# Linear Technology Magazine Circ uit Collection, Volume II 

Power Products
Richard Markell, Editor

## INTRODUCTION

Application Note66 is a compendium of "power circuits" from thefirst fiveyears of Linear Technology. Theobjective is to collect the useful circuits from the magazine into several applications notes (another, AN67, will collect signal processing circuits into one Application Note) so that valuable"gems" will not belost. This Application Note contains circuits that can power most any system you can imagine, from desktop computer systems to micropower systems for portable and handheld equipment. Also
included here are circuits that provide 300W or more of power factor corrected DCfrom a universal input. Battery chargers are included, some that charge several battery types, some that are optimized to charge a single type. MOSFET drivers, high side switches and H-bridge driver circuits areal so included, as is an articleon simplethermal analysis. With these introductory remarks, l'Il stand aside and let the authors describe their circuits.

## ARTICLE INDEX

## REGULATORS—SWITCHING (BUCK)

High Power (>4A)
Big Power for Big Processors: The LTC ${ }^{\circledR} 1430$ Synchronous Regulator ........................................................... 4
Applications for the LTC1266 Switching Regulator ......................................................................................... 5
A High Efficiency 5V to 3.3V/5A Converter ...................................................................................................... 7
High Current, Synchronous Step-Down Switching Regulator .......................................................................... 8
Medium Power (1A to 4A)
1MHz Step-Down Converter Ends 455kHz IFWoes ...................................................................................... 10
High Output Voltage Buck Regulator ............................................................................................................. 11
The LTC1267 Dual Switching Regulator Controller Operates from High Input Voltages.................................. 12
High Efficiency 5V to 3.3V/1.25A Converter in 0.6 Square Inches................................................................. 13
LT ${ }^{\circledR}$ 1074/LT1076 Adjustable 0V to 5V Power Supply..................................................................................... 14
Triple Output 3.3V, 5V and 12V High Eficiency Notebook Power Supply ...................................................... 15
The New SO-8 LTC1 147 Switching Regulator Controller Offers High Efficiency in a Small Footprint ............... 17
The LT1432: 5V Regulator Achieves 90\% Efficiency .................................................................................... 20
Low Power (<1A)
Applications for the LTC1265 High Efficiency Monolithic Buck Converter ..... 22
REGULATORS—SWITCHING (BOOST)
Medium Power (1A to 4A)High Output Current Boost Regulator24
Low Power (<1A)
Applications for the LT1372 500kHz Switching Regulator ..... 25

[^0]
## Application Note 66

REGULATORS—SWITCHING (BUCK/BOOST)
$\pm 5 \mathrm{~V}$ Converter Uses Off-the-Shelf Surface Mount Coil ..... 27
Switching Regulator Provides Constant 5V Output from 3.5V to 40V Input Without a Transformer ..... 28
Switching Regulator Provides $\pm 15 \mathrm{~V}$ Output from an 8 V to 40 V Input Without a Transformer ..... 29
REGULATORS— SWITCHING (INVERTING)
High Eficiency 12 V to - 12 V Converter ..... 32
Regulated Charge Pump Power Supply ..... 34
Applications for the LTC1265 High Efficiency Monolithic Buck Converter ..... 22
LTC1174: A High Efficiency Buck Converter ..... 35
REGULATORS—SWITCHING (FLYBACK)
Applications for the LT1372 500kHz Switching Regulator ..... 25
REGULATORS - SWITCHING (POWER FACTOR CORRECTED)
The New LT1508/LT1509 Combines Power Factor Correction and a PWM in a Single Package ..... 37
REGULATORS— SWITCHING (DISCUSSION)
Adding Features to the Boost Topology ..... 39
Sensing Negative Outputs ..... 40
REGULATORS—SWITCHING (MICROPOWER)
3-Cell to 3.3V Buck/Boost Converter ..... 41
LT1111 Isolated 5V Switching Power Supply ..... 41
Low Noise Portable Communications DC/DCConverter ..... 43
Applications for the LT1302 Micropower DC/DC Converter ..... 44
Cock-Synchronized Switching Regulator Has Coherent Noise ..... 49
Battery-Powered Circuits Using the LT1300 and LT1301 ..... 51
LTC1174: A High Efficiency Buck Converter ..... 35
Battery-Powered Circuits Using the LT1304 Micropower DC/DCConverter with Low-Battery Detector ..... 54
Automatic Load Sensing Saves Power in High Voltage Converter ..... 57
REGULATORS— SWITCHING (MICROPOWER)
Backlight
High Eficiency 日 Driver Oircuit ..... 58
A Low Power, Low Voltage CCR Power Supply ..... 60
All Surface Mount E Panel Driver Operates from 1.8V to 8 V Input ..... 61
A Dual Output LCD Bias Voltage Generator ..... 62
LCD Bias Supply ..... 63
REGULATORS—SWITCHING (MICROPOWER)
Switched Capacitor
Regulated Charge Pump Power Supply ..... 34
REGULATORS—SWITCHING (MICROPOWER)
VPP Generator
LTC1262 Generates 12V for Programming Aash Memories Without Inductors ..... 64
Aash Memory VPP Generator Shuts Down with OV Output ..... 64

## Application Note 66

REGULATORS—LINEAR
Low Noise Wireless Communications Power Supply ..... 65
An LT1123 Ultralow Dropout 5V Regulator ..... 66
REGULATORS— LINEAR
Microprocessor Power
LT1580 Low Dropout Regulator Uses New Approach to Achieve High Performance ..... 67
LT1585: New Linear Regulator Solves Load Transients ..... 68
BATTERY CHARGERS
Charging NiMH/NiCd or Li-Ion with the LT1510 ..... 70
Lithium-Ion Battery Charger ..... 71
Simple Battery Charger Runs at 1 MHz ..... 73
A Perfectly Temperature Compensated Battery Charger ..... 74
A Simple 300mA NiCd Battery Charger ..... 75
High Eficiency (>90\%) NiCd Battery Charger Circuit Programmable for 1.3A Fast Charge or 100mA Trickle Charge ..... 76
POWER MANAGEMENT
LT1366 Rail-to-Rail Amplifier Controls Topside Current ..... 78
An Isolated High Side Driver ..... 79
LTC1163: 2-Cell Power Management ..... 80
LTC1157 Switch for 3.3V PC Card Power ..... 81
The LTC1157 Dual 3.3V Micropower MOSFET Driver ..... 82
The LTC1155 Does Laptop Computer Power Bus Switching, SCSI Termination Power or 5V/3A Extremely Low Dropout Regulator ..... 82
A Circuit That Smoothly Switches Between 3.3V and 5V ..... 84
A Fully Isolated Quad 4A High Side Switch ..... 85
The LTCl153 日ectronic Oircuit Breaker ..... 86
LTC1477: 0.07 $\Omega$ Protected High Side Switch Eiminates "Hot Swap" Glitching ..... 87
MISCELLANEOUS
Protected Bias for GaAs Power Amplifiers ..... 88
LT1158 H-Bridge Uses Ground Referenced Current Sensing for System Protection ..... 89
LT1158 Allows Easy 10A Locked Antiphase Motor Control ..... 91
All Surface Mount Programmable 0V, 3.3V, 5V and 12V VPP Generator for PCMCIA ..... 92
A Tachless Motor Speed Controller ..... 93
LT1161...And Back and Stop and Forward and Rest-All with No Worries at All ..... 95
Simple Thermal Analysis-A Real Cool Subject for LTC Regulators ..... 98
ALPHABETIC INDEX
By Major Categories ..... 101

## Application Note 66

## Regulators—Switching (Buck)

High Power (>4A)

## BIG POWER FOR BIG PROCESSORS: <br> THE LTC1430 SYNCHRONOUS REGULATOR by Dave Dwelley

The LTC1430 is a new switching regulator controller designed to be configured as a synchronous buck converter with a minimum of external components. It runs at a fixed switching frequency (nominally 200 kHz ) and provides all timing and control functions, adjustable current limit and soft start, and level shifted output drivers designed to drive an all N -channel synchronous buck converter architecture. The switch driver outputs are capable of driving multiple paralleled power MOSFETs with submicrosecond slew rates, providing high efficiency at very high current levels while eliminating the need for a heat sink in most designs. The LTC1430 is usable in converter designs providing from afew amps to over 50A of output current, allowing it to supply 3.3V power to the most current-hungry arrays of microprocessors.

## A Typical 5V to 3.3V Application

The typical application for the LTC1430 is a 5 V to $3 . \mathrm{xV}$ converter on a PC motherboard. The output is used to power a Pentium ${ }^{\circledR}$ processor, Pentium ${ }^{\circledR}$ Pro processor or
similar class processor and the input is taken from the system $5 \mathrm{~V} \pm 5 \%$ supply. The LTC1430 provides the precisely regulated output voltage required by the processor without the need for an external precision reference or trimming. Fgure 1 shows a typical application with a $3.30 \mathrm{~V} \pm 1 \%$ output voltage and a 12A output current limit. The power MOSFETs are sized so as not to require a heat sink under ambient temperature conditions up to $50^{\circ} \mathrm{C}$. Typical efficiency is above $91 \%$ from 1A to 10A output current and peaks at $95 \%$ at 5 A (Figure 2).
Pentium is a registered trademark of Intel Corporation.


Figure 2. Efficiency Plot for Figure 1's Circuit. Note That Efficiency Peaks at a Respectable 95\%


Figure 1. Typical 5V to 3.3V, 10A LTC1430 Application

The 12A current limit is set by the 16k resistor R1 from $P V_{\propto C}$ to $I_{\text {MAX }}$ and the $0.035 \Omega \mathrm{ON}$ resistance of the MTD20N03HL MOSETTs (M1A, M1B).
The $0.1 \mu \mathrm{~F}$ capacitor in parallel with R 1 improves power supply rejection at $l_{\text {MAX }}$, providing consistent current limit performance when voltage spikes are present at $\mathrm{PV}_{\propto}$ Soft start timeis set by CSS; $^{\text {; the }} 0.01 \mu$ Fvalue shown reacts with an internal $10 \mu \mathrm{~A}$ pull-up to provide a 3ms start-up time. The $2.5 \mu \mathrm{H}, 15 \mathrm{~A}$ inductor is sized to allow the peak current to rise to the full current limit value without saturating. This allows the circuit to withstand extended output short circuits without saturating the inductor core. The inductor value is chosen as a compromise between peak ripple current and output current slew rate, which affects large-signal transient response. If the output load is expected to generatelarge output current transients (as large microprocessors tend to do), the inductor value will need to bequite low, in the $1 \mu \mathrm{H}$ to $10 \mu \mathrm{H}$ range.
Loop compensation is critical for obtaining optimum transient response with a voltage feedback system like the LTC1430; the compensation components shown here give good response when used with the output capacitor values and brands shown (Figure3). The ESR of the output capacitor has a significant effect on the transient responseof thesystem. For best resultsusethe


Figure 3. Transient Response: 0A to 5A Load Step Imposed on Figure 1's Output
largest value, lowest ESR capacitors that will fit the design budget and space requirements. Several smaller capacitors wired in parallel can help reduce total output capacitor ESR to acceptablelevels. Input bypass capacitor ESR is also important to kep input supply variations to a minimum with 10Ap-p square wave current pulses flowing into M1. AVXTPS series surfacemount tantalum capacitors and Sanyo OS-OON organic electrolytic capacitors are recommended for both input and output bypass duty. Low cost "computer grade" aluminum electrolytics typically havemuch higher series resistance and will significantly degrade performance. Don't count on that parallel $0.1 \mu \mathrm{~F}$ ceramic cap to lower the ESR of a cheap electrolytic cap to acceptable levels.

## APPLICATIONS FOR <br> THE LTC1266 SWITCHING REGULATOR <br> by Greg Dittmer

Figures 4,5 and 6 show the three basic circuit configurations for the LTC1266. The all N -channel circuit shown in Figure 4 is a $3.3 \mathrm{~V} / 5 \mathrm{~A}$ surface mount converter with the internal MOSFT drivers powered from aseparate supply, PWR $\mathrm{V}_{\mathrm{IN}}$. The $\mathrm{V}_{\mathrm{GS}(\mathrm{ON})}$ of the Si 9410 N -channel MOSFETs is 4.5 V ; thus the minimum allowable voltage for $\mathrm{PWR} \mathrm{V}_{\mathrm{IN}}$ is $\mathrm{V}_{\operatorname{IN}(\mathrm{MAX})}+4.5 \mathrm{~V}$. At the other end, $\mathrm{PWR} \mathrm{V}_{\text {IN }}$ should be kept under the maximum safelevel of 18 V , limiting $\mathrm{V}_{\text {IN }}$ to $18 \mathrm{~V}-4.5 \mathrm{~V}=13.5 \mathrm{~V}$. The current sense resistor value is chosen to set themaximum current to 5 Aaccording to the formula $\mathrm{I}_{\text {OU }}=100 \mathrm{mV} / \mathrm{R}_{\text {SENSE }}$ With $\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}$, the $5 \mu \mathrm{H}$ inductor and 130pFtiming capacitor providean operating frequency of 175 kHz and a ripple current of 1.25 A .

Figure 5 shows an LTC1266 in the charge pump configuration designed to providea3.3V/10Aoutput fromasingle supply. The Si4410s are new logic level, surface mount, N -channel MOSFTs from Siliconix that provide a mere $0.02 \Omega$ of on-resistance at $\mathrm{V}_{\mathrm{GS}}=4.5 \mathrm{~V}$ and thus provide a 10A solution with minimal components. The efficiency plot shows that the converter is still close to $90 \%$ efficient at 10 A . Because the charge pump configuration is used, the maximum allowable $\mathrm{V}_{\mathrm{IN}}$ is $18 \mathrm{~V} / 2=9 \mathrm{~V}$. Due to the high AC currents in this circuit we recommend low ESR OS-OON or AVX input/output capacitors to maintain efficiency and stability.

Figure6 shows theconventional P-channel topsideswitch circuit configuration for implementing a $3.3 \mathrm{~V} / 3 \mathrm{~A}$ regula tor. The P-channel configuration allows the widest possiblesupply rangeof thethrebasiccircuit configurations,

## Application Note 66

3.5 V to 18 V , and provides extremely low dropout, exceeding that of most linear regulators. Thelow dropout results from the LTC1266's ability to achieve a $100 \%$ duty cycle when in P-channel mode. In N -channel mode the duty cycle is limited to less than $100 \%$ to ensure proper startup and thus the dropout voltage for the all N -channel converters is slightly higher.



AN66 F04b
Figure 4b. Efficiency for Figure 4a's Circuit


Figure 5b. Efficiency for Figure 5a's Circuit

Figure 5a. All N-Channel Single Supply 5V to 3.3V/10A Regulator



Figure 6b. Efficiency for Figure 6a's Circuit

Figure 6a. Low Dropout 3.3V/3A Complementary MOSFET Regulator

## A HIGH EFFICIENCY 5V TO 3.3V/5A CONVERTER by Randy G Fatness

The next generation of notebook and desktop computers is incorporating more 3.3V ICs alongside 5 V devices. As the number of devices increases, the current requirements also increase. Typically, ahigh current 5V supply is already available. Thus, theproblem is reduced to deriving 3.3V from 5 V efficiently in asmall amount of board space.

High efficiency is mandatory in these applications, since converting 5 V to 3.3 V at 5 A using alinear regulator would requiredissipating over 8W. This wastes power and board space for heat sinking.

The LTC1148 synchronous switching regulator controller accomplishes the 5 V to 3.3 V conversion with high efficiencies over a wideload current range. Thecircuit shown in Figure 7 provides 3.3V at efficiencies greater than 90\%


Figure 7. LTC1148-3.3 High Efficiency 5V to 3.3V/5A Step-Down Converter


Figure 8. Efficiency for 5V to 3.3V Synchronous Switcher
from 5mA to 5A (over three decades of load current). The efficiency of the circuit in Fgure 7 is plotted in Fgure 8.
At an output current of 5 A the efficiency is $90 \%$; this means only 1.8 W are lost. This lost power is distributed among R $\mathrm{R}_{\text {SNSE }}$ L1 and the power MOSÆTs; thus heat sinking is not required.
The LTC1 148 series of controllers use constant off-time current modearchitectureto provideclean start-up, accuratecurrent limit and excellent line and load regulation. To
maximize the operating efficiency at low output currents, Burst Mode ${ }^{\text {TM }}$ operationis usedto reduceswitching losses. Synchronous switching, combined with Burst Mode operation, yields very efficient energy conversion over a wide range of load currents.

The top P-channel MOSFETs in Figure 7 will be on $2 / 3$ of the time with an input of 5 V . Hence, thesedevices should becarefully examined to obtainthebest performance. Two MOSFETs are needed to handle the peak currents safely and enhance high current efficiency. The LTC1148 can drive both MOSÆTS adequately without a problem. A singleN-channel MOSETT is used as the bottom synchronous switch, which shunts the Schottky diode. Fnally, adaptive anti-shoot-though circuitry automatically prevents cross conduction between the complementary MOSFETs which can kill efficiency.
The circuit in Fgure 7 has ano-load current of only $160 \mu \mathrm{~A}$. In shutdown mode, with Pin 10 held high (above 2V), the quiescent current decreases to less than $20 \mu \mathrm{~A}$ with all MOSFTTs held off DC. Although the circuit in Fgure 7 is specified at a5Vinput voltage, thecircuit will function from 4 V to 15 V without requiring any component substitutions.
Burst Mode is a trademark of Linear Technology Corporation.

## HIGH CURRENT, SYNCHRONOUS STEP-DOWN SWITCHING REGULATOR <br> by Brian Huffman

The LTC1149 is a half-bridge driver designed for synchronous buck regulator applications. Normally aP- and N -channel output stage is employed, but the P-channel device ON resistance becomes a limiting factor at output currents above2A. N-channel MOSFETs arebetter suited for use in high current applications, since they have a substantially lower ONresistancethan comparably priced P-channels. The circuit shown in Figure 9 adapts the LTC1149 to drive a half-bridge consisting of two N -channel MOSFITs, providing efficiency in excess of $90 \%$ at an output current of 5 A .

Thecircuit's operationis asfollows:theLTC1149provides a P-drive output (Pin 4) that swings between ground and 10 V , turning $@$ on and off. While $ß$ is on, the N-channel MOSFET (Q4) is off because its gate is pulled low by QB through D2. During this interval, theNgateoutput (Pin 13) turns the synchronous switch (СБ) on creating a low resistance path for the inductor current.
Q4 turns on when its gateis driven abovetheinput voltage. This is accomplished by bootstrapping capacitor C2 off the drain of Q4. The LTC1149 V $\mathrm{C}_{\text {c }}$ output (Pin 3) supplies a regulated 10 V output that is used to charge C 2 through D1 whileQ4 is off. With Q4 off, C2 charges to 5Vduring the first cycle in Burst Mode operation and to 10V thereafter.

## Application Note 66



Figure 9. LTC1149-5 (12V-36V to 5V/5A) Using N-Channel MOSFETs

When @ turns off, the N-channel MOSFET isturned on by the SCR-connected NPNPNP network (Q1 and QR). Resistor R2 supplies Q2 with enoughbasedriveto trigger the SCR. QR then forces Q1 to turn on, supplying more base driveto $\mathbb{R}$. This regenerativeprocess continues until both transistors are fully saturated. During this period, the source of Q4 is pulled to the input voltage. While Q4 is on, its gatesource voltage is approximately 10 V , fully enhancing the N -channel MOSFET.

Efficiency performance for this circuit is quiteimpressive. Figure 10 shows that for a 12 V input the efficiency never drops below 90\% over the 0.6A to 5A range. At higher input voltages efficiency is reduced due to transition losses in the power MOSFETs. For low output currents efficiency rolls off because of quiescent current losses.


Figure 10. LTC1149-5 (12V-36V to 5V/5A) High Current Buck

AN66-9

## Application Note 66

## Regulators—Switching (Buck)

Medium Power (1A to 4A)

## 1MHz STEP-DOWN CONVERTER ENDS 455kHz IF WOES

by Mitchell Le
There can be no doubt that switching power supplies and radio IFs don't mix. One-chip converters typically operate in the range of 20 kHz to 100 kHz , placing troublesome harmonics right in the middle of the 455 kHz band. This contributes to adverse effects such as "desensing" and outright blocking of the intended signals. A new class of switching converter makes it possible to mix high efficiency power supply techniques and 455 kHz radio IFs without fear of interference.
The circuit shown in Fgure 11 uses an LT1377 boost converter operating at 1 MHz to implement a high effi-
ciency buck topology switching regulator. The switch is internally grounded, calling for the floating supply arrangement shown (D1 andC1). Thecircuit converts inputs of 8 V through 30 V to a $5 \mathrm{~V} / 1$ A output.
The chip's internal oscillator operates at 1 MHz for load currents of greater than50mA with aguaranteed tolerance of $12 \%$ over temperature. Even wideband 455 kHz IFs are unaffected, as the converter's operating frequency is well over one octave distant.

Fgure 12 shows the efficiency of Fgure 11's circuit. You can expect $80 \%$ to $90 \%$ efficiency over an 8 V to 16 V input range with loads of 200 mA or more. This makes the circuit suitablefor 12Vbattery inputs (that's how l'm using it), but no special considerations are necessary with adapter inputs of up to 30 V .



Figure 12. Efficiency Graph of the Circuit Shown in Figure 3

Figure 11. Schematic Diagram: 1MHz LT1377-Based Boost Converter

## Applic ation Note 66

## HIGH OUTPUT VOLTAGE BUCK REGULATOR

## by Dimitry Goder

High efficiency step-down conversion is easy to implement using the LTC1149 as a buck switching regulator controller. The LTC1149 features constant off-time, current mode architecture and fully synchronous rectification. Current mode operation was selected for its well-known advantages of clean start-up, accuratecurrent limit and excellent transient response.

Inductor current sensing is usually implemented by placing aresistor in series with the coil, but the common mode voltage at the LTC1149's Sensepins is limited to 13V. If a higher output voltage is required, thecurrent sense resistor can be placed in the circuit's ground return to avoid
common mode problems. The circuit in Figure 13 can be used in applications that do not lend themselves to this approach.
Figure 13 shows aspecial level shifting circuit (Q1 and U2) added to a typical LTC1149 application. The LT1211, a high speed, precision amplifier, forces the voltage across R5 to equal the voltage across current sense resistor R8. Q1's drain current flows to the source, creating a voltage across R6 proportional to the inductor current, which is now referenced to ground. This voltage can be directly applied to the current sense inputs of U1, the LTC1149. Cl 2 and C 4 are added to improve high frequency noise immunity. Maximum input voltage is now limited by the LT1211; it can be increased if a Zener diode is placed in parallel with Cl 2 .


Figure 13. High Output Voltage Buck Regulator Schematic Using LTC1149

## Application Note 66

## THE LTC1267 DUAL SWITCHING REGULATOR CONTROLLER OPERATES FROM HIGH INPUT VOLTAGES <br> by Randy G Fatness

## Fixed Output 3.3V and 5V Converter

A fixed LTC1267 application circuit creating 3.3V/2A and $5 \mathrm{~V} / 2 \mathrm{~A}$ is shown in Figure 15. The operating efficiency shown in Fgure 14 exceeds $90 \%$ for both the 3.3 V and 5 V sections. The 3.3 V section of the circuit in Figure 15 comprises the main switch $Q 1$, synchronous switch $\propto$, inductor L 1 and current shunt RSENSE3.
The 5 V section is similar and comprises $@, Q 4, \mathrm{~L} 2$ and $R_{\text {SEDSES }}$. Each current sense resistor (RSENSE) monitors the inductor current and is used to set the output current according to the formula $100100 \mathrm{mV} /$ RSENSE Advantages of current control include excellent line and load transient rejection, inherent short-circuit protection and controlled start-up currents. Peakinductor currentsfor L1 and $L 2$ are limited to $150 \mathrm{mV} / \mathrm{R}_{\text {SENSE }}$ or 3.0 A . TheEXTV $\mathrm{V}_{\propto}$ pin is connected to the 5 V output increasing efficiency at highinput voltages. Themaximum input voltage is limited by the MOSETS and should not exceed 28 V .

## Adjustable Output 3.6V and 5 V Converter

Theadjustableoutput LTC1267-ADJshown in Fgure 16 is configured as a $3.6 \mathrm{~V} / 2.5 \mathrm{~A}$ and $5 \mathrm{~V} / 2 \mathrm{~A}$ converter. Theresistor divider composed of R1 and R2 sets theoutput voltage according to the formula $\mathrm{V}_{\text {OU }}=1.25 \mathrm{~V}(1+\mathrm{R} 2 / \mathrm{R} 1)$. The input voltage range for this application is 5.5 V to 28 V .


Figure 14. LTC1267 Efficiency vs Output Current of Figure 15 Circuit


Figure 15. LTC1267 Dual Output 3.3V and 5V High Efficiency Regulator

## Application Note 66



Figure 16. LTC1267 Dual Adjustable High Efficiency Regulator Circuit. Output Voltages Set at 3.6V and 5V

## HIGH EFFICIENCY 5V TO 3.3V/1.25A CONVERTER IN 0.6 SQUARE INCHES <br> by Randy G Hatness

The next generation of notebook and desktop computers will incorporate a growing number of 3.3 V ICs along with 5 V devices. As the number of 3.3 V devices increases, the current requirements increase. Typically, a high current

5 V supply is already available. Thus, the problem is reduced to deriving 3.3 V from 5 V at high efficiency in a small amount of board space.
High efficiency is mandatory in these applications since converting 5 V to 3.3 V at 1.25 A using a linear regulator would requiredissipating over 2 W . This is an unnecessary waste of power and board space for heat sinking.


Figure 17. High Efficiency Controller Converts 5V to 3.3V in Minimum Board Area

## Application Note 66

TheLTC1147 SO-8 switching regulator controller accomplishes the 5 V to 3.3 V conversion with high efficiencies over awide load current range. Thecircuit shown inFgure 17 provides 3.3 V at efficiencies greater than $90 \%$ from 50 mA to 1.25 A . Using all surface mount components and a low value of inductance ( 10 HH ) for L1, the circuit of Fgure 17 occupies only 0.6 square inches of PC board area. The efficiency of the circuit in Fgure 17 is plotted in Fgure 18.
At an output current of 1.25 A the efficiency is $90.4 \%$; this means only 0.4 W are lost. This lost power is distributed among $\mathrm{R}_{\text {SENSE }} \mathrm{L} 1$ and the power MOSFIs; thus heat sinking is not required.
The LTC1147 series of controllers use constant off-time current mode architectureto provideclean start-up, accurate current limit and excellent line and load regulation. To maximize the operating efficiency at low output currents, Burst Mode operation is used to reduce switching losses.
The P-channel MOSFET in the circuit of Fgure 17 will be on $2 / 3$ of thetime with an input voltage of 5 V . Hence, this device should be carefully selected to obtain the best performance. This design uses an Si9433DYfor optimum
efficiency; for lower cost an Si9340DY can be used at a slight reduction in performance.
The circuit in Fgure 17 has a no load current of only $160 \mu \mathrm{~A}$. In shutdown, with Pin 6 held high (above2V), the quiescent current is reduced to less than $20 \mu \mathrm{~A}$ with the MOSET held off. Although the circuit in Fgure 17 is specified at a 5 V input voltage the circuit will function from $4 V$ to 10 V .


Figure 18. 5V to 3.3V Conversion Efficiency

## LT1074/LT1076 ADJUSTABLE OV TO 5V POWER SUPPLY <br> by Kevin Vasconcelos

Linear regulator ICs are commonly used in variable power supplies. Common types such as the 317 can be adjusted as low as 1.25 V in single-supply applications. At low
output voltages power losses in these regulators can bea problem. For example, if an output current of 1.5 A is required at 1.25 V from an input of 8 V , the regulator dissipates more than 10W. Fgure 19 shows a DC/DC converter that functionally replaces a linear regulator in this application. The converter not only eliminates power


Figure 19. Adjustable LT1074/LT1076 OV to 5V Power Supply

## Application Note 66

loss as a concern, but can be adjusted for output voltages as low as 25 mV while still delivering an output current of 1.5A.

The circuit of Fgure 19 employs a basic positive buck topology with one exception: a control voltage is applied through R4 to the feedback summing node at Pin 1 of the LT1076 switching regulator IC, allowing the output to be adjusted from 0 V to approximately 6 V . This encompasses the3.3V and5VIogic supply ranges as well as battery pack combinations of one to four D cells.
As R4 is driven from 0 V to 5 V by the buffer (U1) more or less current is required from R2 to satisfy theloop's desire to hold the feedback summing point at 2.21V. This forces theconverter's output to swing over therange of $0 \mathrm{Vto6V}$.

Fgure 20 shows acomparison of power losses for alinear regulator and the circuit of Figure 19. The load current is 1.5A in both cases although the LT1076 is capable of 1.75Aguaranteed output current inthis application and2A typical. If more current is required the LT1074 can be
substituted for the LT1076. This change accommodates outputs up to 5A but at the expense of a heftier diodeand coil (D1, L1). An MBR735 and Coiltronics CTX50-2-52 are recommended for 5A service.


AN66 20
Figure 20. Power Loss Comparison: Linear Regulator vs Figure 19's Power Supply

## TRIPLE OUTPUT 3.3V, 5V AND 12V HIGH EFFICIENCY NOTEBOOK POWER SUPPLY by Randy G Fatness

## LTC1142 Circuit Operation

Theapplicationcircuit inFgure22is configured to provide output voltages of $3.3 \mathrm{~V}, 5 \mathrm{~V}$ and 12 V . Thecurrent capability of both the 3.3 V and 5 V outputs is 2 A (2.5A peak). The logic-controlled 12 V output can provide 150 mA (200mA peak), which is ideal for flash memory applications. The operating efficiency shown in Fgure 21 exceeds 90\% for both the 3.3 V and 5 V sections.

The 3.3V section of the circuit in Fgure २2 comprises the main switch Q4, synchronous switch Q6, inductor L1 and current shunt R RENSE3. Thecurrent sense resistor R RENSE monitors the inductor current and is used to set theoutput current according to the formula $\mathrm{l}_{\text {Or }}=100 \mathrm{mV} / \mathrm{R}_{\text {SENSE }}$. Advantages of current control include excellent line and load transient rejection, inherent short-circuit protection and controlled start-up currents. Peak inductor currents for L1 and T1 of the circuit in Figure 22 are limited to $150 \mathrm{mV} / \mathrm{R}_{\text {SENSE }}$ or 3.0A and 3.75A respectively.

