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Introduction

The new generation of high performance microproces-
sors are built on dense, low breakdown voltage processes
in order to accommodate increased transistor counts.
These new processors require high current power at 3.3V,
developed from the 5V input used to power the rest of the
system. Special techniques are required to ensure proper
operation of the microprocessor and good heat dissipa-
tion within the computer system.

The 3.3V supply may be either a linear or switching type.
For most applications a linear regulator is preferable since
it minimizes components and has acceptable efficiency for
a whole computer system. In portable computers where
high efficiency is paramount because of battery operation,
a switching supply is necessary.

This application note contains a collection of 3.3V regula-
tor circuits, each optimized for a 5V input and surface
mount technology. The circuits are split into two catego-
ries, linear and switching, and further arranged by current
capability.

Most of the circuits, with the possible exception of the high
current linear regulators, are surface mountable. Where
appropriate, part numbers are given for surface mount
coils, capacitors, and diodes. Resistors and small capaci-
tors, unless there are special characteristics, are generic
and manufacturer’s part numbers are not shown.

Both linear and switching regulators are available for the
purpose of converting 5V to 3.3V. In general, the linear
regulators are the best choice at lower (≤3A) current
levels where their dissipation is minimized, or in line-
operated equipment where 66% theoretical efficiency is
acceptable. Switchers are favored in higher current and
efficiency-conscious applications. Efficiencies in the 90%
to 95% range are the norm for switchers described in this
application note.

Linear Regulators

Table 1 shows the range of components available for linear
regulation of 3.3V with a 5V input. With only 1.7V of
headroom, low dropout is essential. Low dropout regula-
tors are available delivering currents from 125mA to 7.5A,
allowing almost any microprocessor to be powered with a
local 3.3V generation circuit. The first four devices (LT1020,
LT1120, LT1121 and LT1129) are PNP micropower low
dropout regulators. Since PNP transistors are much larger
than monolithic NPNs, higher current regulators use an
NPN pass device. The LT1117, LT1086, LT1083 through
LT1085, and LT1087 all use NPN pass devices. The NPN
structure requires about 1.2V headroom compared to the
400mV to 500mV dropout typical of PNP regulators, and
ground current of 5mA or 10mA, independent of output
current. Because of this constant quiescent current, the
LT1117 and LT1083 family are not suitable for applica-
tions requiring micropower standby.

LOAD PASS SHUTDOWN
CURRENT DEVICE DEVICE CURRENT TOLERANCE*

125mA LT1020 PNP 40µA 2.1% (69mV)

125mA LT1120 PNP 40µA 2.1% (69mV)

150mA LT1121-3.3 PNP 16µA 3% (100mV)

700mA LT1129-3.3 PNP 16µA 3% (100mV)

800mA LT1117-3.3 NPN – 2% (65mV)

1.5A LT1086-3.3 NPN – 1.6% (53mV)

3A LT1085-3.3 NPN – 1.6% (53mV)

5A LT1084 NPN – 1.9% (61mV)

7.5A LT1083 NPN – 1.9% (61mV)

10A 2 × LT1087 NPN – 1.9% (61mV)

*Includes line, load, and temperature variations. Adjustable parts also
  include worst case effect of external 1% resistors.

Table 1. 3.3V Linear Regulators
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Controlling Transient Loads

Microprocessors require the input voltage to be main-
tained within ±5% under worst case transients. The dy-
namic nodes internal to the processor are sensitive to
voltage. Transients drawn by the processor are so fast that
no active loop can respond in time. Adequate reserves of
charge must be maintained in a group of capacitors to
supply this current until the regulator can respond. This is
true for both linear and switching regulators.

Modern power saving processors may draw large tran-
sient currents unlike older processors. Many include sleep
modes which slow down or stop the processor when it is
not in use. The transition from normal operation to sleep
mode, or sleep mode to normal operation usually causes
a large step in power supply current. The supply current
can jump several amps in a matter of nanoseconds—far
faster than any regulator can respond. Proper printed
circuit layout and bypass capacitors are needed to provide
these current transients.

