August 1967 CATALOG

OPERATIONAL AMPLIFIERS INCLUDING NEW MONOLITHIC INTEGRATED CIRCUITS

FUNCTION MODULES INCLUDING NEW ENCAPSULATED QUARTER-SQUARE MULTIPLIERS, SAMPLE/HOLD MODULES AND ACTIVE FILTERS

BURR-BROWN PROVIDES...

MAXIMUM VALUE:

2

THE RIGHT PRODUCT...

Burr-Brown provides the industry's broadest line of operational amplifiers. . . both Discrete Components and Monolithic Integrated Circuits, as well as a wide variety of Active Filters, Instrumentation Amplifiers, and Function Modules. To facilitate your designs, Burr-Brown offers a complete line of connectors, accessories, and power supplies. If the unit you need is not in the catalog, ask about it. Burr-Brown design capabilities can provide customized units for your engineered component requirements.

AT THE RIGHT PRICE...

Product performance per dollar is higher when you buy from Burr-Brown. Unit prices are listed right in the specification tables to facilitate price/performance comparisons. A 10 percent discount is applied to all purchases of 10 to 24 units. Attractive quantity discounts as well as OEM pricing are available. Annual purchase agreements may be arranged for your continuing requirements.

DELIVERED WHEN YOU NEED IT ...

Burr-Brown's exclusive **JET STOCK** program was initiated to provide rapid delivery to you – the customer. Many of the popular operational amplifiers, connectors, and accessories are stocked by your local Representative for your prototype needs.

Quantity orders are shipped directly from the factory. . .delivered when you need them. . .100% tested and ready to plug into your system.

CUSTOMER SERVICES

DEMONSTRATION UNITS

Your evaluation of our products is encouraged. Contact your local representative to try any Burr-Brown unit in your application.

PRODUCT PERFORMANCE

Burr-Brown products are designed for maximum overall accuracy and system performance. Minimums and Maximums are not just guesswork. We warrant all units to operate within their rated specifications. Each unit undergoes complete electrical and mechanical inspection before being shipped to assure uniform performance in your designs.

GUARANTEED SOURCE

Any product that we have ever manufactured is still available for your follow-on requirements.

RELIABILITY

Mean-Time-To-Failure (MTTF) documents, including electrical stress analysis, are available on all Burr-Brown products.

QUALITY ASSURANCE

Our quality control procedures are based on MIL-Q-9858A, MIL-I-45208A, MIL-C-45662A, and NASA NPC-200-3 specifications. Request a copy

PAGE PRODUCT

of our Quality Control Manual; or if you prefer, we encourage your personal inspection of our facilities.

COMPLIMENTARY HANDBOOKS

Our two industry reference handbooks: Handbook of Operational Amplifier Active RC Networks (104 pages) and Handbook of Operational Amplifier Applications (96 pages) describing theory, applications, and circuits are available upon request.

APPLICATIONS CONSULTING

Burr-Brown maintains a full-time staff of application engineers to provide immediate answers to your most perplexing problems. Our application engineers and your local Representatives, have provided design consultation to hundreds of customers for thousands of applications of operational amplifiers and function modules.

LOCAL ENGINEERING REPRESENTATIVES

Your local Representatives attend periodic training sessions at the factory in Tucson to stay fully informed on the latest products and applications. A call to the specialist nearest you puts the complete services of Burr-Brown at your immediate disposal. For a complete listing, see the back cover of this catalog.

CONTENTS

PRODUCT

GENERAL PURPOSE OPERATIONAL AMPLIFIERS

Low Drift Wideband Low-Noise Commercial Grade	
FET Input-(High Input Impedance) High Common Mode Rejection Ratio Low Drift Wideband Commercial Grade	
Chopper Stabilized Low Noise Low Drift Commercial Grade	
Universal-(High Supply Rejection, High Common Mode Rejection Ratio) Transistor Input FET Input High Voltage	า

	MICROMINIATURE OPERATIONAL AMPLIFIERS		FUNCTION MODULES
4	Monolithic Integrated Circuit Military Temperature Range Commercial Temperature Range	6 6 6	Quarter–Square Multipliers (Multiply/Divide) Squaring Modules Diode Function Generator
4	Discrete and Hybrid (Microminiature)	6	Absolute Value Circuits
4	Military Type	6	Random Noise Generator
	Commercial Type	6	Comparators
4 4	SPECIAL PURPOSE OPERATIONAL AMPLIFIERS		Sample/Hold Modules Three-Mode Integrator
4	Battery Powered	8	Logarithmic Amplifiers Instrumentation Amplifiers
4	High Voltage-(±20 V to ±100 V Output) Transistor Input	8 8	ACTIVE FILTERS
4	FET Input	8	POWER SUPPLIES
4	Chopper Stabilized	8	AND DUAL RECULATORS
4	High Common Mode Voltage	8	AND DOAL REGOLATORS
4	High Power = $(\pm 50 \text{ mA to} \pm 1000 \text{ mA Output})$	8	CONNECTORS AND ACCESS
4	High Supply Rejection	8	INSTRUMENTS AND COMPI
4	FET Input	8	MECHANICAL SPECIFICATIO
4	Differential Output	8	ENGINEERING REPRESENTA

(Multiply/Divide) quaring Modules

PAGE PRODUCT

blode i olientili Generator	11
Absolute Value Circuits	11
Random Noise Generator	- 11
Comparators	12
Solid–State Switches	12
Sample/Hold Modules	13
Three-Mode Integrator	13
Logarithmic Amplifiers	14
Instrumentation Amplifiers	14
ACTIVE FILTERS	15
POWER SUPPLIES	
AND DUAL REGULATORS	16
CONNECTORS AND ACCESSORIES	17
INSTRUMENTS AND COMPUTERS	18
MECHANICAL SPECIFICATIONS	19
ENGINEERING REPRESENTATIVES	20

PAGE

10

4

GENERAL PURPOSE OPERATIONAL AMPLIFIERS

Typical performance at 25°C and at rated power supply (unless otherwise noted). Storage temperature is -55°C to + 100°C.

	MODEL	RATED OUTPUT		DC GAIN	BANDV	VIDTH	SLEW RATE	INP	UT VOLT OFFSET (AGE 1)	INPUT			
	Basic Model			Open Loop	Unity Gain	Full Power		at 25 ⁰ C	Average -25°C t	e Drift o +85°C	at 25°C	Dri -25°C to	ift 5 +85°C	
	No. Module See P. 19	min Volts	min mA	typ dB	typ MHz	min kHz	min V∕µs	typ mV	^{fyp} μV∕⁰C	max µV∕°C	fyp nA	nA∕°C	nA/°C	
Transistor Input														
PREMIUM PERFORMANCE Low Voltage Drift Low Current Drift Wideband Differential Wideband Inverting Low Noise(See note 4)	3003 / 15 3065 / 15 1525 / 25 1510 / 25 3019 / 15	± 10 ± 10 ± 10 ± 10 ± 10 ± 10	± 20 ± 20 ± 20 ± 30 ± 20	110 100 106 90 110	2.0 0.8 15 30 1.5	20 10 500 1000 20	1.2 0.6 30 60 1.2	±0.2 ±0.3 ±0.5 ±0.3 ±0.3	± 1 ± 5 ± 10 ± 10 ± 5	± 3 ± 10 ± 15 ± 25 ± 10	+ 5 + 1 + 5 + 10 + 5	\pm 0.1 \pm 0.05 \pm 0.2 \pm 0.5 \pm 0.2	± 0.3 ± 0.2 ± 0.5 ± 1.0 ± 0.5	
HIGH PERFORMANCE 20 mA Output, 5μV/ ^O C 10 mA Output, 5μV/ ^O C 5 mA Output, 5μV/ ^O C	3004 /15 3020 /15 3007 /15 C	± 10 ± 10 ± 10	± 20 ± 10 ± 5	106 100 100	2.0 2.0 2.0	20 20 20	1.2 1.2 1.2	±0.3 ±0.5 ±1.0	+ 2 + 2 + 2	± 5 ± 5 ± 5	± 5 ± 5 ± 10	± 0.1 ± 0.2 ± 0.5	± 0.3 ± 0.5 ± 1.0	
POPULAR PERFORMANCE 20 mA Output, 10µV/°C 10 mA Output, 10µV/°C 5 mA Output, 10µV/°C	3005 /15 3021 /15 3008 /15 C	± 10 ± 10 ± 10	± 20 ± 10 ± 5	100 96 96	1.5 1.5 1.5	20 15 15	1.2 0.9 0.9	±0.5 ±1.0 ±2.0	± 5 ± 5 ± 5	± 10 ± 10 ± 10	+ 5 + 10 + 15	± 0.2 ± 0.4 ± 0.8	± 0.5 ± 0.8 ± 1.2	
CUMMERCIAL GRADE Wideband Inverting 20 mA Output, 20μV/°C 10 mA Output, 20μV/°C 5 mA Output, 20μV/°C	3014 /15 3006 /15 3022 /15 3009 /15C	± 10 ± 10 ± 10 ± 10	± 20 ± 20 ± 10 ± 5	100 96 90 90	10 1.0 1.0 1.0	500 15 10 10	30 0.9 0.6 0.6	±0.5 ±1.0 ±2.0 ±3.0	± 10 ± 10 ± 10 ± 10	± 20 ± 20 ± 20 ± 20	+ 10 + 10 + 15 + 20	± 0.5 ± 0.5 ± 0.8 ± 1.0	± 1.0 ± 1.0 ± 1.2 ± 1.5	1
FET Input														
HIGH PERFORMANCE Low Voltage Drift High CMRR – 106 dB (See note 6) Wideband Inverting Wideband Differential (See note 5) General Usage	1556 / 15 3062 / 15 1560 / 25 3013 / 15 1552 / 15	± 10 ± 10 ± 10 ± 10 ± 10	± 20 ± 5 ± 30 ± 20 ± 20	106 110 90 92 106	2.0 1.5 60 10 2.0	100 20 2000 500 100	6 1.2 120 30 6	±0.5 ±0.5 ±0.5 ±0.5 ±0.5	$ \pm 2 \\ \pm 10 \\ \pm 10 \\ \pm 10 \\ \pm 5 $	± 5 ± 15 ± 25 ± 15 ± 15	±0.02 ±0.02 ±0.03 ±0.02 ±0.02	doubles doubles doubles doubles doubles	ss/+10°C s/+10°C s/+10°C s/+10°C s/+10°C	
COMMERCIAL GRADE Wideband Differential General Usage	3064/15 1557/15	± 10 ± 10	± 10 ± 10	90 100	5 1.0	150 50	10 3	±1.0 ±1.0	± 15 ± 10	± 30 ± 25	±0.05 ±0.05	double: double:	s∕+10°C s∕+10°C	
Chopper Stabilized														
HIGHEST PERFORMANCE Low Noise, Fast Recovery, 0.5µV/°C Microminiature Low Drift, 0.5µV/°C	3071/25 3049/15 3010/25	± 10 ± 10 ± 10	± 20 ± 10 ± 20) 150 160 160	15 10 15	1000 300 1000	60 18 60	±0.01 ±0.05 ±0.01	±0.2 ±0.5 ±0.2	±0.5 ±1.0 ±0.5	±0.02 ±0.05 ±0.02	±0.000 ±0.001 ±0.000	5 ±0.001 ±0.002 5 ±0.001	
POPULAR PERFORMANCE Low Noise, Fast Recovery, 1μV/°C General Usage, 1μV/°C	3072 /25 3011 /25	± 10 ± 10	± 20 ± 20) 150) 160	15 15	800 800	50 50	±0.02 ±0.02	±0.5 ±0.5	±1.0 ±1.0	±0.03 ±0.03	±0.001 ±0.001	±0.002 ±0.002	
COMMERCIAL GRADE General Usage, 2µ∨/°C	3012/25	± 10	± 20	150	10	500	30	±0.05	±1.0	±2.0	±0.05	±0.002	±0.005	
Universal -High Supply Rejection -High CMRR (See note 6))													-
TRANSISTOR INPUT Low Voltage, ±2V to ±28V Output	3044 /15	note d	5 ± 10	120	3.0	note	6 1.0	±0.3	± 5	± 10	± 5	5 ± 0.3	3 ± 0.7	
FET INPUT Low Voltage, ±1V to ±27V Output High Voltage, ±20V to ± 115V Output	3062 /15 3038 /25	note d	5 ± 20 5 ± 20	5 110	1.5 3.0	note note	6 1.2 6 18	±0.5 ±0.5	± 10 ± 15	± 15 ± 30	±0.02 ± 0.1	2 double I double	es/+10°C es/+10°C	

