

MOTOROLA®

PRICE \$3.50

Edward J Kowalezyk

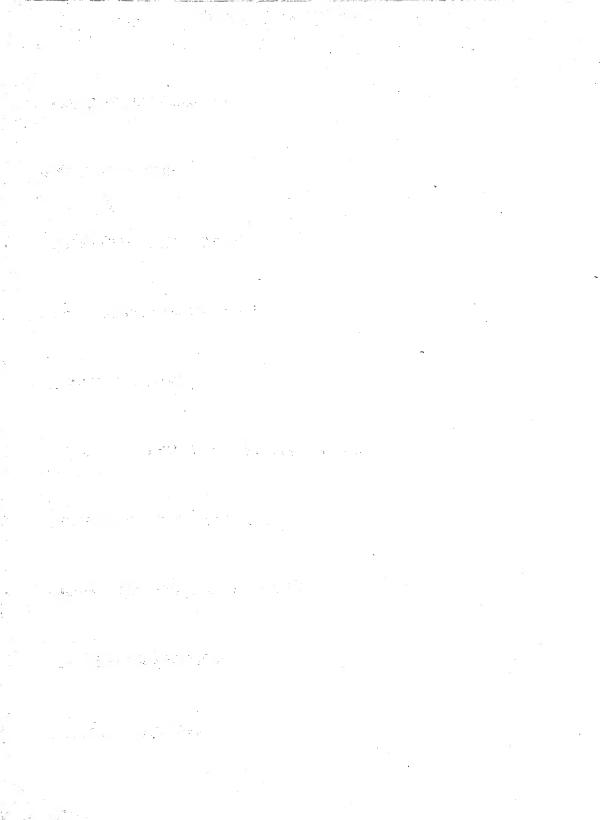
SILICON ZENER DIODES

SILICON RECTIFIERS

SILICON RECTIFIER ASSEMBLIES

SILICON CONTROLLED RECTIFIERS

POWER TRANSISTORS


LOW-FREQUENCY, LOW-POWER TRANSISTORS

HIGH-FREQUENCY TRANSISTORS

SPECIAL AND MULTIPLE TRANSISTORS

SPECIAL PURPOSE SILICON DIODES

INTEGRATED CIRCUITS

SEMICONDUCTOR DATA MANUAL

The information in this handbook has been carefully checked and is believed to be reliable; however, no responsibility is assumed for inaccuracies. Furthermore, such information does not convey to the purchaser of semiconductor devices described any license under the patent right of Motorola Inc., or others.

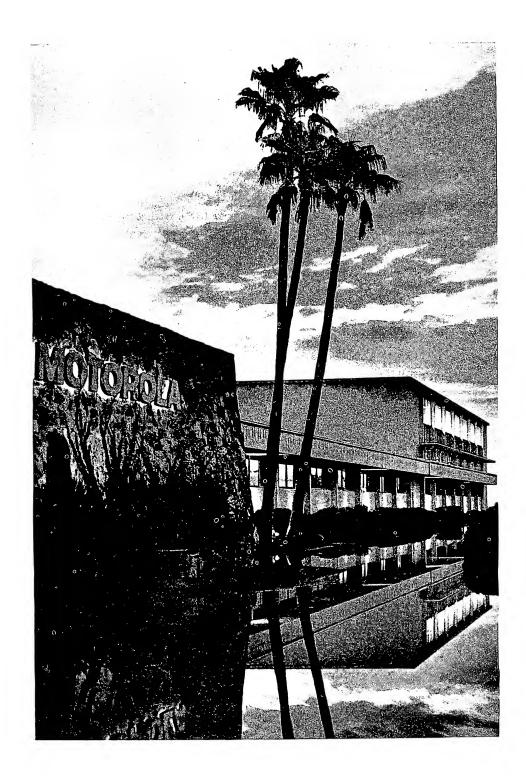
Used throughout this Data Manual are a number of terms that are Trademarks of Motorola Inc. These include: Star, Band-Guard, MIDA, Meg-A-Life, Meg-A-Life II, Epicap, Surmetic, Compatible, 0-pf, and MECL.

© 1965, Motorola Inc.

1st printing May 1965

ABOUT THIS MANUAL

One of the major problems facing workers in the electronics field is the identification and selection of semiconductor devices. Type numbers themselves are of little value since they indicate neither device parameters nor applications. Because it is difficult even to identify the many thousands of device type numbers, let alone evaluate their merits for a particular application, engineers often limit their designs to a few well-known device types -- despite the fact that newer or more suitable devices may be available.


This manual covers the entire line of Motorola semiconductor products -one of the most extensive in the industry. It includes specifications for semiconductor devices, including zener and reference diodes, rectifiers, varactors,
voltage-variable capacitors, controlled rectifiers, transistors, integrated circuits and a variety of other standard and special devices that make up today's
semiconductor complement. It is intended to simplify the selection of the
most useful type numbers for a given application. Accordingly, it contains
a number of selector charts, as well as pertinent electrical specifications for
the Motorola product line. Properly used, it can be a useful toolforthe design
engineer, the component engineer, and the purchasing agent in narrowing the
broad categories of potentially useable components to those best suited for a
specific project.

CONTENTS

Section 1	General Information	
	How to Use the Motorola Semiconductor Data Manual	1-1
	Alpha-Numeric Index of Devices	1-2
	Military Type Semiconductors	1-18
	Meg-A-Life Certified Reliability Products	1-21
	Meg-A-Life II High-Reliability Products	1-22
	Device Outline Dimensions	1-26
Section 2	Silicon Zener Diodes, Temperature Compensated	
	Diodes and Reference Amplifiers	
	Introduction	2-3
	Quick Selection Chart	2-4
	Zener Diode Data Sheets	2-6
	Temperature Compensated Diode Introduction	2-31
	Temperature Compensated Diode Data Sheets	2-32
	Reference Amplifiers	2-36
Section 3	Silicon Rectifiers	
	Introduction	3-3
	Quick Selection Chart	3-4
	Summary of Rectifier Specifications	3-6
	Data Sheets	3-8
Section 4	Silicon Rectifier Assemblies	
	Listing of Devices	4-1
	Introduction	4-3
	Data Sheets	4-4

Section 5	Silicon Controlled Rectifiers and Gate Controlled Switches	
	Listing of SCRs and GCSs	5-3
	SCR Symbols and Definitions	5-4
	Quick Selection Guide	5-5
	Summary of SCR Specifications	5-6
	Data Sheets	5-9
Section 6	Power Transistors	
	Introduction	6-3
	Selection Guides	6-4
	Summary of Power Transistor Specifications	6-6
	Data Sheets	6-9
Section 7	Low-Frequency, Low-Power Transistors (Milliwatt)	
	Introduction	7-3
	Quick Selection Guide	7-3
	Summary of Milliwatt Transistor Specifications	7-4
	Data Sheets	7-6
Section 8	High-Frequency Transistors	
	Listing of High-Frequency Transistors	8-3
	Listing of Preferred Silicon Transistors	8-5
	Cross Reference Guide (EIA Motorola)	8-6
	Silicon High-Speed Switching Transistor Selection Guides	8-8
	Germanium High-Speed Switching Transistor Select on Guides	8-11
	Silicon Medium-Speed Switching Transistor Selection Guides	8-14
	RF Transistor Selection Guides	8-18
	Small Signal Amplifier and Oscillator Transistor Selection Guides	8-24
	Data Sheets	8-28

Section 9	Multiple and Special Transistors	
	Listing of Devices	9-1
	Introduction	9-3
	Data Sheets	9-4
Section 10	Special Purpose Silicon Diodes	
	Silicon Varactor Diode Introduction	10-3
	Silicon Voltage-Variable Capacitance Diode Introduction	10-3
	4-Layer Diode Introduction	10-5
	RF Switching Diode Introduction	10-5
	Data Sheets	10-6
Section 11	Integrated Circuits	
	Digital Circuits	11-1
	Linear Circuits	11-147
Section 12	Reference Material	
	How to Get More Value Out of a Transistor Data Sheet	12-3
	Determining Maximum Reliable Load Lines for Power Transistors.	12-13
	Factors Influencing Selection of Commercial Power Transistor Heat Sinks	12-19
	Understanding Transistor Response Parameters	12-25
	Significance of $\mathbf{Q}_{\mathbf{T}}$ in Switching Circuits	12-27
	High-Power Varactor Diodes — Theory and Application	12-40
	Optimizing SCR Turn-Off Parameters with Negative Bias	12-50

HOW TO USE THE MOTOROLA SEMICONDUCTOR DATA MANUAL

The manual is designed to serve three specific functions:

- To permit quick selection of the most suitable devices for a specific application;
- 2. To permit quick selection of the devices that best meet a given set of electrical specifications;
- 3. To permit quick identification of a particular device number.

To accomplish this, the manual is divided into 10 main sections:

- Zener diodes, temperature compensated reference diodes and reference amplifiers
- 2. Rectifiers
- 3. Varactors, voltage-variable capacitors, 4-layer diodes and RF diodes
- 4. Silicon controlled rectifiers and gate controlled switches
- 5. Power transistors
- 6. Low-power, low-frequency transistors
- 7. High-frequency transistors
- 8. Special and multiple transistors
- 9. Circuit assemblies
- 10. Integrated circuits.

Each of these sections contains data-sheet specifications of suitable device types, preceded by applicable selection charts.

An introductory section in the front of the book contains general data such as a complete numerical-alphabetical listing of device types, military device type listings, Meg-A-Life and Meg-A-Life II high-reliability device listings and case outlines.

HOW TO SOLVE YOUR SEMICONDUCTOR DEVICE SELECTION PROBLEMS

1. Known: Device type number

Needed Information: Identification, applications, and specifications Procedure: Locate device type number in numerical-alphabetical listing (Page 1-2) and turn to the page number given for complete data.

2. Known: Desired application or device parameters.

Needed Information: Specific type numbers of devices to fit known application or parameters.

Procedure: Turn to subsection covering desired devices, (e.g., transistors; low-frequency, high-power). Consult appropriate Quick Selection Chart for device types recommended for your application, or units closely approaching the required parameters. Locate device type number listed in alphabetical-numerical order within subsection for more detailed specifications.

DEVICE INDEX

The semiconductor devices listed in this manual are arranged in product groups such as high-frequency transistors, zener diodes and integrated circuits. While this arrangement should best serve the needs of most users of this manual, there are occasions when it will be necessary to locate a device known only by type number. The following index, arranged in alpha-numeric order, will fill this need.

DEVICE LISTING

Device Type	Page	Device Type	Page	Device Type	Page
1/4M2.4AZ 1/4M2.7AZ 1/4M3.0AZ 1/4M3.3AZ 1/4M3.6AZ 1/4M3.9AZ 1/4M4.3AZ 1/4M4.7AZ 1/4M5.1AZ 1/4M5.6AZ 1/4M6.2AZ	2-6 2-6 2-6 2-6 2-6 2-6 2-6 2-6 2-6 2-6	1/4M6.8Z 1/4M7.5Z 1/4M8.2Z 1/4M9.1Z 1/4M10Z 1/4M11Z 1/4M12Z 1/4M13Z 1/4M14Z 1/4M15Z 1/4M16Z	2-6 2-6 2-6 2-6 2-6 2-6 2-6 2-6 2-6 2-6	1/4M17Z 1/4M18Z 1/4M19Z 1/4M20Z 1/4M22Z 1/4M24Z 1/4M25Z 1/4M25Z 1/4M30Z 1/4M33Z 1/4M36Z	2-6 2-6 2-6 2-6 2-6 2-6 2-6 2-6 2-6

Device Type	Page	Device Type	Page	Device Type	Page
4 /					
1/4M39Z	2-6	3/4M82Z	2-17	1M3.9ZS	2-28
1/4M43Z	2-6	3/4M91Z	2-17	1M4.3ZS	2-28
1/4M45Z	2-6	3/4M100Z	2-17	1M4.7ZS	2-28
1/4M47Z	2-6	3/4M110Z	2-17	1M5.1ZS	2-28
1/4M50Z	2-6	3/4M120Z	2-17	1M5.6ZS	2-28
1/4M52Z	2-6	3/4M130Z	2-17	1M6.2ZS	2-28
1/4M56Z	2-6	3/4M150Z	2-17	1M6.8ZS	2-28
1/4M62Z	2-6	3/4M160Z	2-17	1M7.5ZS	2-28
1/4M68Z	2-6	3/4M180Z	2-17	1M8.2ZS	2-28
1/4M75Z	2-6	3/4M200Z	2-17	1M9.1ZS	2-28
1/4M82Z	2-6	1M6.8Z	2-17	1M10ZS	2-28
1/4M91Z	2-6	1M7.5Z	2-17	1M11ZS	2-28
1/4M100Z	2-6	1M8.2Z	2-17	1M12ZS	2-28
1/4M105Z	2-6	1M9.1Z	2-17	1M13ZS	2-28
1/4M110Z	2-6	1M10Z	2-17	1M15ZS	2-28
1/4M120Z	2-6	1M11Z	2-17	1M16ZS	2-28
1/4M130Z	2-6	1M12Z	2-17	1M18ZS	2-28
1/4M140Z	2-6	1M13Z	2-17	1M20ZS	2-28
1/4M150Z	2-6	1M15Z	2-17	1M22ZS	2-28
1/4M175Z	2-6	1M16Z	2-17	1M24ZS	2-28
1/4M200Z	2-6	1M18Z	2-17	1M27ZS	2-28
3/4M6.8Z	2-17	1M20Z	2-17	1M30ZS	2-28
3/4M7.5Z	2-17	1M22Z	2-17	1M33ZS	2-28
3/4M8.2Z	2-17	1M24Z	2-17	1M36ZS	2-28
3/4M9.1Z	2-17	1M27Z	2-17	1M39ZS	2-28
3/4M10Z	2-17	1M30Z	2-17	1M43ZS	2-28
3/4M11Z	2-17	1M33Z	2-17	1M47ZS	2-28
3/4M12Z	2-17	1M36Z	2-17	1M51ZS	2-28
3/4M13Z	2-17	1M39Z	2-17	1M56ZS	2-28
3/4M13Z	2-17	1M43Z	2-17	1M62ZS	2-28
3/4M15Z	2-17	1M47Z	2-17	1M68ZS	2-28
3/4M16Z	2-17	1M51Z	2-17	1M75ZS	2-28
3/4M18Z	2-17	1M56Z	2-17	1M82ZS	2-28
3/4M20Z	2-17	1M62Z	2-17	1M91ZS	2-28
3/4M22Z	2-17	1M68Z	2-17	1M100ZS	2-28
3/4M24Z	2-17	1M75Z	2-17	1.5M6.8Z	2-22
3/4M27Z	2-17	1M82Z	2-17	1.5M7.5Z	2-22
3/4M30Z	2-17	1M91Z	2-17	1.5M8.2Z	2-22
3/4M33Z	2-17	1M100Z	2-17	1.5M9.1Z	2-22
3/4M36Z	2-17	1M110Z	2-17	1.5M10Z	2-22
3/4M39Z	2-17	1M120Z	2-17	1.5M11Z	2-22
3/4M43Z	2-17	1M130Z	2-17	1.5M12Z	2-22
3/4M47Z	2-17	1M150Z	2-17	1.5M13Z	2-22
3/4M51Z	2-17	1M160Z	2-17	1.5M15Z	2-22
3/4M56Z	2-17	1M180Z	2-17	1.5M16Z	2-22
3/4M62Z	2-17	1M200Z	2-17	1.5M18Z	2-22
3/4M68Z	2-17	1M3.3ZS	2-28	1.5M20Z	2-22
3/4M75Z	2-17	1M3.6ZS	2-28	1.5M22Z	2-22
	ł				1
	1				

DEVICE LISTING (continued)

Device Type	Page	Device Type	Page	Device Type	Page
1.5M24Z	2-22	10M30Z	2-15	50M45Z	2-13
1.5M24Z	2-22	10M33Z	2-15	50M47Z	2-13
1.5M27Z	2-22	10M36Z	2-15	50M50Z	2-13
1.5M30Z	2-22	10M39Z	2-15	50M51Z	2-13
1.5M33Z	2-22	10M43Z	2-15	50M52Z	2-13
1.5M36Z	2-22	10M47Z	2-15	50M56Z	2-13
1.5M39Z	2-22	10M50Z	2-15	50M62Z	2-13
1.5M43Z	2-22	10M51Z	2-15	50M68Z	2-13
1.5M47Z	2-22	10M52Z	2-15	50M75Z	2-13
1.5M51Z	2-22	10M56Z	2-15	50M82Z	2-13
1.5M56Z	2-22	10M62Z	2-15	50M91Z	2-13
1.5M62Z	2-22	10M68Z	2-15	50M100Z	2-13
1.5M68Z	2-22	10M75Z	2-15	50M105Z	2-13
1.5M75Z	2-22	10M82Z	2-15	50M110Z	2-13
1.5M82Z	2-22	10M91Z	2-15	50M120Z	2-13
1.5M91Z	2-22	10M100Z	2-15	50M130Z	2-13
1.5M100Z	2-22	10M105Z	2-15	50M140Z	2-13
1.5M110Z	2-22	10M110Z	2-15	50M150Z	2-13
1.5M120Z	2-22	10M120Z	2-15	50M160Z	2-13
1.5M130Z	2-22	10M130Z	2-15	50M175Z	2-13
1.5M150Z	2-22	10M140Z	2-15	50M180Z	2-13
1.5M160Z	2-22	10M150Z	2-15	50M200Z	2-13
1.5M180Z	2-22	10M160Z	2-15	1N248B	3-8
1.5M200Z	2-22	10M180Z	2-15	1N248C	3-8
10M3.9AZ	2-24	10M200Z	2-15	1N249B	3-8
10M4.3AZ	2-24	50M6.8Z	2-13	1N249C	3-8
10M4.7AZ	2-24	50M7.5Z	2-13	1N250B	3-8
10M5.1AZ	2-24	50M8.2Z	2-13	1N250C	3-8
10M5.6AZ	2-24	50M9.1Z	2-13	1N429	2-31
10M6.2AZ	2-24	50M10Z	2-13	1N702	2-8
10M6.8AZ	2-24	50M11Z	2-13	1N703	2-8
10M7.5AZ	2-24	50M12Z	2-13	1N704	2-8
10M6.8Z	2-15	50M13Z	2-13	1N705	2-8
10M7.5Z	2-15	50M14Z	2-13	1N706	2-8
10M8.2Z	2-15	50M15Z	2-13	1N707	2-8
10M9.1Z	2-15	50M16Z	2-13	1N708	2-8
10M10Z	2-15	50M17Z	2-13	1N709	2-8
10M11Z	2-15	50M18Z	2-13	1N710	2-8
10M12Z	2-15	50M19Z	2-13	1N711	2-8
10M13Z	2-15	50M20Z	2-13	1N712	2-8
10M14Z	2-15	50M22Z	2-13	1N713	2-8
10M15Z	2-15	50M24Z	2-13	1N714	2-8
10M16Z	2-15	50M25Z	2-13	1N715	2-8 2-8
10M18Z	2-15 2-15	50M27Z	2-13	1N716	2-8 2-8
10M19Z	2-15 2-15	50M30Z	2-13 2-13	1N717	2-8 2-8
10M20Z	2-15 2-15	50M33Z	2-13	1N718	2-8 2-8
10M22Z	2-15	50M36Z	2-13	1N719	2-8
10M24Z 10M27Z	2-15	50M39Z 50M43Z	2-13	1N720 1N721	2-8
101/1212	2-10	301/1432	2-10	111/121	2 – 0

	Page	Deviçe Type	Page	Device Type	Page
1N722	2-8	1N823	2-31	1N969	2-9
1N723	2-8	1N823A	2-31	1N970	2-9
1N724	2-8	1N825	2-31	1N971	2-9
1N725	2-8	1N825A	2-31	1N972	2-9
1N726	2-8	1N827	2-31	1N973	2-9
1N727	2-8	1N827A	2-31	1N974	2-9
1N728	2-8	1N829	2-31	1N975	2-9
1N729	2-8	1N829A	2-31	1N976	2-9
1N730	2-8	1N935	2-31	1N977	2-9
1N731	2-8	1N935A	2-31	1N978	2-9
1N732	2-8	1N935B	2-31	1N979	2-9
1N733	2-8	1N936	2-31	1N980	2-9
1N734	2-8	1N936A	2-31	1N981	2-9
1N735	2-8	1N936B	2-31	1N982	2-9
1N736	2-8	1N937	2-31	1N983	2-9
1N737	2-8	1N937A	2-31	1N984	2-9
1N738	2-8	1N938	2-31	1N985	2-9
1N739	2-8	1N938A	2-31	1N986	2-9
1N740	2-8	1N938B	2-31	1N987	2-9
1N741	2-8	1N936B 1N939	2-31		
1N742	2-8	1N939 1N939A	2-31	1N988	2-9
1N743	2-8			1N989	2-9
1N744	2-8	1N939B	2-31	1N990	2-9
1N745	2-8	1N941	2-31	1N991	2-9
1N746	2-8	1N941A	2-31	1N992	2-9
1N747	2-8	1N941B	2-31	1N1124	3-10
1N748		1N942	2-31	1N1124A	3-10
1N749	2-8	1N942A	2-31	1N1125	3-10
1N749 1N750	2-8	1N942B	2-31	1N1125A	3-10
	2-8	1N943	2-31	1N1126	3-10
1N751	2-8	1N943A	2-31	1N1126A	3-10
1N752	2-8	1N943B	2-31	1N1127	3-10
1N753	2-8	1N944	2-31	1N1127A	3-10
1N754	2-8	1N944A	2-31	1N1128	3-10
1N755	2-8	1N944B	2-31	1N1128A	3-10
1N756	2-8	1N945	2-31	1N1183	3-10
1N757	2-8	1N945A	2-31	1N1184	3-10
1N758	2-8	1N945B	2-31	1N1185	3-10
1N759	2-8	1N957	2-9	1N1186	3-10
1N761	2-9	1N958	2-9	1N1187	3-10
1N762	2-9	1N959	2-9	1N1188	3-10
1N763	2-9	1N960	2-9	1N1189	3-10
1N764	2-9	1N961	2-9	1N1190	3-10
1N765	2-9	1N962	2-9	1N1191	3-8
1N766	2-9	1N963	2-9	1N1192	3-8
1N767	2-9	1N964	2-9	1N1193	3-8
1N768	2-9	1N965	2-9	1N1194	3-8
1N769	2-9	1N966	2-9	1N11 9 5	3-8
	~ ~ · I	1N967	2-9	1N1195A	3-8
1N821	2-31				3-0
	2-31 2-31	1N968	2-9	1N1195A 1N1196	3-8

DEVICE LISTING (continued)

Device Type	Page	Device Type	Page	Device Type	Page
1N1196A	3-8	1N1511	2-11	1N1605	2-11
1N1197	3-8	1N1512	2-11	1N1606	2-11
1N1197A	3-8	1N1513	2-11	1N1607	2-11
1N1198	3-8	1N1514	2-11	1N1608	2-11
1N1198A	3-8	1N1515	2-11	1N1609	2-11
1N1313	2-10	1N1516	2-11	1N1730	4-20
1N1314	2-10	1N1517	2-11	1N1731	4-20
1N1315	2-10	1N1518	2-11	1N1732	4-20
1N1316	2-10	1N1519	2-11	1N1733	4-20
1N1317	2-10	1N1520	2-11	1N1734	4-20
1N1318	2-10	1N1521	2-11	1N1735	2-31
1N1319	2-10	1N1522	2-11	1N1736	2-31
1N1320	2-10	1N1523	2-11	1N1736A	2-31
1N1321	2-10	1N1524	2-11	1N1737	2-31
1N1322	2-10	1N1525	2-11	1N1737A	2-31
1N1323	2-10	1N1526	2-11	1N1738	2-31
1N1324	2-10	1N1527	2-11	1N1738A	2-31
1N1325	2-10	1N1528	2-11	1N1739	2-31
1N1326	2-10	1N1530	2-31	1N1739A	2-31
1N1327	2-10	1N1530A	2-31	1N1740	2-31
1N1351	2-10	1N1563	3-12	1N1740A	2-31
1N1352	2-10	1N1563A	3-12	1N1741	2-31
1N1353	2-10	1N1564	3-12	1N1741A	2-31
1N1354	2-10	1N1564A	3-12	1N1742	2-31
1N1355	2-10	1N1565	3-12	1N1742A	2-31
1N1356	2-10	1N1565A	3-12	1N1765	2-11
1N1357	2-10	1N1566	3-12	1N1766	2-11
1N1358	2-10	1N1566A	3-12	1N1767	2-11
1N1359	2-10	1N1567	3-12	1N1768	2-11
1N1360	2-10	1N1567A	3-12	1N1769	2-11
1N1361	2-10	1N1568	3-12	1N1770	2-11
1N1362	2-10	1N1568A	3-12	1N1771	2-11
1N1363	2-10	1N1588	2-11	1N1772	2-11
1N1364	2-10	1N1589	2-11	1N1773	2-11
1N1365	2-10	1N1590	2-11	1N1774	2-11
1N1366	2-10	1N1591	2-11	1N1775	2-11
1N1367	2-10	1N1592	2-11	1N1776	2-11
1N1368	2-10	1N1593	2-11	1N1777	2-11
1N1369	2-10	1N1594	2-11	1N1778	2-11
1N1370	2-10	1N1595	2-11	1N1779	2-11
1N1371	2-10	1N1596	2-11	1N1780	2-11
1N1372	2-10	1N1597	2-11	1N1781	2-11
1N1373	2-10	1N1598	2-11	1N1782	2-11
1N1374	2-10	1N1599	2-11	1N1783	2-11
1N1375	2-10	1N1600	2-11	1N1784	2-11 2-11
1N1507	2-11	1N1601	2-11	1N1785	2-11 2-11
1N1508	2-11	1N1602	2-11 2-11	1N1786	2-11
1N1509	2-11	1N1603	2-11 2-11	1N1787 1N1788	2-11
1N1510	2-11	1N1604	2-11	1111100	2-11
		1		.	

Device Type	Page	Device Type	Page	Device Type	Page
1N1789	2-11	1N2009	2-12	1N2623B	2-31
1N1790	2-11	1N2010	2-12	1N2624	2-31
1N1791	2-11	1N2011	2-12	1N2624A	2-31
1N1792	2-11	1N2012	2-12	1N2624B	2-31
1N1793	2-11	1N2032	2-12	1N2765	2-31
1N1794	2-11	1N2033	2-12	1N2765A	2-31
1N1795	2-11	1N2034	2-12	1N2766	2-31
1N1796	2-11	1N2035	2-12	1N2766A	2-31
1N1797	2-11	1N2036	2-12	1N2767	2-31
1N1798	2-11	1N2037	2-12	1N2767A	2-31
1N1799	2-11	1N2038	2-12	1N2767A	2-31
1N1800	2-11	1N2039	2-12		2-31
1N1801	2-11	1N2040	2-12	1N2768A	2-31
1N1802	2-11	1N2040 1N2041	2-12	1N2769	
1N1803	2-12	1N2041 1N2042	2-12	1N2769A	2-31 2-31
1N1804	2-12	1N2042 1N2043		1N2770	
1N1805	2-12	1N2043	2-12	1N2770A	2-31
1N1806	2-12	1N2044 1N2045	2-12	1N2804	2-13
1N1807	2-12	1N2045 1N2046	2-12	1N2805	2-13
1N1808	2-12		2-12	1N2806	2-13
1N1809	2-12	1N2047	2-12	1N2807	2-13
1N1810	2-12	1N2048	2-12	1N2808	2-13
1N1810 1N1811		1N2049	2-12	1N2809	2-13
	2-12	1N2382	4-20	1N2810	2-13
1N1812	2-12	1N2383	4-20	1N2811	2-13
1N1813	2-12	1N2384	4-20	1N2812	2-13
1N1814	2-12	1N2385	4-20	1N2813	2-13
1N1815	2-12	1N2498	2-12	1N2814	2-13
1N1816	2-12	1N2499	2-12	1N2815	2-13
1N1817	2-12	1N2500	2-12	1N2816	2-13
1N1818	2-12	1N2609	3-13	1N2817	2-13
1N1819	2-12	1N2610	3-13	1N2818	2-13
1N1820	2-12	1N2611	3-13	1N2819	2-13
1N1821	2-12	1N2612	3-13	1N2820	2-13
1N1822	2-12	1N2613	3-13	1N2821	2-13
1N1823	2 - 12	1N2614	3-13	1N2822	2-13
1N1824	2-12	1N2615	3-13	1N2823	2-13
1N1825	2-12	1N2616	3-13	1N2824	2-13
1N1826	2-12	1N2617	3-13	1N2825	2-13
1N1827	2-12	1N2620	2-31	1N2826	2-13
1N1828	2-12	1N2620A	2-31	1N2827	2-13
1N1829	2-12	1N2620B	2-31	1N2828	2-13
1N1830	2-12	1N2621	2-31	1N2829	2-13
1N1831	2-12	1N2621A	2-31	1N2830	2-13
1N1832	2-12	1N2621B	2-31	1N2831	2-13
1N1833	2-12	1N2622	2-31	1N2832	2-13
1N1834	2-12	1N2622A	2-31	1N2833	2-13
1N1835	2-12	1N2622B	2-31	1N2834	2-13
1N1836	2-12	1N2623	2-31	1N2835	2-13
1N2008	2-12	1N2623A	2-31	1N2836	2-13
					ı
<u> </u>					

DEVICE LISTING Device Type	Page	Device Type	Page	Device Type	Page
1N2837	2-13	1N3009	2-15	1N3157	2-31
1N2838	2-13	1N3010	2-15	1N3157A	2-31
1N2839	2-13	1N3011	2-15	1N3189	3-13
1N2840	2-13	1N3012	2-15	1N3190	3-13
1N2841	2-13	1N3013	2-15	1N3191	3-13
1N2842	2-13	1N3014	2-15	1N3208	3-13
1N2843	2-13	1N3015	2-15	1N3209	3-13
1N2844	2-13	1N3016	2-17	1N3210	3-13
1N2845	2-13	1N3017	2-17	1N3211	3-13
1N2846	2-13	1N3018	2-17	1N3212	3-13
1N2970	2-15	1N3019	2-17	1N3213	3-8
1N2971	2-15	1N3020	2-17	1N3214	3-8
1N2972	2-15	1N3021	2-17	1N3282	3-14
1N2973	2-15	1N3022	2-17	1N3283	3-14
1N2974	2-15	1N3023	2-17	1N3284	3-14
1N2975	2-15	1N3024	2-17	1N3285	3-14
1N2976	2-15	1N3025	2-17	1N3286	3-14
1N2977	2-15	1N3026	2-17	1N3305	2-19
1N2978	2-15	1N3027	2-17	1N3306	2-19
1N2979	2-15	1N3028	2-17	1N3307	2-19
1N2980	2-15	1N3029	2-17	1N3308	2-19
1N2981	2-15	1N3030	2-17	1N3309	2-19
1N2981 1N2982	2-15	1N3031	2-17	1N3310	2-19
1N2983	2-15	1N3032	2-17	1N3311	2-19
1N2984	2-15	1N3033	2-17	1N3312	2-19
1N2985	2-15	1N3034	2-17	1N3313	2-19
1N2986	2-15	1N3035	2-17	1N3314	2-19
1N2987	2-15	1N3036	2-17	1N3315	2-19
1N2988	2-15	1N3037	$\frac{1}{2}$ - $\frac{1}{17}$	1N3316	2-19
1N2 989	2-15	1N3038	2-17	1N3317	2-19
1N2999	2-15	1N3039	2-17	1N3318	2-19
1N2991	2-15	1N3040	2-17	1N3319	2-19
1N2991 1N2992	2-15	1N3040	2-17	1N3320	2-19
1N2992 1N2993	2-15	1N3041	2-17	1N3321	2-19
1N2993 1N2994	2-15	1N3042	2-17	1N3322	2-19
1N2994 1N2995	2-15	1N3044	2-17	1N3323	2-19
1N2995 1N2996	2-15	1N3044	2-17	1N3324	2-19
1N2990 1N2997	2-15	1N3046	2-17	1N3325	2-19
1N2991 1N2998	2-15	1N3047	2-17	1N3326	2-19
1N2990 1N2999	2-15	1N3048	2-17	1N3327	2-19
1N2999 1N3000	2-15	1N3049	2-17	1N3328	2-19
1N3000 1N3001	2-15	1N3050	2-17	1N3329	2-19
1N3001 1N3002	2-15	1N3051	2-17	1N3330	2-19
1N3002 1N3003	2-15	1N3154	2-31	1N3331	2-19
1N3003 1N3004	2-15	1N3154A	2-31	1N3332	2-19
1N3004 1N3005	2-15	1N3155	2-31	1N3333	2-19
1N3005 1N3006	2-15	1N3155A	2-31	1N3334	2-19
1N3006 1N3007	2-15	1N3156	2-31	1N3335	2-19
1N3007	2-15	1N3156A	2-31	1N3336	2-19
11/2009	4-10	11.01001	_		
		1			
L					

Device Type	Page	Device Type	Page	Device Type	Page
1N3337	2-19	1N3687	2-20	1N3818	2-21
1N3338	2-19	1N3688	2-20	1N3819	2-21
1N3339	2-19	1N3689	2-20	1N3820	2-21
1N3340	2-19	1N3690	2-20	1N3821	2-23
1N3341	2-19	1N3691	2-20	1N3822	2-23
1N3342	2-19	1N3692	2-20	1N3823	2-23
1N3343	2-19	1N3693	2-20	1N3824	2-23
1N3344	2-19	1N3694	2-20	1N3825	2-23
1N3345	2-19	1N3695	2-20	1N3826	2-23
1N3346	2-19	1N3696	2-20	1N3827	2-23
1N3347	2-19	1N3697	2-20	1N3828	2-23
1N3348	2-19	1N3698	2-20	1N3829	2-23
1N3349	2-19	1N3699	2-20	1N3830	2-23
1N3350	2-19	1N3700	2-20	1N3879	3-20
1N3491	3-15	1N3701	2-20	1N3880	3-20
1N3492	3-15	1N3702	2-20	1N3881	3-20
1N3493	3-15	1N3703	2-20	1N3882	3-20
1N3494	3-15	1N3785	2-21	1N3883	3-20
1N3495	3-15	1N3786	2-21	1N3889	3-20
1N3580	2-31	1N3787	2-21	1N3890	3-20
1N3580A	2-31	1N3788	2-21	1N3891	3-20
1N3580B	2-31	1N3789	2-21	1N3892	3-20
1N3581	2-31	1N3790	2-21	1N3893	3-20
1N3581A	2-31	1N3791	2-21	1N3993	2-24
1N3581B	2-31	1N3792	2-21	1N3994	2-24
1N3582	2-31	1N3793	2-21	1N3995	2-24
1N3582A	2-31	1N3794	2-21	1N3996	2-24
1N3582B	2-31	1N3795	2-21	1N3997	2-24
1N3611	3-17	1N3796	2-21	1N3998	2-24
1N3612	3-17	1N3797	2-21	1N3999	2-24
1N3613	3-17	1N3798	2-21	1N4000	2-24
1N3649	3-18	1N3799	2-21	1N4001	3-23
1N3650	3-18	1N3800	2-21	1N4002	3-23
1N3659	3-18	1N3801	2-21	1N4003	3-23
1N3660	3-18	1N3802	2-21	1N4004	3-23
1N3661	3-18	1N3803	2-21	1N4005	3-23
1N3662	3-18	1N3804	2-21	1N4006	3-23
1N3663	3-18	1N3805	2-21	1N4007	3-23
1N3675	2-20	1N3806	2-21	1N4099	2-25
1N3676	2-20	1N3807	2-21	1N4100	2-25
1N3677	2-20	1N3808	2-21	1N4101	2-25
1N3678	2-20	1N3809	2-21	1N4102	2-25
1N3679	2-20	1N3810	2-21	1N4103	2-25
1N3680	2-20	1N3811	2-21	1N4104	2-25
1N3681	2-20	1N3812	2-21	1N4105	2-25
1N3682	2-20	1N3813	2-21	1N4106	2-25
1N3683	2-20	1N3814	2-21	1N4107	2-25
1N3684	2-20	1N3815	2-21	1N4108	2-25
1N3685	2-20	1N3816	2-21	1N4109	2-25
1N3686	2-20	1N3817	2-21	1N4110	2-2 5
				L	

Device Type	Page	Device Type	Page	Device Type	Page
1N4111	2-25	1N4729	2-28	1N4778	2-35
1N4112	2-25	1N4730	2-28	1N4779	2-35
1N4113	2-25	1N4731	2-28	1N4780	2-35
1N4114	2-25	1N4732	2-28	1N4781	2-35
1N4115	2-25	1N4733	2-28	1N4782	2-35
1N4116	2-25	1N4734	2-28	1N4783	2-35
1N4117	2-25	1N4735	2-28	1N4784	2-35
1N4118	2-25	1N4736	2-28	2N173	6-16
1N4119	2-25	1N4737	2-28	2N174	6-9
1N4120	2-25	1N4738	2-28	2N176	6-11
1N4121	2-25	1N4739	2-28	2N178	6-13
1N4122	2-25	1N4740	2-28	2N242	6-15
1N4123	2-25	1N4741	2-28	2N277	6-16
1N4124	2-25	1N4742	2-28	2N278	6-16
1N4125	2-25	1N4743	2-28	2N297A	6-19
1N4126	2-25	1N4744	2-28	2N307	6-15
1N4127	2-25	1N4745	2-28	2N307A	6-15
1N4128	2-25	1N4746	2-28	2N319	7-6
1N4129	2-25	1N4747	2-28	2N320	7-6
1N4130	2-25	1N4748	2-28	2N321	7-6
1N4131	2-25	1N4749	2-28	2N322	7-7
1N4132	2-25	1N4750	2-28	2N323	7-7
1N4133	2-25	1N4751	2-28	2N324	7-7
1N4134	2-25	1N4752	2-28	2N331	7-8
1N4135	2-25	1N4753	2-28	2N350A	6-21
1N4370	2-8	1N4754	2-28	2N351A	6-21
1N4371	2-8	1N4755	2-28	2N375	6-23
1N4372	2-8	1N4756	2-28	2N376A	6-21
1N4386	10-6	1N4757	2-28	2N378	6-26
1N4387	10-8	1N4758	2-28	2N379	6-26
1N4388	10-9	1N4759	2-28	2N380	6-26
1N4565	2-35	1N4760	2-28	2N381	7-10
1N4566	2-35	1N4761	2-28	2N382	7-10
1N4567	2-35	1N4762	2-28	2N383	7-10
1N4568	2-35	1N4763	2-28	2N398	7-12
1N4569	2-35	1N4764	2-28	2N398A	7-12
1N4505 1N4570	2-35	1N4765	2-35	2N350A 2N441	6-27
1N4570 1N4571	2-35	1N4766	2-35	2N441 2N442	6-27
1N4571 1N4572	2-35	1N4767	2-35	2N442 2N443	6-27
1N4572 1N4573	2-35	1N4768	2-35	2N459	6-26
1N4574	2-35	1N4769	2-35	2N459A	6-26
1N4719	3-24	1N4770	2-35	2N460	7-14
1N4720	3-24	1N4771	2-35	2N461	7-14
1N4721	3-24	1N4772	2-35	2N464	7-15
1N4722	3-24	1N4773	2-35	2N465	7-15
1N4723	3-24	1N4774	2-35	2N466	7-15
1N4724	3-24	1N4775	2-35	2N467	7-15
1N4725	3-24	1N4776	2-35 2-35	2N508	7-7
1N4728	2-28	1N4777	2-35	2N524	7-17
-11110	0	44,1111	- 00		
		L		1	

DEVICE LISTING (continued)

Device Type	Page	Device Type	Page	Device Type	Page
2N525	7-17	2N828A	8-54	2N1162	6-40
2N526	7-17	2N829	8-54	2N1163	6-40
2N527	7-17	2N834	8-57	2N1164	6-40
2N554	6-13	2N835	8-57	2N1165	6-40
2N555	6-13	2N838	8-59	2N1166	6-40
2N618	6-23	2N869	8-61	2N1167	6-40
2N650	7-20	2N914	8-63	2N1175	7-33
2N650A	7-20	2N915	8-65	2N1185	7-25
2N651	7-20	2N916	8-67	2N1186	7-25
2N651A	7-20	2N918	8-68	2N1187	7-25
2N652	7-20	2N929	8-69	2N1188	7-25
2N652A	7-20	2N930	8-69	2N1189	7-28
2N653	7-22	2N956	8-42	2N1190	7-28
2N654	7-22	2N960	8-71	2N1191	7-30
2N655	7-22	2N961	8-71	2N1192	7-30
2N665	6-31	2N962	8-71	2N1193	7-30
2N669	6-11	2N963	8-73	2N1194	7-30
2N681	5-9	2N964	8-71	2N1195	8-83
2N682	5-9	2N964A	8-75	2N1204	8-85
2N683	5-9	2N965	8-71	2N1204A	8-85
2N684	5-9	2N966	8-71	2N1358	6-9
2N685	5-9	2N967	8-73	2N1359	6-23
2N686	5-9	2N968	8-77	2N1360	6-23
2N687	5-9	2N969	8-77	2N1362	6-23
2N688	5-9	2N970	8-77	2N1363	6-23
2N689	5-9	2N971	8-77	2N1364	6-23
2N697	8-28	2N972	8-77	2N1365	6-23
2N700	8-29	2N973	8-77	2N1408	7-32
2N700A	8-29	2N974	8-77	2N1412	6-43
2N705	8-31	2N975	8-77	2N1413	7-33
2N706	8-33	2N985	8-79	2N1414	7-33
2N706A	8-33	2N995	8-61	2N1415	7-33
2N706B	8-33	2N1008	7-24	2N1420	8-28
2N707	8-35	2N1008A	7-24	2N1494	8-85
2N707A	8-35	2N1008B	7-24	2N1494A	8-85
2N708	8-37	2N1011	6-33	2N1495	8-85
2N710	8-38	2N1073	6-35	2N1496	8-85
2N711	8-39	2N1073 2N1073A	6-35	2N1529	6-46
2N711A	8-39	2N1073B	6-35	2N1530	6-46
2N711B	8-39	2N1073B 2N1099	6-16	2N1531	6-46
2N718	8-28	2N11099 2N1100	6-10	2N1531 2N1532	6-46
2N718A	8-42	2N1100 2N1120	6-38	2N1533	6-46
2N722	8-44	2N1131	8-81	2N1534	6-46
2N741	8-46	2N1131 2N1132	8-44	2N1534 2N1535	6-46
2N741A	8-46	2N1132A	8-44	2N1536	6-46
2N744	8-48	2N1132A 2N1132B	8-44	2N1537	6-46
2N753	8-33	2N1132B 2N1141	8-83	2N1538	6-46
	8-50	2N1141 2N1142	8-83	2N1538 2N1539	6-49
2N827	0-00	2747745	J-00	1 2112000	U 10
2N827 2N828			8_83	2N1540	6-40
2N827 2N828	8-52	2N1143	8-83	2N1540	6-49

DEVICE LISTING (continued)

No. No.	Device Type	Page	Device Type	Page	Device Type	Page
No. No.	2N1541	6-49	2N1849A	5-15	2N2193B	
No. No.	2N1542	6-49	2N1850			
2N1545	2N1543	6-49		5-15	2N2194A	8-91
No. No.	2N1544	6-49	2N1924	7-37	2N2194B	
No. No.	2N1545	6-49	2N1925	7-37	2N2195	
2N1548	2N1546	6-49	2N1926	7-37	2N2195A	
2N1549	2N1547	6-49	2N1970	6-56		
No.	2N1548	6-49	2N1980	6-56	2N2217	
No.	2N1549	6-52	2N1981	6-56	2N2218	
2N1552 6-52 2N2042 7-39 2N2219A 8-95 2N1553 6-52 2N2043 7-39 2N2220 8-93 2N1554 6-52 2N2060 9-4 2N2221 8-95 2N1555 6-52 2N2060A 9-4 2N2221A 8-95 2N1557 6-52 2N2075 6-57 2N2222A 8-95 2N1557 6-52 2N2076 6-57 2N2222A 8-95 2N1558 6-52 2N2077 6-57 2N2223A 9-4 2N1559 6-52 2N2079 6-57 2N2256 8-99 2N1561 8-88 2N2080 6-57 2N2256 8-99 2N1562 8-88 2N2080 6-57 2N2257 8-99 2N1595 5-11 2N2082 6-57 2N2259 8-99 2N1596 5-11 2N2099 8-85 2N23303 8-44 2N1597 5-11 2N2099 8-85 2N2330 8-102 <td>2N1550</td> <td></td> <td>2N1982</td> <td></td> <td></td> <td></td>	2N1550		2N1982			
2N1553 6-52 2N2043 7-39 2N2220 8-93 2N1554 6-52 2N2060 9-4 2N2221 8-93 2N1555 6-52 2N2060A 9-4 2N2221A 8-95 2N1556 6-52 2N2075 6-57 2N2222A 8-95 2N1557 6-52 2N2076 6-57 2N2222A 8-95 2N1559 6-52 2N2078 6-57 2N2223A 9-4 2N1560 6-52 2N2079 6-57 2N2223A 9-4 2N1561 8-88 2N2080 6-57 2N2256 8-99 2N1562 8-88 2N2080 6-57 2N2257 8-99 2N1595 5-11 2N2096 8-85 2N23303 8-44 2N1596 5-11 2N2097 8-85 2N2330 8-102 2N1598 5-11 2N2099 8-85 2N2331 8-102 2N1599 5-11 2N2100 8-85 2N2330 8-104 <td>2N1551</td> <td>6-52</td> <td>2N1991</td> <td>8-81</td> <td>2N2219</td> <td></td>	2N1551	6-52	2N1991	8-81	2N2219	
2N1554 6-52 2N2060 9-4 2N2221 8-93 2N1555 6-52 2N2060A 9-4 2N2221A 8-95 2N1556 6-52 2N2075 6-57 2N2222A 8-95 2N1557 6-52 2N2077 6-57 2N2222A 8-95 2N1558 6-52 2N2077 6-57 2N2223A 9-4 2N1559 6-52 2N2079 6-57 2N2223A 9-4 2N1560 6-52 2N2079 6-57 2N2256 8-99 2N1561 8-88 2N2080 6-57 2N2257 8-99 2N1562 8-88 2N2081 6-57 2N2259 8-99 2N1595 5-11 2N2096 8-85 2N2303 8-44 2N1596 5-11 2N2099 8-85 2N2330 8-102 2N1598 5-11 2N2099 8-85 2N2330 8-102 2N1599 5-11 2N2099 8-85 2N2389 8-104 <td>2N1552</td> <td></td> <td>2N2042</td> <td>7-39</td> <td></td> <td></td>	2N1552		2N2042	7-39		
2N1555 6-52 2N2060A 9-4 2N2221A 8-95 2N1556 6-52 2N2075 6-57 2N2222 8-93 2N1557 6-52 2N2076 6-57 2N2222A 8-95 2N1558 6-52 2N2077 6-57 2N2223A 9-4 2N1559 6-52 2N2079 6-57 2N2223A 9-4 2N1560 6-52 2N2079 6-57 2N2256 8-99 2N1561 8-88 2N2080 6-57 2N2257 8-99 2N1562 8-88 2N2081 6-57 2N2259 8-99 2N1595 5-11 2N2096 8-85 2N2303 8-44 2N1597 5-11 2N2097 8-85 2N2330 8-102 2N1598 5-11 2N2097 8-85 2N2330 8-102 2N1599 5-11 2N2097 8-85 2N2330 8-102 2N1693 8-88 2N2137 6-60 2N2381 8-102 <td>2N1553</td> <td>6-52</td> <td>2N2043</td> <td>7-39</td> <td>2N2220</td> <td></td>	2N1553	6-52	2N2043	7-39	2N2220	
2N1556 6-52 2N2075 6-57 2N2222 8-93 2N1557 6-52 2N2076 6-57 2N2222A 8-95 2N1558 6-52 2N2077 6-57 2N2223A 9-4 2N1559 6-52 2N2079 6-57 2N2223A 9-4 2N1560 6-52 2N2079 6-57 2N2256 8-99 2N1561 8-88 2N2080 6-57 2N2257 8-99 2N1562 8-88 2N2081 6-57 2N2259 8-99 2N1595 5-11 2N2096 8-85 2N2303 8-44 2N1596 5-11 2N2097 8-85 2N2330 8-42 2N1598 5-11 2N2099 8-85 2N2331 8-102 2N1599 5-11 2N2100 8-85 2N23369 8-104 2N1613 8-42 2N2137 6-60 2N2381 8-107 2N1693 8-88 2N2137 6-60 2N2382 8-104 <td>2N1554</td> <td>6-52</td> <td>2N2060</td> <td>9-4</td> <td>2N2221</td> <td></td>	2N1554	6-52	2N2060	9-4	2N2221	
2N1557 6-52 2N2076 6-57 2N2222A 8-95 2N1558 6-52 2N2077 6-57 2N2223 9-4 2N1559 6-52 2N2078 6-57 2N2223A 9-4 2N1560 6-52 2N2079 6-57 2N2256 8-99 2N1561 8-88 2N2080 6-57 2N2257 8-99 2N1562 8-88 2N2081 6-57 2N2259 8-99 2N1595 5-11 2N2082 6-57 2N2259 8-99 2N1596 5-11 2N2096 8-85 2N2330 8-44 2N1597 5-11 2N2097 8-85 2N2331 8-102 2N1598 5-11 2N2099 8-85 2N2331 8-102 2N1599 5-11 2N2100 8-85 2N2331 8-102 2N1692 8-88 2N2137 6-60 2N2381 8-107 2N1693 8-88 2N2138 6-60 2N2480 9-4	2N1555		2N2060A			
2N1558 6-52 2N2077 6-57 2N2223 9-4 2N1559 6-52 2N2078 6-57 2N2223A 9-4 2N1560 6-52 2N2079 6-57 2N2256 8-99 2N1561 8-88 2N2080 6-57 2N2257 8-99 2N1562 8-88 2N2081 6-57 2N2258 8-99 2N1595 5-11 2N2082 6-57 2N2259 8-99 2N1596 5-11 2N2096 8-85 2N2303 8-44 2N1597 5-11 2N2099 8-85 2N2331 8-102 2N1598 5-11 2N2099 8-85 2N2331 8-102 2N1599 5-11 2N2100 8-85 2N2369 8-104 2N1692 8-88 2N2137 6-60 2N2381 8-107 2N1693 8-88 2N2138 6-60 2N2480 9-4 2N1705 7-35 2N2140 6-60 2N2480 9-4	2N1556		2N2075	6-57		
2N1559 6-52 2N2078 6-57 2N223A 9-4 2N1560 6-52 2N2079 6-57 2N2256 8-99 2N1561 8-88 2N2080 6-57 2N2257 8-99 2N1562 8-88 2N2081 6-57 2N2258 8-99 2N1595 5-11 2N2082 6-57 2N2259 8-99 2N1596 5-11 2N2096 8-85 2N2303 8-44 2N1597 5-11 2N2097 8-85 2N2330 8-102 2N1598 5-11 2N2099 8-85 2N2331 8-102 2N1599 5-11 2N2100 8-85 2N2331 8-102 2N1693 8-88 2N2137 6-60 2N2382 8-107 2N1693 8-88 2N2138 6-60 2N2382 8-107 2N1693 8-88 2N2138 6-60 2N2480 9-4 2N1693 8-88 2N2138 6-60 2N2480 9-4	2N1557	6-52	2N2076	6-57		
2N1560 6-52 2N2079 6-57 2N2256 8-99 2N1561 8-88 2N2080 6-57 2N2257 8-99 2N1562 8-88 2N2081 6-57 2N2258 8-99 2N1595 5-11 2N2082 6-57 2N2259 8-99 2N1596 5-11 2N2096 8-85 2N2303 8-44 2N1597 5-11 2N2099 8-85 2N2330 8-102 2N1598 5-11 2N2099 8-85 2N2331 8-102 2N1599 5-11 2N2100 8-85 2N2369 8-104 2N1613 8-42 2N2137 6-60 2N2381 8-107 2N1693 8-88 2N2138 6-60 2N2382 8-107 2N1693 8-88 2N2138 6-60 2N2480 9-4 2N1705 7-35 2N2140 6-60 2N2480 9-4 2N1706 7-35 2N2141 6-60 2N2491 6-67	2N1558	6-52	2N2077	6-57	2N2223	
2N1561 8-88 2N2080 6-57 2N2257 8-99 2N1562 8-88 2N2081 6-57 2N2258 8-99 2N1595 5-11 2N2082 6-57 2N2259 8-99 2N1596 5-11 2N2096 8-85 2N2303 8-44 2N1597 5-11 2N2097 8-85 2N2330 8-102 2N1598 5-11 2N2099 8-85 2N2331 8-102 2N1599 5-11 2N2100 8-85 2N2369 8-104 2N1613 8-42 2N2137 6-60 2N2381 8-107 2N1692 8-88 2N2138 6-60 2N2382 8-107 2N1693 8-88 2N2139 6-60 2N2480 9-4 2N1705 7-35 2N2140 6-60 2N2480A 9-4 2N1706 7-35 2N2141 6-60 2N2480A 9-4 2N1707 7-35 2N2142 6-60 2N2490 6-67	2N1559	6-52	2N2078	6-57	2N2223A	
2N1562 8-88 2N2081 6-57 2N2258 8-99 2N1595 5-11 2N2082 6-57 2N2259 8-99 2N1596 5-11 2N2096 8-85 2N2303 8-44 2N1597 5-11 2N2097 8-85 2N2330 8-102 2N1598 5-11 2N2099 8-85 2N2331 8-102 2N1599 5-11 2N2100 8-85 2N23869 8-104 2N1613 8-42 2N2137 6-60 2N2381 8-107 2N1692 8-88 2N2138 6-60 2N2480 9-4 2N1693 8-88 2N2139 6-60 2N2480 9-4 2N1705 7-35 2N2140 6-60 2N2480A 9-4 2N1706 7-35 2N2141 6-60 2N2480 9-4 2N1707 7-35 2N2142 6-60 2N2490 6-67 2N1842 5-13 2N2143 6-60 2N2491 6-67	2N1560	6-52	2N2079	6-57	2N2256	
2N1595 5-11 2N2082 6-57 2N2259 8-99 2N1596 5-11 2N2096 8-85 2N2303 8-44 2N1597 5-11 2N2097 8-85 2N2330 8-102 2N1598 5-11 2N2099 8-85 2N2331 8-102 2N1599 5-11 2N2100 8-85 2N2369 8-104 2N1613 8-42 2N2137 6-60 2N2381 8-107 2N1692 8-88 2N2138 6-60 2N2382 8-107 2N1693 8-88 2N2139 6-60 2N2480 9-4 2N1705 7-35 2N2140 6-60 2N2480A 9-4 2N1706 7-35 2N2141 6-60 2N2480A 9-4 2N1707 7-35 2N2142 6-60 2N2490 6-67 2N1842 5-13 2N2143 6-60 2N2492 6-67 2N1843 5-15 2N2145 6-60 2N2493 6-67	2N1561		2N2080	6-57		
2N1596 5-11 2N2096 8-85 2N2303 8-44 2N1597 5-11 2N2097 8-85 2N2330 8-102 2N1598 5-11 2N2099 8-85 2N2331 8-102 2N1599 5-11 2N2100 8-85 2N2369 8-104 2N1613 8-42 2N2137 6-60 2N2381 8-107 2N1692 8-88 2N2138 6-60 2N2382 8-107 2N1693 8-88 2N2139 6-60 2N2480 9-4 2N1705 7-35 2N2140 6-60 2N2480A 9-4 2N1706 7-35 2N2141 6-60 2N2481 8-109 2N1707 7-35 2N2141 6-60 2N2481 8-109 2N1711 8-42 2N2142 6-60 2N2490 6-67 2N1842 5-13 2N2144 6-60 2N2491 6-67 2N1843 5-13 2N2146 6-60 2N2493 6-67 <td>2N1562</td> <td>8-88</td> <td>2N2081</td> <td>6-57</td> <td>2N2258</td> <td>8-99</td>	2N1562	8-88	2N2081	6-57	2N2258	8-99
2N1597 5-11 2N2097 8-85 2N2330 8-102 2N1598 5-11 2N2099 8-85 2N2331 8-102 2N1599 5-11 2N2100 8-85 2N2369 8-104 2N1613 8-42 2N2137 6-60 2N2381 8-107 2N1692 8-88 2N2138 6-60 2N2382 8-107 2N1693 8-88 2N2139 6-60 2N2480 9-4 2N1705 7-35 2N2140 6-60 2N2480A 9-4 2N1706 7-35 2N2141 6-60 2N2481 8-109 2N1707 7-35 2N2142 6-60 2N2481 8-109 2N1711 8-42 2N2142 6-60 2N2490 6-67 2N1842 5-13 2N2143 6-60 2N2491 6-67 2N1842 5-13 2N2145 6-60 2N2493 6-67 2N1843 5-13 2N2146 6-60 2N2493 6-67 <td>2N1595</td> <td></td> <td>2N2082</td> <td>6-57</td> <td></td> <td></td>	2N1595		2N2082	6-57		
2N1598 5-11 2N2099 8-85 2N2331 8-102 2N1599 5-11 2N2100 8-85 2N2369 8-104 2N1613 8-42 2N2137 6-60 2N2381 8-107 2N1692 8-88 2N2138 6-60 2N2382 8-107 2N1693 8-88 2N2139 6-60 2N2480 9-4 2N1705 7-35 2N2140 6-60 2N2480A 9-4 2N1706 7-35 2N2141 6-60 2N2480A 9-4 2N1707 7-35 2N2141 6-60 2N2490 6-67 2N1711 8-42 2N2142 6-60 2N2491 6-67 2N1842 5-13 2N2144 6-60 2N2492 6-67 2N1842A 5-15 2N2145 6-60 2N2493 6-67 2N1843 5-13 2N2146 6-60 2N2501 8-112 2N1844A 5-13 2N2152 6-63 2N2527 6-68 <td>2N1596</td> <td></td> <td>2N2096</td> <td>8-85</td> <td></td> <td></td>	2N1596		2N2096	8-85		
2N1599 5-11 2N2100 8-85 2N2369 8-104 2N1613 8-42 2N2137 6-60 2N2381 8-107 2N1692 8-88 2N2138 6-60 2N2382 8-107 2N1693 8-88 2N2139 6-60 2N2480 9-4 2N1705 7-35 2N2140 6-60 2N2480A 9-4 2N1706 7-35 2N2141 6-60 2N2481 8-109 2N1707 7-35 2N2142 6-60 2N2490 6-67 2N1711 8-42 2N2143 6-60 2N2491 6-67 2N1842 5-13 2N2144 6-60 2N2492 6-67 2N1842 5-13 2N2145 6-60 2N2493 6-67 2N1843 5-13 2N2146 6-60 2N2501 8-112 2N1843 5-13 2N2152 6-63 2N2526 6-68 2N1844 5-13 2N2154 6-63 2N2527 6-68	2N1597	5-11	2N2097	8-85		
2N1613 8-42 2N2137 6-60 2N2381 8-107 2N1692 8-88 2N2138 6-60 2N2382 8-107 2N1693 8-88 2N2139 6-60 2N2480 9-4 2N1705 7-35 2N2140 6-60 2N2480A 9-4 2N1706 7-35 2N2141 6-60 2N2481 8-109 2N1707 7-35 2N2142 6-60 2N2490 6-67 2N1711 8-42 2N2143 6-60 2N2491 6-67 2N1842 5-13 2N2144 6-60 2N2493 6-67 2N1842A 5-15 2N2145 6-60 2N2493 6-67 2N1843 5-13 2N2146 6-60 2N2501 8-112 2N1843A 5-15 2N2152 6-63 2N2526 6-68 2N1844A 5-13 2N2153 6-63 2N2527 6-68 2N1845 5-13 2N2156 6-63 2N2537 8-114 2N1845 5-13 2N2157 6-63 2N2538 8-114 </td <td>2N1598</td> <td></td> <td>2N2099</td> <td>8-85</td> <td></td> <td></td>	2N1598		2N2099	8-85		
2N1692 8-88 2N2138 6-60 2N2382 8-107 2N1693 8-88 2N2139 6-60 2N2480 9-4 2N1705 7-35 2N2140 6-60 2N2480A 9-4 2N1706 7-35 2N2141 6-60 2N2481 8-109 2N1707 7-35 2N2142 6-60 2N2490 6-67 2N1711 8-42 2N2143 6-60 2N2491 6-67 2N1842 5-13 2N2144 6-60 2N2493 6-67 2N1843 5-15 2N2145 6-60 2N2493 6-67 2N1843 5-15 2N2145 6-60 2N2501 8-112 2N1843 5-13 2N2152 6-63 2N2526 6-68 2N1844 5-13 2N2153 6-63 2N2527 6-68 2N1844A 5-15 2N2154 6-63 2N2527 6-68 2N1845 5-13 2N2156 6-63 2N2537 8-114	2N1599		2N2100	8-85	2N2369	
2N1693 8-88 2N2139 6-60 2N2480 9-4 2N1705 7-35 2N2140 6-60 2N2480A 9-4 2N1706 7-35 2N2141 6-60 2N2481 8-109 2N1707 7-35 2N2142 6-60 2N2490 6-67 2N1711 8-42 2N2143 6-60 2N2491 6-67 2N1842 5-13 2N2144 6-60 2N2492 6-67 2N1843 5-15 2N2145 6-60 2N2493 6-67 2N1843 5-13 2N2145 6-60 2N2501 8-112 2N1843 5-13 2N2152 6-63 2N2526 6-68 2N1844 5-13 2N2152 6-63 2N2527 6-68 2N1844A 5-15 2N2154 6-63 2N2527 6-68 2N1845 5-13 2N2156 6-63 2N2537 8-114 2N1845A 5-15 2N2157 6-63 2N2538 8-114 <td>2N1613</td> <td></td> <td>2N2137</td> <td>6-60</td> <td>Maria</td> <td></td>	2N1613		2N2137	6-60	Maria	
2N1705 7-35 2N2140 6-60 2N2480A 9-4 2N1706 7-35 2N2141 6-60 2N2481 8-109 2N1707 7-35 2N2142 6-60 2N2490 6-67 2N1711 8-42 2N2143 6-60 2N2491 6-67 2N1842 5-13 2N2144 6-60 2N2492 6-67 2N1842A 5-15 2N2145 6-60 2N2493 6-67 2N1843 5-15 2N2145 6-60 2N2501 8-112 2N1843A 5-15 2N2152 6-63 2N2526 6-68 2N1844 5-13 2N2153 6-63 2N2527 6-68 2N1844A 5-15 2N2154 6-63 2N2527 6-68 2N1845 5-13 2N2156 6-63 2N2537 8-114 2N1845A 5-15 2N2157 6-63 2N2538 8-114 2N1846A 5-13 2N2158 6-63 2N2539 8-114			2N2138			
2N1706 7-35 2N2141 6-60 2N2481 8-109 2N1707 7-35 2N2142 6-60 2N2490 6-67 2N1711 8-42 2N2143 6-60 2N2491 6-67 2N1842 5-13 2N2144 6-60 2N2492 6-67 2N1842A 5-15 2N2145 6-60 2N2493 6-67 2N1843 5-13 2N2146 6-60 2N2501 8-112 2N1843A 5-15 2N2152 6-63 2N2526 6-68 2N1844 5-13 2N2153 6-63 2N2527 6-68 2N1844A 5-15 2N2154 6-63 2N2527 6-68 2N1845 5-15 2N2156 6-63 2N2537 8-114 2N1845A 5-15 2N2157 6-63 2N2538 8-114 2N1846A 5-15 2N2157 6-63 2N2538 8-114 2N1847A 5-15 2N2171 7-10 2N2540 8-114			2N2139			
2N1707 7-35 2N2142 6-60 2N2490 6-67 2N1711 8-42 2N2143 6-60 2N2491 6-67 2N1842 5-13 2N2144 6-60 2N2492 6-67 2N1842A 5-15 2N2145 6-60 2N2493 6-67 2N1843 5-13 2N2146 6-60 2N2501 8-112 2N1843A 5-15 2N2152 6-63 2N2526 6-68 2N1844 5-13 2N2153 6-63 2N2527 6-68 2N1844A 5-15 2N2154 6-63 2N2528 6-68 2N1845 5-13 2N2156 6-63 2N2537 8-114 2N1845A 5-15 2N2157 6-63 2N2538 8-114 2N1846A 5-13 2N2158 6-63 2N2539 8-114 2N1847A 5-13 2N2171 7-10 2N2540 8-114 2N1847A 5-15 2N2192A 8-91 2N2575 5-17	1		2N2140			
2N1711 8-42 2N2143 6-60 2N2491 6-67 2N1842 5-13 2N2144 6-60 2N2492 6-67 2N1842A 5-15 2N2145 6-60 2N2493 6-67 2N1843 5-13 2N2146 6-60 2N2501 8-112 2N1843A 5-15 2N2152 6-63 2N2526 6-68 2N1844 5-13 2N2153 6-63 2N2527 6-68 2N1844A 5-15 2N2154 6-63 2N2528 6-68 2N1845 5-13 2N2156 6-63 2N2537 8-114 2N1845A 5-15 2N2157 6-63 2N2538 8-114 2N1846 5-13 2N2158 6-63 2N2539 8-114 2N1846A 5-15 2N2171 7-10 2N2540 8-114 2N1847 5-13 2N2192 8-91 2N2573 5-17 2N1848 5-13 2N2192B 8-91 2N2575 5-17			2N2141			
2N1842 5-13 2N2144 6-60 2N2492 6-67 2N1842A 5-15 2N2145 6-60 2N2493 6-67 2N1843 5-13 2N2146 6-60 2N2501 8-112 2N1843A 5-15 2N2152 6-63 2N2526 6-68 2N1844 5-13 2N2153 6-63 2N2527 6-68 2N1844A 5-15 2N2154 6-63 2N2528 6-68 2N1845 5-13 2N2156 6-63 2N2537 8-114 2N1845A 5-15 2N2157 6-63 2N2538 8-114 2N1846 5-13 2N2158 6-63 2N2539 8-114 2N1846A 5-15 2N2171 7-10 2N2539 8-114 2N1847 5-13 2N2192 8-91 2N2573 5-17 2N1848 5-13 2N2192A 8-91 2N2574 5-17 2N1848A 5-15 2N2193 8-91 2N2576 5-17			2N2142			
2N1842A 5-15 2N2145 6-60 2N2493 6-67 2N1843 5-13 2N2146 6-60 2N2501 8-112 2N1843A 5-15 2N2152 6-63 2N2526 6-68 2N1844 5-13 2N2153 6-63 2N2527 6-68 2N1845 5-15 2N2154 6-63 2N2528 6-68 2N1845 5-13 2N2156 6-63 2N2537 8-114 2N1845A 5-15 2N2157 6-63 2N2538 8-114 2N1846 5-13 2N2158 6-63 2N2539 8-114 2N1846A 5-15 2N2171 7-10 2N2540 8-114 2N1847 5-13 2N2192 8-91 2N2573 5-17 2N1848 5-13 2N2192B 8-91 2N2574 5-17 2N1848A 5-15 2N2193 8-91 2N2576 5-17			2N2143			
2N1843 5-13 2N2146 6-60 2N2501 8-112 2N1843A 5-15 2N2152 6-63 2N2526 6-68 2N1844 5-13 2N2153 6-63 2N2527 6-68 2N1844A 5-15 2N2154 6-63 2N2528 6-68 2N1845 5-13 2N2156 6-63 2N2537 8-114 2N1845A 5-15 2N2157 6-63 2N2538 8-114 2N1846 5-13 2N2158 6-63 2N2539 8-114 2N1846A 5-15 2N2171 7-10 2N2540 8-114 2N1847 5-13 2N2192 8-91 2N2573 5-17 2N1848 5-13 2N2192A 8-91 2N2574 5-17 2N1848A 5-15 2N2193 8-91 2N2576 5-17			2N2144			
2N1843A 5-15 2N2152 6-63 2N2526 6-68 2N1844 5-13 2N2153 6-63 2N2527 6-68 2N1844A 5-15 2N2154 6-63 2N2528 6-68 2N1845 5-13 2N2156 6-63 2N2537 8-114 2N1845A 5-15 2N2157 6-63 2N2538 8-114 2N1846 5-13 2N2158 6-63 2N2539 8-114 2N1846A 5-15 2N2171 7-10 2N2540 8-114 2N1847 5-13 2N2192 8-91 2N2573 5-17 2N1848 5-13 2N2192A 8-91 2N2574 5-17 2N1848A 5-15 2N2193 8-91 2N2576 5-17						
2N1844 5-13 2N2153 6-63 2N2527 6-68 2N1844A 5-15 2N2154 6-63 2N2528 6-68 2N1845 5-13 2N2156 6-63 2N2537 8-114 2N1845A 5-15 2N2157 6-63 2N2538 8-114 2N1846 5-13 2N2158 6-63 2N2539 8-114 2N1846A 5-15 2N2171 7-10 2N2540 8-114 2N1847 5-13 2N2192 8-91 2N2573 5-17 2N1848 5-13 2N2192B 8-91 2N2575 5-17 2N1848A 5-15 2N2193 8-91 2N2576 5-17						
2N1844A 5-15 2N2154 6-63 2N2528 6-68 2N1845 5-13 2N2156 6-63 2N2537 8-114 2N1845A 5-15 2N2157 6-63 2N2538 8-114 2N1846 5-13 2N2158 6-63 2N2539 8-114 2N1846A 5-15 2N2171 7-10 2N2540 8-114 2N1847 5-13 2N2192 8-91 2N2573 5-17 2N1848A 5-13 2N2192B 8-91 2N2574 5-17 2N1848A 5-15 2N2193 8-91 2N2576 5-17						
2N1845 5-13 2N2156 6-63 2N2537 8-114 2N1845A 5-15 2N2157 6-63 2N2538 8-114 2N1846 5-13 2N2158 6-63 2N2539 8-114 2N1846A 5-15 2N2171 7-10 2N2540 8-114 2N1847 5-13 2N2192 8-91 2N2573 5-17 2N1847A 5-15 2N2192A 8-91 2N2574 5-17 2N1848 5-13 2N2192B 8-91 2N2575 5-17 2N1848A 5-15 2N2193 8-91 2N2576 5-17	1					
2N1845A 5-15 2N2157 6-63 2N2538 8-114 2N1846 5-13 2N2158 6-63 2N2539 8-114 2N1846A 5-15 2N2171 7-10 2N2540 8-114 2N1847 5-13 2N2192 8-91 2N2573 5-17 2N1847A 5-15 2N2192A 8-91 2N2574 5-17 2N1848 5-13 2N2192B 8-91 2N2575 5-17 2N1848A 5-15 2N2193 8-91 2N2576 5-17	1					
2N1846 5-13 2N2158 6-63 2N2539 8-114 2N1846A 5-15 2N2171 7-10 2N2540 8-114 2N1847 5-13 2N2192 8-91 2N2573 5-17 2N1847A 5-15 2N2192A 8-91 2N2574 5-17 2N1848 5-13 2N2192B 8-91 2N2575 5-17 2N1848A 5-15 2N2193 8-91 2N2576 5-17						
2N1846A 5-15 2N2171 7-10 2N2540 8-114 2N1847 5-13 2N2192 8-91 2N2573 5-17 2N1847A 5-15 2N2192A 8-91 2N2574 5-17 2N1848 5-13 2N2192B 8-91 2N2575 5-17 2N1848A 5-15 2N2193 8-91 2N2576 5-17	5					
2N1847 5-13 2N2192 8-91 2N2573 5-17 2N1847A 5-15 2N2192A 8-91 2N2574 5-17 2N1848 5-13 2N2192B 8-91 2N2575 5-17 2N1848A 5-15 2N2193 8-91 2N2576 5-17	1					
2N1847A 5-15 2N2192A 8-91 2N2574 5-17 2N1848 5-13 2N2192B 8-91 2N2575 5-17 2N1848A 5-15 2N2193 8-91 2N2576 5-17						
2N1848 5-13 2N2192B 8-91 2N2575 5-17 2N1848A 5-15 2N2193 8-91 2N2576 5-17						
2N1848A 5-15 2N2193 8-91 2N2576 5-17						
					I and the second	
2N1849 5-13 2N2193A 8-91 2N2577 5-17		-				
	2N1849	5-13	2N2193A	8-91	2N2577	5-17

Device Type	Page	Device Type	Page	Device Type	Page
2N2578	5-17	2N3244	8-145	2N3444	8-155
2N2579	5-17	2N3245	8-145	2N3445	6-84
2N2630	8-115	2N3248	8-148	2N3446	6-84
2N2635	8-117	2N3249	8-148	2N3447	6-84
2N2728	6-70	2N3250	8-151	2N3448	6-84
2N2800	8-119	2N3250A	8-151	2N3467	8-190
2N2801	8-119	2N3251	8-151	2N3468	8-190
2N2832	6-72,	2N3251A	8-151	2N3480	9-9
	8-121	2N3252	8-155	2N3481	9-9
2N2833	6-72	2N3253	8-155	2N3483	9-9
2N2834	6-72,	2N3279	8-158	2N3484	9-9
	8-121	2N3280	8-158	2N3485	8-123
2N2837	8-119	2N3281	8-158	2N3485A	8-123
2N2838	8-119	2N3282	8-158	2N3486	8-123
2N2904	8-123	2N3283	8-160	2N3486A	8-123
2N2904A	8-123	2N3284	8-160	2N3493	8-193
2N2905	8-123	2N3285	8-160	2N3494	8-195
2N2905A	8-123	2N3286	8-160	2N3495	8-195
2N2906	8-123	2N3287	8-163	2N3496	8-195
2N2906A	8-123	2N3288	8-163	2N3497	8-195
2N2907	8-123	2N3289	8-163	2N3498	8-197
2N2907A	8-123	2N3290	8-163	2N3499	8-197
2N2912	6-74	2N3291	8-165	2N3500	8-197
2N2929	8-127	2N3292	8-165	2N3501	8-197
2N2947	8-129	2N3293	8-165	2N3506	8-202
2N2948	8-129	2N3294	8-165	2N3507	8-202
2N2949	8-131	2N3295	8-167	2N3508	8-204
2N2950	8-131	2N3296	8-170	2N3509	8-204
2N2951	8-133	2N3297	8-173	2N3510	8-207
2N2952	8-133	2N3298	8-176	2N3511	8-207
2N2955	8-136	2N3307	8-178	2N3544	8-210
2N2956	8-136	2N3308	8-178	2N3546	8-211
2N2957	8-136	2N3309	8-180	2N3553	8-187
2N2958	8-139	2N3309A	8-182	2N3611	6-88
2N2959	8-139	2N3311	6-81	2N3612	6-88
2N3021	6-76	2N3312	6-81	2N3613	6-88
2N3022	6-76	2N3313	6-81	2N3614	6-88
2N3023	6-76	2N3314	6-81	2N3615	6-91
2N3024	6-76	2N3315	6-81	2N3616	6-91
2N3025	6-76	2N3316	6-81	2N3617	6-91
2N3026	6-76	2N3323	8-184	2N3618	6-91
2N3115	8-139	2N3324	8-184	2N3632	8-187
2N3116	8-139	2N3325	8-184	2N3634	8-214
2N3133	8-141	2N3375	8-187	2N3635	8-214
2N3134	8-141	2N3409	9-7	2N3636	8-214
2N3135	8-141	2N3410	9-7	2N3637	8-214
2N3136	8-141	2N3411	9-7	2N3647	8-207
2N3137	8143	2N3427	7-41	2N3648	8-207
2N3227	8-104	2N3428	7-41	2N3664	8-218

Device Type	Page	Device Type	Page	Device Type	Page
2N3713	6-95	MA888	7-46	MC312	11-8
2N3714	6-95	MA889	7-46	MC351	11-25
2N3715	6-95	MA909	7-48	MC352	11-33
2N3716	6-95	MA910	7-48	MC353	11-31
2N3717	8-220	MA1702	7-49	MC354	11-24
2N3718	8-220	MA1703	7-49	MC355	11-37
2N3719	6-99,	MA1704	7-49	MC356	11-25
	8-222	MA1705	7-49	MC357	11-25
2N3720	6-99,	MA1706	7-49	MC358	11-33
21.0.20	8-222	MA1707	7-49	MC359	11-25
2N3742	8-225	MA1708	7-49	MC360	11-25
2N3743	8-228	MC201	11-39	MC361	11-25
2N3783	8-231	MC202	11-39	MC362	11-25
2N3784	8-231	MC203	11-41	MC401	11-143
2N3785	8-231	MC204	11-43	MC402	11-145
2N3796	9-11	MC204 MC205	11-45	MC908	11-128
2N3797	9-11	MC205 MC206	11-45	MC909	11-120
2N3798	8-234	MC200 MC207	11-47	MC909 MC910	11-130
2N3799	8-234	MC201 MC208	11-45	MC911	11-134
2N3800	9-13	MC208 MC209			
	9-13 9-13		11-53	MC912	11-136
2N3801		MC212	11-55	MC913	11-138
2N3802	9-13	MC213	11-57	MC921	11-141
2N3803	9-13	MC215	11-59	MC1110	11-148
2N3804	9-13	MC217	11-61	MC1111	11-114
2N3805	9-13	MC251	11-64	MC1112	11-116
2N3806	9-13	MC252	11-64	MC1113	11-118
2N3807	9-13	MC253	11-66	MC1114	11-120
2N3808	9-13	MC254	11-67	MC1115	11-122
2N3809	9-13	MC255	11-69	MC1116	11-124
2N3810	9-13	MC256	11-71	MC1117	11-124
2N3811	9-13	MC257	11-73	MC1118	11-124
2N3818	8-236	MC258	11-76	MC1513	11-153
Series 300	4-4	MC259	11-78	MC1519	11-154
MA112	7-44	MC260	11-80	MC1524	11-158
MA113	7-44	MC262	11-83	MC1525	11-162
MA114	7-44	MC263	11-85	MC1526	11-162
MA115	7-44	MC265	11-88	MC1527	11-162
MA116	7-44	MC267	11-90	MC1528	11-162
MA117	7-44	MC301	11-8	MCA1911	2-36
MA286	7-45	MC302	11-16	MCA1912	2-36
MA287	7-45	MC303	11-14	MCA1913	2-36
MA288	7-45	MC304	11-7	MCA1914	2-36
MA881	7-46	MC305	11-20	MCA 1921	2-36
MA882	7-46	MC306	11-8	MCA1922	2-36
MA883	7-46	MC307	11-8	MCA1923	2-36
MA884	7-46	MC308	11-16	MCA1924	2-36
MA885	7-46	MC309	11-8	MCA1931	2-36
MA886	7-46	MC310	11-8	MCA1932	2-36
MA887	7-46	MC311	11-8	MCA1933	2-36

Device Type	Page	Device Type	Page	Device Type	Page
MCA1934	2-36	MCR729-10	5-23	MCR1308-2	5-25
MCA2011	2-36	MCR808-1	5-25	MCR1308R-2	5-25
MCA2012	2-36	MCR808R-1	5-25	MCR1308-3	5-25
MCA2013	2-36	MCR808-2	5-25	MCR1308R-3	5-25
MCA2014	2-36	MCR808R-2	5-25	MCR1308-4	5-25
MCA2021	2-36	MCR808-3	5-25	MCR1308R-4	5-25
MCA2022	2-36	MCR808R-3	5-25 ⁻	MCR1308-5	5-25
MCA2023	2-36	MCR808-4	5-25	MCR1308R-5	5-25
MCA2024	2-36	MCR808R-4	5-25	MCR1308-6	5-25
MCA2031	2-36	MCR808-5	5-25	MCR1308R-6	5-25
MCA2032	2-36	MCR808R-5	5-25	MCR1604-1	5-34
MCA2033	2-36	MCR808-6	5-25	MCR1604R-1	5-34
MCA2034	2-36	MCR808R-6	5-25	MCR1604-2	5-34
MCA2111	2-36	MCR846-1	5-28	MCR1604R-2	5-34
MCA2112	2-36	MCR846-2	5-28	MCR1604-3	5-34
MCA2113	2-36	MCR846-3	5-28	MCR1604R-3	5-34
MCA2114	2-36	MCR846-4	5-28	MCR1604-4	5-34
MCA2121	2-36	MCR914-1	5-11	MCR1604R-4	5-34
MCA2122	2-36	MCR914-2	5-11	MCR1604-5	5-34
MCA2123	2-36	MCR914-3	5-11	MCR1604R-5	5-34
MCA2124	2-36	MCR914-4	5-11	MCR1604-6	5-34
MCA2131	2-36	MCR914-5	5-11	MCR1604R-6	5-34
MCA2132	2-36	MCR914-6	5-11	MCR1605-1	5-34
MCA2133	2-36	MCR1304-1	5-34	MCR1605R-1	5-34
MCA2134	2-36	MCR1304R-1		MCR1605-2	5-34
MCA2211	2-36	MCR1304-2	5-34	MCR1605R-2	5-34
MCA2212	2-36	MCR1304R-2	5-34	MCR1605-3	5-34
MCA2213	2-36	MCR1304-3	5-34	MCR1605R-3	5-34
MCA2214	2-36	MCR1304R-3	5-34	MCR1605-4	5-34
MCA2221	2-36	MCR1304-4	5-34	MCR1605R-4	5-34
MCA2222	2-36	MCR1304R-4	5-34	MCR1605-5	5-34
MCA2223	2-36	MCR1304-5	5-34	MCR1605R-5	5-34
MCA2224	2-36	MCR1304R-5	5-34	MCR1605-6	5-34
MCA2231	2-36	MCR1304-6	5-34	MCR1605R-6	5-34
MCA2232	2-36	MCR1304R-6	5-34	MCR1718-5	5-30
MCA2233	2-36	MCR1305-1	5-34	MCR1718-6	5-30
MCA2234	2-36	MCR1305R-1	5-34	MCR1718-7	5-30
MCR649-1	5-20	MCR1305-2	5-34	MCR1718-8	5-30
MCR649-2	5-20	MCR1305R-2	5-34	MCR1907-1	5-32
MCR649-3	5-20	MCR1305-3	5-34	MCR1907-2	5-32
MCR649-4	5-20	MCR1305R-3	5-34	MCR1970-3	5-32
MCR649-5	5-20	MCR1305-4	5-34	MCR1970-4	5-32
MCR649-6	5-20	MCR1305R-4	5-34	MCR1970-5	5-32
MCR649-7	5-20	MCR1305-5	5-34	MCR1970-6	5-32
MCR729-5	5-23	MCR1305R-5	5-34	MCR2304-1	5-34
MCR729-6	5-23	MCR1305-6	5-34	MCR2304R-1	5-34
MCR729-7	5-23	MCR1305R-6	5-34	MCR2304-2	5-34
MCR729-8	5-23	MCR1308-1	5-25	MCR2304R-2	5-34
MCR729-9	5-23	MCR1308R-1	5-25	MCR2304-3	5-34
1					

Device Type	Page	Device Type	Page	Device Type	Page
MCR2304R-3	5-34	MD985	9-21	MDA950-6	4-10
MCR2304-4	5-34	MD986	9-23	MDA950-7	4-10
MCR2304R-4	5-34	MD990	9-25	MDA 952-1	4-13
MCR2304-5	5-34	MD1120	9-27	MDA 952-2	4-13
MCR2304R-5	5-34	MD1121	9-27	MDA952-3	4-13
MCR2304-6	5-34	MD1122	9-27	MDA 952-4	4-13
MCR2304R-6	5-34	MD1123	9-29	MDA 952-5	4-13
MCR2305-1	5-34	MD1124	9-29	MDA952-6	4-13
MCR2305R-1	5-34	MD1125	9-29	MDA962-1	4-13
MCR2305-2	5-34	MD1126	9-31	MDA 962-2	4-13
MCR2305R-2	5-34	MD1127	9-31	MDA962-3	4-13
MCR2305-3	5-34	MD1128	9-33	MDA 962-4	4-13
MCR2305R-3	5-34	MD1129	9-35	MDA 962-5	4-13
MCR2305-4	5-34	MD1130	9-37	MDA 1330	4-16
MCR2305R-4	5-34	MD1131	9-39	MDA 1331	4-16
MCR2305-5	5-34	MD1132	9-41	MDA 1332	4-16
MCR2305R-5	5-34	MD1133	9-43	MDA 1333	4-16
MCR2305-6	5-34	MD1134	9-45	MDA 1491-1	4-13
MCR2305R-6	5-34	MDA 920-1	4-10	MDA 1491-2	4-13
MCR2604-1	5-34	MDA920-2	4-10	MDA 1491-3	4-13
MCR2604R-1	5-34	MDA920-3	4-10	MDA1491-4	4-13
MCR2604-2	5-34	MDA 92 0-4	4-10	MDA 1491-5	4-13
MCR2604R-2	5-34	MDA920-5	4-10	MDA1491-6	4-13
MCR2604-3	5-34	MDA920-6	4-10	MDA 1505-1	4-13
MCR2604R-3	5-34	MDA920-7	4-10	MDA 1505-2	4-13
MCR2604-4	5-34	MDA930-1	4-10	MDA 1505-3	4-13
MCR2604R-4	5-34	MDA930-2	4-10	MDA 1505-4	4-13
MCR2604-5	5-34	MDA930-3	4-10	MDA 1505-5	4-13
MCR2604R-5	5-34	MDA930-4	4-10	MDA1505-6	4-13
MCR2604-6	5-34	MDA930-5	4-10	MDA 1591-1	4-13
MCR2604R-6	5-34	MDA930-6	4-10	MDA1591-2	4-13
MCR2605-1	5-34	MDA930-7	4-10	MDA 1591-3	4-13
MCR2605R-1	5-34	MDA940-1	4-10	MDA 1591-4	4-13
MCR2605-2	5-34	MDA940-2	4-10	MDA 1591-5	4-13
MCR2605R-2	5-34	MDA 940-3	4-10	MDA1591-6	4-13
MCR2605-3	5-34	MDA940-4	4-10	ME1 USN	11-93
MCR2605R-3	5-34	MDA940-5	4-10	ME2 USN	11-96
MCR2605-4	5-34	MDA940-6	4-10	ME3 USN	11-99
MCR2605R-4	5-34	MDA 940-7	4-10	ME4 USN	11-102
MCR2605-5	5-34	MDA942-1	4-13	ME5 USN	11-104
MCR2605R-5	5-34	MDA942-2	4-13	ME6 USN	11-107
MCR2605-6	5-34	MDA942-3	4-13	ME7 USN	11-109
MCR2605R-6	5-34	MDA 942-4	4-13	ME8 USN	11-111
MCS2 135	8-238	MDA942-5	4-13	MF812	8-242
MCS2136	8-238	MDA942-6	4-13	MF832	8-243
MCS2137	8-240	MDA 950-1	4-10	MGCS821-1	5-37
MCS2138	8-240	MDA 950-2	4-10	MGCS821-2	5-37
MD981	9- 15 9- 17	MDA950-3	4-10	MGCS821-3	5-37
MD982	9-17 9-19	MDA950-4	4-10	MGCS821-4	5-37 5-37
MD984	9-19	MDA950-5	4-10	MGCS821-5	5-57

Device Type	Page	Device Type	Page	Device Type	Page
MGCS821-6	5-37	MR1030	3-24	MR1261	3-36
MGCS924-1	5-41	MR1030 MR1031	3-24 3-24		
MGCS924-2	5-41	MR1031 MR1032		MR1262	3-36
MGCS924-2	5-41	MR1032 MR1033	3-24	MR1263	3-36
MGCS924-4	5-41		3-24	MR1264	3-36
MGCS924-5	5-41	MR1034 MR1035	3-24	MR1265	3-36
MGCS924-6	5-41	MR1035 MR1036	3-24	MR1266	3-36
MGCS925-1	5-41	1	3-24	MR1267	3-36
MGCS925-2	5-41	MR1038	3-24	MR1290	3-38
MGCS925-3	5-41	MR1040	3-24	MR1291	3-38
MGCS925-4	5-41	MR1200	3-26	MR1292	3-38
MGCS925-4 MGCS925-5	5-41 5-41	MR1201	3-26	MR1293	3-38
MGCS925-6	5-41 5-41	MR1202	3-26	MR1294	3-38
MM1803	8-143	MR1203	3-26	MR1295	3-38
		MR1204	3-26	MR1296	3-38
MM1941	8-244	MR1205	3-26	MR1297	3-38
MM1943	8-246	MR1206	3-26	MR1337-1	3-40
MM2090	9-47	MR1207	3-26	MR1337-2	3-40
MM2091	9-47	MR1210	3-28	MR1337-3	3-40
MM2092	9-50	MR1211	3-28	MR1337-4	3-40
MM2503	0.040	MR1212	3-28	MR1337-5	3-40
MM2550	8-248	MR1213	3-28	MV1808	10-11
MM2552	8-250	MR1214	3-28	MV1864A	10-13
MM2554	8-252	MR1215	3-28	MV1866	10-14
MM2894	8-254	MR1216	3-28	MV1868	10-14
MP500	8-256	MR1217	3-28	MV1870	10-16
MP501	6-102	MR1220	3-30	MV1871	10-14
MP502	6-102	MR1221	3-30	MV1872	10-17
MP504	6-102	MR1222	3-30	MV1874	10-16
MP505	6-102	MR1223	3-30	MV1876	10-19
MP506	6-102	MR1224	3-30	MV1877	10-14
MP2060	6-102	MR1225	3-30	MV1878	10-16
MP2061	6-104	MR1226	3-30	MV1892	10-21
MP2062	6-104	MR1227	3-30	M4L2052	10-22
MP2063	6-104	MR1230	3-32	M4L2053	10-22
MPS706	6-104	MR1231	3-32	M4L2054	10-22
MPS834	8-259	MR1232	3-32		
MPS918	8-261	MR1233	3-32		
MPS2894	8-263	MR1234	3-32		
MPS2923	8-265	MR1235	3-32		
MPS2924	8-267	MR1236	3-32		
MPS2925	8-267	MR1237	3-32		
MPS3563	8-267	MR1240	3-34		
MPS3639	8-263	MR1241	3-34	ļ	
MPS3640	8-268	MR1242	3-34		
MR322	8-271	MR1243	3-34		
MR323	3-15	MR1244	3-34		
MR324	3-15	MR1245	3-34		
MR325	3-15	MR1246	3-34		
MR326	3-15	MR1247	3-34		
	3-15	MR1260	3-36		

MILITARY TYPE SEMICONDUCTORS

Motorola offers a number of semiconductor devices that comply with the terms of military specifications. The following table lists these devices, the applicable military specifications and the appropriate page in the data sections of this manual. For additional information, military-type data sheets are available.

SILICON ZENER DIODES		page
USN 1N746A thru USN 1N759A	MIL-S-19500/127C	2-8
USN 1N962B thru USN 1N984B	MIL-S-19500/117B	2-9
JAN 1N2804B thru JAN 1N2811B	MIL-S-19500/114B	2-13
JAN 1N2813B	MIL-S-19500/114B	2-13
JAN 1N2814B	MIL-S-19500. 114B	2-13
JAN 1N2816B	MIL-S-19500/114B	2-13
JAN 1N2818B thru JAN 1N28020B	MIL-S-19500/114B	2-13
JAN 1N2822B thru JAN 1N2827B	MIL-S-19500/114B	2-13
JAN 1N2838B	MIL-S-19500/114B	2-13
JAN 1N2840B thru JAN 1N2846B	MIL-S-19500/114B	2-13
JAN 1N2970B thru JAN 1N2977B	MIL-S-19500/124C	2-15
JAN 1N2979B	MIL-S-19500/124C	2-15
JAN 1N2980B	MIL-S-19500/124C	2-15
JAN 1N2982B	MIL-S-19500/124C	2-15
JAN 1N2984B	MIL-S-19500/124C	2-15
JAN 1N2988B thru JAN 1N2993B	MIL-S-19500/124C	2-15
JAN 1N2995B thru JAN 1N2997B	MIL-S-19500/124C	2-15
JAN 1N2999B thru JAN 1N3005B	MIL-S-19500/124C	2-15
JAN 1N3007B thru JAN 1N3009B	MIL-S-19500/124C	2-15
JAN 1N3011B	MIL-S-19500/124C	2-15
JAN 1N3012B	MIL-S-19500/124C	2-15
JAN 1N3014B	MIL-S-19500/124C	2-15
JAN 1N3015B	MIL-S-19500/124C	2-15
USN 1N3016B thru USN 1N3051B	MIL-S-19500/115D	2-17
USN 1N3821A thru USN 1N3828A	MIL-S-19500/115D	2-23
USA 1N3993A thru USA 1N4000A	MIL-S-19500/272	2-24
USN 1N4370A thru USN 1N4372A	MIL-S-19500/127C	2-8

SILICON REFERENCE DIODES		
JAN 1N429	MIL-S-19500/229	2-32
USN 1N821	MIL-S-19500/229	2-32
USN 1N823	MIL-S-19500/229	2-32
USN 1N825	MIL-S-19500/229	2-32
USN 1N827	MIL-S-19500/229	2-32
USN 1N829	MIL-S-19500/229	2-32
USN 1N935B	MIL-S-19500/156B	2-32
USN 1N937B	MIL-S-19500/156B	2-32
USN 1N938B	MIL-S-19500/156B	2-32
USN 1N941B	MIL-S-19500/157C	2-32
USN 1N943B	MIL-S-19500/157C	2-32
USN 1N944B	MIL-S-19500/157C	2-32
USN 1N3154 thru USN 1N3157	MIL-S-19500/158C	2-32
SILICON RECTIFIERS		
USN 1N3611 thru USN 1N3613	MIL-S-19500/228B	3-17
POWER TRANSISTORS		
JAN 2N174	MIL-T-19500/13A	6-9
JAN 2N297A	MIL-T-19500/36B	6-19
JAN 2N665	MIL-S-19500/58C	6-31
USA 2N1011	MIL-T-19500/67	6-33
USA 2N1120	MIL-T-19500/68	6-38
USN 2N1165	MIL-S-19500/178B	6-40
USN 2N1358	MIL-S-19500/122A	6-9
USN 2N1412	MIL-S-19500/76	6-43
AND INVASE TO A DISISTENCE		
MILLIWATT TRANSISTORS JAN 2N331	MIL-S-19500/4C	7-8
USN 2N398	MIL-S-19500/4C	7-0 7-12
USAF 2N461	MIL-T-19500/45	7-12
USA 2N465	MIL-T-19500/50A	7-15
JAN 2N466	MIL-S-19500/51D	7-15
USA 2N467	MIL-T-19500/52B	7-15
JAN 2N526	MIL-S-19500/60D	7-17
USN 2N650A thru USN 652A	MIL-S-19500/175A	7-20
· -	· · · · · · · · · · · · · · · · ·	. 20

HIGH-FREQUENCY TRANSISTORS		
USA 2N700A	MIL-S-19500/123	8-29
USN 2N705	MIL-S-19500/86	8-31
JAN 2N706	MIL-S-19500/120A	8-33
USN 2N962	MIL-S-19500/258A	8-71
USN 2N964	MIL-S-19500/258A	8-71
USN 2N1131	MIL-S-19500/177A	8-81
USN 2N1132	MIL-S-19500/177A	8-44
USN 2N1142	MIL-S-19500/87	8-83
USN 2N1195	MIL-S-19500/71C	8-83
USA 2N2218	MIL-S-19500/251D	8-93
USA 2N2218A	MIL-S-19500/251D	8 - 95
USA 2N2219	MIL-S-19500/251D	8 - 93
USA 2N2219A	MIL-S-19500/251D	8 - 95
USA 2N2221	MIL-S-19500/255D	8 - 93
USA 2N2221A	MIL-S-19500/255D	8 - 95
USA 2N2222	MIL-S-19500/255D	8-93
USA 2N2222A	MIL-S-19500/255D	8-95
USN 2N2481	MIL-S-195007268A	8-109
USA 2N2904, A thru USA 2N29	07, A MIL-S-19500/290A	8-123
INTEGRATED CIRCUITS		
USN ME 1	MIL-M-23700/1	11-93
USN ME 2	MIL-M-23700/2	11-96
USN ME 3	MIL-M-23700/3	11-99
USN ME 4	MIL-M-23700/4	11-102
USN ME 5	MIL-M-23700/5	11-104
USN ME 6	MIL-M-23700/6	11-107
USN ME 7	MIL-M-23700/7	11-109
USN ME 8	MIL-M-23700/8	11-111

MEG-A-LIFE CERTIFIED RELIABILITY ASSURANCE

Motorola's pioneering reliability assurance program, "Meg-A-Life", offers germanium industrial transistors with certified reliability. Starting with germanium transistors from established production lines of known high-reliability, each Meg-A-Life production lot must pass a series of electrical, mechanical, environmental and life acceptance tests. The details of these tests, including the quality control limits, are fully specified on the special Meg-A-Life specification sheets available for each device type.

The customer who specified Meg-A-Life transistors receives devices that are guaranteed to meet published specifications within stated quality control limits. With the purchase of 100 or more Meg-A-Life devices, the customer can request a certificate guaranteeing that the actual production lot from which the devices are shipped passed the acceptance tests. In addition, a copy of the actual test data is available to the customer's quality control department.

This certified assurance of critical transistor parameters, in effect, provides the customer with his own quality control inspector within the transistor manufacturing facility.

Meg-A-Life transistors are indicated by the addition of the suffix "A" to the corresponding basic type number. Since Meg-A-Life transistors are electrically identical to the standard versions, the data pages referenced in the following table provide device characterization.

Meg-A-Life Power Transistors	Page
2N1162A thru 2N1167A	6-40
2N1529A thru 2N1532A	6-46
2N1534A thru 2N1537A	6-46
2N1539A thru 2N1542A	6-49
2N1544A thru 2N1547A	6-49
2N1549A thru 2N1560A	6-52
2N2075A thru 2N2082A	6-57
2N2137A thru 2N2146A	6-60
2N2152A thru 2N2154A	6-63
2N2156A thru 2N2158A	6-63
MP500A thru MP502A	6-102
MP504A thru MP506A	6-102
Meg-A-Life Milliwatt Transistors	
2N524A thru 2N527A	7-17
2N650A thru 2N652A	7-20
2N2042A thru 2N2043A	7-39

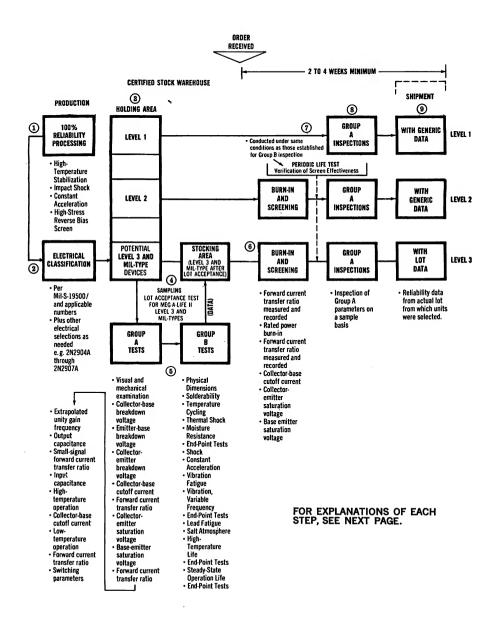
MEG-A-LIFE II A Realistic Approach to High Reliability Assurance

Motorola has instituted the Meg-A-Life II program in order to provide its customers with high-reliability semiconductors at the lowest possible cost and with the shortest possible delivery cycle. Starting with devices from production lines with known histories of reliability, Meg-A-Life II adds testing and processing operations designed to provide three ascending levels of reliability assurance. Level 1. Level 2. and Level 3.

All three levels of Meg-A-Life II devices undergo reliability processing and screening designed to stabilize device parameters and eliminate failure-prone units. For level 2 devices, burn-in at rated load conditions followed by intensive screening is added. In addition to these steps, level 3 units receive individual lot acceptance testing, including life testing, to military or comparable specifications.

Reliability data, including a certificate of compliance and test results, is available on all Meg-A-Life II devices. (For level 3 devices, the reliability data is for the actual lot from which the devices are shipped. For levels 1 and 2, the data is from the most recent lot of continuous production which has completed acceptance tests.)

The most significant feature of the Meg-A-Life II program is that it provides the required level of reliability assurance with a minimum of cost and delivery delay. The cost is low because the cost of acceptance testing is spread over many units and prorated by order size. Delivery is rapid and "on schedule" because much of the testing and processing, including the time consuming life testing, is performed before receipt of the customer's order.


For more detailed information, send for the brochure, "The M = g - A-Life II Program".

The Motorola Meg-A-Life II Program currently applies to a selected number of zener diodes and high-frequency transistors. These devices are electrically similar to the standard versions listed in the data sections of this manual. The following table lists currently available Meg-A-Life II devices and references the appropriate page in this manual for electrical data.

_	
Meg-A-Life II Zener Diodes	Page
1N746A thru 1N759A	2-8
1N962B thru 1N984B	2-9
1N2970B thru 1N3015B	2-15
1N3016B thru 1N3051B	2-17
1N3821A thru 1N3828A	2 -23
1N4370A thru 1N4372A	2 -8
Meg-A-Life II High-Frequency Transistors	
2N2218 thru 2N2219	8-93
2N2218A thru 2N2219A	8 - 95
2N2221 thru 2N2222	8-93
2N2221A thru 2N2222A	8 - 95
2N2904, A thru 2N2907, A	8-123

MEG-A-LIFE II PROCESSING FOR HIGH-RELIABILITY ASSURANCE WITH THREE LEVELS OF RELIABILITY ASSURANCE

(LISTINGS BENEATH BOXES ARE TESTS PERFORMED ON 2N2904 SERIES OF PNP SILICON EPITAXIAL STAR* TRANSISTORS)

1 100% RELIABILITY PROCESSING

Potential Meg-A-Life II devices are subjected to 100 per cent reliability processing using conditioning steps specifically selected for each type of device.

② PARAMETER CLASSIFYING BY TYPE

Devices that pass 100 per cent reliability processing are submitted to final testing of electrical parameters where classification by types is made.

3 MAINTAINING LOT IDENTITY

The lot is divided into two sections which are moved into the holding area of a certified stock warehouse. Both sections of the lot are identified with a common lot number. One section is used to fill immediate orders for Meg-A-Life II Levels 1 and 2 devices (accompanied by generic Group B test results).

The second section is held intact pending satisfactory completion of lot acceptance tests. After the tests are satisfactorily completed, this second section is transferred to a stocking area in the warehouse from which Motorola can then offer military type devices or potential Meg-A-Life II Level 3 (accompanied by lot Group B test results). Individual lot identity is carefully maintained throughout the entire process.

4 LTPD SAMPLING

The generic data provided with Level 1 and 2 devices is drawn from samples which are taken from a production run during a specific period of time or from a process batch (lot). If you order 10-watt zener diodes under the Meg-A-Life II program, for example, the sample is randomly selected only from the lines producing those diodes, rather than from all zener diode lines. Further, sampling is done on a regular basis. Sampling is based on the Lot Tolerance Percent Defective (LTPD) technique.

(5) LOT ACCEPTANCE TESTS

Lot acceptance tests consist of Group A inspections (electrical characteristics per military specification or equivalent) and Group B inspections (environmental and life tests per military specification or equivalent. Where an applicable military specification does not exist, an equivalent specification in Mil format is developed.

Group B inspections include a 1000-hour life test at specified conditions. This lot acceptance testing means that your order starts with devices having a higher assurance of reliability prior to initiating the other Meg-A-Life II screening measures than that which many users are receiving as an end product under other reliability assurance programs. Also it takes less time to fill your order because the mechanical, environmental, and 1000-hour life tests have already been completed.

Effectiveness of the screens is frequently checked by comparing the lot acceptance test data with the screen verification test data obtained later.

® SCREENING FOR HIGHER RELIABILITY

After receipt of order, all Level 2 and 3 products undergo burn-in and screening steps to further condition the devices for assurance of a higher degree of reliability (see pages 9 and 10).

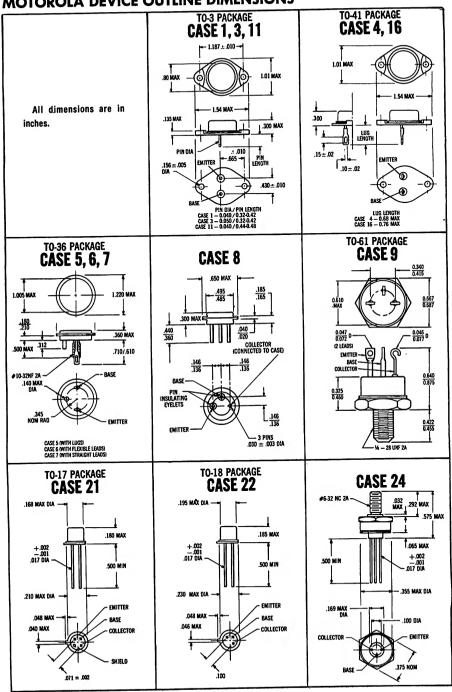
The screening procedures used are selected specifically for the type of device ordered. Their selection is based upon a thorough knowledge of the behavior of the devices and the procedures which will accelerate known failure modes. However, when ordering Level 2 or 3 products, you may elect to specify special burn-in and screening steps based upon your particular application.

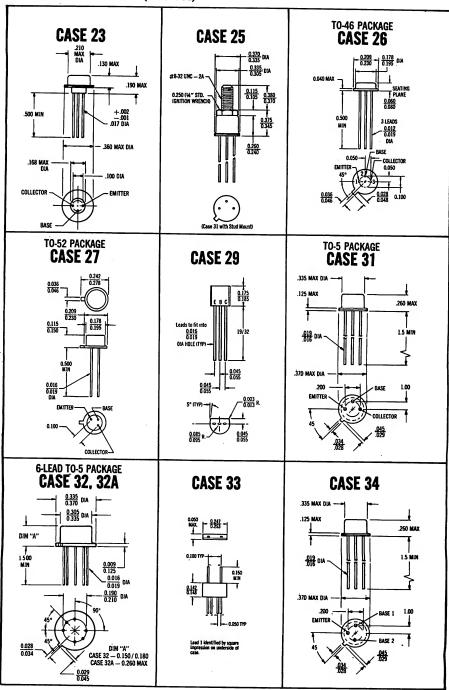
② VERIFYING SCREEN EFFECTIVENESS

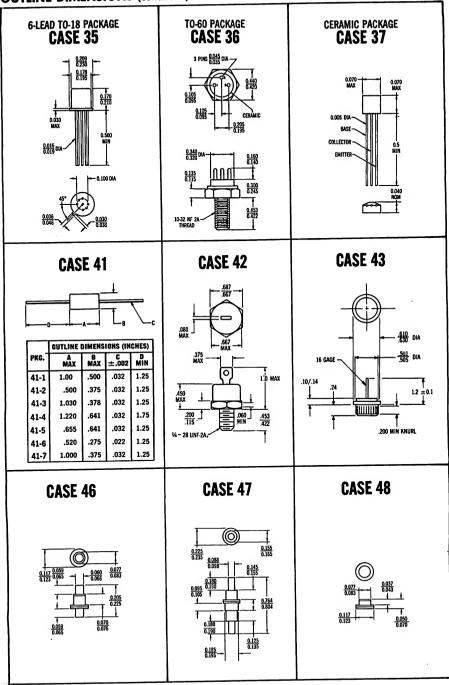
This program of failure evaluation and feedback permits design and production improvements. Naturally, these improvements make the device impervious to certain of the failure modes for which the screening was originally selected. As a result, the screens may be changed when so indicated by this analysis and feedback.

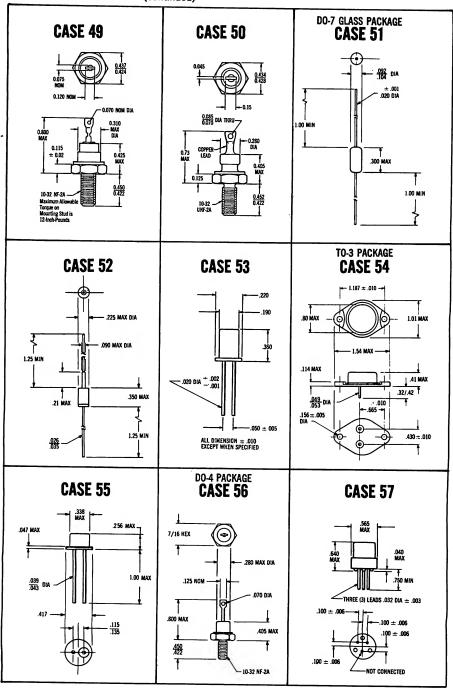
Verification of screen effectiveness is determined by periodically conducting follow-on operating life tests on previously screened devices. These life tests are conducted under the same conditions as those established for Group B inspection. This permits a direct comparison of the results before and after screening.

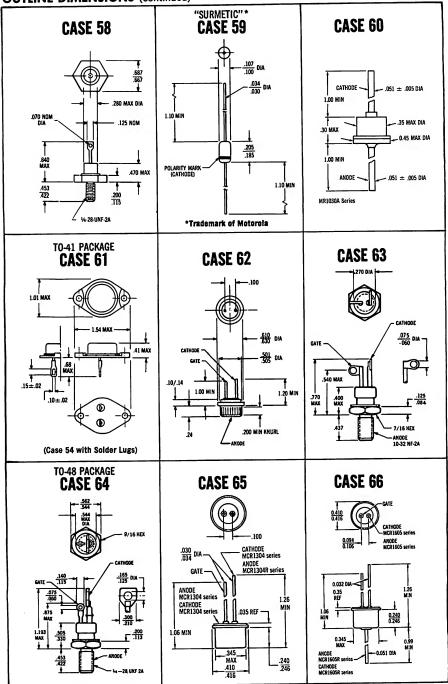
® PRE-SHIPMENT GROUP A INSPECTION

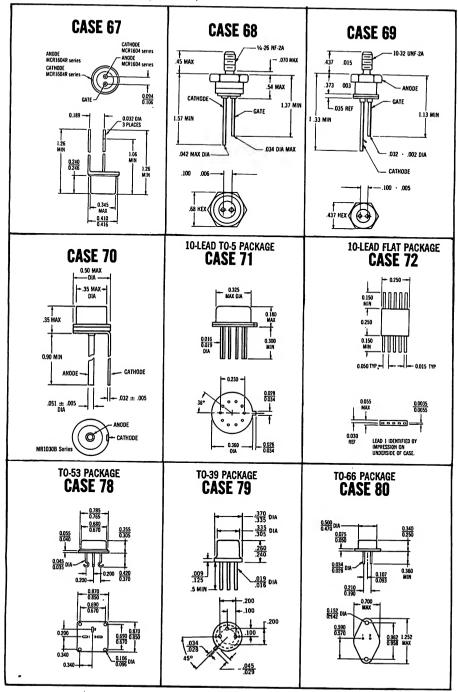

All three levels receive a Group A inspection based on your electrical requirements prior to shipment.

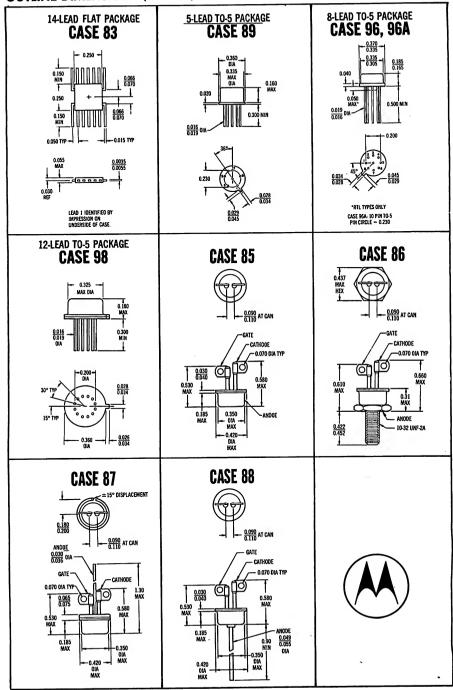

(9) CERTIFICATE OF COMPLIANCE

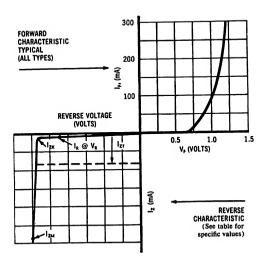

Under Motorola's Meg-A-Life II program you may specify three levels of reliability assurance.


A Certificate of Compliance is provided with each order. This certificate attests to the fact that the devices were processed in conformance with the specifications of the Motorola Meg-A-Life II program.


MOTOROLA DEVICE OUTLINE DIMENSIONS







MOTOROLA SILICON ZENER DIODES TEMPERATURE COMPENSATED DIODES REFERENCE AMPLIFIERS

- I_F Forward Current
- Iz Zener Current Izk Zener Current Near
- Breakdown Knee
- IzM Maximum DC Zener Current • IZM - MAXIMUM DO Zener Current (limited by power dissipation) • Izr - Zener Test Current • V_F - Forward Voltage

- Vz Nominal Zener Voltage
- Zz Zener Impedance
- Zzx Zener Impedance Near
- Breakdown Knee (Izk)
- Zzr Zener Impedance At
- Test Current (Izr) • I. Reverse Current
- Va Reverse Test Voltage

- For high-reliability devices produced under the Meg-A-Life II program, see page 1-22.
- For case outline dimensions, see page 1-26.
- For devices meeting military specifications, see page 1-18.

MOTOROLA SILICON ZENER DIODES

The zener diode is unique within the semiconductor family of devices in that its important electrical properties are associated with a p-n junction operated under reverse-bias avalanche (breakdown) conditions. The major electrical characteristics associated with such devices, from an applications viewpoint, are defined as follows:

Zener Voltage -- (V_Z) -- Nominal zener voltage, measured at a specified test current (I_{ZT}) in the constant-voltage region, with the device junction in thermal equilibrium with a 25 $^{\circ}$ C ambient temperature.

Zener Impedance -- ($\rm Z_{\rm Z}$) -- The impedance of a zener diode is normally specified at two points of the zener characteristics curve: at the knee of the zener plateau, and near the midrange of the zener excursion. The values of ZZ are derived by superimposing a 60-cycle current on the zener test current ($\rm I_{\rm ZT}$) or on the zener knee current ($\rm I_{\rm ZK}$) and measuring the resulting AC voltage across the device. The RMS value of the applied 60-cycle current is 10% of the zener current ($\rm I_{\rm ZT}$ or $\rm I_{\rm ZK}$).

A 100% CRT curve trace is used to insure that each zener diode breakdown region begins at a current lower than I_{ZK} and continues at nearly constant voltage to a current level in excess of I_{ZM} .

Maximum Zener Current Rating -- (I_{ZM}) -- This current rating denotes the maximum current that can be supplied by a device without exceeding the rated power level. This depends, of course, on the nominal zener voltage (V_Z) .

Reverse Current -- (I_R) -- Reverse current is the leakage current of the zener diode in the non-conducting region of the device, i.e., in the area of an applied voltage between 0 and avalanche breakdown. It is normally specified at a reverse voltage (V_R) of approximately 0.8 (V_Z -- tolerance)

AVAILABILITY

Because zener diodes are specified at specific voltages ranging, in small increments, from 2.4 volts to 200, and because many of these voltage ratings are duplicated in each of the various power classifications, the number of zener diode type numbers far exceed that of any other semiconductor product. In addition to this wide range of standard devices, an almost unlimited variety of custom units with special tolerances, special voltages, matched pairs, etc., can be readily supplied to order at a nominal cost. For requirements that are not covered by one of the standard devices, consult a Motorola franchised semiconductor distributor or Motorola semiconductor representative.

MOTOROLA ZENER DIODE QUICK SELECTION CHART

IMPORTANT... The zener diodes listed below represent only a basic profile of Motorola's zener diode line. While the listing includes the industry-preferred types, many additional types, including in-between voltages, are available.

	1/4 \	WATT	400 N	MILLIWATT	¾ WATT	1 W	/ATT
Nominal Zener	CA	SE 51	CA	SE 51	*Surmetic CASE 59	CAS	SE 52
Voltage	INDUSTRIAL (NOTE 1)	INDUSTRIAL ±5%TOLERANCE	INDUSTRIAL (NOTE 2)	MEETS SPECS OF MIL-S-19500/127	INDUSTRIAL (NOTE 3)	INDUSTRIAL (NOTE 2)	MEETS SPECS OF MIL-S-19500/115
!			ALLOY	UNCTION TYPES			
2.4 2.7 3.0 3.3 3.6 3.9	1/4M2.4AZ 1/4M2.7AZ 1/4M3.0AZ 1/4M3.3AZ 1/4M3.6AZ 1/4M3.9AZ		1 N4370 1 N4371 1 N4372 1 N746 1 N747 1 N748	* IN4370A * IN437.IA * IN4372A * IN746A * IN747A * IN748A		1N3821 1N3822 1N3823	₩ 1M8821A ₩ 1M8822A ₩ 1M3823A
4.3 4.7 5.1 5.6 6.2 6.8	1/4M4.3AZ 1/4M4.7AZ 1/4M5.1AZ 1/4M5.6AZ 1/4M6.2AZ		1N749 1N750 1N751 1N752 1N753 1N754	* IN749A * IN750A * IN751A * IN752A * IN753A * IN754A		1N3824 1N3825 1N3826 1N3927 1N3828 1N3829	* 1N38244 * 1N38254 * 1N38264 * 1N38274 * 1N38284
7.5 8.2 9.1 10			1N755 1N756 1N757 1N758 1N759	* 1N755A * 1N755A * 1N755A * 1N755A * 1N759A		1 N3830	
	<u> </u>		DIFFUSED	JUNCTION TYPES			
6.8 7.5 8.2 9.1 10	1/4M6.8Z 1/4M7.5Z 1/4M8.2Z 1/4M9.1Z 1/4M10Z 1/4M11Z	1N4099 1N4100 1N4101 1N4103 1N4104 1N4105	(NOTE 3) 1N957 1N958 1N958 1N960 1N961 1N961	MEE'S SPECS UMIL'S 19509/117	1N3675 1N3676 1N3677 1N3678 1N3679 1N3680	(NOTE 3) 1N3016 1N3017 1N3018 1N3019 1N3020 1N3021	★ 1N30168 ★ 1N30178 ★ 1N30188 ★ 1N30198 ★ 1N30208 ★ 1N30218
12 13 15 16 18 20	1/4M12Z 1/4M13Z 1/4M15Z 1/4M16Z 1/4M18Z 1/4M20Z	1N4106 1N4107 1N4109 1N4110 1N4112 1N4114	1N963 1N964 1N965 1N966 1N967 1N968	* 1N963B * 1N964B * 1N965B * 1N966B * 1N967B * 1N968B	1N3681 1N3682 1N3683 1N3684 1N3685 1N3686	1 N3022 1 N3023 1 N3024 1 N3025 1 N3026 1 N3027	★ 1N3022B ★ 1N3023B ★ 1N3024B ★ 1N3025B ★ 1N3026B ★ 1N3027B
22 24 27 30 33 36	1/4M22Z 1/4M24Z 1/4M27Z 1/4M30Z 1/4M33Z 1/4M36Z	1N4115 1N4116 1N4118 1N4120 1N4121 1N4122	1 N969 1 N970 1 N971 1 N972 1 N973 1 N974	* 14969B * 18970B * 18971B * 18972B * 18973B * 18974B	1N3687 1N3688 1N3689 1N3690 1N3691 1N3692	1N3028 1N3029 1N3030 1N3031 1N3032 1N3033	* 1N30288 * 1N30298 * 1N30308 * 1N30318 * 1N30328 * 1N80338
39 43 47 51 56 62	1/4M39Z 1/4M43Z 1/4M47Z 1/4M51Z 1/4M56Z 1/4M62Z	1N4123 1N4124 1N4125 1N4126 1N4127 1N4129	1N975 1N976 1N977 1N978 1N979 1N980	* 189758 * 189768 * 189778 * 189778 * 18978 * 189808	1N3693 1N3694 1N3695 1N3696 1N3697 1N3698	1N3034 1N3035 1N3036 1N3037 1N3038 1N3039	★1N30348 ★1N30358 ★1N30368 ★1N30378 ★1N30388 ★1N30388
68 75 82 91 100 110	1/4M68Z 1/4M75Z 1/4M82Z 1/4M91Z 1/4M100Z 1/4M110Z	1N4130 1N4131 1N4132 1N4134 1N4135	1N981 1N982 1N983 1N984 1N985 1N986	★1N9818 ★1N9828 ★1N9836 ★1N9848	1N3699 1N3700 1N3701 1N3702 1N3703 1N3704	1N3040 1N3041 1N3042 1N3043 1N3044 1N3045	*1N3040B *1N3041B *1N3042B *1N3043B *1N3044B *1N3045B
120 130 150 160 180 200	1/4M120Z 1/4M130Z 1/4M150Z 1/4M160Z 1/4M180Z 1/4M200Z		1N987 1N988 1N989 1N990 1N991 1N992		1N3705 1N3706 1N3707	1N3046 1N3047 1N3048 1N3049 1N3050 1N3051	* 1N30468 * 1N30478 * 1N30488 * 1N30498 * 1N30508 * 1N80518

MILITARY TYPES

★MEG-A-LIFE II TYPES

MOTOROLA ZENER DIODE QUICK SELECTION CHART

IMPORTANT . . . The zener diodes listed below represent only a basic profile of Motorola's zener diode line. While the listing includes the industry-preferred types, many additional types, including in-between voltages, are available.

1 WATT	1½ WATT	10 \	WATT		50 WATT			
*Surmetic CASE 59	CASE 55	CAS	SE 56	CASE 54		CASE 58	Nominal Zener	
INDUSTRIAL (NOTE 2)	INDUSTRIAL (NOTE 3)	INDUSTRIAL (NOTE 2)	MEETS SPECS OF MIL-S-19500/277	INDUSTRIAL (NOTE 3)	MEETS SPECS OF MIL-S-19500/114	INDUSTRIAL (NOTE 3)	Voltage	
1N4728 1N4729 1N4730		1N3993	1N3993A				2.4 2.7 3.0 3.3 3.6 3.9	
1N4731 1N4732 1N4733 1N4734 1N4735		1N3994 1N3995 1N3996 1N3997 1N3998 1N3999	1N3994A 1N3995A 1N3996A 1N3997A 1N3998A 1N3999A				4.3 4.7 5.1 5.6 6.2 6.8	
		1N4000	-1 N4000A		1 To 1 To 2 To 2 To 2 To 2 To 2 To 2 To		7.5 8.2 9.1 10 12	
		REVERSE POL	ARITIES AVAILAB	LE IN ALL 10	AND 50 WATT D	IFFUSED TYPES.		
1N4736 1N4737 1N4738 1N4739 1N4740 1N4741	1N3785 1N3786 1N3787 1N3788 1N3789 1N3790	(NOTE 3) 1N2970 1N2971 1N2972 1N2973 1N2974 1N2975	MEETS SPECS QF MILS-16500/124 # IN29708/RB # IN29718 # JN29728 # 1N29738 # 1N29748 # 1N29748 # 1N29748	1N2804 1N2805 1N2806 1N2807 1N2808 1N2809	1N280484R8 1N28058 1N2806B 1N2807B 1N2807B 1N2809B	1N3305 1N3306 1N3307 1N3308 1N3309 1N3310	6.8 7.5 8.2 9.1 10	
1N4742 1N4743 1N4744 1N4745 1N4746 1N4747	1N3791 1N3792 1N3793 1N3794 1N3795 1N3796	1N2976 1N2977 1N2979 1N2980 1N2982 1N2984	* 1N2976B * 1N29778 * 1N29778 * 1N29798 * 1N2982B * 1N2984B	1N2810 1N2811 1N2813 1N2814 1N2816 1N2818	1 N2810B 1 N2811B 1 N2813B 1 N2814B 1 N2814B 1 N2814B	1N3311 1N3312 1N3314 1N3315 1N3317 1N3319	12 13 15 16 18 20	
1N4748 1N4749 1N4750 1N4751 1N4752 1N4753	1N3797 1N3798 1N3799 1N3800 1N3801 1N3802	1N2985 1N2986 1N2988 1N2989 1N2990 1N2991	* IN29858 * IN29868 * IN29886 * IN29898 * IN2998 * IN29918	1N2819 1N2820 1N2822 1N2823 1N2824 1N2825	1N28198 4N28208 1N28228 1N28238 1N28248 1N28258	1N3320 1N3321 1N3323 1N3324 1N3325 1N3326	22 24 27 30 33 36	
1N4754 1N4755 1N4756 1N4757 1N4758 1N4759	1 N3803 1 N3804 1 N3805 1 N3806 1 N3807 1 N3808	1N2992 1N2993 1N2995 1N2997 1N2999 1N3000	* 1N2992B * 1N2993B * 1N2993B * 1N2997B * 1N2999B * 1N3909B	1N2826 1N2827 1N2829 1N2831 1N2832 1N2833	1N2826B 1N2827B 1N2827B 1N2829B 1N2831B 1N2832B 1N2833B	1N3327 1N3328 1N3330 1N3332 1N3334 1N3335	39 43 47 51 56 62	
1N4760 1N4761 1N4762 1N4763 1N4764	1N3809 1N3810 1N3811 1N3812 1N3813 1N3814	1N3001 1N3002 1N3003 1N3004 1N3005 1N3007	* 1N30018 * 1N30028 * 1N30038 * 1N30048 * 1N30058 * 1N30078	1N2834 1N2835 1N2836 1N2837 1N2838 1N2840	TN2834B TN2835B IN2836B IN28378 IN2838B IN2840B	1N3336 1N3337 1N3338 1N3339 1N3340 1N3342	68 75 82 91 100 110	
	1N3815 1N3816 1N3817 1N3818 1N3819 1N3820	1N3008 1N3009 1N3011 1N3012 1N3014 1N3015	* IN30088 * IN30098 * IN30118 * IN30128 * IN30146 * IN30158	1N2841 1N2842 1N2843 1N2844 1N2845 1N2846	1N28418 1R28428 1N28438 1N28448 1N28458 1N28468	1N3343 1N3344 1N3346 1N3347 1N3349 1N3350	120 130 150 160 180 200	

14M2.4 AZ thru 14M200z

¼ Watt 2.4 — 200 V

Hermetically sealed, all-glass case with all external surfaces corrosion resistant. Cathode end, indicated by color band, will be positive with respect to anode end when operated in the zener region.

ABSOLUTE MAXIMUM RATINGS

Junction and Storage Temperature: -65°C to +175°C D-C Power Dissipation: 1/4 Watt(Derate 1.67 mW/°C Above 25°C)

SPECIAL TOLERANCE AND VOLTAGE DESIGNATIONS

The type numbers specified on the opposite page have a standard voltage (V_Z) tolerance of $\pm 20\%$. For closer tolerances, add suffix "10" for $\pm 10\%$ or "5" for $\pm 5\%$.

VOLTAGE DESIGNATIONS

To designate units with zener voltages other than those listed, the Motorola type number should be modified as shown below. Unless otherwise specified, the electrical characteristics other than the nominal voltage (\mathbf{V}_Z) and test voltage for leakage current will conform to the characteristics of the next higher voltage type shown in the table.

EXAMPLE:

MATCHED SETS FOR CLOSER TOLERANCE OR HIGHER VOLTAGES

Series matched sets make zener voltages in excess of 200 volts or tolerances of less than 5% possible as well as providing lower temperature coefficients, lower dynamic impedance and greater power handling ability.

For Clippers, Parallel Matched Sets or other special circuit requirements, contact your Motorola District Sales Manager.

1/4M2.4AZ thru 1/4M 6.2 AZ (continued)

ELECTRICAL CHARACTERISTICS (At 25°C Ambient $V_F = 1.5 V \text{ max} \otimes 100 \text{ mA}$)

MOTOROLA	NOMINAL* ZENER	TEST	MAXIMUM ZENER IMPEDANCE	MAXIMUM DC ZENER	REVE	RSE LEAKAGE	CURRENT, (In)
TYPE NO.	VOLTAGE (V _z) volts	CURRENT (Izr) mA	(Z ₂₇) ohms @ I ₂₇)	CURRENT (Izm) mA	I. MAX	TEST	VOLTAGE Vdc
	@ l _{zt}		C -217	View) title	(/· A)	5%	Va 10%
1/4M2.4AZ	2.4	10	60	70	75	1	1
1/4M2.7AZ	2.7	10	60	65	75	i	
1/4M3.0AZ	3.0	10	55	60	50	1	1
1/4M3.3AZ	3. 3	10	55		50 50	i	1
1/4M3.6AZ	3.6	10	50	55	50 50	1	1
				52	50	1	1
1/4M3.9AZ	3.9	10	50	49	25	1 .	1
1/4M4.3AZ	4.3	10	45	46	25	1.5	1.5
1/4M4.7AZ	4.7	10	35	42	10	1.5	1.5
1/4M5.1AZ	5. 1	10	25	39	5	1.5	1.5
1/4M5.6AZ	5.6	10	20	36	5	1.5	1.5
1/4M6. 2AZ	6.2	10	15	33	5	3.5	3.5
1/4M6.8Z	6.8	9.2	7.0	33	150		
1/4M7.5Z	7.5	8.3		30	75	5.2	4.9
1/4M8.2Z	8.2	7.6	8.0	30 26		5.7	5.4
1/4M9.1Z	9.1	6.9	9.0	26 24	50	6.2	5.9
1/4M10Z	10	6.3	10 11	24 21	25 10	6.9 7.6	6.6
1/4M11Z	11	5.7	13	19	5		7.2
1/4M12Z	12	5.2		18	5	8.4	8,0
1/4M13Z	13	4.8	15			9.1	8.6
1/4M14Z	14	4.8	18	16	5	9.9	9.4
1/4M15Z	15	4.5	20	15	5	10.6	10.1
			22	14	5	11.4	10.8
1/4M16Z	16	3.9	24	13	5	12.2	11.5
1/4M17Z	17	3.7	26	12.5	5 5	13.0	12.2
I/4M18Z	18	3.5	28	11.5	5	13.7	13.0
l/4M19Z	19	3.3	30	11.0	5	14.4	13.0
1/4M20Z	20	3. 1	33	10.5	5	15.2	13.7
1/4M22Z	22	2.8	40	9. 5	5	16.7	15.8
/4M24Z	24	2.6	46	9.0	5	18.2	17.3
1/4M25Z	25	2.5	50	8.0	5	19.0	18.0
/4M27Z	27	2.3	58	7.5	5	20.6	19.4
/4M30Z	30	2.1	70	7.0	5	22.8	21.6
/4M33Z	33	1.9	85	6.5	5	25.1	23.8
/4M36Z	36	1.7	100	6.0	5	27.4	25. 9 25. 9
/4M39Z	39	1.6	120	5.0	5	29.7	25. 9 28. 1
/4M43Z	43	1.5	140	4.8	5	32.7	
/4M45Z	45	1.4	150	4. 5	5	34.2	31.0 32.4
/4M47Z	47	1.3	160	4.3	5	35.8	33.8
/4M50Z	50	1.2	180	4.1	5	38.0	36.0
/4M52Z	52	1.2	200	4.0	5	39.5	36.0 37.4
/4M56Z	56	1.1	230	3. 8	5	42.6	37.4 40.3
/4M62Z	62	1.0	290	3. 3	5	47.1	40.3 44.6
/4M68Z	68	0.92	350	3.0	5	51.7	49.0
/4M75Z	75	0.83	450	2.8	5	56.0	54.0
/4M82Z	82	0.76	550	2.5	5	62.2	59.0
/4M91Z	91	0.69	700	2.3	5	69.2	59.0 65.5
/4M100Z	100	0.63	900	2.0	5	76.0	72.0
4M105Z	105	0.60	1000	1.9	5	79.8	75.6
4M110Z	110	0.57	1200	1.8	5	83.6	75.6 79.2
4M120Z	120	0.52	1500	1.7	5	91.2	
4M130Z	130	0.48	1900	1.5	5	98.8	86.4
4M140Z	140	0.45	2200	1.4	5	98.8 106.4	93.6 100.8
4M150Z	150	0.42	2500	1.3	5	114.0	
'4M175Z '4M200Z	175	0.36	3300	1.1	5	133.0	108.0 126.0
	200	0.31			J	1.33. 0	176 0

^{*} SPECIAL SELECTIONS 1 — Nominal zener voltages between those shown.

AVAILABLE INCLUDE: 2 — Matched sets:

a. Two or more units for series connection with specified tolerance on total voltage

b. Two or more units matched to one another with any specified tolerance

} Standard Tolerances

are ±5%, ±2%, and ±1%

1N702 thru 1N745

¼ Watt 2 — 200 V

Recommended for applications requiring an exact replacement only. For new designs and for industry preferred replacement devices, see 1N746--, 1N957-- and 1N4370-- series. Absolute maximum rating-junction and storage temperature range -65 to +175°C, derated 1.67 mW/°C.

1N**746** thru 1N**759** 1N4370 thru 1N4372

400 mW 2.4 -12 V

Hermetically sealed, all-glass case with all external surfaces corrosion resistant. Cathode end, indicated by color band, will be positive with respect to anode end when operated in the zener region.

ABSOLUTE MAXIMUM RATINGS

Junction and Storage Temperature: -65°C to +175°C

D-C Power Dissipation: 400 Milliwatts at 50°C Ambient (Derate 3.2 mW/°C Above 50° Ambient)

TOLERANCE DESIGNATION

The type numbers shown have tolerance designations as follows:

1N4370 series: \pm 10%, suffix A for \pm 5% units. 1N746 series: \pm 10%, suffix A for \pm 5% units.

ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted)

				MAXINUM -	MAXIMUM REVERSE I	EAKAGE CURRENT
JEDEC Type Number	NOMINAL* ZENER VOLTAGE V ₂ @ I ₂₁ VOLTS	TEST CURRENT I ₂₁ mÅ	MAXIMUM ZENER IMPEDANCE Z _{zt} @ l _{zt} Ohms	DC ZENER CURRENT	T _A = 25°C I _B @ V _B = 1 V μA	T₄ = 150°C I₂ @ V₂ = 1 V µA
1N4370	2.4	20	30	150	100	200
1N4371	2.7	20	30	135	75	150
1N4372	3.0	20	29	120	50	100
1N746	3.3	20	28	110	10	30
1N747	3.6	20	24	100	10	30
1N748	3.9	20	23	95	10	30
1N749	4.3	20	22	85	2	30
1N750	4.7	20	19	75	2	30
1N751	5.1	20	17	70	1	20
1N752	5.6	20	11	65	1.	20
1N753	6.2	20	7	60	0.1	20
1N754	6.8	20	5	55	0.1	20
1N755	7.5	20	6	50	0.1	20
1N756	8.2	20	8	45	0.1	20
1N757	9.1	20	10	40	0.1	20
1N758	10.0	20	17	35	0.1	20
1N759	12.0	20	30	30	0.1	20

1N761 thru 1N769

Recommended for applications requiring an exact replacement only. For new designs see 1N746 -- and 1N4370 -- series.

1N957 thru 1N992

400 mW 6.8 - 200 V

Hermetically sealed, all-glass case with all external surfaces corrosion resistant. Cathode end, indicated by color band, will be positive with respect to anode end when operated in the zener region.

MAXIMUM RATINGS

Junction and Storage Temperature: -65 to +175°C

DC Power Dissipation: 400 mW at 50°C Ambient (Derate 3.2 mw/°C above 50°C Ambient.)

TOLERANCE DESIGNATIONS

With no suffix, tolerance is \pm 20%, for \pm 10% units, add suffix A, for \pm 5% units, add suffix B.

ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted)

JEDEC	NOMINAL* Zener voltage	TEST	MAXIN	UM ZENER IMPED	ANCE	MAXIMUM DC ZENER CURRENT	MAXIMUM R	EVERSE CURRENT	
TYPE NUMBER	V _z Volts	CURRENT Izt mA	Zn@In Ohms	Zz @ lz Chms	l _{zx} mA	Iza mA	Ia MAXIMUM (A4)	TEST VOLTA	SE Vdc 10%
1N957	6.8	18.5	4.5	700	1.0	47	150	5.2	4.9
1N958	7.5	16.5	5.5	700	0.5	42	75	5.7	5.4
1N959	8.2	15	6.5	700	0.5	38	50	6.2	5.9
1N960	9.1	14	7.5	700	0.5	35	25	6.9	6.6
1N961	10	12.5	8.5	700	0.25	32	10	7.6	7.2
1N962	11	11.5	9.5	700	0.25	28	5	8.4	8.0
1N963	12	10.5	11.5	700	0.25	26	5	9.1	8.6
1N964	13	9.5	13	700	0.25	24	5	9.9	9.4
1N965	15	8.5	16	700	0.25	21	5	11.4	10.8
1N966	16	7.8	17	700	0.25	19	5	12.2	11.5
1N967	18	7.0	21	750	0.25	17	5	13.7	13.0
1 N968	20	6.2	25	750	0.25	15	5	15.2	14.4
1N969	22	5.6	29	750	0.25	14	5	16.7	15.8
1N970	24	5.2	33	750	0.25	13	5	18.2	17.3
1N971	27	4.6	41	750	0.25	ii	5	20.6	19.4
1N972	30	4.2	49	1000	0.25	10	5	22.8	21.6
1N973	33	3.8	58	1000	0.25	9.2	3	25.1	23.8
1N974	36	3.4	70	1000	0.25	9.2 8.5	5 5	27.4	25.9
1N975	39	3.2	80	1000	0.25	7.8	5	29.7	28. 1
1N976	43	3.0	93	1500	0.25	7.0	5	32.7	31.0
1N977	47	2.7	105	1300	0.25	6.4	5	35.8	33.8
1N978	51	2.5	125	1500	0.25	5.9	5	38.8	36.7
1N979	56	2.2	150	2000	0.25	5.9 5.4	5	42.6	40.3
1N980	62	2.0	185	2000	0.25	4.9	5	47.1	44.6
1N981	68	1.8	230	2000	0.25	4.5	5	51.7	49.0
1N982	75	1.7	270	2000	0.25	4.0	5	56.0	54.0
1N983	82	1.5	330	3000	0.25	3.7		62.2	59.0
1N984	91	1.4	400	3000	0.25	3.7	5 5	69.2	65.5
1N985	100	1.3	500	3000	0.25	3.3 3.0	5	76.0	72.G
1N986	110	1.1	750	4000	0.25	2.7	5	83.6	79.2
1N987	120	1.0	900	4500	0.25	2.5	5	91.2	86.4
1N988	130	0.95	1100	5000	0.25	2.3	5	98.8	93.6
1N989	150	0.85	1500	6000	0.25	2.0	5	114.0	108.0
1N990	160	0.80	1700	6500	0.25	1.9	5	121.6	115.2
1N991	180	0.68	2200	7100	0.25	1.7	,	136.8	129.6
1N992	200	0.65	2500	8000	0.25	1.5	5	152.0	144.0

^{*}SPECIAL SELECTIONS 1 — Nominal zener voltages between those shown.

AVAILABLE INCLUDE: 2 — Matched sets:
a. Two or more units for series connection with specified tolerance on total voltage
b. Two or more units matched to one another with any specified tolerance
} Standard Tolerances
are ±5%, ±2%, and ±1%

1N1313 thru 1N1327

150 mW 8.75 — 127.5 V

Very low power zener diodes with standard ±10% tolerances. Available with ±5% tolerance by adding suffix "A" to type number. Single-ended hermetically sealed metal case designed for easy insertion in printed-circuit boards.

ABSOLUTE MAXIMUM RATINGS

Junction and Storage Temperature Range: -65 to +175°C (Derate 1mW/°C above 25°C).

ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted)

	Nominal	Max Revei	se Current	Test
Туре	Voltage V _Z @ I _{ZT} = 200 µA volts		T _A = 100°C I _A @ V _R µA	Voltage V _R volts
1N1313	8.75	0.5	5	6.8
1N1314	10.50	0.5	5	8.2
1N1315	12.75	0.5	5	10
1N1316	15.75	0.5	5	12
1N1317	19.00	0.5	5	15

	Nominal	Max Rever	se Current	Test
Туре	Voltage V _Z @ I _{ZT} = 200 µA voits	T _A = 25´C I _R @ V _R μA	T _A = 100 °C I _A @ V _R μA	Voltage V _R volts
1N1318	23.50	0.1	10	18
1N1319	28.50	0.1	10	22
1N1320	34.50	0.1	10	27
1N1321	41.00	0.1	10	33
1N1322	48.50	0.1	10	39

	Nominal N	Max Rever	se Current	Test
Туре	Voltage V _Z @ I _{ZT} = 200 µA volts		T _A = 100°C I _A @ V _R µA	Voltage V _R volts
1N1323	58.00	0,1	10	47
1N1324	71.00	1.0	50	56
1N1325	87.50	1.0	50	68
1N1326	105.0	1.0	50	82
1N1327	127.5	1.0	50	100

1N1351 thru 1N1375

10 Watt 10 — 100 V

Recommended for applications requiring an exact replacement only. For new designs and for industry preferred replacement devices, see 1N2970 series.

IN1507 thru IN1517

¾ Watt 3.9 — 27 V

Recommended for applications requiring an exact replacement only. For new designs and for industry preferred replacement devices, see 1-watt, 1N3016 and 1N3821 series.

1N1518 thru 1N1528

1 Watt 3.9 — 27 V

Recommended for applications requiring an exact replacement only. For new designs and for industry preferred replacement devices, see 1N3016 and 1N3821 series.

CASE 56 (DO-4)

1N1588 thru 1N1598

3.5 Watt 3.9 — 27 V

Recommended for applications requiring an exact replacement only. For new designs and for industry preferred replacement devices, see 1N2970 and 1N3993 series.

CASE 56 (DO-4)

1N1599 thru 1N1609

10 Watt 3.9 — 27 V

Recommended for applications requiring an exact replacement only. For new designs and for industry preferred replacement devices, see 1N2970 and 1N3993 series.

1N1765 thru 1N1802

1 Watt 5.6 — 200 V

Recommended for applications requiring an exact replacement only. For new designs and for industry preferred replacement devices, see 1N3016 series.

1N1803 thru 1N1836

10 Watt

Recommended for applications requiring an exact replacement only. For new designs and for industry preferred replacement devices, see 1N2970 and 1N3993 series.

1N2008 thru 1N2012

10 Watt

Recommended for applications requiring an exact replacement only. For new designs and for industry preferred replacement devices, see 1N2970 series.

IN2032 thru IN2040

34 Watt 4.3 — 12 V

Recommended for applications requiring an exact replacement only. For new designs and for industry preferred replacement devices, see 1N3821 and 1N3016 series.

1N2041 thru 1N2049

10 Watt 4.3 — 27 V

Recommended for applications requiring an exact replacement only. For new designs and for industry preferred replacement devices, see 1N3993 and 1N2970 series.

CASE 56 (DO-4)

1N2498 thru 1N2500

10 Watt 10 — 12 V

Recommended for applications requiring an exact replacement only. For new designs and for industry preferred replacement devices, see 1N2970 series.

CASE 56 (DO-4)

1N2804 thru 1N2846

50 Watt 6.8 — 200 V

Units are available with anode-to-case and cathode-to-case connections (standard and reverse polarity). Has two parallel pin connections to ungrounded element so that circuit to load may be broken if unit is removed from socket. For reverse polarity, add suffix "R" to type number. Same devices in stud-type package available—see 1N3305 - 1N3350 series.

ABSOLUTE MAXIMUM RATINGS

Junction and Storage Temperature: -65°C to +175°C. D-C Power Dissipation: 50 Watts. (Derate 0.5 W/°C above 75°C).

SPECIAL TOLERANCE AND VOLTAGE DESIGNATIONS

The type numbers shown have a standard tolerance of ±20% on the nominal zener voltage. Add suffix "A" for ±10% units or "B" for ±5% units.

NON-STANDARD VOLTAGE DESIGNATION

To designate units with zener voltages other than those assigned JEDEC numbers, the equivalent Motorola type number should be used.

EXAMPLE: TO 3 DIAMOND PACKAGE

MATCHED SETS FOR CLOSER TOLERANCE OR HIGHER VOLTAGES

Series matched sets make zener voltages in excess of 200 volts or tolerances of less than 5% possible as well as providing lower temperature coefficients, lower dynamic impedance and greater power handling ability.

For Clippers, Paraliel Matched Sets or other special circuit requirements, contact your Motorola District Sales Manager.

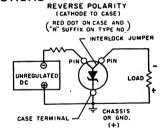
TO-3 APPLICATIONS INFORMATION

If these units are used with a socket, the unregulated line should feed into one pin through a suitable current limiting resistor and the load should be connected to the other pin. This will result in the circuit to the load being broken when unit is removed from socket. When soldered-in, pins may be connected in series to load, paralleled, or only one may be used as suits the application.

Typical circuit connections for anode-to-case and cathode-to-case polarities (standard and reverse polarities, respectively) are as shown on following page.

1N2804 thru 1N2846 (continued)

CASE TERMINAL


CIRCUIT CONNECTIONS STANDARD POLARITY (ANODE TO CASE)

CURRENT LIMITING RESISTOR INTERLOCK JUMPER UNREGULATED DC LOAD

CHASSIS

OR GND.

1-1

ELECTRICAL CHARACTERISTICS (TA = 30°C unless otherwise noted)

	Nominal Zener Voltage	Test Current	Max Zer	ner Impedance	Max DC Zener Current 75°C Case Temp	Max	Reverse Curr	ent	Typical Zener Voltage Temp. Coef
EIA Type No. 50 Watt (TO-3)	(V _z) @ I _z , Volts	(I _{zr}) mA	Z _{zr} @ I _{zr} ohms	Z _{zx} @ I _{zx} = 5mA ohms	(I _{ZM}) mA	I _R MAX (μΑ)	Va,	Vaz	% /°C
1N2804	6.8	1850	0.2	70	6600	150	4.5	4.3	.040
1N2805	7.5	1700	0.3	70	5900	75	5.0	4.7	.045
1N2806	8.2	1500	0.4	70	5200	50	5.4	5.2	.048 .051
1N2807	9.1	1370	0.5	70	4800	25	6.1	5.7	
1N2808	10	1200	0.6	80	4300	10	6.7	6.3	.055 .060
1N2809	11	1100	0.8	80	3900	5	8.4	8.0	.065
1N2810	12	1000	1.0	80	3600	5	9.1	8.6	.065
1N2811	13	960	1.1	80	3300	5	9.9	9.4 10.1	.070
1N2812	14	890	1.2	80	3000	5	10.6		
1N2813	15	830	1.4	80	2800	5	11.4	10.8 11.5	.070 .070
1N2814	16	780	1.6	80	2650	5	12.2	12.2	.075
1N2815	17	740	1.8	80	2500	5	13.0 13.7	13.0	.075
1N2818	18 19	700 660	2.0 2.2	80 80	2300 2200	5 5	14.4	13.7	.075
1N2817								14.4	.075
1N2818	20	630	2.4	80 80	2100 1900	5 5	15.2 16.7	15.8	.080
1N2819	22	570 520	2.5 2.6	80	1750	5	18.2	17.3	.080
1N2820	24	500	2.0	90	1550	5	19.0	18.0	.080
1N2821 1N2822	25 27	460	2.8	90	1500	5	20.6	19.4	.085
			3.0	90	1400		22.8	21.6	.085
1N2823	30	420 380	3.0	90	1300	5	25.1	23.8	.085
1N2824	33 36	350	3.5	90	1150	5	27.4	25.9	.085
1N2825	36 39	320	4.0	90	1050	5	29.7	28.1	.090
1N2826 1N2827	43	290	4.5	90	975	, 5	32.7	31.0	.090
1N2828	45	280	4.5	100	930	5	34.2	32.4	.090
1N2829	47	270	5.0	100	880	5	35.8	33.8	.090
1N2830	50	250	5.0	100	830	5	38.0	36.0	.090
1N2831	51	245	5.2	100	810	5	38.8	36.7	.090 .090
_	52	240	5.5	100	790	5	39.5	37.4	
1N2832	56	220	6	110	740	5	42.6	40.3	.090 .090
1N2833	62	200	7	120	660	5	47.1	44.6 49.0	.090
1N2834	68	180	8	140 150	600 540	5	51.7 56.0	54.0	.090
1N2835 1N2836	75 82	170 150	9 11	160	490	5 5	62.2	59.0	.090
	91	140	15	180	420		69.2	65.5	.090
1N2837	100	120	20	200	400	5	76.0	72.0	.090
1N2838 1N2839	105	120	25	210	380	5	79.8	75.6	.095
1N2840	110	110	30	220	365	5	83.6	79.2	.095
1N2841	120	100	40	240	335	5	91.2	86.4	.095
1N2842	130	95	50	275	310	5	98.8	93.6	.095
	140	90	60	325	290	5	106.4	100.8	.095
1N2843	150	85	75	400	270	5	114.0	108.0	.095 .095
1N2844	160	80	80	450	250	5	121.6	115.2 126.0	.095
	175	70	85	500	230	5	133.0	129.6	.095
1N2845	180	68	90 100	525 600	220 200	5 5	136.8 152.0	144.0	.100
1N2846	200	65	100	900	200	5	132.0	144.0	

^{*} SPECIAL SELECTIONS 1 — Nominal zener voltages between those shown.

AVAILABLE INCLUDE: 2 — Matched sets:
a. Two or more units for series connection with specified tolerance on total voltage
b. Two or more units matched to one another with any specified tolerance
b. Two or more units matched to one another with any specified tolerance

1N2970 thru 1N3015

10 Watt 6.8 — 200 V

Diffused-junction zener diodes for both military and high-reliability industrial applications. Available with anode-to-case and cathode-to-case connections (standard and reverse polarity), i.e., 1N2970 and 1N2970R. Supplied with mounting hardware.

ABSOLUTE MAXIMUM RATINGS

Junction and Storage Temperature: -65°C to +175°C. D-C Power Dissipation: 10 Watts. (Derate 83.3 mW/°C above 55°C).

SPECIAL TOLERANCE AND VOLTAGE DESIGNATIONS

The type numbers shown on the table have a standard tolerance of ±20% on the nominal zener voltage. Add suffix "A" for ±10% units or "B" for ±5% units.

To designate units with zener voltages other than those listed, equivalent Motorola type number should be used-modified as shown below. Unless otherwise specified, the electrical characteristics other than the nominal voltage (V_Z) and test voltage for leakage current will conform to the characteristics of the next higher voltage type shown in the table.

EXAMPLE: STUD PACKAGE

MATCHED SETS FOR CLOSER TOLERANCE OR HIGHER VOLTAGES

Series matched sets make zener voltages in excess of 200 volts or tolerances of less than 5% possible as well as providing lower temperature coefficients, lower dynamic impedance and greater power handling ability.

For Clippers, Parallel Matched Sets or other special circuit requirements, contact your Motorola District Sales Manager.

(cont'd next page)

1N2970 thru 1N3015 (continued)

ELECTRICAL CHARACTERISTICS (At 30°C case temperature unless otherwise specified) V_F = 1.5 V max @ I_F = 2 amp on all types.

	Nominal * Zener Voltage	Test	Max	Zener Impeda	ince	Max DC Zener	Max. Re	verse Cu	rrent
JEDEC Type No.	V _z @ I _{zτ} Voits	Current I _{zt} mA	Z _{zt} @ I _{zt} Ohms	Z _{zK} @ I _{zK} Ohms	I _{zk} mA	Current I _{ZM} mA	I _R Max (μA)	V _{R1} 5%	V _{R2} 10%
1N2970	6.8	370	1.2	500	1.0	1,320	150	5.2	4.9
1N2971	7.5	335	1.3	250	1.0	1,180	75	5.7	5.4
1N2972	8.2	305	1.5	250	1.0	1,040	50	6.2	5.9
1N2973	9.1	275	2.0	250	1.0	960	25	6.9	6.0
1N2974	10	250	3	250	1.0	860	10	7.6	7.3
1N2975	11	230	3	250	1.0	780	5 5	8.4 9.1	8.0 8.0
1N2976	12	210	3	250 250	1.0	720 660	5	9.1	9.4
1N2977	13 14	190	3 3	250 250	1.0 1.0	600	5 5	10.6	10.
1N2978 1N2979	15	180 170	3	250	1.0	560	5	11.4	10.
1N2980	16	155	4	250	1.0	530	5	12.2	11.
1N2982	18	140	4	250	1.0	460	5	13.7	13.
1N2983	19	130	4	250	1.0	440	5	14.4	13.
1N2984	20	125	4	250	1.0	420 .	5	15.2	14.
1N2985		115	5	250	1.0	380	5	16.7	15.
1N2986	24	105	5	250	1.0	350	5	18.2	17.
1N2988	27	95	7	250	1.0	300	5	20.6	19.
1N2989	30	85	8	300	1.0	280	5	22.8	21.
1N2990	33	75	9	300	1.0	260	5 5	25.1 27.4	23. 25.
1N2991	36	70	10	300	1.0	230			
1N2992	39	65	11	300	1.0	210	5	29.7	28.
1N2993	43	60	12	400	1.0	195	5	32.7	31.
1N2995	47	55	14	400	1.0	175	5.	35.8	33.
1N2996	50	50	15	500	1.0	165	5	38.0	36.
1N2997	51	50	15	500	1.0	163	5	38.8	36.
1N2998	52	50	15	500	1.0	160	5	39.5 42.6	37. 40.
1N2999	56 62	45 40	16 17	500 600	1.0 1.0	150 130	5 5	47.1	44.
1N3000 1N3001	62 68	37	18	600	1.0	130 120	5	51.7	49.
1N3001 1N3002	75	33	22	600	1.0	110	5	56.0	54.
			05			100	5	62.2	59.0
1N3003	82 91	30 28	25 35	700	1.0 1.0	85	5 5	69.2	65.
1N3004	100	28 25	40	800 900	1.0	80	5	76.0	72.0
1N3005 1N3006	105	25 25	45	1,000	1.0	75	5	79.8	75.0
1N3006 1N3007	110	23	55	1,100	1.0	72	5	83.6	79.
1N3008	120	20	75	1,200	1.0	67	5	91.2	86.
1N3009	130	19	100	1,300	1.0	62	5	98.8	93.0
1N3010	140	18	125	1,400	1.0	58 54	5 5	106.4 114.0	100.8
1N3011 1N3012	150 160	17 16	175 200	1,500 1,600	1.0 1.0	54 50	5	114.0 121.6	115.2
1N3014	180	14	260	1,850	1.0	45	5	136.8	129.6
11/2014	200	12	300	2,000	1.0	40	5	152.0	144.0

^{*} SPECIAL SELECTIONS 1 — Nominal zener voltages between those shown.

AVAILABLE INCLUDE: 2 — Matched sets:
a. Two or more units for series connection with specified tolerance on total voltage b. Two or more units matched to one another with any specified tolerance } Standard Tolerances are ±5%, ±2%, and ±1%

1N3016 thru 1N3051 FLANGELESS CASE

1 Watt

1M 6.8 Z thru 1M 200 Z TOP HAT CASE*

Choice of two hermetically sealed packages, with 36 standard voltage ratings and 5%, 10% and 20% standard tolerances. Cathode connected to case.

ABSOLUTE MAXIMUM RATINGS

Junction and Storage Temperature: -65°C to +175°C.
D-C Power Dissipation: 1 Watt. (Derate 6.67 mW/°C above 25°C).

SPECIAL TOLERANCE AND VOLTAGE DESIGNATIONS

The type numbers in the table have a standard tolerance of $\pm 20\%$ on the nominal zener voltage. Add suffix "A" for $\pm 10\%$ units or "B" for $\pm 5\%$ units

To designate units with zener voltages other than those assigned JEDEC numbers, the Motorola type number should be used:

EXAMPLE: TOP HAT PACKAGE *

EXAMPLE: FLANGELESS PACKAGE *

* Production devices are now being supplied in the flangeless package.

MATCHED SETS FOR CLOSER TOLERANCE OR HIGHER VOLTAGES

Series matched sets make zener voltages in excess of 200 volts or tolerances of less than 5% possible as well as providing lower temperature coefficients, lower dynamic impedance and greater power handling ability.

For Clippers, Parallel Matched Sets or other special circuit requirements, contact your Motorola District Sales Manager.

1N3016 thru 1N3051 (continued)

ELECTRICAL CHARACTERISTICS

(At 25°C case temperature unless otherwise specified)

Vr = 1.5 Vmax @ 200 mA on all types

JEDEC	Motorola†	Motorola	Nominal * Zener Voltage	Test	Max 2	Cener (mped	lance	Max.	Reverse (urrent	Max DC Zener	Typical Zener Voltage
Type No. (Flangeless)	Type No. (Flangeless)	Type No. (Top Hat)	Vz @ Lz- Volts	Current Izr mA	Z., @ L., Ohms	Zzz @ Lzz Chms	l _{lex} mA	L Max (µA)	V., 5%	V., 10%	Current las mA	Temp. Coeff. %/°C
1N3016	3/4M6.8Z	1M6.8Z	6.8	37	3. 5	700	1.0	150	5. 2	4.9	130	. 040
1N3017	3/4M7.5Z	1M7.5Z	7. 5	34	4.0	700	0. 5	75	5.7	5. 4	120	. 045
1N3018	3/4M8. 2Z	1M8. 2Z	8. 2	31	4.5	700	0.5	50	6. 2	5.9	105	. 048
1N3019	3/4M9.1Z	1M9. 1Z	9.1	28	5.0	700	0.5	25	6.9	6.6	95	. 051
1N3020	3/4M10Z	1M10Z	10	25	7	700	0. 25	10	7.6	7. 2	85	. 055
1N3021	3/4M11Z	1M11Z	11	23	8	700	0. 25	5	8.4	8.0	75	. 060
1N3022	3/4M12Z	1M12Z	12	21	9	700	0. 25	5	9. 1	8.6	70	. 065
1N3023	3/4M13Z	1M13Z	13	19	10	700	0. 25	5	9.9	9.4	65	. 065
1N3024	3/4M15Z	1M15Z	15	17	14	700	0.25	5	11.4	10.8	56	. 070
1N3025	3/4M16Z	1M16Z	16	15.5	16	700	0. 25	5	12. 2	11.5	53	. 070
1N3026	3/4M18Z	1M18Z	18	14	20	750	0. 25	5	13.7	13.0	46	. 075
1N3027	3/4M20Z	1M20Z	20	12.5	22	750	0. 25	5	15. 2	14.4	42	. 075
1N3028	3/4M22Z	1M22Z	22	11.5	23	750	0. 25	5	16. 7	15.8	38	. 080
1N3029	3/4M24Z	1M24Z	24	10.5	25	750	0. 25	5	18.2	17.3	35	. 080
1N3030	3/4M27Z	1M27Z	27	9.5	35	750	0. 25	5	20.6	19.4	30	. 085
1N3031	3/4M30Z	1M30Z	30	8.5	40	1,000	0. 25	5	22.8	21.6	28	. 085
1N3032	3/4M33Z	1M33Z	33	7.5	45	1,000	0. 25	5	25. 1	23.8	26	. 085
1N3033	3/4M36Z	1M36Z	36	7.0	50	1,000	0. 25	5	27, 4	25.9	24	. 085
1N3034	3/4M39Z	1M39Z	39	6. 5	60	1,000	0. 25	5	29.7	28. 1	20	. 090
1N3035	3/4M43Z	1M43Z	43	6.0	70	1,500	0. 25	5	32.7	31.0	19	. 090
1N3036	3/4M47Z	1M47Z	47	5.5	80	1,500	0. 25	5	35.8	33.8	17	. 090
1N3037	3/4M51Z	1M51Z	51	5.0	95	1,500	0. 25	5	38.8	36.7	16	. 090
1N3038	3/4M56Z	1M56Z	56	4. 5	110	2,000	0. 25	5	42.6	40.3	15	. 090
1N3039	3/4M62Z	1M62Z	62	4.0	125	2,000	0. 25	5	47.1	44.6	13	. 090
1N3040	3/4M68Z	1M68Z	68	3.7	150	2,000	0. 25	5	51.7	49.0	12	. 090
1N3041	3/4M75Z	1M75Z	75	3. 3	175	2,000	0. 25	5	56.0	54.0	11	. 090
1N3042	3/4M82Z	1M82Z	82	3.0	200	3,000	0. 25	5	62. 2	59.0	10	. 090
1N3043	3/4M91Z	1M91Z	91	2. 8	250	3,000	0. 25	5	69. 2	65. 5	9	. 090
1N3044	3/4M100Z	1M100Z	100	2.5	350	3,000	0. 25	5	76.0	72.0	8	. 090
1N3045	3/4M110Z			2.3	450	4,000	0. 25	5	83.6	79. 2	7. 2	. 095
1N3046	3/4M120Z	1M120Z	120	2.0	550	4,500	0. 25	5	91.2	86.4	7.0	. 095
1N3047	3/4M130Z			1.9	700	5,000	0. 25	5	98.8	93. 6	6.0	. 095
1N3048	3/4M150Z	1M1502	150	1.7	1,000	6,000	0. 25		114.0	108.0	5. 5	. 095
1N3049	3/4M160Z			1.6	1,100	6,500	0. 25		121.6	115. 2	5. 2	. 095
1N3050	3/4M180Z			1.4		7,000	0. 25		136.8	129.6	4.6	. 095
1N3051	3/4M200Z	1M2002	200	1.2	1,500	8,000	0. 25	5	152.0	144.0	4.0	. 100

^{† 1} Watt Ratings

^{*} SPECIAL SELECTIONS 1 — Nominal zener voltages between those shown.

2 — Matched sets:

a. Two or more units for series connection with specified tolerance on total voltage
b. Two or more units matched to one another with any specified tolerance

3 Standard Tolerances
are ±5%, ±2%, and ±1%

1N3305 thru 1N3350

50 Watt 6.8 - 200 V

Available with anode-to-case or cathode-to-case connection (standard or reverse polarity). For reverse polarity, add Suffix "R" to type number. Same devices in TO-3 package available for both military and industrial applications, see 1N2804 - 1N2846 series.

ABSOLUTE MAXIMUM RATINGS

Junction and Storage Temperature: -65 to + 175°C

D. C. Power Dissipation: 50 Watts (Derate 0.5 W/°C above 75°C-see Figure 3)

ELECTRICAL CHARACTERISTICS (At 30°C case temperature unless otherwise specified) VF = 1.5 V max @ 10 A on all types.

EIA Type No.	Nominal Zener Voitage (V ₂) @ I ₂₁	Test Current	Max Zer	ner Impedance	Max DC Zener Current 75°C Case Temp	Ma	x Reverse Cu	rrent	Typical Zener . Voltage Temp. Coeff.
50 Watt (Stud) (Note 1)	Volts	(I _{zr}) mA	Z _{zr} @ I _{zr} ohms	Z _{zK} @ I _{zK} = 5mA ohms	(I _{ZM}) mA	I _R MAX (µA)	V _R ,	Vas	% /°C
1N3305	6.8	1850	0.2	70	6600	150	4.5	4.3	.040
1N3306 1N3307	7.5 8.2	1700 1500	0.3 0.4	70 70	5900	75	5.0	4.7	.045
1N3308	9.1	1370	0.4	70 70	5200 4800	50 25	5.4 6.1	5.2 5.7	.048 .051
1N3309	10	1200	0.6	80	4300	10	6.7	6.3	.055
1N3310	11 12	1100 1000	0.8 1.0	89 80	3900	5	8.4	8.0	.060
1N3311 1N3312	12	960	1.1	80 80	3600 3300	5	9.1	8.6 9.4	.065 .065
1N3313	14	890	1.2	80	3000	5 5	9.9 10.6	10.1	.070
1N3314	15	830	1.4	80	2800	5	11.4	10.8	.070
1N3315	16 17	780 740	1.6 1.8	80 80	2650	5	12.2	11.5	.070 .075
1N3316 1N3317	17	700	2.0	80 80	2500 2300	5	13.0	12.2 .13.0	.075 .075
1N3318	19	660	2.2	80	2200	5 5	13.7 14.4	13.7	.075
1N3319	20	630	2.4	80	2100	5	15.2	14.4	.075
1N3320 1N3321	22 24 ·	570 520	2.5 2.6	80 80	1900	5	16.7	15.8	.080 .080
1N3321	25	500	2.7	90	1750 1550	5 5	18.2 19.0	17.3 18.0	.080
1N3323	27	460	2.8	90	1500	5	20.6	19.4	.085
1N3324	30	420	3.0	90	1400	5	22.8	21.6	.085
1N3325 1N3326	33 36	380 350	3.2 3.5	90 90	1300	5	25.1	23.8	.085 .085
1N3327	39	320	4.0	90	1150 1050	5 5	27.4 29.7	25.9 28.1	.090
1N3328	43	290	4.5	90	975	5	32.7	31.0	.090
1N3329	45	280	4.5	100	930	5	34.2	32.4	.090
1N3330 1N3331	47 50	270 250	5.0 5.0	100 100	880	5	35.8	33.8	.090 .090
1N3332	51	245	5.2	100	830 810	5 5	38.0 38.8	36.0 36.7	.090
1N3333	52	240	5.5	100	790	5	39.5	37.4	.090
1N3334 1N3335	56	220	6	110	740	5	42.6	40.3	.090
1N3335	62 68	200 180	7 8	120 140	660 600	5	47.1	44.6	.090 .090
1N3337	75	170	9	150	600 540	5 5	51.7 56.0	49.0 54.0	.090
1N3338	82	150	11	160	490	5	62.2	59.0	.090
1N3339	91 100	140 120	15	180	420	5	69.2 ·	65.5	.090
1N3340 1N3341	105	120	20 25	200 210	400 380	5	76.0	72.0 75.6	.090 .095
1N3342	110	110	30	220	365	5 5	79.8 83.6	75.6 79.2	.095
1N3343	120	100	40	240	335	5	91.2	86.4	.095
1N3344 1N3345	130 140	95 90	50 60	275 325	310	5	98.8	93.6	.095
1N3345	140 150	90 85	75	325 400	290 270	5	106.4	100.8	.095
1N3347	160	80	80	450	270 250	5 5	114.0 121.6	108.0 115.2	.095 .095
1N3348	175	70	85	500	230	5	133.0	126.0	.095
1N3349 1N3350	180	68	90	525	220	5	136.8	129.6	.095
147720	200	65	100	600	200	5	152.0	144.0	.100

^{*}SPECIAL SELECTIONS 1 — Nominal zener voltages between those shown.

AVAILABLE INCLUDE: 2 — Matched sets:
a. Two or more units for series connection with specified tolerance on total voltage
b. Two or more units matched to one another with any specified tolerance
} Standard Tolerances
are ±5%, ±2%, and ±1%

1N3305 thru 1N3350 (continued)

SPECIAL TOLERANCE AND VOLTAGE DESIGNATIONS

The JEDEC type numbers shown have a standard tolerance of \pm 20% on the nominal zener voltage. Suffix "A" for \pm 10% units or "B" for \pm 5% units.

To designate units with zener voltages other than those assigned JEDEC numbers, the Motorola type number should be used:

EXAMPLE: STUD PACKAGE

1N3675 thru 1N3703

34 Watt 6.8 — 100 V

Oxide passivated silicon zener diodes in void-free silicone polymer case. Offer 3/4 Watt performance in a package no larger in volume than a conventional 400 mW glass package.

ABSOLUTE MAXIMUM RATINGS

Junction and Storage Temperature: -65°C to +175°C.

D-C Power Dissipation: 750 Milliwatts at 50°C Ambient.

(Derate 6 mW/°C)

Lead Temperature, $1/16 \pm 1/32$ inch from case: +235°C for 12 seconds. (Method 2031, MIL-STD-750).

Tolerance Designation: Tolerances of \pm 10% or \pm 5% are indicated by suffixing "A" or "B" respectively to the JEDEC or Motorola type number. Plus or minus 20% tolerances are indicated by the omission of the suffix letter. Examples:

1N3680 = 11 Volts \pm 20% tolerance 1N3685A = 18 Volts \pm 10% tolerance MZ623-18B = 25 Volts \pm 5% tolerance

1N3675 thru 1N3703 (continued)

ELECTRICAL CHARACTERISTICS 25°C Ambient $V_F = 1.5 \text{ V}$ @ $I_F = 200 \text{ mA}$ for all units)

JEDEC Type No.	Motorola Type No.	Nominal* Zener Voltage Vz @ Izt	Test Current	Max Zener	Impedance	Max DC Zener Current	I _R == 5 mA Max @	renei
Type No.	Typo No.	V2 @ 121 Volts	Izt mA	Z _{ZK} @ I _{ZK} Ohms	Z _{ZT} @ I _{ZT} Ohms	Izm mA		Voltage Temp. Coeff %/°C
1N3675		6.8	18.5	4.5	700	100	5.2	4.9
1N3676		7.5	16.5	5.5	700	90	5.7	5.4
1N3677 1N3678		8.2	15.0	6.5	700	80	6.2	5.9
1N3678 1N3679		9.1	14.0	7.5	700	70	6.9	6.2
		10	12.5	8.5	700	65	7.6	7.2
1N3680	MZ623-6	11	11.5	9.5	700	55	8.4	8.0
1N3681	MZ623-7	12	10.5	11.5	700	53	9. 1	8.6
1N3682	MZ623-8	13	9.5	13.0	700	50	9. 9	9.4
	MZ623-9	14	9.0	14.5	700	45	10.6	10.1
1N3683	MZ623-10	15	8.5	16.0	700	42	11.4	10.8
1N3684	MZ 623-11	16	7.8	17.0	700	40	12.2	11.5
1	MZ 623-12	17	7.2	19.0	700	38	13.0	12.2
1N3685	MZ623-13	18	7.0	21.0	750	35	13.7	13.0
	MZ623-14	19	6, 5	23.0	750	33	14.4	13.7
1N3686	MZ623-15	20	6.2	25.0	750	32	15.2	14.4
1N3687	MZ623-16	22	5.6	29.0	750	29	16.7	15.8
1N3688	MZ623-17	24	5.2	33.0	750	29 26	18.2	17.3
	MZ623-18	25	5.0	36.0	750	24	19.0	18.0
1N3689	MZ623-19	27	4.6	41.0	750	23	20.6	19.4
1N3690	MZ623-20	30	4.2	49.0	1000	21	22.8	21.6
1N3691	MZ623-21	33	3.8	58.0	1000	20	25.1	23.8
1N3692	MZ623-22	36	3.4	70.0	1000	18	27.4	23.8 25.9
1N3693	MZ623-23	39	3.2	80.0	1000	15	29.7	28.1
1N3694	MZ623-24	43	3.0	93.0	1500	14	32.7	31.0
	MZ623-25	45	2.8	99.0	1500	13.5	34.2	32.4
1N3695	MZ623-26	47	2.7	105.0		1		
1N3696	MZ623-26 MZ623-27	51	2.7	125.0	1500	13	35.8	33.8
1N3697	W12023-21	56	2.3	150.0	1500 2000	12.2	38.8	36.7
1N3698		62	2.0	185.0	2000	11 10	42.6 47.1	40.3
1N3699		68	1.8	230.0	2000	10	51.7	44.6 49.0
1N3700						-		
1N3700 1N3701		75 82	1.7	270. 0 330. 0	2000	8.5	56.0	54.0
1N3701 1N3702	l	82 91	1.5	330.0 400.0	3000	7.5	62.2	59.0
1N3702 1N3703		100	1.4 1.3	400.0 500.0	3000	7	69.2	65.5
1113103		100	1.3	300.0	3000	6	76.0	72.0

1N3785 thru 1N3820

1.5 Watt 6.8 — 200 V

Low silhouette single-ended package for printed circuit or socket mounting. Cathode connected to case, but reverse polarity available on special order.

ABSOLUTE MAXIMUM RATINGS

Junction and Storage Temperature: $-65\,^{\circ}\text{C}$ to $+175\,^{\circ}\text{C}$. D-C Power Dissipation: 1.5 Watts.(Derate 10 mW/ $^{\circ}\text{C}$)

1N3785 thru 1N3820 (continued)

SPECIAL TOLERANCE AND VOLTAGE DESIGNATIONS

The type numbers shown in the table have a standard tolerance of ±20% on the zener voltage. Standard tolerances of ±10% and ±5% on individual units are also available and are indicated by suffixing "A" for ±10% and "B" for ±5% unit to the standard type number.

To designate units with zener voltages other than those assigned JEDEC numbers, the Motorola type number should be used.

EXAMPLE: 1.5 M 2 9 Z 10 Power Rating tolerance Zener Diode (Watts) Motorola Nominal voltage

ELECTRICAL CHARACTERISTICS @ 25°C Ambient Vp = 1.5 Volta max @ 300 mA

JEDEC Zener V			Max Zener Impedance				Max	errent .	Typical Zener	
	Keminal* Zener Veltage (Vz) @ Izr Voits	Tost Current (I ₂₇) mA	Z _m @l _m otims	Z _{as} @I _{as} ohms	l <u>s</u> mA	Max DC Zener Current (I _{zm}) mA	I _n Max (μΑ)	5% V _m	10% V ₈₂	Voltage Temp. Coef %/°C
1N3785	6.6	55	2.7	700	1.0	195	150	5. 2	4.9	. 040
1N3766	7. 5	50	3.0	700	0.5	175	75	5.7	5.4	. 045
1N3767	8. 2	46	3.5	700	0.5	155	50	6. 2	5.9	. 048
1N3788	9.1	41	4.0	700	0.5	140	25	6.9	6.6	. 051
1N3789	10	37	5	700	0. 25	125	10	7.6	7.2	. 055
1N3790	11	34	6	700	0. 25	115	5	8.4	8. 0	. 060
1N3791	12	31	7	700	0. 25	105	5	9. 1	8. 6	. 065
1N3792	13	29	8	700	0. 25	98	5	9.9	9.4	. 065
1N3793	15	25	10	700	0. 25	85	5	11.4	10.6	. 070
1N3794	16	23	11	700	0. 25	80	5	12. 2	11.5	. 070
1N3795	18	21	13	750	0. 25	70	5	13.7	13.0	. 075
1N3796	20	19	15	750	0. 25	62	5	15.2	14.4	. 075
1N3797	22	17	16	750	0. 25	56	5	16.7	15.8	. 080
1N3796	24	16	17	750	0. 25	51	5	16.2	17.3	. 080
1N3799	27	14	20	750	0.25	46	5	20.6	19.4	. 085
1N3800	30	12	25	1,000	0. 25	41	5	22.6	21.6	. 065
1N3601	33	11	30	1,000	0. 25	38	5	25. 1	23.8	. 085
1N3802	36	10	35	1,000	0. 25	35	5	27.4	25. 9	. 065
1N3803	39	10	40	1,000	0. 25	31 -	5	29.7	28. 1	. 090
1N3804	43	9.0	45	1,500	0. 25	28	5	32. 7	31.0	. 090
1N3805	47	6.0	55	1,500	0. 25	26	5	35.8	33.8	. 090
1N3806	51	7.4	65	2,000	0. 25	24	5	38. 8	36.6	. 090
1N3807	56	6. 7	75	2,000	0. 25	22	5	42.6	40. 3	. 090
1N3808	62	6.0	85	2,000	0. 25	20	5	47.1	44.6	. 090
1N3809	66	5. 5	95	2,000	0. 25	18	5	51. 7	49.0	. 090
1N3810	75	5.0	110	2,000	0. 25	16	5	56.0	54.0	. 090
1N3611	62	4.5	130	3,000	0. 25	14	5	62.0	59. 0	. 090
1N3812	91	4.1	150	3,000	0. 25	13	5	69. 2	65.5	. 090
1N3613	100	3.7	200	3,000	0. 25	12.0	5	76.0	72.0	. 090
1N3814	110	3.4	300	4,000	0. 25	11.0	5	63.6	79.2	. 095
1N3615	120	3.1	350	4,500	0. 25	10. 5	5	91. 2	66.4	. 095
1N3616	130	2.9	400	5,000	0. 25	9. 0	5	98.6	93. 6	. 095
1N3817	150	2.5	700	6,000	0. 25	8.0	5	114.0	108.0	. 095
1N3618	160	2. 3	750	6,500	0.25	6. 0	5	121.6	115.0	. 095
1N3619	180	2. 1	800	7,000	0. 25	7.0	5	137. 0	130.0	. 095
1N3820	200	1.9	1,000	6,000	0. 25	6. 0	5	152.0	144.0	. 100

SPECIAL SELECTIONS 1 – Nominal zener voltages between those shown.

AVAILABLE INCLUDE: 2 – Matched sets:
a. Two or more units for series connection with specified tolerance on total voltage } Standard Tolerances
b. Two or more units matched to one another with any specified tolerance
} Standard Tolerances are ±5%, ±2%, and ±1%

1N3785 thru 1N3820 (continued)

ELECTRICAL CHARACTERISTICS (25°C Ambient Vr = 1.5 V @ Ir = 200 mA for all units)

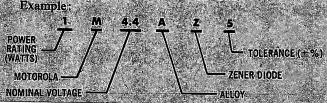
	Nominal Zener Voltage	Test	Max 2	ener Impedance	Max DC Zener	I _A = 10 _H A Max	Typical Zener
JEDEC TYPE NO.		@ Reverse Voltage V ₈ 5% or V ₈ 10%	Voltage/temp.Coeff. %/°C				
1N3821 1N3621A 1N3822 1N3622A	3.3 3.3 3.6 3.6	76 76 69 69	10 10 10 10	400 400 400 400	276 276 252 252	1 1 1	075 075 065 065
1N3623 1N3823A 1N3624 1N3824A	3. 9 3. 9 4. 3 4. 3	64 64 56 58	9 9 9	400 400 400 400	236 236 213 213	1 1 1 1	055 055 040 040
1N3625 1N3825A 1N3826 1N3826A	4. 7 4. 7 5. 1 5. 1	53 53 49 49	8 8 7 7	500 500 550 550	194 194 178 176	1 1 1 1	020 020 +. 005 +. 005
1N3827 1N3827A 1N3826 1N3628A	5. 6 5. 6 6. 2 6. 2	45 45 41 41	5 5 2 2	600 600 700 700	162 162 146 146	2 2 3 3	+. 020 +. 020 +. 035 +. 035
1N3629 1N3629A 1N3830 1N3830A	6. 8 6. 8 7. 5 7. 5	37 37 34 34	1. 5 1. 5 1. 5 1. 5	500 500 250 250	133 133 121 121	3 3 3 3	+. 040 +. 040 +. 045 +. 045

1N3821 thru 1N3830

1 Watt 3.3 — 7.5 V

CASE 52

Low-voltage, alloy-junction zener diodes in hermetically sealed package with cathode connected-to-case. Available as standard industrial types as well as for military and high-reliability applications.


Junction and Storage Temperature: -65°C to +175°C. D-C Power Dissipation: 1 Watt.(Derate 6.67 mW/°C above 25°C)

SPECIAL TOLERANCE AND VOLTAGE DESIGNATIONS

The JEDEC type numbers as shown have a standard tolerance on the nominal zener voltage of $\pm 10\%$. A standard tolerance of $\pm 5\%$ on individual units is also available and is indicated by suffixing "A" to the standard type number i. e. 1N3825A is a 4.7 V. $\pm 5\%$ type.

Lower temperature coefficient, lower dynamic impedance and greater power handling ability can be obtained by using two or more units in a series connection. Series matched sets make tolerances of less than ±5% possible. Matched sets for parallel operation (units matched to each other) are available also.

To designate units with nominal voltages other than those assigned JEDEC numbers, the Motorola type number should be used.

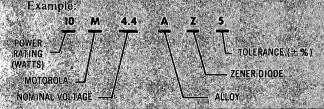
1N3993 thru 1N4000

10 Watt 3.9 — 7.5 V

Low-voltage, alloy-junction zener diodes in hermetically sealed package with cathode connected to case. Supplied with mounting hardware.

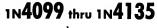
ABSOLUTE MAXIMUM RATINGS

Junction and Storage Temperature: -65°C to +175°C.


D-C Power Dissipation: 10 Watts. (Derate 83.3 mW/°C above 55°C).

SPECIAL TOLERANCE AND VOLTAGE DESIGNATIONS

The type numbers shown in the table have a standard tolerance on the nominal zener voltage of $\pm 10\%$. A standard tolerance of $\pm 5\%$ on individual units is also available and is indicated by suffixing "A" to the standard type number i. e. 1N3995A is a 4.7 V, $\pm 5\%$ type.


Lower temperature coefficient, lower dynamic impedance and greater power handling ability can be obtained by using two or more units in a series connection. Series matched sets make tolerances of less than ±5% possible. Matched sets for parallel operation (units matched to each other) are available also.

To designate units with nominal voltages other than those assigned JEDEC numbers, the Motorola type number should be used.

ELECTRICAL CHARACTERISTICS (T8 = 30°C ± 3, VF = 1.5 max @ IF = 2 amp for all units)

	Nominal Zener Voltage	Test	Max	Zener Impedance	Max DC Zener	@		
JEDEC Type No.	Vz @ Izr Volts	Current Iz, mA	Zz; @ lz; Ohms	Z _{zx} @ I _{zx} = 1.0 mA Ohms	Current Izw mA	L µA Mar	V _A	
1N3993	3.9	640	2	400	2380	100	0. 5	
1N3994	4.3	580	1.5	400	2130	100	0.5	
1N3995	4.7	530	1.2	500	1940	50	1	
1N3996	5.1	490	1.1	550	1780	10	1	
1N3997	5.6	445	1.0	600	1620	10	1	
1N3998	6.2	405	1.1	750	1460	10	2	
1N3999	6.8	370	1.2	500	1330	10	2	
1N4000	7.5	335	1.3	250	1210	10	3	

¼ W 6.8 — 100 V

Oxide passivated devices with extremely low, specified noise level. Designed for low-level operation over expanded temperature range from -75°C to +200°C.

ABSOLUTE MAXIMUM RATINGS

Characteristic	Rating	Unit
DC Power Dissipation, 25°C Ambient	250	mW
Derating Factor	1. 43	mW/°C
Junction and Storage Temperature	-65 to +200	°C

TOLERANCE AND VOLTAGE DESIGNATION

The JEDEC type numbers shown have a standard tolerance of $\pm 5\%$ on the nominal zener voltage.

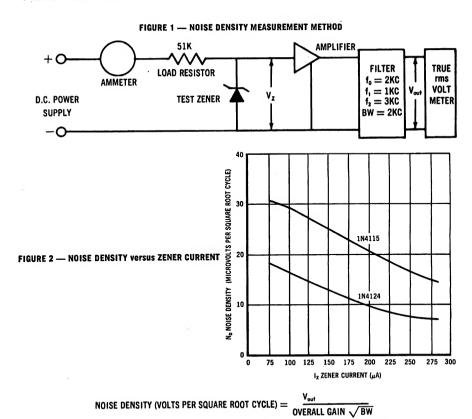
MATCHED SETS FOR CLOSER TOLERANCE OR HIGHER VOLTAGES

Series matched sets make zener voltages in excess of 100 volts or tolerances of less than 5% possible as well as providing lower temperature coefficients, lower dynamic impedance and greater power handling ability.

For Clippers, Parallel Matched Sets or other special circuit requirements, contact your Motorola District Sales Manager.

ZENER NOISE DENSITY

A zener diode generates noise when it is biased in the zener direction. A small part of this noise is due to the internal resistance associated with the device. A larger part of zener noise is a result of the zener breakdown phenomenon and is called microplasma noise. This microplasma noise is generally considered "white" noise with equal amplitude for all frequencies from about zero cycles to approximately 200, 000 cycles. To eliminate the higher frequency components of noise a small shunting capacitor can be used. The lower frequency noise generally must be tolerated since a capacitor required to eliminate the lower frequencies would degrade the regulation properties of the zener in many applications.


1N4099 thru 1N4135 (continued)

Motorola is rating this series with a maximum noise density at 250 microvolts. The rating of microvolts RMS per square root cycle enables calculation of the maximum RMS noise for any bandwidth.

Noise density decreases as zener current increases. This can be seen by the graph in Figure 2 where a typical noise density is plotted as a function of zener current.

The junction temperature will also change the zener noise levels. As temperature is increased, the noise levels decrease. The change is approximately 20% from 25° C to 100° C. Thus the noise rating must indicate bandwidth, current level and temperature.

The block diagram given in Figure 1 shows the method used to measure noise density. The input voltage and load resistance is high so that the zener is driven from a constant current source. The amplifier must be low noise so that the amplifier noise is negligible compared to the test zener. The filter bandpass is known so that the noise density in volts RMS per square root cycle can be calculated.

WHERE: BW = FILTER BANDWIDTH (CYCLES)

V_{ent} = OUTPUT NOISE (VOLTS RMS)

1N4099 thru 1N4135 (continued)

ELECTRICAL CHARACTERISTICS(At 25°CAmbient temperature unless otherwise specified.) V_F = 1.0 max @ I_F = 200 mA on all types

		@I ₂₇ =	250/-Amps			Max. Noise Density		
JEDEC Type Number (Note 1)	Nominal Zener Voltage V _z (Note 1) (volts)	Min. Zener Voltage V _z (volts)	Max. Zener Voltage V _z (volts)	Max. Zener Impedance Z ₂₇ (Note 2) (ohms)	Reverse Current	Test Voltage te 4) V _R (volts)	at I _{2T} == 250/4A N ₀ (Fig 1) (micro-volts per square root cycle)	Max. Zener Current I _{ZM} (Note 3) (mA)
1N4099	6.8	6,460	7.140	200	10	5.17	40	35.0
1N4100	7.5	7.125	7.875	200	10	5.70	40	31.8
1N4101	8.2	7.790	8.610	200	1.0	6.24	40	29.0
1N4102	8.7	8.265	9.135	200	1.0	6.61	40	27.4
1N4103	9.1	8.645	9.555	200	1.0	6.92	40	26.2
1N4104	10	9.500	10.50	200	1.0	7.60		24.8
1N4105	11	10.45	11.55	200	.05	8.44	40 40	
1N4106	12	11.40	12.60	200	.05	9.12		21.6
1N4107	13	12.35	13.65	200	.05		40	20.4
1N4108	14	13.30	14.70	200	.05	9.87 10.65	40	19.0
1 N4109	15		1			10.65	40	17.5
1N4109 1N4110	16	14.25	15.75	100	.05	11.40	40	16.3
1N4110 1N4111		15.20	16.80	100	.05	12.15	40	15.4
1N4111 1N4112	17	16.15	17.85	100	.05	12.92	40	14.5
1N4112 1N4113	18	17.10	18.90	100	.05	13.67	40	13.2
1	19	18.05	19.95	150	.05	14.44	40	12.5
1N4114	20	19.00	21.00	150	.01	15.20	40	11.9
1N4115	22	20.90	23.10	150	.01	16.72	40	10.8
1N4116	24	22.80	25.20	150	.01	18.25	40	9.9
1N4117	25	23.75	26.25	150	.01	19.00	40	9.5
1N4118	27	25.65	28.35	150	.01	20.46	40	8.8
1N4119	28	26.60	29.40	200	.01	21,28	40	8.5
1N4120	30	28.50	31.50	200	.01	22.80	40	7.9
1N4121	33	31.35	34.65	200	.01	25.08	40	7.2
1 N4122	36	34.20	37.80	200	.01	27.38	40	6.6
1N4123	39	37.05	40.95	200	.01	29.65	40	6.1
1N4124	43	40.85	45.15	250	.01	32.65	40	
1 N4125	47	44.65	49.35	250	.01	35.75		5.5
1N4126	51	48.45	53.55	300	.01	38.76	40	5.1
1N4127	56	53.20	58.80	300			40	4.6
1N4128	60	57.00	63.00	400	.01 .01	42.60 45.60	40 40	4.2
1N4129	62						-	4.0
1N4129 1N4130	62 68	58.90	65.10	500	.01	47.10	40	3.8
1N4130 1N4131	75	64.60	71.40	700	.01	51.68	40	3.5
1N4131 1N4132	75 82	71.25	78.75	700 800	.01	57.00	40	3.1
1N4132 1N4133	82 87	77.90	86.10	1000	.01	62.32	40	2.9
		82.65	91.35	1000	.01	66.12	40	2.7
1N4134	91	86.45	95.55	1200	.01	69.16	40	2.6
1 N4135	100	95.00	105.00	1500	.01	76.00	40	2.3

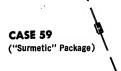
1N4370 thru 1N4372

For Specifications, see 1N746 thru 1N759 data sheet.

^{*} SPECIAL SELECTIONS 1 — Nominal zener voltages between those shown.

AVAILABLE INCLUDE: 2 — Matched sets:

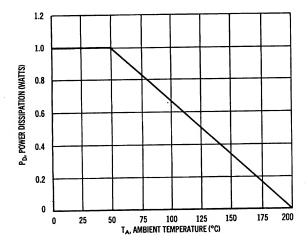
a. Two or more units for series connection with specified tolerance on total voltage


b. Two or more units matched to one another with any specified tolerance

} Standard Tolerances

are ±5%, ±2%, and ±1%

1N4728 thru 1N4764


1 Watt 3.3-100 V

Watt SURMETIC* silicon zener diodes designed for constant voltage reference from 3.3 thru 100 volts, with 10% and 5% tolerances. These diodes are packaged in a void-free silicone polymer case which is no larger than the conventional 400 mW glass package.

MAXIMUM RATINGS

Characteristic	Rating	Unit
DC Power Dissipation	1	Watt
Derating Factor	6. 67	mW/ ^o C
Junction and storage Temperature	-65 to +200	°c

POWER RATING versus AMBIENT TEMPERATURE

MECHANICAL CHARACTERISTICS

CASE: Void free, transfer molded, thermosetting silicone polymer.

FINISH: All external surfaces are corrosion resistant. Leads are readily solderable.

POLARITY: Cathode, indicated by color band. When operated in zener mode cathode will be positive with respect to anode.

MOUNTING POSITION: Any

WEIGHT: 0.42 gram (approximately)

1N4728 thru 1N4764 (continued)

ELECTRICAL CHARACTERISTICS' (At 25°C ambient temperature unless otherwise specified) Vi = 1.5V max

IFDFC		Kominal Zener Voltage	r Current	Max Zener Impedance (Kote 3)					Surge Current	Max DC Zener Current	Typical
Type No. (Note 1)	Moterela Type No.	V _Z @ I _{ZT} Valts (Note 2)		Z _{ZT} @I _{ZT} Chms	Z _{ZX} @1 _{ZX} Ühms	lzx ILÁ	μ ^l ikez €	V _R Volts	@ T _A == 25°C (Note 5)	ZM REA (Mote 4)	Zener Voltage Temp. Coeff. %/°C
1 N4728	1M3.3ZS10	3.3	76	10	400	1.0	10	1	1380	276	075
1N4729	1M3.6Z910	3.6	89	10	400	1.0	10	1	1260	252	065
1N4730 1N4731	1M3.9ZS10	3.9	64	9	400	10	10	1	1190	234	055
1N4732	1M4.3ZS10 1M4.7ZS10	4.3	56 53	9	400 500	1.0	10	1	1070 970	217 193	040 020
1N4733	1M5,12S10	5.1	49	7	550	1.0	10				
1N4734	1M5.82S10	5.6	45	6	600	1.0	10	1 2	890 810	176	.005
1N4735	1M6.2ZS10	6.2	41	2	700	1.0	10	3	730	162	.020 .03 9
1N4738	1M8.6ZS10	6.8	37	3.5	700	1.0	10	4	860	148 133	.039
1N4737	1M7.52S10	7.5	34	4.0	700	0.5	10	5	605	121	.045
1N4738	1M6.2ZS10	6.2	31	4.5	700	0,5	10	6	550	110	.048
1N4739	1M9.1Z810	9.1	26	5.0	700	0.5	1 10	ž	500	100	.051
1N4740	1M10Z810	10	25	7	700	0.25	io I	7.8	454	91	.055
1N4741	1M11ZS10	11	23	1 6	700	0.25	5	8.4	414	63	.060
1N4742	1M12ZS10	12	21	9	700	0.25	5	9.1	380	76	.065
1N4743	1M13ZS10	13	19	10	700	0,25	5	9.9	344	69	.065
1N4744	1M15ZS10	15	17	14	700	0.25	1 5 1	11.4	304	61	.070
1N4745	1M16ZS10	16	15.5	18	700	0.25	5	12.2	285	57	.070
1N4748	1M18ZS10	16	14	20	750	0.25	5	13.7	250	50	.075
1N4747	1M20Z810	20	12.5	22	750	0.25	5	15.2	225	45	.075
1N4748	1M22ZS10	22	11.5	23	750	0.25	5	16.7	205	41	.080
1N4749	1M24Z810	24	10.5	25	750	0.25	5	16.2	190	36	.080
1N4750	1M27ZS10	27	9.5	35	750	0.25	5	20.8	170	34	.065
1 N4751 1 N4752	1M30Z810	30	8.5	40	1,000	0.25	5	22.8	150	30	.065
1N4752	1M33ZS10	33	7.5	45	1,000	0.25	5	25.1	135	27	.065
1N4753 1N4754	1M36ZS10 1M39ZS10	36	7.0	50	1,000	0.25	5	27.4	125	25	.065
1N4754 1N4755		39	8.5	60	1,000	0.25	5	29.7	115	23	.080
1N4755 1N4758	1M43ZS10	43	8.0	70	1,500	0.25	5	32.7	110	22	.090
1N4758 1N4757	1M47ZS10	47	5.5	80	1,500	0.25	5	35.8	95	19	.090
184757	1M51Z810	51	5.0	95	1,500	0.25	5	38.8	90	16	.090
1N4758 1N4759	1M56ZS10 1M82ZS10	58 82	4.5	110	2,000	0.25	5	42.6	60	16	.090
1N4760	1M62ZS10 1M66ZS10	82	4.0	125	2,000	0.25	5	47.1	70	14	.090
1N4781	1M062310 1M752310	75	3.7 3.3	150 175	2,000	0.25	5	51.7	85	13	.090
1N4782	1M82ZS10	82	3.3	200	3,000	0.25 0.25	5	58.0 82.2	80 55	12 11	.090
1N4763	1M91ZS10	91	2.6	250	3,000	0.25	5	69.2	50	10	.090
1N4764	1 M1002810	100	2.5	350	3,000	0.25	1 5 1	76.0	45	· •	.090

TOLERANCE AND VOLTAGE DESIGNATION

The JEDEC type numbers shown have a standard tolerance of $\pm 10\%$ on the nominal zener voltage.. Suffix "A" for $\pm 5\%$ units:

To designate units with zener voltages other than those assigned JEDEC numbers, the Motorola type number should be used:

Series matched sets make zener voltages in excess of 100 volts or toler ances of less than 5% possible as well as providing lower temperature soci ficients, lower dynamic impedance and greater power handling ability.

For other special circuit requirements, contact your Motorola District Sales Manager.

MOTOROLA TEMPERATURE COMPENSATED REFERENCE DIODES

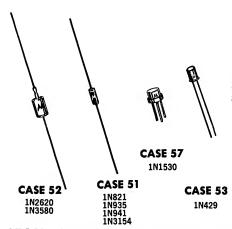
Temperature compensated reference diodes are made possible by taking advantage of the differing thermal characteristics of forward and reverse biased silicon PN junctions. A forward biased junction has a negative temperature coefficient of approximately 2.0 millivolts/°C. Reverse biased junctions above 5 volts have a positive temperature coefficient and therefore it is possible by judicious selection of combinations of forward and reverse biased junctions to obtain a device which shows a very low temperature coefficient due to cancellation. Because of the differing impedance versus temperature characteristics of the junctions involved, optimum temperature stability is obtained by operating in the zener current range at which the temperature coefficient is a minimum.

VOLTAGE-CURRENT CHARACTERISTICS

All Motorola reference diodes are characterized by the "box" method which specifies a guaranteed maximum voltage variation (ΔV_Z) over an indicated temperature range. This method permits the designer to select the required reference diode directly on the basis of temperature range and voltage variation.

Because of device impedance, the reference voltage will vary with changes in zener current. These variations can be minimized by driving the device from a constant current source.

VOLTAGE VARIATION (AVZ) AND TEMPERATURE COEFFICIENT


All Motorola reference diodes are characterized by the 'box' method. This method provides for a guaranteed maximum voltage variation ($\Delta V_{\rm Z}$ in mV) over a specified temperature range, verified by tests at several points within the range. (Maximum voltage variations over the specified temperature ranges are given in Tables associated with each device type.) The design engineer now has a number (without any calculations) telling him the stability of the voltage over the temperature range of interest thus giving him the maximum flexibility as well as economy in selecting the temperature stability required. Military specifications now being issued use this approach to characterize these devices.

Since reference diodes have a non-linear voltage-temperature relationship the temperature coefficients in the tables are tabulated primarily for reference purposes and guaranteed only at the end points of the temperature range.

ZENER IMPEDANCE DERIVATION

The dynamic zener impedance, $Z_{\rm ZT}$, is derived from the 60 cycle ac voltage which results when an ac current having an rms value equal to 10% of the dc zener current, $I_{\rm ZT}$, is superimposed on $I_{\rm ZT}$. Curves showing the variation of zener impedance with zener current for each series are given in figures 7 thru 12. A 100% cathode-ray tube curve trace test is used to ensure that each zener characteristic has a sharp and stable knee region.

in429 6	. 2 V
	¥
IN821 SERIES 6	.2 V — 400 mW
IN935 SERIES 9	9.0 V — 500 mW
IN941 SERIES 11	.7 V — 500 mW
IN 1530 SERIES 8	1.4 V
IN 1735 SERIES 6	. 2 V thru 40 6 V
IN2620 SERIES	21/ 750 14
1M2765	.3 V — 750 mW
IN2765 SERIES 6	.8 V thru 40.8 V
IN3154 SERIES 8	3.4 V —400 mW
IN3580 SERIES 11	1.7 V — 750 mW

Temperature compensated zener reference diodes for circuits requiring extreme stability, high uniformity and reliable operation.

ABSOLUTE MAXIMUM RATINGS (at 25°C ambient temperature unless otherwise noted)

Characteristic	Symbol	Rating	Unit
Maximum Zener Current 1N821 Series (6.2V), 1N3580 (11.7V) 1N935 Series (9.0V) 1N941 Series (11.7V) 1N2620 Series (9.3V) 1N3154 Series (8.4V) 1N429, 1N1530, 1N1735 & 1N2765 Series (6.2-49.62V)	IZM	60 50 40 75 45 see Table 2	m A
Power Dissipation (see Figure 13) 1N821 Series (6.2 V), 1N3154 Series (8.4 V) 1N935 Series (9.0 V), 1N941 Series (11.7 V) 1N2620 Series (9.3 V), 1N3580 Series (11.7 V) 1N429, 1N1530, 1N1735, 1N2765 Series	P _D	400 500 750 see Table 2	mW
Operating Temperature Glass & Metal Package Molded Package	т	-55 to +175 -55 to +150	°C
Storage Temperature All Types	T _{stg}	-65 to +175	°c

—— Motorola Temperature Compensated Zener Reference Diodes ——

1N429 (continued)

TABLE 1 - ELECTRICAL CHARACTERISTICS (at $I_{\rm ZT}$ & $T_{\rm A}$ = 25°C unless otherwise specified)

JEDEC Volume Cl	Max Toltage Change @ ΔVZ Volts)	Test Tempera- ture (°C)	Tem- pera- ture Coef- ficient (%/°C)	Max Dy- namic Im- ped- ance ZZT Ohms	Type Num-	Max Voltage Change ΔV Z (Volts)	@	Test Tempera- ture (°C)	Tem- pera- ture Coef- ficient (%/`C)	Im- ped- ance Z _Z T
-----------------	---	----------------------------------	---	--------------------------------------	--------------	---	---	-------------------------	---	---

400 MILLIWATTS

v _z	V _Z = 6. 2 Volts ± 5% (I _{ZT} = 7. 5 mA)						
1N821 * 1N823 * 1N825 * 1N827 * 1N829	.096 .048 .019 .009	-55, +25, +100	.01 .005 .002 .001 .0005	15			
1N821A 1N823A 1N825A 1N827A 1N829A	.096 .048 .019 .009	-55, +25, +100	.01 .005 .002 .001	10			

	$V_Z = 8.4 \text{ Volts } \pm 5\% \text{ (I}_{ZT} - 10 \text{ mA)}$					
1N3154 1N3155 1N3156 1N3157	.130 .065 .026 .013	-55, +25, +100	.01 .005 .002 .001	15		
1N3154A 1N3155A 1N3156A 1N3157A	.086 .034	-55, +25, +100, +150	.01 .005 .002 .001	15		

500 MILLIWATTS

v _z	$V_Z - 9.0 \text{ Volts } \pm 5\% \text{ (I}_{ZT} = 7.5 \text{ mA)}$						
1N935 1N936 1N937 1N938 1N939	.067 .033 .013 .006	0, +25, +75	.01 .005 .002 .001	20			
1N935A 1N936A 1N937A 1N938A 1N939A	.139 .069 .027 .013	-55, 0, +25, +75, +100	.01 .005 .002 .001	20			
1N935B* 1N936B 1N937B* 1N938B* 1N939B	.092 .037	-55, 0, +25, +75, +100, +150	.01 .005 .002 .001 .0005	20			

7	V _Z = 11.7 Volts ± 5% (I _{ZT} - 7.5 mA)						
1N941 1N942 1N943 1N944 1N945	.088 .044 .018 .009	0, +25, +75	.01 .005 .002 .001	30			
1N941A 1N942A 1N943A 1N944A 1N945A	.181 .090 .036 .018 .009	-55, 0, +25, +75, +100	.01 .005 .002 .001	30			
1N941B* 1N942B 1N943B* 1N944B* 1N945B		-55, 0, +25, +75, +100, +150	.01 .005 .002 .001 .0005	30			

750 MILLIWATTS

v	$V_Z = 9.3 \text{ Volts } \pm 5\% \text{ (I}_{ZT} = 10 \text{ mA)}$						
1N2620 1N2621 1N2622 1N2623 1N2624	.070 .035 .014 .007	0, +25, +75	.01 .005 .002 .001	15			
1N2620A 1N2621A 1N2622A 1N2623A 1N2624A	.144 .072 .029 .014 .007	-55, 0, +25, +75, +100	.01 .005 .002 .001	15			
1N2620B 1N2621B 1N2622B 1N2623B 1N2624B		-55, 0, +25, +75, +100, +150	.01 .005 .002 .001 .0005	15			

$V_{Z} = 11.7 \text{ Volts } \pm 5\% \text{ (I}_{ZT} = 7.5 \text{ mA)}$						
1N3580 1N3581 1N3582	.088 .044 .018	0, 25, +75	.01 .005 .002	. 25		
1N3580A 1N3581A 1N3582A	.181 .090 .036	-55, 0, +25, +75 +100	.01 .005 .002	25		
1N3580B 1N3581B 1N3582B	. 239 . 120 . 048	-55, 0, +25, +75, +100, +150	.01 .005 .002	25		

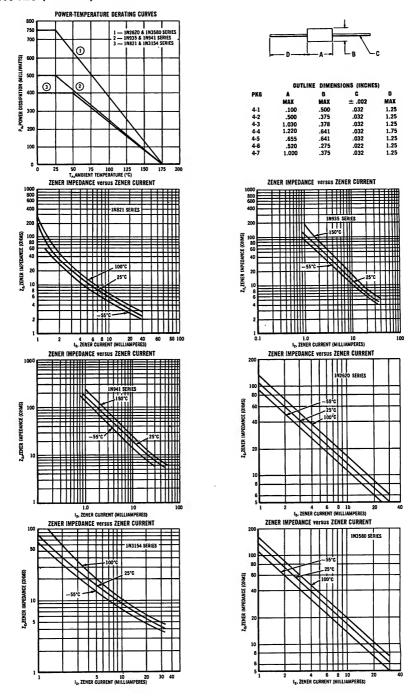
^{*}Military types available.

- Motorola Temperature Compensated Zener Reference Diodes ----

1N 429 (continued)

TABLE 2 - ELECTRICAL CHARACTERISTICS (at I_{ZT} = 7.5 mA & T_A = 25°C unless otherwise specified)

JEDEC Type Number	Zener Voltage V _z ±5% (Volts)	Max Volt- age Change @ -55, +25, +100 C ΔV _Z (Volts)	Max Dynamic Impedance Z ZT (Ohms)	Temperature Coefficient (% ^{/-} C)	Power Dissipation Pd (mW)**	Package Configuration
1N429*	6. 2	. 050	20	. 01	200	case 53
1N1735	6. 2	. 050	20	. 01	200	Fig. 4-6
1N2765 1N2765A	6. 8	. 052 . 026	20	. 005 . 0025	400	Fig. 4-2
1N1530† 1N1530A†	8. 4	. 014 . 007	15	. 002 . 001	250	case 57
1N1736 1N1736A	12. 4	. 100 . 050	. 40	. 01 . 005	400	Fig. 4-3
1N2766 1N2766A	13. 6	. 105 . 052	40	. 005 . 0025	600	Fig. 4-2
1N1737 1N1737A	18. 6	. 150 . 075	60	. 01 . 005	600	Fig. 4-5
1N2767 1N2767A	20. 4	. 158 . 0 7 9	60	. 005 . 0025	600	Fig. 4-7
1N1738 1N1738A	24. 8	. 200 . 100	80	. 01 . 005	800	Fig. 4-5
1N2768 1N2768A	27. 2	. 210 . 105	80	. 005 . 0025	800	Fig. 4-7
1N1739 1N1739A	31. 0	. 250 . 125	100	. 01 . 005	1000	Fig. 4-4
1N2769 1N2769A	34. 0	. 265 . 132	100	. 005 . 0025	1000	Fig. 4-1
1N1740 1N1740A	37. 2	. 300 . 150	120	. 01	1200	Fig. 4-4
1N2770 1N2770A	40. 8	. 316 . 158	120	. 005 . 0025	1200	Fig. 4-1
1N1741 1N1741A	43. 4	. 350 . 175	140	. 01 . 005	1400	Fig. 4-4
1N1742 1N1742A	49. 6	. 400 . 200	180	. 01 . 005	1600	Fig. 4-4


MECHANICAL CHARACTERISTICS

	Glass	Metal	Molded
Case:	All glass, hermetically sealed	Welded, hermetically sealed, metal & glass	Void free, thermo- setting polymer
Polarity:	Cathode indicated by polarity band	Indicated by diode symbol	Indicated by diode symbol except 1N429, 1N1530, 1N1530A where cathode indicated by polarity dot of contrasting color
Weight:	0. 2 grams (approx.)	1.5 grams (approx.)	Varies according to device min 0, 5 grams max 12 grams
Finish:	All external surfaces co	rrosion resistant and leads re	adily solderable.

^{**} Derate linearly from 25°C to 150°C

—— Motorola Temperature Compensated Zener Reference Diodes ——

1N429 (continued)

——— Motorola Temperature Compensated Zener Reference Diodes ———

1N4565 thru 1N4574 _____ 6.4V ± 5%
1N4775 thru 1N4784 ____ 8.5V ± 5%
1N4765 thru 1N4774 ___ 9.1V ± 5%

Low level, temperature compensated Zener reference diodes designed for long-term voltage stability in applications requiring stable, reliable operation at low current levels.

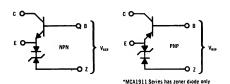
MAXIMUM RATINGS

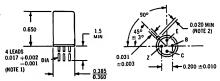
Junction and Storage Temperature: -65°C to +175°C

D-C Power Dissipation: 250 Mill watts at 50°C Ambient (Derate 2 mW/°C Above 50°C)

ELECTRICAL CHARACTERISTICS (at $I_{ZT} \& T_A = 25^{\circ}C$ unless otherwise specified)

1N4565 Series 6. 4 Volts ±5%							
0.5	1. 0	Test Current ^I ZT (mA)					
200	100	Max Dynamic Imped- ance ^Z ZT (Ohms)					
JEDEC Number	JEDEC Number	Change	Tem- perature Coeffi- cient for Refer- ence %/°C				
	ST TEMPE C, 25°C, 75		5				
1N4565 1N4566 1N4567 1N4568 1N4569	1N4570 1N4571 1N4572 1N4573 1N4574	0. 048 0. 024 0. 010 0. 005 0. 002	. 01 . 005 . 002 . 001 . 0005				
TEST TEMPERATURES -55°C, 0°C, 25°C, 75°C, 100°C							
1N4565A 1N4566A 1N4567A 1N4568A 1N4569A	IN4570A 1N4571A 1N4572A 1N4573A IN4574A	0. 099 0. 050 0. 020 0. 010 0. 005	. 01 . 005 . 002 . 001 . 0005				


1N4755 Se	eries 8.5	Volts ±59	6
		Test Current	
0. 5	1. 0	I _{ZT} (mA)	
		Max Dynamic Imped- ance Z ZT	
200	100	(Ohms)	
		Change (Note 2)	Tem- perature Coeffi- cient for Refer-
JEDEC Number	JEDEC Number	ΔVZ (Volts)	ence %/°C
	EST TEMPE C, 25°C, 75		3
1N4775 1N4776 1N4777 1N4778 1N4779	1N4780 1N4781 1N4782 1N4783 1N4784	. 064 . 032 . 013 . 006 . 003	.01 .005 .002 .001
TEST ' -55°C,	TEMPERAT 0°C, 25°C,	URES 75°C, 1	00°C
1N4775A 1N4776A 1N4777A 1N4778A 1N4779A	1N4780A 1N4781A 1N4782A 1N4783A 1N4784A	. 132 . 066 . 026 . 013 . 007	. 01 . 005 . 002 . 001 . 0005


1N4765 Se	eries 9, 1	Volts ±59	6
0. 5	1. 0	Test Current ^I ZT (mA)	
350	200	Max Dynamic Imped- ance Z ZT (Ohms)	
JEDEC	JEDEC	Change	Tem- perature Coeffi- cient for Refer- ence
Number	Number	(,,,,,	%/°C
	EST TEMPE C, 25°C, 75		S
1N4765 1N4766 1N4767 1N4768 1N4769	IN4770 IN4771 IN4772 IN4773 IN4774	0, 068 0, 034 0, 014 0, 007 0, 003	. 01 . 005 . 002 . 001 . 0005
	TEMPERAT 0°C, 25°C,		00°C
1N4765A 1N4766A 1N4767A 1N4768A 1N4769A	1N4770A 1N4771A 1N4772A 1N4773A 1N4774A	0. 141 0. 070 0. 028 0. 014 0. 007	. 01 . 005 . 002 . 001 . 0005

REFERENCE AMPLIFIERS

MCA 1911 SERIES 6.8 V MCA2111 SERIES 9.5 V MCA2211 SERIES 11.0 V

Reference amplifiers for use in regulated power supplies as a combination reference element and MCA2011 SERIES 8.0 V error voltage amplifier. Available with either PNP. or NPN transistors.

NOTES:

- 1. The specified lead diameter applies in the zone between 0.050 and 0.250 from the base seat. Between 0.250 and 0.5 maximum of 0.021 diameter is held. Outside of these zones the lead diameter is not con-
- 2. Measured from max diameter of the actual device.