Typical printed circuit board layouts include a power plane
and a ground plane which are separate from the rest of the
system. Connected to the pins of the processor are small
100nF bypass capacitors, as is common practice in pro-
cessor layout. These capacitors control the voltage for
very fast transients in the 10ns to 100ns time period.
Further from the processor is a large reservoir capacitor
located at the output of the regulator. This capacitor is
typically 100µF to 200µF and provides the energy reservoir
for 100ns to 2µs until the control loop in the regulator can
correct the output. For longer durations, the control loop
in the regulator keeps the output voltage constant.

When the load is released the overshoot must be con-
trolled as well, and the capacitors absorb the energy and
limit overshoot from the regulator. The capacitors must
be low inductance and connected directly to the power
plane close to the processor. Several inches of trace
going to a capacitor can be sufficient to cause large
transient voltages under changing load conditions be-
cause of the inductance in the circuit traces. The power
cycling associated with the new processors makes this
situation far worse than older processors which oper-
ated continuously.

An input bypass capacitor is placed close to the regulator
to provide a low source impedance. The input to the

regulator must also provide an energy reservoir. Typically,
here again, is a 10µF to 100µF capacitor that provides the
energy at the input of the regulator during a load transient.
This capacitor is mandatory since the regulator is usually
situated far from the input power supply.

Both the input and output capacitors play a role in the
stability of the regulator and help assure adequate tran-
sient response. The capacitor values shown in this app
note represent the minimum required for stability. Addi-
tional capacitance may be necessary to handle load tran-
sients. See the design example.

Thermal Design

Heat sinking is an important consideration. For proces-
sors drawing 5A, the power dissipated in the regulator can
be as high as 8.5W. This amount of power requires
adequate heat sinking internal to the computer system.

The general rule for surface mounted components is to
maximize the amount of copper connected to the leads
of the IC. Flood all open areas, intermediate layers, and
the back side of the board with copper. This aids in
spreading and radiating the heat. Surface mount compo-
nents can dissipate up to 2.5W (1.5A output current)
using only circuit traces and ground planes totaling 2 or
3 square inches.

For higher output currents a larger heat sink is needed. To
compute the thermal resistance of the heat sink it is
necessary to know the maximum operating temperature
of the regulator, maximum ambient inside the computer
enclosure and the air flow over the heat sink. For a power
dissipation of 5W (3A output current), maximum junction
temperature of 125°C and maximum ambient temperature
of 80°C:

θHS = (TJ – TA)/PD – θJC

θHS = (125 – 80)/5 – 3
θHS = 6°C/W

where:

PD = Power Dissipation (°C)
TJ = Maximum Junction Temperature (°C)
TA = Maximum Ambient Temperature (°C)
θJC = Junction to Case Thermal Resistance of IC (°C/W)
θHS = Heat Sink Thermal Resistance (°C/W)
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The heat sink for this application must have a thermal
resistance of 6°C/W or less. Figure 1 shows the effect of air
flow over the surface of a 6°C/W heat sink (Thermalloy
7025B-MT). With no air flow the thermal resistance is
dominated by convection currents; this is why the graph
stops at approximately 100 feet per minute air flow. A
much smaller heat sink could be used in this application if
some air flow, such as from the computer’s cooling fan,
could be guaranteed. At higher output currents and dissi-
pations it is almost always necessary to provide some air
flow in order to avoid an unreasonably large heat sink.