SAME DAY SHIPMENT from your local representative's JET STOCK of many of these operational amplifiers, connectors and accessories is provided for your prototype design needs. Contact your nearest U.S. representative.

JET STOCK

INPUT R OUTPUT COMMON MODE POWER SUPPLY UNIT INPUT NOISE OPEN LOOP (see note 3) PRICE R See Open dc to Input 10 kHz Diff CM Limit CMRR Rated Quies Price Loop List typ µV∕rms max typ Ma max typ dB typ typ typ Volts Volts mA U.S. \$ Ma k.a 85 50 5 ± 10 5 3 0.5 80 ± 15 3 1.0 500 0.5 ± 10 80 ± 15 5 75 ± 10 5 95 6 0.5 50 80 ± 15 6 0.1 SINGLE-ENDED 15 95 + 156 0.5 note 4 70 0.5 50 5 ± 10 80 ± 15 5 3 50 5 ± 10 80 ± 15 5 65 0.5 50 5 ± 10 80 ± 15 55 3 0.5 5 3 0.5 50 5 ± 10 80 ± 15 5 40 4 0.5 50 5 ± 10 80 ± 15 5 50 50 ± 10 5 40 4 0.5 5 80 ± 15 0.5 50 ± 10 5 30 4 5 80 ± 15 5 5 0.5 SINGLE-ENDED ± 15 55 6 5 0.5 50 5 ± 10 ± 15 5 40 80 5 ± 10 ± 15 0.5 50 5 80 5 30 5 5 0.5 50 5 ± 10 80 ± 15 20 1011 1011 8 105 6 0.5 ± 10 60 ± 15 1011 ۳101 3 0.5 ± 12 106 ± 15 8 95 1011 10 0.1 SINGLE-ENDED ± 15 20 110 10¹¹ 10¹¹ 60 10 5 ± 10 ± 15 8 85 1011 1011 0.5 ± 10 60 ± 15 8 75 6 1010 1010 ± 10 ± 15 8 50 10 5 60 1010 1010 10 5 ± 10 60 ± 15 8 45 0.5 5 SINGLE-ENDED ± 15 10 175 note 4 SINGLE-ENDED 6 0.5 5 ± 15 15 165 6 0.5 5 SINGLE-ENDED ± 15 10 155 SINGLE-ENDED note 4 0.5 5 ± 15 10 145 0.5 _____ 5 SINGLE-ENDED ± 15 10 125 6 5 SINGLE-ENDED ± 15 10 95 10 0.5 3 0.5 5000 5 note 6 120 note 6 7 75 10¹¹ 10¹¹ 10¹¹ 10¹¹ 3 0.5 note 6 106 **9**5 note 6 8 10 175 10 10 note 6 95 note 6

FOOTNOTES:

Note 1: Voltage Offset

All Burr-Brown operational amplifiers operate with low offset voltages without the use of balancing potentiometers; however, each amplifier has provision for externally balancing the offset to zero.

Note 2: Bias Current

Bias Current is the error current that may appear at either input of the amplifier. The difference between the magnitudes of these two input bias currents (differential offset current) is typically 2-5 times less than the bias at either input.

Note 3: Power Supply Voltage

All 10 V amplifiers operate with \pm 12 Vdc to \pm 18 Vdc power supply voltage, except models listed as Universal Amplifiers which operate over a much wider range. See note 6.

Note 4: Noise Specifications

Complete noise curves are available upon request for Models 3019/15, 3071/25, and 3072/25. Summary specifications are as follows:

Equivalent Input Noise	Model 3019/15	Model 3071/25	Model 3072/25
rms(6Hz to 1kHz)* Voltage (max) Current (max)	0.4µ∨ 0.05nA	2µV ЗрА	4µV 6рА
peak (dc to 1kHz)* Voltage (max) Current (max)	2µV 0.25nA	7μV 15pA	12µV 30pA

*(Effective Noise Bandwidth)

Note 5: Settling Time

Settling time to 1% for Model 3013/15 is less than 1.5 µs.

Note 6: Universal Operational Amplifiers

These unique amplifiers not only operate from unregulated power supplies but also feature high common[®]mode rejection ratios (CMRR).

MODEL	3044/15	3062/15	3038/25
Power Supply Range	±6 to ±32 V	±6 to ±32 V	±40 to ±135 V
Input Voltage Drift	±5 μV/V	±15 μV/V	±25 µV/V
vs. Power Supply	(max)	(max)	(max)
Input Bias Current	± 1.0 nA/V	±0.001 nA/V	±0.02 nA/V
Drift vs. Power Supply	(max)	(max)	(max)
Output Voltage	Power Supply	Power Supply	Power Supply
	less 4 V	less 5 V	less 20 V

The common-mode voltage limit is the same as the rated output voltage to allow 100% feedback .

Full-power response (in kHz) is equal to $10^3 \times \text{Slew Rate}$ (in V/µs) divided by $2\pi E_o$ where E_o is the peak output voltage (in volts).

MICROMINIATURE OPERATIONAL AMPLIFIERS

Performance at 25° C (except as noted) and with ± 1	5 V Power Sup	ply. Po	ower Su	pply rar	nge is ±	9 V to	± 18 V	. Stor	age temp	erature	is -65°	C to +150°	°C	
	MODEL	RAT OUT	ED PUT	DC GAIN	BAND (see 1	WIDTH note 2)	SLEW RATE	INP	UT VOL	TAGE T	INPUT (BIAS CL	IRRENT	
Monolithic Integrated Circuit	Basic Model			Open Loop	Unity Gain	Full Power		at 25 ⁰ C	Averag Over Ter	e Drift np.Range	at 25 ⁰ C	Drift Over Tem	p.Range	
	No. Module See P. 19	min Volts	min mA	typ dB	typ MHz	min kHz	min V∕µs	typ mV	typ µV∕⁰C	max µV∕⁰C	typ nA	typ nA∕°C	max nA∕°C	
$\begin{array}{c} \textbf{MILITARY TEMPERATURE RANGE} \\ \text{Low Noise, } 5\mu \text{V/}^{\text{O}\text{C}} (\text{max}) \\ 5\mu \text{V/}^{\text{O}\text{C}} (\text{max}), -55^{\text{O}\text{C}} \text{ to } +125^{\text{O}\text{C}} \\ 10\mu \text{V/}^{\text{O}\text{C}} (\text{max}), -55^{\text{O}\text{C}} \text{ to } +125^{\text{O}\text{C}} \\ 30\mu \text{V/}^{\text{O}\text{C}} (\text{max}), -55^{\text{O}\text{C}} \text{ to } +125^{\text{O}\text{C}} \end{array}$	3050/01 3051/01 3052/01 3053/01	±10 ±10 ±10 ±10	± 10 ± 10 ± 10 ± 10	100 100 96 93	1.5 1.5 1.5 1.2	20 20 20 15	1.2 1.2 1.2 1.0	± 1 ± 1 ± 2 ± 3	± 2 ± 2 ± 5 ± 10	± 5 ± 5 ± 10 ± 30	± 200 ± 200 ± 300 ± 400	±0.3 ±0.3 ±0.4 ±0.5	±0.6 ±0.6 ±0.8 ±1.0	
COMMERCIAL TEMPERATURE RANGE Low Noise, 5μV/°C (max) . 5μV/°C (max), -25°C to +85°C 10μV/°C (max), -25°C to +85°C 30μV/°C (max), -25°C to +85°C	3054 /01 3055 /01 3056 /01 3057 /01	±10 ±10 ±10 ±10	± 5 ± 5 ± 5 ± 5	100 100 96 93	1.5 1.5 1.2 1.0	20 20 15 10	1.2 1.2 1.0 .6	+ 1 + 1 + 2 + 3	± 2 ± 2 ± 5 ± 10	± 5 ± 5 ± 10 ± 30	± 200 ± 200 ± 300 ± 400	±0.3 ±0.3 ±0.4 ±0.5	±0.6 ±0.6 ±0.8 ±1.0	

MONOLITHIC INTEGRATED CIRCUIT FOOTNOTES:

Note 1: Current Offset

Input bias current is defined as the error current which flows into either input. The maximum limit established by Burr-Brown quality control for this bias current is the maximum into either input, not the average of the two. Differential offset current is the difference between the two bias currents,

Io = input bias current

Io1 is not necessarily equal to Io2, therefore,

 $Io_1 - Io_2 = differential offset current.$

The differential offset currents and drifts for the Burr-Brown monolithic operational amplifiers are given in the adjacent table.

