{aligned}$			$\begin{aligned} & 125 \\ & 150 \\ & 180 \\ & 200 \end{aligned}$
	$A^{\prime} B_{2}$	$\begin{array}{r} 2000 \\ 2500 \\ \hline 2500 \end{array}$	$\begin{aligned} & 350 \\ & 350 \\ & 350 \\ & \hline \end{aligned}$	-451 -451 -431	$\begin{aligned} & 44 \\ & 36 \\ & 47 \\ & \hline \end{aligned}$	$\begin{aligned} & 200 \\ & 150 \\ & 130 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 17 \\ 3 \\ 3 \end{array}$	$\begin{array}{r} 141 \\ 105 \\ 89 \end{array}$	$\begin{aligned} & 9 \\ & 7 \end{aligned}$	$\begin{gathered} 1.25 \\ .7 \end{gathered}$	$\begin{aligned} & 20 \\ & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 125 \\ & 125 \\ & 122 \end{aligned}$	$\begin{aligned} & 175 \\ & 175 \\ & 200 \end{aligned}$
4-250A	$\mathbf{A B}_{1}$	2500 3000 3500 4000 1500	$\begin{aligned} & 660 \\ & 600 \\ & 555 \\ & 510 \\ & \hline 300 \end{aligned}$	$\begin{array}{r} -115 \\ -110 \\ -105 \\ -100 \end{array}$	$\begin{aligned} & 65 \\ & 55 \\ & 45 \\ & 40 \\ & \hline \end{aligned}$	$\begin{aligned} & 230(170)! \\ & 210(150) \\ & 185(130) \\ & 165(115) \end{aligned}$	—	15 (3.5) 12 $(2.5) 4$ 9.5 $(2.04$ 7.5 $(1.5)^{4}$	$\begin{aligned} & 115 \\ & 110 \\ & 105 \\ & 100 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 35 \\ & 35 \\ & 35 \\ & 35 \end{aligned}$			$\begin{aligned} & 335 \\ & 400 \\ & 425 \\ & 450 \end{aligned}$
	AB_{2}	$\begin{array}{r} 2000 \\ 2500 \\ 3000 \\ \hline \end{array}$	$\begin{aligned} & 300 \\ & 300 \\ & 300 \\ & 300 \end{aligned}$	-481 -481 -511 -1051	$\begin{array}{r} 50 \\ 60 \\ 60 \\ 63 \\ \hline \end{array}$	$\begin{aligned} & 243 \\ & 255 \\ & 250 \\ & 237 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 17 \\ & 13 \\ & 12 \\ & 17 \\ & \hline \end{aligned}$	$\begin{array}{r} 96 \\ 99 \\ 100 \\ 99 \end{array}$	$\begin{aligned} & 11 \\ & 12 \\ & 11 \\ & 10 \end{aligned}$	$\begin{aligned} & 1.1 \\ & 1.2 \\ & 1.1 \\ & 1 \end{aligned}$	$\begin{aligned} & 35 \\ & 35 \\ & 35 \\ & 35 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 150 \\ & 185 \\ & 205 \\ & 190 \end{aligned}$	$\begin{aligned} & 214 \\ & 325 \\ & 420 \\ & 520 \end{aligned}$
304TL	AB_{1}	$\begin{aligned} & 1500 \\ & 2000 \\ & 3000 \\ & \hline 2500 \end{aligned}$	-	$\begin{array}{r} -105 \\ -160 \\ -260 \\ \hline \end{array}$	$\begin{array}{r} 135 \\ 100 \\ 65 \\ \hline \end{array}$	$\begin{array}{r} 286 \\ 273 \\ 222 \\ \hline \end{array}$	-	-	$\begin{aligned} & 105 \\ & 160 \\ & 260 \end{aligned}$	-	\square	35		190 300 300 300	$\begin{aligned} & 520 \\ & 128 \\ & 245 \\ & 365 \\ & \hline \end{aligned}$
PL-6569	8s	3500 4000	-	$\begin{array}{r} -601 \\ =901 \\ -1051 \\ \hline \end{array}$	$\begin{aligned} & 40 \\ & 30 \\ & 24 \\ & \hline \end{aligned}$	$\begin{aligned} & 300 \\ & 270 \\ & 250 \\ & \hline \end{aligned}$			$\begin{aligned} & 180 \\ & 220 \\ & 205 \end{aligned}$	$\begin{aligned} & 80 \\ & 68 \\ & 42 \end{aligned}$	$\begin{aligned} & 70^{6} \\ & 756 \\ & 60^{6} \end{aligned}$	Z			$\begin{aligned} & 365 \\ & 550 \\ & 760 \\ & 800 \end{aligned}$
I Adjust to give stated zero-signol plate current. a Single-sideband suppressed-carrier finear amplifier rotings, voice signal. ${ }^{3}$ Due to intermittent nature of voice, average dissipation is considerobly less than mox.-signol dissipation.									tVolues in parentheses are with fwo -tane test signel. ${ }^{5}$ Grounded-grid circuif. 6 Includes bias loss, grid dissipation, and feed-through power.						

released any data on such operation, and any extrapolation of the audio ratings is at the risk of the amateur. A 35- to 50-per cent inerease above plate-voltage ratings should be perfectly safe in most cases. In a tetrode or pentode, the peak plate current can be boosted some by raising the sereen voltage.

When running a linear amplifier at considerably higher than the audio ratings, the "two-tone test signal" (described below) should never be applied at full amplitude for more than a few seconds at any one time. The above statements about working tubes above ratings apply only when a voice signal is used - a prolonged whistle or two-tome test signal may damage the tule.

Adjustment of Amplifiers

The two critical adjustments for obtaining proper operation from the linear amplitier are the plate loading and the grid drive. Sinee these adjustments are preferably made with power on, it is a matter of convenience to have both controls readily available during initial tuncoup.

The scope can show misadjustment at a glanco and will greatly facilitate all adjustments. In addition, it is the most reliable instrument for observing modulation amplitude amb, onere used, is likely to become the most nealy essential instrument in the shack.

With single sidehand, 100 per cont modulation with a single tone is a pure r.f. output with no modulation envelope, and the point of amplifier overload is difficult to olserve. However, if the input signal consists of two sine waves of different frequencies (for example, 1000 c.p.s. difference) but equal amplitudes, the output of the singlesideband transmitter should have the envelope shown in Fig. 12-4. This is called a "two-tone" test sigual to distinguish it from other test signals. Its first advantage lies in the fact that any flattening of the positive peaks is reatily discemible, which makes the adjustment of the linear-amplificr drive and output coupling as simple a procedure as that for AM systems. Flattening of the peaks (t_{0} be avoided) is illustrated in Fig. 12-5.

Those who use the filter method for obtaining single sideband can obtain such a test signal by feeding a single audio tone to the balanced modulator and jumping the filter. Those using the phasing method of single-sidehand signal goncration will recognize the patterm as that ob-
tained when a single test tone is applied to one of the balanced modulators. For this latter group a two-tone test signal may be readily obtained by disabling one of the balanced modulators in the exciter and applying a single input tone.
suppose that the linear amplifier has been coupled to a dummy load and the single-sideband exciter has bern connceted to its imput. By observing the oscilloscope coupled to the amplifier output, it will be possible to adjust the drive and output coupling so that the peaks of the two-tone test signal waveform are on the verge of flattening. The peak input power may now be checked. This is readily possible, for with the two-tone test signal applied, the pak input power will be 1.57 times the d.c. power input to the linear amplifier. Should this be different from the design value for the particular linear amplifier, the drive and loading adjustments can be quickly changed in the proper direction (always adjusting the loading so that the peaks of the envelope are on the verge of lat (ening) and the proper value reached.

As a final check, before coupling the linear amplifier to the antoma, the single-sideband operator will do well to check the linearity of the system, since distortion in the linear amplifier probably will result in the gencration of sidehands on the side that was suppressed in the exciter. Here again the two-tone test signal will be of great help, since distortion of the signal will be readily recognized. A check of the bias supply has afready been recommended. The next most likely form of distortion will be caused bey curvature of the tube characteristic near cut-off, and will be rearnizable from a two-tone test pattern that looks like Fig. 12-6. A slight readjustment of bias (or applying a few volts of positive or negative bias, in the case of zero-bias tubes) will usually straighten out the kink that exists where the pattern crosses the zero axis. Make this adjustment with special care, however, because the dissipation of the tubes with no input signal will be very sensitive to this adjustment. There are a few tubes that will not permit this adjustment to be carried to the point where the kink is entirely eliminated without exceeding the rated plate dissipation.

The antemna may now be coupled to the linear amplifier until the plate input with the excitation as determined above is the same as that obtained with the dummy load. The system has now been

Fig. 12-4-Oscillogram of a two-tone test signal through a linear amplifier.

Fig. 12.5 - Flattening caused by oserdrive or insufficient plate loading.

Fig. 12-6-The distorted pattern ohtained when the bias voltage is ineorrect.
adjusted for optimum performance, although it is well to monitor it with a seope.
(For further reading on linear amplifiers, see Long, "Sugar-Coated linear-Amplifier Theory"," QST, October, 1951, and Whrlich, "How To Test and Align a Linear Amplifier," (QST', May, 1952.)

VOICE-CONTROLLED BREAK.IN

Although it is possible for two SSll stations operating on widely different frequencies to work "duples" if the carrier suppression is great emough (inadequate carrier suppression would be a violation of the F(C rules), most sich operators prefer to use voice-controlled break-in and operate on the same frequency. This ororcomes any possibility of violating the leCC rules and permits three or more stations to engage in a "round table."

Many various systems of voice-eontrolled break-in are in use, but they are all basically the same. Some of the audio from the sperech amplifier is amplified and rectified, and the resultant d.e. signal is used to key an oseillator and one or more stages in the SSB transmitter and "blank" the receiver at the time that the transmitter is on. Thus the transmitter is on at any and all times that the operator is speaking but is off during the intervals between sentenees. The voice-control cireuit must have a small amount of "hold" built into it, so that it will hold in between words, but it should be made to turn on rapidly at the slightest voice signal coming through the spereh amplifier. Both tube and relay lieyers have been used with good sucress. Some voirereontrol systems require the use of headphones by the operator, but a loudspeaker can be used with the proper eircuit. (See Nowak, "Voice-Controlled

Break-In . . . and a Loudspeaker," QST, May, 1951, and IIunter, "Simplified Voice Control with a Loudspeaker," QST, October, 1953.)

Restriction of Audio Range

In either type of SSB generator, it is good practice to restrict the frequency range of the audio amplifier. In the filter-type expiter, reducing the response below 300 or 400 eveles makes it easier for the filtor to eliminate thr unwanted side frequencies below this range. In the phasingtupe exeiter, restricting the range of the audio amplifier to the frequencies at which the network gives its best performance (usually about 300 to 3000 (erces) reduces the possibility of generating unwanted side frequencios outside this range. High-frequency audio cet-off is not as important in the filter-type exciter because the filter automatically takes care of the higher frequencies.

When a restricted audio range is used, it is a good idea to make a number of checks on the system, in an effort to obtain the lerst compromise botwern naturalness and intelligibility. Foice chatarteristies differ from operator to operator, and it is sometimes preferable to accentuate the "highs" slightly to give better intelligibility. No standards can be given here it is a subject for experimentation and ehecking under variod conditions.
The simplost moans for reducing the lowfrequencer response in the audio anplifier is to reduce the values of the coupling capacitors. High-frequency response can be reduced bey adding caparitance across grid resistors. More claborate means require the use of filters using inductance and (apacitance combinations.

Phasing-Type SSB Exciters

It should be obvious that a phasing-type ssilu exciter can take many forms, but in general it will consist of a sperech amplifier, audio phaseshift network, audio amplifier, bataneed modulators, r.f, source, r.f. phase-shift network, and r.f. amplifier. If operation on a band other than that of the r.f. source, a mixer stage will also be required, for heterodyning the signal to the desired frequency. Since there are several balaneectmodulator, audio- and r.f. phasing circuits, it is apparent that many different combinations are available. One of the simplest of all combinations is that shown in Fig. 12-7.

Roferring to Fig. 12-7, the speech amplifier builds up the signal from a crystal mierophone to a useful level. The audio signal is then fed to an audio phase-shift network, $P S N$, which applies equal-amplitude audio signals 90 dequees out of phase to the gritls of the 12AT' audio amplifier. The two audio signals, 90 degrees out of phase, are applied to two balanced modulators that have their outputs in parallel $\left(L_{3}\right)$. The r.f. excitation to the balineed modulators is also 90 degrees out of phase, ohtained by coupling from the two tuned cireuits at L_{1} and L_{2}. A

6AG7 lincar amplifier, operating Class $A B_{1}$, follows the balaneed-modulator stage and provides about 5 watts peak envelope output.

The gain control in the specech amplifier sets the gain to the proper level, depending upon the microphone and how the operator uses it. Since the audio phase-shift network, PS:', has unequal gains through its two chamels, mequalamplitude audio is required at the input to obtain equal sighals in the output. This is obtained through proper adjustment of the $!00$-ohm audio balance control. To compensate for lack of uniformity in audio-amplifier geins, a $500-$ ohm audio balance control is provided in the cathode of a 12 AT 7 section. R.f. carrier balance is obtained by proper setting of the $1000-\mathrm{ohm}$ carrier balance controls. The sideband in use (upper or lower) is solected by si, which reverses the audio signal in one of the chamels. The r.f. phasing adjustment is obtained by the tuning of L_{1} and L_{2}.

Construction

There are a few constructional precautions that should be observed in a unit of this type.

Fig. $12-7$ - Schematic of a phasing-type SSB exciter. Caparitance in μ f. unless otherwise noted - resistors are $1 / 2$-watt unless otherwise noted. Chassis prounds marked * should tee the same.
$C_{1}-5$ or $10 \mu \mu$. if inductive coupling between L_{1} and $I_{3}-16$ turns Vo. 22 enam., spaced to oecupy 1 -ineh L_{2} not sufficient.
T_{1} - Single plate to push-pull grid, l:3 ratio (Etancor A53C.).
$\mathrm{I}_{2}, \mathrm{~T}_{3}-6$-watt universal putput transformer, 30 ohms output (L'I C R-38A).
$L_{1}, L_{2}-32$ turns No. 22 enam. closewound on $1 / 2$-inch diameter iron-core tuned form (Millen 690.46). link turn is 6 turns hook-up wire wound adjacent to cold end.

Transformers T_{2} and T_{3} should preferably be mounted at right angles to each other, to minimize stray coupling. The 1 N 52 germanium diodes used in the balanced modulator should be checked for forward and back resistance with an ohmmeter, and the forward resistanees (the lower readings) should agree within 10 per cent. The leads from the coupling loops at L_{1} and L_{2} should return to the balanced modulator stage in twisted pairs, a nd the grounding precaution mentioned in Fig. 12-7 should be observed. Coils L_{1} and L_{2} should be mounted parallel to each other and with a separation of about $11 / 2$ diameters - L_{3} and L_{4} should be mounted to minimize coupling between them and L_{5} and the oscillator coils. This can be accomplished by providing shielding or using the chassis deck to separate them,

Although slug-tuned coils are shown in the schematic, capaeitance-tuned rireuits can of
lengh on $1 / 2$-inch diameter iron-core-tuned form
(Villen 60016), tapued at center. One-turn link wound at center.
L_{4} - same ans L_{1} : no link.
1.5-2.5 curns No. 22 enam. domewound on $1 / 2$-inch iron-eore-tumed form (Millen 0%) (0). Link of 4 turns at cold end.
$\mathrm{S}_{1}-$ I.p...l.t. toggle or rotary.
P'SN - Audio phase-shift network (Millen Bisit). See lig. 12-8.
course be used. Approximately the same L / C ratios should be retained, however. If operation on another amateur hand is desired, the tuned rircuits can be modified aroordingly, retaining the same L / C ratios, or the output of this unit can be heterodyned to the differont hand.

Fig. 12.8 - Schematic of the phase-shift network marked P^{\prime}, \mathbf{N} in Fig. 12-7. Resistors and capacitors should be within 1 per cent of values shown.

Adjustment

If VFO operation is to be used, the VFO signal should furnish at least 10 volts r.m.s. at the terminals. With crystal control, plug in a crystal and tune L_{1} until the circuit oscillates, as indicated by a signal in a receiver tuned to the proper frequency, and then tune the cireuit to a slightly higher frequency With VFO operation, the circuit is resonated in the usual manner, as indicated by a plate-current minimum.

The output from the 6AG7 stage can be rhecked on an oscilloscope (directly on the vertical plates as described in the chapter on Amplitude Modulation) or on the recoiver. If areceiver is used, an attenuator should be connected at the recoiver antemab terminals to reduce the signal. The attenuator can be a short circuit of wire directly across the terminals and a 75 -ohm resistor in series with the imner conductor of the conxial line from the GAG^{2} output. In either case a dummy load should also be connected to the exciter output terminal.

With the oscillator ruming, tume the babuced moduhator and 6A(i7 cirmits for maximum output - this resonates these circuits. Next adjust,

until they are. Listening to the signal, from the 6A(i7, or looking at it on the 'scope, should give a modulated signal. Try various settings of L_{2} until the modulation is minimized, as well as touching up the 500 -ohm audio balance control. With the v.t.v.m. check the r.f. voltages at the arms of the 1000 -ohm carrior balance potentiometers - they should be about the same. If not, they ean be brought into this condition by readjustment of the tuning conditions whirh, however, must be kept consistent with minimum modulation on the output signal.

The s.s.b. signal with single-tone audio input is a steady ummorlubated signal. While it may not be possible to eliminate the modulation antirely, it will be possible to get it down to a satisfactorily low level. Conditions that will prevent this are improper r.f. phasing, lack of carrier batance (suppression), distortion in the audio signal (at the souree or through overload in the speech amplifier), and lack of audio balanee at the 12 AT atudio amplifier. Of these, the r.f. phasing is perhepps the most critical.

A final check on the signal can be made with the reeriver in its most selective condition. Wixmining the spectrom near it, the side signals

Fir. $12-9$ - Sketches of the oscilloseope face showing different conditions of aljustment of the exciter unit. (1) shows the substantially clean earrier obtained when all adjustments are at optimum and a sine-wave signal is fed to the andio input. (B) shows improper r.f. phase and unbalance letween the outputs of the two balaneed modulators. (C) shows improper r.f. phasing but outputs of the two balanerd modulators equal. (D) shows proper r.f. phasing but unbalance between outputs of two balanced modulators.
the carrier balance potentiometers for minimum output. Then introduce a single audio tone of around 1000 cycles at the microphone terminal. Here again it may be neecssary to use a resistance voltage divider to hold the signal down and prevent overload. Advance the gain control and cheek the voltage at Pins 2 and 7 of the 12.1T7 audio amplifier with a v.t.v.m. If they are not equal, adjust the 100 -ohm audio balance eontrol
other than the main one (earrier, unwanted sidebands, and sidebands from audio harmonies) should be at least 30 dh. down from the desired signal. This cherking ean be done with the Smoter and the a.v.c. on - in the earlier tests the a.v.e. should be off but the r.f. gain reduced low emough to avoid weriver overload.

Examples of the proper and improper 'scope patterns are shown in Fig. 12-9.

Filter-Type SSB Exciters

The basie configuration of a filter-type SSB exciter was shown carlier in this ehapter (Fig. 12-3). Suitable filters, shatrp enough to rejert the unwanted sideband above a fow hundred coveles, can be built in the range 20 to 500 ke . (In England a fow amateurs have used orystal filters at 5 Me .) The low-frequeney filters generally use iron-cored inductors, and the new toroid forms find considerable favor at frequencies up to 50 or 60 ke . These filters are of normal bind-pass constant-k and m-derived configura-
tion. In the range 450 to 500 kc ., either crystallattice or electromechanical filters are used. Lowfrequency filters are manufactured by Barker \& Williums.m and by Burmell \& Co., and electromechanical filters are made by the Collins Radio Co. Crystal-lattice filters are generally homemade, and crystals from war-surplus equipment are a ready source of supply.

The frequency of the filter determines how mane conversions must be made lefore the operating fresuency is reached. For example, if the

Fig. 12-10-One type of balanced-modulator circuit that can he used with a merhanical filter (Collins F45.3-31 or F. $000-31$ series) in the i.f. range. The filters are furnished in various types of monntings, and the values of C_{i} and C_{2} will depend upon the type of fitter selected.
Tı - Ilate-to-push-pull grids amdio transformer.
filter frequency is 30 ks . or so, it is wise to convert first to 500 or 600 ke , and then convert to the 3.9-Mc. band, to avoid the image that would almost surely result if the conversion from 30 to 3900 kc . were made without the intermediate step. When a filter at 500 kc . is used, only one conversion is necessary to operate in the 3.9-Me. band, but 14 -Me, operation would reguire two conversions to hold down the images and make them easy to reject.

The choice of converter circuit depends largely on the frequencias involved and the impedance level. At low frequencies (up to 500 ke .) and low impedances, rectifier-type halaneed modulators are often used for mixers, berause the balanced modulator dors not show the local-oscillator frequency in its output and one source of spurious signal is minimized. At frequencies at high impedance levels, and at the higher frequencies, vacuum tubes are genorally usod, in straight converter or balanced-modulator cireuits, depending upon the need for minimizing the localoscillator frequeney in the output.

Low-frequency sideband filters in the 30- to $50-\mathrm{kc}$ range are usually low-inpedaner deviess, and rectifier-type balanced modulators are common practice. Sideland filters in the i.f. range are higher-impedance circuits and vacum-tube balanced modulators are the rule in this anse. An example of one that can be used with the high-impedance (15,000 ohms) mechanical filter is shown in Fig. 12-10. The filter can be followed by a converter or amplifier tube, depending upon the signal level. Some models of the mechanical filters have a $23-\mathrm{d}$ - l . insertion loss, while others have only 10.

Crystal-lattice filters are also used to reject the unwanted sideband. These filters can be made from crystals in the i.f. range - many of these are still available from stores selling military surplus. The most popular configuration is the "cascaded half lattice" shown in Fig. 12-11. The crystals
used in this filter can be obtained at frequencies in the i.f. range, and ones that are within the ranges of the modified i.f. transformers will be satisfactory. Two $100-\mu \mu \mathrm{f}$. capacitors are connected across the secondary winding of two of the transformers to give push-pull output. The ervstals should be obtained in pairs 1.8 kc apart. The i.f. transformers can be either capacitortuned as shown, or they can be slug-tuned.

A variathe-frequency signal generator of some kind is required for alignment of the filter, but this can be nothing more claborate than a shiclded b.f.o. unit. The signal should be introduced at the balanced modulator, and in output indicator connected to the plate circuit of the vacuum tube following the filter. With the erystals out of the circuit, the transformers can be brought elose to frequency by plugging in small capacitors (10 to $25 \mu \mu \mathrm{f}$.) in one erystal socket in each stage and then tuning the transformers for peak output at one of the two cristal frequencies. The sinall capacitors can then be removed and the crystals replaced in their sockets.

Tuning the signal source slowly across the pass band of the filter and watching the output indicator will show the selectivity characteristic of the filter. The objective is a fuirly flat response for about two ke. and a rapid drop-off outside this range. It will be foumd that small changes in the tuning of the transformers will change the shape of the selectivity characteristic, so it is wise to make a small adjustment of one trimmer, swing the frequency across the band, and observe the charateristic. After a little experimenting it will be found which way the trimmers must be moved to compensate for the peaks that will rise when the filter is out of adjustment.

Fif. $12-11$ - A cascaded half-lattice crystal filter that can be used for sideband selection. The crystals are surplus type in FT- 243 A holders. Y_{1} and Y_{3} should he the same frequency and Y_{2} and Y_{4} should be 1.8 ke. higher. $T_{1}, T_{2}, T_{3}-450-\mathrm{kc}$. i.f. transformers.

A Class AB, Linear Amplifier

The amplifier shown in Figs. 12-12, 12-13 and 12-15 is designed to utilize the advantages of Class AB_{1} operation. It requires very little driving power, the bias supply is simple, and the grid-current moter is a positive "overmodulation" indicator. A low-cost power supply permits a peak power input of 280 watts to the amplifier in SSB service. Vinder these conditions the indicated d.e. input is thout 150 watts.

As ean be seen from Fig. 12-1t, the amplifier uses four tetrodes in push-pull parallol, with shunt feed to remove the d.e. from the plug-in plate coils, A fixed-tune grid rircuit is used and gives substantially uniform response over a $200-\mathrm{ke}$. band centered at $3!00 \mathrm{ke} . R_{1}$ and R_{2} are not "swamping" resistors - while they load the driver to ahout I watt, they are for the purpose of "broad-banding" the grid circuit. Since the loud is constant, it is possible to adjust L_{2}, the coupling coil, to offer a definite input impedane to the comecting line from the exeiter. This ean be done quite easily with a s.w.r. bridge (the amplifier tubes do not have to be lit.). The inductanmes of the coils were adjusted to give close to a 1-to-I s.W.r. in \quad in-ohm line at the band eonter. This method of coupling is a great convenience, sine the exeiter and ampli-
 line with no ehathge in the compling eonditions.
l'arasitic oseillations were aliminated by $/ 3$, L_{4}, L_{5} and L_{6}. The eireuit is aros-mentraliged by means of ('3 and ('f, although the amplifier is stahle under most conditions without the neutralization.
One disalvantage of operating tubes in phashpull in at linear amplifier is the necessity for very good balatue in the driving voltages appled to each side of the cireuit. If the driving voltage is higher on one side than the other, the tuhe or tubes on that side will be driven to peak output before those on the other side, and will start sathurating or "flattening" brefore the full output of the amplifier is reatized. The condensers in the grid tank eireuit, C_{1} zond C_{2}, should be matelad in capanitance within a pereent or two and the usual precatutions as to maintaining cineuit bal-
ance should be observed. The r.f. voltuge batance ein le checked with in r.f. probe and v.t, volim meter.

An "economy-type" power supply is used with the :mplifier, as shown in lig. 12-16. (See "More liffective Utilization of the Small Power Transformer," Qs'T, November, 1952.) The r.f. tubes should not be biased beyond eut-off during reeeiving periods bu* should continue to run at

 tank coil removed to show the blocking condensers, parallel-ferd plate chohes and parasitie-suppressor edils. 'I'he douhbe lead ihrough the grommets rons from the motput-circout abil to the couplinu comblensar and coax connector underneath the chassis,
normat operating bias, herebuse their idling rurrent of 110 mis., plus the 40 -mate drain through the V'la tubes, serves as the only "bleed" on the power supply, and the voltage would rise too high if this drain were removed.

The plate efficieney obtainable with Class AB_{1} operation under the deseribed eonditions is such that the total plate loss at peak output is well under the maximum plate dissipation rationg of

Fig. 12-12-1her power supply oceupies the righthand half of the $17 \times 10 \times 3$-ind chatsin and the r.f.section the left-hand half in this tirw, 'The power transformer and filter condenser are near the pand and the filter choke is at the edge of the chassis next to the volt-age-regulator tubes. Ther panel is $101 / 2$ hy 19 inches.
"The four r.f, tubes are mounted on an clevated subchassis so that the cathodes can be directly promoded to the top of the main chasis. Whe phap-in grid circait is in the can to the right of the tulves. The small ceramic stand-offs visible liencath the suhehassis support the metal tabs which form one of the neutralizing eondensers. A similar pair, hidden by the sthibled prid circuit, supports the other neutralizing condenser.

Fig. 12-14-Circuit of ther.f. portion of the linear amplifier unit. I nlens otherwise specified, ealbacitances are in μ f. $\mathrm{C}_{3}, \mathrm{C}_{4}$ - Copper tahs $2 / 8^{\prime \prime}$ wide, app. $1 / \mathbf{4}^{\prime \prime}$ separation,

1/8" overlap.

L,3, L4- 18 turns No, 22 rinam. on 1 -watt resistor (any high value) as form, tapped at erenter.
I.5. 1.8 - 12 turns No. 22 enam. on same type form. RHC, RFC. - Villen $3110 \mathrm{C}, 1 \mathrm{mh}$.
L_{2} wound over L_{1} at center on $3 . \overline{7}$ and 7 Ve.: interwound with L_{1} on 1/t-Mc. coil. Cail forms 1 -incla diam.
L_{7} and L_{8} made from 13 \& W coil stock, $L_{7} \xlongequal{2}$-inch diam. (3907 and 39001), $1 / 821 / 2-\mathrm{inwh}$ diam. (3906), assembly momed maillon 10305 phag hase.
The grid tumed eircuit, endosed by dasteed line, is mounted in Villen : 1400 plog-in base and shicht.
120 watte for the four tubes. With the hias set for near-naximum dissipation with no signal, the tubes rum cooler when driven. However, in selecting the resting plate current by adjustment of the bias voltage it is advisable to make sure that no one tube is overloaded. This can orear even though the total input is less than 120 watts, since there is some variation in the phate currents taken by various tuber at the same bias voltage. Test the tubes individually and, if a selection is

Fig. 12.16- Power and bias supplies. Capacitance values are in $\mu \mathrm{f}$. unless otherwise specified.
' I_{1} - Fïlament transformer, 12.6 volts, 2 amp.
T_{2} - Reetifier filament transformer, thre 5-volt 3-anip. serondaries.
T3 - (r)() -volt 200-ma. re-placement-type transformer, filament windings not used exeept for pilot light.
T_{4} - Filament transformer, 6.3 volts, 1 amp.
the 'scope, provided the two-tone test can be used and there is independent assurance that the distortion in the exciter is low. Simply maintain the driving voltage just at the grid-current joint and adjust the anterna coupling, kerping the plate circuit at resonance, for about 180 ma. plate current. The offresonance plate current should be only 10 ma . or so larger than the "intune" current. Some sort of r.f. output indicator, su:h as an antenna ammeter, is helpful; theoutput should start to drop inmediately on even a slight reduction in driving voltage. If the output tends to stay up when the driving voltage is cut slightly, the amplifier is saturating on the peaks and is not loaded heavily enough. The trick is to get the loading just right so that the maximum output is obtained (too-heavy loading will redure both the output and plate efficiency) at exartly the point where a bit more drive will cause flattening.

Although the usual constructional practice of shielded wiring with disk by-passes was followed as a matter of course, the amplifier was not shielded for TVI. Shielding is not necessary for 75 meters, but is likely to be required for $14-\mathrm{Mc}$. - and perhans 7 -Mt. - operation in localities where a harmonic falls directly in a channel having a weak TV signal. Class AB_{1} operation does help - it is only necessary to look at the TV sereen while the driving voltage is nudged into the grid-current region to see that - but it is not a complete panacea for the tough cases. Should shielding be needed, it should not be much of a constructional problem to add it around the r.f. section, both top and bottom.

The amplifier should be neutralized by the usual method of adjusting for minimum r.f. in the plate circuit with r.f. voltage on the grids but with plate and screen voltages off. A sensitive indicator such as a erystal detector and lowrange milliammeter should be used; they may be

ronnected to the r.f. output terminals for convenience, C_{3} and C_{4} are adjusted by bending the metal tabs from which they are constructed, to vary the spacing. This should be done with an insulating tool; one can easily be devised in such a way as to permit getting at the plates.
(Originally described in April, 1954, QST.)

Fig. 12-17 - Construction of the plug-in grid tanks. The inductances of the two coils are adjusted for an input impedance of 75 ohms at the center of the band. linal proning of the grid coil can be liy adjusting the spacing of an end turn as in this T- Me. assembly. The coil form is monnted on a thin insulating strip which is mounted on the studs at the sides of the plug-in base.

A Grounded-Grid Linear Amplifier

Grounded-grid amplification in linear service has several advantages over conventional circuits. The amplifier is degencrutive, which adds to the stability. It has been found that it produces slightly better linearity than conventional circuits using the same tubes. The greater part of the power required to drive the grounded-grid
pacitors to the plate. This couples the input and output circuits and causes instability. It is possible, however, to stabilize an amplifier with these tubes by grounding the beam-forming plates direetly, since this helps to isolate the inpuit and output cireuits. In some makes of 1625 se beam-forming phate lead is attached

Fig. 12.18-This linear amplifier uses four marallel-connected tetrodes in a grounded-grid circuit. It can be driven ly an s.s.b. exciter eapable of 20 watts peak envelope power output. The calinet is $141 / 2$ by 9 by 10 inches deep.

amplifier appears in the output along with the amplified signal. The disadvantage of using the 807 or 1625 in this type of operation is that the beam-forming plates are comnected to the cathode. The signal appears on the eathode, and the beam-forming plates form good coupling ca-
${ }^{1}$ The modified tubes can be obtained from $\overline{\mathrm{I}}$ \& 1 lilectronics, 5 N . Earl Are. Lafayette. Ind. (ement for doing the job can be obtained from the same source.
to the cathorde lead in the cathode pin. Such tubers can be modified by first removing the old base by applying heat from a large torch, sepamating the rathode and bemon-pate leads, and reinstalling the base or a new one. Tube-base rement can be uasd to seane the base to the tube, and the assembly can then be baked in an oven at 90 degrees C. to harden the seal. ${ }^{1}$

Fig. 12.19 - Sehematic diagram of the grounded-grid amplifier. Capacitor values in $\mu \mu \mathrm{f}$. untess otherwise specified. $\mathrm{C}_{3}, \mathrm{C}_{4}-600$-rolt sitwered mica capacitor. $\quad \mathrm{RFC}$. Vational 13.175 A.
$\mathrm{L}_{1}-2.0 \mu \mathrm{ll}$. poller-type variable indmetor (from BC-158). $\quad V_{1}, V_{2}, V_{3}, V_{4} \rightarrow$ Modified 1625 -see text.

Fig. 12.20 - A top view of the linear amplifier shows the r.f. tubes at the left, clustered aromil the r.f. choke. The two small tubes are the 816 rectiliers used in the 1200-volt power supply. The variable inductor is the antenna loading coil from a $13(;-158$ Command transmitter.

The schematie of an amplifier using these modified tubes is shown in Fig. 12-19, with photographs of the unit in Figs. 12-18, 12-20 and 12-21. Sine the input eireuit of the gromudedgrid amplifier is a low-impedance load lor the driver, it is possible to do away with any input tuned cireuit; the d.e return for the 16225 is made through the exeiter output tap or link. A word of catation here - be sure there is no d.e. on the exciter link, beceuse the lo()O-ohm resistor would short it to the chassis.

No bias or screen voltage is required at 1200 volts on the plate. Fiath tube draws about 10 ma., so the power supply is constantly bled with 40 mat., thus climinating the need for a bereder.

With no sareen and hias supply and no input tunod cireuit, it is possible to build a compact
amplifier. The unit in Fig. 12-18 uses the pibetwork outpat cireuit with variable inductor to cover 75,40 and 20 meteres Operation on 15 and 10 moters is impractical becanse of the high output capacitance of the four tubes used in paratlel.

Construction

The unit is constructed on a $10 \times 1+\times 3$-inch chassis, and a $51 / 4 \times 51 / 4$-ineh subchassis on which are mounted the plater rif. choke and four (i-pin tube sockets. This subermssis is momeded $11 / 4$ iuches below the main chassis deck. The cold end of the r.f. choke is beyassed through a $0.004-\mu$ f. capacitor to a soldering hag at the erenter of the subassmbly. The lag is momed berneath a l-inch stand-off insulator,

Fig. 12.21 - This bottom view shows how the four r.f. tube sockets are mountell on a small platform. 'The $2 . \overline{\mathrm{s}}$-mh. choke across the output circuit is to prevent accidental shock from the antenna system in the event that the plate-blocking capacitor should short circuit. l'ilament transformers are mounted on the side of the chassis.

and a single stud screw holds the choke and stand-off to the subehassis. A feed-through insulator on the subchassis feeds d.c. to the choke and also serves as a tie point for the "hot side" of the by-pass capacitor. The screen grid, grid, and beam plate are grounded to the subchassis as close as possible to each tube socket. The cathodes are comected at the central stand-off insulator, which is also the tie point for the r.f. input lead.

The cabinet is 10 by $141 / 2$ by $83 / 4$ inches with a panel to fit. The rotor indicator of the inductor and input capacitor are mounted on the pancl and the panel sccured by the output rotor switch. meter and toggle switches. The $0.004-\mu \mathrm{f}$. d.c. blocking capacitor mounts on the rear of the input-tuning capacitor, C_{1}.

An r.f. choke is included across the output of the pi-network, so that in the event of a shorted d.c. plate blocking capateitor the power supply fuse will blow. This kerps 1200 volts d.c. off the antenna system.

If plate voltage were applied with no input connection for the cathode return, full plate voltage would appear between cathode and filament. A 1000 -ohm resistor is connected from eathode to gromen to prevent this from occurring.

Operation

The tume-up procedure is the same as for any pi-network amplifier. The whole coil is used for 75 meters, about half for 40 meters, and onefourth for 20 meters. Initial tuning adjustments are made with about half the available r.f. drive power. Twonty watts of drive will put a good signal on the air.

The input and output circuits in this design are well shielded by the grounded grid, screen, and beam-forming plates, and no trouble with fundamental or v.h.f. instability should be experieneed. Although this amplifier is designed primarily for SSB, it may also be used to amplify a low-powered AM or c.w. signal.
(From Junc, 1955, QST.)

Transmission Lines

The plase where r.f. power is generated is very frequently not the place where it is to be utilized. A transmitter and its antematare a good example: The antenna, to radiate well, should be high aloove the ground and should be kept clear of trees, buiklings and other objeets that might absorb energy, but the transmitter itself is most conveniently installed indoors where it is readily atecessible. There are many other instances where power must bedelivered from one point to another.

The metus by which power is tramsported
from point to point is the r.f. transmission line. At radio frequencies a line exhibits entirely different characteristies than it does at eommereial power frequeneies. This is because the rpeed at which eleatrical energy travels, while tremendously high as compared with mechanieal motion, is not infinite. The peculiarit ies of raf. transmission lines result from the fact that a time interval comparable with an ral. cycle must clapse before energy leaving one point in the cireuit ean reach another just a short distance away.

Operating Principles

Suppose we have a battery and a pair of parallel wires extending to a very great distance. At the moment the battery is conneded to the wires, electrons in the wire near the positive terminal will be attrated to the battery, and the sume number of electrons in the wire near the negative battery terminal will be repelled outwat along the wire.

Thus a current flows in each wire near the battery at the instant the battery is comected. However, a definite time inferval will elapse before these curvents are evident at a distance from the battery. The time interval may be very smatl. For example, one-millionth of a secont (one microsecond) after the commetion is made the currents in the wires will have traveled 300 meters, or nearly 1000 feet, from the battery terminals.

The current is in the noture of at charging curent, flowing to charge the capamitance between the fwo wires. Sut unlike an ordinary "apacitor, the conductors of this "linear" "apacitor have appreciable inductance. In fate,

Hig. 13-1 - Equivalent of a transmission line in lumped circuit constimis.
we may think of the line as being composed of a whole serics of smatl inductances and capacitances connected as shown in lig. 13-1, where ewh eoil is the inductance of a vers short seetion of one wire and each caparitor is the capacitance bet ween two such short sections.

Characteristic Impedance

An infinitely-long chain of coils and capacitors connected ins in lig. 13-1, where eath L is the same as all others and all the Cs have the
same value, hats an important property. To an electrical impulse applied at one end, the comhination appears to have an impedance - called the characteristic impedance or surge impedance - that is approximately equal to $\sqrt{L / C}$, where L and $(T$ are the inductance and capacitance per unit lengith. This impedtance is purely resistive.

In defining the characteristic impedance as $\sqrt{ } L / C$, it is assumed that the conductors have no inherent resistance - that is, there is no $I^{2} R$ loss in them - and that there is no power loss in the dielectio surrounding the emonductors. In other words, it is assumed there is no power loss in or from the line no matter how great its length. This does not seem consistent with calling the characteristic impedance a pure resistance, which implies that the power supplied is all dissipated in the line. But in an in-finitely-long line the efferd, so far as the source of power is concerned, is exactly the stme as though the power were dissipated in a resistance, because the power leaves the source and travels outward forever along the line.

The characteristic impedance determines the amount of current that can flow when a given voltage is applied to an infinitely-long line, in exaetly the same way that a definite value of actual resistance limiss current flow when a given voltage is applied.

The inductance and capacitance per unit length of line depend upon the size of the eonductors and the spacing between them. The clasel the two conductors and the greater their diameter, the higher the catpacitance and the lower the inductance. I line with large conductors cosely spaced will have low impedance, while one with small conductors widely spaced will have relatively high impedance.

"Matched" Lines

Actual trinnmission lines do not extend to infinity but have a definite length and are connected to, or terminate in, a loud at the "output"
end, or end to which the power is delivered. If the load is a pure resistance of a value equal to the characterist ic impedance of the line, the current trave'ing along the line to the load does not find conditions changed in the least when it meets the load; in fact, the load just looks like still more transmission line of the same characteristio impedance. Consequently, comnecting such a load to a short transmission line allows the current to travel in exactly the same fashion as it. would on an infinitely-long line.

In other words, a short line terminated in a purely-resistive load equal to the characteristio impedance of the line acts just as though it were infinitely long. Such a line is said to be matched. In a matched transmission line, power travels outward along the line from the source until it reaches the load, where it is completely absorbed.

R.F. on Lines

The diecussion above, alt hough based on direetcurrent, flow from a batiters, also holds when an r.f. voltage is applied to the line. The difference is that the alternating voltage causes the amplit ude of the current at the input terminals of the lime to vary with the voltage, and the direction of current, flow also periodically reverses when the polatity of the applied voltage reverses. In the time of one excle the energy will travel a distance of one wavelength along the line wires. The current at, a given instant ato any point along the line is the result of a voltage that was applied at some earlier instant at the input, terminals. Hence the instantaneous amplitude of the rurrent is different at all points in a one-wavelength section of line; in fact, the current flows in opposite directions in the same wire in adjacent half-wavelength sections. However, at any given point along the line the current goes through similar variations with time that the current at the input terminals did.

The result of all this is that the current (and voltage) travels along the wire as a series of waves having a length equal to the velocity of travel divided by the frequeney of the ace voltare. On an infinitely-longline, of one properly matehed at the loud, an ammeter inserted anywhere in the line will show the same current, sime the ammeter averages out the variations in current during a eycle. It is only when the line is not properly matched that the wate motion beromes apparent. This is discussed in the next section.

STANDING WAVES

In the infinitely-long line (or its matched counterpart) the impedance is the same at any point on the line because the ratio of voltage to current is always the same. However, the impedance at the end of the line in Fig. 13-2 is zero - or at least extremely small - because the line is short-circuited at the end. The out going power, on meet ing the short-circuit, reverses its direction of flow and goes back along the transmission line toward the input end. There is a large current in the short-circuit, but substantially no voltage
across the line at this point. We now have a voltage and current represent ing the power going outward toward the short-circuit, and a second voltage and current representing the reflected power trabeling bare toward the source.

The reflected current travels at the same speed as the outgoing current, so its instantaneous value will be different at every point along the line, in the distance represented be the time of one cycle. At some proints along the line the phase of the outgoing and reflected currents will be such that the currents cancel each other while at others the amplitude will be doubled. At inbetween points the amplitude is between these two extremes. The points at which the currents are in and out of phase depend only on the time required for them to travel and so depend only on the distance along the line from the point of reflection.

In the short-circuit at the end of the line the two current components are in phase and the total current is lirge. At a distance of one-half wavelength back along the line from the shortcircuit the outgoing and reflected components will again be in phase and the resultant current will again have its maximum value. This is also
(A)

Pif. 13-2 - Standing waves of voltage and current along Fhort-circuited transmission line.
true at any point that is a multiple of a halfwavelength from the short-circuited end of the line.

The outgoing and reflected curvents will cancel at a point one-cquarter wavelengt h, along the line, from the short-rircuit. At this point, then, the current will be zero. It will also be zero at all points that are an odd multiple of one-quarter wavelength from the short-circuit.

If the current along the line is measured at successive points with an ammeter, it will be found to vary about as shown in Fig, 13-213. The same result would be obtained by measuring the current in cither wire, since the ammeter cannot measure phase. However, if the phase could be checked, it, would be found that, in each successive half-wavelength section of the line the currents at any given instant are flowing in opposite directions, as indicated by the solid line in lig. 13-2C. Furthermore, the current in the second wire is flowing in the opposite direction to the current
in the adjacent section of the first wire. This is indicated by the broken curve in IFig. 13-2C. The variations in current intensity along the transmission line are referred to as standing waves. The point of maximum line current is called a current loop or current antinode and the point of minimum line current a current node.

Voltage Relationships

Since the end of the line is short-circuited, the voltage at that point has to be zero. This can only be so if the voltage in the outgoing wave is met, at the end of the line, by a roflected voltage of equal amplitude and opposite polarity. In other words, the phase of the voltage wave is reversed when reflection takes place from the short-cireuit. This reversal is equivalent to an extra hadf-evele or half-wavelength of travel. As a result, the outgoing and returning voltages are in phase a quarter wavelength from the end of the line, and again out of phase a half-wavelength from the end. The st:unding waves of voltage, shown at I) in lig. I3-2, are therefore displaced by one-quarter wavelength from the standing waves of current. The drawing at E shows the voltages on both wires when phase is taken into account. The polarity of the voltage on each wire reverses in each half-wavelength section of transmission line. A voltage maximum is called a voltage loop or antinode and a voltage minimum is called a voltage node.

Open-Circuited Line

If the end of the line is open-eircuited instead of short-circuited, there can be no current at the end of the line but a large voltage can exist. Again the outgoing power is reflected back loward the source. In this case, the outgoing and reflected components of current must be equal and oppowite in phase in order for the totad current at the cond of the line to be zero. The outgring and reflected components of voltage are in phase and add toget her. The result is that we agatin have standing waves, but the conditions are reversed as compared with a short-cireuited line. l'ig. 13-3 shows the open-circuited line case.
(A)

Fig. 13-3-Standing waves of current and voltage along an open-cireuited transmission linc.
(A)
(B)
(c)

Fig. J,3-4 - Standing waves on a transmission line termi. nated in a resistive load.

Lines Terminated in Resistive Load

l'ig. 13-4 shows a line terminated in a resistive loard. In this case at least part of the outgoing power is absorbed in the load, and so is not available to be reflected hack toward the source. Becaluse only part of the power is reflected, the reflected components of voltage and current do not have the same magnitude as the outgoing components. Therefore neither voltage nor current cancel completely at any point along the line. IIowever, the speed at which the outgoing and reflected components travel is not affected by their amplitude, so the phase relationships are similar to those in open- or short-cireuited lines.

It was pointed out carlier that if the load resistance, Z_{R}, is equat to the characteristic impedanee, Z_{0}, of the line all the power is absorbed in the lobd. In such a case there is no reflected power and therefore no standing waves of current and voltage. This is as special ease that reprevents the change-over point between "short-circuited" and "open-eircuited" lines. If Z_{12} is less than Z_{0}, the current is largest at the load, while if Z_{a} is greater than Z_{0} the voltare is langest at the load. The two ronditions are shown at B and (\% respectively, in Fir. 1:3-1.

The resistive termination is an important pratical case. The termination is seidom an artual resistor, the most common terminations being resonant circuits or resonant antenna swstems, both of which have essentially resistive impedances. If the load is reactive as woll as resistive, the operation of the line resembles that shown in liig. 13-1, but the presence of reactance in the load causes two modifications: The loops and nulls are shifted toward or away from the load; and the amount of power reflected back toward the source is increased, ass compared with the amount reflected by a purely resistive load of the same total impedance. Both effects become more pronounced as the ratio of reactance to resistance in the load is made larger.

Standing-Wave Ratio

The ratio of maximum current to minimum current along a line, l'ig. 13-5, is called the standing-wave ratio. The same ratio holds for maximum voltage and minimum voltage. It is a measure of the mismatch between the load and the line, and is equal to 1 when the line is per-
fectly matched. (In that case the "maximum" and "minimum" are the same, since the current and voltage do not vary along the line.) When the line is terminated in a purely-resistive loatd, the standing-wave rat io is

$$
\begin{equation*}
\text { S.H.R. }=\frac{Z_{12}}{Z_{0}} \text { or } \frac{Z_{0}}{Z_{\mathrm{R}}} \tag{13-A}
\end{equation*}
$$

Where $S . W^{r} \cdot R .=$ Stimding-wave rat io

$$
\begin{aligned}
& Z_{\mathrm{R}}= \text { Impedance of load (must be } \\
& \text { pure resistance) } \\
& Z_{0}= \text { (haracteristio impedance of } \\
& \text { line }
\end{aligned}
$$

Example: A line having a characteristic impedance of 300 ohms is terminated in a resistive load of 2.5 ohms. The s.w.r. is

$$
S . W \cdot R .=\frac{Z 0}{Z_{18}}=\frac{300}{25}=12 \text { to } 1
$$

It is customary to put the larger of the two quantities, Z_{R} or Z_{a}, in the numerator of the fraction so that the s.w.r. will be expressed by a number larger than 1 .

It is easier to measure the standing-wave ratio) than some of the other yuantities (such as the

Fif. 13-5-Measurement of standing-wave ratio. In this drawing, $I_{\text {max }}$ is $I, \overline{3}$ and $I_{\text {mit }}$ is $1, \overline{2}$, so the s.w.r. $=I_{\text {mas }} / \boldsymbol{I}$ min $=1 . \overline{5}, 0.5=3$ io 1 .
impedance of an antenna) that enter into trans-mission-! ine computations. Consequently, the s.w.r. is a convenient basis for work with lines. The higher the s.w.r., the greater the mismatech betweon line and load. In practical lines, the power loss in the line itself increases with the s.w.r.

INPUT IMPEDANCE

The input impedance of a transmission line is the impedance seen looking into the sending-end or input terminals; it is the impedance into which the source of power must work when the line is connected. If the load is perfectly matehed to the line the line appears to he infinitely long, as stated eatlier, and the input impedance is simply the characteristic impedince of the line itself. However, if there are standing waves this is no longer true; the input impedance maty have a wide range of values.
This can be understood by referring to Figs. $13-2,13-3$, or $1: 3-4$. If the tine length is such that standing waves caluse the voltage at the input
terminats to be high and the current low, then the input impedince is higher that the Z_{0} of the line, since impedance is simply the ratio of voltange to current. Conversely, low voltage and high current at the input terminals mean that the input impedance is lower than the line Z_{0}. Comparison of the three drawings also shows that the range of input impedance values that may be encount ered is greater when the far end of the line is open- or short-eireuited than it is when the line has a resistive load. In other words, the higher the s.w.r. the greater the range of input imperdane values when the lime length is varied.

In addition to the variation in the absolute value of the input impedance with line length, the presence of standing waves also couses the input impedanee to contain both reactance and resistance, even though the load itself maty be a pure resistance. The only exceptions to this ocrur at the exact current loops or nodes, at which points the input impedance is a pure resistance. These are the only points at which the outgoing and reflected voltages and currents are exactly in phase: At all other distances along the line the current either leads on lags behind the voltage and the effect is exactly the same as though at caparitance or inductance were part of the input impedance of the line.

The input impedance can be represented by cither a resistance and a capacitance, or by a resistance and an inductance, as shown in lig. 136. Whether the impedance is inductive or capacitive depends on the chameteristics of the load and the length of the line. It is possible to represent the equivalent eircuit by resistance and reactance either in series or parallel, so long as the total impedance and phase angle are the same in either case. Meeting this last condition requires different values of resistance and reactance in the series case than in the parallel case.

The magnitude and character of the input impedance is quite importint, since it determines the method by which the power source must be coupled to the line. The ealculation of input impedance is rather complicated and its meaturement is not feasible without special effupment. Fortunately, in amateur work it is umecessary cither to cabculate or measure it. The proper coupling an be achieved by relatively simple methods described later in this chapter.

Unterminated Lines

The input imperlane of a short-circuited or open-circuited line not an exact multiple of oneguarter wavelength long is practically a pure reactance. This is because there is very little power lost in the line. Such lines are frequently used as "linear" inductanes and capacitances.

If a shorted line is less than a quarter wave long, as at. \bar{l} in lig. 13-2, it will have inductive reactance. The reactance increases with the line length up to the quarter-wave point. Beyond that, as at Y, the reactance is capacitive, high near the quarter-wave point and becoming lower as the half-wave point is approached. It then altermates between inductive and capacitive in successive
quarter-wave sections. Just the reverse is true of the open-circuited line.

At exact multiples of a quarter wavelength the imporlance is purely resistive. It is apparent, from examination of 13 and D in Fig. 13-2, that at points that are a multiple of a half-wavelength i. e., $1 / 2,1,1 \frac{1}{2}$ wavelengths, cte. - from the shortcircuited end of the line the current and voltage

Fig. 13-6-Scries and parallel equivalents of a line whose input impedance has hoth reactive and resistive compoments. 'The sorjes and paralled equisalents do not have the same values; e.g., in A, I, does mot ergal I^{\prime} and R doe's not ergal R^{\prime}.
have the same values that they do at the shortcircuit. In other words, if the line were an exart multiple of a half-wavelougth long the generator or soure of power would "look into" a short(ireuit. On the other hand, at points that are an odd multiple of a quarter wavelength - i.e., $1 / 4$, $3 / 4,11 / 4$, ote. - from the short-rireuit the voltage is maximum and the current is zero. Since $Z=$ E / I, the impedance at these points is theoretically infinite. (Actually it is very high, hut not infinite. This is luecause the eurrent does not actually go to a ero when there are losses in the line. Losses are ahays present, hut usually are small.)

Impedance Transformation

The fadt that the imput impedanee of a line deperts on the s.w.r. and line length can be used to advantage when it is neressary to transiform a given imperdance into another value.

Study of lig. 1:3-4 will show that, just as in the open- and short-cirecuited cases, if the line is onehalf wavelength long the voltage and current are exactly the same at the input terminals as they are at the load. This is also true of lengths that are integral multiples of a half wavelength. It is also true for all values of s.w.r. Hence the input impedanere of any line, no matter what its Z_{0}, that is a multiple of a half-wavelengt h long is exactly the same as the load impedance. Sum a line can bre used to transfer the impedance to a new loration without changing its value.

When the line is a quatter wavelength long, or an odd multiple of a quarter wavelength, the load impedance is "inverted." That is, if the current is low and the voltage is high at the load, the input impodance will be such as to require high
current and low voltage. The relationship betwean the load impedanee and input impedance is given by:

$$
\begin{equation*}
Z_{\mathrm{S}}=\frac{Z_{0}^{2}}{Z_{\mathrm{R}}} \tag{13-B}
\end{equation*}
$$

where $\boldsymbol{Z}_{\mathrm{S}}=$ Impedance looking into line (line length an odd multiple of onequarter wavelength)
$Z_{\mathrm{R}}=$ Impedanee of load (must be pure resistance)
$Z_{0}=$ Characteristie impedance of line
Example: A ruarter-wavelength line having a chararteristic impedance of 500 ohms is teminated in a resistive load of 75 ohms. The impedance looking into the input or sending end of the line is

$$
Z_{\mathrm{S}}=\frac{Z_{0} 0^{2}}{Z_{\mathrm{R}}}=\frac{(500)^{2}}{75}=\frac{250,000}{75}=3333 \mathrm{oh}
$$

If the formula above is rearranged, we have

$$
\begin{equation*}
Z_{0}=\sqrt{Z \mathrm{~s}^{2} \cdot \mathrm{R}} \tag{13-C}
\end{equation*}
$$

This means that if we have two values of impedance that we wish to "mateh," we can do so if we connect them together by a quarter-wave transmission line having a characteristie impedance equal to the sepuare root of their product. A quarter-wave line, in other words, has the chatacteristies of a transformer.

Resonant and Nonresonant Lines

because the input impedance of a line operating with a high s.w.r. is eritically dependent on the line length, and furthermore is usually raactive as well as resistive, special tuning means are required for effective power transfer from the source to the line. Lines operated in this way are fommonly called "tuned" or "resonant" lines. (nn the other hand, if the s.w.r. is low the input imperance is close to the Z_{0} of the line and does not vary a great deal with the line length. Such lines are ealled "flat," or "untuned," or "nomresonant."

There is no sharp line of demareation between tuned and untuned lines. If the s.w.r. is below 1.5 to 1 the line is essentially flat, since the same coupling method will work with all line lengt hs. If the s.w.r. is above 3 or 4 to 1 the type of eoupling sustem, and its adjustment, will depend on the line length and such lines fall into the "1uned" eategory.

It is always advantageous to make the s.w.r. as low as possible. "Tuning the line" becomes necessary only when a considerable mismatch between the load and the line has to be tolerated. The most important practical example of this is when a single antenna is operated on several harmonically-related frequencies, in which case the antenna impedanee will have widely-different values on different harmonics.

RADIATION

Whenever a wire earries alternating current the clectromagnetic fields travel away into space with the velocity of light. At power-line frequencies the field that "grows" when the current is
increasing has plenty of time to return or "collapse" about the conductor when the current is decreasing, because the alternations are so slow. But at radio frequencies fields that travel only a relatively short distance do not have time to get back to the conductor before the next eyele commences. The ronsequence is that some of the electromagnetic energy is prevented from being restored to the conductor; in other words, energy is radiated into space in the form of electromergnetic waves.

The amount of energy radiated depends, among other things, on the length of the condurtor in relation to the frequency or wavelength of the r.f. current. If the conductor is very short compared to the wavelength the energy radiated (for a given current) will be small. However, a transmission line used to feed power to an :mtemma is not short; in fact, it is almost always an appreciable fraction of a wavength long and may have a length of several wavelengths.

The lines previously considered have consisted of two parallel conductors of the same diameter. Provided there is nothing in the system to destroy symmetry, at every point along the line the current in one conductor has the same intensity as the current in the other conductor at that point, but the currents flow in opposite directions. This
was shown in l"igs. $13-2 \mathrm{C}$ and $13-3 \mathrm{C}$. It means that the fields set up about the two wires have the sume intensity, but opposite directions. The consequence is that the total field set up about such a transmission line is zero; the two fields "cancel out." Hence no energy is radiated.

Actually, the fields do not completely cancel out because for them to do so the two conductors would have to occupy the same space, whereas they are slightly separated. However, the cancellation is substantially complete if the distance botwcen the conductors is very small compared to the wavelength. Transmission line radiation will be negligible if the distance between the conductors is 0.01 wavelength or less, provided the currents in the two wires actually are balanced as described.

The amount of radiation also is proportional to the current flowing in the line. Because of the way in which the current varies along the line when there are standing waves, the effective current, for purposes of radiation, becomes greater as the s.w.r. is increased. For this reason the radiation is least when the line is flat. However, if the conductor spacing is small and the currents are balanced, the radiation from a line with even a high s.w.r. is inconsequential. A small unbalance in the line currents is far more serious.

Practical Line Characteristics

The forcgoing discussion of transmission lines has been based on a line consisting of two parallel conductors. Actually, the parallel-conductor line is but one of two general types. The other is the coaxial or concentric line. The coaxial line ronsists of a conductor placed in the center of a tube. The inside surface of the tube and the outside surface of the smaller inner conductor form the two conducting surfaces of the line.

In the coaxial line the fields are entirely inside the tube, because the tube acts as a shield to prevent them from appearing outside. This reduces radiation to the vanishing point. So far as the clec:trical behavior of coavial lines is concerned, all that has previously been said about the operation of parallel-conductor lines applies. There are, however, practical differences in the construction and use of parallel and coaxial lines.

PARALLEL-CONDUCTOR LINES

A common type of parallel-conductor line used in amateur installations is one in which two wires (ordinarily No. 12 or No. 14) are supported a fixed distance apart by means of insulating rods called "spacers." The spacings used vary from two to six inches, the smaller spacings being necessary at frequencies of the order of 28 Mc. and higher so that radiation will be minimized. The construction is shown in Fig. 13-7. Such a line is said to be air-insulated. Typical spacers are shown in Fig. 13-8. The characteristic impedance of such "open-wire" lines is between 400 and 600 ohms, depending on the wire size and spacing.

Parallel-conductor lines also are sometimes constructed of metal tubing of a diameter of $1 / 4$ to $1 / 2$ inch. This reduces the characteristic impedance

Fig, 13-7-Typical construction of open-wire line. The line conductor fits in a groove in the end of the spacer, and is held in place by a tie-wire anehored in a hole near the groove.
of the line. Such lines are mostly used as quarterwave transformers, when different values of impedance are to be matched.

Prefabricated parallel-conductor line with air insulation developed for television reception can be used in transmitting applications. This line consists of two conductors separated one-half to one inch by molded-on spacers. The characteristic impedance is 300 to 450 ohms , depending on the wire size and spacing.

A convenient type of manufactured line is one in which the parallel conductors are imbedded in low-loss insulating material (polyethylene). It is commonly used as a TV lead-in and has a charac-

Fig. 13-8-'Iypical manufactured transmission lines and spacers.
teristie impedance of 300 ohms. It is sold under various names, the most common of which is "Twin-Lead." This type of line has the advantages of light weight, close and uniform conductor spacing, flexibility and neat appearanere. However, the losses in the solid dielectric are higher than in air, and dirt or moisture on the line tends to change the characteristic impedance. Moist ure effects an be reduced by coating the line with silicone grease. A special form of $300-\mathrm{ohm}$ TwinLand for transmitting uses a polyethylene tube with the conductors molded diametrically opposite; the longer dielectric path in such line reduces moisture troubles.

In addition to 300 -ohm line, Twin-Lead is obtainable with a characteristic impedane of 75 ohms for transmitt ing purposes. light-weight 75 and 150 -ohm Twin-Lead also is available.

Characteristic Impedance

The characteristic impedance of an air-insulated parallel-conductor line is given by:

$$
\begin{equation*}
Z_{0}=276 \log \frac{b}{a} \tag{13-D}
\end{equation*}
$$

where $Z_{0}=$ Characteristic impedance
$b=$ Center-to-center distance between conductors
$a=$ Radius of conductor (in same units as b)
It does not matter what units are used for a and b so long is they are the same units. Both quantities may be measured in centimeters, inches, ete. Since it is necessary to have a table of common logarithms to solve practical problems, the solution is given in graphical form in lig. 13-9 for a number of common conductor sizes.
In solid-dielectric parallel-conductor lines such as Twin-Lead the characterist ic impedance cannot be calculated readily, because part of the electric field is in air as well as in the dielectric.

Unbalance in Parallel-Conductor Lines

When installing parallel-conductor lines care should be taken to avoid introducing electrical unbalance into the system. If for some reason the current in one conductor is higher than in the
other, or if the currents in the two wires are not exactly out of phase with each ot her, the electromagnetic fields will not cancel completely and a eonsiderable amount of power may be radiated by the line.

Maintaining good line babance requires, first of all, a bataneed load at its end. For this reason the anternat should be fed, whenever possible, at a point where each conductor "sees" exactly the stme thing. C'sually this means that the antenna systom should be fed at its electrical conter. Viven though the antenna appears to be symmetrical, physically, it can be unbalanced electricaly if the part conneted to one of the line condactors is inadvertently coupled to somothing (such as house wiring or a metal pole or roof) that is not duplicated on the other part of the antemma. Every (ffort should be made to koep the antenna as far as possible from other witing or sizable

Fig, 13.0 - (hart $^{\text {showing the pharacteristic imped. }}$ ance of spaced eonductor parallel transmission lines with air dielectric. Tobing sizes given are for outside diameters.
metallic ohjects. The transmission line itself will cause some unbalance if it is not brought away from the antema at right angles to it for a distance of at least a quarter wavelength.

In installing the line conductors take care to see that thry are kept away from metal. The minimum separation between either eonductor and all other wiring should be at least four or five times the condurtor spacing. The shunt capacitance introduced by close proximity to motallic objects can drain off enough current (to ground) to unbalance the line currents, resulting in increased radiation. A shunt capacitance of this sort also constitutes a reactive load on the line, eausing an impedance "bump" that will prevent making the line actually flat.

COAXIAL LINES

The most common form of conxial line consists of either a solid or stranded-wire inner conductor surrounded by polyethylene dielectric. Copper braid is woven over the dielectric to form the
outer conductor, and a waterproof vinyl covering is placed on top of the braid. This cable is made in a number of different diameters. It is moderately flexible, and so is convenient to install. Some different types are shown in I'ig. 13-8. This solid coaxial cable is commonly available in impedances approximating 50 and 70 ohms.

Air-insulated coaxial lines have lower losses than the solid-dielectric type, but are less used in amateur work because they are expensive and difficult to install as compared with the flexible cable. The common trpe of air-insulated coaxial line uses a solid-wire conductor inside a copper tube, with the wire held in the center of the tube by means of insulating "beads" placed at regular intervals.

Characteristic Impedance

The characteristic impedance of an air-insulated coaxial line is given by the formula

$$
\begin{equation*}
Z_{0}=138 \log \frac{b}{a} \tag{13-E}
\end{equation*}
$$

where $Z_{0}=$ (haracteristic impedance
$b=$ Inside diameter of outer conductor $a=$ Outside diameter of inner conductor (in same units as b)
Curves for typical conductor sizes are given in Fig. 13-10.

The formula for coaxial lines is approximately correct for lines in which bead spacers are used, provided the boads are not too closely spaced. When the line is filled with a solid dielectric, the characteristic impedance as given by the chart should be multiplied by $1 / \sqrt{K}$, where K is the dielectric constant of the material.

- electrical length

In the discussion of line operation earlier in this chapter it was assumed that currents traveled along the conductors at the speed of light. Aet ually, the volocity is some what less, the reason being that electromagnetic fields travel more

Fig. 13-10-Chart showing characteristic impedance of various air-insulated roncentric lines.

TABLE 13-I Transmission-Line Data				
Type	Deseription or 'Type Number	Characturistic lmpedathe	Velocity fractor	Capaci- tance per foot; $\mu \mu \mathrm{f}$.
Coaxial	$\begin{aligned} & \text { Air-insulated } \\ & \text { RG-8 } \\ & 13 C-58 \\ & 1 R(-11 \\ & R C-59 \end{aligned}$	$\begin{gathered} \hline 01100 \\ 53 \\ -3 \\ \vdots 3 \\ 7.3 \\ 73 \end{gathered}$	$\begin{aligned} & 0.851 \\ & 0.66 \\ & 0.06 \\ & 0.66 \\ & 0.66 \end{aligned}$	$\begin{aligned} & 29.5 \\ & 28.5 \\ & 20.5 \\ & 21.0 \end{aligned}$
Parallel-Conductor	Air-insulated $1.1-080^{3}$ $14-823^{3}$ $11-0.99^{3}$ $14-0.06^{3}$ $1.4-0.0^{3}$ $1.4-022^{3}$	$\begin{gathered} 200-600 \\ \vdots 6 \\ \vdots 9 \\ 1.60 \\ 300 \\ 300 \\ 300 \end{gathered}$	$0.0-72$ 0.68 0.71 0.76 0.82 0.84 0.8 .5	$\begin{array}{r} 19.0 \\ 20.0 \\ 10.0 \\ 5.8 \\ 3.9 \\ 3.0 \end{array}$

'Average figure for smalledianneter lines with eeramic heads. 2 Average figure for lines insulated with coramic spacers at intervals of a few feet.
${ }^{3}$ Anphenol type numbers and data. hine sintilar to $14-056$ is made by several manularturers, but rated loss may differ from that given in Fig. 13-11. Tybes $14-023,14-076$, and 14022 are made for transnitting applieations.
slowly in material dielectrics than they do in free space. In air the velocity is practically the same as in empty space, but a practical line always has to be supported in some fashion by solid insulating materials. The result is that the fields are slowed down; the currents travel a shorter distance in the time of one cucle than they do in space, and so the wavelength along the line is loss than the wavelength would be in free space at the same frequener.

Whenever reference is made to a line as being so many wavelengths (such as a "half-wavelength" or "quarter wavelength") long, it is to be understood that the electrical length of the line is meant. Its actual physical length as measured by a tape always will be somewhat less. The physical longth corresponding to an electrical wavelongth is given by

$$
\text { Length in feet }=\frac{984}{f} \cdot V
$$

(13-F)
where $f=$ Frequeney in megacyeles $V=V$ Plocity factor

The velocity factor is the ratio of the actual velocity along the line to the velocity in free space, Values of V for several common types of lines are given in Table 13-I.

Example: A 75-foot length of 300 -ohm Twin-
Lerad is used to carry power to an antenna at a fregisency of 7150 ke . From Table 13-1, V is 0.8 ?.
At this irequeney (7.15 Mc .) a wavelength is

$$
\begin{gathered}
\text { Lenglh }(\text { feet })=\frac{984}{f} \cdot V=\frac{984}{7.15} \times 0.82 \\
=137.6 \times 0.82=112.8 \mathrm{ft}
\end{gathered}
$$

The line length is therefore $75 / 112.8=0.665$ wavelength.

Because a quarter-wavelength line is frequently used as a linear transformer, it is con-

Fig. 13.11-Attenuation data for common types of transmission lines. Curve A is the nominal attenuation of 600 -ohm open-wire line with No. 12 conductors, not including dielectric loss in spacers nor possible radiation losses. Additional line data are given in Table 13-I.
venient to calculate the length of a quarter-wave line directly. The formula is

$$
\begin{equation*}
\text { Length (feet) }=\frac{246}{f} \cdot V \tag{13-G}
\end{equation*}
$$

where the sumbols lave the same moaning as above.

LOSSES IN TRANSMISSION LINES

There are three ways by which power may be lost in a transmission line: by radiation, by heating of the conductors ($I^{2} R$ loss), and by heating of the dielectric, if any. There is no appreciable radiation loss from a coavial line, but radiation from a paralle-l-eonductor line may execed the heat losses if the line is unbalanced. Since radiation losses eannot readily be estimated or measured, the following discussion is based only on conductor and dielectrie losses.

Heat losses in both the conductor and the dielectric increase with frecuency. Conductor losses also are greater the lower the characteristic impedance of the line, because a higher current flows in a low-impedance line for a given power input. The converse is true of dielectric losses because these increase with the voltage, which is greater on high-impedance lines. The dielectric loss in air-insulated lines is negligible (the only. loss is in the insulating spacers) and surch lines operate at high efficiency when radiation losses are low.

It is convenient to express the loss in a transmission line in decibels per unit length, since the loss in db, is direetly proportional to the line length. Losses in various types of lines oprerated without standing waves (that is, terminated in :a resistive load equal to the characteristic imped-
ance of the line) are given in graphical form in Fig. 13-11. In these curves the radiation loss is assumed to be negligible.
When there are standing waves on the line the power loss increases as shown in FF g . 13-12. Whether or not the inerease in loss is serious depends on what the original loss would have beern if the line were perfertly matehed. If the loss with perfect matehing is very low, a large s.w.r. will not greatly affeet the efficiency of the line - i.e.,

Fig, 13.12-1.ffert of standing wave ratio on line loss. The ordinates give the additiona/ loss in decilats for the loss, under perfecely-matehed conditions, shossu on the horizontal scale.
the ratio of the power delivered to the load to the power put into the line.

Example: A 1\%)-foot lensth of RG-11/C cable is operting at 7 Me . with a 5 -to-1 s.w.r. If perfeetly matched, the loss from lije. 13-11 would be $1.5 \times 0.4=0.6 \mathrm{~d} 1$, Frem Fig. 13-12 the additional loss becanse of the s.w.r. is 0.73 db . 'The total loss is therefore $0.0+0.73=1.33 \mathrm{db}$.
An appreciable s.w.r. on a wolid-dicelectric line may result in exeessive loss of power at the higher frepuencies. Sueh lines, whether of the
parallel-conductor or coaxial type, should be operated as nearly flat as possible, particularly when the line length is more than 50 feet or so. As shown be Fig. 1:3-12, the increase in line loss is not too serious so long as the s.w.r. is below'? to 1 , but increases rapidly when the s.w.r. rises above 3 to 1 . Tuncd transmission lines such as are used with multiband antennas ahways should be air-insulated, in the interests of highest efficiency.

Matching the Load to the Line

The load for a transmission line may be any device capable of dissipating r.f. power. When lines are used for transmitting applications the most rommon type of load is an antemna, but there are also praetieal cases where the grid circuit of a power amplifier may represent the load. When a transmission line is connected between an antenna and a recoiver, the recerver inpat circuit (not the antenna) is the load, becamse the power taken from a passing wave is delivered to the receiver.

Whatever the application, the conditions existing at the load, and only the load, determine the standing-wave ratio on the line. If the load is purely resistive and equal in value to the chamacteristie impedance of the line, there will be no standing waves. If the load is not purely resistive, and or is not equal to the linc Zo, there will be standing waves. No adjustments that can be made at the input end of the line ran change the s.w.r., nor is it affected by changing the line length.

Only in a few sperial cases is the load inherently of the proper value to mateh a practicable transmission line. In all other cases it is necessary either to operate with a mismatch and accept the s.w.r. that results, or else to take steps to bring about a proper match between the line and load by means of transformers or similar devices. Impedance-matching transformers may take a variety of physical forms, depending on the circumstances.

Note that it is essential, if the s.w.r. is to be made as low as possible, that the load at the point of connection to the transmission line be purcly resistive. In general, this requires that the lond be tuned to resonance. If the load itself is not resonant at the operating frequency the tuning sometimes can be accomplished in the matching system.

THE ANTENNA AS A LOAD

Every antenna system, no matter what its physical form, will have a definite value of impedance at the point where the line is to be connected. The problen is to transform this antenna input impedance to the proper value to match the line. In this respect there is no one "best" type of line for a particular antenna system, because it is possible to transform impedances in
any desired ratio. Consequently, any type of line maty be used with any type of antemna. There are frequently reasons other than impedaner matehing that dictate the use of one type of line in preference to another, such as ease of installation, inherent loss in the line, and so on, but these are not ronsidered in this seetion.

Although the imput impedance of an antenna system is seldom known very accurately, it is ofton possible to make a reasombly close estimate of its value. The information in the chapter on antemas can be used as a guide.
Matching circuits may be constructed using ordinary coils and condensers, but are not used very extensively because they must be supported at the antenna and must be weatherproofed. The sustems to be described use linear transformers.

The Quarter-Wave Transformer or "Q' Section

As described carlier in this chapter, a quarterwave transmission line maty be used as an impedance transformer. Kinowing the antenna impedance and the characteristic impedance of the

Fig. 13-1.3 - "Q" matehing section, a quarter-wave impedance transformer.
transmission line to be matched, the required characteristic impedance of a matching section such as is shown in lig. 1:3-13 is

$$
Z=\sqrt{Z_{1} Z_{0}}
$$

where Z_{1} is the antenna impedince and Z_{0} is the eharacteristic impedance of the line to which it is to be matehed.

> Example: To mateh a 600 -ohm line to an antenma presenting a $\overline{\text { Fohm load, the fuarter- }}$ wave matching section would require a characterisitic impedance of $\sqrt{72 \times 600}=\sqrt{43,200}$ $=208$ ohms.

The spacings between conductors of various sizes of tubing and wire for different surge impedances are given in graphical form in Fig. 13-9. (With

1, indeh tubing, the spacing in the example above should be 1.5 inches for an impedance of 203 ohms.)
The length of the quarter-wave matching section is given by lequation 13-G.
The antenna must be resonant at the operating frequener. Sotting the antemma length by formula is amply accurate with single-wire antennas, but in other systems, particularly close-spaced arrays, the antema should be adjusted to resonane before the matrhing sertion is connected.

When the antema input impedance is not known aceurately, it is advisable to construet the matching section so that the spacing botwen conductors can be changed. The spacing then may be adjusted to give the lowest possible s.w.r. on the transmission line.

Stub Matching

When a transmission line is not matehed he the load, the impedance looking into the line toward the load varies with the distance from the load, as diseussed carlier in this chapter. Considering the

F̈g. 1.3.1.1 - Matching the antenna to the line by means of a stub, S. Curves for determining the lengths X atha Sare given in Jrigs. 13-15 and 13-16. for the case whre the line. section X and wortion) all have the same characteristid imperdance.
imput impedance to be equivalent to a resistanco in parallel with a reactance, at some distance along the line such as \mathcal{X} in lig. $1: 3-14$ the resistive part of the input imperdance will be equal to the Z_{0} of the line. If at this point a reactance equal to the reactive part of the input impedance, but of the opposite type, is conneeted across the line, the reactaners will cancel and leave only the resistive component. From this point back to the transmitter or other source of energy the line will be matched.
The reactances used for matehing in this way are usually linear reactances - sections of transmission line - called stubs. Stubs may be open or closed, depending on whether the free end is left open or is short-cireuited, areording to the type of reactance required in a particular case. The type and length of stub, as well as the point at which it should be attached to the line, can be found without any knowledge of the antenna input impordance, providing that the s.w.r. on the line can be measured before the stub is attached, and providing that the position of a current node (voltage loop) can be determined under the same conditions.
When the s.w.r. and the position of a current node are known Figs. 1:3-15 and 13-16 give the

Fig. 13-15-Graph for determining position and length of a shorred stath. Dimensims may be converted to linear units after values have been taken from the eraph.
stul) information necessary for impedanee matehing. Stul, lengths ate given in wavelengths, which maty be converted to feet with the help of bigu:tion 1:3- β^{3}. The data in Figs. 1:3-15 and 1:3-16 are based on the assumption that the line and stub both have the same $Z_{\text {s }}$.

With this system of matching it is not neeessary that the antema sestem be exactly resonamt, since the mateh is based on the position of a current node along the line. The node nearest the antemas should be used for determining the position of the stub so that as much as prossible of the transmission line will be operating with a low s.w.r.

Folded Dipoles

A half-wave anteman element can be made to match various line impedances if it is split into two or more parallel conductors with the transmission line attached at the center of oaly one of them. Various forms of such "folded dipoles" are shown in lïg. 13-17. (urrents in all ronductors are in phatse in a folded dipole, and sinee the conductor spacing is small the folded dipole is efluivalent in radiating propertios to an ordinary single-conductor dipole. However, the current flowing into the imput terminals of the antema from the line is the current in one conducfor only, and the entire power from the line is delivered at this value of curront. This is equivalont to sitying that the imput impedance of the

Fig. 13.16-Graph for determining position and length of att open stub. Dinensions may be converted to linear units after values have been taken from the graph.

Fig, 13.17-Whe folded dipole, a method for using the antenna element itself to provide an impedance transformation.
antenna has been raised by splitting it up into two or more conductors.

The ratio by which the input impedance of the antenna is stepped up depends not only on the number of conductors in the folded dipole but also on their relative diameters, since the distribution of current between conductors is a function of

Fig, 13-18- Tmpedance transformation ratio, twoconductor folded dipole. The dimensions d_{1}, d_{2} and s are shown on the inset drawing. Conrves show the ratio of the impedance (resistive) seen by the transmission line to the radiation resistance of the resonant antenna system.
their diameters. (When one conductor is larger than the other, as in Fig. 13-17C, the larger one carries the greater current.) The ratio also depends, in gencral, on the spacing between the conduetors, as shown by the graphs of Figs. 13-18 and 13-19, An important special case is the 2-conductor dipole with conductors of equad diameter; as a simple antenna, not a part of a directive array, it has an input resistance close enough to 300 ohms to afford a good mateh to 300-ohm Twin-l.cad.

The reguired ratio of conductor radii (or diameters) for a desired impedance ratio using two conductors may be olstained from Fig. 13-18. Similar information for a 3 -condurtor dipole is given in lig. 13-19. This graph applies where all three conductors are in the same plane and the two conductors not connected to the transmission line are equally spaced from the fed conductor, and have equal diameters (this diameter need not equal the diameter of the fed conductor). The unequal-conductor method hats been found particularly useful in mateling to low-impedance

Fis. 13-19 - Impedance transformation ratio, threcconductor folded dipole. The dimensions d_{1}, d_{2} and s are shown on the inset drawing. Ciarves show the ratio of the impedance (resistive) seen by the transmission line to the radiation resistance of the resonant antenna system.
antennas such as directive arrays using elosespaced parasitic elements.

The length of the antenna element should be such as to be approximately self-resonant at the median operating frequency: The length is usually not highly eritical, because a folded dipole tends to have the characteristics of a "thick" antenna and thus has a relatively broad frequency-response curve.

"T"' and "Gamma" Matching Sections

The method of matehing shown in Fig. 13-20A is based on the faet that the impedance
between any two points along a resonant antemma is resistive, and has a value which depends on the spacing between the two points. It is therefore possible to choose a pair of points between which the impedance will have the right value to mateh a transmission line. In practice, the line camnot

Fig. 13-20 - The "1" match and "gamma" mateh.
be connereted directly at these points because the distance between them is much greater than the conductor spacing of a practicable transmission line. The " T " arrangement in lig. 13-20.1 overcomes this difficulty by using a second conductor paralleling the antenna to form a matching section to which the line may be connected.

The " T " is particularly suited to use with a parallel-conductor line, in which case the two points along the antenna should be equidistant from the center so that electrical balance is maintained.

The operation of this system is somewhat eomplex. Lach " T " conductor (y in the drawing) forms with the antenna conductor opposite it a short section of transmission line. Each of these transmission-line sections can be considered to be terminated in the impedance that exists at the point of connection to the antemna. Thus the part of the antenna between the two points carries a transmission-line current in addition to the normal antenna current. The two transmission-line matching sections are in series, as seen by the main transmission line.

If the antenna by itself is resonant at the oporating frequency its impedance will be purely resistive, and in such case the matching-sertion lines are terminated in a resistive load. However, since these sections are shorter than a quarter wavelength their input impedance - i.e., the impedance seen by the main transmission line looking into the matching-section terminals - will be reactive as well as resistive. This prevents a perfert mateh to the main transmission line, since its load must be a pure resistance for perfect matehing. The reactive component of the input impedance must be tuned out before a proper mateh can be secured.

One way to do this is to detune the antenna just enough, by changing its length, to cause ractance of the opposite kind to be reflected to the input terminals of the matching section, thus cancelling the reactance introduced by the latter. Another
method, which is considerably easier to adjust, is to insert a variable capacitor in series with the matching section where it connects to the transmission line, as shown in Fig. 13-21. A capacitor having a maximum capacitance of $150 \mu \mu \mathrm{f}$. or so will be about right in the average case, for 14 Mc. and higher. The rapacitor must be protected from the weather.

The method of adjustment commonly used is to cut the antenna for approximate resonance and then make the sparing x some value that is convenient constructionally. The distance y is then adjusted, while maintaining symmetry with respect to the center, until the s.w.r. on the transmission line is as low as possible. If the s.w.r. is not below 2 to 1 after this adjustment. the antenna length should be changed slightly and the matching-section taps adjusted again. This process may be continued until the s.w.r. is as close to 1 to 1 as possible.

When the series-capacitor method of reactance compensation is used (Fig. 13-21) the antenna should be the proper length to be resonant at the operating frequency. Trial positions of the match-ing-section taps are taken, each time arjusting the capacitor for minimum s.w.r., until the

Fig. 13-21-U'sing serie's condensers for tuning out reactance in the matching section with the "10" match and "gamma" mateh. The condenser C should have a maximum capacitance of approximately $150 \mu \mu \mathrm{f}$. for 14 Mc. and may have proportionately lower capacitances for shorter wavelengths. Receiving-type condensers can be used for powers up to a few hundred watts.
standing waves on the transmission line are brought down to the lowest possible value.

The unbalanced ("gamma") arrangement in Fig. 13-20B is similar in principle to the "T," but is adapted for use with single coax line. The method of adjustment is the same.

The "Delta'" Match

The matching system in Fig. 13-22 is based on the variation in impedance between two points symmetrically located with respect to the center of the antenna, as in the case of the " T " mateh, but uses a different matching section. If the two conductors of a transmission line are fanned out, the Z_{0} of the line will increase with the increase in spacing. A fanned section of line can be used to
match a given load impedance to the Z_{0} of a uni-formly-spaced transmission line, provided the line Z_{0} is lower than the impedance of the load. Strictly, such a match can be made only if the conductor spacing in the fanned section of line increases at an exponential rate, but the "delta" arrangement in Fig. 13-22 is a rough approximation to this type of spacing.

Dimensions a and b in Fig. 13-22 depend on the antenna impedance (whether it is a simple half-

Fig. 13.22 - The "delta" matching scetion.
wave antenna or the driven element of a multielement heam), the size of the conductors in the delta, and the Z_{0} of the transmission line to be matched. Methods for calculation are not available, but dimensions for practical cases are given in the chapters on antennas.

BALANCING DEVICES

An antenna with open ends, of which the halfwave type is an example, is inherently a balanced radiator. When opened at the center and fed with a parallel-conductor line this balance is maintained throughout the system, including the transmission line, so long as the causes of unbalance discussed earlier in this chapter are avoided.

If the antenna is fed at the center through a coaxial line, as indicated in lig. 13-23A, this balance is upset because one side of the radiator is connected to the shield while the other is connected to the inner conductor. On the side connected to the shield, a current can flow down over the outside of the coaxial line, and the fields thus set up cannot be canceled hy the fields from the inner conductor because the fields inside the line cannot escape through the shielding afforded by the outer conductor. Hence these "antenna" currents flowing on the outside of the line will be responsible for radiation.

Linear Baluns

Line radiation can be prevented tyy a number of devices whose purpose is to detune or decouple the line for "antenna" currents and thus greatly reduce their amplitude. Such devices generally are known as baluns (a contraction for "balanced to unbalanced"). Fig. 13-23B shows one such arrangement, known as a bazooka, which uses a sleeve over the transmission line to form, with the outside of the outer line conductor, a shorted quarter-wave line section. As described earlier in this chapter, the impedance looking into the open end of such a section is very high, so that the end of the outer conductor of the coaxial line is effectively insulated from the part of the line below the sleeve. The length is an electrical quarter

(B)

Fig. 13.23 - Radiator with coaxial feed (A) and methods of preventing unbalance currents from flowing on the outside of the transmission line (B and C). The halfwave phasing section shown at D is used for coupling between an unbalanced and a balanced circuit when a $4 \cdot t o-1$ impedance ratio is desired or can be accepted.
wave, and may be physieally shorter if the insulation between the sleeve and the line is other than air. The bazooka has no effere on the impedance relationships betwern the antemna and the coaxial line.

Another mothod that gives an equivalent offret is shown at C. Since the voltages at the antenna terminals are equal and opposite (with reference to ground), equal and opposite currents flow on the surfaces of the line and serond ronductor. Beyond the shorting point, in the direction of the transmitter, these currents combine to cancel out. The balancing section "looks like" an open circuit to the antenna, since it is a quarterwave parallel-conductor line shorted at the far cond, and thus has no effect on the normal intema operation. However, this is not essential to the lime-balancing function of the device, and baluns of this type are sometimes made shorter than a quarter wavelength in order to provide the shunt inductive ratotance required in certain typers of matehing systems.

Fig. 1:3-2:31) shows a third balun, in which equal and opposite voltages, balanced to ground, are taken from the inner conductors of the main transmission line and half-wave phasing section. Since the voltages at the balanced end are in series while the voltages at the unbalanced end are in parallel, there is a t-to-1 step-down in impedance from the balanced to the unbalanced side. This arrangement is useful for roupling betwern a balanced 300 -ohm line and a 75 -ohm coaxial line, for example.

Coil Baluns

Another form of linear balun is shown in the upper drawing of Fig. 13-2 4 . Two transmission lines of equal longth having a characteristic impedance Z_{0} are connected in series at one end and in parallel at the other. At the series-ommeoted end the lines are balanced to ground and will match an impedance equal to 2%. At the parallelronnected end the lines will be matehed by an impedance equal to $Z_{0} / 2$. One side maty he connected to ground at the parallel-comeected end, provided the two lines have a length such that, considering each line as a single wire, the balanced end is effectively decoupled from the paral-lel-connected end. This reguires a length that is an odd multiple of $1 / 4$ wavelength. The impedance transformation from the series-connerted end to the parallel-comented end is 4 to 1 .

A definite line length is required only for decoupling purposes, and so long as there is adequate decoupling the system will act as a 4 -to-1 impedance transformer regardless of line length. If each line is wound into a coil, as in the lower drawing, the inductances so formed will act as choke coils and will tend to isolate the seriesconnected end from any ground conmertion that may be placed on the parallel-comeded end. balun coils made in this way will operate over a wide frequency range, since the choke inductance is not critical. The lower frequency limit is where the coils are no longer effective in isolating one line from the other; the length of line in each coil
should be about equal to a quarter wavelength at the lowest frequency to be used.

The principal application of such coils is in going from a 300 -ohm balanced line to a 75 -ohm coavial line. This requires that the Z_{0} of the lines forming the coils be 150 ohms. Design data for winding the coils are not available; however, Equation 13-D can be used for determining the approximate wire spacing. Allowance should be made for the fart that the effertive dielectric constant will be somewhat greater than 1 if the coil is wound on a form. The proximity effect between turns can be reduced by making the turn sparing somewhat larger than the conductor sparing. For operation at 3.5 Me, and higher frequencies the length of each conductor should be about 60 feet. The conductor spacing can be adjusted to the proper value by terminating each line in a resistor equal to its characteristic impedance and adjusting the spacing until an s.w.r. bridge at the input end shows the line to be matehed.

A balun of this type is simply a fixed-ratio transformer and does not make up for inaccurate

Fig. 73.24-Baluns for matching hetween push-pull and single-ended circuits. 'the imperdance ratio is 4 to 1 from the push-pull side to the unbatanced side. Coiling the lines as shown in the Iower drawing increases the frefurncy range ower which satisfactory operation is obtained.
matching elsewhere in the system. With a "300ohm" line on the balanced end, for example, a 75-ohm coax cable will not be matched unless the 300 -ohm line actually is terminated in a 300 -ohm load.

NONRADIATING LOADS

Important practical cases of nonradiating loads for a transmission line are the grid circuit of a power amplifier (considered in the chapter on transmitters), the imput circuit of a receiver, and another transmission line. This last case includes the "antenna tuner" - a misnomer because it is artually a device for coupling a transmission line to the transmitier. Because of its importance in amateur installations, the antenna coupler is considered separately in a later section of this chapter.

Coupling to a Receiver

A good mateh between an antenna and its transmission line does not guarantee a low stand-ing-wave ratio on the line when the antenna system is used for receiving. The s.w.r. is determined wholly by what the line "sees" at the receiver's antenna-input terminals. For minimum s.w.r. the rereiver input circuit must be matched to the
line. The rated input impedance of a receiver is a nominal value that varies over a considerable range with frequency. Methods for bringing a bout a proper match are discussed in the chapter on receivers.

It should be noted that if the receiver is matched to the line, then it is desirable that the antenna and line also be matched, since this results in maximum signal transfer from the antenna to the line. If the receiver is not matched to the line, the input impedance of the line (at the terminals of the antenna itself) in turn cannot match the antenna impedance. In such a case the signal input to the receiver depends on the coupling system used between the line and the receiver. For greatest signal strength the coupling system has
to be adjusted to the best compromise between receiver input impedance and load appearing at the input (antenna) end of the line. The proper adjustments must be determined by experiment.

A similar situation exists when the receiver input impedance inherently matches the line Z_{0}, but the line and antenna are mismatched. Under these conditions perfect matching at the receiver does not result in greatest signal strength; a deliberate mismatch has to be introduced so that the maximum power will be taken from the antenna.

The most desirable condition is that in which the receiver is matched to the line Z_{0} and the line in turn is matched to the antenna. This transfers maximum power from the antenna to the receiver with the least loss in the transmission line.

Coupling the Transmitter to the Line

The type of coupling system that will be needed to transfer power adequately from the final r.f. amplifier to the transmission line depends almost entirely on the input impedance of the line. As shown earlier in this chapter, the input impedance is determined by the standing-wave ratio and the line length. The simplest case is that where the line is terminated in its characteristic impedance so that the s.w.r. is 1 to 1 and the input impedance is merely the Z_{0} of the line, regardless of line length.

Coupling systems that will deliver power into a flat line are readily designed. For all practical purposes the line can be considered to be flat if the s.w.r. is no greater than about 1.5 to 1 . That is, a coupling system designed to work into a pure resistance equal to the line Z_{0} will have enough leeway to take care of the small variations in input impedance that will occur when the line length is changed, if the s.w.r. is higher than 1 to 1 but no greater than 1.5 to 1 .

Coupling circuits suitable for coaxial lines are discussed in the chapter on transmitters. As stated in that chapter, an untuned "pick-up" or "link" coil connected directly to the transmission line should have an inductance such that the reactance at the operating frequency is approximately equal to the Z_{0} of the line, to assure adequate coupling to a line that is actually flat. While this condition is sometimes met well enough at the higher frequencies, at least for coaxial lines, by manufactured link coils, it is definitely not met when a parallel-conductor line having a Z_{0} of 300 ohms or more is used. The optimum pick-up coil for coupling to such lines will have about the same inductance as the plate tank coil itself.

Amateurs are frequently successful in coupling power into a line even though the pick-up coil is quite small and is loosely coupled to the amplifier tank coil. When such coupling is possible it is an indication that the line is operating at a fairly high s.w.r. and that the line
length is such as to bring a current loop near the input end. It is customary to "prune" the line length in such cases until adequate coupling is secured - a practice that has given rise to the wholly fallacious belief, on the part of many, that pruning the line reduces the standing-wave ratio and that a flat line will load an amplifier with a small link and very loose coupling. Pruning the line accomplishes nothing if the line is actually flat because, as explained earlier in this chapter, the input impedance of a matched line is equal to its Z_{0} regardless of the line length. If the line is not flat, pruning changes the input impedance and eventually results in a value such that the link or pick-up coil is actually tuned to the operating frequency by the line, a condition that will give maximum power transfer with minimum coupling. The higher the s.w.r. the more loose the coupling can be. Although there is nothing inherently wrong with this method of adjustment, it works only when the s.w.r. is fairly high and will not work with a line that actually is flat.

Tuned Coupling

A tuned coupling circuit has the same advantages, when used with properly-terminated paral-lel-conductor lines, that were outlined in the transmitting chapter in connection with coaxial lines. The principles are the same as well, but a resistance of 300 to 600 ohms is too high to be connected in series with a tuned circuit. Consequently, parallel-tuned circuits must be used with

Fig. 13-25 - Tuned circuits for coupling to a flat parallel-conductor line. Values for C_{1} are given in Table $13-I I ; L_{1}$ is chosen to resonate with the value given at the operating frequency. In the alternative circuit the total inductance of L_{1}, L_{2} and L_{3} should equal L_{1} in the circuit at the left.
these lines. Typical arrangements are shown in Fig. 13-25. The capacitance values given in Table 13-II are for a Q of 2 and are the minimum values that should he used unless the eoupling between the coils can be made very tight. The Q may be increased, permitting full power transfer with looser coupling between the coils, by inereasing the capacitance and decreasing the inductance correspondingly to maintain resonance.

The eapacitance values given are the total required, so if a balanced eaparitor is used as indicated at C_{1} in Fig. 13-25 each socetion should have twice the eaparitance given, A single-ended capacitor may be used if care is taken to mount it far enough away from the chassis or any other grounded conduetor so that the eapacitance from stator and frame to ground is small. In such case it should be tumed by an insulated extension shaft.

The series-tuned circuit shown in the transmitter chapter for coax line can be adapted to use with 75 -ohm parallel-conduetor line by removing the ground connection and using two variable capacitors, one in each line conductor and each having twiee the capaeitance specified. This is the brest arrangement for maintaining balance to ground, but if reasonable care is taken to mount the capacitor as deseribed in the preeeding paragraph, a single eapacitor may be used. In that rase the only circuit difference is that neither side of the line should be grounded.

Link Coupling

The coupling arrangements for parallel-conductor line shown in Fig. 13-25 are not entirely. satisfactory from a construetional standpoint. It is usually more convenient to build the coupling apparatus separate from the final amplifier, and this leads to greater operating flexibility as well. For lines operating at a low standing-wave ratio this is casily accomplished by eonnecting the amplifier and coupling cireuits through a short length of transmission line or "link." With proper design and adjustment, the tuning of both eircuits will be completely independent of the length of the line connecting them. This method has the further advantage that, if the connecting line is coaxial cable, it offers an ideal spot for the insertion of a lowpass filter for preventing harmonic interference to television and FM reception.

The circuit for coax-link coupling is given in Fig. 13-26. The constants of the tuned circuit $C_{1} L_{3}$ are not particularly critical; the principal requirement is that the eireuit must be capable of being tuned to the operating frequency. Constants similar to those used in the plate tank circuit will be satisfactory. The construetion of L_{3} must be such that it can be tapped at least every turn. L_{2} must be tightly coupled to L_{3}, and the induetanee of L_{2} should be approxi-

TABLE 13.II	
Capacitance in $\mu \mu$ I. Required for Coupling to 300.	
and 600.0hm	Flat Lines with Parallel-Tuned
Frequency	Characteristic Impedance of Line
Bund	Characteristic Impedance of Iine
Mc.	ohms ohens
1.8	600300
3.5	300150
7	150
14	75
28	40 20
Note: Inductance resonate at opera	in circuit must be adjusted to ting frequency.

mately the value that gives a reactance equal to the Z_{0} of the connecting line at the frequency in use. An average reactance of about 60 ohms will suffice for either 52 - or 75 -ohm coaxial line.

When the system is properly designed and operated, the circuit formed by $L_{2} L_{3} C_{1}$ acts purely as a matching device to transform the input impedance of the main transmission line to a value equal to the Z_{0} of the coaxial link. The coupling cireuit at the amplifier end is merely designed and adjusted for working into a flat coaxial line, as described in the transmitter chapter.
The most satisfactory way to set up the system initially is to connect a coaxial s.w.r. bridge in the link as shown in Fig. 13-26. The "Mieromatch" type of bridge, which can handle the full transmitter power and may be left in the line for contimuous monitoring, is excellent for this purpose. However, a simple resistance bridge surh as is described in the chapter on measurements is perfeotly adequate, requiring only that the transmitter output be reduced to a very low value so that the bridge will not be overloaded. Take a trial position of the line taps on L_{3}, keeping them equidistant from the conter of the coil, and adjust C_{1} for minimum s.w.r. as indicated by the bridge. If the s.w.r. is not close to 1 to 1 , try new tiap positions and adjust C_{1} again, contianing this procedure until the s.w.r. is pratetieally 1 to 1 . The setting of C_{1} and the tap positions may then be logged for future reference. At this point,

Fig. 13-26 - Matehing eireuits using a coaxial link, for use with parallelconductor transmission lines. Adjustment set-up using an s, w.r. bridge is shown in the lower drawing. Design considerations and method of adjustment are diseussed in the text.
check the link s.w.r. over the frequency range normally used in that band, without changing the setting of C_{1}. No readjustment will be required if the s.w.r. does not exceed 1.5 to 1 over the range, but if it goes higher it is advisable to note as many settings of C_{1} as maty be necessary to keep the s.w.r. below 1.5 to 1 at any part of the band. Changes in the link s.w.r. are caused chiefly by changes in the s.w.r. on the main transmission line with frequency, and relatively little by the coupling circuit itself. A single setting of C_{1} at midfrequency will suffice if the antenna itself is broad-tuning.

If it is impossible to get a l-to-1 s.w.r. at any settings of the taps or C_{1}^{\prime}, the s.w.r. on the main transmission line is high and the line length is probably unfavorable. Ordinarily there should be no difficulty if the transmission-line s.w.r. is not more than about 3 to 1 , but if the line s.w.r. is higher it may not be possible to bring the link s.w.r. down except by using the methods for reactance compensation described in a subsequent section.

The matching adjustment can be considerahly facilitated by using a variable capacitor in series with the matching-circuit coupling coil as shown in Fig. 13-27. The additional adjustment thus

Fig. 13.27-Using a series capacitor for control of coupling between the link and line circuits with the coas-coupled matching circuit.
provided makes the tap settings on L_{3} much less critical since varying C_{2} has the effect of varying the coupling between the two circuits. For optimum control of coupling, L_{2} should be somewhat larger than when C_{2} is not used - perhaps twice the reactance recommended above - and the reactance of C_{2} at maximum capacitance should be the same as that of L_{2} at the operating frequency. L_{3} and C_{1} are the same as before. The method of adjustment is the same, except that for each trial tap position C_{1} and C_{2} are altermately adjusted, a little at a time, until the s.w.r. is brought to its lowest possible value. In general, the adjustment sought should be the one that keeps C_{2} at the largest possible capacitance, since this broadens the frequency response. Also, the taps on L_{3} should be kept as far apart as possible, while still permitting a match, since this also broadens the frequency response of the circuit.

Once the matching circuit is properly adjusted, the s.w.r. bridge may be removed, if necessary, and full power applied to the transmitter. The input should be controlled by the coupling between L_{1}, Fig. 13-26, and the amplifier tank coil. never by making any changes in the settings of the matching circuit, $C_{1} L_{2} L_{3}$. If the amplifier will not load properly, tuned coupling should be used into the coas link.

It is possible to use a circuit of this type without initially setting it up, with the s.w.r. bridge. In such a case it is a matter of cut-and-try until adequate power transfer between the amplifier and main transmission line is secured. However, this method frequently results in a high s.w.r. in the link, with consequent power loss, "hot spots" in the coaxial cable, and tuning that is critical with frequeney. The bridge method is simple and gives the optimum operating conditions quickly and with certainty.

- "TUNED" LINES

If the s.w.r. on a transmission line is high enough to cause the input impedance to change appreciably as the applied frequency is varied, the coupling between the transmitter and the line must be changed accordingly if the amplifier loading is to lo constant. So far as the coupling apparatus is concerned, the principal difference between flat and tuned lines is that the system can be designed for relatively constant impedance for flat lines, but must be rapable of coupling into a wide range of impedances if the line is "tumed."

As montioned earlier, a simple coil can be used for coupling to a line having a high standing-wave ratio providing the line length is adjusted so there is a current loop near the point where it connects to the pick-up coil. The coupling will be maximum, for a given degree of separation between the pick-up coil and the amplifier tank coil, if the line is pruned to a length such that the input impedance is just sufficiently capacitive to cancel the inductive reactance of the piek-up coil. This can be done by cut-and-try. The higher the s.w.r. on the line the easier it becomes to toad the amplifier with loose coupling between the two coils. Whether or not good loading can be obtained over a band of frequencies depends on the characteristics of the antema system. The sharper the antenna and the higher the line s.w.r. the more difficult it becomes to operate over a band without progressively changing the line length.

Series and Parallel Tuning

Rather than adjusting the line length to fit a given coupling coil, it is more pratetical to adjust the coupling circuit to fit the conditions existing at the input end of the transmission line.

A high standing-wave ratio occurs principally on parallel-conductor lines, either because no attempt has been made at matehing the antenna and the line or because the system is used for multiband operation, which preeludes such matching. In the latter case, cutting the line length to a multiple of a quarter wavelength will bring either a current or voltage loop near the input terminals of the transmission line (assuming that the antenna itself is resonant) depending on the termination and the line length. If there is a current loop near the imput end the impedance will be lower than the line Z_{0}; if a voltage loop, the input impedance will be higher than the line Z_{0}. In both eases the imput impedaneres will be essentially resistive.

Inder these conditions the cireuit arrangements shown in Fig. 13-28 will work satisfactorily. Serics tuning is used when a current loop occurs at the input end of the line; parallel tuning when there is a voltage loop at the input end. In the series case, the circuit formed by L_{1}, C_{1} and C_{2} with the line terminals short-circuited should tune to the operating frequency. C_{1} and C_{2} should be maintained at equal rapacitance. In the parallel case, the circuit formed by L_{1} and C_{1} should tune to resonance with the line disconnected.
The L / C ratio in either circuit depends on the transmission line Z_{0} and the standing-wave ratio. With series tuning, a high L / C ratio must be used if the s.w.r. is relatively low and the line Z_{0} is high. With parallel tuning, a low L / C ratio must he used if the s.w.r. is relatively low and the tnansmission-line Z_{0} also is low. With either series or parallel tuning the L_{i} / C ratio becomes less critical when the s.w.r. is high. As a first approximation, coil and condenser values of the same order as those used in the phate tank circuit may be tried.

To adjust the series-tuned circuit, first couple L_{1} loosely to the amplifier tank coil and then vary C_{1} and C_{2}, keeping their eaparitances equal, until the setting is found that makes the amplifier plate current kick upward. Keep adjusting the :mplifier tank capacitor, C, for minimum plate current while this is being done. When the proper settings are found, increase the coupling between the two coils until the minimum plate current is the normal operating value for the amplifier. It is unnecessary to readjust C_{1} and C_{2} when the coupling is increased. Keep the coupling between the coils at the smallest value that will load the amplifier properly. If full loading cannot be obtained with the tightest possible coupling, use a coil of more inductance at L_{1}.

The same adjustment proredure is used with parallel tuning, exeept that there is only one capacitor, C_{1}. If full loading camot be secured, reduce the inductance of L_{1} and increase C_{1} correspondingly to maintain the same frequency, until the amplifier loads properly.

The r.f. :mmeters shown in Fig. 13-28 are not strictly necessary, but are useful for indieating maximum output. They may be omitted if dosired; in most cases the amplifier plate current is a good enough indication of output, providing the amplifier is operating at normal ratings and afliciener.

In case full loading camot be obtained even when the L / C ratio is varied, the type of tuning in use probably is not suitable and should be changed: e.g., from series to parallel. If satisfactory loading still cannot be secured, the probability is that the s.w.r. is quite low and the coupling methods designed for flat lines, deseribed earlier, should be used.

Two eapacitors are used in the
series-tuned circuit in order to keep the line balanced to ground. This is because two identieal capacitors, both conneeted with either their stators or rotors to the line, will have the same rapacitance to ground. A single unit would be perfectly usable so far as the operation of the coupling eireuit is concerned, but will slightly unbalance the cireuit because the frame has more eapacitance to ground than the stator. The unbalance is not especially serious unless the eapacitor is mounted near a large mass of metal, such as a chassis or shield assembly.

A balanced capacitor is used in the parallel eircuit, in preference to a single unit, for the same reason. An alternative seheme to maintain balance is to use two single-ended capacitors in parallel, but with the frame of one conneeted to one side of the line and the frame of the other connected to the other side of the line. The same two eapacitors may be switehed in series when series tuning is to be used.

Link Coupling

The rircuits shown in Fig. 13-28 require a means for varying the coupling between two sizable coils, a thing that is somewhat inconvenient constructionally. It is casier to use separate fixed mountings for the final tank and antemna coils and couple them by means of a link. As explained in the chapter on circuit fundamentals, a short link is equivalent to providing mutual induetance between two tuned cireuits. Typical arrangements for series and parallel tuning are shown in Fig. 13-29. Although these drawings show variable coupling at both ends of the link, a fixed link eoil can be used at either end so long as variable coupling is available at the other.

There is no essential difference between the tuning procedures with these circuits and those of Fig. 13-28. The only change is that the coupling is adjusted by menns of a link instead of by varying the spacing between L and L_{1}.

In rises where the link will be more than a few inches long, or when coaxial cable is to be

Fig. 13-28 - Series and parallel tuning. This method is useful with resonant lines when the length is such as to bring either a current or voltage lonp, near the input end. Design data and methods of adjustment are given in the text.

Fig. 13-29 - Link-coupled series and parallel tuning.
not have enough range available to give complete compensation, particularly when (as is the case with some line lengths when the s.w.r. is high) the input impedance is principally reactive.

Under such conditions it is necessary, if the line length cannot be changed to a more satisfaetory value, to provide additional means for compensating for or "eanceling out" the reactive component of the input impedance. As described earlier in this chapter (Fig. 13-6) the input impedance can be considered to be equivalent to a circuit consisting either of resistance and inductance or resistance and capacitance. It is generally more convenient to consider these elements as a parallel combination, so if the line "looks like" $L^{\prime} R^{\prime}$ at A in Fig. 13-6, it is apparent that if we conneet a capacitance of the right value across L^{\prime} the circuit will become resonant and will appear to be a pure resistance of the value R^{\prime}. Similarly, connecting an inductance of the right value aeross C^{\prime} in Fig. 13-6B will resonate the circuit and the impedance will be equal to R^{\prime}. The resistive impedance that remains ean easily be matched to the coax link by means of the eireuit of Fig. 13-26.

The practical application of this prineiple is shown in Fig. 13-30, where L and C are the reactanees required to cancel out the line reactance, L for cases where the line is capacitive, C for lines having inductive reactance. The amount of either inductance or eapacitance required is easily determined by trial, using the s.w.r. bridge in the coax link. First disconnect the main transmission line from L_{3} and connect a noninductive resistor in its place. A 1 -watt carbon resistor of about the same resistance as the line Z_{0} will do, if a low-power bridge of the resistance type is used. With the "Micromatch" bridge, a suitable load may be made by conneeting carbon resistors in parallel; for example, ten 3000 -ohm 2 -watt resistors in parallel will make a 300 -ohm load capable of handling 20 watts of r.f. Adjust the coil taps and C_{1} for a 1-to-1 standing-wave ratio in the link, as described earlier. This determines the proper setting of C_{1} for a purely resistive load. Then take off the resistor and connect the line, again adjusting the taps and C_{1} to make the s.w.r. as low as possible, and compare the

Fig. 13-30 - Reactance cancellation on random-length lines having a high standing-wave ratio.
new setting of C_{1} with the original setting. If the capacitance has increased, the line reactance is inductive and a capaeitor must be connected at C in Fig. 13-30. The amount of capacitance nerded to bring the proper setting of C_{1} near the original setting can be determined by trial. On the other hand, if the capacitance of C_{1} is less than the original, an inductance must be connected at L. Trial values will show when the proper tuning conditions have been reached.

It is not necessary that C_{1} be at exactly the
original setting after the eompensating reatance has been adjusted; it is sufficient that it be in the same vicinity.

Using this procedure practically any length of line can be coupled properly to the transmitter, even when the line s.w.r. is quite high. C'nfortunately, no specific values can be suggested for L and C, since they vary widely with line length and s.w.r. Their values usually are comparable with the values used in the regular coupling circuits at the same frequency.

Coupler or Matching-Circuit Construction

The design of matehing or "antenna coupler" circuits has been covered in the preceding section, and the adjustment procedure also has been outlined. Sinee cireuits of this type are most frequently used for transferring power from the transmitter to a parailel-conductor transmission line, a principal point requiring attention is that of maintaining good balance to ground. If the coupler circuit is apprecially umbalanced the currents in the two wires of the transmission line will also be unbalaneed, resulting in radiation from the line.

In most cases the matching circuit will be built on a metal chassis, following common practice in the construction of transmitting units. The chassis, because of its relatively large area, will tend to establish a "ground" - even though not actually grounded - particularly if it is assembled with other units of the transmitter in a rack or cabinet. The components used in the coupler, therefore, should be placed so that they are electrieally symmetrical with respect to the chassis and to each other.

In general, the construction of a coupler circuit should physically resemble the tank layouts used with push-pull amplifiers. In parallel-tuned circuits a split-stator eapaeitor should be used. The rapacitor frame should be insulated from the chassis because, depending on line length and other factors, harmonic reduction and line balance may be improved in some eases by grounding and in others by not grounding. It is therefore advisable to adopt construction that permits either. Provision also should be made for grounding the center of the coil, for the same reason. The coil in a parallel-tuned cireuit should be mounted so that its hot ends are symmetrically placed with respect to the chassis and other components. This equalizes stray capacitances and helps maintain good balance.

When the coupler is of the type that ean be shifted to series or parallel tuning as required, two separate single-ended capacitors will be satisfactory. As deseribed earlier, they should be connected so that both frames go to corresponding parts of the circuit - i.e., either to the eoil or to the line - for series tuning, and when used in parallel for parallel tuning should be conneeted frame-to-stator.

A coupler designed and adjusted so that the connecting link acts as a matched transmission line may be placed in any convenient location. Some amateurs prefer to install the coupler at the point where the main transmission line enters the station. This helps maintain a tidy station layout when an air-insulated parallek-conductor transmission line is used. With solid-dielectrie lines, which lend themselves well to neat installation indoors, it is probably more desirable to install the coupler where it can be reached easily for adjustment and band-changing. The use of coax-

Fig. 13-31 - A coav-coupled matching circuit of simple construction. The entire circuit is monmed on a 3 by 4 by 5 box. C_{1} is inside; C_{2} and the plag-in eoil assembly are mounted on top.
ial line between the transmitter and coupler is strongly recommended if the link line is more than a few inches long, for the reasons outlined in the preceding section.

COAX-COUPLED MATCHING CIRCUIT

The matching unit shown in loig. 13-31 is constructed according to the design principles outlined earlier in this chapter. It uses a paralleltuned circuit with taps for matching a parallelconductor line through a link coil to a coaxial line to the transmitter. It will handle about 500 watts of r.f. power and will work, without modification, into lines of any length if the s.w.r. is below 3 or 4 to 1 . If the s.w.r. is high, it may be neeessary to compensate for the reactive part of the input impedance of the line, at certain line lengths, by using an additional coil or capacitor as discussed earlier. The necessity for such compensation can be avoided, on lines having a high s.w.r., by making the electrical length of the line a multiple of a quarter wavelength.

As shown by the circuit diagram, Fig. 13-32, the link circuit is adjusted by means of a variable capacitor, C_{1}, to facilitate matching the main transmission line to the coax link. The coils are constructed from commercially-available coil material, and the link inductances are chosen to provide adequate coupling for flat lines. The link coil, of smaller diameter than the tank coil, is mounted inside the latter at the center. Duco cement is used to hold the coils together at their bottom tie strips. The coils are nounted on Millen type 40305 plugs and require no other support than the stiffness of the short lengths of wire going into the end prongs of the plug from the tank coil. Short lengths of spaghetti tubing are slipped over the leads to the link coil where they go between the tank coil turns to reach the plug.

Fig. 13-32 - Circuit diagran of the coax-coupled matching circuit.
$\mathrm{C}_{1}-300-\mu \mu \mathrm{f}$. variable, approximately $0.024^{\prime \prime}$ spacing. $\mathrm{C}_{2}-100{ }_{\mu \mu \mathrm{f}}$. per section, 1500 volts.
J_{1} - Chassis-type coax connector.

Taps on the tank coil for connection to a paral-lel-conductor transmission line are made by bending ordinary soldering lugs around the wire and soldering them in place. The clips are Johnson type 235-860, adjusted so that they fit snugly over the tilps when pushed on sidewise. Used this way, the elips provide an easy and rapid method of connecting and disconnecting the line. The proper positions for the taps may be determined by first using the clips in the normal fashion.

The maximum length of coil that can be mounted satisfactorily on the plugs is about 4 inches. Alternative coils of this length are shown in Fig. 13-32 for 3.5 Mc .; one requiring the addition of $75 \mu \mu$ f. fixed capacitaner across the cirenit.

The matching circuit should be adjusted with the aid of an s.w.r. bridge, as described earlier in this chapter. In general, the tuning will be less critical, and the circuit will work over a wider frequency range without readjustment, if the taps are kept as far toward the ends of the coil as possible and C_{1} is set at the largest capacitance that will permit bringing the s.w.r. in the coax link down to 1 to 1 .

- A "UNIVERSAL" MATCHING CIRCUIT

The matching circuit shown in Fig. 13-33 offers considerable flexibility in that it can be used as a tapped-coil matching network of the same type as that just described, and also can be used as either a series- or parallel-tuned "antenna coupler." It can also be adapted to other types of coupling by simple changes in the plug-comection arrangement of the coils.

Two capacitors are used in the tank circuit. Their rotors are insulated from each other but are turned simultaneously by a right-angle drive unit. When used either for parallel tuning or the tapped-coil method of matching, the rotors are connected together to form a split-stator capacitor having a maximum capacitance of 150 $\mu \mu$. When used for series tuning the condenser frames connect to the parallel-conductor transmission line, the jumper that connects the rotors together being removed.

The unit is built on a 7 by 9 by 2 aluminum chassis and has a 7 by 10 panel. The tank capacitors are mounted on small aluminum plates supported on $3 / 4$-ineh stand-off insulators, to insulate the frames from the chassis; this method is preferable to mounting the capacitors directly on the insulators as it lessens the mechanical strain on the latter. Soldering lugs projecting from the capacitor frames provide means for connecting the line clips for series and parallel tuning. The jumper for connecting the rotors together is in the foreground; it uses banana plugs that fit into jabeks mounted on the condenser mounting plates. The link condenser is located underneath the chassis.

Fis. 1:3-33- Circuit diagram of the "universal" coancoupled matehing network. For use as a tapped matehing circuit, commed the line to taps on L_{1}, ats at $A-B$, and conmect the jumper. V. Io (-1); the jumper is also used for parallel tuning but with the line connected to IS.F. for series tuning, remove the jumber and connect the line to C.-f). The promad conneretion to the middle prong of the roil socket is provided for rases where it is desirable to ground the eenter of L_{1}.
(i - $300-\mu \mu$. variable, approximately $0.024^{\prime \prime}$ spacing.
 $300)$.
J1 - Chassis-lype coax connector.

Cail Datt

Band	L., turns	L., turns
$3.5-7$ Wc.	$20(14 \mu \mathrm{h})$.	$10(5 \mu \mathrm{h})$.
714 Mc.	$10(5 \mu \mathrm{h})$.	$6(2.5 \mu \mathrm{~h})$.
$1.1-28$ We.	$4(1.5 \mu \mathrm{~h})$.	2

l, No. 12 tinned wire, $21 / 2$ inches dia, 6 turns per

I. 2 - No. 16 wire, 2 inches dia, 10 turns per inch (IB \& W 390 i or 3907.1).

The coils shown are designed primarily for use in the tapped matching circuit or for paralled tuming, but will also be satisfactory for serios tuning if the transmission line length is sucth as to bring a current loop near the input end. (Soil taps are mate in the same way as in the eoupler previously deseribed. Beceluse of the fairly large value of maximum capacitance available whan the tank capacitors, C_{2} and C_{3}, are used together as a split-stator capacitor, it is possible to cover a 2-to-1 frequency ringe. Consequently, only three coil assemblies are nereded to eover the 3.5to 30-Mc. range, and carch one can be used for two (in the case of the smallest coil, three) adjacent amateur bands.

As a tapped matehing eirenit, adjustment is the same as for the unit just deseribod. When using aither series or parallel tuning, the s.w.r. bridge should he used as before, adjusting C_{1} and
$C_{2}-C_{3}$ for minimum s.w.r. in the coax link. (Originally described in March, 1953, QST.)

MATCHING CIRCUIT WITH MULTIBAND TUNER

The coupling network shown in Fig. 13-35 uses a multiband tumer (see chapter on transmitters for other examples) to cover the 3.5-30 Mc. range without coil changing or switching. The matching aircuit is the section of Fig. 13-36 to the right of the portion enclosed by the dashed line, and consists of the multiband circuit, $L_{1} L_{2} C_{11}$, coupling roils L_{3} and L_{4}, and the serio's ('apuritor C_{10}. The input impedance of parallelconductor lines comected to the output terminal assemblies J_{3} and $J_{4}-J_{3}$ for 3.5 and 7 Mc ., J_{4} for 14,21 and 28 Mc. - can be matched to a conxial line running to the transmitter, over the usual range of input impedances encountered.

Switch siz $_{2}$ also permits feeding the transmitter output to a coaxial connector, J_{2}, to which a matehed coaxial line may be connected, no matching circuit being reguired in such case. In addition, a dummy antenna, R_{5}, may be selected by means of S_{2}. The dummy antenna is not assential to the operation of the coupler, but is convenient for transmitter testing.

An s.w.r. bridge of the "Micromateh" type is also included in Fig. 13-36. The bridge circuit may be constructed as a separate unit and used with any form of antenna coupler.
The coupling expacitor C_{10} is electrically above ground and is mounted on two feedthrough insulators, one of which is used to bring the connection from s_{2} through the chassis to the rotor of (' 10 . This capacitor is set back from the panel and coupled to the dial by an insulated shaft, thus eliminating body capacity. C_{11} is mounted at the other end of the chassis and the control is brought out through the panel with swmmetry in mind. Inductors L_{2} and L_{4} are mounted near the rear output terminal panel so the over-all lead length can be kept to a minimum in the high-frequency section, L_{1} and L_{3} are mounted at right angles to L_{2} and L_{4} to reduce mutual coupling.

Fif, 1.3.34-1 coupler or mateling network that can also be used for serise or parallel tuning of tuned lines.

Fig. 13-35- Matching cirenit using a multiband tuncr. 'The tank capacitor, C_{11}, is at the left in this view. The series eapacitor, Cio, is at the right. 'The coaxial connectors at the bottom are for feeding r.f. to a coaxial line when the latter is matehed at the antenna. The meter on the panel is the indicator for the s.w.r. bridge circuit. The switches, s.w.r. bridge components and dunumy antenna shown in Fig. 13-36 arc helow chassis.
The chassis is approximately 12 by 9 by $21 / 2$ inches, a nonstandard size, but any chassis large enough to acrommodate the component layout may be used.

In addition to the two binding-post assemblies, the output terminal pancl on the rear of the chassis has a wing-nutted ground terminal, so either balanced or unbalaneed lines or antemats may be used.

To operate the coupler, first connect the line
to the proper output terminals, J_{3} or J_{4}, depending on the frequency. With \mathbb{S}_{2} in the second position, tune C_{10} and C_{11} for minimum s.w.r. The two controls will interlock somewhat, but a few trials should lead to a good mull. The system is then ready for use. After the minimum or zero

Fig. 13-36- Circuit diagram of the multihand tuner matching eircuit.
$\mathrm{C}_{1}, \mathrm{C}_{5}$ - Frie button type or equivalent.
ℓ_{2}, C_{6} - 'l'ubular-type variable, $0.5-5{ }_{\mu \mu}$. (Eric type 532-(18).
$\mathrm{C}_{3}, \mathrm{C}_{4}$ - Mica or ceramic.
$\mathrm{C}_{\mathrm{i}}, \mathrm{C}_{\mathrm{C}}, \mathrm{C}_{4}-1$)isk cerantic.
(10 - $340-\mu \mu$ f. variable (Bud 1529).
(in - 250 - $\mu \mu \mathrm{f}$.-fer-section varialle (Bud 1556).
$\mathrm{R}_{1}-0.62 .5$ olim. 8 watts (sixteen 10 -ohm $1 / 2$ watt composition resistors in parallel).
R_{2} - 2500 -nhm earbon potentiometer.
$\mathrm{R}_{3}-25.000$-shm earbon potentioneter.
R_{4} - $50,(001)$-ohm carlon potentiometer.
$\mathrm{R}_{5}-50$ ohms (for 50 -ohm coax), 50 watts (Globar type (X).
$\mathrm{L}_{1}-3.4 \mu \mathrm{~h} .: 3 \mathrm{~m}$ turns No. 14, 2 1/16-inch diam., $\mathrm{I}_{2}-1.7 / 4$ inelies long.
 $15 / 8$ inches long.
$\mathrm{L}_{3}-2.35 \mu \mathrm{~h} . ; 61 / 2$ turns No. $14,25 / 8$-inch diam., $1 / 2$ inch long.
$\mathrm{L}_{4}-1.8 \mu \mathrm{~h} . ;{ }^{3} 3 / 4$ turns No. 1.t, $25 / 8$-inch diam., $1 / 2$ inch long.
$\mathrm{J}_{1}, \mathrm{~J}_{2}$ - Coaxial connectors.
$\mathrm{J}_{3}, \mathrm{~J}_{4}$ - Binding-post assemblies.
S_{1} - Rotary switeh, 2 poles, 6 positions (bakelite wafer).
S_{2} - Rotary switch, 1 pole, 3 positions, shorting (ceramic wafer).
reflected-power reading has been obtained no readjustment of the transmitter output coupling is nocessary if it has previously been adjusted to work into the dummy load.

The tuning ceupacitor C_{11} will be near maximum capacitance for both 3.5- and $1+$-Mc. operation, while the setting will be ne:ur midscale at 21 Mc. On 7 and 28 Me., the eapacitance will be nearly at minimum. The setting of C_{10} will vary with different loads.

Bridge Construction

The s.w.r. bridge is constructed as shown in Fig. 13-37 and is mounted underneath the chassis of the unit. The basic "Mieromateh" cireuit is discussed in the chapter on measuremants. The

Fig. 13-37-The s.w.r. bridge assembly. 'I'lie circuit arrangement is made symmetrical for the purpose of reducing the effects of stray capacitance and inductance. The resistors in the center $\left(R_{1}\right)$ are assembled in the form of a cylinder supported by soldering their leads to circular pieces of wire. This reduces inductance and tends to assure uniform current distribution throughout the assembly.
'The bridge is built on a small metal subchassis formed from a picce of sheet aluminum as shown. This in turn is fastened to the main chassis with screws through the mounting holes in the side lips.

Capacitors Co and Conare not clearly visible, but each is monnted on the subchassis underneath the junction of a button capacitor, dionle, and r.f. choke. They are adjusted from the opmosite side.
circuit shown in Fig. 13-36 consists of two bridges connected back to back so that ineident and reHeeted voltage may both be determined.

The "forward" or incident-voltage bridge consists of R_{1}, C_{5}, C_{6} and the transmitter output impedance; the reffected-voltage bridge consists of R_{1}, C_{1}, C_{2} and the load. The r.f. voltage across the arms of each bridge is rectified by a crustal diode. A d.e. path is provided by the r.f. chokes. The rest of the components are used for r.f. filtering.
R_{1} consists of sixteen $10-\mathrm{ohm} 1 / 2$-watt composi-
tion resistors in parallel. Since the bridge is designed to operate from 3 to 30 Mc., it is important that noninductive resistors be used. For best results, C_{1} and C_{5} should be of the button type. Lead lengths should be kept as short as possible to reduce the effeets of lead indurtance. The layout shown in the photograph should be foliowed.

In the initial set-up of the bridge, set s_{2} to the dummy load position, apply r.f. power to the input terminals, and adjust \dot{C}_{2} for zero deflection of the meter. Next, temporarily interchange the iuput and output connections of the bridge and adjust C_{6} for zero deflection. Then return to the original input-output connections and the bridge is ready for use.

The meter readings may be calibrated in r.f. power, if desired. A good calibration will require eomparison with an already-calibrated power meter, or by calculation from the r.f. current in the dummy load as measured by an r.f. ammeter conneeted in series with the load. The full-scale power values (three ranges are provided for) may be set hy adjusting R_{2}, R_{3} and R_{4}. However, the bridge will serve quite well both for adjustment of coupling and for relative power indications without calibration. The meter used in the bridge has a basie movement of $0-200$ microamperes.
(Originally described in May, 1955, QST.)

CHAPTER 14

Antennas

An antenna system can be considered to include the antenna proper (the portion that radiates the r.f. energy), the feed line, and any coupling devices used for transferring power from the transmitter to the line and from the line to the antenna. Some simple systems may omit the transmission line or one or both of the coupling devices. This chapter will describe the antenna proper, and in many eases will show popular types of lines, as well as line-toantenna couplings where they are required. However, it should be kept in mind that any antenna proper can be used with any type of feedline if a suitable coupling is used between the antenna and the line. Changing the line does not change the type of antenna.

Selecting an Antenna

In selecting the type of antenna to use, the majority of amateurs are somewhat limited through space and structural limitations to simple antenna systems, except for v.h.f. operation where the small space requirements make the use of multielement beams readily possible. This chapter will consider antemmas for frequencies as high as 30 Mr . - a later chapter will describe the popular types of v.h.f. antennas. However, aven though the available space may be limited, it is well to ronsider the propagation characteristics of the frequency band or bands to be used, to insure that best possible use is made of the available facilities. The propagation characteristies of the anateur-hand frequencies are deseribed in Chapter Fifteen. In general, antenna construction and location become more critical and inmportant on the higher frequencies. On the lower frequencies (3.5 and 7 Mc .) the vertical angle of radiation and the plane of polarization may be of relatively little importance; at 28 Me. they may be all-important. On a given frequency, the type of antenna hest suited for long-distance communication may not be as good for shorter-lange work as a different trpe.

Definitions

The polarization of a straight-wire antenna is determined by its position with respect to the earth. Thus a vertical antenna radiates vertically-polarized waves, while a horizontal antenna radiates horizontally-polarized waves in a direction broadside to the wire and vertically-polarized waves at high vertical angles off the ends of the wire. The wave from
an antenna in a slanting position, or from the horizontal antenna in direstions other than mentioned above, contains both horizontal and vertical components.

The vertical angle of maximum radiation of an antenna is determined by the free-space pattern of the antenna, its height above ground, and the nature of the ground. The angle is measured in a vertical plane with respect to a tangent to the earth at that point, and it will usually vary with the horizontal angle, except in the case of a simple vertical antenna. The horizontal angle of maximum radiation of ant antenna is determined by the free-space pattern of the antenna.

The impedance of the antenna at any point is the ratio of the voltage to the current at that point. It is important in connertion with feeding power to the antemna, since it constitutes the load to the line offered by the antenna. It can be either resistive or complex, depending upon whether or not the antenna is resonant.

The field strength produced by an antenna is proportional to the current flowing in it. When there are standing waves on an antenna, the parts of the wire carrying the higher current have the greater radiating effect. All resonant antennas have standing waves - only terminated trpes, like the terminated rhombic and terminated "V," have sabstantially uniform current along their lengths.

The ratio of power required to produce a given field strength with a "comparison" antenna to the power required to produce the same field strength with a specified type of antenna is called the power gain of the latter antenna. The field is measured in the optimum direction of the antenna under test. The comparison antema is generally a half-wave antenna at the same height and having the same polarization as the antenna under consideration. Gain usually is expressed in decibels.

In unidirectional beams (antennas with most of the radiation in only one direction) the front-to-back ratio is the ratio of power radiated in the maximum direction to power radiated in the opposite direction. It is also a measure of the reduction in received signal when the beam direction is changed from that for maximum response to the opposite direction. Front-to-back ratio is usually expressed in decibels.

The bandwidth of an antenna refers to the frequency range over which the gain and impedance are substantially constant.

Ground Effects

The radiation pattern of any antenna that is many wavelengths distant from the ground and all other objects is called the free-space pattern of that antenna. The free-space pattern of an antenna is almost impossible to obtain in practice, except in the v.h.f. and u.h.f. ranges. Below 30 Me., the height of the antenna above ground is a major factor in determining the radiation pattern of the antenna.

When any antenna is near the ground the free-space pattern is modified by reflection of radiated waves from the ground, so that the actual pattern is the resultant of the free-space pattern and ground reflections. 'This resultant is dependent upon the height of the antenna, its position or orientation with respect to the surface of the ground, and the electrical characteristics of the ground. The effect of a perfectly-reflecting ground is such that the

Fig. 14-1 - Effect of ground on radiation of horizontal antennas at vertical angles for four antenna heights. This chart is based on perfectly-conducting ground.
original free-space field strength may be multiplied by a factor which has a maximum value of 2 , for complete reinforcement, and having all intermediate values to zero, for complete cancellation. These reflections only affect the radiation pattern in the vertical plane - that is, in directions upward from the earth's surface - and not in the horizontal plane, or the usual geographical directions.

Fig. 14-1 shows how the multiplying factor varies with the vertical angle for several representative heights for horizontal antennas, As the height is increased the angle at which complete reinforcement takes place is lowered, until for a height equal to one wavelength it occurs at a vertical angle of 15 degrees. At still greater heights, not shown on the chart, the first maximum will occur at still smaller angles.

Radiation Angle

The vertical angle of maximum radiation is of primary importance, especially at the higher
frequencies. It is advantageous, therefore, to erect the antenna at a height that will take advantage of ground reflection in such a way as to reinforce the space radiation at the most desirable angle. Since low angles usually are most effective, this generally means that the antenna should be high - at least one-half wavelength at 14 Mc., and preferably three-quarters or one wavelength, and at least one wavelength, and preferably higher, at 28 Mc . The physical height required for a given height in wavelengths decreases as the frequency is increased, so that good heights are not impracticable; a half-wavelength at 14 Mc . is only 35 feet, approximately, while the same height represents a full wavelength at 28 Mc . At 7 Mc , and lower frequencies the higher radiation angles are effective, so that again a useful antenna height is not difficult of attainment. Heights between 35 and 70 feet are suitable for all bands, the higher figures being preferable.

Imperfect Ground

Fig. 14-1 is based on ground having perfect conductivity, whereas the actual earth is not a perfect conductor. The principal effect of actual ground is to make the curves inaccurate at the lowest angles; appreciable high-frequency radiation at angles smaller than a few degrees is practically impossible to obtain over horizontal ground. Above 15 degrees, however, the curves are accurate enough for all practical purposes, and may be taken as indicative of the result to be expected at angles between 5 and 15 degrees.

The effective ground plane - that is, the plane from which ground reflections can be considered to take place - seldom is the actual surface of the ground but is a few feet below it, depending upon the character of the soil.

Impedance

Waves that are reflected directly upward from the ground induce a current in the an-

Fig. 14-2 - Theoretical curve of variation of radiation resistance for a half-wave horizontal antenna, as a function of height in wavelength above prerfectly-reflecting ground.
tenna in passing, and, depending on the antenna height, the phase relationship of this induced current to the original current may be such as either to increase or decrease the total current in the antenna. For the same power input to the antenna, an increase in current is equivalent to a decrease in impedance, and vice versa. Hence, the impedance of the antenna varies with height. The theoretical curve of variation of radiation resistance for a half-wave antenna above perfectly-reflecting ground is shown in Fig. 14-2. The impedance approaches the free-space value as the height becomes large, but at low heights may differ considerably from it.

Choice of Polarization

Polarization of the transmitting antenna is generally unimportant on frequencies between
3.5 and 30 Mc. However, the question of whether the antenna should be installed in a horizontal or vertical position deserves consideration for other reasons. A vertical halfwave or quarter-wave antenna will radiate equally well in all horizontal directions, so that it is substantially nondirectional, in the usual sense of the word. If installed horizontally, however, the antenna will tend to show directional effects, and will radiate best in the direction at right angles, or broadside, to the wire. The radiation in such a case will be least in the direction toward which the wire points.

The vertical angle of radiation also will be affected by the position of the antenna. If it were not for ground losses at high frequencies, the vertical half-wave antenna would be preferred because it would concentrate the radiation horizontally.

The Half-Wave Antenna

The fundamental form of antenna is a single wire whose length is approximately equal to half the transmitting wavelength. It is the unit from which many more-complex forms of antennas are constructed. It is known as a dipole or Hertz antenna.

The length of a half-wavelength in space is:

$$
\begin{equation*}
\text { Length }(\text { fect })=\frac{492}{\text { Freq. (Mc.) }} \tag{14-A}
\end{equation*}
$$

The actual length of a half-wave antenna will not be exactly equal to the half-wave in space, but depends upon the thickness of the conductor in relation to the wavelength as shown in Fig. 14-3, where K is a factor that must be multiplied by the half-wavelength in free space to obtain the resonant antenna length. An additional shortening effect occurs with wire antennas supported by insulators at the ends because of the capacitance added to the system by the insulators (end effect). The following formula is sufficiently accurate for wire antennas at frequencies up to 30 Mc .:

$$
\begin{align*}
& \text { Length of half-wave antenna (fect) }= \\
& \frac{492 \times 0.95}{\text { Freq. (Mc.) }}=\frac{468}{\text { Freq. (Mc.) }} \tag{14-B}
\end{align*}
$$

Example: A half-wave antenna for 7150 kc . (7.15 Mc .) is $\frac{468}{7.15}=65.45$ feet, or 65 feet 5 inches.
Above 30 Mc . the following formulas should be used, particularly for antennas constructed from rod or tubing. K is taken from Fig. 14-3.

$$
\begin{gather*}
\text { Length of half-wave antenna (feet) }= \\
\frac{492 \times K}{\text { Freq. }(\mathrm{Mc} .)} \tag{14-C}\\
\text { or length (inches) }=\frac{5905 \times K}{\text { Freq. }(\mathrm{Mc.})}
\end{gather*}
$$

(14-D)

Example: Find the length of a half-wavelength antenna at 29 Mc ., if the antenna is made of 2 inch diameter tubing. At 29 Mc , a half-wavelength in space is $\frac{492}{29}=16.97$ feet, from Eq. 14-A. Ratio of half-wavelength to conductor diameter (changing wavelength to inches) is $\frac{16.97 \times 12}{2}=101.8$. From Fig. $14-3, K=0.963$ for this ratio. The length of the antenna, from Eq. $14-\mathrm{C}$, is $\frac{492 \times 0.963}{29}=16.34$ feet, or 16 feet 4 inches. The answer is obtained directly in inches by substitution in Eq. 14-D : $\frac{5905 \times 0.963}{29}$ $=196$ inches.

Fig. 14-3 - Effect of antenna diameter on length for half-wave resonance, shown as a multiplying factor, K, to be applied to the free-space half-wavelength (Equation 14-A). The effect of conductor diameter on the impedance measured at the center also is shown.

Current and Voltage Distribution

When power is fed to a half-wave antenna, the current and voltage vary along its length. The current is maximum at the center and nearly zero at the ends, while the opposite is true of the r.f. voltage. The current does not actually reach zero at the current nodes, because of the end effect; similarly, the voltage is not zero at

Fig. 14-4 - The above scales, based on Eq. 14-B, can be used to determine the length of a half-wave antenna of wire.

Radiation Characteristics

The radiation from a dipole is not uniform in all directions but varies with the angle with respect to the axis of the wire. It is most intense in directions perpendicular to the wire and zero along the direction of the wire, with intermedi-

Fïg. 14-5 - The free-space radiation pattern of a half-wave antenna. The antenna is shown in the vertical position. This is a cross-section of the solid pattern described by the figure when rotated on its vertical axis. The "doughnut" form of the solid pattern can be more easily visualized by imagining the drawing glued to a piece of cardboard, with a short length of wire fastened on it to represent the antenna. T'wirling the wire will give a visual representation of the solid radiation pattern.
its node because of the resistance of the antenna, which consists of both the r.f. resistance of the wire (ohmic resistance) and the radiation resistance. The radiation resistance is an equivalent resistance, a convenient conception to indicate the radiation properties of an antenna. The radiation resistance is the equivalent resistance that would dissipate the power the antenna radiates, with a current flowing in it equal to the antenna current at a current loop (maximum). The ohmic resistance of a half-wavelength antenna is ordinarily small enough, in comparison with the radiation resistance, to be neglected for all practical purposes.

Impedance

The radiation resistance of an infinitelythin half-wave antenna in free space is 73 ohms , approximately. The value under practical conditions is commonly taken to be in the neighborhood of 70 ohms, although it varies with height as shown in Fig. 14-2. It increases toward the ends. The actual value at the ends will depend on a number of factors, such as the height, the physical construction, the insulators at the ends, and the position with respect to ground.

Conductor Size

The impedance of the antenna also depends upon the diameter of the conductor in relation to the wavelength, as shown in Fig. 14-3. If the diameter of the conductor is made large, the capacitance per unit length increases and the inductance per unit length decreases. Since the radiation resistance is affected relatively little, the decreased L / C ratio causes the Q of the antenna to decrease, so that the resonance curve becomes less sharp. Hence, the antenna is capable of working over a wide frequency range. This effect is greater as the diameter is increased, and is a property of some importance at the very-high frequencies where the wavelength is small.
ate values at intermediate angles. This is shown by the sketch of Fig. 14-5, which represents the radiation pattern in free space. The relative intensity of radiation is proportional to the length of a line drawn from the center of the figure to the perimeter. If the antenna is vertical, as shown in the figure, then the field strength will be uniform in all horizontal directions; if the

Fig. 14.6-Illustrating the importance of vertical angle of radiation in determining antenna directional effects. Off the end, the radiation is greater at higher angles. Ground reflection is neglected in this drawing of the free-space pattern of a horizontal antenna.
antenna is horizontal, the relative fieldstrength will depend upon the direction of the receiving point with respect to the direction of the antenna wire. The variation in radiation at various vertical angles from a half-wavelength horizontal antenna is indicated in Figs. 14-6 and 14-7.

FEEDING THE DIPOLE

Direct Feed

If possible, it is advisable to locate the antenna at least a half-wavelength from the transmitter and use a transmission line to carry the power from the transmitter to the antenna. However, in many cases this is impossible, particularly on the lower frequencies, and direct feed must be used. Three examples of direct feed are shown in Fig. 14-8. In the method shown at A, C_{1} and C_{2} should be about $150 \mu \mu \mathrm{fd}$. each for the $3.5-\mathrm{Mc}$. band, $75 \mu \mu \mathrm{fd}$. each at 7 Mc ,, and proportionately smaller at the higher frequencies. The antenna coil connected between them should resonate to 3.5 Mc. with about 60 or $70 \mu \mu \mathrm{fd}$., for the $80-$ meter band, for 40 meters it should resonate with 30 or $35 \mu \mu \mathrm{fd}$., and so on. The circuit is adjusted by using loose coupling between the antenna coil and the transmitter tank coil and

Fig. 14-7-Horizontal pattern of a horizontal halfwave antenna at three vertical radiation angles. The solid line is relative radiation at 15 degrers. Dotted lines show deviation from the 15 -degree pattorn for angles of 9 and 30 degrees. The patterns are use ful for shane only, since the amplitude will depend upon the height of the antenna above ground and the vertical angle considered. The patterns for all three angles have been proportioned to the same scale, but this does not mean that the maximum amplitudes necessarily will be the same. The arrow indicates the direction of the horizontal antenna wire.
adjusting C_{1} and C_{2} until resonance is indicated by an increase in plate current. The coupling between the coils should then be increased until proper plate current is drawn. It may be necessary to reresonate the transmitter tank circuit as the coupling is increased, but the change should be small.

The circuits in Fig. 14-8B and C are used when only one end of the antenna is accessible. In B, the coupling is adjusted by moving the

Fig. 14-8 - Methods of directly exciting the half-wave antenna. A, current feed, series tuning; B. voltage feed, capacitive coupling; C, voltage feed, with in-durtively-coupled antonna tanh. In A, the coupling circuit is not ineluded in the effective electrical length of the antennasystem proper. link coupling can be used in 1 :nd C .
tap toward the "hot" or plate end of the tank coil - the condenser C may be of any convenient value that will stand the voltage, and it doesn't have to be variable. In the circuit at C, the antema tuned circuit (C_{1} and the antenna coil) should be similar to the transmitter tank circuit. The antenna tuned circuit is adjusted to resonance with the antenna connected but with loose coupling to the transmitter. Heavier loading of the tube is
then obtained by tightening the coupling between the antenna coil and the transmitter tank coil.

Of the three systems, that at A is preferable because it is a symmetrical system and generally results in less r.f. power "floating" around the shack. The system of 13 is undesirable because it provides practically no protection against the radiation of harmonies, and it should only be used in emergencies.

Transmission-Line Feed for Dipoles

Since the impedance at the center of a dipole is in the vicinity of 75 ohms, it offers a good match for 75 -ohm two-wire transmission lines. Several types are available on the market, with different power-handling capabilities. They can be connected in the center of the antenna, across a small strain insulator to provide a convenient connection point. Coaxial line of $\mathbf{7 5}$ ohms impedance can also be used, but it is heavier and thus not as

Fig. 14-9-Construction of a dipole fed with 75 -ohm line. 'I'he length of the antenna is calculated from Fumation 1.1-13 or Fig. 14-4.
convenient. In cither case, the transmission line should be run away at right angles to the antenna for at least one-quarter wavelength, if possible, to avoid current unbalance in the line caused by pick-up from the antenna. The antenna length is calculated from Equation 14-B, for a half-wavelength antenna. When No. 12 or No. 14 enameled wire is used for the antenna, as is generally the case, the length of the wire is the over-all length measured from the loop through the insulator at each end. This is illustrated in Fig. 14-9.

The use of 75 -ohm line results in a "flat" line over most of any amateur band. However, by making the half-wave antenna in a special manner, called the two-wire or folded dipole, a good mateh is offered for a 300 -ohm line. such an antenna is shown in Fig. 14-10. The open-wire line shown in Fig. 14-10 is made of No. 12 or No. 14 enameled wire, separated by

Fig, 14-10- Thic construction of an open-wire folded dipole fed with 300 -ohm line. The length of the antenna is calculated from Equation 14-B or Fig. 14-4.
lightweight spacers of Lucite or other material (it doesn't have to be a lou-lows insulating material), and the spacing can be on the order of from 4 to 8 inches, depending upon what is convenient and what the operating frequeney is. It 14 Me., t-inch separation is satisfactory, and 8 -inch spacing can be used at 3.5 Me .

The half-wavclength antenna can also be made from the proper length of 300 -ohm line, opened on one side in the center and connected to the feedline. After the wires have been soldered together, the joint ran be strengthened by molding some of the exeres insulating material (polyethylene) around the joint with a hot iron, or a suitable lightweight clamp of two pieces of Lucite can be devised.

Fig. 1.2-11- The construction of a 3-wire folded dipole is similar to that of the 2 -wire folded dipole. 'The" end spacers may have to be slightly stronger than the others lecanse of the areater compression force on them. The longth of the antema is ohtainerl from Eianation lt-ls or lig. It-1. A suitable line can the made from No. It wire spated 5 inches, or from No. 12 wire spated 6 inches.
similar in some resperts to the two-wire folded dipole, the three-wire folded dipole of Fig. 14-11 offers a good match for a (000 -ohm line. It is favored by amateurs who prefer to use ath open-wire line instead of the 300 -ohm insulated line. The three wires of the antenna proper should all be of the same diameter.

Another method for offering a mateh to a 600-ohm open-wire line with a half-wavelength antenna is shown in Fig. 11-12. The system is called a delta match. The line is "finned" as it approzehes the antema, to have a gradu-ally-increasing impedance that equals the antemat impedance at the point of comnection. The dimensions are fairly critical, but careful measurement before installing the antenna and matching section is generally all that is necessary. 'lhe length of the antenna, L, is caleu-

Fig. 14-12 - Delta-matehed antenna system. 'The di. munsions C, D, and E are found hy formulas given in the text. It is important that the matehing section, E, contestraight away from the antenna withont any hends.
lated from líquation 14-B or Fig. 14-4. The length of section ('is computed from:

$$
\begin{equation*}
f^{\prime}(\text { feet })=\frac{118}{\text { Freq. (Me.) }} \tag{14-E}
\end{equation*}
$$

The feeder clearance, E, is found from

$$
\begin{equation*}
E(\text { fect })=\frac{148}{\text { Freq. }(\text { Mc. })} \tag{14-F}
\end{equation*}
$$

Example: For a frequence of $\overline{-1}$ Mar., the length
$L=\frac{46 \mathrm{x}}{7.1}=00.91$ feet, or 6.5 feet 11 inches.
$C=\frac{118}{7.1}=16.62$ feet, or 16 feet ; inches.
$E=\frac{148}{i .1}=20.84$ feet, or 20 feet 10 inches.
Since the equations hold only for 600-ohm line, it is important that the line be close to this value. This requires 5 -inch spaced No. 14 wire, 6 -inch spaced No. 12 wire, or $33 / 4$-inch spared No. 16 wire.

If a half-wavelength antenna is fed at the center with other than $75-o h m$ line, or if a two-wire dipole is fed with other than 300 -ohm line, standing waves will appear on the line and coupling to the trinsmitter may become awkwad for some line lengths, as described in the preceding chapter. However, in many cases it is not convenient to feed the half-wave antenna with the correct line (as is the case where multiband operation of the same antenna is desired), and sometimes it is not convenient to feed the antemat at the center. Where multibund operation is desired (to be discussed later) or when the antenna must be

Fig. I.4-13 - The half-wave antenna can be fid at the renter or at the end with an open-wire line. The antunna length is ohtained from Equation 14.13 or Fig. 11-4.
fed at one end by a transmission line, an openwire line of from 450 to 600 ohms imperdance is generally used. The impedance at the end of a half-wavelength antenna is in the vicinity of several thousand ohms, and hence a standingwave ratio of 4 or 5 is not unusual when the line is connceted to the end of the antenna. It is advisable, therefore, to keep the losses in the line as low as possible. This requires the use of ceramic or Micalex feeder spacers, if any appreciable power is used. For low-power installations in dry climates, dry wood spacers boiled in paraffin are satisfactory. Me Manical details of half-wavelength antennas fed with open-wire lines are given in Fig. 14-13. If the power is below 100 watts or so, 300 ohm TwinLead can be used in place of the open line.

Long-Wire Antennas

An antenna will be resonant so long as an integral number of standing waves of current and voltage can exist along its length; in other words, so long as its length is some integral multiple of a half-wavelength. When the antenna is more than a half-wave long it usually is called a long-wire antenna, or a harmonic antenna.

Current and Voltage Distribution

Fig. 14-14 shows the current and voltage distribution along a wire operating at its fundamental frequency (where its length is

Fig. 14-14 - Standing-wave current and voltage distribution along an antenna when it is operated at various harmonics of its fundamental resonant frequency.
equal to a half-wavelength) and at its second, third and fourth harmonics. For example, if the fundamental frequency of the antenna is 7 Mc., the current and voltage distribution will be as shown at A. The same antenna excited at 14 Mc. would have current and voltage distribution as shown at B. At 21 Mc ., the third harmonic of 7 Mc ., the current and voltage distribution would be as in C ; and at 28 Mc ., the fourth harmonic, as in D . The number of the harmonic is the number of half-waves contained in the antenna at the particular operating frequency.

The polarity of current or voltage in each standing wave is opposite to that in the adjacent standing waves. This is shown in the figure by drawing the current and voltage curves successively above and below the antenna (taken as a zero reference line), to indicate that the polarity reverses when the current or voltage goes through zero. Currents
flowing in the same direction are in phase; in opposite directions, out of phase.

It is evident that one antenna may be used for harmonically-related frequencies, such as the various amateur bands. The long-wire or harmonic antenna is the basis of multiband operation with one antenna.

Physical Lengths

The length of a long-wire antenna is not an exact multiple of that of a half-wave antenna because the end effects operate only on the end sections of the antenna; in other parts of the wire these effects are absent, and the wire length is approximately that of an equivalent portion of the wave in space. The formula for the length of a long-wire antenna, therefore, is

$$
\text { Length }(\text { feet })=\frac{492(N-0.05)}{\text { Freq. }(\mathrm{Mc} .)}
$$

where N is the number of half-waves on the antenna.

Example: An antenna 4 half-waves long at 14.2

$$
\text { Mc. would be } \frac{492(4-0.05)}{14.2}=\frac{492 \times 3.95}{14.2}
$$

$=136.7$ feet, or 136 fect 8 inehes.
It is apparent that an antenna cut as a halfwave for a given frequency will be slightly off resonance at exactly twice that frequency (the second harmonic), because of the decreased influence of the end effects when the antenna is more than one-half wavelength long. The effect is not very important, except for a possible unbalance in the feeder system and consequent

Fig. 14-15 - Curve A shows variation in radiation resistance with antenna length. Curve B shows power in lobes of maximum radiation for long-wire antennas as a ratio to the maximum radiation for a half-wave antenna.

Fig. 14-16 - IIorizontal patterns of radiation from a full-uave antenna. The solid line shows the pattern for a vertical angle of 15 degrees; dotted lines show deviation from the 15 -degree patternat 9 and 30 degrew. All three patterns are drawn to the same relative seale: actual amplitudes will depend upon the height of the antenna.
radiation from the feedline. If the antenna is fed in the exact center, no unbalance will occur at any frequency, but end-fed systems will show an unbalance in all but one frequency, the frequency for which the antenna is cut.

Impedance and Power Gain

The radiation resistance as measured at a current loop becomes higher as the antenna length is increased. Also, a long-wire antenna radiates more power in its nost favorable direction than does a half-wave antenna in its most favorable direction. This power gain is secured at the expense of radiation in other

Fig. 14-17 - IIorizontal patterns of radiation from an antenna three half-uares long. The solid line shows the pattern for a vertical angle of 15 degrees; dotted lines show deviation from the 15 -degrer pattern at 9 and 30 degrees. Minor lohes coincide for all threc angles.
directions. Fig. $14-15$ shows how the radiation resistance and the power in the lobe of maximum radiation vary with the antenna length.

Directional Characteristics

As the wire is made longer in terms of the number of half-wavelengths, the directional effects change. Instead of the "doughnut" pattern of the half-wave antenna, the directional characteristic splits up into "lobes" which make various angles with the wire. In general, as the length of the wire is increased the direction in which maxinum radiation occurs tends to approach the line of the antenna itself.

Directional characteristics for antennas one wavelength, three half-wavelengths, and two wavelengths long are given in Figs. 14-16, 14-17 and 14-18, for three vertical angles of radiation. Note that, as the wire length in-

Fig. 14-18 - Horizontal patterns of radiation from an antenna two wavelengths long. The solid line shows the pattern for a vertical angle of 15 degrees; dotted lines show deviation from the 15 -degree pattern at 9 and 30 degrees. 'the minor lobes eoineide for all three angles.
creases, the radiation along the line of the antenna becomes more pronounced. Still longer "antennas can be considered to have practically "end-on" directional characteristics, even at the lower radiation angles.

Methods of Feeding

In a long-wire antenna, the currents in adjacent half-wave sections must be out of phase, as shown in Fig. 14-14. The feeder system must not upset this phase relationship. This requirement is met by feeding the antenna at either end or at any current loop. A two-wire feeder cannot be inserted at a current node, however, because this invariably brings the currents in two adjacent half-wave sections in phase. A long wire is usually made a half wavelength at the lowest freguency and fed at the en-l.

Multiband Antennas

As suggested in the preceding section, the same antenna may be used for several bands by operating it on harmonics. When this is done it is necessary to use tuned feeders, since the impedance matching for nonresonant feeder operation ean be accomplished only at one frequency unless means are provided for changing the length of a matching section and shifting the point at which the feeder is attarhed to it.

A half-wave antemat that is renter-fod by a solid-dielectric line is useless for even harmonic operation; on all even harmonics there is a voltage maximum ocrurring right at the feed point, and the resultant imperdance mismatch causes a large standing-wave ratio and consequently high losses arise in the sod dielectric. It is wise not to attempt to use on its even harmonics a half-wave antenna center-fed with coaxial cable. (on odd harmonics, as between 7 and 21 Me.. a current loop will appear in the center of the antemna and a fair match can be obtained. High-impedance solid-diolectric lines such as 300 -ohm Twin-Lead may be used, provided the power does not exceed a fow hundred watts.

When the same antemna is used for work in several bands, it must be realized that the directional characteristic will vary with the band in use.

Simple Systems

The most practical simple multiband antenna is one that is a half-wavelength long at the lowest frequency and is fed either at the center or one end with an open-wire line. Although the standing-wave ratio on the feedline will not approach 1.0 on any band, if the losses in the line are low the system will be eflicient. From the standpoint of reduced feedline radiation, a center-fed system is superior to one that is end-fed, but the end-fed arrangement is often more convenient and should not be ignored as a possibility. The center-fed antenna will not have the same radiation pattern as an end-fed one of the same length, except on frequencies where the length of the antenna is a half-wavelength. The end-fed antenna acts like a long-wire :antenma on all bands (for which it is longer than a half-wavelength), but the center-fed one acts like two antennas of half that length fed in phase. For example, if a full-wavelength antenna is fed at one end, it will have a radiation pattern as shown in lig. 14-16, but if it is fed in the center the pattern will be somewhat similar to Fig. 14-7, with the maximum radiation broadside to the wire. Fither antenna is a good radiator, but if the radiation pattern is a factor, the point of feed must be eonsidered.

Since multiband operation of an antenna does not permit matehing of the feedline, some attention must be paid to the length of the feedline if convenient transmitter-coupling ar-
rangements are to be obtained. Table 14 -I gives some suggested antenaia and feeder lengths for multiband operation. In general, the length of the feedline can be other than that indicated. lat the type of coupling eireuit may change.
(open-wire line feed is recommended for an antema of this type, since the losses will run too high in solid-dielectric line. For low-power applirations up to a few hundred watts, open-wire TV line is convenient and satisfactory to use. However, for high-power installations up to the kilowatt limit, an open-wire line with No. 14 or No. 12 conductors should be used. This must he built by the amateur, using soft-drawn enameled wire and ceramic or other suitable spacers.

Antennas for Restricted Space

If the space available for the antemna is not large enough to accommodate the length necessary for a half-wave at the lowest frequency to be used, quite satisfactory operation can be seeured by using a shorter antenna and making up the missing length in the feeder system. The antenna itself may be as short as a quarter wavelength and will radiate fairly well, although of course it will not be as effective as one a halfwave long. Nevertholess. such a system is useful where operation on the desired band otherwise would be impossible.

Tuned feeders are a practical necessity with such in antenna system, and a center-fed antenna will give best all-around performanere.

TABLE 14-1 Multiband Tuned-Line-Fed Antennas			
Antenna Length (Ft.)	Feeder Length ($F^{\prime} t$.)	Band	Type of Coupling Circuil
With end feed:			
135	45	$\begin{gathered} 3.5-21 \\ 28 \end{gathered}$	Series Parallel
67	45	$7-21$ 28	Series ParalleI
With center feed:			
135	42	$\begin{gathered} 3.5-21 \\ 28 \end{gathered}$	Parallel Series
135	771/2	3.5-28	Parallel
67	421/2	$\begin{gathered} 3.5 \\ 7-28 \end{gathered}$	Serics Parallel
67	651/2	$\begin{gathered} 3.5 .14,28 \\ 7,21 \end{gathered}$	Parallel Series
Antenna lengths for end-fed antennas are approximate and should be cut to formula length at favorite operating frequency. Where parillel tuning is speeified, it will be necessary in some cases to tap in from the ends of the coil for proper loading - see Chapter 13 for examples of antenna couplers.			

Fig 14-19 - Practical arrangement of a shortened antenna. When the total length, $A+B+B+A$, is the same as the antenna length plus twice the feeder length of the center-fed antcnnas of Table 14-1, the same type of coupling circuit will be used. When the feeder length or antenna length, or both. makiss the sum different, the type of coupling circuit may be different but the effectiveness of the antenna is not changed, unless $A+A$ is less than a quarter wavelength.

With end feed the feeder currents become badly unbahanced.

With center feed, practically any convenient bength of antenna can be used. If the total length of antenna plus twice feed line is the same as in Table 14-I, the type of tuning will be the same as stated. This is illustrated in Fig. 14-19. If the total longth is not the same, different tuning conditions can be expected on some bands. This should not be interpreted as a fault in the antenna, and any tuning system (series or parallel) that works well without any trace of heating is quite satisfactory. Heating will sometimes result when the taps with parallel tuning are made too close to the center of the coil - it can often be corrected by using less total inductance.

Bent Antennas

Since the field strength at a distance is proportional to the current in the antemma, the high-current part of a half-wave antenna (the renter quarter wave, approximately) dors most of the radiating. Advantage can be taken of this faet when the space available does not permit building an antenna a half-wave long. In this rase the ends may be bent, either horizontally or vertically, so that the total longth equals a half wave, even though the straightaway horizontal length may be as short as a quarter wave. The operation is illustrated in Fig. 14-20. Such atn antenna will he a somewhat better radiator than a quarter-wavelength antema on the lowest fre-

Fis. 14-20-Folded arrangement for shortened antennas. The total length is a half-wave, not including the feeders. The horizontal part is made as long as convenient and the ends dropped down to make up the required length. The ends may be hent hack on themselves like feeders to cancel radiation partially. The horizontal section should be at least a quarter wave long.
quency, but is not so desirable for multiband operation because the ends play an increasingly important part as the frequency is raised. The performance of the system in such a case is diflicult to predict, especially if the ends are vertical (the most convenient arrangement) because of the eomplex eombination of horizontal and vertical polarization which results ass well as the dissimilar directional characteristirs. However, the fact that the radiation pattern is incapable of predietion does not detract from the general usefulness of the antenna. For one-band operation, end-loading with eoils (5 feet or so in from each end) is practical and eflicient.

"Windom' or Off-Center-Fed Antenna

A multiband antenna that enjoyed considerable popularity in the 19330 s is the "off-center fred" or "Windom," named after the amateur who wrote a comprehensive article about it. Shown in Fig. 14-21A, it consists of a half-wavelength antenna on the lowest-frequency band to be used, with a single-wire feeder connected 14% off center. The antenna will operate satisfactorily

Fig. I4-21 - T'wo versions of the off-ecnter-fed antenna. (A) Single-wire feed shows approximately 600 ohms impedance to ground and is most conveniently coupled to the transmitter as shown. 'The pi-network coupling will require nore capaeity at C_{1} than at $C_{2} . L_{1}$ is best found liy experiment - an inductance of about the same size as that used in the output stage is a nood starting point. 'The parallef-tuned circuit will be a itumed circuit that resonates at the operating frequency with I, and C close to those used in the output stage. The tap is found by experiment, and it should be as tutar the top of L as it ean and still give good loading of the transmitter.
(B) 'I'wo-wire off-center feed uses 300 -ohm 'TV line. Although the 300 -ohm line can be coupled directly to some transmitters, it is common practice to step down the impedance level to 75 ohms through a pair of "balun" coils.
on the even-harmonic frequencies, and thus a single antenna can be made to serve on the 80 -, $40-, 20$-, and 10 -meter bands. The single-wire feeder shows an impedance of approximately 600 ohms to ground, and consequently the antenna coupling system must be capable of matching this value to the transmitter. A tapped parallel-tuned circuit or a properly-proportioned pi-network coupler is generally used. Where TVI is a problem, the antenna coupler is required, so that a low-pass filter can be used in the connerting link ef coaxial line.

Although theoretically the feed line can be of any length, some lengths will tend to give trouble with "too much r.f. in the shack," with the ronsequence that r.f. sparks can be drawn from the transmitter's metal cabinet and/or VFO notes will develop serious modulation. If such is found to be the case, the feeder length should be changed.

A newer version of the off-center-feed antenna uses 300 -ohm TV Twin-Lead to feed the antenna, as shown in Fig. 14-21B. It is claimed that the antenna offers a good mateh for the 300 -ohm line on four bands and, although this is more wishful thinking than actual truth, the system is widely used and does work satisfactorily. It is subject to the same feed line-length and " r .f.-in-the-shack" troubles that the single-wire version enjoys. However, in this case a pair of "balun" coils can be used to step down the impedance level to 75 ohms and at the same time alleviate some of the feed line troubles. This antenna system is popular among amateurs using multiband transmitters with pi-network-tuned output stages.

With either of the off-renter-fed antenna systems, the feed line should rum away from the antenna at right angles for as great a distance as possible before bending. No sharp bends should be allowed anywhere in the line.

Multiband Operation with Coaxial Line Feed

The proper use of coaxial line requires that the standing-wave ratio be held to a low value, preferably below $2: 1$. Since the impedance of an ordinary antenna changes widely from band to band, it is not possible to feed a simple antenna with coaxial line and use it on a number of bands without tricks of some kind. The single exception to this is the use of 75 -ohm coaxial line to feed a 7-Mc. half-wave antenna, as in Fig. 14-19; this antenna can also be used on 21 Mc . and the s.w.r. in the line will not run too high.

One approach to a solution is the use of paralleltuned circuits installed in the antenna at the right points to "divorce" the remainder of the antenna from the center section (part fed by coaxial line) as the transmitter is changed to a higher-frequency band. The support and adjustment of these tuned circuits presents a problem, but the method has been used. The same principle has also been applied to a vertical antenna. (See l'emberton, QST', December 1955, for an example of both horizontal and vertical antennas using this principle.)
The principle of the "divorcing" circuits is utilized in a commercial "all-band" vertical antenna, and a 5-band doublet kit for horizontal antennas using the method is also available commercially.

Another approach to multib:and operation with coaxial line feed is the use of a vertical antenna (a maximum length of 0.6 wavelength at the highest frequency band) and the use at the base of suitable matching sections for each band. The matching sections can be housed in a weatherproof box and changed manually or by stepping relays; their form will vary from parallel-tuned circuits to L sections. (See McCoy, QST, December, 1955, for a description of the L-section coupler.)

Vertical Antennas

A vertical quarter-wavelength antenna is of ten used in the low-frequency amateur bands to obtain low-angle radiation. It is also used when there isn't enough room for the supports for a horizontal antenna. For maximum effectiveness it should be located free of nearby objects and it should be operated in conjunction with a good ground system, but it is still worth trying where these ideal conditions cannot be obtained.

Four typical examples and suggested methods for feeding a vertical antenna are shown in Fig. 14-22. The antenna may be wire or tubing supported by wood or insulated guy wires. When tubing is used for the antenna, or when guy wires (broken up by insulators) are used to reinforce the structure, the length given by the formula is likely to be long by a few per cent. A check of the standing-wave ratio on the line will indicate the frequency at which the s.w.r. is minimum, and the antenna length can be adjusted accordingly.

A good ground connection is necessary for the
most effective operation of a vertical antenna (other than the ground-plane type). In some cases a short connection to the cold-water system of the house will be adequate. But maximum performance usually demands a separate ground system. A single 4 to 6 -foot ground rod driven into the earth at the base of the antenna is usually not sufficient, unless the soil has exceptional conductivity. A minimum ground system that can be depended upon is 6 to 12 quarter-wavelength radials laid out as the spokes of a wheel from the base of the antenna. These radials can be made of heavy aluminum wire, of the trpe used for grounding TV antennas, and it should be buried at least 6 inches in the ground. This is normally done by slitting the earth with a spade and pushing the wire into the slot, after which the earth can be tamped down. The ends of the radials can be terminated in 4 to 6 -foot ground rods.
The examples shown in Fig. $1+22$ all require an
antenna insulated from the ground, to provide for the feed point. A grounded tower or pipe can be used as a radiator by employing "shunt feed," which consists of tapping the inner conductor of the coaxial-line feed up on the tower until the best mateh is obtained, in much the same manner as the "gamma mateh" (deseribed later) is used on

The vertical portion of the ground-plane antenna can be made of self-supported aluminum tubing, or a top-supported wire, depending upon the neeessary length and the available supports. The radials are also made of tubing or heavy wire, depending upon the available supports and necessary lengths. They need not be exactly symmetrical about the base of the vertical portion.
The radiation resistance of a ground-plane antenna varies with the diameter of the vertical element, as shown in Fig. 14-22. Sinee the radiation resistance is usually in the vieinity of 30 to 32 ohms, the antenna can be fed with 75 -ohm coaxial line if a quarter-wavelength matching section of 50 -ohm coaxial line is used between the line and the antenna. (See Chapter Thirteen, "Quarter-Wave Transformers.")
For multiband operation, a ground-plane antenna can be fed with tuned open-wire line of any length,

Fig. 14-23-Radiation resistance of a quarter-wave antenna (with ground plane or grounded) as a function of M. The values apply only when the antenna is of the resonant length.

It is also possible to feed the ground-plane antenna with coaxial line and a "shunt" matching section, as shown in Fig. 14-23. The various values required for proper matehing will depend on the particular type of line used, as well as on the radiation resistance, resonant length, and reactance per unit length of the antenna. These antenna characteristics are dependent on the length/diameter ratio - that is, the ratio of a half wavelength in free space to the diameter of the antenna element - and allowance must be
made for this factor. The necessary information for design purposes is given in Figs. 14-23, 14-25 and 14-26.

Determining the antenna dimensions can be reduced to a series of steps, as follows:
per 1 per cent change in length ($K_{\mathbf{x}}$) from Fig. $14-26$, and the radiation resistance (R_{r}) from Fig. 14-23.

Since the antenna is to be shortened, these values must he modified appropriately. The

Fip. 14-24 - The groundplane antenna with shunt matching. The antenna length, L_{a}, matching stub length, L_{s}, ind radial length, L_{r}, are deternined as descrihed in the text, for matching a transmission line of given characteristic impedance. As shown in the insert, the radials and the outside eonductors of the stub and line are all connected together.

First determine M, the ratio of a free-space half wavelength to the eonductor diameter. The following formula may be used:

$$
M=\frac{5906}{F D}
$$

where $F=$ frequence in megaeyeles,
I) $=$ conductor diameter in inches.

Ising this value of M, read the length factor (K_{a}) from Fig. 14-25, the reactance change

Fig. 14-25 - The antenna-length factor as a function of the ratio of a free-space half wavelength to the con. duetor diameter. The length factor multiplied by a free-space quarter wavelength is the length of a quarterwave radiator resonant at the seleeted frepueney.
actual radiation resistance, after the antenna is properly shortened, will be

$$
R_{\mathrm{o}}=R_{\mathrm{r}}-\frac{Z_{1}}{4 R_{\mathrm{r}}} \mathrm{ohms}
$$

where $R_{o}=$ radiation resistance after shortening,
$Z_{1}=$ characteristic impedance of transmission line to be matehed.
The proper value of capacitive reactance in the shortened antenma is given by

$$
X_{\mathrm{a}}=S R_{\mathrm{o}} \text { ohms }
$$

where $X_{u}=$ capacitive reactance of antenna, and

$$
S=\sqrt{\frac{Z_{1}}{R_{o}}-1}
$$

The antenna length that gives the proper capacitive reactance is

$$
L_{\mathrm{a}}=\frac{2953 K_{\mathrm{a}} K_{\mathrm{b}}}{F} \text { inehes, }
$$

where $L_{\mathrm{a}}=$ required antenna length, and

$$
K_{\mathrm{b}}=1-\frac{X_{\mathrm{n}}}{100 K_{\mathrm{x}}}
$$

The only remaining steps are to find the dimensions of the inductive stub and the length of the radial ground-plane rods.

The required stub reactance is given by

$$
X_{\mathrm{s}}=\frac{Z_{1}}{S} \mathrm{ohms}
$$

where $X_{s}=$ inductive reactance of stub.
The length of the shorted stub is

$$
L_{\mathrm{s}}=\frac{32.8 \mathrm{I}^{\prime} L}{F} \text { inches, }
$$

where $L_{\mathrm{s}}=$ stub length,
$V^{\prime}=$ velocity factor of line used in stub,
$L=$ length of stub in electrical degrees having required X_{s}.

OHMS REACTANCE CHANGE PER 1% CHANGE IN LENGTH
Fig. 14-26 - Reactance change with antenna length as a function of M, for quarter-wave ground-plane (or grounded) antennas. If the antenna is longer than the resonant length the reactane is induetive; if shorter, the reactance is eapacitive. The eurve is accurate for lengths within 10 per eent of the resonant length. Dultiply reactance values by 2 for half-wave antennas.
L is equal to the angle whose tangent is λ_{n} / Z_{s}, where Z_{s} is the characteristic impedance of the stub.

The length of each radial is given by

$$
L_{\mathrm{r}}=\frac{2953 K_{\mathrm{a}}}{{ }^{\prime}} \text { inches }
$$

the length being measured from the center line of the radiator to the tip of the radial.

If the radials have a different diameter than the radiator (a common practice) the.M and K_{a} for radials and antenna must be considered separately. The preceding formulas apply when the radials are horizontal, although the artema can be built with "drooping" radials.

> Example: Assume a ground-plane antenna to be eonstruet with a vertical radiator of 2 -inch dianeter tubing and radiats of No. 10 (0.10 -inch diam.) wire, for a freduency of 7.1 Me. and to be natched to 72 -ohm IR($-11 / \mathrm{U}$ coaxial lime by using a stub of the same material.

$$
\begin{aligned}
& F=7.1 \text { Me., } D=2 \text { inches, } Z_{1}=Z=72 \text { ohms, } \\
& V=0.66, M=5406 \div(7.1 \times 2)=410 .
\end{aligned}
$$

From Figs. 14-25, 14-26 and 14-23, it is foumd that

$$
K_{\mathrm{a}}=0.971, K_{\mathrm{x}}=5.5, R_{\mathrm{r}}=30.9
$$

From the formma,

$$
R_{0}=30.9-\frac{72}{4 \times 30.9}=30.3 \mathrm{ohms}
$$

and the factor

$$
S=\sqrt{\frac{72}{30.3}-1}=1.175
$$

Hence $X_{a}=1.175 \times 30.3=35.65$
Also, $K_{\mathrm{l}}=1-\frac{3 \overline{5} .65}{100 \times \overline{5.5}}=0.935$
Thus the antenna length,
$L_{\mathrm{a}}=\frac{2053 \times 0.971 \times .03 \overline{5}}{7.1}=377$ inehes $=31$ feet Σ inches
To find the stub dimensions,

$$
X_{\mathrm{s}}=\frac{72}{1.175}=61.3
$$

L is the angle whose tangent is $61.3 \div 72=0.852$, and from a table of tangents is found to be 40.4 degrees
Then $L_{\mathrm{s}}=\frac{3.8 \times 0.66 \times 40.4}{7.1}=\underset{\text { inches. }}{1.23 \text { ines }=10 \text { feet } 3}$ For the radials,
$\begin{aligned} U & =5904 \div(7.1 \times 0.1)=8340, K_{\mathrm{a}}=0.978 \overline{\mathrm{a}} . \\ \text { Hence } L_{\mathrm{r}} & =\frac{2953 \times 0.978 \overline{3}}{7.1}=407 \text { inches }=33 \text { feet } 11 \text { inehes. }\end{aligned}$

Antennas for 160 Meters

Results on 1.8 Me , will depend to a large extent on the antenna system and the time of day or night. Almost any random long wire that can be tuned to resonance will work during the night but it will generally be found very ineffective during the day. A vertical antenna - or rather an antenna from which the radiation is predominantly vertically polarized - is probably the best for 1.8-Mc. op)eration, A horizontal antenna (horizontallypolarized radiation) will give better results during the night than the day because daytime absorption in the ionosphere is so high at this frequency that the reflected wave is too weak to be useful. At night the performance improves because nighttime ionosphere conditions generally permit the reflected wave to return to earth without too much attenuation. The vertically-polarized radiator gives a strong ground wave that is effective day or night, and it is to be preferred on 1.8 Mc .

There is another reason why a vertical antenna is better than a horizontal for 160 meter operation. The low-angle radiation from a horizontal antenna $1 / 8$ or $1 / 4$ wavelength above ground is almost insignificant. Any reasonable height is small in terms of wavelength, so that a horizontal antemat on 160 meters is a poor radiator at angles useful for long distances ("long," that is, for this band). Its chief usefulness is over relatively short distances at night.

Bent Antennas

Since ideal vertical antennas are generally out of the question for practical amateur work, the best compromise is to bend the antenna in such a way that the high-current portions of the antenna run vertically. It is, of course, advisable to place the antenna so that the highest currents in the antenna occur at the highest points above actual ground.

Two antenna systems designed along these lines are shown in Fig. 14-27. The antenna at A uses a loading coil, L_{2}, to increase the electrical length of the antenna to a half wavelength, so that the antenna can be fed at its

Fig. 14-27-Bent antenna for the 160 -meter hand. In the system at A, the vertical portion (length X) should be made as long as possible. In either antenna system, $L_{1} C_{1}$ should resonate at 1900 kc , roughly. To adjust L_{2} in antenna A, resonate $L_{1} C_{1}$ alone to the operating frequency, then connect it to the antenna system and adjust L_{2} for maximum loading. Further loading can be obtained by increasing the coupling between L_{1} and the link.
high-voltage point through the coupling circuit $L_{1} C_{1}$. The antenna of Fig. 14-27B uses a full half-wavelength of wire but is bent so that the high-current portion runs vertically. The horizontal portion running to $L_{1} C_{1}$ should run 8 or 10 feet above ground.

Grounds

A good ground connection is generally important on 160 meters. The ideal system is a number of wire radials buried a foot or two underground and extending 50 to 100 feet from the central connection point. As many radials as possible should be used.

If the soil is good (not rocky or sandy) and generally moist, a low-resistance connection to the cold-water pipe system in the house will often serve as an adequate ground system. The connection should be made close to where the pipe enters the ground, and the surface of the pipe should be scraped clean before tightening the ground clamp around the pipe.

A 6 - or 8 -foot length of 1 -inch water pipe, driven into the soil at a point where there is considerable natural moisture, can be used for the ground connection. Three or four pipes driven into the ground 8 or 10 feet apart and all joined together at the top with heavy wire are more effective than the single pipe.

The use of a counterpoise is recommended where a buried system is not practicable or where a pipe ground cannot be made to have low resistance be-

Fig. $14-28$ - An arrange. ment for keeping the main radiating portion of the antenna vertical. cause of poor soil conditions. A counterpoise consists of a number of wires supported from 6 to 10 feet above the surface of the ground. Generally the wires are spaced 10 to 15 feet apart and located to form a square or polygonal configuration under the vertical portion of the antenna.

Long-Wire Directive Arrays

THE "V' ANTENNA

It has been emphasized that, as the antenna length is increased, the lobe of maximum radiation makes a more acute angle with the

Fig. 14-29 - The basic "V" antenna, made by combining two long wires.
wire. Two such wires may be combined in the form of a horizontal " V " so that the main lobes from each wire will reinforce along a line bisecting the angle between the wires. This increases
both gain and directivity, since the lobes in directions other than along the bisector cancel to a greater or lesser extent. The horizontal "V" antenna therefore transmits best in either direction (is bidirectional) along a line bisecting the " V " made by the two wires. The power gain depends upon the length of the wires. Provided the necessary space is available, the " V " is a simple antenna to build and operate. It can also be used on harmonics, so that it is suitable for multiband work. A top view of the " V " antenna is shown in Fig. 14-29.

Fig. 14-30 shows the dimensions that should be followed for an optimum design to obtain maximum power gain for differentsized "V" antennas. The longer systems give good performance in multiband operation. Angle \propto is approximately equal to twice the

Fig. 14.30 - Design chart for horizontal "V" antennas, giving the enclosed angle between sides us, the length of the wires. Values in parentheses represent approximate wave angle for height of one-half wavelength.
angle of maximum radiation for a single wire equal in length to one side of the " V."

The wave angle referred to in Fig. 14-30 is the vertical angle of maximum radiation. Tilting the whole horizontal plane of the "V" will tend to increase the low-angle radiation off the low end and decrease it off the high end.

The gain increases with the length of the wires, but is not exactly twice the gain for a single long wire as given in Fig. 14-15. In the longer lengths the gain will be somewhat increased, because of mutual coupling between the wires. A " V " eight wavelengths on a leg, for instance, will have a gain of about 12 db . over a half-wave antenna, whereas twice the gain of a single eight-wa velength wire would be only approximately 9 db .

The two wires of the " V " must be fed out of phase, for correct operation. A resonant line may simply be attached to the ends, as shown in Fig. 14-29. Alternatively, a quarter-wave matching section may be employed and the antenna fed through a nonresonant line. If the antenna wires are made multiples of a half-wave in length (use Equation 14-G for computing the length), the matching section will be closed at the free end. A stub can be connected across the resonant line to provide a match, as described in the preceding chapter.

THE RHOMBIC ANTENNA

The horizontal rhombic or "diamond" antenna is shown in Fig. 14-31. Like the " V ," it requires a great deal of space for erection, but it is capable of giving excellent gain and directivity.

It also can be used for multiband operation. In the terminated form shown in Fig. 14-31, it operates like a nonresonant transmission line, without standing waves, and is unidirectional. It may also be used without the terminating resistor, in which case there are standing waves on the wires and the antenna is bidirectional.
The important quantities influencing the design of the rhombic antenna are shown in Fig. 14-31. While several design methods may le used, the one most applicable to the conditions existing in amateur work is the so-called "compromise" method. The chart of Fig. $14-32$ gives design information based on a given length and wave angle to determine the remaining optimum dimensions for best operation. Curves for value of length of two, three and four wavelengths are shown, and any intermediate values may be interpolated.
With all other dimensions correct, an increase in length causes an increase in power gain and a slight reduction in wave angle. An increase in height also causes a reduction in wave angle and an increase in power gain, but not to the same extent as a proportionate increase in length. For multiband work, it is satisfactory to design the rhombic antenna on the basis of $14-\mathrm{Mc}$. operation, which will permit work from the 7 - to $28-\mathrm{Mc}$. bands as well.

A value of 800 ohms is correct for the terminating resistor for any properly-constructed rhombic, and the system behaves as a pure resistive load under this condition. The terminating resistor must be capable of safely dissipating one-half the power output (to eliminate the rear pattern), and should be noninductive. Such a resistor may be made up from a carlon or graphite rod or from a long 800 -ohm transmission line using resistance wire. If the carbon rod or a similar form of lumped resistance is used, the device should be suitably protected from weather effects; i.e., it should be covered with a good asphastic compound and sealed in a small lightweight box or fiber tube. Suitable nonreactive terminating resistors are also available commercially.

Fig. 14.31 - The horizontal rhombic or diamond antenna, terminated. Important design dimensions are indieated; details in text.

Fig. 14-32-Compromise-method design chart for rhombic antennas of various ler lenrths and wave angles. 'l'he examples at the right illustrate the use of the chart:

>>

For feeding the antenna, the antenna impedance will he matched by an 800 -ohm line, which may be constructed from No. 16 wire spaced 20 inches or from No. 18 wire spaced 16 inches. The 800 -ohm line is somewhat ungainly to install, however. and may be replaced by an ordinary 600 -ohm line with only a negligible mismatch. Alternatively, a matching section may be installed between the antenna terminals and a low-impedance line. However, when such an arrangement is used, it will be necessary to change the match-ing-section constants for each different band on which operation is contemplated.
(1) Given:

Length $(L)=2$ wavelengths
Desired wave angle (Δ) $=20^{\circ}$.
To Find: H, Φ. Method:

Draw vertical line through point a ($L=2$ wave. lengths) and point b on abscissa ($\Delta=20^{\circ}$). Read angle of tilt (Φ) for point a and height (H) from intersection of line ab at point c on eurve H.
Result:
$\phi=60.5^{\circ}$.
$H=0.73$ wavelength.
(2) Given:

Length $(L)=3$ wa velengths.
Angle of tilt $(\Phi)=78^{\circ}$.
To Find: H, د.
Method:
Draw a vertical line from point d on eurve $L=3$ wavelengths at $\Phi=78^{\circ}$. Head intersection of this line on eurve H (point e) for height, and intersection at point f on the abscissa for Δ.

$$
\begin{aligned}
& \text { Result: } \\
& \begin{aligned}
H & =0.56 \text { wavelength. } \\
\Delta & =26.6^{\circ} .
\end{aligned}
\end{aligned}
$$

The same design details apply to the unterminated rhombic as to the terminated type. When used without a terminating resistor, the system is bidirectional. Tuned feeders are generally used with the unterminated rhombic. A nonresonant line may be used by incorporating a matching section at the antenna, but is not readily adaptable to satisfactory multiband work or over an appreciable band of frequencies.

Rhombic antennas will give a power gain of 8 to 12 db . or more for leg lengths of two to four wavelengths, when constructed according to the charts given. In general, the larger the antenna, the greater the power gain.

Beams with Driven Elements

By combining individual half-wave antemas into an array with suitable spacing between the antennas (called elements) and feeding power to them simultancously, it is possible to make the radiation from the clements add up along a single direction and form a beam. In other directions the radiation tends to cancel, so a power gain is obtained in one direction at the expense of radiation in other directions. There are several methods of arranging the elements. If they are strung end to end, so that all lie on the same
harmonic. The way in which the number of elements may be extended for increased directivity and gain is shown in Fig. 14-33313. Quarter-wave phasing sections are used between elements to give the necessary reversal in phase. It is best to feed at the center of the array; so that the energ. will be distributed uniformly among the elements.

The gain and directivity depend upon the number of elements and their spacing, center-to-renter, as shown in Table 14-II. Although three-quarter wave spacing gives greater gain,

Fig. 1f.33- Collinear halfowave antennas in phase. The sys-
 is an extension of the system; in theory the number of elements may be carried on indefinitely, lut practical considerations usually limit the elements to four.

TABLE 14-II Theoretical Gain of Collinear Halt-Wave Antennas					
Spacing betheen centers of aljacem half-wates	Number of half-uares in urray vs. gain in alb.				
	2	3	4	5	6
1/2 wave	18	3.3	4.5	5.3	6. 2
$3 / 4$ wave	32	18	6.0	7.0	7.8

it is difficult to construct a suitable phase-reversing system when the ends of the antenna elements are widely separated. The half-wave sparing is most generally used in actual practice.

Collinear arrays may be mounted either horizontally or vertically. Horizontal mounting gives increased horizontal directivity, while the vertical directivity remains the same as for a single element at the same height. Vertical mounting gives the same horizontal pattern as a single element, but concentrates the radiation at low angles.

Broadside Arrays

Parallel antenna elements with currents in phase may be combined as shown in Fig. 14-3t to form a broadside array, so named because

Fig. 14-34-Broadside array using parallel half-wave elements. Arrons indicate the direction of carrent flow. Transposition of the feeders is neeessary to bring the antenna currents in phase. Any reasonable number of elements may be used. The array is hidirectional, with maximum radiation "broadside" or perpendicular to the antenna plane (perpendicularly through this page).
the direction of maximum radiation is broadside to the plane containing the antennas. Again the gain and directivity depend upon the number of elements and the spacing, the gain for different spacings being shown in Fig. 14-35, Half-wave spacing generally is used, since it simplifies the problem of feeding the system when the array has more than two elements. Table 14-1II gives theoretical gain as a function of the number of elements with half-wave spacing.

Broadside arrays may be suspended either with the elements all vertical or with them horizontal and one above the other (stacked). In the former case the horizontal pattern becomes quite sharp, while the vertical pattern is the same as that of one element alone. If the array is suspended horizontally, the horizontal pattern is equivalent to that of one element while the vertical pattern is sharpened, giving low-angle radiation.

Broadside arrays may bed either by resonant transmission lines or through quarter-wave match-
ing sections and nonresonant lines. In Fig. 14-34, note the "crossing over" of the feeders, which is necessary to bring the elements into proper phase relationship.

Combined Broadside and Collinear Arrays

Broadside and collinear arrays may be combined to give both horizontal and vertieal directivity, as well as additional gain. The

Fig. 14-35-Gain es. sparing for two parallel half-wave elements combined as either broadside or end-fire arrays.
general plan of constructing such antennas is shown in Fig. 14-36. 'The lower angle of radiation resulting from stacking elements in the vertical plane is desirable at the higher frequencies. In general, doubling the number of elements in an array by stacking will raise the gain from 2 to 4 db ., depending upon whether vertical or horizontal elements are used - that is, whether the stacked elements are of the broadside or collinear type.
'The arrays in Fig. 14-36 are shown fed from one end, but this is not especially desirable in the case of large arrays. Better distribution of energy between elements, and hence better over-all performance, will result when the feeders are attached as nearly as possible to the center of the array. Thus, in the eight-element array at A, the feeders could be introduced at the middle of the transmission line between the second and third set of elements, in which case the connecting line would not be transposed between the second and third set of elements.
A four-element array, known as the "lazy-H" antenna, has bern quite frequently used. This

TABLE 14-III	
Theoretical Gain US. Number of Broadside Elements (Half-Wave Spacing)	
No. of elememts	Gain
9	4 db.
3	5.5
4	6
5	8
6	9

Fig. 14-36 - Combination broadside and collinear arraye. A, with vertical clements; B, with horizontal elements. Both arrays give low-angle radiation. Two or more sections may be used. The gain in db. will be equal, approximately, to the sum of the gain for one set of broadside elements (Table 14-IV) plus the gain of one set of collinear elements (Table 14-II1). For example, in A each broadside set has four clements (gain 7 db .) and each collincar set two elements (gain 1.8 dh .), giving a total gain of 8.8 db . In B, each broadside set has two elements (gain 4 db .) and each collincar set thrce elements (gain 3.3 db .), making the total gain 7.3 db . The result is not strictly accurate, because of mutual coupling between the elements, but is good enough for practical purposes.
arrangement is shown, with the feed point indicated, in Fig. 14-37. For best results, the bottom section should be at least a half wavelength above ground.

End-Fire Arrays

Fig. 14-38 shows a pair of parallel half-wave elements with currents out of phase. This is known as an end-fire array because it radiates best along the plane of the antennas, as shown.

The end-fire array may be used either vertically or horizontally (elements at the same height), and is well adapted to amateur work because it gives maximum gain with relatively close element spacing. Fig. $14-35$ shows how the gain varies with spacing. End-fire elements may be combined with additional collinear and broadside elements to give a further increase in gain and directivity.
Either tuned or untuned lines may be used with this type of array. Untuned lines preferably are matched to the antenna through a quarterwave matching section or phasing stub.

Phasing

Figs. 14-36 and 14-38 illustrate a point in connection with feeding a phased antenna system which sometimes is confusing. In Fig. 14-38, when the transmission line is connected as at A there is no crossover in the line connecting the two antennas, but when the transmission line is connected to the center of the connecting line the crossover becomes necessary (13). The same thing is true of the untransposed line of Fig. 14-36B. Note that, under these conditions, the antenna elements are in phase when the line is not transposed, and out of phase when the transposition is made.

Adjustment of Arrays

With arrays of the types just described, using half-wave spacing between elements, it will usually suffice to make the length of each element that given by Equations 14-13 or 14-C.

Fig. $14-37$ - A four-element combination broadsidecollincar array, popularly known as the "lazy.II" antenna. A elosed quarter wave stub may be used at the feed point to matchinto an untuned transmission line, or tuned feeders may be attached at the point indicated. The gain over a half-wave antenna is 5 to 6 db .

The phasing lines between the parallel elements should be of open-wire construction, and their length can be calculated from:

Length of half-wave line (feet) $=$
(14-H)

$$
480
$$

Freq. (Mc.)
Example: A half-wavelength phasing line for
28.8 Mc . would be $\frac{480}{28.8}=16.66$ feet $=16 \mathrm{feet}$ 8 inches.

The spacing between elements can be made equal to the length of the phasing line. No special adjustments of line or element length

Fig. 14.38 - End-firc arrays using parallel half-wave elements. The elements are shown with half-wave spacing to illustrate feeder connections. In practice, closer spacings are desirable, as shown by Fig. 14-35. Direction of maximum radiation is shown by the large arrows.
or spacing are needed, provided the formulas are followed closely.

With collinear arrays of the type shown in Fig. 14-3313, the same formula may be used for the element length, while the length of the quarter-wave phasing section can be found from the following formula:

Length of quarter-wave line (feet) $=$

$$
\begin{equation*}
\frac{240}{\text { Freq. (Mc.) }} \tag{14-I}
\end{equation*}
$$

Example: A quarter-wavelength phasing line
for 14.25 Mc . would be $\frac{240}{14.25}=16.84$ feet $=16$
feet 10 inches.

Fig. 14-39 - Simple directive-antenna systems. A is a two-element end-fire array; 13 is the same array with eenter feed, which permits use of the array on the serond harmonic, where it heeonses a foureclement array with quarter-wave spacing. C is a four-element end-fire array with $1 / 8$-wave spacing. D is a simple two-element hroadside array using extended in-phase antennas ("extended double-Zepp"). The gain of A and B is slightly over $4 d h$. On the seeond harmonic, 13 will give about 5 db . sain. With C, the gain is approximately 6 db ., and with 1 , approximately 3 db . In A, B and C, the phasing line contrilutes about $1 /$ ros $^{\text {wavelength to the transmission }}$ line; when 13 is used on the second harmonic, this contribution is $1 / 8$ wavelength. Alternatively, the antenna ends may le bent to meet the transmission line, in which case each feeder is simply connected to one antenna. In D, points $Y-Y$ indicate a quarter-wave point (high current) and X-X a half-wave point (high voltage). The line may be extended in multiples of quarter waves if resonant fecters are to be used. A, 13 and C may be suspended on wooden spreaders. The plane containing the wires should be parallel to the ground.

If the array is fed in the center it should not be necessary to make any adjustments, although, if desired, the whole system ean be resonated by connecting an r.f. ammeter in the shorting link of each phasing section and moving the link back and forth to find the maximum-rurrent position. This refinement is hardly necessary, however, so long as all elements are the same length and the system is symmetrical.

The phasing sections can be made of $300-$ ohm Twin-Lead, if low power is used. However, the lengths of the phasing sections must then be only 84 per cent of the length obtained in the two formulas above.

Example: The half-wavelength line for 28.8 Mc. would become $0.84 \times 16.06=13.99$ feet $=$ 14 feet 0 inches.