Linear Technology regulators in the LT1083/4/5/6, LT1117
and LT1121/9 families are designed to withstand over 5V
with no problems.
The MOSFET has an on resistance of approximately 30mΩ
when the gate is driven to 12V. There is a 12V power
supply available in most systems and a high value resistor
can be used to tie the gate of the MOSFET high. If 12V is
not available, an LTC1157 high-side driver (Figure 3) can
be used to drive the gate of the MOSFET.
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Figure 1. Thermal Resistance vs Air Flow

Selectable 5V and 3.3V

Figure 2 shows a regulator configuration which is pin
selectable for 3.3V or 5V output. An external N-channel
power MOSFET bypasses the regulator to provide 5V
output. When the gate of the MOSFET is grounded by a pin
on the microprocessor, the MOSFET turns off and the
regulator supplies a 3.3V output. For this type of circuit to
operate properly, the regulator must be designed to with-
stand 5V forced on its output pin without damage. All

Figure 2. 3.3V Regulator with 5V Bypass Circuit

LINEAR REGULATOR

MTD3055EL (1.5A)
MTB30N06EL (3A)
MTB50N06EL (5A)
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(SHORTING LINK
IN µP PACKAGE)

Switching Regulators

Properly designed step-down, or buck, switching regula-
tors can provide 5V to 3.3V conversion efficiencies as high
as 95%. In a step-down switching regulator, the inductor
current flows from the input when the switch is ON and
through a diode (or synchronously switching FET) from
ground when the switch is OFF. Keys to high efficiency
include minimizing quiescent current, using a low resis-
tance power MOSFET switch and in higher current appli-
cations, using a synchronous switch to reduce the diode
losses. In continuous operation (i.e., the inductor current
does not go to zero), the duty cycle for a 5V to 3.3V
switching regulator is 66%. This means that the switch is
ON for 2/3 of each cycle and OFF for the remaining 1/3.

Table 2 shows four switching regulators suitable for 5V to
3.3V conversion. All of these regulators break the 90%
efficiency barrier over a wide range of load currents. High
efficiency makes for a compact layout and allows all
surface mount solutions at high current since heat sinking
is either modest or unnecessary.

LINEAR REGULATOR
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MTB30N06EL (3A)
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Figure 3. LT1157 Switches Between 5V and 3.3V
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Table 2. 3.3V Switching Regulators

LOAD SYNCHRO- SHUTDOWN
CURRENT DEVICE NOUS CURRENT EFFICIENCY

200mA to LTC1174-3.3 No 1µA 90%
400mA

0.5mA to 2A LTC1147-3.3 Yes 10µA 92%

1A to 5A LTC1148-3.3 Yes 10µA 94%

5A to 20A LT1158 Yes 2.2mA 91%

The LTC1174, LTC1147 and LTC1148 step-down, high
efficiency switching regulators feature Burst ModeTM

operation to maintain low quiescent current at light loads
(sleep mode) and in the LTC1148, synchronous opera-
tion at higher output currents. The LTC1147 and LTC1148
use a constant off-time, current-mode architecture. This
results in excellent line and load transient response,
constant inductor ripple current and well controlled startup
and short-circuit currents.

The LTC1174 and LTC1147 are nonsynchronous convert-
ers for applications under 1A. The LTC1148 is fully
synchronous for improved efficiency in the 2A to 5A
output range. In Figure 17 an LTC1147 is used for 1A
output current. This circuit consumes less board space
than the LTC1148 circuit of Figure 18, at the cost of 2.5%
worse efficiency. The LT1158 is a half-bridge driver de-
signed for 5V to 20A applications. At these current levels
multiple paralleled MOSFETs are necessary to maintain
high efficiency. The LT1158 is used in Figures 21 and 22.

The compactness of a switching regulator solution is
appealing, but not all of the required components shrink as
easily as semiconductors and resistors. In particular, coils
and high value capacitors present special miniaturization
problems. Coil size is limited by practical considerations of
core volume, temperature rise, and window area. Very
high power densities have been achieved through the use
of ferrite cores and materials such as molypermalloy.
Unfortunately, the selection of surface mount bobbins for
“E” style split cores has lagged behind. This area is the
focus of development work but product introductions are
slow in coming. A list of surface mount component sup-
pliers can be found in Appendix A of Application Note 54.