ABSOLUTE MAXIMUM RATINGS (at 25°C ambient temperature unless otherwise noted)

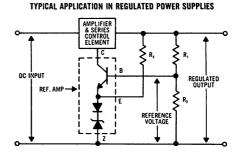
Characteristic	Characteristic Symbol		Unit
Zener Current	I _Z	20	mA
Collector Current	I _C	20	mA
Collector-Emitter Voltage	v _{CEO}	30	v
Junction and Storage Temperature Range	T _J T _{stg}	-65 to +175	С

ELECTRICAL CHARACTERISTICS (at 25°C ambient temperature unless otherwise noted)

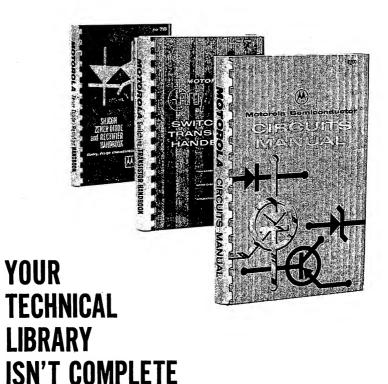
Characteristic	Symbol	Ratio	ig	Unit
Nominal Reference Voltage ($I_Z = 5 \text{ mA}, V_{CE} = 3 \text{ V}, I_{C} = 250 \mu\text{A}$)	v _{REF}	6.8-11.0 nom (See Table 1)		Volts
Maximum Reference Voltage Change with Temperature (I_Z = 5 mA, V_{CE} = 3 V, I_C = 250 μ A)	∆V _{REF}	(See Table 1)		Volts
		Min	Max	
Zener Impedance $(I_{ZT} = 5 \text{ mA}, I_{ac} = 10\% I_{Z})$	z _{zt}	-	40	Ohms
Collector-Emitter Breakdown Voltage ($I_C = 250 \mu A$)	BVCEO	30	-	Volts
Collector Cutoff Current (V _{CB} = 45 V) (V _{CB} = 45 V, T _A = 150 °C)	I _{CBO}	<u>-</u>	50 10	μА
DC Current Gain (I _C = 250 µA, V _{CE})	h _{FE}	50	100	-
Small-Signal Transconductance (V_{CE} = 3 V, I_{C} - 250 μ A, f = 1 kc)	g _{fe}	6500	-	μmhos

TABLE I ELECTRICAL CHARACTERISTICS

(at $I_{ZT} = 7.5$ mA & $T_A = 25$ °C unless otherwise specified)


· Z1		Α,	
Type Num- ber (Note 1)	Max Voltage Change (Note 2) ΔV _{REF} (Volts)	Test @ Temperature (°C)	Reference Voltage VREF (Volts)
	6. 8 Vol	t Series ($I_{ZT} = 5 \text{ mA}$)	
MCA1911N MCA1912N MCA1913N MCA1914N	.051 .025 .010 .005	0, +25, +75	6.8 ± 10%
MCA1921N MCA1922N MCA1923N MCA1924N		-55, 0, +25, +75, +100	6.8 ± 5%
MCA1931N MCA1932N MCA1933N MCA1934N	.069	-55, 0, +25, +75, +100, +150	6.8 ± 5%
	9. 5 Volt	Series (I _{ZT} = 5 mA)	
MCA2111N MCA2112N MCA2113N MCA2114N		0, +25, +75	9.5 ± 10%
MCA2121N MCA2122N MCA2123N MCA2124N	.028	-55, 0, +25, +75, +100	9.5 ± 5%
MCA2131N MCA2132N MCA2133N MCA2134N	.097	-55, 0, +25, +75, +100, +150	9.5 ± 5%

Type Num- ber (Note 1)	Max Voltage Change (Note 2) ∆VREF (Volts)	Test @ Temperature (C)	Reference Voltage VREF (Volts)
	8. 6 Vol	t Series (I _{ZT} = 5 mA))
MCA2011N MCA2012N MCA2013N MCA2014N	.060 .030 .012 .006	0, +25. +75	8.0 ± 10%
MCA2021N MCA2022N MCA2023N MCA2024N	.024	-55. 0. +25. +75. +100	8.0 ± 5%
MCA2031N MCA2032N MCA2033N MCA2034N	. 082	-55. 0. +25. +75. +100. +150	8.0 ± 5%
	11.0 Vo	lt Series (I _{ZT} = 5 mA	1)
MCA2211N MCA2212N MCA2213N MCA2214N	.016	0. +25. +75	11.0 ± 10%
MCA2221N MCA2222N MCA2223N MCA2224N	.170 .085 .034 .017	-55. 0. +25. +75. +100	11.0 ± 5%
MCA2231N MCA2232N MCA2233N MCA2334N		-55. 0. +25. +75. +100. +150	11.0 ± 5%


NOTES:

2. ΔV_{REF} is the maximum voltage variation over the specified temperature range, verified by tests at specified points within the range.

NOMENCLATURE Motorola Polarity N-NPN P-PNP Circuit Assembly Reference Temperature ΔV_{REF} as Specified on Voltage Table 1 (i.e., for 6.8 Volt Series, 1 designates ΔV_{REF} of .051 V) Range 0 to 75°C 19 - 6.8 V 2. -55 to +100° C 20 - 8.0 V 21 - 9.5 V 3. -55 to +150°C 22 - 11.0 V

Type numbers shown are for devices containing NPN transistors; for devices with PNP transistors substitute a "P" suffix for the "N" suffix in the type number.

Without Motorola's Authoritative Handbooks!

Switching Transistor Handbook — \$2.50

The only reference devoted to the design of high-frequency switching circuits, this valuable handbook not only provides detailed design procedures for saturated and current-mode switching circuits, but relates much needed device characterization and reliability data to practical worst-case design.

Circuits Manual — \$2.00

Perhaps you'll never need to count the number of peas in a can or even feel the urge to add a solid-state ignition system to the family car. If you work with semiconductors, however, you will find, in addition to such circuits, a wealth of technical design information and some very useful circuit ideas in the Motorola Semiconductor Circuits Manual.

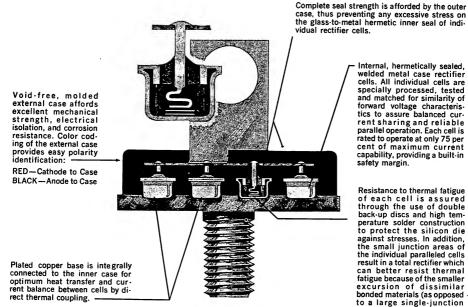
Zener Diode and Rectifier Handbook — \$2.00

Anyone who designs regulating and power control circuitry needs the Motorola Zener Diode and Rectifier Handbook. This valuable guide provides design analysis and useful circuits for a variety of zener applications ranging from regulated power supplies to surge protection to using the zener diode as a coupling device.

MOTOROLA SILICON RECTIFIERS

- For devices meeting military specifications, see page 1-18.
- For case outline dimensions, see page 1-26.

SILICON RECTIFIERS

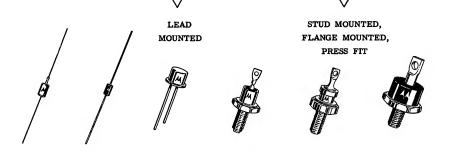

The trend in rectifiers, today, is toward silicon. Technically, there are many reasons why this is so. In comparison with thermionic tubes, silicon rectifiers offer a new era of reliability and performance, and no other solidstate rectifier has the inherant advantages of silicon. Silicon shrugs at operating temperatures that would quickly wilt other solid-state devices. The high forward conductance and low-reverse-leakage current of silicon outclasses selenium, and no other type of rectifier packs as much currentcarrying capacity into as small a package. Moreover, these advantages of silicon rectifiers are now available at costs that are more than competitive with other types.

Motorola manufactures a complete line of silicon rectifiers for current requirements ranging from milliamperes to kiloamperes. These are housed in a variety of package types, making them suitable for every electrical and electronic application.

In addition, rectifier assemblies for higher voltage and current devices and for applications such as bridges and other circuit configurations are available as standard devices and can easily be made to order for custom applications. (see page 4-3).

MULTI-CELL RECTIFIERS

For high-current rectifiers, Motorola employs the multi-cell concept. This approach not only permits the fabrication of higher-current rectifiers, but also eliminates many of the problems associated with large single-junction devices. The construction of a typical multi-cell rectifier is shown below.


Internal, hermetically sealed, welded metal case rectifier cells. All individual cells are specially processed, tested and matched for similarity of forward voltage characteristics to assure balanced current sharing and reliable parallel operation. Each cell is rated to operate at only 75 per cent of maximum current capability, providing a built-in safety margin.

Resistance to thermal fatigue of each cell is assured through the use of double back-up discs and high temperature solder construction to protect the silicon die against stresses. In addition, the small junction areas of the individual paralleled cells result in a total rectifier which can better resist thermal fatigue because of the smaller excursion of dissimilar bonded materials (as opposed to a large single-junction rectifier).

QUICK SELECTION CHART MOTOROLA PREFERRED SILICON RECTIFIERS

THIS SELECTION CHART IS FOR QUICK REFERENCE ONLY AND THE DETAILED DATA SHEET SHOULD BE CONSULTED FOR COMPLETE INFORMATION

Max. Pe Repetit	V _{RM} (rep) Max. Peak Repetitive Reverse Voltage		IOMAX HALF WAVE, SINGLE PHASE RECTIFIED FORWARD CURRENT (At 25°C Ambient Temp for Axial Lead; 100 to 150°C Case Temp for Stud Mount, Flange Mount or Press Fit)								
Reverse v			1.5 A	3 A	6 A	12 A	15 A	20 A			
	50V	1N4001 MR1337-1		MR1030 1N4719	1N3879	1N3889	1N3208	1N248I			
VOLTAGE	100V	1N4002 MR1337-2	1N1563	MR1031 1N4720	1N3880	1N3890	1N3209	1N249I			
	150V							1N1193			
REVERSE	200V	1N4003 MR1337-3	1N1564	MR1032 1N4721	1N3881	1N3891	1N3210	1N2501			
	250V										
REPETITIVE	300V	MR1337-4	1N1565	MR1033	1N3882	1N3892	1N3211	1N119			
	350V										
PEAK	400V	1N4004 MR1337-5	1N1566	MR1034 1N4722	1N3883	1N3893	1N3212	1N1196			
-MAX	'500V	MR1337-6	1N1567	MR1035			1N3213	1N1197			
VRM(rep) MAX	600V	1N4005 MR1337-7	1Ñ1568	MR1036 1N4723			1N3214	1N1198			
	800V	1N4006		MR1038 1N4724							
	1000V	1N4007		MR1040 1N4725							

THIS SELECTION CHART IS FOR QUICK REFERENCE ONLY AND THE DETAILED DATA SHEET SHOULD BE CONSULTED FOR COMPLETE INFORMATION

25A	30A	35 A	50 A	80 A	160 A	240 A	400 A	650 A	1000 A
1N3491	1N3659	1N1183	MR1200	MR1210	MR1220	MR1230	MR1240	MR1260	MR1290
1N3492	1N3660	1N1184	MR1201	MR1211	MR1221	MR1231	MR1241	MR1261	MR1291
		1N1185	MR1202	MR1212	MR1222	MR1232	MR1242	MR1262	MR1292
1N3493	1N3493 1N3661	1N1186	MR1203	MR1213	MR1223	MR1233	MR1243	MR1263	MR1293
			MR1204	MR1214	MR1224	MR1234	MR1244	MR1264	MR1294
1N3494	IN3494 1N3662	1N1187	MR1205	MR1215	MR1225	MR1235	MR1245	MR1265	MR1295
			MR1206	MR1216	MR1226	MR1236	MR1246	MR1266	MR1296
1N3495	1N3663	1N1188	MR1207	MR1217	MR1227	MR1237	MR1247	MR1267	MR1297
		1N1189							
		1N1190							
							1		

PRESS FIT

STUD MOUNTED, FLANGE MOUNTED,

SILICON RECTIFIER SPECIFICATIONS

LOW CURRENT RECTIFIERS - 0.1 to 12.0 Amperes

	V _{RM (rep)}	Forward Curr	ent	la (AV)		V _{RM (rep)}	Forward Cu	rrent	IR (AV)
Туре	volts	lo amps	fru (urg+) amps	mΑ	Туре	volts	to amps	t _{FM (surge)} amps	mA '
Case 51		(25°C)	(25°C)	(100°C)	Case 55		(55°C) (150°C)	(25°C)	(25°C)
1N3282	1000	0.1	2.5	0.01	1N1567	500	1.5 0.3	70	.005
1N3283	1500	0.1	2.5	0.01	1N1567A	500	1.5 0.3	70	.003
1N3284	2000	0.1	2.5	0.01	1N1568	600	1.5 0.3	70	.005
1N3285	2500	0.1	2.5	0.01	1h1568A	600	1.5 0.3	70	.003
1N3288	3000	0.1	2.5	0.01	1				
Case 41 ①					Case 59 — SURME	TIC*	(75°C)		(75°C)
1N1730	1000	0.2	2.5	_	184001	50	1.0	30	.03
1N1730	1500	0.2	2.5	_	1N4002	100	1.0	30	.03
1N1732	2000	0.2	2.5	_	1N4003	200	1.0	30	.03
1N1732 1N1733	3000	0.15	2.5	_	1N4004	400	1.0	30	.03
1N1734	5000	0.10	2.5	_	1N4005	600	1.0	30	.03
1N2382	4000	0.15	2.5	_	1N4008	800	1.0	30	.03
1N2383	6000	0.10	2.5	_	1N4007	1000	1.0	30	.03
1N2384	8000	0.10	2.5						
1N2385	10000	0.07	2.5	_	Case 60/Case 60,	70②		(75°C)	(75°C)
	10000		2.0		1N4719/MR103	50	3.0	300	1.5
Case 55		(55°C) (150°C)		(25°C)	1N4720/MR103		3.0	300	1.5
1N1563	100	1.5 0.3	70	.005	1N4721/MR103		3.0	300	1.5 1.5
1N1563A	100	1.5 0.3	70	.003	— /MR103		3.0	300	1.5
1N1564	200	1.5 0.3	70	.005	1N4722/MR103	400	3.0	300	1.5
1N1564A	200	1.5 0.3	70	.003	- /MR103		3.0	300	1.5
1N1565	300	1.5 0.3	70	.005	1N4723/MR103	600 E	3.0	300	1.5
1N1585A	300	1.5 0.3	70	.003	1N4724/MR103		3.0	300	1.5
1N1568	400	1.5 0.3	70 70	.005	1N4725/MR104		3.0	300	1.5
1N1566A	400	1.5 0.3	70	.003		1000	0.0		1.0

FAST SWITCHING POWER RECTIFIERS - tr = 0.2 µsec maximum

	V	Forward Current	IR(AV)		VRM (rep)	Forward Current		le (AV)	
Туре	V _{RM (rep)} volts	lo amps	IFM (surge) amps	mÃ		volts	lo amps	I fau (surge) amps	mA
Case 52 MR1337-1 MR1337-2 MR1337-3 MR1337-4 MR1337-5 Case 50 1N3879	50 100 200 300 400	(75°C) 0.75 0.75 0.75 0.75 0.75 0.75 (100°C) 6.0	(75°C) 30 30 30 30 30 30 30 (100°C) 75	(75°C) 0.75 0.75 0.75 0.75 0.75 0.75 (100°C) 3.0	Case 50 1N3881 1N3882 1N3883 1N3890 1N3890 1N3891 1N3893	200 300 400 50 100 200 300 400	(100°C) 6.0 6.0 6.0 12 12 12 12	(100°C) 75 75 75 150 150 150 150	(100°C) 3.0 3.0 3.0 5.0 5.0 5.0 5.0

MEDIUM CURRENT RECTIFIERS - 15 to 35 Amperes

		Forward (Current	le (AV)	_	V _{RM [rep]}	Forwa	rd Current	lr (AV)
Туре	VRM (rep) volts	lo amps	lem (surge) amps	mA'	Туре	volts	lo amps	IFM (surge) amps	mA
Case 42		(150°C)	(25°C)	(150°C)	Case 42		(150°C)	(150°C)	(150°C)
IN3208	50	15	250	10	IN1195	300	20	350	5.0
1N3200	100	15	250	10	1N1195A	300	20	350	3.2
1N3210	200	15	250	10	1N1198	300	20	350	5.0
1N3210	300	15	250	10 10	1N1188A	300	20	350	2.5
1N3212	400	15	250	īŏ	101197	500	20	350	5.0
INSZIZ	100	••		••	1N1197A	500	20	350	2.2
Case 43					1N1198	600	20	350	5.0
	50	18	300	10	1N1198A	600	20 20 20	350	1.5
1N3491-MR322	100	18	300	10	1N3213	500	20	350	10.0
1N3492-MR323	200	18	300	10 8	1N3214	600	20	350	10.0
1N3493-MR324	300	18	300	6					
1N3494-MR325	400	18	300	4	Case 43				
1N3495-MR326	400	10	300	-	1M3859	50	25	400	5.0
Case 42			(150°C)		1N3860	100	25 25	400	4.5
1N248B	50	20	350	5.0	1N3861	200	25	400	4.0
1N248C	55	20	350	3.8	1N3662	300	25	400	3.5
1N248B	100	20	350	5.0	1N3663	400	25	400	3.0
1N249C	110	20	350	3.6	Case 42		(140°C)	(140°C)	(140°C)
1N250B	200	20	350	5.0	IN1183	50	35	400	10
	220	20	350	3.4	1N1184	100	35	400	10
1N250C	220	20	000	•••	1N1185	150	35	400	10
Case 42					1N1186	200	35 35	400	io
1N1191	50	20	350	5.0	1N1187	300	35	400	io
101192	100	20	350	5.0	101188	400	35	400	10
101193	150	20	350	5.0	101189	500	35 35	400	10
181194	200	20	350	5.0	181180	600	35	400	10
1 181134	200	20	300		101130	300			

^{*}Trademark of Motorola Inc. ① See data sheet for device dimensions ② Suffix A for case 60; Suffix B for case 70; i.e. MR1030A

SILICON RECTIFIER SPECIFICATIONS

HIGH CURRENT RECTIFIERS - 50 to 1000 Amperes

	V _{RM (rep)}	Forward	Current				Forward	Current	
Туре	volts	lo amps	IFM (surge) amps	IR (AV) mA	Туре	V _{RM (rep)} volts	lo amps	Î _{FM (surge)} amps	IR (AV) MÅ
	Flat-mount w	ith solid lug terminal	FL) ①			Stud-mount with flexible		solid lug terminal (SL)	
		(150°C)	(150°C)	(150°C)		ide induite with the kible	Dialucu leau (FD) Of	solid ing terminal (FL)	
MR1200	50	50	800	10	MR1230 MR1231	50 100	240 240	5000	35
MR1201	100	50	800	10	MR1232	150	240 240	5000 5000	35 35
KR1202	150	50	800	10	MR1233	200	240	5000	35 35
MR1203	200	50	800	10	MR1234	250	240	5000	35
MR1204	250	50	800	10	MR1235	300	240	5000	35
MR1205 MR1206	300 350	50	800	10	MR1238	350	240	5000	35
MR1200	400	50 50	800	10	MR1237	400	240	5000	35
mn1201	400		800	10		Sud mount with flowible	besided lead (CD)		
	Stud-r	mount with flexible bra mount with solid lug to	erminal (SL)		}	lat-mount with flexible	braided lead (FB) or	solid lug terminal (SL) (Standard lug terminal (FL))
MR1210	50	80	0000		MR1240	50	400	8000	50
MR1211	100	80 80	2000	15	MR1241	100	400	8000	50
MR1212	150	80	2000 2000	15	MR1242	150	400	8000	50
MR1213	200	80	2000	15	MR1243	200	400	8000	50
MR1214	250	80	2000	15	MR1244	250	400	8000	50
MR1215	300	80	2000	15 15	MR1245	300	400	8000	50
MR1216	350	80	2000	15	MR1246	350	400	8000	50
MR1217	400	80	2000	15	MR1247	400	400	8000	50
	Stud-mount with flexi Flat-mount with flexit	ble braided lead (SB) o de braided lead (FB) o	r solid lug terminal (SL) solid lug terminal (FL)	0		Flat-mo	unt with solid lug te	rminal (FL) ①	
MR1220	50	160	3600	20	MR1260	50	650	12000	100
MR1221	100	160	3600	20	MR1261	100	650	12000	100 100
MR1222	150	160	3600	20	MR1262	150	650	12000	100
MR1223	200	160	3600	20	MR1263	200	650	12000	100
MR1224	250	160	3600	20	MR1264	250	650	12000	100
MR1225	300	160	3600	20	MR1265	300	650	12000	100
MR1226 MR1227	350 400	160 160	3600	20	MR1268	350	650	12000	100
mn1221	400	160	3600	20	MR1267	400	650	12000	100
o							Bus-bar mount, water	er cooled	
U For dea	ired package o	onfiguration (S	B, SL, FB, FL) as well as	MR1290	50	1000	18000	200
reverse	polarity (R),	add the proper	suffix to the par	rt number,	MR1291	100	1000	18000	200
i.e. Mi	112315BR. FO	r complete out	line dimensions	and speci-	MR1292	150	1000	18000	200
iication	s see data she	ets.			MR1293	200	1000	18000	200
					MR1294	250	1000	18000	200
					MR1295	300	1000	18000	200
					MR1288	350	1000	18000	200
				The state of the s	MR1297	400	1000	18000	200

1N248B.C thru 1N250B, C

 $I_{\rm O}=$ 20 AMPS $V_{\rm RM(rep)}-$ to 600 V

1N1191 thru 1N1198 1N1195 A thru 1N1198A 1N3213 thru 1N3214

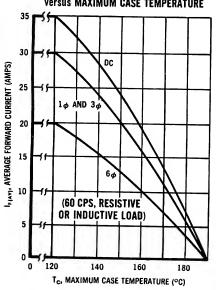
Medium current silicon rectifiers. Unique doublecase construction consists of hermetically sealed inner metallic case surrounded by molded external case; provides highest degree of ruggedness and reliability. Type numbers shown have cathode connected to case, but reverse-polarity units can be obtained by adding suffix "R" to standard type number, e.g. 1N248BR.

ABSOLUTE MAXIMUM RATINGS

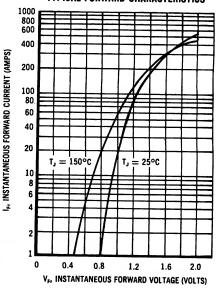
Characteristics	Symbol	Rating	Unit
Peak Repetitive Reverse Voltage	V _{RM} (rep)		Volts
and	` ."		
DC Blocking Voltage	v_{R}		
1N248B, 1N1191		50	
1N248C	1	55	
1N249B, 1N1192		100	
1N249C		110	
1N1193	1	150	
1N250B, 1N1194		200	
1N250C		220	
1N1195, 1N1195A	1	300	
1N1196, 1N1196A		400	ŀ
1N1197, 1N1197A, 1N3213		500	
1N1198, 1N1198A, 1N3214		600	
RMS Reverse Voltage	V _r		Volts
1N248B, 1N1191	•	35	
1N248C		38.5	
1N249B, 1N1192		70	
1N249C		77	
1N1193		105	
1N250B, 1N1194		140	
1N250C	1	154	
1N1195, 1N1195A		210	1
1N1196, 1N1196A		280	ì
1N1197, 1N1197A, 1N3213	1	3 50	
1N1198, 1N1198A, 1N3214		420	
Average 1/2-Wave Rectified Forward Current (Resistive Load, 60 cps, $T_C^{}$ = 150 $^{\circ}$ C)	Io	20	Amps
Peak Repetitive Forward Current (T _C = 150°C)	I _{FM} (rep)	90	Amps
Peak Surge Current (T _C = 150 ^o C, superimposed on Rated Current at Rated Voltage, 1/2-Cycle, 1/120 sec)	I _{FM} (surge)	350	Amps

1N248B,C thru 1N250B,C (continued)

THERMAL CHARACTERISTICS


Maximum Operating and Storage Temperature: $-65 \text{ to} + 190^{\circ}\text{C}$

Maximum Thermal Impedance, Junction to Case: $\theta_{JC} = 1.50^{\circ}\text{C/W}$ DC


ELECTRICAL CHARACTERISTICS

Characteristics	Symbol	Max	Unit
Full Cycle Average Forward Voltage Drop ($I_{O \text{ (max)}}$, rated V_{r} , 60 cps, T_{C} = 150 o C)	V _{F(AV)}	0.6	Volts
Instantaneous Forward Voltage Drop $(i_F = 100 \text{ Amps}, T_J = 25^{\circ}\text{C})$	v _F	1.5	Volts
Full Cycle Average Reverse Current (I _{O (max)} , rated V _r , 60 cps, T _C = 150°C) 1N248B thru 1N250B, 1N1191 thru 1N1198 1N248C 1N249C 1N250C 1N1195A 1N1196A 1N1197A 1N1198A 1N3213 and 1N3214	I _R (AV)	5.0 3.8 3.6 3.4 3.2 2.5 2.2 1.5	mA
DC Reverse Current (Rated V_R , $T_C = 25^{\circ}C$)	IR	1.0	mA

TYPICAL FORWARD CHARACTERISTICS

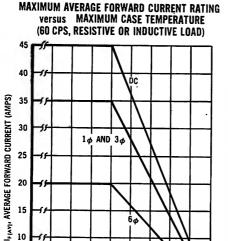
IN1124, A thru IN1128, A

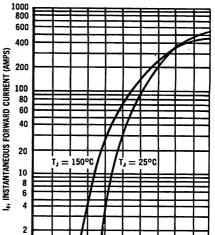
Obsolete, discontinued types, replace with devices from the MR1030 series.

1N1183thru 1N1190

 $I_0 = 35 \text{ AMPS}$ $V_R = to 600 \text{ V}$

Medium current silicon rectifiers. Unique doublecase construction consists of hermetically sealed inner metallic case surrounded by molded external case; provides highest degree of ruggedness and reliability. Type numbers shown have cathode connected to case, but reverse-polarity units can be obtained by adding suffix "R" to standard type number, e.g. 1N1183R.


ABSOLUTE MAXIMUM RATINGS


Characteristic	Symbol	Rating	Unit
Peak Repetitive Reverse Voltage and DC Blocking Voltage IN1183 IN1184 IN1185 IN1186 IN1187	V _{RM} (rep)	50 100 150 200 300	Volts
1N1188 1N1189 1N1190		400 500 600	•
RMS Reverse Voltage 1N1183 1N1184 1N1185 1N1186 1N1187 1N1188 1N11189 1N1190	v _r	35 70 105 140 210 280 350 420	Volts
Average 1/2-Wave Rectified Forward Current (Resistive Load, 60 cps, T _C = 140°C)	I _O .	35	Amperes
Peak Repetitive Forward Current (T _C = 140°C)	I _{FM} (rep)	150	Amperes
Peak Surge Current (T _C = 140°C, superimposed on Rated Current at Rated Voltage)	I _{FM} (surge)	400	Amperes
Operating and Storage Temperature	T _J , T _{stg}	-65 to +190	°C
Thermal Impedance	_θ јС	1.0	°C/W, DC steady state

1N1183 thru 1N1190 (continued)

ELECTRICAL CHARACTERISTICS

Characteristics	Symbol	Rating	Unit
Max. Full Cycle Average Forward Voltage Drop ($I_{O \text{ (max)}}$, rated V_{r} , 60 cps, T_{C} = 140°C)	V _{F(AV)}	0.6	Volts
Max Instantaneous Forward Voltage Drop (i _F = 100 Amps, T _J = 25°C)	v _F	1.3	Volts
Max Full Cycle Average Reverse Current $(I_{O (max)}, rated V_{r}, 60 cps, T_{C} = 140^{\circ}C)$	I _{R(AV)}	10.0	mA
Max DC Reverse Current (Rated V _R , T _C = 25°)	I _R	1.0	mA

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

V_F, INSTANTANEOUS FORWARD VOLTAGE (VOLTS)

TYPICAL FORWARD CHARACTERISTICS

IN1191thru IN1198

120

140

Tc, MAXIMUM CASE TEMPERATURE (°C)

160

180

15

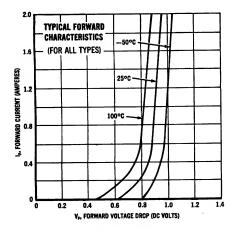
10

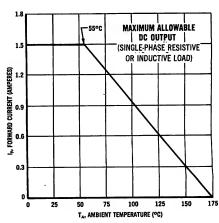
5

For Specifications, See IN248B Data Sheet

1N1563, A thru 1N1568, A

 $I_{\rm O}=1.5~{\rm AMPS}$ $V_{\rm R}$ — to 600 V


Low-current silicon rectifiers in hermetically sealed, low-silhouette single-ended package designed to operate under military environmental conditions. Cathode connected to case, but reverse polarity devices are available on special order.


ABSOLUTE MAXIMUM RATINGS (At 60 cps Sinusoidal Input, Resistive or Inductive Load)

Rating	Symbol	1N1583A 1N1563	1N1564A 1N1564	1N1585A 1N1585	1N1566A 1N1566	1N1567A 1N1567	1N1568A 1N1568	Unit
Peak Repetitive Reverse Voltage DC Blocking Voltage	V _{RM(rep)} V _R	100	200	300	400	500	600	Volts
RMS Reverse Voltage	v _r	70	140	210	280	350	420	Volts
Average Half-Wave Rectified Forward Current (55°C Ambient) (150°C Ambient)	I _O	1500 300	1500 300	1500 300	1500 300	1500 300	1500 300	mA mA
Peak Surge Current (1/2 Cycle Surge, 60 cps)	IFM(surge)	70	70	70	70	70	70	Amps
Peak Repetitive Forward Current	I _{FM(rep)}	10	10	10	10	10	10	Amps
Operating and Storage Temperature Range	T _J + T _{stg}			-65 t	o +175			°c

ELECTRICAL CHARACTERISTICS

Characteristic	Symbol	1N1563A 1N1568A Rating	1N1563- 1N1568 Rating	Unit
Maximum Forward Voltage Drop @ 500 mA, (25°C) Continuous DC (150°C)	V _F	1.2 0.9	1.2 1.0	Volts
Maximum Reverse Current @ Rated DC Voltage (25°C)	IR	1.5		μΑ
Maximum Full-Cycle Average Reverse Current (25°C) @ Max Rated PIV and Current (as Half-Wave (150°C) Rectifier, Resistive Load	I _{R(AV)}	3.0 150	5.0 500	μА

IN2609 thru IN2617

Obsolete, discontinued types, replace with devices from the 1N4001 series.

1N3189 thru 1N3191

Obsolete, discontinued types, replace with devices from the 1N4001 series.

1N3208thru 1N3212

 $I_0 = 15 \text{ AMPS}$ $V_R = 10 400 \text{ V}$

Medium-current silicon rectifiers. Cathode connected to case, but reverse polarity (anode-to-case connection) also available by adding suffix "R" to type number, e.g. 1N3208R. Supplied with mounting hardware.

ABSOLUTE MAXIMUM RATINGS

Rating	Symbol	1N3208 1N3208R	1N3209 IN3209R	1N3210 1N3210R	1N3211 1N3211R	1N3212 1N3212R	Unit
D-C Blocking Voltage	v _R	50	100	200	300	400	Volts
RMS Reverse Voltage	v _r	35	70	140	210	280	Volts
Average Half-Wave Rectified Forward Current With Re- sistive Load	Io*	15	15	15	15	15	Amps
Peak One Cycle Surge Current (60 cps & 25°C Case Temp)	I _{FM(surge)}	250	250	250	250	250	Amps
Operating Junction Temperature	$\mathbf{T}_{\mathbf{J}}$	-65 to + 175					°C
Storage Temperature	Tstg	-65 to + 175					°C

^{*}T_C = 150°C

ELECTRICAL CHARACTERISTICS (All Types) at 25°C Case Temp.

Characteristic	Symbol		
Maximum Forward Voltage at 40 Amp D-C Forward Current	v _F	1. 5	Volts
Maximum Reverse Current at Rated D-C Reverse Voltage	I _R	1.0	mAdc
Typical Thermal Resistance, Junction To Case	θјС	1.7	C/W

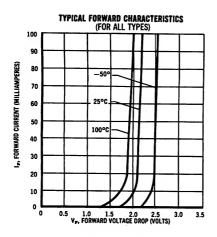
IN3213. IN3214

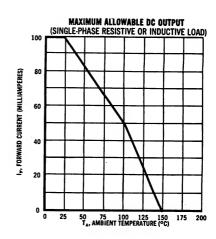
For Specifications, See IN248B Data Sheet

1N3282thru 1N3286

 $I_0 = 100 \text{ mA}$ V_R — to 3000 V

Low-current silicon rectifiers for applications requiring extremely high reverse-voltage capability. Hermetically sealed, subminiature glass package, offering excellent stability and reliability under environmental extremes.


ABSOLUTE MAXIMUM RATINGS (At 60 cps Sinusoidal Input, Resistive or Inductive Load)


Rating	Symbol	1N3282	1N3283	1N3284	1N3285	1N3286	Unit
Peak Repetitive Reverse Voltage	V _{RM(rep)}	1000	1500	2000	2500	3000	Volts
DC Blocking Voltage	v_{R}						
RMS Reverse Voltage	v _r	700	1050	1400	1750	2100	Volts
Average Half-Wave Rectified Forward Current (25°C Ambient) (100°C Ambient)	I _O	100 50	100 50	100 50	100 50	100 50	mA mA
Peak Surge Current (1/2-cycle, 60 cps)	I _{FM(surge)}	2. 5	2. 5	2.5	2. 5	2. 5	Amps
Peak Repetitive Forward Current	I _{FM(rep)}	0.50	0. 50	0, 50	0. 50	0, 50	Amps
Operating and Storage Temperature Range	T _j , T _{stg}	-65 to + 150					,°C

ELECTRICAL CHARACTERISTICS

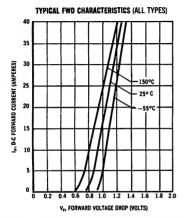
Characteristic	Symbol	Rating	Unit
Maximum Forward Voltage Drop @ 100 mA, Continuous DC (25°C)	$\mathbf{v}_{\mathbf{F}}$	2.5	Volts
Maximum Full-Cycle Average Forward Voltage Drop @ Rated Current (100°C)	V _{F(AV)}	1, 2	Volts
Maximum Reverse Current @ Rated DC Voltage (25°C) (100°C)	I_R	1. 0 10. 0	μΑ
Maximum Full-Cycle Average Reverse Current @ Max Rated PIV and Current (as Half-Wave Rectifier, Resistive Load, 100°C)	I _{R(AV)}	10. 0	μА
Typical Thermal Resistance, Junction to Air Ambient	$\theta_{ m JA}$	400°	C/W

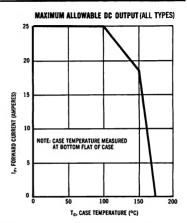
1N3282 thru 1N3286 (continued)

IN349 Ithru IN3495 FORMERLY MR 322 thru MR 326

 $I_{\circ} = 25 \text{ AMPS}$ $V_{R} = 10 400 \text{ V}$

Low-cost, medium-current, silicon rectifiers in hermetically sealed, press-fit case. Designed for industrial and commercial applications requiring operation under severe environmental conditions. Cathode connected to case, but available with reverse polarity by adding suffix "R" to type number.

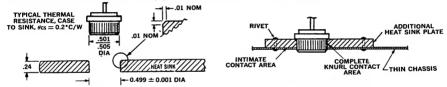

ABSOLUTE MAXIMUM RATINGS


Rating	Symbol	1N3491 MR322	1N3492 MR323	1N3493 MR324	1N3494 MR325	1N3495 MR326	Unit
Peak Repetitive Reverse Voltage DC Blocking Voltage	${f v}_{ m RM(rep)} \ {f v}_{ m R}$	50	100	200	300	400	Volts
RMS Reverse Voltage	v _r ,	35	70	140	210	280	Volts
Average Half-Wave Rectified Forward Current With Resistive Load 100°C 150°C	Io	25 18	25 18	25 18	25 18	25 18	Amps
Peak Repetitive Forward Current (60 cps & 25°C Case Temp.)	I _{FM(rep)}	75	75	75	75	75	Amps
Peak One Cycle Surge Current (60 cps & 25°C Case Temp.)	I FM(surge)	300	300	300	300	300	Amps
Operating Junction Temperature	т _J	-65 to +175					°C
Storage Temperature	T _{stg}		-	65 to +17	5		°C

1N3491 thru 1N3495 (continued)

FI FCTRICAL CHARACTERISTICS (At 25°C case temperature unless otherwise specified)

Characteristic	Symbol	1N3491 MR322	1N3492 MR323	1N3493 MR324	1N3494 MR325	1N3495 MR326	Unit
Maximum Forward Voltage at 100 Amp DC Forward	v _F	1.5	1.5	1.5	1.5	1.5	Volts
Maximum Full-Cycle Average Forward Voltage Drop @ Rated Current and Voltage	V _{F(AV)}	0.7	0.7	0. 7	0.7	0.7	Volts
Maximum Reverse Current at Rated DC Reverse Voltage	I _R	1.0	1.0	1.0	1.0	1.0	mAdc
Maximum Full-Cycle Average Reverse Current at Rated Current and Voltage (as Half-Wave Rectifier, Resistive Load, 150°C Case)	^I R(AV)	10	10	8	6	4	mAdc
Thermal Resistance	θЈС			1			°c/w



Motorola MR322-MR326 and 1N3491-1N3495 rectifiers are designed for press-fitted mounting in a heat sink. Recommended procedures for this type of mounting are as follows:

- 1. Drill a hole in the heat sink 0.499 \pm .001 inch in diameter.
- Break the hole edge as shown to prevent shearing off the knurled edge of the rectifier when it is pressed into the hole.
- The depth of the break should be 0.010 inch maximum to retain maximum heat skin surface contact with the knurled rectifier surface.
- 4. Width of the break should be 0.010 inch as shown.

These procedures will allow proper entry of the rectifier knurled surface, provide good rectifier- heat sink surface contact, and assure reliable rectifier operation. If the break is made too deep, thereby reducing contact area for heat transfer, reliability of operation will be impaired.

These devices can be mounted in a thin chassis by inserting the rectifier through an additional heat sink plate which is mounted in intimate contact with the upper side of the chassis. This provides additional contact area for the rectifier knurled edge, as well as additional heat sink capacity.

HEAT SINK MOUNTING

THIN-CHASSIS MOUNTING

NOTE:
Refer to Motorola brochure PR-104 for additional suggested mounting methods and examples.

USN1N361 1thru USN1N3613

 $I_0 = 1$ AMP $V_R - to 600 V$

Subminiature silicon rectifier with glass passivated surface in void-free, flame-proof, silicone polymer case. Tested in accordance with MIL-S-19500/228 for military applications requiring up to 1 ampere output at 100° C.

ABSOLUTE MAXIMUM RATINGS

(At 60 cps Sinusoidal Input, Resistive or Inductive Load)

Characteristic	Symbol	USN 1N3611	USN 1N3612	USN 1N3613	Unit
Working Peak Reverse Voltage DC Blocking Voltage	V _{RM (wkg)} V _R	200	400	600	Volts
Peak Repetitive Reverse Voltage	V _{RM (rep)}	240	480	720	Volts
Average Rectified Forward Current $T_A = 100^{\circ}\text{C}$ $T_A = 150^{\circ}\text{C}$	I _O	-	1.0 0.3		Adc
Non-Repetitive Peak Surge Current (1/2 cycle, 60 cps)	I _{FM} (surge)	4	10		Amps
Operating and Storage Temperature Range	T _A , T _{stg}	 -	65 to +175		°C

ELECTRICAL CHARACTERISTICS

Characteristics and Conditions	Symbol	Minimum	Maximum	Unit
Forward Voltage $(I_F = 1.0 \text{ Adc}, T_A = 100^{\circ}\text{C})$	$v_{\mathbf{F}}$	0.6	1.2	Vdc
Reverse Current (V _R = 200 Vdc) USN 1N3611 (V _R = 400 Vdc) USN 1N3612 (V _R = 600 Vdc) USN 1N3613	I _R	_	5 5 5	µ Adc
Reverse Current at Rated V _{RM} (rep) (V _{RM} (rep) = 240 Vdc) USN 1N3611 (V _{RM} (rep) = 480 Vdc) USN 1N3612 (V _{RM} (rep) = 720 Vdc) USN 1N3613	I _R	- - -	100 100 100	μAdc
High Temperature Operation: Reverse Current @ $T_A = 150^{\circ}$ C ($V_R = 200 \text{ Vdc}$) USN 1N3611 ($V_R = 400 \text{ Vdc}$) USN 1N3612 ($V_R = 600 \text{ Vdc}$) USN 1N3613	I _R	1 1	300 300 300	µAdc

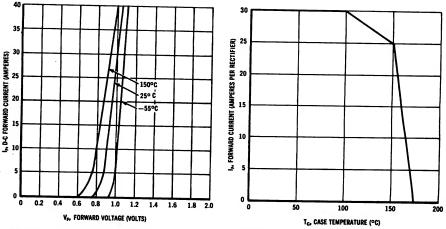
1N3649thru 1N3650

Obsolete, discontinued types, replace with devices from the MR1030 series.

1N3659thru 1N3663

 $I_0 = 30$ AMPS $V_R = 400$ V

Low-cost silicon rectifiers in hermetically sealed, press-fit case, designed for operation under severe environmental conditions. Cathode connected to case, but available with reverse polarity by adding suffix "R" to type number.

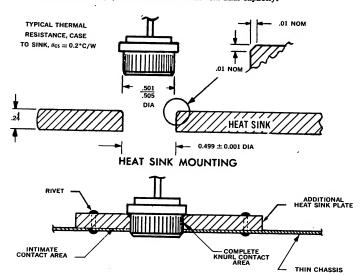

ABSOLUTE MAXIMUM RATINGS at 25°C Case Temp. Unless Otherwise Indicated

Rating	Symbol	1N3659 1N3659R	1N3660 1N3660R	1N3661 1N3661R	1N3662 1N3662R	1N3663 1N3663R	Units
Peak Repetitive Reverse Voltage DC Blocking Voltage	V _{RM(rep)} V _R	50	100	200	300	400	Volts
RMS Reverse Voltage	v _r	35	70	140	210	280	Volts
Average Half-Wave Rectified Forward Current with Resistive Load @ 100°C case @ 150°C case	I _O	30 25	30 25	30 25	30 25	30 25	Amps Amps
Peak One Cycle Surge Current (150°C case temp, 60 cps)	IFM(surge)	400	400	400	400	400	Amps
Operating Junction Temperature	T _J		-65 to	+175			°C
Storage Temperature	Tstg		-65 to	+200			°C

ELECTRICAL CHARACTERISTICS

Characteristic	Symbol	1N3659 1N3659R	1N3660 1N3660R	1N3661 1N3661R	1N3662 1N3662R	1N3663 1N3663R	Unit
Maximum Forward Voltage at 25 Amp DC Forward Current	v _F	1, 2	1.2	1, 2	1, 2	1. 2	Volts
Maximum Full Cycle Average Forward Voltage Drop @ Rated PIV and Current	v _{F(AV)}	0.7	0.7	0.7	0.7	0. 7	Volts
Maximum Full Cycle Average Reverse Current @ Rated PIV and Current (as half-wave rectifier, resistive load, 150°C)	I _{R(AV)}	5. 0	4.5	4.0	3.5	3, 0	mA
Thermal Resistance	θЈС			1			°C/V

1N3659 thru 1N3663 (continued)



Motorola 1N3659-1N3663 rectifiers are designed for press-fitted mounting in a heat sink. Recommended procedures for this type of mounting are as follows:

- 1. Drill a hole in the heat sink 0.499 \pm .001 inch in diameter.
- Break the hole edge as shown to prevent shearing off the knurled edge of the rectifier when it is pressed into the hole.
- The depth of the break should be 0.010 inch maximum to retain maximum heat skin surface contact with the knurled rectifier surface.
- 4. Width of the break should be 0.010 inch as shown.

These procedures will allow proper entry of the rectifier knurled surface, provide good rectifier-heat sink surface contact, and assure reliable rectifier operation. If the break is made too deep, thereby reducing contact area for heat transfer, reliability of operation will be impaired.

These devices can be mounted in a thin chassis by inserting the rectifier through an additional heat sink plate which is mounted in intimate contact with the upper side of the chassis. This provides additional contact area for the rectifier knurled edge, as well as additional heat sink capacity.

THIN-CHASSIS MOUNTING

NOTE: Refer to Motorola brochure PR-104 for additional suggested mounting methods and examples.

1N3879thru 1N3883 6 AMPERES 1N3889thru 1N3893 $I_0 = 6$ and 12 A $V_0 = 100$ to 400 V

Fast recovery silicon power rectifiers designed for high-frequency power supply, inverter, and converter applications. Typical recovery time of 100 nsec extends practical frequency limit of current rectification to more than 300,000 cps thus permitting the design of power supplies with smaller, lighter, and less expensive associated components. Cathode connected to case, but available with reverse polarity by adding suffix "R" to type number.

ABSOLUTE MAXIMUM RATINGS

Rating	Symbol	1N3879 1N3889	1M3880 1M3880	1N3881 1N3891	1N3882 1N3892	1N3883 1N3893	Unit		
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RM(rep)} V _{RM(wkg)} V _R	50	100	200	300	400	Volts		
Non-Repetitive Peak Reverse Voltage (half-wave, single phase, 60 cycle peak)	V _{RM(non-rep)}	100	200	300	400	500	Volts		
RMS Reverse Voltage	v _r	35	70	140	210	280	. Volts		
Rating	Symbol	l "i	1N3879 thru 1N3883		thru		1N38 thri 1N38	i i	Unit
Average Rectified Forward Current (single phase, resistive load, 60 cps, T _C = 100°C)	I _O		6		12		Amperes		
Non-Repetitive Peak Surge Current (superimposed on rated current at rated voltage, T _C = 100°C)	I _{FM(surge)}	75		75)	Amperes		
1 ² t Rating (non-repetitive, for t greater than 1 msec and less than 8.3 msec)	r ² t	15			50		A _(rms) ² sec		

THERMAL CHARACTERISTICS

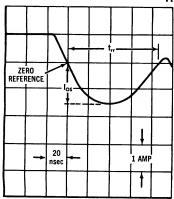
Characteristic	Characteristic S			
Maximum Junction Operating Temperature Range Maximum Case Storage Temperature Range		T _J T _{stg}	-65 to +150 -65 to +175	°C
Maximum Steady State DC Thermal Resistance	1N3879-83 1N3889-93	θјС	5. 0 2. 5	°C/Watt

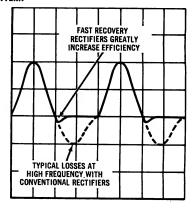
1N3879 thru 1N3883 (continued)

ELECTRICAL CHARACTERISTICS

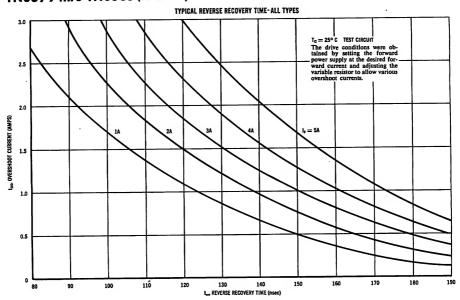
1N3879 thru 1N3883

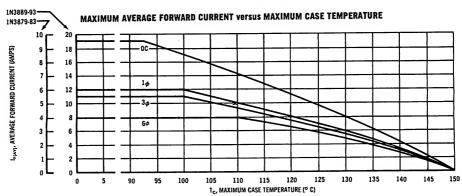
Characteristic	Symbol	Max Limit	Unit
DC Forward Voltage Drop (I _F = 6.0 Adc, T _C = 25°C)	v _F	1.4	Vdc
Full Cycle Average Reverse Current ($I_O = 6.0$ Amps and Rated V_r , 60 cps $T_C = 100$ °C, single phase)	I _{R(AV)}	3.0	mA
DC Reverse Current (Rated V _R , T _C = 100°C)	I _R	1.0	mA

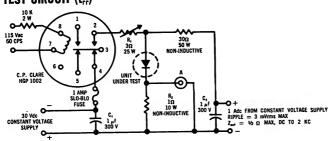

1N3889 thru 1N3893


Characteristic	Symbol	Max Limit	Unit
DC Forward Voltage Drop (I _F = 12.0 Adc, T _C = 25°C)	v _F	1.4	Vdc
Full Cycle Average Reverse Current (I_O = 12.0 Amps and Rated V_r , 60 cps T_C = 100°C, single phase)	I _{R(AV)}	5.0	mA
DC Reverse Current (Rated V _R , T _C = 100°C)	I _R	3.0	mA

REVERSE RECOVERY TIME CHARACTERISTICS


Characteristic	Symbol	Max Limit	Unit
Maximum Reverse Recovery Time (I _F = 1 Amp min, see test circuit)	t _{rr}	200	nsec
Maximum Overshoot Current (see test circuit)	Ios	2.0	Amps


TYPICAL RECOVERY PATTERN



1N3879 thru 1N3883 (continued)

MAXIMUM REVERSE RECOVERY TIME TEST CIRCUIT $(t_{\rm rr})$

A — Tektronix 545A, K Plug-in Pre-Amp, P6000 Probe of Eq.

 R_1 — Adjusted for 1.4Ω between point 2 of relay and rectifier. Inductance $\approx 3 \mu h$.

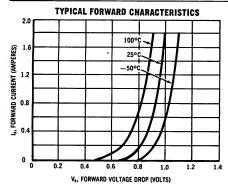
 R_2 — Ten 1 W, 10Ω , 1% carbon comp. in parallel.

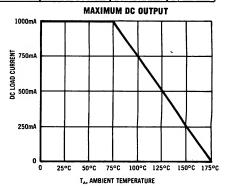
 $Tc = 25 + 10 \circ C$ for rectifiers.

Minimize all lead lengths.

1N4001thru 1N4007

 $I_{O} = 1 \text{ AMP}$ $V_{R} = \text{to } 1000 \text{ V}$


Low-current, glass passivated silicon rectifiers in subminiature void-free, flame-proof silicone polymer case. Designed to operate under military environmental conditions.


ABSOLUTE MAXIMUM RATINGS (At 60 cps Sinusoidal, Input, Resistive or Inductive Load)

Rating	Symbol	1 N 4001	1N4002	1N4003	1N4004	1N4005	1N4006	1N4007	Unit
Peak Repetitive Reverse Voltage DC Blocking Voltage	V _{RM(rep)} V _R	50	100	200	400	600	800	1000	Volts
RMS Reverse Voltage	v _r	35	70	140	280	420	560	700	Volts
Average Half-Wave Rectified Forward Current (75°C Ambient) (100°C Ambient)	I _O	1000 750	1000 750	1000 750	1000 750	1000 750	1000 750	1000 750	mA mA
Peak Surge Current 25°C (1/2 Cycle Surge, 60 cps) Peak Repetitive Forward Current	I _{FM(surge)} I _{FM(rep)}	30 10	30 10	30 10	30 10	30 10	30 10	30 10	Amps Amps
Operating and Storage Temperature Range	T _J , T _{stg}	-65 to + 175						°C	

ELECTRICAL CHARACTERISTICS

Characteristic	Symbol	Rating	Unit
Maximum Forward Voltage Drop (1 Amp Continuous DC, 25°C)	$v_{\mathbf{F}}$	1, 1	Volts
Maximum Full-Cycle Average Forward Voltage Drop (Rated Current @ 25°C)	V _{F(AV)}	0.8	Volts
Maximum Reverse Current @ Rated DC Voltage (25°C) (100°C)	I _R	0. 01 0. 05	mA
Maximum Full-Cycle Average Reverse Current (Max Rated PIV and Current, as Half-Wave Rectifier, Resistive Load, 100°C)	I _R (AV)	0. 03	mA

IN4719 thru IN4725 MR1030 thru MR1036, MR1038, MR1040

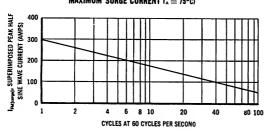
 $I_0 = 3 \text{ Amps}$ $V_R - \text{to 1000 V}$

CASE 66A 1N4719 THRU 1N4725 MR1030A THRU MR1040A

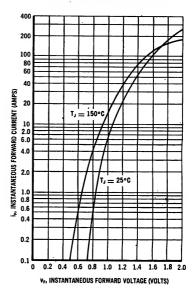
CASE 67A MR1030B THRU MR1040B

Silicon high-conductance rectifiers available in either axial-lead or single-ended packages. Type numbers shown have cathode connected to case. For anodeto-case connection, add suffix "R" to type number, i.e. IN4720R

ABSOLUTE MAXIMUM RATINGS (Both Package Types) TA = 25°C unless otherwise noted


Rating	Symbol	184719 MR1030	184729 MR1031	1 N4721 NR1032	MR1033	1N4722 MR1034	MR1035	1M4723 MR1036	134724 MR1038	1 N4725 MR1040	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	VRM (rep) VRM (wkg) VR	50	100	200	300	400	500	600	800	1000	Volts
Non-Repetitive Peak Reverse Voltage (one half-wave, single phase, 60 cycle peak)	V _{RM} (non-rep)	100	200	300	400	500	600	720	1000	1200	Volts
RMS Reverse Voltage	v _r	35	70	140	210	280	350	420	560	700	Volts
Average Rectified Forward Current (single phase, resistive load, 60 cps, T _A = 75 ^O C) see figure 4	I _O	IO 3.0							Amps		
Peak Repetitive Forward Current $(T_A = 75^{\circ}C)$	I _{FM} (rep)	+		-		25				→	Amps
Non-Repetitive Peak Surge Current (superimposed on rated current at rated voltage, T _A = 75°C) see figure 1	IFM (surge)	FM (surge) 300 (for 1/2 cycle)							Amps		
I ² t Rating (non-repetitive, 1 msec <t <8.3="" msec)<="" td=""><td colspan="7">1²t</td><td>A(rms) 2sec</td></t>	1 ² t							A(rms) 2sec			
Operating and Case Temperature	T _J , T _{Stg} -65 to + 175							°C			
Thermal Resistance	θ_{JA}					30					^O C/Watt

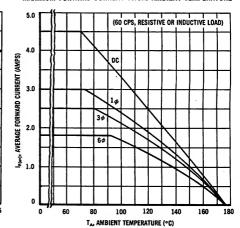
1N4719 thru 1N4725 (Continued)


ELECTRICAL CHARACTERISTICS (All Types)

Characteristic	Symbol	Max Limit	Unit	
Full Cycle Average Forward Voltage Drop ($I_O = 3.0$ Amps and Rated V_T , $T_A = 75^{\circ}C$, Half Wave Rectifier)	Amps and Rated Vr.		Volts	
DC Forward Voltage Drop (I _F = 3.0 Adc, T _A = 25 ⁰ C)	v _F	0.9	Volts	
Full Cycle Average Reverse Current ($I_O = 3.0$ Amps and Rated V_r , $T_A = 75^{\circ}C$, Half Wave Rectifier)	I _{R(AV)}	mA		
DC Reverse Current (Rated V _R , T _A = 25 ^o C)	IR	0.5	mA	

MAXIMUM SURGE CURRENT TA = 75°C)

FORWARD VOLTAGE CHARACTERISTICS



MAXIMUM FORWARD POWER DISSIPATION versus AVERAGE FORWARD CURRENT

DC.

T, = 150°C TO 175°C

MAXIMUM FORWARD CURRENT Versus AMBIENT TEMPERATURE

PF(4**), AVERAGE FORWARD POWER (WATTS) IF(av), AVERAGE FORWARD CURRENT (AMPS)

MR322 thru MR326

For Specifications, See IN3491 Data Sheet

MR1030 thru MR1036 MR1038, MR1040 E

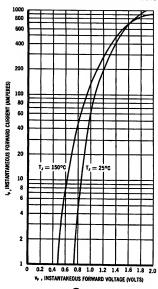
For Specifications, See 1N4719 Data Sheet.

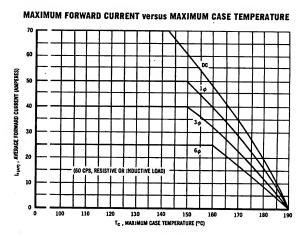
MR 1200 thru MR 1207

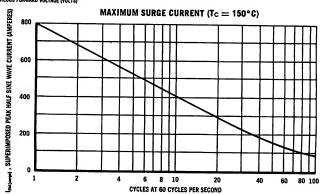
 $I_O = 50$ AMPS $V_R - to 400 V$

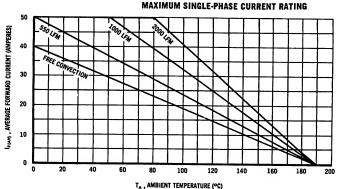
Silicon power rectifiers designed with double-case, multi-cell construction for extreme reliability and ruggedness. Standard cathode-to-case polarity, but available with reverse polarity by adding suffix "R" to type number.

ABSOLUTE MAXIMUM RATINGS


Rating	Symbol	MR 1200	MR 1201	MR 1202	MR 1203	MR 1204	MR 1205	MR 1206	MR 1207	Units
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RM(rep)} V _{RM(wkg)} V _R	50	100	150	200	250	300	350	400	Volts
Non-Repetitive Peak Reverse Voltage (one half-wave, single phase, 60 cycle peak)	V _{RM (non-rep)}	150	200	250	300	350	400	450	500	Volts
RMS Reverse Voltage	v _r	35	70	105	140	175	210	245	280	Volts
Average Rectified Forward Current (single phase, resistive load, 60 cps, T _C = 150°C)	I _o	50						Amperes		
Non-Repetitive Peak Surge Current (superimposed on rated current at rated voltage, T _C = 150°C)	IFM (surge)	800 (for 1/2 cycle) 500 (for six consecutive 1/2 cycles)						Amperes		
1 ² t Rating (non-repetitive, for t greater than 1 msec and less than 8.3 msec)	I ² t	1,300						A _(rms) ² sec		
Operating and Storage Temperature	T _J , T _{stg}	-65 to +190						°C		
Thermal Resistance	θ Ј С	0.60						°C/Watt		


ELECTRICAL CHARACTERISTICS


Characteristic and Conditions	Symbol	Maximum Limit	Units
Full Cycle Average Forward Voltage Drop (rated $\rm I_{0}$ and $\rm V_{r}$, single phase, 60 cps. $\rm T_{C}^{=150^{\circ}\rm C}$)	V _{F(AV)}	0.4	Volts
Full Cycle Average Reverse Current (rated I $_{0}$ and V_{r} , single phase, 60 cps, T_{C} =150°C)	I _{R(AV)}	10	mA


MR1200 thru MR1207 (continued)

FORWARD VOLTAGE CHARACTERISTICS

CONDITIONS

 $5 \times 5 \times \frac{1}{8}$ copper heat sink fin $\epsilon \ge 0.9$ and mounted parallel to air flow , 180° conduction.

For 3 phase ratings multiply current scale by 0.85.

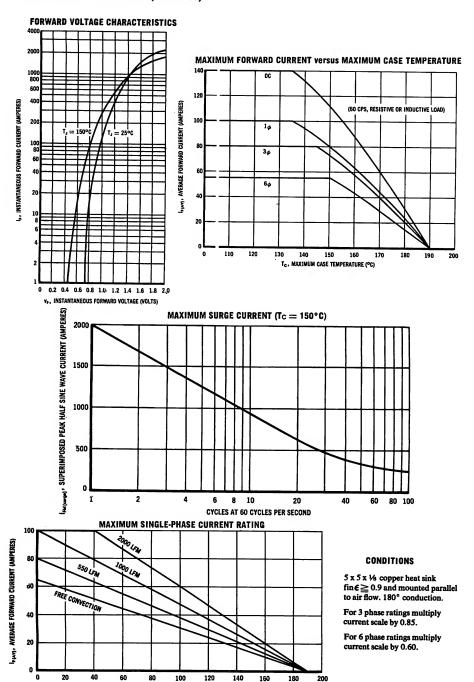
For 6 phase ratings multiply current scale by 0.60.

MR 1210thru MR 1217

 $I_0 = 80 \text{ AMPS}$ $V_R = to 400 \text{ V}$

SL

Silicon power rectifiers designed with double-case, multi-cell construction for extreme reliability and ruggedness. Standard cathode-to-case polarity, but available with reverse polarity by adding suffix "R" to type number. Available in two package styles having identical ratings and characteristics. Desired package can be selected by adding suffix "SB" or "SL" to type number.


ABSOLUTE MAXIMUM RATINGS (All Package Types)

Rating	Symbol	MR 1210	MR 1211	MR 1212	MR 1213	MR 1214	MR 1215	MR 1216	MR 1217	Units
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RM(rep)} V _{RM(wkg)} V _R	50	100	150	200	250	300	350	400	Volts
Non-Repetitive Peak Reverse Voltage (one halfwave, single phase, 60 cycle peak)	V _{RM} (non-rep)	150	200	250	300	350	400	450	500	Volts
RMS Reverse Voltage	v _r	35	70	105	140	175	210	245	280	Volts
Average Rectified Forward Current (single phase, resistive load, 60 cps, T _C = 150 °C)	I _o	80						Amperes		
Non-Repetitive Peak Surge Currents (superimposed on rated current at rated voltage, T _C = 150°C)	^I FM (surge)	2,000 (for 1/2 cycle)						Amperes		
I ² t Rating (non-repetitive, for t greater than 1 msec and less than 8.3 msec)	r²t	8,300						A _(rms) ² sec		
Operating and Case Temperature	T _J , T _{stg}	-65 to +190						°C		
Thermal Resistance	₆ ¹C	0.40						°C/Watt		

ELECTRICAL CHARACTERISTICS (All Package Types)

Characteristic and Conditions	Symbol	Maximum Limit	Units
Full Cycle Average Forward Voltage Drop (rated I_0 and V_r , single phase, 60 cps, $T_C^{=150}$ °C)	V _{F(AV)}	0.4	Volts
Full Cycle Average Reverse Current (rated l _o and V _r , single phase, 60 cps, T _C = 150°C)	I _{R(AV)}	15	m A

MR1210 thru MR1217 (continued)

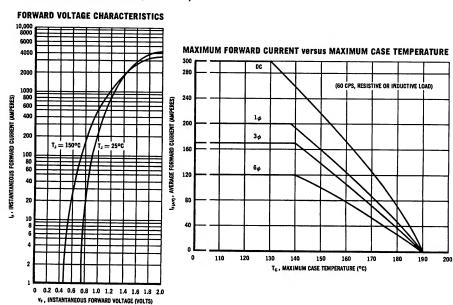
TA, AMBIENT TEMPERATURE (°C)

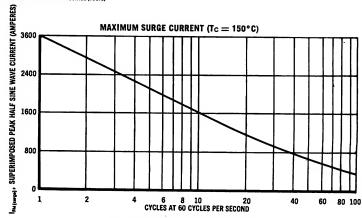
MR1220thru MR1227

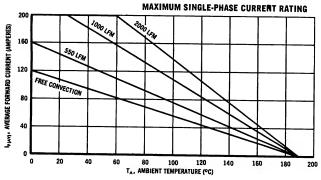
 $I_0 = 160 \text{ AMPS}$ $V_R - \text{to } 400 \text{ V}$

FL

Silicon power rectifiers designed with double-case, multi-cell construction for extreme reliability and ruggedness. Standard cathode-to-case polarity, but available with reverse polarity by adding suffix "R" to type number. Available in a variety of packages, all of which have the same ratings and characteristics. Desired package can be selected by adding suffix "SB", "FB", "SL", or "FL" to type number.


ABSOLUTE MAXIMUM RATINGS


Rating	Symbol	MR 1220	MR 1221	MR 1222	MR 1223	MR 1224	MR 1225	MR 1226	MR 1227	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RM(rep)} V _{RM(wkg)} V _R	50	100	150	200	250	300	350	400	Volts
Non-Repetitive Peak Reverse Voltage (one halfwave, single phase, 60 cycle peak)	VRM(non-rep)	150	150 200 250 300 3			350	400	450	500	Volts
RMS Reverse Voltage	v _r	35	70	105	140	175	210	245	280	Volts
Average Rectified Forward Current (single phase, resistive load, 60 cps. T _C = 150°C)	I _o	160						Amperes		
Non-Repetitive Peak Surge Currents (superimposed on rated current at rated voltage, T _C = 150°C)		3,600 (for 1/2 cycle) 2,000 (for six consecutive 1/2 cycles)							Amperes	
I ² t Rating (non-repetitive for t greater than 1 msec and less than 8.3 msec)	¹² t	27,000						A _(rms) ² sec		
Operating and Case Temperature	T _J , T _{stg}		-65 to +190					°c		
Thermal Resistance	θЈ С				0	. 20				°C/Watt


ELECTRICAL CHARACTERISTICS

Characteristics and Conditions	Symbol	Max Limit	Unit
Full Cycle Average Forward Voltage Drop (rated I_0 and V_r , single phase, 60 cps. $T_C = 150$ °C)	v _{F(AV)}	0. 4	Volts
Full Cycle Average Reverse Current (rated I_O and V_T , single phase, 60 cps, $T_C = 150$ °C)	I _{R(AV)}	20	mA

MR1220 thru MR1227 (continued)

CONDITIONS

 $7 \times 7 \times 14$ copper heat sink fin $\epsilon \ge 0.9$ and mounted parallel to air flow. 180° conduction.

For 3 phase ratings multiply current scale by 0.85.

For 6 phase ratings multiply current scale by 0.60.

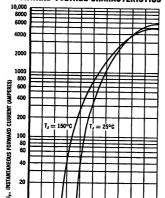
MR 1230thru MR 1237

 $I_0 = 240 \text{ AMPS}$ $V_R - \text{to } 400 \text{ V}$

FL

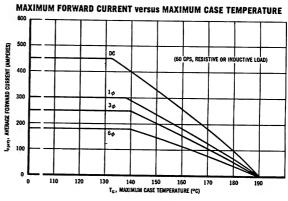
Silicon power rectifiers designed with double-case, multi-cell construction for extreme reliability and ruggedness. Standard cathode-to-case polarity, but available with reverse polarity by adding suffix "R" to type number. Available in a variety of packages, all of which have the same ratings and characteristics. Desired package can be selected by adding suffix "SB", "FB", "SL", or "FL" to type number.

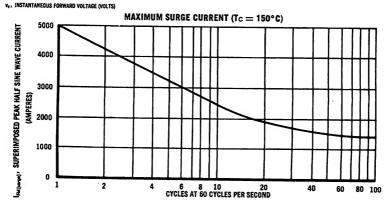
ABSOLUTE MAXIMUM RATINGS

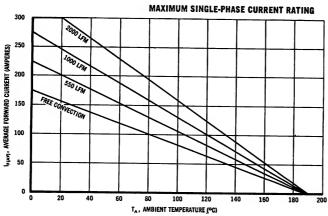

Rating	Symbol	MR 1230	MR 1231	MR 1232	MR 1233	MR 1234	MR 1235	MR 1236	MR 1237	Unit
Peak Repetive Reverse Voltage Working Peak Reverse Voltage DC Blecking Voltage	V _{RM(rep)} V _{RM(wkg)} V _R	50	100	150	200	250	300	350	400	Volts
Non-Repetitive Peak Reverse Voltage (one halfwave, single phase, 60 cycle.peak)	V _{RM(non-rep)}	150	200	250	300	350	400	450	500	Volts
RMS Reverse Voltage	v _r	35	70	105	140	175	210	245	280	Volts
Average Rectified Forward Current (single phase, resistive load, 60 cps, T _C = 150°C)	I _o	+	240						Amperes	
Non-Repetitive Peak Surge Currents (superimposed on rated current at rated voltage, T _C = 150°C)	I _{FM} (surge)	+	5,000 (for 1/2 cycle) — 3,000 (for six consecutive — 1/2 cycles							Amperes
I ² t Rating (non-repetitive, for t greater than 1 msec and less than 8.3 msec)	ī ² t	+	52,000					A _(rms) 2sec		
Operating and Case Temperature	T _J , T _{stg}		-65 to +190					°c		
Thermal Resistance	θјС				0.	12				°C/Watt

ELECTRICAL CHARACTERISTICS

Characteristics and Conditions	Symbol	Max Limit	Unit
Full Cycle Average Forward Voltage Drop (rated I _o and V _r , single phase, 60 cps = 150°C)	V _{F(AV)}	0.4	Volts
Full Cycle Average Reverse Current (rated I_0 and V_r , single phase, 60 cps = 150°C)	I _{R(AV)}	35	mA


MR1230 thru MR1237 (continued)


FORWARD VOLTAGE CHARACTERISTICS



0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

10

CONDITIONS

8 x 8 x ¼ copper heat sink fin € ≥ 0.9 and mounted parallel to air flow. 180° conduction.

For 3 phase ratings multiply current scale by 0.85.

For 6 phase ratings multiply current scale by 0.60.

MR 1240 thru MR 1247

 $I_O = 400 \text{ AMPS}$ $V_R = to 400 \text{ V}$

FB

FL

Silicon power rectifiers designed with double-case, multi-cell construction for extreme reliability and ruggedness. Standard cathode-to-case polarity, but available with reverse polarity by adding suffix "R" to type number. Available in a variety of packages, all of which have the same ratings and characteristics. Desired package can be selected by adding suffix "SB", "FB", "SL", or "FL" to type number.

ABSOLUTE MAXIMUM RATINGS


Rating	Symbol	MR 1240	MR 1241	MR 1242	MR 1243	MR 1244	MR 1245	MR 1246	MR 1247	Units
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RM(rep)} V _{RM(wkg)} V _R	50	100	150	200	250	300	350	400	Volts
Non-Repetitive Peak Reverse Voltage (one halfwave, single phase, 60 cycle peak)	V RM (non-rep)	150	200	250	300	350	400	450	500	Volts
RMS Reverse Voltage	v _r	35	70	105	140	175	210	245	280	Volts
Average Rectified Forward Current (single phase, resistive load, 60 cps, T _C = 150 °C)	I _o	400								Amperes
Non-Repetitive Peak Surge Currents (superimposed on rated current at rated voltage, T _C = 150°C)	^I FM (surge)	8,000 (for 1/2 cycle) ————————————————————————————————————								Amperes
I ² t Rating (non-repetitive, for t greater than 1 msec and less than 8.3 msec)	I ² t	133,000								A _(rms) 2 _{sec}
Operating and Case Temperature	T _J , T _{stg}	-85 to +190								°c
Thermal Resistance	θ _J C					0, 075				°C/Watt

ELECTRICAL CHARACTERISTICS

Characteristic and Conditions	Symbol	Maximum Limit	Units
Full Cycle Average Forward Voltage Drop (rated I _o and V _r , single phase, 60 cps, T _C = 150° C)	V _{F(AV)}	0. 4	Volts
Full Cycle Average Reverse Current (rated I_0 and V_r , single phase, 60 cps, $T_C = 150^{\circ}$ C)	I _{R(AV)}	50	mA

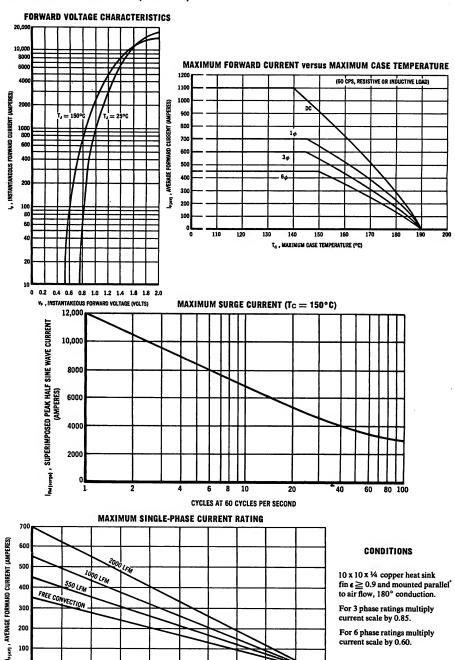
MR1240 thru MR1247 (continued)

TA, AMBIENT TEMPERATURE (°C)

MR 1260 thru MR 1267

 $I_0 = 650 \text{ AMPS}$ $V_0 = to 400 \text{ V}$

Silicon power rectifiers designed with double-case, multi-cell construction for extreme reliability and ruggedness. Standard cathode-to-case polarity, but available with reverse polarity by adding suffix "R" to type number.

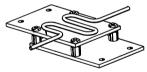

ABSOLUTE MAXIMUM RATINGS

Rating	Symbol .	MR 1260	MR 1261	MR 1262	MR 1263	MR 1264	MR 1265	MR 1266	MR 1267	Units
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RM(rep)} V _{RM(wkg)} V _R	50	100	150	200	250	300	350	400	Volts
Non-Repetitive Peak Reverse Voltage (one half-wave, single phase, 60 cycle peak)	V RM (non-rep)	150	200	250	300	350	400	450	500	Volts
RMS Reverse Voltage	v _r	35	70	105	140	175	210	245	280	Volts
Average Rectified Forward Current (single phase, resistive load, 60 cps, T _C = 150°C)	I _o	650								Amperes
Non-Repetitive Peak Surge Currents (superimposed on rated current at rated voltage, T _C = 150°C)	IFM (surge)	12,000 (for 1/2 cycle) ————————————————————————————————————								Amperes
I ² t Rating (non-repetitive, for t greater than 1 msec and less than 8.3 msec)	r²t	300,000								A _(rms) 2sec
Operating and Storage Temperature	т _J , т _{stg}	-65 to +190								°C
Thermal Resistance	€ _{JC}				0.0	145				°C/Watt

ELECTRICAL CHARACTERISTICS

Characteristic and Conditions	Symbol	Maximum Limit	Units
Full Cycle Average Forward Voltage Drop (rated I _O and V _r , single phase, 60 cps, T _C =150°C)	V _{F(AV)}	0.4	Volts
Full Cycle Average Reverse Current (rated I _O and V _r , single phase, 60 cps, T _C =150°C)	I _{R(AV)}	100	mA

MR1260 thru MR1267 (continued)



TA , AMBIENT TEMPERATURE (°C)

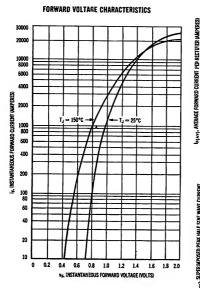
current scale by 0.60.

MR 1290 thru MR 1297

 $I_0 = 1000 \text{ Amps}$ $V_0 = 1000 \text{ V}$

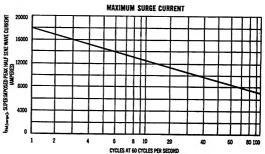
Silicon power rectifiers designed with multi-cell construction for extreme reliability and ruggedness. Standard polarity is cathode-to-water-cooled case, but reverse polarity devices are available designated by an "R" suffix. i.e. MR1295R

MAXIMUM RATINGS


Rating	Symbol	MR 1290	MR 1291	MR 1292	MR 1293	MR 1294	MR 1295	MR 1296	MR 1297	Units
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RM(rep)} V _{RM(wkg)} V _R	50	100	150	200	250	300	350	400	Volts
Non-Repetitive Peak Reverse Voltage (one half-wave, single phase, 60 cycle peak)	VRM(non-rep)	100	200	250	300	350	400	450	500	Volts
RMS Reverse Voltage	v _r	35	70	105	140	175	210	245	280	Volts
Continuous Average Rectified Forward Current (single phase, resistive load, 60 cps, T _C = 150°C)	I _o	1000							Amperes	
Non-Repetitive Peak Surge Currents (subperimposed on rated current at rated voltage, $T_C = 150^{\circ}C$)	^I FM(surge)	18,000 (for 1/2 cycle) ————————————————————————————————————								Amperes
Operating and Storage Temperature	TJ, T _{stg}	-65 to +190							°c	
Thermal Resistance DC 1 and 3 phase 6 phase	θJC					0. 035 0. 045 0. 060				°C/Watt

Case Temperature Reference Point: T_C measured at center edge of the water cooled mounting bus

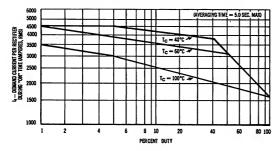
ELECTRICAL CHARACTERISTICS


Characteristic and Conditions	Symbol	Maximum Limit	Units
Full Cycle Average Forward Voltage Drop (rated I _O and V _r , single phase, 60 cps, T _C = 150 ⁹ C)	V _{F(AV)}	0.4	Volts
Full Cycle Average Reverse Current (rated I _O and V _r , single phase, 60 cps, T _C = 150°C)	^I R(AV)	0.2	Amperes

MR1290 thru MR1297 (Continued)

Versus MAXÍMUM CASE TEMPERATURE (180% DUTY) 1750 RECOMMENDED OPERATING CASE TEMPERATURE RAWES BETWEEN O'C CAZ"7) AND 100°C CAZ"7) WITH WATER COOLING FOR COMTINUOUS RECTIFIER SERVICE (60 CPS, RESISTIVE OR INDUCTIVE LOAD) 1250 1 PHASE (HALF WAVE OR FULL WAVE) 3 PHASE (HALF WAVE OR FULL WAVE) -6 PHASE WITH INTERPHASE 6 PHASE STAR 250 100 120 140 160 180 200 T_C, MAXIMUM CASE TEMPERATURE (°C)

MAXIMUM FORWARD CURRENT



TYPICAL COOLING RATES AT RATED LOAD CONDITIONS

Inlet Water Temperature (°C)	Water Water Imperature Flow Required (°C) (Gellons/Hour)		
15	2	10	
50	5	8	
75	10	5	

NOTE: Water flow rates may be decreased at lighter load demands provided maximum case temperatures are not exceeded. In some applications where cooling systems are operated in series, it may be desirable to increase flow rates in order to minimize water temperature rise.

MAXIMUM RMS DEMAND CURRENT Versus PERCENT DUTY

COOLING REQUIREMENTS

Type of Cooling — Water Min Inlet Water Temp. — 0°C Max Inlet Water Temp. — 75°C

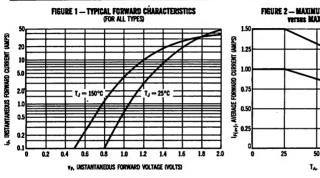
NOTE:

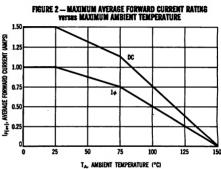
Curves apply to normal rectifier service conditions with maintained Rectifier Case Temperature (Tc) equal to or less than the values specified.

To determine the Maximum Average Current $[I_{F(AY)}]$ per rectifier, multiply the RMS Current $[I_f]$ rating by the factor given for the operating condition.

- IF(AV) = .64If for Single Phase
- IF(AV) = .57It for Three Phase and Six Phase with interphase
- IF(AV) = .40Ie for Six Phase Star

MR 1337-1thru MR 1337-5

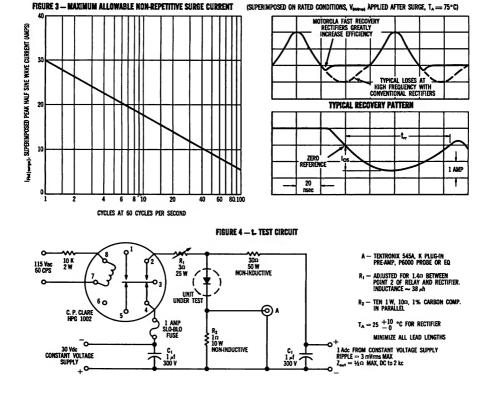

 $I_0 = 1 \text{ AMP}$ $V_0 = 10 400 \text{ V}$



Fast recovery silicon rectifiers designed for high-frequency power supply, inverter, and converter applications. Typical recovery time of 100 nsec extends practical frequency limit of current rectification to more than 300,000 cps thus permitting the design of power supplies with smaller, lighter, and less expensive associated components.

ABSOLUTE MAXIMUM RATINGS

Rating	Symbol	MR 1337-1	MR 1337-2	MR 1337-3	MR 1337-4	MR 1337-5	Unit	
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RM(rep)} V _{RM(wkg)} V _R	50	100	200	300	400	Volts	
Non-Repetitive Peak Reverse Voltage (half-wave, single phase, 60 cycle peak)	V _{RM(non-rep)}	100	200	300	400	500	Volts	
RMS Reverse Voltage	v _r	35	70	140	210	280	Volts	
Average Rectified Forward Current (single-phase resistive load) T_A =25°C Figure 2 T_A =75°C	I _O		Amperes					
Non-Repetitive Peak Surge Current Figure 3 (superimposed on rated current at rated voltage, $T_A = 75$ °C)	I _{FM(surge)}		Amperes					
Peak Repetitive Forward Current (T _A = 75°C)	I _{FM(rep)}			4.0			Amperes	
I ² t Rating (non-repetitive, for t greater than 1 msec and less than 8.3 msec)	I ² t		A _(rms) 2se					
Maximum Junction Operating Temperature Range	${f T_J}$		-6	35 to +1	50		°C	
Maximum Case Storage Temperature Range	T _{stg}	-65 to +175					C	
Maximum Steady State DC Thermal Resistance	$\theta_{ m JA}$			100			°C/Watt	



MR1337-1 thru MR1337-5 (continued)

ELECTRICAL CHARACTERISTICS

FIGURE 3 - MAXIMUM ALLOWABLE NON-REPETITIVE SURGE CURRENT

Characteristic	Symbol	Max Limit,	Unit
DC Forward Voltage Drop (I _F = 1.0 Adc, T _A = 25°C)	v _F	1,1	Vdc
Full Cycle Average Forward Voltage Drop (I_O = 0.75 Amps and Rated V_r , T_A = 75°C, Half Wave Rectifier)	V _{F(AV)}	0. 55	Volts
Full Cycle Average Reverse Current ($I_O = 0.75$ Amp and Rated V_r , $T_A = 75$ °C, single phase)	I _{R(AV)}	0.75	mA
DC Reverse Current (Rated V _R , T _A = 25°C)	I _R	0.25	mA
Maximum Reverse Recovery Time (I _F = 1 Amp min)	t _{rr}	200	nsec
Maximum Overshoot Current	Ios	2.0	Amps

HAVING A SEMICONDUCTOR APPLICATIONS PROBLEM?

Perhaps one of Motorola's authoritative Technical Information notes can help you find a solution.

The most recent index to the growing list of Motorola Application Notes appears below.

- AN-111 Video Amplifier with 150-mc Bandwidth
- AN-112 400-mc Power Oscillator
- AN-114 Modulation of Driver Stage to Increase Power Output of A-M Transmitter
- AN-124 The 2N741 Mesa Transistor as a Power Oscillator and Class C Amplifier
- AN-129 For Computers . . . Basic RCTL Circuits
- AN-130 2N711 Computer Circuits
- AN-133 Designing Low-Noise RF Input Transistor Stages
- AN-134 Power Inverter Circuits Using Distributor Components
- AN-136 Techniques of Current-Mode Logic Switching
- AN-138 Transistor Switches: The Best Design for the Worst Case
- AN-140 Characterization of SCR's as Switches for Line Type Modulators
- AN-141 Silicon Controlled Rectifiers New Opportunities for Electronic Applications in the Home
- AN-142 Highlights of Small-Signal Circuit Design
- AN-143 Converting Amplifiers to Integrated Circuit Format
- AN-144 Monolithic or Hybrid?
- AN-146 The Gate Controlled Switch
- AN-148 Integrated Circuit Reliability
- AN-149 Designing Linear Microcircuits: Problems and Solutions
- AN-150 Getting Transistors into Single-Sideband Amplifiers
- AN-151 Charge Storage Varactors Boost Harmonic Power
- AN-152 Thin Film Hybrid Techniques
- AN-153 Monostable Multivibrator
- AN-155 New Masking Techniques for Micro-power Transistors
- AN-156 A Marine Band Transmitter Using 2N2832 Power Transistor
- AN-157 Designing Monolithic I/C
- AN-158 Whats and Whys about v Parameters
- AN-159 A New Look at Coaxial Cavities for Varactor Multipliers
- AN-160 Application of Micro-Electronics to IF Amplifiers
- AN-161 Design, Performance, and Applications of the MV1892 RF Switching Diode
- IC-10 Tuned Amplifier Design with Motorola's MC1110 Integrated Circuit Amplifier
- IC-11 System Design with MECL Integrated Circuit Logic Blocks

You can obtain copies of the notes by writing to:

Technical Information Center Motorola Semiconductor Products Inc. Box 955

Phoenix, Arizona 85001

MOTOROLA SILICON RECTIFIER ASSEMBLIES

Devices included in this section:

RECTIFIER STACKS

300 Series

MOLDED BRIDGES

MDA942	Series
MDA952	Series

MDA962 Series MDA1491 Series MDA 1505 Series MDA 1591 Series

MINIATURE BRIDGE ASSEMBLIES

MDA920	Series
MDA930	Series

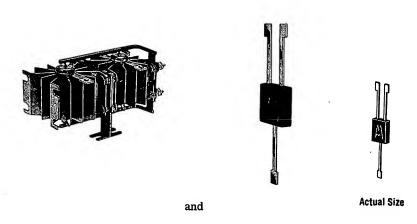
MDA940 Series

. MDA950 Series

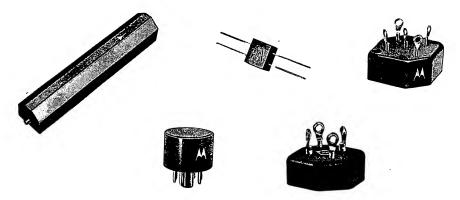
HIGH-VOLTAGE MOLDED ASSEMBLIES

1N1730 1N1731 1N1732 1N1733 1N1734	1N2382 1N2383 1N2384 1N2385	MDA1330H MDA1331H MDA1332H MDA1333H
--	--------------------------------------	--

e de villa de la composition della composition d


The second of th

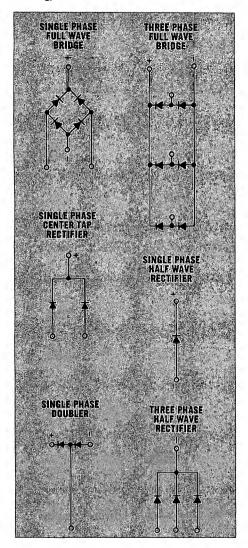
SILICON RECTIFIER ASSEMBLIES


Silicon rectifiers are available as individual cells with a wide variety of current and voltage ratings, as described in the rectifier section of this manual. In addition, these devices are available in standard and custom assemblies, which greatly increase the range of applications that can be satisfied with single-unit preassembled devices.

Included in these standard assemblies are:

High and low current rectifier circuit configurations

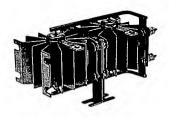
Series-connected high-voltage rectifier assemblies.



Custom assemblies, including both zener diode and rectifier assemblies, can be obtained inexpensively in quantity by specifying the type of devices needed (from a large selection of individual diodes and rectifiers) and the desired circuit configuration.

SILICON RECTIFIER STACKS

300 SERIES


Motorola silicon rectifier stacks consist of one or more medium current silicon rectifiers interconnected in any of six common rectifier circuits and securely mounted in extruded-fin, aluminum coolers to provide optimum heat-sink surface contact. Configurations in both vertical-fin cooler (for free convection cooling) and horizontal-fin coolers (for forced air cooling) are available.

TYPICAL COOLER ORIENTATIONS

Horizontal Fins — Forced Air Cooling

Vertical Fins - Free Convection Cooling

MOTOROLA SILICON RECTIFIER STACK CODING SYSTEM

STACK SERIES NUMBER

3 - Series 300

COOLER ORIENTATION

V — Vertical, primarily de-signed for free convection cooling H — Horizontal, primarily designed for forced air cooling

COOLER AXIAL LENGTH

— ¾ inch — 1½ inch — 3 inches

RECTIFIER CIRCUITS

B,C,U,D,F,H,Y,W

RECTIFIER CELL PACKAGE

INDIVIDUAL RECTIFIER CELL PIV

— 50 Volts — 100 Volts — 200 Volts — 300 Volts — 400 Volts

NUMBER OF RECTIFIER CELLS IN SERIES IN EACH CIRCUIT LEG*

1 thru 8

*All series or parallel connected rectifiers are matched units.

NUMBER OF RECTIFIER CELLS IN PARALLEL IN EACH CIRCUIT LEG*

- one

B — two C — three D — four E — five

NUMBER OF COOLERS IN COMPLETE STACK

1 thru 4

B - Single Phase Bridge

DC Output Current: 12.0 to 70.0 Amps (55°C) DC Output Voltage: 31 to 434 Volts (Resistive Load)

C — Single Phase, Center Tap,

U — Single Phase, Center Tap,

DC Output Current: 12 to 70 Amps (55°C) DC Output Voltage: 15 to 382 Volts (Resistive Load)

D - Single Phase Doubler

DC Output Current: 4.5 to 26.5 Amps (55°C)
DC Output Voltage: 50 to 1200 Volts
(Capacitive Load)

F - Three Phase, Full Wave Bridge

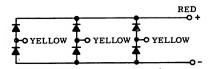
DC Output Current: 18 to 88.5 Amps (55°C) DC Output Voltage: 46 to 377 Volts (Resistive Load)

- Single Phase Half-Wave

DC Output Current: 6.0 to 35.0 Amps (55°C) DC Output Voltage: 16 to 635 Volts (Resistive Load)

Y — Three Phase Half-Wave, common cathode

W — Three Phase Half-Wave, common anode


DC Output Current: 18 to 105.0 Amps (55°C) DC Output Voltage: 23 to 330 Volts (Resistive Load)

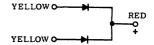
YELLOW O RED +

B — SINGLE PHASE FULL WAVE BRIDGE

	. DC	VERTICAL – free-convection cooling						Max. RMS
	Current +55°C 1 +100°C		12. 0A 5. 0A	16. 0A 7. 0A	22. 0A 10. 0A	32. 0A 14. 0A	48. 0A 19. 0A	Input Volt- age
Res. Load	Cap. Load		1					Cap. Line to Line
31 62 124 185 250 333 434	50 100 200 300 400 525 700	3V1B1A1A2 3V1B1B1A2 3V1B1C1A2 3V1B1D1A2 3V1B1E1A2 3V1B1D2A4 3V1B1E2A4		3V2B1A1A2 3V2B1B1A2 3V2B1C1A2 3V2B1D1A2 3V2B1E1A2 3V2B1D2A4 3V2B1E2A4	3V3B1A1A2 3V3B1B1A2 3V3B1C1A2 3B3B1D1A2 3V3B1E1A2 3V3B1D2A4 3V3B1E2A4	3V2B1A1A4 3V2B1B1A4 3V2B1C1A4 3V2B1D1A4 3V2B1E1A4	3V3B1A1A4 3V3B1B1A4 3V3B1C1A4 3V3B1D1A4 3V3B1E1A4	35 70 140 212 282 370 494
				HORIZON	ITAL – forced ai	r cooling (1000 I	LFM)	
	Current +55°C 37. 0A +100°C 15. 0A			44. 0A 19. 0A	59. OA 26. OA	68. 0A 34. 0A	70. 0A 39. 0A	Cap. Line to Line
31 62 125 185 250 333 434	50 100 200 300 400 525 700	31 31 31	11B1A1A2 11B1B1A2 11B1C1A2 11B1D1A2 11B1E1A2	3H2B1A1A2 3H2B1B1A2 3H2B1C1A2 3H2B1D1A2 3H2B1E1A2 3H2B1D2A4 3H2B1E2A4	3H3B1A1A2 3H3B1B1A2 3H3B1C1A2 3H3B1D1A2 3H3B1E1A2 3H3B1D2A4 3H3B1E2A4	3H2B1A1A4 3H2B1B1A4 3H2B1C1A4 3H2B1D1A4 3H2B1E1A4	3H3B1A1A4 3H3B1B1A4 3H3B1C1A4 3H3B1D1A4 3H3B1E1A4	35 70 140 212 282 370 494

F — THREE PHASE FULL WAVE BRIDGE

	. DC put			 Max. RMS				
	Current +55°C +100°C 7.5A			24. 0A 10. 5A	33. 0A 15. 0A		Input Volt- age Cap.	
Res.	Cap.						Line to Line Delta Sec.	
46 93 188 283 377		37 37 37	/1F1A1A3 /1F1B1A3 /1F1C1A3 /1F1D1A3 /1F1E1A3	3V2F1A1A3 3V2F1B1A3 3V2F1C1A3 3V2F1D1A3 3V2F1E1A3	3V3F1A1A3 3V3F1B1A3 3V3F1C1A3 3V3F1D1A3 3V3F1E1A3		35 70 140 210 280	


THREE PHASE, FULL WAVE BRIDGE (continued)

	HORIZONTAL - forced air cooling (1000 LFM)							
	Current +55°C +100°C Voltage			66, 0A 28. 5A	88. 5A 39. 0A			Cap. Line to Line Delta Sec.
46 93 188 283 377		3H 3H 3H	11F1A1A3 11F1B1A3 11F1C1A3 11F1D1A3 11F1E1A3	3H2F1A1A3 3H2F1B1A3 3H2F1C1A3 3H2F1D1A3 3H2F1E1A3	3H3F1A1A3 3H3F1B1A3 3H3F1C1A3 3H3F1D1A3 3H3F1E1A3			35 70 140 210 280

SINGLE PHASE, CENTER TAP RECTIFIER

C — SINGLE PHASE CENTER TAP, COMMON CATHODE

U – SINGLE PHASE CENTER TAP, COMMON ANODE

	. DC tput	VERTICAL - free convection cooling						Max. RMS
	Current +55 +100 Voltage		12. 0A 5. 0A	16. 0A 7. 0A	22. 0A 10. 0A	32. 0A 14. 0A	48, 0A 19, 0A	Input Volt- age Cap. or Res.
Res. Load	Cap. Load							Line to Center Tap
15 30 62 92 125 167 222 286 382	25 50 100 150 200 262 350 450 600	3 V 3 V 3 V 3 V 3 V 3 V 3 V	71C1A1A1 71C1B1A1 71C1C1A1 71C1C1A1 71C1D1A1 71C1E1A1 71C1D2A2 71C1E2A2 71C1E4A4	3V2C1A1A1 3V2C1B1A1 3V2C1C1A1 3V2C1D1A1 3V2C1E1A1 3V2C1D2A2 3V2C1E2A2 3V2C1D4A4 3V2C1E4A4	3V3C1A1A1 3V2C1B1A1 3V3C1C1A1 3V3C1D1A1 3B3C1E1A1 3V3C1D2A2 3V3C1E2A2 3V3C1D4A4 3V3C1E4A4	3V2C1A1A2 3V2C1B1A2 3V2C1C1A2 3V2C1D1A2 3V2C1E1A2 3V2C1D2A4 3V2C1D2A4	3V3C1A1A2 3V3C1B1A2 3V3C1C1A2 3V3C1D1A2 3V3C1E1A2 3V3C1D2A4 3V3C1E2A4	17. 5 35 70 105 140 183 245 315 420
				HORIZON	ITAL – forced ai	r cooling (1000)	LFM)	
	Current +55°C +100°C 37.0A Voltage			44, 0A 19, 0A	59. 0A 26. 0A	68. 0A 34. 0A	70. 0A 39. 0A	Cap. or Res. Line to Center Tap
15 30 62 92 125 167 222 286 382	25 20 100 150 200 262 350 450 600	3H 3H 3H 3H 3H	IIC1A1A1 IIC1B1A1 IIC1C1A1 IIC1D1A1 IIC1E1A1 IIC1D2A2 IIC1E2A2	3H2C1A1A1 3H2C1B1A1 3H2C1C1A1 3H2C1D1A1 3H2C1E1A1 3H2C1D2A2 3H2C1E2A2 3H2C1D4A4 3H2C1E4A4	3H3C1A1A1 3H3C1B1A1 3H3C1C1A1 3H3C1D1A1 3H3C1E1A1 3H3C1D2A2 3H3C1D2A2 3H3C1D4A4 3H3C1E4A4	3H2C1A1A2 3H2C1B1A2 3H2C1C1A2 3H2C1D1A2 3H2C1E1A2 3H2C1D2A4 3H2C1E2A4	3H3C1A1A2 3H3C1B1A2 3H3C1C1A2 3H3C1D1A2 3H3C1E1A2 3H3C1D2A4 3H3C1E2A4	17.5 35 70 105 140 183 245 315 420

----- Silicon Rectifiers and Assemblies ----

SILICON RECTIFIER STACKS (continued)

D-SINGLE PHASE DOUBLER

Max. Out				VER	TICAL – free co	nvection cooling		Max. RMS Input
Cu	rrent +5	°c	4. 5A	6. 0A	8. 0A	12. 0A	18. 0A	Volt-
	+100		1. 8A	2. 6A	3.7A	5. 0A	7. 0A	age
Vol	tage						l	
								Cap. Line to Line
	50		1D1A1A1	3V2D1A1A1	3V3D1A1A1	3V2D1A1A2	3V3D1A1A2	17.5
1 1	100		1D1B1A1	3V2D1B1A1	3V3D1B1A1	3V2D1B1A2	3V3D1B1A2	35
1 1	200		1D1C1A1	3V2D1C1A1	3V3D1C1A1	3V2D1C1A2	3V3D1C1A2	70
	300		1D1D1A1	3V2D1D1A1	3V3D1D1A1	3V2D1D1A2	3V3D1D1A2	105
1 1	400		1D1E1A1	3V2D1E1A1	3V3D1E1A1	3V2D1E1A2	3V3D1E1A2	140
1	500		1D1D2A2	3V2D1D2A2	3V3D1D2A2	3V2D1D2A4	3V3D1D2A4	175
	700		1D1E2A2	3V2D1E2A2	3V3D1E2A2	3V2D1E2A4	3V3D1E2A4	250
	900		1D1D4A4	3V2D1D4A4	3V3D1D4A4			310
	1200	3 V	1D1E4A4	3V2D1E4A4	3V3D1E4A4			420
				HORIZON	TAL – forced ai	r cooling (1000 I	JFM)	
Cu	rrent .s	5°C	13. 8A	16. 5A	22. 0A	25. 5A	26. 5A	
· \	× +10		5. 5A	7. 0A	9, 5A	12. 5A	14. 5A	Cap.
	_	ا ۲	0. 011					Line
Vol	tage							to Line
	50	3H	1D1A1A1	3H2D1A1A1	3H3D1A1A1	3H2D1A1A2	3H3D1A1A2	17.5
1	100	3 H	11D1B1A1	3H2D1B1A1	3H3D1B1A1	3H2D1B1A2	3H3D1B1A2	35
i	200	3H	IDICIAI	3H2D1C1A1	3H3D1C1A1	3H2D1C1A2	3H3D1C1A2	70
1	300	3H1D1D1A1		3H2D1D1A1	3H3D1D1A1	3H2D1D1A2	3H3D1D1A2	105
1	400	3H1D1E1A1		3H2D1E1A1	3H3D1E1A1	3H2D1E1A2	3H3D1E1A2	140
	500	3H1D1D2A2		3H2D1D2A2	3H3D1D2A2	3H2D1D2A4	3H3D1D2A4	175
	700	3H	IID1E2A2	3H2D1E2A2	3H3D1E2A2	3H2D1E2A4	3H3D1E2A4	250
	900			3H2D1D4A4	3H3D1D4A4			310
	1200			3H2D1E4A4	3H3D1E4A4	l		420

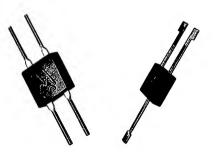
H - SINGLE PHASE HALF-WAVE RECTIFIER

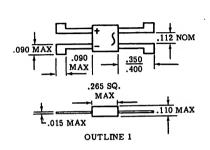
Max. DC Output VERTICAL - free convection cooling									Max. RMS Input Voltage	
Cı	urrent	+55°C		8. 0A	11. 0A	16. 0A 7. 0A			Voltage	
Voltage		100°C	2. 5A	3. 5A	5. 0 <u>Ą</u>	7. VA	9. 5A			
Res. Load	Cap. Load							Cap.	Res.	
16	25				3V1H1A1A1	3V2H1A1A1	3V3H1A1A1	17. 5	35	
31	50				3V1H1B1A1	3V2H1B1A1	3V3H1B1A1	35	70.	
63	100				3V1H1C1A1	3V2H1C1A1	3V3H1C1A1	70	140	
93	150	l			3V1H1D1A1	3V2H1D1A1	3V3H1D1A1	105	210	
125	200				3V1H1E1A1	3V2H1E1A1	3V3H1E1A1	140	280	
167	262		IID2A1	3V2H1D2A1	3V3H1D2A1			183	366	
222	350		I1E2A1	3V2H1E2A1	3V3H1E2A1	3V2H1D3A3	3V3H1D3A3	245	490	
286	450	3V1H	[1D4A2	3V2H1D4A2	3V3H1D4A2			315	630	
318	500	1				3V2H1E3A3	3V3H1E3A3	350	700	
382	600		[1E4A2	3V2H1E4A2	3V3H1E4A2	3V2H1E4A4	3V3H1E4A4	420	840	
475	750		I1E6A3	3V2H1E6A3	3V3H1E6A3			525	1050	
635	1000	3V1H	11E8A4	3V2H1E8A4	3V3H1E8A4			700	1400	

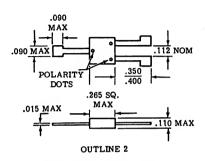
SINGLE PHASE, HALF-WAVE RECTIFIER (continued)

		HORIZONTAL - forced air cooling (1000 LFM							
Curren Voltage	t +55°C +100°C		22. 0A 9. 5A	29. 5A 13. 0A	34. 0A 17. 0A	35, 0A 19, 5A	Cap.	Res.	
16 29 31 55 63 100 93 155 125 200 167 266 222 356 286 45 318 500 382 600 475 750	3H1H 3H1H 3H1H 3H1H	11D2A1 11E2A1 11D4A2 11E4A2 11E6A3	3H2H1D2A1 3H2H1E2A1 3H2H1D4A2 3H2H1E4A2 3H2H1E6A3	3H1H1A1A1 3H1H1B1A1 3H1H1C1A1 3H1H1D1A1 3H1H1B1A1 3H3H1D2A1 3H3H1E2A1 3H3H1E2A1 3H3H1E4A2 3H3H1E4A2	3H2H1A1A1 3H2H1B1A1 3H2H1C1A1 3H2H1D1A1 3H2H1D1A1 3H2H1D3A3 3H2H1E3A3 3H2H1E4A4	3H3H1A1A1 3H3H1B1A1 3H3H1C1A1 3H3H1D1A1 3H3H1E1A1 3H3H1D3A3 3H3H1E3A3 3H3H1E4A4	17. 5 35 70 105 140 183 245 315 350 420 525	35 70 140 210 280 366 490 630 700 840 1050	

THREE PHASE HALF-WAVE RECTIFIER


Y — THREE PHASE HALF-WAVE, COMMON CATHODE W — THREE PHASE HALF-WAVE, COMMON ANODE


	k. DC			<u> </u>	VEDTICAL	free convection		
	urrent	+55°C +100°C		24. 0A 10. 5A	33. 0A 15. 0A	48. 0A 21. 0A	72. 0A 28. 5A	Max. RMS Input Voltage Cap.
Res. Load	Cap. Load							Line to Neutral
23 46 94 142 188 248 330			1D2A3 1E2A3	3V2Y1D2A3 3V2Y1E2A3	3V1Y1A1A3 3V1Y1B1A3 3V1Y1C1A3 3V1Y1D1A3 3V1Y1E1A3 3V3Y1D2A3 3V3Y1E2A3	3V2Y1A1A3 3V2Y1B1A3 3V2Y1C1A3 3V2Y1D1A3 3V2Y1E1A3	3V3Y1A1A3 3V3Y1B1A3 3V3Y1C1A3 3V3Y1D1A3 3V3Y1E1A3	20 40 80 120 160 210 280
				HOR	IZONTAL – for	rced air cooling	g (1000 LEM)	
Voltage	Current +55°C 55. 5A Voltage +100°C 22. 5A			66. 0A 28. 5A	88. 5A 39. 0A	102. 0A 51. 0A	105. 0A 58. 5A	Cap. Line to Neutral
23 46 94 142 188 248 330			1D2A3 1E2A3	3H2Y1D2A3 3H2Y1E2A3	3H1Y1A1A3 3H1Y1B1A3 3H1Y1C1A3 3H1Y1D1A3 3H1Y1E1A3 3H3Y1D2A3 3H3Y1E2A3	3H2Y1A1A3 3H2Y1B1A3 3H2Y1C1A3 3H2Y1D1A3 3H2Y1E1A3	3H3Y1A1A3 3H3Y1B1A3 3H3Y1C1A3 3H3Y1D1A3 3H3Y1E1A3	20 40 80 120 160 210 280


MINIATURE DIODE ASSEMBLIES

MDA 920 SERIES MDA 930 SERIES MDA940 SERIES MDA950 SERIES

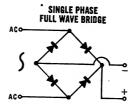
Miniature Integral Diodes Assemblies (MIDA) are low-current rectifier circuit configurations designed with a high output-current/size ratio for applications where space is at a premium.

POLARITY DOTS:

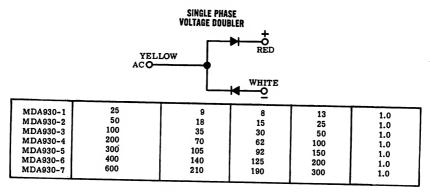
R: RED-POS. OUT W: WHITE-NEG. OUT Y: YELLOW-AC IN

ELECTRICAL CHARACTERISTICS (All Types) (At 25°C ambient temperature unless otherwise indicated)

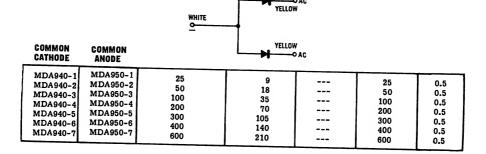
Unit Ratina Symbol Characteristics

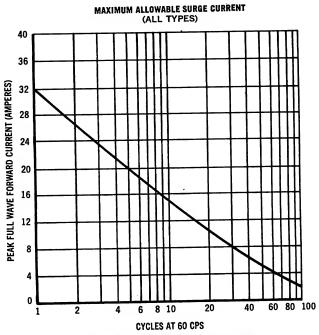

Maximum Forward Voltage Drop (Per Cell.) (500 mAdc)	v _F	1.2	Volts
Peak Recurrent Forward Current (Full Wave, 60 cps)	IF	5.0	Amps
Peak One Cycle Surge Current (Full Wave, 60 cps)	I _{Surge}	32	Amps
Maximum Reverse Current @ Rated DC Voltage * 25°C 100°C	I _R *	60 600	μА
Operating and Storage Temperature Range	T _A and T _{stg}	-50 to +175	°c
Typical Thermal Resistance	θ _{JA}	60	°C W

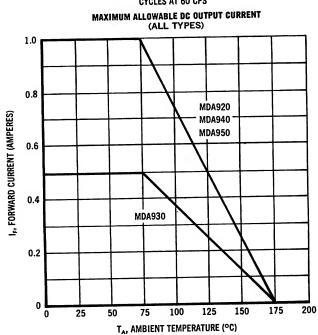
^{*2} cells in parallel - MDA920 series


¹ cell - MDA930, MDA940, and MDA950 series

MINIATURE DIODE ASSEMBLIES (continued)


Circuit Diagram and Terminal Identification


Type No. Voltage	Peak Reverse	Max. RMS	Max. DC Ou	Max. DC	
	Voitage per Cell Voits	imput Voltage Cap. Load Volts	Res. Load Volts	Cap. Load Volts	Output Current At 75°C Amps
MDA920-1 MDA920-2 MDA920-3 MDA920-4 MDA920-5 MDA920-6 MDA920-7	25 50 100 200 300 400 600	18 35 70 140 210 280 420	15 30 62 124 185 250 380	25 50 100 200 300 400 600	1.0 1.0 1.0 1.0 1.0



SINGLE PHASE CENTER TAP

MINIATURE DIODE ASSEMBLIES (continued)

——— Silicon Rectifiers and Assemblies ———

RECTIFIER BRIDGES IN MOLDED ASSEMBLIES

Single Phase Full Wave Bridge

MDA942 SERIES (1.5 AMPS DC)

MDA 952 SERIES (6 AMPS DC)

MDA962 SERIES (10 AMPS DC)

MDA 1491 SERIES (1.5 AMPS DC)

MDA 1591 SERIES (4 AMPS DC)

Three Phase Full Wave Bridge MDA 1505 SERIES (8 AMPS DC)

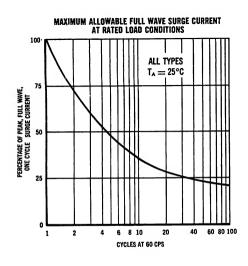
MDA962

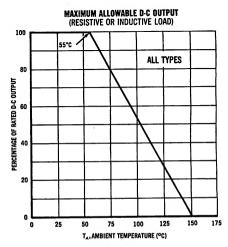
MDA1505

Hermetically sealed individual rectifier cells interconnected as single-phase and three-phase bridge rectifiers and encapsulated in molded plastic cases.

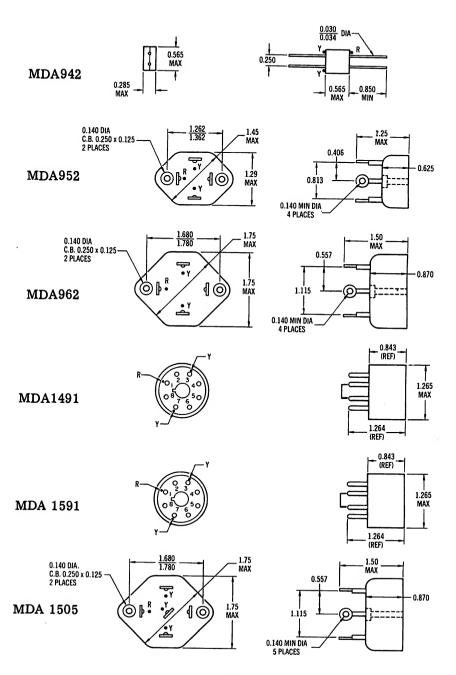
ABSOLUTE MAXIMUM RATINGS (at 25°C ambient unless otherwise noted)

	DEAK DEVENS	anın		UTPUT TAGE	DC OUTPUT	PEAK FULL WAVE	
	PEAK REVERSE VOLTAGE PER CELL	SINE WAVE	Res.	-	CURRENT @55°C	ONE CYCLE	CURRENT FOR-
	(DC or RECURRENT)	VOLTAGE	Load	Cap. Load	AMBIENT	SURGE CURRENT	WARD CURREN
TYPE NO.	VOLTS	VOLTS	Volts	Volts	AMPS	(60 cps) AMPS	(60 cps) AMPS
1477 1 010 1							
MDA 942-1	50 100	35	30	50	1.50	25	6, 0
-3	200	70 140	62	100	1. 50	25	6. 0
-4	300	210	124 185	200 300	1. 50 1. 50	25	6. 0
-5	400	280	250	400	1.50	25 25	6. 0
-6	600	420	380	600	1. 50	25 25	6. 0 6. 0
MDA 952-1							
MDA 952-1	50 100	35	30	50	6. 00	150	35
-3	200	70 140	62	100	6. 00	150	35
-4	300	210	124 185	200 300	6. 00 6. 00	150	35
-5	400	280	250	400	6.00	150 150	35
-6	600	420	380	600	6.00	150	35 35
				- 000	0.00	200	30
MDA 962-1	50	35	30	50	10.0	250	60
-2 -3	100	70	62	100	10.0	250	60
-4	200 300	140	124	200	10.0	250	60
-5	400	210 280	185 250	300 400	10. 0 10. 0	250	60
			200	400	10.0	250	60
MDA1491-1	50	35	30	50	1.50	25	6. 0
-2	100	70	62	100	1.50	25	6. 0
-3	200	140	124	200	1, 50	25	6. 0
-4 -5	300 400	210 280	185	300	1.50	25	6. 0
-6	600	420	250 380	400 600	1.50 1.50	25 25	6.0
							6. 0
MDA1591-1	50	35	30	50	4.0	100	25
-2 -3	100 200	70 140	62 124	100 200	4. 0 4. 0	100 100	25
-4	300	210	185	300	4.0	100	25 25
-5	400	280	250	400	4.0	100	25 25
-6	600	420	300	600	4.0	100	25 25
MDAI505-1	50	35	30				
-2	100	35 70	62	50 100	8. 00 8. 00	200 200	45
-3	200	140	124	200	8.00	200	45 45
-4	300	210	185	300	8.00	200	45 45
-5	400	280	250	400	8.00	200	45 45
-6	600	420	300	600	8. 00	200	45


Maximum Operating and Storage Temperature: -65°C to + 150°C (All Types)


----- Silicon Rectifiers and Assemblies ---

RECTIFIER BRIDGES (continued)


ELECTRICAL CHARACTERISTICS (at 25° ambient)

Туре	Characteristic	Symbol	Rating	Unit
MDA 942	Max. Fwd. Voltage Drop Per Cell (I _F = 0. 75 Adc)	v _F	1. 1	Vdc
1. 5 Amp Series	Max, Reverse Current Per Cell(V _R = Rated PRV)	IR	. 01	mAdc
MDA 952 6. 0 Amp Series	Max, Fwd. Voltage Drop Per Cell (I _F = 3.0 Adc)	v _F	1.0	Vdc
	Max, Reverse Current Per Cell (V _R = Rated PRV)	IR	1. 0	mAdc
MDA 962 10, 0 Amp Series	Max. Fwd. Voltage Drop Per Cell (I _F = 5. 0 Adc)	v _F	1.0	Vdc
	Max. Reverse Current Per Cell (V _R = Rated PRV)	I _R	1. 0	mAdc
	Max. Fwd. Voltage Drop Per Cell (I _F = 0.75 Adc)	v _F	1.1	Vdc
MDA 1491 1. 5 Amp Series	Max. Reverse Current Per Cell (V _R = Rated PRV)	IR	. 01	mAdc
MDA 1505	Max. Fwd. Voltage Drop Per Cell (I _F = 4. 0 Adc)	$v_{\mathbf{F}}$	1. 0	Vdc
MDA 1505 4. 0 Amp Series	Max. Reverse Current Per Cell (V _R = Rated PRV)	I _R	1.0	mAdc
MDA 1591	Max. Fwd. Voltage Drop Per Cell (I _F = 2.0 Adc)	v _F	1.0	Vdc
8. 0 Amp Series	Max, Reverse Current Per Cell (V _R = Rated PRV)	I _R	1.0	mAdc

RECTIFIER BRIDGES (continued)

HIGH VOLTAGE SILICON RECTIFIERS MOLDED ASSEMBLIES

MDA 1330H MDA 1331H MDA 1332H MDA 1333H

 I_0 — to 2.5 AMPS $V_{RM(rep)} = 5000$ and 10,000 VOLTS

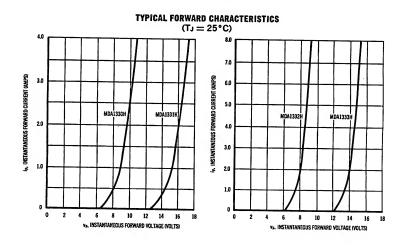
Compensated series-connected rectifier cells for high-voltage single-phase, half-wave circuit applications. Each cell in the series string is shunted by a high-voltage capacitor and resistor for equal voltage distribution.

MAXIMUM RATINGS

Rating		Symbol	MDA1330H	MDA1331H	MDA1332H	MDA1333H	Units
Peak Repetitive Reverse Voltage (Rated Current, Over Operating Temp	① perature Range)	V _{RM(rep)}	5, 000	10,000	5, 000	10,000	Volts
RMS Reverse Voltage (Rated Current Over the Complete Op Temperature Range)	2 erating	v _r	3, 500	7, 000	3, 500	7, 000	Volts
DC Blocking Voltage (Over Operating Temperature Range)	v_R	3, 000	6, 000	3, 000	6, 000	Volts	
Average Half Wave Rectified Forward (Resistive Load, 180° Conduction Ang 60cps, Free Convection Cooling)		I _O	1.0	1.0 0.3	2, 5 0, 5	2.5 0.5	Amps
Peak 1 Cycle Surge Current (T _A = 40°C, Superimposed on Rated Current at Rated Voltage)		I _{FM(surge)}	25	25	250	250	Amps
Operating Frequency Range		DC to 400					
Operating and Storage Temperature Ra	Operating and Storage Temperature Range -55 to +110						°C

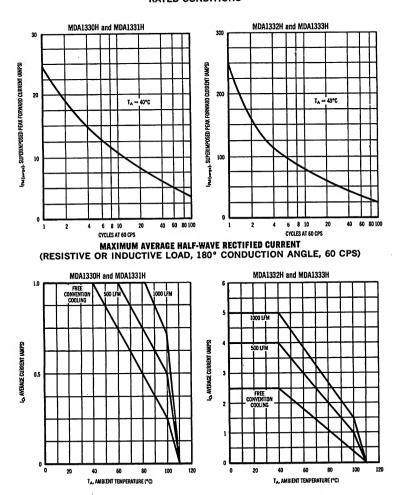
- ① VRM(rep) ratings of 5,000 or 10,000 volts peakare both the maximum repetitive and non-repetitive ratings. Where voltage transient suppression is employed, these assemblies can be reliably operated at the maximum ratings.
- 2 The DC Blocking Voltage rating (V_R), is established by the continuous power dissipation ratings of the shunting resistors and is not a function of the series rectifiers.

ELECTRICAL CHARACTERISTICS

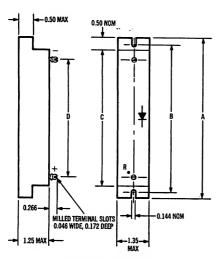

Rating	Symbol	MDA1330H	MDA1331H	MDA1332H	MDA1333H	Units
Maximum Full-Cycle Average Forward Voltage Drop (Half-Wave, Resistive Load, Rated Current and Voltage, T _A =40°C)	v _{F(AV)}	5. 0	10.0	5.0	10.0	Volts
Maximum Full-Cycle Average Reverse Current (Half-Wave, Resistive Load, Rated Current and Voltage, T _A =40°C)	^I R(AV)	0.2	0,2	3.0	3. 0	mA

Note: Ambient temperatures are measured at the cold air source point i.e. immediately below the rectifier legs under convection cooling and on the cool air side with forced air cooling.

HIGH VOLTAGE SILICON RECTIFIERS (continued)


ELECTRICAL DESIGN NOTES

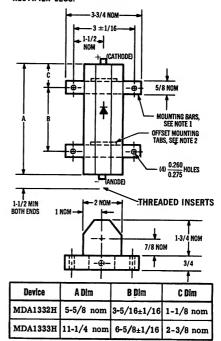
- 1. For single-phase full-wave circuits using "Series 1300" stacks, multiply the current ratings given for the half-wave by two.
- 2. For three-phase full-wave and half-wave circuits, multiply given current ratings for single-phase half-wave by two and one half.
- 3. For capacitive loads, sufficient surge and capacitor inrush current protection must be employed. Recurrent peak currents up to six times the single-phase average output current ratings can be safely sustained when the average value of these peaks are held at or below the rated average output. Non-repetitive peak currents must be held to the maximum surge ratings.



HIGH VOLTAGE SILICON RECTIFIERS (continued)

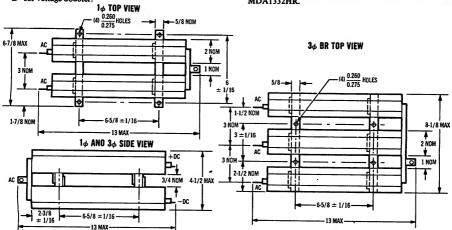
MAXIMUM SURGE CURRENT RATED CONDITIONS

MECHANICAL DESIGN INFORMATION AND OUTLINE DI-MENSIONS FOR THE BASIC MDA1330H AND MDA1331H RECTIFIER LEGS.



POLARITY DOTS: RED = + DC OUTPUT

	Device	A Dim	B Dim	C Dim	D Dim
MD	A1330H	4. 25 max	3.70±0.05	3. 25 max	3.00nom
MD	A1331H	7. 00 max	6. 39±0. 05	6.00max	5. 25nom


NOTES: These basic rectifier legs are suitable for chassis mounting and connection into multiple leg circuits. Center tapped versions of the MDA1330H and MDA1331H are also available for use in lower voltage, Center tapped and Voltage Doubler applications. The center tapped versions of the MDA1330H and MDA1331H are designated by a different suffix letter as follows: instead of "H" specify "C" for common cathode, center tap

MECHANICAL DESIGN INFORMATION AND OUTLINE DI MENSIONS FOR THE BASIC MDA1332H AND MDA1333H RECTIFIER LEGS.

NOTE 1. Insulated mounting bars are supplied with all Motorola Series 1300 stacks and the single unit bar is shown above. For multiple leg circuits, mounting bars are available in lengths suitable for 2 or 3 legs mounted side by side. In addition, the mounting arrangement used is also suitable for mounting legs top and bottom on the same bar with stand-offs employed for support of the assembly.

NOTE 2. Offset mounting taps are used to provide more compact multiple leg assemblies. When top & bottom or side by side mounting is employed, reverse polarity legs are often required in some circuits. Legs of reverse polarity to that shown above are designated by an "R" suffix, i.e. MDA1332HR.

[&]quot;U" for common anode, center tap

[&]quot;D" for voltage doubler.

----- Silicon Rectifiers and Assemblies -----

HIGH VOLTAGE SILICON RECTIFIERS MOLDED ASSEMBLIES

1N1730 thru 1N1734
1N2382 thru 1N2385

 $I_{\rm O}$ — to 0.2 AMPS $V_{\rm P}$ — to 10,000 VOLTS

Standard single - phase, half-wave, high - voltage silicon rectifier assemblies

ELECTRICAL SPECIFICATIONS (covering all devices in the table below)

Max. DC Reverse Current @ Late Peak Reverse Voltage							25°C 100°C 1	10 μ Α 00 μ Α	
Max. Surge Current (8 nsec)							2. 5A		_
(Operating Temperature				-55°C to +150°C				
		F		Max. RMS		Case Dimensions		Lead Dimensions	
Rectifier Types	(rep)	@25°C	@100°C	Voltage	dc @ 25°C	L	Dia.	L	Dia.
1N1730 1N1731 1N1732 1N1733 1N1734 1N2382 1N2383 1N2384 1N2385	1000 1500 2000 3000 5000 4000 6000 8000	200 200 200 150 100 150 100 70	100 100 100 75 50 75 50 35	700 1050 1400 2100 3500 2800 4200 5600 7000	5 5 9 12 18 18 27 27 39	.5 .5 1.0 1.0 1.5 1.5 1.5	.375 .375 .375 .375 .5 .5 .5	1. 250 1. 250 1. 250 1. 250 1. 250 1. 250 1. 250 1. 250 1. 250	.030 .030 .030 .030 .030 .030 .030 .030

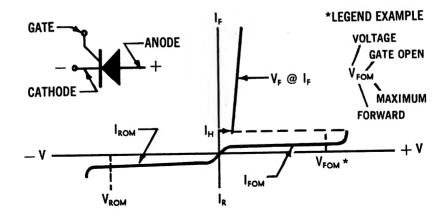
In addition to these standard assemblies, a wide variety of custom assemblies is available. For more information, request the brochure "Motorola Molded Diode Assemblies."

MOTOROLA SILICON CONTROLLED RECTIFIERS AND GATE CONTROLLED SWITCHES

• For case outline dimensions, see page 1-26.

SILICON CONTROLLED RECTIFIERS & GATE CONTROLLED SWITCHES

The Motorola line of silicon controlled rectifiers is available with current ratings from 1.6 to 25 amps RMS and 1000 amps pulse. The gate controlled switch line is rated at 5 amps.


DEVICES IN THIS SECTION

	Motorola	Silicon Controlled Rectifie	rs	Motorola Gate Controlled Switches
2N681 2N682 2N683 2N684 2N685 2N686 2N687 2N688 2N1595 2N1596 2N1597 2N1598 2N1599 2N1599	2N 1843 2N 1843A 2N 1844 2N 1844 2N 1845 2N 1846 2N 1846 2N 1846 2N 1847 2N 1847A 2N 1848 2N 1848 2N 1849 2N 1849 2N 1849 2N 1850	2N2573 2N2574 2N2575 2N2576 2N2576 2N2577 2N2578 2N2579 MCR649 Series MCR729 Series MCR729 Series MCR808 Series MCR808 Series MCR8046 Series MCR914 Series MCR1304R Series MCR1304R Series	MCR1305R Series MCR1308 Series MCR1308R Series MCR1604 Series MCR1604R Series MCR1605R Series MCR1605R Series MCR1718 Series MCR1907 Series MCR2304 Series MCR2304Series MCR2305R Series MCR2305R Series MCR2305R Series MCR2305R Series MCR2605 Series MCR2605 Series	MGS821 Series MGS924 Series MGS925 Series

SILICON GATE CONTROLLED SWITCHES

The gate controlled switch is a PNPN semiconductor device that can be used as a bistable latching switch under complete control of the gate signal. The gate controlled switch is turned on by a positive gate signal and turned off with a negative gate signal.

SCR SYMBOLS AND DEFINITIONS

dv/dt FORWARD VOLTAGE APPLICATION RATE (V/μsec) - A rate of applied voltage in excess of this value may cause premature, nondestructive breakover.

I FORWARD CURRENT - The RMS value of forward current during the "on" state. RMS value is the same for all conduction angles.

IF(av) AVERAGE FORWARD CURRENT - The full cycle average forward current for specified conditions of case temperature and conduction angle.

IFM PEAK FORWARD CURRENT, "ON" STATE - The peak current through the collector junction for a positive anode-to-cathode voltage.

I_FM(surge)

PEAK ONE-CYCLE SURGE FORWARD CURRENT - The maximum forward current having a single forward cycle (8.3 milliseconds duration) in a 60 cps single-phase resistive load system. The surge may be preceded and followed by maximum rated voltage, current, and junction temperature conditions, and maximum allowable gate power may be concurrently dissipated. However, limitations on anode current during turn-on should not be exceeded.

I_{FOM}

PEAK FORWARD BLOCKING CURRENT, GATE OPEN - The peak current through the collector junction when the SCR is in the "off" state for a stated anode-to-cathode voltage and junction temperature.

GATE TRIGGER CURRENT, DC - The minimum DC gate current required to cause switching from the "off" state to the "on" state for a stated anode-to-cathode voltage.

HOLDING CURRENT, GATE OPEN - That value of forward anode current below which the controlled rectifier switches from the conducting state to the forward blocking condition.

HAX HOLDING CURRENT, GATE CONNECTED - That value of forward anode current below which the controlled rectifier switches from the conducting state to the forward blocking condition with the gate terminal returned to the cathode terminal thru specified impedance and/or voltage.

IROM

PEAK REVERSE BLOCKING CURRENT, GATE OPEN - The peak current through the collector junction when the SCR is in the reverse blocking state for a stated anode-to-cathode voltage and junction temperature.

I²t (FOR CIRCUIT FUSING CONSIDERATIONS) - A measure of the maximum non-recurrent RMS forward current capacity for pulse durations less than 8.3 milliseconds. I is in RMS amperes, and t is pulse duration in seconds. The same conditions as listed for I_{FM}(surge) apply.

 $_{\rm G(av)}^{\rm P}$ AVERAGE GATE POWER DISSIPATION - The value of maximum gate power dissipation averaged over a full cycle permitted between gate and cathode.

 $\mathbf{P}_{\mathbf{GM}}$ PEAK GATE POWER DISSIPATION - The maximum instantaneous value of gate power dissipation permitted between gate and cathode.

R_{I.} LOAD RESISTOR

T_C CASE TEMPERATURE

T_J JUNCTION TEMPERATURE

Tata STORAGE TEMPERATURE

SCR SYMBOLS AND DEFINITIONS (continued)

t _{on}	TURN-ON TIME - The time interval between initiation of the gate current signal and reduction of the forward voltage to 10% of the blocking value during switching to conduction under stated
	conditions.

t off TURN-OFF TIME - The time interval required for the gate to regain control of forward blocking characteristic after interruption of forward anode current.

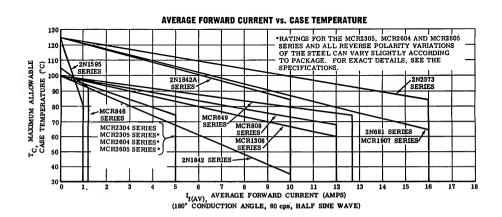
V FM PEAK "ON" VOLTAGE - The peak forward voltage for a stated peak forward current when the SCR is in the "on" state.

V FOM PEAK FORWARD BLOCKING VOLTAGE, GATE OPEN - The peak forward voltage when the SCR is in the "off" state

V_{GFM} PEAK FORWARD GATE VOLTAGE - The peak voltage between the gate terminal and the cathode terminal resulting from the flow of forward gate current.

VGRM

PEAK REVERSE GATE VOLTAGE - The peak voltage between the gate terminal and the cathode terminal when the junction between the gate region and the adjacent cathode region is reverse blased.


V_{GT} GATE TRIGGER VOLTAGE, DC - The DC voltage between the gate and the cathode required to

VROM(rep)

PEAK REVERSE VOLTAGE, GATE OPEN - The maximum allowable instantaneous value of reverse voltage (repetitive or continuous DC) which can be applied to the device with the gate open at rated temperature.

 $heta_{
m JC}$ THERMAL RESISTANCE, JUNCTION-TO-CASE - The temperature rise per unit power dissipation of a designated junction above the temperature of the case under conditions of thermal equilibrium.

SIMPLIFIED SCR QUICK SELECTION GUIDE

ECONOMY LINE SCR'S

	,						
				Maxi-	l		
	l		I _{FM} (surge)	mum	l		
1		ŀ	Peak Surge	V _{FOM}			
i	Maxi-	۱.	Current		Maxi-		
	mum	I _f	1 Cycle	and	mum	Typical	
İ	Тj	RMS	60 cps	v _{rom}	I _{GT}	l ^I HO	
Туре	oc .	A	A	v	mA	mA	Case
MCR1304, R Series	See MCR	2304. R Se	ries for Electr	cal Specific	ations		
MCR 2304-1	100	I 8	100	25	1 20	10	Single
MCR2304R-1	100	8	80	25	20		ended
MCR 2304-2	100	8	100	50	20	l 🕈 🖠	ciided
MCR 2304R-2	100	8	80	50	20		
MCR 2304-3	100	1 8	100	100	20	1	
MCR2304R-3	100	8.	80	100	20		
MCR2304-4	100	8	100	200	20	1 1 1	85
MCR2304R-4	100	8	80	200	20	1 1 1	
MCR2304-5	100	8	100	300	20		
MCR 2304R-5	100	8	80	300	´20	1 1 1	
MCR2304-6	100	8	100	400	20		
MCR2304R-6	100	8	80	400	20		
MCR1305, R Series	See MCP	 205 P.So	nios fon Floatni	anl Specific	otions		
MCR2305-1	100	2305, R Se 8	100	cai Specuic 25	ations 20		
MCR2305R-1	100	8		25 25	20		
MCR2305-2	100	8	80	25 50	20		
MCR2305R-2	100	8	100 80	50 50	. 20		
MCR 2305-3	100	8	100	100	20		
MCR2305R-3	100	8	80	100	20		
MCR2305-4	100	8	100	200	20		86
MCR2305R-4	100	8	80	200	20		
MCR 2305-5	100	8	100	300	20		
MCR2305R-5	100	8	80	300	20		
MCR 2305-6	100	8	100	400	20		
MCR2305R-6	100	8	80	400	20		
MCD1604 P Sonios	Soo MCD	2604 D Ca	mian for Thest		(1	100	
MCR1604, R Series MCR2604-1	100	2604, R Se	ries for Electri	cal Specific 25 l	ations 20	, •	
MCR 2604R-1	100	8		25 25	1		
MCR 2604-2	100	8	80 100	50 50	20		
MCR 2604R-2	100	8	80	50	20		
MCR 2604-3	100	8	100	100	20 20		
MCR 2604R-3	100	8	80	100	20		87
MCR2604-4	100	8	100	200	20		01
MCR 2604R-4	100	8	80	200	20		
MCR 2604-5	100	8	100	300	20		
MCR 2604R-5	100	8	80	300	20		
MCR 2604-6	100	8	100	400	20		
MCR 2604R-6	100	8	80	400	20	1	
MODIEGE D C	G MCDO	1005 D 2					
MCR1605, R Series MCR 2605-1	See MCR2	oub, R Se	ries for Electri	cal Specifica	ations		
MCR 2605-1 MCR 2605R-1	100 100	8	100 80	25 25	20	1 1	
MCR 2605R-1 MCR 2605-2	100	8	100	25 50	20		
MCR 2605-2 MCR 2605R-2	100	8	80	50 50	20	1 1	
MCR 2605R-2 MCR 2605-3	100	8	100	100	20 20		
MCR2605R-3	100	8	80	100	20		00
MCR 2605R-3	100	8	100	200	20	1 1	88
MCR 2605R-4	100	8	80	200	20		
MCR 2605R-4	100	8	100	300	20		
MCR.2605R-5	100	8	80	300	20		
MCR 2605-6	100	8	100	400	20	↓ 1	
MCR 2605R-6	100	8	80	400	20	10	
						•	

ECONOMY LINE SCR'S (continued)

Туре	Maxi- mum T _j oC	I _f RMS A	I FM (surge) Peak Surge Current 1 Cycle 60 cps A	Maxi- mum V FOM and V ROM V	Maxi- mum ^I GT mA	Typical ^I HO mA	Case
MCR 808-1 MCR 808-1 MCR 808-2 MCR 808-2 MCR 808-3 MCR 808-3 MCR 808-4 MCR 808R-4 MCR 808-5 MCR 808-5 MCR 808-6 MCR 808-6	100 100 100 100 100 100 100 100 100 100	18 18 18 18 18 18 18 18 18 18	225 225 225 225 225 225 225 225 225 225	25 25 50 50 100 100 200 200 300 300 400	50 50 50 50 50 50 50 50 50 50	15 15 15 15 15 15 15 15 15 15	68
MCR1308-1 MCR1308-1 MCR1308-2 MCR1308-2 MCR1308-3 MCR1308-3 MCR1308-4 MCR1308-5 MCR1308-5 MCR1308-6 MCR1308-6	100 100 100 100 100 100 100 100 100 100	18 18 18 18 18 18 18 18 18 18 18	225 225 225 225 225 225 225 225 225 225	25 25 50 50 100 100 200 200 200 300 400 400	50 50 50 50 50 50 50 50 50 50 50	15 15 15 15 15 15 15 15 15 15	Press Fit 62

SCR'S FOR PULSE MODULATOR APPLICATIONS

Туре	т _Ј °С	v _{FOM}	v _{ROM}	I _f RMS A	I _{pulse} A	Maxi- mum ^I GT ma	Typical ^I HO mA	dv/dt V/μsec	Case
MCR 729-5 MCR 729-6 MCR 729-7 MCR 729-8 MCR 729-9 MCR 729-10	105 105 105 105 105 105	300 400 500 600 700 800	50 OO 50 OO 50 OO 50 OO 50 OO	2 2 2 2	100 100 100 100 100	50 50 50 50 50 50	25 25 25 25 25 25 25	50 00 50 00 50 00 50 00 50 00	Stud-Mounted Case
MCR1718-5 MCR1718-6 MCR1718-7 MCR1718-8	125 125 125 125	300 400 500 600	300 400 500 600	25 25 25 25	1000 1000 1000 1000	50 50 50 50	15 15 15 15	100 ③ 100 ③ 100 ④ 100 ③	TO-48 TO-48

² Minimum value

³ Typical value

INDUSTRIAL SILICON CONTROLLED RECTIFIERS

						*	
Type Number	Maxi- mum T _j °C	I _f RMS A	IFM (surge) Peak Surge Current 1/2 Cycle @60 cps A	Maxi- mum V FOM and VROM V	Maxi- mum IGT mA	Typical ^I HO mA	Case
2N1595 2N1596 2N1597 2N1598 2N1599	125 125 125 125 125 125	1. 6 1. 6 1. 6 1. 6 1. 6	15 15 15 15 15	50 100 200 300 400	10 10 10 10 10	5 5 5 5 5	TO-5 TO-5 TO-5 TO-5 TO-5
MCR 914-1 MCR 914-2 MCR 914-3 MCR 914-4 MCR 914-5 MCR 914-6	-		See 2	N1595 Seri	es		
MCR 846-1 MCR 846-2 MCR 846-3 MCR 846-4	105 105 105 105	2 2 2 2	30 30 30 30	25 50 100 200	50 50 50 50	25 25 25 25 25	7/16 in Stud-Mounted Case
2N1842 2N1842A 2N1843A 2N18444 2N18444 2N1845A 2N1845A 2N1845A 2N1846A 2N1847 2N1847A 2N1847A 2N1848A 2N1848A 2N1849A 2N1849A 2N1850 2N18500 2N18500 2N18500 MCR 649-1 MCR 649-2 MCR 649-3 MCR 649-5 MCR 649-5 MCR 649-6 MCR 649-7 MCR 1907-1* MCR1907-1* MCR1907-3* MCR1907-5*	100 125 100 125 100 125 100 125 100 125 100 125 100 125 100 125 100 125 100 125 100 125 100 125 100 125 100 125 100 125 100 125 100 125 125 125 125 125 125	16 16 16 16 16 16 16 16 16 16 16 16 20 20 20 20 20 20 25 25 25	125 125 125 125 125 125 125 125 125 125	25 25 50 50 100 150 150 200 200 250 250 300 400 500 500 500 25 50 100 200 250 250 300 400 500 500 500 500 500 500 5	80 80 80 80 80 80 80 80 80 80 80 80 80 8	15 15 15 15 15 15 15 15 15 15 15 15 15 1	TO-48 TO-41
MCR1907-6* 2N 681 2N 682 2N 683 2N 684 2N 685 2N 686 2N 687 2N 688 2N 689 2N2573 2N2574 2N2576 2N2576 2N2577	125 125 125 125 125 125 125 125 125 125	25 25 25 25 25 25 25 25 25 25 25 25 25 2	150 150 150 150 150 150 150 150 150 260 260 260 260 260	25 50 100 150 200 250 300 400 500 25 50 100 200 250	30 25 25 25 25 25 25 25 25 25 25 25 40 40 40 40 40	15 15 15 15 15 15 15 15 15 15 15 15 15	TO-48 TO-41 TO-41 TO-41 TO-41 TO-41 TO-41 TO-41

^{*} Fast Turn Off at SCR

2N681 thru 2N689

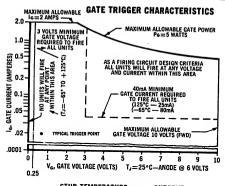
 $I_f = 25 A RMS$ $V_{ROM} = 25-500 V$

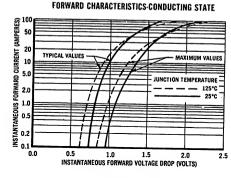
Industrial-type, silicon controlled rectifiers in a stud package with current handling capability to 25 amperes at junction temperatures up to 125°C .

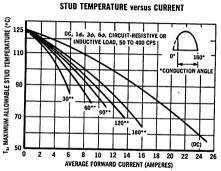
CASE 64 (TO-48)

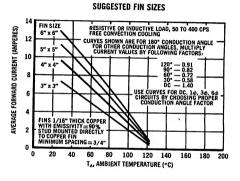
MAXIMUM RATINGS (T_J = 125°C unless otherwise noted)

Characteristic		Symbol	Rating	Unit
Peak Reverse Voltage* †		V _{ROM} (rep)		Volts
I can here be remise	2N681	ROM (Tep)	25	
	2N682		50	
	2N683		100	
	2N684		150	
	2N685		200	
	2N686		250	
	2N687		300	
	2N688		400	
	2N689		500	
Peak Reverse Voltage*		v_{ROM}		Volts
Transient	2N681	(non-rep)	3 5	
(non-recurrent	2N682		75	
5 msec max. duration)	2N683		150 225	
	2N684		300	
	2N685		350 350	
	2N686		400	
	2N687 2N688		500	
	2N689		600	
	211009		25	Amps
Forward Current RMS (All Conduction Angles)		$\mathbf{I_F}$	25	Ampo
Peak Surge Current (one ((T _{.I} = -65 to +125°C)	cycle, 60 cps)	I FM(surge)	150	Amps
Circuit Fusing Considera (T _{.T} = -65 to +125°C; ≦8	tions .3 msec)	I ² t	75	A ² sec
Peak Gate Power		РСМ	5	Watts
Average Gate Power		P _G (AV)	0, 5	Watte
Peak Gate Current		I _{GM}	2	Amps
Peak Gate Voltage		V _{GFM}		Volts
Forward		Vanis	10	
Reverse		V.GRM	5	
Operating Temperature			-65 to +125	°C
Storage Temperature		Tstg	-65 to +150	°C
Stud Torque			30	in. lb.


 $[\]dagger~v_{\rm ROM}$ for all types can be applied on a continuous DC basis without incurring damage.


 $^{^{*}}$ $V_{ROM\ (rep)}$ ratings apply for zero or negative gate voltage.


2N681 thru 2N689 (continued)


ELECTRICAL CHARACTERISTICS ($T_J = 125^{\circ}C$ unless otherwise noted)

Characteristic		Symbol	Min	Тур	Max	Unit
Forward Breakover Voltage	2N681 2N682 2N683 2N684 2N685 2N686 2N686 2N687 2N688	V _{BO}	25 50 100 150 200 250 300 400		mdX	Volts
Forward or Reverse Leakage Current	2N689 (Full Cycle Ave.) 2N681 - 2N684 2N685 2N686 2N687 2N688 2N689	i _S , i _R	500		6. 5 6. 0 5. 5 5. 0 4. 0 3. 0	mAde
Forward Voltage Drop (16 A Full Cycle Average, 180° Conduction Ar	ngle)	v _F			0.86	Volts
Gate Trigger Current (Continuous DC)		I _{GT}		10	25	mAdo
Gate Trigger Voltage (Continuous DC)		V _{GT}	0, 25		3.0	Vdc
Holding Current		I _H O		20		mA
Switching Time (depends on circuit - consult manufacturer for further information)		t _{on} (t _d + t _r) t _{off}		1.0 - 4.0 10 - 20		µвес µвес
Forward Voltage Application Rate		dv/dt		30		V/µве
Thermal Resistance (Junction to Stud)		θ _{JS}		1.0	2.0	°C/W

2N1595 thru 2N1599

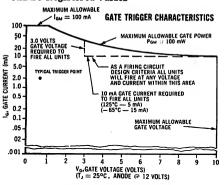
 $I_f = 1.6 A RMS$ $V_{ROM} = 50-400 V$

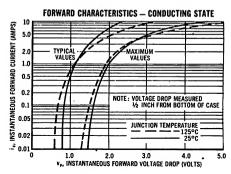
Industrial-type, low-current silicon controlled rectifiers in a three-lead package ideal for printed-circuit applications. Current handling capability of 1.6 amperes at junction temperatures up to 125°C.

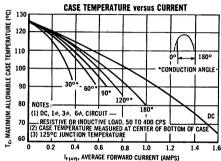
MAXIMUM RATINGS (T_J = 125°C unless otherwise noted)

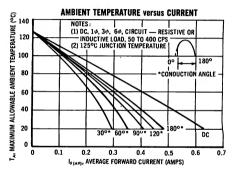
Characteristic	Symbol	Rating	Unit
Peak Reverse Blocking Voltage*	V _{ROM(rep)} *		Volts
2N1595	110.11(1.0p)	50	
2N1596	j	100	
2N1597		200 .	
2N1598		300	
2N1599		400	
Peak Forward Blocking Voltage *	V _{FOM}		Volts
$(R_{GC} = 1000 \text{ ohms}) 2N1595$	FOM	50	
2N1596		100	
2N1597	·	200	
2N1598		300	
2N1599		400	
Forward Current RMS (All Conduction Angles)	I _f	1.6	Amps
Peak Surge Current	IFM(surge)		Amps
(One Cycle, 60 cps,		15	
T _J = -65 to +125°C)			
Peak Gate Power	P _{GM}	0.1	Watt
Average Gate Power	P _{G(AV)}	0.01	Watt
Peak Gate Current	I _{GM}	0.1	Amp
Peak Gate Voltage - Forward	V _{GFM}	10	Volts
Reverse	VGRM	10	
Operating Temperature Range	T _J	-65 to +125	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C

^{*}JEDEC Registered Values


^{**} V_{ROM} & V_{FOM} for all types can be applied on a continuous DC basis without incurring damage.


2N1595 thru 2N1599 (continued)


ELECTRICAL CHARACTERISTICS (T₂ = 25°C unless otherwise noted, R_{GC} = 1000 ohms)


Characteristics	Symbol	Min	Тур	Max	Unit
Peak Reverse Blocking Current (@ rated V _{ROM} , T _J = 125°C)	IROM	_	_	1000	μА
Peak Forward Blocking Current (@ rated V _{FOM} , T _J = 125 ^o C)	I _{FOM}		_	1000	μА
Forward On Voltage (I _F = 1 Adc)	v _F	_	1.1	2.0*	Volts
Gate Trigger Current (Anode Voltage = 7 V, R_L = 12 Ω)	IGT	_	5.0	10.0*	mA
Gate Trigger Voltage (Anode Voltage = 7 V, R_L = 12 Ω) (Anode Voltage = 7 V, R_L = 12 Ω , T_J = 125°C)	V _{GT} V _{GNT}	0.2	0.7	3.0*	Volts
Holding Current (Anode Voltage = 7 V)	IHX	_	5.0	_	mA
Turn-on Time $(I_{GT} = 10 \text{ mA}, I_F = 1 \text{ A})$ $(I_{GT} = 20 \text{ mA}, I_F = 1 \text{ A})$	ton	_	0.8	_	μ ѕес
Turn-off Time (I _F = 1 A, I _R = 1 A, dv/dt = 20 V/ μ sec, T _J = 125°C)	toff		10	_	μ вес

*JEDEC Registered Values

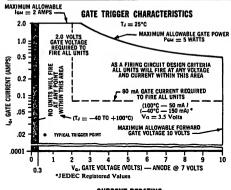
2N1842 thru 2N1850

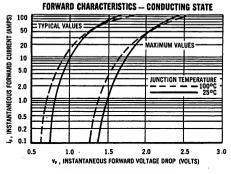
 $\begin{array}{l} I_f = 16 \text{ A RMS} \\ V_{ROM} = 25\text{-}500 \text{ V} \end{array}$

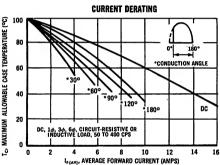
Industrial-type, silicon controlled rectifiers in a stud package with current handling capability to 16 amperes at junction temperatures up to $100\,^{\circ}\text{C}$.

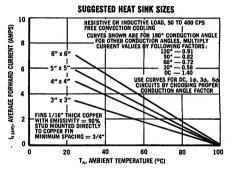
MAXIMUM RATINGS (T_J = 100°C unless otherwise noted)

Characteristic	Symbol	Rating	Unit
Peak Reverse Blocking Voltage**	V _{ROM(rep)} **		Volts
2N1842	KOM(rep)	25	
2N1843		50	
2N1844		100	
2N1845		150	
2N1846		200	
2N1847		250	
2N1848		300	
2N1849		400	
2N1850		500	
Peak Reverse Voltage	V _{ROM(non-rep)}		Volts
Transient 2N1842	•	35	
(non-recurrent 2N1843		75	
5 msec max. 2N1844		150	
duration) 2N1845		225	
2N1846		300	
2N1847		350	
2N1848		400	
2N1849		500	
2N1850		600	
Forward Current RMS (All Conduction Angles)	I _f	16	Amps
Peak Forward Surge Current (One cycle, 60 cps)	I _{FM(surge)}		Amps
$(T_{\rm J} = -40 \text{ to } +100^{\rm O}\text{C})$		125	
Circuit Fusing Considerations	г ² t		A ² sec
$(T_J = -40 \text{ to} + 100^{\circ}\text{C}; \le 8.3 \text{ msec})$		60	
Peak Gate Power	P _{GM}	5	Watts
Average Gate Power	P _{G(AV)}	0.5	Watts
Peak Gate Current	I _{GM}	2	Amps
Peak Gate Voltage			Volts
Forward	v_{GFM}	10	. 0165
Reverse	VGRM	5	
Operating Temperature Range	$T_{\mathbf{J}}$	-40 to +100	°C
Storage Temperature Range	T _{stg}	-40 to +125	°C
Stud Torque		30	in. lb.


^{*} JEDEC - registered values.


^{**} VROM(rep) for all types can be applied on a continuous DC basis without incurring damage. Ratings apply for zero or negative gate voltage.


2N1842 thru 2N1850 (continued)


ELECTRICAL CHARACTERISTICS (T_J = 100°C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
Peak Forward Blocking Voltage*	V _{FOM} *				Volts
2N1842		25	_	_	
2N1843	l l	50	_	_	
2N1844	ı	100	_	_	
2N1845	1	150	_	_	
2N1846		200	_	_	
2N1847		250	_	_	
2N1848		300	_	_	
2N1849	Į.	400	_	_	
2N1850		500	_	_	
Peak Forward or Reverse Blocking Current	I _{FOM} , I _{ROM}	_	_	6.0	mA
Forward On Voltage (16 Adc, T _J = 25°C)	v _F	_	1.1	1.8	Volts
Gate Trigger Current (Continuous DC) (Anode Voltage \cdot 7 V. R $_{L}$ 50 Ω . T $_{J}$ \cdot 25 $^{\rm O}$ C)	IGT	_	15	80	mA
Gate Trigger Voltage (Continuous DC)	V _{GT}				Volts
(Anode Voltage 7 V. R _L 50 Ω. T _J 25 ⁰ C)		_	0.8	2.0	
(Anode Voltage = 7 V, R_L = 50 Ω , T_J = 100°C)	V _{GNT}	0.3	_	_	
Holding Current	I _{HO}				mA
(Anode Voltage - 7 V. Gate Open, T _{,J} = 25 ⁰ C)	_	_	20	_	
Switching Time	t _{on} (t _d + t _r)	_	1.0	_	μsec
(depends on circuit - consult manufacturer for further information)	toff		14-30	_	μsec
Forward Voltage Application Rate	dv/dt	=	30	=	V/μse
Thermal Resistance (Junction to Stud)	$\theta_{ m JC}$	_	1.0	2.0	°C/w

2N1842A thru 2N1850A

 $\begin{array}{l} I_f = 16 \text{ A RMS} \\ V_{ROM} = 25\text{-}500 \text{ V} \end{array}$

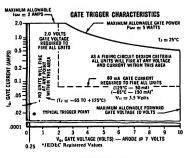
(TO-48)

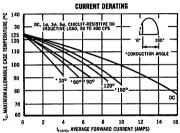
Industrial-type, silicon controlled rectifiers in a stud package with current handling capability to 16 amperes at junction temperatures up to 125°C.

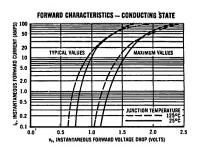
MAXIMUM RATINGS (T₂ = 125°C unless otherwise noted)

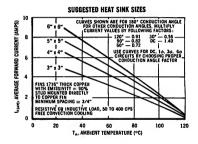
Characteristics	Symbol	Rating	Unit
Peak Reverse Blocking Voltage**	V **		Volts
2N1842A	VROM(rep)**	25	70100
2N1843A		50	
2N1844A		100	
2N1845A		150	
2N1846A		200	
2N1847A		250	
2N1848A		300	
2N1849A		400	
2N1850A		500	
Peak Reverse Voltage	V _{ROM(non-rep)}		Volts
Transient 2N1842A	,	35	
(non-recurrent 2N1843A		75	
5 msec max. 2N1844A		150	
duration) 2N1845A		225	
2N1846A	1	300	
2N1847A		350	
2N1848A		400	
2N1849A		500	
2N1850A		600	
Forward Current RMS (All Conduction Angles)	I _f	16	Amps
Peak Surge Current (One cycle, 60 cps)	IFM(surge)		Amps
$(T_J = -65 \text{ to } +125^{\circ}\text{C})$		125	
Circuit Fusing Considerations $(T_J = -65 \text{ to } +125^{\circ}\text{C}; \le 8.3 \text{ msec})$	ı ² t	60	A ² sec
Peak Gate Power	P _{GM}	5	Watts
Average Gate Power	P _{G(AV)}	0.5	Watts
Peak Gate Current	I _{GM}	2	Amps
Peak Gate Voltage			Volts
Forward	V _{GFM}	10	
Reverse	VGRM	5	
Operating Temperature Range	T _J	-65 to +125	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C
Stud Torque		30	in. lb.

^{*} JEDEC - registered values.


^{**} VROM(rep) for all types can be applied on a continuous DC basis without in-curring damage. Ratings apply for zero or negative gate voltage.


2N1842 A thru 2N1850A (continued)


FLECTRICAL CHARACTERISTICS (Tx = 125°C unless otherwise noted)


Characteristic	Symbol	Min	Тур	Max	Unit
Forward Blocking Voltage*	V _{FOM} *				Volts
2N1842A	1000	25		_	
2N1843A		50	_	_	
2N1844A		100	_		
2N1845A		150	_	_	
2N1846A		200	_	_	
2N1847A		250	_	_	
2N1848A	1	300	_	_	
2N1849A	i	400	_	_	
2N1850A	1	500	_	_	
Forward or Reverse Blocking Current	I _{FOM} , I _{ROM}		_	6.0	mA
Forward On Voltage (16 Adc, T _J = 25 ^o C)	v _F		1,1	1.6	Volts
Gate Trigger Current (Anode Voltage = 7 V, R_L = 50 Ω , T_J = 25 $^{\circ}$ C)	I _{GT}	_	15	80	mA
Gate Trigger Voltage (Anode Voltage = 7 V, R_L = 50 Ω , T_J = 25°C) (Anode Voltage = 7 V, R_L = 50 Ω , T_J = 125°C	v _{GT}	0.25	0.8	2.0	Volts
Holding Current (Anode Voltage = 7 V, Gate Open. $T_J = 25^{\circ}C$)	I _{HO}	_	20	_	mA
Switching Time (depends on circuit – consult manufacturer for further information)	ton (td +tr)		1.0 14-30	_	μsec μsec
Forward Voltage Application Rate	dv/dt		30	_	V/μ sec
Thermal Resistance (Junction to Stud)	$\theta_{ m JC}$	= -	1.0	2.0	°C/W

^{*}V_{FOM} for all types can be applied on a continuous DC basis without incurring damage. Ratings apply for zero negative gate voltage.

2N2573 thru 2N2579

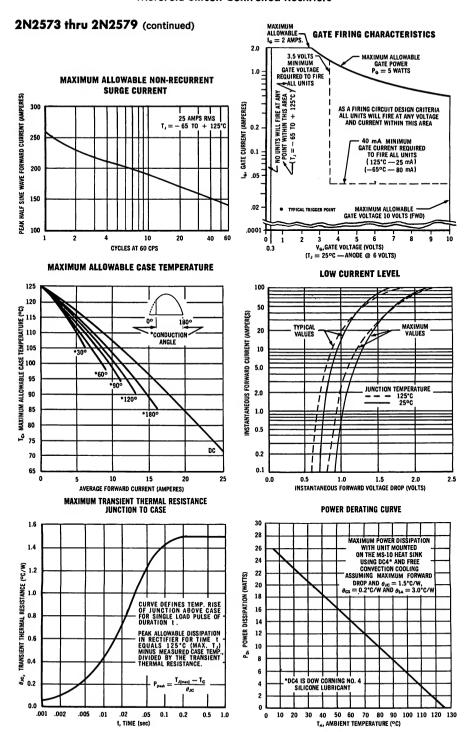
 $I_f = 25 \text{ A RMS}$ $V_{ROM} = 25-500 \text{ V}$

Industrial-type, silicon controlled rectifiers in a "diamond" package for applications requiring a high surge-current rating or low thermal resistance.

CASE 61 (TO-41)

MAXIMUM RATINGS ($T_J = 125$ °C unless otherwise noted)

Characteristics	Symbol	Rating	Units
Peak Reverse Voltage* 2N2573 2N2574 2N2575 2N2576 2N2577 2N2578 2N2578	V _{ROM}	25 50 100 200 300 400 500	Volts
Forward Current RMS (All Conduction Angles)		25	Amps
Peak Surge Current (one cycle, 60 cps) (T _r = -65 to +125°C)	I(surge)	260	Amps
Circuit Fusing Considerations (T _J = -65° to +125°C; ≦8.3 msec)	I ² t	275	A ² sec
Peak Gate Power	P_{G}	5	Watts
Average Gate Power	P_G	0.5	Watts
Peak Gate Current	$I_{\mathbf{G}}$	2	Amps
Peak Gate Voltage Forward Reverse	V _G	10 5	Volts
Storage Temperature	Tstg	-65 to +150	°C
Operating Temperature	${ m T_J}$	-65 to +125	°С


^{*} $V_{\rm ROM}$ for all types can be applied on a continuous DC basis without incurring damage. $V_{\rm ROM}$ ratings apply for zero or negative gate voltage.

2N2573 thru 2N2579 (continued)

ELECTRICAL CHARACTERISTICS ($T_J = 125$ °C unless otherwise noted)

Characteristics	Symbol	Min	Тур	Max	Unit
Forward Breakover Voltage (T _J = 125°C)	v _{FOM}				Volts
2N2573 2N2574 2N2575 2N2576 2N2577 2N2578 2N2579		25 50 100 200 300 400 500	-	- - - - -	
Forward Leakage Current (@ Rated V _{BO} with Gate Open) (T _J = 25°C) (T _J = 125°C)	is	=	_ 0. 6	2 5	mA
Reverse Leakage Current (@ Rated PRV) (TJ = 25°C) (TJ = 125°C)	iR	=	_ 0. 6	2 5	m A
Forward Voltage Drop (T _J = 125°C) (16 A Full Cycle Average, 180° Conduction Angle) (25 Amps DC)	v _F	-	_ 1. 1	0. 7 —	Volts
Gate Firing Current (Continuous DC)	I _{GT}	-	20	40	m Adc
Gate Firing Voltage (Continuous DC) (T _J = 25°C) (T _J = 125°C)	v _{GT}	_ 0.3	1.0	3. 5 3. 5	Vdc
Holding Current	IH	-	20	_	m A
Forward Voltage Application Rate	dv/dt	_	30		V/μsec
Thermal Resistance	θJC	_	1.0	1. 5	°C/W

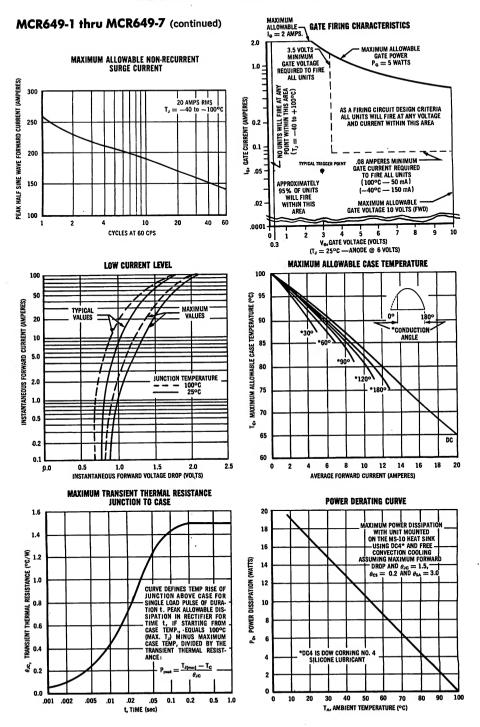
MCR649-1 thru MCR649-7

 $I_f = 20 A RMS$ $V_{ROM} = 25-500 V$

Industrial-type, silicon controlled rectifiers in a "diamond" package for applications requiring a high surge-current rating or low thermal resistance.

CASE 61 (TO-41)

MAXIMUM RATINGS (T_J = 100°C unless otherwise noted)


Characteristics '	Symbol	Rating	Units
Peak Reverse Voltage * MCR649-1 -2 -3 -4 -5 -6	V _{ROM}	25 50 100 200 300 400 500	Volts
Forward Current RMS (All Conduction Angles)	$I_{\mathbf{F}}$	20	Amps
Peak Surge Current (full cycle, 60 cps) (T _J = -40 to +100°C)	I(surge)	260	Amps
Circuit Fusing Considerations (T _J = -40 to + 100° C; ≦ 8.3 msec)	I ² t	275	A ² sec
Peak Gate Power	$^{\mathrm{P}}_{\mathrm{G}}$	5	Watts
Average Gate Power	P_{G}	0. 5	Watts
Peak Gate Current	I _G	2	Amps
Peak Gate Voltage Forward Reverse	v _G	10 5	Volts
Storage Temperature	T _{stg}	-40 to +150	°C
Operating Temperature	$ au_{f j}$	-40 to +100	°C

 $^{^{*}}$ V_{ROM} for all types can be applied on a continuous DC basis without incurring damage. V_{ROM} ratings apply for zero or negative gate voltage.

MCR649-1 thru MCR649-7 (continued)

ELECTRICAL CHARACTERISTICS (At T_J = 25°C unless otherwise noted)

Characteristics	Symbol	Min	Тур	Max	Unit
Forward Breakover Voltage (T _J = 100°C)	v _{FOM}				Volts
MCR649-1 -2		25 50		-	
-3 -4		100 200		- - -	
-5 -6 -7		300 400 500	-	- -	
Forward Leakage Current (@ Rated V _{BO} with Gate Open)					mA
$(T_J = 25^{\circ}C)$ $(T_J = 100^{\circ}C)$		<u>-</u>	=	2 5	
Reverse Leakage Current (@ Rated PRV)					mA
$(T_J = 25^{\circ}C)$ $(T_J = 100^{\circ}C)$		_	=	2 5	
Forward Voltage Drop(T _J = 100°C) (13 A Full Cycle Average,	v _F				Volts
180" Conduction Angle) (20 Amps DC)		_	_ 1.00	0.7 —	
Gate Firing Current (Continuous DC)	I _{GT}	_	30	80	mA
Gate Firing Voltage (Continuous DC)	v _{GT}				Volts
$(T_J = 25^{\circ}C)$ $(T_J = 100^{\circ}C)$		_ 0. 3	1.0	3. 5 —	
Holding Current	I _H	-	20	-	mA
Forward Voltage Application Rate $(R_{GC} = 27 \Omega)$	dv/dt				V/μsec
MCR649-1 thru MCR649-4 (25 V - 200 V)		-	10	-	
MCR649-5 thru MCR649-7 (300 V - 500 V)		-	30	_	
Thermal Resistance	θ _{JC}	-	1.0	1.5	°C/W

MCR729-5 thru MCR729-10

I_{pulse} = 100 Adc V_{ROM} = 300-800 V Pulse Repetition Rates to 10,000 pps

Fast-switching, high-voltage silicon controlled rectifier especially designed and characterized for radar, proximity fuse, beacon and similar pulse applications.

CASE 63

MAXIMUM RATINGS (T_J = 105°C unless otherwise noted)

Characteristic	Symbol	Rating	Unit
Forward Current (continuous)	Icont	2	Adc
Repetitive Pulse Current (10 µsec pulse width)	I _{pulse}	100	Adc
Peak Reverse Voltage*	v _{rom}	50	Volts
Peak Gate Power	P _G	20	Watts
Average Gate Power	P_{G}	1	Watt
Peak Gate Current	^I G	5	Amps
Peak Gate Voltage Forward and Reverse	v _G	10	Volts
Operating Temperature	$^{\mathrm{T}}\mathrm{_{J}}$	-65 to +105	°C
Storage Temperature	T _{stg}	-65 to +150	°C
Stud Torque		15	in. lb.

^{*} Characterized for unilateral applications where reverse blocking capability is not important. Higher \boldsymbol{v}_{ROM} rated units available on request.

----- Motorola Silicon Controlled Rectifiers -----

MCR729-5 thru MCR729-10 (continued)

ELECTRICAL CHARACTERISTICS (T_J = 105°C unless otherwise noted)

Characteristic	Symbol	Minimum	Typical	Maximum	Unit
Forward Breakover Voltage* MCR729-5 -6 -7 -8 -9	V _{FOM}	300 400 500 600 700 800	- - - -	- - - -	Volts
Forward Leakage Current (Rated V _{BO} with gate open)	ⁱ s	-	0. 2.	2	mA
Gate Firing Current (T _J = 25°C)	I _{GF}	-	10	50	mA
Gate Firing Voltage (T _J = 25°C)	v_{GF}	-	0.8	1.5	Volts
Forward Voltage Drop (2 Adc, T _A = 25°C)	v _F	-	1.1	1.5	Volts
Turn-On Time $(t_d + t_r)$ $(I_G = 200 \text{ mA}, T_A = 25^{\circ}\text{C})$ $I_{\text{pulse}} = 30 \text{ amps}$ $I_{\text{pulse}} = 100 \text{ amps}$	t _{on}	-	0.2	-	μsec
Turn-On Time Variation (T _J = +25°C to +105°C and +25°C to -65°C)	Δt _{on}	-	±0.05	-	μѕес
Recovery Time (forward) (I _{pulse} = 30 amps, I _{reverse} = 0, T _A = 25°C (Inductive charging circuit)	t _{rec}	_	10	-	μsec
Turn-Off Time (Conventional) (Iforward = 2 amps, Ireverse = 10 amps, TA = 25°C)	^t off	-	6	-	μsec
Forward Voltage Application Rate	dv/dt	50	-	-	V/µsec
Drop-Out (Holding) Current (T _A = 25°C)	IH	5	25	-	mA
Thermal Resistance	θјС	-	-	4	°C/W

^{*} Other voltage units available upon request.

MCR808 series MCR1308 series

 $I_f = 18 \text{ A RMS}$ $V_{ROM} = 25-400 \text{ V}$

Low-cost, silicon controlled rectifiers available in two package styles and reverse polarity for versatile, economical, general-purpose applications.

CASE 68

CASE 62

MAXIMUM RATINGS (at T_J = 100°C unless otherwise noted)

Characteristic	Symbol	Rating	Unit
Peak Reverse Voltage* MCR808 MCR808R MCR1308 MCR1308R -5 -6	VROM(rep)	25 50 100 200 300 400	Volts
Forward Current RMS (All Conduction Angles)	If	18	Amps
Peak Surge Current (one cycle, 60 cps) (T _J = -40 to +100°C)	IFM(surge)	225	Amps
Circuit Fusing Considerations $(T_J = -40 \text{ to } +100^{\circ}\text{C}; 8.3 \text{ msec})$	I ² t	235	A ² sec
Peak Gate Power	P _{GM}	5	Watts
Average Gate Power	P _{G(av)}	0.5	Watts
Peak Forward Gate Current	^I GFM	2	Amps
Peak Gate Voltage Forward Reverse	V _{GFM} V _{GRM}	10 10	Volts
Operating Temperature Range	${f T_J}$	-40 to +100	°C
Storage Temperature Range	T _{stg}	-40 to +150	o _C
Stud Torque - MCR1308 and MCR1308R	_	30	in. lb.

 $^{^{*}}V_{ROM(rep)}$ for all types can be applied on a continuous DC basis without incurring damage. Ratings apply for zero or negative gate voltage.

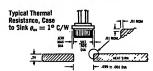
MCR808, MCR1308 (continued)

ELECTRICAL CHARACTERISTICS (T. = 25°C unless otherwise noted)

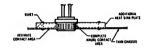
Characteristic	Symbol	Min	Тур	Max	Uatt
Peak Forward Blocking Voltage * (T _J = 100°C) MCR808 MCR808R MCR1308 MCR1308R -2 -3 -4 -5 -6	V _{FOM}	25 50 100 200 300 400	11111	11111	Volts
Peak Forward Blocking Current (Rated V_{FOM} with gate open, $T_J = 100^{\circ}$ C)	IFOM	_	1	8	mA
Peak Reverse Blocking Current (Rated V_{ROM} , Gate open, $T_J=100^{\rm o}{\rm C}$)	I _{ROM}	_	1	5	mA
Forward On Voltage (18 Adc, T _J = 100°C)	v _F	_	1.1	1.5	Volts
Gate Triggering Current (Anode Voltage = 7 V, R_L = 50 Ω)	I _{GT}	_	15	50	mA
Gate Firing Voltage (Continuous DC) (Anode Voltage = 7 V , $R_L = 50 \Omega$) (Anode Voltage = 7 V , $R_L = 50 \Omega$, $T_J = 100^{\circ}\text{C}$)	V _{GT} V _{GNT}	0.3	0.7	1.5	Volts
Holding Current (Anode Voltage = 7 V, gate open)	IHO	_	15	ı	mA
Turn-On Time ($I_F = 18$ Adc, $I_{GT} = 50$ mAdc)	ton	_	1.0	ı	μвес
Turn-Off Time (I _F = 10 A, I _R = 10 A) (I _F = 10 A, I _R = 10 A, T _J = 100°C)	t _{off}	=	12 18		µвес
Forward Voltage Application Rate $(T_J = 100^{\circ}C)$	dv/dt		30	_	V/µse
Thermal Resistance MCR808 and MCR808R MCR1308 and MCR1308R	⊕JC	_	1.0 1.4	1.6 2.0	°C/W

^{*}V FOM for all types can be applied on a continuous DC basis without incurring damage. Ratings apply for zero or negative gate voltage.

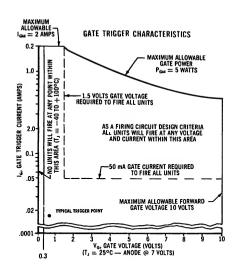
PRESS IN MOUNTING

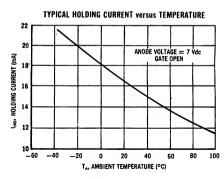

- 1. Heat Sink Hole To provide good SCR heat sink surface contact, the diameter of the heat sink hole should be 0.499 ±.001 inch. The edge of the hole into which the SCR will be pressed should be slightly beveled to aid in starting and to prevent shearing off of the package knurl. The depth and width of this beveled break should be 0.010 nominal (see Figure 14).
- 2. Hardness of Heat Sink Material If the SCR is pressed into a heat sink material which is harder than the case of the SCR, degradation of voltage characteristics can occur because of stresses placed on the package and consequently on the silicon die inside. Therefore, the following hardnesses for the heat sink material are recommended:

Copper — less than 50 on the Rockwell F scale (the MCR808 case is 50 or greater)

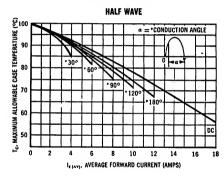

Aluminum — less than 65 on the Brinell scale.

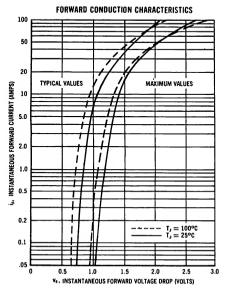
3. Press-In Force — The recommended press-in force is between 250 and 1000 pounds per square inch. It is extremely important that this force be applied only to the external annular ring portion of the device. If pressure is applied to the glassto-metal seal portion of the device, stresses can result which crack the glass and/or break the hermetic seal.

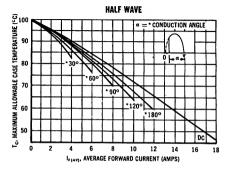

HEAT SINK MOUNTING



THIN-CHASSIS MOUNTING




MCR808, MCR1308 (continued)



MCR808, R SERIES

MCR1308, R SERIES

MCR846 series

 $I_f = 2 A RMS$ $V_{ROM} = 25-200 V$

Silicon controlled rectifiers for low-power switching and control applications requiring blocking to 200 volts and load currents to 2 amps.

CASE 63

MAXIMUM RATINGS (T_J = 105°C unless otherwise noted)

Characteristic	Symbol	Rating	Unit
Peak Reverse Voltage MCR 846 - 1 - 2 - 3 - 4	V _{ROM}	25 50 100 200	Volts
RMS Forward Current	$I_{\mathbf{F}}$	2	Amps
Peak Surge Current (one cycle, 60 cps, T _j = -65 to +105°C)	I _{FM} (surge)	30	Amps
Circuit Fusing Considerations	I ² t	35	Amp ² sec
Peak Gate Power	P _G	5	Watts
Average Gate Power	P _{G(avg)}	0.5	Watts
Peak Gate Current	I _G	2	Amps
Peak Gate Voltage (forward and reverse)	v _G	10	Volts
Storage Temperature	T _{stg}	-65 to +150	°c
Operating Temperature	Тj	-65 to +105	°c
Stud Torque		15	in-lb

----- Motorola Silicon Controlled Rectifiers

MCR846 (continued)

ELECTRICAL CHARACTERISTICS (T_J = 105°C unless otherwise noted)

Characteristic	Symbol	Minimum	Typical	Maximum	Unit
Forward Breakover Voltage MCR 846 - 1 - 2 - 3 - 4	V _{ROM}	25 50 100 200			Volts
Forward Leakage Current	i _s			2	ma
Reverse Leakage Current	i _r			2	ma
Forward Voltage Drop T _C = 25°C, I _F = 2 amp DC	v _F			1.6	VDC
Gate Firing Current T _j = 25°C	I _{GF}		10	50	ma DC
Gate Firing Voltage T _j = 25°C	v _{GF}		0.8	1.5	VDC
Holding Current	I _H		25		ma DC
Turn On Time $(T_C = 25^{\circ}C)$ (IF = 2 amps DC)	t _{on}		0.5		usec
$(T_{C}=25^{\circ}C)$ Turn Off Time $(I_{F}=2 \text{ amps})$ $(I_{R}=10 \text{ amps})$	t off		4		usec
Forward Voltage Application Rate	dv/dt	50			volts/usec
Thermal Resistance	θ _{J-C}			4	°C/W

MCR914 series

For specifications, See 2N1595 Series Data Sheet

MCR1304 series MCR1305 series

MCR1604 series

MCR1605 series

For Specifications, See MCR2304 Series Data Sheet

MCR1718-5 thru MCR1718-8

 $I_{pulso} = 1000 \text{ A} \ V_{ROM} = 300-600 \text{ V} \ I_E = 25 \text{ A RMS}$

Fast-switching, high-voltage silicon controlled rectifiers for pulse modulator applications requiring blocking to 600 volts and repetitive pulse currents to 1000 amps.

MAXIMUM RATINGS (TJ = 125°C unless otherwise noted)

Characteristic	Symbol	Rating	Unit
Peak Reverse Blocking Voltage* MCR1718-5 -6 -78	V _{ROM} * (rep)	300 400 500 600	Volts
Transient Peak Reverse Blocking Voltage (non-recurrent 5 msec max duration) MCR1718-5 -6 -7 -8	V _{ROM} (non-rep)	400 500 600 700	Volts
Peak Repetitive Pulse Current (1-10 microsec pulse width)	I _{pulse}	1000	Amps
RMS Forward Current	I _f	25	Amps
Dynamic Average Power Dissipation (At $T_c = 65$ °C)	P _F (AV)	30	Watts
Current Application Rate (up to 1000 Amps Peak)	di/dt	1000	A/μsec
Curcuit Fusing Considerations (T _j = -65 to +125°C; P.W. <1.0 msec)	I ² t	250	A ² sec
Peak Gate Power	P _{GM}	20	Watts
Average Gate Power	P _G (AV)	1	Watt
Peak Forward Gate Current	I _{GFM}	5	Amps
Peak Gate Voltage - Forward - Reverse	V _{GFM} V _{GRM}	10 10	Volts
Operating Junction Temp. Range	Тj	-65 to +125	°C
Storage Temperature Range	T _(stg)	-65 to +150	°C
Stud Torque		30	in-lb

----- Motorola Silicon Controlled Rectifiers -----

MCR1718-5 thru MCR1718-8 (continued)

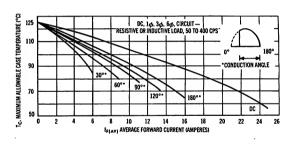
ELECTRICAL CHARACTERISTICS (TJ = 25°C unless otherwise noted)

Characteristic	Symbol	Minimum	Typical	Maximum	Unit
Peak Forward Blocking Voltage* T _j = 125°C MCR1718-5 -6 -7 -8	V _{FOM} *	300 400 500 600			Volts
Peak Forward Blocking Current (Rated V _{FOM} ; T _j = 125°C, Gate Open)	I _{FOM}			8	mA
Peak Reverse Blocking Current (Rated V _{ROM} ; T _j = 125°C, Gate Open)	I _{ROM}			8	mA
Gate Trigger Current (continuous DC) (Anode Voltage = 7Vdc , $R_L = 50\Omega$)	I _{GT}		10	50	mAde
Gate Trigger Voltage (continous DC) (Anode Voltage = 7Vdc, $R_L = 50 \Omega$, $T_j = 25^{\circ}C$) (Anode Voltage = 7Vdc, $R_L = 50 \Omega$, $T_j = 125^{\circ}C$)	v _{GT} v _{GNT}	. 25	0.8	1.5	Vdc
Turn-on Forward Voltage Drop (I _{GT} = 500 mA, I _{pulse} = 500 amps) 1.0 μsec after start (10% pt.) of I pulse 5.0 μsec after start (10% pt.) of I pulse	V _{F(on)}		30 5		Volts
Forward On Voltage (I _F = 25 Adc)	v _F		.1.1	1.3	Vdc
Recovery Time (Forward) (I pulse = 500 amps, I reverse = 10 amps) (Inductive charging circuit - circuit dependent)	^t rec		20		μѕес
Forward Voltage Application Rate (Gate Open, T _j = 125°C)	dv/dt		100		V/μsec
Drop-out (Holding) Current Gate Open; T _j = 25°C Gate Open; T _j = 125°C	I _{НО}	5	15 6		mAdc
Thermal Resistance (Junction-to-Case)	$\theta_{ m JC}$			2.0	°C/W

^{*} V_{FOM} and $V_{ROM(rep)}$ for all types can be applied on a continuous DC basis without incurring damage. Ratings apply for zero or negative gate voltage.

MCR 1907-1 thru MCR 1907-6

 $I_F = 25 A RMS$ $V_{ROM} = 25-400 V$

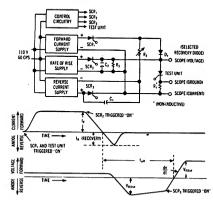

Fast turn-on, fast turn-off silicon controlled rectifiers for high-frequency applications requiring blocking to 400 volts and load currents to 25 amps.

MAXIMUM RATINGS (TJ = 125°C unless otherwise noted)

Characteristic	Symbol	Rating	Unit
Peak Reverse Blocking Voltage*	V _{ROM(rep)} *	25 50 100 200 300 400	Volts
Peak Reverse Blocking Voltage (non-recurrent, 5 msec max. duration) MCR1907-1 MCR1907-2 MCR1907-3 MCR1907-4 MCR1907-5 MCR1907-6	V _{ROM(non-rep)}	35 75 150 300 400 500	Volts
Forward Current RMS (All Conduction Angles)	I _f .	25	Amps
Peak Surge Current (one cycle, 60 cps) (T _J = -65 to +125°C)	I _{FM(surge)}	150	Amps
Circuit Fusing Considerations (T _J = -65 to +125°C; t ≤ 8.3 msec)	I ² t	75	A ² sec
Peak Gate Power	P _{GM}	5	Watts
Average Gate Power	P _{G(av)}	0.5	Watts
Peak Gate Current	IGFM	2	Amps
Peak Gate Voltage: Forward Reverse	V _{GFM} V _{GRM}	10 5	Volts
Operating Temperature	T _J	-65 to+125	°C
Storage Temperature	T _{stg}	-65 to+150	°c

 $^{^{*}}V_{ROM(rep)}$ for all types can be applied on a continuous DC basis without incurring damage. Ratings apply for zero or negative gate voltage.

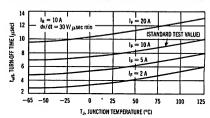
CURRENT DERATING

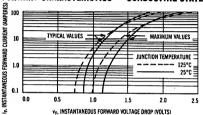

MCR1907-1 thru MCR1907-6 (continued)

ELECTRICAL CHARACTERISTICS (TJ = 125°C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
Peak Forward Blocking Voltage* MCR1907-1 MCR1907-2 MCR1907-3 MCR1907-4 MCR1907-5 MCR1907-6	V _{FOM} *	25 50 100 200 300 400	= =	=	Volts
Peak Forward or Reverse Blocking Current	IFOM & IROM	_	_	4	mA
Forward On Voltage $(I_F = 20 \text{ Adc}, T_C = 25^{\circ}C)$	v _F	_	1.4	1.7	Volts
Gate Trigger Current (Continuous DC) (Anode Voltage = 7 Vdc, R _L = 50 ohms, T _J = 25°C)	I _{GT}	_	15	30	mA
Gate Trigger Voltage (Continuous DC) (Anode Voltage = 7 Vdc, R_L = 50 ohms, T_J = 25°C) (Anode Voltage = 7 Vdc, R_L = 50 ohms, T_J = 125°C)	V _{GT} V _{GNT}	0.25	=	1.5	Volta
Holding Current (Anode Voltage = 7 Vdc, gate open, T _J = 25°C)	IHO	_	12	_	mA
Turn-On Time (I _F = 10 A, I _G = 200 mA, T _J = 25°C)	ton	_	0.5		μвес
Turn-Off Time (Figure 3) (IF = 10 A, IR = 10 A, dv/dt = 30 V/µsec min) VFXM = rated voltage VRXM = rated voltage	toff	_	_	12	µвес
Forward Voltage Application Rate	dv/dt	30	_	_	V/μsec
Thermal Resistance, Junction to Case	θJC	_	1.0	1.7	°C/W

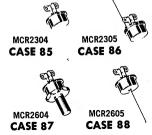
^{*}VFOM for all types can be applied on a continuous DC basis without incurring damage. Ratings apply for zero or negative gate voltage. These devices should never be tested with a constant current source for forward or reverse blocking capability such that the voltage applied exceeds the rated blocking voltage.


TURN-OFF TIME TEST CIRCUIT


Forward conduction current is passed through the device (SCR₁ and test device triggered on). The anode is then driven negative (SCR₂ triggered on), causing reverse current to flow. The anode-to-cathode potential goes negative with a decrease in reverse current. Forward voltage is then applied to the anode of the device (SCR₃ triggered on). The device has fully recovered when it regains its ability to block the reapplied forward voltage.

† Consult manufacturer for further circuit information.

TYPICAL TURN-OFF TIME VESUS PEAK FORWARD CURRENT AND JUNCTION TEMPERATURE



FORWARD CHARACTERISTICS — CONDUCTING STATE

MCR2304 series MCR2305 series MCR2604 series MCR2605 series

 $I_f = 8 A RMS$ $V_{ROM} = 25-400 V$

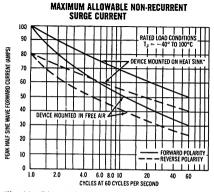
Silicon controlled rectifiers for applications requiring current up to 8 amperes with blocking voltages up to 400 volts. Available in a variety of economical packages for mounting versatility, and in both forward (anode-to-case) connection. (normally anode connected to case. For cathode-to-case connection, addsuffix "R" to type number.) Also available in flying lead ('L' suffix) and pin ('P' suffix) versions.

Note: MCR1304, R; MCR1305, R; MCR1604, R; MCR1605, R series are electrically identical to the equivalent "2000" series, but are mounted in cases 65, 69, and 68 respectively.

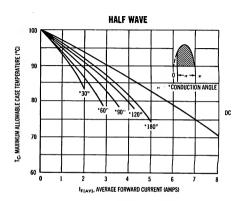
MAXIMUM RATINGS (T_J = 100°C unless otherwise noted)

Characteristic	Symbol	Rating	Unit
Peak Reverse Blocking Voltage* MCR2304, MCR2304R MCR2305, MCR2305R MCR2604, MCR2604R MCR2605, MCR2605R -4 -5 -6	V _{ROM(rep)} *	25 50 100 200 300 400	Volts
Forward Current RMS (All Conduction Angles)	Ľ _f	8	Amps
Peak Surge Forward Current (One cycle, 60 cps) (T _J = -40 to +100 ^O C) Forward Polarity Reverse Polarity	I _{FM} (surge)	100 80	Amps
Circuit Fusing Considerations (T _J = -40+100°C; t ≦ 8.3 msec) Forward Polarity Reverse Polarity	I ² t	40 25	A ² sec
Peak Gate Power	P _{GM}	5	Watts
Average Gate Power	P _{G(av)}	0.5	Watt
Peak Forward Gate Current	I _{GFM}	2	Amps
Peak Gate Voltage Forward Reverse	V _{GFM} V _{GRM}	10 10	Volts
Operating Temperature Range	Т _Ј	-40 to +100	°C
Storage Temperature Range	T _{stg}	-40 to +150	°C
Stud Torque (MCR1305, MCR1305R series)		15	in. lb.

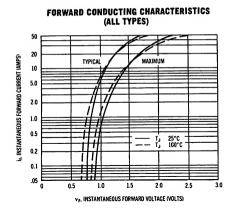
 $^{^{*}V}$ ROM(rep) for all types can be applied on a continuous DC basis without incurring damage. Ratings apply for zero or negative gate voltage.

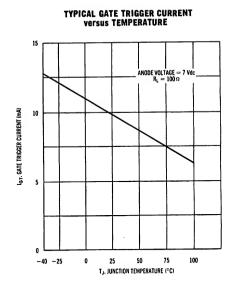

These devices should never be tested with a constant current source for forward or reverse blocking capability such that the voltage applied exceeds the rated blocking voltage.

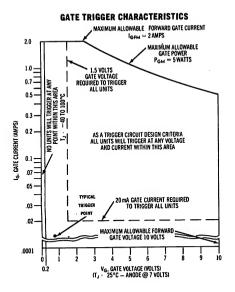
MC2304, MCR2305, MCR2604, MCR2605 (continued)

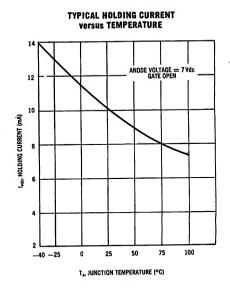

ELECTRICAL CHARACTERISTICS (T_J = 125°C unless otherwise noted)

Characteristic	Symbol	Mia	Тур	Max	Unit
Peak Forward Blocking Voltage* (T _J = 100°C) MCR2304, MCR2305R MCR2305, MCR2305R MCR2604, MCR2604R MCR2605, MCR2605R	V _{FOM} *	25 50 100 200 300 400	=	= = =	Volts
Peak Forward Blocking Current (Rated V _{FOM} @ T _J = 100°C, gate open)	I _{FOM}	_	_	2	mA
Peak Reverse Blocking Current (Rated V _{ROM} @ T _J = 100°C, gate open)	I _{ROM}	_	_	2	mA
Forward On Voltage (I _F = 5 Adc)	v _F	_	1.0	1.3	Volts
Gate Trigger Current (Continuous DC) (Anode Voltage = 7 Vdc, R _L = 100Ω)	I _{GT}	_	10	20	mA
Gate Trigger Voltage (Continuous DC) (Anode Voltage = 7 Vdc, R_L = 100Ω) (Anode Voltage = 7 Vdc, R_L = 100Ω , T_J = 100^0 C)	V _{GT} V _{GNT}	0.2	0.6	1.5	Volts
Holding Current (Anode Voltage = 7 Vdc, gate open)	IHO	_	10	25	mA
Turn-On Time (I _F = 5 Adc, I _{GT} = 20 mAdc)	t _{on}	_	1	_	µвес
Turn-Off Time (I _F = 5 Adc, I _R = 5 Adc) (I _F = 5 Adc, I _R = 5 Adc, T _J = 100° C)	toff	=	12 16	Ξ	μ вес
Forward Voltage Application Rate $(T_J = 100^{\circ}C)$	dv/dt	_	50	_	V/μ sec
Thermal Resistance, Junction to Case MCR2304, MCR2604, MCR2605 MCR2304R, MCR2604R, MCR2605R MCR2305 MCR2305R	θ ¹ C	-	1.5 2.0 1.8 2.3	2.7 3.1 3.0 3.4	°C/W
Thermal Resistance, Case to Ambient MCR2304, MCR2604, MCR2605 and reverse polarity units.	θ _{CA}	_	-	40	°C/W


^{*}V_{FOM} for all types can be applied on a continuous DC basis without incurring damage. Ratings apply for zero or negative gate voltage. These devices should never be tested with a constant current source for forward or reverse blocking capability such that the voltage applied exceeds the rated blocking voltage.







MC2304, MCR2305, MCR2604, MCR2605 (continued)

MGCS821-1 thru MGCS821-6

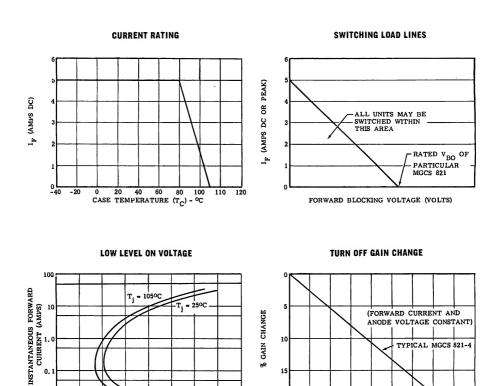
 $\begin{array}{l} I_F = 5 \text{ A RMS} \\ V_{ROM} = 25\text{-}400 \text{ V} \end{array}$

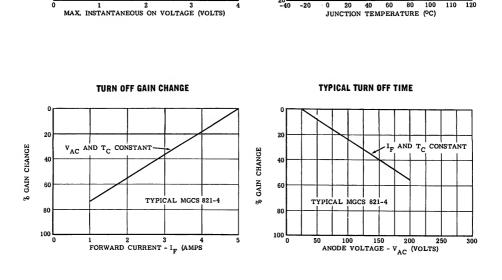
Silicon gate controlled switches for switching and control applications requiring a bistable switch that can be turned off as well as on by a gate signal.

CASE 61 (TO-41)

MAXIMUM RATINGS ($T_J = 105$ °C unless otherwise specified)

Characteristic	Symbol	Rating	Unit
Peak Reverse Voltage (Note 1) MGCS 821 - 1 - 2 - 3 - 4 - 5 - 6	V _{ROM}	25 50 100 200 300 400	Volts
Forward Current @ T _C = 80°C (see Figure 1)	I _F	5	Amps
Peak Surge Current (One cycle, 60 cps, T _j = -40°C to +105°C)	I _(surge)	60	Amps
Circuit Fusing Considerations (t ₹ 8.3 msec)	I ² t	65	Amp ² sec
Peak Gate Power Forward Reverse	P _{GF}	10 40	Watts
Average Gate Power Forward Reverse	PGF(avg)	2 20	Watts
Peak Gate Current Forward Reverse	I _{GF} I _{GR}	2 2. 5	Amps
Storage Temperature	T _{stg}	-40 to +150	С
Operating Temperature	T _j	-40 to +105	С




MGCS821 series (continued)

ELECTRICAL CHARACTERISTICS (T_J = 105°C unless otherwise noted)

© Characteristic	Symbol	Minimum	Typical	Maximum	Unit
Forward Breakover Voltage MGCS 821 - 1 - 2 - 3 - 4 - 5 - 6	V _{FOM}	25 50 100 200 300 400			Volts
Controllable Anode Current (see Figure 2)	I _F	5			Amps
Forward Blocking Current (@ rated V _{BO})	I FOM		1	5	ma DC
Reverse Blocking Current (@ rated PRV)	^I ROM		1	5	ma
Forward Voltage Drop @ I _F = 5 amps DC, T _C = 25°C	v _F		1.0	2.0	v
Gate Turn On (Trigger) Current @ T _i = 25°C	I _{GT}		20	100	ma
@ T _j = 105°C			5	30	
Gate Turn On (Trigger) Voltage @ T _j = 25°C @ T _i = 105°C	v _{GT}	0.3	0.8	3.5	v
Gate Turn Off Current 25-200 volt units 300-400 volt units @ I _F = 5 amp DC, T _j = -40°C to +105°C Pulse Width = 200 usec	^I GO		•	-500 -1 (See Note 4)	ma amp
Gate Turn Off Voltage @ I _F = 5 amp DC, T _j = -40°C to +105°C Pulse Width = 200 usec	v _{GQ}		-	-10	v
Latching Current, T _C = 25°C,	I ₁		50		ma
Rise Time (@ $T_C = 25$ °C, $I_F = 5$ amp DC, $I_{GT} = 100$ ma)	t _r		1.0		μsec
Fall Time @ turn off conditions listed above	t _f		2.0		μsec
Thermal Resistance	$\theta_{ m JC}$			2.5	°C/W
Holding Current @ T _C = 25°C	I _H		40		ma DC
Rate of Applied Forward Voltage	dv/dt		40		v/μsec

MGC\$821 series (continued)

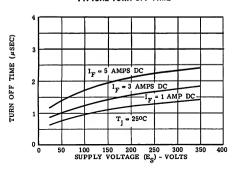
15

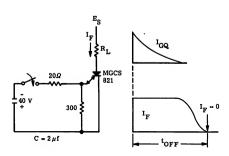
20L -40 -20

20 40 60

MGCS821 series (continued)

NOTES:


- 1. Units for DC applications (V_{FOM} only) available on special request.
- 2. Higher current units available on special request.
- 3. In addition to the gate to cathode resistor (R_{GC}) , performance may be enhanced in certain applications be the use of an anode to cathode capacitor (C_{AC}) .
- 4. (See gate turn off current) Typical units can be turned off with much lower level gate pulses (i.e., exhibit much higher gain), however, the values specified are recommended for safe area operation in accordance with figure 2. Recommended turn off gains $(\frac{IF}{IGO})$ for various switching


a. Switching from 3-5 amps to 200 volts or less
b. Switching from 3-5 amps to 200 volts or more
- 5 max.

c. Switching from 2-3 amps - 6 max.

d. Switching from less than 2 amps - 4 max.

TYPICAL TURN OFF TIME

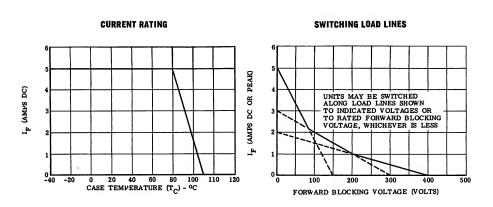
MGCS 924-1 thru MGCS 924-6 MGCS 925-1 thru MGCS 925-6

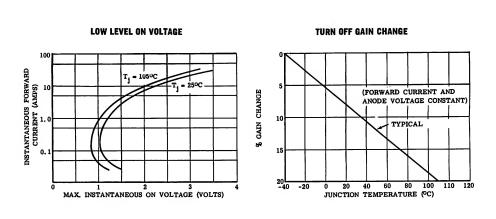
 $I_F = 5$ A RMS $V_{FOM} = 25-400 \text{ V}$ $V_{ROM} = 15-400 \text{ V}$

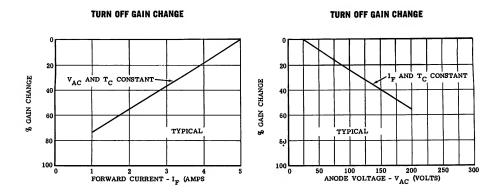
Silicon gate controlled switches for switching and control applications requiring a bistable switch that can be turned off as well as on by a gate signal.

CASE 61 (TO-41)

MAXIMUM RATINGS (T_J = 105°C unless otherwise noted)


Characteristic	Symbol	Rating	Unit
Peak Reverse Voltage MGCS 924 (All Units) MGCS 925 - 1 - 2 - 3 - 4 - 5 - 6	V _{ROM} .	15 25 50 100 200 300 400	Volts
Forward Current @ T _C = 80°C (see Figure 1)	$^{\mathrm{I}}\mathrm{_{F}}$	5	Amps
Peak Surge Current (One cycle, 60 cps, T _j = -40°C to +105°C)	I(surge)	60	Amps
Circuit Fusing Considerations (t ₹ 8.3 msec)	r ² t	65	Amp ² sec
Peak Gate Power Forward Reverse	P _{GF}	10 40	Watts
Average Gate Power Forward Reverse	P _{GF} (avg) P _{GR} (avg)	2 20	Watts
Peak Gate Current Forward Reverse	I _{GF}	2 2. 5	Amps
Storage Temperature	T _{stg}	-40 to +150	°C
Operating Temperature	T _j	-40 to +105	°C

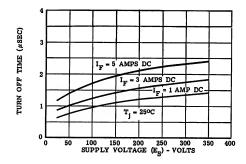

MGCS924-MGCS925 (continued)

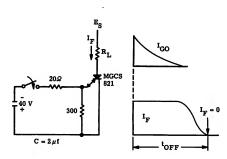

ELECTRICAL CHARACTERISTICS

Characteristic	Symbol	Minimum	Typical	Maximum	Unit
Forward Breakover Voltage (MGCS 924 & 925) - 1 - 2 - 3 - 4 - 5 - 6	V _{FOM}	25 50 100 200 300 400			Volts
Controllable Anode Current	I _F	5			Amps
Forward Blocking Current (@ rated V _{BO})	I FOM		1	5	ma
Reverse Blocking Current (@ rated PRV)	IROM		. 1	5	ma
Forward Voltage Drop @ I _F = 5 amps DC, T _C = 25°C	v _F		1.0	2.0	
Gate Turn On (Trigger) Current @ T _j = 25°C @ T _j = 105°C	I _{GT}		20 5	100 30	ma
Gate Turn On (Trigger) Voltage @ T _j = 25°C @ T _j = 105°C	v _{GT}	. 03	0.8	3.5	v
Gate Turn Off Current @ I _F = 5 amp DC, T _j = -40°C to +105°C Pulse Width = 200 usec	I _{GQ}			-500 (See Note 2)	ma
Gate Turn Off Voltage @ I _F = 5 amp DC, T _j = -40°C to +105°C Pulse Width = 200 usec	v _{GO}			-12	v
Latching Current, T _C = 25°C	^I 1		50		ma
Rise Time(@ T _C = 25°C, I _F = 5 amp DC, I _{GT} = 100 ma)	^t r		1.0		μsec
Fall Time @turn off conditions listed above	^t f		2.0		µsec
Thermal Resistance	$\theta_{ m JC}$			2. 5	°C/W
Holding Current @ T _C = 25 C	I _M		40		ma
Rate of Applied Forward Voltage	dv/dt		40		v/μsec

MGCS924-MGCS925 (continued)

MGCS924-MGCS925 (continued)


NOTES:


- 1. In addition to the gate to cathode resistor (RGC), performance may be enhanced in certain applications by the use of an anode to cathode capacitor (C_{AC}).
- 2. (Reference gate turn off current). Typical units can be turned off with much lower level gate pulses (i.e., exhibit higher gain), however, the values specified are recommended for safe area operation in accordance with figure 2. Recommended turn off gains (IF) for various switching levels are as follows:

a.	Switching from 3-5 amps to 150 volts or less	-10 max.
b.	Switching from 2-3 amps to 300 volts or less	- 6 max.
c.	Switching from less than 2 amps to 400 volts or less	- 4 max.

3. Units with higher forward blocking voltage available on special request. Also, units with intermediate voltage ratings (150 volts, etc.) available on special request.

TYPICAL TURN OFF TIME

MOTOROLA POWER TRANSISTORS

READING REFERENCES

Factors Influencing Selection of Commercial Power Transistor Heat Sinks. Page 12-19

How to get more Value out of a Power Transistor Data Sheet. Page 12-3

Determining Maximum Reliable Load Lines for Power Transistors. Page 12-13

- For devices meeting military specifications, see page 1-18.
- For Meg-A-Life devices with certified reliability, see page 1-21.
- For case outline dimensions, see page 1-26.

HIGH POWER TRANSISTORS

Motorola high-power transistors include both germanium and silicon devices. Generally, these transistors are characterized for both amplifier and switching applications requiring power dissipation ratings up to 170 watts.

APPLICATIONS SELECTION GUIDE

The following tables list the preferred power transistors for specific applications categories. For more detailed specifications, refer to individual specification sheets.

(Table I)

Preferred Power Transistors for Audio Amplifier Applications

(Table II)

Preferred Power Transistors for DC Amplifier and Series OR Shunt Regulator Applications

(Tables III, IV, V)

Preferred Transistors for Power Inverter Applications

SELECTOR GUIDES

TABLE I - AUDIO AMPLIFIER TRANSISTORS

	TRANSISTOR VOLTAGE RATING (BVces)											
POWER OUTPUT	30V	45V	60V	75 V	90V	120V	160V					
1W	2N3611	2N3713*N 3N3612	2N3713*N 2N3615	2N3716*N 2N3616	2N3489*N 2N2141	2N2527	2N2528					
5W	2N3613	2N3614	2N3713*N 2N2832 2N3617	2N3716*N 2N2832 2N3618	2N2833 2N2146	2N2834 2N2527	2N2528					
10W	2N3613	2N3614	2N3713*N 2N2832 2N3617	2N3716*N 2N2832 2N3618	2N2833 2N2146 2N3492*N	2N2834 2N2527	2N2528					
50W	2N1557	2N1558	2N3715*N 2N1599	2N3716*N 2N2832 2N1547	2N2833 2N1548 2N3492*N	2N2834	2N2528					
100W	2N2156	2N2157	2N2153	2N3716*N 2N2154	2N1548 2N3492*N							

NOTE: ALL TRANSISTORS ARE GERMANIUM PNP UNLESS OTHERWISE NOTED

TABLE II — DC AMPLIFIERS AND SERIES OR SHUNT REGULATOR TRANSISTORS

	Vce MAXIMUM VOLTAGE AT SPECIFIED CURRENT; LIMITED BY SAFE AREA											
CURRENT	20V	30V	45V	60V	80V	120V	160V					
0. 1A	2N3611	2N3611	2N3612	2N3615 2N3713*N	2N2141	2N2527	2N2528					
1. 0A	2N3613	2N3715*N 2N1541 2N3312	2N3713*N 2N3313	2N2075								
3.0	2N3311	2N3715*N 2N3313 2N2153	2N2079									
5A	2N3314	2N3715*N										

NOTE: ALL TRANSISTORS ARE GERMANIUM PNP UNLESS OTHERWISE NOTED

^{*} Silicon

N NPN

^{*} Silicon

N NPN

TABLE III — LOW FREQUENCY INVERTER TRANSISTORS (60-400 CPS)

DOWND	TRANSISTOR VOLTAGE RATING (BVces)											
POWER OUT PUT	30	45	60	75	90	120	160					
50	2N3611	2N3612	2N3713*N 2N1541	2N3714*N 2N1542	2N3489*N 2N1543	2N2527	2N2528					
100	2N1539	2N1540	2N3714*N 2N1541	2N3714*N 2N1542	2N3489*N 2N1543	2N2527	2N2528					
200	2N1557	2N1558	2N3715*N 2N1546	2N3716*N 2N1547	2N3491*N 2N1543	2N2527	2N2528					
500	MP504	2N2156	2N2153	2N2154	2N1548							

TABLE IV — MEDIUM FREQUENCY INVERTER TRANSISTORS (400CPS-10 KC)

	TRANSISTOR VOLTAGE RATING (BVces)											
POWER OUTPUT	5	30	45	60	75	90	120	160				
50	2N2912	2N3611	2N3612	2N3713*N 2N1551	2N3714*N 2N1552 2N2526	2N3489*N 2N2527	2N2527	2N2528				
100	2N2728	2N2082	2N2081	2N3715*N 2N1551	2N3716*N 2N1552	2N3489*N 2N2527	2N2527	2N2528				
200				2N3715*N 2N2832 2N2080	2N3716*N 2N2079 2N2832	2N3491*N 2N2527 2N2833	2N2527 2N2834	2N2528 2N2834				
500					2N2079	2N2833	2N2834	2N2834				

TABLE V — HIGH FREQUENCY INVERTER TRANSISTORS (10 KC-50 KC)

	TRANSISTOR VOLTAGE RATING (BVces)												
POWER OUTPUT	5	30	45	60	75	90	120	160					
50	2N2912	2N2832	2N3025* 2N2832	2N3026* 2N3713*N 2N3445*N 2N2832	2N3714*N 3N3446*N 2N2833	2N3489*N 2N2833	2N2834	2N2834					
100				2N3715* 2N3447* 2N2832	2N3448*N 2N3716*N 2N2833	2N3492*N 2N2833	2N2834	2N2834					
200					2N3716* 2N2833	2N3492*N 2N2833	2N2834	2N2834					

NOTES: ALL TRANSISTORS ARE GERMANIUM PNP UNLESS OTHERWISE NOTED.

^{*} INDICATES SILICON TRANSISTOR

N INDICATES NPN TRANSISTOR

GERMANIUM POWER TRANSISTOR SPECIFICATIONS

	8	REAKDOWN VOLTA	AGE	GAI		SATURATION			
Туре	V _{CB} volts	V _{EB} volts	V _{CES} volts	h _{FE} @ min/max	lc amps	VCE(wit) @ volts max	tc/ts amps	fr mc typ	P _D watts
Ic = 15 amps (max)		L							L
2N441	40	20	40	20/40 20/40 35/70 35/70 10/30	5 5	0.3 typ 0.9 0.3 typ	12/2 12/2 12/2 12/2 12/2 10/1	0.30	150
2N2O78* 2N277	40 40	40 20	40 40	35/70	5 5	0. 3 typ	12/2	0. 30 0. 30	150
2N2082* 2N1549*	40 40	40 20	40 30	35/70 10/30	10	0.9 1.0	10/1	0.30 0.55 0.40	170 90
2N1553* 2N1557*	40 40	20 20	30 30	30/60 50/100	10 10	0.7 0.5	10/1	0.40 0.40	150 170 150 170 90 90
2N442	50	30	45	20/40	5	0.3 typ	12/2 12/2 12/2 12/2 12/2	0.30 0.30	150
2N2O77* 2N278	50 50	35 30	50 45	20/40 35/70 35/70	5 5	0.9 1.0	12/2	0.30	170 150
2N2081* 2N1980	50 50	35 20	50 30③	35/70 50/100	5 5	0. 9 0. 5	12/2 5/0.5	0.30 0.30	170 170
2N443	60	40	50	20/40	5	1.0	12/2	0.30 5 ®	150
2N2491 2N173	60 60	30 40	50 50	35/70 35/70 10/30	5 5	0.7 1.0 1.0	12/2 12/2	0.30	170 150
2N1550*	60 60	30 30	45 45	10/30 30/60	10 10	1.0	10/1 10/1	0.55 0.40	90 90
2N1554° 2N1558°	60	30	45	50/100	10	0.5	10/1	0,40	90
2M2490 2M2076*	70	40 25	60 70	20/40 20/40 35/70	5 5	0.7 0.7	12/2 12/2 12/2	5 ⑥ 0.30	170 170
2M2080*	70 70	25 20	70	35/70 50/100	5 5	0.7 0.5	12/2 5/0.5	0.30 0.30	170 170 170
2N1981 2N2075°	70 80	20	40③ 80	20/40	5	0.7	10/0	0.30 5 ®	170
2N2492	80	60 60	70 70	25/50 25/50	5 5	0.5 0.7 0.9	12/2	0.30	170 150
2N1358 † 2N174 †	80 80	60	70	20/40 25/50 25/50 25/50 25/50 25/50 35/70	5	0. 9	12/2 12/2 12/2 12/2 12/2 12/2 12/2	0. 30 0. 30	150
2N174A 2N1099	80 80	60 40	70 70	35/70	5 5	0.7 0.7 0.7	12/2	0.30	150 150
2N2079* 2N1551*	80 80	20 40	80 60	35/70 10/30 20/50	5 10	1.0	12/2 10/1 10/1	0.30 0.55	170 90 90
2N1120 † 2N1555*	80 80	40 40	70 60	20/50 30/60	10 10	1.0	10/1 10/1	0.40 0.40	90 90
2N1559*	80	40	60	50/100	10	0.5	10/1	0, 40	90
2N1982 2N1970	90 100	20 40	50③ 50③	50/100 17/40 25/50 25/50 25/50 10/30 30/60 50/100	5 5 5	0.5 1.0	5/0.5 12/2 12/2	0.30 0.30	170 170
2N1412 †	100	60 80	80 80	25/50 25/60	5 5	0.7 0.7 0.5	12/2	0.30	170 150 150
2N1100 2N2493	100 100	80	85	25/50	5	0.5	12/2 12/2	0.30 5 ® 0.30	170
2N1552* 2N1558*	100 100	50 50	75 75	30/60	10 10	1.0 0.7	10/1 10/1	0. 40 0. 40	90 90
2N1560°	100	50	75	50/100	10	0, 5	10/1	0.40	90
lc = 20 amps (max) MP1612	70	2	50③	25/100	10	0.3	10/1	18.0	85②
2N2832 MP1612A	80 110 120	2 2	50③ 75③	25/100 25/100	10 10	0.3 0.3 0.3	10/1 10/1	18.0 18.0	85② 85②
2N2833 MP1612B	120 130	2 2 2 2 2 2	50① 50③ 75③ 75③ 100② 100③	25/100 25/100 25/100 25/100 25/100	10 10	0.3 0.3	10/1 10/1	18.0 18.0	8500000 8550000000000000000000000000000
2N2834	140	2	1003	25/100	iŏ	0, 3	10/1	18.0	85②
lc == 25 amps (max) 2N2912			63	75/—	10	0.5	25/2, 5	30 O ·	75②
2N1162*	15 50	1.5 25 25	35	15/65	25	0.8	25/1.6	30.0 0.40 0.40 0.40	90
2N1163° 2N1164° 2N1165°†	50 80	40	35 60 60	15/65 15/65 15/65 15/65	25 25	0.8 0.8	25/1.6	0.40	90 90
2N1165*† 2N1168*	80 100	40 50	60 75	15/65 15/65	25 25 25 25 25 25	0. 8 0. 8 0. 8	25/1.6 25/1.6 25/1.6 25/1.6 25/1.6	0.40 0.40	90 90
2N1167*	100	50	75 75	15/65	25	0.8	25/1.6	0.40	90
Ic = 30 amps (max)	45	25	45	50/100	5	0.3	25/2	0.30	170
2N2152* 2N2156*	45	25	45	50/100 80/160 50/100	5	0.3	25/2 25/2 25/2 25/2	0.30 0.30 0.30	170 170
2N2153* 2N2157*	60 60	30 30	60 60	80/160	5 5	0.3 0.3 0.3	25/2	0.30	170 170
2M2154* 2M2158*	75 75	40 40	75 75	80/160 50/100 80/160	5 5	0.3	25/2 25/2	0, 30 0, 30	170 170
I _C = 50 amps (max)							'-		
2N2728	15	15	53	40/130	20	0,1	50/5	0.30	170
l _C = 60 amps (max) MP500*	45	25	45	30/60	15	0.45	50/5	0, 30	170
MP504* MP501*	45 60	25 25 30	45 45 60	30/60 50/100 30/60 50/100 30/60 50/100	15 15	0. 45 0. 45 0. 45 0. 45	50/5 50/5 50/5 50/5	0.30 0.30 0.30	170
MP595*	60 75	30 40	60	50/100 30/60	15 15	0.45 0.45	50/5 50/5	0. 30 0. 30	170 170 170
MP502* MP506*	75 75	40	75 75		15	0, 45	50/5	0.30	170
Туре	lc amps	V _{C8} volts	V _{E8} volts	VCES ha		lc Power Gain mps db typ	VCE (sat)	@ lc/ls amps	P _D watts
2 watts Audio	<u> </u>		L			· · · · · · · · · · · · · · · · · · ·			•
2N554	3	15	15	16 50 30 50	1 (), 5 35), 5 35	0.6 0.6	3/0.3 3/0.3 3/0.3 3/0.3 3/0.3	65 65
2N555 2N176 2M178	3	30 40	15	30 4	5 0).5 35).5 30	0.4 0.6	3/0.3	65 90 90
2N178 2N669	3 3	40 40	20	30 56 30 96	5 6).5 30).5 40	0. 4	3/0.3	90
4 Watts Audio		-				- •		0/0.0	20
2N35QA 2N351A	3 4	50 50	=	40 30 40 41	5 (). 7 31). 7 33	0.8 0.8	3/0.3 4/0.4 5/0.5	90 90
2N376A	5	50		30 6 See data shee).7 35	0.8	5/0.5 (S) BV	90 R, R = 100 ohm
* Available as	meg-A-I	ife" Units	G	, ⊳ee uata siiee	r tot gate g	. ca operation		⊙ ~. CE	K' 2

^{*} Available as "Meg-A-Life" Units † Military type available ① For TO-41 order MP2137, etc.