Whentheoutput current for either regulator sectiondrops below approximately $15 \mathrm{mV} / \mathrm{R}_{\text {SENSE }}$, that section automatically enters Burst Modeoperationto reduceswitching losses. Inthis modetheLTC1 142 holds both MOSFETs off and "sleeps" at $160 \mu \mathrm{~A}$ supply current while the output capacitor supports the load. When the output capacitor falls 50 mV below its specified voltage ( 3.3 V or 5 V ) the LTC1142 briefly turns this section back on, or "bursts," to recharge the output capacitor. The timing capacitor pins,


Figure 21. LTC1142 Efficiency

## Application Note 66



Figure 22. LTC1142 High Efficiency Power Supply Schematic Diagram
which go to OV during the sleep interval, can bemonitored with an oscilloscope to observe burst action. As the load current is decreased the circuit will burst less and less frequently.
The timing capacitors $\mathrm{C}_{\mathrm{T} 3}$ and $\mathrm{C}_{5}$ set the off-time according to the formulator $=1.3\left(10^{4}\right)\left(\mathrm{C}_{\mathrm{T}}\right)$. The constant off-timearchitecture maintains a constant ripple current while the operating frequency varies only with input voltage. The 3.3 V section has an off-time of approximately $5 \mu \mathrm{~s}$, resulting in a operating frequency of 120 kHz with an 8 V input. The 5 V section has an off-time of $2.6 \mu \mathrm{~s}$ and a switching frequency of 140 kHz with an 8 V input.

## Auxiliary 12V Output

The operation of the 5 V section is identical to the 3.3 V section with inductor L1 replaced by transformer T1. The 12 V output is derived from an auxiliary winding on the 5 V
inductor. The output from this additional winding is rectified by diode D3 and applied to the input of an LT1121 regulator. Theoutput voltageis set by resistors R3 and R4. Aturns ratio of 1:1.8 is used for T 1 to ensurethat theinput voltagetotheLT1121 is high enough to keep theregulator out of dropout mode while maximizing efficiency.

The LTC1142 synchronous switch removes the normal limitation that power must be drawn from the primary 5 V inductor winding in order to extract power from the auxiliary winding. With synchronous switching, the auxiliary 12 V output may be loaded without regard to the 5 V primary output load, provided that the loop remains in continuous mode operation.
When the 12 V output is activated by a TLL high ( 6 V maximum) on the 12 V enable line, the 5 V section of the LTC1142 is forced into continuous mode. A resistor

## Application Note 66

divider composed of R1, R5 and switch Q1 forces an offset, subtracting from theinternal offset at Pin 14. When this external offset cancels the built-in 25 mV offset, Burst Mode operation is inhibited.

## Auxiliary 12V Output Options

The circuit of Figure 22 can be modified for operation in low-battery count (6-cell) applications. For applications where heavy 12 V load currents exist in conjunction with low input voltages ( $<6.5 \mathrm{~V}$ ), the auxiliary winding should bederived from the 3.3 V instead of the 5 V section. As the input voltagefalls, the5V duty cycleincreases to the point when there is simply not enough time to transfer energy from the 5 V primary winding to the 12 V secondary winding. For operation from the 3.3 V section, a transformer with a turns ratio of 1:3.25 should be used in place of the $33 \mu \mathrm{H}$ inductor L1. Likewise, a $30 \mu \mathrm{H}$ inductor would re placeT1 inthe5Vsection. Withthesecomponent changes, theduty cycleof the 3.3 V section is morethan adequatefor full 12 V load currents. The minimum input voltage in this case will bedetermined only by the dropout voltage of the

5V output. The 100\% duty cycle inherent in the LTC1 142 provides low dropout operation limited only by the load current multiplied by the sum of the resistances of the 5 V inductor, $Q R R_{D S(O N)}$ and current sense resistor R RENSES.

## Extending the Maximum Input Voltage

The circuit in Figure 22 is designed for a 14 V maximum input voltage. The operation of thecircuit can be extended to over 18 V if a few key components are changed. The parts that determine the maximum input voltage of the circuit arethepower MOSFETs, theLTC1142 and theinput capacitors. WiththeLTC1 142 replaced by an LTC1142HV, an 18 V typical ( 20 V maximum) input voltage is allowable. Since thegatedrivevoltages supplied by the LTC1142 and LTC1142HV are from ground to $\mathrm{V}_{\mathrm{IN}}$, the input voltage must not exceed the maximum $\mathrm{V}_{\mathrm{GS}}$ of the MOSFETs. The MOSFETs specified in Fgure 22 have an absolute maximum of 20 V , matching that of the LTC1142HV. ${ }^{1}$ Fnally, the input capacitor's voltage rating will also have to be increased above 12 V .
${ }^{1}$ For improved efficiency, CT5 should be charged to 270pF.

## THE NEW SO-8 LTC1147 SWITCHING REGULATOR CONTROLLER OFFERS HIGH EFFICIENCY

 IN A SMALL FOOTPRINTby Randy Fatness

## Introduction

The LTC1147 switching regulator controller is a high efficiency step-down DC/DC converter. It uses the same current mode architecture and Burst Mode operation as the LTC1148/LTC1 149 but without the synchronous switch. Ideal for applications requiring up to 1 A , the LTC1147 shows $90 \%$ efficiencies over two decades of output current.

## High Efficiency 5V to 3.3 V in a Small Area

The LTC1 1475 V to 3.3 V converter shown in Figure 23 has $85 \%$ efficiency at 1 A output with efficiencies greater than $90 \%$ for load currents up to 500 mA . Using the LTC1147 reduces the power dissipation to less than

500 mW . The efficiency plotted as a function of output current is shown in Fgure 24.


Figure 23. This LTC1147 5V to 3.3V Converter Achieves 92\% Efficiency at 300mA Load Current


Figure 24. The LTC11475V to 3.3V Converter Provides Better Than $90 \%$ Efficiency from 20 mA to 500 mA of Output Current

## Giving Up the Synchronous Switch?

The decision whether to use a nonsynchronous LTC1 147 design or afully synchronous LTC1 148 design requires a careful analysis of where losses occur. The LTC1147 switching regulator controller uses the same loss reducing techniques as the other members of the LTC1148/ LTC1149 family. The nonsynchronous design saves the N -channel MOSFT gate drive current at the expense of increased loss due to the Schottky diode.

Fgure 25 shows how the losses in a typical LTC1147 application are apportioned. The gate-charge loss (P-channel MOSFIT) is responsiblefor themajority of the efficiency lost in the midcurrent region. If Burst Mode operation was not employed, the gate charge loss alone would cause the efficiency to drop to unacceptable levels at low output currents. With Burst Modeoperation, theDC supply current represents the only loss component that increases almost linearly as output current is reduced. As expected, the ${ }^{2} \mathrm{R}$ loss and Schottky diode loss dominate at high load currents.
In addition to board space, output current and input voltage are the two primary variables to consider when deciding whether to use the LTC1147. At low input-tooutput voltage ratios, thetop P-channel switch is on most of the time, leaving the Schottky diode conducting only a small percentage of thetotal period. Hence, thepower lost in the Schottky diode is small at low output currents. This
is the ideal application for the LTC1147. As the output current increases the diode loss increases. At high input-to-output voltage ratios, the Schottky diode conducts most of thetime. Inthis situation, any loss inthediode will haveamoresignificant effect on efficiency and an LTC1148 might therefore be chosen.
Figure 26 compares the efficiencies of LTC1147-5 and LTC1148-5 circuits withthesameinductor, timing capacitor and P-channel MOSFET. At low input voltages and 1A output current the efficiency of the LTC1147 differs from that of the LTC1148 by less than two percent. At lower


Figure 25. Low Current Efficiency is Enhanced by Burst Mode Operation. Schottky Diode Loss Dominates at High Output Currents


AN66 F26
Figure 26. At High Input Voltages Combined with Low Output Currents, the Efficiency of the LTC1147 Exceeds That of the LTC1148

## Applic ation Note 66

output currents and high input voltages the LTC1147's efficiency can actually exceed that of the LTC1148.

## Low Dropout 5V Output Applications

Because the LTC1147 is so well-suited for low input-tooutput voltage ratio applications it is an ideal choice for lowdropout designs. All members oftheLTC1148/LTC1149 family (including the LTC1147) have outstandingly low dropout performance. Astheinput voltageontheLTC1 147 drops, the feedback loop extends the on-time for the


Figure 27. The LTC1147 Architecture Provides Inherent Low Dropout Operation. This LTC1147-5 Circuit Supports a 1A Load with the Input Voltage Only 200 mV Above the Output

P-channel switch (off-time is constant) thereby keeping the inductor ripple current constant. Eventually the ontimeextends so far that theP-channel MOSFTT is on at DC or at a $100 \%$ duty cycle.

With the switch turned on at a $100 \%$ duty cycle, the dropout is limited by the load current multiplied by the sum of the resistances of the MOSFET, the current shunt and the inductor. For example, the low dropout 5 V regulator shown in Fgure27 has atotal resistance of less than $0.2 \Omega$. This gives it a dropout voltage of 200 mV at 1 A output current. At input voltages below dropout theoutput voltage follows the input. This is the circuit whose efficiency is plotted in Fgure 28.


Figure 28. Greater Than 90\% Efficiency is Obtained for Load Currents of 20 mA to $2 \mathrm{~A}\left(\mathrm{~V}_{\mathrm{IN}}=10 \mathrm{~V}\right.$ )

## Application Note 66

## THE LT1432: 5V REGULATOR <br> ACHIEVES 90\% EFFICIENCY <br> by Carl Nelson

Power supply efficiency has become ahighly visible issue in many portable battery-powered applications. Higher efficiency translates directly to longer useful operating time-a potent selling point for products such as notebook computers, cellular phones, data acquisition units, sales terminals and word processors. The "holy grail" of efficiency for 5 V outputs is $90 \%$.
For a number of reasons, older designs were limited to efficiencies of 80 to $85 \%$. High quiescent current in the control circuitry limited efficiency at lower output currents. Losses in the power switch, inductor and catch diode all added up to limit efficiency at moderate-to-high output currents. Each of theseareas must be addressed in a design that is to have high efficiency over a wide output current range.
Some portable equipment has the additional requirement of high efficiency at extremely light loads ( 1 mA to 5 mA ). These applications have a sleep mode in which RAM is kept aliveto retaininformation. Theinstrument may spend days or even weeks in this mode, so battery drain is
critical. Ordinary 5V switchers draw quiescent currents of 5 mA to 15 mA for theselight loads. Theefficiency of a 12 V to 5 V converter with 10 mA supply current and 1 mAload is only $4 \%$. Clearly, some method must be provided to eliminate thequiescent current of the switching regulator control section.

An additional requirement for some systems is full shutdown of the regulator. It would be ideal if a simple logic signal could causethe converter to turn off and draw only a few microamperes of current.
The combination of battery form factors, their discrete voltage steps and the use of higher voltage wall adapters requires a switching regulator that operates with inputs from 6 V to 30 V . Both of these voltages present problems for aMOS designbecauseof minimum and maximumgate voltage requirements of power MOS switches.
The LT1432 was designed to address all the requirements described above. It is abipolar control chip that interfaces directly to the LT1070 family of switching regulators and is capable of operating with 6 V to 30 V inputs. These ICs have a very efficient, quasisaturating NPN switch that mimics the resistivenature of MOStransistors with much smaller dieareas. TheNPNis ahighfrequency devicewith

*R2 IS MADE ROM PC BOARD COPPR R TRACES
L1 = OOLTTRONICS CTX 50-3-MP (3A) (407) 241-7876
Figure 29. High Efficiency 5V Buck Converter
an equivalent voltage and current overlap time of only 10 ns . Drive to the switch is automatically scaled with switch current, so drive losses are also low. Switch and driver losses using an LT1271 with a 12 V input and a5V, 500 mA load are only about $2 \%$.

To reduce quiescent current losses, the LT1271 is powered from the5Voutput rather than from theinput voltage. This is doneby pumping the supply capacitor C from the output via D2. Quick minded designers will observe that this arrangement does not self-start; accordingly, a parallel path was included inside the LT1432 to provide power to the ICswitcher directly from the input during start-up. Equivalent quiescent supply current is reduced to about 3.5 mA with this technique.

Catch diode losses cannot be reduced with IC "tricks" unless the diode is replaced with a synchronously driven MOS switch. This is more expensive and still requires the diode to avoid voltage spikes during switch nonoverlap times. The question is, is it worth it?
The following formula was developed to calculate the improvement in efficiency when adding a synchronous switch.

$$
\text { Efficiency change }=\frac{\left(\mathrm{V}_{\mathrm{IN}}-\mathrm{V}_{\text {OUT }}\right)\left(\mathrm{V}_{\mathrm{f}}-\mathrm{R}_{\text {®T }} \cdot \mathrm{I}_{\text {OUT }}\right)\left(\mathrm{E}^{2}\right)^{2}}{\left(\mathrm{~V}_{\text {IN }}\right)\left(\mathrm{V}_{\text {OUT }}\right)}
$$

With $\mathrm{V}_{\mathrm{IN}}=10 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{f}}($ diode forward voltage $)=$ $0.45 \mathrm{~V}, \mathrm{R}_{\text {fIT }}=0.1 \Omega$ and $\mathrm{l}_{\text {OT }}=1 \mathrm{~A}$ the improvement in efficiency is only $2.8 \%$. This does not take into account the losses associated with MOS gate drive, so real improvement would probably be closer to $2 \%$. The availability of low forward voltage Schottky diodes such as the MBR330P makes synchronous switches less attractive than they used to be.
To achievehigher efficiency during sleep, the LT1432 has Burst Mode operation. In this mode the LT1271 is either driven full on, or completely shut down to its micropower state. The LT1432 acts as a comparator with hysteresis instead of alinear amplifier. This modereduces equivalent input supply current to 1.3 mA with a 12V battery. Battery life with NiCd AA cells is over 300 hours with a 1 mA 5 V load. Burst Mode operation increases output ripple, especially with higher output currents, so maximumload inthis mode is 100 mA .

The LT1271 normally draws about $50 \mu \mathrm{~A}$ to $100 \mu \mathrm{~A}$ in its shutdown state. A shutdown command to the LT1432 opens all connections to the LT1271 $\mathrm{V}_{\text {IN }}$ pin so its current drain is eliminated. This leaves only the shutdown current of the LT1432 and theswitchleakageof theLT1271, which typically add up to less than $20 \mu \mathrm{~A}$-less than the selfdischargerateof NiCdbatteries. For many applicationsthe on/off function is under keystroke control. Digital chips which draw only a few microamps are available for keystroke recognition and power control.

There is no way to design around inductor losses. These losses are minimized by using low loss cores such as molypermalloy or ferrite, and by sizing the coreto usewire with sufficient diameter to keep resistive losses low. The $50 \mu$ Hinductor shownhas acoreloss of 200mW withtype 52 powderedironmaterial and 28mWwith molypermalloy. For a 1A load this represents efficiency losses of $4 \%$ and $0.56 \%$ respectively-a major difference. Ferrite cores would haveeven lower losses than molypermalloy, but the "moly" has such low losses that ferrites should bechosen for other reasons, such as height, cost, mounting and the like. DCresistance of the inductor shown is $0.02 \Omega$. This represents an efficiency loss of $0.4 \%$ at 1 Aload and $0.8 \%$ at 2A. Significant reduction in these resistance losses would require a somewhat larger inductor. The choice is yours.

TheLT1432 has ahigh efficiency current limit with asense voltageof only 60 mV . This has asidebenefit inthat printed circuit board trace material can be used for the sense resistor. A 3A limit requires a $0.02 \Omega$ sense resistor and this is easily madefrom asmall section of serpentinetrace. The 60 mV sense voltage has a positive temperaturecoefficient that tracks that of copper so that the current limit is flat with temperature. Foldback current limiting can be easily implemented.

TheLT1432 represents asignificant improvement in high efficiency 5 V supplies that must operateover a widerange of load currents and input voltages. Its efficiency has a very broad peak that exceeds $90 \%$, requiring a new definition of the "holy grail." Logic controlled shutdown, millipower Burst Mode operation and efficient, accurate, current limiting make this regulator extremely attractive for battery-powered applications.

## Application Note 66

Regulators-Switching (Buck)
Low Power (<1A)

## APPLICATIONS FOR THE LTC1265

HIGH EFFICIENCY MONOLITHIC BUCK CONVERTER by San-Hwa Chee

## Efficiency

Figure 30 shows atypical LTC1265-5 application circuit. The efficiency curves for two different input voltages are shown in Figure31. Notethat the efficiency for a6V input exceeds $90 \%$ over a load range from less than 10 mA to 850 mA . This makes the LTC1265 attractive for all battery operated products and efficiency sensitive applications.

5V to 3.3V Converter
Figure 32 shows the LTC1265 configured for 3.3V output with 1A output current capability. This circuit operates at
a frequency of 100 kHz . Figure 33 is the efficiency plot of the circuit. At aload current of 100 mA the efficiency is at $92 \%$; the efficiency falls to $82 \%$ at a 1 A output.

## 2.5mm Typical-Height 5V to 3.3V Regulator

Figure 34 shows the schematic for a very thin 5 V to 3.3 V converter. For the LTCl265 to be able to source 500 mA output current and yet meet the height requirement, a small value inductor must beused. Thecircuit operates at a high frequency ( 500 kHz typically) increasing the gate charge losses. Figure 35 is the efficiency curve for this application.

## Positive-to-Negative Converter

Besides converting from a positive input to positive output, theLTC1265canbeconfiguredto perform apositive-to-negative conversion. Figure 36 shows the schematic for this application.


Figure 30. High Efficiency Step-Down Converter


Figure 31. Efficiency vs Load Current

## Applic ation Note 66



Figure 32. High Efficiency 5V to 3.3V Converter


Figure 34. 2.5mm High 5V to 3.3V Converter ( 500 mA Output Current)


AN66 F33

Figure 33. Efficiency vs Load Current


AN66 F35

Figure 35. Efficiency vs Load Current

## Application Note 66



Figure 36. Positive (3.5 to 7.5V) to Negative (-5V) Converter

## Regulators-Switching (Boost)

Medium Power (1A to 4A)
HIGH OUTPUT CURRENT BOOST REGULATOR by Dimitry Goder

Low voltage switching regulators are often implemented with self-contained power integrated circuits featuring a PWM controller and an onboard power switch. Maximum
switch currents of up to 10A are available, providing a convenient means for power conversion over wide input and output voltage ranges. If higher switch currents are required, a controller with an external power MOSFET is a better choice.

Fgure 37 shows an LTC1147-based 5V to 12V converter with 3.5A peak output current capability. The LTC1147 is a micropower controller that uses a constant off-time


Figure 37. LTC1147-Based 5V to 12V Converter

## Application Note 66

architecture, eliminating the need for external slope compensation. Current mode control allows fast transient responseand cycle-by-cyclecurrent limiting. Amaximum voltage of only 150 mV across the current-sense resistor R7 optimizes performance for low input voltages.

When QR turns on, current starts building up in inductor L1. This provides a ramping voltage across R7. When this voltagereaches athreshold value set internally inthe LTC1147, QR turns off and the energy stored in L1 is
transferred to the output capacitor C5. Timing capacitor C2 sets the operating frequency. The controller is powered from the output through R5 providing 10 V of gate drive for $\mathbb{Q}$. This reduces the MOSETT's ON resistance and allows efficiency to exceed $90 \%$ even at full load. The feedback network comprising R2 and R8 sets the output voltage. Current sense resistor R7 sets the maximum output current; it can be changed to meet different circuit requirements.

## Regulators—Switching (Boost) Low Power (<lA)

APPLICATIONS FOR THE LT1372 500kHz<br>SWITCHING REGULATOR<br>by Bob Essaff

## Boost Converter

The boost converter in Fgure 38 shows atypical LT1372 application. This circuit converts an input voltage, which can vary from 2.7 V to 11 V , into a regulated 12 V output. Using all surface mount components, the entire boost converter consumes only 0.5 square inches of board


Figure 38. 5V to 12V Boost Converter
space. Fgure 39 shows the circuit's efficiency, which can reach 89\% on a 5 V input.
The reference voltage on the $B$ pin is trimmed to 1.25 V and the output voltage is set by the R1/R2 resistor divider ratio $\left(\mathrm{V}_{\mathrm{OU}}=\mathrm{V}_{\mathrm{RE}} \cdot(\mathrm{R} 1 / \mathrm{R} 2+1)\right.$. R3 and C2 frequency compensate the circuit.

## Positive-to-Negative Flyback with Direct Feedback

A unique feature of the LT1372 is its ability to directly regulate negative output voltages. As shown in the posi-tive-to-negative flyback converter in Fgure 40, only two resistors are required to set the output voltage. The reference voltage on the NB pin is $-2 \mathrm{~V}_{\mathrm{RE}}$, making $\mathrm{V}_{\mathrm{OU}}=-2 \mathrm{~V}_{\mathrm{RE}} \cdot(\mathrm{R} 2 / R 3+1)$. Eficiency for this circuit reaches $72 \%$ on a 5 V input.


Figure 39. 12V Output Efficiency

## Application Note 66

## Dual Output Flyback with Overvoltage Protection

Multipleoutput flyback converters offer an economical means of producing multiple output voltages, but the power supply designer must be aware of cross regulation issues, which can cause electrical overstress on the supply and loads. Figure41 is adual-output flyback converter with overvoltage protection. Typically, in multiple-output flyback designs only one output is voltage sensed and regulated. Theremaining outputs are"quasi-regulated" by the turns ratios of the transformer secondary. Cross regulation is a function of the transformer used and is a measure of how well thequasi-regulated outputs maintain


Figure 40. LT1372's Positive-to-Negative Converter with Direct Feedback


Figure 41. LT1372 Dual Output Flyback Converter with Overvoltage Protection
regulation under varying load conditions. For evenly loaded outputs, as shown in Figure 42, cross regulation can be quitegood, but when the loads differ greatly, as inthecase of a load disconnect, there may be trouble. Figure 43 shows that when only the 15 V output is voltage sensed, the -15 V quasi-regulated output exceeds -25 V when unloaded. This can cause electrical overstress on the output capacitor, output diode and the load when reconnected. Adding output voltage clamps is oneway to fix the problembut thecircuit inFigure41 eliminates this require ment. This circuit senses both the 15 V and -15 V outputs and prevents either from going beyond its regulating value. Figure 44 shows the unloaded -15 V output being held constant. The circuit's efficiency, which can reach $79 \%$ on a 5 V input, is shown in Fgure 45.


Figure 42. Cross Regulation of Figure 41's Circuit. $\mathrm{V}_{\text {OUT }}$ and $-\mathrm{V}_{\text {OUT }}$ Evenly Loaded


Figure 43. Cross Regulation of Figure 41's Circuit. - $\mathrm{V}_{\text {Out }}$ Unloaded; Only $\mathrm{V}_{\text {OUT }}$ Voltage Sensed


AN66 F44
Figure 44. Cross Regulation of Figure 41's Circuit. - $\mathrm{V}_{\text {OUT }}$ Unloaded; Both $-V_{\text {OUT }}$ and $V_{\text {OUT }}$ Sensed

## Regulators-Switching (Buck/Boost)

## $\pm 5 \mathrm{~V}$ CONVERTER USES OFF-THE-SHELF SURFACE MOUNT COIL <br> By Mitchell Lee and Kevin Vasconcelos

Single-output switching regulator circuits can often be adaptedto multipleoutput configurations with aminimum of changes, but these transformations usually call for custom wound inductors. Anew series of standard inductors, ${ }^{1}$ featuring quadrifilar windings, allows power supply designers to take advantage of thesemodified circuits but without the risks of a custom magnetics development program.
The circuit shown in Fgure 46 fulfills a recent customer requirement for a 9 V to 12 V input, $5 \mathrm{~V} / 800 \mathrm{~mA}$ and $-5 \mathrm{~V} / 100 \mathrm{~mA}$ output converter. It employs a $1: 1$ overwinding on what is ostensibly a buck converter to provide a -5 V output. The optimum solution would be a bifilar wound coil with heavy gauge wire for the main 5 V output and smaller wire for the overwinding. To avoid a custom coil design, an off-the-shelf JUMBO-PAC ${ }^{\text {MM }}$ quadrifilar wound coil is used. This family of coils is wound with


AN66 F45
Figure 45. Efficiency of Dual Output Flyback Converter in Figure 41


Figure 46. 5V Buck Converter with - 5 V Overwinding
1:1:1:1 sections. In the application of Figure 46, three sections are paralleled for the main 5 V winding and the remaining sectionis usedfor the-5Voutput. Thisconcentrates the copper where it is needed most-on the high current output.
Efficiency with the outputs loaded at 500 mA and -50 mA is over $80 \%$. Minimum recommended load on the -5 V output is 1 mA to 2 mA , and the -5 V load current must always be less than the 5 V load current.

[^1]
## Application Note 66

## SWITCHING REGULATOR PROVIDES CONSTANT 5V OUTPUT FROM 3.5V TO 40V INPUT WITHOUT A TRANSFORMER by Brian Huffman

Acommon switching regulator requirement is to produce aconstant output voltagefrom an input voltagethat varies above or below the output voltage. This is particularly important for extending battery life in battery-powered applications. Figure 47 shows how an LT1171 switching regulator IC, two inductors and a "flying" capacitor can generate a constant output voltage that is independent of input voltagevariations. This is accomplished without the use of a transformer. Inductors are preferred over transformers because they are readily available and more economical.

The circuit in Figure 47 uses the LT1171 to control the output voltage. A fully self-contained switching regulator IC, the LT1171 contains a power switch as well as the control circuitry (pulse-width modulator, oscillator, referencevoltage, error amplifier and protection circuitry). The power switch is an NPN transistor in a common-emitter configuration; when the switch turns on, the LT1171's $\mathrm{V}_{\text {SW }}$ pin is connected to ground. This power switch can handle peak switch currents of up to 2.5A.

$\mathrm{Cl}=\mathrm{NIOH} \mathrm{CON}$ (AL) UPL1H560M ㅂ, ESR $=0.250 \Omega$, $\mathrm{I}_{\text {RMS }}=360 \mathrm{~mA}$ $C 2=\mathrm{NICHOON}$ (AL) UPL1H $151 \mathrm{MPH}, \mathrm{ESR}=0.100 \Omega, \mathrm{I}_{\text {RMS }}=820 \mathrm{~mA}$
$C_{3}=\operatorname{NIOHOON}$ (AL) UPL $1 C 471 \mathrm{MPH}, E S R=0.090 \Omega$, $\mathrm{I}_{\text {RMS }}=770 \mathrm{~mA}$
$\mathrm{L}, \mathrm{L} 2=$ OOLTRONICS CTX50-4, DCR $=0.090 \Omega$, COLTRONICS (407) 241-7876
EQUATION $1: \mathrm{V}_{\text {OUT }}=1.25 \mathrm{~V}(1+\mathrm{R} 2 / \mathrm{R} 3)$
Figure 47. LT1171 Provides Constant 5V Output from 3.5 V to 40 V Input. No Transformer Is Required

Fgure 48 shows the operating waveforms for the circuit. In this architecture the capacitor C 2 serves as the single energy transfer device between the input voltage and output voltage of the circuit. While the LT1171 power switch is off, diode D1 is forward biased, providing a path for thecurrents from inductors L1 and L2. Trace A shows inductor L1's current waveform and traceBis L2'scurrent waveform. Observe that the inductor current waveforms occur on top of a DC level. The waveforms are virtually identical because the inductors have identical inductance values and the samevoltages areapplied across them. The current flowing through inductor L1 is not only delivered to the load but is also used to charge C2. C2 is charged to a potential equal to the input voltage.

When the LT1171 power switch turns on, the $\mathrm{V}_{\text {SW }}$ pin is pulled to ground and theinput voltageis applied across the inductor L1. At the same time, capacitor C2 is connected across inductor L2. Ourrent flows from the input voltage source through inductor L1 and into the LT1171. TraceC shows the voltageat the $\mathrm{V}_{\text {SW }}$ pin and TraceDis thecurrent flowing through thepower switch. Thecatch diode(D1) is reverse biased and capacitor C2's current also flows through the switch, through ground and into inductor L2. During this interval C 2 transfers its stored energy into inductor L2. After theswitchturns off thecycleis repeated.

Another advantage of this circuit is that it draws its input current in a triangular waveshape (see Trace A in Fgure 48). The current waveshape of the input capacitor is identical to the current waveshape of inductor L1 except that the capacitor's current has no DC component. This type of ripple injects only a modest amount of noise into the input lines because the ripple does not contain any sharp edges.


Figure 48. LT1171 Switching Waveforms

## Applic ation Note 66

Figure49 shows theefficiency of thiscircuit for a0.5Aload and maximum output current for various input voltages. The two main loss elements aretheoutput diode (D1) and theLT1171 power switch. A Schottky diode is chosen for its low forward voltage drop; it introduces a 10\% loss, which is relatively constant with input voltage variations. At low input voltages the efficiency drops because the LT1171 power switch's saturation voltage becomes a higher percentage of the available input supply.
This circuit can deliver an output current of 0.5 A at a 3.5 V input voltage. This rises to 1 A as input voltage is increased. Above20V, higher output currents canbeachieved by increasing the values of inductors L1 and L2. Larger inductances store more energy, providing additional current totheload. If 0.5 A of output current is insufficient, use a higher current part, such as the LT1170.
The output voltage is controlled by the LT1171 internal error amplifier. This error amplifier compares a fraction of the output voltage, via the R1 to R2 divider network shown in Fgure 47, with an internal 1.25 V reference voltage, and varies the duty cycle until the two values are
equal. (The duty cycle is determined by multiplying the switch ON time by the switching frequency.) The RC network (R1 and C4 in Fgure 47) connected to the $\mathrm{V}_{\mathrm{C}}$ pin provides sufficient compensation to stabilizethis control loop. Equation 1 (seeFigure47) canbeused to determine the output voltage.