Power Supply Sequencing and Rise Time

New 3.3V microprocessors must interface with 5V logic
circuits. As a precaution against damaging logic inter-
faces, supply turn-on characteristics must be controlled.
For example, one specification calls for a maximum
difference between the system (5V) supply and the
microprocessor (3.3V) supplies of 2.25V. Not all of the
circuits shown will meet this specification or have been
characterized for input/output differential.

The linear regulators in the LT1083 thru LT1086 family will
maintain proper startup and shutdown voltages for mixed
supply systems. On turn-on, the output follows the input
less the 1.2V dropout voltage until 3.3V is reached on the
output. At turn-off, an internal diode insures the 3.3V
supply follows the 5V supply down.

Recommended Circuit Design Example

Figure 4 shows a recommended circuit for general pur-
pose 5V to 3.3V conversion in desktop machines. Since
the microprocessor draws only a fraction of the total
system power, the 66% efficiency of a linear regulator
gives acceptable performance. The system requirements
are:

VIN = 5V ±0.25V
VOUT = 3.3V ±0.3V
IOUT = 3A

Transients Loads: 200mA to 3A in 100ns and 3A to 100mA
in 100ns

Maximum Circuit Height: 1.5"

Bypass Option: 5V out through low resistance switch if
3.3V processor is not installed.

The LT1085 fullfills these requirements with the output
bypassing capacitors shown in Figure 4. The 5V bypass
switch, detailed in Figures 2 and 3 can be added as an
option. A pin on the 3.3V microprocessor serves as the
ground shorting switch to disable the bypass circuit.

Burst ModeTM is a trademark of Linear Technology Corporation
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Figure 6. 5V/3.3V Tracking at Power Up and Power Down

Thermal design, as previously discussed, would require a
6°C/W heat sink. The Thermalloy 7025B-MT or Aavid
533402 meet this requirement as well as the 1.5" maxi-
mum height requirement.

Regulation, including all combinations of line, load, and
temperature, is better than 1.6% (53mV) for the LT1085—
well inside the 300mV specification. Figure 5 shows the
transient response to a 3A load change. The transient

response should be checked in the finished circuit to verify
the layout and capacitor placement.

Figure 6 shows the output voltage tracking as the system
is powered up and down. Note that the 5V supply never out
runs the 3.3V supply by more than approximately 1.2V,
thereby protecting the processor from damage.

Ground current for the LT1085 is just 5mA, even at 3A
output current.
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Figure 4. Multiple Bypassing is Necessary in Order to Assure Good Transient Response
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Switching Regulators
FIGURE PAGE

CURRENT DEVICE  NUMBER  NUMBER

175mA LTC1174 14 AN58-7
425mA LTC1174 15 AN58-8
500mA LTC1147 16 AN58-8
1A LTC1147 17 AN58-9
1A LTC1148 18 AN58-10
2A LTC1148 19 AN58-11
5A LTC1148 20 AN58-12
7.5A (10Apk) LTC1158 21 AN58-13
15A (20Apk) LTC1158 22 AN58-14

CIRCUIT INDEX

Linear Regulators
FIGURE PAGE

CURRENT DEVICE  NUMBER  NUMBER

125mA LT1020/LT1120 7 AN58-6
150mA LT1121 8 AN58-6
700mA LT1129 9 AN58-6
800mA LT1117 10 AN58-6
1.5A LT1086 11 AN58-7
3A LT1085 11 AN58-7
5A LT1084 12 AN58-7
7.5A LT1083 12 AN58-7
10A LT1087 13 AN58-7
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Figure 8. The Output of the LT1121 Can Be Pulled Up
to 5V with No Ill Effects
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Figure 7. The LT1120 and LT1020 Include On-Chip
Comparator Functions. See Their Data Sheets for Details
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Figure 9. The Output of the LT1129 Can Be Pulled Up
to 5V with No Ill Effects