Csing Twin-Lead for the phasing sections is most useful in arrays such as that of Fig. 14-3313, or any ot her system in which the element spacing is not controlled by the length of the phasing section.

Simple Arrays

Several simple directive-antenna systems using driven elements have achieved rather wide use among amateurs. Four of these systems are shown in Fig. 14-39. Tuned feeders are assumed in all cases; however, a matching section readily ran be substituted if a nonresonant transmission ine is preferred. Dimensions givenare in terms of wavelength; actual lengths can be calculated from the equations for the anterna and from the equation above for the resonant transmission line or matching section. In cases where the transmission line proper commects to the midpoint of a phasing line, only half the length of the latter should be added to the line to find the quarter-wave point.

At A and 13 are two-element end-fire arrangements using close spacing. They are electrieally equivalent; the only difference is in the method of connecting the feeders. 3 may also be used on the second harmonis, although the spacing is not optimum (Fig. 14-35) for such operation.

A close-spaced four-element array is shown at C. It will give about 2 db , more gai: than the two-element array.

The antenna at D, commonly known as the "extended double-Zepp," is designed to take advantage of the greater gatin possible with collinear antennas having greater than halfwave center-to-center spacing, but without introducing feed complirations. The elements are made longer than a half-wave. The gain is 3 db . over a single half-wave antenna, and the broadside directivity is fairly sharp.

The antennas of A and 13 may be mounted rither horizontally or vertically; horizontal suspension (with the elements in a plane parallol to the ground) is reconmended, since this tends to give low-angle radiation without an unduly sharp horizontal pattern. Thus these systems are useful for roverage over a wide horizontal angle. The system at C, when mounted horizontally, will have a sharper horizontal pattern than the two-element arrays because of the effect of the collinear arrangement. The vertical pattern will be the same as that of the antennas in A and B .

Directive Arrays with Parasitic Elements

Parasitic Excitation

The antenna arrays previously described are bidirectional; that is, they will radiate in direetions both to the "front" and to the "back"
of the antenna system. If radiation is wanted in only one direction, it is neeessary to use different element arrangements. In most of these arrangements the additional elements receive
power by induction or radiation from the driven element, generally called the "antenna," and reradiate it in the proper phase relationship to achicve the desired effect. These elements are called parasitic elements, as contrasted to the driven elements which reccive power directly from the transmitter through the transmission line.
The parasitic element is called a director when it reinforces radiation on a line pointing to it from the antema, and a reflector when the reverse is the case. Whether the parasitic element is a director or reflector depends upon the

Fig. 14-40-Gain is. element spacing for an antenna and one parasitic element. The reference point, 0 db ., is the field strength from a half-wave antenna alone. The greatest gain is in direction A at spacings of less than 0.14 wavelength, and in direction B at greater spacings. The front-to-back ratio is the difference in db. between curves \boldsymbol{A} and \boldsymbol{B}. Variation in radiation resistance of the driven element also is shown. These curves are for a selfresonant parasitic element. At most spacings the gain as a reflector can be inereased by slight lengthening of the parasitic element: the gain as a directorcan be increased hy shortening. 'This alsoimproves the front-to-back ratio.
parasitic-element tuning, which usually is adjusted by changing its length.

Gain vs. Spacing

The gain of an antenna with parasitic elements varies with the spacing and tuning of the clements, and thus for any given spacing there is a tuning condition that will give maximum gain at this spacing. The maximum front-to-back ratio seldom, if ever, occurs at the same condition that gives maximum forward gain. The impedance of the driven element also varies with the tuning and spacing, and thus the intenna system must be tuned to its final condition before the mateh between the line and the antenna can be eompleted. However, the tuning and matching may interlock to some extent, and it is usually necesstary to run through the adjustments several times to insure that the best possible tuning has been obtained.

Two-Element Beams

A 2-element beam is useful where space or other considerations prevent the use of the
larger structure required for a 3 -element beam. The general practice is to tune the parasitic element as a reflector and space it about 0.15 wavelength from the driven element, although some suceessful antennas have beon built with 0.1wavelength spacing and director tuning. Gain vs. dement spacing for a 2 -element antenna is given in lig. $1+4($) for the special case where the parasitic element is resonant. It is indicative of the performance to be expected under maximumgain tuning conditions.

Three-Element Beams

Where room is available for an over-all length greater than 0.2 wavelength, a 3 -element beam is preferable to one with only 2 elements. Once the over-all length has been decided upon, the curves of Fig. $14-41$ can be used to determine the proper sparing of director and reflector. If, for example, the distance between director and reflector can be made 0.4 wavelength, Fig. 14-41 shows that a spacing of $0.15 \mathrm{D}-0.25 \mathrm{~K}$ gives a gain of 7.8 db ., and a spacing of $0.25 \mathrm{D}-0.15 \mathrm{R}$ gives a gain of 8.2 db. Obviously the latter is the better choice, although the practical difference might be difficult to measure, and practical (mechanical) considerations might call for using the more balanced $0.2 \mathrm{D}-0.2 \mathrm{R}$ construction and a gain of 8.1 db .

When the over-all length has been decided upon, and the element spacing has been determined, the element lengths can be found by referring to Fig. 1 $t-42$. It nust be remembered that the lengths determined by these charts will vary slightly in actual practice with the element diameter and the method of supporting the elcments, and the tuning of a beam should always be checked after installation. However, the lengths obtained by the use of the charts will be

Fig. /f.1/ - Gain vs. element spacing for 3 -element beams using a driven element and a director and a reflector. The $0-\mathrm{db}$. reference level is the field strength from a half-wavelength antenna alone. These curves are for the system tuned for maximum forward gain.

The clement spacing shown is the fraction of a wavelength determined by $\frac{984}{f(11 c)}$. Thus a wavelength at 14.2 Mc. $=984 / 11.2=69.3$ feet. A spacing of 0.15 wavelength at 14.2 Mc. would be $0.15 \times 69.3=$ 10.4 feet $=10$ feet 5 inches.
close to correct in practically all cases, and they can be used without checking if the beam is difficult of arcess.

The preferable method for checking the beam is by means of a field-strength meter or the S-meter of a communications receiver, used in conjunction with a dipole antenna located at

Fig. 14-42 - Flement lengths for a 3 -clement beam. 'Ihese lengths will hold closely for tubing elements sup. ported at or near the center. 'The ratiation resistance (1) is usefnl information in plaming for a matching system, but it is subject to variation with height above sround and must be considered an approsimation.

The driven-element length (C) maty reguire modilication for tuning out reactance if a "l"- or tamma-mateh feed system is used, as mentioned in the text.

A $0.2[-0.2 \mathrm{~K}$ beam rut for 28.6 Mc. would have a director lenpth of $452 / 28.6=15.8=15$ feet 10 inches, a reflector lenkth of $190 / 28.6=17.1=17$ feet 1 inch, and a driven-element lengt l_{1} of $170.5 / 28.6=16.15=16$ feet 5 inches.
least 10 wavelengths away and as high as or higher than the beam that is being checked. A few watts of power fed into the antenna will give a useful signal at the observation point, and the power input to the transmitter (and hence the antemata) should be held constant for all of the readings. Beams tuned on the ground and then lifted into place are subject to tuning errors and cannot be depended upon. The impedince of the driven element will vary with the height above ground, and grood pratetice dictates that all final matching between antenna and line be done with the antenma in place at its normal height above ground.

Simple Systems: the Rotary Beam

Two- and 3 -element systems are popular for rotary-beam antennas, where the entire antenna system is rotated, to permit its gain and directivity to be utilized for any compass direction. They may be mounted either horizontally (with the plane containing the elements parallel to the earth) or vertically.

A 4-element beam will give still more gain than a 3 -element one, provided the support is sufficient for at least 0.2 -wavelength spacing between clements. The tuning for maximum gain involves many variables, and complete gain and tuning data are not available.

The elements in close-spaced (less than onequarter wavelength element spacing) arrays preferably should be made of tubing of onehalf to one-inch diameter. A conductor of large diameter not only has less olhmic resistance but also has lower Q; both these factors are important in close-spaced arrays because the impedance of the driven element usually is quite low compared to that of a single half-wave dipole. With 3 - and 4 -element close-spaced arruys the radiation resisfance of the driven element may be so low that ommic losses in the conductor con consume an appreciable fraction of the power.

Feeding Close-Spaced Arrays

Any of the usual methods of feed may be applied to the driven element of a parasitic array. The preferred methods are shown in Fig. 14-43. Tuned feeders are not recommended for lengths greater than a half-wavelength unless open lines of copper-tubing conductors are used.

Four versions of the popmlar "T"-mateh are shown, for two-wire lines of Twin-lesd at A, for single conxial line at 13 and 1 , and for double coavial line at C. The match is atjusted by moving the shorting bars, keeping them equidistant from the conter, until the minimum s.w.r. is ohtained on the line. If the s.w.r. minimum is not $1 . \overline{\text { j }}$ or less, the transmitter frequener should be shifted to find the frequency where the minimum s.w.r. occurs. If it is higher than the original test frequency, increase the antenna element lengih slightly. The partusitic element lengths taken from Fig. 14-42 shoukd not require much adjustment unless considerably different spacing is used, but it may

Fig. 14-43 - Recommended methods of feeding the driven antenna element in close-spaced parasitic arrays. 'The parasitic elements are not shown. A, B, C. D, "I" match; E, "ganma" match; \mathbf{F}, delta matehing transformer; G, coaxial-line quarter-waye matching section; II, folded dipole. Adjustment is discussed in the text. Variable capacitors can be installed at "x" to simplify matching.
be necessary to change the position of the shorting bars and the length of the antenna element once or twice before the s.w.r. at the test frequency is acceptable. The matehing section may be made of the same type of conductor as the element and spaced a few inches from it. The length of the matehing section will be greater with higher-impedance lines and with wider element spacing. A good starting point for a 28 -Me, wide-spaced ($0.2 \mathrm{D}-0.15 \mathrm{R}$) beam fed with 300 -ohm Twin-Lead is 28 inches each side of center. A similar antenna and line on 14 Mc . might require about 56 inches each side.

The gamma mateh, shown in Fig. 14-43E, can be considered as one-half a "T" match, and the same principles hold. However, when the length of the element is changed, in an effort to minimize the s.w.r., only the side to which the movable bar is connected should be changed - the other side should remain at one-half the length obtained from Fig. 14-42. With 52 -ohm coaxial line feed, the length of the matehing element may run around 15 to 20 inches in a 28 -Me. beam, and twice this value in a $14-\mathrm{Me}$. array.

An alternative to adjusting the element length for tuning out the residual reactance is to use a small variable condenser in series at the junction of the coaxial cable and the matehing section of the gamma or "T" match. A small $140-\mu \mu \mathrm{fd}$. receiving-type variable is adequate at powers of a few hundred watts, and it can be weatherproofed by mounting it in a smallplastic cup. The T-mateh of Fig. 14-43 A, B, C or D requires two condensers, one in each side.

The delta matehing transformer shown at F is probably easier to install, mechanically, than any of the others. The positions of the taps (dimension a) must be determined experimentally, along with the length, b, by checking the standing-wave ratio on the line as adjustments are made. Dimension b should be about 15 per cent longer than a.

The coaxial-line matehing section at G will work with fair aceuracy into a elose-spaced parasitic array of 2,3 or 4 elements without necessity for adjustment. The line is used as a quarter-wavelength transformer, and, if its characteristic impedance is 70 ohms (RG$11 / \mathrm{U})$, it will give a good match to a $600-\mathrm{ohm}$ line when the resistance at the termination is about 8.5 ohms. Over a range of 5 to 15 ohms the mismateh, and therefore the standingwave ratio, will be less than 2 -to- 1 . The length of the quarter-wave section may be calculated from

$$
\begin{equation*}
\text { Length }(\text { feet })=\frac{246 \mathrm{~V}}{f} \tag{14-J}
\end{equation*}
$$

where $V=$ Velocity factor

$$
f=\text { Frequency in Me. }
$$

Example: A quarter-wave transformer of RG-11/U is to be used at 28.7 Mc . From the table in Chapter Thirteen, $V=0.66$.

$$
\text { Length }=\frac{246 \times 0.66}{28.7}=5.67 \text { feet }
$$

$=5$ feet 8 inches

The folded-dipole antenna, Fig. 14-43H, presents a good match for the line when properly designed. Details are given in Chapter Thirteen. Different impedance step-up ratios can be obtained by varying the number of conductors or their diameter ratio.

Sharpness of Resonance

leak performance of a multielement parasitic array depends upon proper plasing or tuning of the elements, which can be exaet for one frequency only. In the case of close-spaced arrays, which because of the low radiation resistance usually are quite sharp-tuning, the frequeney range over which optimum results can be secured is only of the order of 1 or 2 per cent of the resonant frequency, or up to about 500 ke . at 28 Me . However, the antenna can be made to work satisfactorily over a wider frequency range by adjusting the director or directors to give maximum gain at the highest frequeney to be eovered, and by adjusting the reflector to give optimum gain at the lowest frequency. This sacrifices some gain at all frequencies, but maintairs more uniform gain over a wider frequency range.

As mentioned in the preceding paragraphs, the use of large-diameter conductors will broaden the response curve of an array because the larger diameter lowers the Q. This causes the reactances of the elements to change rather slowly with frequency, with the result that the tuning stays near the optimum over a considerably wider frequency range than is the ease with wire conductors.

Combination Arrays

It is possible to combine parasitic elements with driven elements to form arrays composed of collinear driven and parasitic elements and combination broadside-collinear-parasitic elements. Thus two or more collinear elements might be provided with a collinear reflector or director set, one parasitic element to each driven element. Or both directors and reflectors might be used. A broadside-collinear array can be treated in the same fashion.

RECEIVING ANTENNAS

Nearly all of the properties possessed by an antenna as a radiator also apply when it is used for reception. Current and voltage distribution, impedance, resistance and directional characteristics are the same in a receiving antenna as if it were used as a transmitting antenna. This reciprocal behavior makes possible the design of a recciving antenna of optimum performance based on the same considerations that have been discussed for transmitting antennas.

The simplest receiving antenna is a wire of rindom length. The longer and higher the wire, the more energy it abstracts from the wave. Be-
cause of the high sensitivity of modern receivers, sometimes only a short length of wire strung around the room is used for a receiving antenna, but such an antenna cannot be expected to give good performance, although it is adequate for loud signals on the $3.5-$ and $7-\mathrm{Me}$. hands. It will serve in emergencies, but a longer wire outdoors is always better.

The use of a tuned antenna improves the operation of the receiver, because the signal strength is greater than with a wire of random length. Where local electrical noise is a problem, as from an electrical appliance, a measure of relief can often be obtained by locating the antenna as ligh above and as far as possible from the noise source and power lines. The lead-in wire, from the center of the antenna, should be a coasial line or shielded twin-conductor eable (RG-62/U). If the twin-conductor cable is used, the conductors conneet to the antenna binding posts and the shield to the ground binding post of the receiver.

Antenna Switching

Switehing of the antenna from receiver to transmitter is commonly done with a changeover relay, connected in the antenna leads or the coupling link from the antenna tuner. If the relay is one with a 115 -volt a.e. coil, the switch or relay that controls the transmitter plate power will also control the antenna relay. If the convenience of a relay is not desired, poreclain knife switehes can be used and thrown by hand.

Typical arrangements are shown in Fig. 14-44. If coaxial line is used, the use of a coaxial relay is recommended, although on the lower-frequency bands a regular switch or change-over relay will work almost as well.

Fig. A-4-A - Antenna changenver for receiving and transmitling in twowire line (A) and coaxial line (3). The low-pass filter for T'V reduction should be conneeted between switeh or relay and the transmitter.

Antenna Construction

The use of good materials in the antenna system is important, since the antema is exposed to wind and weather. To keep eleetrical losses low, the wires in the antenna and feeder system must have good conductivity: and the insulators must have low dielectric losis and surface leakage, particularly when wet.

For short antennas, No. 14 gauge hard-drawn enameled copper wire is a satisfactory conductor. For long antennas and directive arrays, No. 14 or No. 12 enameled copper-clad steel wire should be used. It is best to make feeders and matching stubs of ordinary soft-drawn No. 14 or No. 12 enameled copper wire, since harddrawn or copper-clad steel wire is difficult to handle unless it is under considerable tension at all times. The wires should be all in one piece; where a joint cannot be avoided, it should be carefully soldered. Open-wire TV line is excellent up to several hundred watts.

In building a $t w o$-wire open line, the spacer insulation should be of as good quality as in the antenna insulators proper. For this reason, good ceramic spacers are advisable. Wooden dowels boiled in paraffin may be used with untuned lines, but their use is not recommended for tuned lines. The wooden dowels

Fig. 14-45 - Details of a simple 40-foot "A"-frame mast suitable for erection in lorations where space is limited.
can be attached to the feeder wires by drilling small holes and binding them to the feeders.

At points of maximum voltage, insulation is most innportant, and l'yrex glass or ceramic insulators with long leakage paths are recommended for the antemat. Insulators should be cleaned once or twice a year, especially if they are subjected to much smoke and soot.

In most cases poles or masts are desirable to lift the antenna clear of surrounding buildings, although in some locations the antenna will be sufficiently in the clear when strung from one chimney to another or from a housetop to a tree. Small trees usually are not satislactory as points of suspension for the antenna because of their movement in windy weather. If the antenna is strung from a point near the center of the trunk of a large tree, this difficulty is not so serious. Where the antenna wire must be strung from one of the smaller branches, it is best to tie a pulley firmly to the branch and run a rope through the pulley to the antenna, with the other end of the rope attached to a counterweight near the ground. The counterweight will keep the tension on the antenna wire reasonably constant even when the branches sway or the rope tightens and stretches with varying climatic conditions.
Telephone poles, if they can be purchased and installed conomically, make excellent supports because they do not ordinarily require guying in heights up to 40 feet or so. Many low-eost television-antenna supports are now available, and they should not be overtooked as possible antenna aids.

- "A"-FRAME MAST

The simple and inexpensive mast shown in Fig. $14-45$ is satisfactory for heights up to $3 \overline{5}$ or 40 feet. Clear, sound lumber should be selected. The completed mist may be protected by two or three coats of house paint.

If the mast is to be crected on the ground, a couple of stakes should be driven to keep the bottom from slipping and it may then be "walked up" by a pair of helpers. If it is to go on a roof, first stand it up against the side of the building and then hoist it from the roof, keeping it vertical. The whole assembly is light enough for two men to perform the complete operation - lifting the mast, carrying it to its permanent berth, and fastening the guys with the mast rertical all the while. It is entirely practicable, therefore, to erect this type of mast on any small, flat area of roof.

By using $2 \times 3 \mathrm{~s}$ or $2 \times 4 \mathrm{~s}$, the height may be extended up to about 50 feet. The 2×2 is too flexible to be satisfactory at such heights.

SIMPLE 40-FOOT MAST

The mast shown in Fig. 14-46 is relatively strong, easy to construct, readily dismantled, and costs very little. Like the "A"-frame, it is suitable for heights of the order of 40 feet.

The top section is a single 2×3. bolted at the bottom between a pair of $2 \times 3 \mathrm{~s}$ with an overlap of about two feet. The lower section thus has two legs spaced the width of the narrow side of a 2×3. At the bottom the two

Fig. 14-46-A simple and sturdy mast for heights in the vicinity of 40 feet, pivoted at the base for easy erection. The height can le extended to 50 fert or more by using $2 \times$ 4 s instead of $2 \times 3 \mathrm{~s}$.
legs are bolted to a length of 2×4 which is set in the ground. A short length of 2×3 is placed between the two legs about halfway up the bottom section, to maintain the spacing.
The two back guys at the top pull against the antenna, while the three lower guys prevent buckling at the center of the pole.

The 2×4 soction should be set in the ground so that it fares the proper direction, and then made vertical by lining it up with a plumb bob. The holes for the bolts should be drilled beforehand. With the lower section laid on the ground, bolt A should be slipped in place through the three pieces of wood and tightened just enough so that the section can turn freely on the bolt. Then the top section may be bolted in phace and the mast pushod up, using a ladder or another 20 -foot 2×3 for the job. As the mast goes up, the slack in the guys can be taken up so that the whole structure is in some measure continually supported. When the mast is vertical, bolt 13 should be slipped in place and both A and B tightened. The lower guys ean then be given a final tightening, leaving those at the top a little slack until the antemma is pulled up, when they should be adjusted to pull the top section into line.

- guys and guy anchors

For masts or poles up to about 50 feet, No. 12 iron wire is a satisfactory guy-wire material. Heavier wire or stranded eable may be used for taller poles or poles installed in locations where the wind velocity is likely to be high.

More than three guy wires in any one set usually are unnecessary. If a horizontal antenna is to be supported, two guy wires in the top set will be sufficient in most cases. These should run to the rear of the mast about 100 degrees apart to offset the pull of the antenna. Intermediate guys should be used in sets of three, one running in a direction opposite to that of the antenna, while the other two are spaced 120 degrees either side. This leaves a clear space under the antenna. The guy wires should be adjusted to pull the pole slightly back from vertical before the antenna is hoisted so that when the antenna is pulled up tight the mast will be straight.

When raising a mast that is big enough to tax the available facilities, it is some advantage to know nearly exactly the length of the guys. Those on the side on which the pole is lying can then be fastened temporarily to the anehors beforehand, which assures that when the pole is raised, those holding opposite guys will be able to pull it into nearly-vertical position with no danger of its getting out of control. The guy lengths can be figured by the right-angledtriangle rule that "the sum of the squares of the two sides is equal to the square of the hypotenuse." In other words, the distance from the base of the pole to the anchor should be measured and squared. To this should be added the square of the pole length to the point where the guy is fastened. The square root of this sum will be the length of the guy.

Guy wires should be broken up by strain insulators, to avoid the possibility of resonanee at the transmitting frequency. Common practiee is to insert an insulator near the top of each guy, within a few feet of the pole, and then eut each section of wire between the insulators to a length which will not be resonant either on the fundamental or harmonies. An insulator every 25 feet will be satisfactory for frequencies up to 30 Me . The insulators should be of the "egg" type with the insulating material under compression, so that the guy will not part if the insulator breaks.
Twisting guy wires onto "egg" insulators may be a tedious jol) if the guy wires are long and of large gauge. The simple time- and finger-saving

Fig. 14-47- Using a lever for twisting heavy gny wires.
device (piece of heavy iron or stcel) can be made by drilling a hole about twice the diameter of the guy wire about a half inch from one end of the piece. The wire is passed through the insulator, given a single turn by hand, and then hed with a patir of pliers at the point shown in the sketch. By passing the wire through the hole in the iron and rotating the iron as shown, the wire may be quickly and neatly twisted.

Guy wires may be anchored to a tree or building when they happen to be in cont venient spots. For small poles, a 6 -foot length of 1 -inch pipe driven into the ground at an angle will suffice. Additional bracing will be provided by using two pipes, as shown in Fig. 14-48.

halyards and pulleys

Halyards or ropes and pulleys are important items in the antenna-supporting system. Particular attention should be directed toward the

Fï. 1.1-18 - Pipo guy anchors, One pipe is sufficient for small masts. but two installed as shown will pro. vide the additional strength reguired for thelargerpoles.
choice of a pulley and halyards for a high mast since replacement, once the mast is in position, may he a major undertaking if not entirely impossible.

Galvanized-iron pulleys will have a life of only

Fig. $14-49-\mathrm{An}$ antenna lead-in pancl may be placed over the top sash or under the lower sash of a window. Substituting a smaller height sash in half the window will simplify the weatherproofing problem where the sash overlap.
a year or so. Especially for coastal-area installations, marine-type pulleys with hardwood blocks and bronze wheels and bearings should be used.

For short antemnas and temporary installations, heavy clothesline or window-sash cord may be used. However, for more permanent jobs, $3 / 8$-inch or $1 / 2$-inch waterproof hemp rope should be used. Even this should be replaced about once a year to insure against breakage.

It is advisable to carry the pulley rope back up to the top) in "endless" fashion in the manner of a flag hoist so that if the antenna breaks close the screen.

Fip. 14-50 - A - Anchoring feeders takes the strain from feedthrough insulators or window glass. B - Going through a full-lenith sereen, a cleat is fastened to the frame of the screen on the inside. Clearance holes are cat in the cleat and also in
to the pole, there will be a means for pulling the hoisting rope back down.

- BRINGING THE ANTENNA OR FEED LINE INTO THE STATION

The antenna or transmission line should be anchored to the outside wall of the building, as shown in Fig. 14-50, to remove strain from the lead-in insulators. Holes cut through the walls of the buikling and fitted with feed-through insulators are undoubtedly the best means of bringing the line into the station. The holes should have plenty of air clearance about the conducting rod, especially when using tuned lines that develop high voltages. Probably the best place to go through the walls is the trimming board at the top or bottom of a window frame which provides flat surfaces for lead-in insulators. Cement or rubber gaskets may be used to waterproof the exposed joints.

Where such a procedure is not permissible,

Fig. 14-51 - 1 .ow-loss lightning arresters for transmit. ting-antenna installations.
the window itself usually offers the best opportunity. One satisfactory method is to drill holes in the glass near the top of the upper sash. If the glass is replaced by plate glass, a stronger job will result. Plate glass may be obtained from automobile junk yards and drilled before placing in the frame. The glass itself provides insulation and the transmission line may be fastened to bolts fitting the holes. Rubber gaskets will render the holes waterproof. The lower sash should be provided with stops to prevent damage when it is raised. If the window has a full-length screen, the scheme shown in Fig. 14-50B may be used.
As a less permanent method, the window may be raised from the bottom or lowered from the top to permit insertion of a board which carries the feed-through insulators. This lead-in arrangement can be made weatherproof by making an overlapping joint between the board and window sash, as shown in Fig. 14-19, or by using weatherstrip material where necessary.
Coaxial line can be brought through clearance holes without additional insulation.

LIGHTNING PROTECTION

An ungrounded radio antenna, particularly if large and well elevated, is a lightning hazard. When grounded, it provides a measure of protection. Therefore, grounding switches or lightning arresters should be provided. Examples of construction of low-loss arresters are shown in Fig. 14-51. At A, the arrester electrodes are mounted by means of stand-off insulators on a fireproof asbestos board. At B, the electrodes are enclosed in a standard steel outlet box. The gaps should be made as small as possible without danger of breakdown during operation. Lightning-arrester systems require the best ground connection obtainable.

The most positive protection is to ground the antenna system when it is not in use; grounded flexible wires provided with clips for connection to the feeder wires may be used. The ground lead should be of short, length and run, if possible, directly to a driven pipe or water pipe where it enters the ground outside the building.

Rotary-Beam Construction

It is a distinct advantage to be able to shift the direction of a beam antenna at will, thus securing the benefits of power gain and directivity in any desired compass direction. A favorite method of doing this is to construct the antenna so that it can be rotated in the horizontal plane. The use of such rotatable antennas is usually limited to the higher frequencies - 14 Mc. and above - and to the simpler antenna-element combinations if the structure size is to be kept within practicable bounds. For the 14-, 21- and 28-Mc. bands such antennas usually consist of two to four elements and are of the parasitic-array type described earlier in this chapter. At 50 Mc . and higher it becomes possible to use more elaborate arrays because of the shorter wavelength and thus obtain still higher gain. Antennas for these bands are described in another chapter.

The problems in rotary-beam construction are those of providing a suitable mechanical support for the antenna elements, furmishing a means of rotation, and attaching the transmission line so that it does not interfere with the rotation of the system.

Elements

The antenna elements usually are made of metal tubing so that they will be at least partially self-supporting, thus simplifying the supporting structure. The large diameter of the conductor is beneficial also in reducing resistance, which becomes an important consideration when close-spaced elements are used.

Aluminum alloy tubes are generally used for the elements. The elements frequently are constructed of sections of telescoping tubing making
length adjustments for tuning quite easy. Electrician's thin-walled conduit also is suitable for rotary-beam elements.

The element lengths are made adjustable by sawing a 6- to 12 -inch slot in the ends of the larger-diameter tubing and clamping the smaller tubing inside. Homemade clamps of aluminum can be built, or hose clamps of suitable size can be used. An example of this construction is shown in Fig. 14-52. If steel clamps are used, they should be cadmium- or zinc-plated before installation.

If steel elements are used, spccial precautions should be taken to prevent rusting. The elements should be coated both inside and out with slowdrying aluminum paint. For coating the inside, the paint may be poured in one end while rotating the tubing. The excess paint may be caught as it comes out the bottom end and poured through again until it is certain that the entire inside wall has been covered. The ends should then be plugged up with corks sealed with glyptal varnish.

Supports

The supporting framework for a rotary beam usually is made of wood or metal, using as lightweight construction as is consistent with the required strength. Generally, the frame is not required to hold much weight, but it must be extensive enough so that the antenna elements can

Fig. 14-52-Details of telescoping tubing for beam elements.
be supported without excessive sag, and it must have sufficient strength to stand up under the maximum wind in the locality. The design of the frame will depend on the size and strength of the elements and the mothod used to rotate the antenua.

The general preference is for horizontal elements, primarily because less height is required to clear surrounding ohstructions when all the antema elements are in the horizontal plane. This is important at 14 and 21 Mc. where the elements are fairly long.

The support may be coupled to the mast by any convenient means which permits rotation or, alternatively, it may be fimly fastened to the mast and the latter rotated in bearings affixed to the side of the house.

Metal is commonly used to support the elements of the rotary beam. For 28 Mr., a piece of 2-inch diameter duraluminum tubing makes a good "boom" for supporting the elements. The elements can be made to slide through suitable holes in the boom, or special clamps and brackets can be fashioned to support the elements. Fittings for TV antenuas can of ten be used on 21-and 28 -Me. beams.

Most of the TV antemmatators are satisfactory for turning the smaller beams.

With all-metal const ruetion, delta, "gamma" or "T"-match are the only practical matching methots to use to the line, since anything clse requires opening the driven element at the center, and this complicates the support problem for that element.

"Plumber's-Delight"' Construction

The lightest beam to build is the so-called "plumber's delight" - an array constructed entirely of metal, with no insulating members between the elements and the supporting structure. Suggested constructional details are shown in Figs. 14-53, $14-5+1,14-55,14-56$ and $14-5 \overline{7}$.

The boom can be built of two lengths of 3-inch diameter $61 \mathrm{~S}-\mathrm{T} 6$ dural tubing of 0.072 -inch wall thickness, as shown in Fig. $14-53$. The two seretions are spliced together with a three-foot length of 6×6 oak, turned down at each end to fit inside the tubing. The center of the block is left square to provide a flat surface to attach to the vertical rotating pipe. At cach extremity of this hoom is cut a hole the exact diamoter of the parasitic elements. A two-foot length of $3 / 4$-inch pipe, complete with flange mounting plate, is bolted to the top surface of the oak block, and a single guy wire is run to each end of the boom. An egg insulator and a turnbuekle are placed in

Pig. 14-5.4-'the center clement section is held in the boom with a $1 / 4-28$ machine screw, nut and lock washer. The guy wire attaches to the head of the bolt.
each guy. The turnbuekles should be tightened until there is no sag in the boom when it is supported at the center, and then safety-wired. Finally the renter block should be given a good coat of paint or varnish.

The elements can be made of three 12 -foot lengths of dural tubing, the two outside lengths telescoping inside the center section. The ends of the renter section should be slotted for a distance of about + inches with a hack saw, but it is advisable to do the slotting after the renter sections have been assembled on the boom. The parasitic-element renter sections are fastened to the boom with $1 / 4$-inch bolts, as shown in Fig. 14-54, while the driven element is secured in a rradle made of half sections of iron pipe welded together, as shown in Fig. 14-55. The cradle is bolted to the boom with three $1 / 4$-inch bolts, and the driven element is held fast with two bolts or with adjustable air-craft-tubing clamps.

The foed line for the antena an be any balanced line, of from 200 to 600 olms impedance, and it is most conveniently coupled through a "T"-match. This "T"-match assembly can be made from two 4 -foot lengths of dural tubing joined together by a piece of broomstick, as shown in Fig. 1+57. The " Γ " is connected to the antenna by two elamps fashioned of 1 -inehwide brass strip.

A convenient mothod for supporting the boom atop the pipe used to rotate the beam is shown in Fig. 1-56. A " U "-channel into which the boom will fit is welded to the end of the pipe. Holes are drilled in the side of the channel corresponding to holes in the boom. The boom is hoisted up and positioned between the two flanges and a bolt rum through the flanges and the hoom. The boom ean then be swing into a honizontal position and the second bolt put in place.

Feeder Connections

For beams that rotate only 360 degrees, it is common to bring off feeders by making a short section of the feeder, just where it leaves the rotating member, of flexible wire. binough slaek should be left so that there is no danger of break-

Fig. IA-5.3 - ' H (he boom is made of iwo 10 -foot lengths of dural tuhing slipped over a 3 -foot oak hlock and held in place with 2 . inch wood s.rens. Guy wires from the center add strength to the homem structure.
ing or twisting. Stops should be placed on the rotating shaft of the antenna so that it will be impossible for the feeders to "wind up."

For continuous rotation, the sliding contact is simple and, when properly built, quite practicable. The chicf points to keep in mind are that the contart surfaces should be wide mough to take care of woble in the rotating shaft, and that the contact surfaces should be kept elean. Spring contacts are essential, and an "umbrella" or other scheme for keeping rain off the contacts is a desirable addition, Aliding contarts preferablyshould be used with nonresonant open-wire lines, so that the line current is bow.

The possibility of poor connertions in sliding contacts can be avoided by using indurtive coupling at the antenna, with one coil rotating on the antenna and the other fixed in position, the two coils being arranged so that the coupling does not change when the antema is rotated. A quarter-wave feeder system is connected to a tuned piek-up circuit whose inductance is coupled to a link. The link coil connects to a twisted-pair transmission line, but iny type of line such as flexible coaxial cable ean be used.

Fig. 14-55 - The clamp for the driven clement is made by splitting 1 -foot lengthis of iron pipe and welding them as shown.

The circuit would be adjusted in the same way as any link-coupled cireuit, and the number of turns in the link should be varied to give proper loading on the transmitter. The rotating coupling circuit tunes to the trinsmitting frofuener. The systom is equivalent to a link-coupled antemna tuner mounted on the pole, using a parallet-tunod tank at the end of a quartor-wave line to centerfred the antemnat. For constant coupling, the two coils should be rigid and the pole should rotate without wobble. The two coils might be made a part of the upper bearing assembly holding the rotating pole in prosition.

There are other variations of the inductiveroupled system. The tuned rircuit might, for instance, be placed at the end of a 600 -ohm line, and a one-turn link used to couple directly to the center of the antenna, if the construction of the rotary member permits. In this case the coupling can be varied by changing the L / C ratio in the tuned eircuit. for mechanical strengt the coupling coils preferably should be made of $1 / 4$-inch eopper tubing, braced with insulating strips to kerp) them rigid.

F̈g. $\quad 14-57-1) \mathrm{E}-$ tails of the "l". mateh assembly.

Fis. 14.50- Whe mounting pate is made from a length of "U"-channel iron cut and drilhed as shown. The hoom is raised vertically until one set of bolt holes is in line and a bolt is slipped through. The boom is then awong into its borizontal position and the other bolt is put in place.

Rotation

It is convenient hut not essential to use a motor to rotate the beam. If a rope-and-pulley arrangement can be brought into the operating room or if the pole can be mounted near a window in the operating room, hand rotation will work.

If the use of a rope and pulleys is impracticable, motor drive is about the only alternative. There are several complete motor driven rotators on the market, and they are easy to mount, convenient to use, and require little or no maintenance. Generally speaking, light-weight units are better beause they reduce the tower load.

The speed of rotation should not be too great - one or $11 / 2 \mathrm{r} . \mathrm{p} . \mathrm{m}$. is about right. This requires a considerable gear reduction from the usual $1750-\mathrm{r} . \mathrm{p} . \mathrm{m}$. speed of small induction motors; a large reduction is advantageous because the gear train will prevent the beam from turning in weather-vane fashion in a wind. The usual beam does not require a great deal of power for rotation at slow speed, and a $1 / 8$-hp. motor will be ample. A reversible motor should be used. War-surplus "prop pitch" motors have found wide application for rotating $14-$ Me. beams, while TV rotators can be used with many 28-Mc. lightweight beams.

Driving motors and gear housings will stand the weather better if given a coat of aluminum paint followed by two coats of enamed and a coat of glyptal varnish. Even commercial units will last longer if treated with glyptal varnish. Be sure that the surfaces are elean and free from grease before painting. Grease can be removed by brushing with kerosene and then squirting the surface with a solid stream of water. The work can then be wiped dry with it rag.

The power and control leands to the rotator should be run in electrical conduit or in lead covering, and the metal should be grounded.

A Compact 14-Mc. 3-Element Beam

A 20 -meter beam no larger than the usual 10 -meter beam can be made by using centerloaded elements and close spacing. Such an antenna will show good directivity and can be rotated with a TV-antenna rotator.
Constructional details of the elements are

Fig. 14-58 - Dimensions of a compaet 14-Me. beam. A - Side view of a typical element. TV-antenna "U" clamps hold the support arms to the hoom. Birnbach 4176 insulators support the elements. B - 'Top plan of the beam showing element spacing and loading-coil dimensions. Elements are made of aluminum tubing. Construction of the loading coils and adjustment of the elements are discussed in the text. Endsection lengths of 41 inches for the reflector, 40 inches for the driven clement, and 10 inches for the director will be elose to optimum.
clamps can be used for this purpose. The boom is a 12 -foot length of $11 / 2$-inch o.d. 61ST aluminum tubing, with 0.125 -inch wall.
The line is coupled and matched at the center of the driven element through adjustment of the link wound on the outside of the Lucite tubing. To check the adjustment of the elements, first resonate the driven element to the desired frequency in the $1+$-Mc. band with a griddip oscillator. Then resonate the director to approximately 14.8 Mc., and the reflector to approximately 13.6 Mc . This is not eritical and only serves as a rough point for the final tuning, which is done by use of a conventional fieldstrength indicator. Check the transmitter loading and readjust if necessary. Adjust the director for maximum forward gain, and then aljust the reflector for maximum forward gain. At this point, check the driven element for resonance and readjust if necessary. Turn the reflector toward the field-strength indicator and adjust for back cut-off. This must be done in small steps. Do not expect the attenuation off the sides of a short beam to be as high as that obtained with full-length elements. The s.w.r. of the line feeding the antenna can be cherked with a bridge, and after the elements have been tuned, a final adjustment of the s.w.r. can be made by adjusting the coupling at the antenna loading coil turns and spacing. As
shown in Figs. 14-58 and 14-59. The loading coils are space-wound by interwinding plumb line (sometimes known as chalk line) with the No. 12 wire coils. The coil ends are secured by drilling small holes through the polystyrene bar, as shown in Fig. 14-59. The coils should be sprayed or painted with Krylon before installing the protective Lucite tubes.

The beam will require 4 foot lengths of the tubings indicated in Fig. 14-58.A. For good telescoping, element wall thickness of 0.058 inch is recommended. The ends of the tubing sections should be slotted to permit adjustment, and secured with clamps, so that the joints will not work loose in the wind. Perforated ground

Fig. 14-59- Detailed sketeh of the loading and coupling eoils at the center of the driven element, and its mounting. Similar loading eoils (see text) are used at the centers of the director and reflector.

A "One-Element Rotary" for 21 Mc.

The directional properties of a simple halfwavelength antenna become more apparent at higher frequencies, and it is possible to take addvantage of this fact to build a "one-dement rotary" for 21 or 28 Mr. To take advantage of the directional propertics of the antema, it is only necessary to rotate it 180 degrees. It can be rotated by hand, as will be described, or by a small TV antenna rotator.

The antenna is made from two pieces of $1 / 2$-inch diameter electrical thin-wall steel tubing or conduit. This tubing is readily available at any electric supply shop. It comes in 10 -foot lengths and, while 20 feet is short for a half-wave antemat at 21 Mc., with loading the length is just about right for 52 -ohm line feed. (A half-wavelength intenna would normally be fed with 72 -ohm cable, since the antenna offers a good match for this impedance value. In this antenna system, the shorter elements, plus the small coil, offer a good match for 52 -ohn (able.) If aluminum tub)ing is available, it can be used in place of the conduit, and the antenna will be lighter in weight. As shown in Figs. 14-60 and 14-61, the two pieces of tubing are supported by four stand-off insulators on a four foot long 2 hy 2 . The coax fitting for the feed line is mounted on the end of one of the lengths of tubing. A mounting point is made by flattening the erd of the tubing for a length of about $11 / 2$ inches. The tubing can be flattened by squeezing it in a vise or by laying the end of the tubing on a hard surface and then hammering it flat. This will provide enough space to accommodate the coax fitting (Amphenol type 8:3-1R). A $5 / 8$-inch hole will be needed in the flat section to clear the shell of the cons fitting.

The coil, L_{1}, is made from $1 / 8$-inch diameter
copper tubing. It consists of 5 turns spaced $1 / 4$ inch apart and is 1 inch inside diameter. The coil is comected in series with the inner conductor pin on the coax fitting and the other half of the antema. To secure a good connection at the coax fitting, the coil lead should be wound around the inner-conductor pin and soldered. The other end of the coil can be connected with a screw and nut.

Mounting

The antenna can be mounted on a 1 -inch floor flange and held in place by two 2 -inch bolts, as shown in Fig. 1-4-60. The floor flange can be connected to at 12 -foot length of 1 -inch pipe which will serve as a mast. Television antenna wall mounts can be used to support the mast.

In the installation shown in Fig. 14-62, 19-inch wall mounts were used in order to clear the eaves of the house. A 2 -inch long piece of $11 / 4$-inch pipe was used as a sleeve, and it was clamped in the U bolt on the bottom wall mount. A 1.4-inch hole was drilled through the mast pipe approximately 6 inches from the bottom. Then a $1 / 1 / 2$-inch bolt was slipped through the hole and the mast was then mounted in the sleeve on the bottom wall mount. The bolt acted as a bearing point against the top of the sleeve. Another $1 / 4$-ineh hole was drilled through the mast about threc feet above the bottom wall mount. A piece of $1 / 4$-inch metal rod, six inches long, was forced through the hole so that the rod projected on each side of the mast. To turn the mast, a piece of rope was attached to each end of the rod and the rope was brought into the shack, so that the antenna could be rotated by the "arm-strong" method. Obviously, one could spend more money for a "de luxe" version and use a TV antenna rotator and mast.

Fig. 14-60-(A) Diagram of the $21-$ Me antenna and mounting. The L bolts that hold the 2 by 2 to the floor llange are standard 2 -inch TV mast type bolts. (B) A more detailed drawing of the coil and eoax-fitting mountings. The $1 / 4$-inch spacing between turns is not critical, and they can vary as much as 1/16 inch without any apparent harm to the mateh.

Fig. 14-61- 1 close-up of the coil and coax fitting monomings. Be sure that the coil doesirt short out to the outer conductor when soldering the coil end to the inner conductor pin on the coax fitting.

1RG-8/U 52-ohm coax cable is recommended to feed the antenna. For power inputs up to 100 watts, the smaller and less expensive RG-58/U can be used. However, when you buy IRG-58/U, be sure that the line is made by a reputable manufacturer (such as Amphenol or Belden). Some of the line made for TV installations is of inferior quality and is likely to have higher losses. The feed line was fed up through the mast pipe and through a $3 / 4$-inch hole in the 2 by 2 . An Amphenol 8:3-1Sl' fitting on the end of the cons line connects to the fomale fitting on the antenma.

Coupling to the Transmitter

It may be found that, when the feed line is eoupled to the trinsmitter, the antenna won't take power. Since the line is teminated at the
antenna in its eharacteristie impedance of 52 ohms, the output of the final r.f. amplifier must be adjusted to couple into a 52 -chm load. Where the output eoupling device is a variable link, all that may be nceded is the correct setting of the link. If the link is fixed, one end of the link can be grounded to the transmitter chassis and the other end of the link connected in series with a small variable capacitor to the inner conductor of the feed line. The outer conductor of the coas is grounded to the transmitter chassis. The eapaeitor is tuned to the point where the final amplifier is properly loaded. For transmitters having a pi-network output circuit, it is merely a matter of adjusting the network to the point where the amplifier is properly lowded.
(From QSTT, January, 1955.)

Fig. 14-62- Oureall view of the antenna and mounting. The feed line comes out of the botton of the mast and through the wall into the shack.

CHAPTER 15

Wave Propagation

Much of the appoal of amaten communication lies in the fact that the results are not always predictable. Transmission conditions on the same frequoney vary with the year, season and with the time of day. Although these variations usually follow certain estahlished patterns, many peculiar effects can be observed from time to time. Every radio amateur should have some understanding of the known faets about radio Wave propagation so that he will stand some chance of interpreting the unusual conditions
when they occur. The observant amateur is in an excellent position to make worthwhile contributions to the science, provided he hats sufficient background to understand his results. He may discover new facts about propagation at the veryhigh frequencies or in the microwave region, as amateurs have in the past. In fact, it is through amateur efforts that most of the extended-range possibilities of various radio frequencies have been discovered, either through accident or long and careful investigation.

Characteristics of Radio Waves

Radio waves, like other forms of electromarnetic radiation such as light. travel at a speed of $300,000,000$ meters per second in free spare, and can be refleeted, refracted, and diffracted.

As deseribed in the chapter on fundamentals, an electronagnetir wave is composed of moving fields of electric and magnetic force. The lines of force in the two fields are at right angles, and are

Fis. 1.5-1 - Representation of electrostatic and electromagnetic lines of force in a radio wave. Arrows indicate instantaneous directions of the fiefl- for a wave traveling toward the reader. Reversing the direction of one set of lines would reverse the direction of travel.
mutually perpendicular to the direction of travel. A simple representation of a wave is shown in Fig. 15-1. In this drawing the electric lines atre perpendicular to the carth and the magnetio lines are horizontal. They could, however, have any position with respect to earth so long as they remain perpendieular to earh other.
The plane containing the continuous lines of elestric and magnetic force shown by the grid- or mesh-like drawing in Fig. 15-1 is called the wave front.

The medium in which clectromagnetic waves travel has a marked influmee on the speed with
which they move. When the medium is empty spare the speed, as stated above, is $300,000,000$ meters per secomd. It is almost, but not quite, that great in air, and is much less in some other substanees. In dielectries, for example, the speed is inversely proportional to the dielectric constant of the material.
When a wave meets a good conductor it cannot penctrate it to any extent (although it will travel through a dielectric with case) hecause the eleetric lines of force are practically shortcircuited.

Polarization

The polarization of a radio wave is taken as the direction of the lines of force in the electric field. If the electric lines are perpendirular to the earth, the wave is said to be vertically polarized; if parallel with the carth, the wave is horizontally polarized. The longer waves, when traveling along the ground, usually maintain their polarization in the same plane as was generated at the antema. The polarization of shorter waves may be altered during travel, however, and sometimes will vary quite rapidly.

Spreading

The field intensity of a wave is inversely proportional to the distance from the source. Thus if one receiving point is twice as far from the transmitter as another, the field strength at the more distant point will be just half the field strength at the nearer point. This results from the fact that the energy in the wave front must be distributed over a greater area as the wave moves away from the source. This inverse-distance law is based on the assumption that there is nothing in the medium to absorb energy from the wave as it travels, which is true in free space but not in practical communication along the ground and through the atmosphere.

Types of Propagation

Aceording to the altitudes of the paths along which they are propagated, radio waves may
be classified as ionospheric waves, tropospheric waves or ground waves.

The ionospheric wave or sky wave is that part of the total radiation that is directed toward the ionosphere. Depending upon variable conditions in that region, as well as upon transmitting wavelength, the ionospheric wave may or may not be returned to earth by the effects of refraction and reflection.
The tropospheric wave is that part of the total radiation that undergoes refraction and reflection in regions of abrupt change of dielectric constant in the troposphere, such as the boundaries between air masses of differing temperature and moisture content.

The ground wave is that part of the total radia-

Fig. 15-2 - Showing how both direet and reflected waves may be received simultaneously.
tion that is directly affected by the presence of the earth and its surface features. The ground wave has two components. One is the surface wave, which is an earth-guided wave, and the other is the space wave (not to be confused with the ionospheric or sky wave). The space wave is itself the resultant of two components - the direct wave and the ground-reflected wave, as shown in Fig. 15-2.

Ionospheric Propagation

PROPERTIES OF THE IONOSPHERE

Except for distances of a few miles, nearly all amateur communication on frequencies below 30 Mc . is by means of the sky wave. Upon leaving the transmitting antenna, this wave travels upward from the earth's surface at such an angle that it would continue out into space were its path not bent sufficiently to bring it back to earth. The medium that causes such bending is the ionosphere, a region in the upper atmosphere, above a height of about 60 miles, where free ions and electrons exist in sufficient quantity to have an appreciable effect on the speed at which the waves travel.

The ionization in the upper atmosphere is believed to be caused by ultraviolet radiation from the sun. The ionosphere is not a single region but is composed of a series of layers of varying densities of ionization occurring at different heights. Each layer consists of a central region of relatively dense ionization that tapers off in intensity both above and below.

Refraction

The greater the intensity of ionization in a layer, the more the path of the wave is bent. The bending, or refraction (often also called reflection), also depends on the wavelength; the longer the wave, the more the path is bent for a given degree of ionization. Thus low-frequency waves are more readily bent than those of high frequency. For this reason the lower frequencies - 3.5 and 7 Mc. - are more "reliable" than the higher frequencies - 14 to 28 Mc ; there are times when the ionization is of such low value that waves of the latter frequency range are not bent enough to return to earth.

Absorption

In traveling through the ionosphere the wave gives up some of its energy by setting the ionized particles into motion. The energy absorption from this cause increases with the wavelength; that is, absorption is greater at lower frequencies. It also increases with the intensity of ionization,
and with the density of the atmosphere in the ionized region.

Virtual Height

Although an ionospheric layer is a region of considerable depth it is convenient to assign to it a definite height, called the virtual height. This is the height from which a simple reflection would give the same effect as the gradual bend-

Fig. 15-3 - Bending in the ionosphere, and the echo or reflection method of determining virtual height.
ing that actually takes place, as illustrated in Fig. 15-3. The wave traveling upward is bent back over a path having an appreciable radius of turning, and a measurable interval of time is consumed in the turning process. The virtual height is the height of a triangle having equal sides of a total length proportional to the time taken for the wave to travel from T to R.

Normal Structure of the Ionosphere

The lowest useful ionized layer is called the E layer. The average height of the region of maximum ionization is about 70 miles. The air at this height is sufficiently dense so that the ions and electrons set free by the sun's radiation do not travel far before they meet and recombine to form neutral particles, so the layer can maintain its normal intensity of ionization only in the presence of continuing radiation from the sun. Hence the ionization is greatest around local noon and practically disappears after sundown.

In the daytime there is a still lower ionized area, the D region. D-region ionization is propor-
tional to the height of the sun and is greatest at noon. Low-frequency waves (80 meters) are almost completely absorbed by this layer, and only the high-angle radiation is reflected by the E layer. (Lower-angle radiation travels farther through the D region and is absorbed.)
The second principal layer is the F layer which has a height of about 175 miles at night. At this altitude the air is so thin that recombination of ions and electrons takes place very slowly, because a particle can travel a relatively great distance before mecting another. The ionization decreases after sundown, reaching a minimum just before sunrise. In the daytime the F layer splits into two parts, the F_{1} and F_{2} layers, with average virtual heights of, respectively, 140 miles and 200 miles. These layers are most highly ionized at about local noon, and merge again at sunset into the F layer.

SKY-WAVE PROPAGATION

Wave Angle

The smaller the angle at which a wave leaves the earth, the less will be the bending required in the ionosphere to bring it back and, in general, the greater the distance between the point where it leaves the carth and that at which it returns. This is shown in Fig. 15-4. The vertical angle (such as the angle A in the figure) that the wave makes with a tangent to the earth is called the wave angle or angle of radiation.

Skip Distance

More bending is required to return the wave to earth when the wave angle is high, and at times the bending will not be sufficient unless the wave angle is smaller than some eritical value. This is illustrated in Fig. 15-4, where A and smaller angles give useful signals while waves sent at higher angles penetrate the layer and are not returned. The distance between T and R_{I} is, therefore, the shortest possible distance, at that particular frequency, over which communication by ionospheric refraction can be accomplished.

The area between the end of the useful ground wave and the beginning of ionospherie-wave reception is called the skip zone, and the distance from the transmitter to the nearest point where the sky wave returns to earth is called the skip distance. The extent of skip) zone depends upon the frequency and the state of the ionosphere, and also upon the height of the liver in which the refraction takes place. The higher layers give longer skip distances for the same wave angle. Wive angles at the transmitting and receiving points are usually, although not always, approximately the same for any given wave path.

Critical and Maximum Usable Frequencies

If the frequency is low enough, a wave sent vertically to the iono-
sphere will be reflected back down to the transmitting point. If the frequency is then gradually increased, eventually a frequency will be reached where this vertical reflection just fails to occur. This is the critical frequency for the layer under consideration. When the operating frequency is below the critical value there is no skip zone.

The critical frequency is a useful index to the highest frequency that can be used to transmit over a specified distance - the maximum usable frequency (m.u.f.). If the wave leaving the transmitting point at angle A in Fig. 15-4 is, for example, at a frequency of 14 Mc ., and if a higher frequency would skip over the receiving point R_{1}, then $1+$ Mc. is the m.u.f. for the distance from T to R_{1}.

The greatest possible distance is covered when the wave laves along the tangent to the earth; that is, at zero wave angle. Under average conditions this distance is about 4000 kilometers or 2500 miles for the F_{2} layer, and 2000 km . or 12.50 miles for the E layer. The distances vary with the layer height. Frequencies alove these limiting m.i.f.'s will not be returned to earth at any distance. The $4000-\mathrm{km}$. m.u.f. for the F_{2} layer is approximately 3 times the critical frequency for that layer, and for the E layer the $2000-\mathrm{km}$. m.u.f. is about 5 times the critical frequency.

Absorption in the ionosphere is least at the maximum usable frequency for the distance, and increases very rapidly as the frequency is lowered below the m.u.f. Consequently, best results with low power always are secured when the frequency is as close to the m.u.f. as possible.

It is readily possible for the ionospheric wave to pass through the E layer and be refracted back to earth from the F, F_{1} or F_{2} layers. This is because the critical frequencies are higher in the latter layers, so that a signal too high in frequency to be returned by the E layer can still come back from one of the others, depending upon the time of day and the existing conditions.

Multihop Transmission

On returning to the earth the wave can be reflected upward and travel again to the ionosphere. There it may once more be refracted, and

Fig. 15-1- Refraction of sky waves, showing the critical wave angle and the skip zone. Waves leaving the transmitter at angles above the critical (greater than A) are not bent enough to be returned to earth. As the angle is decreased, the waves return to carth at increasingly greater distances.
again bent back to earth. This process may be repeated several times. Multihop propagation of this mature is necessary for transmission over great distanes beathee of the limited heights of the layers and the curvature of the earth, which restrict the maximum one-hop distance to the values mentioned in the preceding section. However, ground losses absorb) some of the energy from the wave on each reflection (the amount of the loss varring with the type of ground and being least for reflection from sea water), and there is also abooption in the ionosphere at each reflection. Hence the smaller the number of hops the greator the signal strength at the reeceiver, other things being equal.

Fading

Two or more parts of the wave may follow slightly different paths in traveling to the rereiving point, in which rase the difference in path lengths will cause a phase difference to exist betwern the wave components at the reeeiving antema. The total field strength will be the sum of the components and may be larger or smaller than one component alone, sinee the phases may be such as either to aid or oppose. Sinee the paths change from time to time, this causes a variation in signal strength called fading. Fading can also result from the combination of single-hop and multihop waves, or the eombination of a ground wave with an iomospheric or tropospheric wave. The latter condition produees an area of severe fading in the region where the two waves have about the same intensity ; hetter reception is obtained at either shorter or longer distances where one component of the wave is considerably stronger than the other.

F'ading maty be either rapid or slow, the former type usually resulting from rapidl-changing conditions in the ionosphere, the latter occurring when transmission conditions are relatively stable.

It frequently happens that transmission conditions are different for waves of slightly different frequencies, so that in the case of voico-modulated transmission, involving sidebands differing slightly from the carrier in frequener, the carrier and various sideband components may not be propagated in the same relative amplitudes and phases they had at the transmitter. This offect, known as selective fading, causes severe distortion of the signal.

Scatter

Even though the operating frequency is above the m.u.f. for a given distance, it is usually possible to hear signals from within the skip zone. This phenomenon, called scatter, is caused by random reflections from distances beyond the skip zone. Such reflections ean oceur when the transmitted energe strikes the earth at a distance and some of it is reftected back into the skip zone to the receiver. Other possible satater sources are "patches" of ionization of different density than the average, or sporadic- E clouds (see later section). Scatter signals are weaker
than those nomally propagated, and also have a rapid fade or "flutter" that makes them easily recognizable.

OTHER FEATURES OF IONOSPHERIC PROPAGATION

Cyclic Variations in the Ionosphere

Since ionization depends upon ultraviolet radiation, conditions in the ionosphere vary with changes in the sun's radiation. In addition to the daily variation, seasonal changes result in higher critical frequencies in the E layer in summer, averaging about 4 Mc. as against a winter average of 3 Mc. The F layer shows little variation, the aritical frequency being of the order of 4 to 5 Mc. in the evening. The F_{1} layer, whieh has a critical frequency near $\boldsymbol{o}^{\mathrm{M}} \mathrm{M}$ e. in summer, usually disappears entirely in winter. The datime maximum critical frequencies for the F_{2} are highest in winter (10 to 12 Mc.) and lowest in summer (around 7 Me.). The virtat height of the F_{2} laver, which is about 185 miles in winter, averages 250 miles in summer, These values are representative of latitude 40 deg . North in the Western hemisphere, and are subject to eonsiderable variation in other parts of the world.

Very marked changes in ionization also oceur in step with the 11-year sunspot cycle. Although there is no apparent direct correlation between sumspot activity and ritical frequencies on a given day, there is a definite correlation between avernge sumspot artivity and eritical frequencies, The eritical frequencies are highest during sumspot maxima and lowest during sunspot minima. During the period of minimum sunspot aetivity the lower freauencies - 7 and 3.5 Mc. - frequently are the only usable bunds at night. At sueh times the 28-Me. band is seldom useful for long-distance work, while the 14-Mc. band performs woll in the daytime but is not ordinarily useful at night.

Ionosphere Storms

Certain types of sunspot activity cause considerable disturbances in the ionosphere (ionosphere storms) and are accompanied by disturbances in the earth's magnetic field (magnetic storms). Ionosphere storms are eharacterized by a marked increase in absorption, so that radio conditions become poor. The critical frequencies also drop to relatively low values during a storm, so that only the lower frequencies are useful for communication. Ionosphere storms may last from a few hous to several days. Since the sun rotates on its axis once every 28 dates, disturbances tend to recur at such intervals, if the sunspots responsible do not become inartive in the meantime. Ibsorption is usually low, and radio conditions therefore good, just preceding a storm.

Sporadic-E Ionization

Scattered patches or clouds of relatively dense ionization occasionally appear at heights approximately the same as that of the E layer, for rea-
sons not yet known. This sporadic- E ionization is most prevalent in the equatorial regions, where it is substantially continuous. In northern latitudes it is most frequent in the spring and early summer, but is present in some degree a fatir percontage of the time the sear 'round. It aceoments for a good deab of the night-time short distance work on the lower frequencies (3.5 and 7 Me.) and, when more intense, for similar work on 1 -t and 28 Mr. Dxepeptionally intense sporadic- E ionization is responsible for work over distances exceeding 400 or 500 miles on the $50-\mathrm{Me}$. bend.
There are indications of a relationship, between sporadic- E ionization and average sumspot activity, but it does not appear to be directly related to daylight and darknoss since it may oceur at any time of the day. However, there is an apparent tendency for the ionization to peak at mid-morning and in the carly evening.

Tropospheric Propagation

Changes in temperature and humidity of air masses in the lower atmosphere often permit work over greater than normal ground-wave distances on 28 Mc. and higher frequencies. The effect can be observed on 28 Me., but it is generally more marked on 50 and 144 Me . The subject is treated in detail later.

PREDICTION CHARTS

The Central Radio Propagation Laboratory of National Bureau of Standards offers prediction charts three months in advance, by means of which it is possible to predict with considerable acouracy the maximum usable frequency that will hold over any path on the earth during a monthly period. The charts can be oltained from the Superintendent of Documents, U. S. Government Printing Office, Washington 25, D. (. for 10 cents a copy or $\$ 1.00$ per year. They are called "CRPL $-D$ Basic Radio Propagation I'redictions."

P PROPAGATION IN THE 3.5 TO 30-MC. BANDS

The 1.8-Mc., or " 160 -meter," band offers reliable working over ranges up to 25 miles or so during daylight. On winter nights, ranges up to several thousand miles are not impossible. (Inly. small sections of the band are currently available to amateurs, because of the presence of the loman service in that part of the spectrum. The pulsetype interference sometimes caused by loran can be readily eliminated by using an audio limiter in the receiver.

The 3.5 -Mc., or " 80 -meter," band is a more useful hand during the night than during the daylight hours. In the daytime, one can seldom hear signals from a distance of greater than 200 miles or so, but during the darkness hours distances up to several thousand miles are not unusual, and transoceanic contats are regularly made during the winter months. During the summer, the static level is high in some parts of the world.

The $\overline{\text { T Me. M }}$, or " 40 -meter," band has many of the same characteristics as 3.5 , except that the distances that can be covered during the day and night hours are increased. During daylight, distances up to a thousand miles can be covered under good conditions, and during the dawn and dusk periods in winter it is possible to work stations as far as the other side of the world, the signals following the darkness path. The winter months are somewhat better than the summer ones. In general, summer static is much less of a problem than on 80 meters, although it can be serious in the semitropical zones.

The 1t-Mc., or "20-meter," band is probably the best one for long-distance work. Juring the high portion of the sumspot eycle it is open to some part of the world during prastically all of the 24 hours, while during as sunspot minimum it is generally useful only during daylight hours and the dawn and dusk periods. There is always a skip zone on this band.

The 21-Mc., or "15-meter," band shews highly variable eharacteristics depending on the sunspot cyele. During sumspot maxima it is useful for long-distance work during a large part of the elt hours, but in years of low sunspot activity it is almost wholly a daytime band, and sometimes unusable even in daytime. However, it is often possible to maintain communication over distances up to 1500 miles or more by sporadic- E ionization (deseribed later), which may oecur either day or night at any time in the sunspot cycle.
The 27-Mc. ("11-meter") and 28-Mc. (" $10-$ meter") bands are generally eonsidered to be DK bands during the daylight hours and good for local work during the hours of darkness, for about half the sunspot cycle. At the very peak of the sumspot cercle, they may be "open" into the late evening hours for INX communication. At the sumspot minimum these bands are usuably "dead" for long-distance communication, by means of the F_{2} layer, in the northern latitudes. Nevertheless, sporadie- E propargation is likely to occur at any time, just is in the case of the 21-Mc. band.

Propagation Above 50 Mc .

The importance to the amateur of having some knowledge of wave propagation was stressed at the beginning of this chanter. An understanding of the means by which his signals reach their destination is an even greater aid to the v.h.f.
worker. Each of his bands shows different characteristics, and knowledge of their peculiarities is as yet far from eomplete. The observant user of the amateur v.h.f. assignments has a good opportunity to contribute to that knowledge, and
his enjoyment of his work will be greatly enhanced if he knows when to expect unusual propagation conditions.

CHARACTERISTICS OF THE V.H.F. BANDS

An outstanding feature of our bands from 50 Mc. up is their ability to provide consistent and interference-free communication within a limited range. All lower frequencies are subject to varying conditions that impair their effectiveness for work over distances of 100 miles or less at least part of the time, and the heavy occupancy they support results in severe interference problems in areas of dense population. The v.h.f. bands, being much wider, can handle many times the amateur population without crowding, and their eharacteristics for local work are more stable. It is thus to the advantage of amateur radio as a whole to make use of 50 Mc. and higher bands for short-range communieation wherever possible.

In addition to reliable local coverage, the v.h.f. bands also exhibit several forms of longdistance propagation at times, and use of 50 and 144 Mc. has been taken up in recent years by many isolated amateurs who must depend on these propagation peculiarities for all or most of their contacts. It is particularly important to these operators that they understand common propagation phenomena. The material to follow supplements information presented earlier in this chipter, dealing with wave propagation only as it affeets the occupants of the world above 50 Me. First let us consider the bands individually.

50 to 54 Mc.: This band is borderline territory between the IDX frequencies and those normally employed for local work. Thus just about every form of wave propagation found throughout the radio spectrum appears, on occasion, in the 50 Mc. region. This has contributed greatly to the popularity of the $50-\mathrm{Mc}$. band.

During the peak years of a sunspot ryele it is oceasionally possible to work $50-\mathrm{Me}$. DX of world-wide proportions, by reflection of signals from the F_{2} layer. Sporadic- E skip provides contacts over distances from 400 to 2500 miles or so during the early summer months, regardless of the solar eyele. Reflection from the aurora regions allows 100 - to 600 -mile work during pronounced ionospherie disturbances. The ever-changing weather pattern offers extension of the normal coverage to as much as 300 to 500 miles. This develops most often during the warmer months, but may oceur at any season. In the absence of any favorable propagation, the average wellequipped $50-\mathrm{Me}$. station should be able to work regularly over a radius of 75 to 100 miles or more, depending on local terrain.

144 to 148 Mc .: Ionospheric effects are greatly reduced at 144 Me. F_{2}-layer reflection is unlikely, and sporadic- E skip is rare. Aurora DX is fairly common, but signals are generally weaker than on 50 Mc . Tropospheric effects are more pro-
nounced than on 50 Me ., and distances covered during favorable weather conditions are greater than on lower bands. Air-mass boundary bending has been responsible for communication on 144 Me. over distanees in excess of 1100 miles, and 500 -mile work is fairly common in the warmer months. The reliable range under normal conditions is slightly less than on 50 Me ., with comparable equipment.
220 Mc. and Higher: Ionospherie propagation is unlikely at 220 Me . and up, but tropospherie bending is more prevalent than on lower bands. Amateur experience on 220 and 420 Mc . is showing that they can be as useful as 144 Mc., when comparable equipment is used. Under minimum conditions the range may be slightly shorter, but when signals are good on 144 Mc., they may be better on 220 or 420 . Even above 1000 Mc. there is evidence of tropospheric DX .

PROPAGATION PHENOMENA

The various known means by which v.h.f. signals may be propagated over unusual distances are discussed below.
F_{2}-Layer Reflection: Most contacts made on 28 Me. and lower frequencies are the result of reflection of the wave by the F_{2} layer, the ionization density of which varies with solar activity, the highest frequencies being reflected at the peak of the 11-year solar cycle. The maximum usable frequency (m.u.f.) for F_{2} reflection also follows other well-defined cyeles, daily, monthly, and seasonal, all related to conditions on the sun and its position with respect to the earth.

At the low point of the 11-year eyele, such as in the early ' 50 s , the m.u.f. may reach 28 Me . only during a short period each spring and fall, whereas it may go to 60 Mc. or higher at the peak of the cycle. The fall of 1946 saw the first authentic instances of long-distance work on 50 Me. by F_{2}-layer reflection, and as late as 1950 contacts were made in the more favorable areas of the world by this medium. The rising eurve of the current solar cycle indicates that F_{2} DX on 50 Mc . may be possible in the tropical latitudes in the winter of $1956-7$, spreading farther north and south by the fall of 1957. Loss of the $50-$ Me. band to television in Europe and Australia will limit the scope of $50-\mathrm{Me}$. DX in years to come.

The F_{2} m.u.f. is readily determined by observation, and it may be estimated quite accurately for any path at any time. It is predictable for months in advance, enabling the v.h.f. worker to arrange test sehedules with distant stations at propitious times. As there are numerous commercial signals, both harmonies and fundamental transmissions, on the air in the range between 28 and 50 Mc., it is possible to determine the approximate m.u.f. by careful listening in this range. Daily observations will show if the m.u.f. is rising or falling, and once the peak for a given month is determined it can be assumed that another will oecur about 27 days later, this cycle coinciding with the turning of

Fig. 15-5 - The principal means hy which v.h.f. signals may be returned to earth, showing the approximate distanees over which they are effeetive. 'The F_{2} layer, highest of the refiecting layers, may provide $50-\mathrm{Mc}$. DX at the peak of the 11 -year sunspot eyele. Sueh communieation may be world-wide it scope. Sporadic ionization of the E region produces the familiar "short skip" on 28 and $\mathbf{5 0}$ We. It is most common in carly summer and in late December, but may oceur at any time, regardless of the sumspot cycle. Refraction of v.h.f. waves also takes place at airmass boundaries in the lower atmosphere, making possible communieation over distanees of several hundred miles on all v.h.f. bands. Normally it exhibits no skip zone.
the sun on its axis. The working range, via F_{2} skip, is roughly comparable to that on 28 Mc., though the minimum distance is somewhat longer. Two-way work on 50 Mc . by reflection from the F_{2} layer has been accomplished over distanees from 2200 to 10,500 miles. The maximum frequency for F_{2} reflection is believed to be about 70 Mc .
Sporadic-E Skip: Patchy concentrations of ionization in the E-layer region are often responsible for reflection of signals on 28 and 50 Mc . This is the popular "short skip" that provides fine contacts on hoth bands in the range between 400 and $1: 300$ miles. It is most common in May, June and July, during morning and carly evening hours, but it may oecur at any time or season. Multiple-hop effects may appear, when ionization develops simultaneously over large areas, making possible work over distances of more than 2500 miles.

The upper limit of frequency for sporadic- E skip is not positively known, but scattered instances of $144-\mathrm{Mc}$. propagation over distances in excess of 1000 miles indicate that E-layer reflection, possibly aided by tropospheric effects, may be responsible.

Aurora Effert: Low-frequency communication is occasionally wiped out by absorption in the ionosphere, when ionospheric storms, associated with variations in the earth's magnetic field, occur. During such disturlances, however, v.h.f. signals may be reffected back to earth, making communication possible over distances not normally workable in the v.h.f. range. Magnetic storms may be aecompanied by an aurora-borealis display, if the disturbance occurs at night and visibility is good. Aiming a directional array at
the auroral curtain will bring in signals strongest, regardless of the true direction to the transmitting station.

Aurora-reflected signals are characterized by a rapid flutter, which lends a "dribbling" sound to 28 -Mc. carriers and may render modulation on $50-$ and $144-\mathrm{Mc}$. signals completely unreadable. The only satisfactory means of communication then becomes straight c.w. The effect may be noticeable on signals from any distance other than purdy local, and stations up to about 800 miles in any direction may he worked at the peak of the disturbance. Unlike the two methods of propagation previously described, aurora effect exhibits no skip zone. It is observed frequently on 50 and 144 Me . in northeastern U. S. A., usually in the carly evening hours. The highest frequency for auroral reflection is not yet known, but pronounced disturbanees have permitted work by this medium in the $220-\mathrm{Me}$. band.

Tropospheric Bending: The most common form of v.h.f. DX is the extension of the normal operating range associated with casily observed weather phenomena. It is the result of the change in refractive index of the atmosphere at the boundary between air masses of differing temperature and humidity characteristirs. Such airmass boundaries usually lie along the western or southern edges of a stable slow-moving area of high barometric pressure (fair calm weather) in the period prior to the arrival of a storm.

A typical upper-air sounding showing temperature and water-vapor gradients favorable to v.h.f. DN is shown in Fig. 15-6. An increase in temperature and a sharp drop in water-vapor
gradient are seen at about 4000 feet, in comparison to the U.S. Standard Atmosphere curves at the left.

Such a favorable eondition develops most often in the late summer or early fall, along the juncbion between air masses that may have come together from such widely-separated points as the Gulf of Mexioo and Northern Canada. Under stable weather conditions the two air masses may retain their original character for several

Wave range, and there is good evidence to indicate that our assignments in the u.h.f. and s.h.f. portions of the frequency speetrum may someday support communication over distances far in excess of the optical range.

Scaller: When long-distance communication is possible on 50 Mr ., stations within the skip zone may be heard with a wavery quality indicative of multipath reception. Such signals have traversed a normal ionospheric path, via either the F_{2} or E

Fig. 15-6 - LTpperair conditions that produce extended-range communication on the v.h.f. bands. At the left is shown the U.S. Standard Atmosphere temperature enrve. The humidity eurve (dotted) is that which would result if the relative humidity were $\mathbf{7 0}$ per cent from the ground level to 12,000 feet elevation, There is only slight re. fraction under this standard condition, At the right is shown a sounding that is typical of marked refraction of $v, h . f$, waves. Figures in parentheses are the "mixing ratio" - grams of water vapor per kilogram of dry air. Note the sharp break in both curves at about 4000 fect. (From (ollier, "Upper \cdot. ir Comditions for 2 . Neter I) X," OST", September, 1955.)
days at a time, usually moving slowly eastward across the country. When the path between two v.h.f. stations separated by fifty to several hundred miles lies along such a boundary, signal levels run far above the average value.

Many factors other than air-mass movement of a continental character provide increased v.h.f. operating range. The convection along coastal areas in warm weather is a good example. The rapid cooling of the earth after a hot day in summer, with the air aloft cooling more slowly, is another, producing a rise in signal strength in the period around sundown. The carly-morning hours, when the sun heats the air aloft, before the temperature of the earth's surface begins to rise, may be the best of the day for extended v.h.f. range, particularly in clear, ralm weather, when the barometer is high and the humidity low.

The v.h.f. enthusiast soon learns to correlate various weather manifestations with radiopropagation phenomena. By watching temperature, barometric: pressure, changing cloud formations, wind direction, visibility, and other easilyolserved weather signs, he can tell with a reasonable degree of aceuracy what is in prospect on the v.h.f. bands.

The responsiveness of radio waves to varying weather conditions increases with frequency: The $50-\mathrm{Mc}$. band is more sensitive to weather variations then is the 28-Mc, band, and the $144-$ Mc. band may show strong signals from far beyond visual distances when lower frequencies are relatively inactive. It is probable that this tendency continues on up through the micro-
layor, and a small amount of energy has returned to the receiver by reflection from a distant point on the earth's surface. The process is similar to that of a radar echo, except that an ionospheric route is followed.

The effeet is most marked with high-gain directional arrays and high transmitter power. The direction from which scatter signals are observed indicates the region of most intense ionization, and adaptations of radar methols make it possible to "sound" the ionosphere to deternine what distances and directions may be covered on a given frequency.

Reflections from . Meteor Trails: Probably the least-known means of v.h.f. wave propagation is that resulting from the passage of meteors across the signal path. Ireflections from the ionized meteor trails may be noted as a Doppler-effeet whisthe on the carrier of a signal already being roceived, or they may cause bursts of reception from stations not normally receivable. Ordinarily such reflections are of little value in communication, since the increases in signal strength are of short duration, but meteor showers of considerable magnitude and duration may provide fluttery signals from distances up to 1500 miles or more on both 50 and 144 Mc .

As meteor-hurst signals are relatively weak, their detection is greatly aided if high power and high-gain antennas are used. Two-way communication of sorts has been carried on by this medium on 50 and 144 Me. over distances of 800 to 1300 miles, through the use of short c.w. transmissions and frequent repetition.

V.H.F. Receivers

Even more than in work on lower frequencies, rereiver performance is all-important in the v.h.f. station. lligh sensitivity and good signal-to-noise ratio, neressary attributes in a reeeiving system for 50 Mc . and higher bands, are best attained through the use of a converter, working in conjunction with a commanications receiver designed for lower frequencies. Though receivers and eonverters for 50,144 , and even 220 and 420 Mc . are available on the amateur market, the v.h.f. worker ean build his own with fully as good results, and at a considerable saving in cost.

In its basic principles, modern recerving equipment for these bands differs little from that employed on lower frequencies, and the same order of selectivity may be used in amateur work up to at leasit 450 Me . The greatest practical seleretivity should be used in v.h.f. work, as well as on the frequencies below 30 Mc , as it not only permits more stations to oprerate in a given band, but is an important factor in improving the signal-to-moise ratio. The effective sensitivity of a recoiver having "communication" selectivity can be made considerably better than is possible with broadband systems. Fïst on iff Me, more than a decade ago, then more recontly on 144 Mr ., and rurrently on 220 and 420 Mc ., the change to selective superheterodyne receivers marked the begiming of real extensions of the operating range.

The superregenerative reeoiver, ohere very popular for v.h.f. work, is now used principally for portable operation, or for other applications where maximum semsitivity and selectivity are not of prime importance. It is still capable of surprising periormance, for a given momber of tubes and components, hut its lack of selecotivity, its poor signal-to-moise ratio, and its tondency to radiate a strong interfering signad rule cout the superregenerator as a fixed-station receiver in areas where there is appreciable v.h.f. antivity.

R.F. AMPLIFIER DESIGN

The amonnt of noise generated within the receiver itself is an important factor in the offectiveness of v.h.f. receiving gear. At lower frequencies the external noise is a limiting factor, but at oto Me. and higher the receiver moise figure, gatin and selectivity determine the
ability of the system to respond to weak signals, l'roper selection of r.f. amplifier tubes and appropriate ribuit design aimed at low noise figure are of more importance in the v.h.f. receiver "front cad" than mere gain.

Cortain triode or triodo-comeseted pentode tubes have been found superior in this respect, their superiority becoming more pronounced as we go higher in frequenty. At $1+4 \mathrm{Mc}$., for instance, a triode r.f. stage may give substantially the same gain as a pentode, but with a nuch lower moise figure. With the exception of the simplest unit, the equipment described in the following pages incorporates low-noise r.f. amplifier technigue.

When triodes are used as r.f. amplifiers some form of neutralization of the grid-plate capacitance is required. This can be capacitive, as is commonly uscd in transmitting applications,

Fig. 16.1 - Sidematir diagram of a push-pull r.f. amplifier for v.h.f. rereiver use. 'This circuit is will suited to use with anterna systems fed by balanced limes. Coil and condenser sizes will he govermed tiy the hand for whids the amplifier is to be used.
(.1-0.005- - fol. dise veramic.

Cos - Neutralizing eapacitance, abont $-\mu \mu \mathrm{fd}$. May be made from lengths of $\overline{\mathbf{S o n h m}}$ 'I win-lead about $11 / 2$ inches fons. Plastic-sleeve 'T'V trimmers are also a a ailable.
$1 h_{1}-1.00$ ohns, $1 / 2$-watt carhon.
R_{2} - 1000 ohms, $1 / 2$-watt carbon.
or inductive. The altermative to neutralization is the use of grounded-grid technique. Circuits for v.h.f. triode r.f. amplifior stages are given in Figs. 16-1 through 16-4.

A dual triode operated as a neutralized push-pull amplifier is shown at $16-1$. This arrangement is well adapted to v.h.f. preamplifier applications, or as the first sfage in a converter, particularly when a balaneed transmission line such as the popular 300 -ohm Twin-lead is used. It is relatively selective

Fig. 16-2- (:ircuit of the cascole r.f. amplifier. Preferred antenna coupling methods for coaxial or balanced lines are shown. The first r.f. grid coil, and the neutralizing coil, L_{N}, should be a high-Q design. Other coils are not eritical as to Q. $\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{4}, \mathrm{C}_{5}-\mathbf{0} 0005 \mathrm{ffd}$. dise eeramic.
$\mathrm{C}_{3}, \mathrm{C}_{6}-50-\mu \mu \mathrm{fd}$. ceramic.
$\mathrm{K}_{1}, \mathrm{~K}_{2}$ - 100 ohms, $1 / 2$-watt carbon.
$R_{3}, R_{4}-1000$ ohms, $1 / 2$-wat carbon.
L_{N} - Should resonate at signal fregueney with 6 AK 5 grid. plate eapacitance.
and may require resistive loading of the plate circuit, when used as a preamplifier. The loading effect of the following circuit may be sufficient to give the required bandwidth, when the push-pull stage is inductively coupled to the mixer.

A two-stage triode amplifier having excellent noise figure and broadhand characteristies is shown in Fig. 1fi-2. Commonly called the cascode, it uses a triode or triode-comnected pentode followed hy a triode grounded-grid stage. This circuit is extremely stable and uneritical in adjustment. At 50 Me . and higher its over-all gain is at least equal to the best single-stage pentode amplifier and its noise figure is far lower.

Neutralization is acomplished by the coil L_{N}, whose value is such that it resonates at the signal frequency with the grid-plate capacitance of the tube. Its inductance is not critical; it may be omitted from the circuit without the stage going into oscillation, but neutralization results in a lower noise figure than is possible without it. Any of several v.h.f. tubes may be used in the cascode circuit, the most popular arrangement being the 6AK5-6.J6 combination, Fig. 1(i)2.

A simplified version of the cascolle, using a dual triode tube designed especially for this application, is shown in Fig. 16-3. liy reducing stray capacitanee. through direct coupling between the two triode sections, this circuit
makes for improved performance at the frequencies above 100 Mc . The two sections of the tube are in series, as far as plate voltage is concerned, so it requires higher voltage than the other cireuits shown.

The neutralization process for the cascode and neutralized-triode amplifiers is somewhat similar. With the cireuit operating normally the noutralizing adjustments (capacitance of C_{N} in Fig. 16-1; inductance of L_{N} in Figs. 16-2 and 16-3) can be set for best signal-to-noise ratio. The middle of the range over which no oscillation occurs is approximately the proper setting. The best results are obtained using a noise generator, adjusting for lowest noise figure, but the method described above provides a íair approximation. Noise generators and their use in v.h.f. recoiver adjustment are treated in July, 1053, QSTT, page 10.

Grounded-grid r.f. amplifier technique is illustrated in Figs. 16-4 and 16-25. Here the input is in the cathode lead, with the grid of the tube grounded, to act as a shield between cathode and plate. The groundedgrid circuit is stable and easily adjusted, and is well adapted to broadband applications. The gain per stage is low, so that two or more stages may he required.

Choice of tubes is fairly limited, the best for the job being the $6 \mathrm{~J} 4,6 \mathrm{AN} 4,6 \mathrm{AJ} 4$ and 6 AMI 4 , triodes especially designed for grounded-grid service. The 6J6 is used occasionally, as in Fig. 16-2. Disc-seal tubes such as the "lighthouse" and "pencil tube" types are often used as r.f. amplifiers above 500 Me ., and the new ceramic tubes show great possibiities for r.f. amplifier service in the u.h.f. range.

Great care should be used in adjusting the r.f. portion of a v.h.f. receiver. If it is working properly it will control the noise figure of the entire system.

Fig. 16-3-Simplified version of the eascode eircuit for $6 \mathrm{BQ} 7,6 \mathrm{BK} 7$ or $6 \mathrm{BZ7}$ dual triodes. This circuit is partieularly effective at 144 Me. and higher. Coil and condenser values not given depend on frequency. The neutralizing coil, L_{x}, should resonate at the signal frequency. R.f. chohes in the heater cireuit should be resonant with the plate-to-ground capacitance of the first triode section, at the highest frequency to be covered, They are bifilar wound.

Fig. $16-4$ - Grounded-grid r.f. amplifier. Position of cathode taps on coils should be adjusted for lowest noise figure.
$\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C}_{5}, \mathrm{C}_{6}-0.005-\mu \mathrm{fd}$. dise ceramic.
$\mathrm{C}_{4}-50-\mu \mu \mathrm{fd}$. ceramic.
$\mathrm{K}_{1}, \mathrm{~K}_{3}-220$ ohms, $1 / 2$-watt carbon.
$\mathrm{R}_{2}, \mathrm{~K}_{4}-470$ ohms, $1 / 2$-watt carbon.

- MIXER CIRCUITS

Triode tubes are favored for v.h.f. applications, as they are less critical as to operating conditions and the highest frequency at which they will operate satisfactorily is well above that of most pentodes. When used in converters having no r.f. amplifier stage triodes are usually quieter in operation as well.

A simple triode mixer circuit is shown in Fig. 16-5A. The grid circuit is tuned to the signal frequency, the plate circuit to the intermediate frequency. A dual-triode version is given at 13 . The latter is particularly suitable for use at the higher frequencies. Frequently a

Fig. 16-5 - Two types of triode mixers suitable for v.h.f. receivers. A single-ended triode circuit is shown at A. The tube may be half of a dual triode, with the other portion used as the oscillator, or separate tubes may be used. 'l'be dual.triode version, B, is particularly useful for 144 Mc . and higher bands.
$\mathrm{C}_{1}-50-\mu \mu \mathrm{fd}$. ceramic or mica.
$\mathrm{C}_{2}, \mathrm{C}_{6}-30-$ to $50-\mu \mu \mathrm{fd}$. ceramic or mica.
$\mathrm{C}_{3}, \mathrm{C}_{4}, \mathrm{C}_{5}-0.005-\mu \mathrm{fd}$. dise ceramic.
$\mathrm{R}_{1}-1$ megohm, $1 / 2$ watt.
$\mathrm{R}_{2}, \mathrm{R}_{4}-1000$ ohms, $1 / 2$ watt.
$\mathrm{R}_{3}-150$ ohms. $1 / 2$ watt.
dual triode is used as a combination mixer-oscillator, using the circuits of Figs. 16-5A and 166 A . The amount of oscillator injection is usually not eritical, but in the interest of stability it should be kept as low as practical. In dual triodes having separate cathodes (7F8, 12AT7, 2 C 51 , etc.) some external coupling may be required, but the common cathode of the 6 JJ 6 will provide sufficient injection in most cases. If the injection is more than necessary it can be reduced by dropping the oscillator plate voltage, either directly or by increasing the value of the dropping resistor, R_{1}.
A pentode mixer may be less subject to oscillator pulling than a triode, and it will probably require less injection voltage. If a pentode mixer is used, its plate current slould be held to the lowest usable value, to reduce tube noise. This may be controlled by varying the mixer screen voltage. A common use of pentode mixers in v.h.f. work is in the interest of simplicity of circuit layout, as in multiband converters employing bandswitching.

Occasionally oscillation near the signal frequency may be encountered in v.h.f. mixers. This ustally results from stray lead inductance in the mixer plate circuit, and is most common with triode mixers. It may be corrected by connecting a small capacitance from plate to cathode, direclly at the tube socket. Ten to $25 \mu \mu \mathrm{fd}$. will be sufficient, depending on the signal frequency.

oscillator stability

When a high-selectivity i.f. system is employed in v.h.f. reception, the stability of the oscillator is extremely important. Slight variations in oscillator frequency that would not be noticed when a broadband i.f, amplifier is used become intolerable when the passband is reduced to crystal-filter proportions.

One satisfactory solution to this problem is the use of a crystal-controlled oscillator, with frequency multipliers if needed, to supply the injection voltage. Such a converter usually employs one or more broadband r.f. amplifier stages, and tuning is done by varying the intermediate frequency to cover the desired frequency range.

When a tunable oscillator and a fixed intermediate frequency are used, special attention must be paid to the oscillator design, to be sure that it is mechanically and electrically stable. The tuning condenser should be solidly built, preferably of the double-bearing type. Splitstator condensers specifically designed for v.h.f. service, usually having ball-bearing end plates and special construction to insure short leads, are well worth their extra cost. Leads should be made with stiff wire, to reduce vibra-
tion effects. Mechanical stability of air-wound coils can be improved by tying the turns together with narrow strips of household cement at several points.

Recommended oscillator circuits for v.h.f. work are shown in Fig. li-6. The single-ended oseillator may be used for 50 or 144 Me. with good results. The push-pull version is recommonded for higher frequencies and may also be used on the two lower bands, as well. Circuit A works well with almost any small triode, the ($\mathrm{AB} 4,6 \mathrm{AF} 4$ or one half of a $6 . \mathrm{J} G$ or 12 AT 7 being most commonly used. The 6 J (is well suited to push-pull applications, as shown in circuit 16-613.

Fig. 16.6- Recommended cirevits for v.h.f. oseillators. The push pull arrangement at 13 is recommended for 220 and 4.0 Mr., particularly.
$\mathrm{C}_{1}-50 \mu \mu \mathrm{fll}$.
R_{1} - Any small carbon resistor, 1000 ohms or less.
$\mathrm{R}_{2}-10,000$ ohms, $1 / 2$ watt.
$R_{3}-3000$ to 5000 ohms, $1 / 2$ watt.

THE I.F. AMPLIFIER

Superheterodyne receivers for 50 Mc . and up should have fairly high intermediate frequencies, to reduce both oscillator pulling and image response. Approximately 10 per cent of the signal frequency is commonly used, with 10.7 Mc. being set up as the standard i.f. for commercially-built FM receivers. This particular frequency has a disadvantage for $50-\mathrm{Mc}$. work, in that it makes the receiver subject to image response from 28 -Mc. signals, if the oseillator is on the low side of the signal frequency. A spot around 7 Mc . is favored for amateur converter service, as practically all communications receivers are capable of tuning this range.

For seleetivity with a reasonable number of i.f. stages, double conversion is usually employed in complete reccivers for the v.h.f. range. A 7 -Mc. intermediate frequency, for instance, is changed to 455 kc ., by the addition of a second mixer-oseillator. This procedure is, of course, inherent in the use of a v.h.f. converter ahead of a communications receiver.

If the receiver so used is lacking in sensitivity, the over-all gain of the converter-receiver combination may be inadequate. This can be corrected by building an i.f. amplifier stage into the converter itself. Such a stage is useful even when the gain of the system is adequate without it, as the gain control can be used to
permit operation of the converter with receivers of widely-different performance. If the reeciver hats an S-meter, its adjustment may be left in the position used for lower frequencies, and the converter gain set so as to make the meter read normally on v.h.f. signals.

Where reception of wide-band FM or unstable signals of modulated oscillators is desired, a converter maly be used ahead of an FM broadcast recoiver. A superregenerative detector operating at the intermediate frequency, with or without additional i,f. amplifier stages, also may serve as an i.f. and detector system for reception of wideband signals. Byy using a high i.f. (10 to 30 Mc , or so) and by resistive loading of the i.f. transformers, almost any desired degree of bandwidth can be secured, providing good voice quality on all but the most unstable signals. Any of these methods may be used for reception in the mierowave region, where stabilized transmission is extremely difficult at the current state of the art.

- THE SUPERREGENERATIVE RECEIVER

The simplest type of v.h.f. recciver is the superregenerator. It affords fair sensitivity with fow tubes and elementary circuits, but its weaknesses, listed earlier, have relegated it to applications where small size and low power consumption are important considerations.

Fig, 16.7 - Super. regencrative deteetor circuit using a self-quenched detertor. $L_{2} \mathrm{Cil}_{1}$ tunces to the signal frecuency. Typical values for other components are given below.
$\mathrm{C}_{2}-47 \mu \mu \mathrm{fd}$.
C3-0.001 to $0.005 \mu \mathrm{dd}$.
$\mathrm{h}_{1}-2$ to 10 megohins.
R_{2} - 50,000 -ohm potentioneter.
$13_{3}-47,000$ ohms, 1 watt.
IRFC - Single-layer r.f. ehoke. for frequeney in volved. T_{1} - Interstage audio transformer.

Its sensitivity results from the use of an alternating quenching voltage, usually in the range betwern 20 and 200 kc ., to interrupt the normal oscillation of a regencrative detector. The regeneration can thus be increased far beyond the amount usable in a straight regenerative circuit. The detector itself can be made to furnish the quenching voltage, or a separate oscillator tube can be used. Regeneration is usually controlled bev varying the plate voltage in triode detectors, or the sereen voltage in the case of pentodes. A typical circuit is shown in Fig. 16-7.

Crystal-Controlled Converters for 50,144 and 220 Mc.

The family of converters shown in Figs. 16-8 through 16-16 was designed to provide optimum reception on all v.h.f. bands. Crystal-controlled injection is used to insure stability, and the r.f. cireuit design provides the lowest practical noise figure for each frequeney. Sperial attention has been paid to the reduction of spurious responses, of ten a troublesome point in broadband converter design. A separate converter section for each band connerts to a common i.f. amplifier and power supply by means of a single plug and cable. This carries the mixer output, and plate and filament voltages.

The R.F. Circuits

A pentode r.f. amplifier (6 Cl 36) is used in the 50-Mc. converter in the interest of simplicity. With proper design, such a stage can be made to deliver a satisfactory noise figure at 50 Mc . Its performance is quite adequate: it will be found that outside noise picked up by the antenna will be the limiting factor in weak-signal reception, even in a quiet receiving location.

The 144 -and 220-Mc. converters have modified cascode circuits with dual triodes (6BQ7A, 6BK゙7 or $\left(6 B^{\prime} / 7\right)$ in the first stages. The $220-\mathrm{Mc}$. converter has an additional pentode stage, to build up the gain and improve the ability of the converter to rejert unwanted frequencies. It will be noted that the converters differ somewhat as to rircuitry in other respects, but this was done primarily to show examples of various cireuit teedniques, rather than because of any superiority of one approach over another. This applies partioularly to the methods of coupling between stares.

When a fixed injection frequency is used with a variable intermediate frequency, the r.f. and i.f.
circuits of the eonverter must be made broalband, to avoid the need for readjusting them as the receiver with which the converter is used is tuned across the i.f. range. Spurious res, onses, both at the i.f. range and at frequencies arljacent to the desired signal frequencies, pose a special problem. Bandpass charucteristies are attained through the use of overcoupled double-tuned circuits in the converter r.f. circuits. These circuits present a high impedance at the signal frequency, but they look like a short eireuit to signads in the i.f. range that are picked up by the antenna.

Spurious responses that might develop as the result of the injection of unwanted frequencies at the mixer grid are reduced by the use of a spmarate tube for the mixer, and coupling the injection voltage from the multiplier stage through a link. lsolation of the mixer and multiplier stages is firther increased in the 144 - and $220-\mathrm{Me}$. converters by the installation of a shield partition along the middle of the base plate.

Crystal Oscillator Details

Crystal frequencies were selected so that all bands would start at the same spot on the communications receiver dial: in this case 7000 ke . Crystal frequencies, multiplier details and i.f. tuning ranges are shown in Table $16-I$. Other i.f. tuning ranges that may be better suited to some communirations reveivers may be employed by suitable alteration of the reystal and multiplier frequencies.

A fairly high oseillator frequency is desirable, to reduce the possibility of oscillator harmonies apporing in the tuning range, as well as to keep down the number of multiplier stages. Wach eon-

Fis. I6-8- Crystalcontrolled converters for 220 , 144 and 50 Mc. (l. tor.) with their common i.f. amplifier and power supply. All chassis are standard sizes, requiring a minimum of metal work.

verter in this series uses a roadily-obtainable crystal operating on its third overtone. This may result in a frequency of oscillation that is not exactly three times that marked on the crystal, but it is close emough for ordinary cabibration purposes. Overtone erystals of the desired frequency may be obtained on order, at somewhat higher prices than for funclamental-t tpe crystals. Conventional operation of ervatals in the 7 -Mre. range, making up the multiplication with additional stages, is not recommended because of the difficulty in avoiding birdies from erystal harmonies. In the overtone circuit, no frequency lower than the overtone at which the erystal oseillates is heard.

Layout

Each converter is built on a single 5×7-inch aluminum plate, and mounted on a standard chassis that serves as shielding and case. The three $5 \times 7 \times 3$-inch chassis are bolted to the back of the i.f. unit, to be deseribed later. In this way mach converter is a separate entity, permitting the constructor to buikt any one of them, omitting those bands in which he may not be interested. The shape of the i.f. unit is not important, and it could very readily be built in more comparet fashion if less than the three converters are planned. The method of construction shown requires a minimum of metal work, and a converter can be rebuilt or replaced without affeeting the operation of the others.

As only three tubes are used in the 50 Mc. converter they are arranged in a single line down the middle of the base plate. The other models have the oscillator-multiplier and amplifier-mixer sections separated by a vertical shield partition.

THE 50-MC. CONVERTER

The simplest of the three converters is the 50Me. unit, shown in Figs. 16-9 and 16-10. The r.f. and mixer stages use 6 Cl 36 pentodes and a $6 \mathbf{6 J 6}$ serves as crystal oscillator and multiplier. A

TABLE 16-I
Crystal-Controlled Converter Data

| $\begin{array}{c}\text { Injec- } \\ \text { Rand tion }\end{array}$ | | | | I.F. |
| :---: | :---: | :---: | :---: | :--- | \(\left.\begin{array}{c}Crys-

tal\end{array} \quad $$
\begin{array}{c}\text { Overlone \& }\end{array}
$$\right)\)

* For covering 432 to 436 Mc. only. To tune the rest of the band additiona: crystal frequencies or a wider i.f. tuning range must be used.
somewhat lower noise figure could have been obtained with a triode r,f. amplifier, but the design shown has a noise figure under 5 db . With the considerable external noise pioked up by the antemna at 50 Mc., even in a quiet location, there is little to be gained in weak-signal reception by going lower than this figure.

The bottom view of the converter, Fig. 16-9, shows the r.f. amplifier socket and components at the left side. A small shield across the socket isolates the grid and plate circuits. The r.f. plate tuning condenser, C_{2}, is near the center. The plate coil, L_{3}, is the lower of the two coils in the middle of the photograph, with the mixer grid coil, L_{4}, just above it. An enameled-wire link may be seen running from this coil to the doubler plate coil, L_{10}, at the lower right. The oscillator inductance, L_{9}, is at the upper right corner.

Two methods of antenna coupling are shown in the schematic, Fig. 16-10, but the constructor need install only the one that is suited to the type of transmission line he intends to use to feed his antenna system. If coax is used, connection is made directly to the r.f. amplifier grid coil, L_{2}. This same type of connection may be used with a batun for balanced lines, or the coupling winding, L_{1}, mity be added. In some instances it may be desirable to connect a trimmer between J_{1} and L_{2}, as shown in the $220-\mathrm{Mc}$. converter, if spurious signals are a problem.

Fig. 16.9 - Bottom view of the 50-Mc, converter. 'The r,f, amplifier socket, divided by a shield partition, is at the left. Crystal oscillator and multiplier components are at the right, with the mixer in the mid. dle.

Fig. 16-10 - Schematic diagram of the $\mathbf{5 0 . M}$. crystal.controlled converter.
$\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}-20-\mu \mathrm{f} . \mathrm{min}$. variable (Johnson 20M11).
$\mathrm{C}_{4}-50 \cdot \mu \mu \mathrm{f}$. min. padder (H ammarlund MAP'C 50). $\mathrm{C}_{5}-25 \cdot \mu \mu \mathrm{f}$. min. padder (Hammarlund MAP' 25). $\mathrm{L}_{1}-3$ turns fine ins, wire wound over cold end of L_{2}. $\mathrm{L}_{2}, \mathrm{~L}_{4}-9$ turns No. 20 tinned, $1 / 2$-inch diam., $9 / 6$ inch long (1 \& \& Winductor No. 3003).
$\mathrm{L}_{3}-10 \frac{1}{2}$ turns similar to L_{2}. These coils are mounted in line with their cold ends $1 / 8$ ineh apart.
L_{5} - No. 28 enameled wire close-wound one inch on $3 / 8$-inch slug-tuned form (National XlR.91). Lacepuer and dry before winding L_{0}. Wind on upper portion of form.

Adjustment of the converter is very simple. First the oscillator and multiplier are tuned up, with the r.f. and mixer tubes out of their sockets, or with their plate voltage removed. Proper adjustment of the overtone oseillator follows practice outlined in the introductory portion of Chapter Seventeen, and the doubler portion need only be resonated for maximum output initially. This can be eheeked with a 60-ma. pilot lamp connected across a one-turn loop eoupled to the cold end of L_{10}. The frequency of the output should be cheeked to be sure that the right overtone and harmonic are being used, and the oseillator tested to see that it is controlled by the erystal.

Now a signal souree will be helpful. This ean be a signal generator, an amateur signal, or the harmonic of a receiver or transmitter oseillator of known frequency. If the signal is derived locally it should be possible to hear it with only the mixer and oseillator-multiplier stages rumning, and with no piek-up antenna. If a weak signal is used it may be necessary to put a temporary coupling winding (similar to L_{1}) on the mixer grid coil, L_{4}. Peak this cireuit and the slug in the mixer plate eireuit for maximum response. The plate voltage should be removed from the r.f. stage during this period, but the tube should be left in the socket with the heater voltage on.

Next feed the signal into the r.f. stage, by either of the coupling methods shown, and peak L_{2} and L_{3} for maximum response. There should be a considerable rise in noise as the adjustments
L_{8} - 10 turns same wound over cold end of L_{5}.
$\mathrm{L}_{7}, \mathrm{~L}_{8}$ - Loop of No. 22 enameled wire inserted in cold ends of L_{4} and L_{10}, connected lyy link of same material. Fasten in place with cement.
$\mathrm{L}_{9}-13$ turns No. 20 timed, $5 / 8$-inch diam., $3 / 4$ inch long, tapped at $31 / 2$ turns from crystal end (B \& W No. 3007).
$\mathrm{L}_{10}-8$ urns similar to L_{2}.
J_{1} - Coaxial fitting.
J_{2} - Crystal socket for antenna terminal.
$\mathrm{J}_{3}-4$-pin male chassis fitting (Jones P'304-A13).
are marle, so the noise level can be used as an indication of resonance in the absence of a test signal.

The converter is now ready for final adjustment, for best signal-to-noise ratio and uniform response across the band. The first can best be done with a noise generator, though a test signal can be used. Noise figure will be affected principally by the tuning of the first stage, and by the adjustment of the antenna coupling. Wateh for improvements in the margin of signal over noise, rather than maximum gain, as these two characteristies may not oceur coincilentally. The coupling between L_{3} and L_{4} affects the passhand of the system and the tuning of these circuits and the slug in the mixer plate winding ean be staggered to provide uniform response across the band. Peaking of the input cireuit may be neeessary as the receiver is tuned aeross the entire band, though a setting can be made for the middle of the range most used and this will hold for at least a megaeycle either way. Receiver noise can be used as a cheek on the uniformity of response, in the absence of signals.

The amount of injection from the multiplier should be set at the least that will provide satisfactory performanee. This will not be at all critieal, but more injection than needed will inerease the tendeney to spurious response. It is controlled by the size and position of the coupling loops, L_{7} and L_{8}. In the original model they are about twothirds the diameter of the windings in which they

CHAPTER 16

Fig. 16-11-The 1H-Nc. converter is separated into two parts by a shield partition. It the top are the r.f. amd miver stakes, with the oscillator and mattiplier portion below the shield.
are inserted. The loop can be made small enough to slip through between the strips of polystyrene on the Miniductor, and then spread to give the desired coupling. Cement the loops in place when this is arhieved.

THE 144-MC. CONVERTER

The 2-meter converter is shown in litgs. 16-11 and 16-12. From the photugraph it may be seen
that the r.f. and mixer components are separated from the oseilator-multiplier chain by a shield partition. The r.f. portion is in the upper half of the picture. Use of small plastic trimmers for the tuned circuits saves enough space so that the auditional tube is handled without erowding.

The r.f. eireuit is the simplified cascode, using any of the several dual triodes designed for this application. Double-tuned circuits in the r.f. plate and mixer grid provide bandpass response

Fig. 16 -I2 - Schematic diagram and parts information for the 111 . Me. converter.
 832-10).
$\mathrm{C}_{4}-50-\mu \mu \mathrm{f}$, min. trimmer ($1 \mathrm{tammarland} \mathrm{MAPC}(-50)$.
L_{s} - 5 turns No. 211 timued, $1 / 4$-inch diam. Adjust spacing for neutralizing: ser text.
$L_{1}-6$ turns No. 20 tinned, $1 / 4$-inch diam. turns spaced diam. of wire, 'Tap at $21 / 2$ turns.
L_{2} - 4 turns No. 20 enam. $\frac{12}{}$-inch diam.. 3 , ineht long.
$L_{3}-3$ turns. No. 20 enamt, ${ }^{3}$ x-inch diam, $5 / 16$ inch lomg. L_{2} and $I .3$ are in line, with their cold ando $1 / 8$ ineh apart.
14 - No. 28 enam. clowe "ound 1 inch on 3 -s-inch slugtuned form (Vational \1R.91). Latoxper and dry before wimding I_{5}. Wind on upper portion of form.
I_{25} - 10 turns, same, wound over coll end of L_{4}.
1,6 - 12 turns No. 20 tinnerl, spared diam. of ware, $5 / 8$-incla diam. 'lap at $31 / 2$ turns.
$\mathrm{L}_{7}-11$ turns No. 0_{0} enam., $3 / 8$-imh diam., $3 / 4 \mathrm{inch}$ long.
 with their cold ends $3 / 16$ inch apart.
1.9-1 turns like $1.7,3 / 8$ inch long.

L,10, 1.11 - I turn insulated wire at each end, linking L_{3} with I s.
$J_{1}-$ Comial fitting.
$\mathrm{I}_{2}-1$-pin mate chassis fitting (Jones $\mathrm{P}^{2}-304 \cdot \mathrm{IB}$).
RFC: RFE: - Bifilar-wound r.f. chokes. 'I'wist two pieres of Vo. 26 enameled wire together and wind 1.5 turns on $1 / 4$-inch diameter.
and help to attenuate unwanted sign ols on other frequencies. The oscillator-multiplier circuit is similur to the 50-M e, converter, except that the second half of the $6 . J 6$ is a tripler. This is coupled through another pair of double-tuned eireuits to tur additional doubler stage.

The order of frequency multiplication can be altered to take care of local interference conditions. Should it turn out that unwanted signals are brought in as a result of frequencies appearing in the multiplier chain, the socond stage can be made a doubler and the pentode a tripler. The use of link eoupling, and the isolation afforded by the shiedd, should reduce spurions responses to megligible proportions in most locations, however.

The first steps in adjustment of the $144-\mathrm{Mc}$. ronverter are similar to those outhed for the 5()$-$ Me. model. The only additional work recpuired is the neutralization of the $613 Q 7$ stage. This is done by adjusting the spacing of the turns in L_{N} for lowest noise figure, ans indicated with a noise generator, or by best signal-to-noise ratio on a test signal. The inductance is not extremely critical, and it may be set somewhat on the lowinductance side of the largest value that can be used without oseillation developing in the r.f. stage.

Other than the neutralization, only the tuming of the input eireuit will affect the noise figure materially. This is also best done with a noise generator. It will be found that best results will be obtained with $L_{1} C_{1}$ resonated somewhat on the low-frequency side of the point that produces: maximum gain. The tap on L_{1} should be set higher on the coil than the point that gives maximum signal response. The objeetive, as in the other adjustments outlined above, is best signal-to-noise ratio, rather than maximum gain.

Uniform response across the band can be attained by stagger-tuning the r.f. plate, mixer grid and mixer plate circuits. Injection coupling should be set as low as will deliver optimum performance. This can be controlled by the position
of the coupling loops, L_{10} and L_{11}, or low varying $^{\text {and }}$ the output of the pentade stage by raising or lowering the value of the sereen dropping resistor.

THE 22O-MC. CONVERTER

Circuitry and layout for the $220-\mathrm{Mc}$, converter, Figs. 16-13 and $16-14$, are very similar to the 141-Me. moded, except that an additional stage is used following the cascode, and an additional shield divides the sooket of this stage. This helps to make up, for the somewhat lower gain of the cascode at the higher frecuency, and it improves the rejection of unwanted signals eonsiderably. The latter condition has been found to be troublesome in 220-Me, work, particularly in areas where TV and FM brouldalsting stations are in operation.

No tuning condensers are used in the r.f. circuits, the coils being tuned to the desired frequency by adjusting the turn spacing until they resonate properly with the tube capacitances that appear across them. I variation on the doubletuned cireuit is used in which a renter-tapped coil serves as both grid and plate inductance. This type of circuit is wall adapted to use at frequencies where tube capauitance becomes a limiting factor in the performance of r.f. amplifiers.

A different form of i.f. output coupling is shown in this converter, though it works iclentically to the method used in the other models. Sote that the mixer plate eoil is louded by a 7 foobohm resistance in this case. The i.f. inust cover from 7 to 12 Mc. for the 220-Mc. band, so a broader response is required. The value of this resistance can be altered to attain the desired degree of uniformity, though lower values than the one shown will result in lower over-all gain.

The tuning comdenser in the input cireuit tunes out the reactance of the line to the antenna. It may not be neressary in some installations, but it is likely to be helpful in reduring spurious responses. The same technique may also be applied

Fig. 16.13 - The 220-Mc.crystal-controlled converter. Note that two shields are used; one separating the injection and r.f. chains, the other dividing the socket for the 6AK5 r.f. stage. R.f. components occupy the lower half of the assembly.

Fig. 16-14 - Schematic diagram and parts information for the $\mathbf{2 2 0 - M}$ c. converter.
$\mathrm{C}_{1}-50-\mu \mu \mathrm{f}$. miniature variable (Hammarlund MA1'C50).
C_{2} - $8-\mu \mathrm{ff}$. plastic trimmer (Erie 532-10).
($3_{3}-5-\mu \mu \mathrm{f}$. plastic trimmer (Firie 532-08-OR5).
$\mathrm{C}_{4}-3-30-\mu \mu \mathrm{f}$, mica trimmer.
$\mathrm{l}_{1}-3$ turns $\mathrm{K}_{\mathrm{K}} .20$ tinned, $1 / 4$-inch diam., $1 / 4$ inch Iong, center tapped.
$\mathrm{L}_{\mathrm{N}}-5$ turns No. 20 tinned, $1 / 4$-inch diam. Adjust spacing for nentralization; sec text.
$\mathrm{L}_{2}, \mathrm{~L}_{3}-7$ turns No. 20 tinned, spaced 1 diam., $1 / 4$-inch diam., center-tapped.
L_{4} - No. 28 enam. wound one inch on $3 / 8$-inch slugtuned form (National XR-91).
to advantage in the other converters, when spurious signals are bothersome.

Adjustment procedure is similar to that outlined for the $144-$ Mr . model, except that the sparing of the turns in the r.f. coils must be adjusted, rather than tuning them by capacitors. As in the 144 -Me. converter, the order of frequency multiplication can be altered to take eare of any extreme local interference problems resulting from near-by TV, FM or other high-powered stations that may ride through as spurious responses. The oseillator can be operated on its fifth overtone instead of the third, making the second and third stages operate as doubler and tripler, or vice versa. Fifth-overtone operation of the oseillator will require more care in adjustment of feedbaek than is the ease with the third.

The coupling between L_{8} and L_{3} will be a factor in holding down spurious responses. It should be set at the lowest value that will allow satisfactory performance, by altering the position of the coupling loops, L_{9} and L_{10}, or by varying the value of the sereen-dropping resistor in the last fre-queney-multiplier stage.

If a noise generator is available, and care is used in making the adjustments, it should be possible to achieve noise figures under 6 db . for the $220-\mathrm{Mc}$. converter and 5 db . for the 144 - and 50-Me, models.
$L_{5}-12$ turns No. 20 timed, spaced one diam., $5 / 8$-inch diam., tapped at $31 / 2$ turns ($13 \&$ N No. 3007).
$L_{6}-4$ turns No. 20 tinned, $1 / 2$-inch dian., $1 / 4$ inch long (3 \& W Miniductor No. 3003).
$L_{7}-5$ turns like $L_{0} . L_{6}$ and L_{7} are in line with their cold ends spaced $1 / 8$ inch.
L_{8} - $21 / 2$ turns No. 20 enam., $1 / 4$ inch long.
$\mathrm{L}_{9}, \mathrm{~L}_{10}-2$ turns insulated wire between turns of L_{8} and L_{3}, connected by link of same material.
J_{1} - Coaxial fitting.
$\mathrm{J}_{2}-$ Male 4-prong chassis fitting (Jones P-304-AB).

V.H.F. RECEIVING BALUNS

As pointed out in the preceding eonverter descriptions, coaxial antenna input eircuits are preferable in v.h.f. reecivers where single-ended circuitry is employed. Where long transmission lines must be used, however, the losses in coaxial line discourage its use in feeding the antenna system. Particularly on 144 Me . and higher, many amateurs prefer elose-spaced open-wire lines for runs of 50 feet or more between the operating position and the antenna.

The advantages of coaxial input coupling and the low losses of open-wire balanced lines can both be retained if some means of coupling between the balanced line and the unbalanced receiver input eircuit is provided. Such a device, usually called a "balun," is shown in Fig. 13-23D. V.h.f. receiver baluns are usually made of small coaxial line such as RG-59/U, and installed at the converter input terminal. The propagation factor of the line should be taken into account, making the actual length of the folded portion 65 per cent of a half-wave. The straight portion may be any convenient length, though it is usually a wavelength or less.

A 3 -band balun for v.h.f. receiving use may also be made by using the coils from a so-called "elevator transformer" for this purpose that can

Fig. 16.15 - Bottom view of the i.f. and power supply unit with bottom eover removed. Power components are at the left. A smaller chassis may lie used if less than the three converters are to be built.
he obtained from some TV receiver parts distributors. Such a balun would consist of two pairs of coils, connected in parallel at one end and in series at the other. The parallel end is wired to a coaxial connector and the sories end to a er-stal socket or a pair of binding posts. The assembly should be housed in a copper or aluminum box that may be as small as $1 \times 1 \frac{1}{2} \times 21 / 2$ inches.

Like the coaxial-line balun, this converts from balanced to unbalaneed termination, and provides a 4 -to-1 impedance transformation in the process. The coils are designed for use across the v.h.f. TV range, 54 to 216 Mc ., so they will serve well for all three amateur v.h.f. bands, 50,144 and 220 Mc . See lig. 1:3-2 4 for connections.

THE I.F. AMPLIFIER AND POWER SUPPLY

The i.f. amplifier (Figs. 16-15 and 16-16) serves two useful purposes. It builds up the gain, for receivers that may be poor performers at 7 Me, and it provides a means of controlling the over-all gain of the system without disturbing the gain or s-meter controls on the receiver itself. The reeriver may thus be operated exactly as it would be on $\overline{6}$ Mr., and the gain of the converter adjusted so that v.h.f. signals will be received
similarly to those on lower frequency hands.
It is obvious from the photographs that the i.f. and power supply unit conld have been built in a smadler space, If the builder is considering only one or two of the converters he may wish to do this, but where all three are usad the arrangemont shown is a convenient one. The i.f, chassis is a standard size, $3 \times+\times 1 \overline{1}$-inch ahminum, to which a bot tom phate is added for shiclding. Rubber feet can be attached to the two ends of the bise, and one on cach of the converters at the rear, to prevent the combination from marring a receiver top.

The heater voltage, the plate voltage and the i.f. input lead are all carried on shielded wire to a t-pin plug. This is connected to whichever converter is to be used at the moment, and no other ehanges other than plugging the antenna into the proper jack are required in changing from one v.h.f. band to another. The shiedded wires in the cable are bonded together several times and then wropped with plastic tape. The couxial fitting for the connection to the receiver is at the extreme right on the rear wall of the i.f. chassis.

The only idjustment required in the i.f. unit is to set the eoil slugs (on noise or signal) so that the response will be as nearly dat as possible across 7 to 11 Me .

Fig. $16-16$ - Schematie diagram and parts information for the i.f. and power supply unit used with the erystalcontrolled converters.
$\mathrm{L}_{1}, \mathrm{~L}_{2}-$ No. 28 enameled wire close wound 1 inch on $3 / 8$-inch slug-tuned form (National XR-91). Lachuer and dry before adding coupling winding. Wind on upper portion of form.
$\mathrm{L}_{3}, \mathrm{~L}_{4}-10$ turns same wound over cold ends of L_{1} and L_{2}.
J_{1} - Coaxial fitting.
H_{1} - Female 4-pin on end of cable (Jones S.304-CCT).

A One－Tube Converter for 21，28，50， 144 or 220 Mc．

The arystal－controlled converters described on the previous pages are typical of the type of equipment that must be used in v．h．f．reereption if optimum results are to loe experted．It is pos－ sible to start in with simpler devieres，however， and still do atn acerptable joh．The one－tube eonverter shown in lijgs． $1(6-17.16-18$ and 16 － 19 is designed for the begimer or easual v．h．f． operator who wants the simplest thing that will give usable reception．

Provision is made for any amateur band from $2 f$ to 220 Mr ．，but the eonverter should not be thought of as a multiband deviere in the usual sense．To keep its ronstruction as simple as possible，and to make it work satisfactorily on 144 or 220 Mc．，the coils are not made plug－in．
volts dar，at about 12 mat．will be required．A simple selenium－reatifier supply can be huilt for the converter，as shown．if the necessary power cannot be taken from the reaciver．

Construction

The converter was designed with an absolute minimum of parts．Note that it is shown without a pand，for instance．One ran be added if the builder wishes，but it is be motans a necessity． A standard $\overline{5} \times 7 \times 2$－inch aluminum chassis （premier ACll－126）is used，and no brackets or other metal patets need be made．Fig．16－20 shows the locations of all holes．The front－ view photograph shows the tuning capacitor，C_{6} ． on top of the chassis with the trimmer（ $\left(C_{5}\right)$ and

ドiд．10－17－Onte－lube converter， with 14t．We，oseilator tuned cir－ cuit in placer．selenium rectifier mower supply，shown plugged onto rear of the conserter，may be omitterl if power is taken from the receiver．

To change from one band to another the coils must be unsoldered and another pair instathed in their plare．The 21－and 28－Mre．bands are cov－ ered with a single pair of eoils by resetting the associated trimmer eapacitors，hat separate sets of coils are nerded for 50，1．4．4 or 220 Nar．

A single $6 . J$ dubur serves ats mixer and useillator． The input reireuit，$L_{1} \mathbf{C}^{\prime}$ ，tunes to the signal fre－ guence：Energy from the oscillator，funed by $L_{2} \mathrm{C}_{5} \mathrm{C}_{6}$ ．beats with the sigual to produer the intermediate frequency，approximately 7 Mre， in the plate cireuit of the mixer stage．The coil L_{3} is tumed to this frequencry，and the output is fod into at commundations rereiver through $/ 4$ and a coaxial cable attached to J_{2} ．The oscillator tumes 7 Me ．lower than the signal frequeney．
The converter power can be taken from the communications receriver in most rases．Rereivers usually have an areessory sorket on the rear watl for this purpose．Consult the receiver instruetion book for the type of plug and connections needed． An ase，voltage of 6.3 at 0.45 amp ．and 75 to 150

14t－Me，eoil soldered in place．The feed－through hashing near the edge of the rhassis serves ats a tie point for R_{3} and holds the coil rigidly in position．Immediately behind C_{6} the 6 㰤 and the tuning adjustment for L_{3} are visible．The dial is a Nationat type K．Note that a large knob （National troe IHRT－M）is substituted for the one that cemes with the dial to smooth out the tuning．The dial index is mounted below on the front wall of the chassis instead of above，for obvious reasons．The 0 to 100 seale may be used for logging，or a catibration may be drawn on stiff white pater and cemented to the dial surface． The smatl knol）to the left is the mixer grid （irruit trimmer， Ci_{1}.

A power supply is shown phaged into the bark of the converter．If the power plugs are positioned so that this is possible，it will save making up a commerting rable．The supply is built in a $4 \times 2 \times 2$－inch utility cabinet．The layout is not important，and it can be built，in some other form if desired．

Fig. 16-18 - Schematic diagram and parts information for the simple comverter.
$\mathrm{C}_{1}-15-\mu \mu \mathrm{f}$. variable (IIammarlund HF F - 5).
C.2, C:-100- $\mu \mathrm{f}$. ceramic.

C3 - $10-\mu \mu$ f. ceramir (connedt rlose to plate pin).

 for earh hame required).
C_{6}-Split-stator variahle, about lZ- $\mu \boldsymbol{f}$. per section (Itammarhund IIFD)-ISX with 2 rotor plates and 1 stator plate removed from caelt section). Cs - 0.0001- $\mu \mu$ f. ceramic.
Ca, (in - $16-\mu$ f. 250-t. electrolytic.
R_{1} - 1 megohm $3 / 2$ watt.
$\mathrm{K}_{2}-10,000$ ohms, $1 / 2$ watt.
$R_{3}-1000$ ohms, $1 / 2$ watt.
$\mathrm{R}_{4}-33.0000$ ohms, $1 / 2$ watt.
$\mathrm{R}_{5}-3300$ ohms, $1 / 2$ watt.
$\mathbf{R}_{\mathrm{G}}-22$ ohma. $1 / 2$ watt.
Li - 21, 28 Me: - 16 turns No. 20 tinned, $3 / 4$-inch diam.. I inch long. tapped 1 turns from ground end. (13 \& W Miniductor No, 3011.)
50 Mc. - 7 turns $\mathbf{N O}_{2} 20$ timed, $5 / 8$-incla diam.. Tin inch long. tapped 2 turns from ground emd. (B \& $\mathbf{W} 300_{+}^{-}$)
114 Mc.-2 turns $1 / 2$-inch diam. Vo. I2 tinned wire, spacool $1 / 4$ inch, taplued $3 / 4$ turn from ground end.

220 Wa. - I turn $1 / 4$-inch diam. No. 12 tinned wire, taplod near center.
$L_{2}-21.28$ Mlc. - 1.5 turns B © 11 30tl c.t. Idd C as in photo.
 phote.
111 Mr. - IIairpin loup of No. 12 tinned wire I inch long, I imsh wide, c.1. Conneet Cs to C_{6} terminals.
220 Xic. - Jfairpin loop of No. I2 timmal wire, $3 / 4$ inch long, $3 / 8$ inch wide with $3 / 8$-inch leads, c.t. Connert C.5 5 inch from rapacitor terminals: see photo.
I_{3} - 24 turns Vo. 21 enamel on $3 / 8$-ineh iron-slug form (National XR-91).
La-4 turns No. 21 dece or enamel at cold chel of Las.
$\mathrm{J}_{1}, \mathrm{~J}_{2}$ - Ihono jacks ((:inch 81B or two (ineh 81A single jacks).
J_{3} - A-contact male chassi= fitting (Amphenol 86R(:P't).
J_{4} - A-contact female chassis liting (Amphenol 78RS4).
$P_{1}-11.7$-volt line plug.
S_{1}-S.p.s.t. toggle swith-h.
(R_{1} - 20 -ma. seleninm redtifier (F゚ederal 1150).
'I' - I'ower transformer. 150 volts at 2.5 ma.; 6.3 volts at 0.5 amp. (Jarit 1'3016).

Fig. 16.19-130ttom viow of the converter, slowing thr primeipal parts mmbered as they appear on the schematic diagram.

Fig. 16-20 - Layout drawing of the converter chassis, showing size and location of all holes.

The various components visible in the bottom view are labeled for ease in identification. Most of the small parts are grouped around the tube sorket near the center of the chassis. There is very little wiring to be done other than soldering in these resistors and eapacitors by their leads. Below the tube socket are the slug-tuned L_{3} and a two-terminal tie point supporting R_{4}. L_{3} is held in place by passing its leads through holes in the plastic rings supplied with the XR-91 coil form. L_{4} is wound around the by-passed end of L_{3} and is cemented or doped in place. Its leads are then twisted and run over to the output conncetor on the back of the chassis. If the dual connector shown is not available, two standard phono jacks can be substituted.

The mixer grid cirruit is visible above and to the left of the tube socket. C_{1} is mounted on the front wall of the chassis and L_{1} is soldered across its terminals. A shori picce of coax (IRG-58/U or $\mathrm{I} \mathrm{G}-59 / \mathrm{U}$) is run from the input connertor to the grid cireuit. Here the braid is grounded to the rotor of C_{1} and the inner conductor is tapped onto L_{1} in the proper place. Note the two $3 / 8$-inch holes drilled between the tube socket and the tuning capacitor. These are for the leads from C_{4} and P'in 1 of the 656, whieh pass through the chassis near the centers of the holes. The tube socket should be mounted as shown with Pin 1 adjacent to the large hole near the middle of the chassis.

The third photograph shows the coils for 15 , 10,6 and $11 / 4$ meters, the 2 -meter coils being on
the converter when the pictures were made. The oscillator coils with their trimmers (C_{5}) and decoupling resistors $\left(R_{3}\right)$ are in the back row, and the mixer grid coils are in the front row. It is not necessary to use separate trimmers for each oscillator coil, but doing this eliminates the need for readjustment when changing coils. The use of separate decoupling resistors does away with repeated soldering to the coil center tap. The coils for 50 Mc . and below are made of sections of $\mathrm{B} \& \mathrm{~W}$ Miniductor. It will be easier to solder to these if the turns each side of the desired one are bent toward the center of the coil. The higher frequency coils are made from No. 14 wire as deseribed in the parts list.

The oscillator eapacitor, C_{6}, was modified slightly to secure more bandspread on the higher ranges. The end stator plate and the last two rotor plates of each section should be removed by twisting earefully with long-nosed pliers. This leaves four stator and three rotor plates in each section. If the converter is to be used on 144 or 220 Mc . only, the bandspread may be increased by removing more plates, but it is advisable to leave them on until the proper frequencies are found.

Adjustment

The mixer has the best noise figure with a plate voltage of about 75 , so R_{4} should be made a suitable value to provide this drop. If a different supply voltage is used it may be advisable to change the value of R_{4} to reduce the mixer voltage to about 75. This is not critical, though, and anything 20 volts or so either side is perfectly satisfactory. Even a 90 -volt " B " battery will do for a plate supply.
First apply filament voltage and see that the $6 J 6$ heater lights up. Now apply plate voltage. Check to see that the oseillator is working. If a milliammeter is available (10 to 100 ma . full scale) comneet it in series with R_{3} to measure oscillator plate current. This should be about 6 mal. and should rise when the oscillator coil, L_{2}, is touched with a pencil lead. If it is much higher, and does not change, the tube is not oscillating. Recheck the oscillator wiring for a mistake, or try another $6 J 6$.

The frequency of the oscillator may be ehecked with a calibrated receiver, if one is available, or use a grid-dip meter or an absorption-type wavemeter with fairly accurate calibration. The grid-dip meter will show output when coupled to L_{2} and tuned to the frequency of the oseillation Tuning an absorption wavemeter coupled to L_{2} to the oscillator frequency will cause a flicker in oscillator plate current. At 220 Mc . it is also possible to use a Leeher wire system to measure the frequency as outlined in the measurements ehapter.

The oscillator should be adjusted (by C_{5}) to tune below the desired signal frequency by the amount chosen as the i.f. For the 2l-Mc. band the oscillator tunes at least 14 to 14.45 Mc . For 28 Me . it should cover at least 21 to 22.7 Mc . For the 6 -meter band it must tune 43 to 47 Me .,
and so on. The trimmer capacitor, C_{5}, and, if necessary, the coil, L_{2}, are adjusted to set the oscillator to the proper range. Actually coverage will be somewhat more than the width of the band, and the desired range should be centered on the dial by varying C_{5}. The coverage mentioned above is obtained by rotating C_{6}, of course.

Now connect the converter output to the receiver antema terminals. The converter is normally operated on top of the communications receiver, or close alongside it, in a convenient operating position. A coaxial cable is made up with a male phono-type cotwial fitting on one end, with enough cable to reach from the converter to the recoiver antemat terminals. Most receivers have a threc-terminal antenna connortion block. One of these terminals is grounded. The middle one and the one at the opposite end from the grounded one are normally used for doublet antenna ronnections. Connect the middle one and the grounded terminal together, and make this combination the point of conneetion for the outer conductor of the coasial cable. The inner conductor goes on the remaining antenna terminal.

The mixer plate coil, L_{3}, may be tumed to about 7 Me. with a grid-dip meter, or it can be peaked on noise with the receiver set at this frequency and the converter rumning. The grid circuit, $L_{1} C_{1}$, maty be checked with a grid-dip meter. It may also be peaked for maximum response to a signal generator comected to the input, or it can be peaked on noise or signals with the intenna comected to the converter. Some improvement on weak signals may be possible through adjustment of the position of the tap on the grid coil, and the mixer plate voltage should be checked to see that it is somewhere near 75 volts. On the higher bands turing C_{1} will shift the oscillator frequency, so that retuning the signal as this adjustment is made may be required.

The exact frequence used for the i.f. is not important, so it can be set to suit two requirements. First, it should not be at such a spot that a strong local $7-\mathrm{Mc}$. signal will ride through.

Should interference develop it any time on the intermediate frequency, the setting of the main receiver dial may be changed slightly to clear the trouble. It is also usuably easier to shift the i.f. slightly than to reset the oscillator, in order to make the dial calibration come out right. With a signal of known frequency available, the converter dial can lee set for that, spot and the main receiver retuned to make the signal come in at the desired spot.

The 15 -, 11 -, and 10 -meter bands are covered by one pair of coils. It is necessary, of crourse, to reset the oscillator trimmer, C_{5}, for each band to the proper range. An alternative would be to use separate coils and trimmers for each band as is done on the higher ranges. Bandspread obtained with the original converter using a 7 -Mc. i.f. was as follows: 21.0-21.45 Mc. - 65 divisions; 26.9627.23 Mc. - 12 divisions; $28.0-29.7$ Mc. - 67 divisions; 50-54 Mc. - 75 divisions; 144-148 Mc. - 65 divisions; and 220-225 Mc. - 30 divisions. More bandspread can be obtained on the higher ranges by removing more plates from the tuning capacitor, but this will not permit full coverage on the lower bands.

Performance

On 21 and 28 Mc ., at least, this simple converter will usually provide all the sensitivity that can be used, as external noise is normally the limiting factor in weak-signal reception on these bands. At 50 Me . and higher the noise generated within the converter tends to limit the overall sensitivity. Thus the addition of a low-noise r.f. amplifier may make a considerable improvement in reception in the v.h.f. ranges.

A cascode-type preamplifier, such as that shown in Fig. 16-22, is ideal for $14 t-M c$. use, and the same basie circuit may be used for 50 and 220 Mc. amplifiers as well.

The greatest difficulty with tumable converters is instability in the oscillator. For most v.h.f. operators the only satisfactory solution to this problem is the use of erystal-controlled converters such as those shown elsewhere in this chapter.
(O)riginally described in October, 1955, QST, page 27.)

Fig. 16-21 - Coils for the one-tule eonverter. Top row are the oscillator coils, with trimmers (C5) attached. Corresponding mixer coils below. Ieft to right sets for 21 to 28 Mc., 50 Me and 220 Me . The Ith-Mc. coils appear in the converter photographs.

Low-Noise Preamplifier for 144 Mc.

The triode preamplifier shown in Figs. 16-22 to $16-24$ will improve the sensitivity and signal-tonoise ratio of receivers or converters for $14+$ Me.

Fig. 16-22 - Two-meter preamplifier using two 6AJ4 tubes. Adjustments are (left to right) input tuning capacitor, slug of neutralizing winding, and the plate thang eapacitor of the seeond stage.
that are deficient in these respects. Two separate triode tubes are shown, but any of the dual triodes designed for v.h.f. amplifier service may be used similarly. The circuit may be adapted to use on

Fig. 16.23 - Sofematic diagram and parts list for the low-moise preamplifier.
C_{1}, (: Plastic trimmer, 1 to $8 \mu \mu \mathrm{ffl}$. (i:rice style 532-10).

R_{1} - 68 ohms, $\frac{1}{2}$ watt, carlmn.
$\mathrm{R}_{2}-0.1$ inegohm, $1 / 2$ watt.
R_{3} - 170 olmens, $1 / 2$ wath, carlom.
$\mathrm{L}_{2}-1$ turns No. 16 tinned, $1 / 4$-inelo diam., spaced 1 diameter. tapped at $13 / 4$ turns from gronad end.
$\mathrm{L}_{2}-4$ turns No. 24 on $1 / 4$-inch slug-tuned form.
Le- 5 turns No. 18 cham.. $1 / 4$-inch diam, spaced half diameter.
L_{4} - 2 turns insulat ed wire wound over cold end of I_{3}.
J_{1} - Cuasial antema fitting.
P_{1} - Coaxial plus on cable of suitable length to reach converter input.
 woomed.
$\mathrm{RFC}_{2}, \mathrm{RFC}_{3}-18$ turns carh, No. 21 enam;, $1 / 4$-inels diam. Twint wires together leffure winding, Coat turns with houschold eement.

50 or 220 Me., by suitable alteration of coil and pondenser values.

Pin connertions given on the sehematic diagram, Fig. 16-23, are for the 6.d.Jt or 6AM4. () ther tubes such as the 6.ANt and 417 A will work equally well. if pin connections shown in the tube data section of this Handbook are followed. Slightly: difierent values of cathode bias resistor may be needed if tubes other than the 6AJ + are used.

The preamplifier is housed in a standard 3×4 $\times 5$-inch aluminum utility box. The components were mounted on a sheet of flashing copper and the preliminary work of wiring was done with this plate as a chassis. The plate was later fastened to the inside of the top of the box. The parts could be mounted on the box directly, but ther are more aecessible if the work is done as described above.

Looking at the interior view, Fig. 16-24, we see the coax fitting, the first tube socket and the input circuit at the left. Between the tube sockets. at the center of the copper base plate, is the slugtumed neutralizing winding, L_{2}. A small copper shichd divites the serond sorket, isolating the input and output circuits. This shiedd is not always needed, but it may be an aid to neutralization. At the far right are the output cireuit and the bifilitr-wound r.f. chokes for the heater circuit of the serond stage. The tuning condensers, C_{1} and C_{2}, are plastic trimmers of a design that allows a saving in space and offers lower minimum rapacitame and lead inductance than eonventiona' fatplate trimmers.

The five grid pios of the (i, J. \downarrow may be strapped together or used individually, as layout requirements dictate. In this instance, Pin 4 is used for

Fig. 16 -24 - Interior view of the 141-Mc. r.f. amplifier. A small shind arruse the second tuhe soek ef inolates the input and output cirenits. The amplifier is built on a eopper plate, which is then fitted to the top of a standard alumimum utility box.
the hot end of L_{1}, with the trimmer, C_{1}, connected to Pin 3. In the second stage, Pins 3 and 4 are tied to the grid side of R_{2}, and $\operatorname{Pin} 1$ is by-passed by C_{4}. See Aug., 1953, QST' for 'etails.

Adjustment

A noise generator will make the adjustment of the amplifier easy, as it is then only neressary to paak the plate cireuit (1 y C_{2}) for maximum gain, and then adjust the inductance of L_{3} and the setting of C_{1} for lowest noise figure. It is possible to follow this routine using signals or a signal generator, but it is a more difficult proress.

If a signal is to be used, prak the second plate cireuit for maximum response first. Then tume the imput gireuit for maximum also, if the amplifier does not oscillate. If it should oscillate, vary the setting of the slug in L_{2} to stop it, before attempting to peak any other adjustments. In adjusting
the input circuit, watch for best signal-to-noise ratio, now, rather than for maximum gain. This will show up somewhat on the high-capacity side of the maximum-gain point, as the rotor of C_{1} is turned into the stator.
The position of the tap on L_{1} can be adjusted in the same way. The optimum point will be higher on the coil than the point at which maximum gain is olserved. If the amplifier is adjusted at 146 Me . it should not be necessary to repeak it aeross the entire band.

An amplifier of this sort should not be expected to produce a large improvement in reception when it is used ahead of a converter that already has a good triode front end, but installed ahead of a pentode amplifier, and particularly a converter having a bandswitehing l.f. circuit, it will help eonsiderably in the reception of weak signals, by increasing the margin of the signal over noise.

Receivers for 420 Mc .

For best signal-to-noise ratio, receivers for any frequency should have the highost degree of selectivity that can be used successfully at the frequeney in question. With ervstal control or its equivalent in stability accepted as standard practice on all bands up through 148 Me., there is litthe point in using more bandwidth in receivers for these frequencies than is neressary for satisfagtory voice reception, a maximum of about 10 ke . Such commonication selectivity is now being used successfully be most workers on 220 and 420 MI. ., too. but it imposes several problems not encountered on lower hands.

First is the matter of oscillator instability in the converter. Even the best tumable oscillator at t20 Mc. suffers from vibration and hand-qapacity effects sufficiently to make it diflicult to hold the signal in a lo-ke. i.f. bandwidth.

Then, there are still some unstable transmitters being used in work on 220 and 420 Mc . It is out of the question to cope these on a selective receiver.

Last, searehing a band 30 megaceleles wide is excessively time-consuming when rommunica-tions-receiver solertivity is used in the i.f. sistem.

There is no single solution to these problems, but the best approach appears to be that of breaking up of the band into segments for different types of operation. This is loeing done by mutual agreement among 420 - Mc, operators at present, as follows: 420 to 432 Mc . - modulated oscillators and wideband F.M: $4: 32$ to ti36 Mr. -(rystal-controlled $(\cdot w .$, AM and marrow-band F. I : 436 to 450 - television.

The first segment can be rovered with a superregencrative receiver, a superheterodye having a widehand i.f. system, or a converter used ahead of an FXI broulcast receiver. The high selectivity required for best use of the middle portion makes a reystal-controlled or otherwise highly stable converter and communications receiver combination almost mandatory. Amateur TV is usually received with a converter ahead of a standard TV
receiver, tuned to some channel that is not in use locally:

Many of the tubes used on the v.h.f. bands are useless at 420 Me, and the performance of even the bost u.h.f. tules is down compared to lower bands. Only the lighthouse or pencil-triode tubes and a few of the miniatures are usable, and these require modifieations of conventional circuit teehnigue to produce satisfactory results.

Crystal diodes are often used as mixers in 420Me. receivers, as in this frequency range they work nealy as well as vacuum tubes. The over-all gain of a converter having a erystal mixer is ahout 10 db . lower than one using a tube, so this difference must be made up in the i.f. amplifier. The noise figure of a receiver having a crystal miver and no r.f. stage includes the noise figure of the i.f. amplifier following the mixer, so best results require that the i.f. amplifier employ low-noise techniques discussed carlier in this chapter. If the i.f. is 50 Me. or higher it is particalarly important that a low-moise triode be used for the first i.f. stage.

Crystal diodes of the tepe used in radar mixers, such as the $1 N 21$ series, are well suited to 420 - No. mixer serviec, though care must be taken to avoid damage from transmitter r.f. energy. Other types of erystal diodes sueh as the 1×2 and Cliz10 will stand higher values of crystal current, and their use is recommended.

Few conventional varcuum tubes work well as mivers at 420 Me. and higher. The 6Jtis useful where a balanced input circuit is desired, as in Fig. 1(i-5l3. For single-ended circuitry the 6AM.4 and 6.NNt are reommonded. They may be used in grounded-grid or grounded-cathode cireuits.

For high-selectivity coverage of the 432- to fi36-Me, segment of the band, a common practice is to use a erystal-controlled converter working into another converter for either the 50 - or $144-$ Me. band, tuning the latter for the four-megaercle tuning range.

A 420-MC. R.F. AMPLIFIER

The r.f. amplifier shown in Figs. 16-25 through $16-27$ is capable of a gain or more than 15 db . and its noise figure can be as low as 6 db . with careful adjustment. It will make a large improvement in the sensitivity of any converter or receiver that has no r.f. stage, or one that is working poorly.

The lesign shown is for either the GiJJ4 or 6ANI 4 , but with suitable socket and pin-comnection changes the 417 A and 6AN4 will work equally well. It is a grounded-grid amplifier with a half-wave line in the plate circuit. The antenna is ronnected to the cathode of the tube through a coupling condensor. As the input impedance of the grounded-grid stage is low, nothing is gained by the use of a tuned cireuit in the cathode lead. Output is taken off through a coupling loop at the point of lowest r.f. voltage along the line.

The amplifier is built in a frame of flashing copper that serves as the outer conductor of the tank circuit. The whole assembly is 10 inches long and $11 / 4$ inches square, except for the bottom, which is about $13 / 4$ inches wide. Edges are folded over with lips $1 / 4$ inch wide which slide into a bottom cover made from copper sheet $21 / 4$ by 10 inches in size, with its edges bent up $1 / 4$ inch wide on cach side.

The plate circuit is marle of $1 / 4$-inch copper tubing tuned by a copper-tal, caparitor at the far end from the tube. Plate voltage is fed in at the point of minimum r.f. voltage, which in this

Fig. $16-26$ - Schematic diagram of the 420. Mc. r.f. amplifier. $C_{1}-500-\mu \mu \mathrm{fd}$. ceramic.
$\mathrm{C}_{2}, \mathrm{C}_{3}-1000-\mu \mu \mathrm{fd}$. ceramic feed-through (Eric style
2404).
$\mathrm{C}_{4}-$ Copper tabs, $7 / 8$-inch diam.; see text and photoCopper ta
graphs.
h_{1} - 150 ohms, $1 / 2$ watt.
$R_{2}-470$ ohms, $1 / 2$ watt.
$\mathbf{L}_{1}-1 / 4$-inch copper tubing, $73 / 8$ inches long, tapped $23 / 8$ inches from plate end.
1.2 - Loop of insulated wire adjacent to L_{1} for $3 / 4 \mathrm{inch}$. $\mathrm{J}_{1}, \mathrm{~J}_{2}$ - Coaxial fitting.
RPC 1 , $\mathrm{RFC}_{2}, \mathrm{RFC}_{3}-9$ turns No. 22, 3/8-inch diam.,
spaced one diam.

Fig. 16.25 - A highly effective r.f. amplifier for 420 Mc. The tank circuit is a half-wave line made of flashing copper. Coaxial fittings are for input and ontput connections. Heater and plate voltages are bronght in on feedthrough by-pass capacitors just visible on either side of the 6AJ4 tube.
instance is about 5 inches from the open end. The antenna is connected to the cathode through a coupling eondenser. The input impedance of the grounded-grid amplifier is so low that nothing is gained by using a tuned circuit at this point. The cathode and heater are maintained ahove ground potential by small air-wound r.f. chokes.

The tube socket is two inches in from the end of the trough, and is so oriented that its plate connection, l’in 5 , is in the proper position to comnert to the line with the shortest possible lead. A copper shielding fin is mounted across
the interior of the trough $21 / 8$ inches from the end, dividing the socket so that lins $3,4,5$ and 6 are on the plate side of the partition.

Minimum grid-lead inductance is important. This was insured by bending all the grid prongs down against the ceramic body of the socket, and then making the mounting hole just big enough to pass this part of the socket and the prongs. They were soldered to the wall of the trough.

Input and output connections are coaxial fittings mounted on the side wall of the trough. B-plus and heater voltage are brought into the assembly on feed-through capacitors mounted on the same side of the trough as the tube. Connection to the inner conductor of the line is made with a grid clip, so that the point of connection can be adjusted for optimum results.

The copper tubing is slotted at the plate end with a hack saw to a depth of about $1 / 4 \mathrm{inch}$, and a strip of flashing copper soldered into this slot to make the plate connertion. A copper tab about the size of a one-cent piece is soldered to the other end of the tubing to provide the stationary plate of C_{4}. The line is supported near the low-voltage point by a $1 / 4$-inch-thick block of polystyrene. This is centered at a point $5 \frac{1}{4}$ inches in from the tube end of the trough assembly. The hole for the B-plus feed-through is $41 / 4$ inches from the same end.

The movable plate of C_{4} is soldered to a screw rumning through a nut soldered to the upper

Fis. 16-27-13ottom view of the 120- Me. r.f. amplifier, with the slip-on cover removed. 'I'he inner eonductor of the tank circuit is Ield in place liy a block of polystyrene, mounted near the lowvoltage point on the line. The pate-voltage feed-throngh and output conpling loop may be seen at the left of this support. Heater, cathode and antenna-eircuit components are in a separate compartment at the tuhe end of the assembly. The line is tumed at the opposite end by a handmade eopper-tab capacitor.
surface of the trough at a point $3 / 8$ inch in from the open end. If a fine-thread screw is available for this purpose it will make for easier tuning, though a $6 / 32$ thread was used in this model. This made a wobbly contact, so a coil spring was installed between the top of the trough and the knob to keep some tension on the adjusting screw.
Adjustment of the $420-\mathrm{Mc}$. amplifier is made easier if a noise generator is used, though it is not as important as in the case amplifiers with tuned input circuits. If the amplifier is working properly there will be an appreciable rise in noise as the plate circuit is tuned through resonance, and it may break into oscillation if operated without load. When connected to a following stage, with a reasonably-matched antenna plugged into J_{1}, the amplifier should not oscillate unless the coupling loop, L_{2}, is much too far from the inner conductor.

When the amplifier is operating stably and tuned to a test signal (or to a peak of response to a noise generator), the next step is to locate the optimum position for feeding the plate voltage into the line. This may be done by running a pencil lead slowly up and down the inner conduetor, until a spot is found where touching the lead to the line has lit tle or no effect on the operation of the amplifier. The plate voltage elip should be placed at this point and the process repeated, moving the clip slightly until it is at the minimumvoltage point precisely. This adjustment should be made at the midpoint of the tuning range over which the amplifier is to be used.

The position of the coupling loop should then be adjusted for hest signal-to-noise ratio. This will probably turn out to be with the insulated wire lying against the inmer conductor for a distance of about $3 / 4$ to 1 inch, starting at the minimum-voltage point just located.

- A CRYSTAL-CONTROLLED CONVERTER FOR 432 MC.

The eonverter shown in Figs. 16-28 through $16-31$ is designed to provide high sensitivity and signal-to-noise ratio in reception of signals in the $432-$ to $4: 36-\mathrm{Nc}$. range. It uses a grounded-grid r.f. amplifier stage similar to the one shown in Fig. 16-25, working into a crystal-diode mixer.

The intermediate frequency, with the design constants given, is 50 to 54 IIc., though lower frequencies could be used by suitable modification of the injection chain.

Crustal-controlled injection on 382 Me. is provided by two GJtis operating as overtone oscilla-tor-tripler and tripler-doubler, respectively. As only a small amount of r.f. is required at 382 Mc .,

Fig. 16-28-A erystal-controlled converter for 432 to 436 Me, R.f, and mixer stages are in copper sulbassemblies at the right. Oseillator, multiplier and i.f. amplifier are on the left side.
this line-up is not difficult to build or adjust. An inexpensive 7 -Me. crystal is used. An i.f. preamplifier stage follows the ervstal mixer. This may or may not be needed, depending on the performance of the reeciver or converter that will serve as the tunable i.f. Low-noise amplification in the i.f. stage is a factor in the over-all performance of the system, so use of the built-in i.f. stage is recommended.

Construction

The converter is built on a $7 \times 11 \times 2$-inch aluminum chassis, with the r.f. and mixer portions in a copper subassembly that mounts on the top of the chassis, at the right side as seen in

Fig. 16-29 - Interior view of the r.f. amplifier and mixer assemblies. 'The r.f. rircuit is a half-wave line. The shorter assembly is the quarter-wave line using a rratal diondo miser.

Fig. 16-28. The ascillator-tripler and triplerdoubler 6JJes are at the left fromt, with the GBQ7A i.f. amplifier at the rear. The mixer line is the short portion of the ropper assembly, with the r.f. amplifier line at the right. In the bottom view, Fig. 16-29, the injection-chain and i.f. amplifier components are visible,

Fig. $16-2$? is an interior view of the r.f. and mixer lines. These are made as two separate assemblies, joined ber short length of copper tubing that is visible in the top view. Both tank circuits aro $11 / 4$ inches square, with $1 / 4$-inch copper tubing inner conductors. They are made from sheete of flashing ropper $41 / 4$ inchers wide. The mixer compartment is $51 / 2$ inches long and the r.f. portion is 10 inches long.

The r.f. amplifier is similar streeturally to the one described previously, exreqt for the method of coupling betwern it and the ersstal miser. This is done with a grid elip on each line and a ceramic compling condenser. The lead from the eapacitor, inside the amplifier line. is brought through a half-ind length of ropper tubing that is soldered into the walls of both lines. The lead is insulated with sparhetti slecving.

The b-phas foed to the r.f. stage sloould be at the point of minimum r.f. voltage, $17 / 8$ inches from the plate and of the ropper tulbing. The coupling tap is one inch out from the b-plus feedpoint. The eoupling point on the mixer line is I inch from the groumd end. The errstal diode is inserted in a smatl hold in the mixer inmer eonductor, 1^{3} inches from the gromed mat. The imner conductors of the r.f. and mixer lines are
$7: 3 / 16$ and 5 inches long, respectively, Mixer tuning is done with a small plastie trimmer, C_{10}, While the r.f. plate circuit is tumed with a handmade tab capacitor, C_{9}, similar to C_{4} in Fig. 16-26.

Notr the r.f. by-pass, C_{8}, on the outside of the mixer line. This is made from a piece of enpper $7 / 8$ inch in diameter, insulated from the line housing by a piece of vingl plastic. Two thieknemses of the material commonly used for small parts envelopes are satisfatory. The crystal, which may be any of the u.h.f. diondes, is slipped through a close-fit hole and is held in place by the wire soldered to its outside terminal.
llate and filament voltages are fed into the assembly on fred-through by-pass capacitors. visible in the top-view photograph. Antenna ronnection is mate through a coaxial fitting on the end of the r.f. assembly. A crystal-current jacek, a t-pin power fitting and two i.f. connectors are on the end wall of the chassis. The second caxial comnector was installed so that tests could be made with and without the i.f. amplifier stage.

Wiring in the power rircuits is clone with shiodded wire, in case that Tl'I might result from the osrillator or multiplier stages. The addition of a bottom plate and power-lead filtering would then be effective. Injection and i.f. coupling leads are also made of shielded wire, this serving in plare of coas line that is hateder to handle.

The output of the injertion chain is coupled into the mixer line by means of a loop, $L 8$, that is not visible in the photographs. This loop is mounted on the copper hase plate that is under

Fis. 16-30 - Boltom virn of the 132-Ale ronverter, showing the oscillator, multiplier andi.f. amplifier circuils.

Fig. 6 -31 - Wiring diagram and parts list for the 432-Mc. erystal-
controlled converter. Values given are for an i.f. of 50 to 54 Me .
 in).
$\mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C}_{4}-20-\mu \mu \mathrm{C}$. miniature trimmer (Johmson 20 M11).
$\mathrm{C}_{5}-25 . \mu \mathrm{f}$. miniature trimmer (H ammarlund M APC. 23).
$\mathrm{C}_{6}, \mathrm{C}_{7}-\frac{20}{500} 50 \mu \mathrm{~F}$. feed-through ceramie (Centralah 11 1゙T-500).
Cs - Mandmade copper-tab by-pass: see test.
C_{9} - Ilandmade copper-taly variable see text.
(io - 0.5-to. 5 - $\mu \mathrm{ff}$. plastic trimmer (i:ric style 532-08ORT).
$1.1-131 / 2$ turns No. 20 timed, $5 / 8$-inch diam., $/ 8$ inch long, tapped at $11 / 2$ turns (B \& W Miniductur No. 300 -).
La - 5 turns No, 20 timucd. $1 / 2$-inch diam., $3 / 8$ inch long (18 \& W Minidurtor No. 3003).
$\mathrm{L}_{3}-23 / 4$ turns similar to L_{2}.
1.4 - 2 turns So. 12 tinned. $1 / 4$-incl diam., $1 / 4$ inch tong.
1.s - 1 turn ins. wire between turns of L_{4}. May be inner conductor of shielded wire, with braid removed.
I. 7 - Quarter lonave. line, $1 / 4$-inch copper tubing, 5 inches long.
Ls - Laop of insulated wire 1 inch long and $1 / 2$ inch high projecting throngh base plate on which line assemblies are mounted. May be made from inner conductor of shielded wire, with braid removed from last two inches.
$L_{9}-2$ urns No, $2 \underline{2}$ enam. around cold end of L_{10}.
l.in- 6 turns similar to $\begin{aligned} & \text { I. } 2 .\end{aligned}$
$L_{11}-11$ turns No. 22 entam. close-wound on $3 / 8$-inch shus-tuned form (Vational XR-91).
$\mathrm{L}_{12}-1$ turns No. 28 silk or enamel womd over cold end of l_{11}.
$\mathrm{H}_{1}, \mathrm{~J}_{2}-$ Coaxial fitting.
J_{3} - Closed-cirenit jack.
$\mathrm{J}_{4}-4$-pin male chassis filting.
RPC - 10 turns No, 29 timed, $1 / 8$-inch diam. Space turns diam. of wire.
circuits at about 52 Me. on noise. Next apply phate voltage and feed a signal into the r.f. stage. Prak the r.f. and mixer capacitors for maximum response at about 43.4 Me. These aljustments can be made on noise also, if the circuits were close to resonance originally, If a mosa generator is not available, the margin of signal over receiver noise that is obtamed on a reerived signal is also usable, if aljustments are made with care.

The points of connertion for the $13-p l u s$ and the coupling taps on the ref. and mixer lines are eritical adjustments, but if the dimensions given above are followed carefully the points should be close to optimum. Adjustments can be made and checked readily if the r.f.-mixer assembly is momed in place temporarily with a few selftapping serews. (0)riginally described in January, $195+1,(2 S T$, p. 24.)

V.H.F. Transmitters

Transmitter stalility regulations for the $50-$ Mc. band are the same as for lower bands, and proper design may make it possible to use the same rig for $50,28,21$, and even 14 Mc., but incorporation of $1+4$ Mc. and higher in the usual multiband transmitter is generally not feasible. Rather, it is usually more satisfactory to combine 50 and 144 Mc., since the two bands are close to a third-harmonic relationship. At least the exciter portion of the transmitter may be made to cover the requirements for both these bands very readily.

Though no stability restrictions are imposed by law on operation at $14 \pm$ Mc. and higher amateur bands (other than that the entire emission must be kept within the limits of the band in question), experience has demonstrated the value of using erystal control or its equivalent in v.h.f. work. Crystal-controlled transmitters and receivers having the minimum bandwidth necessary for voice communication make it possible for hundreds of stations to operate without undue interference in a band that would appear crowded if occupied by a dozen or less stations using broadband receivers and unstable transmitters.

The use of narrow-hand communications systems also pays off in improved efficieney in both transmitter and receiver. It is this factor, perhaps more than the interference potentialities of the wide-bind systems, which makes it desirable to employ advaneed techniques at 220 and even 420 Mc . Stabilized transmitters for these bands are not too difficult to build, and their use is highly recommended.

Choice of tubes suitable for this type of work is quite limited, but the advanced amateur who is
interested in making the most of the interesting possibilities afforded by this developing field will be satisfied with nothing less. The $420-$ Mc. band is much wider than our lower v.h.f. assignments, however, and interference is not likely to become a limiting factor in this band for a long time to come. Thus it may be more important, in many localities, to get activity rolling with any sort of gear, leaving perfeetion in design to come along as the need develops.

At 420 Mc . and in the higher amateur assignments most standard tubes cannot be used with any degree of success, and special tubes designed for these frequencies must be employed. These types have extremely dose electrode spacing, to reduce transit-time effects, and are constructed with leads having virtually no inductance. Several more-or-less conventional tubes are now available which will operate with fair efficiency up to about 500 Mc., but best performance is obtained with the "Iighthouse," "pencil tube," or coaxial-electrode types built especially for u.h.f. applications, and requiring specially-designed tank circuits.

Frequency modulation may be used throughout the v.h.f. and higher bands, wide-band emission being permitted above 52.5 Mc. and narrow-band FM anywhere. Where suitable receivers are available to make best use of such emissions, either wide-hand or narrow-band FM can provide effective v.h.f. communication. Their use is particularly advantageous in congested areas where the freedom from interference to broadeast and television reception they enjoy may permit operation when an amplitude-modulated transmitter of any power would be a constant source of trouble.

Transmitter Technique

The low-power stages of a transmitter for the v.h.f. bands need not be greatly different in design from those used for lower bands, and many of the ideas in Chapter Six may be used to good advantage in the initial stages of the v.h.f. rig. The constructor has the choice of starting at some lower frequency, usually around 6,8 or 12 Mc ., multiplying to the operating frequency in one or more additional stages, or he can use a high initial frequency and thus reduce the number of multiplier stages required or eliminate them entirely. The first approach has the virtue of employing low-cost crystals, and it usually results in better stability, but high-frequency crystals may effect a considerable economy in power consumption, an important factor in portable or emer-gency-powered gear.

overtone oscillators

Crystal oscillator stages for v.h.f. transmitters may make use of any of the circuits shown in Chapter 6, when crystals up to 12 Mc . are employed, but certain variations are helpful for higher frequencies. Crystals for 12 Mc . or higher are usually of the overtone variety. Their frequency of oscillation is an approximate multiple of some lower frequency, for which the crystal is actually ground. Thus $24-\mathrm{Me}$ c crystals commonly used in $144-\mathrm{Mc}$. work are 8 -Mc. cuts, specially treated for overtone characteristics. Until recent years such crystals were tricky in operation and subject to excessive drift if operated at high crystal current. The overtone crystals now being supplied are approximately as stable as those
designed for fundamental operation, and they are easy to handle in properly designed circuits.

Best results are usually obtained with overtone crystals if some regeneration is added. This makes for easy starting under load and greater output than would be obtainable in a simple triode or tetrode circuit. Regenerative circuits, with constants for 8 - or 24 -Mc. crystals, are shown in Figs. 17-20 and 16-10. Triodes are shown, but the same arrangement may be used with tetrode or pentode tubes. The important point in either case is the amount of regeneration, controlled by the number of turns below the tap in L_{9} of Fig. $16-10$ or the capacitance of the smaller of the two by-passes in the $\mathrm{B}+$ lead to the oscillator in Figs. $17-20$ and 17-23. There should be only mough feed-back to assure easy crystal starting and satisfactory operation under load; too much will result in random oscillation not under the control of the crystal.

Overtone operation is possible with standard fundamental-type erystals, using these circuits. Practically all will oscillate on their third overtones, and fifth and higher odd overtones may be possible. Adjustment of regeneration is more aritical, however, if the crystals are not ground for overtone characteristics. It should also be noted that the frequency may not be an exact multiple of that marked on the erystal holder, so care should be used in working with erystals that are near a band edge.

Crystals ground for overtone service ean be made to oscillate on other overtones than the one marked on the holder. A $24-$ Me. crystal, actually an 8-Mc. cut, may be made to oseillate on 40, 56 , 72 Me, or even higher odd multiples of its 8 -Mc. fundamental frequency. The circuits shown in the constructional material later in this chapter may be used in this way, but there are several eireuits that have been developed especially for use with high-order overtones that may serve the purpose better. For a more complete discussion of overtone oscillator techniques, see QS'T for April, 1951, page 56, and March, 1955, page 16.

Crystals are now available for frequencies up to around 100 Mc. They are somewhat more expensive and more critieal in operation than those for 30 Mc . and lower, however, so they have not been used widely in amateur work, exeept where a saving in power is important. Use of 50-Are, crystals is made occasionally as a means of preventing radiation of the harmonics of lower frequeney crystals that might cause interference to television reception.

- FREQUENCY MULTIPLIERS

Frequency multiplying stages in a v.h.f. transmitter follow standard practice, the principal precaution being arrangement of components for short lead length and minimum stray capacitance. This is particularly important at 144 Mc . and higher. 'To reduce the possibility of radiation of oscillator harmonics on frequencies that might interfere with television or other services, the lowest satisfactory power level should be used.

Iow powered stages are easier to shield or filter, in case such steps become necessary.

Common practice in v.h.f. exciter design is to make the tuned circuits capable of operation over the whole range from 48 to $54 \mathrm{Mc} ., \mathrm{s}^{\circ}$ that the output stage can drive cither an amplifier at 50 to 54 Mc. or a tripler from 48 to 144 Mc. Tripling is often done with push-pull stages, particularly when the output frequency is to be 144 Me. or higher. The output capacitances of the tubes in such push-pull circuits are in series, permitting a better L / C ratio than is possible with single-ended eircuits.

AMPLIFIERS

Most transmitting tubes now used by amateurs will work on 50 Mc ., but for 144 Mc . and higher the tube types are limited to those having low input and output capacitances and compact physical structure. Leads must be as short as possible, and soldered connections should be avoided in high-powered circuits, where heating may be great enough to reach the melting point of the solder used.

Plug-in coils and their associated sockets or jack bars are generally unsatisfactory for use at $14+\mathrm{Mc}$. and higher because of the stray inductance and capacitance they introduce. One way around this trouble is the clual tank circuit shown in Figs. 17-24 and 17-25. Ilere the tank eircuit for 144 Me, is a conventional tuned line, with its shorting bar made as a removable plug. When the stage is to be used on another band the short is removed and a coil is plugged into the jack, the line then serving as a pair of plate leads. Such an arrangement will operate as effieiently on $1+4$ Mc. as if it were designed for that band alone, yet it ean be made to work properly on any lower band.

At 220 Mc . and higher it may be necessary to employ half-wave lines as tuned circuits, as shown in Fig. 17-20) (P_{1} in place). Here the tuning car pacitance, instead of being connected direetly in parallel with the output caparitance of the tube, is at the far end of a half-wave line. Plate voltage is fed into the line near the middle, at the point where the r.f. voltage is lowest. The proper point can be located by first operating the stage with the voltage fed in near the middle of the line, and then touching a pencil point along the line to locate the spot where the least effect on the grid or plate current is noted. This check should be made with the pencil in an insulating mount, if dangerous values of plate voltage are used.

Neutralization of triode amplifiers for 50 and 144 Mc. can follow standard practice, but the stray inductance and capacitance introduced by the neutralizing circuits may be exeessive for 220 Mc . and higher. In such instances groundedgrid amplifiers may be used as shown in Fig. 16-25, modified for trinsmitting use. Driving power is applied to the cathode circuit, with the grid acting as a shield. Grounded-grid amplifiers are stable, but they require high driving power. Some of the drive appears in the output, so both
the driver and amplifier must be modulated when amplitude mortulation is used. For this reason the grounded-grid amplifior is used mainly for FM applications.

Tetrode and pentode amplifirers may operate without neutralization, but it is advisable to plan for it in the original layout. With such tubes as the 829 or 832 enough neut ralizing eapacitance fan be obtained by rumning sloort lengths of stiff wire up through the chassis alongside the tube plates, erossing them over to the mposite grid terminals below the chassis. Neutralization is adjusted by trimming or bending the wires.

Instability shows up frequently in tetrode amplifiers as the result of indfeetive sereen bypassing, in which case conventional eross-gver neutralization will acomplish little or nothing. The solution lies in series-resonating the sereen rireuits to ground, as shown in Fig. 17-25. The r.f. choke and condenser values vary with frequency, so sereen neutralization is essentially a one-band deviere.

FREQUENCY MODULATION

Though FMI has not enjoyed great popularity' in v.h.f. operation, probably beeause of lack of suitable receivers in most v.h.f. stations, its possibilities should not be overlooked, particularly for the higher bands. At 420 Mc ., for instance, the efficiency of most amplifiers is so low that it is often difficult to develop sufficiont grid drive for proper AM service. With FMI any amount of grid drive may be used without affecting the audio quality of the signal, and the modulation process adds nothing to the plate dissipation. Thus considerably higher power ean be run with FM than with AM before damage to the tubes develops or the signal is of poor quality.

Frequencer modulation also simplifies transmitter design. The principal obstacle to greater use of FM in v.h.f. work is the wide variation in selectivity of v.h.f. receivers, making it difficult. for the operator to set up his deviation so that it will be satisfactory for all listeners.

TVI PREVENTION AND CURE

Interference to television reception is not ordinarily so serious a problem with v.h.f. gear as with equipment for lower amateur batuds, where more harmonies of the operating frequency fall within the television channels. The principal causes of TVI from v.h.f. transmitters are as follows:

1) Adjacent-chamel interference in Channel 2 from 50 Me .
2) Fourth harmonic of 50 Me , in Channels 11 , 12 or 13, depending on the operating frequency:
3) Radiation of unused harmonies of the oscillator or multiplier stages. Examples are 9 th harmonic of 6 Me., and 7 th harmonic of 8 Mc. in Chamel 2; 10th harmonic of 8 Me. in Channel 6; 7th harmonic of $25-\mathrm{Me}$. stages in Channel 7 ; fth harmonic of 48 -Me. stages in

Chamnel 9 or 10; and many other comhinations. This may include i.f. piok-up, as in the cases of 24-Mc. interfercuce in receivers having 21-Mc, i.f. systems, and $48-\mathrm{Me}$. tronble in $4 \overline{5}-\mathrm{Me}$. i.f.'s.

1) Fundamental bocking effects, including modulation hars, usually found only in the lower chammels, from 5(0-Me. equipment.
2) Image interference in Channel 2 from 141 Me., in reoeivers having a 45 -Mc. i.f.
b) Sound interference (pioture clear in some (ases) resulting from r.f. piek-up be the andio circuits of the TV receiver.

There are many other possibilities, and u.h.f. TV in general use will add to the list, but nearly all can be eorrected completely, and the rest can be substantially reduced.

Items 1,4 and 5 are receiver fatuls, and nothing (an be done at the transmitter to reduce them, except to lower the power or increase separation between the transmitting and TV antenna systems. Item (i is also a receiver fault, but it can be alleviated at the transmitter by using FM or $r \cdot w$. instead of AM 'phone.

Treatment of the various harmonic troubles, Items 2 and 3, follows the standard methods detailed elsewhere in this Handbook. It is suggested that the prospective builder of new v.h.f. equipment familiarize himself with TVI prevention techniques, and incorporate them in new construction projects.

Use as high a starting frequency as possible, to reduce the number of harmonies that might cause trouble. Seleet crystal frequencies that do not have harmonies in TV chamels in use locally. Example: The 10 th hamonic of 8 - Me. erystals used for operation in the low part of the 50-Mc. band falls in Channel (;) but 6 -Me. crystals for the same frequency range have no harmonis in that chamel.

If TVI is a serious problem, use the lowest transmitter power that will do the job at hand. Much interesting work can be done on the v.h.f. bands with but a few watts output, particularly if a good antemma system is used.
lieep the power in the multiplier and driver stages at the lowest practionl level, and use link coupling in preference to caparitive coupling, particularty in the later stages.
l'an for complete shiclding and filtering of the r.f. sections of the trunsmitter, should these steps become neressary.

Lise coaxial line to feed the antema system, and locate the ratiating portion as far as possible from TV receivers and antemna sustems.

Some v.h.f. TV tuners have removable strips that can be replaced with double-conversion inserts for u.h.f. reception. For a number of Channels the first conversion frequeney may then fall in or near the 144-Me. band. Where this method is employed for u.h.f. reception the receiver is very sensitive to $14+\mathrm{Me}$. interforence. The cure for this receiver fault is to replare the strips with others having a different conversion frequency, or use a conventional u.h.f. eonverter for reception of the channels from 14 up.

A Complete Transmitter for 144 Through 21 Mc.

The gear deseribed in the next several pages shows how transmitting equipment for several bands can be coordinated so as to rum from a single exeiter. Fach item can be used alone. or they combine readily to cover 21,28 , 50 and $1+4$ Me., at a power level approaching the legal maximum.

In the order of their deseription, they include an exciter capable of up to 40 watts cutput on 21 , 28 and 48 to 54. Me., a high-powered driver-amplifier for $1+4$ Me., an amplifier of similar power level for 21, 28 and 50 Mr ., and a VFO) unit designed to work with the exeiter. Their external appearanere is such that they combine neatly for rack mounting.

THE EXCITER

The transmitter-exeiter shown in Figs. 17-2 through $17-1$ was designed for the v.h.f. man who likes to work some of the lower bands an well. It delivers up to 40 watts output on 21, 28 or 50 Me., and rovers the range down to 48 Me. so that it may be used as a source of exritation for additional stages that multiply to 1.4 .1 Ne. Though it was intended for use with the highpowered amplifiers deseribed later, it may be used effectively an a eomplete transmitter in itsell.

Shichding for TVI reduction was achieved by buidding the unit inside a standard aluminum chassis. Fath power lead is hy-pased at the power plag, and all wiring was done with shielded wire. Output is taken off through a coaxial fitting so that a low-pass filter eam be insorted in the line for harmonic attenuation if needed.

Circuit Details

The exditer cireuit follows standard pratice. The oscillator is a 5 ate grid-plate trpe with provision for 10 erystals and VFO input. Crys-

Fig. 17-I - A completr Iransmitter for 114 through 21 Mc. 'The four units are, from the bottom ur, a VF゙O with reactane mondulator: ant exciter. trassmittry with ar to 40 wathe outpul: a triplaredriver. amplifier for 111 Vlas and a shiolded amplifior for 50,28 and 21 We.
tals may be in the 3.5-, 6-, $7-, 8-, 14-$ or $24-\mathrm{Mc}$. ranges. On 21 Me. the oscillator output is on the signal frequency, and best results are obtained with $\overline{\mathrm{T}}$-IIc. crystals, tripling in the plate rircuit. For 28 Mr. the oscillator doubles to 14 Me. with 7 -Me. crystals, quadruples from 3.5 Me., or works straight through with $1+$-Mc. overtone erystals. For operation on 50 or $1+4$ Mc., the oscillator output is on 24 to 27 Mc., quadruphing, tripling or working straight through, for (i-, 8or 2 - - Ile. crestals, respertively. The $100-\mu \mu \mathrm{fd}$. tuning caparitor at ('b tunes the oscillator plate rircuit from If to 27 Me, so no bandswitching is noeded in this staue.

Another 5 gis 3 follows the oscillator, working straight through on 21 Me, or doubling to 28 or 48 to 51 Mr . Two coils, L_{2} and L_{3}, and a $50-\mu \mu \mathrm{fd}$. condenser, ('io, cover 21 to 30 Me ., and 48 to 51 Me., respectively. In case trouble is emoontered in making the 57633 run stably as a 21-Me, amplifier, a thind switch position is available for comerting a dimping resistor, R_{8}, in series with L_{2}.

The output stare uses a 6116 , with a tapped coil for 21 and 28 Me, and a second coil for 48 to 54 Me. Output coupling links in these two

Fig. 17-2 - Looking into the bandswitching exciter-transmitter from the top front. Oscillator components are in the left compartment, the doubler and power connector in the center, and the output stage at the right. Note that the 61.16 soeket is mounted inside the output stage compartment.
coils are also switched. The 6146 works nicely over a wide range of plate voltages, so this rig may be used in exciter service with as little as 300 volts on the final, or it may be used as a eomplete transmitter at up to 500 volts. A 2 F 26 may be used in the final stage where its power output is adequate for the jol) at hand.

The exciter is built largely inside a $3 \times 5 \times 17-$ inch aluminum chassis and is fitted with a standard $31 / 2$-inch rack panel. Only the crustals, the first two tubes and the filament transformer are outside, and these are mounted on the rear wall of the chassis to keep down the vertical dimension.

Arrangement of parts is not particularly ritical, the principal consideration in the first two stages being to mount the tubes in such position that the coupling lead $\left\{C_{2 s}\right.$ to the grid of the second 5763) is short. The grid circuit of the second stage should be isolated from the rest of the eomponents to reduce the tendeney toward self-oseillation when the stage is operated straight
through on 21 Mc. The lead to the grid is made with a short piece of RG-59/U coax, run through a slot in the top of the partition, and a small piece of flashing copper is soldered arross the 5763 sorket between l'ins 1 and 9 to isolate the input and out cireuits further. Leads from the tube plate to the bandswitch, S_{2}, and thence to the tuning condenser, C_{10}, are made with $1 / 4$-inchwide eopper strap, to hold down lead inductance.

Note the method of mounting the socket for the 6146. Contrary to common practice, this socket is mounted on the lube side of the partition. Cathode, heater and sereen pins (Nos. 1, 3, 4, 6 and 7) are by-passed individually to separate points on the partition with the shortest possible leads. Lleater and cathode leads are brought through the partition with shielded wire, and the control wrid and sereen leads are run through on short lengths of stiff wire insulated with spaghetti sleeving. Mounting the 6146 socket inside the final stage eompartment provides a short plate-

Fig. 17-3- Rear view of the exciter, On the rear wall at the right are 10 crystal sockets of various types. Then come the two 5763 s , the power plag, the filament transformer, and the output eoaxial fitting. On the inside front wall are, in the same order, the crystal switeh, oscillator tuning, doubler bandswiteh, doubler tuning, and final bandswiteh.

$\mathrm{C}_{6}-100-\mu \mu \mathrm{fd}$. midget variable, shaft-mounting type.
$\mathrm{C}_{10}-50-\mu \mu \mathrm{fd}$. midget variable, shaft-mounting type.
$\mathrm{C}_{12}-15-\mu \mu \mathrm{fd}$. mica or ceramic.
$\mathrm{C}_{17}-20-\mu \mu \mathrm{fl}$. double-spaced midget variable, shaftmounting type.
$\mathrm{C}_{25}-50-\mu \mu \mathrm{fd}$, ceramic or mica.
$\mathbf{R}_{1}, \mathbf{R}_{4}-0.1$ megohm, $1 / 2$ watt.
$R_{2}-220$ ohms, $1 / 2$ watt.
$\mathrm{R}_{3}, \mathrm{R}_{6}-22,000$ ohms, 1 watt.
$R_{5}, R_{10}-1000$ ohms, $1 / 2$ watt.
R_{7} - 100 ohms, $1 / 2$ watt.
$\mathrm{R}_{8}-7.5$ ohms 1 watt (two 15 -ohm $1 / 2$-watt resistors in parallel).
$R_{9}-33,000$ ohms, 1 watt.
$\mathrm{R}_{11}-20,000$ ohms, 10 watts.
$\mathrm{R}_{12}-68$ ohms, $1 / 2$ watt.
$\mathrm{L}_{1}-81 / 2$ turns No. 20 tinned, $3 / 4$-inch diam., $1 / 2$ inch long (B \& W Miniductor No. 3011).
$\mathrm{L}_{2}-7$ turns like $L_{1}, 3 / 6$ inch long.
$\mathrm{L}_{3}-4$ turns No. 20 tinned, $5 / 8$-inch diam., $1 / 2$ inch long (B \& W No. 3006).
$L_{4}-2$ turns No. 18 push-back, $5 / 8$-inch diam., coupled to cold end of L_{3}.
$\mathrm{L}_{5}-4$ turns No. 20 tinned, $3 / 4$-inch diam., $1 / 2$ inch long
to-cathode return. The stage may possibly be unstable if the socket is mounted on the opposite side of the partition from the tube, as is usually done.

The three tuning condensers should be the shaft-mounting type, not the sort that mount on small pillars. Unless the rotor shaft is grounded solidly to the panel it will act as an "antenna" to radiate harmonic energy that is almost certain to cause TVI. The meter tip jacks, J_{5} and J_{6}, may also turn out to be harmonic radiators, unless by-passed right at the point where they come through the rear wall.

The output coupling links, L_{6} and L_{8}, are the smallest diameter $\mathrm{B} \& \mathrm{~W}$ Miniductor, which makes a close fit inside the larger size used for L_{5} and L_{7}. They are held in place with household cement. A coupling link is also provided for L_{3}, so that a small amount of power can be taken off at 48 Mc . if desired. This is made of selfsupporting stiff insulated wire, coupled closely to the cold end of L_{3}.

Note that the front-panel appearance is completely symmetrical, the controls being spaced at regular intervals horizontally, and in the center of the panel vertically. The chassis is
(B \& W No. 3010).
$\mathrm{L}_{6}-41 / 2$ turns No. 20 tinned, $1 / 2$-inch diam., $1 / 2$ inch long, mounted inside cold end of L_{5}. (B \& W Miniductor No. 3003.)
L_{7} - 11 turns like L_{1}, tapped at 7 turns, $3 / 4$ inch long.
Ls - 9 turns B \& W No. 3004, $1 / 2$-inch diam., $5 / 6$ inch long, mounted inside cold end of L_{7}.
J_{1}, J_{2}, J_{3} - Coaxial fitting. J_{1} is for VFO input. $\mathrm{J}_{4}-$ Closed-circuit jack.
$\mathrm{J}_{5}, \mathrm{~J}_{6}$ - Tip jack.
$\mathrm{J}_{7}-8$-pin male chassis fitting.
RFC $_{1}-2.5-\mathrm{mh}$. r.f. choke (National R-100-S).
RFC2 - Parasitic choke, 6 turns No. 20 enamel, $1 / 4$-inch diam., $3 / 8$ inch long.
$S_{1 A}, S_{1 B}-11$-position 2 -section ceramic wafer switch. (Made from centralab P-122 index assembly and 2 centralab type Y switch sections. Complete assembly CRİ. 2513.)
S_{2} - Similar to above, but single section (CRL 2501 on 2503 , wafer type X or Y).
$\mathrm{S}_{3 \mathrm{~A}}, \mathrm{~S}_{3 \mathrm{~B}}$ - Same but 2 -pole 3 -position single section (CRL 2505, wafer type RR).
T_{1} - 6.3-v. 3-amp. filament transformer,
bottom up, with the cover at the top. This allows ready access to the inside when the unit is in its normal operating position, but it may be used the other side up, if the builder so desires. Ventilation of the 6146 is afforded by twenty $1 / 4$-inch holes drilled in the top and bottom surfaces over and under the tube.

Testing and Use

For initial tests a power supply delivering 200 to 250 volts is adecuate. Each stage has its platescreen power lead brought out to the plug separately, so that individual metering is possible. Applying voltage through Pin 3, we note that the stage draws low current until oscillation is obtained, because of the cathode bias. Plug a lowrange meter into J_{5} to read the grid current of the following stage, and tune C_{6} for maximum indication, which will be about 0.5 to 1 ma . at normal operating voltage. The oscillator platescreen current will be around 20 ma .

Should the oscillator refuse to start, try other crystals, and then experiment with the values of C_{1} and C_{3}. The grid-to-cathode capacitor, C_{1}, may not be necessary, particularly if crystals no lower than 6 Mc. are used. Use the lowest value
that will permit oscillation with all erystals. The value of ('3 may be eritical when overtone-type crystals are used. Improper values at either of these positions may result in intermittent oscillittion, or none at all.

Check the output frequency with a calibrated wavemeter, or by listening with a receiver whose calibration can be relied upon, and proceed to the following stige. Plug the grid meter into J_{6}, apply power through l'in 4 , and cherk the output frequency when (' 10 is tuned for maximum grid current. At least 2 mis. should be available. Cherk for self-oscillation by removing exatation. Should self-oscillation orcur on the 21-Mc. range, switch in the damping resistor, Rg. This should be the lowest value pormissible, as the output from the stage drops ratpidly as the series resistance is increased above a few ohms.

When around 2 mat of grid purent is obtained the output stage maty be chered. This maty be done initially with 250 to 30 ot) volts applied through Pins 5^{2} and 6 , using a 25 -wat t lamp phuged into. J_{3} for a dummy load. Cutting the excitation (do it only briefly - $\$ 1 \mathrm{hfs}$ draw a tremendous smount of phate current!) should result in zero grid current. If the stage is operating correctly the output should be around 15 watts with 300 volts on the plate.

Increasing to 400 to 450 volts it should be possible to get at least 35 watts output on all frequencies. In an enclosed lityout of such smatl dimensions it is not advisable to go much beyond this level, as the heat dissipation may he high enough to damage the smatl roils used. Where the exater is used to drive a high-powered tetrode final stage, 300 volts on the $(6116$ and 200 to 250 volts on the 5 tio3s is plenty. The rig maty be used as a complete transmiter, modulating the output stage on 28 or 50 Mc , at 30 to 50 wat th input. The operating conditions in all stages can beadjusted to suit the builder's own requirements by varying the serem resistor values. The exater is keyed in the 6110 eathode lead for c.w. operation.

A 144-MC. DRIVER-AMPLIFIER

The unit shown in Figs. 17-5 through 17-10 is a three-stage tripler-driver-amplifier that may be used with the exciter just deseribed. Iriving power at 48 Me may be taken from the doubler stage (bye connecting to J_{2} in Fig. 17-4) or from the output stage, rumning at low power. Almost any $50-\mathrm{Me}$. transmitter of 3 to 5 watts output could be used by substituting at suitable crestal and retming the stages for operation at 48 to 49.3 Mr. If a small $1+4-$ Mer . transmitter is available, the tripler stage may be dispensed with, in which ease about 5 watts drive on $1+4$ Me. is required.

This section of the station is built in two parts. The tripler and driver stages are in the small portion at the right of Fig. 17-5, with the final stage at the left. All are push-pull stages, the tripler and driver using dual tetrodes. The tripler is :n Amperex 6:360, followed by an RCA 652.4 straight-through amplifier. This drives a pair of $4-12 \bar{i} \mathrm{ds}$ in the final stage.

Input to the $4-125$ As can be up to 600 watts on AMI phone. or 800 watts on (ew. or FM. By suitable adjustment of screen and plate voltages the power cam be dropped as low as 150 watts input and still maintain good efficieney. Some mosus of reducing power is highty desirable, as most operation on 144 Me. cun be carried on satisfinetorily with low power.

The Driver Portion

The tripler and driver stages, Figs, 17-7 and 17.8 , both operate well bolow their maximum ratings. Solf-tuned grid cirouits are used in each stage. This simplifies construetion, and in the rase of the driver stage, reduces the possibilityof solf-oscillation. With a surplus of drive available, the grid circuit of the 652.4 may be resonated as low as 1:30 Me. There is little tendeney to tuned-plate tuned-grid oseillation, therefor, and neatralization is not required.

Tripler and driver are built on a standard $5 \times 10 \times 3$-inch ahminum chas-
 sis, with the tripler at the back. lis plate cireuit is tuned from the front puel byan extension shaft. Omission of the sercen by-pass on the tripler is intentional as the stage works satisfiactorily without sereen by-passing.

The $652 \cdot 4$ is exisily over driven. This math be corrected by stueezing the driver grid coil turns

Fig. に- - The hish-powered 2meler rig, with shielding enclowures in place. The small unit at the right houses: the tripler and driver stages.
"loser together, lowering the resomant frequeney until the desired 2.5 to 3.5 mat is obtained across the hand. The farther it can be resomated below 14. Me. the less likelihood there is of self-oscillattion in the driver stage.
The 6524 is monnted horizontally, and holes are drilled in the chassis under the tube to allow for air circulation. Plate leads are made of thin phosphor bronze or copper, bent into at semicirele. conneding the butterfly capacitor and the hatdissipating commertors. This allows the latter to be removed for changing tubes, without putting undue strain on the plate pins. The romeretors have to be sawed or filed down on the insides to fit on the $652 . t$ pins. The coupling link at the driver plate cireuit is tuned, to provide efferent transfer of energy to the amplifier grids.

Smatl fered-through by-passes are used in the driver sereen cireuit. C_{5} is mounted in the alumimom plate that supports the 6.52 .1 socket, and r $_{6}$ is in the ehassis surface.

Amplifier Features

1)esign of the $4-125 \mathrm{~A}$ grid cirenit is important in achieving efficient transfer of energe from the driver stage. The input capacitance of the large totrodes is so high that at tumed grid rimuit of conventional design cannot be used at $1+4$ Mre, so a half-wave lime is substituted, as shown in Figs. 17-9 and $17-10$. The input coupling tink is series tuned, permitting adjustment for minimum standing-wave ratio on the conxial line commerting it to the driver stage output link. The urid line, $L_{1} L_{20}$, is made of $1 / 4$-inch copper tubing, to reduce heat losses.

Maintaining the $4-125 \mathrm{~A}$ screens and filament leads at ground potential for r.f. is neerssary for stability. To this end, the tube sorekets are mounted atoove the chassis, rather than below. They are clevated only enough to allow the socket contacts to clear the ehassis, and are mounted corner to corner, with the inner comers almost touching. The grid line is brought up through $1 / 2$-inch chassis holes and soldered directly to the grid contuets. This determines the line spacing, about $1 \frac{1}{2}$-inches centor to center.
The inner filament terminals on each socket are grounded to the chassis. The others commect to feed through by-passes with the shortest possible leads. These are joined under the ehassis with as shielded wire and tied to the filament transformer. The r.f. chokes in the sereen leads are

Fig. 17-6- IScar view of the 4.12.51 linal stare. 'I'he split-itator rapacitor near the middle of the picture is the sereen neutralizing arljustment. 'The plate line is taned with a capacitor made from parts of a meutralizing unit, momited on ceramic atand-offs.
under the chassis, their wire leats eoming up) through Millen type 321 an feed-through bushings inserted in chassis holes under the serwen terminabs. The two sereen terminals on rach socket are strapperd together with is 3 s-inch wide strip of flashing enpmer. The sermen nomtralizing coubator is mounted as close to the sorkets as possible and still leave room for the shat't compling on its rotor. Lads to its stators are about one half inch long.

Wore compact and symmetrical design is possible if a modified single-section caparitor is used for ("g. It should be the type having supports at both ends of the rotor shaft. The Millen I $91+0$ and Hammathund MCI 40 are suitable emits for the purpose. The stator hars are suwed at each side of the remter stather plate. The front rotor plate is removed, making a split-stator variable with 1 phates on each stator and 8 on the rotor. This procedure mesy not be applicable to all 1 Ho- $\mu \mu l^{\prime}$. (apacitors, but any medhod that results in a balaned unit having about $50 \mu \mu$ f. per section should do.

Construetion of the final plate rirenit should We clear from Fig. 17-6. Tuning is done with parts of a disk-type meutalizing rapacitor (Mil(en 15011) mountex on reramic standoofts 3 '白 inches high. These are made of one l-inch and one $2 \frac{1}{2}$-inch stand-off rach, fastenod together with a threaded insert. Commetion to the lines is made with (oppere or silver strap, 412 inches from the plate end. Silver plating of all tank circuit parts is a worth-while investment, though it should mot be considered a meressity. A shaft coupling designed lor high-voltage serviee is attached to the threaded shatit of the movable pate, and this is rotated with a shaft of insulating material brought out to the front panel.

A word about the extension shatts is in order at this point. If they are of metal they may have ab serious detuning effert in some circuits, even though they are comueded through insulating couplings. Bakclite rod is fine, but since the insulating quatities are of no importance, 1/4-ineh wooden doweling will do the jol) just as well. Incite or polvistrene rod will not stand

Fig. 17-7 - Schemalic diagram of the tripler and driver stages of the high-powered 2-meter transmitter.
$\mathrm{C}_{1}, \mathrm{C}_{2}-10.5 \mu_{\mu} \mathrm{f}$ - per-section butterfly variable (Johnson 101.1315).
$\mathrm{C}_{3}-25-\mu \mu \mathrm{f}$. serewdriver-adjustment variable (IIammarlund APC-25).
$\mathrm{C}_{4}-25-\mu \mu \mathrm{f}$. miniature variable (Bud I.C-1642).
$\mathrm{C}_{5}, \mathrm{C}_{\mathrm{B}}-500-\mu \mu \mathrm{f}$. feed-through by-pass (Centralal), FT. 500).
$\mathrm{K}_{1}-11,000$ ohms 2 watts (two 22,000 -ohm 1 -watt resistors in parallel.)
$\mathrm{K}_{2}-50,000$ ohms 2 watts ($\mathrm{two} 100,000$-ohm 1 -watt resistors in parallel).
$\mathrm{L}_{1}-2$ turn insulated wire around enter of L_{2}. 'Twist leads to J_{1} and C_{3}.
$\mathrm{L}_{2}-13$ turns No. $20,5 / 8$-inch diam., $7 / 8$-inch long, center tapped (13 \& 11 Miniductor No. 3007).
$1,3-3$ turns No. it enamel, $2 / 4$-inch diam., spaced 1/6 inch, center-tapped.
the heat and should not be used.
The final chassis is aluminum, 10 by 12 by 3 inches, matching up with the driver chassis to fit into a standard $101 / 2$-inch rack panel. Complete enclosure is a must for TVI prevention, and it pays dividends in improved stability by providing effective isolation of rireuits that tend to give trouble in open layouts.

The enclosures were made by mounting $1 / 2$-inch aluminum angle stock around the edges of the chassis of both units and cutting the sides and covers to fit. It was not intended to cool the
$14-2$ turns No. 18 cnamel, same as I_{3}, inserted at center.
Ls - 2 turns No. 18 enamel, same as Lo, inserted at center.
$I_{6}-1$ turns No. 14 enamel, $1 / 2$-inch diam., turns spaced wire diameter.
$1.7-2$ turns No. 14 enamel, 1 -inch diamn., spaced $1 / 4$ ineh.
L.s - 1 turn No. 14 enamel between turns of L_{7}.
$\mathrm{J}_{1}, \mathrm{~J}_{2}$ - Coaxial fitting, female (Amphenol 83-1 K).
$\mathrm{J}_{3}, \mathrm{~J}_{4}, \mathrm{~J}_{5}$ - Closed-circuit jack. Insulate J_{5} from panel and chassis.
$M A_{1}$ - Vixternal meter not shown in photo, 200 ma .
S_{1} - 'loggle switch.
T_{1} - Filament transformer, 6.3 volts, 3 amp . (UTC S.55).
driver unit originally, so the enclosure was made of perforated aluminum. The blower for the final provided plenty of air, however, so three holes were made in the walls of the two chassis to allow some of the air flow to go through the driver enclosure as well. The chassis are bolted together where the vent holes are drilled. The main flow is up through the amplifier chassis, around the $4-125 \mathrm{As}$, and out through the $1 / 4$-inch holes drilled in the top cover above the tubes. Holes in the amplifier chassis are drilled to line up with the ventilating holes in the $4-125 \mathrm{~A}$ sockets. All other holes and cracks are sealed with household cement to confine the air to the desired paths, and bottom covers are fitted tightly to both units.

Fig. 17-8-Side view of the tripler and driver stages. Coil adjacent to the 6,360 tripler tube is the grid coil for the 6524 driver. I'late leads for the driver tube are flexible copper straps, to permit removal of the tube from its socket. Serewdriver adjustment at the lower right is the reactance tuning capacitor for the tripler input link.

The somewhat random appearance of the front panel is the result of the development of the unit in experimental form. A slight rearrangement of some of the noneritical components could be made to achieve a symmetrical panel layout readily enough.

Operation

The two units have their own filament transformers. l'ate supply requirements are 300 volts at 50 ma . for the tripler, 400 volts at 100 ma . for the driver, 300 to 400 volts at 75 ma. for the final screens and 1000 to 2500 volts at 400 mat. for the final plates. The driver plates and final sereens may be run from the same supply, but more flexibility is possible if they are supplied separately. A variable-voltage supply for the final sercens is a fine way to control the power level.
In putting the rig on the air the stages are fired up separately, beginning with the tripler. A juck (J_{3}, in Fig. 17-7,) is provided on the front panel for measuring the 6i360 grid current. Alout 1 ma. through the 150,000 -ohm grid resistor is plenty of drive. The series capacitor, C_{3}, in the link can be used as a drive adjustment, if more than necessary is available.

Next plug the grid meter into the 6524 grid eurrent jack, J_{4}, and tune the 6360 plate cireuit for maximum grid eurrent. If it is higher than 3 to 4 mis. increase the inductance of the grid coil, L_{6}, by squeezing its turns eloser together. Now apply plate and screen voltage to the 6524, and check for signs of self-oscillation. If the plate circuit is tumed down to the same frequency as that at which the grid eoil resonates with the tube cabaritance, the stage may oscillate, but if it is stable across the intended tuning range there should be no operating difficulty resulting from a tendency to oscillate lower in frequeney, and no neutralization should be needed.

Connect a coaxial line between the driver output and the final grid input preferably with a standing-wave bridge connected to indicate the standing-wave ratio on this line. Tune the driver plate circuit and its series-tuned link for maximum grid current in the final amplifier. Adjust the final grid tuning, C_{1}, for maximum grid current, and the series capucitor, C_{3}, in the link for minimum reflected power on the s.w.r. bridge. Adjust the coupling loop position for maximum transfer of power, using the least coupling that will achieve this end.