AN66 F49
Figure 49. Efficiency and Load Characteristics for Various Input Voltages

## SWITCHING REGULATOR PROVIDES $\pm 15 \mathrm{~V}$ OUTPUT FROM AN 8 V TO 40V INPUT WITHOUT A TRANSFORMER <br> by Brian Huffman

Many systems derive $\pm 15 \mathrm{~V}$ supplies for analog circuitry from an input voltage that may beabove or below the 15 V output. The split supply requirement is usually fulfilled by a switcher with a multiple-secondary transformer or by multiple switchers. An alternative approach, shown in Figure 50, uses an LT1074 switching regulator IC, two inductors and a "flying" capacitor to generate a dualoutput supply that accepts a wide range of input voltages. This solution is particularly noteworthy because it uses only one switching regulator IC and does not require a transformer. Inductors are preferred over transformers because they are readily available and more economical.

The operating waveforms for the circuit are shown in Figure 51. During the switching cycle, the LT1074's $\mathrm{V}_{\mathrm{SW}}$
pin swings between the input voltage $\left(\mathrm{V}_{\text {IN }}\right)$ and the nega tive output voltage $\left(-V_{0}\right.$ ). (The ability of the LT1074's $V_{\text {SW }}$ pin to swing below ground is unusual-most other 5-pin buck switching regulator ICs cannot do this.) Trace Ashows thewaveform of the $\mathrm{V}_{\text {Sw }}$ pin voltage and TraceB is the current flowing through the power switch.

Whilethe LT1074 power switch is on, current flows from the input voltage source through the switch, through capacitor C2 and inductor L1 (Trace C), and into the load. A portion of the switch current also flows into inductor L2 (Trace D). This current is used to recharge $C 2$ and $C 4$ during the switch OF time to a potential equal to the positiveoutput voltage $\left(\mathrm{V}_{\text {OUT }}\right)$. Thecurrent waveforms for both inductors occur on top of a DClevel.
The waveforms are virtually identical because the inductors have identical values and because the same voltage potentials are applied across them during the switching cycles.

## Application Note 66



Figure 50 . Schematic Diagram for $\pm 15 \mathrm{~V}$ Version


Figure 51. LT1074 Switching Waveforms
Whentheswitchturnsoff, thecurrent inL1 andL2begins to ramp downward, causing the voltages across them to reverse polarity and forcing the voltage at the $\mathrm{V}_{\text {SW }}$ pin below ground. The $\mathrm{V}_{\mathrm{SW}}$ pin voltage falls until diodes D1 (TraceE) and D2 (TraceF) areforward biased. During this
interval thevoltageonthe $V_{\text {Sw }}$ pinisequal to adiodedrop below the negative output voltage $\left(-\mathrm{V}_{\text {Or }}\right)$. L2's current thencirculates between bothD1 and D2, charging C2 and C4. Theenergy stored in L1 is used to replace theenergy lost by C2 and C4 during the switch ONtime. Trace Gis capacitor C2's current waveform. Capacitor C4's current waveform(TraceF) isthesameasdiodeD2'scurrent less the DC component. Assuming that the forward voltage drops of diodes D1 and D2 are equal, the negativeoutput voltage ( $-\mathrm{V}_{\text {OUT }}$ ) will be equal to the positive output voltage ( $\mathrm{V}_{\mathrm{O}}$ ). After the switch turns on again the cycle is repeated.

Figure 52 shows the excellent regulation of the negative output voltage for various output currents. The negative


Figure 52. -15V Output Regulation Characteristics

## Applic ation Note 66

output voltage tracks the positive supply ( $V_{\text {our }}$ ) within 200 mV for load variations from 50 mAto 500 mA . Negative output load current should not exceed the positive output load by morethan afactor of 4; theimbal ance causes loop instabilities. For common load conditions the two output voltages track each other perfectly.
Another advantageof thiscircuit is that inductor L1 acts as both an energy storage element and as a smoothing filter for the positive output (Vorr). The output ripple voltage has a triangular waveshape whose amplitude is determined by theinductor ripplecurrent (seetraceC of Fgure 51) and the ESR (effective series resistance) of the output capacitor (C3). Thistypeof rippleisusually small so apost filter is not necessary.
Figure 53 shows the efficiency for a 0.5 A common load at various inputvoltages. Thetwo mainloss elements arethe output diodes (D1 and D2) and the LT1074 power switch. At low input voltages, the efficiency drops because the switch's saturation voltage becomes ahigher percentage of the available input supply.
The output voltage is controlled by the LT1074 internal error amplifier. This error amplifier compares afraction of theoutput voltage, viathe R2 to R3divider network shown


Figure $53 . \pm 15 \mathrm{~V}$ Efficiency Characteristics with 0.5A Common Load
in Figure 50, with an internal 2.21 V reference voltage and then varies the duty cycle until the two values are equal. The RCnetwork ( R 1 and C5 in Fgure50) connected to the $V_{C}$ pin along with the $R 4 / R 5$ and $06 / C 7$ network provides sufficient compensationtostabilizethecontrol loop. Equa tion 1 can be used to determine the output voltage.
Fgure 54 shows the circuit's -5 V load regulation characteristics and Fgure 55 shows its efficiency.
Refer to the schematic diagram in Figure 56 for modified component values to provide $\pm 5 \mathrm{~V}$ at 1 A .


Figure 54. -5V Output Regulation Characteristics


Figure 55. $\pm 5 \mathrm{~V}$ Efficiency Characteristics with 1A Common Load


Figure 56. Schematic Diagram for $\pm 5 \mathrm{~V}$ Version

## Regulators-Switc hing (Inverting)

## HIGH EFFICIENCY 12V TO-12V CONVERTER by Milton Wilcox and Christophe Franklin

It is difficult to obtain high efficiencies from inverting switching regulators because the peak switch and inductor currents must be roughly twice the output current. Furthermore, the switch node must swing twicethe input voltage(24Vfor a12V inverting converter). Theadjustable version of theLTC1159 synchronous stepdown controller is ideally suited for this application, producing acombination of better than 80\% efficiency, low quiescent current and $20 \mu \mathrm{~A}$ shutdown current.
The 1A circuit shown in Fgure 57 exploits thehigh inputvoltage capability of the LTC1159 by connecting the controller ground pins to the -12 V output. This allows the simple feedback divider between ground and the output (comprising R1 and R2) to set the regulated voltage, since the internal 1.25 V reference rides on the negative output. The inductor connects to ground via the $0.05 \Omega$ currentsense resistor.

AuniqueEXTV $\mathrm{V}_{\text {C }}$ pin on theLTC1159 allows theMOSFT drivers and control circuitry to bepoweredfromtheoutput of the regulator. In Figure 57 this is accomplished by grounding EXT $\mathrm{V}_{\propto c}$ placing theentire 12 V output voltage across the driver and control circuits (remember the ground pins are at -12 V ). This is permissible with the LTC1159, which allows a maximum of 13 V between the Sense and Ground pins. During start-up or short-circuit conditions, operating power is supplied by an internal 4.5V low dropout linear regulator. This start-up regulator automatically turns off when theoutput falls below-4.5V.
Acycle of operation begins when Q1 turns on, placing the 12 V input across the inductor. This causes the inductor current to ramp to a level set by the error amplifier in the LTC1159. Q1 then turns off and Q2 turns on, causing the current stored in the inductor to flow to the -12 V output. At the end of the $5 \mu \mathrm{~s}$ off-time (set by capacitor $\mathrm{C}_{\mathrm{T}}$ ), QR turns off and Q1 resumes conduction. With a12Vinput the duty cycle is $50 \%$, resulting in a 100 kHz operating frequency.

## Application Note 66



Figure 57. LTC1159 Converts 12V to -12V at 1A

The LTC1 159, like other members of the LTC1148 family, automatically switches to Burst Mode operation at low output currents. Fgure 57's circuit enters Burst Mode operation below approximately 200 mA of load current. This maintains operating efficiencies exceeding $65 \%$ over two decades of load current range, as shown in Figure58. Quiescent current (measured with no load) is 1.8 mA . Complete shutdown is achieved by pulling the gate of @B low. $₫ 3$, which can beinterfaced to either 3.3 V or 5 V logic, creates a 5 V shutdown signal referenced to the negative output voltage to activate the LTC1159 Shutdown 2 pin. Additionally, Q4 offsets the $V_{B}$ pin to ensure that Q1 and ©R remain off during the entire shutdown sequence. In shutdown conditions, $40 \mu \mathrm{Aflows}$ in $@$ Q and only $20 \mu \mathrm{~A}$ is taken from the 12 V input.


AN66 58
Figure 58. Efficiency Plot of Figure 57's Circuit

## Application Note 66

## REGULATED CHARGE PUMP POWER SUPPLY

by Tommy Wu
The circuit shown in Fgure59 uses an LTC1044A charge pump inverter to convert a5Vinput to a-1.7V potential as required for a certain LCD panel. Output regulation is provided by anovel feedback scheme, which uses components Q1, R1 and R2. Without feedback the charge pump would simply develop approximately -5 V at its output. With feedback applied, $V_{\text {out }}$ charges in the negative direction until the emitter of Q1 is biased by the divider comprising R1 and R2. Current flowing in the collector tends to slow the LTC1044A's internal oscillator, reducing the available output current. The output is thereby maintained at a constant voltage.


Figure 59. Regulated Charge Pump

In this application less than 5mA output current is required. As a result, charge pump capacitor C 1 is reduced to $1 \mu \mathrm{~F}$ from the usual $10 \mu \mathrm{~F}$. Ourves of output voltage with and without feedback are shown in Fgure60. The equiva lent output impedanceof thechargepumpis reduced from approximately $100 \Omega$ to $5 \Omega$.
A variety of output voltages within the limits of the curve in Figure 60 can be set by simply adjusting the $\mathrm{V}_{\mathrm{BE}}$ multiplier action of Q1, R1 and R2. Tighter regulation or a higher tolerance could be obtained by adding a reference or additional gain, at the expense of increased complexity and cost.


AN66 F60
Figure 60. Effect of Feedback on Output Voltage

## Application Note 66

## LTC1174: A HIGH EFFICIENCY BUCK CONVERTER by San-Hwa Chee and Randy Fatness

The LTC1174 is an 8-pin SO "user-friendly" step-down converter. (A PDIP package is also available.) Only four external components are needed to construct a complete high efficiency converter. With no load it requires only $130 \mu \mathrm{~A}$ of quiescent current; this decreases to amere $1 \mu \mathrm{~A}$ upon shutdown. TheLTC1174 is protected against output shorts by an internal current limit, which is pin selectable to either 340 mA or 600 mA . This current limit also sets the inductor's peak current. This allows the user to optimize the converter's efficiency depending upon the output current requirement.

In dropout conditions, the internal $0.9 \Omega$ (at a supply voltage of 9 V ) power P-channel MOSFET switch is turned on continuously (DC), thereby maximizing the life of the battery source. (Who says a switcher has to switch?) In addition to the features already mentioned, the LTC1174 boasts alow-battery detector. All versions function down to an input voltage of 4 V and work up to an absolute maximum of 13.5 V . For extended input voltage, high voltage parts are also available that can operate up to an absolute maximum of 18.5 V .

## 5V Output Applications

Fgure 61 shows a practical LTC1174-5 circuit with a minimum of components. Efficiency curves for this circuit at two different input voltages areshowninFigure62. Note that theefficiency is $94 \%$ at asupply voltageof 6 V and load current of 175 mA . This makes theLTC1174attractiveto all power sensitiveapplications and showsclearly why switching regulators are gaining dominance over linear regulators in battery-powered devices.


Figure 61. Typical Application for Low Output Currents

If higher output currents are desired Pin 7 (lpgM) can be connected to $\mathrm{V}_{\mathrm{IN}}$. Under this condition the maximum load current is increased to 450 mA . The resulting circuit and efficiency curves are shown in Fgures 63 and 64 respectively.


Figure 62. Efficiency vs Load Current


Figure 63. Typical Application for Higher Output Currents


Figure 64. Efficiency vs Load Current

## Application Note 66

## More Applications

## Positive-to-Negative Converter

The LTC1174 can easily be set up for a negative output voltage. The LTC1174-5 is ideal for -5 V outputs as this configuration requires the fewest components. Fgure 65 shows the schematic for this application with low-battery detection capability. The LED will turn on at input voltages below 4.9 V . Theefficiency of this circuit is $81 \%$ at an input voltage of 5 V and output current of 150 mA .


Figure 65. Positive to - 5 V Converter with Low-Battery Detection

## A 5 V to 3.3V Converter

TheLTC1 174-3.3isideal for applications that require 3.3 V at less than 450 mA Aminimum board areasurfacemount 3.3V regulator is shown in Figure66. Figure67 shows that this circuit can achieve efficiency greater than $85 \%$ for load currents between 5 mA and 450 mA .


Figure 66. 5V to 3.3V Output Application


Figure 67. Efficiency vs Load Current

## Regulators-Switching (Power Factor Corrected)

## THE NEW LT1508/LT1509 COMBINES POWER FACTOR CORRECTION AND A PWM IN A SINGLE PACKAGE by Kurk Mathews

## Typical Application

Fgure68 shows a24VDC, 300W, power-factor corrected, universal input supply. The continuous, current mode boost PFC preregulator minimizes the differential mode input filter size required to meet European low frequency conducted emission standards while providing a high power factor. The 2-transistor forward converter offers many benefits, including low peak currents, a nondissipative snubber, 500VDCswitches and automatic core reset guaranteed by the LT1509's 50\% maximum duty-cycle limitation. An LT1431 and inexpensive optoisolation are used to close the loop conservatively at 3 kHz with excess phasemargin (seeFigure69). Figure70 shows theoutput voltage's responseto a2Ato almost 10A


Figure 69. Bode Plot ot the Circuit Shown in Figure 68


Figure 70. Figure 68's Response to a 2 A to $\approx 10 \mathrm{~A}$ Load Step


Figure 71. Efficiency Curves for Figure 68's Circuit
current step. Regulation is maintained to within 0.5 V . Efficiency curves for output powers of $30 \mathrm{~W}, 150 \mathrm{~W}$ and 300W are shown in Fgure71. The PFCpreregulator alone has efficiency numbers of between about $87 \%$ and $97 \%$ over line and load.

Start-up of the circuit begins with the LT1509's $\mathrm{V}_{\propto \subset}$ bypass capacitors trickle charging through $91 \mathrm{k} \Omega$ to 16VDC, overcoming the chip's 0.25 mA typical start-up current ( $\mathrm{V}_{\propto} \leq$ lockout voltage). PFC soft start is then released, bringing up the 382VDC bus with minimal overshoot. As the bus voltage reaches its final value, the forward converter comes up powering the LT1431 and closing the feedback loop. A 3-turn secondary added to the 70 -turn primary of T 1 bootstraps $\mathrm{V}_{\propto \mathcal{C}}$ to about 15VDC, supplying the chip's 13mA requirement as well as about 39mAto cover thegatecurrent of thethreeÆTs and high side transformer losses. A $0.15 \Omega$ sense resistor senses input current and compares it to a reference current ( $l_{\mathrm{M}}$ ) created by the outer voltage loop and multiplier. Thus, theinput current follows theinput linevoltage and changes, as necessary, in order to maintain a constant bank voltage. The forward converter sees a voltage input of 382VDC unless the line voltage drops out, in which case the $470 \mu \mathrm{~F}$ main capacitor discharges to 250VDCbeforethe PWM stage is shut down. Compared to atypical off-line converter, the effective input voltage range of the forward converter is smaller, simplifying the design. Additionally, the higher bus voltage provides greater hold-uptimes for agiven capacitor size. The high side transformer effectively delays the turn-on spike to the end of the built-in blanking time, necessitating the external blanking transistor.

## Application Note 66



Figure 68. Schematic Diagram of 300W 24VDC Output Power Factor Corrected Universal Input Supply

## Application Note 66

## Regula tors-Switc hing (Disc ussion)

ADDING FEATURES TO THE BOOST TOPOLOGY by Dimitry Goder

A boost-topology switching regulator is the simplest solution for converting a 2 - or 3 -cell input to a 5 V output. Unfortunately, boost regulators have some inherent disadvantages, including no short-circuit protection and no shutdown capability. In some battery-operated products, external chargers or adapters can raisethebattery voltage to a potential higher than the 5 V output. Under this condition aboost converter cannot maintain regulationthe high input voltage feeds through the diode to the output.
Thecircuit showninFigure72overcomes theseproblems. An LT1301 is used as a conventional boost converter, preserving simplicity and high efficiency in the boost mode. Transistor Q1 adds short-circuit limiting, true shutdown and regulation when there is a high input voltage.
When the input voltage is lower than 4 V and the regulator isenabled, Q1'semitter is driven aboveitsbase, saturating the transistor. As a result, the voltages on Cl and C 2 are roughly the same and the circuit operates as a conventional boost regulator.

If the input voltage increases above 4 V , the internal error amplifier, acting to keep the output at 5 V , boosts the voltage on C 1 to a level greater than 1 V above the input. This voltagecontrols Q1 to providethedesired output with the transistor operating as a linear pass element. The output does not change abruptly during the switch-over between step-up and step-down modes because it is monitored in both modes by the same error amplifier.

Figure 73 shows efficiency versus input voltage for $5 \mathrm{~V} / 100 \mathrm{~mA}$ output. The break point at 4.25 V is evidence of Q1 beginning to operatein alinear modewith an attendant roll-off of efficiency. Below 4.25 V thecircuit operates as a boost regulator and maintains high efficiency across a broad range of input voltages.

The circuit can be shut down by pulling the LT1301's Shutdown pin high. The LT1301 ceases switching and Q1 automatically turns off, fully disconnecting the output. This stays true over the entire input voltage range.

Q1 also provides overload protection. When the output is shorted the LT1301 operates in a cycle-by-cycle current limit. The short-circuit current depends on the maximum switch current of the LT1301 and on the Q1's gain, typically reaching 200 mA . The transistor can withstand overload for several seconds before heating up. For sustained faults the thermal effects on Q1 should be carefully considered.


Figure 72. Q1 Adds Short-Circuit Limiting, True Shutdown and Regulation When There Is a High Input Voltage to the LT1301 in Boost Mode


AN66 F73
Figure 73. Efficiency vs Input Voltage for $5 \mathrm{~V} / 100 \mathrm{~mA}$ Output

## Application Note 66

## SENSING NEGATIVE OUTPUTS

by Dimitry Goder

Various switching regulator circuits exist to provide posi-tive-to-negativeconversion. Unfortunately, most controllers cannot sensethenegativeoutput directly; they require a positive feedback signal derived from the negative output. This creates aproblem. Thecircuit presented in Fgure 74 provides an easy solution.

TheLT1172 is aversatileswitching regulator that contains an onboard 100kHz PWM controller and a power switching transistor. Fgure74shows the LTC1172configuredto provide a negative output using a popular charge pump technique. When the switch turns on, current builds up in the inductor. At the same time the charge on $\mathbb{C}$ is transferred to output capacitor C4. During the switch offtime, energy stored in the inductor charges capacitor $\mathbb{C}$. A special DClevel-shifting feedback circuit consisting of Q1, QR, and R1 to R4 senses the negative output.
Under normal conditions Q1's base is biased at a level about 0.6 V aboveground and the current through resistor R3 is set by theoutput voltage. If we assume that thebase current is negligible, then R3's current also flows through R2, biasing Q's collector at a positive voltage proportional to the negative output.


Figure 74. 10V/20V to - 24 Converter

QR is connected as adiode and is used to compensate for Q1's base-emitter voltage change with temperature and collector current. Both transistors see the same collector current and their base-emitter voltages track quite well. Because the base-emitter voltages cancel, the voltage across R2 also appears on the LT1172's Feedback pin.
The resulting output voltage is given by the following formula:

$$
\mathrm{V}_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{B}} \frac{\mathrm{R} 3}{\mathrm{R} 2}-\mathrm{V}_{\mathrm{BE}}
$$

where $\mathrm{V}_{\text {B }}$ is theLT1172 internal 1.244 V referenceand $\mathrm{V}_{\mathrm{BE}}$ is Q1's base/emitter voltage ( $\approx 0.6 \mathrm{~V}$ ). The $\mathrm{V}_{\mathrm{BE}}$ term in the equation denotes a minor output voltage dependency on input voltage and temperature. However, thevariationdue to this factor is usually well below $1 \%$.
Essentially, Q1 holds its collector voltage constant by changing its collector current and will function properly as long as some collector current exists. This puts the following limitation on R1: at minimum input voltage the current through R1 must exceed the current through R2. This is reflected by the following inequality:

$$
R 1<R 2 \frac{\mathrm{~V}_{\mathrm{IN}(\mathrm{MIN})}-\mathrm{V}_{\mathrm{B}}-\mathrm{V}_{\mathrm{BE}}}{\mathrm{~V}_{\mathrm{FB}}}
$$

If the input voltage drops below the specified limit (e.g., under a slow start-up condition) and Q1 turns off, R4 provides the LT1172 Feedback pin with apositivebias and the output voltage decreases. Without R4 the Feedback pin would not get an adequate positive signal, forcing the LT1172 to provide excessiveoutput voltage and resulting in possible circuit damage.
Thefeedback configuration described above is simple yet veryversatile. Only resistor valuechanges arerequiredfor the circuit to accommodate a variety of input and output voltages. Exactly the same feedback technique can be used with flyback, "Okk" or inverting topologies, or whenever it is necessary to sense a negative output.

## Application Note 66

## Regulators-Switching (Micropower)

3-CELL TO 3.3V BUCK/BOOST CONVERTER<br>by Dimitry Goder

Obtaining 3.3 V from three 1.2 V (nominal) cells is not a straightforward task. Since battery voltage can be either below or abovetheoutput, commonstep-up or step-down converters areinadequate. Aternatives includeusing more complexswitching topologies, such as SEIC, or aswitching boost regulator plus a series linear pass element. Fgure 75 presents an elegant implementation of thelatter approach.

The LT1303 is a Burst Mode switching regulator that contains control circuitry, an onboard power transistor and a gain block. When the input voltage is below the output, U1 starts switching and boosts the voltage across C2 and Cito $^{3} 3$ VV. The gainblockturns on $Q 1$ becausethe
feedback network R3 to R5 biases the low-battery comparator input (LBI) 20 mV below the reference. In this mode the circuit operates as a conventional boost converter, sensing output voltage at the $\not \boxplus$ pin.
When the input voltage increases, it eventually reaches a point where the regulator ceases switching and the input voltage is passed unchanged to capacitor $\mathbb{C}$. The output voltage rises until the LBI input reaches the reference voltage of 1.25 V , at which point Q1 starts operating as a series pass element. In these conditions the circuit functions as alinear regulator withtheattending efficiency rolloff at higher input voltages.
For input voltages derived from three NiCd or NiMH cells, the circuit described provides excellent efficiency and the longest battery life. At 3.6 V , where the battery spends most of its life, efficiency exceeds $91 \%$, leaving al alterna tive topologies far behind.


Figure 75. 3-Cell to 3.3V Buck/ Boost Converter

## LT1111 ISOLATED 5V SWITCHING POWER SUPPLY by Kevin R. Hoskins

## Circuit Description

Many applications require isolated power supplies. Examples include remote sensing, measurement of signals riding on high voltages, remote battery-powered equipment, elimination of ground loops and data acquisition systems where noise elimination is vital. In each situation the isolated circuitry needs a floating power source. In
some cases batteries or an AC line transformer can be used for power. Alternately, the DCDC converter shown herecreates an accurately regulated, isolated output from a 5 V source. Moreover, it eliminates the optoisolator feedback arrangements normally associated with fully isolated converters.

Fgure 76 shows a switching power supply that generates an isolated and accurately regulated 5 V at 100 mA output. Thecircuit consists of an LT1111, configured as aflyback converter, followedby anLT1121 lowdropout, micropower

## Application Note 66

linear regulator. An LTC1145 (winner of EDN's ICInnovation of the Year Award) provides micropower isolated feedback.
The LT1111 is a micropower device that operates on only $400 \mu \mathrm{~A}$ (max). This micropower operation is important for energy-conscious applications. It works well with surface mount inductors suchas theCoiltronics OCTA-PACshown in the schematic. Although the LT1111's internal power switch handles up to 1A, a $100 \Omega$ resistor (R1) limits the peak switch current to approximately 650 mA . This maximizes converter efficiency. Onesidebenefit of limiting the peak switch current is that the circuit becomes insensitive to inductance. The circuit operates satisfactorily with an inductance in the range of $20 \mu \mathrm{H}$ to $50 \mu \mathrm{H}$.
It is important that capacitor C2 have low effective series resistance(ESR) and inductance (ESL) to minimizeoutput ripple voltage. Although aluminum capacitors are abundant and inexpensive, they will perform poorly in this switcher application because of their relatively high ESR and ESL. Two good choices that meet C2's low ESR and ESL requirements are the AVX TPS and Sanyo OS-OON ${ }^{\text {M }}$ capacitor series.

## Circuit Operation

The LT1111 is configured to operate as a flyback converter. The voltage on the transformer's secondary is rectified by D2, filtered by C2 and applied to the LT1121's input. As the LT1121's input voltage continues to rise, its output will regulate at 5 V . The LT1121's input voltage continues increasing until the differential between input and output equals approximately 600 mV . At this point Q1 begins conducting, turning on the LTC1 145 isolator. The output of the LTC1145 goes high, turning off the converter. Thefeedback fromtheLTC1 145gates the LT1111's oscillator, controlling the energy transmitted to the transformer's secondary and the LT1121's input voltage. Theoscillator isgated onforlonger periods astheLT1121's load current increases. Q1's sgain andthefeedbackthrough the LTC1145 force the converter loop to maintain the LT1121 just above dropout, resulting in the best efficiency. The LT1121 provides current limiting as well as a tightly regulated low noise output.

OS-OON is a trademark of SANYOBectric Co., LTD.


Figure 76. Circuit Generates Isolated, Regulated 5V at 100 mA

## Application Note 66

## LOW NOISE PORTABLE COMMUNICATIONS DC/DC CONVERTER <br> by Mitchell Lee

Portable communications products pack plenty of parts into close proximity. Digital clock noise must be eliminated not only from the audio sections but also from the antenna, which, by the very nature of the product, is located only inches from active circuitry. If a switching regulator is used in the power supply, it becomes another potential source of noise. The LTC1174 stepdown converter is designed specifically to eliminate noise at audio frequencies while maintaining high efficiency at low output currents.

Figure 77 shows an all surface mount solution for a 5 V , 120 mA output derived from five to seven NiCd or NiMH cells. Small input and output capacitors are used to conserve space without sacrificing reliability. In applications where it is desired, a shutdown feature is available; otherwise, short this pin to $\mathrm{V}_{\mathrm{IN}}$.


Figure 77. Low Noise, High Efficiency Step-Down Regulator for Personal Communications Devices

The LTC1174's internal switch, which is connected between $\mathrm{V}_{\mathrm{IN}}$ and $\mathrm{V}_{\mathrm{SW}}$, is current controlled at apeak threshold of approximately 340 mA . This low peak threshold is one of the key features that allows the LTC1174 to minimize system noise compared to other chips that carry significantly higher peak currents, easing shielding and filtering requirements and decreasing component stress.

To conserve power and maintain high efficiency at light loads, the LTC1174 uses Burst Mode operation. Unfortunately, this control scheme can also generate audio frequency noise at both light and heavy loads. In addition to electrical noise, acoustical noise can emanate from capacitors and coils under these conditions. A feedforward capacitor (C2) shifts the noise spectrum up out of the audio band, eliminating these problems. C2 also reduces peak-to-peakoutputripple, whichmeasures approximately 30 mV over the entire load range.
The interactions of load current, efficiency and operating frequency are shown in Fgure 78. High efficiency is maintained at even low current levels, dropping below $70 \%$ at around $800 \mu \mathrm{~A}$. No-load supply current is less than $200 \mu \mathrm{~A}$, dropping toapproximately $1 \mu$ Ain shutdown mode. The operating frequency rises above the telephony bandwidth of 3 kHz zat aload of 1.2 mA . Most productsdraw such low load currents only in standby mode with the audio circuits squelched, when noise is not an issue.

The frequency curve depicted in Fgure 78 was measured with a spectrum analyzer, not acounter. This ensures that the lowest frequency noise peak is observed, rather than afaster switching frequency component. Any tendency to generate subharmonic noise is quickly exposed using this measurement method.


Figure 78. Parameter Interaction Chart for Figure 77's Circuit

## Application Note 66

## APPLICATIONS FOR THE LT1302 MICROPOWER DC/DC CONVERTER <br> by Steve Pietkiewicz

## 2- or 3-Cell to 5V Converter

Fgure 79 shows a2- or 3-cell to 5V DC/DC converter that can deliver up to 600 mA froma2-cell input ( 2 V minimum) or up to 900 mA from a 3 -cell input ( 2.7 V minimum). R1 and R2 set the output voltage at 5 V . The 200pF capacitor from $\nrightarrow$ to ground aids stability; without it the 円 pin can act as an antenna and pick up dV/dt from the switch node, causing some instability in switch current levels at heavy loads. L1's inductance value is not critical; a minimum of $10 \mu \mathrm{H}$ is suggested in 2 -cell applications (although this guideline is ignored in the 2 -cell to 12 V circuit shown later). Lower values typically have less DCresistance and can handle higher current. Transient response is better with low inductance but more output current can be had with higher values. Peak current in Burst Mode operation increases as inductance decreases, due to the finite response time of the current sensing comparator in the LT1302. The Coilcraft DO3316 series inductors havebeen found to be excellent in terms of performance, size and cost but their open construction results in some magnetic flux spray; try Coiltronics' OCTA-PAC series if EMI is a problem. Transient response with a load step of 25 mA to 525 mAis detailed in Figure 80 . Thereis no overshoot upon load removal because switching stops entirely when out-


Figure 79. 2- or 3-Cell to 5 V Converter Delivers 600 mA , 1A From 3.3V Supply
put voltage rises above the comparator threshold. Undershoot at load step is less than 5\%. The circuit's efficiency at various input voltages is shown in Fgure 81.
Although efficiency graphs present useful information, a more "real world" measure of converter performance comes from battery lifetime chart recordings. Many systems require high power for a short time, for example to spin upahard disk or transmit apacket of data. Figures 83, 84 and 85 present battery life data with a load profile of 50 mA for 9 seconds and 550 mA for 1 second, as detailed in Figure 82. At the chart speeds used, individual 10 second events are not discernable and the battery voltage appears as avery thick line. Fgure 83 shows operating life using a 2-cell alkaline (Eveready E91) battery. Battery voltage (pen B) drops 400 mV as the output load changes


Figure 80. Transient Response of DC/DC Converter with 2.5 V Input. Load Step is 25 mA to 525 mA


Figure 81. Efficiency of Figure 79's Circuit


Figure 82. Load Profile for Battery Life Curves in Figures 83,84 and 85

## Application Note 66



Figure 83. 2-Cell Alkaline Battery to 5 V Converter with Load Profile of Figure 82 Gives 63 Minutes Operating Life. Battery Life Decreases When 550 mA Load is Applied; Impedance is $330 \mathrm{~m} \Omega$ When Fresh. Output Voltage Drops at 550 mA Load After 63 Minutes But Converter Can Still Deliver 50 mA


Figure 84. 3-Cell Alkaline Battery to 5V Converter with Pulsed Load Has 7.3 Hours Operating Life
from 50 mA to 550 mA . Battery impedance ( $330 \mathrm{~m} \Omega$ when fresh) can bederived from this data. After 63 minutes the battery voltage drops substantially below 2 V when the output load is 550 mA , causing theoutput voltage (pen A) to drop. The output returns to 5 V when the load drops to 50 mA . The LT1302's undervoltage lockout prevents the battery voltage from falling below 1.5 V until the battery is completely discharged (not shown on the chart).