② See data sheet for safe
③ BV_{CEO}
④ BV_{CER}, R = 30 ohms

<sup>BV_{CER}, R
f_{ae} kc min
Minimum</sup>

⁶⁻⁶

GERMANIUM POWER TRANSISTOR SPECIFICATIONS

	BREAKDOWN VOLTAGE			GAI	N	SATURATI	ON VOLTAGE		
Туре	V _{C8} volts	V _{E8} volts	V _{CES}	hee @		VCE(set) (fr mc typ	P _D watts
Ic = 3 amps (max)	TOIGS	1013	VUILS	min/max	amps	voits max	emps	nic typ	Watts
2N2137*	30	15	30	30/60	0.5	0.5	2/0.2 2/0.2	0.60 0.60	62.5
2N2142° 2N2138°	30 45	15 25	30 45	50/100 30/60 50/100	0.5 0.5	0. 5 0. 5	2/0.2	0.60 0.60	62. 5 62. 5
2N2143* 2N1359	45	25 25	45	50/100	0.5	0.5	2/0.2 2/0.2	0, 60	62.5
2N1359 2N1360	50 50	25 25	45 45 40 40	35/90 60/140	1	1.0 0.8	2/0.2 2/0.2	0. 35 0. 35	90 90
2M2139*	60	30	60	30/60	0.5	0.5	2/0.2	0. 60	62.5
2N2144* 2N2140*	60 75	30 40	60 75	50/100 30/60	0.5 0.5	0. 5 0. 5	2/0.2 2/0.2	0.60 0.60	62.5 62.5 62.5 62.5 90
2M2145*	75	40	75 75 60	50/100 35/90	0,5	0.5	2/0.2 2/0.2 2/0.2	0.60	62.5
2N375 2N818	80 80	40 40	60	35/90 60/140	1	1. 0 0. 8	2/0.2	0.35 0.35	90 90
2M2141* 2M2146*	90	45	90	30/60	0.5	0.5	2/0. 2 2/0. 2 2/0. 2	0.60	62.5
2N1362	90 100	45 50 50	90 75 75	50/100 35/90 60/140	0.5 1	0. 5 1. 0	2/0.2 2/0.2	0.60 0.35	62. 5 90
2N1383 2N1384	100 120	50 60	75 100	60/140 35/90	1	0.8	2/0. 2 2/0. 2	0. 35 0. 35	90
2N3185	120	60	100	60/140	i	1.0 0.8	2/0.2	0. 35	90 90
$I_C = 5$ amps (max)			-						
2N378 2N380	20 30	=	20 30	40/80	2 2	1.0 1.0	2/0.2 2/0.2 3/0.3	5 © 5 ®	106 106
2N380 2N3311	30	20	30	30/70 60/120	3	0.1	3/0.3	0.45	170
2N3314 2N307	30 35	20 10	30 35	100/200 20/—	3 0. 2	0. 1 1. 0	3/0.3 2/0.2	0.45 3 ©	170 106
2N307A	35	10	35	30/	0.2	0.8	1/0.1	3.5®	106
2N379 2N1529*	40 40	20	40 30	20/70 20/40	2 3	1.0	2/0.2	5 ® 0.35	106 90
2N1534° 2N1539°	40 40	20 20	30 30	20/40 35/70 50/100 75/150	3	1.5 1.2 0.6	3/0, 3 3/0, 3	0.35	90
2N1544*	40	20	žΩ	75/150	3 3	0.3	3/0.3 3/0.3 2/0.2 3/0.3	0.40 0.40	90 90
2N242 2N3312	45 45	45 25 25	45 ④ 45 45	30/120 60/120	0. 5 3	0.8 0.1	2/0.2 3/0.3	5 ® 0.45	106 170
203315	45			100/200	3	0.1	3/0.3	0.45	170
2N1530* 2N1535*	60 60	30 30	45 45	20/40	3	1.5 1.2 1.0	3/0.3	0.35 0.35	90 90
2N297A†	60	40	50	35/70 40/100 50/100	Ŏ. 5	1.6	3/0.3 2/0.2 3/0.3 3/0.3 3/0.3	0. 35	90
2N1540° 2N3313	60 60	30 30	45 60	50/100 60/120	3 3		3/0.3 3/0.3	0.40 0.45	90 170
2N1545° 2N1316	60 60	30 30 30	45 60	75/150 100/200	3	0. 1 0. 3 0. 1	3/0.3 3/0.3	0.40 0.45	90 170
2N1531*	80	40	60	20/40	3	1.6	3/0.3	0. 35	90
291011†	80 80	40	80	20/40 30/75 35/70 40/80 50/100 75/150 20/40 35/70	3	1.5 1.2 0.9 0.6 0.3	3/0.3 3/0.2 3/0.3	0.35	90
2N1536* 2N665†	80	40 40 40	60	40/80	Ŏ. 5	0.9	3/0. 22	0.35 20 ©	90 35
2N1541* 2N1548*	80 80	40 40	60 60	50/100 75/150	3 3	0.6	3/0.3	0. 40 0. 40 0. 35	90 90
2N1532*	100 100	50	75	20/40	3	1.5	3/0.3	0. 35	90 90
2N1537* 2N1542*	100	40 50 50 50	75 75 75 75	50/100	3	1.5 1.2 0.6	3/0. 22 3/0. 3 3/0. 3 3/0. 3 3/0. 3 3/0. 3	0.35 0.40	90
291547*	100	50		75/150	3	0.3	3/0.3	0.40	90
2N459 2N458A	105 105	10 25	60 60	20/70 40/70	2 2	1.0	2/0.2	5 ⑥ 5 ⑥	106 106
2N1533 2N1538	120 120	60 60	90	20/40	3	0.3 1.5 1.2	3/0.3	0.35 0.35	90 90
2N1543	120	60	90	40/70 20/40 35/70 50/100	3 3	0,6	2/0. 2 2/0. 2 3/0. 3 3/0. 3 3/0. 3 3/0. 3	0. 40 0. 40	90
2N1548	120	60	90	75/150	3	0, 3	3/0.3	0, 40	90
l _C = 7 amps (max) MP2060	40	20	30	30/200	3	0.25	3/0.3	0.6	85@
2N3611	40	20 20	30 30 30	30/200 35/70 60/120	3	0.25 0.25 0.25	3/0.3 3/0.3 3/0.3 3/0.3 3/0.3	0.6 0.7 0.7	850
2N3613 MP2061	40 60	20	40	30/200	3	0.25	3/0.3	0. 6 0. 7	85@
2N3612 2N3614	60 60	30 30	45 45	35/70 60/120	3 3	0, 25 0, 25	3/0.3 3/0.3	0. 7 0. 7	85 @ 85 @ 85 @ 85 @ 85 @
MP2062	75	20	60	30/200	3	0. 25	3/0.3	0.6	85@
2N3815 2N3817	80 80	40 40	60 60	20/60	3	0. 25 0. 25	3/0 3	0.7	85 @ 85 @
MP2063 2N3816	90 100	20 50	75 75	45/90 30/200 30/60 45/90	3	0. 25 0. 25 0. 25 0. 25 0. 25 0. 25 0. 25	3/0.3 3/0.3 3/0.3	0.7 0.6 0.7	85@ 85@ 85@ 85@ 85@
2N3618	100	50 50	75	45/90	3	0, 25	3/0.3 3/0.3	0.7	85 @ 85 @
l _C = 10 emps (max									
2N1073 2N2526	40 80	1.5 5.0	40③ 80③ 80⑤	20/60 20/50	5 3	1.0 0.8	5/0.5 10/1	0.70	85 85
2N1073A 2N2527	80 120	5.0 1.5 5.0	80 ③ 120 ④	20/50 20/60 20/50	5	1. 0 0. 8	5/0.5 10/1	0.70	85 85
2N1073B	120	1.5 5.0	120③	20/60	3 5 3 5	1.0	5/0.5	_	85
2N2528 lc = 10 amps (max)	160	5.0	160③	20/50	3	0, 8	10/1	0,70	85
ic = 10 amps (max) Case 4	— 1.1005U161								
2N627	40	20	30	10/30	10	1.0	10/1	0.55	90
2N628 2N629	60 80	30 40	45 60	10/30 10/30 10/30	10 10	1.0 1.0	10/1 10/1 10/1	0.55 0.55	90 90
2N830	100	50	75	10/30	10	1.0	10/1	0, 55	90

SILICON POWER TRANSISTOR SPECIFICATIONS

	BI	REAKDOWN VOLTAG	E	G	AIN	SATURATI	ON VOLTAGE		
Туре	V _{C8} voits	V _{EB} voits	Vceo volts	h _{FE} min/max	@ lc amps	Voe(649) @	lc/ls amps	f _T me min	P _D ② @T _C == 25°C watts
Ic = 3 amps (max)	— PNP								
2N3021 2N3024 2N3719 2N3022	30 30 40 45	4 4 4	30 30 40 45	20/60 50/180 25/180 20/60	1 1 1 1	1.5 1.0 1.5 1.5	3/0.3 3/0.3 3/0.3 3/0.3	60 60 60 60	25 25 6 25
2N3025 2N3023 2N3720 2N3026	45 60 60 60	4 4 4	45 60 60 60	50/180 20/60 25/180 50/180	1 1 1 1	1.0 1.5 1.5 1.0	3/0.3 3/0.3 3/0.3 3/0.3	60 60 60	25 25 6 25
Ic = 5 amps (max)	— NPN								
2N1722 2N1724 2N1725	120 120 120	10 10 10	80 80 80	20/90 20/90 50/150	2 2 2	1.0 1.0 1.0	2/0,2 2/0,2 2/0,2	15 15 15	117 117 117
l _C = 7.5 amps (ma	ix) — NPN								
2N3445 2N3487 2N3447 2N3490 2N3488	80 80 80 80 100	6 10 6 10 10	60 60 60 60 80	20/60 20/60 40/120 40/120 20/60	3 5 5 3	1.5 1.2 1.5 1.5 1.2	3/0.3 3/0.3 5/0.5 5/0.5 3/0.3	10 10 10 10 10	117 117 117 117 117
2N3448 2N3491 2N3448 2N3489 2N3492	100 100 100 120 120	10 10 10 10	80 80 80 100 100	20/60 40/120 40/120 15/45 30/90	3 5 5 3 5	1.5 1.5 1.5 1.2 1.5	3/0.3 5/0.5 5/0.5 3/0.3 5/0.5	10 10 10 10 10	117 117 117 117 117
I _C = 10 amps (max	x) — NPN								
2N3235 2N3232 2N3713 2N3715	55 60 80 80	7 6 7 7	55 60 60 60	20/70 15/75 25/90 50/150	4 3 1 1	1.1 2.5 1.0 0.8	4/0.4 3/0.2 5/0.5 5/0.5	1 1 4 4	117 117 150 150
2N3055 2N3714 2N3716	100 100 100	7 7 7	60 80 80	20/70 25/90 50/150	4 1 1	1.1 1.0 0.8	4/0.4 5/0.5 5/0.5	1 4 4	117 150 150
Ic = 10 amps (max									
2N3789 2N3791 2N3790 2N3792	60 60 80 80	7 7 7	60 60 80 80	25/90 50/150 25/90 50/150	1 1 1	1.0 1.0 1.0 1.0	4/0.4 4/0.4 4/0.4 4/0.4	4 4 4	150 150 150 150

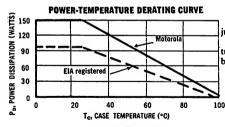
¹ Solid Header

³ See data sheet for safe area operation

2N 173

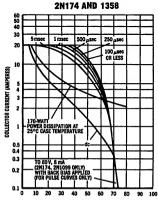
For Specifications, See 2N277 Data Sheet

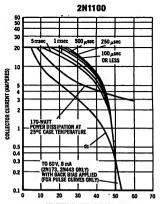
2N174 2N1100 2N1358


CASE 5 (TO-36)

PNP germanium power transistors. Power dissipation and junction temperature ratings exceed those of EIA registration.

ABSOLUTE MAXIMUM RATINGS


Characteristic	Symbol	2N174	2N1100	2N1358	Unit
Collector-Base Voltage	вусво	80	100	80	Vdc
Emitter-Base Voltage	BV _{EBO}	60	80	60	Vdc
Emitter Current (Continuous)	I _E	15	15	15	Amps
Base Current (Continuous)	I _B	4	4	4	Amps
Junction and Storage Temperature	T_J, T_{stg}	-65 to +110			°C
Thermal Resistance, Junction to Case (Motorola Units)	$\theta_{ m JC}$		°C/W		

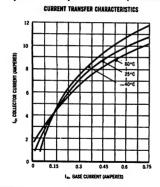

The maximum continuous power is related to maximum junction temperature by the thermal resistance factor.

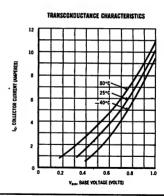
This curve has a value of 150 Watts at case temperatures of 25°C and is 0 Watts at 100°C with a linear relation between the two temperatures such that:

allowable
$$P_D = \frac{100^{\circ} - \tau_c}{0.5}$$

The Safe Operating Area Curves indicate Ic—Vob limits below which the device will not go into secondary breakdown. Collector load lines for specific circuits must fall within the applicable Safe Area to avoid causing a collector-emitter short.

(Duty cycle of the excursions make no significant change in these safe areas.) To insure operation below the maximum T_J, the power-temperature derating curve must be observed for both steady state and pulse power conditions.


2N174, 2N1100, 2N1358 (continued)


ELECTRICAL CHARACTERISTICS

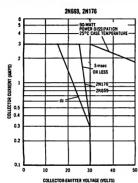
Characteristic		Symbol	Minimum	Typical	Maximum	Unit
Collector-Base Cutoff Current (V _{CB} = -2 volts)	2N174 2N1100 2N1358	СВО	-	100 100 100	- - 200	μА
Collector-Base Cutoff Current (V _{EB} = -1.5 volts, V _{CB} = -80 volts) -100 -80	2N174 2N1100 2N1358	I _{CB}	-	2 2 2 2	8 8 8	mA
Emitter-Base Cutoff Current (VEB = -60 volts) -80 -60	2N174 2N1100 2N1358	I _{EBO}	-	1 1 1	8 8 8	mA
Collector-Base Cutoff Current (V _{CB} = - 80 volts, 71°C) -100 - 60	2N174 2N1100 2N1358	СВО	-	- - 4	15 15 6	mA
Emitter-Base Cutoff Current (V _{EB} = -30 volts, 71°C)	2N1358	I _{EBO}	-	4	6	mA
Collector-Emitter Voltage (I _C = 300 mA, V _{EB} = 0)	2N174 2N1100 2N1358	BV _{CES} *	-70 -80 -70		- - -	Vdc
Collector-Emitter Voltage (IC = 1.0 amp, IB = 0) 1.0 amp, IB = 0 300 mA, IB = 0	2N174 2N1100 2N1358	BV _{CEO} *	-55 -65 -40			Vdc
Floating Potential (I _E = 0, V _{CB} = - 80 volts) -100 - 80	2N174 2N1100 2N1358	$v_{ m FE}$	-	- 0.15	1.0 1.0 1.0	volt
Current Gain (IC = 1.2 amps, VCB = -2 volts) (IC = 5 amps, VCB = -2 volts) (IC = 12 amps, VCB = -2 volts)	2N1358 2N174 2N1100 2N1358 2N174 2N1100	h _{FE}	40 25 25 25 25 -	55 - - 35 20 20	80 50 50 - -	-
Base-Emitter Voltage (I _C = 1. 2 amps, V_{CB} = -2 volts) (I _C = 5 amps, V_{CB} = -2 volts)	2N1358 2N174 2N1100 2N1358	V _{BE}	- - -	0.35 0.65 0.65 0.65	0.5 0.9 0.9 0.9	Vdc
Saturation Voltage $(I_C = 12 \text{ amps}, I_B = 2 \text{ amps})$	2N174 2N1100 2N1358	V _{CE(sat)}		0.3 0.3 0.3	0.9 0.7 0.7	Vdc
Common-Emitter Current Amplification Cutoff Frequency (I _C = 5 amp, V _{CE} = 6 volts)	2N174 2N1100	^f ae	-	10	_	kc
Common-Base Current Amplification Cutoff Frequency (I _C = 1 amp, V _{CB} = -12 volts)	2N1358	^f ab	100	_	_	kc
Rise Time ("on" I _C = 12 Adc, I _B = 2 Adc, V _{CE} = -12 volts)	All Types	t _r	-	15		μsec
Fall Time ("off" IC = 0, VEB = -6 volts, REB = 10 ohms)	All Types	^t f		15	-	μsec

^{*} In order to avoid excessive heating of the collector junction, perform test by the sweep method.

2N174, 2N1100, 2N1358 (continued)

2N 176 2N669

 $P_{C} = 90 \text{ W}$ $I_{C} = 3 \text{ A}$ $V_{CBO} = 40 \text{ V}$

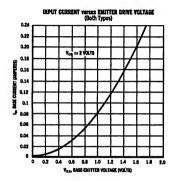


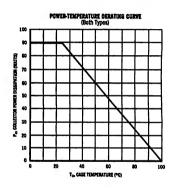
PNP germanium power transistors for economical power switching circuits and commercial grade power amplifier applications.

ABSOLUTE MAXIMUM RATINGS

Characteristic	Symbol	Rating	Unit
Collector-Base Voltage	v _{сво}	40 \$	Vdc
Collector-Emitter Voltage	v _{CEi} *	30	Vdc
Collector Current (Continuous)	I _C	3	Amps
Storage and Junction Temperature	T _j , T _{stg}	-65 to +100	°C
Collector Dissipation (At 25°C Case Temperature)	P _C	90	Watts
Thermal Resistance (Junction to Case)	θ _{JC}	0.8	°C/W

*2N176 figure is VCER, 2N669 figure is VCES


SAFE OPERATING AREAS


The Safe Operating Area Curves indicate Ic — Vcs limits below which the device will not go into secondary breakdown. Collector load lines for specific circuits must fall within the applicable Safe Area to avoid causing a collector-emitter short. (Case temperature and duty cycle of the excursions make no significant change in these safe areas.) To insure operation below the maximum TJ, the-power-temperature derating curve must be observed for both steady state and pulse power conditions.

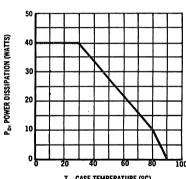
2N176, 2N669 (continued)

ELECTRICAL CHARACTERISTICS (At 25°C case temperature unless otherwise specified)

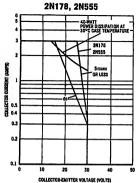
Characteristic		Symbol	Minimum	Typical	Maximum	Unit
Collector-Base Cutoff Current $V_{CB} = 30 \text{ V}, I_{E} = 0$ $V_{CB} = 2.0 \text{ V}, I_{E} = 0$ $V_{CB} = 30 \text{ V}, I_{E} = 0, T_{C} = 90^{\circ}\text{C}$	Both Types	ІСВО	- - -	 50 	3 — 20	mA μA mA
Emitter-Base Cutoff Current $V_{EB} = 10 \text{ V}, I_C = 0$	Both Types	I _{EBO}	_	_	2	mA
Collector-Emitter Breakdown Voltage I_C = 330 mA, R_{BE} = 10 Ohms	2N176 2N669	BV _{CER} BV _{CES}	30 30	_	_	Vdc
Collector-Emitter Saturation Voltage $I_C = 3 A$, $I_B = 300 \text{ mA}$	Both Types	V _{CE(SAT)}	_	0.4	_	Vdc
DC Forward Current Transfer Ratio V _{CE} = 2.0 V, I _C = 0.5 A	2N176 2N669	h _{FE}	25 75	=	 250	_
Power Gain $P_O = 2$ Watts, $V_{CE} = 12$ V, $I_C = 0.5$ Amp, $f = 1$ kc, $R_S = 10$ Ohms, $R_L = 26.6$ Ohms	2N176 2N669	G _{PE}	34 38	=	37	dc
Total Harmonic Distortion (under same conditions of power gain)	Both Types					%
Small-Signal Current Gain Cutoff Frequency $V_{CE} = 12 \text{ V}, I_{C_{\phi}} = 0.5 \text{ Amp, } f = 1 \text{ kc ref}$	2N176 2N669	fae	4 3	7 5	=	kc
Small-Signal Forward-Current Transfer Ratio V_{CE} = 2.0 V, I_{C} = 0.5 Amp, f = 1 kc	2N176 2N669	hFE	=	45 90	=	_
Small-Signal Input Impedance $V_{CE} = 2.0 \text{ V}, \text{ I}_{C} = 0.5 \text{ Amp}, f = 1 \text{ kc}$	2N176 2N669	h _{FE}	7 10	_	25 50	Ohms

2N 178 2N554. 2N555

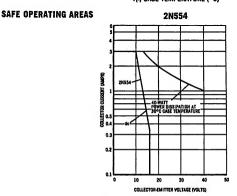
 $P_D = 40 \text{ W}$ $I_C = 3 \text{ A}$ $V_{CBO} = 15-30 \text{ V}$



PNP germanium power transistor for non-critical power amplifier and power switching applications requiring economical components.

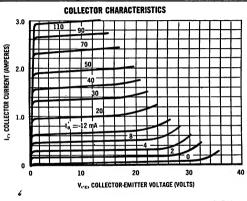

MAXIMUM RATINGS

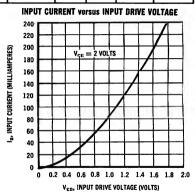
Characteristic	Symbol	2N178	2N554	2N 555	Unit
Collector-Base Voltage	v _{сво}	30	15	30	Vdc
Collector-Emitter Voltage	VCER	30	16	30	Vdc
Emitter-Base Voltage	v _{EBO}	20	15	15	Vdc
Collector Current	I _C	3	3	3	Amps
Junction and Storage Temperature Range	T _J T _{stg}		-40 to +90		°c
Collector Power Dissipation (at T _C = 80°C)	P _C	10	10	10	Watts


POWER-TEMPERATURE DERATING CURVE (All Types)

Tc. CASE TEMPERATURE (°C)

The Safe Operating Area Curves indicate I_0 — $V_{\rm CB}$ limits below which the device will not go into secondary breakdown. Collector load lines for specific circuits must fall within the applicable Safe Area to avoid causing a collector-emitter short.


(Duty cycle of the excursions make no significant change in these safe areas.) To insure operation below the maximum T_J, the power-temperature derating curve must be observed for both steady state and pulse power conditions.



2N178, 2N554, 2N555 (continued)

ELECTRICAL CHARACTERISTICS (At 25°C case temperature unless otherwise specified)

Characteristic		Symbol	Min	Typical	Max	Unit
Collector-Base Cutoff Current (V _{CB} = 30 V, I _E = 0)	2N178	I _{СВО}	_	-	3. 0	mμA
(V _{CB} = 15 V, I _E = 0)	. 2N554		-	-	10.0	
$(V_{CB} = 30 \text{ V}, I_{E} = 0)$	2N555		-	-	20. 0	
Collector-Base Cutoff Current (V _{CB} = 2 V, I _E = 0)	2N178	Сво	-	50	-	μА
Emitter-Base Cutoff Current $(V_{EB} = 10 \text{ V}, I_{C} = 0)$	2N 178	I _{EBO}	-	-	2. 0	mA
Collector-Base Cutoff Current (V _{CB} = 30 V, I _E = 0,		I _{CBO}				mA
T _C = 90°C)	2N178		-	-	20.0	
Collector-Emitter Breakdown Voltage (I_C = 330 mA, $R_{BB} = 10 \Omega$)	2N178 2N554 2N555	BV _{CER}	30 16 30	-		Vdc
Power Gain (P _O = 2 Watts; V _{CE} = 12 V, I _C = 0.5 A,	2N178	G _e	28	-	33 ′	db
$f = 1 \text{ kc}, R_s = 10 \text{ Ohms}, R_L = 26.6 \text{ Ohms}$	2N554 2N555		25 25	-	-	
Total Harmonic Distortion (under same conditions as power gain)	2N178		-	-	5	%
DC Forward Current Transfer Ratio (V _{CE} = 2 V, I _C = 0.5 A)	2N178 2N554 2N555	h _{FE}	15 - -	50 50	45 - -	-
Small-Signal Current Gain Cutoff Frequency (V _{CE} = 12 V, I _C = 0.5 A,	2N178	f _{ae}	5	-	-	kc
f = 1 kc ref)	2N554 2N555		:	6 6	-	
Small-Signal Forward Current Transfer-Ratio (Base Input)		h _{fe}				-
$V_{CE} = 2V$, $I_{C} = 0.5 A$,	2N178		-	50	-	
f = 1 kc ref)	2N554 2N555		-	55 55	-	
Small-Signal Input Impedance (Base Input) (V _{CE} = 2 V, I _C = 0.5 A,	2N178	h _{ie}	8	25	~	Ohms
f = 1kc)	2N554 2N555		-	25 25	-	
Collector-Emitter Saturation Voltage (I _C = 3 A, I _B = 300 mA)	All Types	V _{CE(sat)}	-	0.6	-	Vdc

2N**242** 2N307, A

 $P_{C} = 90 \text{ W}$ $I_{C} = 5 \text{ A}$ $V_{CBO} = 35-45 \text{ V}$

PNP germanium power transistors for general purpose power amplifier and switching applications.

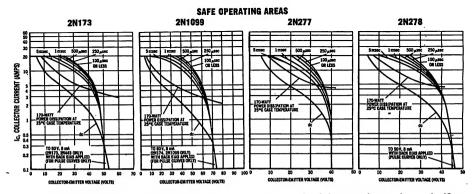
ABSOLUTE MAXIMUM RATINGS

Characteristic	Symbol	2N242	2N307, 307A	Unit
Collector-Base Voltage	v _{сво}	45	35	Volts
Collector-Emitter Voltage ($R_{BE} = 30 \Omega$)	v _{CER}	-45	-	Volts
Collector-Emitter Voltage	V _{CEO}		35	Volts
Emitter-Base Voltage	V _{EBO}	-	10	Volts
Collector Current	I _C	5	5	Amps
Junction Temperature Range	T _J	-65 to + 110	-65 to +110	°c
Collector Dissipation (at T _C = 25°C)	P _C	90	90	Watts

ELECTRICAL CHARACTERISTICS (Tc = 25°C unless otherwise noted)

Characteristic		Symbol	Min	Max	Unit
Collector-Base Cutoff Current (VCB = -2 Vdc) (VCB = -25 Vdc) (VCB = -1 Vdc, I _E = 0,T _C =85°C)	2N307 2N307 2N307 A 2N242	ІСВО	- - -	0.5 5 2 5	mAdc
Emitter-Base Cutoff Current (V _{EB} = -10 Vdc)	All Types	IEBO		2	mAdo
	2N242 2N242 2N307 2N307 A	¹ CER		5 1 15 7	mAdo
Base-Emitter Voltage (V _{CE} = -1.5 Vdc, I _C = 1.0 Adc)	2N242	VBE	-0.3	-0.8	Vdc
	2N242 2N307 2N307A	VCE(sat)	=	-0. 8 -1. 0 -0. 8	Vdc
DC Current Gain (V _{CE} = -12 Vdc, I _C = 500 mAdc) (V _{CE} = -1 Vdc, I _C = 200 mAdc)	2N242 2N307 2N307A	h _{FE}	30 20 30	120 — —	
Common Emitter Cutoff Frequency (V _{CE} = -12 V, I _C = 0.5 A) (V _{CE} = -6 V, I _C = 1 A)	2N242 2N307A 2N307	fae	5 3.5 3		ke
Power Gain (I _C = 0.5 A, V _{CE} = -14 V, R _L = 30 Ω , R _g = 10 Ω)	2N242	Ge	30	·	db

2N**277**2N**278**2N173
2N1099


 $P_D = 150 \text{ W}$ $I_C = 15 \text{ A}$ $V_{CBO} = 40-60 \text{ V}$

PNP germanium power transistors for general purpose power amplifier and switching applications. Power and temperature ratings exceed EIA registration.

ABSOLUTE MAXIMUM RATINGS

Characteristic	Symbol	2N277	2N278	2N173	2N1099	Unit
Collector-Base Voltage	V _{СВО}	40	50	60	80	Vdc
Emitter-Base Voltage	VEBO	20	30	40	40	Vdc
Emitter Current (Continuous)	IE	15	15	15	15	Amp
Base Current (Continuous)	In	4	4	4	4	Amp
Junction and Storage Temperature	Tstg	-	—65 то	+ 100 —		°C
Thermal Resistance Junction to Case	θic	-	O.	.5 —		°C/W

The Safe Operating Area Curves indicate $Ic - V_{CB}$ limits below which the device will not go into secondary breakdown. Collector load lines for specific circuits must fall within the applicable Safe Area to avoid causing a collector-emitter short.

(Duty cycle of the excursions make no significant change in these safe areas.) To insure operation below the maximum T_J, the power-temperature derating curve must be observed for both steady state and pulse power conditions.

2N277, 2N278, 2N173, 2N1099 (continued)

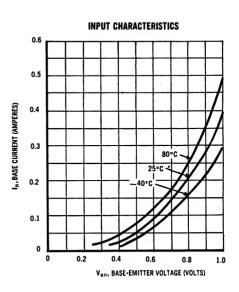
ELECTRICAL CHARACTERISTICS (At 25°C case temperature)

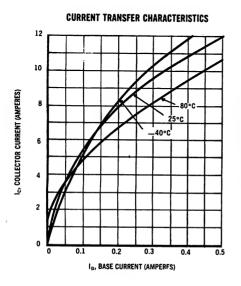
Characteristic		Symbol	Minimum	Typical	Maximum	Unit
Collector-Base Cutoff Current V _{CBO} = -2 V	All Types	^I СВО	-	100	_	μА
	2N277 2N278 2N173 2N1099	^I СВ	=	2 2 2 2	8 8 8 8	mA
Emitter-Base Cutoff Current VEBO = -20 V -30 -40 -40	2N277 2N278 2N173 2N1099	I _{EBO}		1 1 1 1	8 8 8 8	mA
Collector-Base Cutoff Current VCBO = -40 V, 71°C -50 -60 -80	2N277 2N278 2N173 2N1099	I _{CBO}	=	= =	15 15 15 15	mA
Collector-Emitter Voltage $I_C = 300 \text{ mA}, V_{EB} = 0$	2N277 2N278 2N173 2N1099	BV _{CES} *	-40 -45 -50 -70	= = =	=	Vdc
Collector-Emitter Voltage I _C = 1 Amp, I _B = 0	2N277 2N278 2N173 2N1099	BV _{CEO} *	-25 -30 -45 -55	_ _ _	=======================================	Vdc
Floating Potential I _E = 0, V _{CB} = -40 V -50 -60 -80	2N277 2N278 2N173 2N1099	v _{fl}		0.15 0.15 0.15 0.15	1.0 1.0 1.0 1.0	volt
Current Gain $I_C = 5$ Amps, $V_{CB} = -2$ V $I_C = 12$ Amps, $V_{CB} = -2$ V	All Types	h _{FE}	35 —	 25	70 —	_
Base-Emitter Voltage l _C = 5 Amps, V _{CB} = -2 V	2N277 2N278 2N173 2N1099	V _{BE}	= =	0.65 0.65 0.65 0.65	 	Vdc
Saturation Voltage I_C = 12 Amps, I_B = 2 Amps	2N277 2N278 2N173 2N1099	V _{CE(SAT)}	=	0.3 0.3 0.3 0.3	1.0 1.0 0.7	Vdc
Common-Emitter Current Amplification Cutoff Frequency $I_C = 5$ Amps, $V_{CE} = -6$ V	All Types	^f ae	_	10	- .	kc
Rise Time "on" I_C = 12 Adc, I_B = 2 Adc, V_{CE} = -12 V	All Types	t _r	_	15	_	μsec
Fall Time "off" $I_C = 0$, $V_{EB} = -6 \text{ V}$, $R_{EB} = 10 \text{ Ohms}$		t _f	_	15	_	μѕес

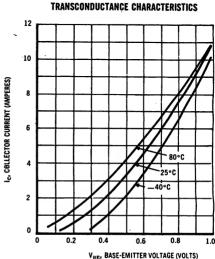
^{*} To avoid excessive heating of the collector junction, perform these tests with the sweep method.

2N277, 2N278, 2N173, 2N1099 (continued)

POWER-TEMPERATURE DERATING CURVE 140 120 Matarala POWER DISSIPATION 100 60 40 20 20 40 RN


The maximum continuous


Tc, CASE TEMPERATURE (°C)

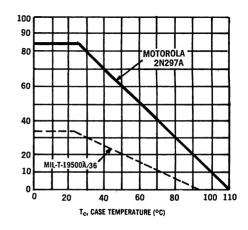

The maximum continuous power is related to maximum junction temperature by the thermal resistance factor.

This curve has a value of 150 Watts at case temperatures of 25°C and is 0 Watts at 100°C with a linear relation between the two temperatures of the proper services and the services of the service tion between the two temperatures such that:

allowable
$$P_D = \frac{100^{\circ} - T_C}{0.5}$$

2N297 A

 $P_{C} = 90 \text{ W}$ $I_{E} = 5 \text{ A}$ $V_{CRO} = 60 \text{ V}$



PNP germanium power transistors for military and industrial power switching and amplifier applications. Operating temperature range and collector dissipation rating excedes military specifications.

MAXIMUM RATINGS

Characteristic	Symbol	Rating	Unit
Collector-Base Voltage	v _{сво}	60	Vdc
Collector-Emitter Voltage	V _{CEB}	50	Vdc
Collector-Emitter Voltage	v _{CEO}	40	Vdc
Emitter-Base Voltage	v _{EBO}	40	Vdc
Emitter Current	I _E	5	Amps
Operating Temperature Range (MIL-T-19500A/36)	_	-65 to +95	°C
Operating Temperature Range (MOTOROLA 2N297A)	_	-65 to +110	°c
Collector Dissipation at 75°C Case Temperature (MIL-T-19500A/36)	P _C	10	Watts
Collector Dissipation at 25°C Case Temperature (MOTOROLA 2N297A) ($\theta_{\rm JC} = 0.8$ °C/W max)	P _C	85	Watts

POWER — TEMPERATURE DERATING CURVE

-Motorola Power Transistors—

2N297 A (continued) ELECTRICAL CHARACTERISTICS (At 25°C unless otherwise specified)

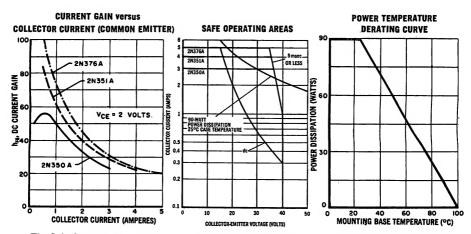
Characteristic	Symbol	Minimum	Maximum	Unit
DC Current Transfer Ratio	h _{FE}	40	100	+-
V _{CE} = 2 V	12			
I _C = 0.5 Adc				
DC Current Transfer Ratio	h _{FE}	20	_	T -
V _{CE} = 2 V				
I _C = 2.0 Adc				
Small-Signal Current Transfer Ratio Cutoff Frequency	fae	5		kc
V _{CE} = 14 Vdc				
I _C = 0.5 Amp				
Emitter-Base Cutoff Current	I _{EBO}	-	3.0	mAdc
$V_{EB} = 40 \text{ Vdc}$				
I _C = 0	L			
Collector-Base Cutoff Current V _{CB} = 2 Vdc	I _{CBO}	-	200	μAdc
IE = 0				
Collector-Base Cutoff Current	I _{CBO}	1 - 1	3.0	mAdc
V _{CB} = 60 Vdc	020			
$I_{\mathbf{E}} = 0$				
Base Current	I _B	5.0	12.5	mAdc
V _{CE} = 2 Vdc				
I _C = 0.5 Adc				
Base Current V _{CE} = 2 Vdc	IB	_	100	mAdc
I _C = 2 Adc				
Emitter-Base Voltage	v _{EB}	_	1.5	Vdc
V _{CE} = 2 Vdc	EB			
I _C = 2 Adc				
Floating Potential	v_{fl}	0.0	0.18	Vdc
V _{CB} = 60 Vdc				
(Voltmeter input resistance = 10 Megohm min)				1
Collector-Emitter Saturation Voltage	V _{CE(SAT)}	0.0	1.0	Vdc
I _C = 2 Adc	CE(SAI)			
I _B = 200 mAdc				
Collector-Emitter Voltage	BVCEO	40	_	Vdc
$I_{\mathbf{C}} = 300 \text{ mAdc}$ $I_{\mathbf{B}} = 0$]
Collector-Emitter Voltage	DV	50		Vdc
I _C = 300 mAdc	BVCES	"		V ac
V _{EB} = 0				
Small-Signal Short-Circuit Forward-Current Transfer Ratio Cutoff Frequency	fae	5		kc
$V_{CE} = 14 \text{ Vdc}$ $I_{C} = 0.5 \text{ Adc}$				
High-Temperature Operation				
$T_C = +71^{\circ}C \text{ min}$				
Collector Cutoff Current	I _{CBO}	-	6. 0	mAdc
V _{CB} = 30 Vdc				
$I_{\mathbf{E}} = 0$		<u> </u>		

2N307 2N307 A

For Specifications, See 2N242 Data Sheet

2N350A 2N351A

 $P_C = 90 \text{ W}$ $I_C = 3-5 \text{ A}$ $V_{CBO} = 50 \text{ V}$


2N376A

PNP germanium power transistors for economical power switching applications and for power amplifiers requiring up to 4 watts of output power at relatively low distortion.

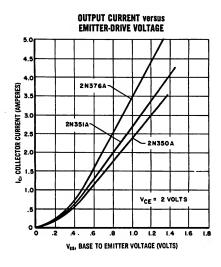
MAXIMUM RATINGS

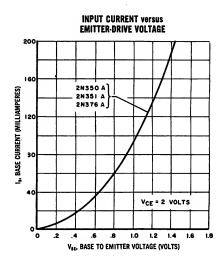
Characteristic	Symbol	Rating	Unit
Collector-Base Voltage	v _{CBO}	50	Vdc
Collector-Emitter Voltage	v _{CES}	40	Vdc
Collector Dissipation at 25°C mounting base temperature	P _C	90	Watts
Collector Junction Temperature	T _j	-65 to +100	•€
Thermal Resistance (Junction to Case)	θJC	0.8	°C/W

The Safe Operating Area Curves indicate Ic—VcB limits below which the device will not go into secondary breakdown. Collector load lines for specific circuits must fall within the applicable Safe Area to avoid causing a collector-emitter short.

(Duty cycle of the excursions make no significant change in these safe areas.) To insure operation below the maximum T_J, the power-temperature derating curve must be observed for both steady state and pulse power conditions.

2N350A, 2N351A, 2N376A (continued)


ELECTRICAL CHARACTERISTICS (at mounting base temperature 25°C ± 3°C.)


GENERAL	Symbol	Minimum	Typical	Maximum	Unit
Collector Cutoff Current VCB = 30 V VCB = 2 V VCB = 30 V, T = 100°C	СВО	<u>-</u> -	 50 	3.0 — 30	mA μA mA
Emitter Cutoff Current V _{EB} = 10 V	I _{EBO}	_	_	2.0	mA
Collector Breakdown Voltage $I_C = 1 \text{ A } (R_{BB} = 10 \Omega)$ $I_C = 330 \text{mA}, R_{BB} = 0$ (This test should be made under dynamic conditions only)	BV _{CES}	40	_	_	Vdc

ELECTRICAL CHARACTERISTICS (at mounting base temperature $25^{\circ}C \pm 3^{\circ}C$.)

COMMON EMITTER	2N350A			2N351A			2N376A			Unit	
	Sym	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	
Power Gain (\pm 0.5 db) P _O = 4 Watts, V _{CE} = 12 V, I _C = 0.7 A, f = 1 kc	G _{PE}	_	_	33	32	_	35	34	_	37	đb
Total Harmonic Distortion under same conditions as power gain		_	_	7%	_	_	7%	_	_	7%	
DC Forward Current Gain V _{CE} = 2 V, I _C = 0.7 A	h _{FE}	20	_	60	25	_	90	35	_	120	
Current Gain Frequency Cutoff V_{CE} = 12 V, I_{C} = 0.7 A, f = 1 kc ref	f _{ae}	5	_	_	5	_	_	5	_	_	kc
Small-Signal Forward Current Gain f = 1 kc, V _{CE} = 2 V, I _C = 0.7 A	h _{fe}	_	30	_	_	45	_	_	60	_	
Small-Signal Input Impedance f = 1 kc, V _{CE} = 2 V, I _C = 0.7 A	h _{fe}			-							Ohms
Collector Saturation Voltage I _C = 3 A, I _B = 300 mA	V _{CE(SAT)}	_	0.8	1.75	_	_	-	_	_	_	Vdc
Base-Emitter Voltage I _C = 3 A, I _B = 300 mA	v _{BE}	_	1.0	2.00	_	_	_	_	_	_	Vdc
Collector Saturation Voltage I _C = 4 A, I _B = 400 mA	V _{CE(SAT)}	_	_	_	_	0.8	1.75	_	_	_	Vdc
Base-Emitter Voltage I _C = 4 A, I _B = 400 mA	v _{BE}	-	_	_	_	1.0	2.00	_	_	_	Vdc
Collector Saturation Voltage I _C = 5 A, I _B = 500 mA	V _{CE(SAT)}	_	_	_	_	_	_	_	0.8	1.75	Vdc
Base-Emitter Voltage I _C = 5 A, I _B = 500 mA	v _{BE}	_	_	_	_	_	_		1.0	2.00	Vdc

2N350A, 2N351A, 2N376A (continued)

 $P_{C} = 90 \text{ W}$ $I_{C} = 3 \text{ A}$ $V_{CBO} = 50-120 \text{ V}$

2N375

2N618

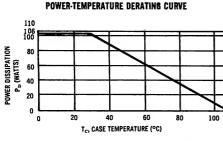
2N1359

2N1360

2N1362 thru 2N1365

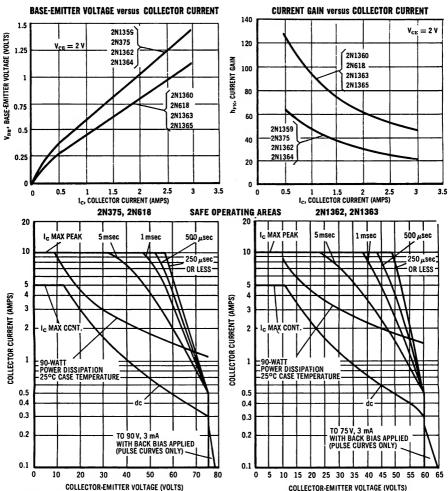
PNP germanium power transistors for general purpose switching and amplifier applications.

MAXIMUM RATINGS


Characteristic	Symbol	2N1359 2N1360	2N375 2N618	2N1362 2N1363	2N1364 2N1365	Unit
Collector-Base Voltage	V _{CBO}	50	80	100	120	Vdc
Collector-Emitter Voltage	VCES	40	60	75	100	Vdc
Emitter-Base Voltage	VEBO	25	40	50	60	Vdc
Collector Current (Continuous)	Ic	3	3	3	3	Amps
Collector Current (Peak)	Ic	10	10	10	10	Amps
Collector Junction Temperature Range	T,	4	65 Т	0 + 110 -		°C
Collector Dissipation (25°C Case Temperature)	Pc	106	106	106	106	Watts
Thermal Resistance	θ _{JC}	0.8	0.8	0.8	0.8	°C/W

2N375, 2N618, 2N1359, 2N1360, 2N1362 thru 2N1365 (continued)

ELECTRICAL CHARACTERISTICS (At = 25°C unless otherwise noted)


Characteristic	Types	Symbol	Minimum	Typical	Maximum	Unit
	2N1359, 2N1360	^I сво	1.1		3.0 20.0	mA
$(V_{CB} = 60 \text{ V}, I_{E} = 0)$ $(V_{CB} = 80 \text{ V}, I_{E} = 0)$	2N375, 2N618		 		3.0 20.0	
$(V_{CB} = 75 \text{ V}, I_{E} = 0)$ $(V_{CB} = 100 \text{ V}, I_{E} = 0)$	2N1362, 2N1363				3.0 20.0	
$(V_{CB} = 100 \text{ V}, I_{E} = 0)$ $(V_{CB} = 120 \text{ V}, I_{E} = 0)$	2N1364, 2N1365		 		3.0 20.0	
Collector-Base Cutoff Current at Tc = +90°C V _{CB} = 1/2 BV _{CES} rating	All Types	I _{СВО}			20	mA
Emitter-Base Cutoff Current (V _{EB} = 12 V, Ic = 0)	All Types	I _{EBO}			0.5	mA
(V _{EB} = 25 V, I _C = 0) (V _{EB} = 50 V, I _C = 0) (V _{EB} = 60 V, I _C = 0)	2N1359, 2N1360 2N1362, 2N1363 2N1364, 2N1365		 		20 20 20	
Collector-Emitter Breakdown Voltage $I_C = 500 \text{ mA}, V_{EB} = 0$	2N1359, 2N1360 2N375, 2N618 2N1362, 2N1363 2N1364, 2N1365	BV _{CES}	40 60 75 100	 	 	Vdc
DC Current Transfer Ratio (V _{CE} = 4 V, I _C = 1.0A) (V _{CE} = 4 V, I _C = 1.0A)	2N1359, 375, 1362, 64 2N1360, 618, 1363, 65 2N1359, 375, 1362, 64 2N1360, 618, 1363, 65	h _{FE}	35 60 15 20	55 90 22 35	90 140 	
Transconductance (V _{CE} = 4 V, I _C = 1.0A)	2N375 2N618 2N1359, 2N1362, 2N1364 2N1360, 2N1363, 2N1365	gfE	0.8 1.0 0.8 1.0	1. 25 1. 6 1. 25 1. 6	2. 2 2. 5 	mhos
Frequency Cutoff (VCE = 4 V, I _C = 1 A) (VCE = 4 V, I _C = 1 A) (V _{CE} = 4 V, I _C = 3 A) (V _{CE} = 4 V, I _C = 3 A)	2N375 2N618 2N1359, 2N1362, 2N1364 2N1360, 2N1363, 2N1365	f _{ae}	7 5 7 5	10 8.5 10 8.5	 	kc
Collector Saturation Voltage (I _C = 2.0 A, I _C = 200mA)	2N1359, 375, 1362, 64 2N1360, 618, 1363, 65	V _{CE(sat)}	1.1	0. 4 0. 3	1.0 0.8	Vdc
Base-Emitter Drive Voltage (I _C = 2.0A, I _B = 200 mA)	2N1359, 375, 1362, 64 2N1360, 618, 1363, 65	v _{BE}	 	0. 7 0. 6		Vdc
Collector-Emitter Punch- Through Voltage (V _{CB} = 50 V, I _C = 0) (V _{CB} = 100 V, I _C = 0) (V _{CB} = 120 V, I _C = 0)	2N1359, 2N1360 2N1362, 2N1363 2N1364, 2N1365	v _{EBF}		 	1. 25 1. 25 1. 25	Vdc

2N375 (continued)

The maximum continuous power is related to maximum junction temperature, by the thermal resistance factor. For d.c. or frequencies below 25 cps the transistor must be operated within the constant $P_D = Vc \times Ic$ hyperbolic curve. This curve has a value of 106 Watts at case temperatures of 25°C and is 0 Watts at 110°C with a linear relation between the two temperatures such that

 P_D allowable = $\frac{110^O - Tc}{.08}$

The Safe Operating Area Curves indicate $I_C - V_{CE}$ limits below which the device will not go into secondary breakdown. Collector load lines for specific circuits must fall within the applicable Safe Area to avoid causing a collector-emitter short.

COLLECTOR-EMITTER VOLTAGE (VOLTS)
(Duty cycle of the excursions make no significant change in these safe areas.) To insure operation below the maximum T_J, the power-temperature derating curve must be observed for both steady state and pulse power conditions.

2N376A

For Specifications, See 2N350A Data Sheet

2N378 thru 2N380

2N459.A

 $P_{C} = 90W$ $I_{C} = 5 A$ $V_{CRO} = to 105 V$

PNP germanium power transistors for general purpose power amplifier and switching applications.

Characteristic	Symbol	2N378	2N379	2N380 -	2N459	2N459A	Unit	
Collector-Base Voltage	v _{Сво}	_	_	_	_	105	Volts	
Collector-Emitter Voltage (VBE = 1.5 V) (VBE = 1.0 V)	VCEX	40 —	80 —	60 —	_ 105	_ 105	Volts	
Collector-Emitter Voltage (RBE = 0)	VCES	-	-	-	70	70	Volts	
Collector-Emitter Voltage	VCEO	20	40	30	60	60	Volts	
Emitter-Base Voltage	V _{EBO}	_		_	10	25	Volts	
Collector Current	IC	5	5	5	5	5	Amps	
Junction Temperature Range	$T_{\mathbf{J}}$	- 65 TO +110						
Collector Dissipation (at $T_C = 25^{\circ}C$)	PC	90	90	90	90	90	Watts	

ELECTRICAL CHARACTERISTICS (at TA = 25°C unless otherwise noted

Characteristic	Characteristic			Max	Unit
Collector-Base Cutoff Current (V _{CB} = -25 Vdc) (V _{CB} = -25 Vdc, T _C = 85°C)	All Types All Types	^I сво	=	0. 5 7. 5	mAdc
Emitter-Base Cutoff Current (V _{EB} = -10 Vdc) (V _{EB} = -25 Vdc)	2N380 2N459 2N459A	I EBO	_ 	1.5 2 2	mAdc
Collector Cutoff Current (VCE = -40 Vdc, VBE = 1.5 Vdc) (VCE = -80 Vdc, VBE = 1.5 Vdc) (VCE = -60 Vdc, VBE = 1.5 Vdc) (VCE = -105 Vdc, VBE = 1.5 Vdc) (VCE = -105 Vdc, VBE = 1.0 Vdc)	2N378 2N379 2N380 2N459 2N459A	I _{CEX}	1111	10 10 10 10	mAdc
Collector-Emitter Breakdown Voltage (I _C = 100 mAdc)	2N378 2N379 2N380 2N459, 2N459A	BVCEO	20 40 30 60		Vdc
Base-Emitter Voltage (I _C = 2 Adc, V _{CE} = -2 Vdc)	2N378 2N379 ,2N459, 2N459A 2N380	v _{BE}	_	-1.6 -1.3 -1.0	Vdc

2N378, thru 2N380 2N459, 2N459 A

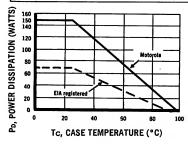
ELECTRICAL CHARACTERISTICS (at $T_c = 25^{\circ}C$ unless otherwise specified.)

Characteristic	Symbol	Min	Max	Unit	
Collector-Emitter Saturation Voltage ($I_C = 2$ Adc, $I_B = 0.2$ Adc)	2N378-2N380, 2N459 2N459A	VCE(sat)	_	1. 0 0. 3	Vdc
DC Current Gain (I _C = 2 Adc, V _{CE} = 2 Vdc)	2N378 2N379, 2N459 2N380 2N459A	hFE	40 20 30 40	80 70 70 70	_
(I _C = 5 Adc, V _{CE} = -2 Vdc) Common Emitter Cutoff Frequency (I _C = 1 A, V _{CE} = -2 V) (I _C = 2 A, V _{CE} = -2 V)	2N459A 2N378-2N380, 2N459 2N459A	fae	20 5 5	-	kc

2n441 2n442

2N443

CASE 5 (TO-36)



 $P_{C} = 150 \text{ W}$ $I_{C} = 15 \text{ A}$ $V_{CBO} = 40-60 \text{ V}$

PNP germanium power transistors for power switching and amplifier applications. Power and temperature ratings exceed EIA registration.

MAXIMUM RATINGS

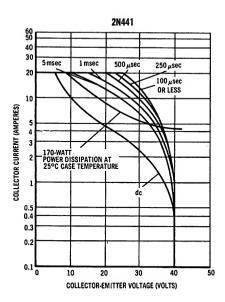
Characteristic	Symbol	2N441	2N442	2N443	Unit
Collector-Base Voltage	v _{CB}	40	50	60	Vdc
Collector-Emitter Voltage	v _{CES}	40	45	50	Vdc
Emitter-Base Voltage	v _{EBO}	20	30	40	Vdc
Emitter Current (continuous)	I _E	15	15	15	Amps
Base Current (continuous)	I _B	4	4	4	Amps
Junction and Storage Temperature	T _{stg}		-65 to +100	-1	°C/W
Thermal Resistance	_θ _{JC}		0.5		°C/W

POWER-TEMPERATURE DERATING CURVE

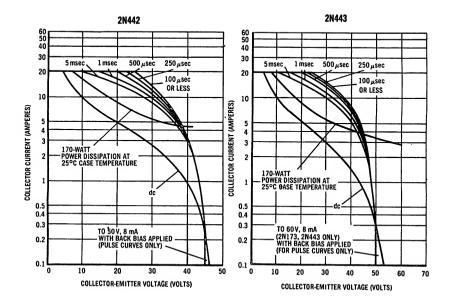
The maximum continuous power is related to maximum junction temperature by the thermal resistance factor. This curve has a value of 150 Watts at case temperatures of 25°C and is 0 Watts at 100°C with a linear relation between the two temperatures such that:

$$P_D$$
 allowable = $\frac{100^O - Tc}{0.5}$

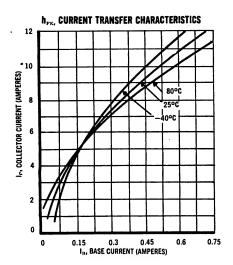
2N441 thru 2N443 (continued)

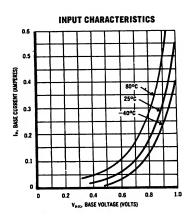

ELECTRICAL CHARACTERISTICS

Characteristic		Symbol	Minimum	Typical	Maximum	Unit
Collector-Base Cutoff Current VCBO = -2 V	All Types	^I СВО	_	100	_	μΑ
Collector-Base Cutoff Current V_{EB} = -1.5 V, V_{CB} = -40 V -50 -60	2N441 2N442 2N443	I _{CB}	_	2 2 2	8 8 8	mA
Collector-Base Cutoff Current $T_B = 71^{\circ}\text{C}, \ V_{CBO} = -40 \ \text{V} \\ -50 \\ -60$	2N441 2N442 2N443	I _{CBO}		=	15 15 15	mA
Emitter-Base Cutoff Current VEBO = -20 V -30 -40	2N441 2N442 2N443	I _{EBO}	=	1 1 1	8 8 8	mA
Collector-Emitter Voltage I _C = 300 mA, V _{EB} = 0*	2N441 2N442 2N443	BV _{CES}	-40 -45 -50	7 1 1	=	Vdc
Collector-Emitter Voltage I _C = 1 Amp, I _B = 0 *	2N441 2N442 2N443	BVCEO	-25 -30 -45	_ 	=	Vdc
Floating Potential I_E = 0, V_{CB} = -40 V_{CB} -50 -60	2N441 2N442 2N443	V _{BE}	=	=	1.0 1.0 1.0	volt
Current Gain $I_C = 5$ Amps, $V_{CB} = -2V$ $I_C = 12$ Amps, $V_{CB} = -2$ V	All Types All Types	hFE	20 —	 20	40 —	_
Base-Emitter Voltage $I_C = 5 \text{ Amps}, V_{CB} = -2 \text{ V}$	2N441 2N442 2N443	V _{BE}	=	0.65 0.65 0.65	 0.9	Vdc
Saturation Voltage $I_C = 12 \text{ Amps}, I_B = 2 \text{ Amps}$	2N441 2N442 2N443	V _{CE(SAT)}	=	0.3 0.3 0.3	_ _ 1.0	Vdc
	All Types	fae	_	10	_	kc
Rise Time "on" $I_C = 12 \text{ Adc},$ $I_B = 2 \text{ Adc}, V_{CE} = -12 \text{ V}$	All Types	t _r		15		μsec
Fall Time "off" $I_C = 0$, $V_{EB} = -6 V$, $R_{EB} = 10 Ohms$	All Types	t _f	_	15	_	μsec


^{*} To avoid excessive heating of the collector junction, perform test with the sweep method.

2N441 thru 2N443 (continued)


SAFE OPERATING AREAS



The Safe Operating Area Curves indicate Ic—VcB limits below which the device will not go into secondary breakdown. Collector load lines for specific circuits must fall within the applicable Safe Area to avoid causing a collector-emitter short. (Duty cycle of the excursions make no significant change in these safe areas.) To insure operation below the maximum Ts, the power-temperature derating curve must be observed for both steady state and pulse power conditions.

2N441 thru 2N443 (continued)

2N459,A

For Specifications, See 2N378-38 Data Sheet

2N554 2N555

For Specifications, See 2N178 Data Sheet

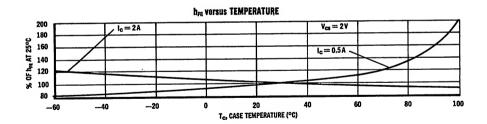
2N618

For Specifications, See 2N375 Data Sheet

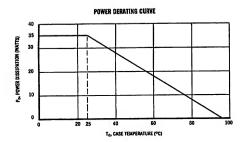
2N665-JAN

 $P_C = 35 \text{ W}$ $I_C = 5 \text{ A}$ $V_{CBO} = 80 \text{ V}$

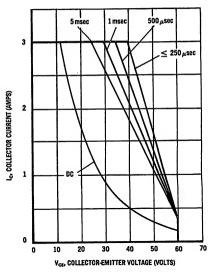
PNP germanium power transistors for driver and power output amplifier and power switching applications in military and industrial equipment.


MAXIMUM RATINGS

Characteristic	Symbol	Rating	Unit
Collector-Base Voltage	v _{CBO}	80	Vdc
Emitter-Base Voltage	v _{EBO}	40	Vdc
DC Collector Current MIL-S-19500/58C Motorola Unit	,rc	2 3	Amps
DC Emitter Current	I _E	5	Amps
Collector Junction Temperature	T _J	-65 to +95	°С
Collector Dissipation Derate above 25°C	P _C	35 0.5	Watts W/°C


ELECTRICAL CHARACTERISTICS

Characteristic	Symbol	Min	Max	Unit
Emitter Cutoff Current (V _{EBO} = -40 Vdc, I _C = 0)	I _{EBO}		-2	mAde
Collector Cutoff Current ($V_{CBO} = -2 \text{ Vdc}, I_E = 0$) ($V_{CBO} = -60 \text{ Vdc}, I_E = 0$) ($V_{CBO} = -80 \text{ Vdc}, I_E = 0$)	I _{CBO}	Ξ	05 -2 -10	mAdc
DC Current Gain $(V_{CE} = -2 \text{ Vdc}, I_{C} = -0.5 \text{ Adc})$ $(V_{CE} = -2 \text{ Vdc}, I_{C} = -2 \text{ Adc})$	hFE	40 20	80	_
Emitter-Base Voltage (V _{CE} = -2 Vdc, I _C = -2 Adc)	v _{EB}	_	1.5	Vdc
Floating Potential (V _{CB} = -80 Vdc, voltmeter input resistance = 10 megohms min, t ≈ 1 sec)	V _{EBF}	_	-1	Vdc
Collector-Emitter Saturation Voltage (I _C = -3 Adc, I _B = -220 mAdc)	V _{CE (sat)}		-0.9	Vdc
Collector-Emitter Voltage (I _C = -300 mAdc, I _B = 0)	v _{CEO}	-40	_	Vdc
Small-Signal Short-Circuit Forward-Current Transfer-Ratio Cutoff Frequency ($V_{CE} = -14 \text{ Vdc}$, $I_{C} = -2 \text{ Adc}$)	fhfe	20	_	ke
Emitter Cutoff Current $(V_{EBO} = -30 \text{ Vdc}, I_C = 0, T_C = +71^{\circ}\text{C min})$	I _{EBO}	_	-2	mAde
Collector Cutoff Current (V _{CBO} = -30 Vdc, I _E = 0, T _C = +71°C min)	I _{CBO}	_	-2	mAdc
	1			


2N665 (continued)

The Safe Operating Area Curves indicate $I_C - V_{CE}$ limits below which the device will not go into secondary breakdown. Collector load lines for specific circuits must fall within the applicable Safe Area to avoid causing a collector-emitter short. (Duty cycle of the excursions make no significant change in these safe areas.) To insure operation below the maximum T_J , the power-temperature derating curve must be observed for both steady state and pulse power conditions.

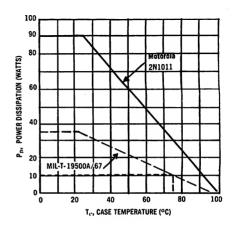
SAFE OPERATING AREA

2N669

For Specifications, See 2N176 Data Sheet

2N1011

 $P_{C} = 90 \text{ W}$ $I_{C} = 5 \text{ A}$ $V_{CBO} = 80 \text{ V}$



PNP germanium power transistors for general purpose power amplifier and switching applications in military and industrial equipment. Operating temperative range and power dissipation exceed military specifications.

MAXIMUM RATINGS

Characteristic	Symbol	Rating	Unit
Collector-Base Voltage	V _{CBO}	80	Vdc
Collector-Emitter Voltage	V_{CE8}	80	Vdc
Collector-Emitter Voltage	V_{ceo}	40	Vdc
Emitter-Base Voltage	V_{ERO}	40	Vdc
Emitter Current	IE	5	Amps
Operating Temperature Range (MIL-T-19500A/67)	_	-65 to +95	°C
Operating Temperature Range (MOTOROLA 2N1011)	_	-65 to +100	°C
Collector Dissipation at 75°C Case Temperature (MIL-T-19500A/67)	Pc	10	Watts
Collector Dissipation at 25°C Case Temperature (MOTOROLA 2N1011)	P_{c}	90	Watts

POWER — TEMPERATURE DERATING CURVE

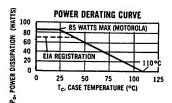
USA2N1011 (continued)

ELECTRICAL CHARACTERISTICS (At 25°C unless otherwise specified)

Characteristic	Symbol	Minimum	Maximum	Unit
DC Current Transfer Ratio $ V_{CE} = 2 \ V $ $ I_{C} = 1.0 \ Adc $	${}^{\mathrm{h}_{\mathrm{FE}}}$	_	150	_
DC Current Transfer Ratio V _{CE} = 2 V I _C = 3.0 Adc	h _{FE}	30	75	-
Small-Signal Current Transfer Ratio Cutoff Frequency $V_{CE} = 2 \text{ Vdc}$ $I_{C} = 3 \text{ Amps}$	^f ae	5	_	kc
Emitter-Base Cutoff Current $V_{EB} = 40 \text{ Vdc}$ $I_{C} = 0$	I _{EBO}	_	3.0	mAdc
	I _{CBO}	_	200	μAdc
Collector-Base Cutoff Current $V_{CB} = 80 \text{Vdc}$ $I_E = 0$	I _{CBO}	-	15.0	mAdc
Base Current $V_{CE} = 2 \text{ Vdc}$ $I_{C} = 1 \text{ Adc}$	I _B	6.7	_	mAdc
Base Current $V_{CE} = 2 \text{ Vdc}$ $I_{C} = 3 \text{ Adc}$	I _B	40.	100	mAdc
Emitter-Base Voltage $V_{CE} = 2 \text{ Vdc}$ $I_{C} = 3 \text{ Adc}$	$v_{ m EB}$	_	2.0	Vdc
Floating Potential V _{CB} = 50 Vdc (Voltmeter input resistance = 10 Megohm min)	v _{fi}	_	1.0	Vdc
Collector-Emitter Saturation Voltage	V _{CE} (SAT)	_	1.5	Vdc
Collector-Emitter Voltage	BV _{CEO}	40	_	Vdc
Collector-Emitter Voltage $I_C = 300 \text{ mAdc}$ $V_{EB} = 0$	BVCES	80		Vdc
	f _{ae}	5	_	kc
T _C = +90°C min Collector Cutoff Current V _{CB} = 30 Vdc I _E = 0	I _{CBO}	_	20	mAdc

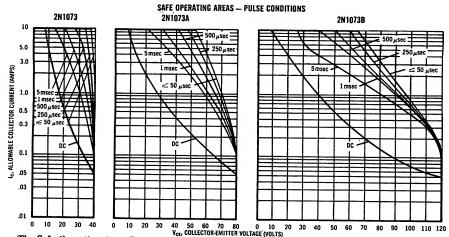
2N1073, A, B

 $P_C = 85 \text{ W}$ $I_C = 10 \text{ A}$ $V_{CER} = 40-120 \text{ V}$



PNP germanium power transistors for high-voltage power switching applications.

For TO-3 package with 50-mil dia. pins (no solder lugs) specify MP1350 thru MP1352.

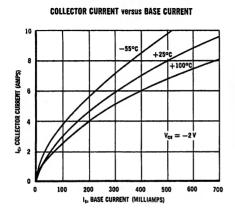

MAXIMUM RATINGS

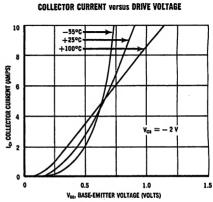
Characteristic	Symbol	2N1073	2N1073A	2N1073B	Unit
Collector-Emitter Voltage	VCER	40	80	120	Vdc
Collector-Base Voltage	V _{CB}	40	80	120	Vdc
Emitter-Base Voltage	V _{EB}	1.5	1.5	1.5	Vdc
Collector Current (Cont)	I _C	10	10	10	Amps
Base Current (Cont)	IB	5	5	5	Amps
Emitter Reverse Current (Surge 60 cps Recurrent)	IE	1.5	1.5	1.5	Amps
Storage and Operating Temperature	T _{stg}		-65 to +110		°С
Collector Dissipation (25°C Mtg. Case Temp.)	P _C	85	85	85	Watts

The maximum continuous power is related to maximum junction temperature by the thermal resistance factor. This curve has a value of 85 watts at a case temperature of 25°C and is 0 watts at 110°C with a linear relation between the two temperatures such that:

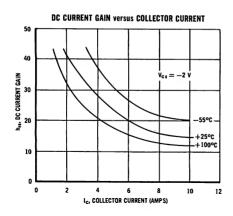
Allowable $P_0 = \frac{110^{\circ} - T_C}{1.0}$ Watts

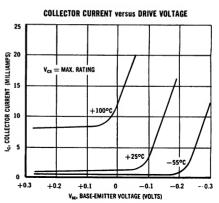
The Safe Operating Area Curves indicate Ic—VcE limits below which the device will not go into secondary breakdown. Collector load lines for specific circuits must fall within the applicable Safe Area to avoid causing a collector-emitter short.

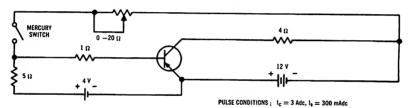

(Duty cycle of the excursions make no significant change in these safe areas.) To insure operation below the maximum T₁, the power-temperature derating curve must be observed for both steady state and pulse power conditions.


2N1073, A, B (continued)

ELECTRICAL CHARACTERISTICS (at TA = 25°C unless otherwise noted


Characteristic		Symbol	Min	Тур	Max	Unit
Collector-Base Cutoff Current (VCB = 25 Vdc, IE = 0) (VCB = 25 Vdc, IE = 0, T _C = 85°C) (VCB = 40 Vdc, IE = 0) (VCB = 60 Vdc, IE = 0) (VCB = 60 Vdc, IE = 0, T _C = 85°C) (VCB = 80 Vdc, IE = 0, T _C = 85°C) (VCB = 100 Vdc, IE = 0, T _C = 85°C) (VCB = 120 Vdc, IE = 0, T _C = 85°C) (VCB = 120 Vdc, IE = 0) (VCB = 120 Vdc, IE = 0)	ZN1073 ZN1073 ZN1073 ZN1073A ZN1073A ZN1073B ZN1073B ZN1073B All Types	I _{СВО}			1 15 20 1 15 20 2 20 20 0.3	mAdc
Emitter-Base Leakage Current (V _{EB} = 0.75 Vdc)		IEBO	_	_	50.	mAdc
Emitter Floating Potential ($V_{CE} = 40 \text{ Vdc}$) ($V_{CE} = 80 \text{ Vdc}$) ($V_{CE} = 80 \text{ Vdc}$) ($V_{CE} = 120 \text{ Vdc}$)	2N1073 2N1073A 2N1073B	V _{EBF}	Ξ	=	-1.0 -1.0 -1.0	Vdc
Collector-Emitter Breakdown Voltage* ($I_C = 50 \text{ mAdc}, R_{BE} = 100 \Omega$)	2N1073 2N1073A 2N1073B	BV _{CER} *	40 80 120	=	=	Vdc
DC Current Gain (I _C = 5 Adc, V _{CE} = -2.0 Vdc)		hFE	20	_	60	-
Small Signal Current Gain (IC = 0.5 Adc, VCE = 12 Vdc, f = 30 kc)		h _{fe}	_	15	_	_
Base Input Voltage (V _{CE} = 2.0 Vdc, I _C = 5 Adc)		V _{BE}	_	_	1.0	Vdc
Collector-Emitter Saturation Voltage (I _C = 5 Adc, I _B = 0.5 Adc)		V _{CE(sat)}	_	0.5	1.0	Vdc
Rise Time		t _r	_	5.5	I =	µsec
Storage Time		t _s	=	1.2	—	μsec
Fall Time		· tr	_	2.0	$\overline{}$	/I Bec


[&]quot;To avoid excessive heating of collector junction, perform this test with a sweep method.



2N1073, A, B (continued)

SWITCHING TEST CIRCUIT

2N1099

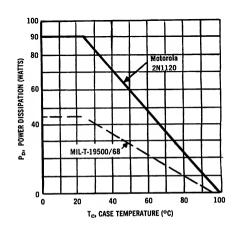
For Specifications, See 2N277 Data Sheet

2N1100

For Specifications, See 2N174 Data Sheet

2N1120

 $P_{C} = 90 \text{ W}$ $I_{C} = 15 \text{ A}$ $V_{CBO} = 80 \text{ V}$



PNP germanium power transistors for military and industrial power applications.

MAXIMUM RATINGS

Characteristic	Symbol	Rating	Unit
Collector-Base Voltage	V _{CBO}	80	Vdc
Collector-Emitter Voltage	V _{CER}	70	Vdc
Collector-Emitter Voltage	V _{CEO}	40	Vdc
Emitter-Base Voltage	V _{EBO}	40	Vdc
Emitter Current	IE	15	Amps
Operating Temperature Range (MIL-T-19500/68)	_	-65 to +95	°C
Operating Temperature Range (MOTOROLA 2N1120)		-65 to +100	°C
Collector Dissipation at 25°C Case Temperature (MIL-T-19500/68)	Pe	45	Watts
Collector Dissipation at 25°C Case Temperature (MOTOROLA 2N1120)	Pc	90	Watts

POWER — TEMPERATURE DERATING CURVE

2N1120 (continued)

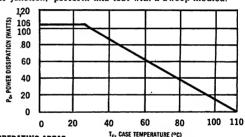
ELECTRICAL CHARACTERISTICS (At 25°C unless otherwise specified)

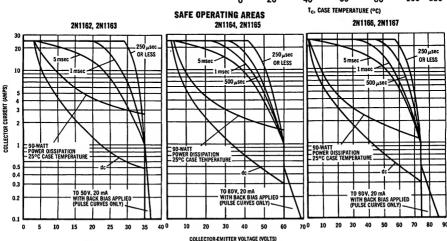
Characteristic	Symbol	Min	Max	Unit
DC Current Transfer Ratio Vcs = 2V	h _{FE}	_	100	
$I_c = 5.0 \text{ Adc}$ DC Current Transfer Ratio $V_{CE} = 2V$	h _{FE}	20	50	_
$I_{\rm C}=10.0~{ m Adc}$ Small Signal Current Transfer Ratio Cutoff Frequency $V_{ m CE}=2~{ m Vdc}$ $I_{ m C}=5~{ m amps}$	fae	3	-	kc
Emitter-Base Cutoff Current VEB = 40 Vdc	I _{EBO}	_	5.0	mAdc
Ic = 0 Collector-Base Cutoff Current VcB = 2 Vdc IB = 0	Ісво	_	.300	μAdc
Collector-Base Cutoff Current V _{CB} = 80 Vdc I _E = 0	Ісво	_	15.0	mAdc
Base Current $V_{CE} = 2 \dot{V}_{CE}$ $I_{C} = 5 \dot{A}_{CE}$	IB	50	_	mAdc
Base Current $V_{CE} = 2 Vdc$	Ів	200	500	mAdc
I _C = 10 Adc Emitter-Base Voltage V _{CE} = 2 Vdc	VEB	_	2.0	Vdc
$\begin{array}{c} I_{\text{C}} = 10 \text{Adc} \\ \text{Floating Potential} \\ V_{\text{CB}} = 80 \text{Vdc} \\ \text{Voltmeter Input} \\ \text{Resistance} = \\ 10 \text{meg. min.} \end{array}$	Vrı	_	1.0	Vdc
Collector-Emitter Voltage (Saturation) $I_C = 10 \text{ Adc}$ $I_B = 1 \text{ Adc}$	V _{CE} (SAT)	-	1.0	Vdc
Base-Emitter Voltage (Saturation) I _B = 11 Adc I _C = 10 Adc	$V_{\mathtt{BE}}$	_	1.5	Vdc
Collector-Emitter Voltage $I_{C} = 300 \text{ mAdc}$ $I_{B} = 0$	BV _{CEO}	40	_	Vdc
Collector-Emitter Voltage $\begin{array}{ccc} I_C = 300 \text{ mAdc} \\ V_{\mathtt{BB}} = 0 \\ \text{Small-Signal Short-Circuit Forward-} \end{array}$	BV _{CES}	70	_	Vdc
Current Transfer Ratio Cutoff Frequency $V_{\text{CE}} = 2 \text{ Vdc}$ $I_{\text{C}} = 5 \text{ Adc}$ $\text{High-Temperature Operation}$ $T_{\text{C}} = +90^{\circ}\text{C}$	fae	3	-	kc
(min) Collector Cutoff Current $V_{CB} = 30 \text{Vdc}$ $I_{E} = 0$	Ісво	_	20	mAdc

2N 1162 thru 2N 1167

 $P_C = 106 \text{ W}$ $I_C = 25 \text{ A}$ $V_{CBO} = 50-100 \text{ V}$

CASE 3, 4


PNP germanium power transistors for switching and amplifier applications in high reliability equipment.


MAXIMUM RATINGS

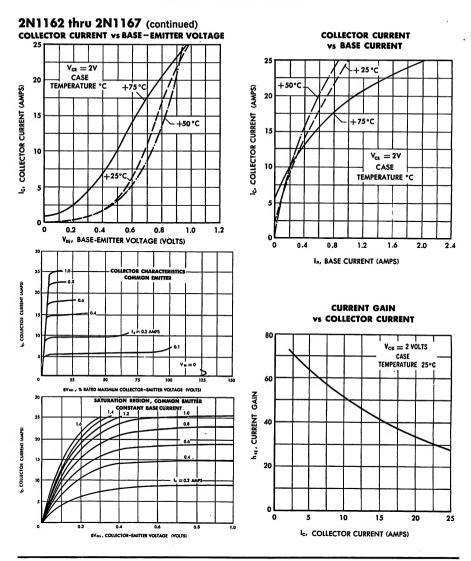
Characteristics	Symbol	2N1162 2N1163	2N1164 2N1165	2N1166 2N1167	Unit
Collector - Base Voltage	v _{CBO}	50	80	100	Vdc .
Collector - Emitter Voltage	V _{CES} *	35	60	75	Vdc
Emitter - Base Voltage	V _{EBO}	25	40	50	Vdc
DC Collector Current	IC	25	25	25	Amps
Collector Junction Temperature	Tj	110	110	110	С
Collector Dissipation	P _C	106	106	106	Watts
Thermal Resistance	$\theta_{ m JC}$	_	0.6		°C/W

^{*} To avoid excessive heating of the collector junction, perform this test with a sweep method.

POWER-TEMPERATURE DERATING CURVE

The Safe Operating Area Curves indicate Ic—VCE limits below which the device will not go into secondary breakdown. Collector load lines for specific circuits must fall within the applicable Safe Area to avoid causing a collector-emitter short.

(Duty cycle of the excursions make no significant change in these safe areas.) To insure operation below the maximum T₁, the power-temperature derating curve must be observed for both steady state and pulse power conditions.


2N1162 thru 2N1167 (continued)

ELECTRICAL CHARACTERISTICS (At 25°C case temperature unless otherwise specified)

Parameter	Symbol	Min	Тур	Max	Unit
Collector Cutoff Current VCB = BVCBO(max), IE - 0 All Ty	ICBO ₁		3	15	m A
Collector Cutoff Current VCB = 2V, IE = 0 All Ty VCB = 15V, IE = 0, TC = 90 C 2N1162 VCB = 30V, IE = 0, TC = 90 C 2N1164	·3	=	125 10 10	225 20 20	μA mA mA
Collector-Emitter Breakdown Voltage I _C = 500mA, V _{EB} = 0 2N1162 2N1164 2N1166	5	35 60 75	=	=	V _{dc}
Emitter Cutoff Current VEB = 12V, IC = 0 All Typ	s I _{EBO}	_	0. 5	1. 2	mA
DC Forward Current Gain VCE = 1V, IC = 25A All Typ VCE = 2V, IC = 5A All Typ		15	25 65	125	_
Collector - Emitter Saturation Voltage I _C = 25A, I _B = 1.6A All Type	V _{CE(sat)}	_	0.3	0. 8	volts
Base - Emitter Drive Voltage I _C - 25A, I _B = 1.6A All Typ	v _{BE}		0.7	1. 7	volts
Common Emitter - Cutoff Frequency VCE = 2V, IC = 2A All Type	s fae		4		kc

SWITCHING CHARACTERISTICS

Saturated Collector		Pulsed Drive Base Current		Response times in µsec	
Current	On	Off	te+tr	t,	t _f
5 amps	330 mA	100 mA	11	5	17
10 amps	660 mA	200 mA	15	4	20
25 amps	1700 mA	500 mA	19	3	18

2N1358

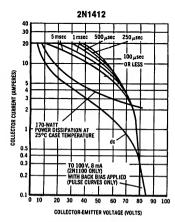
For Specifications, See 2N174 Data Sheet

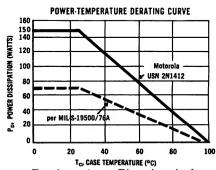
2N 1359 2N 1360

2N 1362 thru 2N 1365

For Specifications, See 2N375 Data Sheet

2N1412


 $P_C = 150 \text{ W}$ $I_C = 15 \text{ A}$ $V_{CRO} = 100 \text{ V}$


PNP germanium power transistors for high-voltage power amplifier and switching applications in military and industrial equipment.

MAXIMUM RATINGS

Characteristic	Symbol	Rating	Unit
Collector-Base Voltage	Vсво	100	Vdc
Collector-Emitter Voltage	Vces	80	Vdc
Collector-Emitter Voltage	V _{CEO}	60	Vdc
Emitter-Base Voltage	VEBO	60	Vdc
Emitter Current (Continuous)	I _E	15	Amps
Base Current (Continuous)	I _B	4	Amps
Junction & Storage Temperature	Tstg	-65 to +100	°C
Thermal Resistance	θις	0.5	°C/W

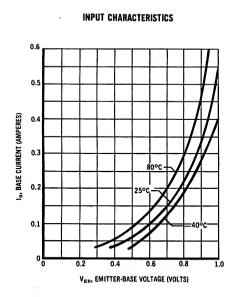
The Safe Operating Area Curves indicate $I_C - V_{CE}$ limits below which the device will not go into secondary breakdown. Collector load lines for specific circuits must fall within the applicable Safe Area to avoid causing a collector-emitter short.

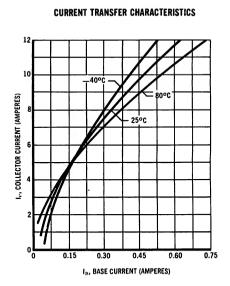
The maximum continuous This may be a value of power is right to the power in the power is right to the power in the power

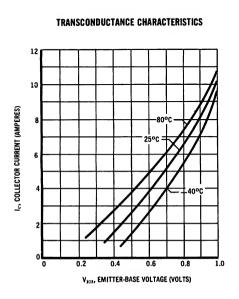
allowable $P_D = \frac{100^\circ - T_C}{0.5}$

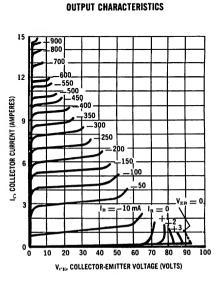
(Duty cycle of the excursions make no significant change in these safe areas.) To insure operation below the maximum T_i, the power-temperature derating curve must be observed for both steady state and pulse power conditions.

------Motorola Power Transistors

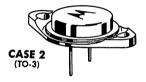

2N1412 (continued)


ELECTRICAL CHARACTERISTICS


Characteristic	Symbol	Minimum	Maximum	Unit
Emitter Cutoff Current	I _{EBO}		200	μAdc
$V_{EB} = -2.0 \text{ Vdc}$ $I_{C} = 0$				
Emitter Cutoff Current	I _{EBO}	1 - 1	- 10	mAdc
$V_{EB} = -60 \text{ Vdc}$ $I_{C} = 0$				
Collector Cutoff Current	I _{CBO}	_	200	μAdc
$egin{aligned} V_{ extbf{CB}} &= -2.0 \text{ Vdc} \\ I_{ extbf{E}} &= 0 \end{aligned}$				_
Collector Cutoff Current	ІСВО	T - T	10	mAdc
$V_{CB} = -100 \text{ Vdc}$ $I_E = 0$				
Emitter-Base Voltage	v_{EB}	0.0	0.5	Vdc
V _{CE} = -2.0 Vdc I _C = -1.2 Adc				
Emitter-Base Voltage	v _{EB}	0.0	0.9	Vdc
$V_{CE} = -2.0 \text{ Vdc}$ $I_{C} = -5.0 \text{ Adc}$				
Floating Potential	v_{fl}	0.0	1.0	Vdc
V _{CB} = -100 Vdc I _E = 0				
(Voltmeter input resistance = 10 Megohm min)				
Collector-Emitter Saturation Voltage	V _{CE(SAT)}	0.0	0.7	Vdc
I _C = -12 Adc I _B = -2.0 Adc				
Forward Current Transfer Ratio*	$h_{ extbf{FE}}$	10	_	_
V _{CE} = -2.0 Vdc I _C = -15 Adc				
Forward Current Transfer Ratio	h _{FE}	25	50	T -
$V_{CE} = -2.0 \text{ Vdc}$ $I_{C} = -5.0 \text{ Adc}$				
Collector-Emitter Breakdown Voltage*	BV _{CEO}	60	-	Vdc
$I_{\mathbf{C}} = -1 \text{ Adc}$ $I_{\mathbf{B}} = 0$				
Collector-Emitter Breakdown Voltage*	BV _{CES}	80	_	Vdc
V _{EB} = 0 I _C = 300 mA				
Small-Signal Short-Circuit Forward-Current Transfer Ratio Cutoff Frequency	fae	5	_	kc
$V_{CE} = -12 \text{ Vdc}$ $I_{C} = -5.0 \text{ Adc}$				-
High-Temperature Operation Emitter Cutoff Current	I _{EBO}	-	6.0	mAdc
$T_C = +71^{\circ}C \text{ min}$ $V_{EB} = -30 \text{ Vdc}$	•			
Collector Cutoff Current	I _{CBO}	- ,	6.0	mAdc
$V_{CB} = -30 \text{ Vdc}$ $I_{E} = 0$				


^{*}Test by sweep method with a short duty cycle (about 1%) to avoid excessive heating.

2N1412 (continued)

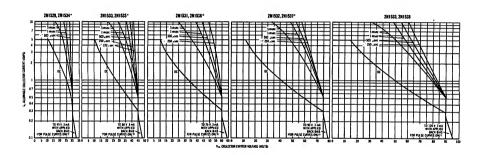


2N 1529 thru 2N 1538

 $P_C = 106W$ $I_C = 5 A$ $V_{CRO} = 40-120 V$

PNP germanium power transistors for switching and amplifier applications in high-reliability equipment.

For units with solder lugs attached, specify devices MP1529A etc. (TO-41 package)

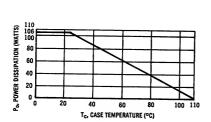

MAXIMUM RATINGS

Characteristic	Symbol	2N1529 2N1534	2N1530 2N1535	2N1531 2N1536	2N1532 2N1537	2N1533 2N1538	Unit
Collector-Emitter Voltage	v _{CEX}	40	60	80	100	120	Vdc
Collector-Emitter Voltage	VCES	30	45	60	75	90	Vdc
Collector-Emitter Voltage	V _{CEO}	20	30	40	50	60	Vdc
Collector-Base Voltage	v _{CBO}	40	60	80	100	120	Vdc
Collector-Base Voltage	v _{EBO}	20	30	40	50	60	Vdc
Collector Current (Continuous)	I _C	5	5	5	5	5	Amp
Collector Current (Peak)	I _C	10	10	10	10	10	Amp
Junction Temperature Range	T _J	_		-65 to +110		<u></u>	°C
Collector Dissipation (25°C Case Temperature)	PC	106	106	106	106	106	Watt
Thermal Resistance	$\theta_{ m JC}$	-		0.8			°C/V

SAFE OPERATING AREAS — PULSE CONDITIONS

The Safe Operating Area Curves indicate $I_C - V_{CE}$ limits below which the device will not go into secondary breakdown. Collector load lines for specific circuits must fall within the applicable Safe Area to avoid causing a collector-emitter short.

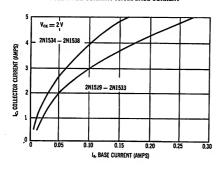
(Duty cycle of the excursions make no significant change in these safe areas.) To insure operation below the maximum $T_{\rm J}$, the power-temperature derating curve must be observed for both steady state and pulse power conditions.

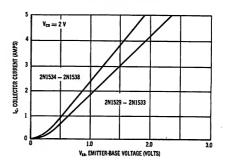

2N1529 thru 2N1538 (continued)

ELECTRICAL CHARACTERISTICS ($T_c = 25^{\circ}C$ unless otherwise specified.)

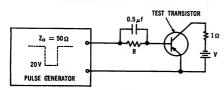
Characteristic		Symbol	Min	Max	Unit
Collector-Base Cutoff Current (V _{CB} = 25V) (V _{CB} = 40V) (V _{CB} = 55V) (V _{CB} = 65V) (V _{CB} = 80V)	2N1529, 2N1534 2N1530, 2N1535 2N1531, 2N1536 2N1532, 2N1537 2N1533, 2N1538	I _{CBO1}	= =	2.0 2.0 2.0 2.0 2.0	mA
Collector-Base Cutoff Current (V _{CB} = 2V) (V _{CB} = 1 2 BV _{CES} rating; T _C = +90°C)	All Types All Types	ІСВО	=	0.2 20	mA
Emitter-Base Cutoff Current (V _{EB} = 12V).	All Types	IEBO	_	0.5	mA
Collector-Emitter Breakdown Voltage (I _C = 500 mA, V _{EB} = 0)	2N1529, 2N1534 2N1530, 2N1535 2N1531, 2N1536 2N1532, 2N1537 2N1533, 2N1538	BV _{CES}	30 45 60 75 90	=======================================	volts
Collector-Emitter Leakage Current $(v_{BE} = 1v; v_{CE})$	All Types	ICEX		20	mA
Collector-Emitter Breakdown Voltage (I _C = 500 mA, I _B = 0)	2N1529, 2N1534 2N1530, 2N1535 2N1531, 2N1536 2N1532, 2N1537 2N1533, 2N1538	BV _{CEO}	20 30 40 50 60		volts
Collector-Base Breakdown Voltage $(I_C = 20 \text{ mA})$	2N1529, 2N1534 2N1536, 2N1535 2N1531, 2N1536 2N1532, 2N1537 2N1533, 2N1538	вусво	40 60 80 100 120	=======================================	volts
Current Gain (V _{CE} = 2V, I _C = 3A)	2N1529 - 2N1532 2N1534 - 2N1537 2N1529 - 2N1533 2N1534 - 2N1538	h _{FE1}	20 35 20 35	40 70 40 70	
Base-Emitter Saturation Voltage (I _C = 3A, I _B = 300 mA)	2N1529 - 2N1532 2N1534 - 2N1537 2N1529 - 2N1533 2N1534 - 2N1538	VBE(sat)	=	1.7 1.5 1.7 1.5	volts
Collector-Emitter Saturation Voltage (I _C = 3A, I _B = 300 mA)	2N1529 - 2N1532 2N1534 - 2N1537 2N1529 - 2N1533 2N1534 - 2N1538	V _{CE(sat)}	 	1.5 1.2 1.5 1.2	volts
Transconductance (V _{CE} = 2V, I _C = 3A)	2N1529 - 2N1532 2N1534 - 2N1537 2N1529 - 2N1533 2N1534 - 2N1538	g _{FE}	1.2 1.5 1.2 1.5	=	mhos

2N1529 thru 2N1538 (continued)

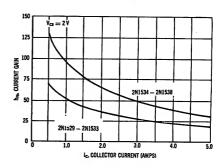

POWER-TEMPERATURE DERATING CURVE


The maximum continuous power is related to maximum junction temperature, by the thermal resistance factor. For d. c. or frequencies below 25 cps the transistor must be operated within the constant $P_D = V_C \times I_C$ hyperbolic curve. This curve has a value of 106 Watts at case temperatures of 25°C and is 0 Watts at 110°C with a linear relation between the two temperatures such that

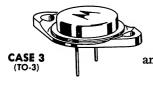
 P_D allowable = $\frac{110^O - Tc}{.08}$


COLLECTOR CURRENT Versus BASE CURRENT

COLLECTOR CURRENT VERSUS EMITTER BASE VOLTAGE


SWITCHING TIME MEASURING CIRCUIT

TYPICAL SWITCHING CHARACTERISTICS


	l _c (Amps)	V (Volts)	R (ohms)	t _d +t, (μsec)	t, (μsec)	t, (µsec)
2N1529-33	3	3	65	10	2	5
2N1534-38	3	3	100	8	3	5

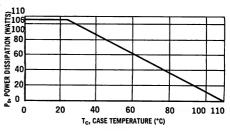
DC CURRENT GAIN VERSUS
COLLECTOR CURRENT

2N 1539 thru 2N 1548

 $P_C = 106 W$ $I_C = 5 A$ $V_{CBO} = 40-120 V$

PNP germanium power transistors for switching and amplifier applications in high-reliability equipment.

For units with solder lugs attached, specify devices MP1539A etc.


MAXIMUM RATINGS

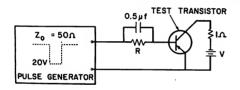
Characteristics	Symbol	2N1539 2N1544	2N1540 2N1545	2N1541 2N1546	2N1542 2N1547	2N1543 2N1548	Unit
Collector-Emitter Voltage	VCEX	40	60	80	100	120	Vdc
Collector-Emitter Voltage	V _{CES}	30	45	60	75	90	Vdc
Collector-Emitter Voltage	V _{CEO}	20	30	40	50	60	Vdc
Collector-Base Voltage	v _{сво}	40	60	80	100	120	Vdc
Emitter-Base Voltage	V _{EBO}	20	30	40	50	60	Vdc
Collector Current (Continuous)	IC	5	5	5	5	5	Amps
Collector Current (Peak)	IC	10	10	10	10	10	Amps
Collector Junction Temperature Range	$\tau_{ m J}$			-65 to +110			С
Collector Dissipation (25 C Case Temp.)	P _C	106	106	106	106	106	Watts
Thermal Resistance	$\theta_{\rm JC}$			0.8			°C/W

The maximum continuous power is related to maximum junction temperature, by the thermal resistance factor. For d. c. or frequencies below 25 cps the transistor must be operated within the constant $P_D = Vc \times Ic$ hyperbolic curve. This curve has a value of 106 Watts at case temperatures of $25^{\circ}C$ and is 0 Watts at $110^{\circ}C$ with a linear relation between the two temperatures such that

 P_D allowable = $\frac{110^O - Tc}{0.8}$

POWER - TEMPERATURE DERATING CURVE

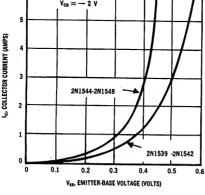
2N1539 thru 2N1548 (continued)


ELECTRICAL CHARACTERISTICS (At 25°C case temperature unless otherwise specified)

Parameter	Symbol	Min	Max	Unit
Collector-Base Cutoff Current (V _{CB} = 25 V) 2N1539, 2N1544 (V _{CB} = 40 V) 2N1540, 2N1545 (V _{CB} = 55 V) 2N1541, 2N1546 (V _{CB} = 65 V) 2N1542, 2N1547 (V _{CB} = 80 V) 2N1543, 2N1548	¹ своі	- - - -	2.0 2.0 2.0 2.0 2.0	mA
Collector-Base Cutoff Current ($V_{CB} = 2 V$) All Types ($V_{CB} = 1, 2 BV_{CES}$ rating, All Types $T_{C} = 90^{0}C$)	IСВО		0.2 20	mA
Emitter-Base Cutoff Current (VEB = 12 V) All Types	I _{EBO}		0.5	mA
Collector-Emitter Breakdown Voltage † (I _C = 500 mA) 2N1539, 2N1544 2N1540, 2N1545 2N1541, 2N1546 2N1542, 2N1547 2N1543, 2N1548	BV _{CES} ‡	- 30 45 60 75 90	=	volts
Collector-Emitter Leakage Current ($V_{ m BE}$ = 1V, $V_{ m CE}$ @ rated ${ m BV}_{ m CBO}$) All Types	ICEX		20	m A
Collector-Emitter Breakdown Voltage‡ (I _C = 500 mA, I _B = 0) 2N1539, 2N1544 2N1540, 2N1545 2N1541, 2N1546 2N1542, 2N1547 2N1543, 2N1548	BV _{CEO} ‡	20 30 40 50 60	=	volts
Collector-Base Breakdown Voltage (I _C = 20 mA) 2N1539, 2N1544 2N1540, 2N1545 2N1541, 2N1546 2N1542, 2N1547 2N1543, 2N1548	вуСВО	= = = = = = = = = = = = = = = = = = = =	40 60 80 100 120	volts
Current Gain (VCE = 2V, IC = 3A) 2N1539 - 2N1542 2N1544 - 2N1547 2N1539 - 2N1543 2N1544 - 2N1548	hFE1	50 75 50 75	100 150 100 150	-
Base-Emitter Drive Voltage (I _C = 3 A, I _B = 300 mA) 2N1539 - 2N1542 2N1544 - 2N1547 2N1539 - 2N1543 2N1544 - 2N1548	VBE	= =	0. 7 0. 5 0. 7 0. 5	volts
Collector Saturation Voltage (I _C = 3 A, I _B = 300 mA) 2N1539 - 2N1542 2N1544 - 2N1547 2N1539 - 2N1543 2N1544 - 2N1548	V _{CE(sat)}	= = = =	0.6 0.3 0.6 0.3	volts
Transconductance (V _{CE} = 2V, I _C = 3A) 2N1539 - 2N1542 2N1544 - 2N1547 2N1539 - 2N1543 2N1544 - 2N1548	8FE	3. 0 5. 0 3. 0 5. 0	=	mhos
Frequency Cutoff $(V_{CE} = 2 V, I_{C} = 3 A)$ All Types	fae		yp 4	kc

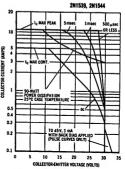
Characteristics apply to corresponding, non-A type numbers also
 To avoid excessive heating of collector junction, perform this test with a sweep method

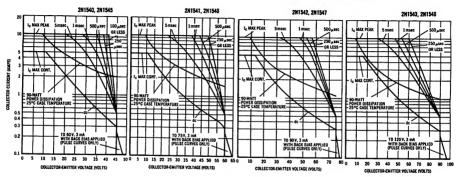
2N1539 thru 2N1548 (continued)


SWITCHING TIME MEASURING UNIT

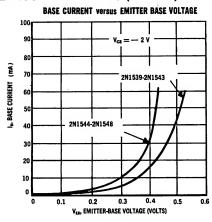
COLLECTOR CURRENT Versus EMITTER BASE VOLTAGE

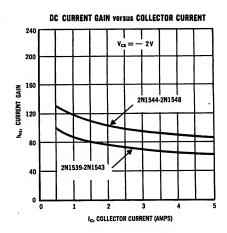
Devices		Conditi	ons*	Sw	Typics itching	al Times	
	i _c (Amps)	V (Voits)	R (ohms)	t _d + t, (µsec)	t, (µsec)	t, (µsec)	
2N1539-43	3	3	165	5	3	5	
2N1544-48	3	3	250	5	3	8	


	6	V _{C8} =	2 V		T
	5	 <u> </u>	ļ	1	Ш
AMPS)	4				/
URRENT (
Ic, COLLECTOR CURRENT (AMPS)	3	2N15	14-2N1548		
[3	2				
	1			2N1539	-2N1542



COLLECTOR CURRENT VERSUS RASE CURRENT 2N1544-2N1548 Ic. COLLECTOR CURRENT (AMPS) 2N1539-2N1543 ٥ 10 Is, BASE CURRENT (mA)


SAFE OPERATING AREAS


The Safe Operating Area Curves indicate Ic — Vce limits below which the device will not go into secondary breakdown. Collector load lines for specific circuits must fall within the applicable Safe Area to avoid causing a collector-emitter short. (Case causing a collector-emitter short. (Case temperature and duty cycle of the excursions make no significant change in these safe areas.) To insure operation below the maximum TJ, the power-temperature derating curve must be observed for both steady state and pulse power conditions.

2N1539 thru 2N1548 (continued)

2N 1549 thru 2N 1560

 $P_C = 106 W$ $I_C = 15 A$ $V_{CBO} = 40-100 V$

PNP germanium power transistors for switching and amplifier applications in high-reliability equipment.

For units with solder lugs attached, specify devices MP1549A etc.

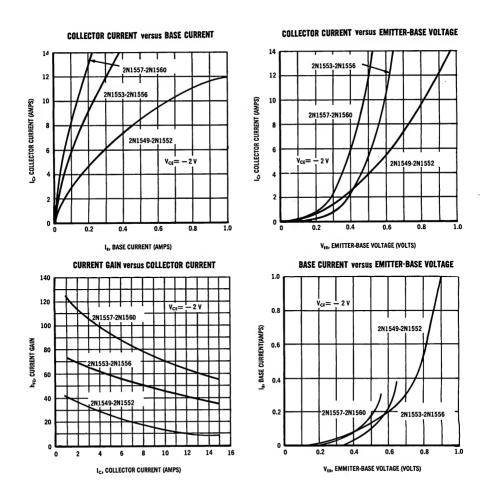
MAXIMUM RATINGS

Characteristic	Symbol	2N1549 2N1553 2N1557	2N1550 2N1554 2N1558	2N1551 2N1555 2N1559	2N1552 2N1556 2N1560	Unit •
Collector-Emitter Voltage	V _{CEX}	40	60	80	100	Vdc
Collector-Emitter Voltage	v _{CES*}	30	45	60	75	Vdc
Collector-Emitter Voltage	v _{CEO*}	20	30	40	50	Vdc
Collector-Base Voltage	v _{сво}	40	60	80	100	Vdc
Emitter-Base Voltage	v _{EBO}	- 20	30	40	50	Vdc
Collector Current (Continuous)	I _C	15	15	15	15	Amp
Collector Current (Peak)	I _C	20	20	20	20	Amp
Collector Junction Temperature	T _J		-65	to +110	-	С
Collector Dissipation (25 C Case Temp.)	P _C	106	106	106	106	Watts
Thermal Resistance	$\theta_{ m JC}$	-		0.8 —	-	°c/w

^{*}To avoid excessive heating of collector junction, perform this test with a sweep method.

2N1549 thru 2N1560 (continued)

ELECTRICAL CHARACTERISTICS (At 25°C case temperature unless otherwise specified)

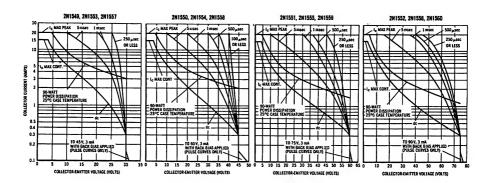

Parameter	Symbol	Min	Max	Unit
Collector-Base Cutoff Current (VCB = 25 V) 2N1549, 2N1553, 2N1557 (VCB = 40 V) 2N1550, 2N1554, 2N1558 (VCB = 55 V) 2N1551, 2N1555, 2N1559 (VCB = 55 V) 2N1551, 2N1555, 2N1569	ICBO1	- - -	3. 0 3. 0 3. 0	m A
(V _{CB} = 65 V) 2N1552, 2N1556, 2N1560			3.0	
Collector-Base Cutoff Current (V _{CB} = 2 V) All Types (V _{CB} = 1/2 BV _{CES} rating; T _C = +90 C)	ІСВО	-	0.2 20	mA
Emitter-Base Cutoff Current (V _{EB} = 12 V) All Types	I _{EBO}	_	0.5	m A
Collector-Emitter Breakdown Voltage (IC = 300 mA)	BVCES			volts
2N1549, 2N1553, 2N1557		30	_	
2N1550, 2N1554, 2N1558		45	-	
2N1551, 2N1555, 2N1559 2N1552, 2N1556, 2N1560		60 75	_	
Collector-Emitter Leakage Current	ICEX			m A
$(V_{BE} = 1 \text{ V}, V_{CE} @ \text{ rated BV}_{CBO})$ All Types		-	20	
Collector-Emitter Breakdown Voltage	BVCEO			volts
(I _C = 300 mA, I _B = 0)				
2N1549, 2N1553, 2N1557 2N1550, 2N1554, 2N1558		20 30	_	
2N1551, 2N1555, 2N1559		40	_	
2N1552, 2N1556, 2N1560		50	-	
Collector-Base Breakdown Voltage (I _C = 20 mA)	BVCBO			volts
2N1549, 2N1553, 2N1557		40	-	
2N1550, 2N1554, 2N1558		60	-	
2N1551, 2N1555, 2N1559 2N1552, 2N1556, 2N1560		80 100	_	
Current Gain	h _{FE1}			_
(V _{CE} = 2 V, I _C = 10 A)				
2N1549 - 2N1552 2N1553 - 2N1556		10	30 60	
2N1557 - 2N1560		30 50	60 100	
Base-Emitter Drivé Voltage (I _C = 10 A, I _B = 1 A)	V _{BE}			volt
2N1549 - 2N1552		-	1.3	
2N1553 - 2N1556 2N1557 - 2N1560		-	1.0	
2N1557 - 2N1560		_	0.7	
Collector Saturation Voltage (I _C = 10 A, I _B = 1.0 A)	V _{CE(sat)}			volt
2N1549 - 2N1552		_	1.0	
2N1553 - 2N1556		-	0.7	
2N1557 - 2N1560			0.5	

2N1549 thru 2N1560 (continued)

ELECTRICAL CHARACTERISTICS (continued)

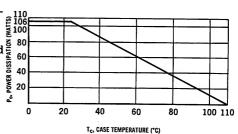
Parameter	Symbol	Min	Max	Unit
Transconductance	gFE	-		mhos
$(V_{CE} = 2 V, I_{C} = 10 A)$				
2N1549 - 2N1552		6	18	
2N1553 - 2N1556		8	30	
2N1557 - 2N1560		12	40	
Frequency Cutoff	fae	T	ур	kc
2N1549 - 2N1552	40		10	
2N1553 - 2N1556			6	
2N1557 - 2N1560			5	

Characteristics apply to corresponding, non-A type numbers also To avoid excessive heating of collector junction, perform this test with a sweep method

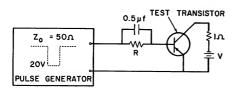


2N1549 thru 2N1560 (continued)

SAFE OPERATING AREAS


The Safe Operating Area Curves indicate $I_C - V_{CE}$ limits below which the device will not go into secondary breakdown. Collector load lines for specific circuits must fall within the applicable Safe Area to avoid causing a collector-emitter short.

(Duty cycle of the excursions make no significant change in these safe areas.) To insure operation below the maximum T_j, the power-temperature derating curve must be observed for both steady state and pulse power conditions.



The maximum continuous power is related to maximum junction temperature, by the thermal resistance factor. For d.c. or frequencies below 25 cps the transistor must be operated within the constant $P_D = V_C \times I_C$ hyperbolic curve. This curve has a value of 106 watts at case temperatures of 25°C and is 0 watts at 110°C with a linear relation between the two temperatures such that P_D allowable =110°- Tc

0.8

SWITCHING TIME MEASURING UNIT

Devices		Condi	tions*	Typical Switching Times			
	I _C (Amps)	V (Volts)	R (ohms)	t _e + t, (μsec)	t, (μsec)	t, (μsec)	
2N1549 -52	10	10	10	5	2	10	
2N1553 -56	10	10	30	10	5	25	
2N1557 -60	10	10	50	10	5	25	
* Input Pulse Rep	etition Ra	te - 2 l					

Pulse Width = 50 µsec

2N1970

$$\begin{split} P_{\text{C}} &= 170 \text{ W} \\ I_{\text{C}} &= 15 \text{ A} \\ V_{\text{CBO}} &= 50\text{-}100 \text{ V} \end{split}$$

2N 1980 thru 2N 1982

PNP germanium power transistors for general purpose amplifier and switching applications.

MAXIMUM RATINGS

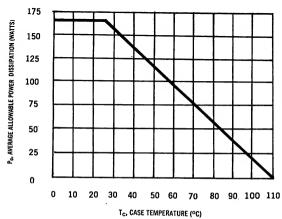
Characteristic	Symbol	2N1970	2N1980	2N1981	2N1982	Unit
Collector-Base Voltage	v _{CBO}	100	50	70	90 .	Volts
Collector-Emitter Voltage	VCEO	50	30	40	50	Volts
Emitter-Base Voltage	VEBO	40	20	20	20	Volts
Collector Current	I _C	15	15	15	15	Amps
Power Dissipation at T _C = 25°C	P _C	170	170	170 .	170	Watts
Junction Temperature Range	T _J		-65 to	+110		°C

ELECTRICAL CHARACTERISTICS TA = 25°C unless otherwise noted

Characteristic		Symbol	Min	Max	Unit
Collector-Base Cutoff Current		I _{СВО}			mAdc
(V _{CB} = -100 Vdc)	2N1970	CDO	_	4	
(V _{CB} = -50 Vdc)	2N1980		_	6	
(V _{CB} = -70 Vdc)	2N1981		_	6	
(V _{CB} = -90 Vdc)	2N1982		_	6	
(V _{CB} = -2 Vdc)	2N1980-2N1982	l .	_	0.3	
Emitter-Base Cutoff Current		I _{EBO}			mAdc
(V _{EB} = -40 Vdc)	2N1970		-	4	
(V _{EB} = - 20 Vdc)	2N1980-2N1982		-	5	
(V _{EB} = -2 Vdc)	2N1980-2N1982		_	0.3	
Collector-Emitter Breakdown Voltage		BV _{CEO}			Vdc
$(I_C = 1 \text{ Adc}, I_R = 0)$	2N1970		-50	_	
c <i>b</i>	2N1980	1	-30	_	
	2N1981	1	-40	-	
	2N1982	1	-50	_	
Base-Emitter Voltage		v _{BE}			Vdc
(V _{CE} = -2 Vdc, I _C = 5 Adc)	2N1970		_	-0.9	
Emitter Floating Potential		v _{EBF}			Vdc
(V _{CB} = -50 Vde)	2N1980		_	-1.0	
(V _{CB} = -70 Vdc)	2N1981	1	_	-1.0	
(V _{CB} = -90 Vdc)	2N1982		-	-1.0	
Collector-Emitter Saturation Voltage		V _{CE(sat)}			Vdc
(I _C = 12 Adc, I _R = 2 Adc)	2N1970	CE(Sat)	_	-1.0	
$(I_C = 5 \text{ Adc}, I_B = 0.5 \text{ Adc})$	2N1980-2N1982		-	-0.5	
DC Current Gain		h _{FE}			
(I _C = 5 Adc, V _{CE} = -2 Vdc)	2N1970	""	17	40	
-	2N1980-2N1982	1	50	100	
$(I_C = 12 \text{ Adc}, V_{CE} = -2 \text{ Vdc})$	2N1970	İ	10	_	
Common Emitter Cutoff Frequency		fae			kc
$(V_{CE} = -4 V, I_{C} = 5 A)$	2N1970		5	_	
$(V_{CE} = -5 \text{ V}, I_{C} = 2 \text{ A})$	2N1980-2N1982	I	3	_	

2N2075 thru 2N2082

 $P_{C} = 170 \text{ W}$ $I_{C} = 15 \text{ A}$ $V_{CBO} = 40-80 \text{V}$



PNP germanium power transistors for high-power applications in high-reliability equipment.

MAXIMUM RATINGS

Apply to corresponding "Meg-A-Life" series also

CHARACTERISTIC	SYMBOL	2N2078 2N2082	2N2077 2N2081	2N2076 2N2080	2N2075 2N2079	UNIT
Collector-Base Voltage	v _{сво}	40	50	70	80	Volts
Collector-Emitter Voltage	v _{CES}	40	50	70	80	Volts
Collector-Emitter Voltage	V _{CEO}	25	45	55	65	Volts
Emitter-Base Voltage	V _{EBO}	20	25	35	40	Volts
Collector Current	I _C	15	15	15	15	Amps
Power Dissipation at T _C = 25 C	P _C	170	170	170	170	Watts
Junction Temperature Range	T_{J}		-65 to	+ 110		°C
Thermal Resistance, Junction to Case,	θЈС		0.5			°C/W

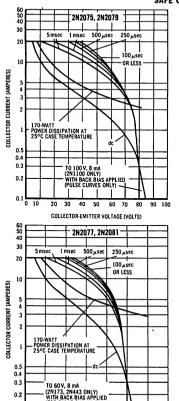
POWER TEMPERATURE DERATING CURVE

The maximum average power is related to maximum junction temperature by the thermal resistance factor.

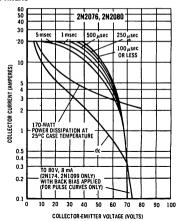
mum junction temperature by the thermal resistance factor. This curve has a value of 170 Watts at case temperatures of 25°C and is 0 Watts at 110°C with a linear relation between the two temperatures such that:

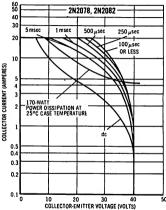
allowable $P_D = \frac{110^\circ - T_C}{0.5}$

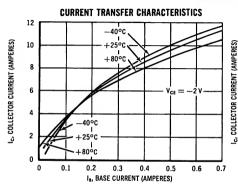
2N2075 thru 2N2082 (continued)

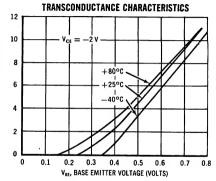

ELECTRICAL CHARACTERISTICS (At 25°C case temperature unless otherwise specified)

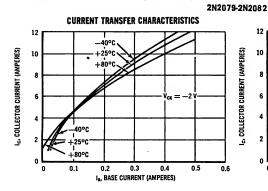
CHARACTERISTIC		SYMBOL	MIN	MAX	UNIT
Collector-Base Cutoff Current (VCB = -40 V, VEB = -1.5 V) (VCB = -50 V, VEB = -1.5 V) (VCB = -70 V, VEB = -1.5 V) (VCB = -70 V, VEB = -1.5 V) (VCB = -80 V, VEB = -1.5 V)	2N2078, 2N2082 2N2077, 2N2081 2N2076, 2N2080 2N2075, 2N2079	I _{CB1}		4.0 4.0 4.0 4.0	mAd
Collector-Base Cutoff Current $(V_{CB} = V_{CB \text{ max}}, I_{E} = 0, T_{C} = +71^{\circ}C)$	All Types	IСВО	-	15	mAd
Collector-Base Cutoff Current (V _{CB} = -2 V, I _E = 0)	All Types	I _{СВО}	-	200	μ Ado
Emitter-Base Cutoff Current (VEB = -20 V, IC = 0) (VEB = -25 V, IC = 0) (VEB = -35 V, IC = 0) (VEB = -40 V, IC = 0)	2N2078, 2N2082 2N2077, 2N2081 2N2076, 2N2080 2N2075, 2N2079	I _{EBO}	-	4.0 4.0 4.0 4.0	mAd
Emitter-Base Cutoff Current $(V_{EB} = V_{EB \text{ max}}, I_{C} = 0, T_{C} = +71^{\circ}C)$	All Types	IEBO	-	15	mAdo
Collector-Emitter Breakdown Voltage * (I _C = 300 mA, V _{EB} = 0)	2N2078, 2N2082 2N2077, 2N2081 2N2076, 2N2080 2N2075, 2N2079	BVCES	-40 -50 -70 -80	:	Vdc
Collector-Emitter Breakdown Voltage * (I _C = 1.0 A, I _B = 0)	2N2078, 2N2082 2N2077, 2N2081 2N2076, 2N2080 2N2075, 2N2079	BVCEO	-25 -45 -55 -65		Vdc
Floating Potential $(V_{CB} = -40 \text{ V}, I_{E} = 0)$ $(V_{CB} = -50 \text{ V}, I_{E} = 0)$ $(V_{CB} = -70 \text{ V}, I_{E} = 0)$ $(V_{CB} = -80 \text{ V}, I_{E} = 0)$	2N2078, 2N2082 2N2077, 2N2081 2N2076, 2N2080 2N2075, 2N2079	v _{f1}	- - -	1.0 1.0 1.0 1.0	Vdc
DC Current Transfer Ratio $(I_C = 1.2 \text{ A}, V_{CB} = -2 \text{ V})$ $(I_C = 5 \text{ A}, V_{CB} = -2 \text{ V})$ $(I_C = 12 \text{ A}, V_{CB} = -2 \text{ V})$ $(I_C = 12 \text{ A}, V_{CB} = -2 \text{ V})$ $(I_C = 5 \text{ A}, V_{CB} = -2 \text{ V}, T_C = -55^{\circ}\text{C})$	2N2075 thru 2N2078 2N2079 thru 2N2082 2N2075 thru 2N2078 2N2079 thru 2N2082 2N2075 thru 2N2078 2N2079 thru 2N2082 2N2075 thru 2N2078 2N2075 thru 2N2078	h _{FE}	25 40 20 35 8 12 15 25	100 160 40 70 - - -	
Collector-Emitter Saturation Voltage (I _C = 12 A, I _B = 2 A)	2N2075 & 76, 2N2079 & 80 2N2077 & 78, 2N2081¦& 82	V _{CE(sat)}	-	0.7 0.9	Vdc
Base-Emitter Voltage (I _C = 5 A, V _{CB} = -2 V)	All Types	V _{BE}	-	0.9	Vdc
Common Emitter Cutoff Frequency (I _C = 5 A, V _{CE} = -6 V)	All Types	ľαe	5	-	kc
Rise Time ("On" I _C = 12 A, V _{CE} = -12 V, I _B = 2 A)	2N2075 thru 2N2078 2N2079 thru 2N2082	t _r	9	yp B	µsec
Fall Time ("Off" $I_C = 0$, $V_{EB} = -6 \text{ V}$, $R_{EB} = 10 \text{ Ohm}$	s) 2N2075 thru 2N2078 2N2079 thru 2N2082	t _f		2 3	µsec

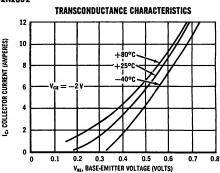

^{*} To avoid excessive heating of collector junction, perform this test with a sweep method.


2N2075 thru 2N2082 (continued)


The Safe Operating Area Curves indicate Ic—VCE limits below thich the device will not go into secondary breakdown. Collector load lines for specific circuits must fall within the applicable Safe Area to avoid causing a collector-emitter short.

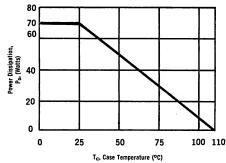



(Duty cycle of the excursions make no significant change in these safe areas.) To insure operation below the maximum T₁, the power-temperature derating curve must be observed for both steady state and pulse power conditions.


2N2075-2N2078

2N2075 thru 2N2082 (continued)

2N2137 thru 2N2146


 $P_C = 70 \text{ W}$ $I_C = 3 \text{ A}$ $V_{CBO} = 30-90 \text{ V}$

PNP germanium industrial power transistors for driver applications in high reliability equipment.

ABSOLUTE MAXIMUM RATINGS

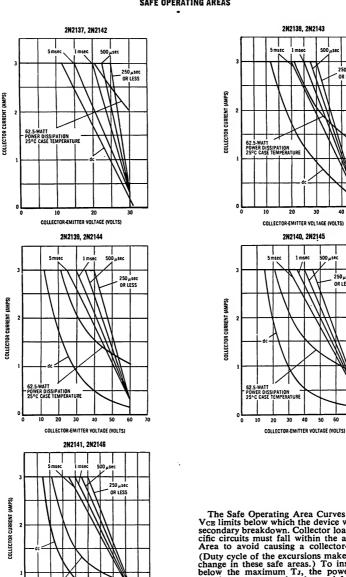
Characteristic	Symbol	2N2137 2N2142	2N2138 2N2143	2N2139 2N2144	2N2140 2N2145	2N2141 2N2146	Unit
Collector-Base Voltage	Vсво	30	45	60	75	90	Volts
Collector-Emitter Voltage	VCES	30	45	60	75	90	Volts
Collector-Emitter Voltage	VCEO	20	30	45	60	65	Volts
Emitter-Base Voltage	VEBO	15	25	30	40	45	Volts
Collector Current	Ic	3	3	3	3	3	Amp:
Power Dissipation at T _c =25°C	Pc	70	70	70	70	70	Watts
Junction Temperature Range	T,	←		65 TO +110	-		°C
Thermal Resistance, Junction to. Case,.	$\theta_{\sf JC}$	•		1.2	-		°C/W

POWER TEMPERATURE DERATING CURVE

The maximum continuous power is related to maximum junction temperature by the thermal resistance factor. This curve has a value of 70 Watts at case temperatures of 25°C and is 0 Watts at 110°C with a linear relation between the two temperatures such that:

allowable
$$P_D = \frac{110^O - Tc}{1.2}$$

2N2137 thru 2N2146 (continued)


ELECTRICAL CHARACTERISTICS (At 25°C case temperature unless otherwise specified)

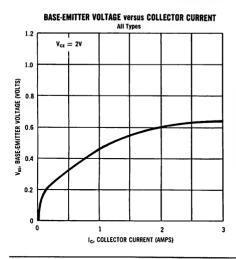
Characteristic	Types	Symbol	Minimum	Typical	Maximum	Unit
Collector-Base Cutoff Current $(V_{CB} = -2 \text{ V}, I_E = 0)$	All Types	I _{CIO}	_	18	50	μAdc
Collector-Base Cutoff Current $(V_{CB} = -30 \text{ V}, I_E = 0)$ $(V_{CB} = -45 \text{ V}, I_E = 0)$ $(V_{CB} = -60 \text{ V}, I_E = 0)$ $(V_{CB} = -75 \text{ V}, I_E = 0)$ $(V_{CB} = -90 \text{ V}, I_E = 0)$	2N2137, 2N2142 2N2138, 2N2143 2N2139, 2N2144 2N2140, 2N2145 2N2141, 2N2146	I _{CIO}	= = =	0.1 0.1 0.1 0.1 0.1	2 2 2 2 2	mAdc
Collector-Base Cutoff Current ($V_{C8} = V_{C8}_{max}$, $I_E = 0$, $T_C = +71^{\circ}C$)	All Types	I _{CIO}	_	0.75	5	mAdc
Emitter-Base Cutoff Current $(V_{E8} = -15 \text{ V, } I_{C} = 0)$ $(V_{E8} = -25 \text{ V, } I_{C} = 0)$ $(V_{E8} = -30 \text{ V, } I_{C} = 0)$ $(V_{E8} = -40 \text{ V, } I_{C} = 0)$ $(V_{E8} = -45 \text{ V, } I_{C} = 0)$	2N2137, 2N2142 2N2138, 2N2143 2N2139, 2N2144 2N2140, 2N2145 2N2141, 2N2146	I _{EBO}	_ _ _ _	0.08 0.08 0.08 0.08 0.08	2 2 2 2 2	mAdc
Emitter-Base Cutoff Current ($V_{EB} = V_{EB max}$, $I_C = 0$, $T_C = +71$ °C)	All Types	IEBO	_	0.5	5	mAdc
Collector-Emitter Breakdown Voltage* ($I_{c}=300$ mA, $V_{\epsilon B}=0$)	2N2137, 2N2142 2N2138, 2N2143 2N2139, 2N2144 2N2140, 2N2145 2N2141, 2N2146	BV _{CES}	-30 -45 -60 -75 -90	=	= = =	Vdc
Collector-Emitter Breakdown Voltage* (I _C = 500 mA, I _B = 0)	2N2137, 2N2142 2N2138, 2N2143 2N2139, 2N2144 2N2140, 2N2145 2N2141, 2N2146	BV _{CEO}	-20 -30 -45 -60 -65	=	= = =	Vdc
Floating Potential	2N2137, 2N2142 2N2138, 2N2143 2N2139, 2N2144 2N2140, 2N2145 2N2141, 2N2146	V _{EBF}	_ _ _	_ _ _	1.0 1.0 1.0 1.0	Vdc
DC Current Transfer Ratio ($I_c=0.5$ A, $V_{c\epsilon}=2$ V) ($I_c=2.0$ A, $V_{c\epsilon}=2$ V)	2N2137 - 2N2141 2N2142 - 2N2146 2N2137 - 2N2141 2N2142 - 2N2146	h _{FE}	30 50 15 25	45 70 25 33	60 100 —	-
Collector-Emitter Saturation Voltage (I _C = 2.0 A, I _B = 200 mA)	All Types	V _{CE (set)}	. <u>.</u>	0.12	0.5	Vdc
Base-Emitter Voltage ($I_c = 2.0 \text{ A}, I_s = 200 \text{ mA}$)	All Types	V _{BE}	_	0.75	1.2	Vdc
Common Emitter Cutoff Frequency (I _C = 2.0 A, V_{CE} = 6 V)	All Types	fae	12	20	_	kc

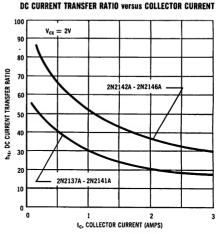
^{*}To avoid excessive heating of the collector junction, perform these tests with an oscilloscope

2N2137 thru 2N2146 (continued)

SAFE OPERATING AREAS

The Safe Operating Area Curves indicate Ic—VCE limits below which the device will not go into secondary breakdown. Collector load lines for specific circuits must fall within the applicable Safe Area to avoid causing a collector-emitter short. (Duty cycle of the excursions make no significant change in these safe areas.) To insure operation below the maximum T₁, the power-temperature derating curve must be observed for both steady state and pulse power conditions.


250 µse


OR LESS

10 20 30 40 50 COLLECTOR-EMITTER VOLTAGE (VOLTS)

2N2137 thru 2N2146 (continued)

INPUT & TRANSFER CHARACTERISTICS

2N2152 thru 2N2154
2N2156 thru 2N2158

 $P_C = 170 \text{ W}$ $I_C = 30 \text{ A}$ $V_{CBO} = 45-75 \text{ V}$

PNP germanium power transistors for high-power, high-gain applications in high-reliability industrial equipment.

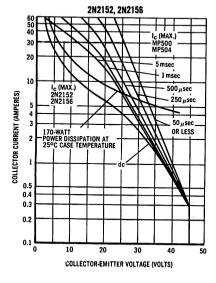
MAXIMUM RATINGS

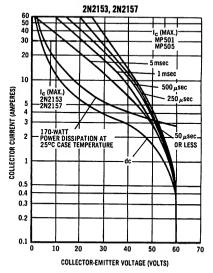
Characteristic	Symbol	2N2152 2N2156	2N2153 2N2157	2N2154 2N2158	Unit
Collector-Base Voltage	BV _{CBO}	45	60	75	Volts
Collector-Emitter Voltage	BV _{CES}	45	60	75	Volts
Collector-Emitter Voltage	BVCEO	30	45	60	Volts
Emitter-Base Voltage	BVEBO	25	30	40	Volts
Collector Current	lc	30	30	30	Amps
Power Dissipation at $T_c = 25^{\circ}C$	P _C	170	170	170	Watts
Junction Temperature Range	T,		-65 t <u>o +110</u> —		°C
Thermal Resistance, Junction to Case,	θις	4	— 0.5 ———		°C/W

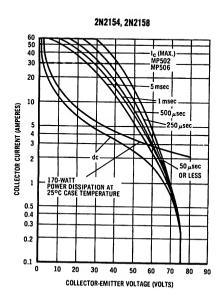
2N2152 thru 2N2154 2N2156 thru 2N2158 (continued)

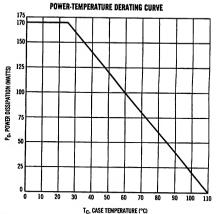
ELECTRICAL CHARACTERISTICS (at TA = 25°C unless otherwise noted)

Characteristic		Symbol	Minimum	Typical	Maximum	Unit
$ \begin{array}{ll} \text{Collector-Base Cutoff Current} \\ (\text{V}_{\text{CB}} = -45 \; \text{V}, \; \text{I}_{\text{E}} = 0) \\ (\text{V}_{\text{CB}} = -60 \; \text{V}, \; \text{I}_{\text{E}} = 0) \\ (\text{V}_{\text{CB}} = -75 \; \text{V}, \; \text{I}_{\text{E}} = 0) \end{array} $	2N2152, 2N2156 2N2153, 2N2157 2N2154, 2N2158	I _{CBO}	=	0.9 0.9 0.9	4.0 4.0 4.0	mAdc
Collector-Base Cutoff Current (V _{CB} = V _{CB max} , I _E = 0, T _C = +71°C)	All Types	I _{cso}	_	4.0	15	mAdc
Collector-Base Cutoff Current ($V_{Ce} = -2 \text{ V}, I_E = 0$)	All Types	I _{CBO}	_	80	200	μAdc
Emitter-Base Cutoff Current ($V_{\rm EB}=-25$ V, $I_{\rm C}=0$) ($V_{\rm EB}=-30$ V, $I_{\rm C}=0$) ($V_{\rm EB}=-40$ V, $I_{\rm C}=0$)	2N2152, 2N2156 2N2153, 2N2157 2N2154, 2N2158	I _{EBO}	=	0.2 0.2 0.2	4.0 4.0 4.0	mAdc
Emitter-Base Cutoff Current ($V_{EB} = V_{EB_{max}} I_C = 0$, $T_C = +71^{\circ}C$)	All Types	IEBO	_	2.7	15	mAdc
Collector-Emitter Breakdown Voltage* (I _C = 300 mA, V _{EB} = 0)	2N2152, 2N2156 2N2153, 2N2157 2N2154, 2N2158	BV _{CES}	45 60 75	Ξ	=	Vdc
Collector-Emitter Breakdown Voltage* (I $_{\rm C}=1.0$ A, I $_{\rm B}=0$)	2N2152, 2N2156 2N2153, 2N2157 2N2154, 2N2158	BV _{CEO}	-30 -45 -60	=	=	Vdc
Floating Potential $(V_{C8} = -45 V, I_E = 0)$ $(V_{C8} = -60 V, I_E = 0)$ $(V_{C8} = -75 V, I_E = 0)$	2N2152, 2N2156 2N2153, 2N2157 2N2154, 2N2158	VESF	=	=	1.0 1.0 1.0	Vdc
DC Current Transfer Ratio ($I_C = 5A$, $V_{CB} = 2 V$) ($I_C = 15A$, $V_{CB} = 2 V$) ($I_C = 25A$, $V_{CB} = 2 V$)	2N2152, 2N2153, 2N2154 2N2156, 2N2157, 2N2158 2N2152, 2N2153, 2N2154 2N2156, 2N2157, 2N2158 All Types	h _{FE}	50 80 25 40 15	75 105 47 63 38	100 160 — —	_
Collector-Emitter Saturation Voltage ($I_c = 5 \text{ A}$, $I_b = 500 \text{ mA}$) ($I_c = 25 \text{ A}$, $I_b = 2 \text{ A}$)	All Types All Types	V _{GE(sat)}	=	0.06 0.2	0.1 0.3	Vdc
Base-Emitter Voltage (I _C = 5 A, I _B = 500 mA) (I _C = 25 A, I _B = 2 A)	All Types All Types	VeE	_	0.65 1.0	1.0 2.0	Vdc
Common Emitter Cutoff Frequency (I _C = 5 A, V_{CE} = 6 V)	All Types	f _{ae}	2	2.7		


^{*}To avoid excessive heating of the collector junction, perform these tests with an oscilloscope.


2N2152 thru 2N2154 2N2156 thru 2N2158 (continued)


SAFE OPERATING AREAS


The Safe Operating Area Curves indicate Ic—VCE limits below which the device will not go into secondary breakdown. Collector load lines for specific circuits must fall within the applicable Safe Area to avoid causing a collector-emitter short.

(Duty cycle of the excursions make no significant change in these safe areas.) To insure operation below the maximum T₁, the power-temperature derating curve must be observed for both steady state and pulse power conditions.



The maximum continuous power is related to maximum junction temperature by the thermal resistance factor. This curve has a value of 170 Watts at case temperatures of 25°C and is 0 Watts at 110°C with a linear relation between the two temperatures such that:

allowable
$$P_D = \frac{110^O - Tc}{0.5}$$

2N2152 thru 2N2154 2N2156 thru 2N2158 (continued)

TYPICAL INPUT AND TRANSFER CHARACTERISTICS

2N2490 thru 2N2493

 $P_C = 170 \text{ W}$ $I_C = 15 \text{ A}$ $V_{CBO} = 60-100 \text{ V}$

PNP germanium power transistors for general purpose power and switching applications.

ABSOLUTE MAXIMUM RATINGS

Characteristic	Symbol	2N2490	2N2491	2N2492	2N2493	Unit
Collector-Base Voltage	v _{CBO}	70	60	80	100	Volts
Collector-Emitter Voltage	VCES	60	50	70	85	Volts
Emitter-Base Voltage	V _{EBO}	40	30	60	80	Volts
Collector Current	I _C	15	15	15	15	Amps
Power Dissipation at T _C = 25°C	P _C	170	170	170	170	Watts
Junction Temperature Range	$T_{\mathbf{J}}$	-	°c			

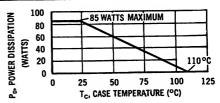
ELECTRICAL CHARACTERISTICS (at $Tc = 25^{\circ}C$ unless otherwise noted)

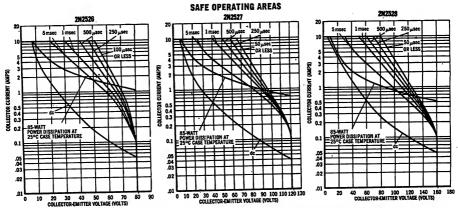
Characteristic		Symbol	Min	Max	Unit
Collector-Base Cutoff Current (V _{CB} =-2 Vdc)	All Types	I _{CBO}	_	0. 2	mAde
Emitter-Base Cutoff Current (VEB = -40 Vdc) (VEB = -30 Vdc) (VEB = -60 Vdc) (VEB = -80 Vdc)	2N2490 2N2491 2N2492 2N2493	I EBO	=======================================	3 3 2 3	mAde
Collector Cutoff Current (VCE = -70 Vdc, VBE = 1.5 Vdc) (VCE = -80 Vdc, VBE = 1.5 Vdc) (VCE = -80 Vdc, VBE = 1.5 Vdc) (VCE = -100 Vdc, VBE = 1.5 Vdc) (VCE = -35 Vdc, VBE = 1.5 Vdc, $T_{\rm C} = +100^{\circ}$ C) (VCE = -35 Vdc, VBE = 1.5 Vdc, $T_{\rm C} = +100^{\circ}$ C) (VCE = -80 Vdc, VBE = 1.5 Vdc, $T_{\rm C} = +100^{\circ}$ C) (VCE = -80 Vdc, VBE = 1.5 Vdc, $T_{\rm C} = +100^{\circ}$ C)	2N2490 2N2491 2N2492 2N2493 2N2490,2N2491 2N2492 2N2493	ICEX	111111111111111111111111111111111111111	3 3 2 3 3 35 35 35	mAdc
Collector-Emitter Breakdown Voltage (I $_{\rm C}$ = 1 A, I $_{\rm B}$ = 0)	2N2490 2N2491 2N2492 2N2493	v _{CEO}	-50 -40 -65 -75	=======================================	Volts
Base-Émitter Voltage (I _C = 5 Adc, V _{CE} = -2 Vdc) (I _C = 12 Adc, V _{CE} = -2 Vdc)	2N2490,2N2491 2N2492,2N2493 All Types	v _{BE}	=	-0. 9 -0. 8 -1. 5	Vdc
Collector-Emitter Saturation Voltage ($I_C = 12 \text{ Adc}$, $I_B = 2 \text{ Adc}$)	2N2490, 2N2491 2N2492, 2N2493	V _{CE (sat)}	=	-0.7 -0.5	Vdc
DC Current Gain (I _C = 1 Adc, v_{CE} = -2 Vdc) $ (I_{C} = 5 \text{Adc}, v_{CE} = -2 \text{Vdc}) $ (I _C = 5 Adc, v_{CE} = -2 Vdc, v_{CE} = -65°C) $ (I_{C} = 12 \text{Adc}, v_{CE} = -2 \text{Vdc}) $	2N2490 2N2491 2N2492, 2N2493 2N2490 2N2491 2N2492, 2N2493 2N2490 2N2491 2N2492, 2N2493 2N2492, 2N2493 2N2492, 2N2493 2N2492, 2N2493	hFE	45 65 50 20 35 25 15 25 20 8 12		_
Common Emitter Cutoff Frequency (I _C = 5A, V _{CE} = -6 V)		fae	5	_	kc
Turn-On Time (I _C = 5 A, I _{B1} = I _{B2} = 0.5 A)		ton	_	25	µвес
Turn-Off Time (I _C = 5 A, I _{B1} = I _{B2} = 0.5 A)		toff	_	15	μвес

2N2526 2N2527 2N2528

 $P_{C} = 85 \text{ W}$ $I_{C} = 10 \text{ A}$ $V_{CBO} = 80-160 \text{ V}$

PNP germanium power transistors for high-voltage power switching applications.


MAXIMUM RATINGS


Characteristic	Symbol	2N2526	2N2527	2N2528	Unit
Collector-Emitter Voltage	v _{CE}	80	120	160	Vdc
Collector-Base Voltage	v _{CB}	80	120	160	Vdc
Emitter-Base Voltage	v _{EB}	5	5	5	Vdc
Collector Current (Cont)	I _C	10	10	10	Amps
Base Current (Cont)	I _B	5	5	, 5	Amps
Emitter Reverse Current (Surge 60 cps Recurrent)	I _E	1.5	1.5	1.5	Amps
Storage and Operating Temperatures	${ t T_{stg} t T_J}$	4	65 to +110		°c
Collector Dissipation (25°C Mtg. Case Temp.)	PC	85	85	85	Watte
Thermal Resistance	θJC	-	1.0 —		°C/W

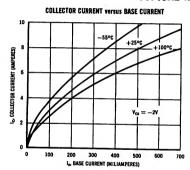
POWER DERATING CURVE

The maximum continuous power is related to maximum junction temperature by the thermal resistance factor. This curve has a value of 85 watts at a case temperature of 25°C and is 0 watts at 110°C with a linear relation between the two temperatures such that:

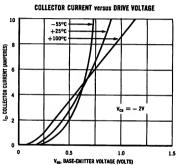
Allowable
$$P_0 = \frac{110^{\circ} - T_C}{1.0}$$
 Watts

The Safe Operating Area Curves indicate Ic—VCE limits below which the device will not go into secondary breakdown. Collector load lines for specific circuits must fall within the applicable Safe Area to avoid causing a collector-emitter short.

(Duty cycle of the excursions make no significant change in these safe areas.) To insure operation below the maximum T_J, the power-temperature derating curve must be observed for both steady state and pulse power conditions.

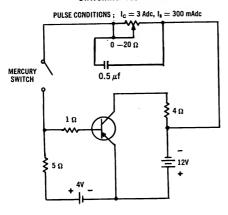

2N2526 thru 2N2528 (continued)

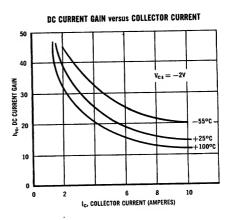
ELECTRICAL CHARACTERISTICS (At 25°C unless otherwise noted


Characteristic	Types	Symbol	Min.	Тур.	Max.	Unit
	2N2526 2N2527 2N2528	ICEX	=	-	35 35 35	mA
Collector-Base Cutoff Current	2N2526 2N2527 2N2528 All Types	I _{CBO}	- - -	=	3 3 3 150	m Ado
Collector-Emitter Cutoff Current $(V_{CE} = -80 \text{ Vdc}, R_{BE} = 100 \Omega)$ $(V_{CE} = -120 \text{ Vdc}, R_{BE} = 100 \Omega)$ $(V_{CE} = -180 \text{ Vdc}, R_{BE} = 100 \Omega)$	2N2526 2N2527 2N2528	ICER	=	=	25 25 25 25	m Ade
Emitter-Base Breakdown Voltage ($I_E = 50 \text{ mAdc}$)	All Types	BVEBO	5	-	_	Vdc
Collector-Emitter Breakdown Voltage* (I _C = 100 mA, I _B = 0)	2N2526 2N2527 2N2528	BV _{CEO(sus)}	-80 -120 -160	=	=======================================	Volts
DC Current Gain (I _C = 3 Adc, V _{CE} = -2.0 Vdc)	All Types	$h_{\mathbf{FE}}$	20	-	50	_
Small Signal Current Gain (V _{CE} = -12 Vdc, I _C = 0.5 Adc, f = 30 kc)	All Types	h _{fe}	10	15	_	_
Transconductance (V _{CE} = -2.0 Vdc, I _C = 3 Adc)	All Types	gFE	4	6	_	Mhos
Collector-Emitter Saturation Voltage (I _C = 10 Adc, I _B = 1.0 Adc)	All Types	V _{CE(sat)}	_	-0.5	-0.8	Vdc
Base-Emitter Saturation Voltage ($I_C = 10$ Adc, $I_B = 1.0$ Adc)	All Types	V _{BE(sat)}		0.8	1. 2	Vdc
Rise Time	All Types	t _r		5.5	_	μвес
Storage Time	All Types	t _s		1. 2		μвес
Fall Time	All Types		_	2.0	_	ивес

^{*}To avoid excessive heating of collector junction, perform this test with a sweep method.

TYPICAL INPUT CHARACTERISTICS




ALL TYPES

2N2526 thru 2N2528 (continued)

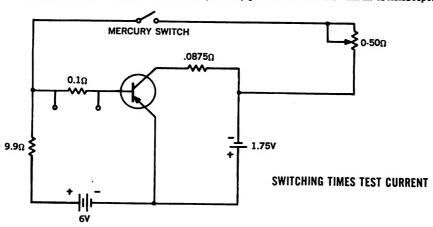
SWITCHING TEST CIRCUIT

2N2728

 $P_{C} = 170 \text{ W}$ $I_{C} = 50 \text{ A}$ $V_{CBO} = 15 \text{ V}$

PNP germanium high-current power transistors especially designed for switching and power converter circuit operating from low-voltage power sources such as solar cells, thermo-electric generators, sea cells, fuel cells, and 1.5-volt batteries.

ABSOLUTE MAXIMUM RATINGS


Characteristic	Symbol	Rating	Unit
Collector-Base Voltage	v _{сво}	15	Vdc
Collector-Emitter Voltage	V _{CEO}	5	Vdc
Emitter-Base Voltage	v _{EBO}	15	Vdc
Collector Current (continuous)	I _C	50	Adc
Base Current (continuous)	I _B	10	Adc
Total Device Dissipation @ 25°C Case Temperature	P _D	170	Watts
Operating Temperature	${f T_J}$	+110	°C
Storage Temperature	T _{stg}	-65 to +110	°c
Thermal Resistance (Junction to Case)	θJC	0.5	°C/W

2N2728 (continued)

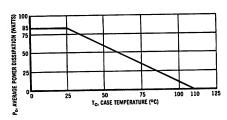
ELECTRICAL CHARACTERISTICS

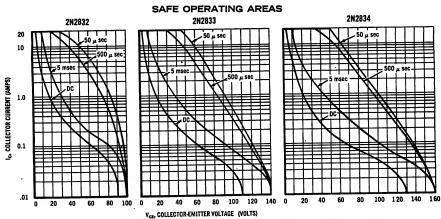
Characteristic	Symbol	Min	Тур	Max	Unit
Collector Cutoff Current V _{CE} = 15 V, V _{BE} = 1 V V _{CE} = 10 V, V _{BE} = 1 V, T _C = 100°C	ICEX	-	-	10 35	mAdc
Emitter-Base Cutoff Current VEB = 15 V	I _{EBO}	-		10	m Adc
Emitter Floating Potential $V_{CB} = 15 \text{ V}, I_E = 0$	V _{EBF}	-	-	0.5	Vdc
Collector-Emitter Breakdown Voltage* I _C = 500 mA, I _B = 0	BV _{CEO}	5	10	-	v
DC Current Transfer Ratio $I_C = 20 \text{ A}, V_{CE} = 2 \text{ V}$	h _{FE}	40	-	130	-
Collector-Emitter Saturation Voltage $I_C = 50 \text{ A}, I_B = 5 \text{ A}$	V _{CE(sat)}	_	. 075	0. 1	Vdc
Base-Emitter Voltage I _C = 50 A, I _B = 5 A	V _{BE(sat)}	_	0.85	1.0	Vdc
Common Emitter Cutoff Frequency $I_C = 20 \text{ A}, V_{CE} = 2 \text{ V}$	fae	3	4.5		kc
Rise Time $I_C = 20 \text{ A}$, $V_{CC} = 1.75 \text{ V}$, $I_{B(on)} = 2 \text{ A}$	t _r	_	18	25	μsec
Storage Time $V_{BE} = 6 \text{ V}, R_{be} = 10 \Omega$	t _s	-	15	20	μsec
Fall Time $V_{BE} = 6 \text{ V}, R_{be} = 10 \Omega$	t _f		10	15	μsec

^{*} To avoid excessive heating of the collector junction, perform these tests with an oscilloscope.

2N2832 2N2833 2N2834

 $P_{C} = 85 \text{ W}$ $I_{C} = 20 \text{ A}$ $V_{CBO} = 80-140 \text{ V}$


PNP germanium high-speed, high-frequency, power transistors for output stages of CRT deflection circuits, high-efficiency power inverters, and similar applications.

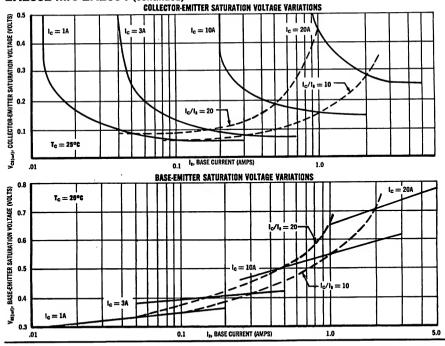

MAXIMUM RATINGS

Characteristic	Symbol	2N2832	2N2833	2N2834	Unit
Collector-Base Voltage	v _{CBO}	80	120	140	Volts
Collector-Emitter Voltage	v _{CEO}	50	75	100	Volts
Emitter-Base Voltage	V _{EBO}	2	2	2	Volts
Collector Current (Continuous)	I _C	20	20	20	Amps
Base Current (Continuous)	IB	5	5	5	Amps
Power Dissipation	P _C	85	85	85	Watts
Case Operating & Storage Temperature Range	T _C & T _{stg}	-65 to +110°		°C	

POWER DERATING CURVE

THESE TRANSISTORS ARE ALSO SUBJECT TO SAFE AREA CURVES

The Safe Operating Area Curves indicate the Ic - Vcz limits below which the devices will not go into secondary breakdown. As secondary breakdown is independent of temperature and duty cycle, these curves can be used as long as the average power derating curve is also taken into consideration to insure operation below the maximum junction temperature.


2N2832 thru 2N2834 (continued)

ELECTRICAL CHARACTERISTICS (At 25°C case temperature unless otherwise specified)

Characteristic		Symbol	Min	Typical	Max	Unit
Collector-Base Cutoff Current* $(V_{CB} = 2V, I_{E} = 0)$ $(V_{CB} = 80V, I_{E} = 0)$ $(V_{CB} = 120V, I_{E} = 0)$ $(V_{CB} = 140V, I_{E} = 0)$	All Types 2N2832 2N2833 2N2834	I _{CBO} *			0.3 10 10 10	mA
Collector-Emitter Current* (V _{CE} = 100V, V _{BE} = 0) (V _{CE} = 140V, V _{BE} = 0) (V _{CE} = 160V, V _{BE} = 0)	2N2832 2N2833 2N2834	ICES*			20 20 20	mA
Collector-Emitter Cutoff Current** (V _{CE} = 50V, V _{BE} = 0.2V, T _C = +85°C) (V _{CE} = 75V, V _{BE} = 0.2V, T _C = +85°C) (V _{CE} = 100V, V _{BE} = 0.2V, T _C = +85°C)	2N2832 2N2833 2N2834	ICEX**			40 40 40	mA
Emitter-Base Breakdown Voltage $(I_E = 50 \text{ mAdc}, I_C = 0)$		BV _{EBO}	2			Vdc
Collector-Emitter Breakdown Voltage** (I _E = 100 mA, I _B = 0)	2N2832 2N2833 2N2834	BV _{CEO(sus)} **	50 75 100			Volts
Emitter Floating Potential* ($V_{CB} = 80V$, $I_{E} = 0$) ($V_{CB} = 120V$, $I_{E} = 0$) ($V_{CB} = 140V$, $I_{E} = 0$)	2N2832 2N2833 2N2834	VEBF*			0.5 0.5 0.5	Volts
DC Current Transfer Ratio (I _C = 1.0 A, V _{CB} = 2V) (I _C = 10A, V _{CB} = 2V)		h _{FE}	50 25	75	100	
Collector-Emitter Saturation Voltage ($I_C = 1.0$ Adc, $I_B = 100$ mAdc) ($I_C = 10$ Adc, $I_B = 1.0$ Adc) ($I_C = 20$ Adc, $I_B = 2.0$ Adc)		V _{CE(sat)}			0.15 0.30 0.5	Vdc
Base-Emitter Saturation Voltage ($I_C = 1 A$, $I_B = 100 \text{ mAdc}$) ($I_C = 10 A$, $I_B = 1 \text{Adc}$) ($I_C = 20 A$, $I_B = 2 \text{ Adc}$)		V _{BE(sat)}			0.6 0.75 1.0	Vdc
Small Signal Current Gain (I _C = 1.0 A, V _{CE} = 10 V, f = 5 mc)		h _{(e}	2	3.5		
Rise Time		t _r		2	4	μвес
Storage Time		t _s		3	6	μвес
Fall Time		t _f		1	2.5	μвес

[•] SWEEP TEST: 1/2 Sine Wave, 60 cps min •• PULSE TEST: PW = 1 msec, 2% Duty Cycle

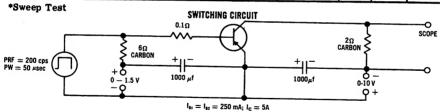
2N2832 thru 2N2834 (continued)

2N2912

 $P_{C} = 75 \text{ W}$ $I_{C} = 25 \text{ A}$ $V_{CBO} = 15 \text{ V}$

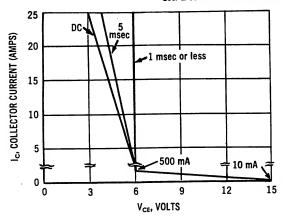
PNP germanium, epitaxial-base, high speed, power transistors for switching and power converter circuits operating from low-voltage power sources such as solar cells, thermo-electric generators, sea cells, fuel cells, and 1.5-volt batteries.

MAXIMUM RATINGS

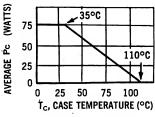

Characteristic	Symbol	Rating	Unit
Collector-Base Voltage	v _{CBO}	15	Volts
Collector-Emitter Voltage	V _{CEO}	6	Volts
Emitter-Base Voltage	V _{EBO}	1.5	Volts
Collector Current (Continuous)	· I _C	25	Amps
Base Current (Continuous)	IB	3	Amps
Power Dissipation	P_{D}	75	Watts
Operating Case Temperature Range	T _C	-65 to +110	°C
Storage Temperature Range	T _{stg}	-65 to +110	°C
	θ_{JC}	1	°C/W
Thermal resistance .	θ_{CA}	30	°C/W

-----Motorola Power Transistors

2N2912 (continued)


ELECTRICAL CHARACTERISTICS (At 25°C unless otherwise specified)

Characteristic	Symbol	Min	Max	Unit
Collector Cutoff Current (V _{CE} = 15 Vdc, V _{BE} = 0.2 Vdc) (V _{CE} = 6 Vdc, V _{BE} = 0.2 Vdc, T _C = 85°C)	ICEX		10 15	mAde
Collector-Base Cutoff Current (V _{CB} = 2 Vdc, I _E = 0)	I _{СВО}		0.2	mAdc
Emitter Floating Potential (V _{CB} = 15 Vdc, I _E = 0)	VEBF		0.2	Vdc
Emitter Cutoff Current (V _{EB} = 1.5 Vdc)	I _{EBO}		50	mAdc
Collector-Emitter Voltage* (I _C = 500 mAdc, I _B = 0)	v _{CEO} *	6		Vdc
DC Forward Current Transfer Ratio (V _{CE} = 2 Vdc, I _C = 10 Adc)	h _{FE}	75		
Collector-Emitter Saturation Voltage ($I_C = 5 \text{ Adc}$, $I_B = 0.5 \text{ Adc}$) ($I_C = 25 \text{ Adc}$, $I_B = 2.5 \text{ Adc}$)	V _{CE} (sat)		0.12 0.5	Vdc
Base-Emitter Saturation Voltage ($I_C = 25$ Adc, $I_B = 2.5$ Adc)	V _{BE} (sat)		1.2	Vdc
Base-Emitter Saturation Voltage ($I_C = 5 \text{ Adc}$, $I_B = 0.5 \text{ Adc}$)	V _{BE} (sat)		0.5	Vdc
Rise Time $(I_C = 5A, V_{CE} = 10 \text{ V}, I_{B \text{ (on)}} = 250 \text{ mA})$	t _r		2	μвес
Storage Time $(I_C = 5 \text{ A, } V_{CE} = 10 \text{ V, } I_{B \text{ (on)}} = 250 \text{ mA)}$	t _s		2.5	µвес
Fall Time ($I_C = 5 \text{ A}$, $V_{CE} = 10 \text{ V}$, $V_{EB} = 1.5 \text{ V}$, $R_{be} = 6 \text{ Ohms}$)	ц		2	д зе с
Common Emitter Small-Signal Forward Current Transfer Ratio Cutoff Frequency ($V_{CE} = 2 \text{ V}, I_{C} = 5 \text{ A}, f = 1 \text{ mc}$)	h _{fe}	20		



2N2912 (continued)

SAFE AREA OF OPERATION

The safe operating area curve is applicable for all case temperatures. The thermal derating curve must also be observed to insure operation below maximum T_J.

POWER DERATING CURVE

2N3021 thru 2N3026

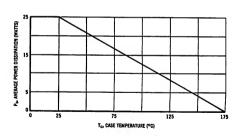
 $P_C = 25 \text{ W}$ $I_C = 3 \text{ A}$ $V_{CBO} = 30-60 \text{ V}$

PNP silicon power transistors for Class C power amplifiers, high-current core switching and high-speed switching and amplifier applications.

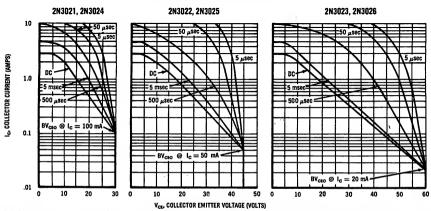
ABSOLUTE MAXIMUM RATINGS

Characteristic	Symbol	2N3021 2N3024	2N3022 2N3025	2N3023 2N3026	Unit
Collector-Base Voltage	v _{CB}	30	45	60	Volts
Collector-Emitter Voltage	v _{CE}	30	45	60	Volts
Emitter-Base Voltage	v _{EB}	4	4	4	Volts
Collector Current (Continuous)	IC	3	3	3 .	Amps
Base Current (Continuous)	IB	0.5	0.5	0.5	Amp
Power Dissipation	PC	25	25	25	Watts
Junction Operating Temperature Range	$T_{\mathbf{J}}$		65 to +175		°C

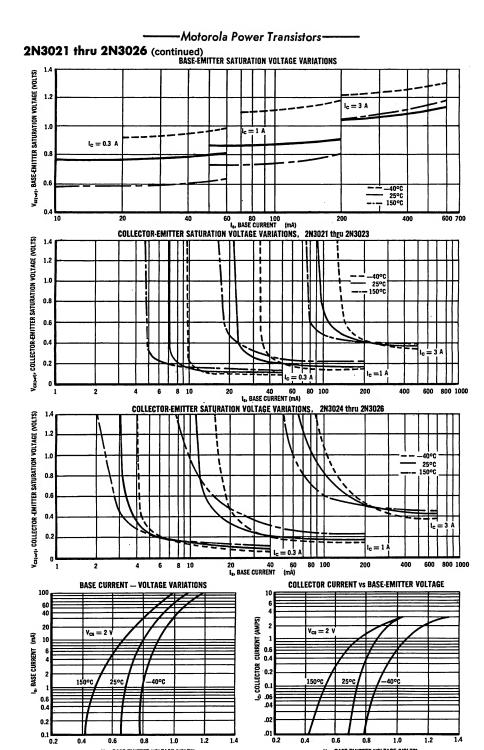
2N3021 thru 2N3026 (continued)


ELECTRICAL CHARACTERISTICS (At 25°C unless otherwise specified)

Characteristics		Symbol	Min	Max	Unit
Emitter-Base Cutoff Current (VBE = 4 Vdc)	All Types	I _{EBO}	_	1	mAdo
Collector-Emitter Cutoff Current (VCE = 25 Vdc, V _{BE} = 2 Vdc) (VCE = 40 Vdc, V _{BE} = 2 Vdc) (VCE = 54 Vdc, V _{BE} = 2 Vdc) (VCE = 54 Vdc, V _{BE} = 2 Vdc, T _C = 150°C) (VCE = 25 Vdc, V _{BE} = 2 Vdc, T _C = 150°C) (V _{CE} = 35 Vdc, V _{BE} = 2 Vdc, T _C = 150°C)	2N3021, 2N3024 2N3022, 2N3025 2N3023, 2N3026 2N3021, 2N3024 2N3022, 2N3025 2N3023, 2N3026	ICEX	=	0.2 0.2 0.2 2 2 2	m Ade
Collector-Emitter Breakdown Voltage* ($I_C = 100 \text{ mAdc}$, $I_B = 0$) ($I_C = 50 \text{ mAdc}$, $I_B = 0$) ($I_C = 20 \text{ mAdc}$, $I_B = 0$)	2N3021, 2N3024 2N3022, 2N3025 2N3023, 2N3026	BV _{CEO*}	30 45 60		Vdc
DC Current Gain (I _C = 1.0 Adc, V _{CE} = 2 Vdc)	2N3021, 2N3022, 2N3023 2N3024, 2N3025, 2N3028	hFE	20 50	80 180	_
Collector-Emitter Saturation Voltage (I _C = 3 Adc, I _B = 0.3 Adc)	2N3021, 2N3022, 2N3023 2N3024, 2N3025, 2N3028	V _{CE} (sat)	=	1.5 1.0	Vdc
Base-Emitter Saturation Voltage (I _C = 3 Adc, I _B = 0.3 Adc)	All Types	V _{BE} (sat)	_	1.5	Vdc
Small Signal Current Gain (I _C = 0.5 Adc, V _{CE} = 15 Vdc, f = 30 mc)	All Types	h _{fe}	2	_	_
Switching Times (Figures 17 and 18) (I _C = 1 Adc, I _{B1} = I _{B2} = 100 mAdc)	All Types	t _d + t _r t _s t _f	=	100 100 75	nse


^{*}Perform tests using sweep method to prevent heating.

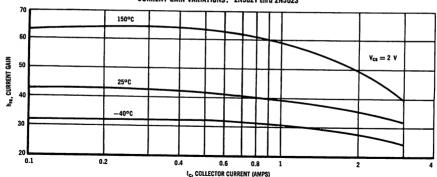
POWER DERATING CURVE


THESE TRANSISTORS ARE ALSO SUBJECT TO SAFE AREA CURVES AS INDICATED BY FIGURES 2, 3, 4. BOTH LIMITS ARE APPLICABLE AND MUST BE OBSERVED

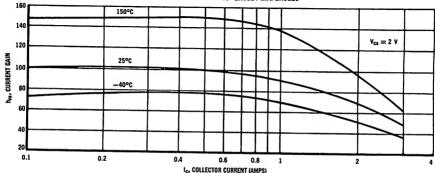
SAFE OPERATING AREAS

The Safe Operating Area Curves indicate Ic - Vce limits below which the devices will not go into secondary breakdown. As the safe operating areas shown are independent of temperature and duty cycle, these curves can be used as long as the average power derating curve (Figure 1) is also taken into consideration to insure operation below the maximum junction temperature.

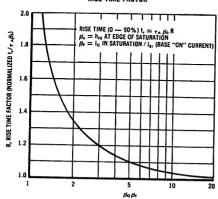
0.4

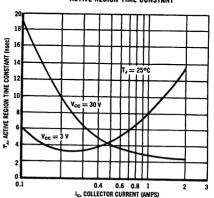

V_{EE}, BASE-EMITTER VOLTAGE (VOLTS)

0.4

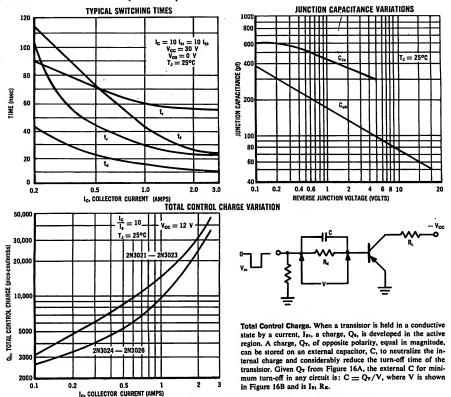

V_{EE}, BASE-EMITTER VOLTAGE (VOLTS)

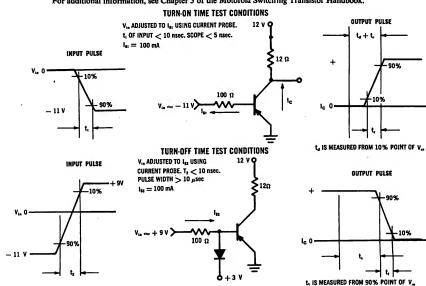
2N3021 thru 2N3026 (continued)




CURRENT GAIN VARIATIONS. 2N3024 thru 2N3026

RISE TIME FACTOR


ACTIVE REGION TIME CONSTANT


SWITCHING TIME EQUATIONS

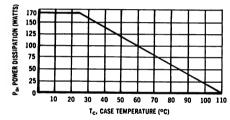
Using charge control theory and data given with this transistor, switching times for a wide variety of conditions can be readily computed. For specific information regarding this technique, see Chapter 5 of the Motorola Switching Transistor Handbook.

2N3021 thru 2N3026 (continued)

For additional information, see Chapter 5 of the Motorola Switching Transistor Handbook.

2N3311 thru 2N3316

 $P_C = 170 \text{ W}$ $I_C = 5 \text{ A}$ $V_{CBO} = 30-60 \text{ V}$



PNP germanium power transistors for high-power applications.

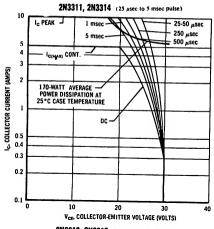
MAXIMUM RATINGS

Characteristic	Symbol	2N3311 2N3314	2N3312 2N3315	2N3313 2N3316	Unit
Collector-Base Voltage	v _{CBO}	30	45	60	Volts
Collector-Emitter Voltage	V _{CES}	30	45	60	Volts
Collector-Emitter Voltage	V _{CEO}	20	30	40	Volts
Emitter-Base Voltage	v_{EBO}	20	25	30	Volts
Collector Current (Continuous)	I _C	5	5	5	Amps
Power Dissipation at $T_C = 25^{\circ}C$	P _C	170	170	170	Watts
Junction Temperature Range	т	-65 to +110		10	°c
Thermal Resistance	θις	0.5			°C/W

POWER-TEMPERATURE DERATING CURVE

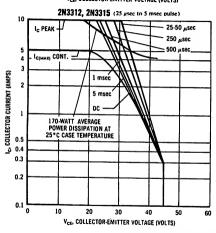
The maximum continuous power is related to maximum junction temperature by the thermal resistance factor. This curve has a value of 170 Watts at case temperatures of 25° C and is 0 Watts at 110° C with a linear relation between the two temperatures such that:

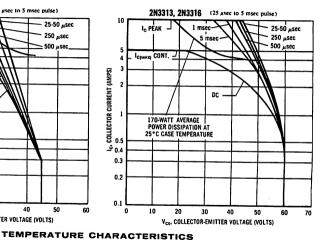
allowable
$$P_D = \frac{110^{\circ} - Tc}{0.5}$$

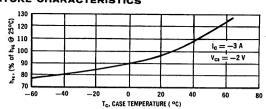

2N3311 thru 2N3316 (continued)

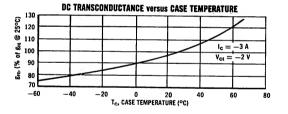
ELECTRICAL CHARACTERISTICS (At Tc=25°C unless otherwise specified.)

Characteristic,		Symbol	Min	Max	Unit
Collector-Base Cutoff Current (VCB = VCB max) (VCB = -2 Vdc, IE = 0)		I _{CBO}	-	5.0 0.3	m Adc
Collector Cutoff Current (VCE = 10 Vdc, IB = 0) (VCE = 15 Vdc, IB = 0) (VCE = 20 Vdc, IB = 0)	2N3311, 2N3314 2N3312, 2N3315 2N3313, 2N3316	I _{CEO}	111	200 200 200	m Adc
Collector Cutoff Current (VCE = 25 Vdc, VBE = 1 Vdc, TC = 100°C) (VCE = 40 Vdc, VBE = 1 Vdc,	2N3311, 2N3314	I _{CEX}	_	35	mAdc
T _C = 100°C; (V _{CE} = 55 Vdc, V _{BE} = 1 Vdc, T _C = 100°C)	2N3312, 2N3315		-	35 35	
Emitter-Base Cutoff Current (VEB = VEB max, IC = 0)		I _{EBO}	1	4	mAdc
Collector-Emitter Breakdown V (I _C = 300 mAdc, V _{EB} = 0)	oltage* 2N3311, 2N3314 2N3312, 2N3315 2N3313, 2N3316	BV _{CES} *	30 45 60	_	Vdc
Collector-Emitter Breakdown V (I _C = 500 mAdc, I _B = 0)	oltage* 2N3311, 2N3314 2N3312, 2N3315 2N3313, 2N3316	BV _{CEO} *	- 20 - 30 - 40	1 -	Vdc
Collector-Emitter Saturation Vo (I _C = 3 Adc, I _B = 300 mAdc)	ltage	V _{CE(sat)}	-	0.1	Vdc
Base-Emitter Voltage (I _C = 3 Adc, V _{CE} = 2 Vdc)	2N3311 thru 2N3313 2N3314 thru 2N3316	v _{BE}	11	0.6 0.5	Vdc
DC Current Gain ($I_C = 3$ Adc, $V_{CB} = 2$ Vdc) ($I_C = 500$ mAdc, $V_{CB} = 2$ Vdc)	2N3311 thru 2N3313 2N3314 thru 2N3316 2N3311 thru 2N3313 2N3314 thru 2N3316	h _{FE}	60 100 —	120 200 150 250	· .
Small Signal Current Gain (I _C = 3 Adc, V _{CE} = 2 Vdc, f = 0.5 kc)	2N3311 thru 2N3313 2N3314 thru 2N3316	h _{fe}	30 40	90 120	_
Common Emitter Cutoff Frequence (IC = 3 Adc, VCE = 2 Vdc)	ncy	fae	1.0	_	kc


^{*}To avoid excessive heating of the collector junction, perform these tests with an oscilloscope.

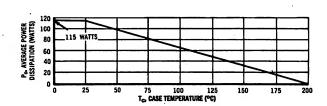

2N3311 thru 2N3316 (continued)


SAFE OPERATING AREA

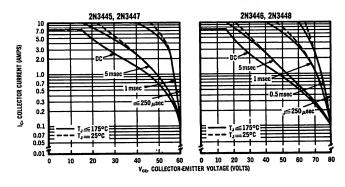

The Safe Operating Area Curves indicate the $I_{\rm C}$ - $V_{\rm CE}$ limits below which the devices will not go into secondary breakdown. As the safe operating areas shown are independent of temperature and duty cycle, these curves can be used as long as the average power derating curve is also taken into consideration to insure operation below the maximum junction temperature.

2N3445 thru 2N3448

 $P_C = 118 W$ $I_C = 7.5 A$ $V_{CBO} = 80-100 V$


NPN silicon power transistors for switching and amplifier applications requiring fast response, wide bandwidth and good Beta linearity.

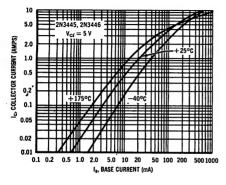
ABSOLUTE MAXIMUM RATINGS

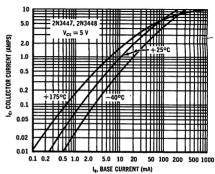

Characteristic	Symbol	2N3445 2N3447	2N3446 2N3448	Unit
Collector-Base Voltage	v _{CB}	80	100	Volts
Collector-Emitter Voltage	VCE	60	80	Volts
Emitter-Base Voltage	v_{EB}	6	10	Volts
Collector Current (Continuous)	I _C	7.5	7.5	Amps
Base Current (Continuous)	I _B	4.0	4.0	Amps
Power Dissipation	PD	115	115	Watts
Junction Operating Temperature Range	$\mathbf{T}_{\mathbf{J}}$	-65 to	+ 200	•С

POWER DERATING CURVE

These transistors are also subject to safe area curves. Both limits are applicable and must be observed.

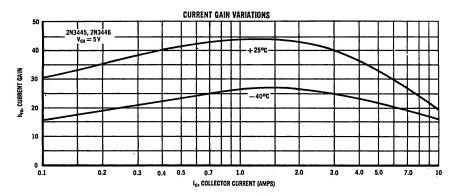
SAFE OPERATING AREAS

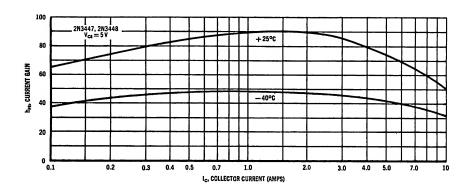

The Safe Operating Area Curves indicate Ic - Ver limits below which the device will not go into secondary breakdown. Collector load lines for specific circuits must fall within the applicable Safe Area to avoid causing a collector-emitter short. (Duty cycle of the excursions make no significant change in these safe areas.) To insure operation below the maximum Ta, the power-temperature derating curve must be observed for both steady state and pulse power conditions.

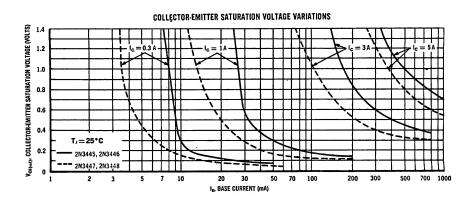

2N3445 thru 2N3448 (continued)

ELECTRICAL CHARACTERISTICS (Tr = 25°C unless otherwise noted)

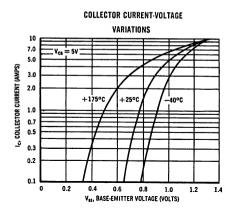
Characteristic		Symbol	Min	Тур	Max	Unit
Emitter-Base Cutoff Current (VEB = 6 Vdc) (VEB = 10 Vdc)	2N3445, 2N3447 2N3446, 2N3448	I _{EBO}	=	Ξ	0.25 0.25	mAdc
Collector-Emitter Cutoff Current (V _{CE} = 60 Vdc, V _{BE} = -1 Vdc) (V _{CE} = 60 Vdc, V _{BE} = -1 Vdc, T _C = 150°C) (V _{CE} = 80 Vdc, V _{BE} = -1 Vdc, T _C = 150°C) (V _{CE} = 80 Vdc, V _{BE} = -1 Vdc, T _C = 150°C)	2N3445, 2N3447 2N3445, 2N3447 2N3446, 2N3448 2N3446, 2N3448	ICEX	=	=	0.1 1.0 0.1 1.0	mAde
Collector-Emitter Cutoff Current (VCE = 40 Vdc, I _B = 0) (VCE = 60 Vdc, I _B = 0)	2N3445, 2N3447 2N3446, 2N3448	I _{CEO}	=	=	1.0 1.0	mAde
Collector-Base Breakdown Voltage $(I_C = 1 \text{ mAdc}, I_E = 0)$	2N3445, 2N3447 2N3446, 2N3448	вусво	80 100	=	=	Vdc
Collector-Emitter Sustaining Voltage (I _C = 100 mAdc, I _B = 0)	2N3445, 2N3447 2N3446, 2N3448	V _{CEO(sus)}	60 80	=	=	Vdc
DC Current Gain ($I_C = 0.5$ Adc, $V_{CE} = 5$ Vdc) ($I_C = 3$ Adc, $V_{CE} = 5$ Vdc) ($I_C = 5$ Adc, $V_{CE} = 5$ Vdc)	2N3445, 2N3446 2N3447, 2N3448 2N3445, 2N3446 2N3447, 2N3448	h _{FE}	20 40 20 40	45 85 40 75	 60 120	
Collector-Emitter Saturation Voltage (I _C = 3 Adc, I _B = 0.3 Adc) (I _C = 5 Adc, I _B = 0.5 Adc)	2N3445, 2N3446 2N3447, 2N3448	V _{CE} (sat)	=	0.6 0.8	1.5 1.5	Vdc
Base-Emitter Saturation Voltage (I _C = 3 Adc, I _B = 0.3 Adc) (I _C = 5 Adc, I _B = 0.5 Adc)	2N3445, 2N3446 2N3447, 2N3448	V _{BE} (sat)	=	1.0 1.0	1.5 1.5	Vdc
Base-Emitter Voltage (I _C = 3 Adc, V _{CE} = 5 Vdc) (I _C = 5 Adc, V _{CE} = 5 Vdc)	2N3445, 2N3446 2N3447, 2N3448	v _{BE}	=	1.0 1.0	1.5 1.4	Vdc
Small Signal Current Gain ($V_{CE} = 10 \text{ Vdc}$, $I_{C} = 0.5 \text{ Adc}$, $t = 1 \text{ kc}$) ($V_{CE} = 10 \text{ Vdc}$, $I_{C} = 0.5 \text{ Adc}$, $t = 10 \text{ mc}$)	2N3445, 2N3446 2N3447, 2N3448 All Types	h _{fe}	20 40 1.0		100 200 —	_
Common Base Output Capacitance (VCR = 10 Vdc, f = 0.1 mc)	All Types	C ^{op}	_	260	400	pf
Switching Times ($V_{CC} \approx 25$ Vdc, $R_L = 5$ ohms, $I_C = 5$ A, I_{B1} Delay Time plus Rise Time Storage Time Fall Time	= I _{B2} = 0.5 A)	t _d + t _r t _s t _f	=	0.15 0.9 0.15	0.35 2.0 0.35	µвес

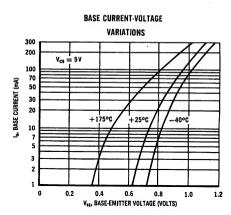

COLLECTOR CURRENT versus BASE CURRENT

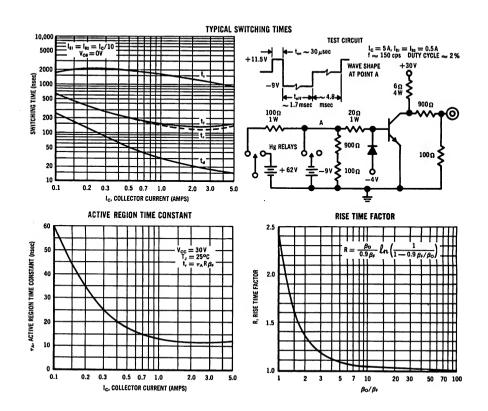




-----Motorola Power Transistors


2N3445 thru 2N3448 (continued)

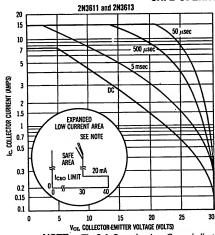




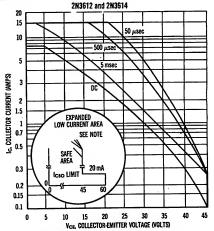
2N3445 thru 2N3448 (continued)

2N3611 thru 2N3614

 $P_C = 85 \text{ W}$ $I_C = 7 \text{ A}$ $V_{CBO} = 40-6 \text{ V}$



PNP germanium power transistors for switching and amplifier applications.


MAXIMUM RATINGS

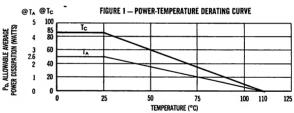
Characteristics	Symbol	2N3611 2N3613	2N3B12 2N3614	Unit
Collector-Emitter Voltage	V _{CES}	30	45	Vdc
Collector-Emitter Voltage (Open Base)	V _{CEO}	25	35	Vdc
Collector-Base Voltage	v _{CBO}	40	60	Vdc
Emitter-Base Voltage	V _{EBO}	20	30	Vdc
Collector Current (Continuous)	I _C		7	
Peak Collector Current (PW ≤ 5 msec)	I _C] 1	15	
Base Current (Continuous)	IB		2	
Storage Temperature Range	T _{stg}	-65 t	o +110	°C
Operating Case Temperature Range	T _C	-65 t	o +110	°С
Total Device Dissipation @ $T_C = 25^{\circ}C$	P _D	1	85	
Derate above $T_C = 25^{\circ}C$			1	
Thermal Resistance, Junction to Case	θЈС	1	1.0	
Thermal Resistance, Case to Ambient	θ CA	33	2.7	°C/W

SAFE OPERATING AREAS

NOTE — The Safe Operating Area Curves indicate $I_{\rm C}$ -V_C limits below which the device will not go into secondary breakdown. Collector load lines for specific circuits must fall within the applicable Safe Area to avoid causing a collector-emitter short. (Case temperature and duty cycle of the excursions make no significant change in these safe areas.) The load line may exceed the BV_{CES} voltage limit only if the collector

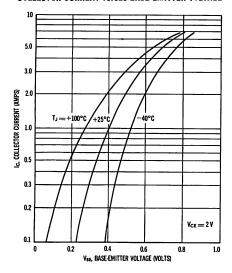
current has been reduced to 20 mA or less before or at the BV_{CRB} limit; then and only then may the load line be extended to the absolute maximum voltage rating of BV_{CRO} . To insure operation below the maximum T_J , the power-temperature derating curve must be observed for both steady state and pulse power conditions.

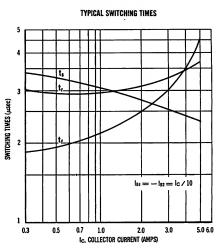
2N3611 thru 2N3614 (continued)

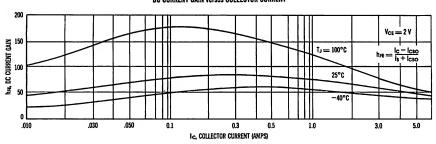

ELECTRICAL CHARACTERISTICS

Characteristics		Symbol	Min	Max	Unit
Collector-Emitter Breakdown Voltage* (I _C = 250 mAdc)	2N3611, 2N3613 2N3612, 2N3614	BV _{CES} *	30 45	=	Vdc
Collector-Emitter Breakdown Voltage* (IC = 500 mAdc)	2N3611, 2N3613 2N3612, 2N3614	BA ^{CEO} *	25 35	-	Vdc
Floating Potential (V _{CB} = V _{CB} max)	All Types	V _{EBF}	-	1.0	Vdc
Collector-Emitter Leakage Current (V _{CE} = 1/2 V _{CEO} max)	All Types	ICEO	-	30	mAdo
Collector-Emitter Leakage Current $(V_{CE} = V_{CE} \text{ max}, V_{BE} = 1.0 \text{ Vdc}, T_{C} = +1)$.00°C) All Types	I _{CEX}	_	10	mAdo
Collector-Base Cutoff Current (V _{CB} = 2 Vdc) (V _{CB} = 25 Vdc) (V _{CB} = 40 Vdc) (V _{CB} = V _{CB} max)	All Types 2N3611, 2N3613 2N3612, 2N3614 All Types	^I сво	- - -	. 040 0. 5 0. 5 5. 0	mAdo
$\begin{aligned} & \text{Emitter-Base Cutoff Current} \\ & (\mathbf{V_{EB}} = \mathbf{V_{EB}} \text{ max}) \\ & (\mathbf{V_{EB}} = 12 \text{ Vdc}) \end{aligned}$	All Types All Types	I _{EBO}	- ·	500 100	μAdc
Collector-Emitter Saturation Voltage ($I_C = 3 \text{ Adc}, I_B = 300 \text{ mAdc}$) ($I_C = 7 \text{ Adc}, I_B = 700 \text{ mAdc}$)	All Types	V _{CE(sat)}	-	0. 25 0. 35	Vde
Base-Emitter Saturation Voltage (I _C = 3 Adc, I _B = 300 mAdc) (I _C = 7 Adc, I _B = 700 mAdc)	2N3611, 2N3612 2N3613, 2N3614 2N3611, 2N3612 2N3613, 2N3614	V _{BE(sat)}	- - -	0.7 0.6 1.1 0.9	Vdc
Transconductance (I _C = 3 Adc, V _{CE} = 2 Vdc)	2N3611, 2N3612 2N3613, 2N3614	g _{FE}	3. 0 3. 5	=	mhos
Small Signal Current Gain ($I_C = 0.5 \text{ A}, V_{CE} = 12 \text{ V}, f = 20 \text{ kc}$) ($I_C = 0.5 \text{ A}, V_{CE} = 2 \text{ V}, f = 1 \text{ kc}$)	All Types 2N3611, 2N3612 2N3613, 2N3614	h _{fe}	15 40 60	- 100 150	-
DC Current Gain (I _C = 3 Adc, V _{CE} = 2 Vdc)	2N3611, 2N3612 2N3613, 2N3614	h _{FE}	35 60	70 120	-
(I _C = 7 Adc, V _{CE} = 2 Vdc)	2N3611, 2N3612 2N3613, 2N3614		20 30	=	

*Sweep Test: 1/2 sine wave, 60 cps


POWER-TEMPERATURE DERATING CURVE

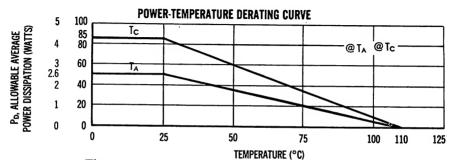

These transistors are also subject to safe area curves. Both limits are applicable and must be observed.


2N3611 thru 2N3614 (continued)

COLLECTOR CURRENT Versus BASE-EMITTER VOLTAGE

DC CURRENT GAIN Versus COLLECTOR CURRENT

2N3615 thru 2N3618


 $P_{C} = 85 \text{ W}$ $I_{C} = 7 \text{ A}$ $V_{CBO} = 80-100 \text{ V}$

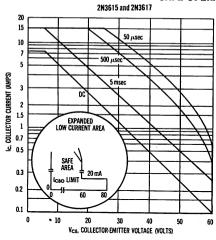
PNP germanium power transistors for switching and amplifier applications.

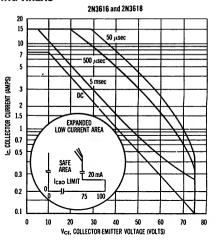
MAXIMUM RATINGS

Characteristics	Symbol	2N3615 2N3617	2N3616 2N3618	Unit
Collector-Emitter Voltage	v_{CES}	60	75	Vdc
Collector-Emitter Voltage (Open Base)	v _{CEO}	50	60	Vdc
Collector-Base Voltage	v _{CBO}	80	100	Vdc
Emitter-Base Voltage	v _{EBO}	40	50	Vdc
Collector Current (Continuous)	I _C	7		Adc
Peak Collector Current (PW ≤ 5 msec)	IC	15		Adc
Base Current (Continuous)	$\overline{I_{\mathrm{B}}}$	2		Adc
Storage Temperature	T _{stg}	-65 to	+110	°С
Operating Case Temperature	T _C	-65 to +110		°С
Total Device Dissipation @T _C = 25 ^o C	P _D	85		Watts
Derate above 25 ^o C		1		w/ºc
Thermal Resistance, Junction to Case	θJC	1.0		°C/W
Thermal Resistance, Case to Ambient	θ CA	32	7	°C/W

These transistors are also subject to safe area curves
Both limits are applicable and must be observed.

2N3615 thru 2N3618 (continued)

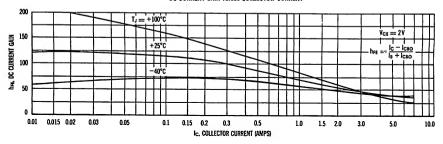

ELECTRICAL CHARACTERISTICS (at T $_{\text{C}} = 25 \,^{\circ}\text{C}$ unless otherwise specified)

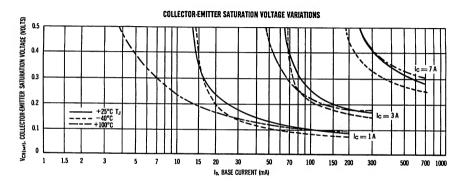

. Characteristics		Symbol	Min	Max	Unit
Collector-Emitter Breakdown Voltage* (I _C = 250 mAdc)	2N3615, 2N3617 2N3616, 2N3618	BV _{CES} *	60 75	<u>-</u>	Vdc
Collector-Emitter Breakdown Voltage* (I _C = 300 mAdc)	2N3615, 2N3617 2N3616, 2N3618	BV _{CEO} *	50 60	=	Vdc
Floating Potential (V _{CB} = V _{CB} max)	All Types	v _{EBF}	-	1.0	Vdc
Collector-Emitter Leakage Current (V _{CE} = 1/2 V _{CEO} max)	All Types	ICEO	-	30	m Adc
Collector-Emitter Leakage Current (V _{CE} = V _{CE} max, V _{BE} = 1.0 Vdc, T _C = +100)°C) All Types	ICEX	_	10	m Adc
Collector-Base Cutoff Current (V _{CB} = 2 Vdc)	All Types	I _{CBO}	-	. 060	m Adc
(V _{CB} = 55 Vdc) (V _{CB} = 65 Vdc) (V _{CB} = V _{CB} max)	2N3615, 2N3617 2N3616, 2N3618 All Types	-	-	1.0 1.0 5.0	
Emitter-Base Cutoff Current (V _{EB} = V _{EB} max) (V _{EB} = 12 Vdc)	All Types	I _{EBO}	-	500 100	μAdc
Collector-Emitter Saturation Voltage (I _C = 3 Adc, I _B = 300 mAdc) (I _C = 7 Adc, I _B = 700 mAdc)	All Types	V _{CE(sat)}	-	0. 25 0. 35	Vdc
Base-Emitter Saturation Voltage (I _C = 3 Adc, I _B = 300 mAdc) (I _C = 7 Adc, I _B = 700 mAdc)	2N3615, 2N3616 2N3617, 2N3618 2N3615, 2N3616	V _{BE(sat)}	=	0.7 0.6 1.1	Vdc
Transconductance ($I_C = 3 \text{ A}, V_{CE} = 2 \text{ V}$)	2N3617, 2N3618 2N3615, 2N3616 2N3617, 2N3618	g _{FE} ,	3. 0 3. 5	0.9	mhos
Small Signal Current Gain (I _C = 0.5 A, V _{CE} = 12 V, f = 20 kc) (I _C = 0.5 A, V _{CE} = 2 V, f = 1 kc)	All Types 2N3615, 2N3616 2N3615, 2N3616 2N3617, 2N3618	h _{fe}	15 40 60	- 100 150	-
DC Current Gain (I _C = 3 Adc, V _{CE} = 2 Vdc)	2N3615, 2N3616 2N3617, 2N3618	h _{FE}	30 45	60 90	-
(I _C = 7 Adc, V _{CE} = 2 Vdc)	2N3615, 2N3616 2N3617, 2N3618		20 30		

*Sweep Test: 1/2 sine wave, 60 cps

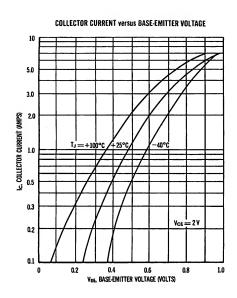
2N3615 thru 2N3618 (continued)

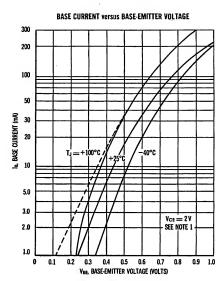
SAFE OPERATING AREAS

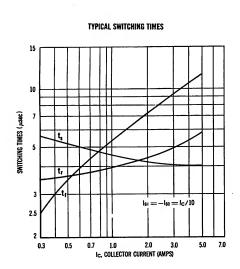


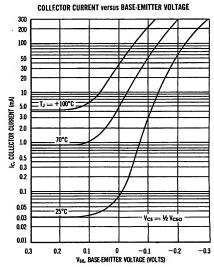


NOTE The Safe Operating Area Curves indicate $I_{\rm c^*}V_{\rm CE}$ limits below which the device will not go into secondary breakdown. Collector load lines for specific circuits must fall within the applicable Safe Area to avoid causing a collector-emitter short. (Case temperature and duty cycle of the excursions make no significant change in these safe areas.) The load line may exceed the BV_{CEB} voltage limit only if the collector


current has been reduced to 20 mA or less before or at the BV_{CER} limit; then and only then may the load line the extended to the absolute maximum voltage rating of BV_{CBO} . To insure operation below the maximum T_J , the power-temperature derating curve must be observed for both steady state and pulse power conditions.

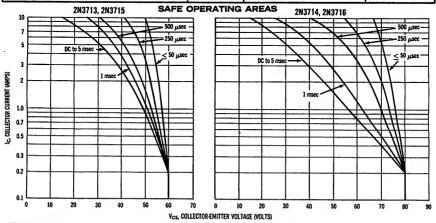

DC CURRENT GAIN VERSUS COLLECTOR CURRENT




2N3615 thru 2N3618 (continued)

NOTE 1 — Dotted line indicates Metered Base Current plus the I_{CBO} of the transistor at 100°C.

2N3713 thru 2N3716

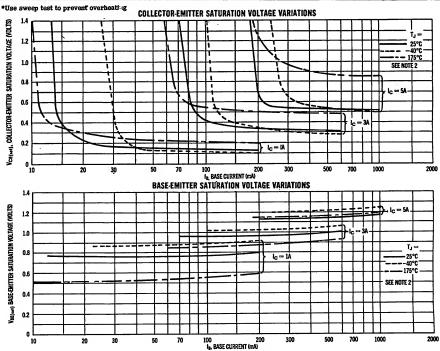

 $P_C = 150 \text{ W}$ $I_C = 10 \text{ A}$ $V_{CBO} = 80-100 \text{ V}$

NPN silicon power transistors for medium-speed switching and amplifier applications.

MAXIMUM RATINGS

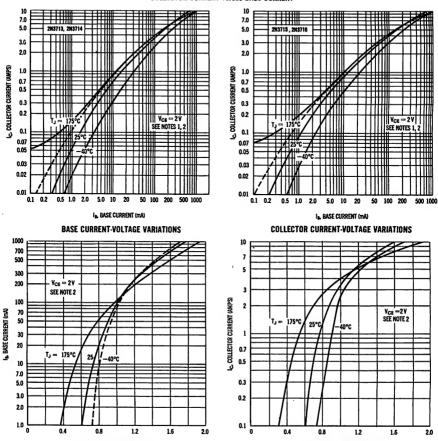
Characteristic	Symbol	2N3713 2N3715	2N3714 2N3716	Unit
Collector-Base Voltage	v _{CBO}	80	100	Volts
Collector-Emitter Voltage	v _{CEO}	60	80	Volts
Emitter-Base Voltage	v _{EBO}	7	7	Volts
Collector Current (Continuous)	I _C	10	10	Amps
Base Current (Continuous)	IB	4.0	4.0	Amps
Power Dissipation	P _C	150 150		Watts
Thermal Resistance	e ^{JC}	1.2	1.2	°C/W
Operating Junction and Storage Temperature Range	T _J and T _{stg}	-65 to +200		°c

The Safe Operating Area Curves indicate $I_C - V_{CE}$ limits below which the device will not go into secondary breakdown. Collector load lines for specific circuits must fall within the applicable Safe Area to avoid causing a collector-emitter short. (Duty cycle of the excursions make no significance)


cant change in these safe areas.) To insure operation below the maximum $T_{\rm J}$, the power-temperature derating curve must be observed for both steady state and pulse power conditions.

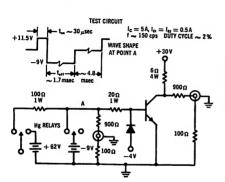
——Motorola Power Transistors——

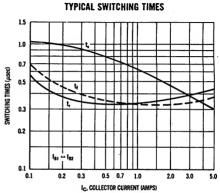
2N3713 thru 2N3716 (continued)


ELECTRICAL CHARACTERISTICS (To = 25°C unless otherwise noted)

Characteristic		Symbol	Min	Max	Unit
Emitter-Base Cutoff Current (V _{EB} = 7 Vdc)	All Types	I _{EBO}	_	5	mAdc
Collector-Emitter Cutoff Current (V _{CE} = 80 Vdc, V _{BE} = -1.5 Vdc) (V _{CE} = 100 Vdc, V _{BE} = -1.5 Vdc) (V _{CE} = 80 Vdc, V _{BE} = -1.5 Vdc, T _C = 150°C) (V _{CE} = 80 Vdc, V _{BE} = -1.5 Vdc, T _C = 150°C)	2N3713, 2N3715 2N3714, 2N3716 2N3713, 2N3715 2N3714, 2N3718	ICEX	=	1 1 10 10	mAde
Collector-Emitter Sustaining Voltage* (IC = 200 mAde, IB = 0)	2N3713, 2N3715 2N3714, 2N3716	V _{CEO(sus)} *	60 80	=	Vdc
DC Current Gain * (I _C = 1 Adc, V _{CE} = 2 Vdc) (I _C = 3 Adc, V _{CE} = 2 Vdc)	2N3713, 2N3714 2N3715, 2N3716 2N3713, 2N3714 2N3715, 2N3716	h _{FE} *	25 50 15 30	90 150 —	_
Collector-Emitter Saturation Voltage * (I _C = 5 Adc, I _B = 0.5 Adc)	2N3713, 2N3714 2N3715, 2N3716	V _{CE(sat)} *	_	1.0 0.8	Vdc
Base-Emitter Saturation Voltage* (I _C = 5 Adc, I _B = 0.5 Adc)	2N3713, 2N3714 2N3715, 2N3716	VBE(sat) *	=	2.0 1.5	Vdc
Base-Emitter Voltage* (I _C = 3 Adc, V _{CE} = 2 Vdc)	All Types	v _{BE} *	_	1.5	Vdc
Small Signal Current Gain (VCE = 10 Vdc, IC = 0.5 Adc, f = 1 mc)	All Types	h _{fe}	4		
Switching Times				Тур	µвес
(I _C = 5A, I _{B1} = I _{B2} = 0.5 A) Rise Time Storage Time Fall Time		t _s t _s		0.45 0.3 0.4	•

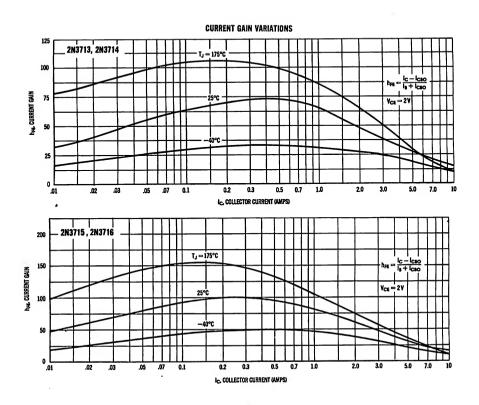
2N3713 thru 2N3716 (continued)

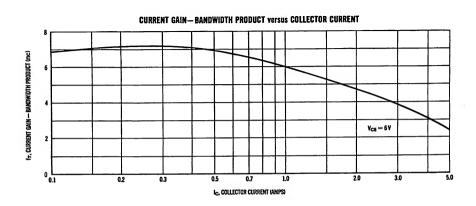

COLLECTOR CURRENT Versus BASE CURRENT



V₈₆. BASE-EMITTER VOLTAGE (VOLTS)

NOTE 1. Dotted line indicates metered base current plus the Iceo of the transistor at 175°C.


NOTE 2. Pulse test: pulse width & 200 asec, duty cycle & 1.5%



V_{BE} BASE-EMITTER VOLTAGE (VOLTS)

2N3713 thru 2N3716 (continued)

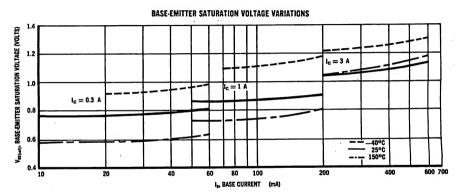
2N3719

 $P_D = 1 W$ $I_C = 3 A$ $V_{CBO} = 40-60 V$

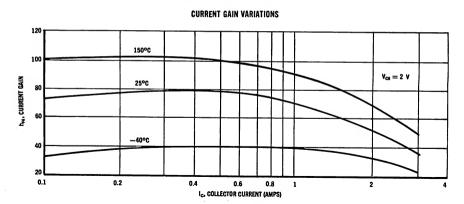
PNP silicon annular power transistors for highspeed, high-current switching in core, driver and Class C power applications.

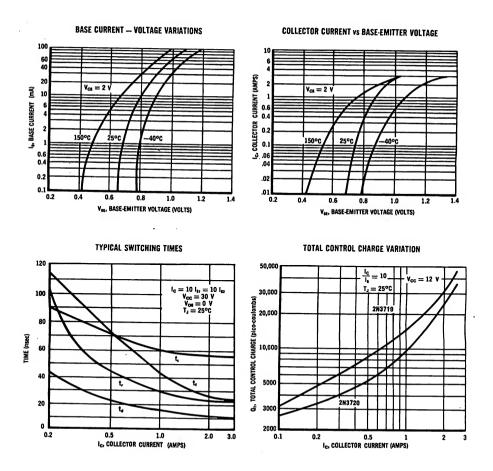
ABSOLUTE MAXIMUM RATINGS

Characteristic	Symbol	2N3719	2N3720	Unit
Collector-Base Voltage	v _{CBO}	40	60	Volts
Collector - Emitter Voltage	v _{CEO}	40	60	Volts
Emitter - Base Voltage	V _{EBO}	4	4	Volts
Collector Current—Continuous Collector Current—Peak	I _C	3 10	3 10	Amps Amps
Base Current	I _B	0.5	0.5	Amp
Total Device Dissipation @ $T_A = 25^{\circ}C$ Derate above $25^{\circ}C$	PD	1.0 5.72		Watt mW/°C
Total Device Dissipation @ $T_C = 25^{\circ}C$ Derate above $25^{\circ}C$	PD	6 34.3		Watts mW/ ^O C
Operating Junction and Storage Temperature Range	T _J and T _{stg}	-65 to +200		°C



2N3719 and 2N3720 (continued)


ELECTRICAL CHARACTERISTICS (at To = 25°C unless otherwise noted)


Characteristic		Symbol	Min	Max	Unit
Collector Leakage Current (V _{CE} = 40 Vdc, V _{BE} = 2 Vdc) (V _{CE} = 60 Vdc, V _{BE} = 2 Vdc)	2N3719 2N3720	ICEX	-	10 10	μ Adc
Collector-Base Cutoff Current (VCB = 40 Vdc, I _E = 0, T _A = 25°C) (V _{CB} = 40 Vdc, I _E = 0, T _A = 150°C) (V _{CB} = 60 Vdc, I _E = 0, T _A = 25°C)	2N3719 2N3719 2N3720	ГСВО		.010 1 .010	mAdc
$(V_{CB} = 60 \text{ Vdc}, I_E = 0, T_A = 150^{\circ}\text{C})$	2N3720			1	mAdc
Emitter-Base Cutoff Current (V _{BE} = 4 Vdc, I _C = 0)		I _{EBO}		1	
DC Current Gain* $(I_C = 500 \text{ mA}, V_{CE} = 1.5 \text{ V}, T_A = 25^{\circ}\text{C})$ $(I_C = 1 \text{ A}, V_{CE} = 1.5 \text{ V}, T_A = 25^{\circ}\text{C})$ $(I_C = 1 \text{ A}, V_{CE} = 1.5 \text{ V}, T_A = -40^{\circ}\text{C})$		hFE*	20 25 15	- 180 -	_
Collector-Emitter Saturation Voltage* (I _C = 1 A, I _B = 100 mA, T _A = -40 to +100 (I _C = 3 A, I _B = 300 mA, T _A = 25°C)	oc	V _{CE(sat)} *		0.75 1.5	Volts
Base-Emitter Saturation Voltage* (I _C = 1 A, I _B = 100 mA) (I _C = 3 A, I _R = 300 mA)		V _{BE(sat)} *		1.5 2.3	Volts
Collector-Emitter Breakdown Voltage* (I _C = 20 mA, I _B = 0)	2N3719 2N3720	BV _{CEO} *	40 60	=	Volts
Collector Output Capacitance (VCB = 10 Vdc, I _E = 0, f = 100 kc)		Cob	_	120	pf
Input Capacitance (V _{BE} = 0.5 Vdc, I _C = 0, f = 100 kc)		C _{ib}	_	1000	pf
Current-Gain — Bandwidth Product (V _{CE} = 10 Vdc, I _C = 500 mAdc, f = 30 mc	<u> </u>	f _T	60		mc
Delay Plus Rise Time (Figure 14) (I _C := 1 Adc, I _{B1} = 100 mA)		ton	_	75	nsec
Storage Time (Figure 15) (I _C = 1 Adc, I _{B1} = I _{B2} = 100 mA)		t _g	_	150	Beec
Fall Time (Figure 15) (I _C = 1 Adc, I _{B1} = I _{B2} = 100 mA)		ty	_	75	nsec

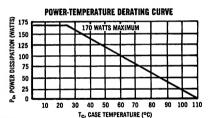
2N3719 and 2N3720 (continued)

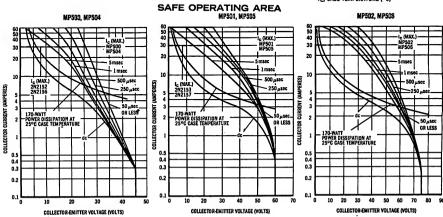
MP500 thru MP502 MP504 thru MP506

 $P_C = 170 \text{ W}$ $I_C = 60 \text{ A}$ $V_{CRO} = 45-75 \text{ W}$

PNP germanium power transistors for high-gain, high-power amplifier and switching applications in high reliability industrial equipment.

MAXIMUM RATINGS


Characteristic	Symbol	MP500 MP504	MP501 MP505	MP502 MP508	Unit
Collector-Base Voltage	вусво	45	60	75	Volts
Collector-Emitter Voltage	BVCES	45	60	75	Volts
Collector-Emitter Voltage	BVCEO	30	45	60	Volts
Emitter-Base Voltage	BVEBO	25	30	40	Volts
Collector Current	ıс	60	60	60	Amps
Power Dissipation at T _C = 25 ⁰ C	PC	170	170	170	Watts
Junction Temperature Range	T _J	-65 to+110			°С


POWER DERATING

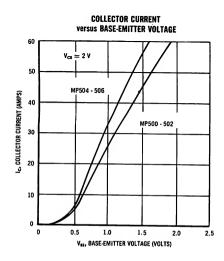
The maximum continuous power is related to maximum junction temperature by the thermal resistance factor.

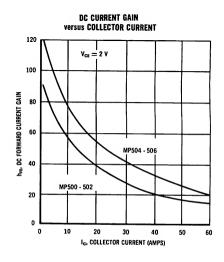
This curve has a value of 170 Watts at case temperatures of 25°C and is 0 Watts at 110°C with a linear relation between the two temperatures such that:

allowable
$$P_D = \frac{110^\circ - T_C}{0.5}$$

The Safe Operating Area Curves indicate $Ic - V_{CE}$ limits below which the device will not go into secondary breakdown. Collector load lines for specific circuits must fall within the applicable Safe Area to avoid causing a collector-emitter short.

(Duty cycle of the excursions make no significant change in these safe areas.) To insure operation below the maximum T_J, the power-temperature derating curve must be observed for both steady state and pulse power conditions.


MP500 thru MP502 MP504 thru MP506 (continued)


ELECTRICAL CHARACTERISTICS (At 25°C case temperature unless otherwise specified)

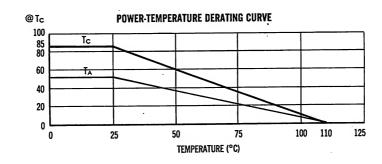
LTPD applies to "MEG-A-LIFE" units only

Characte	ristic	Symbol	Min	Тур	Max	Uni
Collector-Base Cutoff Current (Note		I _{CBO1}				m/
(V _{CB} = -45 V, I _E = 0)	MP500, MP504	1 0201	_	0.9	4.0	
(V _{CB} = -60 V, I _E = 0)	MP501, MP505	i	_	0.9	4.0	
(V _{CB} = -75 V, I _E = 0)	MP502, MP506	1	-	0.9	4.0	
Collector-Base Cutoff Current	_	I _{CBO}				m.A
(V _{CB} = V _{CBmax} , I _E = 0, T _C = +7	1°C) All Types		_	4.0	15	
Collector-Base Cutoff Current		I _{CBO}				μАс
(V _{CB} = -2 V, I _E = 0)	All Types		_	80	200	
Emitter-Base Cutoff Current (Note 1		IEBO				mAd
(V _{EB} = -25 V, I _C = 0)	MP500, MP504	I	_	0.2	4.0	
(VEB = -30 V, IC = 0)	MP501, MP505	l	_	0.2	4.0	
(V _{EB} = -40 V, I _C = 0)	MP502, MP508		_	0.2	4.0	
Emitter-Base Cutoff Current		I _{EBO}				mA
(V _{EB} * V _{EB max} , I _C = 0, T _C = 47		_	_	2.7	15	
Collector-Emitter Breakdown Voltag (I _C = 300 mA, V _{EB} = 0)		BVCES				Vdc
(*C - 300 mw' AEB = 0)	MP500, MP504	1	-45	_	_	
	MP501, MP505	I	-60	_	_	
	MP502, MP506		-75			
Collector-Emitter Breakdown Voltag		BVCEO				Vdc
(I _C = 1.0 A, I _B = 0)	MP500, MP504		-30	_	_	
	MP501, MP505		-45	_	_	
	MP502, MP508		-60	_	_	
Floating Potential (Note 1)		VEBF				Vdc
(V _{CB} = 45 V, I _E = 0)	MP500, MP504		_	_	1.0	
(V _{CB} = 60 V, I _E = 0)	MP501, MP505	i	_	_	1.0	
(V _{CB} = 75 V, I _E = 0)	MP502, MP506				1.0	
DC Current Transfer Ratio (Note 1) (I _C = 15 A, V _{CE} = 2 V)	MEDERA AL MEDERA	h _{FE1}				
AC = 20 1.CE = 2 4)	MP500 through MP502		30	47	60	
(I _C = 50 A, V _{CE} = 2 V)	MP504 through MP506 All Types	h _{FR}	50 12	63 20	100	
Collector-Emitter Saturation Voltage	• • • • • • • • • • • • • • • • • • • •					
(I _C = 15 A, I _B = 1 A)	All Types	V _{CE} (sat)		0.11	• •	Vdc
(IC = 50 A, IB = 5 A)	All Types		=	0.11	0.2 0.45	
Base-Emitter Saturation Voltage				0.2	- 0.45	
(I _C = 15 A, I _B = 1 A)	All Types	V _{BE(sat)}				Vdc
(I _C = 50 A, I _B = 5 A)	All Types		_	0.7 2.0	1.5 2.5	
Common Emitter Cutoff Frequency						
(I _C = 15 A, V _{CE} = 2 V)	All Types	fae	2	3.6		kc

INPUT AND TRANSFER CHARACTERISTICS

MP 2060 thru MP 2063

 $P_C = 150 \text{ W}$ $I_C = 10 \text{ A}$ $V_{CBO} = 80-100 \text{ V}$



PNP germanium power transistors for audio amplifier applications.

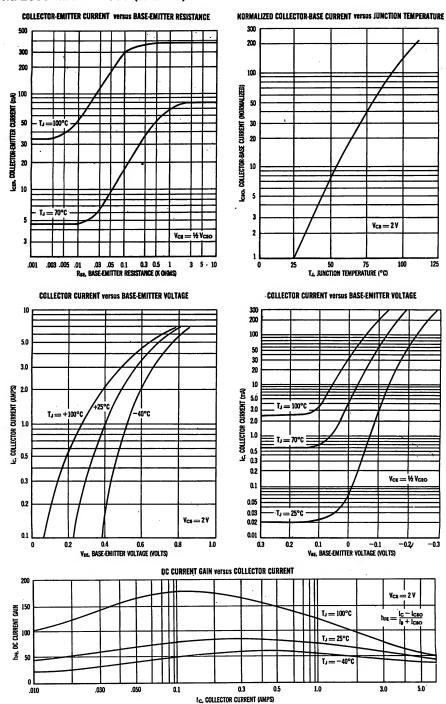
MAXIMUM RATINGS

Characteristics	Symbol	MP2060	MP2061	MP2062	MP2063	Unit
Collector-Emitter Voltage	VCES	30	45	60	75	Vdc
Collector-Emitter Voltage (Open Base)	V _{CEO}	25	35	50	60	Vdc
Collector-Base Voltage	v _{CBO}	40	60	75	90	Vdc
Emitter-Base Voltage	V _{EBO}	4	2	0 —	_	Vdc
Collector Current (Continuous)	I _C	-		7 —	_	Adc
Peak Collector Current (PW ≤ 5 msec)	I _C	-	<u> </u>	5		Adc
Base Current (Continuous)	I _B	-	2			Adc
Storage Temperature	Tstg	-	65 to	+110 -	-	°C
Operating Case Temperature	T _C	-	65 to	+110 -		°C
Total Device Dissipation @T _C = 25 ^o C Derate above 25 ^o C	PD	+	8!	i —		Watts W/ ^O C
Thermal Resistance Junction to Case	θЗС		1	.0		°C/W
Thermal Resistance Case to Ambient	θ CA		32	.7		°C/W

MP2060 thru MP2063 (continued)

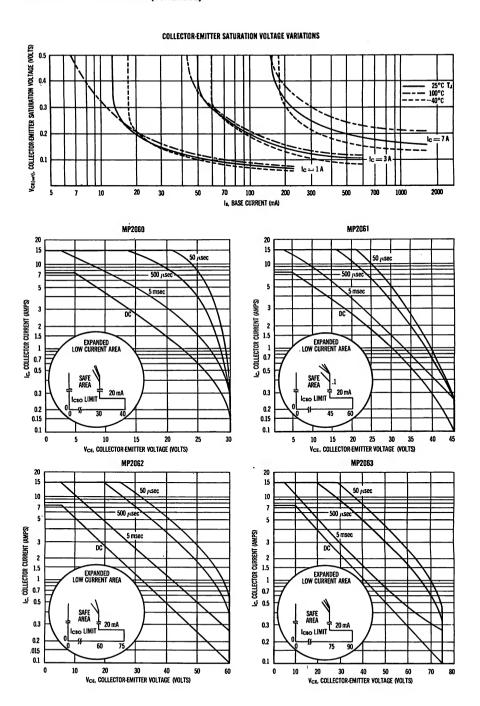
ELECTRICAL CHARACTERISTICS (At To = 25°C unless otherwise specified)

Characteristics	Symbol	Mila	Тур	Max	Unit
DC Forward Current Gain (Note 1) (I_C = 3 Adc, V_{CE} = 2 Vdc) All Types	h _{FE}	30	-	200	-
Current Gain-Bandwidth Product (IC = 0.5 Adc, V_{CE} = 12 Vdc) All Types	f _T	_	600	_	ke
Collector-Emitter Saturation Voltage (IC = 3.0 Adc, IB = 0.3 Adc) All Types	V _{CE(sat)}	_	_	0.25	Vdc
Base-Emitter Saturation Voltage (I $_{\rm C}$ = 3.0 Adc, I $_{\rm B}$ = 0.3 Adc) All Types	V _{BE(sat)}	_	_	0.70	Vdc
DC Transconductance (I_C = 3.0 Adc, V_{CE} = 2 Vdc) All Types	g _{FE}	3.0	_	-	mhos
Collector-Emitter Breakdown Voltage* (I _C = 250 mAdc) MP2060 MP2061 MP2062 MP2063	BV _{CES*}	30 45 60 75	=	=	Vdc
Collector-Emitter Sustaining Voltage* (I _C = 500 mAdc) MP2060 MP2061 MP2062 MP2063	BV _{CEO(sus)} *	25 35 40 60	=	=======================================	Vdc
Collector-Base Breakdown Voltage (I _C = 20 mAdc) MP2061 MP2061 MP2062 MP2063	вусво	40 60 75 90	=	=	Vdc
Collector-Base Cutoff Current All Types (V _{CB} = 2 Vdc) All Types (V _{CB} = 25 Vdc) MP2060 (V _{CB} = 35 Vdc) MP2061 (V _{CB} = 40 Vdc) MP2082 (V _{CB} = 80 Vdc) MP2083	ІСВО	=	=	0.080 1.0 1.0 1.0	mAde
Collector-Emitter Cutoff Current (VCE = 30 Vdc, VBE(off) = 1 Vdc, TC = 100°C) MP2060	ICEX				mAde
(V _{CE} = 45 Vdc, V _{BE(off)} = 1 Vdc, T _C = 100°C) MP2061 (V _{CE} = 60 Vdc, V _{BE(off)} = 1 Vdc, T _C = 100°C)		_	_	10 10	
(V _{CE} = 75 Vdc, V _{BE(off)} = 1 Vdc, T _C = 100°C) MP2062 MP2063		_	-	10 10	
Emitter-Base Cutoff Current (VBE = 20 Vdc) All Types	I _{EBO}	_	_	1.0	mAde
Input Impedance ($I_C = -500 \text{ mAdc}$, $V_{CE} = -12 \text{ Vdc}$, $i_b = 1 \text{ mAdc}$, $f = 1 \text{ kc}$)	h _{ie}	_	25	_	ohms
Distortion ($^{\circ}$ C = -500 mAdc, $^{\circ}$ CE = -12 Vdc, $^{\circ}$ R _S = 30 onms, $^{\circ}$ R _L = 25 ohms, $^{\circ}$ R _E (unbypassed) = 0.33 ohm, $^{\circ}$ Pout = 2 watts)	η	_	3	_	%

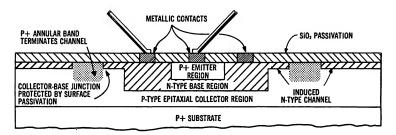

^{*}Sweep Test: 1/2 sine wave, 60 cps

Note 1:

Upon customer's request the transistors will be numerically coded to identify matched pairs. The DC current transfer ratios are sorted into approximately 1:1.5 ranges. Any two devices within a bracket constitute a matched pair. No guarantee is made of gain distribution; bracket selection available at a slight increase in price.