Adjust the screen neutralizing eapacitor, C_{6},

Fig. 17-9-Schematic diagram of the 4-125A amplifier for 144 Mc .
C_{1} - $30 \cdot \mu \mu \mathrm{f}$.-per-section split-stator variable (Ifammar-

C_{2} - Plate tuning capacitor made from Millen 15011 neutralizing unit; sec text and photo.
$\mathrm{C}_{3}-25-\mu \mu \mathrm{f}$. miniature variable ($\mathrm{Bud} \mathrm{LC} \cdot \mathrm{-l}(\mathrm{H} 2$).
$\mathrm{C}_{4}, \mathrm{C}_{5}-500-\mu \mu \mathrm{f}$. feed-throngh hy-pass (Centralab FT-500).
C_{6} - Approx. $50-\mu \mu \mathrm{f}$.-per-section split-stator variable.
Make from Millen 19140 or Lammarlund MC-140; sec text.
$\mathrm{C}:-25-\mu \mu \mathrm{f}$. variable (Johnson 25L15).
$\mathrm{C}_{8}-0.25-\mu \mathrm{f}$. tubular.
$\mathrm{R}_{1}-5000$ ohms, 10 watts.
$\mathrm{L}_{1}, \mathrm{~L}_{2}-1 / 4$-inch copper tubing, 12 inches long, spaced $11 / 2$ inches center to center. Hend around $11 / 2$ inch radius, 1 inch from grid end.
L_{3} - Loop made from 5 inches No. 14 enamel. Portion coupled to line is I inch long cach side, about $3 / 8$-inch from line.
$L_{4}, L_{5}-1 / 2$-inch copper tubing 12 inches long, spaced $11 / 2$ inches center to center. Bend around 2 -inch radius to make line 4 inches high. Attach C_{2} $41 / 2$ inches from plate end.
$L_{6}-$ Loop made from 7 inches No. 14 enamel. Sides spaced $11 / 4$ inches.
$\mathrm{L}_{7}-5-\mathrm{hy}$. (min.) $100-\mathrm{ma}$. rating filter choke.
$\mathrm{J}_{1}, \mathrm{~J}_{2}$ - Coaxial fitting, female (Amphenol 83-1 R).
$\mathrm{MA}_{1}, \mathrm{MA}_{2}, \mathrm{MA}_{3}$ - External neters, not shown; 100, 200 and 500 ma .
M - Motor-hlower assembly, 17 c.f.m. (Ripley Inc., Middletown, Com., Type 8.43).
RFC - V.h.f. solenoid choke (Ohmite Z-144). Four required.
S_{1} - Togglé switch.
S_{2} - Rotary jack-type switch (Mallory 720).
T_{1} - Filament transformer, 5 -volt 13 -amp. (Chicago FO-513).
for maximum final grid current, with the plate and sereen voltages off. Do not attempt to run the final stage without load. With a fixed sereen supply the sereen dissipation goos very high when the plate load is removed or made too light. It is important to meter the sereen curvent at all times. With $4-125 \mathrm{~A}$ denger to the plates can be detected by their color, but the sereen current is the only indication of possibla damage to that element.

There is no suitathle inexpensive dummy lowd for testing a v.h.f. rig of this power level. The best load is probably an antenma. This can be an indoor gamma-matehed dipole, fod with coax. Its sorias eapacitor should be adjusted for a standing-wave ratio close to $1: 1$. The MieroMatch can be used in this cperation, but adjustments should be mude at less than full power. Watch for any sign of heating in the bridge unit.

The position of the coupling loop, L_{66}. should be adjusted for maximum transfer of energy to the antema, kecping the compling as loose as possible. The series eapacitor, C_{7}, ean be used as a loading adjust ment thereafter. If the sereen voltage is contimuonsly variahle it will be found that there is on opimum value around 325 to 350 volts.

Below are some ronditions under which the rig hats been operated experimentally:

stage	E_{1}	I_{1}.	$E_{\text {sr }}$	$I_{\text {ce }}$	$I_{\text {g }}$
Tripler	300 v .	3.) mat.	-	-	1.5 mia.
Driver	700 v .	92 ma.	-	8 tıa.	3-4 ina.
Final	1000 v .	300 ma.	400 r .	60 ma.	22 ma.
Final	2000 v .	350 ma .	350 v	45 ma.	20 на木.
Final	2:00 v.	400 ma.	320 v	40 пиа.	18 ma.

The first and third conditions given for the final stage represent extremes, both exereding the tubes' ratings in some way, so they are not recommended. At low plate voltages the sereen has to be rum above recommended ratings to make the tubes draw their full rated plate current and operate etliciently. At high plate voltages the sereen dissipation drops markedly. The use of $4-125.1 s$ at a full kilowatt input exereds the manufaturer's maximum ratings, and is rome at
the user's risk. To operate safely, the maximum plate voltage for woice work at $1+4$ Ma. should prohably not go over 2000 . At this level the tubes will handle 600 watts input on voiee, and $\overline{6} 0$ watts on c.w. casily.

Modulation and Keying

Kiving is done in the sereen circuit of the driver stage, and in the sereen and plate cirenits of the tripler. Cathole keving of the driver was attempted, but it caused instability troubles, so was abandoned. The sereen method makes the key hot, so an insulated key or a keving relay must be used in the interest of sufety. The keving jack must be insulated from the pand.

Fixed bias for the final amplifier is provided by the VIR-tube method. When the tube ignites at the application of drive, the eapacitor C_{8} charges. Removing excitation stops the flow through the VIR tube and leaves the negative charge in the capacitor applied to the amplifier grids. The effectiveness of this system requires : low-leakage capacitor for C_{8}.

Moxblation is applied to the plates only. A rhoke of about 10 henrys is connested in the screen lead, or the modulation can be supplied through a sereen winding on the modulation transformer. The by-pass value in the sereen eireuit should be low enough to avoid affecting the higher atudio frequencies. Oceasionally andio resonance in the sereen choke may canse a singing effect on the modulation. If this develops, the choke may be shunted with a resistor. Use the highest value that will stop the singing.

In neutralizing the $4-125 \mathrm{As}$ it may be found that what appears to be the best setting of the sereen cupacitor will result in a very large drop in grid earrent when plate voltage is applied. The setting may be altered slightly, raising the full-load grid eurrent, without adversely afferting the stability of the amplifier. The final cherek for neutralization is twofold. There should be mo oscillation when drive is removed; and maximum grid arrent, minimum plate aurent and maxi-

Fig, 17-10- U'nder-chassiss view of the 2 -meter transmitter. T'ripler grid and plate circuits are at the upper left. Only two of the three jacks on the front pancl show in the lower left. The halfwave line used in the $4-125.1$ grid circuit is the matin item of interest in the amplifier section. Both units are fitted with bottom covers. to provide shiedding and confine the flow of cooling air to the desired areas.
mum output should all show at one setting of the plate tuning rapacitor. The latter condition may be observed only when the amplifier is operated without fixed bits.

It may be dosirable, especiatly if e.w. is to be used regularly, to provide for ehanging the gridleak resistance. A 5000 -ohm 25-watt potentiometer can be connorted in the grid return lead, and the value of R_{1} redured to about 2500 ohms. The potentiometer is then reudjusted to permit rumning the same value of grid current, whether or not the VR-tube bias arrangement is in use.

Three different makes of $4-125.1$ s have been used in the new finat amplifier, limitw, (ile and Amporex. The Amperex tubes, also known as Gl5⿹\zh26s, atre quite different in design from the other two makes, lout exeept for a slight differenere in final plate foming they work identically with the others.

A FINAL AMPLIFIER FOR 50, 28 AND 21 MC .

The top unit in the ratek of v.h.f. equipment, Fig. 17-1, shown in detail in ligg. 17-11 through $1 \overline{6}-13$, is it high-powered companion to the exciter described earlier. It covers the sime three bands, with a maximum power rating of 600 watts input on A.I 'phone, or 800 on e.w., and maty be used with :my exciter capable of delivering 15 to 25 watts output in the proper frequence range. It is completely shielded, for TVI reduction, inn misy be changed from bind to band without opening the enclosure.

The plate circuit is a pi notwork, with a vat-
riable inductor ats the matin element. Conventional bandswitrhing is amployed in the grid eirenit. l'arasitic suppression ind neutralizing methods are the principal departures from familiar practice. The alumimum enclosure calls for forced-air eooling.

Electrical and Mechanical Features

Looking into the top of the amplitier, is in Fig. 17-11, we see the $4-250$ A tetrode tube at the left. Just helow it is the neutrabizing rabsuitor. At the center of the chassis is the input luning condenser, C_{9}, of the pi-network tamk cirauit, with the variable indurtor at its right. The variable condenser at the fior right is the output condenser, (io. The smatl components to the right of the tube comprise the parasitio suppressiom cireuit. The coupling (:il):ucitor, ('s, and the
 the photograph. Gumberinuit composents are visible in the bottom view, along with the filatment trinsformor, cooling fin, and modnlation choke.
In order to obtain a satisfiactory tuning ramge and minimum strive indurtimere, a large neatral-izing-tye condenser is used for tuning the input to the pi-network plate cireuit. The eaparity range is about $\overline{5}$ to $20 \mu \mu \mathrm{fi}$. The output tuning range needed for (L , is roughly 50 to $150 \mu \mu \mathrm{fl}$, so at conventional tramsmitting variable maty be used. With a properly matched lowl the r.f. voltage abross J_{2} is low, and a phate spateing of 0.01^{7} inch is adeguate, aven with high power.
The varriable indurtor assembly hats considerable strely reymationce, which would make it

Fig. $17-1 I$ - looking inside the 3 -hand amplificr. Note the meatralizing condenser used for uning the input to the pi-network tank circnit. The small air-wound coil, center, is the 50 - Me. portion of the tank, L_{8}.

Fig. 17-12 - Schematic diagram and parts list for the 4-250 A amplifier.
$\mathrm{C}_{1}-220-\mu \mu \mathrm{fd}$. silver mica.
$\mathrm{C}_{2}-30-\mu \mu \mathrm{fd}$. miniature variable, double -spaced (II ammarlund IIF-30.X, shaft-mounted).
$\mathrm{C}_{3}, \mathrm{C}_{4}, \mathrm{C}_{5}, \mathrm{C}_{6}, \mathrm{C}_{12}, \mathrm{C}_{13}, \mathrm{C}_{14}, \mathrm{C}_{15}-\mathbf{0 . 0 0 1 - \mu \mathrm { fd }}$. disk ceramic.
$\mathrm{C}_{7}, \mathrm{C}_{8}, \mathrm{C}_{16}-500-\mu \mu \mathrm{fd}$. 10,000 -volt ceramic (Centralah TV3-501).
$\mathrm{C}_{9}-5-20-\mu \mu \mathrm{fd}$, disk-type variable (National NC-500 neutralizing condenser, with nounting bracket reversed).
$\mathrm{C}_{10}-200-\mu \mu \mathrm{fd}$. variable, 0.047 -inch spacing (National TMK-200).
$\mathrm{C}_{11}-3-30-\mu \mu \mathrm{fd}$. mica trimmer.
$\mathrm{C}_{17}-2-8-\mu \mu \mathrm{fd}$, neutralizing condenser (National N(.800A).
$\mathbf{R}_{1}-10,000$ ohms, 5 watts.
R_{2} - See text - use only if needed.
H_{3} - Approximately 100 ohms, 6 watts (three $\mathbf{3 3 0}$-ohm 2-watt resistors in parallel).
$L_{1}-21 / 2$ turns No. 20 tinned, $3 / 4$-inch diam.: turns spaced $1 / 8$ inch (l) \& W Miniductor No. 3010).
impossible to develop proper circuit Q at 50 Mc . if the variable coil alone were used, so a small airwound coil, L_{8}, is connected ahead of the variable unit. Its inductance is such that only a small portion (one turn or less) of L_{9} is used at 50 Mc .
Parallel feed of the high voltage, through $R F C_{2}$, permits the tank circuit to be operated with no d.c. applied to its components. The purpose of RFC_{3} is to provide a path to ground for the high voltage in case C_{8} should break down. The coils L_{5} and L_{6}, the capacitor C_{11}, and the resistor R_{3} comprise a parasitic-suppression circuit that will be discussed later.
The grid circuit is largely self-explanatory, with the possible exception of the neutralizing method used. C_{1} and C_{17} make up a capacity bridge, by means of which energy is fed back into the grid circuit from the plate. In this method, C_{1} has a critical value. It should be such that the amplifier can be neutralized with C_{17} at approximately the midpoint of its range. It is possible that some variation in layout might eliminate the need for neutralization, though provision
$\mathrm{L}_{2}-4$ turns 1 B \& W No. 3004 cemented inside cold end of L_{1}.
$\mathrm{L}_{3}-8$ turns $\operatorname{Vo} .20$ tinned, $3 / 4$-inch diam., $9 / 6$ inch Jong, tapped at 6 turns (No. 3011).
$\mathrm{L}_{4}-7$ turns 13 \& W No. 300% cemented inside cold end of L .3 .
$\mathrm{I}_{5}-3$ turns No. 16 timed, spaced $1 / 6 \mathrm{incl}_{1,}$ on $1 / 2$-inch diam. ceramic stand-off, 1 inch long.
L. -2 turne similar to $I / 5$, and about $1 / 4$ inch away from it on same form.
1,8-10-hy. 100-ma. filter choke.
Ls- 4 turns No. 14 timed, $5 / 8$-inch dianı., spaced $1 / 8$ inch.
$L_{s}-6.2-\mu h$, variable inductor (B \& W No. 3851).
13 - Blower motor and fan (Allied Catalog Nos. 72-702 and $22-203$).
$\mathrm{J}_{1} . \mathrm{J}_{2}$ - Coaxial fitting, femalc.

$S_{1 A}, S_{1 B}-2$-pole 3 -position ceramic wafer switch (Centralab 2505 , wafer type $k k$).
S_{2} - Single-pole single-throw toggle switch.
should be made for it when the amplifier is built.
Note that the $4-250$ A socket is mounted above the chassis, with the control grid toward the front. It is raised so that the prongs just clear the chassis. Each contact, with the exception of the control grid, is then by-passed individually to the chassis with the shortest possible leads.

The screen voltage is ohtained from a separate source, in preference to the use of a dropping resistor connected to the plate supply. The modulation choke, L_{i}, should have a minimum of 10 henrss inductance, and a current-carrying capacity of about twice the expected sereen current. The resistor connected across the choke should be added only if needed to suppress "singing" resulting from choke resonance in the audio range. It should be the highest value that will stop such tone modulation of the transmitted signal.

Arrangement of parts should be such that r.f. leads are short, and copper or silver strap should be used in preference to wire in r.f. circuits wherever it is mechanically feasible. The by-pass, C_{7},
and the blocking capacitor, C_{8}, are high-voltage ceramic units of the type used in TY receiver power supplies. The parasitic-suppression circuit and the parallel-feed r.f. choke are mounted on a ceramic pillar made from two 3 -ineh stand-off insulators. The r.f. choke should be as far from the tube envelope as possible, to prevent blistering of the paint by heat radiated from the tule.

The filament transforner, modulation choke, grid-circuit components and cooling fan are mounted below the chassis, which is at standard $3 \times 10 \times 17$-inch job). The fan may be plawed at any point where the blades can rotate elose to an intake hole. If this is not possible, at duct just larger than the area of the fan blades can be used to channel the air to the fan. The blades must be bent so that air will be drawn inward. Holes in the chassis just below the tube socket and in the top cover over the tube provide the only air path out of the enclosure. Any other holes should be plugged, and the shielding of the upper portion of the amplifier should make a good fit to the chassis. Circulation may be checked by placing as smoke source near the intake hole. The smoke should be drawn in rapidly, flowing out through the top holes only. A light piece of paper placed over the holes in the top cover should rise perceptibly when the fan is started.

The shielding of the main assembly is male in four pieces, fitted to the front, back and sides of the chassis. The edges are folded over three quarters of an inch and drilled and tapped, or the assembly may be made with self-titpping screws. The entire job should make good contact clectrically and meehanically, if cooling and TVI prevention measures are to be effeetive.

Adjustment and Operation

Initial tests may be made on the amplifier with the parasitic suppression and neutralizing circuits omitted, though both will probably he needed. Start with resistor bias only, as instability will be more evident if the plate current is not cut off in the absence of excitation. The plate and sereen voltages should be such that the dissipation by thesc elements is below the permissible maximum for the tube. A suitable load for the first tests can be made by connerting three 100 -watt lamps in parallel at J_{2}.

With a 25 - or $50-\mathrm{ma}$. meter connected between R_{1} and ground, apply plate and sereen voltages (but not grid drive) and watch for signs of grid current. If any appears it will indieate oscillation, cither a v.h.f. parasitie, or tuned-plate tuned-grid feed-back near the operating frequency. If a v.h.f. parasitic is encountered, it can be suppressed with the LCR combination shown in the schematie diagram. L_{6} and C_{11} tune to the parasitie frequeney: L_{5} should be as low inductance as possible, in order to kerp the frequency of the parasitic high. The lower the parasitic frequency the greater will be the $50-\mathrm{Mc}$. energy dissipated in the suppression circuit. With the values given in the parts list there is no overheating of the resistors by dissipation of $50-\mathrm{Mc}$. energy, yet the loading at the parasitic frequency is suflicient to prevent oscillations from starting up, if the tuning of C_{11} and the coupling between L_{55} and L_{66} are adjusted carefully.

A cheek on the need for neutralization may be made by operating the amplifier normally and observing the grid and plate currents simul-

Fig. 17-13 - Bottom view of the amplifier for 50,28 and 21 Mc., with bottom eover removed. Note method of mounting the ventilating fan. The chassis should be made as nearly airtight as possible, exeept for the fan hole and holes drilled under the tube socket. Air is thus drawn in through the hase and foreed up around the base seal of the tube, leaving through holes in the top eover. Sereening of the fan hole may be required for TV1 prevention.

taneously. Maximum grid eurrent and mininum plate current should oreur at the same setting of ('9. If the grid current rises as the plate circuit is tumed to the high-freguency side of resonamee, more neutralizing capmotance is needed. If neutralization camot be achieved at any setting of C_{18} it may be necossiry to use a different value of capacitance at C_{1}. 'ंerfert neutralization maty not be possible on all three bands with one setting of (${ }_{1 i}$, but it should be possible to find a satisfiutory compromise.

With the amplifier operating stably, actual on-the-air conditions can be set up. The typieal operating eonditions given be the tube manuficturer con be used as a guide, but any of the values can be varied considerably, provided the maximum safe figure for cach of the tube elements is not execeded. Thus it may be desirable to lower the grid bias when operating at low plate voltage, in order to get the amplifier to draw more plate current. As little as lool volts on the plate works well, provided that the grid drive and screen voltage are properly altered.

If the antenta system has an open-wire or other balanced line, the output of the amplifier should be fed through an antenna coupler that provides for coaxial imput and batanced output. A low-pats filter ram then be used, if needed, between the amplifier and the antenna coupler, to reduce harmonie radiation that might cause TVI.

Though the adjustments are not critical, there are certain optimum values of (0 and L_{9}. Their selection is explained in the discussion of tank (ircuit () elsewhere in this Iarudhook. Capacitance required at ('s will be of the order of 7 to $12 \mu \mu \mathrm{fd}$. for 50 Mr ., 10 to 15 for 28 Mc ., and around 20 $\mu \mu \mathrm{f}$. for 21 Me. This will be ne:rly "all out " for 50 Mc., near the midpoint for 28, find down to about $1 / 4$ inch for 21 . The varriable coil ein be adjusted for resonance for each band, and the approximate number of turns required can be logged for future reference. Logging of settings
for C_{9} can be done similarly. Adjustment of the viriable coil should be made at low power level, to avoid areing at the contact surfice and possible damare to the roller and coil.

The capacitance needed at C_{10} will be about 50 $\mu \mu \mathrm{fd}$ for 50 Mc ., 100 for 28 and 150 for 21 Mc . Adjustment of this control is similar to the use of the familiar swinging link. It is an output coupling adjustment only, and either L_{9} or ("9 should be reset for resonance whenevor (${ }^{10}$) is varied. Adjustment should be made with a standingwave bridge connected in the coaxial line between J_{2} and the antenna coupler, taking care to see that the load is properly mateherd.

A V.H.F. MAN'S VFO

The frequency-control unit shown in ligs. 17-1 and $17-1+-17-16$ is designed for the v.h.f. operator, though it may be used on all bands from 3.5 Mc . up as well. When used with the other equipment described in these pares it converts the erystal oseillator stang of the exciter to a frequency multiplier. The VFO unit has is speed amplifier and a reactance modulator for marrowband lM built in.

The oseillator is a $57(33$, with a serios-tumed Colpitts circuit having a tuning range of 30000 to the ke. Its plate cireuit is untumed, and the output is fed to another 57 (i;3 that serves as either amplifier or doubler. The plate circuit of the second stage may be tuned to the ascilator frequener or to its second harmonic.

With the values given in the parts list, one sweep of the vernier dial tunes the oscillator from 3000 to 3713 ke , with a litt le leeway at cach cond. The serond stage is nommally tuned from 6000 to 7125 ke, taking catre of the $21-, 27-, 28$-, 51 - :und $1+4$-Mc. reguirements of the romplete station is desired. By resetting the bind-set eondenser, (${ }^{2}$, slightly the oscillator range ean be extended to 400 ke, permitting use of the VFO over the contire 3.5-Mc, band, as well as the 7 - and $1+$ - Me. binds if the user so desires.
 ponents are at the right, with the omejlator toming eondenser and eoil near the ecnter. An alumimum partition divides the oseillator socher. The amplifier stage is at the lefternd.

Fig. 17.15-Schematie diagram and part: list for the VFO and reactance modulator,

```
Ci, C2- - 50-\mu\mufd, variable with rotor bearing at each Pnd of shaft (Hammarlund MC.-.30). Kemove plates in Ci for desired handspread - see text.
```



```
C5, Ci5. Ci6 - \(47-\mu \mu \mathrm{fd}\). siluer mica.
\(C_{i,}, C_{\%}, C_{9}, C_{11}, C_{13}, C_{1}-0.01-\mu \mathrm{fl}\). dish coramic.
(i;- - \(2 .-\mu \mu \mathrm{fl}\). reramic or mica.
Cin - \(110-\mu \mu \mathrm{fd}\). , ariahile (Iammarlund VIC.-110).
```



```
\(\mathrm{K}_{1}-68,000\) ohmes, \(1 / 2\) watt.
\(\mathrm{R}_{2}-1000\) ohms, \(1 / 2\) watt.
\(\mathrm{R}_{3}\) - 33,000 olims, \(1 / 2\) watt.
\(\mathrm{R}_{1}\) - 22,000 olims. 1 watt.
\(\mathrm{K}_{5}\) - 1 megohm, \(1 / 2\) watt.
\(K_{6,} K_{1 n}\). \(K_{11}-0.42\) megolm, \(1 / 2\) watt.
\(\mathrm{R}_{\text {- }}\) - 0.22 mergohm.
\(\mathrm{R}_{8}-0.0\)-mesohm qutentioneter, with switeh.
```


Construction

Mechanimally, the VF() is similar to the exciter, in that it is built inside astandard $3 \times 1 \times 17$ inch aluminum chassis, with the tubes and filament transformer projecting from the rear wall. This makes it companet shiedded unit that mounts on a $3!/ 2$-inch ratek panel. Looking into the ton front view, Fig. 17-14, we see the osciliator tuning condenser, ('1, at the renter, driven by the vernier dial. The osciliator inductance is to the left. An aluminum partition splits the oscillator tube socket, with pins $\&$ to \bar{f} on the right side of the partition. Components of the output stage are at the far left. On the right side are the reartance modulator and sperch-amplifier sorkets, the deviation control, the band-set condenser, $(2,2$ and the microphone jack.

R R_{9} - 0.I megohm, $1 / \frac{1}{2}$ watt.
R_{12} - 820 olims. I_{2} watt.
$R_{13}-10,000$ oh ons. ${ }^{1} 1_{2}$ watt.
 Inductor, typr 8031, with pha-in hase removed)
 II type (10-MEIL.. with plug-in base removed).
1.3-4-turn linh, part of L_{2} assembly.

It-cilosed-circual jach.
$\mathrm{J}_{2}, \mathrm{~J}_{3}$ - Coaxial fitting, female.
 tye (National R-100S or R-1000).

S_{1}-S.p.s.s. switch, shaft typr.
S_{2}-Switeh or zian control, R_{0}.
$\mathrm{T}_{1}-6.3$-solt 3 -amp. filament transformer (Chicago 1:(0.63).

The inductanes in both stages are made from commereial phur-in coil assemblies. The plug-in bases are renoved, and the coils mounted on pillar's. The oseillator coil should have at least one half its diameter in all directions clear of motal objects of apprectiable size. Wiring should be done with stiff wire, and all eomponents emo nerted with the oscillator circuit should be mounted rigidly.

Where the cable between the VFO and the following equipment is very short, the output from J_{2} may be fed direetly inter the resstal sorkete For more remote oparation it may he necessary to install a tumed rireuit and link coupling at the exciter end in ordor to insure efficient transfer of energy between the two units.

The reatance modulator follows standard pratice. The gain of the first 6B.16 stage is sulfi-

Fig. 17-16 - Looking into the VFO from the rear. The variable condenser at the left is C_{2}, for setting the band on the vernier dial. The large variable at the right allows the output circuit to be tuned to the oscillator frefuency or its second harmonic.
cient to permit NFM operation on 10,6 or 2 meters, with a crystal microphonc. With the method of connection between the modulator and the oscillator shown in the schematic, the deviation is too low for use on frequencies lower than the 27-Mc. band. More deviation can be obtained by connecting the load from the coupling capacitors, C_{15} and C_{16}, to the stators of C_{1} and C_{2}, instead of across the tuned circuit. If the FMI is to be used only above 27 Mc., however, the method shown is recommended.

Provision is made for turning off the heaters of the GIBAGs when the FM portion of the VFO is not in use. There is some frequeney shift when the heaters are turned on and off in this way, however, and if the user expects to change frequently from FM to other modes it would be well to have S_{2} break the B-plus lead, rather than the heaters. Where the deviation control is comnected in the reactance-modulator grid circuit, as is done here, a hocking capacitor, C_{14}, must he added in series with the arm of the potentiometer. Otherwise, variation of the control will affect the frequeney of the oscillator.

Operation

Deviation should be adjusted byy listening to the signal on the band where the trinsmitter is to be used, as it inoreases with each frequenos. multiplication. Monitoring the signal is easy, is the proper harmonac of the V FO can he used, and all the rest of the rig left inoperative, thus preventing blocking of the receiver. Deviation requirements of various receivers will vary widely, but a safe starting proint is to set the control so that speed sounds clean in a communications receiver with its crystal filter in the brondest "on" position.
The VFO dial (National MCN) can be calibrated with the aid of a receiver copable of tuning the oscillator or doubler range, Set the vernier dial so that the variable condenser is at maximum. Then adjust the bandset eondenser until the oscillator frequency is 3000 kc . Cherk the tuning range before removing plates from C_{1}.

The tuning range can be made to cover 3000 to 4000 ke. without resetting the bandset condenser, or if the user is interested in the v.h.f. bands only, it cin be reduced to 3000 to 3375 ke ., multiples of which cover the 50 and $14+$-Mc. bands. Plates can be removed from C_{1}, one at a time, resetting C_{2} earh time so that the frequeney of the oscillator is 3000 ke , with C_{1} at maxinum, and checking the tuning range on the calibrated receiver. To cover 3000 to 3713 kc ., C_{1} was reduced to 3 stator and 2 rotor plates.

To use the VFO with the exciter described curlier, no more than 150 to 200 volts is needed on the second stage. Cathode current, metered at J_{2}, will be around 10 ma . when the doubler plate circuit is tuned to resonance. At this low input the tuming is unimportant, so long as the stages following receive sufficient excitation. It is not necessary to retune the doubler plate circuit for frequency shifts normally made within any one band.

The construction of the VFO is such that there should be little frequency drift due to heating as the tubes are operated far below ratings, and being mounted outside the main assembly they cause little temperature ehange in the frequencycontrolling elements of the oscillator circuit. No special TVI precautions were taken, other than the shielding inherent in the design, and the use of shielded wire for all power wiring.

It is important that the power supply used on the VF() and modulator be well filtered and free from hum. I'articularly where PM is used, the slightest a.e, ripple will show up in objectionable proportions. With sufficient filtering in the power supply, the note should be nearly comparable to erystal control, even on the v.h.f. range.

Note that no mention is made of keying the VFO unit. Bxperience has shown that oscillator keying results in too much frequency shift to be usable in v.h.f. work without precautions that are out of line for a simple unit such as this. In v.h.f. work, at least, keying should be done two stages or more away from the oscillator unless extensive stability measures are taken.

Progressive Station for 50 and 144 Mc.

The three units shown in Fig. 17-17 are designed to serve several purposes. The two smaller ones are complete r.f. sections for use on 50 and 144 Mc. at the 15 - to 25 -watt level. The other is an amplifier capable of running up to 125 watts, 'phone or c.w., on both bands. The exciters may be keyed or modulated also, and their low power consumption makes them ideal for mohile service or home-station operation at moderate power.

The separate 25 -watt rigs are as similar as possible, meehanically and electrically; the tubes and many of the parts being interchangeable. Circuitry is similar, and their design is aimed at moderate duplication cost and ease of construction. Both are assembled on 5×10-inch aluminum plates that fasten to standard 3 -inch chassis of the same size. Covers of perforated aluminum $31 / 2$ inches high provide shielding and prevent damage to components when the rigs are used for mobile service.

Circuitry

The oscillators use a third-overtone circuit, with 8 - or $24-\mathrm{Mc}$. crystals for 144 Mc. and $8.4-$ or 25 -Me. cristals for 50 Me. in one half of a 12 AT dual triode. The other triode doubles to 50 Me , or triples to 72 Mc . The $50-\mathrm{Mc}$. doubler drives a 2 L 26 amplifier. An extra stage is needed in the $144-\mathrm{Mc}$. rig. This is another 12 AT 7 , with its triodes connected in parallel, doubling to 144 Mc. The amplifier is a 21226 . Neutralization and interstage coupling methods differ in the two amplifier stages, but operating eonditions are generally similar.
The amplifier for higher power has a pair of 6146 tetrodes, with changeable tank circuits for operation on both bands. Input and output caparitances of such tubes are too high to permit use of ordinary plug-in coil arrangements on 144 Mc ., so a quarter-wave line for 144 Mc . and a plug-in coil for 50 Me , are used in the plate circuit. No tuning eapacitance is used in the
grid eircuit, the plug-in inductances ising resonated by the input capacitance of the tubes alone.

Figs. 17-24 and 17-25 show how the plate circuit works. A $144-$ Ic. line of strips of thashing copper is completed at the far end from the tubes by means of a combined plug-in short and B-plus connection, $P_{2}-L_{4}$. The tuning capacitor, C_{2}, is tapped down the line 2 inches to minimize its loading effect on the line at 144 Me. At 50 Me . the line is merdy the pair of connertirg leads to the plug-in coil assembly, $L_{4}-L_{5}$. Separate output coupling arrangements are provided for the two bands, but these are tuned by a common series capacitor, C_{3}. The $144-\mathrm{Mc}$. coupling loop is fitted with a 300 -ohm-line plug, fitting into the crestul socket, J_{4}, visible in Fig. $17-24$. It is removed when the $50-\mathrm{Mc}$. coil is plugged into the coil socket, J_{3}.

Of special interest is the protective circuit used to keep the 6146 plate current within bounds when drive is removed. A 12AU7 serves as a combined rathode follower (right in Fig. 17-25) and d.c. amplifier (left). Normally the d.e. amplifier is cut off by the bias developed arross the amplifier grid leak. Voltage applied to the rathode follower is determined by the voltage divider. Its cathode follows the voltage on its grid, so adjustment of the potentiometer allows the desired voltage to be applied to the 6116 sereens. Loss of drive removes bits, causing the d.c. amplifier to conduct heavily. Voltage drops across the 1 -megohm resistor in its plate circuit, and this low voltage is applied to the 6146 sereens through the cathode follower.

This simple devire not only protects the amplifier tubes in case of drive failure, but it serves as a convenient means of controlling input, for tuning ip or for local work where less than full power may be desirable. With a 400 -volt supply, input to the 6146 s ean be varied from 20 to more than 125 watts without changing loading adjustments.

Fig. 17-17 — A 120-wall lransmitter for 50 and 141 Mc. 'Ihe top unit is the amplifier, the two lower units are r.f. sec. tions for driving the amplilier on cither band.

- BUILDING THE EXCITERS

Parts liayout for the tow-power rigs is not particularly eriticab, exeppt that 14t-Ne. r.f. leans must be kept extremely short. All parts except the output and powre connectors are mounted on the aluminum plates. Lads to the connectors

Fig. 17.18 - Top view of the $50-\mathrm{Mc}$. rig, with eover removed.
are made long enough so that they can be fastened in plate on the batek wall of the chassis and still permit the plate to be lifted for adjustment or servicing. Wiring of all power leads is done with shielded wire as an atid to TV' prevention.

Oscillator components are arranged identically in the two units looking at the top view of the 50-Mte rig, lig. 17-18, we see, left to right. the crystal, oseillator-doubler tube doubler platere tuming, 2 list, final plate tuning (front) and antenna serios trimmer (rear). The serew adjustment in the lower left comer is the oseillater plate-roil slug.
The 2 -meter rig is photographed the other way aroumd, to show the power eomedor and coaxial fitting. The $12.1 \mathrm{~T}^{-}$paralled doubler is in the middle. Just in bark of it is the adjustment for ('2. The 2 F 26 grid trimmer, C_{3}. is to the right and in bark of the amplifior tube. The plate coil, mper left, partially hides its trimmers. In the fornground is the antenna serides trimmer. C_{5}

The 50-Mc. bottom view, lig. 17-19, shows the oncillator-doubler parts at the right. Doubler plate and amplifier grid coils are neir the midde. The 2 list plate coil is to the left of the tubers socket; the tuning capacitor below. The smalder coil is L_{5}. with ('3 above. The 14 I-Mr. bottom view is more open, and reguires little explanation. Note the difference in the monnting of the interstage coupling coils in the two units.

Testing the 50-Mc. Rig

Chereking the operation of the transmittere is made easy by the power ronnertion method shown in ligg. 17-20. biach power leat is brought out to a separate terminal on the power fitting. J_{2}, so that meters can be conneeted temporarily in each circuit. A power supply delivering ti.3 volts a.ce or d.e. at 1.5 :mpp, ind 200 to 300 volts: at 100 ma. is suitable for test work.

Apply plate voltage through a 50 - or 100 -mat. meter and lin 3 , whe check for oscillation, tuning the slug in L_{1} for a kick in plate current. Current will be 10 to 15 ma . listen to the note in a receiver tuned to the frequency of oscillation (25 to 27 Mc .) or a hamonic thereof. If the oscillator is crystal controlled, there should be no more than a slight shift in frequency the the hand or a metal object is moved near the plate: roil, L_{1}.

Next connert the supply direetly to l'in :3 and feed lin 4 through the test meter. If : lowrange moter, 0-10 mat. of so, is available, commet it between lin as and ground to measure the 2V26 grid current at the same time. Tune the doubler plate cireuit, (${ }_{1}$, and the oscillator plate coil slug for maximum grid current. It should be possible to develop 2 mat or more with these cirruit peaked. Plate current in the doubler will be 15 man or lexs.

The position of the doubler plate and amplifier grid coils (see Fig. 17-19) is not (ritical, but they should not be end to end as in the 144-Ne. unit. Resonance in the 2li26 grid cireuit can be checked with brass and powdered-iron slugs. Inserting either should catuee the grid current to drop. A rise with a brass slug indicates that $L_{\text {a }}$ is too large. A rise with the iron shag shows that it is too small.

Neutralization is the next step. The monnting (lip) of the phatic-sleeve trimmer, ('t, is soldered to the stator post of ('2. It should be indjusted to the foint where tuning the plate cirenit

Fin. 17.19 - Bontom of the 50-Mc, r.f, section, Note that power and output eommectors are wired to their respective cables, for monting in the chassis.
through resonance with drive (but no plate voltage) applied causes no kick in grid current. A change in the value of the grid by-pass is required if neutralization is not complete within the range of adjustment on ('4. If $C_{4}{ }_{4}$ is set at minimum when neutralization is approtehing, increase the value of the grid by-pass to about $500 \mu \mu \mathrm{f}$: and try again.

Now commert the plate supply to Pins 3, 4 ind 7, and run the motered lead to Pin 8, to measure final plate current. Use a 15 - or 25 -walt t lamp for a lo:ul, tuning ("2 for minimum plate coment. Tune ('3 for greatest lamp brilliance, dorking C_{2} again for minimum plate eurrent. If neutratization is exactly right, minimum

Fig. 17-20 - Schematic diagram and parts information for the . $\mathbf{8 0}$ - Mc. transmitter.

0 - $1.5-\mu \mu \mathrm{f}$. midget variable, doulde spated (Hammarlund IIF-15X).
 (4 - $1-8$ - $\mu \mathrm{f}$. plastic trimmer (1:ric 53 - 3 -11).
$\mathrm{R}_{1}-33,010$) ohms, 3 watts (3 100,006)-ohmi I-watt resistorn in parallell).
1.1- 24 turns No. 30 enam. elosewoum on $3 / 8$-inch duk-tumed form (Xational XR-け)

plate current and maximum grid curvent will show at the sambe setting of 'es. lailing to achate
 when drive is removed and plate and sererom voltages ane left on. (herek this only biofly, as the plate current will be execosive under this condition if the tube is not osefllating.

The rig is now ready for operation. lion voied work, apply modulated voltage to the plate and sereen through l'ins \bar{i} and 8 . For c. W. the thansmitter maty loe leferel in the rathode lent, Pin if to ground, direetly, or in the serem lead,
 Should sereen kexing not rat the $21: 26$ off completely, the doublor pate lead am be keved at the stane time, povided both are fed from the same supplys. 'The oweilatore and doulder. or the doublor alome, catl la keved if fixed biat is contnected between l'in 5 : and ground.

Approximate operating comblions follow. With 300 -volt phite supply, input will be athout 15 watts at last loadines. Offiresonance plate current - $\mathbf{- 0} 0 \mathrm{mb}$. Girid current - 2 mit. Sircen curvent - 1 to mat. Plate rument, 12AT7 statgex-15 mat. abeh or lass. Plate and sureen maty be fed from sepatrate sourer of 100 to 500 volts. Jaximum imput should then not execed about 35 Witts.

The 144-Mc. Transmitter

Fixeept for the extrab doubler stage and the differonees made neesssary by the higher frequenery, the 2 lide rigs are built, trested and operated guite similarly. straght induretive roupling is used between the doubler plate and $21: 26$ grid cironits in the 2 -moter trinsmitter, and the spating of the two coils must be adjusted
(B \& W Vimiduetor No. 3007).
1,3-Sime as: La, but $6: \frac{1}{4}$ turns.
l.1-is turns No. $20,3 / 4$-inch diam., $1 / 2$ inch long (B \mathcal{E} 11 Vo. 3010 .
 \a. 30033 .
J1-Coaxial nutput fittiny (1 mphemol 83-11).
1s-3-pin male powar fitting (Amphonol 8o-1R(CP8).

for maximum energy trimeter. The amplifier plate eirenit is mounted above the deck, for short phate leads. The 2 Pe26 is meutratized by inserting a small indurtance in series with the serenth lead (L_{5} in Figg. 17-2:3).

The amplifier tamk cirenits are serices tumed. Output coupling is done with a single-turn loop, $L_{\overline{7}}$, miade of the immer conduction of the rown used to complete the eireuit to the output, rombertor, J_{1}.

The ossillator cireuit is identical to the 50-Mte. rig, exerpt that both oseriliator and tripler plate riteuite are fed from a single pin on J_{2}. The cathle conmertions for the $50-\mathrm{M}$ e. rig still apply, exerpt that the 1700 -ohm resistor in the tripler plate lead must be diseonmeded temporarily to measure the oscillator plate (eurrent alone.

Tresting the owillator, tripler and doubler stages is routine otherwise. Adjust the spacing betwren L_{3} and L_{4}, and ehorek neutratization lefore applying plate voltage to the 2L26. Cheek

Fif. 17-21-Ton rear view of the 111 -Mc. excitertransmitter, showing power and output connectors on hack of the chassis.
for neutralization as in the 50-Me. rig, altering the number of turns or turn spacing in L_{5}, if necessury.
The amplifier may be koved in the sereen lead, but no provision is made for opening the

Fig. 17-22 - 'The 2-meter rig is laid out in similar fashion, except that the final plate circuit is atove the chassis.
eathode lead as this often leads to instability at 144 Me. Noto here astability precaution that may be needed is the addition of external grounding elips on the 2E26 strield ring. These are visible in the photograph, Fig. 17-21. If sereen keying does not completely eut off the $2 \mathrm{l}: 26$ plate eurrent, additional stages maty be keyed simultaneously. Fixed bias comented betwoen Pin 5 and ground may also be used if eartier stages than the sereen are keved.

Best-sounding e.w. will be had if the 12 AT 7 doubler plate and amplifier sereon are keved and the oscillator is run from a separate source, preferahly regulated. The power cable set-up shown allows the power supply problem to be
solved in any of several ways, to suit one's own requirements. A convenient operating set-up for two bands is to leave both rigs conneeted to a common power source, energizing the heater circuits of the one to be used at the moment.

All $1 / 4$-inch shafts are fitted with knobs for adjustment when the covers are removed. The top surface of ach knob is slotted with a hack saw, to a depth of about $1 / 16$ inch, to allow for serewdriver adjustment with the covers in place. lloles fitted with rubber grommets are placed over eath adjustment.
("This equipment originally deseribed in Oetober, 1954, (2ST, page 16.)

THE 2-BAND 125-WATT AMPLIFIER

The exciters just described were designed as separate rigs so that anyone interested in just one of the bands can make his low-powered rig for that hand only. The convenience and performance obtainable with the two rigs more than offsets the small extra cost.

In groing to a higher power level, however, the investment in tubes and parts needed is great enough so that building for both bands in a single unit becomes attractive economically. The amplifier shown in Fig. 17-21 suerifices little in performance to achieve its two-band operation, and the cost is only slightly more than for a similar set-up for either band alone.

Construction

The amplifier is built on a $6 \times 17 \times 3$-ineh aluminum chassis, with sides of perforated aluminum fastened in place by aluminum angle stock brackets in a manner similar to the exciters, exeept that controls are brought out through the

$\mathrm{C}_{1}-15-\mu \mu \mathrm{f}$. variable (Hammarlund HF.15).
($2, \mathrm{C}_{3}-1-8-\mu \mu \mathrm{f}$. plastic trimmer (Eric $532-10$).
$\mathrm{C}_{4}-15-\mu \mu \mathrm{f}$. double-spaced variable (Hammarinnd IIF-15X).
$\mathrm{C}_{5}-50-\mu \mu \mathrm{f}$. variable (Hammarlund IIF-50).
$\mathrm{R}_{1}-33,000$ ohms, 3 watts (3100 K 1-watt in paralle).
L_{1} - 20 turns No. 28 enam. on $3 / 8$-ineh slug-tuned form (National XR-91).
$\mathrm{L}_{2}-4$ turns No. 20 tinned, $1 / 2$-inch diam., spaeed twiee wire diam. (13 \& IV No. 3002).
$\mathrm{L}_{3}-2$ turns No. 3002 .

LA - 4 turns No. 3002, center-tapped.
$\mathrm{L}_{5}-27$ turns Xo. 30 enam. on 1 -watt resistor (Ohmite Z 2 -235).
Lo. -4 turns No. 12 tinned, spaced $1 / 4$ inch, $3 / 4$-inch diam., center-tapped.
$L_{7}-1$ turn ${ }^{3}$-ineh diamn., made from imer conductor of RG.5)
RFC_{1} - Ohmite Z-141.
J_{1} - Coaxial output litting, female (Amphenol 83-1R)
$\mathrm{J}_{2}-8$-pin power fitting, male (Amphenol $78-\mathrm{l}^{\prime} \mathrm{l}^{\prime} 8$).

Fig. 17-24-The push-pull 61.46 amplifier for 50 and 144 Me. The 50-Mce enils are in place. On the cover in the foreground are the grid roil, the antenna eoupling loop and the plate-line shorting plug, all for 14t-Mc. operation.

front on insulated flexible couplings. A gridcurrent jack, a filament switeh and the sereenvoltage control are on the front wall of the chassis. On the back are coaxial fittings, power connector and the $12 \mathrm{AU}^{7}$ socket. Underside are the filament transformer, sereen audio choke, a few resistors and the power wiring.

Two aluminum mounting brackets are required. These are $41 / 2$ inches wide and $23 / 4$ inches high when folded as shown in Fig. 17-24. Dimensions otherwise are not important. The 61.46 sockets are $21 / 2$ inches apart, centered $11 / 2$ inches ahove the chassis. Note that they are on the tube side of the bracket. Three $3 / 8$-inch holes under each socket pass the screen, control grid and heater connections. The cathode and the rold side of the heater cireuit are grounded directly to the bracket on the tube side.

The screen neutralizing caparitor, C_{1}, is held in place liy the same serews that hold the sockets. The grid coil socket, J_{2}, the two sereen r.f. chokes and their $0.001-\mu$. by-pass are hidden from view by (1 . This whole assembly should be made and wired before mounting it in place. It is 5 inches from the end of the chassis, and the other bracket, with J_{3}, J_{4} and (${ }_{3}$, is $71 / 2$ inches to the right of the first one. Note that the plate tuning e:tpacitor, C_{2}, is mounted on a polystyrene plate with its rotor above ground. A grounded rotor at this point may introduce stray resonames and cause parasitie oseillations higher than the operating frequency.

Though shicelding may not be too important in the operation of the exciters, other than for mechanical protection and for TVI prevention, use of a cover is definitely recommended for the amplifier. Tests with and without the shielding have shown that stable operation is attained much more readily with the shielding in place.

Testing and Use

A single supply of $4(0)$ volts or less may be used on both plates and sereens of the 6ilfos for
testing. Iligher than 400 volts may be applied to the plates alone, if a separate supply of 300 volts is available for the sereens. Higher than 400 volts should not be applied to both elements as the clamp tube will not hold the plate current within safe limits if drive is removed.

Without plate or screen voltage on the amplifier, check the grid circuit to see that drive can be obtained on cither 50 or 144 Mc . There should be at least 5 to 6 ma . grid current with either 2E26 driver running at 300 volts on the plate. There will be a surplus of drive on 50 Me ., ordinarily, so if the grid circuit is not exactly resonated it may not be too important. The 144 -Mc. grid circuit can be resonated for maximum grid current by changing the shape of the loop, L_{2}. Spreading its sides farther apart lowers the resonant freguency; bringing them closer together ratises it. The position of the coupling loop, L_{1}, should be adjusted for maximum grid current as this is done.

With grid drive applied, tune the plate circuit through resonance and watch for variation in grid current. Adjust the screen neutralization trimmer, C_{1}, until there is no kick in grid current at plate resonance. The required setting may be different for the two bands.

Next test the clamp circuit operation. Apply plate and screen voltage as shown in Fig. 17-25 and measure 6146 plate current with no drive applied. With the potentiometer arm set at the ground end, the plate current should be 125 ma. or less with no excitation. At 400 volts this is 50 watts input, the maximum sufe plate dissipation for a pair of 6146 s . The tubes should not be operated in this way for long periods, but it is safe for c.w. keying or normal short tests.

Now connect a 100 -watt lamp across the output coaxial fitting. Apply drive and plate and screen voltage. Tune (C_{2} for minimum plate current or maximum lamp brilliance. Adjust C_{3} for greatest output, retuning C_{2} for minimum plate current meanwhile. Sat the coupling so

Fig. 17.25 - Sehenatic diagram and parts list for the two-hand v,h.f. amplifier.
$\mathrm{C}_{\mathrm{t}}-100$ - $-\mu \mathrm{f}$.-prr-section sulit-stator variable (ITam. marlund $|1 \mathrm{~F}|$-100).
$\mathrm{C}_{2}-30-\mu \mathrm{f} .-\mathrm{p}$-r-section, double spaced (Itammarlund 1HFIT-30X).
$\mathrm{C}_{3}-50-\mu \mu \mathrm{f}$, variable (Hammarhund $\mathrm{H} \stackrel{\circ}{-50}$).
$\mathrm{L}_{1}-50 \mathrm{Mc}:$: -turn link aromend $I_{2}, 1 / 4 \mathrm{Mc.:}$ Hairpin loop $11 / 2$ inches long, $1 / 2$ inch widr. Made from $5 \frac{1}{2}$ inehes No. 16 tinned, Cover with insulating sleceving, Solder into ${ }^{\prime}$,
$\mathrm{I}_{2}-50 \mathrm{Mc}: 8$ turns No. 14 tinnel, $1 \frac{1}{2}$-inch diam., 2 inches long, renter-tapped: i-pin base (13 \& W 10JCL), 144 Mr,: Same as L_{1}, hot centertapped and no insulation.
L_{3} - Shown as heavy lines. Hhashing copper stripe $1 / 4$ inch wide, 3 inches long. lnner wlyes are $13 / 10$ inch apart. Bend over $1 / 6$ inch for soldering to plate caln, Combet (22 inches from tube end.
that the plate eurrent is no more than 300 ma . with a 400 -volt plate supply when the antemna series eapacitor is tuned for maximum output. This is the maximum rating for e.w. operation. For plate-modulated phone 250 mat would be advisable, particularly at 1+1 Me. Racherek neutralization by removing drive. (irid current should drop to zero. If it does not, reset C C_{1} earefully until there is no sign of grid curront.

Once the amplifier is working eorrectly it maty be operated in several ways. At 50 Me . inputs
$L_{4}-50$ Mc.: 2 turns No. 14 each side, $13 / 4$-inch diam., spaerel $1 / 4$ inch. Leave 34 -ineh space at eenter. (13 \& 11 ! 01 NL , with one turn removed from each end.) I4 Mr.: Short Pins 2, 3 and 4 of P_{3}.
L_{5} - 50 . Mr.: 3-turn swinging link: part of I_{4}. 144 Mr.: Hairpin loon made from $51 / 2$ inches No. 16 timed. Cover $3 \frac{1}{2}$ inehes with insulating sleeving. lanp is $\frac{3}{4}$ inch wide; portion parallel to plate line is $3 / 4$ line long.
$\mathrm{J}_{1}, \mathrm{~J}_{5}$ - Coaxial fitting (Amphenol 83-1R).
$\mathrm{J}_{2}, \mathrm{~J}_{3}-5$-pin ceramic socket (Amphenol 49-18SS5).
J. - (reystal sockel (Millen 33102),
J_{6} - B -bin mate elassis connector (Amphenol 86-RCP).
J; - Closed circuit jack.

P_{2} - - -pin phun witl cap (Ampherol 86-1PM5).
P_{3} - 3 (N)-ohm line plug (Nillen 3:412).

RFC, 1 RFC: Ohmite $\%-50$.
$\mathrm{RFC}_{3}-$ Ohmite $\%$-1.1.
as high as 180 watts com be run on c.w. if the sweren voltage is held low enough so that the plate input will be no more than 50 watt.s with the drive removed. A 400 -volt supply will be most convenient for two-band operation. Plate current will be 300 ma., maximum, sereen current about 15 mas.; grid current 3 to 6 ma. If screen voltuge is held constient there will be little variation in plate current with increased plate voltage. Output is about 60 to 70 watts maximum with 120 watts imput. Iower power ran be run, as desired, by adjustment of the clampcircuit potentiometer. the amplifier operating efficiently at inputs as low as 25 watts when eontrolled in this way.

Fig. 17.26 - Bottom view of the v.h.f. amplifier. Power connector, coax fittinge and clamp tuhe are mounted on the rear wall. Filament transformer is at the right and the sereen-lead choke near the middle.

The transmitter in Figs. $1 \mathbf{7}-2 \overline{\mathbf{7}}-1 \mathbf{7}-30$ is for the nowcomer who wants to start with simple gear, groing on to something better when he has gatined construction and operating experience. It is built in two units, with the ide: that the modulator can be retained when the r.f. portion is discarded.

The r.f. section is a simple oscillator with
input that may be constructed at a later date.

Construction

The two units are built on identical 5 by 7 by 2 -inch aluminum chassis, conneeting by means of a plug on the oscillator and a socket on the modulator. Power is fed through a similar plug on the back of the modulator. Arrange-

Fig. 17-27 - The simple transmitter for 2.20 and 420 Mc , is made in two parts, 'The modalator, left, may be retained for use with more advancel r.f. sections than the simple oscillator shown at the right. The two units may be plugged together or connected by a cable.

two 6AF4 or 6AT4 tubes in push-pull. Its plate cireuit is changed from a quarter-wave line at 220 Mc, to a half-wave line at 420 Mc. be plugging in suitable terminations at the end of the timed circuit.

Because the oscillator is modulated directly it will have considerable frequency modulation, and the signal will not be readable on selective receivers unless the modulation is kept at a very low level. Where a broader receiver is in use at the other end of the path a higher modulation level can be employed.

The modulator is designed for a crystal microphone. It delivers 3 to 10 watts output, deproding on the plate voltage and whother a 6 V 6 or $6 \mathrm{~L}, \mathrm{i}$ tube is used. It maty be considerod as a long-term investment that will be suitable for use with any r.f. section of up to 20 watts

Fig. 17-28-IBottom view of the ascillator anit, showing the iwo-band tank eireait. 'The line terminations, with their pro. tecting caps removed, arc in the foregronnd, At the left is the 220. Me, phag, with the $420-\mathrm{Mc}$, one at the right.
ment of parts in the modulator is not critical, but the oscillator should be exactly as shown.
sockets for the tubes are one inch apart center to center, 2,16 inch in from the end of the ehassis. C_{1} is at the exact eenter of the chassis, with $J_{2} 11 / 2$ inches to its left, as seen in Fig. $17-28$. At the firr left is a crystal socket. used for the antemna terminal, \dot{I}_{1}. One-inch eeramie stand-offs are mounted on the screws that hold J_{2} in place. These support the antonnat coupling loop, L_{2}.

Testing and Use

A power supply delivering about 200 volts

Fig. 17-29 - Schematic diagram and'parts information for the two-band oscillator and modulator.
C_{1} - 10.5 - $\mu \mu \mathrm{f}$.-per-scetion butterfly variable (Johnson 101.B15).
$\mathrm{L}_{1}-231 / 2$ inch pieces No. 12 tinned, spaced $1 / 2$ inch. Bend down $3 / 4$ inch at tube end and $1 / 2$ inch at socket end. R.f. chokes connect $5 / 8$ inch from bend at tube end. Connect C_{1} at 1 inch from bend at socket end.
L_{2} - Hairpin loop 21/4 inches long and $1 / 2$ inch wide, No. 16 , covered with insulating sleeving.
\mathbf{J}_{1} - Crystal socket used for antenna terminal.
d.e. at 50 ma . or more and 6.3 volts at 1 amp . or more is needed. Plug the units together or connect them by a cable. With a cable, a milliammeter may be connected between the No. 4 pins to measure the oscillator plate current. Otherwise the meter should be connected temporarily between Pin 4 of J_{3} and Pin 3 of J_{2}, in place of the wire shown in Fig. 17-29.

Plate current should be about 25 to 30 ma . If the stage is oscillating there will be a fluctuation in current as the plate line is touched with
$\mathrm{K}_{2}-5$-eontact ceramie socket (Amphenol 49-RSS5). $\mathrm{J}_{3}, \mathrm{~J}_{5}-4$-eontact male chassis fitting (Amphenol 861RCP4).
J_{4} - 4-contaet female chassis fitting (Amphenol 78-S4 or RS4).
J_{6} - Microphone conncetor (Amphenol 75-PCIM).
$P_{1}-5$-eontact male cahle eonnector (Amphenol 86 PM5) with Pins 2, 3 and 4 joined together.
P_{2} - Same as P_{1}, but with Pins 1 and 5 joined. Connect 100 -ohm resistor between these and Pin 3.
RFC (6 required) - 12 turns No. 28 cnamel closcwound on high-value l-watt resistor.
an insulated metal object. Do not hold the metal in the hands for this test! The frequency is best checked by means of Lecher wires, a technique that is covered in the chapter on measurements.

With the dimensions given the range with P_{1} plugged in should be about 405 to 450 Mc . With P_{2} plugged in the frequeney should fall within the $220-M c$. band with C_{1} set in the same position as it was for the middle of the $420-\mathrm{Me}$. band. Some alteration of the connection point for C_{1} on L_{1} may be necessary to achieve this.

In using the transmitter it is well to stay between 221 and 224 Mc . to avoid out-of-band operation. On 420, keep the transmitter below 432 Mc. to avoid interference with the high-selectivity work that is done bet ween 432 and 436 Mc. (Further details on this transmitter in QST for December, 1954.)

Fig. 17-30 - Loohing at the underside of the modulator.

A Tripler-Amplifier for $\mathbf{4 3 2} \mathbf{~ M c .}$

Only tubes designed especially for u.h.f. sorvice will work satisfactorily at 420 Me , and higher. The various small receiving triodes made for u.h.f. TV use will work well in low-powered frequency multiphers and r.f. amplifiers for transmitting, but the trend is to tetrodes. Several of the latter are now available.

The tripler-amplifier shown in ligs, 17-31 to $17-333$ delivers up to 20 watts output on 432 Me.

Fip. 17.31 - A tripler-amplifier for 132 Nc. using dual tetrodes. Shidlded construction and forced. air cooling are employed.
when driven on 144 Mc. by any 2 -meter unit delivering 10 watts output or more. In platemodulated servire the output is 12 watts. Tubes are RCA 6.524 dual tetrodes, but with slight modification Amperex 6252 s or 5894 s may be used. With 6252s the output will be about the same as with the 6524 . The 5804 will deliver up to 40 watts with higher plate voltages. The $8: 32 \mathrm{~A}$ may also be used, but the output will be no more than 4 or 5 watts. Foreed-air cooling and shielding are recommended.

The tripler tube is mounted vertically, at the left, with its socknt $11 / 2$ inches bolow the chassis. There is just room under the socket for the selfresonant input cireuit, L_{2}. The amplifier is horizontal, with its socket mounted in back of a plate that is 8 inehas from the left edge of the $3 \times 4 \times 17$-inch aluminum chassis. The shielding enclosure is $31 / 4$ inches wide by $31 / 2$ inchos high. A rooling fam is mounted on the rear wall of the chassis. Sir eirculatess aromed the tripler tube through its 2 -inch bole, flowing out through
holes in the top cover. Holes are drilled in the chassis under the amplifier tube, and in the cover over it. With a bottom plate fitted to the chassis there should be enough air flowing through beth top vents to lift a paper briskly when the fin is started.

Half-wave lines are used in all 432-Me, circuits. The grid cireuit of the amplifier is capacitively coupled to the tripler plate line, the two over-

lapping about $11 / 4$ inches. The spacing between them must be adjusted carefully for maximum grid drive. Plate voltage is fed to the lines through small resistors. These should be corr nected at the point of lowest r.f. voltage on the lines. The amplifier grid r.f. chokes are connected at the tube socket.

Note that the plate line capacitors, C_{1} and C_{2}, have their rotors floating. This is important. Grounding the rotors, or use of capacitors having motal end plates, may introduce multiple r.i. paths and eircuit unbalance. The capacitors have small metal mounting brackets that are not commeted directly to the rotors, but even so it was necessary to resort to polystyrene mounting plates for best circuit balance and efficiency. Holes $3 / 4$ inch in diamoter are punched in the front wall to pass the rotor shafts.

Testing

The tripler-amplifier is designed to operate in conjunction with a $144-$ Me transmitter such as

Fif. 17-32-Tanking into the tripler-amplifier with the top cover and front wate removed.

Fig, 17-3:3 - Schematic diagram for the 432-Me. tripler-implifier.
 (Bud IC.-I604). Do not use metal end-plate or grounded-rotor types.
$\mathrm{R}_{1}, \mathrm{~K}_{2}-23,300$ olms, 2 watts (two 45,000 ohm 1 -watt resistors in paralled).
I_{1} — \because turns No. 20 enam., $1 / 2$-inch diann. Insert lictween turns of $t: 2$.
$\mathrm{L}_{2}-4$ lurus No. 16 enam, $1 / 2$-inch diam., $1 / 2$ inch long, center-tapped.
I_{3} - Coppre strap on heat-dissipating eonnectors, $31 / 2$ incher long. Twisi 90 degrecs $1 / 2$ inch from phate end. space $3 / 4 \mathrm{inch}$,
L_{4} - Copocr strap $22 / 8$ inelues long, soldered to grid terminals. space about $1 / 2$ inch.
the 2E26 rig showin in Fig. 17-23. A plate supply of 300 volts at 200 mat . is needed (400 volts mily be used with 5804s). Apply power to the 1.4-Me. driver stage and adjust the sparing of the turns in L_{2} and the degree of coupling between L_{1} and L_{2} for maximum tripler grid current. This should be about 3 mis .

Next apply plate and sereen voltage to the thipler and tune C_{1} for maximum grid current in the amplifier, with no plate or sereen voltange to the latter. Adlust the position of the grid lines with respect to the phate circuit, readjusting Co whenever a change is made, until at least 1 mit. grid current is obtained.

Now connect a lamp load across the output terminal, J_{2}. Ordinary house lamps are not suitable. A fatir load can be made by connerting 6 or more blue-bead pilot lamps in paralled. This can be done by wrapping a $1 / 4$-inch ropper stretp
dissipating conncetors. Space $3 / 4$ ineh. All tank circuits of thashing copur $1 / 2$ ineh wide.
L_{6} - Compling lowp, No, $\mathbf{Z}^{(0)}$ enam. U -shaped portion is 1 imh long and $\frac{5}{8}$ inch wide. Mount on 3 -inch ecramie stand-offs.
$\mathbf{I}_{\mathbf{1}}$ - Cavxial input fitting (Amphenol 83-1 K).
J_{2} - Cryatal sochet used for antenna terminal.
$\mathrm{I}_{3}, \mathrm{~J}_{4}$ - Chosed-cireuit jack.
$\mathrm{J}_{5}-5$-pin male chassis conncetor (Amphenol 86. R(P.).
M - Motor-hlower assembly, 17 ef.m. (Ripley Ine., Middletown, Comn, Type 8433.)
around the brass bases and soldering them all toge ther. Then another strap should be soldered to the lead terminals, Apply plate and sereen voltage and tune (e, for maximum lamp brilliance. It should be possible to develop at very bright glow in the (0 -lamp loted with a plate current of about 100 mat. at 300 volts.

Cut drive very briefly to check for oseillation in the final stame. (irid current should drop to zoro. The sereen and grid resistors shown are for operation with plate modulation. More input can be rum if the serern or grid resistance is derestsed, but this should be done only when the rig is to be used for fim. or e.w. service.

Operating conditions are about as follows: tripher grid current - 2 to 3 mat.; amplifier grid current - 3 to 4 mat.; tripler phate and screen current - 00 mas; amplifior plate and screen current - 110 mas.; output - 12 watts.

Fig. 17-34- Bottom view of the $132-\mathrm{Ml}$ (Araminiter.

Exciter-Transmitter for 220 Mc .

Construction of a stable transmitter for 220 Me. is not difficult, and while simple oscillatortope rigs such as the one shown in Fig. 17-29) may suffice for short-range work, a erystal-controlled or otherwise stabilized rig is highly worth while. A low-powered transmitter of stable design need not be costly, as inexpensive tubes ran be used throughout. A further economy ran be made by selecting a erystal frequency in the lower part of the band, so that the same erestal maty be emphoyed for the upper portion of the 2-meter band as well.

The trinsmitter shown in Figs. 17-35, 17-36 and 17-37 delivers it to 10 watts output. The final stage may be modulated for voice work, or the unit may be used as an exciter to drive higher-powered stages. Four tubes are required. The first two are $6 C D A 8$, serving as oscillatormultiplier and singlo-ended tripler. The third stage is a push-pull tripler using an Amperex 6:360 dual tetrode. This drives a similar tube as a straight-through amplifier on 220 Mc.

Cristal frequeneies should lie between 8.15 and $8.3: 3 \mathrm{Me}$., or 12.22 to 12.5 Me . If the same arystal is to be uscful for 2 -meter work it must be between 8.15 and 8.22 Mc . or 12.22 and 12.33 Mc .

A balaneed plate cireuit is used in the multiplier, so that its output can be caparitively roupled to the 6:360 tripler grids. In case of insufficient grid drive to the (i336) tripler, try putting a small plastie trimmer between the low side of L_{2} and ground, to batane up the raparaifances on either side. It was not needed in the original, but it would be well to remember the suggestion.

The 6360 push-pull tripler to 220 Mc: is inductively coupled to the push-pull final stage. No neut ralization is shown in Fig. 17-36. Should neutralization be needed, a met hod for achereving it is given later. Output from the final 63360 plate rircuit is taken off through come, and provision is made for tuming ont the reactanee of the link, with C_{4}.

Construction

The transmitter is built on a flat plate of sheet aluminum 5 by 10 inches in size. This is serewed to a standard aluminum ehassis of the same dimensions, that serves as both case and shielding. If more complote shielding is recuired, a perforated metal rover may be made to go over the top, as was done with the fo- and 2 -meter rigs in Fig. 17-17. All parts except the power and coaxial output connertors are mounted on the top plate. The two connertors mount in holes in the rear wall of the chassis. The mounting serews are hold in phace on the fittings with nuts and other muts on the outside of the chassis hold the fittings in position.

The tube sockets are along the centerline of the plate, two inches center to center, with the oseillator' socket $13 / 8$ inch in from the right end, as seen in the photographs. The erystal socket and the oscillator plate coil, L_{1}, may be seen at the lower and upper right, respectively, in the bottom view. The tripler plate tuning capacitors are midway between their respective sockets.
lixecent for the power leads, there is no "witing" in the usual sense, as all r.f. leads should be extremely short. The decoupling resistors and r.f. chokes in the various power circuits are supported on tie points. Three single-lug strips and two double-lug ones are needed. All the power wiring is done with shielded wire, as an aid to TVI prevention. The coils L_{2}, L_{3} and L_{4} are soldered direetly to the stator support bars of their trimmers, with the shortest possible leads.

Adjustments

The power supply should deliver at least ? amperes at 6.3 volts, a.c. or d.c., and 200 to 300 volts d.e., at 200 ma. If a 300 -volt supply is used for the testing, the tubes cen be protected from excessive drain by conneeting a 5000 -ohm 10 watt resistor in series with the power supply lad. The power comnectors, J_{1} and P_{1}, make provision for metering all plate circuits except those of the oseillator and first tripler. The power

Fig. 17-35-The 220-Me tetrode transmitter. At the right are the oCi.6 crystal oseillator and multiplier stares. with the 6360 tripler and amplifier in the center and left, respectively. The rig is huilt on a sheet of aluminum which is serewed to an inverted chassis.

Fig. $17-36$ - Schematie diagram and parts information for the 220 - Me. tetrode transmitter. Resistors are half watt unless otherwise specified. Capacitor values below 0.001 are in $\mu \mu f .:$ all ceramie.
$\mathrm{C}_{1}-11-\mu \mu \mathrm{f}$. miniature butterfly variable (Johnson $\mathrm{L}_{4}-2$ turns same as L_{3}, center-tapped. Adjust turns
$\mathrm{C}_{2}, \mathrm{C}_{3} \frac{-5-\mu \mu \mathrm{f}, \text { miniature butterfly variable (Johnson }}{5}$ $5 \mathrm{MB11)}$.
$\mathrm{C}_{4}-15-\mu \mu \mathrm{f}$. miniature (Johnson 15M11).
L_{1} - 14 turns No. 28 enam, on $3 / 8$-ineh iron-slug form (National XR-91).
$\mathrm{L}_{2}-7$ turns No. $20,1 / 2$-inch diam., $7 / 3$ inch long, centertapped (B \& W Miniduetor No. 3003),
$\mathrm{L}_{3}, \mathrm{~L}_{5}-4$ turns No. 18 enam., $5 / \mathrm{h}_{6}$-ineh diam., centertapped. Space twice diameter of wire, except for $1 / 8$-inel space at center.
$L_{6}-2$ mum grid current.
at eenter of L_{5} for maximum output.
J_{1} - 8 -pin male chassis fitting (Amphenol 86-RCP8).
J_{2} - Coaxial fitting, female (Amphenol 83-1R).
P_{1} - 8-contact power cable conncetor, female (Amphenol 78 -RS8).
$\mathrm{RFC}_{1}-750-\mu \mathrm{h}$, r.f. choke (National R -33).
$\mathrm{RFC}_{2}, \mathrm{RFC}_{3}-17$ turns No. 28 enam. on high value 1 -watt resistor, or use Ohmite \bar{Z} - 235 .
leads to these are shown connected together, to Pin 2 of J_{1}, but during testing they should be fed separately through a milliammeter, as described below.

Connect a 0-50 or 0-100 milliammeter between Pin 2 of J_{1} and the oscillator plate-sereen circuit, at the low side of the 22,000 -ohm sereen-dropping resistor, point A on the schematic. Be sure that the tripler plate and sereen resistors are disconnected for the time being, to prevent this stage from drawing current. Apply 200 to 300 volts d.c. through Pin 2 of P_{1}, and tume the plate circuit of the oscillator to the third harmonie of the erystal frequeney. Listening on this frequency (24.45 to 25 Me ., depending on choice of crystai) a large inerease in signal strength should be noted as the coil is tuned through resonance. A double check on frequency with a calibrated grid-dip or absorption wavemeter is recommended. ()scillator plate-sereen current will be about 20 ma .

Now conneet the oscillator plate-sereen power lead directly to Pin 2 on J_{1}, and insert the meter in the lead to the tripler plate-screen circuit, point B on the diagram. Apply voltage and tune the tripler plate circuit for maximum output at 73.35 to 75 Mc . A 2 -volt $60-\mathrm{ma}$. pilot lamp with a single-turn loop of insulated wire, about a half inch in diameter, may be coupled to L_{2} to serve as an output indicator. The 6CL6 tripler plate-screen current will be about the same as the oseillator, around 20 ma . at 300 volts.

Now wire the power leads to these two stages us shown in the diagram. Leave the 300 -volt lead connected to Pin 2 of P_{1}, and connert a $100-\mathrm{ma}$. meter between Pins 2 and 4, to measure the 6360 tripler plate-screen current. A low-range milliam-
meter, about 0-10 ma., should be conneeted between I'in 5 and l'in 1, to measure final grid eurrent. Tune C_{2} for maximum indication on this meter. With no plate voltage on the final stage, there should be at least 3 ma. grid current. Adjust the spacing between L_{3} and L_{4} carefully, retuning C_{2} each time, for maximum grid current.
Solder a jumper between I'ins 2 and 4 on J_{1}, so that voltage will be supplied to the $6: 360$ tripler. Connect a temporary jumper between P'in 2 and Pin 7, to feed voltage to the final screen, and eonnect the $0-100$ milliammeter between Pins 2 and 8 , to measure final plate current. A 10 - or 15-watt light bulb may be used as a temporary dummy load, connected to J_{2}. Apply voltage and tune C_{3} for minimum plate current, or for maximum output as indicated in the lamp load. Adjust C_{4} for lest output. The setting of C_{4} and the degree of coupling between L_{5} and L_{6} will be different for an antenna, however, as the lamp is not a good load at this frequency.

If the stage is completely stable, maximum output, maximum grid current and minimum plate current should all occur at the same setting of the plate tuning capacitor, C_{3}. Another cheek for ncutralization is to eut the drive for a brief period by removing plate and screen voltage from the tripler. Grid current should drop to zero when this is done. If it does not, the final stage is oscillating, and must be neutralized. In the original model, there was no atual self oseillation, but the stage was not completely stable until a small amount of neutralization was added.

This is done very simply with the $6: 360$. The leads are so arranged within the tube that all that is required for neutralization is a very

Fig. 17.37-Bottom view of the 220 - Ale. transmitier, showing all parts except the tubes and rrystal. Noter the method of attaching the power and coaxial fittings. Vints hold their mounting screns in place, so that they can be fastened to the rear wall of the chassis.

small capacitance between Pins 3 and 6 , and between l'ins 1 and 8 . A stub of No. 18 wire about $3 / 8$ inch long is soldered to l'in 6 , with its opposite end "looking" at l'in 3. A similar stub is soldered to Pin 8, with its free end adjacent to I'in 1 . The ends can then be bent toward or away from the grid pins to give the reduired eapacitance.

When all stages have been adjusted correctly, the plate voltage may be incrased to 300 on all stages, to run the maximum power of which the tubess are capable. Current drains indieated on the schematic diagram are for 300 -volt operation. Staying at 250 volts or less allows more conservative operation, and may be well worth while, in the interest of longer tube life. There is no great advantage to be gaincd from pushing the tubes excessively, as doubling the power output will net less than one S unit improvement in signal lovel at the reociving end.

In feeding power to an antemna system using coaxial line, it is merely necessary to connect the coax to the output fitting, J_{2}, and adjust the coupling and ('a for maximum radiated power. If $300-\mathrm{ohm}$ Twin-Lead or open-wire line is used to feed the antemna, coupling to the transmitter is done with a coaxial balun. An antenna sysiom
designed for 300 -ohm balanced lines may be fed with 7 -5-ohm cotx similarly.

If the rig is to be used as a complete transmitter r.f. section, the final plate and soreen will probably be modulated. This is done be running the lead to Pin 6 on the power plug to the secondary of the output transformer of the modulator. Any modulator unit capable of supplying about 10 watts of audio power may be used.

One or more amplifier stages may be added to build up the r.f. power level. As interstage coupling efficiency is likely to be poar at this frequency the following stage should nat operate at as high a power level as would be accepted practice on lower frequencies. Suitable tubes for 220-IIc. amplifier stages following this exeiter are the 832 A , the 6252 and the 5894 A or 9903 . An amplifier using the 6252 was described in QST' for May, 1954, page 18. Other QS'T refereneas that may be of interest to $220-\mathrm{Mc}$. workers are listed below.
"Coaxial Tank Amplifier for 220 and 420 Mc ." - May, 1951, page 39.
"220-Me. Station for the Beginner," - October, November and December, 195:3.
"Crystal Contiol on 220 Mc." (All-triode transmitter, 10 watts) - February, 1954, page 16.

V.H.F. Antennas

While the basic principles of antenna design remain the same at all frequencies where conventional elements and transmission lines are used, certain aspects of v.h.f. work call for rhanges in antenna techniques above 50. Mc. Here the physical size of arrays is reduced to the point where some form of antenna having gain over a simple halfwave dipole can be used in almost any location, and the rotatable high-gain directional array has become a standard feature of all well-equipped v.h.f. stations. The importance of antemat gain in v.h.f. work camot be over-emphasized. By no other means can so large a return be obtained from a small investment as results from the erection of a good directional array.

DESIGN CONSIDERATIONS

At 50 Mc . and higher it is usually important to have the antenna work well over all or most of the band in question, and as the bands are wider than at lower frequencies the attention of the designer must be focussed on broad frequencer response. This may be attained in some instances through sacrificing other qualitios such as high front-toback ratio.

The loss in a given length of transmission line rises with frequency. V.h.f. feedlines should be kept as short as possible, therefor. Matching of the impedances of the antenna and transmission line should be done with care, and in open locations a high-gain antenua at relatively low height may be preferable to a low-gain sysiem at great height. Wherever possible, however, the v.h.f.

Fig. 18.1-Combination tuning and matching stub for v.h.f. arrays. Sliding short is used to tune out reactance of the driven element. 'loransmission line, either balanced or coax, is connected at the point of lowest stand-ing-wave ratio. Adjustment procedure is outlined in text.
array should be well above heavy foliage, buildings, power lines or other obstructions.

The physical size of a v.h.f. array is usually more important than the number of elements. i 4-element array for 432 Me. may have as much gain over a dipole as a similarly-desigmed array for 144 Me., but it will interecpt only one-third as
much energy in recoiving. Thus to be equal in communication, the $432-\mathrm{Mc}$. array must equal the $144-\mathrm{Mc}$. antenna in capture area, requiring three times as many elements, if similar element configurations are used in both.

Polarization

Early v.h.f. work was clone with simple antennas, and since the vertical dipole gave as good results in all directions as its horizontal counterpart offered in only two directions, vertical polarization became the acoepted standard. Later when high-gain antennas came into use it was only natural that these, too, were put up vertical in areas where v.h.f. activity was already well established.

When the discovery of various forms of longdistance propagation stirred interest in v.h.f. operation in areas where there was no previous experience, many newcomers started in with horizontal arrays, these having been more or less standard practice on frequencies with which these operators were familiar. As use of the same polarization at both ends of the path is necessary for best results, this lack of standardization resulted in a conflict that, even now, has not yet been completely resolved.
Tests have shown no large difference in results over long paths though evidence points to a slight superiority for horizontal in certain kinds of terrain, but vertical has other factors in its favor. Horizontal arrays are generally easier to buikd and rotate. Where ignition noise and other forms of man-made interference are present, horizontal systems usuatly provide better signal-to-noise ratio. Simple 3 - or t-element arrass are more effective horizontal than vertical, as their radiation patterns are broad in the plane of the elements and sharp in a plane perpendicular to them.

Vertical systems cin provide uniform coverage in all dircetions, a feature that is possible only with fairly complex horizontal arrays. Gain can be built up without introducing directivity, an important feature in net operation, or in locations where the installation of rotatable systems is not possible. Mobile operation is simpler with vertical antemmas. Fear of increased TVI has kept v.h.f. men in densely-populated areas from adopting horizontal as a standarel.

The factors favoring horizontal have been predominant on 50 Mc ., and today we find it the standard for that band, except for emergeney net operation involving mobile units. The slight advantage it offers in WN work has accelerated the trend to horizontal on 144 Me. and higher bands, though vertioal polarization is still widely used. The picture on 144,220 and 420 Mc. is still confused, the tendency being to follow the local
trend. The neweomer should rheck with local amateurs to see which polarization is in general use in the area he expects to cover. Eventual standardization should be a major objective, and to this end it is recommended that horizontal polarization be established in aroas where activity is developing for the first time.

IMPEDANCE MATCHING

Because line losses increase with frequency it is important that v.h.f. antemat systems be matehed to their transmission lines carefully. lines commonly used in v.h.f. work include open-wire, usually 300 to 500 ohms impedance, spaced $1 / 2$ to two inches; polyethylene-insulated floxible limes, available in 300,150 and 72 ohms impedance; and coaxial lines of 50 to 90 ohms impedance.

The various methods of matehing antenna and line impedance are described in detail in the chapter on transmission lines. Matching devices rommonly used in v.h.f. arrays fed with bataneed lines include the folded dipole in its various forms, Fig. 13-17, the "T" Match, Fig. 13-21, the "Q" section, Fig. 13-13, and the adjustable stub, Fig. 18-1. The gamma mateh, useful for ferding the driven element of a parasitic array with coaxial line, is shown in schematic form in Fig, 13-21. Balaneed loads such as a split dipole or a folded dipole can be fed with coax through a balun, as shown in Fig. 13-231). Practical examples of the use of these devices are shown in the following pages. The principles upon which their operation depends are explatined in Chapter 13, with the exception of the adjustable stub of Fig. 18-1.

The Corrective Stub

The adjustable stub shown in Fig. 18-1 provides a means of matching the antemat to the transmission line and also tuming out reactance in the driven element. It is, in effert, a tuning doviee to which the transmission line maty be connected at the point where impedances mateh. Both the shorting stub) and the point of connection are made adjustable, though once the proper points are found the connections may be made permanent.

For antenna experiments the stub naty be made of tubing, and the connections made with sliding clips. In a permanent installation a stub) of open-wire line, with all connertions soldered, may be more satisfactory merhanically. The transmission line may be open-wire or Twin-lead. connected directly to the stub, or coaxial line of any impedance, which should be connected through a bilun.

To adjust the stub start with the short at a point about a guarter wavelength below the antenna, moving the point of comoretion of the transmission line up and down the stub) until the lowest standing-wave ratio is achorved. Then move the shorting stub) a small amount and readjust the line romnection for lowest s.w.r. again. If the mininum s.w.r. is lower that at
the first point checked the short was moved in the right direction. Continue in that direction, readjusting the line connection each time, until the s.w.r. is as close to $1: 1$ as possible. When adjustments are completed the portion of the stul) bolow the short can be cut off, if this is desirable meehanically.

TYPES OF V.H.F. ARRAYS

Directional antenna systems commonly used in amateur v.h.f. work are of three general types, the collinear, the Yagi, and the plane reflector

Fig. 18.2 - Inserts for the ends of the elements in a v.h.f. array provide a means of adjustment of length for optimum performance. Short pieces of the element material are sawed lengthwise and compressed to fit inside the element ends.
array. Collinear sustems have two or more driven dements end to cond, fed in phase, usually backed up by parasitie reflectors. The Yagi has a simgle driven element, with one or more parasitic elements in front and in back of the driven element, all in the same plane. The plane-reflector array has a large reflecting surface in back of its driven clement or elements. This may be a sheot of metal, a metal serren, or closely-spaced rods or wires. The reflector maty be a flat plane, or it can be bent into several forms, such as the corner and the parabola.

Examples of all three types are described, and each has points in its favor. The collinear systems such as the 12- and 16 -element arrays of Figs. 1812 and $18-13$ require little or no adjustment and they present few feed problens. They work well over a wide band of frequencies. Yagi, or parasitie arrays, Figs. 18-5 to 18-9, depend on fairly precise tuning of their elements for gain, and thus work over a narrower frequency range. They are simple morhanically, however, and usually offer more gain for a small number of elements than do the collinear sustems. Planeand corner-reflector arrays are broadband deviecs, having broad forward lobes and high front-to-back ratio. They are casily adjusted, but somewhat eumbersome mechanically.

ELEMENT LENGTHS AND SPACINGS

Dosigning a v.h.f. array presents both mechanisal and electrical problems. The electrical problems are basic, and their solution involves choosing the type of performance most desired. Merhanical design, on the ot her hand, can be subject to almost endows variations, and the form that the array will take can usually be deaded by the materials and tools available. One common

TABLE 18-I
Dimensions for V.H.F. Arrays in Inches

Freq. (Mc.)	52*	146*	222.5*	435*
Driven Element	106.5	38	$247 / 8$	123/4
Change per Mc.*	2	0.25	0.12	0.03
Reflector	1111/2	40	$261 / 8$	138/8
Ist I irector	$1011 / 2$	36	$235 / 8$	121/8
2nd Jirector	$991 / 2$	$3.53 / 4$	$238 / 4$	12
3rd I irector	$971 / 2$	35)	23	1178
1.0 Wavelength	234	81	52	27
0.625 Wavelength	147	50) $1 / 2$	32.5	$163 / 4$
0.5 Wavelength	117	40) $1 / 2$	26	13.5
0.25 Wavelength	581/2	201/4	13	63/4
0.2 Wavelength	47	16	101/2	$53 / 8$
0.15) Wavelength	35	12	7 $1 / 4$	4
Balun loop (coax)	76	26.5	163/4	83/4
* Dimensions given for element lengths are for the middle of each band. For other frequencies aljust lengths as shown in the third line of table. Example: A dipole for 50.0 Mc , would be $106.5+4=110.5$ inches. Apply change figure to parasitic elements as well. For phasing lines or matching sections, and for spacing between elements, the midband figures are suffieiently accurate. They apply only to open-wire lines. Parasitic-clement lengths are optimum for 0.2 wavelength spacing.				

source of materials for amateur arras is com-mereially-built TV antemas. They can often be revamped for the amateur v.h.f. bands with a minimum of effort and expense.

Dimensions for lagi or collinear arrays and their matehing deviees can be taken from Table 18-I. The driven element is usually cut to the formula:

$$
\text { Length (in inches) }=\frac{5 \overline{5} 40}{\text { Frecf. (Xe.) }}
$$

This is the busis of the lengths in Table 18-I, which are suitable for the tubing or rod sizes commonly used. Arrays for 50 Me. usually have $1 / 2$ to 1 -inch elements. For 144 Me. $1 / 4$ to $1 / 2$-inch stock is rommon. Rool or tubing $1 / 8$ to $3 / 8 \mathrm{inch}$ in diameter is suitable for 220 and 420 Mre. Note that the clement lengths in the table are for the middle of the band roncerned. For peaked performance at ot her frequencies the element lengeths
should be altered according to the figures in the third line of the table.

Reflector elements are usually about 5 percent longer than the driven element. The director nearest the driven element is 5 percent shorter, and others are progressively shorter, as shown in the table. Parasitic elements should also be adjusted arcording to Line 3 of the table, if peak performance is desired at some frequeney other than midhand.
l'arasitic element lengths of Table 18-I are based on element spacings of 0.2 wavelength. This is most often used in v.h.f. armas, and is suitable for up to 4 or 5 clements. () ther spacings ran be used, however. If the element lengths are :adjusted properly there is little difference in gain with reflector sparings of 0.15 to 0.25 wavelength. The eloser the reflector is to the driven element,

Fig. $18.3-0$ Omidirectional vertical array for $114 \$ 1 \mathrm{c}$ Flements of aluminum chothesline wire are momoted on ceramic standoff insulators screwed to a wooden pold. Feedline shown is 52 -ohm coax, with a balon at the feedpoint. 'l'win-lead or other 300-ohm hatanced line mas alwo be used, but it should he hronght anay horizontally from the supporting pole and elements for at least a quarter wavelength. Coas may be taped to the support.

the shorter it must be for optimum forward gain, and the greater will be its effect on the driven element impedance.

Direetors maty also lo spaced over a similat range. Closer spacing than 0.2 wavelength for arrays of two or three elements will require a longer director than shown in Table 18-I. Thus it can be seen that close-spared arrays tend to work over a narrower frequeney mange than widespaced ones, when they are tumed for best performance. They also result in lower drivenelement impedance, making them more difficult to foed properly. Spacings less than 0.15 wavelength are not commonly used in v.h.f. arrays for these reisons.

Practical Designs for V.H.F. Arrays

The antenna systems pietured and deseribed herewith are examples of ways in which the information in Table 18 -I can be used in arrays of proven performance. Dimensions can be taken from the table, except where otherwise moted. If
the builder wishes to experiment with element adjustment, a simple method is shown in Fig. 18-2. With elements $1 / 2$ inch or larger diameter a piede of the element material can be used. It is siwed lengt hwise and then compressed to make

Fig. 18-4-Dimensions and supporting method for the 111 -Me. vertical array.
a tight lit inside the end ol the element.
A readily-available material often used for elements in arrats for $1+4$ Mc. and higher is aluminum clothesline wire. This is astiff harddrawn wire about $1 / 4 \mathrm{inch}$ in diameter. It shoukd be used in preferener to a similar-appearing wire commonly sold for TV grounding purposes. The latter is too sof to make satisfactory clements if the length is more than about two fere.

A Collinear Array for 144 Mc.

Where a vertically-polarized array hatwing some gatin over a dipole is needed. yet dirextivity is undesirable, collinear halfwawe elements may be mounted vertically and fed in phase as shown in Figs. 18-3 and 18-4. Such an array may have 3 elements, as shown, or 5. The impedance at the center is approximately 300 ohms. permitting it to be fed directly with TV-tape line, or through a coaxial balun, as in the model shown. Fither 52- or 72 -ohm line mate be employed without serious mismateh.

The array is made from two pieeres of aluminum ctothestine wire about 9 inches long overall. These are bent to provide a 38 -ineh top seetion, a folded-back forinch phasing loop, and a 19 -inch renter section. These elements are monnted on coramice pillars, which are fastened to a round woodern pole. Small clamps of sheet alumimum are wapped around the elements and serewed to the stand-offes. A rheaper but somewhat less dosirable mothod of mounting is to use TV screwere insulators to hold the elements in phater.

Feeding the array at the eenter with a coasial balun makes a noat arrangement. The balun leop may be taped to the vertioal support, and the
coaxial line likewise taped at intervals down the mast. The same type of construction can be applied to a $220-$ Me, vertical collinear array, using the lengths for that band given in Table 18-I.

PARASITIC ARRAYS

Single-hity arrays of 2 to 5 elements are widely used in $50-\mathrm{Mc}$. work. These may be built in many different ways, using the dimensions given in the table. Probably the strongest and lightest structure results from use of aluminum or dural tubing (usially $1 \frac{1}{4}$ to $1 \frac{1}{2}$ inches in diameter) for the boom, though wood is also usable. If the elements are mounted at their midpoints there is no need to use insulating supports. Usually the clements are run through the boom and clamped in place in a manner similar to that shown in Fig. 18-10. Where a metal boom is used the joints betweon it and the elements must be tight, as any movement at this point will result in noisy reception.

2-Element 50-Mc. Array

The 2-rlement :mtenna of Fig. 18-5 was designed for portable use, but it is also suitable for fixed-station work with minor modification. The 2 -meter arrity ahove it is deseribed later. The elements are made in three sections, for portability, using inserts similar to that shown in lig. 18-2. The driven eloment, is gamma matched for coax feed, and the parasitic element is a 0.15 -wavelength spaced director. Details of

Fig. 18.5 - Two-element 50. Mc. and four-element 144 He, arrays desizned for portable use. Support is sectional 'TV masting clamped to car door handle. Elcments of 50 -Me. array are made in three seetions, for stowing in hack of ear. Intenna for 114 Me is ent-down 'T' array. Both use gamma match, as shown in Fig. 18-6.

Fig. 18-6 - Details of the gamna match for the 50-Mc. portable array. In a permanent installation the variable capacitor should be monnted in an inverted pastic coup or other device to protert it from the weathar. 'The gammat arm is about 12 inches long for $50 \mathrm{Mc}, 5$ inclies for 144 Mc .
the gamma section, the boom and its supporting clamp are shown in Fig. 18-6. The arm is about 12 inches long, and the capacitor is a $50-\mu \mu$ f variable. Clean, tight connertions between the arm and element are important. Where the array is to be mounted permanently outdoors the rapacitor may be protected from the weather by mounting it in an inverted plastie cup. More details on this array are given in August, 1!55, QST'.

3.Element Lightweight Array

The 3-clement 50-Me armay of Fig. 18-7 weighs only 5 pounds. It uses the closest sparing that is practical for v.h.f. applications, in order to make an antenna that could be usod individually or stacked in pairs without, refuiring a cumbersome support. The olements are half-inch aluminum tubing of $1 / 1$ fi-inch watl thickness, attached to the $1 \frac{1}{4}-$ inch dural boom with aluminum castings made for the purpose. (Willard Radeliff, Fostoria, (hhio, Type HASLa) By limiting the element spacing to 0.15 wavelongth the boom is only 6 feet long. Two booms for a stacked array (Fig. 18-11) gan thas be cut from a single 12 -foot length of tubing.

The folded-dipole driven element has No. 12 wire for the fed portions. These are mounted on $3 / 4$-inch cone standoff insulators and joined to the outer ends of the main portion by means of metal pillars and $6 /: 32$ serews and nuts. When the wires are pulled up tightly and wrapped around the serew, solder should be sweated over the nuts and screw ends to seal the whole against wather corrosion. The same treatment should be used at each standoff. Mount a soldering lug on the ceramic cone and wrap the end of the lug around the wire and solder the whole assembly together. These joints and other portions of the array may be sprayed with cloar facequer as an atditional protection.
The inner ends of the folded tipole are $11 / 2$ inches apart. Slip the dipole into its aluminum casting, and then
drill through both element and easting with a No. 36 drill, and tap with $6 / 32$ thread. Suitable inserts for mounting the stand-offs can be made by eutting the heads off 6 '32 serews. Taper the cout end of the sorew slightly with a file and it will serew into the standoff readily.

Cut the dipole length according to Table 18-I, for the middle of the frequency range vou expect to use most. The reflector and director will be approximately + percent louger and shorter, rospectively. The eloser spacing of the parasitic elements (0.15 wavelength) makes this deviation from the dimensions of the tahle desirable.

The single 3 -clement array has a feed impedance of about 200 olums at its resonant frequeney. Thus it may be fed with 52 -ohm coax and a balun. A gamma-matched dipole may also be used, as in the 2 -element array. If the gamma mateh and 72 -ohm coax are used, a balun will convert to 300 -olm balanced feed, if Twinlead or 300 -ohm open-wire TV line feed is desired. If the dimensions are selected for optimum performance at 50.5 Me . the array will show good performance and fairly low standing-wave ratio over the range from 50 to 51.5 Me .

A closeup of a mounting method for this or any other array using a round boom is shown in Fig. 18-8. Four TV-type U bolts champ the horizontal and vertical members together. The metal plate is about 6 inches $s q u a r e$. If $1 / 4$-inch sheet aluminum is available it maty be used alone, though the photograph shows a sheet of $1 / 16$ inch stock barked up by a piece of wood of the same size for stiffening.

High-Performance 4-Element Array

The felement array of lig. 18-9 was designed for maximum forward gain, and for direct feed with 300 -ohm balanced transmission line. The parasitic dements may be any diameter from $1 / 2$ to 1 inch, but the driven element should be made as shown in the sketeh. The same gencral arrangement may be used for at 3-element array, except that the solid portion of the dipole should

Fig. 18-7 - Lightweight 3-element 50-Mc. array. Predline is 52. ohm roax, with a balun for connection to the folded-dipole driven element. Balun may be coiled as shown, or taped to supporting pipe.
be $3 / 4$-inch tubing instead of 1 -inch. With the element kengths given the array will give nearly uniform response from 50 to 51.5 Me , and usable gain to above 52 Me . It may be peaked for any portion of the band by using the information in Table 18-I.

If a shorter hoom is desired, the reflector spacing can be reduced to 0.15 wavelength and both

Fig. 18-8 - Closeup photograph of the boom mounting for the 50 -Mc. array, A sheet of altuminum 6 inches square is hacked up by a piece of wood of the same size. TV-type U clamps hold the boom and vertical support together at right angles. At the left of the mounting assembly is one of the aluminum castings for holding the bean elements.
directors spared 0.2 wavelength, with only a slight reduction in forward gain and bandwidth. Such a t-element array is shown in Fig. 18-16.

5-Element 50-Mc. Array

As aluminum or dural tubing is usually sold in 12-foot lengths this dimension imposes a pratical limitation on the construction of a $50-\mathrm{Mc}$. beam. A 5 -element array that makes optimum use of a 12-foot boom may be built according to Table 18-I. If the aluminum casting method of mounting elements shown for the 3-clement array is employed the weight of a 5 -element beam can be held to under 10 pounds. The gammat mateh and coaxial line are recommended for feeding such an array, though a balun and 72 -ohm coax can be used for the rotating portion of the line, converting to balanced feed at the anchor point, as shown in Fig. 18-20.

Hements should be spaced 0.15 wavelength, or about 36 inches. With 5 or more elements, good bandwidth can be secured by tapering the element lengths properly. A dipole 110 inches long, with a 116 -inch reflector, and directors of 105,103 and 101 inches respectively will work well over the first two megacreles of the band, provided that the s.w.r. is adjusted for optimum at 51 Mc .

144-MC. PARASITIC ARRAYS

The main features of the arrius deseribed above can be adapted to $144-\mathrm{Mc}$. antennas, but
the small physical size of arrays for this frequency makes it possible to use larger numbers of elements with ease. Few 2-meter antennas have less than 4 or 5 elements, and most stations use more, either in at single bay or in stacked systems.

Parasitic arrays for $1+4$ Mc. can be made readily from TV antennas for Channels 4,5 or 6. The relatively close spacing normally used in TV arrays makes it possible to approximate the recommended 0.2 wavelength at 144 Mc , though the element spacing is not a critical factor. A 4-element array for 144 Mc. made from a Chimnel 6 TV Yagi is shown in Fig. 18-5. It is fed with a gammar match and 52 -ohm coax, and was designed primarily for portable work. As most TV antennas are designed for 300 -ohm feed the same feed system ean be employed for the 2 meter arraty that is made from them.

If one wishes to build his own Yagi antennas from available tubing sizes, the boom of a 2 meter antenna should be $3 / 4$ to 1 inch aluminum or dural. E'lements can be $1 / 4$ to $1 / 2$-inch stock, fastened to the boom as shown in Fig. 18-10. Irecommended spacing for up to 6 efements is 0.2 wavelength, though this is not too critical. Gamma match feed is recommended for coax, or a folded dipole and balun may be used. If balanced line is to be used the folded dipole is

Fig. 18.9 - Details of a 4 -element 50 -Me. array designed for 300 -ohm balanced feed. Element lengths and spacings were derived experimentally for optimum performance over the first $\mathbf{1 . 5}$ megacyeles of the band.
recommended, the 4 to 1 ratio of conductor sizes being about right for most designs.
Very high gain can be obtained with long Yagitype arrays for 144 Me . and higher frequencies, though the bandwidth of such antennas is considerably narrower than for those having up to 4 or 5 elements. The first two directors in long Yagis are usually spaced about 0.1 wavelength. The third is spaced about 0.2 , increasing to 0.4 wavelength or so for the forward directors. Highest gain is obtained when all directors are made the same length, but better front-to-back ratio and lower side lobe content results if the director lengths are tapered $1 / 8$ to $1 / 4$ inch per director. Tapering the element lengths also widens the effective bandwidth of long parasitic arruys.

STACKED YAGI ARRAYS

The gain (in power) obtainable from a single Yagi array can be more than doubled by stacking
two or more of them vertically and feeding them in phase. This refers to horizontal systems, of course. Vertically-polarized bays are usually stacked side by side. The principles to follow apply in either case.

The spacing between bays should be at least one half wavelength, and more is desirable. For dipoles or Yagis of up to three elements optimum spacing between hays is about $5 / 8$ wavelength, but with longer Yagis the spacing can be increased to one wavelength or more Bays of 5 elements or more, spaced one wavelength, are commonly used in antemnas for 144 Mc. and higher frequencies. At 50 M s. a spacing of more than $5 / 8$ wavelength is diflicult mechanically.

Where half-wave stacking is to be cmployed, the phasing line between bays can be treated as a double " Q " seetion. If two bays, each designed for 300 -ohm feed, are to be stacked a half wavelength apart and fed at the midpoint between them, the phasing line should have an impedance of about 380 ohms. No. 12 wire spaced one inch will do for this purpose. The midpoint then can be fed either with 300 -ohnn line, or with 72 -ohm coax and a balum.

When a spacing of $5 / 8$ wavelength between bays is employed, the phasing lines can be coax. (The velocity factor of coax makes a full wavelength of line actually about $5 / 8$ wavelength physically.) The impedance at the midpoint between two bays is slightly less than half the impedance of either bay alone, due to the coupling betweon bays. This effect decreases with increased spacing.

When two bays are spaced a full wavelength the coupling is relatively slight. The phasing line can be any open-wire line, and the impedance at the midpoint will be approximately half that of the individual bays. Predieting what it will be with a given set of dimensions is difficult, as many factors come into play. It will usually be of a value that can be fed through the combination of a " Q " section and a transmission line of 300 to 450 ohms impedance. An adjustable " $(Q$ " section, or an adjustable stub like the one shown in Fig. 18-1, may be used when the antenna impedance is not known.

Fig. 18.10 - Model showing nethod of assembling allmetal arrays for 144 Mc. and higher frequencies. Dimensions of clamps are given in Fig. 18.15.

Fig. 18-11 - Stacked array for 50 Me. using two of the 3-element hays of Fig. 18- $\mathbf{-}$. Phasing system and flexible section for rotation are of conxial line. A "Q" section matehes this to 150 -ohm open-wire line for run to the station.

The stacked :3-over-3 for 50 Me., Fig. 18-11, uses a coaxial phasing line and an additional section of coax to provide for the flexible portion of the feedline. liach bay is fed with a balun and halfwave section of RG-8'U (able. These are joined at the center between bays with a Tee fitting. As each bay has an impedance of 200 ohms, two 50 -ohm leads are paralleled at the center, resulting in an impedance of about 20 ohms, when the coupling effect between bays is inchuded. A flexible section of 50 -ohm coax one wavelength long, with a balun at the end, steps this up to about 80 ohms. A "()" section of $1 / 4-$ inch tubing $3 / 4$ inch center to center steps this up) to the point where it can be fed with 450 -ohm open-wire TV line.

The "Twin-Five" for 144 Mc.

A popular stacked array for $14+$ Ne work is the Twin Five, originally developed by W2PAU . ${ }^{1}$ In this design two 5 -element arrays of standard design are stacked a full wavelength apart. If the folded-dipole driven elements are constructed so that the individual bays have a feed impedance of about 400 ohms the midpoint of the open-wire phasing line can be fed with 52 -ohm coax and a balun. Where open-wire line is desired, the impedances can be matehed through a "Q" section of about 300 ohms impedanee. If the constructor is in doubt as to the actual feed imperdance to be matched, the stub) arrangement of Fig. 18-1 will

[^5]take care of a wide range of impodances and lines to he matched. Dimensions can be taken from Table 18-I.

An effective 20 -element array can be made by using two of these arrays side by side, with fullwave spating horizontally also. The impedance at the midpoint of the horizontal phasing line will then be about 100 ohms, which is still well within the range of " Q " sections of practical dimensions.

- LARGE COLLINEAR ARRAYS FOR 144 MC. AND HIGHER

IIigh gain and very broad frequeney response are desirable characteristies found in curtains of half wave elements fed in phase and backed up by reflectors. The reflector can be made up of parasitic elements, or it can be a screen extending approximately a quarter wavelength beyond the ends of the driven elements. There is not a large difference between the two types of reflectors, except that higher front-to-back ratio and somewhat broader frequency response are achieved with the plane reflector.

12- and 16-Element Arrays

Two collinear systems that may be used on 144,220 or 420 Mc . are shown in Figs. 18-12 and 18-13. Wither may be fed direetly with 300 -ohm transmission line, or through coaxial line and a balun. In the 12 -element array, Fig. 18-12, the reflectors are spaced 0.15 wavelength in back of the driven elements. while the 16 -element array, Figs. 18-1:3 and 18-16, uses 0.2 wavelength spacing. Dimensions may be taken from Table 18-I, and figures for the middle of the band will give good performance across either band.

Fig. 18.12-Element arrangement and feed system of the 12 -element array. Reflectors are spaced 0.15 wavelength behind the driven elements.

The supporting frame for either array may be made of wood or metal. Details of a metal support for the 12-element array are shown in Figs. 18-14 and 18-15. Note that all elements are mounted at their midpoints, and that no insulators are used. The elements are mounted in front of the supporting frame, to keep metal out of the field of
the array. This method is preforable to that wherein mechanical balance is mantained through mounting the driven elements in front and the reflectors in back of the supporting structure.
Two 12 -element arrays may be mounted one above the other and fed in phase, to form a 24 element array. This is done in the $420-\mathrm{Mc}$. array

Fig. 18-13 - Schematic drawing of a 16 -element array. A varialle " Q " seetion may be inserted at the feed point if accurate matching is desired. Reflector spacing is 0.2 wavelength.
of Fig. 18-17. The two midpoints are connected through a phasing line one wavelength long, and the center of this phasing line fed through a "Q" section. The impedance at the midpoint is about 150 ohms, requiring a 255 -ohm " Q " section for feeding with 450 -ohm open-wire line.

Combination of colinear arrays may be carried further. Pairs of 16 -element systems fed in phase are common, and even 64 -element arrays (416 element beams fed in phase) are used in some leading stations on $1+4 \mathrm{Me}$. Configurations of 32 to 64 elements are not difficult to build and support at 220 or 420 Mc. Examples of 16-and 24 -element arrays for 220 and 420 Mc . are shown mounted back to back in Fig. 18-17.

ARRAYS FOR 220 AND 420 MC.

The use of high-gain antenna systems is almost a necessity if work is to be done over any great distance on 220 and 420 Me . Experimentation with antenna arrays for these frequencies is fascinating indeed, as their size is so small as to permit trying various element arrangements and feed systems with ease. Arrays for 420 Me., particularly, are convenient for investigation and
demonstration of antenna principles, as even high-gain systems may be of table-top proportions.

Any of the arrays described previously maty he used on these bands, but those having large num-

Fig. 18-14-Supporting framework for a 12 -element 144-Ne, array of all-metal design. Dimensions are as follows: element supports (1) $3 / 4$ by 16 inches; horizontal menbers (2) $3 / 4$ hy 46 inches: vertical members (3) $8 / 4$ ly 86 inches; vertical support (f) $11 / 2$-ineh diameter, length as required; reflector-to-driven-element spacing 12 inehes. Parts not shown in sketeh: driven elements $1 / 4$ by 38 inches; reflectors $1 / 4$ by 40 inches; phasing lines No. 18 spaced 1 inch, 80 inches long, fanned out to $31 / 2$ inches at driven elements (transposic each halfwave section).
bers of driven elements in phase are more readily adjusted for maximum effeetiveness.

A 16 -element array for 220 Me . and a 24 element array for 420 Me , are shown mounted back-to-back in Fig. 18-17. The 220-Me, portion follows the 16 -clement design already deseribed. It is fed at the center of the system with 300 -ohm tubular Twin-Lead, matehed to the renter impedance of the array through a " Q " section of 7/16-inch tubing, spaced about $11 / 2$ inches center to center. This spacing was adjusted for minimum standing-wave ratio on the line.

Elements in the array shown are of $7 / 16$-inch aluminum fuel-line tubing, which is very light in weight and casily worked. The supporting structure is dural tubing, using the clamp assembly methods of Fig. 18-14.

The $420-\mathrm{Me}$. array uses two 12 -element assemblies similar to Fig. 18-12, mounted one above the other, about one half wavelength separating the botton of one from the top of the other. The two sets of phasing lines are joined by means of one-wavelength sections of Twin-lead at the middle of the array. This junetion, which has an impedance of around 150 ohms , is fed with $300-$ ohm tubular 'Twin-lead through an adjustable "Q" section.

Elements in the $420-\mathrm{Mc}$. array are cut from
thin-walled $1 / 4$-inch tubing. Their supports are the $7 / 16$-inch stoek used for the $220-$ Me, elements. Slots were cut in the ends of these supports to take the clements, and a 4/40 screw was rum through hoth pieces and drawn up tightly with a nut. The horizontal supports were fastened in holes drilled in the vertical members, and were also held in place with a $6 / 32$ screw and nut. The small size and light weight of the $420-\mathrm{Me}$. array did not require the use of clamps to make a strong assembly.
The two one-wavelength sections of 300 -ohm line are $213 / 4$ inches long, taking the propagation fictor into account. The " Q " section may be any convenient size tubing, $1 / 4$ to $1 / 2$ inch diameter. It should be made adjustable, as matching is important at this frequency. Dimensions for both arrays can be taken from Table 18-I.

- MISCELLANEOUS ANTENNA SYSTEMS

Coaxial Antennas

At v.h.f. the lowest possible radiation angle is essential, and the coaxial antenna shown in Fig. 18-18 was developed to eliminate feeder radiation. The center conductor of a 70 -ohm concentric transmission line is extended onequarter wave beyond the end of the line, to act as the upper half of a half-wave antemna. The lower halt is provided by the quarter-wave sleeve, the upper end of which is connected to the outer conductor of the concentric line. The sleeve acts as a shield about the transmission line and very

Fig. 18-I5 - Detail drawings of the elamps used to assemble the all-metal 2 -meter array. $A, 13$ and C are lefore lending into "e"s shape. I'lie right-angle bends should be made first, along the dotted lines as shown, then the plates may be bent around of piece of pipe of the proper diameter. Sheet stock should be $1 / 16$-inch or heavier aluminum.
little current is induced on the outside of the line by the antenna field. The line is non-resonant, since its characteristic impedance is the same as the center impedance of the half-wave antema. The sleeve may be made of copper or brass tubing of suitable diameter to clear the transmission

Fif. 18-16 - A 16-clement array for 1.44 Mc, using the all-metal construction methools outlined in lizss. 18-11 to 18-13. The 4-eldment array for 50 Mc . below is also all-metal design.
line. The coaxial intenna is somawhat diffieult to construct, but is superior to simpler systems in its performance at low radiation angles.

Broadband Antennas

Certain types of antemas used in television are of interest beatuse they work across a wide band of frequencies with relatively uniform response. At very-high frequencias an antenna made of small wire is purely resistive omly over a very small frequency range. Its Q, and therefore its selectivity, is sufficient to limit is optimum performance to a narrow frequency range, and readjustment of the length or tuning is required for each narrow slice of the spectrum. With tuned transmission lines, the affective length of the antennat can be shifted by retuning the whole system. However, in the case of antenmas fed by matehed-impedanoe lines, any appresiable freguency change requires an atetual mechanical adjustment of the system. (Otherwise, the resulting mismateh with the line will be sufficient to cause significant reduction in power input to the antenna.

A property designed and eonstructed wideband antema, on the other hand, will exhibit very nearly constant input impedance over several megacyrles.

The simplest method of obtaining a broadband chatracteristice is the use of what is temmed a "colindrical" antemba. There is no more than a conventional doublet in which large-diameter tubins is used for the dements. The use of a relatively lange diameter-to-length ratio lowers the Q of the antema, thas broedening the resionamee characteristic.

As the diameter-to-length ratio is increased, end effects alse incroase, with the result that
the antenna must be made shorter than thinwire antemat resonating at the same frequeney. The reduction factor may be as much as 20 per cont with the tubing sizos rommonly used for amateur antennas at v.h.f.

Plane-Reflector Arrays

At 220 Me. and higher, where their dimensions become practicable, plane-reflector arrays are widely used. Exerpt as it affects the impedance of the system, as shown in Fig. 18-19, the sparing betwern the driven elements and the reflecting plane is not particularly ritical. Maximum gain orcurs around 0.1 to 0.15 wavelength, which is also the region of lowest impedance. Highest impedance appears at about 0.3 wavelength. A plane reflector spaced 0.22 wavelength in track of the driven elements has no effect on their feed impedance. As the gain of a plane-reflector array is nearly constant at spacings from 0.1 to 0.25 wavelength, it may be seen that the spacing may be varied to achieve an impedance mateh.

An advantage of the plane reflector is that it maty be used with two driven element systems, one on each side of the plane, providing for twoband operation, of the ineorporation of horizontal and vertical polarization in a single structure. The gain of a plane-reflector array is slightly higher than that of a simitar number of driven clements backed up by parasitic reflectors It also has a broader frequency response and higher front-to-back ratio. To achieve these ends, the reflecting plane must be larger that the area of

Fis. $18-17$ - 2 fellement array for 420 Nc and a 16 clement for 220 monnted back-to-back on a single support.
the driven elements, extending at least a quarter wavelength on all sides. Chicken wire on a wood or metal frame makes a good plane reflector. Closely-spaced wires or rods may be substituted,

with the spacing between them rumning up to 0.1 wavelength without apprectiable reduction in effectiveness.

Corner Reflectors

In the corner reflector two plane surfaces are set at an angle, usually between 45 and 90 degrees, with the antemna on a line bisecting this angle. Maximum gain is ottained with the antenna 0.5 wavelongth from the vertex, but compromise designs ean be built with closer spacings. There is no focal point, as would be the ease for a parabolic reflector. Corner angles greater than 90 degrees can be used at some sacrifice in gain. At less than 90 degrees the gain inereases, but the size of the reflecting sheets must be increased to realize this gain.

At a spacing of 0.5 wavelength from the vertex, the impedance of the driven element is approximately twice that of the same dipole in free space. The impedance decreases with smaller spacings and corner angles, as shown in Fig. 18-19. The gain of a corner-reflector array with a 90 -degre angle, 0.5 wavelength spacing and sides 1 wavelength long is approximately 10 db . P'rincipal advantages of the corner reflector are broad frequency response and high front-to-buek ratio.

Cone Antennas

From the colimirieal antmma various spocialized forms of broadly-resonant radiators have been evolved, induding the ellipsoid, spheroid, cone, diamond and double diamond. () these, the conical antema is perhaps the most interesting. With large angles of revolu-
tion, the variation in the characteristic impedance with changes in frequency can be reduced to a very low value, making such an antenna suitable for extremely wide-band operation. The cone may be made up either of sheet metal or of multiple wire spines. A variation of this form of conical antenna is widely used in TV reception.

Parabolic Reflectors

A plane sheet may be formed into the shape of a parabolic curve and used with a driven radiator situated at its focus, to provide a highlydirective antenna system. If the parabolic reflector is sufficiently large so that the distance to the focal point is a number of wavelengths, optical conditions are approached and the wave across the mouth of the reflector is a plane wave. However, if the reflector is of the same order of dimensions as the operating wavelength, or less, the driven radiator is appreciably coupled to the reflecting sheet and minor lobes oceur in the pattern. With an aperture of the order of 10 or 20 wavelengths, sizes that may be practical for microwave work, a beam-width of approximately 5 degrees may be achieved.

A reflecting paraboloid must be carefully desigued and constructed to obtain ideal performance. The antema must be located at the focal point. The most desirable focal length of the parabola is that which places the radiator along the plane of the mouth; this length is equal to one-half the mouth radius. At other focal distances interference fields may deform the pattern or cancel a sizable portion of the radiation.

- FEEDLINE IDEAS FOR ROTATABLE ARRAYS

Where arrays are to be rotated, the method of connecting the transmission line may present a

Fif. 18-19 - Feed impedance of the driven clement in a corner-rellector array for corner angles of 180 (flat sheet), 90,60 and 45 degrees. " $D^{" *}$ is the dipole-to-vertex smacing.
problem, particularly if open-wire line is used. This can be handled in several ways, some of which may atso take are of matehing problems at the same time.

If coaxial line is employed throughout the entire run from antenna to rig the rotation problem can be taken care of by making a few turns of coas around the tower or supporting

line. However, if the array and its main transmission line are other than 300 ohms impedance, the stume method may be employed by making the connecting line between the two baluns any multiple of a half wavelength along. Lither $52-$ or 75 -ohm coax can be used in this cuse, as the antenna impedance will be repeated at the anchor point.

There may be antenna and line impedance combinations that can be matched with the use of "(Q" sections of 72,150 or 300 ohms. If any of these values is suitable for a matehing section, the functions of matching and flexible rotating sections can be combined in a " Q " section of Twin-load of suitable impedince, as shown in Fig. $18-20 \mathrm{~B}$. The flexible section should then be an odd multiple of a quarter wavelength long. A section of Twin-lead one half wavelength or multiple thereof may also be used as an im-pedance-repeating flexible lead. The tubular line

Fig. 18-20 - Flexible sections of line for rotatable arrays may be made of coax (A) or Twin-lead (13). If the rotating sections are a half wavelength or any multiple thereof the antenna impedance is repeated at the anchor point. If they are a quarter wavelength or odd multiple thereof they may be emploved as matching sections. If the driven element in A is designed for coaxial feed the upper balun should be omitted.
of the heavy-duty variety normally used for transmitting purposes is most suitable for these applications.

Where a long run of open-wire line is to be used from the tower anchor point to the station, it should be supported on strain insulators, one in each eonductor, at both ends of the run. The polyethylene spreaders used in TV line are not sufficiently strong to be used for supporting the line in runs of more than a few feet.

Mobile and PortableEmergency Equipment

The amateur who goes in for mobile operation will find plenty of room for exereising his individuality and developing original ideas in equipment. Wach installation has its sperial problems to be solved.

Most mobile recerving systems are designed around the use of a h.f. converter working into a standard car broadeast reeciver tuned to 1500 ke , which serves as the i.f. and audio amplifiers. The rar receiver is molified to take a noise limiter and provide power for the eonverter.

While a few mohile transmitters may run an input to the final amplifier as high as 100 watts or more, an input of about 30 watts normally is considered the practical limit unless the car is eguipped with a special battery-fharging system. The majority of mobile operators use phone.

In contemplating a mobile installation, the car should be stadied carefully to dotermine the most suitable spots for mounting the equipment. Then the various units should be built in a form that will make best use of that space. The location of the converter should have first consideration. It should be phaced where the controls ean be operated conveniently without distracting attention from the wheel. The following list suggests spots that may be found suitable, deponding upon the individual car.

On top of the instrument panel
Attached to the sterering post
Under the instrument panel
In a unit made to fit between the lower lip of the instrument panel and the floor at the center of the car
The tranmitter power control can be placed close to the recciver position, or included in the converter unit. This control normally operates mase, rather that to switeh the power eircuit directly, This permits a
minimum length of heavy-current battery circuit. Frequency within any of the 'phone bands sometimes is changed remotely by means of a stepping-switeh system that switches erystals. In most cases, however, it is necessary to stop the ear to make the several changes required in changing bands.

Depending upon the size of the transmitter unit, one of the following places may be found convenient for mounting the transmitter:

In the glove compart ment
Under the instrument panel
In a unit in combination with or without the converter, built to fit between the lower edge of the instrument panel and the floor at the center
On the ledge above the rear seat
In the trunk
Most mobile antennas consist of a vertical whip with some system of adjustable loading for the lower frequencies. Power supplies are of the vihrator-t ransformer-rectificr or motor-generator type operating from the car storage battery.

Units intended for use in mobile installations should be assembled with greater than ordinary care, since they will be subject to considerable vibration, toldered joints should be well made and wire wrap-arounds should be used to avoid dependence upon the solder for mechanical strength. Solf-tapping serews should be used wherever feasible, otherwise lock-washers should be provided. Any shafts that are normally operated at a permanent or somi-permanent setting should be provided with shaft locks so they ramot jar out of adjustment. Where wires pass through metal, the holes should be fitted with rubber grommets to prevent chafing. Any cabling or wiring between units should be securely clamped in plare where it cannot work loose to interfere with the operation of the car.

Noise Elimination

Feletrieal-moise interference to reepption in a car may arise from several different sourees. As examples, trouble may be experieneed with ignition nois, gemerator and voltagerequator hash, or whed and tire statie.

A noise limiter added to the car b.e reerever will go far in reducing some trpes, esperially ignition noise from passing cats as well as your own. But for the satisfactory reception of weaker signals, some investigation and treat-
ment of the ear's electrical system will be necessary.

Ignition Interference

Fig. 19-1 indicates the meanures that may be taken to suppress ignition interference. The capacitor at the primary of the ignition coil should be of the coaxial trpe: ordinary types are not effertive. It should be placed as close to the coil torminal as possible. In stubborn cases, two

of these capacitors with an r.f. choke between them may provide additional suppression. The size of the choke must be determined experimentally. The winding should be made with wire heavy enough to carry the coil primary current. A 10,000 -ohm suppressor resistor should be inserted at the center tower of the distributor, a 5000 -ohm suppressor at each spark-plug tower on the distributor, and a 10,000 ohm suppressor at each spark plug. The latter may be built-in or external. A good supprassor element should be molded of material having low capacitance. Several concerns manufacture satisfactory suppressors. In extreme cases, it may be necessary to use shielded ignition wire. The 1951 Pontiac car was equipped with suppressor ignition wires, the resistance being distributed throughout the length of the wire. This is somewhat superior to lumped resistance and may be used if the lead lengths are right to fit your car. They should not be cut, but used as they are sold.

Generator Noise

Generator hash is caused by sparking at the commutator. The pitch of the noise varies with the speed of the motor. This type of noise may be eliminated by using a 0.1 - to $0.25-\mu \mathrm{fd}$. coaxial capacitor in the generator armature circuit. This capacitor should be mounted as near the armature terminal as possible and directly

Fig. 19.2-The right way to install by-passes to reduce interference from the regulator. A calbacitor should never be conneeted across the generator field lead without the small series resistor indicated.
on the frame of the generator.
To reduce the noise at 28 Mc., it may be necessary to insert a parallel trap, tuned to the middle of the band, in series with the generator output lead. The coil should have about 8 turns of No. 10 wire, space-wound on a 1 -inch diameter and should be shunted with a $30-\mu \mu \mathrm{d}$, miea trimmer. It can be pretuned by putting it in the antenna lead to the home-station receiver tuned to the middle of the band, and adjusting the trap to the point of minimum noise. The tuning may need to be peaked up after installing in the car, since it is fairly critical.

Voltage-Regulator Interference

In eliminating voltage-regulator noise, the use of two coaxial capacitors, and a resistor-micacapacitor combination, as shown in Fig. 19-2, are effective. A $0.1-$ to $0.25-\mu \mathrm{fd}$. coaxial capacitor should be placed between the battery terminal of the regulator and the battery, with its case well grounded. Another captcitor of the same size and type should be placed between the generator terminal of the regulator and the generator. A $0.002-\mu \mathrm{fd}$. nica capacitor with a tohm carlon resistor in series should be comected between the fich terminal of the regulator and ground. Never use a calpacitor across the field contacts or between field and ground without the resistor in series, since this greatly reduces the life of the regulator. In some cases, it may be necessary to pull double-braid shiekling over the leads between the generator and regulator. It will be advisable to rum new wires, grounding the shielding well at both ends. If regulator noise persists, it may be necessury to insulate the regulator from the car body. The wire shielding is then connected to the regulator case at one end and the generator frame at the other.

Wheel Static

Wheel static shows up as a steady popping in the receiver at speeds over about $15 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. on smooth dry strects. Front-wheel static collectors are available on the market to eliminatc this variety of interference. They fit inside the dust cap and bear on the end of the axle, effectively grounding the wheel at all times. Those designated particularly for your car are preferable, since the universal type does not always fit well. They are designed to operate without lubrication and the end of the axle and dust cap should be cleaned of grease before the installation is made. These collectors require replacement about every 10,000 miles.

Rear-wheel collectors have a brush that bears against the inside of the brake drum. It
may be necessary to order these from the factory through your dealer.

Tire Static

This sometimes sounds like a leaky power line and can be very troublesome even on the broadeast band. It can be remedied byinjoeting an antistatie powder into the inner tubes through the valve stem. The powder is marketed hy Chevrolet and possibly others. Chevrolet dealers can also supply a convenient injector for inserting the powder.

Tracing Noise

To determine if the recpiving antenna is pieking up all of the noise, the shielded lead-in should be disconneeted at the point where it connects to the antenma. The motor should be started with the rereiver gain control wide open. If no noise is heard, all moise is being pieked up via the antenna. If the noise is still heard with the antema diseonnected, even though it may be reduced in strength, it indicates that some signal from the ignition system is being picked up by the antenna transmission line. The lad-in may not be sufliciently-well shichded, or the shield not properly grounded. Noise may also be picked up through the bat tery circuit, although this does not normally happen if the receiver is provided with the usual r.f.-choke-and-by-pass-capacitor filter.

In ease of noise from this source, a direct wire from the "hot" battery terminal to the recoiver is recommended.

Ignition noise varies in repetition rate with engine speed and usually can be recognized by that characteristie in the early stages. Later, however, it may resolve itself into a popping noise that does not always correspond with engine speed. In such a case, it is a good idea to remove all leads from the generator so that the only sounce left is the ignition system.

Regulator and generator noise may be detected by racing the engine and cutting the ignition switch. This eliminates the ignition noise. Gencrator noise is chanaterized hy its musical whine contrasted with the rugged raspy irregular noise from the regulator.
With the motor rumning at idling speod, or slightly faster, cherks should be made to try to determine what is bringing the noise into the field of the antenna. It should be assumed that any control rod, motal tube, stoering post, ete, passing from the motor compartment through an insulated bushing in the firewall will carry noise to a point where it can be radiated to the antemas. All of these should be bonded to the firewall with heavy wire or braid. Insulated wires can be stripped of r.f. by by-passing them to ground with $0.5-\mu \mathrm{fd}$. metal-case capacitors. The following should not be overlooked: battery lead at the ammeter, gasoline gatuge, ignition switeh, headlight, backup and taillight leads and the wiring of any aceessorics rumning from the motor compartment to the instrument panel or outside the car.

Fig, 10.3 - Diaprams showing addition of noise limiter to car receiver. A - ['sual eircuit. 13 - Modification. ($A_{1},(3-100)-\mu \mu \mathrm{fl}$. mica.
(:2, Ci, ($6,0,0)-\mu \mathrm{ff}$, paper.
($: 5$ - O.I- - fid. paper.
$R_{1}-1 ., 000$ oflims.
$R_{2}, R_{10}-I$ megolim.
$R_{3}-1 / 2$ megolim.
R:, Rs. R R_{9} - 0.1% megohm.
$\mathrm{R}_{4}-10$ menghtis.
l_{5} - $1 / 4$ megolim.
$11_{5}-0.1$ megohm.
'I' - I.f. transformer.
V_{1} - Scomid detector
The firewall should be bonded to the frime of the car and also to the motor block with heavy braid. If the exhaust pipe and muffler are insulated from the frame by rubler mountings, they should likewise be grounded to the frame with flexible copper braid.

Noise Limiter

Fig. 19-3 shows the alterations that may be made in the existing car-receiver circuit to provide for a noise limiter. The usual diodetriode second detector is replaced with a type having an extra independent diode. If the car receiver uses octal-base tubes, a 6S8GT may be substituted. The 7×7 is a suitable replacement in receivers using loktal-type tubes, while the 6T8 may be used with miniatures.

The switch that cuts the limiter in and out of the circuit may be located for convenience on or near the converter panel. Regardless of its placement, however, the leads to the switch should be shiclded to prevent hum piek-up.

A Bandswitching Crystal-Controlled Converter

Figures 19-4 through 19-8 show a bandswitching crystal-controlled mobile converter covaring bands from 80 to 10 meters. The tuning of the oscillator is fixed, and the r.f. amplifier is broadbanded. Signats across the band are tuned in by adjusting the bee receiver which is used as a tunable i.f. amplifier. Frequency stability is much superior to that of the nsual tumable converter. Coils and crystals for unneeded bands may be omitted.

While the converter draws 20 mat, at 150 volts, tests have shown that the performanee is essentially unchanged with the plate input reduced to 5 mas. at 45 volts. If you are reluctant to dig into the recerver to bring out a $13+$ load, you can operate the converter from a small 13 battery.

The Circuit

The rircuit diagram is shown in Fig. 19-5. A 6.AK5 is used as an r.f. amplifier, and a $6 . J 6$ dual triode as the frequency eonverter. The r.f. eircuits consist of slug-rored coils tuned by the tube capacitances. However, a trimmer, C_{3}, is included so that the amplifier grid circuit can be peaked up for the particular antemma in use, or in going from one end of the band to the other.

A pair of wavetraps, $C_{1} L_{1}$ and $C_{2}^{\prime} L_{2}$, at the input are provided to minimize interference from loral bere stations.

For frequencies above 7 Me, the oseillator seetion of the converter works at harmonics of the erystal frequency, At these frefuencies an oseillator eireuit is used which limits the oscillator output essentially to the desired harmonie frequener. On 3.5 and 7 Mr., the crystals work at the fundamental, and the cireuit is a simple Pievere, L_{6} being eliminated on these bands.

For the sake of simplieity in the diagram, only a single set of coils (the $14-\mathrm{Mr}$. set) is shown. ()ther roils and erystals are wired similatly to their respective switch points. Switch section $S_{2 E}$ is not used as an abotive switeh, its point terminals merely serving as a most convenient tie-point strip for supporting the junction of the

Fig. 19-4-Front view of the bandswited. ing crystal.controlled mobile converter. The unit is luilt into a $7 \times 7 \times 2$-inch aluminum chassis. The suhassembly, shown in Fiks. 19-7 and 19-8, is to the left of the bandswitch. It includes the 28- We. coils, the tubes, and most of the small components. The second ubassembly to the right contains all remaining coils. The controls for Cis to the left, and s_{1} to the right, are spaced 2 inches from the bandswiteh shaft. Holes along the right side are for adjusting the eoil shags, Bandswiteh wafers are in alphatertical order, $\dot{s}_{2 A}$ to $\dot{\$}_{2} F$, front to rear.
crustals and L_{6} coils. In the case of the 7 -and 3.5-Mc. positions, where no L_{6} coil is used, the corresponding switeh points are simply wired together, as indicated.
$S_{1 A}$ and $S_{1 B}$ shift the antenna from the converter to the b.e. reereiver, while $S_{1 c}$ turns off the converter filaments.

An acompanying table shows the crystal frequency, the h.f. oscillator frequency, and the range over which the b.e. receiver must be tuned to cover each of the ham bands.

Since the range of the bee receiver is approximately 1000 ke . ($5000-550 \mathrm{kc}$.), the tuning range with any single crestal is limited to 1 Mc. However, this is more than adequate for all exeept the 10-meter hand. For full coverage of this band, two erystak are used, as inclicated in the table. The 11 -meter band is not normally included, but values are given so that this band may be substituted for one of the 10 -meter ranges if desired.

Construction

The converter is built into a $2 \times 7 \times 7$-inch aluminum chassis. The top cover (aetually a hottom plate for the chassis and not shown in the photographs) is a flat piece of aluminum measuring 7 by 9 inches, The extra inch of overlap on each side provides lips for fastening the converter to the bottom cover of the bere receiver by means of machine serews and metal spacers.

The aluminum bracket for the large subassembly should be made first. This subassembly is shown to the left of the bandwwiteh in Fig. 1: -4, and in Figs, 19-7 and 19-8. The latter identify the components, indirating the holes that must be drilled for the tubes, eoils and r.f. ehokes.

Fis. 19.5 - Circuit diagram of the crystal-controlled mobile converter. All resistors $1 / 2$ watt. * ludicates a tubular ecramic cavaritor; all other fixed caparitors disk ceramic. Values below $0.001 \mu \mathrm{f}$. are in $\mu \mu \mathrm{f}$.
$\mathrm{C}_{3}-3.5-\mu \mu$. variable (Ifammarlund $\mathrm{HF}-35$).
l.1 through J_{6} - See roil chart.
J_{1}, I_{2} - RCA-type phono jack.
J_{3} - 4 -prong male chassis comertor (Cinch-Jones P-304 1 B).
RFG(1-2.5-mh. r.f. choke (National R-l(10)S).
RFG R_{2} - $10-\mathrm{mh}$. r.f. cloke (National R-100S).
When the bracket has beren drilled, plate it against the rear wall of the chassis, $3 / 4 \mathrm{inch}$ in from the left side, and mark the mounting holes in the chassis. Then slide the bracket against the left-hand side of the chassis and spot the slugadjusting holes and the 1 -inch holes that permit removal of the tubes.

Bofore assembling the unit, the antenna coils (L_{3}) should be wound on rath of the two L_{A} forms. Bach of the North Hills coil forms has an extra set of terminals that may be used as tie points for the switch ends of the L_{3} windings. (By judicious use of these extra terminals, it is possible to complete the wiring of the converter without employing any additional tie points.)

At the conclusion of the wiring of the subassembly, connert power leads that will run to $S_{1 c}$:

Coil Chart for the Mobile Converter					
Band	Turns. L3	Ind. Ramge, μ h.		Type No.	
		$L_{4}-L_{5}$	L_{0}	$L_{4}-L_{5}$	Lo
3.5-4	30	64-105	-	120-1 ;	-
7-7.3	8	18-36	-	120-E:	-
14-14.35	4	5-9	18-36	120-C	120-E
21-21.45	3	3-5	5-9	120-B	120-C
26.93-27.23	3	2-3	3-5	120-A	120-B
28-28.9	3	2-3	$3-5$	120-A	120-B
28.75-29.7	3	2-3	3-5	120-A	120-B
Note: L_{1} and $L 2$, Fig. $14-5$, are Types 120-F (36-64 $\mu \mathrm{h}$.) and $120-\mathrm{L}$, respectively. Series 120 coils are obtainable from North Hills Electric: Co., Inc., 203-18 3 5th Ave., Bayside 61, New York, L_{3} is wound with fine magnet wire $(20-30)$ at grounded end of $L A$.					

$s_{1}-3$-pold $\overline{5}$-position (used as 3 -p.d.t.) selector switch (Centralab PA-2007 or P 1.5 wafer mounted on PA-300 index).
S_{2} - 6-pole (6-position selector switeh (6 Centralab) PA-18 wafers monnted on PA-302 index).
Xtil - See chart (James Kinights type II-17 or Jnternational crystal typeri-9).
and J_{3}, and attach a 2 -inch length of wire to Pin 5 of the 6.J6. The free end of the latter will be ronnected to S_{21}, later.

The remaining slug-tuncol coils are mounted as at second subassembly on a bracket the same in size ats the first, although the mounting lips must be bent in the opposite directions. The coils are arranged in three groups of four coils. The coils are centered at the corners of a $3 / 4$-inch square. The first square is contered on the strip and at $5 / 8$ inch from the front edge of the strip. The second square is centered $21 / 2$ inches from the front edge, and the last square is centered $3^{5 /} / 2$ inches back. At the center of each of the two squares toward the front, a hole is drilled for a 1 -inch 6 - -32 serew. A soldering lug and a $3 / 4$-inch metal spacer are slid over the serew before it is fastened to the bracket. The lugs provide convenient grounding terminals.

Before the coils are mounted, this bracket should be placed against the rear wall of the chassis, and $3 / 4$ inch from the right-hand side and its mounting holes marked in the chassis. Then, as before, it should be slid against the right-hand side of the chassis while the slug-adjusting holes are spotted in the wall of the chassis.

The first group of coils toward the front are the r.f. grid coils, $L_{3}-L_{4}$, and the plate coils, L_{5}, are in the serond group. With the slug serews facing you, the 80 -meter coils are at the upper left, the 40-meter "oils we at the upper right, the 20 -neter roils at the lower left, and the 15 -meter coils at the lower right. The third group of coils at the rear include the trap coils, L_{2}, at the upper left, and L_{1} at the upper right. Below are the 20 -meter oscillator roil (L_{6}) to the left, and the 15 -meter oscillator coil to the right. The antenna coils, L_{3}. should be wound on their corresponding grid-coil forms (L_{4}) before assembling.

Frequency Chart for the Mobile Converter			
Band, Mc.	Crystal Freli., K'c.	Oscillator Freq., M/c.	I.F. Ranife, Kic.
$3.5-4$	2900	2.9	600-1100
7-7.3	6400	0.4	600-900
14-14.35	6700	13.4	600-4:50
21-21.4.5	6800	20.4	600-1050
26.96-27.23	6.575	26.3	660-030
28-28.9	6850	27.4	600-1500
28.75-29.7	7050	28.2	550-1:300
Note: I.f. range indicates broadeast receiver tuning range neressary for covering the associated amateur frequencics.			

Only a single by-pass capacitor is shown in the diagram as C_{6}. Artually, there are three of them. One is at the junction of the cold ends of the two 10-meter coils, one for the $3.5-$ and 7 -Me. coils, and one for the $14-$:und 21-Mc. coils.

The Bandswitch

The handswitch is made up from Contralah Switchkit pants as indicated undro Fig. 1!-5. In assembling the switch, all waters should be placed on the assembly rods so that the rotor or "arm" terminal is the second terminal to the left of the upper assembly rod, as viewed from the front.

The erystals can be soldered to the switeh contacts before the switeh is mounterl in the chatsis.

Prongs taken from an octal socket and slid over the erystat-holder pins are a good means of connecting the crystals to the switch wafers.
The fiber mountings of the input and output phono connectors will need to be clipped off so that they will fit betwern the chassin and the subassembly brackets. These jacks should be mounted next, and the coax leads run

Fig. 19-6 - Space belween the bandswiteh index head and the froml wafer is $5 / 16 \mathrm{inch}$. Suceceding spacings bet ween wafers, front to rear, are 11/16, 17/16, 11/16, I and $13 / 16$ inches. The tail of the shaft is cut off close to the last wafar to provide spate for $/ 3$ at the rear, but the assembly rods extend through the rear of the ehansis. Shielded bhono jacks at the rear are for antenna to the right, and lice recciver to the left. Capped holes along the right-hand side are for tabe removal. 'The smaller ones are for lo-meter shy adjusiment. Crystals, belween $\mathrm{S}_{2 \mathrm{D}}$ and $i_{2} \mathrm{E}$, left $t o$ right, are for $3.5,7,21$, and the high end of 28 Me. Those for 1411% and the low end of 28 Mc , mounted horizontally, are hidden by the three crystals to the left.
to $S_{1 A}$ and S_{11}, keeping the leads along the bottom comers of the chassis.

Then the two subassemblies can be mounted and connections made to the bandswitch. In addition to the connections shown in the diat gram, the bandswiteh terminals immediately to the left of the upper tie rod (as viewed from the front) on $S_{2 A}$ and $S_{2 B}$ should be comnected together, and then to the ground terminal at the sorket of the 6AL5. This grounds the inactive L_{3} and L_{4} coils.

As a last operation, the power leads are fished out through the mounting hole for J_{3}, and conneetions to J_{3} are mate hefore it is mounted.

Power Supply

The converter recpuires 0.625 ampere at 6 volts for the heaters, and anything between 5 mat at 45 volts to 20 mat at 150 volts for the plate supply. This can be taken most conveniently from the cau b.e. receiver by ronnecting two leads to an audio-output-stage socket. Pate voltage should te taken from the sereen terminal. This voltage will usually be about 200, and ran be dropped down to the desired value with at series resistor. A $10,000-0$ hm 2 -watt resistor will usuatly be about right - at least, it will serve as a starting point for aljustment to the clesired valus. The hot filament and plate-supply leads, plus a ground lead, can be brought to a connector mounted on the b.c. receiver, or rum in the form of a cable. Shiclded wire should be used for the rable.

Adjustment

With a small antenna, such as a mobile whip, tight coupling to the antemnis is cesential for best signal response. It is also important in avoiding regeneration in the r.f.-amplifier stage. Therefore,

Fig. 19-7-'The bracket for this sutsassembly is $51 / 2$ by $17 / 8$ inches, with $3 / 8$-inch lips. 'lube-removal holes are 1 inch in diameter. Sparing between bracket and rear plate is $13 / 8$ inclies.
especially when the antenna is a small one, it should be resonant. This is usually the case in a mobile installation where the antenna must be made resonant for transmitting.

The high-frequency oscillator should be checked first, listening on a commumications recoiver at the oscillator frequencies listed in the table. No adjustment of the oscillator is necessary at 3.5 and 7 Mc ., but at the higher frequencies the slugs of the L_{6} coils must be adjusted for most stable output. Set the receiver to the desired frequeney and adjust the slug until the oscillator signal is heard. To make sure that the oscillator is crustal-controlled, jar the converter. If the signal is crystal-controlled, no amount of jarring should change the frequency. If it is not crystalcontrolled, the shag should be aljusted carcfully until the oseillator locks in with the crustal.
The r.f. amplifier may now be lined up, band by band, by tuning in a signal from a generator
or the antemna, and then adjusting the amplifier grid and plate coils for maximum response. The grid-coil slug should be adjusted with signals near the high-frequency end of the band, and with (${ }_{3}$ set near minimum capaeitance. The antema coupling should then be adjusted to the point where a slight peak in a signtal or background noise is heard within the range of C_{3}.

When interference from local broadcasting stations is experienced, the slug of L_{1} should be adjusted to minimize the strongest b.c. signal toward the low-frequeney end of the b.c. bund, while the slug of L_{2} should be likewise adjusted for the strongest signal toward the high-frequene y end of the band. These two adjustments will usually serve to attenuate most other b.c. signals in between the two extremes of frequency. Ilowever, other combinations may be advisable, depending on the frequencies of the local stations. (Originally described in QST, January, 1955.)

Fig. 19-8 - The fubesochet mounting plate is $33 / 4$ by $13 / 4$ inches overall. The ends are rounded to elear the outer coil forms. Holes oplosite the inner coil forms are $3 / 4$ inch; those elearing the' r.f. chokes are $5 / 8$ inch. Small components should be kept close to the plate, so as to clear the handswitch.

A Crystal-Controlled Converter for 50 Mc .

The 50-Mc. mobile ronverter shown in Figs. 19-9 through 19-13 combines simplicity with up-to-date v.h.f. design practice. Although only three tubes are used, the converter includes a stage of r.f. amplification plus dual conversion with erystal-controlled oscillators. The choice of i.f. results in a high order of image rejection. A car b.c. receiver is used as the tunable i.f. for the unit and also supplies the necessary plate power.

An antenna peaking capacitor is the only operating-type control on the converter. Four low-frequency crystals, any one of which may be plugged into the front of the unit, provide selection of 1-Mc. segments of the 6-meter range. With this arrangement, a tuning range of 1 Mc . is obtained with each full swing of the broadcast receiver tuning dial.

The circuit diagram is shown in Fig, 19-10. A ${ }_{6} \mathrm{DC6}$ is used as an r.f. amplifier. C_{1} is the gridcircuit peaking capacitor. Output from the 6DC6 is coupled through a simple band-pass circuit, $C_{5} L_{3} C_{6}{ }_{6} L_{4}$, to a 12 AT7 mixer. The second half of the 12AT7 is operated as a crystal oscillator at 43.5 Mc . to provide injection voltage for the mixer. Thus, the i.f. output for the mixer is set by the frequency of the incoming 50-Mc. signal and will fall within the $6.5-$ to $10.5-\mathrm{Me}$. range.

A second bandpass circuit, $C_{8} C_{10} C_{11} L_{5} L_{6}$, is connected between the plate of the mixer and the grid of a Type 6BA7 converter tube. The oscillator section of the 6 BA 7 uses crystals ground for $5.95,6.95,7.95$ and 8.95 Mc . These crystals, in the order listed, provide 1-Mc. i.f. ranges (from the 6 BA 7) beginning at 0.55 Mc . L_{7} is a slug-tuned plate coil for the converter tube.

A resistor, R_{6}, is connected between the control grid of the 6 BA 7 and ground. Its purpose is to flatten out the response of the low-frequency (6.5 to 10.5 Mc .) coupling circuit. S_{1} performs the switehing neerssary in shifting from 50 Me. to h.c. input. Heater cireuits for both $6.3-$ and 12.6 -volt are shown in Fig. 19-10.

Construction

The converter is built into a 2×5 $\times 7$-inch aluminum chassis. The top cover (actually a bottom plate for the chassis, and not shown in the photographs) is a flat piece of aluminum measuring 5 to 9 inches. The extra inch of overlap on cach side pro-

F'ig. 19.9. The input tuning capacitor (C_{1}), the antenna-heater switch (S_{1}), and the low-frequency crystal (l_{2}) are in line from left to right on the front wall of the chassis. A metal partition, mounted along the center line of the chassis, supports the tubes, the v.h.f. crystal (I_{1}), and most of the r.f. components,
vides lips for fastening the converter to the bottom of the b.e. receiver by means of matchine screws and metal spacers.

The subassembly is shown centered in the chassis in Figs. 19-9) and 19-11, and in two detail photographs. Figs. 19-12 and 19-13 identify the components in the subassembly. When the bracket has been bent and drilled, place it against the inside bottom surface of the chassis and mark the mounting holes in the chassis. Then place the bracket against the rear wall of the chassis and use it as a template to mark the position of the 1 -inch holes that permit removal of the tubes.

The positions of J_{1}, J_{2} and the cable grommet may now be marked on the rear wall of the chassis and mounting holes for C_{1}, S_{1} and the erystal socket for Y_{2} may be spotted on the front wall. Mount C_{1} with the shaft hardware and with the threaded mounting foot facing toward S_{1}.
When mounting components in the subassembly, orient the tube sockets in the following manner: Pins 3 and 4 of V_{1} facing toward the top of the bracket; Pin 7 of V_{2}, and Pins 4 and 5 of V_{3} pointing toward the bottom of the bracket. One-terminal tie-point strips, held in place by the socket hardware, should be mounted at the bottom of V_{1}, to the right of V_{2} (as seen in Fig. 19-13) and at the top of V_{3}. A 2-terminal tiepoint strip should be mounted to the right of V_{1}.
The $1 / 2$-inch clearance holes for L_{5} and L_{0} are spaced $7 / 8$-inch between centers and are located in between the sockets for V_{2} and V_{3}. A rubber grommet, mounted in the bracket just above the socket for V_{3}, passes a lead between Pin 9 of the $6 \mathrm{BA}^{7}$ and the plate coil, L_{7}.

Fig. 19-12 shows the socket for Y_{1} mounted above the 12.AT7. Adjustment serews for C_{5}, C_{6}, C_{8} and C_{16} are also visible in this view. A 3 -terminal tie-point strip to the right of V_{3} supports the out-

Fig. 19-10-Circuit diagram of the 50-Me. erystal-controlled mobile converter. All resistors $1 / 2$ watt. * Indicates a mica capacitor; all other fixed capacitors disk ceramic. Values below $0.001 \mu \mathrm{f}$. are in $\mu \mathrm{f}$.

$\mathrm{C}_{5}, \mathrm{C}_{6}, \mathrm{Cis}_{\mathrm{s}}, \mathrm{C}_{16}-1.5-10-\mu \mu \mathrm{f}$. tubular trimmer (Centralab 829-10).
$\mathrm{C}_{10}-3-30-\mu \mu \mathrm{f}$. ceramic trimmer (Vational $\mathrm{M}-30$).
$\mathrm{I}_{1}-4 \frac{1}{2}$ turns insulated magnet wire ($20-30$), closewound over grounded end of L_{2}.
$L_{2}, L_{3}, L_{4}-7$ turns No. 20 tinned, 76 inch long, $1 / 2-$ inch diam. (B \& iN 3003), see text.
L5, La - $9-18-\mu \mathrm{h}$. slug-tuned coil (North Hills Electric 120-D).
$L_{7}-10-200-\mu \mathrm{l}$. slug-tuned eoil (North Hills Electric 120-II).
put end of (${ }_{15}$ and the associated coax lead, the grounded sides of the eoaxial cable and capacitor C_{14}, and the $\mathrm{B}+$ end of R_{11}.

To assure mechanical stability, the coils for the first bandpass circuit (L_{3} and L_{4}), and those of the $43.5-\mathrm{Mc}$: oscillator (L_{8} and L_{9}) are made up as follows: $L_{3} L_{4}$ is made from an 18 -turn length of trpe 3003 Miniductor having + turns removed at the exact center. Do not break the support hars when removing the turns, and be sure to leave leads approximately $3 / 4$ inch long
$L_{8}-9$ turns No. 20 tinned, 26 inch long, $1 / 2$-ineh diam. (13 $\& \| 3003$).
$\mathrm{L}_{9}-2$ turns No. 20 tinned, $1 / 8$ inch long, $1 / 2$-ineh diam. (B\&W 3003). See text.
$\mathrm{J}_{1}, \mathrm{~J}_{2}$ - RCA - type phono jack.
P_{1} - 3 -prong male plug (Cinch-Jones P'303-CCT).
$\mathrm{RFC}_{1}-750-\mu \mathrm{h}$. r.f. ehoke (National R-33).
$\mathrm{S}_{1}-3$-pole 5 position (used as 3 p.dit.) selector switeh (Centralal, PA-2007 or PA-s wafer mounted on PA-300 index).
Y_{1}, Y_{2} - Crystals. Sce text (International Crystal type FA-9).
at both ends of each winding; $L_{8} L_{9}$ is made from a 12-turn length of Type 300:3 Miniductor having the tenth turn removed (without breaking the supports), thus leaving a 9-turn coil for the oscillator plate circuit (L_{8}) and a 2-turn (L_{9}) for coupling injection voltage to the mixer grid.

When the subassembly has been completed, it mate be mounted and the interchassis wiring completed. However, the alignment of the tuned circuits is more conveniently handled if the subassembly is worked on out in the open. This procedure neressitates that the input circuit, $C_{1} L_{1} L_{2}$, be mounted temporarily at one corner of the bracket (adjacent to V_{1}).

Testing

The converter requires 0.9 ampere at 6 volts - or 0.45 ampere at 12

Fig. 19-11. Connectors J_{1} and J_{2} are moumted in that order, from right to left, on the rear wall of the converter. Shiclded power leads pass through a rublier grommet at the lower right-hand corner. One-ineh holes, covered with snap-in ventilating pluss, permit the removal of tubes. 1 copper plate, located inside the unit at the upper right-hand corner, provides shielding betweer the grid and plate coils for the r.f. anplifier.

Fig. 19-12-The subassembly bracket : aseures $17 / 8$ liy $61 / 4$ inches and has a $\frac{3}{8}$ inch mounting lip at the bottom. The support plate for L_{5}^{5} and L6 measures $5 / 8$ by $11 / 2$ inches. and is mounted on a $1 / 2$-inch metal pillar. L_{5} and $L_{\text {fi }}$ pass through $1 / 2$-indi hodes punclied in the sub. assembly bracket.

volts - for the heaters, and alpproximately 13 mat at 150 volts for the plate supply. It the b.e. supply delivers output much in exess of 150 volts, it is desirable to limit the mput of the converter by moans of a dropping resishor.

If flat response of the bandpass cireuits is to be obtained, a signal gencrator for aligument should be on hand. The generator should cover 6.5 to 10.5 as well as the $30-M \mathrm{C}$. hatad. (on the other hand, a gencrator is not neessary if the converter circuits are to be peaked for maximum response in one seetion of the li-meter bencl. It is advisable to ohtain a grid-dip moter for use during the alignment,

The simplest alignment (for praked response at one end of the bend) is areomplished by first checking all tuncd cireuits for resomane as indicated by a grid-dipper. Resonate (' $5 L_{3}$ and $C_{6} I_{4}$ at about 0.5 Mc . inside the band limit of interest, and them adjust the mixer-converter coupler for resoname at cither 7 or 10 Mc . depending on which end of the 50.Me. hand is being favored. Peak the couplews at 52 and 8.5 Me., respectively, if most of the operation is to take place at the center of the bimeter band.

A 50-Me. signal should now be ferl to the converter and a means for making relative output measurements should he provided. The over'-ali response of the eonverter witl the broadened
if the varions tuned circuits are stagger tuned.
Aligument of the interstage coupler for bandpass characteristies is a somewhat more ecomplex task. lawh half of each coupler must be indepentently resonated at the center of its range. This means that $C_{5} I_{L_{3}}$ and $C_{6} L_{4}$ must earch he peaked at 52 Mc. and that $C_{8} L_{5}$ and L_{6} must both be resonated at 8.5 Me. Resonant frequeneios mar be checked with a grid-dip meter providing one half of a couplor is not allowed to interact on the other half during the measurements.

After the couplers have been resonated, the converter should be spot cheoked through the entire 5 ()-Mc. hand to make sure that the over-all response is fairly flat. Very slight adjustment of (5 and (${ }_{6}$ may improve the response curve of the 50-Me. coupler and the capacitance of C_{10} wil determine the spread of the 6.5 - to $10-\mathrm{Me}$. bandpass circuit. A capacitance of approximatedy $25 \mu \mu \mathrm{f}$. is optimum for the circuit.

After the aligmment has been completel, the subassembly nay be mounted in the ehassis and the permanent wiring completed. The small copper shichd shown in the rear view of the converter may now be bent into shape and mounted on the mounting foot of (${ }^{1}$. In making a final bench test of the unit, Fig. 19-10 may be referred to for trpical voltages.
(Origimally described in QST, Nov., 19.35.)

Fif. 19-1.3-This view identifies the eomponerts monnted on the front of the subtus-embly, sparing between the tubersoeket centers is $21 / 2$ inehes. The enamel-covered leads leaving the unit at the left and the right connect to Cils and i_{2} respercively. The cable at the lower teft is terminated at I_{1} and S_{1}.

A Simple Mobile Converter for 144 Mc.

The $144-\mathrm{Mc}$, mobile converter shown in Figs. 19-14 through 19-16 may be operated from the receiver power supply. The output frequeney of the eonverter is 1.5 Me., permitting it to be used with an automobile broadcast receiver.
Two 12AT7 twin-triodes are used, each as a mixer-oseillator, the first converting the signal frequeney to 11.4 Mc ., the second working from this frequency to 1500 kc . Plate voltage for all cireuits is stabilized by an 0B2 regulator tube. The sensitivity of the converter is quite good, and satisfactory image rejection is obtained through the double conversion.

Circuit Details

The first mixer has a tuned grid coil and its plate circuit is tuned to 11.4 Mc . by C_{2} and L_{3}. The oscillator tunes from 132.6 to 136.6 Me . It uses the second seetion of the first 12AT; and, beating with the ineoming signal, produces an i.f. of 11.4 Ne. which is then caparitance coupled to the grid of the sceond mixer. C_{6} is the band-set rapacitor and C_{7} is the bandspread capacitor. Stray coupling between grid pins at the socket gives adequate injection.

The second 12AT7 serves as another mixeroscillator combination, eonverting the $11.4-\mathrm{Mc}$. i.f. to 1500 ke. for working into a car radio. A $\operatorname{trap}\left(C_{3} L_{4}\right)$ is connected in series with the coupling capacitor between the two mixer eireuits. This trap is tuned to 14.4 Me. and attenuates image response at a frequency removed from the signal frequency by 3000 ke .

The plate circuit of the mixer is tuned to 1500 ke. by L_{5}, and a fixed eapacitor, C_{5}. A short length of coaxial cable is used between the output jack, J_{2}, and the rereiver.

The oscillator for the second mixer is erystal eontrolled at 12.9 Mc . and has its plate cireuit tuned by means of C_{8} and L_{7}.

Construction

Figs. 19-14 and 19-16 illustrate how the converter is built into a HAMCAB (Prefeet Mfg. Co.) Type A-10-A chassis-cabinet assembly. The photographs elearly show the arrangement of parts and the only real precautions to be observed is that of providing adequate isolation between L_{7} and the rest of the coils.

A three-terminal tie-point strip, mounted to the rear of the 0B2 socket (Fig. 19-16), provides terminals for the d.c. input leads and support for R_{3}. A two-terminal tie-point strip is mounted between the socket for V_{2} and the front panel and is used for the support and termination of $R_{1}, R_{2}, C_{9}, C_{10}$ and $R F^{\prime} C_{1}$. Many of the other eomponents are mounted directly on the terminals of the slug-tuned coil forms. C_{6} is mounted directly above C_{7} by means of leads made with $3 / 8$-inch eopper strap.

The rear wall of the chassis (see Fig. 19-16) must be added to the commercial chassis.

Testing

Power requirements for the converter are 150 volts at 17 ma , and 6 volts at 0.6 ampere (or 12 volts at 0.3 ampere). A receiver capable of tuning to 1500 ke. should be coupled to the converter by a short length of coaxial cable and the receiver adjusted for normal operation at this frequeney. If a signal generator is to be used, it is connected to the input jack, J_{1}, and if a generator is not available, the converter should be coupled to a low-impedance antenna system.

If preliminary testing is to be done with noise, the converter and the receiver are turned on and the converter output coil, L_{5}, adjusted until the noise level is at maximum. The low-frequeney oscillator should now be adjusted by means of L_{7} until a further inerease in noise level is heard.

Now introduce a test signal at 146

Fig, 19-14-The chassis for the 144-Mc. converter measures $11 / 2$ by $47 / 8$ by $67 / 8$ inches and the panel is 5 inches square. The cover for the unit (not shown in the photograph) measures 5 by 5 hy 7 inches. A National AM vernier dial, mounted on the panel, is used for tuning the bandspread capacitor, C7. Control knobs for C_{1} and S_{1} are at the botton of the panel. $\mathrm{I}_{2}, \mathrm{I}_{4}$ and l_{5} are mounted on a small aluminum strip to the left of V_{2}. V_{1} is located at the front of the chassis, just to the left of C7. The 0132 regulator tube is at the rear of the converter. Y_{1} and L_{7} are located to the right of V_{2}.

Fig. 19.15 - Schematie diagram for the 114 . Me. molile converter. All resistors $1 / 2$ watt unless otherwise specified. Capacitor values below $0.001 \mu \mathrm{f}$. are in $\mu \mu \mathrm{f}$. Alt 0.001 and 0.01 capacitors are disk ceramic. * Indicates a silver-mica capacitor. Other fixed rablaritors are tubhar ceramic.
C_{1} - Aprox. 8 - μ f. variathe (IIammarlund IIF.15 reduesed to 2 stater and 1 rotor plate).
(in - 9 - $\mu \mu$ f. miniature variable (Johnson 91111).
(: - 8 - $\mu \mu \mathrm{f}$--per-section variathle (Bud LC:-1 (0.19)).
1.s - 4 turns No. 22 enam. interwound between turns at cold end of 1.2 .
I_{2} - $4 \frac{1}{2}$ turns No. 16 tinned, $3 x$-ineh diam., $1 / 2$ inch long.
$\mathrm{I}_{3}, \mathrm{I}_{4}$, lia-shetunel ; inductance range $2-3 \mu \mathrm{~h}$. (Oorth Hills Vilectric type 120-1).

Me. With ('riset at hall 'apaciance, ${ }^{\circ} 6$ is adjusted until the test signal is heard. Check the hight frequency oscilhator at this point to make sure that it is adjusted to the low-frequenes side of the 1.4.-Me. band. C_{1}, L_{3}, L_{5} and L_{5} should now be tuned for maximum eonverter sensitivit!.

The converter bandspread ran be adjusted by changing the $L /$ ' ratio of the first oscillator, by altering the spacing between turns of $L_{\text {fi }}$. ('6 must be reset each time the inductance of the coil is variod. The coupling between L_{1} and L_{12} should be atjusted for maximum response.

Fig. 19-16 - Itoles of $5 /$ winch $^{\text {diam. }}$ eter, punched in the chassis to the left of the socket for $\$_{2}$, clear the forms for I_{3}. I. 4 and I . Feed-throunh loushings, monnted in the chassis to the right of V_{1}, carry r.f. leads between $V_{1 A}$ and C_{7}. A two-terminal tie-point strip, supported by the mounting foot of C_{3}, is used to terminate the leads for L_{1} and the grounded end of $\mathrm{I}_{2} . \mathrm{J}_{1}, \mathrm{~J}_{2}$ and a grommet for the d.c. input eable are located on the rear wall of the chassis.
$L_{5}-$ Slug-tuned; inductanee range 61-105 $\mu \mathrm{h}$. (Vorth lifls l:lectrie type 120.(5).
L6-4 turns No. 16, $5 / 16$-inch diam., 3/4-inch long.
$\mathrm{J}_{1}, \mathrm{~J}_{2}$ - ICCA-type phono jack.

$\mathrm{RFC} C_{1}-2$ - μ h. r.f. choke (National R-60).
$\mathrm{S}_{1}-3$-pole 5 -porition (nsed as 3-p.d.t.) selector switch (Centralab PA-2007 or PA-5 wafer momed on PA-300 index).
$\mathrm{Y}_{1}-12.9$ - Me. erystal (International type FA-9)
The 14.t-Me. trap is adjusted by tuning to the high side of the signal trequeney until the image is heard, and bo then adjusting L_{4} until the image response is attemuated. (Originally deseribed in QST', Dee., 1905.)

A 6-Band Mobile R.F. Assembly

The cirenit and comstructional dotails of a (i-hand tranmittor for mohile work are shown in Figs. 19-17 through 1! -21. Maximum powion iuput will vary from about 30 watte with a 300 (volt supply to approximatoly (ai) watts at (iof volts.

Multiband tumers in the output eireuits of the last two stages cover all ($;$ bands. The two tuners are ganged to a single rontrol. The output rircuit of the oseillator covers the :3.5- and $7-$. Me

Fig. 19-17 - Front view of the G-hand mobile transmitter. The control knol, for sig is located in thetwern the meter and the dial for (a and fi. Si is directh below the crystal soeket, with the hmolo for eq and ef to the Ioft and right, respectionl. I and $/$ as are at the hollom of the $47 / 8 \times 61 / 4$-inch paliel. 'lite merforated aluminum "over is 9! í inches drep and has a hale pumethed in the left side to permit adjusiment of Ci.
bands with a single coil. ('1 atjusts ferd-hark for best crystal performanece. ('2 may be used as an excitation control. L_{2} and L_{5} are v.h.f. parasitic suppressors. R_{3} is important in leveling of and broadening the response of the driver output rircuit. It is also an important aid in stabilizing

Ha last two stages. ('s provides a tracking adjustment. Sa, in the eentral position, grounds the arrern of the 6146 while adjusting the two preroding stages, and $S_{1 B}$ selowts cither of two output links, L_{7} for 80 - and 40 -metor output, and L_{9} for the other bands. Loading call be iddjusted by $C_{\text {b }}$.

Sy switrhes the 10 -mat moter to read plate rurrent of each stage, grid current of either of the Lant two stages, or modulator plate current. R_{I} and R increase the meter reading to a maximum of 50 mat. Nimilarly, R_{5} and R_{6} increase the fullscale moter realing to 250 ma . J_{4} is the comector for the power-supply cable, while J_{3} takes at cable from the modulater unit (sere Fig. 19-23). J_{5} is a micerophone jatk with a contact for a push-to-talk rironit.

Construction

The panel, chassis plater parlition and con-nector-mounting bracket are made from Aleoa 2sII-I aluminum sheed 0.06t inch thick. The rover that houses the unit is cut from perforated aluminum sheet 0.051 inch thick. Langthe of $1 / 2 \times \frac{1}{2} \times 1 / 6^{-i n c h}$ alunimum angle stock are used in the assembly.

The panel is $47 / 8$ by $61 / 4$ inches, and a rearview sketch is shown in Fig. 19-20. Lengths of angle stock, drilled and tapped to accommodate marhine serews, are fastomed along the four edges of the pancl, on the inside. The strips of angle must be set in from the edges of the pane by the thickness of the cover material. The angles are fastemed to the batk of the panel bey ($6-32$ serews: ith the No. 28 holes skirting the edges of the pand. Fhe two pieces that moet at the upper righthand corner (rear view) musi lo filed out to chear the round case of the meter. They must also be drilled to clater the No. 4 serews used to mount the instrument.
lobles marked A and B are used for fastening a $51 / 8$-inch length of angle arross the back of the pancl to serve as a support for the front edge

Fiд. 19-18 - As sern in this top view of the mobile tranmintiter, I_{i} is located to ther rixht of the milliammeter, jusi ahove 1 l . L_{3} is mounted on a l-inch come insulator to the right of s_{2}, and Lat is supported by the stator terminals of $C_{3}, \mathrm{C}_{\mathrm{s}} \mathrm{s}, \boldsymbol{R}_{11}$ and RFC'4 are grouped to the lower right of a feed-thromgh insulator used for the plate lead of 12. The 6146 is mounted on the rixhe side of the aluminum partition, and L_{5}, C_{4}, C_{5} and $R H_{5}$ are in line brlow the tube.

Fig. 19-19 - Wiring diagram of the six-hand mohile transmitter.
(: -3 -30- $-\mu \mathrm{f}$. trimmer.
(:2-140- $\mu \mathrm{f}$, variable (Itammarlund MC:-140-s),
(i3. Ci -140 - $\mu \mu \mathrm{f}$-per-section variable (Ilammarlund MCD-140-M1). (Ganged to single control.) ($:-14-\mu \mu$ f. midget variable (Johnson 15:111).

$\mathrm{R}_{1}, \mathrm{~K}_{2}-\overline{\mathrm{T}}$-times meter shunt: 60 inches \o. 34 enam., scramble-wound on 1 -megohm, $1 / 2$-watt resistor.
$\mathrm{R}_{6}, \mathrm{R}_{6}-25$-times meter shunt: three $32 \frac{1}{2}$-inch lengeths No. 34 enam., connected in parallet and seram-ble-wound on 1 -megohm, $1 / 2$-watt resistor.
1., - 11 ph: 13 turns No. 24 , $1^{\text {in }}$ inches long, $5 / 8$-inch diam. (B \& W 3008).
1:2-Parasitic choke: 4 turns No. 16, $1 / 4$-inch diam., turns splaced wire diam.
1/3-6 6 h.: 20 turns No. $24,5 / 8$ inch long, $3 / 4$-inch diam. (13 \& 113012).
 diam. (B \& IV 300).
15-Parasitic choke: 6 turns No. 16, $1 / 4$-inch diam., turns spaced nire diam.
$1_{6 ;}-6 \mu \mathrm{~h}: ~ 20$ turns No. $20,11 / 4$ inches long, 1 -inch diam. (13 \& W 3015).
1.8-5.2 $\mu \mathrm{h} .: 181 / 2$ turns Vo, 21 , ${ }^{46}$ inch long, $3 / 4$ inch diam. (B \& W 3012).
of the chassis plate. The holes in the angle should be located so that the top surface of the chassis plate will be $25 / 32$ inches up from the bottom edge of the panel. The chassis plate must be notched so that its front edge will fit flush against the back of the panel.

The partition on which the 6146 is monted is made from a $5 \frac{31}{3} 2 \times 3$-inch piece of aluminum. Bend at 3,8 -inch mounting lip along the bottom edge, and then rlip or round off the two top rorners to clear the eover when it is slipped on.

Now fasten the chasis-supporting angle to the panel. slip the front edge of the chatsisis plate over the angle, and hold it there while you slide the partition up against the back of the panal, keeping the bottom lip of the partition tight arganst the chassis. Then, using the panel as a template, scribe a hole in the partition that matches hole (" (Fig. 19-20) in the panel. Notch out the mounting lip of the partition to clear the ceramic hase of the rear tuning eatuacitor when the latter is mounted.

The 6iff socket is centered on the partition with its mounting holes in a vertical line, and the

Ls - $2.85 \mu \mathrm{~h} .: 16 \frac{1}{2}$ turns No. 20,1 inch long, $3 / 4$-inch diam. (13 \& \mid
Le -0.4 ph.: 4 turns V_{o}. $20,1 / 4$ inch long, $3 / 4$-inch diam. (13 \& 113011).
Note: See text for additional data on L_{8} and L_{0}.
J, - Ilidget elosidedircuit jack.
I_{2} - Coaxial-eable connector (Imphenol 83-1 K).
1: - 8 -prong female chassis comnector (Amphenol 78-88).
J/-8-prong male chassis connector (Amphenol $86-(\mathrm{CP})$.
Js - Midget 2 -circuit microphone jack.
MA - 0-10-ma. d.c. meter (Simpson Model 12i).
$S_{1 A}$ - 1-pole 6-position (3 used) selector switeh (Centralab P(1-1).
$s_{18}-1$-pole 11 -position (3 used) selector switch (Centralal P:11).
Nots: Sta and Sis mounted on Centralab PA-300 index assembly.
S_{2} - 2 -pole 6-position selector switch (Centralah, P. $1-2003$ or P $4-3$ section on P:-300 index).

1 nless otherwise specified, all resistors are $1 / 2$ watt, and all fixed eapacitors are disk ceramic. *Indicates a mica capacitor. All values below $0.001 \mu \mathrm{f}$. are in $\mu \mu \mathrm{f}$.
grid terminal to the loft as viewed from the rear of the partition. The socket is mounted on $3 / 4$-inch tubular spacers. A $1 / 2$-inch clearance hole should be drilled in the partition opposite the grid terminal. Considerable time will be satved if the disk ceramios and leads connecting to the socket are attached and soldered before the socket is mounted permanently.

The partition is placed 4316 inches from the panel, and another $1 / 2$-inch hole, lined with a rubber grommot, is drilled in the chassis, directly below the socket, to pass filament, cathode, and screan leads.

The branket that supports J_{2}, J_{3} and J_{4} (see bottom view) should now be fabricated. Use the 2×633-inch piece of aluminum, The bracket has a ${ }^{3}$-inch mounting lip bent up along one side, and $3 / 4$-inch braees bent up at the ends. The finished height of the bracket should be $15 / 8$ inches, and the length $51 / 4$ inches. When the bracket is finally mounteal, it is held in place by machine sarews that pass through the chassis and then thread into a 5 -inch length of angle centered along
the edge, on the opposite fate of the chassis phate.
Temporarily mount the panel components, and the partition, with the 6146 inserted in its socket, and the amplifier tank capacitor, ('s, in place. Scribe lines on the chassis, along the inner edges of the ceramie bases of ('a and Ca, across the rear of Cat, and mark hole centers direetly under the inside stator terminals of the eaparion, C_{4}. The latter will indieate the prositions of the feedthrough insulators that support L_{x} and L_{9} (sees bottom view). Now make marks on the chassis indicating the rearmost edges of all panelmounted parts, and also draw a line aross the ehassis, holding the seriber against the front of the partition.

All components may now be removed from the chassis so that the positions of the tube sockets. r.f. chokes and other small components may bo marked. The socket for ${ }^{1} 1$ is centered 37_{1}; inches back from the pand and $3 / 4$ inch from the side of the chatsis. I 2 is centered $13 / 4$ inches below V_{1} (top view). Pins t and 5 of each socket should face toward the rear of the chatsisis.

In addition to the feed-through insubators for $L_{8}-L_{9}$, and the plate land of I_{2}, another must be provided for the lead between the erystal sorket and l_{1}. Aso, holes lined with rubber grommets should the provided in the chassis for the leads that connere to $S_{2}, R F C_{1}$, and $R F C_{5}$.
L_{1} and L_{3} are fatstened to their resperetive coneinsulator supports with Duco rement. Allow the cement to dry overnight before mounting these units.

A lug soldered to the last turn (plate end of L_{6}, and then mounted on a $1 / 2$-inch cone insulattor, provides support for this roil. The cold and of L_{7} is supported in a similar manumer.

No. 12 timed wire is used to support the plate end of L_{8}, and the C_{6} onds of both L_{2} a and L_{8}.

The $L_{, 8}-L_{9}$ assembly is made from a single length of 13 d 11 Miniductor. Lise a $20 \frac{1}{2}$-turn
langth of Type 3011, and break the winding at 4 turns from one end, leaving the support hars intact. After heavy leads have been soldered to the four free ends of the assembly, mount and then wire as shown in Fig. 19-19.

The shafts of \boldsymbol{C}_{3} and C_{4} arre genged with a motal roupler (Nillen Type 30003).
('s is mounted on a bracket, 1 inch high, with at 1 -inch lip, mate from a "-inch strip of aluminum.

For operation with a plate supply delivering betweren 300 and 450 volts, a 20,000 -ohm 2-watt sereen-dropping resistor (R_{4}) works well. This value of resistance can be most conveniently provided by mounting a pair of 10,000 -ohm 1-watt resistors in series on the terminals of S_{IA}.
R_{3} is a pair of 12,000 -ohm 1 -watt resistors comereted in parallel and soldered between rotor and stator terminals of the section of C_{3} that conneets to ("s.

I four-terminal tic-point strip to the rear of V_{1} and V_{2} eomneets to the $\mathrm{B}+$ ends of R_{8}, R_{10} and $R F^{\prime} C_{2}$. and to the meter side of $R 9$. A singleterminal strip provides a junetion point for $C^{\prime}{ }_{7}$, R_{7} and $R F_{i}\left(_{1}\right.$.

The five sections of the cover are held together hy machine sorws. These somes pats through the perforated aluminum and then thread into the lengths of angle that run along all elosed edges of the cover. A cutout measuring $19{ }_{10}$, by $51 / 8$ inches is made in the rear wall to provide clearance for the power and antemna comnectors and their cables.

Adjustment

If it is not conveniont to use the mobile supply for initial testing of the tranmitter, any aceoprated supply delivering betwern 300 and 150 volts at about 150 mm may be used. If the voltage is higher than 300, it should be fed into Terminal

Hia. Iリ-20 - I.aymal drasing of the pantel (roar view) for the sin. hand molile trans. mitter.

3 of J_{4}, and at dropping resistor connereted hetween Terminals 3 and 4 . This resistor should have a value of 50 ohms for eateh volt that the power supply delivers above 300 volts. Thus, a powor supply delivering 350 volts should have: dropping resistanere of $50 \times 50=2 \overline{5}(0)$ ohms. The negative terminal of the supply should be connerted to 'Terminal $\overline{7}$ of J_{4}. Heater rombertions are mate at Torminals 1 and $\bar{\sigma}$ of J_{4}.

 mutput, and $\overline{\mathrm{T}}$-Mre orrstals may be used for 1 t -21-, and 28 -. Wre. operation. The oweillator output "irecuit may be resonated at any of these revetal
 tion appears to be sluggish, ('i should be adjusterd for maximum atetivity. It $3(0)$ volts, the oscillator offresoname phate current should he about 30 mat. It resomaner, the phate current should drop to about 6 mat., and the gride coment to $l^{2} 2$ shoulal simultancously poak at 1.5 to 2 mas.

With excitation at the grid of le, the output direuit of Fe can be resonated by adjustment of the gang-tuning eontrol. Rewonamere at :3.5 Me. should be found with the ganged funing condensers set well toward maximum rapabitathere Resonathere at $1+$ Me. slould oreur at about $\overline{\text { B }}$ per erent of maximum raparitanore, Resonance all 21,7 , and 28 . Me., in that order, should eome al appoximately 35, 20, and 10 per cent of maximum. This stage is operated straight through on
 Me. erystall. With a $\bar{i}-\mathrm{Me}$. urystal, it is used ats: doubler $1011 \mathrm{Mr} \cdot$, a tripler to 21 Mc ., athed as a quadrupler to 28 Me . It is also usied as a quadrupler in obtaning output at 27 Me, using (i-Me. (erystals in the oweilator.

At mesenanere, the phate eurrent to lez should be apporimately 10 mat, and grid current to the 6iftishould run + mis. or more on 3 . $\overline{5}$ and 7 Me., and at least 3 ma. on the remaining bands,

Plate voltage ean be applied to the amplifion by placing a jumper betworn Torminals: 3 and o 6 of J_{3}. Whemerer it is desired to eut of the amplifier while adjusting the preereling stages, this can be done be turning sit the erentral position in which sia grounds the serren of the $6 \mathrm{il}+\mathrm{th}$.
for proliminary tracking adjustments, ('s should first he set at minimum capateitance. Nor-math-grid current for the 61 H is approximately 3 mat. If it exeeds this value appreciably, excitattion maty be reduced by detuning ('2 in the oscillator (iment slightly to the high-frequenes side of resonather.

With proper exeitation applied, the meter switch should now be tumed to read amplifier plate current. and the gemg eontrol adjusted to mesonance as indicated bey the dip in plate current. The lowding should then be adjusted, by maths of ('s.eso that the plate current at resoHather is as close to 100 mat. as possible.

With the gatig control adjusted aceurately to amplifier plate-cerrent dip, the moter should the
 reatjustment of the gatig control is merersary to obtain maximum grid eurrent to $\mathrm{l}_{\text {: }}$, ('s shoula he. reatlonted stighty, amb the prowes reparted. If the losed is mot too septoms reative ath adjustmont of ('s should be found where nasimum grid cument and minimum plate current in I_{s} a werer at the satme sedting of the ging control. so long as the lome is very elose to resistive, this same aljusi mont should hod for all hands. (originatly

Fig. $19.21-\operatorname{In}$ this hot. ton siew of the mosile transmitter, Cis and fin are to the lotit aml the right, respertisely, of s_{1}, s_{A} is the secrion donese lo the patmel. I_{1} (mounted on a minch Pome insalator), (it and RP'iz form at trianale to the
 fred-hirmosh, RI'CB, and the tular sockret -all forl2ane to the rear of tils. LA and $/ 7$ ard monnted parallel with the rear of the ehassis am! thr /a-L L_{0} ansembly is supported by fecol-throngh insulator above and to the left of $L_{6} . I_{2}, J_{3}$ and J_{4} are monnted on an aluminum bracket shown at the bottom of the photograph.

A 25-Watt Mobile Modulator

Figs. 19-22 through 10-25 show a $2.5-$ watt mobile modulator. While it is designed primarily for use with the preeding r.f. assembly, it is ohvious that it e:m be ued with any mobile or fixedstation transmitter whose input does not exered 50 watts.

Fig. 19-23 shows the sehmatir of the motulator with an input circuit suitable for a crystal micro-

phone. A two-stage resistancr-eoupled spech amplifier using at single $12.1 N 7$ drives a pair of files oprotating as Closs $A B_{1}$:mplifiers. Although Class 13 operation is somewhat more officient, an $A B_{1}$ amplifier has its advantages. Since it does not draw grid eurrent, no power is reguired from the driver, and an ordinary interstage triansformer cith be used in coupling the drivere to the motulator. Also, the plate current of the $\mathrm{A} 3_{1}$ amplifier hat less variation with sperech, which helps to maintain better voltage regulation.

The $0.01-\mu \mathrm{f}$. eipacitor, r_{6}, is essential in improving the frequency response for voice communication. R_{5} is the gain control, R_{2} biases the first seretion of the $12 A X 7$, while R_{6} provides bias for the second section. R_{4} is a decoupling resistor. Bias for the blus is developed across R_{7}. It was not found necessary to by-pass the (iL6 serern resistor, R_{8}.

Fig. $19-22$ - The modulator in the foregroumd is laid out on a lomemade chassis measuring $11 / 2$ by $4 \frac{1}{4}$ l)y 656 inches, with $1 / 2$-inch lips along the sides. 'lhe interstage transformer, T_{1}, is eentered hetween the shielded $12.1 X^{7}$ and the 6l.os. The modulation transformer is at the rear of the chassis, J_{1} and the gain control are mounted on the front wall of the unit. The sides of the chassis are enelosed by the perforated coser when the latter is slipped in plate.

Irig. 19-24 shows the changes in the speechimplifier circuit necessary to adapt it for use with a carbon mierophone. The first stage is converted to a grounded-grid :mplifier with lowimpedance input, aliminating the need for a microphone matehing transformer. D.c. voltage for operating the carbon mierophome is obtained be connerting the microphone in sories with the two spereh-amplifier eathodes.

At maximum power output, the total drain is about 100 ma .

Fig. 19-23 - Circuit diagram of the 25.watt modulator wired for crystal-midrophone input. I nless otherwise specified, all resistors $1 / 2$ watt.
R_{9} - See text.
$\mathrm{J}_{1}-8$-prong male connector (Amphenol 86.CP8).
' l_{1} - Interstage audio transformer, single plate to push ${ }_{2}$ pull grids, secondary-to-prinary turns ratio 3 to 1 ('lriad 1.31X).
${ }^{\prime} \mathrm{I}_{2}$ - Unisersal medulation transformer, 30 watts (L'JC S-19).

A single cable connector, J_{1}, is used for all of the voltage leads entering and leaving the audio chassis. The pin numbering and the wiring of J_{1} are arranged to correspond with those of J_{3} of the r.f. unit. If the wiring of J_{1} of the audio chassis and that of J_{3} of the r.f. unit are made to correspond, it will not only assure that the proper
the front edge of the chassis and, as seen in Fig. $19-25$, is mounted with lins 4 and 5 facing toward the left. T_{2} is centered over the cut-out to the rear of the 6L. 6 s. Terminal connertions for the transformer are discussed later.
Nearly all of the components mounted on the under side of the chassis are identified in the cut

Fig. 19.24-Circuit diagram of the cartoon-microphone input circuit for the 25 -watt modulator. All resistors, $1 / 2$ watt. T_{1}-See Fig. 19-23.

voltages are fed to and from the audio circuits, but it will permit monitoring of the modulator plate current by means of the transmitter metering circuit.

Construction

As is the case with the transmitter, three types of aluminum - plain sheet, perforated sheot, and angle stock - are used in the fabrication of the audio unit. The specifications for the material used are as follows:

Alcoa 2SII-14 ahminum sheet, 0.06 f inch thick:

Chassis - $51 / 4$ by $91 / 4$ inches
Bottom plate - $43 / 8$ by $61 / 4$ inches
Perforated aluminum sheet for cover, 0.051 inch thick:

2 pes. (sides) - $51 / 4$ by $6 \frac{1}{4}$ inches
2 pes. (front and rear) - $311 / 16$ by $45 / 6$ inches
1 pe. (top) - $43 / 8$ by $61 / 4$ inches
Angle stock: Approximately 45 inches, $1 / 2$ by $1 / 2$ by $1 / 16$ inch

In addition to the above, 5 dozen No. 6 selftapping serews are used in the assembly.

The two photographs that illustrate the modulator show how the largest sheet of plain aluminum is bent to form a chassis measuring $11 / 2$ by $41 / 4$ by $61 / 4$ inches. Lengths of $1 / 2$-inch angle, fastened flush with the bottom edges of the end walls, provide surfaces to which the bottom cover may be fastened.

The top view of the unit shows the locations of the tubes and the transformers.

The two 6L6 sockets are mounted in line, with $21 / 4$ inches between centers, and are centered back from the front of the chassis by a distance of $27 / 8$ inches. As seen in the bottom view, the sockets are mounted with the keys pointing toward the right.

The interstage transformer, T_{1}, is centered $13 / 4$ inches back from the front of the chassis. A pair of holes, equipped with rubber grommets, provide through-ehassis clearance for the primary and secondary leads of the transformer. The socket for the 12 AX 7 orcupies the space between T_{1} and
label of Fig. 19-25. The arangement of parts shown in thie view is the one used when the speech amplifier is wired for ervstal-mierophone input. IResistors R_{1}, R_{2}, R_{2} and R_{6} (Fig. 19-23) are grouped around the $12 A X 7$ tube socket, and C_{1} is connected between lin 7 of the socket and ground, with the shortest leads possible. The interstage roupling capacitor, C_{3}, mounted parallel with the front wall of the chassis, is supported by Pin 6 of the socket at one end and by the input terminal of the gain control, R_{5}, at the cther end. A one-terminal tie-point strip, located directly alove the right-hand 61.6 socket (Fig, 19-25) serves as the common connection point for R_{3}, R_{4} and C_{4}. Belden type 8885 wire is used wherever shielded leads are shown in the circuit diagram.

The top view of the modulator shows the perforated cover in the background. Lengths of $1 / 2-$ inch angle, held in place by means of self-tapping sorews, are run along the closed edges (inside) to hold the box together. The sides of the caver extend down below the front and the rear sections be a distance of 1916 inches and thereby enclose the open sides of the chassis when the eover is placed over the modulator unit. The cover and the chassis are ordinarily held together by means of self-tapping serews which pass through the perforated aluminum and then tap into the flanges of the chassis.

Testing

If the modulator is to be bench tested before it is installed in a vehicle, it is convenient to use a.c. for the heaters. In this case, the 6.3 -volt transformer should be rated at not less than 2 amp. and must be connected to Terminals 1 and 7 of J_{1}. Plate voltage for the 12 AN 7 may be obtained directly from a 300 -volt supply connected to Terminal 2 of J_{1}, or it may be taken from the (6L6 plate supply via a dropping resistor connected between Terminals 2 and 4 of J_{1}. If the, plate supply for the 6L6s delivers 360 volts - the most desirahle voltage for the tubes - the 1-watt dropping resistor should have a value of 22,000 ohms, provided the spereh amplifier has been
wired for crystal-microphone input. If the grounded-grid input aireuit hats beon used, it 15,000 -ohm resistor will be satisfactory. If the voltage applied to Terminal 4 of J_{1} is other than 360 velts, the corrent value of dropping resistance: may be based on a combined platereurrent flow for the 12ANT of either 4.5 mal. (erysial-mirrophone input) or 6.ti, mat. (arbon-miarophone input).

If a 360 -volt supply is connected to Terminal 4 of J_{1}, it is not, necessary to employ R_{9} of lig. 19-23. On the other hand, if the plate supply output is in excess of 360 volts be any sulstantial amount, it is advisable to reduce the plate voltange for the 6L6s by means of a resistor (R9). This resistor should have a value of 10 ohms for each volt that the power supply delivers above 360 volts.

During the bench testing of the audis circuits, it is convenient to load the serondary of '/'2 with a slider-type 25-watt resister having it valur equal to the r.f. load imperlane (Z_{m}) with which the modulator will eventually work. The $Z_{\text {m }}$, or load resistance presented by the modulated r.f. amplifier, is mual to

$$
Z_{\mathrm{m}}=\frac{E_{\mathrm{l}}}{I_{\mathrm{p}}} \times 10000 \mathrm{hms}
$$

where $E_{1},=D . \operatorname{c}$ plate voltage

$$
I_{\mathrm{p}}=\text { D.e. plate current (ma.) }
$$

For example: The $61+16$ r.f. amplifier is to le operated at 450 volts with a plate current of 100 mat.

$$
Z_{\mathrm{m}}=\frac{450}{100} \times 1000=4500 \text { ohms. }
$$

The chart furnished with the universal modulattion transformer should be consulted for the eonnections that will permit a match between the

9000-ohm plate-to-plate load of the 6Lfos and the anticipated r.f. load rexistance.

Methorls of testing audio circuits are treated in detail in the modulator equipment chapter. Howwer, at quick-and-easy test of this unit can be mate by tapping either at speatier or a pair of headphones arrose a portion of a 25 -wat toad resistor. The resistor should be connected arross Terminals 3 and 6 of J_{1} and the slider should be adjusted to give reasonable output leval. of course, it is both dangerous and unnecessary to apply d.e. voltage to the serondiny of T_{2} during this wherek.

The microphone should be connerted between Terminals 7 and 8 of J_{1} and power applied. Figs. 19-23 and 19-24 show the approximate potentials that may be experted throughout the circuit provided that all 3 tubes are behaving propert: Plate current for the didis should idle at abproximately 88 mat. and should rise to 100 ma . or so with the appliation of voice modulation. If a milliammetor has been inserted in the platevoltage lead external to Terminal 4 of J_{1}, it will register the 61.6 serem-current swing of 5 to 17 mat. as well its the plate drain.
liull output from the blows should be obtained when the arytal-microphone input cireuit is adjusted, by means of R_{5}, for somewhat less that hatf gain. With the rarbon-mierophone input aincuit employed. full power from the modulator shonld be obtained with gain control at the approximate midscale.

In an artual mobile installation, the modulator unit may be separated from the r.f. assembly by any comvenient distance. The cable used to connert J_{1} of the modulator with J_{3} of the r.f. section should be made with individually-shielded leads (Belden No. 8885 is quite suitable). It is also advisable to add a $100-\mu \mu \mathrm{f}$. rapacitor between Ter-

minals 7 and 8 of J_{3} of the transmitter. This by-pass capacitor for the microphone output line will redure the possibility of feed-batek when both the audio and the r.f. circuits are activated. (Origimally deseribed in QST, Nov. 1954 and Fel., 1955.)

Fif. 19.25-Bottom view of the 25 -watt modulator. A cut-ont measuring $13 / 4$ by $21 / 4$ inches, located at the end of the chassis, provides arcess to the modulation transformer terminals. Cis and R_{7} are monnted on a tie. point strip at the lower lefthand corner and C_{6} and R_{8} are centered between the cutout and the 61.6 tube sockets. (i4 is located at the upper right-hand eorner, just to the right of Co. Component symbols refer to lite. 19-23.

A Band-Changing Mobile Transmitter for 50 and 144 Mc.

Figs 19-26 through 19-31 wow riruits and construetional details of al compart tramsmitter rovering the 6 - and 2 -moter bands. Band-rhanging is dome cutirely by the panel controls. The
riereuit resonant at approximately 15 Me. C5 has sufficient range to tune the osciliator output circuit from 24 through 36 . Mc. This cirruit is tuned to 25 Mc . for $50-$ Mc. output from the transmitter,

Fig. 19.26- The arystal is monnted above the meter switch. to the left of the amplifier prid. tuming eontrol. 'I lue tuning knols for the oseillator is at the lower left-hand side of thr output switeh, sis. (ontrols for the output and amplifier plate circuits are at the right. The unit may be used vertically by orientating the meter. Ventilating holes should be drilled in the end used as the: top.

unit is only 3 inches derp, and therefore is suitable for instrument-panel mounting.

Output on either band may be obtaned using crystals in the 8 -, 12-, or 25 - M. Manges. Although it is possible to operate the 21226 output stage at higher voltage, the unit is resigned primarily to work from a $30(0$-volt 100 -mat. supply. A single 200 -ma. supply should take rare of both this unit and a modulator in the latter case. Changing from one band to the other is arcomplished theough the use of wide-range tanks in the exater. and a multicirmit tumer in the output, Metering circuits are included.

Circuit

The eircuit of the unit is shown in liig. 19-28. Type 57 giss are used in the Tri-tet oscillator and the driver stage. '1the oseillator has a fived eathode
and may be tuned to rither 21 or 36 Me. for final output at $1+4.21$.

The multiplier output cirenit, (${ }_{12} L_{3}$, rewers the range of 18 to $\overline{2} 2 \mathrm{Mr}$., and operates as a doubler to 20 Me., or as cither a doubler or tripler (depending on the oscillator output frecpueney) to T2 Me. for final output at 144 . Mc. The multiplier is eaparity-coupled to the 2126 amplifer grid. This stage operates straight through at äl Mc., and as a doubler to $1+1$ Me. A combination of fixed bias and grial hak is used. The value of fised biak is not rriliail- 22 to 15 volts. The 22K sereen resistor gives proper socoll voltage over a supply-voltage range of 300 to 400 volts.

The plate tumer for the amplifier consists of a caparitor, ('16, and inductors L_{4} and L_{5}. Output from the amplifier is transfered to J_{1} be a seriastuned circuit consisting of ('18, L_{66} and S_{1}, L_{6} is electrically subdivided by a tap which comerts to ('18. That portion of $L 6$ above the tap provides output coupling at 50 Mr., and the lower section of the coil rouples to L_{5} when S_{1} is set for $1+1-M e$. operation.

The motering circuit uses S_{2}, a 200 -mad d.e. milliammeter, and resistors $R_{4}, R_{8}, R_{10}, R_{12}$ and $R_{13} . R_{13}$ is connerted to Terminals E and E_{1} of the wwitch and, in tum, to Pins 7 and 8 of the power-input ronnector, I_{2}. The lattor set of connections alfows the phate current of an extermal modulator to be cheaked by the moter.

Provision for comecting either a single or a pair of supples to the tramsmitter is made at $/ /_{2}$. If a single 300 -volt park is used for the entire unit, it is neressary to commert a jumper between Pins 3 and $\overline{5}$ of \dot{J}_{2}. With separate supplies for exciter and final, connert the 300 -volt supple to Pin 3 and the amplifier supply to Pin 5. Whan a modulator is comeeted to the thansmitter, connect the secondary of the modulation transformer between lins 5 and 8 of J_{2}, comert + h.v. to the 2 202t to l'in 8 , and then return the + h.v. load of the modulation-transiormer primary to l'in $\overline{7}$.

Construction

A $3 \times 5 \times 10$-inch aluminum chassis is used as the housing for the transmitter. The construction is made easier through the use of subassem-
blies. Fig. 1!)-30, along with the sketch of Fig. (!)-29, identifies the components for the oscillatormultiplier section. The bracket supporting the components has $3 / 8$-inch lips along the right and bottom edges for fastening to the chassis. The wire leader that later connects to (is should be about 3 incbes long, while the five leads that will be joined to J_{2} and S_{2} can be about 5 inches long.

Fig. 19-27 shows a $/$-shaped partition spanning the chassis. This can be made and installed most easily in two pieces overlapping and fastened together at the center. The height is made to fit the chassis depth. In Fig. 19-27, the segment lengths, from left to right, are $21 / 2,11 / 8$, and $21 / 2$ inches. Lips are bent at the ends and along the bottom for fastening to the chassis, A $11 / 4$-inch hole is punched in the center of the segment on which the 2K26 is mounted, while a small feedthrough bushing (Millen 32100) is set in the other segment. Position this bushing so that (${ }^{\prime \prime}$, which is mounted on it, will be at the right level, and clear of the partition segment to the rear. The 2126 socket is mounted on $5 / 8$-inch spacers. Prongs $1,2,4,6$ and 8 , and the soreen by-pass, ('s, should be returned directly- to ground on the sorket side of the partition. A 2-terminal tie point to the rear of the socket supports the heater lead and the h.v. end of the sereen resistor, R_{11}.

Mount the meter-shunt resistors across the terminals of S_{2}. Join Contacts S_{1} and B_{1}, and connect 8 -ineh leads to the rotor-arm contacts and to Stationary Contacts $\mathrm{C}_{1}, \mathrm{D}_{1}, \mathrm{E}$ and E_{1}. A

Fig. 19.29-1 rawing of the parts layout for the exciter subassembly. A and B are 2- and 5 -terminal tie-point strips.

lead about 1 foot long should be soldered to ('ontart 1).

In construeting the multicireuit tuner, first reduce the 300613 \& W Miniductor to a total of 141/4 turns. Without breaking the supporting bars, clip the winding at points that will leave 5 full turns at one end and $31 / 4$ turns at the opposite end. The 6 turns left intact between end windings are used as the output coupling inductance, L_{6}. Short leads of No. 16 wire should now be soldered to the free ends of the three windings. Also, solder a short lead $11 / 4$ turns in from the $14-$-Ms end of the coupling coil. This should phare the tap at the top of the eoil when it is mounted.