MODEL	DIFFE	RENTIAL OFFS	ET CURREN	T
	at 25°C		Drift	
	typ	typ	max	Temp. Range
	nA	nA/°C	nA/°C	°C
3050/01	± 15	±0.10	±0.2	-55 to +125
3051/01	± 15	±0.10	±0.2	-55 to +125
3052/01	± 20	±0.15	±0.3	-55 to +125
3053/01	± 30	±0.20	±0.4	-55 to +125
3054/01	± 15	±0.10	±0.2	-25 to + 85
3055/01	± 15	±0.10	±0.2	-25 to + 85
3056/01	± 20	±0.15	±0.3	-25 to + 85
3057/01	± 30	±0.20	±0.4	-25 to + 85

Note 2: Bandwidth - Phase Compensation

Bandwidth specifications shown in the top chart are with the amplifier phase compensated for unconditional stability at unity gain. The monolithic operational amplifiers can be easily compensated by the user for operation at any gain. The adjacent illustration shows pin connections for the monolithic amplifiers. Frequency stability is guaranteed for the unity-gain phase compensation values shown.

	MODEL	RA OUT	TED TPUT	DC GAIN	BAND	WIDTH	SLEW RATE	INP	UT VOL OFFSET	TAGE	INPU	T BIAS CL	IRRENT	
Discrete and Hybrid	Basic Model			Open Loop	Unity Gain	Full Power		at 25 ⁰ C	Averaç -25°Ç t	ge Drift o +85°C	at 25 ⁰ C	Drit -25 ⁰ C to	ft +85 ⁰ C	
	No. Module See P. 19	min Volts	min mA	typ dB	typ MHz	min kHz	min V∕µs	typ mV	typ µV∕⁰C	max µV∕°C	typ nA	typ nA∕°C	max nA∕°C	
MILITARY TYPE														
MIL-STD-202C and -810 (note 1) MIL-STD-202C and -810 (note 1) MIL-E-5272C (note 1) FET-Wide Temp. Range (note 1)	1901 /19 1902 /19 1903 /19 1554 /15	±10 ±10 ±10 ±10	±20 ± 2 ± 2 ±20	106 96 96 106	1.5 1.5 1.5 1.5	20 20 10 90	1.2 1.2 0.6 5.5	±0.3 ±0.3 ±0.3 ±0.5	+ 5 + 5 + 10 + 10	± 10 ± 10 ± 15 ± 15	± 5 ± 5 ± 10 ±0.05	±0.2 ±0.2 ±0.4 Doubles/	±0.5 ±0.5 ±0.8 +10°C	
COMMERCIAL TYPE Transistor Input FET Input Wideband Differential Chopper Stabilized Wideband Inverting Low Cost Power Booster (note 2)	1706 /17 1752 /17 3034 /17 3049 /15 1701 /17 3068 /17 1719 /17	±10 ±10 ±10 ±10 ±10 ±10 ±10	$\pm 10 \\ \pm 50 $	106 96 90 160 92 100 0	2.0 2.0 7.0 10 3 1.5	20 100 200 300 30 20	1.2 6 12 18 1.8 1.2	± 0.5 ± 0.5 ± 1.0 ± 0.05 ± 0.5 ± 0.3		± 15 ± 30 ± 30 ±1.0 ± 15 ± 10	± 5 ±0.02 ±0.02 ±0.05 ± 20 ± 5	±0.2 Doubles/ Doubles/ ±0.001 ± 1 ±0.5	±0.5 /+10°C /+10°C ±0.002 ±2.0 ±1.5	0

Performance at 25° C (except as noted) and with ± 15 V Power Supply. Power Supply range is ± 12 V to ± 18 V.

Small Quantity Linear IC Unit Prices (U.S. \$)													
	-550	PC to +125	-25°C to +85°C										
Quantity	3050/01	3051/01	3052/01	3053/01	3054/01	3055/01	3056/01	3057/01					
1-9	60.00	55.00	35.00	20.00	33.00	28.00	18.00	12.00					
10-24	54.00	49.50	31.50	18.00	29.70	25.20	16.20	10.80					
25-99	48.00	44.00	28.00	16.00	26.40	22.40	14.40	9.60					
100-249	45.00	41.00	26.00	15.00	25.00	21.00	12.00	8.00					
	Quantity 1-9 10-24 25-99 100-249	-55° Quantity 3050/01 1-9 60.00 10-24 54.00 25-99 48.00 100-249 45.00	Small Quar Small Quar -55°C to +125° Quantity 3050/01 3051/01 1-9 60.00 55.00 10-24 54.00 49.50 25-99 48.00 44.00 100-249 45.00 41.00	Small Quantity Linear Guantity 3050/01 3051/01 3052/01 1-9 60.00 55.00 35.00 10-24 54.00 49.50 31.50 25-99 48.00 44.00 28.00 100-249 45.00 41.00 26.00	Small Quantity Linear IC Unit Pr Guantity 3050/01 3051/01 3052/01 3053/01 1-9 60.00 55.00 35.00 20.00 10-24 54.00 49.50 31.50 18.00 25-99 48.00 44.00 28.00 16.00 100-249 45.00 41.00 26.00 15.00	Small Quantity Linear IC Unit Prices (U.S. -55°C to +125°C -25° Quantity 3050/01 3051/01 3052/01 3053/01 3054/01 1-9 60.00 55.00 35.00 20.00 33.00 10-24 54.00 49.50 31.50 18.00 29.70 25-99 48.00 44.00 28.00 16.00 26.40 100-249 45.00 41.00 26.00 15.00 25.00	Small Quantity Linear IC Unit Prices (U.S. \$) Guantity 1-5°C to +125°C -25°C to +85°C 3050/01 3051/01 3052/01 3053/01 3055/01 1-9 60.00 55.00 20.00 33.00 28.00 10-24 54.00 44.00 28.00 16.00 25.20 25-99 48.00 44.00 28.00 16.00 22.40 100-249 45.00 41.00 26.00 15.00 21.00	Small Quantity Linear IC Unit Prices (U.S. \$) Guantity 3050/C to +125°C Quantity 3050/O1 3051/O1 3052/O1 3053/O1 3054/O1 3055/O1 3056/O1 1-9 60.00 55.00 35.00 20.00 33.00 28.00 18.00 10-24 54.00 49.50 31.50 18.00 29.70 25.20 16.20 25-99 48.00 44.00 28.00 16.00 26.40 22.40 14.40 100-249 45.00 41.00 26.00 15.00 25.00 21.00 12.00					

Contact factory with your production requirements.

INPUT NOISE	INPU OPEN	JT R LOOP	OUTPUT R	соммо	N MODE	SPECIFIC TEM	ATION	PO' SUI	WER PPLY	UNIT PRICE
dc to 10 kHz	Diff	СМ	Open Loop	Input Limit	CMRR			Rated	Quies.	See Price
typ µV, rms	typ Mr	typ Ma	typ k.a.	max Volts	typ dB	°C	°C	typ Volts	max mA	List U.S.\$
(note 3) 3 3 3	0.3 0.3 0.3 0.3	200 200 200 200	4 4 4 4	±]] ±]] ±]] ±]]	100 100 100 100	-55 -55 -55 -55	+125 +125 +125 +125 +125	±15 ±15 ±15 ±15 ±15	6 6 6	60 55 35 20
(note 3) 3 4 4	0.3 0.3 0.3 0.2	200 200 150 150	4 4 5 5	±11 ±11 ±11 ±11	100 100 100 100	-25 -25 -25 -25 -25	+ 85 + 85 + 85 + 85	±15 ±15 ±15 ±15 ±15	6 6 6	33 28 18 12

Gain	R ohms	СpF	Gain Bandwidth Product	Typical Feedback Resistor
X1	390	2200	1 MHz	10 km
X10	1K	2200	10 MHz	10 km.
X100	10K	2200	100 MHz	100 k.a.
X1000	0	10	1000 MHz	1 M.a.

NOTE: Pin 4 connected to case.

	INPUT NOISE	INPU OPEN	JT R LOOP	OUTPUT R	COMMON MODE		SPECIFICATION TEMP.		POWER SUPPLY		UNIT PRICE
	dc to 10 kHz	Diff	СМ	Open Loop	Input Limit	CMRR			Rated	Quies.	See Price
	typ µV,rms	typ Mr.	typ Mr	typ k.n.	max Volts	typ dB	min °C	°C	typ Volts	max mA	List U.S. \$
	5 5 5 6	0.5 0.5 0.5 10 ¹¹ ~	50 50 10 ¹¹ م	5 1.2 0.2 0.5	±10 ±10 ±3 ±10	80 80 80 80	-25 -25 -55 -55	+ 85 + 85 +125 +125	±15 ±15 ±15 ±15 ±15	5 15 15 8	75 65 105 125
•	3 6 6 3 3	0.5 101 م 101 م 0.5 0.3 0.3	50 10 ¹¹ 2 10 ¹¹ 2 - - 50	5 5 5 5 0.2 5	±10 ±10 ±10 single single ±11	80 60 60 ended ended 80	-25 -25 -25 -25 -25 -25 -25 -25 -25	+ 85 + 85 + 85 + 85 + 85 + 85 + 85	± 15 ± 15 ± 15 ± 15 ± 15 ± 15 ± 15 ± 15	5 6 15 6 5	75 95 95 165 75 65 45

The New BBIC Op Amps

BURR-BROWN Monolithic IC

Burr-Brown monolithic IC's have the repeatability and uniform performance from unit to unit that you would expect from the technological leader of the operational amplifier field. Burr-Brown's unique and proprietary design (patent pending) is a major breakthrough in overcoming the limitations of the monolithic process. Only Burr-Brownoffers IC operational amplifiers that are fully tested and have guaranteed performance. For example: Burr-Brown drift specifications include maximums not just typicals.

Phase compensation is consistent from unit to unit; no "hand tuning" is required. The amplifier output may be indefinitely shorted to ground without damage to the unit and the input is protected to supply. Both voltage noise and current noise are completely specified for Models 3050/01 and 3054/01. The amplifier's unique design assures unity-gain stability with virtually any capacitive loading without changing phase compensation or adding a decoupling resistor. Burr-Brown IC Operational Amplifiers are truly general purpose units.