$I_C = 3 \text{ Adc}, V_{CE} = 2 \text{ Vdc}$		h,	FE .
C, · CE		Min.	Max.
	Appropriate MP# -1	30	45
	-2	40	60
	-3	50	75
	-4	60	90
	-5	80	120
	-6	100	150
	_7	130	200

MP2060 thru MP2063 (continued)



MP2060 thru MP2063 (continued)

A WORD ABOUT ANNULAR . . .

Cross Section of an Annular Transistor

For more than 2 years . . .

Motorola has demonstrated the advantages of the annular process in its line of high-frequency silicon transistors.

This Motorola-developed process represents the most advanced means for manufacturing highly reliable, high-performance, surface-passivated silicon transistors. Initially developed as an answer to channeling, which prevents the fabrication of high-voltage PNP transistors by conventional surface passivation methods, it has been continually refined to provide a proven history of extreme stability and exceptionally long-term reliability.

The annular structure overcomes the randomly induced channeling problem with a deliberately induced channel, with controlled characteristics, terminated by means of an annular diffused region that prevents the spread of the channel to the unpassivated edges of the transistor chip.

The advantages of the annular process are inherent in all Motorola PNP and NPN high-frequency transistors as well as other types of semiconductor devices.

For more detailed information on the Motorola annular process, send for the "Annular Process" brochure.

MOTOROLA LOW-FREQUENCY, LOW-POWER TRANSISTORS

- For devices meeting military specifications, see page 1-18.
- For Meg-A-Life devices with certified reliability, see page 1-21.
- For case outline dimensions, see page 1-26.

LOW-FREQUENCY, LOW-POWER TRANSISTORS

The Motorola line of low-frequency, low-power transistors, sometimes called the "milliwatt" line, consists of a wide selection of highly reliable germanium PNP devices designed for general purpose switching, and control applications.

The line is generally characterized by devices having a power rating to 225 mW, a maximum operating temperature range from -65°C to +100°C, and a typical cutoff frequency (f_{ch}) to 8 Mc.

QUICK SELECTION GUIDE — FOR AMPLIFIER / OSCILLATOR AND SWITCHING APPLICATIONS TO 20 KILOCYCLES

The following transistors merit first consideration within the specified gain-voltage groups. All of the specified devices have collector power dissipation ratings ($P_{\rm C}$) of 150-225 mW, and dc maximum operating junction temperature of 100°C.

MINIMUM DC CURRENT	TRANSISTOR VOLTAGE RATING; V_{CER} (R = 10 K)									
GAIN (h _{FE})	12-24	25-39	40-49	50-60						
20	<u> </u>	2N524	MA910 ③	2N2042						
30	2N322	2N525 2N1191 ①	2N1924 2N1186							
40	2N323 2N1008 ① ②	2N526 2N1192 ①	2N1008A ① ② 2N1925	2N1008B ① ② 2N2043						
60	2N324 2N1705	2N527 2N1175	2N1926							
90	2N467 2N508 MA1706	2N1193 ① 2N2171 2N3427	2N1188 .							
130	MA1707	2N3428								
180	MA1708	2N1194 ① MA1702		· —						

(1) Small Signal Current Gain h_{fe} (2) V_{CEO} (3) V_{CES}

COMPLETE NUMERICAL-ALPHABETICAL LISTING

		MAXI	MUM	RATINGS		ELEC	TRICAL	CHARAC	CTERIS	TICS	MILITARY
	Pc	T,	Vcto	VCER (R = 10 K)	lc	ħį	∉ @ Vc	& Ic		f _{ab} typ	and MEG-A-LIFE
Туре	mW	°C	volts	volts	mA	min	max	volts	mA	mc	Туре
2N319	225	100	_	20	500	25	42	1	20	1.0 (5) 1.5 (5) 2.0 (6) 1.0 (6) 1.5 (5) 2.0 (5)	
2N320	225	100	-	20	500	34	65	1	20	1.5 (5)	Į.
2N321 2N322	225 225	100	_	20 18	500	53 34	121	1	20	2.00	1
2N322 2N323	225	100	_	18	500 500	53	65 121	1 1	20 20	1.00	
2N324	225	100	_	18	500	72	198	i	20	2.0 (5)	
2N331	200	100	30	V _{EB} = 12	200	30	70	6	1	1.5	JAN 2N331
2N381	225	100	50	25	400	35	65	1	20	3	
2N382	225	100	50	25	400	60	95	1	20	4	
2N383 2N398	225 50	100 85	50 105	25 V _{pt} =105	400 100	75 20	120	0. 35	20 5	5 1. 0	
2N398A	150	100	105		200	20		0. 35	5	1. 0	USN 2N398
2N460	225	100	45	V _{pt} =105 35 ⑦ 35 ⑦	400	31 .	200	6.	1(2) 1(2)	4	
2N461	225	100	45	35 ⑦	400	0. 94 h _{fb}	0.972	6	1(2)	1.2	USAF 2N461
2N464	200	100	45	40	100	14	-	6	1	1.0	
2N465	200	100	45	30	100	27	_	6	1	1, 5	USA 2N465
2N466	200	100	35	20	100	56	_	. 6	1	2.0	JAN 2N466
2N467 2N508	200 225	100	35	15 18	100 500	112 99	198	6	1 20	2.5	USA 2N467
2N506 2N524	225	100	_	30	500	25	42	i	20	2.5 (5) 0.8 (5)	2N524A (1)
2N525	225	100	_	30	500	34	65	i	20	1.0 (5)	2N525A ①
2N526	225	100	_	30 .	500	53	90	1	20	1. 3 🜀	JAN 2N526 2N526A ①
2N527	225 ⁻	100	_	30	500	72	121	1	20	1.5 (5)	2N527A (1)
2N650	200	100	45	30	500	30	70	6	1	1. 5	2N650A ①
2N651	200	100	45	30	500	50	120	6	1	2. 0	USN 2N650A 2N651A (1) USN 2N651A
2N652	200	100	45	30	500	100	225	6	1	2.5	2N652A ① USN 2N652A
2N653	200	100	30	25	250	30	70	6	1	1. 5	
2N654	200,	100	30	25	250	50	125	6	1	2.0	1
2N655	200	100	30 20	25 20 ⑥	250 300	100	250 150	6 5	1 10	2. 5	
2N1008 2N1008A	200	100	40	20 ⑥ 40 ⑥	300	40 hfe 40 hfe	150	5	10	=	
2N1008B	200	100	60	60 🔞	300	40 h _{fe}	150	5	10		
2N1175	225	100		25	500	70	140	1	20	1.5 (5)	1
2N1185	200	100	45	30	500	190	400 70	6	1 1	3. 0 1. 5	
2N1186 2N1187	200	100	60 60	45 45	500 500	30 50	120	6	1	1. 5 2. 0	
2N1188	200	100	60	45	500	100	225	6	1	2, 5	
2N1189	200	100	45	30	500	60	l. —	1	10② 10②	3, 5	1
2N1190	200	100	45	30	500	100		1			1
2N1191	200	100	40	25	200	30	70	6	1	1.5]
2N1192	200	100	40	25	200	50	125	- 6	1	2.0	

NUMERICAL-ALPHABETICAL LISTING (continued)

		MAXI	MUM	RATINGS		ELEC	TRIGAL	CHARAC	TERIST	rics	MILITARY
	Pc	TJ	Vсво	V _{CER} (R = 10 K)	lc	h _{FE} @ Vce & Ic		fab	and MEG-A-LIFE		
Туре	mW	°Ç	volts	volts	mA	min	max	volts	mA	typ mc	Туре
2N1193 2N1194	200 200	100 100	40 40	25 25	200 200	100 190	250 500	6 6	1 1	2.5 3.0	
2N1408	150	100	50	50 ④	200	10	-	ı	13	_	
2N1413 2N1415	225 225	100	35	25 25	500 500	23 53	65	1 1	20 20	0.8 (5) 1.3 (5)	1
2N1705	200	100	18	12	400	70 h _{fe}	150	6	1	4 5	
2N1706	200	100	25	18	400	50 hfe	150	5	10	3 5	
2N1707	200	100	30	25	400	30 h _{fe}	150	5	10	3 5	
2N1924 2N1925	225 225	100 100	_	40 40	500 500	34 53	65 90	1	20 20	1.0 ⑤ 1.3 ⑤	
2N1926	225	100	=	40	500	72	121	1	20	1. 5 (5)	
2N2042	200	100	105	55	200	20	50	0. 35	5	0.5 (5) 0.75 (5)	2N2042A ①
2N2043 2N2171	200 225	100 100	105 50	55 25	200 400	40 110	100 250	0. 35 1. 0	5 20	7.5	2N2043A ①
2N3427	200	100	45	30	500	100	350	1.0	100	6.0	
2N3428	200	100	45	30	500	150	400	1	100	8. 0	
MA112 MA113	175 175	85 85	15 15	=	200 200	30 h	70 125	6	1	_	1
MA114	175	85	15	_	200	100 h fe	250	6	1	_	ĺ
MA115	175	85	15	_	200	30 h 50 h fe 100 h fe 30 h fe	125	6	î	_	
MA116	175	85	15	_	200	I 50 ኤ	250	6	1	_	
MA117 MA286	175 175	85 85	15 10	_	200	30 h 14 hfe	250 40	6 6	1 1	_	
MA287	175	85	10	_	200	30 h.fe	250	6	i	_	
MA288	175	85	10	_	200	30 h fe 14 h fe 30 h fe 180 h fe	_	6	1	-	
MA881 MA882	200 200	100 100	60 60	60 ④ 60 ④	500 500	30 40	_	1 1	10 10	0. 75 (5) 1. 0 (5)	
MA883	200	100	60	60 (4)	500	75	_	i	10	1. 25 (5)	
MA884	200	100	60	60 ④	500	125		1	10	1.75(5)	
MA885	200	100	50	50 ④	500	15 h _{fe}	40	6	1	0. 75 🕏	
MA886 MA887	200 200	100 100	50 50	50 ④ 50 ④	500 500	30 h 50 hfe 100 hfe 190 hfe	70 120	6	1 1	0. 75 (5) 1. 25 (5)	
MA888	200	100	50	50 (A)	500	100 h fe	225	6	i	0.5 (5)	
MA889	200	100	50	50 🚯	500		400	6	1	- `	
MA909	150	100	75	35 ④	200		_	0. 35	5		
MA910 MA1702	150 200	100 100	90 45	45 ④ 30	200 500	20 200	_	0. 35	5		
MA1702 MA1703	200	100	25	25	500	100	350	1 1	100 100	7. 0 min 3. 0 min	
MA1704	200	100	25	25	500	150	400	1	100	5.0 min	
MA1705	200	100	25	25	500	200		1	100	6. 0 min	
MA1706 MA1707	200 200	100 100	15 15	15 15	500 500	100	350	1	100	3. 0 min	
MA1707 MA1708	200	100	15	15	500 500	150 200	400	1	100 100	4.0 min 5.0 min	

① MEG-A-LIFE ② I_{E} ③ I_{B} ④ BVces ⑤ Minimum ⑥ Vceo ⑦ $R_{BE}=1\,K$

2N319 thru 2N321

 $BV_{CBO} = 25 V$

h_{FE} — to 53-121 (min-max)

 f_{α_b} — to 2.0 MC

CASE 31 (TO-5)

PNP germanium transistor for audio amplifier and low-frequency switching applications.

ABSOLUTE MAXIMUM RATINGS

Characteristic	Symbol	Maximum	Unit
Collector-Base Voltage	v _{сво}	25	Vdc
Collector-Emitter Voltage	· v _{CEO}	20	Vdc
Emitter-Base Voltage	v _{EBO}	5	Vdc
Collector Current	I _C	500	mAdc
Junction and Storage Temperature	T _j & T _{stg}	-65 to + 100	°C
Power Dissipation at 25°C Free Air	PD	225	mW

ELECTRICAL CHARACTERISTICS (At 25°C unless otherwise noted)

Characteristic	Symbol	Minimum	Maximum	Unit
Collector Cutoff Current $V_{CB} = -25 \text{ Vdc}, I_E = 0$	^I сво	-	16	μAdc
Emitter Cutoff Current V _{EB} = -15 Vdc, I _C = 0	I _{EBO}	-	. 10	μAdc
Collector-Emitter Voltage $I_C = 0.6$ mAdc, $R_{BE} = 10$ K	BV _{CER}	20	•	Vdc
DC Current Gain I _C = 20 mAdc, V _{CE} = -1 Vdc 2N319 2N320 2N321	h _{FE}	25 34 53	42 65 121	
DC Current Gain I _C = 100 mAdc, V _{CE} = -1 Vdc 2N319 2N320 2N321	h _{FE}	23 30 47		-
Base Input Voltage V _{CE} = -1 Vdc, I _C = 20 mAdc	v _{BE}	180	320	mVdc
Output Capacitance; Input AC Open Circuit VCB = -5 Vdc, IE = 1 mAdc, f = 1 Mc	C _{ob}	-	35	μμξ
Frequency Cutoff $ {\rm V_{CB}} = -5 \; {\rm Vdc}, \; {\rm I_E} = 1 \; {\rm mAdc} $ $ 2{\rm N}319 $ $ 2{\rm N}320 $ $ 2{\rm N}321 $	f _{atb}	1. 0 1. 5 2. 0		Mc Mc Mc

2N322 thru 2N324 2N508

 $BV_{CBO} = 18 \text{ V}$ h_{FE} -to 99-198 (min-max) f_{CB} - to 2.5 MC

PNP germanium transistors for audio driver and low-power output service in entertainment equipment.

ABSOLUTE MAXIMUM RATINGS

Characteristic	Symbol	Maximum	Unit
Collector-Base Voltage	v _{CBO}	18	Vdc
Collector-Emitter Voltage	v _{CEO}	18	Vdc
Emitter-Base Voltage	V _{EBO}	5	Vdc
Collector Current	1 _C	500	mAdc
Junction and Storage Temperature	T _j & T _{stg}	-65 to + 100	°C
Power Dissipation at 25°C Free Air	. b ^D	225	mW

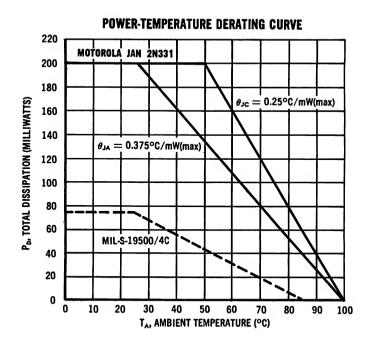
ELECTRICAL CHARACTERISTICS (at 25°C case temperature unless otherwise noted)

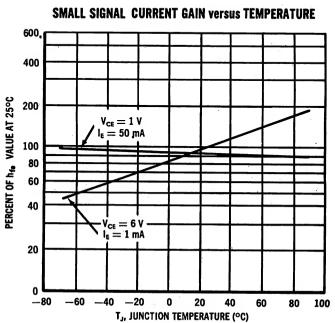
Characteristic	Symbol	Minimum	Maximum	Unit
Collector Cutoff Current $V_{CB} = -16$ Vdc, $I_E = 0$	ІСВО	-	16	μAdc
Emitter Cutoff Current V _{EB} = -3 Vdc, I _C = 0	I _{EBO}	_	16	μ Adc
Collector-Emitter Voltage $I_C = 0.6 \text{ mAdc}, R_{BE} = 5 \text{ K}$	BV _{CER}	18	-	Vdc
DC Current Gain V _{CE} = -1 Vdc, I _C = 20 mAdc 2N322 2N323 2N324 2N508	h _{FE}	34 53 72 99	65 121 198 198	1111
Base Input Voltage V _{CE} = -1 Vdc, I _C = 20 mAdc	V _{BE}	180	320	m/Vdc
Output Capacitance; Input AC Open Circuit $V_{CB} = -5$ Vdc, $I_E = 1$ mAdc, $f = 1$ Mc	C _{ob}	_	35	pf
Frequency Cutoff V _{CB} = -5 Vdc, I _E = 1 mAdc 2N322 2N323 2N324 2N508	fab	1.0 1.5 2.0 2.5	_ _ _ _	Mc Mc Mc Mc

2N331

 $BV_{CBO} = 30 \text{ V}$ $h_{fo} = 30-70 \text{ (min-max)}$ $f\alpha_{b} - \text{to } 1.5 \text{ MC}$

PNP germanium transistor for audio range amplifier and switching service in military equipment. Have collector dissipation and storage temperature ratings significantly higher than those of the military specification (see maximum ratings table below).


ABSOLUTE MAXIMUM RATINGS


Characteristic	Symbol	Rating	Unit
Collector-Base Voltage	v _{сво}	-30	Volts.
Emitter-Base Voltage	V _{EBO}	-12	Volts
Storage Temperature (MIL-S-19500/4C)	Tstg	-65 to +85	°C
Storage Temperature (Motorola JAN 2N331)	T _{stg}	-65 to + 100	°c
Collector Dissipation at T _A = 25°C (MIL-S-19500/4C (Derate 1.25 mW/°C above 25°C)	P _D	75	mW
Collector Dissipation at T _A = 25°C (Motorola JAN 2N331) (Derate 2.67 mW/°C above 25°C)	P _D	200	mW

ELECTRICAL CHARACTERISTICS (at 25°C case temperature unless otherwise noted)

Characteristic	Symbol	Minimum	Maximum	Unit
Emitter Cutoff Current (V _{EB} = -12 Vdc, I _C = 0)	I _{EBO}	_	-10	μAdc
Collector Cutoff Current (V _{CB} = -30 Vdc, I _E = 0)	I _{СВО}	_	-10	μAdc
Small-Signal Open-Circuit Output Admittance ($V_{CB} = -6 \text{ Vdc}$, $I_E = 1.0 \text{ mAdc}$, $f = 1 \text{ kc}$)	h _{ob}	_	1	μmho
Small-Signal Short-Circuit Input Impedance ($V_{CB} = -6 \text{ Vdc}$, $I_{E} = 1.0 \text{ mAdc}$, $f = 1 \text{ kc}$)	h _{ib}	-	50	Ohms
Small-Signal Short-Circuit Forward-Current Transfer Ratio $(V_{CE} = -6 \text{ Vdc}, I_{C} = 1.0 \text{ mAdc}, f = 1 \text{ kc})$	h f e	30	70	
Small-Signal Short-Circuit Forward-Current Transfer Ratio Cutoff Frequency ($V_{CB} = -6$ Vdc, $I_{E} = 1$ mAdc)	f _{hfb}	0.4	_	mc
Output Capacitance (V _{CB} = -6 Vdc, I _E = 1 mAdc)	C ^{op}	_	50	pf
Noise Figure (V_{CB} = -6 Vdc, I_{E} = 1 mAdc, R_{S} = 1000, ohms, f = 1 kc, f = ΔI cps)	NF		20	ďb

2N331 (continued)

2N**381**thru 2N**383** 2N2171

 $BV_{CBO} = 50 \text{ V}$ h_{FE} — to 110-250 (min-max) f_{CB} — to 7.5 MC

PNP germanium transistors for small-signal audio amplifiers, Class B push-pull output stages and medium-speed switching circuits.

ABSOLUTE MAXIMUM RATINGS

Characteristic	Symbol	Rating	Unit
Collector-Base Voltage	v _{CBO}	50	Volts
Collector-Emitter Voltage (R _{BE} = 10K)	V _{CER}	25	Volts
Emitter-Base Voltage	v _{EBO}	20	Volts
Collector Current	¹ C	400	mA
Junction Temperature	т _J	-65 to +100	°c
Collector Dissipation $T_A = 25$ °C derate $T_C = 25$ °C derate	P _D	225 3 500 6.7	mW mW/°C mW mW/°C

ELECTRICAL CHARACTERISTICS (at 25°C case temperature unless otherwise noted)

Characteristic	Symbol	Minimum	Typical	Maximum	Unit
Collector-Base Cutoff Current (V _{CB} = -25 Vdc)	ІСВО		6	10	μ Adc
Emitter-Base cutoff Current (V_EB = -20 Vdc)	I _{EBO}		5	10	μ Adc
Collector-Emitter Voltage (I _C = 500 μAdc, R _{BE} = 10K)	BVCER	25			Vdc
Collector-Emitter Voltage (I _C = 50 \(mu\)Adc, \(V_{BE} = 1.0\) Vdc) 2N381 2N382, 2N383, 2N2171	BV _{CER}	:::	50 45		Vdc
DC Current Gain (I _C = 20 mAdc, V _{CE} = -1.0 Vdc) 2N381 2N382 2N383 2N2171	h _{FE}	35 60 75 110		65 95 120 250	
(I _C = 100 mAdc, V _{CE} = -1.0 Vdc) 2N381 2N382 2N383 2N2171		30 50 65 90			

2N381 thru 2N383 2N2171 (continued)

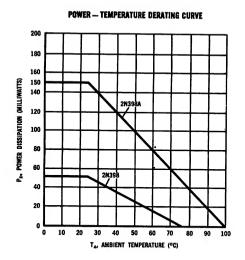
ELECTRICAL CHARACTERISTICS (continued)

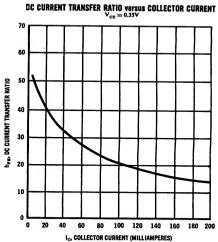
Characteristic		Symbol	Minimum	Typical	Maximum	Unit
Small Signal Current Gain ($I_C = 10 \text{ mA}, V_{CE} = -5.0 \text{ V}, f = 1 \text{ kc}$)	2N381 2N382 2N383 2N2171	h _. fe	35 70 90 120	60 90 115 210	85 135 155 310	
Voltage Feedback Ratio ($I_C = 10 \text{ mA}$, $V_{CE} = -5 \text{ V}$, $f = 1 \text{ kc}$)	2N381 2N382 2N383 2N2171	^h re		0.66 0.69 0.72 0.75		Ж10 ⁻³
Input Impedance ($t_C = 10 \text{ mA}$; $v_{CE} = -5.0 \text{ V}$, $t = 1 \text{ kc}$)	2N381 2N382 2N382 2N2171	h _{ie}		300 450 550 850		ohms
Output Admittance ($I_C = 10 \text{ mA}, V_{CE} = -5.0 \text{ V}, f = 1 \text{ kc}$)	2N381 2N382 2N383 2N2171	h oe		420 400 380 500		μmhos
Transducer Gain $(R_g = 300 \Omega , R_L = 500 \Omega)$ $(R_g = 450 \Omega , R_L = 500 \Omega)$ $(R_g = 550 \Omega , R_L = 500 \Omega)$ $(R_g = 785 \Omega , R_L = 500 \Omega)$	2N381 2N382 2N383 2N2171	G _T		36 38 39.5 42.5		db
Output Capacitance $(I_C = 1 \text{ mA}, V_{CB} = -6V)$		C _{ob}		20		pf
Noise Figure ($I_C = 1 \text{ mA}$, $V_{CE} = -6V$, $R_g = 1 \text{ kc}$, $f = 1 \text{ kc}$)	2N381 2N382 2N383 2N2171	NF		6 5.5 5.0		đb
Cutoff Frequency (I _C = 1 mA, V _{CB} = -6V)	2N381 2N382 2N383 2N2171	fhfb		3 4 5 7.5		mc

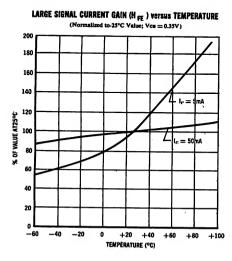
2N398, 2N398 A

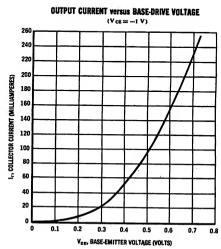
 $BV_{CBO} = 105 \text{ V}$ $h_{FE} = 20 \text{ (min)}$ f_{α_b} - to 1.0 MC (typ)

PNP germanium transistor for high-voltage, audio-frequency applications.


ABSOLUTE MAXIMUM RATINGS


Characteristic	Symbol	2N398A	2N398	Unit
Collector-Base Voltage	v _{сво}	105	105	Vdc
Collector-Emitter Voltage	v _{CEO}	105	105	Vdc
Emitter-Base Voltage	v _{EBO}	50	50	Vdc
DC Collector Current	I _C	200	100	mA
Emitter Current	I _E	200	100	mA
Junction Temperature	T _J	-65 to +100	-65 to +85	°C
Storage Temperature	Tstg	-65 to +100	-65 to +85	- C
Collector Dissipation @ 25°C	P _D	150	50	mW
Thermal Resistance, Junction to Air	θJA max	0. 5	1. 2	°C/mW


ELECTRICAL CHARACTERISTICS (at 25°C case temperature unless otherwise noted)


Characteristic	Symbol	Minimum	Typical	Maximum	Unit
Collector-Base Cutoff Current (V _{CB} = 105 V, I _B = 0)	^I сво	-	12. 0	50	μA
Collector-Base Cutoff Current (V _{CB} = 2.5 V, I _B = 0)	I _{CBO}	-	5. 0	14	μA
Emitter-Base Cutoff Current (V _{EB} = 50 V, I _C = 0)	I _{EBO}	-	3.0	50	μ Α
Collector-Emitter Saturation Voltage (I _C = 5 mAdc; I _B = 0.25 mAdc)	V _{CE} (SAT)	-	0. 11	0. 35	Vdc
Base-Emitter Saturation Voltage (I _C = 5 mAdc; I _B = 0. 25 mAdc)	V _{BE} (SAT)	-	0. 22	0. 40	Vdc
DC Current Transfor Ratio (I _C = 5 mAdc; V _{CE} = 0.35 Vdc)	h _{FE}	20	65	-	-
DC Collector-Emitter Punch-Through Voltage (V_{CB} necessary to obtain V_{EB} of -1 V max, using instrument with $Z_{in} > 11$ megohm to measure V_{BE})	v _{PT}	105	160	-	Vdc
	fab	-	1. 0	-	me

2N398 (continued)

2N460, 2N461

 $BV_{CBO}=45~V$ $h_{fe}=31-200~(min-max)$ $f\alpha_{b}$ - to 4 MC (typ)

PNP germanium transistor for general purpose industrial applications.

ABSOLUTE MAXIMUM RATINGS

Characteristic	Symbol	Rating	Unit
Collector-Base Voltage	v _{сво}	45	Volts
Collector-Emitter Voltage (R _{BE} = 1 K)	v _{CER}	35	Volts
Emitter-Base Voltage	V _{EBO}	• 10	Volts
Collector Current	I _C	400	mA
Collector Dissipation at 25° C Case Temperature Derate above 25° C at 25° C Ambient Temperature Derate above 25° C	P _D	500 6. 7 225 3	mW mW/° C mW mW/°-C
Junction Temperature Range	T _J	-65 to +100	°C

ELECTRICAL CHARACTERISTICS (at 25°C case temperature unless otherwise noted)

Characteristic		Symbol	Minimum	Typical	Maximum	Unit
Collector-Base Cutoff Current (V _{CB} = 45 Vdc)		СВО			15	µAdc
Emitter-Base Cutoff Current (V _{EB} = -10 Vdc)		I _{EBO}			10	μAdc
Collector-Emitter Voltage (I _C = 1 mAdc, R _{BE} = 1 K)		BV _{CER}	35			Vdc
Small-Signal Current Gain $(V_{CB} = -6 \text{ Vdc}_f I_E = 1 \text{ mAdc}, f = 1 \text{ kc})$	2N460 2N461	,tp	0.94 0.955	0.96 0.968	0.972 0.988	
Small-Signal Current Gain. $(V_{CB} = -6 \text{ Vdc}, I_E = 1 \text{ mAdc}, f = 1 \text{ kc})$	2N461	h _{fe}	31		200	
Reverse Voltage Ratio (V _{CB} = -6 Vdc, I _E = 1 mAdc, f = 1 kc)	2N460 2N461	h _{rb}		2 3	15 15	X10-4
Input Resistance (V _{CB} 6 Vdc, I _E = 1 mAdc, f = 1 kc)	2N460 2N461	h _{ib}	25 25	30	40 40	Ohms
Output Admittance (V _{CB} = -6 Vdc, I _E = 1 mAdc, f = 1 kc)	2N460 2N461	h _{ob}		0.8 0.5	1.5 1.5	μohms
Frequency Cutoff (V _{CE} = -5 Vdc, I _E = 1 mAdc)	2N460 2N461	hfb		1.2		mc
Output Capacitance (V _{CB} = -10 Vdc, I _E = 1 mAdc, f = 1 mc)		Cop		20		pf
Noise Figure ($V_{CE} = -4.5$ Vdc, $I_{E} = 0.5$ mAdc, $R_{g} = 1$ K, $f = 1$ kc)	2N460 2N461	NF		5 4		db

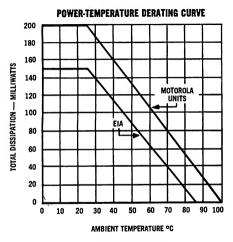
2N464 thru 2N467

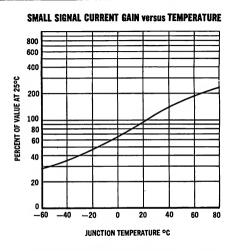
 $BV_{CBO} = 45 \text{ V}$ h_{fe} - to 112 (min) $f\alpha_b$ - to 1.2 MC (typ)

PNP germanium transistor for general purpose applications in the audio-frequency range. These devices exceed EIA requirements for collector-current, maximum temperatures and collector dissipation (See maximum Ratings table below).

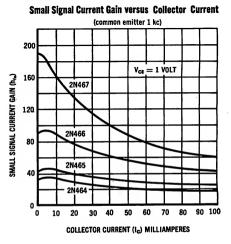
ABSOLUTE MAXIMUM RATINGS

Characteristic	Symbol	2N464	2N465	2N466	2N467	Unit				
Collector-Base Voltage	v _{сво}	45	45	35	35	Volts				
Collector-Emitter Voltage	v _{CE}	40	30	20	15	Volts				
Emitter-Base Voltage	V _{EBO}	12				Volts				
DC Collector Current EIA Motorola Units	^I c	100								mA
Max. Junction & Storage Temperature EIA Motorola Units	T _J and T _{stg}	-		5		°C				
Collector Dissipation in Free Air EIA Derate 2.5 mW/°C above 25°C Motorola Unit Derate 2.67 mW/°C above 25°C	P _D	-		0		mW				
Thermal Resistance, Junction to Air EIA Motorola Units	^θ ЈА		0. 4 0. 3			°C/mW °C/mW				


ELECTRICAL CHARACTERISTICS (at 25°C ambient temperature unless otherwise noted)


Characteristic		Symbol	Min	Typical	Max	Unit
Collector-Emitter Breakdown Voltage (I _C = 0.6 mAdc, R _{BE} = 10 K ohms)	2N464 2N465 2N466 2N467	BV _{CER}	40 30 20 15	1111	1111	Vdc
Collector-Base Cutoff Current (V _{CB} = 20 Vdc)		ICBO	_	6	15	μAdc
Small Signal Current Gain Cutoff Frequency (V_{CB} = 6 Vdc, I_{E} = 1 mAdc)	2N464 2N465 2N466 2N467	f _{ab}	-	0.7 0.8 1.0 1.2	- - -	mc
Small Signal Current Gain ($V_{CE} = 6$ Vdc, $I_{E} = 1.0$ mAdc, $f = 1$ kc)	2N464 2N465 2N466 2N467	h _{fe}	14 27 56 112	26 45 90 180	<u>-</u> -	_


2N464 thru 2N467 (continued)


ELECTRICAL CHARACTERISTICS (continued)

Charaeteristic		Symbol	Min	Typical	Max	Unit
Small Signal Input Impedance ($V_{CE} = 6 \text{ Vdc}$, $I_{E} = 1.0 \text{ mAdc}$, $f = 1 \text{ kc}$)	2N464 2N465 2N466 2N467	h _{ie}	<u>-</u> -	900 1400 3000 5500	- - -	Ohms
Small Signal Power Gain ($V_{CE} = 6 \text{ Vdc}$, $I_{E} = 1.0 \text{ mAdc}$, $f = 1 \text{ kc}$, matched)	2N464 2N465 2N466 2N467	G _e	- - -	40 42 44 45	- - -	db
Noise Figure ($V_{CE} = 2.5 \text{ Vdc}$, $I_{E} = 0.5 \text{ mAdc}$, $f = 1 \text{ kc}$, $R_{g} = 10$ $\Delta f = 1 \text{ cps}$)	Kohms,	nf	_	_	22	đb

2N508

FOR SPECIFICATIONS, SEE 2N322 DATA SHEET

2N524 thru 2N527

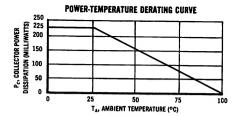
 $BV_{CBO}=45~V$ $h_{FE}-$ to 72-121 (min-max) $f\alpha_{b}-$ to 7.0 MC (max)

PNP germanium transistor for switching and amplifier applications in the audio-frequency range. Available for military and high-reliability industrial purposes.

ABSOLUTE MAXIMUM RATINGS

Characteristic	Symbol	Rating	Unit
Collector-Base Voltage	v _{CBO}	45	Vdc
Collector-Emitter Voltage	v _{CEO}	30	Vdc
Emitter-Base Voltage	v _{EBO}	15	Vdc
Collector Current	I _C	500	· mAdc
Storage and Operating Temperature	T _{stg} , T _j	-65 to +100	°c
Collector Dissipation in Free Air @ 25°C Ambient	P _D	225	mW
Thermal Resistance (Junction to Air)	$\theta_{ m JA}$	0. 333	°C/mW
Thermal Resistance (infinite heat sink)	_в јс	0. 15	°C/mW

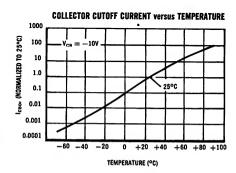
2N524 THRU 2N527 (continued)

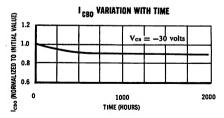

ELECTRICAL CHARACTERISTICS (at 25°C case temperature unless otherwise noted)

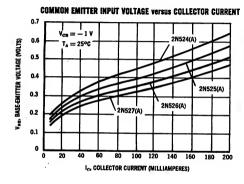
Characteristic		Symbol	Minimum	Maximum	Unit
Collector Cutoff Current (V _{CB} = 30 Vdc, I _E = 0)		СВО	-	10	μAde
Emitter Cutoff Current (V _{EB} = 15 Vdc, I _C = 0)		I _{EBO}	-	10	μAdc
Collector-Emitter Breakdown Voltage (I _C = 0, 6 mAdc, R _{BE} = 10K)	All Types	BV _{CER}	30	-	μVdc
Collector-Emitter Reach Through (Punch-Thru) Voltage (V _{EB} = 1 Vdc, VTVM Z ≥ 1 Megohm)		v _{RT}	30	-	μVdc
Static Forward-Current Transfer Ratio (V_{CE} = 1 Vdc, I_{C} = 20 mAdc)	2N524 2N525 2N526 2N527	h _{FE}	25 34 53 72	42 65 90 121	- - -
Small-Signal Short-Circuit Forward		f _{ab} .			
Current Transfer Ratio Frequency Cutoff $(V_{CB} = 5 \text{ Vdc}, I_E = 1 \text{ mAdc})$	2N524 2N525 2N526 2N527		0. 8 1. 0 1. 3 1. 5	5. 0 5. 5 6. 5 7. 0	Mc Mc Mc Mc
Output Capacitance (V _{CB} = 5 V.dc, I _E = 1 mAdc, f = 1 Mc)	All Types	C ^{op}	5	40	pf
Small-Signal Open Circuit Output Admittance ($V_{CB} = 5$ Vdc, $I_E = 1$ mAdc, $f = 1$ Kc)	2N524 2N525 2N526 2N526 2N527	hob	0, 10 0, 10 0, 10 0, 10	1. 3 1. 2 1. 0 0. 9	μmho μmho μmho μmho
Small-Signal Open Circuit Reverse Transfer		h _{rb}			
Voltage Ratio (V _{CB} = 5 Vdc, I _E = 1 mAdc, f = 1 Kc)	2N524 2N525 2N526 2N527		1. 0 1. 0 1. 0 1. 0	10 11 12 14	X10 ⁻⁴ X10 ⁻⁴ X10 ⁻⁴ X10 ⁻⁴
Small-Signal Short Circuit Input Impedance ($V_{CB} = 5 \text{ Vdc}$, $I_{E} = 1 \text{ mAdc}$, $f = 1 \text{ Kc}$)	2N524 2N525 2N526 2N527	h _{ib}	26 26 26 26	36 35 33 31	ohms ohms ohms ohms
Collector-Emitter Saturation Voltage		V _{CE} (sat)			ĺ
(I _C = 20 mAdc)				100	
(I _B = 2 mAdc)	2N524	1	55 65	130 130	mVdc mVdc
(I _B = 1, 33 mAdc)	2N525 2N526	[70	130	mVdc
(I _B = 1. 0 mAdc) (I _C = 0. 67 mAdc)	2N526 2N527	1	80	130	mVdc
Base Input Voltage (V _{CE} = 1 Vdc, I _C = 20 mAdc)	2N524	v _{BE}	220 200	320 300	mVdc mVdc
-	2N525 2N526 2N527		190 180	280 260	mVdc mVdc

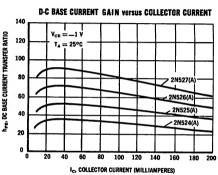
2N524 thru 2N527 (continued)

ELECTRICAL CHARACTERISTICS (continued)


Characteristic		Symbol	Minimum	Maximum	Unit
Noise Figure (V _{CB} = 5 Vdc, I _E = 1 mAdc,		NF	1	15	đb
f = 1 Kc, BW = 1 Cycle)	All Types				
Small-Signal Short-Circuit Forward-Current Transfer Ratio		h _{fe}			
$(V_{CE} = 5 \text{ Vdc}, I_{E} = 1 \text{ mAdc}, f = 1 \text{ Kc})$	2N524		18	41	-
02 <u>2</u>	2N525		30	64	-
	2N526		44	88	
	2N527		60	120	-


The maximum continuous power is related to maximum junction temperature by the thermal resistance factor.


This curve has a value of 225mW at case temperatures of 25°C and is 0 mW at 100°C with a linear relation between the two temperatures such that:


allowable $P_D = \frac{100^{\circ} - T_A}{0.333}$

2N650, A thru 2N652, A

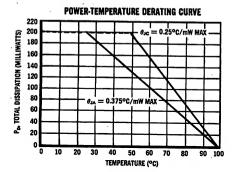
 $BV_{CBO} = 45 \text{ V}$ $h_{FE} - \text{ to 80 (min)}$ $f\alpha_{b} - \text{ to 2.5 MC (typ)}$

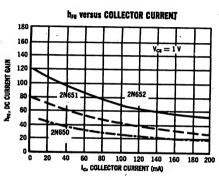
PNP germanium transistor for switching and amplifier applications in the audio-frequency range. Available for military and high-reliability industrial purposes.

ABSOLUTE MAXIMUM RATINGS

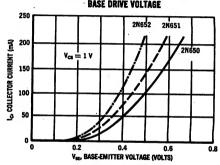
Characteristic	Symbol	Rating	Unit
Collector-Base Voltage	v _{сво}	45	Vdc
Collector-Emitter Voltage	v _{CER}	30	Vdc
Emitter-Base Voltage	V _{EBO}	30	Vdc
Collector Current (Continuous)	I _C	500*	mAdc
Junction Temperature Range	T _J (max)	-65 to +100	°c
Storage Temperature Range	T _{stg}	-65 to +100	°C
Collector Dissipation in Free Air (Derate 2. 67 mW/°C above 25°C)	P _D	200	mW
Thermal Resistance (Junction to Air)	$\theta_{ m JA}$	0.375	°C/mW
Thermal Resistance (Junction to Case)	θ _{JC}	0. 250	°C/mW

^{*}Limited by power dissipation.


ELECTRICAL CHARACTERISTICS (at 25°C ambient temperature unless otherwise noted)


Characteristic		Symbol	Minimum	Typical	Maximum	Unit
Collector-Base Cutoff Current $(V_{CB} = 30 \text{ V}, I_{E} = 0)$ $(V_{CB} = 45 \text{ V}, I_{E} = 0)$ $(V_{CB} = 10 \text{ V}, I_{E} = 0, T_{A} = +71^{\circ}\text{C})$	All Types	I _{CBO}	1 1 1	3.0 - 55	10 50 100	μAdc
Emitter-Base Cutoff Current (V _{EB} = 30 V, I _C = 0)		I _{EBO}	-	3.0	10	μAdc
Collector-Emitter Leakage Current (V _{CE} = 30 V, R _{BE} = 10 K)	All Types	ICER	-	_	600	μAdc
Collector-Emitter Punch-Thru Voltage (V _F = 1.0 V)	All Types	v _{pt}	45	-	_	Vdc
Output Capacitance (V _{CB} = 6 V, I _E = 0)	All Types	C _{ob}	_	10	25	pf
Noise Figure (V _{CE} = 4.5 V, I _E = 0.5 mA, R _g = 1 K, f = 1 kc, Δf = 1 cps)	All Types	NF	_	5	15	db
Small Signal Current Gain Cutoff Frequency (V _{CB} = 6 V, I _E = 1 mA)	2N650 2N651 2N652	^f ab	0. 75 1. 0 1. 25	2.0	_ _ _	mc


—— Motorola Low-Frequency, Low-Power Germanium Transistors -


2N650 thru 2N652 (continued)

Characteristic		Symbol	Minimum	Typical	Maximum	Unit
Input Impedance (V _{CB} = 6 V, I _E = 1 mA, f = 1 kc)	2N650 2N651 2N652	h _{ib}	27 27 27	31 34 35	37 37 37	Ohms
Output Admittance (V _{CB} = 6 V, I _E = 1 mA, f = 1 kc)	2N650 2N651 2N652	h _{ob}	0. 2 0. 2 0. 2	0. 65 0. 60 0. 55	1. 0 0. 9 0. 8	μmho
Small Signal Current Gain $(V_{CE} = 6 \text{ V}, I_{E} = 1 \text{ mA}, f = 1 \text{ kc})$	2N650 2N651 2N652	h _{fe}	30 50 100	49 80 130	70 120 225	-
DC Current Transfer Ratio (V _{CE} = 1.0 V, 1 _C = 10 mA)	2N650- 2N651 2N652	h _{FE}	33 45 80	44 75 115	=	-
Base-Emitter Drive Voltage (V _{CE} = 1.0 V, I _C = 10 mA)	2N650 2N651 2N652	v _{EB}		0. 245 0. 235 0. 225	0. 270 0. 260 0. 250	Vdc
Collector-Emitter Saturation Voltage $(I_C = 50 \text{ mA}, I_B = 2.5 \text{ mA})$	2N650	V _{CE} (sat)	-	0. 175	0. 250	Vdc
$(I_C = 50 \text{ mA}, I_B = 1.67, \text{mA})$ $(I_{C.} = 50 \text{ mA}, I_B = 1.25 \text{ mA})$	2N651 2N652		-	0. 175 0. 175	0. 250 0. 250	
Collector-Emitter Saturation Voltage (I _C = 100 mA, I _B = 5.0 mA)	2N650	V _{CE} (sat)	_	0. 250	0. 500	Vdc
$(I_C = 100 \text{ mA}, I_B = 3.33 \text{ mA})$ $(I_C = 100 \text{ mA}, I_B = 2.5 \text{ mA})$	2N651 2N652	.	-	0. 250 0. 250	0. 500 0. 500	

2N653 thru 2N655

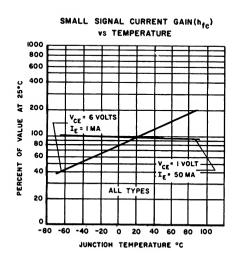
CASE 31 (TO-5) $BV_{CBO} = 30 V$

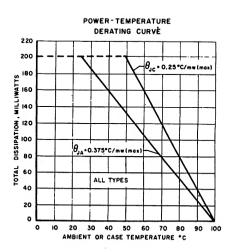
h_{fe} - to 100-250 (min-max)

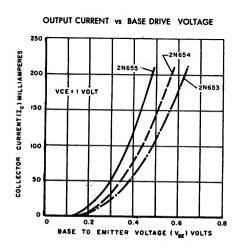
 f_{α_b} - to 2.5 MC (typ)

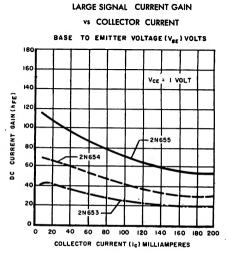
PNP germanium transistor, for high-gain amplifier and switching service in the audio frequency range.

ABSOLUTE MAXIMUM RATINGS


Characteristic	Symbol	Rating	Unit
Collector to Base Voltage	v _{сво}	. 30	Volts
Collector to Emitter Voltage	V _{CER}	25	Volts
Emitter to Base Voltage	V _{EBO}	25	Volts
Collector D. C. Current	I _C	250*	mA :
Junction Temperature Limits	T _J	-65 to +10J	°c
Storage Temperature Limits	T _{stg}	-65 to +100	°c
Collector Dissipation in Free Air Derate 2.67 mW/° C above 25° C	P _D	200	~W
Thermal Resistance, Junction to Air	$\theta_{ m JA}$	0.375	° C/mW


^{*}Limited


ELECTRICAL CHARACTERISTICS (at TA = 25° ± 3°C)


		:	2N65	3	:	2N654	1	:	2N65	5	
Characteristic	Symbol	Min	Max	Тур	Min	Max	Typ	Min	Max	Тур	Unit
Small Signal Current Gain V _{CE} = 6 V, I _E = 1.0 mA, f = 1 kC	h _{fe}	30	49	70	50	80	125	100	130	250	•
Small Signal Input Impedance $V_{CE} = 6 \text{ V}, I_{E} = 1.0 \text{ mA}, f = 1 \text{ kC}$	h _{ie}	750	-	2900	1500	-	4700	3000	-	8500	ohms
Small Signal Current Gain Cutoff Frequency $V_{CB} = 6 V$, $I_E = 1.0 mA$	f _{ab}		1. 5			2.0			2. 5		mc
Output Capacity V _{CB} = 6 V, I _E = 0 mA, f = 1 mc	C ^{op}		10			10			10		pf ·
Noise Figure V _{CE} = 4.5 V, I _E = 0.5 mA, Rg = 1, f = 1 kC Af = 1 cps	NF		10			10			10		đb
Collector Reverse Current V _{CB} = 25 V, I _E = 0	ІСВО		5	15		5	15		5	15	μa
Emitter Reverse Current V _{EB} = 25 V, I _C = 0	I _{EBO}		5	15		5	15		5	15	μа
Collector-Emitter Reverse Current V _{CE} = 25 V, R _{BE} = 10 k	ICER			600			600			600	
Base-Emitter Input Voltage $V_{CE} = 6 \text{ V}, I_{C} = 1.0 \text{ mA}$	V _{BE}			0.3			0.3			0.3	Vdc

2N653 thru 2N655 (continued)

2N1008, A, B

 $BV_{CBO} = 60 \text{ V}$ $h_{fe} = 40-150 \text{ (min-max)}$

 $\ensuremath{\mathsf{PNP}}\xspace$ germanium transistor for audio driver and medium speed switching applications.

ABSOLUTE MAXIMUM RATINGS

Characteristics	Symbol	2N1008	2N1008A	2N1008B	Unit
Collector-Base Voltage	V _{СВО}	20	40	60	Volts
Collector-Emitter Voltage	V _{CEO}	20	40	60	Volts
Emitter-Base Voltage	VEBO		15	<u> </u>	Volts
Collector Current	I _C		300		mAdc
Base Current	I _B		30		mAdc
Collector Dissipation T _A = 25 ^o C derate T _C = 25 ^o C derate	P _D		200 2.78 300 4.0		mW mW/°C mW mW/°C
Junction and Storage Temperature Range	$ au_{ extsf{J}}$	-	65 to +1	00	oc.

ELECTRICAL CHARACTERISTICS (at 25°C unless otherwise noted)

Characteristics	Symbol	Min	Тур	Max	UNIT
Collector Leakage Current (V _{CB} = 10 Vdc) 2N1008 (V _{CB} = 10 Vdc, T _A = 85°C) 2N1008 (V _{CB} = 25 Vdc) 2N1008A (V _{CB} = 25 Vdc, T _A = 85°C) 2N1008A (V _{CB} = 45 Vdc) 2N1008B (V _{CB} = 45 Vdc, T _A = 85°C) 2N1008B	^І СВО		5 5 7	10 500 10 500 15 750	μAdc
Emitter Leakage Current (VEB = 10 Vdc) 2N1008 2N1008A 2N1008B	I _{EBO}		5 	10 10 10	μ Adc
Collector-Emitter Breakdown Voltage (IC = 1.0 mAdc, $R_{\rm BE}$ = 10 K) 2N1008 2N1008A 2N1008B	BV _{CER}	15 35 55			Vdc
Collector-Emitter Saturation Voltage (IC = 100 mAdc, IB = 10 mAdc)	V _{CE} (sat)			0.25	Vdc
Small Signal Current Gain ($I_C = -10$ mAdc, $V_{CE} = 5.0$ Vdc, $f = 1$ kc)	h _{fe}	40		150	
Input Resistance	h _{ie}	200		1000	ohms

2N1175

FOR SPECIFICATIONS, SEE 2N1413-2N1415 DATA SHEET

2N1185 thru 2N1188

 $BV_{CRO} = 60 \text{ V}$

h_{FE} - to 130-170 (min-max)

 f_{α_b} - to 3.0 MC

PNP germanium transistors for high-gain audio amplifier and switching applications.

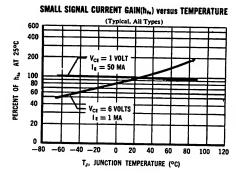
CASE 31 (TO-5)

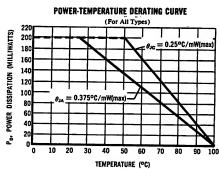
ABSOLUTE MAXIMUM RATINGS

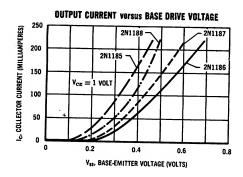
Characteristic	Symbol	Rating	Unit
Collector-Base Voltage 2N1185 2N1186-2N1188	v _{СВО}	45 60	Vdc
Collector-Emitter Voltage 2N1185 2N1186-2N1188	VCER	30 45	Vdc
Emitter-Base Voltage	V _{EBO}	30	Vdc
Collector Current (Continuous)	I _C	500*	mAdc
Storage and Operating Temperature	T _{stg} , T _J	-65 to +100	°C
Collector Dissipation in Free Air (Derate 2.67 mW/° C above 25° C)	P _D	200	mW
Thermal Resistance (Junction to Air)	$\theta_{ m JA}$	0.375	° C/mW
Thermal Resistance (Junction to Case)	дC	0.250	° C/mW

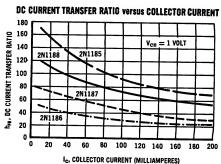
^{*}Limited by power dissipation

2N1185 thru 2N1188 (continued)


ELECTRICAL CHARACTERISTICS (at 25°C ambient temperature unless otherwise noted)


Characteristic		Symbol	Minimum	Typical	Maximum	Unit
Collector-Base Cutoff Current ($V_{CB} = 30 \text{ V}, I_{E} = 0$) ($V_{CB} = 45 \text{ V}, I_{E} = 0$) ($V_{CB} = 60 \text{ V}, I_{E} = 0$) ($V_{CB} = 10 \text{ V}, I_{E} = 0$, $T_{A} = +71^{\circ} \text{ C}$)	2N1185 2N1186 thru 2N1188 2N1186 thru 2N1188 All Types	I _{CBO}	-	3. 0 5. 0 - 55	10 10 50 100	μAdc
Emitter-Base Cutoff Current (V _{EB} = 30 V, I _C = 0)	All Types	IEBO	-	3.0	10	μAdc
Collector-Emitter Leakage Current ($V_{CE} = 30 \text{ V}, R_{BE} = 10 \text{ K}$) ($V_{CE} = 45 \text{ V}, R_{BE} = 10 \text{ K}$)	2N1185 2N1186 thru 2N1188	ICER	-	-	600 600	μAdc
Collector-Emitter Punch-Thru Voltage (V _F = 1.0 V)	2N1185 2N1186 thru 2N1188	V _{pt}	45 60	-		Vdc
Output Capacitance (V _{CB} = 6 V, I _E = 0)	All Types	C _{ob}	-	10	25	pf
Noise Figure ($V_{CE} = 4.5 \text{ V}, I_E = 0.5 \text{ mA}, R_g = 1 \text{ K}, f = 1 \text{ kc}, \Delta f = 1 \text{ cps}$	All Types	NF	-	5	15	db
Small Signal Current Gain Cutoff Frequency (V _{CB} = 6 V, I _E = 1 mA)	2N1185 2N1186 2N1187 2N1188	fab	1. 75 0. 75 1. 0 1. 25	3.0 1.5 2.0 2.5	-	mc
Input Impedance (V _{CB} = 6 V, I _E = 1 mA, f = 1 kc)	2N1185 2N1186 2N1187 2N1188	h _{ib}	27 27 27 27 27	35 31 34 35	37 37 37 37	Ohms
Output Admittance (V _{CB} = 6 V, I _E = 1 mA, f = 1 kc)	2N1185 2N1186 2N1187 2N1188	h _{ob}	0. 2 0. 2 0. 2 0. 2	0.50 0.65 0.60 0.55	0.7 1.0 0.9 0.8	μmho
Small Signal Current Gain (V _{CE} = 6 V, I _E = 1 mA, f = 1 kc)	2N1185 2N1186 2N1187 2N1188	h _{fe}	190 30 50 100	260 49 80 130	400 70 120 225	-
DC Current Transfer Ratio (V _{CE} = 1.0 V, I _C = 10 mA)	2N1185 2N1186 2N1187 2N1188	h _{FE}	130 33 45 80	170 44 75 115	- - -	-


2N1185 thru 2N1188 (continued)


ELECTRICAL CHARACTERISTICS (continued)

Characteristic		Symbol	Minimum	Typical	Maximum	Unit
Base-Emitter Input Voltage (V _{CE} = 1.0 V, I _C = 10 mA)	2N1185 2N1186 2N1187 2N1188	V _{BE}	- - -	0. 215 0. 245 0. 235 0. 225	0. 240 0. 270 0. 260 0. 250	Vdc
Collector-Emitter Saturation Voltage ($I_C = 50$ mA, $I_B = 1.0$ mA) ($I_C = 50$ mA, $I_B = 2.5$ mA) ($I_C = 50$ mA, $I_B = 1.67$ mA) ($I_C = 50$ mA, $I_B = 1.25$ mA)	2N1185 2N1186 2N1187 2N1188	V _{CE} (sat)	- - -	0. 175 0. 175 0. 175 0. 175 0. 175	0.250 0.250 0.250 0.250	Vdc
Collector-Emitter Saturation Voltage (I_C = 100 mA, I_B = 2.0 mA) (I_C = 100 mA, I_B = 5.0 mA) (I_C = 100 mA, I_B = 3.33 mA) (I_C = 100 mA, I_B = 2.5 mA)	2N1185 2N1186 2N1187 2N1188	V _{CE} (sat)		0.250 0.250 0.250 0.250	0.500 0.500 0.500 0.500	Vdc

2N1189 2N1190

 $BV_{CBO} = 45 \text{ V}$

h_{FE} - to 100-170 (min-max)

 $fa_b - to 4.5 MC (typ)$

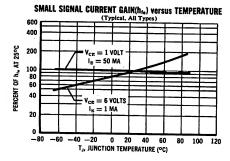
CASE 31 (TO-5)

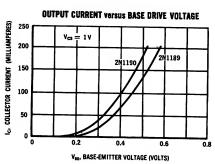
PNP germanium transistors for high-gain audio amplifier and switching applications.

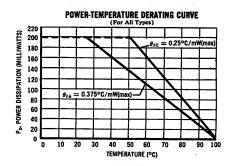
ABSOLUTE MAXIMUM RATINGS

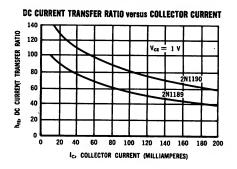
Characteristic	Symbol	Rating	Unit
Collector-Base Voltage	v _{сво}	45	Vdc
Collector-Emitter Voltage	V _{CER}	30	Vdc
Emitter-Base Voltage	V _{EBO}	15	Vdc
Collector Current (Continuous)	I _C	500*	mAdc
Junction, Storage Temperature	T _J , T _{stg}	-65 to +100	°C
Collector Dissipation in Free Air (Derate 2.67 mW/° C above 25° C)	P _D	200	mW
Thermal Resistance (Junction to Air)	$\theta_{ m JA}$	0.375	°C/mW
Thermal Resistance (Junction to Case)	дс	0. 250	°C/mW

^{*}Limited by power dissipation.


ELECTRICAL CHARACTERISTICS (at 25°C ambient temperature unless otherwise noted)


Characteristic	Types	Symbol	Min	Тур	Max	Unit
		I _{CBO}	111	3.0 - 55	10 50 100	μ Adc
Emitter-Base Cutoff Current (VEB = 15 Vdc, I _C = 0)		IEBO	-	3.0	10	µ Adc
Collector-Emitter Leakage Current (V _{CE} = 30 Vdc, R _{BE} = 10K)		I _{CER}	-	-	600	µ Adc
Collector-Emitter Punch-Thru Voltage (VEB = 1 Vdc, VTVM Impedance ≥ 1 M ohm		v _{pt}	45	-	_	Vdc
Output Capacitance (V _{CB} = 6 Vdc, I _E = 0, f = 1 mc)		C _{ob}	ı	12.0	25	pf
Noise Figure		NF	ı	5	15	ďb
Small-Signal Current-Gain Cutoff Frequency (VCB = 6 Vdc, IE = 1 mAdc)		fhfb				mic
(CR = 0.40) vE = 1 mrate)	2N1189 2N1190		1.75 2.25	3.5 4.5	=	


2N1189, 2N1190 (continued)


ELECTRICAL CHARACTERISTICS (continued)

Characteristic	Туре	Symbol	Min	Тур	Max	Unit
Input Impedance (VCB = 6 Vdc, IE = 1 mAdc, f = 1 kc)		h _{ib}	27	31	37	Ohms
Output Admittance (V _{CB} = 6 Vdc, I _E = 1 mAdc, f = 1 kc)		h _{ob}	0.1	_	0.9	µ mho
Small Signal Current Gain $(V_{CE} = 6 \text{ Vdc}, I_{E} = 1 \text{ mAdc}, f = 1 \text{ kc})$		h _{fe}				-
	2N1189 2N1190		75 125	120 190	175 300	
DC Current Transfer Ratio $(V_{CE} = 1.0 \text{ Vdc}, I_{E} = 10 \text{ mAdc})$		$h_{\mathbf{FE}}$				-
CE 2 500 vac; ig 2 10 mac;	2N1189 2N1190		60 100	115 170	-	
Base-Emitter Drive Voltage $(V_{CE} = 1.0 \text{ Vdc}, I_{E} = 10 \text{ mAdc})$		v_{BE}				Vdc
	2N1189 2N1190		-	0.24 0.22	0.26 0.25	
Collector-Emitter Saturation Voltage		v _{CE}				Vdc
$(I_C = 50 \text{ mAdc}, I_B = 1.5 \text{ mA})$	2N1189	(sat)	-	0. 14	0.22	
$(I_C = 50 \text{ mAdc}, I_B = 1.0 \text{ mA})$ $(I_C = 100 \text{ mAdc}, I_B = 3.0 \text{ mA})$	2N1190 2N1189		_	0. 15 0. 17	0.22	
$(I_{\rm C} = 100 \text{ mAdc}, I_{\rm B} = 2.0 \text{ mA})$	2N1190		-	0. 19	0:3	

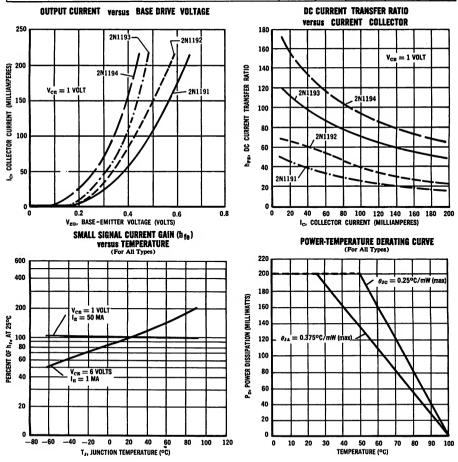
2N1191thru 2N1194

 $BV_{CBO} = 40 \text{ V}$ h_{FE} - to 125-600 (min-max) $f\alpha_b$ - to 3.0 MC (typ)

PNP germanium transistors for high-gain audio amplifier and switching applications.

ABSOLUTE MAXIMUM RATINGS

Characteristic	Symbol	Rating	Unit	
Collector-Base Voltage	вусво	40	Vdc	
Collector-Emitter Voltage	BVCER	25	Vdc	
Emitter-Base Voltage	BVEBO	25	Vdc	
Collector Current (Continuous)	^I c	200	mAdc	
Storage and Operating Temperature	T _{stg} , T _J	-65 to +100	°C	
Collector Dissipation in Free Air (Derate 2.67 mW/°C above 25°C)	P _D	200	mW	
Thermal Resistance (Junction to Air)	^θ ЈА	0.375	°C/mW	
Thermal Resistance (Junction to Case)	[€] JC	0.250	°C/mW	


ELECTRICAL CHARACTERISTICS (at 25°C ambient temperature unless otherwise noted)

Characteristic		Symbol	Min	Typical	Max	Unit
Collector-Base Cutoff Current $(V_{CB} = 25 \text{ V}, I_{E} = 0)$ $(V_{CB} = 1.0 \text{ V}, I_{E} = 0)$	All Types	СВО	-	- 2.0	15 -	μAdc μAdc
Emitter-Base Cutoff Current $(V_{EB} = 25 \text{ V, I}_{C} = 0)$	All Types	I _{EBO}	-	-	15	μAdc
Collector-Emitter Leakage Current (V _{CE} = 25 V, R _{BE} = 10 K)	All Types	ICER	-	_	600	μAdc
Output Capacitance (V _{CE} = 6 V, I _E = 1.0 mA)	All Types	Cop	-	20	_	pf
Noise Figure (V _{CE} = 4.5 V, I _E = 0.5 m A, f = 1 kc, R _g = 100 ohms)	All Types	NF	-	10	_	db
Small Signal Current Gain Cutoff Frequency (V _{CB} = 6 V, I _E = 1.0 mA)	2N1191 2N1192 2N1193 2N1194	f _{ab}	-	1.5 2.0 2.5 3.0		mc mc mc

2N1191 thru 2N1194 (continued)

ELECTRICAL CHARACTERISTICS (continued)

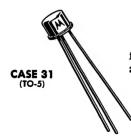
Characteristic		Symbol	Min	Typical	Max	Unit
Small Signal Current Gain ($V_{CE} = 6 \text{ V}, I_{E} = 1.0 \text{ mA},$ f = 1 kc)	2N1191 2N1192 2N1193 2N1194	^h fe	30 50 100 190	40 75 160 280	70 125 250 500	- - -
DC Current Gain (V _{CE} = 1 V, I _C = 10 mA)	2N1191 2N1192 2N1193 2N1194	h _{FE}	20 40 70 125	- - -	80 135 300 600	. <u>-</u> . <u>-</u>
Small Signal Power Gain (V _{CE} = 6 V, I _E = 1.0 mA, f = 1 kc, matched)	2N1191 2N1192 2N1193 2N1194	G _e	- - -	42 44 46 48	- - -	db db db db
Base-Emitter Input Voltage $(V_{CE} = 6 \text{ V}, I_{C} = 1.0 \text{ mA})$	All Types	v _{BE}	_	_	0.3	Vdc

2N1408

 $BV_{CBO} = 50 \text{ V}$ $h_{FE} = 10 \text{ (min)}$

PNP germanium transistor for high voltage neon driver, solenoid and relay driver circuits.

ABSOLUTE MAXIMUM RATINGS


Characteristic	Symbol	Rating	Unit
Collector-Base Voltage	v _{сво}	50	Volts
Collector-Emitter Voltage	V _{CES}	50	Volts
Emitter-Base Voltage	V _{EBO}	10	Volts
Collector Current	^I c	200	mA
Collector Dissipation at T _A = 25°C	ъ.	150	mW
derating factor		2.0	mW/°C
Junction Temperature Range	$^{\mathrm{T}}\mathrm{_{J}}$	-65 to +100	°c

ELECTRICAL CHARACTERISTICS (at 25°C case temperature unless otherwise noted)

Characteristic	Symbol	Minimum	Maximum	Unit
Collector-Base Cutoff Current (V _{CB} = 5 Vdc, I _E = 0)	I _{CBO}		7	μAdc
Emitter-Base Cutoff Current (V _{EB} = 5 Vdc, I _C = 0)	I _{EBO}		7	μAdc
Collector-Emitter Leakage Current (V _{CB} = 50 Vdc, R _{BE} = 0)	I _{CES}		150	μAdc
Collector-Base Breakdown Voltage ($I_C = 25 \mu Adc, I_E = 0$)	BV _{CBO}	50		Vdc
Emitter-Base Breakdown Voltage ($I_E = 25 \mu Adc, I_C = 0$)	BV _{EBO}	10		Vdc
Collector-Emitter Punch-Thru Voltage ($I_E = 25 \mu Adc$)	v _{pt}	50		Vdc
Base-Emitter Input Voltage (I _B = 1.0 mAdc, V _{CE} = 1.0 Vdc)	v _{BE}		0.6	Vdc
DC Current Gain (V _{CE} = 1 Vdc, I _B = 1 mAdc)	h _{FE}	10		
Small Signal Current Gain (V _{CE} = 5.0 Vdc, I _E = 1.0 mA, f = 1 kc)	h _{fe}	10		
Output Admittance (V _{CB} = 5.0 Vdc, I _E = 1.0 mA, f = 1 kc)	h _{ob}		2.0	μmhos

2N1413 thru 2N1415

 $BV_{CBO} = 35 V$ h_{FE} - to 62 (min) f_{CB} - to 1.5 MC

PNP germanium transistor for general purpose low-frequency amplifier and switching applications. Characteristics curves similar to 2N524-2N527 series.

ABSOLUTE MAXIMUM RATINGS

Characteristic	Symbol	Maximum	Unit
Collector - Base Voltage	v _{сво}	35	Vdc
Collector-Emitter Voltage	V _{CEO}	25	Vdc
Emitter-Base Voltage	V _{EBO}	10	Vdc
Collector Current	ıc	500	m Adc
Junction and Storage Temperature	T _j & T _{stg}	-65 to +100	°C
Power Dissipation at 25°C Free Air	P _D	225	mW

2N1413 thru 2N1415 (continued)

ELECTRICAL CHARACTERISTICS (at 25°C case temperature unless otherwise noted)

	1			
Characteristic	Symbol	Minimum	Maximum	Unit
Collector Cutoff Current VCB = 30 Vdc, IE = 0	^I сво	-	12	μAdc
Emitter Cutoff Current V _{EB} = 10 Vdc, I _C = 0	I _{EBO}	-	10	μAdc
Collector-Emitter Voltage $I_{\overline{C}}$ = 0.6 mAdc, $R_{\overline{BE}}$ = 10 K	BVCER	25	-	Vdc
Punch-Thru Voltage	v _{pt}	25	-	Vdc
DC Current Gain I _C = 20 mAdc, V _{CE} = 1 Vdc 2N1413 2N1414 2N1415 2N1175	h _{FE}	25 34 53 70	42 65 90 140	- - -
DC Current Gain I _C = 100 mAdc, V _{CE} = 1 Vdc 2N1413 2N1414 2N1415 2N1175	h _{FE}	23 30 47 62		= = = = = = = = = = = = = = = = = = = =
Base Input Voltage $V_{CE} = 1$ Vdc, $I_{C} = 20$ mAdc 2N1175	v _{BE}	_	260	mVdc
Output Capacitance; Input AC Open Circuit $V_{CB} = 5$ Vdc, $I_E = 1$ mAdc, $f = 1$ Mc	C ^{op}	-	40	μμί
Frequency Cutoff $V_{CE} = 5 \text{ Vdc}, I_{E} = 1 \text{ mAdc}$ 2N1413 2N1414 2N1415 2N1175	f _{ab}	0.8 1.0 1.3 1.5	- - -	Mc Mc Mc Mc
Small-Signal Short-Circuit Forward-Transfer Current Ratio $V_{CE} = 5 \text{ Vdc}, \ I_E = 1 \text{ mAdc}, \ f = 1 \text{ Kc}$ 2N1413 2N1414 2N1415 2N1475	h _{fe}	20 30 44 60	41 64 88 120	_*
Small-Signal Open Circuit Output Admittance $V_{CB}=5~Vdc,~I_E=1~mAdc,~f=1~Kc$ 2N1413 2N1414 2N1415 2N1175	h _{ob}	0. 10 0. 10 0. 10 0. 10	1.3 1.2 1.0 0.9	μmoh μmho μmho μmho
Small-Signal Open-Circuit Reverse-Transfer Voltate Ratio $V_{CB} = 5 \text{ Vdc}, \ I_E = 1 \text{ mAdc}, \ f = 1 \text{ Kc}$ $2N1413$ $2N1414$ $2N1415$ $2N1175$	h _{rb}	1.0 1.0 1.0 1.0	10 11 12 14	X10 ⁻⁴ X10 ⁻⁴ X10 ⁻⁴ X10 ⁻⁴
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	h _{ib}	26 26 26 26 26	36 35 33 31	ohms ohms ohms

2N1705 thru 2N1707

BV_{CBO} - to 30 V h_{FE} - to 60-120 (min-max)

 f_{α_b} - to 4 MC (typ)

PNP germanium transistors for audio driver applications in transistorized radio receivers.

CASE 31

ABSOLUTE MAXIMUM RATINGS

Characteristic	Symbol	2N1705	2N1706	2N1707	Unit
Collector-Base Voltage	v _{CBO}	18	25	30	Volts
Collector-Emitter Voltage (R _{BE} = 1 K)	V _{CER}	12	18	25	Volts
Emitter-Base Voltage	v _{EBO}	5	5	10	Volts
Collector Current	I _C		400		mA
Collector Dissipation at T _C = 25°C	P _D		200		mW
Junction Temperature Range	${ t T}_{ extbf{J}}$		-65 to +100		°C

2N1705 thru 2N1707 (continued)

ELECTRICAL CHARACTERISTICS (at 25°C case temperature unless otherwise noted)

Characteristic		Symbol	Min	Typical	Max	Unit
Collector-Base Cutoff Current (V _{CB} = -10 Vdc) (V _{CV} = -25 Vdc)	2N1705` 2N1706 2N1707	Сво		5	10 10 15	μAdc
Emitter-Base Cutoff Current (V _{EB} = -5 Vdc) (V _{EB} = -10 Vdc)	2N1705 2N1706 2N1707	IEBO		4	20 20 10	μAdc
Collector-Emitter Voltage (I _C = 1 mAdc, R _{BE} = 1 K)	2N1705 2N1706 2N1707	BV CER	12 18 25			Vdc
Base-Emitter Voltage $(I_C = 10 \text{ mA}, V_{CE} = 5 \text{ V})$ $(I_C = 20 \text{ mA}, V_{CE} = 1 \text{ V})$	2N1706 2N1705	v _{BE}	0.15 0.2		0.35 0.4	v
DC Current Gain (I _C = 10 mAdc, V _{CE} = -5 V) (I _C = 20 mAdc, V _{CE} = -1 V)	2N1707 2N1706	h _{FE}	40 60	90	150 120	
Small Signal Current Gain ($I_C = 1 \text{ mA}$, $V_{CE} = -6 \text{ V}$, $f = 1 \text{ kc}$) ($I_C = 10 \text{ mA}$, $V_{CE} = -5 \text{ V}$, $f = 1 \text{ kc}$)	2N1705 2N1706 2N1707	h _{fe}	70 50 30	110 90	150 150 150	
Output Admittance Conductance ($I_C = 1 \text{ mA}$, $V_{CB} = -6 \text{ V}$, $f = 1 \text{ kc}$) ($I_C = 10 \text{ mA}$, $V_{CE} = -5 \text{ V}$, $f = 1 \text{ kc}$)	2N1705 2N1706, 2N1707	h _{ob}		0.5 3.0		μmhos
Input Impedance $(I_C = 1 \text{ mA}, V_{CE} = -6 \text{ V}, f = 1 \text{ kc})$ $(I_C = 10 \text{ mA}, V_{CE} = -5 \text{ V}, f = 1 \text{ kc})$	2N1705 2N1706, 2N1707	h _{ib}		30 4		ohms
Voltage Feedback Ratio $(I_C = 1 \text{ mA}, V_{CB} = -6 \text{ V}, f = 1 \text{ kc})$ $(I_C = 10 \text{ mA}, V_C = -5 \text{ V}, f = 1 \text{ kc})$	2N1705 2N1706 2N1707	h _{rb} h _{re} h _{rb}		3 0.69 4.5		X10 ⁻⁴ X10 ⁻³ X10 ⁻⁴
Frequency Cutoff $(I_C = 1 \text{ mA}, V_C = -6 \text{ V})$	2N1706, 2N1707 2N1705	f _{ab}		3 4		mc
Output Capacitance (I _C = 1 mA, V _{CB} = -6 V, f = 1 mc)		C _{ob}		20		pf
Noise Figure $(I_C = 1 \text{ mA}, V_{CB} = -6 \text{ V}, R_g = 1 \text{ K}, f = 1 \text{ kc}$	2N1705	NF		6		db

2N1924 thru 2N1926

 $\begin{aligned} \mathrm{BV_{CBO}} &= 60 \ \mathrm{V} \\ \mathrm{h_{FE}} &- \mathrm{to} \ 72 \, \mathrm{(min)} \\ \mathrm{f}_{\alpha_\mathrm{b}} &- \mathrm{to} \ 1.5 \ \mathrm{MC} \end{aligned}$

PNP germanium transistors for general purpose, low-frequency applications. Characteristics curves similar to 2N524-2N527 series.

ABSOLUTE MAXIMUM RATINGS

Characteristic	Symbol	Maximum	Unit
Collector-Base Voltage	v _{сво}	60	Vdc
Collector-Emitter Voltage	v _{CEO}	40	Vdc
Emitter-Base Voltage	v _{EBO}	25	Vdc
Collector Current	I _C	500	mAdc
Junction and Storage Temperature	T _j & T _{stg}	-65 to +100	°C
Power Dissipation at 25°C Free Air	P _D	225	mW

ELECTRICAL CHARACTERISTICS (at 25°C case temperature unless otherwise noted)

Characteristic	Symbol	Minimum	Maximum	Unit
Collector Cutoff Current V _{CB} = -45 Vdc, I _E = 0	I _{CBO}	-	10	μ Ad c
Emitter Cutoff Current V _{EB} = -25 Vdc, I _C = 0	I _{EBO}	-	10	μAdc
Collector-Base Voltage $I_C = 200 \mu\text{Adc}, I_E = 0$	v _{СВО}	60	-	Vdc
Collector-Emitter Voltage I _C = 50 μAdc, V _{BE} = +1.5 Vdc, R _{BE} = 10 K	v _{CEX}	50	_	Vdc
Collector-Emitter Voltage I _C = 0.6 mAdc, R _{BE} = 10 K	v _{CER}	40	-	Vdc
Punch-Thru Voltage	v _{pt}	50	-	Vdc

2N1924 thru 2N1926 (continued)

ELECTRICAL CHARACTERISTICS (continued)

Characteristic	Symbol	Minimum	Maximum	Unit
DC Current Gain I _C = 20 mAdc, V _{CE} = -1 Vdc 2N1924 2N1925 2N1926	h _{FE}	34 53 72	65 90 121	
DC Current Gain I _C = 100 mAdc, V _{CE} = -1 Vdc 2N1924 2N1925 2N1926	h _{FE}	30 47 65	-	111
Collector-Emitter Saturation Voltage $I_B = 1.33$ mAdc, $I_C = 20$ mAdc $2N1924$ $I_B = 1.0$ mAdc, $I_C = 20$ mAdc $2N1925$ $I_B = 0.67$ mAdc, $I_C = 20$ mAdc $2N1926$	V _{CE(SAT)}	50 55 60	110 110 110	mVdc mVdc mVdc
Base Input Voltage V _{CE} = -1 Vdc, I _C = 20 mAdc 2N1924 2N1925 2N1926	V _{BE}	200 190 180	300 280 260	mVdc mVdc mVdc
Output Capacitance; Input AC Open Circuit V _{CB} = -5 Vdc, I _E = 1 mAdc, f = 1 Mc	C ^{op}	-	30	pf
Frequency Cutoff V _{CB} = -5 Vdc, I _E = 1 mAdc 2N1924 2N1925 2N1926	f _{ab}	1.0 1.3 1.5	1 1	Mc Mc Mc
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	^h fe	30 44 60	64 88 120	
Small-Signal Open Circuit Output Admittance V _{CE} = -5 Vdc, I _E = 1 mAdc, f = 1 Kc 2N1924 2N1925 2N1926	h _{oe}	15 20 25	60 65 70	μmho μmho μmho
Small-Signal Open-Circuit Reverse-Transfer Voltage Ratio $V_{CE}=-5$ Vdc, $I_{E}=1$ mAdc, $f=1$ Kc 2N1924 2N1925 2N1926	h _{re}	2 3 4	8 9 10	X10 ⁻⁴ X10 ⁻⁴ X10 ⁻⁴
Small-Signal Short-Circuit Input Impedance V_{CE} = -5 Vdc, I_{E} = 1 mAdc, f = 1 Kc 2N1924 2N1925 2N1926	h _{ie}	700 1200 1500	2200 3200 4200	ohms ohms ohms

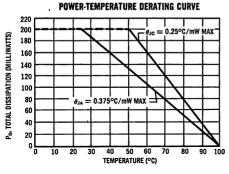
2N2042, 2N2043

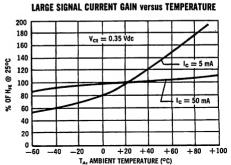
 $BV_{CBO} = 105 \text{ V}$ h_{FE} — to 40-100 (min-max) f_{α_b} — to 0.75 MC

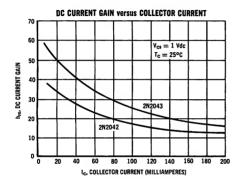
PNP germanium transistor suitable for high-voltage audio switching and amplifier applications. Suitable for high-reliability projects as MEG-A-LIFE devices.

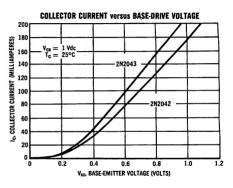
ABSOLUTE MAXIMUM RATINGS

Characteristic	Symbol	Rating	Unit
Collector-Base Voltage	v _{сво}	105	Vdc
Collector-Emitter Voltage	v _{CES}	105	Vdc
Emitter-Base Voltage	v _{EBO}	75	Vdc
Collector Current (Continuous)	I _C	200	mAdc
Operating Junction Temperature Range	$^{\mathrm{T}}\mathrm{_{J}}$	-65 to +100	°C
Storage Temperature Range	T _{stg}	-65 to +100	°C
Collector Dissipation in Free Air Derate above 25°C	P _D	200 2.67	mW mW/°C
Thermal Resistance (Junction to Air)	θЈА	0.375	°C/mW
Thermal Resistance (Junction to Case)	θјС	0.250	°C/mW


ELECTRICAL CHARACTERISTICS (at 25°C case temperature unless otherwise noted)


Characteristic		Symbol	Minimum	Maximum	Unit
Collector-Base Cutoff Current		I _{CBO}			μAdc
$(V_{CB} = 105 \text{ V}, I_{E} = 0)$		020	-	25	
$(V_{CB} = 2.5 \text{ V}, I_{E} = 0)$			-	10	
$(V_{CB} = 105 \text{ V}, I_{E} = 0, T_{A} = +71^{\circ}\text{C})$			-	500	
Emitter-Base Cutoff Current		I _{EBO}			μAdc
$(V_{EB} = 75 \text{ V}, I_{C} = 0)$			-	50	
$(V_{EB} = 2.5 \text{ V}, I_{C} = 0)$			-	10	
Collector-Emitter Cutoff Current		ICER			μAdc
(V _{CE} = 55 V, R _{BE} = 10 K)			_	600	
Collector-Emitter Cutoff Current		ICES			mAdc
$(V_{CE} = 105 \text{ V}, V_{BE} = 0)$			-	1.0	
DC Collector-Emitter Punch-Through Voltage		v _{pt}			Vdc
(V _{fl} = 1.0 V, VTVM R _{in} 10-12 megohm)			105	-	
DC Current Gain		h _{FE}			-
$(I_C = 5 \text{ mA}, V_{CE} = 0.35 \text{ V})$	2N2042 2N2043		20 40	50 100	
Common Base, Small-Signal Input Impedance		h _{ib}			Ohms
$(V_{CB} = 6 V, I_{E} = 1 mA, f = 1 kc)$			30	50	


2N2042, 2N2043 (continued)


ELECTRICAL CHARACTERISTICS (continued)

Characteristic		Symbol	Minimum	Maximum	Unit
Common Base, Small-Signal Output Admittance ($V_{CB} = 6 \text{ V}$, $I_E = 1 \text{ mA}$, $f = 1 \text{ kc}$)		h _{ob}	0.1	1.0	μmho
Common Emitter, Small-Signal Current Transfer I $(V_{CE} = 6 \text{ V}, I_{C} = 1 \text{ mA}, f = 1 \text{ kc})$	Ratio 2N2042 2N2043	h _{fe}	20 45	80 180	-
Base-Emitter Saturation Voltage ($I_C = 5 \text{ mA}, I_B = 0.25 \text{ mA}$)		V _{BE(sat)}	-	0.30	Vdc
Collector-Emitter Saturation Voltage ($I_C = 5 \text{ mA}, I_B = 0.25 \text{ mA}$) ($I_C = 100 \text{ mA}, I_B = 10 \text{ mA}$)		V _{CE(sat)}	-	0. 25 0. 75	Vdc
Collector Output Capacitance (VCB = 6 V, IE = 0)		C _{ob}	-	25	pf
Common-Base, Small-Signal Forward Current Transfer Ratio Cutoff Frequency		f _{hfb}			mc
$(V_{CB} = 6 V, I_{E} = 1 mA)$	2N2042 2N2043		0.50 0.75	-	

2N2171

FOR SPECIFICATIONS, SEE 2N381 DATA SHEET

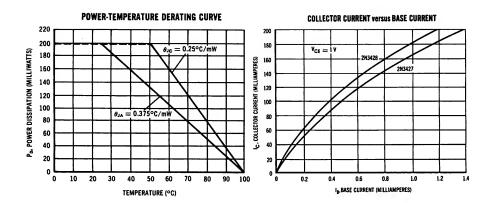
2N3427, 2N3428

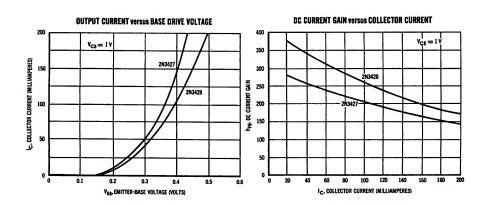
 $\begin{aligned} \text{BV}_{\text{CBO}} &= 45 \text{ V} \\ \text{h}_{\text{FE}} &= 350\text{-}800 \text{ (min-max)} \\ \text{f}\alpha_{\text{b}} &= \text{to 8.0 MC} \end{aligned}$

PNP germanium transistors for audio amplifier and medium-speed switching applications.

ABSOLUTE MAXIMUM RATINGS

Characteristic	Symbol	Rating	Unit
Collector-Base Voltage	v _{сво}	45	Vdc
Collector-Emitter Voltage	v _{CER}	30	Vdc
Emitter-Base Voltage	v _{ebo}	30	Vdc
Collector Current (Continuous)	^I C	500*	mAdc.
Base Current (Continuous)	I _B	50*	mAdc
Storage and Operating Temperature Range	T _{stg} , T _J	-65 to +100	°c
Collector Dissipation in Free Air Derate Above 25°C	P _D	200 2, 67	mW mW/°C


^{*}Limited by power dissipation


2N3427, 2N3428 (continued)

ELECTRICAL CHARACTERISTICS (at 25°C case temperature unless otherwise noted)

Characteristic	Symbol	Minimum	Typical	Maximum	Unit
Collector-Base Cutoff Current (V CB = 1.5 Vdc, I _E = 0)	ІСВО	-	3.0	5	μAdc
(V _{CB} = 10 Vdc, I _E = 0, T _A = +71°C) (V _{CB} = 30 Vdc, I _E = 0)	Ì	-	-	100	
(V _{CB} = 45 Vdc, I _E = 0)		_	_	10 50	
CBE .,	ļ			- 50	
Emitter-Base Cutoff Current (V _{EB} = 30 Vdc, I _C = 0)	I _{EBO}	-	3.0	10	μAdc
Collector-Emitter Leakage Current (V _{CE} = 30 Vdc, R _{BE} = 10K ohms)	ICER	-	-	600	μAdc
Collector-Emitter Punch-Thru Voltage (V _{fl} = 1.0 Vdc, VTVM impedance ≥ 1 megohm)	v _{pt}	30	-	-	Vđc
Output Capacitance (V _{CB} = 6 Vdc, I _E = 0, f = 1 mc)	C ^{op}	-	10	20	pf
Noise Figure ($V_{CE} = 4.5 \text{ Vdc}$, $I_{E} = 0.5 \text{ mAdc}$, $R_{g} = 1 \text{ K ohms}$, $f = 1 \text{ kc}$,	NF				đb
$\Delta f = 1 \text{ cps}$		-	5	10	
Small-Signal Current-Gain Cutoff Frequency ($V_{CB} = 6$ Vdc, $I_{E} = 1$ mAdc) 2N3427 2N3428	f _{hfb}	4.0 5.0	6.0 8.0	1 1	mc
Input Impedance (V _{CB} = 6 Vdc, I _E = 1 mAdc, f = 1 kc)	h _{ib}	25	_	35	Ohms
Output Admittance (V _{CB} = 6 Vdc, I _E = 1 mAdc, f = 1 kc)	h _{ob}	0.05	_	0. 50	μmho
Small-Signal Current Gain ($V_{CE} = 6$ Vdc, $I_E = 1$ mAdc, $f = 1$ kc) 2N3427 2N3428	h _{fe}	200 350	325 475	500 800	-
Small-Signal Current Gain (V_{CE} = 6 Vdc, I_E = 1 mAdc, f = 2 mc) 2N3427 2N3428	h _{fe}	2.0 2.5	-	7 8	-
$\begin{array}{lll} \text{DC Current Gain} & & & 2 \text{N3427} \\ \text{(I$_{\text{C}}$ = 20 mAdc, V$_{\text{CE}}$ = 1 Vdc)} & & 2 \text{N3428} \\ \text{(I$_{\text{C}}$ = 100 mAdc, V$_{\text{CE}}$ = 1 Vdc)} & & 2 \text{N3427} \\ & & 2 \text{N3428} \\ \text{(I$_{\text{C}}$ = 200 mAdc, V$_{\text{CE}}$ = 1 Vdc)} & & 2 \text{N3427} \\ & & 2 \text{N3428} \\ \end{array}$	^h FE	150 250 100 150 75 125	275 375 210 260 - -	- 350 400 - -	-
Base-Emitter Input Voltage ($V_{CE} = 1 \text{ Vdc}, I_{C} = 100 \text{ mAdc}$)	v _{BE}		_		Vđc
Collector-Emitter Saturation Voltage (I _C = 100 mAdc, I _B = 2 mAdc) 2N3427 (I _C = 200 mAdc, I _B = 4 mAdc) 2N3427 2N3427 2N3428	V _{CE} (sat)	- - - -	0. 155 0. 150 0. 220 0. 200	0. 200 0. 190 0. 300 0. 280	Vđc

2N3427, 2N3428 (continued)

MA 112 thru MA 117

 $BV_{CBO} = 15 V$ h_{fe} — to 100-250 (min-max)

PNP Germanium transistors for economical circuit applications. Available with a wide variety of gain ranges.

ABSOLUTE MAXIMUM RATINGS

Characteristic	Symbol	Rating	Unit
Collector-Emitter Voltage	v _{CEO}	15	v
Collector-Base Voltage	v _{CBO}	15	v
Emitter-Base Voltage	v _{EBO}	15	v
Collector Current	I _C	200	mA
Storage Temperature Limits	Tstg	-55 to +85	°C
Power Dissipation @ T _A = +25°C	P _D	175	mW

ELECTRICAL CHARACTERISTICS (at 25°C ambient temperature unless otherwise noted)

Characte	ristic	Minimum	Maximum	Unit
Collector-Emitter Cur	rent, I _{CER}			
(V _{CE} = 15 V,		ŀ		
R _{BE} = 10 KΩ)	All Types	-	600	μА
Collector-Base Currer	nt, I _{CBO}			
(V _{CB} = 15 V,				
I _E = 0)	All Types	-	15	μΑ
Small Signal Current C	ain, h _{fe}			
(V _{CE} = 6 V,				
I _C = 1 mA)	MA112	30	70	
~	MA113	50	125	l
	MA114	100	250	i i
	MA115	30	125	
	MA116	50	250	
	MA117	30	250	

MA286 thru MA288

 $BV_{CBO} = 10 V$ $h_{fe} - to 180 (min)$

PNP germanium transistors for very economical circuit applications. Available with wide variety of gain ranges.

ABSOLUTE MAXIMUM RATINGS

Characteristic	Symbol	Rating	Unit
Collector-Emitter Voltage	v _{CEO}	10	v
Collector-Base Voltage	v _{сво}	10	v
Emitter-Base Voltage	v _{EBO}	10	v
Collector Current	I _C	200	mA
Storage Temperature Limits	T _{stg}	-55 to +85	°C
Power Dissipation © T _A = +25°C	P _D	175	mW

ELECTRICAL CHARACTERISTICS (at 25°C ambient temperature unless otherwise noted)

Characte	ristic	Minimum	Maximum	Unit
Collector-Emitter Cur	rrent, I _{CER}			
$(V_{CE} = 10 \text{ V})$ $R_{BE} = 10 \text{ K}\Omega$	All Types	-	600	μΑ
Small Signal Current	Gain, h _{fe}]
(V _{CE} = 6 V, I _C = 1 mA)				
$I_C = 1 \text{ mA}$	MA286 MA287 MA288	14 30 180	40 250 -	

MA881 thru MA889

 $BV_{CBO} = 60 \text{ V}$ h_{FE} — to 125(min) $f\alpha_b$ — to 1.75 MC (min)

PNP germanium transistors for audio amplifier and medium-speed switching applications. Recommended as driver transistors for 50-60 Volt power transistors.

ABSOLUTE MAXIMUM RATINGS

Characteristic	Symbol	Rating	Unit
Collector-Base Voltage MA881 thru MA884 MA885 thru MA889	^V СВО	60 50	Vdc
Collector-Emitter Voltage MA881 thru MA884 MA885 thru MA889	V _{CES}	60 50	Vdc
Emitter-Base Voltage	v _{EBO}	15	Vdc
Collector Current (Continuous)*	I _{C*}	500	mAdc
Collector Dissipation at T _A = 25°C Derate above 25°C	P _D	200 2. 67	mW mW/°C
Storage and Operating Temperature Range	T _{stg} , T _J	-50 to +100	°C

^{*}Limited by power dissipation

MA881 thru MA889 (continued)

ELECTRICAL CHARACTERISTICS (at 25°C ambient temperature unless otherwise noted)

Characteristic		Symbol	Min	Max	Unit
Collector-Base Cutoff Current (V _{CB} = 30 Vdc, I _E = 0)	MA881 thru MA884	I _{CBO}		10	μAdc
(V _{CB} = 60 Vdc, I _E = 0)	MA881 thru MA884			100	
(V _{CB} = 25 Vdc, I _E = 0)	MA885 thru MA889			15	
$(V_{CB} = 50 \text{ Vdc}, I_{E} = 0)$	MA885 thru MA889			100	
Emitter-Base Cutoff Current (V _{EB} = 15 Vdc, I _C = 0)	MA881 thru MA884 MA885 thru MA889	I _{EBO}		10 15	μAdc
Collector-Emitter Leakage Current (V _{CE} = 60 Vdc, R _{BE} = 0) (V _{CE} = 50 Vdc, R _{BE} = 0)	MA881 thru MA884 MA885 thru MA889	ICES		100 100	μAdc
Output Capacitance (V _{CB} = 6 Vdc, I _E = 0, f = 1 mc)	All types	C _{ob}		25	pf
Input Impedance $(V_{CB} = 6 \text{ Vdc}, I_{E} = 1 \text{ mAdc}, f = 1 \text{ kc})$	All types	h _{ib}	26	40	ohms
Output Admittance (V _{CB} = 6 Vdc, I _E = 1 mAdc, f = 1 kc)	All types	h _{ob}	0. 1	1. 0	μmhos
DC Current Gain (V _{CE} = 1 Vdc, I _C = 10 mAdc)	MA881 MA882 MA883 MA884	h _{FE}	30 40 75 125		
Small-Signal Current Gain (V _{CE} = 6 Vdc, I _E = 1 mAdc, f = 1 kc)	MA881, MA886 MA882, MA887 MA883, MA888 MA884, MA889 MA885	h _{fe}	30 50 100 190 15	70 120 225 400 40	
Small-Signal Current Gain Cutoff Frequent (V _{CB} = 6 Vdc, I _E = 1 mAdc)	MA881, MA886 MA882, MA887 MA883, MA888 MA884, MA889 MA885	f _{ab}	0. 75 1. 0 1. 25 1. 75 0. 5		mc

MA909, MA910

 $BV_{CBO} = to 90 V$ $h_{FE} = 20 (min)$

PNP Germanium transistors for high-voltage neon driver, solenoid and relay driver circuits.

ABSOLUTE MAXIMUM RATINGS

Characteristic	Symbol	MA909	MA910	Unit
Collector-Base Voltage	v _{CB}	75	90	Volts
Collector-Emitter Voltage	v _{CE}	75	90	Volts
Emitter-Base Voltage	v _{EB}	35	45	Volts
Collector Current	I _C	2	200	
Collector Dissipation at $T_C = 25$ °C	P _C	1:	150	
Junction and Storage Temperature	T _{J(max)}	1	100	

ELECTRICAL CHARACTERISTICS (at 25°C case temperature unless otherwise noted)

Characteristic		Symbol	Min	Max	Unit
Collector-Base Cutoff Current ($V_{CB} = 2.5 \text{ Vdc}$, $I_{E} = 0$) ($V_{CB} = 75 \text{ Vdc}$, $I_{E} = 0$) ($V_{CB} = 90 \text{ Vdc}$, $I_{E} = 0$)	Both Types MA909 MA910	^I СВО	-	14 50 50	Adc
Emitter-Base Cutoff Current (V_{EB} = 35 Vdc, I_{C} = 0) (V_{EB} = 45 Vdc, I_{C} = 0)	MA909 MA910	I _{EBO}	-	50 50	Adc
Collector-Emitter Leakage Current $(V_{CE} = 75 \text{ Vdc}, R_{BE} = 0)$ $(V_{CE} = 90 \text{ Vdc}, R_{BE} = 0)$	MA909 MA910	ICES	-	100 100	Adc
Collector-Emitter Saturation Voltage (I _C = 5 mAdc, I _B = 0.25 mAdc)		V _{CE} (sat)	-	0, 35	Vdc
Base-Emitter Saturation Voltage (I _C = 5 mAdc, I _B = 0. 25 mAdc)		V BE(sat)	-	0. 40	Vdc
DC Current Gain (I _C = 5 mAdc, V _{CE} = 0.35 Vdc)		h _{FE}	20	-	-
Collector-Emitter Punch-Thru Voltage (V _{fl} = 1, 0 Vdc, R _{in} of VTVM - 10 to 12 Megohms)	MA909 MA910	v _{pt}	75 90	-	Vdc

MA1702 thru MA1708

 BV_{CBO} — to 45 V h_{FE} — to 150-400 (min-max) f_{α_h} — to 7.0 MC

PNP germanium transistors for audio amplifier and medium speed switching applications requiring high ac gain at low collector current or high dc gain at high collector current.

ABSOLUTE MAXIMUM RATINGS

Characteristic	Symbol	Rating	Unit
Collector-Base Voltage MA1702 MA1703 thru MA1705 MA1706 thru MA1708	v _{сво}	45 25 15	Vdc
Collector-Emitter Voltage MA1702 MA1703 thru MA1705 MA1706 thru MA1708	V _{CER}	30 25 15	Vdc
Emitter-Base Voltage MA1702 MA1703 thru MA1705 MA1706 thru MA1708	V _{EBO}	30 25 4.5	Vdc
Collector Current (Continuous)	I _C	500*	mAdc
Base Current (Continuous)	I _B	50*	mAdc
Maximum Junction Temperature	T _{J(max)}	100	°C
Storage Temperature Range	T _{stg}	-65 to +100	°c
Collector Dissipation in Free Air Derate Above 25° C	P _D	200 2.67	mW mW/° C

^{*}Limited by power dissipation

MA1702 thru MA1708 (continued)

ELECTRICAL CHARACTERISTICS (at 25°C ambient temperature unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit	
	MA1702 thru MA1705 MA1702 MA1706 thru MA1708 MA1703 thru MA1705 MA1702 MA1702	СВО	-	3.0	5 100 15 15 10 50	μAdc
	MA1706 thru MA1708 MA1703 thru MA1705 MA1702	I _{EBO}	- -	- 3.0	15 15 10	μAdc
	MA1706 thru MA1708 MA1703 thru MA1705 MA1702	ICER	-	-	600 600 600	μAdc
Collector-Emitter Punch-Thru Voltage ($V_{f1} = 1.0 \text{ Vdc}$, VTVM impedance $\geq 1 \text{ megohm}$)	MA1702	v _{pt}	30	-	-	Vdc
Output Capacitance (V _{CB} = 6 Vdc, I _E - 0, f = 1 mc)	All Types	C ^{op}	_	10	20	pf
Noise Figure ($V_{CE} = 4.5 \text{ Vdc}$, $I_{E} = 0.5 \text{ mA}$, $R_{g} = 1 \text{ K}$, $f = 1 \text{ kc}$, $\Delta f = 1 \text{ cps}$)	MA1702	NF	-	5	10	db
Small-Signal Current Gain Cutoff Freque (V_{CB} = 6 Vdc, I_{E} = 1 mAdc)	ncy MA1702 MA1703 .MA1704 MA1705 MA1706 MA1707 MA1708	f _{hfb}	7.0 3.0 5.0 6.0 3.0 4.0 5.0		-	mc
Input Impedance ($V_{CB} = 6 \text{ Vdc}$, $I_E = 1 \text{ mAdc}$, $f = 1 \text{ kc}$)	MA1702 thru MA1705 MA1706 thru MA1708	h _{ib}	25 25		35 37	Ohms
Output Admittance (V _{CB} = 6 Vdc, I _E = 1 mAdc, f = 1 kc)	MA1702	h _{ob}	0.05		0.50	μmho
Small Signal Current Gain ($V_{CE}=6~Vdc,~I_{\underline{E}}=1~mAdc,~f=1~kc$)	MA1702, MA1705, MA1708 MA1703, MA1706 MA1704, MA1707	h _{fe}	500 200 350		- 500 800	-
DC Current Gain ($I_C = 20 \text{ mAdc}$, $V_{CE} = 1 \text{ Vdc}$) ($I_C = 100 \text{ mAdc}$, $V_{CE} = 1 \text{ Vdc}$) ($I_C = 200 \text{ mAdc}$, $V_{CE} = 1 \text{ Vdc}$)	MA1702, MA1705, MA1708 MA1703, MA1706 MA1704, MA1707 MA1702 MA1703 MA1704 MA1704	h _{FE}	350 200 100 150 135 70 110 125		350 400 - -	-
Collector-Emitter Saturation Voltage ($I_C = 200 \text{ mAdc}$, $I_B = 4.0 \text{ mAdc}$)	MA1702	V _{CE} (sat)	-	-	0.260	Vdc

MOTOROLA HIGH FREQUENCY TRANSISTORS

- For devices meeting military specifications, see page 1-18.
- For high-reliability devices produced under the Meg-A-Life II program, see page 1-22.
- For case outline dimensions, see page 1-26.

MOTOROLA HIGH FREQUENCY SWITCHING AND AMPLIFIER TRANSISTORS

This line of transistors includes germanium and silicon devices designed for switching and amplifier applications at frequencies ranging from a few megacycles to over a gigacycle.

NUMERICAL-ALPHABETICAL LISTING OF DEVICES COVERED IN THIS SECTION

2N697	037050	22745.04
2N700	2N956	2N1561
2N700A	2N960	2N1562
2N705	2N961	2N1613
	2N962	2N1692
2N706	2N963	2N1693
2N706A	2N964	2N1711
2N706B	2N964A	2N1991
2N707	2N965	2N2096
2N707A	2N966	2N2097
2N708	2N960 2N967	2N2099
2N710	2N968	2N2100
2N711	2N969	
2N711A		2N2192
	2N970	2N2192A
2N711B	2N971	2N2192B
2N718	2N972	2N2193
2N718A	2N973	2N2193A
2N722	2N974	2N2193B
2N741	2N975	2N2194
2N741A	2N985	2N2194A
2N744	2N995	2N2194B
2N753	2N1131	2N2195
2N827	2N1132	2N2195A
2N828	2N1132 2N1132A	
2N828A	2N1132A 2N1132B	2N2195B
2N829		2N2217
	2N1141	2N2218
2N834	2N1142	2N2218A
2N835	2N1143	2N2219
2N838	2N1195	2N2219A
2N869	2N1204	2N2220
2N914	2N1204A	2N2221
2N915	2N1420	2N2221A
2N916	2N1494	2N2221A 2N2222
2N918	2N1494A	2N2222 2N2222A
2N929	2N1494A 2N1495	4N444A
2N930	2N1495 2N1496	
211000	71/1490	

NUMERICAL-ALPHABETICAL LISTING (continued)

	AL LISTING (continued)	
2N2256	2N3245	2N3506
t .		2N3507
2N2257	2N3248	2N3508
2N2258	2N3249	2N3509
2N2259	2N3250	
2N2303	2N3250A	2N3510
2N2330	2N3251	2N3511
2N2331	2N3251A	2N3544
2N2369	2N3252	2N3546
2N2381	2N3253	2N3553
2N2382	2N3279	2N3632
	0210000	2N3634
2N2481	2N3280	2N3635
2N2501	2N3281	2N3636
2N2537	2N3282	2N3637
2N2538	2N3283	
2N2539	2N3284	2N3647
2N2540	· 2N3285	2N3648
2N2630	2N3286	2N3664
2N2635	2N3287	2N3717
2N2800	2N3288	2N3718
2N2800 2N2801	2N3289	2N3719
1	2N3299	2N3720
2N2832		2N3720 2N3742
2N2834	2N3291	
· 2N2837	2N3292	2N3743
2N2838	2N3293	2N3783
2N2904	2N3294	2N3784
2N2904A	2N3295	2N3785
2N2905	2N3296	2N3798
2N2905A	2N3297	2N3799
	2N3298	2N3818
2N2906	2N3307	MCS2135
2N2906A		
2N2907	2N3308	MCS2136
2N2907A	2N3309	MCS2137
2N2929	2N3309A	MCS2138
2N2947	2N3323	MF812
2N2948	2N3324	MF832
2N2949	2N3325	мм1803
2N2950	2N3375	MM1941
2N2951	2N3444	MM1943
2N2952	2N3467	MM2503
2N2955	2N3468	MM2550
1		MM2552
2N2956	2N3485	
2N2957	2N3485A	MM2554
2N2958	2N3486	MM2894
2N2959	2N3486A	MPS706
2N3115	2N3493	MPS834
2N3116	2N3494	MPS918
2N3133	2N3495	MPS2894
2N3134	2N3496	MPS2923
2N3135	2N3497	MPS2924
2N3136	2N3498	MPS2925
1		MPS3563
2N3137	2N3499	MPS3639
2N3227	2N3500	MPS3639 MPS3640
2N3244	2N3501	MESSOAO

PREFERRED SILICON TRANSISTORS

Year after year the industry introduces a host of new transistor type numbers to join the growing list of devices already available. Some of the new type numbers represent true state-of-the-art advances in transistor technology, while others are merely improvements of older types already in general use.

Motorola manufactures one of the most extensive lines of high-frequency transistors and will continue to produce many of the older device type numbers—though some of these are recommended for direct replacement only. For new equipment designs, the engineer should consider primarily the more advanced transistors which offer performance and price advantages, and assure a continuing and reliable source of supply.

NUMERICAL LISTING OF PREFERRED MOTOROLA HIGH-FREQUENCY SILICON TRANSISTORS

Type Number	Type Number	Type Number	Type Number	
2N834	2N2537	2N3253	2N3511	
2N835	2N2538	2N3444	2N3544	
2N915	2N2539	2N3467	2N3546	
2N916	2N2540	2N3468	2N3634	
2N918	2N2800	2N3485, A	2N3635	
2N2192, A, B	2N2801	2N3486, A	2N3636	
2N2193, A, B	2N2837	2N3493	2N3637	
2N2194, A, B	2N2838	2N3494	2N3647	
2N2195, A, B	2N2904, A	2N3495	2N3648	
2N2217	2N2905, A	2N3496	2N3719	
2N2218, A	2N2906, A	2N3497	2N3720	
2N2219, A	2N2907, A	2N3498	2N3742	
2N2220	2N3227	2N3499	2N3743	
2N2221, A	2N3244	2N3500		
2N2222, A	2N3245	2N3501		
2N2330	2N3248	2N3506	MM1755	
2N2331	2N3249	2N3507	MM1756	
2N2369	2N3250, A	2N3508	MM1757	
2N2481	2N3251, A	2N3509	MM1758	
2N2501	2N3252	2N3510	MM2894	

SILICON HIGH FREQUENCY TRANSISTORS EIA-MOTOROLA PREFERRED† TYPE CROSS REFERENCE GUIDE

EIÅ	Motorola	EIA	Motorola	EIA	Motorola	EIA	Motorola	EIA	Motorola
2N497	2N3498	2N730	# 2N2220	2N930	2N930	2N1564	2N2218	2N1987	2N2217
2N498	2N3498	2N731	#2N2221	2N947	2N834	2N1565	2N2218	2N1988	2N2218A
2N656	2N3498	2N734	2N2221	2N956	# 2N2222	2N1566	2N2219	2N1989	2N2218A
2N657	2N3498	2N735	2N2221	2N957	2N2501	2N1566A	2N2219	2N1991	# 2N2800
2N696	#2N2217	2N736	2N2222	2N978	2N2837	2N1613	#2N2218A	2N2008	2N3500
03,400,04	0370017	2N736A	2N2222	2N988	2N2221	2N1613A	2N2218	2N2049	2N2219A
2N696A	2N2217	2N730A 2N742	2N2222 2N2220		2N2221 2N2221	2N1644	2N2218	2N2049 2N2106	2N2218
2N697	# 2N2218	2N742A	2N2220 2N2220	2N989 2N995	# 2N3250	2N1044 2N1700	2N2217	2N2100 2N2107	2N2218
2N697A	2N2218	2N742A 2N743	# 2N835		# 2N3250 2N3250	2N1700 2N1701	2N2217	2N2107 2N2108	2N2210 2N2219
2N698	#2N3498	2N743 2N744		2N995A	# 2N3230	2N1701 2N1702	2N2217		#2N3253
2N699	# 2N3498	2N144	# 2N2501	2N996	# 2N3240	ZN1102	2112211	2N2192	#2143233
2N699B	2N3498	2N752	2N2221	2N1060	2N2501	2N1703	2N2217		# 2N3253
2N702	# 2N835	2N753	# 2N835	2N1131	#2N2800	2N1704	2N2218	2N2192B	
2N703	# 2N835	2N754	2N2220	2N1131A	#2N2800	2N1711	# 2N2219A	2N2193	# 2N3444
2N706	#2N835	2N755	2N2220	2N1132	#2N2800	2N1711A	2N2219A	2N2193A	# 2N3444
2N706A	# 2N835	2N780	2N2220	2N1132A	# 2N2800	2N1711B	2N2219A	2N2193B	#2N3444
2N706B	# 2N835	2N783	2N834	2N1132B	#2N2800	2N1837	2N2218	2N2194	# 2N2218A
2N706C	# 2N835	2N784	#2N834	2N1139	2N835	2N1837A	2N2218		#2N2218A
2N707	2N707	2N784A	# 2N834	2N1199	2N835	2N1838	2N2218		# 2N2218A
2N707A	2N707A	2N834	# 2N2501	2N1199A		2N1839	2N2217	2N2195	#2N2217
2N708	# 2N834	2N835	#2N2501	2N1252	2N2537	2N1840	2N2217	2N2195A	
2N708A	# 2N834	2N839	2N2220	2N1252A	2N2537	2N1889	#2N3498	2N2195B	# 2N2217
2N709	2N709	2N840	# 2N2221	2N1252A 2N1253	2N2537	2N1890	#2N3499	2N2205	# 2N835
2N709A	2N709A	2N841	2N2222			2N1893	# 2N3498	2N2206	# 2N835
2N715	#2N2221	2N842	2N2221	2N1253A	2N2551 2N2501	2N1893A		2N2200 2N2216	2N3498
2N716	# 2N2221	2N843	2N2222	2N1276		2N 1958	# 2N2537	2N2210 2N2217	2N3450 2N2217
211110	# 2112221	211045	2142222	2N1277	2N2501	2111330	# 2142331	2142211	ZNZZII
2N717	#2N2221	2N849	2N835	2N1278	2N2501	2N1958A	2N2537	2N2218	* 2N2218
2N717A	# 2N2221	2N850	2N834	2N1279	2N2501	2N1959	# 2N2537	2N2218A	* 2N2218A
2N718	#2N2221	2N851	2N835	2N1386	2N2218	2N1959A	2N2537	2N2219	* 2N2219
2N718A	# 2N2221	2N852	2N834	2N1387	2N2218	2N1962	2N834	2N2219A	* 2N2219A
2N719	# 2N3498	2N869	# 2N3250	2N1388	2N2218	2N1963	2N834	2N2220	2N2220
2N719A	2N3498	2N869A	2N3250	2N1389	2N2218	2N1964	2N2539	2N2221	* 2N2221
2N720	#2N3498	2N909	2N2222	2N1390	2N2218	2N1965	2N2539	2N2221A	* 2N2221A
2N720A	#2N3498	2N914	# 2N834	2N1409	2N2537	2N1972	2N2219	2N2222	* 2N2222
2N721	# 2N2837	2N915	2N915	2N1409A		2N1973	2N2219	2N2222A	* 2N2222A
2N722	# 2N2837	2N916	2N916	2N1410	2N2537	2N1974	2N3498	2N2224	# 2N2218
2N722A	# 2N2837	2N919	2N834	2N1410A	2N2537	2N1975	2N3498	2N2242	# 2N2501
2N726	# 2N3250	2N920	2N834	2N1420	#2N2218	2N1983	2N2218	2N2243	2N2219
2N727	#2N3250	2N921	2N834	2N1420A	2N2219	2N1984	2N2218	2N2244	2N835
2N728	# 2N2539	2N922	2N834	2N1507	#2N2219	2N1985	2N2218	2N2245	2N835
2N729	#2N2539	2N929	2N929	2N1528	2N2218	2N1986	2N2218	2N2246	2N835
				L	<u> </u>	L		L	<u> </u>

[†] Motorola type indicated generally offers improved performance when used in place of the EIA type listed.

[#] EIA type available in addition to Motorola preferred type.

^{*} Also available in TO-46 package.

CROSS REFERENCE GUIDE (continued)

EIA	Motorola	EIA	Motorola	EIA	Motorola	EIA	Motorola	EIA	Motorola
2N2247	2N834	2N2545	2N2222A	2N2949	2N2949	2N3252	2N3252	2N3503	# 2N2905A
2N2248	2N834	2N2651	# 2N2501	2N2950	2N2950	2N3253	2N3253	2N3504	# 2N2907
2N2249	2N834	2N2696	#2N2837			2N3287	2N3287	2N3505	#2N2907A
2N2250	2N835			2N2951	2N2951	2N3288	2N3288	2N3506	2N3506
2N2251	2N835	2N2709	2N2800	2N2952	2N2952	2N3289	2N3289	2N3507	2N3507
		2N2711	2N834	2N2958	2N2958				
2N2252	2N834	2N2712	2N834	2N2959	2N2959	2N3290	2N3290	2N3508	2N3508
2N2253	2N834	2N2713	2N834	2N3009	#2N3511	2N3291	2N3291	2N3509	2N3509
2N2254	2N834	2N2714	2N834			2N3292	2N3292	2N3510	2N3510
2N2255	2N834		-11001	2N3010	# 2N3010	2N3293	2N3293	2N3511	2N3511
2N2256	2N2256	2N2715	2N834	2N3011	# 2N3227	2N3294	2N3294	2N3512	2N2537
		2N2716	2N834	2N3012	# MM2894			2110012	211200.
2N2257	2N2257	2N2787	2N2217	2N3013	#2N3511	2N3295	2N3295	2N3544	2N3544
2N2270	#2N2219	2N2788	# 2N2218A	2N3014	# 2N3511	2N3296	2N3296	2N3546	2N3546
2N2297	# 2N3252	2N2789	# 2N2219A			2N3297	2N3297	2N3634	2N3634
2N2303	# 2N2801	2112100	511551011	2N3015	# 2N2537	2N3298	2N3298	2N3635	2N3635
2N2318	2N834	2N2790	#2N2220	2N3019	2N3019	2N3299	#2N2218A	2N3636	2N3636
		2N2791	# 2N2221A	2N3020	2N3020			2110000	1 2110000
2N2319	2N834	2N2792	# 2N2222A	2N3021	2N3021	2N3300	# 2N2219A	2N3637	2N3637
2N2320	2N834	2N2800	2N2800	2N3022	2N3022	2N3301	# 2N2221A	2N3647	2N3647
2N2330	2N2330	2N2801	2N2801			2N3302	# 2N2222A	2N3648	2N3648
2N2331	2N2331	2112001	2112001	2N3023	2N3023	2N3304	2N3546	2N3040 2N3719	2N3719
2N2350	MM1756	2N2837	2N2837	2N3024	2N3024	2N3307	2N3307	2N3720	2N3720
2112000	1411411100	2N2838	2N2838	2N3025	2N3025			2113120	2113120
2N2350A	MM1756	2N2845	# 2N2539	2N3026	2N3026	2N3308	2N3308	2N3742	2N3742
2N2368	# 2N3227	2N2846	# 2N2537	2N3053	# 2N3498	2N3309	2N3309	2N3743	2N3743
2N2369	# 2N3227	2N2847	# 2N2531	-1.0000		2N3326	2N2218A	2N3796	2N3796
2N2369A	#2N3227	2112041	" 2112333	2N3110	# 2N2218A	2N3337	2N3287	2N3797	2N3797
2N2405	# 2N3498	2N2848	# 2N2538	2N3114	#2N3500	2N3338	2N3289	2N3798	2N3798
2112 100	" 2110 400	2N2868	2N3252	2N3115	2N3115			21.0.00	
2N2410	# 2N2537	2N2883	2N3232 2N3309	2N3116	2N3116	2N3339	2N3288	2N3799	2N3799
2N2411	#2N3250	2N2884	2N3309	2N3120	# 2N2800	2N3467	2N3467	MCS2135	MCS213
2N2412	# 2N3250	2N2890	2N3505 2N3507	2110120		2N3468	2N3468	MCS2136	MCS2136
2N2476	# 2N3252	2112030	2113301	2N3121	# 2N2837	2N3485	2N3485	MCS2137	MCS213
2N2477	# 2N3252	2N2891	2N3507	2N3133	2N3133	2N3486	2N3486	MCS2138	MCS213
2112411	# 2143232	2N2894	# 2N3248	2N3134	2N3134			WC32130	MCSZIS
2N2478	2N2218	2N2994 2N2904	# 2N3246 2N2904	2N3135	2N3135	2N3493	2N3493	MF3304	MF3304
2N2479	2N2218	2N2904 2N2904A	2N2904 2N2904A	2N3136	2N3136	2N3494	2N3494	MM1755	MM1755
2N2419 2N2481	2N2481	2N2904A 2N2905	2N2904A 2N2905	2143130	2110200	2N3495	2N3495	MM1756	MM1756
2N2483	MM2483	2142 903	2N2905	2N3209	# MM2894	2N3496	2N3496	MM1757	MM1757
2N2483 2N2484	MM2484	2N2905A	2N2905A	2N3224	2N3498	2N3497	2N3497		MM1757
2112404	WW12404	2N2905A 2N2906	2N2905A 2N2906	2N3225	2N3498	2.,0.0.	2110401	MM1758	MIMIT 128
2N2501	2N2501	2N2906 2N2906A		2N3223	2N3227	2N3498	2N3498	34349000	34349000
2N2501 2N2511	2N2501 2N3444	2N2906A 2N2907	2N2906A	2N3244	2N3244	2N3499	2N3499	MM2090 MM2091	MM2090
2N2511 2N2537	2N3444 2N2537	2N2907 2N2907A	2N2907			2N3500	2N3500	MM2091 MM2092	MM2091 MM2092
2N2537 2N2538	2N2537 2N2538	4N49U/A	2N2907A	2N3245	2N3245	2N3501	2N3501		MM2092 MM2483
2N2538 2N2539		2312027	0370000	2N3248	2N3248	2N3502	# 2N2905	MM2483	
2N2539 2N2540	2N2539 2N2540	2N2927	2N2800	2N3249	2N3249			MM2484	MM2484
2N2540 2N2605	# 2N3798	2N2947 2N2948	2N2947	2N3250	2N3250	i .	1	MM2894	MM2894
5145 009	# 2143 196	4N4948	2N2948	2N3251	2N3251	I	1		l

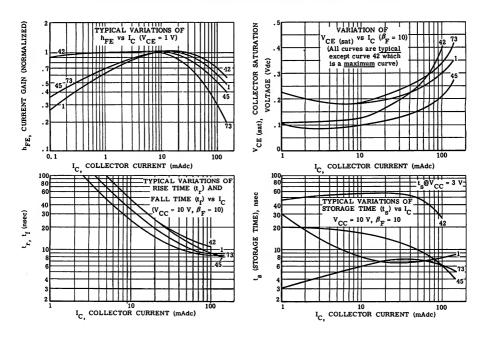
[†] Motorola type indicated generally offers improved performance when used in place of the EIA type listed.

[#] EIA type available in addition to Motorola preferred type.

^{*} Also available in TO-46 package.

SILICON TRANSISTOR HIGH SPEED SWITCHING SELECTION GUIDE

The following tables and graphs are intended for a rapid guide for selecting preferred silicon transistors for high-speed switching applications. The devices in this category are optimized for low storage time.

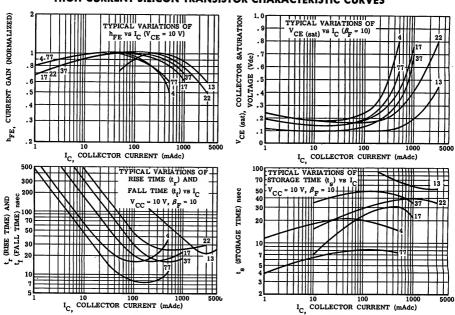

					OPTIMUM	COLLECT	OR CURR	ENT RANG	E			
MIN. VCEO VOLTS	10 μΑ •	- 1 mA	1 mA - 10 mA		10 mA - 100 mA 100 m		100 mA	A - 400 mA 400 mA		-800 mA 800		A - 3 A
	NPN	PNP	NPN	PNP	NPN	PNP	NPN	PNP	NPN	PNP	NPN	PNP
5-19	2N3493		2N2369 2N2481	2N3248 2N3249 2N3546	2N706 2N708 2N744 2N753 2N835 2N914 2N2369 2N2481 2N3510 2N3511 2N3647 2N3648 MPS706	2N3248 2N3249 2N3546	2N3510 2N3511 2N3647 2N3648					
20-29			2N2501 2N3227 2N3508 2N3509		2N834 2N2501 2N3227 2N3508 2N3509 MPS834							9
30-39					2N2537 2N2538 2N2539 2N2540		2N2537 2N2538 2N2539 2N2540 2N3252		2N3252			
40-50	÷					2N2904 2N2905 2N2906 2N2907 2N3485 2N3486	2N3253 2N3444	2N3467 2N3468 2N2904 2N2905 2N2906 2N2907 2N3485 2N3486	2N3253 2N3444 2N3506 2N3507	2N3467 2N3468 2N3719	2N3506 2N3507	2N3719
60-79						2N2904A 2N2905A 2N2906A 2N2907A 2N3485A 2N3486A		2N2904A 2N2905A 2N2906A 2N2907A 2N3485A 2N3486A		2N3720	×	2N3720

----- Motorola High-Frequency Transistors -----

HIGH-SPEED SILICON TRANSISTORS, FOR LOW CURRENT SATURATED SWITCHING

	LIMIT SPECIFICATIONS (at 25°C) (for typical variations, see accompanying graphs)									
		Type · hFE		V _{CE(sat)}	SWITCHI	NG TIME				
CURV	ERENCE VE	Type · Number	FE min/max	βF = 10 (VOLTS)	t _{on} , or t _d + t _r (nsec)	t _{off} , or t _s + t _f (nsec)				
1	CURVE 24	2N3493	40/120@I _C =0.5 mA	0. 13@ I _C =0. 1 mA I _B =0. 01 mA						
NPN	CURVE	2N 706 2N 708 2N 744 2N 753 2N 834 2N 835 2N 914	20/- 30/120 4 40/120@ I _C =10 mA 40/120 V _{CE} =1 V 20/- 30/120	0. 6 0. 4 0. 35 (+170°C) 0. 6 0. 25 @ I _C =10 mA 0. 3 I _B = 1 mA 0. 25	40	75 24 @ I _C = 10 mA 75 30 V _{CC} = 3 V 35 40 @ I _C =200 mA V _{CC} = 5 V 55 @ I _C = 10 mA				
	1	2N2501	50/150	0. 2	v _{CC} = 3 v	V _{CC} = 3 V				
	CURVE 73	2N2369 2N3227 2N3508 2N3509	40/120 © I _C = 10 mA 40/120 V _{CE} = 1 V	0. 25 @ I _C = 10 mA 0. 25	12 12 @ I _C =10 mA 12 V _{CC} =3 V	18 18 @ I _C =10 mA 18 V _{CC} = 3 V				
PNP	CURVE 45	2N3546	30/120 @ I _C = 10 mA V _{CE} = 1 V	0.15	25 @ I _C =50 mA V _{CC} =3 V	35@ I _C =50 mA V _{CC} = 3 V				
1	CURVE 42	2N3248 2N3249	50/150 @ I _C = 10 mA 100/300 V _{CE} = 1 V	0. 125 @ I _C = 10 mA 0. 125 I _B = 1 mA	20@I _C =100 mA 20 V _{CC} =10V	80 @I _C =100 mA 80 V _{CC} =10 V				

HIGH SPEED SILICON TRANSISTOR CHARACTERISTIC CURVES



----- Motorola High-Frequency Transistors ----

HIGH CURRENT CORE DRIVERS AND PULSE AMPLIFIERS

	LIMIT SPECIFICATIONS (at 25°C) (for typical variations, see accompanying graphs)								
			h _{FE}	V _{CE(sat)}	SWITCHI	NG TIME			
REFI CUR	ERENCE VE	Type Number	min/max	βF = 10 (VOLTS)	t _{on} , or t _d + t _r (nsec)	t _{off} , or t _s + t _f (nsec)			
	CURVE	2N3510 2N3511 2N3647 2N3648	25/150 @ I _C = 150 mA 25/150 V _{CE} = 1 V	0.4 @I _C = 150 mA 0.4 0.4 I _B = 15 mA	20 @I _C = 150 mA 20 V _{CC} = 6 V	25 @I _C = 150 mA 25 V _{CC} = 6 V			
NPN	CURVE 4	2N2537 2N2538 2N2539 2N2540	50/150 @ I _C = 150 mA 50/150 V _{CE} = 10 V	0.45 @ I _C = 150 mA 0.45 U _B = 15 mA 0.45 U _B = 15 mA	40 @ I _C = 150 mA 40 V _{CC} = 7 V 40 R _L = 40 ohms	40 @ I _C = 150 mA 40 V _{CC} = 7 V 40 R _L = 40 ohms			
	CURVE 17	2N3252 2N3253 2N3444	30/90 @ I _C = 500 mA 25/75 V _{CE} = 1 V	0.5 @I _C = 500 mA 0.6 I _B = 50 mA	45 @I _C = 500 mA 50 V _{CC} = 30 V	70 @ I _C = 500 mA 70 V _{CC} = 30 V			
	CURVE 22	2N3506 2N3507	40/200 @I _C = 1.5 A 30/150 V _{CE} = 2 V	1.0 @I _C = 1.5 A 0.6 I _B = 150 mA	45 @ I _C = 1.5 A 45 V _{CC} = 30 V	90 @I _C = 1.5 A 90 V _{CC} = 30 V			
PNP	CURVE	2N2904 2N2904A 2N2905 2N2905A 2N2906A 2N2906A 2N2907 2N2907A 2N3485 2N3485A 2N3486 2N3486A	40/120 40/120 100/300 100/300 40/120 @ I _C = 150 mA 40/120 100/300 V _{CE} = 10 V 100/300 40/120 40/120 100/300 100/300	0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	45 45 45 45 45 45 45 45 45 45 45 45 45 4	100 100 100 100 © I _C = 150 mA 100 V _{CC} = 6 V 100 100 100 100 100			
	CURVE 37	2N3467 2N3468	40/120@I _C = 500 mA 25/75 V _{CE} = 1 V	0.5 @I _C = 500 mA 0.6 I _B = 50 mA	40 @I _C = 500 mA 40 V _{CC} = 30 V	90 @ I _C = 500 mA 90 V _{CC} = 30 V			
-	CURVE 13	2N3719 2N3720	25/180 @I _C = 1 A 25/180 V _{CE} = 1.5 V	0.75 @ I _C = 1 A 0.75 I _B = 100 mA	75 @ I _C = 1 A 75 V _{CC} = 12 V	225 @I _C = 1 A 225 V _{CC} = 12 V			

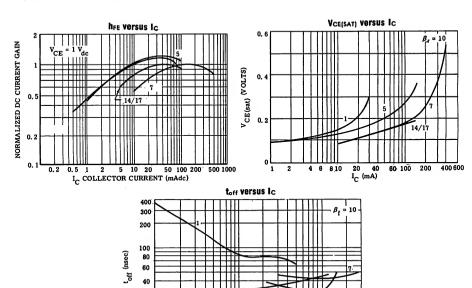
HIGH CURRENT SILICON TRANSISTOR CHARACTERISTIC CURVES

—— Motorola High-Frequency Transistors ——

GERMANIUM HIGH SPEED SWITCHING TRANSISTOR SELECTION GUIDE

These tables and graphs are intended as a rapid guide for selection of germanium transistors for high-speed switching applications.

BV _{CEO} MINIMUM VOLTS	ОРТІ	OPTIMUM COLLECTOR CURRENT RANGE						
¥0L13	1 mA - 50 mA	10 mA - 100 mA	100 mA - 500 mA					
5 - 9	2N 705 2N 710 2N 711 2N 827 2N 968 2N 969 2N 970 2N 971 2N 972 2N 973 2N 974 2N 975 2N 2258 MM2259	2N711A 2N711B 2N828 2N828 2N829 2N960 2N961 2N962 2N963 2N964 2N964 2N965 2N966 2N965						
10 - 15	мм2550	2N2635 MM2552 MM2554	2N1204 2N1204A 2N1494 2N1494A 2N2096 2N2099 2N2381					
16 - 20		2N2956 2N2957	2N2097 2N2100 2N2382					
more than 21		2N838 2N2955	2N1495 2N1496					


GERMANIUM HIGH SPEED SWITCHING TRANSISTOR SPECIFICATIONS

Refer-		h _{FE} @I _C	V _{CE(SAT)}	f _T	Switching	Times (max)
ence Curve	Type Number	min/max	max Volts @ I & IB	Mc	t _{on} = t _d + t _r nsec	toff = ts + tf nsec
	2N705 2N710	25/- 25/-	0. 3 0. 5	325 * 325 *	75 I _B = 1 mA	200 I _{B₁} - 1 mA
	2N711	20/-	0. 5	300*	100	350 I _{B₂} = 0.25 mA
	2N827	100/-	0, 25	250	35 I _B = 3.3 mA	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
					-	$I_{\underline{B}_{2}}^{-1} = 3.3 \text{ mA}$
	2N968	17/- I _C = 10 mA	0. 25	250	75	150
	2N969	17/-	0. 25	250	75 I _C = 10 mA	150 I _C = 10 mA
	2N 970	17/-	0. 25	250	100	275 I _{B1} - 1 mA
	2N971	17/-	0. 25 I _C = 10 mA	250	100	275 I _{B2} = 0.25 mA
	2N972	40/-	0, 25	250	75 I _B = 1 mA	175
1	2N973	40/-	0. 25 I _B = 1 mA	250	75	175
1 1	2N974 2N975	40/- 40/-	0. 25 0. 25	250 250	100	275 275
l 1	2N2258 2N2259	17/- 40/-		250 250	100 8** 8**	275 7** 7**
					T = 10 mA	I _C = 10 mA
	MM2550	20/-	0, 2	1000	2.5 V _{CE} = 5 V	2.5 V _{CE} = 5 V
	2N711A 2N711B	25/150 30/150	0. 55 I _C = 50 mA 0. 45 I _B = 2 mA	150 150	100	300 I _{B₁} - 1 mA
	2N828	25/-	0. 2 I _C = 10 mA	300	70 I _B = 1 mA	100 I _{B2} = 0.25 mA
	2N828A	25/-	0.2 I _B = 1 mA	300	50	100
	2N829	50/-	0.2 I _B = 0.5 mA	300	50	100 I _C = 10 mA
5	2N838	30/-	0.18 I _B = 3.3 mA	300	30 I _B = 3.3 mA	
		Į.			†	I _{B2} = 3.3 mA
	2N960	20/- I _C = 10 mA	0.4 I _C = 50 mA	300	50 IC = 10 mA	85 I _{B1} - 1 mA
	2N961	20/-	0.4 I _B = 5 mA	300	50	85 I _{B2} = 0.25 mA
	2N962 2N963	20/- 20/-	0.4 0.2 I _C = 10 mA	300- 300	50	100
	211803	20/-	1 "	300	60 I _B = 1 mA	B ₁
			I _B = 1 mA	300		I _{B2} = 1.25 mA
	2N964	40/-	0.35 I _C = 50 mA		50	85 I _{B1} - 1 mA
	2N964A 2N965	40/- 40/-	0.28 0.35 I _B = 5 mA	300 300	50 50	85 I _{B2} = 0.25 mA
	2N966 2N967	40/- 40/-	0.35 0.2 I _C = 10 mA	300 300	50 60	100
	21.001	19/-	C - 10 mg			1 1 B, 1
		40/	0.15 7 - 1 - 4	300	35 In = 5 mA	$\begin{array}{c c} I_{B_2} = 1.25 \text{ mA} \\ \hline I_{D_2} = 5 \text{ mA} \end{array}$
	2N985	40/-	0.15 I _B = 1 mA	300	35 I _B = 5 mA	181
			7 05 :		J - 95 4	I _{B2} = 1.25 mA
-	MM2552	30/- I _C = 25 mA	0. 2 I _C = 25 mA I _B = 2. 5 mA	1000	3.5 V _{CE} = 5 V	2.5 V _{CE} = 5 V
			I = 40 mA		**1 _C = 40 mA	**10 = 40 mA
	MM2554	20/- I _C = 40 mA	0. 25 I _B = 4 mA	1000	** ¹ C = 40 mA 3.5 V _{CE} = 5 V	2.5 V _{CE} = 5 V
*TYP				CURRENT		

*TYP **CURRENT MODE

GERMANIUM HIGH SPEED SWITCHING TRANSISTORS (continued)

Refer-	Туре	hre @ Ic	VCE/	fr	Maximum Sv	witching Time
Curve		min/max	VCE(sat) Max Volts @ Ic & IB	Mc	$t_{\text{on}} = t_{\text{d}} + t_{\text{r}}$ nsec	$t_{\rm off} = t_{\rm s} + t_{\rm f}$ nsec
	2N2635	45/300	0.4 I _C ·= 50 mA I _B = 2.5 mA	150	50 I _C = 10 mA I _B = 1 mA	250
14/17	2N2955 2N2956 2N2957	20/60 I _C = 50 mA 40/120 100/-	0. 3 I _C = 50 mA 0. 25 I _B = 5 mA	200 250 300	55 45 I _C = 50 mA 40 I _B = 5 mA	80 I _C = 50 mA 90 I _{B₁} = -5 mA 95 I _{B₂} = 5 mA
7	2N1204 2N1204A 2N1494 2N1494A 2N1495 2N1496 2N2096 2N2097 2N2099	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	110 110 110 110 150 150	-	130 I _B = 200 mA 130 I _B = -20 mA 130 I _B = 20 mA
	2N2100 2N2381 2N2382	20/- 40/- 40/- I _C = 200 mA	0. 5 0. 4 I _C = 200 mA 0. 4 I _B = 20 mA	300 300	22 I _C = 200 mA 22 I _B = 40 mA	90 45 I _C = 200 mA 45 I _{B₁} = -40 mA I _{B₂} = 40 mA

I_C (mA)

6 8 10

20

60 80 100

20

SILICON MEDIUM SPEED, SWITCHING TRANSISTOR SELECTION GUIDE

These tables and graphs are intended to permit rapid comparison and selection of silicon transistors for medium-speed, general-purpose switching applications.

	Optimum Collector Current Range									
	100 μΑ	100 μA-10 mA		10 mA-100 mA		-400 mA	400 mA-800 mA			
V _{CEO}	PNP	NPN	PNP	NPN	PNP	NPN	PNP	NPN		
5-19 V	MM2894 MPS2894 MPS3639 MPS3640	_	2N869 2N995 MM2894 MPS2894 MPS3639 MPS3640	_	_	-	_	-		
20-29 V	-	2N916	_	2N916	2N 1991	2N697 2N718 2N1420 2N2195 2N2195A 2N2195B 2N2958 2N2959 2N3115 2N3116	-	-		
30-39 V	2N2800 2N2801 2N2837 2N2838	2N2217 2N2218 2N2219 2N2220 2N2221 2N2221 2N2222	2N2800 2N2801 2N2837 2N2838 2N3133 2N3134 2N3135 2N3136	2N2217 2N2218 2N2219 2N2220 2N2221 2N2221 2N2222	2N722 2N1131 2N1132 2N2303 2N2800 2N2801 2N2837 2N2838 2N3133 2N3133 2N3134 2N3135 2N3136	2N718A 2N956 2N1613 2N1711 2N2217 2N2218 2N2219 2N2220 2N2221 2N2222	-	-		
40-59 V	MCS2137 MCS2138	2N915 MCS2135 MCS2136	2N2904 2N2905 2N2906 2N2907 2N3250 2N3251 2N3485 2N3486	2N2218A 2N2219A 2N2221A 2N2222A	2N1132A 2N1132B 2N2904 2N2905 2N2906 2N2907 2N3244 2N3245 2N3485 2N3486	2N2192 2N2192A 2N2192B 2N2193 2N2193A 2N2193B 2N2194 2N2194A 2N2194B 2N2218A 2N2218A 2N2221A 2N2221A	2N3244 2N3245	-		
60-79 V	2N2904A 2N2905A 2N2906A 2N2907A 2N3485A 2N3486A	-	2N2904A 2N2905A 2N2906A 2N2907A 2N3250A 2N3251A 2N3485A 2N3486A	-	2N2904A 2N2905A 2N2906A 2N2907A 2N3485A 2N3486A	-	_	_		
80-119 V	_		2N3494 2N3496	2N3498 2N3499	_	2N3498 2N3499	-	_		
120-300 V	-	-	2N3495 2N3497 2N3634 2N3635 2N3636 2N3637	2N3500 2N3501	-	2N3500 2N3501	-	-		

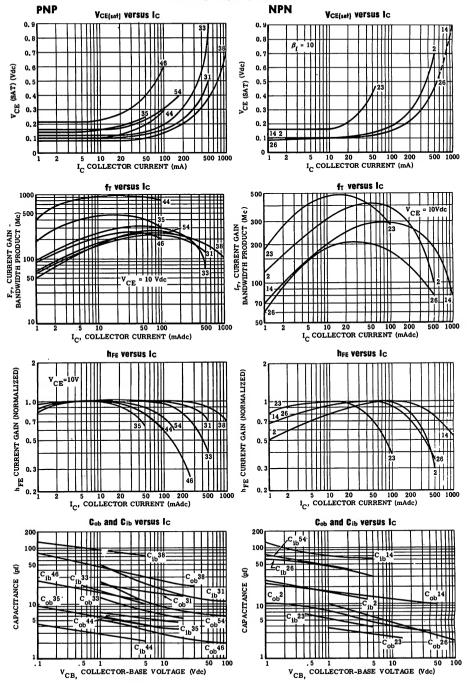
SILICON TRANSISTOR MEDIUM SPEED SWITCHING SELECTION GUIDE

Devices in this category are preferred for applications requiring high DC current gain and low leakage currents.

NPN MEDIUM SPEED SWITCHING TRANSISTOR SPECIFICATIONS

Limit Specifications (at 25°C) (For typical variations, see accompanying graphs)

Refer- ence Curves see page 8 - 17	Type Numbers	h _{FE}	V _{CE} (sat) I _C /I _B = 10 max volts I _C	f _T min Mc	C _{ib} max pf	C _{ob} max pf
23 23	2N915 2N916	50/200 10 mA 50/200 10 mA	1.0 10 mA 0.5 10 mA	250 300	10 10	3.5 6
2	2N697 2N718 2N718A 2N956 2N1420 2N1613 2N1711 2N2217 2N2218 2N2218 2N2219A 2N2220 2N2221 2N2221 2N2222 2N2222 2N2222A 2N2958 2N3959 2N3116	40/120 40/120 100/300 100/300 100/300 40/120 100/300 20/60 40/120 100/300 100/300 20/60 40/120 40/120 100/300 20/60 40/120 100/300 20/60 40/120 100/300 100/300 100/300 100/300 100/300 100/300 100/300 100/300 100/300	1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 0.4 0.3 0.4 0.3 0.4 0.3 0.4 0.3 0.4 0.3 0.5 0.5 0.5	50 50 60 70 50 60 70 250 250 300 250 250 250 250 300 250 250 300 250 250 250 250	- 80 80 80 80 80 30 30 25 30 25 30 25 30	35 35 25 25 35 25 8 8 8 8 8 8 8 8 8 8
14	2N2192 2N2192A 2N2192B 2N2193 2N2193A 2N2193B 2N2194 2N2194A 2N2194B 2N2195 2N2195A 2N2195A 2N2195B	100/300 100/300 100/300 40/120 40/120 20/60 20/60 20/60 20/ - 20/ - 40/120	0.35 0.25 0.18 0.35 0.25 0.18 150 mA 0.25 0.18 0.35 0.25 0.18	50 50 50 50 50 50 50 50 50 50 50 50	- - - - - - - - - - - - - - - - - - -	20 20 20 20 20 20 20 20 20 20 20 20
26	2N3499 2N3500 2N3501	100/300 40/120 100/300	0.6 0.4 0.4 0.4	150 150 150	80 80 80	10 8 8


PNP MEDIUM SPEED SWITCHING TRANSISTOR SPECIFICATIONS

Limit Specifications (at 25°C) (For typical variations, see accompanying graphs)

		h		v _{CE(s}					
						f	c _{ib}	C ^{op}	
Refer-		h _{FE}		max		1 1			
ence	Туре	L				min	max	max	
Curves	Numbers	min/max	I _C	Volts	I _C	Mc	pf	pf	
	MM 2894	40/150	30 mA	0.2 30	mA	400	6	6	
L I	MPS2894	40/150		0.2 30		400	_	6	
44	MPS3639	30/120		0. 16 10	mA	500	3.5	3.5	
•	MPS3640	30/120	10 mA	0.2 10		500	3.5	3.5	
	2N869	20/120		1.0 10		-	11	9	
	2N995	35/140	20 mA	0. 2 <u>20</u>	mA	-	11	10	
35	2N3250	50/150	t	0.25	1	250	8 8	6	
1	2N3250A	50/150	10 mA	0.25 0.25	mA	250 300	8	6	
	2N3251 2N3251A	100/300 100/300	1	0.25	1	300	8	6	
	2N3494	40/ -		0.25	1	200	30	7	
ī	2N3495	40/ -	I .		1	150	30	6	
46	2N3496	40/ -	10 mA	0.3 10	mA	200	30	7	
1 1	2N3497	40/ -	•	0.35	1	150	30	6	
54	2N 3634	50/150		0.5	1	150	75	10	
	2N3635	100/300	_ 	0.5	mA	200	75	10	
	2N3636		I MA	0.5	ma 1	150	75	10	
	2N3637	100/300		0.5	1	200	75	_ 10	
1	2N722	30/90	t	1.5	t	60	80	45	
	2N1131	20/45		1.5	İ	50	80	45	
	2N1132	30/90	- 1	1.5	1	60	80	45	
	2N1132A	30/90		1.5	1	60	80	30 30	
	2N1132B	30/90		1.5	L.,	60 40	80 80	45	
31	2N1991 2N2303	15/60 19 75/200	ou ma	1.5 150 1.5	mA	60	80	45	
	2N 2800	30/90		0.4		120	- 00	25	
1 1	2N 2801	75/225	1	0.4	ŀ	120	_	25	
	2N2837	30/90		0.4	1	120	_	25	
. ↓ 1	2N2838	75/225	1	0.4	į.	120	_	25	
	2N2904	40/120	 -	0.4	t -	200	30	8	
	2N 2904A	40/120		0.4	1	200	30	8	
	2N 2905	100/300		0.4	1	200	30	8	
	2N 2905A	100/300		0.4		200	30	8	
	2N 2906	40/120		0.4	1	200	30	8	
	2N 2906A	40/120		0.4	1	200	30	8	
	2N 2907	100/300		0.4	ı	200	30	8	
33	2N2907A	100/300	150 mA	0.4 150	mA	200	30	8	
	2N3133	40/120	1	0.6	1	200 200	40 40	10 10	
	2N3134	100/300 40/120		0.6 0.6	1	200	40 40	10	
	2N3135	100/300		0.6	1	200	40	10	
	2N 3136 2N 3485	40/120	- 1	0.4	1	200	30	8	
	2N 3485A	40/120		0.4	1	200	30	8	
	2N 3486	100/300	- 1	0.4		200	30	8	
	2N3486A	100/300		0.4	ł	200	30	8	
38	2N3244	50/150	500 mA	0.5 500	mA	175	100	25	
38	2N3245	30/90		0.6 500	mA	150	100	25	
				L		L			

—— Motorola High-Frequency Transistors ——

SILICON MEDIUM SPEED TRANSISTORS CHARACTERISTIC CURVES

—— Motorola High-Frequency Transistors ———

RF TRANSISTOR SELECTOR GUIDE

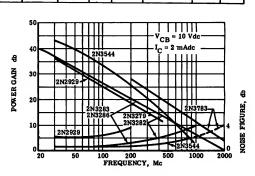
These tables and graphs are intended to permit rapid comparison and selection of transistors for transmitter and receiver designs. The devices included are suitable for application as RF and IF amplifiers, oscillators, mixers, multipliers, power oscillators, drivers, output and harmonic generator stages.

SMALL SIGNAL RF APPLICATIONS SELECTOR GUIDE

Frequency Range	Polarity and Material	RF and IF Amplifiers, Mixers and Converters	Low-Level Oscillators P _o < 100 mW	High-Level Oscillators 100 mW < P _O < 2W	Low-Level Wide-Band Amplifiers
2 Mc to 70 Mc	PNP Ge	2N700 2N700A 2N1141 2N1142 2N1143 2N1195 2N2929 2N3279 2N3280 2N3281 2N3282 2N3283 2N3284 2N3286 2N3286 2N3323 2N3324 2N3323	2N700 2N700A 2N1141 2N1142 2N1143 2N1195 2N2929 2N3279 2N3280 2N3281 2N3282 2N3285 2N3323 2N3324 2N3324	2N1141 2N1142 2N1143 2N1195 2N1561 2N1562 2N1692 2N1693 2N2929	2N 700 2N 700A 2N 1141 2N 1142 2N 1143 2N 1195 2N 2929 2N 3279 2N 3280 2N 3281 2N 3282 2N 3283 2N 3284 2N 3285 2N 3285 2N 3285 2N 3285 2N 3285 2N 3286 2N 32286 2N 3323 2N 3323
	NPN Si	2N918 2N3287 2N3288 2N3289 2N3290 2N3291 2N3292 2N3293 2N3293	2N918 2N3287 2N3288 2N3289 2N3290 2N3293 2N3298	2N2949 2N2951 2N2952 2N3309	2N 918 2N 3287 2N 3288 2N 3289 2N 3290 2N 3291 2N 3292 2N 3293 2N 3294
	PNP Si	2N3250 2N3251 2N3307 2N3308	2N3250 2N3251 2N3307 2N3308	-	2N3307 2N3308

SMALL SIGNAL RF APPLICATIONS SELECTOR GUIDE (continued)

Frequency Range	Polarity and Material	RF and IF Amplifiers, Mixers and Converters	Low-Level Oscillators P _O < 100 mW	High-Level Oscillators 100 mW < P _O < 2W	Low-Level Wide-Band Amplifiers
70 Mc to 400 Mc	PNP Ge	2N1141 2N1142 2N1143 2N11195 2N2929 2N3279 2N3280 2N3281 2N3282 2N3282 2N3283 2N3284 2N3285 2N33286 2N3323 2N3783 2N3783 2N3783	2N700 2N700A 2N1141 2N1142 2N1143 2N1195 2N2929 2N3279 2N3280 2N3281 2N3282 2N3285 2N3385 2N3783 2N3784 2N3784 2N3784	2N1141 2N1142 2N1143 2N1195 2N1561 2N1562 2N1692 2N1693 2N2929	2N1141 2N1142 2N1143 2N1195 2N2929 2N3279 2N3280 2N3281 2N3282 2N3783 2N3783 2N3784 2N3785 MM2503
	NPN Si	2N 918 2N 3287 2N 3288 2N 3289 2N 3290 2N 3291 2N 3292 2N 3293 2N 3294	2N 918 2N3287 2N3288 2N3289 2N3290 2N3293 2N3293	2N2949 2N2951 2N3137 2N3309	2N918 2N3287 2N3288 2N3289 2N3290
	PNP Si	2N3307 2N3308	2N3307 2N3308		2N3307 2N3308
400 Mc	NPN Si	2N918 2N3287 2N3288 2N3289 2N3290 2N3291 2N3292 2N3293 2N3293 2N3294 2N3544	2N918 2N3287 2N3288 2N3289 2N3290 2N3293 2N3294	2N3309	2N918
1 Gc	PNP Si	2N3307 2N3308	2N3307 2N3308	_	2N3307 2N3308
	PNP Ge	2N3783 2N3784 2N3785 MM2503	2N3783 2N3784 2N3785 MM2503	_	2N3783 2N3784 2N3785 MM2503
·	NPN Si		_	2N3309 2N3664	
1 Gc Up	PNP Ge	2N3783 2N3784 2N3785	2N3783 2N3784 2N3785		2N3783 2N3784 2N3785 MM2503


- Motorola High-Frequency Transistors —

SMALL SIGNAL RF DEVICE CHARACTERISTICS

		LUTE RATIN	MAXIMU IGS	JM		CTRICAL CTERIST			CIRCU	IT PERFOR	MANCE	
	P _D Ambient	v _{CB}	v _{EB}	T _J	h _{FE}	C _{ob}	f _T		Amplifie yp NF	er @ f		llator in @ f
Туре	mW	volts	volts	°C	min/max	pf	Mc	db	db	Mc	mW	mc
GERMANIUM	PNP TY	PES									-	
2N700 ① 2N700A ①	75 75	25 25	0.2 0.2	100 100	4/ - ② 4/50 ②	1.4 1.4	500 800	23 23	6	70 70	-	-
2N741	150	15	1.0	100	10/-	10.0	360	22	7	30	:	:
2N741A	150	20	1.0	100	10/ -	10.0	360	22	7	30	-	-
2N1141	300	35	1.0	100	10/ -	1.5	800	25	4.0	100	-	-
2N1142 ① 2N1143	300 300	30 25	0.7 0.5	100	10/ -	1.5	800	24	4.5	100	-	-
2N1145 2N1195 (1)	225	30	1.0	100	10/ -	1.5 1.5	800 800	24 25	5	100 100	:	1 : 1
2N2929	300	25	0.75	100	10/100	2.5	1250	16	5.5	200	[[]
2N3279	100	30	1.0	100	10/70	1.0	500	20	2.9	200	-	-
2N3280	100	30	1.0	100	10/70	1.0	500	20	2.9	200	-	-
2N3281 2N3282	100 100	30 30	0.5 0.5	100 100	10/100 10/100	1. 2 1. 2	400 400	20 20	4.0	200 200	-	:
2N3283	100	25	0.5	100	10/ -	1.5	400	20	4.0	200	 -	\vdash
2N3284	100	25	0.5	100	10/ -	1.5	400	20	5	200	[1 []
2N3285	100	20	0.5	100	5/ -	1.5	400	-	-	-	2	257
2N3286	100	20	0.5	100	5/ -	1.5	400.	18	5.5	200	-	-
2N3323	150	35	3.0	100	30/200	3.0	360	13	-	100	-	- 1
2N3324 2N3325	150 150	35 35	3.0 3.0	100 100	30/200 30/200	3.0 3.0	360 360	29 30	-	10.7 1.6	-	-
2N3783	150	30	0.5	100							<u> </u>	
2N3784	150	30	0.5	100	20/200 20/200	1.0 1.0	800 ③ 700 ③	203 203	2. 2(4 2. 5(4) 200) 200	:	:
2N3785	150	15	0.5	100	15/200	1.2	700③	18(3)	2.9(4		[1 - 1
MM2503	75	30	0.5	100	20/ -	2.0	1000③	20③	3.04		-	-
SILICON NPN	TYPES											
2N918	200	30	3.0	200	20/ -	1.7	900	18	7	200	40	500
2N3287 2N3288	200 200	40 40	3.0 3.0	200	15/100 15/100	1.1 1.5	600 600	20	4.9	200	-	-
2N3289	200	30	3.0	200	10/150	1.5	500	20 20	4.9 6	200 200	-	:
2N3290	200	30	3.0	200	10/150	1.5	500	20	6	200	-	
2N3291	200	25	3.0	200	10/ -	2.0	600	20	6	200	-	-
2N3292	200	25	3.0	200	10/ -	2.0	600	20	7	200	-	- [
2N3293 2N3294	200 200	20 20	3.0 3.0	200 200	10/ - 10/ -	2.0 2.0	600 600	18		-	2	257
MPS918	200	30	3.0						7	200	-	\vdash
MPS3563	200	30	2.0	125 125	20/ - 20/200	1.7 1.7	- 1	15 14	6	200 200	30	500
SILICON PNP					30, 200					200	L	L
2N869	360	25	5. 0	200	20/120	9	300	- 1				
2N995	360	20	4.0	200	35/140	10	300	-		-	[-
2N3307	200	40	3.0	200	20/125	1.3	600	20	4.0	200	-	- 1
2N3308	200	30	3.0	200	10/175	1.6	600	20	5.0	200	-	-
				_								

- ① Available as MIL types
- 2 h_{fe}3 Minimum value
- 4 Maximum value

SMALL SIGNAL DEVICE TYPICAL PERFORMANCE

----- Motorola High-Frequency Transistors -----

LARGE SIGNAL RF APPLICATIONS SELECTOR GUIDE

			Power Amplifier	Transistors	
Fre- quency Range	Polarity and Material	P _o < 1W	1W < P ₀ < 5W	5W < P _o < 15W	15W < P _o < 50W
1 Mc	PNP Ge	2N1141 2N1142 2N1143 2N1195 2N1561 2N1562 2N1692 2N1693 2N2929	2N2832	2N2832	2N2834
10 Mc	NPN Si	2N2949 2N2951 2N2952 2N3295 2N3298	2N2949 2N2950 2N3296	2N2947 2N2948 2N3297	2N2947 MF812
	PNP Si	2N2800 2N2801 2N2904 2N2905		_	
10 Mc to 70 Mc	PNP Ge	2N1141 2N1142 2N1143 2N1195 2N1561 2N1562 2N1692 2N1693 2N2929		_	
	NPN Si	2N918 2N2949 2N2951 2N2952 2N3295 2N3298 2N3309	2N2949 2N2950 2N3296 2N3309	2N2947 2N2948 2N3297	2N2947 MF812 MF832
	PNP Ge	2N1141 2N1142 2N1143 2N1195 2N1561 2N1562 2N2929	_	_	_
70 Mc to 400 Mc	NPN Si	2N918 2N2949 2N2951 2N2952 2N3137 2N3295 2N3298 2N3309 2N3309A MM1941 MM1943	2N2949 2N2950 2N3296 2N3309 2N3309A 2N3553 2N3664 2N3717 2N3718	2N2947 2N2948 2N3297 2N3375 2N3632 2N3818	2N2947 2N3632 2N3818
	PNP Si	2N2800 2N2801 2N2904 2N2905	_		_
400 Mc Up	NPN Si	2N918 2N3309 2N3309A	2N3309 2N3309A 2N3664		

	Varactors	
Fre- quency Range	1W < P _o < 50W	50W < P _o < 100W
1 Mc to 300 Mc	1N4386 1N4387 1N4388	1N4386
300 Mc to 600 Mc	1N4387 1N4388	
600 Mc	1N4388 MV 1808	_
to 1000 Mc	MV 1808	-

— Motorola High-Frequency Transistors ——

LARGE SIGNAL RF DEVICE CHARACTERISTICS

POWER AMPLIFIERS/OSCILLATORS

	ABSOLU	UTE MAX	IMUM RA	ATINGS	ELECT CHARA IST	CTER-	CI	RCUIT PE	RFORMAN	CE
	P _c Case	v _{CB}	v _{EB}	T _J	C _{ob}	f _T	Ampl P _o mi		Oscil P _o mi	
Type	Watts	Volts	Volts	,C	pf	Mc	watts	Mc	Watts	Mc
PNP GERMAN	NUM									
2N1561 2N1562 2N1692 2N1693	3. 0 3. 0 3. 0 3. 0	25 25 25 25 25	3. 0 2. 0 3. 0 2. 0	100 100 100 100	10 10 10 10	500 450 500 450	0. 5 0. 4 0. 5 0. 4	160 20 160 20 160 20 160 20		
NPN SILICON			l			1	L		<u> </u>	
2N 707 2N 707A 2N2947 2N2948 2N2949	1. 0 1. 2 25 25 6. 0	56 70 60 40 60	4. 0 5. 0 3. 0 2. 0 3. 0	175 175 175 175 175	10 6 60 60 20	350 350 200 200 200	0. 2 0. 4 15 15 3. 5	100 100 50 30 50	=======================================	
2N2950 2N2951 2N2952	6. 0 3. 0 1. 8	60 60 60	3. 0 5 5	175 175 175	20 8 8	200 400 400	3. 5 0. 6 0. 6	50 50 50	Ξ	=
2N3137	2. 0	40	4	200	3.5	500 min	0. 4	250	_	_
2N3298 2N3309	1. 0 3. 5	25 50	3 3	175 175	6 10	400 500	2. 0	250	0.06	80
2N3309A 2N3375 2N3553 2N3632	5. 0 11. 6 7 23	60 65 65 65	4 4 4	200 200 200 200	6 10 10 20	500 500 400	2. 2 7. 5 2. 5 13. 5	250 100 175 175	2.53 1.53	500 500
2N3664	5	60	4	175	6	300 min	2. 2	250	_	
2N3717 2N3718 2N3818 MF812 MF832 MM1803 MM1941 MM1943	7. 5 10. 0 25 60 40 2. 0 0. 6 0. 6	60 60 60 60 60 50 30	4 4 3 3 5 3	200 200 175 175 175 200 175 175	10 10 40 150 100 3.5 2.5 4	250 min 250 min 150 min ————————————————————————————————————	2 2 15 30 30 0. 56 0. 1 0. 3	175 175 100 30 50 250 175 175	0. 05	80
PNP SILICON 2N2800	3	50		900	0.5	100 6				
2N2800 2N2801 2N2904 2N2905	3 3 3	50 50 60	5 5 5 5	200 200 200 200	25 25 8 8	120 ② 120 ② 200 200		=	\equiv	=

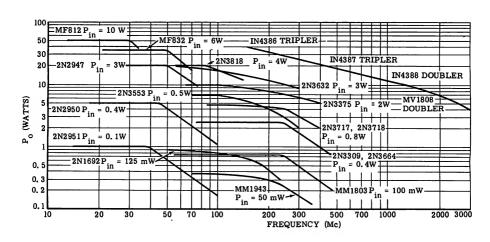
LINEAR AMPLIFIERS (NPN SILICON)

	ABSOLUTE MAXIMUM RATINGS							CIRC	UIT PER	FORMAN	ICE
Туре	P _c case watts	V _{CB}	V _{EB}	T _J	h _{FE}	C _{ob} max pf	f _T typ Mc	Pout min watts	G _e min db	I m min db	f Mc
2N3295 2N3296 2N3297	2 6 25	60 60 60	5 3 3	175 175 175	20 5 2. 5	8 20 60	400 200 200	0.3 ④ 3 ④ 12 ④	14 16 10	30 30 30	30 30 30

MINIMUM VALUE
TYPICAL VALUE

PEP, TWO TONE SSB TEST

—— Motorola High-Frequency Transistors ——


LARGE SIGNAL RF DEVICE CHARACTERISTICS (continued)

SILICON VARACTOR DIODES

		MAXIMUM RATINGS ELECTRICAL CHARACTERISTICS @ 25°						
	P _D (T _c = 75°C)	T,	BV _R min (I _R = 10 μA)	R _s max	C _J max	Q min 50 mc)		iplier nin @ f
Туре	watts	°č	volts	ohms	pf		Watts	Мс
1N4386 1N4387 1N4388 MV1808	25 20 10 5. 5	175 175 175 200	250 150 100 75	1. 5 1. 5 2. 0 0. 5	50 35 20 ② 7. 5②	75 150 200 1100 ①	32.5 15 11 6	150 ③ 450 ④ 1000 ⑤ 2000 ⑥

- 1 Typical Value
- 3 $f_{in} = 50 \text{ Mc}, n = 65 \% \text{ min}$
- 4 $f_{in} = 150 \text{ Mc}, n = 50\% \text{ min}$
- $f_{in} = 500 \text{ Mc}, n = 55\% \text{ min}$
- 6 $f_{in} = 1000 \text{ Mc}, n = 50\% \text{ min}$

LARGE SIGNAL DEVICE TYPICAL PERFORMANCE

---- Motorola High-Frequency Transistors ----

SMALL SIGNAL AMPLIFIER AND OSCILLATOR TRANSISTORS — TO 10 MC

CURRENT GAIN (hee) - VOLTAGE (Vce) RELATIONSHIP

	Minimum DC Current Gain (h _{FE})												
Maxi-					Mini	mum DC C	Jurrent Gai	n (h _{FE})					
mum	ì		Ì		}]							
VCEO											İ	1	
(for Si)						ŀ						ł	
V _{CES}	h _{FE}	> 15	h _{FE}	5 20	hFE=25	h _{FE}	₹30	h _{FE 5 40}			hFE >50	hee	5 100
(for Ge) Volts	PNP Si		NPN Si		PNP Si	PNPSI	NPN SI	PNPSi	NPNSI	PNP Ge	PNPSi	PNPSi	
7	_	2N971	_	2N975	-	_	-	-	-	2N975	- FINE SI	- PNP SI	NENSI
8	_	_	_	_	-		_	_	2N3493	_	-		
10	_		2N706	-	<u> </u>	_	2N708	_	-		 		2N2959
			2N3510 2N3647				2N914 2N3511				İ		2N3116
			MPS706				2N3648		l				2N3227 2N3509
12	2N1991	2N 969 2N 970	MPS3563	2N711 2N961	_	2N3248	-	2N3248		2N965	2N3248	2N3249	-
		ZN970		2N961 2N962				MPS2894		2N966 2N967			
				2N963					ľ	2N973 2N974	İ		1
15		2N968		2N705	-				2N2369	2N914 2N964		-	
				2N710				1	2112000	2N964A		İ	
20		2N1204	2N835	2N960 2N2635		_		<u> </u>		2N972			
20	_	2N1204 2N1494	2N835 2N2195	2N2635	_	-	2N916 2N2958	-	2N916 2N2958	2N2381	-	-	2N2959 2N3116
			2N2195A			l	2N3115	1	2N3115				2N3116 2N3227
30			2N2195B 2N834				2N3508		2N3508				2N3509
30	_	_	2N034 2N2217	-	-	-	2N697 2N2221	_	2N697 2N718	-	-	-	2N1420 2N2219
			2N2220		1		2N3252		2N2218		l		2N2219 2N2222
35	2N1131		MPS834						2N2221	<u> </u>			
"	211131	_	_	_	-	2N722 2N1132	-	2N3133 2N3135	_	-	2N2801 2N2838	2N3134 2N3136	
					ŀ	2N2800 2N2801	ŀ				22000	2.10100	
40	2N1132A	2N 14 95	2N2194	2N1495	_	2N1132A	2N718A	2N2904	2N718A	2N2382	2N3244	03/0005	
		2N1496 2N2955	2N2194A 2N2194B	2N1496		2N3245	2N1613	2N2906	2N1613	2N2 957	2N3244 2N3250	2N2905 2N2907	2N956 2N1711
	1	2N2955 2N2956	2N2194B 2N3253	2N2955 2N2956			2N2218A 2N2221A	2N3485	2N2218A 2N2221A			2N3251	2N2192
							2N3506		2N3506		l	2N3486	2N2192A 2N2192B
													2N2219A
50		_	2N3444	_	_		2N3507		2N915				2N2222A 2N3499
									2N2193				2149488
İ								ľ	2N2193A 2N2193B				
		_	_	_	_				_			2N2905A	
												2N2905A 2N2907A	
												2N3251A 2N3486A	
60	2N1132B					2N1132B		2N2904A			2N3250A		MCS2135
								2N2906A			2	2N3799	MCS2136
1								2N3485A				MCS2137 MCS2138	
80	2N3494 2N3496	-		_	_	2N3494		2N3494	=			=	
100	2143496		2N3498			2N3496		2N3496					
120	2N3495					2N3495	2N3498	-	2N3498				2N3499
	2N3497					2N3495 2N3497		2N3495 2N3497			2N3634	2N3635	_
150	_		2N3500			_	2N3500	_	2N3500	-	_		2N3501
175	2N3636					2N3636		2N3636			2N3636	2N3637	_
300			2N3742		2N3743							_	

NPN SILICON ANNULAR SMALL SIGNAL TRANSISTORS FOR FREQUENCIES TO 10 MC

Туре	V CEO Volts	^h FE ^{@ I} C mA	h	fe ^{@ I} C and	f Mc	C _{ob}	P _D @ 25°C Ambient mW
2N697 2N706 2N708 2N718 2N718 2N753 2N834 2N835 2N914 2N915 2N916 2N956	40* 20* 15 40* 50* 15 20 15 30 20 15 50 25	40/120 150 20 10 30/120 10 40/120 150 40/120 4 10/120 25 20 10 30/120 15/200 15/200 150	2. 5 2 3 2. 5 30 2 3. 5 3 3	50 10 10 50 1 10 10 20 —	20 100 100 20 1 kc 100 100 100 100 100	35 6 35 25 4 4 6 3.5 6 25	600 300 360 400 500 300 300 360 360 360 360
2N1420 2N1613 2N1711 2N2192 2N2192A 2N2192B	30* 50* 50* 40 40 40	100/300 40/120 100/300 100/300 100/300 100/300	2.5 35 70 2.5 2.5 2.5	50 5 5 50 50 50	20 1 kc 1 kc 20 20 20	35 25 25 20 20 20	600 800 800 800 800 800
2N2193 2N2193A 2N2193B 2N2194 2N2194A 2N2194B	50 50 50 40 40 40	40/120 40/120 40/120 20/60 20/60 20/60	2.5 2.5 2.5 2.5 2.5 2.5	50 50 50 50 50 50	20 20 20 20 20 20 20	20 20 20 20 20 20 20	800 800 800 800 800 800
2N2195 2N2195A 2N2195B 2N2217 2N2218 2N2218 2N2218A 2N2219 2N2219A 2N2220	25 25 25 30 30 40 30 40 30	20 150 20 20 20 20/60 40/120 40/120 100/300 100/300 20/60	2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	50 50 50 20 20 20 20 20 20	20 20 20 100 100 100 100 100	20 20 20 8 8 8 8	800 800 800 800 800 800 800 800
2N2221 2N2221A 2N2222 2N2222	30 40 30 40	40/120 40/120 100/300 100/300	2. 5 2. 5 2. 5 2. 5	20 20 20 20	100 100 100 100	8 8 8	500 500 500 500
2N2369 2N2958 2N2959 2N3115 2N3116 2N3227	15 20 20 20 20 20 20	40/120 10 40/120 1 100/300 150 40/120 1 100/300 1 100/300 10	5 — — 5	10 — — — 10	100 — — — — — 100	4 8 8 8 8 4	360 600 600 400 400 360
2N3252 2N3253 2N3444 2N3493	30 40 50 8	30/90 25/75 500 20/60 <u> </u>	_ _ _ 4	_ _ _ 1	 	12 12 12 0.7	1000 1000 1000 150
2N3498 2N3499 2N3500 2N3501 2N3506 2N3507	100 100 150 150 40 50	40/120 100/300 150 40/120 100/300 40/120 1500 30/150	1.5 1.5 1.5 1.5 —	20 20 20 20 —	100 100 100 100 ———————————————————————	10 10 8 8 40 40	1000 1000 1000 1000 1000 1000

^{*}V_{CER}

----- Motorola High-Frequency Transistors -----

NPN SILICON ANNULAR SMALL SIGNAL TRANSISTORS (continued)

Туре	V CEO Volts	h _{FE} @ I _C mA		n _{fe} ^{@ I} C ^{and}	f Mc	C _{ob}	P _D @ 25°C Ambient mW
2N3508 2N3509 2N3510 2N3511 2N3647 2N3648 2N3742	20 20 10 15 10 15 300	40/120 10 100/300 10 25/150 4 30/120 150 25/150 150 30/120 4 20/200 30	5 5 3.5 4.5 3.5 4.5 1.5	10 10 15 15 15 15	10 10 100 100 100 100 20	4 4 4 4 4 6	400 400 360 360 400 400 1000
MCS2135	60	100/300 0.1	1	0. 5	30	3	150
MCS2136	60	250/750 0.1	1	0. 5	30	3	150
MPS706	20*	20/ - 10	2	10	100	6	300
MPS834	30	25/ - 10	3.5	10	100	4	300
MPS2923	25		90	2	1 kc	12	200
MPS2924	25		150	2	1 kc	12	200
MPS2925	25		235	2	1 kc	12	200
MPS3563	12	20/200 8	6	8	100	1.7	200

^{*}V_{CER}

PNP SILICON ANNULAR SMALL SIGNAL TRANSISTORS FOR FREQUENCIES TO 10 MC

Туре	V _{CEO} Volts	ь _{FE} @ I _С		h _{fe} @ I _C and i	1	C _{ob}	P _D @ 25°C Ambient mW
2N722 2N1131 2N1132 2N1132A 2N1132B	35 35 35 40 60	30/90 20/45 30/90 150 mA 30/90 30/90	30 2.5 30 30 30	5 mA 50 mA 5 mA 5 mA 5 mA	1 kc 20 Mc 1 kc 1 kc 1 kc	45 45 45 30 30	400 600 600 600 600
2N1991 2N2800 2N2801 2N2837 2N2838	20 35 35 35 35	15/60 30/90 75/225 150 mA 30/90 75/225	2	50 mA — — — —	20 Mc — — — —	45 25 25 25 25	600 800 800 500 500
2N2904 2N2904A 2N2905 2N2905A 2N2906	40 60 40 60 40	40/120 40/120 100/300 150 mA 100/300 40/120	25 40 50 100 25	1 mA	1 kc	8 8 8 8	600 600 600 600 400
2N2906A 2N2907 2N2907A 2N3133 2N3134	60 40 60 35 35	40/120 100/300 100/300 150 mA 40/120 100/300	40 50 100 —	1 mA	1 kc	8 8 8 10 10	400 400 400 600 600
2N3135 2N3136 2N3244 2N3245 2N3248	35 35 40 50 12	40/120 150 mA 100/300 150 mA 50/150 500 mA 30/90 500 mA 50/150 10 mA	11111	11111	11111	10 10 25 25 8	400 400 1000 1000 360
2N3249 2N3250 2N3250A 2N3251 2N3251A	12 40 60 40 60	100/300 50/150 50/150 10 mA 100/300 100/300	 50 50 100 100	1 mA	1 kc	8 6 6 6	360 360 360 360 360

----- Motorola High-Frequency Transistors -----

PNP SILICON ANNULAR SMALL SIGNAL TRANSISTORS (continued)

Туре	V _{CEO} Volts	^h FE ^{@ I} C		h _{fe} @ I _C and f		C _{ob} pf	P _D @ 25°C Ambient mW
2N3485 2N3485A 2N3486 2N3486A 2N3494	40 60 40 60 80	40/120 40/120 100/300 100/300 40 100/300 100/300	 40			8 8 8 7	400 400 400 400 600
2N3495 2N3496 2N3497 2N3634 2N3635	120 80 120 140 140	40 40 10 mA 40 50/150 50 mA 100/300 50 mA	40 40 40 40 40	10 mA	1 kc	6 7 6 10	600 400 400 1000 1000
2N3636 2N3637 2N3743 2N3798 2N3799	175 175 300 60 60	50/150 50 mA 100/300 50 mA 25/250 30 mA 150/450 0.5 mA 300/900 0.5 mA	40 80 30 150 300	10 mA 1 mA	1 kc 1 kc	10 10 15 4 4	1000 1000 1000 360 360
MCS2137 MCS2138	60 60	100/300 100 250/750 μA	1	0. 5 mA	30 Mc	3 3	150 150
MPS2894	12	40/150 30 mA	4	30 mA	100 Mc	6	300

PNP GERMANIUM SMALL SIGNAL TRANSISTORS FOR FREQUENCIES TO 10 MC

Туре	V _{CES} Volts	I _C mA	^h FE ^{@ I} C	C _{ob} pf	P _D @ 25°C Ambient mW
2N705	15	50	25		150
2N710	15	50	25	-	150
2N711	12	50	20 10 mA	-	150
2N960	15	100	20	4	150
2N961	12	100	20	4	150
2N 962	12	100	20	4	150
2N 963	12	100	20	5	150
2N 964	15	100	40 10 mA	4	150
2N 964A	15	100	40	4	150
2N 965	12	100	40	4	150
2N 966	12	100	40	4	150
2N 967	12	100	40	5 9	150
2N 968	15	50	17 10 mA	9	150
2N 969	12	50	17	9	150
2N970	12	50.	17	9	150
2N971	7	50	17	9	150
2N 972	15	50	40	9	150
2N 973	12	50	40 10 mA	9	150
2N 974	12	50	40	9	150
2N 975	7	50	40	9	150
2N1204	20	500	15 400 mA	6. 5	250
2N1494	20	500	15 <u>400 mA</u>	6. 5	250
2N1495	40	500	25	6. 5	250
2N1496	40	500	25 200 mA	6. 5	300
2N2381	30	500	40	6	300
2N2382	45	500	40 200 mA	6	300
2N2635	30	100	30 <u>100 mA</u>	5	150
2N2955	40	100	20	4 4 4	150
2N2956	40	100	30 10 mA	4	150
2N2957	40	100	60	4	150

2N**697** 2N718 2N1420

 $V_{CER} = 30-40 \text{ V}$ $f_T = 300 \text{ Mc}$

NPN silicon annular Star transistors for mediumcurrent switching and amplifier applications

MAXIMUM RATINGS

Characteristics	Symbol	Rat	ing	Unit
Collector-Base Voltage	v _{сво}	6	0	Vdc
Collector-Emitter Voltage 2N697, 2N718 2N1420	V _{CER}	4	-	Vdc
Emitter-Base Voltage	V _{EBO}		5	Vdc
		2N697 2N1420 TO-5	2N718 TO-18	
Total Device Dissipation at 25°C Case Temperature Derating Factor Above 25°C	P _D	3 20	1.5	Watts mW/°C
Total Device Dissipation at 25°C Ambient Temperatures Derating Factor Above 25°C	P _D	0. 6 4. 0	0.4 2.66	Watts mW/ ^o C
Junction Temperature	T _j	+ 1	75	°c
Storage Temperature range	T _{stg}	-65 to	+ 300	°C

ELECTRICAL CHARACTERISTICS (at 25°C unless otherwise noted)

Characteristics	Symbol	Min.	Тур.	Max.	Unit
Collector Cutoff Current (V _{CB} = 30 Vdc, I _E = 0) (V _{CB} = 30 Vdc, I _E = 0, T _A = 150°C)	I _{СВО}	=	. 001	1.0 100	μAdc
Collector-Base Breakdown Voltage (IC = 100 μAdc, IE = 0)	вусво	60		_	Vdc
Collector-Emitter Breakdown Voltage (IC = 100 mAdc, pulsed; $R_B \le 10$ Ohms) 2B697, 2N718 2N1420	BV _{CER}	40 30			Vdc
Collector-Emitter Saturation Voltage* (I _C = 150 mAdc, I _B = 15 mAdc)	V _{CE(sat)}	_	0.3	1.5	Vdc
Base-Emitter Saturation Voltage* (I _C = 150 mAdc, I _B = 15 mAdc)	V _{BE(sat)}	_		1. 3	Vdc

----- Motorola High-Frequency Transistors -----

2N697, 2N178, 2N1420 (continued)

ELECTRICAL CHARACTERISTICS (continued)

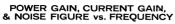
Characteristic	Symbol	Min	Тур	Max	Unit
DC Forward Current Transfer Ratio*	h _{FE}				_
$(I_C = 1 \text{ mAdc}, V_{CE} = 10 \text{ Vdc})$ 2N697, 2N718		_	20	_	
2N1420		_	35	_	
$(I_C = 150 \text{ mAdc}, V_{CE} = 10 \text{ Vdc})$ 2N697, 2N718 2N1420		40 100	_	120 300	
$(I_C = 500 \text{ mAdc}, V_{CE} = 10 \text{ Vdc})$ 2N697. 2N718 2N1420		=	20 35	=	
Small Signal Forward Current Transfer Ratio ($I_C = 50 \text{ mAdc}$, $V_{CE} = 10 \text{ Vdc}$, $f = 20 \text{ mc}$)	^h fe	2. 5	15		_
Output Capacitance (VCB = 10 Vdc, IE = 0)	Cop	_	5	35	pf

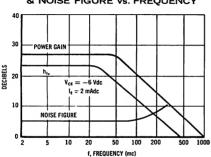
2N**700, A**

 $V_{CBO} = 25 \text{ V}$ $G_e = 20 \text{ db } @ 70 \text{ Mc}$ NF = 10 db @ 70 Mc

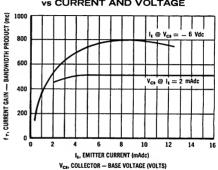
PNP germanium mesa transistors for oscillator, frequency multiplier, wide-band mixer and wide-band amplifier applications.

MAXIMUM RATINGS


Characteristic	Symbol	Rating	Unit
Collector-Base Voltage	v _{сво}	25	Vdc
Collector-Emitter Voltage 2N700 2N700A	v _{CE,O} ,	20 25	Vdc
Emitter-Base Voltage	v _{EB}	0.2	Vdc
Collector DC Current	I _C	50	mAdc
Junction Temperature	${f T_J}$	100	°C
Storage Temperature	$ au_{ ext{stg}}$	-65 to +100	°C
Total Device Dissipation at 25°C Ambient (Derate 1 mW/°C above 25°C)	P _D	75	mW


----- Motorola High-Frequency Transistors -----

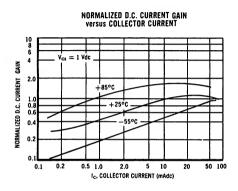
2N700,A (continued)

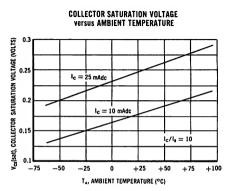

ELECTRICAL CHARACTERISTICS (TA = 25°C Unless Otherwise Noted)

Characteristic	Symbol	Test Conditions		Min	Тур	Max	Unit
Collector-Base BreakdownVoltage	BV _{CBO}	$I_C = 100 \mu\text{Adc}, I_E = 0$	All Types	2 5	32	-	Vdc
Collector- Emitter Breakdown Voltage	BVCEO	I _C = 100 μAdc, I _B = 0	2N700 2N700A	20 25		_	Vdc
Emitter-Base BreakdownVoltage	BV _{EBO}	$I_E = 100 \mu\text{Adc}, I_C = 0$	All Types	0.2	0.5	_	Vdc
Collector Cutoff Current	ICBO	$V_{CB} = 6 \text{ Vdc}, I_{E} = 0$ $V_{CB} = 6 \text{ Vdc}, I_{E} = 0, T_{A} = 85^{\circ}\text{C}$	All Types 2N700 2N700A	1 1		2 150 50	
Small Signal Forward Current Transfer Ratio	h _{fe}	$I_E = 2 \text{ mAdc}, V_{CE} = 6 \text{ Vdc}, f = 1 \text{ kc}$ $I_E = 5 \text{ mAdc}, V_{CE} = 6 \text{ Vdc}, f = 1 \text{ kc}$ $I_E = 2 \text{ mAdc}, V_{CE} = 6 \text{ Vdc}, f = 200 \text{ mc}$	All Types 2N700A 2N700 2N700A	4 2.5 5	10 - 7	- 50 -	— db
Input Impedance	h _{ib}	$I_E = 2 \text{ mAdc}, V_{CB} = 6 \text{ Vdc}, f = 1 \text{ kc}$	All Types		17	30	Ohms
	$\mathbf{r}_{\mathrm{b}}^{\prime}$	I_E = 2 mAdc, V_{CB} = 6 Vdc, f = 300 mc	All Types	=	55	100	Ohms
Collector-Base OutputCapacitance (case grounded)	C _{ob}	$V_{CB} = 6 \text{ Vdc}, I_{E} = 0, f = 100 \text{ kc}$	2N700 2N700A	\equiv		1.5 1.4	pf
Power Gain	G _e	I_E = 2 mAdc, V_{CB} = 6 Vdc, f = 70 mc (neutralized)	2N700 2N700A	20 22	23	_	đb
	NF		All Types	_	6	10	db
Power Gain	G _e	I_E = 2 mAdc, V_{CB} = 6 Vdc, f = 30 mc (neutralized)	2N700A	26	_	_	

CURRENT-GAIN-BANDWIDTH PRODUCT VS CURRENT AND VOLTAGE

2N705

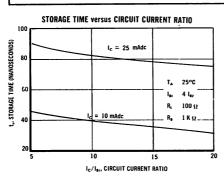

 $V_{CES}=15~V$ $I_C=50~mA$ $f_t=900~Mc~Typ$

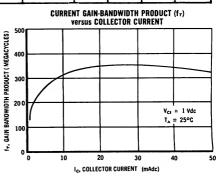


PNP germanium mesa transistor for high-speed switching applications.

MAXIMUM RATINGS

Characteristic	Symbol	Rating	Unit
Collector-Base Voltage	v _{CBO}	15	Vdc
Collector-Emitter Voltage	V _{CES}	15	Vdc
Emitter-Base Voltage	$\overline{v_{EBO}}$	3.5	Vdc
Collector Current	I _C	50	mAdc
Emitter Current	I _E	50	mAdc
Junction Temperature	$\overline{\mathtt{T}_{\mathtt{J}}}$	100	°C
Storage Temperature	Tstg	-65°C to +100°C	°C
Collector Dissipation @ 25°C Case Temp. (Derate 4 mW/°C above 25°C)	P _C	300	mW
Collector Dissipation in Free Air	P _C	150	mW




----- Motorola High-Frequency Transistors

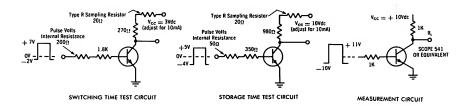
2N705 (continued)

ELECTRICAL CHARACTERISTICS (At 25°C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
Collector-Base Breakdown Voltage (I_C = 100 μ Adc, I_E = 0)	вусво	15	-	-	Vdc
Collector-Emitter Breakdown Voltage ($I_{CE} = 100 \mu Adc, V_{BE} = 0$)	BV _{CES}	15	-	-	Vdc
Emitter-Base Breakdown Voltage ($I_E = 100 \mu Adc, I_C = 0$)	BVEBO	3.5	-	-	Vdc
Collector Cutoff Current (V _{CB} = 5 Vdc, I _E = 0)	I _{CBO}	_	0. 2	3	μAde
DC Forward Current Transfer Ratio (V _{CE} = .3 Vdc, I _C = 10 mAdc)	h _{FE}	25	40	-	1
Collector Saturation Voltage (I _B = .4 mAdc, I _C = 10 mAdc)	V _{CE(sat)}	-	0. 18	0.3	Vdo
$(I_B = 5 \text{ mAdc}, I_C = 50 \text{ mAdc})$		_	0. 45	_	
Base-Emitter Voltage (I _B = .4 mAdc, I _C = 10 mAdc)	v _{BE}	0.34	0. 39	0.44	Vdo
Small Signal Forward Current Transfer Ratio $(V_{CE} = 1.0 \text{ Vdc}, I_{C} = 10 \text{ mAdc}, f = 100 \text{ mc})$	^h fe	_	9	-	đb
Collector Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 1 mc)	C _{ob}	1	5. 0	-	pf
Input Capacitance (V _{EB} = 2 Vdc)	C _{ib}	1	3. 5	-	pf
Common Base Alpha Cutoff Frequency (V _{CB} = 5 Vdc, I _C = 10 mAdc)	fαb	-	300	_	mc
Delay + Rise Time (I _C = 10 mAdc, I _B = 1 mAdc)	t _d + t _r	_	55	75	nse
Storage Time (I _{B1} = 1.0 mAdc, I _{B2} = .25 mAdc)	ts	_	65	100	nse
Fall Time (I _{B1} = 1.0 mAdc, I _{B2} = .25 mAdc)	t _f	_	70	100	nse

2N**706, A, B** 2N753

 $V_{CEO} = 15 V$ $h_{FE} = 20-40$ $f_{T} = 400 Mc$



NPN silicon annular switching transistors for high-speed switching applications.

MAXIMUM RATINGS

Characteristic	Symbol	Rating	Unit
Collector-Base Voltage	v _{CB}	25	Volts
Collector-Emitter Voltage	VCER*	20	Volts
Emitter-Base Voltage 2N706 2N706A 2N706B 2N753	VEB	3 5 5 5	Volts Volts Volts Volts
Junction Temperature	Tj	175	°C
Storage Temperature	T _{stg}	-65 to +175	°C
Total Device Dissipation at 25°C Case Temperature (Derate 6.67 mW/°C above 25°C)	PD	1.0	Watt
Total Device Dissipation at 25° C Ambient Temperature (Derate 2 mW/°C above 25°C)	PD	0.3	Watt
Total Device Dissipation at 100°C Case Temperature (Derate 6.67 mW/°C above 100°C)	PD	0.5	Watt

^{*}Refers to collector breakdown voltage in the high current region when R $_{
m he}=10\Omega$

- Motorola High-Frequency Transistors —

2N706,A,B,2N753 (continued)

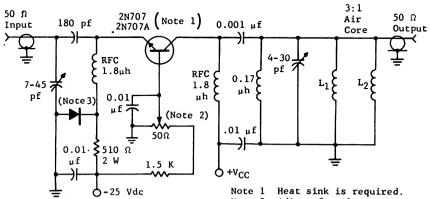
ELECTRICAL CHARACTERISTICS (At 25°C unless otherwise noted)

Characteristic	Туре	Symbol	Min	Тур	Max	Unit
Collector Cutoff Current (V _{CB} = 15Vdc. I _E = 0) (V _{CB} = 15Vdc, I _E = 0, T _A = 150 °C) (V _{CB} = 25Vdc, I _E = 0)	All Types All Types 2N706A, 2N706B, 2N753	I _{CBO}	<u>:</u>	005 3	0.5 30 10	μAdc
Collector-Emitter Cutoff Current (VCE = 20Vdc, Rbe = 100k)	2N706A, 2N706B, 2N753	ICER	_	-	10	μ Adc
Emitter Cutoff Current (VEB = 3Vdc, I _C = 0) (VEB = 5Vdc, I _C = 0)	2N706 2N706A, 2N706B, 2N753	IEBO	:	-	10 10	μAdc
Collector-Emitter Breakdown Voltage * (IC = 10mAdc,IB = 0)	All Types	BVCEO*	15	24	-	Vdc
Collector-Emitter Breakdown Voltage* (R = 10 ohms, I _C = 10mAdc)	All Types	BVCER*	20	48		Vdc
Forward-Current Transfer Ratio* (I _C = 10mAdc, V _{CE} = 1Vdc)	2N706 2N706A, 2N706B, 2N753	hFE*	20 20 40	20 40	- 60 120	
Base-Emitter Voltage* (I _C = 10mAdc, I _B = 1mAdc)	2N706 2N706A, 2N706B, 2N753	V _{BE} (sat)*	- 0.7	0.75 0.75	0.9	Vdc
Collector Saturation Voltage* (I _C = 10mAdc, I _B = 1mAdc) (I _C = 50mAdc, I _B = 5mAdc)	2N706, 2N706A 2N706B 2N753 2N753	V _{CE} (sat)*	:	0.3 0.3 0.18 0.3	0.6 0.4 0.6	Vdc .
Collector Capacitance $(V_{CB} = 5V_{CC}, I_{E} = 0)$ $(V_{CB} = 10V_{CC}, I_{E} = 0)$	2N706A, 2N706B, 2N753 2N706	Cob	:	4.5	5 6	pf
Small-Signal Forward Current Transfer Ratio $(V_{CE} = 15Vdc, I_E = 10mAdc, f = 100mc)$	All types	h _{fe}	2	4_		-
Current Gain-Bandwidth Product (VCE = 15Vdc, IE = 10mAdc, f = 100mc)	All types	f _T	<u>-</u>	400		mc
Base Resistance (VCE = 15Vdc, IE = 10mAdc, f = 300mc)	2N706B	r _b '		39	50	ohms
Charge Storage Time Constant (See Figure 2)	2N706 2N706A 2N753	Τ ***	-	16 16 19	60 25 35	nsec
Storage Time	2N706B	ts	-	19	25	nsec
Turn-On Time	All types	ton**	Ξ	30	40	nsec
Turn-Off Time	All Types	toff**	-	50	75	nsec

^{*}Pulse Test: $PW \leq 12$ nsec, Duty Cycle $\leq 2\%$ **Switching Times Measured with Tektronix Type R Plug-In (50 Ω Internal Impedance) and Circuits Shown Below.

2N**707, A**

 $f_{max} = 600 Mc$ P. = 200-400 mW @ 100 Mc


NPN germanium epitaxial mesa transistors for VHF oscillator and class C amplifier applications.

MAXIMUM RATINGS

Characteristic	Symbol	2N707	Unit	
Collector-Base Voltage	Vcво	56	2N707A 70	Vdc
Collector-Emitter Voltage	VCEO	28*	40‡	Vdc
Emitter-Base Voltage	VEBO	4	5	Vdc
Total Device Dissipation at 25°C Case Temperature (Derate above 25°C)	P _D	1.0 6.67	1.2	Watt mW/°C
Total Device Dissipation at 25°C Ambient Temperature (Derate above 25°C)	Po	0.3	0.5 3.33	Watt
Junction & Storage Temperature Range	Tj, Tstg	- 65 to	+ 175	°C

[•] Refers to Collector Breakdown Voltage in the high current region when $R_{be} \le 10$ ohms.

‡ V_{CEO}

- Ll 5 turns #14 wire wound on 1/2" diameter.
- 2 turns #14 wire wound on L₁. L_2
- Note 2
- Adjust for Class C operation. Note 3 Very High conductance silicon
- Adjust V_{CC} for proper V_{CE} Note 4

100 MC, CLASS C, COMMON BASE AMPLIFIER

2N707,A (continued)

ELECTRICAL CHARACTERISTICS (At 25°C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
Collector-Base Breakdown Voltage (I _C = 10 \(\mu\) Adc, I _E = 0) 2N707 2N707A	BV _{CBO}	56 70			Vdc
Collector-Emitter Breakdown Voltage (I _C = 10 mAde, R = 10 ohms) 2N707	BVCER	28			Vdc
Collector-Emitter Breakdown Voltage* (I _C = 20 mAdc, I _B = 0) 2N707A	BV _{CEO} *	40			Vdc
Emitter-Base Breakdown Voltage $(I_E = 100 \mu Adc, I_C = 0) 2N707A$	BVEBO	5			Vdc
Collector Cutoff Current $(V_{CB} = 15 \text{ Vdc}, I_E = 0) 2N707$ $(V_{CB} = 15 \text{ Vdc}, I_E = 0, T_A = + 150^{\circ}\text{C}) 2N707$ $(V_{CB} = 30 \text{ Vdc}, I_E = 0) 2N707A$ $(V_{CB} = 30 \text{ Vdc}, I_E = 0, T_A = 150^{\circ}\text{C}) 2N707A$	ICBO		0.005 3.0 .01 5	5 1.0 100	μAdc
Emitter Cutoff Current (V _{EB} = 4 Vdc, I _C = 0) 2N707 (V _{EB} = 5 Vdc, I _C = 0) 2N707A	I _{EBO}			10 100	μAdc
Forward Current Transfer Ratio ($I_C = 10 \text{ mAdc}$, $V_{CE} = 1 \text{ Vdc}$) 2N707 2N707A	hFE	9	12	50	
Collector Saturation Voltage (I _C = 10 mAdc, I _B = 1 mAdc)	V _{CE(sat)}		0.18	0.6	Vdc
Base-Emitter Saturation Voltage (I _C = 10 mAdc, I _B = 1 mAdc)	V _{BE(sat)}		0.75	0.9	Vdc
Collector Capacitance $(V_{CB} = 10 \text{ Vdc}, I_E = 0) 2N707$ $(V_{CB} = 5 \text{ Vdc}, I_E = 0) 2N707A$	C _{ob}		4.0 4.0	10.0	pf
Current Gain-Bandwidth Product (VCE = 10 Vdc, IE = 15 mAdc)	f _T	70	350		mc
Maximum Frequency of Oscillation	f _{max}		600		mc
r'bC _C Product (V _{CB} = 10 Vdc, I _C = 10 mAdc, f = 4 mc)	r'bCC		80		psec
Power Output, 100-mc, Common Base, Class-C Amplifier (Figure 1) (V _{CE} = 20 Vdc, P _{in} = 50 mW) All Types (V _{CE} = 40 Vdc, P _{in} =175 mW) 2N707A	P _{out}	200 400	300		mW
100-mc Oscillator Efficiency (V _{CE} = 28 Vdc, I _C = 40 mAdc)			38		%

^{*}Pulse Test 300 μ sec, 2% duty cycle

2N708

 $V_{CEO} = 15 \text{ V}$ $f_T = 450 \text{ Mc Typ}$

NPN silicon annular transistor for high-speed switching applications.

MAXIMUM RATINGS

Characteristic	Symbol	Rating	Unit
Collector-Base Voltage	v _{CBO}	40	Vdc
Collector-Emitter Voltage	VCEO	15	Vdc
Emitter-Base Voltage	V _{EBO}	5.0	Vdc
Total Device Dissipation 25°C Case Temperature	P _D	1. 2	Watts
(Derate 6.9 mW/°C above 25°C) 100°C Case Temperature (Derate 6.9 mW/°C above 100°C)		0.68	
Total Device Dissipation 25°C Ambient Temperature (Derate 2 mW/"C above 25"C)	P _D	0.36	Watts
Junction Temperature	$T_{\mathbf{J}}$	+ 200	°C
Storage Temperature	T _{stg}	-65 to +300	°C

ELECTRICAL CHARACTERISTICS (at 25°C unless otherwise specified)

Characteristic	Sym	Min	Тур	Max	Unit
Collector Cutoff Current (V _{CB} = 20 Vdc, I _E = 0) (V _{CB} = 20 Vdc, I _E = 0, T _A = 150°C)	ІСВО	Ξ	. 005 —	025 15	μAdc
Emitter Cutoff Current (VER = 4.0 Vdc, IC = 0)	IEBO	_	_	. 08	μAdc
Collector-Base Breakdown Voltage (IC = 1.0 µAdc, IE = 0)	BVCBO	40	_		Vdc
Collector-Emitter Breakdown Voltage (I _C = 30 mAdc, I _B = 0)	BVCEO	15	-	-	Vdc
Collector-Emitter Breakdown Voltage ($I_C = 30 \text{ mAdc}, R_{BE} \le 10 \Omega$)	BVCER	20	-	_	Vdc
Emitter-Base Breakdown Voltage (I _E = 10 µAdc, I _C = 0)	BV _{EBO}	5.0	_	-	Vdc
Forward Current Transfer Ratio ($I_C = 0.5$ mAdc, $V_{CE} = 1.0$ Vdc) ($I_C = 10$ mAdc, $V_{CE} = 1.0$ Vdc)* ($I_C = 10$ mAdc, $V_{CE} = 1.0$ Vdc, $T_A = -55^{\circ}$ C)*	hFE	15 30 15	=	_ 120 _	_
Small Signal Forward Current Transfer Ratio ($I_C = 10 \text{ mAdc}$, $V_{CE} = 10 \text{ Vdc}$, $f = 100 \text{ mc}$)	h _{fe}	3. 0	4.5	-	_
Collector Saturation Voltage ($I_C = 10$ mAdc, $I_B = 1.0$ mAdc) ($I_C = 7.0$ mAdc, $I_B = 0.7$ mAdc, $T_A = -55$ to 125° C)	V _{CE(sat)}	=	0.2	0. 4 0. 40	Vdc
Base-Emitter Saturation Voltage ($I_C = 10$ mAdc, $I_B = 1.0$ mAdc) ($I_C = 7.0$ mAdc, $I_B = 0.7$ mAdc, $T_A = -55$ °C)	V _{BE(sat)}	0. 72 —	-	0. 80 0. 90	Vdc
Output Capacitance ($V_{CB} = 10 \text{ Vdc}$, $I_{E} = 0$)	Cop	-	3.0	6.0	pf
Storage Time (Figure 1) (I _C = I _{B1} = I _{B2} = 10 mAdc)	t _g	_	15	25	nsec
Collector Current (V _{CE} = 20 Vdc, V _{BE} = 0.25 Vdc, T _A = 125°C)	ICEX	_	_	10	μAdc
Base Resistance ($I_C = 10 \text{ mAdc}$, $V_{CE} = 10 \text{ Vdc}$, $f = 300 \text{ mc}$)	r _b ,	-	-	50	Ohms

^{*} Pulse Test: Pulse width \leq 300 µsec, duty cycle \leq 2%

2N710

 $V_{CES} = 15 \text{ V}$ $I_C = 50 \text{ mA}$

PNP germanium mesa transistor for saturated and and non-saturated switching applications.

MAXIMUM RATINGS (At 25°C unless otherwise noted)

Characteristic	Symbol	Rating	Unit
Collector to Base Voltage	V _{CBO}	15	Vdc
Collector to Emitter Voltage	Vces	15	Vdc
Emitter to Base Voltage	V _{EBO}	2	Vdc
Collector Current	Ic	50	mAdc
Emitter Current	I _E	50	mAdc
Junction Temperature	T,	100	°C
Storage Temperature	Tstg.	-65 to +100	°C
Collector Dissipation @ 25°C Case Temp. (Derate 4mW/°C above 25°C)	Po	300	mW
Collector Dissipation in Free Air	Pc	150	mW

ELECTRICAL CHARACTERISTICS (At 25°C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
Collector to Base Breakdown Voltage $I_C = -100 \mu A dc$, $I_B = 0$	BV _{CBO}	15	_	_	Vdc
Collector to Emitter Breakdown Voltage $I_{GB} = -100 \mu Adc$, $V_{BB} = 0$	BVoss	15	_	_	Vdc
Emitter to Base Breakdown Voltage $I_B = -100 \mu A dc$, $I_C = 0$	BVEBO	2	_	-	Vdc
Collector Cutoff Current Vcs = -6Vdc, Is = 0	Ісво	_	0.2	3	μAdc
Forward Current Transfer Ratio Vcs =5Vdc, Ic = -10mAdc	bys	25	_	_	_
Collector Saturation Voltage I _B = -0.4mAdc, I _C = -10mAdc	V _{GB} (sat)	_	_	0.5	Vdc
Base to Emitter Voltage $I_B = -AmAdc$, $I_C = -10mAdc$	Vas	0.34	0.42	0.5	Vdc
$\begin{array}{l} \textbf{Delay} + \textbf{Rise Time (Fig. 1)} \\ \textbf{Is} = -1.0 \textbf{mAdc, I_c} = -10 \textbf{mAdc} \end{array}$	£4 + £,	_	60	75	пзес
Storage Time (Fig. 1) I _{B1} = -1.0mAdc, I _{B2} = .25mAdc	t,	_	65	100	nsec
Fail Time (Fig. 1) $I_{B1} \leftarrow -1 \text{mAdc}, I_{B2} = .25 \text{mAdc}$	te	_	70	100	nsec

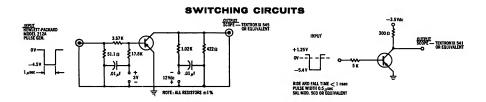
2N**711, A, B**

$$\begin{split} V_{\text{CEO}} &= 7 \text{ V} \\ I_{\text{C}} &= 50\text{-}100 \text{ mA} \\ f_{\text{f}} &= 300\text{-}320 \text{ Mc Typ} \end{split}$$

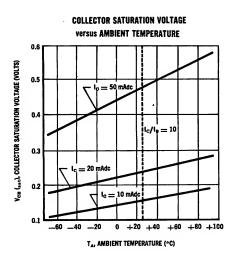
CASE 22 (TO-18)

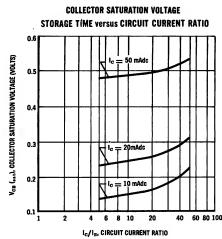
 $\ensuremath{\mathsf{PNP}}$ germanium mesa transistors for high-speed switching applications.

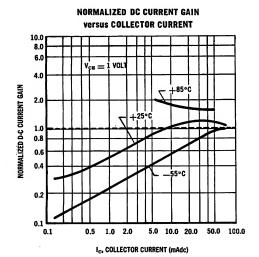
MAXIMUM RATINGS

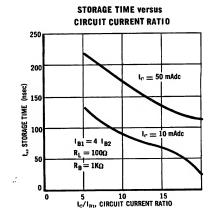

Characteristic	Symbol	2N711	2N711A	2N711B	Unit
Collector-Base Voltage	v _{сво}	12	15	18	Vdc
Collector-Emitter Voltage	v _{CES}	12	14	15	Vdc
Collector-Emitter Voltage	v _{CEO}	_	7	7	Vdc
Emitter-Base Voltage	V _{EBO}	1	1.5	2	Vdc
Collector Current (Continuous)	I _C	50	100	100	mAdc
Emitter Current (Continuous)	IE	50	100	100	mAdc
Junction Temperature	$T_{\mathbf{J}}$	-	100	-	oC.
Storage Temperature	T _{stg}	-	-65 to+100		°C
Device Dissipation @ T _C = 25°C Derating factor above 25°C	P _D	-	300 4		mW mW/°C
Device Dissipation @ T _A = 25°C Derating factor above 25°C	PD	-	150 2	→	mW mW/°C

----- Motorola High-Frequency Transistors -----


2N711,A,B (continued)


ELECTRICAL CHARACTERISTICS (At 25°C unless otherwise noted)


Characteristic	S	Symbol	Min	Тур	Max	Unit
Collector-Base Breakdown Voltage		BVCBO				Vdc
(I _C = 100 μAde, I _E = 0)	2N711 2N711A		12 15	-	-	İ
(I _C = 20 μAdc, I _E = 0)	2N711B		18	1 =	=	
			10			-
Collector-Emitter Breakdown Voltage (I _C = 100 µAdc)	2N711	BVCES	12	l _		Vdc
(AC - 100 PARK)	2N711A		14	=	=	1
(I _C = 20 µAde)	2N711B		15	l <u> </u>	_	
Collector-Emitter Breakdown Voltage		BVCEO	7			Vdc
(I _C = 5 mAde, I _B = 0)	2N711A, 2N711B		7			
Emitter-Base Breakdown Voltage (I _E = 0.1 mAde, I _C = 0)	2N711	BVEBO	1.0			Vdc
(1E - 0.1 mum; 1C - 0)	2N711A		1.5	_	_	1
	2N711B	1	2.0	_	_	
Collector-Base Cutoff Current		I _{CBO}				μAde
(V _{CB} = 5 Vdc, I _E = 0)	2N711	1	-	0.2	3.0	
	2N711A	1	_	-	1.5	İ
(V _{CB} = 10 Vdc, I _E = 0)	2N711B	1	_	-	1.5	
Emitter-Base Cutoff Current	A10011	IEBO				μ Ade
(V _{EB} = 1 Vdc)	2N711A 2N711B		=	=	100 20	
DC Current Gain		hpR		l		† <u> </u>
(IC = 10 mAde, VCE = 0.5 Vde)	2N711	"FE	20	30	_	_
, ,,	2N711A		25	=	150	
	2N711B		30	I –	150	
(I _C = 50 mAde, V _{CE} = 0.7 Vde)	2N711A, 2N711B		40	-	-	
Collector Saturation Voltage		V _{CE(sat)}				Vde
(I _C = 10 mAde, I _B = 0.5 mAde)	2N711		_	0.2	0.5	
	2N711A		_	_	0.30	ļ
(I _C = 10 mAde, I _B = 0.4 mAde)	2N711B		_	_	0.25	ł
(I _C = 50 mAde, I _B = 2 mAde)	2N711A 2N711B	Ì	=	_	0.55 0.45	
Small-Signal Current Gain						
(IC = 10 mAde, VCE = 5 Vdc, f = 100 mc)	2N711A, 2N711B	h _{fe}	1.5	_	_	_
(IC = 10 mAde, VCE = 0.5 Vdc, f = 100 mc)	2N711A		1.1	_	_	
	2N711B		1.2	_	_	j
Base-Emitter Voltage		VBE				Vde
(I _C = 10 mAde, I _B = 0.4 mAde)	2N711, 2N711A		0.34	0.42	0.50	1
	2N711B		0.34	_	0.45	
(I _C = 50 mAde, I _B = 2 mAde)	2N711A 2N711B		0.45	i –	0.75 0.70	
	2N711B		0.45		0.70	
Collector Output Capacitance (V _{CB} = 5 Vdc, I _E = 0, f = 1 mc)	2N711A, 2N711B	Cob	_	_		pf
(V _{CB} = 10 Vdc, I _E = 0, f = 1 mc)	2N711			5.0	_	
		ļ				
Fall Time	(2N711A	ų	I _	l _	150	nsec
Figu	re 1: 2N711B		_	_	110	
	(2N711A	1	l –	-	110	
Figu	re 2: 2N711B		=	90	100	
	(2N711	+		80	150	1
Minority Carrier Storage Time	(997911 4	t _s	l		150	nsec
Figu	re 1: { 2N711A 2N711B	ł	=	=	140	
	(2N711A	1	l _	l _	120	Ì
Figu				90	100	1
	,	+				
Delay Plus Rise Time Figu	re 1: { 2N711A, 2N711B	ta+t <u>.</u>	_	 	100	nsec
	re 2: { EN711A, 2N711B 2N711	1	l –	_	75	1
Figu	re Z: { earns	1	l	70	100	1



2N711,A,B (continued)

2N718

For Specifications, See 2N697 Data Sheet

2N**718A**2N956
2N1613
2N1711

 $V_{CER} = 50 \text{ V}$ $f_T = 300 \text{ Mc Typ}$

CASE 22 CASE 31 (TO-18) 2N718A 2N956 2N1

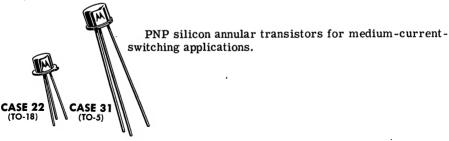
NPN silicon annular Star transistors for high-speed switching and DC to UHF amplifier applications.