To assemble the tuner, turn Cis with the insulated support bar faring toward the partition. Place the coil about $3 / 8$ inch above the capacitor, and bend the four leads from L_{4} and L_{5} into placr. The outsite ends of these sertions go direstly to the rear stator terminal of the capacitor, while the inside lead of L_{5} goes to the front stator terminal. The inside end of L_{4} is grounded to the frame at the rear.

In mounting parts on the chassis, center J_{2} on the rear wall $11 / 4$ inches from the exciter end
of the chassis, and J_{1} in the lower eorner of the amplifier end. On the panel side, the shafts for ${ }^{\prime}{ }_{17}$ and (${ }^{\prime} 18$ are 1 inch from the right end. S_{1} is rentered $27 / 8$ inches from the right end, while the rontrols for ('s and (' 12 are $43 / 4$ inches in. A panel bearing is needed for C_{12}, which is fitted with an insulating shaft coupling. The remaining two controls are $65 / 8$ inches from the right-hand end. The meter is at the left-hand end.

The subassemblies may now be positioned while the mounting holes are marked. The bracket for the $576: 3$ s is placed $31 / 4$ inches from the left-hand end of the chassis, while the rear end of the $/ 7$-shaped partition comes at $51 / 8$ inches from the same end.

Before fastening the subassemblies in plate, proceed with the wiring. Conneet S_{1} to L_{1} and J_{1}; solder the tap on L_{6} to C_{18} : mount L_{2} on the terminals of C_{5} : connert the rotor arms of S_{2} to the meter.

Mount the exciter assembly and attach the proper loose leads to C_{5}, J_{2} and S_{2}. Mount a tie point at the right-hand mounting screw of the crystal sooket, and fasten R_{9} between the tie point and Contact C of S_{2}. IRun leads to the erystal

Fig. $14-30$ - This subassembly measures 21 亿得 by $31 / 2$ inches and sapports most of the components for the exciter stapes. Cis, with one emd floating free, is at the uprer righthand cormer. The wire leaders at the lrottom of the plate conneet to the essillator tank, meter switch and power comnector, as shown by Pig. 14.28.

socket and then mount the Z-shoped partition in place.

Testing

For 50-Mr. operation, the ervatal frequeney must lie within one of the following ranges: $8.3: 3: 3$
 With a small 13 battery for fixed bias and a 300 or volt supply comected to the exerter, but not the amplifier, tuning of the exeriter at 5) Mre. requires only that C_{5} and (${ }_{12}$ be resonated at 25 and 50 Me, respectively. The chart shows the approximate operating ronditions for the 5763 s .

Before testing the amplifier, turn the supply off and connect a jumper betweon Pins 3^{3} and $\overline{5}$ of J_{2}, and connect a 115 -volt 10 -wate lamp to the output connertor. S_{1} should be set at the 50-. We . position. Apply power and resonate ('17, indiraterl by a dip in plate rurrent. This should come well toward minimum caparitance. Set Cis near full capacitance and retume C_{18} for resonance. (The amplifier data in the chart were taken with the dummy load. In operation, the currents will depend upon loading.) If biasing voltages are checked, use a v.t.v.m., or a general-purpose test instrument with a radio-frefuency choke inductance of at least 1 mh . connected in series.

In tuning up for $1+4-$ Mc. output, work with the exciter stanges only at first, using a cerystal in any one of the following frequency ranges: 8.0 to $8.222 \mathrm{Mr} \cdot: 12.0$ to $12.3: 33 \mathrm{Me}: .24$ to 24.666 Mr. If it 12-Me. crystal is selected, the oseillator may be tumed to either 21 or 36 Me . In either case, the multiplier must be tumed to 32 Me . by C12. The oncellator is always tuned to 21 Me. with erystak in the 8 - and 21 - Me. ranges.

In cherking amplifier operation at $14+$ Me, St must be in the $1+4-M \mathrm{C}$. position. The plate rurrent will show a reletively smell dip at resonance on this band. For resonance, C_{18} and C_{18} will be set well tow:urd minimmen eapacitance.

Antenna

The tuncol-link output circuit is designed for use with low-impedance antemat systems, so quarter-wave whips are recommended. A logical system for mohile work would make use of a twosertion 50-Ne. whip that ran be redured to $1+4$ Me. dimensions bey removing it top section.

Fig. 1!--31 shows the circuit of an appropriate modulator.
(R.F. section originally described in $Q S T$, Nov., 1933.)

Fig. 19-31 - Circuit of a modulator for the 50 - and $141-$ Mc. mobile transmitter. Pin numbers on modulation transformer leads refer to J_{2} in Fig. 19.28 .

[^6]
The Mobile Antenna

For mobile operation in the range betwen 1.8 and 30 Me., the vertical whip antema is almost universally used. Since longer whips present mechanical difficultios, the length is usuatly limited to a dimension that will resonate as a quarterwave antenna in the 10 -meter band. The car body serves as the ground comnection. This antemit length is approximately 8 feet.

Fif. $\quad 19.32-$ ' Th g quarterwave whip at resonance will show a pure resistance at the feed point $\$.

With the whip length adjusted wrenomane in the 10 -mater band, the impedance at the feed point, X, Fig. 1!)-32, will abpear as a pure rosistance at the resonant frequeney. This resistance will be composed almost entirely of ratiation resistance (see index), and the efficiency will be high. However, at frequencies lower than the resonant frequency, the antemat will show an increasingly large eaparitive reactane and a decreasingly small radiation resistance.

Fig. 19-33-At frequencies below the resmant freguency, the whip antenna will show capacitive reactance as well as resistance. KR is the radiatiom resistance, and Ca represents the capaeitive reactane.

The equivalent circuit is shown in Fig. 19-33. For the average $8-\mathrm{ft}$, whip, the reactanee of the apacitanee, ('A, may range from about 150 ohms at 21 Mc. to as high as 8000 ohms at 1.8 Mc ., while the radiation resistance, h_{R}, varies from about 15 ohms at 21 Me. to as low as 0.1 ohm at 1.8 Mc. Since the resistance is low, considerable current must fow in the circuit if any appreciable power is to be dissijated as radiation in the resistance. Yot it is apparent that little current can be made to flow in the circuit so long as the comparatively high series reactance remains.

$$
\begin{aligned}
& \text { Fig. 19-34-lhe eapacitive } \\
& \text { reactance at frequencies lower } \\
& \text { than the resonant freguency } \\
& \text { of the whip ean be canceled } \\
& \text { out by adding an equivalent } \\
& \text { induetive reactance in the } \\
& \text { form of a loading coilin series } \\
& \text { with the antenna. }
\end{aligned}
$$

Eliminating Reactance

The caparitive reactaner can be canceled out be connerting an equivalent inductive reactance, L_{1}, in series, as shown in lig. 1!)-34, thus tuning the sistem to resonamee.

Crifortunately, all eoils have resistance, and this resistance will be adeled in serios, as indi(ated at R_{c} : in loig. 19-3:). While at large eoil may radiate some energy, thus adding to the radiation resistance, the latter will ushatly be negligible eompared to the loss resistance introduced. However, adding the coil makes it possible to feed power to the circuit.

Ground Loss

Another eloment in the rireuit dissipating power is the ground-loss resistance. Fundamentally, this is related to the nature of the soil in the area under the antema. Little information

Fig. 19-35-Equivalent circuit of a loaded whip antema. CA represents the capacitive reactance of the antenna, hL an eqnivalent inductive reactance. R_{C} is the loading-coil resistance, Re: the mromd-loss resistance, and Ris the radiation resistance.
is available on the values of resistance to be experted in prastiox, but some measurements have shown that it may amount to as much as 10) or 12 ohms at + Me. It the lower frequencies, it may constitute the major resistance in the circuit.

Fig. 19-35 shows the cirenit including all of the elements mentioned above. Assuming $C_{\text {A }}$ lossless and the loss resistance of the coil to be represented by R_{e}, it is seem that the power output of the transmitter is divided among three resistances R_{0}, the coil resist:mee; R_{i}, the ground-loss resistance; and $R_{R 1}$, the radiation resistance. Only the power dissipated in R_{i} is radiated. The power

Fig. 19-36 - Graph showing the approximate capacitance of short vertical antennas for various diameters and lengths. These values should be approvimately halved for a center-loaded antenna.

8-ft. whip, and the resistances of loading coils - one group having a (of 50), the other a Q of 300). A comparison of radiation and roil resistaneres will show the importance of reducing the coil resistance to a minimum, exprially on the three lowerfrequency binds.

To minimize loadingcoil loss, the coil should have a high ratio of reactance to resistance, i.e., high Q. A 4 - Me. loading coil wound with small wire on a small-diameter solid form of poor quality, and enclosed in a metal protector, may have a Q as low an 50 , with a resistence of 50 ohms or more. Iligh-Q coils require a large conductor, "airwound'" construetion, turns spaced, the best insulating material available, a diameter not less than half the length of the coil (not always mechan-
developer in R_{C} and R_{6}; is dissipated in heat. Therefore, it is importint that the latter two resistances be minimized.

MINIMIZING LOSSES

There is little that can he done alout the nature of the soil. However, poor electrical contact betwen large surfaces of the car body, and esperially between the point where the feed line is grounded and the rest of the booly, can add materially to the ground-loss resistance. For example, the feed line, which should be grounded as close to the base of the antema as possible, may be connected to the humper, while the bumper may have poor contact with the rest of the body bectause of rust or paint.

Loading Coils

The accompanying table shows the approximate loading-coil indurtance required for the various bands. The graph of Fig. 19-36 shows the approximate capacitance of whip antemats of various average diameters and lengths. For 1.8, 4 and 7 Me., the loading-coil induetance required (when the loading coil is at the base) will be approximately the inductance required to resonate in the desired band with the whip rapacitance taken from the graph. For 14 and 21 Mc., this rough cakeulation will give more than the required inductance, but it will serve as a starting point for final experimental adjustment that must always be made.

Also shown in the table are approximate values of radiation resistance to be expected with an
ically feasible), and a minimum of metal in the field. Such a coil for 4 Me. may show a Q of $3(k)$ or more, with a resistance of 12 ohms or less. This reduction in loading-coil resistance may be equivalent to increasing the transmitter power by 3 times or more. Most low-loss transmitter plug-in coils of the 100 -watt size or larger, commercially produced, show a Q of this order. Where larger inductance values are required, lengths of lowloss space-wound coils are avaitable (13 \& W).

Suggested Loading-Coil Dimensions					
$\underset{\substack{\text { liriot } \\ L_{\text {lhb. }}}}{ }$	Turns	$\begin{aligned} & \text { W'iré } \\ & \text { Size } \end{aligned}$	Diam. In.	$\begin{gathered} \text { Lenolnt } \\ \text { In. } \end{gathered}$	Form or ls \& Type
700	190	22	3	10	Polystyrene
945	135	18	3	10	Polvistyrene
1.0	100	16	21/2	10	Polystyrene
$\begin{aligned} & 77 \\ & 77 \end{aligned}$	$\begin{aligned} & 75 \\ & 29 \end{aligned}$	$\begin{aligned} & 14 \\ & 12 \end{aligned}$	$\frac{21 / 2}{5}$	$\begin{aligned} & 10 \\ & 41 / 4 \end{aligned}$	Polystyrene 160 T
$\begin{aligned} & 40 \\ & 40 \end{aligned}$	$\begin{aligned} & 28 \\ & 34 \end{aligned}$	$\begin{aligned} & 16 \\ & 12 \end{aligned}$	$\begin{aligned} & 21 / 2 \\ & 21 / 2 \end{aligned}$	$\begin{aligned} & 2 \\ & 41 / 4 \end{aligned}$	$\begin{aligned} & 80 \mathrm{~B} \text { less } 7 \mathrm{t} . \\ & 80 \mathrm{~T} \end{aligned}$
$\begin{aligned} & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 17 \\ & 22 \end{aligned}$	$\begin{aligned} & 16 \\ & 12 \end{aligned}$	$\begin{aligned} & 21 / 2 \\ & 21 / 2 \end{aligned}$	$\begin{aligned} & 11 / 4 \\ & 23 / 4 \end{aligned}$	80 B less 18 t . 80 T less 12 t .
$\begin{aligned} & 8.6 \\ & 8.6 \end{aligned}$	$\begin{aligned} & 16 \\ & 15 \end{aligned}$	$\begin{aligned} & 14 \\ & 12 \end{aligned}$	$\begin{aligned} & 2 \\ & 21 / 2 \end{aligned}$	$\begin{aligned} & 2 \\ & 3 \end{aligned}$	40 H less 4 t . 40 T less 5 t .
$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 10 \\ & 12 \end{aligned}$	$\begin{aligned} & 14 \\ & 12 \end{aligned}$	$\begin{aligned} & 2 \\ & 21 / 2 \end{aligned}$	$4_{4}^{11 / 4}$	$\underset{40 \mathrm{~T}}{40 \mathrm{~B} \text { less } 10 \mathrm{t} .}$
$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	8	12	$\stackrel{2}{23 / 8}$	${ }_{4}{ }^{1 / 2}$	${ }_{1: 510}^{151}$
1.25	$\begin{aligned} & 6 \\ & 6 \end{aligned}$	$\begin{array}{r} 12 \\ 6 \end{array}$	$\begin{aligned} & 13 / 4 \\ & 238 \end{aligned}$	$\begin{aligned} & 2 \\ & 41 / 2 \end{aligned}$	$\begin{aligned} & 10 \mathrm{~B} \\ & 10 \mathrm{~T} \end{aligned}$

Center Loading

The radiation rewistance of the whip can be approximately doubled by placing the loading coil at the center of the whip, rather than at the base, as shown in l"ig. 19-37. (The optimum position varies with ground resistance. The center is optimum for average ground resistance.) llowever, the inductance of the loading coil must be

approximately doubled over the value required at the base to tume the system to resonance. For a coil of the same Q, the coil resistance will also be doubled. But, even if this is the case, center loading represents a gain in antenna effeicncy, esperially at the lower frequencios. This is berause the ground-loss resistance remains the same, and the increased radiation resistance beromes a larger portion of the total circuit resistance, even though the coil resistance also increases. Ifowever, as turns are added to a loading roil (other factors being equal) the inductance (and therefore the reactance) increases at a grater rate than the resistance, and the larger coil will usuatly have a higher Q.

Top Loading Capacitance

Since the coil resistance varies with the inductance of the loading coil, the coil resistance can be reduced by reducing the number of turns. This can be done, while still maintaining resonance, by adding capacitance to the portion of the antenna above the coil. This caparitance can be provided by attaching a rapacitive surface as high up on the antema as is mechanically feasible. Capacitive "hats," as they are usually

Fig. 19-38-Capacitances of spheres, dishs and cylinders in free space. These values are approvimately those to be expected when used with top-loaded whip antennas. 'The cylinder length is assumed to be equal to its diameter.
called, miy eonsist of a light-weight metal ball, eylinder, disk, or wheel structure as shown in Fig. 19--39. Fig. 19-38 shows the approximate added rapacitance to be expected firom toplowding deviees of various forms and dimensions. This should be added to the capacitance of the whip above the loading coil (from Fig. 19-36) in determining the approximate induetance of the loading coil.

When center lotuling is used, the amount of capacitance to be added to permit the use of the sume loading inductance required for base loading is not great, and should be seriously considered, since the total gain made by moving the coil to the center of the antenna may be quite narked.

Tuning the Band

Pispecially at the lower frequencies, where the resistance in the circuit is low compared to the coil reactance, the antenna will represent a very high-Q circuit, making it necessary to retune for relatively small changes in frequency. White many methods have been devised for tuning the whip over a band, one of the simplest and most efficient is shown in the sketches of ligs. 19-40 and 19-41, and the photograph of Fig. 19F-42. In this case, a standard IB \& W plug. in coil is used as the loading coil. A length of large-diameter

Fig. 19-39 - The top-loaded 4-Mc. antenna used by W6SCX. The loading coil is a B \& \mathbb{N} transmitting coil. The coil can be tuned by the variable link which is connected in series with the two halves of the coil.

Fig. 19-40-Details of rod construction. Dimensions can be varied to suil the whip diameter and the baidder's convenience. Adjustment of rod lengths is deseribed in the text.
polystyrene rod is drilled and tapped to fit between the upper and lower sections of the antenna. The assembly also serves to clamp a pair of metal braekets on cach side of the polystyrene block that serve both as support and connections to the loading-coil jack bar.

A $1 / 8$-inch steel rod, about 15 inches long, is brazed to each of two large-diameter washers with holes to pass the threaled end of the upper

Fig. 19.41 - Construction details of the mounting for the rods and plag-in coil.
section. The rods form a loading capacitance that varies as the upper rod is swung away from the lower one, the latter being stationary. Fnough variation in tuning can be obtained to cover the 80 -meter band. Fig. 19-40 shows the top washer slightly smaller to facilitate marking a frequency seale on the stationary washer, after the upper washer has been marked with an index. After the movable rod has been set, it is clamped in position lo tightening up the upper antenna section. (Original deseription appeared in $Q S^{\prime}$ ', September, 1953.)

Fis. 19.42 - $11811{ }^{\circ}$'s alljustable capacity hat for turing the whip antenna over a band. The eool is a $B \mathbb{N} W$ ty pe B 160-meter coil, with a turn or ino removed. Spread. ing the rods apart increases the caparitance. This simple top loader has sufficient eapacitance to permit the use of approximately the same load-ing-roil inductance at the center of the antenna as would normally be required for hase loading.

REMOTE ANTENNA RESONATING

Figs. 19-43 thmough 19-15 show riments and romstrutional details of two remoteroontrol resonating systems for mobilo antemnas. Is shown. ther make use of surplus 21 -volt d.e. motors driving a loading roil removed from asar-
 motor mas loe used in rithor installation at inrroused experise.

Mans of the 24 -volt surjlus motors will rum on 6 volts der. with sulfieient toreue to drive the eoil. Wome of the motors were equipped with gexus that nowh perfoctly with the fiber grate on the losting roil.

The ront rol rireuit shown in Fig. 1!-t. P is a therevire system (the rat frame is the fourib romductor) with a double-pole double-throw

Fifg. 19.13-(:ircuits of the remote mohile-whip tuning systems.

$\mathrm{s}_{1}, \mathrm{~S}_{3}, \mathrm{~S}_{4} . \mathrm{S}_{5}-$ Nomentars-contart, s.p,s.t., norma!ly omer.
$S_{2}-1$ If.lit. togyle.
$\mathrm{S}_{4}, \mathrm{~S}_{7}-\mathrm{S}_{\mathrm{p}} \mathrm{p}$ s.t. momentary contart mioroswiteh, normally open.
switeh and a momentary (normatly off) singlepole single-1 hrow switeh. S_{2} is the molor reversing switeh. The motor runs so long as S_{1} is resod.

The circuit shown in Fig. 19-1313 uses a latching relay, in conjunction with mieroswitehes. to autonatiacally reverse the motor when the roller reathes the end of the eoil. S_{3} and S_{5} operate the relas, K_{1}, which reverses the motor. S_{4} is the motor on-off switch. When the tuming roil roller reaches one end or the other of the eoil, it choses \mathcal{S}_{6} or S_{7}, as the case may be, operating the relay athd reversing the motor.
'The procedure in setting up the system is to prume the renter loading eoil to resonate the

 athates microswitahes, maced at either end of the coil, to rewerse the motor.
athlamat on the highest frequemer used withont the hase lowding eooil. 'Then, the bess Ioushing roil is userd to resontate at the lowor frocpurners. Whorn
 (rol. $\sin _{1}$ is used fo slart athel stop thar moter. atmel S.e. sot at the "up" or "down" position. nill determine whathen the ressmant frequeney is ratserd or lowered. In the eireuit shown in Fig. 1! - 1313 . S_{1} is msed to xondrod the motere. \mathscr{S}_{3} or S_{5} is momerntarily alased (to adivate tho latching rasave for raisigg of lowering the destotant frequebers. "The h.c. antrentat is used with a wave motere (s:\% Figs.

Fif. $19-17$ - W (oto's AlRC-S roller coil is Iriven by a small pinion gear on the shaft of the surplas motor. 'l'he pinion tits the oripinal diler pear on the coil.

FEEDING THE ANTENNA

It is usually found most convenient to feed the whip antema with coms line. Unless very low- Q loading coils are used, the feed-point impedance will always be appreciably lower than 52 ohms - the characteristic impedance of the commonly-used cotx line, RG-8/C or R(i-58/U. Since the length of the trimsmission line will seldom exceed 10 ft ., the losses involved will he negligible, even at $2!$) Me., with a farly-high s.w.r. However, unless a line of this length is made reasonably flat, difficulty may be encountered in oltaining sufficient coupling with a link tolowd the transmitter output stage.
One method of obtaining a mateh is shown in Fig. 19-46. A small inductance, L_{m}, is inserted at

Fiz. 19-46-1 meliod of mateling the loaded whip to 52 ohm coax calle. La is the lowhing conil and $L_{\text {si }}$ the matching coil.

the base of the antema, the loading-coil inductance being reduced correspondingly to matintain resonance. The line is then tapped on the coil at a point where the desired loading is obtaned. The table (page 462) shows the approximate inductance to be used between the line tap and ground. It is alvisable to make the experimental matching roil larger than the value shown, so that there will be provision for varying either side of the proper position. The matching coil can also be of the plug-in type for changing bands.

Adjustment

For operation in the bunds from 29 to 1.8 Mt .., the whip shoukd first be resonated at 29 Me. with the matching coil inserted, but the line disconmeeted, using a grid-dip oseillator coupled to the matching coil. Then the line should be attacherl, and the tap varied to give proper louling, using a link at the transmitter end of the line whose reactance is approximately 52 ohms at the operating frequency, tightly coupled to the output tank circuit. After the proper positio: for the tap, hats been found, it may be necessary to readjust the antenna length slightly for resonance. This ram be checked on a fichl-strength meter several feet away from the car.

The same procedure should be followed for each of the other bands, first resonating, with the g.d.o. coupled to the matehing coil, by adjusting the loading eoil.

After the position of the matching tap has been found, the size of the matching coil can be re-
duced to only that portion between the tap and ground, if desired. If turns are removed here, it will be necessary to reresonate with the loading coil.

If an entirely flat line is desired, a s.w.r. indicator should be used while adjusting the line tap. With a good match, it should not be necessary to radjust for resonance after the line tap has been set.

It should be emphasized that the figures shown in the table are only approximate and may be altered considerably depending on the type of ear on which the antema is mounted and the spot at which the antemna is placed.

ANTENNAS FOR 50 AND 144 MC.

A common type of antenna employed for mobile operation on 50 and 144 Me. is the quarter-viave radiator which is fed with a coaxial line. The antenna, which maty be a flexible telescoping "fish pole," is mounted in any of several places on the car. Quite a good mateh mily be obtained by this method with the 50 -ohm coaxial line now available; however, it is well to provide some means of tuning the system, so that all variables can be taken eare of. The simplest tuning arangement consists of a variable capacior connected betwern the low side of the transmitter coupling coil and ground, as shown in Fig. 19-17. This capacitor should have a maximum capacitance of 75 to $100 \mu \mu \mathrm{fd}$. for 50 Mc ., and should be adjusted for maximum loading with the least roupling to the transmiter. Some

method of varring the roupling to the transmitter should be provided.

Bibliography

Belrose, "Short Inteman for Mobile Operation," QST, Sept., 195\%.
Roberge \& MeCommell, "Let's Go Migh IIat!," QST, Jan., 1952.
Dinsmore, "The 'IIot-IRod' Mobile Antenna," QST, Sept., 195:3.
Swafford, "Improved Coax Feed for Low-Frequency Mobile Antemnas," QST', Dee., 1951.
Tilton, "Have Vou Tried V.II.F. Mobile"" QST, Sept., 1954.
Webster, "Mohile Loop Antennas," QST', June, 1954.

Hargrave, "Automatic Mobile Antemna Tuning," (EST', May, 1955.

A Signal/Field-Strength Meter for Mobile Use

Sepanate meters for measuring signal amm fiold strongth arre used in many mobila installations. The unit shown in Figs. 1!--18 theough 1! - and promits a single 1 -man moter to be used for making both tepes of measurements. The eost of the duatpurpose indicator is very little more thatn that of either instrument alone.

The unit is smatl enough for mounting either above or under the dashboard of a car, or it may be stored in the glove compartment when not in use. It is housed in a $+\times \overline{5} \times 3$-inch gray hammertone box. A simple toggle switeh chatuges from one function to the other. Power drawn from the broadeast receiver for the S-moter cireuit is less than $2 \frac{1}{4}$ watts.

The fiedd-strength meter can be used installed in the car as an antematresoname indicator or as an outpuat indicator for transmitter adjustments, or it can easily be removed for antematpatterin ploting, adjustment of other mobile installations or even for use in the home station. The sensitivity adjustment makes the indieator useful over a wide range of field strengths.

One handy feature of the s-meter armangement is the sensitivity control. This coutrol can be adjusted to prevent extremely strong signals from pinning the meter. When working with really wak signals, the sensitivity eontrol may be adjusted to provide a notionable moter deflection

Circuit

The circuit of the indieator is shown in Fig. $19-4!$. A $12 . A X 7$ is used in the s-meter section. One grid is returned direetly to chassis and the serond grid is connected to the sensitivity control, R_{1}. The input end of R_{1} is retumed, via J_{2} and a shiedded cable, to the a.v.e. line in the bee reeedver. The plates of the 12 AN are conneeted in parallel and then, through a single lead, to J_{2}. Fig. I!-49 shows heater wiring for both 6 -and 12 -volt operation. l'in! of the tuber is not used in the 12 -volt circuit.

For s-meter operation, the moder and R_{2} are switched arross the cathode terminals of the tube by S_{1}. The 50 ohohm potentionmeter, R_{2}, becomes a zero-adjust eontrol. Zaro reading is obtained with R_{2} adjusted for equal voltage at Pins 3 and 8 of the $12 \mathrm{AX} \overline{\mathrm{z}}$. Alter an initial zero adjustment, the application of a.v.e. voltage through R_{1} will drive the eathode of $l_{1 \text { a }}$ negrative with respect to the mathode of V_{213}, thus upsetting the balance and ratsing an upward defleetion. For a given a.v.e, voltage, the amplitude of the deflection will be controlled be $/ h_{1}$.

Fig. $19-48$ - A front view of the signal/feld-strength meter. 'The zero-adjust control is to the right of the toggle switsh, S'. The metor registers either signal or field strength, depending upon the setting of the tongle switch.

The rireuit of the fiold-strengeth section is made adetive beve swithing the metor and h_{2} into the cireuit and by applying r.f. through J_{1}. The amonut of ref. fed to the eirenit maty be controlled be adjusting the length of the bick-up antennat aftarhed to $J_{1} \cdot R_{2}$ is a shunt to prevent off-scale roadings when moasuring strong r.f. fiedds.

Construction

As shown in the Fig. 19-18, the Triplett model 227-T meter is mounted on the front panel of the utility box. S_{1} and R_{2} are below the meter with a $1^{1} \frac{1}{2}$-inch space bet ween mounting centers. bach control is centered 13^{8} inehes up from the bottom of the panel.
The bottom view shows the "U"-shaped chassis made from 1 'lijind thick aluminum stork. The width, depth and height of the whasis are $27 / 8,3$ and $11 / 16$ inches, respectively: Panel-mounted controls (R_{2} and S_{1}) (lamp the ehassis against the rear of the front patel as shown in lig. 1!-a)

The socket for the 12 AX - is centered 1 inch in from the rear edge of the ehassis. L_{1} is located just to the front of the tule socket as seem in lig. 19-48. L_{1} is a North Hills type 120-H inducfor having an indurtatere rature of 105 to $200 \mu \mathrm{~h}$. Howrever, any coil that will resomate around 3.9 Me, (and still fit into the chassis) with the

cirruit eapacitane may be used. A hole in the front of the socket, fitted with a rubher grommet, pasees the leads betweon the moter and the toggle switch. h_{1}, J_{1} and J_{2} are momedrl on the reat wall of the rhassis.

Fig. 19-i0) shows the r.f, choke and the disk capmecitors for the field-strength eircuit mounted on a 2-terminal tie-point strip at the right side of the unit. The extra terminals on the slugtuned eosil are used for mounting the $1 \times: 3 t$ crystal diode.

Installation

Heater, plate and a.v.c. voltages for the Smeter are obtained from the car bee, receiver and should be brought to the indicator through shielded leads. The heater lead may be tapped onto the hot side of any receiver tulse (it is a good idea to stay clear of the rectifier tube) close to a hole or receptacte provided for the output cable. The plate lead may be commeted to the sereren pin of an audio output tube sorket or to any other point delivering approximately 150 volts (higher voltages merely increase the current drain umeecsarily), A sories resistor may also be used to drop the voltage.

It is frequently possible to spot the a.v.c. line by tracing back from the control grid of cither the r.f. amplifier tube or the converter. The grid of each tube is usually returned to the a.v.e. bus through a $1 / 2-$ to 1 -megohm resistor. If you test a junction for a.v.e. voltage, just commeet a highrosistance dec. voltmeter between the point and ground and watch for a negative reading that increases with increased signal input. focal bere. stations can supply the test signals.

After the interunit calbling has heren completed. the receiver may be returned to the dash of the car. The pertormance of the S-meter may now be

Mobile Power Supply

By far the majority of amateur mobile installations depend upon the car storage hattery as the source of power. The tube types used in equipment are ehosen so that the filaments or heaters may be operated directly from the battery. lligh voltage may be ohtained from a supply of the vibrator-transformer-rectifier type or from a small motor-generator operating from the batiery.

Filaments

Because tubes with directly-heated eathodes (filament-type tubes) have the advantage that they can be turned off during receiving periods and thereby reduce the average load on the battery, they are preferred by some for transmitter applications. However, the choice of types with direct heating is limited, especially among those for (i-volt operation, and the saving may not always be as great as anticipated, because directly-heated tubes may roquire greater filament power than those of equivalent rating with indirectly-heated cathodes. In most cases, the power required for transmitter filaments will be quite small compared to the total power consumed.

Plate Power

Under steady running eonditions, the vi-brator-transformer-rectifier system and the motor-generator-type plate supply operate with approximately the same efficiency. However, for the same power, the motor-generator's over-all efficiency may be somewhat lower because it draws a heavier starting eurrent. On the other hand, the output of the generator requires less filtering and sometimes trouble is experienced in climinating interforence from the vibrator.

Converter units, both in the vibrator and rotating types, are also available. These operate at 6 or 12 volts d.c. and deliver 115 volts a.c. This permits operating standard a.e.-powered equipment in the car. Although these systems have the advantage of flexibility, they are less efficient than the previousty-mentioned systems beeause of the additional losses introduced by the transformers used in the equipment.

Mobile Power Considerations

Since the ear storage battery is a low-voltage souree, this means that the current drawn from the battery for even a moderate amount of power will be large. Therefore, it is important that the resistance of the battery circuit be held to a minimum by the use of heavy conductors, no longer than necessary, and good solid eonnections. A heavy-duty relay should be used in the line between the battery and the plate-power unit. An ordinary toggle switch, loeated in any convenient position,
may then be used for the power eontrol. A second relay may sometimes be advisable for switching the filaments. If the power unit must be located at some distance from the battery (in the trunk, for instance) the 6 - or 12 -volt cable should be of the heavy military type.

A complete mobile installation may draw 30 to 40 amperes or more from the 6 -volt battery or better than 20 amperes from a 12 -volt battery. This requires a considerably inereased demand from the car's battery-charging generator. The voltage-regulator systems on cars of recent years will take care of a moderate increase in demand if the car is driven fair distances regularly at a speed great enough to insure maximum charging rate. However, if much of the driving is in urban areas at slow speed, or at night, it may be necessary to modity the charging system. Special commu-nications-type generators, such as those used in police-car instaflations, are designed to charge at a high rate at slow engine speeds. The charging rate of the standard system can be increased within limits by tightening up slightly on the voltage-regulator and currentregulator springs. This should be done with caution, however, checking for excessive generator temperature or abnormal sparking at the commutator. The average car generator has a rating of 35 amperes, but it may be possible to adjust. the regulator so that the generator will at least hold even with the transmitter, receiver, lights, heater, cte., all operating at the same time.

Another scheme that has been used to increase generator output at slow driving speeds is to decrease slightly the diameter of the generator pulley. This means, of course, that the generator will be running above normal at high driving speeds. Some generators will not stand the higher speed without damage.

If higher transmitter power is used, it may be neressary to install an a.e. charging system. In this system, the generator delivers a.e. and works into a reatifier. A charging rate of 75 amperes is casily obtained. Commutator trouble often experienced with d.c. generators at high current is avoided, but the cost of such a system is rather high.

Some mobile operators prefer to use a separate battery for the radio equipment. Such a system can be arranged with a switch that cuts the auxiliary battery in parallel with the car battery for charging at times when the car battery is lightly loaded. The auxiliary battery can also be charged at home when not in use.

A tip: many mobile operators make a habit of carrying a pair of heavy cables five or six feet long, fitted with clips to make a conneetion to the hattery of another car in case the operator's battery has been allowed to run too far down for starting.

The Automobile Storage Battery

The sucerss of any mohile instahation depends to a large extent upon intelligent use and maintenance of the car's bat tery.
The storage battery is made up of mits consisting of a pair of coated lead plates immersed in a solution of sulphurie adid and water. Cells, each of which delivers about 2 volts, can be comected in sories to obtain the desired battery voltage. A $(6$-volt battery therefore has three cells, and a 12 -volt battery has 6 cells. The average stock car battery has a rated capacity of 600 to 800 watt-hours, regardless of whether it is a 6 -volt or 12 -volt battery.

Specific Gravity and the Hydrometer

As power is drawn from the battery, the aeid content of the electrolyte is reduced. The acid content is restored to the electrolyte (meaning that the battery is recharged) by passing a current through the battery in a direction opposite to the direction of the diseharge current.

Since the acid content of the electrolyte varies with the charge and discharge of the battery, it is possible to determine the state of charge by measuring the specific gravity of the electrolyte.

An inexpensive device for checking the s.g. is the hydrometer which ean be obtained at any automobile supply store. In weeking the s.g., enough electrolyte is drawn out of the coll and into the hydrometer so that the calibrated bulb floats freely without leaning against the wall of the ghass tube.

While the readings will vary slightly with batteries of different manufacture, a reading of 1.275 should indicate full charge or nearly full charge, while a reading below 1.150 should indicate a battery that is close to the discharge point. More sperific values can be obtained from the car or battery dealer.

Readings taken immodiately after adding water, or shortly after a heavy discharge period will not be reliable, because the electrolyte will not be uniform throughout the cell. (harging will sperd up the equalizing, and some mixing can be done by using the hydrometer to withdraw and return some of the electrolyte to the rell several times.

A battery should not be laft in a discharged condition for any appreciathe length of time. This is especially important in low temperatures when there is danger of the elecetrolyte frecaing and ruining the battery: A battery discharged to an s.g. of 1.100 will start to freeze at about 20 degrees F., at about 5 degrees when the s.g. is 1.150 and at 16 below when the s.g. is 1.200 .

If a battery has been run down to the point where it is nearly discharged, it can usually be fast-charged at a battery station. Fast-charging rates may be as high as 80 to 100 amperes for a (i-volt battery. Any 6 -volt battery that will aceept a charge of 75 amperes at 7.75 volts during the first 3 minutes of charging, or any 12 -volt battery that will accept a charge of 40 to 45 amperes at 15.5 volts. may be saffely fast-rharged
up, to the point where the gassing becomes so exerssive that electrolyte is lost or the temperature rises above 125 degrees.

A normal battery showing an s.g. of 1.150 or less may be fast-charged for 1 hour. One showing an s.g. of 1.150 to 1.175 may be fastcharged for 45 minutes. If the s.g. is 1.175 to 1.200 , fast-charging should be limited to 30 minutes.

Care of the Battery

The battery terminals and mounting frame should be kept free from corrosion. Any corrosive aceumulation may be removed by the use of water to which some houschold ammonia or baking soda has been added, and a stiff-bristle brush. Care should be taken to prevent any of the corrosive material from falling into the cells. Cell caps should be rinsed out in the same solution to keep the vent holes free from obstructing dirt. Battery terminals and their cable clamps should be polished bright with a wire brush, and coated with mineral grease.

The hold-down damps and the battery holder should also be checked occasionally to make sure that they are tight so that the battery will not be damaged by pounding when the car is in motion.

Voltage Checks

Although the readings of s.g. are quite reliable as a measure of the state of charge of a normal battery, the necessity for frequent use of the hydrometer is an inconvenience and will not ahways serve as a conclusive check on a defective hattery. Cells may show normal or ahmost normal s.g. and let have high internal resistance that ruins the usefulness of the battery under load.

When all cells show satisfactory s.g. readings and yot the battery output is low, service statiors rheck each eoll by an instrument that measures the voltage of cach cell under a heavy load. Theder a heavy load the coll voltages should not differ ber more than 0.15 volt.

A load-voltage test can also be made by measuring the voltage of each cell while closing the starter switeh with the ignition turned off. In many ears it is necessary to pull the central distributor wire ont to prevent the motor starting.

Electrolyte Level

Water is evaporated from the electrolyte, but the arid is not. Therefore water must be added to each cell from time to time so that the plates are always completely covered. The level should be checked at least once per week, especially during hot weather and constant operation.

Distilled water is preferred for replenishing, but cloar drinking water is an acceptable substitute. Too much water should not be added, since the gassing that acompanies charging may force clectrolyte out through the vent holes in the eaps of the cells. The eleetrolyte expands with temperature. (From QST', August, 1955.)

Emergency and Independent Power Sources

Emergency power supply which operates independently of a.c. lines is available, or can be built in a number of different forms, depending upon the requirements of the service for which it is intended.
The most practical supply for the average individual amateur is one that operates from a car storage battery. Such a supply may take the form of a small motor generator (often called a genemotor), a rotary converter, or a vibrator-transformer-rectifier combination.

Dynamotors

A dynamotor differs from a motor generator in that it is a single unit having a double armature winding. One winding serves for the driving motor, while the output voltage is taken from the other. Dynamotors usually are operated from 6 -, 12 -, 28 - or 32 -volt storage batteries and deliver from 300 to 1000 volts or more at various current ratings.
Genemotor is a term popularly used when making reference to a dynamotor designed especially for aut omobile-receiver, soundtruck and similar applications. It has good regulation and efficiency, combined with economy of operation. Standard models of genemotors have ratings ranging from 250 volts at 50 ma . to 400 volts at 375 ma . or 600 volts at 250 ma . The normal efficiency averages around 50 per cent, increasing to better than 60 per cent in the higher-power units.
Successful operation of dynamotors and genemotors requires heavy direct leads, mechanical isolation to reduce vibration, and thorough r.f. and ripple filtration. The shafts and bearings should be thoroughly "run in" before regular operation is attempted, and thereafter the tension of the bearings should be checked occasionally to make certain that no looseness has developed.

In mounting the genemotor, the support should be in the form of rubber mounting blorks, or equivalent, to prevent the transmission of vibration mechanically. The frame of the genemotor should be grounded through a heavy flexible connertor. The brushes on the high-voltage end of the shaft should be bypassed with $0.002-\mu \mathrm{fd}$. mica capacitors to a common point on the genemotor frame, preferably to a point inside the end cover close to the brush holders. Short leads are essential. It may prove desirable to shield the entire unit, or even to remove the unit to a distance of three or four feet from the receiver and antenna lead.
When the genemotor is used for receiving, a filter should be used similar to that described for vibrator sumplies. A $0.01-\mu \mathrm{fd}$. 600 -volt (d.e.) paper capacitor should be connected in shunt across the output of the genemotor, followed by a $2.5-\mathrm{mh}$. r.f. choke in the positive high-voltage lead. From this point the output should be run to the receiver power terminals
through a smoothing filter using 4 - to 8 - $\mu \mathrm{ff}$. rapacitors and a 15 - or 30 -henry choke having low d.c. resistance.

D. C.-A.C. Converters

In some instances it is desirable to utilize existing equipment built for 11 z -volt a.c. operation. To operate such equipment with any of the power sources outlined above would require a considerable amount of rebuilding. This can be obviated by using a rotary converter capable of changing the d.c. from 6 -, 12 - or 32 -volt batteries to 115 -volt 60 -cycle a.e. Such converter units are built to deliver outputs ranging from 40 to $2 \overline{5} 0$ watts, depending upon the battery power available.

The conversion efficiency of these units averages about 50 per cent. In appearance and operation they are similar to genemotors of equivalent rating. The over-all efficiency of the converter will be lower, however, because of losses in the a.c. rectifier-filter circuits and the neecssity for converting heater (which is supplied directly from the battery in the case of the genemotor) as well as plate power.

Vibrator Power Supplies

The vibrator type of power supply consists of a special step-up transformer combined with a vibrating interrupter (vibrator). When the unit is connected to a storage battery, plate power is obtained by passing current from the battery through the primary of the transformer. The circuit is made and reversed rapidly by the vibrator contacts, interrupting the current at regular intervals to give a changing magnetic field which induces a voltage in the secondary. The resulting squarewave d.c. pulses in the primary of the transformer cause an alternating voltage to be developed in the secondary. This high-voltage a.c. in turn is reetified, cither by a vacuum-tube rectifier or by an additional synchronized pair of vibrator contacts. The rectified output is pulsating d.c., which may be filtered by ordinary means. The smoothing filter can be a single-section affair, but the output capaeitance should be fairly large -16 to $32 \mu \mathrm{fd}$.

Fig. 19-51 shows the two types of circuits. At A is shown the nonsynchronous type of vibrator. When the battery is disconnected the reed is midway between the two contacts, touching neither. On closing the battery circuit the magnet coil pulls the reed into contact with one contact point, causing current to flow through the lower hald of the transformer primary winding. Simult ancously, the magnet roil is short-circuited, deënergizing it, and the reed swings back. Inertia carries the reed into contact with the upper point, causing current to flow through the upper half of the transformer primary. The magnet coil again is energized, and the eycle repeats itself.

The synchronous circuit of Fig. $19-51 \mathrm{~B}$ is
provided with an extra pair of contacts which rectify the secondary output of the transformer, thus eliminating the need for a separate rectifier tube. The secondary center-tap furnishes the positive output terminal when the relative polarities of primary and secondary windings are correct. The proper connertions may be determined by experiment.

The buffer capacitor, ${ }^{2} 2$, across the transformer secondary, absorbs the surges that oceur on breaking the current, when the magnetic field collapses practically instantaneously and hence causes very high voltages to be induced in the secondary. Without this capacitor excessive sparking occurs at the vibrator contacts, shortening the vibrator life. Correct values usually lie between 0.005 and $0.03 \mu \mathrm{fd}$., and for $250-300$-volt supplies the capacitor should be rated at 1500 to 2000 volts d.c. The exact capacitance is critical, and should be determined experimentally. The optimum value is that which results in least battery

Fig. 19-51 - Basic types of vibrator power-supply circuits. A - Nonsynchronous. B - Synehronous.
current for a given rectified d.c. output from the supply. In practice the value can be determined by observing the degree of vibrator sparking as the capacitance is changed. When the system is operating properly there should be practically no sparking at the vibrator contacts. A 5000 -ohm resistor in series with C_{2} will limit the secondary current to a safe value should the capacitor fail.

Vibrator-transformer units are available in a variety of power and voltage ratings. Representative units vary from one delivering 125 to 200 volts at 100 mas. 10 others that have a 400 -volt output rating at 150 ma . Most units come supplied with "hash" filters, but not all of them have built-in ripple filters. The requirements for ripple filters are similar to those for a.e. supplies. The usual efficiency of vibrator packs is in the vieinity of 70 per cent, so a 300 -volt 200 -ma. unit will draw approximately 1.5 amperes from a 6 -volt storage battery. Special vibrator transformers are also available from transformer manufacturers so that the amateur may build his own supply if
he so desires. These have d.c. output ratings varying from 150 volts at 40 ma. to 330 volts at 135 ma .

Vibrator-type supplies are also available for operating standard a.c. equipment from a 6 - or 12-volt stomge battery in power ratings up to 100 watts continuous or 125 watts intermittent.

"Hash" Elimination

Sparking at the vibrator contarts causes r.f. interference ("hash," which can be distinguished from hum by its harsh, sharper pitch) when used with a receiver. To minimize this, r.f. filters are incorporated, consisting of $R F C_{1}$ and C_{1} in the battery circuit, and $R F C_{2}$ with C_{3} in the d.c. output circuit.
liqually as important as the hash filter is thorough shielding of the power supply and its connecting leads, since even a small piece of wire or metal will radiate enough r.f. to cause interference in a sensitive receiver.

Testing in connection with hash elimination should be carried out with the supply operating a receiver. Since the interference usually is picked up on the receiving-antenna leads by radiation from the supply itself and from the battery leads. it is advisable to keep the supply and battery as far from the receiver as the connerting cables will permit. Three or four feet should be ample. The microphone cord likewise should be kept away from the power supply and its leads.
The power supply should be built on a metal chassis, with all unshielded parts underneath. A bottom plate to complete the shielding is advisable. The transformer case, vibrator cover and the metal shell of the tube all should be grounded to the chassis. If a glass tube is used it should be enclosed in a tube shield. The battery leads should be evenly twisted, since these leads are more likely to radiate hash than any other part of a well-shielded supply. Experimenting with different values in the hash filters should come after radiation from the battery leads has been reduced to a minimum. Shielding the leads is not often found to be particularly helpful.

PRACTICAL VIBRATOR-SUPPLY CIRCUITS

A vibratortype power supply may be designed to operate from a storage battery only, or in a combination unit which may be operated interchangeably from either battery or 115 volts a.c.

An example of the latter-type circuit is shown in Fig. 19-52. It consists essentially of two transformer-rectifier systems - one for 115 volts a.c. and the other a vibrator system to operate from a 6 -volt storage battery. A rommon filter is used for the two systems. In interchanging between a.c. and d.c. operation, the reetifier tube is shifted to the appropriate socket, while the filament connections are made to the proper output terminals. If desired, two rectifier tulbes may be usod and the changeover made through suitable switehes.

Fip. 19-i2 - (irruit of a combination a.c.d.r. powresthls for "Horgenes work.
(${ }^{1}$ - (1.0)- μ fil, foll).salt paper.
(2-8. $\mathrm{C}_{2} \mathrm{fa}$. 150.volt electrolytio.
(:3-32- $\mu \mathrm{fd}$. 150 -volt electrolytie
(is-0.005- In 0.0]- f fll. 1600-volt paper.
(:3-500)- fil. elertrolytic, 25 volts or higher.
($: s$ - 10 0) $-\mu \mu \mathrm{fd}$. 600-volt mica.
$\mathrm{R}_{1}-4$ 400 olims, 1 watt.
I.1-10. In I2.ly, filter choke, 100 mat. (not wer 100 ohms) (Staneor (..2303 or equivalent).
RH(: entmh. r.f. choke.
RHC: sis turns to. I: on l-inch form, rlose-wound.
Δ_{1}, Δ_{2} 'l'ogдle switels.
" 1^{\prime} - I'ower transformer: $2 \bar{\circ} \bar{\sigma}^{-5}$ to 30 volts r.min. tach side of center tall, 1001 to lis) ma., 6.3-volt filantent winding.
'J'2 - Vilirator transformer (Stathoor l'-()|31 or similar).
VIB-Vibrator unit (Mallory aool', 294, cte.).

li.f. filter's for reducing hash are ineorporated in both primary and secondary careuits. The secondary filter eonsists of a $0.01-\mu$ fol. paper eapacitor directly across the rectifier output, with a $2.5-\mathrm{mh}$. r.f. choke in series ahead of the smoothing filter. In the primaty circuit a low-inductance choke athl high-capacitance eapacitor are needed because of the low imperdance of the circuit. A choke of the sperifications given should be adecguate, but if there is trouble with hash it may be benefiecial to experiment with other sizes. The wire should be large - No. 12, preferably, or No, 14 as a minimum. Manufactured chokes such as the Mathory RFios: are more compant and give higher inductance for a given rosistance because they are bank-wound, and may be substituted if whtainable. ('s should be at least 500) μ fle. : avern more eaparitance may holp in had cases of hash.

The eompacthess of selenium rertifiers and
Fif. 19.53 - A typical combination ate. - 1 .r. power pack for low-power energeney work. The two transformer: are monmed at either end of the chassis. The filter capacitor is at the left, the two reetifier sockets at the crnter and the sibater to the rear. 'The -irenit is shown in Fig. 19-, ${ }^{2}$.

the fact that they do not require filament voltage make them particularly suited to compact lightwight power supplias for portable amergenery work.

Fig. 19-54 shows the cireuit of a vibuator pack that will deliver an output voltage of 400 at 200 ma. It will work with either 11%-volt ac. or (j -volt battery input. The cireuit is that of the familiar volage tripler whose d.e. output voltage is, as a rough approximation, three times the peak voltage delivered by the framsformer or line. An interesting feature of the circuit is the fact that the single transformer serves as the vibrator transformer when opcrating from 6 -volt d.e. supply and as the filament transformer when operating from an a.e. line.

The vibrator transformer, T_{1}, is a dualsecondary 6.3 -volt filament fransformer con-

Fig. 19. $3 \cdot 1$ - ('ircuit diagram of a compaet vibrator-a.c. portable power sulpls using seleninm rectifiers.
$(\therefore$ - $60-\mu$ fal 200 -wolt rectrol tic.

(:3- (ol)-afts, (o) 0)-volt vectrolytic.

$1 \mathrm{R}_{1}-\mathrm{e}, \mathrm{o}, 00$ ohms, 10 watts.

$s_{1}-115$-volt torgle switch.
S_{2} - I.p.d.t. lwave-duty knife switeh.
\mathbf{S}_{3} - 25-amp. s.p.s.t. witch.
J_{1}-Suetext (IT: S.63).
V - Heaveduty vibrator (Cornell-Dıb. 4123).
neeted in reverse. The filament windings must have a rating of 10 amperes if the full load current of 200 ma . is to be used. The vibrator also must be capable of handling the current. The hash-filter choke, L_{1}, must carry a current of 20 amperes.

The following table shows the output voltage to be expected at various load currents, depending upon the size of eapacitors used at C_{1}, C_{2} and C_{3}.

$C_{1,} C_{2}, C_{3}$	Outpul Voltage at			
$(\mu f d)$.	50 ma.	100 ma.	150 ma.	200 ma,
60	455	430	415	395
40	42.5	390	360	330
20	400	340	285	225

In operating the supply from an a.c. line, it is always wise to determine the plug polarity with respect to ground. Otherwise the rectifier part of the circuit and the transformer circuit cannot be connected to actual ground exeept through by-pass capacitors.
(0riginally described in (SS'T by WoCO.)

GASOLINE-ENGINE DRIVEN GENERATORS

For higher-power installations, such as for communications control centers during emergencies, the most practical form of independent power supply is the gasoline-engine driven generator which provides standard 115 -volt (0)-cyele supply.

Such generators are ordinarily rated at a minimum of 250 or 300 watts. They are available up to ten kilowatts, or hig enough to handle the highest-power amateur rig. Most are arranged to charge automatically an auxiliary 6- or 12 -volt battery used in starting. Fitted with self-starters and adequate muflers and filters, they represent a high order of performance and efficiency. Many of the larger models are liquid-cooled, and they will operate continuously at full load.

The output frequency of an engine-driven generator must fall betwern the relatively narrow limits of 50 to 60 cycles if standard (i0-cycle transformors are to operate efficiently from this source. A 60-cycle electric clock provides a means of checking the output frequency with a fair degree of accuracy. The clock is connected across the output of the generator and the second hand is checked closely against the second hand of a watch. The speed of the engine is adjusted until the two second hands are in synchronism.

Output voltage should be checked with a voltmeter since a standard 115 -volt lamp bulb, which is sometimes used for this purpose, is very inaccurate.

Noise Elimination

Electrical noise which maty interfere with receivers operating from engine-driven a.c. generators may be reduced or eliminated by taking proper precautions. The most important point is that of grounding the frame of the
generator and one side of the output. The ground lead should be short to be effective, otherwise grounding may act ually increase the noise. A water pipe may be used if a short connection can be made near the point where the

Fig. 19-5.5 - Connections used for eliminating interference from gas-driven generator plants, C should be 1 μ fil., 300 volts, paper, while C_{2} may be $1 \mu \mathrm{fd}$, with a voltage rating of twice the d.c. output voltage delivered by the generator. X indicates an added connection betweon the slip ring on the grounded side of the line and the generator frame.
pipe enters the ground, otherwise a good separate ground should be provided.

The next step is to loosen the brush-holder locks and slowly shift the position of the brushes while checking for noise with the receiver. Usually a point will be found (almost always different from the factory setting) where there is a marked decrease in noise.

From this point on, if necessary, by-pass caparitors from various brush holders to the frame, as shown in Fig. 1!-55, will bring the hash down to within 10 to 15 por cent of its original intensity, if not entirely eliminating it. Most of the remaining noise will be reduced still further if the high-power audio stages are cut out and a pair of headphones is conneeted into the second detector.

POWER FOR PORTABLES

Dry-cell batteries are the only practical source of supply for equipment which must be transported on foot. From certain considerations they may also be the best source of voltage for a receiver whose filaments may be operated from a storage battery, since no problem of noise filtering is involved.

Their disadvantages are weight, high cost, and limited current capability. In addition, they will lose their power even when not in use, if allowed to stand idle for periods of a year or more. This makes them uneconomical if not used more or less continuously.

Dry " 13 " batteries are made in a variety of sizes and shapes, from a 45 -volt unit weighing about 1 lb . that has an intermittent service rating of 20 hours at a drain of 20 ma ., to a $12-\mathrm{lb}$. unit rated at 130 hours at 40 ma. "A" batteries for filament service range from a 6 -volt unit weighing $1 \frac{1}{2}$ lbs. delivering in intermittent service an average of 60 ma, for 150 hours, to a $61 / 4-\mathrm{Ib}$. 1.5 -volt unit having a service life of 870 hours at 200 ma . Miniature batteries, suitable for hand-portable use, are also available.

Construction Practices

TOOLS AND MATERIALS

While an easier, and perhaps a better, job can be done with a greater variety of tooks available, by taking a little thought and eare it is possible to turn out a fine piece of equipment with only a few of the common hand tools. A list of tools which will be indispensable in the eonstruction of radio equipment will be found on this page. With these tools it should be possible to perform any of the required operations in preparing

INDISPENSABLE TOOLS

Lomg-nose pliers, fi-inch.
Diagonal eutting pliers, 6-inch.
Wire stripper.
Screwdriver, fi- to 7 -inch, $1 / 4$-inch hade.
Screwdriver, t- to $\overline{5}$-inch, $1 / 8$-inch blade.
scrutch awl or seriber for marking lines.
('ombination sguare, 12 -inch, for lasing out work.
lland drill, ${ }^{1}$ - -inch chuck or larger, 2-speed type preferable.
Flectric soldering iron, 100 watts, $1 / 4$-in. tip.
Hack saw, 12-inch blades.
('conter punch for marking bole centers.
llammer, ball-peen, 1-1b, head.
Heaveknife.
Y'ardstick or other straightedge.
('arpenter's brace with adjustable hole cutter or socket-hole punches (see text).
Iarge, coarse, flat file.
Iarge round or rat-tail file, $1 / 2$-inch diameter.
'lhree or four small and medium files-flat, round, half-round, triangular.
Drills, particularly $1 / 1$-inch and Nos. 18, 28, 33, 42 and 50.
Combination oil stone for sharpening tools.
Solder and soldering paste (noncorroding).
Medium-weight machine oil.

ADDITIONAL TOOLS

Bench vise, 4 -inch jaws.

Tin shears, 10 -inch, for eutting thin sheet metal.
Taper reamer, $1 / 2$-inch, for enlarging small holes.
'laper reamer, 1 -inch, for enlarging holes.
Countersink for brace.
C'arpenter's plane, 8- to 12 -inch, for wootworking.
('arpenter's saw, crossetut.
Motor-driven rimery wheel for arinding,
l.ong-shank screwdriver with serew-holding elip for tight plares.
set of "spimite" socket wrenches for hex nuts.
set of small, that. open-end wrenches for hex mits.
Wood chiscl, $1 / 2$-inch.
(cold chise), $1 / 2-\mathrm{itm} h$.
Wing dividers, 8-inch, for scribing circles.
Sot of machine-screw taps and dies.
Justing brush.
Socket punches, esp. 5/8', 3/4 ${ }^{\prime \prime}$, $11 / 8^{\prime \prime}$ and $11 / 4^{\prime \prime}$.
panels and metal fhassis for assembly and wiring. It is an exeellent idea for the amatewe who does constructional work to add to his supply of tools from time to time as finanees permit.

Several of the pieces of light woodworking machinery, often sold in hardware stores and mail-order retail stores, are ideal for amateur radio work, especially the drill press, grinding head, band and circular saws, and joiner. Although not essential, they are desirable should you be in a position to acquire them.

Twist Drills

Twist drills are mate of either high-speed steel or carbon steel. The latter type is more common and will usually be supplied unless sperifie recquest is made for high-speed drills. The earbon drill will suffice for most ordinary equipment construction work and costs less than the high-speed type.

While twist drills are available in a number of sizes those listed in bold-faced type in Table 20-I will be most commonly used in construction of amateur equipmant. It is usually desirable to purehase sereral of each of the commonly-used sizes rather than a standard set, most of wheh will be used infrequently, if at all.

Care of Tools

The proper care of tools is not alone a matter of pride to a good workman. He also realizes the energy which may be saved and the annoyance which may be awoided by the possession of a full kit of well-kept sharp-edged tools.

Drills should be sharpened at frequent intervals so that grinding is kept at a minimum each time. This makes it easier to maintain the rather critical surface angles required for best cutting with least wear. Oceasional oilstoning of the cutting edges of a drill or reamer will extend the time between grindings.

The soldering iron can be kept in good condition by keeping the tip well tinned with solder and not allowing it to run at full voltage for long periods when it is not being used. After each period of use, the tip should be removed and cleaned of any scate which may have accumulated. An oxidized tip may be cleaned by dipping it in sal ammoniac while
hot and then wiping it clean with a rag. If the tip becomes pitted it should be filed until smooth and bright, and then tinned immediately by dipping it in solder.

Useful Materials

Small stoeks of various miscellatheous materials will be required in constructing radio apparatus, most of which are awalable from hardware or radio-supply stores, A representative list follow: :

Sheet alumimm, solid and perforated. If or 18 gauge, for brackets and shielding.
$1 / 2 \times 1 / 2$-inch abluminum angle stork.
$1 / 4$-ineh diameter round brass or aluminum rod for shatt extensions.
Machine screws: Round-head and fiat-head, with muts to fit. Most useful sizes: 4-36, 6-32 and 8-32, in lengths from $1 / 1$ inch to $11 / 2$ inches. (Nickel-plated iton will be found satisfartory except in strong r.f. fields, where brass should be used.)
Bakelite, lucite and polystrrene seraps.
soldering lugs, panel bearings. rubber grommots, torminal-lug wiring strips, var-nished-eambrio insulating tubing.
Shielded and unshiedded wire.
Tinned bare wire, Nos, 22, 14 and 12.
Machine serews, muts, washers, sohlering lugs, etc., are most reasonably purchased in quantities of a gross.

CHASSIS WORKING

With a few essential tools and proper procedure, it will be found that building ratdo gear on a metal chassis is no more of a chore than buideling with wood. and a more satisfactory joh results. Aluminum is to be proferred to sted, not only because it is a superion shiclding material, but beause it is much easier to work and to provide good ehassis contacts.

The placing of components on the chassis is shown quite clearly in the photographs in this IIandbook. Aside from certain essential dimensions, which usually are given in the text, exart duplipation is mot necessary.

Much trouble and energy can be saved by spending suflicicht time in plaming the job, When all details are worked out beforehand

Fig. 20.1 - Method of measuring the heights of con. denser shafts, ete. If the stuare is anjustabli, the end of the scale should be set llash with the face of the head.

Namber	TABLE 20-I Numbered Drill Sizes		
	Diametra (mils)	IIIll $\begin{gathered}\text { bar } \\ \text { srea }\end{gathered}$	Drilled for Thapping Irom. steel or Brass*
1	228.0	-	-
2	221.0	12-24	-
3	293.0	-	14-2.4
4	209.0	12-20	-
5	20.8 .0	-	-
6	304.0	-	-
7	201.0	-	-
8	199.0	-	-
9	116.0	-	-
10	1103.8	10-32	-
11	1! 1 1.0	10-24	-
12	$18 \% .1$	-	-
13	18.3.0	-	-
14	182.0	-	-
13	180.0	-	-
16	187.0	-	12-24
17	173.0	-	
18	169.5	8-32	-
19	16 fi .0	-	12-20
231	1161.0	-	-
$\cdots 1$	159.0	-	10-3:
220	158.0	-	-
23	154.0	-	-
24	15:2.0	-	-
25	189.5	-	10-24
26	117.0	-	-
27	144.0	-	-
28	140.0	6-32	-
29	138.0	-	8-32
311	128.5	-	-
31	120.0	-	-
3:	116.0	-	-
33	113.0	4 36, 4-40	-
34	111.11	-	-
35	110.0	-	6-32
316	1106.5	-	-
817	114.0	-	-
38	101.5	-	-
39	(1930)	3-48	-
10	098.0	-	-
11	096.0	-	-
42	093.5	-	4-36, 4-40
13	(181).0	2-50	-
H	1186.0	-	-
tis	0x:. 0	-	3-48
41	US1.0	-	-
47	178.5	-	-
18	1186	-	-
$4!$	173.0	-	2-56
50	070.0	-	-
S1	007.0	-	-
5	003.5	-	-
53	0.09 .5	-	-
54	05.50	-	-

the actual construction is greatly simplified.
Cower the top of the chassis with a piece of wrapping paper or, preferably, cross-section paper, folding the edges down over the sides of the chassis and fastening with adhesive tape. Then issemble the parts to be mounted on top, of the chassis and move them ahout until a satisfactory arrangement has been found, keeping in mind any parts which are to be mounted underneath, so that interferences in mounting may be aroided. Phace condensers and other parts with shafts extending through the panel first, and arrange them so that the controls will
form the desired pattern on the panel. Be sure to line up the shafts squarely with the chasis, front. Locate any partition shicelds and panel brackets next, and then the tube sockets and any other parts, marking the mounting-hole centers of each accurately on the paper. Watch ont for condensers whose shafts are off center and do not line up with the mounting holes. Do not forget to mark the centers of socket holes and holes for leads under i.f. transformers. ate, as well as holes for wiring leads. The smatl holes for socket-mounting serews are best located and renter-punched, using the socket itself as a template, after the main center hole has heern cut.

By means of the square lines indicating accurately the centers of shafts should be extended to the front of the chassis and marked on the panel at the chassis line, the pancl being fastened on temporarily. The hole centers may then be punched in the chassis with the renter punch. After drilling. the parts which require mounting underneat may be located and the monnting holes drilled. making sure by trial that mo interferences exist with parts momated on top. Mounting holes along the front edge

Fis. $20-2$ - To cut rertangular holes in a chassis corner, holes may be filed out as shown in the shated portion of 13 , making it possible to start the hack-saw blale along the cutting line. A shows how a single. ended hande may be constructed for a hack-san hitade.
of the chassis should be transferred to the pancl, by once again fastoning the panel to the chassis and marking it from the rear.

Next, mount on the chassis the rondensers and any other parts with shafts extending to the pancl, and measure acourately the height of the center of each shaft abowe the rhassis, as illustrated in Fig. 20-1. The horizontal displacement of shafts having already been marked on the chassis line on the panel, the vertical displacement can be measured from this line. The shaft centers may now be marked on the back of the panel, and the holes drilled. Holes for any other panel equipment coming above the chassis line may then be marked and drilled, and the remainder of the apparatus: monnted. Holes for torminals etc., in the rear edge of the chassis shomd be marked and drillewt at the same time that they are done for the top.

Drilling and Cutting Holes

When drilling holes in metal with a hand drill it is important that the centers first be located with a conter punch, so that the drill point will not "walk" away from the center when starting the hole. When the drill starts to break through, special care must be used. Often it is an advantage to shift a two-speed drill to low gear at this point. Ifoles more than $1 / 4$ inch in diameter may bestarted with a smaller drill and reamedout with the larger drill.
The chuck on the usual twpe of hand drill is limited to $1 / 4$-inch drills. Although it is rather tedious, the $1 / 4$-inch hole may be filed out to larger diameters with round files. Another method possible with limited tools is to drill a series of small holes with the hand drill along the inside of the diameter of the large hole, placing the holes as close together as possible. The center may then be knocked out with a cold chisel and the edges smoothed up with a file. 'Taper reamers which fit into the earpenter's brace will make the job easiar. A large rattail file clamped in the brace makes a very good reamer for holes up to the diameter of the file. if the file is revolved counterdoekwise.

For socket holes and other large round holes, ath adjustable cutter designed for the purpose may be used in the brace. Oceasional applieation of machine oil in the entting groove will help. The cutter first should be tried out on a block of wood, to make sure that it is set for the corred diameter. The most convenient device for cutting socket holdes is the socket-hole punch. The best type is that which works by turning a takicoup serew with a wrench.

Rectangular Holes

Square or rectangular holes may be eut out by making a row of small holes as previously deseribed, but is more easily done by drilling a \quad orinch hole inside eateh cornor, as illustrated in ligg. 20-2. and using these holes for starting and toming the hacksaw. The sockethole punch and the square punches whith are now a vailable also may be of considerable assistane in coutting out large rectangular openings. The burrs or rough edges which usually result after drilling or cutting holes may be removed with a file. or sometimes more eonveniently with a sharp knife or chisel. It is a good idea to keep an old wood chisel sharpened and available for this purpose. A burr reamer will also be useful.

CONSTRUCTION NOTES

If a eontrol shaft must be extended or insulated, a flexible shaft coupling with adequate insulation should be used. Satisfactory support for the shaft extension can be providerl by means of a metal panel bearing made for the purpose. Never nse pancl bearings of the nonmetal type unless the eondenser shaft is gromaded. The metal bearing shomil be connectcol to the chassis willa aire or groumling strip.

This prevents any possible danger of shock.
The use of fiber washers between ceramic insulation and metal brackets, screws or nuts will prevent the coramic parts from breaking.

Cutting and Bending Sheet Metal

If a sheet of metal is too large to be cut comveniently with a hack saw, it may be marked with scratches as deep as possible along the line of the cut on both sides of the shect and then champed in a vise and worked back and forth until the sheet breaks at the line. Do not carry the bending too far until the break begins to weaken; otherwise the edge of the sheet may become bent. A pair of iron bars or pieces of heavy angle stock, as long or longer than the width of the sheet, to hold it in the vise will make the jol casier. "C"-clamps may be used to kerep the bars from spreading at the ends. The rough edges may be smoothed up with a file or by placing a large piece of emery rloth or sandpaper on a flat surface and running the edge of the metal back and forth over the sheet.

Bends may be made similarly. The sheet should be seratched on both sides, but not so deeply as to cotuse it to break.

Finishing Aluminum

Aluminum chassis, manels and parts may be given a sheen finish bey treating them in a caustio; bath. An enamelled eontainer, such as a dishan or infant's bathtub, should be used for the solution. Dissolve ordinary household lye in cold water in a proportion of $1 / 4$ to $1 / 2$ can of lye per gatlon of water. The stronger solution will do the job more rapidly. Stir the solution with a stick of wool until the lye erystals are complete dissolved. be very caroful to avoid any skin contact with the solution. It is also harmful to clothing. Sufficient solution should be prepared to eover the piece completely. Whem the aluminum is immorsed, a very pronounced bubbling takes plate and ventilation should be provided to disperse the escaping gas. A half hour to two hours in the solution should be suflieient, depending upon the strength of the solution and the desired sturface.

Remove the aluminum from the solution with sticks and rinse thoroughly in cold water while swabling with a ratg to remove the black deposit.

DECIMAL EQUIVALENTS OF FRACTIONS			
1/32.	.0312i	17.32.	. 33125
1/16.	.062,	116	.819\%
3 '32.	00037-7	1932	.09478
1 '8.	.12;	; 8.	. $\%$ \%
532.	.1802\%	$31: 82$	
316	.1875	111	.tis\%
732.	$\therefore 187.7$	3:3: 3	.7187.
14	. \because	34.	
983.	$\therefore 812$.	?	.7813-7
516.	.312.;	13	.x1?
1132	. 31387.5	2783	. 513775
38	.37.)	78	.87\%
1332.	.4069-9	2:13:	.1042\%
716	.437.	1.71	. 0375
15/32.	. 418875	3132.	. 36875
$1,2$.		1.	

Then wipe off with a rag soaked in vinegar to remove any stubhorn stains or fingerprints. (beo May, 1950, QS'T for a method of coloring and anodizing aluminum.)

Soldering

The secret of good soldering is in allowing time for the juint, as well as the solder, to attain sufficient temperature. Enough heat should be applied so that the solder will molt when it comes in contact with the wires being joined. without touching the solder to the iron. Always use rosin-core solder, never arid-eore. Dixeept where absolutely neeessary, solder shouk never be depented upon lor the merhanical st rength of the joint: the wire should be wrapped around the terminals or clamped with soldering terminals.

When soldering erystal diodes or carbon resistors in place, especially if the leads have been rut short and the resistor is of the small $1 / 2$-watt size, the resistor lead should be gripped with a pair of pliers up close to the resistor so that the heat will he conducted away from the resistor. Overheating of the resistor while soldering can cause a permanent resistance change of as much as 20 per rent. Also, merhanical stress will have a similar effect, so that a small resistor should he mounted so that there is no appreciable merhanieal strain on the leads.

Trouble is sometimes experienced in soldering to the pins of coil-forms or male cable plugs. It helps first to tin the inside of the pins by applying soldering piste to the hole, and then flowing solder into the pin. Then immediately glour the solder from the hot pin by a whipping motion or by blowing through the pin from the inside of the form or plug. belore inserting the wire in the pin, file the niekel plate from the tip. After soldering, round the solder tip off with a file.

When soldering to sookets, it is a good idea to have the tube or coil form inserted to prevent solder ruming down into the sooket prongs. It also helps to conduet the heat away when soldering to polystyrene sockets, which often solten under the heat of the irom.

Wiring

The wire used in ('onnerting up amateur equipment should be selected ronsidering both the maximum current it will be called upon to handle and the voltage its insulation must stand without breakdown. Also, from the consideration of TVI, the power wiring of all transmitters should be done with wire that has a braided shielding cover. Receiver and atudio cirruits may also reguire the use of shiedded wire at some points for stability, or the elimination of hum.

No. 20 stranded wire is eommonly used for most receiver wiring (except for the highfrequency (ireuits) where the current does not exceed 2 or 3 ampores. For higher-auront heater circuits, No. 18 is available. Wire with collulose acetate insulation is good for voltages up to about 500. For higher voltages, thermoplastic-insulated wire should be used. Inexpensive wire strippers that make the removal of insulation from hook-up

Fip. 201-3- Cablestripping dimensiens for Jom's 'Type P-101 phags. Smaller dimensions are for $1 / 4$-inch plugs, the larger dimensions for 1 -inch plages. Is indicated in ©, ther remaining copper hiraid is wound with bare or timed wire to mahe a sung lit in the sleeve of the plate.
wire ant (ass job) are available on the matrot.
In rates where power leads have several branches in the chassis, it is comvenient to use fiber-insulated tie points or "lug strijs" as :unchorages or jumetion points. Strips of this tupe are also useful as insulated supports for resistors, r.f. chokes and comdensers. High-voltage wiring should have exposed points held to a minimum, and those which commot be avoided should be rendered as inameressible as possible to amedental contated or short-rideruit.

Where shiedded wire is catled for :und capacitance to ground is not a factor, Buden tyon 888 in shiolded grid wire mats be used. If capabetathee must be minimized, it may be neressary to use a piere of car-radio low-rapacitance lead-in wire, or cosxial cable.

For wiring high-frequency cireuits, rigid wire is oftorn used. Bare soft-dtawn tinned wire, sizes 22 to 12 (depending on meehatnieal requirements), is suitable. Kinks ewn be removed by stretehing a piere 10 or 15 fere long and then rutting into short lengt he that rin be hataded ronveniently. R.f. wiring should be run directly from point to point with a minimum of shatp bends and the

Fig. 20-4 - Dimensions fur stripping $1 / 2$-inch calle to fit Amphenol 'l'ype 83-1sP' (P1.259) plug.

rifs, 20-5- Vathod of assembling $1 / 4$-inch ealle, Am. phonol 'rype 83-1SP (P1-259) plug and adapter.
wire kept well spared from the chassis or other grounded metal surfares. Where the wiring must pass through the chassis or a patition, at clearance hole should be cut and lined with a rubler grommet. In case insulation becomes neressary, varnished cambre tubing (spoughetti) can be slipper ower the wire.

In transmitters where the park voltage does not exced 2500 volts, the shied ded grid wire mentioned above should be satisfactory for power rimuits. For higher voltages, Belden type Sobti, Bimbath tape 1820, or shielded ignition (ablle can be used. In the case of filament circuits carrving heavy current, it may be neressary to use No. 10 or 12 batre or enameled wire, slipped through spaghetti, and then covered with copper braid pulled tightly over the spaghetti. The chapter

Fig. 20.6-Stripping dimensions for Amphenol 82-830 and 82-832 plug-in eonnectors. The longer exposed liraid is for the first type.

Fig. 20.7 - Mathorls of lacing eables. The method shown at (: is more secure. lut takes more time than the method of B. The latter is usially adequate for most amator reguirements.
on 'IVI shows the minner in which shielded wire should be ipplied. If the shioding is simply slid back over the insulation and solder fowed into the end of the braid, the braid usuatly will stay in plare without the neressity for rutting it back or binding it in plane. The braid should be burnished with sumpaper or a knife so that solder will take with a minimum of heat to protect the insulation underneath.
R.f. wiring in transmitters usually follows the method described above for roceivers with due respert to the voltages involved.

Power and control wiring external to the transmitter chassis preferably should be of shiedted wire bound into a cable. Fig. 20-7 shows the correct methods of laceing cables.

Coaxial Plug Connections

Considerable time and trouble can be sived in making (ablle comertions to concxial pluges by starting out with the correct stripping dimonsions. lig. 20-3 shows how the end of the cable should be prepated for comoceting to Jomes Type P-101 plugs. After the exposed braid has been wound, it should be carofilly timed, applying no more heat than is neressary, to aboid melting the inmer insulation. A small amonnt of solder also slould be flowed into the slereve of the plug. Then, when the eathe is inserted in the sle seve, the connection can be mado sereure by holding the iron against the sleeve until the solder inside molts. While joining the two, the ploge mity be
held by inserting it in a hold drilled in a board. liges. 20-4, 20-5 and $2(-6)$ show details of conneretions to different types of Amphemol plugs and adapters. In Fig. 2(1)-1, it is easiest to cut through to the wire with a sharp knife at a distance of 13 后 inch from the end of the wire and remove the insulation and shickling in one piece. Then slice off a , /i6-inch piece of polyothyene which mat be slid back onto the wire.

Alter the batid in Fig. 20-5 hats been frayed batck, it will be ureessary to file the brad down as murh as possible to make it fit the plug.

COMPONENT VALUES

Values of composition resistors and small eondensers (micat and ecramic) are specified throughout this Mandbook in terms of "preforred values." In the prefermed-number system, all values represent (approximately) a constant-pereentage inerease over the next lower value. The base of the system is the number 10. Only two significant figures are used. Table 2\%-11 shows the preferred values based on tolerance steps of 20,10 and 5 per eent. All other values are expressed by multiplying or dividing the base figures given in the table by the appropriate power of 10 . (For example, resistor values of 33,000 ohms, 6800 ohms, and 150 ohms are obtatned by multiplying the hase figures by 1000 , 100 , and 10 , respetively.)
"Polerance" means that a variation of plus or minus the percentage given is considered satisfactory. lomexample, the act ual resistance of a " $4700-$ ohm" 20 -per-cent resistor can lie atuwhere between 3700 and 5600 ohms, approximately. The permissible variation in the sather resistathee value with j-per-rent tolerance

Standard Component Values		
$20{ }^{\circ}$; Tomerance	10'; Tollemine	$\stackrel{5}{\text { Tun }}$
10	111	$\begin{aligned} & 111 \\ & 11 \end{aligned}$
	12	119
15	15	15
	18	18
2-	22	? 2
		24
	27	-7
33	33	33
		34
	39	$3: 1$
		43
47	47	47
		51
	51	314
		(i)
188	68	(i8
		75
	8:	S2
		91
100	100	100

would be in the range from 4500 to 4900 ohms, approximately.

Only those values shown in the first column of Table 20 -1I are available in 20 -per-cent tolerance. Additional values, as shown in the second column, are available in 10 -per-cent tolerance; still more values can be obtained in 5-per-cent tolerance.

In the component specifications in this IIarulbook, it is to be understood that when no tolerance is specified the largest tolerance available in that value will be satisfact ors.

Values that do not fit into the preferrednumber system (such as $500,25,000$, ete.) easily can be substituted. It is obvious, for example, that a 5000 -ohm resistor falls well within the tolerance range of the 4700 -ohm 20-per-cent resistor used in the example above. It would not, however, be usable if the tolerance were specified as $\mathbf{5}$ per cent.

COLOR CODES

Standardized color codes are used to mark values on small components such as composition resistors and mica condensers, and to identify leads from transformers, ete. The resistor-condenser number color code is given in Table 20-III.

Fixed Condensers

The methods of marking "postage-stamp" mica condensers, molded paper condensers, and tubular ceramic condensers are shown in Fig. 20-8. Condensers made to American War Standards or Joint Army-Navy specifications are marked with the 6 -dot code shown at the top. Practically all surplus condensers are in this category. The 3-dot IRETMA code is used for eondensers having a rating of 500 volts and $\pm 20 \%$ tolerance only; other ratings and tolerances are rovered by the 6-dot RI'TMA code.
Examples: A condenser with a 6-dot code has
the following markings: Top row, left to right,
black, vellow, violet; bottom row, right to left,
brown, silwer, red. Since the first color in the top
row is back (significant figure zero) this is the
AW's code and the condenser has miea dielectric.
The significunt figures are 4 and 7 , the decimal
multiplier 10 (brown, at right of seeond row),
so the capacitance is $470 \mu \mu \mathrm{f}$ The tolerance is
$\pm 10 \% / 2$. The final color, the characteristic, deals
with temmerature corflicionts and methods of
testing, and may be ignored.
A condenser with a 3 -dot code has the follow-
ing colors, left to right: brown, blaek, red. The
significant figures are 1.0 (10) and the multiplier
is 100 . The capacitance is therefore $1000 \mu \mu$ f.
A condenser with a 6 -dot code hats the fol-
lowing markings: Top row, left to right, brown,
black, black; bottom row, right to left, black,
gold, blue. Since the first color in the top, row is
neither black nor siwer, this is the REIMA code.
The significant figures are $1,0,0(100)$ and the
decimal multipler is 1 (black). The capapitance
is therefore $100 \mu \mu$. The gold dot shows that
the tolerance is $\pm 5 \%$ and the hlue dot indicates
600 -volt rating.

Ceramic Condensers

Conventional markings for ceramie con-
densers are shown in the lower drawing of Fig. 20-8. The colors have the meanings indicated in Table $20-I V$. In practice, dots may be used instead of the narrow bands indicated in Fig. 20-8.

Example: A ceramic condenser has the following markings: Broad band, violet; narrow bands or dots, green, brown. black, green. The significant figures are 5, 1 (51) and the decimal multiplier is 1 . so the capacitance is $51 \mu \mu$. The temperature cocllicient is -750 parts per million per degree C., as given by the broad hand, and the capacitance tolerance is $\pm 5 \%$.

Fixed Composition Resistors

Composition resistors (including small wirewound units molded in cases identical with the composition type) are color-coded as shown in

AWS and JAN fixed capacitors

RETMA 3-dot 500 -volt, $=20 \%$ tolerance only

Fig. 20-8-Color coding of fixed mica, molded paper, and tulular ceramic condensers, The color code for mica and molded paper condensers is given in Table 20 -III. T'able $20-1 \mathrm{~V}$ gives the color code for tubular ceramic condensers.

Figg. 20.9 - Color coding of fixed composition resistors. The color code is given in 'rable 20-1II. The colorad areas have the following significance:
A - First significant figure of resistance in olms.
B - Second significant figure.
C-Decimal multiplier.
D-Resistance tolerance in per cent. If no color is shown, the tolerance is $\pm 20 \%$.

Fig. 20-9. Colored bands are used on resistors having axial leads; on radial-lead resistors the colors are placed as shown in the drawing. When bands are used for color coding the body color has no significance.
Examples: A resistor of the type shown in the
lower drawing of Fig. 20-9 has the following
color bands: A. red; I3, red; C, orange; I), no
color. I'he significant figures are 2,2 (29) and the
decimal multiplier is 1000 . The value of resist-
ance is therefore 22.000 ohtens and the tolerance
is $\pm 20 \%$.
A resistor of the type shown in the upper draw-
ing has the following colors: body (A), blue;
end (B). grav; dot, red: end (D), gold. The
significant figures are (6, 8 (68) and the decimal
multiplier is 100 , so the resistance is 6800 ohms.
The tolerance is $\pm 5 \%$.

I.F. Transformers

Blue - plate lead.
Rerl-" 3 " + lead.
Green - grid (or diode) lead.
Black - grid (or diode) return.
Note: If the secondary of the i.f.t. is centertapped, the second diode phate lead is green-

Color	TABLE 20-III Resistor-Condenser Color Code			
	Sionificant Figure	at Decimal Multiplier	Tolerance (\%)	Voltage Rating*
13lack	0	1	-	-
13rown	1	10	1*	100
Red	2	100	2*	200
Orange	3	1000	3*	300
Vellow	4	10,000	4*	400
Green	5	100,000	5*	500
Blue	6	1,000,000	6*	000
Violet	7	10,000,000	7*	700
Gray	8	100,000,000	8*	80
White	91	1.000,000,000	9^{*}	900
Gold	-	0.1	5	1000
Silver	-	0.01	10	2000
No color	-	-	20	500
* Applies to condensers only.				

TABLE 20-IV Color Code for Ceramic Condensers					
Color	Significant Figure	Decimal Hultiplier	Capacilance Tolerance		$\begin{aligned} & \text { Temp. Coeff. } \\ & \text { p.p.m./deg } \\ & \text { C. } \end{aligned}$
			More than $10 \mu \mu$ f. (in \%)	Lees than $10 \mu \mu f$. (in $_{\mu \mu f \text {.) }}$	
Black	0	1	± 20	2.0	0
Brown	1	10	± 1		-30
Red	2	100	± 2		-80
Orange	3	1000			-150
Ycllow	4				-220
Green	5		± 5	0.5	-330
Blue	6				-470
Violet	7				-750
Gray	8	0.01		0.25	30
White	9	0.1	± 10	1.0	500

and-black striped, and black is used for the center-tap lead.

A.F. Transformers

Blue - plate (finish) lead of primary.
Red - "13" + lead (this applies whether the primary is plain or center-tapped).
Brown - plate (start) lead on center-tapped primaries. (Blue may be used for this lead if polarity is not important.)
Green - grid (finish) lead to secondary.
Black - grid return (this applies whether the secondary is plain or center-tapped).
Yellow - grid (start) lead on center-tapped secondarios. (Green may be used for this lead if polarity is not important.)

Note: These markings apply also to line-togrid and tube-to-line transformers.

Loudspeaker Voice Coils

Green - finish.
Black - start.

Loudspeaker Field Coils

Black and Red - start.
Yellow and Red-finish.
Slate and Red - tap (if any).

Power Transformers

1) Primary Ieads Black If tapped:

Common. Black Tap........ . Black and Yellow Striped Finish. Black and Red Striped
2) High-Voltage Pate Winding Red

Conter-Tap. . Red and Yellow Striped
3) Rectifier Filament Winding. Yellow

Conter-Tap. . Yellow and Blue Striped
4) Filament Winding No. 1...... . . . Green Center-Tap. . Green and Yellow Striped
5) Filament Winding No. 2. Brown Center-Tap. Brown and Yellow Striped
6) Filament Winding No. 3. Slate Center-Tap. . . Slate and Y'ellow Striped

COPPER-WIRE TABLE

Gauge No. B. \& S.	Diam. in :fils ${ }^{1}$	$\begin{gathered} \text { Circular } \\ \text { Mil } \\ \text { Area } \end{gathered}$	Turns per Linear Inch ${ }^{2}$				Turns per Situare Inch ${ }^{2}$			Feet per Lb.		$\begin{gathered} \text { Ohms } \\ \text { per } \\ 1000 \mathrm{ft} . \\ 25^{\circ} \mathrm{C} . \end{gathered}$	Current Carrying Capacily ${ }^{3}$ at $\gamma 00$ C.M. per Amp.	Diam. in mm .	Nearest British s.W.G. No.
			Enamel	S.S.C. ${ }^{4}$	$\begin{aligned} & \text { D.S.C. }{ }^{5} \\ & \text { or } \\ & \text { S.C.C. } \end{aligned}$	D.C.C. ${ }^{7}$	S.C.C.	Enamel S.C.C.	D.C.C,	Bare	D.C.C.				
1	289.3	83990	-	-	-	-	-	-	-	3.947	-	. 126.4	119.6	7.348	1
2	257.6	6i6370	-	-	-	-	-	-	-	4.977	-	. 1593	94.8	6. 5.44	3
3	29.4	52640	-	-	-	-	-	-	-	6.276	-	. 20009	75.2	5.827	4
4	204.3	41740	-	-	-	-	-	-	-	7.914	-	. 25333	59.6	5. 189	5
5	181.9	33100	-	-	-	-	-	-	-	9.980	-	. 3108	47.3	4.621	7
6	162.0	29250	-	-	-	-	-	-	-	12.58	-	. 4028	37.5	4.115	8
7	144.3	$\because 0820$	-	-	-	-	-	-	-	15.87	-	. 51080	29.7	3.685	9
8	128.5	16310	7.6	-	7.4	7.1	-	-	-	20.01	19.6	.610.)	23.6	3.264	10
9	114.4	13090	8.6	-	8.2	7.8	-	-	-	25.23	24.6	. 8077	18.7	2.906	11
10	101.9	10:380	9.6	-	0.3	8.9	87.5	84.8	80.0	31.82	30.9	1.018	14.8	2.588	12
11	90.74	8:34	10.7	-	10.3	9.8	110	105	17.5	40.12	38.8	1.284	11.8	2.305	13
12	80.81	(6)30	12.0	-	11.5	10.9	136	131	121	50.59	48.9	1.619	9.33	2.0 .73	14
13	71.96	5178	13.5	-	12.8	12.0	170	162	150	(i3. 3.80	61.5)	2.142	7.40	1.828	1.5
14	64.08	4107	15.0	-	14.2	13.8	211	198	183	80.44	77.3	2.27 .5	5.87	1.628	16
15	57.07	32.57	16.8	-	15.8	14.7	262	250	223	101.4	97.3	3.217	4.6 .5	1.470	17
16	50.82	2583	18.9	18.9	17.9	16.4	321	306	271	127.9	119	4.094	3.69	1.291	18
17	45.26	2048	21.2	21.2	19.9	18.1	397	372	32!	161.3	150)	5.103	2.93	1.150	18
18	40.30	1624	23.6	23.6	22.0	19.8	493	4.54	399	203.4	188	6.510	2.32	1.024	19
19	35.89	1288	26.4	26.4	24.4	21.8	$5!2$	55.3	479	25.6 .5	237	8.210	1.84	. 9116	20
20	31.96	1022	29.4	29.4	27.0	23.8	775	725	62\%	323.4	298	10.35	1.46	. 8118	21
21	28.46	810.1	33.1	32.7	29.8	26.0	940	885	75.4	407.8	370	13.05	1.16	. 7230	22
22	25.35	642.4	37.0	30.5	34.1	30.0	1150	1070	910	514.2	461	16.46	918	. 6438	23
23	22.57	009.5	41.3	40.6	37.6	31.6	1400	1300	1080	618.4	584	20.76	. 728	. 5733	24
24	20.10	404.0	46.3	45.3	41.5	35.6	1700	1570	1260	817.7	745	26.17	. 577	. 2106	25
25	17.90	320.4	51.7	50.4	45. 6	38.6	2060	1910	1510	1031	903	33.00	. 458	. 4547	26
26	15.94	254.1	58.0	55.6	50.2	41.8	2500	2300	1760	1300	1118	41.62	. 3 f3	. $40+9$	27
27	14.20	201.5	64.9	61.5	55.0	45.0	3030	2780	2020	1639	1422	52. 48	. 288	. 36000	29
28	12.64	159.8	72.7	68.6	60.2	48.5	3670	3350	2310	2067	1759	66.17	. 228	. 3211	30
29	11.26	126.7	81.6	74.8	65.4	51.8	4300	3900	2700	2 6 07	2207	8:3.44	. 181	.2859	31
30	10.03	100.5	90.5	83.3	71.5	55.5	5040	4660	3020	3287	25.34	105.2	. 144	.2516	33
31	8.928	79.70	101	92.0	77.5	59.2	5920	5280	-	4145	2768	132.7	. 114	2268	34
32	7.950	(i3.21	113	101	83.6	62.6	7060	6250	-	5227	31.37	167.3	. 090	. 2019	36
33	7.080	50.13	127	110	90.3	66.3	8120	7390	-	(65\%)	4697	211.0	. 072	. 1798	37
34	6.305	39.75	143	120	97.0	70.0	9600	$8: 310$	-	8310	6168	206.0	. 0.57	. 1601	38
35	5.615	31.52	158	132	104	73.5	10900	8700	-	10480	63.37	335.0	. 045	. 1426	38-39
36	5.000	25.00	175	143	111	77.0	12200	10700	-	13210	7877	423.0	. 036	. 1270	30-40
37	4.453	19.83	198	15.4	118	80.3	,	,	-	19660	0300	533.4	. 028	. 1131	41
38	3.965	15.72	22.4	166	126	83.6	-	-	-	21010	10666	${ }^{672.6}$. 022	. 1007	42
39	3.531	12.47	248	181	133	86.6	-	-	-	26500	11907	848.1	. 018	. 0897	43
40	3.145	9.88	282	194	140	89.7	-	-	-	33410	14222	1069	. 014	. 0799	44

[^7] mils per ampere is a satisfactory design figure for small transformers, but values from 500 to $1000 \mathrm{C} . \mathrm{M}$. are commonls used. For $1000 \mathrm{C} . \mathrm{M}$./amp. divide the circular mil area (third column) by 1000 ; for $500 \mathrm{C} . \mathrm{M}$./amp. divide circular mil area by 500 . 4 Single silk-covered. 5 Double silk-covered. 6 Single cotton-covered. 7 Double cotton-covered.

Measurements

It is practically impossible to operate an amateur station without making measurements at one time or another, and quite crude methods often will suffice. However, the more refined the measuring equipment and methods, the more information can be olstained, and with more information at hand it beeomes possible to adjust a piece of equipment for optimum performanere more quickly and surely. Measuring and test equipment is especially valuable in buidding and in the initial adjustment of radio gear, and in locating and correrting breakdowns and faults.

The basic measurements are those of current, voltage, and frequency. Determination of the values of circuit elements - resistance, inductance and capacitance - are almost equally important. The inspection of waveform in audiofrequency circuits is highly useful. For these purposes there is available a wide assortment of instruments, both complete and in kit form; the latter, particularly, compare very favorably in cost with strictly home-built instruments and are
frequently more satisfactory both in appearance and calibration. The instruments deseribed in this chapter are ones having features of particular usefulness in amateur applications and not usually included in commerciatly available models.

In using any instrument it should always be kept in mind that there is no surh thing ats an "absolute" measurement, and that measurements depend not only on the inherent aceuracy of the instrument itself (which, in the case of commercially built units is usually within a few per cent, and in any event should be speecified by the manufareturer) but also the conditions under which the measurement is made. Large errors can be introduced by failing to recognize the existence of conditions that affect the instrument readings. The instrument can only record what it sees and what it sees may be something quite different from what the operator thinks it sees. This is particularly true in certain types of r.f. measurements, where there are many stray effects that are hard to eliminate

D.C. Measurements

A direct-current instrument - voltmeter, ammeter, milliammeter or mieroammoter-is a device in which magnetic foree is used to deflect a pointer over a calibrated seale in proportion to the current flowing. In the D'Arsonval type a coil of wire, to which the pointer is attached. is pivoted between the poles of a permanent magnet, and when current flows through the coil it causes a magnetic field that interacts with that of the magnet to cause the coil to turn. The turning force is excrted against a spiral spring attached to the coil and the pointer deflertion is directly proportional to the current.

A less expensive type of instrument is the moving-vane type, in which a pivoted iron vane is pulled into a coil of wire by the magnetic field set up, when current flows through the coil. The farther the vane extends into the coil the greater the magnetic force on it, for a given change in current, so this type of instrument does not have "linear" deflection - that is, the scale is eramped at the low-current end and spread out at the highcurrent end.

The same basic instrument is used for measuring either current or voltage. Good-cuality instruments are made with fairly high sensitivity that is, they give full-seale pointer deflection with very small currents - when intended to the used as voltmeters. The sensitivity of instruments intended for measuring large currents can be lower, but a highly sensitive instrument can be, and frequently is, used for measurement of currents much greater than needed for full-scale
deflertion.
Panel-mounting instruments of the ly'Arsonval type will give a lower deffection when mounted on iron or steel panels than when mounted on nonmagnetic material. Readings maty be as much as ten percent low. Specisally eablibrated meters should be obtained for mounting on such panels.

VOLTMETERS

Only a fraction of a volt is required for fullseale deflection of a sensitive instrument (1 mil liampere or less full scale) so a high resistance is connected in series with it, Fig. 21-1, for measur-

Fig. 21-1- How voltmeter maltipliers and milliam. meter shunts are connected to extend the range of a d.c.meter.
ing voltage. Knowing the current and the resistance, the voltage can casily be calculated from Ohm's Law. The meter is calibrated in terms of the voltage drop across the series resistor or multiplier. Practically any desired full-scale
voltage range can be selected by proper choice of multiplier resistance, and voltmeters frequently have several ranges selected by a switch.

The sensitivity of the voltmeter is usually expressed in "ohms per volt." A sensitivity of 1000 ohms per volt means that the resistance of the voltmeter is 1000 times the full-scale voltage. and hy ohm's Law the current required for fullscale deflection is 1 milliampere. A sensitivity of 20.000 ohms per volt, another eommonly used value, moans that the instrument is a 50 -microampere meter. The higher the resistance of the voltmeter the more accurate the measurements

Fig. 21.2-Effect of voltmeter resistance on acemracy of readings. It is assumed that the d.c. resistance of the sereen circuit is eonstamt at 100 kilohms. The actual eurrent and voltage without the voltmeter ennnected are 1 man. and 100 volts. The voltmeter readings will differ because the different types of meters draw different amounts of eurrent through the 150 -kilohm resistor.
in high-resistance circuits. This is because the current flowing through the voltmeter will cause a change in the voltage between the points across which the meter is connected, compared with the voltage with the meter absent, as shown in Fig. 21-2.

The required multiplier resistance is foum by dividing the desired full-scale voltage be the current, in amperes, required for full-scale deflection of the meter alone. Strictly, the internal resistance of the meter should be subtracted from the value so found, but this is seldom necessary (exeept perhaps for very low ranges) because the meter resistaner will be negligibly small compared with the multiplier resistance. An execption is when the instrument is already provided with an internal multiplier, in whieh ease the multiplier resistance required to extend the range is

$$
R=R_{m}(n-1)
$$

where R is the multiplier resistance, R_{m} is the total resistance of the instrument itself, and n is the factor by which the scale is to be multiplied. For example, if a 1000 -ohms-per-volt voltmoter having a calibrated range of $0-10$ volts is to be axtended to 1000 volts, $R_{\text {m }}$ is $1000 \times 10=$ 10,000 ohms, n is $1000 / 10=100$, and $R=$ $10,000(100-1)=990,000$ ohms.

If a milliammeter is to be used as a voltmeter, the value of series resistance can be found by Ohm's Law:

$$
R=\frac{1000 E}{I}
$$

Where E is the desired full-scale voltage and I
the full-scale reading of the instrument in milliamperes.
The aecuracy of a voltmeter depends on the calibration accuracy of the instrument itsel: and the accurary of the multiplier resistors. Precision wire-wound resistors are used in high-quality. instruments, but for most purposes standard $1 / 2-$ or l-watt composition resistors will make an acerptable and conomical substitute. Such resistors are supplied in tolerances of $\pm 5,10$ or 20 per cent. By obtaining matched pairs from the dealer's stock, one of which is, for example, 4 per cent low while the other is 4 per cent high, and using the pairs in parallel or series to obtain the required value of resistance, good aceuradey can be obtained at small cost. Migh-voltage multipliers are preferably made up of several resistors in series; this not only raises the breakdown voltage but tends to average out errors in the individual resistors.

- MILLIAMMETERS AND AMMETERS

A microammeter or milliammeter can be used to measure currents larger than its full-scale reading by connecting a resistance shunt across its terminals as shown in Fig. 21-1. This diverts part of the current through the shunt, and the total current is the sum of that through the shunt and that through the meter. Knowing the meter resistance and the shunt resistance. the relative currents can easily be calculated.

The value of shunt resistance required for a given full-scale current range is given by

$$
R=\frac{R_{m}}{n-1}
$$

where R is the shunt, R_{m} is the internal resistance of the meter, and u is the factor by which the original meter scale is to be multiplied. The intermal resistance of a milliammeter is preferably determined from the manufacturer's catalog, but if this information is not available it can be determined by the method shown in Fig. 21-3. Do not use an ohmmeter to measure the internal resistance of a milliammeter; it may ruin the instrument.

Fig. 21-3- Determining the internal resistance of a milliammeter or microammeter. R_{1} is an adjustable resistor having a naximum value abont twice that necessary for limiting the current to full seale with K_{2} diseonnected; adjust it for exactly full-scale reading. Then connect R_{2} and aljnst it for exaetly half-scale reading. The resistance of R_{2} is then equal to the internal resistance of the meter, and the resistor may be removed from the circuit and measured separately. Internal resistanees vary from a few ohms to several hundred ohins, depending on the sensitivity of the instrument.

Homemade milliammeter shunts can be constructed from any of the various special kinds of resistance wire, or from ordinary copper wire if no resistance wire is available. The (opper Wire 'Table in this IIandbook gives the resistance per 1000 feet for various sizes of copper wire. After computing the resistance required, determine the smallest wire size that will carry the full-scale current (at 250 cireular mils per ampere). Measure off enough wire (pulled tight but not stretched) to provide the required resistance. Aceuracy can be cherked by causing enough current to flow through the meter to make it read full seale without the shumt ; connerting the shunt should then give the correct reading on the new full-scale range.

Any current-measuring instrument should have very low resistance compared with the resistance of the circuit being measured; otherwise, inserting the instrument will cause the current to differ from its value with the instrument out of the rircuit. ('lhis does not matter if the instrument is left permanently in the circuit.)

Fig. 21-4-Voltmeter method of measuring current, This method permits using relatively large values of resistance in the shant, standard values of fixed resistors frequently being usable. If the multiplier resistance is 20 times the shant resistance (or more) the crror in assum. ing that all the current flows thromph the shunt will not be of ensequence in most practical applications.

However, the resistance of many circuits in radio equipment is quite high and the circuit operation is affected little, if at all, by adding as much as a few hundred ohms in series. In such catses the voltmeter method of measuring current, shown in Fig. 21-4, is frecuently convenient. A voltmeter - or low-range milliammeter provided with a multiplier and operating as a voltmoter - having a full-scale voltage range of a few volts, is used to measure the voltage drop across a comparatively high resistance arting as a shunt. The formula above is used for finding the proper value of shunt resistance for a given scale-multiplying factor, R_{m} in this case being the multiplier resistance.

D. C. Power

Power in direct-current circuits is determined by measuring the current and voltage. When these arc known, the power is equal to the voltage in volts multiplied by the current in amperes. If the current is measured with a milliammeter, the reading must be divided by 1000 to convert it to amperes.

RESISTANCE MEASUREMENTS

Measurement of d.e. resistance is based on measuring the curront through the resistance when a known voltage is applied, then using Ohm's Law. A simple eircuit is shown in Fig. 21-5.

Fig. 21.5 - Measuring resistance with a voltmeter and milliammeter. If the approximate resistance is known the voltare can be selected to canse the milliammeter, M.f, to read ahout half seale. If not, additional resist. ance should be first eomeeted in series with R to limit the current to a sate value for the milliammeter. The set -up then measures the total resistance, and the value of K can be found by sultracting the known additional resistanee from the total.

The internal resistance of the ammeter or milliammeter, $M A$, shoutd be low compared with the resistance, h, being measured, since the voltage read by the voltmeter, V, is the veltage across I/A and R in series. The instruments the the d.c. voltage should be chosen so that the readings are in the upper half of the scate, if possible, since the percentage error is less in this region.

An ohmmeter is an instrument consisting fundamentally of a voltmeter (or milliammeter, depending on the cireuit used) and a small dry battery as a source of d.e, voltage, calibrated so the value of an unknown resistance ean be read directly from the saale. Typical ohmmeter circuits are shown in Fig. 21-6. In the simplest type, shown in Fig. 21-tiA, the meter and battery are gonnected in series with the unknown resistance. If a given deflection is ohtained with terminals $A-B$ shorted, inserting the resistance to be measured will cause the moter reading to decrease. When the resistance of the voltmeter is known, the following formula can be applied:

$$
R=\frac{e R_{\mathrm{m}}}{E}-R_{\mathrm{m}}
$$

where R is the resistance under measurement, e is the voltage applied (A- B shorted),
E is the voltmeter reading with R connected, and
R_{m} is the resistance of the voltmeter.
The circuit of Fig. 21-6id is not suited to measuring low values of resistance (below a hundred ohms or so) with a high-resistance voltmeter. For such measurements the circuit of Fig. 21-ifls cen be used. The milliammeter should be a $0-1$ mat. instrument, and R_{1} should be equal to the bittery voltage, e, multiplied by 1000 . The unknown resistance is

$$
R=\frac{I_{2} R_{\mathrm{m}}}{I_{1}-I_{2}}
$$

(A)

(B)

(C)

Fig. 21-6 - Ohmmeter eircuits. Values are discussed in the text.
where R is the unknown,
R_{m} is the internal resistance of the milliammeter,
I_{1} is the current in ma. with R disconnected from terminals $A-B$, and
I_{2} is the current in mal. with R connected.
The formula is approximate, but the error will be negligible if e is at least 3 volts so that R_{1} is at least 3000 ohms.

A third eircuit for measuring resistance is shown in Fig. 21-6C. In this case a high-resistance voltmeter is used to measure the voltage drop across a reference resistor, \boldsymbol{R}_{2}, when the unknown resistor is comected so that eurrent flows through it, R_{2} and the battery in series. By suitable choice of R_{2} (low values for low resistance, high values for high-resistance unknowns) this eireuit will give equally grood results on all resistance values in the range from one ohm to several megohms, provided that the voltmeter resistance, R_{m}, is always very high (50 times or more) compared with the resistance of R_{2}. A 20,000 (oohms-per-volt instrument (50 --a anp. movement) is generally used. Assuming that the current through the voltmeter is negligible compared with the current through R_{2}, the formula for the unknown is

$$
R=\frac{e R_{2}}{E^{\prime}}-R_{2}
$$

where R and R_{2} are as shown in Fig. 21-6C, e is the voltmeter reading with $A-B$ shorted, and
E is the voltmeter reading with R connected.
The "zero adjuster," R_{1}, is used to set the
voltmeter reading exactly to full scale when the meter is calibrated in ohms. A 10,000 -ohm variable resistor is suitable with a $20,000-$ ohms-per-volt meter. The battery voltage is usually 3 volts for ranges up to 100,000 ohms or so and 6 volts for higher ranges.

Combination Instruments

Since the same basic instrument is used for measuring current, voltage and resistance, the three functions can readily be combined in one unit using a single meter. Various models of the "YOMI" (volt-ohm-milliammeter) are available commercially, the less expensive ones using a $0-1$ milliammeter. A simple circuit based on such a meter is shown in Fig. 21-7. It has five current

Fig. 21-7 - Diagram of the volt-ohm-milliammeter.
$\mathrm{h}_{1}-2000$-ohm wire-wound variable.
R_{2} - 3000 ohms, $1 / 2$ watt.
$\mathrm{l}_{3}-10$-ma. shumt, 6.11 ohms (see text).
R_{4} - 100 -ma, shunt, 0.55 .5 ohm (sec text).
R_{5} - 1000 -ma. shumt, $0.055^{-} \mathrm{ohm}$ (sec text).
R_{6} - 1000 -volt multiplier, 0.9 megohm, $1 / 2$ watt.
$R_{7}-100$ volt multiplier, 90,000 ohms, $1 / 2$ watt.
$R_{s}-10$-volt multiplier, 10,000 ohms, $1 / 2$ watt.
13 - 4.5 -volt dry battery.
$\mathrm{S}_{1 \mathrm{~A}}-\mathrm{B}-9$-point 2 -pole selector switeh.
MI $-0-1$ milliammeter.
ranges, from 1 ma . to 1 ampere, three voltage ranges, 10 volts to 1000 volts, and two resistance ranges. Fig. 21-8 shows the ohmmeter calibration: the low-ohms curve is for a meter having an internal resistance of 55 ohms and should be calculated from the formula above (Fig. 21-6B) for instruments of different resistance.
Ordinary carbon resistors can be used as voltmeter multipliers, conneeting them in series or parallel to obtain a given value. The $10-$, $100-$ and $1000-\mathrm{ma}$. shumts can be made of copper wire wound on small forms. The approximate lengths and sizes of the wire for the shunts are as follows: $R_{3}, 9$ feet No. 38 enameled: $R_{4}, 5$ feet No. 30 enameled; $R_{5}, 81 / 2$ feet No. 18.

It is possible to buy special VOM scales to replace the 0-1 seale for certain types of milliammeters. In such case the circuit reeommended for that scale should be used.
More expensive instruments use a 50 -amp. meter in the VOM, with large scales for casy reading. Such instruments frequently include a.e. scales as weil, and in general are better purchased complete than made at home.
The VOMI, even a very simple one, is among the most useful instruments for the amateur. Besides current and voltage measurements, it

Fig. 21-8-Calitation curve for the high- and lowresistance ranges of the volt-ohm-milliammeter.
can be used for checking continuity in circuits, for finding defective components before installation - shorted condensers, open or otherwise defective resistors, ete. - shorts or opens in wiring, and many other cherks that, if applied during the construction of a piece of equipment, save much time and trouble. It is equally usoful for serviring, when a component fails during operation.

- THE VACUUM-TUBE VOLTMETER

The usefulness of the vacuum-tube voltmeter (VTVM) is based on the fact that a vacuam tube can amplify without taking power from the source of voltage applied to its grid. It is therefore possible to have a voltmeter of extremely high resistance, and thus take negligible eurrent from the
circuit under measurement, without using a d.e. instrument of exceptional sensitivity.

While there are several possible circuits, the one commonly used is shown in lig. 21-9. A dual triode, l_{1}, is arranged so that, with no voltage applied to the left-hand grid, equal currents flow through both sections. C"nder this condition the two (athodes are at the same potential and no current flows through M. The currents can be adjusted to balance by potentiometer R_{11}, which takes eare of variations in the tube seetions and in the values of eathode resistors R_{9} and R_{10}. When a voltage is applied to the left-hand grid the current through that tube seretion changes but the current through the other seetion remains unchanged, so the balanee is upset and the meter indicates. The sensitivity of the meter is regulated by R_{8}, which serves to adjust the calibration. R_{12}, common to the eathodes of both tube sections, is a ferd-back resistor that stabilizes the system and makes the readings linear. R_{6} and C_{1} form a filter for any a.ce component that may be present, and R_{6} is balanced by R; connerted to the grid of the second tube section.

To stay well within the linetr range of operation the scale is limited to 3 volts or less in the a verage commercial instrument. Higher ranges are obtained by means of the voltage divider formed by R_{1} to R_{5}, inclusive. As many ranges as desired can be used. Common practice is to use 1 megohm at R_{1}, and to make the sum of R_{2} to R_{5}, inclusive, 10 megohms, thus giving a total resistance of 11 megohms. constant for all voltage ranges. R_{1} should be at the probe end of the dee. doad to minimize capacity loading effects.

For moasuring ance voltages the reetifier eireuit shown at the lower left of Fig. 21-9) is used. One sertion of the double diode, V_{2}, is a half-wave rectifior and the second half ants as a balaneing deviere, adjustable by R_{1-}, to climinate contact potential effects that would cause a constant de. voltage to appear at the VTVMI grid. When measuring a.c., R_{8} is usually set so that the r.m.s. a.e. calibration coincides with the d.e. calibration, i separate resistor is frequently switehed in for the purpose.

Values to be used in the cimuit depend considerably on the supply voltage and the sensitivity
$\mathrm{C}_{1}-0.002-$ to 0.00.i- $\mu \mathrm{f}$, mica.
$\mathrm{C}_{2}-0.01 \mu \mathrm{f}$. 1000 to 2000 volis, paper or mica.
$\mathrm{K}_{1}-1$ megohm, $1 / 2$ watt.
R_{2} to R_{5}, inelusive - W or give desired voltage ranges, totaling 10 megrohms.
$\mathrm{R}_{6}, \mathrm{~K}_{7}-2$ to 3 megolims.
R_{g} - 10,000 -ohm variahle.
$\mathrm{R}_{9}, \mathrm{R}_{10}-2000$ to 3000 olims.
$\mathrm{R}_{11}-5000$ - to 10,000 -ohim potentiometer.
$R_{12}-10,000$ t1 50,000 ohtms.
 A 50.1 (M) -ohm shider-type wire-womod ean be used,
$R_{1 \bar{\prime}}-10$ megohims.
$R_{16}-3$ megohmis.
1 18 - - 10-megrohm variable.
N - Microammeter, ranke from (1)-200 mamp, to 0-1 ma.
$\left.V_{1}-1\right)_{\text {ual }}$ triode, $6 S N$ or $I 2 A U \overline{7}$.
V_{2} - Dual dione, 6116 or 6ALi

Fig. 21.9 - Vacumm-tube voltmeter circuit.
of the meter, $M / . R_{12}$, and $R_{13}-R_{14}$, should be adjusted so that the voltmeter circuit can be brought to balance, and to give full-seale deflecfion on .11 with about 3 volts applied to the grid. The meter connections can be reversed to read voltages that are negative with respect to ground.

The VTY'M has the disadvantage that it requires a source of power for its operation, as compared with a regular d.e. instrument. Also, it is susceptible to r.f. pick-up when working around tun operating transmitter, unless well shielded and filtered. The faet that one of its terminals is grounded is also disadvantageous in some cases, since a.r. readings in particular may be inaceurate if an attempt is made to measure a cireuit having both sides "hot" with respect to ground. Nevertheless, the high resistance of the VTVMI more than compensates for these disadvantages, especially since in the majority of measurements they do not apply.

CALIBRATION

When extending the range of a d.e. instrument calibration usually is neecssary, although resistors for voltmeter multipliers of en can be purchased to close-enough tolerances so that the new range will be accurately known. However, in calibrating an instrument such as a VTVM a known voltage must be available to provide a starting
point. Fresh dry cells have an open-circuit terminal voltage of approximately 1.6 volts, and one or more of them may be connected in series to provide several calibration points on the low range. Gas regulator tubes in a power supply, such as the $0 \mathrm{C} 3,0 \mathrm{D} 3$, etc., also provide a stable source of voltage whose value is known within a few per cent. Once a few such points are determined the voltmeter ranges may be extended readily by adding multipliers or a voltage divider as appropriate.

Shunts for a milliammeter may be adjusted by first using the meter alone in series with a souree of voltage and a resistor seleeted to limit the current to full seale. For example, a $0-1$ midiammeter may be connected in series with a dry cell and a 2000 -ohm variable resistor, the latter being adjusted to allow exactly 1 milliampere to flow. Then the shunt is added across the meter and its resistance adjusted to reduce the meter reading by exactly the scale factor, n. If n is 5 , the shunt would be adjusted to make the meter read 0.2 milliampere, so the full-scale current will be 5 ma. Using the new seale, the seeond shunt is added to give the next range, the same procedure being followed. This can be carried on for several ranges, but it is advisable to check the meter on the highest range against a separate meter used as a standard, since the errors in this process tend to be eumulative.

Measurement of Frequency and Wavelength

ABSORPTION FREQUENCY METERS

The simplest possible frequency-measuring device is a resonant circuit, tumable over the desired frequency range and having its tuning dial calibrated in terms of frequeney. It operates by extracting a small amount of energy from the oscillating circuit to be measured, the frequency being determined by the tuning setting at which the energy absorption is maximum (Fig. 21-10).

Although such an instrument is not capable of

Fig. 21-10- Absorption frequency meter and a typical application. The meter consists simply of a calibrated resonant circuit LC.. When coupled to an amplifier or oscillator the tube plate current will rise when the frequeney meter is tuned to resonanee. A flashlight lamp may be connected in series at X to give a visual indication, but it decreases the selectivity of the instrument and makes it necessary to use rather close coupling to the circuit being measured.
very high accuracy, because the Q of the tuned circuit cannot be high enough to avoid uncertainty in the exact setting and beoause any two coupled circuits interact to some extent and change each others' tuning, the absorption wavemeter or frequency meter is nevertheless a highly useful instrument. It is compact, inexpensive, and requires no power supply. There is no ambiguity in its indications, as is frequently the case with the heterodyne-type instruments deseribed later.

When an absorption meter is used for chereking a transmitter, the plate eurrent of the tule connected to the circuit being checked can provide the necessary resonance indiration. When the frequeney meter is loosely coupled to the tank circuit the plate current will give a slight upward fieker as the meter is tuned through resonance. The accuracy is greatest when the loosest possible coupling is used.

A receiver oscillator may be checked by tuning in a steady signal and heterodyning it to give a beat note as in ordinary ew. reception. When the frequency meter is eoupled to the oscillator coil and tuned through resonance the beat note will change. Again, the coupling should be made loose enough so that a justperceptible change in beat note is observed.

An approximate calibration for the wavemeter, adequate for most purposes, may be obtained by comparison with a calibrated re-
coiver. The usual recoiver dial rablibation is sufliciently acrurate. I simple oscilator circuit covering the same range as the frequener moter will be useful in calibration. set the reeriver to a given frequeney, tune the oscillator to zero beat at the sime frequency, and adjust the frequency moter to resonamor with the oscillator as described abover. 'This gives one calibration point. When a suflicient number of such points has been obtained a gratph may be drawn to show frequency es. dial settings on the frequeney meter.

- INDICATING WAVEMETERS

The plain absorption meter resuires fairly chose coupling to the oscillating cireuit in order to affect the plate ceurrent of a tule sufficiently to give a visual indieation. However, ly adding a

Fig. 21-II - Circuit diagram of indidating wavemeter. Wint the meter ploge removed, it can be used as a compact alisorption moter of the ordinary type.
Ci-5t)- $\mu \mu \mathrm{f}$. variable (11 ammarlund II f゙-50)
$\mathrm{C}_{2}, \mathrm{C}_{3}-\mathbf{0 . 0 0 1 - \mu \mathrm { f } \text { . disce veramic. }}$
J_{I} - Open-circnil jach.
Ma-I), milliammeler, (0 - I or less. P- 'Phone plar.
RHC, 1-min, r.f. rhoke.

Coil Data, L_{1}					
Freq. Range	Turns	Wire	Diameter	Turne/inch	Tap*
1.6-4.2 Mc.	139	32 cıam.	${ }^{3} \mathbf{4}$ ill.	('lose-wound	32
$3.6-10.5 \mathrm{Mc}$.	40	32 ctam.	$3_{4}^{4} \mathrm{il}$.	Close-wound	12
7.8-24.0 Mc.	40	21 timbed	1/2in.	32	14
17.8-52.0 Mc.	15	20 timued	$1 / 2 \mathrm{in}$.	16	5
$38-117$ Mc.	4	20 timued	1/2in.	16	11/3

$80-270 \mathrm{Mc}$. Hairpin of No. 14 wire, $3 / 8 \mathrm{in}$. spacing, 2 inches lone ineluding coil form pins. Taphed $1 / 2 \mathrm{in}$. From ground end.

* Turns from ground end.

Coil forms are Amphenol $24.51 \mathrm{I}, 3$ 3-in, diameter.
rectifier and d.e. microammeter or milliammeter, the sensitivity of the instrument can be increased to the point where very loose coupling will suffire for a good reading. A typical cireuit for this purpose is given in Fig. 21-11, and Figs. 21-12 and 21-1:3 show how such in instrument ean be constructed. For convenience in use, the tuned eirenit is mounted in a smatl metal box that can be held in one hand for close coupling to at rireuit. The d.e. meter ean be conneded or not as desired, since it is separate (it can also be mounted in a small bos) so the instrument can be wed either as a plain absorption meter or as an indicating-type meter.

The rectifier is a crestal diode, tapped down on the tuncd-circuit coil to avoid excessive loading

Fig. 21-12-A compact ahsorption wavemeter pro. vided with a crystal rectifier and jack for an indicating meter. The meter can be menonted in a in parate lone. if desired. The dial is similar to that need on the grid-dip meter deseribed later in this mapter.
of the rimeuit which would broaden the tuning. Tapping down also improves the sensitivity, by providing an approximate impedance mateh between the tuned eireuit and the erystal-circuit load. l3y plugging a heatsee into the output jack ('phones having 2000 ohms or greater resistance should be used for greatest sensitivity) the wavemeter can be used as a monitor for modulated transmissions.

It is of course possible to mount the d.c. meter in the sume unit with the wavemeter proper, but this increases the bulk and weight. The separate units have the advantage, also, that a long line can be used to comeet the two, sine such a line curries only d.e., so the neter can be placed at a remote point to piek up r.f. While the indirator is placed at the spot where aljustments are being made. This is frequently useful in antemna work, for example.

Where eonnertion to an atce line is convenient, a VTV.M ran be used instead of the milliammeter or mierommeter, and because of its high resistance will considerably increase the sensitivity and selectivity of the wavemeter.
In addition to the uses mentioned above, a meter of this type may be used for final adjust-

Fig. 21-13 - Inside the indicating-type wavemeter. "The tuming eaparitor should be monterl as close as possible io the coil socket so the leads will be of negligible length. The box is $15 / 8 \times 2!\times 4$ inehes.

Fig. 21-14- One end of a typical lacher wire system. 'The wire is No. 16 baresolid-eopperantenna wire (hard-drawn). The turnbuekles are held in place lyy a 3 但 $\times 2$-inch bolt throush the anchor block. 'The other end of the line, which is connected to the pick-up lonp, should the insulated.

ment of neutralization in r.f. amplifiers. For this purpose it may be loosely coupled to the plate tank coil. Alternatively, L_{1} may be removed and the final-amplifier link output terminals eonnerted to the coil socket. The latter method tends to ensure that the pick-up is from the final tank coil only.

LECHER WIRES

At very-high and ultrahigh frequencies it is possible to determine frequency by actually metasuring the length of the waves generated. The measurement is made by observing standing waves on a two-wire parallel transmission line or Lecher wires. Such a line shows pronounced resonance effects, and it is possible to determine quite aecurately the current loops (points of maximum current). The physical distance between two consocutive current loops is equal to one-half wavelength. Thus the wavelength an be read directly in meters (39).37 inches $=1$ meter; 0.39:37 inch $=1 \mathrm{~cm}$.), or in centimeters for the very-short wavelengths.
The Lecher-wire line should be at least a wavelength long - that is, 7 feet or more on 144 Me. - and should be entirely air-insulated except where it is supported at the ends. It may be made of copper tubing or of wires stretched tightly. The sparing between wires should not exceed about 2 per cent of the shortest wavelength to be measurd. The positions of the current loops are found by means of a "shorting bar," which is simply a metal strip or knife edge which can be slid along the line to vary its effective length.

Making Measurements

For measuring the frequency of a transmitter, a convenient and fairly sensitive indicator can be made by soldering the ends of a one-turn loop of wire, of about the same diameter as the transmitter tank (roil, to a low-current flashlight bulb). The loop should be coupled to the tank coil to give a moderately bright glow. A coupling loop should be connerted to the ends of the lecher wires and brought near the tank coil, as shown in Fig. 21-15. Then the shorting bar should be slid along the wires outward from the transmitter until the lamp gives a sharp dip in brightness. This point should be marked and the short-
ing bar moved out until a second dip is obtained. The distance between the two points will be equal to half the wavelength. If the measurement is made in inches, the frequency will be

$$
F_{\mathrm{Mc} .}=\frac{5905}{\text { length (inches) }}
$$

If the length is measured in meters,

$$
F_{\mathrm{Mc.}}=\frac{150}{\text { length (meters) }}
$$

In checking a superregenerative receiver, the Lecher wires may be similarly coupled to the receiver coil. In this case the resonance indication may be obtained by setting the receiver just to the point where the hiss is obtained, then as the bar is slid along the wires a spot will be found where the receiver goes out of oscillation. The distance between two sueh spots is equal to a half-wavelength.

Fig. 21-15-Coupling a Lecher wire system to a transmitter tank eoil. lypieal standing-wave distribution is shown thy the dashed line. T'he distance X between the positions of the shorting bar at the current loops equals one-half wavelength.

The shorting bar must be kept at right angles to the two wires. A sharp edge on the bar is desirable, since it not only helps make good contart but also definitely locates the point of contart.

Accurate readings result when the loosest possible coupling is used between the line and the tank coil. Careful measurement of the exact distance between two current loops also is essential.

HETERODYNE METHODS

Heterodyne methods of frequency measurement make use of a stable oscillator generating either a known frequency or one that is variable over a known range. Measurement consists in comparing the unknown frequency with the known frequency of the oscillator, using an ordinary receiver for detecting both. This method is more accurate than others, because frequency differences of less than a cycle can be oiserved
by aural (beat-note) methods, and the oscillator can be calibrated to practically any degree of precision by comparison with standard frequencies transmitted from WWV and WWVH.

Care must be used in heterodyne frequency measurement because in most cases harmonics are used and the measured frequency can be in error by a large factor if the wrong harmonic is picked. Also, a superheterodyne receiver will give many spurious responses in the presence of a strong signal and harmonics, so these must be recognized and ignored in making measurements. In general, heterodyne methods are most useful in measuring frequency to a high degree of accuracy after the frequency is known approximately from other methods. The absorption wavemeter is useful for making the first approximation and thus eliminating the possible gross errors.

Frequency Measurement with the Receiver

An ordinary receiver has the essential elements needed for frequency measurement. Its dial readings must be calibrated in terms of frequency, of course, before measurements can be made. Manufactured receivers are generally so calibrated; the accuracy of the calibration will vary with the receiver model, but if the receiver is well made and has good inherent stability, a bandspread dial calibration can be relied upon to within perhaps 0.2 per cent. For most accurate measurement, maximum response in the receiver should be determined by means of a carrier-operated tuning indicator (such as an S-meter), the receiver beat oscillator being turned off. If the receiver has a crystal filter, it should be set in a fairly "sharp" position to increase the accuracy.

When checking the frequency of your own transmitter, the receiving antenna should be disconnected so the signal will not overload or "block" the receiver. Also, the r.f. gain should be reduced as a further precaution against overloading. If the receiver still blocks without an antenna the frequency may be checked by turning of the power amplifier and tuning in the oscillator alone. It is difficult to avoid blocking under almost any conditions with a regenerative receiver, and so this type is not very suitable for checking the frequency of one's own transmitter.

THE HETERODYNE FREQUENCY METER

The heterodyne frequency meter is an oscillator with a precise frequency calibration. The oscillator must be so designed and constructed that it can be accurately calibrated and will retain its calibration over long periods of time.

The oscillator used in the frequency meter must be very stable. Mechanical considerations are most important in its construction. No matter how good the instrument may be electrically, its accuracy cannot be depended upon if the mechanical construction is flimsy.

Frequency stability can be improved by avoiding the use of phenolic and thermoplastic insulating materials (bakelite, polystyrene, etc.) in the oscillator circuit, employing only high-grade ceramics instead. Plug-in coils ordinarily are not acceptable; instead, a solidly-built and firmly-mounted tuned circuit should be permanently installed. The oscillator panel and chassis should be as rigid as possible.

For amateur purposes the most useful type of meter is one covering the amateur bands only. The VFOs described in the chapter on transmitters are typical of the circuits and construction since they are designed with the same considerations in mind - i.e., to be highly stable both electrically and mechanically. Hence a good VFO, if accurately calibrated in frequency, is also a good heterodyne frequency meter.

Calibration must be done by comparing the oscillator frequency at various points in its range with signals of known frequency. The best method is to calibrate from a secondary frequency standard, described in the next seetion, at intervals of, say, 100 ke . and fill in the calibration curve by interpolation. The oscillator usually works over the approximate range $1750-2000$ ke., harmonics being used for the higher amateur bands. If the calibration is done on the highest range - $28-32$ Mc. - at intervals of 100 kc . it is equivalent to having calibration points at intervals of $100 / 16$ $=6.25 \mathrm{kc}$. on the fundamental-frequency range.

THE SECONDARY FREQUENCY STANDARD

The secondary frequency standard is a highlystable oscillator generating a single frequency, usually 100 kc . It is nearly always crystal-controlled, and inexpensive $100-\mathrm{kc}$. crystals are available for the purpose. Since the harmonics are multiples of 100 kc . throughout the spectrum, some of them can be compared directly with the standard frequencies transmitted by WWV. The edges of most amateur bands also are exact multiples of 100 kc ., so it becomes possible to determine the band edges very accurately. This is an important consideration in amateur frequency measurement, since the only regulatory requirement is that an amateur transmission be inside the assigned band, not on a specific frequency.

Intervals of 100 kc . are sometimes too close for accurate identification of a given harmonic, so special crystals that operate at both 1000 and 100 kc . are available. Intervals of 1000 kc . are sufficiently far apart to avoid confusion, since the average receiver calibration is good enough to provide positive identification. Once the 1000 -kc. harmonics are spotted, it is easy to count off the $100-\mathrm{kc}$. intervals from the known $1000-\mathrm{kc}$. points.

Manufacturers of 100 -kc. crystals usually supply circuit information for their particular crystals. The circuit given in Fig. 21-16 is representative, and will generate usable harmonics up to 30 Mc . or so. The variable capacitor,
C_{1}, provides a means for adjusting the frequency to exartly 100 ke . Harmonic output is taken from the eireuit through as smatl eapacitor, C_{5}. There are no particular constructional points to be observed in building surch a unit. lower for the tube heater and plate may be taken from the supply in the receiver with which the unit is to be used. The plate voltage is not critical, but it is recommended that it be taken from a VR-150 regulator if the receiver is equipped with one.

Sufficient signal strength usually will be sercured if a wire is run between the output terminal connected to C_{5}^{\prime} and the antenna post on the recoiver. At the lower frequencies a metallic commetion may not be neressary.

Figs. 21-17 through 21-19 show a compact standard, complete with power supply, that will give usable harmonics from both 100 and 1000 ke. up through the $1+4$-Me. hand. It uses a dual rrystal, either fundamental frequency heing selected by a switeh, and the output of the oscillator is fed to a crystal-diode rectifier to increase the amplitude of the high-order harmonics. These harmonies are then amplified in the second tube, a stage having broadly-tuncel plate circuits centering in the higher-frequeney amateur bands, switched in or out as recpuired. A cathode gain control is provided in the amplifier circuit for regulating the output amplitude. The whole unit is constructed in a $5 \times 3 \times+$ box of the trpe having its own chassis, the small size being used so the unit cam be squerzed into limited space on the operating table. It can be put on a larger

Fig. 21-16 - Circuit for aryatal-controlled frequency standard. Tiulees such as the 6.5%, $6511 \%, 6 \mathrm{AL} 6$, ete., are suitable.
(1 - $50-\mu \mu \mathrm{f}$. variable.
($2-1.00-\mu \mu \mathrm{f}$. mica.

(.4-0.01-mf. paper.
(s - $29-\mu \mu \mathrm{f}$. mica.
$\mathrm{R}_{1}-0.47$ megohm, $1 / 2$ watt.
$1 R_{2}-1000$ ohms, $1 / 2$ watt.
183 - 0.1 megolm, $1 / 2$ watt.
$1 \beta_{4}-0.1 .3$ megohm, $1 / 2$ watt.
chassis and bow if desired, since the construction is not eritical. Nuffieient signal strength in the receiver should be serured bey connexting a shomet piece of wire to the output terminal. but on very high frequencies it may be neressary to comert the wire to one antema post on the receiver.

Adjusting to Frequency

In either Fig. 21-16 or 21-18 the frequency can be adjusted exactly to 100 ke. by making use of

Fig. 21-17-A compact frequency standard and harmonic amplifier for generating either 100 or $1000-\mathrm{ke}$. intervals throughont the spectrum: to 150 Mc . It has a self-emtained powor supply using the transformer shown in the upper part of the phito. The output control is at the upper left, and the switch in the foreground is the harmonie-amplifier bandswitch. The dual erystal is between the bandswith and wutpht eontrol. The toggle swit ch at the lower left corner of the panel selects either 100%. or $100-\mathrm{ke}$. intervals.
the WWV transmissions tabulated in this chapter. Seleet the WWV frequency that gives a good signal at your location at the time of day most convenient. Tune it in with the remeiver b.f.o. off and wait for the period during which the modulation is absent. Then switch on the 100 -ke. oseillator and adjust its frequency, by means of C_{1}, until its harmonic is in zero beat with WWV. The exact setting is easily found by observing the slow pulsation in thackground noise as the harmonic comes close to zoro beat, and adjusting to where the pulsation disappears or occurs at a very slow rate. The pulsations ean he observed even more readily by switching on the recoiver's b.f.o., after approximate zero beat has been serured, and observing the rise and fall in intensity (not fremuency) of the beat tone. For best results the WWV signal and the signal from the $100-\mathrm{kc}$. oseillator should be about the same strength. It is advisable not to try to set the $1(0)$-ke. oscillator during the periods when the WWV signal is modulated, since it is diffieult to tell whether the harmonic is being adjusted to zero beat with the rarrier or with one of the sidebands.

Frequency Checking

The secondary standard provides signals of known frequency that can be tuned in on the station rexiver. Determination of the frequency of a transmitter is then carried out by the method dessribed earlier under "Frequency Measurement with the Receiver," using these points as positive identification of band edges. By using the known 100 -kc. points the receiver calibration can be

Fig. 21-18 - Circuit diagram of the frequency standard and harmonic amplifier.
$\mathrm{C}_{\mathrm{I}}-2.5-\mu \mu \mathrm{f} . \quad$ midget variable (Hammarlund MAP(:25).
$\mathrm{C}_{2}-3{ }_{\mu \mu} \mathrm{f}$. $\quad(1 / 2$ inches of 75-ohm Twin-Lead).
$\mathrm{C}_{3}, \mathrm{C}_{4}-0.1-\mu \mathrm{f}$, paper, 400 volts.
$\mathrm{C}_{5}-2 \cdot 50-\mu \mu \mathrm{f}$. ceramic.
$\mathrm{C}_{6}, \mathrm{C}_{7}^{-}, \mathrm{C}_{9}-0.001-\mu \mathrm{f}$. dise ceramic.
C_{s} - $100-\mu \mu \mathrm{i}$. ceramic.
$\mathrm{C}_{10}, \mathrm{C}_{11}-20-\mu \mathrm{f}$. electrolytic, 2.50 volts.
$\mathrm{R}_{1}-4.7$ megohm, $1 / 2$ watt.
$\mathrm{R}_{2}-22,000$ ohms, $1 / 2$ watt.
$\mathrm{H}_{3}, \mathrm{l}_{4}, \mathrm{H}_{5}-0.47$ megolim, $1 / 2$ watt.
R_{6} - 4.0 ohms, $1 / 2$ watt.
R_{7} - $\mathrm{S}(0) \mathrm{O}$-ohm potentiometer.
$\mathrm{R}_{8}-47,000$ ohms, 1 watt.
R_{9} - 1000 ohms, 1 watt.
$\mathrm{L}_{1}-1-\mathrm{mh}$. r.f. chohe (National R-50).
$L_{2}-4-\mu h$ r.f. choke (Xational R-60),
$\mathrm{L}_{3}-\mathbf{2}-\mu \mathrm{h}_{\mathrm{r}}$ r.f. choke (attional R-60).
J.4-0.5 μ h. (I- μ h. r.f. choke, National R-33, with 10 turns removed).
$L_{5}-3$ turns No. $16,1 / 4$-incli diam., $3 / 8$ inch long.
CR - $6 . \mathrm{S}_{-m a}$-melenium rectifier.
J_{1} - 'liy, jack.

corrected so that, by interpolation, the frequenes of a signal lying between the calibration points ean be determined with good accurary.

More Precise Methods

The methods desaribed in this section are quite adequate for the primary purpose of amateur freduency measurements - that is, determining whether or not a transmitter is operating inside the limits of an amateur band, and the approximate frecuency inside the band. For measuremont of an unknown frequency to a high degree of arcurary more advanced methods gan be used. Aceurate signals at closer intervals ean be obtained by using at multivibrator in conjunction

$\mathrm{RFC}_{2}-5-\mathrm{mh}$. r.f. choke (National R-100S).
S_{1}-S.p.s.t. toggle switch.
s_{2} - S.p.s.t. togyle switch mounted on R_{i}.
s_{3} - 1 -pole 0 -position selector swith; shorting type (Centralal, 2500).
' 1 - P'ower transformer, 150 volts, 2.5 ma.; 6.3 volts, 0.5 amp. (${ }^{2}$ erit ${ }^{1}-30+6$).

X'TAI. - 100-1000-ke. dual frequency erystal (Valpey DF'S).
with the $100-\mathrm{ke}$, standard, and thus obtaining signals at intervils of, say, 10 kc . or some other integral divisor of 100 . Temperature control is frequently used on the $100-\mathrm{kc}$. oseillator to give a high order of stability (Collier, "What l'rice Precision?", (Qsl', September and October, 1952). Also, the serondary standard can be used in conjunction with a variable-frequency interpolation oscillator to fill in the standard intervals (Woodward," A Linear Beat-Frequency Oscillator for Frequency Mewurement," (SATT, May, 1951). An interpolation oseillator and standard can be combined in one instrument, one application of this type having been described in (SST for May, 19月!) (Grammer, "The Additive Frequency Meter").

Fig. 21-19 - Below-rhassis virw of the freguency standard. The 1 N3.4 harmontic epenerator is at the upper left. The viriable condenser at the hottom is for adjustment of the oncillator frequency to exactly 100 ke . It the upper right, mounted on the rear lip of the chassis, is the selenium rectifier for the power supply. 'The filter condenser is just below it. Small resistors and condensers are grouped around the tube sochets.

Standard radio and audio frequencies are broadeast continuously from WWV, operated by the Central Radio Propagation Laboratory, National Bureau of Standards, Washington, D. C. on the following frequencies:

Freq., Mc.
Modulations (c.p.s.)
2.5

1,440 or 600
${ }_{5}^{2.5}$
10
15
20
25
1,440 or 600
1,440 or $\mathbf{3 0 0}$
1,440 or 600
1,440 or 600
1, 410 or 600

Similar broadeasts are given from WWVII, Puunene, T.II., on the following frequencies:

Freq., Mc.

5	1,440 or $6(0)$
10	1,440 or 660
15	1.440 or 600

Transmissions are as given in the eharts above, exeept that the WWVH broadeast is interrupted for 4 minutes following cach hour and half hour and for periods of 40 minutes beginning at 0700 and 1900 universal time.

Time Signals

The 1-c.p.s. modulation is a 5 -millisecond pulse at intervals of precisely one second, and is heard as a tiek. Time intervals as transmitted are arcurate to within 2 parts in 100 million +1 microsecond. The tick on the 59th sceond is omitted.

Accuracy

Transmitted frequencies are aceurate within 2 parts in 100 million.

Propagation Notices

During the announcement intervals at 20 minutes after and 10 minutes before the hour, propagation notices applying to transmission paths over the north Atlantic are transmitted from WWV on 2.5, 5, 10, 15, 20, and 25 Mc. These notices, in telegraphie code, consist of the letter N, W, or U followed by a number. The letter designations apply to propagation conditions as of the time of the broadeast, and have the following signifieance:

> W - Ionospheric disturbance in progress or expected.
> U - Unstable conditions, but communication possible with high power.
> N - No warning.

The number designations apply to expected propagation conditions during the subsequent 12 hours and have the following significance:

Divit	Forecast
1	Impossible
2	Very Poor
3	Poor
4	Fair to Poor
$\mathbf{4}$	Fair
6	Fiar to Good
7	Ciood
8	Very Good
9	Fxeellent

Test Oscillators

THE GRID-DIP METER

The grid-dip meter is a simple vacuum-tube oscillator to which a low-range milliammeter or microammeter has been added to read the oseillator grid eurrent. A 0-1 milliammeter is sensitive
enough in most cases. The grid-dip meter is so called beeause when the oscillator is coupled to a tuned circuit, the grid current will show a decrease or "dip" when the oscillator is tuned through resonance with the unknown circuit. The reason for this is that the external cireuit will

Fig. 21-26-Circuit diagram of the audio oscillator. Capacitances below $0.001 \mu \mathrm{f}$. are in $\mu \mu$ f. Fixed resistors are $1 / 2$ watt unless otherwise indicated.
J_{1} - 3-watt, 115-volt lamp (C.I:. 3s(o).
' T_{1} - Power transformer, lin 0 volts, 25 ma.; 6.3 volts, 0.5 amp . (Nerit $\mathrm{l}^{\prime}-3016$).
$\mathrm{CH}_{1}-20$-ma. seleniam rectifier.
ditions at the print where the best waveform is generated. This operating point is set by the "os"illation eontrol," R_{1}. The frequeney is determined by the resistance and capacitance in the coupling circuit between the first-section plate and second-section grid. Various values of capacitance can be selected by means of s_{1} to set the frequency. The acturb frequencies measured in the unit shown in the photographs are given on the diagram. They may be either

Fig. 21-25 - Bottom view of the audio oscillator, show ing the power-supply components and amplitule-control lamp, I_{1}. The lamp is mounted ly wires soldered to its base. The selenium rectifier is supuorted by a tiepoint strip. Placement of resistors, which are hidden by the other eomponents, is not critical. The unit fits in a $4 \times 5 \times 6$ ineh box.
S_{1} - S. pmot, toggle (mounted on R_{1}).
S_{2} - I).p.d.t. torgle.
S_{3} - 2-pole 5-position (3 used) rotary switeh. $\mathrm{K}_{1}, \mathrm{~K}_{2}$ - Volume controls.
increased or decreased by using smaller or larger capacitances, respectively.

Output is taken from the cathode of the

Fig. 21-27-Inside view of the andio oseillator. The a.c. switch, S_{3}, is mounted on the output control at the left. The ceramie capaeitors in the frequency-determining circuits are mounted on the rotary switch, St, at the richt. Δ_{2} is above the tube, and T_{1} is on the near edge of the chassis, which is a (-shaped piece of aluminum $31 / 2$ inches deep with $11 / 2$ inch $l_{i p s} R_{1}$ is mounted on the near lip at the left.

Standard radio and andio freduencies are broadeast continuously from WWV, operated be the Contral Radio l'ropagation laborat tory, National Burean of standards, Washington, D. C. on the following frequencies:

Freq., Mc.	Modulations (c.p.s.)
2.5	1,440 or 600
5	1,440 or 600
10	1,440 or 600
15	1,410 or 600
20	1,440 or 600
25	1,410 or 600

Similar broadeasts are given from WWVII, Puunene, T.II., on the following frequencies:

Freq., Mc.	Modulations (c.p.s.)
5	1,440 or 600
10	1,440 or 600
15	1,440 or 600

Tramsmissions are as given in the charts above, execpt that the WVWVII broadeast is interrupted for 4 minutes following cach hour and half hour and for periods of 40 minutes begiming at 0700 and 1900 universal time.

Time Signals

The 1-c.p.s. modulation is a 5 -milliserond pulse at intervals of preerisely one second, and is heatd as a tick. Time intervals as transmitted are arcorate to within 2 purts in 100 million +1 microserond. The tick on the i9th second is omitted.

Accuracy
Transmitted fregueneies are accurate within 2 parts in 100 million.

Propagation Notices

During the amouncement intervals at 20 minutes after and 10 minutes before the hour, propagation notiees applying to transmission pathe over the north Athatie are transmitted from IWWV on $2.5,5,10,15,20$, and 25 Mc . These notices, in telegraphic rode, ronsist of the letter \mathfrak{N}, W, or C followed by a number. The letere designations apply to propagation conditions as of the time of the broadeast, and have the following significance:

$$
\begin{aligned}
& \text { W - Ionospheric disturbance in progress or ex- } \\
& \text { U - petced. } \\
& \text { - Unstalle conditions, but comnunication } \\
& \text { possiluc with high power. }
\end{aligned}
$$

The number designations apply to expected propagation conditions during the subsequent 12 hours and have the following significance:
Diwil
1
2
3
4
5
6
7
8
9

Forecast
Impossible
Very Poor
Poor
Fair to Poor
Fair
F'air to (Good
Giood
Very (iood
Excellent

Test Oscillators

THE GRID-DIP METER

The grid-dip meter is a simple varuum-tube oscillator to which a low-ramge milliammeter or microammeter has been added to read the osaillat or grid current. A 0-1 milliammeter is sensitive
enough in most cases. The grid-dip meter is so called because when the oseillator is coupled to a tuned circuit, the grid current will show a decrease or "dip" when the oscillator is tuned through resonance with the unknown circuit. The reason for this is that the external circuit will

Fig. 21.20 - A compact and light-weight grid-dip meter for onehand operation, It is huitt in a $15 / 8 \times$ $21 / 8 \times 4$-inch "Channel-lock" box and uses six plug-in coils to cover the range 1600 ke . to 160 . Mc. The power supply and milliammeter for reading grid current are in a separate unit.
absorb energy from the oscillator when both are tuned to the same frequency; the loss of energy from the oscilator circuit causes the feedback to decrease and this in turn is accompanied by a decrease in grid current. The dip in grid current is quite sharp when the circuit to which the oscillator is coupled has reasomably high Q.

The grid-dip meter is most useful when it covers a wide frequency range and is compactly constructed so that it cin be coupled to circuits in hard-to-reach places such as in a transmitter or receiver chassis. It can thus be used to cheek tuning ranges and to find unwanted resonances of the type desmibed in the chapter on TVI. Since it is its own sourec of r.f. energy it does not, like the absorption wavemeter, require the circuit being ehecked to be emergized. In addition to resonance checks, the grid-dip meter also can be used as a signal source for receiver alignment and, as described later in this chapter, is useful in measurement of inductance and capacitance in the range of values used in r.f. circuits.

Figs. 21-20 to 21-22, inclusive, show a grid-dip meter of quite compart ronstruction using plug-in coils to cover a continuous frequency range of 1600 ke . to 160 Mc ., and thus useful in all amateur bands up through 1.t Mc. as well as for
checking for resonances in the low group of v.h.f. TV channels, the most important from the standpoint of harmonic TVI. It is small and light, and can be held and tuned with one hand since the dial extends slightly over the edges of the box so it can be operated with the thumb. The milliammeter is not contained in the oscillator itself but

Fig. 21-21 - Cirenit diagram of the grid-dip meter. C_{1} - $50-\mu \mu \mathrm{f}$, midget variable (Hammarlund $1 \mathrm{~F} \cdot \mathrm{~F} \cdot 50$). $\mathrm{C}_{2}-100 \cdot \mu \mu \mathrm{f}$, ceramie.
$\mathrm{C}_{6}^{2}, \mathrm{C}_{4}, \mathrm{C}_{6}-0.001-\mu \mathrm{f}$, dise ecramic. ($: 5$ - $0.01-\mu \mathrm{f}$, dise ceramic.
$R_{1}-22,000$ ohms, $1 / 2$ watt.

Coil Data, L_{1}					
Freq. Range	Turns	Wire	Diameter	Turns/inch	Tap*
$1.59-3.5 \mathrm{Mc}$.	139	32 enam.	$3 / 1 \mathrm{in}$.	Close-wound	32
$3.45-7.8$ Mc.	10	32 enam.	$3 / 4 \mathrm{in}$.	Close-wound	12
7.55-17.5 Mc.	40	24 tinned	$1 / 2 \mathrm{in}$.	32	14
17.2-40 Mc.	15	20 tinned	1/2in.	16	5
$37-85$ Mc.	1	20 tinned	$1 / 2 \mathrm{in}$.	16	$11 / 3$

$78-160$ Mc. Hairpin of No. $1+$ wire, $3 / 8$ in. spacing, 2 inches long including coil form gins. Tapped $11 / 2 \mathrm{in}$. from grousd end.
*Turns from ground end.
Coil forms are Amphenol $24-5 \mathrm{HI}, 3 / 4-\mathrm{in}$. diameter.
can be mounted separately in any convenient spot for viewing. Fig. 21-2.3 shows the milliammeter mounted in a standard meter case which also contains the power supply for the oscillator. The cable connerting the two units can be any desired length.

The oscillator circuit, shown in Fig. 21-21, is a grounded-plate Hartley, with the cathode tap adjusted for maximum sensitivity - that is, for greatest change in grid current when tuning through resonance with a coupled circuitrather than for maximum grid current. For satis-

Fig. 2l.22-1'he grid. dip oscillator is buili on the l-shaped portion of the fon. Cis, Cis and Ci6 are groumded to a soldering lus at the left of the socket. Wires in the power and meter cable terminate at a 4 -point terminal strip at the left.
fartory operation at the highest frequeney, the leads in the tuned circuit should be kept as short as possible, and the tuning capacitor, C_{1}, is mounted so that its rotor and stator terminals are practically touching the corresponding pins on the coil socket. The tube socket is mounted on a bracket made from aluminum and placed at an angle so that the tube can be removed. The cathode connection between the tube socket and the coil socket is made of flat copper strip to reduce its inductance as much as possible.

Coils for the two low-frequency ranges are wound on the outsides of the forms in normal fashion, but with the exception of the highest range the remaining coils are lengths of $B \& W$ Diniductor mounted inside the forms. A hairpinshaped coil is used for the highest range. As the coil forms are polystyrene, which softens at relatively low temperatures, care must be used in soldering to the pins. It is helpful to drill a metal plate, a few inches square and $1 / 16$ inch or so thick,

Fig. 21.23 - Power sup. ply and milliammeter for the grid-dip meter are contained in a meter case. The control on top is for varying the plate voltage to maintain the grid current in the proper region.
so the eoil pins will fit suugly; then if the plate is pressed firmly against the bottom of the form during soldering it will conduct the heat away from the polystyrene rapidly enough to prevent softening, if the soldering operation is not prolonged.

A transparent dial cut from a piece of $1 / 8$-inch Plexiglas (ohtainable at hobby stores) is used in preference to a solid dial so the calibration can be placed on top of the box, where there is more room for lettering. A hairline indicator is scratehed on the dial, which is also provided with a standard small knob, fastened to it by small machine serews threaded in from the bottom.

The power supply shown in Fig. 21-2:3 uses a miniature power transformer with a selenium rectifier and a simple filter to give approximately 120 volts for the oscillator plate. The potentiometer shown in Fig. 21-24 is for adjustment of plate voltage. In any grid-dip meter the gride current will be different in different parts of the frequency range, with fixed plate voltage, so it is ordinarily neecssary to choose a plate voltage that will keep the reading on scale in the part of the range where the grid current is highest. This usually results in rather low grid current at some other part of the range. With variable plate voltage this compromise is unnecessary.

The instrument may be calibrated by listening to its output with a calibrated receiver. The calibration should be as accurate as possible, although "frequency-meter accuracy" is not re-

Fig. 21.24 - Circuit diagram of the power supply for the grid-dip meter.
$\mathrm{C}_{1}, \mathrm{C}_{2}-16 . \mu \mathrm{f}$. electrolytic, 150 volts.
R_{1} - 1000 ohms, $1 / 2$ watt.
R_{2} - 0.1 -megohm potentiometer.
T_{1}^{\prime} - Power transformer, 6.3 yolts and 125 to 150 volts. (Merit P- 3046 or equivalent.)
CR - 20 -ma, seleninm rectifier.
MA - 0-1 d.c. milliammeter.
quired in the applications for which a grid-dip meter is useful.

The grid-dip meter may be used as an indicat-ing-type absorption wavemeter by shutting off the plate voltage and using the grid and cathode of the tube as a diode. However, this type of circuit is not as sensitive as the crystal-detector type shown carlier in this chapter, because of the highresistance grid leak in series with the meter.

In using the grid-dip meter for checking the resonant frequency of a circuit the coupling should be kept to the point where the dip in grid current is just perceptible. This reduces interaction between the two circuits to a minimum and gives the highest accuracy. With too-close coupling the oscillator frequency may be "pulled" by the circuit being checked, in which case different readings will be obtained when resonance is approached from the high side as compared with approaching from the low side.

AUDIO-FREQUENCY OSCILLATORS

A useful accessory for testing audio-frequency amplifiers and modulators is an audio-frequency signal generator or oscillator. Checks for distortion, gain, and the ordinary troubles that oceur in such amplifiers do not require elaborate equipment; the principal requirement is a source of one or more audio tones having a good sine waveform, at a voltage level adjustable from a few volts down to a few millivolts so the oscillator can be substituted for the type of microphone to be used.

An easily-constructed oscillator of this type is shown in Figs. 21-25 to 21-27, inclusive. Three audio frequencies are available, approximately 200,900 and 2500 cycles. These three frequencies are sufficient for testing the frequency response of an amplifier over the range needed for voice communication.

The circuit uses a double triode as a cathodecoupled oscillator, the second section of the tube providing the feed-back necessary for oscillation through the common cathode connection. The 3 -watt lamp in this feed-back loop acts as a variable resistance to control the oseillation amplitude and thus maintain the operating con-

Fig. 21-26 - Cirruit diagram of the audio oscillator. Capacitances below $0.001 \mu \mathrm{f}$, are in $\mu \mu$. Fixed resistors are $1 / 2$ watt unless otherwise indicated.

'T1 - Power transformer, 1.20 volts, 25 ma.; 6.3 volts, 0.5 amp . (Verit P-3016).
$\mathrm{CR}_{1}-20$-ma. selenium rectifier.
ditions at the point where the best waveform is gemerated. This operating point is set by the "os :illation eontrol." R_{1}. The frequener is determined by the resistanee and eapacitance in the coupling rircuit between the first-section plate and second-section grid. Various values of capacitance ean be selected ber means of s_{1} to set the frequency. The actual frequencies measured in the unit shown in the photographs are given on the diagram. They may be either

Fig. 21-25 - Bottom view of the audio oseillator. showink the powersupply componemts and amplitudecontrol lamp, I_{1}. The lamp is mounted by wires soldered to its base. The selenimm rectifier is supported by a tiepoint strip. Placement of resistors, whieh are hidden hy the other components, is not eritical. The unit fits in a $4 \times 5 \times 6$ inch box.
s_{1} - s.p.e.t. topinle (monnted on R_{1}).
s_{2} - D.p.il.t. topgle.
53 - 2 -phle 5 -position (3 nsed) rotary switch.
$\mathrm{h}_{1}, \mathrm{R}_{2}$ - 1 olume controls.
increased or decreased by using smatler or larger eapacitanees, respeetively.

Output is taken from the eathocle of the

Fig. 21.27 - Inside view of the andio oscillator. The a.c. switch, Sia, is mounted on the output control at the left. The ceramic capacitors in the frequene-determining circuits are mounted on the rotary swimen, Si, at the right. s_{2} is alove the tube, and h_{1} is on the near edge of the chassis, which is a L -shaped piree of alumimm $31 / 2$ inelaes decp with $11 / 2$ inch lips. R_{1} is monted on the near lip at the left.
second triode section. Fither the full output, I.i) volts, or approximately one-tenth of it can be selected by S. (On either of these two ranges smooth control of output is provided by $R 2$.

The self-contained power supply uses a smatl transformer and a solonium reetifier to develop approximately 150 volfs. Ilum is reduced to a
negligible level by the filter consisting of the $35-h e m y$ choke and $20-\mu$ f. capacitors.

An oscilloscope is useful for preliminary cheoking of the oscillator since it will show waveform. h_{1} should be set at the point that will ensure oseillation on all three frequencies when switching from one to the other.

R.F. Measurements

R.F. CURRENT

R.f. current-measuring devices use a thermocouple in conjunction with an ordinary d.c. instrument. 'The thermocouple is made of two dissimilar motals which. when heated, generate a small d.c. voltage. The thermocouple is heated by a resistanee wire though whieh the r.f. current flows, and since the d.c. voltage developed is proportional to the heating. which in turn is proportional to the power used by the heating element, the deflections of the d.e. instrument are proportional to power rather thall to current. This causes the calibrated seale to be compressed at the low-current end and spread out at the highcurrent end. The useful range of surh an instrument is about 3 or 4 to 1 ; that is, an r.f. ammeter having a full-seale reading of 1 ampere can be read with satisfactory aceuracy down to about 0.3 ampere one having a full scale of 5 amperes ean be read down to about 1.5 amperes, and so on. No single instrument can be made to handle a wide range of currents. Neither can the r.f. ammeter be shunted satisfactorily, as can be done with d.e. instruments, berause even a very small amount of reactance in the shunt will cause the readings to be highly dependent on frequency.

R.F. VOLTAGE

An r.f. voltmeter is a rertifier-type instrument, in which the r.f. is converted to d.e., which is then measured with a d.c. instrument. The best trpe of rectifier for most applieations is a crostal diode, such as the 1×34 and similar types, berause its capacitance is so low as to have little effert on the behavior of the r.f. cirruit to which it is eonnected. The prineipal limitation of these rectifiers is their rather low value of safe inverse peak voltage. Vacuum-tube diodes are considerably better in this respect, but their size, shunt capacitance, and the fact that power is required for heating the cathode constitute serious disadvantages in many applications. Typieal circuits for crystal-diode r.f. voltmeters are given in Fig. 21-28.

One of the principal uses for sueh voltmeters is as null indieators in r.f. bridges. as desmibod later in this chapter. Another useful application is in measurement of the voltage hetween the eonductors of a coaxial line, to show when a transmitter is adjusted for optimum output. In either case the voltmeter impedance should be high compared with that of the circuit under measure-
ment, to avoid taking appreciathe power, and the relationship between r.f. voltage and the reading of the d.e. instrument should be as linear as possi-ble-that is, the d.e. indication should be directly proportional to the r.f. voltage at all points of the scalc.

All rectifiers show a variation in resistance with applied voltage, the resistance being highest when the applied voltage is small. These variations can be fairly well "swamped out" by using a high value of resistance in the d.e. cireuit of the rectifier. A besistance of at least 10,000 ohms

Fin. 21-28-1R.f. voltmeter eirenits using a erystal rectifior and d.c. micrommeter or 0-1 milliammeter. The circuit at A is suitable for measuring low voltages up to about 20 volts maximum. 3 is for measuring the voltage letween the conductors of a coaxial linc. 'The total resistance of R_{2} and R_{3} shomlal the of the order of 7500 ohms, with the ratio of R_{2} to R_{3} chosen to apply not more than $I(0)$ volis to the erystal cirenit, based on the unmodnlated carrier power in the line. In looth eireuits, R_{1} should be not loss than 10,000 ohms for a $0-1$ milliammeter, and shombl be incrased in proportion to the sensitivity of the meter (e. $\mathrm{y} ., 20,000$ ohms for a $0-500$ nicroammeter, 100,000 ohms for a $0-100$ microammeter). Ci and (i2 should be $0.001 \mu \mathrm{f}$, or more. In B , J_{1} and J_{2} represent coaxial connectors. The voltmeter is preferahly lhuilt in a shiclded box, the $2 \times 4 \times 4$ size being large enough to eontain the whote instrument.
is neeessary for reasomably good linearity, and higher values are beneficial. For this reason a fairly sensitive d.e. instrument should be used if possible, a 0-100 microammeter, although a $0-1$ milliammeter will serve quite well in many cases. A VTVMI is ideal for the purpose since its extremely high imput resistance execeds anything that is pratecal with an ordinary microammeter. IIigh resistance in the d.c. circuit also raises the
impedance of the r.f. voltmeter and reduces its power consumption.

The basie voltmeter circuit is shown in Fig. 21-28A, and is simply a half-wave rectifier with a meter and a resistor, R_{1}, for improving the linearity. The time constant of $C_{1} R_{1}$ should be large compared with the period of the lowest radio frequency to be measured - a condition that can easily be met if R_{1} is 10,000 ohms and C_{1} is 0.001 μf. or more - so C_{1} will stay charged near the peak value of the r.f. voltage. The radio-frequency choke may be omitted if there is a low-resistance d.c. path through the circuit being measured. C_{2} provides additional r.f. filtering for the d.e. circuit.

A practical arrangement for measuring the r.f. voltage in a coaxial line from a tranemitter is shown at B. A voltage diviter, $R_{2} R_{3}$, is connected across the line, the resistance values being chosen so the inverse peak voltage rating of the rectifier is not exceeded. This rating is 60 volts for the $1 N 34$, which limits the r.m.s. voltage that may be applied to the erystal to a maximum of 21 volts. If the approximate power carried thy the line is known, the voltage can easily be calcu'ated if the line is flat. A standing-wave ratio of 4 to 1 will cause the voltage to be twice the calculated value at a voltage loop, and 100 per cent modulation also doubles the voltage. Since it is unlikely that the s.w.r. will exered 4 to 1 in a properly operated coax line, the safety factor will be adequate if the voltage divider is designed on the basis of applying one-fourth the rated value of voltage, or about 5 volts, to the crystal. The total resistanee in the divider should be about 100 times the line impedince so the power consumed by the voltmeter will not exceed 1 per cent of the power in the line. Composition resistors should be used, allowing 1 watt dissipation in R_{2} (which usually dissipates practically all the voltmeter power) for each 100 watts in the line. The necessary dissipation can be built up by using resistors in series.

In constructing such a voltmeter care must be used to prevent stray coupling between the line and any part of the voltmeter, and also between the voltage divider and the erystal rectifier circuit. Also, the resistor or resistors comprising R_{2} should be kept away from grounded metal, in order to reduce stray caparitance.

Calibration

Calibration is not necessary for purely fomparative measurements. A calibration in actual voltage requires a known resistive load and an r.f. ammeter. The set-up) is the same as for r.f. power measurement as described later, and the voltage calibration is obtained by calculation from the known power and known load resistance, using Ohm's Law - $E=\sqrt{P R R}$. As many points as possible should be obtained, by varying the power output of the transmitter, so that the linearity of the voltmeter can be cherked.

Different voltage ranges may be secured, with a fixed voltage divider, by changing the value of R_{1}. It is advisable to calibrate on the lowest
range and then, with a fixed value of power in the line, increase R_{1} until the desired scale factor is obtained.

R.F. POWER

Measurement of r.f. power requires a resistive load of known value and either an r.f. ammeter or a calibrated r.f. voltmeter. The power is then either $I^{2} R$ or E^{2} / R, where R is the load resistance in ohms.

The simplest method of obtaining a load of known resistance is to use an antenna system with coax-coupled matching circuit of the type described in the chapter on transmission lines. When the circuit is adjusted, by moans of an s.w.r. bridge, to bring the s.w.r. down to 1 to 1 the load is resistive and of the value for which the bridge was designed (52 or 75 ohms). Fig. 21-2!) shows a convenient way of mounting an r.f. ammeter for measuring current in a coaxial line.

Fig. $21-29$ - R.f. ammeter mounted for connecting into a coaxial line for measuring bower. A " 2 -inela" instrument will fit into a $2 \times+\times+$ metal hox. The shmm capacitance of an ammeter momed in this way has a negligithle effect on the areuracy at frequencies as hiyla as 30 Me , if the instrument has a bakelite ease. Netaleased meters should be mounted on a bakelite panel which can in turn be mometed in a cut-ont which clears the meter ease hy about $1 / 4$ inch.

The instrument can be inserted in the line in place of the s.w.r. bridge after the matehing has been completed, and the trinsmitter is then adjusted - without touching the matching circout - for maximum current. A 0-1 ammeter is useful for measuring the approximate range 5-50 watts in 52 -ohm line, or $\overline{7} .5-75$ watts in 75 -ohm line; a $0-3$ instrument can be used for $1: 3-450$ watts in $52-$ ohm line and $20-675$ watts in 75 -ohm line. The accuracy is usually greatest in the upper half of the seale.

An r.f. voltmeter of the type described in the preceding section also can be used for power measurement in a similar set-up. It hats the advantage that, because its scale is substantially linear, a much wider range of powers can be measured with a single instrument.

INDUCTANCE AND CAPACITANCE

The ability to measure inductance and capacitance frequently saves time that might otherwise be spent in cut-ind-try. A convenient instrument for this purpose is the grid-dip oscillator, described cartier in this chapter.

For measuring inductance, the coil is connected to a eipacitance of known value as shown at A in Fig. 21-31. With the unknown coil connected to the standard capacitor, the pick-up
loop is coupled to the coil and the oscillator frequency adjusted for the grid-current dip, using the loosest coupling that gives a detectable indication. The inductance is then given by the formula

$$
L_{\mu \mathrm{l}, \bullet}=\frac{25,330}{C_{\mu \mu \mathrm{I}} \cdot \int_{\mathrm{Mc}}^{2{ }_{2}}}
$$

The reverse procedure is used for moasuring capacitance - that is, a coil of known inductance is used as a standard as shown at B. The unknown capacitance is

$$
C_{\mu \mu \mathrm{I} \cdot}=\frac{25,330}{L_{\mu \mathrm{ll},} f_{\mathrm{Mc} .}^{2}}
$$

The aceurary of this method depends on the accuracy of the grid-dip meter calibration and

Fig. $21-30$ - Set-ups for measuring inductance and capacitance with the grid-dip meter.
the aceuracy with which the standard values of L and C are known. Postage-stamp silver-mica apacitors make satisfactory capacitance standards, since their rated tolerance is ± 5 per cent. liqually good inductance standards can be made from commercial machine-wound coil material.

Fig. 21.31 - A convenient mounting, using bindingposit plates, for I and C standards made from commer-cially-available parts. The capacitor is a $100-\mu \mu \mathrm{f}$. silver mica unit, mounted so the lead length is as nearly zero as possilile. The inductance standard, $5 \mu \mathrm{~h}$., is 17 turns of No. $301513 \& W$ Minidhetor, 1 -ingh diameter, 16 tarns per inch.

A single pair of standards will serve for measuring the L and C values commonly used in amateur equipment. A good choice is $100 \mu \mu \mathrm{f}$. for the capacitor and $5 \mu \mathrm{~h}$. for the coil. Based on these values the chart of Fig. $21-32$ will give the unknown directly in terms of the resonant frequency registered by the grid-dip meter. In measuring the frequeney the coupling between the grid-dip meter and resonant circuit should be kept at the smallest value that will give a definite indication.

A correction should be applied to measurements of very small values of L and C to include the effects of the shunt capacitanee of the mounting for the coil, and for the mductance of the leads to the capacitor. These amount to approximately $1 \mu \mu \mathrm{f}$. and $0.003 \mu \mathrm{~h}$., respectively, with the method of mounting shown in Fig. 21-31.

Fig. 21-32 - Chart for determining unknown values of L and C in the range 0.1 to $100 \mu \mathrm{~h}$. and 2 to $1000 \mu \mu \mathrm{f}$, using standards of $100 \mu \mu \mathrm{f}$. and $5 \mu \mathrm{~h}$.

Coefficient of Coupling

The same equipment can be used for measurement of the coefficient of coupling between two eoils. This simply requires two measurements of inductance (of one of the coils) with the coupled coil first open-circuited and then short-circuited. Comect the $100-\mu \mathrm{f}$. standard eapacitor to one coil and measure the inductance with the terminals of the second coil open. Then short the terminals of the second roil and again measure the inductaner of the first. The coeflicient of coupling is givern by

$$
k=\sqrt{1-\frac{L_{2}}{L_{1}}}
$$

where $k=$ rocflicient of coupling
$L_{1}=$ inductance of first coil with terminals of second roil open
$L_{2}=$ inductance of first coil with terminals of second coil shorted.

R.F. RESISTANCE

Aside from the bridge mothouls used in trans-mission-line work, described later, there is relat tively little need for measurement of r.f. resistance in amateur practive. Also, measurement of
resistance by fundamental methods is not pratetieable with simple equipment. Where such measurements are made, they are usually based on known charactaristies of available resistors used as standards.

Most types of resistors have so much inherent reactance and skin effere that they do not act like "pure" resistance at radio frequencies, but instead their effective resistance and impedance vary with frequency. This is esperially true of wire-wound resistors. Composition (carbon) resistors as a rule have negligible inductance for frequencies up to 100 Me . or so and the skin effect also is small, but the shunt capacitance cannot be neglected in the higher values of these resistors, sinee it reduces their impedance and makes it reactive. However, for most purposes the caparitive effects can be eonsidered to be negligible in composition resistors of values up to 1000 ohms, for frequencies up to 50 to 100 Me., and the r.f. resistance of such units is practically the same as their d.e. resistance. Inence they can be considered to be practically pure resistance in such applications as r.f. bridges, ete., provided they are mounted in such a way as to avoid magnetic coupling to other circuit components, and are not so close to grounded metal parts as to give an appreciable increase in shunt eapacitance.

Antenna and Transmission-Line Measurements

Two principal types of monsuremonts are made on antenua systems: (1) the standing-wave ratio on the transmission line, as a means for determining whether or not the antenna is properly natehed to the line (alternatively, the input resistance of the line or antenna may be measured); (2) the comparative radiation fiold strength in the vicinity of the antema, as a means for checking the directivity of a beam antemat and
ats an aid in adjustment of element tuning and phasing. Both types of measurements can he made with rat her simple equipment.

- FIELD-STRENGTH MEASUREMENTS

The radiation intensity from an antenna is measured with a deviee that is essentially a very simple receiver equipped with an indicator to give a visual representation of the comparative

Fig. 2/-33 - Transistorized fieldstrengh meter and monitor. Plug-in wils cover the amateur Dands from 1.8 to 50 Mc . The function switch, meter pin jacks, and zero-aljust control are on the near edge of the $2 \times 4 \times 4$ inch aluminum box. The headphone jack, on the left side, is insulated from the box. The dial on top is the taning control.

Fig. 2/-34- (ircouit liagratm of the transistorized field-strength meter.

signal strength. Such a field-strength meter is used with a "pick-up antenna." which should always have the same polarization as the antenna being checked - e.g., the pick-up antenna should be horizontal if the transmitting antemat is horizontal. (are should be taken to prowent stray pick-up, be the field-strength meter itself or by any transmission line that may connect it to the pick-up antenna.

Field-strength measurements preferahly should be made at a distance of several wavelengths from the transmitting antema being testemb. Measurements made within a wavelength of the antenna maty be misleading, because of the possibility that the measuring equipment maty be responding to the combined induction and radiation fields of the antenna, rather than to the radiation field alone. Also, if the piek-up antemat has dimensions comparable with those of the antemnt under test it is likely that the eoupling between the two antennas will be great enough to callse the piek-up antema to tend to beeome part of the radiating system and thas result in misloading field-ritrength readings.

A desiratble form of piek-up antenna is a dipole installed at the same height as the antemat being tested, with low-impedance line such as 75 -ohm Twin-Lead connected at the center to transfor the r.f. signal to the field-strength meter. The length of the dipole need only be great cnough to give adergate motor readings. A half-wave dipole will give maximum sensitivity, but such length will not be needed unless the distanee is several wavelengths and a relatively insensitive meter is used.

Field-Strength Meters
The erystal-detector wavemeter described earlier in this chapter may be used as a fieldstrength meter. It may be coupled to the transmission line to the pick-up antenna by means of a link of a few turns wound around the wavemeter eoil. Also, the wavemeter proper may be connected to the milliammeter through a section of lampeord or similar two-conductor cable of any convenient length. This permits the milliammeter unit to be near the point where adjust-
ments are being made, even though the pick-up antruna and wavemeter may he several waveleugthe away.

The indications with a crystal wavemeter connected as shown in Fig. 2l-11 will tend to be "square law" - that is, the meter reading will be proportional to the suate of the r.f. voltage. This exagrerates the effert of relatively small adjustments to the antenna system and gives a false impression of the improvement secured. Tho moter reading can be made more lincar by comerting a fairly large resistance in series with the milliammeter (or microammeter). About 10,000 olms is required for good linearity. This considerably reduces the sensitivity of the meter, but the lower sensitivity cam be compensated for by making the pick-up intenna sufliciently large.

Transistorized Field-Strength Meter

A sensitive field-strengt h moter can be made by using a transistor as a d.e. amplifier following the rerstal reetifier of a wavemeter. A meter of this tipe is shown in Figs. 21-3:3 to 21-35, inclusive. Depending on the characteristies of the particular tramsistor used, the amplification of current may be 10 or more times, so that a (0-1 millimpere d.c: instrument becomes the equivalent of a sensitive microbmmeter.

The instrument shown combines the functions of field-strength moter, phone monitor, and mil-liammeter-microammeter. Although a direct frequeney calibration is not feasible, calibration charts may be premed for using the device as a wavemeter. The transistor is used in the commonemitter arrangement connected so that the reetified d.e. from the erystal flows in the baseemitter circuit. It thus acts both as a d.c. amplifier and as a direct-coupled a.f. amplifier, the meter and phone jack being connected in the collector circuit. Because there is a small residual collector current with no signal applied to the base, the meter is comented in a bridge cireuit so the meter reading can be balanced to zero. The current in an external circuit (not exceeding 1 milliampere) maty be measured by means of the pin jacks J_{1} and J_{2}.

In making field-strength checks the instrument should the placed far enough from the radiating antenna system to avoid coupling to the transmitter tank circuits and any transmission line that may he used. It is advisable to use a length of wire as a pick-up antemna, using the same polarization as the antemas system being checked. For greater distanee and more useful comparative readings when a beam antenna is being adjusted, a dipole with a transmission line and link coupling to the f.s. meter coil, as described in the preceding seetion, should be used.
(From QST for August, 1955.)

IMPEDANCE AND STANDING-WAVE RATIO

Adjustment of antenna matching systems requires some means either of measuring the input impedance of the antenna or transmission line, or measuring the standing-wave ratio. "Bridge" methods are suitable for either measurement.
There are many varieties of bridge eireuits, the two shown in Fig. 21-36 being among the most popular for amateur purposes. The simple resistance bridge of Fig. 21-36A consists essentially of two voltage dividers in parallel aeross a source of voltage. When the voltage drop aeross R_{1} equals that aeross R_{s} the drops across R_{2} and R_{L} are likewise equal and there is no difference of potential between points A and B. Hence the voltmeter reading is zero and the bridge is said to the "balanced." If the drops aeross R_{1} and $R_{\text {s }}$ are not equal, points A and B are at different potentials and the voltmeter will read the difference. The operation of the cirenit of Fig. 21-3613 is similar, exrept that one of the voltage dividers is capacitive instead of resistive.
Beeause of the characteristies of practical components at radio frequencies, the circuit of Fig.

(A)

(B)

Fig. 21-36- Basic bridge circuits, (A) Resistance bridge: (B) resistance-capacitance bridge. The latter circuit is used in the "Mieromateh," with R_{8} a very low resistance (I ohm or less) and the ratio C_{1} / C_{2}^{2} adjusted accordingly for a desired line impedance. One form of Mieromateh, shown in the chapter on transmission lines, uses two such bridges back to back for s,w,r. measurements.
$21-36 \mathrm{~A}$ is best suited to applieations where the ratio R_{1} / R_{2} is fixed. This type of bridge is particularly well suited to measurement of standing-wave ratio. The circuit of Fig. 21-36B is well adapted to applications where a variable voltage divider is essential (since C_{1} and C_{2} may readily be mide variable) as in measurement of unknown values of R_{L}.

S. W.R. Bridge

In the circuit of Fig. $21-36 \mathrm{~A}$, if R_{1} and R_{2} are made equal, the bridge will be balaneed when $R_{\mathrm{L}}=R_{\mathrm{s}}$. This is true whether R_{t}, is an aetual resistor or the input resistance of a perfectly matched transmission line, provided R s is chosen to equalal the characteristic impedance of the line. liven if the line is not properly matched, the bridge will still be balanced for power traveling outward on the line, since outward-going power sees only the Z_{0} of the line until it reaches the load. However, power reflected back from the load does not "see" a bridge circuit and the reflected voltage registers on the voltmeter. From the known relationship, between the outgoing voltage and the reflected voltage, the s.w.r. is casily ealeulated:

$$
N . W . R .=\frac{V_{\mathrm{o}}+V_{\mathrm{r}}}{V_{\mathrm{o}}-V_{\mathrm{r}}}
$$

where V_{o} is the outgoing voltage and V_{r} is the reflected voltage. The outgoing voltage is equal to $E / 2$ since R_{s} and $R_{1_{1}}$ (the Z_{0} of the line) are equal. It may be measured cither by disconneeting R_{L} or shorting it.

Fig. 21-35 - Inside view of the field-strength meter. The tuning capacitor is concealed by the components mounted above it, but is just helow the milliammeter. The capacitor and meter are mounted on the removable plate. The penlite cell, at the right, is supported by soldering its powitive terninal to the tie-bolt of the function switeh assembly. The other end is not supported, the negative connection being made by soldering a lead to the case. The transistor and two 560 -ohm resistors, just below the meter, are supported by their leads. The binding post alongside the coil is for an external antenna.

Measuring Voltages

For the s.w.r. formula above to apply with reasonable arcuracy (particularly at high stand-ing-wave ratios) the current taken by the voltmeter must be inappreciable compared with the currents through the bridge "arms." The voltmeter used in bridge circuits employs a crystal diode rectifier (sce discussion carlier in this chapter) and in order to meet the above requirement - as well as to have linear response, which is equably necessary for calibration purposes should use a resistance of at least 10,000 ohms in series with the milliammeter or microammeter.

Sinee the voltage applied to the line is measured by shorting or discomecting R_{I}. (the line input terminals), while the reflected voltage is measured with R_{1}. comected, the loat on the source of voltage E is different in the two measurements. If the regulation of the voltage sourer is not perfect, the voltage E will not remain the same under these two conditions. This can lead to large errors. Such errors can be avoided by using a second voltmeter to maintain a check on the voltage applied to the bridge, readjusting the

Fig. 2I-37-13ridge circuit for s.w.r. measurements. This circuit is intended for use with a d.c. voltmeter, range it to 10 volts, having a resistance of 10,000 ohms per volt or greater.
$\mathrm{Ci}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C}_{4}-\mathbf{0 . 0 0 5}$ or $0.01-\mu \mathrm{f}$. disk ceramic.
$\mathrm{R}_{1}, \mathrm{R}_{2}-4 \overline{7}$-ohm composition, $1 / 2$ or 1 watt.
$\mathrm{K}_{3}-50$ - or 5.5 -ohm (depending on line impedance) composition, $1 / 2$ or 1 watt.
$\mathrm{R}_{4}, \mathrm{R}_{5}-10,000$ ohms, $1 / 2$ watt.
$\mathrm{J}_{1}, \mathrm{~J}_{2}$ - Coaxial eonnectors.
Meter connects to cither "input" or "bridge" position as refuired.
coupling to the voltage source to maintain constant applied voltage during the two moasurements. Since the "imput" voltmeter is simply used as a reforence, its linearity is not important, nor does its reading have to bear any definite relationship to that of the "bridge" voltmeter, except that its range has to be at least twice that of the latter.

A practical eireuit incorporating these features is given in Fig. 21-37.

If the bridge is to be used merely for ant enna adjustment, where the object is to secure the lowest possible s.w.r. rather than to measure the s.w.r. accurately, the voltmeter requirements are not stringent. In this casc the object is to get as close to a" "mull" or halance (that is, zero reading)

Fig, 21-38-A simple bridge circuit useful for imped-ance-matching in coasial lines.
$\mathrm{C}_{1}, \mathrm{C}_{2}-0.00 \mathrm{~B}-$ or $0.01-\mu \mathrm{f}$. disk (cramic.
$\mathrm{R}_{1}, \mathrm{~K}_{2}-4 \vec{i}$-ohme composition, $1 / 2$ watt.
R_{3}, $\mathrm{R} 2-50$ or or 6.5 -olmm (depending on line impedance) composition, $1 / 2$ watt.
$\mathrm{H}_{4}-1000$-ohm compesition, $1 / 2$ watt.
$\mathrm{J}_{1}, \mathrm{~J}_{2}$ - Conaxial connector.
The meter may be a 0 - milliammeter or d.c. voltmeter of any type having a sensitivity of 1000 ohms per volt or greater, and a full-scale range of 5 to 10 volts. Vegative side of meter conncets to ground.
as possible. At or near exact balance the voltmeter impedance is not important. Neither is it necessary to maintain constant input voltage to the bridge. This simplifios the bridge circuit considerably, Fig. 21-38 being at practical example. The construction of a bridge of this type suitable for antenna and transmission line adjustments is shown in Fig. 21-39.

Bridge Construction

A principal point in the construction of an s.w.r. bridge is to avoid coupling between the resistors forming the bridge arms, and between the arms and the voltmeter circuit. This can be done by keeping the resistince arms separated and at right angles to each other, and by placing the erystal and its comecting leabs so that the loop so formed is not in inductive relattionship with any loops formed by the bridge arms. Shielding betwoon the bridge arms and the crystal circuit is helpful in reducing such couplings, although it is not always necessary. The two resistors forming the "ratio arms," R_{1} and R_{2}, should have identical relationships with metal parts, to keep the shunt eapacitances equal, and also should have the same lead lengths so the inductances will balance. Leads should be kept as short as possible.

Testing and Calibration

In a bridge intended for s.w.r. measurement (Fig. 21-37) rather than simple matehing, the first chock is to apply just enough r.f. voltage, at the highest frequency to to used, so that the bridge voltmeter reads full scale with the load terminals open. Observe the input voltage, then short-cireait the load terminals and readjust the input to the same voltage. The bridge voltmeter should again register full scale. If it does not, the ratio arms, R_{1} and R_{2}, probably are not exactly equah. These two resistors should be carefully matched, although their actual value is not

Fig. $2 / .39-$ An inexpensive bridge for matching adjustments using the circuit of Fig. 21-38. It is built in a $15 / 8>21 / 8 \times 4$-ineh "Channel-lock" loox, 'lherstandard resistor, Ra, bridges the two coas connectors. A pin jack is provided for conmection to the d.e. meter, 0 - 1 ma. or $0-500$ pa,; the meter nowative can be connected to the case or to one of the cona fittings.
eritical. If a similar test at a low frequenty shows better balance, the probable cause is stray inductance or eapacitanee in one arm not baianced by equal strays in the other.
After the "short" and "open" readings have been equalized, the bridge should be chereked for null halance with a "dummy" resistance, equal to the line impedance, connected to the load terminals. It is convenient to mount a half- or 1 -watt resistor of the proper value in a coax comector, keeping it centered in the comector and using the minimum lead length. The bridge voltmeter should read zero at all frequencies. A reading above zero that remains constant at all froqueneries indicates that the "dummy" resistor is not matched to R_{3}, while readings that vary with frequency indieate stray reactive effects or stray coupling betweon parts of the bridge.

When the operation is satisfactory on the two points just desmibed, the null should be cheeked with the dummy resistor connerted to the bridge through several different lengths of transmission line, to ensure that R_{3} actually matches the line impedance. If the null is not complete in this test hoth the dummy resistor and R_{3} will have to be adjusted until a good mateh is ohtained. With (are, composition resistors can le filed down to raise the resistance, so it is best to start with resistors somewhat low in value. With each change in R_{3}, adjust the dummy resistor to give a good null when connected directly to the bridge, then try it at the end of several different lengths of line, continuing until the null is sat isfactory under all conditions of line length and frequeney.

With a high-impedance voltmeter, the s.w.r. readings will closely approximate the theoretical curve of lig. 21-40. The calibration can be checked by using composition resistors as loads. Adjust the tramsinitter coupling so that the bridge voltmeter reads full scale with the output terminals open, and then check the input voltage. Comect various values of resistance across the output terminals, making sure that the input voltage is readjusted to be the same in each case, and note the reading with the meter in the bridge position. The s.w.r. is given by

$$
S . W . R .=\frac{R_{\mathrm{I}}}{R_{1}} \text { or } \frac{R_{0}}{R_{\mathrm{L}}}
$$

where R_{0} is the line impedance for which the bridge has been adjusted to null, and R_{L} is the resistance used as a load. Use the formula that places the larger of the two resistances in the numerator. If the readings do not corresponel exactly for the same s.w.r. when appropriate resistors above and below the line impedance for which the bridge is designed are used, the curront taken by the voltmeter is affecting the measuremonts.

Using a $0-100$ microammeter, a 20,000 -ohms-per-volt voltmeter on a 5 -volt or higher range, or a VT voltmeter, the difference between "up" and "down" s.w.r. measurements should be negligible, provided the load resistors used for this test can be measured (at d.e.) with sufficient aceurary. Values over 1000 ohms or so should not be usid at the higher frequencies.

Using the Bridge

The operating provedure is the same whether the britge is used for matching or for s.w.r. measurement. Apply power with the load terminals either open or shorted, and adjust the input until the bridge voltmeter reads full scale. Bectuse the bridge operates a very low power level it may be necrassary to couple it to a low-power driver stage rather than to the final amplifior. Alternatively,

Fig. 21.A0-Standing-wave ratio in terms of meter reading (relative to full seale) after setting outgoing voltage to full scale.
the plate voltage and exeitation for the final amplifior may be reduced to the point where the power output is of the order of a few watts. Then conneer the load and observe the voltmeter reading. For matehing, aljust the matching network until the best possible mull is obtamed. For s.w.r. measurement, note the r.f. imput voltage to the bridge after aljusting for full-seale with the lowd termmals open or shorted, then comere the load and readjust the transmitter for the sume input voltage. The bridge voltmeter then intiatas the standing-wate ratio as given by Fig. 21-40.
Antemat systems are in general resontut systems and thus exhibit a purely-resistive impedance at only one frequency or over as smatl band of frequencios. In making bridge mosismements, this will eatuse errors if the r.f. energy used to operate the bridge is not free from hatmonies and other spurious components, such as frequeneies lower than the desired operating frequens that maty be fed through the final amplifier from a frequency-doubler stage. When a good null cannot be secured in, for example, the course of adjusting a matehing sertion for 1-to-1 s.w.r., at check should be made to onsure that only the desired messurement frequency is present. A crystal wavemeter coupled to the toat usuadly will show whether puergy on undesired frequencies is present in significant imounts. If so, tudditional selectivity must be used between the source of power and the measuring eircuit.

Impedance Bridge

The bridge shown in Figs, 21-41 to 21-43, indusive, uses the basic eirenit of Fig, $21-3613$ and incorporates a "differential" capactitor to obtain anadjustable ratio. Referring to Fig. 21-3633, when a load of unknown value is connected in plate of R_{1}, the C_{1} / C_{2} ratio is adjusted for batinnere, indicated by a mull reading. The eapacitor settings ean be calibrated in terms of resistance at R_{L}, so the unknown value can be read off the calibration.

The differential capacitor consists of two identical eapacitors on the same shaft, arranged so that when the shaft is rotated to increase the eapacitance of one unit, the caparitance of the other decreases. The practical cireuit of the bridge is given in Fig. 21-42. Satisfactory operittion hinges on observing the same construetional precations as in the case of the s.w.r. bridge. Although a high-impedance voltmeter is not essential, since the bridge is ahwas adjusted for

Kig. 21-4I-An RC bridge for measuring unknown values of impedanee. The bridge operates at an r.f. input voltage level of about $\overline{5}$ volts. 'The aluminum box is 4 ly 5 by (inches.
a mull, the use of such a voltmeter is advisable because its better linearity (partiendarly at the low readings) makes the actual mull settings more atecurately observable.

With the circuit arrangement and capacitor shown, the useful range of the bridge is from about 5 ohms to 400 ohms. The cablibration is such that the percentage accuracy of reading is approximately constant at all parts of the scale. The midscale value is in the range $50-75$ ohms, to correspond with the Z_{0} of coavial cable. The reliable frequeney range of the bridge includes all amateur bands from 3.5 to 54 Mc .

Checking and Calibration

A bridge constructed as shown in the photographs should show a complete null at all frequencies within the range mentioned above when t50-ohm "dimmy" lowel of the type deseribed e:urlier in commection with the s.w.r. bridge is connected to the loud terminals. The bridge may

Fig. 21-42- (:ircuit of the imperlance bridge. Resistors are composition, $1 / 2$ watt except as noted. lixed caparitors are ceramic.
(i-D) Diferential capacitor. 11-161 ниf. per section (Millen 28801).
CH_{1}-Germanium diode (1)34, 1) 48 . ctc..).
$\mathrm{J}_{1}, \mathrm{~J}_{2}$ - Coaxial connectors, chassis type.
$\mathrm{M}_{1}-0-500$ microammeter.

Fig. 21-43- All components eveept the meter are mounted on one of the removable sides of the box. The variable eapacitor is mounted on an $L_{\text {-shaped }}$ piece of aluminum (with half-inch dips on the inner edge for bolting to the box side) 2 inches wide, $21 / 4$ inches high and $23 / 4$ inches decp, to shield the capacitor from the other components. 'The terminals projeet through holes as shown, with assoriated components mounted direetly on them and the load conncctor, J_{2}. Since the rotor of C_{1} must not be arounded, the capacitor is operated by an extension shaft and insulated roupling.

The lead from J_{1} to C_{1} slould go directly from the input connector to the eapacitor terminal (lower right) to which the 68 -rimm resistor is attached. 'The $4700-$ ohm resistor is soldered aeross J_{1}.
be ealibrated by using a mumber of $1 / 2$-watt composition resistors of different values in the 5-400 ohm range as loads, in each uase balaneing the bridge by adjusting C_{1} for a null reading on the meter. For highest aceuracy, the test resistors should be measured on a precision resistance bridge, if possible, since the best tolerance normally obtainable in such resistors is ± 5 per cent. The leads between the test resistor and J_{2} should be as short as possible, and the calibration prefcrably should be done in the 3.5-Me, band where stray inductance and capacitance will have the least effect. The calibration should be checked on the highest-frequency band to be used and the dial readings should be identical with the lowfrequency calibration. At 30 to 50 Mc . the mull may not be quite complete at the extremes of the resistance range because at these frequencies stray inductance and capaciance in the test resistor and its leads are not negligible. However, the current indicated by the meter at the minimum point should not be more than about 5 per cont of the current indicated when the bridge is thrown as far out of balance as possible by varying C_{1}.

Using the Bridge

Strietly spaking, a simple bridge can measure only purely resistive impedunces. When the load is a pure resistance, the bridge can be balaneed to a good null (meter reading zero). If the load has a reactance component the null will not be
complete; the higher the ratio of reactance to resistance in the load the poorer the null reading. The operation of the bridge is such that when an exact null cannot be secured, the readings approximate the resistive component of the load for very low values of impedance, and approximate the total impedaner at very high vahues of impedance. In the mid-range the approximation to either is poor, for loads having ronsiderable reactance.

In using the bridge for idjustment of matching networks C_{1} is set to the desired value (usually the Z_{0} of the coaxial line) and the matching network is then adjusted for the best possible null.

PARALLEL-CONDUCTOR LINES

Bridge measurements made directly on paral-lel-conductor lines are frequently subjeet to considerable error becanse of "antenna" eurrents flowing on such tines. These curronts, which are either indued on the line by the fied around the antenna or coupled into the line from the transmitter by stray capacitanee, are in the same phase in both line wires and hence do not balance out like the true transmission-line currents. They will nevertheless actuate the bridge voltmeter, calusing an indication that has no relationship to the standing-wave ratio.

S.W.R. Measurements

The effect of "antenna" currents on s.w.r. measurements can be largely overcome by using a coaxial bridge and coupling it to the parallelconductor line through a properly-designed impedance-matching circuit. A suitable circuit is given in Fig. 21-44. An antenna coupler can be

Fig, 21-44 - Cireuit for using coaxial s.w.r. bridge for measurements on paralled-conductor lines, Values of circuit components are identical with those used for the similar "antenna-conpler" cirenit diseussed in the chap. ter on transmission lines.
used for the purpose. In the balanced tank eircuit the "antenna" or parallel components on the line tend to balance out and so are not passed on to the s.w.r. bridge, It is essential that L_{1} be coupled to a "eold" point on L_{2} to minimize capareitive coupling, and also desirable that the center of L_{2}, be grounded to the chassis on which the eirenit is mounted. Values should be such that $L_{2} C_{2}$ ean be tuned to the operating frequency and that, L_{1} provides sufficient coupling, as deseribed in the trans-mission-line chapter. The neasurement procedure is as follows:

Connect a noninductive ($1 / 2-$ or $1-w a t$ earbon) resistor, having the same value as the characteristie impedance of the parallel-conductor line, to the "line" terminals. Apply r.f. to the bridge, adjust the taps on L_{2} (keeping them equidistant
from the "enter), while varying the capacitance of (${ }_{1}$ and C_{2}^{\prime}, until the bridge shows a null. After the null is obtained, do not touch any of the eircuit aljustments. Next, short-rireuit the "line" terminals and adjust the r.f. input until the bridge voltmeter reads full scale. Remove the shortrireuit and test resistor, and commert the regular transmission line. The bridge will then indicate the standing-wave ratio on the line.

The eirelit reguires rematehing, with the test resistor, whenever the frequency is changed apprectiably, It can, however, be used over a portion of an amateur band without readjustment, with negligible error.

Impedance Measurements

Measurements on parallel-conductor lines and other ballaneed lowds can be made with the impedance bridge previously deseribed by using a balun of the type shown schematically in Fig. 21-45. This is an atototrasformer having a 2 -to- 1 turns ratio and thus provides a 4 -to- 1 step-down in impedance from a balanned load to the output circuit of the bridge, one side of which is grounded. L_{1} and L_{2} must be as tightly coupled as possible, and so should be constructed as a bifilar winding. The circuit is resonated to the operating froquency by C_{1}, and C_{2} serves to tune out any residual reactane that maty be present because the coupling between the two coils is not quite perfect.

Fig. 21-46 shows one method of constructing such ab balun. The two interwound coils are madeas noarly identical as possible, the "finish" end of the first being connected to the "stant" end of the second through a short lead running under the winding inside the form. The center of this lead is tapped to give the commection to the shell side of the coax connector. C_{1} should be chosen too resonate the cirenit at the center of the band for which the balun is designed with J_{1} open, and C_{2} is adjusted to resonate the eireuit to the same frequency with both J_{1} and the "load" terminals shorted. The frequency cheeks may be made with it grid-dip meter. (For further details, see QST' for August, 1955.)

With the balun in use the bridge is operated in the same way as previously deseribed, except that atl impedance readings must be multiplied by 4. The balun also may be used for s.w.r. measurements on $300-\mathrm{ohm}$ line in conjunction with a resistance bridge designed for 75 -ohm coaxial line.