Figure 85. 2-Cell NiCd Battery to 5 V Converter Shows Dramatically Lower ESR of NiCds Compared to Alkalines. Battery Impedance Is $80 \mathrm{~m} \Omega$. Although the 600 mA Hour NiCd Has $1 / 4$ the Energy of $2.4 \mathrm{~A} / \mathrm{Hr}$ Alkalines with $50 \mathrm{~mA} / 550 \mathrm{~mA}$ Loads NiCds Outlast Alkalines by a Factor of 2.8. Low Cell Impedance is Maintained Until the Battery Is Completely Discharged

A 3-cell alkaline battery has a significantly longer life, as shown in Fgure 84. Note that the time scale here is one hour per inch. Usable life is about 7.3 hours, a sevenfold improvement over the 2-cell battery. Again, battery impedance causes the battery voltage (pen B) to drop as the load changesfrom 50 mAto 550 mA . Theincreasing change between the loaded and unloaded battery voltage over time is due to both increased current demand on the battery as its voltage decreases and increasing battery impedance as it is discharged.
Replacing the 2-cell alkaline with a2-cell NiCd (AA Gates Millennium) battery results in a surprise shown in Fgure 85. Although these AA NiCd cells have one-fourth the energy of AA alkaline cells, operating life is 2.8 times greater with the $50 \mathrm{~mA} / 550 \mathrm{~mA}$ load profile. Dramatically lower battery impedance ( $80 \mathrm{~m} \Omega$ for the NiCd versus $330 \mathrm{~m} \Omega$ for the alkaline) is the cause. Battery voltage (pen B) drops just 100 mV as the output load changes from 50 mA to 550 mA , compared to 400 mV for alkalines. Additionally, impedance stays relatively constant over the life of the battery. This comparison clearly illustrates the limitations of alkaline cells in high power applications.

## 2-Cell to 12V Converter

Portable systems with PCMCIA interfaces often require 12 V at currents of up to 120 mA . Figure 86 's circuit can

## Application Note 66



Figure 86. 2-Cell to 12V DC/DC Converter Delivers 120mA. Changing L1's Value Allows Operation from 3.3V/5V Supply


Figure 87. 2-Cell to 12V Converter Efficiency


AN66 F88
Figure 88. Maximum Load Current of 2-Cell to 12 V Converter vs Input


Figure 89. 3.3V/5V to 12 V Converter Efficiency
generate 12 V at over 120mA from a2-cell battery. Operating the converter in continuous mode requires a higher duty cycle than the LT1302 provides, so a very low inductance $(3.3 \mu \mathrm{H})$ must be used in order to provide enough output current in discontinuous mode. Efficiency for this circuit is in the 70\% to 80\% range, as Fgure 87's graph shows. Battery lifeat thispower level would beshort with a continuous load but the most common application for this voltage/current level, flashmemory programming, has a rather low duty factor. Maximum output current versus input voltage is shown in Figure 88. To operatethis circuit from a 3-cell battery change L1's value to $6.8 \mu \mathrm{H}$. This will result in lower peak currents, improving efficiency substantially.


Figure 90. Single Cell to 5 V Converter Delivers 150 mA . Changing R1 to 169 k Provides 3.3 V at 250 mA


AN66 F91
Figure 91. Single Cell to 5V Converter Efficiency
Changing L1's value to $22 \mu \mathrm{H}$ allows the circuit to operate from a3.3V or 5V supply. Up to 350mA can be generated from 3.3 V ; 600 mA can be delivered from a 5 V input. Efficiency, pictured in Figure 89, exceeds 80\% over much of the load range and peaks at $89 \%$ with a 5 V input.

## Single Cell to $5 \mathrm{~V} / 150 \mathrm{~mA}$ Converter

Stand alonesingle-cell converterscantypically provideno more than 40 mA to 50 mA at 5 V from a single cell. When more power is required, the LT1302 can be used in
conjunction with a single cell device. ${ }^{1}$ Figure 90 's circuit operates from a single cell and delivers 5 V at 150 mA output. Although the LT1302 requires a minimum $\mathrm{V}_{\mathrm{IN}}$ of 2 V , single-cell operation can beachieved by powering the LT1302 fromthe5V output. At start-up $\mathrm{V}_{\text {ori }}$ is equal to the cell voltage minus a diode drop. The LT1073 initially puts the LT1302 in its shutdown state. The LT1073 switches L1, causing L1's current to alternately build up and dump into C2. When Voureaches approximately 2VtheLT1073's Set pingoes above212mV causing Aotogolow. This pulls the LT1302's SHDN pin low, enabling it. The output, now booted by themuchhigher power LT1302, quickly reaches 2.4 V . When the LT1073's B pin reaches 212 mV its switching action stops. The brief period when the LT1073 and LT1302 are switching simultaneously has no detrimental effect. Whentheoutput reaches 5VtheLT1073 has ceased switching. Oircuit efficiency is in the 60 to $70 \%$ range as shown in Fgure 91.

## 3-Cell to 3.3V/12V Buck/Boost Converter

Obtaining 3.3V from three cells is not a straightforward task; a fresh battery measures over 4.5 V and a fully depleted one 2.7V. Since battery voltage can be both

[^2]
## Application Note 66



Figure 92. 3-Cell to 3.3V Buck/Boost Converter with Auxiliary 12V Regulated Output


AN66 F93
Figure 93. 3.3V Buck/Boost Converter Efficiency above and below the output, common step-up (boost) or step-down (buck) converters are inadequate. Fgure 92's circuit provides an efficient solution to the problem using just one magnetics component and also provides an auxiliary 12 V output. When the LT1302's switch is on its SWpin goes low, causing current buildup in T1D and T1E (windings are paralleled to achieve lower DCresistance). D1's anode goes to $-\mathrm{V}_{\text {IN }}$ because of the phasing of $\mathrm{T1C}$ T1A relative to T1D/T1E C1 is charged to $\mathrm{V}_{\mathrm{IN}}$. When the
switch opens, SW flies high to a voltage of $\mathrm{V}_{1 \mathrm{~N}}+\mathrm{V}_{\mathrm{OU}}+$ $V_{\text {DIODE }}$. Energy is transferred to the output by magnetic coupling from T1D/T1Eto T1C/T1A and by current flowing through C1. During this flyback phase, T1AT1Chas 3.3V plus a diode drop across the windings. T1B, which has a 3:1 turns ratio, has approximately 10 V to 11 V impressed upon it. T1B "stands" on the 3.3V output, resulting in about 13 V to 14 V at the input of the LT1 121 linear regula tor, which then precisely regulates the 12 V output. Since this output is not directly regulated by the LT1302, it cannot be loaded without having at least a small load on the directly regulated 3.3V output. The LT1121 can be turned off by pulling its SHDN pin low, isolating the load from the output. Fgure 93 shows the circuit's efficiency for various input voltages.

## Construction Hints

The high speed, high current switching associated with the LT1302 mandates careful attention to layout. Follow the suggested component placement in Fgure 94 for proper operation. High current functions are separated by the package from sensitive control functions. Feedback


Figure 94. Suggested Component Placement for LT1302
resistors R1 and R2 should be close to the Feedback pin (Pin 4). Noise can easily be coupled into this pin if care is not taken. If the LT1302 is operated off a 3-cell or higher input, $\mathrm{R} 3(2 \Omega)$ in series with $\mathrm{V}_{\mathbb{I}}$ is recommended. This isolates the device from noise spikes on the input voltage. Do not install R3 if the devicemust operatefrom a2Vinput, as input current will causetheLT1302's input voltage to go below 2 V . The $0.1 \mu \mathrm{~F}$ ceramic bypass
capacitor © (use X7R not Z5U) should be mounted as close as possible to the package. Grounding should be segregated as illustrated. W's ground trace should not carry switch current. Run a separate ground trace up under thepackage as shown. Thebattery and load return should go to the power side of the ground copper. Adherenceto theserules will result in working converters with optimum performance.

## CLOCK-SYNCHRONIZED SWITCHING REGULATOR HAS COHERENT NOISE

by Jim Williams, Sean Gold and Steve Pietkiewicz
Gated oscillator type switching regulators permit high efficiency over extended ranges of output current. These regulators achieve this desirable characteristic by using a gated oscillator architecture instead of a clocked pulsewidth modulator. This eliminates the "housekeeping" currents associated with the continuous operation of fixed-frequency designs. Gated oscillator regulators simply self-clock at whatever frequency is required to maintaintheoutput voltage. Typically, looposcillationfrequency ranges from afew Hertz into the kiloHertz region depending upon the load.

This asynchronous variable frequency operation seldom creates problems; some systems, however, are sensitive to this characteristic. The circuit in Fgure 95 slightly modifies a gated-oscillator-type switching regulator by synchronizing its looposcillationfrequencytothesystem's clock. In this fashion the oscillation frequency and its
attendant switching noise, although variable, are made coherent with system operation.
Circuit operation is best understood by temporarily ignoring the flip-flop and assuming that the LT1107 regulator's Aor and 円Bpins are connected. When theoutput voltage decays, the Set pindrops below $V_{\text {RE, }}$, causing $A_{\text {ort to fall. }}$ This causes the internal comparator to switch high, biasing theoscillator and output transistor into conduction. L1 receives pulsed drive and its flyback events are deposited into the $100 \mu \mathrm{~F}$ capacitor via the diode, restoring output voltage. This overdrives the Set pin, causing the IC to switch OFF until another cycle is required.

The frequency of this oscillatory cycle is load dependent and variable. If aflip-flop is interposed in the Aor/ßB pin path as shown, the frequency is synchronized to the system clock. When the output decays far enough (trace A, Figure 96) the Aor pin (traceB) goes low. At the next clock pulse (traceC) theflip-flop Q2 output (traceD) sets low, biasing the comparator-oscillator. This turns on the power switch (VSW pin is trace E), which pulses L1. L1

## Application Note 66



Figure 95. A Synchronizing Flip-Flop Forces Switching Regulator Noise To Be Coherent with the Clock
responds in flyback fashion, depositing its energy into the output capacitor to maintain output voltage. This operation is similar to the previously described case except that the sequence is forced to synchronize with the system clock by the flip-flop's action. Although the resulting loop's oscillation frequency is variable, it and all its attendant switching noise are synchronous and coherent with the system clock.

Because of its sampled nature, this clocked loop may not start. To ensure start-up, the flip-flop's remaining section is connected as a buffer. The CLR1/CLK1 line monitors output voltage viathe resistor string. If thecircuit does not start, Q1 goes high, CLR2 sets and loop operation commences. Although thecircuit shown is astep-uptype, any switching regulator configuration can use this technique.


Figure 96. Waveforms for the Clock Synchronized Switching Regulator. The Regulator Switches (Trace E) Only on Clock Transitions (Trace C) Resulting in Clock Coherent Output Noise (Trace A)

## Application Note 66

## BATTERY-POWERED CIRCUITS USING THE LT1300 AND LT1301 <br> by Steve Pietkiewicz

## 5V from 2 Cells

Figure 97's circuit provides 5V from a 2-cell input. Shutdown is effected by taking the Shutdown pin high. $\mathrm{V}_{\mathrm{IN}}$ current drops to $10 \mu A$ in this condition. This simpleboost topology does not provide output isolation, and in shutdown the load is still connected to the battery via L1 and D1. Fgure 98 shows the efficiency of the circuit with a rangeof input voltages, including afresh battery (3V) and an "almost-dead" battery (2V). At load currents below a few milliamperes, the $120 \mu \mathrm{~A}$ quiescent current of the device becomes significant, causing the fall off in efficiency detailed in the figure. At load currents in the 20 mA to 200 mA range, efficiency flattens out inthe $80 \%$ to $88 \%$ range, depending on the input. Figure 99 details circuit operation. $\mathrm{V}_{\text {Or }}$ is shown in trace A . The burst repetition


Figure 97. 2-Cell to 5V DC/DC Converter Delivers $>200 \mathrm{~mA}$ with a 2 V Input


AN66 F98
Figure 98. Efficiency of Figure 112's Circuit


Figure 99. Burst Mode Operation In Action
pattern is clearly shown as $\mathrm{V}_{\text {OU }}$ decays, then steps back up due to switching action. Trace B shows the voltage at the switch node. Thedamped high frequency waveform at the end of each burst is due to the inductor "ringing off," forming an LCtank with theswitch and diode capacitance. It is not harmful and contains far less energy than thehigh speed edgethat occurs when the switch turns off. Switch current is shown intraceC. Thecurrent comparator inside the LT1300 controls peak switch current, turning off the switch when the current reaches approximately 1A.
Although efficiency curves present useful information, a more important measure of battery-powered DC/DCconverter performance is operating life. Fgures 100 and 101 detail battery life tests with Figure 97's circuit at load currents of 100 mA and 200 mA , respectively. Operatinglife curves are shown using both Eveready E91 alkaline cells and new L91 "Hi-Energy" lithium cells. Theselithium cells, new to the market, are specifically designed for high drain applications. The performance advantage of lithium is about $2: 1$ at 100mA load current (Figure 100), increasing to $2.5: 1$ at 200 mA load (Fgure 101). Alkaline cells perform poorly at high drain rates because their internal impedance ranges from $0.2 \Omega$ to $0.5 \Omega$, causing a large voltage drop within the cell. The alkaline cells feel quite warm at 200 mA load current, the result of $I^{2} \mathrm{R}$ losses inside the cells.
The reduced power circuit shown in Fgure 102 can generate 5 V at currents up to 50 mA . Here the $\mathrm{l}_{\text {LIM }}$ pin is grounded, reducing peak switch current to 400 mA . Lower profilecomponents can beused inthis circuit. Thecapacitors are G-case size solid tantalum and inductor L1 is the tallest component at 3.2 mm . The reduced peak current also extends battery life, since the $I^{2}$ R loss due to internal battery impedance is reduced. Fgure 103 details efficiency versus load current for several input voltages and


Figure 100. Two Eveready L91 Lithium AA Cells Provide Approximately Twice the Life of E91 Alkaline Cells at a 100 mA Load Current


AN66 F101
Figure 101. Doubling Load Current to 200 mA Causes E91 Alkaline Battery Life to Drop by $2 / 3$; L91 Lithium Battery Shows 2.5:1 Difference in Operating Life


Figure 102. Lower Power Applications Can Use Smaller Components. L1 Is Tallest Component at 3.1 mm


Figure 103. Efficiency of Figure 102's Circuit


Figure 104. 50 mA Load and Reduced Switch Current Are Kind to E91 AA Alkaline Battery; the Advantages of L91 Lithium Are Not as Evident

Fgure 104 shows battery life at a50mAload. Notethat the L91 lithium battery lasts only about $40 \%$ longer than the akkaline. The higher cost of the lithium cells makes the alkaline cells more cost effective in this application. Apair of Eveready AAA alkaline cells (type E92) lasts 96.6 hours with 5 mA load, very close to the rated capacity of the battery.

## A 4-Cell Application

A4-cell packis aconvenient, popular battery size. Alkaline cells are sold in 4 -packs at retail stores and 4 cells usually provide sufficient energy to keep battery replacement frequency reasonable. Generating 5V from 4 cells, however, is a bit tricky. A fresh 4 -cell pack has a terminal voltage of 6.4 V , but at the end of its lifethepack's terminal voltage is around 3.2 V ; hence, the DCDC converter must

## Application Note 66

step the voltageeither up or down depending on the state of the batteries. A flyback topology with a costly custom designed transformer could beemployed but Figure 105's circuit gets around these problems by using a flying capacitor scheme along with a second inductor. The circuit al so isolates theinput from theoutput, allowing the output to go to OV during shutdown. The circuit can be divided conceptually into boost and buck sections. L1 and theLT1300 switch comprisetheboost or step-up section and L2, D1 and CO comprise the buck or step-down section. $\mathbb{C}$ is charged to $\mathrm{V}_{\mathrm{IN}}$ and acts as a level shift between the two sections. The switch node toggles between ground and $\mathrm{V}_{\mathrm{IN}}+\mathrm{V}_{\mathrm{O}}$, and the L2/C2 diode node toggles between $-\mathrm{V}_{\mathbb{I N}}$ and $\mathrm{V}_{\mathrm{OU}}+\mathrm{V}_{\mathrm{D}}$. Figure 106 shows efficiency versus load current for the circuit. All four energy storage elements must handle power, which accounts for the lower efficiency of this circuit compared to thesimpler boost circuit in Figure97. Efficiency is directly


Figure 105. 4-Cell to 3.3V or 5 V Converter Output Goes to Zero When in Shutdown. Inductors May Have, but Do Not Require Coupling; a Transformer or Two Separate Units Can Be Used


Figure 106. Efficiency of Up/Down Converter in Figure 105
related totheESRand DCRof thecapacitors and inductors used. Better capacitors cost moremoney. Better inductors do not necessarily cost more but they do take up more space. Worst-case RMS current through C2 occurs at minimum input voltageandmeasures 0.4 A at full load with a3Vinput. C2's specified maximum RMScurrent must be greater than this worst-case current. The Sanyo capacitors noted specify a maximum ESR of $0.045 \Omega$ with a maximum ripple current rating of 2.1A. The Gowanda inductors specify a maximum DCR of $0.058 \Omega$.

## LT1301 Outputs: 5V or 12V

TheLT1301 is identical to the LT1300 in every way except output voltage. The LT1301 can be set to a 5 V or 12 V output via its Select pin. Figure 107 shows a simple 3.3V or 5 V to 12 V step-up converter. It can generate 120 mA at 12 V from either 3.3 V or 5 V inputs, enabling the circuit to provide VPP on a PCMCIA card socket. Fgure 108 shows the circuit's efficiency. Switch voltage drop is a smaller percentage of input voltageat 5 V than at 3.3 V , resulting in the higher efficiency at 5 V input.


Figure 107. LT1301 Delivers 12V from 3.3V or 5V Input


Figure 108. Efficiency of Figure 122's Circuit

## Application Note 66

## BATTERY-POWERED CIRCUITS USING THE LT1304 MICROPOWER DC/DC CONVERTER WITH LOW-BATTERY DETECTOR

by Steve Pietkiewicz

## A 2-Cell to 5V Converter

Acompact 2-cell to5Vconverter canbeconstructedusing the circuit in Figure 109. Using the LT1304-5 fixed output device eliminates the need for external voltage setting resistors, lowering component count. As the battery voltage drops, the circuit continues to function until the LT1304's undervoltage lockout disables the part at approximately $\mathrm{V}_{\mathbb{I N}}=1.5 \mathrm{~V}$. 200 mA is available at a battery voltage of 2.0 V . As the battery voltage decreases below 2 V , cell impedancestarts to quickly increase. End-of-lifeis usually assumed to be around 1.8 V , or 0.9 V per cell.


Figure 109. 2-Cell to 5V/200mA Boost Converter Takes Four External Parts. Components with Dashed Lines Are for Soft Start (Optional)


Figure 110. 2-Cell to 5V Converter Efficiency

Efficiency is detailed in Figure 110. Micropower Burst Modeoperation keeps efficiency above 70\%, even for load current below 1 mA . Efficiency reaches $85 \%$ for a 3.3 V input. Load transient response is illustrated in Fgure 111. Since the LT1304 uses ahysteretic comparator in place of the traditional linear feedback loop, the circuit responds immediately to changes in load current. Fgure112details start-up behavior without soft start circuitry (R1 and C1 in Figure 109). Input current rises to 1A as the device is turned on, which can cause the input supply voltage to sag, possibly tripping the low-battery detector. Output voltage reaches 5 V in approximately 1 ms . The addition of R1 and C1 to Fgure 109's circuit limits inrush current at start-up, providing for a smoother turn-on as indicated in Figure 113.


Figure 111. Boost Converter Load Transient Response with $V_{I N}=2.2 \mathrm{~V}$


Figure 112. Start-Up Response. Input Current Rises Quickly to 1A. $\mathrm{V}_{\text {OUT }}$ Reaches 5V in Approximately 1ms. Output Drives 20mA Load


Figure 113. Start-Up Response with $1 \mu \mathrm{~F} / 1 \mathrm{M} \Omega$ Components in Figure 109 added. Input Current Is More Controlled. VOUT Reaches 5V in 6ms. Output Drives 20mA Load

## Applic ation Note 66

## A 4-Cell to 5 V Converter

A 4-cell to 5 V converter is more complex than a simple boost converter because the input voltage can be either above or below the output voltage. The single-ended primary inductance converter (SEPIC) shown in Fgure 114 accomplishes this task with the additional benefit of output isolation. In shutdown conditions, the converter's output will go to zero, unlike the simple boost converter, whereaDCpath from input to output through the inductor and diode remains. In this circuit, peak current is limited to approximately 500 mA by the addition of 22 k resistor R1. This allows very small low profile components to be used. The $100 \mu$ Fcapacitors are D-case size with a height of 2.9 mm and the inductors are 3.2 mm high. The circuit can deliver 5 V at up to 100 mA . Efficiency is relatively flat across the 1 mA to 100 mA load range.


Figure 114. 4-Cell to 5V Step-Up/Step-Down Converter, Also Known as SEPIC (Single-Ended Primary Inductance Converter). Low Profile Components Are Used Throughout


Figure 115. Efficiency Plot of SEPIC Converter Shown in Figure 114

## Super Burst ${ }^{\text {TM }}$ Mode Operation: 5V/100mA DC/DC with $15 \mu \mathrm{~A}$ Quiescent Current

The LT1304's low-battery detector can be used to control theDC/DCconverter. Theresult is areduction inquiescent current by almost an order of magnitude. Fgure 116 details this Super Burst circuit. $\mathrm{V}_{\mathrm{O}}$ is monitored by the LT1304's LBI pin via resistor divider R1/R2. When LBI is above1.2VLBOishigh, forcingtheLT1304 intoshutdown modeand reducing current drainfrom the battery to $10 \mu \mathrm{~A}$. When $\mathrm{V}_{\text {or }}$ decreases enough to overcome the lowbattery detector's hysteresis (about 35mV) LBOgoes low. Q1 turns on, pulling SHDN high and turning on the rest of the IC. R3 limits peak current to 500 mA ; it can beremoved for higher output power. Efficiency is illustrated in Figure
Super Burst is a trademark of Linear Technology Corporation.


Figure 116. Super Burst Mode Operation 2-Cell to 5V DC/DC Converter Draws Only $15 \mu$ A Unloaded. 2 AA Alkaline Cells Will Last for Years


AN66 F117
Figure 117. Super Burst Mode Operation DC/DC Converter Efficiency

## Application Note 66

117. The converter is approximately $70 \%$ efficient at a $100 \mu \mathrm{Aload}, 20$ points higher thanthecircuit of Figure 109. Even at a $10 \mu$ Aload, efficiency is in the $40 \%$ to $50 \%$ range, equivalent to $100 \mu \mathrm{~W}$ to $120 \mu \mathrm{~W}$ total power drain from the battery. In contrast, Figure 109's circuit consumes approximately $300 \mu \mathrm{~W}$ to $400 \mu \mathrm{~W}$ unloaded.

An output capacitor charging cycle or "burst" is shown in Figure 118, with the circuit driving a50mAload. The slow response of the low-battery detector results in the high number of individual switch cycles or "hits" within the burst.
Figure 119 depicts output voltage at the modest load of $100 \mu \mathrm{~A}$. The burst repetition rate is around 4 Hz . With the load removed, the repetition rate drops to approximately 0.2 Hz or one burst every 5 seconds. Systems that spend a high percentage of operating time in sleep mode can benefit from the greatly reduced quiescent power drain of Fgure 116's circuit.


Figure 118. Super Burst Mode Operation in Action


Figure 119. Super Burst Mode Operation Circuit with $100 \mu \mathrm{~A}$ Load, Burst Occurs Approximately Once Every 240ms

## Layout

The LT1304 switch turns on and off very quickly. For best performance we suggest the component placement in Figure 120. Improper layouts will result in poor load regulation, especially at heavy loads. Parasitic lead inductance must bekept low for proper operation. Switch turnoff is detailed in Figure 121 ${ }^{1}$. A close look at the rise time
(5ns) will confirm the need for good PCboard layout. The 200MHzringing of theswitch voltageis attributableto lead inductance, switch and diodecapacitance, and diodeturnontime. Switchturn-on is shown in Fgure 122. Transition time is similar to that of Fgure 121. Adherence to the layout suggestions will result in working DC/DCconverters with a minimum of trouble.
${ }^{1}$ Instrumentation for oscillographs of Figures 121 and 122 include Tektronix P6032 active probe, Type 1S1 sampling unit and type 547 mainframe.


Figure 120. Suggested Layout for Best Performance. Input Capacitor Placement as Shown Is Highly Recommended. Switch Trace (Pin 4) Copper Area is Minimized


Figure 121. LT1304 Switch Rise Time Is in the 5ns Range. These Types of Edges Emphasize the Need for Proper PC Board Layout


Figure 122. Switch Fall Time. Lower Slope in Second and Third Graticules Shows Effect of Lead and Bond Wire Inductance

## Application Note 66

## AUTOMATIC LOAD SENSING SAVES POWER IN HIGH VOLTAGE CONVERTER <br> by Mitchell Le

There are a surprising number of high output voltage applications for LTCs micropower DC/DCconverter family. Theseapplications includeelectroluminescent panels, specialized sensing tubes and xenon strobes. One of the key features of the micropower converters is low quiescent current. Since the quiescent current is far less than the self-discharge rate of common alkaline cells, the traditional ONOFF switch can be eliminated in cases where the load is intermittent or where the load is shut down under digital control.

The maximum switch voltage for many micropower devices is 50 V . For higher outputs the circuit showninFigure 123 is often recommended. It combines aboost regulator and acharge pump tripler to produce an output voltage of up to 150 V . The output is sensed through a divider network, which consumes a constant current of about $12 \mu \mathrm{~A}$. This doesn't seem like much, but reflected back to the 3V battery it amounts to over 3mA. Together with the

LT1107's 320 $\mu$ A quiescent current the battery current is 3.5 mA under no load. In standby applications this is unacceptably high, even for two D cells.
Acircuit consisting of transistors Q1 and Q2 was added to reduce the standby current to an acceptable level. When a load of more than $50 \mu \mathrm{~A}$ is present, Q1 turns on, Q2 turns off and the 9.1 M resistor (R4) serves as a feedback path. R2, R3 and R4 regulate the output at 128 V .

If the load current drops below $50 \mu \mathrm{~A}$, Q1 turns off and QR turns on, shorting out R4. With R4 out of the way, R2 and R3 regulate the output to approximately 15 V . The mea sured input current under this condition is only $350 \mu \mathrm{~A}$, just slightly higher than the chip's no-load quiescent current. When the load returns, Q1 senses the excess current and the output automatically rises to its nominal value of 128 V .

This automatic feedback switching scheme improves the battery current by afactor of ten and eliminates the need for amechanical ONOFswitch in applications where the load is under digital control.