Note 3: Noise Specifications

Complete noise curves are available upon request for Models 3050/01 and 3054/01. A graph of the equivalent input noise voltage versus source resistance for various constant amplifier bandwidths and an equation for calculating amplifier noise figure are also available. Summary specifications are as follows:

Equivalent Input Noise					
rms (6 Hz to 1 kHz)*					
Voltage Current	0.8µV, rms (max) 0.03nA, rms (max)				
peak (DC to 1 kHz)*					
Voltage Current	3μV, peak (max) 0.15nA, peak (max)				

*(Effective noise bandwidth)

Note 1: Military Type

Models 1901/19 and 1902/19 have been certified under MIL-STD-202C and MIL-STD-810 for humidity, shock, altitude, acceleration, thermal shock and vibration. The Model 1903/19 is designed to meet environmental requirements of MIL-E-5272C. Mean-time-to-failure (including electrical stress analysis) is available for many Burr-Brown amplifiers.

Note 2: Power Booster

May be used with any 10-Volt Operational Amplifier as shown.

SPECIAL PURPOSE OPERATIONAL AMPLIFIERS

	MODEL	RAT OUT	ED PUT	DC GAIN	BAND	WIDTH	SLEW RATE	INP (UT VOL OFFSET (TAGE (1)	INPU	T BIAS C (see note	URRENT 2)	
	Basic Model No . Module	min	min	Open Loop typ	Unity Gain typ	Full Power min	min	offset 25°C	Averag -25°C t	ge Drift o +85°C max	at 25°C	Dri -25°C t	ft o+85 ⁰ C max	
Rattory Doworod	See P. 19	Volts	mA	dB	MHz	kHz	V/µs	mV	μV/ ⁶ C	μV∕°C	nA	nA/ ⁶ C	nA/°C	
Transistor Input (See note 4) FET Input (See note 4)	3001 / 15 3002 /15	± 4 ± 4	± 5 ± 5	100 96	0.8 1.0	5 30	0.1 0.7	±0.3 ±0.5	± 5 ± 10	± 10 ± 15	± 5 ±0.05	±0.3 Doubles,	±0.5 /+10°C	
High Voltage						25								
20 VOLT OUTPUT Transistor Input FET Input Chopper Stabilized Low Cost	1540 /15 1543 /15 1548 /25 1547 /15	+ 20 + 20 + 20 + 20 + 20	± 10 ± 10 ± 10 ± 5	106 103 160 100	1.5 1.5 15.0 1.0	10 50 100 10	1.2 6 12 1.2	±0.3 ±0.5 ±0.02 ±0.5	± 5 ± 5 ±0.5 ± 10	± 10 ± 15 ±1.0 ± 20	± 10 ±0.1 ±0.03 ± 20	±0.3 Doubles, ±0.001 ±0.5	±0.5 /+10°C ±0.002 ±1.0	
50 VOLT OUTPUT Transistor Input FET Input Chopper Stabilized	1541 / 25 1544 / 25 1643 A / 16	± 50 ± 50 ± 50	± 10 ± 20 ± 20	110 110 160	0.4 1.0 3.0	3 20 50	0.9 6 15	±0.3 ±0.5 Adj.	± 10 ± 10 ±0.5	± 25 ± 25 ±1.0	± 10 ±0.1 ±0.05	±0.5 Doubles, ±0.01	±1.0 /+10°C ±0.02	
100 VOLT OUTPUT Transistor Input FET, High Common Mode (See note 5) FET, General Purpose Chopper Stabilized	1542 / 25 3038 / 25 1545 / 25 1644 A / 16	±100 ±100 ±100 ±100	± 10 ± 20 ± 10 ± 10	110 115 110 160	0.4 3.0 1.0 3.0	3 note5 20 .50	1.8 18 12 30	±0.5 ±0.5 ±0.5 Adj.	± 10 ± 15 ± 10 ±0.5	± 25 ± 30 ± 25 ±1.0	± 10 ±0.1 ±0.1 ±0.05	±0.5 Doubles, Doubles, ±0.01	±1.0 /+10°C /+10°C ±0.02	0
High Power														
LOW VOLTAGE High Supply Rejection, 1000 mA (note 5) High Supply Rejection, 500 mA (note 5) Wideband Differential FET Input Low Cost, 500 mA Low Cost, 100 mA Low Cost, 50 mA	3045 / 16 3063 / 40 1527 / 25 1555 / 25 3046 / 40 3043 / 15 3015 / 15	+ 10 + 10 + 10 + 10 + 10 + 10 + 10 + 10	±1000 ±500 ±100 ±100 ±500 ±100 ± 50	120- 120 100 95 100 100 100	1.5 1.5 15 1.5 1.5 1.5 1.5	10 10 1000 1000 10 20 10	0.6 0.6 60 0.6 1.2 0.6	±0.03 ±0.3 ±0.5 ±0.5 ±0.2 ±0.2 ±0.2 ±0.5		± 10 ± 10 ± 15 ± 25 ± 15 ± 15 ± 25		±0.2 ±0.2 ±0.2 Doubles, ±0.5 ±0.5 ±0.5	±0.5 ±0.5 ±0.5 (+10°C ±1.5 ±1.5 ±1.0	
HIGH VOLTAGE High Supply Rejection, 600 mA (note 5) High Supply Rejection, 300 mA (note 5)	3042 /16 3070 /40	± 20 ± 20	±600 ±300	120 120	1.5 1.5	10 10	1.2 1.2	±0.03 ±0.3	± 5 ± 5	± 10 ± 10	± 5 ± 5	±0.2 ±0.2	±0.5 ±0.5	
POWER BOOSTER 10 Volt, 100 mA 10 Volt, 200 mA 10 Volt, 500 mA 10 Volt, 500 mA 20 Volt, 100 mA	1520 /15 3016 /25 3069 /49 1634 A /16 3017 /25	± 10 ± 10 ± 10 ± 10 ± 20	±100 ±200 ±500 ±500 ±100	0 0 0 0 0		300 300 50 50 300	18 18 3 3 18	May b ationa voltag the an	e used w I Amplif e. Ove plifier-k	ith any ier with rall band pooster c	Genero the so dwidth combino	I Purpose ame rated is determi tion.	Oper- output ined by	
Differential Output														
Transistor Input (See note 6)	1514 /15	± 10	± 20	106	0.7	10	0.6	±0.3	± 5	± 15	± 10	±0.3	±0.5	

Typical performance at 25°C and at rated power supply (unless otherwise noted). Storage temperature is -55°C to + 100°C.

QUARTER-SQUARE MULTIPLIERS

APPLICATIONS:

- DYNAMIC GAIN CONTROL
- TRIGONOMETRIC COMPUTATION
- POWER MEASUREMENT
- CORRELATION COMPUTATION
- RMS MEASUREMENT
- ANALOG SIMULATION

FUNCTIONS:

BURR-BROWN

Model 1671/16

Models 1661/16 and 1671/16 are high-speed, accurate analog function modules for performing four-quadrant multiplication and two-quadrant division. Model 1671/16 features a six-position switch for selecting any one of the functions listed above. Model 1661/16 features a two-position switch for selecting the inverting multiply mode or a two-quadrant ($E_2 > 0$) divide mode ($E_0 = -10 E_1/E_2$).

Models 4001/40 and 4012/25 are encapsulated quarter-square multipliers designed for accurate, wide-bandwidth multiplication and division. Model 4001/40 requires two external amplifiers for four-quadrant operation; Model 4012/25 is encapsulated with the amplifiers internal. The following functions may be performed by the Model 4012/25: $-E_1E_2/10$, $E_1E_2/10$, $\pm 10 E_1/E_2$ for $E_2 > 0$, $\pm 10 E_1/E_2$ for $E_2 < 0$, $\pm (E_1^2/10)$ sign E_1 , $\pm \sqrt{10|E_1|}$ sign E_1 . See page 19 for /16, /40, and /25 module dimensions.

MODEL	1661 / 16	1671/16	4001/40	4012/25
Accuracy, ⁽¹⁾ % f.s. typ.	± 1.0%	± 0.15%	± 0.15%	± 0.15%
max.	± 2.0%	± 0.25%	± 0.25%	± 0.25%
Bandwidth, 1% abs. error	2 kHz	50 kHz	50 kHz	50 kHz
5 ⁰ Phase Shift	5 kHz	100 kHz	100 kHz	250 kHz
– 3 dB	50 kHz	1 MHz	1 MHz	1 MHz
Rated Input	± 10 V	± 10 V	± 10 V	± 10 V
Input R, min	25 ka	2 kr	2 kr	2 kr
Rated Output	± 10 V	± 10 V	± 10 V	± 10 V
	± 10 mA	± 20 mA	± 20 mA	± 10 mA
Output Drift, m√ ^o C, typ.	± 5	± 1.5	± 1	± 2.5
max.	± 10	± 2.5	± 2	± 5.0
Quies. $@ \pm 15 \lor$	± 60 mA	± 55 mA	± 45 mA	± 30 mA
Temp. Range, ^o C	-25/+85	-25/+85	-25/+85	-25/+85
Unit Price	\$ 595	\$ 735	\$ 495	\$ 695

(1) Accuracy is inversely proportional to the magnitude of E_2 in the divide mode.

Contact your engineering representative listed on the back cover for detailed data sheets.

SQUARING MODULES

APPLICATIONS:

- RMS COMPUTATION
- SQUARE-ROOTING
- MULTIPLYING
- SQUARING

2

These encapsulated modules provide an output current proportional to the square of the input voltage. They can perform squaring and square-rooting when used with an operational amplifier. RMS computation, odd-value squaring, and multiplication can be accomplished by combining two or more units. Models 9874/19 and 9875/19 are two-quadrant squaring modules that may be used to square the sum or the difference of two input signals. Both positive and negative output units are available. See page 19 for /19 module dimensions.