Fig. 21-45-Tuned balun for coupling between halanced and unbalanced lines. L_{8} and L_{2} should be built as a bifilar winding to get as tight coupling as jusisille between thern. 'lypical constants are as follows:

Frequ., Mc.	I.1, L. 2	CH_{1}	C_{2}
28	3 turns each on 2 -inch form, equally spaced over ${ }^{\text {gits inch, }}$ total.	$4 \mu \mu \mathrm{f}$.	$420 \mu \mu$.
14	Same as 28 Mc .	$39 \mu \mathrm{f}$.	0.0015 \% f .
7	8 turns of 150 ohm Twin-l.cad, no spacing between turns, on $23 / 4$-inch dia. form.	None	0.001μ f.
3.5	Same as 7 Mc .	$62 \mu \mu \mathrm{f}$.	$0.0045 \mu \mathrm{f}$.

Capacitors in umit shown in Fig. $21-46$ are NP0 disk cerramic. I/nits may be paralleled to obtain proper eabacitanes.

The "Twin-Lamp"

A simple and inexpensive standing-wave indicator for 300 -ohm line is shown in Fig. 21-47. It consists only of two flashlight lamps and a short piece of 300 -ohm line. When latid flat against the line to be checked, the coupling is such that ontgoing power on the line causes the bamp nearest to the transmitter to light, while reflerted power lights the lamp nearest the load. The power input to the line should be adjusted to make the lamp nearest the transmitter light to full brilliance. If the line is properly matched and the reflected power is very low, the lamp toward the antenna will be dark. If the s.w.r. is high, the two lamps will glow with practically equal brilliance.

The length of the piece of 300 -ohm line needed in the twin-lamp will depend on the transmitter power and the operating frequency. A few inches will suflice with high power at high frequencies, while a foot or two may be needed with low power and at low frequencies.

In conslructing the twin-timp, cut one wire in the exact center of the piece and peel the ends back on either side just far enough to provide leads to the flashlight lamps. Remove about $1 / 4$

Fip, 2/-46- Walun construction
 may tre used for the bifilar winding in place of the ordinary wire shown, Eymmetrical construetion with tipht coupling betwern the tworoils is essential to good performanec.

Fig, 2l-17-The "twin-lamp" standinw-wave indicator monnted on $3(0)$-ohm 'lwin-Lead, scotela tape is used for faxtering.
inch of insulation from one wire of the main transmission line at some convenient point. Ise the lowest-current flashlight bulhs or dial lamps available. Solder the t i ss of the bulbs together and connect them to the bare point in the transmission line, then solder the ends of the cut portion of the short piece to the shells of the bulls, Figs, $21-47$ and -48 should make the construction clear.

Installing the twin-lamp on a line introduces a discontinuity in the line impedince which eatses the s.w.r. from the twin-lamp batek to the transmiter to differ from the s.w.r. existing between the antennit and twin-lamp. For this reason it is desirable to remove it after s.w.r. checks have been made. It is convenien to mount the twin-lamp on a short length of line fitted tos a 300 -ohm plug at one end and is mating soeket at the other. If similar plugs and sockets are used on the transmitter and regular transmission line, the whole test unit can be inserted and taken out at will.

The twin-lamp will respond to "antenna" currents on the transmission linc in much the same way as the bridge cireats disenssed earlier. There is therefore always a possibility of error in its indieations, unless it has been determined by other means that "int enna" rurrents are inconsequential compared with the true transmission-line current.

Fig. 21-18- Wiring diagram of the "twin-lamp" standing-wave indieator.

The Oscilloscope

The cathode-ray oscilloscope gives a visual representation of signals at both audio and radio frequencies and con therefore be used for many trpes of measuremente that are not possible with instruments of the tepes discussed earlior in this chapter. In tmateur work, one of the prineipal uses of the 'seope is for displaying an amplitudemodulated signal so a 'phone transmitter cian be adjusted for proper modulation and continuously monitored to keep the modulation percentage within proper limits. For this purpose a very simple circuit will suflice, and an oscilhseope designed expressly for this purpose is deseribed in this section.

The versatility of the 'soope can be greatly increased by adding amplifiers and linear deflection circuits, but the design and adjustment of such circuits tends to be eomplieated if optimum performance is to be secured, and is somewhat out-
side the field of this chapter. Special eomponents are generally required. ()silloseope kits for home assembly are available from a number of suppliers, and since their eost compares very fitworably with that of a home-built instrument of comparable design, they are recommended for serious consideration by those who have need for or are interested in the wide range of metsurements that is possible with a fully-equipped scope.

- CATHODE-RAY TUBES

The heart of the oseilloseope is the cathoderay tube, at vacuum tube in which the electrons emitted from thot cathode are first acelerated to give them considerible velority, then formed into a betm, and finally atlowed to strike a speriad translucent sereen which flumresces, or gives off light at the point where the beam

Fig. $2 \overline{2} i-4 \bar{y}$ - "Typical construction for a cathode-ray tube of the electrostaticadeflection type.
strikes. A beam of moving ofectrons cam be moved laterally, or deflected, by clectrie or magnetic fields, and since its weight, and inertia are negligibly small, it catm be made to follow instantly the variations in periodically-changing fields at both audio and radio frequencies.

The clectrode arrangement that forms the electrons into a beam is called the electron gun. In the simple tube structure shown in fig. 21-49, the gun consists of the cathode, grid, and anodes Nos. 1 and 2. The intensity of the electron beam is regulated by the grid in the same way as in an ordinary tube. Anode No. 1 is operated at a positive potential with respect to the cathode, thus accelerating the electrons that pans through the grid, and is provided with small apertures through which the clectron stram passes. On cmerging from the apertures the electrons are traveling in practically parallel straight-line paths. The electrostat ic fieks sot up by the potentials on anode No. 1 and amode No. 2 form in electron lens system which makes the electron paths converge or focus to a point at the fluorescent sereen. The potential on tmode No. 2 is usually fixed, while that on anode No. 1 is varied to bring the beam into focus. Anode No. 1 is, therefore, called the focusing electrode.
lilectrostatic deflection, the type gencrally used in the smaller tubes, is produced by deflecting plates. Two sets of plates are placed at right angles to each other, as indicated in Fig. 21-49. The fields are created by applying suitable voltages between the two plates of each pair. Usually one plate of each pair is connected to anode No, 2, to establish the polarities of the vertical and horizontal fields with respect to the beam and to cach other.

Formation of Patterns

When periodically-varying voltages are applied to the two sets of deffecting plates, the path traced by the fluorescent spot forms a pattern that is stationary so long as the amplitude and phase relationships of the voltages remain unchanged. lig. 21-50 shows how such patterns are formed. The horizontal sweep, voltage is assumed to have the "satwtooth" waveshape indicated. With no voltare applied to the vertical plates the trace simply sweeps from left to right across the screen along the horizontal axis $X-X^{\prime}$ until the instant I is reached, when it reverses direction and returns to the starting point. The sine-wave voltage applied to the vertical plates similarly would trace a line along the axis $Y-Y^{\prime \prime}$ in the absence of any deflecting voltage on the horizontal plates. Ifowever, when both voltages are present the position of the spot at any instant depends upon the voltages on both sets of plates at that instant. Thus at time B the horizontal voltage has moved the spot a short distance to the right and the vertical voltage has similarly moved it upward, so that it reaches the actual position B^{\prime} on the screen. The resulting trace is easily followed from the
other indicated positions, which are taken at equal time intervals.

Types of Sweeps

A sawtooth sweep-voltage waveshape, such as is shown in lig. 21-50, is called a linear sweep, because the deflection in the horizontal direction is directly proportional to time. If the sweep were perfect the fly-back time, or time taken for the spot, to return from the end (H) tos the begiming (I or A) of the horizontal trace, would be zero, so that the line $H I$ would be perpendicular to the axis $Y-Y^{\prime \prime}$. Athough the fly-back time cannot be made zero in practicable sweep-voltage generators it eun be made quite small in comparison to the time of the desired trace $A H$, at least at most frequencies within the audio range. The line $H^{\prime} I^{\prime}$ is called the return trace; with a lincar sweep it is less brilliant than the pattern, because the spot is moving much more rapidly during the fly-back time than during the time of the main trace.

The linear sweep shows the shape of the wave in the same way that it is usually represented graphically. If the period of the ace volnage applied to the vertical phates is considerably less than the time taken to sweep horizontally across the screen, several cycles of the vertical or "signal" voltage will appear in the pattern.

The shape of the pattern obtained, with a given signal wabeshape on the vertical plates, obviously will depend upon the shape of the horizontal sweep voltage. If the horizontal sweep is sinusoidal, the main and return sweeps each occupy the same time and the spot moves faster horizontally in the center of the pattern than it does at the ends. When two sinusoidal voltages of the same frequency are applied to both sets of plates, the pattern may be a straight line, an ellipse, or a circle, depending upon the amplitudes and phase relationships of the two voltages.

For many amateur purposes a satisfactory horizontal sweep is simply a 60 -cycle voltage

of adjustable amplitude. In modulation monitoring (described in the chapter on amplitude modulation) audio-frequency voltage can be taken from the modulator to supply the horizontal sweep. For examination of audio-frequency waveforms, the linear sweep is essential. Its frequency should be adjustable over the entire range of audio frequencies to be inspected on the oscilloscope.

Lissajous Figures

When sinusoidal a.c. voltages are applied to the two sets of deflecting plates in the oscilloscope the resultant pattern depends on the relative amplitudes, frequencies and phase of the two voltages. If the ratio between the two frequencies is constant and can be expressed in integers a stationary pattern will be produced. This makes it possible to use the oscilloscope for determining an unknown frequency, provided a variable frequency standard is available, or for determining calibration points for a variablefrequency oscillator if a few known frequencies are available for comparison.

The stationary patterns obtained in this way are called Lissajous figures. Examples of some of the simpler Lissajous figures are given in Fig. 21-51. The frequency ratio is found by counting the number of loops along two adjacent edges. Thus in the third figure from the top there are three loops along a horizontal edge and only one along the vertical, so the ratio of the vertical frequency to the horizontal frequency is 3 to 1 . Similarly, in the fifth figure from the top there are four loops along the horizontal edge and three along the vertical edge, giving a ratio of 4 to 3. Assuming that the known frequency is applied to the horizontal plates, the unknown frequency is

$$
f_{2}=\frac{n_{2}}{n_{1}} f_{1}
$$

where $f_{1}=$ known frequency applied to horizontal plates,
$f_{2}=$ unknown frequeney applied to vertical plates,
$n_{1}=$ number of loops along a vertical edge, and
$n_{2}=$ number of loops along a horizontal edge.

An important application of Lissajous figures is in the calibration of audio-frequency signal generators. For very low frequencies the 60-cycle power-line frequency is held accurately

Fig, 21-5I- Tissajons figures and corresponding frequency ratios for a 90 -degrec phase relationship between the voltages applied to the two sets of deflecting plates.
enough to be used as a standard in most localities. The medium audio-frequeney range can be covered by comparison with the $40-$ and 600 -eycle modulation on the WWF transmissions. In oscilloscope having both horizontal and vertical amplifiers is desirable, since it is convenient to have a means for adjusting the voltages applied to the deflection plates to secure a suitable pattem size. It is possible to calibrate over a $10-$ to-1 range, both upwards and downwards, from each of the latter frequencies and thas cover the audio range useful for voice communication.

SIMPLE OSCILLOSCOPE FOR MODULATION CHECKING

The 2-inch oscilloseope shown in Fig. 21-52 includes all the features neeersary for modulation checking and monitoring, ineluding tumed-eireuit r.f. input to the vertical plates. A filament supply and souree of a.e. sweep voltage are incorporated, so the only external requirement is the d.e. supply for the e.r. tule anodes. This may be taken from the transmitter power supply, sine the current drain is negligible. Although the tube will operate with as little as 500 volts, at least 750 volts is recommended for sufficiont pattern brightuess, and voltages up to 2500 are permissible.

For constructional eonvenience, compactucss, and inexpensive magnetic shielding of the tube,

Fig, 21-52 - Two-inch oseilloseope for rack mounting. Everything needed for modulation monitoring is included except the high-voltage d.c. supply, which can be ohtained from the transmitter.

Fig. 21-53-Gircuit of the 2 -inchoweilownor. Fixed resistors $1 / 2$ watt exeept the 1 -megohm unit, which is 1 watt. Capacitances are in $\mu \mathrm{f}$, unless indicated otherwise. Fixed capacitors are ceramic, 1000 volts working or higher, aceording to d.c. voltage used. Sce text for explanation of "X."
T_{1} - Small autio transformer, 1 -to-1 turns ratio.
$\mathrm{L}_{1}-1.75 \mathrm{Mc},: 3 / 4$ inch winding of No. 30 enam.
3.5 to 7.9 Mic.: 30 turns No. 22 enam., elosc-wound.
the unit is constructed in a $3 \times 4 \times 17$-inch stecl chassis, which is mounted on a $31 / 2 \times 19-$ inch relay-rack panel. The tube face is viewed through a 2 -inch hole in the panel and chassis, using a small mirror to rellect the image. A chart frame with a clear window is used to cover the panel hole.

The right-hand section of Fig. 21-53 shows the tube conneretions. Controls are provided for spot intensity, focusing, and horizontal and vertieal centering of the pattern. The values speecified for the voltage-divider string are sitisfactory for voltages up to about 1500 d.e., but for voltages between 1500 and 3000 an additional 1-megohm 1-watt resistor should be connceted in series with the one shown. This may require inserting additional resistance (0.1 to 0.25 megohm) in series at " X " to make the forus control cover the proper range. The fixed caparifors should have a voltage rating appropriate to the voltage actually used. Caparitance values are not aritieal: up to $0.01 \mu \mathrm{f}$. may be used if available in the proper voltage rating.

13 to 30 Mc.: 7 turns No. 22, length $3 / 4 \mathrm{in}$.
I_{2} - 2 or more turns as necessary for sufficient coupling. All coils wound on l-inch diameter forms (Millen 45004).

A tuned input circuit is provided, using plug-in eoils to cover the various bands. The $100-\mu \mu$ f. condenser makes th convenient "IIeight" eontrol for the pattern, and the tumed circuit insures adequate pattern height even from a low-powered transmitter. The r.f. may be pieked up with a 1- or 2-turn link at the transmitter tank or antennat tank rirenit, if the latter is used, and connected to the 'seope through a length of small coax cable.

Iine-frequency ace. is used for the horizontal sweep for obtaining a wave-envelope pattern. An input is also provided for audio from the modulator, for the trapezoidal pattern. Full deflection requires about 75 volts (peak) for each 1000 volts used on the e.r. tube, using the deflection plate connections shown in Fig. 21-5:3.

The parts layout is such as to give short connections between the r.f. cirenit and the vertieal deflection plate terminals on the tube socket, and to place the two transformers as far as possible from the tube and thus redute the possibility of trouble from stray fields. The tube soeket is

Fif. 21-54- The ascilloseape is constructed in a 3 by 4 by 17 chassis mounted on a $31 / 2$ inch relay rack panel. The steel chassis with bottom plate (not shown) shields the tule from stray magnetie: ficlds.

held by two semicireular brackets made from aluminum strips $1 / 2$ inch wide and mounted on 1 -inch stand-off insulators. The mirror, which is held to a wood strip by Duco cement, the strip being bolted to the chassis, should be cut to block off the left-hamd (intermal view) section of the chassis, which contains the pilot light.

The centering potentiometers do not require frequent handling and are controlled from the rear. Beause they are at high voltage they are insulated from the chassis by monnting them on
a bakelite plate fastened to the rear wall by halfinch pillars. The shafts are eut short and slotted for serewdriver adjustment. An insulated sorewdriver should be used. The intensity and focusing controls are mounted on the panel either side of the window. The ace, switeh is on the intensity control.

The d.e. supply used preferably should be one that does not vary in output voltage during modulation; e.g., the (Chus C amplifier supply is proferable to the Class 13 modulator supply.

Assembling a

 Station

 Station}

The artual location inside the house of the "shack" - the room where the transmitter and reobiver are located - depends, of course, on the free space avaibable for amateur atetivities. Fortunate indeed is the amateur with a separate room that he can reserve for his hohby, or the frew who can have a sperial small building separate from the main house. However, most amaterurs must share a room with other domestie activities, and amaterur stations will be found theled away in aromer of the living room, a bedroom, a large closet, or even under the kitehen stove! A spot in the cellar or the attie can almost be chassed as a separate room, although it may latek the "finish" of a normal room.

Regardless of the location of the station, however, it should be clesigned for maximum uperating convenience and safety. It is foolish to have the station arranged so that the throwing of several switches is required to go from "receive" to "transmit," just as it is silly to have the equipment arranged so that the oparator is in an uncomfortable and eramped position during his operating hours. The reatson for building the station as safe as possible is obvious, if you are interested in sperding a number of years with your hobby!

- CONVENIENCE

The first consideration in any amateur station is the operating position, which inchades the operator's table and chair and the pieces of equipment that are in constant use
(the receiver, send-receive swit ch, and key or microphone). The table should be as large as possible, to allow sufficient room for the re(eiver or receivers, frequency-measuring equip)ment, monitoring equipment, control switches, and keys and microphones, with enough space left over for the loghook, a pad and pencil, and perhaps a large ash tray, Suitable space should be included for radiogram blanks and a eall book, if these accessories are in frequent use. If the table is small, or the number of pieces of equipment is large, it is often neressary to build a shelf or rack for the auxiliary equipment, or to mount it in some less conveniont location in or under the table. If one has the facilities, a semicireular "console" can be built of wood, or a simpler solution is to use two small wooden cabincts to support a table top of wood or Masonite, A flush-t.pe door will make ath exeellent table top. Home-built tables or consoles can be finished in any of the available oil stans, varnishes, paints or lacquers. Many operators use a large piere of plate glass over part of their table, since it furnishes a good writing surface and can rover miscellaneous charts and tables, prefix lists, operating aids, calendar, and similar accessories.

If the major interests never require frequent band changing, or frequency changing within a band, the transmitter can be located some distance from the operator, in a location where the meters can be observed from time to time (and the color of the tube plates noted!). If frequent band or frequency changes are a part

This station shows a logical arrangement of the units, combined with adegnate operating space and storape room for magazines and books. Jower supplics and modulator are at the right, with switches in the top pastel. On the desk, from left to right, litl-watt transmitter. VF'O and reocinor. All of the "quipronent in this walion is built from The Radio fmatertr"s Ilamilsooh de-

of the usual operating procedure, the transmitter should be mounted close to the operator, either along one side or above the receiver, so that the controls are easily accessible without the need for leaving the operating position.

A compromise arrangement would place the VFO or crystal-switched oscillator at the operating position and the transmitter in some convenient location not adjacent to the operator. Since it is usually possible to operate over a portion of a band without retuning the transmitter stages, an operating position of this type is an advantage over one in which the operator must leave his position to make a change in frequency.

Fig. 22.1 - In a station assembled for maximum case in frequency or hand changing, the transmitter should be located next to the operating position, as shown above. On the operating table, the receiver is in front of the operator and VFO or crystaloswitehing oscillator on the left. (The VF') or erystal oscillator coudd le part of the transmitter proper, but most operators seem to prefer a separate VP().)

The frequeney standard and other anxiliary equipment can be monnted on a shelf above the receiver. 'The operating table can be an old desk, or a top supported by two small wooden calinets. "He "send-receive" switch is to the right of the telegraph keys - other switches are on the transmitter or the individual mits.

The above arrangement can be mate to look cleaner by arranging all of the equipment on the table behind a single pancl or a set of panchs. In this rase, provision must be made for getting behind the panel for servicing the units.

Controls

The operator has an excellent chance to exereise his ingenuity in the location of the operating controls. The most important controls in the station are the receiver timing dial and the send-recoive switch, 'lhe receiver tuming dial should be located four to cight inches above the oproting table, and if this requires mounting the receiver off the table a small shelf or bracket will do the trick. With the single exception of the amatear whose work is almost entirely in traffic or rag-chew nets, which require little or no attention to the rereiver, it will be found that the operator's hand is on the receiver timing dial most of the time. If the tuning knob is too high or too low. the hand gets cramped after an extended
period of operating. hence the importance of a properly-located receiver. The majority of c.w. operators tune with the left hand, preferring to leave the right hand free for eopying messages and handling the key, and so the receiver should be mounted where the knob can be reached by the left hand. 'Phone operators aren't tied down this way, and tume the communications receiver with the hand that is more convenient.

The hand key should be fastened securely to the table, in a line just outside the right shoulder and far enough back from the front edge of the table so that the elbow can rest on the table. A good location for the semiautomatic or "bug" key is right next to the handkey, although some operators prefer to mount the automatic key in front of them on the left, so that the right forearm rests on the table parallel to the front edge.

The best location for the microphone is directly in front of the operator, so that he doesn't have to shout across the table into it. or run up the speech-implifier gain so high that all manner of external sounds are pieked up. If the mierophone is supported by a boom or by a flexible "goose neck," it can be placed in front of the operator without its base taking up valuable table space.

In any amateur station worthy of the name, it should be necessary to throw no more than one switch to go from the "receive" to the "transmit" condition. In 'phone stations, this switeh should be located where it can be easily reached by the hand that isn't on the receiver. In the case of c, w, operation, this switch is most conveniently lorated to the right or left of the key, although some operators prefer to have it mounted on the left-hand side of the operating position and work it with the left hand while the right hand is on the key. Wither location is satisfactory, of course, and the choice depends upon personal preference. Some operators use a foot-controlled switch, which is a convenience but doesn't allow too much freedom of position during long operating periods.

If the microphone is hand-held during 'phone operation, a "push-to-talk" switeh on the microphone is convenient, but hand-held microphones tie up the use of one hand and are not too desirable, although they are widely used in mobile and portable work.

The location of other switches, such as those used to eontrol power supplies, filaments, 'phone/c.w. change-over and the like, is of no particular importance, and they can be located on the unit with which they are assoriated. This is not strictly true in the case of the 'phone,'c.w. DA man, who sometimes has need to change in a hury from c.w. to 'phone. In this case, the change-over switah should be at the operating table, although the actual change-over should be done by a relay controlled by the switch.

If a rotary beam is used the control of the beam should be convenient to the oporator. The direction indicator, however. can be lowated anywhere within sight of the operator, and does not have to be located on the operating table unless it is included with the control.

Frequency Spotting

In a station where a VFO is used, or where a number of crystals is available the operator should be able to turn on only the oscillator of his tramsmitter, so that he can spot aceurately his location in the band with respect to other stations. This allows him to see if he has anything like a cloar channel, or to see what his frequency is with respert to another station. Such a provision can be part of the "send-receive" switch. Switches are available with a center "off" position, a "hold" position on one side, for turning on the oscillator only, and a "lock" position on the other side for turning on the transmitter and antenna relays. If oscillator keying is used, the key serves the same purpose provided a "send-receive" switeh is available to turn off the high-voltage supplies and prevent a signal going out on the air during adjustment of the oscillator frequener.

For 'phone operation. the telegraph key or an auxiliary switch can control the transmitter oscillator, and the "send-receive" switeh can then be wired into the eontrol system so as to control the oseillator as wollas the other circuits.

Comfort

Of prime importance is the comfort of the operator. If you find yourself getting tired after a short period of operating, examine

Hig. 22.2 - When litule space is a a ailable for the amateur station, the equipment has to be spotted where it will fit. In the above arrangement, the transmitter, modalator and power supplies (neparate units) are sandwidhel in alongside the operatige table and on a shelf above the table. The antenna tuning unit is nomated over the feed-through insulators that bring the antemna line into the "shack," and loutspraker and small power supplies are monnted under the table. 'The operating position is clean, however, with the VFO, repeiver and keys at table level. The tuning knol, of this receiver would be mememfortably low if the remeiver werent raised by the wooden arch, and the "send-recrise" switeh is mometed on the right-hand side of this arcli, next to the haind key. Interconnceting leads shonald be catbed along the batk of the talle and table legs, to keep them inconspicuous.
your station to find what canses the fatigue. It may be that the chair is too soft or hasn't a straight back or is the wrong height for you. The key or remiver may be forated so that you assume sun uncomfortable position while using them. If you get sleepy fast, the ventalation may be at fanlt. (Or you may need sleep!)

POWER CONNECTIONS AND CONTROL

Following afew simple rules in wiring your power supplies and eontrol rimuits will make itwan easy job to change units in the station. If the station is planmed in this way from the start. or if the rules are realled when you are rebuilding, you will find it a simple matter to revise your station from time to time without a major rewiring job.

It is neater and safer to run a single pair of wires from the outlet over to the operating table or some central point, rather than to use a number of adapters at the wall outlet.

Interconnections

The wiring of any station will entail two or three common circuits, as shown in Fig. 22-1. The circuit for the receiver, monitoring equipment and the like, assuming it to be taken from a wall outlet, should be run from the wall to an inconspicuous point on the operating table, where it terminates in in multiple outlet large enough to handle the required number of plags. A single switch between the wall outlet and the receptacle will then turn on all of this equipment at one time.

The second common circuit in the station is that supplying voltage to rectifier- and trans-mitter-tube filaments, bias supplies, and anything else that is not switehed on and off during transmit and receive periods. The coil power for control relays should also be obtained from this circuit, The power for this circuit can come from a wall outlet of from the transmitter line, if a special one is used.

The third rircuit is the one that furnishes power to the plate-supply transformers for the r.f. stages and for the modulator. (See chapter on Power Supplies for high-power considerations.) When it is oprened, the transmitter is disabled except for the filaments, and the transmitter should be safe to work on, However, one always feels safer when working on the transmitter if he has turned off every power supply pertaining to the transmitter.

With these three eirouits established, it beeomes a simple matter to arrange the station for different ronditions and with new units. Anything on the opreating table that runs all the time ties into the first cireuit. Any new power supply or r.f. unit gets its filament power from the seath ribenit, Since the thim (ircuit is controlled by the send-receive switeh (or relay), any power-supply primary that is to be switched on and off for send and receive commerts to rircuit N゙ぃ. 3.

Cinhtest opurating is the major interest al this station. and to that and all controls are within eas: reath of the operator. 'The "tuleless VFO" to the left of the reteiver sits on the power-control pancl. (Ex-IV2QMO, Lecitomat, I., I., N. Y.)

Break-In and Push.To.Talk

In e.w. operation, "break-in" is any system that allows the transmitting operator to hoar the other station's signal during the "ker-up," periond between characters and letters. This allows the sendity station to be "broken" by the receiving station at any time, to shorten calls, ask for "fills" in messages, and speed up operation in gereral. With present technigues, it requires the use of a separate receiving antenna or a "TR loox" and, with high power, some means for protecting the reeeiver from the transmitter when the key is "down." Several methods, applicable to high-power stations, are described in Chapter Bight. If the transmitter is low-powered (50 watts or so), no special equipment is required except the soparate roreiving antenna and a receiver that "recovers" fast. Where break-in operation is used, there should be a switeh on the operating table to turn off the plate supplies when adjusting the oscillator to a new frequency, although during all break-in work this switeh will be closed.
"Push-to-talk" is an expression derived from the "push" switch on some microphomes. and it means a 'phone station with a single control for all change-over functions. Strictly speaking, it should apply only to a station where this single send-receive switch must be held in plate during transmission periods, but any fast-acting swith will give practically the same effect. A control switeh with a center "off" position, and cme "hold" and one "lock" position, will give more flexibility than a straight "push" switeh. The one switch must control the transmitter power supplies, the receiver "on-off" circuit :and, if one is used, the antemath chageover relay. The receiver control is necessary: to disable its out put during transmit periods, to avoid acoustic feed-biack.

Switches and Relays

It is dangerous to use an overlonded switch in the power circuits. After it hats been used for some time, it may fail. leaving the power on the circuit even after the swith is thrown to the "off" position. For this reason, large switches, or relays with adequate ratings, should be used to control the pate power. Relays are rated by
coil voltages (for their control (ireuits) and by their contart current ratings.

When rellays are used. the semi-rective swith closes the circuit to their coils. thes closing the relay contats. The relay contacts are in the power circuit being controlled, and thus the switch handes only the relay-coil current.

SAFETY

Of prime importance in the layout of the station is the personal safety of the operator and of visitors, invited or otherwise, during normal operating practice. If there are small chidiren in the house, every step must be taken to prevent their accidental contact with power leads of any voltage. A locked room is a fine idea, if it is possible, otherwise homsing the transmitter and power supplies in matal cabinets is an exellent, although expensive, solution. Lacking a metal cabinct, a wooden rabinet or a wooden framework covered with wire sereen is the next-best solution. Many stations have the power supplies honsed in metal cabinets in the operating room or in a closect on bisement, and this cabinet or entry is kept locked - with the key out of reath of everyone but the operator. The power leals are rum through comduit to the transmitter, using ignition cable for the high-voltage leads. If the power supplies and transmitter are in the same (abinct, a lowk-type main witch for the incoming line power is a good precaution.

A simple substitute for a lock-type main switeh is an ordinary line plug with a short connecting wire between the two pins. By wiring a female receptacle in series with the main power line in the transmitter, the shorting plug will act as the main safety lock. When the plug is removed and hidden, it will be impossible to energize the tramsmitter, and a stranger or child isn't likely to spot or suspect the open receptacle.

An essential adjumet to any station is a shorting stick for discharging any high voltage to ground before any work or coil changing is done in the transmitter. Even if interloeks and power-supply bleders are used, the fature of one or more of these componemts may leave the

Fig. 22-3 - Power circuits for a high-power station. I shows the ontlets for the receiver, monitoring equipment, spech amplifier and the like. 'The outlets shonld be mounted inconspicuously on the operating tathe. IS shows the transmitter filament cirnots and control-relay eirenits, if the later are used. Gishow the plate-Iransformer primary circuits, controlled by the power relay. Where 230 - and $\$ 15$-volt primaries are controlled simultaneously, point $*{ }^{\prime \prime}$ should connect to the "neutral" or common. I heavy-dnty switeh can be usd instead of the relay, in which fase the anterna relay would tre connected in circuit C.

If 115 -wolt pilot lamps are used, they can be conneeted as shown. I.ower-voltage lamps must be connected acrosis suitable windings on transformers.

With "push-to-talh" operation, the "send-receive" switch can be a d.p.d.t. affair, with the second pole controlling the "on-off" cireuit of the receiver.
transmitter in a dangerous condition. The shorting stick is made by mounting as small metal hook, of wire or rod, on one end of a diy stick or bakelite rod. A piece of ignition cable or other well-insulated wire is then run from the hook on the stick to the chassis or common ground of the transmitter, and the stick is hung alongside the transmitter. Whenever the power is turned off in the transmitter to work on the rig, or to change eoils, the shorting stick is first used to touch the several high-voltage leads (tank condenser. filter condenser, tube plate connection. ete.) to insure that there is no high voltage at any of these points. This simple deviec has saved many a life. Use it!

Fusing

A minor hazard in the amateur station is the possibility of fire through the failure of a component. If the failure is complete and the eomponent is large, the house fuses will generally blow. However, it is unwise and inconvenient to deperd upon the house fuses to protect the lines running to the radio equipment, and every power supply should have its primary circuit individually fused, at about 150 to 200 per cent of the maximum rating of the supply. Cirruit breakers can be used instead of fuses if dexired.

Wiring

Control-eireuit wires ruming between the operating position and a transmitter in another part of the room should be hidden, if possible. This can be donn by running the wires under the foor or behind the base molding, bringing the wires out to terminal boxes or regular wall fixtures. Such construction, however, is generally only possible in elaborate installations, and the average amateur must content himself with trying to make the wires as inconspicuous as possible. If several pairs of leads must be run from the oprorating table to the transmitter, as is generally the ease, a single piece of rubber- or vinyl-eovered multiconductor cable will always look neater than sevaral piecess of rubber-covered lamp cord.

The antenna wires always present a problem, unless eoaxial-line ferd is used. Open-wire line from the point of entry of the antenna line should always be arranged mally, and it is gonerally best to support it at several points. Many operators profer to mount their antennatuning assemblies right at the point of entry of the feedline, together with an antenna changeover relay (if one is used), and then the link from the tuning assembly to the transmitter can be made of inconspicuous coasial line or Twin-Lead. If the transmitter is mounted near
the point of entry of the line, it simplifies the problem of "What to do with the feeders?"

Underwriters' Code

The National blectrical Satete Code. Damphlet 70 , Standard of the National Board of Fire Underwriters, deals with eleetrid wiring and apparatus. The Code was set up to proteet persons and buidings from the clectrical hatzards arising from the use of electricity, radio, ete. Article 810 is antitled "Radio Dequipment." The scope of this article, section 8101, sats, "The article applies to radio and television recriving equipment and to amatemr radio trausmitting aquipment, but not to the equipment used in carrier-current opration."
The Board of Fire Underwriters sets up the code as a minimum standard for good practiere. Most eities adopt the code, or parts of it, wither antirely or with eertatin ancondments which may apply to that particalar rity. It is up to the rity to enforce these rules. When a violation is reported, periodie therks are made be ath insporetor until a comeretion is made and to insure against future monrence. The National Eilectrie Code is only a minimum stamdard, and compliance with its rules will assure less operating failures and hazards, and greater safety.

A copy of the pamphlet is availatble by writing the National Board of Fire Underwriters in Your city, or at 85 John Street, New York 38, New lork. Ask for pamphlet No. 70.
Parts of the Cndorwriters' Code deal with power wiring and, in addition to the reduimement
of the use of Underwriters laboratory approved materials and fittings, have the following to say of direct interest to amateres.
"Atl switches shall indieate elearly whether they are open or closed.
"All (switeh) handes throughout a systom \therefore. shall have uniform opell and closed positions.
". . . supply (ideruits shall mot be designed to use the grounds nomally at the sold eonduetor for an!! part of the cireuit."

The latter means that wire conductor should be used for all parts of the power rirenit. Deperndener should not be plated on water pipes, etar., as one side of a cireuit.

General

You wall check your station arrangement by asking yourself the following questions. If a! of vour answers are an honest "J'es," your station will be one of wheh you can be proud.

1) Is your station saff, under normald oprorating conditions. both for the operator and the visitor?
2) Is the operating position romfortathe, even after several hour of operating.
3) Do you throw not more than one switch (1) go from "receive" to "transmit"?
4) Does it take only a short time to explain to another amateur how to work your station?
5) In you show your station to visiting amatours or laymen without apologizing for its appearance?

A modern homemarle cabinet can be used to house the entire station if it is desikned dowely aronmed the transmitter and receiver. 'This cahinet is made of $3 / 4-$ inch plywod and, with the doors closed, conceals the ham station, At least one-incla air space should be left aronnd rach mit for air circutation abd, for the same reason, the bachs of the compartments shomld le left open, The recoiver compartment also houses the microphone, key, Qaber and

CHAPTER 23

BCI and TVI

livery amateur has the ohligation to make sure that the operation of his station does not, because of any shorteomings in equipment. catuse interforence with other radio servires. It is unfortunately true that murh interference is dirertly the fault of broadeast and TV reseiver construction. Nevertheless, the amateur can and should help to alloviate interference even though the responsihility for it does not lie with him.

Successful handling of interference cases requires winning the listener's coopperation. Here are a few pointers on how to go about it.

Clean House First

The first step obviously is to make sure that the transmitter has no radiations outside the bands assigned for amatem use. The best check on this is your own AMI or TV receiver. It is always convincing if you oan say - and demonstrate that you do not interfere with reception in your own home.

Don't Hide Your Identity

Whenever you make equipment changes - or shift to a hitherto unused band or type of emission - that might be experted to change the interference situation, check with your neighbors. If no one is experiencing interference, so much the better: it does no harm to keep the neighborhood aware of the fart that you are operating without lothering :nyone.

Should you change location, announce your prosence and conduct occasional tests on the air, regucsting ancone whose rereption is being spoiled to let you know about it so steps may be taken to climinate the trouble.

Act Promptly

The avorage person will tolorate a limited amount of interference, but no one can be expeeted to put up with frequent and extended interruptions to programs. The sooner you take steps to eliminate the interferenee, the more agreeable the listener will be; the longer he has to wait for you, the less willing he will be to coüperate.

Present Your Story Tactfuily

When you interfere, it is natural for the emmplainant to assume that your transmitter is at liault. If you are certain that the trouble is not catused by harmonics or other spurious emissions from your transmitter, explain to the listener that if it is simply the presence of your strong signal on his receiving antemat that causes the difficulty, and that some modifications will have to be made in the receiver if he is to expect inter-ference-free reception.

Arrange for Tests

Most listeners are not very competent observers of the various aspects of interference. If at all possible, enlist the help of another amateur and have him operate your transmitter while you see what happens at the affected receiver. You can then determine for yourself where the trouble is most likely to be.

Avoid Working on the Receiver

If your tests show that the fault has to be remedied in the receiver itself, do not offer to work on the receiver. It is not your fault that the receiver design is defective. Recommend that the work be done by a reliable serviceman, and offer to advise the latter as to the cause and cure if necessary.

In General

In this "public relations" phase of the problem a great deal depends on your own attitude. Most people will be willing to meet you half way, particularly when the interference is not of long standing, if you as a person make a good impression. Your personal appearance is important. So is what you say about the receiver - no one takes kindly to hearing his posscssions derided. If you discuss your interference problems on the air, do it in a constructive way one caleulated to increase listener coöperation, not destroy it.

Causes and Cure of BCI

Interference with $A M$ broudeasting usually falls into one or more rather well-defined categories. A knowledge of the general types of interference and the methods required to eliminate it will lead to a rapid appraisal of the situation and will avoid much cut-and-try in finding a cure.

Transmitter Defects

Out-of-band radiation is something that must be cured at the transmitter. Parasitic oscillations are a frequently unsuspected
source of such radiations, and no transmitter can be considered satisfact ory unt il it has been thoroughly checked for both low- and highfrequency parasitics. Very often parasitics show up only as transients, causing key clicks in e.w. transmitters and "splashes" or "burps" on modulation peaks in AM transmitters. Methods for detecting and eliminating parasities are discussed in the transmitter chapter.

In c.w. transmitters the sharp make and break that occurs with unfilt ered keying causes
transients that, in thoory, contain frequency components through the entire radiospectrum. Practically, they are often strong enough in the immediate vicinity of the transmitter to cause serious interference to broadeast reception. Kiey dieks ran be eliminated by the methods detailed in the chapter on keying.

A distinetion must be made between clicks generated in the transmitter itself and those set up by the mere opening and closing of the key contacts when current is flowing. The lat ter are of the same nat ure as the elicks heard in a receiver when a wall switeh is thrown to turn a light on or off, and may be more troublesome nearby than the clieks that act ually go out on the signal. A filt er for eliminating them usuably has to be installed as close as possible to the key contacts.

Overmodulation in AM 'phone transmitters generates transients similar to key clicks. It can be prevented either by using automatie systems for limiting the modulation to 100 per cent, or by continasusly monitoring the modulation. Methods for both are described in the chatpter on amplitude modulation. In this connection, the term "overmodulation" means any type of nonlinear modulation that results from overloading or inadequate design. This can orcur even though the actual modulation percentage is less tham 100 .

BC:I is frequently made worse by radiation from the transmitter, power wiring, or the r.f. transmission line. This is because the signal causing the interference, in such cases, is radiated from wiring that is nearer the broadeast rerefor than the antenna itself, In such eases much deprends on the method used to couple the trinsmitter to the antenna, a subject that is discussed in the chapters on transmission lines and antennas. If it is at all possible the antenna itself should be placed so that it is not in close proximity to house wiring, telephone and power lines, and similar eonductors.

Image and Oscillator-Harmonic Responses

Relatively few superhet broadeast receivers have any r.f. amplification preceding the miser, so that the seloctivity at the signal frequener is not especially high. The result is that strong signals from near-by transmitters, even though the transmitting frequeney is far removed from the broadeast band, can force themsolves to the mixer grid. They will normally be eliminated by the i.f. selectivity, except in cases where the transmitter frequency is the image of the broadmast sigmal to which the receiver is tuned, or when the transmitter frequency is so relited to a harmonic of the broadeasi receiver's loral oseillator as to produce a beat at the intermediate frequencs.

These image and oscillator-harmonie responses tume in and out on the broadeast rereiver dial just like a broadeast signal, except that in the rase of harmonie response the tuning rate is more rapid. Nime most receivers use an intermediate frequeney in the neighbor-
hood of 450 ke , the interference is a true image only when the amateur transmitting frequener is in the $1750-\mathrm{ke}$. bathd. Oseillator-harmonie responses occur from 3.j- and 7 -Me. transmissions, and sometimes even from higher frequancies.

The prohlem is to reduce the amplitude of the amateur signal in the front end of the b.e. rereiver. If the reeciver uscs an external antemata wavetrap at the recoiver antenma terminals mat holp. It maty also be helpful to reduce the length of the receiving antemna - and particularly to avoid a lengih that might be near resonance at the transmitter lieepuence - or to change its direction with respert to the transmitting antenna. If the signal is looing pieked up by the antenna it will disappear when the antenna is disconnected. If it is still present under these cireumstances the piok-up is in the set wiring or the power circuits. A line filter maty be tried for the latter. Piek-up on the set wiring ean only be cured by installing some shielding around the ref. eireuits. Copper window sercening cut and fitted to size will usually do the trick.

Since images and harmonir responses oremr at definite frequencies on the reerever dial, it is always possible to choose an operating frequency that will not give such a response on top of the broadeast stations that are favered in the vicinity. While vour signal may st ill the heard when the receiver is tuned off the local stations, it will at last not interfere with program reception.

Cross-Modulation

With 'phone transmitters, there are oceasionally casos where the voice is heard whenever the broadeast reociver is tuned to a b.e. station, but there is no interference when tuning between stations. This is aross-modulation, a result of rectification in one of the early stages of the reeciver. Rercivers that are susceptible to this trouble usually also get a similar type of interference from regular broadeasting if there is a strong local b.e, station and the receiver is tumed to some other station.

The remedy for eross-modulation in the reeciver is the same as for images and oseillatorharmonic resionses - redure the strength of the amateur sigmal at the receiver by means of a wave-trap, line filter, or shielding, as required. The trouble is not always in the recerver, however, since cross modulation cen oceur in any rectifying eircuit - such as a poor contact in water or steam piping, gutter pipes, and other conductors in the strong field of the transmitting antenam.

Audio-Circuit Rectification

The most frequent catuse of interference from operation at the higher frequencios is from rectification of a signal that by one means or arsother gets into the audios system of the receiver. In the milder cases an amplitudemodulat ed signal will be heard with reasonably good qualit y, but is mot tumable - - that is, it, is present no mattor what the frequence to
which the receiver dial is set. An ummodulated carrier may have no observable effect in such anses bevond causing a little hum. However, if the signal is very strong there will be a reduction of the audio output level of the receiver whenever the carrier is thrown on. This causes an smotying "jumping" of the program when the interfering signal is keved. With 'phone transmission the ehange in audio level is not so objectionable becaluse it occurs at less frequent intervals. Also, ordinary rectifieation pives no audio ontput from a frequener-modulated signal, so the interference can be made almost complet ely umoticeable if FM or PM is used inst ead of AM.

Interference of this type is most prevalent in a.c.-d.e. receivers. The pick-up may oeeur in the audio-cirenit wiring or the interfering signal may get into the andio cireuits hy way of the line cord. Power-line pick-up can be treated by means of line filters, but pick-up in the receiver wiring requires individual attention. Remedies that have been found suecessful are deseribed in the sections following.

CHECKING AND CURING BCI

When a case of broudeast int erforence eomes to your attention, set a definite time to eondued tests and then prepare to do the job as expeditiously as possible. As suggested before, get another amateur to operate vour tranmitter while you do the actual observing and testing at the listener's reediver. If you have a small bromdcast receiver of your own that does not show interference, take it with you to demonstrate to the listener that the trouble is not in four transmitter but in his receiver. The procedure outlined bolow will save time in getting at the soure of the trouble and eliminating it.

1) Determine whether the interferenes is tunable or not. This will usually indiate the methods required for climination of the trouber as it will show which of the general types of interference diseussed above is present.
2) If the set has an external antenna, discomnect it and turn the volume cont rol up full. If the interference is no longer present, it is merely necessary to prevent the s.f. appearing on the antenna from entering the set. If wavetraps reduce the amplitude of the interfering signal but do not eliminate it entirely, try a short piece of wire as a receiving antemna. Alternatively, the antema may be relocated. It should be plared as far as possible from the transmitting antemna, and should run at right angles to it to minimize coupling.
3) If the interferene persists after the antenma is disconnected, cherk for r.f. on the power line by using a sensitive wavemeter such as that deseribed in the rhapter on masurements to probe along the a.ce cord that combects the set to the power source. (This test also should be made with receivers using built-in loops.) (Cheeks should be made at the transmitter frequener, and also at harmonic frequencies. If r.f. is detected in
the line, by-pass both sides of the a.c. line to ground with $0.005-\mu \mathrm{Fd}$. ceramic condensers at the point where the line cord enters the set. (A simple plug-and-socket adapter can be made up for this purpose.) If this does not completely eliminate the interference, try a line filter designed kor the operating frequency.
4) If it is evident that the interfermes is being picked up on the receiver wiring, explatin the situation to the owner and tell him that the exact cause cannot be determined without removing the chassis from the cabinet, and that, in any event, the receiver will have to be modified if the interferences is to be eliminated. Recommend that the artual work be done by a radio serviceman. Offer to cheek into the cause yourself, if he will allow you to take the set to your shop (with the understanding that you will not make any changes in the receiver without his express permission) so the serviceman can be told what needs to be done.

(A)

(B)
rig. 23.1 - 'Two methods of eliminating r.f. from the grid of at eomhined detector/lirst-andio stage. At A, the value of the grid leak is roduced to 2 or 3 megolins, and a micat by-pass condenser is adhed. At B, both grid and cathode are by-pansed.
b) In the event that the owner allows you to take the receiver, set it up near your transmitter and check to see if the amplitude of the interfering signal is changed by various settings of the reeciver volume control. If it is, the r.f. is entering the set ahead of the volume control. If it is unaffected by the volume control, it is getting into the audio stages at a point following the volume control.
5) Pin the source down, if it is ahead of the vohume rontrol, by removing one tube at a time until one is found that kills the interference when it is removed. In sets using seriesconnected filaments, this will he possible only if a lube of equal heater rating, and with all but the heater pins clipped off, is substituted for the tube.
6) Determine which element (or elements) of the tube is picking up the interference by touching each tube pin with a test lead about three feet long. The lead, acting as an antenna, will cause the interference to increase when it is placed on a tube pin that is contributing to the interference. Once the sensitive points have been determined, the trouble can be eliminated by shieding the leads connected to the tube element that is afforted, and by shielding the tube itself. Grid leads are the principal offenders, especially the long leads that run
from a tube cap to a tuning condenser terminal.
7) If the pick-up is found to be in the audio system - as is the case in many sets, especially when the transmitter is operating at 28 Mc . or higher - it can be eliminated by one or another of the mothods shown in Figs. 23-1 and

Fig. 23-2 - 1 sing a $\overline{\text { in. }}$ 000 -ohnm revistor to form a low-pass filter with the tuhe capacitanee. The resistor must be mounted at the tube pin, between the grid and all other grid connections.

23-2. Fig. 23-1A is a method that has proved successful with many a.c.-d.e. receivers. The value of the grid leak in the combined detector/first-audio) tube (usuatly a 12s(e7 or its equivalent) is redued to 2 or 3 megohms. The grid is then by-passed for r.f. with a $250-$ $\mu \mu \mathrm{fd}$. mica condenser. Fïg. 23-113 is a similar method. A third method that has worked in a.c.-d.c. receivers requires only that the heater of the detector/first-atudio stage be by-passed to ground with a $0.001-\mu \mathrm{fd}$. condenser. The method shown in Fig. 23-2 uses a $75,000-$ ohm $1 / 2$-wat resistor to form, with the tube eapacitance, a low-pass filter. The resistor is conneeted between the grid pin of the tube and all other wires comected to the grid. In all cases, both sides of the ace. line should be by-paseed to chassis with $0.001-$ to $0.01-\mu \mathrm{fd}$. condensers.

Wavetraps and A.C. Line Filters

A wavetrap consists of a parallel-tuned circuit that is comected in series with the brosul-

Fis. 2:3-3-A simple wavetran circuit. I and C most resonate at the frequency of the interfering signal. suitable eonstants are tabulated below.

Hund	C	L		
3.5	$140 \mu \mu \mathrm{fd}$.	$16 \mu \mathrm{l}$.. 32 turns	\$22, $\mathrm{I}^{\prime \prime}$ diam..	I', ling
7	$100 \mu \mu \mathrm{fl}$.	619	¥22, $1^{\prime \prime}$ ",	$1^{\prime \prime}$ ',
11	$50 \mu \mu \mathrm{fl}$.	3.511	718, 1",	$1^{\prime \prime}$
21	$3.5 \mu \mu \mathrm{fil}$.	2.212	118.1"	1''
28	2.5 m ${ }^{\text {f }} \mathrm{fd}$.	1.i 9	(18. ${ }^{\prime \prime}$	$1^{\prime \prime}$

cast antenna and the antenna post of the receiver. It should be designed to resonate at the frequency of the interfering signal. The circuit of a simple trap is shown in Fig. 23-3. If interference results from operation in more than one amateur band several traps may be conneeted in series, each tuned to the center of one of the
bands in which operation is contemplated. To adjust the wavetrap, have another licensed anateur operate the transmitter while you tune the trap for maximum attenuation of the interference.

A common form of a.c. line filter is shown in Fig. 23-4. This type of filter will usually do some good if the signal is being picked up on the house wiring and transferred to the set by way of the line cord. The values used for the coils and condensers are in general not eritical. The effectiveness of the filter will depend considerably on the ground connection used, and it may be necessary to try grounding to several different possible ground connections to secure

Fis. 23-4 - A.e. line filter for receivers. The values of C_{1}, C_{2} and C_{3} are mot senerally critical; capaeitances from 0.001 to $0.01 \mu \mathrm{fd}$. can be used. L_{1} and L_{2} can be a -tinch winding of to. 18 enameled wirc on a half-inch diameter form.
the best results. A filter of this type will usually not be very helpful if the signal is being pieked up on the line cord itself, which may be the case when the transmitter is on v.h.f. In sueh a case it should be installed inside the receiver chassis and grounded to the chassis at the point where the line cord enters.

The tuned filter shown in Fig. 23-5 is often more effective than the untuned trpe when only one frequency needs to be eliminated. After installation, the condenser is simply adjusted to reduce the interference to the greatest possible extent. It is advisable to mount either type of filter in a small shield box, to prevent pirk-up in the filter and to make it less conspicuous.

Fig. 23-5 - Resnnant filter for the a.c. line. A single condenser tunes borth L_{1} and L_{2}, which are unityeompled, one wound on top of the other. Constants for amatour bands are tahulated below.

Hand	c	$L_{1}-1.2$
3.5	$110+1,00$	2.5 t. No. 18, $11 / 4^{\prime \prime}$ dial. $\times 2 \frac{188^{\prime \prime} \text { long }}{}$
7	$140 \mu \mu \mathrm{fll}$.	181. No. $18,11 / 4^{\prime \prime}$ dia. $\times 28 / 8^{\prime \prime} \mathrm{long}$
1.1	$100 \mu \mu \mathrm{fd}$.	12 t. No. 18. $13 / 4{ }^{\prime \prime \prime}$ 'lia. $\times 238^{\prime \prime}{ }^{\prime \prime}$ long
21	$50 \mu \mu \mathrm{ff}$.	10 1. No. 18, $114^{\prime \prime}$, dis. $\times 238^{\prime \prime}$ 'lang
28	$25 \mu \mu \mathrm{fd}$.	$91 . N$ N. 18, $11 / 2^{\prime \prime}$ dia. $\times 28 / 8^{\prime \prime} \mathrm{long}$

D.c.c. wire is recommended for atl coils,

Interference with Television

Interference with the rocoption of television signals usually presents a more difficult problem 1han interference with AM brotudeasting. In BCI cases the interference almost always can be attributed to defieient selectivity or spurious responses in the BC receiver. While similar deficirmeios exist in many television recoivers, it is also true that amateur transmitters generate harmonies that fall inside many or all television
ch:mnels. These spurious radiations cause interference that ordinarily eannot be eliminated by anything that may be done at the recoiver, so must be prevented at the transmitter itself.

The over-all situation is further complicated by the fact that television broadeasting is in three distinct hands, two in the v.h.f. region and one in the u.h.f.

V.H.F. Television

For the amateur who does most of his transmitting on frequencies below 30 Me, the 'TV' bend of principal interest is the low v.h.f. band between it and 88 Mc. If harmonic radiation can be reduced to the point where no interference is caused to Chammels 2 to 6 , inclusive, it is almost certain that any harmonic troubles with channels above 17. Mac will disatppear also.

The melationship between the v.h.f. television (hammels and harmonies of amateur bands from $1+$ through 28 Me, is shown in Fig. 2:3-(i, 1larmonics of the 7 - and $3.5-\mathrm{Mc}$. hands are not shown because they fall in every television channel. However, the harmonies athove 54 Me. from these bands are of such high order that they are usually rather low in amplitude, although they may he strong enough to interfere if the television rerciver is quite close to the amateur transmitter. Low-order harmonios - up to :lont the sixth are usually the most difficult to eliminate.

Of the amateur v.h.f. bunds, only 5o Me. will have hamonies falling in a v.h.f. telovision channel (channels 11, 12 and 13). However, ot transmitter for any amateur v.h.f. band may cause interference if it has multiplier stages either tumed to or hatving harmonies in one or more of the v.h.f. TV ehannels. The r.f. energy on such frequendies can be radiated directly from the transmitting cireuits or coupled by straty means to the transmitting antenna.

Frequency Effects

The degree to which transmitter harmonics or other undesired radiation actually in the TV chamed must be suppressed depends principally on two factors, the strength of the TV signal on the chamnel or chamels affected, and the relationship beI ween the frequency of the spurious radiation and the frequencios of the TV picture and sound carriers within the channel. If the TV signal is very strong, interference can be eliminated by
comparatively simple methods. Iowever. il the 'TV signal is very weak, as in "fringe" areas where the received picture is visibly degraded by the supparance of set noise or "snow" on the sorcen, it may bo necessary to go to extreme measures.

In either case the intensity of the interference depends very greatly on the exane frequency of the interfering signal. Fig. 2:3-7 shows the platemont of the picture and sound carriers in the standard TV chamel. In Chamel 2, for example, the picture earrier fregueney is $5.4+1.25=$ 55.25 Me. and the sound earrier frequency is (i) $-0.25=59.75 \lambda$ (. The serond harmonic of $28,010 \mathrm{kc}$. $(5 \mathrm{fi},(020 \mathrm{ke}$. or ati .02 Me .) falls $56.02-$ $5 t=2.02 \mathrm{Mc}$. above the low edge of the chammel and is in the region marked "Severe" in Fig. 2:3-7. On the other hand, the second harmonic of $29,500 \mathrm{ke}$. (59,000) ke. or 59 Me.) is $59-54=5$ Me. from the low edge of the chanmel and fatls in the region marked "Mild." Interference at this frequency has to be about 100 times as strong as at $50,020 \mathrm{ke}$. to cause effects of equal intensity.

Fig. 2:3-6 - Relationship of amateurband harmonies to v.h.f. 'TV chammels. Harmonic interference from transmitters operating below 30 Me is most likely to be serious in the low-channel group (5.1 to 88 Mc .).

the case with eapacitive coupling. Link coupling also reduces the coupling between the driver and amplifier at harmonic frequencies, thus preventing driver harmonics from being amplified.

The inductance of leads from the tule to the tank condenser can be reduced not only by shortening but by using flat strip instead of wire conductors. It is also better to use the chassis as the return from the blocking condenser to cathode, since a chassis path will have less inductance than almost any other form of connection.

The v.h.f. resoname points in amplifier tank cireuits ean be found by eoupling a grid-dip meter covering the $50-250$ Me. range to the grid and plate leads. If a resonance is found in or near a TV channel, methods such as those deseribed above should be used to move it well out of the TV range. The grid-dip meter also should be used to check for v.h.f. resonances in the tank coils, because coils made for $1+\mathrm{Mc}$. and below usually will show sueh resonances. In making the check, disconnect the eoil entirely from the transmitter and move the grid-dip meter coil along it while exploring for a dip in the 54-88 Me. band. If a resonance falls in a ' TV ' chamel that is in use in the locality, changing the number of turns will move it to a frequeney where it will not be troublesome.

In many r.f. amplifiers the cathode connection of the tube is below chassis while the plate (and sometimes the qrid) connection frequently is above. In such a case the blocking condenser should be mounted below chassis, If the ground return is make to the top, the r.f. current has to flow over the top :und either through the hole for the tube socket or chse entirely over the chassis surface before it reathes the eathode. This condition is highly undesirable not only because of v.h.f. resonamees but because such chassis currents frequently c:use instability in the amplifier.

Operating Conditions

Grid bias and grid current have an important effect on the hammonic content of the r.f. currents in both the grid and plate circuits. In general, harmonic output increates as the grid biats and grid current are increased, but this is not necessarily true of a particular harmenis. 'The third and higher harmonies, especially, will go through Huduations in amplitude as the gride eurent is incereased, and sometimes a rather high value of grid current will nunimize one harmonic: as comparred with a low value of grid current. This characteristic cian be used to advantage where a particula harmonie is causing interferenee, kepping in mind that the operating conditions that minimize one harmonic may greatly increase mother.

For equal operating conditions, there is little or no differenee betwern single-ended and pushpull amplifiers in respect to harmonic generation. l'ush-pull amplifiers are frequently trouble-makers on even harmonies because with such amplifiers the even-hamonic voltages are in phase at the ends of the tank circuit and hence appoar with equal amplitude across the whole tank coil,
if the center of the coil is not grounded. Under such circumstances the even harmonies can be coupled to the output cireuit through stray capacitance between the tank and eoupling coils. This does not oecur in a single-ended amplifier if the eoupling eoil is plateed at the cold end of the tank.

Harmonic Traps

If a harmonic in only one TV chamel is particularly bothersome - frequently the case when the transmitter operates on 28 Mc . - a trap tuned to the harmonic frequeney may be installed in the plate lead as shown in Fig. 23-11. At the harmonic frequeney the trap represents a very high impedance and hence reduces the amplitude of the harmonic current flowing through the tank eireuit. In the push-pull eircuit both traps have the same constants. The L / C ratio is not critical but a high-c eircuit usually will have least effect on the performance of the plate circuit at the normal operating frequener.

Fince there is a considerable harmonic voltage arross the trap, it may radiate unless the transmitter is well shielded. Traps should be placed so that there is no coupling between them and the amplifier tank eircuit.

A trap is a highly-selective device and so is useful only over a small range of frequencies. A

Fig. 2:3-11- Harmonic traps in an amplifier pate eirenit. L. and © should resonate at the frequency of the har. monie to be suppresed. C may be a $25-50$ to $50-\mu \mu$ fol. midget, and L usually eonsists of 3 to 6 turns abont $1 / 2$ ind in diameter for chanmels 2 through 6. 'The inductance should be adjusted so that the trap resonates at about half capacity of C before being installed in the transmitter. It may be checked with a grid-dip meter. When in place, it is adjusied for minimum interference to the 'TV picture.
second- or third-harmonic trap on : $28-\mathrm{Mc}$. tank cireuit usually will not be effective over more than 50 ke . or so at the fundamental freguener, depending on how serious the interference is without the trap. Because they are eritical of adjust-
ment, it is bettor to prevent TVI by other means, if possible, and use traps only as a last resor't.

PREVENTING RADIATION FROM THE TRANSMITTER

The extent to which interference will be caused by direct radiation of spurious signals depends on the operating frequency, the transmiter power lovel, the strength of the television signal, and the distance betwern the transmitter and TV recoiver. Transmitter radiation can be a very serious problem if the TV signal is wata, if the TV receiver and amateur transmitter are close together, and if the transmitter is operated with high power.

Shielding

Direct radiation from the transmitter circuits and components can be prevented by proper shielding. To be effective, is shield must eompletely enclose the eircuits and parts and must have no openings that will permit r.f. energy to eseape. Unfortunately, ordinary metal boxes and cabinets do not provide good shielding, since such openings as louvers, lids, holes for rumning in ronnections, and so on, allow far too much leakage.

A primary requisite for good shichling is that all joints must make a good electrical connection along their entire length. I small slit or crack will let out a surprising amount of r.l. energy; so will ventilating louvers and large holes such as those used for mounting meters. On the other hand, small holes do not impair the shielding very greatly, and a limited number of ventilating holes may be used if they are small - not over $1 / 4$ inch in diameter. Also, wire screen makes quite efferetive shielding if the wires make good electrical connection where they cross over, so the leakage through harge openings ean be very much reduced hy covering such openings with screening, well bonded to all edges of the opening.

Fig. 23-12-Proper method of by-passing the end of a shielded lead using disk ceramic condenser, 'lhe 0.001 $\mu \mathrm{fd}$. size should lo ned for 1600 volts or less; $500 \mu \mu \mathrm{fd}$. at higher voltages. Ther leads are wrapped around the inner and outer conductors and soldered, so that the leal length is negligible. 'lhis photograplo is alont four times actual size.

The intensity of r.f. fields about coils, condensers, tubes and wiring decreases very rapidly with distinee, so shielding is more effeetive, from a practical standpoint, if the components and wiring are not too close to it. It is advisable to have a separation of several inches, if possible, hetween "loot" points in the circuit and the nearest shielding.

For a given thickness of metal, the greater the conductivity the better the shielding. Copper is best, with aluminum, brass and steel following in that order. However, if the thickness is aleguate for structural purposes (over 0.02 inch) and the shield and a "hot" point in the circuit are not in close proximity, any of these metals will be satisfactory. (ireater separation should be used with steel shielding than with the other materials not only beatuse it is considerably poorer as a shiold but also beanse it will gatuse greater losses in near-by circuits than would copper or aluminum at the same distance. Wire sereen used as a shield should also be kept at some distance from highvoltage or high-curront r.f. points, since there is considerably more leakage through the mesh than through solid metal.

Where two pieces of metal join, as in forming it corner, they should overlap at least a hatf inch and be fastened together firmly with serews or bolts spaced at close-enough intervals to maintain firm contact all along the joint. The contact surfaces should be elean before joining, and should be checked occasionally - especially steel, which is almost certain to rust after a period of time.

The leakage through a given size of aperture in shieding increases with frequency, so such points as good continuous contact, sereening of holes, and so on, become even more important when the radiation to be suppressed is in the high hand -17-216 Mc. - than in the low TV band. Hence $50-$ and 144 -Mc. transmitters, which in general will have frequency-multiplier harmonias of relatively high intensity in this region, require special

Fis. 2:3-13 - 13y-passing the end of a high-voltage lead. The end of the shieid braid is soldered to a lug fastened to the chassis direetly underneath. 'The other terminal of the condenser is similarly bolted direetly to the chassis. When the by-pass is used at a terminal connertion bloek the "hot" lead should be soldered direetly to the terminal, if possible, but in any event connected to it liy a very short learl.

Fig. 23-14 - Additional r.f. filtering of sup. ply leads may be required in regions where the 'TV signal is very weak, 'The r.f. choke should be physically small, and may consist of a 1 -ineh winding of No. 26 enameled wire on a $1 / 4$-inch form, rlose-wound. Manufactured single-layer chokes having an inductance of a few mierohenrys also may be used,
attention in this respert if the possibility of intorforing with a chamed rewoived lowally exists.

Lead Treatment

liven very good shiclding ran be made eompletely useless when commertions are run from external power supplies and other equipment to the circuits inside the shided. levery conduetor so introduced into the shielding forms a path for the aseape of r.f., which is then radiated by the eonnerting wires. Henere a stap that is essential in every case is to prevent hamonie currents from flowing on the loads having the shiclded enclosure.
Harmonic currents always flow on the d.e. or a.e. lads eommerting to the tulne cireuits. A very effective means of preventing such currents from being eoupled into other wiring, and one that provides desirable ber-passing as well, is to use whelded wire for all such keads, mantaning the shickling from the point where the lead connects to the tube or r.f. eireuit right through to the point where it is about to leave the chassis. The shiold braid should be grounded to the chassis at both ends and at frequent intervals along the pith.
(iood by-passing of shichded keads also is essential. Bearing in mind that the shidd brad about the conductor eonfines the harmonic eurrents to the inside of the shielded wire, the objeet of bypassing is to prevent their escaper. Jigs. 2:3-12 and 2:3-1:3 show the proper way to by-pass. The smalltype $0.001-\mu$ fol. examie disk rondenser, when monnted on the end of the shichled wire as shown in lig. 2:3-12, artually forms a sories-resonant cireuit in the $5+-88$-Mc. range and thus represents practically a short-circuit for low-hand TV harmonics. The exposed wire to the connection terminal should be kept as short as is physically possible, to prevent any possible harmonic pirkup exterior to the shielded wiring. Disk condensers of this caparitance are available in several voltage ratings up to $16(0)$ volts. For higher voltages, the maximum raparitance available is approximately $500 \mu \mu \mathrm{fd}$., which is large enough for grood be-passing of harmonios. Altematively, mical condensers may be used as shown in Fig. 2:3-1:3, mounting the condenser flat against the chassis and grounding the end of the shied braid directly to chassis, keeping the exposed part as short as possible. lït her $0.001-\mu \mathrm{fd}$. or $470-\mu \mu \mathrm{fd}$. (50) $\mu \mu \mathrm{fl}$.) condensers should be used. The larger rapacitance is serter-resonant in Channel 2 and the smaller in Chamel 6 ,
These by-passesare essential at the conmetionbloek terminats, and clesirable at the tube ends of the leads also. Installed as shown with shielded
wiring, they have been found to be so effective that there is usually no need for further harmonie filtering. However, if a test shows that additional filtering is required, the arrangemont shown in ligg, 2:3-14 may be used. Such an r.f. filter should be installed at the tube end of the shielded lead, and if more than one cirruit is filtered care should be taken to keep the r.f. chokes scparated from eachother and so oriconted as to minimize coupling between them. This is neeessary for preventing harmonies present in one eirruit from being coupled into another.

In difficult eases involving Chamels 7 to $1: 3-$ i.e., close proximity botween the transmitter and recoiver, and a weak TV signal - additional leadfiltering measures may be needed to prevent radiation of interfering signals be 50 - and $1+4-M \mathrm{C}$. transmitters. . recommended method is shown in lig. 23-15. It uses a shichled lead by-passed

FFig, 2.3-15 - Nditionallead filtering for harmonicsior other spurious frequencies in the high v.h.f. 'T hand (17+216 Me.).
(i - $0.001-\mu$ fil. disk reramic.
$\mathrm{C}_{2}-0.001-\mu \mathrm{fil}$. fecd-through ly -pass (Hirie style 320). (For 500-200) (ovolt lead, substitute Ilastiom Glass mike, $1 . N(;-251$, for (2.)
KFC - 14 inches No. 26 enamel close-wound on 3is inch diam. form or resistor.
with a ceramic disk as deseribed above, with the addition of a low-inductance foed-through type condenser and a small r.f. choke, the condenser being used as a terminal for the external connection. For voltages above $4(0)$, a condenser of compact construction (as indicated in the caption) should be used, mounted so that there is a very minimum of exposed lead, inside the chassis, from the condenser to the comnertion terminal.

As an alternative to the series-resonant bypassing deswribed above, feed-through type condenser's such as the Sprague "Hypass" trpe may
be used as terminals for external connertions. The ideal method of installation is to mount them so they protrude through the chassis, with thorough bonding to the chassis all around the hole in which the condenser is mounted. The principle is illustrated in Fig. 2:3-16.

Fip. 23:16- The best method of using the "Hyyasis" type feed-through eondenser. (;apacitances of 0.01 to $0.1 \mu \mathrm{fd}$. are satisfactory. Condensers of this type are useful for higheeurrent circuits, sueh as filament and 115 -volt leads, as a subntitute for the r.f. choke shown in l"ig. 2:3-1t, in cases where additional lead filtering is ureted.

Moters that are mounted in an r.f. unit should be enclosed in shielding eovers, the connections being made with shichded wire with each lead by-passed as described above. The shiold braid should be grounded to the panel or chassis immediately outside the meter shield, as indicated in Fig. 23-17. A by-pass may also be connected arross the meter terminals, principally to provent any fundamental current that may be prosent from flowing through the meteritself. As an alternative to individual moter shielding the moters may be mounted entirely behind the pancl, and the panel holes needed for observation may be covered with wire screen that is carefully bonded to the panel all around the hole.

Care should be used in the selection of shielded wire for transmitter use. Not only should the insulation be conservatively rated for the d.c. volt-

Fig. 23.17 - Meter shielding and by passing. It is essential to shield the meter mounting hole sinee the meter will carry r.f. through it to be radiated. Suitahle shields can be made from $21 / 2$ or 3 -inch diameter shield cans of the type made for enclosing coils.
age in use, but the insulation should be of material that will not easily deteriorate in soldering. The r.f. characteristics of the wire are not esperially important, except that the attenuation of harmonics in the wire itself will be greater if the insulating material has high losses at radio frequeneies: in other words, wire intended for use at d.e. and low frequencies is preferable to rables designed expressly for carrving r.f'. 'The attemattion also will increase with the length of the wire; in general, it, is better to make the leads as long as cireumstances permit rather than to follow the more usual pratide of using no more lead that is actually neecssary. Where the wiring crosses or runs parallel, the shields should be spot-soldered together and connected to the chassis. For high voltages, automolile ignition cable covered with shichding braid is rerommended.
Proper shiclding of the transmitter requires that the r.f. circuits be shielded entirely from the external comecting leads. A situation such as is shown in Fig. 23-18, where the leads in the r.f. chassis have been shielded and properly filtered

Fig. 23.18-A metal cahinet can be an adequate shieli, but there will still be radiation if the leads inside can piek up r.f. from the transmitting eirenits.
but the chassis is monnted in a large shield, simply invites the hamonie currents to travel over the chassis and on out over the leads outside the chassis. The shiedding about the r.f. rircuits should make complete contact with the chassis on which the prorts are mounted.

Checking Transmitter Radiation

A check for transmitter radiation always should be made belore attempting to use low-pass filters or other deviess for preventing harmonies from reaching the antema system. The only really satisfactory indieating instrument is a television receiver. In regions where the TV signal is strong an indicating wavemeter such as one having a crystal or tule detector may be useful; if it is possible to get any indication at all on harmonies either on supply leads or around the transmitter itself, the harmonics are probably strong enough to cause interference. However, the absence of
any such indication dors not mean that harmonie interforence will not be caused. If the terehniques of shiclding and lead filtering deseribed in the

Fig. 23-19 - Dummy antenna circuit for checking harmonic radiation from the transmitter and leads. The matching eireuit helpes present harmonies in the output of the transmitter from flowing back over the transmitter itself, which may occur if the lampload is simply connerted to the output coil of the final amplifier. see transmission-line chapter for details of the matehing circuit. 'luning must be adjusted by cut-and-try, as the bridge method deseribed in the transmission-line ehapter will not work with lamp loads beeause of the ehange in resistance when the lamps are hot.
proceding section are followed, the harmonic intensity on any external leads should be far below what any such instruments can detect.

Radiation checks should be mate with the transmitter delivering full power into a dummy antema, such as an incandeseent lamp of suitable power rating, preferably installed inside the shielded enelostre. If the dummy must be external, it is desirable to conncet it through a coaxmatching cireuit such as is shown in Fig. 23-19. Shiclding the dummy antenna circuit is also desinable, although it is not always neressary.

Nake the radiation test on all frequeneies that are to be used in transmitting, and note whether or not interference patterns show in the rereived pieture. (These tests must be made while a TV signal is boing recoived, since the beat patterns will not le formed if the TV pieture carrier is not present.) If interforence exists, its souree can be detected by grasping the various external leads (by the insulation, not the live wire!) or bringing the hand near meter faces, louvers, and other possible points where harmonic energy might eseape from the transmitter. If any of these tests cause a change - not neersarily an increase - in the intensity of the interference, the presene of harmonies at that point is indieated. The loeation of such "hot" spots usually will point the way to the remedy. If the TV receiver and the transmitter can be operated side-by-side, a length of wire connected to one antenna terminal on the receiver can be used as a probe to go over the transmitter enclosure and external leads. This device will very quickly expose the spots from which serious leakage is taking place.

As a final test, comect the transmitting antemma or its transmission line terminals to the outside of the transmitter shielding. Interference created when this test is applied indirates that weak currents are on the outside of the shield and can be conducted to the antenna when the normal antenna comections are used. Currents of this nature represent interference that can be ronducted over low-pass filters, ete., and which therefore cannot be eliminated by such filters.

PREVENTING HARMONICS FROM REACHING THE ANTENNA

The third and last step) in rofucing harmonie TVI is to kerep the spurious enorgy generated in or passed through the final stage from traveling over the transmission line to the antenna. It is seldom worthwhile even to at tempt this until the radiation from the transmitter and its connecting leads has beren reduced to the point where, with the transmitter delivering full power into a dummy antenna, it has beon dotermined by actual testing with a tolevision receiver that the radiation is below the level that ean cause interference. If the dummy antennat test shows enough radiation to be sero in a TV picture, it is a practical certainty that harmonies will be coupled to the antema system no matter what preventive measures are taken,

In inductively-roupled output systems, some hammonic energy will be transferred from the final amplifier through the mutual inductance between the tank coil and the output eoupling coil. Harmonics of the output frequency transfered in this way can be greatly reduced by providing suflicient solectivity between the final tank and the transmission line. A good deal of seleetivity, amounting to 20 to 30 dl , reduction of the second harmonic and much higher reduction of higher-orter harmonies, is furnished by a matehing cireuit of the type shown in Fig. 23-1! and described in the ellapter on transmission lines. An "antenna coupler" is therefore a worthwhile addition to the transmitter.

In 50- and 141-31e. transmitters, particularly, harmonies not directly assoriated with the output frequency - such as those generated in low-frequency early stages of the transmitter - may get coupled to the autenna by stray means. For example, a $14+$ - Mr. transmittor might have an oscillator or frequence multiplier at 48 Ne., followed be a tripler to 1.t.t Mc. Sonne of the 48-Mc. energy will appear in the plate circuit of the tripler, and if passed on to the grid of the final amplifier will appear as a 48 - Me. modulation on the $144-\mathrm{Me}$. signal. This will cause a spurious signal at 102 M . ., which is in the high TV band, and the selectivity of the tank eircuits may not be sufficient to prevent its being coupled to the antemat Spurious signals of this type can be reduced by using link coupling between the driver stage and final amplifier (and between earlior stages as well) in audition to the suppression afforded by using an antenna coupler.

Capacitive Coupling

Harmonirs athe other spurious sighals transforred from the tank by st ray eapacitance are not suppressed by an antema coupler to the same extent as those transfermed by pure inductive coupling. The upper drawing in lig. 2:30) shows the link-coupled system as it might be used to couple into a parallel-conductor line. Inasmuch as a coil is a sizahle metallic objert, there is capateitance between the final tank coil and its associated link coil, and between the antenna tank

Fís. 23.20-FIre stray capacitive counling betwern eoila in the upper cireuit leads to the equivalent eircuit shown below, for i.l.f. harmonies.
roil and its link. linergy coupled through these raparitances travels over the link circuit and the transmission line as though these were morely single conductors. The tuned cireuits simply art as masses of motal and offer no seleetivity at all for capacity-coupled energy. Although the actual (aparitances are smatl, they offer a very good roupling medium for frequencies in the v.h.f. range.
(:apacitive coupling can be reduced by coupling to a "eold" point on the tank coil - the end connected to ground or cathode in a single-onded stage. In push-pull cireuits having a split-stator condensur with the rotor groumed for r.f., all parts of the tank coil are "hot" at "ven harmonics, but the center of the eooil is "cold" at the fundamental and odd harmonics. If the center of the tank coil, rather than the rotor of the tank condenser, is grounded through a by-pass condenser the center of the coil is "cold" at all frequenries, but this arrangement is not very desirable because it causes the harmonic currents to flow through the roil rather that the tank condenser and this inereases the harmonie transfer by pure inductive conpling.

With either single-ended or balaneed tank eirenits the coupling coil should be groumed to the chassis by a short, direet connertion as shown in Fig. 23-21. If the eoil feeds a balaned line or link,
it is preferable to ground its center, but if it feeds a cons line or link one side may be grounded. Coaxial output is much preferable to balanced output, because the harmonies have to stay inside a properly installed coax system and tend to be attenuated by the cable before reaching the antemat coupler.

It high frequencies - and possibly as low as 14 Me, - capacitive coupling ean begreatly reduced be using a shideded coupling coil as shown in Fig. $23-22$. The inmer conductor of a length of coaxial cable is used to form an one-turn couphing coil. The outer conductor serves as an open-circuited shield around the turn, the shield being grounded to the chassis. The shielding has no effeet on the inductive coupling. Because this construction is suitable only for one turn, the coil is not well adapted for use on the lower freguencies where many turns are recpuired for good coupling. Shicided coupling coils having a larger number of turns are available commercially. A shieded coil is particularly useful with push-pull amplifiers when the suppression of even harmonies is important.

A shiedded coupling coil or coaxial output will not prevent stray capacitive eoupling to the antoma if harmonic currents can flow over the ontwide of the coax line. In Fig. 23-2:3, the arrangement at either A or (1 will allow r.f. to flow over the outside of the cable to the antenna system. The proper way to use coaxial cable is to shield the transmitter completely, as shown at B, and make sure that the outer conductor of the sable is a continuation of the transmitter shiclding. This

Fig. 23.22-Shiclded coupling coil : onstructed from coaxial cable.
 the coil dianuter is 3 inehes or less, because of greater flexibility. For larker coils R(B.8/L or RC.11/L ran be used.

Fig. 23.2I - Methools of coupling and zrounding link circuits to reduace capacitive conpling between the tank and link eoils. Where the link is: wound over one end of the tank enil the side toward the hot end of the tank should be grounded, ats shown at 13 .

prevents r.f. inside the transmitter from getting out by any puth except the inside of the cable. Harmonics flowing through a coax line ean be stopued from reaching the antenna system by an anterna coupler of by a low-pass filter installed in the line.

(B)

(C)
quener below the RETMA standard i.f. for television receivers (sound carrier at +1.25 Me.: pieture carrier at to.zo Me.). This is to avoid possible harmonie interterence from 21 Me, and below the the receiver's intermediatu amplificr. The other desigus similarly rut off at +1 Ma or bolow, but m in these comes is neressatily hased on the raparitances available in standard fixerl rondensers.

Hig. 23-29 - A :in-ohm low-pass filter for 111-Me. transmitters.

Filters for 50- and 144-Mc. Transmitters

Sinece a low-pass filter must have a doutoff froquency above the frequeney on which the tramsmitter operates, a filtor for a v.h.f. transmitter camot lo designed for attenuation in all telfovision chamels. This is no handieap, for v.h.t. work hut means that the filter will not be effertive when used with lower-freguency transmitters, unless it happeris that no TV ehamek in uso in the locality fall inside the pass-hand of the filter.

Fig. 2:3-2 : shows a filter for 52-ohm coax suitable for a a ol- Ma transmitter of any power ap to the athorized limit. The cirenit diagram is given in lig. 2:3-28. If the values of inductance

Figs. 23-28 - (iirenit diagram of the low-pase filters for 50 -and | If-Nc. tratsmitters, Dalues on the drawing are for the $\overline{\mathrm{s}}$ (-Ve. filter. Partitions are wot used in the 1/1:-Nc, unit.
 to midille of laming ranqu (Johmsen 50l.15).
(11. Mc.: $11-\mu \mu \mathrm{fd}$, ceramis ($10-\mu \mu$ fil, useable).
 sat with rotor $1 / 4$ inch cout of staleor (Bual NC: 9(0.).

IIf Mc.: $38-\mu \mu \mathrm{fa}$. stamboff by-lass (Firic Sylu - : 1 A).
FO. Alc. coil datal:
l.1, $1.5-31 / 2$ turns $5 / 8$ inch long. 'Iop leads $3 / 4 \mathrm{inch}$, fortom leads $1 / 4$ ineh long.
I. $2, \mathrm{~L}_{4}-41 / 2$ turns $5 / 8$ inch long, lads $1 / 2$ inch long mach embl.
1.sin- $5 / 1 / 2$ turns ? s inch long. I eads 1 inch long eath.

All 50 -Mr. wils No. 12 timned, $1 / 2$-inch diam.., coil lenath meatsured between right-angle hends where leads begin.
1H-Mc. coil data:
1.1. I. $5-3$ turns $1 / 4$ inch long. leads $1 / 4$ inch long each rinl.
$14, I_{4}-2$ turns $1 / 8$ inch long. Leads I inch long each end.
La- 5 turns $3 / 4$ inch long. Leads $5 / 8$ indilong each end.
III 14 !- 114 , coils No. 18 timmel, $1 / 4$-inch diam., lengths measured as for $50-$ Mc. coils.
$\mathrm{J}_{1}, \mathrm{~J}_{2}$ - Cianial filling.
and eapacitance can be measured (wee chapter on measurements) the components cion be presett and assembled without further adjustment. Alternatively, the grid-dip moter mothod deseribed catior may be used. The resonant frequeneles are: $L_{1} \mathrm{C}_{1}\left(I_{1}\right.$ shorted $\left.)\right\}$ $L_{5}\left({ }_{4}\left(I_{2}\right.\right.$ shorted $\left.)\right\}$ 81.5 Me. $L_{33}\left({ }_{2} C_{3}^{\prime}\left(L_{22}\right.\right.$ and L_{4} disconnerded $)$ f(M . $L_{1} L_{22}\left(C_{1} C_{2}\right.$ (L_{3} disconnerted) $L_{4} L_{5} \mathrm{C}_{3} \mathrm{C}_{4}^{2}$ (L_{3} diseromented)
58.5 Mc . The rut-off frequoney is approximately (6is Mc.
The eave for the of O-Me. filter is a standard box (10,1 slip-coves, No, $2!100$) mestariang $31 / 8$ by 13 be 2^{-}s inches. The two end condensers, Ciand ('s, ate mounted with their two stator posts toward the ends of the filter. The two larger units are mounted in the center compartment with their rotor shafts toward the middle. The top leads from ails L_{1} and L_{5} are wrapped aromed the stator terminals of C_{1} and C_{4}, ant the bottom leads fit direetly into the roaxial input and oatput fittings. The outer conds of coils L_{2} and L_{4} are soldered to the coaxial fitting terminals, and their inner ends are soldered to lugs supported on oneinch eeramic stand-off insulators. Leads from the stand-offs go through holes in the partitions to the hottom stator lugs on C_{2} and C_{3}. L_{3} is soldered to the two uperer lugs on these two caparitors, thus completing the filter circuit. Lead lengths for the coils given in the parts list are the total lengthe to be left when the winding is completed, including the portions that will be used in soldering operations.

This filter will give high attemation in Channels 1 -6: and all the high-hand chamarls, and thate will take cate of most of the spurions signals gen-

I filter for low-power 14-Xe transmithers is shown in lig. 2:-2!). It is designed for maximum attenuation in the $191-215$. Me. region to suppress the spurious radiations in that rauge that freguently oreur with 14-Me. transmifters, but ahe hat good at trination for all frequendios above 170 Ma. Optimum caparitance values are piven it lig. 2:3-28. If possible, several units of the moarest standard values available should be measured and those having values rlosest to the opimum used. The inductance values are too small to be measured with sufficiont aceurary so the filtor shoula be alljusted by the following method:

First, mount L_{1} and C_{1}, short J_{1} temporarily at its inner terminals, and adjust L_{1} until the combination resonates at 200 Me. as shown by griddip meter. Next, remove the short from J_{1} and conneet L_{2} and ('2, adjusting L_{2} until the circuit formed by $L_{1} L_{2} \mathrm{C}_{1} \mathrm{C}$ '2 resonates at $1+4$ Me. Then disconnect L_{2} athd mount L_{3} between C_{2} and ('3. - Idjust L_{3} until the eircuit $L_{3} C_{2} C_{3}$ resonates at 112 Mc . Next, diseonneet L_{3} and follow a similar procedure starting from the other end with L_{5} and ('4. Finally, recomedt all coils and a cherk at any point in the filtor should show rewomane at 160 Me., the approximate rut-off irequency.

The rase for the $1+4-\mathrm{Mc}$. filter is made from Hashing eopper and is $1 \frac{1}{4}$ inches square by $71 / 8$ inches long. The main portion of the case is cut from a single piece with the end talhs folded down and soldered to the sides. Flanges are folded over at the botiom, and a rover is made to slip over these.

Filter Installation

In order to give the harmonic athentation of which it is capable, a low-pass filter must be installed in such a way that all the output of the transmitter flows through it. If hamonie currents are permitted to flow on the outside of the connecting coaxial cables, they will simply flow over the filter and on up to the antemat, and the filter does not have an opportunity to stop them. 'That is why it is so important to reduce the radiation from the transmitter and its loads to negligible proportions.

Fig. 23-30 shows the proper way to install a filter between a shiclded tramsmitter and a matching circuit. Note that the cosx, together with the shields about the transmitter and filter, forms a eontinuous shield to keep all the r.f. inside. It is thas forced to flow through the filter and the harmonies are attenuated. If there is no harmonic encrgy left after passing through the filter, shiclding from that point on is not neressary; consequently, the matehing eircuit or antemna coupler does not need to be shielded. However, the antenna-coupler chassis arrangement shown in Fig. 23-30 is dosirable because it will tend to prevent fundamental-frequency energy from flowing from the matching circuit back over the transmitter; this helps eliminate feed-back troubles in audio systems.

If the anterna is driven through coaxial line the matching eireuit shown in Fig. 23-30 may be omitted. In that case the line goes directly from the filter to the antennat.

When a filter does not seem to give the harmonie attenuation of which it should be capable, the probable reason is that harmonies are by-passing it because of improper installation and inadequate transmitter shiolding, induding lead filtering. However, oceasionally there are cases where the circuits formed hy the cables and the apparatus to which they ronneet become resonant at a harmonic frequency. This greatly increases
the harmonic output at that frequency. Such troubles can be completely overcome by substituting a slightly different cable length. The most eritieal length is that comerting the transmitter to the filter. Checking with a grid-tip moter at the final amplifier output coil usually will show whether an unfavorable resonance of this type exists.

SUMMARY

The methods of harmonic elimination outlined in this chapter have been proved berond doubt, to be effertive even under highly unfavorable conditions. It must be emphasized once more, however, that the problem must be solved one step at a time, and the procedure must be in logical order. It camot be done properly without. two items of simple erguipment: a grid-dip meter and wavemeter rovering the TV hands, and a dummy antenna.
The proper procedure may be summarized as follows:

1) Take a critical look at the tramsmitter on the basis of the design considerations outlined under "Reducing Harmonic (ioneration".
2) Check all cireuits, particularly those connected with the final amplifier, with the grid-dip) meter to determine whether there are any resonances in the TV bands. If so, rearrange the circuits so the resonances are moved out of the eritical frequeney region.
3) Connect the transmitter to the dummy antema and check with the wavemoter for the presence of harmonics on leads and around the transmitter enelosure, Seal off the weak spots in the shielding and filter the leads until the wavemeter shows no indication at any harmonic frequency.
4) At this stage, check for interference with a ${ }^{\prime} T$ ' receiver. If there is interference, determine the cause by the mothods described previously and apply the recommended remedies until the interferenee disappears.
5) When the transmitter is completely clean on the dummy antenna, comnect it to the regular antenna and check for interference on the TV receiver. If the interference is not bad, an antenna coupler or matehing eircuit installed as previously described should clear it up. Alternatively, a lowpass filter may be used. If neither the antemna coupler nor filter makes any difference in the interfrence, the cvidenee is strong that the interference, at least in part, is boing caused by receiver overloating because of the strong funda-

Fig. 23-30 - 'The proper method of installing a low-pass filter between the transmiter and antenna coupler or matching circuit. If the antenna is fed through coax the matehing circuit may be omitted but the same construction should be used between the transmitter and filter. The filter should lie thoroughly shielded.
mental-frequence field about the 'TV antema and receiver. (Hee later section for identifieation of fundamental-frequeney interference.) A couplar and/or filter, installed as deseribed above, will invariably make a difference in the intensity of the interfermere if the interference is cansed by transmitior hamonies alone.
6) If there is still interference after installing the coupler and/or filter, and the evidenee shows that it is probably caused by a hamonic, more attenuation is needed. A more elaborathe filter may be necessury. However, it is well at this stage to assume that part of the interference may be caused by receiver overloading, and take steps to alleviate such a condition before trying highlyelaborate filters, traps, ete., on the transmitter.

HARMONICS BY RECTIFICATION

liven though the transmitter is completely free from harmonie output it is still possible for interference to occur berause of hamonics generated outside the transmitter. These result from rectification of fundamental-frerpueney currents incluced in conductors in the virinity of the transmitting antemat. Rectifieation can take place at any point where two conductors are in poor electrical contact, a condition that frequently exists in plumbing, downspouting, B. cables crossing eath other, and numerous other places in the ordinary residence. It also (ath oceur in any exposed vabumm tubes in the station, in power supplies, sperech equipment, etc., that may not be endosod in the shieding about the r.f. rircuits. P'oor joints anywhere in the antenna system are experially bad, and rectification also may take place in the contacts of atemna changeover relays. Another common satuse is overloading the front end of the communications reeeiver when it is used with a separate antenna (which will radiate the harmonies generated in the first tube) for break-in.

Rectification of this sort will not only amse hammonic interfereme but also is frequently responsible for cross-modulation effects. It cain be detected in greater or less degree in most loontions, but fortumately the harmonics thas generated are not usually of high amplitude. However, they ean cause considerable interference in the immediate vicinity in fringe areas, esperially when operation is in the 28-Mc, band. The amplitude doreases rapidly with the order of the harmonic, the second and third being the worst. It is ordinarily found that evern in cases where destructive interference results from 28 - Wc. operation the interference is comparatively mild from 14 Me, and is nogligible at still lower frenuencies.

There is nothing that ean be done at either the transmitter or reeceiver when rectification oreurs. The remedy is to find the source and eliminate the poor contant rither by separating the conductors or bonding them together. A arsial wavemeter (tuned to the fundamental frequenes) is useful for hunting the source, by showing which conductors are carrying r.f. and, comparatively, how much.

Intorference of this kind is frogurntly intermittent, since the roctification efficience will vary with vibration, the weather, and so on. The possibility of corroded contarets in the TV reeriving antema should not br overlooked, rispercially if it has been up a wear or more.

TV RECEIVER DEFICIENCIES

Front-End Overloading

When a television recerver is quite close to the transmitter, the intense r.f. signal from the transmitter's fundamental may owrond one or more of the recorver circuits io produce spurious rosponses that cause interferance.

If the overload is moderate, the interference is of the same nature ats harmonis interference: it is cansed hey hamonies genemated in the early stages of the receiver and, since it oedurs only on channels harmonically related to the transmitting frepurnery, is difficult to distinguish from harmonies actually radiated by the transmitter. In such eases additional hammone suppression at the transmittor will do no good, but any means taken at the receiver to reduce the amateder fundamental strengeth fed to the first tube will effect an improvement. With more severe overloading interfervere aho will oesur on ehatmels not harmonically related to the transmitting frequencer, so surh cesces are casily identifiod.

Cross-Modulation

Ender some cireumstaners overloading will result in reoss-modulation or mixing of the amateur signal and that, from a local Fil or TV stattion. For example, a $1+$-Me, signal can mix with is 92-Mc. $1 \times \mathrm{M}$ station to produce a beat at 78 Me . and rause interference in (hammel 5 , or with it TV station on Chamed 5 to calus interference in (Channel 3. Noither of the ehammels interfered with is in harmonig relationship to If Mr. Both signals have to be on the air for the interference to oecor, and eliminating either at the TV reediver will eliminate the interference.
There are many combinations of this type, depending on the bend in use and the local frequency assignments to F.M and TV stations, The interfering frequency is equal to the amatern fundamental frequencer wither added to or subtracted from the frequeney of some local station. and when interference orems in a TV chanmed that is not harmonically related to the amateur transmitting frequency the posibilitios in such frequency combinations should be investigated.

I. F. Interference

Some 'TV receivers do not have sufficient selectivity to prevent strong signals in the intermedi-ate-frequency range from foreing their way through the frout cond and getting into the i.f. amplifier. The onerestandard intermediate frequeney of, roughly, 21 to 27 Me , is subject to interference from the fundamental-frequenc: output of tramsmitters operating in either the $21-$
and $2 \overline{7}$ - Me. hands. Trimsmiters on 28 Me. semetimes will eanse this typ of intorferenee as woll.

A form of i.f. interference peruliar to 50 ()- Ac: operation now the low edge of the band occurs with some recerivers having the standard "H1-Mc." i.f., which has the sound carrier at 41.25 Me. and the picture carrier at 45.75 Ne. A 50 -Mc. signal that formes its way into the i.f. system of the reeediver will crase a beat with the i.f. picture carricr that falls on or near the i.f. sound ramier, even though the interfering signal is not actually in the nominal pass-band of the i.f. amplifier.
'There is a twe of i.f. interferemer unique to the 14-Mc. band in localitios where erertain u.h.f. TV chamels are in opration, afterting only those TV receivers in which doubla-eonversion type plug-in u.h.f. tuning strips are used. The design of these strips involves a first intermediate frequency that varios with the 'TV' chamed to be received and, depending on the particular strip) design, this first i.f. may be in or close to the 14-Ne amatedur band. Since there is romparatively little selectivity in the TV signalfrequeney eiretrits ahead of the first i.f., a signal from a $1-4-$ Mre transmitter will "ride into" the i.f., even when the receiver is at a considerable distance from the trammitare. The chamels that can be afferted by this type of i.f. interference are as follows:

> Receiress with $21-M /$. secout i.f.
(hatumels 14-18, ine.
('hamnels $+1-48$, ine.
(hatnels 69-77, ince.

> Recrirers with 4-M/c. secont i.f.

Chammels 20-25, ince. (hamucls 5 - -58 , ince. (hatmels 82 athd 83 .

If the receiver is not dose to the transmitter, it trap of the type shown in liig. 2:3-33 will be eftertive. Llowever, if the separation is smatl the 14-Me signal will be pieked up direetly on the receiver cireuits and the best solution is to readjust the strip oscillator so that the first i.f. is moved to a frequency not in the virinity of the 14.4-Mc. band. This has to be done bi a competent technician.
1.f. interference is easily identified since it oeeurs on all dammels - although sometimes the intensity varies from chamel to chamel - and the eross-hateh pattern it causes will rotate when the receiver's fine-tuning control is varied. When the interforence is caused by a harmonie, overloading, or cross modulation, the structure of the interference pattern does not change as the finctuming control is varied, although its intensity may change.

High-Pass Filters

In all the above eases the interference eath be eliminated if the fundamental signal strength cian be redued to a level that the reeciver ean hamdle. To accomplish this with signals on bands below 30) Me., the most satisfactory device is a highpass filter having at cut-off frequeney between 30

Fig. 2:3-3I - High-pass filters for installation at the IV receiver antemat terminals. A - batanced filter for 300. ohm line, B - for $\overline{\mathrm{h}}$-ohm coavial line. Importent: Do not use a direct groundon the chassis of a transformorless receiver. (;round through a 0. . 0) $1-\mu \mathrm{fl}$. mica comdenver.
and 50 Mr., installed at the tumer input terminals of the receiver. (ircuits that have proved effective are shown in Figs, 2:3-31 and 2:3-32, Fig. 2:3-32 has one more sertion than the filters of Fig. 2:3-31 and as a consequence has somewhat better cut-off characteristies. All the rircuits given are designed to have little or no effect on the 'TV' signals but will attenuate all signals lower in frequeney than about 40 Mc. These filters preferahly should be constructed in some sort of shielding container, although shielding is not always neerssary. The dashed lines in Fig. 2:3-32 show how individual filter eoils c:m be shieded from eath other. The condensers can be

Fig. 23-32 - Another type of high-pass filter for 300 whm line. The coils may be wound on $1 / 8$-inch diameter plastic knitting needles. Important: Do uot use a direct pround on the chassis of a transformerless receiver. Ground throagh a $0.001-\mu \mathrm{fd}$. mica condenser.
tubular exramic units centered in holes in the partitions that separate the coils.

Simple high-pass filters cannot be applied suceessfully in the ease of $50-$ Me trinsmissions, because they do not have sufficiently-sharp entoff chatracteristies to give both good attenuation at 50-5. 4 Me. and no attenuation above 54 Mc. A move elaborate design eapable of giving the required sharp eut-off has been deseribed (Ladd, " $50-\mathrm{Mc}$. TVI - Its Causes and Cures," (Qs"J', Jume and July, 1959). This article also contains other information useful in coping with the TVI prollems peculiar to 50-Mce operation. As ath ilternative to surh it filter, a high- Q wave-
trap tuned to the transmitting frequency may he used, suffering only the disadvantage that it is quite selective and therefore will protect a receiver from overloading over only a small range of transmitting frequencies in the $50-\mathrm{Me}$, band. A trap of this type using quarter-wave sections of Twin-Lead is shown in Fig. 2:3-33. These "suck-out" traps, while absorbing energy at the frequener to which they are tuned, do not affect the receiver operation otherwise. The assemblyshould be slid along the TV' antenua lead-in until the most effective position is found, and then fastened securely in place with Scotch Tape. An

Antenna Installation

Many television receivers will respond strongly to parallel currents on the receiving transmission line. Csually, the transmission line picks up a great deal more energy from a near-by transmitter than the television receiving antenna itsolf, causing parallol currents that should be, but are not, rejected by the receiver's input cireuit. This situation can be improved by using shielded transmission line - cons or, in the balanced form, "twinax" - on the recoiving installation. For best results the line should terminate in a

Fig. 23-33-Ahsorption-type wavetrap using sections of 300 ohm line tuned to have an electrical length of $1 / 4$ wavelength at the transmitter frequency. Approximate physical lengths (dimension A) are 40 inches for 50 Mc . and II inches for 144 Me., allowing for the leading effect of the capacitanee at the opere end. 'Two traps are used in marallel, one on eald vide of the line to the reeniver.
insulated tuning tool should be used for adjustment of the trimmer condenser, since it is at a "hot" point and will show considerable body-caipacity effect.

High-pass filters are available commercially at moderate prices. In this connection, it should be understood by all parties concerned that while an amateur is responsible for harmonic radiation from his transmitter, it is no part of his responsibility to pay for or install filters, wavetraps, etc., that may be required at the receiver to provent interference caused by his fumbamental frequency. The sot owner should be advised to gret in touch with the organization from which he purchased the receiver or which services it, to make arrangements for proper installation. Proper installation usually repuires that the filter be installed right at the input terminals of the r.f. tuner of the TV set and not morely at the antemat terminals, which may be at a eonsiderable distance from the tuner. The question of cost is one to be settled between the set owner and the organization with which he deals. Some of the larger manufacturers of TV reecivers have instituted arrangements for cooperating with the set dealer in installing high-pass filters at no cost to the receiver owner. FCC-sponsored TVI Committees, now operating in many eities, have all the information neressary for effectuating such arrangements.

If the fundamental signal is getting into the receiver by way of the line cord a line filter such as that shown in Fig. 2:3-4 may help. To be most effective it should he installed inside the receiver chassis at the point where the cord enters, making the ground commertions dirertly to chassis at this print. It may not be so helplul if placed betwen the line plug and the wall socket unless the r.f. is actually pieked up on the house wiring rather than on the line cord itself.
abax fitting on the receiver chassis, but if this is not possible the shield should he grounded to the chassis right at the antemas terminals.

The use of shieded transmission line for the receiver also will be helpful in reducing response to harmonies actually being radiated from the transmitter or transmitting antenna. In most receiving installations the transmission line is very much longer than the antenna itself, and is consequently far more exposed to the harmonic fields from the transmitter. Much of the harmonie pick-up, therefore, is on the reeeiving transmission line when the transmitter and recoiver are quite elose together. Shiclded line, plas relocation of pither the transmitting or recoiving antenna to take alvantage of directive effects, oftern will result in reducing overloading, as well as harmonie pick-up, to a level that does not interfere with reception.

U.H.F. TELEVISION

Harmonic TVI in the u.h.f. TV band is far less troublesome than in the v.li.f. band. Harmonies from transmitters operating below 30 Me, are of such high order that they would normally be experted to be quite weak: in addition, the components, circuit conditions and construction of low-frequeney transmitters are such as to tend to prevent very strong hamonics from being gencrated in this region. However, this is not true of amateur v.h.f. transmitters, particularly those working in the $1+4-M \mathrm{Me}$ and higher bands. Here the prohlem is quite similar to that of the low v.h.f. TV hand with resperet, to transmitters oprating below 30 Mc .

There is one highly favorable factor in u.h.f. TV that does not exist in the most of the v.h.f. TV band; If harmonies are radiated, it is possible to move the transmitter frequency sufficiently

Amateur Band 144 Mc .	$\begin{gathered} \text { I/armonic } \\ \text { 4th } \end{gathered}$	ic Relationship	$\begin{array}{r} \text { TAl } \\ \text { p-Amateur } \end{array}$	$23-1$ F. Bands	d U.H.F.	Channels	U.II.F.TV Channel Allected
		F'undamental Freq. Range	U.II.F. TV Channel Alfecied	Amateur Band $220 \mathrm{Mc} .$	/larmonic	Fundamental Freq. Rande	
		$\begin{aligned} & 144.0-144.5 \\ & 144.5-146.0 \\ & 146.0-147.5 \\ & 147.5148 .0 \end{aligned}$	$\begin{aligned} & 31 \\ & 32 \\ & 3: \\ & 34 \end{aligned}$	$220 \mathrm{Mc} .$	3rd	$\begin{array}{r} 220-220.67 \\ 290.67-222.67 \\ 224.67-224.67 \\ 224.67-225 \end{array}$	$\begin{aligned} & 45 \\ & 40 \\ & 47 \\ & 48 \end{aligned}$
	5th	14.0-14.4.4	55		4th	$\begin{aligned} & 220-221 \\ & 221-222.5 \end{aligned}$	$\begin{aligned} & 82 \\ & 83 \end{aligned}$
		$1+4.4-145.6$ $14.5 .6-146.8$	56 57	400 Mc	2nd	420-421	75
		146.8148	58			421-424	76
						4:3-427	77
	6th	14-14.333	79			$427-430$ $430-433$	78 79
		141.33-14.5.33	80			$4.30-43.3$ $433-436$	80
		145. $3: 33-147.33$	81			4:36-4:39	81
		147.33-148	82			439-442	82
						442-448	83

(within the amateur band being used) to avoid interfering with a chamel that may be in use in the locality. By restrieting operation to a portion of the amateur band that will not result in harmonic interference, it is possible to avoid the necessity for taking extraordinary precautions to prevent harmonice radiation.

The frequeney assigmment for u.h.f. television consists of seventy 6 -megarerelo chamels (Nos. 14 to $8: 3$, inclusive begimning at 470 Mc . and ending at 890 Ne. The harmonics from amateme bands above 50 Me. span the uh.f. chamels as shown in Table 2:3-I. Since the assignment plan (abls for a minimum separation of six chamels between any two stations in one locality, there is ample opportunity to choose a fundamental frequence that will move a hamonic out of range of a local TV freguency.

COLOR TELEVISION

The color 'TV signal includes a substuricor spaced 3.58 megacyedes from the regular picture carrier (or $4.8: 3$ dic. from the low edge of the chamel) for tramsmitting the color information. Harmonics which fall in the color sub(arrier region can be experted to (ause broak-up) of color in the received pieture. This modifies the chart of Fig. 23-7 to introdure another "sovere" region centering around 4.8 Me. measured from the low-frequency edge of the channel. Dence with color television refeption there is less opportunity to avoid harmonic interference by ahoire of operating frequency. In other resperets the problem of climinating interferener is the same as with blark-and-white Iulevision.

INTERFERENCE FROM TV RECEIVERS

The TV picture tube is swept horizontally by the electron beam $15, \overline{6} 0$ times per second, using at waveshape that has very high hamonice content. The harmonies are of appreciable amplitude even at frequencies as high as 30 Me ., and when radiated from the receiver can canse considerable
interference to reception in the amateur bands. While in some reedivers measures have been taken to suppress radiation of this nature, many sets have had no such treatment. The interference: takes the form of rather unstable, a.e.e-modulated signals spated at intervals of 15.75 ke .

Studies have shown that the radiation takes place principally in three ways, in order of their importance: (1) from the a.c. line, through stray coupling to the sweep circuits; (2) from the antenna system, through similar coupling; (3) directly from the picture tube and sweep-cirenit wining. Line radiation often can be reduced by by-passing the a.e. line cord to the chassis at the point of entry, although this is not completely offertive in all cases since the coupling may take place outside the chassis beyond the proint where the by-passing is done. Radiation from the antemna is usually suppressed by installing a high-pass filter on the receiver. The direct radiation requires shielding of high-potential leads and, in some receivers, additional hypassing in the swoep circuit; in sovere cases, it may be necessary to line the cabinet with screming or similar shielding material.

It is usually possible to reduce interference very considerably, without modifying the TV receiver, simply be having a good amateur-band receiving installation. The principles are the same as those used in reducing "hash" and other noise - use a good antenna, such as the transmitting antenna, for reception; install it as far as possible from ace. cireuits; use a good ferder s.stem such as a properly balaneed two-wire lime or coax with the outer conductor grounded: usie coas input to the rereeiver, with a inatching cireuit if necessars; and chack the receiver to make sure that it does not pidk up signals or noise with the antennar disconnerted. These measures not only reduce interference from swerp radiation and a.ce line noise, but also build up the strength of the desired signal, so that the overall improvement in sighal-to-interference ratio is very much worth-while.

Operating a Station

The enjoyment of our hobly usually comes from the operation of our station once we have finished its construction. Upon the station and its operation depend the eommunication reords that are made. The standing of individuals as amateurs and respect for the capabilities of the whole institution of amateor radio depends to at considerable extent on the practical commmications established by amatours, the aggrengate of all our station efforts.

An operator with a slow, steady, clean-cut mothod of sombing has a big advantage over the poor operator. The terhaigue of speaking in eonnected thoughts and phrases is equally important for the voiere operator. Good sending is partly a matter of practioe but pationere and judgment are just as important qualitios of an operator as a good "fist."
$O_{\text {gerating knowledge ambracing standard pro- }}$ cedures, development of skill in employing e.w. to expand the station range at operating effectiveness at minimum power lovels and some not know-how are all essentials in athieving a triumphant amateur experienee with top station records, personal results, and demonstrations of what our stations caln do in practical communieations.

OPERATING COURTESY AND TOLERANCE

Normal operating interests in amateur radio vary considerably, Some profer to rag-chew, others handle traffie, others work 1)X, others coneentrate on working cortain areas, countries or states and still others get on for an oreasional contact only to check a now transmitter or anteuna.

Interference is one of the things we amateurs have to live with However, we can eonduct our operating in a way designed to alleviate it as much as possible. Before putting the transmitter on the air, listen on your own frequen'y. If you hear stations engaged in communication on that

fregueney, stand by until you are sure no interference will be caused by your operations, or shift to another frequency. No amateur or any group of amateurs has any exchasive elam to any frequency in amy band. We must work together, each resperting the rights of others. Remember, those other chaps can cause you as much interference as rou cause them, sometimes more!

In this chapter we'll recount some fundamentals of operating success, cover major procedures for suceessful general work and inelude proper forms to use in mossage handling and othor fields. Note also the sections on speccial activitios. awards and organization. These permit us all to devolop through our organization more sucress together than we could ever attain by separate meneordinated efforts that overlooked the precepts established through operating exproience.

C.W. PROCEDURE

The best operators, both those using voier and c.ll.. olserve certain operating procedures rogarded as "standard practione"

1) ('alls. Calling stations may call eticienotly by transmitting the call signal of the station called three times, the letters I)E, followed by one's own station call sent three times. (Whort calls with frequent "breaks" to listen have proved to be the best method.) Irepeating the call of the station called four or five times and signing not more than two or three times has
 Wø日Y WøBY Wø13Y DE W1AW WIAW AR.
$C Q$. The general-inquiry eall (CQ) should be sent not more than five times without interspersing one's station identification. The bength of repeated calls is carefully limited in intelligent amateur operating. (C) is not to be used when testing or when the sonder is not expecting or looking for an answer. Never send a CQ "blind," Always be sure to listen on the transmitting fre(queney first.)

The directional CQ: To reduce the number of useless answers and lossen QRM, every (Q call should be made informative when possible.

> Examples: A L'nited States station looking for any Hawaiian amateur radls: CQ KH6 CQ KH6 CQ KH6 DE W4IA W4IA W4A K. A Western station with traflic for the East Coast when looking for an intermediate relay station ralls: CQ EAST CQ EAST CQ EAST DE Walgw Wosigw wilgw k. A station with nowsage for points in Massachusetts calls: CO MASS CQ MASS (Q MASS IEE W7CZY W7C \%Y W7CZy k゙.

Itams who do not raise stations readily maty find that their sending is poor, their calls ill-timed or judgment in error. When conditions are right
to bring in signals from the desired locality, you can call them. IReasonably short calls, with appropriate and brief breaks to listen, will raise stations with minimum time and trouble.
2) Answering a Call: Call three times (or less); sond DE; sign three times (or less); after contact is established deerease the use of the eall signals, of both stations to once or twice. When a station reeceives a call but doos not receive the eall letters of the station calling, QlRZ? may be used. It means "By whom anı I being called"" QRZ should not be used in place of CQ.
3) Ending Signals and Sign-Off: The proper use of $\overline{\mathrm{AR}}, \mathrm{K}, \overline{\mathrm{KN}}, \overline{\mathrm{SK}}$ and CL ending signats is as follows:
$\overline{A I R}$ - Find of transmission, Irecommended after eall to a speeifie station hefore contact has beren established.

Example: W6ABC W6ABC W6ABC W6ABC
W6ABC DE W9LMN W91,MN AR, Also at the end of transmission of a radiogram, immediately following the signature, preceding identification.
K - (io ahead (any station). Recommended after CQ and at the end of each transmission during QSO when there is no objection to others breaking in.
E.rample: CQ CQ CQ DE WIABC W1ABC K or W:NYZ DE WIABC'K.
$\overline{K N}$ - (io ahead (specifie station), atl others keep out. Recommended at the end of each transmission during a (2SO, or after a call, when ealls from other stations are not desired and will not be answered.

SK - lind of QNO. Recommended before signing last transmission at and of a (2s().

Examme: ... $\overline{\text { EFK W8LNAN DE W5BC: }}$
(d, - I am elosing station. Jeoommenderl when a station is going off the air, to inclicate that it will not listen for any further calls.

4) Test sigmals to permit another station to adjust reeriving equipment may consist of a sories of V s with the call signal of the transmitting station at frequent intervals. Remember that a test signal ean be a totally unwarmated cause of QRM, and always listen first to find at clear spot if possible.
5) Receipting for conversation or traflie: Never send acknowledgment until the transmission has beon entirely received. " R " means "All right, OK, I understand completely." Use R only when all is received correetly.
(i) Repeats. When most of a transmission is lost, a call should be followed by correct abbre viations to ask for repeats. When a few words on the end of a transmission are lost, the last word reseived correctly is given after ?AA, meaning "all after." When a few words at the begiming of a transmission are lost, ?Al3 for "all before" a stated word should be used. The quickest way to ask for a fill in the middle of a transmission is to send the last word received eorrectly, a ques-
tion mark, then the next word rearived romectly. Another way is to send "?lS. [word] and [word]."

Do not send words twice (QS゙Z) unless it is requested. Fend single. Do not fall into the had habit of sending double without a request from frellows you work. Jon't say "QIRMI " or "QIRN" when you mean "QRS'" Don"t C() unless there is definita reason for so doing. When sending CQ, use judgment.

General Practices

When a station has reeeiving trouble, the operator asks the tramsmitting station to "(Qil.". The letter " IR" is often used in phace of a deeimal point (e.g., " 3125 Mc .") or the colon in time designation (e.g., "2lR30 PM"). A long dash is sometimes sent for "zaro."

The latw concerning superfluous signals should be noted. If you must test, disconnect the antenna system and use an equivalent "dummy" antemas. somd your call frequently when operating. liek a time for adjusting the station apparatus when few stations will be bothered.

The up-to-date amateur station uses "breakin." For best results sond at a medium speed. send evenly with proper spacing. The stathardtype telegraph key is best for all-round use. Regular daily pratice periods, two or three periods a day, are best to acquire real familiarity and proficieney with code.

No excuse can be made for "garbled" copy. Operators should copy what is sent and rofuse to acknowledge a whole transmission until evory word has been received eorreetly. Good operators do not guess. "Swing" in a fist is not the mark of a good operator. Unusual words are sent twice, the word repeated following the transmission of "?". If not sure, a good operator systematically asks for a fill or repeat. Nign your call frequently, interspersed with calls, and at the end of all transmissions.

On Good Sending

Assuming that an operator has learned somding properly, and comes up, with a precision "fist" - not fast, but cloan, steady, making wellformed rhythmical eharacters and spateing beattiful to listen to - he then becomes subject, to outside pressures to his own possible detriment in everyday operating. He will want to "speed it up" Breause the operator at the other end is going faster, and so he begins, unconsciously, to run his words together or develops a "swing."

Perhaps one of the easiest ways to get into bad habits is to do too much playing around with specrial keys. Too many operators spend only enough tine with a straight key to acquire "passable" sending, then subject their newlydeveloped "fists" to the entirely different movements of bugs, side-swipers, blectronic keys, or what-haverou. All too oftern, this results in the ruination of what may have beeome a very good "fist."

Think about your sending a little, Are you satisfied with it". Jou should not be - ever. Nobody's sonding is perfect, and therefore every
operator should continually strive for improvement. Do you ('ver run letters together - like Q for MA, or l' for AN - especially when you are in a hurry'? Practically everyboly does at one time or another. Do you have a "swing'? Any recognizable "swing" is a deviation from perfection. Strive to send like tape sending; copy a W'AW Bulletin and try to semd it with the same spacing using a local oscillator on a subsequent transmission,

Check your spacing in characters, between charateters and between words oceasionatly by making a recording of your fist on an inked tape recorder. This will show up your faults as nothing else will. lractice the correction of faults.

USING A BREAK-IN SYSTEM

Break-in avoids unnecessarily long calls, prevents (QRM, gives more communication per hour of operating. Brief calls with frequent short pauses for reply can approach (but not equal) break-in efficiency.

A soparate receiving antenna facilitates broakin operation. It is only necessary with break-in to pause just a moment with the key up for to cut the carrior momentarily and pause in a 'phone conversation) to listen for the other station. The click when the carrier is cut off is as offective as the word"break."
C.w. telcgraphy break-in is usually simple to arrange. With break-in, ideas and messages to be transmitted can be pulled right through the holes in the QIRMI. Suappy, efficient amateur work with break-in usually requires a separate receiving antenna and arrangennent of the transmitter and receiver to eliminate the necessity for throwing switches between transmissions.

In calling, the transmitting operator sends the lotters "BK" at frerguent intervals during his call so that stations hearing the call may know that break-in is in use and take advantage of the fact. He pauses at intervals during his call, to listen for a moment for a reply. If the station being called does not answer, the call can be continued.

With a tap of the key, the man on the receiving end can interrupt (if a word is missed). The other operator is constantly monitoring, awaiting just such directions. It is not necessary that you have perfect facilities to take advantage of break-in when the stations you work are break-inequipped. Alter any invitation to break is qiven (and at each pause) press your key - and contart can start immediately.

VOICE OPERATING

The use of proper procedure to get best results is just as important as in using code. In telegraphy words must be spelled out letter by lettor. It is thercfore but natural that abbreviations and shorteuts should have come into widespread usr. In voice work, however, abbreviations are not neeessary, and should have less importance in our operating procedure.

Voice-Operating Hints

1) Listen before calling.
2) Make short calls with breaks to listen. Avoid long CQs^{2}; do not answer any.
3) Use push-to-talk. (iive essential data concisely in first transmission.
4) Make reports honest. U'se definitions of strength and readability for reference, Make your reports informative and useful. Honest reports and full word description of signals save amateur operators from FCC trouble.
5) Limit transmission length. Two minutes or less will convey much information. When three or more stations converse in round tables, brevity is essential.
6) Display sportsmanship and comrtesy. Bands are congested . . . muke transmissions meaningful . . . give others a break.
7) Check transmitter adjustment . . . avoid AM overmodulation and splatter, Do not radiate when moving VFO frepmency or checking NFM swing. 【'se receiver b,f.o. to cheek stahility of signal. Complete testing before busy hours!

The lether "K" has bern agreed to in tekgraphic practice so that the operator will not have to pround out the separate letters that spell the words "go aheal." The voiec operator ean say the words "go ahead" or "over," or "come in please."

One laughs on c.w. by spelling out HI. On 'phone use a laugh when one is called for. Be natural as you would with your family and friends.
The matter of reporting readubilit!, and strength is as important to 'phone operators as to those using coole. With telegraph nomenclature, it is neressary to spell out words to deseribe signals or use the abbreviated signal reporting sustem (RST . . . sec ('hapter Twonty-Five). Using voier, we have the ability to "say it with words." "Roadability four, strength cight" is the best way to give a quantitative report. Reporting can be done so much motre meaningfully with ordinary words: "You are weak but you are in the clear and I can understand you, so go ahead," or "Your signal is strone but you are buried under local interference." Why not say it with words".

Voice Equivalents to Code Procedure

Voice

Go ahead; over
Wait ; stand by
Okay
$\frac{\mathrm{K}^{\text {Code }}}{\mathrm{As}, \mathrm{QRX}}$
A
R

Meaning
Self-explanatory Nelf-explanatory Receipt for a cor-rectly-transeribed mossaty or for "solid" transmission with no missing pertions

'Phone-Operating Practice

Eflicient voice communication, like good c.w. communication, demands good oporating. Adherence to cortain points "on getting results" will go a long way toward improving our 'phoneband operating conditions.

Use phash-to-talk technique. Where possible arrange on-off switehes, controls or voice-eontrolled break-in for fast back-and-forth rechanges that emulate the practicality of the wire telephone.

This will help reduce the length of transmissions and keep brother amateurs from calling you a "monologuist" - a guy who likes to hear himsolf talk!

Listen with care. Keep moise and "backgrounds" out of your operating room to facilitate grood listening. It is natural to answer the strongest signal, but take time to listen and give some consideration to the best signals, regardless of strength. Every amateur cannot run a kilowatt, but there is no reason why every amateur cannot have a signal of good quality, and utilize uniform operating practices to aid in the understandability and ease of his own communications.

Interpose your call regularly and at frequent intervals. Three short calls are better than one long one. In calling CQ, one's call should certainly appear at least once for every five or six CQs. Calls with frequent breaks to listen will save time and be most productive of results. In identifying, always transmit your oun call last. Don't say "This is W1ABC'standing liy for W2D)EF"; saty "W2DEF, this is W1ABC', over." FCC regulations show the call of the transmitting station sent last.
Include country prefix before call. It is not correct to say "9R12X, this is 1BID." Correct and legal use is "WORRX, this is W1131)I." FCC regulations require proper use of calls; stations have been cited for failure to comply with this requirement.

Monitor your own frequency. This helps in timing calls and transmissions. Send when there is a chance of being copied successfully - not when you are merely "more QRM." Timing transmissions is an art to cultivate.

Keep modulation constant. By turning the gain "wide open" you are subjecting anyone listening to the diversion of whatever noises are present in or near your operating room, to say nothing of the possibility of feed-back, echo due to poor acousties, and modulation excesses due to sudden loud noises. Speak near the microphone, and don't let your gaze wander all over the station causing sharply-varying input to your speech amplifier; at the same time, keep far enough from the microphone so your signal is not modulated by your breathing. Change distance or gain only as necessary to insure uniform transmitter performance without overmodulation, splatter or distortion.

Make connected thoughts and phrases. Don't mix disconnected subjects. Ask questions consistently. Pause and get answers.
llave a pad of paper handy. It is convenient and desirable to jot down questions as they come in the course of discussion in order not to miss any. It will help you to make intelligent to-thepoint replies.

Steer clear of inanities and soap-opera stuff. Our amateur radio and also our personal reputation as a serious communieations worker depend on us.

A void repetition. Don't repeat back what the other fellow has just said. Too often we hear a conversation like this: "Okay on your new antenna there, okay on the trouble you're having

With your recciver, okay on the company who just came in with some ice cream, okay ... [etc.]." Just say you received everything OK. Don't try to prove it.

Use phonetics only as required. When elarifying genuinely doubtful expressions and in getting your call identified positively we suggest use of the ARIRL Phonetic List. Limit such use to really-necessary clarification.

The speed of radiotelephone transmission (with perfect accuracy) depends almost entirely upon the skill of the two operators involved. One must learn to speak at a rate allowing perfect understanding as well as permitting the receiving operator to copy down the message text, if that is necessary. Because of the similarity of many English speech sounds, the use of alphabetical word lists has been found necessary. All voiceoperated stations should use a standard list as needed to identify call signals or unfamiliar expressions

Round Tables. The round table has many advantages if run properly. It clears frequencies of interference, especially if all stations involved are on the same frequency, while the enjoyment value remains the same, if not greater. By use of push-to-talk, the conversation can be kept lively and interesting, giving each station operator ample opportunity to participate without waiting overlong for his turn.

Round tables can become very unpopular if they are not conducted properly. The monologuist, off on a long spiel about nothing in particular, cannot be interrupted; make your transmissions short and to the point. "Butting in" is discourteous and unsportsmanlike; don't enter a round table, or any contact betuceen two other amateurs, umless you are invited. It is bad enough trying to understand voice through prevailing interference without the added difficulty of poor quality; check your transmitter adjustments frequently. In general, follow the precepts as hereinbefore outlined for the most enjoyment in round tables as well as any other form of radiotelephone communication.

WORKING DX

Most amateurs at one time or another make "working DN" a major aim. As in every other phase of amateur work, there are right and wrong ways to go about gotting best results in working foreign stations, and it is the intention of this saction to outline a few of them.

The ham who has trouble raising DX stations
readily may find that poor transmitter efficiency is not the reason．He may find that his sending is poor，or his ealls ill－timed，or his judgment in error．When conditions are right to bring in the I）X，and the receiver sensitive enough to bring in several stations from the desired locality，the way to work DX is to use the appropriate fre－ quency and timing and call these stations，as against the common practice of calling＂CQ INX．＂
The call CQ DX means slightly different things to amateurs in different bands：
a）On v．h．f．，CQ IDX is a general call ordi－ narily used only when the band is open，under favorable＂skip＂conditions．For v．h．f．work such a call is used for looking for new states and countries，also for distances beyond the custom－ ary＂line－of－sight＂range on most v．h．f．bands．
b）CQ DX on our 7－，1t－，21－and 28－Me．bands may be taken to mean＂General call to any for－ eign station，＂The term＂foreign station＂usually refers to any station in a foreign continent．（Ex－ perienced amateurs in the U．S．A．and Canada do not use this call，but answer such calls made by foreign stations．）

DX OPERATING CODE （For W／VE Amateurs）

Some amateurs interested in 1）N work have caused considerable confusion and Q［2N1 in their efforts to work 1）X stations．The points below，if observed by all W／VE amateurs，will go a long way toward making IN more enjoyable for ewerybody：

1．Cull 1）N only after he calls CQ．Q［2\％？．signs $\overrightarrow{\mathrm{SF}}$ ，or＇phone equivalents thereof．
2．Do not call a DX station：
a．On the frecuency of the station ho is work－ ing until you are sure the QSO is over．This is indicated by the ending signal $\stackrel{⿱ ㇒ ⿺ ⿻ ⿻ 一 ㇂ ㇒ 丶 ⿱ 口 一}{ }$ on e．w．and any indication that the operator is listening，on＇phone．
b．Becanse you hear someone else calling him．
c．When he signs $\overline{\mathrm{KN}}, \overline{\mathrm{AR}}, \mathrm{CL}$ ，or＇phone equivalents．
d．Fxactly on his frequency．
e．Aftor he calls a directional（ Q ．unless of course you are in the right direction or area．
3．Keep within frefuency－band limits．Some Ind stations oprrate outside．J＇erhaps they ran get away with it，but you cannot．

4．Observe calling instructions of 1 NX stations． ＂ 10 L ＂＂means call ten k＂．up from his fregueney． ＂ 15 D ＂means 17 kc ．down，ete．

5．Give honest reports．Many foreign stations depend on W and VE reperts for adjustment of station and equipment．

6．Keep your signal clean．Kiey rlicks．chirps， hum or splatter give you a bad reputation and may get you a citation from FCC．

7．List＇n for and call station you want．Calling CQ DN is not the best assurance that the rare $\mathrm{D} \mathrm{X}^{\circ}$ will reply．

8．When there are several W or VE stations wait－ ing to work a DN station，avoid asking him to ＂listen for a friend．＂Let sour friend take his chances with the rest．Also avoid engaging 1）X sta－ tions in rag－chews against their wishes．
e）CQ DN used on 3.5 Me ．under winter－night conditions may be used in this same manner．At other times，under average $3.5-\mathrm{Me}$ ．propagation conditions，the call may be used in domestic work when looking for new states or countries in one＇s own continent，usually applying to stations located over 1000 miles distant from you．

The way to work IX is not to use a CQ call at all（in our continent）．Instead，use your best tuning skill－and listen－and listen－and listen．You have to hear them before you can work them．Hear the desired stations first；time your ealls well．Use your utmost skill．A sensitive re－ ceiver is often more important than the power input in working forcign stations，Il you can hear stations in a particular country or area，ehances are that you will be able to work someone there．

One of the most effective ways to work DX is to know the operating habits of the DX stations sought．Doing too much transmitting on the IDX bands is not the way to do this．Again，listening is effective．Onee wou know the operating habits of the DX station you are after you will know when and where to call，and when to remain silent waiting your chance．

Some DX stations indicate where they will tune for replies by use of＂10U＂or＂15D．＂（Sce point 4 of the DX（Operating Code．）In voice work the overseas operator may say＂＂listening on $14,225 \mathrm{ke}$ ．＂or＂tuning upward from 28,500 ke．＂Many a INX station will not reply to a call on his exat frequencr．

AlRRI，has reeommended some operating pro－ cedures to 10 X stations aimed at eontrolling some of the thoughtless operating practices sometimes used by $1 \mathbf{W} / \mathrm{TE}$ amateurs．A copy of these recommendations（Operating Aid No．5） can be obtained free of charge from ARRL Head－ quarters．

In any band，particularly at line－of－sight fre－ quencies，when directional antemnas are used，
 ete，is the preferable type of call．Mature ama－ teurs agree that $C(Q) X$ is a wishful rather than a practical type of call for most stations in the North Americas looking for foreign contacts． Ordinarily，it is a cause of unnecessary QRM．

Conditions in the transmission medium make all field strengths from a given region more nearly equal at a distanee，irrespective of power used．In general，the higher the frequeney band， the less important power considerations beeome． This aceounts in part for the relative popularity of the $1+-21-$ and $28-$ Mc．bands among amateurs who like to work IDX．

윢	\%4*	${ }^{\text {c.up }}$	\%	-	-	nec	\%	\%	:as	ormen ora
		x	3.65	589	$569 x$	$\times 3.5$	A1	250	6:43	Tfe-recid 6 , sent 10
7:20	CQ	T				7				fe recd 6 , vent 10
		W4TWI	7.16	369	579					Vy heavy QRM on
9:25			3.83	59		3.9	A3	100	10:05	fam
		\times	14.03			14	A1	250		Answered a W6
$\begin{aligned} & 7.09 \\ & 7: 21 \\ & 7.29 \end{aligned}$	I2ACV		14.07		$559 x$				7:20	
	$\stackrel{\square}{\text { C }}$	KA2kW	14.07		349				7:33	Eirat KA
7:37	\times	W6TI	14.01	589	5890				8:12	

Abstract

A paye from the official ARRI, log is shown atove, answering every Government reguirement in respet tontation records. Bound logs made np in arcord with the atheve form cat be obtained from Ileadruarters for a nominal sum or yon can prepare your own, in which case we offer this form as a suggestion. The ARIKI, Iog has a special wire binding and lins perfectly flat on the table.

KEEPING AN AMATEUR STATION LOG

The FCC requires every amateur to kerp a complete station operating record. It may also contain records of experimental tests and adjustment data. A stenographer's motelook can be ruled with vertical lines in any form to suit the user. The Federal Communications Commission requirements are that a log be maintained that shows (1) the date and time of each transmission, (2) all calls and transmissions made (whether two-way contacts resulted or not), (3) the input
power to the last stage of the transmitter, (4) the frecquency band used, (i) the time of ending each (2SO and the operator's identifying signature for responsibility for "ach session of operating. Messages may be written in the log or separate reeverds kept - but record must be made for one year as recuired by the P('C'. For the comenenience of amateur station operators ARRI, storks both loghooks and message blanks, and if one uses the oflicial log he is sure to comply fully with the Government recfuirements if the precautions and suggestions included in the log are followed.

Message Handling

Amateur operators in the United States and a few other countries enjoy a priviluge not available to amateurs in most countries - that of handing third-party messinge traffic. In the early history of amateur radio in this country, some amateurs who were among the first to take advantage of this privilege formed an extensive relay organization which became known as the American Radio Relay League.

Thus, amateur message-handing has had a long and honorable history and, like most serviees, has gone through many periods of development and change. Those amateurs who handed traffic in 1914 would hardly recognize it the way some of us do it today, just as equipment in those days was far different from that in use now. Progress has been made and now mothots have been developed in step with advancement in communication trehniques of all kinds. Amatteurs who handled a lot of traffic found that orgamized operating schedules were more effective than random relays, and as techniques advanced and messages inerensed in number, trunk lines were organized, spot frequencies began to be used, and there sprang into existence a number of traffic nets in which many stations operated on the same frequency to effect wider cov-
erage in less time with frwer relays; but the old methols are still available to the annateur who handles only an oceasional message.

Although message handling is as old an art as is amateur radio itself, there are many amateurs who do not know how to handle a mossage and have never done so. As cach amateur grows oldor and gains experience in the amateur serviee, there is bound to come a time when be will be ealled upon to handle a written message, during a communications emergeney, in casual contact with one of his many aequaintanees on the air, or as a result of a request from a nonamatcur friend. Regardless of the oceasion, if it comes to you, you will want to rise to it! Considerable embarrassment is likely to be experienced by the amateur who finds he not only does not know the form in which the message shonld be prepared, but does not know what to do with the message once it has been filed or received in his station.
Traffic work need not be a complicated or time-consuming activity for the casual or oceasional message-hander. Amateurs may participate in traffie work to whatever extent tha wish, from an occasional message now and then to becoming a part of organized traffic systems.

This chapter explains some principles so the reader may know where to find out more about the subject and may exercise the message-handling privilege to best effect as the spirit and opportunity arise.

Responsibility

Amateurs who originate messages for transmission or who receive messages for relay or delivery should first consider that in doing so they are aceepting the responsibility of clearing the message from their station on its way to its destination in the shortest possible time. Fortyeight hours after filing or receipt is the generallyaceepted rule among traffic-handling amateurs, but it is obvious that if every amateur who relayed the message allowed it to remain in his station this long it might be a long time reaching its destination. Traffie should be relayed or delivered as quickly as possible.

Message Form

Once this responsibility is realized and accepted, handling the message becomes a matter of following generally-accepted standards of form and transmission. For this purpose, each mossage is divided into four parts: the preamble, the address, the text and the signature. Some of these parts themselves are subdivided. It is necessary in preparing the message for transmission and in actually transmitting it to know not only what each part is and what it is for, but to know in what order it should be transmitted, and to know the various procedure signals used with it when sent by c.w. If you are going to send a messuge, you may as well send it right.

Standardization is important! There is a great deal of room for expressing originality and individuadity in amateur radio, but there are also times and places where such expression can only cause confusion and inefficiency. Recognizing the need for standardization in message form and message transmitting procedures, ARRLL has long since recommended such standards, and most traffic-interested amateurs have followed them. In general, these recommendations, and the various changes they have undergone from year to year, have been at the request of ama-

[^8]teurs participating in this activity, and they are completely outlined and explained in Operating an Amateur Radio Station, a copy of which is available upon request or by use of the coupon at the end of this chapter.

Clearing a Message

Amateurs not experienced in message handling should depend on the experieneed messagehandler to get a message through, if it is important; but the average amateur can enjoy operating with a message to be handled either through a local traffic net or by free-lancing. The latter may be acemplished by caroful listening for an amateur station at desired points. directional COs, use of the National Calling and Emergeney frequencies, or by making and keeping a schedute with another amateur for regular work between sperified points. He may well aim at learning and enjoving through doing. The jor and aceomplishment in thas developing one's operating skill to top perfection has a reward all its own.

The best way to clear a message is to put it into one of the many organized traffic networks, or to give it to a station who can do so. There are many amateurs who make the handling of traffie their prineipal operating activity, and many more still who participate in this activity to it greater or lesser extent. The result is a system of traffic nets which spreads to all corners of the C"nited States and covers most U. S. possessions and Canada. Once a message gots into one of these mets, regardless of the net's size or coverage, it is systematically routed toward its destination in the shortest possible time.

If you decide to "take the bull by the horns" and put the message into a traffic net yourself (and more power to you if you do!), you will need to know something about how traffic nets operate, and the spectial Q signals and procedure they use to dispatch all traffic with a maximum of efficiency. Reference to not lists in QST (usually in the November and January issues) will give you the frequency and operating time of the net in your section, or other net into which your mossuge can gro. Listening for a few minutes at the time and frequency indicated should acquaint you with enough fundamentals to enable you to report into the net and indicate your traffic. From that time on you follow the instructions of the net control station, who will tell you when and to whom (and on what frequency, if different from the net frequency) to send your mossage. Since most nots use the special "(2N" signals, it is usually very holpful to have a list of these before you (list available from ARRL Hq.).

Network Operation

About this time, you may find that you are enjoying this type of operating activity and want to know more about it, and to increase your proficiency. Many amateurs are happily "addicted" to traffic handling after only one or two brief exposures to it. Most traffic nets are at present being conducted by c.w., since this mode of
communication seems to be more popular for record purposes - but this does not mean that high code speed is a necessary prerequisite to working in traffic networks. There are many nets organized specifically for the slow-speed amateur, and most of the so-ealled "fast" nets are usually glad to slow down to accommodate slower operators, especially those nets at state or section level.

The significant facet of net operation, however, is that code spred alone does not make for efficiency - sometimes quite the contrary! A high-speed operator who does not know net proeedure can "foul up" a net much more completely and more quickly than can a slow operator. It is a proven fact that a bunch of high-speed operators who are not "savvy" in net operation cannot accomplish as much during a specified period as an equal number of slow operators who know net procedure. Don't let low code speed deter you from getting into traffic work. Given a little time, your speed will reach the point where you can compete with the best of them. Concentrate first on learning net procedure, for most traffic nowadays is handled on nets.

Much traffic is also being handled on 'phone nowadays. This mode is exceptionally well suited to short-range traffic work and requires knowledge of phoneties and procedure peculiar to voice operation. Procedure is of paramount importance on 'phone, since the publie may be listening. The major problem, of course, is QRMI.

Teamwork is the theme of net operation. The net which functions most efficiently is the net in which all participants are thoronghly familiar with the procedure used, and in which operators refrain from transmitting except at the direction of the net control station, and do not occupy time with extrancous comments, even exchange of pleasantries. There is a time and place for everything. When a net is in session it should concentrate on handling traffic until all traffic is cleared. Before or after the net is the time for rag-chewing and disenssion. Some details of net operation are included in Operating an Amaleur Radio Station, mentioned carlier, but the whole story cannot be told. There is no sulstitute for actual participation.

The National Traffic System

To facilitate and speed the movement of message traffic, there is in existence an integrated national system by means of which originated traffic will normally reach its destination area the same day the message is originated. This system uses the local section net as a basis. Each section net sends a representative to : "regional" net (normally covering a call area) and each "regional" net sends a representative to an "arca" net (normally covering a time zone). After the area net has cleared all its traffic, its members then go back to their respective regional nets, where they clear traffic to the various section net representatives. By means of connecting schedules between the area nets, traffic can flow both ways so that traffic originated on the West Coast reaches the East Coast with a maximum of dispatch, and vice versa. In general local section nets function at 1900 , regional nets at 1945, area nets at 2030 and the same or different regional personnel again at 2130 . Some section nets condurt a late session at 2200 to effect traffic delivery the same night. Local time is referred to in each case.

The NTS plan somewhat spreads traffic opportunity so that casual traffic may be reported into nets for efficient handling one or two nights per week, early or late; or the ardent traffic man can operate in both carly and late groups and in between to roll up impressive totals and speed traffic reliably to its destination. Old-time traffic men who prefer a high degree of organization and teamwork have returned to the traffec game as a result of the new system. Begimers have shown more interest in becoming part of a system nationwide in seope, in which anyone can participate. The National Traffic System has vast and intriguing possibilities an an amateur service. It is open to any amateur who wishes to participate.
The above is but the briefest résume of what is of necessity a rather complicated arrangement of nets and schedules. Complete details of the system and its operation are available to anyone interested. Just drop a line to ARRL IIeadquarters.

Emergency Communication

One of the most important ways in which the amateur serves the public, thus making his existence a national asset, is by his preparation for and his participation in communications emergencies. Every amateur, regardless of the extent of his normal operating activities, should give some thought to the possibility of his being the only means of communication should his community be cut off from the outside world. It has happened many times, often in the most unlikely places; it has happened without warning, finding some amateurs totally unprepared; it can happen to you. Are you realy?

There are two principal ways in which any amateur can prepare himself for such an eventuality. One is to provide himself with equip-
ment capable of oporating on any type of emergency power (i.e., either a.c. or d.c.), and equip-

ment which can readily be transported to the scene of disaster. Mobile equipment is aspecially desirable in most emergency situations.

Such equipment, regardess of its elaborateness or modernness, is of little use, however, if it is not used properly and at the right times; and so another way for an amateur to prepare himself for emergeacios, by no means less important than the first, is to learn to operate efficienlly. There are many amateurs who feel that they know how to operate efficiently who find themselves considerably handicapped at the crucial time by not knowing proper procedure, by being unable due to years of casual amateur operation to adapt themselves to snappy, abbreviated transmissions, and by being unfamiliar with message form and routing procedures. It is dangerous to overrate your ability in this respect; it is far bet ter to assume that you have much to learn.

In general it can be said that there is more emergency equipment available than there are operators who know properly how to operate during emergency conditions, for such conditions require clipped, terse procedure with complete break-in on e.w. and fast push-to-talk on 'phone. The casual rag-chewing aspect of amateur radio, however enjoyable and worth-while in its place, must be forgotten at sueh times in favor of the business at hamd. There is only one way to gain experience in this type of operation, and that is by practicing it. During an emergency is no time for practice; it should be done beforehand, as often as possible, on a regular basis.

This leads up to the necessity for emergency organization and preparedness. ARRL, has long recognized this necessity and has provided for it. The Section Communications Manager (whose
address appears on page 6 of any recent issue of QST') is empowered to appoint certain qualified amateurs in his section for the purpose of coordinating emergency communication organization and preparedness in specified areas or communities. This appointee is known as an Fimergency Coördinator for the city or town. One is specified for each community. For coördination and promotion at section level a Section Emergency Coürdinator arranges for and recommends the appointments of various Emergency Coordinators at activity points throughout the section. Emergency Coördinators organize amateurs in their communities aceording to local needs for emergency communication facilitios.

The community amateurs taking part in the local organization are members of the Amateur Radio Emergency Corps (ARLEC). All amateurs are invited to register in the ARLC, whether they are able to play an active part in their local organization or only a supporting rôle. Application blanks are available from your EC, SLC, SCM or direct from ARIRL lleadquarters. In the event that inquiry reveals no Fmergeney Coördinator appointed for your community, your SCM would welcome a recommendation either from yourself or from a radio club of which you are a member. By holding an amateur operator license, you have the responsibility both to your community and to amateur radio to uphold the traditions of the service.

Among the league's publications is a booklet entitled Emergency Communications. This booklet, while small in size, contains a wealth of information on AREC' organization and functions and is invaluable to any amateur participating in emergency or civil defense work. It is free to

Before Emergency

PREPARE yourself by providing a transmitter-receiver set-up together with an emergency power source upon which you can depend.

TEST both the dependability of your etuergeney equipment and your own operating ability in the annual ARRL, Simulated Emergency Test and the several annual on-thc-air contests, especially Field Day.
REGISTER your facilities and your availability with your local ARRL Emergency Coirdinator. If your community has no EC, contact your local civic and relief agencics and explain to them what the Amatear Service offers the community in time of disaster.

In Emergency

LISTEN before you transmit. Never violate this principle.
HEPORT at onec to your Emergency Coürdinator so that he will have up-to-the-minute data on the facilities available to him. Work with local civic and relief agencies as the EC suggests, offer these agencies your services directly in the absence of an EC.

RESTRICT all on-the-air work in accordance with FCC regulations, Sce. 12.150. whenever $\mathrm{I}^{\circ} \mathrm{CC}^{\prime}$ "declares" a state of communications emergency:

QRRR is the oflicial ARRL "land SOS," a distress call for emergency only. It is for use only by a station secking assistance.

HISPPECT the fact that the success of the amateur effort in emergency depends largely on cireuit discipline. The established Net Control Station should be the supreme authority for priority and traffie routing.

CO-OPERATE with those we serve. Be ready to help, but stay off the air unless there is a speeific job to be done that you can hande more efficiently than any other station.

COPY all bulletins from WIAW. During time of emergeney special bulletins will keep you posted on the latest developments.

After Emergency

REPORT to ARRL Headquarters as soon as possible and as fully as possible so that the Anateur Serviee can receive full credit. Amuteur Radio has won glowing publie tribute in many major disasters since 1919. Maintain this record.

AREC members and should be in every amateur's shack. Drop a line to the ARRI Communications Department if you want a copy, or use the coupon at the end of this chapter.

The Radio Amateur Civil Emergency Service

In order to be prepared for any eventuality, FCC and the Federal Civil Defense Administration (FCl) 1), in collaboration with ARRL, have promulgated the Radio Amateur Civil Emergency Service, RACES is a temporary peacetime sorvice, intended primarily to sorve civil defonse and to continue operation during any extreme national emergeney, such as war. It shares certain segments of frequencies with the regular Amateur Sorvice on a non-exclusive basis. Its regulations have been made a sub-part of the familiar amateur regulations; that is, the present regulations have become sub-part A, the new RACES regulations being added as sub-part 13. Copies of both parts are included in the latest edition of the ARIRL License Manual.

If every amateur participated, we would still be far short of the total operating personnel required properly to implement RACLSS. As the service which bears the responsibility for the successful implementation of this important new function, we face not only the task of installing (and in some cases building) the necessary equipment, but also of the training of thousands
of additional people. This can and should be a function of the local unit of the Amateur Radio Emergency Corps under its EC and his assistants, working in close collaboration with the local civil defense organization.

The first step in organizing RACES locally is the appointment of a Radio Officer by the local civil defense director, possibly on the recommendation of his communications officer. A complete and detailed communications plan must be approved sucecssively by local, state and FCDA regional directors, by the FCD)A National office, and by FCC. Once this has been accomplished, applications for station authorizations under this plan can be submitted direct to FCC. QST will carry further information from time to time, and ARRL, will keep its field officials fully informed by bulletins as the situation requires. A series of three articles in QST for March, April and May, 1953, makes a useful reference and sets the stage for RACES.

In the event of war, civil defense will place great reliance on RACES for radio communications. RACES is an Amateur Service. Its implementation is logically a function of the Amateur Radio Emergeney Corps - an additional function in peacetime, but probably an exclusive function in wartime. Therefore, your best opportunity to be of service will be to register with your local EC, and to participate actively in the local AREC/RACES program.

ARRL Operating Organization

Amateur operation must have point and constructive purpose to win public respect. Each individual amateur is the ambassador of the contire fraternity in his public relations and attitude toward his hobby. ARRL field organization adds point and purpose to amateur operating.

The Communications Department of the league is concerned with the practical operation of stations in all branches of amateur activity. Appointments or awards are available for rag-chewer, traffic enthusiast, 'phone operator, DA man and experimenter.

There are seventy-three ARIRI, Sections in the laague's field organization, which embraces the United States, Canada and certain other territory. Operating affairs in each Section are supervised by a Section Communications Manager clected by members in that section for a twoyear term of office. Organization appointments are made by the section managers, clected as provided in the Rules and Regulations of the Communications Department, which accompany the I rague's 13y-Laws and Artieles of Assoriation. sortion communications managers' addresses for all sections are given in full in each issue of OST. SCMI welcome monthly activity reports from all amateur stations in their jurisdiction.

Whether your activity embraces 'phone or telegraphy, or both, there is a place for you in Lamgue organization.

LEADERSHIP POSTS

To advance each type of station work and group interest in amateur radio, and to develop practical communications plans with the greatest success, appointments of leaders and organizers in particular single-interest fields are made by SCMs. Each leadership post is important. Each provides activities and assistance for appointee groups and individual members along the lines of natural interest. Some posts further the general ability of amateurs to commumicate efficiently at all times, by pointing activity toward networks and round tables, others are aimed specifically at establishment of provisions for organizing the amateur service as a stand-by communications group to serve the public in disaster, civil defense need or emergeney of any sort. The SCM appoints the following in accordance with section needs and individual qualifications:

PAM 'Phone Activities Manager. Organizes activities for OPSs and voice operators in his section. Promotes 'phone nets and reeruits OPSs.
RM Route Manager. Organizes and eoördinates c.w. traffie activities. Supervises and promotes nets and recruits ORSs.
SEC Section Emergeney Coördinator. Prommtes and administers section emergency radio organization. EC Emergenry Coördinator. Organizes amateurs of a eommunity or other area for emergency radio serviee; maintains liaison with officials and ageneies served; also with other loeal eommonication facilities.

STATION APPOINTMENTS

ARRRL's field organization has a place for every active amateur who has a station. The Communications Department organization exists to increase individual enjoyment and station effectiveness in amatrur radio work, and we extend a cordial invitation to every amatour to participate fully in the activities and to apply to the SCM for one of the following station appointments. ARRL Membership and the General Class license or VFi equivalent is prerequisite to appointments, exeept OES is available to Novice/ Technieian grades.

OPS Official 'Phone Station. Sets high voice operating standards and procedures, furthers 'phone nets and traffic.
ORS Official Relay Station. Traffic serviee, operates c.w. nets; noted for $15 \mathrm{w} . \mathrm{p} . \mathrm{m}$. and procedure ability. Official Bulletin Station. Transmits ARRL and FCC bulletin information to amatenrs.
OES Official Experimental Station, Experimental operating, collects and reports v.h.f.-1.h.f.-s.h.f. propagation data, may engage in facsimile, TT, TV. etc., experiments working on 50 Me. and/or above. Oflicial Observer. Sends cö̈perative notices to amateurs to assist in frequency ohservance, insures high-quality signals, and prevents FCC trouble.

Emblem Colors

Members wear the emblem with black-enamel background. A red background for an emblem will indicate that the wearer is SCM. SHC 's, ECs, IRMs, PAMs may wear the emblem with green background. Observers and all station appointees are entitled to wear blue emblems.

SECTION NETS

Amateurs can add much experience and pleasure to their own amateur lives, and substance and accomplishment to the credit of all of amateur radio, when organized into effective interconnection of cities and towns.

The successful operation of a net depends a lot on the Net Control Station. This station should be chosen carefully and be one that will not hesitate to enforce each and every net rule and set the example in his own operation.

A progressive net grows, obtaining new members both directly and through other net members. Bulletins may be issued at intervals to keep in direct contact with the members regarding
general net artivity, to keep tab on net procedure, make suggestions for improvement, keep track of active members and weed out inactive ones.

A National Traffic System is sponsored by ARIRL to facilitate the over-all expeditious relay and delivery of message traffic. The system recognizes the need for handling traffic beyond the section-level networks that have the popular support of both 'phone and c.w. groups (OPS and ORS) throughout the League's ficlel organization. Area and regional provisions for NTS are furthered hy Headquarters eorrespondence. The ARRI, Net Directory, revised in December each year, includes the frequencies and times of operation of the hundreds of different nets operating on amateur band frequencies.

Radio Club Affiliation

ARRL is pleased to grant affiliation to any amateur society having (1) at least 51% of the voting elub membership as full members of the League, and (2) at least 51% of society govern-ment-licensed radio amateurs. In high school radio clubs bearing the school name, the first above requirement is modified to require one full member, ARRI ${ }_{2}$, in the club. Where a society has common aims and wishes to add strength to that of other elub groups and strengthen amateur radio by affiliation with the national amateur organization, a request addressed to the Communieations Manager will bring the necessary forms and information to initiate the application for affiliation, Such elubs receive field-organization bulletins and special information at intervals for posting on club bulletin boards or for relay to their memberships. A travel plan providing communications, technical and secretarial contact from the Ileadquarters is worked out seasonally to give maximum benefits to as many as possible of the several hundred active affiliated radio clubs. Papers on elub work, suggestions for organizing, for constitutions, for radio courses of study, etc., are available on request.

Club Training Aids

One section of the ARRL Communications Department handles the Training Aids Program. This program is a service to ARRLL affiliated clubs. Material is amed at education, trainingandentertainment of club members. Interesting quiz material is available.

Training Aids include such items as motionpicture films, film strips, slides, and lecture outlines. Also, code-proficiency training equipment such as recorders, tape transmitters and tapes will be loaned when such items are available.

All Training Aids materials are loaned free (except for shipping charges) to ARRL, affiliated clubs. Numerous groups use this ARRIRL service to good advantage. If your club is alfiliated but has not yet taken advantage of this service, you are missing a good chance to add the available features to your meeting programs and general club activities. Watch club bulletins and QST or write the ARRL Communications Department for full details.

WlAW

The Maxim Memorial Station, W1AW, is dedieated to fraternity and servier. Operated by the Lague hoadquarters, W1AW is located about four miles south of the Headquarters offiees on a seven-areresite. The station is on the air daily, exeept holidays, and available time is divided between different bands and modes.
 Telegraph and 'phone transmitters are provided for all bands from 1.8 to 1+4 Me. The normal frequencies in each band for c.w. and voice transmissions are as follows: 1885, 3505, :3945, $7125,7255,14,100,14,280,21,010,21,35()$, $28,060,28,768,52,000$ and 145,600 ke. Operatingvisiting hours and the station schedule are listed every other month in QST'.

Operation is roughly proportional to amateur interest in different bands and modes, with one kw , exeept on 160 and v.h.f. bonds. W1AW's daily bulletins and code prastice aim to give operational help to the largest number.

All amateurs are invited to visit W1AW, as well as to work the station from their own shacks. The station was established to be a living memorial to lliram Perry Maxim and to carry on the work and traditions of amateur radio.

OPERATING ACTIVITIES

Within the ARRL field organization there are several special aetivitios. The first Saturday and Sunday of cach month is set aside for all ARRL, officials, officers and directors to got together over the air from their own stations. This anetivity is known to the gang as the Lo party. For all appointees, other quarterly tests are scheduled to develop operating ability and a spirit of fraternalism.

In addition to these special activities for appointees and members, ARIRL sponsors various other atetivities open to all amateurs. The I). I^{-} minded amateur may participate in the Annual ARIRI, International DS Competition during February and March. This popular contest may bring you the thrill of working new countries. Then there is the ever-popular Sweepstakes in November. Of domestie seope, the sis affords the opportunity to work now states for that WAS award. A Novice activity is planned annually. The interests of v.h.f. enthusiasts are also provided for in special activities planned by ARIRL.

As in all our operating, the idea of having a good time is combined in the Annual Field Day with the more serious thought of preparing ourselves to render public service in times of emorgency. A premium is placed on the use of equip-
ment without connection to commercial power sourees. Clubs and individual groups always have a good time in the "FI)," learn much about the requirements for operating under knockabout conditions afield.

ARRL, eontest activitios are diversified to appeal to all operating interests, and will be found amounced in detail in issues of QSTT preceding the different events.

AWARDS

The Lamue-sponsored operating artivities heretofore mentioned have useful objectives and provide much enjoyment for members of the fraternity. Achicvement in amateur radio is recognized by various certificates offered through the I eague and detailed below.

WAS Award

WAS means "Worked All States." This award is available regardless of affiliation or nonaffiliation with any organization. Here are the rules to follow in applying for WAS:

1) Two-vay communication must be established on the amateur bands with each of the states; any and all amateur

bands may be used. A card from the District of Columbia maty be submitted in lien of one from Maryland.
2) Contarts with all states must be made from the same loration. Within a given eommunity one location may be defined as from places no two of which are more than 25 miles apart.
3) Contacts may be made over any period of years, and may have been made any mmber of years ayo, provided only that all contacts are from the same location.
f) QSL cards, or other written communications from stations worked confirming the neessary two-way contacts, must be submitted by the applicant to ARRL headquarters.
4) Sufficient postage must be sent with the confirmations to finance their return. No correspondence will be returned unless sufficient postage is furnished.
5) The WAS award is available to all amatcurs.
6) Address all applications and confirmations to the Communications Department, ARRL, 38 La Salle Road, West Hartford, Conn.

DX Century Club Award

IIere are the rules under which the DX Century Club Award will be issued to amateurs who have worked and confirmed contact with 100 countries in the postwar period. If you worked fewer than 100 countries before the war and have since worked and confirmed a sufficient number to make the 100 mark, the 1 JCC is still available to you under the rules detailed on page 74 of June, 1946, QST.

1) The Century Club Award Certificate for confirmed contacts with 100 or more countries is available to all amateurs everywhere in the world.
2) Confirmations must be summitted direet to ARRL headquarters for all countries claimed. Claims for a total of 100 countries must be ineluded with first application. Confirmation from foreign contest logs may be requested in the case of the ARRL International D. Competition only, subject to the following conditions:
a) Sufficient confirmations (f other types must be submitted so that these, blus the DX Contest confirmations, will total 100. In every case, Contest eonfirmations must not be refuested for any countries from which the applicant has regular confirmations. That is, contest confirmations will be granted only in the case of countries from which applicants have no regular confirmations.
b) Look up the contest results as putbished in QST to see if your man is listed in the foreign scores. If he isn't, he did not send in a log and no confirmation is possible.
c) Give year of contest, date and time of QSO.
d) In future I)X Contests do not roquest confirmations until after the final results have been published, usually in one of the carly fall issues. Requests before this time must be ignored.
3) The ARIRL Countries List, printed periodically in QST, will be thed in determining what constitutes a "country." The Miscellancous Data chapter of this Handbook contains the Postwar Countries List.
4) Confirmations must be aecompanied by a list of claimed countries and stations to aid in checking and for future referenee.
5) Confirmations from additional conntries may be submitted for eredit cach time ten alditional eonfirmations are available. Endorsements for affixing to certificates and showing the new confirmed total ($110,120,130$, ete.) will be awarded as additional credits are pranted. AR1RL DN Competition logs from foreign stations may be utilized for these endorsements, subject to conditions stated under (2).
6) All contacts must be made with amateur stations working in the anthorized amateur bands or with other stations licensed to work amatenrs.
7) In cases of countries where amateurs are licensed in the normal manner, eredit may be claimed only for stations using regular government-assigned call letters. No credit may be elaimed for contacts with stations in any countries in which amateurs have been temporarily closed down by special government odict where amateur licenses were formerly issued in the normal manner.
8) All stations contacted must he "land stations" contacts with ships, anchored or otherwise, and aircraft, cannot the counted.
9) All stations must be contacted from the same call area, where such areas exist, or from the same country in cases where there are no call areas. One exception is allowed to this rule: where a station is moved from one call area to another, or from one country to another, all contaets must be made from within a radius of 150 miles of the initial location.
10) Contacts may be made over any period of years from November $15,194 \overline{5}$, provided only that all contacts be made under the provisions of Rule 9 , and by the same station licenser; contacts may have been made under different call letters in the same area (or country), if the licensee for al! was the same.
11) All confirmations must be submitted exactly as received from the stations worked. Any altered or forged confirmations submitted for CC credit will result in disp nalification of the applieant. The elipilitity of any DXCC applicant who was ever barred from DACC to reapply, and the conditions for such application, shall be determined by the Awards Committee. Any holder of the Century Club Award submitting forged or altered confirmations must forfeit his right to the considered for further endorsements.
12) OPIERATING ETHIIC: Fair play and good sportsfanship in operating are required of all amateurs working toward the DX Century Club Award. In the event of specific objections relative to continued poor operating ethics an individual may be disqualified from the D.XCC by aetion of the ARRL Awards Committee.
13) Sufficient postage for the return of confirmations nust be forwarded with the application. In order to insure the safe return of large batehes of confirmations, it is suggested that enough postage be sent to make possitbe their return by first-class mail, registered.
14) Decisions of the ARRL Awards Committee regard-
ing interpretation of the rules as here printed of later amended shall be final.
15) Address all applications and confirmations to the Communications Department. ARRL, 38 La Salle Road. West Hartford 7, Conn.

WAC Award

The International Amateur Radio Union issues WAC (Worked All Continents) certificates to all members of member-societies who submit proof of two-way communication with at least one station on each continent. Foreign amateurs submit their proof direet to member-societies of the IARC. Others may make application to ARRL, headquarters soeicty of the Union. A c.w. and a telephony cortificate are avaidable. Also, special endorsements will be placed on certificates upon receipt of request accompanied by proof of having worked all continents on the $3.5-$ or $50-\mathrm{Mc}$. bands.

Code Proficiency Award

Many hams can follow the general idea of a contact "by ear" but when pressed to "write it down" they "muff" the copy. The Code Proficiency Award invitess evely amateur to prove himself as a proficient operator, and sets up a system of awards for step-by-step gains in copying proficiency. It enables every amateur to check his code proficieney, to better that proficiency, and to receive a certification of his receiving speed.

This program is a whate of a lot of fun. The League will give a certificate to any lieonsed radio amateur who demonstrates that he can copy perfectly, for at least one minute, plainlanguage Continental code at $10,15,20,25,30$ or

35 words per minute, as transmitted during special monthly transmissions from W1AW and W60W1.

As part of the ARRL Code Proficieney program WIAW transmits plain-language practice material each evening at speeds from 5 to 35 w.p.m. All amateurs are invited to use these transmissions to increase their rode-copying ability. Non-amateurs are invited to utilize the lower speeds, $5,71 / 2$ and $10 \mathrm{w} . \mathrm{p} . \mathrm{m}$, which are transmitted for the benefit of persons studying the code in preparation for the amateur license
examination. Refer to any issue of $Q S T$ for details of the practice schedule.

Rag Chewers Club

The Rag Chewers Club is designed to encourage friendly contacts and discourage the "hello.good-by" type of QSO. Its purpose is to bond logether operators interested in honest-togoodness rag-chewing over the air. Membership certificates are available.

How To Get in: (1) Chew the ray with a member of the club for at least a solid half hour. This does not mean a half hour spent in trying to get a message over through bad QRM or QRNN, but a solid half hour of conversation or message handling. (2) IReport the conversation by card to The Rag Chewers Club, ARRL, Communications Department, West Ifartford, Conn., and ask the member station yon talk with to do the same. When both reports are received you will be sent a membership certificate entitling you to all the privileges of a Rag Chewer.

How To Stay in: (1) Be a conversationalist on the air instead of one of those tongue-tied infants who don't know any words excent "cuagn" or "eul," or "QRU" or " nil." 'Iulk to the fellows you work with and get to know them. (2) Operate your station in accordance with the radio laws and ARRL prartice. (3) Observe rules of courtesy on the air. (4) Sign "RC'C" after each call so that others may know you can talk as well as call.

A. 1 Operator Club

The A-1 Operator Club) should include in its ranks every good operator. To become a member, one must he nominated by at least two operators who already belong. General keving or voice technique, procedure, copsing ability, judgment and courtesy all count in rating candidates under the club rules detailed at length in Operating an Amateur Radio Station. Aim to make yourself a fine operator, and one of these days you may be pleasantly surprised by an invitation to belong to the A-1 Operator Club, which carries a worth-while certificate in its own right.

Brass Pounders League

Every individual reporting more than a specified minimum in official monthly traffic totals is given an honor place in the QST listing known as the Brass Pounders League and a certificate
to recognize his performance is furnished by the SCM. In adelition, a BPL Traffic Award (medallion) is given to individual amateurs working at their own stations after the third time they "make BPL"" by reports duly reported through the SCM and reported for QST .
The value to amateurs in operator training, and the utility of amateur message handling to the members of the fraternity itself as well as to the general publie, make message-handing work of prime importance to the fraternity. Fun, enjoyment, and the feeling of having done something really worth while for one's fellows is accentuated by pride in nessage files, records, and letters from those served.

Old Timers Club

The Old Timers Club is open to anyone who holds an amateur call at the present time, and who held an amateur license (operator or station) 20-or-more years ago. Lapses in activity during the intervening vears are permitted.

If you can qualify as an "Old Timer," send us a brief chronology of your ham career, being sure to indicate the date of your first amateur license, and your present call. If the evidence submitted proves you eligible for the OTC, you will he added to the roster and will receive a membership certificate.

INVITATION

Amateur radio is capable of giving enjoyment, self-training, sorial and organization benefits in proportion to what the individual amateur puts into his hobby. All amateurs are invited to beeome ARIRL members, to work toward awards, and to acrept the challenge and invitation offered in field-organization appointments. Drop a line to AIRIRL I Ieadquarters for the booklet Operating an Amateur Radio Station, which has detailed information on the field-organization appointments and awards. Accept today the invitation to take full part in all League activities and organization work.

556

- Operating an Amateur Radio Station covers the details of practical amateur operating. In it you will find information on Operating Practices, Emergency Communication, ARRL Operating Activities and Awards, the ARRL Field Organization, Handling Messages, Network Organization, " Q " Signals and Abbreviations used in amateur operating, important extracts from the FCC Regulations, and other helpful material. It's a handy reference that will serve to answer many of the questions concerning operating that arise during your activities on the air.

Emergency Communications is the "bible" of the Amateur Radio Emergency Corps. Within its eight pages are contained the fundamentals of emergency communication which every amateur interested in public seŕvice work should know, including a complete diagrammatical plan adaptable for use in any community, explanation of the role of the American Red Cross and FCC's regulations concerning amateur operation in emergencies. The Radio Amateur Civil Emergency Service (RACES) comes in for special consideration, including a complete table of RACES frequencies on the front cover. If you don't already have an up-to-date copy of this manual, we suggest you take steps to obtain one immediately.

> The two publications described above may be obtained without charge by any Handbook reader. Either or both will be sent upon request.

american radio relay league 38 La Salle Road
West Haxtford 7, Conmecticut, U. S. A.

Please send me, without charge, the following:

OPERATING AN AMATEUR RADIO STATION EMERGENCY COMMUNICATIONS

Name.
(Please Print)
Address

Miscellaneous Data

Q SIGNALS

Given below are a number of ($)$ signals whose meanings most often need to be expressed with brevity and elearness in amateur work. (Q ab)breviations take the form of questions only when each is sent followed by a question mark.)

QRG Will you tell me my exact frequency (or that of.......)? Your exact freruency (or that of.) is.ke.
QRII Does my frequency vary? Your frequency varics.
QIRI How is the tone of my transmission? The tone of your transmission is (1. (iood; 2. Variable; 3. Bad).

QRK What is the readability of my signals for those of......)? The readability of your signals (or those of.....) is..... (1. I'nroadable: 2. Readable now and then; 3. Readable but with difficulty; 4. Readable; 5. Porfectly readable).
QRL. Are you busy? I am busy (or I am busy with). Please do not interfere.
QRM Arc you treing interfered with? I an interfered with.
QRN Are you troubled by static? I am being troubled by static.
QRQ Shall I send faster? Send faster (. words per min.).
QRS Shall I send more slowly? Send more slowly (. . . . w.p.m.).

QRT Shall I stop sending? Stop sending.
QRU Have you anything for me? I have nothing for you.
QRV A re you ready? I am ready.
QRW Shall I tell.....that you are calling him onkc.? Please inform.... . that I am calling him on......kc.
QRX When will you call me arain? I will call you again at. hours (on.kc.).
QleZ Who is calling me? You are being called by.... (on.ke.).
QSA What is the strength of my signals for those of)? The strength of your signals (or those of......) is....... (1. Ncarcely perceptible; 2. Weak; 3. Fairly good; 1. Good; 5. Very good).
QSB Are my signals fading? Your signals are fading.
QsD Is my keying defective? Your keying is defective.
QsGi Shall I send.messages at a time? Send..... messuges at a time.
QSL. Can you acknowletge receipt? I am acknowledging receipt.
QSM Shall I rejeat the last message which I sent yon, or some previous message? IRepeat the last message which you sent me [or message(s) number(s)].
QSO Can you communicate with.... direct or by relay? I can communicate with. . . . direct (or by relay through.).
QSP Will you relay to.....? 1 will relay to.....
QsV Shall I send a series of Vs on this frectuency (orke.)? send a series of tis on this frequency (or.ke.).
QSW Will you send on this frequency (or on.... ke.)? I am going to send on this frequency (or onke.).
QSX Will you listen to.on......ke.? I am listening

QSY Shall 1 change to transmission on another frequency? Change to transmission on another frequency (or on.....ke.).
QSZ Shatl I send each word or group more than once? Send each word or gromp twice (or. . . . times).
QTA Shall 1 cancel message number.... as if it had not been sent? C'ancel message number. . . . as if it had not been sent.
QTB Do you agrce with my counting of words? I do not agree with your counting of words; I will repeat the first letter or digit of each word or grous.
Q'IC How many messazes have you to send? I have.... mutssuges for you (or for.).
QTH What is your location? My location is....
Q'IR What is the exact time? The time is......
Special abbreviations adopted by ARRL:
Q. Cl° General call preceding a message addressed to all amaterrs and ARRL, nembers. This is in effect "CQ ARRLA."
ORIRR Ollicial ARRI, "land Nos." A distress call for emergoney use only by atation in an emergency situation.

THE R-S-T SYSTEM

READABILITY

1 - Unreadable.
2 - Buarely readable, occasional words distinguishable.
3 - Readable with considerable difliculty.
4 - Readable with practically no difficulty.
;- Perfectly readable.

SIGNAL STRENGTH

1 - l'aint sirnals, barely perceptible.
2 - Very weak signals.
3 - Weak signals.
4- Fiair signats.
5- lairly good signals.
6 - Good signals.
7 - Moderately strong signals.
8 -Strong signals.
9 - Extremely strong signals.

TONE

1 - Extremely rough hissing note.
2 - Very rough a.c. note, no trace of musicality.
3 - Rough low-pitched a.c. note, slightly musical.
4 - Rather rough a.c. note, moderately musical.
5 - Musically-modulated note.
6 - Modulated note, slight trace of whistle.
7 - Near d.c. note, smooth ripple.
8 - Good d.c. note, just a trace of ripple.
9 - Purest d.c, note.
If the signal has the characteristic steadiness of erystal control, add the letter X to the RS'l report. If there is a chirp, the letter \mathbf{C} may be added to so indicate. Similarly for a click, add K. The above reporting system is used on both c.w. and roice. leaving out the "tone" report on voice.

A.R.R.L. COUNTRIES LIST - Official List for ARRL DX Contest and the Postwar DXCC

INTERNATIONAL PREFIXES

AAA－ALZ	Luited States of America	SsA－SLZ	Eigypt
AMA－AOZ	Spain	SVA－SZZ	Greere
APA－AS\％	Pakistan	TAA－TCZ	Turkey
ATA－AWZ	India	THA－TDZ	Guatemala
AXA－AXZ	Commonwealth of Australia	TEA－TEZ	Costa lica
$A^{\prime} \mathrm{A}-\mathrm{A} / \mathrm{Z}$	Argentina Republic	TFA－TF\％	lecland
BAA－BZZ	China	TGA－TGZ	Guatemala
CAA－CEZ	Chile	THA－TH\％	France and Colonies and Protectorates
CEA－CKZ	Canada	TIA－TIZ	Costa Rica
CLA－CNIZ	C＇uba	TJA－TZZ	France and Colonies and Irotectorates
CNA－CNZ	Moroceo	CAA－UQZ	Union of Sovict sorialist Republies
COA－COZ	Cuba	URA－CTZ	Ukrainan Soviet Socialist Republie
CPA－CI＇Z	Bolivia	ULA－UZZ	Union of Soviet Socialist Republics
CQA－CRZ	Portugucse Colonis：	VAA－VG\％	Canada
CSA－CL゙Z	Portugal	VHA－Vス\％	Commonwealth of Australia
CVA－CXZ	Uruguay	VOA－VOZ	Newfoundland
CYA－CZZ	Canada	VPA－VSZ	British Colonics and Protectorates
DAA－DMZ	Germany	＂MA－VW\％	India
DNA－1）QZ	Belgian Congo	VxA－YYZ	Canada
DRA－DTZ	Biclorussian Soviet Socialist Republie	VZA－VZZ	Commonwealth of Australia
DUA－ITZ	Republic of the Ihilippines	WAA－W゙ZZ	U＇nited States of America
EAA－EH\％	Spain	XAA－XIZ	Mexico
E1．A－E．J／	Ireland	NJA－NOZ	Canada
EKA－EKZ	Union of Soviet Socialist Republies	XPA－XP＇／	Denmark
LLA－ELZ	Republic of Liberia	XQA－XR\％	Chile
EMA－EOZ	Union of Sovict Socialist Republics	XSA－XSZ	China
EPA－1：Q／	1 ran	XCA－XCZ	Camboria
ERA－ERZ	Union of Soviet Socialist Republics	XVA－XVZ	Viet－Nam
ESA－ES\％	Estonia	XWA－XWZ	Laos
ETA－ETZ	Ethiopia	XX．A－XXZ	Portuguese Colonies
EUA－F\％Z	Union of sovict socialist Republies	NYA－XZZ	Burma
FAA－F゙ZZ	France and Colonies and Protectorates	1AA－YAZ	Afghanistan
GAA－GZZ	Great Britain	Y13A－Y11\％	Indonesia
HAA－HAZ	Hungary	Y1A－Y1Z	lrail
HBA－11BZ	Switzerlath	Y，JA－YJZ	New llebrides
HCA－111\％	Ecuador	リ゙イスーY゙Z	Syria
HEA－HEZ	Switzerland	YLA－YLZ	Latvia
HFA－HF\％	Poland	YMA－MMZ	Turkey
IIGA－HGZ	Hungary	YNA－YNZ	Nicaragua
HHA－HHZ	Republic of Llaiti	YOA－YRZ	Roumania
HIA－1H\％	［ Dominican Republic	ISA－ISZ	Republic of El Salvador
HJA－HKZ	Republic of Colombia	1TA－ICZ	l ugosalvia
HLA－HMZ	Korea	IVA－ry\％	Vencauela
HNA－HN\％	Iract	1ZA－IZZ	Tumoslavia
HOA－H11\％	Republic of Panama	Z．A．A－ZAZ	Albania
HQA－HRZ	Republie of Honduras	ZBA－Z．IZ	Britisl，Colonies and Protectorates
HSA－HSZ	Siam	ZKA－ZAIZ	New Zealand
H＇TA－HTZ	Nicaragua	ZNA－ZOZ	British Colonies and Protectorates
HCA－HCZ	Republic of EI Salvador	ZPA－ZPZ	Paraguay
HVA－HV\％	Vatican City State	ZQA－ZQZ	British Colonies and I＇rotectorates
HWA－HYZ	France and Colonies and Protectorates	ZRA－ZUZ	Union of South Africa
HZA－11ZZ	Kingdom of Saudi Arabia	2VA－ZZZ	Brazil
1AA－IZ\％	Italy and Colonies	2AA－2ZZ	Great Britain
JAA－JSZ	Japan	3AA－3AZ	Primeipality of Monaeo
J＇IA－JVZ	Mongolian People＇s Republie	318A－3F\％	Canada
JWA－JXZ	Norway	3（iA－3Ci／	Chile
JYA－JY\％	Hashimite Kingdom of Jordan	311A－3LZ	China
JZA－JZZ	Netherlands New Guinea	$3 \mathrm{VA}-3 \mathrm{VZ}$	Tunisia
KAA－K゙ZZ	Cnited States of America	3W゙A－3W゙Z	Viet－Nam
LAA－L，${ }^{\text {2 }}$	Norway	3YA－3Y\％	Norway
LO．A－1，WZ	Argentina Republie	3ZA－3ZZ	Poland
LXA－LXZ	Luxembourg	4．A－tCZ	Mexice
LYA－LY\％	Lithuania	41）A－41\％	Republic of the Philippines
LZA－LZZ	13ulgaria	4．J． 4 －4 LZ	U＇nion of Sovict Socialist Republics
MAA－MZZ	Cireat Britain	4．MA－4MZ	Venezuela
NAA－NZZ	United States of America	4NA－4OZ	Yugoslavia
OAA－OCZ	P＇eru	41P－4S2	Ceylon
OIDA－O1）Z	Republic of Lebanon	4TA－4T\％	Peria
OEA－OEZ	Austria	4UA－4CZ	United Nations
OFA－OJZ	Finland	$4 \mathrm{VA}-4 \mathrm{VZ}$	Republie of Haiti
OKA－OMZ	Czechoslovakia	4WA－4WZ	lemen
ONA－OTZ	Belgium and Colonics	$4 \times A-4 X Z$	Israel
OUA－OZZ	D enmark	41A－4\％	International Civil Aviation Organization
PAA－PIZ	Netherlands	¢AA－iAZ	Libya
PJA－I＇JZ	Curacao	$5 \mathrm{CA}-5 \mathrm{CZ}$	Norocco
PKA－POZ	Indonesia	5LA－sLZ	Liberia
PPA－P「Z	1razil	6．AA－6Z\％	（Not alloeaterl）
PZA－PZZ	Surinam	7AA－7Z\％	（Not allocated）
QAA－QZ\％	（Service abbreviations）	8AA－8Z\％	（Not allocated）
RAA－RZZ	Union of Soviet Socialist Republies	9AA－9AZ	San Marino
SAA－SMZ	Sweden	9N．A－9NZ	Nepal
SNA－SRZ	Poland	9SA－9SZ	Saar

ABBREVIATIONS FOR C．W．WORK

Abbreviations help to cut down unecessary transmission．However，make it a rule not to abbreviate unnecessarily hen working an operator of unknown experience．			
AA	All after	NW	Now：I resume transmission
AB	All before	OH	Old boy
ABT	About	ONI	Old man
Al）R	Address	Ol＇－OPR	Operator
AGN	Again	OSC	Oscillator
ANT	Antenna	OT	Old timer；old top
BCI	Broadrast interference	PBL	I＇reamble
BCL	Broadeast listener	PSE－PLS	Please
BK	Break；break me；break in	］WR	Power
BN	All between；been	1＇X	1＇ress
B4	Before	1	Received solid；all right；OK；are
C	les	RAC	Rectified alternating current
CFM	Confirm；I confirm	12CI）	Reccived
CK	Check	121：F	Refer to；referring to；reference
CL	1 am closing my station；call	RPT	Repeat；I repeat
CLID－CLG	Called；calling	SEI）	Said
CU1）	Could	SE\％	Says
CLL	See you later	SIC：	Signature；signal
CUM	Come	SINE	Operator＇s personal initials or nickname
CW	Continuous wave	SKED	Schedule
1）LD－DLVD	Delivered	SRI	Sorry
1）${ }^{\text {d }}$	Distance	SVC	Service；prefix to service message
LCO	Electron－coupled oscillator	TFC	Traffic
FB	Fine business；excellent	TMW	Tomorrow
（iA	（io aliead（or resume sending）	TNX－TKS	Thanks
C ${ }^{\text {B }}$	（iood－by	T T	That
（1BA	（iive botter address	TU	Thank you
（ili	（iood evening	TXT	Text
G：	Going	CR－URS	Your；you＇re；yours
（iN］	（iood morning	V＇O	Variable－frequency oscillator
（iN	（iood night	V	Ver：
（iND）	（iround	WA	Word after
GUD	（ lood	WH	Word before
111	The telegraphic laugh；high	W1）－WDS	Word；words
1112	Here；hear	Wに゙）－W゙にく	Worked；working
11 V	Have	W1，	Well；will
11 W	How	W（1）	Woule］
LII）	A poor operator	WX	Weather
MILS	Milliamperes	NMTR	Transmitter
MSG	Messagre；prefix to radiogram	X＇TAL	Crustal
N	No	Y＇F＇（XYL）	Wife
N1）	Nothing doing	Y1	Young lady
Nil．	Nothing；I have nothing for you	73	Best regards
NI？	Number	88	Love and kisses

W PREFIXES BY STATES

Alabama IIt Nebraska W0
Arizona W7 Nevada W7
Arkansas W5 New Hampshite WI
California IV0 New Jersey W2
Colorado 110 II5
Connecticut New lork
I elaware IV2 IV2NVi North Carolina
I）istrict of Columbia W：
Florida W 4
Georgia W 4
Idaho W7
Illinois II
Indiana IV？
Iowal． W
Kinsas IV
Kentucky W
Louisiana W5
Mitine IV
Marviand W：3
Missachusetts IV1
Michigan W8
Minnesot：a IV
Mississippi W5
IV 0
IV 0
North Dakota
North Dakota IV8
（）klahoma W5
Oregon IV
Pennsylvania IV：
I hode Islitnd IV
South Carolina II．
South Dakota W6
Tomnesse W4
Texas W5
Utah W7
Vermont IV
Virginia IIt
Wishington W7
West Virginia W8
Missouri WII
W7 Wyoming Montana W！
yoming W

CONELRAD

Effective January 2, 1957, the "Conelrad" rukes reprinted here will become part of the amatelur regulations. Until that date, FCC urges voluntary compliance with the rules as being in the publice interest. Vissentially, compliance with the rules consists in monitoring a broadeast station - standard band, FMI or 'TV - either contimuously or at intervals not exceeding ten minutes, during periods in which the amiteur transmitter is in use. On reeeipt of a Conelrad Alert all transmitting must cease, except as authorized in 12.193 and 12.194.

The existence of an Alert may be determined as outlined in 12.192 (b)(3). Operation during hours when local broudeast stations are not on the air will require tuning through the standard broudcast band to determine if operation appears to be normal. The presence of any ${ }^{T}$.S. broadeast stations on frequencies other than 640) and 1240 kr . indirates normal operation.

If a broadeast receiver is not regularly available for monitoring purposes, a simple converter ran be made for working into the communications receiver i.f., as shown in the arcompanying diagram. Additional suggestions will be found in (2STV for Junuary, 1950.

Converter circuit for monitoring broadcast stations in conncetion with a commonications receiver. Capacitances are in $\mu \mu \mathrm{f}$.
Cia, Cis - 'Two-gang hroadoast capacitor, oscillator section according to intermediate frequency to he used.
I, I- loop stiek.
'T1-B.c. oscillator transformer (for i.f. to be used).
'l'2 - I.f. coil and trimmer. This can be taken from an i.f. transformer, or the tramsformer can be wised intact, the output being taken from the secondary.
Note: If only one broadeast station is to be monitored C_{1} and Can can lop padder-type capacitors (or a combination of padding and fixed eapacitance as reduired) adjusted for the desired station and intermediate frequencies. Other types of converter tubes may be substituted if desired.

Power for the mit can le tahen from the receiver's "accessory" socket.

CONELRAD

12.190 Scope and Objective of CO.VELR.AD. CONtrol of FiLectromagnetic RADiation applics to all radio stations in the Amateur Radio Service and is for the purpose of providing for the alerting and operation of radio stations in this service during periods of air attack or amminent threat thercof. The objective is to minimize the navigational aid that may be obtained by an enemy from the electromagnetic radiations cmanating from radio stations in the Amateur Radio Service while simultaneously providing for a continued service under controlled conditions when such operation is essential to the public welfare.
12.191 The CO.NELR. $1 D$ RADIO ALERT is the term applied to the Military Warning that an air attack is probable or imminent and which automatically orders the immediate implementation of CONFILRAD procedures for all radio stations. The CONELRAI) RAI)IO ALEIRT is distinct from the military or Civil Air Defense Warnings YELLOW or IRED, but may be coincidental with such warnings.
12.192 Reception of RAD/O ALERT. (a) The licensee of a station in the Amateur Radio Service is required to provide a means for reception of the CONLILRAD RADIO ALERT or a means for the determination that such ALERT is in force.
(b) All operators of stations in the Amaterir Radio Service will be responsible for the reception of the CONELRAD RADIO ALERT or indication that such ALER'T is in force by:
(1) reception of a CONELRAD RADIO ALERT MESSAGE which will be broadeast by each standard. FMI and TV broadcast station on its regular assigned frefuency before they leave the air: or
(2) reception of standard broadeast stations operating under CONELKAD requirements during the period of the ALERT on 640 or 1240 ke ; or
(3) determining that an ALER' is in force by lack of normal broadcast station operation (abservations made before anateur station operation is begun and at least once every ten minutes during operation thercafter will be considered as sulficient for compliance with this Section); or
(4) other means if so authorized by the Federal Communications Commission.
12.193 Operation During an A LERT. During a CONELRAD RADIO ALERT the operation of all amateur radio stations, except stations in the Radio Amateur Civil Emergency Service (RACES) and stations sureifically authorized otherwise, will be inmediately discontinued until the RADIO ALL CLEAR is isened. Stations in the RACES and such others as are specifically authorized to operate during the ALER'Y will conduct oneration under the following restrictions.
(a) No transmission shall be made unless it is of extreme emergency afferting the national sufety or the safety of life and property.
(b) Transmissions shall be as short as possible.
(c) No station identification shall be giverr, either by transmission of call letters or by ammouncement of location (if station identification is necessary to carry on the service, tactieal cats or other means of identification will be utilized in accordance with 12.246).
(d) The radio station carrier slall be discontinued during periods of tho messuge transmission.
12.194 Special Operation. In certain cases, the Federal (onmunications Commission may authorize specific stations to operate during a ('ONELRAI) RADIO ALERT in a manner not governed by these Rules, provided, such operation is determined to be necessary in the interest of National Defense or the publie welfare.
12.195 Resumption of Normal Oprration. At the conelusion of a ('ONELLRAI) RADIO ALIERT, each standard. FM and TV broadeast station will broadeast a CONEL. RAD RAIDO ALIL CLEAR MESSAGE. Unless otherwise restricted by order of the Federal Comnumications Commission, normal oneration of stations in the Amateur Radio sicrvice may be resumed unon reeeption of the CONELIRAI) RADIO ALL ('LEAR. Only the CONELRAD RADIO AIL, CLEAR will authorize termination of the CONLELRAD RAIDIO ALART.
12.196 CO.VELRAD TESTS. So far as practicable, tests and practice operation will be conducted at appropriate intervals.

- FILTERS

The filter sections shown on the facing page can be used alone or, if greater attemuation and sharper cut-off are required, several sections can be connected in series. In the low- and high-pass filters, f_{c} represents the cut-off frequency, the highest (for the low-pass) or the lowest (for the high-pass) frequency transmitted without attenuation. In the bandpassfilter designs, f_{1} is the low-frequency cut-off and f_{2} the high-frequency cut-off. The units for L, C, R and f are henrys, farads, ohms and cycles, respectively.

All of the types shown are for use in an unbalanced line (one side grounded), and thus they are suitable for use in coaxial line or any other unbalanced circuit. To transform them for use in balanced lines (e.g., 300 -ohm transmission line, or push-pull audio circuits), the series reactances should be equally divided between the two legs. Thus the balanced con-stant- $k \pi$-section low-pass filter would use two inductors of a value equal to $L_{\mathbf{k}} / 2$, while the balanced constant- $k \pi$-section high-pass filter would use two capacitors of a value equal to $2 C_{k}$.

If several low- (or high-) pass sections are to be used, it is advisable to use m-derived end sections on either side of a constant- k center section, although an m-derived center section can be used. The factor m relates the ratio of the cutoff frequency f_{c} and f_{∞}, a frequency of high attenuation, Where only one m-derived section is used, a value of 0.6 is generally used for m, although a deviation of 10 or 15 per cent from this value is not too serious in amateur work. For a value of $m=0.6, f_{\infty}$ will be $1.25 f_{c}$ for the low-pass filter and $0.8 f_{c}$ for the high-pass filter. Other values can be found from
$m=\sqrt{1-\left(\frac{f_{c}}{f_{\infty}}\right)^{2}}$ for the low-pass filter and $m=\sqrt{1-\left(\frac{f_{\infty}}{f_{c}}\right)^{2}}$ for the high-pass filter.

The filters shown should be terminated in a resistance $=R$, and there should be little or no reactive component in the termination.

Simple audio filters can be made with pow-dered-iron-core chokes and paper capacitors. Sharper cut-off characteristics will be obtained with more sections. The values of the components can vary by $\pm 5 \%$ with little or no reduction in performance. The more sections there are to a filter the greater is the need for accuracy in the values of the components. lligh-performance audio filters ean be built with only two sections by winding the inductors on toroidial powdered-iron forms - it generally takes three sections to olstain the same results when using ot her inductors.

Sideband filters are often designed to operate in the range 10 to 20 ke . Their attenuation requirements are such that usually at least a five-
section filter is required. The coils should be as high-(Q as possible, and mica is the most suitable capacitor dielectric.

Low-pass and high-pass filters for harmonic suppression and receiver-overload prevention in the television frequencies range are usually made with self-supporting coils and mida or ceramic eapacitors, depending upon the power requirements.

In any filter, there should be no magnetic or capacitive coupling bet ween sections of the filter unless the design specifically calls for it. This requirement makes it necessary to shield the coils from each other in some applications, or to mount them at right angles to each other.

Further information on filter design can be found in the following articles:
Bennett, "Audio Filters for Eliminating QRM," QS'T, July, 1949.
Berry, "Filter Design for the Single-Sideband Transmitter," QST, June, 1949.
Buchheim, "Low-Pass Audio Filters," QST, July, 1948.
Granmer, "Pointers on Harmonic Recluction," QST, April, 1949; "Iligh-Pass Filters for 'TVI Reduction," QST, May, 1949.
Mann, "An Inexpensive Sideband Filter," QS', March, 1949.
Rand, "The Little Slugger," QST', February, 1949.

Smith, "Premodulation Speech Clipping and Filtering," QST, February, 1946; "More on Speech Clipping," QST, March, 1947.

- TUNED-CIRCUIT RESPONSE

The graph below gives the response and phase angle of a high- Q parallel-tuned circuit.

Circuit Q is equal to

$$
2 \pi f R C \text { or } \frac{R}{2 \pi f L}
$$

where L and C are the inductance and capacitance at the resonant frequency, f, and R is the parallel resistance across the circuit. The curves above become more accurate as the cireuit Q is higher, but the error is not especially great for values as low as $Q=10$.

In the above formulas R is in ohms, C in farads, L in henrys, and f in cycles per second.

INDUCTANCE, CAPACITANCE AND FREQUENCY CHART - 1.5-40 MC.

This chart may be used to find the values of inductance and capacitance required to resonate at any given frequency in the medium- or high-frequency ranges; or, conversely, to find the frequency to which any given coilcapacitor combination will tune. In the example shown by the dashed lines, a capacitor has a minimum capacitance of $15 \mu \mu \mathrm{fd}$, and a maximum capacitance of $50 \mu \mu \mathrm{fd}$. If it is to he used with a coil of $10-\mu \mathrm{h}$. inductance, what frequency range will be covered? 'The straightedge is connected lietween 10 on the left-hand scale and 15 on the right, kiving 13 Mc. as the high-frequency limit. Keeping the straightedge at 10 on the left-hand scale, the other end is swung to 50 on the right hand scale, giving a low-frequency limit of 7.1 Mc. The tuning range would, therefore, be from 7.1 Mc . to 13 Mc ., or $\mathbf{7} 100 \mathrm{kc}$, to $13,000 \mathrm{kc}$. The center scale also serves to convert frequency to wavelength.

The range of the chart can be cxtended by multiplying cach of the scales by 0.1 or 10 . In the example above, if the capacitances are 150 and $500 \mu \mu \mathrm{fd}$, and the indactance $100 \mu \mathrm{~h}$., the range becomes approximately 231 to 422 meters or 0.7 to 1.3 Mc . Alternatively, 1.5 to $5 \mu \mu \mathrm{fd}$, and $1 \mu \mathrm{~h}$, will give a range of approximately 71 to 130 Mc .

INDUCTIVE AND CAPACITIVE REACTANCE VS. FREQUENCY CHART

FREQUENCY
By use of the chart above, the approximate reactance of any capacitance from $1.0 \mu \mu \mathrm{fd}$. to $10 \mu \mathrm{fd}$. at any frequency from 100 eycles to 100 megacycles, or the reartance of any inductance from $0.1 \mu \mathrm{l}$, to 1.0 henry, can be read directly. Intermediate values can be estimated by interpolation. In making interpolations, remember that the rate of change between lines is logarithmic. Use the frequency or reactanee seales as a guide in estimating intermediate values on the capacitance or inductance scales.
This elart also can be used to find the approximate resonance frequencies of $L C$ combinations, or the frequency to which a given coil-ind-capacitor combination will tume. First locate the respective slanting lines for the capacitance and inductance. The point where they intersect, i.f., where the reactanees are equal, is the resonant frequency (projected downward and read on the frequency sicale).

ELECTRICAL CONDUCTIVITY OF METALS

Relative Temp, Conf. ${ }^{2}$
Conducticity' of Renistauce

Aluminum (2F; pure).	59	0.0019
Aluminum (alloys):		
Soft-annealed.	45-50	
Heat-trated.	30-45	
Brass.	28	0.002-0.007
Cadmium.	19	
Chronitum.	5.)	
(Clmax .	1.8:	
Cobalt.	16.3	
Constantin.	3.24	0.00002
(oopper (hard drawn)	89.5	0.004
Copper (ammealed).	100	
Everder.	6	
(inman silver (18'c).	5.3	0.601019
Cold.	65	
Iron (pure)	17.7	0.006
Iron (cast).	2-12	
Iron (wrought).	11.4	

[^9]| | Relative Conductivity | Temp. Coef. ${ }^{2}$
 of hesistance |
| :---: | :---: | :---: |
| Lemd. | 7 | 0.10041 |
| Manganin. | 3.7 | 0.00002 |
| Mipeury. | 1.66 | 0.00089 |
| Mosphienum. | 33.2 | 0.0033 |
| Monel. | 4 | 0.0019 |
| Nichrome | 1.45 | 0.00017 |
| Nickrl. . | 12-16 | 0.005 |
| Phosphor Bronze. | 36 | 0.004 |
| Platinum. | 15 | |
| silver. | $10 ¢$ | 0.004 |
| Storel. | 3-15 | |
| Tin. | 13 | 0.0042 |
| 'rungsten. | 28.9 | 0.0045 |
| Zinc. | 28.2 | 0.0033 |

Apmraximate relations
An increase of 1 in A. W. (i. or B. \& S. wire size increases resistance 25%
An increase of 2 increases resistance $60^{\circ} \%$.
An increase of 3 increases resistance $100 \stackrel{\circ}{\circ}$
An increase of 10 increases resistance 10 times.

- the decibel

In most radio communication the received signal is converted into sound. This being the case, it is useful to appraise signal strengths in terms of relative loudness as registered by the ear. A peculiarity of the car is that an increase

or deerease in loudness is responsive to the ratio of the amounts of power involved, and is practically independent of absolute value of the power. For example, if a person estimates that the signal is "twice as loud" when the transmitter power is increased from 10 watts to 40 watts, he will also estimate that a 400 -watt signal is twice as loud as a 100 -watt signal. In other words, the human ear has a logarithmic response.