Figure 123. Automatic Shutdown Reduces Battery Current to $350 \mu \mathrm{~A}$

# Regulators－Switching （Micropower） 

Ba c klight<br>HIGH EFFICIENCY EL DRIVER CIRCUIT<br>by Dave Bell

Eectroluminescent（且）lamps are gaining popularity as sources of LCD backlight illumination，especially in small， handheld products．Compared with other backlighting technologies，且 is attractive because the lamp is thin， lightweight，rugged and can be illuminated with little power．
且 lamps are capacitive in nature，typically exhibiting around $3000 \mathrm{pF} / \mathrm{in}^{2}$ ，and require alow frequency（ 50 Hz to $1 \mathrm{kHz}) 120 \mathrm{~V}_{\mathrm{RMS}} \mathrm{AC}$ drive voltage．Heretofore，this has usually been generated by alow frequency blocking oscil－ lator using a large transformer．

Fgure 124 depicts a high efficiency 且 driver that can drive arelatively large（ $12 \mathrm{in}^{2}$ ）且 lampusing asmall high frequency transformer．Thecircuit is self－oscillating and delivers a regulated triangle wave to the attached lamp． Very high conversion efficiency may be obtained using this circuit，even matching state－of－the－art OCR back－ lights at modest brightness levels（ 10 to 20 foot－lam－ berts）．
Since an 且 lamp is basically a lossy capacitor，the majority of the energy delivered to the lamp during the charge half－cycle is stored as electrostatic energy $\left(1 / 2 C V^{2}\right)$ ．Overall conversion efficiency can be improved byalmost 2：1 if this storedenergy is returned to thebattery during the discharge half－cycle．The circuit of Fgure 124 operates as a flyback converter during the charge half－ cycle，taking energy from the battery and charging the 日 capacitance．During the discharge half－cycle the flyback converter operates in the reverse direction，taking energy back out of the 且 lamp and returning it to the battery． Nearly $50 \%$ of the energy taken during the charge half－ cycle is returned during the discharge half－cycle；hence the 2：1 efficiency improvement．
During the charge half－cycle，the LT1303 operates as a flyback converter at approximately 150 kHz ，ramping the current in T1＇s 10 $\mu$ Hprimary inductanceto approximately 1A on each switching pulse．When the LT1303＇s internal
power switch turns off，the flyback energy stored in T 1 is delivered to the E lamp through D3 and C5．Successive high frequency flyback cycles progressively chargethe日 capacitance until 300 V is reached on the＂+ ＂side of C ．At this point thefeedback voltagepresent at the LT1303＇s LBI input reaches 1.25 V ，causing the internal comparator to change state．
When the LT1303＇s internal comparator changes state， the open－collector driver at the LBO output is released． This places the circuit into discharge mode and reverses the operation of the flyback energy transfer．QB turns on and removes the gate drive from CRA，thereby disabling switching action ontheprimary of T1．Rip－flop U2Ais also clocked，resulting in a high level on the $\bar{Q}$ output；this positive feedback action keeps LBI above 1．25V．Even though QRA is turned off the LT1303＇s SW pin still switches into pull－up resistor R4．The resulting pulses at the SW pin are used to clock U2B and to drive a＂poor man＇s＂current modeflyback converter on the secondary of T1．

Every clock pulseto flip－flop U2Bturns on QRB and draws current from the 且 lamp through C5，T1，D2 and Q4．（Q4 must bea600V rated MOSFTT to withstand thehigh peak voltages present on its drain during normal operation．） Current ramps up through T1＇s 2.25 mH secondary induc－ tance until the voltage across current sense resistor R12 reaches approximately 0.6 V ．At this point Q5 turns on， providing adirect clear to U2B and thereby terminatingthe pulse．Energy taken from the 且 lamp and stored in T1＇s inductance is then transferred back to the battery through D1 and T1＇s primary winding．This cycle repeats at ap－ proximately 150 kHz until thevoltageon C 5 ratchets down to approximately 0 V ．Once C5 is fully discharged，the preset input on U2A will be pulled low，forcing the voltage on theLT1303＇s LBI input to ground and initiating another charge half－cycle．
This circuit produces a triangle voltage waveform with a constant peak－to－peak voltage of 300V，but the frequency of the triangle wave depends on the capacitance of the attached 且 lamp．A $12 \mathrm{in}^{2}$ lamp has approximately 36 nF of capacitance，which results in atriangle wave frequency of approximately 400 Hz ．This produces approximately 17R of light output from a state－of－the－art 日 lamp． Because of the＂constant power＂nature of the charging

## Application Note 66

flyback converter，light output remains relatively constant with changes in the battery voltage．In addition，since日 lamp capacitance decreases with age，the circuit tends to minimize brightness reduction with lamp aging．C5，R9， and R10 maintain a zero average voltage across the 日 lamp terminals－an essential factor for reliable lamp operation．
Two options exist for 且 lamps with different characteris－ tics．Larger lamps can be supported by specifying an LT1305 instead of the LT1303 shown in Figure 124．The LT1305 will terminate switch cycles at 2A instead of 1A，
thereby delivering four times as much energy（energy stored in T 1 is defined by $1 / 2 \mathrm{LI}^{2}$ ）．The value of R12 must also bereduced to $7.5 \Omega$ to increasethedischargeflyback current by the same ratio．For smaller lamps or for brightness adjustment，the circuit may be＂throttled＂by connecting the LT1303／LT1305＇s B pin to a small current－sense resistor in the lower leg of the 且 lamp．
Not only does the depicted circuit operate very efficiently， it takes output fault conditions in stride．The circuit，with C5 rated at 300 V ，tolerates indefinite short－circuit and open－circuit conditions across its 且 lamp output pins．


Figure 124．High Efficiency EL Driver Circuit

## Application Note 66

A LOW POWER, LOW VOLTAGE CCFL POWER SUPPLY by Steve Pietkiewicz

Most recently published OCR driver circuits require an input supply of 7 V to 20 V and are optimized for bulb currents of 5 mA or more. This precludes lower power operation from 2- or 3-cell batteries often used in PDAs, palmtop computers and the like. ACCF- power supply that operates from 2 V to 6 V is shown in Fgure 125. This circuit candrive asmall ( 75 mm ) OCAL over a 100uAto2mArange.
The circuit uses an LT1301 micropower DC/DC converter IC in conjunction with a current driven Royer class converter comprising T1, Q1 and ©R. When power is applied along with intensity adjust voltage $\mathrm{V}_{\mathrm{A}}$, the LT1301's LIM $^{\text {LI }}$ pin is driven slightly positive, causing maximum switching current to flow through the ICs internal Switch pin (SW). L1 conducts current, which flows from T1's center tap, through the transistors, into L1. L1's current is depositedin switchedfashionto ground by theregulator's action.

TheRoyer converter oscillates at afrequency set primarily by T1's characteristics (including its load) andthe $0.068 \mu \mathrm{~F}$ capacitor. L1 sets the magnitude of the Q1-to-Q2 tail current, and hence, T1's drive level. The 1N5817 diode maintains L1's current flow when the LT1301's switch is off. The $0.068 \mu$ F capacitor combines with L1's characteristics to producesine wave voltagedrive at the Q1 and ©R collectors. T1 furnishesvoltagestep-up and about 1400 V P-P appearsatitssecondary. Aternating current flowsthrough the $22 p F$ capacitor into the lamp. On positive half cycles thelamp's current is steered to ground viaD1. On negative half cycles thelamp's current flows through @'s collector and is filtered by C1. The LT1301's Lim pin acts as azero summing point with about $25 \mu \mathrm{~A}$ bias current flowing out of the pin into C1. The LT1301 regulates L1's current to maintain equality of Q's average collector current, repre senting one-half the lamp current, and R1's current, represented by $V_{A} R 1$. When $V_{A}$ is set to zero the LIm pin's bias current forces about 100 A bulb current.


Figure 125. CCFL Power Supply

## ALL SURFACE MOUNT EL PANEL DRIVER OPERATES FROM 1．8V TO 8V INPUT by Steve Pietkiewicz

Bectroluminescent（且）panels offer aviablealternativeto LB，incandescent or CCA backlighting systems in many portable devices．且 panels are thin，rugged，lightweight and consume little power．They require no diffuser and emit an aesthetically pleasing blue－green light．日 panels， being capacitive in nature，typically exhibit about 3000 pF per square inch of panel area and require low frequency （ 50 Hz to 1 kHz ） $120 \mathrm{~V}_{\mathrm{RMS}}$ AC drive．This has traditionally been generated using alow frequency blocking oscillator with a transformer．Although this technique is efficient， transformer size renders the circuit unusable in many applications due to space constraints．Moreover，low frequency transformers arenot readily availablein surface mount form，complicating assembly．
Figure 126＇s circuit solves these problems by using an LT1303 micropower switching regulator IC along with a small surface mount transformer in a flyback topology． The 400 Hz drive signal is supplied externally．When the drive signal is low，T1 charges the panel until the voltage at point A reaches 240VDC．C1 removes the DC compo－ nent from thepanel drive，resulting in 120VDCat thepanel． When theinput drivesignal goes hightheLT1303＇s Apin is also pulled high，idling the IC and turning on Q1．Q1＇s collector pulls point $A$ to ground and the panel to -120 VDC ．C2 can be added to limit voltage if the panel is
disconnected or open．R3 provides intensity control by varying output voltage．Intensity canalso bemodulated by varying the drive signal＇s frequency．
Ayback transformer T1（Dale LPE5047－A132）has a 10 $\mu \mathrm{H}$ primary inductance and a 1：15 turns ratio．It measures 12 mm by 13.3 mm and is 6.3 mm high．The1：15turns ratio generates highvoltageat theoutput without exceeding the allowable voltage on the LT1303＇s Switch pin．Schottky diodeD1 is required to prevent ringing at theSWpin from forward biasing the IC＇s substrate diode．Because of T1＇s low leakage inductance theflyback spike does not exceed 22V．No snubber networkis required sincetheLT1303SW pin can safely tolerate25V．R1 and C3 providedecoupling for the ICs $\mathrm{V}_{\mathrm{IN}}$ pin．Feedback resistor R2 is made from three3．3M units in series instead of a single 10M resistor． This lessens the possibility of output voltage reduction due to PCboard leakage shunting the resistor．Shutdown is accomplished by bringing the ICs SHDN pin high．For minimum current drain in shutdown the 400 Hz drive signal should be low．
Figure 127 details relevant circuit waveforms with a22nF load（about 7 inches of panel）and a5Vinput．TraceA is the panel voltage．Trace B shows Switch pin action．The circuit＇s input current is pictured in trace Cand trace $D$ is the 400 Hz input signal．The circuit＇s efficiency measures about $77 \%$ ．Witha5Vinput thecircuit can deliver $100 \mathrm{~V}_{\text {RMS }}$ at 400 Hz into a 44 nF load．More voltage can be obtained at lower drive frequencies．



A）HIGH VOLTAGEOUTPUT
B）SWITCH PIN
C）INPUT CURRENT
D） 400 Hz DRIVE
Figure 127．Oscillograph of Relevant Circuit Waveforms

Figure 126．LT1303 Circuit Drives EL Panel

## Application Note 66

## A DUAL OUTPUT LCD BIAS VOLTAGE GENERATOR by Jon A. Dutra

With the many different kinds of LCD displays available, systems manufacturers often want the option of deciding thepolarity of the LCD bias voltage at thetime of manufacturing.
The circuit in Fgure 128 uses the LT1107 micropower DC/DC converter with a single inductor. The LT1107 features an lıIM pin that enables direct control of maximum inductor current. This allows the use of a smaller inductor without the risk of saturation. The LT1111 could also be used with a resulting reduction in output power.

## Circuit Operation

Thecircuit is basically an AC-coupled boost topology. The feedback signal is derived separately from the outputs, so loading of the outputs does not affect loop compensation. Since there is no direct feedback from the outputs, load regulation performance is reduced. With 28 V out, from $10 \%$ to $100 \%$ load ( 4 mA to 40 mA ), the output voltage sags by about 0.65 V . From 1 mA to 40 mA load, the output voltage sags by about 1.4 V . This is acceptable for most displays.

Output noise is reduced by using the auxiliary gain block (AGB) in the feedback path. This added gain effectively reduces the hysteresis of the comparator and tends to randomize output noise. With low ESR capacitors for C2 and C4, output noise is below 30 mV over the output load range. Output power increases with $V_{\text {BATTERY, }}$, from about 1.4 W out with 5 V in to about 2 W out with 8 V or more. Efficiency is $80 \%$ over a broad output power range.

If only apositiveor negativeoutput voltageis required, the two diodes andtwo capacitors associated withtheunused output can be eliminated. The $100 \mathrm{k} \Omega$ load is required on each output to load a parasitic voltage doubler created by the capacitance of diodes D2 and D4. Without this minimum load, the output voltage can go up to almost 50\% above the nominal value.

## Component Selection

Thevoltageat the Switch pin SW1 swings from 0 V to $\mathrm{V}_{\mathrm{O}}$ plus two diode drops. This voltage is AC coupled to the positive output through C1 and D1 and to the negative output through C and D3. The full output current flows through Cl and C . Most tantalum capacitors arenot rated for current flow and their use can result in field failures.


Figure 128. LT1107 Dual Output LCD Bias Generator Schematic Diagram

## Applic ation Note 66

Use a rated tantalum or a rated electrolytic for longer system life. At lower output currents or higher frequencies, using monolithic ceramics is also feasible.
Onecouldreplacethe1N5819 Schottky diodeswith 1N4148 types for lower cost, with areduction in efficiency and load regulation characteristics.

## Shutdown

The circuit can be shut down in several ways. The easiest isto pull the Set pin above 1.25 V ; however, this consumes $300 \mu \mathrm{~A}$ in shutdown conditions. Alower power method is toturn off $\mathrm{V}_{\text {IN }}$ totheLT1107 by means of ahigh sideswitch
or by simply disabling alogic supply. This drops quiescent current fromthe $\mathrm{V}_{\text {BATITR }}$ input below $10 \mu \mathrm{~A}$. Inboth cases $\mathrm{V}_{\text {OU }}$ drops to 0 V . In the event that $+\mathrm{V}_{\mathrm{O}}$ does not need to drop to zero, C1 and D1 can be eliminated.

## Output Voltage Adjustment

Theoutput voltagecan beadjusted from any voltageabove $V_{\text {BATTERY }}$ up to 46 V with proper passive components. Output voltage can be controlled by the user with DAC, PWM or potentiometer control. By summing currents into the feedback node, the output voltage can be adjusted downward.

## LCD BIAS SUPPLY <br> by Steve Pietkiewicz

An LCD requires a bias supply for contrast control. The supply's variable negative output permits adjustment of display contrast. Relatively little power is involved, easing RF radiation and efficiency requirements. An LCD bias generator is shown in Figure 129. In this circuit, U1 is anLT1173 micropower DC/DCconverter. The3Vinput
is converted to 24 V by U1's switch, L2, D1 and C1. The Switch pin (SW1) also drives a charge pump composed of C2, C3, D2 and D3 to generate -24V. Line regulation is less than $0.2 \%$ from 3.3 V to 2 V inputs. Although load regulation suffers somewhat becausethe- 24 V output is not directly regulated, it measures $2 \%$ for loads from 1 mA to 7 mA . Thecircuit will deliver 7mAfroma2Vinput at $75 \%$ efficiency.


Figure 129. DC/DC Converter Generates LCD Bias

## Applic ation Note 66

Regula tors-Switc hing (Micropower)<br>VPP Generator

## LTC1262 GENERATES 12V FOR PROGRAMMING FLASH MEMORIES WITHOUT INDUCTORS <br> by Anthony Ng and Robert Reay

Aash memories requirea $5 \mathrm{~V} \mathrm{~V}_{\propto \subset}$ supply and an additional 12 V supply for write or erase cycles. The 12 V supply can be a system supply or be generated from the 5V supply usingaDC/DCconverter circuit. Singlesupply flashmemories (i.e., those with the 12 V converter built-in) are available, but thesememories havelower capacities and slower write/erase performance and thereforeare not as popular as memories without abuilt-in 12 V supply. Rash memories require that the 12 V supply be regulated to within $5 \%$ and not exceed the permitted maximum voltage ( 14 V for Intel ETOX ${ }^{\text {M }}$ memories). The LTCl262 offers asimpleand cost effective 12 V programming supply to meet these requirements.

Fgure 130 shows a typical application circuit. The only external components needed are four surface mount capacitors. The LTC1262 uses a triple charge pump techniqueto convert 5 V to 12 V . It operates from 4.75 V to 5.5 V and delivers 30 mA while regulating the 12 V output to within $5 \%$. The TIL-compatible SHDN pin can be driven directly by amicroprocessor. When the SHDN pin is taken high (or floated) the LTC1262 enters shutdown mode. In this state the supply current of the LTC1262 is reduced to $0.5 \mu \mathrm{~A}$ typical and the 12 V output drops to $\mathrm{V}_{\mathrm{C}}$. When SHDN is taken low, the LTC1262 leaves shutdown mode
and theoutput rises to 12V without any potentially harmful overshoot (se Figure 131).

The LTC1262 is available in both 8-pin PDIP and narrow SO packages. With small surface mount capacitors, the complete12V supply takes up verylittle spaceon aprinted circuit board. In power sensitive applications, such as PCMCIA flash cards for portable PCs, the LTC1262 shutdown current is low enough to preclude the need for external switching devices when the system is inactive.


Figure 130. Typical LTC1262 Application Circuit


Figure 131. LTC1262 Taken In and Out of Shutdown

## FLASH MEMORY VPP GENERATOR SHUTS DOWN WITH OV OUTPUT by Sean Gold

Nonvolatile "flash" memories require a well controlled 12 V bias (VPP) for programming. Thetoleranceon VPP is $\pm 5 \%$ for 12 V memories. Excursions in VPP above 14V or below -0.3 V are destructive. VPP is often generated with a boost regulator whose output follows the input supply when shut down. It is sometimes desirableto forceVPPto 0 V when thememory is not in use or is in read-only mode.

Thecircuit in Fgure 132 generates a smoothly rising 12V, 60 mA supply that drops to 0 V under logic control. Fgure 133 illustrates the programming cycle. Shortly after driving theSHDNpin high, the LT1109-12 switching regulator drives L1, producing high voltage pulses at the device's Switch pin. The 1N5818 Schottky diode rectifies these pulses and charges areservoir capacitor C2. Q1 functions as a low on-resistance pass element. The 1N4148 diode clamps Q1 for reversevoltageprotection. Thecircuit does not overshoot or display unruly dynamics because the

## Application Note 66

regulator gets its DCfeedback directly from the output at Q1's collector. Minor slew aberrations are due to Q1's switching characteristics.
Even with the additional losses introduced by Q1, efficiency is $83 \%$ with a60mAload. Line and load regulation arebothlessthan $1 \%$. Output rippleis about 100mV under


Figure 132. Boost Mode Switching Regulator with Low RoN Pass Transistor for Flash Memory Programming
light loads. Quiescent current drops to $400 \mu \mathrm{~A}$ when shut down. All components shown in Fgure 132 are available in surface mount packages, making the circuit well suited for flash memory cards and other applications where minimizing PCboard space is critical.


Figure 133. Input and Output Waveforms for the Flash Memory Programming Circuit

## Regulators-Linear

## LOW NOISE WIRELESS COMMUNICATIONS POWER SUPPLY <br> by Mitchell Le and Kevin Vasconcelos

Shown in Fgure 134 is a5V power supply we designed for a synthesizer oscillator. The original design used a 3 -terminal regulator but the regulator's voltage noise contributed to excessive phase noise in the oscillator, leading us to this solution. Of prime importance is noise over the 10 Hz to 10 kHz band. Careful measurements show a 40dB improvement over standard 3-terminal regulators.
The regulator is built around a 5 V buried-Zener reference. It is the buried Zener's inherently low noisethat makes the finished supply so quiet. Measured over a 10 Hz to 10 kHz band the 5 Voutput contains just $7 \mu \mathrm{~V}_{\text {RMs }}$ noiseat full load. The 10 Hz to 10 kHz noise can be further reduced to $2.5 \mu V_{\text {RMS }}$ by adding a $100 \mu \mathrm{H}, 1000 \mu \mathrm{~F}$ output filter. The noise characteristics of the reference aretested and guaranteed to a maximum of $11 \mu \mathrm{~V}$ over the band of interest.
An external boost transistor, the ZBD949, provides gainto meet a200mA output current requirement. Ourrent limit-
ing is achieved by ballasting the pass transistor and clamping base drive. Although our application only requires 200 mA , it is possible to extend the output current to at least 1A by selecting an appropriate ballast resistor and addressing attendant thermal considerations in the pass transistor.


Figure 134. Ultralow Noise 5V, 200mA Supply. Output Noise Is $7 \mu \mathrm{~V}_{\text {RMS }}$ Over a 10 Hz to 10 kHz Bandwidth. Reference Noise Is Guaranteed Less Than $11 \mu \mathrm{~V}_{\text {RMs }}$. Standard 3-Terminal Regulators Have 100 Times the Noise and No Guarantees

## AN LT1123 ULTRALOW DROPOUT 5V REGULATOR by Jim Williams and Dennis O'Neill

Switching regulator post regulation, battery-powered apparatus and other applications often requirelow $\mathrm{V}_{\mathbb{I}} / \mathrm{V}_{\text {Or }}$ or low dropout linear regulators. For post regulators this is needed for high efficiency. In battery circuits lifetime is significantly affected by regulator dropout. TheLT1123, a new low cost reference/control IC, is designed specifically for cost effective duty in such applications. Used in conjunction with adiscrete PNP power transistor, the 3-lead TO-92 unit allows very high performance positive regulator designs. TheICcontains a5Vbandgap reference, error amplifier, NPN Darlington driver and circuitry for current and thermal limiting.
A low dropout example is the simple 5 V circuit of Fgure 135 using the LT1123 and an MJE1 123 PNP transistor. In operation, the LT1123 sinks Q1 base current through the Drive pin to servo control the ß (feedback) pin to 5 V . R1 provides pull-up current to turn Q1 off and R2 is a drive limiter. The $10 \mu \mathrm{~F}$ output capacitor ( C Or) provides frequency compensation. The LT1123 is designed to tolerate a wide range of capacitor ESR so that low cost aluminum electrolytics can be be used for Cour. If the circuit is located more than six inches from the input source, the optional $10 \mu \mathrm{~F}$ input capacitor $\left(\mathrm{G}_{\mathrm{N}}\right)$ should be added.


Figure 135. The LT1123 5V Regulator Features Ultralow Dropout
Normally, such configurations require external protection circuitry. Here, the MJE1123 has been cooperatively designed by Motorolaand LTCfor use with the LT1123. The deviceis specified for saturation voltagefor currents up to 4A with base drive equal to the minimum LT1123 drive current specification. In addition, the MJE1123 is specified for min/max beta at high current. Because of this factor and the defined LT1123 drive, simple current limit-
ing is practical. Excessive output current causes the LT1123 to drive Q1 hard until the LT1123 current limits. Maximum circuit output current is then a product of the LT1123 current and the beta of Q1. The foldback characteristic of the LT1123's drive current combined with the MJE1123 beta and safe area characteristics provide reliable short-circuit limiting. Thermal limiting can also be accomplished by mounting the active devices with good thermal coupling.

Performance of the circuit is notable as it has lower dropout than any monolithic regulator. Line and load regulation are typically within 5 mV and initial accuracy is typically inside $1 \%$. Additionally, the regulator is fully short-circuit protected with a no load quiescent current of 1.3 mA .

Figure 136 shows typical circuit dropout characteristics in comparison with other IC regulators. Even at 5A the LT1123/MJE1123 circuit dropout is less than 0.5 V , de creasing to only 50 mV at 1 A . Totally monolithic regulators cannot approach these figures, primarily because their power transistors do not offer theMJE1123 combination of high beta and excellent saturation. For example, dropout is ten times lower than in 138 types and significantly better than all the other IC types. Because of Q1's high beta, base drive loss is only $1 \%$ to $2 \%$ of output current, even at high output currents. This maintains high efficiency under the low $\mathrm{V}_{\mathbb{N}} / \mathrm{V}_{\text {Or }}$ conditions the circuit will typically se. As an exercise, the MJE1 123 was replaced with a 2N4276 germanium device. This provided even lower dropout performance but limiting couldn't be production guaranteed without screening.


Figure 136. LT1123 Regulator Dropout Voltage vs Output Current

## Application Note 66

## Regulators-Linear (Mic roprocessor Power)

LT1580 LOW DROPOUT REGULATOR USES NEW APPROACH TO<br>ACHIEVE HIGH PERFORMANCE<br>by Oraig Varga

## Enter the LT1580

TheLT1580 NPNregulator is designedtomakeuseof the higher supply voltages already present in most systems. The higher voltage source is used to provide power for the control circuitry and supply the drive current to the NPN output transistor. This allows the NPN to be driven into saturation, thereby reducing the dropout voltage by a $\mathrm{V}_{\mathrm{BE}}$ compared to a conventional design.
The LT1580 is capable of 7A maximum with approximately 0.8 V input-to-output differential. The current requirement for thecontrol voltagesourceis approximately $1 / 100$ of the output load current or about 70mA for a 7A load.

## Circuit Examples

Fgure 137 shows a circuit designed to deliver 2.5 V from a 3.3 V source with 5 V available for the control voltage. Figure 138 shows the responseto aload step of 200 mA to 4.0A. The circuit is configured with a $0.33 \mu \mathrm{~F}$ Adjust pin bypass capacitor. The performance without this capacitor is shown in Figure 139. This difference in performance is the reason for providing theAdjust pin on the fixed voltage devices. Asubstantial savings in expensive output decoupling capacitance may be realized by adding a small "1206-case" ceramic capacitor at this pin.
Fgure 140 shows an example of a circuit with shutdown capability. By switching the control voltagerather than the main supply, the transistor providing the switch function needs only a small fraction of the current handling ability that it would need if it was switchingthemain supply. Also, in most applications it is not necessary to hold the voltage drop across the controlling switch to a very low level to maintain low dropout performance.


Figure 137. LT1580 Delivers 2.5V from 3.3V at up to 6A

## Application Note 66



Figure 138. Transient Response of Figure 137's Circuit with Adjust Pin Bypass Capacitor. Load Step Is from 200mA to 4A


Figure 139. Transient Response Without Adjust Pin Bypass Capacitor. Otherwise, Conditions Are the Same as in Figure 138


Figure 140. Small FET Adds Shutdown Capability to LT1580 Circuit

## LT1585: NEW LINEAR REGULATOR SOLVES LOAD TRANSIENTS

## by Oraig Varga

The latest hot new microprocessors have added asignificant complication to the design of thepower supplies that feed them. These devices have the ability to switch from consuming very little power to requiring several amps in tens of nanoseconds. To add a further complication, they areextremely intolerant of supply voltagevariations. Gone are the days of the popcorn 3-terminal regulator and the $0.1 \mu \mathrm{~F}$ decoupling capacitor. The LT1585 is the first low dropout regulator specifically designed for tight output voltage tolerance (optimized for the latest generation processors) and fast transient response.

Figure 141 shows the kind of response that can and must be achieved if these microprocessors are to operate reliably. Fgure 142 details the first several microseconds of


Figure 141. Transient Response of 200 mA to 4A Load Step

## Application Note 66

thetransient in Figure 141. The load change in this case is 3.8A in about 20ns. Two parasitic elements dominate the transient performance of the system. Both are controlled by the type, quantity and location of the decoupling capacitors in the system.

## Anatomy of a Load Transient

The instantaneous droop at the leading edge of the transient is theresult of the sum of theeffects of theequivalent series resistance (ESR) and the equivalent series inductance(ESL) from theoutput capacitor(s) terminal(s) to the load connection. Notethat thesecontributions alsoinclude the lead trace parasitics from the capacitor(s) to the load.

The resistive component is simply $\Delta l \cdot$ ESR. The droop to point $\mathrm{A}, 23.6 \mathrm{mV}$, is the ESR contribution. Calculating ESR:

$$
23.6 \mathrm{mV} / 3.8 \mathrm{~A}=0.0062 \Omega
$$

The effects of inductanceare predicted by theformulaV= Ldl/dt. The voltage from point A to the bottom of the trough is the inductive contribution ( 13.4 mV ). ESL is calculated to be 0.07 nH . After the load current stops rising the inductive effects end, bringing the voltage to point $B$. At this point the curve settles into a gentle droop. The


Figure 142. Detailed Sketch of First Few Microseconds of Transients
droop rate is $\mathrm{dV} / \mathrm{dt}=\mathrm{I} / \mathrm{C}$. There is about $1300 \mu \mathrm{~F}$ of useful capacitance on the board in this case (seeFigure 143). As the regulator output current starts to approach the new load current, the droop rate lessens until the regulator supplies thefull load current. This is theinflection point in the curve. Since the regulator now measures the output voltageas being too low, it overshootstheload current and recharges the output capacitors to the correct voltage.

## Faster Regulator Means Fewer Capacitors, Less Board Space

The regulator has one major effect on the system's transient behavior. The faster the regulator, the less bulk capacitance is needed to keep the droop from becoming excessive. It is here that the advantage of the LT1585 shows up. The responsetime of the LT1585 is about onehalf that of the last generation 3-terminal regulators.

The response in thefirst several hundred nanoseconds is controlled by the careful placement of bypass capacitors. Figure 143 is a schematic diagram of the circuit but the layout is critical so consult the LTCfactory for circuit and layout information.


Figure 143. Schematic Diagram: LT1585 Responding to Fast Transients

## Application Note 66

Battery Chargers<br>CHARGING NiMH/NiCd OR Li-Ion WITH THE LT1510 by Chia Wei Liao

## Charging NiMH or NiCd Batteries

The circuit in Fgure 144 will charge battery cells with voltages up to 20 V at afull charge current of 1 A (when Q1 is ON ) and atrickle charge current of 100 mA (when Q1 is OFF. If the third charging level is needed, simply add a resistor and a switch. The basic formula for charging current is:
$\frac{2.465}{R 1|\mid R 2}(2000)$ (when Q1 ON)

For NiMH batteries, a pulsed trickle charge can be easily implemented with a switch in series with R1; switch Q1 at thedesired rateand duty cycle. If amicrocontroller is used to control the charging, connect the DAC current-sink output to the PROG pin.

## Charging Li-Ion Batteries

The circuit in Fgure 145 will charge lithium-ion batteries at aconstant current of 1.5 A until battery voltage reaches 8.4 V , set by R3 and R4. It then goes into constant voltage charging and the current slowly tapers off to zero. @ can beadded to disconnect R3 and R4 so they will not drainthe battery when the wall adapter is unplugged.
$\frac{2.465}{R 1}$ (2000) (when Q1 OFF)


Figure 144. Charging NiCd or NiMH Batteries


Figure 145. Charging Li-Ion Batteries

## Typical Charging Algorithms

The following algorithms are representative of current techniques:
Lithium-Ion - charge at constant voltage with current limiting set to protect components and to avoid overloading the charging source. When thebattery voltage reaches the programmed voltage limit, current will automatically decay to float levels. The accuracy of the float voltage is critical for long battery life. Be aware that lithium-ion batteries in series suffer from "walk away" because of the required constant float voltagecharging technique. "Walk away" is acondition wherethebatteries intheseries string wind up in different states of the charge/discharge cycle. They may need to be balanced by redistributing charge from one battery to another. This phenomenon is minimized by carefully matching the batteries within a pack.
Nickel-Cadmium - charge at a constant current determined by the power available or by a maximum specified
by the manufacturer. Monitor battery charge state using voltage change with time ( $\mathrm{dV} / \mathrm{dt}$ ), second derivative of voltage ( $\left.\mathrm{d}^{2} \mathrm{~V} / \mathrm{dt}\right)$, battery pressureor somecombination of theseparameters. Whenthebattery approachesfull charge, reducethecharging current to avalue(top-off) that can be maintained for a long time without harming the battery. After the top-off period, usually set by a simple time out, reduce the current further to a trickle level that can be maintained indefinitely, typically $1 / 10$ to $1 / 20$ of the battery capacity.
Nickel-Metal-Hydride - same as NiCd except that some NiMH batteries cannot tolerate a continuous low level trickle charge. Instead they require a pulsed current of moderate value with a low duty cycle so that the average current represents atricklelevel. Atypical scenario would beonesecond ON and thirty seconds OFwiththecurrent set to thirty times desired trickle level.

## LITHIUM-ION BATTERY CHARGER <br> by Dimitry Goder

Lithium-ion (Li-Ion) rechargeable batteries are quickly gaining popularity in a variety of applications. The main reasons for the success of Li-Ion cells are higher power density and higher terminal voltage compared to other currently available battery technologies. The basic charging principle for a Li-Ion battery is quite simple: apply a constant voltage source with a built-in current limit. A depleted battery is charged with a constant current until it reaches a specific voltage (usually 4.2 V per cell), then it floats at this voltage for an indefinite period. The main difficulty with charging Li-Ion cells is that the floating voltageaccuracy needsto bearound $1 \%$, with $5 \%$ currentlimit accuracy. These two targets are fairly difficult to achieve. Fgure 146 shows the schematic of afull solution for a Li-lon charger.