MODEL	OUTPUT CURREN	T, mA		
9648 / 19	$I_{o} = \frac{1}{25} \left(\frac{E_{1}^{2}}{10} + 10^{2} \right)$)	0 <	E ₁ <+10 V
9671 /19	$I_{o} = \frac{-1}{25} \left(\frac{E_{1}^{2}}{10} + 10 \right)$)	- 10	V < E ₁ < 0
9875/19	$I_{o} = \frac{1}{100} \left(\frac{E_{1} + E_{2}}{2} \right)$	$\left(\right)^{2}$		
9874 /19	$I_{o} = \frac{-1}{100} \left(\frac{E_{1} - E_{2}}{2} \right)$.)2		
			_	
NODEL	9648/19	9671/19	9875/19	987.4 /19

MODEL	9648/19	9671/19	9875/19	987.4 /19
Accuracy,(1) max.	± 0.25%	± 0.25%	± 0.1%	± 0.1%
Bandwidth(2)	10 kHz	10 kHz	100 kHz	100 kHz
Input R, min.	5 ka	5 ka	5 ka	5 ka
Drift, % f.s./ ⁰ C, max.	0.015	0.015	0.025	0.025
Quies. @ ± 15 V	± 17 mA	± 17 mA	± 3 mA	± 3 mA
Temp. Range, ^o C	-25/+85	-25/+85	0/+60	0/+60
Unit Price	\$ 145	\$ 145	\$ 195	\$ 195

(1) Worst-case error from dc to 2 kHz.

(2) With an absolute error of 1% f.s. Includes both phase shift and amplitude error.

DIODE FUNCTION GENERATOR

APPLICATIONS:

(TI

- NONLINEAR GAIN CONTROL SIGNAL COMPRESSION
- LINEARIZING TRANSDUCER OUTPUTS WAVE SHAPING
- TRIGONOMETRIC FUNCTION APPROXIMATION

Diode function generators are used to provide arbitrary, nonlinear shaping of an input voltage. The Model 1662/16-2 fits nonlinear functions of an input voltage by eleven straight-line segments. Ten fixed breakpoints are equally spaced from -10 to +10 volts. Eleven slope controls are provided on the front panel for slope adjustment. The slope of each segment can be varied $\pm 2 \text{ V/V}$. X-offset and Y-offset controls are also included so that the X and Y axes may be shifted. An input buffer gain control permits reduction of the effective breakpoint spacing for input signals of less than 10 volts peak amplitude. The gain control and X-offset control may be employed to concentrate all of the breakpoints to the right or left of the Y-axis, therefore providing an 11 segment output function, for unipolar input signals. See page 19 for /16-2 module description.

MODEL	1662/16-2
Number of Segments	11
Slope Adjustment Range	± 2 V/V
Relative Breakpoint Spacing	1 V to 2 V
Frequency Responses, ± 1%	dc to 10 kHz
Input/Output Voltage Rating	± 10 V
Input R	10 k.a.
Output Stability	±5 mV/°C
Temperature Range	0° to 50°C
Quiescent @ \pm 15 V	± 30 mA
Unit Price	\$ 625

ABSOLUTE VALUE CIRCUITS

Model 4004/16 is a rack-mounted unit that produces the instantaneous absolute value of the input signal. The unit may be used as a very precise full-wave rectifier over a ± 10 V range.

Model 1668/16 is a precision rectifier designed to convert ac input signals to a dc output. A multipolar active filter network is used to provide fast dc output response with low ripple.

MODEL	4004/16	1668/16
Function	$E_o = E_1$	$E_0 = Avg. \frac{10}{3} E_1$
Accuracy, (worst-case)	±0.25%	±1.0%
Accuracy, dc to 10 kHz	±1.0%	-
100 Hz to 10 kHz	-	±1%
10 Hz to 100 kHz	-	±1 dB
Input Level, max	±10 V	3.0 V, rms
Input R	5 km	5 km
Rated Output	±10 V @±10 mA	+10 V @ +10 mA
Output Ripple at 10 Hz	-	1%
Quiescent @ ±15 V	±10 mA	±15 mA
Temperature Range	0°C to +60°C	0°C to +50°C
Unit Price	\$ 165	\$ 295

RANDOM NOISE GENERATOR

APPLICATIONS:

- COMMUNICATIONS TESTING
- VIBRATION TESTING
- BIO-MEDICAL RESEACH
- SERVO SYSTEM DESIGN
- SIGNAL GENERATOR FOR ANALOG COMPUTERS

The Model 4006/25 Noise Generator is useful as a general-purpose source of random test signals with precise spectral characteristics. It is a highly stable noise source that generates a random binary waveform with transitions occuring at a rate determined by an external clock signal. Its output is a ±5 volt clocked random ("coin-toss") square wave. The clocking rate establishes the amplitude and upper-frequency limit of the noise spectrum. Low-pass and band-pass output filters may be added to obtain a gaussiandistributed noise source with precisely controlled rms level and spectrum shape. See page 19 for /25 module description.

MODEL	4006/25
Output:	
Voltage Levels	+5 V and -5 V
Level Accuracy (1)	±50 mV
Level Stability vs. Temperature	±2.5 mV/°C
vs. Load (0 to 20 mA)	±100 mV
vs. Supply	±2 mV/%
Rise Time	0.05 ms
Rated Output Current	±20 mA
Average Voltage, max	±0.2 V
Stability of Average, (worst-case)	±6 mV/°C
Clock Pulse Requirements (2)	
Input R	lkn
Clock Frequency	dc to 1 MHz
Temperature Range	0°C to 60°C
Quiescent @ ±15 V	+80 mA, -20 mA
Unit Price	\$ 295

- (1) An error of ±50 mV in output level implies an error of only 2% in the amplitude of the autocorrelation function and in the amplitude of the power spectrum.
- The clocking signal must be a periodic waveform. It must make a negative-going transition from a positive level of at least $\pm 1.2 \text{ V}$ down to a level of less than $\pm 0.2 \text{ V}$. This transition time (fall time) must be less than 1 µs. A pulse amplitude of +3 V is recommended, but amplitudes up to +12 V are satisfactory.

11

COMPARATORS

APPLICATIONS:

- A/D CONVERSION
- PULSE-HEIGHT DETECTOR
- ZERO-CROSSING DETECTORS
- SINE-TO-SQUARE WAVE CONVERSION

Model 4015/15 is a very fast analog comparator with high resolution and excellent noise immunity. This module is used with a Model 1510/25 operational amplifier, or equivalent, as shown above.

Model 9892/25 is an encapsulated unit that also is used in combination with a high-speed operational amplifier as shown above. This unit features an adaptive noise immunity capability. For slowly varying signals, the comparator will switch within ± 1 mV; for high-speed signals, the transition is initiated within ± 5 mV of the true zero-crossing point. Switching speed of the output transition is 200 n sec, virtually independent of the input signal rate-of-change (a square-wave input is not required to achieve this speed). For noise immunity the comparator adapts itself by introducing ± 15 mV hysteresis as the output changes state. For accurate comparison, this hysteresis is removed whenever the input sum exceeds ± 100 mV.

Model 4002/16 contains a Model 9892/25 comparator, a Model 1510/25 operational amplifier, and a voltage-offset potentiometer in a /16 rack-mount package. See page 19 for dimensions.

MODEL	9892/25	4002/16	4015/15
Summing Inputs Input Signal Level, max Input R (each input)	2 ± 10 V 2 k.a.	2 ± 10 ∨ 2 k.a.	2 ± 10 V 2 k.s.
Summing Accuracy Switching Error (1) Input Drift	± 0.1% ± 1 mV ± 50µV/°C	± 0.1% ± 1 mV ± 50uV/°C	± 0.1% ± 1 mV ± 50uV/°C
Switching Time ⁽²⁾ max Hysteresis	0.3 μs (3)	0.3 µs (3)	0.2 µs ± 6 mV
Output Level $(E_1 + E_2) > 0$ $(E_1 + E_2) < 0$	+5 V -5 V	+5 ∨ -5 ∨	+5 V -5 V
Output Current	± 20 mA	± 20 mA	± 20 mA
			1 15 4
Quiescent @ ± 15 V	±5mA	± 20 mA	± IS mA
Quiescent @ ± 15 V Temperature Range, [°] C	± 5 mA 0/+60	± 20 mA 0/+60	± 15 mA 0/+60

 Static zero-crossing error; adjustable to zero by balancing the operational amplifier.

(2) Total switching time; includes delay time and rise time.

(3) Hysteresis is zero or ±15mV depending on the input signal characteristics. See text above for description of adaptive hysteresis.

SOLID-STATE SWITCHES

APPLICATIONS:

- SAMPLE/HOLD
- INTEGRATOR MODE CONTROL
- PULSE-CODE DEMODULATION
- PEAK DETECTION
 MULTIPLEXING

These encapsulated electronic modules are designed to operate into operational amplifier summing junctions as current switches. The input signal must be from a resistive source. Models 4014/15 and 9580/15 are switched current amplifiers for use in very fast SAMPLE/HOLD circuits. The high output current in the ON state and low offset current in the OFF state provide a minimum ON/OFF ratio of 2×10^8 .

Model 9859/15 is a general-purpose FET electronic switch for multiplexers, integrator mode control circuits, and gating applications. While somewhat slower that the other switches, it has zero ON state offset and is ideal for low-frequency applications.

MODEL	9859/15	9580/15	4014/15
Current Gain, min]	1000	20,000
Switching Times ⁽¹⁾ - ON - OFF	3 μs 5 μs	0.4 μs 0.2 μs	0.2 μs 0.05 μs
Input R Output R	(5) (5)	50 k љ 15 љ	10 ¹¹ 0.1
Output Current Rating	± 1 mA	± 20 mA	± 20 mA
ON-State Offsets Input Voltage (2), max Input Current, max OFF-State Output Offsets, max	(5) (5) (5)	± 30 mV ± 300 nA ± 0.1 nA	± 2 mV ± 0.1 nA ± 0.1 nA
vs. Supply	(5) (5)	± 100 μV/°C ± 10 nA/°C ± 200 μV/%	± 50 μV/ ^o C (3) ± 100 μV/%
Offset Charge (turn OFF)	± 10 pC	± 50 pC	± 50 pC
Logic Levels (4) ON State OFF State Noise Immunity Switch Input R	+5V 0 0.5V 22ka	0 + 5 V 0.5 V 22 k.a.	+ 3 V 0 0.5 V 10 k s
Temp. Range, ^o C	-25/+85	0/+60	0/+60
Quiescent @ ± 15 V	± 11 mA	± 15 mA	± 20 mA
Unit Price	\$ 75	\$ 75	\$ 95

NOTES:

(1) Driven with 40 n sec rise-time square wave (slower rates may be used).