MAXIMUM RATINGS

Characteristic	Symbol	2N1613 2N1711 (TO-5)	2N718A 2N956 (TO-18)	Unit
Collector-Base Voltage	v _{сво}	75	75	Vdc
Collector-Emitter Voltage	v _{CER}	50	50	Vdc
Emitter-Base Voltage	v_{EBO}	7	7	Vdc
Total Device Dissipation at 25°C Case Temperature Derate	P _D	3 17. 1	1. 8 10. 3	Watts mW/°C
Total Device Dissipation at 25°C Ambient Temperature Derate	P _D	0.8 4.57	0. 5 2. 86	Watt mW/°C
Junction Temperature	т	-65 to +200		°C
Storage Temperature	T _{stg}	-65 to +300		°C

2N718A, 2N956, 2N1613, 2N1711 (continued)

ELECTRICAL CHARACTERISTICS (at 25°C unless otherwise specified)


Characteristic		Symbol	Min	Тур	Max	Unit
Collector Cutoff Current (V _{CB} = 60 Vdc, I _E = 0)		I _{CBO}	ı	. 001	.01	μAdc
Collector Cutoff Current (V _{CB} = 60 Vdc, T _A = 150°C)		ICBO	_	-	10	μAdc
Emitter Cutoff Current (V _{EB} = 5 Vdc, I _C = 0)	2N1613, 2N718A 2N1711, 2N956	I _{EBO}	-	-	. 010	μAdc
Collector-Base Breakdown Voltage ($I_C = 100 \mu Adc, I_E = 0$)		BVCBO	75	-	-	Vdc
Collector-Emitter Breakdown Voltage ($I_C = 100$ mAdc, pulsed; $R_{BE} \le 10 \Omega$)		BVCER	50	-	-	Vdc
Emitter-Base Breakdown Voltage ($I_E = 100 \mu Adc$, $I_C = 0$)		BVEBO	7	-	-	Vdc
Collector Saturation Voltage (I _C = 150 mAdc, I _B = 15 mAdc)		V _{CE(sat)} *	-	0. 24	1.5	Vdc
Base-Emitter Saturation Voltage ($I_C = 150$ mAdc, $I_B = 15$ mAdc)		V _{BE(sat)} *	-	1.0	1.3	Vdc
DC Forward Current Transfer Ratio ($I_{\rm C}=.01$ mAdc, $V_{\rm CE}=10$ Vdc) ($I_{\rm C}=0.1$ mAdc, $V_{\rm CE}=10$ Vdc) ($I_{\rm C}=0.1$ mAdc, $V_{\rm CE}=10$ Vdc) ($I_{\rm C}=10$ mAdc, $V_{\rm CE}=10$ Vdc) ($I_{\rm C}=10$ mAdc, $V_{\rm CE}=10$ Vdc, $I_{\rm A}=-55^{\circ}{\rm C}$) ($I_{\rm C}=150$ mAdc, $V_{\rm CE}=10$ Vdc) ($I_{\rm C}=150$ mAdc, $I_{\rm CE}=10$ Vdc) ($I_{\rm C}=100$ Vdc, $I_{\rm C}=10$ Vdc) ($I_{\rm C}=100$ Vdc, $I_{\rm C}=100$ Vdc) ($I_{\rm C}=100$ Vdc) ($I_{\rm C}=100$ Vdc, $I_{\rm C}=100$ Vdc) Small Signal Forward Current Transfer Ratio ($I_{\rm C}=100$ Vdc, $I_{\rm C}=100$ Mdc, $I_{\rm C}$	2N1711, 2N956 2N1613, 2N718A 2N1711, 2N956 2N1613, 2N718A 2N1711, 2N956 2N1613, 2N718A 2N1711, 2N956 2N1613, 2N718A 2N1711, 2N956 2N1613, 2N718A 2N1711, 2N956	C _{ob}	20 20 35 35 75 20 35 40 20 40 —			pf pf
(I _C = 1 mAdc, V _{CE} = 5 Vdc, f = 1 kc) (I _C = 5 mAdc, V _{CE} = 10 Vdc, f = 1 kc) Input Resistance (I _C = 1 mAdc, V _{CB} = 5 Vdc, f = 1 kc)	2N1613, 2N718A 2N1711, 2N956 2N1613, 2N718A 2N1711, 2N956	h _{fe}	30 50 35 70	- - -	100 200 150 300	Ohms
(I _C = 5 mAdc, V_{CB} = 10 Vdc, f = 1 kc) Voltage Feedback Ratio (I _C = 1 mAdc, V_{CB} = 5 Vdc, f = 1 kc) (I _C = 5 mAdc, V_{CB} = 10 Vdc, f = 1 kc)	2N1613, 2N718A 2N1711, 2N956 2N1613, 2N718A 2N1711, 2N956	h _{rb}	- - - -	=	3×10 ⁻⁴ 5×10 ⁻⁴ 3×10 ⁻⁴ 5×10 ⁻⁴	
Output Conductance ($I_C = 1 \text{ mAdc}$, $V_{CB} = 5 \text{ Vdc}$, $f = 1 \text{ kc}$) ($I_C = 5 \text{ mAdc}$, $V_{CB} = 10 \text{ Vdc}$, $f = 1 \text{ kc}$)		h _{ob}	0.1 0.1	=	0. 5 1. 0	μmho
Noise Figure ($V_{CB} = 10 \text{ Vdc}$, $I_{C} = 300 \mu \text{Adc}$, $f = 1 \text{ kc}$)	2N1613, 2N718A 2N1711, 2N956	NF	=	=	12 8	ďb

^{*}Pulse Test: Pulse width ≤ 300 μsec

2N**722** 2N1132,A,B 2N2303

 $V_{CEO} = 35-45 \text{ V} \ I_C = 500-600 \text{ mA} \ f_T = 250 \text{ Mc Typ}$

2N1132,B

2N722

MAXIMUM RATINGS

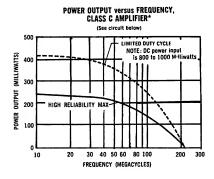
Characteristic	Symbol	Rating	Unit
Collector-Base Voltage 2N722, 2N1132, 2N2303 2N1132A 2N1132B	v _{СВО}	50 60 70	Vdc
Collector-Emitter Voltage 2N722, 2N1132, 2N2303 2N1132A 2N1132B	VCEO	35 40 45	Vde
Emitter-Base Voltage 2N722, 2N1132, 2N1132A, 2N2303 2N1132B	V _{EBO}	5 6	Vdc
Collector-Emitter Voltage (R _{BE} ≤ 10 Ω) 2N722, 2N1132, 2N1132A, 2N2303 2N1132B	V _{CER}	50 60	Vdc
Collector Current 2N2303 2N1132A, 2N1132B	I _C	500 600	mAde
Total Device Dissipation @ T _C = 25°C TO-5: 2N1132, 2N1132A, 2N1132B, 2N2303 Derating Factor Above 25°C TO-18: 2N722 Derating Factor Above 25°C	P _D	2 13.3 1.5 10	Watts mW/°C Watts mW/°C
Total Device Dissipation @ $T_A = 25^{\circ}C$ TO-5: 2N1132, 2N1132A, 2N1132B, 2N2303 Derating Factor Above 25 $^{\circ}C$	P _D	0.6 4.0	Watt mW/ ^O C
TO-18: 2N722 Derating Factor Above 25 ^o C		0.4 2.67	Watt mW/ ^O C
Junction Temperature	$T_{\mathbf{J}}$	+175	°C
Storage Temperature Range	Tstg	-65 to + 300	°C

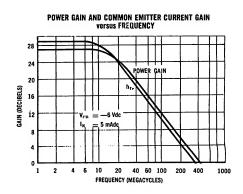
2N722, 2N1132,A,B, 2N2303 (continued)

ELECTRICAL CHARACTERISTICS (At 25°C ambient unless otherwise noted)

Characteristic	Types	Symbol	Min	Max	Unit
Collector-Base Breakdown Voltage ($I_C = 100 \mu Adc, I_E = 0$)	2N722, 2N1132, 2N2303 2N1132A 2N1132B	вусво	50 60 70	=	Vdc
Emitter-Base Breakdown Voltage (I _E = 100 μAdc, I _C = 0)	2N722, 2N1132, 2N2303	BVEBO	5	_	Vdc
$(I_E = 1 \text{ mAde}, I_C = 0)$	2N1132A 2N1132B		5 6	=	
Collector-Emitter Breakdown Voltage (I _C = 100 mAdc pulsed)	2N722, 2N1132, 2N2303 2N1132A 2N1132B	BVCEO	35 40 50	Ξ	Vdc
Collector-Emitter Breakdown Voltage (IC = 100 mAdc pulsed, $R_{BE} \le 10 \Omega$)	2N722, 2N1132, A, 2N2303 2N1132B	BVCER	50 60	_	Vdc
Collector Cutoff Current (V _{CB} = 30 Vdc, I _E = 0)	2N722, 2N1132, 2N2303	I _{СВО}	_	1	µAdc −
$(V_{CB} = 30 \text{ Vdc}, I_{E} = 0, T_{A} = 150^{\circ}\text{C})$ $(V_{CB} = 50 \text{ Vdc}, I_{E} = 0)$	2N722, 2N1132, 2N2303 2N1132A 2N1132B		=	100 0.5 0.01	
$(V_{CB} = 50 \text{ Vdc}, I_E = 0, T_A = 150^{\circ}\text{C})$	2N1132A 2N1132B		=	50 10	
Emitter Cutoff Current (V _{EB} = 5 Vdc, I _C = 0)	2N1132A 2N1132B	I _{EBO}	=	100 0.1	μAdc
(V _{EB} = 2 Vdc, I _C = 0)	2N2303			100	
DC Forward Current Transfer Ratio (I _C = 5 mAdc, V _{CE} = 10 Vdc)	2N722, 2N1132, A, B 2N2303 2N722, 2N1132, A, B	h _{FE}	25 75 30	<u>_</u>	_
(I _C = 150 mAdc, V _{CE} = 10 Vdc)	2N2203		75	200	
Collector-Emitter Saturation Voltage (I _C = 150 mAdc, I _B = 15 mAdc)	All Types	V _{CE(sat)}		1.5	Vdc
Base-Emitter Saturation Voltage (I _C = 150 mAdc, I _B = 15 mAdc)	All Types	V _{BE(sat)}	_	1.3	Vdc
Output Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 100 kc) (V _{CB} = 10 Vdc, I _E = 0, f = 1 mc)	2N722, 2N1132, 2N2303 2N1132A, 2N1132B	C _{ob}	_	45 30	pf
Input Capacitance (V _{EB} = 0.5 Vdc, I _E = 0, f = 100 kc)	All Types	C _{ib}		80	pf
Small-Signal Forward Current Transfer Ratio $(I_C = 1 \text{ mAdc}, V_{CE} = 5 \text{ Vdc}, f = 1 \text{ kc})$	2N722, 2N1132 2N1132A, 2N1132B 2N2303	h _{fe}	25 25 75	100 75 300	_
(I _C = 5 mAdc, V _{CE} = 10 Vdc, f = 1 kc)	2N722, 2N1132, A, B 2N2303		30 75	=	
Current-Gain — Bandwidth Product (I _C = 50 mAdc, V _{CE} = 10 Vdc, f = 20 mc)	All Types	f _T	60	_	mc
Small Signal Input Resistance (IC = 1 mAdc, V _{CB} = 5 Vdc, f = 1 kc) (IC = 5 mAdc, V = 10 Vdc, f = 1 kc)	All Types	h _{ib}	25	35 10	ohms
(I _C = '5 mAdc, V _{CB} = 10 Vdc, f = 1 kc) Small Signal Output Admittance (I _C = 1 mAdc, V _{CE} = 5 Vdc, f = 1 kc) (I _C = 5 mAdc, V _{CE} = 10 Vdc, f = 1 kc)	All Types	h _{ob}		1 5	µmhos
Small Signal Voltage Feedback Ratio (I _C = 1 mAdc, V _{CE} = 5 Vdc, f = 1 kc)		h _{rb}			× 10 ⁻⁴
(I _C = 5 mAdc, V _{CE} = 10 Vdc, f = 1 kc)	All Types		_	8	

2N741,A


 $V_{CBO} = 15-20 \text{ V}$ $G_e = 16 \text{ db } @ 30 \text{ Mc}$ NF = 7 db @ 30 Mc



PNP germanium mesa transistors for oscillator, frequency multiplier and amplifier applications.

ABSOLUTE MAXIMUM RATINGS

Characteristic	Symbol	Туре	Rating	Unit
Collector-Base Voltage	V _{CBO}	2N741 2N741A	15 20	Vdc
Collector-Emitter Voltage	V _{CEO}	2N741 2N741A	15 20	Vdc
Emitter-Base Voltage	V_{EBO}		1.0	Vdc
Collector Current (Continuous)	Ic		100	mAdc
Junction Temperature	T,		100	°C
Storage Temperature	Tutg		_65 to +100	°C
Total Device Dissipation @ 25°C Case Temperature (Derate 4 mW/°C above 25°C)	PD		300	mW
Total Device Dissipation @ 25°C Ambient Temperature (Derate 2 mW/°C)	P _D		150	mW

2N741,A (continued)

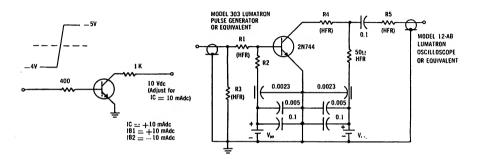
ELECTRICAL CHARACTERISTICS (at 25°C unless otherwise specified)

Characteristic	Symbol	Туре	Min	Тур	Max	Unit
Collector-Base Breakdown Voltage $I_c = -100~\mu Adc$	BV _{CBO}	2N741 2N741A	15 20	=	=	Vdc
Emitter-Base Breakdown Voltage $I_{\rm C}=0, I_{\rm E}=100~\mu Adc$	BVEBO		1.0	_	_	Vdc
Collector-Emitter Cutoff Current $V_{\rm CE} = -15~{ m Vdc}, V_{\rm ER} = 0$	Ісвз	2N741	_	_	100	μAdc
Collector-Emitter Cutoff Current Vce = -20 Vdc, Veb = 0	I _{CES}	2N741A	_	_	100	μAdc
$ \begin{array}{c} \text{Collector Cutoff Current} \\ V_{\text{CB}} = -6 \text{ Vdc}, I_{\text{E}} = 0 \end{array} $	Ісво		_	0.2	3	μAdc
Forward Current Transfer Ratio $V_{CE} = -6 \text{ Vdc}, I_C = -5 \text{ mAdc}$	hfe		10	25	_	_
Small Signal Forward Current Transfer Ratio $V_{\text{CE}}=-6\text{Vdc},I_{\text{C}}=-5\text{mAdc},f=1\text{kc}$	h _f ,		20	_	_	_
Collector Output Capacitance $V_{CB} = -6 \text{ Vdc}, I_E = 0, f = 100 \text{ kc}$	С。ь		_	6	10	pf
Collector Capacitance $V_{CB}=-6 Vdc, I_E=0, f=100 kc$	C,		_	3	-	pf
Input Impedance $V_{CB} = -6$ Vdc, $I_E = 5$ mAdc, $f = 1$ kc	hıь		_	8	15	Ohms
Output Admittance $V_{CB}=-6~Vdc,I_{B}=5~mAdc,f=1~kc$	h _{ob}		_	45	_	μmhos
Frequency at Which Common-Emitter Current Gain is Unity $V_{\rm CB}=-6~{ m Vdc},~I_{\rm E}=5~{ m mAdc}$	$f_{ au}$	2N741 2N741A	300	360 360	1-1	mc
Base Resistance $V_{CB} = -6 \text{ Vdc}, I_E = 5 \text{ mAdc}, f = 300 \text{ mc}$	г′ь	2N741 2N741A		75 65	-	Ohms
Noise Figure $V_{CB} = -6 \text{ Vdc}, I_E = 5 \text{ mAdc}, f = 30 \text{ mc}$	NF		_	7	_	db
Power Gain, Matched, Neutralized $V_{\text{CB}}=-6~\text{Vdc}, I_{\text{E}}=5~\text{mAdc}, f=30~\text{mc}$	PG.		16	22	-	db
Power Output $V_{CB}=-6~Vdc,~I_C=-60~mAdc$ $PG_e=8~db~,~f=30~mc$	P.	2N741 2N741A	_	200 250	-	mW
Power Output $V_{CB} = -6 \text{ Vdc}, I_C = -60 \text{ mAdc}$ $PG_{\bullet} = 5 \text{ db}, f = 70 \text{ mc}$	P.	2N741A	_	200	_	mW

2N744

 $V_{CEO} = 12 V$ $I_C = 200 \text{ mA}$ $f_T = 450 \text{ Mc}$

NPN silicon annular transistor for high-speed switching applications.


ABSOLUTE MAXIMUM RATINGS

Characteristic	Symbol	Rating	Unit
Collector-Base Voltage	v _{CBO}	20	Vdc
Collector-Emitter Voltage*	v _{CEO}	12	Vdc
Emitter-Base Voltage	V _{EBO}	5	Vdc
Collector DC Current	I _C	200	m Adc
Total Device Dissipation at 25 C Case Temperature (Derate 6.67 mW/ C above 25 C)	P _D	1.0	Watt
Total Device Dissipation at 25 C Ambient Temperature (Derate 2 mW/ C above 25 C	PD	0.3	Watt
Junction Temperature	T _J	+200	,C
Storage Temperature	T _{stg}	-65 to +300	C

^{*}Refers to the voltage at which the magnitude of hFE approaches one when the emitter base diode is open-circuited.

SWITCHING TIME TEST CIRCUIT

CHARGE STORAGE TEST CIRCUIT

2N744 (continued)

ELECTRICAL CHARACTERISTICS (At 25°C unless otherwise noted)

Characteristic	Sym	Min	Тур	Max	Unit
Collector Cutoff Current (VCE = 20 Vdc, IE = 0) (VCE = 20 Vdc, IB = 0, TA = 170 °C)	I _{CES}	_	. 005	1. 0 100	μAdc
Collector Cutoff Current (V _{CE} = 10 Vdc, V _{BE} = 0.35 Vdc, T _A = 100°C)	ICEX		-	30	μAdc
Emitter Cutoff Current (V _{EB} = 5 Vdc, I _C = 0)	I _{EBO}	-	_	10	μAdc
Collector-Emitter Breakdown Voltage (I _C = 10 mAdc, I _B = 0)*	BVCEO	12	30	-	Vdc
Forward Current Transfer Ratio (I _C = 1.0 mAdc, V _{CE} = 0.25 Vdc)* (I _C = 10 mAdc, V _{CE} = 0.35 Vdc) (I _C = 10 mAdc, V _{CE} = 0.35 Vdc, T _A = -55 °C) (I _C = 100 mAdc, V _{CE} = 1.0 Vdc)*	hFE	20 40 20 20	1111	- 120 - -	-
Small Signal Forward Current Transfer Ratio (I _C = 10 mAdc, V _{CE} = 10 Vdc, f = 100 mc)	h _{fe}	2. 8	4.5	_	-
Base-Emitter Voltage (I _C = 10 mAdc, I _B = 1 mAdc) (I _C = 10 mAdc, I _B = 1 mAdc, T _A = -55°C) (I _C = 100 mAdc, I _B = 10 mAdc)* (I _C = 100 mAdc, I _B = 10 mAdc)*	V _{BE}	0. 7 - - -	- - -	0.85 1.1 1.5 1.6	Vdc
Collector-Emitter Saturation Voltage (I _C = 10 mAdc, I _B = 1 mAdc, T _A = 170°C)* (I _C = 100 mAdc, I _B = 10 mAdc, T _A = 170°C)*	V _{CE(sat)}	-	-	0.35 1.0	Vdc
Output Capacitance ($V_{CB} = 5 \text{ Vdc}, I_E = 0$)	C ^{op}	_	3.0	5.0	pf
Turn-on Time (Condition 1) (Condition 2) (Condition 3) (Condition 4)	t _{on}	1 1 1	26 10 7 6	- 16 - 12	nsec
Turn-off Time (Condition 1) (Condition 2) (Condition 3) (Condition 4)	t _{off}	-	30 17 18 23	_ 24 _ 45	nsec
Charge Storage Time Constant (I _C = 10 mAdc, I _{B1} = -I _{B2} = 10 mAdc)	τ _s	_	-	18	nsec

* Pulse Test: Pulse width ≦ 300 µsec, duty cycle ≦ 2%

										t _o	n	to	er
CONDITION	I _C	I _{B1} mA	IB2 mA	V _{BE(off)} Vdc	V _{CC} Vdc	$R_1 = R_2$	R ₃ Ω	R ₄ Ω	R ₅ Ω	v _{BB} v	v _{iN} v	v _{BB} v	v _{IN} v
1	3	1	-0.5	-0.9	3.4	6.8 K	50	1 K	0	-1.8	10. 2	8.4	-19. 2
2	10	3	-1.5	-1.5	3.0	3.3 K	50	220	0	-3.0	15.0	12.0	-15 0
3	50	15	-7.5	-1.8	4.0	680	50	18	1 K	-3. 5	15.3	* 11.7	-15.3
4	100	40	-20.0	-2.4	6.0	330	56	0	1 K	-4.5	20.0	*15.3	-20.0

^{*}VBB is pulsed for 1.5 sec @ less than 10% duty cycle

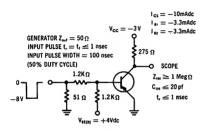
2N753

For Specifications, See 2N706 Data Sheet

2N827

$$\label{eq:Vces} \begin{split} V_{\text{CES}} &= 20 \text{ V} \\ I_{\text{C}} &= 100 \text{ mA} \\ f_{\text{T}} &= 350 \text{ Mc Typ} \end{split}$$

 $\ensuremath{\mathsf{PNP}}$ germanium mesa transistor for high-speed switching applications.


ABSOLUTE MAXIMUM RATINGS

Characteristic	Symbol	Rating	Unit
Collector-Base Voltage	v _{сво}	20	Vdc
Collector-Emitter Voltage	V _{CES}	20	Vdc
Collector-Emitter Voltage	v _{CEX}	io	Vdc
Emitter-Base Voltage	V _{EBO}	4	Vdc
Collector Current (Continuous)	IC	100	mAdc
Junction Temperature	т	+100	°c
Storage Temperature	T _{stg}	-65 to + 100	°C
Device Dissipation @ 25°C Ambient Temperature (Derate 2mW/°C above 25°C)	P _D	150	mW

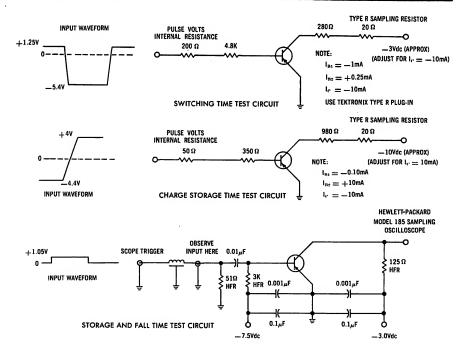
2N827 (continued)

ELECTRICAL CHARACTERISTICS (at 25°C unless otherwise specified)

Characteristic	Symbol	Min	Тур	Max	Unit
Collector-Base Breakdown Voltage ($I_C = 100 \mu$ Adc, $I_E = 0$)	BV _{CBO}	20	22		Vdc
Collector-Emitter Breakdown Voltage $(I_C = 100 \mu Adc, V_{EB} = 0)$	BV _{CES}	20	22		Vdc
Emitter-Base Breakdown Voltage $(I_E = 100 \mu Adc, I_C = 0)$	BV _{EBO}	4	5		Vdc
Collector Latch-up Voltage	LVCEX	10			Vdc
Collector-Emitter Cutoff Current (V _{CE} =15 Vdc, V _{EB} =0)	I _{CES}		0.5	5	µ Adc
Collector-Base Cutoff Current (V _{CB} =15 Vdc,)	I _{CBO}		0.5	5	μ Adc
DC Forward Current Transfer Ratio $(I_C = 10 \text{ mAdc}, V_{CE} = 0.3 \text{ Vdc})$	h _{FE}	100	150		
Collector-Emitter Saturation Voltage ($I_C = 10 \text{ mAdc}$, $I_B = 3.3 \text{ mAdc}$)	V _{CE(sat)}		0.16	0.25	Vdc
Base-Emitter Voltage ($I_C = 10 \text{ mAdc}$, $I_B = 3.3 \text{ mAdc}$)	V _{BE}		0 .3 9	0.5	Vdc
Small-Signal Forward Current Transfer Ratio (I _C = 10 mA, V _{CE} = 1 V, f = 100 mc)	h _{fe}	2.5	3.5		
Collector Output Capacitance (V _{CB} = 10 V, I _E = 0, f = 1 mc)	C _{ob}		4	9	pf
Delay Time	t _d		10	15	nsec
Rise Time	t _r		10	20	nsec
Storage Time	t _s		15	30	nsec
Fall Time	t _f		15	30	nsec

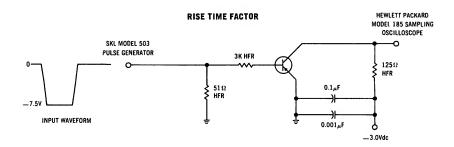
SWITCHING TIME TEST CIRCUIT

2N828


 $\label{eq:Vces} \begin{array}{l} V_{\text{CES}} = 15 \text{ V} \\ I_{\text{C}} = 200 \text{ mA} \\ f_{\text{T}} = 400 \text{ Mc} \text{ Typ} \end{array}$

PNP germanium epitaxial mesa transistor for highspeed switching applications.

ABSOLUTE MAXIMUM RATINGS


Characteristic	Symbol	Rating	Unit
Collector-Base Voltage	V _{CBO}	15	Vdc
Collector-Emitter Voltage	Vces	15	Vdc ·
Emitter-Base Voltage	. V _{EBO}	2.5	Vdc
Collector DC Current	I_{c}	200	mAdc
Junction Temperature	T,	100	°C
Storage Temperature	Tate	_65 to +100	°C
Total Device Dissipation at 25°C Case Temperature (Derate 4 mW/°C above 25°C)	P _D	300	mW
Total Device Dissipation at 25°C Ambient Temperature (Derate 2 mW/°C above 25°C)	P _D	150	mW

2N828 (continued)

ELECTRICAL CHARACTERISTICS (at 25°C unless otherwise specified)

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Vdc Vdc Vdc Vdc μAdc
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Vdc Vdc
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Vdc Vdc
	Vdc
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Vdc
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$I_{C}=0, I_{E}=-100 \mu Adc$ Collector Cutoff Current I_{CBO} — 0.4 3 μh	
Collector Cutoff Current I _{CBO} — 0.4 3 µJ	μAdc
1 CBO	μΑυσ
$IE \equiv 0$, $VCB \equiv -0$ VCC	
	_
Forward Current Transfer Ratio h_{FE} 25 40 — — — $I_{C} = -10 \text{ mAdc}$.	
$V_{CR} = -0.3 \text{ Vdc}$	
	Vdc
$I_c = -10 \mathrm{mAdc}$	
$I_{B} = -1 \text{ mAdc}$	
Concetor Saturation voltage ACE(##1)	Vdc
$I_{c} = -50 \text{ mAdc},$	
$I_{B} = -5 \text{ mAdc}$ $Rase-Fmitter Voltage$ $V_{-1}() 0.34 0.39 0.44 V()$	Vdc
Buse Emitter Voltage V BE(sat) 0.04	Vac
$I_C = -10 \text{ mA}$ Collector Capacitance $C_{co} = -3.5$	pf
Collector Capacitance C_{ob} — 3.5 — $I_B = 0$, $V_{CB} = -10$ Vdc	Pι
Small-Signal Forward Current hre 3 4 —	_
Transfer Ratio	
$I_c = -10 \text{ mAdc}$	
$V_{CE} = -1 \text{ Vdc, } f = 100 \text{ mc}$	
Carrent Cam Sanamatin Floratet	mc
$V_{CE} = -1 \text{ Vdc},$	
$I_{c} = -10 \text{mAdc}$	
ta + tr	nsec
t _n	nsec
1 4 1 5 1 5	nsec
Charge Storage Time Constant $ au_{*}$ — 14 25 ns	nsec
Rise Time	nsec
	nsec
Fall Time t _f — 3 — ns	nsec

----- Motorola High-Frequency Transistors -----

2N828A 2N829 $V_{CES} = 15 V$ $I_C = 200 \text{ mA}$ $f_T = 300 \text{ Mc Min}$

PNP germanium epitaxial mesa transistors for high-speed switching applications

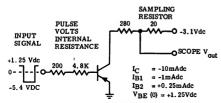
CASE 22 (TO-18)

MAXIMUM RATINGS

Maximum Ratings	Symbol	Rating	Unit
Collector to Base Voltage	v _{CBO}	15	Vdc
Collector to Emitter Voltage	v _{CES}	15	Vdc
Emitter to Base Voltage	v _{EBO}	2. 5	Vdc
Collector Current (Continuous)	I _C	200	mAdc
Total Device Dissipation at 25°C case	P _D	300	mW
Temperature (Derate 4. 0mw/°C above 25°C)			
Total Device Dissipation at 25°C	P _D	150	mW
Ambient Temperature (Derate 2.0mw/°C)		1	
Junction Temperature	Т _j	+100	°C
Storage Temperature	T _{stg}	-65 to +100	°c

2N828A, 2N829 (continued)

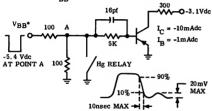
ELECTRICAL CHARACTERISTICS (at 25°C ambient temperature unless otherwise noted)

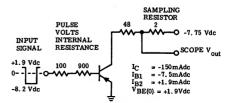

Characteristic		Symbol	Minimum	Typical	Maximum	Unit
Collector to Base Breakdown Voltage I_E = 0, I_C = -100 μ Adc		вусво	15	25		Vdc
Collector to Emitter Breakdown Voltage $B_{EB} = 0$, $I_{C} = -100\mu Adc$		BV _{CES}	15	25		Vdc
Emitter to Base Breakdown Voltage $I_C = 0$, $I_E = -100\mu$ Adc		BV _{EBO}	2.5	-		Vdc
Collector Cutoff Current $I_E = 0$, $V_{CB} = -6Vdc$		I _{СВО}		. 4	3	μAdc
Forward Current Transfer Ratio I_{C} = -10mAdc, V_{CE} =3Vdc	2N828A 2N829	^h FE	25 50	40 80		
Forward Current Transfer Ratio $I_C = -150 \text{mAdc}, V_{CE} = -1 \text{Vdc}$	2N828A 2N829	h _{fe}	25 50	40 80		
Collector Saturation Voltage $I_C = -10 \text{mAdc}, I_B = -1.0 \text{mAdc}$ $I_C = -10 \text{mAdc}, I_B = -0.5 \text{mAdc}$	2N828A 2N829	V _{CE(sat)}		0.11 0.11	0.20 0.20	Vdc
Collector Saturation Voltage $I_C = -50 \text{mAdc}, I_B = -5.0 \text{mAdc}$		V _{CE(sat)}			0.25	Vdc
Collector Saturation Voltage $^{1}C = -150 \text{mAdc}, I_{B} = -15 \text{mAdc}$ $I_{C} = -150 \text{mAdc}, I_{B} = -7.5 \text{mAdc}$	2N828A 2N829	V _{CE(sat)}		0.35 0.38	0.50 0.50	Vdc
Base to Emitter Voltage $I_{\text{C}} = -10 \text{mAdc}, \ I_{\text{B}} = -1 \text{mAdc}$ $I_{\text{C}} = -10 \text{mAdc}, \ I_{\text{B}} = -0.5 \text{mAdc}$	2N828A 2N829	V _{BE}	0.34	0.40 0.38	0.44 0.44	Vdc
Base to Emitter Voltage $I_{\hbox{\scriptsize C}} = -150 \hbox{\scriptsize mAdc}, \ I_{\hbox{\scriptsize B}} = -15 \hbox{\scriptsize mAdc}$ $I_{\hbox{\scriptsize C}} = -150 \hbox{\scriptsize mAdc}, \ I_{\hbox{\scriptsize B}} = -7.5 \hbox{\scriptsize mAdc}$	2N828A 2N829	v _{BE}		0.70 0.65	0.85 0.85	Vdc
Collector Capacitance I_E = 0, V_{CB} = -6Vdc		C _{ob}		2.2	4	pf

- Motorola High-Frequency Transistors -

2N828A, 2N829 (continued)

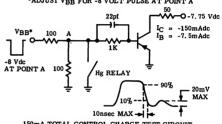
ELECTRICAL CHARACTERISTICS (continued)


Characteristic	Symbol	Minimum	Typical	Maximum	Unit
Input Capacitance V _{EB} = 1Vdc	C _{ib}		2. 2	3.5	pf
Small Signal Forward Current Transfer Ratio $I_C = -10 \text{mAdc}, V_{CE} = -1 \text{Vdc}, f = 100 \text{mc}$	h _{fe}	3.0	4.0		
Current Gain Bandwidth Product V_{CE} = -1Vdc, I_{C} = -10mAdc, f = 100mc	í,	300	400	- -	Мс
Delay Plus Rise Time (Fig. 1) $I_C = -10 \text{mAdc}$	td+tr		35	50	nsec
Storage Time (Fig. 1) I _C = -10mAdc	ts		30	50	nsec
Fall Time (Fig. 1) I _C = -10mAdc	tf		30	50	nsec
Total Control Charge (Fig. 3) $I_{\hbox{\scriptsize C}} = -10 \hbox{\scriptsize mAdc}$	Q _T		50	80	рC
Delay Plus Rise Time (Fig. 2) I _C = -150mAdc	t _d +t _r		25	50	nsec
Turn Off Time (Fig. 2) I _C = -150mAdc	toff		60	100	nsec
Total Control Charge (Fig. 4) $I_{C} = -150 \text{mAdc}$	Q _T		120	175	рC


SCOPE INPUT IMPEDANCE = 1Megohm SCOPE INPUT CAPACITANCE = 20pf GENERATOR OUTPUT IMPEDANCE = 50 ohms INPUT PULSE tr = tf = 2nsec

10mA SWITCHING TIME TEST CIRCUIT FIGURE 1

*ADJUST V BB FOR -5.4 VOLT PULSE AT POINT A


10mA TOTAL CONTROL CHARGE TEST CIRCUIT FIGURE 3

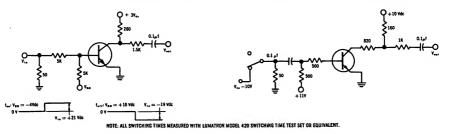
SCOPE INPUT IMPEDANCE = 1 Megohm SCOPE INPUT CAPACITANCE = 20pf GENERATOR OUTPUT IMPEDANCE = 50 ohms INPUT PULSE tr = tr = 2nsec

150mA SWITCHING TIME TEST CIRCUIT FIGURE 2

*ADJUST VBB FOR -8 VOLT PULSE AT POINT A

150mA TOTAL CONTROL CHARGE TEST CIRCUIT FIGURE 4

2N834 2N835
$$\begin{split} V_{\text{CES}} &= 20\text{-}30 \text{ V} \\ I_{\text{C}} &= 200 \text{ mA} \\ f_{\text{T}} &= 500 \text{ Mc Typ} \end{split}$$

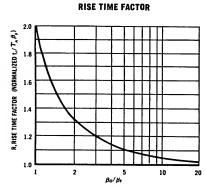

 $\ensuremath{\mathsf{NPN}}$ silicon epitaxial mesa transistors for high-speed switching applications.

MAXIMUM RATINGS

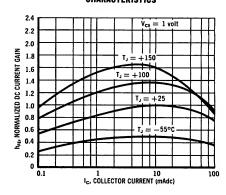
Characteristic	Symbol	Туре	Rating	Unit
Collector-Base Voltage	V _{сво}	2N834 2N835	40 25	Vdc Vdc
Collector-Emitter Voltage	V _{CES}	2N834 2N835	30 20	Vdc Vdc
Emitter-Base Voltage	V _{EBO}	2N834 2N835	5 3	Vdc Vdc
Collector Current	Ic		200	mAdc
Junction Temperature	T,		+175	°C
Storage Temperature	Tatg		-65 to +175	°C
Total Device Dissipation @ 25°C Case Temperature (Derate 6.67 mw/°C above 25°C)	P _D		1.0	Watt
Total Device Dissipation @ 100°C Case Temperature (Derate 6.67 mW/°C above 100°C)	PD		0.5	Watt
Total Device Dissipation @ 25°C Ambient Temperature (Derate 2 mW/°C)	PD		0.3	Watt

TURN-ON AND TURN-OFF TIME MEASUREMENT CIRCUIT

CHARGE STORAGE TIME CONSTANT MEASUREMENT CIRCUIT


2N834, 2N835 (continued)

ELECTRICAL CHARACTERISTICS (At 25°C unless otherwise noted)

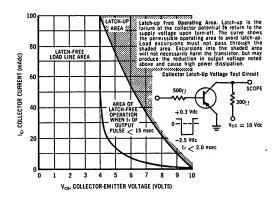

Characteristic	Symbol	Туре	Min	Тур	Max	Unit
Collector-Base Breakdown Voltage $I_B=0,I_C=10\mu\text{Adc}$	BV _{CBO}	2N834 2N835	40 25	=	=	Vdc Vdc
Emitter-Base Breakdown Voltage I _C = 0, I _E = 10 μAdc	BV _{EBO}	2N834 2N835	5 3	=	=	Vdc Vdc
Collector Cutoff Current $V_{BE} = 0$, $V_{OE} = 30 \text{ Vdc}$	Ices	2N834	-	_	10	μAdo
Collector Cutoff Current $V_{BB} = 0$, $V_{CE} = 20$ Vdc	Iczs	2N835	-	-	10	μAd
Collector Cutoff Current $I_R=0$, $V_{GB}=20$ Vdc	Ісво		-	0.01	0.5	μAd
Collector Cutoff Current $I_B = 0$, $V_{CB} = 20$ Vdc, $T_A = +150$ °C	Ісво		_	6	30	μAd
Forward Current Transfer Ratio (Note 1) $I_c = 10 \text{ mAdc}, V_{cz} = 1 \text{ Vdc}$	hen	2N834 2N835	25 20	40 40	_	=
Collector Saturation Voltage $I_{c}=10\ mAdc,\ I_{B}=1.0\ mAdc$	VCE(sat)	2N834 2N835	=	0.15 0.18	0.25 0.30	Vdc Vdc
Collector Saturation Voltage (Note 1) $I_c = 50 \text{ mAdc}$, $I_B = 5.0 \text{ mAdc}$	V _{CE(sat)}	2N834 2N835	=	0.28 0.35	0.4	Vdc Vdc
Base-Emitter Saturation Voltage (Note 1) $I_0 = 10 \text{ mAdc}$, $I_0 = 1.0 \text{ mAdc}$	VBE(sat)		-	0.74	0.9	Vdc
Collector Capacitance $I_B=0$, $V_{CB}=10$ Vdc, $f=100$ kc	Соь		-	2.8	4.0	pf
Small Signal Forward Current Transfer Ratio $I_c=10~\text{mAdc}, V_{cz}=20~\text{Vdc}, f=100~\text{mc}$	h _f	2N834	3.5	5.0	_	_
Small Signal Forward Current Transfer Ratio Io = 10 mAdc, Vos = 15 Vdc, f = 100 mc	hre	2N835	3.0	4.5	-	_
Current Gain-Bandwidth Product Vos = 20 Vdc, Io = 10 mAdc, f = 100 mc	fτ	2N834	350	500	_	mc
Current Gain-Bandwidth Product Vox = 15 Vdc, Ic = 10 mAdc, f = 100 mc	fτ	2N835	300	450	-	mc
Charge-Storage Time Constant (Figure 2; Note 2)	τ.	2N834 2N835	=	14 16	25 35	nsec
Turn-on Time (Figure 1; Note 3)	ton	2N834 2N835	=	10 11	16 20	nsec
Turn-off Time (Figure 1; Note 3)	torr	2N834 2N835	=	16 20	30 35	nsec

Note 1 — Pulsed Conditions
Pulse length ≤ 12 msec
Duty Cycle ≤ 2%

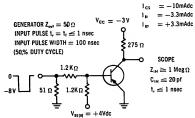
Note 2 — Ic = 10 mA In: = Ins = 10 mA Note 3 — Ic = 10 mA Im = 3 mA Im = 1 mA

NORMALIZED CURRENT GAIN CHARACTERISTICS

CASE 22 (TO-18)


 $V_{CES} = 30 \text{ V}$ $I_C = 100 \text{ mA}$ $f_T = 300 \text{ Mc}$

PNP germanium epitaxial mesa transistor for high-speed switching applications.


ABSOLUTE MAXIMUM RATINGS

Characteristic	Symbol	Rating	Unit
Collector-Base Voltage	v _{CBO}	30	Vdc
Collector-Emitter Voltage .	v _{CES}	30	Vdc
Collector-Emitter Voltage (see Figure 2)	VCEX	15	Vdc
Emitter-Base Boltage	v _{EBO}	2.5	Vdc
Collector Current (Continuous)	I _C	100	mAďc
Junction Temperature	T _J	+100	°c
Storage Temperature	T _{stg}	-65 to+ 100	°c
Device Dissipation @ 25 ^o C Ambient Temperature (Derate 2mW/ ^o C above 25 ^o C)	PD	150	mW

AREA OF PERMISSIBLE LOAD LOCI

SWITCHING TIME TEST CIRCUIT

----- Motorola High-Frequency Transistors -----

2N838 (continued)

ELECTRICAL CHARACTERISTICS (At 25°C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
Collector-Base Breakdown Voltage (I_C =100 μ Adc, I_E =0)	BV _{CBO}	30	35		Vdc
Collector-Emitter Breakdown Voltage ($I_C = 100~\mu$ Adc, $V_{EB} = 0$)	BV _{CES}	30	35		Vdc
Emitter-Base Breakdown Voltage (I_E = 100 μ Adc, I_C = 0)	BV _{EBO}	2.5	4.5		Vdc
Collector Latch-up Voltage (see Figure 2)	LVCEX	15			Vdc
Collector-Emitter Cutoff Current (V_{CE} =15 Vdc, V_{EB} =0)	ICES		1	10	µ Adc
Collector-Base Cutoff Current (VCB=15 V)	ІСВО		1	10	μ Adc
DC Forward Current Transfer Ratio $(I_C = 10 \text{mAdc}, V_{CE} = 0.3 \text{ Vdc})$	h _{FE}	30	70		
Collector-Emitter Saturation Voltage (I_C =10 mAdc, I_B =3.3 mAdc)	V _{CE} (sat)		0.1	0.18	Vdc
Base-Emitter Voltage ($I_C = 10$ mAdc, $I_B = 3.3$ mAdc)	V _{BE}		0.39	0,5	Vdc
Small-Signal Forward Current Transfer Ratio ($I_C = 10$ mA, $V_{CE} = 1V$, $f = 100$ mc)	h _{fe}	3	4.5		
Collector Output Capacitance (V _{CB} =10 V, I _E =0, f=1 mc)	c _{ob}		2 .	4	pf
Delay Time	t _d			15	nsec
Rise Time	t _r		7	15	nsec
Storage Time	t _s		10	20	nsec
Fall Time	ŧ,		10	20	nsec

2N869 2N995

 $V_{\text{CBO}}\,{=}\,20\text{-}25~\text{V}$ $f_T = 300 Mc Typ$

PNP silicon annular transistors for high-frequency general-purpose amplifier applications.

ABSOLUTE MAXIMUM RATINGS

Characteristics	Symbol	Type	Rating	Unit
Base Voltage	V _{CBO}	2N869 2N995	25 20	Volts Volts
Collector-Emitter Voltage	v _{CEO}	2N869 2N995	18 15	Volts Volts
Emitter-Base Voltage	V _{EBO}	2N869 2N995	5 4	Volts Volts
Total Device Dissipation at 25 ^o C Case Temperature at 100 ^o C Case Temperature (Derate 6.86 mW/ ^o C above 25 ^o C)	P _D	Both Types	1.2	Watts Watt
Total Device Dissipation at 25°C Ambient Temperature (Derate 2.06 mW/°C above 25°C)	P _D	Both Types	0.36	Watt
Storage Temperature	T _{stg}	Both Types	-65 to +200	°C
Junction Temperature	Tj	Both Types	+200	°C

— Motorola High-Frequency Transistors —

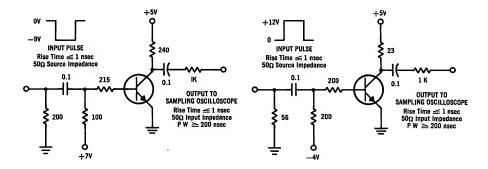
2N869, 2N995 (continued)

ELECTRICAL CHARACTERISTICS (At 25°C unless otherwise noted)

Characteristics	Symbol	Min	Тур	Max	Unit
Collector-Base Breakdown Voltage ($I_C = 10 \mu Adc, I_E = 0$) 2N869 2N995	BV _{CBO}	25 20			Volts
Collector-Emitter Sustaining Voltage * . (IC = 10 mAdc, I _B = 0) 2N869 2N995	V _{CEO} (sust)*	18 15			Volts
Emitter-Base Breakdown Voltage ($I_E = 10 \mu \text{ Adc}, I_C = 0$) 2N869 2N995	BV _{EBO}	5 4			Volts
$ \begin{array}{l} {\rm Collector~Cutoff~Current}\\ {\rm (V_{CB}~=-15~Vdc,~I_{E}=~0)} & {\rm 2N869}\\ {\rm 2N995} \\ \\ {\rm (V_{CB}~=-15~Vdc,~I_{E}=~0,~T_{A}~=~150^{O}C)} & {\rm Both~Types} \end{array} $	^I CBO	111		. 010 . 005 25	μ Adc
Emitter Current (VEB = 4.0 Vdc, IC = 0) 2N995	I _{EBO}			10	μ Adc
	V _{CE} (sat)		0. 17	1.0 0.2	Volt
Base Saturation Voltage ($I_C = 10 \text{ mAdc}$, $I_B = 1.0 \text{ mAdc}$) 2N869 ($I_C = 20 \text{ mAdc}$, $I_B = 2.0 \text{ mAdc}$) 2N995	V _{BE} (sat)		0. 78 	1.0 0.95	Volt
DC Forward-Current Transfer Ratio * (IC = 10 mAdc, VCE = -5.0 Vdc) 2N869 (IC = 1.0 mAdc, V _{CE} = -1.0 Vdc) 2N995 (IC = 20 mAdc, V _{CE} = -1.0 Vdc) 2N995 (IC = 50 mAdc, V _{CE} = -1.0 Vdc) 2N995	h _{FE} *	20 25 35 25		120 140 	
Open-Circuit Output Capacitance $(V_{CB} = -10 \text{ V}, I_{E} = 0)$ 2N869 2N995	C _{ob}		3 3	9 10	pf
Open-Circuit Input Capacitance (V_{EB} = -0.5 V, I_{C} = 0) Both Types	C _{ib}		7	i1	pf
Small-Signal Forward-Current Transfer Ratio (I _C = 10 mA, V _{CE} = -15 V, f = 100 Mc) 2N869 (I _C = 10 mA, V _{CE} = -10 V, f = 100 Mc) 2N995	h _{fe}	1. 0 1.0	3. 0 3. 0		

^{*}Pulse Note: Pulse Width = 300 μ sec, Duty Cycle = 1%

 $V_{\text{CEO}} = 15 \text{ V} \\ f_{\text{T}} = 500 \text{ Mc} \quad \text{Typ}$


 $\ensuremath{\text{NPN}}$ silicon annular transistor for high-speed switching applications.

ABSOLUTE MAXIMUM RATINGS

Characteristic	Symbol	Rating	Unit
Collector-Base Voltage	Vcво	40	Vdc
Collector-Emitter Voltage	V _{CEO}	15	Vdc
Collector-Emitter Voltage $(R_{BE} \leq 10 \Omega)$	V _{CER}	20	Vdc
Emitter-Base Voltage	V _{EBO}	5	Vdc
Operating Junction Temperature	T,	200	°C
Storage Temperature	T _{stg}	-65 to +300	°C
Lead Temperature (Soldering, no limit)		300	°C
Total Device Dissipation at 25°C Case Temperature (derate 6.9 mW/°C)	Po	1.2	Watts
Total Device Dissipation at 25°C Ambient Temperature (derate 2.06 mW/°C)	Po	0.36	Watt

CHARGE STORAGE TIME CONSTANT TEST CIRCUIT

Ton and Toff TEST CIRCUIT

- Motorola High-Frequency Transistors ----

2N914 (continued)

ELECTRICAL CHARACTERISTICS (At 25° unless otherwise specified.)

Characteristic	Symbol	Min	Тур	Max	Unit
Collector Cutoff Current $(V_{Ce}=20~V,~I_{E}=0) \ (V_{Ce}=20~V,~I_{E}=0~,T_{A}=150^{\circ}C)$	laso	<u>-</u>	4.0 3.0	25 15	nA μA
Emitter Cutoff Current (V _{EB} = 4.0 V, I _C = 0)	I _{ESO}	_	_	0.1	μΑ
Collector Current ($V_{BE}=0.25 \text{ V, } V_{CE}=20 \text{ V , } T_A=125 ^{\circ}\text{C}$)	I _{CEX}	_	_	10	μА
Collector-Base Breakdown Voltage (I _C = 1.0 μ A, I _E = 0)	BV _{C≅O}	40	_	_	Volts
Emitter-Base Breakdown Voltage (I _E = $10 \mu A$, I _C = 0)	BV _{ESO}	5.0	_	_	Volts
Collector-Emitter Sustaining Voltage (Note 1) (I _C = 30 mA (pulsed), $R_{BE} \le 10$ ohms)	V _{CER(sust)}	20	_	_	Volts
Collector-Emitter Sustaining Voltage (Note 1) ($I_c = 30$ mA (pulsed), $I_0 = 0$)	V _{CEO (pust)}	15	_	_	Volts
Base Saturation Voltage (I _C = 10 mA, I _B = 1.0 mA)	V _{BE(sat)}	0.70	0.74	0.80	Volts
Collector Saturation Voltage ($I_C=200$ mA, $I_B=20$ mA) ($I_C=10$ I_B , $T_A=-55^{\circ}$ C to $+125^{\circ}$ C) (Note 3)	V _{CE(sat)}	-	0.40 0.14	0.70 0.25	Volts
DC Forward Current Transfer Ratio (Note 2) (I _C = 10 mA, V_{CE} = 1.0 V) (I _C = 10 mA, V_{CE} = 1.0 V, T_A = -55° C) (I _C = 500 mA, V_{CE} = 5.0 V)	h _{FE}	30 12 10	60 35 20	120 _ _	-
Output Capacitance $(V_{C8} = 10 \text{ V}, I_E = 0)$	С°Р	-	2.8	6.0	pf
Small Signal Forward Current Transfer Ratio (V _{CE} = 10 V, I _C = 20 mA, f = 100 mc)	h _{f•}	3.0	5.0	_	_
Charge Storage Time Constant (Note 4) $(I_C = I_{B1} = I_{B2} = 20 \text{ mA})$	Ts	_	10	20	nsec
Turn-on Time (See Note 4) ($I_C = 200 \text{ mA}$, $I_{B1} = 40 \text{ mA}$, $I_{B2} = 20 \text{ mA}$)	t _d .,	-	20	40	nsec
Turn-off Time (See Note 4) (I _C = 200 mA, I _{B1} = 40 mA, I _{B2} = 20 mA)	t _{s+1}	-	25	40	nsec

NOTE 1. Rating refers to a high-current point where collector-emitter voltage is lowest.

NOTE 2. Pulse Conditions: Length = 300 μ sec; duty cycle $\leq 1\%$.

NOTE 3. $I_C=1.0$ mA through 20 mA NOTE 4. Measured on Sampling Scope. PW \geq 200 nsec.

 V_{CEO} = 50 V h_{FE} = 50 f_{T} = 400 Mc Typ

NPN silicon annular transistor for high-frequency amplifier, oscillator and switching applications.

MAXIMUM RATINGS

Characteristic	Symbol	Maximum	Unit
Collector-Base Voltage	v _{сво}	70	Vdc
Collector-Emitter Voltage	V _{CEO}	50	Vdc
Emitter-Base Voltage	V _{EBO}	5	Vdc
Total Device Dissipation @ 25°C Case Temperature Derating Factor Above 25°C	P _D	1. 2 6. 9	W mW/°C
Total Device Dissipation @ 25°C Ambient Temperature Derating Factor Above 25°C	P _D	. 36 2. 06	W mW/°C
Junction Temperature, Operating	$^{\mathrm{T}}\mathrm{_{J}}$	+200	°C
Storage Temperature Range	T _{stg}	-65 to +300	°c

---- Motorola High-Frequency Transistors -----

2N915 (continued)

ELECTRICAL CHARACTERISTICS

Characteristic	Symbol	Minimum	Maximum	Unit
Collector Cutoff Current I _E = 0 V _{CB} = 60V	СВО		10	пA
Collector Cutoff Current @ 150°C I _E = 0 V _{CB} = 60V	СВО		30	μА
Collector Breakdown Voltage $I_C = 100 \mu A I_E = 0$	вусво	70		Volts
Collector to Emitter Sustaining Voltage IC = 10mA IB = 0	*V _{CEO}	50		Volts
Emitter Breakdown Voltage $I_C = 0$ $I_E = 100 \mu A$	BV _{EBO}	5. 0		Volts
Base Saturation Voltage IC = 10mA IB = 1.0mA	V _{BE(sat)}		0. 9	Volts
Collector Saturation Voltage IC = 10mA IB = 1.0mA	V _{CE(sat)}		1.0	Volts
DC Pulse Current Gain IC = 10mA VCE = 5.0V	h _{FE}	50	200	
Output Capacitance I _E = 0 V _{CB} = 10V	C ^{op}		3.5	pf
Emitter Transition Capacitance I _C = 0 V _{EB} = 0.5V	C _{TE}		10	pf
High Frequency Current Gain f = 100mc I _C = 10 mA V _{CE} = 15V	h _{fe}	2. 5		
Small Signal Current Gain f = 1kc I _C = 1.0mA V _{CE} = 5.0V	h _{fe}	40	200	
$I_C = 5.0 \text{mA}$ $V_{CE} = 5.0 \text{V}$		50	250	
Input Resistance f = 1kc I _C = 1.0mA V _{CE} = 5.0V	h _{ie}		6000	ohms
$I_{C} = 5.0 \text{mA} V_{CE} = 5.0 \text{V}$			2000	ohms
Output Conductance f = 1kc I _C = 1.0mA V _{CE} = 5.0V	h _{oe}		75	μmho
I _C = 5. 0mA V _{CE} = 5. 0V			125	μmho

^{*}pw = 300 μ s duty cycle \leq 1%

NPN silicon annular transistor for high-frequency amplifier, oscillator and switching applications.

MAXIMUM RATINGS

Characteristic	Symbol	Maximum	Unit
Collector-Base Voltage	v _{сво}	45	Vdc
Collector-Emitter Voltage	V _{CEO}	25	Vdc
Emitter-Base Voltage	V _{EBO}	5	Vdc
Total Device Dissipation @ 25°C Case Temperature Derating Factor Above 25°C	P _D	1.2 6.9	w mw/°C
Total Device Dissipation @ 25 °C Ambient Temperature Derating Factor Above 25 C	P _D	. 36 2. 06	W mW/°C
Junction Temperature, Operating	$T_{\mathbf{J}}$	+200	°C
Storage Temperature Range	T _{stg}	-65 to +300	С

ELECTRICAL CHARACTERISTICS

Characteristic	Symbol	Minimum	Maximum	Unit
Collector Cutoff Current I _E = 0 V _{CB} = 30V	^I СВО		10	nA
Collector Cutoff Current @150 C I _E = 0 V _{CB} = 30V	^I сво		10	μΑ
Collector Breakdown Voltage $I_C = 10 \mu A$ $I_E = 0$	вv _{сво}	45		Volts
Collector to Emitter Sustaining Voltage $I_C = 30 \text{mA}$ $I_B = 0$	*V _{CEO}	25		Volts
Emitter Breakdown Voltage $I_C = 0$ $I_E = 10 \mu A$	BV _{EBO}	5.0		Volts
Base Saturation Voltage I _C = 10mA I _B = 1.0mA	V _{BE(sat)}		0.9	Volts
Collector Saturation Voltage I _C = 10mA I _B = 1.0mA	V _{CE(sat)}		0.5	Volts
DC Pulse Current Gain I _C = 10mA V _{CE} = 1.0V	*h _{FE}	50	200	
Output Capacitance I _E = 0 V _{CB} = 5.0V	C _{ob}		6.0	pf
Emitter Transition Capacitance $I_C = 0$ $V_{EB} = 0.5V$	C _{TE}		10	pf
High Frequency Current Gain $f = 100$ mc $I_C = 10$ mA $V_{CE} = 15$ V	^h fe	3.0		
Small Signal Current Gain f = 1kc I _C = 1.0mA V _{CE} = 5.0V	h _{fe}	40	200	
$I_C = 5.0 \text{mA} \text{ V}_{CE} = 5.0 \text{V}$		50	250	
Input Resistance f = 1kc I _C = 1.0mA V _{CE} = 5.0V	h _{ie}		6000	ohms
$I_C = 5.0 \text{mA} \text{ V}_{CE} = 5.0 \text{V}$			2000	ohms
Output Conductance f = 1 kc I _C = 1.0mA V _{CE} = 5.0V	h _{oe}		75	μmho
$I_C = 5.0 \text{mA} \text{ V}_{CE} = 5.0 \text{V}$!	į į	125	μmho

^{*}pw = $300\mu s$ duty cycle $\leq 1\%$

G_e = 15 db @ 200 Mc NF = 6 db @ 60 Mc max P_o = 30 mW @ 500 Mc min

CASE 22 (TO-18)

NPN silicon annular transistor for ultra-high frequency oscillator and amplifier applications.

MAXIMUM RATINGS

Characteristic	Symbol	Rating	Unit
Collector-Base Voltage	v _{сво}	30	Volts
Collector-Emitter Voltage	V _{CEO}	15	Volts
Emitter-Base Voltage	V _{EBO}	3.0	Volts
Total Dissipation at 25°C Case Temperature at 25°C Ambient Temperature	P _D	0.3 0.2	Watt Watt
Operating Junction Temperature	T_{J}	+200	·c
Storage Temperature	T _{stg}	-65 to +300	´c

ELECTRICAL CHARACTERISTICS (at 25°C unless otherwise specified)

Characteristic	Symbol	Test Conditions	Min	Тур	Max	Unit
Collector Cutoff Current	l _{СВО}	V _{CB} = 15 V, I _E = 0 V _{CB} = 15V, 150 C, I _E = 0	-		10 1.0	пА µА
Collector-Base Breakdown Voltage	вусво	I _C 1.0 μA, I _E 0	30	-	-	Volts
Emitter-Base Breakdown Voltage	BVEBO	I _C 10 μA, 1 _C 0	3	-	-	Volt
Collector-Emitter Voltage	BVCEO	I _C 3 mA	15	-	-	Volt
DC Current Gain	h _{FE}	V _{CE} = 1.0 V, I _C = 3.0 mA	20	50	-	-
Collector-Emitter Saturation Voltage	V _{CE(sat)}	I _C = 10 mA, I _B = 1.0 mA	-	-	0. 4	Vo
Base-Emitter Saturation Voltage	V _{BE(sat)}	I _C = 10 mA, I _B = 1.0 mA	\equiv	<u> </u>	1.0	Vo
Output Capacitance .	C _{ob}	V _{CB} = 10 V l _E = 0, f = 140 kc		•	1.7	pf
		V _{CB} = 0, f = 140 kc I _E = 0	-	-	3. 0	pf
Input Capacitance	C _{ib}	V _{EB} = 0.5 V I _C = 0	-	-	2.0	pf
Small Signal Current Gain	h _{fe} .	1 _C = 4.0 mA V _{CE} = 10 V f = 100 mc	6.0	9.0	-	-
Amplifier Power Gain	G _e	I _C = 6.0 mA V _{CB} = 12 V f = 200 mc R _G = R _L = 50 Ω	15	-	-	db
Power Output	P _{out}	I _C = 8.0 mA V _{CB} = 15 V f = 500 mc	30	-	-	m
Collector Efficiency	eff	V _{CB} = 15 V f = 500 mc 1 _C = 8.0 mA	25	-	-	%
Noise Figure	NF	I _C = 1.0 mA V _{CE} = 6.0 V f = 60 mc R _G = 400 Ω		3	6	db

2N929 2N930

 $V_{CEO} = 45 \text{ V}$ NF = 3-4 db @ 10 cps to 15.7 Kc 1

NPN silicon annular transistors for low-level, low-noise amplifier applications.

MAXIMUM RATINGS

Characteristic	Symbol	Rating	Unit
Collector-Emitter Voltage	v _{CEO}	45	Vdc
Emitter-Base Voltage	V _{EBO}	5	Vdc
Collector Current	^I C	. 030	Adc
Total Device Dissipation @ T _A = 25°C	P _D	0.3	Watt
Derating Factor above 25°C		2. 0	mW/°C
Total Device Dissipation @ T _C = 25 °C	P _D	. 0.6	Watt
Derating Factor above 25°C		4.0	mW/°C
Junction Temperature, Op.	${ m T_J}$	175	°C
Storage Temperature Range	T _{stg}	-65 to +300	°c

----- Motorola High-Frequency Transistors -----

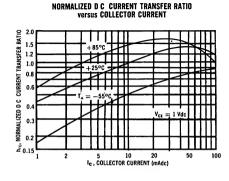
2N929, 2N930 (continued)

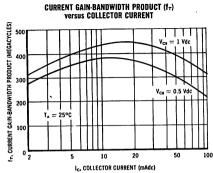
ELECTRICAL CHARACTERISTICS (At 25°C unless otherwise noted)

Characteristic		Symbol	Minimum	Maximum	Unit
Collector-Emitter Breakdown Voltage* $I_C = 10$ mA, $I_B = 0$		BV CEO	45		v
Emitter-Base Breakdown Voltage $I_E = 10$ nA, $I_C = 0$	-	BVEBO	5		v
Collector-Base Cutoff Current $V_{CB} = 45 V$, $I_E = 0$		I _{CBO}		. 010	μΑ
Collector-Emitter Cutoff Current $V_{CE} = 45 \text{ V}, V_{EB} = 0$ $V_{CE} = 45 \text{ V}, V_{EB} = 0, T_A = 170 ^{\circ}\text{C}$		ICES		. 010	μА
Collector-Emitter Cutoff Current V _{CE} = 5 V, I _B = 0		I _{CEO}		. 002	μΑ
Emitter-Base Cutoff Current $V_{EB} = 5 \text{ V}, I_{C} = 0$		IEBO		.010	μА
DC Forward Current Transfer Ratio I_C = 10 μ A, V_{CE} = 5 V I_C = 10 μ A, V_{CE} = 5 V, I_A = -55°C I_C = 500 μ A, V_{CE} = 5 V I_C = 10 mA, I_C = 5 V*	2N929 2N930 2N929 2N930 2N929 2N930 2N929 2N930	h _{FE}	40 100 10 20 60 150	120 300 350 600	
Collector-Emitter Saturation Voltage* $I_C = 10 \text{ mA}, I_B = .5 \text{ mA}$		V _{CE(sat)}		1.0	v
Base-Emitter Voltage* I _C = 10 mA, I _B = .5 mA		v _{BE}	0.6	1.0	v
Output Capacitance V _{CB} = 5 V, I _E = 0, f = 1 mc		c _{ob}		8.0	pf
High-Frequency Current Gain $I_C = 500 \mu A$, $V_{CE} = 5 V$, $f = 30 mc$		h _{fe}	1.0		
Small-Signal Current Gain $I_C = 1.0 \text{ mA}, V_{CE} = 5 \text{ V}, f = 1 \text{ kc}$	2N929 2N930	h _{fe}	60 150	350 600	
Input Resistance $I_C = 1.0 \text{ mA}, V_{CB} = 5 \text{ V}, f = 1 \text{ kc}$		h _{ib}	25	32	ohms
Output Conductance I _C = 1.0 mA, V _{CB} = 5 V, f = 1 kc		h _{ob}		1.0	μmho
Voltage Feedback Ratio $I_C = 1.0 \text{ mA}, V_{CB} = 5 \text{ V}, f = 1 \text{ kc}$		h _{rb}		600	X10 ⁻⁶
Noise Figure IC = 10 μ A, V CE = 5 V, f = 10 cps to 15.7 kc, R = 10 K Ω	2N929 2N930	NF		4.0 3.0	db

*Pulse Conditions: Width \leq 300 μ sec Duty Cycle \leq 2%

For Specifications, See 2N718A Data Sheet

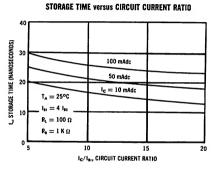

2N960 2N961 2N962 2N964 2N965 2N966


 $V_{CE} = 12-15 \text{ V}$ $I_{C} = 100 \text{ mA}$ $f_{T} = 460 \text{ Mc}$

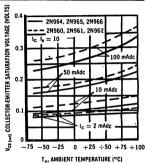
CASE 22 (TO-18) PNP germanium epitaxial mesa transistors for highspeed switching applications.

MAXIMUM RATINGS

Characteristic	Symbol	2N960 2N964	2N961 2N965	2N962 2N966	Unit
Collector-Base Voltage	Vcво	15	12	12	Vdc
Collector-Emitter Voltage	VCES	15	12	12	Vdc
Emitter-Base Voltage	VEBO	2.5	2.0	1.25	Vdc
Junction Temperature	T _i		100		°C
Storage Temperature	Tstg	-65 to +100			°C
Total Device Dissipation at 25°C Case Temperature (derate 4mW/°C above 25°C)	P _D				mW
Total Device Dissipation at 25°C Ambient Temperature (derate 2 mW/°C above 25°C)	P _D	150			mW



----- Motorola High-Frequency Transistors -

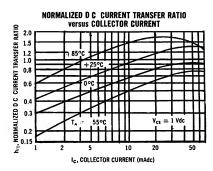

2N960 SERIES (continued)

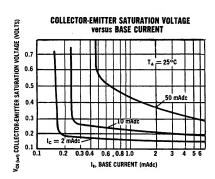
ELECTRICAL CHARACTERISTICS (At 25°C unless otherwise specified)

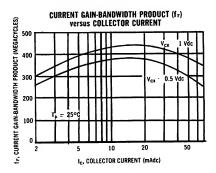
Characte	ristic	Symbol	Min	Typ	Max	Unit
Collector-Base Breakdown Voltage		BV _{CEO}				Vdc
$(I_{\rm C}=-100~\mu{\rm Adc},~I_{\rm E}=0)$	2N960, 2N964 2N961, 2N962, 2N965, 2N966		15 12	25 20	_	
Collector-Latch-up Voltage		LV _{CEX}				Vdc
V _{cc} = -11.5 Vdc (Figure 1)	All Types		11.5			
Emitter-Base Breakdown Voltage (I _E = -100 μAdc, I _C = 0)	2N960, 2N964	BV _{€80}				Vdc
$(i_{\ell} = -100 \mu \text{Auc}, i_{\ell} = 0)$	2N961, 2N965		2.5 2.0	_	_	
	2N962, 2N966		1.25	_	_	
Collector-Emitter Cutoff Current		Icis				μAdo
$(V_{CE} = -15 \text{ Vdc})$	2N960, 2N964		_	_	100	-
(V _{Ct} = -12 Vdc)	2N961, 2N962, 2N965, 2N966				100	
Collector-Base Cutoff Current $(V_{cs} = -6 \text{ Vdc}, I_{\epsilon} = 0)$	All Types	Iceo		0.4	3	μAdc
DC Forward Current Transfer Ratio	All 13pes					
$(I_C = -10 \text{ mAdc}, V_{CE} = -0.3 \text{ Vdc})$	2N960, 2N961, 2N962	hee	20	40	_	_
	2N964, 2N965, 2N966		40	70	_	
$(I_c = -50 \text{ mAdc}, V_{ce} = -1 \text{ Vdc})$	2N960, 2N961, 2N962		20	55	_	
	2N964, 2N965, 2N966		40	90	_	
$(I_c = -100 \text{ mAdc}, V_{cs} = -1 \text{ Vdc})$	2N960, 2N961, 2N962		20	50	_	
Collector-Emitter Saturation Voltage	2N964, 2N965, 2N966		40	85		
$(I_C = -10 \text{ mA}, I_B = -1 \text{ mA})$	2N964, 2N965, 2N966	V _{CE(set)}		0.11	0.18	Vdc
(16 — 10 tim, 16 — 1 tim)	2N960, 2N961, 2N962		=	0.13	0.10	
$(I_c = -50 \text{ mA}, I_a = -5 \text{ mA})$	2N964, 2N965, 2N966		_	0.18	0.35	
	2N960, 2N961, 2N962		_	0.20	0.40	
$(I_c = -100 \text{ mA, } I_s = -10 \text{ mA})$	2N964, 2N965, 2N966		_	0.27	0.60	
	2N960, 2N961, 2N962			0.30	0.70	
Base-Emitter Voltage	A.1 T	VsE				Vdc
$(I_c = -10 \text{ mA}, I_s = -1 \text{ mA})$	All Types		0.30	0.40	0.50	
$(I_c = -50 \text{ mA}, I_s = -5 \text{ mA})$	All Types		0.40	0.55	0.75	
$(I_c = -100 \text{ mA}, I_s = -10 \text{ mA})$	2N960, 2N961, 2N964, 2N965 2N962, 2N966		0.40 0.40	0.65 0.75	1.00 1.25	
Current Gain-Bandwidth Product		- f _T -				mc
$(I_6 = -20 \text{ mAdc, } V_{C0} = -1.0 \text{ Vdc})$	All Types		300	460	_	
Collector Output Capacitance		Cob				pf
$(V_{C0} = -10 \text{ Vdc}, I_E = 0, f = 1 \text{ mc})$	All Types			2.2	4	
Emitter Transition Capacitance $(V_{EB} = 1 \text{ Vdc})$	All Types	C _{To}		2.0	3.5	pf
Turn-on Time — All Types	All Types					
$(I_C = -10 \text{ mAdc}, I_{st} = -1 \text{ mAdc}, V_s$	(0) = +1.25 Vdc) (Fig. 2)	Lon	_	35	50	nsec
$(I_c = -100 \text{ mAdc}, I_a = -5 \text{ mAdc}, V$			_	30	50	
Turn-off Time		ton				nsec
$(I_{C} = -10 \text{ mA, } I_{B1} = -1 \text{ mAdc, } I_{B2} =$						
	2N960, 2N961, 2N964, 2N965 2N962, 2N966		_	60 80	85 100	
$(I_c = -100 \text{ mAdc}, I_s, = -5 \text{ mAdc}, I_s)$			_	80	100	
We - 200 minute) ist - 70 minute) i	2N960, 2N961, 2N964, 2N965		_	50	85	
	2N962, 2N966			60	100	
Rise Time Constant (Figure 4)	All Types	THE		0.6		nsec
Hole Storage Factor (Figure 6)	All Types	К',		16		nsec
Fall Time Constant (Figure 5)	All Types	THE		0.5		nsec
Total Control Charge		Q,	—	_	<u></u>	pico-coulombs
(I _c = -10 mAdc, I _s = -1 mAdc) (Figure 7)	2N960, 2N961, 2N964, 2N965		_	50	80	
(i igmie //	20962, 20966		_	60	90	
$(I_c = -100 \text{ mAdc}, I_s = -5 \text{ mAdc})$						
(Figure 8)	2N960, 2N961. 2N964, 2N965		_	80 100	125 150	
	2N962, 2N966		_	100	130	

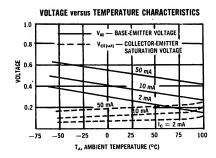
2N963 2N967

(TO-18)

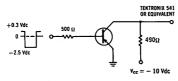

 $V_{\text{CES}} = 12 \, \text{V}$ $I_C = 100 \text{ mA}$ $f_T = 300 \, \text{Mc}$



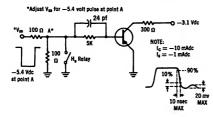

PNP germanium epitaxial mesa transistors for highspeed switching applications.

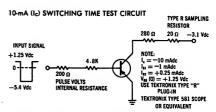

MAXIMUM RATINGS

Characteristic	Symbol	Rating	Unit
Collector-Base Voltage	V _{CBO}	12	Vdc
Collector-Emitter Voltage	V _{CES}	12	Vdc
Junction Temperature	T,	100	°C
Storagė Temperature	T _{stg}	-65 to +100	°C
Device Dissipation @ 25°C Case Temperature (Derate 4 mW/°C above 25°C)	Po	300	mW
Device Dissipation @ 25°C Ambient (Derate 2 mW/°C)	Po	150	mW

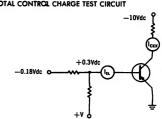

- Motorola High-Frequency Transistors ----

2N963, 2N967 (continued)

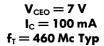

ELECTRICAL CHARACTERISTICS (At 25°C unless otherwise specified)


Characteristic	Symbol	Minimum	Maximum	Unit
Collector-Base Breakdown Voltage	BV _{CBO}			
$I_{\rm c}=-100~\mu {\rm Adc},I_{\rm E}=0$		12		Vdc
Collector-Latch-up Voltage	LV _{CEX}			
$V_{cc} = -10 \text{ Vdc}$		10		Vdc
Emitter-Base Breakdown Voltage	BVEBO		i	
$I_{\rm F} = -100 \mu \text{Adc}, I_{\rm C} = 0$	<u></u>	2		Vdc
Collector-Emitter Cutoff Current V _{CE} = -12 Vdc, V _{EB} = 0	ICES			
Collector Cutoff Current			100	μAdc
$V_{CB} = -6 \text{ Vdc}, I_{E} = 0$	I _{CBO}			1
Emitter Cutoff Current			5	μAdc
$V_{ER} = -5 \text{ Vdc}, I_C = 0$	I _{EBO}		1 1	
Collector Cutoff Current	I _{CEX}		<u> </u>	mAdc
$V_{CE} = -10 \text{ Vdc}, V_{BE} = +0.3 \text{ Vdc}, T_A = 55^{\circ}\text{C}$	'CEX	_	20	μAdc
Base Cutoff Current	I _{BL}			
$V_{CE} = -10 \text{ Vdc}, V_{BE} = +0.3 \text{ Vdc}, T_A = 55^{\circ}\text{C}$		-	20	μAdc
DC Forward Current Transfer Ratio	h _{FE}			
$I_c = -10$ mAdc, $V_{ce} = -0.3$ Vdc 2N963		20	_	_
2N967	<u> </u>	40		
Collector Saturation Voltage $I_C = -10$ mAdc, $I_B = -1$ mAdc	V _{CE(sat)}			
			0.2	Vdc
Base-Emitter Voltage $I_C = -10 \text{ mAdc}$, $I_R = -1 \text{ mAdc}$	V _{BE}	0.3	0.5	
Current Gain-Bandwidth Product		0.3	0.5	Vdc
$V_{CE} = -1 \text{ Vdc}, I_C = -20 \text{ mAdc}, f = 100 \text{ mc}$	f₹	300		
Collector Output Capacitance	_	- 500		mc
$V_{CB} = -5 \text{ Vdc}, I_E = 0, f = 1 \text{ mc}$	Соь	· _	5	Df
Input Capacitance	CiP			Pi
$V_{EB} = -1 \text{ vdc}, I_{C} = 0, f = 100 \text{ kc}$	Сib		4	pf
Turn-on Time	ton		·····	ļ <u>"</u>
$I_{\rm C}=-10$ mAdc, $I_{\rm BI}=-1$ mAdc, $V_{\rm BE(0)}=+1.25$ Vdc	Lon		60	nsec
Turn-off Time	t _{off}			
$I_c = -10$ mAdc, $I_{BI} = -1$ mAdc, $I_{BZ} = +1.25$ mAdc			120	nsec
Total Control Charge	Q,			
$I_c = -10$ mAdc, $I_B = -1$ mAdc			120	pico-coulombs

COLLECTOR LATCH-UP VOLTAGE TEST CIRCUIT

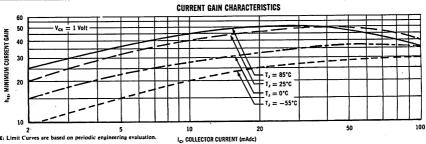


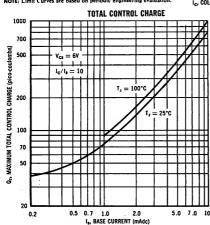
BASE AND COLLECTOR CUTOFF CURRENT TEST CIRCUIT



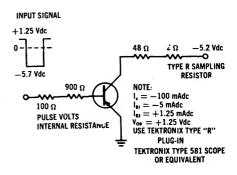
10-mA (Ic) TOTAL CONTROL CHARGE TEST CIRCUIT

2N964A





PNP germanium epitaxial mesa transistor for high-speed switching applications.


MAXIMUM RATINGS

Characteristic	Symbol	Rating	Unit
Collector-Base Voltage	Vсво	15	Vdc
Collector-Emitter Voltage	VCES	15	Vdc-
Emitter-Base Voltage	VEBO	2.5	Vdc
Collector Current	Ic	100	mAdc
Junction Temperature	Tu	100	°C
Storage Temperature	T _{stq}	-65 to +100	°C
Total Device Dissipation at 25°C Case Temperature (Derate 4 mW/°C above 25°C)	P _D	300	mW
Total Device Dissipation at 25°C Ambient Temperature (Derate 2 mW/°C above 25°C)	Po	150	mW

100-mA (Ic) SWITCHING TIME TEST CIRCUIT

2N964A (continued)

FOR ADDITIONAL CURVES, SEE 2N960 DATA SHEET

ELECTRICAL CHARACTERISTICS

(Registered with EIA as the 2N964A) (at 25°C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					
Collector-Base Breakdown Voltage	BVCEO				Vdc
$(I_c = -100 \mu Adc, I_E = 0)$		15	25	_	Vuc
Collector-Emitter Breakdown Voltage	BVCEO				Vdc
$(I_c = 10 \text{ mAdc}, I_s = 0)$	CEO	7	_	_	***
Collector Latch-up Voltage	LV _{CEX}	11.5			Vdc
Emitter-Base Breakdown Voltage	BV _{EBO}				Vdc
$(I_E=100~\mu Adc,~I_C=0)$	1.00	2.5	_	_	
Collector-Emitter Cutoff Current	I _{CES}				μAdc
$(V_{CE} = -15 \text{ Vdc}, V_{EB} = 0)$		_	_	100	
Collector Cutoff Current	Icto				μAdc
$(V_{CB} = -6 \text{ Vdc, } I_E = 0)$			0.4	3	
Base Leakage Current	IBL				μAdc
$(V_{CE} = -6 \text{ Vdc}, V_{OB} = +0.5 \text{ Vdc})$		_	50	4 140	
$(V_{CE} = -6 \text{ Vdc}, V_{OB} = +0.5 \text{ Vdc}, T_j = 85^{\circ}\text{C})$				140	
ON CHARACTERISTICS					
Forward Current Transfer Ratio	h _{FE}				
$(I_C = -10 \text{ mAdc}, V_{CE} = -0.3 \text{ Vdc})$		40	80	_	
$(I_c = -10 \text{ mAdc}, V_{ce} = -0.3 \text{ Vdc}, T_j = -55^{\circ}\text{C})$		20	45	_	
$(I_c = -50 \text{ mAdc}, V_{c\epsilon} = -1 \text{ Vdc})$ $(I_c = -100 \text{ mAdc}, V_{c\epsilon} = -1 \text{ Vdc})$		48 40	105 95		
$(I_c = -100 \text{ mAdc}, V_{ce} = -1 \text{ Vdc}, T_i = 85^{\circ}\text{C})$		35	85	_	
Collector Saturation Voltage	V _{CE(set)}				Vdc
$(I_c = -10 \text{ mAdc}, I_s = -1 \text{ mAdc})$	Celsell		0.1	0.18	vuc.
$(I_c = -50 \text{ mAdc}, I_s = -5 \text{ mAdc})$		_	0.16	0.28	
$(I_c = -100 \text{ mAdc}, I_s = -10 \text{ mAdc})$			0.22	0.4	
Base-Emitter Voltage	VsE				Vdc
$(I_c = -10 \text{ mAdc}, I_s = -1 \text{ mAdc})$		0.3	0.38	0.44	
$(I_c = -50 \text{ mAdc}, I_s = -5 \text{ mAdc})$ $(I_c = -100 \text{ mAdc}, I_s = -10 \text{ mAdc})$		0.4 0.4	0.48 0.6	0.58 0.72	
TRANSIENT CHARACTERISTICS					
Output Capacitance	C°P		0.7	-	pf
$(V_{cs} = -1 \text{ Vdc}, I_s = 0, f = 1 \text{ mc})$		_	2.7 2.2	5 4	
$(V_{C8} = -10 \text{ Vdc}, I_E = 0, f = 1 \text{ mc})$ Input Capacitance					
$(V_{EB} = 1 \text{ Vdc}, I_{C} = 0, f = 100 \text{ kc})$	CiP	_	2	3.5	pf
Small Signal Forward Current Transfer Ratio					
$(I_C = -20 \text{ mAdc}, V_{CE} = -1 \text{ Vdc}, f = 100 \text{ mc})$	h _{fe}	3.0	4.6		_
Current-Gain — Bandwidth Product	$ f_{\tau}$				
$(I_E = -20 \text{ mAdc}, V_{CB} = -1 \text{ Vdc})$	• •	300	460	_	mc
Delay Time Plus Rise Time	$t_d + t_r$				nsec
$(I_C = -10 \text{ mA})$		_	35	50	11360
$(I_c = -100 \text{ mA})$		_	30	50	
Storage Time Plus Fall Time	$t_i + t_i$				nsec
$(I_{c}=-10 \text{ mA})$		_	60	85	1
$(I_c = -100 \text{ mA})$			50	85	
Total Control Charge	Q _T				pico-
$(I_c = -10 \text{ mA}, I_s = -1 \text{ mA})$			50	75	coulombs
Active Region Time Constant	$ au_{\scriptscriptstyle{A}}$				nsec
$(I_c = -10 \text{ mA})$		_	0.6	1.5	

2N965 2N966

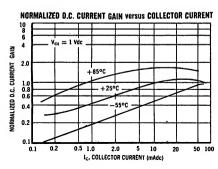
For Specifications, See 2N960 Data Sheet

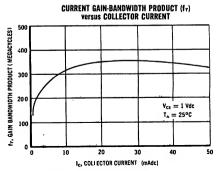
2N**967**

For Specifications, See 2N963 Data Sheet

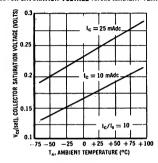
2N968 thru 2N975

 $V_{CES} = 7-15 \text{ V}$ $I_C = 100 \text{ mA}$ $f_T = 320 \text{ Mc}$

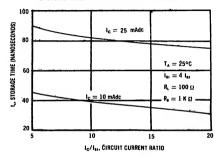

CASE 22 (TO-18)



PNP germanium mesa transistors for high-speed switching applications.


MAXIMUM RATINGS

Characteristic	Symbol	2N968 2N972	2N969 2N973	2N970 2N974	2N971 2N975	Unit
Collector - Base Voltage	Vcво	15	12	12	7	Vdc
Collector - Emitter Voltage	Vces	15	12	12	7	Vdc
Emitter - Base Voltage	VEBO	2.5	2.0	1.25	1.25	Vdc
Junction Temperature	T _i	+100				°C
Storage Temperature Range	T _{stg}			°C		
Total Device Dissipation @ T _j = 25°C (Derate 4mW/°C above 25°C)	Po	-65 to +100				mW
Total Device Dissipation @ T _A = 25°C (Derate 2mW/°C above 25°C)	Po		mW			



COLLECTOR SATURATION VOLTAGE versus AMBIENT TEMPERATURE

STORAGE TIME VERSUS CIRCUIT CURRENT RATIO

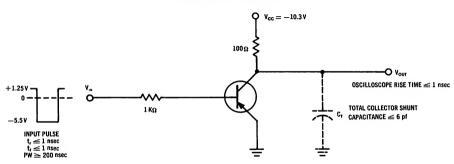
----- Motorola High-Frequency Transistors ----

2N968 thru 2N975 (continued)

ELECTRICAL CHARACTERISTICS (At 25°C unless otherwise noted)

Characteristic		Symbol	Minimum	Typical	Maximum	Unit
Collector Base Breakdown Voltage (I_c = $-100~\mu {\rm Adc}$, I_ $\epsilon = 0$)	2N968, 2N972 2N969, 2N970, 2N973, 2N974 2N971, 2N975	BV _{C8O}	15 12 7	25 20 15	_ 	Vdc
Emitter Base Breakdown Voltage (I $_{\rm E}=-100~\mu{\rm Adc}$, I $_{\rm C}=0$)	2N968, 2N972 2N969, 2N973 2N970, 2N974 2N971, 2N975	BV _{EBO}	2.5 2.0 1.25 1.25		— — —	Vdc
$ \begin{array}{l} \text{Collector-Emitter Cutoff Current} \\ (\text{V}_{\text{SE}} = 0) \\ (\text{V}_{\text{CE}} = -15 \text{ Vdc}) \\ (\text{V}_{\text{CE}} = -12 \text{ Vdc}) \\ (\text{V}_{\text{CE}} = -7 \text{ Vdc}) \end{array} $	2N968, 2N972 2N969, 2N970, 2N973, 2N974 2N971, 2N975	I _{CES}		111	100 100 100	μAdc
	974 2N971, 2N975	I _{CBO}	_	_	. 3 10	μAdc
$(I_c = -10 \text{ mAdc}, V_{ce} = -0.5 \text{ Vdc})$ $(I_c = -25 \cdot \text{mAdc}, V_{ce} = -0.7 \text{ Vdc})$	2N974, 2N975	h _{FE}	17 40 20 40	35 75 40 85	= = =	_
$ \begin{array}{l} \mbox{Collector-Emitter Saturation Voltage} \\ \mbox{(I}_{\text{C}} = -10 \mbox{ mAdc, I}_{\text{B}} = -1 \mbox{ mAdc)} \\ \mbox{(I}_{\text{C}} = -25 \mbox{ mAdc, I}_{\text{B}} = -1.5 \mbox{ mAdc)} \end{array} $	All Types All Types	V _{CE(1at)}	_	0.19 0.25	0.25 0.5	Vdc
$(I_c = -10 \text{ mAdc}, I_s = -1 \text{ mAdc})$ $(I_c = -25 \text{ mAdc}, I_s = -1.5 \text{ mAdc})$	2N974, 2N975	V _{BE(101)}	0.30 0.30 —	0.39 0.43 0.45 0.60	0.55 0.65 0.80 1.0	Vdc
Current Gain-Bandwidth Product ($I_{\rm E}=-10$ mAdc, $V_{\rm Cs}=-1$ Vdc)	All Types	f _T	250	320	_	mc
Collector Output Capacitance ($V_{\text{ca}} = -10$ Vdc, f = 1 mc, $I_{\text{E}} = 0$)	All Types	С°Р	_	4.0	9.0	pf
Emitter Transition Capacitance ($V_{EB}=1\ Vdc,\ I_{C}=0$)	All Types	C _{Te}	-	3.5	_	pf
Turn-on Time (I _C = -10 mAdc, I _B , = -1 mA) V _{BE} (0) = $+1.25$ Vdc	2N968, 2N969, 2N972, 2N973 2N970, 2N971, 2N974, 2N975	t _{on}	-	50 65	75 100	nsec
2N972	, 2N969 , 2N973 , 2N971, 2N974, 2N975	t _{off}		70 75 100	150 175 275	nsec
Total Control Charge ($I_c=-10$ mAdc, $I_B=1$ mA) 2N968 2N970 (Figure 4) ($I_C=-25$ mAdc, $I_B=-1.5$ mA)	, 2N971, 2N974, 2N975	Q _T	_	75 80	100 150	pico- coulombs
2N968	. 2N969, 2N972, 2N973 2N971, 2N974, 2N975		= *	90 175	175 300	

 $V_{CEO} = 7 \text{ V}$ $I_{C} = 200 \text{ mA}$ $f_{T} = 300 \text{ Mc}$



PNP germanium epitaxial mesa transistor for highspeed switching applications.

MAXIMUM RATINGS

Characteristic	Symbol	Ratings	Unit
Collector-Base Voltage	v _{CBO}	-15	Vdc
Collector-Emitter Voltage	VCEO	-7	Vdc
Emitter-Base Voltage	V _{EBO}	-3	Vdc
Collector Current	I _C	-200	mAdc
Junction Temperature	т	100	°C
Storage Temperature	T _{stg}	-65 to +100	°C
Device Dissipation @ T _C = 25 ^o C Derating factor above 25 ^o C	P _D	300 4	mW mW/ ^o C
Device Dissipation @ T _A = 25°C Derating factor above 25°C	PD	150 2	mW mW/ ^O C

SWITCHING TIME TEST CIRCUIT

---- Motorola High-Frequency Transistors -----

2N985 (continued)

ELECTRICAL CHARACTERISTICS (At 25°C unless otherwise noted)

Characteristic	Symbol	Min	Max	Unit
Collector-Base Breakdown Voltage (I _C = -100 µAdc, I _E = 0)	вусво	-15	_	Vdc
Collector-Emitter Breakdown Voltage (I _C = -5 mAdc, I _B = 0)	BVCEO	-7	_	Vdc
Collector-Emitter Breakdown Voltage (IC = -100 μ Adc, R _{BE} = 0)	· BV _{CES}	-15	_	Vdc
Emitter-Base Breakdown Voltage (I_E = -100 μ Adc, I_C = 0)	BVEBO	-3	_	Vdc
Collector Cutoff Current (V _{CB} = -5 Vdc, I _E = 0)	I _{СВО}	_	-3	μ Adc
Emitter Cutoff Current (V _{EB} = -3 Vdc, I _C = 0)	I _{EBO}	_	-100	μ Adc
DC Current Gain ($I_C = -10$ mAdc, $V_{CE} = -0.25$ Vdc) ($I_C = -100$ mAdc, $V_{CE} = -0.5$ Vdc)	h _{FE}	40 60	_	-
Collector Saturation Voltage (I_C = -10 mAdc, I_B = -0.5 mAdc) (I_C = -100 mAdc, I_B = -5 mAdc)	V _{CE(sat)}		-0.15 -0.30	Vdc
Base-Emitter Voltage (I_C = -10 mAdc, I_B = 0.5 mAdc) (I_C = -100 mAdc, I_B = -5 mAdc)	V _{BE}	-0.28 -0.40	-0.40 -0.60	Vdc
Small Signal Current Gain $(V_{CE} = -2 \text{ Vdc}, I_{C} = -30 \text{ mAdc}, f = 100 \text{ mc})$	h _{fe}	3.0	_	-
Collector Output Capacitance (V _{CB} = -5 Vdc, I _E = 0, f = 1 mc)	Cop	_	6	pf
Turn-on Time $(I_C = -10 \text{ mAdc}, I_{B1} = -5 \text{ mAdc}, V_{BE(0)} = +1.25 \text{ Vdc})$. ton	-	35	nsec
Turn-off Time ($I_C = -10 \text{ mAdc}$, $I_{B1} = -5 \text{ mAdc}$, $I_{B2} = +1.25 \text{ mA}$)	toff	_	80	nsec

2N995

For Specifications, See 2N869 Data Sheet

 $V_{CEO} = 20-35 \text{ V}$ $I_C = 600 \text{ mA}$ $f_T = 120 \text{ Mc Typ}$

PNP silicon annular transistors for medium-currentswitching applications.

MAXIMUM RATINGS

Characteristics	Symbol	Rating	Unit
Collector-Base Voltage 2N1131 2N1991	v _{CBO}	50 30	Vdc
Collector-Emitter Voltage 2N1131 2N1991	v _{CEO}	35 20	Vdc
Emitter-Base Voltage 2N1131, 2N1991	V _{EBO}	5	Vdc
Collector-Emitter Voltage $(R_{be} \leq 10 \Omega)$ 2N1131	v _{CER}	50	Vdc
Collector Current 2N113I	I _C	600	mAdc
Total Device Dissipation @ 25°C Case Temperature Both Types Derating Factor Above 25°C 2N1131 2N1991	P _D	2 18.3 16.0	Watts mW/ ^O C mW/ ^O C
Total Device Dissipation @ 25 ^o C Ambient Temperature Both Types Derating Factor Above 25 ^o C 2N1131 2N1991	P _D	0.6 4.0 4.8	Watt mW/°C mW/°C
Junction Temperature 2N1131 2N1991	${f T_J}$	+175 +150	· °C
Storage Temperature Range 2N1131 2N1991	T _{stg}	-65 to +300 -65 to +150	°C

----- Motorola High-Frequency Transistors -----

2N1131, 2N1991 (continued)

ELECTRICAL CHARACTERISTICS (At 25°C unless otherwise noted)

Characteristics	Types	Symbol	Min	Max	Unit
Collector-Base Breakdown Voltage ($I_C = 100~\mu$ Adc, $I_E = 0$) ($I_C = 1.0$ mA, $I_E = 0$)	2N1131 2N1991	вусво	50 30	=	Vdc
Emitter-Base Breakdown Voltage ($I_E = 100 \mu Adc, I_C = 0$)		BVEBO	5	_	Vdc
Collector-Emitter Breakdown Voltage (I _C = 100 mAdc pulse, I _B = 0)	2N1131 2N1991	BV _{CEO}	35 20	=	Vdc
Collector-Emitter Breakdown Voltage ($I_C = 100 \text{ mAdc}$ pulsed, $R_{be} \le 10 \Omega$)	2N1131	BVCER	50	_	Vdc
Collector Cutoff Current $(V_{CB} = 30 \text{ Vdc}, I_E = 0)$ $(V_{CB} = 30 \text{ Vdc}, I_E = 0, T_A = 150^{\circ}\text{C})$ $(V_{CB} = 50 \text{ Vdc}, I_E = 0)$ $(V_{CB} = 10 \text{ Vdc}, I_E = 0)$ $(V_{CB} = 10 \text{ Vdc}, I_E = 0)$ $(V_{CB} = 10 \text{ Vdc}, I_E = 0, T_A = 150^{\circ}\text{C})$	2N1131 2N1131 2N1131 2N1991 2N1991	I _{СВО}	- - - -	1 100 100 5 200	μ Adc
Emitter Cutoff Current $(V_{EB} = 2 \text{ Vdc}, I_C = 0)$ $(V_{EB} = 1 \text{ Vdc}, I_C == 0)$	2N1131 2N1991	IEBO	=	100 200	μ Adc
DC Forward Current Transfer Ratio ($I_C = 5$ mAdc, $V_{CE} = 10$ Vdc) ($I_C = 30$ mAdc, $V_{CE} = 10$ Vdc) ($I_C = 150$ mAdc, $V_{CE} = 10$ Vdc)	2N1131 2N1991 2N1131 2N1991	. hFE	15 15 20 15		-
Collector-Emitter Saturation Voltage (I _C = 150 mAdc, I _B = 15 mAdc)	-	V _{CE} (sat)	_	1.5	Vdc
Base-Emitter Saturation Voltage (I _C = 150 mAdc, I _B = 15 mAdc)	2N1131 2N1991	V _{BE} (sat)	=	1.3 1.5	Vdc
Output Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 100 kc)		C _{ob}	_	45	pf
Input Capacitance (V _{EB} = 0.5 Vdc, I _C = 0, f = 100 kc)	2N1131	C _{ib}	_	80	pf
AC Current Gain (IC = 50 mAde, VCE = 10 Vdc, f = 20 me)	2N1131 2N1991	h _{fe}	2. 5 2. 0		-
Small-Signål Forward Current Transfer Ratio ($I_C = 1 \text{ mAdc}$, $V_{CE} = 5 \text{ Vdc}$, $f = 1 \text{ kc}$) ($I_C = 5 \text{ mAdc}$, $V_{CE} = 10 \text{ Vdc}$, $f = 1 \text{ kc}$)	2N1131 2N1131	h _{fe}	15 20	50 —	_
Small Signal Input Resistance (I _C = 1 mAdc, V_{CB} = 5 Vdc, f = 1 kc) (I _C = 5 mAdc, V_{CB} = 10 Vdc, f = 1 kc)	2N1131	h _{ib} .	25 —	35 10	ohms
Small Signal Output Admittance ($I_C = 1 \text{ mAdc}$, $V_{CE} = 5 \text{ Vdc}$, $f = 1 \text{ kc}$) ($I_C = 5 \text{ mAdc}$, $V_{CE} = 10 \text{ Vdc}$, $f = 1 \text{ kc}$)	2N1131	h _{ob}	=	1 5	μ mhos
Small Signal Voltage Feedback Ratio ($I_C = 1 \text{ mAdc}$, $V_{CE} = 5 \text{ Vdc}$, $f = 1 \text{ kc}$) ($I_C = 5 \text{ mAdc}$, $V_{CE} = 10 \text{ Vdc}$, $f = 1 \text{ kc}$)	2N1131	h _{rb}	=	8 8	x 10 ⁻⁴

Pulse Test: Pulse width $\leq 300~\mu\,\mathrm{sec}$, Duty Cycle $\leq 2\%$

2N1132, A, B

For Specifications, See 2N722 Data Sheet

2N1141 thru 2N1143

2N1195

 $G_{e} = 25 \text{ db } @ 70 \text{ Mc}$ NF = 4-5 db @ 100 Mc $P_{D} = 300 \text{ mW}$

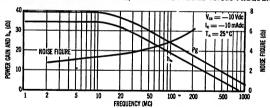
CASE 31 (TO-5) PNP germanium mesa transistors for amplifier, driver, oscillator and doubler applications.

MAXIMUM RATINGS

Characteristic	Symbol	2N1141	2N1142	2N1143	2N1195	Unit
Collector-Base Voltage	V _{СВО}	35	30	25	30	Vdc
Emitter-Base Voltage	VEBO	1.0	0.7	0.5	1.0	Vdc
Collector Current (Continuous)	lc	100	100	100	40	mAdc
Emitter Current (Continuous)	I _E	100	100	100	_	mAdc
Base Current	I _B	50	50	50	Ξ	mAdc
Junction Temperature	TJ	+100	+100	+100	+100	°C
Storage Temperature Range	Tstg					°C
Total Device Dissipation at 25°C Case Temperature (10 mW/°C)	Po	750	750	750	_	mW
Total Device Dissipation at 25°C Ambient Temperature (Derate 4 mW/°C above 25°C)	Po	300	300	300		mW
Collector Dissipation at 25°C Ambient Temperature (Derate 3 mW/°C above 25°C)	Pc	_	_	_	225	mW

TRANSISTOR SELECTION CHART

ТҮРЕ	Minimum BV _{CIO} $@l_c = -100 \mu \text{Adc}, l_i = 0$			Typical 100mc Noise Figure @ $V_{c\epsilon} = -10 Vdc$, $I_{\epsilon} = 1 mAdc$ $R_s = 75 \Omega$		@ Ic =	Minimum h _r —10mAdc, Vdc, f — 10	, V _{cs} =	
	35 Vdc	30 Vdc	25 Vdc	4.0 db	4.5 db	5.0 db	12 db	10 db	8 db
2N1141	1			1			<u> </u>		
2N1142		1			1				
2N1143			1			~			
2N1195		~		1			1		


----- Motorola High-Frequency Transistors -----

2N1141-2N1143, 2N1195 (continued)

ELECTRICAL CHARACTERISTICS (At 25°C case temperature unless otherwise specified)

Characteristic		Symbol	Minimum	Typical	Maximum	Uni
Collector-Base Breakdown Voltage ($t_c=-100\mu \text{Adc}, t_t=0$)	2N1141 2N1142 2N1143 2N1195	BV _{ceo}	35 30 25 30	45 45 45 45	=	Vdc
Emitter-Base Breakdown Voltage ($t_{\rm e}=100\mu$ A, $t_{\rm c}=0$)	2N1141 2N1142 2N1143 2N1195	BV _{MO}	1.0 0.7 0.5 1.0	1.3 1.3 1.3 1.3	<u> </u>	Vdc
Collector-Base Cutoff Current (V _{ct} = -15 Vdc, I _t = 0) (V _{ct} = -20 Vdc, I _t = 0)	2N1141, 2N1142, 2N1143 2N1195	Icao		0.5 0.5	5 5	μAdo
Emitter-Base Cutoff Current (V _{es} == -0.5 Vdc, I _c == 0)	All Types	luo		0.2		μAdo
DC Forward Current Transfer Ratio (V _{ct} == 10 Vdc, I _c == -10 mAdc)	2N1141, 2N1142, 2N1143 2N1195	h _{ee}	10	25 25	=	-
Collector Saturation Voltage (I _c = -50 mAdc , I _s = -10 mAdc)	2N1141, 2N1142, 2N1143 2N1195	Votjunj		0.185 0.185	2	Vdc
Small Signal Forward Current Transfer Ratio (V $_{\rm cl}=-10$ Vdc , I $_{\rm c}=-10$ mAdc , f $=100$ mc)	2N1141 2N1142 2N1142 2N1143 2N1195	h.,	12 10 8 12	18 18 18 18	= -	db
Small Signal Forward Current Transfer Ratio ($V_{\rm cs}=-10$ Vdc, $I_{\rm c}=-10$ mAdc, $f=1$ kc)	2N1141, 2N1142, 2N1143 2N1195	h _s ,		0.98	0.995	-
Small Signal Input Impedance $(V_{ct} = -10 \text{ Vdc}, I_c = -10 \text{ mAdc}, f = 1 \text{ kc})$	2N1141, 2N1142, 2N1143 2N1195	h.		3.6 3.6		Ohms
Output Admittance (V _{ct} = 10 Vdc, I _c = -10 mAdc, f = 1 kc)	2N1141, 2N1142, 2N1143 2N1195	h _{ab}		10 10		μmho
Voltage Feedback Ratio $V_{cs} = -10 \text{Vdc}, I_c = -10 \text{mAdc}, f = 1 \text{kc})$	2N1141, 2N1142, 2N1143 2N1195	h,		0.0013 0.0013	0.003	-
Small Signal Current Gain Cutoff Frequency (Vcr = -10 Vdc, Ic = -10 mAdc)	All Types	fα _b		1000	0.005	mc
Base Resistance (V $_{\rm crit}=-10$ Vdc, I $_{\rm c}=-10$ mAdc, f $=250$ mc)	2N1141 2N1142 2N1143 2N1195	<i>1,</i> '	=	65 80 110 65	70 - 80	Ohms
Collector Transition Capacitance ($V_{\rm cs}=-10$ Vdc, $I_{\rm s}=0$, ${\rm f}=1$ mc)	2N1141 2N1142 2N1143 2N1195	Cre	=	1.1 1.1 1.1 1.1	1.5	pf
Emitter Transition Capacitance ($V_{cs} = 0.5 \text{ Vdc}$, $I_c = 0, f = 1 \text{ mc}$)	All Types	C _{re}		2.5		pf
Collector-Base Time Constant $(V_{ce} = -10 \text{ Vdc}, I_e = 3 \text{ mAdc}, f = 30 \text{ mc})$	All Types	r,°C,		23		p sec
Noise Figure (V _{ct} = -5 Vdc, I _s =8 mAdc, f = 4.5 mc, R _s = 300n)	2N1141 2N1142	NF	Ξ	3.0 3.5		db
$(V_{ca} = -10 \text{ Vdc}, I_s = 1 \text{ mAdc},$	2N1143 2N1195		=	4.0 3.0	Ξ	
f = 100 mc, R _s = 75n)	2N1141 2N1142 2N1143 2N1195		=	4.0 4.5 5.0 4.5	=	
$V_{ca} = -10 \text{ Vdc}, I_1 = 1 \text{ mAdc}, f = 200 \text{ mc}, R_s = 50 \text{ m}$	2N1141 2N1142 2N1143 2N1195		= = = = = = = = = = = = = = = = = = = =	5.5 6.0 6.5 6.0	= = =	
Oscillator Efficiency $(V_{cs}=-20\mathrm{Vdc},\mathrm{I_c}=-10\mathrm{mAdc},\mathrm{f}=400\mathrm{mc})$	2N1141 2N1142 2N1143 2N1195	7	<u> </u>	20 18 12 18	=	%
Collector Series Resistance (V _{cs} = -10 Vdc, I _s = 10 mAdc)	All Types	T,'		2		Ohms

COMMON EMITTER POWER GAIN his, AND NOISE FIGURE VERSUS FREQUENCY

----- Motorola High-Frequency Transistors

2N1204, A 2N1494, A 2N1495 2N1496 2N2096

 $V_{CEO} = 12-25 \text{ V}$ $I_C = 500 \text{ mA}$ $f_T = 200 \text{ Mc Typ}$

2N2097 2N2099 2N2100

PNP germanium epitaxial mesa transistors for high-speed, high-current switching in line and core driver applications.

CASE 31 (TO-5)

CASE 25 (TO-31)

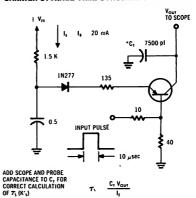
2N1204,A 2N1495 2N2099 2N2100 2N1494,A 2N1496 2N2096 2N2097

MAXIMUM RATINGS

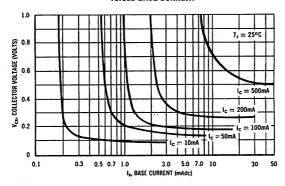
Characteristics	Symbol	Maximum	Unit
Collector-Base Voltage	v _{сво}		Vdc
2N1204, 2N1204A, 2N1494, 2N1494A 2N2096, 2N2099	CÞO	20 25	
2N1495, 2N1496, 2N2097, 2N2100		40	
Collector-Emitter Voltage	v _{CEO}		Vdc
2N2096, 2N2099	0,00	12	
2N1204, 2N1204A, 2N1494A		15	
2N2097, 2N2100		20	
2N1495, 2N1496		25	
Collector-Emitter Voltage	v _{ces}		Vdc
2N1204, 2N1204A, 2N1494, 2N1494A		20	
2N2096, 2N2099		25	
2N1495, 2N1496, 2N2097, 2N2100		40	
Emitter-Base Voltage	v _{EBO}	4	Vdc
Collector Current	I _C	500	mAdc
Total Device Dissipation @ T _C = 25°C	P _D		
All Types		750	mW
derating factor above 25°C		10	mW/°C
Total Device Dissipation @ T _A = 25°C	P _D		
TO-5 Case	_		
2N1204, 2N1204A, 2N1495, 2N2099, 2N2100		300	mW
derating factor above 25°C		4.0	mW/°C
TO-31 Case			
2N1494, 2N1494A, 2N1496, 2N2096, 2N2097		500	mW
derating factor above 25°C		6. 67	mW/°C
Operating Junction Range	$_{\mathrm{T}}^{\mathrm{T}}_{\mathrm{J}}$	-65 to +100	°C
Storage Temperature Range	Tstg	-03 10 +100	

2N12O4, A SERIES (continued)

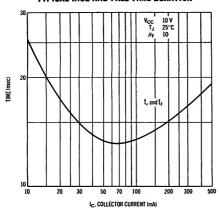
ELECTRICAL CHARACTERISTICS (At 25°C amblent unless otherwise noted)

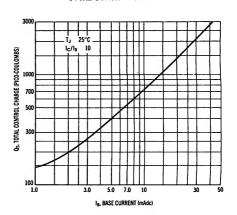

C-III Pro- Pro- II	Characteristics	Symbol	Minimum	Typical	Maximum	Unit
Collector-Base Breakdown Voltage (I _C = 100 µAdc, I _E = 0)	2N1204, 2N1204A, 2N1494, 2N1494A 2N2086, 2N2095 2N1495, 2N1496, 2N2097, 2N2100	вусво	20 25 40	40 -	=	Vdc
Collector-Emitter Breakdown Voltage (1 _C = 100 μAdc, V _{EB} = 0)	2N1204, 2N1204A, 2N1494, 2N1494A 2N2098, 2N2099	BVCES	20 25	40	-	Vdc
Collector-Emitter Breakdown Voltage	2N1495, 2N1496, 2N2097, 2N2100	 	40			
(I _C = 2 mAdc, I _B = 0) (I _C = 10 mAdc, I _B = 0)	2N1204, 2N1204A, 2N1494. 2N1494A	вусео	15	25		Vdc
	2N2096, 2N2099 2N2097, 2N2100 2N1495, 2N1496		12 20 25	=	=	
Emitter-Base Breakdown Voltage (I _E = 1 mAdc, I _C = 0)	2N1204, 2N1204A, 2N1494 thru 2N1496, 2N1494A	BV _{EBO}	4	-	-	Vdc
(1 _E = 10 mAdc, 1 _C = 0) Collector Cutoff Current	2N2096, 2N2097, 2N2099, 2N2100		4	_	_	
(V _{CB} = 5 Vdc, I _E = 0)	2N1204, 2N1204A, 2N1494 thru 2N1496, 2N1494A	1 _{СВО}	-	0,4	7	μAdc
(V _{CB} = 12 Vdc, I _E = 0) (V _{CB} = 15 Vdc, I _E = 0)	2N2096, 2N2099 2N2097, 2N2100		-	-	12 12	
Emitter Cutoff Current (V _{OB} = 0.5 Vdc, 1 _C = 0)	2N1494 thru 2N1496, 2N1494A	IEBO			5	μAdc
(V _{OB} = 1 Vdc, 1 _C = 0) DC Current Gain	2N2096, 2N2097, 2N2099, 2N2100			10	50	
(1 _C = 200 mAde, V _{CE} = 0.5 Vdc)	2N1204A, 2N1494A, 2N1495, 2N1496	h _{FE}	25	-	_	_
(1 _C = 200 mAdc, V _{CE} = 1 Vdc) (1 _C = 400 mAdc, V _{CE} = 1.5 Vdc)*	2N2097, 2N2100 2N1204, 2N1494, 2N2098, 2N2099		30	70	-	
	2N2097, 2N2100		15 20	35 50	=	
Collector-Emitter Saturation Voltage (1 _C = 50 mAdc, 1 _B = 2.5 mAdc)	2N2097, 2N2100	V _{CE(sat)}	_	-	0.3	Vdc
(1 _C = 200 mAde, 1 _B = 10 mAde)	2N1204, 2N1204A, 2N1494, 2N1494A 2N2097, 2N2100 2N2096, 2N2099		=	Ξ	0.4 0.5 0.6	
(I _C = 200 mAdc, I _B = 20 mAdc)	2N1495, 2N1496	1	_	_	0.3	
(I _C = 400 mAdc, I _B = 25 mAdc)**	2N1204A, 2N1494A. 2N1495, 2N1496		-	-	0.7	
Base-Emitter Saturation Voltage (I _C = 50 mAdc, I _B = 2.5 mAdc)	2N2097, 2N2100 ·	V _{BE(sat)}	-	_	0, 5	Vdc
(I _C = 200 mAdc, I _B = 10 mAdc)	2N1204, 2N1204A, 2N1494 thru 2N1496, 2N1494A 2N2097, 2N2100 2N2096, 2N2099		0.40	0.60	0.72 0.8 0.9	
Collector Output Capacitance (V _{CB} = 10 Vdc, 1 _E = 0, f = 4 mc)	2N1204, 2N1204A, 2N1494 thru 2N1496, 2N1494A 2N2098, 2N2097, 2N2099, 2N2100	c ^{op}	-	3, 5 3, 5	6, 5	pf
nput Capacitance (V _{OB} = 1 Vdc, 1 _C = 0, f = 4 mc)	All Types	C _{ib}	- 1	8	50	pf
C Current Gain (1 _C = 20 mA, V _{CE} = 10 V, f = 100 mc)	2N1204, 2N1204A, 2N1494, 2N1494A 2N1495, 2N1496	h _{fe}	1.1	2	-	-
lise Time	2N2057, 2N2100 2N1204, 2N1204A, 2N1494, 2N1494A, 2N2096, 2N2099 2N1495, 2N1498	t _p	Ξ	Ξ	20 35	nsec
finority Carrier Storage Time Constant	2N1204, 2N1204A, 2N1494, 2N1494A 2N1495, 2N1496	$ au_{\mathrm{g}}$	=	30	75 90	nsec
torage Time	2N2097, 2N2100 2N2096, 2N2099	t _s	=	=	50 70	nsec
all Time	2N2097, 2N2100 2N2096, 2N2099	t _f	-	-	40 60	nsec

^{*}Pulse Test: Pulse width ≤ 1 msec, Duty cycle ≤ 6% **Pulse Test: Pulse width ≤ 5 msec, Duty cycle ≤ 2%


RISE TIME TEST CIRCUIT STORAGE AND FALL TIME TEST CIRCUIT H_R RELAY 500 TEKTRONIX TYPE 5.17 CRO OR EQUIVALENT 10 V SCOPE RISE TIME TEST CIRCUIT STORAGE AND FALL TIME TEST CIRCUIT Vovid SEE NOTE 1) NOTE 1: SCOPE RISE TIME FAST ENGUISH TO HARD ETHE READING. SCOPE RISE TIME FAST ENGUISH THE READING. 10 V 10 V SCOPE RISE TIME FAST ENGUISH THE READING.

2N1204,A SERIES (continued)


CARRIER STORAGE TIME CONSTANT TEST CIRCUIT


COLLECTOR EMITTER SATURATION VOLTAGES VEISUS BASE CURRENT

TYPICAL RISE AND FALL-TIME BEHAVIOR

TOTAL CONTROL CHARGE

For Specifications, See 2N697 Data Sheet

2N 1494, A thru 2N 1496

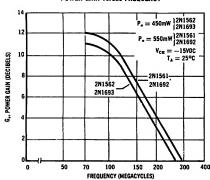
For Specifications, See 2Nl204 Data Sheet

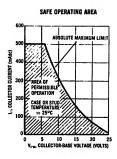
2N 1561 2N 1562 2N 1692 2N 1693

G_o = 5-6 db @ 160 Mc P_o = 0.4-0.5 W @ 160 Mc

PNP germanium mesa transistors for VHF power amplifier applications.

CASE 23 CASE 24

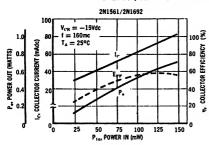

2N1561 2N1562 2N1692 2N1693

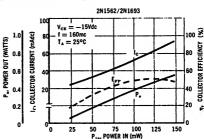

MAXIMUM RATINGS

Characteristic	Symbol	Туре	Rating	Unit
Collector-Base Voltage	V _{CBO}		25	٧
Collector-Emitter Voltage	Vces		25	٧
Emitter-Base Voltage	VEBO	2N1561, 2N1692 2N1562, 2N1693	3* 2*	V V
Collector DC Current (Continuous)	Ic		250	mAdc
Collector Current (Instantaneous)	I _c		500	ma
Junction Temperature	T,		100	°C
Storage Temperature Range	Tatg		-65 to +100	°C
Total Device Dissipation at 25°C Case Temperature (Derate 40 mW/°C above 25°C)	Pp		3	Watts
Total Device Dissipation at 25°C Ambient Temperature (Derate 3.3 mW/°C above 25°C)	Pp	2N1561, 2N1562 2N1692, 2N1693	250 350	mW

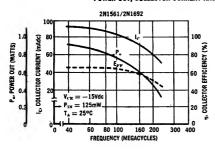
^{*}May be exceeded provided total rated device dissipation is not exceeded.

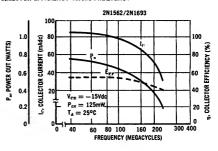
POWER GAIN versus FREQUENCY

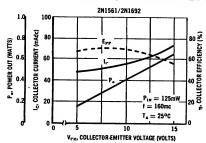


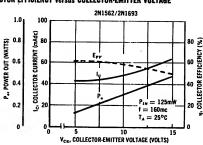

2N1561, 2N1562, 2N1692, 2N1693 (continued)

ELECTRICAL CHARACTERISTICS (At 25°C unless otherwise noted)


Characteristic	Symbol	Туре	Min	Тур	Max	Ualt
Collector-Base Breakdown Voltage $I_B=0$, $I_C=-100~\mu Adc$	BV _{CBO}		25	-	_	Vdc
Collector-Emitter Breakdown Voltage $V_{BB} = 0$, $I_C = -100 \mu Adc$	BVcm		25	1	_	Vdc
Collector Cutoff Current In = 0, Von = -10 Vdc	Icso		_	1.5	10	μAdc
Emitter Cutoff Current $I_C = 0$, $V_{BB} = -0.4 \text{ Vdc}$	I _{BBO}	2N1562, 2N1693	_	5.0	_	mAdc
Emitter Cutoff Current $I_c = 0$, $V_{BB} = -1.0 \text{ Vdc}$	Івво	2N1561, 2N1692	_	5.0	_	mAdc
Collector Saturation Voltage I ₀ = -200 mAde, I ₈ = -40 mAde	V _{CE(sat)}	2N1561, 2N1692 2N1562, 2N1693	=	_	3.0 4.0	Vdc Vdc
Small Signal Forward Current Transfer Ratio $I_0 = -50$ mAde, $V_{cs} = -10$ Vdc, $f = 160$ mc	he.	2N1561, 2N1692 2N1562, 2N1693	=	10 9	=	db db
Collector Capacitance $I_B = 0$, $V_{CB} = -10$ Vdc	C _{ob}	-	_	7	10	pf
Current Gain-Bandwidth Product $I_C = -50$ mAdc, $V_{CB} = -10$ Vdc	fτ	2N1561, 2N1692 2N1562, 2N1693	-	500 450	=_	mc mc
Base Resistance $I_B = -20$ mAde, $V_{CB} = -10$ Vdc , $f = 300$ mc	₽₽,	-	_	25	_	Ohms
Power Output $I_C = -100 \text{ mAdc Max}, f = 160 \text{ mc}$ $V_{CR} = 15 \text{ Vdc}, P_{IR} = 125 \text{ mW}$	P.	2N1561, 2N1692 2N1562, 2N1693	0.5 0.4	=	=	Watts Watts
Power Gain $I_{C} = -100 \text{ mAde Max,}$ $V_{CM} = -15 \text{ Vdc, } f = 160 \text{ mc,}$ $P_{\bullet} = 0.5 \text{ Watt}$	G.	2N1561, 2N1692	6	_	_	db
Power Gain $I_C = -100 \text{ mAdc Max,}$ $V_{CR} = -15 \text{ Vdc, } f = 160 \text{ mc,}$ $P_o = 0.4 \text{ Watt}$	G.	2N1562, 2N1693	5	-	_	db


POWER OUT, COLLECTOR CURRENT AND COLLECTOR EFFICIENCY versus POWER IN


POWER OUT, COLLECTOR CURRENT AND COLLECTOR EFFICIENCY Versus FREQUENCY



2N1561, 2N1562, 2N1692, 2N1693 (continued)

2N1613

For Specifications, See 2N718A Data Sheet

2N 1692 2N 1693

For Specifications, See 2N1561 Data Sheet

2N1711

For Specifications, See 2N718A Data Sheet

2N1991

For Specifications, See 2N1131 Data Sheet

2N2096 2N2097 2N2099 2N2100

For Specifications, See 2N1204 Data Sheet

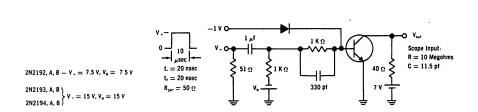
2N2192, A, B thru 2N2195, A, B

 $V_{\text{CEO}} = 25-50 \text{ V}$

 $I_C = 1 A$ $f_T = 250 Mc$

NPN silicon annular transistors for high-current switching and amplifier applications.

MAXIMUM RATINGS


Characteristic	Symbol	2N2192 2N2192A 2N2192B 2N2194 2N2194A 2N2194B	2N2193 2N2193A 2N2193B		UNIT
Collector-Base Voltage	v _{CBO}	60	80	45	Vdc
Collector-Emitter Voltage	V _{CEO}	40	50	25	Vdc
Emitter-Base Voltage	V _{EBO}	5	8	5	Vdc
Collector Current	I _C	1.0	1.0	1.0	Adc
Total Device Dissipation @ 25°C Case Temperature Derating Factor Above 25°C	P _D	0.8 4.56	0.8 4.56	0.6 3.43	Watt mW/°C
Total Device Dissipation @ 25°C Case Temperature Derating Factor Above 25°C	P _D	2.8		Watts mW/°C	
Junction Temperature, Operating	$\mathbf{T}_{\mathbf{J}}$	-65 to +200		°C	
Storage Temperature Range	T _{stg}	-6	5 to +300)	°C

2N2192,A,B thru 2N2195,A,B (continued)

ELECTRICAL CHARACTERISTICS (at 25°C unless otherwise specified)

Characteristi	ts .	Symbol	Min	Max	Unit
Collector-Base Breakdown Voltage ($I_C = 100 \mu\text{Adc}, \ I_E = 0$)	2N2192, A, B, 2N2194, A, B 2N2193, A, B 2N2195, A, B	висво	60 80 45	-	Vdc
Collector Emitter-Open Base Sustain Voltage* (I_C = 25 mA pulsed, I_B = 0)	2N2192, A, B, 2N2194, A, B 2N2193, A, B 2N2195, A, B	V _{CEO(sus)} *	40 50 25	- - -	Vdc
Emitter-Base Breakdown Voltage (I_E = 100 μ Adc, I_C = 0)	2N2192, A, B, 2N2194, A, B, 2N2195, A, B 2N2193, A, B	BV _{EBO}	5 8	-	Vdc
Collector Cutoff Current (V _{CB} = 30 Vdc, I _E = 0)	2N2192, A, B, 2N2194, A, B 2N2195, A, B 2N2192, A, B	4сво	-	.010	μAdc
(V _{CB} = 30 Vdc, I _E = 0, T _A = 150 C) (V _{CB} = 60 Vdc, I _E = 0)	2N2194, A, B 2N2195, A, B 2N2193, A, B			15 25 50 , 010	
(V _{CB} = 60 Vdc, I _E = 0, T _A = 150 C)	2N2193, A, B		-	25	
Emitter Cutoff Current (V _{EB} = 3 Vdc, I _C = 0)	2N2192, A, B, 2N2194, A, B 2N2195, A, B	1 _{EBO}	:	.050 .100	μAdc
(V _{EB} = 5 Vdc, I _C = 0)	2N2193, A, B		•	. 050	
Collector-Emitter Saturation Voltage (I _C = 150 mAdc, I _B = 15 mAdc)	2N2192 thru 2N2195 2N2192A thru 2N2195A 2N2192B thru 2N2195B	V _{CE(sat)}		0.35 0.25 0.18	Vdc
Base-Emitter Saturation Voltage ($I_C = 150 \text{ mAdc}, I_B = 15 \text{ mAdc}$)	All Types	V BE(sat)	:	1.3	Vdc
DC Current Gain* (I _C = 0.1 mAdc, V _{CE} = 10 Vdc)	2N2192, A, B, 2N2193, A, B	h _{FE} *	15		•
(I _C = 10 mAdc, V _{CE} = 10 Vdc)	2N2192, A, B 2N2193, A, B 2N2194, A, B		75 30 15	:	
(I _C = 10 mAde, V _{CE} = 10 Vdc, T _A = -55°C)	2N2192, A, B 2N2193, A, B		35 20	:	
(I _C = 150 mAde, V _{CE} = 10 Vdc)	2N2192, A, B 2N2193, A, B 2N2194, A, B 2N2195, A, B		100 40 20 20	300 120 60 -	
(I _C = 150 mAdc, V _{CE} = 1.0 Vdc)	2N2192, A, B 2N2193, A, B 2N2194, A, B 2N2195, A, B		70 30 15 10	:	
$(I_C = 500 \text{ mAdc}, V_{CE} = 10 \text{ Vdc})$	2N2192, A, B 2N2193, A, B 2N2194, A, B		· 35 20 12	:	
(I _C = 1.0 Adc, V _{CE} = 10 Vdc) 2N2192, A, B	, 2N2193, A, B		15	•	
Output Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 1.0 mc)	All Types	c ^{op}		20	pf
Small Signal Current Gain (I _C = 50 mA, V _{CE} = 10 V, f = 20 mc)	All Types	h _{fe}	2.5	-	-
Rise Time		t _r	•	70	nsec
Storage Time 2N2192-94, 2	N2192A-94A, 2N2192B-94B	ts		150	nsec
Faii Time		t _f		50	nsec

^{*}Pulse Test: PW \leq 300 μ sec, Duty Cycle \leq 2%

2N2217 thru 2N2222

 $V_{\text{CEO}} = 30 \text{ V}$ $f_{\text{T}} = 400 \text{ Mc Typ}$

NPN silicon annular Star transistors for high-speed switching and DC to UHF amplifier applications.

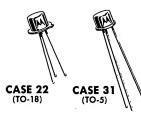
ABSOLUTE MAXIMUM RATINGS

Characteristic	Symbol	2N2217-19 (T0-5)	2N2220-22 (TO-18)	Unit
Collector-Base Voltage	V _{CBO}	60	60	Vdc
Collector-Emitter Voltage	V _{CEO}	30	30	Vdc
Emitter-Base Voltage	V _{EBO}	5	5	Vdc
Total Device Dissipation at 25°C Case Temperature Derating Factor Above 25°C	Po	3 20	1.8 12	Watts mW/°C
Total Device Dissipation at 25°C Ambient Temperatures Derating Factor Above 25°C	Po	0.8 5.33	0.5 3.33	Watts mW/°C
Junction Temperature	Тј	-65 to +175		°C
Storage Temperature	T _{stg}	-65 to +300		°C

—— Motorola High-Frequency Transistors ——

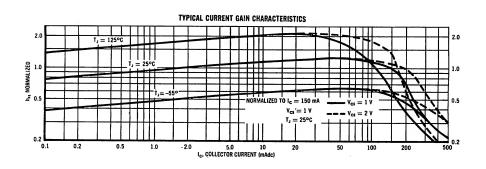
2N2217 thru 2N2222 (continued)

ELECTRICAL CHARACTERISTICS (At 25°C unless otherwise noted)


Characteristic		Symbol	Min.	Тур.	Max.	Unit
Collector Cutoff Current ($V_{Cs} = 50 \text{ Vdc}, I_{\epsilon} = 0$)		l _{cso}	_	.001	.01	μAdc
Collector Cutoff Current (V _{CB} = 50 Vdc, T _A = 150°C)		I _{cso}	_	_	10	μAdc
Collector-Base Breakdown Voltage ($I_C = 10 \mu Adc$, $I_E = 0$)		BV _{CNO}	60	90	_	Vdc
Collector-Emitter Breakdown Voltage (I _C = 10 mAdc, I _B = 0)		BV _{CEO}	30	45	_	Vdc
Emitter-Base Breakdown Voltage ($I_E=10~\mu Adc,~I_C=0$)		BV _{ENO}	5	_	_	Vdc
Collector Saturation Voltage (I _C = 150 mAdc, I _B = 15 mAdc) (I _C = 500 mAdc, I _B = 50 mAdc)	All Types	V _{GE(sat)} *	_	0.24	0.4	Vdc
	2N2218, 2N2219 2N2221, 2N2222		_	0.8	1.6	Vdc
Base-Emitter Saturation Voltage (I _C = 150 mAdc, I _S = 15 mAdc) (I _C = 500 mAdc, I _S = 50 mAdc)	All Types	V _{BE(set)} *	_	1.0	1.3	Vdc
	2N2218, 2N2219 2N2221, 2N2222		_	1.5	2.6	Vdc
DC Forward Current Transfer Ratio ($I_C = 0.1 \text{ mAdc}$, $V_{CE} = 10 \text{ Vdc}$)		h _{FE}				
$(I_C=1.0 \text{ mAdc, } V_{CE}=10 \text{ Vdc)}$	2N2218, 2N2221 2N2219, 2N2222		20 35	=	=	=
	2N2217, 2N2220 2N2218, 2N2221 2N2219, 2N2222		12 25 50	Ξ	=	=
$(I_C = 10 \text{ mAdc}, V_{CE} = 10 \text{ Vdc})$	2N2217, 2N2220 2N2218, 2N2221 2N2219, 2N2222		17 35 75	=	=	=
(I _C = 150 mAdc, V_{CE} = 10 Vdc) *	2N2217, 2N2220 2N2218, 2N2221 2N2219, 2N2222		20 40 100	Ξ	60 120 300	=
(I _C = 500 mAdc, V _{CE} = 10 Vdc) *	2N2218, 2N2221 2N2219, 2N2222		20 30	=	=	=
Output Capacitance $V_{Ce} = 10 \text{Vdc}, I_E = 0, f = 100 \text{KC}$		Cob	_	4	8	pf
Input Capacitance $V_{es} = 0.5 \text{ Vdc}, I_C = 0, f = 100 \text{KC}$		Сњ	1	20	_	pf
Small Signal Forward Current Transfer R (V _{CE} = 20 Vdc, I _C = 20 mAdc, f = 1		h _{fe}	2.5	4.0		_
Current Gain — Bandwidth Product ($I_c = 20 \text{ mAdc}$, $V_{c\epsilon} = 20 \text{ Vdc}$)		f _r	250	400		mc
Turn-on Time (Fig. 1)		t _{on}	_	26	_	пѕес
Turn-off Time (Fig. 2)		t _{iri}	_	68	_	nsec
Total Switching Time (Fig. 3)		t _{fofal}	_	12	_	nsec

•Pulse Test:
Pulse width ≤ 300 μsec
Duty Cycle ≤ 2%

2N2218A 2N2219A 2N2221A 2N2222A


 $V_{CEO} = 40 \text{ V}$ $f_T = 400 \text{ Mc Typ}$

NPN silicon annular Star transistors for high-speed switching and DC to VHF amplifier applications.

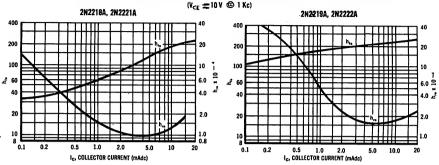
ABSOLUTE MAXIMUM RATINGS

Characteristic	Symbol	2N2218A 2N2219A (TO-5)	2N2221A 2N2222A (TO-18)	Unit
Collector-Base Voltage	v _{CBO}	75	75	Vdc
Collector-Emitter Voltage	VCEO	40	40	Vdc
Emitter-Base Voltage	V _{EBO}	6	6	Vdc
Total Device Dissipation at 25°C Case Temperature Derating Factor Above 25°C	PD	3 20	1. 8 12	Watts mW/°C
Total Device Dissipation at 25 C Ambient Temperature Derating Factor Above 25 C	P _D	0. 8 5. 33	0, 5 3, 33	Watts mW/°C
Junction Temperature Range	Tj	-65 to +175		°c
Storage Temperature Range	T _{stg}	-65 to	+300	°c

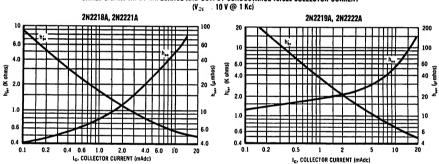
2N2218A, 2N2219A, 2N2221A, 2N2222A (continued)

ELECTRICAL CHARACTERISTICS

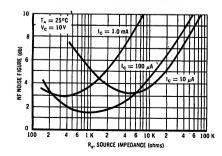
(At 25°C Ambient temperature unless otherwise specified.)

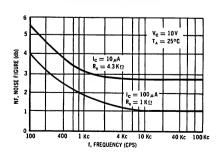

Static Characteristi	cs	Symbol	Min	Max	Unit
Collector-Base Breakdown Voltage $(I_C = 10 \mu \text{ Adc}, \ I_F = 0)$	Ali Types	вусво	75		Vdc
Collector-Emitter Breakdown Voltage (I _C = 10 mAdc, I _B = 0)	All Types	BV _{CEO}	40		Vdc
Emitter-Base Breakdown Voltage $(I_E = 10 \mu Adc, I_C = 0)$	All Types	BV _{EBO}	6	_	Vde
Collector Cutoff Current (V _{CB} = 60 Vdc, I _E = 0)	All Types	I _{СВО}	_	0.01	μ Adc
$(V_{CB} = 60 \text{ Vdc}, I_{E} = 0, T_{A} = 150^{\circ}\text{C})$	All Types		_	10	
Collector Cutoff Current (V _{CE} = 60 Vdc, V _{OB} = 3Vdc)	All Types	I _{CEX}	_	10	nAdc
Base Cutoff Current (V _{CE} = 60 Vdc, V _{OB} = 3 Vdc)	All Types	IBL		20	nAdc
Emitter Cutoff Current (V _{OB} = 3 Vdc, I _C = 0)	All Types	I _{EBO}		10	nAdc
Collector-Emitter Saturation Voltage* (IC = 150 mAdc, I = 15 mAdc)	All Types	V _{CE} (sat)*	_	0.3	Vdc
(I _C = 500 mAdc, I _B = 50 mAdc)	All Types		_	1.0	
Base-Emitter Saturation Voltage* (I _C = 150 mAdc, I _B = 15 mAdc)	All Types	V _{BE(sat)} *	0.6	1.2	Vdc
$(I_C = 500 \text{ mAdc}, I_B = 50 \text{ mAdc})$	All Types		_	2.0	
DC Forward Current Transfer Ratio* (I _C = 0.1 mAdc, V _{CE} = 10 Vdc)	2N2218A, 2N2221A 2N2219A, 2N2222A		20 35	=	_
$(I_C = 1.0 \text{ mAdc}, V_{CE} = 10 \text{ Vdc})$	2N2218A, 2N2221A 2N2219A, 2N2222A		25 50	=======================================	
$(I_C = 10 \text{ mAdc}, V_{CE} = 10 \text{ Vdc})$	2N2218A, 2N2221A 2N2219A, 2N2222A		35 75	=	
$(I_C = 10 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}, T_A = -55^{\circ}C_{i}$	2N2218A, 2N2221A 2N2219A, 2N2222A		15 35	=	
(I _C = 150 mAdc, V _{CE} = 10 Vdc)	2N2218A, 2N2221A 2N2219A, 2N2222A		40 100	120 300	
$(I_C = 150 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc})$	2N2218A, 2N2221A 2N2219A, 2N2222A		20 50	=	
$(I_C = 500 \text{ mAdc}, V_{CE} = 10 \text{ Vdc})$	2N2218A, 2N2221A 2N2219A, 2N2222A		25 40	=	

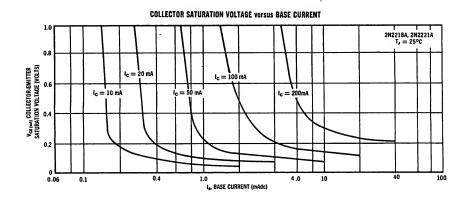
^{*} Pulse Test \leq 300 μ sec, duty cycle \leq 2% V_{OB} - Base-Emitter Reverse Bias

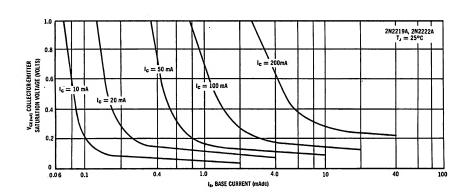

Small Signal Characteristics		Symbol	. Mio	Max	Valt
Small Signal Current Gain ($I_C = 1.0 \text{ mA}, V_C = 10 \text{ V}, f = 1 \text{ kc}$) ($I_C = 10 \text{ mA}, V_C = 10 \text{ V}, f = 1 \text{ kc}$)	2N2218A, 2N2221A 2N2219A, 2N2222A 2N2218A, 2N2221A 2N2219A, 2N2222A	^h ſe	30 50 50 75	150 300 300 375	_
Voltage Feedback Ratio (I _C = 1.0 mA, V _C = 10 V, f = 1 kc) (I _C = 10 mA, V _C = 10 V, f = 1 kc)	2N2219A, 2N2221A 2N2219A, 2N2222A 2N2219A, 2N2222A 2N2219A, 2N2221A 2N2219A, 2N2222A	h _{re}	:	5 8 2.5	X10 ⁻⁴
input Impedance (I _C = 1.0 mA, V _{CB} = 10 V, f = 1 kc)	2N2218A, 2N2221A 2N2219A, 2N2222A	h _{le}	1 2.0 0.2	3.5	k ohms
(I _C = 10 mA, V _{CB} = 10 V, f = 1 kc) Output Admittance (I _C = 1.0 mA, V _C = 10 V, f = 1 kc)	2N2218A, 2N2221A 2N2219A, 2N2222A 2N2218A, 2N2221A	h _{oe}	0.2 0.25	1,0 1.25	μ mhos
(I _C = 10 mA, V _C = 10 V, f = 1 kc)	2N2219A, 2N2222A 2N2218A, 2N2221A 2N2219A, 2N2222A		10 25	35 100 200	
Collector-Base Time Constant (I _C = 20 mA, V _{CE} = 20 V, f = 31.8 mc)		r'b ^C c		150	psec
Noise Figure (I _C = 100 \(\mu \) A, V _{CE} = 10 V, Rg = 1 k\(\Omega \), (= 1 kc)	2N2219A, 2N2222A	NF		4	db

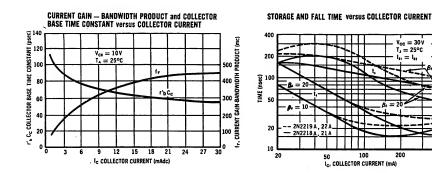
2N2218A, 2N2219A, 2N2221A, 2N2222A (continued)


SMALL SIGNAL FORWARD CURRENT GAIN AND VOLTAGE FEEDBACK RATIO VERSUS COLLECTOR CURRENT


SMALL SIGNAL INPUT IMPEDANCE AND OUTPUT CONDUCTANCE VERSUS COLLECTOR CURRENT


1 KC NOISE FIGURE VERSUS SOURCE IMPEDANCE




NOISE FIGURE versus FREQUENCY

2N2218A, 2N2219A, 2N2221A, 2N2222A (continued)

2N2220

For Specifications, See 2N2217 Data Sheet

2N2256 thru 2N2259

 $V_{CES} = 7 V$ $I_C = 100 \text{ mA}$ $f_T = 320 \text{ Mc}$

NPN silicon and PNP germanium mesa complementary transistors for high-speed non-saturated switching applications.

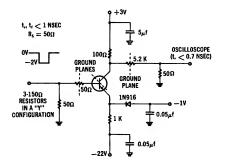
MAXIMUM RATINGS

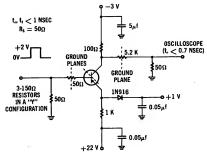
Characteristic	Symbol	2N2256 2N2257	2N2258 2N2259	Unit
Collector-Base Voltage	Vсво	7	7	Vdc
Collector-Emitter Voltage	VCES	7	7	Vdc
Emitter-Base Voltage	VEBO	1	1	Vdc
DC Collector Current	l _c	100	100	mAdc
Storage Temperature	T _{STG}	65 to +175	65 to +100	°C
Junction Temperature		+175	+100	°C
Device Dissipation at 25°C Case	Po	1000	300	mW
Derating factor above 25°C		6.67	4	mW/°C
Device Dissipation at 25°C Ambient	Po	300	150	mW
Derating factor above 25°C		2	2	mW/°C

TRANSISTOR SELECTION CHART

	TΥ	'PE	h _{FE} @ I _C :	= 25 mA
TYPE	NPN	PNP	20	40
2N2256	х		Х	
2N2257	X			X
2N2258		x	X	
2N2259		x		X

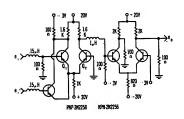
2N2256 thru 2N2259 (continued)

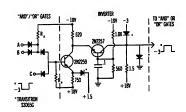

ELECTRICAL CHARACTERISTICS


(At 25°C unless otherwise noted) - All voltages and currents are magnitudes only)

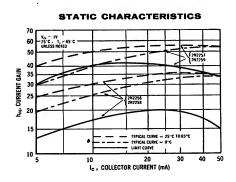
Characteristic		Symbol	Minimum	. Typical	Maximum	Unit
Collector-Base Breakdown Voltage $I_c=100 \mu \text{Adc}$ $I_E=0$	ALL TYPES	BV _{C80}	7	15	_	Vdc
Collector-Emitter Breakdown Voltage $I_{c}=100 \mu \text{Adc} \qquad V_{\text{E8}}=0$	ALL TYPES	BV _{CES}	7	15	_	Vdc
Emitter-Base Breakdown Voltage $I_{\rm E}=100\mu{\rm Adc}$ $I_{\rm C}=0$	ALL TYPES	BVEBO	1	-	_	Vdc
	ALL TYPES	I _{CBO}		3	10	μAdc
Collector Cutoff Current $V_{CB} = 6Vdc I_E = 0 T_A = 65^{\circ}C$	ALL TYPES	lcíó	_	30	100	μAdc
$\begin{array}{ll} \text{DC Forward Current Transfer Ratio} \\ \text{I}_{\text{C}} = 10 \text{mAdc} & \text{V}_{\text{CE}} = 1 \text{Vdc} \\ \\ \text{I}_{\text{C}} = 25 \text{mAdc} & \text{V}_{\text{CE}} = 1 \text{Vdc} \end{array}$	2N2256, 2N2258 2N2257, 2N2259 2N2256, 2N2258 2N2257, 2N2259	h _{FE}	17 40 20 40	30 50 35 55		
$\begin{array}{ll} \text{Base-Emitter Voltage} \\ \text{I}_{\text{C}} = 10 \text{mAdc} & \text{V}_{\text{CE}} = 1 \text{Vdc} \\ \\ \text{I}_{\text{C}} = 25 \text{mAdc} & \text{V}_{\text{CE}} = 1 \text{Vdc} \end{array}$	2N2256, 2N2257 2N2258, 2N2259 2N2256, 2N2257 2N2258, 2N2259	V _{BE}		0.70 0.35 0.8 0.45	0.8 0.5 0.9 0.6	Vdc Vdc Vdc Vdc
Conduction Threshold Base-Emitter Voltage* I _C = 200μΑ V _{CE} = 6V	2N2256, 2N2257 2N2258, 2N2259	V _T	0.5 0.1	_		Vdc
Collector Output Capacitance $V_{C8}=5 V dc$ $I_E=0$ $f=4 mc$	2N2256, 2N2257 2N2258, 2N2259	С°Р	=	4	5 8	pf pf
	2N2258, 2N2259 (Ge) } 2N2256, 2N2257 (Si) }	fτ	250	320	_	mc
Turn-on Time	2N2256, 2N2257 2N2258, 2N2259	t _{on}	- 1	3 4	7 8	nsec
Turn-off Time	2N2256, 2N2257 2N2258, 2N2259	t _{off}	=	4 3	7	nsec
Base Resistance $V_{CB}=2V$ $I_E=5$ mA $f=300$ mc	2N2256, 2N2257 2N2258, 2N2259	r' _b	=	50 75	100 125	chms

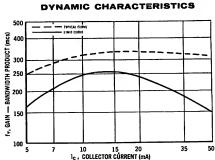
[•] Base to emitter forward bias voltage at which transistor will be at the threshold of conduction; i.e. that base to emitter voltage at which the collector current is less than or equal to the specified amount under a given collector to emitter voltage condition.


2N2256 thru 2N2259 (continued)



NPN SWITCHING TIME TEST CIRCUIT


PNP SWITCHING TIME TEST CIRCUIT


CASCADE COMPLEMENTARY
GATE

CURRENT MODE INVERTER FOR USE WITH DIODE LOGIC PROPAGATION DELAY TIME 10nSec.

CURRENT GAIN CHARACTERISTICS

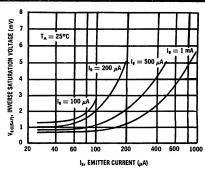
GAIN-BANDWIDTH PRODUCT CHARACTERISTICS

2N2303

For Specifications, See 2N722 Data Sheet

2N2330 2N2331

 $V_{CBO} = 30 \text{ V}$ $V_{EC(sat)} = 3 \text{ mV}$

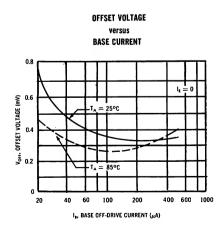


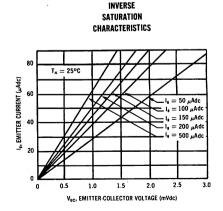
NPN silicon annular Star transistors for low-level DC/AC chopper applications.

MAXIMUM RATINGS

Characteristic	Symbol	2N2330 (TO-5)	2N2331 (TO-18)	Unit
Collector-Base Voltage	V _{CBO}	30	30	Vdc
Collector-Emitter Voltage	V _{CEO}	20	20	Vdc
Emitter-Base Voltage	V _{EBO}	5	5	Vdc
Total Device Dissipation at 25°C Case Temperature Derating Factor Above 25°C	Po	3 20	1.8 12	Watts mW/°C
Total Device Dissipation at 25°C Ambient Temperature Derating Factor Above 25°C	P _D	0.8 5.33	0.5 3.33	Watts mW/°C
Junction Temperature	Тј	-65 to +175		°C
Storage Temperature	T _{stg}	— 65 to +300		°C

INVERSE SATURATION VOLTAGE
versus
EMITTER CURRENT




—— Motorola High-Frequency Transistors ——

2N2330, 2N2331 (continued)

ELECTRICAL CHARACTERISTICS (At 25°C unless otherwise noted)

Characteristics	Symbol	Min.	Typ.	Max.	Unit
Co ¹ lector Cutoff Current ($l_{cs} = 4.5 \text{ Vdc}, l_{E} = 0$)	I _{CBO}	1	0.1	1.0	nAdc
Collector-Base Breakdown Voltage ($I_C=10~\mu Adc,~I_E=0$)	ВУсво	30	60	_	Vdc
Collector-Emitter Breakdown Voltage ($I_c = 1.0$ mAdc, $I_8 = 0$)	BV _{CEO}	20	30	_	Vac
Emitter-Base Breakdown Voltage (I $_{\rm E}=10~\mu{\rm Adc},~{\rm I}_{\rm C}=0$)	BV _{EBO}	5	_	ı	Vdc
Forward Current Transfer Ratio ($I_c=10$ mAdc, $V_{c\epsilon}=1$ Vdc)	h _{FE}	50	_	1	_
Offset Voltage (I _B = 200 μ Adc. I _E = 0)	V _(off)	_	0.3	0.75	mVdc
Inverse Saturation Voltage ($I_8 = 200 \mu Adc$, $I_E = 50 \mu Adc$)	V _{EC(SAT)}	_	1.0	3.0	mVdc
Offset Current $(V_{BC} = 2.0 \text{ Vdc}, V_{CE} = 0, T_A = 25^{\circ}\text{C})$	1(011)		0.1	1	nAdc
Offset Current $(V_{aC}=2.0 \text{ Vdc}, V_{CE}=0, T_A=85^{\circ}\text{C})$	I _(off)	_	1	10	nAdc
Collector Capacitance $(V_{C8} = 2 \text{ Vdc}, I_E = 0)$	Соь	_	7	10	pf
Common Base Input Capacitance $(V_{EB}=2 \text{ Vdc}, I_C=0)$	C'P	_	15	20	pf
Small Signal Forward Current Transfer Ratio ($I_c=1~\text{mAdc}$, $V_{c\epsilon}=1~\text{Vdc}$, $f=100~\text{mc}$)	h _f	1	1.5		_

2N**2369** 2N3227

 $V_{\text{CEO}} = 15\text{-}20 \text{ V}$ f = 600 Mc Typ

NPN silicon annular transistors for low-current, high-speed switching applications.

(TO-18)

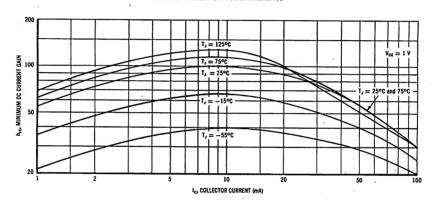
MAXIMUM RATINGS

Characteristics	Symbol	Rating	Unit
Collector-Base Voltage	v _{Сво}	40	Vdc
Collector-Emitter Voltage	V _{CES}	40	Vdc
Collector-Emitter Voltage 2N2369 2N3227	v _{CEO}	15 20	Vdc
Emitter-Base Voltage 2N2369 2N3227	v _{EBO}	4.5 6.0	Vdc
Collector Current (10 µsec pulse)	I _C (Peak)	500	mA
Total Device Dissipation` @ 25 [°] C Ambient Temperature Derating Factor Above 25 [°] C	P _D	0.36 2.06	Watt mW/ ^o C
Total Device Dissipation @ 25 ⁰ C Case Temperature Derating Factor Above 25 ⁰ C	P _D	1.2 6.85	Watts mW/ ^O C
Junction Temperature, Operating	Т _Ј	+200	°С
Storage Temperature Range	${ m T_{stg}}$	-65 to +200	°C

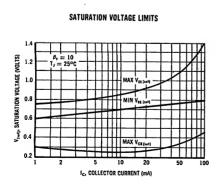
2N2369, 2N3227 (continued)

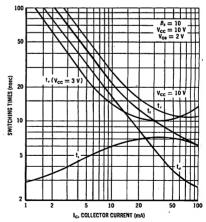
ELECTRICAL CHARACTERISTICS ($T_A = 25$ °C unless otherwise noted)

Characteristics		Symbol	Min	Max	Unit
Collector Cutoff Current		I _{CBO}			μ Adc
(V _{CB} = 20 Vdc)	2N2369	СВО	 	0.4	
	2N3227		-	0.2	
(V _{CB} = 20 Vdc, T _A = 150 ^o C)	2N2369 2N3227		_	30 50	
Collector Cutoff Current		I _{CEX}			μ Adc
(V _{CE} = 20 Vdc, V _{OB} = 3 Vdc)	2N3227			0. 2	
Base Cutoff Current (VCE = 20 Vdc, VOB = 3 Vdc)	2N3227	I _{BL}		0.5	μ A dc
Collector-Base Breakdown Voltage (IC = 10μ Adc, I _B = 0)		ву _{СВО}	40	-	Vdc
Emitter-Base Breakdown Voltage		BVEBO			Vdc
$(I_E = 10 \mu \text{ Adc}, I_C = 0)$	2N2369 2N3227	EBO	4.5 6.0	1 1	
Collector-Emitter Breakdown Voltage *		BVCEO*			Vdc
(I _C = 10 mAdc)	2N2369	020	15 20	_	
	2N3227		20		
Collector-Emitter Voltage $(I_C = 10 \mu \text{ Adc}, I_B = 0)$		BVCES	40	_	Vdc
Collector-Emitter Saturation Voltage *		V _{CE(sat)} *		2.22	Vdc
(I _C = 10 mAdc, I _B = 1 mAdc) (I _C = 100 mAdc, I _B = 10 mAdc)	Both Types 2N3227			0.25 0.45	
Base-Emitter Saturation Voltage *	5110351	V +	-		Vdc
(Ic = 10 mAdc, In = 1 mAdc)	Both Types	V _{BE(sat)} *	0.70	0.85	740
(I _C = 10 mAdc, I _B = 1 mAdc) (I _C = 100 mAdc, I _B = 10 mAdc)	2N3227		0.8	1.4	
DC Current Gain*		h _{FE} *			
$(I_C = 10 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc})$	2N2369 2N3227		40 100	120 300	
			20	300	
$(I_C = 10 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc}, T_A = -55^{\circ}C)$	2N2369 2N3227		40	-	
$(I_C = 100 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc})$	2N3227		30	_	
$(I_C = 100 \text{ mAde}, V_{CE} = 2 \text{ Vde})$	2N2369		20	-	
Small Signal Current Gain		h _{fe}			_
$(I_C = 10 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}, f = 100 \text{ mc})$			5		
Output Capacitance		C _{ob}			pf
$(v_{CB} = 5 \text{ Vdc}, I_E = 0, f = 140 \text{ kc})$				4	
Input Capacitance (VOB = 1 Vdc, I _C = 0, f = 140 kc)	2N3227	C _{ib}		4	pf
Storage Time (I _C = I _{B1} = I _{B2} = 10 mA)		$t_{\mathbf{g}}(\tau_{\mathbf{g}})$		13	nsec
Turn-On Time		ton			nsec
$(I_C = 10 \text{ mA}, I_{B1} = 3 \text{ mA},$		l ""	- 1	12	
V _{CC} = 3 V, V _{OB} = 1.5 V)					
Turn-Off Time		toff			nsec
$(I_C = 10 \text{ mA}, I_{B1} = 3 \text{ mA},$				18	
I _{B2} = 1.5 mA, V _{CC} = 3 V)					
Total Control Change		000			рC
Total Control Charge (I _C = 10 mA, I _B = 1 mA, V _{CC} = 3 V)	2N3227	$Q_{\mathbf{T}}$	⊢	50	٦
		<u></u> _			L


2N2369, 2N3227 (continued)

ELECTRICAL CHARACTERISTICS (continued)

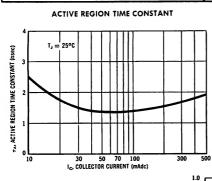

Characteristics	Symbol	Min	Max	Unit
Delay Time V _{CC} = 10 V, V _{OB} = 2 V, I _C = 100 mA, I _{B1} = 10 mA 2N3	t _d	-	5	nsec
Rise Time $I_C = 100 \text{ mA}, I_{B1} = 10 \text{ mA}$ 2N3	t _r		18	nsec
Storage Time V _{CC} = 10 V I _C = 100 mA, 2N3:	27 t _s		13	nsec
Fall Time $I_{B1} = I_{B2} = 10 \text{ mA}$	t _f		15	nsec


^{*}Pulse Test: PW = 300 µsec, Duty Cycle ≤ 2%

MINIMUM CURRENT GAIN CHARACTERISTICS

TYPICAL SWITCHING TIMES

2N2381 2N2382


 $V_{CEO} = 15-20 \text{ V}$ $I_C = 500 \text{ mA}$ $f_T = 300 \text{ Mc}$


PNP germanium epitaxial mesa transistors for high-speed, high-current switching applications.

CASE 31 (TO-5)


MAXIMUM RATINGS

Characteristic	Symbol	Rating 2N2381 2N2382	Unit
Collector-Base Voltage	V _{CBO}	30 45	Vdc
Collector-Emitter Voltage	V _{CEO}	15 20	Vdc
Emitter-Base Voltage	V _{EBO}	4 4	Vdc
Collector Current (Continuous)	lc	500	mAdc
Junction Temperature	T,	100	°C
Storage Temperature	T _{STG}	-65 to +100	°C
Device Dissipation @ 25°C Case Temper- ature (Derate 10 mW/°C above 25°C)	Po	750	mW
Device Dissipation @ 25°C Ambient (Derate 4 mW/°C)	Po	300	mW

COLLECTOR-EMITTER SATURATION VOLTAGES versus BASE CURRENT

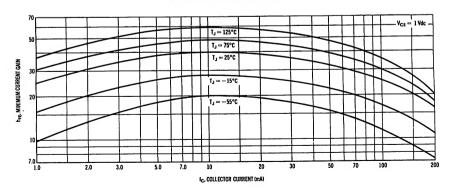
2N2381, 2N2382 (Continued)

ELECTRICAL CHARACTERISTICS (At 25°C unless otherwise noted)

Characteristic	Fig. No.	Symbol	Min.	Тур.	Max.	Unit
Collector-Base Breakdown Voltage (I_C - 100 μ Adc, I_E = 0) 2N2381 2N2382		вусво	30 45	=	=	Vdc
Collector-Emitter Breakdown Voltage (I _C = 10 mAdc, I _B = 0) 2N2381 2N2382		BV _{CEO}	15 20	=	=	Vdc
Latch-Up Voltage 2N2381 2N2382	7	LVCEX	20 25	=	=	Vdc
Collector-Emitter Leakage Current (V _{CE} : 30, V _{EB} : 0) 2N2381 (V _{CE} : 45, V _{EB} : 0) 2N2382		ICES	=	-	100 100	μAdc
Emitter-Base Leakage Current $(V_{EB}: 0.5 \text{ Vdc}, I_{C} = 0)$ $(V_{EB}: 4 \text{ Vdc}, I_{C} = 0)$		IEBO	=	=	5 1	μAdc mAdc
Collector Cutoff Current (V _{CB} = 5 Vdc, I _E = 0) (V _{CB} = 5 Vdc, I _E = 0, T _A = 85°C) Both Types (V _{CB} - 20 Vdc, I _E = 0) 2N2381		^I СВО	-	1.0	7 100 25	μAdc
2N2382			<u> -</u>	_	15	
DC Forward Current Transfer Ratio (I_C = 200 mAdc, V_{CE} = 0.5 Vdc) (I_C = 400 mAdc, V_{CE} = 1.0 Vdc)	11	hFE	40 25	<u>-</u>	-	_
Collector-Emitter Saturation Voltage (I_C = 200 mAdc, I_B = 20 mAdc) (I_C = 400 mAdc, I_B = 40 mAdc)	8	V _{CE(sat)}	-	0. 25 0. 4	0.4 0.7	Vdc
Base-Emitter Voltage (I_C = 200 mAdc, I_B = 20 mAdc) (I_C = 400 mAdc, I_B = 40 mAdc)	9	v _{BE}	0.45	0. 54 0. 71	0.7 0.9	Vdc
Output Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 4 mc)	13	C _{ob}	-	3.5	6	pf
Input Capacitance (V _{EB} = 1 Vdc, I _C = 0, f = 4 mc)	13	C _{ib}	-	8	15	pf
Current-Gain — Bandwidth Product (V _{CE} - 10 Vdc, I _C = 20 mAdc, f = 100 mc)		f _T	300	-	-	mc
Delay Time	4	t _d	-	4.5	7	nsec
Rise Time	4	tr	-	8	15	nsec
Storage Time	3,4	tg	-	20	30	nsec
Fall Time	4	ч	_	8	15	nsec
Active Region Time Constant	1,4	τA	-	1.6	3.0	nsec

2N2481

 $V_{\text{CEO}} = 15 \, \text{V}$ $f_{\text{T}} = 450 \; \text{Mc} \; \text{Typ}$



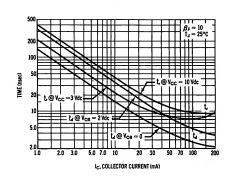
 $\ensuremath{\mathsf{NPN}}$ silicon annular transistor for high-speed switching applications.

MAXIMUM RATINGS

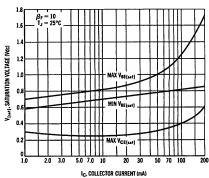
CHARACTERISTIC	SYMBOL	RATING	UNIT
Collector-Base Voltage	v _{CBO}	40	Vdc
Collector-Emitter Voltage	v _{CEO}	15	Vdc
Emitter-Base Voltage	v _{EBO}	5	Vdc
Total Device Dissipation @ 25°C Ambient Temperature (Derate 2.06 mW/°C above 25°C)	P _D	0.36	Watt
Total Device Dissipation @ 25°C Case Temperature (Derate 6.9 mW/°C above 25°C)	PD	1.2	Watts
Junction Temperature	$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	200	°C
Storage Temperature	T _{stg}	-65 to + 300	°c

MINIMUM CURRENT GAIN CHARACTERISTICS

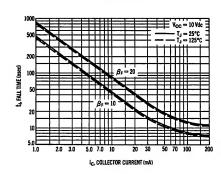
2N2481 (Continued)

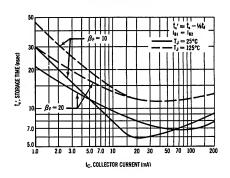

ELECTRICAL CHARACTERISTICS (At 25°C unless otherwise noted)

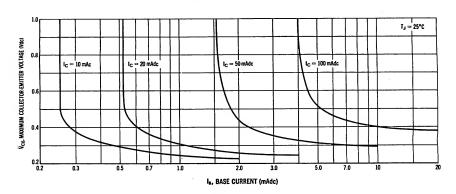
CHARACTERISTIC	SYMBOL	MIN	MAX	UNIT
Collector-Base Breakdown Voltage ($I_C = 10 \mu Adc, I_E = 0$)	BV _{CBO}	40		Vdc
Emitter-Base Breakdown Voltage $(I_E = 100 \mu Adc, I_C = 0)$	BVEBO	5		Vdc
Collector-Emitter Breakdown Voltage* (IC = 30 mAdc, IB = 0)	BV _{CEO}	15		Vdc
Collector-Emitter Breakdown Voltage ($I_C = 1.0 \mu Adc, V_{BE} = 0$)	BVCES	30		Vdc
Collector Leakage Current ($V_{CE} = 20 \text{ Vdc}$, $V_{BE} = 3 \text{ Vdc}$) ($V_{CE} = 20 \text{ Vdc}$, $V_{BE} = 3 \text{ Vdc}$, $T_{A} = 150^{\circ}\text{C}$)	ICEX		.050 15	μAdc
Base Leakage Current (V _{CE} = 20 Vdc, V _{BE} = 3 Vdc)	IBL		50	nAdc
Emitter Cutoff Current (V _{EB} = 4.0 Vdc, I _C = 0)	I _{EBO}		100	nAdc
DC Forward Current Transfer Ratio $(I_C = 1.0 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc})$ $(I_C = 10 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc})*$ $(I_C = 10 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc}, T_A = -55^{\circ}C)*$ $(I_C = 150 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc})*$	h _{FE}	25 40 20 20	120	
Collector-Emitter Saturation Voltage (I _C = 10 mAdc, I _B = 1.0 mAdc) (I _C = 100 mAdc, I _B = 10 mAdc)*	V _{CE} (sat)		0.25 0.40	Vdc
Base-Emitter Saturation Voltage ($I_C = 10 \text{ mAdc}$, $I_B = 1.0 \text{ mAdc}$) ($I_C = 100 \text{ mAdc}$, $I_B = 10 \text{ mAdc}$)*	V _{BE} (sat)	0.7	0.82 1.25	Vdc
Output Capacitance (V _{CB} = 5 V, I _C = 0, f = 1 Mc)	C _{ob}		5	pf
Input Capacitance (V _{EB} = 0.5 V, f = 1 Mc)	C _{ib}		7	pf
Small-Signal Forward Current Transfer Ratio ($V_{CE} = 10 \text{ V}, I_{C} = 10 \text{ mA}, f = 100 \text{ Mc}$)	h _{fe}	3		
Small-Signal, Short-Circuit, Input Impedance (Real part) (IC = 10 mA, VCE = 10 V, f = 250 Mc)	hie (real)		60	ohms
Turn-On Time (I _C = 100 mA, I _{B1} = 10 mA, V _{BE} (off) = -2 V) (I _C = 10 mA, I _{B1} = 1.0 mA, V _{BE} (off) = -2 V)	t _{on}		40 75	nsec
Turn-Off Time (I _C = 100 mA, I _{B1} = 10 mA, I _{B2} = -5 mA) (I _C = 10 mA, I _{B1} = 1.0 mA, I _{B2} = -0.5 mA)	t _{off}		55 45	nsec
Storage Time $(I_C = 10 \text{ mA}, I_{B1} = 10 \text{ mA}, I_{B2} = -10 \text{ mA})$	t _s		20	nsec


[•]Pulse width = 300 μ sec, Duty Cycle = 2%

2N2481 (Continued)




LIMITS OF SATURATION VOLTAGES

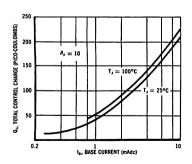

FALL TIME BEHAVIOR

STORAGE TIME BEHAVIOR

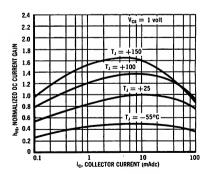
COLLECTOR SATURATION VOLTAGE CHARACTERISTICS

2N2501

 $V_{CEO} = 20 \text{ V}$ $f_T = 450 \text{ Mc Typ}$



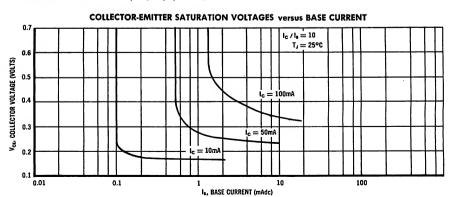
NPN silicon annular transistor for high-speed switching applications.


MAXIMUM RATINGS

Characteristic	Symbol	Rating	Unit
Collector-Base Voltage	v _{CBO}	40	Vdc
Collector-Emitter Voltage	v _{CEO}	20	Vdc
Emitter-Base Voltage	v _{EBO}	6	Vdc
Total Device Dissipation @ 25°C Ambient Temperature (Derate 2.06 mW/ C above 25°C)	P _D	0.36	Watts
Junction Temperature	$\overline{\mathtt{T}_{\mathtt{J}}}$	+200	С
Storage Temperature	T _{stg}	-65 to +200	С
Total Device Dissipation @ 25°C Case Temperature (Derate 6.9 mW/'C above 25°C)	P _D	1. 2	Watts

TOTAL CONTROL CHARGE

NORMALIZED CURRENT GAIN CHARACTERISTICS



2N2501 (Continued)

ELECTRICAL CHARACTERISTICS (At 25°C unless otherwise noted)

Characteristic	Symbol	Minimum	Maximum	Unit
Collector-Base Breakdown Voltage (I _C = 10 µAdc, I _E = 0)	вусво	40	-	Vdc
Collector-Emitter Breakdown Voltage ($I_C = 30 \text{ mAdc}, I_B = 0$, Pulsed)	BVCEO	20	-	Vdc
Emitter-Base Breakdown Voltage ($I_E = 10 \mu Adc, I_C = 0$)	BV _{EBO}	6	_	Vdc
Collector Leakage Current (V _{CE} = 20 Vdc, V _{BE} = -3 Vdc)	ICEX	_	25	nAdc
Base Leakage Current $(V_{CE} = 20 \text{ Vdc}, V_{BE} = -3 \text{ Vdc})$ $(V_{CE} = 20 \text{ Vdc}, V_{BE} = -3 \text{ Vdc}, T_A = 150^{\circ}\text{C})$	IBL	<u>-</u>	25 50	nAdc μAdc
DC Forward Current Transfer Ratio* ($I_C = 100 \ \mu Adc$, $V_{CE} = 1 \ Vdc$) ($I_C = 1 \ Madc$, $V_{CE} = 1 \ Vdc$) ($I_C = 10 \ Madc$, $V_{CE} = 1 \ Vdc$) ($I_C = 10 \ Madc$, $V_{CE} = 1 \ Vdc$) ($I_C = 10 \ Madc$, $V_{CE} = 1 \ Vdc$) ($I_C = 100 \ Madc$, $V_{CE} = 1 \ Vdc$) ($I_C = 100 \ Madc$, $I_C = 100 \ Madc$, $I_C = 100 \ Madc$, $I_C = 100 \ Madc$, $I_C = 100 \ Madc$, $I_C = 100 \ Madc$, $I_C = 100 \ Madc$, $I_C = 100 \ Madc$, $I_C = 100 \ Madc$, $I_C = 100 \ Madc$, $I_C = 100 \ Madc$, $I_C = 100 \ Madc$, $I_C = 100 \ Madc$	h _{FE}	20 30 50 20 40 30	- - 150 - - - -	_
Collector-Emitter Saturation Voltage* ($I_C = 10 \text{ mAdc}$, $I_B = 1 \text{ mAdc}$) ($I_C = 50 \text{ mAdc}$, $I_B = 5 \text{ mAdc}$) ($I_C = 100 \text{ mAdc}$, $I_B = 10 \text{ mAdc}$)	V _{CE(sat)}	= =	0. 2 0. 3 0. 4	Vdc
Base-Emitter Saturation Voltage* (I _C = 10 mAdc, I _B = 1 mAdc) (I _C = 50 mAdc, I _B = 5 mAdc) (I _C = 100 mAdc, I _B = 10 mAdc)	V _{BE(sat)}	=	0.85 1.0 1.2	Vdc
Output Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 100 kc)	C _{ob}	_	4	pf
Input Capacitance (V _{EB} = 0.5 Vdc, I _C = 0, f = 100 kc)	C _{ib}	_	7	pf
Small Signal Forward Current Transfer Ratio (VCE = 20 Vdc, IC = 10 mAdc, f = 100 mc)	h _{fe}	3.5		-
Current-Gain-Bandwidth Product (VCE = 20 Vdc, IC = 10 mAdc)	ſτ	350	-	mc
Charge Storage Time Constant (I _C = I _{B1} = I _{B2} = 10 mAdc)	τ _S	-	15	nsec
Total Control Charge (I _C = 10 mAdc, I _B = 1 mAdc)	$Q_{\mathbf{T}}$		60	pico- coulombs
Active Region Time Constant (I _C = 10 mAdc)	₹ _A	_	2. 5	nsec

^{*}Pulse Test: Pulse width \le 300 μ sec, duty cycle \le 2%

2N2537 thru 2N2540

 $V_{\text{CEO}} = 30 \text{ V}$ $f_{\text{T}} = 400 \text{ Mc} \, \text{Typ}$

CASE 22 CASE 31 (10-5)

NPN silicon annular Star transistors for high-speed switching.

MAXIMUM RATINGS

		Yy	pes	
Characteristic	Symbol	2N2537 2N2538 (TO-5)	2N2539 2N2540 (TO-18)	Unit
Collector-Base Voltage	v _{CBO}	60	60	Vdc
Collector-Emitter Voltage	V _{CEO}	30	30	Vdc
Collector-Emitter Voltage	V _{CER}	40	40	Vdc
Emitter-Base Voltage	V _{EBO}	5	5	°Vdc
Total Device Dissipation 25°C Case Temperature Derate above 25°C	P _D	3 17. 2	1. 8 10. 3	Watts mW/°C
Total Device Dissipation 25°C Ambient Temperature Derate above 25°C	PD	0. 8 4. 57	0. 5 2. 86	Watts mW/°C
Junction Temperature	тл	-65 to	+200	°c
Storage Temperature	T _{stg}	-65 to +300		°c

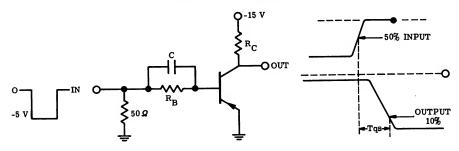
ELECTRICAL CHARACTERISTICS (At 25°C unless otherwise noted)

Characteristic		Symbol	Mia.	Max.	Unit
Collector Cutoff Current (V _{CB} = 40 Vdc, I _E = 0) (V _{CB} = 40 Vdc, I _E = 0, T _A = 150°C)		гсво	=	0. 250 200	μAdic
Emitter Cutoff Current (V _{EB} = 3 Vdc, I _C = 0)		IEBO	-	0.05	μAde
Collector Cutoff Current (V _{BE} = 0.2 Vdc, V _{CE} = 20 Vdc)		ICEX	-	0. 250	μAdc
Base Cutoff Current (V _{BE} = 0.2 Vdc, V _{CE} = 20 Vdc) (V _{BE} = 0.2 Vdc, V _{CE} = 20 Vdc, T _A = 150°C)		IBL	-	0. 250 200	μAdic
Collector-Base Breakdown Voltage (I _C = 10 µAdc, I _E = 0)		вусво	60	-	Vdc
Collector-Emitter Breakdown Voltage (I _C = 100 mAdc, pulsed, I _B = 0)		BVCEO	30	-	Vdc
Collector-Emitter Breakdown Voltage ($I_C = 100 \text{ mAdc}$, pulsed, $R_{BE} \le 10 \Omega$)		BVCER	40	-	Vdc
Emitter-Base Breakdown Voltage (I _E = 10 µAdc, I _C = 0)		BAEBO	5	-	Vdc
Collector Saturation Voltage * (IC = 150 mAde, IB = 15 mAde) (IC = 500 mAde, IB = 50 mAde)		VCE(sat)	-	0.45 1.6	Vdc
Base-Emitter Saturation Voltage (I _C = 150 mAdc, I _B = 15 mAdc) * (I _C = 500 mAdc, I _B = 50 mAdc)		VBE(sat)	=	1.3 2.6	Vdc
DC Forward Current Transfer Ratio (I _C = 1 mAdc, V _{CE} = 10 Vdc) (I _C = 10 mAdc, V _{CE} = 10 Vdc) (I _C = 150 mAdc, V _{CE} = 10 Vdc)* (I _C = 500 mAdc, V _{CE} = 10 Vdc)*	2N2537, 2N2539 2N2538, 2N2540 2N2537, 2N2539 2N2538, 2N2540 2N2537, 2N2540 2N2538, 2N2540 2N2538, 2N2540 2N2538, 2N2540	ра	20 35 30 50 50 100 20	- - 150 300 -	-
Output Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 100 kc)		Cop	-	8	pf
Input Capacitance (V _{EB} = 0.5 Vdc, I _C = 0, f = 100 kc)		Cib	-	25	pf
Small Signal Forward Current Transfer Ratio (VCR = 20 Vdc, IC = 20 mAdc, f = 100 mc)		híe	2.5	_	-

^{*}Pulse Test: Pulse width \leq 300 μ sec, duty cycle \leq 2%

2N2630

 $V_{CEO} = 10 \text{ V}$ $I_C = 100 \text{ mA}$



PNP germanium mesa transistor for high-speed switching applications.

MAXIMUM RATINGS

Characteristic	Symbol	Maximum	Unit
EMITTER-BASE VOLTAGE	v _{EBO}	-4	VOLTS
COLLECTOR-BASE VOLTAGE	v _{CBO}	-18	VOLTS
COLLECTOR-EMITTER VOLTAGE	v _{CEO}	-10	VOLTS
D. C. COLLECTOR CURRENT	I _C	100	mA
STORAGE TEMPERATURE RANGE	T _{stg}	-65 to +100	°C
DEVICE DISSIPATION @25°C CASE TEMPERATURE LINEAR DERATING FACTOR 4 mW/°C		300	mW

SWITCHING TIME TEST CIRCUIT

GENERATOR RISE AND FALL TIME \leq 10 nSec OUTPUT INDICATOR RISE TIME \leq 4.0 nSec

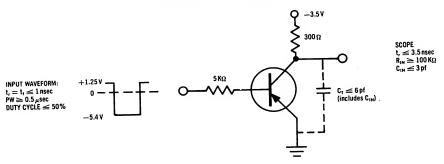
2N2630 (Continued)

ELECTRICAL CHARACTERISTICS

	Symbol		Minimum	Typical	Maximum	Unit
COLLECTOR-BASE CUTOFF CURRENT	I _{CBO}	V _{CB} = -15 Vdc	-	-	5	μAdc
EMITTER-BASE CUTOFF CURRENT	I _{EBO}	V _{EB} = -2 Vdc	_	-	5	μAdc
COLLECTOR-BASE BREAKDOWN VOLTAGE	вусво	I _C = 25 μA	-18	-	-	Vdc
EMITTER-BASE BREAKDOWN VOLTAGE	BV _{EBO}	I _E = 100 μA	-4	-	-	Vdc
COLLECTOR-EMITTER BREAKDOWN VOLTAGE	BVCEO	I _C = 5 mA	-10	-	-	Vdc
COLLECTOR-EMITTER LATCH-UP VOLTAGE	LVCER		-17	-	_	Vdc
COLLECTOR-EMITTER SATURATION VOLTAGE	V _{CE (sat)}	I _C = 100 mA I _B = 10 mA	_	-	-0.45	Vdc
BASE-EMITTER VOLTAGE	V _{BE}	I _C = 100 mA I _B = 10 mA	-	-	-0.8	Vdc
FORWARD CURRENT TRANSFER RATIO	h _{FE}	I _C = 100 mA V _{CE} = -0.75 V	25	-	_	-
OUTPUT CAPACITANCE	Сор	$V_{CB} = -10 \text{ V}, I_{E} = 0$ f = 1 mC	-	-	4	pf
INPUT CAPACITANCE	C _{ib}	V _{EB} = -1 V I _C = 0, f = 1 mC	-	-	3.5	pf
SMALL SIGNAL FORWARD CURRENT	h _{fe}	$V_{CE} = -6 V$ $I_{C} = 5 \text{ mA}$ $f = 100 \text{ mC}$	3	-	_	_
TURN OFF TIME	t _{off1}		-	-	20	nSec
TURN OFF TIME	t _{off2}		-	-	20	nSec

2N2635

 $V_{CEO} = 15 V$ $I_{C} = 100 \text{ mA}$ $f_{T} = 150 \text{ Mc}$



PNP germanium epitaxial mesa transistor for highspeed switching applications.

MAXIMUM RATINGS (at $T_A = 25$ °C unless otherwise noted)

Characteristic	Symbol	Rating	Unit
Collector-Base Voltage	v _{CBO}	30	Vdc
Collector-Emitter Voltage	v _{CEO}	15	Vdc
Emitter-Base Voltage	VEBO	2.5	Vdc
Collector Current (Continuous)	I _C	100	mAdc
Junction Temperature	T _J	+100	°C
Storage Temperature	T _{stg}	-65 to +100	°c
Device Dissipation @ 25°C Ambient Temperature (Derate 2mW/°C above 25°C)	P _D	150	mW

SWITCHING TIME TEST CIRCUIT

2N2635 (Continued)

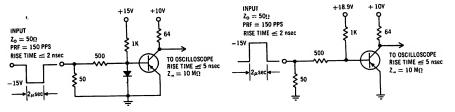
ELECTRICAL CHARACTERISTICS (at TA = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
Collector-Base Breakdown Voltage ($I_C = 100 \mu \text{ Adc}, I_E = 0$)	BV _{CBO}	30	50		Vdc
Collector-Emitter Breakdown Voltage (I _C = 2 mAdc, I _B = 0)	BVCEO	15	30		Vdc
Emitter-Base Breakdown Voltage ($I_E = 100 \mu Adc, I_C = 0$)	BVEBO	2.5	4.5		Vdc
Collector-Base Cutoff Current $(V_{CB} = 25V, I_{E} = 0)$ $(V_{CB} = 25V, I_{E} = 0, T_{A} = +55^{\circ}C)$	ІСВО		1 5	5 20	μ Adc
Emitter-Base Cutoff Current (VEB = 1V, I _C = 0)	I _{EBO}		2	20	μ Adc
	h _{FE}	30 45 25 30		300	
Base-Emitter Voltage ($I_{\rm C}=10$ mA, $I_{\rm B}=0.5$ mA) ($I_{\rm C}=50$ mA, $I_{\rm B}=2.5$ mA) ($I_{\rm C}=50$ mA, $I_{\rm B}=2.5$ mA, $T_{\rm A}=-55^{\rm O}{\rm C}$) ($I_{\rm C}=100$ mA, $I_{\rm B}=10$ mA)	V _{BE}		0.36 0.47 0.56 0.57	0.45 0.70 0.85 0.90	Vdc
Collector-Emitter Saturation Voltage ($I_C = 10 \text{ mA}, I_B = 0.5 \text{ mA}$) ($I_C = 50 \text{ mA}, I_B = 2.5 \text{ mA}$) ($I_C = 50 \text{ mA}, I_B = 2.5 \text{ mA}, T_A = +55^{\circ}\text{C}$) ($I_C = 100 \text{ mA}, I_B = 10 \text{ mA}$)	V _{CE} (sat)		0.13 0.20 0.22 0.23	0.20 0.40 0.45 0.75	Vdc
Small-Signal Forward Current Transfer Ratio ($I_C = 30 \text{ mA}, V_{CE} = 2V, f = 100 \text{ mc}$)	h _{fe}	1.5			
Collector Output Capacitance $(V_{CB} = 5 \text{ V}, I_{\underline{E}} = 0, f = 1 \text{ mc})$	C _{ob}		2.5	5	pf
Input Capacitance (V _{EB} = 1V, I _C = 0, f = 1 mc)	c _{ib}			4	pf
Delay Time	t _d		15	20	nsec
Rise Time	t _r		20	3 0	nsec
Storage Time	t _s		100	185	nsec
Fall Time	t _f		35	65	nsec

2N2800 2N2801 2N2837 2N2838

 $\label{eq:Vceo} \begin{array}{l} V_{\text{CEO}} = 35 \text{ V} \\ I_{\text{C}} = 800 \text{ mA} \\ f_{\text{T}} = 120 \text{ Mc} \end{array}$

PNP silicon annular transistors for medium-speed switching applications.


2N2837 2N2838 2N2800 2N2801

MAXIMUM RATINGS

Characteristic	Symbol	Maximum	Unit
Collector-Base Voltage	v _{сво}	50	Vdc
Collector-Emitter Voltage	v _{CEO}	35	Vdc
Emitter-Base Voltage	v _{EBO}	5	Vdc
Collector Current	I _C	800	mA
Total Device Dissipation @ 25°C Ambient Temperature 2N2800, 2N2801 — TO-5 Derating Factor Above 25°C 2N2837, 2N2838 — TO-18 Derating Factor Above 25°C	P _D	0.8 4.57 0.5 2.86	Watt mW/°C Watt mW/°C
Total Device Dissipation @ 25°C Case Temperature 2N2800, 2N2801 — TO-5 Derating Factor Above 25°C 2N2837, 2N2838 — TO-18 Derating Factor Above 25°C	P _D	3 17.3 1.8 10.3	Watts mW/°C Watts mW/°C
Junction Temperature, Operating	T_{J}	+200	°C
Storage Temperature	T _{stg}	-65 to +300	°c

DELAY AND RISE TIME TEST CIRCUIT

STORAGE AND FALL TIME TEST CIRCUIT

2N2800, 2N2801, 2N2837, 2N2838 (Continued)

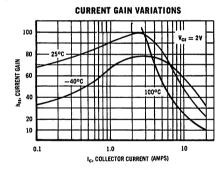
ELECTRICAL CHARACTERISTICS (At 25°C unless otherwise noted)

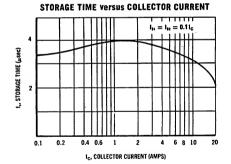
Characteristic	Symbol	Minimum	Maximum	Unit
Collector-Base Breakdown Voltage ($I_C = 10 \mu Adc, I_E = 0$)	вусво	50	-	Vdc
Emitter-Base Breakdown Voltage ($I_E = 100 \mu Adc, I_C = 0$)	BV _{EBO}	5	-	Vdc
Collector-Emitter Breakdown Voltage (I _C = 100 mAdc, I _B = 0)	BVCEO	35	-	Vdc
Collector Cutoff Current (V _{CE} = 25 Vdc, V _{BE} = 0.5 Vdc)	ICEX	-	100	nAdc
Base Cutoff Current (V _{CE} = 25 Vdc, V _{BE} = 0.5 Vdc)	IBL	-	100	nAdc
DC Forward Current Transfer Ratio (I _C = 0.1 mAdc, V _{CE} = 10 Vdc) 2N2800, 2N2837 2N2801, 2N2838	h _{FE}	20 30	- -	-
(I _C = 150 mAdc, V _{CE} = 10 Vdc)* 2N2800, 2N2837 2N2801, 2N2838		30 75	90 225	
(I _C = 150 mAdc, V _{CE} = 1 Vdc)* 2N2800, 2N2837 2N2801, 2N2838		15 30	<u>-</u>	
(I _C = 500 mAdc, V _{CE} = 10 Vdc)* 2N2800, 2N2837 2N2801, 2N2838		25 40	-	·
Collector Saturation Voltage ($I_C = 150 \text{ mAdc}$, $I_B = 15 \text{ mAdc}$) ($I_C = 500 \text{ mAdc}$, $I_B = 50 \text{ mAdc}$)	V _{CE(sat)}	-	0. 4 1. 2	Vdc
Base-Emitter Saturation Voltage ($I_C = 150 \text{ mAdc}$, $I_B = 15 \text{ mAdc}$) ($I_C = 500 \text{ mAdc}$, $I_B = 50 \text{ mAdc}$)	V _{BE(sat)}	-	1.3 1.8	Vdc
Output Capacitance (V _{CB} = 10 Vdc, f = 100 kc)	C ^{op}	-	25	pf
Current-Gain — Bandwidth Product (I _C = 50 mAdc, V _{CE} = 10 Vdc, f = 100 mc)	f _T	120	.	mc

SWITCHING CHARACTERISTICS (At 25°C unless otherwise noted)

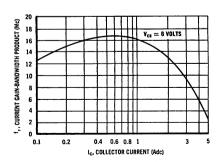
Characteristic	Symbol	Typical	Maximum	Unit
Delay Time	t _d	9	25	nsec
Rise Time	t _r	25	45	nsec
Storage Time	t _s	100	225	nsec
Fall Time	t _f	30	45	nsec

^{*}Pulse Test: Pulse Width ≦ 300 μsec, duty cycle ≦ 2%


2N2832 2N2834 $V_{CEO} = 50-100 \text{ V}$ $I_{C} = 20 \text{ A}$ $P_{D} = 85 \text{ W}$

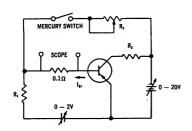


PNP germanium transistors for switching and amplifier applications.


MAXIMUM RATINGS

Characteristic	Symbol	2N2832	2N2834	Unit
Collector-Base Voltage	v _{CBO}	80	140	Volts
Collector-Emitter Voltage	V _{CEO}	50	100	Volts
Emitter-Base Voltage	v _{EBO}	2	2	Volts
Collector Current (Continuous)	^I C	20	20	Amps
Base Current (Continuous)	I _B	5	5	Amps
Power Dissipation	P _C	85	.85	Watts
Junction Operating Temperature Range	Tj	-65 to +110 ⁰		°c

CURRENT GAIN BANDWIDTH PRODUCT versus Collector Current



2N2832, 2N2834 (Continued)

ELECTRICAL CHARACTERISTICS (at Tr = 25°C unless otherwise noted)

Characteristic		Symbol	Min	Typical	Max	Unit
Collector-Base Cutoff Current* (V _{CB} = 2V, I _E = 0) (V _{CB} = 80V, I _E = 0)	All Types 2N2832	ICBO*			0.3 10	mA
(V _{CB} = 140V, I _E = 0)	2N2834	/A.A.A.			10	
Collector-Emitter Current* (V _{CE} = 100V, V _{BE} = 0)	2N2632	ICES*			20	mA
(V _{CE} = 160V, V _{BE} = 0)	2N2834				20	
Collector-Emitter Cutoff Current** (VCE = 50V, VBE = 0.2V, TC = +85°C)	2N2832	ICEX**			40	mA
$(V_{CE} = 100V, V_{BE} = 0.2V, T_{C} = +85^{\circ}C)$	2N2834				40	
Emitter-Base Breakdown Voltage (I _E = 50 mAde, I _C = 0)		BVEBO	2			Vdc
Collector-Emitter Breakdown Voltage** (I _E = 100 mA, I _B = 0)	2N2832	BV _{CEO(sus)} **	50			Volts
	2N2834		100			
Emitter Floating Potential* (VCB = 80V, IE = 0)	2N2832	VEBF*			0.5	Volts
(VCB = 140V, IB = 0)	2N2834				0.5	
DC Current Transfer Ratio (I _C = 1.0 A, V _{CB} = 2V) (I _C = 10A, V _{CB} = 2V)		page	50 25	75	100	
Collector-Emitter Saturation Voltage (I _C = 1.0 Adc, I _B = 100 mAdc) (I _C = 10 Adc, I _B = 1.0 Adc) (I _C = 20 Adc, I _B = 2.0 Adc)		V _{CE(sat)}		==	0,15 0.30 0.5	Vde
Base-Emitter Sahuration Voltage (IC = 1 A, IB = 100 mAdc) (IC = 10 A, IB = 1Adc) (IC = 20 A, IB = 2 Adc)		V _{BE(sat)}	==		0.6 0.75 1.0	Vde
Small Signal Current Gain ($I_C = 1.0 \text{ A}, V_{CE} = 10 \text{ V}, I = 5 \text{ mc}$)		h(e	2	3.5		
Rise Time		· ·		2	4	µ вес
Storage Time		16		3	6	µвес
Fall Time		t _r		1	2.5	μвес

SWITCHING TIME TEST CIRCUIT

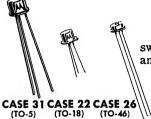
Characteristic	Sym	Max	Valt
Rise Time	t,	4	µsec
Storage Time	t,	6	μsec
Fall Time	t,	2.5	µsec

ADJUST R, R, R, for $l_{\rm B1}=l_{\rm B2}=0.1\,l_{\rm C}$

PULSE CONDITIONS; $I_c = 5$ AMP, $I_{a_1} = 0.5$ AMP

Switching times shown are for constant current drive conditions. Faster times can be realized by the use of a lower source impedance or a speed-up capacitor. See Chapter 5 of the Motorola Switching Handbook for a more detailed explanation.

[•] SWEEP TEST: 1/2 Sine Wave, 60 cps min •• PULSE TEST: PW = 1 msec, 2% Duty Cycle


2N2837 2N2838

For Specifications, See 2N2800 Data Sheet

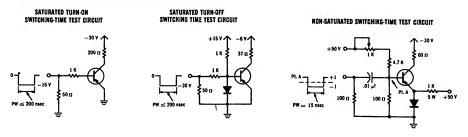
2N2904, A thru 2N2907, A 2N3485, A, 2N3486, A

 $V_{CEO} = 40-60 \text{ V}$ $I_{C} = 600 \text{ mA}$ $f_{T} = 200 \text{ Mc}$

PNP silicon annular Star transistors for high-speed switching, complementary circuitry and DC to VHF amplifier applications.

MAXIMUM RATINGS

2N2904, A 2N2906, A 2N3485, A 2N2905, A 2N2907, A 2N3486, A

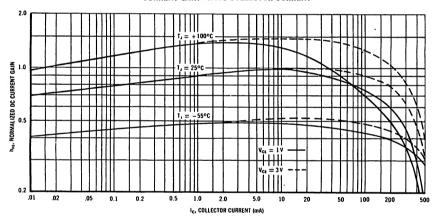

CHARACTERISTIC	SYMBOL	RATING	UNIT
Collector-Base Voltage	^V сво	60	Vdc
Collector-Emitter Voltage 2N2904-2N2907, 2 3485, 2N3486 2N2904A-2N2907A, 2N3485A, 2N3486A	V _{CEO}	40 60	Vdc
Emitter-Base Voltage	V _{EBO}	5	Vdc
Collector Current	l ^I c	600	mAdc
Total Device Dissipation @ T _C = 25°C	P _D		
TO-5: 2N2904, 2N2904A, 2N2905, 2N2905A DERATING FACTOR		3 17. 2	W mW/°C
TO-18: 2N2906, 2N2906A, 2N2907, 2N2907A DERATING FACTOR		1.8 10.3	W mW/°C
TO-46: 2N3485, 2N3485A, 2N3486, 2N3486A DERATING FACTOR		2 11. 43	W mW/°C
Total Device Dissipation @ T _A = 25°C	P _D		
TO-5: 2N2904, 2N2904A, 2N2905, 2N2905A DERATING FACTOR		600 3. 43	mW mW/°C
TO-18: 2N2906, 2N2906A, 2N2907, 2N2907A		400	mW
TO-46: 2N3485, 2N3485A, 2N3486, 2N3486A DERATING FACTOR		2. 28	mW/°C
Operating Junction Temperature Range	T_{J}	-65 to +200	°C
Storage Temperature Range	T _{stg}	-65 to +300	· C

2N2904, A-2N2907, A and 2N3485, A, 2N3486, A (Continued)

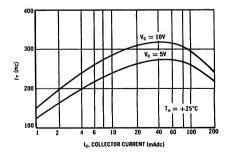
ELECTRICAL CHARACTERISTICS (At 25°C unless otherwise noted)

Characteristic		Symbol	Min	Max	Unit
Collector Cutoff Current $(V_{CB} = 50 \text{ Vdc}, I_E = 0)$ $(V_{CB} = 50 \text{ Vdc}, I_E = 0, T_A = 150^{\circ}\text{C})$	2N2904 thru 2N2907, 2N3485, 2N3486 2N2904A thru 2N2907A, 2N3485A, 2N3486A 2N2904 thru 2N2907, 2N3485, 2N3486 2N2904A thru 2N2907A, 2N3485A, 2N3486A	^I СВО		.020 .010 20 10	μAde
Collector Cutoff Current (V _{CE} = 30V, V _{BE} = 0.5 V)		I _{CEX}		50	nAdc
Base Cutoff Current (V _{CE} = 30V, V _{BE} = 0.5 V)		IBL		50	nAdc
Collector-Base Breakdown Voltage ($I_C = 10$ Adc, $I_E = 0$)		BV _{CBO}	60		Vdc
Collector-Emitter Breakdown Voltage* (I _C = 10 mAdc, I _B = 0)	2N2904 thru 2N2907, 2N3485, 2N3486 2N2904A thru 2N2907A, 2N3485A, 2N3486A	BVCEO*	40 60	== ,	Vdc
Emitter-Base Breakdown Voltage (I _B = 10 Adc, I _C = 0)		BVEBO	5		Vdc
Collector Saturation Voltage* (I _C = 150 mAdc, I _B = 15 mAdc) (I _C = 500 mAdc, I _B = 50 mAdc)		V _{CE(sat)} *		0.4 1.6	Vdc
Base-Emitter Saturation Voltage (I _C = 150 mAdc, I _B = 15 mAdc)* (I _C = 500 mAdc, I _B = 50 mAdc)		V _{BE(sat)} *		1.3 2.6	Vdc
DC Forward Current Transfer Ratio ($I_C = 0.1$ mAdc, $V_{CE} = 10$ Vdc)	2N2904, 2N2906, 2N3485 2N2905, 2N2907, 2N3486 2N2904, 2N2906A, 2N3485A 2N2905A, 2N2906A, 2N3486A	h _{FE}	20 35 40 75		
(I _C = 1.0 mAde, V _{CE} = 10 Vde)	2N2904, 2N2906, 2N3485 2N2905, 2N2907, 2N3486 2N2904A, 2N2906A, 2N3485A 2N2905A, 2N2907A, 2N3486A		25 50 40 100	==-	
(I _C = 10 mAdc, V _{CE} = 10 Vdc)	2N2904, 2N2906, 2N3485 2N2905, 2N2907, 2N3486 2N2904A, 2N2906A, 2N3485A 2N2905A, 2N2907A, 2N3486A		35 75 40 100	===	
(I _C = 150 mAde, V _{CE} = 10Vdc)* 2N2904, 2N2905,	2N2904A, 2N2906, 2N2906A, 2N3485, 2N3485A 2N2905A, 2N2907, 2N2907A, 2N3486, 2N3486A		40 100	120 300	
(I _C = 500 mAdc, V _{CE} = 10 Vdc)*	2N2904, 2N2906, 2N3485 2N2905, 2N2907, 2N3486 2N2904A, 2N2906A, 2N3485A 2N2905A, 2N2907A, 2N3486A		20 30 40 50		
Output Capacitance (V _{CE} = 10 Vdc, I _E = 0, f = 100 kc)		C _{ob}		8	pf
Input Capacitance (V _{BE} = 2 Vdc, i _C = 0, f = 100 kc)		Cip		30	pf
Current-Gain — Bandwidth Product (I _C = 50 mAdc, V _{CE} = 20 Vdc, f = 100	mc)	f _T	200		me

^{*}Pulse Test: Pulse Width = 300 µsec, duty cycle ≤ 2%

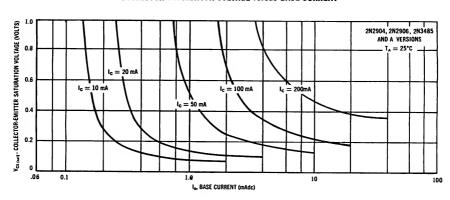


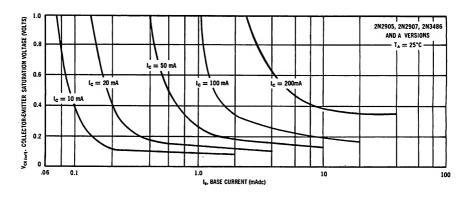
2N2904, A-2N2907, A and 2N3485, A, 2N3486, A (Continued)

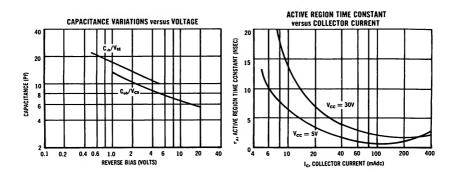

SWITCHING CHARACTERISTICS(At 25°C unless otherwise noted)

Characteristic	Symbol	Typical	Max	Unit
Delay Time	t _a	6	10	nsec
Rise Time	t _r	20	40	·nsec
Turn-On Time	ton	26	45	nsec
Storage Time	t _s	50	80	nsec
Fall Time	t	20	30	nsec
Turn-Off Time	t _{off}	70	100	nsec
Total Switching Time	ttotal	12		nsec

CURRENT GAIN VERSUS COLLECTOR CURRENT



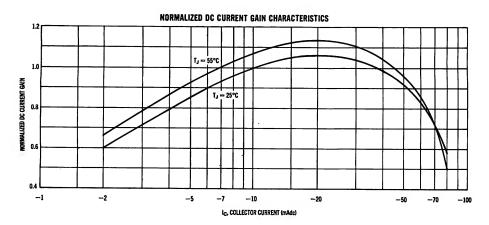

CURRENT GAIN-BANDWIDTH PRODUCT versus Collector Current



2N2904, A-2N2907, A and 2N3485, A, 2N3486, A (Continued)

COLLECTOR SATURATION VOLTAGE VERSUS BASE CURRENT

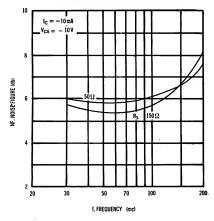
2N2929



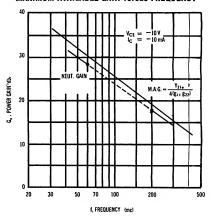
PNP germanium epitaxial mesa transistor for low noise, broadband, power and driver amplifier applications.

MAXIMUM RATINGS

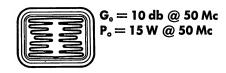
Characteristic	Symbol	Ratings	Unit
Collector-Base Voltage	v _{CBO}	- 25	Volts
Collector-Emitter Voltage	V _{CES}	-25	Volts
Collector-Emitter Voltage	VCEO	-10	Volts
Emitter-Base Voltage	v _{EBO}	- 0.75	Volts
Collector Current	I _C	- 100	mA
Total Device Dissipation @ $T_A = 25^{\circ}C$ Derate above $25^{\circ}C$	P_{D}	300 4	mW mW/ ^o C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	P _D	7 50 10	mW mW/ ^o C
Junction Temperature	T_{J}	100	°c
Storage Temperature	T _{stg}	-65 to +100	°C



2N2929 (Continued)

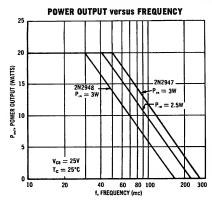

ELECTRICAL CHARACTERISTICS

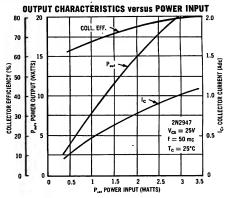
Characteristic	Symbol	Test Conditions	Min	Тур	Max	Unit
Collector-Base Breakdown Voltage	BV _{CBO}	I _C =-100 μAde, I _E = 0	-25	-45	_	Vde
Collector-Emitter Breakdown Voltage	BVCES	I _C =-100 μAdc, V _{EB} = 0	-25	-45	_	Vđc
Collector-Emitter Breakdown Voltage	BVCEO	I _C =-10 mAde, I _B = 0	-10	-20	_	Vdc
Emitter-Base Breakdown Voltage	BVEBO	I _E =-1 mAde, I _C = 0	-0.75	-1.5	_	Vdc
Collector Cutoff Current	I _{CBO}	V _{CB} =-10 Vdc, I _E = 0	_	-0.15	-5	μAde
		V _{CB} =-10 Vdc, I _E = 0, T _A =+55°C	-	_	-50	
Emitter Cutoff Current	I _{EBO}	V _{EB} =-0.5 Vdc, I _C = 0	_	-1	-100	μAde
DC Forward Current Transfer Ratio	h _{FE}	V _{CE} =-10 Vdc, I _C =-10 mAdc	10	30	100	_
Collector-Emitter Saturation Voltage	V _{CE(sat)}	I _C =-50 mAde, I _B =-10 mAde	_	-0.15	-0.5	Vdc
Base-Emitter Saturation Voltage	V _{BE(sat)}	I _C =-50 mAde, I _B =-10 mAde	-	-0.55	-1.0	Vdc
Small-Signal Forward Current Transfer Ratio	h _{fe}	I _C =-10 mAde, V _{CE} =-10 Vde, f = 1 ke	10	35	120	_
Current Gain - Bandwidth Product	f ₇	IC =-10 mAde, V _{CE} =-10 Vde, f = 100 me	800	1100	1400	me
		I _C =-20 mAde, V _{CE} =-10 Vde, f = 100 me	1000	1250	1600	
		I _C = -40 mAde, V _{CE} =-10 Vde, f = 100 me	700	1200	_	
Collector-Base Time Constant	z₀′ Cc	V _{CB} =-10 Vdc, I _E =+20 mAdc, f = 31.8 mc	10	25	40	psec
Real Part of Small-Signal Short Circuit Input Impedance	Re(h _{ie})	I _C =-10 mA, V _{CE} =-10 V, f = 1000 mc	_	45	75	ohms
Collector-Base Capacitance	Cob	V _{CB} =-10 Vdc, I _E = 0, f = 100 kc	_	1.75	2,5	pf
Power Gain	G _e	V _{CE} =-10 Vdc, I _C =-10 mAdc, f = 60 mc	26	28	_	Ф
		V _{CE} =-10 Vdc, I _C =-10 mAdc, f = 200 mc	_	16	:	
Noise Figure	NF	V _{CE} =-10 Vdc, I _C =-2 Adc, f = 200 mc	<u> </u>	5.5	_	Ф
		R _G = 50 Ω				


NOISE FIGURE versus FREQUENCY

MAXIMUM AVAILABLE GAIN versus FREQUENCY

2N2947 2N2948

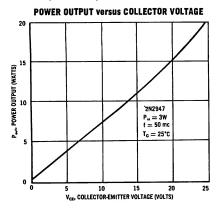


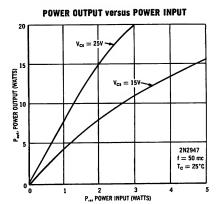

NPN silicon annular transistors for power amplifier applications to $100 \ \text{Mc}$.

MAXIMUM RATINGS (NOTE 1)

Characteristic	Cumbal	Rating		Unit
Gnaracteristic	Symbol	2N2947	2N2948	Unit
Collector-Base Voltage	v _{сво}	60	40	Vdc
Collector-Emitter Voltage	v _{CES}	60	40	Vdc
Emitter - Base Voltage	v _{eb}	3	2	Vdc
Collector-Current (continuous)	^I C	1.5		Adc
Base-Current (continuous)	I _B	50	mAdc	
Power Input (Nominal)	P _{in}	5.	Watts	
Power Output (Nominal)	Pout	20	0.0	Watts
Total Device Dissipation @ 25°C Case Temperature Derating Factor above 25°C	P _D	29	Watts mW/°C	
Junction Temperature	${ t T}_{f J}$	1'	°c	
Storage Temperature	T _{etg}	-65 to	°c	

Note 1. The maximum ratings as given for DC conditions can be exceeded on a pulse basis. See electrical characteristics.


2N2947 (Continued)


ELECTRICAL CHARACTERISTICS TA = 25°C unless otherwise noted

Characteristic	Symbol	Test Conditions	Min	Тур	Max	Unit
Collector-Emitter	V _{CES} (sus)					Volts
Sustain Voltage		2N2947: I _C = 0.250 A, R _{BE} = 0	90	120		
		2N2948: I _C = 0.250A, R _{BE} = 0	80	100		
Collector-Emitter- Open Base Sustain Voltage	V _{CEO(sus)}	2N2947: I _C = 0.250A, I _B = 0	40			Volts
		2N2948: I _C = 0.250A, I _B = 0	20			
Collector-Emitter Current	I _{CES}					m Adc
Current		2N2947' V _{CE} = 60 Vdc, V _{BE} = 0			0.5	
		$V_{CE} = 50 \text{ Vdc}, \ V_{BE} = 0, \ T_{C} = 175^{\circ}\text{C}$			1.0	
		2N2948: V _{CE} = 40 Vdc, V _{BE} = 0			0.5	
		$V_{CE} = 30 \text{ Vdc}, \ V_{BE} = 0, \ T_{C} = 175^{\circ}\text{C}$			1.0	
Collector Cutoff Current	^I CBO	2N2947: V _{CB} = 50 Vdc, I _E = 0	·		1	μAdc
Current		2N2948: V _{CB} = 30 Vdc, I _E = 0			1	
Emitter Cutoff	I _{EBO}	2N2947: V _{EB} = 3 Vdc, I _C = 0			100	μAdc
Current		2N2948: V _{EB} = 2 Vdc, I _C = 0			100	
DC Current Gain	h _{FE}	2N2947: I _C = 400 mAdc, V _{CE} = 2Vdc	2.5		35	
	! :	2N2948: I _C = 400 mAdc, V _{CE} = 2 Vdc	2.5		100	
		Both Types: I = 1 Adc, V _{CE} = 2 Vdc	2.5			
Collector-Emitter Saturation Voltage	V _{CE(sat)}	I _C = 1.0 Adc, I _B = 500 mAdc			0.5	Vdc
Base-Emitter Saturation Voltage	V _{BE(sat)} .	I _C = 1.0 Adc, I _B = 500 mAdc			2.0	Vdc
AC Current Gain	h _{fe}	V _{CE} = 2.0 Vdc, I _C = 400 mAdc, f = 50 mc	2.0			
Collector Output Capacitance	С _{ов}	V _{CB} = 25 Vdc, I _E =0, f = 100 kc			60	pf
Power Input	P _{in}	P _{out} = 15 W, f = 50 mc, V _{CE} = 25 Vdc		2.0	3.0	Watts
Efficiency	η	I _{C(max)} = 1A	60	80		%
Power Input	Pin	P _{out} = 15 W, f = 30 mc, V _{CE} = 25 Vdc		2.0	3.0	Watts
Efficiency	η	I _{C(max)} = 1.0 A	60	70		%

[•] Pulse Measurement: Pulse Width ≤ 100 μsec, Duty Cycle = 2%

2N2947 (continued)

2N2949 2N2950

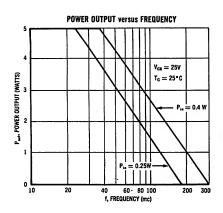
 $G_{\rm e} = 12~{
m db}~@~50~{
m Mc}$ $P_{\rm o} = 3.5~{
m W}~@~50~{
m Mc}$

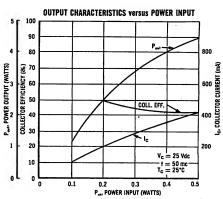
CASE 23 CASE 24 2 2N2949 2N2950

NPN silicon annular transistors for power amplifier and driver applications to 100 Mc.

MAXIMUM RATINGS (Note 1)

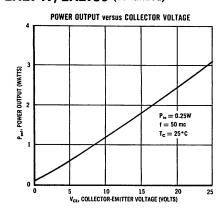
Characteristic	Symbol	Ra	ting	Unit		
Collector-Base Voltage	v _{сво}	6	60		60	
Collector-Emitter Voltage	v _{CES}	-	10	Vdc		
Emitter - Base Voltage	v _{EB}	3	.0	Vdc		
Collector Current (Continuous)	I _C	0	0.7		0.7	
Base Current (Continuous)	I _{B.}	1	100		100	
RF Input Power (Nom)	P _{in}	1	1.0		1.0	
RF Output Power (Nom)	Pout	5	5.0			
Total Device Dissipation (25°C Case temperature) (Derating Factor above 25°C)	P _C		6.0 40			
Total Device Dissipation at 25° Ambient (Derating Factor above 25°C)	P _D	2N2949 0. 5 3. 33	2N2950 0.7 4.67	Watt mW/°C		
Junction Temperature	$^{\mathrm{T}}\mathrm{_{J}}$	1	175			
Storage Temperature	T _{stg}	-65 to	-65 to + 175			

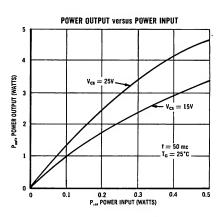

The maximum ratings as given for DC conditions can be exceeded on a pulse basis. See Electrical Characteristics.


2N2949, 2N2950 (Continued)

ELECTRICAL CHARACTERISTICS TA = 25°C unless otherwise noted

Characteristic	Symbol	Test Conditions	Min	Тур	Max	Unit
Collector-Emitter Sustain Voltage	V _{CES(sus)} .	I _C =0.250 A, R _{BE} = 0	85	120		Volts
Collector Emitter-Open Base Sustain Voltage	V _{CEO(sus)} *	I _C =0. 250A, I _B =0	40			Volts
Collector-Emitter Current	ICES	V _{CE} = 60 Vdc, V _{BE} =0			100	μAdo
		V _{CE} =50 Vdc, V _{BE} = 0 T _C = + 175°C			500	
Collector - Cutoff Current	I _{CBO}	V _{CB} =50 Vdc, I _E =0			0.1	μAdd
Emitter-Cutoff Current	I _{EBO}	V _{EB} ² 3 Vdc, I _C ² 0			100	μAdd
DC Current Gain	h _{FE}	V _{CE} = 2.0 Vdc I _C = 40 mAdc	5.0		100	
		V _{CE} =2.0 Vdc I _C = 400 mAdc	5.0			
Collector - Emitter Saturation Voltage	V _{CE(sat)}	I _C = 400 mAdc, I _B = 80 mAdc			0.5	Vdc
Emitter-Base Saturation Voltage	V _{BE(sat)}	I _C =400 mAde, I _B =80mAde			2.0	Vdc
AC Current Gain	h _{fe}	V _{CE} =2.0 Vdc I _C =40 mAdc, f=50 mc	2.0			1
Collector Output Capacitance	c ^{op}	V _{CB} = 25 Vdc, I _E =0 f=100kc			20	pf
Power Input	P _{in}	P _{out} =3.5 watts, f=50 mc			0.35	Watt
Efficiency	η	V _{CE} =25 Vdc, I _{C(max)} =325 mA,	43			%


^{*} Pulse Width $\leq 100 \,\mu \mathrm{sec}$, Duty Cycle = 2%



—— Motorola High-Frequency Transistors ——

2N2949, 2N2950 (continued)

2N2951 2N2952

 $G_{\rm e} = 9 \ {
m db} \ @ \ 50 \ {
m Mc}$ $P_{\rm o} = 600 \ {
m mW} \ @ \ 50 \ {
m Mc}$

CASE 31 CASE 22 (TO-5) (TO-18) 2N2951 2N29

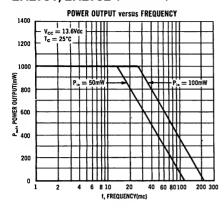
NPN silicon annular Star transistors for power amplifier applications to 100 Mc. $\label{eq:constraint}$

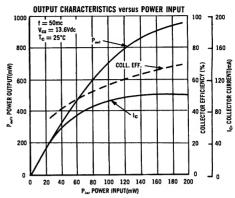
MAXIMUM RATINGS

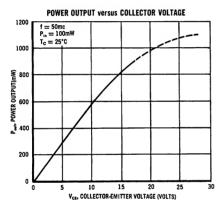
Characteristics	Symbol	Rat	ting	Unit						
Collector-Base Voltage	v _{CBO}	6	0	Vdc						
Collector-Emitter Voltage	V _{CES}	60		60		60		60		Vdc
Emitter-Base Voltage	v _{EBO}	5		Vdc .						
Collector Current (continuous)	I _C	25	0	mAdc						
Base Current (continuous)	I _B	50		mAdc						
Total Device Dissipation (25°C Case Temperature) (Derate above 25°C)	P _C	2N2951 3 20	2N2952 1.8 12	Watts mW/°C						
Total Device Dissipation (25°C Ambient Temperature) (Derate above 25°C)	P _D	0.8 5.33	0.5 3.33	mW/°C						
Junction Temperature	T _J	-65 t	o 175	°C						
Storage Temperature	T _{stg}	-65 t	o 175	°C						

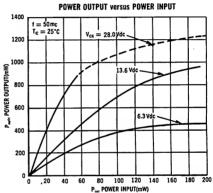
NOTE 1: The maximum ratings as given for D.C. conditions can be exceeded on a pulse basis. See Electrical Characteristics.

2N2951, 2N2952 (Continued)

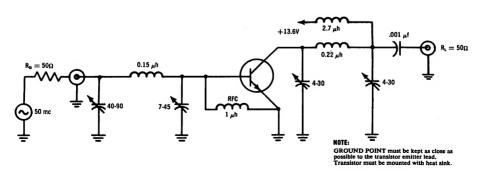

ELECTRICAL CHARACTERISTICS (At 25°C ambient unless otherwise noted)


Characteristic	Symbol	Conditions	Min	Max	Unit
Collector-Emitter Current	ICES	$V_{CE} = 60Vdc,$ $V_{BE} = 0$.00	μAdc
		V _{CE} = 50Vdc, V _{BE} = 0, T _C = 175°C		500	μ A dc
Collector Cutoff Current	I _{СВО}	$V_{CB} = 50 \text{ Vdc},$ $I_{E} = 0$		0.1	μAdc
Emitter Cutoff Current	I _{EBO}	$V_{EB} = 5 \text{ Vdc},$ $I_{C} = 0$		100	μ Ad c
DC Current Gain	h _{FE}	I _C = 10 mAdc, V _{CE} = 10 Vdc	20	150	
		I _C = 150mAdc, V _{CE} = 10 Vdc [*]	20		
Collector-Emitter Saturation Voltage	V _{CE(sat)}	I _C = 150 mAdc, I _R = 15 mAdc		0.5	Vdc
Base-Emitter Saturation Voltage	V _{BE} (sat)	I _C = 150 mAdc, I _B = 15 mAdc		2.0	Vdc
Collector-Emitter Sustain Voltage	V _{CES(sus)} *	I _C = 100 mA, R _{BE} = 0	30		Volts
Collector-Emitter Open Base Sustain Voltage	V _{CEO(sus)} *	I _C = 100 mA, I _B = 0	20		Volts
AC Current Gain	h _{fe}	V _{CE} = 10 Vdc, I _C = 10 mAdc f = 50 mc	4.0		
Collector Output Capacitance	C _{ob}	V _{CB} = 10 Vdc, I _E = 0, f = 100kc		8	pf
Power Input	P _{in}	P _{out} = 600 mW		100	mW
		f = 50 mc V _{CE} = 13.6 Vdc I _{C(max)} = 125 mA			
Efficiency	η	C(max)	35		%


^{*}Pulse ≤ 100 nsec, Duty Cycle = 2%

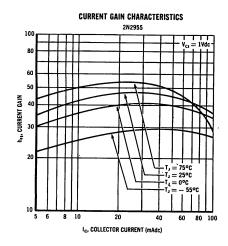

—— Motorola High-Frequency Transistors ——

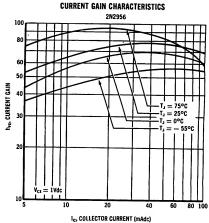
2N2951, 2N2952 (Continued)



POWER OUTPUT AND POWER GAIN CIRCUIT

2N2955 2N2956 2N2957

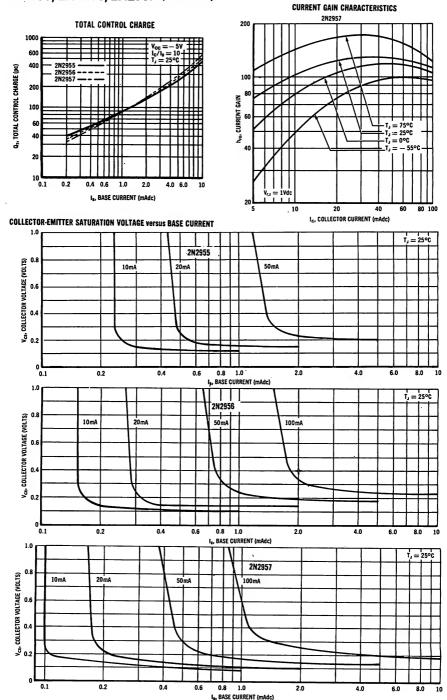

 $V_{CEO} = 18-25 \text{ V}$ $I_C = 100 \text{ mA}$ $f_T = 200-300 \text{ Mc}$



PNP germanium epitaxial mesa transistors for high-speed switching applications.