The battery charger is built around the LTC1147, a high efficiency step-down regulator controller. The ICs constant off-time architecture and current mode control ensure circuit simplicity and fast transient response. At the beginning of theONcycle, P-channel MOSFETQ1 turns on and the current ramps up in the inductor. An internal
current comparator senses the voltageproportional to the inductor current across sense resistor R13. When this voltage reaches a preset value, the LTC1147 turns Q1 off for a fixed period of time set by C1. After the off-time the cycle repeats.
To providean accuratecurrent limit, U3A and QR are used tosensethecharging current separatelyfromtheLTC1147. U3A forces the voltage across R11 to match the average drop across the current sense resistor R13. This voltage sets Q's drain current, which flows unchanged to the source. As a result the same voltage appears across R9, which is now referenced to ground. Since C5 provides high frequency filtering, U3A shifts the average value of the output current. N-channel MOSFET Q2 ensures correct circuit operation even under short-circuit conditions by allowing current sensing at potentials closeto ground.
U3B monitors voltage across R9 and acts to keep it constant by comparing it to the reference voltage. Diode D3 is connected in series with U3B's output, allowing the circuit to operateas acurrent limiter. Thecurrent feedback circuit is not active if the output current limit has not been reached.

## Application Note 66



Figure 146. Li-Ion Battery Charger Schematic

U3C provides the voltage feedback by comparing the output voltagetothereference. Thefeedback resistor ratio [R16/(R15 + R16)] sets the output at exactly 4.2V. U3C has a diode (D4) connected in series with its output. This diode ensures that the voltage and current feedback circuits do not operate at the same time. The reference voltageis supplied by theLT1009, with aguaranteed initial tolerance of $0.2 \%$. Together with the $0.25 \%$ feedback
resistors, thecircuit provides less than 1\% output voltage error over temperature.

When the input voltage is not present $@$ is automatically turned off and thefeedback resistors do not dischargethe battery. Diode D2 is connected in series with the output, preventing the battery from supplying reverse current to the charger.

## Application Note 66

## SIMPLE BATTERY CHARGER RUNS AT 1MHz by Mitchell Lee

Fast switching regulators have reduced coil sizes to the point that they are no longer the largest components on theboard. Acasein point is theLT1377, which can operate at 1 MHz with inductances under $10 \mu \mathrm{H}$.

The circuit shown in Figure 147 was designed for a customer who wanted to charge a 4-cell NiCd pack from a5V logic supply. (This circuit will work equally well with a3.3V input.) Cearly the circuit needs an output voltage greater than 5 V , which is handled easily by the LT1377 boost regulator. The output current is limited to approximately 50 mA by a $\mathrm{V}_{\mathrm{BE}}$ current sensor (Q1/R1) controlling theFeedback pin (2) of theLT1377. This current is perfect for slow charging or trickle charging AA NiCd batteries.

Battery chargers are commonly subject to a number of fault conditions, which must be addressed in the design phase. Frst, what happens when the battery is disconnected? In a boost regulator the output voltage will increase without bound and blow up either the output capacitor or switch. Some voltage limiting is necessary, and D2 serves this purpose. If the voltage on C rises to $11.25 \mathrm{~V}, \mathrm{D} 2$ takes over thecontrol loop at theFeedback pin.
Another potential calamity is an output short circuit; a related fault results from connecting a battery pack containing one or more shorted cells, such that the terminal
voltage is less than about 4 V . Under either of these circumstances, unlimited current flows from the 5V input supply, through D1 and Q1's base-emitter junction, frying at least Q1.

Q has been added to allow full current control even when theoutput voltageis less than theinput voltage. In normal operation, wheretheoutput is boosted higher than $5 \mathrm{~V}, \mathrm{Q}$, isfully on. Its gateis held at 1.25 V (Pin2 feedback voltage) andits sourceis greater than 5 V ; henceit has no choicebut to be fully enhanced. QR becomes more functional when the output voltage drops to around 4V. Frst of all, at 4V input the switching regulator stops switching because more than 50 mA current flows and the feedback pin is pulled up above 1.25 V -Q1 makes sure of that. But as Q1's collector continues to rise, QR is gradually cut off, at least to the extent necessary to starve the drain current back to about 50 mA . This action works right down to $V_{\text {ort }}=0$. In a short circuit Q2 dissipates about 200mW, not too much for a surface mount MOSET.

This circuit is useful for four to six cells and the output current can be modified somewhat by changing sense resistor R1. A reasonable range is from very low currents ( 1 mA or less) up to 100 mA . The current will diminish as Q1's $V_{B E}$ drops about $0.3 \% /{ }^{\circ} \mathrm{C}$ with temperature.


Figure 147. Battery Charger Schematic Diagram

AN66-73

## Application Note 66

## A PERFECTLY TEMPERATURE-COMPENSATED BATTERY CHARGER <br> by Mitchell Le and Kevin Vasconcelos

Battery charging circuits are usually greeted with a yawn, but this lead-acid charger offers a combination of features that sets it apart from all others. It incorporates a low dropout regulator, temperature compensation, dual-rate charging, truenegativeground andconsumes zerostandby current.

The LT1083 family of linear regulators exhibits dropout characteristics of less than 1.5 V as compared to 2.5 V in standard regulators. A smaller regulator drop allows for lower input voltages and less power dissipation in the regulator. Inthis applicationtheregulator is used to control charging voltage and limit maximum charging current.
The temperature compensation employed in this circuit, unlike diode-based straight-line approximations, follows thetruecurvature of alead-acid cell. This prevents over or undercharging of the battery during periods of extended low or high ambient temperatures. Temperaturecompensation is conveniently provided by a Tempsistor ${ }^{\oplus}$ as shown in Fgure 148. The Tempsistor is used to generate a temperature-dependent current, which, in turn, adjusts

[^3]the charger's output voltage to match that of the battery. The match is within 100 mV for a 12 V battery over a range of $-10^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$. The best place for the Tempsistor is directly under thebattery with thebattery resting on apad of styrofoam.

Q1 provides a low voltage disconnect function that reduces thecharger standby current to zero. When theinput voltage (from a rectified transformer) is available, Q1 is biased ON and QR is turned ON. QR connects the various current paths on the output of the regulator to ground, activating the charging circuitry. If the input voltage is removed, Q1 and QRturnoff, andall current pathsfromthe battery to ground (except for the load, of course) are interrupted. This preventsunnecessarybattery drain when the charging source is not available.
A dual-rate charging characteristic is achieved by means of a current-sense resistor ( $\mathrm{R}_{\mathrm{S}}$ ) and a sense comparator (LT1012). If the battery charge current exceeds the floatcurrent threshold of $10 \mathrm{mV} / \mathrm{R}_{\mathrm{S}}$, the comparator pulls the gate of @ low, increasing the output voltage by 600 mV . This sets the charging voltage to 14.4 V at $25^{\circ} \mathrm{C}$. After the battery reaches full charge the current will fall below the $10 \mathrm{mV} / \mathrm{R}_{\mathrm{S}}$ threshold and the LT1012 will short out R7, reducing the output by 600 mV to a float level of 13.8 V .


Figure 148. Battery Charger Follows Temperature Coefficient of a Lead-Acid Cell Very Accurately

## Application Note 66

Both the float and charging voltages can be trimmed by R6; R7 sets the 600 mV difference between them.

Withthecharging sourceconnected, thesenseresistor RS measures only battery current. This eliminates the tendency found in some schemes for the charger to trip on load current.

Table 1 simplifies theselection of an appropriateregulator for batteries of up to 48 Ampere-hours (Ah). The selection is based on providing aminimum available chargecurrent of at least C/4, where Crepresents the battery's Amperehour capacity. The next larger regulator may be required in applications where sustained load currents of greater than C/10 are expected.

If you want to set the trip current to an exact figure, the current shunt $\mathrm{R}_{\mathrm{S}}$ can be calculated as $\mathrm{R}_{\mathrm{S}}=10 \mathrm{mV} / \mathrm{I}_{\mathrm{TH}}$. For a threshold of $\mathrm{C} / 100$ this reduces to $R_{S}=1 / C$.
Table 1. The Regulator Should Be Chosen to Provide at Least C/4
Charging Current

| BATTERY <br> CAPACITY | DEVICE | MAXIMUM <br> CHARGING <br> CURRENT | FLOAT <br> CURRENT <br> THRESHOLD | SENSE <br> RESISTOR <br> (SHUNT) |
| :---: | :---: | :---: | :---: | :---: |
| $\leq 3 \mathrm{Ah}$ | LT1117 | 0.8 A | 20 mA | $0.5 \Omega$ |
| 3Ah to 6Ah | LT1086 | 1.5 A | 50 mA | $0.2 \Omega$ |
| 6 Ah to 12Ah | LT1085 | 3.2 A | 100 mA | $0.1 \Omega$ |
| 12Ah to 24Ah | LT1084 | 5.5 A | 200 mA | $0.05 \Omega$ |
| 24 Ah to 48Ah | LT1083 | 8.0 A | 400 mA | $0.025 \Omega$ |

## A SIMPLE 300mA NiCd BATTERY CHARGER by Randy G Hatness

Low current battery charger circuits are required in handheld products such as palmtop, pen-based and fingertip computers. Thecharging circuitry for theseapplications must use surface mount components and consume minimal board space. The circuit shown in Fgure 149 meets both of these requirements.

The circuit shown in Fgure 149 uses an LTC1174 to control the charging circuit. A fully self-contained switching regulator IC, the LTC1174 contains both a power switch and thecontrol circuitry (constant off-timecontroller, reference voltage, error amplifier and protection circuitry). The internal power switch is aP-channel MOSFET transistor inacommon-sourceconfiguration; consequently when the switch turns on, the LTC1174's $\mathrm{V}_{\mathrm{SW}}$ pin is

$\mathrm{C} 1=\mathrm{AVX}$ (TA) TPSD226M025R0200 ESR $=0.200 \mathrm{I}_{\mathrm{RMS}}=0.775 \mathrm{~A}$
$\mathfrak{C}=\mathrm{AVX}$ (TA) TPSD107M010R0100 ESR $=0.100 \mathrm{I}_{\mathrm{RMS}}=1.095 \mathrm{~A}$
D1, D2 $=$ MOTOROLA SCHOTTKY VBR $=30 \mathrm{~V}$
L1 $=$ OOLLTRONICS CTX50-2P DCR $=0.212$ IDC $=0.729$ A TYPE 52 OORE
COILTRONICS (407) 241-7876
$\mathrm{V}_{\mathrm{OUT}}=1.25 \mathrm{~V} \cdot(1+\mathrm{R} 1 / \mathrm{R} 2)=7.0 \mathrm{~V}$
FAST CHARGE $\approx 0.6 \mathrm{~A}-\frac{\left(\mathrm{V}_{\text {BATT }}+0.6 \mathrm{~V}\right) \cdot 4 \mu \mathrm{~S}}{2 \cdot \mathrm{~L}}$ (EQ1)
Figure 149. 4-Cell, 300 mA LTC1174 Battery Charger Implemented with All Surface Mount Components

## Application Note 66

connected to theinput voltage. This power switch handles peak currents of 600 mA . The LTC1174's architecture allows it to achieve 100\% duty cycle, forcing the internal P-channel MOSETT on $100 \%$ of the time.
When the batteries arebeing charged, the resistor divider network (R1 and R2) forces the LTC1174's Feedback pin $\left(\mathrm{V}_{\mathrm{B}}\right)$ below 1.25 V , causing the LTC1174 to operate at the maximum output current. An internal $0.1 \Omega$ resistor senses
this current and sets it at approximately 300 mA , according to equation 1 (shown on the schematic). When thebatteries are disconnected, the error amplifier drives the Feedback pin to 1.25 V , limiting the output voltage to 7.0 V . DiodeD2 prevents thebatteries from discharging through the divider network when the charger is shut down. In shutdown mode less than $10 \mu$ A of supply current is drawn from the input supply.

## HIGH EFFICIENCY (>90\%) NiCd BATTERY CHARGER CIRCUIT PROGRAMMABLE FOR 1.3A FAST CHARGE OR 100mA TRICKLE CHARGE <br> by Brian Huffman

Battery charger circuits are of universal interest to laptop, notebook and palmtop computer manufacturers. High efficiency is desirableintheseapplications to minimizethe power dissipated in the surface mount components. The circuit shown in Fgure 150 is designed to charge four NiCd cells at a 1.3A fast charge or a 100mA trickle charge
with efficiency exceeding $90 \%$. This circuit can be modified easily to handle up to eight NiCd cells.
The circuit uses an LTC1148 in astep-down configuration to control the charge rate. The LTC1148 is a synchronous switching regulator controller that drives external, complementary power MOSÆTs using aconstant off-timecurrent mode architecture. When the LTC1148's P-drive output pulls the gate of Q1 low, the P-channel MOSFTturns on and connects one side of the inductor to the input voltage. Duringthis period, current flows fromtheinput throughQ1,

$\mathrm{C} 1=(\mathrm{TA})$
$\mathrm{C}=\mathrm{AVX}$ (TA) TPSD226K025R0200 ESR $=0.200 \mathrm{IRMS}=0.775 \mathrm{~A}$
$\mathrm{CB}=\mathrm{AVX}$ (TA) TPSE227M010R0100 ESR $=0.100 \mathrm{IRMS}=1.149 \mathrm{~A}$
Q1 = SILIOONIX PMOS BVDSS $=20 \mathrm{~V}$ RDSON $=0.125 \mathrm{C}_{\text {RSS }}=400 \mathrm{pF} \mathrm{Q}_{\mathrm{G}}=25 \mathrm{nC} \theta \mathrm{JA}=50^{\circ} \mathrm{CW}$
$\mathbb{Q}=$ SILIOONIX NMOS BVDSS $=30 \mathrm{~V}$ RDSON $=0.050 \mathrm{C}_{\text {RSS }}=160 \mathrm{pF} \mathrm{Q}_{\mathrm{G}}=50 \mathrm{nC} \theta \mathrm{JA}=50^{\circ} \mathrm{C} \mathrm{W}$
$\mathrm{V}_{\text {OUT }}=1.25 \mathrm{~V} \cdot(1+\mathrm{R} 4 / \mathrm{R} 5)=8.1 \mathrm{~V}$
FAST CHARGE $=130 \mathrm{mV} / \mathrm{R} 3=1.3 \mathrm{~A}$ (EQ 1)
$\mathrm{D} 2=\mathrm{MOTOROLA}$ SCHOTIKY VBR $=40 \mathrm{~V}$
TRICKLECHARGE $=100 \mathrm{~mA}($ SEI RGURE 2$)$
$\mathrm{R} 3=\mathrm{KRL} \mathrm{SP}-1 / 2-\mathrm{A} 1-0 \mathrm{R} 100 \mathrm{~J} \mathrm{Pd}=0.75 \mathrm{~V}$
L1 = OOILTRONICS CTX50-4 DCR $=0.175$ IDC $=1.350 \mathrm{~A}$ KOOL $\mathrm{M} \mu$ OORE
ALL OTHER CAPACITORS ARE CRAMIC
COLLTRONICS (407) 241-7876
KRL (809) 668-3210
Figure 150. 4-Cell, 1.3A Battery Charger Implemented in Surface Mount Technology
through the inductor and into the battery. When the LTC1148 P-drive pin goes high, Q1 is turned off and the voltage on the drain of Q1 drops until the clamp diode is forward biased. Thediodeconducts for avery short period of time, until the LTC1148 internal circuitry senses that the P-channel is fully off, preventing thesimultaneous conduction of Q1 and ©R. Then the N-drive output goes high, turning on $\mathbb{Q}$, which shorts out D1. Now the inductor current flows through the N -channel MOSFET instead of throughthediode, increasing efficiency. Thistypeof switching architecture is known as synchronous rectification.
During thefast-chargeinterval, theresistor divider network (R4 and R5) forces the LTC1148's Feedback pin ( $\mathrm{V}_{\mathrm{B}}$ ) below 1.25 V , causing the LTC1148 to operate at the maximum output current. R3, a $0.1 \Omega$ resistor, senses the current and sets it at approximately 1.3A according to equation 1 in Figure 150. When the batteries are disconnected, theerror amplifier forcestheFeedbackpinto1.25V, limiting the output voltage to 8.1V. Diode D2 prevents the batteries from discharging through the divider network when the charger is shut down. In shutdown mode the circuit draws less than $20 \mu \mathrm{~A}$ from the input supply.
The dual rate charging is controlled by @ß, which can be toggled between fast chargeand trickle charge. Thetrickle charge rate is set by resistor R1. Figure 151 is a graph showing the value of R1 for a given trickle charge output current. The trickle charge current can also be varied by using an op amp to force the Threshold pin voltage within its $0 V$ to $2 V$ range. Fgure 152 shows theoutput current as a function of Threshold pin voltage.


AN66 F151
Figure 151. LTC1148 Output Current Voice Trickle Charge Set Resistance (R1)


AN66 F152
Figure 152. LTC1148 Output Current vs Forced Threshold Pin Voltage

## Application Note 66

## Power Management

LT1366 RAIL-TO-RAIL AMPLIFIER<br>CONTROLS TOPSIDE CURRENT<br>by William Jett and Sean Gold

## Topside Current Source

The circuit shown in Figure 153 takes advantage of the LT1366's rail-to-rail input range to form a wide-compliance current source. The LT1366 adjusts Q1's gate voltagetoforcethevoltageacross the senseresistor ( $\mathrm{R}_{\text {SENSE }}$ ) to equal thevoltagefromthesupply to thepotentiometer's wiper. A rail-to-rail op amp is needed because the voltage across the sense resistor must drop to zero when the divided reference voltage is set to zero. $\mathbb{Q}$ acts as a constant current sink to minimize error in the reference voltage when the supply voltage varies.


Figure 153. Topside Current Source
Thecircuit can operateover a widesupply range $\left(5 \mathrm{~V}<\mathrm{V}_{\propto}\right.$ <30V). At low input voltage, circuit operation is limited by the MOSETT's gate-drive requirements. At high input voltage, circuit operation is limited by the LT1366's absolute maximum ratings and the output power requirements.

In this example the circuit delivers 1A at 200 mV of sense voltage. With a 5 V input supply the power dissipation is 5 W . For operation at $70^{\circ} \mathrm{C}$ ambient temperature, the MOSFT's heat sink must have a thermal resistance of:

$$
\begin{aligned}
\theta_{\mathrm{HS}} & =\theta_{\mathrm{JASYSTBM}}-\theta_{\mathrm{JCIET}}=55^{\circ} \mathrm{C} / 5 \mathrm{~W}-1.25^{\circ} \mathrm{CW} \\
& =9.75^{\circ} \mathrm{CW}
\end{aligned}
$$

This is easily achievable with asmall heat sink. When input voltages are greater than 5 V the use of a larger heat sink or derating of the output current is necessary.
The circuit's supply regulation is about $0.03 \% / \mathrm{V}$. The output impedanceis equal totheMOSFTTs soutput impedancemultiplied by theop amp's open-loop gain. Degrada tions in current sourcecomplianceoccur when thevoltage across theMOSFETson-resistanceand the senseresistor drops below the voltage required to maintain the desired output current. This condition occurs when $\mathrm{V}_{\propto}-\mathrm{V}_{\mathrm{Or}}$ $<$ LIOAD $^{\left(R_{S E N S E}+R_{\text {ONV }}\right) \text {. }}$

## High Side Current Sense Amplifier

In power control it is sometimes necessary to sense load current at low loss near the input supply. The current sense amplifier shown in Fgure 154 amplifies the voltage across a small value sense resistor by the ratio of the current source resistors (R2/R1). The LT1366 forces the low power MOSFET's gate voltage such that the sense voltage appears across a current source resistor R1. The resulting current in Q1's drain is converted to a ground referred voltage at R 2 . ( $\mathrm{V}_{\mathrm{O}}=\mathrm{I}_{\mathrm{IN}} \mathrm{R}_{\mathrm{S}}$ [R2/R1])
The circuit takes advantage of the LT1366's ability to sense signals up to the supply rail, which permits the use of small value, low loss sense resistors. The LT1366 and the gain setting resistors arealso biased at low current to reduce losses in the current sense.


Figure 154. High Side Current Sense Amplifier

## Application Note 66

## AN ISOLATED HIGH SIDE DRIVER <br> by James Herr

## Introduction

The LTC1146 low power digital isolator draws only $70 \mu \mathrm{~A}$ of supply current with $\mathrm{V}_{\mathbb{I N}}=5 \mathrm{~V}$. Its low supply current feature is well suited for battery-powered systems that require isolation, such as an isolated high side driver. The LTC1 146A is rated at $2500 V_{\text {RMS }}$ and is UL approved. The LTC1146 is intended for less stringent applications and is rated at 500VDC.

## Theory of Operation

Optoisolators available today require supply currents in the milliampere range even for low speed operation (less than 20 kHz ). This high supply current is another drain on the battery. Fgure 155 shows the alternative of using an LTC1146Ato drive an external power MOSFT (IRF840) at speeds to 20 kHz with $\mathrm{V}^{+}=300 \mathrm{~V}$.

The Input pin of LTC1 146A must be driven with a signal that swings at least $3 V$ (referred to GND1, which is a floating ground). The $\mathrm{O}_{\mathrm{S}}$ pin outputs a square wave corresponding to the input signal but with a time delay. The amplitude of the output square wave is equal to the potential at the $V_{\propto C}$ pin. The TL4426 is a high speed MOSFET driver used here to supply gate drive current to the power MOSEET. The power supply to the LTC1146A and the TL 4426 is bootstrapped from a 13 V supply re ferred to system ground. C1 supplies the current to both the LTC1 146A and the TL4426 when the power MOSFT is being turned on. Its value should be increased when the input signal's ON time increases. D3 prevents the output from swinging negative due to stray inductance. If the output goes below ground, the gate to-source voltage of the IRF840 rises. This high potential could damage the power MOSFET. The output slew rate should be limited to $1000 \mathrm{~V} / \mu \mathrm{s}$ to prevent glitches on the $\mathrm{O}_{\mathrm{s}}$ output of the LTC1146A.


Figure 155. Isolated High Side Driver Schematic Diagram

## Application Note 66

## LTC1163: 2-CELL POWER MANAGEMENT by Tim Skovmand

The LTC1163 1.8V to 6V high sideMOSFET driver allows inexpensive N -channel switches to be used to efficiently managepower in2-cell systems such as palmtop computers, portable medical equipment, cellular telephones and personal organizers.
Anysupply voltageabove3V, such as $3.3 \mathrm{~V}, 5 \mathrm{~V}$ or 12V, can begenerated by step-up converters powered from a2-cell supply. Step-up regulators are typically configured as shown in Figure 156. An inductor is connected directly to the2-cell battery pack and switched by alarge (1A) switch. The inductor current is then passed through a low drop


Figure 156. Typical Step-Up Converter Topology

Schottky rectifier to charge the output capacitor to a voltagehigher thantheinput voltage. Unfortunately, when the regulator is shut down, theinductor and diode remain connected and the load may leak significant current in standby.

One possible solution to this problem is to add a low $R_{D S(O N)}$ MOSFET switch between the battery pack and the input of the regulator to completely disconnect it and the load from the battery pack. MOSFET switches, however, cannot operate directly from 2-cell battery supplies because the gate voltage is limited to 3 V with fresh cells and 1.8 V when the cells are fully discharged.

TheLTC1 163 solves this problem by generating gatedrive voltages that fully enhance high side N -channel switches when powered from a 2-cell battery pack, as shown in Figure 157. The standby current with all three drivers switched off is typically $0.01 \mu \mathrm{~A}$. The quiescent current rises to $85 \mu \mathrm{~A}$ per channel with the input turned on and the charge pump producing 10 V (above ground) from a 3 V supply. The surface mount MOSFT switches shown are guaranteed to be less than $0.1 \Omega$ with $\mathrm{V}_{\mathrm{GS}}=5 \mathrm{~V}$ and less than $0.12 \Omega$ with $\mathrm{V}_{\mathrm{GS}}=4 \mathrm{~V}$ and therefore have extremely low voltage drops.


Figure 157. Complete 2-Cell to 3.3V, 5V and 12V Power Management System

## Application Note 66

## LTC1157 SWITCH FOR 3.3V PC CARD POWER by Tim Skovmand

Computers designed to accept PC cards-plug-in modules specified by the Personal Computer Memory Card International Association (PCMCIA)—have special hardware features to accommodate these pocket-sized cards. PCMAA-compliant cards requirepower management electronics that conform to the height restrictions of the three standardconfigurations: 3.3 mm , 5 mm and 10.5 mm . These height limitations dramatically reduce the available options for power management on the card itself. For example, high efficiency switching regulators to convert the incoming 5 V down to 3.3 V for the on-card 3.3 V logic require relatively large magnetics and filter capacitors, which arenot always availablein packaging thinenoughto meet the tight height requirements.

Onepossibleapproach to theproblem of supplying power toa3.3VPCcard is to switch the input supply voltagefrom 5 V to 3.3 V after the card has been inserted and the attribute ROM has informed the computer of the card's voltage and current requirements. The switching regulator, housed in the computer, switches the power supplied to the connector from 5 V to 3.3 V .

A window comparator and ultralow drop switch on thePC card, Q1 in Fgure 158, closes after the supply voltage drops from 5 V to 3.3 V , ensuring that the sensitive 3.3 V logic on the card is never powered by more than 3.6 V or less than 2.4 V . A second switch, $\mathbb{Q}$, is provided on the card to interrupt power to 3.3 V loads that can be idled when not in use.

The built-in charge pumps in the LTC1157 drive the gates of the low $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})} \mathrm{N}$-channel MOSFETs to 8.7 V when poweredfroma3.3V supply. TheLT1017andtheLTC1157 are both micropower and are supplied by a filter (R5 and C2) that holds the supply pins high long enough to ensure that the MOSFET gates are fully discharged immediately after the card is disconnected from the power supply. A largevaluebleed resistor, R6, further ensuresthat thehigh impedance gate of Q1 is not inadvertently charged up when the card is removed or when it is stored.

All of thecomponents showninFigure 158 areavailablein thin, surface mount packaging and occupy a very small amount of surface area. Further, the power dissipation is extremely low because the LTC1157 and LT1017 are micropower andtheMOSFETswitches areverylow $R_{D S(O N)}$.


Figure 158. 3.3V PCMCIA Card Power Switching

## Application Note 66

## THE LTC1157 DUAL 3.3V MICROPOWER MOSFET DRIVER by Tim Skovmand

The LTC1157 dual micropower MOSÆT driver makes it possible to switch either supply- or ground-referenced loads through a low $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})} \mathrm{N}$-channel switch. The LTC1157's internal charge pump boosts the gate drive voltage 5.4 V above the positive rail (8.7V above ground), fully enhancing a logic level, N-channel MOSFET for 3.3V high side switching applications.

## LTC1157 Switches Two 3.3V Loads

Fgure 159 illustrates how two surface mount MOSFETs andtheLTC1157(also availableinSO-8packaging) canbe used to switch two 3.3V loads. The gaterise and fall times are typically in the tens of microseconds, but can be slowed by adding two resistors and acapacitor as shown
on the second channel. Slower rise and fall times are sometimes required to reduce the start-up current demands of large supply capacitors which might otherwise glitch the main supply.


Figure 159. LTC1157 Used to Switch Two 3.3V Loads

## THE LTC1155 DOES LAPTOP COMPUTER POWER BUS SWITCHING, SCSI TERMINATION POWER OR 5V/3A EXTREMELY LOW DROPOUT REGULATOR <br> by Tim Skovmand

TheLTC1 155 is anew micropower MOSETTdriver specifically designed for low voltage, high efficiency switching applications such as those found in laptop or notebook computers. Three applications for this versatile part are detailed here.

Figure 160 is a schematic diagram that demonstrates the use of the LTC1 155 for switching the power buses in a laptop computer system. The disk drive, display, printer and the microprocessor system itself are selectively engaged via high side switching with minimum loss and are shut down completely when not in use.
The quiescent current of the LTC1155 is designed to be extremely low in both the OF and ON states, so that efficiency is preserved even when driving loads that require very little current to operate in standby, but require much larger peak currents when in operation. This combination of alow $R_{D S(O N)}$ MOSFET and an efficient driver delivers the maximum energy to the load.


Figure 160. Laptop Computer Power Bus Switching

## Protected SCSI Termination Power

The circuit shown in Figure 161 demonstrates how the LTC1155 provides protected power to SCSI terminators. The LTC1 155 is initially triggered by the free running 1 Hz oscillator (it could also be triggered by a pulse from the microprocessor) and latches ONviathepositive feedback

## Application Note 66

provided by $\mathrm{R}_{\mathrm{B}}$. Thepower MOSFET gateis drivento 12 V and the MOSFET is fully enhanced.

Thedelay afforded bythetwo delay components, R RLY and CDLY, ensures that theprotection circuit is not triggered by a high inrush-current load. If, however, the source of the MOSFT is shorted to ground or if theoutput of LT1117 is shorted, the delay will beexceeded and theMOSFTT will be held OFF until the pulse from the frerunning oscillator resets theinput again. Thedrain senseresistor, RSENSE is selected to trip the LTC1155 protection circuitry when the MOSFT current exceeds 1A. This current limit protects both the LT1117 and any peripheral system powered by the SCSI termination power line.

The delay time afforded by $R_{D L Y}$ and CDLY $^{\text {is chosen to be }}$ considerably smaller than the reset time period ( $>100: 1$ ), so that very little power is dissipated while the shortcircuit condition persists, i.e., the LTC1155 will deliver small pulses of current during every reset timeperiod until the short-circuit condition is removed.

The LTC1155 and the LT1117, as well as the power MOSFTTshown, areavailablein surfacemount packaging and therefore consume very little board space.

## Extremely Low Voltage Drop Regulator

An extremely low voltage drop regulator can be built around the LTC1 155 and alow resistance power MOSFT
as shown in Fgure 162. The LTC1155 charge pump boosts thegatevoltage above the supply rail and continuously charges a $0.1 \mu \mathrm{~F}$ reservoir capacitor. The LT1431 works against this capacitor and the 100k series resistor to control the MOSETT gate voltage and maintain a constant 5V at the output.