(2) May be adjusted to near zero by using a balance potentiometer.

(3) Doubles every 10°C. Typically less than 0.7 nA at 60°C.
 (4) Other logic levels are available on request.

 (5) Passive resistance — 100 f in ON state and 10¹² in OFF state. Drift is 0.25 n/°C.

SAMPLE/HOLD MODULES

Sample and Hold (or Track and Store) modules follow a time-varying analog input signal and hold or store the value of the signal at a precisely controlled point in time. Aperture time specifies the time between a HOLD command and completion of the transition to hold. Acquisition time specifies the time to acquire an input for the worst-case condition of a 20-volt transition and settle to 0.1% of final value. Acquisition time determines maximum sampling rate; aperture time determines the accuracy in tracking fast signals. The units may also be used as switched integrators; i.e., will integrate for a specified time and reset to an initial condition on command.

Model 1666/16, 1663/16, and 1673/16 are rack-mounted units with the summing resistors and holding capacitor self-contained. Model 4013/25 is an encapsulated unit with the integrator input resistors and holding capacitor external. Model 4013/25 may be ordered with the capacitor internal for C < .01 μ f, if desired. For detailed specifications contact your engineering representative listed on the back cover.

P

MODEL	1666 / 16	1663/16	1673/16	4013/25
SAMPLE/HOLD MODE				
Accuracy, %f.s.	±0.1%	±0.1%	±0.1%	±0.1%
Full Power Response, kHz	3	40	500	0.4/C ⁽¹⁾
Input R	10 km	2 k.m.	1 k.m.	10 k.a.
Aperture Time, µ sec (max)	0.4	0.1	0.1	0.1
Acquisition Time, µ sec (max)	100	10	3	10+1000C ⁽
HOLD Mode Decay, V/sec	±0.002	±0.1	±0.1	±0.0001/C
Output Drift (mV/°C) HOLD (for 1 sec) TRACK	± 2.0 ±0.2	± 100 ±0.1	± 100 ±0.1	±0.2/C ±0.1
SWITCHED INTEGRATOR MC		GRATE/ R		
Input R - Input 1 - Input 2	100 k.a. 1 M.a.	10 km 100 km	_	Adj. Adj.
Integrator Gain (Inverting) – Input 1 – Input 2 Gain Accuracy <u>ALL MODES</u>	100 10 ± 1%	10 ⁴ 10 ³ ±0.25%		1/R ₁ C ⁽¹⁾ 1/R ₂ C ⁽¹⁾ (1)
Rated Input – Volts	±10 V	±10 V	±10 V	±10 V
Rated Output – Volts – Current	±10 V ±20 mA	±10 ∨ ±20 mA	±10 ∨ ±20 mA	±10 ∨ ±20 mA
Switch Logic Levels (Other	logic leve	els availa	ble upon	request)
TRACK (RESET) HOLD (COMPUTE) Rise Tîme, max	0 V +5 V 100 ns	-6 V 0 V 40 ns	-6 V 0 V 40 ns	+3 ∨ 0 ∨ 1 µs
Quiescent @ ± 15 V	±20 mA	±35 mA	±35 mA	±35 mA
Temp.Range, ^o C	0/+60	0/+60	0/+60	0/+60
Unit Price	\$275	\$335	\$395	\$225

 Several performance factors are dependent on the size of the holding capacitor C. Capacitor C has the units of µF's in the table – choose its size to optimize performance in your application. External Cmust be 0.01µF or larger. For C < 0.01µF, consult our applications engineers.

THREE-MODE INTEGRATOR

APPLICATIONS:

- REP-OP COMPUTERS
- HYBRID COMPUTERS
- PROCESS CONTROL
- SIGNAL AVERAGING

The Model 4003/16 features electronic switching on external digital command into one of three operating modes:

	RESET	INTEGRATE	HOLD
Control Signal A	0 V	+5 V	+5 V
Control Signal B	0 V	0 V	+5 V

Other logic levels are available on special order. Two different integrate inputs are available for summing or time scaling flexibility. In the INTEGRATE mode:

$$E_0 = -(E_1)_{t=0} - \int_0^t (E_2 + 10 E_3) dt$$

In the RESET mode the unit acquires an external initial condition voltage (E_1) in the ± 10 V range within one millisecond. Balance control and output voltage limiting is internal. For detailed specifications, contact your engineering representative.

MODEL	4003/16
Integrator Gain Accuracy,%f.s.	±0.25% (worst-case)
Gain – Input E ₂	1 V/sec
- Input E3	10 V/sec
Reset Gain Accuracy, % f.s.	±0.5% (worst-case)
Reset Time	1 m sec (worst-case)
Rated Output	±10 V at ±10 mA
Rate Limit	±30 V/m sec
Control Signal A – RESET – INTEGRATE/HOLD	0 ∨ +5 ∨
Control Signal B – RESET/INTEGRATE – HOLD	0 ∨ +5 ∨
Output Stability	±1 mV/sec (worst-case)
Quiescent @ ±15 V	±40 mA
Temperature Range	0° to +60° C
Unit Price	\$ 295

THREE-MODE SWITCH

The Model 9890/25 is the encapsulated electronic switch module used in the Model 4003/16 Three-Mode Integrator. Model 9890/25 is a combination of the Model 9580/15 and 9859/15 (page 12) with interconnecting logic to provide RESET/INTEGRATE/HOLD capability. Model 9890/25 is available at a unit price of \$125.

OGARITHMIC AMPLIFIERS

APPLICATIONS:

- SIGNAL COMPRESSION
- MULTIPLICATION
- DIVISION

- CUBING OF VARIABLES
- PROCESS SIMULATION

Carefully matched silicon transistors are employed to obtain the linear-tolog conversion, and special temperature-sensitive resistors are used to aid in temperature compensating the units. As a result, exceptionally lowoutput drifts are achieved. Both gain and offset are stable with temperature.

MODEL	OUTPUT FUNCTION	
1664/16	E _o = -10 log ₁₀ E ₁	$+0.1 \le E_1 \le +10 V$
1674/16	$E_o = -\frac{20}{3} \log_{10} (\sqrt{10 E_1})$	$+0.01 \le E_1 \le +10 V$
1665/16	$E_0 = -10 \log_{10} (E_1/E_2)$	+0.1 < (E_1/E_2) < +10 V
1667/16	$E_o = Antilog_{10} \left(-\frac{E_1}{10}\right)$	-10 < E ₁ < +10 V
4007/40	$E_{o} = -10 \log_{10} E_{1}$	+0.1 < E ₁ < +10 V
4008/40	$E_o = -\frac{20}{3} \log_{10} (\sqrt{10 E_1})$	+0.01 < E ₁ < +10 V

See page 19 for / 16 and /40 module description.

ENCAPSULATED LOG AMPLIFIERS

MODEL	4007/40	4008/40
Function Accuracy(1) Bandwidth (± 1 dB) Input R Rated Output - Volts - Current	40 dB Log ± 2.0% 5 kHz 10 k.a. ± 10 V ± 10 mA	60 dB Log ± 2.0% 2.5 kHz 10 k.a. ± 10 V ± 10 mA
Output Stability vs. Temperature vs. Supply Temperature Range, ^O C Unit Price	5 mV/°C 100 mV/% 0/+60 \$ 275	5 mV/°C 100 mV/% 0/+60 \$ 275

RACK-MOUNTING LOG AMPLIFIERS

MODEL	1664/16	1674/16	1665/16	1667/16
Function	40 dB	60 dB	40 dB	40 dB
1 one non	Log	Log	Log Ratio	Antilog
Accuracy(1)	± 1.0%	± 1.0%	± 1.0%	± 1.0%
Bandwidth (± 1 dB)	10 kHz	5 kHz	5 kHz	10 kHz
Input R	10 ka	10 km	10 km	100 km
Rated Output - Volts	± 10 V	± 10 V	± 10 V	+0.1to+10
- Current	± 20 mA	± 20 mA	± 20 mA	± 20 mA
Output Stability				
vs. Temperature, mV/°C	5	5	10	10
vs. Supply, mV/%	100	100	100	100
Temperature Range, °C	0/+60	0/+60	0/+60	0/+60
Unit Price	\$ 295	\$ 295	\$ 365	\$ 295

(1) Worst case, % of full scale.

Quiescent current is \pm 15 mA for all units with rated supply of \pm 15 V. 14

INSTRUMENTATION AMPLIFIERS

Model 1505B/15 is an encapsulated differential-input amplifier featuring high input-impedance independent of gain. The gain of Model 1505B/15 is set by an external feedback network of four resistors. Directions for setting the gain, balancing the amplifier, and for adjusting the common-mode rejection are supplied with each unit. The small size of this encapsulated unit allows the user to place it near the physical location of the transducer, thereby reducing noise pickup.

Model 3061/25 is an encapsulated differential-input amplifier with exceptionally low drift and low output noise. The gain is adjustable from 1 to 1000 by only one external resistor. An output sensing point is also included on this unit. This module may also be placed near the transducer bridge to avoid noise-pickup problems. Output offset is continuously adjustable over the total output range for zero-suppression purposes.

Model 1631A/16 is a rack-mounted unit designed to drive a fluid-damped optical galvanometer or other recording equipment. Gain is continuously adjustable from 1 to 11 with a 10-turn potentiometer. Standoffs are provided for series and shunt damping resistors. Output offset is adjustable over the full output voltage range.

Models 1505B/15 and 3061/25 are also available as rack-mounted units with factory-set gain. Contact your engineering representative listed on the back cover for detailed specifications. See page 19 for description of /15, /25, and /16 modules.