MAXIMUM RATINGS $T_A = 25$ °C unless otherwise noted

Characteristic	Symbol	Rating	Unit
Collector-Base Voltage	v _{CBO}	40	Vdc
Emitter-Base Voltage	v_{EBO}	3.5	Vdc
2N2955 Collector-Emitter Voltage 2N2956 2N2957	v _{CEO}	25 20 18	Vdc
Collector Current	I _C	100	mAdc
Junction Temperature	${f T}_{f J}$	100	°C
Storage Temperature	TSTG	-65 to +100	°C
Total Device Dissipation at 25°C Case Temperature (Derate 4 mW/°C above 25°C)	P _D	300	mW
Total Device Dissipation at 25°C Ambient Temperature (Derate 2 mW/°C above 25°C)	$P_{\mathbf{D}}$	150	mW



2N2955, 2N2956, 2N2957 (Continued)

ELECTRICAL CHARACTERISTICS (At $T_A = 25$ °C unless otherwise noted)

Characteristic		Symbol	Min	Тур	Max	Unit
ff Characteristics						
Collector-Base Breakdown Voltage (I _C = 100 μAdc, I _E = 0)		вусво	40	60		Vđc
Emitter-Base Breakdown Voltage (I _E = 100 μAdc, I _C = 0)		BVEBO	3.5	5		Vdc
Collector-Emitter Breakdown Voltage (I _C = 10 mAdc, Emitter-Base Termination - Open)	2N2955 2N2956 2N2957	BVCEO	25 20 18	35 26 25		Vde
Collector-Emitter Reverse Current (VCE = 25 Vdc, VEB = 0.5 Vdc)		ICEX			10	μ Adc
Base Leakage Current (V _{CE} = 25 Vdc, V _{EB} = 0.5 Vdc)		IBL			10	μ Adc
n Characteristics						
Forward Current Transfer Ratio (I _C = 10 mAdc, V _{CE} = 1 Vdc)	2N2955 2N2956 2N2957	hpE	20 30 60	43 64 105		
(I _C = 50 mAdc, V _{CE} = 1 Vdc)	2N2955 2N2956 2N2957		20 40 100	43 76 130	60 120	
(I _C = 100 mAde, V _{CE} = 1 Vde)	2N2956 2N2957		30 60	69 115		
Collector-Emitter Saturation Voltage (IC = 10 mAdc, IB = 1 mAdc)	2N2955 2N2956 2N2957	VCE (sat)		0.12 0.12 0.09	0.20 0.18 0.15	Vdc
(I _C = 50 mAdc, I _B = 5 mAdc)	2N2955 2N2956 2N2957			0.20 0.16 0.13	0.30 0.25 0.20	
(I _C = 100 mAdc, I _B = 10 mAdc)	2N2956 2N2957			0.23 0.16	0.34 0.26	
Base-Emitter Voltage (I_C = 10 mAdc, I_B = 1 mAdc)	2N2955 2N2956 2N2957	V _{BE}		0.38 0.37 0.36	0.50 0.47 0.44	Vdc
(I _C = 50 mAde, I _B = 5 mAde)	2N2955 2N2956 2N2957			0.51 0.46 0.45	0.65 0.60 0.55	
(IC = 100 mAde, IB = 10 mAde)	2N2956 2N2957			0.56 0.52	0.70 0.65	
ransient Characteristics						
Output Capacitance (V _{CB} = 5 Vdc, I _E = 0, I = 1 mc)	10	C ^{op}		2.5	4	pf
Input Capacitance $(V_{EB} = 1 \text{ Vdc}, I_{C} = 0, f = 1 \text{ mc})$	10	Cip		3.3		pf
Small Signal Forward Current Transfer Ratio $(V_{CE} = 5 \text{ Vdc}, I_C = 10 \text{ mAdc}, f = 100 \text{ mc})$	2N2955 2N2956 2N2957	h _{fe}	2 2.5 3	3.5 3.75 4.0		
Delay Time (V_{CC} =12 Vdc, I_{CS} =50 mAdc, I_{B1} = 5 mAdc, V_{BE} (Off) = 2.2 Vdc)		t _d		7	15	nsec
Rise Time (same conditions as t _d)	2N2955 2N2956 2N2957	t,	===	25 16 15	40 30 25	nsec
Storage Time (V _{CC} = 12 Vdc, I _{CS} = 50 mAdc, I _{B1} = 5 mAdc, I _{B2} = 5 mAdc)	2N2955 - 2N2956 2N2957	t _s		28 37 42	40 55 60	nsec
Fall Time (same conditions as t _g)	2N2955 2N2956 2N2957	tį		25 16 16	40 35 35	nsec
Total Control Charge (I _C = 10 mAde, I _B = 1 mAde)	2N2955 2N2956 2N2957	Q _T	===	64 68 86		рс
	14	T _A				nsec

2N2955, 2N2956, 2N2957 (Continued)

—— Motorola High-Frequency Transistors ———

2N2958 2N2959 2N3115 2N3116

 $V_{\text{CEO}} = 20 \text{ V}$ $I_{\text{C}} = 600 \text{ mA}$ $f_{\text{T}} = 400 \text{ Mc Typ}$

CASE 23

NPN silicon annular Star transistors for high-speed switching and amplifier applications.

CASE 31 CASE 22 (TO-5) (TO-18)

2N2958 2N3115 2N2959 2N3116

MAXIMUM RATINGS

		Туј		
Characteristics	Symbol	2N2958 2N2959 (TO-5)	2N3115 2N3116 (TO-18)	Unit
Collector-Base Voltage	v _{СВО}	60	60	Vdc
Collector-Emitter Voltage	v _{CEO}	20	20	· Vdc
Emitter-Base Voltage	v _{ebo}	5	5	Vdc
Collector-Current	IC	600	600	mAdc
Total Device Dissipation 25°C Case Temperature Derate above 25°C	P _D	3 20	1.8 12	Watts mW/ ⁰ C
Total Device Dissipation 25°C Ambient Temperature Derate above 25°C	PD	0.6 4.00	0.4 2.67	Watts mW/°C
Junction Temperature	T _J	-65 to +175		°C
Storage Temperature	Tstg	-65 to +200		°C

2N2958, 2N2959, 2N3115, 2N3116 (Continued)

ELECTRICAL CHARACTERISTICS TA = 25°C unless otherwise noted

Characteristics	Symbol	Min	Max	Unit
Collector Cutoff Current $(V_{CB} = 50 \text{ Vdc}, I_{E} = 0)$ $(V_{CB} = 50 \text{ Vdc}, I_{E} = 0, T_{A} = 150^{\circ}\text{C})$	I _{CBO}		0.025 15	μ Adc
Collector Cutoff Current (V _{CE} = 30 Vdc, V _{BE} = -0.5 Vdc)	ICEX		.050	u Adc
Base Cutoff Current (V _{CE} = 30 Vdc, V _{BE} = -0.5 Vdc)	I _{BL}		.050	u Adc
Collector-Base Breakdown Voltage ($I_C = 10 \mu Adc, I_E = 0$)	BVCBO	60		Vdc
Collector-Emitter Breakdown Voltage* (I _C = 10 mAdc, pulsed, I _B = 0)	BV _{CEO*}	20		Vdc
Emitter-Base Breakdown Voltage (I _E = 10 µAdc, I _C = 0)	BVEBO	5		Vdc
Collector Saturation Voltage* (I _C = 150 mAdc, I _B = 15 mAdc)	V _{CE} (sat)*		0.5	Vdc
Base-Emitter Saturation Voltage* (I _C = 150 mAdc, I _B = 15 mAdc)	V _{BE} (sat)*		1.3	Vdc
DC Forward Current Transfer Ratio (I _C = 150 mAdc, 2N2958, 2N3115 V _{CE} = 10 Vdc) 2N2959, 2N3116	h _{FE}	40 100	120 300	
Common-Base Open Circuit Output Capacitance (V _{CB} = 10 V, I _E = 0, f = 100 kc)	C ^{op}		8	pf
Delay Time $(V_{CC} = 30 \text{ V}, I_{CS} = 150 \text{ mA}, I_{B1} = 15 \text{ mA})$	t _d		20	nsec
Rise Time $(V_{CC} = 30 \text{ V}, I_{CS} = 150 \text{ mA}, I_{B1} = 15 \text{ mA})$	t _r		75	nsec
Storage Time $(V_{CC} = 6 \text{ V}, I_{CS} = 150 \text{ mA}, I_{B1} = +15 \text{ mA}, I_{B2} = -15 \text{ mA})$	t _s		300	nsec
Fall Time $(V_{CC} = 6 \text{ V}, I_{CS} = 150 \text{ mA}, I_{B1} = +15 \text{ mA}, I_{B2} = -15 \text{ mA})$	t _{f.}		200	nsec
Current Gain-Bandwidth Product (I _C = 20 mA, V _{CE} = 20 V, f = 100 mc)	f _T	250		mc

[•]PULSE TEST: Pulse width \leq 300 µsec, duty cycle \leq 2%

2N3133 thru 2N3136

 $V_{CEO} = 35 \text{ V}$ $I_C = 600 \text{ mA}$ $f_T = 200 \text{ Mc}$

CASE 31 CASE 22 (TO-18)
2N3133
2N3134
2N3135

PNP silicon annular Star transistors for high-speed switching and DC to UHF amplifier applications.

MAXIMUM RATINGS

		Ту	pes	
		(TO-5)	(TO-18)	
Characteristic	Symbol	2N3133 2N3134	2N3135 2N3136	Unit
Collector-Base Voltage	v _{CBO}	50	50	Vdc
Collector-Emitter Voltage	v _{CEO}	35	35	Vdc
Emitter-Base Voltage	v _{EBO}	4	4	Vdc
Collector Current	I _C	600	600	mA
Total Device Dissipation @25°C Case Temperature Derate Above 25°C	P _D	3 17.3	1.8 10.3	Watts mW/ ⁰ C
Total Device Dissipation @ 25°C Ambient Temperature Derate Above 25°C	PD	0.6 3.43	0.4 2.28	Watts mW/ ^O C
Junction Temperature	TJ	-65 to +200		°C
Storage Temperature	T _{stg}	-65 to	o + 300	°C

SWITCHING CHARACTERISTICS (At 25°C unless otherwise noted)

Characteristic	Symbol	Typical	Max	Unit
Turn-On Time $(V_{CC} = -30 \text{ V}, I_{CS} = 150 \text{ mA}, I_{B1} = 15 \text{ mA})$	ton	26	75	nsec
Turn-Off Time (V _{CC} = -6V, I _{CS} = 150 mA, I _{B1} = I _{B2} = 15 mA)	t _{off}	70	150	nsec

2N3133 thru 2N3136 (Continued)

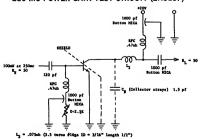
ELECTRICAL CHARACTERISTICS (At 25°C unless otherwise noted)

Characteristic	Symbol	Min	Max	Unit
Collector Cutoff Current (VCB = 30 Vdc, IE = 0) (VCB = 30 Vdc, IE = 0, TA = 150°C)	I _{CBO}		0.05 30	μAdc
Collector Cutoff Current (V _{CE} = 30 V, V _{BE} = 0.5 V)	ICEX		0.1	μAdc
Base Cutoff Current (VCE = 30 V, VBE = 0.5 V)	I _{BL}		0.1	μAdc
Collector-Base Breakdown Voltage ($I_C = 10 \mu Adc$, $I_E = 0$)	BV _{CBO}	50		Vdc
Collector-Emitter Breakdown Voltage* $(I_C = 10 \text{ mAdc}, I_B = 0)$	BV _{CEO} *	35		Vdc
Emitter-Base Breakdown Voltage ($I_E = 10 \mu Adc, I_C = 0$)	BVEBO	4		Vdc
Collector Saturation Voltage* (I _C = 150 mAdc, I _B = 15 mAdc)	V _{CE} (sat)*		0.6	Vdc
Base-Emitter Saturation Voltage * (I _C = 150 mAdc, I _B = 15 mAdc)	V _{BE} (sat)*		1.5	Vdc
DC Forward Current Transfer Ratio (I _C = 1.0 mAdc, V _{CE} = 10 Vdc) 2N3133, 2N3135 2N3134, 2N3136 (I _C = 150 mAdc, V _{CE} = 10 Vdc)* 2N3133, 2N3135 2N3134, 2N3136	$h_{ extbf{FE}}$	25 50 40 100	 120 300	
Output Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 100 kc)	Cob		10	pf
Input Capacitance (VBE = 2 Vdc, I _C = 0, f = 100 kc)	C _{ib}		40	pf
Current-Gain — Bandwidth Product (I _C = 50 mAdc, V _{CE} = 20 Vdc, f = 100 mc)	f _T	200		mc

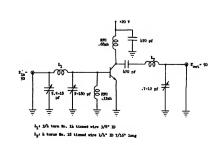
^{*}Pulse Test: Pulse Width \leq 300 μ sec, duty cycle \leq 2%

2N**3137** MM1803

$G_{PE} = 7.7-8.5 \text{ db } @ 250 \text{ Mc Typ}$ $P_O = 600-700 \text{ mW } @ 250 \text{ Mc Typ}$



NPN silicon annular transistors for large signal VHF and UHF applications.


MAXIMUM RATINGS

Characteristic	Symbol	2N3137	MM1803	Unit
Collector-Base Voltage	v _{сво}	40	50	Vdc
Collector-Emitter Voltage	v _{CEO}	20	25	Vdc
Emitter-Base Voltage	v _{EBO}	4	5	Vdc
Cellector Current (Continuous)	I _C	150	150	mAdc
Power Dissipation @25°C Case Temperature @25°C Ambient Temperature	P _D	2,0		Watts
Operating Junction Temperature Storage Temperature Range	T _J	200 -65 to +200		°C
Thermal Resistance Junction to Case	θ _{JC}	87.5		°C/ Watt
Thermal Resistance Junction to Air	$\theta_{ m JA}$	153		°C/ Watt

250 MC POWER GAIN TEST CIRCUIT (2N3137)

250 MC POWER GAIN TEST CIRCUIT (MM1803)

2N3137, MM1803 (Continued)

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise specified)

Characteristic		Symbol	Min	Typical	Max	Unit
Collector-Base Breakdown Voltage $I_{C} = 0.1 \text{mAdc}, I_{E} = 0$	2N3137 MM1803	v _{СВО}	40 50			Vdc
Collector-Emitter Open Base Sus. Voltage $I_C = 15$ mAdc, $I_B = 0$	2N3137 MM1803	V _{CEO(sus)}	20 25			Vdc
Collector Cutoff Current V _{CB} = 20Vdc, I _E = 0, T _C = +150°C	Both Types	I _{CBO}			50	μAdc
Collector Cutoff Current V _{CB} = 20Vdc, I _E = 0	Both Types	^I СВО		i	05	μAdc
Emitter-Base Breakdown Voltage $I_E = 100\mu A, I_C = 0$	2N3137 MM1803	V _{EBO}	4 5			Vdc
DC Current Gain V _{CE} = 5Vdc, I _C = 50mAdc	2N3137 MM1803	$^{ m h}_{ m FE}$	20 40		120 160	
Collector-Emitter Saturation Voltage $I_C = 50$ mAdc, $I_E = 5$ mAdc	Both Types	V _{CE(sat)}			0.3	Vdc
Small Signal Current Gain $V_{CE} = 10Vdc, I_{C} = 50mAdc, f = 100mc$		h _{fe}	5.0			
Common-base Output Capacitance $V_{CB} = 10Vdc$, $I_{C} = 0$, $f = 100kc$		c _{ob}			3.5	pf
Power Output		Pout	400	600		mWatts
Power Gain P _{in} = 100mw, f = 250mc	2N3137	G _e	6.0	7.7		db
Efficiency $V_{CE} = 20Vdc$		η	40	65		%
Power Output		Pout	560	700		mWatts
Power Gain P _{in} = 100mw, f = 250mc	MM1803	G _e	7.5	8.5		db
Efficiency V _{CE} = 20V		η	45	60		%

^{*}Pulse Width \approx 300 μ sec. Duty cycle = 1%

For Specifications, See 2N2369 Data Sheet

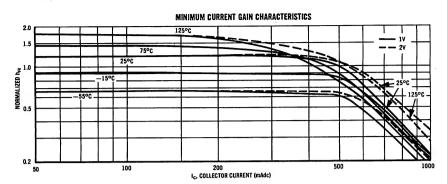
2N3244 2N3245

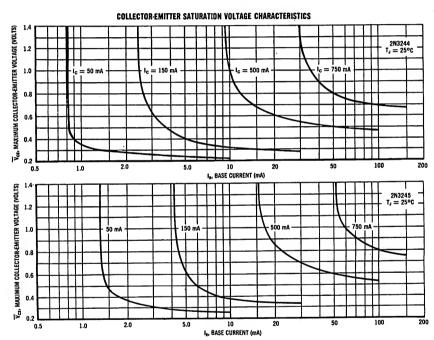
 $V_{CEO} = 40-50 \text{ V}$ $I_C = 1 \text{ A}$ $f_T = 150-175 \text{ Mc}$

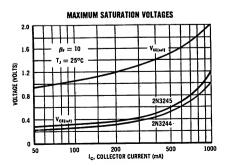
PNP silicon annular transistors for medium-current, high-speed switching and driver applications.

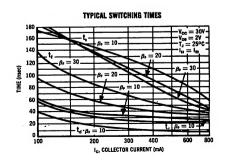
MAXIMUM RATINGS

Characteristic	Symbol		mum 2N3245	Unit				
Collector-Base Voltage	v _{сво}	40	50	Vdc				
Collector-Emitter Voltage	v _{CEO}	40	50	Vdc				
Emitter-Base Voltage	v _{EBO}	5		Vdc				
Collector Current	I _C	1		1		1		Adc
Total Device Dissipation @ 25 ° C Ambient Temperature Derating Factor Above 25 °C	P _D	1.0 5.71		Watt mW/°C				
Total Device Dissipation @ 25 ° C Case Temperature Derating Factor Above 25° C	P _D	5 28.6		Watts mW/°C				
Junction Temperature, Operating	$T_{\mathbf{J}}$	+200		+200		°c		
Storage Temperature Range	T _{stg}	-65 to +200		°c				
Thermal Resistance	θ _{JA} JC	0. 175 35		°C/mW				


2N3244, 2N3245 (Continued)

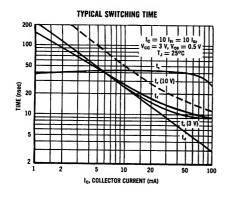

ELECTRICAL CHARACTERISTICS (at TA = 25°C unless otherwise specified)

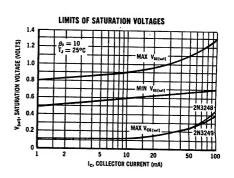

	Characteristic		Symbol	Min	Max	Únit
Collector Cutoff C (V _{CB} = 30 Vdc, (V _{CB} = 30 Vdc,	Current I _E = 0) I _E = 0, T _A = 100°C)		СВО	_	.050 10	μ Adc
Collector Cutoff C	urrent		I _{CEX}	_	50	nAdc
Emitter-Base Lea (V _{EB} = 3 Vdc,	ukage Current I _C = 0)		1 _{EBO}	_	30	nAdc
Base Cutoff Curre (V _{CE} = 30 Vdc,	ent V _{OB} = 3 Vdc)		I _{BL}	_	80	nAdc
Collector-Base Br (I _C = 10 μ Adc,	reakdown Voltage I _E = 0)	2N3244 2N3245	вусво	40 50	11	Vdc
Collector-Emitter	Breakdown Voltage* IB = 0)	2N3244 2N3245	BV CEO.	40 50	-	Vdc
Emitter-Base Bre (I _E = 10 µ Adc,	akdown Voltage I _C = 0)		BVEBO	5	1	Vdc
Collector Saturati (I _C = 150 mAdc,	L _B = 15 mAdc)	2N3244 2N3245	V _{CE(sat)} *	=	0.3 0.35	Vdc
(I _C = 500 mAdc, (I _C = 1 Adc, I _B		2N3244 2N3245 2N3244			0.5 0.6 1.0	
Base-Emitter Satu (I _C = 150 mAdc,	iration Voltage* I _B = 15 mAdc)	2N3245	V _{BE(sat)} *		1.1	Vdc
(I _C = 500 mAdc, (I _C = 1 Adc, I _B	I _B = 50 mAdc) = 100 mAdc)			0.75 —	1.5 2.0	
(I _C = 150 mAdc,	ent Transfer Ratio* VCE = 1.0 Vdc)	2N3244 2N3245	h _{FE}	60 35		_
(I _C = 500 mAdc,		2N3244 2N3245		50 30	150 90	•••
Output Capacitance		2N3244 2N3245		25 20		pf
(V _{CB} = 10 Vdc,	I _E = 0, f = 100 kc)		C ^{op}	_	25	
(V _{OB} = 0.5 Vdc,	I _C = 0, f = 100 kc)		c _{ib}		100	pf
Current-Gain - Ba (1 _C = 50 mAdc,	V _{CE} = 10 Vdc, f = 100 mc)	2N3244 2N3245	fy	175 150	=	me
Delay Time	(I _C = 500 mA, I _{B1} = 50 mA		t _d	_	15	nsec
Rise Time	V _{OB} = 2 V, V _{CC} = 30 V)	2N3244 2N3245	t _r	=	35 40	nsec
Storage Time	(I _C = 500 mA, V _{CC} = 30 V	2N3244 2N3245	ts		140 120	nsec
Fall Time (V _{CC} = 30 V)	I _{B1} = I _{B2} = 50 mA)		t ^t		45	пзес
Total Control Char (I _C 500 mA, I	ge B = 50 mA, V _{CC} = 30 V)	2N3244 2N3245	Q _T	=	14 12	nC`


[•] Pulse Test: PW * 300 µsec, Duty Cycle 2%

2N3244, 2N3245 (Continued)

2N3248 2N3249

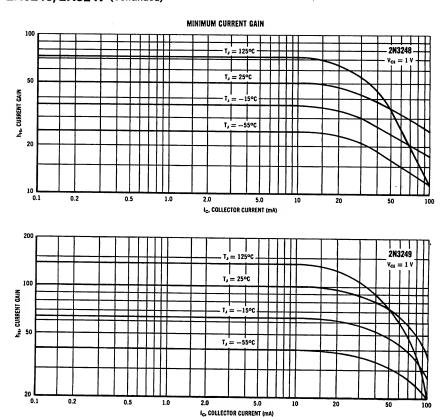

 $V_{CEO} = 12 \text{ V}$ $f_T = 250-300 \text{ Mc}$



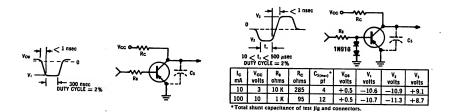
PNP silicon annular transistors for low-level, high-speed switching applications.

MAXIMUM RATINGS

Characteristics	Symbol	Rating	Unit
Collector-Base Voltage	v _{CBO}	15	Vdc
Collector-Emitter Voltage	v _{CEO}	12	Vdc
Emitter-Base Voltage	V _{EBO}	5	Vdc
Total Device Dissipation @ 25 ^o C Ambient Temperature Derate above 25 ^o C	PD	0.36 2.06	Watt mW/ ⁰ C
Total Device Dissipation @ 25 ^o C Case Temperature Derate above 25 ^o C	P _D	1.2 6.9	Watts mW/ ^O C
Operating Junction Temperature	$ extsf{T}_{ extsf{J}}$	200	°C
Storage Temperature Range	T _{stg}	-65 to +200	°С


2N3248, 2N3249 (Continued)

ELECTRICAL CHARACTERISTICS (at 25°C unless otherwise specified)


Characteristics	Symbol	Min	Max	Unit
Collector-Cutoff Current (VCE = 10 Vdc, V _{OB} = 1 Vdc) (VCE = 10 Vdc, V _{OB} = 1 Vdc, T _A = 100 ^O C)	ICEX	=	.05 5	μ Adc
Base Cutoff Current (V _{CE} - 10 Vdc, V _{OB} = 1 Vdc)	I _{BL}		50	n Adc
Collector-Base Breakdown Voltage (I _C 10 \(\mu\) Adc. I _E = 0)	BV _{CBO}	15	_	Vdc
Collector-Emitter Breakdown Voltage* (I _C 10 mAdc, I _B : 0)	BV _{CEO} *	12	_	Vdc
Emitter-Base Breakdown Voltage (I_E - 10 μ Adc. I_C = 0)	BVEBO	5	-	vdc
$ \begin{array}{c} \text{Collector Saturation Voltage} \\ \text{(I}_{C} = 10 \text{ mAdc, I}_{B} = 1 \text{ mAdc)} \\ \text{(I}_{C} : 50 \text{ mAdc, I}_{B} = 5 \text{ mAdc)} \\ \text{(I}_{C} : 100 \text{ mAdc, I}_{B} = 10 \text{ mAdc)} \\ \end{array} $	V _{CE} (sat)	1111	0,125 0.25 0.4 0.45	Vdc
Base-Emitter Saturation Voltage (I_C = 10 mAdc, I_B = 1 mAdc) (I_C = 50 mAdc, I_B = 5 mAdc) (I_C = 100 mAdc, I_B = 10 mAdc)	V _{BE(sat)}	0.6	0.9 1.1 1.3	Vdc
DC Current Gain* (I _C = 0.1 mAdc, V _{CE} = 1 Vdc) 2N3248 2N3249	h _{FE} *	50 100	=	_
(I _C = 1.0 mAdc, V _{CE} = 1 Vdc) 2N3248 2N3249		50 100	=	
(I _C = 10 mAdc, V _{CE} = 1 Vdc) 2N3248 2N3249		50 100	150 300	
(I _C = 50 mAdc, V _{CE} = 1 Vdc) 2N3248 2N3249		35 75	=	
(I _C = 100 mAdc, V _{CE} = 1 Vdc) 2N3248 2N3249		25 35	=_	
Output Capacitance (VCE = 10 Vdc, I _E = 0, f = 100 kc)	Cob		8	pf
Input Capacitance (V _{BE} = 1 Vdc, I _C = 0, f = 100 kc)	C _{ib}	_	8	pf
Current-Gain — Bandwidth Product (I _C = 20 mAdc, V _{CE} - 10 Vdc, f = 100 mc) 2N3248 2N3249	f _T	250 300	=	mc
Total Control Charge (I _C = 10 mA, I _B - 0.25 mA, V _{CC} = 3 V)	Q _T	_	150	рC
Delay Time	t _d	+=-	5 15	nsec
	t _s		6υ	nsec
Storage Time IC = 100 mA, IB1 = IB2 = 10 mA, CC = 10 V CC = 10 mA, CC = 10 m	tr		20	nsec
Turn-On Time $I_C = 10 \text{ mA}, I_{B1} = 1 \text{ mA}, V_{OB} = 0.5 \text{ V}, V_{CC} = 0.5 \text{ V}$		-	90	nsec
Turn-Off Time $I_C = 10 \text{ mA}, I_{B1} = I_{B2} = 1 \text{ mA}, V_{CC} = 3 \text{ V}$	toff		100	nsec

^{*}Pulse Test: PW 300 µsec, Duty Cycle 2%

2N3248, 2N3249 (Continued)

Ton and Toff TEST CIRCUIT

2N3250, A 2N3251, A

 $V_{CEO} = 40-60 \text{ V}$ $I_C = 200 \text{ mA}$ $f_T = 250-300 \text{ Mc}$

PNP silicon annular transistors for high-speed switching and amplifier applications.

MAXIMUM RATINGS

Characteristic	Symbol	Rating		Unit		
		2N3250 2N3251				
Collector-Base Voltage	v _{CBO}	50	60	Vdc		
Collector-Emitter Voltage	v _{CEO}	40	60	Vdc		
Emitter-Base Voltage	V _{EBO}	5		5		Vdc
Collector Current	, ^I C	200		mAdc		
Total Device Dissipation @ 25°C Case Temperature Derating Factor Above 25°C	P _D	1. 2 6. 9		Watts mW≯°C		
Total Device Dissipation @ 25°C Ambient Temperature Derating Factor Above 25°C	P _D	0.36 2.06		Watts mW/°C		
Junction Operating Temperature	T	200		°C		
Storage Temperature Range	T _{stg}	-65 to +200		°c		
Thermal Resistance	$ heta_{ m JA} heta_{ m JC}$	0. 49 0. 15		^o C/mW		

2N3250, A, 2N3251, A (Continued)

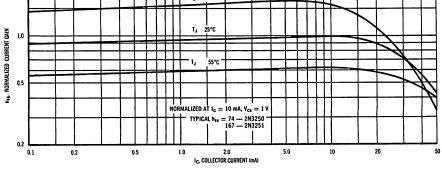
ELECTRICAL CHARACTERISTICS (At 25°C unless otherwise noted)

Characteristic		Symbol	Min	Max	Unit
Collector Cutoff Current (V _{CE} = 40 Vdc, V _{OB} = 3 Vdc)		I _{CEX}		20	n Adc
Base Cutoff Current (V _{CE} = 40 Vdc, V _{OB} = 3 Vdc)		I _{BL}		50	nAdc
Collector-Base Breakdown Voltage (I _C = 10 µAdc)	2N3250, 2N3251 2N3250A, 2N3251A	BV CBO	50 60		Vdc
Collector-Emitter Breakdown Voltage * (I _C = 10 mAdc)	2N3250, 2N3251 2N3250A, 2N3251A	BV _{CEO} *	40 60		Vdc
Emitter-Base Breakdown Voltage (I _E = 10 μAdc)		BVEBO	5		Vdc
Collector Saturation Voltage * (I _C = 10 mAdc, I _B = 1 mAdc)		v _{CE(sat)} *		0. 25	Vdc
(I _C = 50 mAdc, I _B = 5 mAdc) Base-Emitter Saturation Voltage *				0.5	
(I _C = 10 mAdc, I _B = 1 mAdc) (I _C = 50 mAdc, I _B = 5 mAdc)		V _{BE(sat)} *	0.6	0.9	Vdc
DC Forward Current Transfer Ratio * $(I_C = 0.1 \text{ mAdc}, V_{CE} = 1 \text{ Vdc})$ $(I_C = 1 \text{ mAdc}, V_{CE} = 1 \text{ Vdc})$ $(I_C = 10 \text{ mAdc}, V_{CE} = 1 \text{ Vdc})$ $(I_C = 50 \text{ mAdc}, V_{CE} = 1 \text{ Vdc})$	2N3250, 2N3250A 2N3251, 2N3251A 2N3250, 2N3250A 2N3251, 2N3251A 2N3250, 2N3250A 2N3251, 2N3251A 2N3250, 2N3250A 2N3251, 2N3251A	^h FE*	40 80 45 90 50 100 15 30	 150 300 	
Output Capacitance • (V _{CB} = 10 Vdc, I _E = 0, f = 100 kc)		C _{ob}		6	pf
Input Capacitance $(V_{OB} = 1 \text{ Vdc}, I_{C} = 0, f = 100 \text{ kc})$		C _{ib}		8	pf
Current-Gain - Bandwidth Product $(I_C = 10 \text{ mAdc}, V_{CE} = 20 \text{ Vdc}, f = 100 \text{ mc})$	2N3250, 2N3250A 2N3251, 2N3251A	í _T	250 300		mc

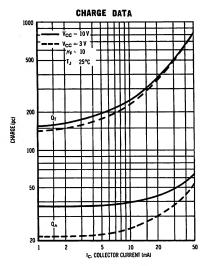
Small Signal Characteristics		Symbol	Min	Max	Unit
Small Signal Current Gain $(I_C = 1.0 \text{ mA}, V_{CE} = 10 \text{ V}, f = 1 \text{ kc})$	2N3250, 2N3250A 2N3251, 2N3251A	h _{fe}	50 100	200 400	
Voltage Feedback Ratio (I _C = 1.0 mA, V _{CE} = 10 V, f = 1 kc)	2N3250, 2N3250A 2N3251, 2N3251A	h _{re}		10 20	X10 ⁻⁴
Input Impedance (I _C = 1.0 mA, V _{CE} = 10 V, f = 1 kc)	2N3250, 2N3250A 2N3251, 2N3251A	h _{ie}	1 2	6 12	kohms
Output Admittance (I _C = 1.0 mA, V _{CE} = 10 V, f = 1 kc)	2N3250, 2N3250A 2N3251, 2N3251A	h _{oe}	4 10	40 60	μ mhos
Collector-Base Time Constant (I _C = 10 mA, V _{CE} = 20 V)		r'bCC	:	250	psec
Noise Figure ($I_C = 100 \mu A$, $V_{CE} = 5 V$, $R_g = 1 k a$, $f = 100 cps$)		NF		6	db

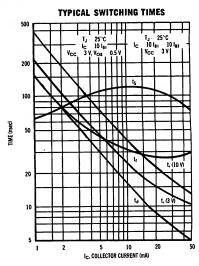
^{*}Pulse Test: PW = 300 μ sec, Duty Cycle = 2%

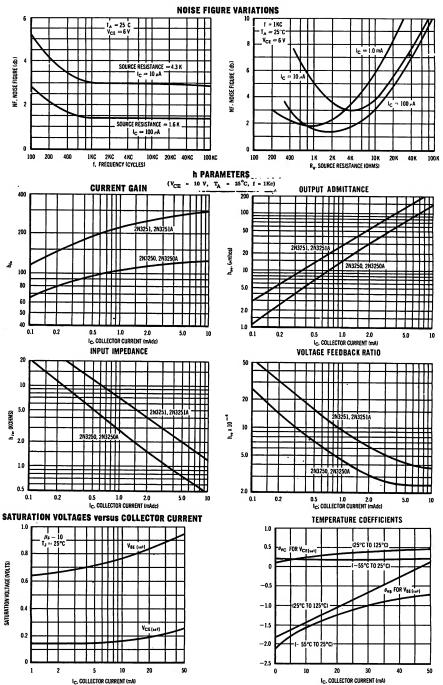
V_{OB} = Base Emitter Reverse Bias


2N3250, A, 2N3251, A (Continued)

2.0


SWITCHING CHARACTERISTICS (At 25°C unless otherwise noted)


*	Characteristic		Symbol	Max	Unit
Delay Time	$(V_{CC} = 3 \text{ Vdc}, V_{OB} = 0.5 \text{ Vdc}$ $I_{C} = 10 \text{ mAdc}, I_{B1} = 1 \text{ mA})$		t _d	35	nsec
Rise Time			t _r	35	nsec
Storage Time	(I _{B1} = I _{B2} = 1 mAdc 2N3250, 2N3250A V _{CC} = 3V)		t _s	175 200	пзес
Fall Time			t _f	50	nsec


NORMALIZED CURRENT GAIN CHARACTERISTICS

2N3250, A, 2N3251, A (Continued)

AUDIO SMALL SIGNAL CHARACTERISTICS

2N**3252** 2N**3253** 2N3444

 $V_{CEO} = 30-50 \text{ V}$ $I_C = 1 \text{ A}$ $f_T = 175-200 \text{ Mc}$

NPN silicon annular transistors for high-current saturated switching and core driver applications.

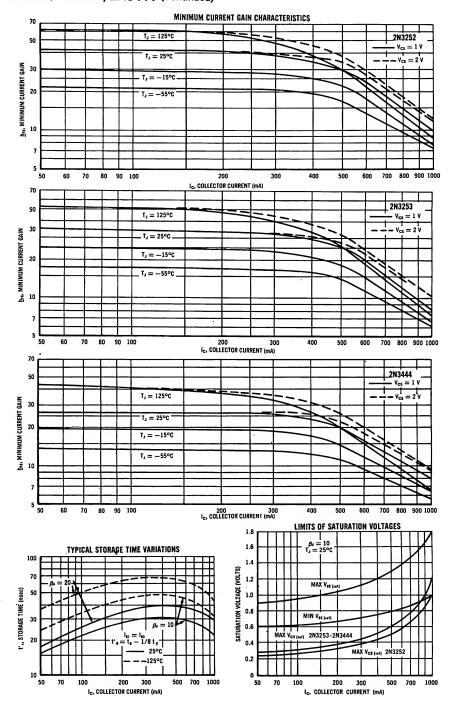
CASE 31 (TO-5)

MAXIMUM RATINGS

Characteristics	Cumbal		Types		Unit
Gilatatolistics	Symbol	2N3252	2N3253	2N3444	Oint
Collector-Base Voltage	v _{Сво}	60	75	80	Vdc
Collector-Emitter Voltage	VCEO	30	40	50	Vdc
Emitter-Base Voltage	V _{EBO}	-	5		Vdc
Total Device Dissipation 25 ^o C Case Temperature Derate above 25 ^o C	P _D	-	5 28.6		Watts mW/°C
Total Device Dissipation 25°C Ambient Temperature Derate above 25°C	PD	=	1.0 5.71		Watt mW/°C
Junction Operating Temperature Range	т	-	65 to +200)	°c
Storage Temperature Range	T _{stg}	4	65 to +20	<u> </u>	°C
Thermal Resistance:	$\theta_{ m JC}$ $\theta_{ m JA}$		35 0.175		°C/W

SWITCHING CHARACTERISTICS

	Characteristics		Min	Max	Unit
Output Capacitance ($V_{CB} = 10 \text{ Vdc}$, $I_E = 0$, $t = 100 \text{ kc}$)		Cop	_	12	pf
Input Capacitance (V _{EB} = 0.5 Vdc, I _C	= 0, f = 100 kc)	C _{ib}	_	80	pf
Current Gain-Bandw (I _C = 50 mAdc, V _C	idth Product E = 10 Vdc, f = 100 mc) 2N3252 2N3253, 2N3444	f _T	200 175	=	mc
Total Control Charge (I _C = 500 mAde, I _E	9 ** 11 = 50 mAdc, V _{CC} = 30 V)	QT	-	5	nC
Delay Time	I _C = 500 mAdc, I _{B1} = 50 mAdc	t _d	_	15	nsec
Rise Time	V _{CC} = 30 V, V _{OB} = 2 V 2N3252 2N3253, 2N3444	tr	=	30 35	nsec
Storage Time	I _C = 500 mAde, I _{B1} = I _{B2} = 50 mAde	t _s	_	40	nsec
Fall Time	v _{CC} = 30 v	t _f	 	30	nsec


2N3252, 2N3253, 2N3444 (Continued)

ELECTRICAL CHARACTERISTICS (At 25°C unless otherwise noted)

Character	istics	Symbol	Min	Max	Unit
	2N3252 2N3252 2N3253, 2N3444 2N3253, 2N3444	ГСВО	-	0.50 75.0 0.50 75.0	μAd
Emitter Cutoff Current (V _{CB} = 4 Vdc, I _C = 0)		I _{EBO}	_	0.05	μAd
Collector Cutoff Current (V _{CE} = 40 Vdc, V _{OB} = 4 Vdc) (V _{CE} = 60 Vdc, V _{OB} = 4 Vdc)	2N3252 2N3253, 2N3444,	ICEX	_	0.5 0.5	μAd
Base Cutoff Current (V _{CE} = 40 Vdc, V _{OB} = 4 Vdc) (V _{CE} = 60 Vdc, V _{OB} = 4 Vdc)	2N3252 2N3253, 2N3444	IBL	_	0.50 0.50	μAc
Collector-Base Breakdown Voltage ($I_C = 10 \mu Adc, I_E = 0$)	2N3252 2N3253 2N3444	вусво	60 75 80	=	Vdc
Collector-Emitter Breakdown Voltage * (I _C = 10 mAdc, pulsed, I _B = 0)	2N3252 2N3253 2N3444	BV _{CEO} *	30 40 50	=	Vdo
Emitter-Base Breakdown Voltage ($I_E = 10 \mu Adc$, $I_C = 0$)		BVEBO	5	_	Vde
Collector Saturation Voltage * (I _C = 150 mAdc, I _B = 15 mAdc)	2N3252 2N3253, 2N3444	V _{CE} (sat)*	=	0.3 0.35	Vd
$(I_C = 500 \text{ mAdc}, I_B = 50 \text{ mAdc})$	2N3252 2N3253, 2N3444		=	0.5 0.60	
(I _C = 1.0 Adc, I _B = 100 mAdc)	2N3252 2N3253, 2N3444		=	1.0 1.2	
Base-Emitter Saturation Voltage * (I _C = 150 mAdc, I _B = 15 mAdc) (I _C = 500 mAdc, I _B = 50 mAdc) (I _C = 1.0 Adc, I _B = 100 mAdc)		V _{BE} (sat)*	- 0.7 -	1.0 1.3 1.8	Vd
DC Forward Current Transfer Ratio * (I _C = 150 mAdc, V _{CE} = 1 Vdc)	2N3252 2N3253 2N3444	h _{FE} *	30 25 20	=	-
(I _C = 500 mAdc, V _{CE} = 1 Vdc)	2N3252 2N3253 2N3444		30 25 20	90 75 60	
$(I_C = 1 \text{ Adc}, V_{CE} = 5 \text{ Vdc})$	2N3252 2N3253 2N3444		25 20 15	=	

^{*} Pulse Test: Pulse width = 300 gsec, duty cycle = 2%

2N3252, 2N3253, 2N3444 (Continued)

2N3279 thru 2N3282

V_{CBO} = 30 V G_o = 16-17 db @ 200 Mc NF = 3.5-5 db @ 200 Mc

PNP germanium epitaxial mesa transistors for highgain, low-noise amplifier, oscillator, mixer and frequency multiplier applications.

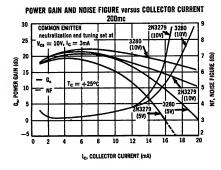
MAXIMUM RATINGS

Characteristic •	Symbol	Rating 2N3279 2N3280	Rating 2N3281 2N3282	Unit
Collector-Base Voltage	v _{сво}	30	30	Volts
Collector-Emitter Voltage	V _{CES}	30	30	Volts
Collector-Emitter Voltage	v _{CEO}	20	15	Volts
Emitter-Base Voltage	V _{EBO}	1.0	0.5	Volts
Collector Current	I _C	50	50 .	mA
Total Device Dissipation	P _D	100	100	mW
(25°C Ambient Temperature) Derate above 25°C		1.33	1.33	mW/°C
Junction Temperature	Тj	+100	+100	°c
Storage Temperature	T _{stg}	-65 to +100	-65 to +100	°c

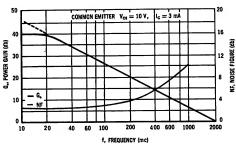
ELECTRICAL CHARACTERISTICS (At 25°C unless otherwise noted)

Characteristic	Symbol	Test Conditions		Тур	Max	Unit
Collector-Base Breakdown Voltage	BV _{CBO}	$I_{\rm C}$ = 100 $\mu{\rm Adc}$, $I_{\rm E}$ = 0 All Types	30	_	_	Vdc
Collector-Emitter Breakdown Voltage	BVCES	I_C = 100 μAdc, V_{EB} = 0 All Types	30	_	_	Vdc
Collector-Emitter Breakdown Voltage	BVCEO	I _C = 2.0 mAdc, I _B = 0 2N3279, 2N3280 2N3281, 2N3282	20 15	=	=	Vdc

2N3279 thru 2N3282 (Continued)


ELECTRICAL CHARACTERISTICS (continued)

Characteristic	Sym		Min	Тур	Max	Unit
Collector Cutoff Current	СВО	$V_{CB} = 10 \text{ Vdc}, I_{E} = 0$ All Types $V_{CB} = 10 \text{ Vdc}, I_{E} = 0, T_{A} = +55^{\circ}\text{C}$ 2N3279, 2N3280	_	1	5	μAdo
Emitter Cutoff Current	ļ ,	1	_	_	50	μAdo
	I _{EBO}	V _{EB} = 0.75 Vdc, I _C = 0 2N3279, 2N3280 V _{EB} = 0.5 Vdc, I _C = 0 2N3281, 2N3282	_	_	100 100	
DC Forward Current Transfer Ratio	hFE	V _{CE} = 10 Vdc, I _C = 3 mAdc 2N3279, 2N3280 2N3281, 2N3282	10 10	-	70 100	_
Collector-Emitter Saturation Voltage	V _{CE} (sat)	I _C = 5 mAdc, I _B = 1.0 mAdc 2N3279, 2N3280 2N3281, 2N3282		11	0.3 0.5	Vđc
Base-Emitter Saturation Voltage	V _{BE (sat)}	I _C = 5 mAdc, I _B = 1.0 mAdc 2N3279, 2N3280 2N3281, 2N3282	=		1.0 1.5	Vdc
Small Signal Forward Current Transfer Ratio	h _{fe}	V _{CE} = 10 Vdc, I _C = 3 mAdc, f = 1 kc 2N3279, 2N3280 2N3281, 2N3282	10 10	=	100 150	
Collector-Base Capacitance	c _{ob}	V _{CB} = 10 Vdc, I _E = 0, f = 100 kc (Note 1) 2N3279 2N3280 thru 2N3282	=	0.9 1.0	1.0 1.2	pf
Collector-Base Time Constant	r _b 'C _c	V _{CB} = 10 Vdc, I _C = 3 mAdc, f = 31.8 mc 2N3279, 2N3280 2N3281, 2N3282	3	5 5	10 15	psec
Current Gain - Bandwidth Product	fT	V _{CE} = 10 Vdc, I _C = 3 mAdc 2N3279, 2N3280 2N3281, 2N3282	400 300	500 400	800 800	mc
Maximum Frequency of Oscillation	í _{max}	V _{CE} = 10 Vdc, I _C = 3 mAdc All Types		2000	_	mc
Power Gain	G _e	V _{CE} = 10 Vdc, I _C = 3 mAdc, f = 200 mc 2N3279, 2N3280 2N3281, 2N3282	17 16	=	23 23	đb
Noise Figure	NF	V _{CE} = 10 Vdc, I _C = 3 mAdc, f = 200 mc 2N3279, 2N3280 2N3281, 2N3282	_	2.9 4.0	3.5 5.0	đb
Power Gain (AGC)	G _e	V _{CE} = 5 Vdc, I _C = 20 mAdc, f = 200 mc (Note 2) 2N3279, 2N3281 (Note 2) 2N3280, 2N3282	=	10	0	db


Note 1. Cob is measured in a guarded circuit such that the can capacitance is not included.

Note 2. AGC is obtained by increasing I_{C} . The circuit remains adjusted for $\rm V_{CE}$ = 10 Vdc and $\rm I_{C}$ = 3 mAdc operation.

2N3279 thru 2N3282 (Continued)

NEUTRALIZED POWER BAIN AND NOISE FIGURE versus FREQUENCY $\frac{1}{1000} = \frac{1}{1000}

2N3283 thru 2N3286

V_{CBO} = 20-25 V G_o = 14-16 db @ 200 Mc NF = 4-5 db @ 200 Mc

PNP germanium epitaxial mesa transistors for TV and FM, RF and IF amplifier, oscillator and general purpose high-gain, low-noise amplifier applications.

MAXIMUM RATINGS

Characteristic	Symbol	2N3283 2N3284	2N3285 2N3286	Unit
Collector-Base Voltage	v _{сво}	25	20	Volts
Collector-Emitter Voltage	V _{CES}	25	20	Volts
Emitter-Base Voltage	V _{EB}	0.5	0.5	Volt
Collector Current	I _C	50	50	mA
Total Device Dissipation at $T_A = 25^{\circ}C$ Derate above 25°C	P _D	100 1.33	100 1.33	mW mW/°C
Junction Temperature	T _J	+100	+100	°C
Storage Temperature Range	T _{stg}		+100	°C

2N3283 thru 2N3286 (Continued)

ELECTRICAL CHARACTERISTICS (At 25°C unless otherwise noted)

Characteristic	Symbol	Test Conditions	Min	Тур	Max	Unit
Collector-Emitter Breakdown Voltage	BVCES	I _C = 100 μAdc, V _{BE} = 0 2N3283, 2N3284 2N3285, 2N3286	25 20	30 25	-	Vdc
Collector Cutoff Current	I _{CBO}	V _{CB} = 10 Vdc, I _E = 0	_	2.0	10	μ Ado
Emitter Cutoff Current	IEBO	v _{EB} = 0.5 Vdc, I _C = 0	_	_	100	μAdo
DC Forward Current Transfer Ratio	h _{FE}	V _{CE} = 10 Vdc, I _C = 3 mAdc 2N3283, 2N3284 2N3285, 2N3286	10 5	30 15	_	-

AC Current Gain	h _{fe}	V _{CE} = 10 Vdc, I _C = 3 mAdc, 2N3283, 2N3284 f = 1 kc 2N3285, 2N3286	10 5	=	200 200	_
Output Capacitance	Cop	V _{CB} = 10 Vdc, I _E = 0, f = 100 kc Note 1	1	1.0	1.5	pf
AC Current Gain	h _{fe}	V _{CE} = 10 Vdc, I _C = 3 mAdc, f = 100 mc	2.5	4.0	8.0	_
Collector-Base Time Constant	r _b 'C _c	V _{CB} = 10 Vdc, I _C = 3 mAdc, f = 31.8 mc	_	10	25	рвес
Maximum Frequency of Oscillation	f _{max}	V _{CE} = 10 Vdc, I _C = 3 mAdc	_	2000	-	me

2N3283

Power Gain	G _e	V - 10 Vde V - 2 mAde	16	20	23	ďb
Noise Figure	NF	V _{CE} = 10 Vdc, I _C = 3 mAdc f = 200 mc	_	4	5	ďЪ
Power Gain (AGC)	G _e	Circuit Fig. 1 - Note 2 V _{CE} = 5 Vdc, I _C = 20 mAdc, f = 200 mc	-	-	0	ďb

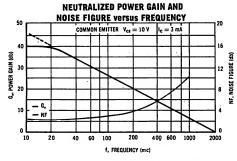
2N3284

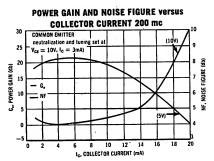
Power Gain	G _e		16	20	23	ďЪ
Noise Figure	NF	V _{CE} = 10 Vdc, I _C = 3 mAdc f = 200 mc	1	5	6	ďЪ
Power Gain (AGC)	G _e	V _{CE} = 5 Vdc, I _C = 20 mAdc, f = 200 mc	_	0	_	ďЪ

2N3285

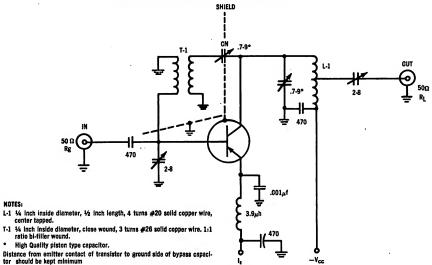
Power Output	Pout	V _{EE} = +12 Vdc, f = 257 mc	2	-	-	mW
						

2N3286

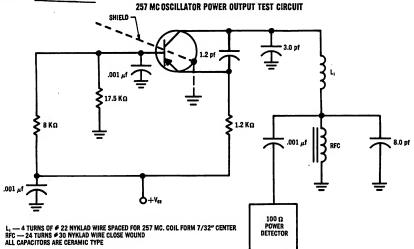

Power Gain	G _e	V 10 Vdo V - 2 made	14	<u> </u>	<u> </u>	ďЪ
Noise Figure	NF	V _{CE} = 10 Vdc, I _C = 3 mAde f = 200 me	_	5		ďЪ


Note 1. $C_{\mbox{\scriptsize ob}}$ is measured in a guarded circuit such that the can capacitance is not included.

Note 2. AGC is obtained by increasing I_C . The circuit remains adjusted for V_{CE} = 10 Vdc and I_C = 3 mAdc operation.


2N3283 thru 2N3286 (Continued)

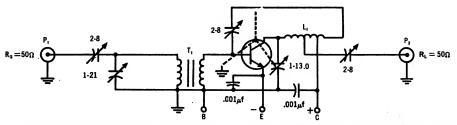
NOTES:



200 MC POWER GAIN AND NOISE FIGURE TEST CIRCUIT

2N3287 thru 2N3290

V_{CBO} = 30-40 V G_o = 17 db @ 200 Mc NF = 6-7 db @ 200 Mc



NPN silicon annular transistors for high-gain, low-noise amplifier, oscillator, mixer and frequency multiplier applications.

MAXIMUM RATINGS

Characteristic	Symbol	2N3287 2N3288	2N3289 2N3290	Unit
Collector - Base Voltage	v _{CBO}	40	30	Volts
Collector - Emitter Voltage	v _{CES}	40	30	Volts
Collector - Emitter Voltage	V _{CEO}	20	15	Volts
Emitter - Base Voltage	V _{EBO}	3.0	3.0	Volts
Collector Current	I _C	50	50	mA
Power Dissipation at 25°C Case Above 25°C derate 1,71 mW/°C	P _C	300	300	mW
Power Dissipation at 25° C amb. Above 25°C derate l. 14 mW/°C	PD	200	200	mW
Junction Temperature	Тj	+200	+200	°C
Storage Temperature	T _{stg}	-65 to +200	-65 to +200	°C

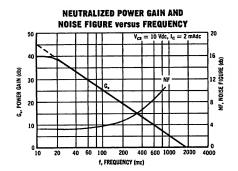
200 MC TEST CIRCUIT: POWER GAIN, NOISE FIGURE, & AGC

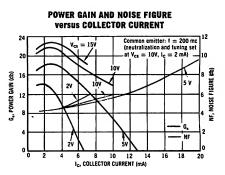
 $L_1\text{--}6$ turns of #16 tinned wire; $\%^\prime\prime$ ID; Air wound; winding length $\%^\prime\prime;$ V_{CC} feeds tap 4% turns from collector end; output tap 3½ turns from collector end.

P₁-General Radio 874 G6 Pad (6 db) P₂-General Radio 874 G6 Pad (6 db)

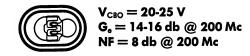
 $[\]rm T_{1}\text{-}3$ turns primary and secondary Bifilar wound (close wound) on $44^{\prime\prime}$ ceramic form (cambion type) with brass slug. #22 enameled wire.

----- Motorola High-Frequency Transistors -----


2N3287 thru 2N3290 (Continued)

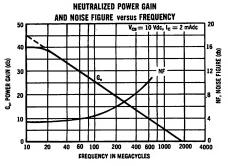

ELECTRICAL CHARACTERISTICS (At 25°C Ambient unless otherwise noted)

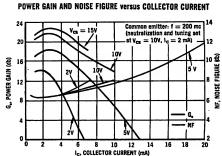
Characteristic	Synchol	Test Contitions		Mia	Typ	Max	Buit
Collector-Base Breakdown Voltage	вусво	I _C = 10 μAdc, I _E = 0	2N3287, 2N3288 2N3289, 2N3290	40 30		=	Vdc
Collector-Emitter Breakdown Voltage	BV _{CE8}	I _C = 10 μAdc, V _{BE} = 0	2N3287, 2N3288 2N3289, 2N3290	40 30	=	=	Vde
Collector-Emitter Breakdown Voltage	BVCEO		2N3287, 2N3288 2N3289, 2N3290	20 15		11	Vdc
Emitter-Base Breakdown Voltage	BVEBO	I _E = 10 μAde, I _C = 0		3.0	_		Vdc
Collector Cutoff Current	ІСВО	VCB = 15 Vdc, T = 150°C	All Types 2N3287, 2N3288	=	=	.010 3. 0	μ Ade
DC Forward Current Transfer Ratio	hFE		2N3287, 2N3288 2N3289, 2N3290	15 10	=	100 150	_
Collector-Emitter Saturation Voltage	V _{CE} (sat)	I _C = 5 mAde, I _B = 0.5 mAde	2N3287, 2N3288 2N3289, 2N3290	=	=	0.3 0.4	Vdc
Base-Emitter Saturation Voltage	VBE (sat)	I _C = 5 mAde, I _B = 0.5 mAde	2N3287, 2N3288 2N3288, 2N3290	=	=	0.9 1.0	Vdc
AC Current Gain	híe		2N3287, 2N3288 2N3289, 2N3290	15 10	=	150 200	_
Output Capacitance	Cob	V _{CB} = 10 Vdc, I _E = 0, f = 0.1 mt (Note	1) 2N3287 2N3288 thru 2N3290	=	0.9 1.2	1.1 1.5	pf
Collector-Base Time Constant	r _b 'C _c		2N3287, 2N3288 2N3289, 2N3290	3	8 8	15 20	psec
Current Gain - Bandwidth Product	t _T		2N3287, 2N3288 2N3289, 2N3290	350 300	600 500	1200 1200	me
Maximum Frequency of Oscillation	fmax	V _{CE} = 10 Vdc, I _C = 2 mAdc			2000		me
Power Gain	G _e	V _{CE} = 10 Vdc, I _C = 2 mAdc, f = 200 mc	All Types	17	_	24	ďъ
Noise Figure	NF	V _{CE} = 10 Vdc, I _C = 2 mAde, f = 200 me	2N3287, 2N3288 2N3289, 2N3290	=	4.9 6.0	6.0 7.0	db
Power Gain (AGC)	G _e		nc 2N3287 2N3289 2N3288, 2N3290	=	1.	0 +5	ďъ


Note 1. C_{ob} is measured in guarded circuit such that the can capacitance is not included.

Note 2. AGC is obtained by increasing I_C . The circuit remains adjusted for $V_{CE} = 10$ Vdc, $I_{C} = 2$ mAdc operation.

2N3291 thru 2N3294





NPN silicon annular transistor for TV and FM mixer, RF and IF amplifier and general-purpose, low-noise, high-gain amplifier applications.

MAXIMUM RATINGS

Characteristic	Symbol	2N3291 2N3292	2N3293 2N3294	Unit
Collector - Base Voltage	v _{CBO}	25	20	Volts
Collector - Emitter Voltage	v _{CES}	25	20	Volts
Emitter – Base Voltage	V _{EBO}	3.0	3.0	Volts
Collector Current	I _C	50	50	mA
Power Dissipation at 25 ^o C Case Above 25 ^o C derate 1.71 mW/ ^o C	P _C	300	300	mW
Power Dissipation at 25°C Amb. Above 25°C derate 1.14 mW/°C	P _D	200	200	mW
Junction Temperature	$^{\mathrm{T}}\mathrm{_{J}}$	+200	+200	οС
Storage Temperature	T _{stg}		°C	

----- Motorola High-Frequency Transistors -----

2N3291 thru 2N3294 (Continued)

ELECTRICAL CHARACTERISTICS TA = 25°C unless otherwise noted

Characteristic	Symbol	Test Cenditions	Min	Тур	Max	Vait
Collector–Emitter Breakdown Voltage	BV _{CES}	I_{C} = 25 μ Adc, V_{BE} = 0 2N3291, 2N3292 2N3293, 2N3294	25 20	35 30	=	Vdc
Collector Cutoff Current	^I CBO	V _{CB} = 10 Vdc, I _E = 0	<u> </u>	.01	0.1	μ Adc
Emitter Cutoff Current	I _{EBO}	V _{EB} = 0.5 Vdc, I _C = 0	<u> </u>	-	100	μ Adc
DC Forward Current Transfer Ratio	h _{FE}	V _{CE} = 10 Vdc, I _C = 2 mAdc	10	-	-	-
AC Current Gain	h _{fe}	V _{CE} = 10 Vdc, I _C = 2 mAdc, f = 1 kc	10	-	200	-
Output Capacitance	С ^{ор}	V _{CB} = 10 Vdc, I _E = 0, f = 100 kc, Note 1	_	1.0	2.0	pf
AC Current Gain	h _{fe}	V _{CE} = 10 Vdc, I _C = 2 mAdc f = 100 mc	2.5	6.0	12	-
Collector-Base Time Constant	rb'Cc	V _{CB} = 10 Vdc, I _C = 2 mAdc f = 31.8 mc	_	15	30	рвес
Maximum Frequency of Oscillation	f _{max}	V _{CE} = 10 Vdc, I _C = 2 mA	-	2000	_	me
2N3291						
Power Gain	G _e	V - 10 Vd- 1 0 14	16	20	24	ďЪ
Noise Figure	NF	V _{CE} = 10 Vdc, I _C = 2 mAdc, f = 200 mc	_	6	8	ďЪ
Power Gain (AGC)	G _e	Note 2 V _{CE} = 5 Vdc, I _C = 20 mAdc f = 200 mc	-	-	0	đb
2N3292		· · · · · · · · · · · · · · · · · · ·				
Power Gain	G _e		16	20	24	ďb
Noise Figure	NF	V _{CE} = 10 Vdc, I _C = 2 mAdc f = 200 mc	_	7		ďb
Power Gain (AGC)	G _e	Note 2 V _{CE} = 5 Vdc, I _C = 20 mAdc f = 200 mc	-	0	_	ф
2N3293						
Power Output	P _{out}	VCE = -11 Vdc, f = 257 mc	2	-	-	mW
2N3294		-			_	
Power Gain	G _e	V _{CE} = 10 Vdc, I _C = 2 mAdc	14	_	一	đb

Note 1. $C_{\mbox{ob}}$ is measured in guarded circuit such that the can capacitance is not included.

Note 2. AGC is obtained by increasing I_C . The circuit remains adjusted for V_{CE} = 10 Vdc, I_C = 2 mAdc operation.

2N3295

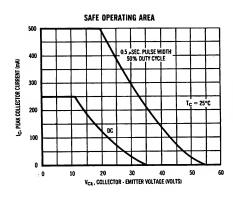
 $G_{PE} = 17 \ db \ @ \ 30 \ Mc \ Typ$ $P_o = 0.3 \ W \ PEP \ @ \ 30 \ Mc$ $I_m = 32 \ db \ @ \ 30 \ Mc$

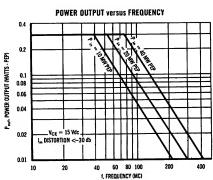
NPN silicon annular Star transistor for linear amplifier applications from 2 to $100\ \text{Mc}$.

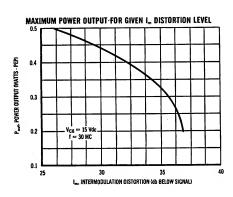
MAXIMUM RATINGS (Note)

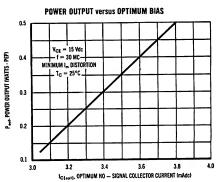
Characteristic	Symbol	Rating	Unit
Collector-Base Voltage	v _{CBO}	60	Vdc
Collector-Emitter Voltage	v _{ces}	60	Vdc
Emitter-Base Voltage	V _{EBO}	5	Vdc
Collector Current (Continuous)	^I C	250	mAdc
Base Current (Continuous)	I _B	50	mAdc
Total Device Dissipation (25°C Case Temperature) Derate above 25°C	P _C	2 13. 3	Watts mW/°C
Total Device Dissipation (25°C Ambient Temperature) Derate above 25°C	P _D	0.8 5.33	Watts mW/°C
Junction Temperature Range	$\mathbf{T_{J}}$	-65 to 175	°C
Storage Temperature Range	T _{stg}	-65 to 175	°C

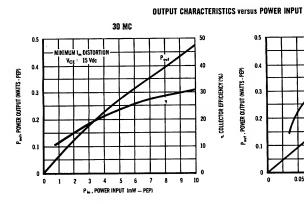
Note The maximum ratings as given for DC conditions can be exceeded on a pulse basis. See Electrical Characteristics.

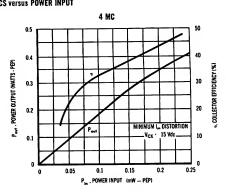

2N3295 (Continued)


ELECTRICAL CHARACTERISTICS (At 25°C unless otherwise noted)


Characteristic	Symbol	Conditions	Min	Тур	Max	Unit
Collector-Emitter Current	ICES	$V_{CE} = 60 \text{Vdc}, V_{BE} = 0$			100	μ Adc
	CES	$V_{CE} = 50 \text{Vdc}, V_{BE} = 0,$ $T_{C} = 175^{\circ}\text{C}$			500	μ Adc
Collector Cutoff Current	^I сво	$V_{CB} = 50 \text{Vdc}, I_E = 0$			0.1	μ Adc
Emitter Cutoff Current	I _{EBO}	$V_{EB} = 5 \text{ Vdc}, I_C = 0$			100	μ Adc
DC Current Gain	h _{FE}	$I_C = 10$ mAdc, $V_{CE} = 10$ Vdc $I_C = 150$ mAdc,	20		60	i
		V _{CE} = 10Vdc *	20			
Collector-Emitter Saturation Voltage	V _{CE(sat)}	I _C = 150mAdc, I _B = 15mAdc			0. 5	Vdc
Base-Emitter Saturation Voltage	V _{BE(sat)}	I _C = 150mAdc, I _B = 15mAdc			2. 0	Vdc
Collector-Emitter Sustain Voltage	V CES(sus)*	$I_C = 100 \text{mA}, R_{BE} = 0$	30			Volts
Collector-Emitter Open Base Sustain Voltage	V _{CEO(sus)} *	I _C = 100mA, I _B = 0	20			Volts
AC Current Gain	h _{fe} -	$V_{CE} = 10 \text{Vdc},$ $I_{C} = 10 \text{mAdc}, \text{ f=50mc}$	4.0			
Collector Output Capacitance	C _{ob}	$V_{CB} = 10 \text{Vdc}, I_{E} = 0,$ f = 100 kc			8	pf
Power Input (PEP) (Note 1)	P _{in}				12	mW
Power Gain	G _e	P _{out} = 0.3 Watts PEP (0.15 W rms)	14	17		db
Intermodulation Distortion Ratio	I _m	$f = 30mc, V_{CE} = 15.0Vdc$	30	32		đb
Efficiency	η	I _{C(max)} = 40 mA	25	30		%


* Pulse = 100 μ sec, Duty Cycle = 2% Note 1. PEP. Peak Envelope Power


2N3295 (Continued)



2N3296

 $G_{PE} = 19 \text{ db } @ 30 \text{ Mc Typ}$ $P_o = 3 \text{ W PEP } @ 30 \text{ MC}$ $I_m = 35 \text{ db } @ 30 \text{ Mc Typ}$

NPN silicon annular transistor for linear amplifier applications from 2 to $100\ Mc$.

MAXIMUM RATINGS (Note 1)

Characteristic	Symbol	Rating	Unit
Collector-Base Voltage	v _{CBO}	60	Vdc
Collector-Emitter Voltage	v _{CES}	60	Vdc
Emitter-Base Voltage	V _{EB}	3.0	Vdc
Collector Current (Continuous)	I _C	700	mAdc
Base Current (Continuous)	I _B	100	mAdc
RF Input Power (Note 2)	P _{in}	1.0	Watt (PEP)
RF Output Power (Note 2)	Pout	5.0	Watts (PEP)
Total Device Dissipation (25°C Case Temperature) Derating Factor above 25°C	P _C	6. 0 40	Watts mW/°C
Total Device Dissipation at (25°C Ambient Temperature) Derating Factor above 25°C	P _D	0.7 4.67	Watts mW/°C
Junction Temperature	$^{\mathrm{T}}\mathrm{_{J}}$	175	°C
Storage Temperature Range	${ m T_{stg}}$	-65 to +175	°C

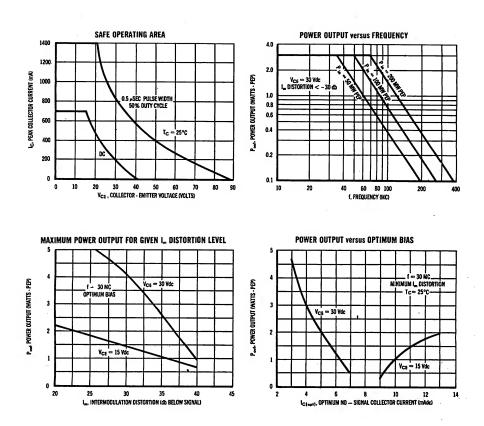
Note 1: The maximum ratings as given for DC conditions can be exceeded on a pulse basis. See Electrical Characteristics.

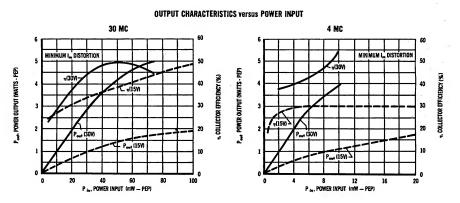
Note 2: PEP = Peak Envelope Power.

2N3296 (Continued)

ELECTRICAL CHARACTERISTICS

Characteristic	Symbol	Conditions	Min	Тур	Max	Unit
Collector-Emitter Sustain ^ Voltage	V _{CES} (sus)*	$I_{C} = 0.200A, R_{BE} = 0$	85	120		Volts
Collector Emitter-Open Base Sustain Voltage	VCEO(sus)	I _C = 0.200A, IB = 0	40			Volts


Collector-Emitter Current	I _{CES}	$V_{CE} = 60 \text{Vdc}, V_{BE} = 0$ $V_{CE} = 50 \text{Vdc}, V_{BE} = 0$ $T_{C} = +175^{\circ}\text{C}$		 100 500	μ Adc
Collector-Cutoff Current	^I сво	$V_{CB} = 50 \text{ Vdc}, I_{E} = 0$		 0.1	μ Adc
Emitter-Cutoff Current	I _{EBO}	$V_{EB} = 3Vdc, I_C = 0$		 100	μ Adc
DC Current Gain	h _{FE}	$V_{CE} = 2.0 \text{Vdc}.$ $I_{C} = 40 \text{mAdc}$ $V_{CE} = 2.0 \text{Vdc},$ $I_{C} = 400 \text{mAdc}$	5.0 5.0	 50	
Collector-Emitter Saturation Voltage	V CE(sat)	I _C = 400mAdc, I _B = 80mAdc	-	 0.5	Vdc
Emitter-Base Saturation Voltage	BE(sat)	I _C = 400mAdc, I _B = 80mAdc		 2.0	Vdc


AC Current Gain	h _{fe}		2.0	 	
Collector Output Capacitance	C _{ob}	V _{CB} = 25Vdc, I _E = 0, f = 100kc		 20	pf

Power Input (PEP)	Pin	D 0.0W (277)			75	mW
Power Gain	G _e	P _{out} = 3.0 Watts (PEP) (1.5 W rms)	16	19		db -
Intermodulation Distortion Ratio	I _m	V _{CE} = 30 Volts, f = 30mc	30	35		db
Efficiency	η	I _{C(max)} = 125 mA	40	48		%

^{*}Pulse Test. Pulse Width = 100 μ sec. Duty Cycle = 2%.

2N3296 (Continued)

2N3297

 $G_{PE} = 13 \ db \ @ \ 30 \ McTyp$ $P_o = 12 \ W \ PEP \ @ \ 30 \ Mc$ $I_m = 33 \ db \ @ \ 30 \ Mc \ Typ$

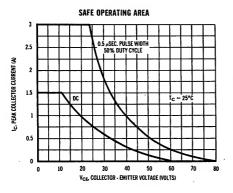
NPN silicon annular transistor for linear amplifier applications for 2 to $100\ Mc$.

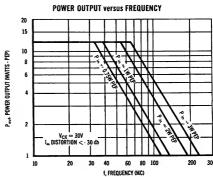
MAXIMUM RATINGS

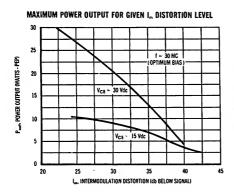
Characteristic	Symbol	Rating	Unit
Collector-Base Voltage	v _{сво}	60	Vdc
Collector-Emitter Voltage	v _{CES}	60	Vdc
Emitter-Base Voltage	V _{EB}	3	Vdc
Collector Current (Continuous)	I _C	1.5	Adc
Base-Current (Continuous)	I _B	500	mAdc
Power Input (PEP)	P _{in}	5.0	Watts (PEP)
Power Output (PEP)	Pout	20.0	Watts (PEP)
Total Device Dissipation @ 25°C Case Temperature Derating Factor above 25°C	P _D	25. 0 167 _.	Watts mW/°C
Junction Temperature	$^{\mathrm{T}}_{\mathrm{J}}$	175	°C
Storage Temperature Range	Tstg	-65 to +175	°C

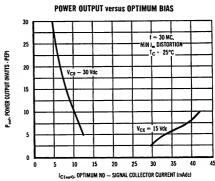
Note: The maximum ratings as given for DC conditions can be exceeded on a pulse basis. See electrical characteristics

----- Motorola High-Frequency Transistors -----

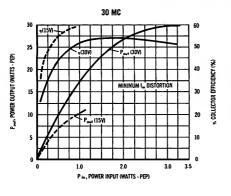

2N3297 (Continued)

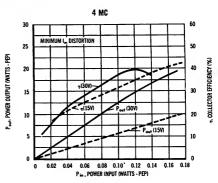

ELECTRICAL CHARACTERISTICS (At 25°C Ambient unless otherwise noted)


Characteristic	Symbol	Conditions	Min	Тур	Max	Unit
Collector-Emitter Sustain Voltage		$I_C = 0.250A, R_{BE} = 0$	80	100		Volts
Collector Emitter-Open Base Sustain Voltage	V _{CEO(sus)} *	$I_C = 0.250A, I_B = 0$	40			Volts
	T	$V_{CE} = 60 \text{Vdc}, V_{BE} = 0$			0.5	
Collector-Emitter Current	ICES	$V_{CE} = 50 \text{Vdc}, V_{BE} = 0,$			1.0	mAdc
		$T_C = +175^{\circ}C$		l	1.0	
Collector-Cutoff Current	^I сво	$V_{CB} = 50 \text{Vdc}, I_E = 0$			1.0	μ Adc
Emitter-Cutoff Current	I _{EBO}	$V_{EB} = 3Vdc, I_C = 0$			100	μAdc
		$I_C = 400 \text{mAdc},$	2.5		35	
DC Current Gain	h _{FE}	$V_{CE} = 2Vdc$	2.5		35	
		$I_C = 1Adc, V_{CE} = 2Vdc$	2. 5			
Collector-Emitter Saturation Voltage	V _{CE(sat)}	$I_C = 1 \text{Adc}, I_B = 500 \text{mAdc}$		1.	0.5	Vdc
Emitter-Base Saturation Voltage	V _{BE(sat)}	$I_C = 1 \text{Adc}, I_B = 500 \text{mAdc}$			2.0	Vdc
AC Current Gain	h _{fe}	V _{CE} = 2Vdc,	2.0			
	1 101		2.0			
Collector Output	C _{ob}	$V_{CE} = 25 \text{Vdc}, I_{E} = 0,$		-	60	pf
Capacitance		f = 100kc			60	pf
Power Input (PEP) Note 2	P _{in}				1.2	Watts PEP
Power Gain	G _e	Pout = 12 Watts PEP (6.0W rms)	10	13	1	db
Intermodulation Distortion Ratio	I _m	$V_{CE} = 30 \text{ Volts, } f = 30 \text{ mc}$ $I_{C(max)} = 0.50 \text{ Amp}$	30	33		db
Efficiency	η	C(max)	40	45		%


^{*} Pulse Test: Pulse Width = $100 \, \mu sec$, Duty Cycle = $2 \, \%$ Note 2. PEP. Peak Envelope Power

2N3297 (Continued)





OUTPUT CHARACTERISTICS versus POWER INPUT

2N3298

 $V_{CES} = 25 \text{ V}$ $P_o = 60-100 \text{ mW } @ 80 \text{ Mc}$

NPN silicon annular transistor for power oscillator applications to $150\ \text{Mc}$.

MAXIMUM RATINGS

Characteristic	Symbol	Rating	Unit
Collector-Base Voltage	· V _{CBO}	25	Vdc
Collector-Emitter Voltage	V _{CES}	25	Vdc
Emitter-Base Voltage	V _{EBO}	3.0	Vdc
Collector Current	^I C	100	mA
Total Device Dissipation (25°C Case Temperature) Derate Above 25°C	^P C	1. 0 6. 67	Watt mW/°C
Total Device Dissipation (25°C Ambient Temperature) Derate Above 25°C 2mW/°C	P _D	0.3 2	Watt mW/°C
Junction Temperature	$^{\mathrm{T}}_{\mathrm{J}}$	+175	°C
Storage Temperature Range	T _{stg}	-65 to +175	°C

80 MC OSCILLATOR POWER OUTPUT TEST CIRCUIT

2N3298

16 K
3.9

RFC
3.9

A TURNS #22 WIRE ON 1/4" COIL FORM

12 pf

15 pf

15 pf

17 pf

18 pf

18 pf

18 pf

19 pf

19 pf

10 pf

10 pf

10 pf

11 pf

12 pf

13 pf

14 pf

15 pf

15 pf

16 pf

17 pf

18 pf

18 pf

18 pf

19 pf

19 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

11 pf

12 pf

13 pf

14 pf

15 pf

16 pf

17 pf

18 pf

18 pf

18 pf

19 pf

19 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

10 pf

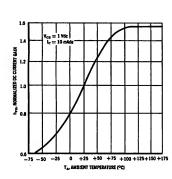
10 pf

10 pf

10 pf

10 pf

10 pf


2N3298 (Continued)


ELECTRICAL CHARACTERISTICS (At 25°C Ambient unless otherwise noted)

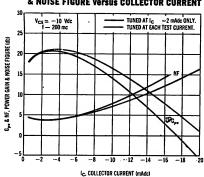
Characteristic	Symbol	Conditions	Min	Тур	Max	Unit
Collector-Emitter Breakdown Voltage	BV _{CES}	I _C =25 μAdc, V _{BE} =0	25	35	-	Vdc
Collector-Emitter Open Base Sustaining Voltage	BV _{CEO(sus)} *	I _C =10mA, I _B =0	15	24	-	Vdc
Collector Cutoff Current	Сво	V _{CB} =10 Vdc, I _E =0 V _{CB} =10 Vdc, I _E =0, T _A =150°C	-	0. 01 10	0.5 50	μAdc
Emitter Cutoff Current	I _{EBO}	V _{EB} =3 Vdc, I _C = 0	-	-	10	μAdo
DC Current Gain	h _{FE}	V _{CE} =1 Vdc, I _C =10 mAdc	60	90	120	_
AC Current Gain	hfe	V _{CE} =10 Vdc, I _C =10mAdc, f=100mc	2		-	-
Collector Output Capacitance	c _{ob}	V _{CB} =10 Vdc, I _E =0, f=100 kc	-	5	6	pf
Power Output	P. out	f=80 mc	60	-	100	mW
Efficiency	η	V _{CC} = 12 Vdc I _{C(max)} = 20 mA	25	40	-	%

^{*}Pulse Width = 300 μ sec, Duty Cycle = 2%

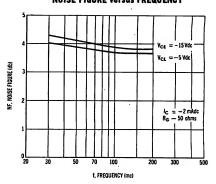
NORMALIZED DC CURRENT GAIN Versus Ambient Temperature

2N3307 2N3308

G_{PE} = 17 db @ 200 Mc NF = 5-6 db @ 200 Mc Typ



PNP silicon annular transistors for high-gain, lownoise amplifier, oscillator, mixer and frequency multiplier applications.

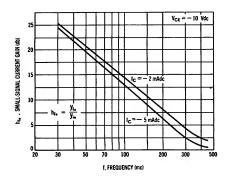

MAXIMUM RATINGS

Characteristics	Combal	Rat	Rating		
Characteristics	Symbol	2N3307	2N3308	Unit	
Collector-Base Voltage	v _{CBO}	40	30	Vdc	
Collector-Emitter Voltage	V _{CES}	40	30	Vdc	
Collector-Emitter Voltage	v _{CEO}	35	25	Vdc	
Emitter-Base Voltage	v _{EBO}	3.0		" Vdc	
Collector Current	I _C	5	0	mAdc	
Power Dissipation at T _C = 25°C Above 25°C derate	P _C	300 1.71		mW mW/°C	
Power Dissipation at T _A = 25°C Above 25°C derate	P _D	200 1.14		mW mW/°C	
Junction Temperature	T _j	200		°C	
Storage Temperature	Tstg	-65 to	+200	°C	

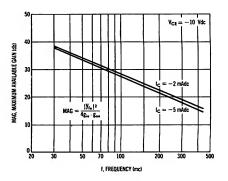
COMMON EMITTER AVERAGE SMALL POWER GAIN & NOISE FIGURE VERSUS COLLECTOR CURRENT

NOISE FIGURE versus FREQUENCY

2N3307, 2N3308 (Continued)


ELECTRICAL CHARACTERISTICS (At 25°C unless otherwise noted)

Characteristics	Symbol	Test Conditions		Min	Тур	Max	Unit
Collector-Base Breakdown Voltage	вусво	¹ C = -10 μAdc, ¹ E = 0	2N3307 2N3308	-40 -30	=	=	Vdc
Collector-Emitter Breakdown Voltage	BVCES	I _C = -10 μAdc, V _{BE} = 0	2N3307 2N3308	-40 -30	=	=	Vdc
Collector-Emitter Breakdown Voltage	BVCEO	I _C = -2.0 mAdc, I _B = 0	2N3307 2N3308	-35 -25	=	=	Vdc
Emitter-Base Breakdown Voltage	BVEBO	I _E = -10 μAdc, I _C = 0	Both Types	-3.0	-	-	Vdc
Collector Cutoff Current	^I сво	V _{CB} = -15 Vdc V _{CB} = -15 Vdc, T = 150 °C	Both Types 2N3307	=	-0.001 -0.5	-0.010 -3.0	μAdc
DC Current Gain	h _{FE}	V _{CE} = -10 Vdc, 1 _C = -2 mAdc	2N3307 2N3308	40 25	-	250 250	-
Collector-Emitter Saturation Voltage	v _{CE(sat)}	I _C = -3 mAde, I _B = -0.6 mAde	Both Types	-	-	-0,4	Vdc
Base-Emitter Saturation Voltage	V _{BE(sat)}	I _C = -3 mAdc, I _B = -0.6 mAdc	Both Types	-	-	-1.0	Vdc
AC Current Gain	h _{fe}	V _{CE} = -10 Vdc, 1 _C = -2 mAdc, f = 1 kc	2N3307 2N3308	40 25	-	250 250	-
Output Capacitance	c ^{op}	V _{CB} = -10 Vdc, 1 _E = 0, f = 0.1 mc	2N3307 2N3308	=	1.0 1,2	1.3	pf
Collector -Base Time Constant	r _b 'C _c	V _{CB} = -10 Vdc, I _C = -2 mAdc, f = 31.8 mc	2N3307 2N3308	2 2	=	15 20	psec
Current Gain-Bandwidth Product	t _T	V _{CE} = -10 Vdc, I _C = -2 mAdc, f = 100 mc	Both Types	300	-	1200	mc
Maximum Frequency of Oscillation	f _{max}	V _{CE} = -10 Vdc, 1 _C = -2 mAde	Both Types	-	2000	-	mc
Power Gain	G _e	V _{CE} = -10 Vdc, I _C = -2 mAdc, f = 200 mc	Both Types	17	I -	24	ďb
Noise Figure	NF	V _{CE} = -10 Vdc, I _C = -2 mAdc, f = 200 mc	2N3307 2N3308	=	4.0 5.0	4.5 6.0	đb
Power Gain (AGC)	G _e	V _{CE} = -5.0 Vdc, I _C = -20 mAdc, f = 200 mc	2N3307 2N3308	=	-	0	đb


Note 1. C_{ob} is measured in guarded circuit such that the can capacitance is not included.

Note 2. AGC is obtained by increasing I_{C} . The circuit remains adjusted for V_{CE} = -10 Vdc, I_{C} = -2 mAdc operation.

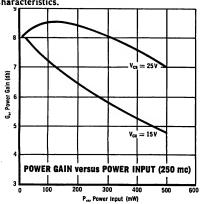
SMALL SIGNAL CURRENT GAIN Versus FREQUENCY

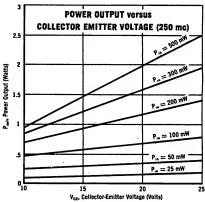
MAXIMUM AVAILABLE GAIN versus FREQUENCY

2N3309

 $G_{PE} = 8 \text{ db } @ 250 \text{ Mc Typ}$ $P_o = 2 \text{ W } @ 250 \text{ Mc}$

CASE 31 (10-5)

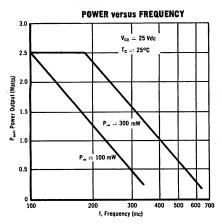

NPN silicon annular transistor for power amplifier and driver applications to 500 Mc.

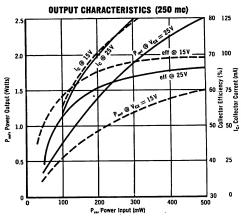

MAXIMUM RATINGS

Characteristic	Symbol	Rating	Unit
Collector-Base Voltage	v _{сво}	50	Vdc
Collector-Emitter Voltage	V _{CES}	50	Vdc
Emitter-Base Voltage	v _{EB}	3.0	Vdc
Collector Current (Continuous)	^I c	0.5	Adc
Base Current (Continuous)	I _B	0.1	Adc
RF Input Power (Nom)	P _{in}	0.5	Watt
RF Output Power (Nom)	Pout	2. 5	Watts
Total Device Dissipation (25°C Case temperature) (Derating Factor above 25°C)	P _C	3. 5 23. 3	Watts mW/°C
Total Device Dissipation at 25° Ambient (Derating Factor above 25°C)	P _D	1.0 6.67	Watt mW/°C
Junction Temperature	т _J	175	°c
Storage Temperature Range	T _{stg}	-65 to +175	°c

NOTE:

The maximum ratings as given for DC conditions can be exceeded on a pulse basis. See Electrical Characteristics.


2N3309 (Continued)


ELECTRICAL CHARACTERISTICS (At 25°C unless otherwise noted)

Characteristics	Symbol	Test Condition	Min	Typ	Max	Unit
Collector-Emitter Sustain Voltage	V _{CES(sus} *)	I _C = 50 mA, R _{BE} = 0	60	75		Volts
Collector Emitter-Open Base Sustain Voltage	V _{CEO(sus*)}	I _C =100 mA, I _B = 0	30			Volts
Collector-Emitter Current	ICES	V _{CE} = 50 Vdc, V _{BE} = 0 V _{CE} = 25 Vdc, V _{BE} = 0 T _C = +150°C			100 500	μAdc μAdc
Collector-Cutoff Current	I _{СВО}	V _{CB} = 25 Vdc, I _E = 0	-	0.01	0.5	μAdc
Emitter-Cutoff Current	I _{EBO}	V _{EB} = 3 Vdc, I _C = 0			100	μAdc
DC Current Gain	h _{FE}	I _C = 30 mAdc, V _{CE} = 2.0 Vdc I _C = 250 mAdc, V _{CE} = 2.0 Vdc	5		100	
Collector-Emitter Saturation Voltage	V _{CE(sat)}	I _C = 250 mAdc, I _B = 65 mAdc		•	0.5	Vdc
Emitter-Base Saturation Voltage	V _{BE(sat)}	I _C = 250 mAde, I _B = 65 mAde	<u>.</u>	-	2.0	Vdc
AC Current Gain	¤ _{Ye}	V _{CE} = 15 Vdc I _C = 30 mAdc, f = 100 mc	3	4		
Collector Output Capacitance	C _{ob}	V _{CB} = 15 Vdc, I _E = 0, f = 100 kc		8.0	10	hţ
		Т		ı		
Power Output**	Pout**		2.0	<u></u>		Watte
Power Gain	G _e	P _{in} = 400 mW max, f = 250 mc V _{CE} = 25 Vdc, I _{C(max)} = 160 mA	7	8		ďb
Efficiency	η	CE C(max)	50	60	-	%

[•] Pulse Width = 100 μ sec, Duty Cycle = 2%

 $^{^{**}}$ In functional test, $P_{\rm out}$ is fixed at 2.0 watts and $P_{\rm in}$ is monitored to be 400 mW maximum.

2N3309A

G_{PE}= 7.4 db @ 250 Mc P_o = 2.2 W @ 250 Mc

NPN silicon annular transistor for power amplifier and driver applications to $500\ Mc$.

ABSOLUTE MAXIMUM RATINGS (Note)

Characteristic	Symbol	Rating	Unit
Collector-Base Voltage	v _{Сво}	60	Vdc
Collector-EmitterVoltage	v _{CES}	60	Vdc
Emitter-Base Voltage	v _{ebo}	4	Vdc
Collector Current (Continuous)	I _C	0.5	Adc
Base Current (Continuous)	I _B	0.1	Adc
RF Input Power (Nom)	P _{in}	0.5	Watt
RF Output Power (Nom)	Pout	2.5	Watts
Total Device Dissipation (25°C Case Temperature) (Derating Factor Above 25°C)	P _C	5 28. 6	Watts mW/ C
Total Device Dissipation at 25 ⁻ Ambient (Derating Factor Above 25 ⁻ C)	P _D	1.0 5.7	Watt mW/ C
Junction Temperature	т	200	С
Storage Temperature Range	T _{stg}	-65 to +200	С

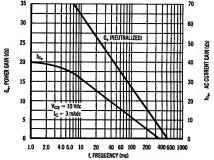
Note: The maximum ratings as given for DC conditions can be exceeded on a pulse basis. See Electrical Characteristics.

2N3309A (Continued)

ELECTRICAL CHARACTERISTICS (at 25°C ambient temperature unless otherwise noted)

Characteristic	Symbol	TEST CONDITIONS	Min	Тур	Max	Unit
Collector-Emitter Sustain Voltage	V _{CES(sus} *)	$I_C = 50$ mA, $R_{BE} = 0$	60			Volts
Collector Emitter-Open Base Sustain Voltage	V _{CEO(sus} *)	I _C - 100mA, I _B = 0	30			Volts
Collector-Emitter Current	ICES	$V_{CE} = 50 \text{ Vdc}, V_{BE} = 0$			100	μAdc
		$V_{CE} = 25 \text{ Vdc}, V_{BE} = 0$			500	μAdc
		T _C = +150 C				
Collector-Cutoff Current	I _{CBO}	V _{CB} = 25 Vdc, I _E = 0			0.5	μAdc
Emitter-Cutoff Current	I _{EBO}	V _{EB} = 4 Vdc, I _C = 0			100	μAdc
DC Current Gain	h _{FE}	I _C = 50 mAdc,	8		80	
		V _{CE} = 2.0 Vdc				
	ļ	I _C = 250 mAdc,	8			
		V _{CE} = 2.0 Vdc				
Collector-Emitter Saturation Voltage	V _{CE(sat)}	I _C = 250 mAdc, IB = 50 mAdc			0.5	Vdc
Emitter-Base Saturation Voltage	V _{BE(sat)}	$I_C = 250 \text{ mAdc}, I_B = 50 \text{ mAdc}$			1.2	Vdc
AC Current Gain	h _{fe}	V _{CE} = 15 Vdc	3			
		I _C = 30 mAdc, f = 100 mc				
Collector Output Capacitance	C _{ob}	V _{CB} = 15 Vdc, I _E = 0,			6	pf
	<u> </u>	f = 100 kc	<u> </u>	<u> </u>	<u> </u>	L
Power Output	Pout	TEST CIRCUIT	2. 2		-	Watts
Power Gain	G _e	P _{in} = 400 mW max, f = 250 mc V _{CE} = 25 Vdc, I _{C(max)} = 176 mA	7.4			db
Efficiency -	η	CE C(max)	50			%

^{*}Pulse Width = 100 μ sec, Duty Cycle = 2%


2N3323 2N3324 2N3325 $V_{CBO} = 35 \text{ V}$ $G_e = 11 \text{ db } @ 100 \text{ Mc}$

CASE 22 (TO-18) PNP germanium epitaxial transistors for FM RF, IF, mixer and oscillator and AM RF, IF and converter applications.

MAXIMUM RATINGS

Characteristic	Symbol	Rating	Unit
Collector-Base Voltage	v _{сво}	35	Volts
Collector-Emitter Voltage	v _{CES}	35	Volts
Emitter-Base Voltage	v _{EBO}	3.0	Volts
Collector Current	^I C	100	mA
Total Device Dissipation 25°C Case Temperature Derate Above 25°C	P _C	300 4	mW mW/°C
Total Device Dissipation 25°C Ambient Temperature Derate Above 25°C	P _D	150 2	mW mW/°C
Junction Temperature	$\mathbf{T}_{\mathbf{J}}$	+100	°C
Storage Temperature Range	Tstg	-65 to +100	°C

POWER GAIN AND AC CURRENT GAIN VERSUS FREQUENCY

2N3323 thru 2N3325 (Continued)

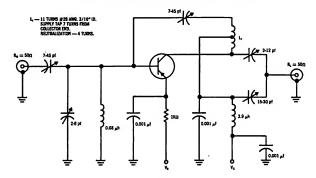
ELECTRICAL CHARACTERISTICS (At 25°C Ambient unless otherwise noted)

Characteristic	Sym	Conditions	Min	Тур	Max	Unit
Collector-Emitter Breakdown Voltage	BVCER	$I_{C} = 100 \mu\text{Adc},$ $R_{BE} = 10K$	35	40		Vdc
Collector-Emitter Current	I _{CES}	$V_{CE} = 35 \text{ Vdc},$ $V_{BE} = 0$			100	μAdc
Collector Cutoff Current	^I СВО	V _{CB} = 10 Vdc, I _E = 0	-	0.5	10	μAdc
Emitter Cutoff Current	^I ЕВО	V _{EB} = 2 Vdc, I _C = 0			100	<i>u</i> Adc
DC Current Gain	h _{FE}	V _{CE} = 10 Vďc, I _C = 3 mAdc	30		200	
AC Current Gain	h fe	V _{CE} = 10 Vdc, I _C = 3 mAdc f = 1 kc	30		225	
Current-Gain — Bandwidth Product	f _T	V _{CE} = 10 Vdc, I _C = 3 mAdc f = 100 mc	200		600	mc
Collector-Base Time Constant	r _b 'C _C	f = 100 mc V _{CE} = 10 Vdc, I _C = 3 mAdc f = 31.8 mc		50	100	psec
Output Capacitance	C _{ob}	V _{CE} = 10 Vdc, I _E = 0 f = 100 kc		2.2	3.0	pf
Maximum Frequency of Oscillation	f _{max}	$V_{CE} = 10 \text{ Vdc},$ $I_{C} = 3\text{mAdc}$		500		mc
Input Resistance, Parallel Equivalent	R _{ie}	V _{CE} = 10 Vdc, I _C = 3 mAdc		1200		ohms
Output Resistance, Parallel Equivalent	R _{oe}	f = 10 mc		11		kohms
Input Resistance, Parallel Equivalent	R _{ie}	$V_{CE} = 10 \text{ Vdc},$ $I_{C} = 3 \text{ mAdc}$		100		ohms
Output Resistance, Parallel Equivalent	R _{oe}	f = 100 mc		1.0		kohms

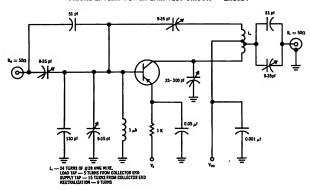
2N3323 thru 2N3325 (Continued)

ELECTRICAL CHARACTERISTICS (continued)

5,	Characteristic	Sym	Conditions	Min	Тур	Max	Unit
----	----------------	-----	------------	-----	-----	-----	------


2N3323

Power Gain	G.	Test Circuit Fig. 1 V _{CE} = 10 Vdc,	11	 15	db
10001 002	e	I _C = 3 mAdc f = 100 mc			


2N3324

Power Gain		Test Circuit Fig. 2 V _{CE} = 10 Vdc, I _C = 3 mAdc f = 10 mc	24		31	db
------------	--	--	----	--	----	----

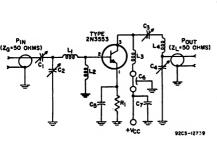
FIGURE 1: 100MC POWER GAIN TEST CIRCUIT - 2N3323

FIGURE 2: 10MC POWER GAIN TEST CIRCUIT - 2N3324

2N3375 2N3553 2N3632

 $P_o = 2.5 \text{ to } 13.5 \text{ W } @ 175 \text{ Mc}$ G_e = 4.8-10 db @ 175 Mc

NPN silicon annular transistors for high-power amplifier and oscillator applications at VHF and UHF.


CASE 79 2N3553

CASE 36 2N3375 2N3632

MAXIMUM RATINGS

Characteristic	Symbol	2N3553	2N3375	2N3632	Unit
Collector-Base Voltage	v _{СВО}	65	65	65	Vdc
Collector-Emitter Voltage	v _{CEO}	40	40	40	Vdc
Emitter-Base Voltage	V _{EBO}	4	4	4	Vdc
Collector Current	I _C	1.0	1.5	3.0	Amps
Total Device Dissipation (Up to 25°C Case Temp.)	P _D	7.0	11.6	23	Watts
Derating Factor (Above 25°C Case Temp.)		40.0	66.3	131.4	mW/°C
Storage and Operating Temperature	T _{stg}				°c

RF AMPLIFIER CIRCUIT FOR 2N3553 POWER-OUTPUT TEST (50- & 175-Mc Operation)

For 50-Mc Operation: C1,C2: 24-200 pf C3: 32-250 pf C₄: 7-100 pf C₅: 1,800 pf, disc ceramic

C6: 2,000 pf C7: 0.01 \(\mu \mathfrak{f}\), disc ceramic

For 175-Mc Operation:

C1,C2,C3,C4: 3-35 pf C5: Not used

C6: 1,000 pf C7: 0.005 \(\mu^{\mathcal{f}} \), disc ceromic

L₁: 2 turns No.16 wire, 3/16" ID, 1/4" long

L2: Ferrite choke, Z = 450 ohms

L1: 5 turns No.16 wire, 1/4" ID, 1/2" long

L2: Ferrite choke, Z = 450 ohm:

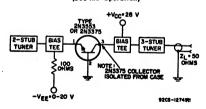
L3: 7-µh choke

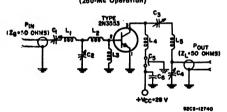
L4: 6 turns No.20 wire on 3./8" coil form (slug-tuned), 1-1/8" long

R1: 1.35 ohms, non-inductive (emitter grounded for 13.5-volt operation)

L3: 2 turns No.16 wire, 1/4" ID, 1/4" long

L₄: 4 turns No.16 wire, 3/8" ID, 3/8" long


R1: Not used (emitter connected to ground)


----- Motorola High-Frequency Transistors -----

2N3375, 2N3553, 2N3632 (continued)

RF AMPLIFIER CIRCUIT FOR 2N3553 POWER-OUTPUT TEST (260-Mc Operation)

OSCILLATOR CIRCUIT FOR 2N3553 OR 2N3375 POWER-OUTPUT TEST (500-Mc Operation)

C₁,C₄: 1.5-20 pf C₂,C₃: 3-35 pf

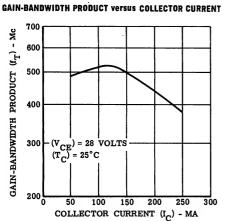
-2, C3: 3-35 μ/ C5: 1,000 pf C6: 0.005 μ/, disc ceramic

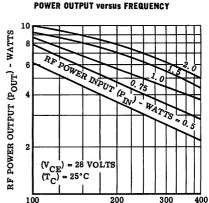
L₁. 4 turns No.16 wire, 3/8" ID, 3/8" long L₂: 3/16" wide copper strip, 7/16" long

Lg: Ferrite choke, Z = 450 ohms

L4: 1/2 turn 3/16" wide copper strip, 1/4" ID

L5: 2 turns 3/16" wide copper strip, 1/4" ID, 1/2" long

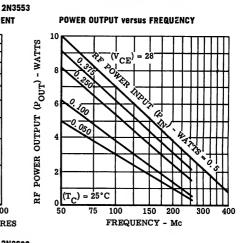

ELECTRICAL CHARACTERISTICS (At 25°C)

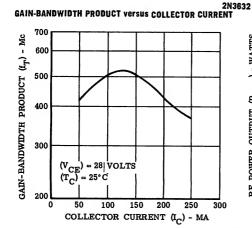

Characteristic		Symbol	Min	Typical	Max	Unit
Collector-Cutoff Current (V _{CE} = 30 V, I _B = 0)	2N3375 2N3553 2N3632	ICEO	=	=	0.1 0.1 0.25	mA
Collector-Base Breakdown Voltage $(I_C = 0.1 \text{ mA}, I_E = 0)$	2N3375	вусво	65	_	_	Vdc
$(\mathbf{I_C} = 0.3 \text{ mA}, \mathbf{I_E} = 0)$	2N3553		65	_	–	
$(I_C = 0.5 \text{ mA}, I_E = 0)$	2N3632		65	_	-	1
Collector-Emitter Breakdown Voltage $(I_C = 200 \text{ mA}, I_B = 0)$	2N3375 2N3553 2N3632	BVCEO	40 40 40	=	=	Vdc
Emitter-Base Breakdown Voltage $(I_C = 0, I_E = 0.1 \text{ mA})$	2N3375	BVEBO	4	_	-	v _{dc}
$(I_C = 0, I_E = 0.1 \text{ mA})$	2N3553		4	—	_	
$(I_C = 0, I_E = 0.25 \text{ mA})$	2N3632		4	_	_	
Collector-Emitter Saturation Voltage (I _C = 500 mA, I _B = 100 mA)	2N3375	V _{CE(sat)}	_	_	1	v _{dc}
$(I_C = 250 \text{ mA}, I_B = 50 \text{ mA})$	2N3553		—	_	1	
$(I_C = 500 \text{ mA}, I_B = 100 \text{ mA})$	2N3632		-	-	1	
Gain-Bandwidth Product (V _{CE} =28V, I _C =150 mA) (V _{CE} =28V, I _C =100 mA) (V _{CE} =28V, I _C =150 mA)	2N3375 2N3553 2N3632	f _T		500 500 400	Ξ	f _T
Power Output (P _{in} = 1 W, f = 400 Mc, V _{CE} = 28 V)	2N3375	Po	3	_	_	Wat
$(P_{in} = 0.25 \text{ W}, \text{ f} = 175 \text{ Mc}, \text{ V}_{CE} = 28 \text{ V})$ $(P_{in} = 3.5 \text{ W}, \text{ f} = 175 \text{ Mc}, \text{ V}_{CE} = 28 \text{ V})$	2N3553 2N3632		2.5 13.5	_	=	
Efficiency (P _{in} = 1 W, f = 400 Mc, V _{CE} = 28 V)	2N3375	η	40			%
(P _{in} = 0. 25 W, f = 175 Mc, V _{CE} = 28 V)	2N3553		50	_	_	
(P _{in} = 3.5 W, f = 175 Mc, V _{CE} = 28 V)	2N3632	1	70	_	_	

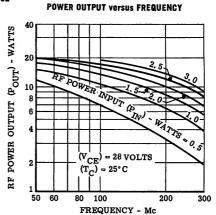
—— Motorola High-Frequency Transistors ——

2N3375, 2N3553, 2N3632 (continued)

2N3375




FREQUENCY - Mc

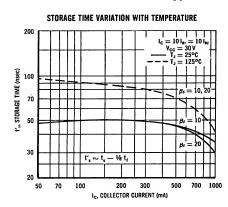


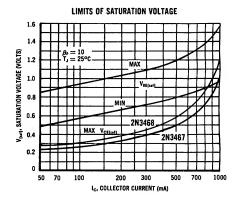
COLLECTOR CURRENT (I_C) - MILLIAMPERES

GAIN-BANDWIDTH PRODUCT VERSUS COLLECTOR CURRENT

2N3467 2N3468

 $V_{CEO} = 40-50 \text{ V}$ $I_{C} = 1 \text{ A}$ $f_{T} = 150-175 \text{ Mc}$




PNP silicon annular transistors for high-speed switching and driver applications.

MAXIMUM RATINGS

Characteristic	Symbol	2N3467	Unit			
Collector-Base Voltage	v _{CBO}	40	40 50		40 50	
Collector-Emitter Voltage	V _{CEO}	40 50		Vdc		
Emitter-Base Voltage	v _{EBO}		5	Vdc		
Collector Current	I _C		Adc			
Total Device Dissipation @ T _A = 25 ^o C Derating Factor Above 25 ^o C	P _D		1.0 5.71			
Total Device Dissipation @ T _C = 25°C Derating Factor Above 25°C	P _D		5 28.6			
Junction Temperature, Operating	$ au_{ extsf{J}}$	+200		°C		
Storage Temperature Range	T _{stg}	-65 to +200		°С		

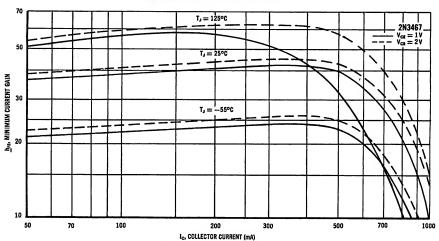
THERMAL RESISTANCE θ_{JA} (air) = 0.175°C/mW θ_{JC} (case) = 35°C/W

2N3467, 2N3468 (continued)

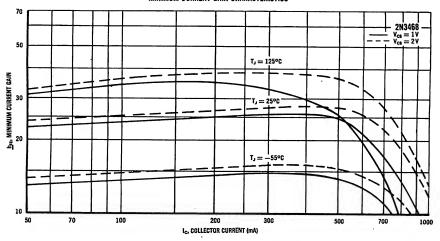
ELECTRICAL CHARACTERISTICS (At 25°C unless otherwise noted)

Characteristic		Symbol	Min	Max	Unit
Collector Cutoff Current (V _{CB} = 30 Vdc, I _E = 0) (V _{CB} = 30 Vdc, I _E = 0, T _A = 100°C)		^I СВО	=	0.10 15	μ Adc
Collector Cutoff Current (V _{CE} = 30 Vdc, V _{OB} = 3 Vdc)		ICEX	_	100	nAdc
Base Cutoff Current (V _{CE} = 30 Vdc, V _{OB} = 3 Vdc)		IBL	_	120	nAdc
Collector-Base Breakdown Voltage $(I_C = 10 \mu Adc, I_E = 0)$	2N3467 2N3468	вусво	40 50	=	Vdc
Collector-Emitter Breakdown Voltage* (IC = 10 mAdc, IB = 0)	2N3467 2N3468	BV _{CEO} *	40 50	=	Vdc
Emitter-Base Breakdown Voltage (I _E = 10 μAdc, I _C = 0)		BVEBO	5	_	Vdc
Collector Saturation Voltage* (I _C = 150 mAdc, I _B = 15 mAdc)	2N3467 2N3468	V _{CE(sat)} *	=	0.3 0.35	Vdc
(I _C = 500 mAdc, I _B = 50 mAdc)	2N3467 2N3468		_	0.5 0.6	
(I _C = 1 Adc, I _B = 100 mAdc)	2N3467 2N3468		=	1.0 1.2	
Base-Emitter Saturation Voltage (IC = 150 mAdc, IB = 15 mAdc)		V _{BE(sat)} *	_	1.0	Vdc
(I _C = 500 mAdc, I _B = 50 mAdc)			8.0	1.2	
(I _C = 1 Adc, I _B = 100 mAdc)			_	1.6	
DC Forward Current Transfer Ratio* (I _C = 150 mAdc, V _{CE} = 1.0 Vdc)	2N3467 2N3468	h _{FE} *	40 25	=	_
(I _C = 500 mAde, V _{CE} = 1.0 Vde)	2N3467 2N3468		40 25	120 75	
(I _C = 1 Adc, V _{CE} = 5 Vdc)	2N3467 2N3468		40 25	=	
Output Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 100 kc)		C ^{op}		25	pf
Input Capacitance (V _{OB} = 0.5 Vdc, I _C = 0, f = 100 kc)		C _{ib}	_	100	pf
Current-Gain - Bandwidth Product (I _C = 50 mAdc, V _{CE} = 10 Vdc, f = 100 mc)	2N3467 2N3466	t _T	175 150	_	mc

----- Motorola High-Frequency Transistors -----


2N3467, 2N3468 (continued)

ELECTRICAL CHARACTERISTICS (continued)


	Characteristic	Symbol	Min	Max	Unit
Delay Time	(I_= 500 mA I = 50 mA II	t _d	_	10	nsec
Rise Time	(I _C = 500 mA, I _{B1} = 50 mA, V _{OB} = 2 V, V _{CC} = 30 V)		=.	30	nsec
Storage Time	/I = 500 == A I = I = 50 == A I = 00 II)	t _s	_	60	nsec
Fall Time	$(I_C = 500 \text{ mA}, I_{B1} = I_{B2} = 50 \text{ mA}, V_{CC} = 30 \text{ V})$	ty	_	30	nsec
Total Control Charge (I _C = 500 mA, I _B = 50 mA, V _{CC} = 30 V)		QT	_	6	nC

^{*} Pulse Test: PW ≤ 300 µsec, Duty Cycle ≤ 2%

MINIMUM CURRENT GAIN CHARACTERISTICS

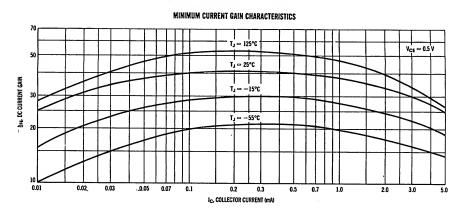
MINIMUM CURRENT GAIN CHARACTERISTICS

2N3485, A 2N3486, A

For Specifications, See 2N2904 Data Sheet

2N3493

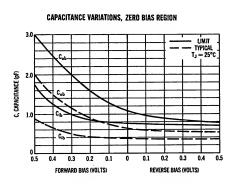
 $V_{CEO}=8\ V$ $C_{ob}=0.7\ pf$ $C_{1b}=0.7\ pf$

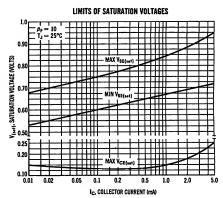

NPN silicon annular transistor for high-speed micropower logic switching.

CASE 22 (TO-18)

MAXIMUM RATINGS

Characteristics	Symbol	Rating	Unit
Collector-Base Voltage	v _{CBO}	12	Vdc
Collector-Emitter Voltage	V _{CEO}	8	Vdc
Emitter-Base Voltage	v _{EBO}	5	Vdc
Total Device Dissipation @ T _C = 25°C Derate above 25°C	P _D	250 1.43	mW mW/°C
Total Device Dissipation @ T _A = 25°C Derate above 25°C	P _D	150 0.86	mW/°C
Junction Operating Temperature Range	T _J	-65 to +200	°C
Storage Temperature Range	T _{stg}	-65 to +200	°C


THERMAL RESISTANCE $\theta_{JA} = 1.16^{\circ}\text{C/mW}$ $\theta_{JC} = 0.70^{\circ}\text{C/mW}$



2N3493 (continued)

ELECTRICAL CHARACTERISTICS (At 25°C unless otherwise noted)

Characteristics	Symbol	Min	Max	Unit
Collector Cutoff Current (V _{CE} = 6 V, V _{EB} = 2 V)	ICEX		5	nAdc
Base Cutoff Current (V _{CE} = 6 V, V _{EB} = 2 V)	IBL		5	nAdc
$(V_{CE} = 6 \text{ V}, V_{EB} = 2 \text{ V}, T_{A} = 150 \text{ °C})$			500	
Collector-Base Breakdown Voltage $(I_C = 10 \mu A, I_E = 0)$	вусво	12		Vdc
Collector-Emitter Breakdown Voltage (I _E = 1 mA, I _B = 0)	BV _{CEO}	8		Vdc
Emitter-Base Breakdown Voltage $(I_E = 10 \mu A, I_C = 0)$	BV _{EBO}	5		Vdc
Collector-Emitter Saturation Voltage $(I_C = 10 \mu Adc, I_B = 1 \mu Adc)$	V _{CE(sat)}		0.15	Vdc
$(I_C = 100 \mu\text{A}, I_B = 10 \mu\text{A})$			0.13	
$(I_C = 5 \text{ mA}, I_B = 0.5 \text{ mA})$			0.25	
Base-Emitter Saturation Voltage $(I_C = 100 \mu A, I_B = 10 \mu A)$	V _{BE(sat)}	0.60	0.75	Vdc
$(I_C = 5 \text{ mA}, I_B = 0.5 \text{ mA})$			0.95	
DC Forward Current Gain (I _C = 10 μA, V _{CE} = 0.5 V)	h _{FE}	25		
$(I_C = 100 \mu\text{A}, V_{CE} = 0.5 \text{V})$		40		
$(I_C = 100 \mu\text{A}, \ V_{CE} = 0.5 \ V \ (-55^{\circ}C))$		20		
$(I_C = 500 \mu\text{A}, \ V_{CE} = 0.5 \text{V})$		40	120	
$(I_C = 5 \text{ mA}, V_{CE} = 0.5 \text{ V})$		25		
High Frequency Current Gain (I _C = 1 mA, V _{CE} = 3 V, f = 100 mc)	h _{fe}	4.0		
Output Capacitance	c _{ob}			pF
(V _{CB} = 3 V, I _E = 0, f = 100 kc - Includes 0.3 pF Can Capacitance)	J		0.7	
Input Capacitance (V _{OB} = 0.5 V, I _C = 0, f = 100 kc)	c _{ib}		0.7	pF

2N3494 thru 2N3497

 $V_{CEO} = 80-120 \text{ V}$ $I_C = 100 \, \text{mA}$ $f_T = 150-200 \, Mc$

2N3494 2N3495 2N3496 2N3497

PNP silicon annular Star transistors for high voltage switching and DC to VHF amplifier applications.

MAXIMUM RATINGS

		Types						
		(T0-5)		(TO-18)				
Characteristic	Symbol	2N3494	2N3495	2N3496	2N3497	Unit		
Collector-Base Voltage	v _{CBO}	80	120	80	120	Vdc		
Collector-Emitter Voltage	VCEO	80	120	80	120	Vdc		
Emitter-Base Voltage	V _{EBO}	4.5		4.5		Vdc		
Collector Current	I _C	100		100		mA		
Total Device Dissipation @ T _C = 25°C Derate Above 25°C	PD	3 17.2		,		Watts mW/ ^o C		
Total Device Dissipation @ T _A = 25°C Derate Above 25°C	PD	600 3.43					mW mW/°C	
Junction Temperature	T _J	-65 to +200		°C				
Storage Temperature	T _{stg}	-65 to +20		-65 to +200		+200		°C

SWITCHING CHARACTERISTICS ($T_A = 25$ °C unless otherwise specified)

Characteristic	Symbol	Min	Max	Unit
Turn-On Time $(V_{CC} = 30 \text{ V, } I_{C} = 10 \text{ mA, } I_{B1} = 1 \text{ mA, } V_{OB} = 0)$	ton	_	300	nsec
Turn-Off Time $(V_{CC} = 30 \text{ V}, I_{C} = 10 \text{ mA}, I_{B1} = I_{B2} = 1 \text{ mA})$	fott	_	450	nsec

----- Motorola High-Frequency Transistors -----

2N3494 thru 2N3497 (continued)

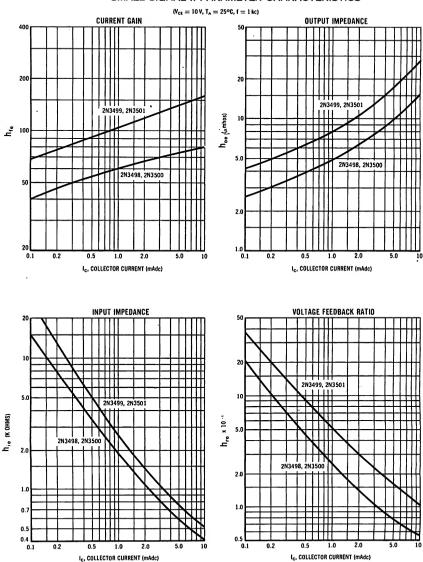
ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise specified)

Characteristic		Symbol	Min	Max	Unit
Collector-Base Breakdown Voltage (I _C = 10 µAdc, I _E = 0)	2N3494, 2N3496 2N3495, 2N3497	вусво	80 120	_	Vdc
Collector-Emitter Breakdown Voltage* (I _C = 10 mAdc, I _B = 0)	2N3494, 2N3496 2N3495, 2N3497	BV _{CEO} *	80 120	Ξ	Vdc
Emitter-Base Breakdown Voltage ($I_E = 10 \mu \text{ Adc}, I_C = 0$)	All Types	BVEBO	4.5	_	Vdc
Collector Cutoff Current (VCB = 50 Vdc, I _E = 0)	2N3494, 2N3496	ГСВО	_	100	nAdc
(V _{CB} = 90 Vdc, I _E = 0) Emitter-Base Leakage Current	2N3495, 2N3497	-I _{EBO}	_	100	nAdc
(V _{CB} = 3 Vdc) DC Forward Current Transfer Ratio	All Types		_	25	
(I _C = 100 μ Adc, V _{CE} = 10 Vdc)	All Types	h _{FE}	35	_	_
(I _C = 1 mAdc, V _{CE} = 10 Vdc)	All Types		40		•
(I _C = 10 mAdc, V _{CE} = 10 Vdc)	All Types		40	_	
(I _C = 50 mAde, V _{CE} = 10 Vde) (I _C = 100 mAde, V _{CE} = 10 Vde)	All Types 2N3494, 2N3496		40 35		
Collector Saturation Voltage (IC = 10 mAdc, IB = 1 mAdc)	2N3494, 2N3496 2N3495, 2N3497	V _{CE(sat)}	=	0.3 0.35	Vdc
Base-Emitter Saturation Voltage ($I_C = 10 \text{ mAdc}$, $I_B = 1 \text{ mAdc}$)	All Types	V _{BE(sat)}	0.6	0.9	Vdc
Output Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 100 kc)	2N3494, 2N3496 2N3495, 2N3497	C _{ob}	=	7 6	pf
Input Capacitance (V _{OB} = 2 Vdc, I _C = 0, f = 100 kc)	All Types	C _{ib}	_	30	pf
Current-Gain — Bandwidth Product (I _C = 20 mAdc, V _{CE} = 10 Vdc, f = 100 mc)	2N3494, 2N3496 2N3495, 2N3497	f _T	200 150	=	mc
Small Signal Current Gain $(V_{CE} = 10 \text{ V}, I_{C} = 10 \text{ mA}, f = 1 \text{ kc})$	All Types	h _{fe}	40	300	
Input Impedance ($V_{CE} = 10 \text{ V}$, $I_{C} = 10 \text{ mA}$, $f = 1 \text{ kc}$)	All Types	h _{ie}	100	1.2	kohms
Voltage Feedback Ratio (V _{CE} = 10 V, I _C = 10 mA, f = 1 kc)	All Types	h _{re}	2 2	2.0	X10 ⁻⁴
Output Admittance (V _{CE} = 10 V, I _C = 10 mA, f = 1 kc)	All Types	h _{oe}	_	300	μ mhos
Extrinsic Base Resistance (V _{CE} = 10 V, I _C = 20 mA, f = 300 mc)	All Types	-r _b	_	30	ohms

^{*} Pulse width \leq 300 μ sec, Duty Cycle = 2%

2N3498 thru 2N3501

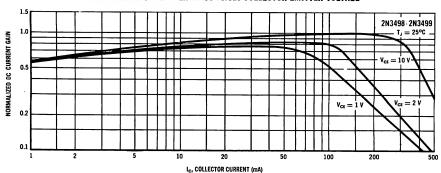
 $\begin{array}{l} \rm V_{CEO} = 100\text{-}150~V \\ \rm I_{C} = 300\text{-}500~mA \\ \rm C_{ob} = 8\text{-}10~pf \end{array}$

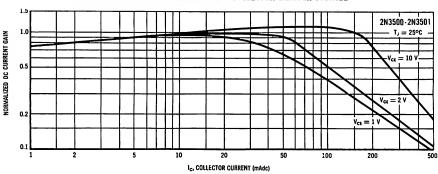

NPN silicon annular transistors for high voltage switching and low-power amplifier applications.

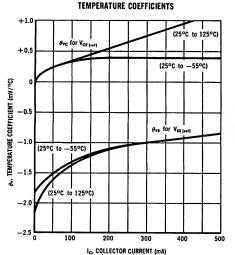
MAXIMUM RATINGS

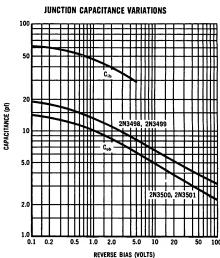
		Maxi	mum	
Characteristics	Symbol	2N3498 2N3499	2N3500 2N3501	Unit
Collector-Base Voltage	v _{сво}	100	150	Vdc
Collector-Emitter Voltage	V _{CEO}	100	150	Vdc
Emitter-Base Voltage	V _{EBO}	-	3	Vdc
Collector Current	I _C	500	300	m Adc
Total Device Dissipation @ T _A = 25°C Derating Factor Above 25°C	P _D		1. 0 5. 71	
Total Device Dissipation @ T _C = 25°C Derating Factor Above 25°C	P _D		5 28. 6	
Junction Temperature, Operating	T_{J}	+ 2	+200	
Storage Temperature Range	T _{stg}	-65 to	-65 to +200	
Thermal Resistance	$ heta_{ m JA} heta_{ m JC}$	0. 175 35		°C/mW

2N3498 thru 2N3501 (continued)


SMALL SIGNAL h PARAMETER CHARACTERISTICS


Ic, COLLECTOR CURRENT (mAdc)

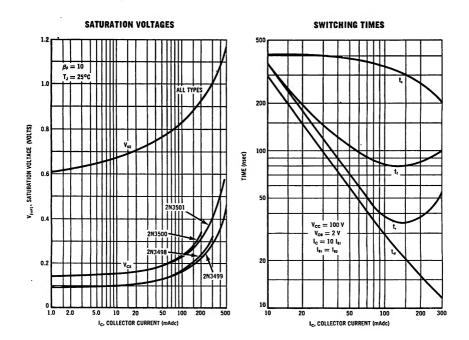

2N3498 thru 2N3501 (continued)



CURRENT GAIN CHARACTERISTICS versus COLLECTOR EMITTER VOLTAGE

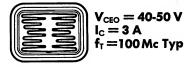
2N3498 thru 2N3501 (continued)

ELECTRICAL CHARACTERISTICS (At 25°C unless otherwise noted)


Static Charact	Symbol	Min	Max	Unit	
Collector Cutoff Current (V _{CB} = 50 Vdc, I _E = 0) (V _{CB} 50 Vdc, I _E = 0, T _A = 150 C)	2N3498, 2N3499	0.050 50	^I сво		μAdc
$(V_{CB} = 75 \text{ Vdc. } I_{E} = 0)$ $(V_{CB} = 75 \text{ Vdc. } I_{E} = 0, T_{A} = 150 \text{ C})$	2N3500, 2N3501	0.050 50		_	
Emitter Cutoff Current (V _{OB} = 4 Vdc, I _C = 0)	All Types	25	I _{EBO}	_	nAdc
Collector-Base Breakdown Voltage $(I_C = 10 \mu Adc, I_E = 0)$	2N3498, 2N3499 2N3500, 2N3501	_	вусво	100 150	Vdc
Collector-Emitter Breakdown Voltage* (I _C = 10 mAdc, I _B = 0)	2N3498, 2N3499 2N3500, 2N3501		BV _{CEO} *	100 150	Vdc
Emitter-Base Breakdown Voltage $(I_E = 10 \mu Adc. I_C = 0)$	All Types	_	BV _{EBO}	6	Vdc
Collector Saturation Voltage* (I _C = 10 mAdc, I _B = 1 mAdc)	All Types	0. 2	v _{CE(sat)} *		Vdc
$(I_C = 50 \text{ mAdc}, I_B = 5 \text{ mAdc})$	All Types	0.25		_	
(I _C = 150 mAdc, I _B = 15 mAdc)	2N3500, 2N3501	0.4		_	
$(I_C = 300 \text{ mAdc. } I_B = 30 \text{ mAdc})$	2N3498, 2N3499	0.6			
Base-Emitter Saturation Voltage* (I _C = 10 mAdc, I _B = 1 mAdc)	All Types	0.8	VBE(sat)*	_	Vdc
(I _C = 50 mAdc, I _B = 5 mAdc)	All Types	0.9		_	
(I _C = 150 mAdc. I _B = 15 mAdc)	2N3500, 2N3501	1.2			
$(I_C = 300 \text{ mAdc}, I_B = 30 \text{ mAdc})$	2N3498, 2N3499	1.4		_	
DC Forward Current Transfer Ratio* (I _C = 0.1 mAdc, V _{CE} = 10 Vdc)	2N3498, 2N3500 2N3499, 2N3501		h _{FE} *	20 35	
$(I_C = 1.0 \text{ mAdc}, V_{CE} = 10 \text{ Vdc})$	2N3498, 2N3500 2N3499, 2N3501	=		25 50	
$(I_C = 10 \text{ mAdc. } V_{CE} = 10 \text{ Vdc})$	2N3498, 2N3500 2N3499, 2N3501	=		35 75	
$(I_C = 150 \text{ mAdc. } V_{CE} = 10 \text{ Vdc})$	2N3498, 2N3500 2N3499, 2N3501	120 300		40 100	
$(I_C = 300 \text{ mAdc}, V_{CE} = 10 \text{ Vdc})$	2N3500 2N3501	=		15 20	
(I _C = 500 mAdc, V _{CE} = 10 Vdc)	2N3498 2N3499			15 20	
Small Signal Current Gain (I _C = 10 mA, V _{CE} = 10 V, f = 1 kc)	2N3498, 2N3500 2N3499, 2N3501	300 375	h _{fe}	50 75	_
Voltage Feedback Ratio (I _C = 10 mA, V _{CE} = 10 V, f = 1 kc)	2N3498, 2N3500 2N3499, 2N3501	2.5 4	h _{re}	_	x10 ⁻⁴
Input Impedance (I _C = 10 mA, V _{CE} = 10 V, f = 1 kc)	2N3498, 2N3500 2N3499, 2N3501	1.0 1.25	h _{ie}	0. 2 0. 25	k ohms
Output Admittance (I _C = 10 mA, V _{CE} = 10 V, f = 1 kc)	2N3498, 2N3500 2N3499, 2N3501	100 200	h _{oe}	10 20	µmhos
Output Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 100 kc)	2N3498, 2N3499 2N3500, 2N3501	10 8	C _{op}	=	pF

2N3498 thru 2N3501 (continued)

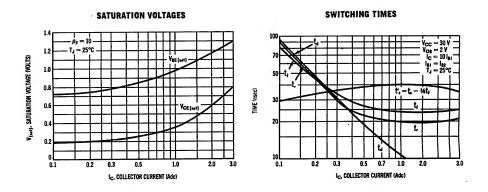
ELECTRICAL CHARACTERISTICS (continued)


Static Characteristics	Symbol	Min	Max	Unit
Input Capacitance $(V_{OB} = 0.5 \text{ Vdc}, I_{C} = 0, f = 100 \text{ kc})$ All Types	c _{ib}	_	80	pF
Small Signal Current Gain (V_{CE} = 20 Vdc. I_{C} = 20 mAdc, I = 100 mc) All Types	h _{fe}	1.5 —		_
		Тур	ical	
Delay Time ($I_C = 150 \text{ mA}$, $I_{B1} = 15 \text{ mA}$, $V_{CC} = 100 \text{ V}$, $V_{OB} = 2.0 \text{ V}$)	t _d	2)	nsec
Rise Time $(I_C = 150 \text{ mA}, I_{B1} = 15 \text{ mA}, V_{CC} = 100 \text{ V}, V_{OB} = 2.0 \text{ V})$	t _r	35		nsec
Storage Time (I _C = 150 mA, I _{B1} = I _{B2} = 15 mÅ, V _{CC} = 100 V)	t _s	300		nsec
Fall Time 2N3498, $(I_C = 150 \text{ mA}, I_{B1} = I_{B2} = 15 \text{ mA}, V_{CC} = 100 \text{ V})$ 2N3499	t _f	80		nsec

^{*}Pulse Test $\leq 300~\mu {
m sec},~{
m duty}~{
m cycle}~\leq 2\%~{
m V}_{
m OB}$ - Base-Emitter

2N3506 2N3507

(TO-5)

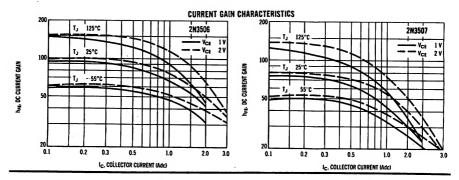


NPN silicon annular transistors for high-current, high-speed, saturated switching and core driver applications.

MAXIMUM RATINGS

Characteristics	Symbol	2N3506	2N3507	Unit
Collector-Base Voltage	v _{сво}	60	80	Vdc
Collector-Emitter Voltage	V _{CEO.}	40	50	Vdc
Emitter-Base Voltage	V _{EBO}	5		Vdc
Collector Current	I _C	3		Adc
Total Device Dissipation @ 25°C Case Temperature Derating Factor Above 25°C	P _D	5 28. 6		Watts mW/°C
Total Device Dissipation @ 25°C Ambient Temperature Derating Factor Above 25°C	P _D	1.0 5.71		Watts mW/°C
Junction Operating Temperature	T _J	200		°c
Storage Temperature Range	T _{stg}	-65 to +200		°C

THERMAL RESISTANCE $\theta_{JA} = 0.175^{\circ}\text{C/mW}$. $\theta_{JC} = 35^{\circ}\text{C/W}$


2N3506, 2N3507 (continued)

ELECTRICAL CHARACTERISTICS (At 25°C Ambient unless otherwise specified.)

Characteristics	4	Symbol .	Min	Max	Unit
Collector Cutoff Current (V _{CE} = 40 Vdc, V _{OB} = 4 Vdc)	2N3506	ICEX			μAdc
(V _{CE} = 40 Vdc, V _{OB} = 4 Vdc, T _A = 100				1. 0 150	
(V _{CE} = 60 Vdc, V _{OB} = 4 Vdc)	2N3507				
(V _{CE} = 60 Vdc, V _{OB} = 4 Vdc, T _A = 100				1.0	
				150	
Base Cutoff Current (V _{CE} = 40 Vdc, V _{OB} = 4 Vdc)	2N3506	BL		1.0	μAdc
(V _{CE} = 60 Vdc, V _{OB} = 4 Vdc)	2N3507			1.0	
Collector-Base Breakdown Voltage $(I_C = 100 \mu Adc, I_E = 0)$	2N3506 2N3507	BV _{CBO}	60 80	==	Vdc
Collector-Emitter Breakdown Voltage* (I _C = 10 mAdc, pulsed, I _B = 0)	2N3506 2N3507	BV _{CEO} *	40 50		Vdc
Emitter-Base Breakdown Voltage $(I_E = 10 \mu Adc, I_C = 0)$	· · · · · · · · · · · · · · ·	BVEBO	5		Vdc
Collector Saturation Voltage* (I _C = 500 mAdc, I _B = 50 mAdc)		V _{CE(sat)} *		0.5	Vdc
$(I_C = 1.5 \text{ Adc}, I_B = 150 \text{ mAdc})$				1.0	
$(I_C = 2.5 \text{ Adc}, I_B = 250 \text{ mAdc})$				1.5	
Base-Emitter Saturation Voltage* (I _C = 500 mAdc, I _B = 50 mAdc)		VBE(sat)*		1.0	Vdc
(I _C = 1.5 Adc, I _B = 150 mAdc)			0.9	1.4	
(I _C = 2.5 Adc, I _B = 250 mAdc)				2.0	*
DC Current Gain*		h _{FE} *		-	
(I _C = 500 mAdc, V _{CE} = 1 Vdc)	2N3506 2N3507	re	50 35		
(I _C = 1.5 Adc, V _{CE} = 2 Vdc)	2N3506 2N3507		40 30	200 150	3
(I _C = 2.5 Adc, V _{CE} = 3 Vdc)	2N3506 2N3507		30 25		
$(I_C = 3.0 \text{ Adc}, V_{CE} = 5 \text{ Vdc})$	2N3506 2N3507		25 20		
Output Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 100 kc)		C ^{op}		40	pf
Input Capacitance (V _{OB} = 3 Vdc, I _C = 0, f = 100 kc)		C _{ib}		300	pf
Current Gain-Bandwidth Product (I _C = 100 mAdc, V _{CE} = 5 Vdc, f = 20 mc	c) ,	í _T	60		mc
Delay Time I _C = 1.5 Adc, I _{B1} = 1	50 mAdc	t _d		15	nsec
Rise Time V _{CC} = 30 V, V _{OB} = 0	v	tr		30	nsec
Storage Time $I_C = 1.5 \text{ Adc}, I_{B1} = I_{I}$	B2 = 150 mAdc	t _g	=	55	nsec
Fall Time V _{CC} = 30 V		-t,		35	nsec

^{*}Pulse Test: Pulse width = 300 μ sec, duty cycle = 2%

2N3506, 2N3507 (continued)

2N3508 2N3509

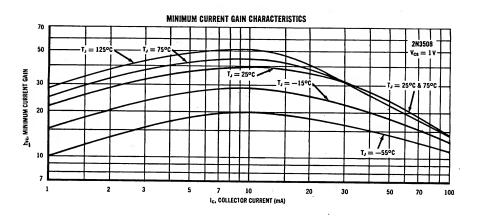
 $V_{CEO} = 20 V$ $I_C = 500 mA$ $f_T = 500 Mc$

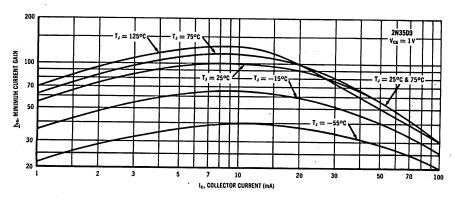
NPN silicon annular transistor for high-speed, low-current switching applications.

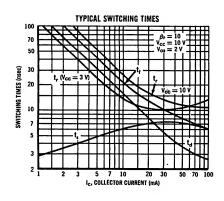
CASE 26 (TO-46)

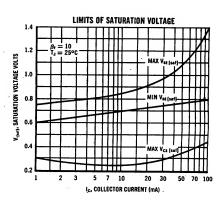
MAXIMUM RATINGS

Characteristics	Symbol	Rating	Unit
Collector-Base Voltage	v _{CBO}	40	Vdc
Collector-Emitter Voltage	V _{CES}	40	Vdc
Collector-Emitter Voltage	v _{CEO}	20	Vdc
Emitter-Base Voltage	V _{EBO}	6.0	Vdc
Collector Current (10 µsec pulse)	I _{C(Peak)}	500	mA
Total Device Dissipation @ 25°C Ambient Temperature Derating Factor Above 25°C	P _D	0.40 2.29	Watt mW/°C
Total Device Dissipation @ 25 ⁰ C Case Temperature Derating Factor Above 25 ⁰ C	P _D	2.0 11.43	Watts mW/ ^O C
Junction Temperature, Operating	T _J	+200	°C
Storage Temperature Range	T _{stg}	-65 to +200	°C
Thermal Resistance	θ _{JC} θ _{JA}	0. 438 0. 0875	OC/mW


2N3508, 2N3509 (continued)


ELECTRICAL CHARACTERISTICS (at 25°C unless otherwise specified)


Characteristic	Symbel	Min	Max	Unit
Collector Cutoff Current (VCB = 20 Vdc) (VCB = 20 Vdc, TA = 150°C) 2N3308	^I СВО	=	0.2 30	μ Adc
2N3309 Collector Cutoff Current		_	50	μAdc
(V _{CE} = 20 Vdc, V _{OB} = 3 Vdc)		_	0.2	
Base Cutoff Current (V _{CE} = 20 Vdc, V _{OB} = 3 Vdc)	IBL	_	0.5	μAdc
Collector-Base Breakdown Voltage (I _C = 10 µAdc, I _B = 0)	BV _{CBO}	40	_	Vdc
Emitter-Base Breakdown Voltage (I _E = 10 μAdc, I _C = 0)	BVEBO	3.0	_	Vdc
Collector-Emitter Breakdown Voltage* (I _C = 10 mAdc)	BV _{CEO} *	20	_	Vdc
Collector-Emitter Voltage (I _C = 10 µAdc, I _B = 0)	BVCES	40	_	Vdc
Collector-Emitter Saturation Voltage* (I _C = 10 mAdc, I _B = 1 mAdc) (I _C = 100 mAdc, I _B = 10 mAdc)	V _{CE(sat)} *	=	0.25 0.45	Vdc
Base-Emitter Saturation Voltage* (IC = 10 mAdc, I _B = 1 mAdc) (I _C = 100 mAdc, I _B = 10 mAdc)	VBE(sat)	0.70 0.8	0.85 1.4	Vdc
DC Current Gain* ($I_C = 10 \text{ mAdc}$, $V_{CE} = 1.0 \text{ Vdc}$) 2N3508 2N3508 ($I_C = 10 \text{ mAdc}$, $V_{CE} = 1.0 \text{ Vdc}$, $T_A = -55^{\circ}\text{C}$) 2N3508 2N3509 ($I_C = 100 \text{ mAdc}$, $V_{CE} = 1.0 \text{ Vdc}$) 2N3508 2N3509 2N3509	h _{FE} *	40 100 20 40 20 30	120 300 — —	
Small-Signal Current Gain (I _C = 10 mAdc, V _{CE} = 10 Vdc, f = 100 mc)	h _{fe}	5	_	-
Output Capacitance (V _{CB} = 5 Vdc, I _E = 0, f = 140 kc)	Cop	_	4	pf
Input Capacitance (V _{OB} = 1 Vdc, I _C = 0, f = 140 kc)	C _{ib}	_	4	pf
Storage Time (I _C = I _{B1} = I _{B2} = 10 mA)	$t_g(\tau_g)$	_	13	nsec
Turn-On Time (I _C = 10 mA, I _{B1} = 3 mA, V _{CC} = 3 V, V _{OB} = 1.5 V)	ton	_	12	nsec
Turn-Off Time (I _C = 10 mA, I _{B1} = 3 mA, I _{B2} = 1.5 mA, V _{CC} = 3 V)	tott	_	18	nsec
Total Control Charge (I _C = 10 mA, I _B = 1 mA, V _{CC} = 3 V)	Q _T	_	50	pC
Delay Time V _{CC} = 10 V, V _{OB} = 2 V,	t _d	=	5	nsec
I _C = 100 mA, I _{B1} = 10 mA	t,	_	18	nsec
Storage Time V _{CC} = 10 V	t _s	_	13	nsec
Fall Time I _C = 100 mA, I _{B1} = I _{B2} = 10 mA		_	15	nsec

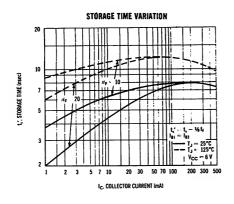

^{*}Pulse Test: PW = 300μsec, Duty Cycle ≤ 2%

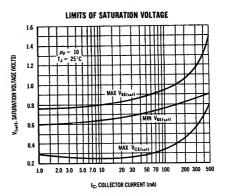
2N3508, 2N3509 (continued)

2N3510 2N3511

2N3647

2N3648


 $V_{CEO} = 10-15 \text{ V}$ $I_C = 500 \text{ mA}$ $f_T = 350-450 \text{ Mc}$

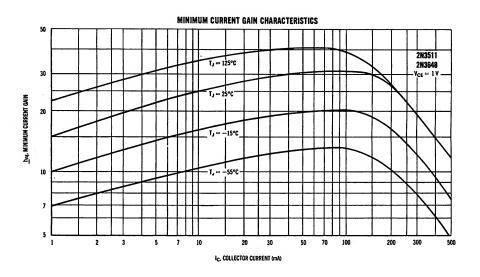

NPN silicon annular transistors for high-speed saturated switching applications to 500 mA. $\label{eq:npn} % \begin{subarray}{ll} \end{subarray}$

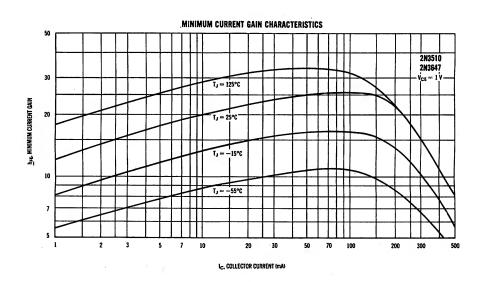
CASE 27 CASE 20 (TO-52) CASE 20

MAXIMUM RATINGS

Characteristic	Symbol	2N3510 2N3647	2N3511 2N3648	Unit
Collector-Base Voltage	v _{сво}	40	40	Vdc
Collector-Emitter Voltage	V _{CEO}	10 15		Vdc
Emitter-Base Voltage	v _{EBO}		Vdc ·	
Collector Current	I _C	500		mAdc
		T0-46 2N3647 2N3648	T0-52 2N3510 2N3511	
Total Device Dissipation @T _A = 25 ^O C Derating Factor Above 25 ^O C	P _D	400 2.28	360 2.06	mW mW/ ⁰ C
Total Device Dissipation @ T _C = 25°C Derating Factor Above 25°C	P _D	2.0 11.43	1.2 6.9	Watts mW/ ⁰ C
Junction Temperature, Operating	T _J	+ 200		°C
Storage Temperature Range	T _{stg}	-65 t	o +200	°C

2N3510, 2N3511, 2N3647, 2N3648 (continued)


ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise specified)


Char	acteristic		Symbol	Min	Max	Unit
Collector Cutoff (V _{CE} = 10 Vd	c, V _{OR} † = 1 Vdc)	000)	ICEX	_	.025	μAdo
	c, V _{OB} = 1 Vdc, T _A = 15	0°C)			50	
Base Cutoff Cur (V _{CE} = 10 Vd	rent c, V _{OB} = 1 Vdc)		I _{BL}		.025	μ Ad
Collector-Base (I _C = 10 μAdo	Collector-Base Breakdown Voltage (I _C = 10 μAdc, I _E = 0)		BVCBO	40		Vdo
	er Breakdown Voltage*		BVCEO*			Vdc
(I _C = 10 mAdo	c, I _B = 0)	2N3510, 2N3647 2N3511, 2N3648		10 15	<u>=</u>	
Emitter-Base B (I _E = 10 μAde	reakdown Voltage , I _C = 0)		$_{\rm BV}_{\rm EBO}$	6	_	Vdc
Collector Satura			V _{CE(sat)} *			Vdc
(I _C = 10 mAde	c, I _B = 1 mAdc)	All Types	CE(Sat)	_	0.25	
(IC = 150 mAc	ic, T _B = 15 mAdc)	All Types		_	0.4	
(IC = 300 mAd	ic, IB = 30 mAdc)	2N3510, 2N3647 2N3511, 2N3648		_	0.6 0.8	
	ic, IB = 50 mAdc)	2110011, 2110010				
Base-Emitter S	aturation Voltage*	All Trans	VBE(sat)*	_		Vde
(Ic = 150 m4d	c, I _B = 1 mAdc) ic. I _D = 15 mAdc)	All Types All Types		0.8	0.8 1.0	
(Ic = 300 mAc	ic, I _B = 15 mAdc) ic, I _B = 30 mAdc)	2N3510, 2N3647		-	1.15	
(IC = 500 mAd	ic, IB = 50 mAde)	2N3511, 2N3648		_	1.5	
DC Current Ga			h _{FE} *			
	c, V _{CE} = 1 Vdc)	2N3510, 2N3647	"FE	12	_	_
	•	2N3511, 2N3648		15	_	
(I _C = 10 mAdd	e, V _{CE} = 1 Vdc)	2N3510, 2N3647		20	_	
/ 150 4	4a 17 1 174a)	2N3511, 2N3648		25		
(rC = 120 mVc	ic, V _{CE} = 1 Vdc)	2N3510, 2N3847		25 20	150	
(In = 150 mAd	lc. V = 1 Vdc. T4 = -	2N3511, 2N3848 55 ^O C\ 2N3511 2N3848		30 12	120	
(Ic = 300 mAd	lc, V _{CE} = 1 Vdc, TA = -5 lc, V _{CE} = 1 Vdc)	2N3510, 2N3847		15	=	
(IC = 500 mAd	lc, V _{CE} = 1 Vdc)	2N3511, 2N3648		12	_	
Output Capacitas	nce		Cop			pf
	c, I _E = 0, f = 100 kc)				4	
Input Capacitano (V _{OB} = 0.5 V	ce 'dc, I _C = 0, f = 100 kc)		c _{ib}		8	pf
Small Signal Cu	rrent Gain		h _{fe}			mc
(I _C = 15 mAde	c, V _{CE} = 10 Vdc, f = 100	mc) 2N3510, 2N3847 2N3511, 2N3648		3.5 4.5	_=_	
Delay Time		2N3510, 2N3647 2N3511, 2N3648	t _d	_	10	nsec
Rise Time	(I _C = 150 mA, I _{B1} = 15 mA, V _{OB} = 0.5 V,	2N3519, 2N3647			12	nsed
	V _{OB} = 0.5 V, V _{CC} = 6 V)	2N3511, 2N3648			10	
Turn-On Time		2N3510, 2N3647 2N3511, 2N3648	t _{on}		20 16	nsec
Storage Time	(T = 150 == 4	2N3510, 2N3647 2N3511, 2N3648	t _s	_	16 12	nsec
Fall Time	(I _C = 150 mA, I _{B1} = -I _{B2} = 15 mA, V _{CC} = 6 V)	2N3510, 2N3647 2N3511, 2N3648	t _y	=	12	nšec
Turn-Off Time	·cc = ""	2N3510, 2N3647			25	nsec
1		2N3511, 2N3648	*off		18	
Total Control Ci (I _C = 150 mA,	narge I _B = 15 mA, V _{CC} = 6 V)		$Q_{\mathbf{T}}$		300	pC
Small Signal Cur			h _{fe}	20	150	_
Voltage Feedbac	k Ratio		h _{re}		25	X10-4
Input Impedance			h _{ie}			kohma
$(I_C = 1 \text{ mA, V})$	CE = 10 V, f = 1 kc)		h _{oe}	0.6	4.5	μ mhos
Output Admittan						

[•] Pulse Test: PW \lesssim 300 μ sec, Duty Cycle \lesssim 2%

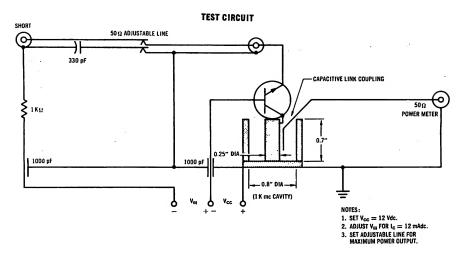
VOB = Base-Emitter Reverse Bias

2N3510, 2N3511, 2N3647, 2N3648 (continued)

2N3544

 $V_{CBO} = 25 \text{ V}$ $P_o = 10 \text{ mW } @ 1000 \text{ Mc}$

NPN silicon annular transistor for VHF and UHF oscillator applications.


MAXIMUM RATINGS

Characteristics	Symbol	Rating	Unit
Collector-Base Voltage	v _{сво}	25	Volts
Collector-Emitter Voltage	v _{CES}	25	Volts
Emitter-Base Voltage	v _{EB}	3.0	Volts
Collector Current	I _C	100	mA
Power Dissipation @ T _C = 25°C Derate above 25°C	P _C	400 2. 67	mW mW/°C
Power Dissipation @ T _A = 25°C Derate above 25°C	P _D	300 2.0	mW mW/°C
Junction Temperature	T _J	+175	°c
Storage Temperature	T _{stg}	-65 to +175	°c

ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted)

LECTRICAL CHARACTERISTICS (IX = 25 C unless otherwise noted)							
Characteristics	Symbol	Condition	Min	Тур	Max	Unit	
Collector-Base Breakdown Voltage	ву _{сво}	$I_C = 10 \mu\text{Adc}, \ I_E = 0$	25	30		Vdc	
Collector-Emitter Breakdown Voltage	BV _{CES}	$I_{C} = 10 \mu\text{A}, \ V_{BE} = 0$	25	30		Vdc	
Collector Cutoff Current	I _{CBO}	$V_{CB} = 15 \text{ Vdc}, I_E = 0$		0. 01	0.1	μ A dc	
Emitter Cutoff Current	I _{EBQ}	$V_{EB} = 3 \text{ Vdc}, I_C = 0$		0.1	10	μAdc	
DC Current Gain	h _{FE}	V _{CE} = 10 Vdc, I _C 10 mAdc	25	50			
AC Current Gain	h _{fe}	V _{CE} = 10 Vdc, I _C = 10 mAdc, f = 100 mc	6	9	15		
Collector Output Capacitance	C _{ob}	$V_{CB} = 15 \text{ Vdc}, I_{E} = 0, I_{f} = 100 \text{ kg}$			2.5	pF	
Collector-Base Time Constant	r _b 'C _c	V _{CB} = 10 Vdc, I _C = 10 mAdc, f = 31.8 mc			10	psec	
Oscillator Power Output	Pout	f = 1000 mc, V _C = 12 Vdc, I _C 12 mAdc	10	16		mW	

2N3544 (continued)

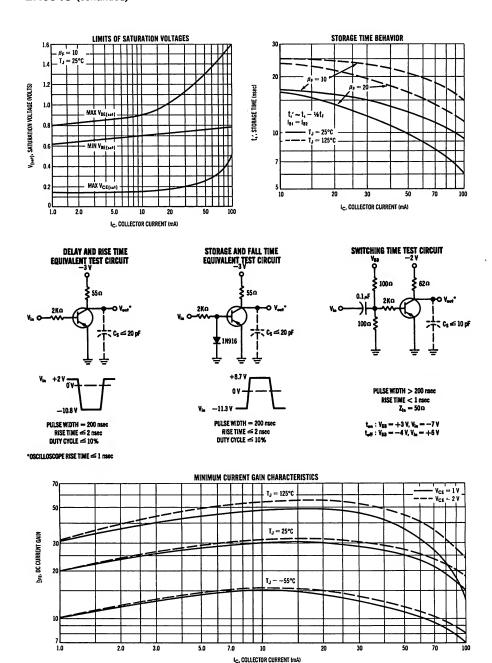
2N3546

 $V_{CEO} = 12 V$ $t_s = 20$ nsec

PNP silicon annular transistor for low-level, high-speed switching applications.

MAXIMUM RATINGS

Characteristics	Symbol	Rating	Unit
Collector-Base Voltage	v _{CBO}	15	Vdc
Collector-Emitter Voltage	V _{CEO}	12	Vdc
Emitter-Base Voltage	V _{EBO}	4. 5	· Vdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	P _D	0.36 2.06	Watt mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	P _D	1. 2 6. 9	Watts mW/°C
Operating Junction Temperature	T_{J}	200	°c
Storage Temperature Range	T _{stg}	-65 to +200	°C
Thermal Resistance	$\theta_{ m JA}$	0. 49	^O C/mW
	$\theta_{ m JC}$	0.15	^O C/mW


2N3546 (continued)

ELECTRICAL CHARACTERISTICS (At 25°C ambient unless otherwise noted)

Characteristics	Symbol	Min	Max	Unit
Collector Cutoff Current (V _{CB} = 10 Vdc)	СВО		0, 010	μ Ad c
(V _{CB} = 10 Vdc, T _A = 150°C)			10	
Collector Cutoff Current (V _{CE} = 10 Vdc, V _{OB} = 3 Vdc)	ICEX		0.010	μAdc
Base Cutoff Current (V CE = 10 Vdc, VOB = 3 Vdc)	IBL		0.10	μAdc
Collector-Base Breakdown Voltage (I_{C} = 10 μ Adc, I_{E} = 0)	вусво	15		Vdc
Emitter-Base Breakdown Voltage ($I_E = 10 \mu Adc, I_C = 0$)	BV _{EBO}	4. 5		Vdc
Collector-Emitter Breakdown Voltage* (I _C = 10 mAdc, I _B = 0)	BV _{CEO} *	12		Vdc
Collector Saturation Voltage* (I _C = 10 mAdc, I _B = 1 mAdc)	V _{CE(sat)} *		0. 15	Vdc
(I _C = 50 mAdc, I _B = 5 mAdc)			0. 25	
(I _C = 100 mAdc, I _B = 10 mAdc)			0.50	
Base-Emitter Saturation Voltage*	V _{BE(sat)} *			Vdc
(I _C = 10 mAdc, I _B = 1 mAdc)		0.7	0.9	
$(I_C = 50 \text{ mAdc}, I_B = 5 \text{ mAdc})$ $(I_C = 100 \text{ mAdc}, I_B = 10 \text{ mAdc})$		0.8	1.3	
			1.6	
DC Current Gain* (I _C = 1.0 mAdc, V _{CE} = 1 Vdc)	h _{FE} *	20		
(I _C = 10 mAdc, V _{CE} = 1 Vdc)		30	120	
$(I_C = 10 \text{ mAdc}, V_{CE} = 1 \text{ Vdc}, T_A = -55^{\circ}\text{C})$		15		
(I _C = 50 mAdc, V _{CE} = 1 Vdc)		25		
$(I_C = 100 \text{ mAdc}, V_{CE} = 1 \text{Vdc})$		15		
Output Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 1 mc)	C ^{op}	••	6	pF
Input Capacitance (V _{OB} = 0.5 Vdc, I _C = 0, f = 1 mc)	C _{ib}		5	pF
Current-Gain - Bandwidth Product (I _C = 10 mAdc, V _{CE} = 10 Vdc, f = 100 mc)	f _T	700		mc
Total Control Charge (I _C = 50 mA, I _B = 5 mA, V _{CC} = 3 V)	Q _T		400	pC
Delay Time $I_C = 50 \text{ mA}, I_{B1} = 5 \text{mA},$	· t _d		10	nsec
Rise Time V _{OB} = 2 V, V _{CC} = 3 V	- <u>-</u> -		15	nsec
Storage Time $I_C = 50 \text{ mA}, I_{B1} = I_{B2} = 5 \text{ mA},$	t _s		20	nsec
Fall Time V _{CC} = 3 V	-t _f		15	nsec
Turn-On Time See "Switching Time Test Circuit"	ton		40	nsec
Turn-Off Time (page 8-213)	toff		30	nsec

^{*}Pulse Test: PW = 300 μ sec, Duty Cycle $\leq 2\%$

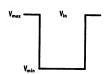
2N3546 (continued)

2N3553 2N3632

For Specifications, See 2N3375 Data Sheet

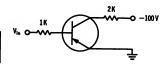
2N3634 thru 2N3637

 $V_{CEO} = 140-175 \text{ V}$ $f_T = 150 - 200 \text{ Mc}$


CASE 31 (TO-5)

PNP silicon annular transistor for high voltage switching and low-power amplifier applications.

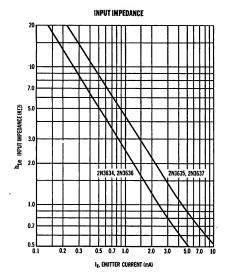
MAXIMUM RATINGS.

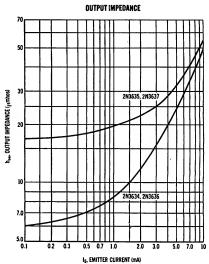

		Max		
Characteristics	Symbol	2N3634 2N3635	2N3636 2N3637	Unit
Collector-Base Voltage	v _{CBO}	140	175	Vdc
Collector-Emitter Voltage	v _{CEO}	140	175	Vdc
Emitter-Base Voltage	v _{EBO}	5		Vdc
Collector Current	IC	1		Adc
Total Device Dissipation @ $T_A = 25$ °C Derating Factor Above 25°C	P _D	1.0 5.71		Watt mW/°C
Total Device Dissipation @ T _C = 25°C Derating Factor Above 25°C	P _D	5 28. 6		Watts mW/°C
Junction Temperature, Operating	$\mathbf{T_{J}}$	+200		°C
Storage Temperature Range	Tstg	-65 to	+200	°C

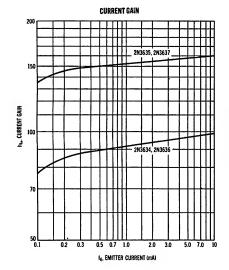
SWITCHING TIME TEST CIRCUIT

P.W. ≈ 20 μ sec Duty cycle ≤ 2% Rise time ≤ 20 nsec

	V _{mex}	V _{min}
TURN-ON	+4V	-5.65 V
TURN-OFF	+4.1V	-5.9 V

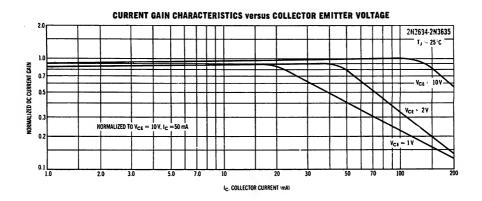

2N3634 thru 2N3637 (continued)

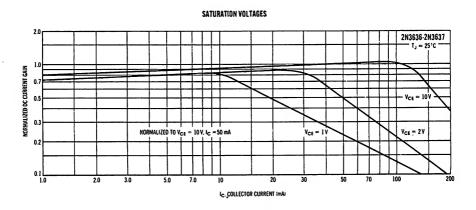

ELECTRICAL CHARACTERISTICS (At 25°C Ambient unless otherwise specified.)

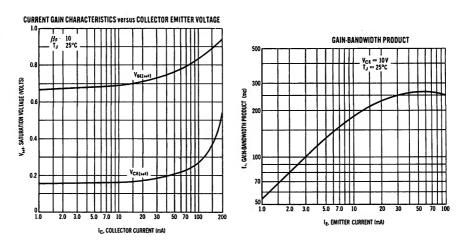

Characteristics		Symbol	Minimum	Maximum	Unit
Collector-Base Breakdown Voltage $(I_C = 100 \mu Adc, I_E = 0)$	2N3634, 2N3635 2N3636, 2N3637	вусво	140 175	=	Vdc
Collector-Emitter Breakdown Voltage* (I _C = 10 mAdc, I _B = 0)	2N3634, 2N3635 2N3636, 2N3637	BV _{CEO} *	140 175	=	Vdc
Emitter-Base Breakdown Voltage $(I_E = 10 \mu Adc, I_C = 0)$	All Types	BV _{EBO}	5	_	Vdc
Collector Saturation Voltage* (I _C = 10 mAdc, I _B = 1 mAdc)	All Types	V _{CE(sat)} *	_	0.3	Vdc
$(I_C = 50 \text{ mAdc}, I_B = 5 \text{ mAdc})$	All Types		_ `	0.5	
Base-Emitter Saturation Voltage* $(I_C = 10 \text{ mAdc}, I_B = 1 \text{ mAdc})$	All Types	V _{BE(sat)} *	_	0.8	Vdc
$(I_C = 50 \text{ mAdc}, I_B = 5 \text{ mAdc})$	All Types		0.65	0.9	
DC Current Gain (I _C = 0.1 mAdc, V _{CE} = 10 Vdc)	2N3634, 2N3636 2N3635, 2N3637	h _{FE} *	40 80		-
$(I_C = 1.0 \text{ mAdc}, V_{CE} = 10 \text{ Vdc})$	2N3634, 2N3636 2N3635, 2N3637		45 90	=	
$(I_C = 10 \text{ mAde}, V_{CE} = 10 \text{ Vde})$	2N3634, 2N3636 2N3635, 2N3637		50 100	_	
$(I_C = 50 \text{ mAdc}, V_{CE} = 10 \text{ Vdc})$	2N3634, 2N3636 2N3635, 2N3637		50 100	150 300	
$(I_C = 150 \text{ mAdc}, V_{CE} = 10 \text{ Vdc})$	2N3634, 2N3636 2N3635, 2N3637		25 50	=	
Small Signal Current Gain $(V_{CE} = 30 \text{ Vdc}, I_{C} = 30 \text{ mAdc}, f = 100 \text{ mc})$	2N3634, 2N3636 2N3635, 2N3637	h _{fe}	1.5 2.0	=	_
Output Capacitance $(V_{CB} = 20 \text{ Vdc}, I_{E} = 0, f = 100 \text{ kc})$	All Types	C ^{op}	_	10	pf
Input Capacitance $(V_{OB} = 1.0 \text{ Vdc}, I_{C} = 0, f = 100 \text{ kc})$	All Types	C _{ib}	_	75	pf
Collector Cutoff Current (V _{CB} = 100 Vdc, I _E = 0)	All Types	^I сво	_	100	nAdc
Emitter Cutoff Current (VOB = 3 Vdc, IC = 0)	All Types	I _{EBO}		50	nAdc
Small Signal Current Gain (I _C = 10 mA, V _{CE} = 10 V, f = 1 kc)	2N3634, 2N3636 2N3635, 2N3637	h _{fe}	40 80	160 320	_
Voltage Feedback Ratio (I _C = 10 mA, V _{CE} = 10 V, f = 1 kc)	All Types	h _{re}	_	3	X10-4
Input Impedance ($I_C = 10 \text{ mA}, V_{CE} = 10 \text{ V}, f = 1 \text{ kc}$)	2N3634, 2N3636 2N3635, 2N3637	h _{ie}	100 200	600 1200	ohms
Output Admittance (I _C = 10 mA, V _{CE} = 10 V, f = 1 kc)	All Types	h _{oe}	_	200	μmhos
Noise Figure ($I_C = 0.5 \text{ mA}$, $V_{CE} = 10 \text{ V}$, $f = 1 \text{ kc}$, $R_g = 1 \text{ kg}$	2) All Types	NF	_	3	đb
Turn-On Time $V_{CC} = 100V$, $I_{C} = 50$ mA,	All Types	ton	 	400	nsec
Turn-Off Time $I_{B1} = I_{B2} = 5 \text{ mA}, V_{OB} = 4 \text{ V}$	All Types	toff	T -	600	nsec


^{*}Pulse Width \leq 300 μ sec, duty cycle \leq 2% $V_{\mbox{OB}}^{}$ - Base-Emitter Off Bias

2N3634 thru 2N3637 (continued)







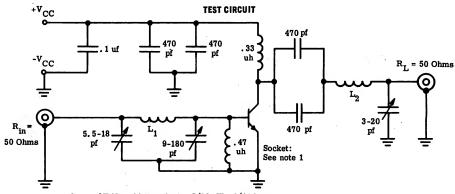
—— Motorola High-Frequency Transistors ——

2N3634 thru 2N3637 (continued)

2N3647 2N3648

For Specifications, See 2N3510 Data Sheet

2N3664


G_{PE} = 7.4 db @ 250 Mc P_o = 2.2 W @ 250 Mc

NPN silicon annular transistor for power amplifier and driver applications to 500 Mc.

CASE 24

MAXIMUM RATINGS

Characteristic	Symbol	Rating	Unit
Collector Base Voltage	v _{CBO}	60	Vdc
Collector Emitter Voltage	v _{CES}	60	Vdc
Collector Emitter Voltage	VCEO	40	Vdc
Emitter Base Voltage	V _{EBO}	4	Vdc
Collector Current (Continuous)	I _C	0. 5	Adc
Base Current (Continuous)	I _B	0.1	Adc
Power Dissipation @ 25°C Case Temperature @ 25°C Ambient Temperature	P _D	5. 0 1. 0	Watts Watts
Operating Junction Temperature Storage Temperature Range	Tj Tstg	200 -65 to +200	°c

L₁: 2T No. 14 tinned wire 5/16" ID, 1/4" long L₂: 2T No. 14 tinned wire 3/8" ID, 3/16" long

Note 1: Use a 0.100" pin circle teflon socket with the emitter grounded to the chassis at the top of the socket.

When making RF power test, the device must be provided with an adequate heat sink.

— Motorola High-Frequency Transistors ———

2N3664 (continued)

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise specified)

	Characteristic	Symbol	Minimum	Maximum	Unit.
Collector-Emitt	ter Sustain Voltage , R _{BE} = 0 ohms	V _{CES (sus)} *	60		Vdc
Collector-Emitt	ter Open Base Sustain Voltage , $I_B = 0$	V _{CEO (sus)} *	40		Vdc
	er Cutoff Current , V _{BE} = 0, T _C = +150°C	ICES		50	μAdc
Collector-Emitt	er Cutoff Current , V _{BE} = 0	ICES		0.05	μAdc
Collector-Emitt	er Cutoff Current , V _{BE} = 0	ICES		10	μAdc
Emitter Cutoff (VEB = 4Vdc,		I _{EBO}		100	μAdc
CD	n I _C = 250mAdc I _C = 50mAdc	h _{FE}	8 8	80	
	er Saturation Voltage c, I _B = 50mAdc	V _{CE} (sat)		75	Vdc
	aturation Voltage c, I _B = 50mAdc	V _{BE} (sat)		1.2	Vdc
Small Signal Cu V _{CE} = 15Vdc	rrent Gain , I _C = 100mAdc, f = 100mc	h _{fe}	3		
	Output Capacitance , I _E = 0, f = 100kc	C _{ob}		6.0	pf
Power Output		Pout**	2.2		Watts
Power Gain	P _{in} = 400 mW, f = 250 mc	G _{PE}	7.4		db
Efficiency	V _{CE} = 25 Vdc	η	50		%

THERMAL CHARACTERISTICS

Characteristic	Symbol	Maximum	Unit
Thermal Resistance - Junction to Case	θ _{JC}	35	°C/ w.
Thermal Resistance - Junction to Air	$\theta_{ m JA}$	175	°C/W.

^{*}Pulse width \leq 200 $_{\mu}sec$ Duty cycle \leq 2% **In functional test P_{out} is fixed at 2.2 watts and P_{in} is monitored to be \leq 400 mW.

2N3717 2N3718

 $G_{PE} = 7.4 \; db \; @ \; 250 \; Mc \; Typ \ P_O = \; 4 \; W \; @ \; 250 \; Mc \; Typ$

NPN silicon annular transistors for power amplifier applications at UHF and VHF. Especially designed for operation from low voltage power supplies.

MAXIMUM RATINGS

Characteristic	Symbol	Rating	Unit
Collector Base Voltage	v _{CBO}	60	Vdc
Collector Emitter Voltage	v _{CES}	60	Vdc
Collector Emitter Voltage	v _{CEO}	40	Vdc
Emitter Base Voltage	v _{EBO}	4	Vdc
Collector Current (Continuous)	I _C	1.0	Adc
Base Current (Continuous)	I _B .	0, 2	Adc
Power Dissipation @25°C Case Temperature @25°C Ambient Temperature	P _D	2N3717 7.5 2N3718 10.0 2N3717 1.0 2N3718 1.5	Watts
Operating Junction Temperature Storage Temperature Range	T _j T _{stg}	200 -65 to +200	°C
Thermal Resistance-Junction to Case Thermal Resistance-Junction to Air	⁰ JC	2N3717 23.3 2N3718 17.5 2N3717 175 2N3718 117	°C/W.

– Motorola High-Frequency Transistors ——

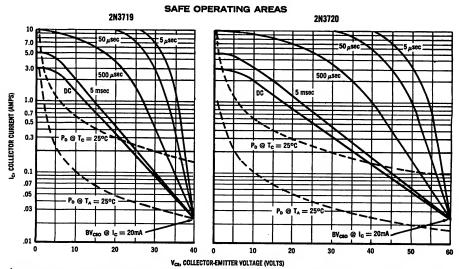
2N3717, 2N3718 (continued)

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

	Characteristic	Symbol	Minimum	Maximum	Unit
Collector-Emitte I _C = 50mAdc	r Sustain Voltage , R _{BE} = 0 ohms	V _{CES} (sus)*	60		Vdc
Collector-Emitte I _C = 50mAdc	r Open Base Sustain Voltage , I _B = 0	V _{CEO} (sus)*	40		Vdc
Collector-Emitte V _{CE} = 25Vdc	r Cutoff Current , V _{BE} = 0, T _C = +150°C	ICES		50	μAdc
Collector-Emitte		ICES		05	μAdc
Collector-Emitte V _{CE} = 50Vdc		ICES		10	μAdc
Emitter Cutoff Cu V _{EB} = 4Vdc,		IEBO		100	μAdc
DC Current Gain $V_{CE} = 2Vdc,$	I _C = 200mAdc	h _{FE}	8		
1	r Saturation Voltage c, I _B = 100mAdc	V _{CE} (sat)		1. 0	Vdc
Small Signal Curr V _{CE} = 10Vdc	rent Gain c, I _C = 150mAdc, f = 100mc	^h fe	2.5		
Common Base Ou V _{CB} = 15Vdc	tput Capacitance c, I _E = 0, f = 100kc	Cop		10	pf
Power Output		P **	2.0		Watts
Power Gain	B 400 4 4F-	G _{PE}	7.0		db
Efficiency	P _{in} = 400 mw, f = 175 mc V _{CE} = 13.5 Vdc	η	60		%
Power Out		Pout**	4.0	Тур.	Watts
Power Gain	P _{in} = 730 mw, f = 250 mc	G _{PE}	7.4	Тур.	db
Efficiency	V _{CE} = 25 Vdc	η	70	Тур.	%

^{*}Pulse width $\leq\!200$ sec Duty cycle $\leq\!2\%$ **In functional test P_{out} is fixed at specified value and P_{in} is monitored to be ≤ value indicated.

2N3719 2N3720


 $V_{CEO} = 40-60 \text{ V}$ $I_{C} = 3 \text{ A}$ $f_{T} = 60 \text{ Mc}$

PNP silicon annular transistors for high-speed, high-current switching in core and driver applications and Class C power amplifiers.

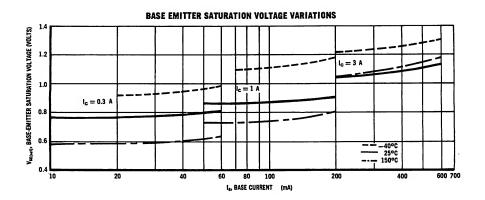
MAXIMUM RATINGS

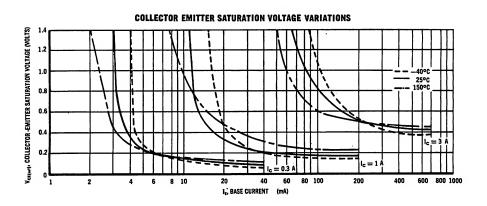
Characteristic	Symbol	2N3719	2N3720	Unit
Collector - Base Voltage	v _{CBO}	40	60	Volts
Collector-Emitter Voltage	v _{CEO} *	40	60	Volts
Emitter - Base Voltage	v _{EBO}	4	4	Volts
Collector Current—Continuous Collector Current—Peak	I _C	3 10	3 10	Amps Amps
Base Current	I _B	0.5	0.5	Amp
Total Device Dissipation @ T _A = 25 ^o C Derate above 25 ^o C	PD	1.0 5.72		Watt mW/ ^O C
Total Device Dissipation @ T _C = 25 ^o C Derate above 25 ^o C	P _D	6 34.3		Watts mW/ ^O C
Operating Junction and Storage Temperature Range	extstyle ext	-65 to	+200	°c

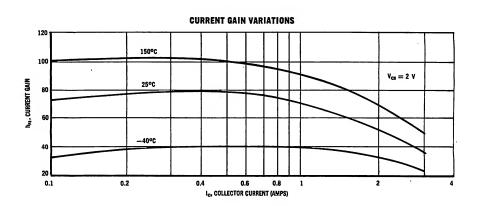
The Safe Operating Area Curves indicate Ic-Vcs limits below which the devices will not go into secondary breakdown. As the safe operating areas shown are independent of temperature and duty cyclo, these curves can be used as long as the average power derating curve is also taken into consideration to insure operation below the maximum junction temperature.

2N3719, 2N3720 (continued)

ELECTRICAL CHARACTERISTICS (at $T_C = 25^{\circ}$ C unless otherwise noted)


Characteristic		Symbol	Min	Max	Unit
	N3719 N3720	ICEX	_	10 10	μ Adc
$(V_{CB} = 40 \text{ Vdc}, I_{E} = 0, T_{A} = 150^{\circ}\text{C})$ 2N $(V_{CB} = 60 \text{ Vdc}, I_{E} = 0, T_{A} = 25^{\circ}\text{C})$ 2N	N3719 N3719 N3720 N3720	I _{CBO}	_ _ _	.010 1 .010	mAdc
Emitter-Base Cutoff Current $(V_{BE} = 4 \text{ Vdc}, I_C = 0)$		I _{EBO}	_	1	mAdc
DC Current Gain* $(I_{C} = 500 \text{ mA}, V_{CE} = 1.5 \text{ V}, T_{A} = 25^{\circ}\text{C})$ $(I_{C} = 1 \text{ A}, V_{CE} = 1.5 \text{ V}, T_{A} = 25^{\circ}\text{C})$ $(I_{C} = 1 \text{ A}, V_{CE} = 1.5 \text{ V}, T_{A} = -40^{\circ}\text{C})$		h _{FE} *	20 25 15	 180 	_
Collector-Emitter Saturation Voltage* $(I_{C} = 1 \text{ A, } I_{B} = 100 \text{ mA, } T_{A} = -40 \text{ to} + 100^{\circ}\text{C})$ $(I_{C} = 3 \text{ A, } I_{B} = 300 \text{ mA, } T_{A} = 25^{\circ}\text{C})$		V _{CE(sat)} *	_	0.75 1.5	Volts
Base-Emitter Saturation Voltage* $(I_{C} = 1 \text{ A}, I_{B} = 100 \text{ mA})$ $(I_{C} = 3 \text{ A}, I_{B} = 300 \text{ mA})$		V _{BE(sat)} *	_	1.5 2.3	Volts
	13719 13720	BV _{CEO} *	40 60	<u>-</u>	Volts
Collector Output Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 100 kc)		C _{ob}	_	120	pf
Input Capacitance $(V_{BE} = 0.5 \text{ Vdc}, I_{C} = 0, f = 100 \text{ kc})$		C _{ib}	_	1000	pf
Current-Gain — Bandwidth Product (V _{CE} = 10 Vdc, I _C = 500 mAdc, f = 30 mc)		f _T	60	_	me
Delay Plas Rise Time (I _C = 1 Adc, I _{B1} = 100 mA)		t _{on}	_	75	nsec
Storage Time (I _C = 1 Adc, I _{B1} = I _{B2} = 100 mA)		t _s	_	150	nsec
Fall Time $(I_C = 1 \text{ Adc}, I_{B1} = I_{B2} = 100 \text{ mA})$		tf	_	75	nsec

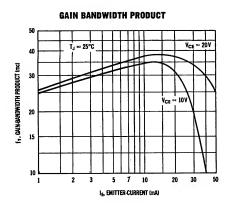

* Pulse Test:

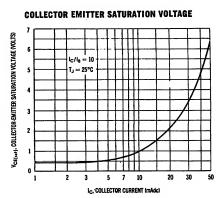

Pulse Width $\leq 300 \mu \text{ sec}$ Duty Cycle $\leq 2\%$

—— Motorola High-Frequency Transistors ——

2N3719, 2N3720 (continued)

2N3742


 $V_{CEO} = 300 \text{ V}$ $I_C = 50 \text{ mA}$ $f_T = 30 \text{ Mc}$

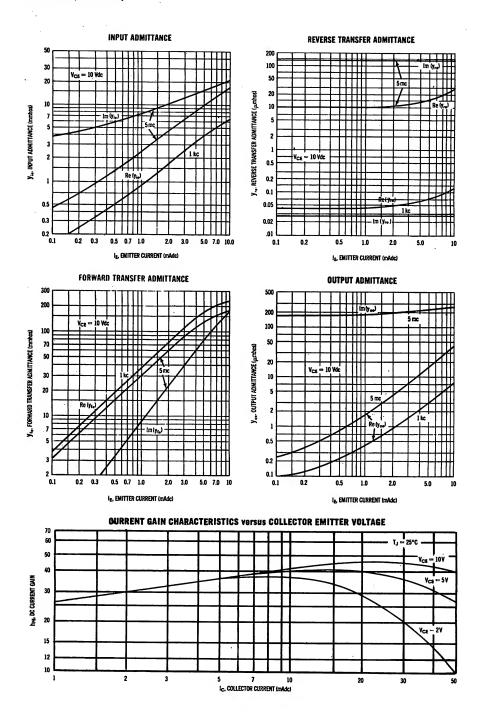


NPN silicon annular transistor for high voltage amplifier applications from DC to VHF.

MAXIMUM RATINGS

Characteristic	Symbol	Rating	Unit
Collector-Base Voltage	v_{CB}	300	Vde
Collector-Emitter Voltage	v _{CEO}	300	Vdc
Emitter-Base Voltage	$\mathbf{v}_{\mathbf{EB}}$	10	Vdc
Collector Current	$I_{\mathbf{C}}$	50	mAde
Total Device Dissipation @ $T_A = 25^{\circ}C$ Derating Factor Above $25^{\circ}C$	P _D	1.0 5.71	Watt mW/°C
Total Device Dissipation @ $T_C = 25^{\circ}C$ Derating Factor Above $25^{\circ}C$	PD	5 28.6	Watts mW/ ⁰ C
Operating Junction Temperature	$\mathbf{T_{J}}$	+200	°C
Storage Temperature Range	${ m T_{stg}}$	-65 to + 200	°C

2N3742 (continued)


ELECTRICAL CHARACTERISTICS (At 25°C ambient unless otherwise noted)

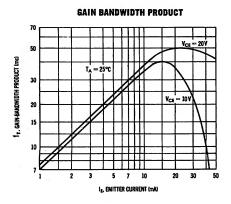
Characteristic	Symbol	Min	Max	Unit
Collector-Base Breakdown Voltage ($I_C = 100 \mu \text{Adc}, I_E = 0$)	BV _{CBO}	300	_	Vdc
Collector-Emitter Breakdown Voltage* (I _C = 10 mAdc, I _B = 0)	BV _{CEO} *	300	_	Vdc
Emitter-Base Breakdown Voltage $(I_E = 100 \mu Adc, I_C = 0)$	BV _{EBO}	10	_	Vdc
Collector Saturation Voltage ** (I _C = 10 mAdc, I _B = 1 mAdc)	V _{CE(sat)} **	_	1	Vdc
(I _C = 30 mAde, I _B = 3 mAde)		-	5	
Base-Emitter Saturation Voltage ** (I _C = 10 mAdc, I _B = 1 mAdc)	V _{BE(sat)} **	_	1.0	Vdc
$(I_C = 30 \text{ mAde}, I_B = 3 \text{ mAde})$		-	1.2	
DC Current Gain ** (I _C = 3 mAdc, V _{CE} = 10 Vdc)	h _{FE} **	10	_	-
$(I_C = 10 \text{ mAdc}, V_{CE} = 10 \text{ Vdc})$		15	_	
$(I_C = 30 \text{ mAdc}, V_{CE} = 10 \text{ Vdc})$		20	200	1
$(I_{C} = 50 \text{ mAdc}, V_{CE} = 20 \text{ Vdc})$		20	_	
Collector Cutoff Current (V _{CB} = 200 Vdc, I _E = 0)	I _{CBO}	_	0.2	μ Adc
$(V_{CB} = 200 \text{ Vdc}, I_{E} = 0, T_{A} = 100^{\circ}\text{C})$		_	20	
Emitter Cutoff Current VEB = 6 Vdc, IC = 0)	I _{EBO}	<u> </u>	0.2	μAde
Small Signal Current Gain (V _{CE} = 20 Vdc, I _C = 10 mAdc, f = 20 mc)	h _{fe}	1.5	_	_
Output Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 100 kc)	C _{ob}	_	6	pf
Input Capacitance (V _{EB} = 0.5 Vdc, I _C = 0, f = 100 kc)	Cib	_	80	pf
Small Signal Current Gain (I _C = 10 mA, V _{CE} = 10 V, f = 1 kc)	^h fe	20	200	-
Voltage Feedback Ratio (I _C = 10 mA, V _{CE} = 10 V, f = 1 kc)	h _{re}	_	1.0	X10 ⁻⁴
Input Impedance ($I_C = 10 \text{ mA}, V_{CE} = 10 \text{ V}, f = 1 \text{ kc}$)	h _{ie}	_	0.5	Kohms
Output Admittance (I _C = 10 mA, V _{CE} = 10 V, f = 1 kc)	h _{oe}	5	50	μmhos
Real Part of Input Impedance (I _C = 10 mA, V _{CE} = 10 V, f = 5 mc)	Re(h _{ie})		40	ohms

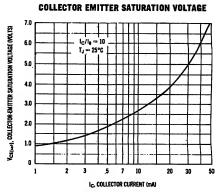
^{*}PW ≤ 30 µsec, Duty Cycle ≤ 1%

^{**}PW \leq 300 μ sec, Duty Cycle \leq 2%

2N3742 (continued)

2N3743


 $V_{CEO} = 300 \text{ V}$ $I_C = 50 \text{ mA}$ $f_T = 30 \text{ Mc}$

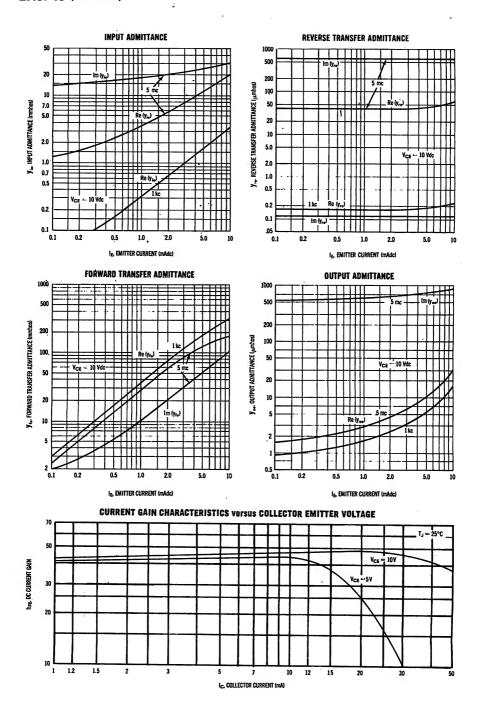


PNP silicon annular transistor for high voltage amplifier applications from DC to VHF.

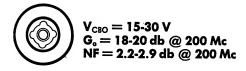
MAXIMUM RATINGS

Characteristic	Symbol	Rating	Unit
Collector-Base Voltage	v _{CB}	300	Vdc
Collector-Emitter Voltage	v _{ceo}	300	Vdc
Emitter-Base Voltage	v_{EB}	5	Vdc
Collector Current	I _C	50	mAdc
Total Device Dissipation @ $T_A = 25^{\circ}C$ Derate Above 25°C	P _D	1.0 5.7	Watt mW/°C
Total Device Dissipation@ $T_C = 25^{\circ}C$ Derate Above $25^{\circ}C$	P _D	5.0 28.6	Watts mW mW/ ^O C
Operating Junction Temperature	$ extbf{T}_{ extbf{J}}$	+200	°C
Storage Temperature Range	${ m T_{stg}}$	-65 to +200	°C

2N3743 (continued)


ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise specified)

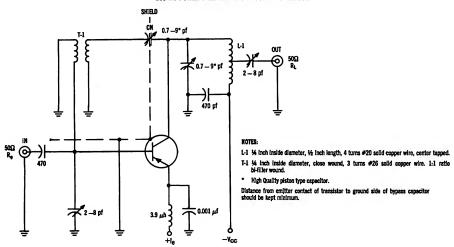
Characteristic	Symbol	Min	Max.	Unit
Collector-Base Breakdown Voltage ($I_C = 100 \mu Adc, I_E = 0$)	BV _{CBO}	300	-	Vdc
Collector-Emitter Breakdown Voltage* (I _C = 10 mAdc, I _B = 0)	BV _{CEO} *	300	_	Vdc
Emitter-Base Breakdown Voltage (I _E = 100 μAdc, I _C = 0)	BVEBO	5	<u> </u>	Vdc
Collector Saturation Voltage** (I _C = 10 mAdc, I _B = 1 mAdc)	V _{CE(sat)} **	_	5	Vdc
(I _C = 30 mAde, I _B = 3 mAde)			8	
Base-Emitter Saturation Voltage** (I _C = 10 mAdc, I _B = 1 mAdc)	VBE(sat)**	_	1.0	Vdc
(IC = 30 mAde, IB = 3 mAde)		_	1.2	_
DC Forward Current Gain** (I _C = 100 μAdc, V _{CE} = 10 Vdc)	hFE**	20	_	_
(I _C = 1 mAde, V _{CE} = 10 Vdc) (I _C = 10 mAde, V _{CE} = 10 Vdc)		25 25	_	
(I _C = 30 mAde, V _{CE} = 10 Vdc)		25	250	
(I _C = 50 mAdc, V _{CE} = 20 Vdc)		25	_	
Collector Cutoff Current (V _{CB} = 200 Vdc, I _E = 0)	ICBO	_	0.3	μAde
$(V_{CB} = 200 \text{ Vdc}, I_{E} = 0, T_{A} = 100^{\circ}\text{C})$		_	30	
Emitter-Base Leakage Current (V _{EB} = 3 Vdc, I _C = 0)	I _{EBO}	_	0.1	μ Adc
Small-Signal Current Gain (I _C = 10 mAdc, V _{CE} = 20 ·Vdc, f = 20 mc)	h _{fe}	1.5	-	
Output Capacitance (V _{CB} = 20 Vdc, I _E = 0, f = 100 kc)	Сор	_	15	pf
Input Capacitance (V _{EB} = 1 Vdc, I _C = 0, f = 100 kc)	C _{ib}		400	pf
Small Signal Current Gain (V _{CE} = 10 V, I _C = 10 mA, f = 1 kc)	h _{fe}	30	300	_
Voltage Feedback Ratio (V _{CE} = 10 V, I _C = 10 mA, f = 1 kc)	h _{re}		4.0	×10 ⁻⁴
Input Impedance $(V_{CE} = 10 \text{ V}, I_{C} = 10 \text{ mA}, f = 1 \text{ kc})$	h _{ie}	_	1.0	kohms
Output Admittance (V _{CE} = 10 V, I _C = 10 mA, f = 1 kc)	h _{oe}	20	100	μ mhos
Real Part of Input Impedance (I _C = 10 mAdc, V _{CE} = 10 Vdc, f = 5 mc)	Re(h _{ie})	_	40	ohms


^{*}PW \leq 30 μ sec, Duty Cycle \leq 1%

^{**}PW \leq 300 μ sec, Duty Cycle \leq 2%

2N3743 (continued)

2N3783 thru 2N3785



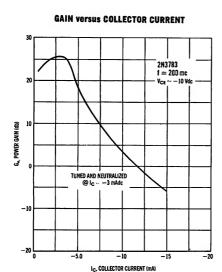
PNP germanium epitaxial mesa transistors for highgain, low-noise amplifier, oscillator and frequency multiplier applications.

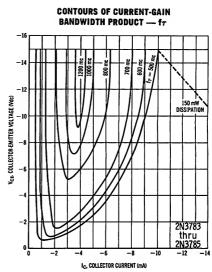
MAXIMUM RATINGS

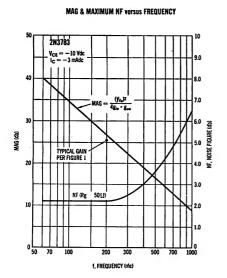
Characteristics	Symbol	2N3783 2N3784	2N3785	Unit
Collector-Base Voltage	v _{CBO}	30	15	Vdc
Collector-Emitter Voltage	v _{CES}	30	15	Vdc
Collector-Emitter Voltage	v _{CEO}	20	12	Vdc
Emitter-Base Voltage	v _{EBO}	0.5		Vdc
Collector Current	I _C	20		mAdc
Total Device Dissipation @ T _A = 25 ^O C Derate above 25 ^O C	PD	150 2		mW mW/ ^O C
Junction Operating & Storage Temperature Range	т _Ј , Т _{stg}	-65 to +100		°C

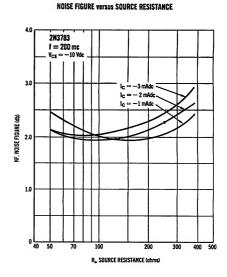
200 MC POWER GAIN AND NOISE FIGURE TEST CIRCUIT

2N3783 thru 2N3785 (continued)


ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted)


Characteristics S	ymbol	Test Conditions			Тур	Max	Unit
Collector-Base Break B down Voltage	v _{сво}	$I_C = -100 \ \mu Adc, I_E = 0$	2N3783, 2N3784 2N3785	-30 -15		=	Vdc
Collector-Emitter B Breakdown Voltage	VCES	$I_C = -100 \mu Adc, V_{EB} = 0$	2N3783, 2N3784 2N3785	-30 -15	=	<u>-</u>	Vdc
Collector–Emitter B Breakdown Voltage	VCEO	I _C = -2 mAdc, I _B = 0	2N3783, 2N3784 2N3785	-20 -12	=	=	Vdc
Emitter-Base Break down Voltage	v _{EBO}	I _E = -100 μAdc, I _C = 0	All Types	-0.5	<u> </u>	_	Vdc
Collector Cutoff I Current	Сво	$V_{CB} = -10 \text{ Vdc}, I_{E} = 0$ $V_{CB} = -10 \text{ Vdc}, I_{E} = 0, T_{A} = +55^{\circ}\text{C}$	All Types 2N3783, 2N3784		- -	-5 -50	μAdc
Emitter Cutoff Current	EBO	V _{EB} = -0.5 Vdc, I _C = 0	All Types	-	_	-100	μAdc
DC Forward Current Transfer Ratio	h _{FE}	V _{CE} = -10 Vdc, I _C = -3 mAdc	2N3783, 2N3784 2N3785	20 15	Ξ,	200 200	_
Collector-Emitter V _C Saturation Voltage	CE(sat)	$I_C = -5.0$ mAdc, $I_B = -1.0$ mAdc	2N3783, 2N3784 2N3785	=	<u> </u>	-0.25 -0.35	Vdc
Base-Emitter V _E Saturation Voltage	BE(sat)	I _C = -5.0 mAdc, I _B = -1.0 mAdc	2N3783, 2N3784 2N3785	_	=	-0.55 -0.65	Vdc
Small-Signal Forward Current Transfer Ratio	h _{fe}	I _C = -3 mAdc, V _{CE} = -10 Vdc, f = 1 kc	2N3783, 2N3784 2N3785	20 15	- 11	200 200	-
Current Gain - Band width Product	f _T	I _C = -3 mAde, V _{CE} = -10 Vde, f = 200 me	2N3783 2N3784, 2N3785	800 700	1-	1600 1600	mc .
Collector-Base Time r Constant	'bc _c	V _{CB} = -10 Vdc, I _E = +3 mAdc, f = 31.8 mc	2N3783, 2N3784 2N3785	1		6 10	рвес
Collector-Base Capacitance	Cob	V _{CB} = -10 Vdc, I _E = 0, f = 100 kc	2N3783, 2N3784 2N3785	-	-	1.0 1.2	pf
Power Gain	Ge	V _{CE} = -10 Vdc, I _C = -3 mAdc, f = 200 mc	2N3783, 2N3784 2N3785	20 18	11	33 33	đb
Noise Figure 1	NF	$V_{CE} = -10$ Vdc, $I_{C} = -3$ mAdc, $f = 200$ mc $R_{G} = 50$ ohms	2N3783 2N3784 2N3785	=		2.2 2.5 2.9	db
Power Gain (AGC) G Note 1	e(AGC)	V _{CE} = -10 Vdc, I _C = -15 mAdc, f = 200 mc	2N3783 2N3784, 2N3785	Ξ	0	<u>•</u>	db
Noise Figure N	F	$V_{CE} = -10 \text{ Vdc}, I_{C} = -3 \text{ mAdc}, f = 1000 \text{ mc}$ $R_{G} = 50 \text{ ohms}$ (Note 2)	2N3783 2N3784 2N3785	=	7.0 7.5	6.5 —	đb

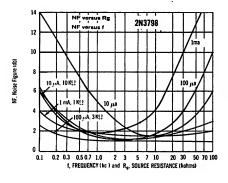

NOTE 1: AGC is obtained by increasing I_C . The circuit remains adjusted for V_{CE} = -10 Vdc and I_C = -3 mAdc.

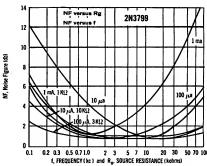

NOTE 2: This Noise Figure was obtained using Hewlett-Packard Type 342A Noise Figure Meter and Type 349A Noise Source.

2N3783 thru 2N3785 (continued)

2N3798 2N3799

 $V_{CEO} = 60 \text{ V}$ $I_C = 50 \text{ mA}$ $H_{FE} = 150 \text{ \& 300 min.@ } 100 \ \mu\text{A}$ NF = 1.5-2.5 db @ 10 kc




PNP silicon annular transistors for low-level, low-noise amplifier applications.

MAXIMUM RATINGS

Characteristics	Symbol	Rating	Unit
Collector-Base Voltage	v _{СВО}	60	Vdc
Collector-Emitter Voltage	v _{CEO}	60	Vdc
Emitter-Base Voltage	V _{EBO}	5	Vdc
Collector Current	I _C	50	mAdc
Total Device Dissipation @ T _C = 25°C Derating Factor Above 25°C	PD	1.2 6.9	Watts mW/°C
Total Device Dissipation @ T _A = 25°C Derating Factor Above 25°C	PD	0.36 2.06	Watt mW/ ^O C
Junction Operating Temperature	$\mathbf{T_{J}}$	200	°C
Storage Temperature Range	T _{stg}	-65 to +200	°c

NOISE FIGURE VERSUS FREQUENCY AND SOURCE RESISTANCE

2N3798, 2N3799 (continued)

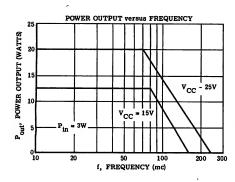
ELECTRICAL CHARACTERISTICS (At 25°C unless otherwise noted)

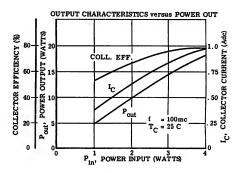
Characteristics		Symbol	Min	Тур	Max	Unit
Collector-Base Breakflown Voltage (L _C = 10 μ Adc, L _E = 0)		вусво	60	_		Vđc
Collector-Emitter Breakdown Voltage (I _C = 10 mAde, I _B = 0)		BVCEO	60	90	_	Vdc
Emitter-Base Breakdown Voltage (I _E = 10 µAdc, I _C = 0)		BVEBO	5	_	_	Vdc
Collector Cutoff Current (VCB = 50 Vdc, I _E = 0) (V _{CB} = 50 Vdc, I _E = 0, T _A = 150 ^o C)		¹ СВО	_	_	.010 10	μAdic
Emitter Cutoff Current (V _{OB} = 4 Vdc, I _C = 0)		IEBO	_	_	20	nAde
Collector-Emitter Saturation Voltage* (IC = 100 μAdc, IB = 10 μAdc)		V _{CE(sat)} *	_	_	0.2	Vde
$(I_C = 1 \text{ mAde}, I_B = 100 \mu\text{Ade})$				_	0.25	
Base-Emitter Saturation Voltage* (I _C = 100 µAdc, I _B = 10 µAdc)		VBE(sat)*	_	-	0.7	Vde
(I _C = 1 mAde, I _B = 100 μAde)					0.8	
DC Forward Current Transfer Ratio* (I _C = 1 μAde, V _{CE} = 5 Vdc)	2N3799	phE.	75	-	-	-
(I _C = 10 μAde, V _{CE} = 5 Vde)	2N3798 2N3799		100 225	=	=	
(I _C = 100 µAdc, V _{CB} = 5 Vdc)	2N3798 2N3799		150 300	=	=	
$(I_C = 100 \ \mu Adc, V_{CE} = 5 \ Vdc, T_A = -55^{\circ}C)$	2N3798 2N3799		75 150	=	=	
(I _C = 500 µAde, V _{CB} = 5 Vde)	2N3798 2N3799		150 300	=	450 900	ĺ
(L _C = 1 mAde, V _{CE} = 5 Vde)	2N3798 2N3799		150 300	=	=	
(I _C = 10 mAde, V _{CS} = 5 Vde)	2N3798 2N3799		125 250	=	=	
Base Emitter "ON" Voltage (I _C = 100 μAdc, V _{CE} = 5 V)		V _{BE(ON)}	_	_	0.7	Vdc
Output Capacitance (V _{CB} = 5 Vdc, I _E = 0, f = 100 kc)	<u> </u>	c _{ob}		_	4	pf
Input Capacitance (V _{OB} = 0.5 Vdc, I _C = 0, f = 100 kc)		Cip		_	8	pf
Small Signal Current Gain (I _C = 500 μA,V _{CE} = 5 V, f = 30 mc)		h _{fe}	1.0	_	_	-
(I _C = 1 mA, V _{CE} = 5 V, f = 100 mc)	average.		1.0 150	_		
(I _C = 1 mA, V _{CE} = 10 V, f = 1 kc)	2N3798 2N3799		300		900	
Voltage Feedback Ratio (I _C = 1.0 mA, V _{CE} .= 10 V, f = 1 kc)		h _{re}	-	_	25	.x10 ⁻⁴
Input Impedance (I _C = 1.0 mA, V _{CE} = 10 V, f = 1 kc)	2N3798 2N3799	hie	3 10	=	25 40	k ohm
Output Admittance (I _C = 1.0 mA, V _C E = 10 V, f = 1 kc)		h _{oe}	_	_	60	μmhor
Noise Figure		NF		1		40
$(I_C = 100 \mu A, V_{CE} = 10 V, R_G = 3 K),$ f = 100 cpe	2N3798 2N3799		=	4 2.5	7 4	
f = 1 ke	2N3798 2N3799		=	1.5 0.8	3 1.5	
f = 10 kc	2N3798 2N3799		=	1.0 0.8	2.5 1.5	
Noise Bandwidth 10 cps to 15.7 kc	2N3798	I	l –	2.5	3.5	1

^{*} Pulse Test \leq 300 μsec , duty cycle \leq 2% $\rm V_{\mbox{\scriptsize OB}}$ - Base-Emitter Reverse Bias

2N3818

 $G_{PE} = 7 db @ 100 Mc Typ$ $P_o = 15 W @ 100 Mc$

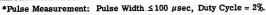

NPN silicon annular transistor for high-frequency power applications to 150 Mc.

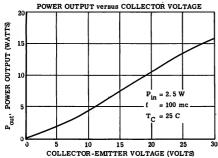

CASE 36 (TO-60)

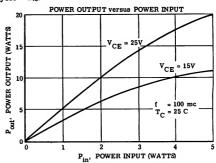
MAXIMUM RATINGS

Characteristic	Symbol	Rating	Unit
Collector-Base Voltage	v _{сво}	60	Vdc
Collector-Emitter Voltage	V _{CES}	60	Vdc
Emitter-Base Voltagè	V _{EB}	4	Vdc
Collector-Current (continuous)	I _C	2.0	Adc
Base-Current (continuous)	I _B	1.0	mAdc
Power Input (Nominal)	P _{in}	5. 0	Watts
Power Output (Nominal)	Pout	20.0	Watts
Total Device Dissipation @ 25°C Case Temperature	P _D	25.0	Watts
Derating Factor above 25°C		167	mW/°C
Junction Temperature	T _J	175	°c
Storage Temperature	T _{stg}	-65 to +175	°C -

Note 1. The maximum ratings as given for DC conditions can be exceeded on a pulse basis. See electrical characteristics.




—— Motorola High-Frequency Transistors ——


2N3818 (continued)

ELECTRICAL CHARACTERISTICS (at 25°C case temperature unless otherwise noted)

Characteristic	Symbol	Minimum	Typical	Maximum	Vait
Collector-Emitter Sustain Voltage $I_C = 0.25$ Adc. $R_{BE} = 0$	V _{CES(sus)} *	8C	100		Vdc
Collector-Emitter-Open Base Sustain Voltage	V _{CEO(sus)} *				Vdc
$I_C = 0.25 \text{ Adc}, I_B = 0$		40			1
Collector-Emitter Current V _{CE} = 60 Vdc, V _{BE} = 0	I _{CES}			0.5	m Adc
$V_{CE} = 50 \text{ Vdc}, V_{BE} = 0, T_{C} = 175^{\circ}\text{C}$				1.0	
Collector Cutoff Current V _{CB} = 50 Vdc, I _E = 0	I _{СВО}			1	μAdc
Emitter Cutoff Current $V_{EB} = 4 \text{ Vdc}, I_{C} = 0$	I _{EBO}			100	μAdc
DC Current Gain I _C = 400 mAdc, V _{CE} = 2 Vdc	h _{FE}	5.0		• 50	
I _C = 1 Adc, V _{CE} = 2 Vdc		5.0			
Collector-Emitter Saturation Voltage $I_C = 1.0$ Adc, $I_B = 250$ mAdc	V _{CE(sat)}			0.5	Vdc
Base-Emitter Saturation Voltage $I_C = 1.0$ Adc, $I_B = 250$ mAdc	V _{BE(sat)}			2.0	Vdc
AC Current Gain $V_{CE} = 2.0 \text{ Vdc}, I_{C} = 400 \text{ mAdc},$ $f = 50 \text{ mc}$	h _{fe}	3			
Collector Output Capacitance V _{CB} = 25 Vdc, I _E = 0, f = 100 kc	C _{ob}			40	pf
Power Input Pout = 15 W, f = 100 mc	P _{in}		3.0	3.75	Watts
V _{CE} = 25 Vdc Efficiency I _{C(max.)} = 1 Adc	η	60	70		%

----- Motorola High-Frequency Transistors -----

mcs2135, mcs2136

 $V_{CEO} = 60 \text{ V}$ $I_C = 50 \text{ mA}$ $C_{ob} = 3 \text{ pf}$ NF = 3-4 db @ 15.7 kc

NPN silicon annular transistors in a micro-ceramic package for general-purpose, low-current switching and amplifier applications.

MAXIMUM RATINGS

Characteristic	Symbol	Maximum	Unit
Collector-Base Voltage	v _{CBO}	75	Vde
Collector-Emitter Voltage	v _{CEO}	60	Vdc
Emitter-Base Voltage	v _{EBO}	6	Vdc
Collector Current	^I C	50	mAdc
Total Device Dissipation @ T _A = 25°C	P _D	150	mW
Derating Factor Above 25°C		1, 5	mW/°C
Junction Temperature, Operating	$\mathbf{T}_{\mathbf{J}}$	+125	°C
Storage Temperature Range	T _{stg}	-65 to +125	°C

----- Motorola High-Frequency Transistors -----

MCS2135, MCS2136 (continued)

ELECTRICAL CHARACTERISTICS (25°C Ambient unless otherwise noted)

Characteristic		Symbol	Minimum	Maximum	Unit
Collector-Base Breakdown Voltage $(I_C = 10 \mu Adc, I_E = 0)$		вусво	75	-	Vdc
Collector-Emitter Breakdown Voltage* $(I_{C} = 10 \text{ mAdc}, I_{B} = 0)$		BV _{CEO} *	60	-	Vdc
Emitter-Base Breakdown Voltage $(I_E = 10 \mu Adc, I_C = 0)$		BV _{EBO}	6	-	Vdc
Collector Cutoff Current (V _{CB} = 50 Vdc, I _E = 0)		ICBO	-	. 010	μAdc
$(V_{CB} = 50 \text{ Vdc}, I_{E} = 0, T_{A} = 100^{\circ}\text{C})$			-	2.0	
Emitter Cutoff Current (V _{EB} = 5 Vdc, I _C = 0)		I _{EBO}	-	20	nAdc
DC Current Gain* $(I_C = 1 \mu Adc, V_{CE} = 5 Vdc)$	MCS2136	h _{FE} *	30	-	-
$(I_C = 10 \mu\text{Adc}, V_{CE} = 5 \text{Vdc})$	MCS2135		40 100	-	
	MCS2136 MCS2135		100	300	
, · · · · · · · · · · · · · · · · · · ·	MCS2136		250 50	750	
	MCS2135 MCS2136		125	_	
	MCS2135		150	-	
	MCS2136 MCS2135		250 150	_	
CE CE	MCS2136		250	-	
Collector-Emitter Saturation Voltage* (I _C = 10 μAdc, I _B = 10 μAdc)		V _{CE(sat)} *	-	0.3	Vdc
$(I_C = 1.0 \text{ mAdc}, I_B = 100 \mu\text{Adc})$			-	0.5	
Base-Emitter Saturation Voltage* (I _C = 100 µAdc, I _B = 10 µAdc)		V _{BE(sat)} *	-	0.7	Vdc
$(I_C = 1.0 \text{ mAdc}, I_B = 100 \mu \text{Adc})$			-	1.0	
Base-Emitter On Voltage $(I_C = 100 \mu\text{Adc}, V_{CE} = 5.0 \text{Vdc})$		V _{BE(on)}	-	0.7	Vdc
High-Frequency Current Gain (I _C = 500 µAdc, V _{CE} = 5 Vdc, f = 30 mc)		h _{fe}	1.0	_	-
(I _C = 1.0 mAde, V _{CE} = 5 Vdc, f = 100 mc)			1.0	-	
Output Capacitance (V _{CB} = 5.0 Vdc, I _E = 0, f = 100 kc)		C _{ob}	-	3.0	pf
Input Capacitance (V _{EB} = 0.5 Vdc, I _C = 0, f = 100 kc)		C _{ib}	-	8.0	pf
	MCS2135 MCS2136	h _{fe}	80 150	450 900	-
	MCS2135 MCS2136	h _{ie}	3 5	20 25	kohms
Voltage Feedback Ratio (I _C = 1.0 mAdc, V _{CE} = 5.0 Vdc, f = 1 kc)		h _{re}	_	25	X10 ⁻⁴
Output Admittance (I _C = 1.0 mAdc, V _{CE} = 5.0 Vdc, f = 1 kc)		h _{oe}		50	μmhos
Noise Figure (Power Bandwidth = 15.7 kc) ($I_C = 10 \mu\text{Adc}, \ V_{CE} = 5 \text{Vdc}, \ R_g = 10 \text{kohms}$)	MCS2135 MCS2136	NF	-	4 3	db

^{*}Pulse Test: PW $\leq 300~\mu sec$, Duty Cycle $\leq 2\%$

----- Motorola High-Frequency Transistors

mcs2137, mcs2138

 $\begin{array}{l} V_{CEO} = 60 \; V \\ I_{C} = 50 \; mA \\ C_{ob} = 3 \; pf \\ NF = 3\text{-}4 \; db \; @ \; 15.7 \; kc \end{array}$

PNP silicon annular transistors in a micro-ceramic package for general-purpose, low-current switching and amplifier applications.

CASE 37

MAXIMUM RATINGS

Characteristic	Symbol	Maximum	Unit
Collector-Base Voltage	v _{сво}	6,0	Vdc
Collector-Emitter Voltage	v _{CEO}	60	Vdc
Emitter-Base Voltage	v _{EBO}	5	Vdc
Collector Current	I _C	50	mAdc
Total Device Dissipation @ T _A = 25°C	P _D	150	mW
Derating Factor Above 25°C		1, 5	mW/°C
Junction Temperature, Operating	$ extbf{T}_{ extbf{J}}$	+125	°C
Storage Temperature Range	T _{stg}	-65 to +125	°C

----- Motorola High-Frequency Transistors -----

MCS2137, MCS2138 (continued)

ELECTRICAL CHARACTERISTICS (25°C Ambient unless otherwise noted)

Characteristic		Symbol	Minimum	Maximum	Unit
Collector-Base Breakdown Voltage ($I_C = 10 \mu Adc$, $I_E = 0$)		вусво	60	-	Vdc
Collector-Emitter Breakdown Voltage* (I _C = 10 mAdc, I _B = 0)	<u>'</u>	BV _{CEO} *	60	-	Vdc
Emitter-Base Breakdown Voltage $(I_E = 10 \mu Adc, I_C = 0)$		BV _{EBO}	5	-	Vdc
Collector Cutoff Current (V _{CB} = 50 Vdc, I _E = 0)		СВО	-	. 020	μAdc
(V _{CB} = .50 Vdc, I _E = 0, T _A = 100°C) Emitter Cutoff Current		I _{EBO}	<u> </u>	2.0	nAdc
$(V_{EB} = 5 \text{ Vdc}, I_C = 0)$		EDO		20	
DC Current Gain* $(I_{C} = 1 \mu Adc, V_{CE} = 5 Vdc)$ $(I_{C} = 10 \mu Adc, V_{CE} = 5 Vdc)$ $(I_{C} = 10 \mu Adc, V_{CE} = 5 Vdc)$	MCS2138 MCS2137 MCS2138 MCS2137	^h FE*	50 75 200 100	- - - 300	-
$(I_C = 10 \mu\text{Adc}, \ V_{CE} = 5 \text{Vdc}, \ T_A = -55^{\circ}\text{C})$	MCS2138 MCS2137 MCS2138		250 50 125	750 - -	
$(I_C = 1.0 \text{ mAdc}, V_{CE} = 5 \text{ Vdc})$ $(I_C = 10 \text{ mAdc}, V_{CE} = 5 \text{ Vdc})$	MCS2137 MCS2137 MCS2138 MCS2137		100 250 100 250	-	
Collector-Emitter Saturation Voltage* $(I_{C} = 10 \mu\text{Adc}, \ I_{B} = 10 \mu\text{Adc})$ $(I_{C} = 1.0 \text{mAdc}, \ I_{B} = 100 \mu\text{Adc})$		V _{CE(sat)} *	-	0.20 0.25	Vdc
Base-Emitter Saturation Voltage* $(I_C = 100 \mu\text{Adc}, \ I_B = 10 \mu\text{Adc})$	***************************************	V _{BE(sat)} *	-	0.7	Vdc
$(I_C = 1.0 \text{ mAdc}, I_B = 100 \mu\text{Adc})$			-	0.8	
Base-Emitter On Voltage $(I_C = 100 \mu\text{Adc}, V_{CE} = 5.0 \text{Vdc})$		V _{BE(on)}	-	0.7	Vdc
High-Frequency Current Gain (I _C = 500 µAdc, V _{CE} = 5 Vdc, f = 30 mc)		^h fe	1.0	-	-
(I _C = 1.0 mAde, V _{CE} = 5 Vde, f = 100 mc)			1.0	-	
Output Capacitance (V _{CB} = 5.0 Vdc, I _E = 0, f = 100 kc)		C _{ob}	-	3.0	pf
Input Capacitance $(V_{EB} = 0.5 \text{ Vdc}, I_{C} = 0, f = 100 \text{ kc})$		C _{ib}	-	8.0	pf
Small Signal Current Gain (I _C = 1.0 mAdc, V _{CE} = 5.0 Vdc, f = 1 kc)	MCS2137 MCS2138	^h fe	100 300	450 900	-
Input Impedance (I _C = 1.0 mAdc, V _{CE} = 5.0 Vdc, f = 1 kc)	MCS2137 MCS2138	h _{ie}	3 10	15 40	kohms
Voltage Feedback Ratio (I _C = 1.0 mAdc, V _{CE} = 5.0 Vdc, f = 1 kc)		h _{re}	-	25	X10 ⁻⁴
Output Admittance (I _C = 1.0 mAdc, V _{CE} = 5.0 Vdc, f = 1 kc)	MCS2137 MCS2138	h _{oe}	_	60 '60	μmhos
Noise Figure (Power Bandwidth = 15.7 kc) $(I_C = 10 \mu\text{Adc}, \ V_{CE} = 5 \text{Vdc}, \ R_g = 10 \text{kohms}$	3)MCS2137 MCS2138	NF	-	4 3	db

^{*}Pulse Test: PW \leq 300 µsec, Duty Cycle \leq 2%

MF812

 $V_{CES} = 60 \ V$ $G_{PE} = 8 \ db \ @ \ 30 \ Typ$ $P_o = 30 \ W \ @ \ 30 \ Mc$

NPN silicon annular transistor for high-frequency amplifier (TO-3) and oscillator applications.