The regulator is switched ON and OFFb the control logic or the microprocessor to conserve power in the standby mode. The LTC1155standby current drops to about 10 $\mu \mathrm{A}$ when the input is switched OFF. The total ON current, including the LT1431 is less than 1 mA .


Figure 162. 5V/3A Extremely Low Voltage Drop Regulator


Figure 161. SCSI Termination Power with Short-Circuit Protection

## Application Note 66

## A CIRCUIT THAT SMOOTHLY SWITCHES <br> BETWEEN 3.3V AND 5V <br> by Doug La Porte

Many subsystems require supply switching between 3.3 V and 5 V to support both low power and high speed modes. This back-and-forth voltage switching can cause havoc to the main 3.3 V and 5 V supply buses. If done improperly, switching the subsystem from 5 V to 3.3 V can cause amomentary jump on the 3.3Vbus, damaging other 3.3V devices. When switching the subsystem from 3.3 V to 5 V , the 5 V supply bus can be pulled down while charging the subsystem's capacitors and may inadvertently cause a reset.

The circuit shown in Fgure 163 allows smooth voltage switching between 3.3 V and 5 V with added protection features to ensure safe operation. IC1 is an LTC1470 switch-matrix device. This part has on-chipchargepumps running from the 5 V supply to fully enhance the internal N -channel MOSFTTs. The LTC1472 also has guaranteed break-before-make switching to prevent cross conduction between buses. It also features current limiting and thermal shutdown.

When switching the subsystem from 5 V to 3.3 V , the holding capacitor and the load capacitance are initially charged up to 5 V . Connecting these capacitors directly to the main 3.3 V bus causes a momentary step to 5 V . This transient is so fast that the power supply cannot react in time. Switching power supplies haveaparticularly difficult time coping with this jump. Switching supplies source current to raise the supply voltage and require the load to sink current to lower the voltage. A switching supply will
be unable to react to counter the large positive voltage step. This jump will cause damage to many low voltage devices.

Thecircuit in Figure 163 employs acomparator (IC2) and utilizes the high impedance state of the LTC1470 to allow switching with minimal effect on the supply. When the 3.3V output is selected, IC1's output will go into a high impedance state until its output falls below the 3.3 V bus. The output capacitors will slowly discharge to 3.3 V , with the rate of discharge depending on the current being pulled by the subsystem and the size of the holding capacitor. The example shown in Figure 163 is for a 250 mA subsystem. The discharge time constant should be about 4ms. Once the subsystem supply has dropped below the 3.3V supply, the comparator will trip, turning on the 3.3 V switch. The comparator has some hysteresis to avoid instabilities. The subsystem supply will reach alow point of about 3V beforethe3.3V switch is fully enhanced.

When switching from 3.3 V to 5 V , IC1's current limiting prevents the main 5 V bus from being dragged down while charging the holding capacitor and the subsystem's capacitance. Without current limiting, the inrush current to charge these capacitors could cause a droop in the main 5 V supply.

If done improperly, supply voltage switching leads to disastrous system consequences. The voltage switch should monitor theoutput voltage and have current limiting to prevent main supply transient problems. Acorrectly designed supply voltage switch avoids the pitfalls and results in a safe, reliable system.


Figure 164. Oscillograph of the Switchover Waveform Showing Smooth Transitions

Figure 163. Schematic Diagram of 3.3V and 5V Switchover Circuit

## Application Note 66

## A FULLY ISOLATED QUAD 4A HIGH SIDE SWITCH by Milton Wilcox

High sideswitching in hostileenvironments often requires isolation to protect thecontrolling logic from transients on the "dirty" power ground. Thecircuit shown in Figure 165 drives and protects four low $R_{D S(O N)}$ power MOSFT switches over a wideoperating supply range. TheLT1161 drivers are protected from transients of up to 60 V on the supply pins and 75 V on the gate pins. Fault indication is provided by an inexpensive logic gate.
Each of thefour LT1161 switch channels has acompletely self-contained charge pump, which drives the gate of the N-channel MOSÆTswitch 12V abovethesupply rail when the corresponding Input pin is taken high. The specified MOSFET devicetypes haveamaximum $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ of $0.028 \Omega$,
resulting in a total switch drop (including sense resistor) of only 0.15 V at 4 A output current.

The LT1161 independently protects and restarts each MOSFET. It senses drain current via the voltage drop across acurrent shunt $R_{S}$. When thecurrent in one switch exceeds approximately $6 \mathrm{~A}(62 \mathrm{mV} / 0.01 \Omega)$ the switch is turned off without affecting theother switches. Theswitch remains off for 50 ms (set by external timing capacitor $\mathrm{C}_{T}$ ), after whichtheLT1161 automatically attempts to restart it. If the fault is still present this cycle repeats until the fault is removed, thus protecting the MOSFI. Ourrent shunts are readily available in both through-hole and surface mount case styles. AN53 has additional information on shunts. Connect the LT1161 $\mathrm{V}^{+}$pins directly to the top of the current shunts (se LT1161 data sheet).


Figure 165. Protected Quad High Side Switch Has Isolated Inputs and Fault Output

## Application Note 66

Thehighest MOSFETdissipationoccurs witha"soft short" (one in which the current is above the normal operating level but still below the current limit threshold). This can cause dissipation in Figure 165's circuit to rise, in the worst-caseto 2W, requiring modest heatsinking. When an output is directly shorted to ground the average dissipation is very low becausetheMOSFETconducts only during brief restart attempts.
Fault indication is provided by a low cost exclusive NOR gate. In normal operationalow ontheLT1161 input forces alow on the output and a high forces a high. If an input is high and the corresponding output is low (i.e., short circuited), the output of the exclusive NOR gate activates
the isolated fault output. Similarly, by adding resistor Ra_ the low input/high output statecan beused to diagnosean open load condition. Adjusting the value of $R_{a}$ sets the output current at which the load is considered to beopen. For example, in Fgure 165 with $\mathrm{V}_{\text {SUPPLY }}=24 \mathrm{~V}$, a fault would be indicated if the load could not sink 10 mA .

Fgure 165's circuit is ideal for driving resistive or inductive loads such as solenoids. However, the circuit can be tailored for capacitiveor high inrushloads as well. Consult the LT1161 data sheet for information on programming current limit, delay time and automatic restart period to handle other loads. The LT1161 is available in both PDIP and surface mount packaging.

## THE LTC1153 ELECTRONIC CIRCUIT BREAKER by Tim Skovmand

The LTC1153 electronic circuit breaker is designed to work with a low cost, N -channel power MOSFT to interrupt power to a sensitive electronic load in theevent of an overcurrent condition. The breaker is tripped by an overcurrent condition and remains tripped for a period of time programmed by an external timing capacitor, C . The switch is then automatically reset and the load momentarily retried. If the load current is still too high, the switch is shut down again. This cycle continues until the overcurrent condition is removed, thereby protecting the sensitive load and the power MOSÆT.

## 5V/1A Circuit Breaker with Thermal Shutdown

The trip current, trip-delay time and autoreset period are programmable over a wide range to accommodate a variety of load impedances. Figure 166 demonstrates how theLTC1153 is used in atypical circuit breaker application. The DCtrip current is set by asmall valued resistor, $\mathrm{R}_{\text {SEN }}$, in series with thedrainlead, whichdrops 100 mV whenthe current limit is reached. In thecircuit of Fgure 166, theDC trip current is set at $1 \mathrm{~A}\left(\mathrm{R}_{\text {SEN }}=0.1 \Omega\right)$.
Thetrip-delay timeis set by thetwo delay components, $R_{D}$ and $C_{D}$, which establish an RCtimeconstant in series with the drain sense resistor, producing a trip delay that is shorter for increasing breaker current (similar to that of a mechanical circuit breaker). Figure 167 is a graph of the trip-delay timeversus thecircuit breaker current for a 1 ms


* ALL COMPONENTS SHOWN ARE SURFACEMOUNT.
** IMSO26 INIERNATIONAL MANUFACTURING SERVICE INC. (401) 683-9700
RL2006-100-70-30-PT1 KEYSTONE CARBON COMPANY (814) 781-1591
AN67 F166

Figure 166. LTC1153 5V/1A Circuit Breaker with Thermal Shutdown


AN66 F167

Figure 167. Trip Delay Time vs Circuit Breaker Current ( 1 ms RC Time Constant for the Circuit of Figure 166)

RCtime constant. Note that the trip time is 0.63 ms at 2 A , but falls to $55 \mu \mathrm{~s}$ at 20A. This characteristic ensures that the load and the MOSETT switch are protected against a wide range of overload conditions.
The autoreset time is typically set in the range of 10 s of milliseconds to a few seconds by selecting the timing capacitor, C . Theautoreset period for thecircuit in Fgure 190 is 200 ms , i.e., the circuit breaker is automatically reset (retried) every 200 ms until the overload condition is removed.

An open-drain fault output is provided to warn the host microprocessor whenever the circuit breaker has been tripped. The microprocessor can either wait for the autoreset function to reset theload, or shut theswitch OFF after a fixed number of retries.
The shutdown input interfaces directly with a PTC thermistor to sense overtemperature conditions and trip the circuit breaker whenever the load temperature or the MOSFT switch temperature exceeds a safe level. The thermistor shown in Figure 166 trips the circuit breaker when the load temperature exceeds approximately $70^{\circ} \mathrm{C}$.

## LTC1153: DC Motor Protector

A 5V DC motor can be powered and protected using the circuit shown in Fgure 168. The DC current delivered to


Figure 168. DC Motor Driver with Overcurrent and Overtemperature Protection
the motor is limited to 5A and a rather long trip delay is used to ensure that the motor starts properly. The motor temperatureisal socontinuouslymonitored andthebreaker is tripped if themotor temperatureexceeds $70^{\circ} \mathrm{C}$. Thefault output of the LTC1 153 informs the host microprocessor whenever thebreaker is tripped. Themicroprocessor can disable the motor if a set number of faults occur or it can initiate a retry after a much longer period of time has elapsed. A rectifier diode across the motor returns the motor current to ground and restricts the output of the switch to less than 1 V below ground.

## LTC1477: $0.07 \Omega$ PROTECTED HIGH SIDE SWITCH ELIMINATES "HOT SWAP" GLITCHING by Tim Skovmand

When a printed circuit board is "hot swapped" into a live 5 V socket, a number of bad things can happen.

Frst, the instantaneous connection of alarge, discharged supply bypass capacitor may cause a glitch to appear on the power bus. The current flowing into the capacitor is limited only by the socket resistance, the card trace resistance, and the equivalent series resistance (ESR) of the supply bypass capacitor. This supply glitch can create real havoc if the other boards in the system have poweron RESET circuitry with thresholds set at 4.65 V .
Second, the card itself may be damaged due to the large inrush of current into the card. This current is sometimes
inadvertently diverted to sensitive (and expensive) integrated circuits that cannot tolerate either overvoltage or overcurrent conditions even for short periods of time.

Third, if the card is removed and then reinserted in a few milliseconds, the glitching of the supply may "confuse" the microprocessor or peripheral ICs on the card, generating erroneous datain memory or forcing thecard into an inappropriate state.
Fourth, a card may be shorted, and insertion may either grossly glitch the 5V supply or cause severe physical damage to the card.

Figure 169 is a schematic diagram showing how an LTC1477 protected high side switch and an LTO699 power-on RESET circuit reducethe chance of glitching or damaging the socket or card during "hot swapping."

## Application Note 66



Figure 169. "Hot Swap" Circuit Featuring LTC1477 and LTC699

The LTC1477 protected high side switch provides extremely low $R_{\mathrm{DS}(\mathrm{ON})}$ switching (typically $0.07 \Omega$ ) with built-in2Acurrent limiting and thermal shutdown, all in an 8 -pin SO package.
As the card is inserted, the LTO699 power-on RESET circuit holds the Enable pin of the LTC1477 low for approximately 200 ms . When the Enable pin is asserted high, theoutput is ramped on in approximately 1 ms . Even if a very large supply bypass capacitor (for example, over
$100 \mu \mathrm{~F}$ ) is used, the LTC1477 will limit the inrush current to 2 A and ramp the capacitor at an even slower rate. Further, the board is protected against short-circuit conditions by limiting the switch current to 2 A .

The 5V card supply can be disabled via Q1. The only current flowing is the standby quiescent current of the LTC1477, which drops below $1 \mu \mathrm{~A}$, the $600 \mu \mathrm{~A}$ quiescent current of the LTO699 and the 10 $\mu \mathrm{A}$ consumed by R1.

## Miscellaneous

## PROTECTED BIAS FOR GaAs POWER AMPLIFERS by Mitchell Lee

Portable communications devices such as cellular telephones and answer-back pagers rely on small GaAsFETbased0.1Wto1.0WRFamplifiers as thetransmitter output stage. Themain power devicerequires anegativegatebias supply, which is not readily available in abattery-operated product. Thecircuit shown in Fgure 170 not only develops aregulated negative gatebias, it also switches the positive supply, protects against the loss of gatebias, limits power dissipation in the amplifier under high standing-waveratio (SWR) conditions and protects against amplifier failures that might otherwise short circuit the battery pack.

Negative bias is supplied by an LTC1044 charge pump inverter and the amplifier's positive supply is switched by an LTC1153 electronic circuit breaker. An open-collector switch can be used to turn the LTC1044 inverter off by
grounding the OSC pin (Pin 7). When off the LTC1044 draws only $2 \mu \mathrm{~A}$.
The negative output from the LTC1044 is sensed by a2.5V reference diode (IC2) and QR. With no negative bias available, Q is off and @ turns on, pulling the LTC1153's control input low. This shuts off the GaAs amplifier. Total standby power, including the LTC1044, is approximately $25 \mu \mathrm{~A}$.
If the LTC1044's OSC pin (Pin 7) is released, a negative output nearly equal inmagnitudetothebattery input voltage appears at $\mathrm{V}_{\text {OU }}$ (Pin 5). The negative bias is regulated by R1, IC2 and Q's base-emitter junction. QR saturates, shutting $@$ off and thereby turning the LTC1153 on.
The LTC1153 charges the N-channel MOSFT (Q4) gateto 10 V above the battery potential, switching Q4 fully on. Power is thus applied to the GaAs amplifier.

The nominal negative bias is -3.2 V , comfortably assuring the -2.5 V minimum specified for the amplifier. Total


Figure 170. Schematic Diagram
quiescent current, exclusive of the GaAs amplifier drain supply, is approximately 1.5 mA in the ON state.
Short circuits or overcurrent conditions in theGaAs amplifier can damagethecircuit board, thebatteries or both. The LTC1153 senses the amplifier's supply current and turns Q4 off if it is over 2A. After a timeout period set by 06
(200ms) the LTC1153 tries again, turning Q4 on. If the amplifier's supply current is still too hightheLTC1153trips off again. This cycle continues until the fault condition is cleared. Under fault conditions the LTC1153's Status pin (Pin 3) is low. As soon as the fault is cleared the LTC1153 resets and normal operation is restored.

## LT1158 H-BRIDGE USES GROUND REFERENCED CURRENT SENSING FOR SYSTEM PROTECTION by Peter Schwartz

The LT1158 half-bridge motor driver incorporates anumber of powerful protection features. Some of these, such as its adaptive gatedrive, arededicated infunction. Others are open to a variety of uses depending upon application requirements. The circuit shown in Figure 171 takes advantage of the wide common mode input range of the LT1158's fault comparator to perform ground referenced current sensing in an H-bridge motor driver. By using ground referenced sensing, protection can easily be provided against overloaded, stalled or shorted motors. For overloads and stalls the circuit becomes a constant current chopper, regulating the motor's armature current to a preset maximum value. For shorted loads the circuit protects itself by operating at avery low duty cycleuntil the short is cleared.

## Setting Up for Ground Referenced Sensing

The circuit of Fgure 171 is essentially a straightforward LT1158 H-bridge of the "sign/magnitude" type. (See the LT1158 data sheet for a description of component functions.) In many LT1158 applications, a current sense resistor is placed in each upper MOSFT sourcelead. This circuit, however, senses the IR drop across one resistor (R1) common to the sources of both lower MOSFTIs. In Figure 171, U1's FAULT output activates the constant current protection mode (for overloads and stalls) and U2's FAULT output indicates a shorted load. Hence, given a maximum continuous motor current of 15A, R1's value is easily determined: $\mathrm{V}_{\text {SENSE }}$ of U1 must exceed $\mathrm{V}_{\text {SENSE }}$ by the LT1158's internal threshold of 110 mV in order for FAULTtogolow. $15 \mathrm{~A} \cdot \mathrm{R} 1=0.110 \mathrm{~V}$, so $\mathrm{R} 1=(0.110 \mathrm{~V} / 15 \mathrm{~A})$ at $0.0075 \Omega$. The FAULT pin of U2 should go low when $\mathrm{I}_{\mathrm{R} 1}$ is 24 A , so a $1.6: 1$ voltage divider is added at U2's Sense ${ }^{+}$ input. R2, R3, C1 and C2 filter any switching spikes that appear across R1.

## Application Note 66



Figure 171. H-Bridge Motor Driver with Ground Referenced Current Sensing

## Closing the Loop on Overloads

If themotor is overloaded or stalled, its back BMFwill drop, causing the armature current to increase at a rate determined primarily by the motor's inductance. Without protection this current could rise to a value limited only by supply voltage and circuit resistance. The necessary protection is provided via the feedback loop formed by U1's FAULToutput, U3A, U4B and U4D. When I $\mathrm{R}_{1}$ exceeds 15A, the FAULT pin of U1 conducts, triggering the $40 \mu \mathrm{~s}$ monostable U3A. The Qoutput of U3A in turn forces the outputs of U4B and U4Dto alogic low state, turning off Q1 or $@$, and turning on both $\propto$ and Q4. For thetime during which U3A's Qoutput is high, the motor current decays through the path formed by the motor's resistance, plus
the on-resistance of $Q$ and Q4 in series. In this applica tion, turning both lower MOSFETs on is preferable to forcing all four MOSFETs off, as it provides a low resistance recirculation path for the motor current. This re duces motor andsupply ripplecurrents, aswell as MOSFT dissipation. At the end of U3A's 40 ms timeout the H bridge turns on again. If the overload still exists, the current quickly builds up to the U1 FAULT trip point again and the 40ms timeout repeats. This feedback loop holds the motor current approximately constant at 15A for any combination of supply voltage and duty cycle that would otherwise cause an excess current condition. When the motor's current draw falls below 15A, thecircuit resumes normal operation.

## Application Note 66

## Opening the Loop on Shorts

In the event of a short across the motor terminals the current through theH-bridge rises faster than the U1/U3A loop can regulate it. This could easily exceed the safe operating area limits of the MOSFETs. The solution is simple: when thefault comparator of $U 2$ detects that $I_{R 1} \geq$ 24A, monostable U3B is triggered. The $\overline{\text { Qoutput of U3B }}$ will then hold the enable line of the two LT1158s low for 10 ms , resulting in a rapid shutdown and a very low duty cycle. After the 10 ms shutdown interval, U3B's Qoutput will return high and the bridge will be reenabled. If the motor remains shorted, U3B is triggered again, causing another 10 msshutdown . Whenthe short iscleared, circuit operation returns to that described above.

## A Final Note

As aclass, sign/magnitudeH-bridge systems are susceptibleto MOSFTT and/or motor damage if the motor velocity is accelerated rapidly, or thestateof theDIRECTIONline is switched while the motor is rotating. This is especially true if the motor/load system has high inertia The circuit of Figure 171 is designed to provide protection under these conditions: the motor may becommanded to accelerateand to change direction with no precautions. For the case of deceleration, however, it's generally best to use a controlled velocity profile. If aspecific application requires the ability to operate with no restrictions upon the rate of change of duty cycle, there are straightforward modifica tions to Figure 171 that allow this. Please contact the factory for more information.

## LT1158 ALLOWS EASY 10A LOCKED ANTIPHASE MOTOR CONTROL by Milton Wilcox

Allowing synchronous control of two N -channel power MOSFTTs operating from 5 V to 30 V , the LT1158 halfbridgedriver effectively deals with themany problems and
pitfalls encountered in the design of high efficiency motor control and switching regulator circuits.
Fgures 172aand 172billustratealocked antiphasemotor drive in which the motor stops if either side is shorted to ground (since a $50 \%$ input duty cycle is used to stop the motor in locked antiphase operation, the motor would


Figure 172a. 10A Locked Antiphase Full-Bridge Circuit Operates Over Wide Supply Range

## Application Note 66



Figure 172b. Protection Logic Stops Motor if Either Side Is Shorted to Ground
normally accelerate to half speed with one side shorted). When afault is detected by either LT1158, theFgure172b latch is set, disabling both LT1158s. The circuit periodically tries restarting the motor at a time interval determined by $R_{T}$ and $G_{T}$. If the short still exists, the disabled state is resumed within 20 $\mathrm{\mu s}$, far too short atimeto move the motor.

The LT1158 can be used with virtually any N-channel power MOSFET, including 5-lead current sensing MOSFETs. This configuration offers thebenefit of no-loss current sensing, sinceacurrent shunt is no longer needed in the source. In addition, R ReNSE ${ }^{\text {increases by afactor of }}$ 1000 or more: from milliohms to ohms. The LT1158 can al so be used with logic level MOSFETs for operation as low as 4.5 V if a Schottky boost diode is used and connected directly to the supply.

TheLT1158 N-channel power MOSFTT driver anticipates all of the major pitfalls associated with the design of high efficiency bridge circuits. The designed-in ruggedness and numerous protection features make the LT1158 the best solution for 5 V to 30 V medium-to-high current synchronous switching applications.

## ALL SURFACE MOUNT PROGRAMMABLE 0V, 3.3V, 5V AND 12V VPP GENERATOR FOR PCMCIA by Jon A. Dutra

Generating the VPP voltage for a PCMCIA port in laptop computers has become more complicated with PCMCIA standard 2.0. The VPP line must come up to 5V initially until the card "tuple" tells the card its type and VPP voltage. For example, a 3.3V SRAM card must have VPP adjusted to 3.3 V . If it is aflash memory card, 12 V must be supplied during programming. During card insertion, 0 V is desirable to unconditionally prevent latch-up. Shutdown supply current must be as low as possible and the supply must not overshoot. This design idea presents a circuit (Figure 173) that meets these specifications. The same topology could be useful for generating other programmable supplies.
Thecircuit uses theLT1107 micropower DC/DCconverter with a single surface mount transformer. The LT1107 features an ILIM pin that enables direct control of maximum inductor current. This allows use of asmaller transformer without risk of saturation. The LT1111 could also be used with a reduction in output power.


Figure 173. Schematic Diagram for VPP Generator

## Application Note 66

## Circuit Operation

Thecircuit is basically agated-oscillator flyback topology. The SET pin of the LT1107 is held at 1.25 V by negative feedback. Summing currents into the SET pin to zero for the three different output states yields three equations with three unknown resistor values. The resistor values are easily solved for using Mathametica, MathCad or classical techniques. Table 1 shows the output voltage truth table.

Table 1

| INPUTS |  |  | OUTPUTS |  |
| :---: | :---: | :---: | :---: | :---: |
| A | B | ENABLE | $\mathrm{V}_{0}$ | NOTE |
| X | X | 0 | 0 V | Off |
| 1 | 1 | 1 | 12 V | 12 V |
| 1 | 0 | 1 | 5 V | 5 V |
| 0 | 1 | 1 | 10.3 V | Not Used |
| 0 | 0 | 1 | 3.3 V | 3.3 V |

Output noise is reduced by using the auxiliary gain block (ACB) in the feedback path. This added gain effectively reduces the hysteresis of the comparator and tends to
randomize output noise. With alow ESR capacitor for C1, output noise is below 30 mV over the output load range.
Output power increases with $V_{\text {BATTIRY }}$ from about 1.4W out with 5 V in to about 2 W out with 8 V or more. Efficiency is $62 \%$ to $76 \%$ over a broad output power range. No minimum load is required.

## Component Selection

Substantial current flows through $\mathrm{G}_{\mathrm{N}}$ and $\mathrm{C}_{0 \text { or }}$. Most tantalum capacitors are not rated for current flow and can result in field failures. Using a rated tantalum or rated electrolytic will result in longer system life.

## Shutdown

The circuit is shut down by using two sections of the CD4066 in parallel as a high side switch. Alternatively, simply disabling the logic supply to the $\mathrm{V}_{\text {IN }}$ and $\mathrm{I}_{\text {LIM }}$ nodes of the LT1107 will shut it down. This drops quiescent current from the $\mathrm{V}_{\text {BATTBY }}$ input below $2 \mu \mathrm{~A}$. When the device is shut down $\mathrm{V}_{\text {Or }}$ drops to 0 V .

## A TACHLESS MOTOR SPEED REGULATOR by Mitchell Lee

A common requirement in many motor applications is a means of maintaining constant speed with variable loading or variable supply voltage. Speed control is easily implemented using tachometer feedback, but the cost of a tach may be prohibitive in many situations and adds mechanical complications to the product. A lower cost solution with no moving parts is presented here.
Motor speed changes under conditions of varying loads because of the effects of series loss terms in the motor. The effects of the predominant contributors to loss, copper and brush/commutator resistance (collectively known as $R_{M}$ ), are best understood by considering the circuit model for a motor (see Figure 174). A motor's back 日MF $\left(\mathrm{V}_{\mathrm{M}}\right)$ is proportional to speed ( n ) and the motor current $\left(\mathrm{I}_{\mathrm{M}}\right)$ is proportional to the load torque ( T ). The following equation predicts the speed of the motor for any given condition of loading:


Figure 174. On the Right is Shown an Equivalent Circuit for a Motor. On the Left is the Model for a Circuit Which Will Stablize the Motor's Speed Against Changes in Supply Voltage and Loading

$$
\begin{equation*}
n=\frac{V_{\text {TRMMINAL }}}{K_{V}}-T\left(\frac{R_{M}}{\left(\mathrm{~K}_{\mathrm{T}}\right)\left(\mathrm{K}_{\mathrm{V}}\right)}\right) \tag{1}
\end{equation*}
$$

where $K_{V}$ and $K_{T}$ are constants of proportionality for rotational velocity and torque. For afixed terminal voltage, the speed of the motor must decrease as increasing load

## Application Note 66

torqueis applied to the shaft. For afixed load, the speed of themotor will also change if the supply (terminal) voltage is changed.
Avoltage regulator fixes the problem of a varying terminal voltage, but the only way to eliminate torque from Equation (1) is by reducing $R_{M}$ to zero. Physically this is impractical, but an electrical solution exists.
If amotor is driven from a regulated sourcewhose output impedance is opposite in sign and equal in magnitude to $\mathrm{R}_{\mathrm{M}}$ (see Figure 174), the result is a motor that runs at a constant speed-regardless of loading and power source variations. Fgure 175 shows acircuit that does it all. The LT1170 is configured as a buck/boost converter, which can take a wide ranging 3 V to 20 V input source and produce a regulated output of, say, 6 V . The circuit shown can deliver 1 A at 6 V with a 5 V input, adequate for many small permanent-magnet DC motors.
To cancel the effects of the motor resistance, a negative output impedance is introduced with an op amp and a current sense resistor ( $\mathrm{R}_{\mathrm{S}}$ ). As the motor current increases, the LT1006 responds by increasing the motor
terminal voltageby an amount equal to $\left(\mathrm{I}_{\mathrm{M}}\right)\left(\mathrm{R}_{\mathrm{M}}\right)$. Depending on the value of R3, the speed can be madeto increase, decreaseor stay the same under load. If R3 is just right, the motor speed will remain constant until theLT1170 reaches full power and the circuit runs out of steam.

Many small motors in the 1W to 10W class are not well characterized. In order to choose proper component values for a given motor, figures for $R_{M}$ and $V_{M}$ are necessary. Fortunately, these areeasily measured using aDVM and a motor characterization test stand. If you don't have a motor characterization test stand, it is also possible to use a lathe or drill press to do the job.
Chuck up the candidate motor's shaft in a variable speed drill press or lathe, which is set to run at the same speed you're intending to operate the motor. Clamp down the motor frameso it won't spin. Turn onthebig machine, and measure the open-circuit motor terminals with a DVM. This is the motor voltage, $\mathrm{V}_{\mathrm{M}}$, as shown in Figure 174. Switch the meter to measure the motor's short circuit current, $I_{\text {SC }}$. Motor resistance $R_{M}=V_{M} / I_{\text {SC }}$ With these figures the other component values can be calculated:


Figure 175. Tachless Motor Speed Regulator
$\mathrm{I}_{\mathrm{MAX}}=$ motor current at full load
$V_{R}$ F $=1.244 \mathrm{~V}$
R1 $=$ series combination of $619 \Omega+619 \Omega=1238 \Omega$
$R_{S} \leq 1 / I_{\text {MAX }}$ (drops less than 1 V at maximum load)
$R 2=\left(V_{M} \cdot R 1 / V_{R G}\right)-R 1$
$R 3=\left(R 2 \cdot R_{S}\right) /\left(R_{M}+R_{S}\right)$
Thecomponent values shown in Fgure175 arefor asmall motor with the following characteristics measured at $360 R P M$ : $\mathrm{V}_{\mathrm{M}}=7.8 \mathrm{~V}, \mathrm{I}_{\mathrm{SC}}=3.7 \mathrm{~A}, \mathrm{R}_{\mathrm{M}}=2.1 \Omega, \mathrm{I}_{\mathrm{MAX}} \approx 1 \mathrm{~A}$.
$R_{S}$, a copper resistor, is either located close to or wound around themotor to assist in tracking changes in armature resistance with temperature. Copper has a strong, 3930ppm $/{ }^{\circ} \mathrm{Ctemperature}$ coefficient, matching the TC of the motor winding.

## Setup Procedure

Initial tests should be performed with a potentiometer in place of, and twice the value of, R3. R5 and C5 should be
disconnected; remove all loading from the motor. Check themotor's unloaded speed, and adjust R2 if necessary to set it precisely.
With the motor driving a nominal load, decrease R3 until the motor commences "hunting." R3 will be near the nominal calculated value. This threshold is very close to optimum motor resistancecancellation. R5 and C5 offer a convenient means of compensating for frictional and inertial effects in the mechanical system, eliminating instabilities. System stability should be evaluated under a variety of loading conditions. The effect of R5 is to reduce the negative output impedance of the circuit at high frequencies. Systems with a net positive impedance are inherently stable.
When the system stability is satisfactory, a final adjustment of R3 can be made to achieve the desired speed regulation under conditions of varying loads. These final values can beused in production. Notethat R2 defines the regulated speed value and may be production trimmed in precision applications.