MODEL	1505B/15	3061/25	1631A/16
Input R-	10 ¹¹	10 ⁸	11 ka
Common Mode	10 ¹¹	108 ~	
Voltage Ggin	10 to 10 ³	1 to 10 ³	1 to 11
Gain Accuracy	(1)	(1)	(1)
Static Linearity, Worst Case	± 0.1%	±0.1%	± 0.1%
Common Mode Inputs, max.	± 5 V	± 11 V	
CMRR, dc to 100 Hz, min.	(0)	(0)	
Balanced Source	80 dB(2)	80 dB(2)	
10 kr. Source Unbalance	60 dB(2)	60 dB(2)	
Frequency Response ⁽³⁾			
± 1% Accuracy	10 kHz	5 kHz	25 kHz
± 3 dB	50 kHz	30 kHz	
Rated Output - Volts	± 10 V	± 10 V	± 10 V
- Current	± 20 mA	± 10 mA	± 80 mA
Output Impedance	5 ~	52	1.000 5
Rated Capacitance Load	1000 pF	1000 pF	1000 pF
Output Stability at Max. Gain			
vs. Temperature ⁽⁴⁾ , mV/°C, max	± 10	± 3	±
vs. Supply, mV/%	± 50	± 5	± 1
Output Noise at Max. Gain	± 20 mVrms	± 3 mVrms	± 1 mVrms
(dc to 10 kHz)			05.1
Quiescent @ ± 15 V	± 6 mA	± 10 mA	± 25 mA
Temperature Range, ^o C	-25/+85	-25/+85	0/+60
Unit Price	\$ 75	\$ 125	\$ 195

(1) Adjustable to any desired accuracy (4-resistor network for 1505B/15, 1 resistor for 3061/25).

(2) Adjustable to over 100 dB by means of an external potentiometer.

(3) At gain of 100 for Models 1505B/15 and 3061/25 and 11 for Model 1631A/16.

(4) The drift is correspondingly less for lower gain.

ACTIVE FILTERS

ACTIVE FILTER MODULES

T

These low-pass active RC networks employ Burr-Brown's high performance DC operational amplifiers in unique combination with quality passive elements.

By employing the operational amplifier as the foundation of an active filter Burr-Brown can use its experience and knowledge in the amplifier field to optimize your filter designs. Burr-Brown offered the industry's first solid-state operational amplifier. Now, it is first to offer the combination of operational amplifiers and passive elements to fulfill your active filter requirements.

Whether you specify low-pass, high-pass, band-pass, or band-rejection, Burr-Brown active filters provide:

- STABLE CUTOFF FREQUENCY
- LOW OUTPUT IMPEDANCE
- HIGH INPUT IMPEDANCE
- DC STABILITY
- SMALL, LIGHT-WEIGHT MODULES
- INVERTING OR NON-INVERTING GAIN

Models 5001/29 (inverting) 5011/29 (non-inverting)

These low-pass active filter modules provide maximally-flat response (Butterworth) with 60 dB per decade rolloff above the 3 dB frequency (f_c). Fixed bandpass gain and fixed cutoff frequency (f_c) may be specified within the wide ranges indicated. Because of the high input impedance (more than 10 km), the low output impedance (less than 10m), and the gain (±0.5 to ± 200 V/V), these units can function both as filters and amplifiers in your circuit designs.

Models 5002/29 (inverting) 5012/29 (non-inverting)

These low-pass active filter modules provide equal ripple response (Tchebyscheff). The initial rolloff rate is increased as the specified maximum ripple is increased. Cutoff frequency (f_c) is defined as the point on the frequency response curve at which the response is down by the amount of the allowable ripple; that is, 1 dB down for a 1 dB maximum ripple filter.

TYPICAL FREQUENCY RESPONSE*

ACTIVE FILTERS

Description	BUTTERWORTH RESPONSE	TCHEBYSCHEFF RESPONSE	SPECIAL RESPONSE
Models	Model 5001/29 (inverting) Model 5011/29 (non-inverting)	Model 5002/29 (inverting) Model 5012/29 (non-inverting)	Custom
Туре	Low Pass	Low Pass	LP, HP, BP, BR
No. of Poles	3	3	2 to 7
Characteristic	Max, Flat	Equal Ripple	As Required
Pass Band Gain	-6 dB to +46 dB	-6 dB to +46 dB	-20dB to +60dB
Cutoff Frequency (f _c) Frequency Stability	5 Hz to 20kHz ±0.05%/°C	5 Hz to 20kHz ±0.05 %/ ^o C	0.1 Hz to 100kHz ±0.01 to 1%/°C
Roll off Rate	60 dB/decade ≈60 dB/decade		40 to 140dB/dec.
Maximum Ripple	±0.1dB	±0.5 to ±3dB	±0.1 to ±3 dB
Input	Single Ended	Single Ended	Single Ended
Input Impedance	10k.a.	10k.a.	1 k.a. to 10 M.a.
Output Offset	Ext. Adj. to 0	Ext. Adj. to 0	Ext. Adj. to 0
Output Swing	±10 V	± 10 V	$\pm 4V$ to $\pm 100V$
at Output Current	±10 mA	± 10 mA	±1 mA to ±50mA
Rated Power Supply	±15 V	±15 V	$\pm 6 \vee$ to $\pm 120 \vee$
Range	$\pm 12 V$ to $\pm 18 V$	$\pm 12 V$ to $\pm 18 V$	As Required
Quies. Current	± 10 mA	±10 mA	As Required
Operating Temperature	-25°C to +85°C	-25°C to +85°C	Submit your
Module Type	/29	/29	requirements for a special
Unit Price (U.S.)	\$175.00	\$195.00	quotation

SPECIAL ORDER Active Filters

Active filters for low-pass, 'high-pass, band-pass, and band-rejection applications are all available from Burr-Brown. During the past ten years, but particularly since we "wrote the book" on Operational Amplifier Active RC Networks, Burr-Brown has designed and produced a wide range of industrial and military active filters. The above chart lists ranges of performance typical of those currently feasible in active filters. Our applications staff is uniquely qualified to discuss your particular requirements.

ORDERING INFORMATION

When ordering any Burr-Brown active filter, be sure to specify:

- REQUIREMENT Low-Pass, Band-Pass, High-Pass, Band-Rejection
- RESPONSE Butterworth, Tchebyscheff, linear phase (Bessel), elliptic, etc.
- CUTOFF FREQUENCIES
- PASS BAND GAIN
- MAXIMUM RIPPLE (For Tchebyscheff Filters)

Connector - 1500MC Weight - 1.5 oz typ. (43 grams)

.

¹⁵

POWER SUPPLIES AND REGULATORS

POWER SUPPLIES

Typical performance at 25°C unless otherwise specified.

- ± 0.1% regulation vs. line (105 to 125 and 210 to 250 Vac) or load (no load to full load).
- Low dynamic output impedance (typically 0.1 rm at 10 kHz and 1.0 rm at 100 kHz).
- 0.5 mV,rms noise and ripple on all ± 15 V units, less than 3.0 mV,rms on all other units.
- Short-circuit protected by current-limiting circuit.
- 47 Hz to 420 Hz line frequency.
- Wide stability margins, all units are stable regardless of external capacitive loading.
- Epoxy cast units available with 115 Vac or 230 Vac input, all others have integral switch for 115 Vac or 230 Vac operation.
- Wide temperature range (-40° C to +85° C for epoxy units, -40° C to +71° C for all others).

DESCRIPTION	MODEL	RATED OUTPUT		OUTPUT VOLTAGE	OUTPUT TEMP.		
		Vdc	mA	ACCURACY % max	STABILITY %/°C	U.S. \$	
Epoxy Cast Modules: Chas	sis mount with	solder lugs	. 3-1/2"	x 3" x 2"			
For 115 Vac line	501	± 15	± 120	±0.5	±0.005	148	
For 230 Vac line	521	± 15	± 120	±0.5	±0.005	148	
For 115 Vac line	505	± 26	± 60	±0.5	±0.005	148	
For 230 Vac line	525	± 26	± 60	±0.5	±0.005	148	
Plug-in Modules: Mount with modules in 2600–16R rack adapter.							
Four modules wide	506/26	± 15	±1000	±0.3	±0.005	280	
Four modules wide	507/26	± 26	± 600	±0.3	±0.005	320	
Six modules wide	508/26	± 60	± 500	±0.3	±0.003	420	
Six modules wide	509/26	±120	± 250	±0.3	±0.003	420	
Powered Rack Adapters: H	ouses /16 ampl	ifier modu	les for 19"	rack mounting.	, 3-1/2" × 19	" × 9–1/2"	
Mounts 12 modules	506/16	± 15	±1000	±0.3	±0.005	340	
Mounts 12 modules	507/16	± 26	± 600	±0.3	±0.005	380	
Mounts 10 modules	508/16	± 60	± 500	±0.3	±0.003	480	
Mounts 10 modules	509/16	±120	± 250	±0.3	±0.003	480	
Bench Supply: Provides fiv	e way binding	posts for b	ench use.				
Fixed output voltages	503 A	± 15	±1000	±0.3	±0.005	280	

DUAL REGULATORS

Dual regulator modules provide $\pm 0.1\%$ regulation (line and load) to power operational amplifiers and analog modules from a center tapped unregulated source. Output noise of 10 μ V, ms and stability of $\pm .02\%$ /°C from -25° C to $+85^{\circ}$ C are features. Basic module type is /25. Connector is 1500MC-1.

MODEL	DC RATED OUTPUT Volts mA		DC INPUT VOLT		ЭE	UNIT PRICE
	nominal	min	min	nominal	max	U.S. \$
1515/25	± 15	±100	± 20	± 26	± 32	95
1526/25	± 26	± 60	± 30	± 38	± 45	98

Burr-Brown's new "Jet Stock" program provides immediate or overnight replenishment of your local representative's inventory of many of the popular operational amplifiers, connectors and accessories for your prototype design needs. Your order is shipped immediately from your local Representative's office. Call your nearest Representative today!

JET STOCK

.

CONNECTORS AND ACCESSORIES

FOR /01 MODULES

F

MATING CONNECTOR accomodates all monolithic integrated circuit amplifiers. Barnes MF-15-8B: \$5

FOR / 15, / 15C, / 25, / 29 and / 40 MODULES

MATING CONNECTOR (as shown) accommodates all these operational amplifiers for plug-in installation or test. Model 1500MC : \$3

MATING CONNECTOR is similar to the 1500MC for mounting dual regulators. Model 1500MC-1: \$3

MATING CONNECTOR for encapsulated multipliers is similar to the 1500MC. Order Model 1500MC-4: \$3

FEEDBACK BOARD provides solder terminals for feedback components. Model 1500FB : \$10

CIRCUIT SIMULATOR (as shown) is a patch panel with 3/4" spaced jacks for feedback elements. Includes offset control. Accommodates all operational amplifiers and adapters having standard 8-pin configuration. Model 1500CS: \$25

FOR / 17 MODULES

MATING CONNECTOR (as shown) accommodates all /17 modules for plug-in installation. Model 1700MC: \$3

ADAPTER PLUGS allow use of /17 units on 1500CS Circuit Simulator. Model 1700AP (for Model 1701) : \$6. Model 1700AP-1 (for all other /17 units) : \$6

FOR / 19 MODULES

MATING CONNECTOR (as shown) accommodates all /19 operational amplifiers. Model 1900MC : \$3. For Model 9874 and 9875 squaring modules use the Model 1900MC-1 : \$3

ADAPTER PLUG allows use of 1500CS Circuit Simulator. Model 1900AP: \$6

RACK ADAPTER holds 16 units in a 3-1/2" x 19" rack space. Model 1600-16R : \$80

WIRED RACK ADAPTER is identical to the 1600-16R but includes mating connectors and power bus wire. Model 1600-16RW : \$100

HALF RACK ADAPTER holds 7 units in a 3–1/2" x 9–1/2" rack space. Model 1600–7R : \$50

POWERED RACK ADAPTER - See Power Supplies, 506/16, 507/16, 508/16, 509/16.