MAXIMUM RATINGS

Characteristic	Symbol	Rating	Unit
Collector-Base Voltage	v _{CBO}	60	Vdc
Collector-Emitter Voltage	V _{CES}	60	Vdc
Emitter-Base Voltage	V_{EE}	3	Vdc
Collector Current (Continuous)	I _C	4	Adc
Base Current (Continuous)	I _B	2.0	Adc
Total Device Dissipation (25°C Case temperature) (Derating Factor above 25°C)	P _D	60 400	Watts mW/°C
Junction Temperature	T _J	175	°c
Storage Temperature	T _{stg}	-65 to +175	°c

ELECTRICAL CHARACTERISTICS (At 25°C)

Characteristic	Symbol	Min	Тур	Max	Unit
Collector-Cutoff Current ($V_{CB} = 30 \text{ Vdc}, I_{E} = 0$)	I _{CBO}	_	_	5	μAdc
Collector-Emitter Cutoff Current (V _{CE} = 60 Vdc, V _{BE} = 0)	ICES	-	_	2.0	mAdc
$ \begin{array}{c} \text{(VCE = 50 Vdc, VBE = 0, T}_{\text{C}} = 150^{\circ}\text{C)} \\ \text{Emitter-Cutoff Current} \\ \text{(V}_{\text{EB}} = 3 \text{ Vdc, I}_{\text{C}} = 0) \end{array} $	I _{EBO}	=	=	4.0 500	μAdc
Collector-Emitter Sustaining Voltage ($I_C = 0.250 \text{ A}$, $R_{BE} = 0$, $PW \le 100 \mu sec$, $DC = 2\%$)	V _{CES(sus)}	80	120	-	Vdc
Collector-Emitter Open-Base Sustaining Voltage ($I_C = 0.250 \text{ A}$, $I_B = 0$, $PW \le 100 \mu \text{sec}$, $DC = 2\%$)	V _{CEO(sus)}	40	_	_	Vdc
DC Current Gain (I _C = 2 Adc, V _{CE} = 2 Vdc) (I _C = 4 Adc, V _{CE} = 2 Vdc) Collector-Emitter Saturation Voltage	h _{FE}	2.5	-	50	_
Collector-Emitter Saturation Voltage $(I_C = 4.0 \text{ Adc}, \ I_B = 2 \text{ Adc})$	V _{CE(sat)}	_	_	0.5	Vdc
Base-Emitter Saturation Voltage ($I_C = 4.0$ Adc, $I_B = 2$ Adc)	V _{BE(sat)}	_	_	2. 0	Vdc
High-Frequency Current Gain (I _C = 2 Adc, V _{CE} = 2 Vdc, f = 25 Mc)	^h fe	2.0	-	_	_
Output Capacitance ($V_{CB} = 25 \text{ Vdc}$, $I_{E} = 0$, $f = 100 \text{ kc}$)	C ^{op}	-	-	150	pf
Power Input $(P_0 = 30 \text{ W}, \text{ f} = 30 \text{ Mc}, \text{ V}_{CE} = 25 \text{ Vdc}, \text{ I}_{C(max)} = 2.4 \text{ A})$	P _{in}	_	_	6	Watts
Efficiency ($P_o = 30 \text{ W}, \text{ f} = 30 \text{ Mc}, \text{ V}_{CE} = 25 \text{ Vdc}, \text{ I}_{C(max)} = 2.4 \text{ A}$)	η	50	80	_	%
Power Gain $(P_0 = 30 \text{ W}, f = 30 \text{ Mc}, V_{CE} = 25 \text{ Vdc}, I_{C(max)} = 2.4 \text{ A})$	G _e	7.0	8.0		db

MF832

 $V_{CES} = 60 \text{ V}$ $G_{PE} = 8 \text{ db } @ 50 \text{ Typ}$ $P_o = 30 \text{ W } @ 50 \text{ Mc}$

NPN silicon annular transistor for high-frequency amplifier and oscillator applications.

MAXIMUM RATINGS

Characteristic	Symbol	Rating	Unit
Collector-Base Voltage	v _{CBO}	60	Vdc
Collector-Emitter Voltage	V _{CES}	60	Vdc
Emitter-Base Voltage	V _{EB}	3	Vdc
Collector Current (Continuous)	I _C	3. 0	Adc
Base Current (Continuous)	I _B	750	mAdc
Total Device Dissipation (25°C Case temperature) (Derating Factor above 25°C)	P _D	40. 0 266	Watts mW/°C
Junction Temperature	T _J	175	°C
Storage Temperature	Tstg	-65 to +175	°C
	i	ı	ı

ELECTRICAL CHARACTERISTICS

Characteristic	Symbol	Min	Тур	Max	Unit
Collector-Cutoff Current $(V_{CB} = 30 \text{ Vdc}, I_{E} = 0)$	I _{СВО}	_	_	2	μAdc
Collector-Emitter Cutoff Current (V _{CE} = 60 Vdc, V _{BE} = 0)	ICES	_	_	0.5	mAdc
$(V_{CE} = 50 \text{ Vdc}, V_{BE} = 0, T_{C} = 150^{\circ}\text{C})$		_	—	2.0	
Emitter-Cutoff Current $(V_{EB} = 3 \text{ Vdc}, I_C = 0)$	I _{EBO}	_	_	500	μAdc
Collector-Emitter Sustaining Voltage (I _C = 0.250 A, R _{BE} = 0, PW \leq 100 μ sec, DC = 2%)	V _{CES(sus)}	80	120	-	Vdc
Collector-Emitter Open-Base Sustaining Voltage ($I_C = 0.250 \text{ A}$, $I_B = 0$, PW $\leq 100 \mu \text{sec}$, DC = 2%)	V _{CEO(sus)}	40	_	_	Vdc
DC Current Gain (I _C = 2 Adc, V _{CE} = 2 Vdc)	h _{FE}	2. 5	_	50	_
$(I_C = 2 \text{ Adc}, V_{CE} = 2 \text{ Vdc})$		2.5	_	—	
Collector-Emitter Saturation Voltage $(I_C = 2.0 \text{ Adc}, I_B = 1 \text{ Adc})$	V _{CE(sat)}	_	_	0. 5	Vdc
High-Frequency Current Gain ($I_C = 800 \text{ mAdc}, V_{CE} = 2.0 \text{ Vdc}, f = 50 \text{ Mc}$)	h _{fe}	2.0	_	_	_
Output Capacitance ($V_{CB} = 25 \text{ Vdc}$, $I_E = 0$, $f = 100 \text{ kc}$)	C ^{op}	-	_	100	pf
Power Input $(P_0 = 30 \text{ W}, f = 50 \text{ Mc}, V_{CE} = 25 \text{ Vdc}, I_{C(max)} = 2 \text{ A}$	P _{in}	_	_	6.0	Watts
Efficiency $(P_o = 30 \text{ W}, f = 50 \text{ Mc}, V_{CE} = 25 \text{ Vdc}, I_{C(max)} = 2 \text{ A})$	η	60	80	_	%
Power Gain $(P_o = 30 \text{ W}, f = 50 \text{ Mc}, V_{CE} = 25 \text{ Vdc}, I_{C(max)} = 2 \text{ A})$	G _e	7	8. 0	_	db

mm1941

G_o = 9 db @ 175 Mc P_o = 100 mW @ 175 Mc

NPN silicon annular transistor for high-frequency power oscillator, multiplier and driver applications.

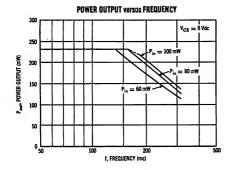
MAXIMUM RATINGS (at 25°C case temperature unless otherwise noted)

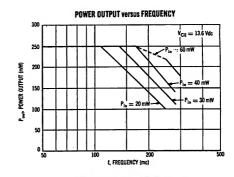
Characteristic	Symbol	Rating	Unit
Collector-Base Voltage	v _{сво}	30	Volts
Collector-Emitter Voltage	V _{CES}	30	Volts
Emitter-Base Voltage	v _{EB}	3.0	Volts
Base Current	I _B	30	mAdc
Collector Current	I _C	200	mAdc
Input Power	P _{in}	100	mW
Output Power	Pout	250	mW
Power Dissipation @ T _C = 25°C Derate above 25°C	Pc*	600 4.0	mW/°C
Power Dissipation @ T _A = 25°C Derate above 25°C	P _D *	300 2.0	mW/°C
Junction Temperature	$^{\mathrm{T}}\mathrm{_{J}}$	175	·°C
Storage Temperature	T _{stg}	-65 to +175	,c

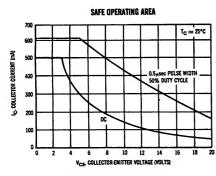
^{*}See Safe Area Curve

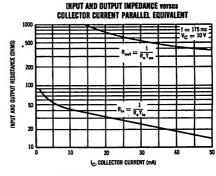
ELECTRICAL CHARACTERISTICS (at 25°C ambient temperature unless otherwise noted)

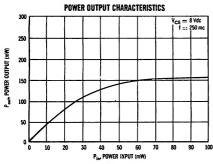
Characteristic	Symbol	Test Conditions	Min	Тур	Max	Unit
Collector-Emitter Sustain Voltage	V _{CES(sus)} *	$I_{\rm C} = 15 \text{ mA}, R_{\rm BE} = 0$	30	40	-	Volts
Collector-Base Breakdown Voltage	вусво	$I_C = 100 \mu\text{Adc}, \ I_E = 0$	30	40	-	Volts
Collector Emitter-Open Base Sustain Voltage	BV _{CEO(sus)} *	I _C = 15 mA, I _B = 0	20	-	-	Volts
Collector Cutoff Current	I _{CBO}	V _{CB} = 15 Vdc, I _E = 0	-	0.01	0. 1	
		$V_{CB} = 15 \text{ Vdc}, I_{E} = 0, T_{C} = 100^{\circ}\text{C}$			25	μAdc
Emitter Cutoff Current	I _{EBO}	$V_{EB} = 3 \text{ Vdc}, I_{C} = 0$	-	0.1	10	μAdc
DC Current Gain	h _{FE}	I _C = 10 mAdc, V _{CE} = 10 Vdc	25	50	-	- 1
AC Current Gain	h _{fe}	V _{CE} = 10 Vdc, I _C = 10 mAdc f = 100 mc	6	8	-	-
Collector Output Capacitance	C _{ob}	$V_{CB} = 15 \text{ Vdc}, I_{E} = 0, f = 100 \text{ kc}$	-	-	2.5	pf
Power Output	Pout	P _{in} = 20 mW max, f = 175 mc	100	-	-	mW

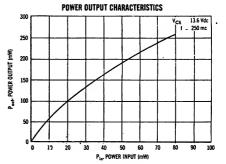

----- Motorola High-Frequency Transistors -----


MM1941 (continued)


ELECTRICAL CHARACTERISTICS (continued)


Characteristic	Symbol	Test Conditions	Min	Тур	Max	Unit
Power Gain	G _e	V _{CC} = 13.6 Vdc, I _{C(max)} = 25 mA	7	9	-	đb
Power Output (Oscillator)	Pout	f = 80 mc, V _{CC} = 13.6 Vdc, I _{C(typ)} = 20 mAdc	-	50	-	mW
Power Gain (Multiplier)	G _e	$f_{\rm in}$ = 80 mc, $f_{\rm out}$ = 240 mc $V_{\rm CC}$ = 13.6 Vdc, $P_{\rm out}$ \approx 30 mW $I_{\rm C(typ)}$ = 25 mAdc	-	3	-	ďb


^{*}Pulse Test: PW = 100 μsec; DC = 2%



мм1943

G_o = 9 db @ 175 Mc P_o = 300 mW @ 175 Mc

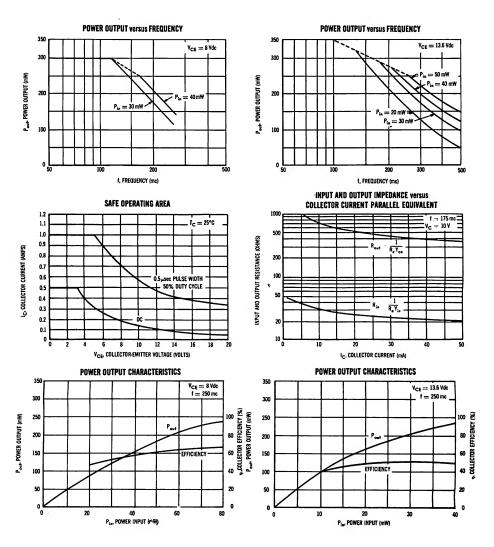
NPN silicon annular transistor for high-frequency multiplier and driver applications.

MAXIMUM RATINGS (at 25°C case temperature unless otherwise noted)

Characteristic	Symbol	Rating	Unit
Collector-Base Voltage	v _{сво}	40	Vdc
Collector-Emitter Voltage	v _{CES}	40	Vdc
Emitter-Base Voltage	v_{EB}	3.0	Vdc
Base Current	IB	30	mA
Collector Current	I _C	200	mA
Input Power	P _{in}	100	mW
Output Power	Pout	400	mW
Device Dissipation @ T _C = 25 ^o C Derate above 25 ^o C	P _C *	600 4. 0	mW mW/ ^O C
Device Dissipation @ T _A = 25 ^o C Derate above 25 ^o C	P _D *	300 2	mW mW/ ^O C
Junction Temperature	$T_{\mathbf{J}}$	+ 175	°c
Storage Temperature Range	T _{stg}	-65 to +175	°c

ELECTRICAL CHARACTERISTICS (at 25°C ambient temperature unless otherwise noted)

Characteristic	Symbol	Test Conditions	Min	Тур	Max	Unit
Collector-Emitter Sustain Voltage	V _{CES(sus)} *	$I_C = 15$ mA, $R_{BE} = 0$	40	50	-	Volts
Collector-Base Breakdown Voltage	BV _{CBO}	$I_C = 100 \mu\text{Adc}, \ I_E = 0$	40	45	-	Volts
Collector Emitter-Open Base Sustain Voltage	BV _{CEO(sus)} *	$I_C = 15 \text{ mA}, I_B = 0$	20	-	-	Volts
Collector Cutoff Current	I _{CBO}	$V_{CB} = 15 \text{ Vdc}, I_{E} = 0$ $V_{CB} = 15 \text{ Vdc}, I_{E} = 0, T_{C} = 100^{\circ}\text{C}$	-	0.01 -	0. 1 25	μAdc
Emitter Cutoff Current	I _{EBO}	V _{EB} = 3 Vdc, I _C = 0	•	0.1	10	μAdc
DC Current Gain	h _{FE}	I _C = 10 mAdc, V _{CE} = 10 Vdc	25	50	-	-
AC Current Gain	h _{fe}	V _{CE} = 10 Vdc, I _C = 10 mAdc f = 100 mc	5	7	-	-
Collector Output Capacitance	C _{ob}	$V_{CB} = 15 \text{ Vdc}, I_E = 0, f = 100 \text{ kc}$	•	-	4	pf
Power Output	Pout	P _{in} =47.5mW max, f = 175 mc	300	-	-	mW


—— Motorola High-Frequency Transistors ——

MM1943 (continued)

ELECTRICAL CHARACTERISTICS (continued)

Characteristic	Symbol	Test Conditions	Min	Тур	Max	Unit
Power Gain	G _e	V _{CC} = 13.6 Vdc, I _{C(max)} =13.6 mA	8	9	-	đb
Efficiency	η		45	55		%
Power Gain (Multiplier)	G _e	$f_{\rm in}$ = 80 mc, $f_{\rm out}$ = 240 mc $V_{\rm CC}$ = 13.6 Vdc, $P_{\rm out}$ ≈ 70 mW $I_{\rm C}$ (typ) = 20 mAdc	-	3	-	đb

^{*}Pulse Test: PW = 100 μ sec; DC = 2%

мм2503

V_{CBO} = 30 V G_e = 20 db @ 200 Mc

PNP germanium annular transistor for high-gain, low-noise amplifier, oscillator and frequency multiplier applications.

MAXIMUM RATINGS

Characteristic	Symbol	Rating	Unit
Collector-Base Voltage	v _{CBO}	-30	Vdc
Collector-Emitter Voltage	v _{CES}	-30	Vdc
Collector-Emitter Voltage	v _{CEO}	-15	Vdc
Emitter-Base Voltage	V _{EBO}	-0.5	Vdc
Collector Current	, I ^C	-20	mA
Total Device Dissipation	P _D	75	mW
(25° C Ambient Temp.) Derate above 25° C		1.0	mW/° C
Junction Temperature	$^{\mathrm{T}}\mathrm{_{J}}$	+100	°C
Storage Temperature	T _{stg}	-65 to +100	°C,

MM2503 (continued)

ELECTRICAL CHARACTERISTICS (at 25°C case temperature unless otherwise noted)

Characteristic	Symbol	Minimum	Maximum	Typical
Collector-Base Breakdown Voltage $I_C = -100\mu$ Adc, $I_E = 0$	BV CBO	-30		Vdc
Collector-Emitter Breakdown Voltage $I_C = -100\mu Adc$, $V_{BE} = 0$	BV CES	-30		Vdc
Collector-Emitter Breakdown Voltage I _C = -1mAdc, I _B = 0	BV CEO	-15		Vdc
Emitter-Base Breakdown Voltage $I_{\underline{C}} = -100\mu Adc, I_{\underline{C}} = 0$	BVEBO	-0.5		Vdc
Collector-Cutoff Current V _{CB} = -6Vdc, T _A = +55° C	СВО		-10 -100	μAdc μAdc
DC Forward Current Ratio VCE = -6Vdc, IC = -3mAdc	h _{FE}	20	·	
Collector-Emitter Saturation Voltage I _C = -3mAdc, I _B = -0.3mAdc	V _{CE(sat)}		-0.2	Vdc
Base-Emitter Saturation Voltage I _C = -3mAdc, I _B = -0.3mAdc	V _{BE(sat)}		-0.7	Vdc
Small Signal Forward Current Ratio $V_{CE} = -6Vdc$, $I_{C} = -3mAdc$, $f = 1KC$	h _{fe}	25		
Collector-Base Capacitance $V_{CB} = -6Vdc$, $I_E = 0$, $f = 100KC$	C _{ob}		2.0	pf
Collector-Base Time Constant $V_{CB} = -6Vdc$, $I_E = +3mAdc$, $f = 79.8MC$	r _b 'C _c		6	psec
Current Gain-Bandwidth Product V _{CE} = -6Vdc, I _C = -3mAdc, f = 100MC	f _T	1000		mc
Power Gain V _{CE} = -6Vdc, I _C = -3mAdc, f = 200MC	Ge	20		db
Noise Figure $V_{CE} = -6Vdc$, $I_{C} = -3mAdc$ $R_{g} = 50 \Omega$, $f = 200MC$	NF		3.0	db
Power Gain (AGC) V _{CE} = -5Vdc, I _C = -15mAdc, f = 200MC	G _e		0	, db

мм2550

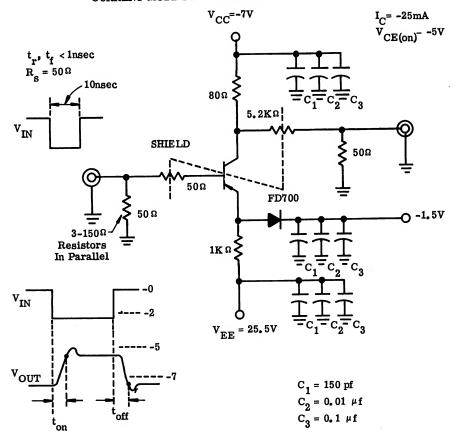
 $V_{CEO} = 10 \text{ V}$ $I_{C} = 100 \text{ mA}$ $f_{T} = 1000 \text{ Mc}$ $t_{off} = 2.5 \text{ nsec}$

PNP germanium epitaxial mesa transistor for highspeed, low-power, current-mode switching applications.

MAXIMUM RATINGS

Characteristic	Symbol	Rating	Unit
Collector-Base Voltage	v _{CBO}	-20	Vdc
Collector-Emitter Voltage	v _{CEO}	-10	Vdc
Emitter-Base Voltage	V _{EBO}	-0.5	Vdc
Collector Current	I _C	-100	mAdc
Junction Temperature	$ extbf{T}_{ extbf{J}}$	100	°c
Storage Temperature	T _{stg}	-65 to +100	°c
Device Dissipation © T _C = 25°C Derating factor above 25°C	P _D	300 4	mW mW/°C
Device Dissipation @ T _A = 25°C Derating factor above 25°C	P _D	150 2	mW mW/°C

ELECTRICAL CHARACTERISTICS (at 25°C case temperature unless otherwise noted)


Characteristic	Symbol	Minimum	Maximum	Unit
Collector-Base Breakdown Voltage (I_C = -100 μ Adc, I_E = 0)	вv _{сво}	-20	-	Vdc
Collector-Emitter Breakdown Voltage $(I_C = -10 \text{mAdc}, I_B = 0)$	BV _{CEO}	-10	-	Vdc
Emitter-Base Breakdown Voltage ($I_E = -100 \mu Adc, I_C = 0$)	BV _{EBO}	-0.5	-	Vdc
Collector Cutoff Current (V _{CB} = -10 Vdc, I _E = 0)	^I сво	-	-10	μAdc
DC Current Gain (I _C = -10 mAdc, V _{CE} = -5 Vdc)	h _{FE}	20	-	-
Collector Saturation Voltage (I _C = -10 mAdc, I _B = -1.0 mAdc)	V _{CE(sat)}	-	-0.2	Vdc
Base-Emitter Saturation Voltage ($I_C = -10 \text{ mAdc}, I_B = -1.0 \text{ mAdc}$)	V _{BE(sat)}	-0. 3	-0.7	Vdc

MM2550 (continued)

ELECTRICAL CHARACTERISTICS (continued)

Characteristic	Symbol	Minimu	m	Maximum	Unit
Current Gain-Bandwidth Product $(I_C = -5 \text{ mAdc}, V_{CE} = -10 \text{ Vdc}, f = 100 \text{ mc})$ $(I_C = -10 \text{ mAdc}, V_{CE} = -5 \text{ Vdc}, f = 100 \text{ mc})$ $(I_C = -15 \text{ mAdc}, V_{CE} = -2 \text{ Vdc}, f = 100 \text{ mc})$	f _T	1000 1000 1000			mc mc mc
Collector Output Capacitance	C _{ob}	Min	Тур	Max	pf
$(V_{CB} = -5 \text{ Vdc}, I_E = 0, f = 100 \text{ kc})$	00	-		3	
Collector-Base Time Constant (I _E = +10 mAdc, V _{CB} = -5 Vdc, f = 31.8 mc)	r _b ' C _c	-	50	-	psec
Turn-on Time (I _C = -10 mAdc, V _{CE(on)} = -5V)	ton	_	1. 8	2. 5	nsec
Turn-off Time (I _C = -10 mAdc, V _{CE(on)} = -5V)	t _{off}	-	1.8	2.5	nsec

CURRENT MODE SWITCHING TIME CIRCUIT

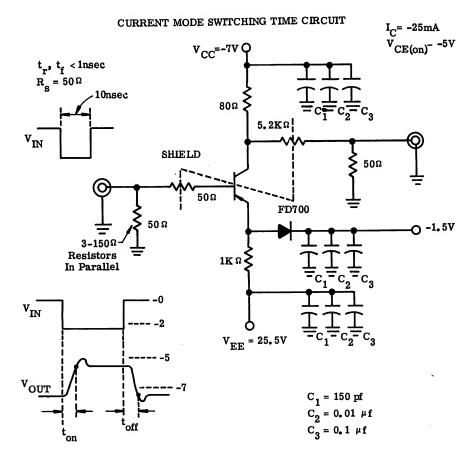
мм2552

 $V_{CEO} = 10 V$ $I_C = 100 \text{ mA}$ $f_T = 1000 \text{ Mc}$ $t_{off} = 2.5 \text{ nsec}$

PNP germanium epitaxial mesa transistor for highspeed, low-power, current-mode switching applications.

MAXIMUM RATINGS

Characteristic	Symbol	Rating	Unit
Collector-Base Voltage	v _{сво}	-20	V dc
Collector-Emitter Voltage	v _{CEO}	-10	Vdc
Emitter-Base Voltage	V _{EBO}	-0.5	Vdc
Collector Current	I _C	-100	mAdc
Junction Temperature	$^{\mathrm{T}}\mathrm{_{J}}$	100	°C
Storage Temperature	T _{stg}	-65 to +100	·C
Device Dissipation @ T _C = 25 °C Derating factor above 25 °C	P _D	600 8	mW mW/°C
Device Dissipation @ T _C = 25 °C Derating factor above 25 °C	P _D	300 4	mW mW/°C


ELECTRICAL CHARACTERISTICS (at 25°C case temperature unless otherwise noted)

Characteristic	Symbol	Minimum	Maximum	Unit
Collector-Base Breakdown Voltage $(I_C = -100 \mu Adc, I_E = 0)$	вусво	-20	-	Vdc
Collector-Emitter Breakdown Voltage (I _C = -10 mAdc, I _B = 0)	BVCEO	-10	_	Vdc
Emitter-Base Breakdown Voltage ($I_E = -100 \mu Adc$, $I_C = 0$)	BVEBO	-0.5	-	Vdc
Collector Cutoff Current (V _{CB} = -10 Vdc, I _E = 0)	I _{CBO}	-	-10	μAdc
DC Current Gain (I _C = -25 mAdc, V _{CE} = -5 Vdc)	h _{FE}	30	_	-
Collector Saturation Voltage (I _C = -25 mAdc, I _B = -2.5 mAdc)	V _{CE(sat)}	-	-0.2	Vdc
Base-Emitter Saturation Voltage (I _C = -25 mAdc, I _B = -2.5 mAdc)	V _{BE(sat)}	-0.3	-0.7	Vdc

MM2552 (continued)

ELECTRICAL CHARACTERISTICS (continued)

Characteristic	Symbol	Minimu	m	Maximum	Unit
Current-Gain, Bandwidth Product ($I_C = -30 \text{ mAdc}$, $V_{CE} = -2 \text{ Vdc}$, $f = 100 \text{ mc}$) ($I_C = -25 \text{ mAdc}$, $V_{CE} = -5 \text{ Vdc}$, $f = 100 \text{ mc}$) ($I_C = -20 \text{ mAdc}$, $V_{CE} = -10 \text{ Vdc}$, $f = 100 \text{ mc}$)	f _T	1000 1000 1000			me me me
Collector Output Capacitance (V _{CB} = -5 Vdc, I _E = 0, f = 100 kc)	c ^{op}	-		3	pf
Collector-Base Time Constant	r _b 'C _c	Min	Тур	Max	psec
$(I_E = +25 \text{ mA}, V_{CB} = -5V, f = 31.8 \text{ mc})$			50		
Turn-on Time $(I_C = -25 \text{ mAdc}, V_{CE(on)} = -5 \text{ Vdc})$	t _{on}	_	2.2	3.5	nsec
Turn-off Time $(I_C = -25 \text{ mAdc}, V_{CE(on)} = -5 \text{ Vdc})$	toff	_	1.8	2.5	nsec

мм2554

 $V_{CEO} = 10 \text{ V}$ $I_C = 200 \text{ mA}$ $f_T = 1000 \text{ Mc}$ $t_{off} = 2.5 \text{ nsec}$

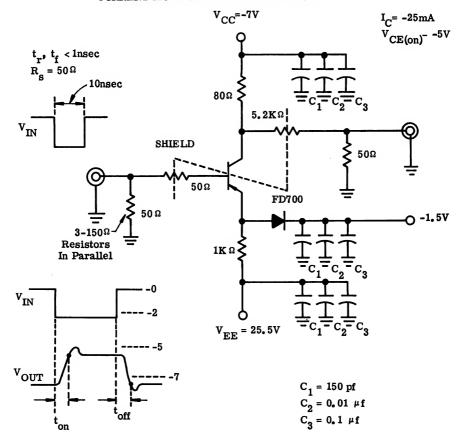
PNP germanium epitaxial mesa transistor for highspeed, low-power, current-mode switching applications.

MAXIMUM RATINGS

Characteristic	Symbol	Rating	Unit
Collector-Base Voltage	v _{CBO}	-20	/dc
Collector-Emitter Voltage	v _{CEO}	-10	Vdc
Emitter-Base Voltage	V _{EBO}	-0.5	Vdc
Collector Current	I _C	-200	mAdc
Junction Temperature	T _J	100	°c
Storage Temperature	T _{stg}	-65 to +100	°c
Device Dissipation @ T _C = 25°C Derating factor above 25°C	P _D	750 10	mW mW/°C
Device Dissipation @ T _A = 25°C Derating factor above 25°C	P _D	300 4	mW/°C

ELECTRICAL CHARACTERISTICS (at 25°C case temperature unless otherwise noted)

Characteristic	Symbol	Minimum	Maximum	Unit
Collector-Base Breakdown Voltage ($I_C = -100 \mu Adc, I_E = 0$)	вусво	-20		Vdc
Collector-Emitter Breakdown Voltage $(I_C = -10 \text{mAdc}, I_B = 0)$	BV _{CEO}	-10		Vdc
Emitter-Base Breakdown Voltage ($I_E = -100 \mu Adc, I_C = 0$)	BV _{EBO}	-0.5		Vdc
Collector Cutoff Current (V _{CB} = -10Vdc, I _E = 0)	I _{CBO}		-10	μAdc
DC Current Gain (I _C = -40mAdc, V _{CE} = -5 Vdc)	h _{FE}	20		
Collector Saturation Voltage (I _C = -40mAdc, I _B = -4mAdc)	V _{CE} (sat)		-0. 25	Vdc
Base-Emitter Saturation Voltage (I _C = -40mAdc, I _B = -4mAdc)	V _{BE(sat)}	-0.4	-0.8	Vdc


—— Motorola High-Frequency Transistors ——

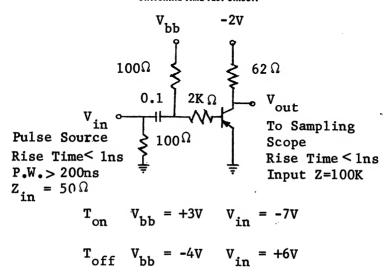
MM2554 (continued)

ELECTRICAL CHARACTERISTICS (continued)

Characteristic	Symbol	Minim	ım	Maximum	Unit
Current-Gain, Bandwidth Product $(I_{C} = -35\text{mAdc}, V_{CE} = -10\text{Vdc}, f = 100\text{MC})$ $(I_{C} = -40\text{mAdc}, V_{CE} = -5\text{Vdc}, f = 100\text{MC})$ $(I_{C} = -45\text{mAdc}, V_{CE} = -2\text{Vdc}, f = 100\text{MC})$	f _T	100 100 100	0		mc mc mc
Collector Output Capacitance (V _{CB} = -5Vdc, I _E = 0, f = 100KC)	C _{ob}			4	pţ.
Collector-Base Time Constant	r _b 'C _c	Min	Тур	Max	psec
$(I_E = +40 \text{mAdc}, V_{CB} = -5 \text{Vdc}, f = 31.8 \text{MC})$	БС		50		
Turn-on Time (I _C = -40mAdc, V _{CE(on)} = -5Vdc)	ton		2. 4	3. 5	nsec
Turn-off Time (I _C = -40 mAdc, V _{CE(on)} = -5Vdc)	t _{off}		1, 6	2, 5	nsec

CURRENT MODE SWITCHING TIME CIRCUIT

мм2894



 $\ensuremath{\mathsf{PNP}}\xspace \ensuremath{\mathsf{silicon}}\xspace$ annular transistors for low-level, high-speed switching applications.

MAXIMUM RATINGS

Characteristic	Symbol	Rating	Unit
Collector-Base Voltage	V _{CBO}	15	Vdc
CollectoEmitter Voltage	v _{CEO}	12	Vdc
Emitter-Base Voltage	V _{EBO}	4.5	Vdc
Total Device Dissipation @ 25° C Ambient Temperature Derate above 25° C	P _D	0.36 2.06	Watt mW/° C
Total Device Dissipation @ 25° C Case Temperature Derate above 25° C	P _D	1.2 6.9	Watts mW/° C
Operating Junction Temperature	т _J	200	°C
Storage Temperature	T _{stg}	-65 to 200	°C

SWITCHING TIME TEST CIRCUIT

MM2894 (continued)

ELECTRICAL CHARACTERISTICS (at 25°C case temperature unless otherwise noted)

Characteristic	Symbol	Minimum	Typical	Maximum	Unit
Collector Cutoff Current $V_{CB} = -6V$, $I_{E} = 0$ $V_{CB} = -6V$, $I_{E} = 0$, $T_{A} = 125^{\circ}$ C	^I СВО			. 08 10	μА
Collector-Base Breakdown Voltage $I_{\text{C}} = 10 \mu \text{A}, I_{\text{E}} = 0$	BV _{CBO}	-15			Vdc
Collector-Emitter Sustaining Voltage* $I_C = 10$ mA, $I_B = 0$	V _{CEO(sust)}	-12	-		Vdc
Emitter-Base Breakdown Voltage $I_E = 100\mu A$, $I_C = 0$	BVEBO	-4.5			Vdc
Collector-Emitter Saturation Voltage $^{\rm I}{\rm C}$ = 10mA, $^{\rm I}{\rm B}$ = 1.0mA $^{\rm I}{\rm C}$ = 30mA, $^{\rm I}{\rm B}$ = 3.0mA $^{\rm I}{\rm C}$ = 100mA, $^{\rm I}{\rm B}$ = 10mA	V _{CE(sat)}		-0.1	-0.15 -0.2 -0.5	Vdc
Base-Emitter Saturation Voltage $I_C = 10mA$, $I_B = 1.0mA$ $I_C = 30mA$, $I_B = 3.0mA$ $I_C = 100mA$, $I_B = 10mA$	V _{BE(sat)}	-0.68 -0.74		-0.83 -0.89 -1.7	Vdc
DC Pulse Current Gain* $I_{C} = 1 \text{mA} \ V_{CE} = 0.3 \text{v}$ $I_{C} = 10 \text{mA} \ V_{CE} = 0.3 \text{v}$ $I_{C} = 30 \text{mA}, \ V_{CE} = 0.5 \text{v}$ $I_{C} = 30 \text{mA}, \ V_{CE} = 0.5 \text{v} \ (-55^{\circ} \text{ C})$ $I_{C} = 100 \text{mA}, \ V_{CE} = 1.0 \text{V}$	h _{FE} *	25 30 40 17 25	70	150	
High Frequency Current Gain (f = 100mc) VCE = 100 IC = 30mA	h _{fe}	4.0			
Output Capacitance V _{CB} = -5.0V, I _E = 0, f = 140KC	C _{ob}			6.0	pf
Emitter Transition Capacitance $V_{EB} = -0.5V$, $I_{C} = 0$, $f = 140 KC$	C _{TE}			6.0	pf
Turn On Time I _C = 30mA, I _{B1} = 1.5mA	Ton		23	60	nsec
Turn Off Time $I_C = 30 \text{mA}, I_{B1} = I_{B2} = 1.5 \text{mA}$	Toff		34	60	nsec

^{*} Pulse Conditions; length = 300 μ sec duty cycle $\leq 2\%$

MM2894 (continued)

MPS706

 $V_{CEO} = 15 V$ $h_{FE} = 20$ $t_s = 60 \text{ nsec}$

NPN silicon annular, plastic encapsulated transistor designed for low-cost, high-speed switching applications. For typical curves, see 2N706 data sheet.

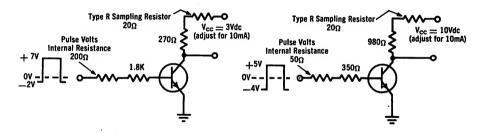
CASE 29

MAXIMUM RATINGS

Characteristic	Symbol	Rating	Unit
Collector-Base Voltage	v _{сво}	25	Vdc
Collector-Emitter Voltage	v _{cer} *	20	Vdc
Emitter-Base Voltage	v _{ebo}	3	Vdc
Junction Temperature	$\mathbf{T_{J}}$	125	°C
Storage Temperature	T _{stg}	-55 to +125	°C
Total Device Dissipation @ 25°C Case Temperature (Derate 5 mW/°C above 25°C)	P _D	500	mW
Total Device Dissipation @ 25°C Ambient Temperature (Derate 3 mW/°C above 25°C)	P _D	300	mW

----- Motorola High-Frequency Transistors ----

MPS706 (continued)


ELECTRICAL CHARACTERISTICS (at 25°C case temperature unless otherwise noted)

Characteristic	Symbol	Minimum	Typical	Maximum	Unit
Collector Cutoff Current VCB = 15 V, IE = 0	I _{CBO}	-	. 005	0.5	μΑ
Emitter Cutoff Current V _{EB} = 3 V, I _C = 0	I _{EBO}	-	-	10	μΑ
Collector-Emitter Breakdown Voltage* $I_C = 10 \text{ mA}, I_B = 0$	BV _{CEO.} *	15	24	1	Vdc
Collector-Emitter Breakdown Voltage* IC = 10 mA, R = 10 Q	BV _{CER} *	20	-	-	Vdc
Forward-Current Transfer Ratio* I _C = 10 mA, V _{CE} = 1 V	h _{FE} *	20	-	-	-
Base-Emitter Voltage* $I_C = 10 \text{ mA}, I_B = 1 \text{ mA}$	V _{BE(sat)*}	1	-	0.9	Vdc
Collector Saturation Voltage* $I_C = 10 \text{ mA}, I_B = 1 \text{ mA}$	V _{CE(sat)*}	-	-	0.6	Vdc
Collector Capacitance $V_{CB} = 10 \text{ V}, I_E = 0$	C _{ob}	-	_	6	pf
Small-Signal Forward Current Transfer Ratio V_{CE} = 15 Vdc, I_{E} = 10 mAdc, f = 100mc	h _{fe}	2	4	-	_
Base Resistance V _{CE} = 15 Vdc, I _E = 10 mAdc, f = 100mc	r'b	-	-	50	ohms
Charge Storage Time Constant (See Figure 2)	7 ** S	-	-	60	nsec
Turn-on Time	T _{on} **	_		40	nsec
Turn-off Time	Toff**	-	· -	75	nsec

^{*} Pulse Test: PW ≤ 12 nsec, Duty Cycle ≤ 2%
**Switching Times Measured with Tektronix Type R
Plug-In (50 Ω Internal Impedance) and Circuits Shown

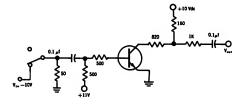
SWITCHING TIME TEST CIRCUIT

STORAGE TIME TEST CIRCUIT

MPS834

 $V_{CEO} = 30 \text{ V}$ $I_C = 200 \text{ mA}$ $t_{off} = 30 \text{ nsec}$

NPN silicon annular, plastic encapsulated transistor for low-cost, high-speed switching applications. For typical curves, see 2N834 data sheet.


CASE 29

MAXIMUM RATINGS

Characteristic	Symbol	Rating	Unit
Collector-Base Voltage	^V СВО	40	Vdc
Collector-Emitter Voltage	v _{CEO}	30	Vdc
Emitter-Base Voltage	v _{EBO}	5	Vdc
D. C. Collector Current	I _C	200	mAdc
Junction Temperature	T _J	+125	°c
Storage Temperature Range	T _{stg}	-55 to +125	°C
Total Device Dissipation @ 25°C Case Temperature	P _D	500	mW
(Derate 5.0 mW/°C above 25°C)			
Total Device Dissipation @ 25°C Ambient Temperature	P _D	300	mW
(Derate 3.0 mW/°C above 25°C)			

TURN-ON AND TURN-OFF TIME MEASUREMENT CIRCUIT

CHARGE STORAGE TIME CONSTANT MEASUREMENT CIRCUIT

NOTE: ALL SWITCHING TIMES MEASURED WITH LUMATRON MODEL 420 SWITCHING TIME TEST SET OR EQUIVALENT.

----- Motorola High-Frequency Transistors -----

MPS834 (continued)

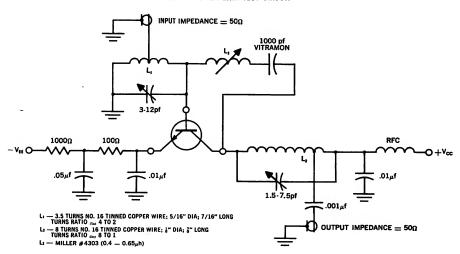
ELECTRICAL CHARACTERISTICS (at 25°C case temperature unless otherwise noted)

Characteristic	Symbol	Minimum	Typical	Maximum	Unit
Collector-Base Breakdown Voltage I_E = 0, I_C = 10 μ Adc	вусво	40	-	-	Vdc
Emitter-Base Breakdown Voltage I_C = 0, I_E = 10 μ Adc	BV _{EBO}	5	-	-	Vdc
Collector Cutoff Current V _{BE} = 0, V _{CE} = 30 Vdc	I _{CES}	-	-	10	μ Ad c
Collector Cutoff Current I _E = 0, V _{CB} = 20 Vdc	I _{СВО}	-	_	0. 5	μAdc
Forward Current Transfer Ratio* I _C = 10 mAdc, V _{CE} = 1 Vdc	h _{FE} *	25	-	-	-
Collector Saturation Voltage* IC = 10 mA, IB = 1 mA	V _{CE(sat)} *	-	-	0. 25	Vdc
Collector Saturation Voltage* I _C = 50 mA, I _B = 5 mA	V _{CE(sat)} *	-	-	0. 4	Vdc
Base-Emitter Saturation Voltage* I _C = 10 mAdc, I _B = 1.0 mAdc	V _{BE(sat)} *	-	-	0.9	Vdc
Collector Capacitance I _E = 0, V _{CB} = 10 Vdc, f = 100 kc	c _{ob}	-	-	4	pf
Small-Signal Forward Current Transfer Ratio I _C = 10 mAdc, V _{CE} = 20 Vdc, f = 100mc	h _{fe}	3.5	-	-	•
Current Gain Bandwidth Product I _C = 10 mAdc, V _{CE} = 20 Vdc, f = 100mc	$f_{\mathcal{T}}$	350	-	-	mc
Charge Storage Time Constant $I_C = 10 \text{ mA}, I_{B1} = I_{B2} = 10 \text{ mA}$	$ au_{ extsf{g}}$	-	-	25	nsec
Turn-on Time I _C = 10 mA, I _{B1} = 3 mA, I _{B2} = 1 mA	t _{on}	-	-	16	nsec
Turn-off Time $I_C = 10 \text{ mA}, I_{B1} = 3 \text{ mA}, I_{B2} = 1 \text{ mA}$	t _{off}	-	-	30	nsec

^{*} Pulse Test: PW ≤ 12 nsec, Duty Cycle ≤ 2%

MPS3563

G_o = 14-15 db @ 200 Mc NF = 6 db @ 200 Mc P_o = 30 mW @ 500 Mc


NPN silicon annular, plastic encapsulated transistors for low-cost, amplifier and oscillator applications at VHF and UHF.

CASE 29

MAXIMUM RATINGS

Characteristic	Symbol	MPS918	MPS3563	Unit
Collector-Base Voltage	v _{сво}	30	30	Volts
Collector-Emitter Voltage	V _{CEO}	15	12	Volts
Emitter-Base Voltage	V _{EBO}	3	2	Volts
Total Dissipation @ 25°C Case Temperature @ 25°C Ambient Temperature	P _D	0.5 0.2	0.5 0.2	Watts
Operating Junction Temperature	т	125	125	°C
Storage Temperature	T _{stg}	-55 t	o +125	°C

200 MC POWER GAIN TEST CIRCUIT

----- Motorola High-Frequency Transistors -----

MPS918, MPS3563 (continued)

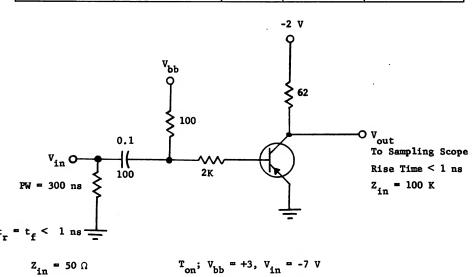
ELECTRICAL CHARACTERISTICS (at 25°C ambient temperature unless otherwise noted)

Characteristic		Symbol	Minimum	Maximum	Unit
Collector Cutoff Current V _{CB} = 15V, I _E = 0	MPS918 MPS3563	СВО	-	10 50	nA
Collector-Base Breakdown Voltage $I_C=1.0~\mu A,~I_E=0$ $I_C=100~\mu A,~I_E=0$	MPS918 MPS3563	вуСво	30 30	-	Volts
Emitter-Base Breakdown Voltage $I_E = 10 \mu A$, $I_C = 0$	MPS918 MPS3563	BV _{EBO}	3.0 2.0		Volts
Collector-Emitter Voltage I _C = 3.0 mA, I _E = 0	MPS918 MPS3563	BV _{CEO*}	15 15	1.1	Volts
DC Current Gain	MPS918 MPS3563	h _{FE*}	20 20	- 200	_
Collector-Emitter Saturation Voltage $I_C = 10$ mA, $I_B = 1$ mA	MPS918	V _{CE(sat)}	-	0.4	Volts
Base-Emitter Saturation Voltage $I_C = 10 \text{mA}$, $I_B = 1 \text{mA}$	MPS918	V _{BE(sat)}	-	1.0	Volts
Small Signal Current Gain $I_C = 4mA$, $V_{CE} = 10V$, $f = 100mc$ $I_C = 8mA$, $V_{CE} = 10V$, $f = 100mc$ $I_C = 8mA$, $V_{CE} = 10V$, $f = 1kc$	MPS918 MPS3563 MPS3563	^h fe	6 6 20	- 15 250	_
Output Capacitance $V_{CB} = 10V$. $I_{E} = 0$, $f = 140kc$ $V_{CB} = 10V$, $I_{E} = 0$, $f = 1mc$ $V_{CB} = 0V$, $I_{E} = 0$, $f = 140kc$	MPS918 MPS3563 MPS918	Cop	-	1.7 1.7 3.0	pf
Input Capacitance V _{EB} = 0.5V, I _C = 0	MPS918	C _{ib}	_	2.0	pf
Amplifier Power Gain $I_C = 6mA$, $f = 200mc$, $V_{CB} = 12V$ $I_C = 8mA$, $V_{CE} = 10V$, $f = 200mc$ $G_{fd} + G_{re} < -20db$	MPS918 MPS3563	Ge	15 14	-	db
Power Output I _C = 8mA, V _{CB} = 15V, f = 500mc	MPS918	Pout	30		mW
Collector Efficiency I _C = 8mA, V _{CB} = 15V, f = 500mc	MPS918	eff	25		%
Noise Figure I _C = 1mA, V _{CE} = 6V, f = 60mc, Rg = 400	MPS918	NF	-	6	db

^{*}PW ≤ 300 µsec. DC ≤ 1%

MPS 2894

 $V_{CEO} = 12 V$ $h_{FE} = 40$ $t_{OFF} = 90 \text{ nsec}$



PNP silicon annular, plastic encapsulated transistor for low-cost, low-level, high-speed switching applications.

CASE 29

MAXIMUM RATINGS

Characteristic	Symbol	Rating	Unit
Collector-Base Voltage	v _{сво}	12	Vdc
Collector-Emitter Voltage	v _{CEO}	12	Vdc
Emitter-Base Voltage	v _{EBO}	4	Vdc
Total Device Dissipation @ 25°C Ambient Temperature Derate above 25°C	P _D	0.3 3	Watt mW/°C
Total Device Dissipation @ 25°C Case Temperature Derate above 25°C	P _D	1.0 10	Watt mW/° C
Operating Junction Temperature	T _J	125	°C
Storage Temperature Range	T _{stg}	-55 to +125	°C

 T_{off} ; $V_{bb} = -4 \text{ V}$, $V_{in} = +6 \text{ V}$

MPS2894 (continued)

ELECTRICAL CHARACTERISTICS (at 25°C case temperature unless otherwise noted)

Characteristic	Symbol	Minimum	Typical	Maximum	Unit
Collector Cutoff Current V _{CB} = -6 V, I _E = 0	I _{CBO}			.08	μΑ
$V_{CB} = -6 \text{ V}, I_{E} = 0, T_{A} = 125^{\circ}\text{C}$					
Collector-Base Breakdown Voltage $I_{C} = 10 \mu A, I_{E} = 0$	BV _{CBO}	-12			Vdc
Collector-Emitter Sustaining Voltage* IC = 10 mA, IB = 0	V _{CEO (sust)}	-12			Vdc
Emitter-Base Breakdown Voltage $I_E = 100 \mu A$, $I_C = 0$	BVEBO	-4.0			Vdc
Collector-Emitter Saturation Voltage $I_C = 10 \text{ mA}, I_B = 1.0 \text{ mA}$ $I_C = 30 \text{ mA}, I_B = 3.0 \text{ mA}$ $I_C = 100 \text{ mA}, I_B = 10 \text{ mA}$	V _{CE(sat)}		-0.1	-0. 15 -0. 2 -0. 5	Vdc
Base-Emitter Saturation Voltage $I_C = 10 \text{ mA}, I_B = 1.0 \text{ mA}$ $I_C = 30 \text{ mA}, I_B = 3.0 \text{ mA}$ $I_C = 100 \text{ mA}, I_B = 10 \text{ mA}$	V _{BE(sat)}	-0. 78 -0. 85.		-0. 98 -1. 20 -1. 7	Vdc
DC Pulse Current Gain* $I_C = 1 \text{ mA}, V_{CE} = 0.3 \text{ V}$ $I_C = 10 \text{ mA}, V_{CE} = 0.3 \text{ V}$ $I_C = 30 \text{ mA}, V_{CE} = 0.5 \text{ V}$ $I_C = 30 \text{ mA}, V_{CE} = 0.5 \text{ V}$ (-55°C) $I_C = 100 \text{ mA}, V_{CE} = 1.0 \text{ V}$	h _{FE} *	25 30 40 17 25	70	150	-
High Frequency Current Gain (f = 100 mc) $V_{CE} = 10 \text{ V}$, $I_{C} = 30 \text{ mA}$	h _{fe}	4.0			_
Output Capacitance V _{CB} = -5.0 V, I _E = 0, f = 140 kc	C _{ob}		_	6.0	pf
Emitter Transition Capacitance V _{EB} = -0.5 V, I _C = 0, f = 140 kc	C _{TE}			6.0	pf
Turn-On Time I _C = 30 mA, I _{B1} = 1.5 mA	t _{on}		23	60	nsec
Turn-Off Time I _C = 30 mA, I _{B1} = I _{B2} = 1.5 mA	toff		34	90	nsec

^{*} Pulse Conditions: Length = 300 μ sec Duty Cycle \leq 2%

MPS 2923 thru MPS 2925

 $\begin{array}{l} V_{CEO} = 25 \text{ V} \\ I_C = 100 \text{ mA} \\ P_D = 200 \text{ mW} \end{array}$

NPN silicon annular, plastic encapsulated transistors for low-cost, medium-speed, general-purpose amplifier and oscillator applications.

CASE 29

MAXIMUM RATINGS -

Characteristic .	Symbol	Rating	Unit
Collector-Base Voltage	v _{сво}	25	Vdc
Collector-Emitter Voltage	v _{CEO}	25	Vdc
Emitter-Base Voltage	v _{EBO}	5	Vdc
Collector dc Current	I _C	100	mAdc
Total Device Dissipation @ 25°C Ambient Temperature Derating Factor above 25°C	P _D	200 2.67	mW mW/°C
Total Device Dissipation @ 55°C Ambient Temperature Derating Factor above 25°C	P _D	120 2.67	mW mW/°C
Junction Temperature-Operating	т	100	°C
Storage Temperature Range	T _{stg}	-30 to +125	°C

ELECTRICAL CHARACTERISTICS (at 25°C case temperature unless otherwise noted)

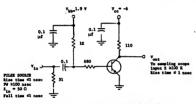
Characteristic	Symbol	Minimum	Maximum	Unit
Collector Cutoff Current V _{CB} = 25 V, I _E = 0	^I сво	-	0.5	μА
$V_{CB} = 25 \text{ V}, I_{E} = 0, T_{A} = 100 ^{\circ}\text{C}$		-	15	μА
Emitter Cutoff Current VEB = 5 V	I _{EBO}	-	0.5	μА
Small Signal Current Gain (f = 1 kc) V _{CE} = 10 V, I _C = 2 mA MPS2923 MPS2924 MPS2925	^h fe .	90 150 235	180 300 470	_
Collector Capacitance V _{CB} = 10 V, I _E = 0, f = 1 mc	C _{ob}	-	12	pf

MPS3563

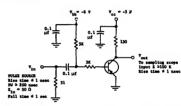
For Specifications, See MPS918 Data Sheet

MPS3639

 $V_{CEO} = 6 V$ $I_C = 80 \text{ mA}$ $t_S = 20 \text{ nsec}$



PNP silicon annular, plastic encapsulated transistor for low-cost, low-level, high-speed switching applications.


MAXIMUM RATINGS

Characteristic	Symbol	Rating	Unit
D. C. Collector Current	I _C	80	mAdc
Collector-Base Voltage	v _{сво}	-6	Vdc
Collector-Emitter Voltage	v _{CE}	-6	Vdc
Emitter-Base Voltage	v _{EBO}	-4	Vdc
Total Device Dissipation @ 25° Ambient Temperature	P _D	0.2	Watts
Derate above 25° C		2.0	mW/°C
Total Device Dissipation @ 25° C Case Temperature	P _D	0.5	Watts
Derate above 25° C		5.0	mW/°C
Operating Junction Temperature	$T_{\mathbf{J}}$	125	°C
Storage Temperature Range	T _{stg}	-55 to +125	°C

SWITCHING TIME TEST CIRCUIT

TES: (1) Collector Current = 50 mA; (2) Turn-On and Turn-Off Rase Currents = 5 mm

NOTES: (1) Collector Current = 10 mA; (2) Turn-On and Turn-Off Sees Currents = 0.5 m

MPS3639 (continued)

ELECTRICAL CHARACTERISTICS (at 25°C case temperature unless otherwise noted)

Characteristic	Symbol	Minimum	Maximum	Unit
Collector Cutoff Current $V_{CE} = 3 V, V_{EB} = 0$ $V_{CE} = 3 V, V_{EB} = 0, T_A = +65 ^{\circ}C$	ICES	- -	. 01 1	μА
Base Current V _{CE} = 3 V, V _{EB} = 0	IB	-	10	nA
Collector-Emitter Breakdown Voltage IC = 100 µA, VBE = 0	BVCES	6	-	v
Collector-Base Breakdown Voltage I_C = 100 μ A, I_E = 0	вусво	6	_	v
Emitter-Base Breakdown Voltage I_E = 100 μ A, I_C = 0	BVEBO	4	-	v
Collector-Emitter Sustaining Voltage $I_B=0$, $I_C=10$ mA, P.W. = 300 μ sec D.C. = 1%	V _{CEO(sus)}	6	-	v ,
Collector-Emitter Saturation Voltage $I_C = 10 \text{ mA}, I_B = 1 \text{ mA}$ $I_C = 50 \text{ mA}, I_B = 5 \text{ mA}, P.W. = 300 \mu sec}$	V _{CE(sat)}	_	0.16	v
D. C. = 1% I _C = 10 mA, I _B = 1 mA			0.5 0.23	
Base-Emitter Saturation Voltage $I_C = 10$ mA, $I_B = 0.5$ mA $I_C = 10$ mA, $I_B = 1$ mA $I_C = 50$ mA, $I_B = 5$ mA, P.W. = 300 μ sec,	V _{BE(sat)}	0.75 0.8	0.95	v
D. C. = 1%		-	1.5	
Forward Current Transfer Ratio $V_{CE} = 0.3 \text{ V}, I_{C} = 10 \text{ mA}, P.W. = 300 } \mu \text{sec},$	h _{FE}			_
D. C. = 1% V _{CE} = 1.0 V, I _C = 50 mA, P.W. = 300 μsec,		30	120	
D. C. = 1%		20	-	

MPS3639 (continued)

ELECTRICAL CHARACTERISTICS (continued)

Characteristic	Symbol	Minimum	Maximum	Unit
Small-Signal Current Transfer Ratio $V_{CE} = 5 \text{ V}, I_{C} = 10 \text{ mA}, f = 100 \text{ mc}$ $V_{CB} = 0, I_{C} = 10 \text{ mA}, f = 100 \text{ mc}$	h _{fe}	5 3	· -	-
Output Capacitance I _E = 0, V _{CB} = 5 V, f = 140 kc	C _{ob}	-	3.5	pf
Input Capacitance $V_{EB} = 0.5 \text{ V}, I_{C} = 0, f = 140 \text{ kc}$	c _{ib}	-	3.5	pf
Delay Time $V_{CC} = 6 \text{ V}, I_C = 50 \text{ mA}, I_{B1} = 5 \text{ mA}$ $V_{OB} = 1.9 \text{ V}$	^t d	-	10	nsec
Rise Time $V_{CC} = 6 \text{ V}, I_{C} = 50 \text{ mA}, I_{B1} = 5 \text{ mA},$ $V_{OB} = 1.9 \text{ V}$	t _r	-	30	nsec
Storage Time $V_{CC} = 6 V$, $I_{C} = 50 \text{ mA}$, $I_{B1} = I_{B2} = 5 \text{ mA}$	t _s	-	20	nsec
Fall Time $V_{CC} = 6 V$, $I_{C} = 50 \text{ mA}$, $I_{B1} = I_{B2} = 5 \text{ mA}$	t _f	_	12	nsec
Turn-On Time I _C = 50 mA, I _{B1} = 5 mA, V _{OB} = 1.9 V I _C = 10 mA, I _{B1} = 0.5 mA	t _{on}	<u>-</u> .	25 60	nsec
Turn-Off Time $I_C = 50 \text{ mA}, V_{OB} = 1.9 \text{ V}, I_{B1} = I_{B2} = 5 \text{ mA}$	t _{off}			nsec
$I_C = 10 \text{ mA}, \ I_{B1} = I_{B2} = 0.5 \text{ mA}$		-	25 60	

MPS3640

 $\begin{array}{l} V_{CEO} = 12\,V\\ I_C = 80\;mA\\ t_S = 20\;nsec \end{array}$

PNP silicon annular, plastic encapsulated transistor for low-cost, low-level, high-speed switching applications.

MAXIMUM RATINGS

Characteristic	- Symbol	Rating	Unit
D. C. Collector Current	I _C	80	mAdc
Collector-Base Voltage	v _{CBO}	12	Vdc
Collector-Emitter Voltage	v _{CEO}	12	Vdc
Emitter-Base Voltage	v _{EBO}	4	Vdc
Total Device Dissipation @ 25°C Ambient Temperature	P _D	0.2	Watts
Derate above 25°C		2.0	mW/°C
Total Device Dissipation @ 25° Case Temperature	P _D	0.5	Watts
Derate above 25°C		5.0	mW/°C
Operating Junction Temperature	${f T_J}$	125	°C
Storage Temperature Range	T _{stg}	-55 to +125	°C

ELECTRICAL CHARACTERISTICS (at 25°C case temperature unless otherwise noted)

Characteristic	Symbol	Minimum	Maximum	Unit
Collector Cutoff Current $V_{CE} = 6 \text{ V, } V_{EB} = 0$ $V_{CE} = 6 \text{ V, } V_{EB} = 0, T_{A} = +65^{\circ}\text{C}$	ICES	-	.01 1	μА
Base Current V _{CE} = 6 V, V _{EB} = 0	IB	_	10	nA
Collector-Emitter Breakdown Voltage $I_C = 100 \mu A, V_{BE} = 0$	BV _{CES}	12	_	v
Collector-Base Breakdown Voltage $I_C = 100 \mu A, I_E = 0$	вусво	12	_	v
Emitter-Base Breakdown Voltage $I_E = 100 \mu A, I_C = 0$	BV _{EBO}	4	-	v
Collector-Emitter Sustaining Voltage $I_B=0$, $I_C=10$ mA, P.W. = 300 μ sec, D.C. = 1%	V _{CEO(sus)}	12	_	v

----- Motorola High-Frequency Transistors -----

MPS3640 (continued)

ELECTRICAL CHARACTERISTICS (continued)

Characteristic	Symbol	Minimum	Maximum	Unit
Collector-Emitter Saturation Voltage I_C = 10 mA, I_B = 1 mA I_C = 50 mA, I_B = 5 mA, P.W. = 300 μ sec, D.C. = 1% I_C = 10 mA, I_B = 1 mA, I_A = +65°C	V _{CE(sat)}	-	0.2	v
Base-Emitter Saturation Voltage $I_C = 10$ mA, $I_B = 0.5$ mA $I_C = 10$ mA, $I_B = 1$ mA $I_C = 50$ mA, $I_B = 5$ mA, P.W. = 300 μ sec, D.C. = 1%	V _{BE} (sat)	0.75 0.8 -	0.95 1	v
Forward Current Transfer Ratio $V_{CE}=0.3$ V, $I_{C}=10$ mA, P.W. = 300 μ sec, D.C. = 1% $V_{CE}=1.0$ V, $I_{C}=50$ mA, P.W. = 300 μ sec, D.C. = 1%	h _{FE}	30 20	120	
Small-Signal Current Transfer Ratio $V_{CE} = 5 \text{ V}, I_{C} = 10 \text{ mA}, f = 100 \text{ mc}$ $V_{CB} = 0, I_{C} = 10 \text{ mA}, f = 100 \text{ mc}$	h _{fe}	5 3	-	-
Output Capacitiance I _E = 0, V _{CB} = 5 V, f = 140 kc	Cop	-	3.5	pf
Input Capacitance V _{EB} = 0,5 V, I _C = 0, f = 140 kc	C _{ib}	_	3.5	pf
Delay Time V _{CC} = 6 V, I _C = 50 mA, I _{B1} = 5 mA, V _{OB} = 1.9 V	^t d	-	10	nsec
Rise Time $V_{CC} = 6 \text{ V}, I_{C} = 50 \text{ mA}, I_{B1} = 5 \text{ mA},$ $V_{OB} = 1.9 \text{ V}$	t _r	-	30	nsec
Storage Time $V_{CC} = 6 \text{ V}, I_C = 50 \text{ mA}, I_{B1} = I_{B2} = 5 \text{ mA}$	ts	-	20	nsec
Fall Time $V_{CC} = 6 \text{ V}, I_C = 50 \text{ mA}, I_{B1} = I_{B2} = 5 \text{ mA}$	t _f	-	12	nsec
Turn-On Time I _C = 50 mA, I _{B1} = 5 mA, V _{OB} = 1.9 V I _C = 10 mA, I _{B1} = 0.5 mA	t _{on}	-	25 60	nsec
Turn-Off Time I _C = 50 mA, V _{OB} = 1.9 V, I _{B1} = I _{B2} = 5 mA	toff	_	35	nsec
$I_{C} = 10 \text{ mA}, \ I_{B1} = I_{B2} = 0.5 \text{ mA}$		_	75	

MOTOROLA SPECIAL AND MULTIPLE TRANSISTORS

DEVICES IN THIS SECTION

	*	1	
2N2060	2N3800	MD981	MD1129
2N2060A	2N3801	MD 982	MD1130
2N2223	2N3802	MD984	MD1131
2N2223A	2N3803	MD985	MD1132
2N2480	2N3804	MD 986	MD1133
2N2480A	2N3805	мФ990	MD1134
2N3409	2N3806	MD1120	MM2090
2N3410	2N3807	MD1121	MM2091
2N3411	2N3808	MD1122	MM2092
2N3480	2N3809	MD1123	
2N3481	2N3810	MD1124	
2N3483	2N3811	MD1124 MD1125	
2N3484	2N3011	MD1125	
2N3796		MD1126 MD1127	
2N3790 2N3747			
4110/47		MD1128	

• For case outline dimensions, see page 1-26.

SPECIAL AND MULTIPLE TRANSISTORS

Included in this listing of special devices are unijunction and field effect transistors as well as multiple devices consisting of two transistors in a single package. The multiple transistor section includes NPN-PNP complementary pairs and duals for differential amplifier, switching and low-level amplifier applications.

UNIJUNCTION TRANSISTORS

Unijunction transistors are three-terminal switching devices suitable for triggering, oscillator, pulse generation and bistable-circuit applications.

2N3480 2N3481 2N3483 2N3484

FIELD EFFECT TRANSISTORS

The Motorola line of field effect transistors includes both tetrode silicon junction and insulated gate devices.

2N3796	2N3797	MM2090	MM2091	MM2092	
--------	--------	--------	--------	--------	--

MULTIPLE TRANSISTORS

In the Motorola multiple transistor line are matched transistors designed for differential amplifier, complementary logic, switching and amplifier applications. The transistor pairs for differential amplifiers are closely matched over a wide range of conditions. In addition, the use of multiple transistors may result in appreciable space-saving since many pairs are packaged in standard transistor case sizes.

Differential	Amplifiers	Complementary Pairs	Duals for Switching	Duals for Amplifiers
2N2060 2N2060A 2N2223 2N2223A 2N2223A 2N2480 2N3409 2N3410 2N3411 2N3800 2N3601 2N3801 2N3802 2N3803 2N3804 2N3804	2N3806 2N3807 2N3808 2N3809 2N3810 2N3811 MD1120 MD1121 MD1122 MD1123 MD1124 MD1125 MD1125 MD1129 MD1130 MD1130	MD985 MD986	MD981 MD982 MD984 MD990 MD1126 MD1127 MD1128 MD1133 MD1134	MD1131

2N2060, A 2N2223, A 2N2480, A $V_{CEO} = 40-60 \text{ V}$ $I_C = 500 \text{ mA}$

NPN silicon annular Star dual-transistors for differential amplifiers and other applications requiring a matched pair with a high degree of parameter uniformity.

CASE 32 (TO-5)

MAXIMUM RATINGS (each side)

Characteristic	Symbol	Ra	ting	Unit		
Collector-Base Voltage 282060. 282060A. 282223. 282223A 282480 282480A	V _{CBO}	100 75 80		75		Vdc
Collector-Emitter Voltage 2N2060. 2N2060A. 2N2223. 2N2223A 2N2480. 2N2480A	v _{CEO}	60 40				Vdc
Collector-Emitter Voltage (R _{BE} ≤ 10 9) 2N2060. 2N2060A. 2N2223. 2N2223A	V _{CER}	80		80		Vdc
Emitter-Base Voltage 2N2060. 2N2060A, 2N2223. 2N2223A 2N2480. 2N2480A	V _{EBO}	7 5		Vdc		
DC Collector Current	1 _C	500		mAdc		
Operating Junction Temperature	т	200		³c		
Storage Temperature Range	Tstg	-65 t	o +300	,c		
		One Side	Both Sides			
Total Device Dissipation @ T _C = 25 C Derate above 25 C	P _D	1. 6 9. 1	3. 0 17. 2	Watts		
Total Device Dissipation @ T _A = 25 C Derate above 25 C	P _D	0. 5 2. 86	0. 6 3. 43	Watt		

2N2060, A, 2N2223, A, 2N2480, A (continued)

ELECTRICAL CHARACTERISTICS (each side)

(at 25°C ambient temperature unless otherwise noted)

Characteristic		Symbol	Min Max		Unit
collector-Base Breakdown Voltage (I _C = 100 μAdc, I _E = 0)	2N2060, 2N2060A, 2N2223, 2N2223A 2N2480 2N2480A	вуСВО	100 75 80	-	Vda
ollector-Emitter Breakdown Voltage*	2N2480, 2N2480A 2N2060, 2N2060A, 2N2223, 2N2223A	BV _{CEO} *	40 60	-	Vdo
Collector-Emitter Breakdown Voltage* (I _C = 100 mA, R _{BE} \(\frac{10 \mathcal{Q}}{2} \)	2N2060, 2N2060A, 2N2223, 2N2223A	BV _{CER} *	80	-	Vd
Emitter-Base Breakdown Voltage (I _E = 100 μAdc, I _C = 0)	2N2060, 2N2060A, 2N2223, 2N2223A 2N2480, 2N2480A	BV _{EBO}	7		V
Collector Cutoff Current (V _{CB} = 60 Vdc, I _E = 0) (V _{CB} = 30 Vdc, I _E = 0, T _A = 150°C) (V _{CB} = 80 Vdc, I _E = 0, T _A = 150°C) (V _{CB} = 80 Vdc, I _E = 0, T _A = 150°C)	2N2480 2N2480A 2N2480, 2N2480A 2N2060, 2N2060A 2N2223, 2N223A 2N2060, 2N2060A 2N2223, 2N2223A	¹ сво		. 050 . 020 . 15 . 002 . 010 . 10	
Emitter Cutoff Current (V _{EB} = 5 Vdc, I _C = 0)	2N2060, 2N2060A 2N2223, 2N2223A 2N2480 2N2480A	1 _{EBO}	:	2 10 50 20	1
DC Current Gain (I _C = 10 μAdc, V _{CE} = 5 Vdc) (I _C = 100 μAdc, V _{CE} = 5 Vdc) (I _C = 1 mAdc, V _{CE} = 5 Vdc) (I _C = 10 mAdc, V _{CE} = 5 Vdc)	2N2060, 2N2060A 2N223, 2N2223A 2N2060, 2N2060A 2N2223, 2N2223A 2N2480 2N2480A 2N2060, 2N2060A 2N2480A 2N2480A 2N2060, 2N2060A 2N2280, 2N2060A 2N2223, 2N2223A	h _{FE}	25 15 30 25 20 35 40 50 50	90 150 - 120 350 200 150	
DC Current Gain Ratio** $(I_C = 100 \mu\text{Adc}, V_{CE} = 5 \text{Vdc})$ $(I_C = 1 \text{mAdc}, V_{CE} = 5 \text{Vdc})$	2N2080, 2N2060A, 2N2223A 2N2223, 2N2480, 2N2480A 2N2080, 2N2080A 2N2480, 2N2480A	h _{FE1} /h _{FE2} **	0. 9 0. 8 0. 9 0. 8	1.0 1.0	
Base Voltage Differential ($I_C = 100 \mu Adc$, $V_{CE} = 5 Vdc$) ($I_C = 1 mAdc$, $V_{CE} = 5 Vdc$)	2N2050A 2N2050, 2N2223A, 2N2480A 2N2480 2N2223 2N2050, 2N2050A, 2N2480A 2N2480			3 5 10 15 5	5

2N2060, A, 2N2223, A, 2N2480, A (continued)

ELECTRICAL CHARACTERISTICS (continued)

Characteristic .		Symbol	Min	Max	Unit
Collector-Emitter Saturation Voltage (I _C = 50 mAdc, I _B = 5 mAdc)	2N2060A 2N2060, 2N2223, 2N2223A, 2N2480A 2N2480	V _{CE(sat)}	-	0. 6 1. 2 1. 3	Vdc
Base-Emitter Saturation Voltage (I _C = 50 mAdc, I _B = 5 mAdc)	2N2060, 2N2060A, 2N2223, 2N2223A, 2N2480A 2N2480	VBE(sat)	-	0. 9 1. 0	Vde
Small-Signal Forward Current Transfer Ratio (I _C = 50 mAdc, V _{CE} = 10 Vdc, f = 20 mc)	2N2223, 2N2223A, 2N2480, 2N2480A 2N2060, 2N2060A	h _{fe}	2. 5 3. 0	-	-
Collector Output Capacitance (V _{CB} = 10 Vdc, f = 1 mc)	2N2060, 2N2060A, 2N2223, 2N2223A 2N2480A 2N2480	C _{ob}	-	15 18 20	pf
Collector Input Capacitance (V _{EB} = 0.5 Vdc, F = 1 mc)	2N2060, 2N2060A, 2N2223, 2N2223A, 2N2480A	C _{ib}	-	85	pſ
Small-Signal Current Gain (I _C = 1 mAde, V _{CE} = 5 Vde, f = 1 kc)	2N2060, 2N2060A 2N2223, 2N2223A 2N2480A	h _{fe}	50 40 50	120	-
Input Impedance (I _C = 1 mAdc, V _{CE} = 5 Vdc, f = 1 kc) (I _C = 1 mAdc, V _{CE} = 5 Vdc, f = 1 kc)	2N2060, 2N2060A, 2N2223, 2N2223A 2N2480A 2N2060, 2N2060A 2N2480A	h _{ib} h _{ib} hie hie		35 4000 5000	ohms
Output Admittance ($_{C}$ = 1 mAdc, $_{CE}$ = 5 Vdc, $_{CE}$ = 1 kc) ($_{C}$ = 1 mAdc, $_{CE}$ = 5 Vdc, $_{CE}$ = 1 kc)	2N2223, 2N2223A 2N2060, 2N2060A, 2N2480A	h _{ob} h _{oe}	4. 0	0. 5 16	μmhos
Voltage Feedback Ratio, Common Base ($I_C = 1$ mAdc, $V_{CE} = 5$ Vdc, $f = 1$ kc)	2N2223, 2N2223A	h _{rb}		3	X10 ⁻⁴
Noise Figure ($I_C = 0.3 \text{ mAdc}$, $V_{CE} = 10 \text{ Vdc}$, $f = 1 \text{ kc}$, $R_G = 5102$, $BW = 1 \text{ cps}$) ($I_C = 0.3 \text{ mAdc}$, $V_{CE} = 10 \text{ Vdc}$, $f = 1 \text{ kc}$, $R_G = 5102$, $BW = 200 \text{ cps}$) ($I_C = 0.3 \text{ mAdc}$, $V_{CE} = 10 \text{ Vdc}$, $f = 1 \text{ kc}$, $R_G = 1 \text{ k2}$, $BW = 15.7 \text{ kc}$)	2N2480, 2N2480A 2N2060, 2N2060A 2N2060, 2N2060A	NF	-	8 8 8	db
Base Voltage Differential Change ($T_C = 100 \mu Adc$, $V_{CE} = 5 Vdc$, $T_A = -55 to +25 ^{\circ}C$) ($T_C = 100 \mu Adc$, $T_C = 5 Vdc$, $T_A = 25 to 125 ^{\circ}C$)	2N2060A 2N2060 2N2223, 2N2223A 2N2480, 2N2480A 2N2060 2N2060 2N2060A 2N2223, 2N2223A 2N22480, 2N2480A	∆(V _{BE1} -V _{BE2})	11111111	0. 4 0. 8 2. 0 1. 2 1. 0 0. 5 2. 5 1. 5	mVdc

^{*} Pulse Test: Pulse Width ≦ 300 µsec, Duty Cycle ≦ 2% ** The lowest h_{FE} reading is taken as h_{FE1} for this ratio

[†] Amplifier: 3 db points at 25 cps and 10 kc with a roll-off of 6 db per octave

2N3409 thru 2N3411

 $m V_{CEO} = 30~V$ $\rm I_{C} = 500~mA$

NPN silicon annular Star dual-transistors for differential amplifiers and other applications requiring a matched pair with a high degree of parameter uniformity.

CASE 32 (TO-5)

PIN CONNECTIONS BOTTOM VIEW

ABSOLUTE MAXIMUM RATINGS

Characteristic	Symbol	Ra	Unit		
Collector-Base Voltage	v _{CBO}	6	60		
Collector-Collector Voltage	v _{cco}	10	0	Vdc	
Collector-Emitter Voltage	v _{CEO}	30		Vdc	
Emitter-Base Voltage	v _{EBO}	5		Vdc	
D.C. Collector Current (Limited by P _D)	I _C	50	mAdc		
Junction Temperature	${f T_J}$	+2	00	°C	
Storage Temperature	T _{stg}	-65 to +200		°C	
		ONE SIDE	BOTH SIDES		
Total Device Dissipation (25°C Ambient Temperature) Derate above 25°C	PD	500 2.9	600 3.4	mW mW/ ^O C	

ELECTRICAL CHARACTERISTICS (each side)

(at 25°C ambient temperature unless otherwise noted)

Characteristic	Symbol	Min	Max	Unit
Collector-Base Breakdown Voltage (I _C = 10 µAdc)	BV _{CBO}	60	_	Vdc
Collector-Emitter Breakdown Voltage * (I _C = 10 mAdc)	BV _{CEO} *	30	_	Vdc
Emitter-Base Breakdown Voltage (I _E *= 10 µAdc)	BV _{EBO}	5	_	Vdc

2N3409-2N3411 (continued)

ELECTRICAL CHARACTERISTICS (each side) (continued)

Characteristic		Symbol	Min	Max	Unit
Collector Cutoff Current (V _{CB} = 50 Vdc) (V _{CB} = 50 Vdc, T _A = 150 ^O C)		I _{CBO}	=	.010 10	μAdc
Emitter Cutoff Current (V _{EB} = 3 Vdc)		I _{EBO}	_	10	nAdc
Collector to Collector Current (V _{CC} = 100 Vdc)		^I cco	_	100	nAdc
Collector-Emitter Saturation Voltage (I _C = 10 mAdc, I _B = 1 mAdc)		V _{CE(sat)}	_	0.15	Vdc
Base-Emitter Saturation Voltage (I _C = 10 mAdc, I _B = 1 mAdc)		V _{BE(sat)}	_	0.85	Vdc
DC Forward Current Transfer Ratio ($I_C = 10 \mu Adc$, $V_{CE} = 10 Vdc$) ($I_C = 100 \mu Adc$, $V_{CE} = 10 Vdc$) ($I_C = 1 mAdc$, $V_{CE} = 10 Vdc$) ($I_C = 1 mAdc$, $V_{CE} = 10 Vdc$)	2N3410, 2N3411 All Types All Types All Types	h _{FE}	30 40	100 120 160 200	_
DC Current Gain Ratio ** ($I_C = 100 \ \mu Adc, V_{CE} = 10 \ Vdc$)	2N3409 2N3410, 2N3411	h _{FE1} /h _{FE2} **	0.8	1.0	_
$(I_C = 1 \text{ mAdc}, V_{CE} = 10 \text{ Vdc})$ Base Voltage Differential $(I_C = 100 \mu \text{Adc}, V_{CE} = 10 \text{ Vdc})$	2N3411 2N3409, 2N3410 2N3411	V _{BE1} -V _{BE2}	0.9	1.0 10 5	mVdc
$(I_C = 1 \text{ mAdc}, V_{CE} = 10 \text{ Vdc})$	2N3411		_	5	
Base Voltage Differential Change ($I_C = 100 \mu Adc$, $V_{CE} = 10 Vdc$, $T_A = -55 to +25^{O}C$) ($I_C = 100 \mu Adc$, $V_{CE} = 10 Vdc$, $T_A = -55 to +25^{O}C$)	2N3409 2N3410, 2N3411 2N3409	[∆] (V _{BE1} -V _{BE2})	111	1.6 0.8 2.0	mVdc
25 to 125°C)	2N3410, 2N3411		_	1.0	
Collector Output Capacitance (V _{CB} = 10 Vdc, f = 1 mc)		C _{ob}	_	8	pf
Collector Input Capacitance (V _{EB} = 0.5 Vdc, f = 1 mc)		C _{ib}	_	20	pf
Small-Signal Forward Current Transfer Ratio ($I_C = 20$ mAdc, $V_{CE} = 20$ Vdc, $f = 100$ mc)		h _{fe}	2.5	_	
Noise Figure (I _C = 100 μ A, V _{CE} = 5 V, f = 1 kc, BW = 1	cps, R _g = 1 KΩ)	NF	_	4	đb

^{*}Pulse Test: Pulse Width \leq 300 μ sec, Duty Cycle \leq 2%

^{**}The lowest $h_{\mbox{\scriptsize FE}}$ reading is taken as $h_{\mbox{\scriptsize FE1}}$ for this ratio

2N3480,2N3481,2N3483,2N3484

 $V_{BB} = 35 \text{ V}$ $I_E = 50 \text{ mA RMS}$

Silicon annular unijunction transistors for SCR triggering, oscillators, timing circuits, pulse generators, bistable circuits and sensing circuits.

CASE 34 (TO-5)

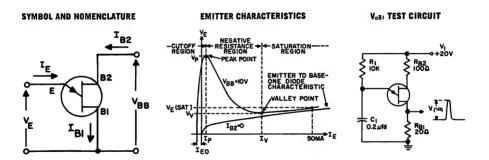
MAXIMUM RATINGS (TA = 25°C)

Characteristic	Rating	Unit
RMS Power Dissipation*	400	mW
RMS Emitter Current	50	mA
Peak Emitter Current	2	Amps
Emitter Reverse Voltage	30	Volts
Interbase Voltage	35	Volts
Operating Junction Temp. Range	-65 to 125	³c
Storage Temperature Range	-65 to 150	³c

^{*}Derate 4 mW/°C ambient temperature increase

ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted)

Device		2N3480		2N3481			
Parameter	Minimum	Typical	Maximum	Minimum	Typical	Maximum	Units
η	. 56	-	. 75	. 70	-	. 85	
R _{BBO}	4.7	-	9. 1	4. 7	-	9. 1	· КΩ
VE(SAT)	-	-	5. 0	-	-	5. 0	Volts
I _{B2} (MOD)	-	4	-	-	4	20	mA
I _{EO}	-	-	12	-	-	12	μΑ
I _p	-	-	20	-	-	20	μΑ
I _v	4	-	-	.4	-	-	mA
v _{oB1}	3	-	-	3	-	-	Volts
t _{oB1}	-	0. 3	-	-	0.3	-	μsec


2N3480, 2N3481, 2N3483, 2N3484 (continued)

ELECTRICAL CHARACTERISTICS (continued)

Device		2N3483			2N3	484	
Parameter	Minimum	Typical	Maximum	Minimum	Typical	Maximum	Units
η	. 60	-	. 72	. 70	-	. 85	
R _{BBO}	4. 7	-	9. 1	6. 2	-	9. 1	KΩ
V _{E(SAT)}	-	-	5. 0	-	-	5. 0	Volts
I _{B2} (MOD)	-	-	15	-	-	15	mA
IEO	-	-	1.0	-	-	0. 2	μΑ
I _p	-	-	5. 0	-	-	5. 0	μΑ
I _v	4	-	-	4	-	-	mA
v_{oB1}	4	-	-	6	-	-	Volts
t _{oB1}		0. 3	-		0.3	-	μsec

Definitions and Conditions

•	
Symbol	
η (Eta)	Intrinsic Standoff Ratio ($V_{BB} = 10V$, $V_{D} = \eta V_{BB} + V_{f} [E-B_{1}]$)
R _{BBO}	Interbase Resistance (V _{BB} = 3V, I _E = 0)
V _{E(SAT)}	Emitter Saturation Voltage (V _{BB} = 10V, I _E = 50ma)
I _{B2(MOD)}	Modulated Interbase Current (V _{BB} = 10V, I _E = 50ma)
I _{EO} .	Emitter Reverse Current ($V_{B2E} = 30V, I_{B1} = 0$)
	Peak Point Emitter Current (VBB = 25V)
I _p I _v	Valley Point Current ($V_{BB} = 20V, R_{B2} = 100\Omega$)
V _{oB1}	Base 1 Peak Pulse Voltage (See Fig. 3)
t _{oB1}	Base 1 Peak Rulse Voltage Rise Time (10%-90% points)

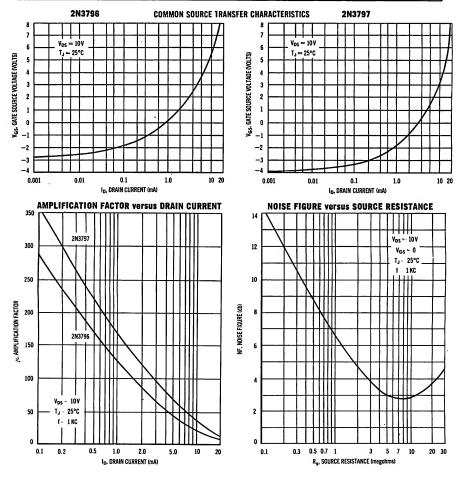
2N3796 2N3797

N-channel insulated gate silicon field effect transistors for low power applications in the audio frequency range.

ABSOLUTE MAXIMUM RATINGS. (At 25° ambient temperature unless otherwise noted)

Characteristic	Symbol	Rating	Unit
Drain-Source Voltage 2N3796 2N3797	v _{DS}	25 20	Vdc
Gate-Source Voltage	v _{GS}	±10	Vdc
Drain Current	I _D	20	mAdc
Power Dissipation at T _A = 25°C Derating Factor above 25°C	P _D	200 1.14	mW mW/°C
Operating Junction Temperature	$^{\mathrm{T}}\mathrm{_{J}}$	+200 .	°C
Storage Temperature	T _{stg}	-65 to +200	•c

ELECTRICAL CHARACTERISTICS (At 25° ambient temperature unless otherwise noted)


Characteristic		Symbol	Min	Typical	Max	Unit
('GS ', 'D - '	2N3796 2N3797	BV _{DSX}	25 20	30 25	-	Vdc
I (DS = 10 V, VGS = 0)	2N3796 2N3797	I _{DSS}	0. 5 2	2 4	3 6	m Adc
l 'D 0.3 μπ, 'DS - 20 1/	2N3796 2N3797	V _{GS(off)}	-	-3 -5	-4 -7	Vdc
"On" Drain Current (V _{DS} = 10 V, V _{GS} = +3.5V)	2N3796 2N3797	I _D (on)	7 9	9 14	14 18	mAdc
Drain-Gate Reverse Current $(V_{DG} = 10 \text{ V}, I_S = 0)$		_T DGO	-	0.1	1.0	pAdc
Gate-Reverse Current (V _{GS} = -10 V, V _{DS} = 0) (V _{GS} = -10 V, V _{DS} = 0, T _A = 150°C)		I _{GSS}	-	0.1 50	1.0 200	pAdc
Small-Signal, Common-Source Forward Transfer Admittance $(V_{DS} = 10 \text{ V}, V_{GS} = 0, \text{ f} = 1 \text{ kc})$ $(V_{DS} = 10 \text{ V}, V_{GS} = 0, \text{ f} = 1.0 \text{ mc})$	2N3796 2N3797 2N3796 2N3797	^y fs	900 1500 900 1500	1300 2100	1800 3000 - -	μmhos

----- Motorola Special and Multiple Transistors -----

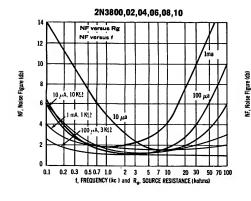
2N3796, 2N3797 (continued)

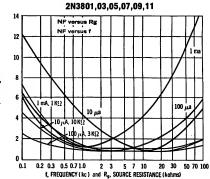
ELECTRICAL CHARACTERISTICS (continued)

Characteristic		Symbol	Min	Typical	Max	Unit
Small-Signal, Common-Source, Output Admittance (V _{DS} = 10 V, V _{GS} - 0, f = 1 kc)	2N3796 2N3797	· y _{os}	-	12 30	25 60	μmhos
Small-Signal, Common-Source, Input Capacitance $(V_{DS} = 10 \text{ V}, V_{GS} = 0, f = 1 \text{ kc})$	2N3796 2N3797	C _{iss}	-	4 6	7 8	pf
Small-Signal, Common-Source, Reverse Transfer Capacitance ($V_{DS} = 10 \text{ V}, V_{GS} = 0, \text{ f} = 1 \text{ kc}$)		C _{rss}	-	0.4	0.8	pf
Noise Figure $(V_{DS} = 10 \text{ V}, V_{GS} = 0, f = 1 \text{ kc},$ $R_g = 3 \text{ megohms})$		NF	-	4.0	-	db

2N3800 thru 2N3811

 $V_{CEO} = 60 \text{ V}$ $I_C = 50 \text{ mA}$


CASE 35 (TO-18)
2N3800 thru 2N3805 2N3811


PNP silicon annular dual-transistors for low-level, low-noise differential amplifier applications.

MAXIMUM RATINGS (at 25°C ambient temperature unless otherwise noted)

Characteristic	Symbol	R	Rating			
Collector-Base Voltage	v _{CBO}		60			
Collector-Emitter Voltage	v _{CEO}	60		Vdc		
Emitter-Base Voltage	V _{EBO}	5		5		Vdc
DC Collector Current	^I c	50		mAdc		
Junction Temperature	T _J	+200		°c		
Storage Temperature Range	T _{stg}	-65 t	to +200	,c		
		One Side	Both Sides			
Total Device Dissipation @ T _A = 25°C TO-5 Case Derate above 25°C	P _D	500 2. 9	600 3. 4	mW/.C		
TO-18 Case Derate above 25°C		250 1.5	360 2.06	mW/`C		

NOISE FIGURE VERSUS FREQUENCY AND SOURCE RESISTANCE

—— Motorola Special and Multiple Transistors ——

2N3800 thru 2N3811 (continued)

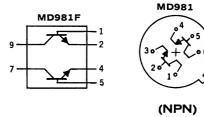
ELECTRICAL CHARACTERISTICS (at 25°C ambient temperature unless otherwise noted)

Characteristic		Symbol	Minimum	Typical	Maximum	Unit
Collector-Base Breakdown Voltage ($I_C = 10 \mu Adc, I_E = 0$)		вусво	60	_	-	Vdc
Collector-Emitter Breakdown Voltage (I _C = 10 mAdc, I _B = 0)		BVCEO	60	90	-	Vdc
Emitter-Base Breakdown Voltage		BVEBO	5	_		Vdc
(I _E = 10 µAdc, I _C = 0) Collector Cutoff Current (V _{CD} = 50 Vdc, I _D = 0)		I _{CBO}	-	_	010	μAdc
(VCB = 50 Vdc, IE = 0) (VCB = 50 Vdc, IE = 0, TA = 150°C) Emitter Cutoff Current		I _{EBO}			10	nAdc
(V _{OB} = 4 Vdc, I _C = 0) Collector-Emitter Saturation Voltage*		V _{CE(sat)} *		<u> </u>	20	Vac
$(I_C = 100 \mu Adc, I_B = 10 \mu Adc)$ $(I_C = 1 \text{ mAdc}, I_B = 100 \mu Adc)$				<u>:</u>	0. 2 0. 25	
Base-Emitter Saturation Voltage* (I _C = 100 μAdc, I _B = 10 μAdc) (I _C = 1 mAdc, I _B = 100 μAdc)		V _{BE(sat)} *	:	-	0. 7 0. 8	Vdc
DC Forward Current Transfer Ratio* (I _C = 1 μAdc, V _{CE} = 5 Vdc)	2N3801, 03, 05, 07, 09, 11	h _{FE} *	75	-	-	-
(I _C = 10 μAdc, V _{CE} = 5 Vdc)	2N3800, 02, 04, 06, 08, 10		100	-	-	
(I _C = 100 μAdc, V _{CE} = 5 Vdc)	2N3801, 03, 05, 07, 09, 11 2N3800, 02, 04, 06, 08, 10	l -	225 150	-	450	
	2N3801, 03, 05, 07, 09, 11		300 75	-	900	
$(I_C = 100 \mu\text{Adc}, V_{CE} = 5 \text{Vdc}, T_A = -55^{\circ}\text{C})$	2N3800, 02, 04, 06, 08, 10 2N3801, 03, 05, 07, 09, 11	1	75 150	-	-	
(I _C = 500 μAdc, V _{CE} = 5 Vdc)	2N3800, 02, 04, 06, 08, 10	I	150	-	450	
-	2N3801, 03, 05, 07, 09, 11	I	300 150	-	900 450	
$(I_C = 1 \text{ mAdc}, V_{CE} = 5 \text{ Vdc})$	2N3800, 02, 04, 06, 08, 10 2N3801, 03, 05, 07, 09, 11		300	-	900	
(I _C = 10 mAdc, V _{CE} = 5 Vdc)	2N3800, 02, 04, 06, 08, 10 2N3801, 03, 05, 07, 09, 11		125 250	<u>:</u>	<u>:</u>	
Base Emitter "ON" Voltage (I _C = 100 μAdc, V _{CE} = 5 V)		V _{BE(ON)}	-		0. 7	Vde
Output Capacitance (V _{CB} = 5 Vdc, I _E = 0, f = 100 kc)		C _{ob}			4	pf
Input Capacitance (V _{OB} = 0.5 Vdc, I _C = 0, f = 100 kc)		C _{ib}	-		8	pf
Small Signal Current Gain (I _C = 500 μA, V _{CE} 5 V, f = 30 mc)		h _{fe}	1, 0	-		-
(C = 1 mA, VCE = 5 V, 1 = 100 mc)			1. 0	-	5	
$(I_C = 1 \text{ mA}, V_C = 5 \text{ V}, f = 100 \text{ mc})$ $(I_C = 1 \text{ mA}, V_{CE} = 10 \text{ V}, f = 1 \text{ kc})$	2N3800, 02, 04, 06, 08, 10 2N3801, 03, 05, 07, 09, 11		150 300	<u>:</u>	600 900	_
Voltage Feedback Ratio (I _C = 1.0 mA, V _{CE} 10 V, f = 1 kc)		h _{re}			25	X10
Input Impedance $(I_C = 1.0 \text{ mA}, V_{CE} = 10 \text{ V}, f = 1 \text{ kc})$	2N3800, 02, 04, 06, 08, 10 2N3801, 03, 05, 07, 09, 11	h _{ie}	3 10	-	15 40	k ohn
Output Admittance (I _C = 1.0 mA, v _{CE} = 10 V, f = 1 kc)		h _{oe}	5	-	60	μmh
Noise Figure (I _C = 100 μA, V _{CE} = 10 V, R _G = 3 K)		NF		_		db
f = 100 cps	2N3800, 02, 04, 06, 08, 10	I	-	4	7	
· ·	2N3801, 03, 05, 07, 09, 11	l		2.5	4 3	
f = 1 kc	2N3800, 02, 04, 06, 08, 10 2N3801, 03, 05, 07, 09, 11	I	-	1. 5 0. 8	1, 5	
f = 10 kc	2N3800, 02, 04, 06, 08, 10	Į.	-	1.0	2. 5	
Noise Bandwidth 10 cps to 15.7 kc	2N3801, 03, 05, 07, 09, 11 2N3800, 02, 04, 08, 08, 10	l	-	0. 8 2. 5	1, 5 3, 5	
Noise Bandwidth 10 cps to 15, 7 kc	2N3801, 03, 05, 07, 09, 11	L		1.5	2, 5	
ATCHING CHARACTERISTICS		l b /b ##				
OC Current Gain Ratio** (I _C = 100 μAdc, V _{CE} = 5 Vdc)	2N3802, 03, 08, 09 2N3804, 05, 10, 11	h _{FE1} /h _{fe2} **	0. 8 0. 9	-	1.0 1.0	
Base Voltage Differential		VBE1-VBE2				mVd
$(I_C = 10 \mu A, \text{ to } 10 \text{ mA}, V_{CE} = 5 \text{ Vdc})$	2N3802, 03, 08, 09	1	-	-	8 5	
$(I_C = 100 \mu\text{Adc}, V_{CE} = 5 \text{Vdc})$	2N3804, 05, 10, 11 2N3802, 03, 08, 09 2N3804, 05, 10, 11		-	-	5	
Base Voltage Differential Change (I _C = 100 μAdc, V _{CE} = 5 Vdc, T _A = -55 to +25°	C) 2N3802, 03, 08, 09	Δ(V _{BE1} -V _{BE2})		_	1.6	mVd
	2N3804, 05, 10, 11		-	-	0.8	
$(I_C = 100 \mu\text{Adc}, V_{CE} = 5 \text{Vdc}, T_A = 25 \text{to} 125^{\circ}\text{C}$	2) 2N3802, 03, 08, 09	1	-	-	2.0	

[•] Pulse Test $\le 300 \mu sec$, duty cycle $\le 2\%$ $V_{\mbox{OB}}$ - Base-Emitter Reverse Bias •• The lowest $h_{\mbox{FE}}$ reading is taken as $h_{\mbox{FE}1}$ for this ratio

MD 981

 $\begin{array}{l} V_{\text{CEO}} = 30 \text{ V} \\ I_{\text{C}} = 200 \text{ mA} \end{array}$


NPN silicon annular Star dual-transistors for highspeed switching and DC to UHF amplifier applications.

MD981

MD981F

CASE 32 (TO-5)

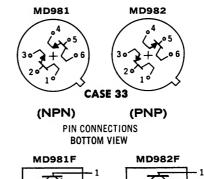
CASE 33

Characteristic	Symbol	Ra	Unit		
Collector-Base Voltage	v _{сво}	60		Vdc	
Collector-Emitter Voltage MD981	v _{CEO}	30		Vdc	
Emitter-Base Voltage	V _{EBO}		5	Vdc .	
Collector Current (Limited by P _D)	^I C	200		mAdc	
Operating Junction Temperature	$^{\mathrm{T}}\mathrm{_{J}}$	+200		°C	
Storage Temperature	T _{stg}	-65 to +200		°C	
		One Side	Both Sides		
Flat Package Total Device Dissipation (25°C Ambient Temperature) Derate above 25°C	P _D	250 1, 5	350 2	mW mW/°C	
TO-5 Package Total Device Dissipation (25°C Ambient Temperature) Derate above 25°C	P _D	500 2. 9	600 3. 4	mW mW√°C	

MD981 (continued)

ELECTRICAL CHARACTERISTICS (each side)

(At 25° ambient temperature unless otherwise noted)


Characteristic	Symbol	Minimum	Maximum	Unit
Collector-Base Breakdown Voltage ($I_C = 10 \mu Adc$, $I_E = 0$)	вусво	60		Vdc
Collector-Emitter Breakdown Voltage* (IC = 10 mAdc, IB = 0)	BV _{CEO} *	30		Vdc
Emitter-Base Breakdown Voltage ($I_E = 10 \mu Adc, I_C = 0$)	BV _{EBO}	5		Vdc
Collector Cutoff Current (V _{CB} = 50 Vdc, I _E = 0) (V _{CB} = 50 Vdc, I _E = 0, T _A = 150 °C)	^I сво		.010 10	μAde
Collector-Emitter Saturation Voltage (I _C = 150 mAdc, I _B = 15 mAdc)	V _{CE} (sat)		0.4	Vdc
Base-Emitter Saturation Voltage (I _C = 150 mAdc, I _B = 15 mAdc)	V _{BE} (sat)		1.3	Vdc
DC Forward Current Transfer Ratio (I _C = 0.1 mAdc, V _{CE} = 10 Vdc)	h _{FE}	20		
(I _C = 1 mAdc, V _{CE} = 10 Vdc) (I _C = 10 mAdc, V _{CE} = 10 Vdc) (I _C = 150 mAdc, V _{CE} = 10 Vdc)*	•	25 35 40*		
Output Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 100 kc)	c ^{op}		8	pí
Small-Signal Forward Current Transfer Ratio (I _C = 20 mAdc, V _{CE} = 20 Vdc, f = 100 mc) TO-5	h _{fe}	2. 5		
Package (I _C = 20 mAdc, V _{CE} = 10 Vdc, f = 100 mc) Flat Package		2. 0		
Current-Gain-Bandwidth Product (V _{CE} = 20 Vdc, I _C = 20 mAdc) TO-5 Package	f _T	250		me
(V _{CE} = 10 Vdc, I _C = 20 mAdc) Flat Package		200		

MD982

MD982 MD982F CASE 32 CASE 33 (TO-5)

 $V_{CEO} = 50 \text{ V}$ $I_C = 200 \text{ mA}$

PNP silicon annular Star dual-transistors for highspeed switching and DC to UHF amplifier applications.

Characteristic	Symbol	Rat	ing	Unit
Collector-Base Voltage	v _{сво}	60		Vdc
Collector-Emitter Voltage	v _{CEO}		Vďc	
MD982		50)	
Emitter-Base Voltage	V _{EBO}	5	5	
Collector Current (Limited by P _D)	I _C	200		mAdc
Operating Junction Temperature	$^{\mathrm{T}}\mathrm{_{J}}$	200		°C
Storage Temperature	T _{stg}	-65 to	+200	°C
		ONE SIDE	BOTH SIDES	
Flat Package Total Device Dissipation (25°C Ambient Temperature) Derate above 25°C	P _D	250 1.5	350 2	mW mW/ ^O C
TO-5 Package Total Device Dissipation (25 ^o C Ambient Temperature) Derate above 25 ^o C	P _D	500 2.9	600 3.4	mW mW/ ^o C

MD982 (continued)

ELECTRICAL CHARACTERISTICS (each side) (at 25°C ambient temperature unless otherwise noted)

Characteristic	Symbol	Min	Max	Unit
Collector-Base Breakdown Voltage ($I_C = -10 \mu \text{Adc}, I_E = 0$)	BV _{CBO}	60	1	Vdc
Collector-Emitter Breakdown Voltage* (I _C = -10 mAdc, I _B = 0)	BV _{CEO} *	50	1	Vdc
Emitter-Base Breakdown Voltage ($I_E = -10 \mu \text{Adc}, I_C = 0$)	BV _{EBO}	5	-	Vdc
Collector Cutoff Current (V _{CB} = -50 Vdc, I _E = 0) (V _{CB} = -50 Vdc, I _E = 0, T _A = 150 ^o C)	I _{CBO}	=	.020 20	μ Adc
Collector-Emitter Saturation Voltage ($I_C = -150 \text{ mAdc}$, $I_B = -15 \text{ mAdc}$)	V _{CE} (sat)	_	0.5	Vdc
Base-Emitter Saturation Voltage (I _C =-150 mAdc, I _B = -15 mAdc)	V _{BE} (sat)	_	1.4	Vdc
DC Forward Current Transfer Ratio (I_C =-0.1 mAdc, V_{CE} = -10 Vdc) (I_C = -1 mAdc, V_{CE} = -10 Vdc) (I_C = -10 mAdc, V_{CE} = -10 Vdc) (I_C = -150 mAdc, V_{CE} = -10 Vdc)*	h _{FE}	20 25 35 40*		_
Output Capacitance (V _{CB} = -10 Vdc, I _E = 0, f = 100 kc)	C _{ob}	_	8	pf
Current-Gain-Bandwidth Product $(V_{CE} = -20 \text{ Vdc}, I_{C} = -20 \text{ mAdc}) \text{ TO-5 Package}$ $(V_{CE} = -10 \text{ Vdc}, I_{C} = -20 \text{ mAdc}) \text{ Flat Package}$	f _T	200 200	_	mc

^{*}Pulse Test: Pulse Width \leq 300 μ sec. Duty Cycle \leq 2%

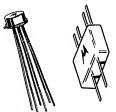
MD984

 $V_{CEO}=20~V$ $I_C=200~mA$

CASE 32 (TO-5) PNP silicon annular dual-transistors for high-speed switching and amplifier applications.

PIN CONNECTIONS (BOTTOM VIEW)

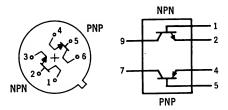
Characteristic	Symbol	Ra	Unit	
Collector-Base Voltage	v _{CBO}	40		Vdc
Collector-Emitter Voltage	v _{CEO}		Vdc	
Emitter-Base Voltage	v _{EBO}		Vdc	
Collector Current	^I C	200		mAdc
Junction Temperature	$^{\mathrm{T}}\mathrm{_{J}}$	+200		°C
Storage Temperature	T _{stg}	-65 to +200		,c
		One Side	Both Sides	
Total Device Dissipation (25°C Case Temperature) Derate above 25°C	P _D	1. 6 9. 1	3. 0 17. 2	W mW/°C
Total Device Dissipation (25°C Ambient Temperature) Derate above 25°C	P _D	0. 5 2. 9	0. 6 3. 4	w mW/°C


MD984 (continued)

ELECTRICAL CHARACTERISTICS (each side) (at 25°C ambient temperature unless otherwise noted)

Characteristic	Symbol	Minimum	Maximum	Unit
Collector-Base Breakdown Voltage ($I_C = -10 \mu Adc$, $I_E = 0$)	вv _{сво}	40		Vdc
Collector-Emitter Breakdown Voltage* (I _C = -10 mAdc, I _B = 0)	BV _{CEO} *	20		Vdc
Emitter-Base Breakdown Voltage ($I_E = -10 \mu Adc$, $I_C = 0$)	BV _{EBO}	5		Vdc
Collector Cutoff Current (V _{CB} = -20 Vdc, I _E = 0) (V _{CB} = -20 Vdc, I _E = 0, T _A = 150°C)	I _{CBO}		. 025 30	μAdc
Collector-Emitter Saturation Voltage (I _C = -10 mAdc, I _B = -1 mAdc) (I _C = -50 mAdc, I _B = -5 mAdc)	V _{CE(sat)}		0. 3 0. 5	Vdc
Base-Emitter Saturation Voltage (I _C = -10 mAdc, I _B = -1 mAdc)	V _{BE(sat)}		0. 9	Vdc
DC Forward Current Transfer Ratio (I _C = -10 mAdc, V _{CE} = -10 Vdc)	h _{FE}	25		
Output Capacitance (V _{CB} = -10 Vdc, I _E = 0, f = 100 kc)	C _{ob}		4	pf
Small-Signal Forward Current Transfer Ratio (I _C = -20 mAdc, V _{CE} = -20 Vdc, f = 100 mc)	h _{fe}	2. 5		;
Current-Gain-Bandwidth Product (I _C = -20 mAdc, V _{CE} = -20 Vdc)	$^{\mathrm{f}} au$	250		mc

^{*} Pulse Test: Pulse Width ≤ 300 µsec, Duty Cycle ≤ 2%


MD985

NPN-PNP silicon annular Star complementary pair dual-transistors for high-speed switching circuits and DC to UHF amplifier applications.

CASE 32 (TO-5) MD985

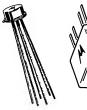
CASE 33 MD985F

 $V_{CEO} = 30 V$ $I_C = 500 \text{ mA}$

PIN CONNECTIONS BOTTOM VIEW

Characteristic	Symbol	Ra	ting	Unit	
Collector-Base Voltage	v _{CBO}		60	Vdc	
Collector-Emitter Voltage	v _{CEO}		30	Vdc	
Emitter-Base Voltage	V _{EBO}		5	Vdc	
Collector Current (Limited by PD)	IC	,	500	mAdc	
Operating Junction Temperature	$^{\mathrm{T}}\mathrm{_{J}}$	+2	200	°C	
Storage Temperature	T _{stg}	-65 t	o +200	°C	
		One Side	Both Sides		
Total Device Dissipation @ T _A = 25°C Flat Package Derating Factor TO-5 Package Derating Factor	P _D	250 1.5 500 2.9	350 2.0 600 3.4	mW mW/°C mW mW/°C	

MD985 (continued)

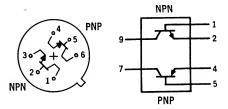

ELECTRICAL CHARACTERISTICS (at 25°C ambient temperature unless otherwise noted)

Characteristic	Symbol	Minimum	Maximum	Unit
Collector-Base Breakdown Voltage ($I_C = 10 \mu Adc$, $I_E = 0$)	BV _{CBO}	60	-	Vdc
Collector-Emitter Breakdown Voltage** (I _C = 10 mAdc, I _B = 0)	BV _{CEO} **	30	_	Vdc
Emitter-Base Breakdown Voltage ($I_E = 10 \mu Adc$, $I_C = 0$)	BV _{EBO}	5	•	Vdc
Collector Cutoff Current (V _{CB} = 50 Vdc, I _E = 0) (V _{CB} = 50 Vdc, I _E = 0, T _A = 150°C)	^I CBO	-	. 020 20	μAdc
Collector-Emitter Saturation Voltage** (I _C = 150 mAdc, I _B = 15 mAdc)	V _{CE(sat)} **	-	0. 5	Vdc
Base-Emitter Saturation Voltage** ($I_C = 150 \text{ mAdc}$, $I_B = 15 \text{ mAdc}$)	V _{BE(sat)} **	-	1. 4	Vdc
DC Forward Current Transfer Ratio ($I_C = 0.1 \text{ mAdc}$, $V_{CE} = 10 \text{ Vdc}$) ($I_C = 1 \text{ mAdc}$, $V_{CE} = 10 \text{ Vdc}$) ($I_C = 10 \text{ mAdc}$, $V_{CE} = 10 \text{ Vdc}$) ($I_C = 150 \text{ mAdc}$, $V_{CE} = 10 \text{ Vdc}$)**	h _{FE}	20 25 35 40**	-	•
Output Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 100 kc)	C _{ob}	-	- 8	pf
Current-Gain – Bandwidth Product (V_{CE} = 20 Vdc, I_{C} = 50 mAdc) TO-5 Package (V_{CE} = 10 Vdc, I_{C} = 20 mAdc) Flat Package	f _T	200 200	-	mc

^{**} Pulse Test: Pulse Width $\leq 300 \,\mu \text{sec.}$ Duty Cycle $\leq 2\%$

MD986

 $V_{CEO} = 15 \text{ V}$ $I_C = 200 \text{ mA}$



CASE 32 (TO-5) MD986

CASE 33 MD986F

NPN-PNP silicon annular Star complementary pair dual-transistors for high-speed switching circuits and DC to UHF amplifier applications.

PIN CONNECTIONS **BOTTOM VIEW**

Characteristic	Symbol	Rating		Unit
Collector-Base Voltage	v _{CBO}	4	0	Vdc
Collector-Emitter Voltage	v _{CEO}	1	5	Vdc
Emitter-Base Voltage	v _{EBO}			Vdc
Collector Current	I _C	200		mAdc
Operating Junction Temperature	$T_{\mathbf{J}}$	+200		၀
Storage Temperature	T _{stg}	-65 to	+ 200	°C
		ONE SIDE	BOTH SIDES	
Total Device Dissipation @ T _A = 25 ^o C Flat Package Derate above 25oC	PD	250 1.5	350 2. 0	mW mW/ ^o C
TO-5 Package Derate above 25 ⁰ C		500 2.9	600 3.4	mW mW/ ^o C

MD986 (continued)

ELECTRICAL CHARACTERISTICS (each side) (at 25°C ambient temperature unless otherwise noted)

Characteristics	Symbol	Min	Max	Unit
Collector-Base Breakdown Voltage ($I_C = 10 \mu Adc$, $I_E = 0$)	BVCBO	40	_	Vdc
Collector-Emitter Breakdown Voltage* (I _C = 10 mAdc, I _B = 0)	BV _{CEO} *	15	_	Vdc
Emitter-Base Breakdown Voltage (I_E = 10 μ Adc, I_C = 0)	BVEBO	5	_	Vdc
Collector Cutoff Current $(V_{CB} = 20 \text{ Vdc}, I_E = 0)$ $(V_{CB} = 20 \text{ Vdc}, I_E = 0, T_A = 150^{\circ}\text{C})$	I _{CBO}	_	.025 30	μAdc
Collector-Emitter Saturation Voltage (I _C = 10 mAdc, I _B = 1 mAdc) (I _C = 50 mAdc, I _B = 5 mAdc)	V _{CE(sat)}	_	0.3 0.5	Vdc
Base-Emitter Saturation Voltage ($I_C = 10$ mAdc, $I_B = 1$ mAdc)	V _{BE(sat)}	_	0.9	Vdc
DC Forward Current Transfer Ratio ($I_C = 10$ mAdc, $V_{CE} = 10$ Vdc)	h _{FE}	25	_	_
Output Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 100 kc)	Cob	_	4	pf
Current-Gain — Bandwidth Product $(V_{CE} = 20 \text{ Vdc}, I_{C} = 20 \text{ mAdc}) \text{ TO-5 Package}$ $(V_{CE} = 10 \text{ Vdc}, I_{C} = 20 \text{ mAdc}) \text{ Flat Package}$	f _T	200 200	<u>. </u>	mc

^{*}Pulse Test: Pulse Width $\leq 300~\mu \, \mathrm{sec}$, Duty Cycle $\leq 2\%$

MD**990**

CASE 32 (TO-5) PNP silicon annular dual-transistors for medium-speed switching applications.

PIN CONNECTIONS (BOTTOM VIEW)

Characteristic	Symbol	Rat	Rating	
Collector-Base Voltage	v _{СВО}	5	50	
Collector-Emitter Voltage	V _{CEO}	3	5	Vdc
Collector-Emitter Voltage $(R_{BE} \leq 10\Omega)$	V _{CER}	5	50	
Emitter-Base Voltage	V _{EBO}	5		Vdc
Collector Current	I _C	600		mAdc
Operating Junction Temperature	$^{\mathrm{T}}\mathrm{_{J}}$	+1'	+175	
Storage Temperature	T _{stg}	-65 to	-65 to +200	
•		One Side	Both Sides	
Total Device Dissipation (25°C Case Temperature) Derate above 25°C	P _D	1.6 10.7	3. 0 20. 0	W mW/°C
Total Device Dissipation (25°C Ambient Temperature Derate above 25°C	P _D	0. 5 3. 3	0. 6 4. 0	w mW/°C

MD990 (continued)

ELECTRICAL CHARACTERISTICS (each side)

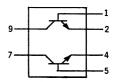
(at 25°C ambient temperature unless otherwise noted)

Characteristic	Symbol	Min	Max	Unit
Collector-Base Breakdown Voltage ($I_C = -100 \mu\text{Adc}, \ I_E = 0$)	вусво	50	_	Vdc
Collector-Emitter Breakdown Voltage* (I _C = -10 mAdc, I _B = 0)	BV _{CEO} *	35		· Vdc
Collector-Emitter Breakdown Voltage* $(I_C = -30 \text{ mAdc}, I_B = 0, R_{BE} \le 10\Omega)$	BV _{CER} *	50	_	Vdc
Emitter-Base Breakdown Voltage ($I_E = -100 \mu Adc, I_C = 0$)	BV _{EBO}	5		Vdc
Collector Cutoff Current ($V_{CB} = -30 \text{ Vdc}, I_E = 0$) ($V_{CB} = -30 \text{ Vdc}, I_E = 0, T_A = 150^{\circ}\text{C}$)	^I сво	_	1 100	μAdc
Collector-Emitter Saturation Voltage (I _C = -150 mAdc, I _B = -15 mAdc)	V _{CE(sat)}	_	1.5	Vdc
Base-Emitter Saturation Voltage (I _C = -150 mAdc, I _B = -15 mAdc)	V _{BE(sat)} ·	_	1.3	Vdc
DC Forward Current Transfer Ratio $^{\circ}$ ($I_C = -150 \text{ mAdc}, V_{CE} = -10 \text{ Vdc}$)	h _{FE} *	50	300	-
Output Capacitance (V _{CB} = -10 Vdc, I _E = 0, f = 100 kc)	c _{ob}		45	pf
Current-Gain-Bandwidth Product (V _{CE} = -10 Vdc, I _C = -50 mAdc, f = 20 mc)	f _T	60		mc

[•] Pulse Test: Pulse Width $\leq 300 \ \mu sec$, Duty Cycle $\leq 2\%$

MD1120 MD1121 MD1122

 $V_{CEO} = 30 \text{ V}$ $I_C = 500 \text{ mA}$


NPN silicon annular Star dual-transistors for differential amplifiers and other applications requiring a matched pair with a high degree of parameter uniformity.

(TO-5) MD1120 thru MD1122

CASE 33

MD1120F thru MD1122F

PIN CONNECTIONS BOTTOM VIEW

MAXIMUM RATINGS (each side)

Characteristic	Symbol	Rating		Unit		
Collector-Base Voltage	v _{сво}	60		Vdc		
Collector-Emitter Voltage	v _{CEO}	30		30		Vdc
Collector-Emitter Voltage	v _{cer}	40		Vdc		
Emitter-Base Voltage	V _{EBO}	5		5 V		Vdc
D.C. Collector Current	I _C	500		mAdc		
Junction Temperature	$T_{\mathbf{J}}$	+200		°C		
Storage Temperature	T _{stg}	-65 to + 200		°C		
		ONE SIDE	BOTH SIDES			
Total Device Dissipation (25 ^o C Case Temperature) (Derate above 25 ^o C)	P _D	1.6 9.1	3.0 17.2	W mW/ ^o C		
Total Device Dissipation (25 ^o C Ambient Temperature) (Derate above 25 ^o C)	$P_{\mathbf{D}}$	0.5 2.9	0.6 3.4	w mW/ ^o C		

- Motorola Special and Multiple Transistors —

MD1120-MD1122 (continued)

ELECTRICAL CHARACTERISTICS (each side)

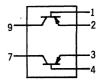
(at 25°C ambient temperature unless otherwise noted)

Characteristics	Symbol	Min	Max	Unit
Collector-Base Breakdown Voltage (I _C = 10 μ Adc)	BV _{CBO}	60	_	Vdc
Collector-Emitter Breakdown Voltage* (I _C = 10 mAdc)	BV _{CEO} *	30	_	Vdc
Emitter-Base Breakdown Voltage (I _E = 10 μ Adc)	BVEBO	5		Vdc
Collector Cutoff Current (VCB = 50 Vdc) (VCB = 50 Vdc, T _A = 150°C)	I _{CBO}	=	010 10	μAdc
Emitter Cutoff Current (VEB = 3 Vdc)	IEBO	_	10	nAde
Collector-Emitter Saturation Voltage (I _C = 10 mAdc, I _B = 1 mAdc)	VCE (sat)	_	0.1	Vde
Base-Emitter Saturation Voltage (I _C = 10 mAdc, I _B = 1 mAdc)	V _{BE} (sat)	_	0.85	Vdc
DC Forward Current Transfer Ratio $(I_C = 10 \ \mu Adc, \ V_C = 10 \ Vdc)$ MD1121, MD1122 (IC = 100 $\mu Adc, \ V_C = 10 \ Vdc)$ All Types (IC = 1 $\mu Adc, \ V_C = 10 \ Vdc)$ All Types (IC = 10 $\mu Adc, \ V_C = 10 \ Vdc)$ All Types	h _{FE}	20 30 40 50	100 120 160 200	=
DC Current Gain Ratio ** (I _C = 100 μAde, V _{CE} = 10 Vde) (I _C = 1 mAde, V _{CE} = 10 Vde) MD1121, MD1122 MD11221	h _{FE1} /h _{FE2***}	0.8 0.9 0.9	1.0 1.0 1.0	_
Base Voltage Differential (I_C = 100 μ Adc, V_{CE} = 10 Vdc) MD1120, MD1121 (I_C = 1 mAdc, V_{CE} = 10 Vdc) MD1122†	VBE1-VBE2	Ξ	10 5 5	mVdc
Base Voltage Differential Change ($I_C = 100 \mu Adc$, $V_{CE} = 10 Vdc$, $T_A = -55^{\circ}C$ to $+ 125^{\circ}C$) MD1121, MD1122	Δ (V _{BE1} -V _{BE2})	_	10	μ ν /°C
Collector Output Capacitance (V _{CB} = 10 Vdc, <i>t</i> = 100 kc)	Cop	_	8	pf
Small-Signal Forward Current Transfer Ratio ($I_C = 20$ mAdc, $V_{CE} = 20$ Vdc, $f = 100$ mc) TO-5 Package ($I_C = 20$ mAdc, $V_{CE} = 10$ Vdc, $f = 100$ mc) Flat Package	b _{fe}	2.5 2.0	=	_
Current-Gain-Bandwidth Product ($V_{CE} = 20 \text{ Vdc}, I_{C} = 20 \text{ mAdc}$) TO -5 Package ($V_{CE} = 10 \text{ Vdc}, I_{C} = 20 \text{ mAdc}$) Flat Package	t _T	250 200	=	me

^{*} Pulse Test: Pulse Width ≤ 300 μsec. Duty Cycle≤ 2%
** The lowest hpp reading is taken as hpp; for this ratio
† Applies to corresponding Flat Package device type also

MD 1123 мо1124 MD1125

 $V_{CEO} = 40 \text{ V}$ $I_C = 200 \text{ mA}$


PNP silicon annular dual-transistors for differential amplifiers and other applications requiring a matched pair with a high degree of parameter uniformity.

CASE 32 (TO-5)

MD1123 thru MD1125

MD1123F thru MD1125F

CASE 33

PIN CONNECTIONS (BOTTOM VIEW)

Characteristic	Symbol	Rating		Unit		
Collector-Base Voltage	v _{CBO}	60		60		Vdc
Collector-Emitter Voltage	v _{CEO}	40		Vđc		
Emitter-Base Voltage	V _{EBO}	5		Vdc		
D.C. Collector Current	I _C	200		mAdc		
Junction Temperature	$T_{\mathbf{J}}$	+200		°C		
Storage Temperature	T _{stg}	-65 to + 200		°C		
		ONE SIDE	BOTH SIDES			
Total Device Dissipation (25 ⁰ C Case Temperature) (Derate above 25 ⁰ C)	P _D	1.6 9.1	3.0 17.2	W mW/ ^o C		
Total Device Dissipation (25 ⁰ C Ambient Temperature) (Derate above 25 ⁰ C)	PD	0.5 2.9	0.6 3.4	w mw/ ^o C		

MD1123-MD1125 (continued)

ELECTRICAL CHARACTERISTICS (each side)

(At 25° ambient temperature unless otherwise noted)

Characteristics	Symbol	Min	Max	Vait
Collector-Base Breakdown Voltage ($I_C = -10 \mu Adc$)	BVCBO	60	_	Vdc
Collector-Emitter Breakdown Voltage* (IC = -10 mAdc)	BV _{CEO} *	40	_	Vdc
Emitter-Base Breakdown Voltage (I _E = -10 µAdc)	BVEBO	5	_	Vdc
Collector Cutoff Current (V _{CB} = -50 Vdc) (V _{CB} = -50 Vdc, T _A = 150°C)	ІСВО	=	.010 10	μ Adic
Emitter Cutoff Current (V _{EB} = -3 Vdc)	IEBO	_	10	nAde
Collector-Emitter Saturation Voltage (I _C = -10 mAdc, I _B = -1 mAdc)	V _{CE (sat)}	_	0.25	Vdc
Base-Emitter Saturation Voltage (I _C = -10 mAdc, I _B = -1 mAdc)	V _{BE (sat)}	_	0.9	Vdc
DC Forward Current Transfer Ratio $(I_{C} = -10 \ \mu Adc, \ V_{CE} = -10 \ Vdc)$ MD1124, MD1125† All Types $(I_{C} = -10 \ mAdc, \ V_{CE} = -10 \ Vdc)$ All Types All Types All Types	h _{FE}	20 30 40 50	100 120 160 200	_
DC Current Gain Ratio ** (I _C = -100 μAdc, V _{CE} = -10 Vdc) (I _C = -1 mAdc, V _{CE} = -10 Vdc) (I _C = -1 mAdc, V _{CE} = -10 Vdc) MD1123† MD1125† MD1125†	hFE1/hFE2**	0.8 0.9 0.9	1.0 1.0 1.0	_
Base Voltage Differential $(I_{\rm C} = -100 \mu {\rm Adc}, V_{\rm CE} = -10 {\rm Vdc})$ MD1123, MD1124 \dagger MD1125 \dagger MD1125 \dagger MD1125 \dagger MD1125 \dagger	v _{BE1} -v _{BE2}	Ξ	10 5 5	mVdc
Base Voltage Differential Change ($I_C = -100 \mu Adc, V_{CE} = -10 Vdc, T_A = -55^{\circ}C to + 125^{\circ}C)$ MD1124, MD1125 †	Δ (V _{BE1} -V _{BE2})	_	10	μV/°C
Collector Output Capacitance (VCB = -10 Vdc, f = 100 kc)	C _{ob}	_	4	pf
Small-Signal Forward Current Transfer Ratio (I_C = -20 mAdc, V_{CE} = -20 Vdc, f = 100 mc) TO-5 (I_C = -20 mAdc, V_{CE} = -10 Vdc, f = 100mc) Flat	h _{fe}	2.5 2.0	_	_
Current-Gain-Bandwidth Product $(V_{CE} = -20 \text{ Vdc}, I_{C} = -20 \text{ mAdc}) \text{ TO-5}$ $(V_{CE} = -10 \text{ Vdc}, I_{C} = -20 \text{ mAdc}) \text{ Flat}$	f _T	250 200	=	mc

^{*}Pulse Test: Pulse Width $\leq 300~\mu sec$, Duty Cycle $\leq 2\%$ **The lowest h_{FE} reading is taken as h_{FE1} for this ratio †Applies to corresponding Flat Package device type also

мо1126 мо1127

 $V_{CEO} = 15 \text{ V}$ $I_C = 200 \text{ mA}$

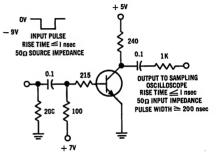
NPN silicon annular dual-transistors for high-speed switching applications.

PIN CONNECTIONS (BOTTOM VIEW)

Characteristics	Symbol	Ra	Unit	
Collector-Base Voltage	v _{CBO}	4	Vdc	
Collector-Emitter Voltage	y _{CEO}	1	Vdc	
Emitter-Base Voltage	v _{EBO}		Vdc	
Collector Current	^I C	20	mAdc	
Operating Junction Temperature	$T_{\mathbf{J}}$	+200		°C
Storage Temperature	T _{stg}	-65 to +200		°C
		ONE SIDE	BOTH SIDES	
Total Device Dissipation (25 ^o C Case Temperature) (Derate above 25 ^o C)	P _D	0.75 4.3	1.5 8.6	w mw/°c
Total Device Dissipation (25 ^o C Ambient Temperature) (Derate above 25 ^o C)	PD	0.30 1.7	0.40 2.3	w mw/°c

MD1126, MD1127 (continued)

ELECTRICAL CHARACTERISTICS (each side) (At 25° ambient temperature unless otherwise noted)


Characteristic	Symbol	Min	Max	Unit
Collector-Base Breakdown Voltage ($I_C = 1.0 \mu Adc, I_E = 0$)	BV _{CBO}	40		Vdc
Collector-Emitter Breakdown Voltage* ($I_C = 30 \text{ mAdc}, I_B = 0$)	BV _{CEO} *	15		Vdc
Emitter-Base Breakdown Voltage ($I_E = 10 \mu Adc, I_C = 0$)	BVEBO	5		Vdc
Collector Cutoff Current ($V_{CB} = 20 \text{ Vdc}$, $I_{E} = 0$) ($V_{CB} = 20 \text{ Vdc}$, $I_{E} = 0$, $T_{A} = 150^{\circ}\text{C}$)	I _{CBO}		.025 15	μ Adc
Collector-Emitter Saturation Voltage ($I_C = 10 \text{ mAdc}, I_B = 1 \text{ mAdc}$) MD1126 MD1127	V _{CE} (sat)		0.40 0.25	Vdc
Base-Emitter Saturation Voltage ($I_C = 10 \text{ mAdc}$, $I_B = 1 \text{ mAdc}$)	V _{BE (sat)}	0.7	0.85	Vdc
DC Forward Current Transfer Ratio* (I _C = 10 mAdc, V _{CE} = 1 Vdc)	h _{FE} *	30		
Output Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 100 kc)	C _{ob}		6.0	pf
Small-Signal Forward Current Transfer Ratio ($I_C = 20 \text{ mAdc}$, $V_{CE} = 10 \text{ Vdc}$, $f = 100 \text{ mc}$)	h _{fe}	3.0		
	τ _s		40 25	nsec

^{*}Pulse Test: Pulse Width ≤ 300 µsec, Duty Cycle ≤ 2%

CHARGE STORAGE TIME CONSTANT TEST CIRCUIT MD1126

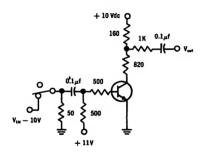
CHARGE STORAGE TIME CONSTANT TEST CIRCUIT MD1127

+ 10 Vdc 160 1K 0.1µf 820 1K 0.1µf Vowr 820 + 11V

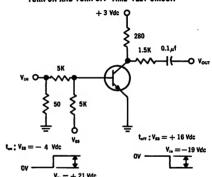
MD1128

 $V_{CEO} = 15 \text{ V}$ $I_C = 200 \text{ mA}$

CASE 32 (TO-5)


NPN silicon annular dual-transistors for high-speed switching applications.

PIN CONNECTIONS **BOTTOM VIEW**


ABSOLUTE MAXIMUM RATINGS (each side)

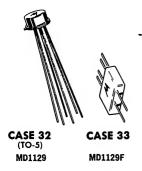
Characteristic	Symbol	Rat	ing	Unit	
Collector-Base Voltage	v _{CBO}	4	Vdc		
Collector-Emitter Voltage	v _{CEO}	1	5	Vdc	
Emitter-Base Voltage	v _{EBO}		5	Vdc	
Collector Current	I _C	20	200		
Operating Junction Temperature	$T_{\mathbf{J}}$	+20	°C		
Storage Temperature	T _{stg}	-65 to +200		°C	
		ONE SIDE	BOTH SIDES		
Total Device Dissipation (25°C Case Temperature) (Derate above 25°C)	P _D	0.75 4.3	1.5 8.6	W mW/ ^O C	
Total Device Dissipation (25°C Ambient Temperature) (Derate above 25°C)	P _D	0.30 1.7	. 0.40 2.3	W mW/ ^O C	

CHARGE STORAGE TIME CONSTANT TEST CIRCUIT

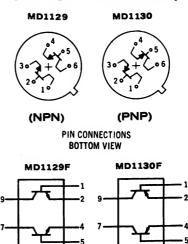
TURN-ON AND TURN-OFF TIME TEST CIRCUIT

MD1128 (continued)

ELECTRICAL CHARACTERISTICS (each side)


(at 25°C ambient temperature unless otherwise noted)

Ob a serie Ada	T	T	T.,	l
Characteristic	Symbol	Min	Max	Unit
Collector-Base Breakdown Voltage ($I_C = 10 \mu Adc, I_E = 0$)	вусво	40		Vdc
Collector-Emitter Breakdown Voltage* (I _C = 10 mAdc, I _B = 0)	BV _{CEO} *	15		Vdc
Emitter-Base Breakdown Voltage ($I_E = 10 \mu Adc, I_C = 0$).	BVEBO	5		Vdc
Collector Cutoff Current (V _{CE} = 20 Vdc, V _{BE} = 0)	ICES		10	μ Adc
Collector Cutoff Current (VCB = 20 Vdc, IE = 0) (VCB = 20 Vdc, IE = 0, TA = +150°C)	I _{СВО}		.025 30	μ Adc
Collector-Emitter Saturation Voltage (I _C = 10 mAdc, I _B = 1 mAdc) (I _C = 50 mAdc, I _B = 5 mAdc)	V _{CE} (sat)		0.3 0.4	Vdc ⁻
Base-Emitter Saturation Voltage ($I_C = 10 \text{ mAdc}$, $I_B = 1 \text{ mAdc}$)	V _{BE(sat)}		0.9	Vdc
DC Forward Current Transfer Ratio $(I_C = 10 \text{ mAdc}, V_{CE} = 1 \text{ Vdc})$	h _{FE}	25		
Output Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 100 kc)	C _{ob}		4	pf
Small-Signal Forward Current Transfer Ratio ($I_C = 10 \text{ mAdc}$, $V_{CE} = 20 \text{ Vdc}$, $f = 100 \text{ mc}$)	h _{fe}	3.5		
Current-Gain-Bandwidth Product (V _{CE} = 20 Vdc, I _C = 10 mAdc)	f _T	350		mc
Charge-Storage Time Constant $(I_C = I_{B1} = I_{B2} = 10 \text{ mAdc})$	[⊤] s		30	nsec
Turn-On Time (I_{C} = 10 mAdc, I_{B1} = 3 mAdc, I_{B2} = 1 mAdc)	t _{on}		20	nsec
Turn-Off Time (I _C = 10 mAdc, I _{B1} = 3 mAdc, I _{B2} = 1 mAdc)	t _{off}		35	nsec


^{*}Pulse Test: Pulse Width ≤ 300 μsec, Duty Cycle ≤ 2%

MD1129

 $V_{CEO} = 30 \text{ V}$ $I_C = 200 \text{ mA}$

NPN silicon annular dual-transistors for differential amplifiers and other applications requiring a matched pair with a high degree of parameter uniformity.

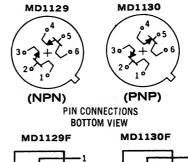
ABSOLUTE MAXIMUM RATINGS (each side)

Characteristic	Symbol	Rating		Unit
Collector-Base Voltage	v _{CBO}	60		Vdc
Collector-Emitter Voltage MD1129	v _{CEO}	30		Vdc
Emitter-Base Voltage	V _{EBO}		5	Vdc
Collector Current (Limited by P _D)	I _C	200		mAdc
Operating Junction Temperature	Т _J	+200		°C
Storage Temperature	T _{stg}	-65 to +200		°C
		One Side	Both Sides	
Flat Package Total Device Dissipation (25°C Ambient Temperature) Derate above 25°C	P _D	250 1. 5	350 2	mW mW/°C
TO-5 Package Total Device Dissipation (25°C Ambient Temperature) Derate above 25°C	P _D	500 2. 9	600 3. 4	mW mW/°C

MD1129 (continued)

ELECTRICAL CHARACTERISTICS (each side)
(At 25° ambient temperature unless otherwise noted)

Characteristic	Symbol	Min	Max	Unit
Collector-Base Breakdown Voltage ($I_{C}^{\prime}=10~\mu Adc$)	вусво	60	-	Vdc
Collector-Emitter Breakdown Voltage* (I _C = 10 mAdc)	BV _{CEO} *	30	-	Vdc
Emitter-Base Breakdown Voltage ($I_E^{}=10~\mu Adc$)	BVEBO	5	-	Vdc ·
Collector Cutoff Current (V _{CB} = 50 Vdc) (V _{CB} = 50 Vdc, T _A = 150°C)	СВО	- -	.010 10	μAdc
Emitter Cutoff Current (V _{EB} = 3 Vdc)	I _{EBO}	-	10	nAdc
Collector-Emitter Saturation Voltage ($I_C = 10$ mAdc, $I_B = 1$ mAdc)	V _{CE(sat)}	-	0.1	Vdc
Base-Emitter Saturation Voltage ($I_C = 10 \text{ mAdc}$, $I_B = 1 \text{ mAdc}$)	V _{BE(sat)}	_	0.85	Vdc
DC Forward Current Transfer Ratio ($I_C = 10 \ \mu Adc$, $V_{CE} = 10 \ Vdc$) ($I_C = 100 \ \mu Adc$, $V_{CE} = 10 \ Vdc$) ($I_C = 1 \ m Adc$, $V_{CE} = 10 \ Vdc$) ($I_C = 1 \ m Adc$, $V_{CE} = 10 \ Vdc$)	h _{FE}	60 100 100 100	- 300 - -	-
DC Current Gain Ratio** $(I_{C} = 100 \ \mu Adc, \ V_{CE} = 10 \ Vdc)$ $(I_{C} = 1 \ mAdc, \ V_{CE} = 10 \ Vdc)$	h _{FE1} /h _{FE2} **	0.9 0.9	1.0 1.0	-
Base Voltage Differential ($I_C = 100 \mu Adc$, $V_{CE} = 10 Vdc$) ($I_C = 1 m Adc$, $V_{CE} = 10 Vdc$)	V _{BE1} -V _{BE2}	-	5 5	mVdc
Base Voltage Differential Change (I_C - 100 μ Adc, V_{CE} = 10 Vdc, I_A = -55 °C to +125 °C)	Δ(V _{BE1} -V _{BE2})	-	10	μV/°C
Collector Output Capacitance (V _{CB} = 10 Vdc, f = 100 kc)	C _{ob}	-	8	pf
Current-Gain - Bandwidth Product ($V_{CE} = 10 \text{ Vdc}$, $I_{C} = 20 \text{ mAdc}$)	f _T	200	-	mc


MD1130

 $V_{CEO} = 40 \text{ V}$ $I_C = 200 \text{ mA}$

CASE 32 CASE 33 (TO-5) MD1130 MD1130F

PNP silicon annular dual-transistors for differential amplifiers and other applications requiring a matched pair with a high degree of parameter uniformity.

MD1129F MD1130F

ABSOLUTE MAXIMUM RATINGS (each side)

Characteristic	Symbol	Rat	ting	Unit
Collector-Base Voltage	v _{CBO}	60		Vdc
Collector-Emitter Voltage MD1130	v _{CEO}		40	Vdc
Emitter-Base Voltage	V _{EBO}		5	Vdc
Collector Current (Limited by P _D)	^I C	200		mAdc
Operating Junction Temperature	Т _Ј	+200		°C
Storage Temperature	T _{stg}	-65 to +200		°c
		One Side	Both Sides	
Flat Package Total Device Dissipation (25°C Ambient Temperature) Derate above 25°C	P _D	250 1. 5	350 2	mW mW/°C
TO-5 Package Total Device Dissipation (25°C Ambient Temperature) Derate above 25°C	P _D	500 2. 9	600 3. 4	mW mW/°C

MD1130 (continued)

ELECTRICAL CHARACTERISTICS (each side)

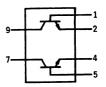

(at 25°C ambient temperature unless otherwise noted)

Characteristic	Symbol	Min	Max	Unit
Collector-Base Breakdown Voltage ($I_C = -10 \mu Adc$)	вусво	60	-	Vdc
Collector-Emitter Breakdown Voltage* (I _C = -10 mAdc)	BV _{CEO} *	40	-	Vdc
Emitter-Base Breakdown Voltage ($I_E = -10 \mu Adc$)	BV _{EBO}	5	-	Vdc
Collector Cutoff Current (V _{CB} = -50 Vdc) (V _{CB} = -50 Vdc, T _A = 150°C)	I _{CBO}	-	010 10	μAdc
Emitter Cutoff Current (V _{EB} = -3 Vdc)	I _{EBO}	-	10	nAdc
Collector-Emitter Saturation Voltage $(I_C = -10 \text{ mAdc}, I_B = -1 \text{ mAdc})$	V _{CE(sat)}	_	0. 25	Vdc
Base-Emitter Saturation Voltage $(I_C = -10 \text{ mAdc}, I_B = -1 \text{ mAdc})$	V BE(sat)	-	0. 9	Vdc
DC Forward Current Transfer Ratio ($I_C = -10 \mu Adc$, $V_{CE} = -10 Vdc$)	h _{FE}	60	-	-
$(I_C = -100 \mu\text{Adc}, V_{CE} = -10 \text{Vdc})$ $(I_C = -1 \text{mAdc}, V_{CE} = -10 \text{Vdc})$		100	300	
$(C_C = -10 \text{ mAdc}, V_{CE} = -10 \text{ Vdc})$ $(C_C = -10 \text{ mAdc}, V_{CE} = -10 \text{ Vdc})$		100 100	-	
DC Current Gain Ratio** $(I_{C} = -100 \mu\text{Adc}, V_{CE} = -10 \text{Vdc})$ $(I_{C} = -1 \text{mAdc}, V_{CE} = -10 \text{Vdc})$	h _{FE1/hFE2} **	0. 9 0. 9	1. 0 1. 0	-
Base Voltage Differential $(I_C = -100 \mu Adc, V_{CE} = -10 Vdc)$ $(I_C = -1 \text{ mAdc}, V_{CE} = -10 Vdc)$	V _{BE1} -V _{BE2}	-	5 5	mVdc
Base Voltage Differential Change ($I_C = -100 \mu Adc$, $V_{CE} = -10 Vdc$, $T_A = -55^{\circ}C$ to +125°C)	Δ(V _{BE1} -V _{BE2})	-	10	μ V /°C
Collector Output Capacitance (V _{CB} = -10 Vdc, F = 100 kc)	C _{ob}	-	4	pf
Current-Gain – Bandwidth Product $(V_{CE} = -10 \text{ Vdc}, I_{C} = -20 \text{ mAdc})$	f _T	200	-	mc

^{*} Pulse Test: Pulse Width ${\le}\,300~\mu{\rm sec}$, Duty Cycle ${\le}\,2\%$ ** The lowest ${\rm h}_{FE}$ reading is taken as ${\rm h}_{FE1}$ for this ratio

MD1131

 $V_{CEO} = 15 \text{ V}$ $I_C = 50 \text{ mA}$



NPN silicon annular dual-transistors for high-frequency oscillator and amplifier transistors.

CASE 32 (TO-5) MD1131

CASE 33MD1131F

PIN CONNECTIONS BOTTOM VIEW

ABSOLUTE MAXIMUM RATINGS (each side)

Characteristic	Symbol	Rating		Unit	
Collector-Base Voltage	v _{CBO}	30		Vdc	
Collector-Emitter Voltage	v _{CEO}		15	Vdc	
Emitter-Base Voltage	V _{EBO}		5	Vdc	
Collector Current	I _C		50		
Operating Junction Temperature	т	+200		°C	
Storage Temperature	T _{stg}	-65 to	-65 to +200		
		One Side	Both Sides		
Total Device Dissipation @ T _A = 25°C	P _D				
TO-5 Package Derate above 25°C		300 1.7	400 2. 3	mW mW/°C	
Flat Package Derate ąbove 25°C		250 1. 5	350 2. 0	mW mW/°C	

MD1131 (continued)

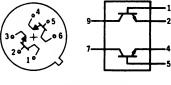
ELECTRICAL CHARACTERISTICS (each side)

(at 25°C ambient temperature unless otherwise noted)

Characteristic	Symbol	Minimum	Maximum	Unit
Collector-Base Breakdown Voltage ($I_C = 1 \mu Adc$, $I_E = 0$)	BV _{CBO}	30	-	Vdc
Collector-Emitter Breakdown Voltage $(I_C = 3 \text{ mAdc}, I_B = 0)$	BV _{CEO}	15	-	Vdc
Emitter-Base Breakdown Voltage (I_E = 10 μ Adc, I_C = 0)	BV _{EBO}	5	-	Vdc
Collector Cutoff Current $(V_{CB} = 15 \text{ Vdc}, I_{E} = 0)$ $(V_{CB} = 15 \text{ Vdc}, I_{E} = 0, T_{A} = +150^{\circ}\text{C})$	^I сво	-	. 010 1. 0	μ Adc
Collector-Emitter Saturation Voltage (I _C = 10 mAdc, I _B = 1 mAdc)	V _{CE(sat)}	-	0. 4	Vdc
Base-Emitter Saturation Voltage (I _C = 10 mAdc, I _B = 1 mAdc)	V _{BE(sat)}	-	1.0	Vdc
DC Forward Current Transfer Ratio (I _C = 1 mAdc, V _{CE} = 5 Vdc)	h _{FE}	50	-	-
Output Capacitance (V _{CB} = 10 Vdc, f = 140 kc) (V _{CB} = 0 Vdc, f = 140 kc)	c _{ob}	-	1. 7 3. 0	pf
Input Capacitance (V _{EB} = 0.5 Vdc, f = 140 kc)	C _{ib}	-	2. 0	pf
Small-Signal Forward Current Transfer Ratio (I _C = 4 mAdc, V _{CE} = 10 Vdc, f = 100 mc)	h _{fe}	6. 0	-	-

MD1132

 $V_{\text{CEO}} = 15 \text{ V}$ $I_{\rm C} = 50 \, \rm mA$



MD1132

MD1132F

NPN silicon annular dual-transistors for differential amplifiers and other applications requiring a matched pair with a high degree of parameter uniformity.

PIN CONNECTIONS **BOTTOM VIEW**

ABSOLUTE MAXIMUM RATINGS (each side)

Characteristic	Symbol	Rating		Unit	
Collector-Base Voltage	v _{сво}	30		Vdc	
Collector-Emitter Voltage	v _{CEO}	15		Vdc	
Emitter-Base Voltage	V _{EBO}		5	Vdc	
Collector Current	^I C	50		mAdc	
Junction Temperature	T _J	+200		°C	
Storage Temperature	T _{stg}	-65 to +200		°C	
		ONE SIDE	BOTH SIDES		
Total Device Dissipation © T _A = 25°C TO-5: MD1132 Derating Factor Above 25°C Flat Package: MD1132F Derating Factor Above 25°C	P _D	300 1.7 250 1.5	400 2.3 350 2.0	mW . mW/°C mW mW/°C	

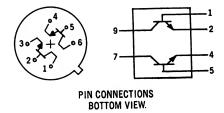
MD1132 (continued)

ELECTRICAL CHARACTERISTICS (each side)

(At 25° ambient temperature unless otherwise noted)

Characteristics	Symbol	Min	Max	Unit
Collector-Base Breakdown Voltage (I _C = 1 μAdc)	BV _{CBO}	30	_	Vdc
Collector-Emitter Breakdown Voltage (I _C = 3 mAdc)	BVCEO	15	_	Vdc
Emitter-Base Breakdown Voltage ($I_E = 10 \mu Adc$)	BVEBO	5	_	Vdc
Collector Cutoff Current (V _{CB} = 15 Vdc) (V _{CB} = 15 Vdc, T _A = 150 ^O C)	^I СВО	- 1	.010 1.0	μAdc
Collector-Emitter Saturation Voltage (I _C = 10 mAdc, I _B = 1 mAdc)	V _{CE(sat)}	_	0.4	Vdc
Base-Emitter Saturation Voltage $(I_C = 10 \text{ mAdc}, I_B = 1 \text{ mAdc})$	V _{BE(sat)}	_	1.0	Vdc
DC Forward Current Transfer Ratio $(I_C = 1 \text{ mAdc}, V_{CE} = 5 \text{ Vdc})$	h _{FE}	50	_	_
DC Current Gain Ratio* (I _C = 1 mAdc, V _{CE} = 5 Vdc)	h _{FE1} /h _{FE2} *	0.9	1.0	_
Base Voltage Differential (I _C = 1 mAdc, V _{CE} = 5 Vdc)	V _{BE1} -V _{BE2}	_	5	mVdc
Base Voltage Differential Change (I _C = 1 mAdc, V_{CE} = 5 Vdc, T_A = -55 to +25°C) (I _C = 1 mAdc, V_{CE} = 5 Vdc, T_A = +25 to +125°C)	△(V _{BE1} -V _{BE2})	-	0.8 1.0	mVdc
Collector Output Capacitance (V _{CB} = 10 Vdc, f = 140 kc) (V _{CB} = 0 Vdc, f = 140 kc)	C _{ob}	=	1.7 3.0	pf
Input Capacitance (V _{EB} = 0.5 Vdc, f = 140 kc)	C _{ib}	_	2.0	pf
Small Signal Forward Current Transfer Ratio ($I_C = 4 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}, f = 100 \text{ mc}$)	h _{fe}	6.0	_	_

^{*}The lowest $h_{\mbox{\it FE}}$ reading is taken as $h_{\mbox{\it FE}1}$ for this ratio


MD1133

 $V_{CEO} = 30 \text{ V}$

NPN silicon annular dual-transistors for high-current saturated switching and core driver applications.

ABSOLUTE MAXIMUM RATINGS (each side)

Characteristic	Symbol	Rating		Unit
Collector-Base Voltage	v _{CBO}	60		Vdc
Collector-Emitter Voltage	V _{CEO}		30	Vdc
Emitter-Base Voltage	V _{EBO}		5	Vdc
Junction Temperature	${ t T}_{ extsf{J}}$	+200		°C
Storage Temperature	T _{stg}	-65 to + 200		°C ·
		ONE SIDE	BOTH SIDES	
Flat Package Total Device Dissipation (25°C Ambient Temperature) Derate above 25°C	P _D	250 1. 5	350 2. 0	mW mW/°C
TO-5 Package Total Device Dissipation (25°C Ambient Temperature) Derate above 25°C	P _D	500 2. 9	600 3. 4	mW mW/°C

----- Motorola Special and Multiple Transistors -----

MD1132 (continued)

ELECTRICAL CHARACTERISTICS (each side)

(At 25° ambient temperature unless otherwise noted)

Characteristic	Symbol	Minimum	Maximum	Unit
Collector Cutoff Current	I _{CBO}			μAdc
(V _{CB} = 40 Vdc, I _E = 0)		-	0, 50	
$(V_{CB} = 40 \text{ Vdc}, I_{E} = 0, T_{A} = 100^{\circ}\text{C})$			75. 0	
Emitter Cutoff Current	I _{EBO}	-	0.05	μAdc
(V _{CB} = 4 Vdc, I _C = 0)				
Collector-Base Breakdown Voltage	BV _{CBO}			Vdc
$(I_C = 10\mu Adc, I_E = 0)$		60	-	
Collector-Emitter Breakdown Voltage*	BV _{CEO*}			Vdc
(I _C = 10mAdc, pulsed, I _B = 0)		30	-	
Emitter-Base Breakdown Voltage	BVEBO			Vdc
$(I_E = 10\mu Adc, I_C = 0)$		5	-	ļ ·
Collector Saturation Voltage*	v _{CE(sat)*}			Vde
(I _C = 150mAdc, I _B = 15mAdc)		-	0, 35	
(I _C = 500mAdc, I _B = 50mAdc)		-	0. 60	}
(I _C = 1.0Adc, I _B = 100mAdc)		-	1. 2	
Base-Emitter Saturation Voltage*	V _{BE(sat)*}			Vdc
(I _C = 150mAdc, I _B = 15mAdc)		-	1. 0	
(I _C = 500mAdc, I _B = 50mAdc)	İ	0.7	1. 3	
(I _C = 1. 0Adc, I _B = 100mAdc)			1. 8	
DC Forward Current Transfer Ratio*	h _{FE*}			-
(I _C = 150mAdc, V _{CE} = 1Vdc)		30	•	
(I _C = 500mAdc, V _{CE} = 1Vdc)		30	120	
(I _C = 1Adc, V _{CE} = 5Vdc)		25	-	
Output Capacitance	C _{ob}			pf
(V _{CB} = 10Vdc, I _E = 0, f = 100kc)		-	12	
Input Capacitance	c _{ib}			pf
(V _{EB} = 0. 5Vdc, I _C = 0, f = 100kc)		-	80	
Current Gain-Bandwidth Product (TO-5)	f _T			me
(I _C = 50mAdc, V _{CE} = 10Vdc, f = 100mc)		200	-	
Current Gain-Bandwidth Product (Flat)	$\mathbf{f}_{oldsymbol{ au}}$			mc
(I _C = 20mAdc, V _{CE} = 10Vdc, f = 100mc)		150	-	

^{*} Pulse Test: Pulse width = $300\mu sec$, duty cycle = 2%

MD1134

 $V_{CEO} = 15 \text{ V}$ $I_C = 500 \text{ mA (peak)}$

NPN silicon annular dual transistor for high-speed switching applications.

CASE 32 (TO-5)

ABSOLUTE MAXIMUM RATINGS

Characteristic	Symbol	Rating	Unit
Collector to Base Voltage	v _{сво}	40	Vdc
Collector to Emitter Voltage	v _{CEO}	15	Vdc
Emitter to Base Voltage	v _{EBO}	5	Vdc
Collector Current (10 μ sec pulse) (limited by P_D)	I _{C(peak)}	500	mAde
Operating Junction Temperature	Т _j	+200	,c
Storage Temperature	r _{stg}	-65 to +200	,c
Total Device Dissipation 25 C Ambient Temperature One Side Both Sides	P _D	500 600	mW mW
Derate 2. 9mW ''C above 25 'C (one side) Derate 3. 4mW ''C above 25 'C (both sides)			

MD1134 (continued)

ELECTRICAL CHARACTERISTICS (At 25° ambient temperature unless otherwise noted)

Characteristic	Symbol	Minimum	Maximum	Unit
Collector Base Breakdown Voltage	вусво	40	-	Vdc
$I_{C} = 10\mu A, I_{E} = 0$				
Collector-Emitter Breakdown Voltage	BV _{CEO*}	15	-	Vdc
$I_C = 10 \text{mA}, I_B = 0$				
Emitter-Base Breakdown Voltage	BV _{EBO}	5	-	Vdc
$I_E = 10\mu A$, $I_C = 0$				
Collector Cutoff Current	I _{CBO}	-	0. 4	μ Adc
$V_{CB} = 20V$, $I_E = 0$				
Collector Cutoff Current	I _{CBO}	· -	30	μ Adc
$V_{CB} = 20V$, $I_E = 0$, $T_A = 150$ °C				
Forward Current Transfer Ratio	h _{FE}			
$I_C = 10$ mA, $V_{CE} = 1$ V		50	-	- '
$I_C = 10$ mA, $V_{CE} = 1V$, $T_A = -55$ C		20	-	-
$I_C = 100 \text{mA}, V_{CE} = 2 \text{V}$		20	-	-
Collector Saturation Voltage	V _{CE(sat)}	-	0. 25	Vdc
$I_C = 10 \text{mA}, I_B = 1 \text{mA}$				
Base Saturation Voltage	V _{BE(sat)}	0, 70	0. 85	Vdc
$I_C = 10 \text{mA}$, $I_B = 1 \text{mA}$				
Output Capacitance	C _{ob}	-	4	pf
$V_{CB} = 5V$, $I_{E} = 0$, $f = 140$ kc				
Input Capacitance	C _{ib}	-	4	pf
$V_{EB} = 1V$, $I_{C} = 0$, $f = 140kc$				
Forward Current Transfer Ratio $I_C = 10mA$, $V_{CE} = 10V$, $f = 100mc$	h _{fe}	5. 0	-	-

^{*} Pulse Condition:

P. W. $\leq 300 \mu \text{sec}$, D. C. $\leq 2\%$

mm2090 mm2091 $V_{DS} = 50 \text{ V}$ $I_D = 20 \text{ mA}$

Silicon N-channel junction field effect transistors for low power switch and amplifier applications in the audio frequency range. Double gate configuration is provided for greater design flexibility.

ABSOLUTE MAXIMUM RATINGS

Characteristic	Symbol	Rating	Unit
Reverse Gate-Source Voltage			
Gate 1	v_{G1S}	50	Vdc
Gate 2	v _{G2S}	50	
Drain-Source Voltage	v _{DS}	50	Vdc
Gate 1-Gate 2 Voltage	V _{G1G2}		Vdc
MM2090 MM2091		1 3	
Gate 2-Gate 1 Voltage	v _{G2G1}		Vdc
MM2090 MM2091		2 6	
Gate Current			mAdc
Gate 1	I _{G1}	20	
Gate 2	I _{G2}	20	
Drain Current	I _D	20	mAdc
Junction Operating Temperature	$^{\mathrm{T}}\mathrm{_{J}}$	200	°C
Storage Temperature Range	T _{stg}	-65 to +200	°C
Total Device Dissipation @25°C Ambient Temperature	P _D	200	mW
Derating Factor Above 25°C		1. 14	mW/°C

----- Motorola Special and Multiple Transistors -----

MM2090, MM2091 (continued)

ELECTRICAL CHARACTERISTICS

(At 25° ambient temperature unless otherwise noted)

		MM	2090	MM2	2091	
Characteristic	Symbol	Minimum	Maximum	Minimum	Maximum	Unit
Gate 2 Con	mon to Gate	e 1				
Gate-Source Breakdown Voltage	BV _{GSS}	50	-	50	-	Vdc
$I_{G} = 10 \mu A, V_{DS} = 0, V_{G1G2} = 0$						
Drain-Gate Reverse Current	I _{DGO}	-	. 001	-	. 001	μ Ad c
$V_{DG} = 25 \text{ V}, I_{S} = 0, V_{G1G2} = 0$						
Gate Reverse Current	I _{GSS}					μAdc
$v_{GS} = 25 \text{ V}, \ v_{DS} = 0, \ v_{G1G2} = 0$		-	0. 001	-	0.001	
$v_{GS} = 25 \text{ V}, v_{DS} = 0, v_{G1G2} = 0, T_A = 150^{\circ}\text{C}$		-	1.0	-	1.0	
Zero-Gate-Voltage Drain Current	IDSS	0. 2	2. 0	1.5	4. 5	mAdc
$V_{DS} = 10 \text{ V}, V_{G1G2} = 0, V_{GS} = 0$						
Gate-Source Voltage	v _{GS}					Vdc
$V_{DS} = 10 \text{ V}, V_{G1G2} = 0, I_{D} = 20 \mu \text{A MM2090}$		0, 2	2.0	-	-	
$v_{DS} = 10 \text{ V}, \ v_{G1G2} = 0, \ I_{D} = 150 \ \mu\text{A MM2091}$		-	-	1.0	3.0	
Gate-Source Cutoff Voltage	V _{GS(off)}					Vdc
$V_{DS} = 10 \text{ V}, I_{D} = 1 \mu A, V_{G1G2} = 0$		-	-2.5	-	-4.0	
Static Drain-Source "On" Resistance	r _{DS(on)}					Ohms
v _{GS} = 0, v _{DS} = 0		100	0 Тур	750	Тур	

Gate 2 Common to Source

Drain-Gate 1 Reverse Current	I _{DG1} 0					μAdc
$V_{DG_1} = 25 \text{ V}, I_{G_2} = 0, I_S = 0$		-	. 001	-	. 001	
$V_{DG_1} = 25 \text{ V}, I_{G_2} = 0, I_S = 0, T_A = 150^{\circ}\text{C}$		-	1.0	-	1. 0	
Gate 1-Gate 2 Reach Through Voltage	V _{G1G20}					Vdc
$I_{G1G2} = 10 \mu A, I_D = 0, I_S = 0$		1	-	3	-	
Gate 2-Gate 1 Reach Through Voltage	V _{G2G10}					Vdc
$I_{G2G1} = 10 \mu A, I_D = 0, I_S = 0$		2	-	6	-	
Gate 1 - Source Cutoff Voltage	v _{G1S}					Vdc
$V_{DS} = 10 \text{ V}, I_{D} = 1.0 \mu \text{A}, V_{G2S} = 0$		-	-5	-	-8	
Gate 2 - Source Cutoff Voltage	v _{G2S}					Vdc
$V_{DS} = 10 \text{ V}, I_{D} = 1.0 \mu\text{A}, V_{G1S} = 0$		-	-8	-	-12	

----- Motorola Special and Multiple Transistors -----

MM2090, MM2091 (continued)

ELECTRICAL CHARACTERISTICS (continued)

SMALL SIGNAL COMMON-SOURCE CHARACTERISTICS

		ММ	2090	MM	2091	
Characteristic	Symbol	Minimum	Maximum	Minimum	Maximum	Unit
Magnitude of Forward Transfer Admittance	y _{fs}					μmhos
$V_{DS} = 10 \text{ V}, \ V_{G1S} = V_{G2S} = 0, \ f = 1 \text{ kc}$						
Gate 2 Common to Source		250	1000	400	1600	
Gate 2 Common to Gate 1		500	1500	800	2400	
Reverse Transfer Capacitance	C _{rss}					pf
$V_{DS} = 10 \text{ V}, \ V_{G1S} = V_{G2S} = 0, \ f = 1 \text{ kc}$						
Gate 2 Common to Source		-	0.5	-	0. 5	
Gate 2 Common to Gate 1		-	2.0	-	2. 0	
Input Capacitance	C _{iss}					pf
$V_{DS} = 10 \text{ V}, \ V_{G1S} = V_{G2S} = 0, \ f = 1 \text{ kc}$						
Gate 2 Common to Source		-	5. 0	-	5. 0	İ
Gate 2 Common to Gate 1			14	-	14	
Magnitude of Output Admittance	y _{os}					μmhos
$V_{DS} = 10 \text{ V}, \ V_{G1S} = V_{G2S} = 0, \ f = 1 \text{ kc}$						
Gate 2 Common to Gate 1		-	2.0	-	10	

mm2092

 $V_{DS} = 50 \text{ V}$ $I_D = 20 \text{ mA}$

Silicon N-channel junction field effect transistor for AGC and mixer applications. Double gate configuration is provided for greater design flexibility.

ABSOLUTE MAXIMUM RATINGS

Characteristic	Symbol	Rating	Unit
Reverse Gate-Source Voltage Gate 1 Gate 2	v _{G1S} v _{G2S}	50 50	Vdc
Drain-Source Voltage	v _{DS}	50	Vdc
Gate 1-Gate 2 Voltage	V _{G1G2}	5	Vdc
Gate 2-Gate 1 Voltage	V _{G2G1}	10	Vdc
Gate Current Gate 1 Gate 2	I _{G1}	20 20	m Adc
Drain Current	I _D	20	m Adc
Junction Operating Temperature	т	200	С
Storage Temperature Range	T _{stg}	-65 to +200	С
Total Device Dissipation @ 25 C Ambient Temperature Derating Factor Above 25 C	P _D	200 1.14	mW mW/C

MM2092 (continued)

ELECTRICAL CHARACTERISTICS (at 25°C ambient temperature unless otherwise noted)

Characteristic	Symbol	Minimum	Maximum	Unit
Gate 2 Commo	on to Gate 1	•		-
Gate-Source Breakdown Voltage $I_G = 10 \mu A$, $V_{DS} = 0$, $V_{G1G2} = 0$	BV _{GSS}	50	-	Vdc
Drain-Gate Reverse Current $V_{DG} = 25 \text{ V}, I_S = 0, V_{G1G2} = 0$	IDGO	-	.001	μAdc
Gate Reverse Current $V_{GS} = 25 \text{ V}, V_{DS} = 0, V_{G1G2} = 0$ $V_{GS} = 25 \text{ V}, V_{DS} = 0, V_{G1G2} = 0, T_A = 150 \text{ C}$	I _{GSS}	-	0.001 1.0	μAdc
Zero-Gate-Voltage Drain Current $V_{DS} = 10 \text{ V}, V_{GS} = 0, V_{G1G2} = 0$	I _{DSS}	3.0	9.0	m Adc
Gate-Source Voltage $V_{DS} = 10 \text{ V}, V_{G1G2} = 0, I_D = 300 \mu\text{A}$	v _{GS}	1.5	5. 5	Vdc
Gate-Source Cutoff Voltage $V_{DS} = 10 \text{ V}, I_{D} = 1 \mu A, V_{G1G2} = 0$	V _{GS(off)}	-	-6. 5	Vdc
Static Drain-Source "On" Resistance $V_{GS} = 0$, $V_{DS} = 0$	r _{DS(on)}	500 Typ.		Ohms

GATE 2 COMMON TO SOURCE

Drain-Gate 1 Reverse Current	I _{DG} 10			μAdc
$V_{DG1} = 25 \text{ V}, I_{G2} = 0, I_{S} = 0$		-	. 001	
$V_{DG1} = 25 \text{ V}, I_{G2} = 0, I_{S} = 0, T_{A} = 150^{\circ}\text{C}$		- .	1. 0	
Gate 1-Gate 2 Reach Through Voltage	V _{G1G20}			Vdc
$I_{G1G2} = 10 \mu A, I_{D} = 0, I_{S} = 0$		5	-	
Gate 2-Gate 1 Reach Through Voltage	V _{G2G10}			Vdc
$I_{G2G1} = 10 \mu A, I_{D} = 0, I_{S} = 0$		10	-	
Gate 1-Source Cutoff Voltage	v _{G1S}			Vdc
$V_{DS} = 10 \text{ V}, I_{D} = 1.0 \mu\text{A}, V_{G2S} = 0$		-	-18	
Gate 2-Source Cutoff Voltage	v _{G2S}			Vdc
$V_{DS} = 10 \text{ V}, I_{D} = 1.0 \mu\text{A}, V_{G1S} = 0$		-	-26	

----- Motorola Special and Multiple Transistors ------

MM2092 (continued)

ELECTRICAL CHARACTERISTICS (continued)

SMALL SIGNAL COMMON-SOURCE CHARACTERISTICS

Characteristic	Symbol	Minimum	Maximum	Unit
Magnitude of Forward Transfer Admittance	y _{fs}			μmhos
$V_{DS} = 10 \text{ V}, \ V_{G1S} = V_{G2S} = 0, \ f = 1 \text{ kc}$				
Gate 2 Common to Source Gate 2 Common to Gate 1		600 1200	2700 3600	
Reverse Transfer Capacitance	C _{rss}			pf
$V_{DS} = 10 \text{ V}, \ V_{G1S} = V_{G2S} = 0, \ f = 1 \text{ kc}$				
Gate 2 Common to Source Gate 2 Common to Gate 1		-	0. 5 2. 0	
Input Capacitance	C _{iss}			pf
$V_{DS} = 10 \text{ V}, V_{G1S} = V_{G2S} = 0, f = 1 \text{ kc}$			-	
Gate 2 Common to Source Gate 2 Common to Gate 1		-	5. 0 14	
Magnitude of Output Admittance	y _{os}			. μmhos
$V_{DS} = 10 \text{ V}, \ V_{G1S} = V_{G2S} = 0. \ f = 1 \text{ kc}$				
Gate 2 Common to Gate 1		-	20	

TYPICAL PERFORMANCE

@ $100 \,\text{mc}$ (Vos = $10 \,\text{V}$, Ve $_{10} = 0$, G $_{1} = \text{Signal Rate}$, G $_{2}$ Grounded)

Characteristic	Symbol	Typical Performance	Unit
Forward Transfer Admittance	y _{fs}	1300 + j 400	μmhos
Input Admittance	y _{is}	200 + j 800	μmhos
Output Admittance	y _{os}	125 + j 1600	μmhos
Maximum Available Gain $R_{11} = 5.0 \text{ k} \Omega, R_{22} = 8.0 \text{ k} \Omega$	M. A. G.	11.3	db

SPECIAL PURPOSE SILICON DIODES

Including:

VARACTOR DIODES

VOLTAGE-VARIABLE

CAPACITANCE DIODES

4-LAYER DIODES

RF SWITCHING DIODE

Devices included in this section:

1N4386 M4L2054 1N4387 MV1808 1N4388 MV1864 M4L2052 MV1866 M4L2053 MV1868	MV1870 MV1871 MV1872 MV1874 MV1876	MV 1877 MV 1878 MV 1892
--	--	-------------------------------

• For case outline dimensions, see page 1-26.

SILICON POWER VARACTOR DIODES

Motorola power varactors are designed for use as frequency multiplier output stages in RF transmitters requiring higher power VHF/UHF output than currently available with high-frequency power transistors.

Motorola power varactors are fabricated by the formation of a deep-diffused silicon junction with a unique impurity profile. The significance of this impurity profile is the enhancement of nonlinearities due to the fast recovery of stored minority carriers after a forward voltage surge. Dependence upon this nonlinearity, rather than on capacity variation with reverse voltage, results in higher efficiency at high-power levels and considerably less distortion of amplitude modulated signals.

For a discussion of Varactor Applications, see page 12-40

SILICON VOLTAGE-VARIABLE CAPACITANCE DIODES

Motorola "EPICAP" voltage-variable capacitance diodes are designed for electronic tuning and harmonic generation applications. The abrupt junction design provides a large variation in capacitance for a change in applied reverse bias.

PARAMETER TEST METHODS

1. L_s, SERIES INDUCTANCE

A. PILL/PILL-PRONG PACKAGE Series Inductance is calculated.

B. GLASS PACKAGE

L_s is measured on a shorted package at 250 mc using an impedance bridge (Boonton Radio Model 250A Rx Meter). L = lead length.

2. Cc, CASE CAPACITANCE

 $C_{\rm c}$ is measured on an open package at 1 mc using a capacitance bridge (Boonton Electronics Model 75A).

3. CT, DIODE CAPACITANCE

 $(C_7 = C_c + C_i)$. C_7 is measured at 1 mc using a capacitance bridge (Boonton Electronics Model 33AS3).

4. Rs, SERIES RESISTANCE and Q, FIGURE OF MERIT

Rs and Q are calculated by taking the G and C readings of an admittance bridge at the specified frequency and substituting in the following equations:

 $Q = \frac{2\pi fC}{G}$

$$R_s = \frac{G}{(2\pi f)^2 C^2}$$

(Boonton Electronics Model 33AS8).

5. fco, CUTOFF FREQUENCY

fco is calculated using the equation fco = Of.

6. a. DIODE CAPACITANCE REVERSE VOLTAGE SLOPE

The diode capacitance, C_T (as measured at $V_s=4$ Vdc, f=1 mc) is compared to C_T (as measured at $V_s=60$ Vdc, f=1 mc) by the following equation which defines α .

$$\alpha = \frac{\log C_{\tau}(4) - \log C_{\tau}(60)}{\log 60 - \log 4}$$

Note that a C_r versus V_k law is assumed as shown in the following equation where C_c is included.

$$C_r = \frac{K}{V\alpha}$$

 α is not the same as γ .

7. TCc, DIODE CAPACITANCE TEMPERATURE COEFFICIENT

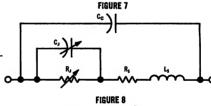
TCc is guaranteed by comparing Cr at $V_4=4$ Vdc, f=1 mc, $T_A=-65^{\circ}C$ with Cr at $V_4=4$ Vdc, f=1 mc, $T_A=+85^{\circ}C$ In the following equation which defines TCc:

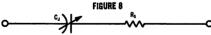
$$TC_{c} = \left| \frac{C_{f}(+85^{\circ}C) - C_{f}(-65^{\circ}C)}{85 + 65} \right| \cdot \frac{10^{6}}{C_{f}(25^{\circ}C)}$$

EPICAP® VOLTAGE VARIABLE CAPACITANCE DIODE DEVICE CONSIDERATIONS

A FRICAR NETWORK PRESENTATION

The equivalent circuit in Figure 7 shows the voltage capacitance and parasitic elements of an EPICAP diode. For design purposes at all but very high and very low frequencies, Ls, Rs, and Cc can be neglected. The simplified equivalent circuit of Figure 8 represents the diode under these conditions.


Definitions:


C_J — Voltage Variable Junction Capacitance
R_S — Series Resistance (semiconductor buik, contact,
and lead resistance)

C. — Case Capacitance

L_s — Series Inductance R_s — Voitage Variable Junction Resistance (negligible

above 100 kc)

B. EPICAP CAPACITANCE VS REVERSE BIAS VOLTAGE

e. EFIMAT MATAUHANCE VS REVERSE BIAS VOLTAGE

The most important design characteristic of an EPICAP
dlode is the Cyversus V, variation as shown in equations 1 and
2. Since the designer is primarily interested in the stope of Cyersus V. the Cc. Co. 4, and "o characteristics have been encompassed by the simplified equation 3. Min/max limits on
a (as defined in Note 1) guarantee device Cr over the specified
V₄ range.

$$C_1 = C_0 + C_J \tag{1}$$

$$C_{t} = C_{c} + \frac{C_{c}}{\left(1 + \frac{V_{b}}{2}\right)^{\gamma}} \tag{2}$$

$$\begin{array}{ll} C_{\circ} = C_{\circ} \text{ at } V_{A} = 0 & V_{A} = \text{Reverse Bias} \\ \phi = \text{Contact Potential, } \phi \approx 0.6 \text{ Voit} & \gamma = C_{\circ} \text{ siope, } \gamma \approx 0.5 \\ C_{1} = \frac{K}{V_{\circ} \alpha} & (3) \end{array}$$

C. EPICAP CAPACITANCE VS FREQUENCY

Variations in EPICAP effective capacitance, as a function of operating frequency, can be derived from a simplified equivalent circuit similar to that of Figure 1, but neglecting R, and R. The admittance expression for such a circuit is given in equation 4. Examination of equation 4 yields the following information:

information: At low frequencies, $C_{\rm sq} \sim C_{\rm f}$; at very high frequencies ($f \sim \infty$) $C_{\rm sq} \sim C_{\rm c}$. As frequency is increased from 1 mc, $C_{\rm sq}$ increases until it is maximum at $\omega^2 = 1/L_1C_{\rm f}$; and as ω^2 is increased from $1/L_2C_{\rm f}$ toward infinity, $C_{\rm sq}$ increases from a very negative capacitance (inductance) toward $C_{\rm sq} = C_{\rm c}$, a positive capacitance

capacitance (inductance) when capacity measurements are made above 1 mc. As ω approaches ω = 1/ $\sqrt{L_{\rm C}}$, small variations in L_s cause extreme variations in measured diode

$$Y = j\omega C_{eq} = j\omega C_e + \frac{j\omega C_J}{1 - \omega^2 L_s C_J}$$
 (4)

D. EPICAP FIGURE OF MERIT (Q) AND CUTOFF FREQUENCY (f...)

D. EPICAP FIGURE OF MERHI (W AND GOUPER PREQUENCY (c.)

The efficiency of EPICAP response to an input frequency is related to the Figure of Merit of the device as defined in equation 5. For very low frequencies, equation 6 applies whereas at high frequencies, where R, can be neglected, equation 5 may be rewritten into the familiar form of equation 7.

Another useful parameter for EPICAP devices is the cutoff frequency (f.e.). This is merely that frequency at which Q is equal to 1. Equation 8 gives this relationship.

$$Q = \frac{X_{\text{teq}}}{R_{\text{c.}}} \tag{5}$$

$$Q_{ij} = \frac{\omega C_j R_j^2}{R_j + R_5 (1 + \omega^2 C_j^2 R_j^2)}$$
 (6)

$$Q_{\rm M} = \frac{1}{\omega R_0 C_{\rm max}} \tag{7}$$

$$f_{eo} = Qf_{max} \approx \frac{1}{2\pi R_S C_{BV_R}}$$
 (8)

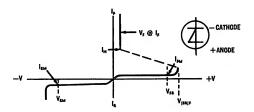
E. HARMONIC GENERATION USING EPICAPS

E. HARMWHIL GERERATION COSING ETIGHTS

Efficient harmonic generation is possible with Motorola
Epicaps because of their high cutoff frequency and breakdown voitage. Since Epicap junction capacitance varies
inversely with the square root of the breakdown voitage, harmonic generator performance can be accurately predicted
from various idealized models. Equation 9 gives the level of
maximum input power for the Epicap and equation 10 gives
the relationships governing Epicap circuit efficiency. In these
equations, adequate heat sinking has been assumed.

$$P_{in[max]} = \frac{M(BVa + \phi)^2}{Rc} \frac{f_{in}}{f_{co}}$$
(9)

M(x2) = 0.0285; M(x3) = 0.0241; M(x4) = 0.196


$$Eff = 1 - N \frac{f_{ort}}{f_{cc}} \tag{10}$$

N(x2) = 20.8; N(x3) = 34.8; N(x4) = 62.5M and Nare constants.

4-LAYER DIODES

Motorola 4-layer diodes are forward breakover devices designed for low-voltage, two-terminal switching and triggering applications. These devices are recommended for logic circuit applications, as pulse generators, memory and relay drivers and relay replacements as well as for alarm circuits, multi-vibrators, ring counters, telephone switching and SCR trigger circuits.

4-LAYER DIODE SYMBOLS AND DEFINITIONS

- dv/dt FORWARD VOLTAGE APPLICATION RATE ($V/\mu sec$) The rate of rise of forward voltage.
- I FORWARD BREAKOVER (SWITCHING) CURRENT The value of anode current at the instant the device switches from the blocking to the "on" state, specified at a particular junction temperature.
- FORWARD CURRENT The continuous or DC value of forward current during the "on" state.
- I_{FM} PEAK FORWARD BLOCKING CURRENT The peak anode current when the 4-layer diode is in the "off" state for a stated anode-to-cathode voltage and junction temperature.
- HOLDING CURRENT That value of forward anode current below which the 4-layer diode switches from the conducting state to the forward blocking condition.
- I_{pulse}
 PEAK PULSE CURRENT The peak repetitive current that can flow through the device for the time duration stated and staying within the P_D rating.
- I_{RM} PEAK REVERSE BLOCKING CURRENT The peak current when the 4-layer diode is in the reverse blocking state for a stated anode-to-cathode voltage and junction temperature.
- P. STEADY STATE POWER DISSIPATION
- T. AMBIENT TEMPERATURE

T, JUNCTION TEMPERATURE

Tata STORAGE TEMPERATURE

- ton TURN-ON TIME The time interval between the 90% point (90% of forward blocking voltage) and the point 10% above the "on" voltage under stated conditions.
- toff TURN-OFF TIME The time interval required for the device to regain control of its forward blocking characteristic after interruption of forward anode current.
 - FORWARD BREAKOVER (SWITCHING) VOLTAGE The positive anode voltage with respect to cathode required to switch the device from the high impedance blocking state to the low-impedance "on" state, specified at a particular junction temperature.
- V_F FORWARD VOLTAGE The forward voltage across the device in the "on" state under stated conditions of current and temperature.
- V_{FB} FORWARD BLOCKING VOLTAGE The anode-to-cathode voltage when the 4-layer diode is in the "off" state.
- V_{RM(rep)} PEAK REVERSE VOLTAGE The maximum allowable instantaneous value of reverse voltage (repetitive or continuous DC) which can be applied to the device at a stated temperature without damage to the device.

MECHANICAL CHARACTERISTICS

CASE: Void free, Transfer Molded, Thermosetting Silicone Polymer.

MAXIMUM LEAD TEMPERATURE FOR SOLDERING PURPOSES: 350°C, 36" from case for 10 seconds at 5 lbs. tension.

FINISH: All external surfaces are corrosion-resistant.

POLARITY: Cathode indicated by color band.

MOUNTING POSITION: Any.

HANDLING PRECAUTIONS: per MIL-S-19500.

WEIGHT: 0.40 Grams (approximately)

RF SWITCHING DIODE

Silicon RF diode designed for high-power, high-frequency signal switching. It is specifically designed as a solid-state replacement for mechanical antenna and coaxial relays.

1N4386

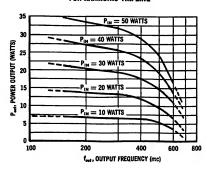
 $V_R = 250 \text{ V}$ $P_O = 37.5 \text{ W} @ 150 \text{ Mc}$ $\eta = 75\% \text{ (f}_O = 150 \text{ Mc)}$

Silicon varactor diode for high-power frequency multiplication applications.

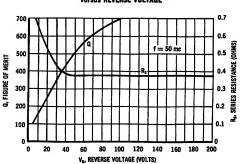
CASE 49 (DO-4) cathode connected to stud

MAXIMUM RATINGS

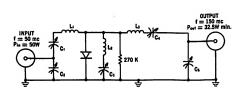
Characteristic	Symbol	Rating	Unit
Reverse Voltage	v _R	250	Volts
RF Power Input	P _{in}	100	Watts
Total Device Dissipation @ $T_C = 75^{\circ}C$ (derate 0.25 W/ $^{\circ}C$ above $75^{\circ}C$)	PD	25	Watts
Junction Temperature	T _J	+175	°C
Storage Temperature	T _{stg}	-65 to +175	°C


ELECTRICAL CHARACTERISTICS (Tc = 25°C)

Characteristic	Symbol	Condition	Min	Тур	Max	Unit
Reverse Breakdown Voltage	вv _R	$I_{R} = 10 \mu\text{Adc}$	250	300	_	Vdc
Series Resistance	R _S	V _R = 6 Vdc f = 50 mc	_	0.75	1.5	Ohms
Junction Capacitance	СJ	V _R = 6 Vdc f = 50 mc	_	35	50	pf
Figure of Merit	Q	V _R = 6 Vdc f = 50 mc	75	125	_	_


Power Output	Pout	TRIPLER TEST CIRCUIT	32.5	37.5	_	Watts
Efficiency	η	P _{in} = 50 W f _{in} = 50 mc f _{out} = 150 mc	65	75	_	%

1N4386 (continued)


POWER OUTPUT versus OUTPUT FREQUENCY FOR HARMONIC TRIPLING

SERIES RESISTANCE AND FIGURE OF MERIT versus REVERSE VOLTAGE

50 mc TO 150 mc TRIPLER TEST CIRCUIT

Coxi.	LENGTH	DIAMETER (inside)	TURNS	WIRE DIA.
Ļ	136"	1 1/16"	7	3/32"
L,	11/2"	11/16"	434	3/32"
L,	11/4"	1/2	31/2	3/32"
C,	2.8-11 pf	E. F. JOHNSON	167-1	VARIABLE CAPACITOR
C,	6.7-140 pf	HAMMARLUND	APC-140	VARIABLE CAPACITOR
C,	3.0-25 pf	HAMMARLUND	APC-25	VARIABLE CAPACITOR
C.	2.9-35 pf	HAMMARLUND	MAPC-35	VARIABLE CAPACITOR
C,	3.0-25 pf	HAMMARLUND	APC-25	VARIABLE CAPACITOR

APPLICATION NOTES

VARACTOR CHARACTERISTICS:

The 1N4386 is designed for RF power inputs up to 100 watts and for output frequencies up to 300 mc. Although power handling capability is stressed in device construction, high-multiplication efficiency is maintained with input powers as low as 10 watts.

Where frequencies with input powers below 10 watts are to be multiplied, or where higher output frequencies are desired, the 1N4387 varactor diode is recommended. That

desired, the 11x4-36 varactor clode is recommended. I nat device is designed for maximum power levels up to 40 watts and output frequencies up to 600 mc. (see the 1N4387 data sheet for device specifications.)

Both the 1N4386 and 1N4387 power varactors are fabricated by the formation of a deep diffused silicon junction with a unique impurity profile. One of the significant characteristics of such a profile is enhancement of nonlinearities due to the sharp recovery of stored injunctive careia instead. accurates of such a profile is enhancement of nonlineanties due to the sharp recovery of stored minority carriers injected during the forward voltage swing. This increased nonlinearity results in better efficiency retention at high power levels and considerably less distortion of amplitude

levels and considerably less distortion of amplitude modulated signals.

Published design theory for abrupt junction varactors can be used for approximate calculations of diffused varactor impedance and power handling capability, but the engineer is cautioned to use the results of such calculations for performance estimates only. Functional specifications and circuit-determined curves are included with data sheet information in order to facilitate circuit design.

The DO-4 package is well suited to varactor shunt circuits such extractors are provided to a become of the statement of the statemen

as the stud can be mounted to a chassis for ground and heat sink purposes.

GENERAL DESIGN CONSIDERATIONS:

In the design of varactor harmonic multipliers, lumped circuit techniques are useful up to 450 mc with little performance degradation provided coil and capacitor "Q" values of 200 to 300 are maintained.

Above 450 mc, coaxial, stripline, or helical coil resonators are recommended. Component values are not particularly critical; however, excessive inductance or insufficient coucritical; nowever, excessive inductance or insufficient cou-pling can cause low efficiency, and insufficient inductance or excessive coupling can cause poor filtering. Simple experi-mentation with well constructed and shielded breadboards is generally sufficient for circuit optimization. Note that an adequate tuning range must be provided to insure input match over normal varactor variations, and that spurious signals between stages should be kept below 30 db by suit-

signals between stages snown or kept velow 50 cm $_{\odot}$ 3... able filter circuits.

If self bias is used, bias resistor values between 68K and 270K ohms are optimum. The higher values give more efficient operation, whereas the lower values permit more linear operation. Amplitude modulated signals can be passed with relatively low distortion if $R_B \approx 100$ K ohms and the varactor RF input power level is kept less than 65% of the rated maximum limit. maximum limit.

For all multiplications other than doubling, idler circuits should be provided in order to optimize circuit efficiencie

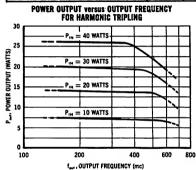
In typical applications doubling efficiency is 5% greater than that for tripling and quadrupling efficiency 5% less than that for tripling. (See data sheet curves.)

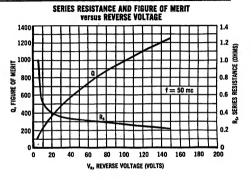
1N4387

 $V_R = 150 \text{ V}$ $P_O = 18 \text{ W} @ 450 \text{ Mc}$ $\eta = 60\% \text{ (f}_O = 450 \text{ Mc)}$

Silicon varactor diode for high-power frequency multiplication applications.

cathode connected to stud


MAXIMUM RATINGS


Characteristic	Symbol	Rating	Unit
Reverse Voltage	v_{R}	150	Volts
RF Power Input	P _{in}	40	Watts
Total Device Dissipation @ $T_C = 75^{\circ}C$ (derate 0.2 W/ $^{\circ}C$ above 75 $^{\circ}C$)	PD	20	Watts
Junction Temperature	$T_{\mathbf{J}}$	+175	°C
Storage Temperature Range	T _{stg}	-65 to +175	°C

ELECTRICAL CHARACTERISTICS (Tc = 25°)

Characteristic	Symbol	Condition	Min	Тур	Max	Unit
Reverse Breakdown Voltage	вv _R	$I_R = 10 \mu\text{Adc}$	150	200	-	Vdc
Series Resistance	RS	V _R = 6 Vdc f = 50 mc	_	1.0	1.5	Ohms
Junction Capacitance	СJ	V _R = 6 Vdc f = 50 mc	_	25	35 ·	pf
Figure of Merit	Q	V _R = 6 Vdc f = 50 mc	150	200	_	_

Power Output	Pout	TRIPLER CIRCUIT	15	18	_	Watts
Efficiency	η	P _{in} = 30 W f _{in} = 150 mc f _{out} = 450 mc	50	60	1	%

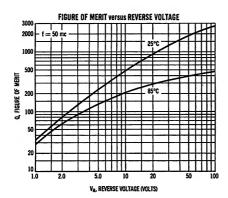
1N4388

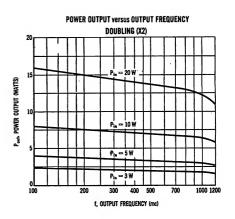
 $V_R = 100 \text{ V}$ $C_T = 10 \text{ pf}$ $\eta = 60\% \text{ (f}_O = 1000 \text{ Mc)}$ $P_O = 12 \text{ W @ 1000 Mc}$

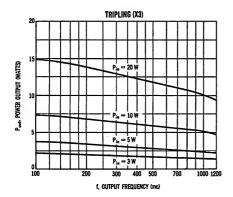
Silicon varactor diode for high-frequency harmonic generation applications.

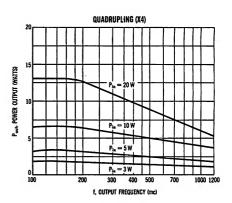
CASE 49 (DO-4) cathode connected to stud

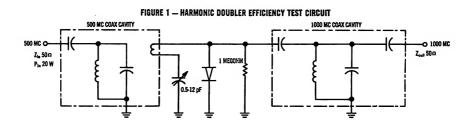
MAXIMUM RATINGS (Tc = 25°C unless otherwise noted)


Characteristics	Symbol	Rating	Unit
Reverse Voltage	$v_{_{ m R}}$	100	Volts
Forward Current	I _F	1	Amp
RF Power Input	P _{in}	25	Watts
Total Device Dissipation @ T _C = 75°C Derate above 75°C	P _D	10 0.10	Watts W/°C
Junction Temperature	T _J	+175	°C
Storage Temperature	T _{stg}	-65 to +175	°C


ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted)


Characteristics	Symbol	Condition	Min	Тур	Max	Unit
Reverse Breakdown Voltage	вv _R	I _R = 10 μAdc	100	150		Vdc
Reverse Current	$I_{\rm R}$	V _R = 75 Vdc		0.5	2	μAdc
		$V_R = 75 \text{ Vdc}, T_A = 150^{\circ}\text{C}$			100	
Series Resistance	R _S	V _R = 6 Vdc, f = 50 mc		1.2	2.0	Ohms
Diode Capacitance	C _T *	V _R = 6 Vdc, f = 50 mc		10	20	pF
		V _R = 90 Vdc, f = 50 mc		5	. 10	İ
Figure of Merit	Q	V _R = 6 Vdc, f = 50 mc	200	300		
		V _R = 90 Vdc, f = 50 mc	1000			l
		TEST CIRCUIT	=			
Power Output	Pout	(Figure 1)	11.0	12.0		Watt
Efficiency	η	P _{in} = 20 W, f _{in} = 500 mc f _{out} = 1000 mc	55	60		%


 $[*]C_T = C_J + C_C$


1N4388 (continued)

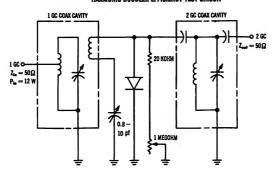
MV1808A, B, C

 $V_R = 75 V$ $P_O = 7.2 W @ 2 Gc$ $\eta = 60\% (f_O = 2 Gc)$

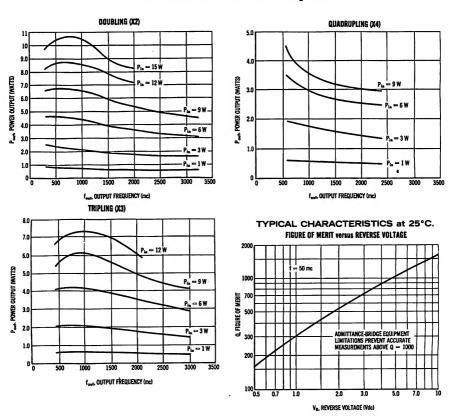
Silicon varactor diodes for high-frequency harmonic generation applications.

MAXIMUM RATINGS (TA = 25°C unless otherwise noted)

Characteristics	Symbol	Rating	Unit
Reverse Voltage	v _R	75	Vdc
Forward Current	I _F	0.25	Adc
RF Power Input	P _{in}	15	Watts
Total Device Dissipation @ T _C = 75°C Derate above 75°C	P _D	5. 5 45	Watts mW/°C
Junction Temperature	T,	200	°C
Storage Temperature	T _{stg}	-65 to +200	°C


ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted)

Characteristics	Symbol	Condition	Min	Тур	Max	Unit
Reverse Breakdown Voltage	BV _R	I _R = 10 μAdc	75	80	_	Vdc
Reverse Current	1 _R	V _R = 60 Vdc V _R = 60 Vdc, T _A = 150°C	<u>-</u>	0.5 —	1 100	μAdc
Series Resistance	R _S	V _R = 6 Vdc, f = 50 mc	-	0.5	1	Ohms
Diode Capacitance	C _T *	V _R = 6 Vdc, f = 50 mc V _R = 70 Vdc, f = 50 mc	5. 0 —	5.8 4	7. 5 —	pf
Figure of Merit	Q	V _R = 6 Vdc, f = 50 mc		1100		
Power Output	Pout	DOUBLER TEST CIRCUIT	6.0	7.2	_	Watts
Efficiency	η	P _{in} = 12 W, f _{in} = 1 gc f _{out} = 2 gc	50	60	-	%
Thermal Resistance	θ_{T}		_	19	23	°C/Watt


 $[*]C_T = C_J + C_C$

MV1808A, B, C (continued)

HARMONIC DOUBLER EFFICIENCY TEST CIRCUIT

POWER OUTPUT versus OUTPUT FREQUENCY

mv1864A

 $\begin{array}{c} C_T = 6.8 \text{ pf} \\ V_R = 60 \text{ V} \\ f_{CO} = 150 \text{ Gc} \end{array}$ Max RF $P_{in} = 5 \text{ W}$

cathode

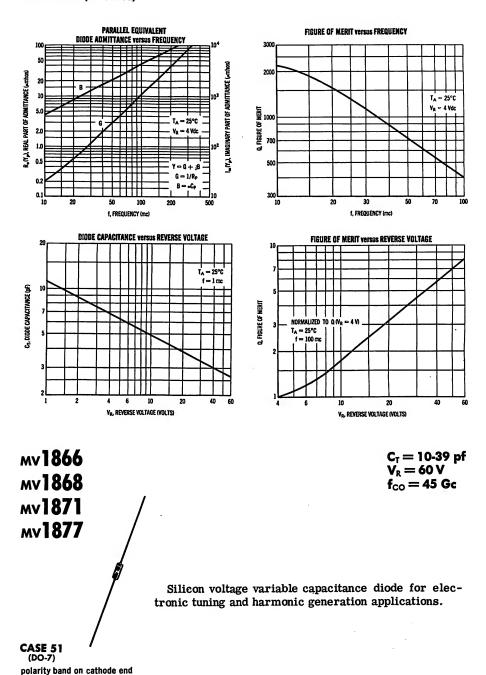
Silicon voltage variable capacitance diode for electronic tuning and harmonic generation applications.

CASE 48

MAXIMUM RATINGS (Tc = 25°C unless otherwise noted)

Characteristics	Symbol	Rating	Unit
Reverse Voltage	v _R	60	Volts
Forward Current	I _F	250	mA
RF Power Input (Note 1)	P _{in}	5	Watts
Device Dissipation @ T _A = 25°C Derate above 25°C	P _D	500 3. 33	mW mW/°C
Device Dissipation @ T _C = 25°C Derate above 25°C	P _C	2 13. 3	W mW/°C
Junction Temperature	${ t T}_{ extbf{J}}$	+175	°C
Storage Temperature	T _{stg}	-65 to +200	°C

Note 1. The RF power input rating assumes that an adaquate heat sink is provided.


ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted)

Characteristics	Symbol	Test Conditions	Min	Тур	Max	Unit
Reverse Breakdown Voltage	вv _R	$I_{R} = 10 \mu Adc$	60 ·	75	•	Vdc
Reverse Voltage Leakage Current	I _R	V _R = 48 Vdc			0. 5	μAdc
		$V_R = 48 \text{ Vdc}, T_A = 75^{\circ}\text{C}$			10.0	

Series Inductance	LS	See Note 1		0.4	1	nhy
Case Capacitance	c _c	f = 1 mc, L ~ 0	0.6	0.8	1.0	pF
Diode Capacitance	C _T	V _R = 4 Vdc, f = 1 mc	6. 1	6.8	7.5	pF
Series Resistance	R _S	V _R = 4 Vdc, f = 100 mc		0. 5	0.9	ohm
Figure of Merit	Q	V _R = 4 Vdc, f = 100 mc	300	400		
Ā	l	V _R = 60 Vdc, f = 100 mc	1000	1500		
Cutoff Frequency	fco	V _R = 60 Vdc, f = 100 mc		150		gc

Diode Capacitance Reverse Voltage Slope	α	V _R = 4 Vdc, f = 1 mc	0, 33	0.35	0.37	
Diode Capacitance Temperature Coefficient	тс _с	V _R = 4 Vdc, f = 1 mc		200	300	ppm/°C

MV1864A (continued)

—— Motorola Voltage-Variable Capacitance Diodes ——

MV1866, MV1868, MV1871, MV1877 (continued)

MAXIMUM RATINGS (Tc = 25°C unless otherwise noted)

Characteristic	Symbol	Rating	Unit
Reverse Voltage	v _R	60	Volts
Forward Current	I _F	250	mA
RF Power Input	P _{in}	5	Watts
Total Device Dissipation at 25°C Ambient	PD	400	mW
Above 25°C Derate	-	2.67	mW/°C
Junction Temperature	T _J	+175	°C
Storage Temperature	T _{stg}	-65 to +175	°c

ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted)

Characteristic	Symbol	Test Conditions	Minimum	Typical	Maximum	Unit
Reverse Breakdown Voltage	BVR	I _R = 10 μAdc	60	75	-	Vdc
Reverse Current	I _R	V _R = 48 Vdc	-		0.5	μAdc
Reverse Current	I _R	V _R = 48 Vdc, T _A = 75°C	-	-	10.0	μ Adc
Series Inductance	L _S	f = 250 mc, L = 1/16"	-	5	10	nhy
Case Capacitance	C _c	f = 1 mc, L ≈ 1/16"	0.20	0. 25	0.30	pf
Diode Capacitance	c _T	V _R = 4 Vdc, f = 1 mc MV1866 MV1868 MV1871 MV1877	9.0 10.8 16.2 36.1	10.0 12.0 18.0 39.0	11.0 13.2 19.8 42.9	pf
Series Resistance	R _S	V _R = 4 Vdc, f = 50 mc MV1866 MV1868 MV1871 MV1877		0.80 0.76 0.65 0.33	1. 18 1. 01 0. 98 0. 50	Ohms
Figure of Merit	Q	V _R = 4 Vdc, f = 50 mc MV1866 MV1868 MV1871 MV1877	300 300 200 175	400 350 275 250		
Figure of Merit	Q	V _R = 60 Vdc, f = 50 mc	700	900	-	-
Cutoff Frequency	fco	V _R = 60 Vdc, f = 50 mc	-	45	-	gc
Diode Capacitance vs Reverse Voltage Slope	α	V _R = 4 Vdc, f = 1 mc MV1866 MV1868 MV1871 MV1877	. 38 . 38 . 38 . 38	. 40 . 40 . 41 . 45	. 43 . 43 . 43 . 47	
Diode Capacitance Temperature Coefficient	^T C	V _R = 4 Vdc, f = 1 mc	-	200	300	РРМ/°С

mv1870 mv1874 mv1878

polarity band on cathode end

 $C_T = 15-47 \text{ pf}$ $V_R = 60 \text{ V}$ $f_{CO} = 45 \text{ Gc}$

CASE 51 (DO-7) Silicon voltage variable capacitance diode for electronic tuning and harmonic generation applications.

MAXIMUM RATINGS (TA = 25°C unless otherwise noted)

Characteristic	Symbol	Rating	Unit
Reverse Voltage	v _R	60	Volts
Forward Current	$I_{\mathbf{F}}$	400	mA
RF Power Input	P _{in}	5	Watts
Total Device Dissipa- tion @25°C Amb.	P _D	400	mW
Above 25°C Derate	-	2.67	mW/°C
Junction Temperature	$T_{\mathbf{J}}$	+175	°C
Storage Temperature	T _{stg}	-65 to +200	°C

ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise specified.)

Characteristic	Symbol	Test Conditions	Minimum	Typical	Maximum	Unit
Reverse Breakdown Voltage	вv _R	I _R = 10 μAdc	60	75	-	Vdc
Reverse Current	I _R	V _R = 48 Vdc	-	•	0. 5	μAdc
Reverse Current	I _R	$V_{R} = 48 \text{ Vdc}, T_{A} = 75^{\circ}\text{C}$	-	-	10.0	μAdc

See Figure 1

Series Inductance	L _S	f = 250 mc, L = 1/16"	-	5	10	nhy
Case Capacitance	C _c	f = 1 mc, L ≈ 1/16"	0.2	0. 25	0.3	pf
Diode Capacitance	c _T	V _R = 4 Vdc, f = 1 mc MV1870 MV1874 MV1878	13.5 24.3 42.3	15 27 47	16.5 29.7 51.7	pf
Series Resistance	R _S	V _R = 4 Vdc, f = 50 mc MV1870 MV1874 MV1878		1.07 0.6 0.35	1.2 0.66 0.38	Ohms
Figure of Merit	Q	V _R = 4 Vdc, f = 50 mc MV 1878	200 175	250		-
Figure of Merit	ବ	$V_R = 60 \text{ Vdc}, f = 50 \text{ mc}$	700	900	-	-
Cutoff Frequency	fco	V _R = 60 Vdc, f = 50 mc	-	45	-	gc

See Figure 1						
Diode Capacitance vs Reverse Voltage Slope	α	MV 1870 V _R = 4 Vdc, f = 1 mc MV 1874 MV 1878	. 38	. 41 . 45	. 43 . 47	-
Diode Capacitance Temperature Coefficient	T _C	V _R = 4 Vdc, f = 1 mc	-	200	300	PPM/°C

MV1871

For Specifications, see MV1866 Data Sheet

MV1872

polarity band on cathode end

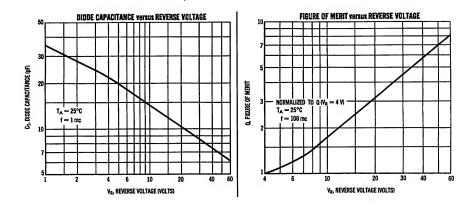
 $C_T = 22 \text{ pf}$ $V_R = 60 \text{ V}$

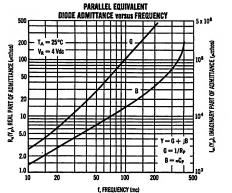
CASE 51 (DO-7) Silicon voltage variable capacitance diode for electronic tuning and harmonic generation applications.

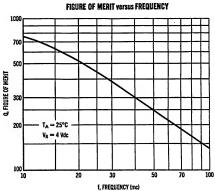
MAXIMUM RATINGS (Tc = 25°C unless otherwise noted)

Characteristics	Symbol	Rating	Unit
Reverse Voltage	v _R	60	Volts
Forward Current	I _F	400	mA
RF Power Input (Note 1)	P _{in}	5	Watts
Device Dissipation @ T _A = 25°C Derate above 25 C	P _D	400 2.67	mW mW/ C
Device Dissipation @ T _C = 25 C Derate above 25 C	P _C	2 13. 3	W mW/ C
Junction Temperature	Т	+175	С
Storage Temperature	Tstg	-65 to +200	С

Note 1. The RF power input rating assumes that an adaquate heat sink is provided.


ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted)


Characteristics	Symbol	Test Conditions	Min	Тур	Max	Unit
Reverse Breakdown Voltage	BV _R	I _R = 10 μAdc	60	75		Vdc
Reverse Voltage Leakage Current	I _R	$V_{R} = 48 \text{ Vdc}$ $V_{R} = 48 \text{ Vdc}, T_{A} = 75^{\circ}\text{C}$			0. 5 10.0	μAdc


Series Inductance	L _S	f = 250 mc, L ~ 1/16"		5	10	nhy
Case Capacitance	c _c	f = 1 mc, L ~ 1/16"	0. 2	0.25	0.3	pF
Diode Capacitance	c _T	V _R = 4 Vdc, f = 1 mc	19.8	22	24. 2	pF
Series Resistance	R _S	V _R = 4 Vdc, f = 50 mc		0.6	0.82	ohm
Figure of Merit	Q	V _R = 4 Vdc, f = 50 mc	200	250		
		V _R = 60 Vdc, f = 50 mc	700	900		
Cutoff Frequency	f _{co}	V _R = 60 Vdc, f = 50 mc		45		gc

Diode Capacitance Reverse Voltage Slope	α	V _R = 4 Vdc, f = 1 mc	0.43	0.45	0.47	
Diode Capacitance Temperature Coefficient	TC _C	V _R = 4 Vdc, f = 1 mc		200	300	ppm/°C

MV1872 (continued)

MV1874

For Specifications, see MV1870 Data Sheet

MV1876

 $C_T = 33 \text{ pf}$ $V_R = 60 \text{ V}$ $f_{CO} = 45 \text{ Gc}$

CASE 51 (DO-7)

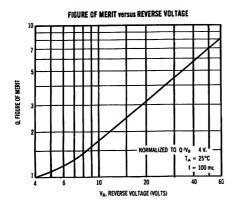
Silicon voltage variable capacitance diode for electronic tuning and harmonic generation applications.

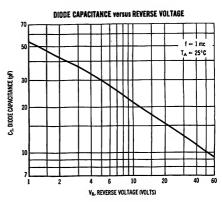
polarity band on cathode end

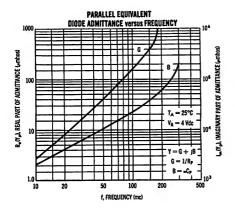
MAXIMUM RATINGS (Tc = 25°C unless otherwise noted)

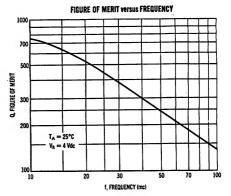
Characteristics	Symbol	Rating	Unit
Reverse Voltage	v _R	60	Volts
Forward Current	$I_{\mathbf{F}}$	250	mA
RF Power Input (Note 1)	P _{in}	5	Watts
Device Dissipation @ T _A = 25°C Derate above 25°C	P _D	400 2.67	mW mW/°C
Device Dissipation @ T _C = 25°C Derate above 25°C	P _C	2 13. 3	W mW/°C
Junction Temperature	T_{J}	+175	°C
Storage Temperature	T _{stg}	-65 to +200	°C

Note 1. The RF power input rating assumes that an adaquate heat sink is provided.


ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted)


Characteristics	Symbol	Test Conditions	Min	Тур	Max	Unit
Reverse Breakdown Voltage	BV _R	I _R = 10 μAdc	60	75		Vdc
Reverse Voltage Leakage Current	I _R	V _D = 48 Vdc				μAdc
	ļ	$V_{R} = 48 \text{ Vdc} V_{R} = 48 \text{ Vdc}, T_{A} = 75^{\circ}\text{C}$		l	10.0	


Series Inductance	LS	f = 250 mc, L ~ 1/16"		5	10	nhy
Case Capacitance	c _c	f = 1 mc, L ~ 1/16"	0, 2	0, 25	0.3	pF
Diode Capacitance	c _T	V _R = 4 Vdc, f = 1 mc	29.7	33	36. 3	pF
Series Resistance	R _S	V _R = 4 Vdc, f = 50 mc		0.4	0.55	ohm
Figure of Merit .	Q	V _R = 4 Vdc, f = 50 mc	200	250		
		$V_R = 60 \text{ Vdc}, f = 50 \text{ mc}$	700	900		
Cutoff Frequency	f _{co}	V _R = 60 Vdc, f = 50 mc		45		gc


Diode Capacitance Reverse Voltage Slope	α	V _R = 4 Vdc, f = 1 mc	0.43	0.45	0, 47	
Diode Capacitance Temperature Coefficient	TC _C	V _R = 4 Vdc, f = 1 mc	-	200	300	ppm/°C

MV1876 (continued)

MV1877

For Specifications, see MV1870 Data Sheet

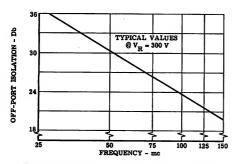
MV1878

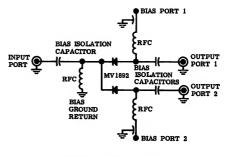
For Specifications, see MV1866 Data Sheet

MV1892

cathode connected to stud

 $\begin{aligned} &V_{\text{R}}=700 \text{ V} \\ &I_{\text{F}}=4 \text{ Amps} \\ &C_{\text{T}}=2.5 \text{ pf} \\ &P_{\text{SW}}=500 \text{ W} \end{aligned}$

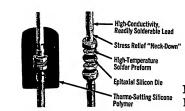

CASE 49 (DO-4) Silicon diode for switching high-power, RF signals. Particularly well suited as a replacement for mechanical antenna and coaxial relays.


MAXIMUM RATINGS (Tc = 25°C unless otherwise noted)

Characteristic	Symbol	Rating	Unit
Reverse Voltage	v _R	700	Volts
Forward Current	I _F	4	Amp
RF Power Switching Capability	P _{sw}	500	Watts
Total Device Dissipa- tion at or below 75°C Case Temperature	P _D	20	Watts
Above 75°C Derate Linearly	-	0.2	w/°c
Junction Temperature	т _J	+175	°C
Storage Temperature	T _{stg}	-65 to +175	°C

ELECTRICAL CHARACTERISTICS (Tc = 25°C unless otherwise noted)

Characteristic	Symbol	Test Conditions	Minimum	Maximum	Unit
Reverse Breakdown Volt.	$_{\mathrm{BV}_{\mathrm{R}}}$	I _R = 10 μAdc	700	-	Vdc
Series Resistance (See Note 1)	R _f	I _F = 100 ma; f = 1 kc	-	0.62	Ohms
Diode Capacitance	c _T	V _R = 100 Vdc; f = 140 kc	-	2. 5	pf


OFF-PORT ISOLATION VS FREQUENCY FOR SPDT SWITCH

TYPICAL RF SWITCHING CIRCUIT

NOTE 1. Laboratory measurements show that $\mathbf{R_f}$ at 1 kc is within 15% of $\mathbf{R_f}$ at 50 mc.

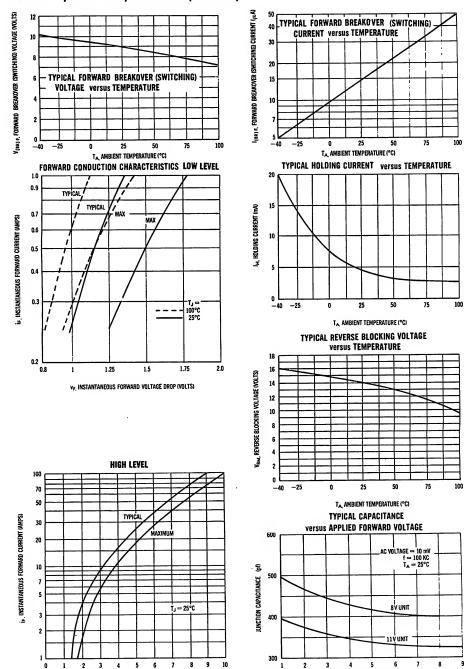
M4L2052 M4L2053 M4L2054

 $V_{RM} = 10-12 \text{ V}$ $I_F = 500 \text{ mA}$ $V_F = 1.5 \text{ V}$ $T_{on} = 60 \text{ nsec}$

CASE 59

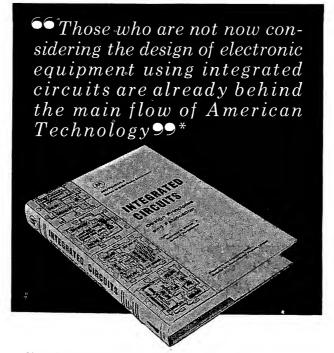
PNPN 4-layer diodes for low-voltage switching and triggering applications.

MAXIMUM RATINGS (TA = 25°C unless otherwise noted)


Characteristic	Symbol	Rating	Unit
Peak Reverse Blocking Voltage M4L2052 M4L2053 M4L2054	V _{RM(rep)}	10 11 12	Volts
Continuous Forward Current	$\mathbf{I_F}$	500	mA
Steady State Power Dissipation	P_{D}	750	mW
Peak Pulse Current (10 μsec maximum pulse width)	^I pulse	100	Amps
Operating Junction Temperature Range	$T_{\mathbf{J}}$	-65 to +100	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C

ELECTRICAL CHARACTERISTICS (At 25°C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
Forward Breakover (Switching) Voltage M4L2052 M4L2053 M4L2054	V _(BR) F	8 9 10	=	10 11 12	Volts
Forward Breakover (Switching) Current	I _(BR) F	_	15	50	μА
Forward Blocking Current (Measured at 75% of V _{(BR)F})	I _{FM}	_	1	5	μA
Reverse Blocking Current (at rated V _{RM rep})	I _{RM}	_	_	10	μ Α
Holding Current	I _H	_	3	15	mA
Forward On Voltage (I _F = 500 mAdc)	v _F	_	1.1	1.5	Volts
Turn On Time (at rated V _{(BR)F} , I _F = 1 A peak)	t _{on}	_	60*		nsec
Turn Off Time (I _F = 100 mA, V _F applied = 5 V, V _R applied = 5 V, dv/dt = 5 V/ μ sec, typical I _H of units tested = 5 mA)	t _{off}	_	2*	_	μsec


^{*}Time depends on a wide variety of circuit conditions.
Consult manufacturer for further information.

M4L2052, M4L2053, M4L2054 (continued)

VF. INSTANTANEOUS FORWARD VOLTAGE DROP (VOLTS)

APPLIED FORWARD VOLTAGE (VOLTS)

Now Off The Presses — the one indispensible text for anyone engaged in the design and applications of integrated circuits . . . the one book that covers the entire technology, both practically and theoretically.

Prepared by the engineering staff of Motorola's Semiconductor Products Division, this book is based on the celebrated Integrated Circuits Design Course presented repeatedly by Motorola, at industry request, to the engineering personnel of leading electronic equipment manufacturers the world over.

Nearly a quarter million dollars has been invested specifically for developing and up-dating the material for this book. It is not a miscellaneous collection of individual papers, but rather, a cohesive and well organized treatment covering integrated circuit design principles from the standpoint of new circuit design philosophies and practical production yields. The efforts which have gone into the Motorola Integrated Circuits Design Course, plus the subsequent editing that has turned the initial material into a highly readable engineering-level work, easily make Integrated Circuits — Design Principles and Fabrication one of the most authoritative and comprehensive texts ever published in the technical field.

°C. Lester Hogan, Vice President, Motorola Inc. General Manager, Semiconductor Products Division

For your postage paid copy, send check or purchase order in the amount of \$12.50 per copy to: Motorola Semiconductor Products, Inc., Dept. TIC, Box 955, Phoenix, Arizona 85001.

MOTOROLA INTEGRATED CIRCUITS

The extensive Motorola integrated circuit line includes a variety of digital and linear circuits. In addition to the standard integrated circuit product lines described on the following pages, Motorola offers a custom fabrication capability that is presently filling many specialized requirements.

Motorola's integrated circuit fabrication capability includes monolithic construction, multi-chip techniques, and Compatible processing in which high-quality thin-film components are deposited on passivated silicon wafers.

- For devices meeting military specifications, see page 1-18.
- For case outline dimensions, see page 1-26.

MOTOROLA DIGITAL INTEGRATED CIRCUITS

Motorola Digital Integr	ated Circuits	Description
Туре	Logic	
MC300 Series	MECL	High-speed current-mode logic series operating over a temperature range of -55 to +125°C.
MC350 Series	MECL	High-speed current-mode logic series with an operating temperature range of 0 to +75°C for commercial applications.
MC200 Series	DTL	High-speed, low-power Diode-Transistor Logic circuits operating over a temperature range of -55 to +125°C.
MC250 Series	DTL	High-speed, low-power Diode-Transistor Logic circuits with an operating temperature range of 0 to +75°C for commercial applications.
USN ME1 Series	DTL	High-speed Diode-Transistor Logic circuits designed to meet MIL-M-23700/1-8 (NAVY).
MC1111 Series	DTL	High-speed Diode-Transistor Logic circuits operating over the temperature range of -55 to +125°C.
MC908 Series	RTL	Milliwatt Resistor-Transistor Logic circuits operating over the temperature range of -55 to +125°C.
MC400 Series	$\mathtt{T}^2\mathtt{L}$	High-speed Transistor-Transistor Logic circuits operating over the temperature range of -55 to +125°C.

MECL MC 300 series

MONOLITHIC SILICON

The MECL* series of integrated logic circuits forms a versatile set of monolithic digital building blocks representing all the necessary circuitry for the arithmetic portion of a computer. MECL circuits combine extremely high speed with a systems-oriented design approach that permits implementation with the fewest possible number of individual devices. This represents both a cost saving and a potential increase in system reliability. The major features of the MEC! series are:

- 5 nsec propagation delay per logic decision
- Virtually constant noise immunity with ±10% power supply variation, and temperature changes from -55° to +125°C
- Simultaneous "OR"-"NOR" or "AND"-"NAND" outputs
- High fan-in and fan-out capabilities

The series is comprised of the following elements:

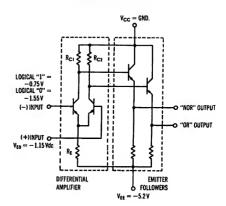
MC301 — A high-speed five-input gate element that provides the positive logic "OR" function and its complement simultaneously.