Figure 10. The LT1117 is Available in a Low Cost,
SOT-223 Package
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Figure 12. Five Components Deliver Up to 7.5A
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Figure 13. Independently, LT1087s Handle 5A. Their Reference
Sense Pins Force Current Sharing for Parallel Operation at 10A
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Figure 11. See Figure 4 in the Design Example for
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Figure 15. Pulling IPGM (Pin 7) High Increases the Internal Current Threshold and Output Current Capability
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Figure 17B. LTC1147 (5V to 3.3V/1A) Buck Converter Measured Efficiency
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Figure 17A. LTC1147 (5V to 3.3V/1A) Buck Converter with Surface Mount Technology.
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Figure 18A. LTC1148 (5V to 3.3V/1A) Fully Synchronous Buck Converter

Figure 18B. LTC1148 (5V to 3.3V/1A) Buck Converter Measured Efficiency
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Figure 19B. LTC1148 (5V to 3.3V/2A) Buck Converter Measured Efficiency

Figure 19A. LTC1148 (5V to 3.3V/2A) Buck Converter
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Figure 20B. LTC1148 (5V to 3.3V/5A) Buck Converter Measured Efficiency

Figure 20A. LTC1148 (5V to 3.3V/5A) Buck Converter. Beyond 5A the LT1158 is a Better Choice
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Figure 21B. High Efficiency High Current 5V to 3.3V Switching Regulator

Figure 21A. High Efficiency High Current 5V to 3.3V Switching Regulator
Output Current = 7.5A Cont. 10A Peak
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Figure 22B. High Efficiency High Current 5V to 3.3V Switching Regulator
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APPENDIX

The following photographs illustrate the effect of various
types and values of output capacitance on the transient
response of the LT1085. The current step for these
photographs is equal to the worst case supply current
change specified by Intel. This current step occurs when
the processor transitions from an idle state to a running
state or from a running state to an idle state.  The current
step illustrated in the photographs is from 100mA to 3A
and then from 3A back to 100mA. Both transitions occur
in 100ns.

Information furnished by Linear Technology Corporation is believed to be accurate and reliable.
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-
tation that the interconnection of its circuits as described herein will not infringe on existing patent rights.

A number of different capacitor types and combinations
were used. In each case the capacitors were chosen to
limit the output voltage deviation to less than ±5% of 3.3V.

For all photographs:

1) The top trace is the output variation and the vertical
scale is equal to 100mV per division.

2) The bottom trace is the output current step at 2A per
division. The horizontal scale for all photographs is
50µs per division.

APXA3 APXA4

COUT = 100µF/10V AVX Tantalum,
Surface Mount in Parallel with 390µF/16V
Aluminum Electrolytic

COUT =  2-100µF/10V AVX
Tantalum, Surface Mount in Parallel

APXA1 APXA2

COUT = 100µF/10V AVX Tantalum,
Surface Mount in Parallel with 100µF/16V
Aluminum Electrolytic

COUT = 100µF/10V AVX
Tantalum, Surface Mount



Application Note 58

AN58-16
LT/GP 0993 10K REV 0 • PRINTED IN USA

 LINEAR TECHNOLOGY CORPORATION 1993

Linear Technology Corporation
1630 McCarthy Blvd., Milpitas, CA 95035-7487
(408) 432-1900 ●  FAX: (408) 434-0507  ● TELEX: 499-3977

APXA9

APXA7

COUT = 22µF/20V OS-CON in Parallel with
390µF/16V Aluminum ElectrolyticCOUT =  100µF/16V OS-CON

APXA8

APXA5

COUT = 100µF/16V OS-CON in Parallel with
220µF/16V Aluminum ElectrolyticCOUT =  220µF/10V OS-CON

APXA6

COUT = 100µF/16V OS-CON in Parallel with
100µF/16V Aluminum Electrolytic