MATING CONNECTOR (Burndy EC4206P5) is furnished with unit. Extra connectors : \$2

BLANK PANEL provides uniform appearance of the rack. Model 1600 BP : \$2

CARD EXTENDER allows testing without disconnecting unit from rack. Model 1600CE: \$30

BLANK MODULE is the same enclosure as the /16 module. Terminals for each pin are mounted next to the connector on the printed circuit board. Model 1600M : \$25

FOR / 16-2 MODULES

BLANK MODULE is similar to the /16 with the exception of double width. Model 1600M-2: \$35

MATING CONNECTOR same as /16 is furnished with unit. Extra connectors : \$2

FOR /26 MODULES

RACK ADAPTER holds 16 units in 3–1/2" \times 19" rack space. Model 2600–16R : \$80

MATING CONNECTOR (Amphenol 143-012-01) is furnished with unit. Extra connectors : \$2

BLANK MODULE is the same enclosure as the /26 module. Terminals for each pin are mounted next to the connector on the printed circuit board. Model 2600M : \$25

INSTRUMENTS AND COMPUTERS

EDUCATIONAL ANALOG SIMULATOR

The Model 600 Educational Analog Simulator is specifically designed for teaching. A proven aid for teaching computer familiarity, analog techniques, systems design and analysis, and mathematics, the simulator is equally at home in the university and industrial laboratory.

In the universities, the Model 600 Simulator is being used in classroom demonstrations as well as laboratory courses to enhance understanding of difficult theoretical concepts and student experience in analog computing techniques. The large fixed patch field and economical price promote efficiency in student grasp per hour per dollar. The ease of use and meaningful results provide real motivation for the students as evidenced by their initiative in pursuing additional problems and verifying their own theories. High school seniors with little or no knowledge of either calculus or electronics have successfully mastered the Model 600. The Model 600 is truly a versatile educational instrument.

In industry, the Model 600 can be used to train engineers and technicians in analog techniques, thus freeing larger, more complex computers for design and analysis. The Model 600 can be used to solve smaller design problems, to check portions of larger problems before going to a large computer, and, by slaving several Model 600 simulators, to handle entire programs. The desk-top size of this instrument permits easy movement from office to laboratory to test stand where actual systems or system components can be included in the computer loop.

A wide range of meaningful linear and nonlinear problems can be solved with the complement of computing elements provided. Complete with 10 amplifiers, 2 multipliers, 10 coefficient potentiometers, reference voltages, and a null system, the ±10 Volt Model 600 employs components and computing elements of better than 1% accuracy. Terminals are provided for external components to further expand the computing capability.Repetive operation (REP OP) with solution rates of up to 100 solution per second is available.

The software available includes an Operator's Handbook, a Maintenance Manual, and a Student Laboratory Manual containing 40 experiments. Accessories including X-Y Recorder and Patch Kit are also offered.

For a copy of our 12 page brochure or a demonstration of the Model 600 contact your nearest representative today.

GEOPHYSICAL INSTRUMENTS

Induced polarization instruments for field exploration and laboratory modeling in the Earth Sciences are the result of our five years of design and development at Burr-Brown. Widely used for the detection of disseminated mineralization associated with porphyry coppers, induced polarization has become the principal geophysical method employed in mineral exploration.

Standard products offered include: a transmitter capable of delivering up to 600 Volt-Amperes at four selectable frequencies from 0.05 to 5Hz; a receiver capable of reading voltages from 1 mV to 100 V full scale with selectable filtering in the range of 0.05 to 20 Hz; a precision square wave generator/voltage source for calibration of induced polarization receivers or for use as a laboratory reference; and a constant current pulse generator/ receiver for laboratory or field measurements on rock samples.

For an 8 page brochure on Burr-Brown Induced Polarization Instruments, contact the Tucson office.

SPECIAL PURPOSE ANALOG COMPUTERS

Special Purpose Analog Computers for process control and instrumentation can be furnished in desk top, suitcase, or rack mounting configurations. The range of catalog and custom analog and hybrid modules available at Burr-Brown provide a broad and versatile base for the design and production of customer computers. Contact your nearest Burr-Brown representative for an economical hardware solution to your special requirements.

MECHANICAL Specifications

The /15, /17, /19, /25, /29, and /40 epoxy cast modules may be secured to a printed circuit board or chassis with 4-40 machine screws (or locking clip for the /17 module). The gold-flashed pins may be hand or dip soldered or plugged into an optional mating connector.

The /49 module is the same as /40 module except .70" max (17.8). The /13, /16, and /26 plug-in units are furnished with internal control and mating connectors. Up to 16 of the /16 or /26 modules may be mounted in a $3-1/2" \times 19$ rack adapter.

The /01 module is a standard TO-99 can (low profile TO-5) with kovar pins which may be soldered or welded for installation.

Pin locations are typical. Detailed pin configurations are contained in product data sheets which are available upon request.

/01 MODULE Connector-Barnes-MF-15-8B Weight - 0.04 oz. typ. (1.12 grams)

/17 MODULE Connector - 1700MC Weight - 0.2 oz typ. (6 grams)

Connector - 1900MC Weight - 0.8 oz typ. (23 grams)

/15 MODULE Connector - 1500MC Weight - 1.3 oz typ. (37 grams)

/25 MODULE Connector - 1500MC Weight - 2.6 oz typ. (74 grams)

/15C MODULE Connector - 1500MC Weight - 1.3 oz typ. (37 grams)

/40 MODULE Connector - 1500MC Weight - 4 oz typ. (120 grams)

Mating Connector (Burndy EC4206P5) furnished with each unit.

/16 MODULE

Mating Connector (Burndy EC4206P5) furnished with each unit. The /16-2 module is identical to the /16 package except that it is twice the width.

WITH A COLLECT CALL TO YOUR NEAREST REPRESENTATIVE

ENGINEERING REPRESENTATIVES - U.S. and CANADA

ALABAMA Huntsville BCS Associates, Inc. Phone: (205) 534–1648

YOUR

STARTS

ARIZONA Phoenix Williams Associates, Inc. Phone: (602)254–6085

Tucson Burr–Brown Research Corporation Phone: (602)294–1431

CALIFORNIA Los Angeles Instrument Specialists, Inc. Phone: (213)665–5181

Sunnyvale Instrument Specialists, Inc. Phone: (408) 245–3321

CANADA Toronto, Ontario Electromechanical Products Phone: (416) 293-7011

Vancouver, B.C. Contact: Burr-Brown Tucson, Arizona

COLORADO Denver Williams Associates, Inc. Phone: (303) 388–4391

CONNECTICUT Milford Measurement Equipment Co., Inc. Phone: (203) 874–9222 FLORIDA Orlando BCS Associates, Inc. Phone: (305) 425–2764

ILLINOIS Chicago Loren F. Green & Associates Phone: (312) 286-6824

LOUISIANA New Orleans BCS Associates, Inc. Phone: (504) 888–2266

MARYLAND Silver Spring QED Electronics, Inc. Phone: (301) 588-8134

MASSACHUSETTS Wakefield Measurement Equipment Co., Inc. Phone: (617) 245-4870

MICHIGAN Detroit Sheridan Associates, Inc. Phone: (313)353–3822

MINNESOTA Minneapolis Loren F. Green & Associates Phone: (612) 781–1611

MISSOURI St. Louis Sheridan Associates, Inc. Phone: (314) 524–4800

NEW JERSEY Camden QED Electronics, Inc. Phone: (215) 925–8711 NEW MEXICO Albuquerque Williams Associates, Inc. Phone: (505) 255–1638

NEW YORK Albany J. A. Reagan Company, Inc. Phone: (518) 436-9649

Binghamton J. A. Reagan Company, Inc. Phone: (607)723-9661

Rochester J.A. Reagan Company, Inc. Phone: (716) 473–2115

Mt. Vernon QED Electronics, Inc. Phone: (914) 968–2200

New Hartford J. A. Reagan Company, Inc. Phone: (315) 732–3775

NORTH CAROLINA Greensboro BCS Associates, Inc. Phone: (919) 273–1918

OHIO Cincinnati Sheridan Associates, Inc. Phone: (513) 761–5432

Cleveland Sheridan Associates, Inc. Phone: (216) 237–9145 Dayton Sheridan Associates, Inc. Phone: (513) 277–8911

OKLAHOMA Tulsa Southwest Electronic Industries, Inc. Phone: (918) 835–2481

PENNSYLVANIA Pittsburgh Sheridan Associates, Inc. Phone: (412)243–6655

Philadelphia (See Camden, N.J.)

TEXAS Dallas Southwest Electronic Industries, Inc. Phone: (214) 363-1671

Houston Southwest Electronic Industries, Inc. Phone: (713) 928-5251

UTAH Salt Lake City Williams Associates, Inc. Phone: (801) 466–8709

VIRGINIA (See Maryland)

WASHINGTON Seattle Instrument Specialists, Inc. Phone: (206) 767-4260

WASHINGTON, D.C. (See Maryland)

PRICES AND SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE. NO RESTRICTION ON SIZE OF ORDER. PRICES F.O.B. TUCSON, ARIZONA FOR OVERSEAS REPRESENTATIVES CONTACT BURR-BROWN EXPORT DEPARTMENT, TUCSON, ARIZONA.

JET STOCK

Same day shipment from your local representative's inventory.

BURR-BROWN RESEARCH CORPORATION

International Airport Industrial Park • Tucson, Arizona 85706 Phone: 602-294-1431 • TWX: 910-952-1111 • Cable Address-BBRCORP