This fact is the basis for the use of the relative-power unit called the decibel. A ehange of one deeibel (abbreviated db.) in the power level is just detectable as a change in loudness under ideal conditions. The power ratio and decibels are related by the following formula:

$$
D b_{.}=10 \log \frac{P_{2}}{P_{1}}
$$

Common logarithms (base 10) are used.
Note that the decibel is based on power ratios. Voltage or current ratios can be used, but only when the impedance is the same for both values of voltage, or current. The gain of an amplifier cannot be expressed correetly in db. if it is based on the ratio of the output voltage to the input voltage unless both voltages are measured across the same value of impedance. When the impedance at both points of measurement is the same, the following formula may be used for voltage or current ratios:

$$
\begin{gathered}
D b .=20 \log \frac{\Gamma_{2}}{Y_{1}} \\
\text { or } 20 \log \frac{I_{2}}{I_{1}}
\end{gathered}
$$

The two formulas are shown graphically in the accompanying chart for ratios from 1 to 10 .

Gains (inereases) expressed in deeibels may be added arithmetically; losses (decreases) may be subtracted. A power decrease is indicated by prefixing the decibel figure with a minus sign. Thus +6 db . means that the power has been multiplied by 4 , while -6 db, means that the power has been divided by 4. The chart may be used for other ratios by adding (or subtraeting, if a loss) 10 db . each time the ratio seale is multiplied by 10 , for power ratios; or by adding (or subtracting) 20 db . each time the scale is multiplied by 10 for voltage or current ratios. For example, a power ratio of 2.5 is 4 db , (from the chart). A power ratio of 10 times 2.5 , or 25 , is 14 db . $(10+4)$, and a power ratio of 100 times 2.5 , or 250 , is 24 d$)$. $(20+4)$. A voltage or eurrent ratio of 4 is 12 db ., a voltage or current ratio of 40 is $32 \mathrm{db} .(20+12)$, and a voltage or current ratio of 400 is 52 db . $(40+12)$.

VACUUM TUBE AMPLIFIER GAIN

The gain through a vacuum tube amplifier stage can be computed by the formulas shown in the figure below. The values of $r \rho$ (plate resistance), μ (amplification factor) and g_{m} (mutual conductance) for the operating point can be obtained from a vacuum tube manual.

triode

TRIODE
CATHODE FOLLOWER

$$
\frac{E_{\text {out }}}{E_{\text {in }}}=\frac{\mu R_{k}}{r_{p}+R_{k}(\mu+1)}
$$

SYMbols for electrical ouantities	
Admittance	Y, y
Angular velocity (2mf)	
Capacitance	C
Conductance	G, g
Conductivity	
Current	I, i
Difference of potential	E, e
Dielectric constant	
Dielectric flux	ψ
Energy	W
Frequency	J
Imperlance	Z,z
Inductance	L
Magnetic intensity	II
Magnetie flux	¢
Magnetic flux density	B
Magnetomotive force	F
Mutual inductance	M
Number of conductors or turns	N
Period	T'
Perme:ability	μ
Plase displatement	θ
Power	P, p
Quantity of electricity	Q, 4
Reactance	X, x
Reactance, Capacitive	x -
Reactance, Inductive	X_{1}
Reluctivity	
Resistance	R, r
Resistivity	ρ
Susceptance	b
Speed of rotation	
Voltage	E, C
Work	W

RESPONSE OF COUPLED TUNED CIRCUITS

The chart shows the response or selectivity curves for various degrees of coupling between two cireuits tumed to a frequency f_{0}. Liqual $Q s$ is assumed in both circuits, although the curves abe

PILOT-LAMP DATA					
$\begin{gathered} \text { Lamp } \\ \text { No. } \end{gathered}$	Hrad Culor	Rase (Miniature)	$\begin{aligned} & \text { Bull, } \\ & \text { Type } \end{aligned}$	RATING	
				Volls	Amp.
40	Brown	Screw	T-31/4	6-8	0.15
$40{ }^{1}$	Brown	Bnyonet	T-31/4	6-8	0.15
41	White	Sirew	T-31/4	2.5	0.5
42	Green	Screw	「-31/4	3.2	**
43	White	Busonet	T-31/4	2.5	0.5
44	Blue	Buyonet	']-31/4	6-8	0.25
45	*	Bayonet	T-31/4	3.2	**
46^{2}	Blue	Screw	T'-31/4	6-8	0.25
47^{1}	Hrown	Bayonet	T-31/4	6-9	0.15
48	link	Sirew	T-31/4	2.0	0.06
49^{3}	link	Bayonet	T-31/4	2.0	0.06
4	White	Screw	T-31/4	2.1	0.12
$49 \mathrm{~A}^{3}$	White	Bayonet	T-31/4	2.1	0.12
50	White	screw	($1-3$) $1 / 2$	6-8	0.2
512	White	Bayonet	($1-31 / 2$	6-8	0.2
-	White	sirew	($1-41 / 2$	6-8	0.4
55	White	Buyonet	($1-41 / 2$	6-8	0.4
2923	White	Screw	T-31/4	2.9	0.17
292A ${ }^{\text {s }}$	White	Bayonet	T-31/4	2.9	0.17
1455	Brown	sirew	(:..)	18.0	0.25
1455A	Browna	Bayonet	(i-i)	18.0	0.25
${ }^{1} 40 \mathrm{~A}$ and 47 are interchangeable. 2 Have frosted bull). ${ }^{3} 49$ and 49A are interchangeable. - Replace with No. 48. 5 ['se in 2.5 -volt sets where regular buib burns out too frequently: * White in G.E. and Sylvania; green in National U'nion, Ray theon and "Tung-Sol. ** 0.35 in G.E. and sylvania; 0.5 in National Enion, Raytheon and Tung-Sol.					

representative if the (Qs differ by ratios up to 1.5 or even 2 to 1 . In these cases, a value of $Q=$ $\sqrt{ } \mathrm{Q}_{1} \mathrm{Q}_{2}$ should be used.

The cocflicient of coupling. k, is given for sevcral different typer of cireuits in the figure. Only the first cireuit uses any induetive coupling between L_{1} athd L_{2}.

$K=\frac{L_{M}}{\sqrt{L_{1} L_{2}}}$

$k \cong \frac{C}{\sqrt{C_{1} C_{2}}}$

$K \cong \frac{\sqrt{C_{1} C_{2}}}{C}$

GREEK ALPHABET					
Greek Letter	Greek lame	English Equivalent	Greek Lelter	Greek Name	English Equivalent
A a	Alphat	a	$\mathrm{N} \nu$	Nu	n
B β	Beta	b	$\Xi \xi$	Ni	x
$\Gamma \gamma$	Camma	g	0 O	Omicron	б
$\Delta \delta$	Delta	d	II π	Pi	p
E ϵ	Epsilon	e	$\mathrm{P} \rho$	Rho	r
Z ζ	Zeta	z	ジの	Sigma	s
H η	Eta	c	T τ	Tau	t
$\theta \theta$	Theta	th	Υv	Upsilon	u
14	Iota	，	¢ ϕ	Phi	ph
K к	L゙appa	k	$\mathrm{X} \times$	Chi	ch
$\wedge \lambda$	Lambda	I	$\Psi \psi$	I＇si	ps
M μ	Mu	m	$\Omega \omega$	Omega	\bar{o}

[^10]

Trype	Page Base
	5AR
$813 \mathrm{P}^{4}$	14 C
913M5	7BZ
01366	9AM
9NP1	6 BN
10	4 D
106; ${ }^{\text {d }}$	14 C
$1011{ }^{\text {P }}$	14 ;
104	$V 2640$
11/12	4 F
12A4	117 9aG
12 A 5	7 F
12 A 6	1207 AC
12 A 7	7 K
12 ABGT	$V 178$
12 A 135.	V17 9EU
$12 \mathrm{AII7GT}$	V20 ${ }^{81318}$
12 Al 5.	$\cdots 216 \mathrm{BP}$
12 A (25.	1177 BZ
12 A 76	Y21 7BT
$12 \mathrm{~A}^{1} 7$	V17 9A
12 AUG .	V21 7BK
$12 \mathrm{~A}{ }^{1} 7$.	${ }^{26} 9{ }^{\text {9A }}$
$12 \mathrm{AU7A}$	V17 9A
12 A 55 A .	V21 6ck
12 A 6	V21 7BT
$12 \mathrm{Av7}$	V17 9A
12 AW	$\checkmark 17$ 7CM
$12 \mathrm{AW7}$	7 CM
12 A 4 CT	4 CG
$12 \mathrm{AX4GTA}$.	$4{ }^{\circ} \mathrm{C}$
12 A 7	$\checkmark 179$ 9a
12 AY 7	V17 9A
$12 \mathrm{AZ7}$.	v17 9A
12134	V17 9AG
12134 A .	V1998
1236 M	V20 6Y
12137	V20 8V
$12 \mathrm{B7ML}$	8 V
12 BSCT	8 T
12 BAG	V21 78K
1213 A7	12180
123176	9217 HK
1213156	1217011
12 HF 6	v22 731
12 BH 17	$\checkmark 17$ 9A
$12 \mathrm{B117}$ A	Y2 9A
123 K 5.	122 913Q
12 HK 6	V22 7BT
1213.6.	122 71)F
123366GA.	v22 6AM
1233(260'T	V22 6AM
123866Tis.	V22 6AM
121317.	V17 9CFF
121316	$V 22$ 731
121316.	Y22 713 T
121364	V22 91) ${ }^{\text {d }}$
1213 V 7	V17 913F
1213 Y 7	V17913F
1213 Y7A	V22 913F
121327.	$V 179 \mathrm{~F}$
126	V22 7cy
$12{ }^{18} 8$.	V2 8E
$12 \mathrm{~A}{ }^{\text {a }}$	1227 CV
126:M6	V22 90k
12(126.	$V 17$ 7EA
12 s 6	V22 7CH
$12 \mathrm{CU6}$.	$\checkmark 22$ 6AM
1213 (26.	$V 22$ 6AM
12 F 5 Cl	6 C
12 L 5 CT	5 M
12 Pr 7	14 E
129:4	V22 613G
126i76.	$v 207 \mathrm{~V}$
126 P7.	14
12 H	v17 71)W
12116	v22 70
121119	11 J
12556 T	V22 60
12J7C;	V22 7R
$12 \mathrm{K7GT}$	$V 22$ 7R
12 KR .	$\checkmark 22$ 8K
121.6GT	V20 7S
12 Lz (ir	8 BUU
120761	V22 7V
12 ssci	V22 81. 3
12847.	$V^{22} 8 \mathrm{8}$
12 sc 7.	V22 85
12 S 15	V22 6AB
12 SF 7.	V22 7AZ
12847	V22 836K
12 sil 7	V22 813K
$12 \mathrm{SJ7}$	V22 8N
12 Sk 7	1228
12S1.7CT	V22 813
$12 \mathrm{SN7GT}$	V22 8131
$12 \mathrm{SN7GTA}$	V22 831)
12 Sc 27.	V22 8Q
$12 \mathrm{sk7}$	V22 80
$12 \mathrm{sw7}$	
12 sc 7.	- 881)
12 SY 7.	V20 8R
$12 \mathrm{V6GT}$	7 S
12 WGGT .	V22 7 S
$12 \mathrm{N4}$.	v25 513S
$12 \mathrm{Z3}$	4 G
$12 Z 5$.	71.
14 A 4	5 AC
14 A 5	6AA
14 A 7	V22 8V
14A1:7	V22 8AC
14API-4	12A
14136.	V22 8W
14138	8 N
1405	6AA
1407	8 V
1+56	8W
$14+147$.	8 AF

$\begin{gathered} \text { Type } \\ \text { HB8. } \end{gathered}$	Page Base - 813W
$14 \mathrm{H7}$	8
14 J 7	- 8B3L
14×7	1228 AC
14 (27	V22 SAL
$14 \mathrm{R7}$	ral:
1457	831
14.7	V2 81
14 W	8 BJ
14×7	V'22 8132
14 Y 4	5 Al
1423	4 ¢
15	$5{ }^{\circ}$
15.4	$\cdots 27{ }^{9} \mathrm{AR}$
16 A5	- 9R1.
17	3 C
1723	9 Cl
18.	613
19	
19A(25	713 Z
19ACH-(ifa.	4 4 Cr
19BG6C:	122515
19 CB	9
1936	$713{ }^{\circ}$
19 P	9 F
19×8	9AII
19 ± 3	93M
19×8	AK
19 Y 3	9 BM
	41)
$20 \mathrm{AP} 1-4$	12 A
$20 \mathrm{J8}$ (GM	
2146	gas
21.4	\%AR
24.8	5 F
2 4-G	V27 21
24 XH	V36 Fly. 1
25 A6	7 s
25 A (GT	8 F
$25 \mathrm{Ac} 5 \mathrm{Cl}^{\circ}$	V20 60 6
25 AV 5 iA	V22 6CK
$25 \mathrm{AV5G} \mathrm{I}^{\circ}$	V22 6ck
$25 A .7(1)$	$4{ }^{\text {d }}$
2585	61)
2536 C	75
25138 (\%T	$8{ }^{\circ}$
25 BK 5	9 BC
251326 cia	V22 6AM
$25 B 669$ T	V2 6AM
$251806{ }^{\text {2 }}$	V22 6AM
25 660,	- 7AC
$25 C 1) 64$	V2 513T
	V22 64M
25188 (iT.	- 8AF
25 DN6.	-22 513T
25 DC6.	V22 6AM
$25 \mathrm{L6CY}$	122 7AC
25 N6:	7W
25 S .	- 6 M
25 T	$V 273$
25 W 6 T	$\overline{\mathrm{V} 2}{ }^{7} 7 \mathrm{AC}$
$25 \times 6 \mathrm{CT}$	76
25 Y 4 CT	5 AA
$25 \mathrm{Y}^{5} 5$.	6 E
2583	V25 4(
2524	5AA
2575	Y25 6H
2526	V25 78
26.	413
26 A 6	7BK
26 A CiT	8131
26 BK 6	711 T
26 C 6	$713{ }^{\circ}$
26 C (6)	713 k
26106	7 CH
2685 W	913
27.	5A
$2 \times 1) 7$	V20 818
2875	5Als
30.	$41)$
31	$41)$
32	4 K
32 L 7 CT	82
33.	5 K
34	4 M
$35 / 51$	5 F
35A5	$\mathrm{V}^{20} 98 \mathrm{6A}$
35135	$V 17783$
35C5. ${ }^{3}$	V22 7cy
${ }_{35 \mathrm{~L}}^{35 \mathrm{~L}} \mathrm{CT}$.	Y2\% 7AC
35 T	$\stackrel{27}{ } 3$ (
35 TC	$\bigcirc 2721$
35 W 4	$\checkmark 25513 \mathrm{C}$
3544	- 5AL
3523 .	4\%
35 Ac (1).	V25 5AA
$35 \mathrm{Z5G}$.	$V 25$ 7A1)
35766;	7 Cl
36	5 L
37	5 A
38	$51{ }^{\circ}$
39/44	51°
40.	413
40z5C......	$\overline{\mathrm{V} 22}{ }_{63}^{681}$
42	V22 613
43	V20 613
45	$41)$
$45 \mathrm{Z3}$	5AM
4525	6AD
46	5 C
47	513
48	6 6
49	50
50	41
$\begin{aligned} & 50 \mathrm{~A} 5 \\ & 50 \mathrm{~A} \text {. } 6 \mathrm{C} \end{aligned}$	V22 6AA

SEMICONDUCTORS

Tupe	Page	Tupe	Page	Tupe	Page	Type	Page	Type	Page
1×34	V39	1×63	V39	1×106	$V 39$	$2 N 35$. +37	$2 N 107$.	V37
1 N 34 A .	V39	1 N64	V39	1×107.	V39	2×36	V37	$2{ }^{2} 108$.	
1 N 38	V39	$1 \mathrm{N64A}$	V39	1×108	$V 39$	2 N 37	V37	2 N 109	7
1 N38A	V39	1 N65	V39	$1 N 109$.	V39	2×38	$V 37$	CK716	$\checkmark 37$
1×39.	V39	1 ± 66	V39	1N110	V39	2N38A	$V 37$	CK721.	7
1N39A.	+39	1×67	$V 39$	1N116.	V39	2×39	V37	CK722	7
1 N 43	V39	1N67A	V39	1×117.	V39	2×40	37	CK723	37
1 N	$V 39$	$1 N 68$	V39	1 N118.	V39	2	37	CK725	$\checkmark 37$
1 N 4	V39	1 N68A	V39	1N126.	$V 39$	2	V37	CK727	V37
$1 N+6$	V39	1×69	V39	1 N127.	$V 39$	2 N	7	CK760	$\checkmark 37$
1×47	$V 39$	1N70	$V 39$	1N128.	$\checkmark 39$	$2{ }_{2}{ }^{2} 4$	V37	CK761	V37
1548	V39	1×72	$V 39$	1N132.	$V 39$	2×45	V37	CK702	V7
1 N49	$V 39$	1 N75	$V 39$	1 N133.	$V 39$	2 N 47	7	CQ1	${ }_{8}$
1 N50	V39	$1 N 81$	V39	1N139.	$V 39$	2×49	$\checkmark 37$	G11.	
1×51	V39	1N86	V39	$1 N 140$	$V 39$	2×63	$\checkmark 37$	G11-A.	V38
1 $\times 52$	$V 39$	1N87	V39	1×141	V39	$2{ }^{2} 64$	V37	GT-1.	V38
1×54	$V 39$	1N87A	$V 39$	1×142	$+39$	2×65	V37	G1-20.	
1 N54A	$V 39$	1N88	V39	$1 N 143$	$V 39$	2×76	$V 37$	GT-34.	
$1 N 55$	V39	1 N89	V39	1 N147.	V39	2 N 77.	V37	cris	8
$1 N 55 \mathrm{~A}$	$V 39$	1×90	V39	1N151.	V39	$2 N 78$.	$\checkmark 37$	HA- -8	
1 N55	V39	1×91	$V 39$	1N152.	V39	2×81	V37	HA-2-9	8
1×56	$\checkmark 39$	1×92	V39	$1 \$ 153$	$\checkmark 39$	2×83	$Y 37$	$\mathrm{HF}^{\text {H-3-1 }}$	38
1 N56A	V39	$1 N 93$	V39	1N158.	V39	2×84	137	HF-1	$\checkmark 38$
1 N57.	V39	1×94	$V 39$	1 N 172	V39	2 N 85	$V 37$	J-1	38
1 N58.	V39	1×95	V39	1×175	V39	$2 N 86$	V37	JP1 ${ }^{\text {a }}$	38
1×58 A	$\checkmark 39$	1N96	139	1N゙198	V39	2×87	$\checkmark \cdot 37$	${ }^{9} \mathrm{C}-70$	V38
1 N59.	V39	1×97.	V39	1×285	V39	2 N 91	137	(C-71.	V38
1 N60.	V39	1N98	V39	1×335	$\checkmark 39$	2×92	$V 37$	P「-2A	V38
1N60A	V39	1 N 99	V39	2 N 32	V37	2N104	$V 37$	SB-100	V38
1 N61.	V39	1 N100	$V 39$	$2 \mathrm{~N}^{2} 3$	V37	2 N 105	$V 37$	-22	V38
1 N62.	V39	1N105	V39	2×34	V37	2N106	V37	X-23	V8

VACUUM-TUBE BASE DIAGRAMS

Socket conneetions eorrespond to the base designations given in the column headed "Soeket Connections" in the elassified tuhe-data tables. Bottom views are shown throughout. 'Terminal designations are as follows:

$\mathrm{A}=$ Anode	$\mathrm{D}=$ Deflecting Plate	Is = Internal Shield	RC. $=$ Ray -Control
$13=$ Beam	$F=$ Filament	$\mathrm{K}=$ Cathode	Eilectrode
BP' = Bayonet Pin	$\mathrm{FE}=$ Fous Elect.	$\mathrm{NC}=$ No Connection	Ref $=$ Reflector
$\mathrm{BS}=1 \mathrm{Base}_{\text {ase Sleve }}$	$\mathrm{C}=\mathrm{Crid}$	$P=$ Plate (Arode)	S $=$ Shell
C = Ext. Coating	11 = IIeater	$\mathrm{P}_{1}=$ Starter-Anode	$\begin{aligned} T: & =\text { Target } \\ & =T \mathrm{mit} \end{aligned}$
CL $4=$ Collector	$1 \mathrm{C}=$ Internal Com .	$\mathrm{P}_{\mathrm{hr}}=$ Meant Plates	- = Gass Trype Tube

> Aphabetical subseripts I, P, T' and IIX indicate, respectively, diode unit, pentode unit, triode unit or hexode mit in multiunit types. Subscript U, T or (I' indicates filament or heater tap.
> Generally when the No. 1 pin of a metal-type tuhe in Table 11, with the exception of all triodes, is shown connerterl to the shell, the A 0.1 pin in the glass (G or $\mathrm{G}^{\prime} \mathrm{T}^{\prime}$) equivalent is connected to an internal shield.
R.E.T.M.A. TUBE BASE DIAGRAMS

2AG

3C

4AC

$4 A P$

4BJ

46

$4 R$

20

3 G

4AT

4BO
(3) (4) (2)
4CK

4H

45

$2 N$

3N

4 BR

$4 J$

4SA

$2 T$

3 T

48

4BU

40

$4 K$

$4 V$

22

4AA

4AJ

$4 E$

4 M

$4 \times$

$4 A B$

$4 P$

TUBE BASE DIAGRAMS

Bottom views are shown. Terminal designations on sockets are given on page V5.

	5A				
5BO				SBS	
				5CB	
		52			
5 U	5 Y	52	5662	6 A	6AA

TUBE BASE DIAGRAMS

Bottom views are shown. Terminal designations on soekets are given on page V5.

640

6AP

6 AX
(3)

68J

$68 X$

$6 E$

6 L

$6 T$

$6 C$
(4) $(5)^{K}$
(3) (1) (8)
6CJ

6 F

6 M

6 w

6 x

6 CC

60

6 J

$6 R$

6

P

62
(3) ${ }^{6}$

- 6305

6CN

TUBE BASE DIAGRAMS

Bottom views are shown. Terminal designations on sockets are given on page V5.

					7AS
			7AW		
	$7 B A$	$78 B$	$7 B C$	$7 B D$	78E
				$7 \mathrm{CV}$	

TUBE BASE DIAGRAMS

Bottom views are shown. Terminal designations on sockets are given on page V5.

(3) (4) (2):

7 G

(3) (2)

$7 T$

$7\llcorner$
(3) (2):
7 TM

 (3) (3) (3) (4):5

8AL

BAV

(3) (5) (5)

TUBE BASE DIAGRAMS

Bottom views are shown. Terminal designations on sochets are given on page V5.

TUBE BASE DIAGRAMS

Bottom views are shown. 'Terminal designations on sockets are given on page V5.

(3) (3) (3) (3)

9BJ

9BB

(4) 5
(4) 5)

[^11]TUBE BASE DIAGRAMS
Bottom views are shown. Terminal designations on sockets are given on page V5.

TUBE BASE DIAGRAMS

Bottom views are shown. Terminal designations on sockets are given on page V5.

				FIG. 7	
FIG 9	FiG. 10	FIG.II			
FIG. 18	FIG. 19		FIG 21		
			FIG. 30		
					FIG. 39
FIG 40	FIG. 41		Fig. 43		
	FIG 47	Fig. 48		FIG 50	FIG. 51
	FIG. 53	FIG. 54			
FIG 59		FIG. 61	FIG. 62	FIG. 63	Fig. 64
	Fig. 66		FIG. 68		FIG. 70

TUBE BASE DIAGRAMS

Bottom views are shown. Terminal designations on sockets are given on page V5.

table I－miniature receiving tubes

Type	Name	Base	E_{1}	1.	c．	Cour	C_{6}	Eb	E1	E，${ }^{2}$	IcF^{2}	l	r_{p}	g．11	μ	R^{12}	Po ${ }^{13}$
$1{ }^{13}$	H．f．Diode	5AP	1.4	0.15	－	－	－	Max．a．c．voltage per plate－117．Max．output current -0.5 ma ．									
1 AB6	Pentogrid Conv．	7DH	1.4	0.025	7.6	8.4	0.36	64	0	64	0.16	0.6	900 K	275	－	－	－
1AC6	Pentagrid Conv．	70H	1.4	0.05	7.5	． 8.4	0.36	63.5	0	63.5	0.15	0.7	900 K	－	－	－	－
IAEA	Sharp Cut－off Pent．	6AR	1.25	0.1	3.6	4.4	0.008	90	0	90	1.2	3.5	500k	1550	－	－	－
1AF4	Sharp Cut－ofl Pent．	6AR	1.4	0.025	3.8	7.6	0.009	90	0	90	0.55	1.8	1.8 meg ．	1050	－	－	－
TAF5	Diode－Pentode	6 6AU	1.4	0.025	2.3	2.8	0.17	90	0	90	0.4	1.1	2 meg ．	600	－	－	－
IAH5	Diode A．f．Pent．	6AU	1.4	0.025	2.1	2.9	0.3	85	10 meg ．Ω	35	0.015	0.05	1 mag ．	－	62	－	－
1 1．4	R．f．Pentode	6AR	1.4	0.025	3.3	7.8	0.01	64	0	64	0.55	1.65	1 meg ．	750	－	－	－
163	Triode	5CF	1.4	0.05	0.9	4.2	1.8	90	－3	－	－	1.4	19 K	760	14.5	－	－
1E3	U．h．i．Triode	98 G	1.25	0.22	1.25	0.75	1.5	150	－3．5	－	－	20	－	3500	14	－	－
114	Sharp Cut－off Pent．	6AR	1.4	0.05	3.6	7.5	0.008	90	0	90	2.0	4.5	350 K	1025	－	－	－
116	Pentagrid Conv．	7DC	1.4	0.05	7.5	12	0.3	90	0	45	0.6	0.5	${ }^{650 \mathrm{~K}}$	300	－	－	－
1R5	Pentagrid Conv．	7AT	1.4	0.05	7.0	12	0.3	90	0	67.5	3.5	1.5	400K	280	Grid	No． 110	
154	Pentagrid Pwr．Amp．	7AV	1.4	0.1	－	－	－	9	－7．0	87.5	1.4	7.4	100K	1575	－	8000	0.270
155	Diode－Pentode $\frac{A_{1} \text { Amp．}}{\text { R．I．Amp．}}$	SAU	1.4	0.05	－	－	－	67.5	0	67.5	0.4	1.6	600K	625	－	－	－
								90	0	90	Screen Resistor 3 meg．，grid 10 meg．					1 meg．	0.050
174	Variable－μ Pent．	6AR	1.4	0.05	3.6	7.5	0.01	90	0	67.5	1.4	3.5	500 K	900	－	－	－
104	Sharo Cut－oif Pent．	6AR	1.4	0.05	3.6	7.5	0.01	90	0	90	0.5	1.6	1 meg ．	900	－	－	－
105	Diode Pentode	6BW	1.4	0.05	－	－	－	67.5	0	67.5	0.4	1.6	600 K	625	－	－	－
106	Pentogrid Conv．	7DC	1.4	0.025	7	12	0.5	90	0	45	0.6	0.6	500 K	300	－	－	－
$2 \mathrm{C51}$	Medium－μ Twin Triode ${ }^{10}$	BCJ	6.3	0.3	2.2	1.0	1.3	150	－2	－	－	8.2	6.5 K	5500	35	－	－
2 E 30		760	6.0	0.65	9.5	6.6	0.2	250	450＊	250	3．3／7．4	44^{2}	63 K	3700	40^{5}	4500	4.5
								250	225＊	250	8．6／14．8	$88{ }^{2}$	－	－	80^{3}	90006	9
								250	－25	250	3／13．5	82^{2}	－	－	48^{5}	8000 ${ }^{\text {c }}$	12.5
								250	－30	250	4／20	$120{ }^{2}$	－	－	40^{5}	38006	17
3 A 4	Pwr．Amp．Pent．	7BB	1.4	0.2	4.8	4.2	0.34	135	－7．5	90	2.6	14.92	90K	1900	－	8000	0.6
			2.8	0.1				150	－8．4	90	2.2	14.12	100K				0.7
345	H．i．Twin Triade ${ }^{10}$	7BC	1.4	0．22	0.9	1.0	3.2	90	－2．5	－	－	3.7	8．3K	1800	15	－	－
3C4	Power Pentode	6BX	1.4	0.05	4.9	4.4	0.3	85	－5．2	85	1.1	5	125K	1350	－	13K	0.2
	Pwr．Amp．Pent．	6BX	1.4	0.05	－	－	－	90	－7	90	1.6	8.0	100K	1550	－	8000	0.25
3 E 5			2.8	0.025				90	－7	90	1.4	6.8	120K	1450	－	9000	0.225
	Pwr．Amp．Pent．	7BA	1.4	0.1	5.5	3.8	0.2	90	－4．5	90	2.1	9.5	100K	2150		10 K	0.27
304			2.8	0.05							1.7	7.7	120X	2000		10K	0.24
	Pwr．Amp．Pent．	7BA	1.4	0.1	－	－	－				1.4	7.4	100K	1575	－	8000	0.27
354			2.8	0.05				90	－7	67.5	1.1	6.1		1425			0.235
5BEB！	Triode	9EG	4.7	0.6	2.8	1.5	1.8	150	56^{*}	－	－	18	5K	8500	40	－	－
	Sharp Cut－off Pent．				4.4	2.6	0.04	250	$68 *$	110	3.5	10	400K	5200	－	－	－
6AB4	U．h．I．Triade	5CE	6.3	0.15	2.2	0.5	1.5	250	200＊	－	－	10	10．9K	5500	60	二	－
	Triode－Pentode	9AT	6.3	0.3	4.6	4.7	0.2	100	－2	－	－	4	－	1350	18	－	－
6ABE					－	－	－	200	－7．7	200	3.3	17.5	150K	3400	－	11k	1.4
6AD8	Duat Diode Pent．	9 T	6.3	0.3	4.0	4.6	0.002	250	－2	85	23	6.7	1 meg ．	1100	－	－	－
	U．h．I．－－Ar Amp．	70K	6.3	0.225	2.2	0.45	1.9	80	150＊	－	－	16	2270	6600	15	－	－
6AF4A	Triode Osc． 950 Mc ．							100	10K2	－	0.49	22	－	－	－	－	－
6AG5	Sharp Cur－ofl Pent．	7BD	6.3	0.3	6.5	1.8	0.03	250	180＊	150	2.0	8.5	800K	5000	－	－	－
								100	180^{*} ．	100	1.4	4.5	600 K	4550	－	二	－
6AH6	Sharp Cut－off Pent．Amp． Pent． Triode Amp．	7BK	6.3	0.45	10	2.0	0.03	300	160^{*}	150	2.5	10	500 K	9600	－	－	－
								150	160^{*}	ISO	2.5	12.5	3．6K	11 K	40	－	－
6AJ4	U．h．f．Triode	9 BX	6.3	0.225	4.4	0.18	2.4	125	$68 *$	－	－	16	4．2K	10K	42	－	－
		7BD	6.3	0.175	4.0	2.1	0.3	28	－1	28	1.0	2.7	100 K	2550	250	－	－
6AJ5	Pent．AB Amp．${ }^{3}$							180	－7．5	75	－	－	－	－	－	$28 \mathrm{~K}^{6}$	1.0
6AJE	Triode	9 9．	6.3	0.3	－	－	－	100	－2	102	3.8	6.5	700K	2400	－	－	－
	Heptode							250	0	－	－	13.5	5.9 K	3700	22	－	－
6 AK5	Sharp Cut－off Pent．	78D	6.3	0.175	4.0	2.8	0.02	180	200＊	120	2.4	7.7	690K	5100	－	－	－
								150	$33{ }^{*}$	140	2.2	7	420K	4300	－	－	－
								120	200＊	120	2.5	7.5	340K	5000	－	－	－
6 6AK6	Pwr．Amp．Pent．	7BK	6.3	0.15	3.6	4.2	0.12	180	－9	180	2.5	15	200k	2300	－	10K	1.1
6AK8	Triple Diode Triode	9 E	6.3	0.45	1.9	1.6	2.2	250	－3	－	－	1	58K	1200	70	－	－
6AL5	Twin Triode ${ }^{10}$	6BT	6.3	0.3	－	－		Max．r．m．s．voliage－117．Max．d．c．output current－9 ma．＇									
6AM4	U．h．I．Triode	98 X	6.3	0.225	4.4	0.16	2.4	150	100＊	－	－	7.5	10K	9000	90	－	－
6AM5	Pwr．Amp．Pent．	68CH	6.3	0.2	－	－	－	250	－13．5	250	2.4	16	130K	2600	－	16 K	1.4
6 GMG6	Sharp Cutooff Pent．	7DB	6.3	0.3	7.5	3.25	0.01	250	$\rightarrow 2$	250	2.5	10	1 meg．	7500	－	－	－
6AMB	Diode－Shorp Cur－ofl Pent．	9 CY	6.3	0.45	6.0	2.6	0.015	200	$120{ }^{*}$	150	2.7	11.5	600k	7000	－	－	－
6AN4	U．h．f．Triode	7DK	6.3	0.225	2.8	0.28	1.7	250	100^{*}	－	－	13	－	10K	70	－	－
6AN5	8 eam Pwr．Pent．	780	6.3	0.45	9.0	4.8	0.075	120	120^{*}	120	12	35	12．5K	8000	－	2500	1.3
6AN7	Triode－Hexade Cony．	90	6.3	0.23	Ose．－ $22 \mathrm{~K} \Omega$			250	－2	85	3	3	1 meg ．	750	Osc．Ebb－250 V14		
6ANE	Medium－μ Triode	90A	6.3	0.45	2.0	2.7	1.5	200	－6	－	－	13	5．75K	3300	－	－	－
	Sharp Cut－off Pent．				7.0	2.3	0.04	200	180＊	150	28	9.5	30K	6200	－	－	－
6 6a4	High $-\mu$ Triode	70T	6.3	0.3	8.5	0.2	2.5	250	－1．5	－	－	10	12K	8500	100	－	－
						8.2	0.35	180	－8．5	180	3／4	30^{2}	58K	3700	293	5500	2.0
6 AO5	8 oom Pwr．Pent．	782	6.3	0.45	8.3	8.2	0.35	250	-12.5	250	4．5／7	472	52K	4100	45^{3}	5000	4.5
								100	－1	－	－	0.8	61 K	1150	70	－	－
6A96	High－μ Triode	7BT	6.3	0.15	1.7	1.5	1.8	250	－3	－	－	1	58K	1200	70	00	－
								250	－16．5	250	5．7／10	35^{2}	65K	2400	34^{3}	7000	3.2
6AR5	Pwr．Amp．Pent．	6CC	6.3	0.4	－	－	－	250	－18	250	5．5／10	33^{2}	68 K	2300	32^{3}	7600	3.4
6ARB	Sheet 8eam	9DP	6.3	0.3	－	－	－			TV Co	lor Ckts．	Synchro	nous Detec	cror－8u	Gate		
6A55	8 eam Pwr．Amp．	7CV	6.3	0.8	12	6.2	0.6	150	－8．5	110	2／6．5	36^{2}	－	5600	35^{5}	4500	2.2
6AS6	Sharp Cut－ofl Pent．	7 CM	6.3	0.175	4	3	0.2	120	－2	120	3.5	5.2	110K	3200	－	－	－
6A58	Diode－Sharp Cut－off Pent．	9 DS	6.3	0.45	7	2.2	0.04	200	180＊	150	3	9.5	300 K	6200	－	－	二
6AT6	Duplex Diode－High $-\mu$ Triode	7BT	6.3	0.3	2.3	1.1	2.1	250	－3	－	－	1	58 K	1200	70	－	－
	Medium－μ Triode				2	0.5	1.5	100	100^{*}	－	－	8.5	6.9 K	5800	40	－	－
6ATB	Sharo Cut－off Pent．	90w	6.3	0.45	4.5	0.9	0.025	250	200^{*}	150	1.6	7.7	750K	4600	－	－	－
6AU6	Sharp Cut－oll Pent．	7BK	8.3	0.3	5.5	5	0.0035	250	68^{*}	150	4.3	10.6	1 meg．	5200	－	－	－

TABLE I－MINIATURE RECEIVING TUBES－Continued

Type	Name	Base	E_{1}	11	C_{n}	Cant	C_{8}	Eb	E_{51}	E_{62}	$\mathrm{l}_{\operatorname{ca} 2}$	1.	r_{p}	$g^{\prime \prime}{ }^{11}$	μ^{4}	Rt ${ }^{12}$	P．${ }^{13}$
6AUS！	Medium μ Triade	9 DX	6.3	0.6	2.6	0.34	2.2	150	150＊	－	－	9	8．2K	4900	40	－	－
	Sharp Cut－all Pent．				7.5	2.4	0.044	200	82＊	125	3.4	15	150 K	7000	－	－	－
6AV6	Dual Diade－High－μ ．Triade	78T	8.3	0.3	2.2	0.8	2.0	250	－2	－	－	1.2	62．5K	1600	100	－	－
	High－μ Triode	90x	6.3	0.6	3.2	0.32	2.2	200	－2	－	－	4	17．5K	4000	70	－	－
6awl	Sharp Cut－off Pent．				11	2.8	0.036	200	180^{*}	150	3.5	13	400 K	9000	－	－	－
6AX8	Medium－μ Triade	9AE	8.3	0.45	2.5	1	1.8	150	56^{*}	－	－	18	SK	8500	40	－	－
	Sharp Cut－aff Pent．				5	3.5	0.006	250	$12{ }^{\circ}$	110	3.5	10	400k	4800	－	－	－
6AZ8	Medium－μ Triode	9ED	6.3	0.45	2	1.7	1.7	200	－6	－	－	13	5．75K	3300	19	－	－
	Semiremote Cut－aff Pent．				6.5	2.2	0.02	200	180^{*}	150	3	9.5	300K	6000	－	－	－
6BA6	Remate Cut－aff Pent．	7BK	6.3	0.3	5.5	5	0.0035	250	68^{*}	100	4.2	11	1 mag．	4400	－	－	二
68A7	Pentogrid Canv．	ECT	6.3	0.3	Osc．－20k ${ }^{\text {a }}$			250	－1	100	10	3.8	1 mag ．	950	－	－	－
68A8 \ddagger	Madium $-\mu$ Triade	90X	6.3	0.6	2.5	0.7	2.2	200	－8	－	－	8	6700	2700	18	－	－
	Sharp Cut－off Pent．				11	2.8	0.036	200	180^{*}	150	3.5	13	400k	9000	－	－	－
$68 \mathrm{C4}$	U．h．f．Medium－μ Triode	9DR	6.3	0.225	2.9	0.26	1.6	150	100^{*}	－	－	14.5	4．8K	10K	48	－	－
68.5	Sharp Cut－off Pent．	78 D	6.3	0.3	6.5	1.8	0.03	250	180^{*}	150	2.1	7.5	800 K	5700	－	－	－
68.7	Triple Diade	9AX	6.3	0.45	Max．diode current per plate $=12 \mathrm{Ma}$ ．Max．htr．－cath，valts $=200$												
6 BCa	Medium－μ Twin Triada ${ }^{10}$	9AJ	6.3	0.4	2.5	1.3	1.4	150	$220 *$	－	－	10	－ 150	6200	35	－	－
6806	Remate Cut－off Pent．	7BK	6.3	0.3	4.3	5.0	0.005	100	－1	100	5	13	150K	2550	－	－	－
								250	－3	100	3	9	800k	2000	－	－	－
6807	Dual Diode－High－μ Triode	9 Z	6.3	0.23	2.4	1.3	1.3	250	－3	－	－	1	58K	1200	70	－	－
68 E6	Pentagrid Conv．	7CH	6.3	0.3	Osc．－20K8			250	－1．5	100	6.8	2.9	1 meg ．	475	－	－	－
68E7	Heplode Limiter－Disc．	9AA	6.3	0.2	$\mathrm{E}_{\mathrm{cs}} \mathrm{E}_{\mathrm{c} s}=12 \mathrm{v}$ ．r．m．s．			250	－4．4	20	1.5	0.28	5 meg ．	－	－	470K	－
68E8	Medium－μ Triode	9EG	6.3	0.45	2.8	1.5	1.8	150	$56 *$	0	－	18	5K	8500	40	－	－
	Sharp Cut－oll Pent．				4.4	2.6	0.04	250	68^{*}	110	3.5	10	400 K	5200	－	－	－
68F5	Beam Pwr．Amp．	782	6.3	1.2	14	6	0.65	110	－7．5	110	4／10．5	392	12K	7500	36^{5}	2500	1.9
68F6	Twin Diode－Medium－μ Triode	7BT	6.3	0.3	1.8	0.8	2	250	－9	－	－	9.5	8．5K	1900	16	10K	0.3
68H5	Remate Cut－aff Pent．	9AZ	6.3	0.2	4.9	5.5	0.002	250	－2．5	100	1.7	6.0	1.1 mag．	2200	－	－	二
$68 \mathrm{BH6}$	Shacp Cutooff Pent．	7CM	6.3	0.15	5.4	4.4	0.0035	250	－1	150	2.9	7.4	1.4 mog．	4600	－	－	－
68H89	Medium－μ Triode	9DX	6.3	0.6	2.6	0.38	2.4	150	－5	－	－	9.5	5.15 K	3300	17	－	－
	Sharp Cut－olf Pent．				7	2.4	0.046	200	82^{*}	125	3.4	15	150 K	7000.	－	－	－
68.35	Pwr．Amp Pent．	6CH	6.3	0.64	－	－	－	250	－5	250	5.5	35	40K	10．5K	420	7000	4
6816	Remote Cut－off Pent．	7CM	6.3	0.15	4.5	5.5	0.0035	250	－1	100	3.3	9.2	1.3 meg．	3800	－	－	－
68.7	Triple Diode	9AX	6.3	0.45	Max．peak inverse plate voltage $=330 \mathrm{~V}$ ．Max．d．c．plaie current oach diode $=1.0 \mathrm{Mo}$ ．												
$68.58 \ddagger$	Twin Diode－Medium－μ Triode	9ER	6.3	0.6	2.8	0.38	2.6	250	－9	－	－	8	7．15K	2800	20	－	－
6BK5	Beam Pwr．Pent．	98 C	6.3	1.2	13	5	0.6	250	－5	250	3．5／10	37^{2}	100K	8500	355	6500	3.5
6BK6	Twin Diode－High－μ Triode	7BT	6.3	0.3	－	－	－	250	－2	－	－	1.2	62.5 K	1600	100	－	－
6BK7A	Modium－μ Twin Triode ${ }^{10}$	9AJ	6.3	0.4	3	1	1.8	150	56^{*}	－	－	18	4.6 K	9300	43	－	－
$68 \mathrm{M5}$	Pwr．Amp．Pent．	7BZ	6.3	0.45	8	5.5	0.5	250	－6	250	3	30^{5}	60K	7000	－	7000	3.5
68N6	Gated－Beam Pent．	7DF	6.3	0.3	4.2	3.3	0.004	80	－1．3	60	5	0.23	－	－	－	68 K	－
6BN7	Twin Triode ${ }^{10}$	9AJ	6.3	0.75	5.5	$1 .{ }^{7}$	3^{7}	250	－15	－	－	24	2.2 K	5500	12	－	－
					1.48	0.38	0.74	120	－1	－	－	5	14K	2000	28	－	－
6BC7A	Medium－μ Twin Triode ${ }^{10}$	9AJ	6.3	0.4	2.85	1.35	1.15	150	$220 *$	－	－	9	6.1 K	6400	39	－	－
68R7	Sharp Cut off Pent．	98 C	6.3	0.15	4.25	4	0.01	250	－3	100	0.6	2.1	2.5 meg．	1250	－	－	－
6855	Beam Pwr．Amp．	98 K	6.3	0.75	9.5	4.5	0.3	250	－75	250	6.0	50.5	17K	7000	120	5000	4.5
6857	Sharp Cut－off Pent．	98 B	6.3	0.15	4	4	0.01	100	－3	100	0.7	2	1.5 meg ．	1100	－	－	－
6858	Law－Noise Twin Triode ${ }^{10}$	9AJ	6.3	0.4	2.6	1.35	1.15	150	$220{ }^{*}$	－	－	10	5K	7200	36	二	－
6856	Twin Diode－High－μ Triode	78T	6.3	0.3	－	－	－	250	－3	－	－	1	58K	1200	70	\cdots	－
68U6	Twin Diade－Low－μ Triode	7BT	6.3	0.3	－	－	－	250	－9	－	－	9.5	8．5K	1900	16	10K	0.3
$68 \mathrm{V7}$	Twin Diode－Pwr．Amp．Pent．	98 U	6.3	0.8	11.5	9.5	0.5	250	－5	250	6	38^{3}	100K	10K	－	8000	4
		9AM	6.3	0.45			－	315	－13	22.5	2.2	34^{5}	77K	3750	－	8500	5.5
68w6	Beam Pwr．Pent．	9AM	6.3	0.45	－	－	－	250	-12.5	250	4.5	45^{5}	52K	4100	－	5000	4.5
								180	100＊＊	180	3.8	10	600 K	9000	－	－	－
68W7	Sharp Cut－ofl Pent．	9AQ	6.3	0.3	10	3.5	0.01	250	180＊	180	3.7	10	750 K	8200	－	－	－
68×6	R．I．Pent．	9AO	6.3	0.3	7.2	3.4	0.007	170	－2	170	2.5	10	400 K	7200	－	－	－
68 Y 6	Pentagrid Amp．	7 CH	6.3	0.3	5.4	7.6	0.08	250	－2．5	100	9	6.5	$\mathrm{E}_{\text {c3 }}=$	－2．5V．	1900	－	－
$6 \mathrm{BY7}$	Remate Cut－off R．t．Pent．	9AQ	6.3	0.3	7.2	3.7	0.007	250	－2	100	2.5	10	500K	6000	－	－	－
6876	Semiramote Cut－off Pent．	7CM	6.3	0.3	7.5	1.8	0.02	200	180^{*}	150	2.6	11	600 K	6100	－	－	－
6827	Medium－μ Twin Triodele ${ }^{10}$	9AJ	6.3	0.4	2.5	1.35	1.15	150	$220 *$	－	－	10	5.6 K	6800	38	－	－
6C4	Medium－μ Triade	6BG	6.3	0.15	1.8	1.3	1.6	250	－8．5	－	－	10.5	7.7 K	2200	17	－	－
6CA5	Beam Pent．	7CV	6.3	1.2	15	9	0.5	125	－4．5	125	4／11	36^{2}	15K	9200	378	4500	1.5
6CB6	Sharp Cut－off Pent．	7CM	6.3	0.3	6.5	1.9	0.02	200	180^{*}	150	2.8	9.5	600k	6200	－	－	－
6CE5	R．f．Pent．	7 CM	6.3	0.3	6.5	1.9	0.03	200	180^{*}	150	28	9.5	600K	6200	－	－	－
6CF6	Sharp Cut－off Pent．	7CM	6.3	0.3	6.3	1.9	0.02	200	180＊	150	28	9.5	600 K	6200	－	－	－
6CG6	Semiremote Cut－off Pent．	78K	6.3	0.3	5	5	0.008	250	－8	150	2.3	9	720K	2000	－	－	－
6CG7 \ddagger	Medium－μ Twin Triode ${ }^{10}$	9AJ	6.3	0.6	2.3	2.2	4	250	－8	－	－	9	7．7K	2600	20	－	－
${ }_{6} 6 \mathrm{CH6}$	R．I．Pont．	9BA	6.3	0.75	14	5	0.25	250	－4．5	250	6	40	50K	11 K	－	－	－
$6 \mathrm{CH7}$	Medium－μ Twin Triode ${ }^{10}$	9EW	6.3	0.4	2.4	0.8	1.1	150	$220{ }^{*}$	－	－	10	5．3K	6800	36	－	－
$6{ }_{6}{ }^{\text {c }} 6$	Pwr．Amp．Pent．	9AS	6.3	1.05	14.7	6	0.8	250	－38．5	250	2.4	32	15K	4600	－	－	－
6 6CK6	Pwr．Amp．Pent．	9AR	6.3	0.71	11.2	6.6	0.1	250	－5．5	250	5	36	130K	10k	－	－	－
6 Cl 6	Pwr．Amp．Pent．	98V	6.3	0.65	11	5.5	0.12	250	－3	150	7／7．2	312	150K	11k	30^{5}	7500	2.8
$6 \mathrm{CM6}$	8 eam Pwr．Amp．	9CK	6.3	0.45	8	8.5	0.7	315	－13	225	2．2／6	35^{2}	80K	3750	34^{5}	8500	5.5
	Medium μ Triode No． 1	9ES	6.3	0.6	2	0.5	3.8	200	－7	－	－	5	IIK	2000	20	－	－
6CM7！	Twin Triode Triode No． 2	$9 E 5$	6.3	0.6	3.5	0.4	3	250	－8	－	－	10	4．1K	4400	18	－	－
			6.3	0.3	1.5	0.5	1.8	100	－1	－	－	0.8	54 K	1300	70	－	－
6CNT \ddagger	Twin Diode－High－μ Triode	PEN	3.15	0.6	1.5	0.5	1.8	250	－3	－	－	1	58K	1200	70	－	－
$6{ }_{6} \mathrm{Cab}^{6}$	Remato Cut－off Pent．	7DB	6.3	0.2	7	4.5	0.01	250	－2．5	200	2	7.8	－	2500	－	－	－
6CR6	Diode－Remote Cut－oll Pent．	7EA	6.3	0.3	－	－	－	250	－2	100	3	9.5	200k	1950	－	－	－
$6 \mathrm{CS5}$	Pentagrid Amp．	7 CH	6.3	0.3	5.5	7.5	0.05	100	－1	30	1.1	0.75	1 meg．	950	$\mathrm{E}_{\mathrm{c} 3}=$	0 V ．	－
	Medium－$\mu \quad$ Triode No． 1	9EF	6.3	0.6	1.8	0.5	2.6	250	－8．5	－	－	10.5	7．7K	2200	17	－	－
6C57 \ddagger	Twin Triode Triode No． 2	9 EF	6.3	0.6	3.0	0.5	2.6	250	－10．5	－	－	19	3.45 K	4500	15.5	－	－
6D86	Sharp Cut－off Pent．	7 CM	6.3	0.3	6	5	0.0035	150	－1	150	6.6	5.8	50K	2050	$\mathrm{E}_{63}=$	－3V．	－
60C6	Semiremote Cut－off Pent．	7 CM	6.3	0.3	6.5	2	0.02	200	180^{*}	150	3	9	500K	5500	－	－	－
60E6	Sharp Cut－off Pent．	7 CM	6.3	0.3	6.3	1.9	0.02	200	180^{*}	150	2.8	9.5	600 K	6200	－	－	－

TABLE I-MINIATURE RECEIVING TUBES-Continued

Type	Name	Baso	Et	14	Cin	C_{0}	$\mathrm{C}_{\text {g }}$	E_{56}	E_{61}	E_{02}	$\mathrm{I}_{\text {ce } 2}$	1.	$r_{\text {b }}$	gm ${ }^{11}$	μ^{4}	R $\mathrm{l}_{1}{ }^{2}$	Pa'
6 676	Sharp Cut-off Pent.	TEN	6.3	0.3	5.8	-	0.02	150	560°	100	2.1	1.1	150k	615	-	-	
614	Grounded-Grid Triode	780	6.3	0.4	7.5	3.9	0.12	150	$10{ }^{\circ}$	-	-	15	4.5K	12K	55	-	-
616	Medium- μ A $_{1}$ Amp Iwin Triode \quadMixer	7BF	6.3	0.45	2.2	0.4	1.6	100	50^{*}	-	-	8.5	7.1K	5300	38	-	-
								150	810^{*}	-	-	4.8	10.2K	1900	Osc. peak voltoge $=3$		
6M5	Pwr. Amp. Pent.	9 N	6.3	0.71	10	6.2	1	250	$17{ }^{*}$	250	5.2	36	40K	10K	-	7000	3.9
6 6N4	U.h.f. Triode	7 CA	6.3	0.2	3	1.6	1.1	180	-3.5	-	-	12	5.4K	6000	32	-	
6N8	Twin Diode-Pent.	97	6.3	0.3	4	4.6	0.002 -	250	$295{ }^{\text {* }}$	85	1.75	5	1.6 meg.	2200	35	-	
604	H.I. Triode	95	6.3	0.48	5.4	0.06	3.4	250.	-1.5	-	-	15	-	12K	80	-	
6 64	H.f. Triode	9 R	6.3	0.2	1.7	0.5	1.5	150	-2	-	-	30	-	5500	16	-	
6 688	Triple Diode-Triode	$9 E$	6.3	0.45	1.5	1.1	2.4	250	-9	-	-	9.5	$8.5 K$	1900	16	10K	0.3
654	Madium- μ Triode	9AC	6.3	0.6	4.2	0.9	2.6	250	-8	-	-	26	3.6 K	4500	18	-	
674	U.h.f. Triode	7DK	6.3	0.225	2.6	0.25	1.7	80	150*	-	-	18	1.86 K	7000	13	-	
678	Triple Diode-High- μ Triade	$9 E$	6.3	0.45	1.6	1	2.2	100	-1	-	-	0.8	54 K	1300	70	-	
								250	-3	-	-	1	58K	1200	70°	-	-
618	Medium- μ, Triode	9AE	6.3	0.45	2.5	0.4	1.8	150	56^{*}	-	-	18	SK	8500	40	-	
	Sharp Cut-ofl Pent.				5	2.6	0.01	250	68^{*}	110	3.5	10	400 K	5200	-	-	
6ve	Triple Diode-Triode	9AH	6.3	0.45	-	-		100	-1	-	-	0.8	54K	1300	70	-	
		9AK				-		250	-3	-	-	1	58 K	1200	70	-	
8	Medium- μ Triode		6.3	0.45	2.0	0.5	1.4	100	$100 *$	-	-	8.5	6.9 K	-	40	-	
	Sharp Cut-off Pent.				4.3	0.7	0.09	250	200°	150	1.6	7.7	750 K	-	-	-	
$12 \mathrm{A4}$	Medium- μ Triode	9AG	12.6	0.3	4.9	0.9	5.6	250	-9	-	-	23	2.5K	8000	20	-	
1244			6.3	0.6				250	-12.5	-	-	4.4	-	-	-	-	
12AB5	$\text { Beam Pwr. Amp. } \frac{A_{1} \text { Amp. }}{A B_{1} \text { Amp. }{ }^{3}}$	9 FU	12.6	0.2	8	8.5	0.7	250	-12.5	250	4.5/7	472	SOK	4100	45^{5}	5000	4.5
12AbS								250	-15	250	5/13	792	60K1	3750	70^{5}	10k ${ }^{\circ}$	10
12AH8	Triode-Heptode Converter	98P	$\frac{12.6}{6.3}$	0.15 0.3	$\begin{aligned} \text { Osc. } I_{81} & =0.2 \mathrm{ma} . \\ \text { Osc. } & =47 \mathrm{~K} \Omega \end{aligned}$			250	-3	100	4.4	2.6	1.5 meg.	550	$\begin{gathered} \mathrm{Ets}_{60} \text { Triode Osc. }=100 \\ \mathrm{I}_{\mathrm{b}} \text { Triode }=5.3 \mathrm{mo} . \end{gathered}$		
12 AO	$\text { Beam Pwr. Amp. } \frac{A_{1} A_{m p} .}{A B_{1} A_{m p .}^{3}}$	782	12.6	0.225	8.3	8.2	0.35	250	-12.5	250	4.5/7	472	52K	4100	45^{5}	5000	4.5
12AGS								250	-15	250	5/13	792	60K1	3750^{1}	70^{5}	10K ${ }^{6}$	10
12417	High- μ Twin Triode ${ }^{10}$	9A	12.6	0.15	2.27	0.57	1.57	100	270^{*}	-	-	3.7	15K	4000	60	二	
			6.3	0.3	2.28	$0.4{ }^{\circ}$	1:50	250	$200 *$	-	-	10	10.9K	5500	60	-	
12AU7A	Medium- μ Twin Triade ${ }^{10}$	9A	12.6	0.15	1.67	0.57	1.57	100	0	-	-	11.8	6.25 K	3100	19.5	-	-
			6.3	0.3	1.68	$0.35{ }^{\circ}$	1.50	250	-B.5	-	-	10.5	7.7 K	2200	17	-	-
12AV7	Madium- μ Twin Triode ${ }^{10}$	9A	12.6	0.225	3.17	0.57	1.97	100	120°	-	-	9	6.1 K	6100	37	-	
			6.3	0.45	3.15	0.48	1.98	150	55°	-	-	18	4.8K	8500	41	-	
12AW6	Sharp Cut-off Pent.	7CM	12.6	0.15	6.5	1.5	0.025	250	200°	150	2	7	800K	5000	42	-	
	High- $\mu \quad$ A ${ }^{\text {Amp. }{ }^{10}}$	9A	12.6	0.15	1.67	$0.46{ }^{7}$	1.77	250	-2	-	-	1.2	62.5K	1600	100	-	
12AX7	Twin Triode Closs 87.0		6.3	0.3	$1.6{ }^{2}$	$0.34{ }^{\circ}$	1.78	300	0	-	-	40^{2}	-	-	145	$16 \mathrm{~K}^{8}$	7.5
12AY7	Madium- μIwin Triodel'A 1 Amp.low-level Amp.	94	12.6	0.15	1.3	0.6	1.3	250	-4	-	-	3	-	1750	40	-	二
			6.3	0.3				150	2700*	Plote resistor $=20 \mathrm{~K}$. Grid ressistor $=0.1 \mathrm{meg} . \mathrm{V}$. G. $=12.5$							
$12 \mathrm{AZ7}$	High- μ Twin Triode ${ }^{10}$	9A	12.6	0.225	3.17	0.57	1.97	100	270°	-	-	3.7	15K	4000	60	-	
			6.3	0.45	3.16	$0.4{ }^{\text {B }}$	1.98	250	$200 *$	-	-	10	10.9K	5500	60	-	
1284	low- μ Triode	9AG	$\underline{12.6}$	0.3 0.6	5	1.5	4.8	150	-17.5	-	-	34	1.03K	6300	6.5	-	-
128H7	Medium- μ Twin Triode ${ }^{10}$	9 A	12.6	0.3	3.2	0.57	2.67	250									
			6.3	0.6	3.28	0.41	$2.6{ }^{8}$		-10.5	-	-	11.5	5.3K	3100	16.5	-	-
12887	Twin Diode-Medium- μ Triode	9CF	12.6	0.225	2.8	1	1.9	100	270^{*}	-	-	3.7	15K	4000	60	-	
			6.3	0.45				250	200^{*}	-	-	10	10.9K	5500	60	-	
128 V 7	Shorp Cut-off Pent.	9BF	12.6	0.3	11	3	0.055	250	68°	150	6	25	90K	12K	1100	-	
			6.3	0.6					68	150	6	25	\%	12 K	1100	-	
128Y7	Sharp Cut-off Pent.	98F	12.6	0.3	11.1	3	0.055	250	68°	150	6	25	90K	12K	1200	-	-
12827			6.3	0.6				250									
	High- μ Twin Triode ${ }^{10}$	9A	12.6	0.3	6.57	0.77	2.57		-2	-	-	2.5	31.8K	3200	100	-	
12CR6	Diode-Remote Cut-off Pent.	7EA	12.6	0.15	-	-	-	250	-2	100	2.6	9.6	800 K	2200	-	-	
12H4	General Purpose Triode	7DW	12.6	0.15	2.4	0.9	3.4	90	0	-	-	10	-	3000	20	-	
			6.3	0.3				250	-8	-	-	9	-	2600	20	-	
3585	Beom Pwr. Amp.	782	35	0.15	11	6.5	0.4	110	-7.5	110	3/7	412	-	5800	40^{5}	2500	1.5
5085	Beom Pwwr. Amp.	782	50	0.15	13	6.5	0.5	110	-7.5	110	4/8.5	502	14K	7500	49s	2500	1.9
5590	R.f. Pent.	7BD	6.3	0.15	3.4	2.9	0.01	90	820°	90	1.4	3.9	300K	2000	-	-	-
5608	Shorp Cut-off Pent.	7BD	6.3	1.75	4	2.9	0.02	120	-12	120	2.5	7.5	340K	5000	-	-	-
5610	Triode	6CG	6.3	0.15	-	-	-	90	-1.5	-	-	17	3.5K	4000	14	-	-
5656	Twin Tetrode ${ }^{10}$	$9 F$	6.3	0.4	3.6	1.5	0.06	150	-2	120	27	15	60K	5800	-	-	-
5686	Beam Pwr. Pent.	9 C	6.3	0.35	6.4	${ }^{8} 8.5$	0.11	250	-12.5	250	3^{3}	27^{7}	45K	3100	-	9000	27
5687	Medium- μ Twin Triode ${ }^{10}$	9H	12.6	0.45	47	$0.6{ }^{7}$	47	120	-2	-	-	36	1.7 K	IIK	18.5	-	
			6.3	0.9	48	$0.5{ }^{5}$	48	250	-12.5	-	-	12.5	3K	5500	16.5	-	-
5722	Noise Generating Diode	5CB	6.3	1.5	-	2.2	-	200	-	-	-	35	-	-	-	-	
5842		9 V	6.3	0.3	1.6	0.5	1.5	150	62°	-	-	26	1.8K	24 K	43	-	
5847	Sharp Cut-off Pens.	9 X	6.3	0.3	7.1	$2.9{ }^{\circ}$	0.04	160	-8.5	160	4.5	-	-	12.5K	-	-	
5879	Sharp Cut-off Pent.	9AD	6.3	0.15	2.7	2.4	0.15	250	-3	100	0.4	1.8	2 meg .	1000	-	-	
$\begin{array}{r} 6028 \\ \frac{6045}{6} \end{array}$	Sharp Cul-off Pent.	7BD	20	0.05	4	2.8	0.02	120	180^{*}	120	2.5	7.5	300 K	5000	-	-	-
	Medium- μ Twin Triode ${ }^{10}$	78F	6.3	0.35	2	0.45	1.3	100	50^{*}	-	-	9	5.9 K	6400	38	-	-
6216	$\begin{array}{ll}\text { Beam Pwr. } \\ \begin{array}{l}\text { Amp. }\end{array} & \text { Al Amp. } \\ \text { Filer Reactor } \\ \text { Pry }\end{array}$	Fig.73	6.3	1.2	12.3	6.7	0.37	200	-6	100	2/4	51^{2}	38K	8800	47^{3}	4500	3.8
								100	-3	100	3	70	18.5K	12.8 K	$\mathrm{R}_{81}=0.1 \mathrm{meg}$. .		
6227	Pwr. Pent.	9BA	6.3	0.75	11.5	7	-	200	130^{*}	200	4.1	30	90 K	9000	-	-	28
6287	Beam Pwr. Amp.	9 CT	6.3	0.6	8	9	1.1	250	-12.5	250	5/10.5	482	55K	4100	465	6000	4.5
6386	Medium- μ Twin Triode ${ }^{10}$	8 CJ	6.3	0.35	2	1.1	1.2	100	$200 *$	-	-	9.6	4.25K	4000	17	-	
9001	Sharp Cut-off Pent.	780	6.3	0.15	3.6	3	0.01	250	-3	100	0.7	2	1 meg.t	1400	-	-	-
9002	U.h.f. Triode	7BS	6.3	0.15	1.2	1.1	1.4	250	-7	-	-	6.3	11.4 K	2200	25	-	-
9003	Remote Cur-off Pent.	7BD	6.3	0.15	3.4	3	0.1	250	-3	100	2.7	6.7	700K	1800	-	-	
9006	U.h.i. Diode	68H	6.3	0.15	-	-	-		c. vols		Max						

\ddagger Controllod heater warm-up characteristic.

- Oscillator gridleak or screen-dropping resistor ohms.
* Cothode resistor-ohms.
${ }^{2}$ Moximum-signol current for full-power oulpuf.
3 Values ore for two tubes in push-pull.
${ }^{4}$ Unless otherwise noted.
s No signol plote mo.
- Effective plate-to-plote.

7 Triode No. 1.

- Triade No. 2.
- Oscillotor grid current ma.

10 Volues for each section.
"Micromhos.
${ }^{12}$ Ohms.
${ }^{13}$ Watts.
14 Through 33K.

TABLE II-METAL RECEIVING TUBES
Characteristics given in this fable apply to all tubes having type numbers shown, including metal tubes, glass tubes with "G" suffix, and bantam tubes with "GT" suffix
For "G" and "GT" tubes not listed (not having metal counterparts), see Tables III, V, VI and VIII.

TABLE III－6．3－VOLT GLASS TUBES WITH OCTAL BASES
（For＂G＂and＂GT＂－rype tubes not listed here，see equivalent type in Tables Il and Vili；characleristics and connections will be similar）

Type	Name	Base	E_{1}	4	C	Com	$\mathrm{Cop}_{\text {g }}$	$\mathrm{E}_{\text {b }}$	$E_{c 1}$	E62	1882	16	Pp	gm ${ }^{10}$	μ	R（11	P0 ${ }^{12}$
$2 \mathrm{E22}$	Disc－Seol Diode	Fig． 37	6.3	0.75	－	2.2	－	Average Cathode $\mathrm{Ma}=5$ ；Oulput Volts $=50$ d．c．								10 K	－
$2 \mathrm{C22}$	Triode	4AM	6.3	0.3	2.2	0.7	3.6	300	－10．5	－	－	11	6.6 K	3000	20	－	－
6A5GT	Triode Pwr．Amp．$\frac{A_{1} \text { Amp．}{ }^{3}}{A_{1} \text { Amp．}}{ }^{4}$	$6 T$	6.3	1.25	－	－	－	250	－45	－	－	60^{6}	0.8 K	5250	4.2	2500	3.75
6AC5GT	Triode Pwr．Amp．AB Amp．${ }^{4}$	60	6.3	0.4				325	－68	－	－	804	－	－	－	3000	15
6AD7G	Triode－ Pwr．Amp．Pent． $\frac{T}{\text { Priode }}$	8AY	6.3	0.85	－	－	－	250	－25	－	二	5	36．7K 19 K	3400	125	OK＇	8
								250	－16．5	250	6．5／10．5	34／36	80K	2500	－	7000	3.2
6AH4GT	Medium μ Triode	8 EL	6.3	0.75	7	1.7	4.4	250	-23	－	－	30	1.78 K	4500	8	－	－
6AH7GT	Madium．μ Twin Triode ${ }^{1}$	8BE	6.3	0.3	－	－	－	180	－6．5	－	－	7.6	8.4 K	1900	16	－	－
6AL7GT	Electran－Ray Indicasor	8CH	6.3	0.15	－	－	－	Outer edge of any of the three illuminated areas displaced $1 / 4 \mathrm{sin}$ ．min．outword with +5 volts to its electrode．Similor inward disp．with -5 volis．No pottern with -6 volts grid．									
6A07GT	Twin Diode－High－μ Triode	${ }^{\text {8CK }}$	6.3	0.3	2.8	3.2	3	250	－2	－	－	2.3	44K	1600	70	－	－
6AR6	8eam Pent．	680	6.3	1.2	11	7	0.55	250	－22．5	250	5	77	21 K	5400	－	－	－
6AR7GT	Twin Diode－Remote Pent．	7DE	6.3	0.3	5.5	7.5	0.003	250	－2	100	1.8	7	1.2 meg ．	2500	－	－	－
6A57G	Low－μ Twin Triode－D．C．Amp．＇	8BD	6.3	2.5	6.5	2.2	7.5	135	250＊	－	－	125	0.28 K	7000	2	－	－
6AU5GT	Beam Pwr．Amp ${ }^{3}$	6CK	6.3	1.25	11.3	7	0.5	115	－20	175	6.8	60	6 K	5600	－	－	－
6AV5GT	8eam Pwr．Amp．${ }^{\text {d }}$	6CK	6.3	1.2	14	7	0.7	250	－22．5	150	2.1	55	20K	5500	－	－	－
68D5GT	Beam Pwr．Amp．${ }^{\text {P }}$	6CK	6.3	0.9		－	－	310	-2007	310	－	900	－	－	－	－	－
68G6G	Beom Pwr．Amp．${ }^{\text {s }}$	5BT	6.3	0.9	12	6.5	0.34	250	－15	250	4	75	25K	6000	－	－	－
68L7GT	Medium $-\mu$ Twin Triode ${ }^{\text {a }}$	8BD	6.3	1.5	5	3.2	4.2	250	－9	－	－	40	2.15 K	6200	15	－	－
6C8G	Iwin Triodel	880	6.3	$\frac{1.5}{0.3}$	5 2.6	3.4	4.2 2.6	250	390＊	二	－	42	1．3K	7600	10	－	－
$6 \mathrm{CB5}$	8eam pwr．Amp．${ }^{\text {d }}$	86D	6.3	2.5	24	10	0.8	175	－40	175	6	3.2	22．5K	1600 8800	36	－	\cdots
6CD6G	8eom Pwr．Amp．＊	58T	6.3	2.5	24	9.5	0.8	175	－30	175	5.5	75	7．2K	7700	二	－	－
6 CUS	Beam Pwr．Amp．${ }^{2}$	6AM	6.3	1.2	15	7	0.55	250	－22．5	150	2.1	55	20K	5500	－	－	－
6DN6	8 eam Pwr．Pent．${ }^{\text {a }}$	5BT	6.3	2.5	22	11.5	0.8	125	－18	125	6.3	70	4K	9000	－	－	－
6006	8eom Pwr．Amp．${ }^{\text {\％}}$	6AM	6.3	1.2	15	7	0.55	250	－22．5	150	2.4	75	20K	6000	－	－	－
6F8G	Twin Triodel	8 G	6.3	0.6		－		250	－8	－	－		7．7K	2600	20	－	－
6G6G	$\text { 8eom Pwr. Amp. } \frac{A_{1} \text { Amp. }}{A_{1} \text { Amp. }{ }^{2}}$	75	6.3	0.15	5.5	7	0.5	180	－9	180	2.56	15^{6}	175K	2300	－	10K	1.1
6H8G		8 E	6.3	0.3	－	－		180 250	-12 -2	－	－	11	4．75K	2000	9.5	12K	0.25
6K6GT	Pwr．Amp．Pent．	75	6.3	0.4	5.5	6	0.5	315	－21	250	4／8	85／28	650k	2400	－	00	－
6M7G	R．I．Pentode	7R	6.3	0.3	－	－	－	250	－2．5	25	2.8	25／28	900k	3100	－	9000	4.5
6P8G	Triode．Hexode Conv．	8K	6.3	0.8	－	－	－	250	－2	75	1.4	1.5	$\mathrm{E}_{\text {bt }}$ Trio	$0=100$	V．Ib T	ode $=2$	
656GT	Remote Cut－oll Pent．	SAK	6.3	0.45	－	－	－	250	－2	100	3	13	350 K	4000	－	－	－
658GT	Triple－Diode Triode	8CB	6.3	0.3	1.2	5	2	250	－2	－	－	－	91K	1100	100	－	－
65D7GT	Semi－Remote Pent．	8 N	6.3	0.3	9	7.5	0.0035	250	－2	125	3	9.5	700K	4250	，	－	－
6557 GT	High－μ Twin Triode＇	88D	6.3	0.3	3.4	3.8	2.8	250	－2	－	－	2.3	44K	1600	70	－	－
65N7GT	Medium．μ Twin Triode ${ }^{1}$	8BD	6.3	0.6	3	1.2	4	250	－8	－	－	9	7．7K	2600	20	－	－
6U6GT	Beam Pwr．Amp．	7AC	6.3	0.75	－	10	0.	200	-14 -13	135	3／13	55／62	20K	6200	－	3000	5.5
6W6GT	Beam Pwr．Amp．	6AO $74 C$	6.3	0.45 1.2	15	10	0.6	315	－13	225	2．2／6	34／35	77K	3750	－	8500	5.5
6X6G	Electron－Ray indicator	7 Cl	6.3	1.2	15	－	0.5	200	0 v for $300^{\circ} \mathrm{L}$ m			48／47	28 K	8000	－	4000	3.8
6Y6G	Beom Pwr．Amp．	75	6.3	1.25	$\overline{15}$	－	0.7	250				a．-8 v	for $0^{\circ} .0$	ma．Von	grid	5 v ．	
717A	H．1．Pentode	9BK	6.3	0.175	－	－	－	120	－14	135	2．2／9	61／66	18．3K	7100	－	2600	6
1635	Migh－μ Twin Triade	88	6.3	0.6	－	－	－	300	0	－	2.5	7.5	250K	4000	－	－	－
5694	Medium－μ Twin Triode	$8 \mathrm{C5}$	6.3	0.8	Sections in parallel			300	－6	－	－	6．6／54	11 K	3200	35	12K3	10.4
－Cathode resistor－ohms． I Per section． ${ }^{2}$ Screen tied to plate．		3 Values ore for single tube． 4 Volues are for two fubes in push－pult． ${ }^{3}$ Plote－to－plote value．						－No signal current． 7 Max．value． －Horz．Deilection Amp．				${ }^{9}$ Cathode current． ${ }^{10}$ Micromhos．				$\begin{aligned} & 11 \mathrm{Oh} \\ & 12 \mathrm{Wo} \end{aligned}$	

TABLE IV－6．3－VOLT LOCK－IN－BASE TUBES
For other lack－in－base types see Tables \mathbf{V}, VI ，and $\mathbf{V I I}$

table V－1．5－VOLt filament battery tubes
See also Table VII for Special 1．4－velt Tubes

table vi－high－voltage heater tubes
See olso Toble Vill．

Type	Name	Base	E_{4}	$1 ;$	$\mathrm{C}_{\text {in }}$	Corr	$\mathrm{Cap}_{\mathrm{g}}$	E_{bb}	Ecl	$\mathrm{E}_{2} 2$	$\mathrm{Ic}_{\mathbf{0} 2}$	I_{6}	${ }^{\prime}$	．9．4	μ	R！${ }^{\text {s }}$	P9 ${ }^{\text {d }}$
$\overline{2 C 52}$	High－μ Twin Triode ${ }^{\text {a }}$	8BD	12.6	0.3	2.3	0.75	2.7	250	－2	－	－	1.3	－	1900	100	－	－
12A6	Beom Pwr．Amp．	7AC	12.6	0.15	8	9	0.3	250	－12．5	250	3．5／5．5	30／32	70K	3000	－	7500	3.4
12AH7GT	Medium μ 佼in Triode ${ }^{1}$	8BE	12.6	0.15	3.2	3	3	180	－6．5	－	－	7.6	8．4K	1900	16	－	－
12B6M	Diode－Triade	$6{ }^{6}$	12.6	0.15	－	－	－	250	－2	－	－	0.9	91K	1100	100	－	－
1287	Remote Cut－off Pent．	8 V	12.6	0.15	5.5	7	0.005	250	－3	100	2.4	9.2	800 K	2000	－	－	－
12G7G	Twin Diode－Triade	$7 V$	12.6	0.15	－	－	－	250	－3	－	－	－	58K	1200	70	－	－
							0.6	110	－7．5	110	4／10	49／50	13 K	8000	－	2000	2.1
1216GT	Beam Pwr．Pent．	7 AC	12.6	0.6	15	10	0.6	200	180^{*}	125	2．2／8．5	46／47	28K	8000	－	4000	3.8
$\overline{125 Y 7}$	Heprode Conv．	8R	12.6	0.15	Osc．	rid le	20 K.	250	－2	8.5	3.5	－	1 meg．	450	－	－	－
25AC5GT	High μ Triode	60	25	0.3	Dyn	nic Co	led	110	＋15	－	－	45	15.2	3800	58	2000	2
	Twin Beom－A_{2} Amp．${ }^{1}$							28	－3．5	28	1／1．9	12．5／8	4.2 K	3400	－	4000	0.1
$28 \mathrm{D7}$	Pwr．Amp．A A Amp．${ }^{2}$	abs	28	0.4	－	－	－	28	180＊	28	1．2／2．5	18．5／14	－	－	－	$6000{ }^{3}$	0.175
3545	Beom Pwr．Amp．	6AA	35	0.15	－	－	－	110	－7．5	110	3／7	40／41	16K	5800	－	2500	1.5
43	Pwr．Amp Pent．	68	25	0.3	8.5	12.5	0.2	160	－18	120	6．5／12	33／36	42 K	2375	－	5000	2.2
50C6GT	Beam Pwrr．Amp．	7 AC	50	0.15	－	－	－	200	－14	135	2．2／9	61／66	18．3K	7100	－	2600	6
117L7GT／		840	117	0.09	－	－		A．c．plote（r．m．s．I 117 V ．max．D．c．output current 95 mo．max．									
117 M GGT	8eom．Pwr．Amp．	840	117	0.09	－	－	－	105	－5．2	105	4／5．5	43	17K	5300	－－	4000	0.85
117N7GT	Rect，－Beom Pwr．Amp．	8AV	117	0.09	Rect．some as 11707GT			100	－6	100	5	51	16 K	7000	－	3000	1.2
1284	U．h．f．Pentode	8 V	12.6	0.15	5	6	0.01	250	－3	100	2.5	9	800K	2000	－	－	－
5824	Beam Pwr．Pent．	7AC	25	0.3	－	－	－	135	－22	135	2．5／14．5	61／69	15K	5000	－	1700	4.3
6082	Iow－μ Twin Triode ${ }^{1}$	8BD	26.5	0.6	6	2.2	8	135	$250 *$	－	－	125	0．28K	7000	2	－	－

＊Cothode resistor－ohms．
1 Each section．
3 Plote－to－plote
－Micromhos．
${ }^{5}$ Whms．
tABLE VII－SpECIAL RECEIVING TUBES

Type	Name	Base	E_{1}	1	$\mathrm{C}_{\text {in }}$	Cout	$\mathrm{C}_{\text {g }}$	$\mathrm{Ebb}_{\text {b }}$	$\mathrm{E}_{\text {ct }}$	E_{62}	$\mathrm{Itg}^{\text {2 }}$	I_{b}	p_{p}	$9{ }^{4}{ }^{4}$	μ	$\mathrm{R}_{1}{ }^{5}$	$P_{0}{ }^{\circ}$
3C6	Medium－μ Twin Triode	7BW	2.82	0.05	－	－	－	90	0	－	－	4.5	11.2 K	1300	14.5	－	－
305GT	Boam Pwr．Amp．	7 AP	2.82	0.05	8	6.5	0.6	90	－4．5	90	1.3	9.5	90K	2200	－	8000	0.27
4A6G	Twin Triode＇	81	43	0.06	－	－	－	90	－1．5	－	－	1.2	28 K	900	25	－	－
$6 \mathrm{BY4}$	Ceromic U．h．f．Triode	－	6.3	0.25	2	0.007	0.7	200	$200 *$	－	－	5	16.7 K	6000	－	－	二
$6 F 4$	Acorn Triode	78R	6.3	0.225	2	0.6	1.9	80	$150{ }^{*}$	－	－	13	2.9 K	5800	17	－	－
614	Acorn Triode	78R	6.3	0.225	1.8	0.5	1.6	80	150＊	－	－	9.5	4．4K	6400	28	－	－
7E5／1201	M．f．Triode	88 N	6.3	0.15	3.6	2.8	1.5	180	－3	－	－	5.5	12 K	3000	36	－	－
	Detector Amp．－Al Amp．	588	6.3	0.15	3.4	3	0.007	250	－3	100	0.7	2	$1 \mathrm{meg} .+$	1400	－－	－	－
954	Pentode（Acorn）Detector							250	－6	100	1 l adjusted to 0.1 ma ．with no signal．					250 K	－
		5BC	6.3	0.15	1	0.6	1.4	250	－7	－	－	6.3	11.4 K	2200	25	－	－
955	Medium－μ Triode（Acorn）							90	－2．5	－	－	2.5	14．7K	1700	25	－	－
		5BB	6.3	0.15	3.4	3	0.007	250	－3	100	2.7	6.7	700K	1800	－	－	－
956	Pent．（Acorn）Mixer							250	－ 10	100	Oscillator peak valts -7 min．					－	－
958－A	Medium－μ Triode（Acorn）	5BD	1.25	0.1	0.6	0.8	2.6	135	－7．5	－	－	3	10K	1200	12	－	－
959	Shorp Cut－off Pent．（Acorn）	5BE	1.25	0.05	1.8	2.5	0.015	135	－3	67.5	0.4	1.7	800K	600	－	－	－
1609	Amplifier Pentode	5B	1.1	0.25	7	7	1	135	－1．5	67.5	0.65	2.5	400k	725	－	－	－
5731	Pwr．Amp．Triode（Acorn）	5BC	6.3	0.15	1	0.4	1.3	250	－7	－	二	6.3	11.4 K	2200	25	－	－
5768	U．h．f．＂Rocket＂Triode	Fig． 36	6.3	0.4	1.2	0.01	1.3	250	－1	－	－	9.3	－	4500	85	－	－
6173	U．h．f．＂Pencil＂Diode	Fig． 67	6.3	0.135	Plote to $\mathrm{K}=1.1$			Peok inverse－ 375 Volts．Peok $\mathrm{I}_{\mathrm{p}}-50 \mathrm{Mo}$. Max．d．c．output－5．5 Mo．									－
6299	Low Noise U．h．l．Triode	－	6.3	0.35	3.5	0.01	1.7	175	200－ohm var．cothade res．			10	Operation of 1200 Mc ．				
9004	U．h．f．Diode（Acorn）	4BJ	6.3	0.15	Plote to $K=1.3$				Mox．	c．voll	ge－11	Max	d．c．outpu	current	5 mo		－
9005	U．h．f．Diode（Acorn）	5BG	3.6	0.165	Plate to $\mathrm{K}=0.8$				Mox．o．c．voltage－117．Mox．d．c．outpul current－1 mo．								－

[^12]${ }^{2}$ Center－tap filament permits 1.4 －valt aperation．
${ }^{4}$ Micromhos．
－Worts．
s Ohms．

TABLE VIII-EQUIVALENT TUBES

Type	Prblotype and Table		Dissimilarity ${ }^{14}$	Base	E_{i}	It	$\mathrm{C}_{\text {in }}$	$\mathrm{C}_{\text {ant }}$	Cap
1153	liE3	V	None.	4AA	1.4	0.05	1.7	3	1.7
1LH4	1H5GI	V	Base.	5AG	1.4	0.05	1.1	4.6	,
2AF4A \ddagger	6AF4A	1	$\mathrm{Ef}_{\mathrm{f}} \mathrm{l}_{4}$	7DK	2.35	0.6	22	0.45	1.9
2T4 \ddagger	6 T4	1	$\mathrm{E}_{\mathrm{t}}-\mathrm{I}_{4}$	70K	3.15	0.6	2.9	0.25	1.7
3AL5 \ddagger	6Al5	1	$\mathrm{E}_{\mathrm{t}}-1 \mathrm{l}$	6BT	3.15	0.6	-	-	.
3AUS \ddagger	6AU6	1	E_{t} - $\mathrm{H}_{\text {t }}$	7BK	3.15	0.6	5.5	5	0.003
3AV6!	6AV6	1	$\mathrm{E}_{\mathrm{t}}-\mathrm{F}_{\mathrm{t}}$	78T	3.15	0.6	2.2	0.8	,
3BA6 \ddagger	6BA6	1	$\mathrm{E}_{\mathrm{f}}-\mathrm{l}_{\mathrm{f}}$	7CC	3.15	0.6	5.5	5	0.0035
3BC5 \ddagger	68C5	1	$\mathrm{E}_{1}-\mathrm{l}_{1}$	78D	3.15	0.6	6.5	1.8	0.03
3BE6 \ddagger	68E6	1	$\mathrm{E}_{4}-\mathrm{l}_{4}$	7BD	3.15	0.6	-	-	-
3BNS \ddagger	6BN6	1	$\mathrm{E}_{1}-\mathrm{H}_{4}$	7DF	3.15	0.6	4.2	3.3	0.004
3BY6!	68Y6	1	E_{5} - ${ }_{\text {H }}$	7CH	3.15	0.6	5.4	7.6	0.08
3826 \ddagger	${ }^{68 \mathrm{ZCO}}$	1	ε_{1} - ${ }_{1}$	7CM	3.15	0.6	7.5	1.8	0.02
3CES \ddagger	6CES	1	$E_{1}-1 /$	7 CM	3.15	0.6	6.5	3	0.01
3CF6 \ddagger	6CF6	1	$E_{1}-1+$	7 cm	3.15 3.15	0.6	6.5	1.9	0.03
3C564	6CS6	1	$\mathrm{E}_{\mathrm{f}}-\mathrm{If}_{\text {f }}$	7 CH	3.15	0.6	5.5	75	0.02
3DT6 \ddagger	6DT6	1	E_{4} - ${ }^{\text {d }}$	7 EN	3.15	0.6	5.8	7.5	0.05
$31 F 4$	3Q5GT	VII	Base-Heater center-tapped for 1.4.volt. operation.	6BB	2.8	0.05	-	-	0.02
3 V 4	3Q4	I	Basé-, Heater center-tapped for 1.4 -volt operotion.	6BX	2.8	0.05	5.5	3.8	- 0.2
$4 \mathrm{CCB} \ddagger$	68C8	1	E_{4}-I	9AJ	4.2	0.6	2.5	1.3	1.4
4BQ7At	68Q7A	1	$\mathrm{E}_{1}-\mathrm{If}_{1}$	9AJ	4.2	0.6	2.85	1.35	1.15
4827 \ddagger	6827	1	$\mathrm{E}_{4}-\mathrm{H}_{1}$	9AJ	4.2	0.6	2.85	1.35	1.15
5AM8 \ddagger	6AM8	1	$\mathrm{E}_{\mathrm{c}}-\mathrm{lf}$	9 CY	4.7	0.6	6	2.6	0.015
SAN8 \ddagger	6AN8	1	$\mathrm{Ef}_{1}-\mathrm{If}-\mathrm{C}_{m^{2}}=2-\mathrm{Com}^{2}=0.27-\mathrm{Cap}^{2}=1.5$	90A	4.7	0.6	7	2.3	0.04
5AQS \ddagger	6AQ5	1	$\mathrm{E}_{1}-11$	787	4.7	0.6	8.3	8.2	0.35
5AS5 \ddagger	6AS5	1	E_{F} - $\mathrm{l}_{\text {F }}$	9AJ	4.7	0.6	7	2.2	0.04
5AT8 \ddagger	6AT8	1	$E_{t}-I_{t}-C_{\text {in }}{ }^{2}=2{ }^{2}-C_{\text {oin }}{ }^{2}=0.5-C_{o p}{ }^{2}=1.5$	90W	4.7	0.6	4.5	0.9	0.025
5AV8 \ddagger	6AN8	1	Base- $\mathrm{E}_{t}-\mathrm{l}_{9}-\mathrm{Cim}^{2}=2-\mathrm{C}_{801}{ }^{2}=0.27-\mathrm{C}_{80}{ }^{2}=1.5$	907	4.7	0.6	7	2.3	0.04
588 \ddagger	6AN8	1	Base - $\mathrm{Ef}_{1}-\mathrm{If}-\mathrm{IEC}^{3}-\mathrm{C}_{\text {in }}{ }^{2}=1.9-\mathrm{Con}^{2}=1.4-\mathrm{C}_{\mathrm{gp}}{ }^{2}=1.7$	9EC	4.7	0.6	6	2.6	0.05
58K7A	68 K 7 A	I	E_{t} - H_{1}	9AJ	4.7	0.6	3	1	1.8
5J6 \ddagger	616	1	E_{f} - $\mathrm{l}_{\text {f }}$	78F	4.7	0.6	2.2	0.4	1.6
5Ta \ddagger	618	1	$\mathrm{E}_{1}-1$	9 E	4.7	0.6	1.6	I	2.2
5V4GA	5V8	\times		9AE	4.7	0.6	5	2.6	0.01
5V6GT!	6V6	11	$\xi_{1}-1 / 18 C^{3}$	75	4.7	0.6	9	75	07
5×8!	6×8	1	$\mathrm{Et}_{\mathrm{t}}-\mathrm{If}_{\mathrm{t}}-\mathrm{Cin}^{2}=2-\mathrm{Cowr}^{2}=0.5-\mathrm{Cap}^{2}=1.4$	9 AK	4.7	0.6	4.3	0.7	0.78
6A6	6 N 7	11	Base.	78	6.3	0.8	-	-	\cdots
6A7	6 A8	II	Base-IEC ${ }^{3}$	7C	6.3	0.3	-	-	-
6AE8	6 K 8	II	Base-Max, rotings.	8DU	6.3	0.3	-	-	-
6AS7GA	6AS7G	11.	None.	8BD	6.3	2.5	6.5	2.2	7.5
6AU7	$12 \mathrm{AU7}$	1	$\mathrm{E}_{1}-\mathrm{l}_{4}$	9A	3.15	0.6	-	-	-
6AV5GA	6AVSGT	III	None.	6CK	6.3	1.2	14	7	0.5
6AX7 \ddagger	12AX7	1	Heoter center-topped for 3.15-volt operation.	9A	6.3	0.3	1.6	0.46	1.7
6B4G	$6{ }^{6} 3$	III	Base.	55	6.3	1	-	-	-
68G6GA	68G6G	III	None.	5BT	6.3	0.9	11	6	0.8
6BO6GA	68Q6GT	111	Max. ralings.	6AM	6.3	1.2	14	6.5	0.8
6BC6GTA	68Q6GT	III	Nane.	6A.M	6.3	1.2	15	7.5	0.6
6BCGGTB/6CU6	6BQ6GI	III	Max, ratings.	6AM	6.3	1.2	15	7.5	0.6
6 C6	617	1	Base-IEC ${ }^{3}$	6F	6.3	0.3	5	6.5	0.007
6CD6GA	$6 \mathrm{CD6G}$	III	IEC ${ }^{3}$ - Max. rotings.	5BT	6.3	2.5	22	8.5	1.1
616GA	616	11	IEC ${ }^{\text {a }}$	75	6.3	0.9	11.5	9.5	0.9
616GB	616	11	IEC ${ }^{3}$	75	6.3	0.9	11.5	9.5	0.9
654A \ddagger	654	1	\ddagger	9AC	6.3	0.6	4.2	0.9	2.6
6SN7 GTA	65N7GT	III	IEC ${ }^{3}$ - Max. rotings.	8BD	6.3	0.6	-	-	. 6
6SN7GTB \ddagger	6SN7GTA	VIII	\ddagger	8BD	6.3	0.6	-	-	-
65U7GTY	6St7GT	III	low loss base.	8BD	6.3	0.3	3.4	3.2	2.8
6Y6GA	6Y6G	III	None.	75	6.3	1.25	15	8	0.7
6Y6GT	6Y6G	III	None.	75	6.3	1.25	15	8	0.7
7 74	615	11	Bose.	5A5	6.3	0.3	3.4	3	4
7 7A6	6 H 6	11	I_-8ase-Max. ratings.	7AJ	6.3	0.15	-	-	-
7A7	6SK7	11	Base.	8 V	6.3	0.3	6	7	0.003
7AU7!	12AU7A	1	ε_{1} - 11 - Heoter center-rapped for 3.5-volt operotion.	9A	7	0.3	-	-	-
7B4	6SF5	II	8ase-18C3	SAC	6.3	0.3	3.6	3.4	1.6
785	6K6GT	III	Base.	6AE	6.3	0.4	5.5	6	0.5
786	6SQ7	11	Base.	8W	6.3	0.3	3	2.4	1.6
788	6 A8	11	Base.	8X	6.3	0.3	-	-	-
$7 \mathrm{C5}$	6V6	II	Base.	6AA	6.3	0.45	9.5	9	0.4
7 747	6517 GI	III	8 ase.	8AC	6.3	0.3	24	2	1.6
747	6SG7	II	IEC ${ }^{3}$ - Base - Max. rotings.	8 V	6.3	0.3	8	7	0.007
7N7	6SN7GT	III	IEC ${ }^{\text {- Base-Max, rotings. }}$	BAC	6.3	0.6	3.4	2.4	3
707	6SA7	11	IEC^{3}	BAL	6.3	0.3	9	9	0.2
12A8GT	6A8	11	$\mathrm{E}_{\mathbf{t}}-\mathrm{l}$	8A	12.6	0.15	-	-	-
$12 \mathrm{Al5}$	6 Al5	1	Et-l	6BT	12.6	0.15	-	-	-
12AT6	6AT6	1	Et-l	7BT	12.6	0.15	2.2	0.8	2
12AU6		1	Et-l	7BK	12.6	0.15	5.5	5	0.0035 .
12AV5GA!	6AVSGI	III	$\mathrm{E}_{1}-\mathrm{l}$ - $-1 \mathrm{EC}^{3}$	6CK	12.6	0.6	14	7	0.5
12AV6	6AV6	1	$\mathrm{E}_{\mathbf{1}}-{ }_{\text {l }}$	78T	12.6	0.15	2.2	0.8	2
1284A \ddagger	1284	1	Heoter center-lapped for 6.3 -volt operotion.	9AG	126	0.3	5	1.5	4.8
128A6	6BA6	1	E_{t} - l_{f}	7BK	12.6	0.15	5.5	5	0.0035

TABLE VIII-EQUIVALENT TUBES-Continued

Type	Prototype and Table		Dis similarity ${ }^{14}$	Base	E_{4}	1	Cin	Con	$C_{\text {pp }}$
2BA7	6BA7	1	$\mathrm{E}_{\mathrm{t}}-\mathrm{l}_{\text {f }}$	8CT	12.6	0.15	-	--	-
2806	6BD6	1	E_{t} - l_{4}	7BK	12.6	0.15	4.3	5	0.005
2BE6	6BE6	i	E_{t} - l_{1}	7 CH	12.6	0.15	-	-	-
2BF6	6BF6	1	$\mathrm{E}_{\mathrm{f}}-\mathrm{l}_{1}$	7BT	12.6	0.15	1.8	0.8	2
2BH7A \ddagger	128 H 7	1	Heater center-tapped for 6.3.volt operation.	94	12.6	0.3	3.2	0.5	2.6
12BK5 \ddagger	6BK5	1	E_{5} - ${ }_{\text {P }}$	980	12.6	0.6	13	5	0.6
12 BK 6	6BK6	1		7B1	12.6	0.15	-	-	-
$128 N 6$	6BN6	1	$E_{i}-l_{i}$	70E	12.6	0.15	4.2	3.3	0.004
12BO6GA \ddagger	6BQ6GT	1111	$\mathrm{E}_{\mathrm{t}}-\mathrm{It}-1 \mathrm{EC}^{3}-\mathrm{Max}$. ratings.	6AM	12.6	0.6	14	6.5	0.8
12BO6GT \ddagger	68Q6GT	III	$\varepsilon_{t}-1{ }_{\text {f }}$	6AM	12.6	0.6	15	7.5	0.6
12806GTB \ddagger	6BQ6GT	III	$\mathrm{E}_{\mathbf{1}}$-li-Mox. ratings.	6AM	12.6	0.6	15	7.5	0.6
12876	6 6T6	1	$\mathrm{Ef}_{\mathrm{t}}-\mathrm{l}_{1}$	78T	12.6	0.15	-	--	-
12806	6BU6	1	Ef- ${ }_{\text {ct }}$	7BT	12.6	0.15	-	-	-
12BW4	68W4	\times	$\mathrm{E}_{4}-\mathrm{I}_{\mathrm{f}}$	90J	12.6	0.45	-	-	-
128Y7A \ddagger	128 Y 7	1	E_{t} - $\mathrm{l}_{\mathbf{t}}$-Heater center-lapped for 8.3 -voll operation.	9 PF	12.6	0.3	10.2	3.5	0.063
$12 \mathrm{CS} \ddagger$	5085	1	$\mathrm{E}_{\mathrm{f}}-\mathrm{l}_{\mathrm{f}}$-1EC ${ }^{3}$ - Base.	7CV	12.6	0.6	13	9	0.55
12C8	688	III	E_{t} - If_{8}	8 E	12.6	0.15	6	9	0.005
12CA5!	6CA5	1	E_{4} - J_{6}	7CV	12.6	0.6	15	9	0.5
$12 \mathrm{CM6}$	6CM6	1	$\mathrm{E}_{4}-\mathrm{If}_{t}$	9CK	12.6	0.225	8	8.5	0.7
12 Cs 6	6CS6	1	$\varepsilon_{t}-l_{f}$	7CH	12.6	0.15	5.5	7.5	0.05
12 Cu 6	6CU6	III	$\mathrm{E}_{\mathrm{t}_{\text {- }}-\mathrm{l}_{\text {f }}}$	6AM	12.6	0.6	15	7	0.55
12006 \ddagger	6DQ6	III	$\mathrm{E}_{4}-\mathrm{I}_{9}$	6AM	12.6	0.6	15	7	0.55
12G4	615	11	$\mathrm{E}_{\mathrm{t}}-1 \mathrm{l}$-Bose.	6BG	12.6	0.15	2.4	0.9	3.4
12 H 6	6 H 6	1	E_{4} - ${ }_{\text {f }}$	70	12.6	0.15	-	-	-
12J5GT	6.5	,	$\mathrm{E}_{1}-\mathrm{It}_{4}-\mathrm{IE} \mathrm{C}^{3}$	60	12.6	0.15	4.2	5.0	3.8
12.37 GT	617	11	$8 E_{1}-1 ; 1 \mathrm{IEC}^{3}$	7R	12.6	0.15	4.6	12	0.005
12K7GT	$6 \mathrm{K7}$	11		7R	12.6	0.15	4.6	12	0.005
12K8	6K8	11	$\mathrm{Ef}_{\mathrm{t}}-\mathrm{l}_{\mathrm{t}}$	8K	12.6	0.15	-	-	-
1207GT	6Q7	11	$\mathrm{E}_{4}-\mathrm{l}_{4}-18 \mathrm{C}^{3}$	$7 V$	12.6	0.15	2.2	5	1.6
1258GT	658GT	III	$\varepsilon_{t}-1{ }_{1}$	8 CB	12.6	0.15	2	3.8	1.2
12547	6SA7	11	E_{t} - l_{4}	8R	12.6	0.15	9.5	12	0.13
$\overline{125 C 7}$	65 C 7	11	$\mathrm{E}_{\mathrm{F}_{1}-\mathrm{I}_{4}}$	85	12.6	0.15	2	3	2
$125 F 5$	6SF5	11	$\mathrm{E}_{4}-{ }_{4}$	6AB	12.6	0.15	4	3.6	2.4
12557	6557	11	$\mathrm{Ef}_{1}-17$	7AZ	12.6	0.15	5.5	6	0.004
125G7	65G7	11	E_{t} - $\mathrm{l}_{\text {f }}$	8BK	12.6	0.15	8.7	7	0.003
125 H 7	6SH7	II	$\mathrm{E}_{1}-\mathrm{l}_{4}$	8BK	12.6	0.15	8.5	7	0.003
$125 \mathrm{J7}$	6 SJ7	11	$\mathrm{E}_{4}-\mathrm{I}_{4}$	8 N	12.6	0.15	6	7	0.005
125K7	65K7	11	E_{4} - H_{4}	8 N	12.6	0.15	6	7	0.003
125L7 GT	6SL7GT	111	E_{t} - l_{1}	880	12.6	0.15	3.4	3.8	2.8
125N7GT	6SN7GT	III	$\mathrm{E}_{4}-\mathrm{H}_{4}$	8BD	12.6	0.3	3	1.2	4
$125 N 7 \mathrm{GTA}$	6SN7GT	III	$\mathrm{E}_{1}-\mathrm{H}_{1}-$ EEC $^{3}-\mathrm{Max}^{\text {a }}$. ratings.	8BD	12.6	0.3	2.6	0.7	4
12507	6SQ7	11	$\mathrm{E}_{\mathrm{i}}-1{ }_{\text {l }}$	80	12.6	0.15	3.2	3	1.6
125R7	6SR7	1	$\mathrm{E}_{\mathrm{t}}-\mathrm{I}_{4}$	80	12.6	0.15	3.6	2.8	2.4
12W6GT!	6W6GT	III	$\mathrm{E}_{1}-1_{1}$	7AC	12.6	0.6	15	9	0.5
14A7	6SK7	II	$E_{t}-1 /-18 C^{3}-$ Base.	8 V	12.6	0.15	5.5	7	0.005
14AF7	7AF7	IV	$\varepsilon_{4}-l_{1}$	BAC	12.6	0.15	2.2	1.6	2.3
1486	6SQ7	II		BW	12.6	0.15	3	2.4	1.6
1497	6SI7GT	III	$\mathrm{E}_{1}-\mathrm{l}_{1}-18 \mathrm{C}^{3}$ - Bose.	8AC	12.6	0.15	2.4	2	1.6
14N7	6SN7GT	111	$E_{1}-1_{1}$-Base.	BAC	12.6	0.6	3.4	2.4	3
1497	6SA7	11	$\mathrm{Ef}_{\mathrm{t}}-\mathrm{I}_{\mathrm{t}}-18 \mathrm{C}^{3}$ - Base.	BAL	12.6	0.15	9	9	0.2
14V7	7v7	IV	$\mathrm{E}_{4}-\mathrm{H}_{4}$	8 V	12.6	0.225	9.5	6.5	0.004
14×7	7X7	IV	$E_{1}-i_{i}$	8BZ	12.6	0.15	-	-	-
198G6G	6BG6G	III	$\mathrm{E}_{1}-\mathrm{I}_{\mathrm{i}}-18 \mathrm{Cl}^{3}$	SBT	18.9	0.3	11	6.5	0.65
25AV5GA	6AV5GT	III	$\mathrm{E}_{1}-\mathrm{lt}$-IEC ${ }^{\text {a }}$	6CK	25	0.3	14	7	0.5
25AV5GT	6AV5GT	III	$\mathrm{E}_{\mathrm{t}}-\mathrm{l}_{4}$	6CK	25	0.3	14	7	0.7
25BQ6GA	6BQ6GT	III	$\mathrm{E}_{1}-\mathrm{I}_{4}-$ IEC $^{3}-\mathrm{Max}^{\text {a }}$. ratings.	6AM	25	0.3	14	6.5	0.8
25BC6GT	68Q6GT	III	$\mathrm{E}_{\boldsymbol{i}}$ - $\mathrm{l}_{\text {\% }}$	6AM	25	0.3	15	7.5	0.6
25BO6GTB \ddagger	6BQ6GT	111	$\varepsilon_{1}-1: 18 C^{3}-$ Max. ratings.	6AM	25	0.3	15	7.5	0.6
25CD6G	6CD6G	III	E_{t} - ${ }_{\text {ct }}$	SBT	25	0.6	26	10	1
25CD6GA \ddagger	6CD6G	III	E_{1}-1t-Max. ratings.	SBT	25	0.6	24	9.5	0.8
$25 \mathrm{CU6}$	$6 \mathrm{CU6}$	III	$\mathrm{Ef}_{\mathrm{i}}-\mathrm{I}_{\text {f }}$	6AM	25	0.3	15	7	0.55
250N6 \ddagger	6DN6	III	$\mathrm{Ef}_{\mathbf{t}} \mathrm{l}_{\mathbf{\prime}}$	58T	25	0.6	22	11.5	0.8
25006	6DQ6	III	$\mathrm{E}_{1}-\mathrm{H}_{1}$	6AM	25	0.3	15	7	0.55
2516GT	126GT	VI	E_{1} - l_{4}-Max. ratings.	7AC	25	0.3	15	10	0.6
25W6GT	6W6GT	III	$E_{t}-\mathrm{H}_{4}$	7AC	25	0.3	15	9	0.5
35C5	3585	1	IEC ${ }^{3}$ - Bose-Mox. ratings.	7CV	35	0.15	12	6.2	0.57
3516GT	3585	,	IEC ${ }^{\text {- Bose-Max. rotings. }}$	7AC	35	0.15	13	9.5	0.8
41	6K6GT	III	Bose.	68	6.3	0.4	5.5	6	0.5
42	6 F6	1	Base.	68	6.3	0.7	-	-	-
50A5	1216GT	VI	$\mathrm{E}_{\mathbf{t}}-\mathrm{l}$ - Base-Max. ratings.	6AA	50	0.15	-	-	-
50C5	50BS	1	Base.	7CV	50	0.15	13	9	0.55
5016GT	126GT	VI	$\mathrm{E}_{\mathrm{t}}-\mathrm{I}_{t}$	7AC	50	0.15	15	10	0.06
75	6SQ7	11	IEC ${ }^{3}$ - Bose-Max. ratings.	6G	6.3	0.3	1.7	3.8	1.7
78	$6 \mathrm{K7}$	11	IEC ${ }^{3}$ - Base.	6 F	6.3	0.3	4.5	11	0.007
117P7GT	11717GT	V	Base.	8AV	117	0.09	-	-	-
417A	5847	1	IEC ${ }^{3}$ - Base.	9 V	6.3	0.3	9	0.48	1.8
1221	617	11	Max. ratings.	$6 F$	6.3	0.3	5	6.5	0.007
1223	6.7	II	Max. ratings.	7R	6.3	0.3	-	-	-
1631	616	11	$\mathrm{Ef}_{\mathrm{f}}-\mathrm{I}_{\text {f }}-$ Max. ratings.	7AC	12.6	0.45	-	-	-
1632	126GT	VI	Mox. ratings.	7AC	12.6	0.6	-	-	-
1634	65 C 7	II	E_{5} - ${ }_{\text {f }}$	85	12.6	0.15	-	-	-

TABLE VIII-EQUIVALENT TUBES-Continued

Typ	Prototype and Table	Dissimilarity ${ }^{\text {/ }}$	Bas*	E	14	Cb_{n}	Cout	$\mathbf{C a p}_{\text {P }}$
5591	6AK5 I	$E_{4}-\mathrm{If}_{4}$	7BD	6.3	0.15	4	2.8	0.02
5654	6AK5 1	IEC ${ }^{3}$	7BD	6.3	0.175	4	2.9	0.02 .
5670	2C51 1	Ef_{t} If-IEC3	8CJ	6.3	0.35	2.2	1 '	1.1
5679	$6 \mathrm{H6}$ II	E_{t}-li-Base.	7CX	6.3	0.15	\cdots	-	J
5691	6SL7GT III	IEC ${ }^{3}$ - Max, ratings.	8BD	6.3	0.6	27	2.6	3.6
5692	6SN7GT Ifi	Max. ratings.	8BD	6.3	0.6	-	2.6	3.6
5725	6AS6 1	None.	7CM	6.3	0.175	4	3	0.01
5726	6A15 I	None.	6BT	6.3	0.3	-	-	-
5749	68A6 1	Base.	7BK	6.3	0.3	5.5	5	0.0035
5750	6856	None.	7CH	6.3	0.3	-		0.003
5751	$12 \mathrm{AX7}$, 1	$\mathrm{Ef}_{\mathrm{f}} \mathrm{l}_{1}$-Heater center-tapped for 6.3 -vall operation.	9 A	12.6	0.175	-	-	-
5814A	I2SN7G ${ }^{\top}$ VI	E_{f} - l_{1}-IEC3 - Base - Heater center-tapped for 6.3 -valt operation.	9A	12.6	0.175	1.6	0.5	1.5
5871	8V8 II	$\mathrm{E}_{\text {¢ }} \mathrm{l}$ l-Max. ratings.	7AC	6.3	0.9	-	-	1.5
5881	616 II	Max. rotings.	7AC	6.3	0.9	10	12	0.4
5910	1041	IEC3$-M a x$. ratings.	6AR	1.4	0.05	3.6	7.5	0.008
5915	6BY6 I	Max. rolings.	7CH	6.3	0.3	3.6	-	0.00
5963	$12 \mathrm{AU7}$ I	IEC3 - Max. ratings-Heater center-tapped for 6.3-volt operation.	9A	12.6	0.15	1.9	0.35	1.5
5964	616 1	IEC ${ }^{3}$ - Max. rotings.	7BF	6.3	0.45	2.1	0.4	1.3
5965	$12 \mathrm{AV7}$	IEC3-Heater center-tapped for 6.3 -volt operalion.	9A	126	0.225	3.8	0.5	3
6046	1216 GT VI	[Ef_{f} lif	7AC	25	0.3	,	0.5	3
6057	$12 \mathrm{AX7}$ I	IEC3-Heoter center-tapped for 6.3-voll operation.	9A	12.6	0.15	1.6	0.46	1.7
6058	6Al5 I	None.	68T	6.3	0.3	1.6	0.6	. 7
6059	$6 \mathrm{J7}$ 11	E_{f} - l_{4} - Base - Max. ratings.	9 BC	6.3	0.15	4.25	4	0.01
6060	$12 \mathrm{AT7}$ I	IEC ${ }^{3}$-Max, ratings-Heater center-fapped for 6.3-volt operation.	9A	12.6	$0: 15$	2.25	0.4	1.6
6061	6V6 II	Bose.	9AM	6.3	0.45	-	0.4	. 6
6064	6AM6 I	Max. ratings.	708	6.3	0.3	7.8	3.9	0.01
6065	6BH6 I	$\mathrm{E}_{1}-\mathrm{lf}_{\text {- }} \mathrm{IEC}^{3}$ - Base-Mox. rotings.	708	6.3	0.2	4.5	7	0.007
6066	6AT6 1	None.	78T	6.3	0.3	4.5		0.007
6067	$12 \mathrm{AU7}$ I	IEC ${ }^{3}$-Heater center-tapped for 6.3-vali operation.	9 A	12.6	0.15	1.6	0.5	1.5
6080	6AS7G III	IEC ${ }^{3}$ - Max. rotings.-	8BD	6.3	2.5	6	2.2	8
6101	616	IEC ${ }^{3}$ - Max. ratings.	7BF	6.3	0.45	2	0.4	1.5
6132	$6 \mathrm{CH6}$ -	None.	9BA	6.3	0.75	14	5	0.25
6136	6AU6	None.	7BK	6.3	0.3	6	5	0.0035
6265	68H6 1	lillec ${ }^{3}$	7CM	6.3	0.175	5.2	4.4	0.004
6350	128H7	$1 E C^{3}$ - Bose - Heater center-tapped for 6.3-volt operation.	9CZ	12.6	0.3	3.6	0.6	3.2
6660	68A6 1	Base.	7CC	6.3	0.3	5.5	5	0.0035
6661	6 BH 6	None.	7CM	6.3	0.15	5.4	4.4	0.0035
6662	6816	None.	7CM	6.3	0.15	4.5	5.5	0.0035
6663	6Al5	None.	68T	6.3	0.3	4.5	5.5	0.005
7000	617 II	None.	7R	6.3	0.3	7	12	0.005
7700	$6 \mathrm{J7}$	IEC ${ }^{3}$ - Base - Max. ratings.	$6 F$	6.3	0.3	5	6.5	0.007
KT-66	616 II	British version of 616	7AC	6.3	0.9	-	-	0.007
XXD	7AF7 IV	E_{f} - $\mathrm{l}_{\text {- }}$ Mox. ratings.	BAC	12.6	0.15	2.2	1.6	2.3

TABLE IX-CONTROL AND REGULATOR TUBES.

Type	Use	Sockef Connections	Cath . ode	Fil. or Heater		Peak Anode Volfage	Max. Anode Ma.	Minimum Supply Voltage	Operofing Voltage	Operating Ma.	Grid Resistor	Tube Voltage Drop
				Vols	Amp.							
$\begin{aligned} & \text { OA2 } \\ & 6073 \end{aligned}$	Voltage Regulator	58O	Cold	-	-	-	-	185	150	5-30	-	-
$\begin{aligned} & \hline \text { OA4G } \\ & 1267 \\ & \hline \end{aligned}$	Gas Triode Starter-Anode Type	$\begin{aligned} & 4 V \\ & 4 V \end{aligned}$	Cold			With 105-120-volf a.c. anode supply, peak storter-anode a.c. voltage is 70, peak r.f. vollage 55. Peak d.c. $\mathrm{ma}=100$. Average d.c. $\mathrm{ma}=\mathbf{2 5}$.						
OA5	Gas Pentode	Fig. 33	Cold			Plate -750 V., Screen -90 V ., Grid +3 V., Pulse -85 V .						
$\begin{aligned} & 082 \\ & 6074 \end{aligned}$	Voltage Regulator	5 BO	Cold	-	-	-	-	133	108	5-30		
2 D 21	Grid-Controlled Rectifier	7BN	Htr.	6.3	0.6	650	500	—	650	100	0.1-104	8
		TBN	Hir.	6.3	0.6	400					1.07	
604	Control Tube	5AY	Hir.	6.3	0.25	$\begin{aligned} & E p=350 ; \text { Grid volts }=-50 ; \text { Avg. Ma. }=25 ; \text { Peak Ma. }=100 ; \\ & \text { Volfoge drop }=16 . \end{aligned}$						
90 Cl	Voltage Regulator	5BO	Cold	-	\square		-	125	90	1-40		
884	Gas Triode Grid Type	60	Hir.	6.3	0.6	300	300			2	25000	
	Gas Triode Grid Type					350	300	-		75	25000	
967	Grid-Controlled Rectifier	$3 G$	Fil.	2.5	5.0	2500	500	-52	-		-	10-24
991	Voltage Regulator							87	55-60	2.0	-	
1265	Voltage Regulator	4AJ	Cold					130	90	5-30		
1266	Volfage Regulator	4AJ	Cold						70	5-40	-	\cdots
1267	Relay Tube	4 V	Cold			Choracteristics same os OAA AG $^{\text {a }}$						
2050	Grid-Controlled Rectifier	8BA	Hir.	6.3	0.6	650	500		-	100	$0.1-104$	8
5651	Voltage Regulator	5BO	Cold		$\underline{-1.5}$	115	\longrightarrow	115	87	1.5-3.5		
5662	Thyrotron-Fuse	5662	Hir.	6.3	1.5	200^{3}	Ik to fuse-150 Amp., 60 cyele, half-wave					50 V .
5663	Control and Relay	7 CE	Hir.	6.3	0.15	Max. peak inv. volls $=500$; Peak Ma. $=100$; Avg. Ma. $=20$.						
5696	Relay Service	7BN	Hir.	6.3	0.15	5003	100 ma . peak current; 25-ma average.					
5823	Relay or Trigger	4CK	Cold	-		Max. peak inv. volts $=2 \overline{00}$; Peak Ma. $=100 ;$ Avg. Ma. $=25$.						
5890	Shunt Regulator	12J	Htr.	6.3	0.6	$\mathrm{E}_{\mathrm{G} 1}=-60$ volts; $\mathrm{E}_{\mathrm{G} 2}=200$ volts; $\mathrm{E}_{\mathrm{G} 3}=5500$ volts. $\mathrm{E}_{\mathrm{P}}=30000$ volts; $\mathrm{I}_{\mathrm{G} 2}=0 \mathrm{Ma}$.; $\mathrm{I}_{\mathrm{i}}, \mathrm{Max} .=0.5 \mathrm{Ma}$.						
5962	Valtage Regulator	2 AG	Cold		-			730	700	5/55	-	-
5998	Series Regulator	8BD	Htr.	6.3	2.4	250	125	-	110	100	3506	-
6308	Voltage Regulator	8EX	Cold				3.5	115	87		-	
6354	Vollage Regulator	Fig. 20	Cold			-	-	180	150	5-15	-	-
KY21	Grid-Controlled Rectifier	-	Fil.	2.5	10.0	-	-	-	3000	500	-	$\overrightarrow{30}$
RK61	Radio-Controlled Relay	$\underline{-1}$	Fil.	1.4	0.05	45	1.5	30	,	0.5-1.5	34	
OA3/VR75	Voltage Regulator	4AJ	Cold	-	-			105	75	5-40		30
OB3/VR90	Voltage Regulator	4AJ	Cold				-	125	90	5-40		
OC3/VR 105	Voltage Regulator	4AJ	Cold				-	135	105	5-40		
OD3/VR150	Voltage Regulator	4AJ	Cold				-	185	150	5-40		-

${ }^{1}$ No base. Tinned wire leads.
2 At 1000 anode volts.
${ }^{2}$ Peak inverse voltage.
${ }^{4}$ Megohms.
${ }^{5}$ Values in μ amperes.
${ }^{6}$ Cathode resistor-ohms.

TABLE X-RECTIFIERS-RECEIVING AND TRANSMITTING
See also Table IX -Control ond Regulator Tubes

Type No.	Name	Base	Socket Connections	Cathode	Fil. or Healer		Max. A.C. Volfage Per Plate	D.C. Oulput Current Ma.	Max. Inverse Peak Volitage	Peak Plate Current Ma.	Type
					Volis	Amp.					
1-V	Half-Wave Rectifior	4-pin S.	46	Hir.	6.3	0.3	350	50			HV
1V2	Half-Wove Rectifier	9-pin B .	90	Fil.	0.625	0.3		0.5	7500	10	HV
$2 \mathrm{B25}$	Half-Wave Rectifier	7-pin B.	31	Fil.	1.4	0.11	1000	1.5		9	HV
2X2-A	Half-Wave Rectifier	4-pin S.	$4 A B$	Hir.	2.5	1.75	4500	7.5	-		HV
2 Y 2	Half-Wave Rectifier	4-pin M.	4AB	Fil.	2.5	1.75	4400	5.0	-		HV
2Z2/G84	Half-Wave Rectifier	4-pin M.	4B	Fil.	2.5	1.5	350	50		-	HV
3B24	Half-Wave Rectifier	4-pin M.	T-4A	Fil.	$\begin{aligned} & 5.0 \\ & 2.5 \mathrm{~s} \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$		$\begin{aligned} & 60 \\ & 30 \end{aligned}$	$\begin{aligned} & 20000 \\ & 20000 \\ & \hline \end{aligned}$	$\begin{aligned} & 300 \\ & 150 \\ & \hline \end{aligned}$	HV
5AU4	Full- Wave Rectifier	8-pin 0.	$5 T$	Fil.	5.0	4.5	300^{3}	$350{ }^{3}$	1400	1075	HV
							$400{ }^{3}$	$325{ }^{\text {3 }}$			
							5004	3254			
5AW4	Full-Wave Reclifier	5-pin 0.	$5 T$	Fil.	5.0	4.0	$450{ }^{3}$	$250{ }^{3}$	1550	750	HV
							5504	2504			
$\begin{aligned} & \text { 5R4GY } \\ & \text { 5R\&GYA } \\ & \hline \end{aligned}$	Full-Wave Rectifier	5-pin 0.	51	Fil.	5.0	2.0	9003	1503	2800	650	HV
							9504	1750			
574	Full-Wave Rectifier	5-pin 0.	51	Fil.	5.0	2.0	450	250	1250	800	HV
5U4G	Full-Wave Rectifier	8-pin 0.	5 T	Fil.	5.0	3.0	Same os Type 573				HV
5U4GA	Full-Wave Rectifier	5-pin 0 .	5 T	Fil.	5.0	3.0	$300{ }^{3}$	2753	1550	900	HV
							$450{ }^{3}$	2503			
							5504	2504			
3U4GB	Full-Wave Rectifier	5-pin 0.	57	Fil.	5.0	3.0	$300{ }^{3}$	$300{ }^{3}$	1550	1000	HV
							$450{ }^{3}$	$275{ }^{2}$			
							5504	2754			
5 V 3	Full-Wave Rectifier	5-pin 0.	$5 T$	Htr.	5.0	3.8	$\begin{aligned} & 4253 \\ & 500^{\prime} \end{aligned}$	350	1400	1200	HV
5V4G	Full-Wave Recfifier	8-pin 0.	51	Hir.	5.0	2.0	Same as Type 83V				HV
5W4GT	Full-Wave Rectifier	5-pin 0.	51	Fil.	5.0	1.5	350	110	1000		HV
5×46	Full-Wove Reclifier	8-pin 0.	50	Fii.	5.0	3.0	Same as 523				HV
5Y3-G-GT	Full-Wave Rectifier	5-pin 0.	51	Fil.	5.0	2.0	Same as Type 80				HV
5Y4-G-GT	Full-Wave Rectifier	8-pin 0.	50	Fil.	5.0	2.0	Some as Type 80				HV
$5 \mathrm{Z3}$	Full-Wave Rectifier	4-pin M.	4C	Fil.	5.0	3.0	500	250	. 1400		HV
5Z4	Full-Wave Rectifier	5-pin 0.	5 L	Htr.	5.0	2.0	400	125	1100		HV
6AV4	Full-Wove Reclifier	7-pin B.	5BS	Hir.	6.3	0.95		90	1250	250	HV
6AX5GT	Full-Wave Reclifier	6-pin 0.	6 S	Hir.	6.3	1.2	450	125	1250	375	HV
6BW4	Full-Wove Rectifier	9-pin B.	90.1	Hir.	6.3	0.9	430	100	1275	350	HV
$6 \mathrm{BX4}$	Full-Wave Rectifier	7-pin B.	5BS	Hir.	6.3	0.6		90	1350	270	HV
6BY5G	Full-Wave Rectifier	7-pin 0.	6CN	Htr.	6.3	1.6	$375{ }^{3}$	175	1400	525	HV
6U4GT	Half-Wave Rectifier	5-pin 0.	4CG	Hir.	6.3	1.2	-	138	1375	660	HV
6 V 4	Full-Wave Rectifier	9-pin B.	9M	Hir.	6.3	0.6	350	90			HV
$\begin{aligned} & 6 \times 4 / 6063 \\ & 6 \times 5 \mathrm{GT} \end{aligned}$	Full-Wave Rectifier	$\begin{aligned} & 7-\text { pin } 8 . \\ & 6-p \text { in } 0 . \end{aligned}$	$\begin{aligned} & 7 C F \\ & 6 S \end{aligned}$	Hif.	6.3	0.6	$\begin{aligned} & 3253 \\ & 450^{4} \end{aligned}$	70	1250	210	HV
673	Half-Wove Reclifier	4-pin M.	4G	Fil.	6.3	0.3	350	50			HV
12×4	Full-Wave Rectifier	7 -pin B.	5BS	Htr.	12.6	0.3	$\begin{aligned} & 6503 \\ & 900^{4} \end{aligned}$	$\begin{aligned} & 70 \\ & 70 \\ & \hline \end{aligned}$	$\begin{aligned} & 1250 \\ & 1250 \end{aligned}$	$\begin{aligned} & 210 \\ & 210 \end{aligned}$	HV
2573	Half-Wave Rectifier	4-pin S.	4G	Hir.	25	0.3	250	50			HV
2575	Rectifier-Doubler	6-pin 5.	6 E	Htr.	25	0.3	125	100		500	HV
2526	Rectifier-Doubler	7-pin O.	70	Hir.	25	0.3	125	100	-	500	HV
35 W 4	Half-Wave Rectifier	7-pin B.	5BQ	Hir.	351	0.15	125	60	330	600	HV
35Z4GT	Half-Wave Rectifier	6-pin 0.	5AA	Hir.	35	0.15	250	100	700	600	HV
3525G	Half-Wave Rectifier	6-pin 0.	6AD	Htr.	351	0.15	125	60	-	-	HV
50×6	Voltage Doubler	8-pin L.	7AJ	Htr.	50	0.15	117	75	700	450	HV
50Y6GT	Full-Wave Rectifier	7-pin 0.	70	Htr.	50	0.15	125	85	-		HV
50Y7GT	Voltage Doubler	8 -pin L.	8AN	Hir.	50^{1}	0.15	117	65	700	-	HV
5026G	Valtage Doubler	7-pin 0.	70	Hir.	50	0.3	125	150	-	-	HV
80	Full-Wave Reclifier	4-pin M.	4C	Fil.	5.0	2.0	$\begin{aligned} & 350^{3} \\ & 500^{4} \end{aligned}$	$\begin{aligned} & 125 \\ & 125 \end{aligned}$	1400	375	HV
83	Full-Wove Reclifier	4-pin M.	4 C	Fil.	5.0	3.0	500	250	1400	800	MV
83-V	Full-Wave Rectifier	4-pin M.	4AD	Hir.	5.0	2.0	400	200	1100	-	HV
84/674	Full-Wove Rectifier	5-pin S.	5 D	His.	6.3	0.5	350	60	1000	-	HV
$\begin{aligned} & 11777 \mathrm{GT} / \\ & 117 \mathrm{M} 7 \mathrm{GT} \\ & \hline \end{aligned}$	Rectifier-Tetrode	8 -pin 0.	8 AO	Hir.	117	0.09	117	75	-	-	HV
117N7GT	Rectifier-Telrode	8 -pin 0.	8 AV	Htr.	117	0.09	117	75	350	450	HV
117P7GT	Rectifier-Tetrode	8-pin 0.	8AV	Hir.	117	0.09	117	75	350	450	HV
11723	Half-Wove Rectifier	7-pin B.	4CB	His.	117	0.04	117	90	330	-	HV
816	Holf-Wave Rectifier	4-pin S.	4P	Fil.	2.5	2.0	2200	125	7500	500	MV
836	Half-Wave Rectifier	4-pin M.	4P	Hif.	2.5	5.0	\cdots	-	5000	1000	HV
866-A-AX	Half-Wave Rectifier	4-pin M.	4P	Fil.	2.5	5.0	3500	250	10000	1000	MV
8668	Holf-Wave Rectifier	4-pin M.	4P	Fil.	5.0	5.0	-	\cdots	8500	1000	MV
866 dr.	Half-Wave Rectifier	4-pin M.	4B	Fil.	2.5	2.5	1250	$250{ }^{2}$	-	-	MV
872A/872	Holf-Wave Rectifier	4-pin J.	4AT	Fil.	5.0	7.5	-	1250	10000	5000	MV

1 Tapped for pilol lamps.
a Per pair with choke input.
${ }^{3}$ Candenser input.

- Choke input.

Pype	Max. Plate Dissi. pation Wotts	Cathode		Max. Plate Voltage	Mox. Plate CurrenMa.	Max. D.C. Grid Current Ma.	Amp. Factor	InterelectrodeCapacitances ($\mu \mu \mathrm{f}$.)			Max. Freq. Mc. Full Rotings	Base	Socket Connections	Typical Operation	Plote Voltage	Grid Voltage	Plate Current Ma.	D.C.GridCuirentMo.	Approx. Grid Driving Power Wotls	$\begin{gathered} \text { Class B } \\ \text { P-to-P } \\ \text { Load Res. } \\ \text { Ohms } \end{gathered}$	Approx. Oulput Power Wotts
		Volts	Amp.					$\begin{aligned} & \text { Grid } \\ & \text { to } \\ & \text { Fil. } \end{aligned}$	$\begin{gathered} \text { Grid } \\ \text { to } \\ \text { Plote } \end{gathered}$	$\begin{aligned} & \text { Plale } \\ & \text { to } \\ & \text { Fil. } \end{aligned}$											
958.A	0.6	1.25	0.1	135	7	1.0	12	0.6	2.6	0.8	500	A.	5BD	Class-C Amp.-Oseillotor	135	-20	7	1.0	0.035	\cdots	0.6
3B7 ${ }^{2}$	-	$\begin{aligned} & 1.4 \\ & 2.8 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.22 \\ & 0.11 \end{aligned}$	180	25	-	20	1.4	2.6	2.6	125	0.	7 AP	Class-C Amp. (Teiegraphy)	180	0	25	-	-	-	2.8
$6.6{ }^{2}$	1.5	6.3	0.45	300	30	16	32	2.2	1.6	0.4	250	B.	7BF	Closs-C Amp. (Telegraphy) ${ }^{2}$	150	- 10	30	16	0.35		3.5
9002	1.6	6.3	0.15	250	8	2.0	25	1.2	1.4	1.1	250	B.	7TM	Class-C Amp. Oseillator	180	- 35	7	1.5			0.5
955	1.6	6.3	0.15	180	8	2.0	25	1.0	1.4	0.6	250	A.	5BC	Closs-C Amp.-Oscillator	180	- 35	7	1.5			0.5
HY114B	1.8	1.4	0.155	180	12	3.0	13	1.0	1.3	1.0	300	0.	2 T	Class-C Amp.-Oseillotor	180	- 30	12	2.0	0.2		1.43
						3.0		1.0	1.3					Class-C Amp. (Telephony)	180	- 35	12	2.5	0.3		1.43
3 A52	2.0	$\begin{aligned} & 1.4 \\ & 2.8 \end{aligned}$	$\begin{aligned} & 0.22 \\ & 0.11 \end{aligned}$	150	30	5.0	15	0.9	3.2	1.0	40	B.	78C	Class-C Amp.-Oseillotor ${ }^{2}$	150	- 35	30	5.0	0.2	-	2.2
$6 F 4$	2.0	6.3	0.225	150	20	8.0	17	2.0	8.9	0.6	500	A.	7BR	Class-C Amp.-Oscillator	150	$\begin{array}{r} -15 \\ 550^{*} \\ 2000 \end{array}$	20	7.5	0.2	-	1.8
72AU7 ${ }^{2}$	$2.75{ }^{5}$	6.3	0.3	350	12°	$3.5{ }^{6}$	18	1.5	1.5	0.5	54	B.	9 A	Closs-C Amp.-Oseillator ${ }^{2}$	350	-100	24	7	-	-	6.0
6 N4	3.0	6.3	0.2	180	12		32	3.1	2.35	0.55	500	B.	7CA	Class-C Amp. Os cillator	180	-	-	-			
6026	3.0	6.3	0.2	150	30	10	24	2.2	1.3	0.38	400	N.		Class-C Oseillotor - 400 Me .	135	1300 +	20	9.5		-	1.25
HY615 HY-E1148	3.5	6.3	0.175	300	20	4.0	20	1.4	1.6	1.2	300	0.	T-8AG	Class-C Amp.-Oscillator	300	- 35	20	2.0	0.4		4.0^{3}
														Class-C Amp. (Telephony)	300	- 35	20	3.0	0.8		3.53
$6 \mathrm{C4}$	5.0	6.3	0.15	350	25	8.0	18	1.8	1.6	1.3	54	B.	6BG	Class-C Amp.-Oseillator	300	- 27	25	7.0	0.35	\cdots	5.5
${ }_{2}^{2 C 36}$	5	6.3	0.4	1500 s			25	1.4	2.4	0.36	1200	N.	Fig. 36	Plate-Pulsed 1000.Mc. Ose.	1000 s	0	$900{ }^{5}$				2005
$\begin{aligned} & 2 C 37 \\ & 5766 \\ & 5767 \end{aligned}$	5	6.3	0.4	350	-	-	25	1.4	1.85	0.02	3300	N.	Fig. 36	1000-Mc. C.W. Oscillator	150	3000 :	15	3.6	\cdots	-	0.5
5764	5	6.3	0.4	1500^{3}	11.5	-	25	1.4	1.85	0.02	3300	N.	Fig. 36	Plate-Pulsed 3300-Mc. Osc.	$1000{ }^{5}$	0	$1300{ }^{\text {s }}$	-	-	-	$200{ }^{3}$
5765	5	6.3	0.4	350			25	1.3	2.1	0.03	2900	N.	Fig. 36	1900-Mc. C.W. Oscillator	180	$1000{ }^{4}$	25		-		0.225
5675	5	6.3	0.135	165	30	8	20	2.3	1.3	0.09	3000	N.	Fig. 36	Grounded-Grid Ose.	120	- 8	25	4		-	0.05
6N7 2	5.53	6.3	0.8	350	30^{6}	5.0^{6}	35				10	0.	8 B	Class-C Amp. Oseillator ${ }^{\text {2, }} 11$	350	-100	60	10			14.5
5876	6.25	6.3	0.135	300	25	-	56	2.5	1.4	0.035	1700	N.	Fig. 36	Grounded-Grid Oselllator	250	- 2	23	3			0.75
								2.5	1.4	0.035	1700	N.	Fig. 36	Frequency Multiplier	300	- 70	17.3	7		\cdots	2.0
$2 \mathrm{C40}$	6.5	6.3	0.75	500	25		36	2.1	1.3	0.05	500	0.	Fig. 19	Class-C Amp.-Oscillotor	250	- 5	20	0.3			0.075
5556	7.0	4.5	1.1	350	40	10	8.5	4.0	8.3	3.0	6	M.	4D	Class-C Amp. (Telegraphy)	350	-80	35	2	0.25		6
										3.0	6	M.	40	Class-C Amp. (Telephony)	300	-100	30	2	0.3		4
5893	8.0	6.0	0.33	400	40	13	27	2.5	1.75	0.07	1000	-	Fig. 36	Class-C Amp. (Telegraphy)	350	- 33	35	13	2.4		6.5
								2.5	1.75		1000		Fig. 36	Class-C Amp. (Telephony)	300	- 45	30	12	2.0	\cdots	6.5
GL-6442	8.0	6.3	0.9	350	35	15	47	5.0	2.3	0.03	2500			Class-C Amp. (Telegrophy)	350	- 50	35	15	-		
									2.3	0.03	2500			Class-C Amp. (Telephony)	275	- 50	35	15			
RK342	10	6.3	0.8	300	80	20	13	3.4	2.4	0.5	250	M.	T-7DC	Closs-C Amp.-Oseillator ${ }^{2}$	300	- 36	80	20	1.8	-	16
$2 \mathrm{C43}$	12	6.3	0.9	500	40		48	2.9	1.7	0.05	1250	0.	Fig. 19	Class-C Amp.-Oscillator	470	二-	38 \%				97
6263	13	6.3	0.28	400	55	25	27	2.9	1.7	0.08	500	N.	\longrightarrow	Class-C Amp. (Telegrophy)	350	-58	40	15	3	-	10
														Class-C Amp. (Telephony)	320	- 52	35	12	2.4	-	8
6264	13	6.3	0.28	400	50	25	40	2.95	1.75	0.07	500	N.	-	Closs-C Amp. (Telegrophy)	350	- 45	40	15	3	-	8
10Y	15	7.5	1.25	450	65	15	8.0	4.1	7.0	3.0	8	M.	4D	Class-C Amp.-Osaillator	450	-100	65	15	3.2	-	19
												m.		Class-C Amp. (Telephony)	350	- 100	50	12	2.2	-	12
HY75A	15	6.3	2.6	450	90	25	9.6	1.8	2.6	1.0	175	0.	2T	Class-C Amp. (Telegraphy)	450	-140	90	20	5.2	\longrightarrow	26
											175	O.	27	Class-C Amp. (Telephony)	400	-140	90	20	5.2		21
1608	20	2.5	2.5	425										Class-C Amp. (Telegraphy)	425	- 90	95	20	3.0	-	27
				425	95	25	20	8.5	9.0	3.0	45	M.	4D	Class-C Amp. (Telephony)	350	-80	85	20	3.0	-	18
														Class-8 Amp. Audio ${ }^{\text {7 }}$	425	- 15	190 ${ }^{\text {8 }}$	1309	2.28	4800	50

TABLE XI-TRIODE TRANSMITTING TUBES-Continued

Type	Max. Plate Dissi- pation Wolts	Cathode		Max. Plate Voltage		Max. D.C. Grid Current Mo.	Amp. Faclor	$\begin{gathered} \text { Interelectrode } \\ \text { Capacitances (} \mu \mu \mathrm{f} .) \end{gathered}$			Max. Freq. Mc. Full Rating:	Base	Socket Connections	
		Volts	Amp.					$\begin{gathered} \text { Grid } \\ \text { to } \\ \text { Fil. } \end{gathered}$	$\begin{aligned} & \text { Grid } \\ & \text { fou } \\ & \text { Plate } \end{aligned}$	$\begin{gathered} \text { Plate } \\ \text { to } \\ \text { Fil. } \\ \hline \end{gathered}$				
801-A/801	20	7.5	1.25	600	70	15	8.0	4.5	6.0	1.5	60	M.	4D	Cla
T20	20	7.5	1.75	750	85	25	20	4.9	5.1	0.7	60	M.	3G	Cla
T220	20	7.5	1.75	750	85	30	62	5.3	5.0	0.6	60	M.	3G	Cla
15E	20	5.5	4.2	-	-	-	25	1.4	1.15	0.3	600	N.	T-4AF	Cla
$\begin{aligned} & 3.25 \mathrm{~A} 3 \\ & 25 \mathrm{~T} \end{aligned}$	25	6.3	3.0	2000	75	25	24	2.7	1.5	0.3	60	M.	3G	
$\begin{aligned} & \text { 3-25D3 } \\ & 24 \mathrm{G} \end{aligned}$	25	6.3	3.0	2000	75	25	23	$\begin{aligned} & 2.0 \\ & 1.7 \end{aligned}$	$\begin{aligned} & 1.6 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 0.2 \\ & 0.3 \end{aligned}$	150	S.	2D	Cl
3 C 24	25	6.3	3.0	2000	75	713	24	1.7	1.6	0.2	60	S.	2D	Cl
	17			1600	60									Cl
	25			2000	75									
3C28	25	6.3	3.0	2000	75	25	23	2.1	1.8	0.1	100	S.	Fig. 56	Cl
3 C 34	25	6.3	3.0	2000	75	25	23	2.5	1.7	0.4	60	5.	3 G	Cl
HK24	25	6.3	3.0	2000	75	30	25	2.5	1.7	0.4	60	s.	3G	Cl
8025	$\begin{aligned} & 30 \\ & 20 \\ & 30 \end{aligned}$	6.3	1.92	1000	$\begin{aligned} & 65 \\ & 65 \\ & 80 \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \end{aligned}$	18	2.7	2.8	0.35	500	M.	4AO	$\mathbf{C l}$ Cl Cl
$\begin{aligned} & \text { HY3122 } \\ & \text { HY12312: } \end{aligned}$	30	$\begin{array}{\|r} \hline 6.3 \\ \hline 12.6 \\ \hline \end{array}$	$\begin{aligned} & 3.5 \\ & 1.7 \end{aligned}$	500	150	30	45	5.0	5.5	1.9	60	M.	T-4D	Cl
$\begin{aligned} & 316 A \\ & \mathbf{V T} .191 \end{aligned}$	30	2.0	3.65	450	80	12	6.5	1.2	1.6	0.8	500	N.	-	Cl
809	30	6.3	2.5	1000	125	-	50	5.7	6.7	0.9	60	M.	3 G	Cl
1623	30	6.3	2.5	1000	100	25	20	5.7	6.7	0.9	60	M.	3G	C
$\begin{aligned} & 8012 \\ & G L-8012-A \end{aligned}$	40	6.3	2.0	1000	80	20	18	$\begin{aligned} & 2.7 \\ & 2.7 \end{aligned}$	$\begin{aligned} & 2.8 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 0.35 \\ & 0.4 \end{aligned}$	500	N.	T-48B	C
T40	40	7.5	2.5	1500	150	40	25	4.5	4.8	0.8	80	M.	36	C
T240	40	7.5	2.5	1500	150	45	62	4.8	5.0	0.8	60	M.	3G	Cl
$\begin{aligned} & \text { 3-50A4 } \\ & 35 \mathrm{~T} \end{aligned}$	50	5,0	4.0	2090	150	50	39	4.1	1.8	0.3	100	M.	36	C

Type	Max. Plate Dissipation Watts	Cathode		Max. Plafe Voltoge	Max. Plafe Current Ma.	Max. D.C. Grid Current Ma.	Amp. Factor	Inferelectrode Capacitances ($\mu \mu$ f.)			Max. Freq. Me. Fult Ratings	Base	5ocket Connec lions	Typical Operation	Plate Voltage	Grid Voltage	Plate Current Ma.		Approx. Grid Driving Power Wotts	$\begin{gathered} \text { Class } 8 \\ \text { P-to-p } \\ \text { Load Res. } \\ \text { Ohms } \end{gathered}$	Approx Output Power Wotts
		Volts	Amp.					$\begin{gathered} \text { Grid } \\ \text { to } \\ \text { Fil. } \end{gathered}$	Grid to Plate	$\begin{gathered} \text { Plate } \\ \text { to } \\ \text { Fil. } \end{gathered}$											
HK54	50	5.0	5.0	3000	150	30	27	1.9	1.9	0.2	100	M.	20	Class-C Amp. (Telegraphy)	3000	-290	100	25	10		250
														Closs-C Amp. (Telephony)	2500	-250	100	20	8.0		210
														Class-B Amp. Audio?	2500	-85	20/150	360^{9}	5.0	40000	275
158	50	12.6	2.5	2000	200	40	25	4.7	4.6	1.0	60	M.	20	Class-C Amp.-Oscillator	2000	-150	125	25	6.0	\cdots	200
						40								Class-C Amp. (Telephony)	2000	-140	105	25	5.0		170
T55	55	7.5	3.0	1500	150	40	20	5.0	3.9	1.2	60	M.	3G	Class-C Amp. (Telegraphy)	1500	-170	150	18	6.0	-	170
								5.0						Clớss-C Amp. (Telephony)	1500	-195	125	15	5.0		145
811	55	6.3	4.0	1500	150	50	160	5.5	5.5	0.6	60	M.	36	Closs-C Amp. (Telography)	1500	-113	150	35	8.0	\cdots	170
														Class-C Amp. (Telephony)	1250	-125	125	50	11	-	120
														Class-B Amp. Audio?	1500	- 9	20/200	1509	$3.0{ }^{\circ}$	17600	220
812	55	6.3	4.0	1500	150	35	29	5.3	5.3	0.8	60	M.	3G	Closs-C Amp. (Telegrophy)	1500	-175	150	25	6.5		170
														Class-C Amp. (Telephony)	1250	-125	125	25	6.0	\square	120
														Class-B Amp. Audio ${ }^{7}$	1500	- 45	50/200	2329	$4.7{ }^{8}$	18000	220
T-60	60	10	2.5	1600	150	50	20	5.5	5.2	2.5	60	M.	20	Class-C Amp.-Oscillator	1500	-150	150	50	9.0		100
826	55	7.5	4.0	1000	140	40	31	3.0	2.9	1.1	250	N.	7BO	Class-C Amp.-Oscillator	1000	- 70	130	35	5.8		90
														Class-C Amp. (Telephony)	1000	-160	95	40	11.5	-	70
														Grid-Modulaled Amp.	1000	-125	65	9.5	8.2		25
$\begin{aligned} & 8308 \\ & 9308 \end{aligned}$	60	10	2.0	1000	150	30	25	5.0	11	1.8	15	M.	3G	Class-C Amp.-Oscillator	1000	-110	140	30	7.0		90
														Class-C Amp. (Telephony)	800	-150	95	20	5.0	-	50
														Class-B Amp. Audio ${ }^{\text {\% }}$	1000	- 35	20/280	$270{ }^{9}$	$6.0{ }^{8}$	7600	175
811-A	65	6.3	4.0	1500	175	50	160	5.9	5.6	0.7	60	M.	3G	Class-C Amp. (Telegraphy)	1500	- 70	173	40	7.1		200
														Class-C Amp. (Telephony)	1250	-120	140	45	10.0		135
														Class-B Amp. Audio?	1500	-4.5	32/313	1709	$4.4{ }^{\text {s }}$	12400	340
812-A	65	6.3	4.0	1500	175	35	29	5.4	5.5	0.77	60	M.	36	Class-C Amp. (Telegraphy)	1500	-120	173	30	6.5	-	190
														Class-C Amp. (Telephony)	1250	-115	140	35	7.6		130
														Class-B Audio?	1500	- 48	28/310	2709	5.0	13200	340
5514	65	7.5	3.0	1500	175	60	145	7.8	7.9	1.0	60	M.	4BO	Class-C Amp. (Telegraphy)	1500	-106	175	60	12	-	200
														Class-C Amp. (Telephony)	1250	-84	142	60	10		135
														Class-B Audio	1500	-4.5	$350{ }^{8}$	888	$6.5{ }^{3}$	10500	400
$\begin{aligned} & 3.75 \mathrm{A3} \\ & 75 \mathrm{TH} \end{aligned}$	75	5.0	6.25	3000	225	40	20	2.7	2.3	0.3	40	M.	2D	Class-C Amp. (Telegraphy)	2000	-200	150	32	10		225
														Class-C Amp. (Telephony)	2000	-300	110	15	6		170
														Class-B Amp. Audia?	2000	- 90	50/225	3509	$3{ }^{8}$	19300	300
$\begin{aligned} & 3.75 \mathrm{~A} 2 \\ & 75 \mathrm{TL} \end{aligned}$	75	5.0	6.25	3000	225	35	12	2.6	2.4	0.4	40	M.	2D	Class-C Amp. (Telegraphy)	2000	-300	150	21	8	-	225
														Class-C Amp. (Telephany)	2000	-500	130	20	14		210
														Closs. $\overline{A B}_{2}$ Amp. Audia ${ }^{\text {a }}$	2000	-190	50/250	6009	58	18000	350
HF-60	75	10	2.5											Class-C Amp. (Telegraphy)	1600	-190	158	12	3.5	-	200
				1600	160	-	28	5.4	5.2	1.5	30	M.	2D	Class-C Amp. (Telephony)	1250	-190	113	8	2.5	-	110
														Class-B Amp. Audia?	1600	-75	50/248	310^{9}	3.0	13800	262
HF75	75	10	3.25	2000	120	-	12.5	-	2.0	-	75	M.	2 D	Class-C Oscillatar-Amp.	2000	-	120	-	-	\cdots	150
														Class-C Amp. - Telegraphy	1500	-130	200	32	7.5	-	220
8005	85	10	3.25	1500	200	45	20	6.4	5.0	1.0	60	M.	3G	Class-C Amp. (Telephony)	1250	-195	190	28	9.0	-	170
														Class-B Amp. Audio?	1500	- 70	40/310	310°	4.0	10000	300
														Class-C Amp. (Telegraphy)	1750	-100	170	19	3.9	-	225
V-70-D	85	7.5	3.25	1750	200	45	-	4.5	4.5	1.7	30	M.	3G	Class-C Amp. (Velegraphy)	1500	-90	165	19	3.9	-	195
														Class-C Amp. (Telephony)	1500	- 90	165	19	3.7	-	185
														Class-C Amp. (Telephony)	1250	- 72	127	16	2.6	-	122
$\begin{aligned} & 3-100 \mathrm{A4} \\ & 100 \mathrm{TH} \end{aligned}$	100	5.0	6.3	3000	225	60	40	2.9	2.0	0.4	40	M.	20	Class-C Amp. (Telegraphy)	3000	-200	165	51	18	-	400
														Class-B Amp. (Audio) ${ }^{\text {] }}$	3000	- 65	40/215	3359	$5.0{ }^{8}$	31000	650

table Xi-triode transmitting tubes-Continued

Type	Max. Plafe Dissipation Watts	Cathode		Max. Plate Voltage		Max. D.C. Grid Current Ma.	Amp. Factor	IntarelectrodeCapacilances ($\mu \mu f$.)			Max. Frea. Mc. Full Ratings	Base	Socket ConnecHions	Typical Operation	Plate Voltage	Grid Voltage	Plate Current Ma.		Approx. Grid Driving Power Watts	$\begin{gathered} \text { Class B } \\ \text { P-to-P } \\ \text { LoadRes. } \\ \text { Ohms } \end{gathered}$	Approx. Output Power Watls
		Volts	Amp.					$\begin{gathered} \text { Grid } \\ \text { to } \\ \text { Fil. } \end{gathered}$	$\begin{aligned} & \text { Grid } \\ & \text { to } \\ & \text { Plate } \end{aligned}$	Plate Io Fil											
$\begin{aligned} & \text { 3-100A2 } \\ & \text { 100TL } \end{aligned}$	100	5.0	6.3	3000	225	50	14	2.3	2.0	0.4	40	M.	2D	Class-C Amp. (Telogrophy)	3000	-400	165	30	20	-	400
														Class-C Amp. (Telephony)							
														Grid-Modulated Amp.	3000	-560	60	2.0	7.0	-	90
														Class-8 Amp. (Audio)?	3000	-185	40/215	640^{9}	6.0^{8}	30000	450
														Class-C Amp. (Telagraphy)	2000	-340	210	67	25		315
VT127A	100	5.0	10.4	3000	-	-	15.5	2.7	2.3	0.35	150	N.	T-4B	Class-B Amp. (Audio) ${ }^{7}$	1500	-125	242	44	7.3	3000	200
HK254	100	5.0	7.5	4000	200	40	25	3.3	3.4	1.1	50	J.	2N	Closs-C Amp. (Telegraphy)	4000	-380	120	35	20	-	475
														Class-C Amp. (Telephony)	3000	-290	135	40	23		320
														Grid-Modulated Amp.	3000	-	51	3.0	4.0		58
														Class-B Amp. (Audio) ${ }^{\text {? }}$	3000	-100	40/240	4569	7.0^{8}	30000	520
HF 120	100	10	3.25	1250	175	50	12	5.5	12.5	3.5	15	J.	4F	Class-C Amp.-Oseillator	1250	-300	166	8	3.5	-	148
HF125	100	10	3.25	1500	175		25		11.5	-	30	J.		Class-C Amp.-Oscillator	1500		175				200
HF140	100	10	3.25	1250	175	-	12	5.5	13.0	4.5	15	J.	45	Class-C Amp.-Oscillator	1250	-300	166	8	3.5		148
$\begin{aligned} & 203 A \\ & 303 A \end{aligned}$	100	10	3.25	1250	175	60	25	6.5	14.5	5.5	15	J.	4E	Class-C Amp. (Telegraphy)	1250	-125	150	25	7.0	-	130
														Class-C Amp. (Telephony)	1000	-135	150	50	14		100
														Class-B Amp. (Audio) ${ }^{\text {] }}$	1250	- 45	26/320	$330{ }^{\circ}$	11^{8}	9000	260
$\begin{aligned} & 211 \\ & 311 \end{aligned}$	100	10	3.25	1250	175	50	12	$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$	$\begin{gathered} 14.5 \\ 9.25 \end{gathered}$	$\begin{aligned} & 5.5 \\ & 5.0 \end{aligned}$	13	J.	4E	Closs-C Amp. (Telegraphy)	1250	-225	150	18	7.0	-	130
														Class-C Amp. (Telephony)	1000	-260	150	35	14	-	100
														Class-B Amp. (Audio)?	1250	-100	20/320	410^{9}	$8.0^{\text {s }}$	9000	260
254	100	5	7.5	4000	225	60	25	2.5	2.7	0.4		\pm.	2N	Class-C Amp. (Telegraphy)	3000	-245	165	40	18	-	400
											-			Class-C Amp. (Telephony)	2500	-360	168	40	23	-	335
														Class-B Amp. (Audio) ${ }^{\text {] }}$	2500	-80	40/240	4609	25	25200	420
$\begin{aligned} & 838 \\ & 938 \end{aligned}$	100	10	3.25	1250	175	70		6.5	8.0	5.0	30	J.	$4 E$	Class -C Amp. (Telegraphy)	1250	-90	150	30	6.0	-	130
							-							Closs-C Amp. (Telephony)	1000	-135	150	60	16	\square	100
														Class-8 Amp. (Audio)	1250	0	148/320	$200{ }^{9}$	$7.5{ }^{8}$	9000	260
8003	100	10	3.25	1500	250	50	12	5.8	11.7	3.4	30	J.	3 N	Class-C Amp.-Oscillator	1350	-180	245	35	11	-	250
														Closs-C Amp. (Telephony)	1100	-260	200	40	15	$\underline{\square}$	167
														Class-B Amp. (Audio) ${ }^{7}$	1350	-100	40/490	480^{9}	$10.5{ }^{8}$	6000	460
$\begin{aligned} & 3 \times 100 \mathrm{A11} \\ & 2 \mathrm{C39} \end{aligned}$	100	6.3	1.1	1000	60	40	100	6.5	1.95	0.03	500	N.		"Grid Isolation" Circuit	600	- 35	60	40	5.0	-	20
$\begin{aligned} & \text { GL2C39A } \\ & \text { GL2C39B } \end{aligned}$	10015	6.3	1.0	1000	12514	50	100	6.5	1.9	0.035	500	N.		Class-C Oscillator	900	-40	90	30			40
	70^{15}							7.0	1.9	0.035				Class-C Amp. (Telephony)	600	-150	10014	50	-		
3 C 22	125	6.3	2.0	1000	150	70	40	4.9	2.4	0.05	500	0.	Fig. 30	Class-C Amp.-Oseillator	1000	-200	150	70	-	\square	65
HF130	125	10	3.25	1250	210	-	12.5	5.5	9.0	3.5	20	J.	-	Closs-C Amp.-Oscillator	1250	-250	200	10	3.5		170
HF150	125	10	3.25	1500	210	-	12.5	5.5	7.2	1.9	30	J.	$\underline{\square}$	Class-C Amp.-Oscillator	1500	-300	200	10	4		220
GL146	125	10	3.25	1500	200	60	75	7.2	9.2	3.9	15	J.	T-4BG	Class-C Amp.-Oscillator	1250	-150	180	30	-		150
														Class-C Amp. (Telephony)	1000	-200	160	40	\square	-	100
														Closs-8 Amp. (Audio)?	1250	0	34/320	-	-	8400	250
GL152	125	10	3.25	1500	200	60	25	7.0	8.8	4.0	15	J.	T-48G	Class-C Amp.-Oscillator	1250	-150	180	30	\square	-	150
														Class-C Amp. (Telephony)	1000	-200	160	30	\square	-	100
														Class-6 Amp. (Audio) ${ }^{\text {a }}$	1250	- 40	16/320	-	-	8400	250
805	125	10	3.25	1500										Class-C Amp. (Telegraphy)	1500	-105	200	40	8.5	-	215
					210	70	40/60	8.5	6.5	10.5	30	J.	3 N	Class-C Amp. (Telephony)	1250	-160	160	60	16	020	140
														Class-B Amp. (Audio)?	1500	- 16	84/400	2809	7.0^{8}	8200	370
														Class-C Amp. (Telegraphy)	2500	-200	200	40	16		390
$\begin{aligned} & \text { AX9900/ } \\ & 586612 \end{aligned}$	135	6.3	5.4	2500	200	40	25	5.8	5.3	0.1	150	N.	Fig. 5	Class-C Amp. (Telephony)	2000	-225	127	40	16	-	204
														Class-B (Audio)?	2500	- 90	80/330	$350{ }^{\circ}$	14^{8}	15680	560

table XI-TRIODE tRANSMITting TUBES-Continued

Type	Max. Plate Dissi- pation Watts	Cathode		Max. Plate Voltage	Max. Current Ma.	Max. D.C. Grid Current Ma.	Amp. Factor	Interelectrode Copacitances ($\mu \mu \mathrm{f}$.)			Max. Freq. Mc. Full Rotings	Base	Sockel Connertions	Typical Operation	Plate Volfage	Grid Vollage	Plate Current Ma.	$\begin{gathered} \text { D.C. } \\ \text { Grid } \\ \text { Current } \\ \text { Ma. } \end{gathered}$	Approx. Grid Driving Power Watls	$\begin{gathered} \text { Class B } \\ \text { P-to.P } \\ \text { Load Res. } \\ \text { Ohms } \end{gathered}$	Approx. Oulput Power Watts
		Volis	Amp.					$\begin{gathered} \text { Gidd } \\ \text { Io } \\ \text { Fil. } \end{gathered}$	$\begin{aligned} & \text { Grid } \\ & \text { to } \\ & \text { Plote } \end{aligned}$	$\begin{aligned} & \text { Plate } \\ & \text { 10 } \\ & \text { Fil. } \end{aligned}$											
$\begin{aligned} & 3.150 \mathrm{A3} \\ & 152 \mathrm{TH} \end{aligned}$	150	5/10		3000	450	85	20	5.7	4.8	0.4	40	J.	4BC	Class-C Amp. (Telegraphy)	3000	-300	250	70	27	-	600
			$\underline{6.5}$											Class-C Amp. (Telephony)	2500	-350	200	30	15		400
														Class-B Amp. (Audio) ${ }^{7}$	2500	-125	40/340	390%	16\%	17000	600
$\begin{aligned} & 3.150 \mathrm{~A} 2 \\ & 152 \mathrm{TL} \end{aligned}$	150	5/10	12.5	3000	450	75	12	4.5	4.4	0.7	40	J.	4BC	Class-C Amp. (Telegraphy)	3000	-400	250	40	20		600
			6.25											Class-B Amp. (Audio) ${ }^{\text {? }}$	3000	-260	65/335	6759	3.0^{8}	20400	700
														Class-C Amp.-Oscillator	3000	-400	250	30	15	-	610
HK252-L	150	5/10	13/6.5	3000	500	75	10	7.0	5.0	0.4	125	N.	4BC	Class-C Amp. (Telephony)	2500	-350	250	35	16	-	500
DR200 HF200 HV18	150	10-11	3.4	2500	200	50	18	5.2	5.8	1.2	20	J.	2N	Closs-C Amp. (Telegraphy)	2500	-300	200	18	8.0	-	380
														Class-C Amp. (Telephony)	2000	-350	160	20	9.0	-	250
														Class-B Amp. (Audio)?	2500	-130	60/360	$460{ }^{\circ}$	8.0^{8}	16000	600
HF201A	150	10-11	4.0	2500	200	50	18	8.8	7.0	1.2	30	J.	Fig. 26	Class-C Amp. (Telegraphy)	2500	-300	200	18	8	-	380
														Class-C Amp. (Telephony)	2000	-350	160	20	9		250
														Class-B Amp. (Audio) ${ }^{7}$	2500	-130	60/360	$460{ }^{\circ}$	$8{ }^{8}$	16000	600
HF250	150	10.5	4.0	2500	200	\cdots	18	-	5.8	-	20	J.	2N	Class-C Amp.-Oscillator	2500		200			-	375
HK354 HK354C	150	5.0	10	4000	300	50	14	4.5	3.8	1.1	30	J.	2N	Class-C Amp. (Telegraphy)	4000	-690	245	50	48		830
														Class-C Amp. (Telaphony)	3000	-550	210	50	35	-	525
														Grid-Modulaled Amp.	3000	-400	78	3.0	12	-	85
														Class-B Amp. (Audio) ${ }^{\text {7 }}$	3000	-205	65/313	$630{ }^{\text { }}$	20^{8}	22000	665
														Class.C Amp. (Telegraphy)	3500	-490	240	50	38	-	690
HK3540	150	5.0	10	4000	300	55	22	4.5	3.8	1.1	30	J.	2N	Class-C Amp. (Telephony)	3500	-425	210	55	36		525
HK354E	150	5.0	10	4000	300	60	35	4.5	3.8	1.1	30		2N	Class C Amp. (Telegraphy)	3500	-448	240	60	45		690
HK354E			10	4000	300	60	35	4.5	3.8	1.1	30	J.	2 N	Class-C Amp. (Telephony)	3000	-437	210	60	45		525
HK354F	150	5.0	10	4000	300	75	50	4.5	3.8	1.1	30	J.	2N	Class-C Amp. (Telegraphy)	3500	-368	250	75	50		720
HK354F	150	5.0	10	4000	300									Class-C Amp. (Telephony)	3000	-312	210	75	45		525
810	175	10	4.5	2500	300	75	36	8.7	4.8	12	30	J.	2N	Closs-C Amp. (Telegraphy)	2500	-180	300	60	19		575
														Class-C Amp. (Telephony)	2000	-350	250	70	35	-	380
														Grid-Modulated Amp.	2250	-140	100	2.0	4.0	-	75
														Class-B Amp. (Audio) ${ }^{\text {? }}$	2250	- 60	70/450	380°	13^{8}	11600	725
8000	175	10	4.5	2500	300	45	16.5	5.0	6.4	3.3	30	J.	2N	Class-C Amp.-Oscillator	2500	-240	300	40	18		575
														Class-C Amp. (Telephony)	2000	-370	250	37	20	-	380
														Grid-Modulaled Amp.	2250	-265	100	0	2.5	-	75
														Class-B Amp. (Audio) ${ }^{\text {3 }}$	2250	-130	65/450	$560{ }^{\circ}$	7.98	12000	725
GL-5C24	160	10	5.2	1750	107	-	8	5.6	8.8	3.3	-	N.	Fig. 26	Class-A Amp. (Audio)	1500	-155	107	-	\cdots	$8200{ }^{\text {b }}$	55
GL.SC24	160	10	5.2	1750	107	-	8	5.6	8.8	3.3	-	N.	Fig. 26	Class-AB ${ }_{1}$ Amp. (Audio) ${ }^{\text {] }}$	1750	-200	$320{ }^{8}$	$390{ }^{\circ}$		8000	240
T200	200	10	5.75	2500	350	80	16	9.5	7.9	1.6	30	J.	2N	Closs-C Amp. (Telegraphy)	2500	-280	350	54	25	-	685
1200	200		5.75	2500	350	80	16	9.5				J.		Class-C Amp. (Telephony)	2000	-260	300	54	23	-	460
$\begin{aligned} & 592 / 15 \\ & 3-200 A 3 \end{aligned}$	200	10	5.0	3500	250	25^{13}	25	3.6	3.3	0.29	150	N.	Fig. 52	Class-C Amp. (Telegraphy)	3500	-270	228	39	15		600
	130			2600	200	25^{13}								Class-C Amp. (Telephony)	2500	-300	200	35	19	-	375
	200			3500	250	$25{ }^{13}$								Class-B Amp. (Audio)?	2000	- 50	120/500	$520{ }^{\circ}$	20:	8500	600
$\begin{aligned} & 4 C 34 \\ & \text { HF300 } \end{aligned}$	200	11-12	4.0	3000	275	60	23	6.0	6.5	1.4	$\begin{aligned} & 60 \\ & 20 \end{aligned}$	\pm.	2N	Class-C Amp. (Telegraphy)	3000	-400	250	28	16	\longrightarrow	600
														Class-C Amp. (Telephony)	2000	-300	250	36	17	\square	385
														Class-B Amp. (Audio)?	3000	-115	60/360	450 \%	138	20000	780
T-300	200	11	6.0	3000	300		23	8.0	7.0	1.4				Class.C Amp. (Telegraphy)	3000	-400	250	28	20	\cdots	600
						-					-	\square	-	Class-C Amp. (Telephony)	2000	-300	250	36	17	\cdots	385
														Class-B (Audio) ${ }^{\text {7 }}$	2500	-100	60/450	-	7.5^{8}	-	750
806	225	5.0	10	3300	300	50	12.6	6.1	4,2	1.1	30	J.	2N	Class-C Amp. (Telegraphy)	3300	-600	300	40	34	\square	780
														Class-C Amp. (Telephony)	3000	-670	195	27	24	-	460
														Class-B Amp. (Audio)?	3300	-240	80/475	930 ${ }^{\circ}$	$35{ }^{8}$	16000	1120

table XI-TRIODE tRANSMITting TUBES-Continued

Type	Max. Plate Dissi- pation Wafls	Cathode		Max. Plate Voltage	Max. Plate Current Ma.	Max. D.C. Grid Current Mo.	Amp. Factor	Interelectrode Capacitances ($\mu \mu \mathrm{f}$.)			Max. Freq. Mc. Full Ratings	Base	5ockel Connecfions	Typical Operation	Plafe Voltage	Grid Voltage	Plate Current Mo.	$\begin{gathered} \text { D.c. } \\ \text { Gurrant } \\ \text { Mo. } \end{gathered}$	Approx. Grid Driving Power Watis	Closs B P-to-P Load Ret. Ohms	Approx Power Watts
		Volts	Amp.					$\begin{gathered} \hline \text { Grid } \\ \text { to } \\ \text { fil. } \end{gathered}$	$\begin{aligned} & \text { Grid } \\ & \text { fo } \\ & \text { Plate } \end{aligned}$	$\begin{gathered} \text { Plole } \\ \text { to } \\ \text { Fil. } \end{gathered}$											
$\begin{aligned} & 3.250 \mathrm{A4} \\ & 250 \mathrm{TH} \end{aligned}$	250	5.0	10.5	4000	350	100	37	5.0	2.9	0.7	40	J.	2N	Class-C Amp. (Telegraphy)	2000	-120	350	100	34		500
														Class-C Amp. (Telephany)	3000	-210	330	75	42	-	750
														Grid-Madulated Amp.	3000	-160	125	4.5	20		125
														Class-8 Amp. (Audio) ${ }^{\text {] }}$	3000	- 65	100/560	460\%	24^{8}	12250	1150
$\begin{aligned} & 3.250 A 2 \\ & 250 \mathrm{TL} . \end{aligned}$	250	5.0	10.5	4000	350	50	14	3.7	3.1	0.7	40	J.	2N	Class-C Amp. (Telegraphy)	3000	-350	335	45	29		750
														Class-C Amp. (Telephony)	3000	-350	335	45	29	-	750
														Grid-Modulated Amp.	3000	-450	125	2.0	15		125
														Class-B Amp. (Audio) ${ }^{\text {? }}$	3000	-175	100/500	$840{ }^{\circ}$	179	13000	1000
GL159	250	10	9.6	2000	400	100	20	11	17.6	5.0	15	J.	T-4BG	Class-C Amp.-Oseillator	2000	-200	400	17	-6.0		620
														Class-C Amp. (Telephony)	1500	-240	400	23	9.0	\square	450
														Class-B Amp. (Audio) ${ }^{7}$	2000	-100	30/660	4009	4.0 \%	6880	900
Gl169	250	10	9.6	2000	400	100	85	11.5	19	4.7	15	d.	T-4BG	Class-C Amp.-Oseillator	2000	-100	400.	42	10		620
														Class-C Amp. (Tolephony)	1500	-100	400	45	10	-	450
														Class-8 Amp. (Audio) ${ }^{\text {? }}$	2000	- 18	30/660	2209	$6.0{ }^{8}$	7000	900
HK454H	250	5.0	11	5000	375	85	30	4.6	3.4	1.4	100	J.	2N	Class-C Amp. (Tolography)	3500	-275	270	60	28		760
HK454L	250	5.0	11	5000	375	60	12	4.6	3.4	1.4	100	J.	2N	Class-C Amp. (Telephony)	3500	-450	270	45	30		760
$\begin{aligned} & 5867 \\ & A X-9901 \\ & \hline \end{aligned}$	250	5.25	14.1	-	-	-	25	7.0	5.3	0.15	100	-	-	Class-C Amplifier	3000	-400	363	80	-	-	950
PL-6569	250	5.0	14.5	4000	300	120	45	7.6	3.7	0.1	30	J.	Fig. 5	Grounded-Grid Class-C Amp.	4000	-120	250	50	70	-	820
														Grounded-Grid Closs-B Lineor Amp.	4000	-103	24/250	428	608	-	800%
HK654	300	7.5	15	4000	600	100	22	6.2	5.5	1.5	20	J.	2N	Class-C Amp. (Telegraphy)	2000	-380	500	75	57	-	720
														Class-C Amp. (Telephony)	2000	-365	450	110	70		655
														Grid-Modulated Amp.	3500	-210	150	15	15	-	210
	300	5/10	25/12.5	3000	900									Class-C Amplifer	1500	-125	667	115	25	-	700
3.300 A 304 TH						170	20	13.5	10.2	0.7	40	N.	48 C	Class-B Amp. (Audio) ${ }^{7}$	3000	-150	134/667	420 ${ }^{\text {\% }}$	6.0^{8}	10200	1400
$\begin{aligned} & 3.300 A 2 \\ & 304 \mathrm{TL} \end{aligned}$														Class-C Amplifier	1500	-250	665	90	33	-	700
						150	12	8.5	9.1	0.6	40	N.	48 C	Class-8 Amp. (Audio) ${ }^{7}$	3000	-260	130/667	6509	6.0^{8}	10200	1400
	350	10	10	3300	500	100	35	12.3	6.3	8.5	30	N.	T-1AB	Class-C Amp. (Telegraphy)	2000	-200	475	65	25	-	740
833A														Class-C Amp. (Telephony)	2500	-300	335	75	30	-	635

* Cothode resisior in ohms.

${ }^{1}$ Discontinued.
${ }^{1}$ Twin triode. Values, exeept infereloment capacitios,
1 ore for both sections in push-pull.

Grid leak resistor in ohms.
5 Peak volves.
Pur section
Yar sectian.

8 Max. signal value.

- Peak a.f. grid-to-grid volts. 10 For single tube.
${ }^{11}$ Class-B data in Table II.

12 Forced-oir cooling.
13 Max. grid dissipation in watts ${ }^{14}$ Max. calhode current in ma. ${ }_{15}$ Forced-air cooling required.
table XII-TETRODE AND PENTODE TRANSMITTING TUBES

Type	Max. Plate Dissi- pation WeHs	Cothode		Max. Plate Voltage	Max. Screen Voltage	Max. Screen Dissipation Walfs	Inferelectrode Copacilances ($\mu \mu$ f.)			Max.Freq.Mc.FFulRatings	Base	Socket Con-nections	Typical Operation	Plat Voltage	Screen Volfage	Sup. pressop Vollage	Grid Voltage	Piate Current Ma.	Screen Current Ma.	Grid Current Ma.	Screen Resisfar Ohms	Approx. Grid Driving Power Watts	Class $:$ P-to-P Load Res. Ohms	Approx Output Power Watts
		Volts	Amp.				$\begin{aligned} & \text { Grid } \\ & \text { to } \\ & \text { Fiil. } \end{aligned}$	$\begin{aligned} & \hline \text { Grid } \\ & \text { To } \\ & \text { Plate } \end{aligned}$	$\begin{array}{c\|} \hline \text { Plate } \\ \text { ta } \\ \text { Fil. } \end{array}$															
3 A4	2.0	$\begin{aligned} & \hline 1.4 \\ & 2.8 \end{aligned}$	$\begin{aligned} & 0.2 \\ & 0.1 \end{aligned}$	150	135	0.9	4.8	0.2	4.2	10	8.	7BB	Class -C Amp. (Telegraphy)	150	135	0	- 26	18.3	6.5	0.13	2300	\square	\square	1.2
6AK6	3.5	6.3	0.15	375	250	1.0	3.6	0.12	4.2	54	B.	7BK	Class-C Amp. (Telegraphy)	375	250		-100	15	4.0	3.0				4.0
5618	5.0	$\begin{aligned} & 6.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 0.23 \\ & 0.46 \end{aligned}$	300	125	2.0	7.0	0.24	5.0	80	B.	7 Cu	Class-C Amp. (Tolegraphy)	300	75	0	- 45	25	7.0	1.5	32000	0.3		5.4
1610	6.0	2.5	1.75	400	200	2.0	8.6	1.2	13	20	M.	T-5CA	Class-C Amp. (Telegraphy)	400	150		- 50	22.5	7.0	1.5		0.1		5.0
									4.0	160	B.	Fig. 29		250	250		- 50	40	10.5	2.0	-	0.15		6.5
5686	7.5	6.3	0.35	250	250	3.0	6.4	0.11	4.0	160	B.	Fig. 29	Class-C Amp. (Telography)	250	180		- 30	30	6.5	2.0		0.10		5.0
6495	8.0	6.3	0.45	350	250	2.0	8.3	0.35	8.2	54	B.	782	Class-C Amp. (Telegraphy)	350	250		-100	47	7.0	5.0		-		11
6V6GT	8.0	6.3	0.45	350	250	2.0	9	0.7	7.5	10	0.	7AC	Class-C Amp. (Telography)	350	250		-100	47	7.0	5.0				11
6Y6G	8.0	6.3	1.25	350	135	-	15	0.7	11	-	0.	7AC	Class-C Amp.-Oscillator	350	115		-40	60	5.1	1.4	5000	0.1		14
6AG7	9.0	6.3	0.65	375	250	1.5	13	0.06	7.5	10	0.	8 Y	Class-C Amp. (Telography)	375	250		- 75	30	9.0	5.0	-			7.5
RK25	10	$\begin{aligned} & 2.5 \\ & 6.3 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 0.9 \end{aligned}$	500	250	8	10	0.2	10		M.	6BM	Class-C Amp. (Telegraphy)	500	200	45	- 90	55	38	4.0	-	0.5		22
										-			Class.C Amp. (Telephony)	400	150	0	-90	43	30	6.0	8300	0.8		3.5
													Suppressor-Modulated Amp.	. 500	200	-45	-90	31	39	4.0	-	0.5		6.0
													Class-C Amp. (Tolography)	350	200		- 35	50	10	3.5	20000	0.22		9
1613	10	6.3	0.7	350	275	2.5	8.5	0.5	11.5	45	0.	75	Class-C Amp. (Telephony)	275	200		-35	42	10	2.8	10000	0.16		6.0
									4.5	160	B.	$7 C 0$	Class-C Amp. (Telegraphy)	250	200		- 50	50	10	2.5	-	0.2		7.5
$2 E 30$	10	6.0	0.7	250	250	2.5	10	0.5	4.5	160	B.	760	Class-AB: Amp. (Audio) ${ }^{\text {B }}$	250	250		- 30	40/120	4/20	$2.3{ }^{7}$	$87{ }^{8}$	0.2	3800	17
837	12	12.6	0.7	500	300	8	16	0.2	10	20	M.	6BM	Class-C Amp. (Telegraphy)	500	200	40	- 70	80	15	4.0	20000	0.4		28
													Class-C Amp. (Telephony)	400	140	40	- 40	45	20	5.0	13000	0.3		11
													Suppressor-Modulated Amp.	500		-65	- 20	30	23	3.5	14000	0.1		5.0
$\frac{5763}{6417}$	13.5	$\frac{6.0}{12.6}$	0.75	350	250	2	9.5	0.3	4.5	50	B.	9K	Class-C Amp. (Telegraphy)	350	250		-28.5	48.5	6.2	1.6	-	0.1		12
													Class-C Amp. (Telephony)	300	250		-42.5	50	6	2.4		0.15		10
			0.375										Daubler to 175 Mc .	300	250		-75	40	4.0	1.0	12500	0.6		2.1
													Tripler to 175 Mc .	300	235		-100	35	5.0	1.0	12500	0.6		1.3
6 66 6F6G	12.5	6.3	0.7	400	275	3.0	6.5	0.2	13	10	O.	75	Class-C Amp. (Telegraphy)	400	275		-100	50	11	5.0	\cdots			14
							8.0	0.5	6.5				Class-C Amp. (Telephony)	275	200		- 35	42	10	2.8	-	0.16		6.0
802	13	6.3	0.9	600	250	6.0	12	0.15	8.5	30	M.	6BM	Class-C Amp. (Telegraphy)	600	250	40	-120	55	16	2.4	22000	0.30		23
													Class-C Amp. (Telephony)	500	245	40	-40	40	15	1.5	16300	0.10		12
													Suppressor- Modulated Amp.	600	250	-45	-100	30	24	5.0	14500	0.6		6.3
$2 \mathrm{E24}$	13.5	6.35	0.65				8.5	0.11	6.5	125	0.	7 Cl	Class-C Amp. (Telephony)	400	180	-	-45	50	8.0	2.5	27500	0.15		13.5
				500	200	2.3								500	180		- 45	54	8.0	2.5	40000	0.16		18.0
														400	200		-45	75	10.0	3.0	20000	0.19		20
				600	200	2.5							Class-C Amp. (Telegraphy)	600	195		- 50	66	10.0	3.0	40500	0.21		27
$2 E 26$	13.5	6.3	0.8	600	200	2.5	12.5	0.2	7.0	125	0.	7CK	Class-C Amp. (Telegraphy)	600	185		- 45	66	10	3.0	41500	0.17		27
					200								Class-C Amp. (Telephonv)	500	180		- 50	54	9.0	2.5	35500	0.15		18
				500	200	2.3							Class-AB2 Amp. (Audio) ${ }^{\text {a }}$	500	125		- 15	22/150	32 ?		60:	$0.36{ }^{7}$	8000	54
$6360{ }^{3}$	14	$\begin{array}{r} 6.3 \\ 12.6 \end{array}$	$\begin{aligned} & 0.82 \\ & 0.41 \end{aligned}$	300	200	2	6.2	0.1	2.6	200	B.	Fig. 21	Class-C Amp. (Telegraphy)	300	200		-45	100	3	3	-	0.2	-	18.5
													Class.C Amp. (Telephony)	200	100		15K1	86	3.1	3.3	33000	0.2	--	9.8
													Tripler to $\mathbf{2 0 0}$ Mc.	300	150		-100	65	3.5	3.8	- -	0.45	-	4.8
													Class-AB1 Amp. (Audio)	300	200		-21.5	30/72	1/12.6	43.58	-	-	10000	12
													Class-AB: Amp. (Audio)	300	200		-21.5	30/100	1/11.4	64^{8}	-	0.04	6500	17.5
$2 E 25$	15	6.0	0.8	450	250	4.0	8.5	0.15	6.7	125	0.	58J	Class-C Amp.-Oscillator	450	250		- 45	75	15	3.0	\square	0.4	-	24
													Class-C Amp. (Telephony)	400	200	-	-45	60	12	3.0	-	0.4	\square	16
													Cass-ABs Amp. (Audio) ${ }^{\text {c }}$	450	250	\cdots	- 30	44/150	10/40	3.0	1428	$0.9{ }^{7}$	8000	40

TABLE XII-TETRODE AND PENTODE TRANSMITTING TUBES—Continued

Type	Max. Plate Dissi- pation Watts	Cothode		Max. Plate Volfage	Max. Screen Vollage	Max. Screen Dissi- palion Wafts	InterelectrodeCapacitances ($\mu \mu \mathrm{f}$.)			Max. Freq. Mc. Full Ratings	Base		Typical Operation	Plate Voltcge	$\begin{aligned} & \text { Scroen } \\ & \text { Volt- } \\ & \text { age } \end{aligned}$	Sup-pressor Vollage	Grid Voltage	Plate Current Ma.	Screen Current Ma.	$\begin{array}{\|} \text { Grid } \\ \text { Current } \\ \text { Ma. } \end{array}$	Screen Resistor Ohms	Approx. Grid Driving Power Wafts	$\begin{aligned} & \text { Class B } \\ & \text { P-to-P } \\ & \text { Load } \\ & \text { Res. } \\ & \text { Ohms } \end{aligned}$	Approx Outpu Power Watts	
		Volis	Amp.				Grid to Fin.	$\begin{aligned} & \text { Grid } \\ & \text { to } \\ & \text { Plate } \end{aligned}$	$\begin{aligned} & \text { Plate } \\ & \text { to } \\ & \text { Fil. } \end{aligned}$																
$832{ }^{3}$	15	6.3	1.6										Class-C Amp. (Telegraphy)	500	200		- 65	72	14	2.6	21000	0.18		26	
$832{ }^{\text {a }}$	15			500	250	5.0	7.5	0.05	3.8	200	N.	7BP	Class-C Amp. (Telephony)	425	200		-60	52	16	2.4	14000	0.15		16	
832A ${ }^{3}$	15	6.3	1.6	750	250	5.0	8	0.07	3.8	200	N.	78P	Class-C Amp. (Telegraphy)	750	200		-65	48	15	2.8	36500	0.19		26	
832						5.0		0.07	3.8	200	N.	78	Class-C Amp. (Telephony)	600	200		-65	36	16	2.6	25000	0.16		17	
1619	15	2.5	2.0	400	300	3.5	10.5	0.35	12.5	45	0.	T.9H	Class-C Amp. (Talegraphy)	400	300		- 55	75	10.5	5.0	9500	0.36		19.5	
													Class-C Amp. (Telephony)	325	285		- 50	62	7.5	2.8	5000	0.18		13	
													Class-AB2 Amp. (Audio) ${ }^{\text {b }}$	400	300	0	-16.5	75/150	6.5/11.5		77^{8}	0.47	6000	36	
5516	15	6.0	0.7	600	250	5.0	8.5	0.12	6.5	80	0.	7 CL	Class.C Amp. (Telegraphy)	600	250		-60	75	15	5.0		0.5		32	
													Class-C Amp. (Telephony)	475	250		-90	63	10	4.0	22500	0.5		22	
													Class-AB2 (Audio) ${ }^{\text {c }}$	600	25		- 25	36/140	1/24	47	80^{8}	0.16	10500	67	
AX. 99053	16	6.3	0.68	400	250	5.0	8.5	0.05	3.3	186	0.	Fig. 34	Closs-C Amplifier	400	250		- 80	80	6	3.5	\cdots	0.39	\square	20.8	
			0.62	400	250	5.0	8.5	0.05	3.3	186	O.	Fig. 34	Class-C Amplifier	250	175		- 70	80	6.5	4.2		0.26		16.9	
6252 / AX9910	20	$\begin{gathered} 12.6 \\ 6.3 \end{gathered}$	$\begin{aligned} & 0.65 \\ & 1.3 \end{aligned}$	750	300	4	6.5		2.5	200	N.	Fig. 10	Class-C Amp. (Telegraphy)	600	250		-60	140	14	4		2.0		67	
													Class-C Amp. (Telaphony)	500	250		-80	100	12	3		4		40	
													Class-B Amp. (Audio)	500	250		- 26	25/73	0.7/16	$52{ }^{\text {8 }}$			20000	23.5	
616	21	6.3	0.9	400	300	3.5	10	0.4	12	10	0.	7AC	Class-C Amp.-Os cillator	400	300		-125	100	12	5.0				28	
616G							11.5	0.9	9.5				Closs-C Amp. (Telephony)	325	250		- 70	65		9.0	-	0.8		11	
5881	23	6.3	0.9	400	300	3.0				-	0.	7AC	Class-C Amplifier	Same as 616											
1614	25	6.3	0.9	450	300	3.5	10	0.4	12.5	80	0.	7AC	Class-C Amp. (Telegrophy)	450	250		- 45	100	8	2.0	12500	0.15		31	
													Class-C Amp. (Telephony)	375	250		-50	93	7.0	2.0	10000	0.15		24.5	
													Class-AB1 Amp. (Audio) ${ }^{\text {a }}$	530	340		- 36	60/160	20 \%	-	$72{ }^{3}$	-	7200	50	
8153	25	$\begin{array}{r} 12.6 \\ 6.3 \end{array}$	$\begin{aligned} & 0.8 \\ & 1.6 \end{aligned}$	500	200	4.0	13.3	0.2	8.5	125	0.	88Y	Class-C Amp.-Oscillator	500	200		- 45	150	17	2.5		0.13		56	
													Class-C Amp. (Telephony)	400	175		- 45	150	15	3.0	-	0.16	-	45	
													Closs-AB2 Amp. (Audio) ${ }^{3}$	500	125		- 15	22/150	327		60^{8}	0.367	8000	54	
1624	25	2.5	2.0	600	300	3.5	11	0.25	7.5	60	M.	T-5DC	Class-C Amp. (Telegraphy)	600	300		-60	90	10	5.0	30000	0.43		35	
													Class-C Amp. (Telephony)	500	275		- 50	75	9.0	3.3	25000	0.25		24	
													Class-AB2 Amp. (Audio)	600	300		- 25	42/180	5/15	1063		1.27	7500	72	
$\begin{aligned} & 6146 \\ & 6159 \end{aligned}$	25	$\begin{array}{r} 6.3 \\ 26.5 \end{array}$	$\begin{aligned} & 1.25 \\ & 0.3 \end{aligned}$	750	250	3.0	13.5	0.22	8.5	60	M.	7CK	Class-C Amp. (C. W. 15 Mc .)	750	160		- 85	120	14.7	3.0		0.3		69	
													Class-C Amp. (C. W. 175 Me.)	400	200		- 54	150	9	1.8		3.0		35	
													Class-C Amp. (Telephony)	600	150		- 85	112.5	12	3.0		0.3		52	
													Class-AB2 Amp. (Audio) ${ }^{\text {8 }}$	750	165		- 45	35/240	0.6/21	1018		0.07	8000	130	
$6524{ }^{3}$	25	6.3	1.25	600	300		7	0.11	3.4	100	N.	6524	Class-C Amp. (Telegraphy)	600	200		-44	120	8	3.7		0.2		56	
						-							Class-C Amp. (Telephony)	500	200		-61	100	7	2.5	-	0.2		40	
													Class- AB_{2} Amp. (Audio) ${ }^{\text {3 }}$	500	200		- 26	20/116	0.1/10	2.6		0.1	11100	40	
$3 E 223$	30	12.6	0.8	560	225	6.0	14	0.22	8.5	200	0.	8 BY	Class-C Amp. (Telegraphy) ${ }^{3}$	600	200	-	- 55	160	20	7.0	20000	0.45	\square	72	
		6.3							8.5	200	O.	8 ar	Class-C Amp. (Telephony) ${ }^{3}$	560	200	-	- 50	160	20	6.5	18000	0.4	-	67	
807 807w 5933 1625	30	6.3		750	300	3.5	12	0.2	7.0	60	M.	5AW	Class-C Amp. (Telegraphy)	750	250	-	- 45	100	6	3.5	85000	0.22		50	
		12.6											Class-C Amp. (Telephony)	600	275	-	- 90	100	6.5	4.0	50000	0.4	-	42.5	
			0.45									5AZ	Class-AB: Amp. (Audio) ${ }^{\text {c }}$	750	300	-	- 326	30/240	5/10	928	-	$0.2{ }^{7}$	6950	120	
												SAZ	Class-B Amp. (Audio) ${ }^{\text {H/ }}$	750	-	\square	0	15/240	,	555 \%		5.37	6650	120	
$2 \mathrm{E22}$	30	6.3	1.5	750	250	10	13	0.2	8.0	M.		5 J	Class-C Amp.-Oscillator	500	250	22.5	- 60	100	16	6.0	15000	0.55	-	34	
												Class-C Amp.-Oscillator	750	250	22.5	- 60	100	16	6.0	30000	0.55		53		
												Suppressor-Madulated Amp.	750	250	-90	- 65	55	29	6.5	17000	0.6		16.5		
$\begin{gathered} 4 \times-3^{3} \\ \hline 99 \end{gathered}$	40	6.3	1.8	600	250	7	6.7	0.08	2.1	150	N.		Fig. 10	Class-C Amp. (Telegraphy)	600	250	\longrightarrow	- 80	200	16	2	-	0.2		80
5894A		12.6											Fig. 1	Class-C Amp. (Telephony)	600	250	\square	-100	200	24	8	-	1.2		85
82983													Class-C Amp. (Telegraphy)	500	200	\square	- 45	240	32	12	9300	0.7		83	
3E293	40	6.3	2.25	750	240	7	14.5	0.12	7.0	200	N.	7BP	Class-C Amp. (Telephony)	425	200	-	60	212	35	11	6400	0.8		63	

Type	Max. Plate Dissi. pation Wafts	Cathode		Max. Plate Valtage	Max Screen Voltage	M-x. Screen Dissipation Wafts	InterelectrodeCopocitances ($\mu \mu \mathrm{f}$.)			Max. Freq. Mc. Full Ratings	Base		Typical Operation	Plate Voltage	Screen Voltage	Suppressor Voltage	Grid Volt--ge	Plate Current Ma.	Screen Current Mo.	Grid Currant Ma.	Screan Resistor Ohms	Approx. Grid Driving Power Watts	Class 8 P-to-P Lood Res. Ohms	Approx. Output PowerWatts Watts
		Volts	Amp.				$\begin{gathered} \text { Grid } \\ \text { to } \\ \text { Fil. } \end{gathered}$	Grid to Plate	Plate to Fil.															
HY 1269	40	$\begin{array}{\|r\|r} \hline 6.3 \\ \hline 12.6 \\ \hline \end{array}$	$\begin{aligned} & 3.5 \\ & 1.75 \end{aligned}$	750	300	5.0	16.0	0.25	7.5	6	M.	T-5DB	Class-C Amp.-Os cillator	750	300		- 70	120	15	4		0.25		63
													Class-C Amp. (Telephony)	600	250	\cdots	- 70	100	12.5	5	35000	0.5		42
													Grid-Modulated Amp.	750	300			80	-			-		20
													Class- AB_{2} Amp. (Audio) ${ }^{6}$	600	300		-35	$200{ }^{7}$				0.3		80
			3.0	2000	400	10	6.5	0.2	2.4	125	L.	T-9J	Class-C Amp.-Oscillotor	2000	375	-	-300	90	20	10		4.0		140
3 D 24	45	6.3	3.0	2000	400	10	6.5	0.2	2.4	125	L.	T.98	Class-C Amp.-Oscillotor	1500	375		-300	90	22	10		4.0		105
HK-57	50	5	5	3000	500	25	7.29	0.05	3.13	200	N.	Fig. 64	Class-C Amp. (Telegraphy)	2000	450	+30	-145	110	2	1	-	0.15		166
													Class-C Amp. (Telephony)	2000	450	+30	-145	88	2	1.5	-	0.2	\cdots	135
													Suppressor-Modulated Amp.	2000	450	-190	-240	80	14	2.5	110000	0.6		90
804	50	7.5	3.0	1500	300	15	16	0.01	14.5	15	M.	T-5C	Class-C Amp. (Telegraphy)	1500	300	45	-100	100	35	7.0	34000	1.95		110
													Class-C Amp. (Telephony)	1250	250	50	-90	75	20	6.0	50000	0.75		65
													Grid-Modulated Amp.	1500	300	45	-135	50	13.5	3.7	-	1.3		28
													Suppressor-Modulated Amp.	1500	300	-50	-115	50	32	7.0		0.95		28
$\frac{4 \mathrm{D} 22}{4 \mathrm{D} 32}$	50			750	350	14	28	0.27	13	60	N.	Fig. 50	Class-C Amp. (Telegraphy)	750	300	-	-100	240	26	12		1.5		135
		$\begin{aligned} & 25.2 \\ & 12.6 \end{aligned}$	$\begin{aligned} & 0.8 \\ & 1.6 \end{aligned}$									Fg. 30	Class-C Amp. (Telegraphy)	600	300		-100	215	30	10		1.25	-	100
		6.3	3.75									Fig. 51	Class -C Amp. (Telephony)	600	-		-100	220	28	10	10000	1.25	-	100
														550	-		-100	175	17	6	15000	0.6		70
													Closs-AB2 Amp. (Audio) ${ }^{6}$	600	250		-25	100/365	26^{7}	70^{8}	-	$0.45{ }^{7}$	3000	125
814	65	10	3.25	1500	300	10	13.5	0.1	13.5	30	M.	T-5D	Class-C Amp. (Telegraphy)	1500	300		-90	150	24	10	50000	1.5		160
													Class-C Amp. (Telephony)	1250	300		-150	145	20	10	48000	3.2		130
													Grid-Madulated Amp.	1500	250		-120	60	3.0	2.5		4.2		35
4-65A	65	6.0	3.5	3000	400	10	8.0	0.08	2.1	160°	N.	Fig. 48	Class-C Amp. (Telegraphy)	3000	250		-100	115	22	10		1.7		280
				2500	400								Class-C Amp. (Telophony)	2500	250		-135	110	25	12		2.6		230
				3000	600								Class-B Linear Amp.	2500	500		-105	20/230	0/45	810		$1.3{ }^{10}$		$325{ }^{7}$
				3000	600								Class-AB2 Amp. (Audio) ${ }^{\text {c }}$	1800	250		- 50	50/220	0/30	180^{8}		$2.6{ }^{7}$	20000	270
$\begin{aligned} & 4827 / \\ & 8001 \end{aligned}$	75	5.0	7.5	4000	750	30	12	0.06	6.5	75	J.	7BM	Class-C Amp. (Telegraphy)	2000	500	60	-200	150	11	6	136000	1.4	-	230
													Class-C Amp. (Telephony)	1800	400	60	-130	135	11	8	125000	1.7		178
													Suppressor-Modulated Amp.	2000	500	-300	-130	55	27	3.0		0.4		35
HK257	75	5.0	7.5	4000	750	25	13.8	0.04	6.7	$\begin{array}{r} 75 \\ 120 \end{array}$	J.	7BM	Class-C Amp. (Teleqraphy)	2000	500	60	-200	150	11	6.0	-	1.4		230
HK2578													Class-C Amp. (Telephony)	1800	400	60	-130	135	11	8.0		1.7		178
PL-6549	75	6.0	3.5	2000	600	10	7.5	0.09	3.4	175	N.	Fig. 22	Class-C Amp. (Telegraphy)	2000	400	70	-125	150	12	5		0.8		250
													Class-C Amp. (Telephony)	2000	400	70	-140	125	15	4		0.7		200
													Class-AB, Amp. (Audio) ${ }^{6}$	2000	600	70	-120	30/120	0.1/9	170^{8}		-	19800	275
													Class-AB2 Amp. (Audio) ${ }^{6}$	2000	400	70	-85	30/225	$0.1 / 10$	1808		$0.05{ }^{7}$	19000	325
828	80	10	3.25	2000	750	23	13.5	0.05	14.5	30	M.	5J	Closs-C Amp. (Telegrophy)	1500	400	75	-100	180	28	12	40000	2.2		200
													Class-C Amb. (Telephany)	1250	400	75	-140	160	28	12	30000	2.7	-	150
													Grid-Modulated Amp.	1500	400	75	-150	80	4.0	1.3	-	1.3	-	41
													Class-AB, Amp. (Audio) ${ }^{\text {a }}$	2000	750	60	-120	50/270	2/60	240		0	18500	385
813	125	10	5.0	2250	400	22	16.3	0.25	14	30	J.		Class-C Amp. (Teleqraphy)	2250	400	0	-155	220	40	15	46000	4.0	-	375
												584	Class-C Amm. (Telephony)	2000	350	0	-175	200	40	16	41000	4.3	-	300
												SBA	Grid-Modulated Amplifier	2250	400	0	-110	85	2.5			-		75
													Class-B Amp. (Audio) ${ }^{\text {c }}$	2500	750	0	-95	35/360	1.2/55		-	0.35	17000	650
													Class-C Amp. (Telegraphy)	3000	350		-150	167	30	9		25	-	375
$4 \mathrm{D} 21$	125	5.0	6.5	3000	400	20	10.8	0.05	3.1	120	N.	58K	Class-C Amp. (Telephony)	2500	350		-210	152	-	9		3.3	-	300
													Class-AB2 Amp. (Audio) ${ }^{\text {c }}$	2500	350	-	- 43	93/260	0/6	1788		1.0	22200	400
														3000	500	60	-200	167	5	6	-	1.6	-	375
$\begin{aligned} & \text { 4E27A/ } \\ & 5.125 B \end{aligned}$	125	5.0	7.5	4000	750	20	10.5	0.08	4.7	75	J.	7BM	Closs-C Amp. (Telegraphy)	1500	500	60	-130	200	11	8	-	1.6	-	215
														1000	750	0	-170	160	21	3		0.6		115

table XII-TETRODE AND PENTODE tRANSMItting tubes-Continued

Type	Max. Plate Dissipation Watts	Cathode		Max. Plate Vollage	Max. Screen Voltage	Max. Screen Dissipation Watts	InterelectrodeCapacitances ($\mu \mu \mathrm{f}$.			Max Freq. Me. Full Ratings:	Base	Sockel Connec: tions	Typical Operation	Plate Voltage	$\begin{gathered} \text { Screen } \\ \text { Volt- } \\ \text { age } \end{gathered}$	Suppressor Volfage	$\begin{gathered} \text { Grid } \\ \text { Volt- } \\ \text { age } \end{gathered}$	Plate Current Ma.	Screen Current Ma.	Grid Current Mo.	Screen Resistor Ohms	Approx. Grid Driving Power Watts	Class B P-to-P Load Res. Ohms	Approx. Outpul Power Waths
		Volts	Amp.				$\begin{aligned} & \text { Grid } \\ & \text { to } \\ & \text { Fil. } \end{aligned}$	$\begin{gathered} \text { Grid } \\ \text { to } \\ \text { Plate } \\ \hline \end{gathered}$	$\begin{gathered} \text { Plate } \\ 10 \\ \text { Fil. } \\ \hline \end{gathered}$															
803	125	10	5.0	2000	600	30	17.5	0.15	29	20	J.	$5 J$	Class-C Amv. (Telegraphy)	2000	500	40	- 90	160	45	12		2.0		210
													Class-C Amo. (Telephony)	1600	400	100	- 80	150	45	25	27000	5.0		155
													Suppres sor-Modulated Amp.	2000	-	-110	- 100	80	48	15	35000	2.5		53
													Grid-Modulated Amplifier	2000	600	40	- 80	80	20	4.0		2.0		53
4X150A ${ }^{9}$	150	6.0	2.6	1250	300	12	15.5	0.03	4.5	165	N.	T-9J	Cless-C Amp. (Telegraphy)	1250	250		- 90	200	20	10		0.8		195
	100			1000	300	12							Class-C Amp. (Telephony)	1000	250		- 105	200	20	15		2.0		140
	150			1250	400	12							Class-AB2 Amp. (Audio) ${ }^{\text {a }}$	1250	300		- 44	180/475	0/65	100^{8}		0.15	5600	425
$\begin{aligned} & \overline{4 X-} \\ & 150 \mathrm{~g} \end{aligned}$	150	2.5	6.25	1250	300	15	16.1	0.02	4.7	165	N.	-	Class-C Amp. (Telegraphy)	1250	250		-90	200	20	11		1.2	-	195
$\begin{aligned} & 4-250 \mathrm{~A} \\ & 5 \mathrm{D} 22 \\ & 6156 \end{aligned}$	250	5.0	14.5	4000	600	35	12.7	0.12	4.5	75	N.	5BK	Class-C Amp. (Telegraphy)	3000	500		-180	330	60	10		2.6	\square	800
													Class-C Amp. (Telephony)	3000	400		-310	225	30	9		3.2		510
													Class-AB2 (Audio) ${ }^{\text {c }}$	1500	300		-48	100/485	0/34	1928		4.77	5400	428
$\begin{aligned} & 4 \mathrm{X}-\mathrm{g} \\ & 250 \mathrm{~B} \end{aligned}$	250	6.0	2.1	2000	300	12	18.5	0.04	4.7	175	N.	T-9J	Class-C Amp. (Telegraphy)	2000	250		- 90	250	25	27		2.8	400	410
				1500 2000	300	12							Class-C Amp. (Telephony)	1500	250		-100	200	25	17	-	2.1		250
				2000	400	12							Class-A8, Amp. (Audio) ${ }^{6}$	2000	350		- 50	200/500	30%	1008		0	8260	650
$400 A^{9}$	400	5.0	14.5	4000	600	35	12.5	0.12	4.7	110	N.	5BK	Class-C Teleg. or Telephony	4000	300	\square	-170	270	22.5	10	\square	10	-	720
		1 Grid-resistor. 2 Triode connection-screen grid tied to plate. ${ }^{3}$ Dual tube. Values for both sections, in push-pull. Interelectrode capacitances, however, aro for each section.									- Terminals 3 and 6 must be connectad fogether. ${ }^{5}$ Filament limited to intermittent operation. ${ }^{6}$ Values are for iwo tubes in push-pull. 7 Max.-signal value.						${ }^{8}$ Peak grid-to-grid a.f. volts. ${ }^{9}$ Forced-air cooling required. ${ }^{10}$ Average value. 11 Two tubes triode connected, \mathbf{G}_{2} to \mathbf{G}_{1} through $20 \mathrm{~K} \Omega$. Input to \mathbf{G}_{2}.							