## LT1161: ... AND BACK AND STOP AND FORWARD AND REST - ALL WITH NO WORRIES AT ALL by Peter Schwartz and Milt Wilcox

Many applications of DCmotors requirenot only theability toturnthemotor on and off, but al so to control itsdirection of rotation. When directional control is involved, theneed for rapid deceleration (electronic braking) can also be assumed. A microcontroller interface (logic-level control) is a necessity in modern systems, as is protection of both the motor controller and the motor itself. With the advent of high power, logic-level N -channel MOSFETs, it is a straightforward matter to build the lower half of an H-bridge suitable for the versatile control of DC motor loads. Equivalent performanceP-channel MOSÆTs, however, arestill expensivedevices of limited availability, even without logic-level capability. Therefore, motor control circuits commonly use N -channel devices for the upper half of the H -bridge as well. The trick is to do this without requiring an additional power supply to provide bias for the upper MOSFET gates, while ensuring the necessary system protections.

## A Complete, Six-Part Plan

The circuit shown in Fgure 176 is a complete H-bridge motor driver, with six distinct modes of operation:

- Motor Forward Rotation-Inthis mode, Q1 and Q4 are on, and $\mathbb{Q}$ and $Q$ are off.
- Motor ReverseRotation-Inthis mode, QRand Qß are on, and Q1 and Q4 are off.
- Motor Stop—Here, arapid stop is performed by using "plugging braking," wherein the motor acts as a generator to dissipate mechanical energy as heat in the braking circuit's resistance.
- Motor Idle-All four MOSFETs are turned off. The motor is, in effect, disconnected from the H-bridge driver.
- Load Protect-If themotor is overloaded or stalled for an excessive period, the on-chip fault detection and protection circuitry of the LT1161 will shut the motor off for programmed interval, then turn it back on.


## Application Note 66

$\square$ Short-Circuit Protect—If a source-to-ground short is detected on either Q1 or QR, theon-chip fault detection and protection circuitry of the LT1161 will shut off the MOSETT at risk for the programmed interval and then attempt to turn the circuit back on.

Figure 176 shows a straightforward H-bridge using four N -channel MOSFETs (Q1 to Q4). The lower MOSETTs (QB and Q4) are logic-level devices to allow direct drive from 5 V logic. The upper MOSFETs (Q1 and QR) are driven via level translation circuitry integral to the LT1161. Input 1 of the LT1161 controls a charge pump in the IC, whose output is developed on Gate 1. Similarly, Input 2 controls a charge pump whose output is available on Gate 2. The Gateoutputs havevoltage swings from 0Vto ( $\mathrm{V}_{\propto+}+12 \mathrm{~V}$ ), which is more than sufficient to enhance a standard threshold N-channel MOSFET, such as the IRFZ34. D3 is added to Q1 as a gate-source protection diode to prevent excessive voltage from appearing across the gate-source
terminals of Q1. This could otherwise happen under certain conditions of "motor-idle" operation. D4 serves the same function for $Q$.

## The Logic Behind It All

The logic of the circuit is straightforward and could be replaced by amicrocontroller in many applications. CMOS inverters U1 and U2 drive the lower MOSÆTs directly from a 5 V supply, with the RCD networks on their inputs providing the necessary timing to prevent shoot-through currents in the MOSFET switches. Inverter U3 and NOR gate U5 work together to turn Gate 1 and hence Q1 on when point Ais at alogical high. This also ensures that $\mathbb{C}$ ischarged to alogical high totakeU2'soutput lowandturn @ off. Under these conditions, with point B low (or left floating), U1 will turn Q4 on and U6 will hold Gate 2 and hence Q2 off. If point $A$ is now immediately taken low (or left floating), and point Bis taken high, the symmetry of the


Figure 176. LT1161-Based H-Bridge Motor Driver Schematic Diagram
logic will reverse these conditions-but only after © has discharged to the point wheretheoutput of U2 cango high to turn $@$ on. This is the shoot-through prevention mentioned previously.

There are two exceptions to the symmetry of the logic: if both point A and point Barelow, both upper MOSFETs are turned off whilebothlower MOSETTs areturned on. Under these conditions, the kinetic energy stored in the motor and its load is used to drive the motor as a generator. This produces acurrent throughthemotor winding, © and Q4. In this "plugging braking" mode, the motor's energy is largely dissipated as ${ }^{2}$ Rlosses and arapid stop occurs. If point A and point Bare both high, all four MOSFTs will be turned off and the motor is essentially disconnected from the electrical circuit. Although primarily included as a cross-conduction interlock in the event that both inputs should ever behigh at the sametime(things do happen on thetest bench), this can al so be useful in situations where it is desirable that the motor coast down from a higher velocity to a lower one.

## Just a Few Grams... But Lots of Protection

In addition to its level translation and charge pump features, the LT1161 also provides comprehensive protection features viaits Sense 1 and Sense 2 pins. Each Sense pin is the (-) input to an on-chip comparator, with the (+) input to that driver's comparator fixed at a level 65 mV (nominal, 50 mV minimum) below the LT1161's $\mathrm{V}^{+}$input. If a Sense pin goes more than 65 mV below $\mathrm{V}^{+}$, several things happen: the corresponding Gate output is rapidly pulled to ground, thecapacitor on the Timer pinis dumped to ground and the charge pump is shut off. The charge pump will remain shut off, and the Gate pin will remain clamped to ground until the Timer capacitor has charged backupto $3 V$ froman on-chip $14 \mu A$ current source. When the capacitor reachesthis 3Vthreshold, theinternal charge pump starts up again and the clamp from the Gate pin to
ground is removed. The net effect of this is that, if one of the Sense pins is pulled 65 mV below $\mathrm{V}^{+}$, the MOSFT turns off for aperiod that is set by thevalue of thecapacitor connected totheTimer pin. At theend of this programmed interval thecircuit will automatically restart. If thefault has been cleared, the protection circuitry then becomes transparent tothesystem. This shutdown/retry cyclewill repeat until the fault is cleared.

Thefault scenarios for which protection is required are, as mentioned above, an overloaded or stalled motor or a source-to-ground short on Q1 or QR. In each case such a fault will cause excessive current to flow through the affected upper MOSFT; this current is readily transformed into avoltageby acurrent shunt resistor. Allowing for a 5 A motor current under load, this yields a resistor value of $[5 \mathrm{~A} / 50 \mathrm{mV}(\mathrm{min})]=0.01 \Omega$ for R1 and R2. Toallow for inrush current when the motor starts up or changes direction, delay networks (R3/C5 and R4/O6) have been added to each half of the H-bridge. At a 20A startup current, the values shown give a 3ms delay. The value of the capacitor can be changed to affect longer or shorter delays as needed (the resistor value should not be raised above 10k). A short-to-ground fault, however, requires a shutdown in microseconds, not milliseconds. This is accomplished by adding two BAT85 signal level Schottky diodes (D1 and D2) in parallel withthe 10k delay resistors. At a fault current of approximately 45A, which is easily attained in the short-circuit case, $\mathrm{V}_{\mathrm{SH}} \mathrm{NT}=0.45 \mathrm{~V}$. At this voltage the appropriate diode conducts to temporarily bypass the delay resistor, allowing the LT1161 to turn off the imperiled MOSFET within 20 $\mu \mathrm{s}$ (typical). In each case, the retry interval is programmed by C1 and C2; the $10 \mu \mathrm{~F}$ shown gives a time-out of about 1.8 seconds.
The LT1161 is a quad driver IC, capable of providing drive and protection for two additional MOSFETs beyond those shown in Figure 176.

## Application Note 66

## SIMPLE THERMAL ANALYSIS - A REAL COOL SUBJECT FOR LTC REGULATORS by Alan Rich

## As the temperatures go up... so go the problems with voltage regulators.

## Introduction

Linear Technology Corporation applications engineers get lots of calls saying, "that \$X\%\#@\& voltage regulator is so hot I can't touch it!" The purpose of the article is to show you, the design engineer, how to perform simple thermal calculations to determine regulator temperature and select the proper packagestyle and/or heat sink. In addition, it will show an alternate method of specifying thermal parameters on LTC voltage regulators.

## Definition of Terms

Power dissipationis the parameter that causes aregulator to heat up; the unit for power is watts. Power is theproduct of the voltage across a linear regulator times the load current (se Fgure 177).
Thermal resistance is a measure of the flow of heat from one surface to another surface; the unit of thermal resistance is ${ }^{\circ} \mathrm{C} /$ watt. Common terms for thermal resistance that show up on most LTC data sheets are:
$\theta_{\mathrm{Jc}}$ —thermal resistancefrom thejunction of thedieto the case of the package
$\theta_{\text {JA }}$-thermal resistancefrom thejunction of thedieto the ambient temperature

Sometypical LTCregulators and their thermal characteristics are shown in Table 1.

Table 1. $\theta_{\mathrm{JC}}$ and $\theta_{\mathrm{JA}}$ for Three LTC Regulators

| DEVICE | $\theta_{\mathrm{JC}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$ | $\theta_{\mathrm{JA}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$ |
| :--- | :---: | :---: |
| LT1005CT | 5.0 | - |
| LT1083MK | 1.6 | - |
| LT1129CT | 5.0 | 50 |

Thereareseveral other commonthermal resistanceterms:
$\theta_{\text {©S }}$ —thermal resistancefrom the case of the package to the heat sink
$\theta_{\text {SA }}$ - thermal resistance from a heat sink surface to the ambient temperature


Figure 177. Typical Linear Regulator Circuit
The last two terms are determined by how a regulator is mounted to the heat sink and by the properties of the heat sink. Heat sinksareusedto decreasethethermal resistance and therefore lower the temperature rise of the regulator.
Temperature is a term with which we areall very familiar. All thermal calculations will usetheCentigradescaleor ${ }^{\circ} \mathrm{C}$.
$\mathrm{T}_{J}$ - temperature of the junction of the regulator die
$\mathrm{T}_{\mathrm{C}}$ — temperature of the case of the regulator
$\mathrm{T}_{\mathrm{A}}$ - ambient temperature
The maximum operating junction temperature, $\mathrm{T}_{\mathrm{JMAX}}$ for LTC regulators is shown on the device data sheet.

## What is Thermal Analysis?

The goal of any thermal analysis is to determine the regulator junction temperature, $\mathrm{T}_{\mathrm{J}}$, to ensure that this temperature is less than either the regulator rating or a design specification. In the simplest case, temperature rise is calculated by multiplying the power times the total of all thermal resistance:

$$
T_{R}=P\left(\theta_{\text {TOTAL }}\right)
$$

$\theta_{\text {Total }}$ includes the thermal resistance junction-to-case $\left(\theta_{\mathrm{Jc}}\right)$, thermal resistance case-to-heat sink ( $\theta_{\mathrm{CS}}$ ), and thermal resistance heat sink-to-ambient ( $\theta \mathrm{SA}$ ).
$T_{R}$ represents the temperature rise above the ambient temperature; therefore, to determine the actual junction temperature of the regulator, the ambient temperature must be added to $T_{R}$ :

Regulator junction temperature $=$ Ambient Temperature $+T_{R}$

For example, consider acircuit using an LT1129CT operating in $50^{\circ}$ Cenclosurewith aninput voltageof 8 VDC , an output voltage of 5VDC and a load current of $1 \mathrm{~A}^{1}$.

[^4]
## Application Note 66

The power dissipated by the LT1129CT is:

$$
\mathrm{P}=\left(\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }}\right)\left(\mathrm{L}_{\text {LOAD }}\right)=(8 \mathrm{~V}-5 \mathrm{~V})(1 \mathrm{a})=3 \mathrm{~W}
$$

The first question is, does this circuit need a heat sink?
Since we have assumed no heat sink on the LT1129CT for the purpose of this calculation, we must use thermal resistance from junction to ambient, $\theta_{\mathrm{JA}}=50^{\circ} \mathrm{CW}$.

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{J}}=\mathrm{P}\left(\theta_{\mathrm{JA}}\right)+\mathrm{T}_{\mathrm{A}}=3 \mathrm{~W}\left(50^{\circ} \mathrm{C} \mathrm{~W}\right)+50^{\circ} \mathrm{C} \\
& =150^{\circ} \mathrm{C}+50^{\circ} \mathrm{C}=200^{\circ} \mathrm{C}
\end{aligned}
$$

The junction temperature, $\mathrm{T}_{\mathrm{J}}$, that we just calculated is greater than the LT1129CT's maximum junction temperature specification of $125^{\circ} \mathrm{C}$, thereforethis circuit must use a heat sink.

Now the task at hand is to calculate the correct heat sink to use. The selected heat sink must hold the junction temperature at less than $125^{\circ} \mathrm{C}$ for the LT1129CT.

$$
\begin{aligned}
& T_{J}=P\left(\theta_{\text {TOTAL }}\right)+\mathrm{T}_{\mathrm{A}} \\
& 125^{\circ} \mathrm{C}=3 \mathrm{~W}\left(\theta_{\mathrm{TOTAL}}\right)+50^{\circ} \mathrm{C} \\
& \theta_{\text {TOTAL }}=25^{\circ} \mathrm{CW} \text { and } \\
& \theta_{\text {TOTAL }} \theta_{\mathrm{JC}}+\theta_{\mathrm{CS}}+\theta_{\text {SA }}
\end{aligned}
$$

For this configuration:
$\theta_{\mathrm{Jc}}=5^{\circ} \mathrm{CW}$ (LT1129CT data sheet)
$\theta_{\mathrm{CS}}=0.2^{\circ} \mathrm{CW}$ (typical for heat sink mounting)
$\theta_{\mathrm{SA}}=$ heat sink specification
Plugging in these numbers:

$$
\begin{aligned}
& 25^{\circ} \mathrm{CW}=5^{\circ} \mathrm{CW}+0.2^{\circ} \mathrm{CW}+\theta_{\mathrm{SA}} \\
& \theta_{\mathrm{SA}}=19.8^{\circ} \mathrm{CW}
\end{aligned}
$$

Therefore, the heat sink selected must have a thermal resistance of less than $19.8^{\circ} \mathrm{C} / \mathrm{W}$ to hold the LT1129CT junction temperature at less than $125^{\circ} \mathrm{C}$. Obviously, the lower the heat sink thermal resistance, the lower the LT1129CT junction temperature. A lower junction temperature will increase reliability.
Now, let's consider acircuit using an LT1129CT operating in $250^{\circ}$ Cenclosure with an input voltage of only 6 VDC , an output voltage of 5 VDC , and a load current of 1 A .
The power dissipated by the LT1129CT is:

$$
\mathrm{P}=\left(\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }}\right)\left(\mathrm{I}_{\text {LOAD }}\right)=(6 \mathrm{~V}-5 \mathrm{~V}) 1 \mathrm{~A}=1 \mathrm{~W}
$$

Does this circuit need aheat sink? Again, for the purposes of the calculation, we must use thermal resistance from junction to ambient, $\theta_{\mathrm{JA}}=50^{\circ} \mathrm{CW}$ for the LT1129CT.

$$
\begin{aligned}
& T_{J}=P\left(\theta_{J A}\right)+T_{A}=1 W\left(50^{\circ} \mathrm{CW}\right)+50^{\circ} \mathrm{C} \\
& =50^{\circ} \mathrm{C}+50^{\circ} \mathrm{C}=100^{\circ} \mathrm{C}
\end{aligned}
$$

Thejunctiontemperature $\mathrm{T}_{\text {t }}$ that wejust calculated is now less than the LT1129CT's maximumjunctiontemperature specification of $125^{\circ} \mathrm{C}$. Therefore this circuit does not need a heat sink. This illustrates the advantage of a low dropout regulator like the LT1129CT.

## An Alternative Method for Specifying Thermal Parameters

Linear Technology Corp. has introduced an alternative method to specify and calculate thermal parameters of voltage regulators. Previous regulators, with a single thermal resistance junction-to-case ( $\theta_{\mathrm{Jd}}$ ), used an averageof temperatureriseof thecontrol and power sections. This could easily allow excessive junction temperature under certain conditions of ambient temperature and heat sink thermal resistance.
Several LTCvoltageregulators includethermal resistance and maximum junction temperature specifications for both the control and power sections, as shown in

Table 2. Two ExamplesShowing Thermal Resistance of Control and Power Sections of LTC Regulators

|  | CONTROL |  | POWER |  |
| :--- | :---: | :---: | :---: | :---: |
| DEVICE | $\theta_{\text {JC }}$ | $\mathrm{T}_{\text {JMAX }}$ | $\theta_{\text {JC }}$ | TJMAXLT1083MK |
| $0.6^{\circ} \mathrm{CW}$ | $150^{\circ} \mathrm{C}$ | $1.6^{\circ} \mathrm{CW}$ | $200^{\circ} \mathrm{C}$ |  |
| LT1085CT | $0.7^{\circ} \mathrm{CW}$ | $125^{\circ} \mathrm{C}$ | $3.0^{\circ} \mathrm{CW}$ | $150^{\circ} \mathrm{C}$ |

As an example, let's calculatethejunctiontemperaturefor the same application shown before, using an LT1085CT instead of the LT1129CT. Once again, we areoperating in a $50^{\circ} \mathrm{C}$ enclosure; the input voltage is 8 VDC , the output voltage is 5 VDC and the load current is 1 A .
The power dissipated by the LT1085CT is the same as before, 3 W . We will assume we have selected a heat sink with a thermal resistance, $\theta_{\mathrm{sA}}$ of $10^{\circ} \mathrm{CW}$. First calculate the control section of the LT1085CT:

## Application Note 66

$$
\begin{aligned}
& \theta_{\mathrm{JC}}=0.7^{\circ} \mathrm{CW}(\mathrm{LT} 1085 \mathrm{CT} \text { data sheet }) \\
& \theta_{\mathrm{CA}}=0.2^{\circ} \mathrm{CW} \text { (typical) } \\
& \theta_{\mathrm{SA}}=10^{\circ} \mathrm{CW}
\end{aligned}
$$

$$
\begin{aligned}
& \theta_{\text {TOTAL }}=\theta_{\mathrm{JC}}+\theta_{\mathrm{CA}}+\theta_{\mathrm{SA}}=0.7^{\circ} \mathrm{CW}+0.2^{\circ} \mathrm{CW}+ \\
& 10^{\circ} \mathrm{CW}=10.9^{\circ} \mathrm{CW}
\end{aligned}
$$

To determine the control section junction temperature:

$$
\begin{aligned}
& \mathrm{T}_{J}=\mathrm{P}\left(\theta_{\text {TOTAL }}\right)+\mathrm{T}_{\mathrm{A}}=3 \mathrm{~W}\left(10.9^{\circ} \mathrm{C} \mathrm{~W}\right)+50^{\circ} \mathrm{C} \\
& =82.7^{\circ} \mathrm{C}\left(\mathrm{~T}_{J \text { MAX }}=125^{\circ} \mathrm{C}\right)
\end{aligned}
$$

To calculate the power section of the LT1085CT:
$\theta_{\mathrm{JC}}=3^{\circ} \mathrm{CW}$ (LT1085CT data sheet)
$\theta_{\text {TOTAL }}=\theta_{\mathrm{JC}}+\theta_{\mathrm{CA}}+\theta_{\mathrm{SA}}=3^{\circ} \mathrm{CW}+0.2^{\circ} \mathrm{CW}+$ $10^{\circ} \mathrm{CW}=13.2^{\circ} \mathrm{C} \mathrm{W}$

To determine the power section junction temperature:

$$
\begin{aligned}
& \mathrm{T}_{J}=\mathrm{P}\left(\theta_{\text {TOTAL }}\right)+\mathrm{T}_{\mathrm{A}}=3 \mathrm{~W}\left(13.2^{\circ} \mathrm{C} \mathrm{~W}\right)+50^{\circ} \mathrm{C} \\
& =89.6^{\circ} \mathrm{C}\left(\mathrm{~T}_{J \text { MAX }}=150^{\circ} \mathrm{C}\right)
\end{aligned}
$$

In both cases, the junction temperature is below the maximum rating for the respective section; this ensures reliable operation.

## Conclusion

This article is an introduction to thermal analysis for voltage regulators; however, the techniques also apply to other devices, including operational amplifiers, voltage references, resistors, and the like. For themoreadvanced student of thermal analysis, it can be shown that there is a direct analogy between electronic circuit analysis and thermal analysis, as shown in Table 3.

Table 3. analogy Between Thermal Analysis and Electronic Circuit Analysis

| THERMAL WORLD | ELECTRICAL WORLD |
| :--- | :--- |
| Power | Current |
| Temperature Differences | Voltage |
| Thermal Resistance | Resistance |

All standard electronic network analysis techniques (Kirchhoff's laws, Ohm's law) and computer circuit analysis programs (SPICE) can be applied to complex thermal systems.

## Application Note 66

ALPHABETICAL INDEX (BY MAJOR CATEGORIES)
BATTERY CHARGERS
Charging NiMH/NiCd or Li-Ion with the LT1510 ..... 70
Lithium-Ion Battery Charger ..... 71
Simple Battery Charger Runs at 1 MHz ..... 73
A Perfectly Temperature Compensated Battery Charger ..... 74
A Simple 300mA NiCd Battery Charger ..... 75
High Eficiency (>90\%) NiCd Battery Charger Oircuit Programmable for 1.3A Fast Charge or 100mA Trickle Charge ..... 76
MISCELLANEOUS
Protected Bias for GaAs Power Amplifiers ..... 88
LT1158 H-Bridge Uses Ground Referenced Current Sensing for System Protection ..... 89
LT1158 Allows Easy 10A Locked Antiphase Motor Control ..... 91
All Surface Mount Programmable 0V, 3.3V, 5V and 12V VPP Generator for PCMCIA ..... 92
A Tachless Motor Speed Controller ..... 93
LT1161...And Back and Stop and Forward and Rest-All with No Worries at All ..... 95
Simple Thermal Analysis-A Real Cool Subject for LTC Regulators ..... 98
POWER MANAGEMENT
LT1366 Rail-to-Rail Amplifier Controls Topside Current ..... 78
An Isolated High Side Driver ..... 79
LTC1163: 2-Cell Power Management ..... 80
LTC1157 Switch for 3.3V PC Card Power ..... 81
The LTC1157 Dual 3.3V Micropower MOSFET Driver ..... 82
The LTC1155 Does Laptop Computer Power Bus Switching, SCSI Termination Power or 5V/3A Extremely Low Dropout Regulator ..... 82
A Circuit That Smoothly Switches Between 3.3V and 5V ..... 84
A Fully Isolated Quad 4A High Side Switch ..... 85
The LTC1153 日ectronic Oircuit Breaker ..... 86
LTC1477: $0.07 \Omega$ Protected High Side Switch Eiminates "Hot Swap" Glitching ..... 87
REGULATORS— LINEAR
Low Noise Wireless Communications Power Supply ..... 65
An LT1123 Ultralow Dropout 5V Regulator ..... 66
REGULATORS— LINEAR
Microprocessor Power
LT1580 Low Dropout Regulator Uses New Approach to Achieve High Performance ..... 67
LT1585: New Linear Regulator Solves Load Transients ..... 68
REGULATORS—SWITCHING (BOOST)
Medium Power (1A to 4A)High Output Current Boost Regulator24
Low Power (<1A)
Applications for the LT1372 500kHz Switching Regulator ..... 25

## Application Note 66

REGULATORS—SWITCHING (BUCK)
High Power (>4A)
Big Power for Big Processors: The LTC1430 Synchronous Regulator ..... 4
Applications for the LTC1266 Switching Regulator ..... 5
A High Efficiency 5V to 3.3V/5A Converter ..... 7
High Ourrent, Synchronous Step-Down Switching Regulator ..... 8
Medium Power (1A to 4A)
1MHz Step-Down Converter Ends 455kHz IFWoes ..... 10
High Output Voltage Buck Regulator ..... 11
The LTC1267 Dual Switching Regulator Controller Operates from High Input Voltages ..... 12
High Eficiency 5V to 3.3V/1.25A Converter in 0.6 Square Inches ..... 13
LT1074/LT1076 Adjustable OV to 5V Power Supply ..... 14
Triple Output 3.3V, 5V and 12V High Efficiency Notebook Power Supply ..... 15
The New SO-8 LTC1147 Switching Regulator Controller Offers High Efficiency in a Small Footprint ..... 17
The LT1432: 5V Regulator Achieves 90\% Efficiency ..... 20
Low Power (<1A)
Applications for the LTC1265 High Efficiency Monolithic Buck Converter ..... $२ 2$
REGULATORS— SWITCHING (BUCK/ BOOST)
$\pm 5 \mathrm{~V}$ Converter Uses Off-the-Shelf Surface Mount Coil ..... 27
Switching Regulator Provides Constant 5V Output from 3.5V to 40V Input Without a Transformer ..... 28
Switching Regulator Provides $\pm 15 \mathrm{~V}$ Output from an 8 V to 40 V Input Without a Transformer ..... 29
REGULATORS— SWITCHING (DISCUSSION)
Adding Features to the Boost Topology ..... 39
Sensing Negative Outputs ..... 40
REGULATORS—SWITCHING (FLYBACK)
Applications for the LT1372 500kHz Switching Regulator ..... 25
REGULATORS— SWITCHING (INVERTING)
High Eficiency 12 V to - 12 V Converter ..... 32
Regulated Charge Pump Power Supply ..... 34
Applications for the LTC1265 High Efficiency Monolithic Buck Converter ..... 22
LTC1174: A High Efficiency Buck Converter ..... 35
REGULATORS—SWITCHING (MICROPOWER)
Backlight
High Eficiency 日 Driver Circuit ..... 58
A Low Power, Low Voltage CCR Power Supply ..... 60
All Surface Mount 日 Panel Driver Operates from 1.8V to 8V Input ..... 61
A Dual Output LCD Bias Voltage Generator ..... 62
LCD Bias Supply ..... 63

## Application Note 66

REGULATORS— SWITCHING (MICROPOWER)
Switched Capacitor
Regulated Charge Pump Power Supply ..... 34
REGULATORS—SWITCHING (MICROPOWER)
VPP Generator
LTC1262 Generates 12V for Programming Fash Memories Without Inductors ..... 64
Aash Memory VPP Generator Shuts Down with OV Output ..... 64
REGULATORS— SWITCHING (POWER FACTOR CORRECTED) The New LT1508/LT1509 Combines Power Factor Correction and a PWM in a Single Package ..... 37

## U.S. Area Sales Offices

NORTHEAST REGION
Linear Technology Corporation
3220 Tillman Drive
Suite 120
Bensalem, PA 19020
Phone: (215) 638-9667
FAX: (215) 638-9764
Linear Technology Corporation
266 Lowell Street
Suite B-8
Wilmington, MA 01887
Phone: (508) 658-3881
FAX: (508) 658-2701
NORTHWEST REGION
Linear Technology Corporation 1900 McCarthy Blvd.
Suite 205
Milpitas, CA 95035
Phone: (408) 428-2050
FAX: (408) 432-6331

FRANCE
Linear Technology S.A.R.L.
Immeuble "Le Quartz"
58 Chemin de la Justice
92290 Chatenay Malabry
France
Phone: 33-1-41079555
FAX: 33-1-46314613

## GERMANY

Linear Technology GmbH
Oskar-Messter-Str. 24
85737 Ismaning
Germany
Phone: 49-89-962455-0
FAX: 49-89-963147

## JAPAN

Linear Technology KK
5F NAO Bldg.
1-14 Shin-Ogawa-cho Shinjuku-ku
Tokyo, 162 Japan
Phone: 81-3-3267-7891
FAX: 81-3-3267-8510

SOUTHEAST REGION
Linear Technology Corporation
17000 Dallas Parkway
Suite 219
Dallas, TX 75248
Phone: (214) 733-3071
FAX: (214) 380-5138
Linear Technology Corporation
5510 Six Forks Road
Suite 102
Raleigh, NC 27609
Phone: (919) 870-5106
FAX: (919) 870-8831

## CENTRAL REGION

Linear Technology Corporation
Chesapeake Square
229 Mitchell Court, Suite A-25
Addison, IL 60101
Phone: (708) 620-6910
FAX: (708) 620-6977

## International Sales Offices

KOREA
Linear Technology Korea Co., Ltd
Namsong Building, \#403
Itaewon-Dong 260-199
Yongsan-Ku, Seoul 140-200
Korea
Phone: 82-2-792-1617
FAX: 82-2-792-1619

## SINGAPORE

Linear Technology Pte. Ltd.
507 Yishun Industrial Park A
Singapore 2776
Phone: 65-753-2692
FAX: 65-754-4113

## SWEDEN

Linear Technology AB
Sollentunavägen 63
S-191 40 Sollentuna
Sweden
Phone: 46-8-623-1600
FAX: 46-8-623-1650

## World Headquarters

Linear Technology Corporation
1630 McCarthy Blvd.
Milpitas, CA 95035-7417
Phone: (408) 432-1900
FAX: (408) 434-0507

## SOUTHWEST REGION

Linear Technology Corporation
21243 Ventura Blvd.
Suite 227
Woodland Hills, CA 91364
Phone: (818) 703-0835
FAX: (818) 703-0517
Linear Technology Corporation
15375 Barranca Parkway
Suite A-211
Irvine, CA 92718
Phone: (714) 453-4650
FAX: (714) 453-4765

## TAIWAN

Linear Technology Corporation
Rm. 602, No. 46, Sec. 2
Chung Shan N. Rd.
Taipei, Taiwan, R.O.C.
Phone: 886-2-521-7575
FAX: 886-2-562-2285

## UNITED KINGDOM

Linear Technology (UK) Ltd.
The Coliseum, Riverside Way
Camberley, Surrey GU15 3YL
United Kingdom
Phone: 44-1276-677676
FAX: 44-1276-64851


[^0]:    $\overline{\mathbf{1 Y}}$, LTC and LT are registered trademarks of Linear Technology Corporation.

[^1]:    ${ }^{1}$ JUMBO-PAC is a trademark of Coiltronics Inc. (407) 241-7876.

[^2]:    ${ }^{1}$ Williams, Jim. "200mA Output, 1.5 to 5V Converter." Linear Technology III:1 (February, 1993) p. 17.

[^3]:    Tempsistor is a registered trademark of Thermodisc Inc.

[^4]:    ${ }^{1}$ The LT1129CT is guaranteed for 700 mA , but could be selected to output 1 A .