TABLE XIII-ELECTROSTATIC CATHODE-RAY TUBES

Type ${ }^{\text {c }}$	Socket Connections	Heater		Anode No. 2 Voltage	Anode No. 1 Voliage ${ }^{1}$	Anode No. 3 Volfage	Cut-off Grid Vollage?	Deflection Avg. Volts DC/Inch	
		Volts	Amp.					$\mathrm{D}_{1} \mathrm{D}_{2}$	$\mathrm{D}_{3} \mathrm{D}_{4}$
2AP1.1]	118	6.3	0.6	1000	250	-	-30/-90	230	196
2APIA	111								
2BP1-11	12E	6.3	0.6	2000	300/560	-	-135	270	174
3AP1.4-906-P1-4-5-11	7 AN	2.5	2.1	1500	430	-	-25/-75	114	109
3AP1A	7 AN								
3BP1-4.11	14 A	6.3	0.6	2000	575	-	-30/-90	200	148
3BP1A	146								
$3{ }^{3} P_{1}$	11 C	6.3	0.6	2000	575	-	-30/-90	124	165
3DP 1	14 C	6.3	0.6	2000	575	-	$-30 /-90$	220	148
3DP1A-3DP7	14H								
3EP1-1806-P1	1 IN	6.3	0.6	2000	575		$-30 /-90$	221	165
3FP7	14 B	6.3	0.6	2000	575	4000	-30/-90	250	180
3FP7A	14J								
3GP1-4.5-11	114	6.3	0.6	1500	350		-25/-75	120	105
3GPIA-3GP4A	1 N	6.3	0.6	1500	$245 / 437$		$-25 /-75$	96/144	84/126
3JP1-2.4-7.11-12	14J	6.3	0.6	2000	400/690	4000	$-30 /-90$	170/230	125/270
3KP1-4-11	11 M	6.3	0.6	2000	$320 / 600$		0/-90	100/136	76/104
3MP1	12F	6.3	0.6	2000	400/700	-	-126	230/290	220/280
3OPI	90	6.3	0.3	1200	240/480		$-31 /-74$	214/290	133/181
3RP1-3RP1A	12 E	6.3	0.6	2000	330/620	-	-135	146/198	104/140
3SP1.4.7	12E	6.3	0.6	2000	$330 / 620$		-28/-135	146/198	104/140
5ABP1.7.11	14G	6.3	0.6	2000	400/690	4000	-52/-87	26/34	18/24
5AP1-1805.P1	114	6.3	0.6	1500	430	-	$-31 /-57$	93	90
5AP4-1805.P4	114	6.3	0.6	1500	430		$-17.5 /-57$	93	90
5BP1-1802.P1.2.4-5-11	11 A	6.3	0.6	2000	425		$-20 /-60$	84	76
5BPIA	11 N	6.3	0.6	2000	450		-20/-60	84	76
$5 \mathrm{BP7A}$	11 N	6.3	0.6	2000	$375 / 560$		-20/-60	70/98	63/89
5CP 1-2-4-5-7-11	14B	6.3	0.6	2000	575	4000	-30/-90	92	78
5CP1A	14J								
5CP7A-11A-12	14J	6.3	0.6	2000	575	4000	$-30 /-90$	92	74
5GP1	11 A		0.6	2000	425	-	$-24 /-56$	36	72
5HP1.4	114	6.3	0.6	2000	425	-	-20/-60	84.8	77.0
5HP1A	11 N	6.3	0.6	2000	450	-	-20/-60	84	76
5JP1-2-4.5-11	$11 E$	6.3	0.6	2000	520	4000	-45/-105	96	96
5JP1A-5JP4A	115	6.3	0.6	2000	$333 / 630$	4000	$-45 /-105$	77/115	77/115
5LP1-2-4-5-11	11F	6.3	0.6	2000	500		$-30 /-90$	103	90
5LP1A-5LP4A	111	6.3	0.6	2000	376/633	4000	$-30 /-90$	83/124	72/108
5MP1-4-5-11	TAN	2.5	2.1	1500	375	-	-15/-45	66	60
5NP1-4	114	6.3	0.6	2000	450	-	-20/-60	84	76
5RP1-2-4-7-11	14F	6.3	0.6	2000	528	20000	-30/-90	140/210	131/197
5RP1A-5RP4A	14P	6.3	0.6	2000	362/695	20000	$-30 /-90$	140/210	131/197
5SP1.4	14K	6.3	0.6	2000	363/695	4000	$-30 /-90$	74/110	62/94
5UP1-7-11	12 E	6.3	0.6	2000	340/360	-	$\frac{-90}{-20 /-60}$	56/77	46/62
5VP7	11 N	6.3	0.6	2000	315/562	-		70/98	63/89
$5 \times P 1$	14P	6.3	0.6	2000	362/695	20000	$-30 /-90$	140/210	
5YP1	140	6.3	0.6	2000	$541 / 1040$	6000	-45/-135	108/162	$46 / 68$ $36 / 54$
7 EP 4	IIN	6.3	0.6	3000	546/858	-	$-43 /-100$	106/158	91/137
$7 \mathrm{FP4}^{3}$	14G	6.3	0.6	3000	810/1200	-	-36/-84	93/123	75/102
7 JPI	14R	6.3	0.6	6000	1620/2400	-	-72/-168	186/246	150/204
7VPI	14R	6.3	0.6	3000	800/1200		-84	93/123	75/102
24-XH	Fig. 1	6.3	0.6	600	120	-	-60	$0.14{ }^{5}$	0.163
902.A	8 CD	6.3	0.6	600	150	-	$-30 /-90$	139	117
905	5 BP								
905.A	5BR	2.5	2.1	2000	450	-	-17.5/-52.5	115	97
907	5 BP								
908-A	7 AN	2.5	2.1	1500	430	-	-25/-75	114	109
912	912	2.5	2.1	15000	3000	\$2 Grid 250	-30/-90	915	750
913	913	6.3	0.6	500	1000	-	-20/-60	299	221
2001	4AA	6.3	0.6	500	1000	-	-20/-60	299	221
2002	Fig. 1	6.3	0.6	600	120	-	- -	0.16^{5}	$0.17{ }^{6}$
2005	Fig. 11	2.5	2.1	2000	1000	200	-35	$0.5{ }^{5}$	$0.56{ }^{5}$

[^13]TABLE XIV－TRANSISTORS

No．	Type	Maximum Ratings					Charocterisfics				Use	Typical Operation								
		Collector			Emitter		Current Amp． Factor	$\begin{gathered} \text { Coll. } \\ \text { R. } \\ \text { K!! } \end{gathered}$	Emitter R． §	Bose R． §		Collectar Mo．	Collector Volts	Emilter Ma．	Input Resistonce Ohms	Oułput Lood R． Ohms	Power Gain Db．	Noise Figure Db．	Base Ma．	Power Outpul M．Watts
		Diss． M．Watts	Ma．	Volts	Diss． M．Watts	Mo．														
2 N 32	Pl．Cant．	50	8	－40	－	3	2.2				Pulse or 5witching	－	－25	0.5	400	31k．	21			
2N33	Pt．．Cont．	30	7	－8．5		0.8			－		Oscillator 50 Mc ．	3.3	－8	0.3	400	31k	21	－		1.0
2N34	Jct．PNP	50	8	－25	－	8.0	0.98	－	－	－	General	10	－ 6	1.0			40		0.25	
2N35	Jet．NPN	50	8	＋25	－	8.0	0.98		－	－	General	10	$+6$	1.0	－		40	－	0.25 0.25	－
2N36	Jct．PNP	50	8	－20	－		45		－	－	General		－6	1.0	1000	30k	40		0.01	－
2N37	Jet．PNP	50	8	－20	－	－	30			－	Generol	－	－6	1.0	1000	30K	36	－	0.01	－
2N38	Jct．PNP	50	\％	－20	－	－	15	－	－	－	General	－	－6	1.0	1000	30k	32	－	0.02	
2N38A	Jct．PNP	50	8	－20	－	－	18	－	－	－	Audio	0.5	－ 3	1.0	1000	30K	34	27	0.02	
2N39	Jct．PNP	50	12	－30	－	12	0.97	1－32	30－50	－	General	1.0	-4.5	1.0	500	30 K	39	10－40	0.02	－
2N40	Jct．PNP	50	12	－30		12	0.97	0．7－22	30－50	－	General	1.0	-4.5	1.0	500	30 K	38	10－40		\cdots
2N42	Jct．PNP	50	12	-30	－	12	0.94	0．5－2 ${ }^{\frac{2}{2}}$	30－50	二	General	1.0	－ 4.5	1.0	500	30 K	36	－10－40		－
2 N 43	Jct．PNP	150	50	－45	－6＂	50	0.98	1 MEG	25	500	Audio		－ 6	1.0	1000	30 K	40	20	． 025	
2N43A	Jcl．PNP	150	50	－45		50	0.98		－	－	Audio		－20	5	500	4500	37	10－20	． 02	
2N44	Jct．PNP	150	50	－45	－69	50	0.955	1 MEG	25	300	Audio	－	－ 6	1.0	1000	30 K	37	11－33	． 04	－
2N45	Jc．PNP	150	50	－45	－69	50	0.92	1 MEG	25	200	Audio		－6	1.0	1000	30 K	33	11－33	． 08	
2N47	Jct．PNP	50	20	－35	－	－	0.975	12	25	－	Hearing－Ald Amp．	1.0	－5	1.0	100	SOK	3	15	． 08	
2N49	Jet．PNP	50	20	－35	－	－	0.975	$1^{\frac{1}{2}}$	25	－	Hearing－Ald Amp．	1.0	－ 5	1.0	－	－	－	12		
2N63	Jct．PNP	33	10	－22	－	10	22	28	25	350	Audia ond R．F．		－ 6	1.0	800	20K	39	25		
2N64	Jct．PNP	33	10	－22	－	10	45	$2{ }^{2}$	25	700	Audio and R．F．		－6	1.0	1500	20 K	41	22		
2N65	Jct．PNP	33	10	－22	－	10	90	22	25	1500	Audio and R．F．		－ 6	1.0	2700	20K	42	20		
2N76	Jct．PNP	50	10	－20	－	10	0.95	－	－	－	General		－ 5	1.0	700	30 K	38	10－30	－	
2N77	Jat．PNP	35	15	－25	－	15		二	－	－	Heoring－Aid Amp．	\cdots		－						
2N78	Jct．NPN	50	20	＋15	－	20	0.95	－		二	Audia and R．F．		＋ 5	1.0	1000	6000	13	13－20		－
2N81	Jct．PNP	50	15	－20	\cdots				－	－	Audio		－	－	－					
2N83	Jet．PNP	10 ：	1000	－60	－69	1000	． 90	20K	． 3	17	Power		－25	100	25	250	25		10	$7.5 W^{10}$
2N84	Jct．PNP	10^{8}	1000	－45	-6.	1000	． 94	20K	． 3	30	Power		－ 20	100	25	200	27		7	$7.5 \mathrm{~W}^{10}$
2N85	Jct．PNP	7508	100	－45	－69	100	0.98	160K	5	450	Mad．PWR		－12	10	500	1000	33	20	． 2	1．0W ${ }^{10}$
2N86	Jct．PNP	$750{ }^{8}$	100	－60	-69	100	． 96	120K	5	370	Med．PWR		－12	10	500	1000	30	20	． 4	$1.0 \mathrm{~W}^{10}$
2N87	det．PNP	7508	100	-30	－69	100	． 96	120K	5	370	Med．PWR		－12	10	500	1000	30	20	． 4	1.0 W 10
2N91	Jct．PNP	125	500	－15	-6.	500	． 97	． 5 MEG	1.5	50	5 witching		－10	100	200	－			20	
2 N 92	Jct．PNP	125	200	－25	－64	200	0.98	1 MEG	5	500	5witching	－	－15	5	500	－	－	－	1	
2 N 104	Jct．PNP	－	50	－30		50	－	－	－	－	Hearing－Aid Amp．	－		－			－			
2 N 105	Jct．PNP	35	15	－25	－	15		－	－	－	Hearing－Aid Amp．		－							
2N106	Jd．PNP	100	10	－ 6	－	10	45	1．02		700	Audio	－	－ 2.5	0.5	1000	20K	36	12		
2N107	Jct．PNP	50	10	－12	－	－	0.95		－		General		－ 5	1.0	700	30 K	38	22		
2N108：	Jet．PNP	504	154	－20＇		－	－	－	－	－	Class 8 Audio	6／21	－ 3.5	－	1500	4005			35	
2N109	Jd．PNP	50	50	－20	－	50		－		－	Class B Audio		－ 3.5	－	1500	400			35	
CK7 16	Pt．－Cont．	100	4	－40	－	10.0	2.5		－	二	General	1.5	－10	0.5	250	15K	18	45		3.0
CK721	Jat．PNP	30	5	－20	－	5.0	40		－	700	General	2.0	-3		－	1250	38	22	0.3	2.8
CK722	Jct．PNP	30	5	－20	－	5.0	12			350	Generol	0.5	-1.5	－	－		30	22	0.2	
CK723	Jct．PNP	33	10	－22	－	10	22	22	25	350	Audio and R．F．	－	－6	1.0	800	20K	39	25		
CK725	Jct．PNP	33	10	－22	－	10	90	$2{ }^{2}$	25	1500	Audio and R．F．	－	－6	1.0	2700	20k	42	20		
CK727	Jct．PNP	30	10	－6		10	25	12	－	700	Audio Amplifier	0.5	-1.5	1.0	1000	20K	36	12		
CK760	Jct．PNP	100		－6	－	5	40				R．F．and I．F．Amp．	－	－6	1.0	600	25K	32			
CK761	Jet．PNP	100		－6	－	5	45				R．F．to 10 Mc ．		－6	1.0	600	25K	33	－	－	\square
CK762	Jct．PNP	100	－	－6	－	5	65	－	－	－	R．F．to 20 Mc ．	－	－6	1.0	－	－	33	－	－	

TABLE XIV-TRANSISTORS—Continued

No.	Type	Maximum Ratings					Characteristics				Use	Typical Operation								
		Collector			Emitter		Current Amp. Factor	Coll. R. $K \Omega{ }^{1}$	Emifter R. Ω	$\begin{gathered} \text { Base } \\ R . \\ \Omega \end{gathered}$		Collector Ma.	Collector Volis	Emitter Ma.	Input Resisfance Ohms	Output Lood R. Ohms	Power Gain Db.	Noise Figure Db.	Base Ma.	Power Output M. Watts
		Diss. M. Watts	Ma.	Volts	Diss. M. Waft:	Ma.														
G-11	Pt.-Cont.	100	7	-30	-	3.0	2.2	-	-	200	Amp. Oscillator	-	-	-	475	20K	17	57	-	-
G-11A	Pl.-Cont.	100	7	-30	\square	3.0	2.2	-	-	500	Switching	-	-15	1.0	800	20K	-	-		
GT-14	Jat. PNP	70	-	-25	-	-	28	1.52	30	800	Audia		- 4.5	1.0	800	1.52	36	12		
GT-20	Jet. PNP	70	-	-25		-	45	1.52	30	800	Audio	-	- 4.5	1.0	800	1.52	40	12	-	
GT-34	Jct. PNP	70	-	-25			15	1.52	30	800	Audio	-	-4.5	1.0	400	1.02	32	12		
GT-81	Jet. PNP	70	-	-25	-	-	65	1.52	30	800	Audio		-4.5	1.0	1000	$2.0{ }^{2}$	42	12		
HA-1-8	Jat. PNP	50	8	-20		-	30	—	-	-	Hearing-Aid Amp.	0.5	- 3	-	1000	30K	37	12	-	
HA-2-9	Jct. PNP	50	8	-20		-	30	-	-	-	Hearing-Aid Amp.	0.5	-3	-	1000	30K	37	17	-	-
HA-3-10	Jet. PNP	50	8	-20		-	35	-	-	-	Hearing-Aid Amp.	0.5	- 3	-	1000	30K	-	-		
HF-1	Jct. PNP	75	8	-20		1	. 975		-	-	RF to 5 Mc .		-	-	38		-	22		
J-1	Jat. PNP	150	10	-40			-		-		Audio Amp.	-	-6	1	-	-	-	11		
JP-1	Jct. PNP	350	50	-45	-	-			-	-	Audio-5witching	-	-221/2	15	-	-	-	15		
PT-2A	Pt. Cont.	100	10	-40		5	1.5	10	300	500	Audio Amplifier	-	-30	1.0	300	20K	19	57		
OC. 70	Ja. PNP	25	10	- 5	-	10	0.30	1.43 ?	39	1000	Hearing Aid Amp.	0.5	-5.0	-	2200	-	-	10	-	
OC.71	Jat. PNP	25	10	- 5		10	47	625	6.5	500	Hearing-Aid Amp.	3.0	-5.0	-	800	-	-	10		
SB-100	${ }^{5}$	10	5	-4.5	-		-	-	-		Amp. Osc. ${ }^{\text {a }}$	0.5	-3.0	-	1000	20K	30	15		
X-22	Jet. NPN	50	5	+40	-	-	0.90	-	-	-	Audio 5 witching	-	+4.5	1.0	35	-	-	-		
X-23	Jat. NPN	50	5	+40			0.95	—	-	-	Audio Switching	-	+4.5	1.0	35	-	-	-	-	-

1 Unless otherwise noted.
2 Resistance in megohms.
${ }^{3}$ Matched pair for p.p. operation.

- Each unit.
${ }_{5}$ Collector to collector. © Surface Barrier Type.
${ }^{2}$ Max. frequency 30 Mc .
${ }^{3}$ With heot sink.

9 Max. emitter voltage.
${ }^{10}$ In p.p. Class-B operation

TABLE XV - GERMANIUM CRYSTAL DIODES

Type	Use	Max. Inverse Volis	Max. Average Mo.	Min. Forward Ma. ${ }^{2}$	Max. Reverse $\mu=A m p$.	Type	Use	Max. Inverse Volts	Max. Average Ma.	Min. Forward Ma.	Max. Reverse μ-Amp.
IN34	General	60	50	5.0	800 @-50 V.	1N86	General	70	50	4.0	833 @-50V.
1N34A	General	60	50	5.0	500 @ -50 V.	1N87	Vid. Detector	25	5.0	-	
1N38	100-Volf Diode	100	50	3.0	625 (a-100 V.	1N87A	Vid. Detector	25	5.0	5.0	800 (a, -50 V.
IN38A	100-Volt Diode	100	50	4.0	500 a-100 V.	$1 \mathrm{NB8}$	Restorer	85	5	2.5	100 @-50 V.
1N39	200-Voll Diode	200	50	1.5	800 a - 200 V .	1 109	Restorer	80	30	3.5	100 (3)-50 V.
IN39A	200-Voll Diode	200	40	3.0	800 @ - 200 V .	1N90	General	60	30	5.0	500 @ 50 V .
IN43	Generol	60	40	5.0	900 @ -50 V .	IN91	Pwr. Rectifier	30	150	470 @ 0.5 V .	2700 (a) 100 V .
1N44	General	115	35	3.0	$410 @-50 \mathrm{~V}$.	IN92	Pwr. Rectifier	65	100	310 @ 0.5 V .	1900 (a) -200v.
1N45	Generol	75	35	3.0	400 a-50 V.	1N93	Pwr. Rectifier	100	75	250 @ 0.5 V .	1200 (a, -300 V.
1N46	General	50	40	3.0	1500@-50 V.	1 N 94	Pwr. Rectifier	185	500	1570 @ 0.7 V .	800 @-380 V.
1×47	General	115	30	3.0	410 (a-50 V.	1N95	Diode	60	250	10	500 (a, -50 V.
1N48	General	70	50	4.0	830 (a-50 V.	1N96	Diode	60	250	20	500 @ ${ }^{\text {a }}$-50V.
iN49	Detector	50	50	4.0	200 (a-20 V	1N97	Diode	80	250	10	100 (a)-50 V.
IN50	Detector	50	50	4.0	80 (6)-20 V.	1N98	Diode	80	250	20	100 (a, -50V.
IN5I	General	40	25	2.5	1300 (a-40 V.	IN99	Diode	80	300	10	50 (a) -50 V.
1N52	General	70	50	4.0	150 @ -50 V .	IN100	Diode	80	300	20	50 (a. -50 V .
1 N 54	Hi-Back Resistance	35	50	5.0	10 (a-10v.	IN105	Vid. Detector	25	50		--
IN54A	Hi-Bock Resistance	50	50	5.0	100 (a-50v.	IN106	Hi-Back Voltage	300	-	20	200 (e-300 V.
1N55	150.Voll Diode	150	50	3.0	800 a-150 v.	1N107	Hi-Forward Current	10	-	150	200 (a) - 10 V .
IN35A	150-Voll Diode	150	50	4.0	500@-150 V.	IN108	General	50	-	50	200 (a)-50V.
iN55	$150 . \mathrm{Valt}$ Diode	150	50	5.0	500 (a-150 V.	IN109	Harmonic Gen.	15	50	8.5	20 (a)-3V.
1N56	Hi-Conduction	40	60	15.0	300 - 30 V .	IN110	U.h.f. Mixer	Noise Figure: 10 db of 750 Mc .			
IN56A	Hi-Conduction	40	60	15.0	300 (a-30 V.	INI16	Diode	60	30	5	100 (a, - 50 V .
IN57	Diode	80	40	3.6	$500{ }^{-1}-75 \mathrm{~V}$.	INIT	Diode	60	30	10	100 (a, 50 V .
1N58	100-Voll Diode	100	50	4.0	800 a-100 V.	IN118	Diode	60	30	20	100 a -50V.
IN58A	100.Voli Diode	100	50	4.0	600@-100 V.	IN126	Diode	60	30	5.0	850 (a) -50 V .
1N59	250.Volt Diode	250	40	3.0	800 a -250 V .	IN127	Diode	100	30	3.0	300 (a-50 v.
1 N 60	Vid. Detector	25	50	5.0	$40 \mathrm{a}-20 \mathrm{~V}$.	IN128	Diode	40	30	3.0	10 (a-10V.
IN60A	Vid. Delector	25	5	5.0	800 @-50V.	IN132	Vid. Delector	25	50	-	
IN61	Diode	130	40	5.0	700 @ - 125 V .	IN133	U.h.f. Mixer	5	50	3 at 0.5 V .	300 @ - 6 V.
IN62	Diode	110	40	5.0	700 (a-100 V.	IN139	Hi-Forward Conduction	40	70	20	1500 (a -50 V .
1 N 63	Hi-Bock Resistance	100	50	4.0	50 a-50 V.	IN140	Hi-Forward Conduction	70	85	40	300 © -50 V
IN64	Vid. Deteclor	20	50	0.1	2.5 (a.)-1.3V.	TN141	Hi-Forward Conduction	70	70	20	50 (a) -50 V.
IN64A	Vid. Detector	25	5	5.0	$800 \times-50 \mathrm{~V}$.	-N142	Hi-Peak Inverse	100	60	5	100 (a) -100 V.
1N65	Hi-Back Resistance	70	50	2.5	200 @ 50 V .	IN143	Hi-Peak Inverse	100	85	40	100 (a-100 V.
1N66	General	60	50	5.0	800 @ - 50 V .	IN147	U.h.f. Mixer	55	25	- --	-
1 N67	Hi-Bock Resistance	80	35	4.0	50 @ 50 V .	1N151	TV Model ${ }^{2}$	30	5000	1570 (a0.7 V.	2400 (a-100 V.
1N67A	Hi-Back Resistance	80	50	5.0	50 (a) -50 v .	IN152	IV Model?	65	500	1570 (a, 0.7 V .	$1900{ }^{-}$(i)-200 V.
IN68	Hi-Back Resistance	80	35	3.0	625@-100 v.	TN153	TV Model ${ }^{2}$	100	500	1570 (a, 0.7 V	1200 (a)-300 V.
IN68A	General	80	50	5.0	625 (a) -100 v .	1N158	Pwr. Rectifier	185	D.c. oufput current $=500 \mathrm{ma}$.		
1N69	General	60	40	5.0	850 @ -50 V.	1N172	U.h.f. Mixer	Low noise and low conversion loss.			
iN70	Generol	100	30	3.0	300@-50v.	IN175	Hi-Back Vollage	200	-	-	200 @ -200 V .
1 N 72	U.h.f. Mixer	2	25	1.6	800-0.5	IN198	Hi-Temperature	80	30	5.0	250 (a) -50 V.
1N75	Varistor	100	50	2.5	50 (a-50v.	1N285	U.h.f. Mixer	Noise Figure: 12.5 at 870 Mc .			
IN81	General	40	30	3.0	10 a-10v.	IN335	Diode	80	50	4.0	50 (a)-50 V.

Average shunt capacitonce $-0.8 \mu \mu \mathrm{f}$.

Jhe

 Catalog Section

 Catalog Section}
$\overrightarrow{3} \hat{3}$
In the following pages is a catalog
file of products of the principal manufacturers and the principal distributors
who serve the radio field: industrial, commercial, amateur. All firms whose advertising has been accepted for this section have met The American Radio Relay League's rigid standards for established integrity; their products and engineering methods have received the League's approval.

33rd EDITION 1956 INDEX OF ADVERTISERS CATALOG SECTION

The Radia Amateuri Handhook

Allied Radio Corp. 82American Electronics Co. 113
American Phenolic Corp. 70
American Radio Relay League, Inc. 83-86
American Television \& Radio Co. 138
Amperex Electronic Corp 78,79
Ashe Radio Co., Walter 124
Barker \& Williamson, Inc 58, 59
Belden Manufacturing Co. 123
Bliley Electric Co 96
Brill Co., W. D. 137
Bud Radio, Inc 76,77
Burstein-Applebee Cc. 107
Cameradio Co., Inc. 126
Candler System Co 104
Cannon Electric Co. 98
Cardwell Electr. Prod. Corp., Allen D. 130
Centralab 103
Collins Radio Co. 62,63
Communications Co., Inc. 108
Communication Products Co., Inc. 33-43
Davis Electronics-Vaaro Div 141
Eitel-McCullough, Inc. 68,69
Electronic Technical Institute 120
Electro-Voice, Inc. 72
Elmar Electronics 139
Erie Resistor Corp. 122
Eyans Radio 116
E-Z Way Towers, Inc. 143
Fort Orange Radio Distributing Co., Inc 129
Fieed Transformer Co. 142
Fretco, Inc. 136
General Electric Co. 13,71,73
Gonset Co. 64
Hallicrafters Cc 3-12
Hammarlund Mfg. Co., Inc. 55-57
Harvey Radio Co, Inc. 74,75
Harvey-Wells Electronics, Inc. 90
Heath Co., The 80, 81
Henry Radio Stores 97
Hudson Radio \& Telev. Corp 1
Hycon Manufacturing Co. 102
Page Page
Ilinois Condenser Co. 110Ilinois Condenser
nstructograph Co. 118
International Crystal Mfg. Co., Inc. 65-67
Internaticnal Rectifier Corp 131
International Resistance Co. 50-53
Johnson Co., E. F 44-49
Lampkin Laboratories, Inc. 99
Lockheed Aircraft Corp., Missile Systems Div 144 144
Mallory \& Co., Inc., P. R 91
Master Mobile Mounts, Inc. 25
Measurements Corp 115
Millen Mfg. Co., Inc., Jas. 24-32
Mosley Electronics, Inc. 112
Moss Electronic Distrib. Co., Inc 133
Multi-Products Co. 100
National Co., Inc. 14-23
Newark Electric Co. 140
Ohmite Manufacturing Co. 105
Par-Metal Products Corp 19
Radio Corp. of America 60, 61
Radio Shack Corp., The 111
Shurite Meters 106
Sprague Products Co. 87
Technical Materiel Corp. 94,95
Telrex, Inc. 35
Terminal Radio Corp. 121
United Transformer Co. 54
Valley Electronic Supply Co. 101
Vibroplex Co., Inc. 117
Ward Products Co. 132
Waterman Products Co., Inc. 92,93
Webster Mfg. Co 127
Western Gear Works 128
Wile, Eugene G 134
Wincharger Corp 109
World Radio Laboratories, Inc. 88, 89

THEWORLDOVER

```
SERVINGTHEHAMFOROVER22YEARS,
```

Hallicrafters' engineers have made significant contributions to the advancement of complex communications equipment. Their experience, engineering skills and production "know-how" have made possible the development of over 100 different major communications designs-more than 5 times as many as any other manufacturer.

This is the reason why Hallicrafters is recognized today as the leading producer of communications equipment... why more than $1,000,000$ hams, novices and listeners own, use and continue to buy Hallicrafters short wave receivers and transmitters.

The Hallicrafters name is your guarantee that every piece of equipment incorporates the latest electronic developments... is unmatched for quality of workmanship... and is unequalled

at everybody's price

MODEL SR-500

for the complete ham

Hallicrafters, over the years, has been closer to the radio amateur field than any other communications manufacturer. The many leading Hallicrafters developments have been based on what the amateur wanted and needed. That is why Hallicrafters now brings you, for the first time, commercial broadcast styling in a complete amateur radio station... a single package tor professional efficiency. Here is any radio man's ideal-the finest component units (Madel SX-100 Am-CW-SSB receiver, Model HT-30 trans-mitter-exciter, Model HT-31 linear power amplifier) in one compact unit...ready to use.
FEATURES: A completely contained unit in a handsome console cabinet-transmitter/exciter, linear power amplifier, receiver-affording the finest in V.F.O. or crystal. SSB, AM and CW transmission and reception. You need supply only the antenna, microphone ard AC power. All the wiring is complete, and external connections are provided for antenna and microphone. The transmitting and receiving units are located for maximum efficiency in coordinated operation. A special communications speaker is positioned above the operating shelf directly in front of the operator, Console is mounted on casters and is easily expandable. Three blank panels provided in the basic
cabinet for in:tallation of any additional equipment desired. All safety and protective features incorporated. Completely enclosed, fused with the main power relay controlled by a key lock. Entire back of cabinet is enclosed and perforated for maximum ventilation and heat dissipation.
CONTROLS: Antenna selector switch for $80,40,20$, 11-10 meter and dummy or special antenna, master power switch "key lock" rype (operates main power relay for on/off of all equipment), main power pilot lamp, "On the air" pilot larp, microphone input, key jack.
EXTERNAL CONNECTIONS: Five coaxial connectors for $80,40,20,11-10$ antenna and dummy load or special antenna, dual 30 amperes fuse block, (3) spare AC power outlets, spare octal socket for beam controls, ete.
POWER SUPPLY: 105/125 V., 50/60 cycle AC.
PHYSICAL DATA: Satin gray-black steel cabinet with brush chrome trim. Size $443 / 4^{\prime \prime}$ wide $\times 481 / 2^{\prime \prime}$ high $\times 22^{\prime \prime}$ deep, not including operating dask (with operating desk, $401 / 2^{\prime \prime}$ deep). Shipping weight approximately 525 lbs .
MODEL SR-500
$\$ 1495.00$

MODEL SX-100

as specified by $1,000,000$ field experts

Hallicrafters 22 years af praduction know how, the engineering experience of developing over 100 different major receiver designs, plus the advice of aver $1,000,000$ field experts aperating Hallicrafters receivers all are combined to bring you this outstanding new receiver with features available only before on receivers costing a great deal more.
COVERAGE: Standard Broadeast; 5381580 kc ; Three S/W Bands, $1720 \mathrm{kc}-34$ mc. Band 1: 538 kc - 1580 kc -Band 2: $1720 \mathrm{kc}-4.9 \mathrm{mc}-$ Band $3: 4.6 \mathrm{mc}-13 \mathrm{mc}-$ Band 4: $12 \mathrm{mc}-34 \mathrm{mc}$, and calibrated bandspread.

TYPE OF SIGNALS: AM-CW-SSB.

FEATURES: Selectable side band operation. "Tee-Notch" Filter-This new development provides a stable non-regenerative system for the rejection of unwanted heterodyne. The "Tee-Notch" also produces an effective steepening of the already excellent 50 mc i-f pass band (made famaus in the 5×-96) and further increases the effectiveness of the advanced exalted carrier type receptian. Natch depth control for maximum null adjustment. Antenna trimmer. Plug-in laboratory type evacuated 100 kc quartz crystal calibratar-included in price. Logging dials far both tuning controls. Full precision gear drive dial system. Second conversion oscillator crystal controlled-greater stability through crystal control and additional temperature compensation of high frequency oscillator circuits.
CONTROLS: Pitch control, reception, standby, phone jack, response control (upper and lower side band selector), antenna trimmer, natch frequency, notch depth, calibrator on/off, sensitivity, band selector, volume, tuning, AVC on/off, noise limiter on/off, bandspread, selectivity.
INTERMEDIATE FREQUENCY: 1650 kc and 50 kc .

BAND CHANGE MECHANISM: Ganged rotary wafer switch.
TUNING ASSEMBLY AND DIAL DRIVE MECHANISM: Separate 3 section tuning capacitar assemblies for main tuning and bandspread tuning. Circular main tuning dial has $0-100$ logging scale. Bandspread dial is calibrated far the 80 , $40,20,15$ and 11.10 meter amateur bands.
ANTENNA INPUT IMPEDANCE: BaIanced/unbalanced.
HEADPHONE OUTPUT IMPEDANCE: Universal impedance.
AUDIO OUTPUT IMPEDANCE: 3.2/ 500 ohms.
TUBE COMPLEMENT: $\sigma C B 6$, R.F. amplifier; 6AU6, 1st canverter; 6C4;-H.F. oscillator; 6BA6, 2nd converter; 12AT7, Dual crystal second converters; (2) 6BES, 50 kc and 1650 kc i-f amplifiers; 6AL5, AVCnoise limiter; 6SC7, 1st audio and BFT; 6K6, Power output; 5Y3; Rectifier; OA2, Voltage regulator; $6 C 4$, i-f amplifier-(50 kc); 6AU6, 100 kc XTAL marker.
EXTERNAL CONNECTIONS: $3.2 / 500$ ohm speaker terminals, terminals for single wire or doublet antenna (external antenna provided), phano jack, AC power cord, socket for DC operation and remote control, audio output terminals, " S " meter electrical adjustment and mounting hole for coaxial cable connector. Phones jack on front panel.
AUDIO POWER OUTPUT: 1.5 watts with 10\% or less distortion.
POWER SUPPLY: $105 / 125$ V., $50 / 80$ cycle AC.
PHYSICAL DATA: Gray black steel cabinet with brushed chrome knob trim, patterned silver back plate and red pointers. Piano hinge top. Size $183 \mathrm{~s}^{\prime \prime}$ wide $\times 8 y_{2} \mathbf{2}^{\prime \prime}$ high $\times 10 \%$ "deep. Shipping weight ap. proximately 42 lbs .

MODEL S-53A

for international listener listening

Thousands of these precision-built Hallicrafters receivers have proved their value with outstanding performances around the world. Unquestionably one of the finest built, it offers maximum performance while occupying minimum space. Several steps above the S-38D and tops in its price field.
COVERAGE: Standard Broadcast from 540-1630 ke plus four short wave bands over $2.5-31$ and $48-54.5 \mathrm{mc}$.
FEATURES: Large easy-to-read slide rule dial. Electrical bandspread and logging scale. Five inch built-in PM speaker, jacks for headphones plus phonograph jack. Temperature compensated to reduce fading due to frequency shift. Two stages of if.
CONTROLS: Main tuning in mc, separate electrical bandspread with $0-100$ logging scale plus mc calibration for $48-54.5 \mathrm{mc}$ band, receive/standby switch, band selector $540-1630 \mathrm{kc}, 2.5-6.3 \mathrm{mc}$, 6.3-16 mc, 14-31 mc, and $48.54 .5 \mathrm{mc}, \mathrm{AM} / \mathrm{CW}$ switch, sensitivity phono control, noise limiter switch on/off/volume, two-position tone switch.

INTERMEDIATE FREQUENCY: 455 kc .

BAND CHANGE MECHANISM: five position rotary wafer switch.

TUNING ASSEMBIY AND DIAL DRIVE MECHA-

 NISM: Separate 2 -section tuning capacitor assemblies for main tuning and bandspread tuning. Slide rule dial. Bandspread tuning calibrated for 48.54 .5 mc .ANTENNA INPUT IMPEDANCE: Balanced/unbalanced.
HEADPHONE OUTPUT IMPEDANCE: Universal impedance.
AUDIO OUTPUT IMPEDANCE: Five inch PM speaker and universal impedance output for headset.
TUBE COMPLEMENT: Seven tubes plus one rectifier: 6C4, Osc.-6BA6, Mixer- (2) 6BA6, if amplifier-6H6, Det., AVC and ANL-6SC7, BFO and AF amp.-6K6GT, Output-5Y3GT, rectifier.
EXTERNAL CONNECTIONS: Phonograph jack, headphone tip jacks, speaker/phones switch, and terminals for doublet or single wire antenna on rear. External antennn provided.
AUDIO POWER OUTPUT: One watt. POWER SUPPLY: $105 / 125$ V., $50 / 60$ cycle AC.
PHYSICAL DATA: Sturdy satin black steel cabinet with brushed chrome trim. Top opens on piano hinge. Size $127 /^{\prime \prime}$ wide $\times 7^{\prime \prime}$ high $\times 734^{\prime \prime}$ deep. Shipping weight approximately $181 / 2 \mathrm{lbs}$.
MODEL S-53A
$\$ 89.95$

MODEL S-38D

the radioman's idea of radio

This famous Hallicrafters radio, now with smart new styling, amazes even the experts with its superior performance. Featuring the same skillful engineering found in much higher priced communications sets make the S-38D ideal for the short wave listener or new radio amateur.
COVERAGE: Standard Broadcast from 540.1650 kc plus international reception on 3 short wave bands covering $1650 \mathrm{kc}-32 \mathrm{mc}$.
FEATURES: Large easy-to-read overseas dial with stations clearly marked. Oscillator for reception of code and electrical bandspread. Separate tuning control and built in 5" PM speaker.
CONTROLS: Tuning dial, separate electrical bandspread dial with 0.100 scale, receive/standby switch, on/off/ volume, AM/CW switch, band selector $540-1650 \mathrm{kc}$., $1.65-5 \mathrm{mc}, 5-14.5 \mathrm{mc}, 13.5-32 \mathrm{mc}$.
INTERMEDIATE FREQUENCY: 455 kc .
BAND CHANGE MECHANISM: Four position rotary wafer switch.
TUNING ASSEMBLY AND DIAL DRIVE MECHA. NISM: Two section tuning gang with electrical bandspread. Vernier driven circular dial. Bandspread dial marked 0.100.
AUDIO OUTPUT IMPEDANCE: Five inch PM speaker and low impedance output for headset.
TUBE COMPLEMENT: Four tubes plus one rectifier: 12SA7, converter-125G7, i-f amplifier and BFO-12SQ7 or 125Q7-GT/G, detector and audio amplifier-50L6GT, audio output-35Z5GT, rectifier.
EXTERNAL CONNECTIONS: Phone tip jacks and terminals for single wire or doublet antenna, switch for speaker or headphones on rear. External antenna provided.
AUDIO POWER OUTPUT: One watt.
POWER SUPPLY: $105 / 125 \mathrm{~V}, 50 / 60$ cycle AC/DC. Line cord (87D1566) for 220 V . AC/DC operation available. PHYSICAL DATA: Gray steel cabinet with silver dial frame and knob trim. Size $127 / 8^{\prime \prime}$ wide $\times 7^{\prime \prime}$ high $\times 714^{\prime \prime}$ deep. Shipping weight approximately 14 lbs.
MODEL S-38D \$49.95
Line Cord (87D 1566) for 220 V. 2.00
hallicrafters

MODEL SX-99

over 1000° calibrated bandspreal
This newly designed and engineered Hallicrafters receiver has the $10,11,15,20,40$ and 80 meter amateur bands calibrated on large easy-to-read dial. Over 1000° of calibrated bandspread for better utility on ham bands. Husky, full sized unit features separate bandspread funing condenser and built-in PM 5" speaker.
COVERAGE: Broadcast band 540-1680 ke plus three S/W bands $1680 \mathrm{kc}-34 \mathrm{mc}$.
FEATURES: Bandspread calibrated in over 1000° on 10 , $11,15,20,40$ and 80 meter amateur bands. One r-f, two i-f and separate bandspread tuning condenser. Temperature compensated oscillator, audio response to 10,000 cycles and built-in speaker.
CONTROLS: Sensitivity, band selector, funing, bandspread, volume, AVC, noise limiter, AM/CW, on/off/tone, pitch control, standby/receive.
INTERMEDIATE FREQUENCY: 455 kc .
BAND CHANGE MECHANISM: Ganged rotary wafer switch.
TUNING ASSEMBLY AND DIAL DRIVE MECHA-
NISM: Ganged, 3 section tuning capacitor assembly with electrical bandspread. Circular main tuning dial is calibrated in megacycles and has 0.100 logging scale.
ANTENNA INPUT IMPEDANCE: Balanced/unbalanced.
HEADPHONE OUTPUT IMPEDANCE: Universal im. pedance.
AUDIO OUTPUT IMPEDANCE: Voice coil impedance 3.2 ohms. High impedance headset output.

TUBE COMPLEMENT: Seven tubes plus rectifier: 6 SG7, r-f amplifier-6SA7, converter-6SK7, 1 st i-f amplifier6SK7, 2nd i-f amplifier-6SC7, BFO and audio amplifier -6 K6GT, audio output-6H6, ANL, AVC, and detector5Y3GT, Rectifier.
EXTERNAL CONNECTIONS: Terminals far single or doublet antenna on rear. External antenna provided. Headphone jack on front.

AUDIO POWER OUTPUT: 2 watts.

POWER SUPPLY: Model S-85: 105/125 V., 50/60 cycle AC. Model S.86: 105/125 V., AC/DC.
PHYSICAL DATA: Gray-black steel cabinet with brushed chrome trim and red pointers. Piano hinge top. Size $181 / 2^{\prime \prime}$ wide $\times 873^{\prime \prime}$ high $\times 10^{\prime \prime}$ deep. Shipping weight approx. imately 32 lbs.
MODEL S-85 or S-86.
. $\$ 119.95$

everything for the $D X$ enthusiast

This new Hallicrafters receiver is destined to be a ham favorite. Smart new styling and feature packed to make this model stand out in its price range.
COVERAGE: Broadcast Band 540-1680 ke plus three Short-Wave Bands covers $1680 \mathrm{kc}-34 \mathrm{mc}$.
FEATURES: Over 1000° of calibrated bandspread over the $10,1 \mathrm{E}, 15,20,40$ ahd 80 meter amateur bands on easy-to-read dial. Separate bandspread tuning condenser, crystat filter, antenna trimmer, " S " Meter, one r-f, two i-f stages and new styling.
CONTROLS: Antenna tuning, sensitivity, band selector, main tuning, bandspread tuning, volume, tone, standby, selectivity, crystal phasing, noise limiter.
INTERMEDIATE FREQUENCY: 455 kc .
BAND CHANGE MECHANISM: Ganged rotary wafer switch.
TUNING ASSEMBLY AND DIAL DRIVE MECHANISM: Ganged, 3 section tuning capacitor assembly with electrical bandspread. Circular main tuning dial is calibrated in megacycles and has 0-100 logging scale.
ANTENNA INPUT IMPEDANCE: Balanced/unbalanced.
HEADPHONE OUTPUT IMPEDANCE: 500 ohms.
AUDIO OUTPUT IMPEDANCE: 3.2 and 500 ohms. Headphone jack on front panel disables both.
TUBE COMPLEMENT: Seven tubes plus one rectifier: 6SG7, r-f amplifier-6SA7, Converter-6SG7, 1st i.f am-plifier-6SK7, 2nd i-f amplifier-6SC7, BFO and audio amplifier-6K6GT, Audio output-6H6, ANL-AVC-detector -6Y3GT, rectifier.
EXTERNAL CONNECTIONS: Terminals for doublet or single wire antenna plus terminals for 3.2 and 500 ohm speakers an rear.
AUDIO POWER OUTPUT: 2 watts.
POWER SUPPLY: $105 / 125$ V. 50/60 cycle AC.
PHYSICAL DATA: Gray black steel cabinet with brushed chrome trim and piano hinge top. Size $181 / 2^{\prime \prime}$ wide $\times 812^{\prime \prime}$ high $\times 11^{\prime \prime}$ deep. Shipping weight appraximately $321 / 2 \mathrm{lbs}$.
MODEL SX-99 (less speaker) \$149.95
hallicrafters

new standard for SSB

For almost a quarter of a century the constant goal of Hollicrafters engineers has been the improvement of receiving and transmitting equipment standards. This palicy of continuous improvement is again reflected in the design and engineering of Hallicrofters amazing new HT-30 Transmitter/Exciter.
COVERAGE: BO, 40, 20, $11-10$ meter bands.

TYPE OF SIGNALS: AM-CW-SSB.

FEATURES: Built in V.F.O. reads directly in kilocycles. V.F.O. stability is equal to most erystals-. 009%. There are also provisions for 1 crystal for fixed frequency operation. Selective filter system is used for reliable sideband selection. The circuitry employs the proven r-f selective filter system used by major commercial communications companies. This system assures continued suppression of unwanted side band energy and distortion products. Hum, noise and unwanted side band are down 40 db or more, while undesired beat frequency is down at least 60 db . New 50 db range meter for constant monitoring of r-f output and carrier suppression. Voice control system built in with adjustable delay and anti-trip feotures. SSB, AM, and CW are all provided for in one compact unit. Front of panel full function control allows selection of $A M, C W$ and upper or lower side band. CONTROLS: Band selector $80,40,20$, 10 meters, driver tuning, finial tuning, speech level, carrier injection - 0 to 100%, meter sensitivity, calibration level, power off, stand-by, warm-up, transmit, operation control, VOX, calibrate, MOX, function selector-AM, CW, upper, lower side band, tuning-V.F.O., 10 meter tuning control, V.F.O.-erystal.

BAND CHANGE MECHANISM: Four position ganged rotary wafer switch.
TUNING ASSEMBLY AND DIAL DRIVE MECHANISM: Ganged variable air condensers.
TUBE COMPLEMENT: 12AT7, $1 / 2-50 \mathrm{kc}$ Oscillator, $1 / 2$ Phase splitter; (2) 6 BY 6 Balanced modulators; 6 BH 650 kc amplifier; 6BH6 50 ke amplifier; 6BH6 Mixer (1675/ 1775 kc with 50 kc); 68H6 S.S.B. Amplifier; 12AT7 ($1 / 2-1675 \mathrm{ke}$ oscillator, $1 / 2-1775$ kc oscillator); 12AT7 ($1 / 2-5210 \mathrm{kc}$ oscillator, $1 / 2-10420 \mathrm{ke}$ oscillator); 6AH6 V.F.O. Mixer; 6CB6 V.F.O. Oscillator; GUB (1/2Crystal oscillator [fixed frequency operation] $1 / 2-4 X$ multiplier); 6CB6 r-f amplifier; 12BY7 Driver; (2) B07s Final amplifier; 12AX7 ($1 / 2$ Audio amplifier, $1 / 2$ Audio phase splitter); 12AY7 ($1 / 2$ VOX-relay tube, $1 / 2$ Anti-trip amplifier); 5R4 High voltage rectifier; 5V4 Low voltage rectifier; OA2 Voltage regulator.
EXTERNAL CONNECTIONS: Output, microphone, input, receiver disabling key terminals.
POWER SUPPLY: $105 / 125 \mathrm{~V}, 50 / 60$ cycle AC.
POWER OUTPUT: SSB-P.E.P. -35 watts, CW-35 watts, AM- 30 watts.
PHYSICAL DATA: Cabinet black steel, brush chrome trim, $18^{\prime \prime} \times 93 / /^{\prime \prime} \times 12^{\prime \prime}$. Shipping weight approximately 61 lbs .
MODEL HT-30 $\$ 495.00$

MODEL HT-31

more talk-power

The side band "talk power" of this more complete, more rugged, more reliable new linear power amplifier is equivalent to 1 kw AM. Components used here surpass even the most rigid commercial specifications.
COVERAGE: Continuous frequency coverage from 3.5 mc to 30 mc .
TYPE OF SIGNALS: AM-CW-SSB.
FEATURES: Continuous frequency coverage from 3.4 mc to 30 mc . Pi-network output for efficient harmonic and T.V.I. suppression. Major T.V.I. suppression built in. Does not require an antenna tuner as will feed loads from 50 to 600 ohms. Full power capabilities available on CW because high stable, time-proven circuitry does not require trick overload protective devices. No special selection of r-f amplifier tubes required. Total tube replacement cost including high voltage rectifiers, amateur net only $\$ 14.20$. Full metering of all important circuits. Power input in watts shown on meter. May be mounted in relay rack. This power amplifier employs two 811-A zero bias triodes in parallel. The input system is designed to be fed from a $50-70$ ohm unbalanced line and requires a maximum of 10 watts drive on 80 meters. The grid tank circuit is bal. onced to provide all band neutralization. The output tank circuit is a continuously variable pi-network which provides a high degree of harmonic suppression.

CONTROLS: Grid range, grid tuning, meter \rightarrow plate/grid/power input watts, plate voltage on/off, power on/off, PA tuning, antenna leading-fine, antenna leadingcoarse.
BAND CHANGE MECHANISM: Four position ganged rotary wafer switch for grid circuit, continuous tuner for output circuit.
TUNING ASSEMBLY: Continuously variable pi-network and four position grid tank circuit.
TUBE COMPLEMENT: (2) 811A triode amplifiers, (2) 866A rectifiers.
EXTERNAL CONNECTIONS: Antenna output and driver input.
POWER SUPPLY: 105/125 V., 50/60 cycle AC.
POWER OUTPUT: P.E.P. -330 watts, CW-275 watts.
DRIVE POWER: Input 10 watts P.E.P. maximum on lowest frequency.
POWER INPUT: P.E.P. -500, CW-450.
PHYSICAL DATA: Satin black steel cabinet with brushed chrome trim. Piano hinge tap for $1034^{\prime \prime} \times 19^{\prime \prime}$ relay rack. Size $20^{\prime \prime}$ wide $\times 12 \frac{1}{4}{ }^{\prime \prime}$ high $\times 171^{\prime \prime}$ deep. Shipping weight 110 lbs. approximate.
MODEL HT-31....... $\$ 395.00$

MODEL SX-96

most talked about on the air

This Hallicrafters dauble conversion se. lectable side band receiver offers major improvements in stability by the addition af temperature campensation in the high frequency oscillatar circuits and the use of crystal controlled second conversion oscillators. Hallicrafters highly selectable 50 kc i-f system is used in this new precision-built receiver.
COVERAGE: Standard Braadcast; 5381580 kc ; Three S/W Bands, $1720 \mathrm{kc}-34$ me. Band 1: $538 \mathrm{ke}-1580 \mathrm{ke}$-Band 2: $1720 \mathrm{kc}-4.9 \mathrm{mc}$.-Band $3: 4.6 \mathrm{mc} \cdot 13 \mathrm{mc} .-$ Band 4: $12 \mathrm{mc}-34 \mathrm{mc}$.
TYPE OF SIGNALS: AM-CW-SSB.
FEATURES: Precision gear drives are used on both main funing and band spread dials. Double conversion with selectable crystal controlled secand oscil. lators. Selectable side band reception of both suppressed carrier and full carrier transmissians by front panel switch, delayed AVC, CW operation with AVC on ar off. Calibrated bandspread, " S " meter, low drift, double conversion superhet. Type of Circuit: Double conversian superheterodyne over the entire frequency range. Selectivity: Five steps. 1. (Broad) $6 \mathrm{db} .5 \mathrm{kc} 60 \mathrm{db}-15 \mathrm{kc}-2$. (Broad) 6 $\mathrm{db}-3 \mathrm{kc} 60 \mathrm{db}-12 \mathrm{kc}-3$. (Braad) $6 \mathrm{db}-2$ ke. $60 \mathrm{db}-10 \mathrm{kc}-4$. (Broad) $6 \mathrm{db}-1.3 \mathrm{ke}$ $60 \mathrm{db}-7 \mathrm{kc}-5$. (Sharp) 6 db .5 kc 80 db 5 kc. Automatic Noise Limiter: Series noise limiter operated by toggle switch on front panel. Carrier Level Indicator: Colibrated in " S " units from 1 ta 9 , decibels to 90 db over S9, microvalts from I to 1000 K .
CONTROLS: Sensitivity, band selector, valume, tuning, AVC on/off, noise limiter on/off, AM/CW-SSB, bandspread, selectivity, pitch contral, response (pwr on/off, LSB, USB-2 tone pos.), receive.
INTERMEDIATE FREQUENCIES: 1650 ke and 50 kc .

TUNING ASSEMBLY AND DIAL DRIVE MECHANISM: Separate 3 sectian tuning capacitor assemblies for main tuning and bandspread tuning. Circular main tuning dial has 0.100 logging scale. Bandspread dial is calibrated for the 80, 40, 20, 15 and 11.10 meter amateur bonds.
ANTENNA INPUT IMPEDANCE: BaIanced/unbalanced.

HEADPHONE OUTPUT IMPEDANCE:

 Universal impedance.AUDIO OUTPUT IMPEDANCE: 3.2/500 ohms.
TUBE COMPLEMENT: 10 tubes plus 1 rectifier and 1 voltage regulator. $6 C B 6$, r-f amplifier-6AU6, 1st mixer-6C4, 1st conv. osc.-6BA6, 1650 kc i.f amplifier6BA6, 2nd mixer-12AT7, dual crystal second conv. osc.-6BA6, 50 kc i-f am-plifier-6AL5, detector, AVC, ANL-6SC7, audio amplifier and BFG-6K6GT, audio output - 6Y3GT, rectifier - OA2, valtage regulator.
EXTERNAL CONNECTIONS: $3.2 / 500$ ohm speaker terminals, terminals for single wire or doublet antenna (external antenna pravided), phono jack, $A C$ power card, socket for DC operation and remote contral, audia output ierminals, " 5 " meter electrical adjustment and maunting hole far caaxial cable connector. Phones jack on front panel.
AUDIO POWER OUTPUT: 1.5 watts with 10% or less distartion.
POWER SUPPLY: 105/125 V., 50/60 cycle AC.
PHYSICAL DATA: Gray black steel cabinet with brushed chrome knob trim, patterned silver back plate and red painters. Piano hinge tap. Size 18\%/" wide $\times 81 / 2^{\prime \prime}$ high $\times 10 \frac{58^{\prime \prime}}{}$ deep. Shipping weight approximately $381 / 2 \mathrm{lbs}$.

MODEL S-94 \& S-95

the thrill of emergency radio

Two new high performance receivers replacing the popular Hallicrafters S-81 and S-82. Compact, easy-to-operate and covers police, fire, taxicab, bus, railroad, private telephone mobile, forestry and other industrial and emer-gency-service communications operating within models' frequencies. Newly engineered FM chassis provides low frequency drift and high signal-to-noise ratio.
COVERAGE: S-94: 30-50 mc-S-95: 152-173 mc.

TYPE OF SIGNALS: FM

FEATURES: Super sensitive, greatly increased audio power output plus extremely reliable adjustable built-in relay squelch system to silence entire audio system until signal is received. Low noise grounded grid r-f amplifier, separate high gain d.c. amplifier for squelch system, wide impedance range antenna input system for excellent performance with any antenna. Low oscillator radiation, greater frequency stability, sensitivity under $11 / 2$ microvolts, 2 i-f stages for extra sensitivity, and built-in $5^{\prime \prime}$ PM speaker.
CONTROLS: Tuning with special logging scale assuring accuracy in logging or relocating stations. On-off/volume, squelch/off.

INTERMEDIATE FREQUENCY: 10.7 mc .

TUNING ASSEMBLY AND DIAL DRIVE MECHA-

NISM: Ganged, 2 section tuning capacitor assembly. Circular dial calibrated in megacycles and principal service channels. 0-100 logging scale.
ANTENNA INPUT IMPEDANCE: Balanced/unbalanced.
HEADPHONE OUTPUT IMPEDANCE: Universal.
AUDIO OUTPUT IMPEDANCE: Five inch PM speaker, universal impedance headset output.
TUBE COMPLEMENT: Eight tubes plus one rectifier: 6AB4, Grounded grid low noise r-f amplifier-12AT7, High frequency oscillator/mixer-(2) 12BA6, 1 st and 2 nd i-f amplifier- $12 \mathrm{AL5}$, Ratio detector-68 6 , Audio amplifier50L6GT, Audio output-12AU7, Squelch-Selenium rectifier.
EXTERNAL CONNECTIONS: Phone tip jacks and terminals for single or twin lead antenna, switch for speaker/ headphones on rear. External antenna provided.
AUDIO POWER OUTPUT: 1.5 watts maximum.
POWER SUPPLY: $105 / 125$ V., 50/60 cycle AC/DC. Mobile operation possible with external power converter.
PHYSICAL DATA: Gray steel cabinet with silver trim panel and red pointer. Size $127 / \mathbf{y}^{\prime \prime}$ wide $\times 7^{\prime \prime}$ high $\times 714^{\prime \prime}$ deep. Shipping weight approximately 13 lbs .
MODEL S-94 or S-95
$\$ 59.95$

11

LITTLEFONE

Abstract

portable 2-way FM radio-telephone PORTABLE LITTLEFONES: The Hallicratters series of Littlefone FM two-way radio-telephone units operate over a frequency of $\mathbf{2 5 - 5 4} \mathrm{mc}$ or $\mathbf{1 4 4 - 2 2 0} \mathrm{mc}$. Crystal controlled with a total of 22 sub-miniature tubes, the complete portable model with antenna and hand-set weighs only $101 / 2$ to 14 lbs . and will operate more than eight hours on the self-contained rechargeable batteries. Models for AC power line and $6 / 12$ volts DC operation employ the same r-f chassis as the portable units but an audio power output stage is added to drive the loud speaker. Adjustable squelch controls available on all models. Power outputs 2 watts on $25-54 \mathrm{mc}$ and up to 1 watt on 144-220 mc . Lower powered dry battery models also available. Four inch loudspeaker models also may be used on all portable models.

PORTABLE MODELS from $\$ 324.95$ (plus F.E.T.) to $\$ 399.95$ (plus F.E.T.)
CENTRAL STATION AND MOBILE LITTLEFONES have same performance and specifications as portable units. Audio-amplifier, providing one watt of audio for loud speaker. Central station AC operated with 35 watts power consumption and plugs in any $A C$ outlet of 117 V . Mobile unit operates on $6 / 12$ volts DC input.
CENTRAL STATION . . . $\$ 450.00$ (plus F.E.T.)
MOBILE $\$ 475.00$ (plus F.E.T.)

MODEL SX-62A

for the complete listener

Here is the world's finest receiver for the all-wave listener. Unequalled in coverage and performance on all bandsStandard Broadcast, Short wave or FM.
COVERAGE: Standard Broadcast from 550 kc through 1620 kc , three short wave bands, 1.62 mc .32 mc and FM or AM from 27 mc to 109 mc .
FEATURES: Single funing control covers wide-vision dial with one band lighting at a time. A 500 kc crystal calibration oscillator buils-in to check dial pointer accuracy. Temperature campensated, voltage regulated. Audio flat $50-15,000$ cycles, 10 watt push-pull audio output. Autamatic Noise Limiter: Series diode.
TYPE OF SIGNALS: Bands 1, 2, 3 and $4 ; A M / C W$. Bands 5 and 6; AM/FM/CW.
CONTROLS: 8and selector $550 \mathrm{kc} .1620 \mathrm{kc}, 1.62 \mathrm{mc}-4.9$ $\mathrm{mc}, 4.9 \mathrm{mc}-15 \mathrm{mc}, 15 \mathrm{mc} .32 \mathrm{mc}, 27 \mathrm{mc}-56 \mathrm{mc}, 54 \mathrm{mc} .109$ mc . Receive/standby, calibrotion osc. on/off, noise limiter, tuning, AF gain, Phono/FM/AM/CW, six-position selectivity, four-posifion tone, r-f gain, calibration reset.
INTERMEDIATE FREQUENCIES: 8aads 1, 2, 3 and 4; 455 kc . Bands 3 and $6 ; 10.7 \mathrm{mc}$.
BAND CHANGE MECHANISM: Six position ganged rotary wofer switch.

TUNING ASSEMBIY AND DIAL DRIVE MECHA-

NISM: Ganged, 8 section ball bearing funing capacitor assembly. Smoath acting inertia tuning control. Thirteen inch slide rule dial, each bond individually illuminated. Crystal calibration switch and dial pointer reset an front panel.
ANTENNA INPUT IMPEDANCE: 52 to 600 ohms.
HEADPHONE OUTPUT IMPEDANCE: High impedance. AUDIO OUTPUT IMPEDANCE: 3.2/8/500.
TUBE COMPLEMENT: Fourteen tubes plus voltage regulator and rectifier. (2) 6AG5, r-f amp,-7F8, conv,-6SK7, i.f amp.-6SG7, i-f amp.-6SG7, i-f amp.-6SG7, FM limiter and AM det.-6H6, FM det.-6H5, BFO-6H6, ANL - $6 S 17$, phase inverter-(2) 6 V 6 , push-pull oudia output6C4, calibration asc.-VR-150, regulator-5U4G, rectifier.
EXTERNAL CONNECTIONS: Terminals for doublet or single wire ontenna on rear. 3.2/8/500 ohm audio outputs. External antenno provided. Phone jack, socket for external power and remote control connections. Phone jack on front ponel.
AUDIO POWER OUTPUT: 10 watts maximum.
POWER SUPPLY: $105 / 125$ V., 50/60 cycle AC.
PHYSICAL DATA: Satin black steel cabinet with fight gray front panel and chrome trim. Top apens on piana hinge. Size $20^{\prime \prime}$ wide $\times 10^{1 / 2 \prime}$ high $\times 16^{\prime \prime}$ deep. Shipping weight approximately 64 lbs .

MODEL R-46B

for the best match

Precision-built communications speaker. This $10^{\prime \prime} \mathrm{PM}$ speaker is the matching unit for any Hallicrafters or other receiver having a 3.2 ohm output. Featuring an 80 to 5000 cycle range and 3.2 ohm speaker voice coil impedance. Gray black steel cabinet measuring $15^{\prime \prime}$ wide x $10 \%{ }^{\prime \prime}$ high $\times 10 \%{ }^{\prime \prime}$ deep. Shipping weight approximately 15 lbs.
MODEL R-46B Speaker.
$\$ 17.95$

4401 West Fifth Avenue, Chicago 24, Ilinois

World's leading manufacturer of precisian-built communications equipment.

electronic tubes

\star Power

* Recoiving
* Special Purpose

READ G-E HAM NEWS-

The magazine that links amateur tube know-how with electronic research!

EXAMPLE: 6 and 2-meter design simplified by G-E Adjustable Crystal-Feedback*

Ham News spotted this contribution to v-h-f design developed by W2ZHI of the G-E Research Laboratory in Schenectady . . . worked out the three pieces of economical equipment at right to help populate the 6 -meter band now open to technician-class licensees.

By means of circuit suggestions-trouble shooting-up-to-the-minute technical informa-tion-Ham News contributes importantly to G-E tube service and to the efficient and economical use of G-E quality tubes in all commercial and industrial applications.

Ask your G-E tube distributor for your free copy of Ham News! See him for quality tubes of every type, for every purpose! Tube Department, General Electric Company, Schenectady 5, N. Y.

Progress is Our Most Imporiant Product general electric

"Technician's Delight" Transceiver. G-E Ham News, July-August, 1955.

"Simple-sixer" Converter. G-E Ham News, September-October, 1955.

"Bonus 100-watt" Transmitter. G-E Ham News, November-December, 1955.

*ADJUSTABLE CRYSTAL-fEEBBACK uses o pinetwork plofe-fo-grid coupling to obtain third or fifth-overione operation of a crystal. A simple adjustment selects the proper amount of feedback; eliminotes redious cut-and-try methods. This device permits you to use inexpensive, readily ovailoble 8 to 9 -megocycle crystals for v-h-f, u-h-f work.

threlto teriarace Nationclas HRO-60

Latest and greatest of a great series featuring the widest frequency coverage of any receiver currently available (50 kc to 54 mc). Voice CW, NFM (with adaptor). Dual conversion on all frequencies above 7 mc .

- Twelve permeability-tuned circuits in the three 455 kc IF stages for sharp selectivity.
- Current-regulated heaters in the high frequency oscillator and first mixer.
- High frequency oscillator and S-meter amplifier are voltage regulated.

FEATURES:

CDA approved

- Extra coil sets available to provide additional frequency coverage on special ranges.
- Crystal filter provides several degrees of selectivity with phasing notch to reject heterodyne interference.
- Has double-ended automatic noise limiter
which is equally effective on both voice or code reception.
- Has two RF stages for better sensitivity and selectivity (image ratio).
- Single knob controls reception of CW, AM, or NBFM signals or connects audio amplifier to Phono input.
- Adjustable CW oscillator control for CW reception.
- Panel-controlled antenna input trimmer.
- Panel switch for choice of 100 kc or 1000 ke calibration marker signals.

COVERAGE

COIL SET	General coverage	BANDSPREAD
A	$14.0-30.0 \mathrm{mc}$.	27.0-30.0 mc. (11,10 meters)
B	$7.0-14.4 \mathrm{mc}$.	$14.0-14.4 \mathrm{mc}$. (20 meters)
C	$3.5-7.3 \mathrm{mc}$.	$7.0-7.3 \mathrm{mc}$. (40 meters)
D	$1.7-4.0 \mathrm{mc}$.	$3.5-4.0 \mathrm{mc} .(80$ meters)
*E	$900-2050 \mathrm{kc}$.	
*F	$480-960 \mathrm{kc}$.	
*G	$180-430 \mathrm{kc}$.	
*H	$100-200 \mathrm{kc}$.	
*J	50-100 kc.	
*AA		27.0-30 mc. (11, 10 meters)
*AB	25-35 mc.	
* AC		$21.0-21.5 \mathrm{mc}$. (15 meters)
*AD		50-54 mc. (6 meters)

TUNING SYSTEM

PW knob has worm gear drive box. Large dial with changing numbers gives a logging scale from 0-500, equivalent to a scale length of 12 feet. In addition, a slide-rule direct-reading scale is ganged with the PW dial to show frequency setting directly. The scale drum can be rotated to change scales. Plug-in coils for separate ranges.

AUDIO SYSTEM

A push-pull audio output stage delivers 8 watte at less than 10% distortion. Output impedance is 8 and 500 ohms, A high impedance phono-jack is located on the chassis, and a phone jack is provided on the receiver panel.

SENSITIVITY

1.5 microvolts from 2 to 30 mc (with 300 -ohm dummy antenna and 10 db signal/noise ratio.)

SELECTIVITY

NORMAL (Crystal off) $6 \mathrm{db}-3.5 \mathrm{kc}$
CRYSTAL IN POSITION 5
IMAGE REJECTION (At high end of band)
BAND
A
\mathbf{B}
\mathbf{C}
\mathbf{D}

IMAGE RATIO
65 db
$80+\mathrm{db}$
$80+\mathrm{db}$
$80+\mathrm{db}$

CONTROLS

Band Switch; Oscillator; Tone; Antenna Trimmer; Dimmer; AVC; Limiter; Calibration; CWO; Phasing; Selectivity: AF Gain/AC ON-OFF; RF Gain; AM-NFM-Phono.; B + ON/OFF.

TUBE COMPLEMENT

1st RF Amp.	6BA6
2nd RF Amp.	6BA6
1st Frequency Conv.	6BE6
High-Frequency Osc.	6 C 4
2nd Frequency Conv.	6BE6
1st IF Amp.	6SG7
2nd IF Amp.	6SG7
3rd IF. Amp.	6SG7
Det.-AVC	6H6
Noise Limiter	6H6
S-Meter Amp.-Phase Inverter	6SN7GT
1st AF Amp.	6SJ7
Audio Output (2)	6V6GT
BFO Oscillator	6SJ7
Voltage Reg.	OB2
Current Reg.	$4 \mathrm{H}-4 \mathrm{C}$
Rectifier	5 V 4 G

OTHER SPECIFICATIONS

Antenna input: 50-300 ohms, balanced or unbalanced.
Size: Table $1934^{\prime \prime}$ wide $\times 1018^{\prime \prime}$ high $\times 16^{\prime \prime}$ deep.
Rack $19^{\prime \prime}$ wide $\times 101 / 2^{\prime \prime}$ high $\times 171 / 16^{\prime \prime}$ from rear of front panel inel. $11 / 8^{\prime \prime}$ handle.
Finish: Smooth gray enamel.
Shipping Weight: 88 lbs.

Optianal Accessaries:

HRO-60R - Rack model receiver with A, B, C, D coil sets. HRO-60T - Table model receiver with A, B, C, D coil sets. HRO-60RS-Rack Model
Speaker.
HRO-60TS-Table Model Speaker.
HRO-60-Deluxe Receiving Installation. (Consists of HRO60 R with $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ coil sets, HRO-60-SC2 speaker and coil container MRR-2 Table Rack.)

HRO-60-SC2 - Speaker and container for 10 coil sets.
HRO-60-XCU-2 - 100/1000 ke crystal calibrator.
HRO-650S-6 V. vibrator type supply.
MRR-2-Table Rack.
NFM-83-50-Narrow Band FM Adaptor.
Coils-E, F, G, H, J, AA, AB AC, AD.

tuned to tomoruow Nationclos NC-183D

Incorporates every feature you want in a truly modern receiver! Dual conversion on the three highest ranges (including 6, $10,11,15,20$, and 40 meter ham bands). Complete coverage from 540 kc up to 30 mc , plus $50-54 \mathrm{mc} 6$-meter ham band. Voice, CW, NFM (with adaptor).

\checkmark
FEATURES:

- Two stages of RF provides extremely high image ratio.
- Dual conversion on all bands above 4.4 mc .
- Bandspread on all amateur bands through six meters.
- Three stage sharp IF (12 permeabilitytuned circuits) no sacrifice in noise selectivity, high degree of skirt selectivity.
- Push-pull audio output.
- Indirectly lighted lucite dial scales.
- Rack and table models available.
- HF oscillator voltage regulated.
- Crystal filter provides several degrees of selectivity with phasing notch to reject heterodyne interference.
- New bi-metallic temperature - compensated tuning condenser for drift-free operation.
- New miniature tubes.
- FCDA Approved.

COVERAGE

BAND	GENERAL COVERAGE	BANDSPREAD	
A			$47-55$ mc. (6 meters)
B	$12-31$	mc.	$26.5-30$ mc. (11,10 meters)
			$20.0-21.5$ mc. (15 meters)
		$14.0-14.4$ mc. (20 meters)	
C	$4.4-12$	mc.	$6.9-7.3$ mc. (40 meters)
D	$1.55-4.4$	mc.	$3.5-4$ mc. (80 meters)
E	$0.54-1.55$	mc.	

TUNING SYSTEM

The main tuning and bandspread tuning capacitors are connected in parallel on all bands. This arrangement permits bandspread tuning at any frequency within the range of the receiver. Two RF stages are employed on all bands, and the trimmer for the first RF stage is controlled from the front panel.

AUDIO SYSTEM

A push-pull audio output delivers 8 watts at less than 10% distortion. A high impedance phono-jack is located on the chassis, and a phone jack is provided on the receiver panel.

IMAGE REJECTION (AT HIGH END of band)

BAND

IMAGE RATIO
A
B
C
D
\mathbf{E}

40 db 65 db
 65 db
 80 db 80 db

80 db

SENSITIVITY

Better than 3.5 microvolts (with 300 -ohm dummy antenna and 10 db signal/noise ratio).

SELECTIVITY

NORMAL (Crystal off)
CRYSTAL IN POSITION \#5
$6 \mathrm{db}-3.5 \mathrm{kc}$
$60 \mathrm{db}-12.5 \mathrm{kc}$ $6 \mathrm{db}-100$ cycles $60 \mathrm{db}-7 \mathrm{kc}$

CONTROLS

CW Switch; CWO control; Tone Control; Limiter Control; Main Tuning; Bandspread Tuning; Band Switeh; RF Gain; AC ONOFF; AF Gain; Send/Receive Switch; AVC/MVC Switch; Radio/ Phono Switch; Phone Jack; Phasing Control; Selectivity Switch; Antenna Trimmer.

TUBE COMPLEMENT

1st RF Amp.	6BA6
2nd RF Amp.	6BA6
1st Conv.	6BE6
2nd Conv.	6BE6
1st IF Amp.	6BA6
2nd IF Amp.	6BA6
3rd IF Amp.	6BA6
2nd Det.-AVC	6AL5
AVC Amp.	6AH6
Beat Freq. Osc.	6S.J7
Noise Limiter	6AL5
1st Audio	6SJ7
Phase Inverter-S Meter Amp.	6SN7
Audio Output (2)	6V6GT G
Voltage Reg.	OB2
Rectifier	5U4G

OTHER SPECIFICATIONS

Antenna Input:

$50-300$ ohms, balanced or unbalanced.

Size:
$101 /^{\prime \prime}$ high $\times 1934^{\prime \prime}$ wide $\times 163 /^{\prime \prime}$ deep.

Finish:
Smooth gray ensmel.

Shipping Weight:
65 lbs.

Optional Accessories: NFM-83-50 Adaptor.
NC-183DTS Table Speaker.
NC-183DRS Rack Speaker.

National's famous "Dream Receiver." An extremely sensitive, highly stable receiver with exceptional calibration accuracy. Has eight electrical bands, 160 through 10 meters, plus a special $30-35 \mathrm{mc}$ range used as a tunable IF for 6,2 , and $11 / 4$ meters.

HAM RECEIVER

FEATURES:

- Ten dial scales for coverage of 160 to $11 / 4$ meters with National's exclusive new converter provision with the receiver scales calibrated for $6,2,11 / 4$ meters using a special $30-35 \mathrm{mc}$ tunable IF band.
- Longest slide-rule dial ever! More than a foot long! Easily readable to 2 ke without interpolation up to 21.5 mc .
- Three-position IF selector-. $5 \mathrm{kc}, 3,5$ kc, 8 ke-provides super selectivity, gives optimum band width for CW, phone, phone net or VHF operation.
- Separate linear detector for single sideband... decreases distortion by allowing AVC "on" with single sideband. . will not block with RF gain full open.
- Hi-speed, smooth inertia tuning dial with 40 to 1 ratio! Provides easier, more accurate tuning. Smoothest dial you've ever used.
- Exclusive optional RF gain provision for best CW results allows independent control of IF gain!
- Giant, easy to read " S " meter?
- Provision for external control of RF gain automatically during transmitting periods.
- Muting provisions for CW break-in operation.
- Calibration reset adjustable from front panel to provide exact frequency sotting!
- Dual conversion on all bands!
- Crystal filter with phasing control and three-position bandwidth control!
- Wide range tone control, for control of both low frequency and high frequency end of response curve!
- Socket for crystal calibrator plus accessory socket for powering converters and future accessories!
- First IF frequency-2215 kc.
- Second IF frequency- 80 kc .
- Selectivity at 6 db down 500 cycles, 3,5 ke and 8 kc . Selectable from the front panel without additional accessories! Nothing extra to buy!
- Crystal filter at 2215 ke provides notching plus three bandwidth positions in addition to the three IF selectivity positions. No other receiver has this versatility.

COVERAGE

BAND DESIGNATION AND LENGTH
160 meters $\quad 1.8$ to 2.0 me,
80 meters - 3.5 to 4.0 mc .
40 meters- 7.0 to 7.3 mc .
20 meters- 14.0 to 14.4 mc .
15 meters-21.0 to 21.5 mc
11 meters - 265 to 27.5 mc
10 meters 28.0 to 29.5 mc
6 meters- 49.5 to 54.5 mc .*
2 meters- 143.5 to 148.5 me.*
$11 / 4$ meters- 220 to 225 me.*
*Usable with Accessory Converlers.

TUNING SYSTEM

Combination gear/pinch for smooth inertia tuning.

AUDIO SYSTEM

The audio amplifier uses a single 6 AQ 5 output tube delivering 1.0 watts at less than 10% distortion. Has front panel phone jack. Output impedance is 8 ohms.

SENSITIVITY

Under 1.5 microvolts (with 300 -ohm dummy antenna and 10 db signal/noise ratio).

SELECTIVITY

SHARP

6 db 0.5 kc
60 db 3 kc

MEDIUM
3.5 ke

12 kc

BROAD
8.0 ke

30 kc

IMAGE REJECTION

BAND
IMAGE RATIO

160	80 db
80	80 db
40	60 db
20	75 db
15	55 db
10	50 db
11	50 db

CONTROLS

RF Gain and AC ON/OFF; AF Gain and RF Tube Gain Switch; Tone Control; AM-CW-SSB-ACC Switeh; CW Pitch; Main Tuning; Calibration Correct; Antenna Trimmer; Crystal Caliibrator ON/OFF; Limiter; IF Selectivity; Crystal Selectivity; Crystal Phasing; Band Switch; Phono-Jack'.

TUBE COMPLEMENT

OTHER SPECIFICATIONS

Antenna Input: 50-300 ohms, balanced or unbalanced,
She: $191 / 2^{\prime \prime}$ wide $\times 111 / 4^{\prime \prime}$ high $\times 15^{\prime \prime}$ deep ($19^{\prime \prime}$ rack out of cabinet) Finish: Two-tone gray enamel,
Shipping Welght: (Legal) 64 lbs.

Optional Accessories:

Converlers

NC-300C6 for 6-meter band
$\mathrm{NC}-300 \mathrm{C} 2$ for 2 -meter band.
NC 300 Cl for $11 / 4$ meter band.

NC-300-CC Converter Cabinat
NC-300TS Speaker.
XCU-300 Plug-in Crystal Calibrator.

turelto toriourau Nationalios: NC-125

An up-to-the-minute general coverage receiver featuring National's exclusive Select-O-Ject audio filter. Complete coverage from 560 kc to 35 mc in four bands including broadcast band. Voice, CW, or NFM (with adaptor).

- Calibrated bandspread for $10,11,15,20,40$, and 80 meter amateur bands.
- Large edge-lighted slide-rule dial with general coverage scales (police, foreign broadcast, and ship frequencies indicated). Has separate seales for amateur bands, plus logging scale.
- With National's exclusive built-in SELECT-O-JECT, you can boost any single selected audio frequency 38 db or reject any single frequency 45 db within the range of 100 cps to $12,000 \mathrm{cps}$. This makes it possible to practically eliminate annoying heterodynes, whistles, and unwanted signals. The resultant high degree of selectivity surpasses that of much higher-priced receivers.
- Accurate S meter reads $\mathrm{S}-9$ to 50 mv for indicating signal strength and accurate tuning.Has gang-tuned RF amplifier stage and two IF amplifier stages.
-

Automatic volume control.

- Series type automatic noise limiter.
- Voltage regulated stabilized oscillator holds signal regardless of line voltage fluctuations.
- Has jack for phonograph input or NFM adaptor; socket for battery operation; accessory socket.

:OVERAGE

AND
A
B
C
D
general coverage
$12.0-35.0 \mathrm{mc}$.
4.4-12.0 mc.
$1.55-4.4 \mathrm{mc}$.
$.56-1.55 \mathrm{mc}$.

BANDSPREAD
$27.16-29.7 \mathrm{mc}$. ($10 / 11$ meters) $21.0-21.5 \mathrm{mc}$. (15 meters) $14.0-14.4 \mathrm{mc}$. (20 meters) $7.0-7.3 \mathrm{mc}$. (40 meters) $3.5-4.0 \mathrm{mc}$. (80 meters)

UNING SYSTEM

sparate general coverage and bandspread tuning capacitors consted in parallel and driven by two independent knobs.

.UDIO SYSTEM

ses two tubes in SELECT-O-JECT as an audio filter. Two more ages of AF including single 6V6 GT output tube providing atts at less than 10% distortion to separate speaker. Output imdance is 3.2 ohms. Also has phono input and headphild dutput cks and tone control.

ENSITIVITY

nder 4 microvolts (with $300-\mathrm{ohm}$ dummy antenna and 10 db :nal/noise ratio).

בLECTIVITY

$$
6 \mathrm{db}-4.1 \mathrm{kc}
$$

$60 \mathrm{db}-18.5 \mathrm{kc}$
dditional extreme selectivity may. be obtained with the receiver justed to boost-dependent on setting of boost control knob.)

IMAGE REJECTION

BAND	IMAGE RATIO
A	23 db
B	26 db
C	44 db
D	57 db

CONTROLS

Band Spread Control; RF Gain Control; Antenna Trimmer; Tone Switch; AC Power-AF Gain Control; BFO Pitch Control; SELECT-O-JECT Frequency Control; Boost Control; NFM Phono Jack, Phones Jack; CWO-MVC-AVC-ANL Control Switch; Band Selector Switch; B+ Stand-by-Receiver Switch.

TUBE COMPLEMENT

RF Amp.	6SG7
HF Conv. Osc.	6SB7-Y
1st IF Amp.	6SG7
2nd IF Amp.	6SG7
Det.-AVC-ANL	6H6
Phase Shifter	6SL7GT
Boost-Reject	6SL7GT
AF Amp.-CH;	6SL7GT
Audio Output	6V6GT
Voltage Regulator	OA2
Rectifier	5Y3GT

OTHER SPECIFICATIONS

Antenna Input:
Size:
Finish:
Shipping Weight:
Optional Accessories:

50-300 ohms, balanced or unbalanced. $161 / 2^{\prime \prime}$ long $\times 101 / 2^{\prime \prime}$ deep $\times 88 / 4^{\prime \prime}$ high. Smooth Gray Enamel.
35 lbs.
NC-125TS Speaker NFM-73B Adaptor.

The lowest-priced general coverage receiver with both crystal filter and S meter. For shortwave listeners, novices, or experienced hams. Covers 540 kc to 40 mc in four bands including broadcast band. Voice, CW, or NFM (with adaptor).

- Calibrated bandspread for $10,11,15,20,40$,

FEATURES:
and 80 meter amateur bands. Separate tuning capacitors, knobs, and scales for general coverage and bandspread.

- Large 6-inch indirectly-lighted Lucite scales.
- Adequate over-all selectivity with eight miniature tubes plus rectifier.
- Has crystal filter providing two additional sharper degrees of selectivity with phasing control for interference rejection.
- Has S meter on front panel for signal strength indication and more accurate tuning.
- Accessory socket for NFM adaptor.
- Has gang-tuned RF amplifier stage, and two IF stages plus two audio stages with phono input and tone control.
- Separate antenna trimmer on front panel.
- Separate high frequency oscillator tube increases stability.
- Separate RF and AF gain controls.
- Series type automatic noise limiter.
- Conelrad (CD) frequencies clearly marked on dial.

COVERAGE

BAND	GENERAL COVERAGE	BANDSPREAD
A	.54-1.6 mc.	
B	$1.6-4.7 \mathrm{mc}$.	3.5-4.0 mc. (80 meters)
C	$4.7-14.0 \mathrm{mc}$.	$6.9-7.3$ mc. (40 meters)
D	$14.0-40 \mathrm{mc}$.	$14-14.35 \mathrm{mc}$. (20 meters)
		20.4-21.5 mc. (15 meters)
		27-30 mc. (10/11 meters)

TUNING SYSTEM

Separate general coverage and bandspread tuning capacitors connected in parallel on all bands. Bandspread knob, used primarily for tuning the amateur bands, can be used as a vernier for general coverage use. Antenna trimmer is on the front panel.

AUDIO SYSTEM

Two-stage audio amplifier with single 6AQ5 output tube provides less than 10% distortion to a separate speaker. Output impedance 3.2 ohms. Has phono input and phones output jacks.

SENSITIVITY

Under 5 microvolts (with $300-\mathrm{ohm}$ dummy antenna and 10 db signal/noise ratio).

SELECTIVITY

	NORMAL	SHARP
6 db	5.2 kc	200 cycles
60 db	29.5 kc	10 kc

IMAGE REJECTION

BAND	IMAGE RATIO
A	67 db
B	50 db
C	27 db
D	18 db

CONTROLS

Main Tuning; Bandspread Tuning; Antenna Trimmer; Band Selector Switch; RF Gain Control; AC ON/OFF and AF Gain Control; Stand-by Switch; Noise Limiter Switch; Tone Control Switch; BFO Pitch Control; AM/SW and S meter Switch; Selectivity Control; Phasing Control.

TUBE COMPLEMENT

RF Amp.	6BA6
Freq. Conv.	6BE6
HF Osc.	6C4
1st IF Amp.	6BD6
2nd IF Amp.	6BD6
S. AVC and ANL	6AL5
Ist AF and BFO/S meter Amp.	12AX7
AF Output	6AQ5
Reetifier	5Y3GT

OTHER SPECIFICATIONS

Antenno Input: 50-300 ohms, balanced or unbalanced.
Size: $83 / /^{\prime \prime}$ high $\times 161 / 2^{\prime \prime}$ wide $\times 101 / 2^{\prime \prime}$ deep.
Finish: Hammertone Gray Enamel.
Shipping Weight: 30 lbs .
Oplional Accessories: NC-98TS Speaker. NFM-83-50 Adaptor.

troned to tomorrow Tationalo NC-88

A low-priced general coverage receiver directly calibrated for the four general coverage ranges and five bandspread ranges ior the amateur bands ($80-10$ meters). Covers 540 kc to 40 mcs . Voice or CW.

- Calibrated bandspread for $10 / 11,15$, 20,40 , and 80 meter amateur bands. Separate tuning capacitors, knobs, and scales for general roverage and bandspread.
- Large 6-inch indirectly-lighted lucite scales.
FEATURES:

Two IF amplifier stages and two audio stages with phono input and tone rentrol.

- Built-in loud-speaker.
- Separate antenna trimmer on front pancl.
Separate high frequency oscillator tube for increased stability.

Separate RF and AF gain controls.
Series type automatic noise limiter.

ZOVERAGE

AND	GENERAL COVERAGE	BANDSPREAD
A	$.54-1.6 \mathrm{mc}$.	
B	$1.6-4.7 \mathrm{mc}$.	$3.5-4.0 \mathrm{mc} .(80$ meters)
C	$4.7-14.0 \mathrm{mc}$.	$6.9-7.30 \mathrm{mc} .(40$ meters $)$
D	$14.0-40.0 \mathrm{mc}$.	$14.0-14.35 \mathrm{mc} .(20$ meters)
		$20.4-21.5 \mathrm{mc} .(15$ meters)

UNING SYSTEM

eparate general coverage and bandspread tuning capacitors conected in parallel on all bands. Bandspread knob, used primarily or tuning the amateur bands, can be used as vernier for general overage use. Antenna trimmer control is on the front panel.

IUDIO SYSTEM

'wo-stage audio amplifier with single 6AQ5 output tube providing .5 watts at less than 10% distortion to built-in speaker. Has phono iput jack. Phones output jack.

;ENSITIVITY

Jnder 5 microvolts (with 300 -ohm dummy antenna and 10 db ignal noise ratio).

;ELECTIVITY

	NORMAL
6 db	5.2 kc
60 db	29.5 kc

MAGE REJECTION

BAND	IMAGE RATIO
A	67 db
B	50 db
C	27 db
D	18 db

CONTROLS

Main Tuning; Bandspread Tuning; Antenna Trimmer; Band Selector Switch; RF Gain Control AC ON/OFF and AF Gain Control; Stand-by-Receive Switch; Noise Limiter Switch; Tone Control Switch; BFO Pitch Control; Antenna Trimmer Control; AM/CW Switch.

TUBE COMPLEMENT

tureed to tomorow
 Nationalo SW-54

See and hear this astonishing little receiver! Notice how it pulls in foreign stations all over the world! Check its beauty and clarity on standard broadcast stations! Hear the fascinating conversations between "hams" you can pick up! Listen to ship and aircraft reports originating thousands of miles away! See how it gives you, not just one or two, but three shortwave bands in addition to the broadcast band!

Compare features! Compare smart styling! Compare the SW-54's light, compact size! And, finally, compare price! You'll agree the SW-54 is America's top value in radio receivers!

FEATURES:

- Continuous coverage of AM Broadcast, amateur, and world-wide shortwave bands -540 kc to 30 mc .
- Receives voice or code.
- Police, ship, amateur, foreign stations clearly marked.
- Easy-to-read indirectly lighted scale.
- Uses miniature tubes.

Logging scale provided.

- Unique large bandspread vernier knob.
- Provision for using headphones.
- Send-Receive switch.
- Operates on 115 volt AC or DC.
- Easily installed. Complete in itself with loud-speaker in cabinet.
- U.L. approved.

COVERAGE

BAND	GENERAL COVERAGE
A	$.54-1.6 \mathrm{mc}$.
B	$1.6-4.7 \mathrm{mc}$.
C	$4.6-14.5 \mathrm{mc}$.
D	$12-30 \mathrm{mc}$.

TUNING SYSTEM

The signal input and HF oscillator are tuned by a two-gang variable capacitor. The tuning capacitor is driven by Main Tuning Knob and also by a large plastic vernier dise with a logging scale.

AUDIO SYSTEM

Two-stage audio amplifier with 50 C 5 out put tube. Has speaker and phone output jacks.

SENSITIVITY

(For 50 mw outpui and 3 ûû-ohm antenna)
Band A-25 microvolt
Band B-15 microvolt
Band C -15 microvolt
Band D-50 microvolt

SELECTIVITY

	NORMAL
6 db	5 kc
60 db	70 kc

IMAGE REJECTION

BAND	IMAGE RATIO
A	35 db
B	20 db
C	15 db
D	8 db

CONTROLS

Main Tuning; Bandspread; AC OFF, Volume Control; Band Se lector Switch; Speaker-Phones Switch; AM-CW Switch; Stand by-Receive Switch.

TUBE COMPLEMENT

Conv.	12BE6
CW ON-IF Amp.	12BA6
2nd Det, AVC-1st Audio	12AV6
Audio Output	50C5
Rectifier	$35 Z 5$

OTHER SPEICFICATIONS

Antenna Input: 50-300 ohms, balanced or unbalanced.
Size: $11^{\prime \prime}$ wide $\times 7^{\prime \prime}$ high $\times 7^{\prime \prime}$ deep.
Finish: Hammertone Gray Enamel.
Shipping Weight: 13 lbs .
Optionol Accessories: Headphones.

tumad to tomouraw NATIONAL COMPONENTS<<l>

COIL FORMS

XR-60

SERIES	USE			GROOYED	WIRE	CORE	DIMEN.	material		
XR-50	amateur, camm'l; wind as desired			-	-	Iron	$23 / 16^{\prime \prime} \times 5 / 8^{\prime \prime}$	Mica-filled bakelite, permeability tuned, JAN. specs.		
XR-51	"	"	"	-	-	Brass	" " ،	${ }^{\prime}$		6
XR-60	"	"	"	YES	* 26	Iran	$13 / 16^{\prime \prime} \times 1{ }^{\prime \prime}$	spe silver-plated brass base		
XR-61	"	"	"	YES	* 26	Brass	$\because{ }^{\circ}$	"	"	"
XR-62	"	"	"	NO	-	Iran	* " "	"	"	"
XR-63	"	"	"	NO	-	Erass	" " "	"	"	"
XR-70	${ }^{6}$	"	*	YES	* 19	Iran	$18 / 16^{\prime \prime} \times 3 / 4{ }^{11}$	"	"	"
XR-71	"	"	"	YES	* 19	Brass	17	"	"	"
XR-72	"	"	"	NO	-	Iran	118	"	"	"
XR-73	"	"	"	NO	-	Brass	" ${ }^{3}$	"	"	"
KR-80	"	"	"	-	-	Bross	$11 / 4^{17} \times 1 / 64$	"	"	"
KR-81	"	"	"	-	-	Iran	π	"	"	"
XR-82	"	"	"	-	-	Brass	$13 / 4^{11} \times 1 / 64^{11}$	"	"	"
KR-83	"	"	"	-	-	Iron	" "	"	"	"
XR-90	"	"	"	-	-	Brass	$11 / 4^{\prime \prime} \times 3 / 8^{\prime \prime}$	"	"	"
XR-91	"	"	"	-	-	Iron	" " "	"	"	"
XR-92	"	"	"	-	-	Brass	$13 / 4{ }^{\prime \prime} \times 3 / 8^{\prime \prime}$	"	"	"
XR-93	"	4	'"	-	-	Iron	" ${ }^{6}$	$\stackrel{\square}{13}$	"	"

XR-70

XR-80

QUALITY COUPLINGS

TX-8: very compact, non-flexible unit, fully insulated with silicone-treated Grade L-3 ceramic for long life. $1 / 166^{\prime \prime}$ diam., fits $1 /{ }^{1 / 2}$ " shaft.
TX-9: very small, for use in isolating circuits, high electrical efficiency, steatite insulation (Grade L-3 ceramic, Jan. 1-10). $1^{3} \xi^{\prime \prime}$ diam., fits $1 / 4^{\prime \prime}$ shaft.

TX-10: fully-insulated, extremely compact coupling, entirely free from backlash. Rigid factory inspection insures long life. $11 / 16^{\prime \prime}$ diam., fits $1 / 4^{\prime \prime}$ shaft.

TX-19: is steatite-insulated flexible coupling for $1 /$ In $^{\prime \prime}$ shafts rated 5000 volts peak. $1 / 8^{\prime \prime}$ diam., $11 / ⿷^{\prime \prime}$ length.

TX-22: is identical to TX-10 except that it is not insulated, uses metal disc in lieu of linen bakelite.

TX-23: a deluxe insulated, thexible unit designed for coupling $1 / 3$ " shafts. Handles maxinum radial misalignment of ${ }^{1} 16$ ", 2° max. radial misalignment, low-voltage insulated. $1^{\prime \prime}$ diam., lits $.252^{\prime \prime}$ shaft.

TX-24: Same as TX-23 but fits ${ }^{5}$ fr" shaft.
TX-25: Same as TX-23 but not in. sulated.

TX-10

TX-19

TX-23

PLUGS: BUSHINGS: INSULATORS

FWT mouided mica-filled bakelite batnana plug is designed for stacking. Nickel-plate brass locking screw may be removed to disassemble unit to ratate plugs to permit easier internal connection to wire holes (up to 10 gage wire). Case width, ${ }^{19}{ }^{2}{ }^{\prime \prime}$ "; length, $1^{11}{ }^{52}{ }^{2}$ "; overall height, $15 \%{ }^{5}{ }^{\prime \prime}$.

SB solid-brass bushing, nickel-plated. Fits I $^{\prime}$ " shafts.

GS insulators molded of Class L-4 ceramic conforming JAN-1-10 specs. In a range of shapes and sizes.

GS-5

Announcing A NEW LINE OF KNOBS

IMPORTANT! National's popular HR series of knobs has been augmented with a new line of versatile, attractive low-prieed knohs. All are molded of top-quality Tenite II, (led. spee. L1P349 type 2, elass MS) with anodized aluminum insert (material 17ST4 finished ANO(QA696) 2 eadmium-plated, fluted, Bristo head set screws. Are available in black matte finish (ean be supplied with differently colored caps and cap shapes to your specs. or military standards).

	B		
TYPE	FIG.	COLOR	NATIONAL CO. NUNBER
WITH SKIRT WITH DOT	C	BLACK MAITE	A 15577
WITHOUT SKIRT WITH DOT	8	BLACK MATTE	A 15741
WIIHOUY SKIRT WITHOUT DOT	B	BLACK MATIE	A 15390
WITH SKIRT WITHOUT DOT	C	BLACK MATTE	A 15755
WITHOUT SKIRT WITHOUT DOT	B	BLACK MATTE	A 15754
WITH SKIRT WITH DOT	C	BLACK MATTE	A 15579
WTHOUT SKIRT WITH DOT	8	BLACK MATTE	A 15578
WITH SKIRT WITHOUT DOT	c	BLACK MATTE	A 15753
WITH DOT	A	BLACK MATTE	A 15740
WITHOUT DOT	A	BLACK MATTE	A 15739
AS SHOWN	D	BLACK MATTE	A 15471

A

c

B

D

HI

HRK

HRP-

VD-16

SAFETY GRID \& PLATE CAPS

National safety grid and plate caps have a ceramic body which offers protection against accidental contact with high voltage caps on tubes.

SPP-3

SPP-3 has ceramic insulation, fits $3 / 8^{\prime \prime}$ diam.
K dial is $31 / 2^{\prime \prime}$ diam., 13 ® $^{\prime \prime}$ from face to back. Faced in gleaming, highly-polished metal, scaled $0=100,180^{\circ}$ arc (Special scales to order). Shipped ready to mount. tures: high legibility, great tuning precision, distinctive appearance. Has "Velvet Vernier', 5 to 1 ratio, 3 blank scales, $0-100$ logging scale.

O has knurled black bakelite knob, \#2 scale divided from $0-100$ in arc of 180° with counter-clockwise condenser rotation.

PP-9 has ceramic in- SPP-9 sulation, fits ${ }^{916}$ " diam.

AM dial includes National's, famous "Velvet Vernier' mechanism. $3^{\prime \prime}$ diam. metal. skirt, ratio 5 to 1. 2, 3, 4, 5, or 6 scale, fits $1 / 4^{\prime \prime}$ shaft. (Mechanisms available separately.)
N and $A D$: each is $4^{\prime \prime}$, enginedivided and die-stamped scales. N has decimal vernier AD has pointer. 5 to 1 planetary drive ratio. 2, 3, 4,5 or blank scale. Fits $1 / 4$ " shaft. Specify scale.
$A C N$ is the original indivi-dually-calibrated dial. Fea-

DEPENDABLE DRIVES

NPW-O precision gear drive is famous for high reaccuracy, precision control, single output shaft perp dicular to panel. Micrometer dial reads direct to 1 p in 500 , division lines are about $1 / 4$ " apart. TX- 9 coupl supplied as standard equipment.
PW-O same as NPW-O except two output sha parallel to panel.
ODD pinch drive is particularly well-suited for with plain dials because of its great smoot hness, of operation, very precise selectivity. Compact and l_{1} cost.
RAD right angle drive has die-cast housing and ge: Ideal for ganging condensers or potentiometers other parts located in hard-to-get-to chassis location

GRID \& PLATE GRIPS

National grid and plate grips g secure, positive contact with tube c release instantly by slight ear pressi

TYPE 8:
$1 / 4^{\prime \prime}$ caps

TYPE 12:

9/6" caps
TYPE 24:
3/8" caps

(1) COMPONENTS

IONAL'S POPULAR OF KNOBS

nnobs have easy-grip knurling, d of grey or black Tenite (other on specialorder). Chrome-plated adds beauty, black-enameled nu| s are |
| :--- |

$\begin{array}{ll}0-10 & 300^{\circ}\end{array}$
single etched line
$0-10 \quad 180^{\circ}$
no chrome-plated skirts, but optional white dot or other ings per your order.
now available for your set. ne-plated inlay, $21 / 8^{\prime \prime}$ diam., fits raft.
n smaller version of HRT. $11 / 2^{\prime \prime}$. fits $1 / 4^{\prime \prime}$ shaft.
lever knob has perfect feel, crisp rance, is die-cast in bright zinc can be anodized in many colors. available in other set-screw sizes. $1 / 4$ " shaft, uses $8-32$ set screw.
knob is fully knurled, brass, chromed and burnished. Blackreled arrowhead. Fits $1 / 4^{\prime \prime}$ shaft. is fluted for firm grip, made of ning black bakelite. Extra sturdy, $31 / 4^{\prime \prime}$ shaft.
P has nickel-plated brass pointer, pecially suited for use on wafer thes and other rotary switches. $1 / 4^{n}$ shaft.
same as HRP-P but without ter.
6 is rugged and crack-resistant, ull knurling for maximum selecsensitivity. In black or your choice. 1/4" shaft.
6 A same as VD-16 but fits $3 / 16^{\prime \prime}$

CONDENSERS

pe UM condensers are low-loss niature variables with aluminum-te-staked construction, designed UHF converters, VFO's, etc. inimum capacity is extremely low.

pes ST \& STH have straight-lineivelength plates.

PRECISION-WOUND R.F. CHOKES

These RF chokes are identical electrically, but differ in mounting provisions. The R-100 employs pigtail leads; the R-100U has pigtail leads and a removable stand-oft insulator; the R-100S has cotter-pin lug terminals and a non-removable stand-off insulator; the R-100ST has a 6-32 threaded stud at each end. These chokes are available in $2.5,5$ and 10 millihenry sizes and are rated at 125 miliamperes.
R-100 R-100U R-100S R-100ST

These RF chokes are similar in size to R-100 series but have higher current capacity. The R-300U is provided with a removable stand-off insulator at one end. The R-300S has a non-removable stand-off insulator and R-300S has a non-removable stand-off insulator and
cotter-pin lug terminals. The R-300ST has a $6-32$ cotter-pin lug terminals. The R-300ST has a $6-32$
threaded stud at each end. Inductance values of 0.5 , $1.0,2.5$ and 5.0 millihenries are available with a current rating of 300 milliamperes. R-300, R-300U, R-300S and $R-300 \mathrm{ST}$ are identical electrically.

R-300 R-300U R-300S R-300ST

R-33. The $\mathrm{R}-33$ series chokes are 2 -section RF chokes available in $10,50,100$ and 750 microhenry sizes. Also a vailable in this series is a single layer solenoid choke of 1 microhenry inductance. All are rated at 100 milliamperes. The chokes are wound on a " $1 / 8$ " long form and range in diameter up to $5 / 10^{\prime \prime}$ maximum.
R-50, R-50-1. The R-50 series chokes are 3 -and 4-section RF chokes and available in $0.5,1,2.5$, and 10 millihenry sizes. They are rated at 100 milliamperes. The chokes are wound on a 1 " long form and have a maximum diameter of ${ }^{15 / 52^{n}}$. The 10 millihenry $R-50-1$ choke is wound on an ircin core.
R-152. For use in the range letween 2 and 4 Mc . Ideal for high power transmitter stages operated in the 80 meter amateur band. Inductance $4 \mathrm{~m} . \mathrm{h}$., DC resistance 10 ohms, DC current 600 ma . Coils honey comb wound on steatite core.
R-175A. The R-175A choke is a revised version of the R-175 choke. This revision has made the reactance of the choke high throughout the 6 meter band as well as the $10,15,20,40$ and 80 meter bands. The R-175A choke is suitable for parallelfeed as well as series-feed in stansmitters with plate supply up to $3 H 00$ volts modulated or 4000 volts unmodulated. Inductance 145 uh., distributed capacity 0.6 mmf ., d-c resistance 5 ohms, d-c current 800 ma., voltage breakdown to base 12,500 volts.

LONG-LIFE SOCKETS

CRYSTAL

CS. The CS-5, CS-6, CS-7 and CS-8 are crystal mounting sockets for crystal holders. Socket bases ceramic conforming to JAN-HO body glazed. Unglazed surface DC 200 treated.

CS-5. contacts spaced . $500^{\prime \prime}$; pin diameter $125^{\prime \prime}$. Phosphor bronze contacts silver plated.
CS-6. contacts spaced . 486^{n}; pin diameter. $095^{\prime \prime}$. Phosphor bronze contacts silver plated.

TUBE SOCKETS
XLA -7 low-loss units fit 6F4 and 950 acorn tubes for frequencies up to 600 meg . Features low contact resistance, short, direct leads, low constant induclance. Silver-plate, heat-treated beryllium copper contacts.
CIR series are made of GradeL-5 ceramic, conform to JAN-1-10 unglazed surfaces DC-200 treated.
CIR- 5 nickel-plat ed brass mounting plate, silver-plated phosphor bronze contacts, solder-dipped tips, ears available for standoff mounting. Contact grips tube of mounting. Contact grips for entire length, ring for prong for entire length, ring for
6 -position mounting. Monnting centers $1^{17} 7_{5}{ }^{\prime \prime}$.
CIR-4 same as CIR-5 but for 4pronged tubes.
CIR-6 same as CIR-5 but for 6pronged tubes.

CS-7 contacts spaced $.486^{\prime \prime}$; pin diameter. $050^{\prime \prime}$. Phosphor bronze contacts silver plated.
CS - 8 contacts spaced $.750^{\prime \prime}$; pin diameter .125". Phosphor bronze contacts silver plated.

CIR-B for 8 -pronged tubes has $11 / 2^{\prime \prime}$ mounting centers, nickelplated brass mounting plate.
XC-5 features excellent contacts, high current capacity, low-loss ceramic insulation. Has $1^{27} 7_{2}^{\prime \prime}$ " mounting center and is designed for 5 ,-pronged tubes.

XC-4 same as XC-5, but designed for 4 -pronged tubes.
XC-6 same as XC-5, but designed for 6-pronged tubes.
XM-10 is heavy-duty metalshell socket designed for tubes with XU 4-pin base. Grade L-3 ceramic (steatite) body conforms to JAN-1-10 specs. Silverplated phosphor bronze contacts.

XM-50 for tubes with jumbo 4pin base (50 watters).

INSTRUMENTATION OSCILLOSCOPE

Minioturized, pockaged panel mounting cothode roy oscilloscope designed for use in instrumentotion in ploce of the conventional "pointer type" moving coil meters uses the $1^{\prime \prime}$ ICPI tube. Ponel bezel matches in size ond type the stondord $2^{\prime \prime}$ square meters. Magnitude, phase displacement, wave shape, etc. ore constontly visible on scope screen. No. 90901 , less tube

INSTRUMENT DIAL

The No. 10030 is on extremely sturdy instrument type indicotor. Control shatt has 1 to 1 ratio. Veeder type counter is direct reoding in 99 revolutions and vernier scale permits readings to 1 part in 100 of a single revolution. Has built-in dial lock and $1 / 4^{\prime \prime}$ drive shaft coupling. May be used with multi-revolution transmitter controls, etc., or through gear reduction mechonism far contral of fractional revolution sapocitors, etc., in receivers or laboratary instruments.

The No. 90651 MILLEN GRID DIP METER is campact and campletely self contained. The $A C$ pawer supply is of the "tronsformer" type. The drum dial has seven calibrated uniform length scales fram 1.7 MC to 300 MC with generaus aver laps plus an arbitrary scale for use with special application inductars. Internol terminal strip permits battery aperation far antenna measurement.
Na. 90651 , with fube
Additional Inductors far Lower Frequencies
Na. $46702-925$ to 2000 KC Na. $46703-500$ to 1050 KC . Na. 46704-325 to 600 KC . Na. 46705-220 ta 350 KC

LABORATORY SYNCHROSCOPES

The 5 " labaratory synchrascopes are avoilable with and withaut detectar-videa strips.
Madel P-4-2, with tubes.
Madel P-4E-2, with tubes

MINIATURE SYNCHROSCOPE

The campact design of the Na. 90952 , measuring anly $71^{\prime \prime} \times 552^{\prime \prime} \times 13^{\prime \prime}$, and weighing anly 17 lbs., makes available far the first time a truly DESIGNED FOR APPLICATION "field service" Synchroscape.
No. 90952 , with tubes. $\$$

CATHODE RAY OSCILLOSCOPES

The No. 90902, Na. 90903 and Na. 90905 Rack Panel Oscillascopes, for twa, three and five inch tubes, respectively, are inexpensive basic units comprising power supply, brilliancy and centering controls, safety features, magnetic shielding switches, etc. As a transmitter monitor, no addi. tional equipment or accessaries are required. The well-known trapezoidal manitoring patterns are secured by feeding modulated carrier valtage from a pickup laap directly to vertical plates af the cathode ray tube and audia modulating valtage to horizontal plates. By the addition af such units as sweeps, pulse generators, amplifiers, serva sweeps, etc., all of which can be canveniently and neatly constructed an campanian rack panels, the original basic scape unit may be expanded ta serve any canceivable industrial ar laboratary application.
Na. 90902 , less tubes
Na. 90903 , less tubes
Na. 90905 , less tubes

'SCOPE AMPLIFIER - SWEEP UNIT

Vertical and horizontal amplifiers alang with hard fube, saw footh sweep generator. Complete with power supply mounted an a standard $514^{\prime \prime}$ rack panel.
Na. 90921 , with tubes.

REGULATED POWER SUPPLIES

A compact, uncased, regulated pawer supply, either for toble use in the laboratary or for incorparation as an integral part af larger equipments. Regulated, unregulated, bios and filament valtages provided.
Madel 90201 , less tubes.

MALDEN M MASSSACHUSETTS

11

STANDING WAVE RATIO BRIDGE

The Millen S.W.R. bridge pravides easy and in

 expensive measurement of standing wave ratio on antennas using co-ax cable. As assembled the bridge is set up for 52 ohm line. A calibrated 75 ahm resistor is mounted inside the case for substitution in the circuit when 75 ohm line is used. No. 90871
PHASE-SHIFT NETWORK

A complete and laboratory aligned pair of phaseshift netwarks in a single compact $2^{\prime \prime} \times \mathrm{T}_{2} / 5^{\prime \prime} \times 4^{\prime \prime}$ case with characteristics so as to provide a phase shift between the two networks of 90° 业 $\mathrm{T} .3^{\circ}$ over a frequency range of 225 cycles to 2750 cycles. Well adapted for use in either single sideband transmitter or receiver. Possible to obtain a 40 db suppression of the unwanted sideband. The No. 75012 presision odjusted phose-shift network eliminates the necessity of complicated laboratory equipment for network odjustment.
No. 75012

ANTENNA BRIDGE

The Millen 90672 Antenna Bridge is an aceurate and sensitive bridge for measuring impedances in the range of 5 to 500 ohms at radio frequencies up to 200 mc . The variable element is an especially designed differential variable capacitor capable of high accuracy and petmanency of calibration. Readily driven by No. 90651 Grid Dipper
No. 90672

50 WATT EXCITER-TRANSMITTER

Modern design includes features and shielding for TVI reduction, bondswitching for $4-7-14-21-28$ megocycle bands, circuit metering. Conservatively rated for use either as a transmitter or exciter for high power PA stages. 5763 oseillator-buffer-multiplier and 6146 power amplifier. Rack mounted. No. 90801 , less tubes.

VARIABLE FREQUENCY OSCILLATOR

The No. 90711 is a complete transmitter contro unit with 6 SK 7 temperature-compensatec, electron coupled oscillator of exceptional stability and low drift, O 6SK7 broad-band buffer or frequency doubler, a 6 A67 tuned amplifier which tracks with the ascillator funing, and a regulated power supply. Output sufficient to drive an 807 is available on 160, 80 and 40 meters and reduced output is available on 20 meters. Since the output is isolated from the ascillator by two stoges, zero "requency shift occurs when the output lood is varied from open circuit to short circuils. The entire onit is unusually solidly buill so that no frequency shift occurs due to vibration. The keying is elean and free from all annoying chirp, quick drift, ump, and similar difficulties often encountered in keying variable frequency oscillators.
No. 90711 , with tubes.

HIGH VOLTAGE POWER SUPPLY

The No. 90281 high voltage power supply has o d.e. output of 700 volts, with moximum current of 235 ma . In addition, o.c. filoment power of 6.3 volts at 4 amperes is aiso ovailable so that this power supply is an ideal unit for use with tronsmitters, such supply is an ideal unit for use with tronsmitters, such as the Millen No. The por as well as general ab-
oratory purposes. The power suply uses two No. 816 rectifiers. The panel is standard $814^{\prime \prime} \times 19^{\prime \prime}$ rack mounting. No. 90281 , less tubes

HIGH FREQUENCY RF AMPLIFIER

A physically small unit capable of a power autput of 70 to 85 watts on 'phone or 87 ta 110 watts on C.W on $20,15,11,10,6$ or 2 meter amoteur bands. Provision is made for quick band shift by means of the new No. 48000 series VHF plug-in coils. The No. 90811 unit uses either on 829-B or $3 E 29$.
No. 90811 with 10 meter band coils, les tube.

RF POWER AMPLIFIER

This 500 woll amplifier may be used as the basis of a high power amateur transmitter. The No. 90881 RF power amplifier is wired for use with the populor " $812 A^{\prime}$ " type tubes. Other populor tubes may be used. The amplifier is of unusually sturdy mechanical construction, an a $101 / 2^{\prime \prime}$ relay rack panel. Plug-in inductors are furnished for operation on 10, 20, 40 or 80 meter amateur bonds. The standard Millen No. 90801 exciter unit is an ideal driver for the new No. 90881 RF power amplifier
No. 90881 , with one set of cails, but less rubes...................................... $\$$

T) A

PANEL DIALS

The No. 10035 illuminoted panel dial has 12 to 1 ratio; size, $81 / 2^{\prime \prime} \times 61 / 2^{\prime \prime \prime}$. Small No. 10039 has 8 to 1 ratio; size, $4^{\prime \prime} \times 314^{\prime \prime}$. Both are of compact mechanical design, easy to mount and have fotally self-contained mechanism, thus eliminating back of panel interference. Provision for mounting and marking auxiliary controls, such as switches, po tentiometers, efc., provided on the No. 10035 Stondurd finish, either size, flat black art metal. No. 10039 No. 10035

WORM DRIVE UNIT

Cast aluminum frame may be panel or base mounted. Spring loaded split gears to minimize bock lash.
Standard ratio 16/1. Alsa in 48/1 on request. No. 10000 -(state ratic) \$

DIALS AND KNOBS

Just a few of the many stock types of small dials and knobs are illustrated herewith. 10007 is $15 / s^{\prime}$ diameter, 10009 is $21 / 2^{\prime \prime}$ and 10008 is $31 / 2^{\prime \prime}$
No. 10002
No. 10007
No. 10008
No. 10008
No. 10009
No. 10015
No. 10015
No. 10018
No. 10021
No. 10065

RIGHT ANGLE DRIVE

Extremely compact, with provisions for many meth ods of mounting. Ideal for operating potentiome ters, switches, etc., that must be located, for short leods, in remote parts of chossis.
Na. 10012.
\$

HIGH VOLTAGE INSULATED SHAFT EXTENSION

No. 10061 shoft locks and the No. 39023 insulated high voltage potentiometer extension mountings are available as a single integrated unit-the No. 39024. The proper shaft length is independent of the panel thickness. The standard shaft has pravision for serew driver adjustment. Special shaft arrangements are available for industrial applica tions. Extension shaft and insulated coupling are molded as a single unit to pravide accuracy of alignment and ease of installation.
No. 39023, non locking type.
No. 39024, locking type

SHAFT LOCKS

In addition to the original No. 10060 and No. 10061 "DESIGNED FOR APPLICATION" shaft locks, we can also furnish such variations as the No. $1006{ }_{2}$ and No. 10063 for easy thumb operation as illusIrated above. The No. 10061 instantly converts any plain "1/4 shaft" volume control, condenser, etc. from "plain" to "shaft locked" type. Easy to moun in place of regular mounting nut.
No. 10060
No. 10061
No. 10062
No. 10063

TRANSMISSION LINE PLUG

An inexpensive, compact, and efficient polystyrene unit for use with the 300 ohm ribbon type polyethylene transmission lines. Fits into standard Millen No. 33102 (crystal) socket. Pin spacing $1 / 2^{\prime \prime}$ diameter.095".
No. 37412 .
$\$$

DIAL LOCK

Compact, easy ta mount, positive in action, does not alter dial setting in operation! Rotation of knob " A " depresses finger " B " and " C " without imparting any rotory motion to Dial. Single hole mounted.
No. 10050.

10063

FULL SIZE

$\square \sqrt[A]{a} \sqrt{4}$ M ALDEN
 (a) $\frac{5^{2}}{22^{2}}$
 $M \mathbb{I L E} \mathbb{N}$ MASSACH USETTS

TUBE SOCKETS

DESIGNED FOR APPLICATION

MODERN SOCKETS for MODERN TUBES! Long Flashover path to chassis permits use with tronsmitting tubes, 866 rectifiers, etc. Long leokage path between contocts. Contocts are type proven by hundreds of millions alreody in government, commerciol and broodcast service, to be extremely dependoble. Sockets may be mounted either with or without metal flange. Mounts in standard size chassis hole. All types have barrier between contacts and chassis. All but octol and crystal sockets also have barriers between individuol contacts in addition.

The No. 33888 shield is for use with the 33008 octal socket. By its use, the electrostatic isalotion of the grid and plate circuits of single-ended metal tubes can be increased to secure greoter stobility and goin.
The 33087 tube clamp is easy to use, easy to instoll, effective in function. Avoilable in special sizes for all types of tubes. Single hole mounting. Spling steel, cadmium plated.

Cavity Socket Contact Discs, 33446 are for use with the Lighthouse" ultra high frequency tube. This set consists of three different size unhardened beryllium copper multifinger contact dises. Heat treoting instructions forwarded with each kit for hardening ofter spinning or forming to frequency requirements.
Voltoge regulotor dual contoct boyonet socket 33991 black phenolic insulation ond 33992 with low lass high leakoge mico filled phenolic insulation.
No. 33004
No. 33005
No. 33006
No. 33008
No. 33888
No. 33087
No. 33002
No. 33102
No. 33202
No. 33302
No. 33446
No. 33991
No. 33992

FLEXIBLE COUPLINGS

The No. 39000 series of Millen "Designed for Application" flexible coupling units include, in addition to improved versions of the conventionol types, olso such exclusive original designs as the No. 39001 insulated universal joint and the No. 39006 "slide action" coupling (in both steotite and bokelite insulation).
The No. 39006 "slide-action" coupling permits longifudinal shoft motion, eccentric shaft motion and out-of-line operation, as well as angular drive without backlosh.
The No. 39005 is similar to the No. 39001 , bul is not insulated and is designed for applications where relatively high forque is required. The steatite insulated No. 39001 hos a speciol anti-backlash pivot ond socket grip feofure. All of the above illustrated units are for $1 / 4^{\prime \prime}$ shoft and are standard production type units. The No. 39016 and 39017 incorporote feotures which have long been desired in a flexible coupling. No Bock Lash-Higher Flexi-bility-Higher Breokdown Voltage-Smoll Diam-eter-Shorter Length-Higher Alignment Accurocy -Higher Resistance to Mechonical Shock-Solid Insuloting Borrier Diophragm-Molded as a Single Unis.
The No. 39017, for $3 / 16^{\prime \prime}$ shofts hos smaller over alt diameter.
No. 39001
No. 39002
No. 39003
No. 39005
No. 39006
No. 39016
No. 39017

39001

39006

JAMESOMMLLEN MALDEN: MASSSACHUSETYS

JAME S MILLEN MALDEN - MASSACHUSETTS

TRANSMITTING TANK COILS

A full line-all popular watlages for oll Dands. Send for special caialog sheet

TUNABLE COIL FORM

standard actal base af low lass mica-filled bake lite, polystyrene $1 / 2$ diameter cail form, heavy aluminum shield, iron 'uning slug af high frequency ype suitable for use up to 35 mc . Adiusting screw protrudes through center hole of standara actal sockel.

No. 74001 , with iran core
No. 74002 less iran care

RF CHOKES

Many have capied, few have equalled, and nane hove surpossed the genuine ariginal design Millen Designed for Application series of midget RF Chakes. The mare papular styles now in constant production are illusirated herewith. Specio styles and variations to meet unusual requirements quiekly furnishe d.
Figures 1 and 4 illustrate special types of RF chakes ovailable on order. The papular 34300 and 34200 series are shown in figures 2 and 3 respectively.
Ceneral Specifications: $2.5 \mathrm{mH}, 250 \mathrm{~mA}$ far types 34100, $34101,34102,34103,34104$ and 1 mH , 300 mA for types $34105,34106,34107,34108$, 34109.

No. 34100
Na. 34101
No. 34102 .
No. 34103
No. 34104

MIDGET COIL FORMS

Made of low loss mica filled brown bakelite. Guide funnel makes for easy threading of leods through pins.
No. 45000
Na. 45004 No. 45005

OCTAL BASE AND SHIELD

low loss phenolic base with octat socket plig and aluninum shield can $17 / 6 \times 17 / 6 \times 3^{15 / 16 .}$
No. 74400

PERMEABILITY TUNED CERAMIC

FORMS

In addition to the popular shielded plug-in permeability tuned forms, 74000 series, the 69040 seriss of ceramic permeobility funed unshielded forms are available as standard stock items. Winding diameters available from $1 / 16^{\prime \prime} 101 / 2^{\prime \prime}$ and winding spoce from "1/32' to $11 / 2$

No. 69041-(Copper Slug)
No. 69042 -(Iran Core)
No. 89043-(Copper Slug) No. 69044 -(Iron Core). .
No. 69045-(Copper Slug)
No. 69046-(Iron Core).
No. 69047-(Copper Slug)
No. 69048 -(Iron Care).
No. 89051 -(Copper Slug)
No. 69052 - (Iron Core)
No. 69054 - (Iron Core)
No. N . 89055 -(Copper Slag)
No. 69056 -(Iron Core).
No. 69057 -(CopperSlug)
No. 69058-(Iran Core).
No. 69061 -(Copper Slug).
Na. 69062-(Iran Core).

MINIATURE IF TRANSFORMERS
Extremely high Q—opproximately 200-Variable Coupling-(under, critical, and over) with all ad justments on top. Small size $11 / 6^{\prime \prime} \times 1 \% / 6^{\prime \prime} \times 17 / 8^{\prime \prime}$ Molded terminal base. Air capacitor tuned. Coils completely enclosed in cup cares. Tapped primary and secondary. Rugged construction. High electrical

stobility

No. $61455,455 \mathrm{kc}$. Universal Trans.
No. $61453,455 \mathrm{kc}$. BFO.
No. $61160,1600 \mathrm{kc}$. Universal Trans.
No. $61163,1600 \mathrm{kc}$. BFO.
 MALDEN D M A S S A CHUSETTS

CERAMIC PLATE OR GRID CAPS

Soldering lug and contact one-piece. Lug ears annealed and solder dipped to facilitate easy combination "mechanical plus soldered" connection of cable.
No. 36001-9/16' \$
No. 36002-3/8'
No. 36004 - $1 / 4^{\prime \prime}$

SNAP LOCK PLATE CAP

For Mobile, Industrial and other applications where tighter than normal grip with multiple finger 360° low resistance contact is required. Contact self-locking when cap is pressed into position. Insulated snap button at top releases contact grip for easy removal without damage to tube.
No. 36011-9/16'
$\$$
No. 36012 - $3 / 8^{\prime \prime}$

SAFETY TERMINAL

Combination high voltage terminal and thrubushing Tapered contact pin fits firmly into conical socket providing large area, low resistance connection. Pin is swivel mounted in cap to prevent twisting of lead wire.
No. 37001 , Black or Red
No. 37501 , Low loss.

TERMINAL STRIP

A sturdy four-terminal strip of molded black Textolite. Barriers between contacts. "Non turning" studs, threaded 832 each end. No. 37104. \$

POSTS, PLATES and PLUGS

Designed for Application! Compact, easy to use. Made in black and red regular bakelite as well as low loss brown mica filled bakelite or steatite for R.F. uses. Posts have captive head.
No. 37202 Plates (pr.)
No. 37212 Plugs.
No. 37222 Posts (pr.).

STEATITE TERMINAL STRIPS

Terminal and lug are one piece. lugs are Navy turret type and are free floating so as not to strain steatite during wide temperature variations. Easy to mount with series of round holes for integral chassis bushings.
No. 37302
No. 37303
No. 37304
No. 37305
No. 37306

CATHODE RAY TUBE SHIELDS

For many years we have specialized in the design and manufacture of magnetic metal shields of nicoloi and mumetal for cathode ray tubes in our own complete equipment, as well as for applications of all other principal complete equipment monufocturers. Stock types as well as special designs to customers' specifications promptly ovailable. No. 80045-Nicoloi for 58P 1
No. 80055-Nicoloi for 5CP 1 .
No. 80043-Nicoloi for $3^{\prime \prime}$ tube
No. 80042 -Nicolai for $2^{\prime \prime}$ tube

BEZELS FOR

CATHODE RAY TUBES
Standord types ore af sotin finish black plastic. $5^{\prime \prime}$ size has neoprene support cushion and green lucite filter. $3^{\prime \prime}$ and $2^{\prime \prime}$ sizes have integrol cushioning. No. 80075-5
Nc. 80073-3"
No. 80072 - $^{\prime \prime}$
No. 80071-1'

ITNIATUITITED

HESIGNED for AlPIIICATION miniaturized compoents developed for use in our own equipment such as the (090) Oseilloseope, are now available for separale sale. tany of these parts are similar in most details exeepl size ith their equivalens in our standard component parts roup and in certain devices where complete minaturizaon is not paramomt, a combination of standard and iniature components inay possibly be used to advantage. 'or conventence, we have also listed on this page the exremely small sized coil forms from our standard catatogne. . Iditional miniature and subminiature components are in rocess of design and will he amounced shortly.

DESCRIPTION

NET PRICE
Matches standard knobs in style. Black plastic with brass insert. Far $1 / 3^{\prime \prime}$ shaft. Overall height $1 / 2^{2}$. Diam= eter $3 / 4^{\prime \prime}$.
Same as A018 except for $5 / 8^{\prime \prime}$ diameter plastic dial with 5 index lines.
Right ongle drive. $1 / 8{ }^{\prime \prime}$ diometer shafts. Single hale mounting bushing $1 / 4$ " -32 diometer.
$1 / 4^{\prime \prime}$ diometer block plostic knob with brass insert for $1 / \mathrm{s}^{\prime \prime}$ shoft. Skirt diometer $3 / \mathrm{s}^{\prime \prime}$. Overoll height $\mathrm{s} / \mathrm{s}^{\prime \prime}$. Unique design hos serewdriver slot in top.

C历MPDNENTS

CODE
A019
A061 Shaft lock for $1 / \mathbf{s}^{\prime \prime}$ diameter shaft. $1 / 4^{\prime \prime}-32$ bushing. Niskle plated brass.
A066 Shaft bearing for $1 /{ }^{\prime \prime}$ diameter shafts. Nickle plated brass. Fits $17 / 4^{\prime \prime}$ diameter hole.
EOO1 Steatite standoff or tie-point integral mounting eyelet .205 overall diameter. Box of five.
1300-500 Iron core RF shoke 500 uh.
J300-1000 1ron core RF chake 1000 uh.
J300-2500 Iron core RF choke $21 / 2 \mathrm{mh}$.
MOO3 Solid caupling for $1 / 8^{\prime \prime}$ diameter shaft. Nickle plated brass.
M006 Universal joint style flexible coupling. Spring finger. Sieotite insulation. Niekle plated brass for $1 / \mathrm{B}^{\prime \prime}$ diameter shafts.
M008 Insuloted coupling, with nickle plated brass inserts or $1 / \mathbf{a}^{\prime \prime}$ diameter shafts.
Insulated shaft extension for mounting sub miniature potentiometer with $1 / 6^{\prime \prime}$ diameter shafts and $1 / 4^{\prime \prime}-32$ bushing.
69043

69044

Stealite coil form. Adiustable core. Top funed. Tapped $4-40$ hole in cose for mounting. Winding space $1 / 4^{\prime \prime}$ diometer $\times 13 / \mathbf{g}^{\prime \prime}$ length.
Steotite coil form. Adjustoble brass core. Bottom tuned. Mounting by No. $1 \mathrm{D}-32$ bross bose. Winding spoce .187 diometer by $3 / \$_{6}^{\prime \prime}$ lenath.

Midget Absorption Frequency Meters

Many amateurs and experimenters do not realize that one of the most useful "tools" of the commercial transmitter designer is a series of very small absorption type frequency meters. These handy instruments can be poked into small shield conspartments, cail cans, corners of chassis, etc., to check harmonics; porasitics; oscillotor-doubler, etc., tonk iuning; ond a host of other such opplicotions. Quickly enobles the design engineer to find out whot is really "going on" in a circuit.

Types 90605 thru 90609 are extremely small and designed primarily for engineering laboratory use where they
will be handled with reasonable care. The most useful combination being the group of four under code No. 90600 and covering the total range of from 3.0 to 140 megacycles. When purchased in sets of four under code No. 90600 a convenient corrying ond storage case is included. Series 9060) are slightly larger and very much more rugged. They ore further protected by a contour fitting transparent polystyrene case to protect against damage and dirt. This latter series is designed primarily for field use ond are not quite as convenient for laooratory use as the 90605 thru 90608 types. All types have dials directly calibrated in frequency.

Code	Description	Net Price
90604	Ronge 180 to 210 mc .	\$
90805	Ronge 3.0 to 10 mc .	
90806	Range 9.0 to 23 mc .	
90607	Ronge 23 to 60 mc .	
90608	Range 50 to 140 mc .	
90609	Range 130 to 170 mc .	
90610	Range 105 to 150 mc .	
90819	Ronge 350 to 1000 kr .-Neon indicator	
90620	Range 150 to 350 kc .-Nean Indicotor	
90625	Range 2 to 6 mc . - Neon Indicator	
90626	Ronge 5.5 to 15 mc . - Neor Indicotor	
90600	Complete set of 90605 thru 90608, in case	
90601	Complete set Field type Frequency Meters in metol carrying cose 1.5 to 40 mc .	

NEW YORK
Cooper-DiBlosi
90 Main Streel
Port Washington
Long Island
PHILADELPHIA
L. D. Lowery

Wynne wood
Wynnewood

MAIN Office

SEATTLE
V. Jensen

2616 Second Avenue

INDIANAPOLIS
 V. MacNobb

915 Westfield Blvd.

DISTRICT SALES OFFICES

SAN FRANCISCO

Moulthrop \& Hunter 165-11th Street

CHICAGO
 G. G. Ryon

549 W. Weshington Blvd.

DALLAS
Jack Yount
1431 Pleosoni Drive
LOS ANGELES
W. Bert Knight

10373 W. Picó Blvd.

KANSAS CITY

J. O. Sehmitz

34 th \& Broodway Aves.

BOSTON
48 Pearl Street
Brookline

CANADA
H. R. Gray 46 Donforth Ed. Toronto

EXPORT

Technical Equipment 155 E. Milion Ave Rohway, N. J.

COMMUNICATION COMPONENTS

A PREVIEW OF GENERAL CATALOG No. 56** -OVER 100 PAGES

CONTENTS:
PAGE

SEAL-O-FLANGE* COAXIAL TRANSMISSION LINE
 For All Services, Civilian and Military - sizes $31 / 8$ " O.D. to $9 " O . D$ and up

AUTO-DRYAIRE* DEHYDRATORS
A Size for Every Purse and Purpose, Civilian and Military

ALUMINUM WAVEGUIDE
For Super Power Megawatt TV - RETMA WR-1150 arid WR-1500
RF and POWER ROTARY SWITCHES
Microamp to Kilowatt Ratings

2-WAY MOBILE RADIO ANTENNAS
Simple Dipoles to High:Gain Arrays for All Services 38

SKY-TOP: ANTENNA TOWERS
 Available for Immediate Delivery - 60, 87 and 100 ft . Towers

STYROFLEX CONNECTORS and CABLE
$3 / 8^{\prime \prime}$ through $31 / 8^{\prime \prime}$, DC to 12 KMC
Q-MAX* A-27 RF LACQUER

SEAL-O-FLANGE* COAXIAL TRANSMISSION LINE

The two sizes of SEAL-O-FLANGE transmission line listed are the principal ones used in presentday commercial broadeast and television work. These lines are manufactured to the latest RETMA specifications. The $3 \frac{1}{8}$ " line is designed in accordance with the 50.0 ohm RETMA trans. mission line specification. The $61 / \mathbf{g}^{\prime \prime}$ line is of

similar design. Both of these transmission lines are designed for service throughout the entire frequency range extending from AM broadcast through UHF television. Transformers, transitions and transducers are available, to allow the use of either of these transmission lines with any standard FM or TV transmitter and antenna.

31/8" HARD DRAWN 50.0 OHM SEAL-O-FLANGE TEFLON INSULATED COPPER TRANSMISSION LINE

(1) Cat. No. 300-506 Transmission Line - normally supplied in 20 ft . lengths.
(2) Cat. No. 301-506 90° Elhow, miter.
(3) Cat. No. 303.50645° Elbow, miter.
(4) Cat. No. 315.506 90° Elhow, short sweep.

15) Cat. No. 321.50645° Ellow, short sweep.
(6) Cat. No. 309.506 Dual Elbow Assembly, miter.
(i$)$ Cat. No. $310-506$ Anchor Insulator and Inner Conductor Connertor Assembly.
(8) Cat. No. 306.506 Gas Barrier.
(9) Cat. No. 305-506 Flange, fixed type.
(10) Cat. No. 308.506 Flange, swivel type.
(11) Cat. No. 304-506 Flange, soft solder type, for field assembly.
(12) Cat. No. $311-506$ Transition, $31 / 8^{\prime \prime}$ to $15 / 8^{\prime \prime}$.
(13) Cat. No. 312.506 Coupling Flange, compression type.
(14) Cat. No. 302.506 Transformer, 50.0 ohm to 51.5 ohm for use in channels 2 through 13. (Specify thannel.)
(15) Cat. No. $31 \% .506$ Tee Fitting, $31 / 8 " .50 .0 \mathrm{ohm}$ female all ends.
(16) Cat No. 98.506 O-Ring.

61/8" HARD DRAWN 75.0 OHM SEAL-O-FLANGE TEFLON INSULATED COPPER TRANSMISSION LINE

(1) Cat. No. 400.511 Transmission Line-nor. mally supplied in 20 ft . lengths.
(2) Cat. No. $401-51190^{\circ}$ Elbow, miter.
(3) Cat. No. $402-51145^{\circ}$ Elbow, miter.
(4) Cat. No. 410.511 Anchor Insulator and In. ner Conductor Connector Assembly.
(5) Cat. No. 405.511 Gas Barrier.
(6) Cat. No. 305-511 Flange, fixed type.
(7) Cat. No. 306.511 Flange, swivel type.
(8) Cat. No. 301.511 Flange, soft solder type, for field assembly.
(9) Cat. No. 403.511 Translucer, $61 / \mathrm{g}^{\prime \prime} \cdot 75.0 \mathrm{ohm}$ to $31 / 8{ }^{\prime \prime} \cdot 50.0 \mathrm{ohm}$. (Specify channel.)
(10) Cat. No. 14-511 O-Ring.

NOTE: Standard installation hardware, hangers, etc. for Seal-O-Flange Transmission Line, are available from stock, and illustrated in General Catalog No. 56.
*Registered Trade Name

AUTO-DRYAIRE* DEHYDRATORS

For Every Commercial and Military Application

Cat. Nos. 102-507 and 103-507 Auto-Dryaire Dehydrators make use of a new, diaphragm type, 1 CFM Super-Life Compressor. This
compressor, produced specifically for dehydrator service, is capable of continuous operation for many thousands of hours.

CAT. NO. 102-507 AUTOMATIC AUTO-DRYAIRE DEHYDRATOR
(Single Desiccant Chamber)

1. Automatic in operation.
2. Dewpoints below $-40^{\circ} \mathrm{F}$.
3. Compact-19" wide $\times 17^{\prime \prime}$ deep $\times 15^{\prime \prime}$ high.
4. Light weight-87 lbs.
5. New CP Super-Life Compressor.
6. Minimum servicing required.
7. Power input -900 W at $115 \mathrm{~V}, 60$ cycles, single phase.
8. Compressor output to atmosphere-1 CFM.
9. Operating pressure -10 to 15 PSI .
10. Dry air available 16 hours per cycle.
11. Reactivation and cooling time-8 hours per cycle.
12. Pressure gauge indicates line pressure.
13. AC solenaid valves.
14. Thermostatically controlled desiccant chamber.
15. Panel mounted fuses-easily accessible.
16. Minimum vibration.
17. Quiet in operation.
18. Output and drain connections-flare fittings for $1 / 4^{\prime \prime}$ O.D. copper tube.
19. Serves up to:
$40,000 \mathrm{ft} .1 / \mathbf{8}^{4}$ Transmission Line.
$10,000 \mathrm{ff} .15 / \mathbf{g}^{\prime \prime}$ Transmission Line. 2,500 ft. $31 / s^{\prime \prime}$ Transmission Line. $700 \mathrm{ft} .61 / \mathrm{B}^{\prime \prime}$ Transmission Line.

CAT. NO. 103-507 FULLY AUTOMATIC AUTO-DRYAIRE DEHYDRATOR

(Dual Desiccant Chamber)

1. Fully automatic-dry air available without interruption.
2. Dewpoints below $-40^{\circ} \mathrm{F}$.
3. Compact-19" wide $\times 17^{\prime \prime}$ deep $\times 15^{\prime \prime}$ high.
4. Weight-100 lbs.
5. New CP Super-Life Compressor.
6. AC solenoid valves.
7. Thermostatically controlled desiccant chamber heaters.
8. Minimum vibration.
9. Quiet in operation.
10. Power input -900 W at $115 \mathrm{~V}, 60$ cycles, single phase.
11. Panel mounted fuses-easily accessible.
12. Compressor output to atmosphere-1 CFM.
13. Operating pressure -10 to 15 PSI .
14. Output and drain connection-flare fittings for $1 / 4^{\prime \prime}$ O.D. copper tube.
15. Serves up to:
$40,000 \mathrm{ft} .1 / \mathrm{B}^{\prime \prime}$ Transmission Line.
10,000 ft. $1 \frac{15 / 4}{\prime \prime}$ Transmission Line.
2,500 ft. 31/8" Transmission Line.
$700 \mathrm{ft} .61 / \mathrm{s}^{\prime \prime}$ Transmission Line.
*Registered Trade Name

ALUMINUM WAVEGUIDE

For Super Power Megawatt TV

The new C.P. aluminum waveguide and associated fittings listed here are precision engineered and manufactured to conform with the rigorous requirements of present-day UHF television. Constructed of heavy, high-strength aluminum, Cat. No. $1 \cdot 1500$ (Frequency range $470.750 \mathrm{Mc}-$ Channels 14 through 60) and Cat. No. $1-1150$ (Frequency range 640.960 Mc - Channels 42 through 83) waveguide sections and associated components represent the highest order of tech.

nical excellence. C.P. aluminum waveguide has been tried and proven in scrvice, and full particulars concerning its power handling rating and overall system efficiency are available in technical data sheets which may be had upon request. Cat. No. 1-1500 and Cat. No. 1. 1150 waveguide employs heavy, heat-treated silver plated multiple fingered contacts at each flange coupling. These contact members eliminate the need for spring hangers and minimize the time consumed in bolting together adjacent sections of waveguide. Typical hanger assemblies as shown are available for supporting the waveguide on horizontal and vertical structures.

A and B dimensions are shown in Catalog No. 56

C.P. CERTIFIED PERFORMANCE

Each section of Cat. No. 1-1500 and Cat. No. 1-1150 C.P. waveguide, as well as each component, is carefully tested for minimum VSWR in the channel for which the waveguide is intended to operate. Final system tuning preparatory to shipment, is nccomplished at our labora tory test site in a simulated station installation. Each component and section of waveguide is marked, for reassembly in the field, and the laboratory character. istics of the system this duplicated in the final installation.

CAT. NO.	DESCRIPTION	FIG. NO.
$1.1150 \dagger$	1150 Waveguide, length as required (143" Max/Section)	1
2-1150 \dagger	1150 Elbow 90° E Plane	2
3-1150 \dagger	1150 Elbow $90^{\circ} \mathrm{H}$ Plane	3
4-1150 \dagger	1150 Elbow 45° E Plane	4
$5 \cdot 1150 \dagger$	1150 Elbow $45^{\circ} \mathrm{H}$ Plane	5
6-1150 \dagger	1150 Transition - Female to $61 / \mathrm{s}^{\prime \prime}-75$ ohm UHF Transmission Line	6
7-1150 \dagger	1150 Transition - Male to $61 / 0^{\prime \prime}-75 \mathrm{ohm}$ UHF Transmission Line	7
8-1150†	1150 Elbow E Plane, angle to be specified by customer	-
9-1150†	1150 Elbow H Plane, angle to be specified by customer	-
10-1150 \dagger	1150 Field Flange - Female	8
11-1150 \dagger	1150 Field Flange - Male	9.
50-1150	Rigid vertical hanger for use in attaching Cat. No. 1-1150 Waveguide to horizontal members of supporting tower	10
51.1150	Rigid horizontal support for 1150 Waveguide	11
1-1500 \ddagger	1500 Waveguide, length as required (143" Max/Section)	1
2-1500 \ddagger	1500 Elbow $90^{\circ} \mathrm{E}$ Plane	2
3-1500 \ddagger	1500 Elbow $90^{\circ} \mathrm{H}$ Plane	3
4-1500 \ddagger	1500 Elbow 45° E Plane	4
5-1500 \ddagger	1500 Elbow $45^{\circ} \mathrm{H}$ Plane	5
6-1500 \ddagger	1500 Transition - Female to $61 / \mathbf{a l}^{\prime \prime}-75$ ohm UHF Transmission Line	6
7-1500ł	1500 Transition - Male to $61 / \mathbf{s}^{\prime \prime}-75$ ohm UHF Transmission Line	7
$8 \cdot 1500 \ddagger$	1500 Elbow E Plane, angle to be specified by customer	-
9-1500 \ddagger	1500 Elbow H Plane, angle to be specified by customer	-
10-1500 \ddagger	1500 Field Flange - Female	8
11-1500 \ddagger	1500 Field Flange - Male	9
50-1500	Rigid vertical hanger for use in attaching Cat. No. $1-1500$ Waveguide to horizontal members of supporting tower	10
51-1500	Rigid horizontal support for 1500 Waveguide	11
†Frequency Range 640-960 Mc Channels 42 thru 83. \ddagger Frequency Range 470-750 Mc Channels 14 thru 60.		

RF and POWER ROTARY SWITCHES

Microamp to Kilowatt Ratings

C.P. LO-LOSS switclies have served the industry for over two decades. The LO-LOSS silicone impregnated steatite supports and non-ferrous, high conductivity metal parts are correctly proportioned to form well
coordinated assemblies. In addition to the line of standard switches shown, which are available for immediate delivery, switches and switch gear are produced to customers' specifications on special order.

Model 28, having a 20 amp. maximum cur. rent carrying capacity, is a low power, transmitting type, shorting switch in which three rotor styles are available. The rotating part of the swisch is driven by a square shaft ergaging a square hole in the rotor bushing. Coin silver is used throughout as the basis of the electrical path.

- 6 position using 30° detent
- 3 position using 60° detent
-4500 V^{*}

Model 65 switch is a non-shorting, non. gangable tap switch. This switch has a maximum current carrying capacity of 25 amps. and a minimum flashover voltage of 4500 volts peak. It is complete with detent mechanism, mounts from three sapped spacers, and is distinguished by it rugged. ness and power handling capacity.

MODEL

 65
2-WAY MOBILE RADIO ANTENNAS

Base Station Unity and 2X Gain Antennas

- Constructed of non-corrodible materials wherever possible

\author{

- Each antenna made to customer's specific frequency
 - Designed for minimum standing wave ratio
}

Cat. No.
19-509

BASE STATION COAXIAL ANTENNA (FEATHERWEIGHT) Cat. No. 19-509, Frequency Range 30-175 Mc

Cat. No. 19.509 featherweight antenna, constructed of high strengtlt aluminum, is designed for use where a lightweight, low cost, portahle antenna is required. The minimum overall weight of this unit makes it especially serviccable where frequent site relocations must be made. Many of these units are also in service on station wagons and trucks used in field survey work. The input comector is a standard UG.96 A/U Type N connector.

BASE STATION COAXIAL ANTENNA

Cat. No. 18-509, Frequency Range 30-175 Mc
Cat. No. 18-509 antema is constructed of non-corrodible materials to give long trouble-free service. It is fed with solid dielectric cable inside the support tulie and terminated in a $U(j-96 \mathrm{~A} / \mathrm{U}$ Type N weatherproof connector. A housing, surrounting the connector, is provided to give complete mechanical as well as additional weather protection.

BASE STATION COAXIAL ANTENNA (OIL FIELD SERVICE) Cat. No. 42-509, Frequency Range 30-50 Mc

This antenna has been developed for specifie service in the oil fields where derrick top mount is required. The extreme vibration encountered in this service necessitates the use of special components. A highly flexible spring temper stainless steel whip is inserted into a special whip socket to provide high strength and to facilitate removal of whip. The internal feedline supplied with this antenna is heavily armored RG-10/L cable. This cable is further protected by a hard brass helical armor where it emerges from the support tube. Since reliability under extreme conditions is necessary, the standard PL-259 connector is attached directly to the $\mathrm{KG} \cdot 10 / \mathrm{U}$ cable. If required, any standard UG fitting can be obtained on this antenna.

BASE STATION COAXIAL ANTENNAS (HEAVY DUTY) Cat. Nos. 26-509 and 27-509, Freq. Range 25-175 Mc

These antennas are fed internally with $7 / 8^{\prime \prime}-70$ ohm air dielectric transmission line. A comnector is fastened to the transmission line input to provide a connection to $7 / 8^{\prime \prime}-70$ ohm Styroflex cable. The use of this heavy duty cable is recommended wherever either of these antennas is used.

BASE STATION COAXIAL ANTENNAS 2X GAIN (OMNIDIRECTIONAL)

 Cat. Nos. 79-509 and 80-509, Frequency Ranges 152-175 Mc and 450-470 Mc

The need for increased service area as well as more complete, positive coverage in the existing service area leads to the requirement of increased radiated power. An inexpensive way of obtaining the radiation increase needed is through the use of gain antennas. Presented here are antennas combining the simplicity of the base station coaxial antenna with the gain of a more complex structure. Though appearing externally the same as a simple coaxial antenna, the element lengths and feed assembly of these products are such as to provide a gain of approximately 3 db . ($2: 1 \mathrm{in}$ power).

2-WAY MOBILE RADIO ANTENNAS

Base Station High-Gain Omnidirectional and Unidirectional Multi-Element Arrays

The multi-element high-gain arrays shown on this page are for use where extreme range and the ultinate in reliability are required. Two of the antennas, Cat. Nos.

200 and 201-509, are omnidirectional. The other antennas shown are unidirectional and are designed primarily for point-to-point service.

BASE STATION STATIONMASTER* GAIN ANTENNAS (OMNIDIRECTIONAL) Cat. Nos. 200-509 and 201-509, Frequency Range 152-162 Mc and 450-470 Mc

\qquad RG-8/U

- Omnidirectional gain (Cat. No, 200-509)..... 4.9 db
- Omnidirectional gain (Cat. No, 201-509) 5.8 db
- Nominal input impedance. \qquad 50 ohm
- Lightning protection.

Direct ground

The new STATIONMASTER collinear gain antennas are designed to meet the ever increasing need for high antenna gain in minimum space and at the lowest cost. These antennas, consisting of a number of collinear radiating elements fed in phase and encapsuled in a continuous weatherproof housing, meet all of the above requirements, In addition the low overall weight eliminates the need for extensive erection equip ment required bv previous antennas offering equal power gain.
BASE STATION YAGI GAIN ANTENNAS (UNIDIRECTIONAL) Cat. Nos. 126-509 and 130-509 Frequency Range 30-50 Mc and 150-175 Mc.

- VSWR (using 70 ohm cable)... $1,3: 1$ - Bandwidth (under 2:1).......... $\pm .5 \%$ - Maximum power input.. 500 watts - Internal feedlineRG-11/U - Forward gain
(Cat. No. 126-509) \quad......... 7.8 dh - Forward gain
(Cat. No, 130-509)......... 5.9 db - Front-to-back ratio
(Cat. No, 126-509) - Front-to-back ratio
(Cat. No, 130-509).......... 13 db

These three-element Yagi antennas are designed around Base Station Antenna Cat. No. 18-509. The only change in the driven antenna is a matching transformer built inside the support tube. The parasitic elements are of spring tempered stainless steel, mounted at the ends of an aluminum boom

The 4 X power gain of this antenna is of int portance, how ever. the almost completenull achieved off the back may be of equal or preater importance in someapplica. some applica.
tions. This gain tions. This gain and null are the two modified Cat No. 18 -509 coaxial antennas spaced a proper distance apart and driven out of phase.

- Internal
feedline RG-8/U
- Front-to-back ratio...... 20 db
- Power gain 6 db - UG-21/U input fitting

2-WAY MOBILE RADIO ANTENNAS

VEHICULAR COAXIAL ANTENNAS Cat. Nos. 28-509 and 63-509

- Cat No. 28-509 has 15^{\prime} RG 50/U external feedline.
- Cat No. 63-509 has 50' RG 59/U external feedline.
- VSWR (using 70 ohm cable) 1.1:1
- Bandwidth (under 2:1) 8 Mc
- All exposed metal parts except the spring stainless steel whip are finished in polished chrome.
- All parts are readily replaceable.

Cat. No. 28-509 and Cat. No. 63-509 antennas are for use in the 152-162 Mc mobile radio band. Their operating characteristics are similar to those of the base station coaxial antennas. The fecdline for these vehicular antennas is factory installed and it is therefore necessary to catalogue two antennas.

VEHICULAR COAXIAL ANTENNAS Cat. Nos. 75-509 and 76-509

These antennas are for use in the $\mathbf{4 5 0 - 4 6 0} \mathrm{Mc}$ and $\mathbf{4 6 0 - 4 7 0} \mathrm{Mc}$ mobile radio band. The basic design is identical to the 152-162 Mc antennas of time-proven performance. The RG 59/U ex. ternal feedline is supplied in one length only, 15 ft . As with the above antennas, all exposed metal parts except the stainless steel whip, are fin. ished in polished chrome.

VEHICULAR WHIP ANTENNA
 Caf. No. 51-509 FREQUENCY RANGE 30-50 Mc

- Whip material 17-7 PH spring tempered stainless steel - Whip butt diameter $.200^{\prime \prime}$
- Whip socket material stainless steel
- Mounting stud thread $3 / \mathrm{s}^{\prime \prime}-24$
- Number of set screws 3 (stainless steel)

This spring tempered stainless steel tapered whip antenna is designed to meet the requirements of the mobile radio industry It is constructed entirely of stainless steel and is completely corrosion resistant

VEHICULAR COAXIAL 2X GAIN ANTENNAS Cat. Nos. 85-509 and 86-509

In the $\mathbf{4 5 0 . 4 6 0} \mathrm{Mc}$ and $460-470 \mathrm{Mc}$ loands the need for additional coverage may be met hy increased gain at either end of the radiation path, or preferably at hoth. Therefore, these vehicular gain antennas, similar in performance to the 2 X station antennas, are offered. The external appearance and size of these antennas is similar to Cat. No. 28-509 Antenna.

- VSWR 1.3:1
- Bandwidth (under 2.5:1)
- Feedline RG-54/U
- Nominal input impedance 50 ohms

Antenna Accessories

BASE STATION ANTENNA MOUNTING CLAMP Cat. No. 46-509

 This double clamp is provided for-attaching base station an. tennas, except Cat. No. 19.509. to a tuhular support. It will accommodate any support structure up to $21 / 2^{\prime \prime}$ O.D. Two clamps are required per antenna. These clamps, holts as well as nuts and lockwashers are all hot galvanized stecl.

"U" BOLTS FOR ALL ANTENNAS

Several size "U" bolts are listed below. They are for use in attaching antennas to angular or flat tower members. These "U" bolts are made of silicon bronze and are supplied complete with gilicon bronze nuts and lockwashers.

Cat. No.Antenna Support Roughing in Dimensions Tube Diameter A				Thread Size
36-509	1/2" O.D.	7/8"	$3^{\prime \prime}$	5/16"-18
37.509	1"O.D.	1.7/16"	$0^{\prime \prime}$	3/8'0.18
38-509	1.315"O.D.	1.15/16"	$6^{\prime \prime}$	1/2'13 13
39-509	1.660" O.D.	21/4"	$6^{\prime \prime}$	1/2"*13

VEHICULAR ANTENNA BUMPER MOUNT

Cat. No. 35-509
Cat. No. 35-509 bumper mount illustrated here is for use with vehic. ular coaxial antennas. providing means for attach. ing them to most standard automo. biles. All parts of this mount are made of brass and heavily chrome plated.

VEHICULAR COAXIAL ANTENNA COWL MOUNT ASSEMBLY Cat. No. 129-509

The mount illustrated here is desjgned for use in mounting coaxial vehicular antennas through the rear deck of passenger type automobiles. The conical portion of this device is mounted in the back deck. The swivel mounting support is mounted directly under the cone and attached to the trunk floor. All exposed portions of this mount are polished chrome plated brass.

VEHICULAR ANTENNA SPRING SHOCK MOUNT Cat. No. 50-509

This shock mount is designed

 to be used in conjunction with Vehicular Whip Antenna (Cat. No. 51-509) and Vehic ular Antenna Swivel Ball Mount (Cat. No. 127-509) This spring provides addi tional flexibility desired in many mobile installations. All parts of this assembly arc made of corrosion resistant stainless stecl finished to a high luster.
VEHICULAR WHIP ANTENNA SWIVEL BASE MOUNT Cat. No. 127-509

This swivel base mount, when installed on a vehicle, provides a $3 / 8-24$ tapped hole to receive vehicular whip antenna (Cat. No. 51.509 or vehicular whip antenna spring shock mount (Cat. No. 50.509) in a vertical position. The insulated mounting plate is made of high strength plastic. Rubber paskets are provided as weatherseals and all exposed metallic parts are protected to minimize corrosion

SKY-TOP* ANTENNA TOWERS

STYROFLEX CONNECTORS

and CABLE

Magicseal* and Flare Type Connectors for Styroflex Cable

Available for Cable Sizes through $31 / 8^{" ~ O . D . ~}$

COUPLINGS

"N" ADAPTERS ADAPTERS

"PL-258" FLANGED ADAPTERS

END SEALS

The connectors illustrated are representative of the complete line of Styrollex coaxial cable comectors mamifactured by Communication Produets Company, Inc. The connertors illustrated are for cable sizes $3 /{ }^{\prime \prime}$ " through $7 / 8^{\prime \prime}$ O.D. The complete catalog list of flare type connectors range upward through $31 / 8^{\prime \prime}$ O.D. Styroflex. All types of connectors listed here are available also for use with the larger size cables. Magicseal connectors are available for cable $3 / 8^{\prime \prime}$ through $7 / 8^{\prime \prime}$ only.

MAGICSEAL COUPLINGS
(Styroflex to Styroflex)
Catalog No. Cable Size (0.D.) Imped. Ohms

$4-523$	$3 / 8$	50
$4-524$	$1 / 2$	50
$4-525$	$3 / 4$	50
$4-526$	$7 / 8$	50

MAGICSEAL ADAPTERS
(Styroflex to Type N Male)
Catalog No. Cable Size (0.0. .) Imped. Ohms

$22-523$	$3 / 8$	50
$22-524$	$1 / 2$	50
$22-525$	$3 / 4$	50
$22-526$	$7 / 8$	50

MAGICSEAL ADAPTERS
(Styroflex to Type LC Female) Catalog No. Cable Size (O.D.) Imped. Ohms 51-526

7/8
50

MAGICSEAL

FLARELESS TYPE

 CONNECTORSMAGICSEAL ADAPTERS (Styroflex to Type N Female) Catalog No. Cable Size (O.D.) Imped. Ohms

$20-523$	$3 / 8$	50
$20-524$	$1 / 2$	50
$20-525$	$3 / 4$	50
20.526	$7 / 8$	50

MAGICSEAL ADAPTERS
(Styroflex to Type LC Male) Catalog No. Cable Size (0.D.) Imped. 0 hms 50-526 $\quad 7 / 8 \quad 50$

MAGICSEAL ADAPTERS (Styroflex to PL-258)		
Catalog No.	Cable Size (0.D.)	Imped. Ohms
66.523	3/8	50
66-524	1/2	50
66-525	3/4	50
66-526	7/8	50

MAGICSEAL END SEALS
Catalog No. Cable Size (0.D.) Imped. Ohms

$53-523$	$3 / 8$	50
$53-524$	$1 / 2$	50
$53-525$	$3 / 4$	50
$53-526$	$7 / 8$	50

MAGICSEAL ADAPTERS

(Styroflex to $7 /$ B $^{\prime \prime}$ RETMA Line)
Catalog No. Cable Size (0.D.) Imped. Ohms

$$
\begin{array}{lll}
13-526 & 7 / 8 & 50
\end{array}
$$

FLARE TYPE COUPLINGS
(Styroflex to Styroflex) Catalog No. Cable Size (O.D.) Imped. Ohms

$4-513$	$3 / 8$	50
4.514	$1 / 2$	50
$4-515$	$3 / 4$	50
4.516	$7 / 8$	50

FLARE TYPE ADAPTERS
(Styroflex to Type N Male)
Catalog No. Cable Size (0.0. .) Imped. Ohms 22-513 $3 / 8 \quad 50$ $22-514 \quad 1 / 2 \quad 50$ 22-515 3/4 50 22-516 $\quad 7 / 8 \quad 50$

NOTE: Standard installation hardware, hangers, etc., for all sizes of Styroflex Cable, available from stock and illustrated in General Cat. No. 56.

FLARE TYPE

STYROFLEX

 CONNECTORSFLARE TYPE ADAPTERS
(Styroflex to Type N Female)
Catalog No. Cable Size (0.D.) Imped. Ohms

$20-513$	$3 / 8$	50
$20-514$	$1 / 2$	50
$20-515$	$3 / 4$	50
$20-516$	$7 / 8$	50

FLARE TYPE ADAPTERS
(Styroflex to PL-258)
Catalog No. Cable Size (O.D.) Imped. Ohms $\begin{array}{lll}66-513 & 3 / 8 & 50\end{array}$ $\begin{array}{lll}66-514 & 1 / 2 & 50\end{array}$
$\begin{array}{lll}66-515 & 3 / 4 & 50\end{array}$
66-516 7/8 50

FLARE TYPE ADAPTERS
(Styroflex to Type LC Male)
Catalog No. Cable Size (O.D.) Imped. Ohms 50-516 $5 / 8 \quad 50$

FLARE TYPE ADAPTERS
(Styroflex to Type LC Female)
Catalog No. Cable Size (0.D.) Imped. Ohms

$$
\begin{array}{lll}
51-516 & 7 / 8 & 50
\end{array}
$$

FLARE TYPE ADAPTERS
(Styroflex to $7 / 8^{\prime \prime}$ RETMA Line)
Catalog No. Cable Size (O.D.) Imped. Ohms
$\begin{array}{lll}13-516 & 7 / 8 & 50\end{array}$
FLARE TYPE END SEALS
Catalog No. Cable Size (0. D.) Imped. 0 hms

$53-513$	$3 / 8$	50
$53-514$	$1 / 2$	50
$53-515$	$3 / 4$	50
$53-516$	$7 / 8$	50

For complete, in formation reques
General Catalo General Catalo No. 56 on you

Q-MAX* A-27 RF LACQUER

A Communications Industry Standard

Q.MAX A.27 RF LACQUER is a chenically engincered composition developed to satisfy as many of the requirements of a coating material for electronic and radio service as modern lacquer formulation permits. The high technical standards set for this product made it necessary to investigate the electrieal quality, the purity and many other characteristics of a large assort. ment of resinous solids and solvent solutions. The investigation was carried out ly specialists working in a specially equipped laboratory.
A study of the values given for the properties of Q.MAX A. 27 RF LACQUER will leave no doubt as to the reasens for its outstanding interest to the electronic and radio cngineer. A comparison of these properies with those of other insulating varnishes is so striking as to suggest the latter as sourves of loss, instability and low " Q " in tuned circuits thus far not fully realized and evaluated.

A FEW USES FOR Q-MAX A-27 RF LACQUER

Q.MAX A.2\% RIF LACQUER is an exrellent reating matrerial for KF solenoid windings and serves well as an impregnant on large and small multi-layer or uni. versal and star-wound coils. It is used as a tape saturant, a stiffening mediam for fabric windings, paper wrappings and sheet stork; as a reinforring medium for maper forms and a surfacer for wood or porous materials such as those used in coustructing large low frequeney inductance supports. Q MAX A-2 Z RF LACOL ER is used extensively as a peneral coil dope particularly when these coils serve in VIIF amd UHF TV circuits and for anthoring large and small wire (emameled, collon covered or baret on smooth forms of steatite, glass, etc. On hardening, Q-MAX A-27 RF LACQUER imparts rigidity to flexible perous insulating materials at the same time making them waterrepellomt. Insulating as it covers, (2-MAX A-27 RF LACQUER protects against oxidation or corrosion. Laced or wrapped larnesses of various sizes and for numerous purposes are nade more servicrable when l,rushed or dipped in a Q-MAX A.2: RF LACQUER solution.
When coated with Q.MAX A.27 RF LACQUER many
molded, stamped or extruded insulating details are rendered more stable as dielectrics where high humidity serviee might otherwise impair their insulating qualitics. Wooden frames or supports which are placed within a strong high frequency field way first be thoroughly dried and then coated with Q-MAX A- 27 RF LACQUER in order to promote their insulating value and lower their temperature rise. Many protective films or saturants when applied to wood which is placed in high frequency fields tend to bubble, drip or burm Q.MAX A.27 RF LACQUER may be used as a linder for finely divided materials. for sealing certain types of gaskets and as a plastic adhesive.
The low dielectric constant and exellent high frequeney insulating characteristics of Q.MAX A-27 RF LACQQER make it particularly useful in the treatment of radio freguency choke coils. For these reasons several manufacturers producing coils of this type in large quantities have seleeted Q-MAX A. 27 RF LAC:QUER for roating coils as large as 8 to 10 inches in diancter, several applications yielding a homogeneous coil of excellent " Q " constancy, strength and appearance.

E. F. JOHNSON AMATEU

VIKING II TRANSMITTER

TVI suppressed, bandswitching, and completely self-contained, the Viking II is rated at 180 watts CW input and 130 watts phone on 160 through 10 meters.
RF section: 6AU6 oscillator, 6AQ5 buffer/doubler and parallel 6146 output amplifier. Modulator, pp807's operating class ABI with 6AU6 speech amplifier and 6AU6 driver. Parallel 5R4GY HV rectifiers. 5V4G low voltage rectifier with 6AL5 bias rectifier and 6AQ5 clamper screen voltage regulator. Fixed bias applied to buffer and output amplifier for break-in CW operation. Audio response limited to center of speech range. All parts furnished including fubes. Detailed instructions for assembly, test, and operation also included. 115 volt $50 / 60$ cycle operation. Dimensions $20^{\prime \prime} \times 101 / 4^{\prime \prime} \times 13^{\prime \prime}$.
Cat. No.
Amateur Net
240-102 Viking II Tronsmitier Kit, with tubes, less crystals, key, and mike.
$\$ 279.50$
240-102-2 Viking II Transmitter, wired and tested. 337.00

VIKING "ADVENTURER" CW KIT

A compact 50 watt CW transmitter kit, completely selfcontained, single-knob bandswitching, and effectively TVI suppressed. Operates by either crystal or external VFO control. Rear apron power receptacle provides for operation of auxiliary equipment such as a VFO or signal monitor or for plugging in a modulator for phone operation. Receptacle wired to permit using full 450 VDC at 150 ma . and 6.3 VAC at 2 amp . output of the supply to power other equipment when transmitter is not operating. No antenna tuner needed. Front panel meter switching monitors final grid or plate currents-break-in keying is clean and crisp.
$73 / 8^{\prime \prime} \times 10^{3 / 8^{\prime \prime}} \times 81 / 8^{\prime \prime}-$ designed for easy assembly by novice or experienced amateur. All parts, complete assembly directions and operating instructions included.
Cat. No. 240-181.1 Viking "Adventurer" Kit camplete with tubes, less crystals and key. Amateur Net $\$ \mathbf{5 4 . 9 5}$

VIKING "RANGER" TRANSMITTER

Rugged and compact, the improved Viking "Ranger" ho new (break-in) block grid keying system and adjustab wave shaping. Serves as a transmitter or an RF an audio exciter for high power equipment. Self-containe 75 watts CW or 65 watts phone input. All amateur ban from 10 to 160 meters. Extremely stable built-in VFO crystal control-100\% AM modulation-high gain audi Pi-network antenna load matching from 50 to 500 ohms complete TVI shielding and filtering. No internal chang needed to switch from transmitter to exciter operatio
Tube line-up: $6 \mathrm{AU} 6 \mathrm{VFO}, \mathrm{OA} 2$ voltage regulator, 6 CL crystal oscilla tor, 6 CL 6 buffer, 6146 final amplifier, 6 AQ clamper, 12AX7 dual triode speech amplifier, 12AU dual triode audio driver, $2-1614$ push-pull modulator 6AX 5 low voltage rectifier, and $5 R 4$ high voltage rectifie

Only $15^{\prime \prime} \times 1158^{\prime \prime} \times 9^{\prime \prime \prime}$. Easily assembled-all part assembly and operating instructions included.

Cat. No.	
240-161	Viking "Ronger"' Kit, with tubes, less
crystals, key, and mike................. $\$ 214.5$	
240-161-2 Viking "Ranger", wired and tested $293 . C$	

VIKING MOBILE

Power-packed mobile kit rated 60 watts maximum P, input. Instant bandswitching: $75,40,20,15$ and $10-1$ meters. Under-dash mounting - all controls readily acces sible. Ganged coupling circuits for each band. RF sec tion: 6BH6 oscillator, 6AQ5 buffer/doubler and 807 power amplifier. 6BH6 speech amplifier, 6BH6 drive and 807 modulator. 6 or 12 volt operation.
Cot. No. $\mathbf{2 4 0 - 1 4 1}$ Viking Mobile Kit, less tubes, crystals, micro phone, power supply................. Amateur Net's $\$ 9.5$

DYNAMOTOR POWER SUPPLIES

Supplies plate voltages for Viking Mobile and VFO Rated 500 volts, 200 ma . intermittent. Base kits accom modate PE-103, Carter and others.
Cot. No.
Amoteur Na
Dynamator Power Supply 6 volt primary..$\$ 89.5$ Dynamatar Power Supply 12 volt primary. . . 92.5 6 volt base kit
12 volt base kit.

EqUMPMENT uMAI ICCENSOIRIES

'IKING KILOWATT "MATCHBOX"

ndswitching $80,40,20,15$, and $10-11$ meters-selfntained. Use with transmitters up to and including 1000 xtts input-handles unbalanced line impedances from to 1200 ohms and balanced line impedances from 50 2000 ohms. No coils to change, no "tapping down" on \geq inductor. Transmit/receive relay grounds receiver tenna terminals in "transmit" position. Adjustment for atching antenna to receiver input. Provision for RF probe Ily shielded. $171 / 4^{\prime \prime} \times 121 / 8^{\prime \prime} \times 107 / 8^{\prime \prime}$.
t. No. 250-30 Kilowatt "Matchbox", assembled, wired, and ted.

Amateur Net $\$ 124.50$

VIKING KILOWATT POWER AMPLIFIER

Idly styled-contains every conceivable feature for fety, operating convenience, and peak performance. w power or maximum legal input AM, CW, or SSB with 2 of a switch. Continuous tuning 3.5 to 30 mc -no coil ange necessary. Compact pedestal contains complete owatt-rolls out for adjustment or maintenance. Excitan requirements: 30 watts RF and 15 watts audio for A; 2-3 watts peak for SSB.
All controls easily reoched from seated pasition - TVI supassed. Bridge neutralized parallel 4-250A RF power amplifier Plate supply delivers $\mathbf{2 5 0 0}$ volts at over 700 ma . High level ss "8" modulator, using push-pull 810's-oudio response is ther than $\pm 1 \mathrm{db}$ 200-3500 cycles. . Tamper-proof, key-
operaled main switch. Saft gray finish, maraon trim, and green nomenclature.
The Viking "Ranger" transmitter/exciter (shown above) is an ideal RF and audio driver for AM and CW, and new Viking SSB transmitter exciter will drive the Viking Kilowatt to full output on SSB. Weight 400 lbs. Pedestal dimensions: $291 / 2^{\prime \prime}$ high $\times 193 / 4^{\prime \prime}$ wide $\times 327 / 8^{\prime \prime}$ deep. With accessory desk top and drawer pedestal: $291 / 2^{"}$ high $\times 631 / 2^{\prime \prime}$ wide $\times 327 / \mathrm{B}^{\prime \prime}$ deep. Weight 555 lbs . Cat. No. 240-1000 Viking Kilowatt Power Amplifier-wir ed, tested, complete with tubes................ A moteur Net $\$ 1595.00$ Cat. No. 251-101-1 Matching Accessory Desk Top and 3 drawer pedestal.

"MATCHBOX"
zrforms all antenna loading and ritching functions required in medium swer Amateur stations. Amateur jnds: $3.5-30 \mathrm{mc}$. Matches balanced itennas from 25 to 1200 ohms and balanced or single wire antennas om 25 to 3000 ohms. Input impedice, 52 ohms, rated, 250 wotts. silt-in transmit/receive relay grounds ceiver antenna terminals when in ransmit' position. Independent adstment for matching antenna to resiver input. RF probe actuates CW zying monitor. Fully shielded. $97 / 8$ $101 / 2 \times 7^{\prime \prime}$.

Af. No. 250-23 Johnson "Matchbox", assemed, wired, tested... Amateur Net \$49.85

VIKING VFO KIT

Variable frequency ascillator with 160 and 40 meter output for frequency multiplying transmitters. Accurately calibrated 160 thru 10 meters. 6AU6 electron coupled oscillator, OA2 voltage regulator. Excellent stability. 6-1 vernier tuning. Requires 6.3 volts, 3 amperes, $250-300$ volts 15 ma ., DC unregulated. (Power and input connections on Viking I and II transmitters.) All parts, assembly and calibration instructions included.

Cal. No.
Amateur Net
240-122
Viking VFO Kit,
with tubes
$\$ 45.50$
240-122-2 Viking VFO Kit, wired and tested, with tubes. . 69.75

SWR BRIDGE

Measures standing wave ratios for effective use of a low pass filter and antenna coupler. 52 ohms impedance can be changed to 70 ohms or other value. SO-239 connectors and polarized meter jacks.
Cot. No. 250-24..... Amoteur Net \$9.75

LOW PASS RF FILTER

Four individually shielded sectionshandle more than 1000 watts RF, provide 75 db or more attenuation above 54 mc . Insertion loss less than .25 db . Replaceable Teflon insulated fixed capacitors. SO-239 coaxial connectors. Wired and pre-tuned.
Cot. No. 250-20 ... Amoteur Net $\$ 13.50$

E. F. JOHNSON AMATEV

"SIGNAL SENTRY"

Monitors either CW or phone signals without regard to operating frequency. Energized by transmitter RF. Mutes receiver audio for break-in. May be used as a code practice oscillator with simple circuit modification. Requires 250 VDC , 5 MA , and $6.3 \mathrm{VAC}, 6 \mathrm{~A}$ from receiver or other source. Size $37 / 8^{\prime \prime} \times 35 / 8^{\prime \prime} \times 334^{\prime \prime}$. Tube line-up consists of one $12 A X 7$ and one 12AU7.

Cot. Na. 250-25 Signal Sentry. Wired and tested, with tubes; instructions included.

Amateur Net $\$ 18.95$

ROTOMATIC ROTATOR

Supports beam antennas weighing up to 175 pounds even under heavy icing conditions or high wind loading. Rotates $11 / 4$ RPM-full 360° either direction-overall gear reduction, 1200 to 1. Heavily chrome plated RF slip rings for feeding open wire or coaxial lines. Rotator housing is cast aluminum; with $5 / 16^{\prime \prime}$ steel rotating table. Unit hinged to tilt 90°. Assembly includes desk top control box with selsyn indicator.
Cat. Na.
Amateur Net
138-112.
$\$ 324.00$

2 METER VFO KIT

Replaces 8 mc . crystals in frequency multiplying transmitters. Exceptionally stable, temperature compensated, voltage regulated. Accurately calibrated, edgelighted dial. 6BH6 series tuned oscillator, OA2 regulator. Requires 6.3 V . at . 3 amps and $250-300 \mathrm{~V}$. at 10 ma. Output range 7.995 to 8.235 mc . Size: $4^{\prime \prime} \times 41 / 2^{\prime \prime} \times 5^{\prime \prime}$.

CaI. Na. 240-132 Two Meter VFO Kit with tubes, power cable. Amateur Net $\$ 29.50$

Cat. Na. 240-132-2 Wired and tested. . Amateur inet $\$ 46.50$

PRE-TUNED BEAMS

Rugged parasitic beam antennas for 20-15-10 meters. Antenna, "T" match and balun feed system pre-funed at factory, requires no adiustment. Designed for years of service in all weather; booms are of $2^{\prime \prime}$ galvanized steel tubing, ele ments strong aluminum alloy. Galvanized steel clamps hold elements rigidly in place. Mediumwide spaced design permits greater forward gain, higher front-to-back ratio, and greater band width. Minjmum wind drag, no antiflutter attachments needed.

"WHIPLOAD-6"
Provides high efficiency base loading for mobile whips with instant bandswitch selection of $75,40,20,15$, 11 and 10 meters. On 75 meters a special capacitor, with dial scale, permits tuning entire band. Covers other bands without tuning. Air-wound coil provides extremely high " Q ". Fibre. glass housing protects assembly. Mounts on standard mobile whip.
Cat. No. 250-26 "Whipload-6", Bandswitching Mobile Antenná Bondswitching
Looding Coil.

Amoteur Net $\$ 19.50$

RF CHOKES

High reactance over 1.7 to 30 mc range (101-760 for VHF). Coils are of enamelled silk-covered wire, impregnated with high grade RF lacquer and wound on steatite cores. Current ratings may be increased for intermittent use.

Cat.	Cur. rent	In- duct.	Net No.
mo.	mh.	Price	

MOBILE VFO KIT

Extremely stable, only $4^{\prime \prime}$ $41 / 2^{\prime \prime} \times 5^{\prime \prime}$, for steering p or under dash mountin Will drive any straight per ode crystal stage. Verni dial calibrated $80,40,2$ 15 and $11-10$ meters. 6 Ht oscillator, 6BH6 amplifie multiplier, OA2 regulate Requires 6.3 V at .45 amp or 12.6 V . at .25 amps . ar 250.300 VDC at 20 ma .

Col. No. 250-152 Viking Mobi VFO Kit, with tubes. All par cables and instructions include Amateur Net $\$ 33$.
Cat. No. 250-152-2. Wired. A mateur Net $\$ 49.5$

ANTENNA AND FEEDER INSULATOR!

High quality porceloin stra insulators. 136-32 compre sion type egg insulator fc aircraft or guy wires.
Cat. No. Length Net Pris $\begin{array}{lcc}136-104 & 4^{\prime \prime} & \$. \\ 136-107 & 7^{\prime \prime} & . \\ 136-112 & 12^{\prime \prime} & \end{array}$ 136-17 136-32
$11 / 2^{\prime \prime}$
Porcelain Feeder insulator 136-122 has extra notche for $11 / 2^{\prime \prime}$ line spacing. A have $3 / 8^{\prime \prime} \times 1 / 2^{\prime \prime}$ cross sectio
Cat. Na. Length Net Pric
136-122 $2^{\prime \prime} \quad \$.1$
136-124
136-126
$\begin{array}{ll}2^{\prime \prime} & \$.1 \\ 4^{\prime \prime} & .1 \\ 6^{\prime \prime} & .2\end{array}$

HIGH POWER VARIABLE INDUCTORS

Heavy duty rotary inductors for amateur and cammercial sse. Handle aver a KW of modulated RF energy to 30 mc. Winding $1 / 4^{\prime \prime} \times 1 / 8^{\prime \prime}$ edgewise copper. Spring loaded beryllium copper contact. Variable pitch winding-wide frequency coverage. Height $61 / 2^{\prime \prime}$, width $4^{\prime \prime}$.

		Mounting	No.	Net
Cof. No.	Inductance	Centers	Turns	Price
$226-1$	22.5 uh	$131 / 2^{\prime \prime}$	$271 / 2$	$\$ 57.00$
226.3	13.5 uh	$111 / 2^{\prime \prime}$	$191 / 2$	53.00

ROTARY INDUCTOR

Same efficient inductor used in final tank of the Viking II. Continuous tuning 3.5 to 30.0 mes. without changing coils. Variable pitch winding of No. 14 tinned copper wire. Maximum inductance 10 uh . Form and end plates steatite. Beryllium copper tension contact. $21 / 2^{\prime \prime} \times 41 / 2^{\prime \prime}$ $\times 3^{\prime \prime}$. Typical tuning curves supplied.

Cal. No. 229-201

Net Price $\$ \mathbf{8 . 8 5}$

EDGEWISE WOUND "HI-Q" INDUCTORS

Edgewise wound, $1 / 4^{\prime \prime}$ copper strip, cadmium plated, glass bonded mica supporting bars. Widely used commercially. Safely handles more than 1000 watts.

Cat. No.	Winding 1×10	Inductance micra H	Net Price
232-610	$713 / 16{ }^{\prime \prime} \times 21 / 2^{\prime \prime}$	31	\$ 8.90
232-620	$88^{\circ} / 16^{\prime \prime} \times 4^{\prime \prime}$	84	11.40
232-622	$6^{3} 16^{\prime \prime} \times 31 / 4^{\prime \prime}$	41	8.90
232-624	$6^{\prime \prime} \times 31 / 4^{\prime \prime}$	20	6.30
232-626	$43 / 4^{\prime \prime} \times 21 / 2^{\prime \prime}$	10	5.80

SWINGING LINK INDUCTORS

For 160 thru 6 meters; 150,500 and 1000 watt sizes. Two inductance values for each band permit choice of L/C ratio dictated by amplifier plate voltage and plate current. Polystyrene insulation and steatite bases. HCSInductors match high voltage, low current tubes. LCSInductors match low voltage, high current tubes.

114.520

114-100-3

NEW SPECIAL SEMI-AUTOMATIC KEY

Combines the best features of former amateur and professional models. Heavy cast metal base $61 / 4^{\prime \prime} \times 3^{\prime \prime} \times 1 / 2^{\prime \prime}$, attractively finished in black wrinkle enamel. Same vibrator as on deluxe keys. Easy action, speed adjustable from lowest to highest speeds. All hardware and vibrator heavily chrome plated. $1 / 8^{\prime \prime}$ coin silver contacts. Adiustments have lock nuts for stable operation. Rubber mounting feet prevent slipping, scratching. Circuit closing switch. Cot. No.

Net Price
114-520 Special Madel, Semi-Autamatic
.$\$ 11.50$

HIGH SPEED STANDARD KEYS

A superior high speed hand key with adjustable spring tension, contact spacing and bearings. Base and binding posts are brass with instrument dacquer finish. Platinor contacts . $072^{\prime \prime}$ diameter.

$\begin{aligned} & \text { Cat. No. } \\ & 114-100 \end{aligned}$	848 Key, palisted brasj, no switch
114-100-3	M100 Key, polished brass with switch

Nef Price

114-320.-321

114-450

HEAVY DUTY KEYS

Heavy die cast base, chrome plated key arm, brass connector strips under base. Well insulated for heavy service. Large $1 / 4^{\prime \prime}$ coin silver contacts. Improved Navy type knob. Adjustable steel bearings and spring design give light keying touch.

Amateur Catalog . . . write for it today!
and specifications without notice and without incurring obligation.

Cot. No.		Net Price
114-320	Black wrinkle enamel base	\$4.10
114-321	Polished chrame ploted bose	5.10

PRACTICE SET

Constant frequency buzzer and key on a $4^{\prime \prime} \times 6^{\prime \prime}$ molded Bakelite base. Use singly or in pairs for code practice.
Cat. No. 114-450 Practice Set
Net Price $\$ 4.25$

Many ather fine quality jotnson manual and semi-automatic keys ore ovailable-see them at your favarite disisísutor.
Cot. No.
114-320 Block wrinkle enamel base... $\$ 4.10$
$114-321$ Polished chrome ploted bose 5.10
are available-se them at your favarite disirisuior.

E. F. JOHIVON RI ILITI

Manufacturers of more than 5,000 items for all segments of the electronic industry, Johnson also build a wide selection of high quality components for the amateur and experimenter. In addition to th items shown on these pages, the Johnson line also includes crystal sockets, shaft couplers, flexibl shafts, panel bearings, and extension shaft assemblies; as well as a complete line of fixed and rotar RF inductors for broadcast transmitting, RF heating, antenna phasing, and other commercial applica tion. All Johnson components are covered in detail in the current Johnson Component Catalog-writ for your copy today!

KNOBS AND DIALS-A distinctive line o matching knobs and dials suitable for the fine: electronic equipment. All types are derive from o new basic knob design. Available wit phenolic skirts, nickel plated skirts with mark ings, or flat dial scales engraved and filles Tough phenolic construction with heavy bras inserts, for $1 / 4^{\prime \prime}$ shafts.

INSULATORS-High quality steatite an porcelain insulators. Heavily glazed surface ond heavy nickel ploted bross hordware suit able for exposed opplication. Moy be supplie، with standord screws and nuts or with jack to accommodate standord bonono plugs Through-panel and stond-off types. Also on tenna insulotors, bushings, ond feeder insulotors

PILOT LIGHTS-A complete selection o stondordized pilot lights. Faceted jewel o. wide-angle lucite lens types; enclosed or oper body styles; standard boyonet, candelabro or minioture screw types, and o wide voriet, of mounting brackets ond ossemblies. Jewel: avoilable in clear, red, green, omber, blue and opal. All Johnson pilot lights ore describea in detail in Pilot Light Catolog 750 - send for your copy!

CONNECTORS-Bonana jacks and plugs, standord lip jacks ond plugs, ond the new nyton tip jacks and plugs, jack ond sleeve ossemblies and banono plugs. Nylon components ore ovailable in eleven bright colors and ore designed to operote through extremely wide temperature range and high relotive humidity conditions. (Voltoge breakdown 11,000 volis.) Nylon plugs are solderless-both plugs and jacks require a minimum omount of mounting space.

ELECTHONIC COMPONENTS

TUBE SOCKETS

anson steatite and porcelain tube sockets are xilable in three grades: Standard, Industrial, and itary. All are manufactured to rigidly controlled ecifications, and all are made of only the highest slity materials.
yonet Types-include Medium, Jumbo, and Super bo 4 pin models.
atite Wafer Types-available in 4,5,6,7, and sin standard sockets as well as Super Jumbo 4 , Giant 5 and 7 pin models and VHF transmitting star base types.
niature Types -are steatite insulated and availle in Miniature 7 and 9 pin models. Matching tiature shields also available.
ecial Purpose Types-include sockets for tubes h as the 204 A and 849 , the $833 \mathrm{~A}, 304 \mathrm{TL}, 5 \mathrm{D} 21$, $5 A$, and other special types.
ew shielded septor socket for tubes such as the 5894 , 24 , and 6252 has recently been added to the Johnson . For complete information on this new socket ar any other nson sockets-write for details taday!

VARIABLE CAPACITORS

'E "M" - These diminutive copocitars provide the perfect wer ta problems encountered in the design of compact io frequency equipment. Bridge-type stator terminal proes extremely law inductance path to both stator supports. fered plate construction, aversized bearing, and heavily hored stotor supports insure extreme rigidity.
' E "L"-A superiar quality general purpose capacitor sodying important advances in design and construction. rotor bearing and stator support rads are actually fered directly to the ceramic (steatite) end frames making capacitor virtually vibration proaf.
'E "C" AND "D"-Functional favorites built to exacting idards for medium power RF equipment. Dual types have tered rotor connection far balance. End frames tapped for作 mounting. Brackels furnished for chassis mounting. 'E "E" AND "F"-Rugged units provide a large amaunt :opacity per cubic inch in extremely law copacity to the ssis. Panel or chassis maunting.
' E " R "- The rugged Jahnsan versian af a papular stan--dized capositar. Featuring extro heavy steatite statar part insulators and soldered $.023^{\prime \prime}$ thick brass plates, all al parts are heavily nickel plated for corrasian resistance. 'E "K"-Widely used far military and many cammercial slications, the Johnsan type K features DC 200 impreged steatite end frames, slatted statar cantacts and extra d saldered plate canstruction.
'E "J"-Heavy duty miniature type has wider spacing n most small air variables yet accupies little more space. ful for smail space plate tank circuits and low pawer stages se standard miniatures have insufficient plate spocing. 'E "G"-Neutralizing capacitars far medium and law vered stages canstructed on the ratar-statar principle. lel ar chassis mounting.
'E "N"-Fxtremely high valtage rating in prapartian to : requiring a small maunting area. Canstant valtage rating sughout full copacity range. These are af the aluminum and cylinder type of construction and ore supparted by leatite frame with cast aluminum mounting bracket.

NEW CATALOG

For detailed information on the complete line of Johnson Electronic Components, write for your free copy of the new Johnson Components Catalog today!

WHEREVER THE CIRCUIT SAYS -M-

ADVANCED TYPE BT RESISTORS

typo if lanculoted Composifion Retilolors-ment JAN.R.II Specificotions of Kı, K. 1 ions 2 want Small size B78 spenially denigned for menialure 2 matt requirementi. Type BT) art twited to fale whition and similer ozacting sirzuth. Eatesenty howi sperating hemperatare. Exevtient pouser die. sipofion 10 shint io 22 menghins in eva roriget

POWER WIRE WOUND RESISTORS

IRC Fixed and Adiustable Power Wire Wounds are rugged resistors engineered for heavy-duty service. They are supplied in a wide variety of power ratings, resistance values, sizes and terminal types. TUBULAR POWER WIRE WOUNDS-fixed and adjustable, 10 to 200 watts, require na derating in high ranges. 10 and 20 watt fixed lypes have combinatian lead and lug terminals.
TYPES PW. 7 and PW-10-Seven and ten watt high temperature resistors of practical rectangular design with oxial leads. I ohm to 8200 ohms.

WHEREVER THE CIRCUIT SAYS -W-

SEALED VOLTMETER MULTIPLIERS

Dependable multipliers for use under the most severe humidity conditions, Type MF Resistors consist of a number of IRC Precisions interconnected and hermetically sealed in a glazed ceramic tube. Compact, rugged, stable, fully moisture-proof and easy to install. Maximum current: 1.0 M.A.; 0.5 megohms to 12 megohms.

MICROSTAK SELENIUM DIODES

TYPE GA Diodes are IRC engineered for use in low current circuits where very high back resistance and low forward resistance are required. They are small size, hermetically sealed, and ideal for circuit applications up to 1 megocycle.
IRC VARISTORS are non-linear resistors. They are voltage sensitive and provide sharp variation of resistance with applied voltage.

INSULATED CHOKES

Ideal for TV and similar circuits. Wide range of size and characteristic combinations permit accurate specification to individual requirements. Small, IRC insulated. Chokes are fully insulated in molded phenolic housings-protected from high humidity, abrasion, physical damage or shorting to chossis. Available in 4 sizes: Type $C L 1 / 2, C L A, C L I$ and $C L 2$.

OTHER IRC PRODUCTS

IRC manufactures a wide line of resistors, controls and related electronic components for equipment manufacturers, service technicians and amateurs.
In addition to the products described on these pages, IRC also furnishes-

INDUSTRIAL CONTROLS - RESISTANCE STRIPS AND DISCS - FLAT TYPE POWER WIRE WOUNDS • FEED-THRU TERMINALS - RESIST-O-CABINETS - RESIST-O-KITS • VOLUME CONTROL CABINETS

SEND FOR LITERATURE

For full information on any IRC product visit your local IRC Distributor or write to IRC for literature.
HIGHEST FIDELITY

Linear Standard
Hipermalloy

COMPACT

Ouncer

Signaling
Replacement
and Control

Plug.tn

Multi-Shielded Inputs

TRANSFORMERS

 REACTORS•FILTER FROM STOCK...HI-Q TOROID

Magnetic Amplifiers

AMATEUR MINIATURE

Special Series Sub-Ouncer

VARIABLE INDUCTO

Equalizers

Inductors
De

RUGGED ... INDUSTRIAL

Plate Audio
HIGHEST FIDELITY

Amplifier Kit
HERMETIC . . . MIL-T-27

Audios

Pulse Units

UNITED TRANSFORMER COMPANY - 150 VARICK STREET, NEW YORK 13, N. Y.

THE NeN PRO-310

AVAILABLE NOW!

The completely new PRO-310 is the latest addition to the long line of outstanding Hammarlund receivers. It is built to rigorous specifications. Its design has been inspired by Hammarlund's reputation of quality without compromise. Here is the answer to the challenge to create a truly superior instrument in every detail, in performance, in workmanship, in design, in utility and in style. The PRO-310 is all-receiver, designed to highest professional communications standards, and incleding the features you need and want. Some of these are:

- Sensitivity-all that can ever be used under all receiving conditions.
- Selectivity - really steep-skirted to let you cut through interference.
- High Image rejection on all six bands. Double conversion on top four bands with crystalcontrolled second conversion oscillator.
- Exceptional stability-every station is always at the same spot on the dial.
- Hammarlund SCANSPREAD tuning provides excellent frequency readability over the entire range from 550 KC to 35 MC .
- Single Sideband operation is yours. Exalted BFO and sharp selectivity are built-in.
A rugged coil turret, sectionalized construction, and restful wrist-high controls are among the many other features that make it the next receiver for your shack.

Our new brochure illustrates and fully describes its construction and operation. Write for it today. Ask for Bulletin 56AM.

For those who apporeciate PROFESSIONAL STANDARDS

$54-6+0.1 x$

MC. $140 . \mathrm{X}$

Communications Receivers for finest Performance

The "SP-600-JX"

The "SP-600-JX", a masterpiece of receiver design is a 20 tube dual conversion superheterodyne cov. ering the range of 540 Kc to 54 Mc in 6 bands Operation on any of 6 crystal-controlled fixed fre quency channels is immediately available. The power supply is an integral part of this worldfamous receiver.

The "SP-600" represents today's ultimate ir receiver performance. Stability is .001 to .01 percent, image rejection is 80 db to 120 db down, anc spurious responses are at least 100 db down. Sensitivity is 1 microvolt CW and 2 microvolts AM Selectivity for the 3 calibrated crystal and 3 non crystal ranges is from 200 cycles to 13 Kc .

The "HQ-140-X"

The "HQ-140-X" was designed to give years of reliable, quality performance. Its many out-standing features are evidence that it was built for those who appreciate professional standards. Extremely accurate frequency setting is achieved because oi its carefully calibrated bandspread dial. The Hammarlund patented 455 Kc crystal filter and phasing. network makes possible bandwidth changes without the slightest detuning. The separate oscillator (6C4) and mixer (6BE6) contribute to the high degree of oscillator stability.

Low-loss tube sockets, ceramic bandswitches temperature compensating capacitors, zero temperature coefficient ceramic trimmers, and a bimetallic compensating plate, all keep frequency drift to less than 0.01%, from the lowest frequency (540 Kc) to the highest (31 Mc).

WANT TO KNOW MORE ABOUT HAMMARLUND RECEIVERS?

Write immediately to have your name placed on our Receiver mailing list.

HAMMARLUND CAPACITORS

Reliable Components For Your Equipment

Hammarlund capacitors are considered by many to be the quality standards of the industry In this complete line of variables are such outstanding types as the new MAC miniature trimmer, the BFC butterfly type for use in VHF applications. and the unique VU for VHF and UHF operations up to 500 Mc .

These and other Hammarlund standards will give long, trouble-free service and continuous fine performance when used in your equipment. They've been doing that for hams since the early years of the hobby

SPECIAL TYPES

Over 5000 different types of special capacitors have been produced by Hammarlund, each designed to meet a customer's specifications. If you have a problem calling for a quantity of a special capacitor, check us first. For among these 5.000 special capacitors there probably is one to meet your needs.

If, however, none of our existing "specials" can fill the bill, our experienced engineering staff will be happy to work with you to design a capacitor that will.

B.W PRODUGTS

 0 F

MODEL 5T00-B
TRANSMITTER WITH MODEL 515B-B SINGLE SIDEBAND GENERATOR

- The new Model 5100-B transmitter gives you unsurpassed performance not just on CW . . . or AM . . . or SSB . . . but on all three! You get high level AM telephony -push-io-talk . . . clean CW keying-break-in on all bands . . . and superlative. SSB performance on all bands with the $51 S B-B$ companion sideband generator. Just a few of the features of the $5100-\mathrm{B}$ are: input power of 180 watts CW-SSB, 140 watts AM phone; integral VFO or crystal frequency control; coverage of 80-40-20-15-11-10 meter amateur bands; plus unitized construction, pi-network final, integral low pass filter, and TVI suppression.
- The completely bandswitched alSB-B single sideband generator is a perfectly matched companion unit to the $5100-\mathrm{B}$ transmitter. Together they provide sparkling SSB performance on all the amateur bands 80 through 10 meters. Tuning and operation are a breeze, with no test equipment required for installation or operation. The generator, which is powered by the transmitter, can be hooked up with the $5100-\mathrm{B}$ easily in less than a half hour. And you get such advanced features as: voice operated control; push-to-talk; speaker deactivating circuit; and true unitized construction. No accescories except microphone required.
SEE THE NEW "B" SERIES AT YOUR B\&W DEALER'S . . . or write for literature.

BARKER \& WILLIAMSON, INC. 237 Fairfield Avenue, Upper Darby, Pa.

THE YEAR

Model 370 Single Sideband Recelving Adapier

This truly selective bandpass type adapter brings the performance of yesterday's receivers up to the reguirements of tomorrow. It can be used to convert any receiver with an I.F. between 450 and 500 ke for superlative performance on SSB, true singlesignal CW reception, and selective sideband reception on AM phone signals.

On AM recention. B\&W"s exclusive "Gating Control" permits tuning ower a narrow frequeney range without disturbing the main receiver tuning. Sharb skirt selectivity on C'W. AM phone. or SSB is assured by an integral 20 kc toroidal type bandpass filter with 3ke passhand. Unwanted signals aro attenuated a minimum of 50 dh . Easy to install and adjust. the adapter is entirely self-contained in an attractive cabinet complete with power supply and 7" dynamic spuaker

Matchmaster

Try this instrument once and you'll wonder how you ever got along without it. The Matchmaster provides in one completely self-contained unit $6^{\prime \prime} \times 8^{\prime \prime} \times 8^{\prime \prime}$. A direct-rcading r-f wett metor-for procise adjustments of all r-f stages up to 125 watts-higher powers hy sampling. Execllent repeat aecuracy owerfull 125 watt scale.
A dummy lood-l'erform all kinds of tests on your transmittor without putting a signal on the air. Maximum SWR 1.2 to 1 from 500 ke to 30 mc .
Integral swh bridge-for matching antennas and other loads to transmitter. Direct measurement of SWVR enables precise adjustment of boam antennas, antenna tuming networks, and mohile whip antennas. Model 650 is for use with 52 ohm line, Model 651 is for use with 73 ohnt line.

Model 550-551
Coaxial Switches
Thase multi-position switehes completely climinate the fumbling and annovance of screwing and trascrewing coaxial connections. With the Mordel 550, you can instantly seled any one of five antomans. transmitters. exciters. receivers. and other r-f generating desieres using 52 or 75 ohm line just by furning a knof. The switch handles up to 1 KW of mochulaterd power with a maximum crosstalk of - 45 (lb at 30 me. Model 5and is a twor pole, two-position type for switt h_{1}. ing various devices such as the 13\&W Matchnaster in or cut of series connection with coax lines.

Model 3a0-B Automatic T-R Antenna Switch

Now vols can have fully automatic dectronic antemachangeover from receiver to transmitter and vicecersa. Suitable for all powers up to the legal limit. the Model 380-B is ideal for vosereoperated SSB-AM whone and break-in CW-all with one antennat . . ending annoving antemna changeover relay clatter. You can automatically select one antenna for receiving and transmitting, getting an actual receiving signal qain from 1 me to 35 mc . Because the Model :380-B is broad band, there's no tuning or adjustments to make, and as a failsate device it protects your final amplifier. low-pass filter, etc. Power loss on transmission is almost unmeasureable. The unit operates with either 52 or 75 ohm coax line.

Model Bso 1 Kw PI-Neiwork Tank Coil
'T'his high-power integral bandswitched pi-network tank coil provides maximum efficiency operation from 80 through :0 meters. It may be used for Class "(") or linear operation using triodes or tetrudes in conventional or grounded grid circuits. A positive-acting, highcurrent r - f switch selects operating band. Stepped sectional coil windings of the Model 850, with extra heavy conductors at the higher frequencies, provide ample eurrent carrying capacity, ard minimum " Q " of 300 over the entire oporating range.

CLASS C POWER AMPLIFIERS AND OSCILLATORS

$\begin{gathered} \text { RCA } \\ \text { Type } \end{gathered}$	$\begin{aligned} & \text { Class } \\ & \text { of } \\ & \text { Service } \end{aligned}$	Max. Plate Ratings			Max. Frequency for full Input Mc	Heater (H)orFilamentVolts	Amplification Factor*	Typical Operating Conditions						
		$\begin{gathered} \text { OC } \\ \text { Input } \\ \text { Watts } \end{gathered}$	$\begin{aligned} & \text { OC } \\ & \text { Volts } \end{aligned}$	Dissipa- tion Watts				$\begin{aligned} & \text { oc } \\ & \text { Plate } \\ & \text { Volts } \end{aligned}$	$\begin{aligned} & \text { DC } \\ & \text { Grid. } \\ & \text { No. } 3 \\ & \text { Voits } \end{aligned}$	DC No. 2 Volts	DC GridNo. 1 Volts	${ }_{\text {Diate }}^{\text {DC }}$ current Ма.	Approx. Driving Watts	Approx Power Dutput
TRIODES														
811-A!	$\begin{aligned} & \text { CW } \\ & \text { Phone } \end{aligned}$	$\begin{array}{r} 260 \\ 175 \\ \hline \end{array}$	$\begin{array}{r} 1500 \\ 1250 \\ \hline \end{array}$	$\begin{aligned} & 65 \\ & 45 \\ & \hline \end{aligned}$	30	6.3	160	$\begin{aligned} & 1500 \\ & 1250 \\ & \hline \end{aligned}$	-	-	$\begin{array}{r} -70 \\ -120 \end{array}$	$\begin{aligned} & 173 \\ & 140 \end{aligned}$	${ }_{10}^{7.1}$	$\begin{aligned} & 200 \\ & 135 \end{aligned}$
812-A \ddagger	$\begin{gathered} \text { CW } \\ \text { Phone } \end{gathered}$	$\begin{aligned} & 260 \\ & 175 \end{aligned}$	$\begin{aligned} & 1500 \\ & 1250 \\ & \hline \end{aligned}$	$\begin{aligned} & 65 \\ & 45 \end{aligned}$	30	6.3	29	$\begin{aligned} & 1500 \\ & 1250 \end{aligned}$	-	-	$\begin{aligned} & -120 \\ & -115 \end{aligned}$	$\begin{aligned} & 173 \\ & 140 \\ & \hline \end{aligned}$	$\begin{aligned} & 6.5 \\ & 7.6 \end{aligned}$	$\begin{aligned} & 190 \\ & 130 \end{aligned}$
8005 \ddagger	$\begin{gathered} \text { CW } \\ \text { Phone } \end{gathered}$	$\begin{array}{r} 300 \\ 240 \\ \hline \end{array}$	$\begin{aligned} & 1500 \\ & 1250 \\ & \hline \end{aligned}$	$\begin{aligned} & 85 \\ & 75 \\ & \hline \end{aligned}$	60	10	20	$\begin{aligned} & 1500 \\ & 1250 \end{aligned}$	-	-	$\begin{array}{r} -130 \\ -195 \\ \hline \end{array}$	$\begin{array}{r} 200 \\ 190 \\ \hline \end{array}$	$\begin{aligned} & 7.5 \\ & 9 \end{aligned}$	220 170
8000 \ddagger	$\begin{gathered} \text { CW } \\ \text { Phone } \end{gathered}$	$\begin{array}{r} 750 \\ 500 \\ \hline \end{array}$	$\begin{aligned} & 2500 \\ & 2000 \\ & \hline \end{aligned}$	$\begin{aligned} & 175 \\ & 125 \\ & \hline \end{aligned}$	30	10	16.5	$\begin{aligned} & 2500 \\ & 2000 \end{aligned}$	-	-	$\begin{array}{\|l} -240 \\ -370 \\ \hline \end{array}$	$\begin{array}{r} 300 \\ 250 \\ \hline \end{array}$	$\begin{aligned} & 18 \\ & 20 \\ & \hline \end{aligned}$	$\begin{aligned} & 175 \\ & 575 \\ & 380 \end{aligned}$
833-A \ddagger	$\begin{gathered} \text { CW } \\ \text { Phone } \end{gathered}$	$\begin{aligned} & 1000 \\ & 1000 \\ & \hline \end{aligned}$	$\begin{aligned} & 3300 \\ & 3000 \\ & \hline \end{aligned}$	$\begin{array}{r} 350 \\ 250 \end{array}$	30	10	35	$\begin{aligned} & 3000 \\ & 3000 \end{aligned}$	-	-	$\left\lvert\, \begin{aligned} & -160 \\ & -240 \end{aligned}\right.$	$\begin{array}{r} 335 \\ 335 \\ \hline \end{array}$	$\begin{aligned} & 20 \\ & 26 \end{aligned}$	$\begin{aligned} & 880 \\ & 800 \end{aligned}$

BEAM POWER TUBES AND PENTODES

5618	CW	7.5	300	5	100	$\begin{aligned} & 3.0 \\ & 6.0 \end{aligned}$	5.4	300	0	75	-45	25	0.2	5.4
$5763 \ddagger$	CW Phone	$\begin{aligned} & 17 \\ & 15 \end{aligned}$	$\begin{aligned} & 350 \\ & 300 \end{aligned}$	$\begin{array}{r} 13.5 \\ 12 \end{array}$	50	6.0 (H)	16	$\begin{aligned} & 350 \\ & 300 \end{aligned}$	0	$\begin{aligned} & 250 \\ & 250 \end{aligned}$	$\left\lvert\, \begin{aligned} & -28.5 \\ & -42.5 \end{aligned}\right.$	$\begin{array}{r} 48.5 \\ 50 \end{array}$	$\begin{aligned} & 0.1 \\ & 0.15 \end{aligned}$	12
$6417 \ddagger$ Same as 5763 except for 12.6 -volt heater														
2:24 \ddagger	CW Phone	$\begin{aligned} & 40 \\ & 27 \\ & \hline \end{aligned}$	$\begin{aligned} & 600 \\ & 500 \\ & \hline \end{aligned}$	$\begin{array}{r} 13.5 \\ 9 \\ \hline \end{array}$	125	6.3	7.5	$\begin{aligned} & 600 \\ & 500 \end{aligned}$	-	$\begin{aligned} & 195 \\ & 180 \end{aligned}$	$\begin{aligned} & -50 \\ & -45 \end{aligned}$	$\begin{aligned} & 66 \\ & 54 \end{aligned}$	$\begin{aligned} & 0.21 \\ & 0.16 \end{aligned}$	27 18
2E26\$	$\begin{aligned} & \text { CW } \\ & \text { Phone } \end{aligned}$	$\begin{aligned} & 40 \\ & 27 \end{aligned}$	$\begin{aligned} & 600 \\ & 500 \\ & \hline \end{aligned}$	$\begin{array}{r} 13.5 \\ 9 \end{array}$	125	6.3 (H)	6.5	$\begin{aligned} & 600 \\ & 500 \\ & \hline \end{aligned}$	-	$\begin{aligned} & 185 \\ & 180 \end{aligned}$	$\begin{array}{r} -45 \\ -50 \\ \hline \end{array}$	$\begin{aligned} & 66 \\ & 54 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.17 \\ & 0.15 \end{aligned}$	18 18 18
832-A \ddagger	CW ${ }^{\circ}$ Phone ${ }^{\circ}$	$\begin{aligned} & 50 \\ & 36 \\ & \hline \end{aligned}$	$\begin{aligned} & 750 \\ & 600 \\ & \hline \end{aligned}$	$\begin{aligned} & 20 \\ & 15 \\ & \hline \end{aligned}$	200	$\begin{array}{r} 6.3 \\ 12.6 \\ \hline \end{array}$	6.5	$\begin{aligned} & 750 \\ & 600 \end{aligned}$	-	$\begin{aligned} & 200 \\ & 200 \end{aligned}$	$\begin{aligned} & -50 \\ & -70 \end{aligned}$	$\begin{aligned} & 65 \\ & 60 \end{aligned}$	$\begin{aligned} & 0.24 \\ & 0.21 \end{aligned}$	35 26
$807 \ddagger$	$\begin{gathered} \text { CW } \\ \text { Phone } \end{gathered}$	$\begin{aligned} & 75 \\ & 60 \\ & \hline \end{aligned}$	$\begin{aligned} & 750 \\ & 600 \end{aligned}$	$\begin{aligned} & 30 \\ & 25 \\ & \hline \end{aligned}$	60	6.3 (H)	8	$\begin{aligned} & 750 \\ & 600 \\ & \hline \end{aligned}$	-	$\begin{aligned} & 250 \\ & 300 \\ & \hline \end{aligned}$	$\begin{array}{r} -45 \\ -85 \\ \hline \end{array}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 0.3 \\ & 0.4 \end{aligned}$	54 44
$6524 \ddagger$	CW ${ }^{\circ}$ Phone ${ }^{\circ}$	$\begin{aligned} & 85 \\ & 55 \end{aligned}$	$\begin{aligned} & 600 \\ & 500 \end{aligned}$	$\begin{array}{r} 25 \\ 16.7 \\ \hline \end{array}$	100	6.3 (H)	8.5	$\begin{aligned} & 600 \\ & 500 \\ & \hline \end{aligned}$	-	$\begin{aligned} & 200 \\ & 200 \\ & \hline \end{aligned}$	$\begin{array}{r} -44 \\ -46 \\ \hline \end{array}$	$\begin{aligned} & 120 \\ & 100 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.2 \\ & 0.2 \end{aligned}$	56 40
6146	$\begin{aligned} & \text { CW } \\ & \text { Phone } \end{aligned}$	$\begin{array}{r} 90 \\ 67.5 \end{array}$	$\begin{aligned} & 750 \\ & 600 \end{aligned}$	$\begin{array}{r} 25 \\ 16.7 \\ \hline \end{array}$	60	6.3 (H)	4.5	$\begin{aligned} & 750 \\ & 600 \end{aligned}$	-	$\begin{aligned} & 160 \\ & 150 \\ & \hline \end{aligned}$	$\begin{aligned} & -62 \\ & -87 \end{aligned}$	$\begin{aligned} & 120 \\ & 112 \end{aligned}$	$\begin{aligned} & 0.2 \\ & 0.4 \\ & \hline \end{aligned}$	70 52
4×150A	CW Phone	$\begin{aligned} & 250 \\ & 200 \end{aligned}$	$\begin{aligned} & 1250 \\ & 1000 \end{aligned}$	$\begin{aligned} & 150 \\ & 100 \end{aligned}$	500	6.0 (H)	5	$\begin{aligned} & 1250 \\ & 1000 \end{aligned}$	-	$\begin{aligned} & 250 \\ & 250 \end{aligned}$	$\begin{array}{r} -90 \\ -105 \end{array}$	$\begin{aligned} & 200 \\ & 200 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.2 \\ & 2 \end{aligned}$	$\begin{array}{r} 192 \\ 140 \end{array}$
829-8 \ddagger	CW ${ }^{\circ}$ Phone ${ }^{\circ}$	$\begin{array}{r} 120 \\ 90 \end{array}$	$\begin{aligned} & 750 \\ & 600 \\ & \hline \end{aligned}$	$\begin{aligned} & 40 \\ & 28 \\ & \hline \end{aligned}$	200	${ }_{12.6}^{6.3}(\mathrm{H})$	9	$\begin{array}{\|l\|} \hline 750 \\ 600 \\ \hline \end{array}$	-	$\begin{aligned} & 200 \\ & 200 \end{aligned}$	$\begin{array}{r} -50 \\ -60 \\ \hline \end{array}$	$\begin{aligned} & 160 \\ & 150 \\ & \hline \end{aligned}$	$\begin{aligned} & 2 \\ & \hline 0.4 \\ & 0.5 \end{aligned}$	140 90 70
5894	CW ${ }^{\circ}$ Phone	$\begin{array}{r} 120 \\ 72 \end{array}$	$\begin{aligned} & 600 \\ & 450 \end{aligned}$	$\begin{aligned} & 40 \\ & 27 \end{aligned}$	250	$\begin{array}{r} 6.3 \\ 12.6 \\ (H) \\ \hline \end{array}$	8.2	$\begin{array}{r} 600 \\ 450 \\ \hline \end{array}$	-	$\begin{array}{r} 250 \\ 250 \\ \hline \end{array}$	$\left[\begin{array}{r} -80 \\ -100 \end{array}\right.$	$\begin{aligned} & 200 \\ & 150 \end{aligned}$	$\begin{aligned} & 4 \\ & 0.6 \end{aligned}$	85 50
4-65A	CW Phone	$\begin{aligned} & 345 \\ & 275 \end{aligned}$	$\begin{array}{\|l\|} \hline 3000 \\ 2500 \\ \hline \end{array}$	$\begin{aligned} & 65 \\ & 45 \\ & \hline \end{aligned}$	50	6.0	5	$\begin{array}{\|l\|} \hline 3000 \\ 2500 \\ \hline \end{array}$	-	$\begin{array}{r} 250 \\ 250 \\ \hline \end{array}$	$\begin{array}{r} -100 \\ -135 \end{array}$	$\begin{aligned} & 115 \\ & 110 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.7 \\ & 2.6 \\ & \hline \end{aligned}$	280 230
$\begin{gathered} 4-1254 / \\ 4021 \end{gathered}$	CW Phone	$\begin{aligned} & 500 \\ & 380 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 3000 \\ 2500 \\ \hline \end{array}$	$\begin{array}{r} 125 \\ 85 \\ \hline \end{array}$	120	5.0	5.9	$\begin{aligned} & 3000 \\ & 2500 \end{aligned}$	-	$\begin{aligned} & 350 \\ & 350 \end{aligned}$	$\begin{array}{\|l\|} \hline-150 \\ -210 \\ \hline \end{array}$	$\begin{aligned} & 167 \\ & 152 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 3.3 \\ & \hline \end{aligned}$	$\begin{aligned} & 375 \\ & 300 \end{aligned}$
$813 \ddagger$	$\begin{gathered} \text { CW } \\ \text { Phone } \end{gathered}$	$\begin{aligned} & 500 \\ & 400 \\ & \hline \end{aligned}$	$\begin{aligned} & 2250 \\ & 2000 \end{aligned}$	$\begin{aligned} & 125 \\ & 100 \\ & \hline \end{aligned}$	30	10	8.5	$\begin{aligned} & 2250 \\ & 2000 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 400 \\ & 350 \end{aligned}$	$\begin{array}{r} -155 \\ -175 \\ \hline \end{array}$	$\begin{aligned} & 220 \\ & 200 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 4 \\ & 4.3 \end{aligned}$	375 300
$\begin{array}{\|c\|} \hline 4-250 A \\ 5022 \\ \hline \end{array}$	CW Phone	$\begin{array}{r} 1000 \\ 675 \end{array}$	$\begin{aligned} & 4000 \\ & 3200 \\ & \hline \end{aligned}$	$\begin{aligned} & 250 \\ & 165 \end{aligned}$	110	5	5.1	$\begin{aligned} & 4000 \\ & 3000 \\ & \hline \end{aligned}$	-	$\begin{aligned} & 500 \\ & 400 \end{aligned}$	$\begin{aligned} & -225 \\ & -310 \end{aligned}$	$\begin{aligned} & 312 \\ & 225 \end{aligned}$	$\begin{aligned} & 2.46 \\ & 3.2 \end{aligned}$	$\begin{array}{r} 1000 \\ 510 \end{array}$

MODULATORS OR RF LINEAR AMPLIFIERS (SINGLE-SIDEBAND)

$\begin{aligned} & \text { RCA } \\ & \text { Type } \end{aligned}$	$\begin{aligned} & \text { Class } \\ & \text { of } \\ & \text { Service } \end{aligned}$	Max. Plate Ratings			Typical Operating Conditions (Two Tubes, Except Where Shown)								
		$\begin{gathered} \text { DC } \\ \text { volts } \end{gathered}$	$\begin{gathered} \text { DC } \\ \text { lnput } \\ \text { Watts } \end{gathered}$	pissipz- tion watts	$\begin{gathered} \text { DC } \\ \text { Plate } \\ \text { Valte } \end{gathered}$ Volts	$\begin{aligned} & \text { DC } \\ & \text { Grid. } \\ & \text { Go. } \\ & \text { No. } \\ & \text { Volts } \\ & \hline \end{aligned}$	OC No. 1 Volts	$\left[\begin{array}{c}\text { Peak AF } \\ \text { Grid -No. } 1 \\ \text { to } \\ \text { Grid-No. } 1 \\ \text { Volts }\end{array}\right.$	Zero- Signal oc Plate Current Ma.	$\begin{array}{\|c\|} \hline \text { Max- } \\ \text { Signal } \\ \text { oc Plate } \\ \text { current } \\ \text { Ma. } \\ \hline \end{array}$	Plateto Plate Load Dhms	Approx. Max.-Sig. Driving Power Watts	$\begin{gathered} \text { Approx. } \\ \text { Max.-sig } \\ \text { Power } \\ \text { Output } \\ \text { Watts } \end{gathered}$
829-8 \ddagger	$\mathrm{ABH}^{\circ}{ }^{\circ}$	750	100	30	600	200	-18	36	40	110	13750	0	44
2E24 \ddagger	AB_{2}	500	37.5	13.5	500	125	-15	82	20	150	9000	0.46	54
$2 E 26 \ddagger$	AB_{2}	500	37.5	12.5	500	125	-15	60	22	150	8000	0.36	54
$6524 \ddagger$	$\mathrm{AB}_{2}{ }^{\circ}$	600	85	25	600	200	-26	76	21	135	11400	0.1	57
4×150A \ddagger	AB_{2} -	1250	300	150	1250	300	-44	100	180	475	5600	0.15	425
807	AB_{2}	$\begin{aligned} & 750 \\ & 750 \end{aligned}$	$\begin{aligned} & 90 \\ & 90 \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \end{aligned}$	$\begin{aligned} & 750 \\ & 750 \end{aligned}$	$\begin{array}{r} 300 \\ 0 \end{array}$	$\begin{array}{r} -35 \\ 0 \end{array}$	$\begin{array}{r} 96 \\ 555 \end{array}$	$\begin{aligned} & 30 \\ & 15 \end{aligned}$	$\begin{aligned} & 240 \\ & 240 \end{aligned}$	$\begin{aligned} & 7300 \\ & 6650 \end{aligned}$	$\begin{aligned} & 0.2 \\ & 5.3 \end{aligned}$	$\begin{aligned} & 120 \\ & 120 \end{aligned}$
61461	AB_{2}	750	90	25	750	165	-46	108	22	240	7400	0.04	131
$5894 \ddagger$	B°	600	120	40	600	250	-25	53	35	168	8000	0.2	70
811-A \ddagger	B	1500	235	65	1500	-	-4.5	170	32	313	12400	4.4	340
$813 \ddagger$	AB_{1} *	2530	450	125	2500	750	-95	180	50	290	19000	4.4	490
$810 \ddagger$	$\mathrm{B}^{\circ 0}$	2750	510	175	2250	-	-60	380	70	450	11600	13	725
$8000 \ddagger$	B**	2750	510	175	2250	-	-130	560	65	450	12000	7.9	725

Values shown are for Intermittent Commercial and Amateur Service (ICAS), unless otherwise indicated.
\$High Perveance Type
${ }^{\circ}$ Values are for both units.
${ }^{\circ}{ }^{\circ}$ For af adolications.

- Values shown are for Continuous Commercial Service (CCS).
-For beam power tubes and pentodes the values shown are for
mu-lactor, Grid No. 2 to Grid No. 1.
Recommended for if applications because of low outpul capacitance.

62
 FirstCioice cocka
 COMPLETE SSE STATION

COLLINS KWS-1 TRANSMITTER

Unprecedented compactness is achieved without undue crowding. Exciter and RF power amplifier are in a single receiver-size housing which can be placed on the operating desk or mounted on top of the power supply cabinet. Proved circuit applications and components - extremely accurate 70 E VFO, Pi-L output network and Collins Mechanical Filter - give you unmatched performance, accuracy and stability in SSB, AM and CW operation.

KWS-1 SPECIFICATIONS

POWER AMPLIFIER INPUT - I kw peak envelope power on SSB, I kw CW operation. Equivalent to 1 kw on AM when using narrow bondwidth receiver.
R-F OUTPUT IMPEDANCE - 52 ohms.
MAXIMUM PERMISSIBLE STANDING WAVE RAIIO - 2.5 to 1.
FREQUENCY RANGE - 80, 40, 20, 15, 11, 10 meters - 3 to 30 mc .
EMISSION - SSB, AM carrier plus one sideband, CW.
FREQUENCY CONTROL - 70E-23 Master Oscillator.
HARMONIC AND SPURIOUS RADIATION - (Other thon 3rd order distartion products.) Intra-channel radiation is of least 50 db down. All spurious rodiatian at least 40 db down of output of exciter. Second harmonic of least 40 db down; alf other harmonics at least 60 db down.
FREQUENCY STABILITY - Worm-up: After 15 minutes warm. up, within 300 cps of starting frequency. Dial Accuracy: 300 eps after calibration.
AUDIO CHARACTERISTICS - Response: $\pm 3 \mathrm{db}, 200$ to $3,000 \mathrm{cps}$. Noise and hum: 40 db or more belaw reference autpuł level.
Input: 01 valts far rated power aufput.
DISTORIION - SSB, 3rd arder products appraximately 35 db dawn of 1 kw PEP.
MICROPHONE INPUT - Will match high impedance dynomic ar crystal.
PHONE PATCH IMPEDANCE - 600 ahms, unbalanced ta ground. CIRCUIT PROTECTION - Overlaad relay and fuses.
WEIGHT - 210 pounds.
SIZE - 40 $1 / 2^{\prime \prime}$ high, $171 / 4^{\prime \prime}$ wide, $151 / 2^{\prime \prime}$ deep.
RACK MOUNTING - Angle brackets kits available for $R F$ Unit and power supply.
TUNING CONTROLS - Bandswitching, frequency selector, PA tuning. PA laading.
OTHER CONTROLS - Filament pawer, plate pawer, filament adjust, tune-operate, multimeter switch, VOX speaker goin, VOX speech gain, band change, audia gain, sidebond select, emission selectar, dial lock, zera set, ALC adjust.
ACCESSORIES REQUIRED - High impedance micraphone, telegraph key, 52 ahm antenna.
POWER SOURCE - $230 \vee, 3$ wire, $50 / 60$ cycle, single phose, graunded neutral; ar 115 v. 2 wire, $50 / 60$ cycle, single phase. 1500 W I kw input CW.

COLLINS 75A-4 RECEIVER

Designed expressly for Amateur operation on the seven HF bands. The time-proven features of earlier 75A models are retained - excellent image rejection, precise dial calibration and high stability, hermetically sealed Collins VFO and crystal-controlled first injection oscillator. Collins Mechanical Filter in the i-f strip provides ideal selectivity. And the new 75A-4 gives you the best SSB reception plus conventional CW and AM operation.

75A-4 SPECIFICATIONS

FREQUENCY RANGE -. 160, 80, 40. 20. 15. 11, 10 meters
 WEIGHT - 35 pounds.
RACK MOUNTING - Angle mounting kit available. NUMBER OF TUBES - 22, including rectifiers.
SENSIITVITY - 1.0 microvolt or 6 db signal-to-noise ratio with 3 kc bondwicth.
AVC CHARACTERISTICS - Audio fise less thon 3 db tor innouts of 5 to 200,000 ur.
AVC TIME CONSTANTS - Rise Time - 01 second. Release Time - 11 second (fast). I second (slow).
IMAGE AND I-F REJECTION - Image ratio of cerrer of each band 50 db or better. I-f rejection at center of each bond 70 db or better.
AUDIO CHARACTERISTICS - Output - 75 watts with a 3.0 uv signal. 30% modulated. Output impedance 500 ohms. 4 ohms. Response of oudio circuits $- \pm 3$ db 100 cps s to 5.000 cps . Distortion - less thon 10%. MUTING - Provisions for muting the Receiver during key-down operation is provided. A muting voltage of +20 volts must be supplied by tronsmitter.
FREQUENCY STABILITY (at 14 mc) - Temperoture Less thon 1200 cycles drift from 0 to $\pm 600 \mathrm{C}$. Wormup drift - Less thon 300 cycles ofter 15 minute operotion. Line voltage coefficient - Less than 100 cycles for $\pm 10 \%$ change. Dial Accuracy - 300 cycles ofter colibration.

KWS-1 AND 75A-4 ACCESSORIES

SPEAKER

The 270G-3 cabinet and 10" PM speaker assembly attractively finished to match the $75 \mathrm{~A}-4$ Receiver.

SPEAKER/CONTROL

The 312A-1 Speaker/Control Unit has space for the loudspeaker and extra control functions necessary in a complete installation. Unit is furnished with removable perforated steel front panel insert with no cut-outs; operator can remove panel and install any control functions such as beam direction indicators, clocks, switches, etc. A $10^{\prime \prime}$ speaker is submounted behind the front panel. Rear of the unit is open and across the bottom is a terminal strip.

MECHANICAL FILTERS

Collins new type F455J-Series Mechanical Filters are available as accessories for the 75A-4 Receiver. The F455J-08 Filter, bandwidth of 800 cycles, is recommended for CW reception. The F455J-31, 3.1 kc , is supplied with Receiver for AM and SSB, and the F455J-60, providing a 6.0 kc bandwidth is recommended for AM reception where interference is not a problem. The F455J-15, 1.5 kc bandwidth, is recommended for RTTY.

LOW PASS FILTER

Collins $35 \mathrm{C}-2$ is a 52 -ohm three-section low pass filter with approximately 0.2 db insertion loss below 29.7 mc and approximately 75 db attenuation of harmonic emissions at TV frequiencies.

Now . . . one complete receiver gives you everything you can possibly want for superior mabile reception. Six bands, including standard broadcast... each amateur band individually calibrated, each spread across the easy-to-read slide rule dial scale. An important economic consideration lies in the fact that, while your present car may have a 6 volt battery, next year's car may have a 12 volt system.

A separate "Three way" power supply takes care of this contingency, operates from 6 volts, 12 volts and... 115 volts AC! G. 66 can also be removed from the car and put into operation on AC power mains. The performance of G-66 can be compared favorably to an excellent communications receiver, one that is equally effective with $A C$ or $D C$ power sources.
at your fingertipe
Panel antenna trimmer-panel " $\mathrm{S}^{\prime \prime}$ meter-panel BFO pitch controlslide rule dial with rotating drum exposes only band in use-40:1 tuning ratio-automatic noise limiter-AVC.

all the axsurese

Provides outstanding operation on all reception modes... AM, CW, SSB with a new high order of stability for CW and SSB reception now made possible by stabilized HF and BF oscillators and by the use of a crystal controlled second conversion oscillator.
Double conversion, (2050 kc lst I.F.) and double input tuning, (3 tuned circuits) on higher bands for very high image rejection.
265 kc 2 nd I.F. with 8, high "Q" tuned circuits gives 3.5 kc bandwidth at 6 db down, together with steep "skirt" selectivity.

pertiment data

6 bands: $540.2000 \mathrm{kcs} .-3500-4000 \mathrm{kcs} .-7000.7300$ kes. $\mathbf{- 1 4 . 1 4 . 3 5}$ mcs. $\mathbf{- 2 1 - 2 1 . 4 5}$ mes. $\mathbf{- 2 8 - 2 9 . 7}$ mes.

8 tubes plus OB2 voltage regulator.
Front panel and chassis slip readily in and out of outer housing which may remain permanently mounted in the car.
"Three way" universal power supply and speaker unit attaches and plugs into rear of receiver as a cabinet extension. May also be mounted separately and connected with patch cable. Terminals are provided for external speaker, also for receiver muting.

CHOOSING YOUR CRYSTAL

Remember-Just any crystal and just any oscillator will not combine to produce spot frequencies.

Several facts should be considered other than the frequency. The final oscillating frequency of the crystal is affected by the associated oscillator circuit through the reactive load and drive levels. For close tolerance operation and. oven use the ambient temperature also must be considered.

For overtone operation crystal units especially processed for mode operations produce better results than fundamental types. Overtone crystals are calibrated on their overtone frequency and therefore are accurate frequency control units. Overtone crystals are valuable for receiver-converter applications and are normally not utilized in transmitters, since only a small amount of power is available under stable operating conditions.

Oscillator Load-will affect erystal frequency from 100 cycles to several kilocycles depending upon the crystal frequency. International erystals are designed to operate into the loads listed below:

Temperature-Ali crystals processed by International use "Zero Coefficient" cuts. Blank angles are held to closer tolerance in the F-6 units and therefore will change less over a given temperapure range than the FA units. Tolerances are listed in the table below.

TYPE	LOAD CAPACITANCE ar OSCILLATOR	CALIBRATING TOLERANCE IN SPECIFIED LOAD	TEMP. TOLERANCE $-30^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$
$\begin{aligned} & \text { F-6 } \\ & \text { (fundamental) } \end{aligned}$	Specified by customer (Use in commercial equipment)	$\pm .0025 \%$	$\pm .002 \%$
$\begin{aligned} & \text { F-6 } \\ & \text { (overtone) } \end{aligned}$	Specified by custamer (Use in commercial equipment)	$\pm .0025$ \%	$\pm .002 \%$
FA (fundamental)	32 mmf (only)	$\pm .01 \%$	$\pm .01 \%$
FA (overtone)	Anti-resonate operation without aditional load. (See circuit with crystal)	$\pm .01 \%$	$\pm .01 \%$
FX-1	FO-1A or FO-1B Oscillator	Available from $.001 \%$ ta $.01 \%$ as required	$\pm .002 \%$

Far further Infarmaflan, turn the page

окцаномл стty, окца.

FA-9 FOR AMATEUR USE

Spot Frequencies 1500 KC to 75 MC

ONE DAY PROCESSING

$.01 \%$ TOLERANCE—Crystols ore oll of the ploted, hermetically seoled type ond colibroted to $.01 \%$ or better of the specified frequency. See specificotions below:
Holders: Metal, hermeticolly seoled, ovoiloble in .093 dio. pins (FA-9) or . 050 dio. pins (FA-5).
Calibration Tolerance: $\pm .01 \%$ of nominal of $30^{\circ} \mathrm{C}$.

Temperature Range: $-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.
Tolerance over temperature range from frequency of $30^{\circ} \mathrm{C} \pm .01 \%$.
Circuit: Designed to operote into o lood copac. itance of 32 mmf on the fundomentol between 1500 KC ond 15 MC . Designed to operate of onti-resononce on overtone modes into o grid circuit without odditional copocitonce lood. Write for recommended circuits.

1) it 3 FA-9* (Pin Diameror .093)		
Pin Spacing . 486 (*FA. 9 fifs same surk FT.243)		
RANGE	LERANCE	PRICE
Fundamental Crystals		
1500-1799 KC	. 01%	\$4.50
1800-1999 KC	. 01%	\$3.90
2000-9999 KC	. 01%	\$2.80
10000-15000 KC	. 01%	\$3.90
Overtone Crystals		
(for 3rd overton	operafio	
15 MC-29.99 MC	. 01%	\$2.80
$30 \mathrm{MC}-54 \mathrm{MC}$. 01%	\$3.90
(for 5th overtone operation)		
$55 \mathrm{MC}-75 \mathrm{MC}$. 01%	\$4,50

F-6 FOR COMMERCIAL USE Precision Crystals 1000 KC to 60 MC
 ONE DAY PROCESSING

Wire mounted, plated crystals, for use in commercial equipment where close tolerances must be observed. All units are calibrated for the specific load presented by equipment.
Holders: Metal, heremeticolly seoled. Pin spacing . 486 Calibration Tolerance: $\pm .0025 \%$ of nominal of $30^{\circ} \mathrm{C}$.
Tolerance over Temp. $\pm .005 \%$ from -55° 10 $+90^{\circ} \mathrm{C}$.
Range: $\quad \pm .002 \%$ from $-30^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$.
Circuit: As specified by customer. Crystals ore ovoiloble for oll mojor two-way equipments. In most coses the necessary correlotion doto is on file.
Drive level: Moximum- 10 milliwatts for fundomental,

Delivery: ONE DAY PROCESSING. All orders of less than five units of any one frequency in th range 1000 KC to 60 MC will be mail. ed within 24 hours from the time received.
F. 612

Pin dia. . 125
Pin ligth. . 620

FO-1 PRINTED CIRCUIT OSCILLATOR

For Generating Spot Frequencies with Guaranteed Tolerance

Since the operating tolerance of crystol is greotly offected by the associated operating circuit, the use of the FO. 1 Oscillator in conjunction with the FX .1 Crystal will guarantee clase tolerance operation. iolerances os clase as .001 percent can be obtoined.

O-1 for Fundamental Operation 200 KC to $15,000 \mathrm{KC}$

FO.1-OScillator Kit (less tube and crystal) $\$ 3.95$ FO-1A-Oscillator, factory wired \& tested with tube (less crystal)... $\$ 8.95$ FO-1B for Overtone Operation 15 MC to 60 MC
FO-IB—Oscillator Kit (less tube and crystal)................................... 53.95 * FO-18A-Oscillator, factory wired \& tested with tube (less crystal) $\$ 0.95^{*}$ -Includes coit in one of four ranges: $15-20 \mathrm{MC}, 21-30 \mathrm{MC}, 31.40 \mathrm{MC}$, or $41-60 \mathrm{MC}$,

OSCILLATOR SPECIFICATIONS		
	$\begin{gathered} \text { FO- } 1 \\ \text { (fundamental) } \end{gathered}$	FO-1B (overtone)
Freq. Range	$\begin{aligned} & 200 \mathrm{KC}- \\ & 15,000 \mathrm{KC} \end{aligned}$	15 MC-60 MC (in 5 ranges)
RF Output	3 to 10 volts into 1200 ohms	2 to 7 volis into 18000 ohms
Plate Power	210 volis (d) 5 ma	150 volts © 8 ma
Heater Power	6.3 volts @ 150 ma	6.3 volts @ 175 ma
Tube	6846	GAK5
$\begin{aligned} & \text { Maximum Drift } 40^{\circ} \mathrm{F} \text { to } 120^{\circ} \mathrm{F}- \\ & \pm .002 \% \text { incl. crystal* } \end{aligned}$		
Maximum Drift with (*) Plate Volroge Chenge		$(.0 \pm 10 \%)$
Calibration Tolerance	$\begin{aligned} & .001 \% \text { to } \\ & .01 \% \\ & \text { depending on } \end{aligned}$	$\begin{aligned} & .001 \% \text { to } \\ & .01 \% \\ & .1 \text { erystal used } \end{aligned}$
Size	$4^{\circ} \times 4^{\prime \prime} \times 3^{\prime \prime}$ overall	$4^{\prime \prime} \times 4^{\prime \prime} \times 3^{\prime \prime}$ overall
Mounting 4	4 holes (with bro	kels provided)

FX-1 CRYSTAL

For Use with the FO-1 Oscillator

The FX-1 Crystal is designed for use x-1 only with the FO-1 Oscillator. For tolerances of $.01 \%$ and $.005 \%$, any FX-1 Crystal can be used with any FO-1 Oscillator.

For tolerances closer than $.005 \%$ the oscillator and crystal must be purchased together. The oscillator is factory wired, and the crystal custom calibrated for the specific oscillator.

For erystal prices consult table below:

TOLERANCE	$\begin{gathered} 200-499 \\ K C \end{gathered}$	$\begin{gathered} 500-999 \\ \mathrm{KC} \end{gathered}$	$\begin{gathered} 1000.1499 \\ K C \end{gathered}$	$\begin{aligned} & 1500.1999 \\ & K C \end{aligned}$	$\begin{gathered} 2000-9999 \\ \mathrm{KC} \end{gathered}$	$\begin{aligned} & 10,000-15,000 \\ & K C \end{aligned}$	$15 \mathrm{MC}-29.9 \mathrm{MC}$	30 MC - 60 MC
. 01%	\$ 8.75	\$12.50	\$ 5.25	\$ 3.75	\$ 3.00	\$ 3.25	\$ 3.00	\$ 4.00
. 005%	\$12.50	\$15.00	\$ 6.00	\$ 4.50	\$ 3.50	\$ 4.00	\$ 5.00	\$ 6.50
(. 0025% and $.001 \%$ tolerances are available only by purchasing the F 0.1 Oscillator and Crystal together)								
. 0025 \%	\$17.50*	\$17.50*	\$ 6.75*	\$ 5.25*	\$ 4.50 *	\$ 4.75*	\$ 6.50*	\$ 8.50*
. 001%	\$25.00*	\$25.00*	\$ 8.00*	\$ 6.50*	\$ 6.00*	\$ 6.00*	\$10.00*	\$15.00*

*Prices are for crystal only. To insure tolerances closer than . 005% crystal must be purchased with oscilfator factory wired and tested, for tatal price add $\$ 6.95$ to price of crystal desired.

HOW TO ORDER: In order to give the fastest possible service, crystals and oscillators are sold direct. Where cash accompanies the order, International will prepay the postage; otherwise, shipment will be made C.O.D.

68

THE WORLD'S LARGEST MANUFACTURER OF TRANSMITTING TUBES

You can depend on

The amphenol Amateur Antenna has been designed to meet your need for a simple, effective folded dipole antenna system. The efficiency of the amphenol Antenna for both transmitting and receiving has been demonstrated by years of satisfied amateur use. The Amateur Antenna is available in an economical, easy-to-assemble kit form. All the kits are pre-cut to band length and are ready for final assembly and installation. Complete assembly instructions are included.

Amphenol twin-lead, flat or tubular, is made of the finest materials available, manufactured with constant and rigid inspection. The brown pigmented virgin polyethylene assures a minimum of signal loss and constant impedance.

Amphenol flat twin-lead is available in a variety of types and sizes. AIR-CORE Tubular twin-lead (U.S. Pat. No. 2,543,696) is a must for UHF television lead-in purposes.

Amphenol cables are produced in strict conformity to the rigid military specifications. Constant checks and inspections are made to assure the best in mechanical and electrical construction.

Most of the RF cables in the amphenol line have top grade polyethylene dielectric for low-loss, flexibility and mechanical stability. For high temperature applications, cables are also available with other types of dielectric, including Teflon.

बMPHENOD Qualify

FLAT and TUBULAR TWIN-LEAD

$16-271$

COAXIAL CABLE

MICROPHONE CONNECTORS

Four separate series of microphone connectors are manufactured by amphenol. Newest of the new are the sensational QWIKs. These 3 and 4 contact bullet-shaped connectors add modern efficiency and modern design to every mike application. The 75 series connectors function as either male or female fitting, include jacks, plugs, receptacles, adapters and switches. The 80 series 1 and 2 contact connectors are designed for use with shielded cable. Obtainable in any combination of male or female cable connectors or chassis units. The 91 series include 3 and 4 contact connectors, polarized to prevent incorrect insertion.
Amphenol R F connectors are unsurpassed for mechanical design and electrical efficiency. They provide low-loss continuity in critical RF circuits with little or no impedance change or increase in voltage standing wave ratio.
Amphenol R F connectors are available in series SUBMINAX, BNC, BN, HN, LC, N, C and the popular 83 series, including plugs, jacks, receptacles and adapters. All amphenol R F connectors meet or surpass rigid government specifications.

INDUSTRIAL 2-WAY RADIO

THERE'S AN ENTIRE FAMILY OF G-E COMMUNICATIONS EQUIPMENT

G-E Communications Equipment Covers the Range 30 ke to $2,000,000 \mathrm{kc}$ • I watt to 3,000 watts
G.E. offers a complete line of com. munications equipment-from audio to microwave-for police, fire, oil, lumber, industrial and civil defense applications. Typical are:

Tone Equipment-Selective signalling systems up to 900 calls. Telemetering up to 18 quantities on one audio channel. Remote and supervisory control. Powerline protective relaying channel equipment.

Microwave-G-E microwave equipment offers dependable communication over long distances and in difficult terrain areas. Up to 24 channels available for heavy traffic use.
2-Way Radio Communication-G-E 2-way radio steps up productionincreases profits. Industrial, public safety, and emergency personnel use it for better co-ordination of activities.For full information on G-E communications equipment call the G-E office near you or write direct: General Electric Company, Communications Equipment, Section X566, Electronics Park, Syracuse, New York.

POLICE \& FIRE DEPTS.

24 CHANNEL COMMUNICATION

G-E 2-WAY RADIO FEATURES:

- FREQUENCY STABILITY AND SELECTIVITY guaranteed for life
- Narrow or wide band operation -6/12 volt operation
- Low battery drain-cooler running equipment
- Quality components-G.E. makes more of its 2-way radio components than any other manufacturer

Progress/s Our Most Important Product
GENERAL ELECTRIC

[^14]
If you aperate 'plane you won't be Satisfied until you own

The 664 will equal a useful power increase of four times over commonly-used peaked microphones, and could well be the best investment, dollar-wise, in your shack

Here is a totally new concept in microphones for amateur phone communication.
The cardioid (high directivity at all frequencies) pickup pattern enables you to have a real "arm chair QSO." The forward gain of $5 \mathrm{db}^{* *}$ allows you to speak at nearly twice the distance you have been working to a conventional microphone. Unwanted sounds in the shack are rejected nearly twice as effectively as by ordinarily-used non-directional microphones.
The response curve is tailored to put the highest degree of intelligibility on your carrier. Your 100% modulation is all speech . . . in full character . . . with bite and punch. This curve, compared to ordinary microphones, will give you up to 12 db more usable audio-without splatter or hash.
We invite you to prove to yourself that the 664 will outperform your present mike by a direct comparison. If it doesn't out-hurdle QRM, your distributor will refund the purchase price without qualification.

New Variable D* Dynamic Microphone operates on the principle of multiple sound paths to the diaphragm. Spaced apertures to the rear of the diaphragm are phased to provide cancellation of rear sounds and give full response to sound from the front.
This new principle enables the curve to be free from peaks or dips. Insures freedom of blasting and boominess from close talking. Eliminates effect from mechanical shock. High level -55 db . Acoustailoy diaphragm. Switch easily changed to relay control, if desired. Absolutely unaffected by moisture, humidity, or temperature.
Model 664. Without Stand.. Net Price: $\$ 47.70$ Model 419. Desk Stand...
.Net: 9.00
A peak in the response curve limits

NOW-A FULL LINE OF G-E H.F. TRANSISTORS FOR ALL RADIO APPLICATIONS

New G-E H.F. PNP Transistors, 2N135, 2N136, 2N137, Complement the G-E 2 N78 NPN

THis new line of G-E High Frequency PNP Transistors offers immediate benefits to electronics manufacturers for use in RF and IF amplifier circuits. The new High Frequency designs, now in full production, were created specifically for use in radio circuits. The line provides mirimum alpha cut-offs of $3 \mathrm{MC}, 5$ MC and 7 MC -coupled with a 5 ua maximum collector cut-off current. The result: all the highgain and high-power advantages of other General Electric transistors, plus operating ranges extending from 3 to 15 MC depend-
ing on the transistor selected. NOW IN COMMERCIAL RADIO CIRCUITS In the circuit above, the 2N136 is used as a converfer-its 5 MC minimum alpha cut-off assures stable oscillator performance and high conversion gain. The 2N137 -with 7 MC minimum alpha cut-off-provides 33 db gain at 455 KC. The high frequency 2 N 135 offers a higher collector voltage rating for the second IF where it is needed. The 2N78 NPN tran-sistor-originally designed for computer and RF circuitryproved ideal as a power detector and audio amplitier to drive a

2N44 power output transistor with direct coupling.

production quantities avallable

General Electric's new high frequency line is in mass production now. Detailed characteristics and specifications of the G-E 2N135, 2N136, and 2N137 transistors may be obtained upon request. Your G-E Semiconductor specialist and our factory application engineers have the answers to your transistor radio circuit questions. Call them in, or write: General Electric Co., Semiconductor Products, Section X566, Electronics Park, Syracuse, N. Y.

Progress/s Our Most Important Product general (3) Electric

harvey AUTHORIZED DISTRIBUTORS

HARVEY's line of RCA tubes is so complete, that HARVEY can fill virtually any requirement . . . right from stock . . . and deliver at almost a moment's notice.

This is particularly important to AM, FM, and TV Broadcasters, Industrial and Commercial users, Amateurs, and Service-Technicians, all of whom depend on tubes for sustained operation of important electronic equipment.

Wrile, Wire or Phone for PROMPT HARVEY SERVICE Visil Harres Nat ICDIOtorian at ll23 Aremue of the Ammricas (bth Hemme) in Nat Sork (ily

that's why NOVICES, AMATEURS, ENGINEERS, and EXPERIMENTERS Across the Nation RELY UPON HARVEY

 for all their ELECTRONIC and COMMUNICATION REQUIREMENTS!Because Harvey's stocks are so large and so complete, almost anything you can name in electronics, can be shipped within minutes of your letter, wire, or phone call. And you can depend upon Harvey that what you receive is exactly as ordered, and that it will function and perform to your complete satisfaction.

Harvey has been the reliable headquarters for hams, experimenters, professionals, commercial and industrial engineers for over 25 years. And the experience gained over these years is always at work for you. Six active amateurs are in Harvey's employ, plus a staff of well informed, trained experts who stand ready to assist you in the selection of parts and equipment, and in troubleshooting your problems. Every possible field is covered, including radio communications and broadcasting, TV, audio, recording, and industrial electronics.

Remember, you are always welcome at Harvey's. So, when in New York, make it a point to come in and say, "Hello".

Harvey is Always af your Service

AUTHORIZED DISTRIBUTORS OF

fand all the products of all the famous names in radio and electronics

Free rca ham tips
There's a free copy of RCA HAM TIPS waiting for you of Harvey Radio. If you can't call personally, write.

DE LUXE RELAY RACKS

These relay racks are made of 16 gauge steel with $1 /{ }^{\prime \prime}$ panel supports. The panel mounting sup ports are recessed so that no edges of the panel will be exposed.
The front and back of the top, the two sides and the door are well louvered to provide adequate ventilation. Snap catches are positioned on the door. A streamlined appearance is achieved by the use of rounded corners and red-lined chrome trim. The relay rack is shipped knockeddown and complete with all necessary hardware for assembly. All standard 19" panels will fit these racks.
A SPECIAL FEATURE IS THE USE OF FOUR STURDY SUPPORTS ON THE BOTTOM SO THAT CASTERS CAN BE FAS TENED DIRECTLY TOTHE BASE, THERE BY ACHIEVING READY MOBILITY. Bud RC-7756 casters will fit this unit. Casters are not included in price of cabinet. These relay racks are supplied in either black or grey wrinkle or grey hammertone finish. The overall width is $22^{\prime \prime}$ and the depth is $171^{\prime \prime}$ on all sizes listed.

Catalog	Overall	Panel	Shipping
No.	Height	Space	Wt.
CR-1774	421/6"	$363 /{ }^{\prime \prime}$	90 lbs.
CR-1771	475 /16"	$42^{\prime \prime}$	100 lbs.
CR-1772	66^{9} [6"	$611{ }^{\prime \prime}$	135 lbs .
CR-1773	82^{3} /16 ${ }^{\prime \prime}$	$77^{\prime \prime}$	155 lbs.

NEW BUD FILTERS TO REDUCE OR ELIMINATE TELEVISION INTERFERENCE

The sources of television interference are most often short wave broadcasting stations, amateur radio transmitting stations, diathermy equipment, X-ray equipment, automotive ignition noises or similar sources. The basic problem of eliminating this interference is that of rejection of the signals received from these sources.

LF-601

LOW PASS FILTER

Interference to television receiver reception caused by transmissions from an amateur station can be caused by harmonics or by shock from the transmitter. The shock from the transmitter fundamental can be cured at the television receiver with a Bud HF-600 high pass filter. Harmonics can be greatly reduced or eliminated at the transmitter by use of a Bud LF-601 low pass filter.

The LF-601 high attenuation low pass filter has the following characteristics:

- Minimum attenuation of 85 decibels on all frequencies above 54 megacycles and a minimum of 93 decibels above 70 megacycles. - Maximum rejection is adjustable from 55 to 90 megacycles. This tunable feature provides two slots at least 100 decibels down. The cut-off frequency is 42 megacycles. The unit will easily handle a full kilowatt modulated on a reasonably flat line. The insertion loss is less than one DB. Since the design of this filter provides an adjustable feature, the unit can be used with either 52 ohm or 72 ohm coax - Each inductance is in an individually shielded compartment . Capacitors used are variable. Size $12^{\prime \prime} \times 21 / 2^{\prime \prime} \times 21 / 4^{\prime \prime}$.

HF-600 HIGH PASS FILTER

The HF-600 high pass filter has a cut off frequency at 42 megacycles, thus this filter rejects signals from 0 to 42 megacycles. It is within this range that the majority of signals causing interference are received. Since there is no attenuation above 42 megacycles, picture strength or quality is not affected. This unit is easily installed and complete installation instructions are included. The filter is housed in an attractive aluminum case $31 / 4^{\prime \prime}$ $\times 21 / 8^{\prime \prime} \times 11 / 8^{\prime \prime}$

TINY MITE TUNING CONDENSER SINGLE SECTION

This series of condensers has been designed for applications where space or weight are limiting factors and for tuning of high frequency circuits. Rigid construction, close fitting bearing, positive rotor contact and Steatite insulation are the outstanding features. Cadmium plated, soldered, brass plates and rods insure high frequency efficiency. For sizes consult BUD Catalog

SUPER DE LUXE RACKS (2 door)

This new Relay Rack is made o gauge steel with $1 / 8^{\prime \prime}$ panel supp The construction is similar to series of Bud de luxe Relay R shown above. The panel moun supports are recessed, so that no e of the panel will be exposed, and are also adjustable from front to b at various stopping points. This ables you to utilize the space in and behind the panel to any des When placed as far back as the kn outs provide, the panel is $6^{\prime \prime}$ from front of the Rack.
These Racks have both front rear doors; the rear door to cover of the equipment behind the pa providing eas y access. The front d provides a means of concealing d knobs, etc., that may be in the f of the panel.
These relay racks also have exclusive Bud feature of support the bottom, so that the casters may be fixed directly to the b AVAILABLE IN BLACK OR GREY WRINKLE OR LIG GREY HAMMERTONE FINISH AT NO EXTRA CHAR

Catalog
CR-2174
CR-2171
CR-2172
CR-2173

Overall Height 421 16" $47^{5}{ }^{16}{ }^{\prime \prime}$ $66^{9}{ }^{16}{ }^{\prime \prime}$ 82^{3} is $^{\prime \prime}$

Panel
Space
$3684^{\prime \prime}$
$42^{\prime \prime}$
$611 / 4^{\prime \prime}$
$77^{\prime \prime}$

Shippi
110
122
165

DE LUXE CABINET RACKS

These cabinet racks have rounded corners attractive red-lined chrome trim. There recessed, hinged door on the top with a catch. These racks are made of heavy ga steel and are of sturdy construction. The large sizes have a hinged rear door, while small sizes have a welded panel in the rea

Adequate ventilation is assured by me of louvered sides and a two inch opening in bottom of the back extends the entire width "NO-SCRATCH" EXTENDED METAL FEET ARE E BOSSED ON THE BOTTOM TO MINIMIZE MARRING A TABLE TOP. Racks are furnished in either black or grey wrin or grey hammertone finish. Depth $144^{\prime \prime \prime}$, width $22^{\prime \prime}$. Will fit sta ard 19" panels.

For sizes consult $B U D$ Catalog
StANDARD RELAY RACK PANELS
Made of Steel or Aluminum. St Panels are made of high grade st敫 thick. Aluminum Panels made of ${ }^{1} 8^{\prime \prime}$ thick Aluminum. Panels are $19^{\prime \prime}$ wide. Furnished either black or grey wrinkle or ge hammertone. Aluminum panels thick may be had if desired at 60 increase in cost over $1 / 8^{\prime \prime}$.
For sizes consult BUD Catalon

STEEL CHASSIS BASES

These chassis are made from piece of steel, all corners are re forced and spot welded. The fo sides are folded on bottom for ditional strength - this also p mits a bottom plate to be attach if desired. Furnished in either Black Wrinkle or Electro-Zinc plate For sizes consult BUD Catalon

ALUMINUM CHASSIS

The construction and design these chassis is exactly the same our steel chassis. The aluminu chassis are welded on governme approved spot welders that are same as used in the welding aluminum airplane parts. As result, you can depend on BU Aluminum Chassis to do a perfect job. Etched Aluminum finis The gauges in table below are aluminum gauges.

For sizes consult BUD Catalog

75-WATT TRANSMITTER COILS

These coils are distinguished by their rigid construction, attractive appearance and conservative power rating. The polysty rene mounting base keeps the coil a safe distance from the chassis it also permits easy coil removal without dis turbing the winding. All coils are air-wound and mount in 5 prong tube sockets.

OEP and OCP Coils are designed for use in circuits using Pentode tubes with high output capacity such as $6 \mathrm{~L} 6,807$, etc.
coils have fixed end link and are not tapped
have fixed center link with main winding center tapped.
have adjustable center link, main winding center tapped.
have adjustable end link and are not tapped
have adjustable end link and are not tapped
have adjustable center link main winding center tapped.

Catalog No. Fixed Center Link	Cat. No. Adjustable Center Link	Cat. No Adjustable End Link		Band	Capacity*	
	OLS-160		160	Meter	100	MMFD
		OES-160	160	Meter	86	MMFD
OCL-80	OLS-80	OES-80	80	Meter	75	MMFD
OCL-40	OLS-40	OES-40	40	Meter	52	MMFD
OCI-20	OLS-20	OES-20	20	Meter	40	MMFD
OCL-15	OLS-15	OES-15	15	Meter	30	MMFD
OCL-10	OLS-10	OES-10	10	Meter	25	MMFD
OCL- 6				Meter	17	MMFD
	OCP-10	OEP-10	10	Meter	45	MMFD
	OCP-20	OEP-20	20	Meter	50	MMFD

Jenotes tube plus circuit plus output coupling capacities required resonate coil at low frequency end of band.

IRON CORE R. F. CHOKES

The efficiency of any circuit requiring an R. F. choke will be definitely improved by utilizing one of these chokes with a finely divided molded metalic core. The improved ' Q ', possible with this contruction results from the D. C. resistance of these chokes being from 40 to 50% less for a given inductance than for regular air-core types. Thus, the D. C. voltage drop through the choke is conlerably less, yet the choking action is equally as good. Windings e made with silk-covered enameled wire terminated on convenield cans measuring $13 / 8^{\prime \prime} \times 13 / 8^{\prime \prime} \times 17 / 16^{\prime \prime}$.
\(\left.$$
\begin{array}{lccc}\text { atalog } & \begin{array}{c}\text { Inductance } \\
\text { mh. }\end{array}
$$ \& D. C. Resistance

Ohms\end{array}\right)\)| Current |
| :---: |
| I-1277 |

Also available Pie wound and Lattice wound Ceramic Core

"CE" MIDGET CONDENSERS

 SINGLE SECTION DOUBLE BEARINGThese Midget Condensers were designed to meet the rigid requirements in design of efficient high frequency electronic devices and precision laboratory equipment. Brass rotor and stator plate stacks are assembled into permanent units by means of electro-soldering, which assures means of electro-soldering, which assures, Eng life and accurate plates of Steatite insulate the mount2 g bushings and angles from the rotor and stator assembles. The arge front and rear bearings provide for smooth rotation. Special iper contact provides noise-free tuning. All metal parts are admium plated. Rotor plates semi-circular shaped. Provision for ither panel or base mounting.

For sizes consult BUD Catalog

CODE PRACTICE OSCILLATOR AND MONITOR CPO-128A

The BUD Codemaster is a real moneysaver. No longer do you have to consider your code practice oscillator useless after you have learned the code. A flip of the switch and you have a good CW monitor. This is a really versatile instrument.
It has a $4^{\prime \prime}$ built-in permanent magnetic dynamic speaker and will operate up to twenty earphones. Now 2 tubes.
A volume control and pitch control permit adjustments to suit individual requirements. Any namber of keys can be connected in parallel to the osrillator for group practice.
This unit will operate on 110 volts A.C. or D.C. An external speaker may be plugged in without the use of an output transformer. All controls are placed on the front of the unit and all jacks are in the rear. The unit is $61 / 2^{\prime \prime}$ high, $51 / 2^{\prime \prime}$ wide and $31 / 2^{\prime \prime}$ deep. It is finished in Grey Hammertone enamel with red lettering.

MODEL CPO-130A

This unit is similar to the CPO-128A. The difference is that the $4^{\prime \prime}$ speaker is not indifference is that the 4 speaker is not in-
cluded. The monitor feature, however, is included. A phone jack is provided for the output and as many as 20 pairs of phones and keys can be operated at one time for class-room operation. This model will also operate a permanent magnetic dynamic speaker. Size is $51 / 2^{\prime \prime}$ wide, $41 / 2^{\prime \prime}$ high, $31 / 2^{\prime \prime}$ deep.

FREQUENCY CALIBRATOR FCC-90A

To comply with federal regulations, some means of accurately checking transmitter frequency must be available at every "ham" station. The BUD FCC-90A consists of a 100 kc. crystal oscillator that is Completely Self-Powered. It will give 100 kc . check points on all bands up to 30 megacycles. This enables the operator to determine exact band edges.

No extra wiring is required to install this unit. Plug the FCC-90A into a 110 volt receptacle, connect the pick-up lead to the antenna binding post of the receiver and the unit is ready for operation. An ON-OFF switch and a STANDBY switch are provided. Now 2 tubes.

THREE-GANG TINY MITE CONDENSERS

Hams, Radio Constructors and Experimenters can find many uses for these compact, three-gang condensers. Designed particularly for high frequency use, they are adaptable for use in converters, preselectors and receivers covering the Amateur, Television and F.M. bands Well constructed with soldered brass plates and ceramic brackets Rotor shaft extended $1 / 4^{\prime \prime}$ at rear. Height $15 / 16^{\prime \prime}$. Width $13 / 16^{\prime \prime}$ Length behind panel $33 / 8^{\prime \prime}$. Mounting holes $23 / 16^{\prime \prime}$ apart.

For sizes consult BUD Cataloß

MIDGET CONDENSERS

Small size, sturdy construction and high mechanical and electrical efficiency are the outstanding features. Insulation used is Steatite. Rotor and Stator plates are brass and are electro-soldered to their respective rods. All metal parts are cadmium plated These condensers have both front and rear bearings and are furnished in either mid-line type plates (straigh line wave length), or semi-circular plates (straight line capacity.)

For sizes consult BUD Cataloß

NEUTRALIZING AND HIGH FREQUENCY TUNING CONDENSERS

This line of condensers will fill every neutralizing and high frequency tuning requirement that modern circuits pose. The two-pillar construction makes this unit unusually sturdy and eliminates any possibility of capacity variation due to vibration. The movable plate is adjusted by means of the threaded shaft to which it is attached, and it is permanently locked in any position by the lock-nut provided. Any loose thread is taken up by a special nut and locked to give smooth operation. All metal parts are of aluminum or brass. Plates have rounded edges. Steatite insulation is used.

For sizes consult BUD Catalog

Detailed Data Sheets on uny of hesese wbess, and application engineering sevice are yours tor the asking. 78

[^15]
DX-100

PHONE ANDCW

 TRANSMITTER KIT

MODEL DX-100
Shpg. Wi. 120 Jbs,

Shipped motur freisht unless whermse specified. 850.00 demosit with C.O.D. miers.

- R.F. onitpal 100 watts Phone, 125 watis CW.
- Built in VFD, modulator. power supplies. Kit includes all components, tubes, eatinet and detailed construction manuat.
- Crystat or VF 0 operation (crystais nol included with kit).
- Pi network output, matches $50-600$ ohms non-reactive luad. Reduces harmenic output.
- Treated for TVI suppression by extensive shielding and filtering
- Single knoth bandswitching, 160 meters through 10 meters.
- Pie-punched chassis, well illustrated construction manuai, high quality components used throughout-stardy mechanical assembly.

Heathkit GRID DIP METER KIT

The invuluable fustrument for all Hams. Nutaerous applitations such as pretambag, neutratization, lurating parasities, correctits TVI, ardjusting athtemas, design proredures, etc. Receiver applications include meamaring C. I, and © of components-determining RF eircuit resonant frequencies
Covers 81. 10, 21t.11, 10, 6.2, and It meter Ham bands. ('ompleta frequency coweraze from $2-250$ Ac. using peady-wount plug-in coils provited with the h:t. Accessory roil kit. Part 341-A at \$3.003 extends lew frequency range to 3:0 Ke. Diel rorrelation curves firrnished.
Compact construction, one hand oberation. Al: transformer operatred, variable sensitivity control. inte calibrations. Precaibrated read with additwnal bank dials for individual calibration roull like the reatly convenience and sanari appearance of this kit whit it; baked enamed panel and crarkle finish cabinet.

HENIH TOMPEIT
 A SUBSIDIARY OF DAYSTROM, INC. BENTON HARBOR 9, MICHIGAN

This modern-design Transmitter has its own V'FO and plate-modulator built in to provide CW or phone operation from 160 meters through 10 meters. It is TV'I suppressed, with all incoming and out-going circuits filtered, plenty of shielding, and strong metal cabinet with interlocking seams. Uses pi network interstage and output coupling. R.F. output 100 watts phone, watis C W. Switch-selcction of VFO or 4 crystals (erystals not ineluded).
Incorporates high quality features not expected at this price level. Copper plated chassis-wide-spaced tuning capacitors - excellent quality components throughout-illuminated IFO dial and meter faceremote socket for conncetion of external switch or control of an external antenus relay. Preformed wiring harness-concentric control shafts. Plenty of step-bystep instructions and pictorial diagrams.

All power supplies built-in. Covers 160, 80, 40, 20, 15 , 11 and 10 meters with single-knob bandswitching. Panel meter reads Driver I_{P}. Final I_{G}, I_{P}, and Ep, and Modulator I_{p}. Uses fidUf VFO, 12HY7 Xial osc.-buffer, 5763 driver, and parallel 6146 final. 12.1×7 speech amp., $12 \mathrm{BY}^{7}$ driver, push-pull 162.5 modulators. Power supplies use $5 \mathrm{~V}_{4} 4$ low voltage rect., $6 A L 5$ bias rect., $0 \Delta 2$ VFO voltuge reg., (2) $5 R 4 G Y$ hi voltage rect., and $6 A Q 5$ clamp tube. R.F. output to coax. connector. Overall dimensions $207 / \mathrm{s}^{\prime \prime} \mathrm{W}$ x $133 / 4^{\prime \prime}$ II $\times 10^{\prime \prime}$ D.

Heathkit ANTENNA COUPLER KIT

Poor matehing allows valuablecommunications energ. y to be lost. The Model AC-1 will properly match your low power transmitter to an end-fed long wire antenna. Also attenuates signals above 36 Mc , reducing TVI. 52 ohm coax. input-power up to 75 watts- 10 through 80 meters-tapped inductor

MODEL AC-1
$\$ 4450 \begin{gathered}\text { Shpg. Wr. } \\ 4 \mathrm{lbs} .\end{gathered}$ und vitriable condenserneon IRF indicat or-copper plated chassis and high quality components

Heathkit antenna impedance METER KIT

Use the Model AMI-1 in conjunction with a signal source for measuring antenna imperdance, line matching purposes, adjustment of beam athd mobile antennas, and to insure proper impedance mateh for optimum overall system operation. Will double, also, as a phone monitor or relative field strength indicator.
$100 \mu a$. meter employed. Covers the range from 0 to to 600 ohms. Cabinet is only $7^{\prime \prime}$ long, $2 \frac{1}{2} 2^{\prime \prime}$ wide, and $31 / 4^{\prime \prime}$ deep. An instrument of many uses for the amateur.

Heathkit AMATEUR TRANSMITTER KIT

Ship. Wi. 16 lbs .

SPECIFICATIONS

Range $80,40,20,15,11,10$ meters.
$6 A G 7$
6A, 61.6

Amplifier-doubler
5U5G 125 Voit A.c. $50-60$ cycestifier.
witts. Size: $81 / 8$ inch high $\times 131 / \mathrm{B}$ inch
wide $\times 7$ inel" deep.
muged,
sigant
construction.
Here is a major Heathkit addition to the Ham radio fleld, the AT-1 Transmitter Kit, Incorporaring many desirable design features at the lowest possible dollar-fer-watts price. Panel mounted crystal sorket, stand-by switch. key cllck flter, A. C. Ine fltering, good shlelding, etc. VFO or erystal exefta-tion-ud to 35 watis input. Butit-In power supply provides 425 volts at 100 MA . Amazlngly low kit price includes all circuit components, tubes, cabinct, bunched chassis, and detalled construction manual.

Heathkit COMMUNICATIONS RECEIVER KIT

HEATH COMPANY
BENTON HARBOR 9, MICHIGAN

A new Heathkit AR-2 communi-
A new Heathitit AR-2 communipanlon plece for the AT-1 Transmitter. Electrical bandspread scale for tunlng and logging conventence. High gain minlature tubes and $1 F$ transformers for high sensittivity and good signal to nolse ratio. Construct your own Communcations Recelver at a very substantlal saving. Supplied with all tubes, punched and formed sheet metal parts, speaker, clrcult components, and detalled stej-by-step construction manual.

MODEL AR-2
53550
Ship. Wi. 12 lbs. CABINET:
Proxylin impregnated fabric cov. ered plywow cab. inet. Shipl. weight

HIGHEST TRADES: get the absolute top trade on your old equipment at allied. Tell us what you've got and what you want-we'll come up with the best deal anywhere.
EASIEST-PAY TERMS: only 10% down, or your trade-in as down payment (pay in 60 days and get full carrying charge refund). Use our money-saving easy-pay plan. Extra: 15-day trial on all receivers.

LARGEST STOCKS: get everything from our largest stocks of Amateur Gear and indus trial electronic supplies-all the nationallyknown dependable lines.
HAM-TO-HAM HELP: our staff of 35 Amateurs goes all-out to give you the straight dope you want. You'll like the kind of personal attention Amateurs have enjoyed at allied for so many years.

QST

QST has been the radio amateur's own journal since 1915 . Although primarily a ham magazine, it is found on the desks and library shelves of engineers, technicians and others in the electronics field who wish to keep in touch with the development of the art. There is something for everyone in QST, from the Novice to the Old Timer.

QST and ARRL membership $\$ 4.00$ in U.S.A., $\$ 4.25$ in Canada, $\$ 5.00$ elsewhere

THE RADIO AMATEUR'S HANDBOOK

Internationally recognized, universally consulted. The all-purpose volume of radio. Packed with information useful to the amateur and professional alike. Written in a clear, concise manner, contains hundreds of photos, diagrams, charts and tables
$\$ 3$ U.S.A., $\$ 3.50$ U.S. Poss. and Canada, \$4 elsewhere

HOW TO BECOME A RADIO AMATEUR Tells what amateur radio is and how to get started in this fascinating hobby. Special emphasis is given to the needs of the Novice licensee, with three complete simple amateur stations featured. 50 c

THE RADIO AMATEUR'S LICENSE MANUAL
Study guide and reference book, points the way toward the coveted amateur license. Complete with typical questions and answers to all of the FCC amateur exams-Novice, Technician, General and Extra Class. Continually kept up to date. 50 c

LEARNING THE RADIOTELEGRAPH CODE

For those who find it difficult to master the code, this publication supplies the key to the problem. Designed to help the beginner overcome the main stumbling block to a ham license. Contains practice material for home study and classroom use. $50 ¢$

SINGLE SIDEBAND FOR THE RADIO AMATEUR

A digest of the best SSB articles from QST. The newcomer to Single Sideband as well as the experienced SSB user will find it indispensable. Includes discussions of theory and practical "how-to-build-it" descripfions of equipment. Covers both reception and transmission.
$\$ 1.50$ U.S.A. proper, $\$ 1.75$ elsewhere

THE ARRL ANTENNA BOOK

Containing 16 chapters and profusely illustrated, the Antenna Book includes all necessary information on theory and operation of antennas for all amateur bands; simple doublets, multielement arrays, rotaries, long wires, rhombics, etc.
$\$ 2.00$ U.S.A. proper, $\$ 2.25$ elsewhere

A COURSE IN RADIO FUNDAMENTALS

A complete course of study for use with the Radio Amateur's Handbook, enables the student to learn the principles of radio by following the principle of "learning by doing." Applicable to individual home study or class use.
$\$ 1$ U.S.A. proper, $\$ 1.25$ elsewhere

HINTS AND KINKS

If you build equipment and operate an amateur radio station, you'll find this a mighty valuable book in your shack and workshop. More than 300 practical ideas.
\$1 U.S.A. proper, $\$ 1.25$ elsewhere

THE MOBILE MANUAL FOR RADIO AMATEURS

This manual is a useful and informative guide to mobile radio. It is a collection of articles on tried and tested equipment that have appeared in QST. Contents include a section on receivers, transmitters, antennas and power supplies. A "must" for the bookshelf of anyone interested in

Applicatian for Membership American Radio Relay League

Administrative Headquarters: West Hartford, Connecticut, U. S. A. 19....

American Radio Relay League, West Hartford, Conn., U. S. A.

Being genuincly interested in Amatcur Radio, I hereby apply for membership in the American Radio Relay League, and enclose $\$ 4.00^{*}$ in payment of one year's dues, $\$ 2.00$ of which is for a subscription to QST for the same period. [Subscription to QST alone cannot be entered for one year for $\$ 2.00$, since membership and subscription are inscparable.] Please login my subscription with the .issue.

The call of my station is \qquad
The class of my operator's license is \qquad
I belong to the following radio societics

Send my Certificate of Membershipor Mcmbership Card \square (Indicate which) to the address below:

Name \qquad
\qquad
\qquad

Qust Right For your rie:

SPRAGUE CAPACITORS

HYPASS®-feed-through capacitors for bypassing harmonic currents in transmitters and for eliminating v-h-f interference from a-c mains and control circuits. Ideal for eliminating TVI ... developed to meet transmitter needs outlined by ARRL Headquarters.

FILTEROL®-line filters for suppressing "man-made" radio noises and television "scrambles" on practically any application. Small, self-contained, and easily installed, Filterols provide maximum noise sup. pression.

CERA-MITE末 - the first complete line of miniature disc ceramics. Tough. dependable, and inexpensive. A type for every use-GA (General Application), high-K, and temperaturecompensating.

METAL-ENCASED PAPER CAPACITORS - long a favorite with amateurs, these metal encased capacitors are impregnated and filled with KVO, the efficient dielectric material. Long-life and reliability are out. standing.

TELECAP* - phenolic molded paper tubulars assure maximum dependability under extreme heat, humidity, and shock. These Black Beauties are available in ratings from 200 to 12,500 volts d.c.

ATOM ${ }^{(1)}$-metal-encased, dry electrolytics are engineered especially for tough television replacement applications. Small enough to fit anywhere, Atoms withstand punishing $85^{\circ} \mathrm{C}$. ($185^{\circ} \mathrm{F}$.) temperatures.

TWIST-LOK ${ }^{\star}$-dry electrolytics, sealed in aluminum cans with twist-prong tabs for washer or direct-tochassis mounting. Top dependability in small size at $85^{\circ} \mathrm{C}$. ($185^{\circ} \mathrm{F}$.). Sprague makes more ratings than any other manufacturer. Ideal for TV servicing.

MICAS -of maximum quality for R-F applications where high "Q" and high insulation resistance are required. There is a Sprague mica capacitor for everyamateur requirement, from tiny half "postage stamp" typestogiant ceramic-jacketed types.

3415 W. BROADWAY COUNCIL BLUFFS, IOWA

HERE'S THE
 Exolusive World Radio

 LINE!
The King of TransmittersWRL'S NEW 500A GLOBE KING!
 Completely Bandswitching

Only $\$ 36^{78}$ per month
PAY JUST 10\% CASH DOWN CASH PRICE: $\$ 675.00$

Packing a Mighty Punch,WRL'S NEW 65A GLOBE SCOUT!

The ideal transmitter for novice or standby Xmitter. Fully bandswitching, 160 thru 10 M ., 65 watts CW, 50 watts on fone. Metering provided. Pi Network antenna tuner. Selfcontained power supply. May be used mobile; provisions for dynamotor attachment. 100% modulation of Final. IV'i screened cabinet. Compact: 8'x16'x 8'.

Only ${ }^{\$ 7}{ }^{95}{ }_{\text {per month }}$ PAY JUST 10\% CASH DOW CASH PRICE: \$99.95 KIT PRICE: $\$ 89.95$
dheal Companion to the clobe scout q clobe kin

\star Extremely Stable \star Built -in Power Supply \star Completely Bandswitching \star Calibrated on 160, $80,40,20,15,11$ and 10 Meters * Output on 160 and 40 M. \quad © Calibrate Switch for Zero Beating \star Full Range Vision Dial.

Only ${ }^{\$} 5^{00}$ per month

CASH PRICE: $\$ 59.95$
KIT PRICE: $\$ 49.95$

Guaranteed for ONE FULL YEAR!

ECONOMY
Code Oscillator KIT

Only ${ }^{5} 4^{95}$
.urdy "PLUMBER'S DELIGHT" Beams M $\$ 18.95$ ISM $\$ 27.95$ 20M $\$ 49.95$

WRL'S NEW

Just ${ }^{\$ 2} \mathbf{4}^{95}$
las

- ANTENNA KIT
- ANTENNA TUNER KIT
- STANDING WAVE RATIO BRIDGE

TOP TRADE-NS GUARANTEED!

let us know what you have what you want - well make you the deal of a lifetime, backed
by a 20 year reputation for top trade-ins and fair dealing

System Engineered by Harvey-WELLS

ORDER FROM YOUR SUPPLY HOUSE

For

Performance

Specify

MALLORY

- Capacitors
- Vibrators
- Resistors
- Controls
- Switches
- Rectifiers
- Power Supplies • Filters
- Mercury Batteries

MALLORY

Featuring small size, light weight and ourstanding performance the HIGH, WIDE and TWIN POCKETSCOPES have become the "triple threat" of the oscilloscope field. Their incomparable versatility, reliability and accuracy have skyrocketed this team of truly portable instruments into unparalleled demand. Each oscilloscope feofures DC coupled amplifiers in both vertical and horizontal channels.

HIGH

The S-14-A HI-GAIN POCKETSCOPE provides the optimum in oscilloscope flexibility for analysis of low-level electrical impulses. Extremely light weight ($123 / 4 \mathrm{lbs}$.), compact in size ($12 \times 53 / 4 \times 7 \mathrm{in}$.), dependable and accurate in performance. Vertical and horizontal channels: 10 mv rms/inch with response within 2DB from IDC to 200 KC and pulse rise of $1.8, \mu \mathrm{~s}$ non-frequency discriminating attenuators and gain controls with internal calibration of trace amplitude... repetitive or trigger time base with linearization from $1 / 2$ cycle to 50 KC with \pm sync or trigger.

tube	PhYSICAL DATA		static voltage		DEFLECTION*		$\begin{aligned} & \text { LIGHT } \\ & \text { OUTPUT•• } \end{aligned}$
	face	LENGTH	A3	A2	vert	HOR	
3JP1	$3^{\prime \prime}$	$10^{\prime \prime}$	3000	1500	111	150	352
3 MPI	3"	$8^{\prime \prime}$		750	99	104	33
3RPI	$3^{\prime \prime}$	9.12 "		1000	61	86	44
3 SPI	$1.5 \times 3^{\prime \prime}$	$9.12^{\prime \prime}$		1000	61	86	44
3XP1	$1.5 \times 3^{\prime \prime}$	8.875'		2000	33	80	218

WIDE

The S-14-B WIDE BAND POCKETSCOPE is ideal investigations of transient signals, DC signals, aperio pulses or recurrent waveforms. Vertical channel: 50 $\mathrm{rms} / \mathrm{in}$. within -2DB from DC to $700 \mathrm{KC} \ldots$ pulse r time of $0.35 \mu \mathrm{~s}$. Horizontal channel: $0.15 \mathrm{v} \mathrm{rms} / \mathrm{in}$. within -2 DB from DC to $\mathrm{KC} \ldots$...pulse rise of $1.8 \mu \mathrm{~s}$. Attenuators and gain controls are non-frequer discriminating... trace amplitude calibration... repetitive or triggered time b: from $1 / 2$ cycle to $50 \mathrm{KC} \ldots \pm$ sync or trigger... trace expansion, filter gra screen and many other features . . . $14 \mathrm{lbs} . . .12 \times 6 \times 7$ inches.

TWIN

 tivity oscilloscope with two independent vertical as well as horizontal channels. It is indispensable for investigation of electronic circuits in industry, school and laboratory. Vertical channels 10mv rms/in. with response within-2I from DC to 200 KC and pulse rise t i of $1.8 \mu \mathrm{~s} \ldots$ horizontal channels rms/in. within -2DB from DC to 1 $\mathrm{KC} .$. . non-frequency discriminatj controls . . . internal signal amplitı calibration. linear time base fr $1 / 2$ cycle to 50 KC . triggered or rept tive, for both horizontal channe
S-11-A The S-11-A INDUSTRIAL POCKETSCOPE is a sm: compact ($5 \times 7 \times 11$ inches), and lightweight ($83 / 4 \mathrm{lbs}$.) inst ment for observing electrical circuit phenomena. The fle bility of the POCKETSCOPE permits its use for measurements as well as for DC. The vertical and horizontal amplifiers capable of reproducing within-2DB from DC to 200 KC with a sensitivity $0.1 \mathrm{v} \mathrm{rms} / \mathrm{in}$. ... repetitive time base from 3 cycles to 50 KC continuously varial throughout its range ... variations of input impedance, line voltage or contr do not "bounce" the signal-the scope stabilizes immediately.

RAYONIC CATHODE RAY TUBES BY WATERMT.

The basic properties of the cathode ray tube th concern the designer or the user are: deflection sen tivity, unit line brightness, line width, static volta requirements and physical size. A comparison betwe cathode ray tubes manufactured by Waterman Prc ucts Company is shown in the table adjoining. The tubes are available in P1, P2, P7 and P11 phospho 3JP1, 3JP7, 3SP1 and 3XP1 are available as JAN tub
*Deflection of volts per inch. \quad **Light outpul of an element of a raster line (one mmlong and not exceeling . 65 mm in widh) in microlumens.

ULSESCOPE
Oscilloscope that Portrays the Pulse

lassic Examples of Precision Engineering...

\qquad

WATERMAN PRODUCTS CO, INC.
PHILADELPHIA 25, PENNA., U.S.A.

THE TECHNICAL

MATERIEL CORPORATION, and TMC CANADA, LIMITED, have for many years been engaged in the manufacrure and sale of high quality precision communications equipment such as, high stability direct reading oscillators, radio teletype frequency shifters and converters broadband transformers, tone telegraph systems and diversity and fixed tuned receivers. Millions of dollars worth of this equipment is in use in twenty or more countries throughout the world.

(ere for the first time is a complete

 package - every item necessary to go on the air A1, A2, A3 except the antenna and that is in the works right now.

CPRT-90

RECEIVER

- Six Bands - .54-31 me., AM, CW MCW, FS.
- Full Electrical Bandspread and Mair Tuning.
- Antenna matching with Ferrite Transformer. 75 ohm unbal. and/or $30 C$ ohm bal. inputs.
- One Microvolt Sensitivity or better for 10-1 Signal to Noise Power Ratio.
- Selectivity in 6 Steps, Variable, 200 cy. to 5 ke. 5 Crystal, one non Crystal.
- Hum Level - Better than 60db down. Image Ratio - Better than 60 db .
- Exclusive Audio Selectivity Control.
- SSB coaxial IF output and Audio input.
- Diversity Operation with GPR-D. HFO, BFO, IFO External Controls.
- For Complete Details Request Bulletin H-179B.

EQUIPPED HAM SHACK

[阶-750 moweme

- Full KW inpul phone, or A2 or A1.
- Continuous Frequency Coverage 2 to 32 megacycles.
- Completely Bandswitched.
- High Stability Direct Reading V.F.O.
- Pi-network Output.
- TVI Suppressed.
- Coax Output 30 to 140 ohms.
- All Decks on Slides for Easy Servicing.
- Double Blower Pressurized Cabinet. Fiberglass Filters,
- Interlock Protected - Overload Protected.
- F.S. Available on Request.
- Final Available for SSB Operation.
- For Complete Information Request Bulletin H-174A.

Ril
 REMOTE CONTROL AMPLIFIER

- Madulation Indicator.
- Al, A2 (tonel, A3 Emission Contraf.
- Peak Clipping Amplifier - Clipper Adjustable 0 to 20db.
- Madulation Contral.
- Keying and Monitor Jack.
- Push-to-Talk Mike Inpul.
- Receiver Muting.
- For Complete Information Request Bulletin H-183

THERE IS NO SUBSIITUTE FOR Zuality. . SPEGIFY BLILEY

Biliey crystals . . . a complete line for Military, Commercial and Amateur application

Bliley builds a complete "family" of hermetically sealed crystal units including the new subminiature BANTAM BX ... for every military, commercial and amateur application. Proficiency isn't acquired overnight. Bliley, now in its 26th year, has established an international reputation for the design and manufacture of the finest frequency control components.

Bliley Crystal Ovens . . . for precision temperature stabilization

When extreme frequency stability is required, Bliley crystal ovens provide precision stabilization of temperature needed to offset ambient conditions. Most models available for 6.3 volt or 28 volt operation.
THE bliLey tco-22 CRYSTALOVEN MAINTAINS BHGA CRYSTAL TEMPERATUREWITH IN \pm IoC.

Bliley solid ultrasonic delay lines for time range $2-3500$ microseconds

Bliley specializes in the production of high precision, high stability delay lines utilizing fused quartz and other solid materials. Designs include hermetically sealed and temperature controlled models, all custom-built to specification.

A TYPICAL CUSTOMBUILT 1500 MICRO. SECOND DELAY LINE, WITH COVER REMOVED TO ILLUS. TRATE POLYGONAL GEOMETRY,
Bliley... 26th Year
MANUFACTURERS OF FREQUENCY CONTROL CRYSTALS, CRYSTAL OVENS, SOLID ULTRASONIC DELAY LINES AND CUSTOM-BUILT OSCILLATOR ASSEMBLIES . . . FOR MILITARY, COMMERCIAL, INDUSTRIAL, AND AMATEUR APPLICATION.

Complete Stocks
Long Trades
Low Terms

100\% Satisfaction
10 Day Trial
Fast Delivery

Henry has everything in the amateur equipment field, new or used . . . transmitters or receivers, and Henry has the NEW equipment FIRST.
Henry wants to trade and he trades big. YOU get truly liberal allowances on your equipment. Tell us what you want to trade. We also pay cash for used equipment.
You get the best terms anywhere because Henry finances all the terms with his easy time payment plan. 10% down (or your trade-in accepted as down payment), 20 months to pay.
Henry gives you a guarantee of " 100% satisfaction" or your money back at the end of a 10 day trial.
Try any receiver or transmitter for 10 days. If you are not perfectly satisfied, return it and all you pay are shipping costs.
Shipments 4 hours after receipt of order. Send only $\$ 5.00$ with order, and shipment will be made COD immediately .. . Order from either store TODAY!
Low Prices Henry's large purchasing power means low prices to you. You just can't beat our wholesale prices.

"World's Largest Distributors of Short Wave Receivers."'

FOR

MIL-SPEC

AN is the prefix for Military Specification electric connector assemblies. Reasonably priced because of extensive tooling and world-wide demand. Light weight shells. Interchangeable inserts.

260 different insert layouts. 15 diameters. 6 shell styles. 22 to 245 amp. contacts. Thermocouple and coaxial contacts available. Cable clamps, conduit fittings, telescoping bushings, junction shells, dust caps, dummy receptacles, potting kits. Majority of assemblies available from shelf stock.
high-temperature... For aircraft AND INDUSTRIAL USE. Firewall connectors in standard steel shell varieties and insert combinations. Maintain circuitry for 5 minutes at $2000^{\circ} \mathrm{F}$.

VIBRATIONPROOF-MOISTUREPROOF AP. PLICATIONS. With resilient inserts, interfacial sealing.

HERMETICALLY SEALED APPLICATIONS. Steel shells, glass-fused inserts. Standard, miniature, and subminiature sizes. For control, relay, power, instrument applications.

PRESSURIZED APPLICATIONS. AN-C pressurized for 30 psi. Cannon K's, pressurized. Wide variety for different conditions.

Also, heavy-duty watertight units; external power plugs and receptacles; high-voltage types; special breakaway designs.

$$
\begin{aligned}
& \text { Printed circuit connectars in } 5 \text { sizes, } 10 \\
& \text { to } 44 \text { gold-plated contacts, Zytel shells. }
\end{aligned}
$$

PLEASE REFER TO DEPT. 138

Cannon miniatures and sub miniatures are designed for amplifiers, miniature indicators, computer circuits, telemetering equipment, small pre-amps, and general instrumentation where space is limited and current requirements are generally not over 5 am peres. Variety of shell styles, junction shell, and insert arrangements. 3 to 50 contacts, plus coaxials.

UNIT PLUG-IN'S

DPA Series
 TOP QUALITY CANNON PLUGS

you the audio connectors give the greatest west quality ... in your every need Sariety to meet leading microphones. Stard on angle 90°. oval ing, panel, oval; wall-mountadapter receptacles, mounting, two-gang receptes, single and lock. 5-to-30-amp res; latch. coaxials.

for RACK/PANEL/CHASSIS

Permit quick diaconnect. interchande. replacement. test. inge and inmection of assemblies and sul-assemblies. For transmitters. TV cameras, control equipment, radar, ete. Rack-and-panel. intereral clamp, sheli-less types. bail-and-year disconnerts. centerserew extraction. 10 to 156 contacts ineluding hich voltage.

INFORMATION AVAILABLE
Ask for Literature
by Application
switching and patching plugs for jacks, external power s, test point missile launching connennectors, fet connectors, cablectors, buf. dc solenoids.

Cannon Electric Co., 3208 Humbold St., Los Angeles 31 Calif. Factories in Los Angeles; East Haven; Toronto, Can.; London, Eng.; Melbourne, Australia, Licensees in Paris. France; Tokyo, Japan."

Comumercial
 MOBILE-RADIO MAINTENANCE is a Payima Propoosition!

Get into this rapidly growing field with 2nd Class Ticker and LAMPKIN METERS

LAMPKIN 105-3 MICROMETER FREQUENCY METER FREQUENCY RANGE - uses only one crystal to measure all transmitters 0.1 to 175 mc., erystal-controlled transmitters to 500 mc . MEETS FCC SPECS - Accuracy guaranteed better than 0.0025%. CAl.I-BRATION-Calibration Table for each meter. Charts show percentage transmitter off frequency from FCC assignment. DIAL-4" circular dial with 8000 diai divisions spread over 42 feet. TEMPERATURE COMPEN. SATION-crystal thermometer on panel, automatioally indicates dial checkpoint for any temperature. SIGNAL GENERATOR-a pinpoint mati-arature. SIGNAL GENERAR
temperinal alignment.
CW source for mobilereceiver

RRIE! NEW BOOKLET "HOW TO MAKE MONEY IN MOBILE-RADIO

 MAINTENANCE!" For your copy-plus complete MALL COUPON TODAY! echnical data and prices on tampkin meters- NAL COUPON TODAY:ust these two meters-with no additional crystals or factory diustments-are all you need to make FCC required checks n any number of comnersial mobile transmitters on hun'reds of different frequencies. Lampkin meters are used by cany municipalities-by agencies of 41 states-by the servee organizations of most two-way radio manufacturers-and 'y hundreds of independent mobile-service engineers. They ire guaranteed to please you, too, or your money will be efunded.

| Lampkin Laboratories, Inc.
| Bradenton, Florida
At no obligation so me, please send
Z "How io Make Money in Mobile.Radio Maintenance!"
1 Technical data and prices on Lampkin Meters

PMR-7 RECEIVER

ADDED FEATURES:

Dual conversion crystal controlled 2nd Oscillator • Variable injection B.F.O. -R-F gain control - Squelch control - Operates from 6, 12 volt D.C. or 115 A.C. Power Supplies • 7 Bands; 10, 15, 20, 40, 80, 160 meter plus Broadcast.

100

As a radio Amateur and／or purchaser of Industrial components． you＇ll be interested in our＂time machire＂ system of stockpiling materiel．Here at Valley Electronic Supply we anticipate your needs by analyzing your purcnases of yesterday，projecting them into your needs of tomorrow，enabling you
to order from us in confidence today．

TOMORROW IS INODEA
at Valley Electronic Supply Co．

Our two big distributor outlets can supply you with all the newest ＂DX Amateur Equiprient＂ or Industrial components．

『ムリルアコ

ELECTRONIC SUPPLYCO．

FOR LATEST INSTRUMENT INFORMATION
 Always write

With Hycon, you're always ready for electronics latest challenge ... including color TV. These new testing aids, accurate enough for the laboratory, rugged enough for repair and maintenance work, will take care of tomorrow's needs. yet are today's best instrument value. See them at your electronic parts jobber.

MODEL 6ITT TRIGGERED OSCILLOSCOPE

Hycons new oscilloscope that gives you everything offered hy the widely used MODEL. 617 phas a triguered sweep ...ideal for pulse work. Has high deflection sensitisity, 4.5 me vertical bandpass. internal 5\% calibrating voltage. Flat face CRT gives a usable trace edge to edge.

MODEL 616 COLOR BAR/DOT GENERATOR

Best for adjustiny and testing color TV sets and transmitting equipment. Provides signals for all stamdard colors sequences and patterns simaltancously shows them in arthal color right on the control panel! Tops in accuracy. tops in convenience for servicing color TV.

MODEL 615 DIGITAL VTVM

Reads woltages directly with 1% accuracy (Dr: and ohms) on a reliable ragyed 3-digit scale.. 12 ranges $1.1 C . D C$. ohms) ... response to 250 mc with auxiliary prohe. No inter. polation. no errors!

MODEL 622 - 5" Oscilloscope
ALSO AVAILABLE: MODEL $6220-5^{\prime \prime}$ Oscilloscope with deloy line in verticol omplifier MODEL $614-V T V M \cdot M O D E L 617-3^{\prime \prime}$ Oscilloscope
"Where accuracy counts"

MODEL 625 DIGITAL RATIOMETER

Measures ratio of two related DC voltages. shows ratio on $3 \cdot d i g i t$ servo-positioned counter with discrete indication of one part in a thousand. Fast . . accurate.

You can see these Hycon instruments of your lacal electronic jobber. For odditional information, write to Hycon todoy. - to Hycon tod.

321 SOUTH ARROYO PARKWAY • P.O. BOX 749 PASADENA, CALIFORNIA
A SUBSIDIARY OF HYCON MFG. COMPANY

STEATITE INSULATORS

SWITCHES

For fixed, mobile, miniature, and experimental rigs.
An advertised name you can count on for guaranteed dependability.
The brand to ask for-to get higher, safer rated voltages; closer tolerances; compactness; low price.
Stock up at your Centralab distributor.

Centralab

A Division of Globe-Union Inc. Milwaukee 1, Wisconsin
In Conada: 804 Mt. Pleasant Rd., Toronto 12, Onf.

The EASY WAY to..

Leain Ende

PREPARE FOR YOUR BIG OPPORTUNITY

Picture yourself at your own transmitter . . . sending out radio code, messages that will be received around the globe. Yes, operators like you are waiting to communicate with you today, tonight or anytime. The knowledge of the world . . . intimate friendships you will gain may help you in your business, may be a stepping stone to suceess.

Wouldn't you like to be the invaluable link with the outside warld in time of disaster? Wouldn't you like to serve in a national or local emergency? Be ready for service when the opportunity arises! Learn telegraphy nowthe Candler way.

Every day trained code operators are finding their dreams of success coming true. Get ready for your big chance now. Learn code the modern, easy CANDLER way. Get maximum speed and efficiency to qualify as an operator in the quickest, easiest way -the CANDLER SYSTEM OF CHAMPIONS.

For forty-three years the CANDLER SYSTEM has trained beginners for all telegraphing requirements, all operator licenses, highest ratings, and F.C.C. specifications, both amateur and commercial. The record of famous amateurs and expert operators who learned the Candler way is proof of what the Candler System offers you Find out how you can save time and money learning code and developing skill with the CANDLER SYSTEM Send for Free Candler Book of Facts today.

CANDLER SYSTEM CO., P.O. BOX 928 DEPT. 56, DENVER 1, COLORADO, U.S.A.

IT'S FREE! - MAIL COUPON OR WRITE NOW

 CANDLER SYSTEM CO., Dept. 56 P. O. Box 928 , Denver 1, Colo.Or 52b, Abingdon Rd., London W.8, England

$$
\square \text { I am a beginner. }
$$

$\square 1$ am an operator.
Gentlemen: Yes...I am interested in the CANDLER Code Training System. Please rush my FREE copy of the CANDLER Book of Facts today.

Name

...........
City. Zone State
104

Where Dependability counts-105

Use OMMロ『!

RHEOSTATS

 $100,150,225,500,500,750$, and 1000 . well whes.

AMRECON RELAYS

Dhemst A miecten reteys in three tell ch modolt - OOS, 00 , and EXU, in 61 strferent typers. 4is VAC or 32 VDC, mon-lindudive lota
 Medty DO, 10 smpj Model CRU, 5 ump. the rempe of colll operetion voliteges.
"HTTLE DEMIR" RESISTORS Momel, colpponilien resistert-coct anftid - th reshobince and wenmyo- K , 1, ant 2 evelt slest, $=10 \% \mathrm{~m}=5 \% \mathrm{wh} 10$ Onm fi. .

FIXED RESISTORSI

Vurepus omponefind Thered restitions. Stanit suen: $23,80,160,160,200$ wets velver 1 © 250,000 sthms. "Hrown Devil" Hred resisters in 5,10 , and 20 -wint atares veluca trom 0.4 to 100,000 thm:

ADJUSTABLE RESISTORS

Virour onoweite. Oulekly odiceteblo to the vele nooded. Adiurioble luge cen be etbeched for mulitiof mesimen and velime dividere. $\$ 1 \mathrm{xec} 10$ to 200 welh. $t=100,000$ shown.

R. F. CHOKES

shoglv-linyer-weund on low pewt fector ceroz, Fith molstrwn-preat sesting. Sevec thoct slaen, 3 to $\$ 20$ me. Two unto rated 100 mat. Alvish 1000 n.0.

TAP SWITCNES

Compect, high-ewreat revery selwein for
 to-nilive contock. Reter of 10, 15, 25, 30 . and 100 ampents.

PRECISION RESISTORS

Thees types ovailatloi vibuose-dinereded, vecuum -impengutied, or encopauloted Yol. cramen to $=0.7 \%$ in $\mathrm{Y}, \mathrm{Y}, \mathrm{K}, \mathrm{h}$, and I -waty sheot, from 0.1 to $2,000,000$ shmes.

DUMMY ANTENNA

These naped, vilucowe-anamuted valis on prectically norscedive whitis then stripmnumped iroesecy renee. In 100 call 250 wen sher, 52 to 000 ehmi, $=52$

OHMITE MANUFACTURING COMPANY

3608 W. Howard St., Skokie, III., (Suburb of Chicago)
Be Right with ○HMMIE

Shurite panel meters are POPULAR WITH HAMS BECAUSE THEY'RE...

RUGGED Exceptionally high ratio, torque to weight, for fast pointer response. Sturdy construction throughout. Molded inner units with internal and external locking nuts for maximum rigidity.
GOOD LOOKING Dials are metal so they stay attractive in spite of age and moispure. All metal cases have rich telephone black finish. Concealed coils and good, readable scales.

WELL DESIGNED AC meters are double-vane repulsion type using hair-spring and jeweled bearing. Most DC meters are polarized-vane solenoid type. High internal resistance voltmeters available in popular ranges. Accuracy well within 5%.
PRICED RIGHT For instance, the meters pictured are priced at
Model 950, 0-100 DC Ma.
$\$ 1.60$
Model 650, 0-150 DC Volts
2.10

Model 550, 0-150 AC Volts
3.40

Other meters are correspondingly reasonable in price, starting at $\$ 1.55$. You get the benefit
of low costs made possible by large quantity production.

GUARANTEED For one year from date of purchase against defective workmanship and material, and will be repaired or replaced if sent to the factory postpaid with $40 \not \subset$ handling charge.
A COMPLETE LINE All of these features are available in over 220 ranges and types; $A C, D C$, Voltmeters, Ammeters, Milliammeters, Resistance Meters. For instance, DC Milliammeters are made in 65 types and ranges. The newest meters are a $0-3$ DC Milliammeter with 500 ohms internal resistance and built-in zero adjuster with ten times the sensitivity of previous $0-3$ DC Milliammeters, also a 0-1 DC Milliammeter with 1000 ohms internal resistance and zero adjuster
AVAILABLE Stocked by leading electronic parts distributors in a wide variety of types and ranges. For prompt shipment, contact the authorized Shurite distributor nearest you.

THEY'RE TODAY'S BEST VALUE

Ask for Bulletin No. 57

SHURITE METERS • 85 Hamilton Street, New Haven 8, Con
 YOU NEED THIS BIG FREE CATALOG!

Drop in a ham shack in Honolulu. Paris, Caperown or Peoria and you'll probably find a well-thumbed book with the familiar red and black cover and the big BA rademark.
Thousands upon thousands of amateurs around the globe for nearly a third of a cenrury have found their every need in Ham Equipment, Electronic Parts and Supplies right at their fingertips in the BA catalog.

Send for your copy today . . . you too will find it mighty handy to have for ready use.
You can always rely on BA for the fastest most complete shipment available anywhere at always lowest prices . . . and BA keeps you up-to-date with regularly published flyers containing information on new equipment and hundreds of special money-saving offers.

BURSTEIN-APPLEBEE CO. 1012-14 McGEE ST., KANSAS GITY 6, MISSOUR1

FLEETCDM Sr: MODEL 500-6/12 SERIES

The FLEETCOM Sr. is rugged, compact, universal 6/12, VHF-FM two-way mobile com. munications equipment for the Public Safety, Industrial, Land Transportation and other radio services. COMCO'S 17 years experience in design leadership and production "know-how" is engineered and built inta every FLEETCOM Sr. unit.

POWERFUL! CDMPACT: EFFICIENT!

108

For better transmission and reception use

Triangular cross-section transmission towers for rotary beam support . . . for insulated vertical radiators . . . for special, complex arrays of rhombics or curtain antennas . . . or any tower problem you have, you'll have the best results with Wincharger.

$$
\text { POW:R } \dagger
$$

TOWER Recommended TOWFR Gus Levels WEIGHT Watt Raing TYPE Max. Height WIITH (3 Guss al PIEKFT** (1, Wase

			l.ev		or Taller)
300	440 ft .	28!	50 ft .	30 lbs.	50,000
150	320 ft.	183/i in.	40 ft .	15 lbs.	10.000
101	220 ft.	$143 / 8$ in.	35 ft .	10.1 lbs .	5,000
78	150 ft .	$143 / 8 \mathrm{in}$.	35 ft .	7.8 lbs .	5.000
42-47	125 ft.	13^{1} in.	30 ft .	4.7 lbs.	3.000

[^16]Whatever you need-simple antenna support towers or heavier towers for complex transmitting arrays-Wincharger Towers can do the best job for you.

ILLINOIS CAPACITORS

KNOWN THE WORLD

 OVER FOR
Tince Tested Quality

For over 20 years ILLINOIS CON. DENSER COMPANY has been foremost in the development of ever greater dependability and longer life in all types of capacitors. Listed below are only a few of the more popular-and most recently developed ILLINOIS types.

TYPE UMP Standardized twist-prong type. Patented molded terminal construction for efficient, stable operation under extreme temperature ranges. Capacity ranges to 10,000 MFD at low voltages - to 600 MFD at 450 WVDC.

TYPE PE Hermetically sealed plug-in octal base type. Especially useful in fixed or mobile communications equipment. Operating temperature range $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Available in wide ranges of capacities and voltages.

TYPE IHC Popular multiple section types with flexible leads, insulating sleeves and mounting straps. Equally adaptable for original equipment or replacement purposes. Available in wide ranges of capacities and voltages.
TYPE LN Extruded aluminum can type with screw neck mounting and flexible leads. Capacity ranges from 8 to 80 MFD and from 450 to 600 WVDC .
TYPE UMS Hermetically sealed inverted can type with screw neck mounting and molded-in terminals. Wide ranges of capacities and voltage ratings.
TYPE UMT Inverted can type with clamp mounting. Hermetically sealed, shock resistant with new molded terminal construction. Ideal for use in highest quality equipment. Wide capacity and voltage ranges.
TYPE IHT Popular tubular aluminum can, pigtail type electrolytic. Vibration proofed construction. In capacity ranges of 1 to 2000 MFD and from 6 to 700 WVDC. Also available with solder lug terminals. Supplied with insulating sleeves.
TYPE UMC Low leakage - high capacity electrolytic for power filter packs, voltage stabilization, energy storage and photo flash. Capacity ranges up to $10,000 \mathrm{MFD}$ to 50 V . and 1000 MFD at 450 V .
TYPE ITC Non-inductively wound, oil impregnated paper-foil assemblies, hermetically sealed in ceramic cases. End seals will not soften or melt at $85^{\circ} \mathrm{C}$. High insulation resistance; excellent power factor; accurate capacities. Available in capacity ranges from .0005 to 1.0 MFD and in 200, 400, 600, and 1600 WVDC ratings.

TYPE MS Motor starting capacitors available in bakelite and aluminum cases. Long wire leads with terminals. Capacities to 5,000 MFD at 115, and 220 VAC .

TYPE BT Hermetically sealed bathtub type especially designed to withstand vibration and shock. Available in electrolytic and paper capacitor types for government and commercial use.
ILLINI 300 A new high intensity, low voltage electronic photoflash kit featuring ELECTRONIC latest advances in tube, capacitor and reflector design. 100 watt FLASH KIT second output. Uses standard type batteries. Easily assembled, rugged, reliable and economical to operate. AC Power Pack also available.

ILLINOIS. THE CAPACITOR LINE OF TIME TESTED QUALITY

RADIO SHACKIS
trading in NEW HAVEN

RADIO SHACKIS

treecirin 크

 in BOSTON
trading

by mail from coast to coast

RADIO SHACK NEEDS AND WANTS your used receiver or transmitter . . . we're trading IBIGGER than Big. Often your trade-in will be more that adequate to meet Radio Shack's 10%-down (year-to-pay) payment on the new gear you want. In Boston, in New Haven - where W WIS is clamoring for "swaps", all over the country RADIO SHACK TRADES ARE MAK ING HISTORY. What have you got? Write WiSZV or WiOTZ in Boston, or W1WIS in New Haven, TODAY!

RADIO SHACK CORP

167 WASHINGTON ST., BOSTON 8, MASS. and 230-234 CROWN ST., NEW HAVEN 10, CONN.

Name.	Send FREE Catalog - 56LM
Street.	Send FREE Bargain Flyer
Town..	Send Time-Pay Appl cation

before you invest．．．Investigate！

These words of wisdom are not our own ．．．but we think them especially appropriate where choosing a liam antenna is concerned．

It＇s easy to investigate the relative merits of Ham beams－just ask each Ham using one which beam he has and how he likes it．You can believe what you hear，too；because a Ham is essentially an Engineer and，when it comes to evaluating a piece of equipment，is likely to call＂a spade，a spade＂！

A large percentage of the Hams you ask will tell you they are using a Mosley＂Vest Pocket＂ Rotary Beam．They will tell you that their beam performs as well，or better，than advertised． They may even brag a bit of their ID X success！ Certainly，they will mention that their Mosley Beam is sturdy－built to take wind and storm； that getting it on the air was easy，uncompli－ cated．You can easily tell，they＇re glad they chose a Mosley＂Vest Pocket＂Rotary Beam！＂

Morley ＂VEST－ POCKET＂

Rotary Beam Antennas

True Beam Performance！
Models For All DX Bands！
Sturdy，Heavy Duty Construction！
Factory Pre－tuned！

＂TRI－BANDER＂Model VPA－3B

15． 20 and 40 Motor Operation ．．．all with one high performance rotary beam and fid with but on s coax inc．No switching，no odiusting slements－iust tuna trons mither to band desired！Up to 5 db ．forward gain and 20 db ．Front－to－back．Presumed and color coded for fast assembly．Max．Clement length， 36^{\prime} ． $15^{\prime \prime}$ steel booth with welded rel element support plates． Weight 75 lbs．Amateur Not ．．．．．．．．．．$\$ 135.00$

＂ 40 METER＇Model VPA40－2

A high performance 40 Meter Rotary Beam of con－ venient size and weight．Provides 5 db ．forward gain over reference dipole and 19 db ．front－to－back． Features heavy duty construction and easy assam－ bly．Rated to $1 \mathrm{Kw} .14^{\prime} 10^{\prime \prime}$ steel boom， 36^{\prime} alum－ inum elements． 68 lbs．assembled weight．Two ele－ mints．Amateur Net
$\$ 74.95$

＂TEN TWENTY＂

Model VPA－ 10

Actually two 3 element beams interlace mounted one boom．Up to 7.5 db ．，or better，forward gain or full size reference dipole． 28 db ．front－to－back． Bc 10 and 20 meter operation by just changing bands the transmitter．Max．element length， $221 / 2^{\prime}$ ． 12 ，attu inum boom．Weight， 57 lbs ．Amateur＇Net ．．．$\$ 120$.

＂ 10,11 \＆ 15 METERS＂

Model YPA1015－3， 3 Element＂V－P＇＂Bean cen 8880 mbled for operation in any one of throe bond $7 \mathrm{y} / \mathrm{db}$ ．forward，gain， 20 db ．front－fo－bock． 10^{\prime} ．lur inum boom． 14^{\prime} max．element length．Weight 24 it TV rotor will turn beam．Am oreur Not ．．．．$\$ 39$ ． Model VPA $1015-2,2$ Elements． 5 db ，forward，年i 15 db ．front－to－bock． $4^{\prime} 6^{\prime \prime}$ oluminum boom．14＇ －loment length．Weight 18 lbs．Amateur Not 539,1

Vest Pocket Dipole Loading Coils Make a high performance dipole transmitting and receiving ant－ enna approximately one－half the length of a normal full－size dipole．Model 75／80－ makes a 75 meter antenna 56^{\prime} overall length－ meter antenna，64＇8＇．Model 40－D makes 40 met antenna 37＇long．Just one coil needed for each ar enna．Use 52 or 75 ohm coax for feed．
Model 40－D．Amateur Net
Model 75／80－D．Amateur Net．．．．．．．．．．．．． 7.

Mosley＂Vest Pocket＂Rotary Besom Antennas a other products are carried in stock by your fovori Ham Equipmem Supplier．Ask your dealer or wri direct for new Mosley Catalog $\mathrm{H} \div 56$ ．

CIATEMENT
?OM \qquad
\qquad
\qquad 19
\qquad
ic or ss \qquad
ITY \qquad
\qquad

, il Al1f utwlat?
\qquad
roir foxiz nomily

THECO • AMECO • AMECO

for a CAREER in communications . . . to pass FCC amateur exams

LEARN CODE

and Theory $\$ 3_{\mathrm{up}}^{95}$

EASY,

FAST HOME STUDY
with 78 R.P.M. Phonograph Records
PASS COMMERCIAL AND AMATEUR CODE EXAMS, AMATEUR THEORY EXAMS, FOR YOUR FCC LICENSE!
4 AMECO Courses Available:
No. 1 - Novice code course. You get and kerp 10 recordings (alphathet through \& W. W'M.). Includers ypical Fic type code exams. Frew in trution hook on harting how to seme and receive conle the simplent, fuste way: phus charts to chack
your receiving accuracy: plus all album; all for the low price your receiving accuracy: plus all album; all for the how price
of only... $\$ 705$

No. 2 - SENIOR CODDE COCRSE. You git and kerp everything given in the Novice "ourse "xerpt that you pet 22 recordings (alphabet through is W, P. M.). phes typical CC tyble licenses. All this for olly.
$\$ 12.95$
No, 3 - COMIPLETE R.DDIO TIHEORY COURSE, A COMplete. simplitied home study theory course it radio covering the Novice. Techmician. conditional and general clasees, all mater

 Ham station. All for the amaring low, low price of.... \$3.95

No. 4 - NEW ADVANCED COURSE DPMares Novice op erators for the anatene general class ind seront chass conniner

$\$ 6.95$
NO. 5 -RADIO AMATELR OUESFIONS \& ANSNER LIGENSE GUDDE. A "must" if probiring for Novice, Terhmician or gellyat choice syme) similar to ones given om

DELUXE CODE PRACTICE OSCILLATOR

In Kit Form or Wired

The AMECO Code Pracrice Oscillator for 110 volts AC or DC, with a built-in A inch speaker, produces a pure, stcady tone with no clicks or chirps. It can eake a large number of headphones or keys. After the code has been learned, the AMECO code practice oscillator is easily converted to an excellent c.w. monitor.
Other features include:

- Variable tone contral
- Volume control
- Sturdy grey hammertone cabinet
- Lowest prices

In Kil Form, with instruction, less tubes (Model (PS.KL) \$1175 Completely Wired \& Tested, less tubes (Model (PS-WL)
${ }^{5} 12{ }^{2 s}$ Set of iwo tubes (35\%4 and 50C5)

The AMECO

AMECO LOW PASS FILTER

The AMECO low pass filter suppresses the radiation of all spurious signals above 40 Mc . from the 1 ransmitter. The filter uses a Constant k Circuit, and is designed for coaxial cable
$(52$ to 72 ohms). Other features include.
 - Nogligible loswrion L,oss - is 131, and more atfenuation of harmonic $\$$ spurious frequesmies almwe 50 Me . Will hamulle of to 200) satts of Kl power - liach unit $\$ 1.95$ Amateur complete with bracket. and instructions \qquad
Model LN1 with 2 RCA phono Jacks $\$ 1.95$
Deluxe Model LN2 with $2 \mathbf{5 0 - 2 3 9}$ Coax. Connectors. ... $\$ 3.45$
HIGH PASS FILTER
The AMECO high poss filter is placed in series with the IV re-
 ceiver's ontenna io prevent the

Model HP-45
tronsmitter's signal from entering the receiver. All frequencies obove 45 Mc are passed through without loss. The AMECO high pass filter is designed for use with the common 300 chm twin line.

other features inciude:

40 db and more altenuation at 14 Mc and A the amazing 40 db and more attenuation at 14 Mc . and below; 20 db attenuotion of 10 meters.

- Negligible insertion loss
low, low price of
- Filter uses bolonced constont K circuil

896
Arnateu
Net

FOLDED DIPOLE ANTENNA KITS

for 10 to 80 meters... using LOW LOSS iwin lead

SENSATIONALLY LOW PRICED tom 53.50

AMECO folded Dipole Antennas are easy-tobuild Kits. The fine quality low loss twin leed has proven reliable in all weather conditions. Each kit complete with flat-top twin lead cut to desired frequency band, 75 ft . of lead-in wire, fclded dipole connector block.

other features inciude:

Can safely handle up to 300 watts
High sirength, high dielectric connector block insures perfect impedance motich and lowest loss

- No soldering necessary; solderiess terminals and hardware provided
Twin line uses heavy copper conductors and pure poly ethylene insulation
Anlennas can be used for receiving as well as transmitting

Avoilable of these LOW		
PRICES		
Model No.	Meters	Price Net
FD-10	10	$\$ 3.50$
FD -20	$15-20$	3.95
FD.40	40	4.95
FD-80	80	6.75

TOP FAVORITE WITH RADIO AMATEURS TEST EQUIPMENT TUBES PARTS BATTERIES

DISTRIBUTED BY

"The Ham's Favorite Supplier!"

TRADE IN

YOUR OLD HAM GEAR

For the best "deal" of all, come to HUOSON! Get your new equipment now, and get highest trade-in allowance on your old equipment. If you can't come, write us today, about your old gear, and the new gear you want. We will answer fast - and you'li be pleased!

COMPLETE STOCKS

ALL STANDARD BRANDS including:

national	ELMAC	RME
HAMMARLUND	GONSET	LYSCO
HALLICRAFTERS	MORROW	SONAR
BARKER-WILLIAMSON	E. F. JOHNSON	ELDICO
collins (a)	wirk Branch Onl.)	

EASY TERMS!

COMPLETE STOCXS RCA TUBES Always on Hand?

UPTOWN store: FRIDAYS DOWNTOWN store: SATURDAYS NEWARK store: WEDNESDAYS
Meet tha rest of our ham gang, too!
Joe Prestia-K2G2X Sid Heller - K2CWa Clark Prestia K2KJS Oick Turin Walmu Joe Abrams-W2Ksp

114

MEASUREMENTS CORPORATION

roughout the world, Measurements' reputation for curacy and reliability is your guarantee of satisfactory service.

ARDARD SIGNAL GENERATOR MODEL 65 .

equency range
" $5 \mathrm{Kc} .-30 \mathrm{Mc}$.
OUTPUT RANGE
MOOULATION
AM. 0 to 100%
400 cycles or 1000° cycles External mod., $50.10,000$ cycles

TAMDARD SIGMAL GFMERATOR MODEL 78

 EQUENCY RANGE5 Mc ; 195.225 Mc .
5 Mc .; 90.125 Mc .

5 Mc ; 195.225 Mc
$5 \mathrm{Mc.;} 90.125 \mathrm{Mc}$
OUTPUT RANGE
1 to 100,000

EQUENCY RANGE
$6 \mathrm{Mc}-108 \mathrm{Mc}$.

OUTPUT RANGE	MOOULATION
1 to 100,000 microvolts	Deviation $0-300$ Ke. 2 ranges FM. $400-8200$ cycles External mod. to 15 Kc.

AMD 4 ?	6MAN it	Tog.model. 0
REQUENCY RANGE	OUTPUT RANGE	MOOULATION
$2 \mathrm{Mc}-400 \mathrm{Mc}$.	$0.110100,000$ microvolts	$\begin{aligned} & \text { AM. } 0 \text { 10 } 30 \% \\ & 400 \text { cycles or } 1000 \text { cycles } \\ & \text { External mod., } 50-10,000 \text { cycles } \end{aligned}$

FAT ARD	6\% 41 6\%	CR W00EL82
EQUENCY RANGE	OUTPUT RANGE	MOOULATION
cyeles to 200 Kc . 10 Kc . to 50 Mc .	0.50 volts 0.1 microvalt to 1 volt	Conlinuously variable 0.50% from 20 cycles to 20 Kc .

TAMDARD SIGNAL GENERATOR MODEL 4
EOUENCY RANGE
OUTPUT RANGE microvolts AM. 0 to $30 \%, 400,1000$, or 2500 cycles. Internal pulse modulator. External mad., $50-30,000$ cycles.
AMDARD STGMAL GENERATOR MODEL 84-TV

heouency range

output range
MOOULATION

Continuously voriable from	Continuously variable 0 to 30% External moculation 20 to 0.1 microvalt to 1.0 voll
20,000 cycles.	

SIONAL GEMERAYOR MODEL

euncy range	output range	moovlation
250 mc .	olt to	Continuously variable, 0 to 100% Sinusoidal modulation 30 cycles S mc. Composite TV modulation

PULSE GENERATCR MODEL 79-8

gquency range

SOUARE:
SOENCY RAMG gouency range
muously variable $\$ 100,000$ cycles

VACUUM TUBE YOLTMEIERS
MODEL 62

MODEL 62		
POLTAGE RANGE	FREOLIEMCY PANGE	13P LMPEDAMCE
$1.1,0.3,0.30$ and 100 volts $A C$ or $D C$	30 cycles to over 150 Mc .	Appraximately 7 mmid .
19t56 67		
YOLTAGE RANGE	FREOUENCY RANGE	INPIITIMPEDANCE
005 to 300 volts peak-to-peck	5 to 100,000 sine-wave cycles per second	1 megohm shunted by $30 \mathrm{~mm} / \mathrm{d}$.

AMPLITUDE MODULATOR

The Model 115 Amplitude Modulater provides 100% modulation with low envelope distortion . . . is designed for use with any conventional a-m or f-m signal generator or oscillator within its frequency range.

SPECIFICATIONS:

CARRIER FREQUENCY RANGE: 100 kc . to 50 mc . with a translation gain of approx. 0.3.
CARRIER INPUT AND OUTPUT IMPEDANCE: 50 ohms nominal.
MODULATION FREQUENCY RANGE: Flat within $\pm 5 \%$ from 30 cycles to 15 kc . Approx. 10 volts across 100,000 ohms required for 100% modulation.
AMPLITUDE MODULATION: 0 to 100% with less than 3% envelope distortion at 100% modulation, decreasing with lower modulation percentage.
MODULATION ACCURACY: $\pm 5 \%$ of full scale from 0 to 100%.

Y.H.E. FIELD STRLMOTH METER MODEL 58

frequency range	input voltage range	
15 Mc . to 150 Mc .	1 to 100,000 microvalts in antenno. 1 to 100 microvolts on semi-logarithmic output meter, balanced resistonce ollenu. otor with ratios of 10,100 and Jno0 ahead of cll tubes.	
INTERMODULATIOM METER MODEL J		
Intermodulation rang	FREQUENCIES (CYCLES)	analyzer input voltages
$\begin{aligned} & 3 \%, 10 \% \text { and } 30 \% \\ & \text { full scale } \end{aligned}$	$\begin{aligned} & \text { LF: } 60 \mathrm{cps} \\ & \mathrm{HF}: 3000 \mathrm{cps} \end{aligned}$	Full scale ranges of 3, 10,30 volts RMS
MEGACYCLE MTERS MODEE 59 [5-59-59HHF		
FREQUENCY RANGE	FREQUENCY ACCURACY	MOOULATION
0.1 Mc . to 45 Mc . 2.2 Mc .10420 Mc . 420 Mc . to 940 Mc .	Within $\pm 2 \%$	CW or 120 cycles fixed of approcimately 30%. Provision for external modulation

CRYSTAL CALIBRATORS

model 111		
frequency range	frequency accuracy	harmomic range
$250 \mathrm{Kc},-1000 \mathrm{Mc}$.	0.002\%	$\begin{aligned} & -25 \mathrm{ME} \text {, Oscillatar: } 25.450 \mathrm{Mc} \\ & 11 \mathrm{ME} \text { Oscillator: } 1.600 \mathrm{Mc} \\ & 10 \mathrm{ME} \text {. Oscillator: } 10.1000 \mathrm{Mc} . \end{aligned}$
MODEL 111 -		
FREQUENCY RAMGE	frequency accuracy	barmonic range
$100 \mathrm{Kc}-.1000 \mathrm{Mc}$.	0.002\%	$\begin{aligned} & 1 \mathrm{Mc} \text {. Osceillator: } 1-450 \mathrm{Mc} \text {. } \\ & 1 \mathrm{Mc} \text {. Oscillotor: } 1=800 \mathrm{Mc} \\ & 10 \mathrm{Mc} \text {. Oscillator: } 10-1000 \mathrm{Mc} . \end{aligned}$

WIHCC
OUR PRODUCTS
250 sources \qquad including B \& W : Central : Collins : Elmac : Gonset : Hallicrafters : Hammarlund : Harvey-Wells : Johnson : National : and other name-brand, nationally advertised components and equipment.
"Your Friendly Supplier"
Service to hams by hams, with equipment trade-in allowances and a liberal extended credit time payment plan. Fast mail order service to hams, dealers, servicemen and industrial accounts. Large enough to take care of your requirements, yet small enough to give you personal attention. Largest inventory of used gear in the East; write for latest list. Catalog also available.

ROUTE

BOW JUNCTION CONCORD, N. H.

P. O. BOX 312

THE VIBROPLEX CO., Inc., 833 Broadway, New York 3, N. Y. W. W. ALBRIGHT, Premident

IF YOU SEND YOU SHOUID USE A VIBROPLEX KEY

Learn Code the EASY Way

Beginners, Amateurs and Experts alike recommend the INSTRUCTOGRAPH, to learn code and increase speed.

Learning the INSTRUCTOGRAPH way will give you a decided advantage in qualifying for Amateur or Commercial examinations, and to increase your words per minute to the standard of an expert. The Government uses a machine in giving examinations.

Motor with adjustable speed and spacing of characters on tapes permit a speed range of from 3 to 40 words per minute. A large variety of tapes are available - elementary, words, messages, plain language and coded groups. Also an "Airways" series for those interested in Aviation.

MAY BE PURCHASED OR RENTED

The INSTRUCTOGRAPH is made in several models to suit your purse and all may be purchased on convenient monthly payments if desired. These machines may also be rented on very reasonable terms and if when renting you should decide to buy the equipment the first three months rental may be applied in full on the purchase price.

ACQUIRING THE CODE

It is a well-known fact that practice and practice alone constitutes ninety per cent of the entire effort necessary to "Acquire the Code," or, in other words, learn telegraphy either wire or wireless. The Instructograph supplies this ninety per cent. It takes the place of an exvert operator in teaching the student. It will send slowly at first, and gradually faster and faster, until one is just naturally copying the fastest sending without conscious effort.

BOOK OF INSTRUCTIONS

Other than the practice afforded by the Instructograph, all that is required is well directed practice instruction, and that is just what the Instructograph's "Book of Instructions" does. It supplies the remaining ten per cent necessary to acquire the code. It directs one how to practice to the best advantage, and how to take advantage of the few "short cuts" known to experienced operators, that so materially assists in acquiring the code in the quickest possible time. Therefore, the Instructograph, the tapes, and the book of instructions is everything needed to acquire the code as well as it is possible to acquire it.

MACHINES FOR RENT OR SALE

ACCOMPLISHES THESE PURPOSES:
FIRST: It teaches you to receive telegraph symbols, words and messages.
SECOND: It teaches you to send perfectly.
THIRD: It increases your speed of sending and receiving after you have learned the code.
With the Instructograph it is not necessary to impose on your friends. It is always ready and waiting for you. You are also free from Q.R.M. experienced in listening through your receiver. This machine is just as valuable to the licensed amateur for increasing his speed as to the beginner who wishes to obtain his amateur license.

Postal Card Will bring full partic.

THE INSTRUCTOGRAPH CO.

The most complete line of
forELECTRONIC APPARATUS mesentred in ar NEW CATALOG

Write for your copy naca!

\qquad racks Thry ste xuilable in x wide
renke of practical sizet with opea of dook Ther may be wied tingly of
\qquad
\qquad
\qquad
\qquad
For your sopy of our 20-page echlolog wrilte todiay to:

LEARN

Jhe Fast Scientific Way!

CODE

In Exclusive, Recorded System Developed by ETI and used by the Armed Forces.

- Learn By Sound Only.
- Correct Speeds From the Start.
- Static and Interference Records.
- 30 Extra Long Playing Time Records.
- 3 Albums:
\#1 Alphabet, Number, Punctuation
\#2 Four through ten words per minute.
\#3 Eleven through twenty words per minute.
\$11.00 Per Album
Complete Set \$29.95
Free Grading Service Included

[OVICE

[^17]
ELECTRONICS communication ENGINEERING

2

 earn Electronics By Photo-Sound. The Complete Audio-Visual Course Available through:- Resident School.
- Home Study.
$T_{\text {his is a Scientifically planned Course }}$ Basic Electronics Through Radar, Loran, and IC.C. Preparation.

ETI Provides Laboratory Training to both the Home Study and Resident Student.

Complete Math-Training and Refresher.

ETI also furnishes this Photo-Sound Method to the Armed Forces.

Approved For Veterans

Electronic Technical Institute	
	070 West A lanchester Wenue
Inglewood, California	
	Cientlemen: I am interested in your training
	Course in Code \square Novice \square Electronics \square
	Send Information:
	Name.
	Address.
	City Zone. . . . State.

970 W. Manchester Ave.
Inglewood, California

Always in Stock at Terminal

the Newest and Finest Electronic Equipment

 THopounaN (siang for AMATEUR and INDUSTRY!
- COMPLETE STOCKS - PROMPT DELIEERY - LOWEST PRICES

Whether it's new equipment or replacement parts, you con always depend on TERMINAL for the BEST BUYS on BEST KNOWN Brands . . . Amateur Gear, Radio, Television, High Fidelity Audio, Electronic and Sound Equipment for Home, Industry and Communications.

TERMINAL'S staff of active Amateurs and Experienced Technicians is here to help solve your problems, save you money and assure your complete satisfaction.

Mail orders filled Anywhere in the World.

AUTHORIZED DISTRIBUTORS ELECTRONIC EQUIPMENT

Visit our Salesrooms and Sound Studios
Terminal Radio come.
85 CORTLANDT STREET, NEW YORK 7, N. Y. Phone: WOrth 4-3311 - Coble Address: termradio

All From One Source

These four quality lines of Electronic Components may be obtained quickly and conveniently from Distributors who stock ERIE RESISTOR CORPORATION products.

CORNING Glass Electronic Components include the complete line of Fixed Glass Capacitors, Direct Traverse and Midget Rotary Glass Trimmer Capacitors, and various types of Low Power, Precision and High Power Glass Resistors.

ERIE-Chemelec Teflon Electronic Components are made of the most nearly perfect insulating material available, and are ideally suited to withstand high humidity, high or low temperatures, high altitudes, high voltages, and high frequency operation. It is serviceable at any temperature from -110° to $550^{\circ} \mathrm{F}$ for long periods with negligible change in critical electrical characteristics.

GRIGSBY-ALLISON Switches are known throughout the industry for dependable quality and smooth performance. They include a complete variety of styles for all types of applications.

BROADCAST AUDIO CABLES

CABLE

 FOR EVERY ELECTRONIC PRODUCT

SOUND SYSTEM CABTES: ?

MAGNET WIRE-
HOOK-UP WIRE
Belten
WIREMAKER FOR INDUSTRY

ONE LINE ONE STOCK ONE CATALOG

SAVE wITH OURSURPRISE TPADFFIN ALLOWANCSS!

STÓP DREAMIN' - GET YOUR

The trend is up-Up-UP on trade-ins at Walter Ashe. Our "Surprise" trade-in allowances were never higher than now. That means far lower prices for you on the new equipment of your choice.

WORKIN' TODAY!

Send for latest catalog.
All prices f. o. b. St. Louis - Phone CHestnut 1-1125

Just let us know the mak number of thow the make and model to trade and the equipment you have ber of the new the make and model numYou'll have our gear you are interested in. TRADES CONFINED To EQUIPMENT by return mail. trades confined to eoulpment manufactured since 1945

ASK ABOUT OUR TIME PAYMENT PLAN

CAVALCADE OF NEW EQUIPMENT

with all new improved features!

BUMPER MOUNTS

No. 445 \$7.95
No. $444 \$ 17.80$
No holes to drill, eosy thread, to f it all antennas. Precision engineered

MASTER MATCHER \& FIELD STRENGTH METER
Automatically tunes the entire band fram the drivers seal!
6 or 12 valt models $\$ 24.95$

GROUND PLANE
(Drooping Type) FOR 6 METERS

No. MGP-6

Aluminum alloy tubing, coox cable connector. For medium or low pow.
ered trans.
$\$ 14.95$

No. 321 BODY MOUNT Swivel base body mount less spring. Specially constructed diogonal boll ioint for moximum strength.
$\$ 7.95$

ANTENNA COILS
HY " Q " construction with wider spocing of turns tor high frequency bands. Use as center or bose looded antenna with $60^{\prime \prime}$ whip.

No. 750-MASTER DELUXE.,ALLBANDER

- Covers 10 thru 75 and all intermediate fre. quencies.
- Silverploted single furn contact, positive spring.
- Eccentric cam contact. easy selection of furn. - Automatic lock prevents domoge to coil. No. 775 -MASTER MULTIBANDER
- Cavers all amatcur bands 10 thru 75. Select band with slide contoct switch to preset tops.
- Seven silverplated cantaets an heavy duly
- Taps easily sel with

Grid Dip Oscillatar.

- Bondspreader B5.195 furnished with coil for 100KC QSY.
No. $750 \$ 14.95$
23/8"Dia $\times 133 / 4^{\prime \prime}$ Lang

\Rightarrow

TENAJUSTER
No. 99
$\$ 2.95$
No. 825 MICRO-Z-MATCH Micrometer Impedance Matching Inductance for Mobile Antennas
Body maunts sold separately sram $\$ 8.75$ up.
$6^{\prime \prime}$ odiustment for whip obove coil. Light weight oluminum. Standard thread to fit all coils. $\$ 2.95$

MATCH

Cameradio is recognized as one of the Nation's leading suppliers of Nationally Advertised electronic equipment and components. Our 36 years of experience has earned a wide-spread reputation for prompt and efficient service. The next time you need anything electronic . . call on Cameradio.

\checkmark COMPLETE STOCK
 $\sqrt{ } \sqrt{ }$ EXPERIENCED PERSONNEL
 \checkmark PROMPT SERVICE

0 amenarifo

1121 Penn Avenue, Pittsburgh 22, Po. EXpress 1-4000

WEBSTER
 MOBILE ANTENLA

6 band operation: 75-40-20-15-11-10 meters

Simple, fast band change - no plug-in coils, no external taps or projections-merely raise or lower whip to precalibrated setting.

Streamlined - unobtrusive - functional . . .
Weatherproof-corrosion resistant . . .
Strong but lightweight-less than 2 pounds...
All parts individually replaceable...

Band-spanner is an effective, centerloaded mobile antenna with loading coil wound directly on upper portion of the fiber glass support column. A unique Webster design internally exposes a portion of each turn.

Affixed to the bottom of the stainless steel whip is a specially designedcircular contact. A positive electrical connection between the whip and any of the internally-exposed turns of the loading inductor is therefore possible.

OVERALL HEIGHT: (whip fully extended) $9^{\prime \prime} 9^{\prime \prime}$

A continuously varioble "tap" is affected merely by raising or lowering the whip, plunger-fashion. The contact arrongement is positive, self-cleaning ...tends also to hold the whip firmly in any preset position.
With continuous adjustment of the loading inductor readily possible, exact antenna resonance can be obtained anywhere within a given band. Load. ing problems are minimized, most efficient operation is assured.

MIN. HEIGHT: support column-looding section, 63"
DIAMETER: Column 1", loading section 1-1/8" Top whip, $1 / 4^{\prime \prime}$ for $24^{\prime \prime}$, (adiustable range) tap. ering to $1 / 8^{\prime \prime}$ at top. Corana boll $5 / 16^{\prime \prime}$ (approx)
MOUNTING STUD: $1 / 2$ " long, threaded 3/8-24 SAE.

Stăinless
Steel Top Whip

Factory

 calibrated mid-band markingsPlastic covered loading section

Fiber glass support column

Webster now offers high quality, economically priced stainless steel and fiber glass covered whips in several standard lengths. All listed whips have male-type base fittings threaded 3/8-24 SAE and $312^{\prime \prime}$ diameter coronaballs at tips.

Inquiries on other lengths and base fittings are invited.

WHIP PRICES (net)

WHIP PRICES (net)		
Lengths	Stainless	Fiber
Lengths	Steel	Glass
$36-46^{\prime \prime}$.	. 4.25	. 6.25
46-56 ${ }^{\circ}$.	. 4.35	. 6.35
56-66".	. 4.45	. 6.45
66-76".	. 4.55 .	. 6.55
76-86".	. 4.85	. 6.65
86-96".	. 4.75 .	. 6.75

QUANTITY DISCOUNTS
All prices f.o.b. foctory
Mill valley, Colif.

Western Gear moums ...custom engineered
 We have more than 50 basic prototype motors, fans, blowers, con-

 verters, alternators and generators. Motor designs range from $1 / 500$ th to $4 \mathrm{HP}, 50$ to 1,000 cycles in frequency, any desired voltage. Extensive line enables economic modification to your requirements or special design. Complete engineering service gladly offered for help on any rotary electrical equipment problem. Write for new catalog No. 254-A.

Delta-Tenna, for all VHF and UHF frequency requirements.
Expertly engineered, not to be confused with ordinary vertically polarized antennas that resort to impedance matching devices to obtain maximum efficiency. Feed impedance matches RG8U 52 ohm coaxial line. Unusually large elements insure efficient broad loading over the amateur band for which it is applied. Gold anodizing provides long life in adverse climates. Will handle RF power in excess of a kilowatt if required. Cut to commercial frequencies on order. Moderately priced for outstanding performance. Amateur models for 2,6 and $10-11$ meters, 220 and 420 MC . Order through your distributor or ask him to write direct.
"The difference is reliability" * Since 1888

Precision fine pitch gears manufactured to your requirements, constructed to the highest specifications for electronics use. Available on order from 200 to 6 diametral pitch and from $.125^{\prime \prime}$ to $10^{\prime \prime}$ diameter. Complete engineering and manufacturing facilities for the application of high precision gearing and gear drives in electronics equipment. Ask for help on your problem. No obligation!

Detail your requirements on any electronic problem. Utilize Western Gear's production facilities to cut your product costs. Our engineers will give their recommendations promptly. Address Western Gear Corporation, Electro Products Division, 132 W. Colorado St., Pasadena 1, Calif.

NOW'. . . model SK-10O
Selectable side band receiter bUILT TO THE SPECIFICATIONS OF 1,000,000 FIELD EXPERTS

Model $\mathrm{XX}-100$. Amment Net $\$ 995.00$ Matthing R-1613 Speaher \&1:. 95 Propumay Range 538 kr -1580he 1:20he-34me

MODEL S.53A $\$ 89.95$

COVERAGE: Standard Broadcast from 590.163 i) kc plus four Short-Wave bands over $2.5-31$ and $48-54.5 \mathrm{Mc}$.
FEATURES: Large easy-to-read overseas dial with interna tional stations clearly marked. Electrical bandspread and logging scale. Five inch built-1n PM speaker, jacks for headphones plus phonograph jack. Temperature compensated to reduce fading due to frequency shift. Two stages of $1 . f$.

MODEL SX. 96 $\$ 249.95$
Matching R.468
Speaker $\$ 17.95$

COVERAGE: Standard Broadcast; 538.1580 kc ; Three S/W Bands, $1720 \mathrm{kc}-34 \mathrm{Mc}$. Band 1:538 kc- $1580 \mathrm{kc}-$ Band 2: 1720 kc . 4.9 Mc-Band 3: 4.6 Mc-13 Mc-Band 4: 12 Mc .34 Mc .

TYPE OF SIGNALS: AM.CW.SSB
FEATURES: Precision gear drives are used on both main tuning and band spread dials.
Most taiked about receiver on the air ... This Hallicrafters double conversion selectable side band receiver offers major improvements in stability by the addition of temperature compensation in the high frequency oscillator circuite and the use of crystal controlled second conversion oscillators. Hallicráters highly selectable 50 kc i. 1 system is used in this new precision. hallicrafters

MODEL S.38D $\$ 49.95$

COVERAGE: Standard Broadcast from 540.1650 kc ; plus international reception on 3 Short-Wave Bands covering 1650 $\mathrm{kc}-32 \mathrm{Mc}$.

The radioman's idea of radio ... This famous Halliciafters' radio, now with smart new styling, amazes even the experts wr:h its superior performance. Featuring the same skillful engineering found in much higher priced communications sets make the S 38D ideal for the Short-Wave listener or new radio amateur.

COVERAGE: Broadcast band 540.1680 kc plus three S / W bands $1680 \mathrm{kc}-34 \mathrm{Mc}$.
This newly engineered Hallicrafters receiver has the 10,11 , 15, 20, 40 and 80 meter amateur bands calibrated on large easy-:O-read dial. Over 1000 of calibrated bandspread for better selectivity on ham bands. Husky, full sized unit features separate bandspread tuning condenser and built-in PM 5" speaker.

COVERAGE: Broadcast Band 540.1680 ke clus three ShortWave Bands covers $1680 \mathrm{kc} \cdot 34 \mathrm{Mc}$. Packed with all the features most in demand by the DX enthusiast, this model is a real stand out in its price range. The large, very easy to read dial features over 1000 degrees of calibrated bandspread through the 10, 11, 15, 20, 40 and 80 meter amateur bands. Incorporated in the advanced design are such much-wanted components as an " S " meter, a separate bandspread tuning condenser, a crystal filter and an antenna trimmer. Grey-black steel and brushed chrome cabinet is perfectly styled for appearance and function.

Couvement Tume Payments! Foreopn Trade Specialiats!

Cardwell Capacitors

The Standard of Comparison for Forty Years

LOW-POWER TRIM-AIRS

Popular Trim-oir midgets, constructed with spacers between plates, provide a means of quickly removing plates for changing capacity ranges, a valuable feature for the amateur and experimenter. Plates are $\mathbf{. 0 2 0}$ " thick buffed aluminum. Insulating end plate is silicone treated ceramic. Shaft is $1 / 4^{\prime \prime}$ diameter nickel plated brass. All units listed have straight line capacity characteristics. Listed capacities of dual units are per section. Butterfly capacitor values are measured from stator to stator with rotor floating. Lengths are referenced from front surface of ceramic end plate.
 TRIM-AIRS

Max. Cap.	Min. Cop.	Air Gap	Single Section Part No.	Dual Section Part No.
75	2.7	. 020	PL. 6016	PL-6041
100	3	. 020	PL-6017	PL.6042
140	5	. 020	PL-6018	PL-6043
10	1.2	. 030	PL. 6000	PL.6028
25	2	. 030	PL-6002	PL-6030
50	2.8	. 030	PL-8004	PL.6032
100	6.9	. 030	PL-6055	PL-6065
15	3	. 070	PL-8011	PL-6037
30	4	. 070	PL-8012	PL-6039

BUTTERFLIES

(Not lllustrated)

Max. Cap.	Min. Cop.	Air Gop	Part No.	Length
3	1.5	.030	PL- 6075	$11 / 2$
7	2	.030	PL-6077	$7 / 10$
13	3	.030	PL-6078	$19 / 2$
20.5	3.5	.020	PL-6079	$11 / 16$
38	6	.020	PL-6081	$17 / 6$

	TYPE "N" DUALS			Length
Max. Cap.	Min. Cap.	Air Gap	Part No.	
17	4	. 084	PL-7116	45/20
35	5	. 084	PL-7106	45/2
50	9	. 084	PL-7108	5\%
75	11	. 084	PL.7109	61/16
43	10	. 125	PL. 7264	62\%/8
10	4	. 125	PL-7231	45/3

TYPE "N" SINGLES

(Not lllustroted)

50	9	.084	PL .7100	$33 / 10$
75	11	.084	PL 7101	$45 / 20$
100	13	.084	PLL 102	$57 / 2$
150	19	.084	$\mathrm{PL}-7103$	$61 / 16$
100	17	.100	$\mathrm{PL}-7342$	$57 / 32$

" N " TRANSMITTING UNITS

Type "N" transmitting capacitors are designed for medium power high frequency applications. Plates are $.040^{\prime \prime}$ thick aluminum with rounded edges. Silicone treated insulating bars insure low losses af high frequencies. Accessory mounting brackets allow inverted mounting for low stator-to-ground capacity. Listed capacities for dual capacitors are per section. Lengths are referenced from front of mounting posts.

The ALLEN D. CARDWELL

Electronics Productions Corporation

Subsidiary of Chesapeake Industries, Inc.
Plainville
Connecticut

International Rectifier Selenium and Germanium Rectifiers

International

Selenium

Products

Pressed poutder or cacum process used as cletermined by our Applications Engineering De'm. The' most widely used Industrial Power Rectifiers in Industry today!

high voltage cartridge rectifiers
Designed for long life and reliability in HalfWave, Voltage Doubler, Bridge, Center-Tap Cirenits, and 3 -Phase Cirenit Types. PhenolieCartridge and Hermetically Sealed types available. Operating temperature range: $-65^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$. Specify Bulletin $\mathrm{H}-2$

International

Germanium

Products

High quality units of improted design are the results of years of experience in the production of exceptionally fine germanitm crystals plas extensice research, development and field performance testing!

industrial power rectifiers
For all DC power needs from microwatts to kiknvatts. Features: long life; compact, light weight and low initial cost. Ratings: to 250 KW, 50 mata 2,300 anperess and up. 6 volts to $30,0(\%)$ valts and ap. Efficiency to 87%. Power factor to 95%. Bulletin C-349

sub-miniature flenium diodes

Developed for use in *imited space at ambient temperatures ranging from $-50^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$. Encapsulated to resist adverse environmental conditions. Octput voltages from 20 to 160 volts; output currents of 100 microamperes to 11 MA. Bulletin SD-1B

GERMANIUM POWER RECTIFIERS
This new line features: High efficiency-up to 97%, Lowest forward drop, High reverse to forward current ratio, minlimited life expectancy: No reforming recpuired after storage. Ratings: 26 to 66 AC input v. per junction: 150 to 100,000 amps DC: output. Operating temperature range: $-55^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$. In three styles. Bullefin GPR-1

IV AND RADIO RECTIFIERS
The widest riunge in the indhstry! Designed for Radio, Television, TV booster, UHF converter and experimental applications. Input ratings from 25 to 195 volts AC and up, DC output eurrent 10 to 1.200 MA . Write for application information. Bulletin ER-178-A

Photoelectric cells
Self-generating photocells avalabic in standard or custom sizes, monnted or unmonnted, Optimum load resistance range: 10 to 10,000 ohms. Ontput from 2 MA to (6) MA in ave sunlight. Ambient temperitture range: $-65^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$. Bulletin PC 649

GERMANIUM DIODES

POINT CONTACT. High quality crystals long reliable life-superior resistance to humidity, shock, temp.ecycling. Bulletin GD-2 JUNCTION POWER, lermetically sealed -welded construction. Available in Standard JETEC: 1N91, 1N92, 1 N 93 types. For diodes to meet your specific requirements, consult our Semiconductor Division.

Antenna Masts-Highest grade stainless steel-177 Ph. Exceptional high strength and corrosion resistance. $841 / 2^{\prime \prime}$. mast can be bent to bring tip and base $30^{\prime \prime}$ apart at base level without distortion! Taper ground. 57" to 96" lengths. Model WCA-3B. Specify length.

Heavy-Duty Antenna BaseAny vertical position can be obtained from adjustable swivel ball design. Positive positioning of the antenna assured under most severe vibration and shock conditions. High "Q" bakelite insulator. Wrenches, ground, and solder lugs included. Model WCA-3.
Heavy-Duty Spring-Barrel type for long life and extra strength. Bends 100° without damage. Heavy cadmium plating protects against rust and corrosion. Noncorroding center conductor. Tightening wrenches supplied. Model WCA-3A.

WARD COMMUNICATION ANTENNAS

quality antennas for your mobile application

Ward high-quality, heavy-duty, mobile antennas are completely reliable with an unsurpassed field record of service. Prices, new, reduced as much as 20%.

Write today for new catalog

Ward also manufactures disguise antennas and ground plane antennas. Other new products to be announced soon. Ask your supplier for new catalog containing complete specifications and information on our product line, or write us:

Superior's New Model TV-12 trans-conpuctance TUBE TESTER

ALSO TESTS TRANSISTORS!

A RADICAL CHANGE IN DESIGN PROCEDURE. Customarily, a new model Tube Tester means a revised model. For usually when a manufacturer designs a "new" model, he actually re-designs the last model made, including new improvements to meet changing requirements, and circuit improvements resulting from experience in producing the last model made. That is the usual practice, but doesn't apply to the new Model TV-12.
Superior Instruments $\mathbf{C o}$. has been designing and producing Tube Testers since 1935. About two years ago, they asked their engineers to select a circuit which would meet the requirements of those technicians who want a top quality Tube Tester. The engineers selected the basic TRANS-CONDUCTANCE circuit employed in the Model TV-12. And then, thanks to the cooperation of a leading switch manufacturer, who designed a special five position lever switch, they were able to improve that basic circuit.

The Model TV-12, therefore, is not a "rehashed" model - it is not a tester which simply tests good tubes "good" and bad tubes "bad." This radically new tester will check tubes under dynamic conditions very closely simulating the manner in which they would function in a receiver or amplifier. It is a tube tester we are proud of. It is a tube tester which we claim will compare favorably with laboratory instruments selling for double the price.

And about Transistors. We doubt that the Transistor will ever wholly replace the Vacuum tube. Unquestionably, however, the present already substantial rate of production and use of Transistors will be very greatly increased in the near future.

The Model TV-12 will test all Transistors produced to date and provision has been made for testing the new Transistor types known to be designed but not yet in production.

SPECIFICATIONS

testing tubes

- TESTS ALl TUBES including 4, 5, 6, 7. Octal, Lock-in, Hearing-Aid, Thyratrons, Miniatures, Sub-Miniatures, Noval, Sub-Minar and Proximity Fuse types.
- Employs improved TRANS-CONDUCTANCE circuit. An in-phase signal is impressed on the input section of a tube and the resultant plate current change is measured. This provides the most suitable method of simulating the manner in which tubes actually operate in Radio \& TV receivers, amplifiers and other circuits. Amplification factor, plate sesistance and cathode emission are all correlated in one meter reading. Although the Model TV-12 is not calibrated to provide mutualconductance reading (MHO'S), the Engineer or Technicion who needs that information may easily compute it with calibrations we supply.
- NEW IMPROVED ROLL CHART MECHANISM USes a combination of fibre and brass gears to eliminate back-lash and slippage.
- New line voltage adjusting system. A tapped transformer makes it possible to compensate for line voltage variations to a tolerance of better than 2%.
- SAFETY BUTTON - protects both the whe under test and the instrument meter against damage duc to overload or other form of improper switehing.
- This model retains the INDIVIDUAL ELEMENT IDENTIFYING SYSTEM developed by Superior in 1945. All elemental switches are numbered according to RMA pin number designations. This procedure enables the operator to instantly identify the particular element being tested.
- NEWLY DESIGNED FIVE POSITION LEVER SWITCH ASSEMBLY. Previously because of switch limitations, the same voltage was applied to the plate and grid. Extra position and unique design of new switch permits application of separate voltages as required for both plate and grid of tube under test, resulting in improved TransConductance circuit.

TESTING TRANSISTORS

Although Transistors may be tested for forward and inverse action with an Ohmmeter, such procedure will not identify an inefficient transistor. Also, if the ohmmeter uses a high-internal battery voltage, the transistor will likely be damaged. A transistor can be safely and adequately tested only under dynamic conditions. The Model TV-12 will test all transistors in that approved manner, and quality is read directly on a special "transistor only" meter scale.

The Model TV-12 will accommodate all transistors including NPN's, PNP's, Phota and Tetrodes, whether made of Germanium or Silicon, either point contact or junction contact types.
Model TV-12 housed in handsome $\$ 7250$
rugged portable cabinet sells for only

Try it for 10 days before you buy. If completely satisfied then send $\$ 22.50$ and pay balance at rate of $\$ 10$ per month for 5 months. No Inferest or Finance Charges Added! If not completely satisfied return unit to us, no explanation necessary.

MOSS ELECTRONIC DISTRIBUTING CO., INC
Dept. D. 200, 3849 Tenth Ave., New York 34, N.Y.
Please rush one Model TV-12. I agree to pay $\$ 22.50$ within 10 days and to pay $\$ 10$ per month for 5 months. It is understood there will be no finance, interest or any other charges. provided I send my
monthly payments when due. It is further understood that should I fail to make payment when due, the full unpaid balance shall become immediately due and payable.

Name
Address

City Sone State

Complete Outfitters

FOR THE

Ham
 - Communichtions
 - Electronic Engineers

Eugene G. Wile

 218-220 South 11th St.Philadelphia 7, Pa. WAlnut 3-1343

Distributors of
Nationally Advertised Lines of
RADIO, TELEVISION and ELECTRONIC Parts

YOU'RE THERE! with the most technically perfected communication arrays ever produced!

Transistors for IMMEDIATE DELIVERY!

TRANSISTOR TYPES	SILICON JUNCTION TRANSISTORS	PHOTODIODES	SEMICONDUCTOR RELAYS
2N 32	2N 39		SR 9
2N 33	2N 40	PD 5A	SR 10
2N 34	2N 42	PD 6	SR 11
2N 35	2N 43	PD 3	SR 12
2N 36	2N 63	PD 7A	
2N 37	2N 64		
2N 38	2N 65		

FOR YOUR SEMICONDUCTOR REQUIREMENTS WRITE TO:

FiETCO INC. 406 N. CRAIG ST., PITTSBURGH 13, PA.

PACKAGED on spools in lengths of 100-250-500 feet.
INSULATORS—pure polystyrene spaced $6^{\prime \prime}$ apart.
WIRE SIZE No. 18 hard-drawn copper-weld wire.
IMPEDANCE 300 ohms at all frequencies. WIDTH between conductors $3 / \mathrm{s}^{\prime \prime}$ center to center.

PACKAGED on spools in lengths of 100 -250-500 feet.
INSULATORS—pure polystyrene spaced $6^{\prime \prime}$ apart.
WIRE SIZE No. 18 hard-drawn copper-weld wire.
IMPEDANCE 425 ohms at all frequencies. WIDTH between conductors $1^{\prime \prime}$ center to center.

INCORPORATED
406 N. Craig St., Pgh. 13, Pa.
136

POWER TUBES: Triodes, Beam Power types, Rectifier types, and Thyratrons.

CATHODE RAY TUBES: For virtually every oscillographic and TV application-in a choice of screen sizes and phosphors.

SPECIAL TUBES: "Special Red" (long life) types, Multiplier Phototubes, Gas and Vacuum Phototubes, Computer tubes, "Pencil types," Vacuum Gauge tubes, and other small types for industrial and communications services.

TEST EQUIPMENT: Including oscilloscopes, vacuum tube voltmeters, microammeter, VHF and UHF sweep generators, VHF marker generators, RF and Audio Signal generators, color-bar generator, dot-bar generator, and specialpurpose probes for laboratory, production line, and service applications.

200 Page W. D. Brill Buying Guide

Write for your FREE copy of the latest W. D. BRILL Catalog-the complete Buying Guide for all Amateur and Industrial Electronic Equipment. Features the widest selection and largest stocks of equipment.

W. D. BRIL COMPANY

198 10 Ch STREET
OAKLAND 7, CALIF. Phone: TEmplebar 2:6100

2uality Praducte Since 1931
SAINT PAULI, MINNESOTA-U. S. A.

ON THE ENTIRE GONSET LINE

2-METER STANDARD COMMUNICATOR
(Less squelch, etc.)
115 V AC/6V DC ${ }^{\#} 3026$. . . . 209.50
2-METER DELUXE COMMUNICATOR
115V AC/6V DC 3025 229.50
115 V AC/ 12 V DC $\# 3057$. 229.50
6-METER DELUXE COMMUNICATOR
$115 \mathrm{~V} \mathrm{AC} / 6 \mathrm{~V}$ DC $\# 3049$. 229.50
115 V AC/12V DC 3058 229.50
GROUND.TO-AIR COMMUNICATOR
115 V AC $(60-400 \mathrm{e})$ \#3042 229.50
115 V AC/6V DC \#3043 350.00
$115 \mathrm{~V} \mathrm{AC} / 12 \mathrm{~V}$ DC \#3073 350.00
INDUSTRIAL COMMUNICATOR
$115 \mathrm{VAC} / 6 \mathrm{~V} D \mathrm{DC}$ \#3042.
350.00

COMMUNICATOR ZIPPER
CARRYING BAG \#3023
2-METER VFO . . $\# 3024$. 84.50 A fitting companion unit for the Communicator, but also well suited for use with almost any 2 .meter transmitter. Provides stable, calibrated VFO (24 mc. output) . . brings all the advantages of LF VFO to the 2 -meter operator.

2-METER LINEAR AMPLIFIER \#3063 \qquad
6-METER LINEAR AMPLIFIER \#3065.
149.50
 \title{
INCLUDING THE COMPLETE
 \title{
INCLUDING THE COMPLETE
 Communicat

}

AND FCDA-APPROVED MODELS

2 METER COMMUNICATOR

All the desirable features of a top-performance fixed station in a comfort: ably carried package. Sensitive superheterodyne receiver with "Cascode" front-end, tunable 144.148 .3 mcs. Has three stages $1 . \mathrm{F}_{\text {; }}$, famous Gonsef noise clipper, adiustable squelch, (de luxe models only) built-in panel speaker, provisions for earphones.
Transmitter uses $2 E 26$ final at 6.7 watts output with high level plate modulation. Modulator can also be utilized for PA system in emergency situations. Built-in power supply is universal for DC and 115 V AC. (Also available, $6 \mathrm{~V} D \mathrm{DC} .115 \mathrm{~V}$ AC and 12 V DC .115 VAC .)
Coax fitting on case top accepts telescoping antenna, (supplied) or terminates coax line from external antenna.

6 METER COMMUNICATOR

A new Communicator which operates on the amateur δ-meter band. General size and appearance is identical to 2 -meter Communicator. Receiver utilizes Cascode front end for high sensitivity, double conversion for increased I.F. selectivity usable on 6 meters. Transmitter delivers 8 to 10 watts output with either 6 (or 12) volt DC or 115 volt AC universal supply. De luxe models only. (Squelch, earphone jack, etc.)

GROUND.TO-AIR COMMUNICATOR

Here is an effective two-way VHF station which may be out into temporary or permarent operation in a matter of seconds. Sensitive, tunable superhet covers 108 to 128 mcs , permits monitoring all VHF frequencies in normal use by airports, airport vehicles and aircraft. Squelch and Gonset noise limiter are included. Xtal controlled transmitter section supplies full 6 to 7 watt output power from either DC or 115 V AC primary power sources. Same general size and appearance as other Communicator models.

INDUSTRIAL COMMUNICATOR
A Communicater designed specifically for low-power industrial fixed or portable servises, with output power limited to comply with FCC rules. Both transmitter and receiver are xtal controlled. Has squelch and noise limiter, panel mounted speaker, Universal OV DC/115V AC built.in power supply. General size and appearance same as other Communicators.

2 AND 6 METER LINEAR AMPLIFIERS

Two new linear amplifiers for 2 or 6 meter Communicators to increase output power to $50-60$ watts. These amplifiers utilize push-pull 826 's with forced air cooling, include self-contained, heavy-duty 115 V AC power supplies. Full control, including built-in antenna relay, by actuating transmit switch on Communicator. No rewiring necessary. Simple to adjust . . .foolproof in operation. Models available for other VHF frequency ranges, including aircraft, commercial, gover nmental.

HALLICRAFTERS

COLLINS

Model 75A-4. Latest 75A Series Annateur Receiver.
97F320. NET....
Model 312A-1. Control Unit.
U7E32
97F321. NET
37.50

Model S-85. Popular Ainateur and Short-Wave Receiver.
98F031. NET
.. 119.95
Model SX-99. Compact, Lightweight
Amateur Receiver.
98F026. NET.
.149 .95
Model S-38D. Latest Version of S-38
Series Receivers.
98F033. NET...
49.95

Model S-53A. 5-Band Short-Wave
Receiver.
98F009. NET.
89.95

Model R-468. Matching Speaker for
Hallicrafters Receivers.
98F010. NET.
.17 .95

NATIONAL

Model NC-300. Brand New Amateur Receiver, covers 160 to $11 / 4$ meters on 10 dial scales.
$98 F 340$. NET
.. 369.95
Model NC-183D. Double Conversion Communications Receiver.
98F311. NET.
Model NC.98 399.50 teur Receiver. Highly Selective Ama98F335. NET:

Model HRO-60T. Professional Comm:1nications Receiver. 98F323. NET .533 .50

Model NC-88. Popular Ainateur Recvr. 98F312. NET
.119 .95
Model SW-54. Compact Short-Wave Receiver.
98F318. NET \qquad .49 .95
JOHNSON er Amplifier.
$97 F 480$. NET. Transtnitter Kit.
mitter Kit.
mitfer ${ }^{\text {mit }}$ NET

Viking Kilowat\}. New 1000-Watt Pow-
1595.00

97F480. NET..........................1595
97F481. Matching Desk for above. 123.50 Viking II. Feature-packed Amateur
97F455. NET................................ 279.50
Viking. 60 -Watt Input Mobile Trans-

Above Kits are Avallable Completely Factory Wired.

GONSET

Model 3025. Deluxe 2-Meter Conmmnicator.
97F117. NET................................. 229.50
Model 3041 . Mobile Super-Ceiver for
Phone and CW
97F090. NET.
119.50

BARKER \& WILLIAMSON
Model 5100S. Compact. Self-Contained Transmitter.
97F135. NET.
467.50

Model sisb. Single Side Band Gen-
crator
97F136. NET.........................279.50
HAMMARLUND
Model HQ-140-X. Outstanding Ama-
teur Receiver.
$97 F 400$. NET.
264.50

Viking. VFO Kit for use with above 97F451. NET.................................... 45.50

Ranger. CW or Phone Transmitter Kit. 97F458. NET......................................214.50

Adventurer. Self-Contained 50-Watt Transinitter Kit.
97F475. NET. 54.95

Model 4300. Newest Cominunications Receiver.
97F076. NET 19400
Model 4301. Side Band Detector Selector.
97F077. NET................................... 75.00 Model 100. Deluxe, Self-Contained Speech Clipper. 97F078. NET

MULTI-ELMAC

Model AF-67. Extreinely Versatile Trans-Citer.
97F506. NET
CLR 177.00
EETRAL ELECTRONICS
Model 20A. Rugged Multiphase Exciter.
97F353. NET
249.50

Send for FREE CATALOC See a complete line of the latest releases in Amateur, Radio, Equipment. Fidelity and Electronics Equipment

Depl. H-1, 223 W. Madison SI.
Chicago 6, III. \bullet STate 2-2950
West Coast: 4736 West Century Boulevard, Inglewood, California

FOR THE GREATEST ADVANCES In Mobile equipment

80
Meters

new! vaaro 500 "HI-Q" COILS " 0 " Over 400 ! Our tests show it's the highest known " Q " in a mobile coil to date. 1 coil per band ($80,40,20,15$) plus new attachment for
quick conversion to 10 meters. You choose the band you want with maximum efficiency. Coil peaked at factory. Use with $36^{\prime \prime}$ base section,
$60^{\prime \prime}$ whip. No pruning necessary due to advanced tuning method. Color coded for fast selection. Mount coil in 10 seconds.

See them af your Dealer!

Sold with a money back guarantee!

NEW! CONTOUR WHIP CLAMP
Another Vaaro-Davis advancement. This whip clamp fits the natural bending angle of the whip. Protects whip, gives long life. Clamps onto rain drain of any car.

Rustproof.
No. Vo-109 Amateur net: \$1.25
Other Vaaro-Davis Mobile Products Fibreglass Whips
Buse Sections Body Mownt
KWIK-ON CONNECTOR
Set up or take down antenna in seconds (one for whip, one for antenna and coill. Ideal for use with new "Hi-Q" coils! Protect against theft. Rustproof.
Amateur net: $\mathbf{\$ 3 . 9 5}$
Mast Sections with Permanent Kwik.On Attached
No. K0-24C (24")
Amateur net: $\$ \mathbf{5 . 9 5}$
No. KO.30C (30")
Amateur net: $\$ \mathbf{6 . 4 5}$

IN.LINE WHIP FLEXOR
Keeps base section rigid by eliminating base section spring. Whip stays upright. Bends for storage, passing under trees.
No. V-110S (Standard Model) Amateur net: \$1.95
No. V-1100 (Deluxe Model) Amateur net: $\$ \mathbf{3 . 9 5}$

FBI

PRODUCTS OF QUALITY \& DEPENDABILITY

The results of extensive engineering
ENCAPSULATED COMPONENTS
DO YOU HAVE

Mics?

us assist you in its souLet us a fully equipped and lion. Annal laboralacilities at perimorate experts. are elablad by experiot modeled your se supplied
tan specifications.
REQUIREMENTS TO
SEND YOUR REQUIREMENTS TO

Brooklyn (Ridgewood) 27, New combining
ultimate in cast miniaturized units treated
Transistor component Compound Pant
The ult, audio and Encapsulating Compound a pitied puli FREED Encapstal With Ping). Compound 828 Resin. Material FREED Encapsused on Shell with this new Speciation epoxy resin basedrocessed wits presents of Spec show that uni the requirement showily me e

Compound maintains its
MIL-T-27A. Encapsulating Compound properties into
FREED Encapsulating and physical as safety
excellent electra l adding
en ge, oddities the every unit. physical and electrical Encapsulating to every uni physical an FREED Encaps on the Compare treated with other similar of the super ing of a and with an be convinced Encapsu Complot today and
marked with FRL

$$
\begin{aligned}
& \text { rarity of uni } \\
& \text { confound. }
\end{aligned}
$$

MAGNETIC AMPLIFIERS

PULSE TRANSFORMERS AVAILABLE FROM STOCK
FOR IMMEDIATE DELIVERY
newest developments Applications of the methods. bible the designs in materials have made posits. Freed pulse reliability research est quality stability formers feature staler size. combined with smiled or encapsulated MiliTOur plastic molded or specification mon on re are designed to nits can ${ }_{27}{ }^{\text {are }}$. Class
Our stock line has been modified to ion specifications transformers that industry. commonly

amplifiers feature extreme spa ch of These amplifiers feature high speed of These combined with research in has response. Con developed mate of utmost
use of newly
under size units use of newly r smaller site sin resulted in
reliability.

1718-36 Weirfield St. Brooklyn (Ridgewood) 27, Now York

Now you con have a tower that combines rugged strength with easy erection. E-Z Way Towers will stand a wind load of $40-60 \mathrm{lbs}$. per squore ft. and with our new portable gin pole, it's easy to erect
a 120 ft . tower in one piece. All work is done on the ground and this one shot erection method saves time, money and ends dongerous climbing. Find out obolt E-Z Way-the industry's new leoder!

C-10	C-12	C-15	C-20	C-25
- Width: $10^{\prime \prime}$ Legs: $1 / 2^{\prime \prime}$ pipe - Weight per ff.: $41 / 2$ lbs.	- Width $101 / 2^{\prime \prime}$ Legs: $3 / 4^{\prime \prime}$ pipe - Weight per ft.: $51 / 2$ lbs.	- Width: Legs: 1" pipe - Weight per ft.: 9 lbs.	- Width 20" Legs: $11 / 2^{\prime \prime}$ pipe - Weight per ft.:	- Width: 25" Legs: 2" pipe - Weight per ff.: 21 lbs.
- Guy Spocing:	- Guy Spacing:	- Guy Spacing :	- Guy Spacing:	- Guy Spocing:
- Max. Height: 120 ft.	- Mox. Height: 160 ft.	- Max. Height: 230 ft.	60 ft. Max. Height: 330 ft .	- Mox. Height: $400 \mathrm{ft} .$
Diag. Bracing: 5/16" Rod	- Diog. Bracing :	- Diog. Bracing:	- Dleg. Bracing:	- Diog. Bracing:
- Horiz. Bracing:	- Horiz. Bracin	- Horiz. Bracing	$1 / 2^{\prime \prime}$ pipe	- Horiz. Pipe ${ }^{\text {- }}$ (${ }^{\text {c }}$
1/2" Rod	1/2" Rod	3." pipe	1" pipe	11/4" pipe

When moximum height ond guy spocing are not exceeded, towers are rated for 40 lb wind load

WRITE FOR FREE COMMUNICATION TOWER CATALOG NO. CH When writing for cotolog specify height of tower ond type of ontenna (make and model) you intend to use.

EZWAY TOWERS wc

P. O. BOX 5491 TAMPA, FLORIDA

PHONE 4-3916

MISSILE SYS'NEMS

Research and Development

Advanced missile research and development requires a high degree of individual responsibility, initiative and creative ability. Because Lockheed Missile Systems Division is concerned primarily with this field, it provides an
ideal scientific environment for engineers and scientists possessing these attributes.

Projects now in development promise important achievement during 1956 and will create many new positions each month for engineers and scientists listed here:

CONIDTVIERS
 F:N(iINEIEItING
12.21).2R

TEIAEMETEIRING
HILECTISONIECHANICAL 1)

COMIMENICATIONS
'TEST IEQTIINIENX 1) EíIG:

INEIRIMIEN'IdTION
WTRTCTITRIEか HNGINEI:IXIN

NUCILEAK IPIIV世IC!
MIECIIANICAI.
1:NGINEIERING;

AKRONATVICAI,
IENGINEIKING:

Those who wish to advance their professional stature while contributing to a group effort of utmost importance are invited to write.

MISSHLE SYSNIENE DIVINION

research and enginecring staff LOCKHEED AIRGRAFT CORPORATION

Index

	PMif:
Ablureviations for (${ }^{\text {W }}$ W. Work	
	568
Antemmand leeder Lengths . .337, 342, 349, 350	
Auteuma Diame	
Antenna (iain 351,351	
Antenna length Factor3ist, 346, 347	
Attemuation of Tramsmi	317
Bandpass Filters ${ }^{\text {Bandwidt }}$	
Beam Element Lengths 3 .	
Call Areas. 5 ¢\%, 560	
Capacitance of Short ${ }^{\text {c }}$	1t1
Capacitance, Top-Loading	
Caparitive Reactance	
Cathode and Screen-I)ropping liesistors for	
Characteristic Impedance 315.316	
Cireuit and Operating Vahnes for Converter	
(Oaxial Line Data	311i
Color Code for Radio Parta............................	
Conduetivity of Metals 18 , iffis	
Conversion of Frami	
Copper-Wire Table	
(oupled Tuned (ircuit Resibunse 56a	
('oupling-Coedfuent Curvos	
Decas, Voltage	
Deribel . 5 (if;	
I) ielertric Constantx	
Drill Sizes. 47 仡	
	14 N
Effect of Ground on Horizontal Antenmas.... $3: 35$	
Flectrical Conductivity of Metats. Stis Electrical (bunntitios, symbols for 5 oia	
Irilters. 50.6	
Folded I Sipole Nomogramı......... $3 \geqslant 31$	
Freguenc v-Sipertrum Nomendathre (ialin of Directive Antemnas	
$\text { (aauges, itindard Metal } 51 \text {. }$	
(iermaniumı Crystal Dioders. V-34	
llatiolvwe Antenna Lengths	3:37
Imperdance Sten- Tp in Fohlerd	: 30
Inductance atud Caparitane for Ripshe Rexher-211	
Inductance, (aparitane and Fremenes Charts 46, 5ij-4, 2023	
Inductance of simall Coils	
Inductive Reartance 40	
Inductors, Dimensions of	
Internationat Prefixes. 5ing	
International Amatemr Prefixas. bix	
International Morse (ode 13	
/.-1 ((omputation	
J./R Time (onstant	
Loading-Coil Datar	

Metals, Relative Resistivity of 18
Molvile-Antemua Data 462
Modalation Index 288
Modulator Characteristic C'hart. 271, 274, 279
Musical Scale 568
Nomendature of Frequencies 18
Open Situbs, Position and Lengeth 319
Oprating Values, Converter Tubes. ! 2
Peak-lRectifier-Current/l).('-Lioad-Current IRatio 214
Percentage Ripple Across Input C'apacitor 214
Phometic ('ode 545
Pilot-Lamp Data 567
Plate-('ircuit-Effriency/Driving-Power Curve 148
Power supplies, Гypical 218,219
Prefixes $556,559,560$
Puncture Voltages, Dielectric 533
O Niguals 55
R1' Times Constant 1,32
RST System
3:38
Radiatioll Angles 3:38, 341
Radiation Patterns
Radiation Patterns 355
Reictance ('hange with Antenat Lemgth. 347
Reactance Charts 46
Relationship of Amateur-13and Harmonices. 525, 541
Resistance-Compled Voltage-Amplifier Data $24: 3$
Resistivity of Motals, Relativo 18
Resistor Color Code 4×1, 48:
Response, Tuned-Cireuit 562, 567
Rhombic Auterma Desura :350
Schematic Sivmbols 569
Screen-Dropping and ("athode lkesistors for
R. F. and I.F'. Amplifiers 95
seleniam lecrifiers $\because 29$
Shorted Stuls, Position and Lemgth :319
Sigmal-strength, Readabilits and Tone scoales. 554
Standard Compoment Values 480
stimdard Metal (ianges 508
Standing-Wive Ratio :317
Nitition Lar 547
Stub Position and Length $31!$
sW゙R Calibration 516
Symbols for Fleatrimal (anatities 567
Tank-Cimouit Camacitance 145,152
Ti! Nizes 476
Time (itpacitor Charge abd Diseharge 31, 32
Time (onstiant, CR 31, :32
Time ("onstant, L / R 31
Top-Loading Capardabre 4133
Tramsformer Ratios $\because 61$
Transistors - -. 37
Tramsistor Symbols $7!$
Tramsmission-Line Data 316
Transmission-Lane dises 317
Transmission Lines, Sparing 315, 316
Tumed- (irmit l Respmas 2. 567
V-Antennat Design ('hatt $34!$
VIIF Arrass 428
Varumm Tubes and Somiomulactors (Index to Pables) '-1
Volority lactor and Attemation of Transmis sion Lines. 316, 317
Voltage Decay :3:
Toltaze-Ontbut Transformer- Voltage Rat w $21: 3$
Volt-Ohm-Milliammeter Range (balibration. 488
W Prefises by States. 560
545
WIIV"s-herdules 445

Formulas

[^18]

Frequener	$\begin{gathered} \text { parat } \\ 3699 \end{gathered}$
Inductance	21-215
Critical Compling	
(ros--Modulation	102 103, 52: 538
(ross-Talk	522
(rystal:	
Dindes	75-78, V-39
F'ilters	101
Mirrophones	241
Oscillators 1338, 139-140, 396-3!	
Rectifiers	77
Resonator . 50 - 51	
Crystal-Controlled (onverters	379-384,
Crystal-Controlled ()weillatoms	3-395, 441-447
	$133,139-$
	140, $3996-397$
(rystal Detector	77-78, 84
Crystal Filter, Tuning with	101, 105
Crystal, Germanium	7-78
Crystals, Overtone	300-397
Crystals, Piezoclectric	50-51
Current:	
Alternating	16, 3:-42
Amplifation lactor	
Antema	
1 Direct	
1)istribution, Antema	
Eddy	
Effentive	
Feed for Antemmas	336-337, 341-342
Gain . 79	
Lay and Lead	32-38
Line . 3099 .310	
Loop	31
Magnetizing.	
Neasurement . 3811	
Prulsating . 16,51	
Values	
Curve, İesonamre 433,48	
Curves, Tramsistor Characteristic	
(${ }^{\text {cheses }}$ Tule-(haracteristic60-61	
('ut-()ff Plate-Currnt 600 -61, 69, 149-151	
C.IV. Aboreviations	
CW. Procedure	542-544
(yrle . 16.3 , 3	
Crelie Variations in Ionosphere	
(ylindrical Antemnas.................. $435-436$	
1) Region	
Data, Misceltaneous . 5 5̄-56x	
	16-17
1) $\%$ Instruments . 484 -488	
Dead Spots	
Deatr, Voltage . 32	
Deciliel . 560	
Decoupling	
Deflection Plates . 511	
Degeneration	66-67
Degree, I'have ${ }^{\text {den }}$ (32	
Demodulation	
Density, Flux	
Design of Speerh Amplifiers. . . ${ }^{\text {a }}$ - 4 -245	
Detection	8:3-88, 90, 96-97
Detertors 83-88, 90, 96-97	
Deviation Ratio	
Diagrams, Schematic Symbols for 569	
I iamond Antenma 349 -350	
Diclertric	
1)iclertric (onstants. $2: 3$	
Difference of Potential …..................... 15.16	
Diffused Junction Transistors.	
I Diode Detertors . $84-85$	
Diodes	
I iodes, Crystal . 77	
Itipole, Folded 319-320, 338-339	
Dipole .336-339	
Direct Current	16-17
Direct Feed for Antenn:	337-338

Selenium liectifiers. 211, 2:4-22(6, 229)
self-1iats. 148-14!!
self-Controlled Osrillators 138
solf-Indurtance 26
Selforsisillation 68
Golf(Gucurding
378
$7-81$
378
$7-81$
semiconductors 5. $44-544$
censitivity, Rereiver 82- $\times: 3,1(0) 3-11)$
cories Antema Thming $326,327,342$
series (oparitances $25-20$
sories ('ircuit: $20-22,25-26,20$
Series IFeed 51-52
Series Inductances21-2:2
Series Resistates 20-21
Series Resonance $42-43$
Series Voltage-I)ropping Resistor 219
Servicing Superhet Receivers 107-109
Sharp Cut-Off Tubes.
Sharp Cut-Off Tubes. 69
478
Shielding $53-5-1,68,529-5: 31$ $5: 3-54$
Shields
Shields
short sisip 37:3
Shorting Stick 518
Short-Circuiting $2: 3$
shot Noise 9
Shunts, Meter. $485-486$
Fidehand (utting 94-95
sideband Interferende 268.270
sidebands 57. 268
Nignal Generators 495-49!
Signal-1landling ('apability 84
Signal-to-Image Ratio 90
Signal Monitor 2:36-2:37
Signal Monitoring 2:35, 286
Nignal-Stremgth Indivators (1)-10 $0,467-468$
Sigmal-strength seale 557
Simal Voltage 61
Nilencers, Noise 98-9!
Nilicon Diodes.
17,3:
Sine Wive 53
Single-linded Cirenits

Amplification $299-302$
Nxciters..... 100, 107
Transmission $298-308$
Reception 100, 107
Single-Signal Reception 101)-101
Skin Effect 19
Skip Distance 369, 37:3
Skip Zone
Skip Zone 364
Skirt Selectivity $8: 3$
Sky Wive 368
shy-Tumed Inductance 91
Smoothing Choke $\stackrel{2}{2} 16$
Solar Cycle 37,
Soldering 475-476
Space Charge 388
Spark Plug Suppressors 438-43!
Specific Inductive C'apacity $2: 3$
Spectrum, Frequency $17-18,867$
Speech Amphifiers
244-245
Specch Amplifier Design 247-24
Speech Conmpression 246-247
Speech liquipment 240-248
Splatter 270
Aporadic-f Laver lonization $370-371,37: 3$
Spreading of Rarlio Waves 37.3
36
Spurions Responses (10, $11,106,338-5: 3!$
Spurious Sidehands: 285-28i
Squegring 94
Stabiility, Amplifier $154-156$
tability, Osmilator73
Stability, Rereiver $83,109,377-378$

Stacked Arrays. $351-353,431-4.33$
take, Amplifier(6)
Stagger-Tuning $4!$Standards, lirembency

4924
Standing Wiaves .310-31.
Standing-Wiave Ratio.311-31릉, 504-507
Stater, Wr Profixen biy .
Static (haracteristics. 61
..........................
Storage lattery, Automabile 470
Straight Amplifier $1: 3$
Stray Reepiver Rectificaion

Superheterorisine90-. 01

Superimposed A.C. on I).('................... 51
Superreqenerative kerover
Suppressor Grid
Suppressor, Noise . $9 \times$ as
Surface Wave 318
Imperance
Sweep Wiaveforms. 511
Swing, Grid .
Sminging Choke
Switches, Power .
switching, Antenna . 357
Switching, Meter . 161-161

arhonous Vhraton.
$320-321$
"T"-Section Filters 0 . $0: 3$
Tank-Circuit $Q \ldots . . .3 ; 47,10,101,143-147$
Tank (ircuits, Mumband
Tank constants..... Fliminating . . $39 \mathrm{~m}_{\mathrm{n}}, 522-541$
Temperature Effects.
19
Temperat ure Inversion
Tertiary Winding .
Tetrode Amplifiers . 15n- 151
Tetrodes, Beam
(6x
Torma-A
5
5!
51
$3(1-3: 2$
1411
$\stackrel{211}{ }$
410.3

91
$8!3,10: \%$
8:3, 10:3
5
10
$4 i$
ransiormation, Impedance
1
Tramsformers
$+1$
$47-48,133,9+1-4$ $3 \cong 1-3 \geq 2,339,356$
$320321,3 \%$
3153
$260-261$
Transformerless Power Supulies
$24+29$
Transformers:

pilament 19-17

$96-96$
 217
Trible-Tuned97
Tramsistors74.7 .5
Transmission Lines ,
Thinsonts 314-315

Transmission-Line (oupling| $111-$ |
| :--- |
| $3: 3-3: 3!$ |

tenuris. (3(1) -370
Transmitters: (see also "Vers-lligh Frequen-"Mohile")Beginmer's 35-Watt Transmitter 170-171Paralle Tetplifier$2(12-205$Remotel--Tuncd VFO$206-208$mitter17:-174
ingle 81.3 Amphitieand164-166
500-X att Multiband Vo Transmitter 194-198
群18(i-1!):
inc-Coltage Adjustment - 11
Pustos Dand55
Trateling-Wave Tul76
Trimmer Condensei(0)
Triode Amplifier: 160
138,159Tribler, FrequencyTroposphere Propagation3138, $371,37: 3-374$
eric Bending368. 371
Tromble Nhooting (Receivers) 566
Tube ielements ss
Tube Noise. 8:
Tubes, Driver260
Tuned-Cirruit Response324-329
Tuned Screen Circuit.72-73
med-hine Tank Circuit313331-33:
Reveived Coupler 27-128
ming indicators60
Tuning lange, Extending the Rereiver 04-105Tuming Slug.90
Turns Ratio 39
TV Rerever Defirimane $5+1$
14-315Cavity Resonators56

- -

$$
->
$$

1

[^0]: Example:
 Transformer r.an.s. voltase - 3.j0
 Input resistance - 200 ohms
 Maximum loud current, including bleeder car-rent-175 na.
 L.oad resistance $=\frac{3.50}{0.175}=2000$ ohms approx,

[^1]: A - Federal. B-International. C-Mallory. D-Radio Receptor. E-Sarkes-Tarzian. F Sylvania.

[^2]: 1 For a description of a well-shielded oscillator, see Smith, "A Solution to the Keyrd-VFO Problem," QST, February, 1950 .

[^3]: 2 For a more complete discussion of this effect, see Carter ${ }_{r}$ " Reducing liey Clicks," QST, March, 1949.

[^4]: 1 Voltage across next-stage grid resistor at grid-current point.
 ${ }^{2}$ At 5 volts rim.s. output.
 ${ }^{3}$ Cathode-resistor values ore for phase-inverter service.

[^5]: ${ }^{1}$ Brown - "The Wide-Spread Twin-Five" CQ, March, 1950.

[^6]: Tt - Driver transformer; parallel 6N7 to Class B 6N7 grids (Stancor A-4702).
 T_{2} - Class B modulation transformer (Stancor A-3845; 5000 -nhm tap).

[^7]: 1 A mil is $1 / 1000$ (one-thousandth) of an inch. ${ }^{2}$ The figures given are uppoximate only. since the thickness of the insulation varies with difierent manufacturers. 3 700 circular

[^8]: Here is an example of a plain-language message in correct ARKL form. The preamble is always sent as shown: number, station of origin, check, place of origin, time filed, date.

[^9]: ${ }^{1}$ At $20^{\circ} \mathrm{C}$., based on copper as $100 .{ }^{2} \operatorname{Per}{ }^{\circ} \mathrm{C}$, at 20° (${ }^{\circ}$

[^10]: Standard circuit symbols (ASA Y32.2-1954). In cases where identification is necessary or desirable, the curved line in the eapacitor symbol represents the outside electrode (marked "outside foil" or "ground") in paper-dielectric eapacitors, and the negative electrode in electrolytic capacitors. In variable capacitors the eurved line usually represents the movable plate or plates.
 In a number of eireuits in this IIandbooh, prepared before adoption of the standard, some symbols are not quite identical with those above. However, in practically all cases the intent of the symbol will be casily recognized. In the older eireuits the ground symbol is gencrally used to indicate a connection to chassis.

[^11]: (4)

[^12]: ＊Cothode resistor－ohms．
 ${ }^{1}$ Eoch section．

[^13]: 1 Bogey value for focus. Vollage should be adjustable about value shown.
 Bias for visual extinction of undeflected spot. Voltage should be adjustable from 0 to the higher value shown. ${ }^{3}$ Discontinued.
 Phosphor characterisfics Designatian

 Color and persistance

 Oscilloscope.
 White medium.......................
 P4. White medium. Televison.
 P5....... Blue very shorf. .Phatographic recording of high speed troces.
 P7..... Blue-white short. Radar indicalors.
 Yellow
 Yellow long
 Blue short..

[^14]: $\rightarrow 4$

[^15]: These prices currently opply when o new tube is purchosed ond the old lube rodiotor in The Amperex types 6268 /AX-9911 and 6279 /AX-9912 ore improved versions but complefely interchangeoble in every respect with the standord types 4C35 and 5C22 respectively. They hove o minimum guaronteed life of 1000 hours due to the self-contoined, self-regulating source of hydrogen.
 $\ddagger 10,000$ hour life tubes.
 \#Subject to Federal Excise Tax.

[^16]: - Tower steel only-weight of guss, insulators. etc. not included. flasulation for seater power available at slight exara cont.

[^17]: Get Your Novice License! Complete Novice Course - Only $\$ 29.95$ Code - 5 WPM

[^18]: A.C. Average, lifiertive R.M.S. and Peak Vahus