MC302 — A DC Set-Reset flip-flop with an expandable input and the power dissipation of ordy one gate.

MC303 — A half-adder that provides the "SUM", "CARRY", and "NOR" function simultaneously.

MC304 — A bias driver that compensates for changes in circuit parameters with temperature.

MC305 — A five-input expander for use with the MC302 and the MC306.7.


MC306,7 — A high-speed expandable threeinput gate element that provides the positive logic "OR" function and its complement simultaneously.

MC308 — A clocked J-K flip-flop for counter and shift register applications with DC Set and Reset inputs.

MC309,10,11 — A high-speed dual twoinput gate element that provides the positive logic "NOR" function.

MC312 — A high-speed dual three-input gate element that provides the positive logic "NOR" function.

BASIC MECL CIRCUIT

FOR LOGICAL "1" INPUT; "NOR" OUTPUT = -1.55 V"OR" OUTPUT = -0.75 V

FOR LOGICAL"O" INPUT; "NOR" OUTPUT = -0.75 V
"OR" OUTPUT = -1.55 V

MECL - A CURRENT MODE SWITCH

The typical MECL circuit is designed with a differential amplifier input and emitter-foliower output to restore dc ievels. The circuit has been designed to prevent saturation of the input transistors, thus eliminating storage time and allowing for high-speed operation with non-critical transistor parameters. High fan-out operation is permitted due to the low impedance emitter-foliower and the high-input impedance of the circuit. The basic gate has both the function and its complement available simultaneously. Since the current in the differential amplifier is switched from one side to the other, there is virtually no power supply noise generated.

The circuit operation is straight-forward. A fixed bias of -1.15 volts is applied to the (+) input of the differential amplifier and the logic signals are applied to the (-) input. If a logical "0" is applied to the (-) linput, the current through R_1 is supplied by the fixed blased transistor. A drop of 800 mV occurs across $R_{\rm ch}$. The "0R" output then is $-1.55 \rm V$, or one V_R-drop below 800 mV. Since no current flows in the (-) linput transistor, the "NOR" output is a V_R-drop below ground, or -0.75 volts. When a logical "1" level is applied to the (-) linput transistor and a drop of 800 mV occurs across $R_{\rm ch}$. The "0R" output then goes to -0.75 volts and the "NOR" output goes to -1.55 volts.

A bias driver is supplied to insure that the threshold point is always in the center of the transition region. The bias driver compensates for temperature changes and is designed to track with temperature.

^{*}Trademark of Motorola Inc.

10 PIN TO-5

12 PIN TO-5 (MC312G ONLY)

10 PIN FLAT PACKAGE

14 PIN FLAT PACKAGE (MC312F ONLY)

CASE 71

CASE 98

CASE 83

CASE 72

FAMILY CHARACTERISTICS

The following information applies to all devices of the MECL family. It is intended to provide the design engineer with meaningful information for worst-case analyses. Parameters of importance are guaranteed at three temperature levels: room, and the extremes for which the family is

designed. All performance curves are based on distributional spreads and the minimum-maximum ranges can be interpreted for design purposes as 10%-90% spreads at all points on the curve except for guaranteed points on the electrical characteristics.

ABSOLUTE MAXIMUM RATINGS (at 25°C)

Characteristics	Symbol	Maximum	Unit
Logic Input Voltage	-	5	Vdc
Power Supply Voltage	_	10	Vdc
Output Source Current	I _O	10	mAde
Operating Temperature Range	т	-55 to +125	°c
Storage Temperature Range	T _{stg}	-65 to +175	°c

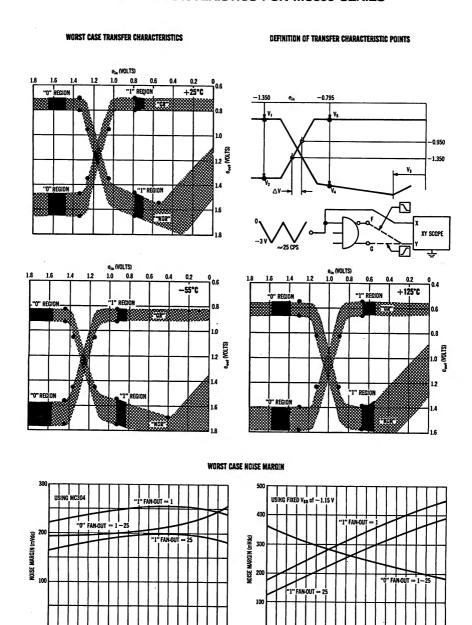
SYSTEM LOGIC SPECIFICATIONS

Any one of the supply nodes, $V_{\text{ss.}}$ $V_{\text{cc.}}$ or V_{te} may be used as ground; however, the manufacturer has found it most convenient to ground the $V_{\text{cc.}}$ node. In such a case:

 $V_{cc} = 0$ $V_{ts} = -1.15V$ $V_{tt} = -5.2V$

The output logic swing of 0.8V then varies from a low state of $V_L=-1.55V$ to a high state of $V_H=-0.75V$ with respect to ground.

Positive logic is used when reference is made to logical "O's" or "1's". Then


 $"0" = -1.55V \\ "1" = -0.75V$ typical

Dynamic logic refers to a change of logic states. Dynamic "O" is a negative going voltage excursion and a dynamic "1" is a positive going voltage excursion.

-35 -15

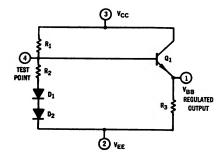
TEMPERATURE (°C)

DC CHARACTERISTICS FOR MC300 SERIES

TEMPERATURE (°C)

105 125

MC304


BIAS DRIVER

A temperature compensating regulator intended for use in conjunction with the MOTOROLA MC300 "MECL" series of INTEGRATED LOGIC CIRCUITS. Insures stable and reliable operation of "MECL" logic systems over a temperature range of -55°C to +125°C.

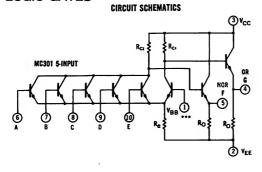
ELECTRICAL CHARACTERISTICS

Test	Conditions	Cumbal	−55°C		25℃		125°C		Unit	
1031	Continons	Symbol	min	max	min	max	min	max	Gai	
Fan-Out	_	n	-	25	_	25	_	25	_	
Output Voltage	V _{CC} = 0, V _{EE} = -5.2 Vdc ±1%	v _{BB}	1.19	1.32	1.09	1.22	0.95	1.08	Vde	
(No Load to Full Load)	1 _{out} = 0 to 2.5 mAdc									
Power Dissipation	V _{CC} = 0, V _{EE} = -5.2 Vdc ± 1%	P _D	-	24	-	24	-	22	m₩	

CIRCUIT SCHEMATIC

CIRCUIT DESCRIPTION

Circuit Operation:

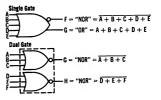

The divider network R₁, R₂, D₁, D₂ compensates for temperature variations of the base-emitter voltages of Q₁, and of the driven gates, producing a bias voltage for the MECL logic circuits that maintains a constant set of dc operating conditions over the temperature range of -55°C to +125°C. In addition, compensation for power supply variations is achieved, since the bias output voltage is derived from the system supply.


Either of the supply voltage nodes may be used as ground, however the ground potential of the bias driver must coincide with that of the logic system. Thus, if $V_{\rm CC}$ is grounded in the logic system, then —

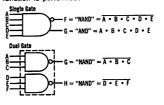
$$V_{cc}=0;$$
 $V_{tt}=-5.2V;$ $V_{ts}=-1.15$ nominal output voltage at 25°C

MC301, MC306, MC307, MC309 thru MC312

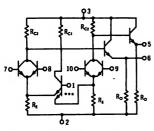
LOGIC GATES



LOGIC SPECIFICATIONS


POSITIVE LOGIC

When V_H is defined as a logical "1" and V_{ι} as a logical "O" the "OR"/"NOR" function is performed:

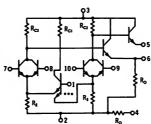


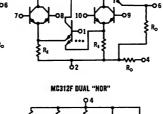
NEGATIVE LOGIC

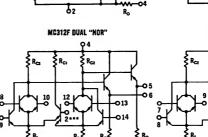
Inversely, when $V_{\mbox{\tiny H}}$ is defined as a logical "0" and V_L as a logical "1" the "AND"/"NAND" function is performed:

MC309 DUAL "NOR"

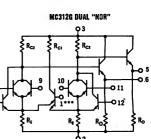
*Resistors Ro are omitted in MC307 circuits to permit reduction of Power Dissi-pation in systems where logic operations are performed at circuit outputs.


EXAMPLE: where (n) gates are to perform an "OR" function, one MC306 gate and (n-1) MC307 gates can be used to provide savings of Power Dissipation in (n-1) gates.


Pins 9 and 10 are for use in conjunction with the MC305 input expander to in-crease the fan-in capability in increments


To be supplied from bias-driver circuit MC304 for optimum temperature stability.

NOTE: Any unused inputs can normally be ieft open-circuited. In cases where there may be external leakage to the unused inputs they should be connected to V_{EE}.

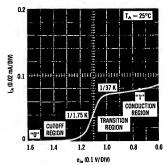

MC310 DUAL "NOR"

MC311 DUAL "NOR"

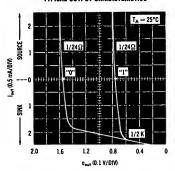
LOGIC GATES (CONTINUED)

DC ELECTRICAL CHARACTERISTICS V_{cc} = 0, V_{tt} = -5.2 Volta, (all = 1%), V_{tt} = -1.25 Volc @ -55*C V_{tt} = -1.15 Volc @ -55*C V_{tt} = -1.15 Volc @ -55*C

Test	Conditions	6h.l	-5	5°C	25	5°C	12	25°C	Unit
1051	Conditions	Symbol	min	max	min	max	min	max	Unit
Total Unit Power Supply Current Drain	All inputs open MC301, MC306 MC307 MC309, MC310, MC312 MC311	I _E	=	8.85 3.6 13.0 10.1		8. 85 3. 6 13. 0 10. 1	=	8. 15 3. 3 12. 0 9. 25	mAde
Input Current Fan-In	V _{1min} € 25°C	I _{IN}	-	_	 -	100 23	- -	-	μAde
Fan-Out		n	-	-	-	25	-	-	


"NOR" OUTPUT - All Types

"NOR" Logical "1" Output Voltage	Each Input: V = -1.45 Vdc @ -55°C Vin = -1.35 Vdc @ -25°C Vin = -1.30 Vdc @ +125°C	v ₁	0.625	0.925	0.690	 0.795 _	_ _ 0.545	_ 0.655	Vdc
"NOR" Logical "O" Output Voltage	Each Input: Vin = -0.925 Vdc @ -55 ⁹ C Vin = -0.795 Vdc @ -25 ⁵ C Vin = -0.655 Vdc @ +125 ⁶ C	V4	1.580	1.750	1.465	1.650	_ 1.390	_ 1.575	Vde
"NOR" Saturation Breakpoint Voltage	dv (NOR) = 0	V3	-	0.40	-	0.55	-	0.65	Vdc
"NOR" Output Voltage Change (No load to full load)	All inputs open No load = 0 current at pin 5 Full load = 2.5 mAdc - 15% at pin 5	ΔV1	_	0.055	-	0,055	-	0.060	Vdc

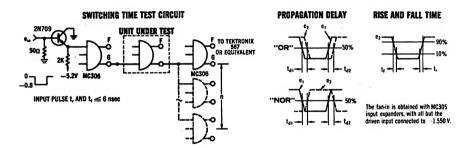

"OR" OUTPUT - Types MC301, MC306, MC307 only

''OR'' Logical ''1'' Output Voltage	Each Input: V _{In} = -0.925 Vdc @ -55 ^O C V _{In} = -0.795 Vdc @ +25 ^O C	v ₅	0.825	0.925	0.690	0.795	_	_	Vdc
	Vin = -0.655 Vdc @ +25°C		=	=	0.690	0.795	0.545	0.655	
"OR" Logical "O" Output Voltage	Each Input: V _{In} = -1.45 Vdc @ -55°C V _{In} = -1.35 Vdc @ +25°C V _{In} = -1.30 Vdc @ +125°C	v ₂	1.560	1.750	1.465	1.650	1.390	1.575	Vdc
Transition Region Slope	V (OR) Between: -1.450 Vdc 2nd -1.050 Vdc @ -55°C -1.350 Vdc and -0.950 Vdc @ +25°C -1.220 Vdc and -0.620 Vdc @ +125°C	ΔV	=	0.095	=	0.095	Ξ	 0.110	Vdc
"OR" Output Voltage Change (No load to full load)	No load = 0 current @ pln 1 Full load = 2.5 mAdc ± 5% at pln 1 Vin = 0.925 Vdc, @ -55°C Vin = 0.795 Vdc, @ +25°C Vin = 0.655 Vdc, @ +25°C	ΔV ₅	-	0.055	=	0.055	=	0.060	Vdc

TYPICAL OUTPUT CHARACTERISTICS

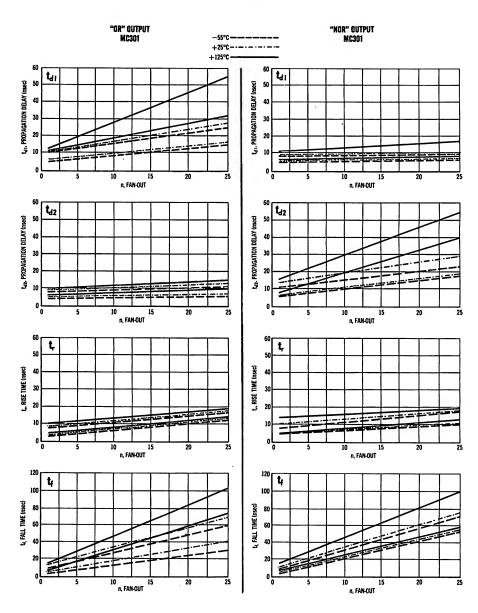
LOGIC GATES (CONTINUED)

SWITCHING CHARACTERISTICS $V_{CC} = 0$, $V_{CC} = 0$, $V_{CC} = 0$, $V_{CC} = 0$. Volts, (all ± 1%) $V_{CC} = -1.25 \text{ Vdc}$, $V_{CC} = -0.370 \text{ Vdc}$, V

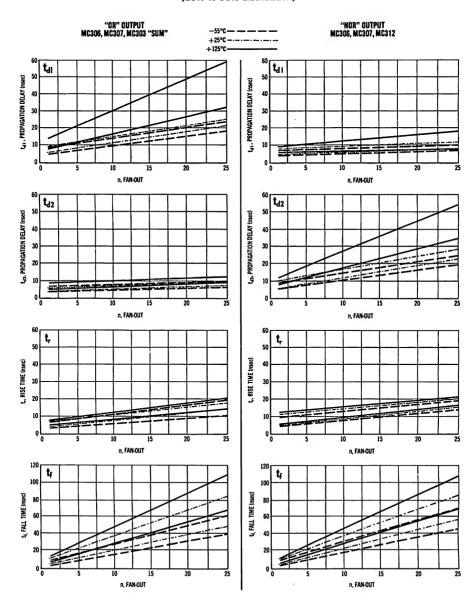

-3 - (+, p. m.o	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					•			
			-5	5℃	25	r°C	12	5℃	
Test	Conditions	Symbol	min	max	min	max			Uni
MC301									
Propagation Delay "NOR" Output	Fan-In = 1, Fan-Out = 1 Fan-In = 1, Fan-Out = 10	tas	4.5 5.0	9.0 10.0	5.0 5.5	9.5 10.5	8.5 7.0	11.5 14.0	nsec
"OR" Output	Fan-In = 1, Fan-Out = 1 Fan-In = 1, Fan-Out = 10	t _{d1}	5.5 9.0	10.5 17.0	8.0 10.0	11.0 18.0	10.0 17.0	17.0 32.0	
"NOR" Output	Fan-In = 1, Fan-Out = 1 Fan-In = 1, Fan-Out = 10	t _{d2}	8.0 10.0	11.0 16.0	8.5 11.0	14.5 20.5	8.0 20.0	18.0 31.0	
"OR" Output	Fan-In = 1, Fan-Out = 1 Fan-In = 1, Fan-Out = 10	t _{d2}	4.0 4.5	8.0 9.5	5.0 5.5	9.0 11.0	8.0 7.0	10.0 12.0	1
Rise Time ''NOR'' Output	Fan-In = 1, Fan-Out = 1	4	4.0	8.5	4.5	12.0	5.0	14.5	nse
"OR" Output	Fan-In = 1, Fan-Out = 1	i	3.5	8.0	4.0	8.0	5.0	10.0	
Fall Time "NOR" Output	Fan-in = 1, Pan-Out = 1	t _t	5.5	10.0	6.0	12.0	8.5	16.5	nse
"OR" Output	Fan-In = 1, Fan-Out = 1	Ι.	5.0	10.0	6.0	12.0	9.0	15.0	I

MC306, MC307 - "NOR" AND "OR" Output; MC312 - "NOR" Output only

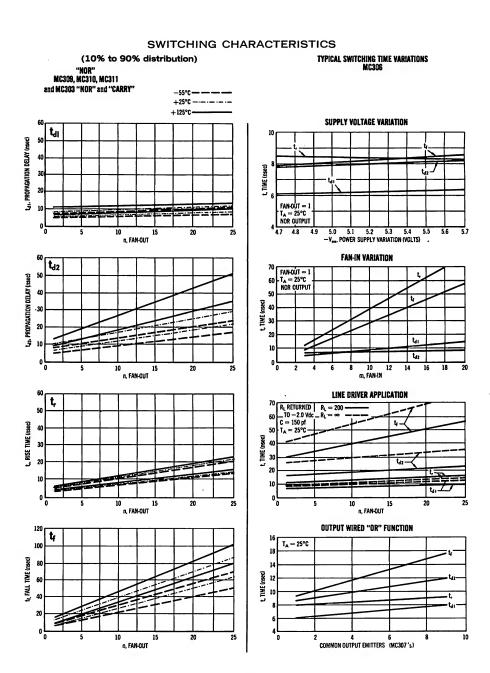
Propagation Delay								1	пвес
"NOR" Output	Fan-In = 1, Fan-Out = 1	ta:	4.5	8.0	5.0	8.5	6.5 6.5	9.5)
	Fan-In = 1, Fan-Out = 10		4.5	9.5	5.0	10.5	6.5	14.0	l
"OR" Output	Fan-In = 1, Fan-Out = 1	t _{as}	5.0	10.0	6.0	10.0	7.5	14.5	l
	Fan-In = 1, Fan-Out = 10		9.0	16.0	10.0	18.0	15.5	32.0	
"NOR" Output	Fan-In = 1, Fan-Out = 1	t _{d2}	5,5	9,5	8.0	10.0	8.0	13.0	ı
•	Fan-In = 1, Fan-Out = 10	"	9,0	18.0	10.5	20.0	15.0	29.0	l
"OR" Output	Fan-in = 1, Fan-Out = 1	t _{d2}	3.5	8.0	4.0	8.0	8.0	8.5	1
	Fan-In = 1, Fan-Out = 10	"	4.0	9.5	4.5	9.5	6.0	12.0	l
Rise Time		t _r			ŀ			Ì	nsec
"NOR" Output	Pan-In = 1, Fan-Out = 1		4.5	10.5	5.0	12.0	8.0	14.5	
"OR" Output	Fan-In = 1, Fan-Out = 1		3.0	7.0	3.5	7.5	5.0	8.0	1
							[1	ı
Fall Time "NOR" Output	Fan-In = 1, Fan-Out = 1	ų.	4.5	10.0	8.0	11.5	7.5	13.5	nsec
non ouque			""	10.0					1
"OR" Output	Fan-In = 1, Fan-Out = 1		4.0	9.5	5.0	11.0	7.5	14.5	ı


MC309, MC310, MC311 - "NOR" Output only

Propagation Delay									nse
Either Output	Fan-In = 1, Fan-Out = 1 Fan-In = 1, Fan-Out = 10	t _{d1}	4.5 5.0	8.5 10.0	5.0 5.5	9.0 11.0	6.0 7.0	12.0 13.0	itse
Either Output	Fan-In = 1, Fan-Out = 1 Fan-In = 1, Fan-Out = 10	t ₆₂	4.5 8.5	9.0 16.0	6.0 11.0	10.5 19.0	8.5 17.0	14.0 30.0	
Rise Time Either Output	Fan-In = 1, Fan-Out = 1	t _r	3.5	9.0	4.0	9.0	4.5	10.0	nse
Fall Time Either Output	Fan-In = 1, Fan-Out = 1	ty	5.5	12.0	8.0	14.0	9.0	17.0	nse


LOGIC GATES (CONTINUED)

SWITCHING CHARACTERISTICS (10% to 90% distribution)



LOGIC GATES (CONTINUED)

SWITCHING CHARACTERISTICS (10% to 90% distribution)

LOGIC GATES (CONTINUED)

MC303

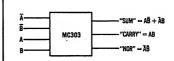
HALF-ADDER

Ō

2

 Provides the "SUM," "CARRY," and "NOR" Outputs for Use in Digital Computer Circuits over a Temperature Range of -55°C to +125°C.

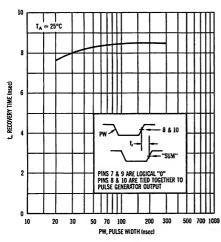
> ➂ ➂

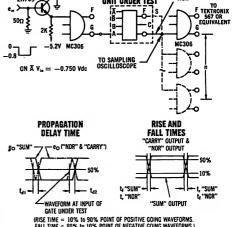

➂

Average Propagation Delay — 6 nsec

NOR

CIRCUIT SCHEMATIC


LOGIC SPECIFICATIONS



The "NOR" and "CARRY" outputs can be tied together to provide the "SUM" function. If complement inputs are not used an undefined state can occur. When all inputs are at a logical "O" Rci has two RE currents which saturates the Vm transistor. The "SUM" output goes to -2.3 Volts. The recovery time characteristics are shown in the curve below.

RECOVERY CHARACTERISTICS WITH SIMULTANEOUS "O" ON ALL INPUTS

SWITCHING TIMES TEST CIRCUIT

HALF-ADDER (CONTINUED)

ELECTRICAL CHARACTERISTICS $V_{11} = -5.2 \text{Vdc} = 1\%$, $V_{0c} = 0$ $V_{1a} = -1.25 \text{Vdc} \oplus -55^{\circ}\text{C}$ $V_{1a} = -1.15 \text{Vdc} \oplus +25^{\circ}\text{C}$ $V_{1a} = -1.00 \text{Vdc} \oplus +25^{\circ}\text{C}$ $V_{1a} = -1.00 \text{Vdc} \oplus +25^{\circ}\text{C}$

Test Conditions	Symbol mi	−55°C	25℃ min max	125°C	Unit	
-----------------	-----------	-------	----------------	-------	------	--

DC CHARACTERISTICS

"NOR" Logical "1" Output Voltage	Each Input: $V_{In} = -1.450 \text{ Vdc } \theta -55^{\circ}\text{C}$ $V_{In} = -1.350 \text{ Vdc } \theta +25^{\circ}\text{C}$ $V_{In} = -1.300 \text{ Vdc } \theta +125^{\circ}\text{C}$	v ₁	0.825	0.925	0.690	0.795	_ 0.545	_ 0.655	Vde
"NOR" Saturation Breakpoint Voltage	dV "NOR"/dvin = 0 for all test temperatures	v ₃	_	0.400	-	0.550	-	0.650	Vde
"NOR" Logical "O" Output Voltage	Each Input: $V_{in} = -0.925 \text{ Vdc } @ -55^{\circ}C$ $V_{in} = -0.795 \text{ Vdc } @ +25^{\circ}C$ $V_{in} = -0.655 \text{ Vdc } @ +125^{\circ}C$	V4	1.560	1.750	1.465	1.850	_ 1.390	_ 1.575	Vdc
"SUM" Logical "1" Output Voltage	Each Input: V _{in} = -0.925 Vdc @ -55°C V _{in} = -0.795 Vdc @ +25°C V _{in} = -0.855 Vdc @ +125°C	v ₅	0.825	0.925	0.890	0.795		0.655	Vdc
"SUM" Logical "O" Output Voltage	Each Input: V _{In} = -1.450 Vdc @ -55°C V _{In} = -1.350 Vdc @ +25°C V _{II} = -1.300 Vdc @ +125°C	v ₂	1.560	1.750	1.465	1.650	1.390	1.575	Vdc
Transition Region Slope	Between: V·guM·· = -1.050 and -1.450 Vdc @ -55°C V·guM·· = -0.950 and -1.350 Vdc @ -25°C V·guM·· = -0.820 and -1.220 Vdc @ +125°C	ΔV	Ξ	0.095	=	0.095	=		Vdc
"CARRY" Logical "1" Output Voltage	Each Input: V _{In} ~ -1.450 Vdc ⊕ -55 ⁰ C V _{In} = -1.350 Vdc ⊕ -25 ⁰ C V _{In} = -1.300 Vdc ⊕ -125 ⁰ C	v ₁	0.825	0.925	0.690	0.795	 0.545	0.655	Vdc
"CARRY" Logical "O"	Each Input: V _{In} = -0.925 Vdc @ -55°C V _{In} = -0.795 Vdc @ -25°C V _{In} = -0.855 Vdc @ +125°C	v ₄	1.560	1.750	1.465	1.650	1.390	1.575	Vde
"CARRY" Saturation Breakdown Voltage	dv "CARRY"/dvin = 0 for all test temperatures	v _s	_	0.400	-	0.550	_	0.850	Vdc
Total Unit Power Supply Current	All Inputs Open	ı _E	_	15.30	-	15. 30	_	14. 10	mAde

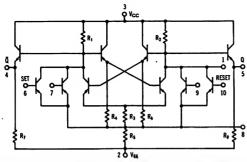
LOADING CHARACTERISTICS

"NOR" Output Voltage Change Between No Load and Full Load Conditions	All Inputs open No load = 0 current (pin 5) Full load = 2.5 mAdc (pin 5)	ΔV1	-	0.055	_	0.055	-	0.060	Vdc
"CARRY" Output Voltage Change Between No Load and Full Load Conditions	All inputs open No load = 0 current (pin 6) Full load = 2.5 mAdc (pin 6)	ΔV1	_	0.055	-	0.055	-	0.060	Vdc
"SUM" Output Voltage Change Between No Load and Full Load Conditions	No load = 0 current (pin 4) Full load = 2.5 mAdc (pin 4) Imput (pin 9): Vin = -0.925 Vdc @ -55°C Vin = -0.925 Vdc @ -55°C Vin = -0.855 Vdc @ +125°C	ΔV ₅	111	0.055	Ξ	0.055	1 1	 0.080	Vde

SWITCHING CHARACTERISTICS The stray capacitance introduced by the test jig was $C_S = (n + 12)$ pf where n = number of fan-outs.

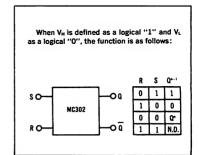
V_H = -0.870 Vdc, V_L = -1.650 Vdc @ -55°C V_H = -0.750 Vdc, V_L = -1.550 Vdc @ +25°C V_H = -0.600 Vdc, V_L = -1.450 Vdc @ +125°C

Propagation Delay Time "SUM" Output	Page 11 Page 11								nsec
	Fan-In = 1, Fan-Out = 1	l tai	6.0	12.0	7.0	12.0	11.0	17.0	
"NOR" Output	Fan-In = 1, Fan-Out = 1	l tai	4.5	6.5	5.0	9.0	6.0	12.0	
"CARRY" Output	Fan-In = 1, Fan-Out = 1	tai tai	4,5	8.5	5.0	9.0	6.0	12.0	
""SUM" Output	Fan-In = 1. Fan-Out = 1	t _{d2}	4.0	8.0	4.5	8.5	6.0	11.0	
"NOR" Output	Fan-In = 1, Fan-Out = 1	1 140	4.5	9.0	6.5	10.5	8.5	14.0	
"CARRY" Output	Fan-In = 1, Fan-Out = 1	t _{d2} t _{d2}	4.5	9.0	6.5	10.5	8.5	14.0	
Rise Time						ı		1	nsec
"SUM" Output	Fan-In = 1, Fan-Out = 1	t _r	4.0	10.0	4.5	10.5	6.0	15.0	
"NOR" Output	Fan-In = 1, Fan-Out = 1	1 6	3.5	9.0	4.0	9.0	4.5	10.0	
"CARRY" Output	Fan-In = 1, Fan-Out = 1	t _r	3.5	9.0	4.0	9.0	4.5	10.0	
Fall Time		1	1						nsec
"SUM" Output	Fan-In = 1. Fan-Out = 1	te	5.5	12.0	6.5	13.0	9.0	18.0	
"NOR" Output	Fan-In = 1, Fan-Out = 1	14	5.5	12.0	6.0	14.0	9.0	17.0	
"CARRY" Output	Fan-In = 1, Fan-Out = 1	1 2	5.5	12.0	6.0	14.0	9.0	17.0	


FLIP.FLOPS

MC302

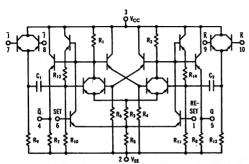
DC R-S ELIP-ELOP


 Performs the Binary Function of "Q" and "Q" Outputs at High Speeds over a Temperature Range of -55°C to +125°C

CIRCUIT SCHEMATIC

NOTE: Any unused inputs can normally be left open-circuited. In cases where there may be external leakage to the unused inputs they should be connected to V_{tt} .

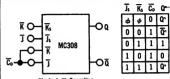
LOGIC SPECIFICATIONS



MC308

J-K FLIP-FLOP

• Performs the Single Phase Binary Function of "Q" and "Q" Outputs at High Speeds over a Temperature Range of -55°C to +125°C


CIRCUIT SCHEMATIC

NOTE: Any unused inputs can normally be left open-circuited. In cases where there may be external leakage to the unused inputs they should be connected to V_{II}.

LOGIC SPECIFICATIONS

When V_H is defined as a logical "1" and $V_{\rm L}$ as a logical "O", the function is as follows:

Clocked JK Operation

The \overline{J}_s and \overline{K}_s inputs refer to logic levels while the Co input refers to dynamic logic swings. The Js and Ks inputs would be changed to a logical "1" only while the Co input is in a logic "1" state.

Set-Reset operation is the same as the

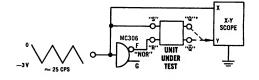
FLIP-FLOPS (CONTINUED)

ELECTRICAL CHARACTERISTICS Vit = -5.2 Vdc ±1%, Vcc = 0

(These characteristics apply to both the MC302 R-S Flip-Flop and the MC308 J-K Flip-Flop)

Test Conditions	Symbol	—55°C min max	25°C min max	125°C min max	Unit
-----------------	--------	------------------	-----------------	------------------	------

DC CHARACTERISTICS


''Q'' or ''Q'' Logical ''1'' Output Voltage	Each Input:(Set Input for Q, Reset Input for Q) V _{In} =-1.45 Vdc @ -55°C V _{In} =-1.350 Vdc @ -52°C V _{In} =-1.30 Vdc @ +125°C	v ₁	0.825	0.925	0.690	0.795 —	 0.545	 0.655	Vdc
"Q" or "Q" Logical "0" Output Voltage	Each Input:(Set Input for Q, Reset Input for \widetilde{Q}) $V_{in} = -1.45 \text{ Vdc } \oplus -55^{\circ}C$ $V_{in} = -1.350 \text{ Vdc } \otimes 25^{\circ}C$ $V_{in} = -1.30 \text{ Vdc } \otimes +125^{\circ}C$	v ₂	1.560	1.750 —	1.465 —	1.650	1.390	_ 1.575	Vdc
"Q" or "Q" Saturation Breakpoint Voltage	dV "Q"/dV _{in} = 0; dV "Q"/dV _{in} = 0	v ₃	-	0.50	-	0.65	-	0.75	Vdc
''Q'' or ''Q'' Latch Voltage	dV1/dVin ≈ ∞	v _L	1.17	1.33	1.09	1.21	0.94	1.06	Vdc
Total Power Supply Current Drain (MC302)	All Inputs Open	I _E	-	10.35	-	10.35	-	9.52	mAde
Total Power Supply Current Drain (MC308)	All Inputs Open	ı _E	-	16.0	-	16.0	-	14.7	mAde

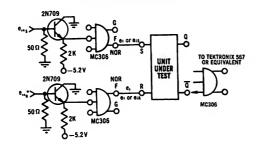
LOADING CHARACTERISTICS

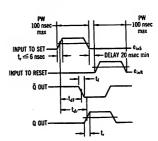
"Q" Output Voltage Change	All Inputs Open, measured and full load No load - 0 current (pin 5) Full load = 2.5 mAdc ½ 5 Vin (pin 6) = -0.925 Vdc Vin (pin 6) = -0.955 Vdc Vin (pin 6) = -0.655 Vdc	% (pin 5) @ -55°C @ 25°C	ΔV1	 <u>=</u>	0.055	=	0.055	=	 0.060	Vdc
"Ğ" Output Voltage Change	All Inputs Open, measured load. V _{in} at pin 10 for M No load = 0 current (pin 4) Full load = 2.5 mAde = 5 V _{in} = -0.925 Vdc @ -55 V _{in} = -0.795 Vdc @ 25 °C V _{in} = -0.795 Vdc @ 25 °C V _{in} = -0.655 Vdc @ +125	C302, pin 1 for MC308 % (pin 4) C	ΔV ₁] =	0.055 —		0.055	Ξ	 0.060	Vdc
Output Vollage at Max I _{in}	Set "Q" to upper state: Vin (μin 6) = -0.228 Vdc Vin (μin 6) = -0.785 Vdc Vin (μin 6) = -0.955	@ 25°C @ +125°C	v ₁	0.825	0.925	0.690	0.795	 0.545	0.655	Vdc

TRANSFER CHARACTERISTICS

*FOR "Q" TESTS REVERSE "S" & "R" CONNECTIONS

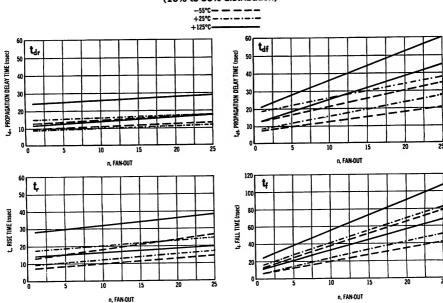
FLIP-FLOPS (CONTINUED)


MC302


SWITCHING CHARACTERISTICS $V_{CC} = 0$, $V_{EI} = -5.2$ Volts, (all =1%), $V_{V_{II}} = -0.870$ Vdc, $V_{I_I} = -0.870$ Vdc, $V_{I_I} = -0.870$ Vdc, $V_{I_I} = -0.750$ Vdc, $V_{I_I} = -0.750$ Vdc, $V_{I_I} = -0.650$ Vdc,

		Symbol	-5.	5°C	5°C 25°C		125°C		Unit
Test	Conditions	Symbol	mia	max	min	max	min	max	
Propagation Delay Time	Either Output (Fan-In = 1, Fan-Out = 1) Either Output (Fan-In = 1, Fan-Out = 1)	t _{dr}	7.5 7.0	13.0 14.0	8.0 7.5	14.0 19.5	10.5 13.0	24.0 21.0	nsec
Rise Time	Either Output (Fan-In = 1, Fan-Out = 1)	L	6.0	14.0	8.0	18.0	13.0	29.0	nsec
Fall Time	Either Output (Fan-In = 1, Fan-Out = 1)	t _r	6.0	13.0	6.5	17.0	12.0	24.0	nsec

SWITCHING TIME TEST CIRCUIT


SWITCHING TIME TEST PROCEDURE

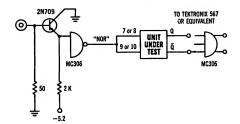
SWITCHING CHARACTERISTICS

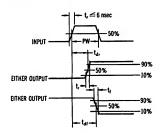
(10% to 90% distribution)

----- Motorola Integrated Circuits -----

MC300 MECL series (continued)

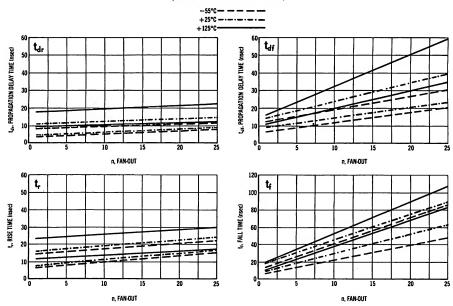
FLIP-FLOPS (CONTINUED)


MC308


SWITCHING CHARACTERISTICS $V_{CC}=0$, $V_{H}=-5.2$ Volts, (ell =1%), $V_{H}=-0.870$ Vdc, $V_{L}=-1.850$ Vdc @ $-55^{\circ}C$ The strey capacitance introduced by the test [ig was $C_{L}=0.000$ Vdc, $V_{H}=-0.600$ Vdc, $V_{L}=-1.450$ Vdc @ $+22^{\circ}C$ $V_{H}=0.600$ Vdc, $V_{L}=-1.450$ Vdc @ $+125^{\circ}C$

Test	Conditions	Symbol	−55°C		2	5°C	12	5°C	Unit
	Conditions	Symbol	min	max	min	max	min	max	Unit
Propagation Delay Time	Either Output (Fan-In = 1, Fan-Out = 1) Either Output (Fan-In = 1, Fan-Out = 1)	tdr tdf	3.5 5.0	9.5 13.0	4.0 7.0	11.0 14.0	9.0 8.5	18.5 17.0	nsec nsec
Rise Time	Either Output (Fan-In = 1, Fan-Out = 1)	٠,	6.5	15.0	7.0	16.0	11.5	24.0	nsec
Fall Time	Either Output (Fan-In = 1, Fan-Out = 1)	ų	6.0	16.0	7.0	18.0	10.0	32.0	nsec

SWITCHING WAVEFORMS


SWITCHING TIME TEST CIRCUIT

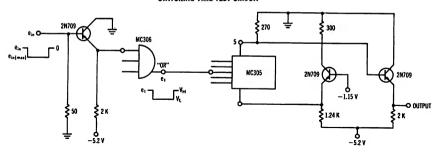
SWITCHING CHARACTERISTICS

(10% to 90% distribution)

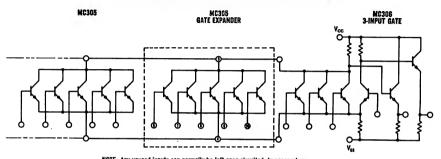
MC305

GATE EXPANDER

Designed primarily for use in conjunction with the MOTOROLA MC306 and MC 307 "MECL" 3-INPUT LOGIC GATES. Each expander unit increases the fan-in of the basic gate by five.


ELECTRICAL CHARACTERISTICS

Total	Test Conditions		Symbol -55°C		2	5°C	12	Unit	
1621	Conditions	Symbol	min	max	min	max	min	max	URIT
Base Leakage Current	V _{EE} = 2.0 Vdc, V _{CC} = 0, V _{BB} = -5.2 Vdc	IBL	-	0.5	-	0.5	-	5.0	μAde
Input Voltage	V _{CB} = 0.7 Vdc, V _B = 0, I _E = -1.33 mAdc	v _{BE}	0,810	0.870	0.680	0.720	0.490	0.530	Vdc
Collector Leakage Current	V _{CC} = -2 Vdc, V _{BE} = 0.3 Vdc (all inputs), V _{EE} = 0	1 _{CEX}	-	1.0	-	1.0	-	100.0	μAde


SWITCHING CHARACTERISTICS (See page)

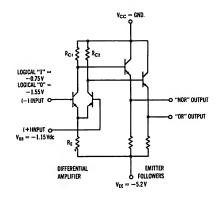
Propagation Delay	t _{d1}	3.5 4.5	8.0 9.5	4.0 5.0	8.5 10.0	5.5 7.0	9.5 13.0	nsec
Rise Time	t _r	4.5	10.5	5.0	11.5	5.5	14.5	пѕес
Fall Time	ų	3.5	10.0	4.0	11.5	5.5	13.5	nsec

SWITCHING TIME TEST CIRCUIT

CIRCUIT SCHEMATIC AND INTERCONNECTION TO MC306 3-INPUT GATE

NOTE: Any unused inputs can normally be left open-circuited. In cases where there may be external leakage to the unused inputs they should be connected to V_{cc} .

MECL MC350 series


The MECL* series of integrated logic circuits forms a versatile set of monolithic digital building blocks representing all the necessary circuitry for the arithmetic portion of a computer. MECL circuits combine extremely high speed with a systems-oriented design approach that permits implementation with the fewest possible number of individual devices. This represents both a cost saving and a potential increase in system reliability. The major features of the MECL series are:

- 5 nsec propagation delay per logic decision
- Virtually constant noise immunity with ±10% power supply variation, and temperature changes from 0 to +75°C
- Simultaneous "OR"-"NOR" or "AND"-"NAND" outputs
- · High fan-in and fan-out capabilities

MECL* integrated circuits are used in various combinations to provide such intermediate system blocks as adders, counters, shift registers, decoders, multivibrators, etc. They provide a line of monolithic computer circuits designed analytically and practically to meet the stringent demands of the most advanced computer systems. The series is comprised of the following elements:

- MC351 A high-speed five-input gate element that provides the positive logic "OR" function and its complement simultaneously.
- MC352 A DC Set-Reset flip-flop with an expandable input and the power dissipation of only one gate.
- MC353 A half-adder that provides the "SUM", "CARRY", and "NOR" function simultaneously.
- MC354 A bias driver that compensates for changes in circuit parameters with temperature.
- MC355 A five-input expander for use with the MC352 and the MC356,7.
- MC356,7 A high-speed expandable threeinput gate element that provides the positive logic "OR" function and its complement simultaneously.
- MC358 A clocked J-K flip-flop for counter and shift register applications with DC Set and Reset inputs.
- MC359,60,61 A high-speed dual twoinput gate element that provides the positive logic "NOR" function.
- MC362 A high-speed dual three-input gate element that provides the positive logic "NOR" function.

BASIC MECL CIRCUIT

FOR LOGICAL "1" INPUT; "NOR" OUTPUT = -1.55 V "OR" OUTPUT = -0.75 V

FOR LOGICAL"O" INPUT; "NOR" OUTPUT = -0.75 V
"OR" OUTPUT = -1.55 V

MECL - A CURRENT MODE SWITCH

The typical MECL* circuit is designed with a differential amplifier input and emitter-follower output to restore de levels. The circuit has been designed to prevent saturation of the input transistors, thus eliminating storage time and allowing for high-speed operation with non-critical transistor parameters. High fan-out operation is permitted due to the low impedance emitter-follower and the high-input impedance of the circuit. The basic gate has both the function and its complement available simultaneously. Since the current in the differential amplifier is switched from one side to the other, there is virtually no power supply noise generated.

The circuit operation is straight-forward. A fixed blas of -1.15 volts is applied to the (+) input of the differential amplifier and the logic signals are applied to the (-) input. If a logical "0" is applied to the (-) input, the current through R_i is supplied by the fixed blased transistor. A drop of 800 mV occurs across R_c. The "OR" output then is -1.55V, or one V_{II}-drop below 800 mV. Since no current flows in the (-) input transistor, the "NOR" output is a V_{II}-drop below ground, or -0.75 volts. When a logical "1" level is applied to the (-) input transistor and a drop of 800 mV occurs across R_c. The "OR" output then goes to -0.75 volts and the "NOR" output goes to -1.55 volts.

A blas driver is supplied to insure that the threshold point is always in the center of the transition region. The bias driver compensates for temperature changes and is designed to track with temperature.

*Trademark of Motorola Inc.

10 PIN TO-5

12 PIN TO-5 (MC362G ONLY)

10 PIN FLAT PACKAGE

14 PIN FLAT PACKAGE (MC362F ONLY)

CASE 71

CASE 98

CASE 83

CASE 72

FAMILY CHARACTERISTICS

The following information applies to all devices of the MECL family. It is intended to provide the design engineer with meaningful information for worst-case analyses. Parameters of importance are guaranteed at three temperature levels: room, and the extremes for which the family is

designed. All performance curves are based on distributional spreads and the minimum-maximum ranges can be interpreted for design purposes as 10%-90% spreads at all points on the curve except for guaranteed points on the electrical characteristics.

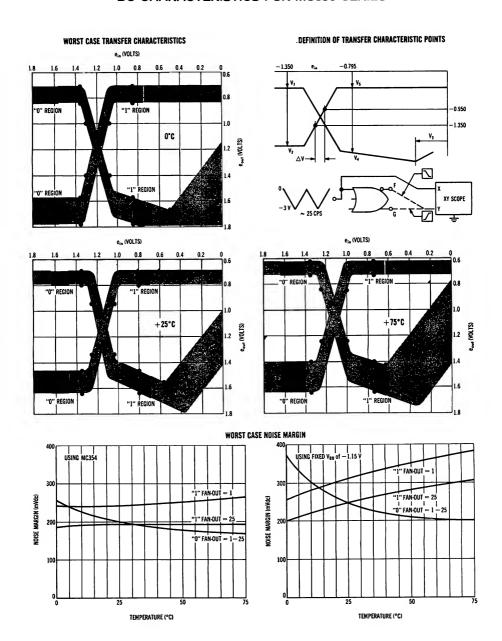
ABSOLUTE MAXIMUM RATINGS (at 25°C)

Characteristics	Symbol	Maximum	Unit
Logic Input Voltage	_	5	Vde
Power Supply Voltage	_	10	Vdc
Output Source Current	ī _o	10	mAde
Operating Temperature Range	т	0 to +75	°c
Storage Temperature Range	T _{stg}	-40 to +150	°c

SYSTEM LOGIC SPECIFICATIONS

Any one of the supply nodes, $V_{\rm B}$, $V_{\rm CC}$, or $V_{\rm B}$ may be used as ground; however, the manufacturer has found it most convenient to ground the $V_{\rm CC}$ node. In such a case:

$$V_{cc} = 0$$
 $V_{ss} = -1.15V$ $V_{tt} = -5.2V$

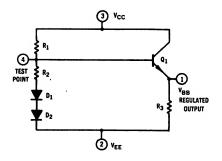

The output logic swing of 0.8V then varies from a low state of $V_L = -1.55V$ to a high state of $V_R = -0.75V$ with respect to ground.

Positive logic is used when reference is made to logical "O's" or "1's". Then

$$"0" = -1.55V \\ "1" = -0.75V$$
 typical

Dynamic logic refers to a change of logic states. Dynamic "0" is a negative going voltage excursion and a dynamic "1" is a positive going voltage excursion.

DC CHARACTERISTICS FOR MC350 SERIES


MC354 BIAS DRIVER

A temperature compensating regulator intended for use in conjunction with the MOTOROLA MC350 "MECL" series of INTEGRATED LOGIC CIRCUITS. Insures stable and reliable operation of "MECL" logic systems over a temperature range of 0 to +75°C.

ELECTRICAL CHARACTERISTICS

Test Conditions		Cumbal	Symbol 0°C		25°¢		75°C		Units
1031	Conditions	Symbol	min	max	min	max	min	max	Oillis
Fan-Out	_	n	-	25	-	25	_	25	_
Output Voltage (No Load to Full Load)	V _{CC} = 0, V _{EE} = -5.2 Vdc ± 1%, l _{out} = 0 to 2.5 mAdc	v _{BB}	1.14	1.27	1.09	1.22	1.04	4.18	Vdc
Power Dissipation	V _{CC} = 0, V _{EE} = -5.2 Vdc ± 1%	PD	-	25	-	24	_	22	m₩

CIRCUIT SCHEMATIC

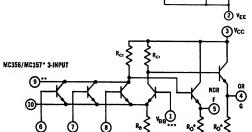
CIRCUIT DESCRIPTION

Circuit Operation:

The divider network R_i, R_i, D_i, D_i compensates for temperature variations of the base-emitter voltages of Q_i , and of the driven gates, producing a bias voltage for the MECL logic circuits that maintains a constant set of dc operating conditions over the temperature range of 0 to $\pm 75^{\circ}$ C. In addition, compensation for power supply variations is achieved, since the bias output voltage is derived from the system supply.

Either of the supply voltage nodes may be used as ground, however the ground potential of the bias driver must coincide with that of the logic system. Thus, if $V_{\rm cc}$ is grounded in the logic system, then —

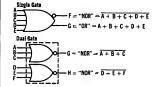
$$\begin{array}{ccc} V_{cc}=0; & V_{ee}=-5.2V; \\ V_{to}=-1.15 \text{ nominal output voltage at } 25\,^{\circ}\text{C} \end{array}$$


MC351, MC356, MC357, MC359 thru MC362

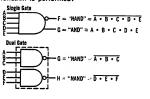
⊙v_{cc}

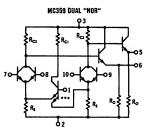
LOGIC GATES

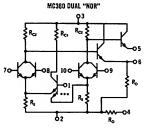
CIRCUIT SCHEMATICS


MC351 5-INPUT R_{C1} R_{C1} R_{C1} R_{C2} R_{C3} R_{C4} R_{C3} R_{C4} R

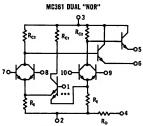
LOGIC SPECIFICATIONS


POSITIVE LOGIC

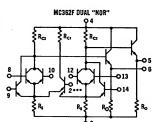

When V_H is defined as a logical "1" and V_L as a logical "0" the "OR"/"NOR" function is performed:

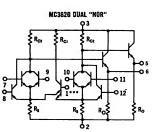


NEGATIVE LOGIC


Inversely, when V_H is defined as a logical "0" and V_L as a logical "1" the "AND"/"NAND" function is performed:

② v_{ee}

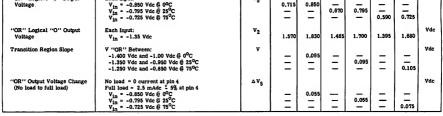


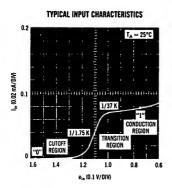

*Resistors R_O are omitted in MC357 circuits to permit reduction of Power Dissipation in systems where logic operations are performed at circuit outputs.

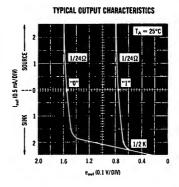
EXAMPLE: where (n) gates are to perform an "OR" function, one MC356 gate and (n-1) MC357 gates can be used to provide savings of Power Dissipation in (n-1) gates.

• Pins 9 and 10 are for use in conjunction with the MC355 input expander to increase the fan-in capability in increments of five.

**To be supplied from bias-driver circuit MC354 for optimum temperature stability. NOTE: Any unused inputs can normally be left open-circuited, in cases where there may be external leakage to the unused in puts they should be connected to V_{II}.

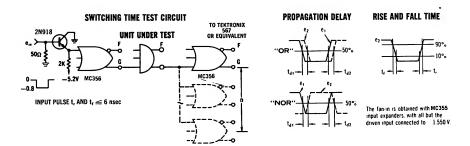




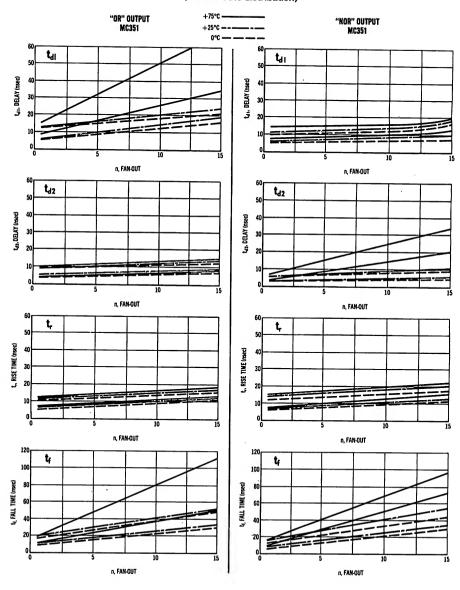

LOGIC GATES (CONTINUED)

DC ELECTRICAL CHARACTERISTICS: $v_{cc} = 0$, $v_{tt} = -5.2$ volts, (all = 1%), $v_{tt} = -1.18$ v/ce @ 0°C $v_{tt} = -1.15$ v/ce $v_{tt} = -1.15$ v/ce $v_{tt} = -1.15$ v/ce $v_{tt} = -1.15$ v/ce $v_{tt} = -1.15$ v/ce $v_{tt} = -1.15$ v/ce $v_{tt} = -1.16$ v/ce

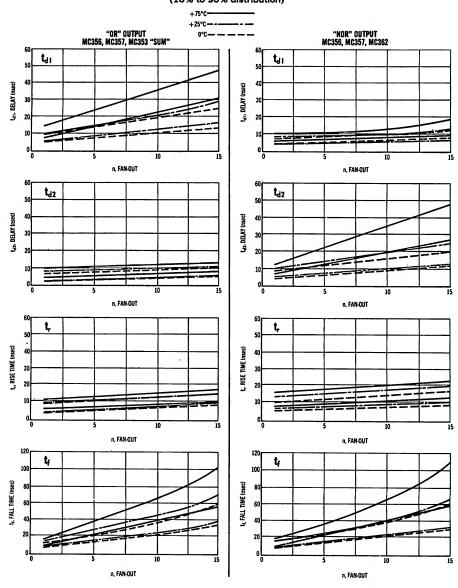
•	ehv	6	0°	C	25	C T	75°	C	Units
Test	Conditions	Symbol	min	max	min	max	min	max	Units
Total Unit Power Supply Current Drain	All inputs open MC351, MC358 MC357 MC359, MC360, MC362 MC381	IE	1111	9.25 3.8 13.55 10.5	1111	8.85 3.6 13.0 10.1	1111	8.15 3.3 12.0 9.25	mAd
Input Current	V _{1 min} € 25°C	I _{in}	_	-	-	100	_	-	μAdı
Fan-In		m	-	_	_	23	_	_	
Fan-Out		n n	_		_	25	_	_	
NOR" OUTPUT - A	II Types								
"NOR" Logical "O" Output Voltage	Each Input: Vin = -1.350 Vdc	v ₁	0.715	0.850	0.670	0.795	0.590	0.725	Vdc
"NOR" Logical "O" Output Voltage	Each Input: Vin = -0.850 Vdc @ 0°C Vin = -0.795 Vdc @ 25°C Vin = -0.725 Vdc @ 75°C	v ₄	1.570	1,830	1.465	1.700	 1.395	_ 1.680	Vdc
"NOR" Saturation Breakpoint Voltage	dv "NOR" = 0	v ₃	-	0.51	-	0.55	_	0.63	Vdc
"NOR" Output Voltage Change (No load to full load)	All inputs open No load = 0 current at pin 5 Full load = 2.5 mAdc = 5% at pin 5	ΔV ₁	_	0.055	_	0.055	-	0.075	Vdc
OR" OUTPUT - Ty	pes MC351, MC356, MC357	only							
"OR" Logical "1" Output Voltage	Each Input: Vin = -0.850 Vdc @ 0°C Vin = -0.795 Vdc @ 25°C Vin = -0.725 Vdc @ 75°C	v ₅	0.715 —	0.850	0.670	0.795 —	_ 0.590	_ 0.725	Vdc
		I			l	ı	1	ı	l



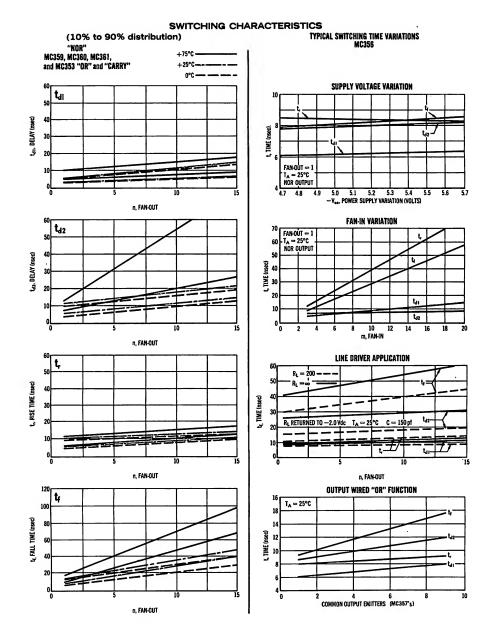
LOGIC GATES (CONTINUED)


SWITCHING CHARACTERISTICS: $v_{CC} = 0$, $v_{H} = -5.2$ volts, (all 1%), $v_{H} = -1.18$ Vdc, $v_{H} = -0.790$ Vdc, $v_{i} = -1.640$ Vdc \otimes 0°C. The strey capacitance introduced by the test jig was: $v_{H} = -1.18$ Vdc, $v_{H} = -1.18$ Vdc, $v_{H} = -1.850$ Vdc, $v_{H} = -1.850$ Vdc \otimes +25°C \otimes +1.18 Vdc, $v_{H} = -1.650$ Vdc, $v_{H} = -1.650$ Vdc \otimes +25°C \otimes +1.18 Vdc, $v_{H} = -1.650$ Vdc \otimes +1.18 Vdc, $v_{H} = -1.650$ Vdc \otimes +1.18 Vdc, $v_{H} = -1.650$ Vdc \otimes +1.18 Vdc, $v_{H} = -1.650$ Vdc \otimes +1.18 Vdc, $v_{H} = -1.650$ Vdc \otimes +1.18 Vdc, $v_{H} = -1.650$ Vdc \otimes +1.18 Vdc, $v_{H} = -1.650$ Vdc \otimes +1.18 Vdc, $v_{H} = -1.650$ Vdc \otimes +1.18 Vdc, $v_{H} = -1.650$ Vdc \otimes +1.18 Vdc, $v_{H} = -1.650$ Vdc \otimes +1.18 Vdc, $v_{H} = -1.650$ Vdc \otimes +1.18 Vdc, $v_{H} = -1.650$ Vdc, $v_{H} = -1.650$ Vdc \otimes +1.18 Vdc, $v_{H} = -1.650$ Vdc,

*	Conditions	Symbol	0°	C	25	s°C	75	°C	Units
Test	Conditions	Symbol	min	max	min	max	min	max	Uinis
MC351 (See curv	es page 7)								
Propagation Delay "NOR" Output	Fan-In = 1, Fan-Out = 1 Fan-In = 1, Fan-Out = 10	t _{a1}	3.0 4.0	10.0 13.0	4.0 5.0	11.0 15.0	5.0 6.0	13.0 17.0	nsec
"OR" Output	Fan-In = 1, Fan-Out = 1 Fan-In = 1, Fan-Out = 10	t _{d1}	3.0 8,0	12.0 20.0	4.0 9.0	12.0 21.0	5.0 15.0	17.0 58.0	
"NOR" Output	Fan-In = 1, Fan-Out = 1 Fan-In = 1, Fan-Out = 10	^t d2	3.0 6.0	11.0 17.0	4.0 7.0	15.0 20.0	5.0 15.0	16.0 50.0	
"OR" Output	Fan-In = 1, Fan-Out = 1 Fan-In = 1, Fan-Out = 10	t _{d2}	3.0 3.0	9.0 12.0	4.0 4.0	9.0 12.0	5.0 5.0	11.0 14.0	
Rise Time "NOR" Output	Fan-In = 1, Fan-Out = 1	t _r	3.0	12.0	4,0	14.0	5.0	15.0	nsec
"OR" Output	Fan-In = 1, Fan-Out = 1		3.0	11.0	4.0	12.0	5.0	14.0	
Fall Time "NOR" Output "OR" Output	Fan-in = 1, Fan-Out = 1 Fan-in = 1, Fan-Out = 1	t _r	3.0 3.0	14.0 14.0	4.0 4.0	15.0 15.0	5.0 5.0	16.0 16.0	nsec
AC356, MC357 -	"NOR" AND "OR" Output; MC	362 - "NO	R" O	utput	only	<u> </u>			
Propagation Delay "NOR" Output	Fan-In = 1, Fan-Out = 1 Fan-In = 1, Fan-Out = 10	^t d1	3.0 4.0	8.0 11.0	4.0 5.0	5.0 11.0	5.0 6.0	11.0 14.0	nsec
"OR" Output	Fan-In = 1, Fan-Out = 1 Fan-In = 1, Fan-Out = 10	t _{d1}	3,0 8,0	9.0 19.0	4.0 9.0	10.0 20.0	5.0 15.0	15.0 37.0	
"NOR" Output	Fan-in = 1, Fan-Our = 1 Fan-in = 1, Fan-Out = 10	t _{d2}	3.0 6.0	10.0 17.0	4.0 7.0	11.0 21.0	5.0 15.0	13.0 36.0	
"OR" Output	Fan-in = 1, Fan-Out = 1 Fan-in = 1, Fan-Out = 10	t _{d2}	3.0 3.0	8.0 11.0	3.0 4.0	8.0 11.0	4.0 5.0	11.0 13.0	
Rise Time "NOR" Output	Fan-In = 1, Fan-Out = 1	tr	3.0	11.0	4.0	12.0	5,0	15.0	nsec
"OR" Output	Fan-In = 1, Fan-Out = 1		3.0	9.0	3.0	10.0	5.0	11.0	
Fall Time "NOR" Output	Fan-In = 1, Fan-Out = 1	tı	3.0	12.0	4.0	14.0	5.0	16.0	nsec
"OR" Output	Fan-In = 1, Fan-Out = 1		3.0	11.0	4,0	14.0	5.0	16.0	
MC359, MC360,	MC361 - "NOR" Output only								
Propagation Delay "NOR" Output	Fan-In = 1, Fan-Out = 1 Fan-In = 1, Fan-Out = 10	taı	3.0 3.0	9,0 11.0	3.0 5.0	10.0 12.0	4.0 6.0	12.0 15.0	nsec
"NOR" Output	Fan-In = 1, Fan-Out = 1 Fan-In = 1, Fan-Out = 10	t _{d2}	3.0 6.0	10.0 16.0	5.0 7.0	11.0 19.0	5.0 15.0	14.0 55.0	
Rise Time "NOR" Output	Fan-In = 1, Fan-Out = 1	t _r	3.0	9.0	4.0	10.0	4.0	12.0	nsec nsec
Fall Time "NOR" Output	Fan-In = 1, Fan-Out = 1	t _f	3.0	12.0	4.0	14.0	5.0	17.0	nsec

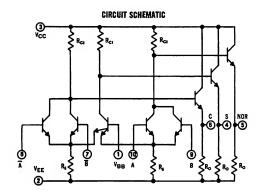

LOGIC GATES (CONTINUED)

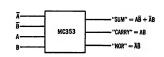
SWITCHING CHARACTERISTICS (10% to 90% distribution)



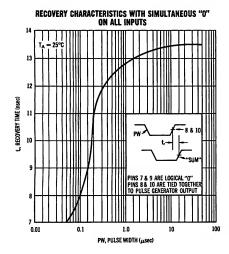
LOGIC GATES (CONTINUED)

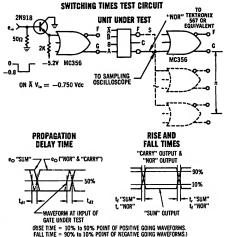
SWITCHING CHARACTERISTICS (10% to 90% distribution)


LOGIC GATES (CONTINUED)


MC353

HALF-ADDER


- Provides the "SUM," "CARRY," and "NOR" Outputs for Use in Digital Computer Circuits over a Temperature Range of 0 to +75°C.
- Average Propagation Delay 6 nsec



LOGIC SPECIFICATIONS

The "NOR" and "CARRY" outputs can be tied together to provide the "SUM" function. If complement inputs are not used an undefined state can occur. When all inputs are at a logical "O" Rc. has two Rc currents which saturates the V₈ transistor. The "SUM" output goes to —2.3 Volts. The recovery time characteristics are shown in the curve below.

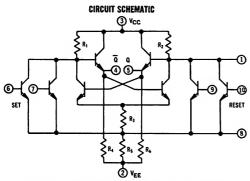
HALF-ADDER (CONTINUED)

ELECTRICAL CHARACTERISTICS: V_{II} = -5.2 Vdc±1%, V_{CC} = 0 V_{II} = -1.18 Vdc@0°C V_{II} = -1.15 Vdc@ 425°C V_{II} = -1.08 Vdc@ 475°C V_{II} = -1.08 Vdc@ 475°C

Test	Conditions	Symbol	0		25			5°C	Uni
		-7	min	max	min	max	min	max	L
CHARACTERISTI					- 			T	· · · ·
'NOR'' Logical ''1'' Output Voltage	V _{in} = -1.350 Vdc each input	v ₁	0.715	0.850	0,670	0.795	0.590	0.725	Ve
'NOR" Saturation Breakpoint Voltage	<u>dV "NOR"</u> = 0	v ₃	-	0.510	-	0.550	-	0.630	Ve
'NOR'' Logical ''0'' Output Voltage	Each Input: Vin = -0.850 Vdc @ 0°C Vin = -0.795 Vdc @ 25°C Vin = -0.725 Vdc @ 75°C	V ₄	1.570	1.830	1.465	1,700	1.395	1,680	Vd
"SUM" Logical "1" Output Voltage	Each Input: Vin = -0.850 Vdc @ 0°C Vin = -0.795 Vdc @ 25°C Vin = -0.725, Vdc @ 75°C	v ₅	0.715 	0.850	0.670	0.795	0,590	_ 0.725	V
"SUM" Logical "O"	V _{in} = -1.350 Vdc each input	v ₂	1.570	1.830	1.465	1.700	1.395	1.680	-
Output Voltage Fransition Region Slope	Between: V''SUM'' = -1.000 and -1.400 Vdc @ 0°C V''SUM'' = -0.950 and -1.350 Vdc @ 25°C V''SUM'' = -0.850 and -1.250 Vdc @ 75°C	ΔV	Ξ	0.095	Ξ	0.095	Ξ	0.105	v
'CARRY'' Logical ''1'' Output Voltage	V _{in} = -1.350 Vdc each input	v ₁	0.715	0.850	0.670	0.795	0.590	0.725	v
"CARRY" Logical :'0" Output Voltage	Each Input: Vin = -0.850 Vdc @ 0°C Vin = -0.795 Vdc @ 25°C Vin = -0.725 Vdc @ 75°C	v ₄	1.570	1.830	1,465	1.700	1.395	1.680	V.
'CARRY'' Saturation Breakpoint Voltage	dv "CARRY" = 0	v ₃	-	0.510	-	0.550	-	0.630	v
Fotal Unit Power Supply Current	All Inputs Open	1 _E	-	15.9	-	15.30	-	14.10	m.
ADING CHARACT	ERISTICS		-						
'NOR" Output Voltage Change Between No Load and Full Load Conditions	All Inputs open No load = 0 Current (pin 5) Full load = 2.5 mAdc (pin 5)	ΔV1	-	0.055	-	0.055	-	0.075	V
"CARRY" Output Voltage Change Between No Load and Full Load Conditions	All Inputs open No load = 0 current (pin 6) Full load = 2.5 mAdc (pin 6)	ΔV ₁	-	0.055	-	0.055	-	0.075	v
"SUM" Output Voltage Change Between No Load and Full Load Conditions	No load = 0 current (pin 4) Full load = 2.5 mAdc (pin 4) Input (pin 9):	ΔV ₅		0.055			_		'
	V _{in} = -0.850 Vdc @ 0°C V _{in} = -0.795 Vdc @ 25°C V _{in} = -0.725 Vdc @ 75°C		ΙΞ	-	ΙΞ	0.055	Ξ	0.075	

The stray capacitance introduced by the test jig was:

V_H = -0.750 Vdc, V_L = -1.540 Vdc @ 0°C V_H = -0.750 Vdc, V_L = -1.550 Vdc @ +25°C V_H = -0.675 Vdc, V_L = -1.500 Vdc @ +75°C

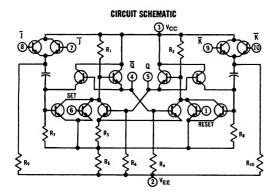

C; = (n + 12) pf where n = number of fan-outs.		VH a = 0.075 Vac, V(2 = 2.500 Vac @ 775 C							
Propagation Delay Time "SUM" Output "NOR" Output "CARRY" Output	Fan-In = 1, Fan-Out = 1 Fan-In = 1, Fan-Out = 1 Fan-In = 1, Fan-Out = 1	t ₄₁	3.0 3.0 3.0	12,0 8.5 8.5	4.0 3.0 3.0	12,0 9,0 9,0	5.0 4.0 4.0	17,0 12,0 12,0	nsec
"SUM" Output "NOR" Output "CARRY" Output	Fan-In = 1, Fan-Out = 1 Fan-In = 1, Fan-Out = 1 Fan-In = 1, Fan-Out = 1	td2 td2 td2	3.0 3.0 3.0	8.0 9.0 9.0	3.0 4.0 4.0	8,5 10,5 10,5	4.0 5.0 5.0	12.0 14.0 14.0	
Rise Time "SUM" Output "NOR" Output "CARRY" Output	Fan-In = 1, Fan-Out = 1 Fan-In = 1, Fan-Out = 1 Fan-In = 1, Fan-Out = 1	tr tr tr	3.0 3.0 3.0	10.0 9.0 9.0	4.0 4.0 4.0	10.5 10.0 10.0	5.0 4.0 4.0	15.0 15.0 15.0	nsec
Fall Time "SUM" Output "NOR" Output "CARRY" Output	Fan-In = 1, Fan-Out = 1 Fan-In = 1, Fan-Out = 1 Fan-In = 1, Fan-Out = 1	ty ty ty	3.0 3.0 3.0	12.0 12.0 12.0	4.0 4.0 4.0	14.0 14.0 14.0	5.0 5.0 5.0	18.0 17.0 17.0	nsec

FLIP-FLOPS

MC352

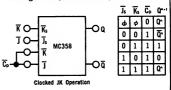
DC R-S FLIP-FLOP

Performs the Binary Function of "Q" and " \overline{Q} " Outputs at High Speeds over a Temperature Range of 0 to +75°C.


NOTE: Any unused inputs can normally be left open-circuited. In cases where there may be external leakage to the unused inputs they should be connected to \mathbf{V}_{EE} .

MC358

J-K FLIP-FLOP


Performs the Single Phase Binary Function of "Q" and " \bar{Q} " Outputs at High Speeds over a Temperature Range of 0 to +75°C.

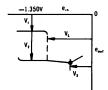
NOTE: Any unused inputs can normally be left open-circuited. In cases where there may be external leakage to the unused inputs they should be connected to \mathbf{V}_{EE} .

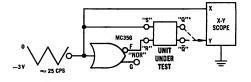
LOGIC SPECIFICATIONS

When V_H is defined as a logical "1" and V_L as a logical "0", the function is as follows:

The J_s and \overline{K}_s inputs refer to logic levels while the \overline{C}_p input refers to dynamic logic swings. The J_s and K_s inputs would be changed to a logical "1" only while the \overline{C}_p input is in a logic "1" state.

Set-Reset operation is the same as the MC352.

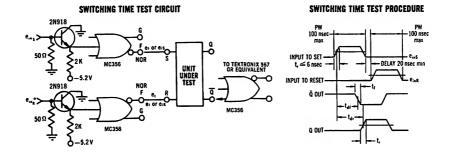

FLIP-FLOPS (CONTINUED)


MC352, MC358

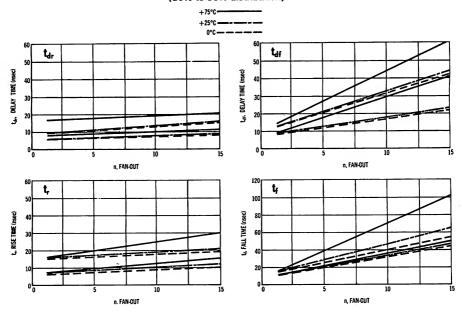
ELECTRICAL CHARACTERISTICS: V ₄	= -5.2 Vdc ±1%, V~ = 0
---	------------------------

Test	Test Conditions		0		25			5°C	Units
		Symbol	min	max	min	max	min	max	J
DC CHARACTERISTIC	cs								
"Q" or "Q" Logical "1" Output Voltage	Each Input: Vin = -1.350 Vdc	v ₁	0.715	0.850	0.670	0.795	0,590	0.725	Vdc
"Q" or "Q" Logical "0" Output Voltage	Each Input: Vin = -1.350 Vdc	v ₂	1.570	1,830	1.465	1.700	1.395	1.680	Vdc
"Q" or "Q" Saturation Breakpoint Voltage	dV "Q"/dV _{in} = 0; dV "Q"/dV _{in} = 0	V ₃	-	0.61	-	0.65	-	0.73	Vdc
''Q''or''Q'' Latch Voltage (MC352)	dV ₁ /dV _{in} ≈ ∞ dV ₁ /dV _{in} ∞	V _L	1.11 1.11	1.34 1.25	1.09 1.09	1,30 1,21	1.02 1.02	1,23 1,14	Vdc Vdc
Total Power Supply Current	All Inputs Open	1 _E	- 1	9.3		8.90	_	8.30	mAde
LOADING CHARACTE	RISTICS								
"Q" Output Voltage Change	All Inputs Open, measured between no load and full load 'In (pin 6) = -0.850 Vdc @ 0°C 'In (pin 6) = -0.785 Vdc @ 25°C 'In (pin 6) = -0.725 Vdc @ 25°C 'In (pin 6) = -0.725 Vdc @ 75°C No load = 0 current (pin 5) Full load = 2.5 midc = '5% (pin 5)	ΔV1	Ξ	0.075	Ξ	0.075	Ξ	0,065	Vdc
"Q̃" Output Voltage Change	All Inputs Open, measured between no load and Full load, V _{In} at pin 10 for MC352, pin 10 for MC358 s V _{In} = -0.850 Vdc @ 0°C Vin = -0.85 Vdc @ 25°C Vin = -0.735 Vdc @ 72°C Vin = -0.735 Vdc @ 72°C No load - 0 current (pin 4) Full load = 2.5 mAdc 1°S (pin 4)	ΔV1		0.075	=	0.075	Ξ	_ 0,085	Vdc
Output Voltage at Max I _{In}	Set ''Q'' to upper state: Via '' = -0.550 Vac (pin 8) @ 0°C Via '' = -0.755 Vac (pin 8) @ 25°C Via '' = -0.755 Vac (pin 8) @ 75°C Remove Via '' Then Imput '' 120 µAdd '11,8 @ 0°C 100 µAdd '13,	v ₁	0.715	0.650 <u>—</u>	0.670	0.795	0.590	 0.725	Vdc

TRANSFER CHARACTERISTICS


*FOR "Q" TESTS REVERSE "S" & "R" CONNECTIONS

FLIP-FLOPS (CONTINUED)

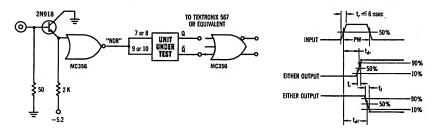

MC352

SWITCHING CHARACTERISTICS: $V_{CC} = 0$, $V_{EI} = -5.2$ Volts, (all $\pm 1\%$), $V_{H} = -0.790$ Vdc, $V_{L} = -1.640$ Vdc \oplus 0°C The stray capacitance introduced by the test jig was; $V_{H} = -0.750$ Vdc, $V_{L} = -1.550$ Vdc \oplus +25°C \oplus 1 in unimber of fan-outs. $V_{H} = -0.675$ Vdc, $V_{L} = -1.500$ Vdc \oplus +75°C

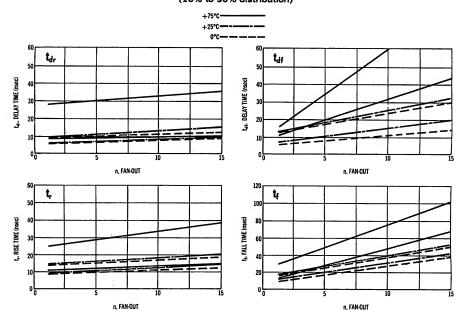
Test	Conditions	Symbol	0	°C	2	5°C	75	°C	Units
1051	Conditions	Зушьог	min	max	min	max	min	max	Omi
Propagation Delay Time	Either Output (Fan-In = 1, Fan-Out = 1) Either Output (Fan-In = 1, Fan-Out = 1)	t _{dr} t _d	4.0 4.0	10.0 14.0	5.0 5.0	11.0 15.0	6.0 6.0	17.0 17.0	nsec
Rise Time	Either Output (Fan-In = 1, Fan-Out = 1)	tr	4,0	16.0	5.0	17.0	6.0	18.0	nsec
Fall Time	Either Output (Fan-In = 1, Fan-Out = 1)	t _f	4.0	16.0	5.0	18.0	6.0	21.0	nsec

SWITCHING CHARACTERISTICS (10% to 90% distribution)

FLIP-FLOPS (CONTINUED)


MC358

 $\begin{aligned} & \textbf{SWITCHING CHARACTERISTICS:} \ v_{\text{CC}} = 0, v_{\text{EI}} = -5.2 \ \text{Volta}, \ (\text{ell} = 1\%), \ v_{\text{H}} = -0.790 \ \text{Volc}, v_{\text{L}} = -1.840 \ \text{Volc} \oplus 0^{\circ}\text{C} \\ & \text{The stray capacitance introduced by the test } \ |_{\text{E}} \ \text{ verse}, \\ & \text{C}_{\text{H}} = (-0.790 \ \text{Volc}, v_{\text{L}} = -1.8500 \ \text{Volc}, \psi_{\text{C}} = -1.8500 \ \text{Volc} \oplus 279^{\circ}\text{C} \\ & \text{C}_{\text{H}} = (-0.790 \ \text{Volc}, v_{\text{L}} = -1.8500 \ \text{Volc}, \psi_{\text{C}} = -1.8500 \ \text{Volc}, \psi$


Test	Conditions	Symbol	0℃		25°C		75°C		Units	
1631	Conditions	Зуныог	min	max	min	max	min	max		
Propagation Delay Time	Either Output (Fan-In = 1, Fan-Out = 1) Either Output (Fan-In = 1, Fan-Out = 1)	t _{dr}	4.0 4.0	11.0 13.0	5. 0 5. 0	15.0 16.0	6. 0 6. 0	30.0 18.0	nsec nsec	
Rise Time	Either Output (Fan-In = 1, Fan-Out = 1)	t _r	4.0	15.0	5.0	15.0	6.0	27.0	nsec	
Fall Time	Either Output (Fan-In = 1, Fan-Out = 1)	tf	4.0	16.0	5.0	16.0	6,0	35.0	nsec	

SWITCHING TIME TEST CIRCUIT

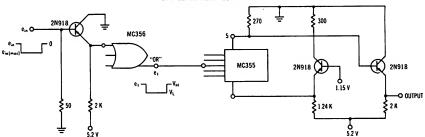
SWITCHING WAVEFORMS

SWITCHING CHARACTERISTICS (10% to 90% distribution)

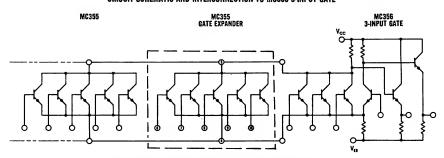
MC355

GATE EXPANDER

Designed primarily for use in conjunction With the MOTOROLA MC356 and MC357 "MECL" 3-INPUT LOGIC GATES. Each expander unit increases the fan-in of the basic gate by five.

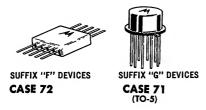

ELECTRICAL CHARACTERISTICS

Test	Conditions	Symbol	0	°C	2	5°C	7	5℃	Units
1031	Conditions	Jymbo	min	max	min	max	min	max	Units
Base Leakage Current	V _{EE} = -2.0 Vdc, V _{CC} = 0, V _{BB} = -5.2 Vdc	IBL	_	0.5	_	0.5	_	2.0	μ Adc
Input Voltage	V _{CB} = -0.7 Vdc, V _B = 0, •I _E = -1.33 mAde	V _{BE}	0.730	0.770	0,680	0.720	0.580	0.620	Vde
Collector Leakage Current	V _{CC} = -2 Vdc, V _{BE} = 0.3 Vdc (All inputs), V _{FF} = 0	ICEX	-	1.0	-	1.0	-	15.0	μ Adc


SWITCHING CHARACTERISTICS

Propagation Delay	^t d1 ^t d2	3.0 3.0	8.0 11.0	3.0 4.0	9.0 11.0	4.0 5.0	11.0 13.0	nsec
Rise Time	te	3.0	12.0	4.0	13.0	5.0	15.0	nsec
Fall Time	t _f	3.0	13.0	4.0	14.0	5.0	16.0	nsec

SWITCHING TIME TEST CIRCUIT



CIRCUIT SCHEMATIC AND INTERCONNECTION TO MC356 3-INPUT GATE

NOTE: Any unused inputs can normally be left open-circuited. In cases where there may be external leakage to the unused inputs they should be connected to V_{EL} .

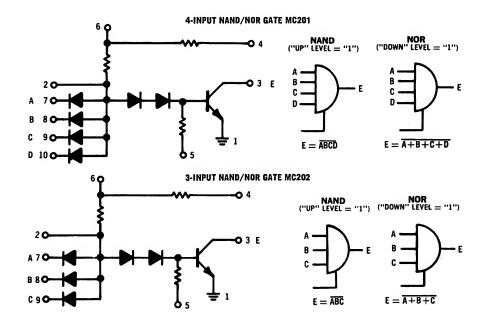
MC 200 DTL series

Monolithic integrated Diode Transistor Logic circuits for low-power, high-speed applications. The MC200 series provides a high noise immunity of 0.5 Volts and operates over the temperature range of -55 to ± 125 C.

SERIES MC200 DTL INTEGRATED CIRCUITS

		Typical Propagation	Maxi Power Di		Maximum
Туре	Description	Delay (nsec)	Output Off (mW)	Output On (mW)	Fan Out (—55 to +125°C)
MC201	4-Input NAND/NOR Gate	30	8. 5	6	5
MC202	3-Input NAND/NOR Gate	30	8.5	6	5
MC203	6-Input Diode AND Gate	_	_	_	-
MC204	3-Input Power NAND/NOR Gate	40	20	60	20
MC205	Line Driver	50	30	60	20(MC201) 15(MC209)
MC206	Dual (2-2) Input NAND/NOR Gat	e 30	17	12	5
MC207	Dual (3-2) Input NAND/NOR Gat	e 30	17	12	5
MC208	Dual (3-2) Input NAND/NOR Gate	e 30	17	12	5
MC209	Flip-Flop	_	16	16	8
MC212	Dual (3-3) Input NAND/NOR Gate	e 30	15	12	5
MC213	Dual (3-3) Input NAND/NOR Gate	e 30	15	30	4
MC215	Dual (3-3) Input AND Gate	_	-	-	-
MC217	Dual-Diode Array	<u>-</u> .	_	_	_

мс **201** мс **202**


MC200 DTL SERIES

4-Input and 3-Input Diode Transistor Logic NAND/ NOR Gates.

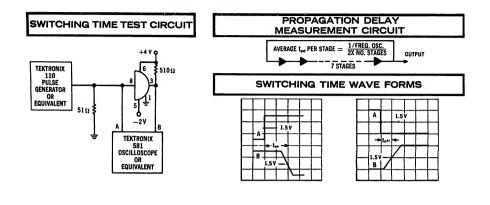
MAXIMUM RATINGS (TA = 25°C unless otherwise noted)

Characteristic	Symbol	Rating	Unit
Applied Voltage			Volts
	V3,4,6	+8	
	$\mathbf{v_5}$	-8	
	V ₅ V ₇ thru 10	+6	
Forward Current	I ₂ thru 10	30	mA
Operating Temperature Range	T _J	-55 to +125	°C
Storage Temperature Range	T _{stg}	-65 to +175	°C

MC201, MC202 (continued)

ELECTRICAL CHARACTERISTICS

• ($V_6 = 4 \text{ Vdc}$, $V_5 = 2 \text{ Vdc}$, $V_1 = 0$, $T_J = 25 ^{\circ}\text{C}$ unless otherwise noted)


Characteristic	Symbol	Min	Тур	Max	Unit
Output Saturation Voltage (I ₃ = 10 mAdc, V ₇ thru 10 = 2 Vdc, T _J = -55 to +125°C)	v ₃	. 1	-	0.6	Vdc
Output Breakdown Voltage $(I_3 = 1 \mu Adc, V_{1,5,6} = 0)$	BV3	8	-	_	Vdc
Output Sustaining Voltage (I ₃ = 10 mAdc, V _{1,5,6} = 0)	LV3	5	_	_	Vdc
Output Leakage Current (V ₇ = 0.7 Vdc, V 8,9,10 = 2 Vdc, V ₃ = 5 Vdc) (V ₇ = 0.7 Vdc, V 8,9,10 = 2 Vdc, V ₃ = 5 Vdc, T _J = 125°C)	I ₃	=	_	0.5 50	μAdc
Input Diode Leakage Current** (Diode under test at 5 Vdc, all other inputs = 0) (Diode under test at 5 Vdc, all other inputs = 0, T _T = 125 °C)	I _{7 thru 10}	_	_	0.25 25	μAdc
Turn-Off Current at Input ** (V7 thru 10 = 0) (V7 thru 10 = 0, T _J = -55 to +125°C) (V ₂ = 0)	I ₇ thru 10 I ₇ thru 10 I ₂	-1.4 -1.6	 	-1.8 -1.9 -2.4	mAdc
Load Resistor Current (V ₄ = 0)	I ₄	-1.6	_	-2.4	mAdc
Output Capacitance (V ₃ = 4 Vdc, V _{in} = 25 mVrms, f = 1 mc, unused pins grounded)	c ₃	-	_	15	pf
Input Capacitance** (V ₇ thru 10 = 4 Vdc, V _{in} = 25 mVrms, f = 1 mc, unused pins grounded)	C _{7 thru 10}	_	_	8	pf
Power Consumption from Power Supply (Output "Off", V7 = 0) (Output "On")		=	_	8.5 6.0	mW
Switching Time Turn-On Delay Turn-Off Delay	t _{on} toff	=	=	60 50	nsec
Average Propagation Delay	pd	-	30	_	nsec
Fan-Out (T _J = -55 to +125°C)	n	_	_	5	_

^{*} Numerical subscripts refer to pin numbers. Pins not specifically referenced are left electrically open.

^{**} Input diode at pin 10 available on MC201 only

----- Motorola Integrated Circuits

MC201, MC202 (continued)

мс 203

MC200 DTL SERIES

6-Input Diode Transistor Logic AND Gate.

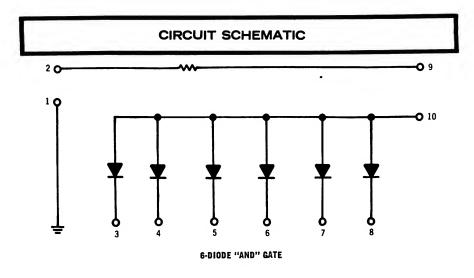
MAXIMUM RATINGS (TA = 25°C)

Characteristics	Symbol	Rating	Unit
Applied Voltage			Vdc
	V	+8	
	V ₃ thru 8 V _{2, 9}	±8	
Forward Current	I ₂ thru 10	30	mAdc
Operating Temperature Range	$T_{\mathbf{J}}$	-55 to +125	°С
Storage Temperature Range	Tstg	-65 to +175	°C

* Numerical subscripts refer to pin numbers.

----- Motorola Integrated Circuits -----

MC203 (continued)


ELECTRICAL CHARACTERISTICS (TJ = 25°C unless otherwise noted)

Characteristics	Symbol	Min	Тур	Max	Unit
Diode Breakdown Voltage (I_3 thru $8 = 10 \mu\text{Adc}$, $V_{10} = V_1 = 0$)	V _{3 thru 8}	8	-		Vdc
Diode Forward Voltage (I ₁₀ = 2 mAdc, V _{3 thru 8} = 0)	v ₁₀	<u>.</u>	-	0.85	Vdc
Diode Reverse Leakage Current (V ₃ thru 8 = 5 Vdc, V ₁₀ = V ₁ = 0) (V ₃ thru 8 = 5 Vdc, V ₁₀ = V ₁ = 0, T _J = 125°C)	I ₃ thru 8	-	-	0. 25 25	μAdc
Input Capacitance $(V_{3 \text{ thru } 8} = 2 \text{ Vdc}, V_{10} = V_{1} = 0, f = 1 \text{ mc},$ $V_{in} = 25 \text{ mVrms, unused inputs grounded})$	C _{3 thru 8}	-		10	pf
Reverse Recovery Time (I _{F 3 thru 8} = I _{R 3 thru 8} = 2 mAdc, V ₁₀ = V ₁ = 0, recover to 0.2 mAdc)	trr 3 thru 8	-		4	nsec
Resistor Current (V ₉ = 4 Vdc, V ₂ = 0)	19	1.6	-	2.4	mAdc
Resistor Temperature Coefficient		-	0.1	-	%/°C
Diode Forward Conductance Change with Temperature	ΔV _{F 3 thru 8}	-	-1.7	-	mV/°C

^{*} Numerical subscripts refer to pin numbers.

Pins not specifically referenced are left electrically open.

MC203 (continued)

мс 204

MC200 DTL SERIES

3-Input Diode Transistor Logic NAND/NOR Power Gate.

MAXIMUM RATINGS (TA = 25°C)

Characteristic	Symbol	Rating	Unit
Applied Voltage	V ₃ , 7, 8, 9 V ₅ V ₆	+8 -6 +6	Vdc
Forward Current	I _{5 thru} 10	30	mAdc
Load Current		75	mAdc
Operating Temperature Range	T _J	-55 to +125	°C
Storage Temperature Range	T _{stg}	-65 to + 175	°C

^{*} Numerical subscripts refer to pin numbers.

--- Motorola Integrated Circuits -----

MC204 (continued)

ELECTRICAL CHARACTERISTICS

(V6 = 4 Vdc, V5 = 2 Vdc, V1 = 0, TJ = 25 °C unless otherwise noted)

Characterístic	Symbol	Min	Тур	Max	Unit
Output Breakdown Voltage (I ₃ = 5 μAdc, V ₇ = 0)	BV3	8		-	Vdc
"1" Output Current (V ₇ , 8, or 9 = 1.1 Vdc, V ₃ = 5 Vdc)	I ₃	-	-	100	μAdc
$(V_{7, 8, \text{ or } 9} = 0.7 \text{ Vdc}, V_3 = 5 \text{ Vdc}, T_{J} = 125 \text{ C})$ $(V_{7, 8, \text{ or } 9} = 1.4 \text{ Vdc}, V_3 = 5 \text{ Vdc}, T_{J} = -55^{\circ}\text{C})$		-	-	100 100	
"0" Output Current	I ₃	40	┝		m Adc
$(V_{7, 8, \text{ or } 9} = 1.7 \text{ Vdc}, V_{3} = 0.6 \text{ Vdc})$ $(V_{7, 8, \text{ or } 9} = 1.3 \text{ Vdc}, V_{3} = 0.6 \text{ Vdc}, T_{J} = 125^{\circ}\text{C})$		40		Ι.	
(V ₇ , 8, or 9 = 2.0 Vdc, V ₃ = 0.6 Vdc, T _J = -55°C)		40	-	-	
Input Breakdown Voltage (I ₇ = 10 µAdc, V ₈ = 0)	BV ₇	8.0			Vdc
$(I_8 = 10 \ \mu Adc, \ V_7 = 0)$	BV ₈	8.0	-	۱-	
$(I_9 = 10 \ \mu Adc, \ V_7 = 0)$	BV ₉	8.0	-	-	
Input Leakage Current (V ₇ = 5 Vdc, V ₈ = 0)	1,			0.25	μAdc
$(V_7 = 5 \text{ Vdc}, V_8 = 0, T_J = 125 \text{ C})$	1,7	-	۱-	25	ļ
$(V_8 = 5 \text{ Vdc}, V_7 = 0)$	18	-	-	0.25	İ
$(V_8 = 5 \text{ Vdc}, V_7 = 0, T_J = 125 \text{ C})$	I ₈	-	-	25	ĺ
$(V_9 = 5 \text{ Vdc}, V_7 = 0)$	I ₉	-	-	0.25	
(V ₉ = 5 Vdc, V ₇ = 0, T _J = 125°C)	I ₉	-		25	
Input Turn-Off Current (Alternately, V ₇ , V ₈ , V ₉ = 0)	I _{7.} I _{8.} I ₉		-	-3.75	mAdc
(Alternately, V_7 , V_8 , $V_9 = 0$, $T_J = -55^{\circ}C \text{ to } +125^{\circ}C$)	I ₇ , I ₈ , I ₉			-3.9	İ
$(v_{10} = 0)$	I ₁₀	-	_	-4.8	l
Output Capacitance ($V_3 = 2.0 \text{ Vdc}$, $V_{in} = 25 \text{ mVrms}$, $f = 1 \text{ mc}$, unused pins grounded)	C	-	-	15	pf
Input Capacitance $(V_7 = 2.0 \text{ Vdc}, V_{in} = 25 \text{ mVrms}, f = 1 \text{ mc}, \text{ unused pins grounded})$					pf
(V ₈ = 2.0 Vdc, V _{in} = 25 mVrms, f = 1 mc, unused pins grounded)	с ₇ с ₈	_		10 10	
$(V_9 = 2.0 \text{ Vdc}, V_{in} = 25 \text{ mVrms}, f = 1 \text{ mc}, \text{ unused pins grounded})$	C ₉	-		10	
Power Supply (Output "OFF", V ₇ = 0)		_		20	mW
(Output "ON")				60	
Switching Times Turn-On Delay	,				nsec
Turn-Off Delay	ton toff	:		35 90	
Average Propagation Delay (Figure 2)	t _{pd}	-	40	-	nsec
Fan-Out (to MC201, T _J = -55°C to + 125°C)	n		-	20	

^{*}Numerical subscripts refer to pin numbers. Pins not specifically referenced are left electrically open.

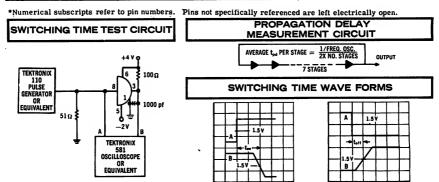
MC204 (continued)

MC **205** LINE DRIVER

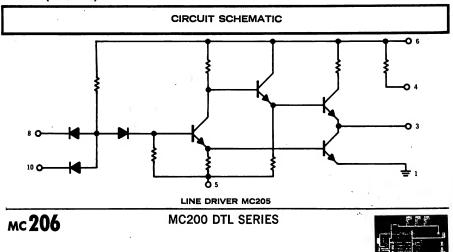
MC200 DTL SERIES

Diode Transistor Logic Line Driver.

MAXIMUM RATINGS (TJ = 25°C)

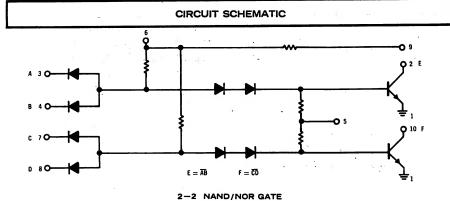

Characteristic	Symbol	Rating	Unit
Applied Voltage	V _{3, 4, 6}	+6	Vdc
,	v ₅	-6	
	v _{8, 10}	+8	
Forward Current	I _{5, 8, 10}	30	mAdc
Load Current	I _{3, 4, 6}	75	mAdc
Operating Temperature Range	T _J	-55 to +125	°C
Storage Temperature Range	T _{stg}	-65 to +175	°C

--- Motorola Integrated Circuits -----


MC205 (continued) ELECTRICAL CHARACTERISTICS

* ($V_b = 4 \text{ Vdc}$, $V_s = 2 \text{ Vdc}$, $V_i = 0$, $T_J = 25 ^{\circ}\text{C}$ unless otherwise noted)

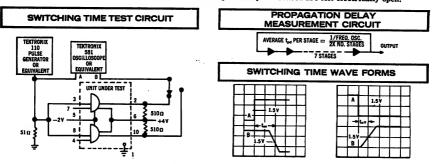
Characteristic	Symbol	Min	Тур	Max	Unit
Output Saturation Voltage (I ₃ = 40 mAdc, T _J = -55°C to +125°C)	v ₃	-	_	0.6	Vdo
Output Voltage, "Off" Level (I ₃ = 10 mAdc, V ₈ = 0.7 Vdc, T _J = -55°C to +125°C)	v ₃	2.0	_	_	Vdo
Input Breakdown Voltage ($t_8 = 10 \mu Adc$, $V_{10} = 0$) ($t_{10} = 10 \mu Adc$, $V_8 = 0$)	BV ₈	8.0 8.0	-	-	Vd
Input Leakage Current $(V_8 = 5 \text{ Vdc}, V_{10} = 0)$ $(V_8 = 5 \text{ Vdc}, V_{10} = 0, T_J = 125^{\circ}\text{C})$ $(V_{10} = 5 \text{ Vdc}, V_8 = 0)$ $(V_{10} = 5 \text{ Vdc}, V_8 = 0, T_J = 125^{\circ}\text{C})$	I ₈ I ₁₀ I ₁₀	-	-	0.25 25 0.25 25	u Ad
Turn-Off Current at Inputs (V ₈ = 0) (V ₈ = 0, T _J = -55 to + 125°C) (V ₁₀ = 0) (V ₁₀ = 0, T _J = -55 to + 125°C)	I ₈ I ₈ I ₁₀ I ₁₀	-	- - -	-3.75 -3.9 -3.75 -3.9	mAc
Load Resistor	R ₆₋₄	-	125	-	ohn
Input Capacitance $(V_8 = 2 \text{ Vdc}, V_{in} = 25 \text{ mVrms}, f = 1 \text{ mc}, \text{ unused pins grounded})$ $(V_{10} = 2 \text{ Vdc}, V_{in} = 25 \text{ mVrms}, f = 1 \text{ mc}, \text{ unused pins grounded})$	C ₈	-	-	10 10	pf
Power Consumption from Power Supply (Output "Off", V ₈ = 0) (Output "On")		-	-	30 60	mV
Switching Times Turn-On Delay Turn-Off Delay	t _{on}	-		90 50	nse
Average Propagation Delay (C _L = 1000 pf)	t _{pd}	-	50	-	nse
Fan-Out (to MC201, $T_J = -55$ to + 125°C) (to MC209, $T_J = -55$ to + 125°C)	n		-	20 15	



MC205 (continued)

 $\label{eq:Dual} Dual~(2-2)~Input~Diode~Transistor~Logic~NAND/NORGate.$ MAXIMUM RATINGS (TJ = 25°C unless otherwise noted)

Characteristic	Symbol	Rating	Unit
Applied Voltage	V _{2,3,4,6} thru 10 V ₅	+8 -8	Vdc
Forward Current	I _{2,10} I ₂ thru 4, 7 thru 10	+30 -30	mAde
Operating Temperature Range	T _J	-55 to +125	°C
Storage Temperature Range	T _{stg}	-65 to +175	°C


MC206 (continued)

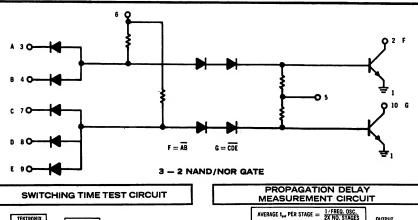
ELECTRICAL CHARACTERISTICS

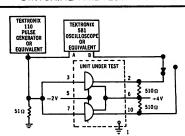
* ($V_6 = 4 \text{ Vdc}$, $V_5 = 2 \text{ Vdc}$, $V_1 = 0$, $T_J = 25$ °C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
Output Breakdown Voltage $(L_2 = 1 \mu A dc, V_3 = 0)$ $(L_{10}^2 = 1 \mu A dc, V_7 = 0)$	BV ₂ BV ₁₀	8 8	-	=	Vdc
"1" Output Current (V ₃ = 1.1 Vdc, V ₂ = 5 Vdc (V ₃ = 0.7 Vdc, V ₂ = 5 Vdc, T _J = +125°C) (V ₃ = 1.4 Vdc, V ₂ = 5 Vdc, T _J = -55°C) (V ₇ = 1.1 Vdc, V ₁₀ = 5 Vdc) (V ₇ = 0.7 Vdc, V ₁₀ = 5 Vdc, T _J = 125°C) (V ₇ = 1.4 Vdo, V ₁₀ = 5 Vdc, T _J = -55°C)	I ₂ I ₂ I ₂ I ₁₀ I ₁₀ I ₁₀			50 50 50 50 50 50	μAdc
"0" Output Current $(V_3 = 1.7 \text{ Vdc}, V_2 = 0.6 \text{ Vdc})$ $(V_3 = 1.3 \text{ Vdc}, V_2 = 0.6 \text{ Vdc}, T_1 = 125^{\circ}\text{C})$ $(V_3 = 2.0 \text{ Vdc}, V_2 = 0.6 \text{ Vdc}, T_2 = -55^{\circ}\text{C})$ $(V_7 = 1.7 \text{ Vdc}, V_1^2 = 0.6 \text{ Vdc})$ $(V_7 = 1.3 \text{ Vdc}, V_{10} = 0.6 \text{ Vdc}, T_2 = 125^{\circ}\text{C})$ $(V_7 = 2.0 \text{ Vdc}, V_{10} = 0.6 \text{ Vdc}, T_3 = -55^{\circ}\text{C})$	I ₂ I ₂ I ₂ I ₁₀ I ₁₀ I ₁₀	10 10 10 10 10			mAdc
Input Breakdown Voltage $(1_2 = 10 \ \mu Adc, \ V_4 = 0)$ $(1_3 = 10 \ \mu Adc, \ V_3 = 0)$ $(1_7 = 10 \ \mu Adc, \ V_8 = 0)$ $(1_8 = 10 \ \mu Adc, \ V_7 = 0)$	B V ₃ B V ₄ B V ₇ B V ₈	8 8 8 8	:	:	Vdc
Input Leakage Current (Diode under test at 5 Vdc, all other inputs = 0) (Diode under test at 5 Vdc, all other inputs = 0, T _J = 125°C)	1 ₃ , 1 ₄ , 1 ₇ , 1 ₈	:	:	0.250 25	μAdc
Input Turn-Off Current (Alternately V ₃ , V ₄ , V ₇ , V ₈ = 0) (Alternately V ₃ , V ₄ , V ₇ , V ₈ = 0, T _J = -55 to +125°C)	I ₃ , I ₄ , I ₇ , I ₈	:	:	-1.8 -1.9	mAdc
Output Capacitance ($V_2 = 2.0$ Vdc, $V_3 = 0$, $V_{in} = 25$ mVrms, $f = 1$ mc, unused pins grounded) ($V_{10} = 2.0$ Vdc, $V_7 = 0$, $V_{in} = 25$ mVrms, $f = 1$ mc, unused pins grounded)	C ₂ C ₁₀	:	:	10 10	pf
Input Capacitance	C ₃ C ₄ C ₇ C ₈		:	10 10 10 10	pf
Load Resistor Current (V ₉ = 0)	19	-1.6	-	-2.4	mAdc
Power Consumption from Power Supply (Output "Off", V ₃ = V ₇ = 0) (Output "On")		-	-	17 12	mW
Switching Times Turn-On Delay Turn-Off Delay	t on off			60 50	nsec
Average Propagation Delay	t pd	-	30	-	nsec
Fan-Out (T _J = -55 to +125°C)	n	-	-	5	

*Numerical subscripts refer to pin numbers. Pins not specifically referenced are left electrically open.

MC200 DTL SERIES




Dual (3-2) Input Diode Transistor Logic NAND/NOR Gate.


MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Characteristic	Symbol	Rating	Unit
Applied Voltage			Vdc
	^V 2,3,4,6 thru 10	+ 8	
	v_5	-8	
Forward Current		A-11-11-11-11-11-11-11-11-11-11-11-11-11	mAdc
	^I 2, 10	+ 30	
	^I 2 thru 4, 7 thru 10	-30	
Operating Temperature Range	T _J	-55 to +125	°C
Storage Temperature Range	T _{stg}	-65 to +175	°C

CIRCUIT SCHEMATIC

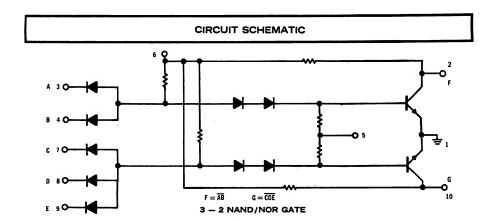
MC207 (continued)

ELECTRICAL CHARACTERISTICS *

 $(V_0 = 4 \text{ Vdc}, V_2 = -2 \text{ Vdc}, V_1 = 0; T_J = 25^{\circ}\text{C unless otherwise noted})$

Characteristic	Symbol	Min	Тур	Max	Unit
Output Breakdown Voltage ($I_2 = 1 \mu Adc$, $V_3 = 0$) ($I_{10} = 1 \mu Adc$, $V_7 = 0$)	BV ₂ BV ₁₀	8	=	=	Vdc
"1" Output Current $ (V_3 = 1.1 \text{ Vdc}, V_2 = 5 \text{ Vdc} $ $ (V_3 = 0.7 \text{ Vdc}, V_2 = 5 \text{ Vdc}, T_J = 125^{\circ}\text{C}) $ $ (V_3 = 1.4 \text{ Vdc}, V_2 = 5 \text{ Vdc}, T_J = -55^{\circ}\text{C}) $ $ (V_7 = 1.1 \text{ Vdc}, V_{10} = 5 \text{ Vdc}) $ $ (V_7 = 0.7 \text{ Vdc}, V_{10} = 5 \text{ Vdc}, T_J = 125^{\circ}\text{C}) $ $ (V_7 = 1.4 \text{ Vdc}, V_{10} = 5 \text{ Vdc}, T_J = -55^{\circ}\text{C}) $	I ₂ I ₂ I ₂ I ₁₀ I ₁₀ I ₁₀	=======================================	=======================================	50 50 50 50 50 50	μAdo
"0" Output Current $ \begin{aligned} & (V_3 = 1.7 \text{ Vdc}, V_2 = 0.6 \text{ Vdc}) \\ & (V_3 = 1.3 \text{ Vdc}, V_2 = 0.6 \text{ Vdc}, T_J = 125^{\circ}\text{C}) \\ & (V_3 = 2.0 \text{ Vdc}, V_2 = 0.6 \text{ Vdc}, T_J = -55^{\circ}\text{C}) \\ & (V_7 = 1.7 \text{ Vdc}, V_{10} = 0.6 \text{ Vdc}) \\ & (V_7 = 1.3 \text{ Vdc}, V_{10} = 0.6 \text{ Vdc}) \\ & (V_7 = 2.0 \text{ Vdc}, V_{10} = 0.6 \text{ Vdc}, T_J = 125^{\circ}\text{C}) \end{aligned} $	I ₂ I ₂ I ₂ I ₂ I ₁₀ I ₁₀ I ₁₀ I ₁₀	10 10 10 10 10 10			μAde
Input Breakdown Voltage $(I_3 = 10 \ \mu Adc, V_4 = 0)$ $(I_4 = 10 \ \mu Adc, V_3 = 0)$ $(I_7 = 10 \ \mu Adc, V_8 = 0)$ $(I_8 = 10 \ \mu Adc, V_7 = 0)$ $(I_9 = 10 \ \mu Adc, V_7 = 0)$	BV ₃ BV ₄ BV ₇ BV ₈ BV ₉	8 8 8 8	11111	11111	Vdc
Input Leakage Current (Diode under test at 5 Vdc, all other inputs = 0) (Diode under test at 5 Vdc, all other inputs = 0, $T_J = 125^{\circ}$ C)	I ₃ ,I ₄ ,I ₇ ,I ₈ ,I ₉	-	=	0.250 25	μAdc
Input Turn-Off Current (Alternately V_3 , V_4 , V_7 , V_8 , V_9 = 0) (Alternately V_3 , V_4 , V_7 , V_8 , V_9 = 0, T_J = -55 to +125°C)	I ₃ ,I ₄ ,I ₇ ,I ₈ ,I ₉	11	-	-1.8 -1.9	mAdc
Output Capacitance $(V_2=2.0~Vdc,~V_3=0,~V_{in}=25~mVrms,~f=1~mc,~unused~pins~grounded)$ $(V_{10}=2.0~Vdc,~V_7=0,~V_{in}=25~mVrms,~f=1~mc,~unused~pins~grounded)$	C ₂ C ₁₀	=	=	10 10	pf
Input Capacitance	C3 C4 C7 C8 C9	11111	=======================================	10 10 10 10 10	pf
Power Consumption from Power Supply (Output "Off", V ₃ = V ₇ = 0) (Output "On")	_	-	=	17 12	mW
Switching Times (Figure 2) Turn-On Delay Turn-Off Delay	ton toff	=	=	60 50	nsec
Average Propagation Delay (Figure 3)	^t pd	_	30	_	nsec
Fan-Out (T _J = -55 to +125 ^O C)	n	_	_	5	_

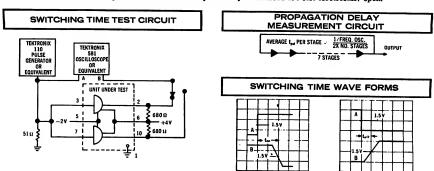
^{*}Numerical subscripts refer to pin numbers. Pins not specifically referenced are left electrically open.


MC200 DTL SERIES

Dual (3-2) Input Diode Transistor Logic NAND/NOR Gate.

MAXIMUM RATINGS ($T_J = 25^{\circ}C$ unless otherwise noted)

Characteristic	Symbol	Rating	Unit
Applied Voltage			Vdc
	^V 2,3,4,6 thru 10	+8	
	v ₅	-8	
Forward Current			mAdc
	^I 2, 10	+30	
	^I 2 thru 4, 7 thru 10	-30	
Operating Temperature Range	$\mathtt{T}_{\mathtt{J}}$	-55 to +125	°С
Storage Temperature Range	T _{stg}	-65 to +175	°C



---- Motorola Integrated Circuits -----

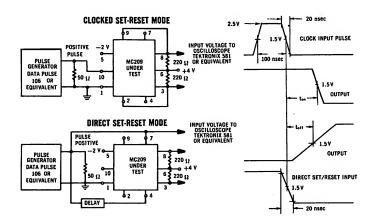
MC208 (continued) ELECTRICAL CHARACTERISTICS

Characteristic	Symbol	Min	Тур	Max	Unit
Output Breakdown Voltage ($I_2 = 1 \mu Adc, V_3 = 0$) ($I_{10} = 1 \mu Adc, V_7 = 0$)	BV ₂ BV ₁₀	8	=	=	Vdc
Output Saturation Voltage $(I_2 = 8 \text{ mAdc}, V_3 = V_4 = 2 \text{ Vdc}, T_J = -55 \text{ to} + 125^{\circ}\text{C})$ $(I_{10} = 8 \text{ mAdc}, V_7 = V_8 = V_9 = 2 \text{ Vdc}, T_J = -55 \text{ to} + 125^{\circ}\text{C})$	v ₂ v ₁₀	=	=	0.6 0.6	Vdc
Output "Off" Voltage $(I_2 = 100 \ \mu Adc, V_3 = 0.7 \ Vdc, T_J = -55 \ to +125^{\circ}C)$ $(I_{10} = 100 \ \mu Adc, V_7 = 0.7 \ Vdc, T_J = -55 \ to +125^{\circ}C)$	v ₂ v ₁₀	3.5 3.5	=	=	Vdc
Input Breakdown Voltage (I ₃ = 10 μ Adc, V ₄ = 0) (I ₄ = 10 μ Adc, V ₃ = 0) (I ₇ = 10 μ Adc, V ₈ = 0) (I ₈ = 10 μ Adc, V ₇ = 0) (I ₉ = 10 μ Adc, V ₇ = 0)	BV3 BV4 BV7 BV8 BV9	8 8 8 8	=======================================	=======================================	Vdc
Input Leakage Current (Diode under test at 5 Vdc, all other inputs = 0) (Diode under test at 5 Vdc, all other inputs = 0, T_J = 125 $^{\circ}$ C)	I ₃ ,I ₄ ,I ₇ ,I ₈ ,I ₉	=	=	0.250 25	μAdc
Input Turn-Off Current (Alternately V_3 , V_4 , V_7 , V_8 , V_9 = 0) (Alternately V_3 , V_4 , V_7 , V_8 , V_9 = 0, T_J = -55 to +125°C)	I ₃ ,I ₄ ,I ₇ ,I ₈ ,I ₉	=	=	-1.8 -1.9	mAdc
Output Capacitance $(V_2=2.0~V_{dc},~V_3=0,~V_{in}=25~mVrms,~f=1~mc,~unused~pins~grounded)$ $(V_{10}=2.0~V_{dc},~V_7=0,~V_{in}=25~mVrms,~f=1~mc,~unused~pins~grounded)$	C ₂ C ₁₀	-	_	10 10	pf
Input Capacitance	C3 C4 C7 C8 C9	11111	11111	10 10 10 10	pf
Power Consumption from Power Supply (Output "Off", V ₃ = V ₇ = 0) (Output "On")	_	11	-	17 30	mW
Switching Times Turn-On Delay Turn-Off Delay	t _{on} t _{off}		=	60 50	nsec
Average Propagation Delay	^t pd	_	30	_	nsec
Fan-Out $(T_J = -55 \text{ to} + 125^{\circ}\text{C})$	n	_	_	4	-

^{*}Numerical subscripts refer to pin numbers. Pins not specifically referenced are left electrically open.

мс 209

MC200 DTL SERIES

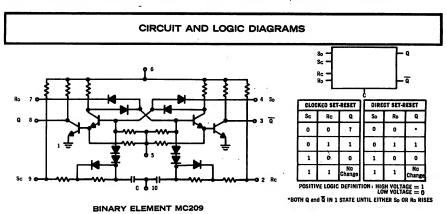


Diode Transistor Logic Flip-Flop.

MAXIMUM RATINGS (TJ = 25°C unless otherwise noted)

Characteristic	Symbol	Rating	Unit
Applied Voltage	V ₂ , 3, 4, 6, 7, 8, 9, 10	+8 -8	Vdc
Forward Current	^I 3, 8 ^I 2, 3, 4, 7 thru 10	+50 -30	mAdc
Operating Temperature Range	$\overline{T_J}$	-55 to +125	°C
Storage Temperature Range	T _{stg}	-65 to +175	°C

SWITCHING TIME TEST CIRCUITS AND WAVE FORMS


MC209 (continued)

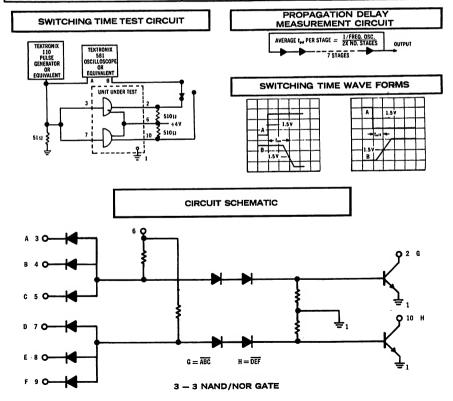
ELECTRICAL CHARACTERISTICS

• ($V_6 = 4 \text{ Vdc}$, $V_5 = 2 \text{ Vdc}$, $V_1 = 0$, $T_J = 25 ^{\circ}\text{C}$ unless otherwise noted)

Characteristic	Logic Symbol	Logic State	Symbol	Min	Тур	Max	Unit
OUTPUT LEVEL "Off" Voltage (I ₈ = -200 μ Adc, V ₄ = 0.6 Vdc, V ₇ = 2.0 Vdc) (I ₃ = -200 μ Adc, V ₄ = 2.0 Vdc, V ₇ = 0.6 Vdc) "On" Voltage	Q	1 1	v ₈ v ₃	2.5 2.5	=		Vdc Vdc
$(I_8 = 16 \text{ mAdc}, V_4 = 2.0 \text{ Vdc}, V_7 = 0.6 \text{ Vdc})$ $(I_3 = 16 \text{ mAdc}, V_4 = 0.6 \text{ Vdc}, V_7 = 2.0 \text{ Vdc})$	QQ	0	$v_8 \\ v_3$	=	=	0.6	Vdc
DIRECT SET-RESET INPUTS "Up" Voltage "Down" Voltage "Up" Current	S _D R _D S _D R _D	1 1 0 0	V ₄ V ₇ V ₄ V ₇	2.0 2.0 —		- 0.6 0.6	Vdc Vdc Vdc Vdc
$(\mathring{V}_4 = 5 \text{ Vdc}, \mathbf{T}_J = 125^{\circ}\text{C})$ $(\mathring{V}_7 = 5 \text{ Vdc}, \mathbf{T}_J = 125^{\circ}\text{C})$ "Down" Current	S _D R _D	1	I ₄ I ₇	=	1.1	25 25	μAde μAde
$ (\mathbf{V_4} = 0) $ $ (\mathbf{V_7} = 0) $	$rac{ extsf{s}_{ extsf{D}}}{ extsf{R}_{ extsf{D}}}$	0	I ₄ I ₇	=	-	-1.8 -1.8	mAde mAde
CLOCKED SET-RESET INPUTS "Down" Current (Vg. $_{10}$ = 0, T $_{\rm J}$ = 25°C) (V2, $_{10}$ = 0, T $_{\rm J}$ = 25°C) Effective Clock input Capacitance	s _C RC	0	I ₉ I ₂ C ₁₀		-	-1.4 -1.4 —	mAde mAde pf
SWITCHING TIME Clocked Set-Reset Mode Turn-On Delay Turn-Off Delay Direct Set-Reset Mode			t _{on}	_	1.1	100 75	nsec nsec
Turn-On Delay Turn-Off Delay			t _{on} t _{off}	=	=	100 75	nsec nsec
FAN-OUT			n		_	8	_
POWER CONSUMPTION					16	_	mW

^{*} Numerical subscripts refer to pin numbers. Pins not specifically referenced are left electrically open.

мс212


MC200 DTL SERIES

Dual (3-3) Input Diode Transistor Logic NAND/NOR Gate.

MAXIMUM RATINGS (T₁ = 25°C unless otherwise noted)

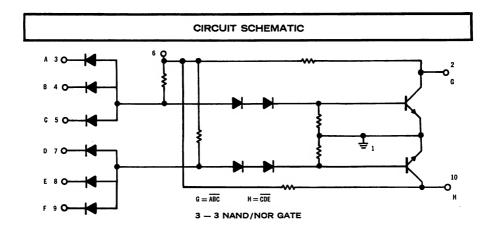
Characteristic	Symbol	Rating	Unit
Applied Voltage	V ₂ thru 10	+8	Vdc
Forward Current	I _{2,10}	+30	mAdo
	I ₂ thru 5, 7 thru 10	-30	
Operating Temperature Range	$\mathtt{T}_{\mathtt{J}}$	-55 to +125	°c
Storage Temperature Range	T _{stg}	-65 to +175	°С

MC212 (continued)

ELECTRICAL CHARACTERISTICS * (V6 = 4 Vdc, V1 = 0, TJ = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
Output Breakdown Voltage $(I_2=1\ \mu Adc,\ V_3=0)$ $(I_{10}=1\ \mu Adc,\ V_7=0)$	BV ₂ BV ₁₀	8	=	=	Vdc
"1" Output Current $ (V_3 = 1.1 \text{ Vdc}, V_2 = 5 \text{ Vdc} $ $ (V_3 = 0.7 \text{ Vdc}, V_2 = 5 \text{ Vdc}, T_J = 125^{\circ}\text{C}) $ $ (V_3 = 1.4 \text{ Vdc}, V_2 = 5 \text{ Vdc}, T_J = -55^{\circ}\text{C}) $ $ (V_7 = 1.1 \text{ Vdc}, V_{10} = 5 \text{ Vdc}) $ $ (V_7 = 0.7 \text{ Vdc}, V_{10} = 5 \text{ Vdc}, T_J = 125^{\circ}\text{C}) $ $ (V_7 = 1.4 \text{ Vdc}, V_{10} = 5 \text{ Vdc}, T_J = -55^{\circ}\text{C}) $	I ₂ I ₂ I ₂ I ₁₀ I ₁₀ I ₁₀	111111		50 50 50 50 50 50	μAdc
"0" Output Current $ \begin{array}{lllllllllllllllllllllllllllllllllll$	I ₂ I ₂ I ₂ I ₁₀ I ₁₀	10 10 10 10 10 10		111111	mAdc
Input Breakdown Voltage (I ₃ = 10	BV3 BV4 BV5 BV7 BV8 BV9	8 8 8 8			Vdc
Input Leakage Current (Diode under test at 5 Vdc, all other inputs = 0) (Diode under test at 5 Vdc, all other inputs = 0, T _J = 125 ^o C)	I ₃ ,I ₄ ,I ₅ ,I ₇ ,I ₈ ,I ₉	-	11	0.250 25	. μAdc
Input Turn-Off Current (Alternately V_3 , V_4 , V_5 , V_7 , V_8 , V_9 = 0) (Alternately V_3 , V_4 , V_5 , V_7 , V_8 , V_9 = 0, T_J = -55 to +125°C)	I ₃ ,I ₄ , I ₅ ,I ₇ ,I ₈ ,I ₉	11		-1.8 -1.9	mAdc
Output Capacitance $(V_2=2.0~{ m Vdc},~V_3=0,~V_{in}=25~{ m mVrms},~f=1~{ m mc},~{ m unused~pins~grounded})$ $(V_{10}=2.0~{ m Vdc},~V_7=0,~V_{in}=25~{ m mVrms},~f=1~{ m mc},~{ m unused~pins~grounded})$	C ₂ C ₁₀	_	=	10 10	pf
Input Capacitance $ \begin{array}{lllllllllllllllllllllllllllllllllll$	034 005 000 000 000		1	10 10 10 10 10	pf
Power Consumption from Power Supply (Output "Off", V3 = V7 = 0) (Output "On")	-	=	=	15 12	mW
Switching Times (Figure 2) Turn-On Delay Turn-Off Delay	t _{on}	=	=	60 50	nsec
Average Propagation Delay (Figure 3)	t _{pd}	\equiv	30	_	nsec
Fan-Out (T _J = -55 to +125 ^O C)	n ed are left electr	_	_	5	_

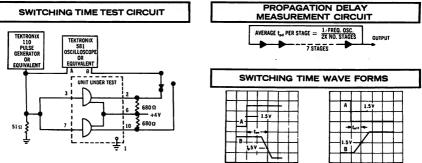
^{*}Numerical subscripts refer to pin numbers. Pins not specifically referenced are left electrically open.


MC200 DTL SERIES

Dual (3-3) Input Diode Transistor Logic NAND/NOR Gate.

MAXIMUM RATINGS ($T_J = 25^{\circ}C$ unless otherwise noted)

Characteristic	Symbol	Rating	Unit
Applied Voltage	V _{2 thru 10}	+8	Vdc
Forward Current	I _{2,10}	+30	mAdc
	^I 2 thru 5, 7 thru 10	-30	
Operating Temperature Range	T _J	-55 to +125	°C
Storage Temperature Range	T _{stg}	-65 to +175	°C

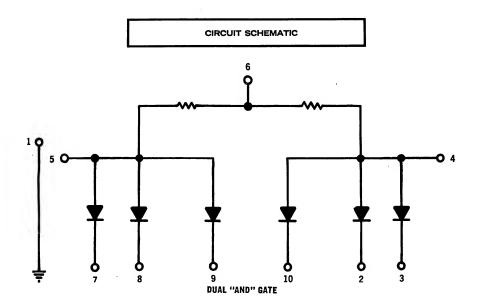

——— Motorola Integrated Circuits ———

MC213 (continued)

ELECTRICAL CHARACTERISTICS ($V_6 = 4 \text{ Vdc}$, $V_1 = 0$, $T_J = 25 ^{\circ}\text{C}$ unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
Output Breakdown Voltage ($I_2 = 1 \mu Adc$, $V_3 = 0$) ($I_{10} = 1 \mu Adc$, $V_7 = 0$)	BV ₂ BV ₁₀	8 8	=	=	Vdc
Output Saturation Voltage (I ₂ = 8 mAdc, V ₃ = V ₄ = V ₅ = 2 Vdc, T _J = -55 to +125°C) (I ₁₀ = 8 mAdc, V ₇ = V ₈ = V ₉ = 2 Vdc, T _J = -55 to +125°C)	v ₂ v ₁₀	_	=	0.6 0.6	Vdc
Output "Off" Voltage $(I_2 = 100 \ \mu Adc, V_3 = 0.7 \ Vdc, T_J = -55 \ to +125^{\circ}C)$ $(I_{10} = 100 \ \mu Adc, V_7 = 0.7 \ Vdc, T_J = -55 \ to +125^{\circ}C)$	v ₂ v ₁₀	3.5 3.5	=	=	Vdc
Input Breakdown Voltage ($I_3 = 10 \ \mu Adc, V_4 = 0$) ($I_4 = 10 \ \mu Adc, V_3 = 0$) ($I_5 := 10 \ \mu Adc, V_3 = 0$) ($I_7 := 10 \ \mu Adc, V_8 = 0$) ($I_8 = 10 \ \mu Adc, V_7 = 0$) ($I_9 = 10 \ \mu Adc, V_7 = 0$)	BV ₃ BV ₄ BV ₅ BV ₇ BV ₈ BV ₉	8 8 8 8 8			Vdc
Input Leakage Current (Diode under test at 5 Vdc, all other inputs = 0) (Diode under test at 5 Vdc, all other inputs = 0, T_J = 125°C)	I ₃ ,I ₄ ,I ₅ ,I ₇ ,I ₈ ,I ₉	=	=	0.250 25	μAdc
Input Turn-Off Current (Alternately V_3 , V_4 , V_5 , V_7 , V_8 , V_9 = 0) (Alternately V_3 , V_4 , V_5 , V_7 , V_8 , V_9 = 0, V_1 = -55 to +125°C)	I ₃ ,I ₄ ,I ₅ ,I ₇ ,I ₈ ,I ₉	=	=	-1.8 -1.9	mAdc
Output Capacitance $(V_2=2.0~V_{dc},V_3=0,V_{in}=25~mVrms,f=1~mc,$ unused pins grounded) $(V_{10}=2.0~V_{dc},V_7=0,V_{in}=25~mVrms,f=1~mc,$ unused pins grounded)	C ₂ C ₁₀	_	=	10 10	pf
Input Capacitance	3 4 5 7 8 9	111111	111111	10 10 10 10 10	pf
Power Consumption from Power Supply (Output "Off", $V_3 = V_7 = 0$) (Output "On")	_	_	_	15 30	mW
Switching Times (Figure 2) Turn-On Delay Turn-Off Delay	t _{on} t _{off}	_	11	60 50	nsec
Average Propagation Delay (Figure 3)	^t pd	_	30	_	nsec
Fan-Out (T _J = -55 to +125 ^o C)	n '	_	_	4	_

*Numerical subscripts refer to pin numbers. Pins not specifically referenced are left electrically open.


MC200 DTL SERIES

Dual (3-3) Input Diode Transistor Logic AND Gate.

MAXIMUM RATINGS (TA = 25°C)

Characteristics	Symbol	Rating	Unit
Applied Voltage			Vdc
	^V 2, 3, 7 thru 10	+8	
	v_6	±8	
Forward Current	I ₂ thru 10	±30	mAdc
Operating Temperature Range	T _J	-55 to +125	°C
Storage Temperature Range	Tstg	-65 to +175	°C

----- Motorola Integrated Circuits

MC215 (continued)

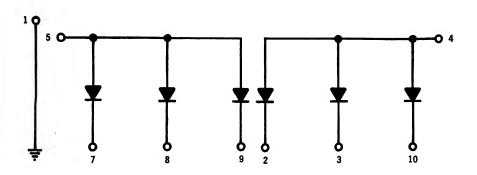
ELECTRICAL CHARACTERISTICS (TJ = 25°C unless otherwise noted)

Characteristics	Symbol	Min	Тур	Max	Unit
Diode Breakdown Voltage (I ₂ , 3, 10 = 10 μ Adc, V ₄ = V ₁ = 0)	v _{2, 3, 10}	8	-	-	Vdc
$(I_{7, 8, 9} = 10 \mu\text{Adc}, V_5 = V_1 = 0)$	V _{7, 8, 9}	8	-	-	
Diode Forward Voltage $(I_4 = 2 \text{ mAdc}, V_2, 3, 10 = V_1 = 0)$	v ₄	-	-	0.85	Vdc
$(I_5 = 2 \text{ mAdc}, V_{7, 8, 9} = V_1 = 0)$	v ₅	-	-	0.85	
Diode Reverse Leakage Current $(V_2, 3, 10 = 5 \text{ Vdc}, V_4 = V_1 = 0)$	I _{2, 3, 10}	-	-	0.25	μAdc
$(V_2, 3, 10 = 5 \text{ Vdc}, V_4 = V_1 = 0, T_J = 125^{\circ}\text{C})$				25	
$(v_7, 8, 9 = 5 \text{ Vdc}, v_5 = v_1 = 0)$	^I 7, 8, 9	-	-	0.25	
$(V_{7, 8, 9} = 5 \text{ Vdc}, V_{5} = V_{1} = 0, T_{J} = 125^{\circ}\text{C})$				25	
Input Capacitance $(V_2, 3, 10 = 2 \text{ Vdc}, V_4 = V_1 = 0, f = 1 \text{ mc},$	C ₂ , 3, 10	-	-	10	pf
V _{in} = 25 mVrms, unused inputs grounded)					<u>.</u>
(V _{7, 8, 9} = 2 Vdc, V ₅ = V ₁ = 0, f = 1 mc, V _{in} = 25 mVrms, unused inputs grounded)	^C 7, 8, 9	-	-	10	
Reverse Recovery Time			-		
$(I_{F2}, 3, 10 = I_{R2}, 3, 10 = 2 \text{ mAdc}, V_4 = V_1 = 0,$ recover to 0.2 mAdc)	^t rr2, 3, 10	-	-	4	nsec
$(I_{F7, 8, 9} = I_{R7, 8, 9} = 2 \text{ mAdc}, V_5 = V_1 = 0,$ recover to 0.2 mAdc)	^t rr7, 8, 9	-	-	4	
Resistor Isolation Leakage (V ₆ = 5 Vdc, V ₄ = V ₅ = 0)	^I 1	-	-	600	nAdc
Resistor Current (V ₆ = 4 Vdc, V ₄ = V ₁ = 0)	I ₄	1.6	-	2.4	mAdc
$(V_6 = 4 \text{ Vdc}, V_5 = V_1 = 0)$	¹ 5	1.6	-	2.4	
Resistor Temperature Coefficient	-	-	0.1	-	%/°C
Diode Forward Conductance Change with Temperature	^{ΔV} F2, 3, 10	-	-1.7	-	mV/°C
-	^{ΔV} F7, 8, 9	-	-1.7	-	

^{*}Numerical subscripts refer to pin numbers. Pins not specifically referenced are left electrically open.

мс217

MC200 DTL SERIES



Diode Transistor Logic Dual-Diode Array.

MAXIMUM RATINGS (TA = 25°)

Characteristics	Symbol	Rating	Unit
Applied Voltage			Vdc
	V ₂ , 3, 7 thru 10	8	
Forward Current	I ₂ thru 5, 7 thru 10	30	mAdc
Operating Temperature Range	T _J	-55 to +125	оС
Storage Temperature Range	T _{stg}	-65 to +175	°C

CIRCUIT SCHEMATIC

DUAL DIODE ARRAY

----- Motorola Integrated Circuits -----

MC217 (continued)

ELECTRICAL CHARACTERISTICS (TJ = 25°C unless otherwise noted)

Characteristics	Symbol	Min	Тур	Max	Unit
Diode Breakdown Voltage (I ₂ , 3, 10 = 10 μAdc, V ₄ = V ₁ = 0)	V _{2, 3, 10}	8		-	Vdc
$(I_{7, 8, 9} = 10 \mu\text{Adc}, V_5 = V_1 = 0)$	v _{7, 8, 9}	8	-	•	
Diode Forward Voltage $(I_4 = 2 \text{ mAdc}, V_2, 3, 10 = V_1 = 0)$	v ₄	-	-	0.85	Vdc
$(I_5 = 2 \text{ mAdc}, V_{7, 8, 9} = V_1 = 0)$	v ₅	-	· -	0.85	
Diode Reverse Leakage Current (V ₂ , 3, 10 = 5 Vdc, V ₄ = V ₁ = 0)	I ₂ , 3, 10	-	-	0.25	μAdc
$(V_2, 3, 10 = 5 \text{ Vdc}, V_4 = V_1 = 0, T_J = 125^{\circ}\text{C})$ $(V_7, 8, 9 = 5 \text{ Vdc}, V_5 = V_1 = 0)$	¹ 7, 8, 9	-	-	25 0.25	
$(v_{7, 8, 9} = 5 \text{ Vdc}, v_5 = v_1 = 0, T_J = 125^{\circ}\text{C})$., ,,			25	
Input Capacitance (V ₂ , 3, 10 = 2 Vdc, V ₄ = V ₁ = 0, f = 1 mc,	C _{2, 3, 10}		-	10	pf
V _{in} = 25 mVrms, unused inputs grounded) (V ₇ , 8, 9 = 2 Vdc, V ₅ = V ₁ = 0, f = 1 mc,	C _{7, 8, 9}	-	-	10	
V _{in} = 25 mVrms, unused inputs grounded)					
Reverse Recovery Time $(I_{F2}, 3, 10^{-1}R2, 3, 10^{-2} \text{ mAdc}, V_4 = V_1 = 0,$ recover to 0.2 mAdc)	^t rr2, 3, 10	-	-	4	nsec
(I _{F7} , 8, 9 = I _{R7} , 8, 9 = 2 mAdc, V ₅ = V ₁ = 0, recover to 0.2 mAdc)	^t rr7, 8, 9	-	-	4	
Diode Forward Conductance Change with Temperature	ΔV _{F2} , 3, 10	-	-1.7	-	mV/°C
- Composition Co	^{ΔV} F7, 8, 9	-	-1.7	-	

^{*}Numerical subscripts refer to pin numbers. Pins not specifically referenced are left electrically open.

MC250 DTL series

SUFFIX "F" DEVICES
CASE 72

SUFFIX "G" DEVICES CASE 71
(TO-5)

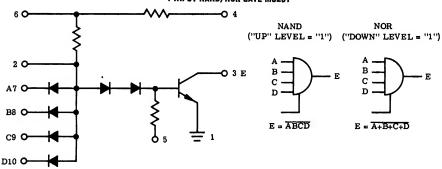
Commercial monolithic integrated Diode Transistor Logic circuits for low-power, high-speed applications. The MC250 series operates over a temperature range of 0 to $+75^{\circ}$ C and provides guaranteed performance at 25° C.

SERIES MC250 DTL CIRCUITS

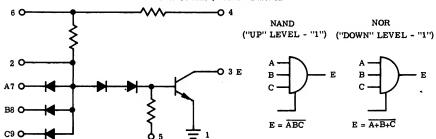
		Typical Propagation	Maximum Power Dissipation		Maximum
Туре	Description	Delay (nsec)	Output Off (mW)	Output On (mW)	Fan Out (0 to +75°C)
MC251	4-Input NAND/NOR Gate	30	10	7	5
MC252	3-Input NAND/NOR Gate	30	10	7	5
MC253	6-Input Diode AND Gate	-	-		-
MC254	3-Input Power NAND/NOR Gate	40	23	66	20
MC255	Line Driver	50	30	65	20(MC251) 15(MC259)
MC256	Dual (2-2) Input NAND/NOR Gate	30	20	12	5
MC257	Dual (3-2) Input NAND/NOR Gate	30	20	12	5
MC258	Dual (3-2)Input NAND/NOR Gate	30	20	34	4
MC259	Flip-Flop	-	16	16	8
MC260	Flip-Flop	-	16	16	8
MC262	Dual (3-3) Input NAND/NOR Gate	30	19	12	5
MC263	Dual (3-3) Input NAND/NOR Gate	30	19	33	4
MC265	Dual (3-3) Input AND Gate	-	• -	-	-
MC267	Dual-Diode Array	-	-	-	-

мс **251** мс **252**

MC250 DTL SERIES


4-Input and 3-Input Diode Transistor Logic NAND/NOR Gates.

MAXIMUM RATINGS (TA = 25°C unless otherwise noted)


Characteristic	Symbol	Rating	Unit
Applied Voltage			Volts
	V ₄ ,6 thru 10	+8	
	v ₅	-8	•
	v ₃	+6	
Forward Current	I ₂ thru 10	30	mA
Operating Temperature Range	T _J	0 to +75	°c
Storage Temperature Range	T _{stg}	-65 to +175	°C

CIRCUIT AND LOGIC DIAGRAMS

4-INPUT NAND/NOR GATE MC251

3-INPUT NAND/NOR GATE MC252

---- Motorola Integrated Circuits -----

MC251, MC252 (continued)

 $(V_6 = 4 \text{ Vdc}, V_5 = 2 \text{ Vdc}, V_1 = 0,$

ELECTRICAL CHARACTERISTICS T_J = 25°C unless otherwise noted)

Characteristic	Symbol ·	Minimum	Typical	Maximum	Unit
Output Breakdown Voltage $(I_3 = 5\mu Adc, V_{5,6,\bar{1}} 0)$	BV ₃	6	-	-	Vdc
"1" Output Current (V _{in} = 1.0Vdc, V ₃ = 5Vdc) (V _{in} = 0.75Vdc, V ₃ = 5Vdc, T _J = 75°C) (V _{in} = 1.1Vdc, V ₃ = 5Vdc, T _J = 0°C)	1 ₃ 1 ₃	-	-	50 50 50	μAdc
"O" Output Current (V ₇ = 2.0Vdc, V ₃ = 0.55Vdc, T _J = 0 to 75°C)	13	10	-	-	mAdc
Input Breakdown Voltage* (Dlode under test at 5Vdc, All other diodes = 0)	BV _{7, 8, 9, 10}	8	-	<u>-</u>	Vdc
Input Leakage Current* (Diode under test at 5Vdc, all other inputs = 0) (Diode under test at 5Vdc, all other inputs = 0, T = 75.2)	^I 7, 8, 9, 10	-	-	0. 50 25	μAdc
other inputs = 0, $T_J = 75^{\circ}C$) Input Turn-Off Current* (Alternately $V_7, V_8, V_9, V_{10} = 0$) (Alternately $V_7, V_8, V_9, V_{10} = 0$, $T_J = 0$ to $75^{\circ}C$)	I ₇ , 8, 9, 10	-	- - -	-2.3 -2.5	mAdc
Output Capacitance $(V_3 = 2.0 \text{Vdc}, V_7 = 0, V_{in} = 25 \text{mVrms},$ f = 1 mc, unused pins grounded)	c ₃	-	-	15	pf
Input Capacitance* (V ₇ = 2Vdc, V _{in} = 25mVrms, f = 1mc, unused pins grounded) V ₈ = 2Vdc, V _{in} = 25mVrms,	с ₇ с ₈	-	-	10	pf
f = 1mc, unused pins grounded) (V ₉ = 2Vdc, V _{in} = 25mVrms, f = 1mc, unused pins grounded) (V ₁₀ = 2Vdc, V _{in} = 25mVrms, f = 1mc, unused pins grounded)	с ₉	-	-	10 10	
Load Resistor Current (V ₄ = 0)	I ₄	-1.3	-	-2. 85	mAdc
Power Consumption from Power Supply (Output "Off", V ₇ = 0) (Output "On")		-	-	10 7	mW
Switching Times Turn-On Delay Turn-Off Delay	t _{on}	-	-	60 60	nsec
Average Propagation Delay	t _{pd}	-	30	-	nsec

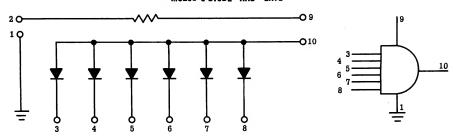
^{*} Input Diode at pin 10 available on MC251 only

MC250 DTL SERIES

6-Input Diode Transistor Logic AND Gate.

MAXIMUM RATINGS (TA = 25°C)

Characteristic	Symbol	Rating	Unit
Applied Voltage	V _{3 thru 8}	+8	Vdc
	v ₂ , 9	±8	
Forward Current	I ₂ thru 10	30	mAdc
Operating Temperature Range	$^{\mathrm{T}}\mathbf{_{J}}$	0 to 75	°C
Storage Temperature Range	T _{stg}	-65 to +175	°C


ELECTRICAL CHARACTERISTICS (TJ = 25°C unless otherwise noted)

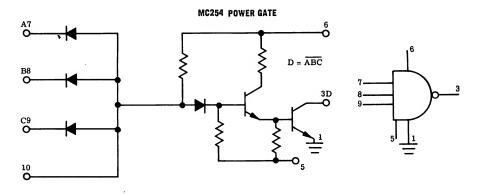
Characteristic	Symbol	Minimum	Typical	Maximum	Unit
Diode Breakdown Voltage	V _{3 thru 8}				Vdc
$(I_{3 \text{ thru } 8} = 10 \ \mu \text{Adc}, \ V_{10=V_{1}=0})$,	8	<u>-</u>	-	
Diode Forward Voltage	v ₁₀				Vdc
(I ₁₀ = 2mAdc, V _{3 thru 8} = 0)		-	-	0. 85	
Diode Reverse Leakage Current	I _{3 thru 8}				μ Adc
$(v_{3 \text{ thru } 8} = 5 \text{Vdc}, \ v_{10} = v_{1} = 0)$		-	-	0. 50	
$(v_{3 \text{ thru } 8} = 5 \text{Vdc}, \ v_{10} = v_1 = 0, T_J = 75^{\circ} \text{C}$		-	-	25	
Input Capacitance	C _{3 thru 8}				pf
(V ₃ thru 8 ⁼ 2Vdc, V ₁₀ ⁼ V ₁ ⁼ 0, f=1mc, V _{in} ⁼ 25mVrms, unused inputs grounded)		-	-	10	
Reverse Recovery Time	trr 3 thru 8	-			nsec
(I _{F 3} thru 8 = I _{R 3} thru 8 ^{=2mAdc} , V ₁₀ = V ₁ = 0, recover to 0.2mAdc)		-	-	4	
Resistor Current	I ₉				mAdc
$(V_9 = 4Vdc, V_2 = 0)$		1.3	-	2. 85	
Resistor Temperature Coefficient		-	0, 1	-	%/°C
Diode Forward Conductance Change with Temperature	ΔV _{F 3 thru 8}	-	-1.7	-	mV/°C

----- Motorola Integrated Circuits

MC253 (continued)

MC253 6-DIODE "AND" GATE

мс 254


MC250 DTL SERIES

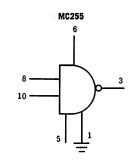
3-Input Diode Transistor Logic NAND/NOR Power Fate.

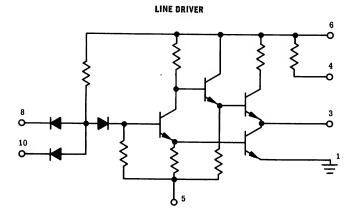
MAXIMUM RATINGS (TA = 25°C)

Characteristic	Symbol	Rating	Unit
Applied Voltage	V _{7,8,9} V ₅ V _{3,6}	+8 -6 +6	Vdc
Forward Current	I ₅ thru 10	30	mAdc
Load Current	I ₃	75	mAdc
Operating Temperature Range	$ au_{ m J}$	0 to 75	°C
Storage Temperature Range	T _{stg}	-65 to +175	°c

MC254 (continued)

Characteristic	Symbol	Minimum	Typical	Maximum	Unit
Output Breakdown Voltage $(I_8 = 5\mu Adc, V_7 = 0)$	вv ₃	6	-	-	Vdc
"1" Output Current (V _{7,8 or 9} = 1.0Vdc, V ₃ = 5Vdc) (V _{7,8 or 9} = 0.75Vdc, V ₃ = 5Vdc, T _J = 75°C) (V _{7,8 or 9} = 1.1Vdc, V ₃ = 5Vdc, T _J = 0°C)	I ₃	1 1 31		100 100 100	μ Adc
"0" Output Current (V _{7,8 or 9} = 2.0Vdc, V ₃ = 0.55, T _J = 0 to 75°C)	I ₃	30	-	-	mAdc
Input Breakdown Voltage $(I_7 = 10 \mu Adc, V_8 = 0)$ $(I_8 = 10 \mu Adc, V_7 = 0)$ $(I_9 = 10 \mu Adc, V_7 = 0)$	BV ₇ BV ₈ BV ₉	8. 0 8. 0 8. 0	ì .		Vdc
Input Leakage Current $(V_7 = 5Vdc, V_8 = 0)$ $(V_7 = 5Vdc, V_8 = 0, T_J = 75^{\circ}C)$ $(V_8 = 5Vdc, V_7 = 0)$ $(V_8 = 5Vdc, V_7 = 0, T_J = 75^{\circ}C)$ $(V_9 = 5Vdc, V_7 = 0)$ $(V_9 = 5Vdc, V_7 = 0, T_J = 75^{\circ}C)$	I ₇ I ₇ I ₈ I ₈ I ₉ I ₉	- - - -	- - - -	0.50 25 0.50 25 0.50 25	μAdc
Input Turn-Off Current (Alternately, $V_7, V_8, V_9 = 0$) (Alternately, $V_7, V_8, V_9 = 0$, $T_J = 0 \text{ to } 75^{\circ}\text{ C}$) $(V_{10} = 0)$	I ₇ , I ₈ , I ₉ I ₇ , I ₈ , I ₉ I ₁₀	- -	-	-4. 5 -5. 5	mAdc
Output Capacitance (V ₃ = 2.0Vdc, V _{in} = 25mVrms, f = 1mc, unused pins grounded)	C3	-	-	15	pf
Input Capacitance ($V_7 = 2.0 \text{Vdc}$, $V_{\text{in}} = 25 \text{mVrms}$, $f = 1 \text{mc}$, unused pins grounded)	C ₇	-	-	10	pf
$(V_8 = 2.0 \text{Vdc}, V_{in} = 25 \text{mVrms},$ f = 1 mc, unused pins grounded) $(V_9 = 2.0 \text{Vdc}, V_{in} = 25 \text{mVrms},$ f = 1 mc, unused pins grounded)	С ₈	-	-	10 10	
Power Supply (Output "OFF", V ₇ = 0) (Output "ON")		-	-	23 66	mW
Switching Times Turn-On Delay Turn-Off Delay	t _{on} t _{off}	-	-	35 100	nsec
Average Propagation Delay	^t pd	-	40	-	nsec


MC250 DTL SERIES



Diode Transistor Logic Line Driver.

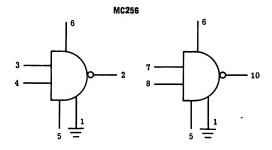
MAXIMUM RATINGS (TJ = 25°C)

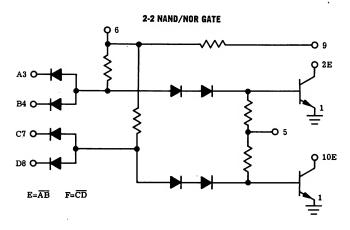
Characteristic	Symbol	Rating	Unit
Applied Voltage	V _{3,4,6} V ₅ V _{8,10}	+6 -6 +8	Vdc
Forward Current	I _{5,8,10}	30	mAde
Load Current	I _{3,4,6}	75	mAdc
Operating Temperature Range	т	0 to +75	۰c
Storage Temperature Range	Tstg	-65 to +175	°c

MC255(continued)

 $(V_{\delta}=4~Vdc,~V_{\delta}=2~Vdc,~V_{1}=0,\\$ ELECTRICAL CHARACTERISTICS $T_{J}=25^{\circ}C$ unless otherwise noted)

Characteristic	Symbol	Minimum	Typical	Maximum	Unit
Output Saturation Voltage (I ₃ = 30mAdc, T _J = 0°C to +75°C	v ₃	-	1	0.55	Vdc
Output Voltage, "Off" Level $(I_3 = 10 \text{mAdc}, V_8 = 0.7 \text{Vdc}, \\ T_J = 0 \text{ to } 75^{\circ} \text{ C})$	v ₃	2.0	-	-	
Input Breakdown Voltage $(I_8 = 10\mu\text{Adc}, V_{10} = 0)$ $(I_{10} = 10\mu\text{Adc}, V_8 = 0)$	BV ₈ BV ₁₀	8. 0 8. 0	-	-	Vdc
Input Leakage Current $(V_8 = 5Vdc, V_{10} = 0)$ $(V_8 = 5Vdc, V_{10} = 0, T_J = 75^{\circ}C)$ $(V_{10} = 5Vdc, V_8 = 0)$ $(V_{10} = 5Vdc, V_8 = 0, T_J = 75^{\circ}C)$	I ₈ I ₈ I ₁₀ I ₁₀	-	-	0.50 25 0.50 25	Adc
Turn-Off Current at Inputs $(V_8 = 0)$ $(V_8 = 0, T_J = 0 \text{ to } +75^{\circ}\text{ C})$ $(V_{10} = 0)$ $(V_{10} = 0, T_J = 0 \text{ to } +75^{\circ}\text{ C})$	I ₈ I ₈ I ₁₀ I ₁₀		- - -	-4. 5 -4. 7 -4. 5 -4. 7	mAdc
Load Resistor	R ₆₋₄	-	125	-	Ohms
Input Capacitance (V ₈ = 2Vdc, V _{in} = 25mVrms, f-1mc, unused pins grounded) (V ₁₀ = 2Vdc, V _{in} = 25mVrms, f=1mc, unused pins grounded)	C ₈	-	-	10 10	pf
Power Consumption from Power Supply (Output "Off", V ₈ = 0) (Output "On")		-	-	30 65	mW
Switching Times Turn-On Delay Turn-Off Delay	t _{on}	-	- -	90 60	nsec
Average Propagation Delay (C _L = 1000pf)	t _{pd}	-	50	-	nsec


MC250 DTL SERIES



Dual (2-2) Input Diode Transistor Logic NAND/NOR Gate.

MAXIMUM RATINGS (TJ = 25°C unless otherwise noted)

Characteristic	Symbol	Rating	Unit
Applied Voltage	V3,4,6 thru 9 V ₅ V _{2,10}	+8 -8 +6	Vdc
Forward Current	^I 2,10 ^I 2 thru 4, 7 thru 10	+30 -30	mAdc
Operating Temperature Range	$^{\mathrm{T}}\mathrm{_{J}}$	0 to 75	°C
Storage Temperature Range	Tstg	-65 to +175	°C

MC256 (continued)

ELECTRICAL CHARACTERISTICS

(V₆ = 4 Vdc, V₅ = 2 Vdc, V₁ = 0, T_J = 25°C unless otherwise noted)

Characteristic	Symbol	Minimum	Typical	Maximum	Unit
Output Breakdown Voltage					Vdc
$(I_2 = 5\mu Adc, V_3 = 0)$	BV ₂	6	-		
$(I_{10} = 5\mu Adc, V_7 = 0)$	BV ₁₀	6	-	-	
"1" Output Current					μAdo
$(V_3 = 1.0 \text{Vdc}, V_2 = 5 \text{Vdc})$	$^{\mathbf{I_2}}$	-	-	50	
$(V_3 = 0.75 \text{Vdc}, V_2 = 5 \text{Vdc},$	$\mathbf{I_2}$	-	-	50	
T _J = 75° C)		_	_	50	
$(V_3 = 1.1 \text{Vdc}, V_2 = 5 \text{Vdc}, $ $T_x = 0^{\circ} \text{C})$	$^{\mathbf{I_2}}$	_	_	"	
(V ₇ = 1.0Vdc, V ₁₀ = 5Vdc)	I ₁₀	-	-	50	
$(V_7 = 0.75 \text{Vdc}, V_{10} = 5 \text{Vdc},$	I ₁₀	-	۱ -	50	
T _{.T} = 75° C)	10				
(V ₇ = 1.1Vdc, V ₁₀ = 5Vdc,	I ₁₀	-	- 1	50	
$T_{J} = 0^{\circ} C$	10				
"O" Output Current					mAd
$(V_3 = 2.0 \text{Vdc}, V_2 = 0.55 \text{Vdc},$	$\mathbf{I_2}$	10	-	-	
T _{.J} = 0 to 75° C)		ļ		1	
$(V_7 = 2.0 \text{Vdc}, V_{10} = 0.55 \text{Vdc},$	I ₁₀	10	-	- 1	
$T_J = 0 \text{ to } 75^{\circ} \text{ C}$					
Input BreakDown Voltage		<u> </u>			Vdc
$(I_3 = 10 \mu Adc, V_4 = 0)$	BV ₃	8	-	-	
$(I_4 = 10 \mu Adc, V_3 = 0)$	BV ₄	8	-	-	
$(I_7 = 10 \mu Adc, V_8 = 0)$	BV ₇	8	-	-	
$(I_8 = 10 \mu Adc, V_7 = 0)$	BV ₈	8	-	<u> </u>	
Input Leakage Current	I ₃ , I ₄ , I ₇ , I ₈				μAd
(Diode under test at 5Vdc, all	3, 3, 3,	-	-	0.50	
other inputs = 0)				65	
(Diode under test at 5Vdc, all other inputs = 0, T _{.J} = 75° C)		-	-	25	
Input Turn-Off Current	I. I. I. I.	+		<u> </u>	mAc
-	^I 3, ^I 4, ^I 7, ^I 8	-	-	-2.3	
(Alternately V_3 , V_4 , V_7 , $V_8 = 0$)		_	_	-2.5	
(Alternately V_3 , V_4 , V_7 , $V_8 = 0$,	1				
T _J = 0 to 75° C)	<u></u>		-	-	
Output Capacitance		_	1 -	10	pf
$(v_2 = 2.0 \text{Vdc}, V_3 = 0, V_{in} = 25 \text{mVrms})$	C ₂	-	-	"	
f = 1mc, unused pins grounded		1			
$(V_{10} = 2.0 \text{Vdc}, V_7 = 0, V_{in} = 25 \text{mVrms},$	C ₁₀	-		10	
f = 1mc, unused pins grounded)			1	1	1

----- Motorola Integrated Circuits

MC256 (continued)

ELECTRICAL CHARACTERISTICS (continued)

Characteristic	Symbol	Minimum	Typical	Maximum	Unit
Input Capacitance (V ₃ = 2Vdc, V _{in} = 25mVrms, f = 1mc, unused pins grounded)	C ₃	-	-	10	pf
(V ₄ = 2Vdc, V _{in} = 25mVrms, f = 1mc, unused pins grounded)	C ₄	-	-	10	
(V ₇ = 2Vdc, V _{in} = 25mVrms, f = 1mc, unused pins grounded)	C ₇	-	-	10	
$(V_8 = 2Vdc, V_{in} = 25mVrms, f = 1mc$ unused pins grounded)	c ₈	-	-	10	
Load Resistor Current (V ₉ = 0)	I ₉	-1.3	-	-2.85	mAdc
Power Consumption from Power Supply (Output "Off", V ₃ = V ₇ = 0)		-	_	20	mW
(Output "On")	İ	-	-	12	
Switching Times Turn-On Delay	ton	-	•	60	nsec
Turn-Off Delay	t _{off}	•	-	60	
Average Propagation Delay	t _{pd}	-	30	-	nsec

мс 257

MC250 DTL SERIES

Dual (3-2) Input Diode Transistor Logic NAND/NOR Gate.

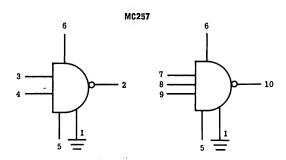
MAXIMUM RATINGS (TJ = 25°C unless otherwise noted)

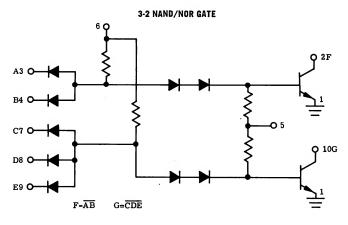
Characteristic	Symbol	Rating	Unit
Applied Voltage	V _{3,4,} 6 thru 9 V ₅	+8	Vdc
	V _{2,10}	+6	
Forward Current	I _{2,10} I ₂ thru 4, 7 thru 10	+30 -30	mAdc
Operating Temperature Range	$^{\mathrm{T}}\mathrm{_{J}}$	-0 to +75	°c
Storage Temperature Range	T _{stg}	-65 to +175	°C

----- Motorola Integrated Circuits -----

MC257 (continued)

ELECTRICAL CHARACTERISTICS

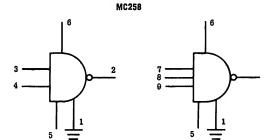

 $(V_6 = 4 \text{ Vdc}, V_5 = 2 \text{ Vdc}, V_1 = 0, T_J = 25^{\circ}\text{C}$ unless otherwise noted)

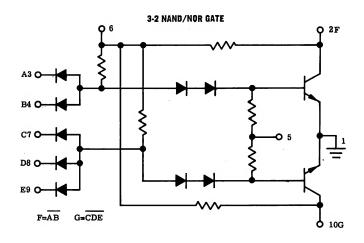

Characteristic	Symbol	Minimum	Typical	Maximum	Unit
Output Breakdown Voltage					Vdc
$(\bar{\mathbf{I}}_2 = 5\mu \mathbf{Adc}, \ \mathbf{V}_3 = 0)$	BV ₂	6	-	-	
$(I_{10} = 5\mu Adc, V_7 = 0)$	BV ₁₀	6	-	-	
"1" Output Current				50	μAdc
$(V_3 = 1.0 \text{Vdc}, V_2 = 5 \text{Vdc})$	I 2	i -	-	50	
$(V_3 = 0.75 \text{Vdc}, V_2 = 5 \text{Vdc},$	$\mathbf{I_2}$	-	-	50	
T _J = 75° C)	_			-	
$(V_3^{'} = 1.1 \text{Vdc}, V_2 = 5 \text{Vdc},$	$\mathbf{I_2}$	-	-	50	
$T_J = 0^{\circ} C$	_	1	1		
$(V_7 = 1.0 Vdc, V_{10} = 5 Vdc)$	I ₁₀	i -	-	50	
$(V_7 = 0.75Vdc, V_{10} = 5Vdc,$	^I 10	-	-	50	
$T_J = 75^{\circ} \text{ C}$	•			50	
$(V_7 = 1.1 \text{Vdc}, V_{10} = 5 \text{Vdc},$	^I 10	-	-	30	
$T_J = 0^{\circ} C$					
"0" Output Current		1	l		mAdo
$(V_3 = 2.0 \text{Vdc}, V_2 = 0.55 \text{Vdc},$	$\mathbf{I_2}$	10	-	-	
$T_{J} = 0 \text{ to } 75^{\circ} \text{ C})$		1,0			
$(V_7 = 2.0 \text{Vdc}, V_{10} = 0.55 \text{Vdc},$	^I 10	10	-	1 - 1	
$T_J = 0 \text{ to } 75^{\circ} \text{ C})$			<u> </u>		
Input Breakdown Voltage	2017				Vdc
$(I_3 = 10\mu Adc, V_4 = 0)$	BV ₃	8	-	-	
$(I_4 = 10\mu Adc, V_3 = 0)$	BV ₄	8 8	-	-	
$(I_7 = 10\mu Adc, V_8 = 0)$	BV ₇	8	-	-	
$(I_8 = 10\mu Adc, V_7 = 0)$	BV ₈	8	[[
$(I_9 = 10 \mu Adc, V_7 = 0)$	BV ₉	<u> </u>	<u> </u>		
Input Leakage Current	I ₃ , I ₄ , I ₇ ,				µAdc
	^I 8, ^I 9				
(Diode under test at 5Vdc, all other inputs = 0)	-	-	-	0.50	
(Diode under test at 5Vdc. all		-		25	
other inputs = 0, $T_J = 75^{\circ} C$)					
Input Turn-Off Current	I ₃ , I ₄ , I ₇ ,				mAdo
	^I 3, ^I 4, ^I 7, ^I 8, ^I 9				
(Alternately V_3 , V_4 , V_7 , V_8 , $V_9 = 0$)		-	-	-2.3	
(Alternately V_3 , V_4 , V_7 , V_8 , $V_9 = 0$) (Alternately V_3 , V_4 , V_7 , V_8 , $V_9 = 0$,		-	-	-2.5	
$T_J = 0$ to 75° C)					
Output Capacitance		†	1	1	pf
$(V_2 = 2.0 \text{Vdc}, V_3 = 0, V_{\text{in}} = 25 \text{mVrms},$	c ₂	-	-	10	-
f = 1mc, unused pins grounded)			1	10	
$(V_{10} = 2.0 \text{Vdc}, V_7 = 0, V_{in} = 25 \text{mVrms},$	C ₁₀	-	-	"	
f = 1mc, unused pins grounded)					

MC257 (continued)

ELECTRICAL CHARACTERISTICS (continued)

Characteristic	Symbol	Minimum	Typical	Maximum	Unit
Input Capacitance (V ₃ = 2Vdc, V _{in} = 25mVrms, f = 1mc, unused pins grounded)	c ₃	-	-	10	pf
$(V_4 = 2Vdc, V_{in} = 25mVrms,$	C ₄	-	-	10	
f = 1mc, unused pins grounded) (V ₇ = 2Vdc, V _{in} = 25mVrms,	C ₇	-	-	10	
f = 1mc, unused pins grounded) (V ₈ = 2Vdc, V _{in} = 25mVrms,	C ₈	-	-	10	
<pre>f = 1mc, unused pins grounded) (V₉ = 2Vdc, V_{in} = 25mVrms, f = 1mc, unused pins grounded)</pre>	c ₉	-	-	10	
Power Consumption from Power Supply (Output "Off", V ₃ = V ₇ = 0)	-	-	-	20	mW
(Output "On")		-	-	12	
Switching Times Turn-On Delay	ton		_	60	nsec
Turn-Off Delay	t _{off}	-	-	60	
Average Propagation Delay	t _{pd}	•	30	-	nsec


MC250 DTL SERIES



Dual (3-2) Input Diode Transistor Logic NAND/NOR Gate.

MAXIMUM RATINGS (TJ = 25°C unless otherwise noted)

Characteristic	Symbol	Rating	Unit
Applied Voltage	V _{3,4,6} thru 9 V ₅ V _{2,10}	+8 -8 +6	Vdc
Forward Current	^I 2, 10 ^I 2 thru 4, 7 thru 10	+30 -30	mAdc
Operating Temperature Range	${f T_J}$	0 to +75	°C
Storage Temperature Range	T _{stg}	-65 to +175	°C

MC258 (continued)

ELECTRICAL CHARACTERISTICS

(V6 = 4 Vdc, V5 = 2 Vdc, V1 = 0, TJ = 25 °C unless otherwise noted)

Characteristic	Symbol	Minimum	Typical	Maximum	Unit
Output Saturation Voltage ($I_2 = 8mAdc$, $V_3 = V_4 = 2Vdc$, $T_J = 0$ to 75° C)	v ₂	-	-	0.55	Vdc
$(I_{10} = 8 \text{ mAdc}, V_7 = V_8 = V_9 = 2 \text{ Vdc}$ $T_J = 0 \text{ to } 75^\circ \text{ C})$	v ₁₀	-	-	0.55	
Output "Off" Voltage (I ₂ = 100 \(mu\)Adc, V ₃ = 1.0 Vdc	v ₂	3.5	_	-	Vdc
$(I_2 = 100 \mu Adc, V_3 = 0.75 Vdc, T_3 = 75^{\circ} C)$	v ₂	3.5	-	-	
$(I_2 = 100 \mu Adc, V_3 = 1.1 Vdc, T_J = 0^{\circ} C)$	v ₂	3.5	-	-	
$(I_{10} = 100 \mu Adc, V_7 = 1.0 Vdc)$	V ₁₀	3.5	-	-	
$(I_{10} = 100\mu\text{Adc}, V_7 = 0.75\text{Vdc}, T_J = 75^{\circ}\text{C})$	V ₁₀	3,5	-	-	
$(I_{10} = 100 \mu Adc, V_7 = 1.1 Vdc, T_J = 0^{\circ} C)$	v ₁₀	3.5	-	-	
Input Breakdown Voltage $(I_3 = 10\mu\text{Adc}, V_4 = 0)$	BV3	8		_	Vdc
$(I_4 = 10\mu Adc, V_3 = 0)$	BV ₄	8	-	-	
$(I_7 = 10\mu Adc, V_8 = 0)$	BV ₇	8	-	-	
$(I_8 = 10 \mu Adc, V_7 = 0)$	BV ₈	8	-	-	
$(I_9 = 10\mu Adc, V_7 = 0)$	BV ₉	8	•	•	
Input Leakage Current	I ₃ , I ₄ , I ₇ , I ₈ , I ₉				μAdc
(Diode under test at 5Vdc, all	","	-	-	0.50	
other inputs = 0) (Diode under test at 5Vdc, all other inputs = 0, T _J = 75°C)		-	-	25	
Input Turn-Off Current	I ₃ , I ₄ , I ₇ , I ₈ , I ₉				mAdc
(Alternately V_3 V_A V_7 V_8 $V_9 = 0$)	8, 9	-	-	-2.3	
(Alternately V_3 , V_4 , V_7 , V_8 , $V_9 = 0$) (Alternately V_3 , V_4 , V_7 , V_8 , $V_9 = 0$, $T_J = 0$ to 75° C)	-	-	-	-2. 5	
Output Capacitance (V ₂ = 2.0Vdc, V ₃ = 0, V _{in} = 25mVrms,	C ₂	-	-	10	pf
f = 1mc, unused pins grounded) ($V_{10} = 2.0$ Vdc, $V_7 = 0$, $V_{in} = 25$ mVrms, f = 1mc, unused pins grounded)	c ₁₀	-	-	10	

----- Motorola Integrated Circuits -----

MC258 (continued)

ELECTRICAL CHARACTERISTICS (continued)

Characteristic	Symbol	Minimum	Typical	Maximum	Unit
Input Capacitance (V ₃ = 2Vdc, V _{in} = 25mVrms, f = 1mc,	c ₃	-		10	pf
unused pins grounded) (V ₄ = 2Vdc, V _{in} = 25mVrms, f = 1mc,	C ₄	-	· -	10	
unused pins grounded) (V ₇ = 2Vdc, V _{in} = 25mVrms, f = 1mc,	C ₇	-	_	10	
unused pins grounded) (V ₈ = 2Vdc, V _{in} = 25mVrms, f = 1mc,	C ₈	-	_	10	,Fr
unused pins grounded) (V ₉ = 2Vdc, V _{in} = 25mVrms, f = 1mc unused pins grounded)	c ₉	_	-	10	
Power Consumption Power Supply (Output "Off", V ₃ = V ₇ = 0)	-	-	_	20	mW
(output ''On'')			-	34	
Switching Times Turn-On Delay	ton	-	-	60	nsec
Turn-Off Delay	t _{off}	-	- '	60	
Average Propagation Delay	t _{pd}	-	30	-	nsec

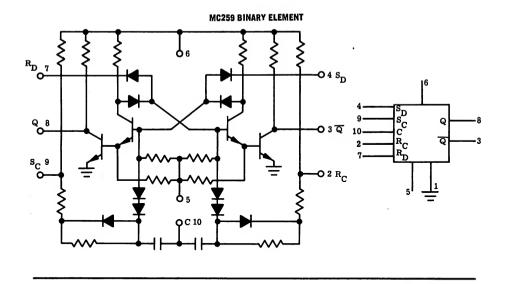
Mc 259

MC250 DTL SERIES

Diode Transistor Logic Flip-Flop.

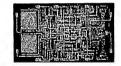
MAXIMUM RATINGS (TJ = 25°C)

Characteristic	Symbol	Rating	Unit
Applied Voltage	V ₂ ,3,4,6,7 8,9,10 V ₅	+8 - 8	Vdc
Forward Current	I _{3,8} I _{2,3,4,} 7 thru 10	+50 -30	mAdc
Operating Temperature Range	$\mathbf{T_{J}}$	0 to +75	°C
Storage Temperature Range	${ m T_{stg}}$	-65 to +175	°C


MC259 (continued)

ELECTRICAL CHARACTERISTICS

(V₆ = 4 Vdc, V₅ = 2 Vdc, V₁ = 0, T_J = 25°C unless otherwise noted)


Characteristic	Logic Symbol	Logic State	Symbol	Minimum	Typical	Maximum	Unit
OUTPUT LEVEL "Off" Voltage (I ₈ = -200\(\text{\pm}\)Adc, V ₄ = 0.55Vdc,	Q	1	v ₈	2.5	-	-	Vdc
$V_7 = 2.0 \text{Vdc}, T_A = 0 \text{ to } 75^{\circ} \text{ C}$ $(I_3 = -200 \mu \text{Adc}, V_4 = 2.0 \text{Vdc}, V_7 = 0.6 \text{Vdc}, T_A = 0 \text{ to } 75^{\circ} \text{ C})$	হ	1	v ₃	2.5	-	-	Vdc
"On" Voltage (I ₈ = 16mAdc, V ₄ = 2.0Vdc, V ₇ = 0.55Vdc, T _A = 0 to 75°C)	Q	0	v ₈	-	-	0₁55	V dc-
$(I_3 = 16 \text{ mAdc}, V_4 = 0.55 \text{ Vdc}, V_7 = 2.0 \text{ Vdc}, T_A = 0 \text{ to } 75^{\circ}\text{ C})$	হ	0	v ₃	-	-	0.55	Vdc
DIRECT SET-RESET INPUTS "Up" Voltage	S _D	1	v ₄ v ₇	2.0 2.0	<u>-</u>	-	Vdc Vdc
"Down" Voltage	S _C R _D	0	v ₄ v ₇	-	-	0. 55 0. 55	V dc V dc
"Up" Current (V ₄ = 5Vdc, T _J = 75°C) (V ₇ = 5Vdc, T _J = 75°C)	S _D	1	I ₄ I ₇	-		25 25	μAdc μAdc
"Down" Current (V ₄ = 0) (V ₇ = 0)	S _D	0	I ₄ I ₇	-	-	-2.3 -2.3	mAdc mAdc
CLOCKED SET-RESET INPUTS "Down" Current (V ₉ , 10 = 0, T _J = 25°C) (V ₂ , 10 = 0, T _J = 25°C)	S _C R _C	0	I ₉ I ₂	-		-1.75 -1.75	mAdc mAdc
Effective Clock Input Capacitance			C ₁₀		75	-	pf
SWITCHING TIME Clocked Set-Reset Mode Turn-On Delay Turn-Off Delay			t on t	-	-	100 75	nsec nsec
Direct Set-Reset Mode Turn-On Delay Turn-Off Delay			t on t	- -	- -	100 75	nsec nsec
POWER CONSUMPTION				-	16	-,	mW

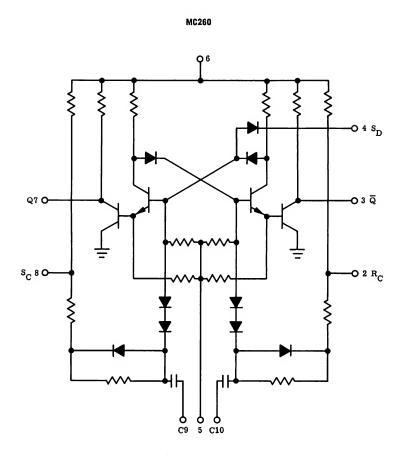
MC259 (continued)

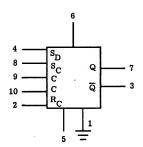
мс 260

MC250 DTL SERIES

Diode Transistor Logic Flip-Flop.

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

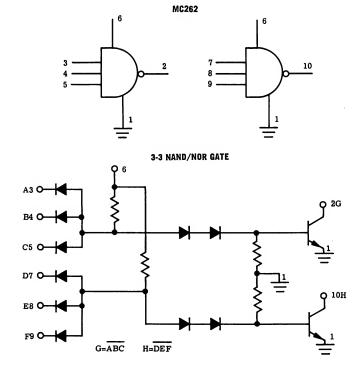

Characteristic	Symbol	Rating	Unit
Applied Voltage	V _{2,3,4,6,} 7,8,9,10 V ₅	+8 -8	Vdc
Forward Current	I _{3,7} I _{2,3,4,} 7 thru 10	+50 -30	mAdc
Operating Temperature Range	$^{\mathrm{T}}\mathrm{_{J}}$	0 to +75	, C
Storage Temperature Range	T _{stg}	-65 to +175	, C


MC260 (continued)

ELECTRICAL CHARACTERISTICS (V6 = 4 Vdc, V5 = 2 Vdc, V1 = 0, TJ = 25 °C)

Characteristic	Logic Symbol	Logic State	Symbol	Minimum	Typical	Maximum	Unit
OUTPUT LEVEL "Off" Voltage (I ₇ = -200 \(\text{N}_4 = 0.55 \text{Vdc}, \)	Q	1	v ₇	2.5	-	-	Vdc
Momentarily connect pin 2 to -2.0Vdc, $T_{\gamma} = 0$ to 75°C) ($I_3 = -200\mu \text{Adc}$, $V_4 = 2.0Vdc$, $T_J = 0$ to 75°C)	হ	1	v ₃	2.5	-	-	Vdc
"On" Voltage ($I_7 = 16$ mAdc, $V_4 = 2.0$ Vdc, Momentarily connect pin 2 to -2.0Vdc, $T_3 = 0$ to 75° C)	Q	0	v ₇	-	-	0. 55	Vdc
$(I_3 = 16 \text{ mAdc}, V_4 = 0.55 \text{Vdc}, T_J = 0 \text{ to } 75^{\circ} \text{ C})$	হ	0	v ₃	-	-	0.55	V dc
DIRECT SET INPUT CURRENT "Up" Current (V ₄ = 5Vdc, T _J = 75°C)	s _D	1	I ₄	-	_	25	μAdc
"Down" Current (V ₄ = 0)	s _D	0	I ₄	-	-	-2.3	mAdc
CLOCKED SET-RESET INPUTS "Down" Current (V _{8,9} = 0, T _J = 75°C) (V _{2,10} = 0, T _J = 75°C)	S _C R _C	0	I ₈ I ₂	- -	-	-1.75 -1.75	mAdc mAdc
Effective Clock Input Capacitance (V ₉ = 2.0Vdc, V ₈ = 0Vdc) (V ₁₀ = 2.0Vdc, V ₂ = 0Vdc) (V ₈ = 4.0Vdc)			C ₉	-	75 - 75	-	pf pf
SWITCHING TIME Clocked Set-Reset Mode Turn-On Delay Turn-Off Delay			t _{on}	-	-	100 75	nsec nsec
Direct Set Mode Turn-On Delay Turn-Off Delay			t _{on}	-	-	100 75	nsec nsec
POWER CONSUMPTION				-	16	-	mW

MC260 (continued)


MC250 DTL SERIES

Dual (3-3) Input Diode Transistor Logic NAND/NOR Gate.

MAXIMUM RATINGS (TJ = 25 °C unless otherwise noted)

Characteristic	Symbol	Rating	Unit
Applied Voltage	V ₃ thru 9 V _{2,10}	+8 +6	Vdc
Forward Current	^I 2, 10 ^I 2 thru 5, 7 thru 10	+30 -30	mAdc
Operating Temperature Range	$^{\mathrm{T}}\mathrm{_{J}}$	0 to +75	°C
Storage Temperature Range	${ m T_{stg}}$	-65 to +175	°c

MC262 (continued)

ELECTRICAL CHARACTERISTICS

(V6 = 4 Vdc, V5 = 2 Vdc, V1 = 0, TJ = 25 °C unless otherwise noted)

Characteristic	Symbol	Minimum	Typical	Maximum	Unit
Output Breakdown Voltage $ (\mathbf{I_2} = 5\mu \mathrm{Adc, V_3} = 0) $ $ (\mathbf{I_{10}} = 5\mu \mathrm{Adc, V_7} = 0) $	BV ₂ BV ₁₀	6 6	-	-	Vdc
"1" Output Current (V ₃ = 1.0Vdc, V ₂ = 5Vdc) (V ₃ = 0.75Vdc, V ₂ = 5Vdc, T _J = 75°C)	I ₂ I ₂	-	-	50 50	Adc
$(V_3 = 1.1 \text{Vdc}, V_2 = 5 \text{Vdc},$ $T_J = 0^{\circ} \text{C})$ $(V_7 = 1.0 \text{Vdc}, V_{10} = 5 \text{Vdc})$ $(V_7 0.75 \text{Vdc}, V_{10} = 5 \text{Vdc},$	I ₂ I ₁₀ I ₁₀	-	-	50 50 50	
$T_{J} = 75^{\circ} \text{ C}$) $(V_{7} = 1.1 \text{ Vdc}, V_{10} = 5 \text{ Vdc}, T_{J} = 0^{\circ} \text{ C})$	I ₁₀	-	-	50	
"" Output Current (V _{in} = 2Vdc, V ₂ = 0.55, T _J = 0 to 75°C)	12	10	-	-	mAdc
$(V_{in} = 2Vdc, V_{10} = 0.55, T_{J} = 0 \text{ to } 75^{\circ} \text{ C})$	I ₁₀	10	-	-	
Input Breakdown Voltage $(I_3 = 10\mu Adc, V_4 = 0)$ $(I_4 = 10\mu Adc, V_3 = 0)$	BV ₃	8	-	-	Vdc
$(I_5 = 10\mu Adc, V_3 = 0)$ $(I_7 = 10\mu Adc, V_8 = 0)$	BV ₅ BV ₇	8 8	-	-	
$(I_8 = 10\mu Adc, V_7 = 0)$ $(I_9 = 10\mu Adc, V_7 = 0)$	BV ₈ BV ₉	8	- -	-	
Input Leakage Current	I ₃ , I ₄ , I ₅ , I ₇ , I ₈ , I ₉				μAdc
(Diode under test at 5Vdc, all other inputs = 0) (Diode under test at 5Vdc, all other inputs = 0, $T_J = 75^{\circ}$ C)	1, 0, 0	-	-	0.50 25	
Input Turn-Off Current	I ₃ , I ₄ , I ₅ , I ₇ , I ₈ , I ₉				mAdc
(Alternately V_3 , V_4 , V_5 , V_7 , V_8 , $V_9 = 0$)	,, ,, ,	-	-	-2.3	
(Alternately V_3 , V_4 , V_5 , V_7 , V_8 , $V_9 = 0$, $T_J = 0$ to 75° C)		-	-	-2. 5	

MC262 (continued)

ELECTRICAL CHARACTERISTICS (continued)

Characteristic	Symbol	Minimum	Typical	Maximum	Unit
Output Capacitance (V ₂ = 2.0Vdc, V ₃ = 0, V _{in} = 25mVrms,	с ₂	-	-	10	pf
f = 1mc, unused pins grounded) $(V_{10} = 2.0 \text{Vdc}, V_7 = 0, V_{in} = 25 \text{mVrms},$ f = 1mc, unused pins grounded)	C ₁₀	-	-	10	
Input Capacitance (V ₃ = 2Vdc, V _{in} = 25mVrms, f = 1mc, unused pins grounded)	c3	-	-	10	pf
(V ₄ = 2Vdc, V _{in} = 25mVrms, f = 1mc, unused pins grounded)	C ₄	-	-	10	
(V ₅ = 2Vdc, V _{in} = 25mVrms, f = 1mc, unused pins grounded)	С ₅	- '	-	10	
(V ₇ - 2Vdc, V _{in} = 25mVrms, f = 1mc, unused pins grounded)	c ₇	-	-	10	
$(V_8 = 2Vdc, V_{in} = 25mVrms, f = 1mc,$	c ₈	-	-	10	
unused pins grounded) (V ₉ = 2Vdc, V _{in} = 25mVrms, f = 1mc,	c ₉	-	-	10	
Power Consumption from Power Supply (Output "Off", V ₃ = V ₇ = 0)		_	_	19	mW
(Output "On")		-	-	12	
Switching Times Turn-On Delay	t	_	_	60	nsec
Turn-Off Delay	t _{on}	-	-	60	
Average Propagation Delay	t _{pd}	-	30	-	nsec

мс 263

MC250 DTL SERIES

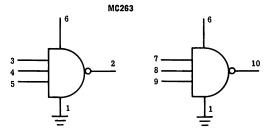
Dual (3-3) Input Diode Transistor Logic NAND/NOR Gate.

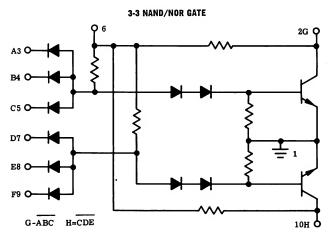
MAXIMUM RATINGS (TJ = 25°C unless otherwise noted)

Characteristic	Symbol	Rating	Unit
Applied Voltage	V ₃ thru 9	+8	Vdc
	v _{2,10}	+6	mAdc
Forward Current	^I 2,10 ^I 2 thru 5, 7 thru 10	+30 -30	
Operating Temperature Range	$^{\mathrm{T}}\mathrm{_{J}}$	0 to 75	°c
Storage Temperature Range	T _{stg}	-65 to +175	°C

MC263 (continued)

ELECTRICAL CHARACTERISTICS

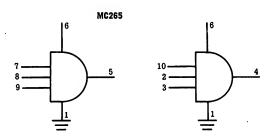

(V6 = 4 Vdc, V5 = 2 Vdc, V1 = 0, TJ = 25 °C unless otherwise noted)

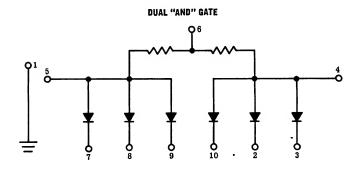

Characteristic	Symbol	Minimum	Typical	Maximum	Unit
Output Breakdown Voltage $(I_2 = 5\mu Adc, V_3 0)$ $(I_{10} = 5\mu Adc, V_7 = 0)$	BV ₂ BV ₁₀	6 6	-	-	Vdc
Output Saturation Voltage (I ₂ = 8mAdc, V ₃ = V ₄ = V ₅ = 2Vdc, T ₇ = 0 to 75° C)	v ₂	-	-	0.55	Vdc
$(I_{10} = 8 \text{mAdc}, V_7 = V_8 = V_9 = 2 \text{Vdc},$ $T_J = 0 \text{ to } 75^{\circ} \text{ C})$	v ₁₀	-	-	0.55	
Output "Off" Voltage (L ₂ = 100 \(mu \text{Adc}, \text{V}_3 = 0.7 \text{Vdc}, \) T ₇ = 0 to 75° C)	v ₂	3.5	-	-	Vdc
$(I_{10} = 100 \mu Adc, V_7 = 0.7Vdc, T_J = 0 to 75°C)$	v ₁₀	3.5	-	-	
Input Breakdown Voltage (I ₃ = 10 \(\mu\)Adc, V ₄ = 0) (I ₄ = 10 \(\mu\)Adc, V ₃ = 0)	BV ₃ BV ₄	8	-	-	Vdc
$(I_5 = 10 \mu Adc, V_3 = 0)$	BV ₅	8	-	-	
$(I_7 = 10 \mu Adc, V_5 = 0)$	BV ₇	8	-	-	
$(I_8 = 10\mu Adc, V_7 = 0)$ $(I_9 = 10\mu Adc, V_7 = 0)$	BV ₈	8 8	-	- -	
Input Leakage Current	I ₃ , I ₄ , I ₅ , I ₇ , I ₈ , I ₉				μAdc
(Diode under test at 5Vdc, all other inputs = 0)	1, 0, 0	-	-	0.500	
(Diode under test at 5Vdc, all other inputs = 0, T _J = 75° C)	-4-	-	-	25	
Input Turn-Off Current	I ₃ , I ₄ , I ₅ , I ₇ , I ₈ , I ₉				mAdc
(Alternately V ₃ , V ₄ , V ₅ , V ₇ , V ₈ , V ₉ = 0)	,,,,	-	-	-2.3	
(Alternately V ₃ , V ₄ , V ₅ , V ₇ , V ₈ , V ₉ = 0, T _J = 0 to 75° C)		•	-	-2.3	
Output Capacitance (V ₂ = 2.0Vdc, V ₃ = 0, V _{in} = 25mVrms, f = 1mc, unused	c ₂	-	-	10	pf
pins grounded) (V ₁₀ = 2.0Vdc, V ₇ = 0, V _{in} = 25mVrms, f = 1mc, unused pins grounded	C ₁₀	-	-	10	

MC263 (continued)

ELECTRICAL CHARACTERISTICS (continued)

Characteristic	Symbol	Minimum	Typical	Maximum	Unit
Input Capacitance (V ₃ = 2Vdc, V _{in} = 25mVrms,	c ₃	-	-	10	pf
f = 1mc, unused pins grounded) (V ₄ = 2Vdc, V _{in} = 25mVrms,	C ₄	-	_	10	
f = 1mc, unused pins grounded) (V ₅ = 2Vdc, V _{in} = 25mVrms,	c ₅	-	-	10	
f = 1mc, unused pins grounded) (V ₇ = 2Vdc, V _{in} = 25mVrms,	C ₇	-	-	10	
f = 1mc, unused pins grounded) (V ₈ = 2Vdc, V _{in} = 25mVrms, f = 1mc, unused pins grounded)	C ₈	-	-	10	
$(V_9 = 2Vdc, V_{in} = 25mVrms,$ f = 1mc, unused pins grounded)	C ₉	-	-	10	
Power Consumption from Power Supply (Output "Off", V ₃ = V ₇ = 0)	-	_	_	19	mW
(Output "On")		-	-	33	
Switching Times Turn-On Delay Turn-Off Delay	t _{on}	-	1 1	60 60	nsec
Average Propagation Delay	t _{pd}	-	30	-	nsec


MC250 DTL SERIES



Dual (3-3) Input Diode Transistor Logic AND Gate.

MAXIMUM RATINGS (TA = 25°C)

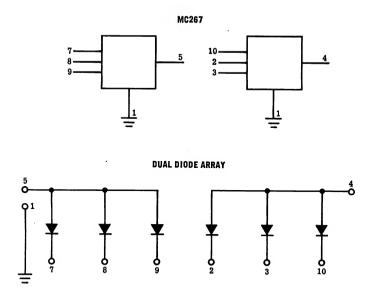
Characteristic	Symbol	Rating	Unit
Applied Voltage	V ₂ , 3, 7 thru 10 V ₆	+8 ±8	Vdc
Forward Current	I ₂ thru 10	±30	mAdc
Operating Temperature Range	T _J	0 to +75	°c
Storage Temperature Range	Tstg	-65 to +175	°c

MC265 (continued)

ELECTRICAL CHARACTERISTICS

Characteristic	Symbol	Minimum	Typical	Maximum	Unit
Diode Breakdown Voltage $(I_2, 3, 10^{=10\mu \text{Adc}}, V_4 = V_1 = 0)$ $(I_7, 8, 9 = 10\mu \text{Adc}, V_5 = V_1 = 0)$	V _{2,3,10} V _{7,8,9}	8 8	-	-	Vdc
Diode Forward Voltage (I ₄ = 2mAdc, V ₂ , 3, 10 = V ₁ = 0) (I ₅ = 2mAdc, V ₇ , 8, 9 = V ₁ = 0)	v ₄ v ₅		-	0.85 0.85	Vdc
Diode Reverse Leakage Current $(V_2, 3, 10 = 5V dc, V_4 = V_1 = 0)$ $(V_2, 3, 10 = 5V dc, V_4 = V_1 = 0, T_J = 75^{\circ} C)$ $(V_7, 8, 9 = 5V dc, V_5 = V_1 = 0)$	^I 2,3,10 ^I 2,3,10 ^I 7,8,9	-	-	0. 50 25 0. 50 25	μAdc
$(V_7, 8, 9 = 5Vdc, V_5 = V_1 = 0, T_3 = 75°C)$ Input Capacitance $(V_2, 3, 10 = 2Vdc, V_4 = V_1 = 0,$	¹ 7,8,9	_	-	10	pf
$f=1 \mathrm{mc}$, $V_{\mathrm{in}}=25 \mathrm{mVrms}$, unused inputs grounded) $(V_{7,8,9}=2 \mathrm{Vdc}, V_{5}=V_{1}=0,$ $f=1 \mathrm{mc}, V_{\mathrm{in}}=25 \mathrm{mVrms}$, unused pins grounded)	C _{7,8,9}	-	-	10	
Reverse Recovery Time (I _{F2} ,3,10 = I _{R2} ,3,10 = 2mAdc, V ₄ = V ₁ = 0, recover to 0.2mAdc)	trr2,3,10	-	-	4	nsec
$(I_{F7,8,9} = I_{R7,8,9} = 2\text{mAdc},$ $V_5 = V_1 = 0$, recover to 0.2mAdc)	t _{rr7,8,9}			-	
Resistor Isolation Leakage (V ₆ = 5Vdc, V ₄ = V ₅ = 0)	I ₁		-	600	mAdc
Resistor Current (V ₆ = 4Vdc, V ₄ = V ₁ = 0) (V ₆ = 4Vdc, V ₅ = V ₁ = 0)	I ₄ I ₅	1.3	-	2.85 2.85	mAdc
Resistor Temperature Coefficient	-	-	0.1	-	%/° C
Diode Forward Conductance Change with Temperature	ΔV _{F2,3,10} ΔV _{F7,8,9}	-	-1.7 -1.7	-	mV∕° C

мс**267**


MC250 DTL SERIES

Diode Transistor Logic Dual-Diode Array.

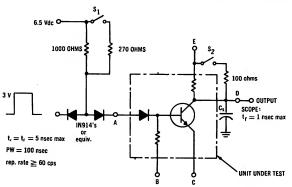
MAXIMUM RATINGS (TA = 25°C)

Characteristic	Symbol	Rating	Unit
Applied Voltage	V _{2,3,} 7 thru 10	8	Vdc
Forward Current	I ₂ thru 5 7 thru 10	30	mAde
Operating Temperature Range	$^{\mathrm{T}}\mathrm{_{J}}$	0 to +75	°c
Storage Temperature Range	T _{stg}	-65 to +175	°c

MC267 (continued)

ELECTRICAL CHARACTERISTICS (TJ = 25°C unless otherwise noted)

Characteristic	Symbol	Minimum	Typical	Maximum	Unit
Diode Breakdown Voltage $(I_2, 3, 10 = 10\mu\text{Adc}, V_4 = V_1 = 0)$ $(I_7, 8, 9 = 10\mu\text{Adc}, V_5 = V_1 = 0)$	V _{2,3,10} V _{7,8,9}	8	-	- -	Vdc
Diode Forward Voltage $(I_4 = 2\text{mAdc}, V_2, 3, 10 = V_1 = 0)$ $(I_5 = 2\text{mAdc}, V_7, 8, 9 = V_1 = 0)$	v ₄ v ₅		-	0.85 0.85	Vdc
Diode Reverse Leakage Current (V ₂ ,3,10 = 5Vdc, V ₄ = V ₁ = 0) (V ₂ ,3,10 = 5Vdc, V ₄ = V ₁ = 0,	I _{2,3,10}	-		0.50 25	μAdc
$T_J = 75^{\circ} C$) $(V_{7,8,9} = 5V dc, V_5 = V_1 = 0)$ $(V_{7,8,9} = 5V dc, V_5 = V_1 = 0, T_J = 75^{\circ} C)$	I _{7,8,9}	-	-	0. 50 25	
Input Capacitance (V ₂ ,3,10 = 2Vdc, V ₄ = V ₁ = 0, f = 1mc, V _{in} = 25mVrms,	C _{2,3,10}	-	-	10	pf
unused inputs grounded) (V _{7,8,9} = 2Vdc, V ₅ = V ₁ = 0, f = 1mc, V _{in} = 25mVrms, unused inputs grounded)	C _{7,8,9}	-	-	10	
Reverse Recovery Time (IF2,3,10 = IR2,3,10 = 2mAdc, V _A = V ₁ = 0, Recover to 0.2mAdc)	t _{rr2,3,10}	-	•	4	nsec
(I _{F7,8,9} = I _{R7,8,9} = 2mAdc V ₅ = V ₁ = 0, recover to 0.2mAdc)	t _{rr7,8,9}	-	-	4	
Diode Forward Conductance Change with Temperature	ΔV _{F2,3,10} ΔV _{F7,8,9}	-	-1.7 -1.7	-	mV∕° C

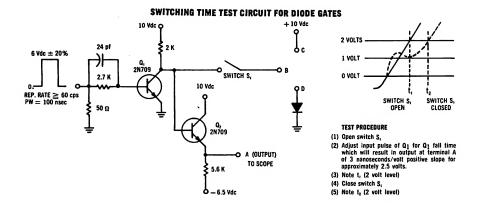

USN ME DTL series

CASE 71 (TO-5) Monolithic integrated Diode Transistor Logic circuits designed to provide all of the basic logic functions in a digital computer. The ME USN Series is intended for high-speed logic applications over a temperature range of -55 to +125°C.

Series USN ME1 DTL Circuits

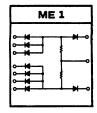
Туре	Description	Recovery Time (nsec)	Switching Time ton (nsec)		Power Dissipation (mW)
ME1	3-4 Diode AND Gate	15	_	_	200
ME2	2-2-2 Diode AND Gate	15	_	_	300
ME3	1-1-1-2 Diode AND Gate	14	_	_	400
ME4	8-Diode AND Gate	15	_	_	100
ME5	Dual Inverters	_	20	45	250
ME6	9-Diode Common-P Gate	90	_	_	-
ME7	9-Diode Common-N Gate	90	_	_	-
ME8	16-Diode Series/Parallel Matrix	90	_	-	-

SWITCHING TIME TEST CIRCUIT FOR INVERTERS (ME5)



TERMINAL	Q,	Q,
A	6	9
В	7	8
С	5	10
D	4	1
E	3	2

NOTES

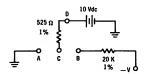

- (1) Turn-on time for the circuit is defined as the time interval from a point 10% up from the minimum amplitude on the leading edge of the input pulse to a point 90% down from the maximum amplitude on the leading edge of the output pulse.
- (2) Turn-off time for the circuit is defined as the time interval from a point 10% down from the maximum amplitude on the trailing edge of the input pulse to a point 50% down from the maximum amplitude on the trailing edge of the output pulse.
- (3) Adjust C_s to 20 pf (includes scope and stray capacitance.)

USN ME (continued)

USN **ME1** MIL-M-23700/1 (NAVY)

USN ME DTL SERIES

CASE 71 (10-5)


3-4 Diode AND Gate.

ABSOLUTE MAXIMUM RATINGS (TA = 25°C unless otherwise noted)

Characteristic	Symbol	Rating	Unit
Forward Current	I _F	20	mA
Reverse Voltage	v _R	10	Volts
Total Device Dissipation Derate above 25°C	P _D	200 1.33	mW mW/°C
Resistor Dissipation (Each Resistor) Derate above 25 ^o C	P _D	100 0.67	mW mW/°C
Operating Temperature Range	T _A	-55 to +125	°C
Storage Temperature Range	T _{stg}	-65 to +175	°C

USN ME1 (continued)

DIFFERENTIAL VOLTAGE AND FORWARD CURRENT TEST CIRCUIT AND TERMINAL CONNECTIONS

	TERMINAL 1 DIFFERE		
	ALTERNATELY CONNECT A TO	6, 7, 8	1, 2, 9, & 10
1	CONNECT B TO	5	4
	CONNECT C TO	3	3

TERMINAL TEST CONNECTIONS FORWARD CURRENT

ALTERNATELY CONNECT A TO	1, 2, 4 THRU 10
CONNECT D TO	3
B NOT CONNECTED	T .

TABLE I GROUP A INSPECTION

TABLE I GROUP A INSPEC	TION	·			T		
Examination or Test	MIL-STD- 750 Method	Symbol		mits /Max	Unit	LPTD	Max Acc Number
SUBGROUP							
Visual and Mechanical Examination	2071	-	_	_	—	20	4
SUBGROUP 2							
Forward Current (each diode - Fig. 2) $V_{D-1}^{}$ = 10 Vdc $V_{D-2}^{}$ = 10 Vdc $V_{D-4}^{}$ thru $10^{}$ = 10 Vdc	4011	I ₃₋₁ I ₃₋₂ I ₃₋₄ thru 10	8.3	10.1 10.1 10.1	mAdc	-	
Reverse Current (each diode) V ₁₋₃ = 10 Vdc V ₂₋₃ = 10 Vdc V ₄ thru 10-3 = 10 Vdc	4016	^I 1-3 ^I 2-3 ^I 4 thru 10-3	-	0.1 0.1 0.1	μAdc	5	4
SUBGROUP 3							
$\begin{array}{c} \text{Differential Voltage (Fig. 2)} \\ \text{V}_{D-6} = 10 \text{ Vdc, I}_{D-5} = 0.5 \text{ mAdc} \\ \text{V}_{D-7} = 10 \text{ Vdc, I}_{D-5} = 0.5 \text{ mAdc} \\ \text{V}_{D-8} = 10 \text{ Vdc, I}_{D-5} = 0.5 \text{ mAdc} \\ \text{V}_{D-8} = 10 \text{ Vdc, I}_{D-5} = 0.5 \text{ mAdc} \\ \text{V}_{D-1} = 10 \text{ Vdc, I}_{D-4} = 0.5 \text{ mAdc} \\ \text{V}_{D-9} = 10 \text{ Vdc, I}_{D-4} = 0.5 \text{ mAdc} \\ \text{V}_{D-10} = 10 \text{ Vdc, I}_{D-4} = 0.5 \text{ mAdc} \\ \text{V}_{D-10} = 10 \text{ Vdc, I}_{D-4} = 0.5 \text{ mAdc} \\ \end{array}$		V5-6 V5-7 V5-8 V4-1 V4-2 V4-9 V ₄₋₁₀		0.30 0.30 0.30 0.30 0.30 0.30 0.30	Vdc	5	4
SUBGROUP 4							
Capacitance (each diode) V ₁ , 2, 4 thru 10-3 = 10 Vdc, f = 100 kc	4001	^C l, 2, 4 thru 10-3	_	4	pf		
Reverse Recovery Time (Fig. 3)	4031	t ₂ - t ₁		ŀ	nsec		
Connect Pin 3 to C. Pin 4 to D, alternately connect Pins 1, 2, 9, and 10 to B Connect Pin 3 to C, Pin 5 to D,		¥	_	15		5	4
alternately connect Pins 6, 7, and 8 to B			_	15			
Connect Pin 3 to C, Pin 2 to D, and Pin 4 to B			_	15			
Connect Pin 3 to C, Pin 6 to D, and Pin 5 to B			_	15			

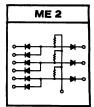
NOTE: Letter subscripts denote test circuit connection points.

Number subscripts denote device pin connections.

USN ME1 (continued)

TABLE II GROUP B INSPECTION

		Limits		nits			
Examination or Test	MIL-STD-750 Method	Symbol	Min	Max	Unit	LTPD	Max Acc Number
SUBGROUP I Physical Dimensions	2066	_	_	_		20	5
SUBGROUP 2 Soldering Heat (1 Cycle)	2031		١	1	_		
Temperature Cycling (T = 175°C)	1051 Condition B	_	_	_	_	20	5
Thermal Shock (Glass Strain)	1056 Condition A	_	_	_	-	20	
Moisture Resistance End Points: Same As Subgroup 7	1021		_	_	_		
SUBGROUP 3 Constant Acceleration (10,000G, X ₁ , Y ₁ , Y ₂)	2006		-	_	_		
Shock (500G, 1 msec, 5 blows each in orientation X_1 , Y_1 , Y_2 , total of 15 blows.)	2016	_	_	-	-	20	5
Vibration Fatigue (10G)	2046 Non-operating	_	-	_	_		
Vibration, Variable Frequency (10G) End Points: Same As Subgroup 7	2056	_	-	-	_		
SUBGROUP 4 (Notes 1, 2) Terminal Strength (3 leads at random)	2036 Condition E	_		_		20	5
SUBGROUP 5 (Notes 1, 3) Salt Atmosphere (Corrosion)	1041		_		1	20	5
SUBGROUP 6 High Temperature Life (T _A = 175°C) End Points: Same As Subgroup 7	1031 Non-operating	l	1	_	1	λ=20	-
SUBGROUP 7 Steady State Operation Life Vr 1, 2, 4 thru 10-3 = 10V, f = 60 cps PD(R ₁) = PD(R ₂) = 100 mW	1026	-	_	_	_	λ=20	_
End Points: (Subgroups 2, 3, 6 and 7) Forward Current VD-1 = 10 Vdc VD-2 = 10 Vdc VD-4 thru 10 = 10 Vdc	4011	I ₃₋₁ I ₃₋₂ I ₃₋₄ thru 10	7.8 7.8 7.8	10. 6 10. 6 10. 6			
Reverse Current V1-3 = 10 Vdc V2-3 = 10 Vdc V4 thru 10-3 = 10 Vdc V4 thru 10-3 = 10 Vdc	4016	I ₁₋₃ I ₂₋₃ I ₄ thru 10-3	=	1.0 1.0 1.0	μAde		

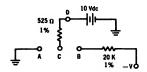

NOTE 1. Tests listed in these subgroups are considered destructive.

NOTE 2. At the conclusion of the testing in subgroup 4, the device shall be examined for evidence of mechanical damage.

NOTE 3. The device shall be examined for destructive corrosion and illegible marking.

USN **ME2** MIL-M-23700/2 (NAVY)

USN ME DTL SERIES



2-2-2 Diode AND Gate.

ABSOLUTE MAXIMUM RATINGS (TA = 25°C unless otherwise noted)

Characteristic	Symbol	Rating	Unit
Forward Current	I _F	20	mA
Reverse Voltage	v _R	10	Volts
Total Device Dissipation Derate above 25°C	P _D	300 2	mW mW/°C
Resistor Dissipation (Each Resistor) Derate above 25°C	P _D	100 0.67	mW/°C
Operating Temperature Range	TA	-55 to +125	°C
Storage Temperature Range	T _{stg}	-65 to +175	°С

DIFFERENTIAL VOLTAGE AND FORWARD CURRENT TEST CIRCUIT AND TERMINAL CONNECTIONS

	DIFFERENTIAL VOLTAGE								
	ALTERNATELY CONNECT A TO	9, 10	7, 8	5, 6					
ı	CONNECT B TO	1	2	4					

CONNECT C TO

USN ME2 (continued)

TABLE I GROUP A INSPECTION

	MIL-STD-750	STD.750 Limits					Max Acc
Examination or Test	Method	Symbol	Min	Max	Unit	LTPD	Number
SUBGROUP I							
Visual and Mechanical Examination	2071		_	_	_	20	_
SUBGROUP 2							
Forward Current (each diode - Fig. 2) VD-1 = 10 Vdc VD-2 = 10 Vdc	4011	I ₃₋₁ I ₃₋₂	8.3	10. 1 10. 1	n.Adc		
VD-4 thru 10 = 10 Vdc Reverse Current (each diode) V1-3 = 10 Vdc V2-3 = 10 Vdc V4 thru 10-3 = 10 Vdc	4016	I ₃₋₄ thru 10 I ₁₋₃ I ₂₋₃ I ₄ thru 10-3	_	0.1 0.1 0.1 0.1	μ Adc	5	4
SUBGROUP 3							
Differential Voltage (Fig. 2) $ \begin{array}{c} V_{D-5} = 10 \ \ Vdc, \ I_{D-4} = 0.5 \ \ mAdc \\ V_{D-6} = 10 \ \ Vdc, \ I_{D-4} = 0.5 \ \ mAdc \\ V_{D-7} = 10 \ \ Vdc, \ I_{D-2} = 0.5 \ \ mAdc \\ V_{D-8} = 10 \ \ \ Vdc, \ I_{D-2} = 0.5 \ \ mAdc \\ V_{D-9} = 10 \ \ \ \ \ Vdc, \ I_{D-1} = 0.5 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$		V4-5 V4-6 V2-7 V2-8 V1-9 V1-10	=	0. 36 0. 30 0. 30 0. 30 0. 30 0. 30	Vdc	5	4
SUBGROUP 4 Capacitance (each diode) V1, 2, 4 thru 10-3 = 10 Vdc, f = 100 kc Reverse Recovery Time (Fig. 3)	4001 4031	C _{1, 2, 4,} thru 10-3 t ₂ - t ₁	_	4	pf nsec		
Connect Pin 3 to C, Pin 1 to D, alternately connect Pins 9 and 10 to B Connect Pin 3 to C, Pin 2 to D, alternately connect Pins 7 and 8 to B Connect Pin 3 to C, Pin 4 to D,			_ _	15 15		5	4
alternately connect Pins 5 and 6 to B Connect Pin 3 to C, Pin 9 to D, and Pi Connect Pin 3 to C, Pin 7 to D, and Pi Connect Pin 3 to C, Pin 5 to D, and Pi	n 2 to B		=	15 15 15 15			

NOTE: Letter subscripts denote test circuit connection points.

Number subscripts denote device pin connections.

QUALITY ASSURANCE PROVISIONS

Qualification approval: Required.

Qualification inspection: Group A and group B inspections as shown in Tables I and II. Sampling shall be in accordance with Appendix D of MIL-M-23700.

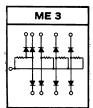
Quality conformance inspection: Group A and group B inspections as shown in Tables I and IL. Sampling for group A inspection shall be in accordance with procedure I, Appendix D of MIL-M-23700. Procedure IC may be used. A device having one or more defects shall be counted as one defective. Sampling for group B inspection shall be in accordance with procedure I (procedure IC may be used), of Appendix D of MIL-M-23700, except for life tests which shall be in accordance with procedure IL.

Quality conformance inspection information: When specified in the contract or order, one copy of the quality conformance inspection data pertinent to the inspection lot shall accompany the shipments.

USN ME2 (continued)

TABLE II GROUP B INSPECTION

	MIL-STD-750		Li	mits	Unit LTPD		Max Acc
Examination or Test	Method	Symbol	Min	Max			Number
SUBGROUP I Physical Dimensions	2066	_	_	_	_	20	5
SUBGROUP 2 Soldering Heat (1 Cycle)	2031			_	_		
Temperature Cycling (T = 175 ⁰ C)	1051 Condition B	_	$ _{-}$	_	-		
Thermal Shock (Glass Strain)	1056 Condition A	_	_	_	—	20	5
Moisture Resistance End Points: Same As Subgroup 7	1021	_	-	-	-		
SUBGROUP 3 Constant Acceleration (10,000G, X ₁ , Y ₁ , Y ₂)	2006	_	-	_	-		
Shock (500G, 1 msec,:5 blows each in orientation $\mathbf{X_{l}}$, $\mathbf{Y_{l}}$, $\mathbf{Y_{2}}$, total of 15 blows.)	2016		-	–	_	20	5
Vibration Fatigue (10G)	2046 Non-operating	_	-	-	—		
Vibration, Variable Frequency (10G) <u>End Points:</u> Same As Subgroup 7	2056	_		_	_		
SUBGROUP 4 (Notes 1, 2) Terminal Strength (3 lèads at random)	2036 Condition E	_	_	-		20 .	5
SUBGROUP 5 (Notes 1, 3) Salt Atmosphere (Corrosion)	1041	_	_	_	. —	20	5
SUBGROUP 6 High Temperature Life (T _A = 175 °C) End Points: Same As Subgroup 7	1031 Non-operating	_		_	-	λ=20	_
SUBGROUP 7 Steady State Operation Life V r1, 2, 4 thru 10-3 = 10V, f = 60 cps P D (R1) = PD (R2) = PD (R3) = 100 mW	1026	_			_	λ = 20	
End Points: (Subgroups 2, 3, 6 and 7) Forward Current (Fig. 2) VD-1;= 10 Vdc VD-2 = 10 Vdc	4011	I ₃₋₁ I3-2	7.8	10. 6 10. 6	m A dc		
VD-4 thru 10 = 10 Vdc Reverse Current V ₁₋₃ = 10 Vdc V ₂₋₃ = 10 Vdc	4016	I ₃₋₄ thru10	7.8	10. 6 1. 0 1. 0	μ Adc		
V4 thru 10-3 = .10 Vdc NOTE 1. Tests listed in these subgroups are co		I ₂₋₃ I _{4 thru 10-3}		1.0			

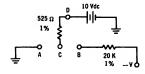

NOTE 1. Tests listed in these subgroups are considered destructive.

NOTE 2. At the conclusion of the testing in subgroup 4, the device shall be examined for evidence of mechanical damage.

NOTE 3. The device shall be examined for destructive corrosion and illegible marking.

USN **ME3** MIL-M-23700/3 (NAVY)

USN ME DTL SERIES



1-1-1-2 Diode AND Gate.

ABSOLUTE MAXIMUM RATINGS (TA = 25°C)

Characteristic	Symbol	Rating	Unit
Forward Current	1 _F	20	mA
Reverse Voltage	$v_{\rm R}$	10	Volts
Total Device Dissipation Derate above 25 ⁰ C	P _D	400 2.67	mW mW/ ⁰ C
Resistor Dissipation (Each Resistor) Derate above 25 ^O C	P _D	100 0.67	mW mW/ ⁰ C
Operating Temperature Range	TA	-55 to +125	°С
Storage Temperature Range	T _{stg}	-65 to +175	°C

DIFFERENTIAL VOLTAGE AND FORWARD CURRENT TEST CIRCUIT AND TERMINAL CONNECTIONS

TERMINAL TEST CONNECTIONS DIFFERENTIAL VOLTAGE								
ALTERNATELY CONNECT A TO	8, 9	7	6	5				
CONNECT B TO	10	1	2	4				
CONNECT C TO	3	3	3	3				

TERMINAL TEST CONNECTIONS FORWARD CURRENT
ALTERNATELY CONNECT A TO 1, 2, 4 THRU 10
CONNECT D TO 3
B NOT CONNECTED.

USN ME3 (continued)

TABLE I GROUP A INSPECTION

Examination or Test	MIL-STD-750 Method	Symbol	Lim Min	iits Max	Unit	LTPD	Max Acc Number
SUBGROUP I Visual and Mechanical Examination Forward Current (each diode - Fig. 2)	∠071 4011		_		— nage	20	4
V _{D-1} = 10 Vdc V _{D-2} = 10 Vdc V _{D-4} thru 10 = 10 Vdc		I ₃₋₁ I ₃₋₂ 3-4 thru 10		10.1 10.1 10.1		5	4
Reverse Current (each diode) V1-3 = 10 Vdc V2-3 = 10 Vdc V4 thru 10-3 = 10 Vdc	4016	I ₁₋₃ I ₂₋₃	_	0.1 0.1 0.1	μ Adc	ŭ	-
SUBGROUP 2		I ₄ thru 10-3	—				
$ \begin{array}{llllllllllllllllllllllllllllllllllll$		V ₁₀₋₈ V ₁₀₋₉ V ₁₋₇		0.30 0.30 0.30 0.30	Vdc	5	4
$V_{D-5} = 10 \text{ Vdc}, I_{D-4} = 0.5 \text{ mAdc}$ $V_{D-5} = 10 \text{ Vdc}, I_{D-4} = 0.5 \text{ mAdc}$		V ₂₋₆ V ₄₋₅	_	0.30			
SUBGROUP 4							
Capacitance (each diode) V1, 2, 4 thru 10-3 = 10 Vdc, f = 100kc	4001	C _{1, 2, 4} thru 10-3		4	pf		
Reverse Recovery Time (Fig. 3) Connect Pin 3 to C, Pin 10 to D,	4031	t ₂ - t ₁			nsec		
alternately connect Pins 8 and 9 to B Connect Pin 3 to C, Pin 1 to D, and Pin 7 to B			=	15 15		5	4
Connect Pin 3 to C, Pin 2 to D, and Pin 6 to B			_	15			
Connect Pin 3 to C, Pin 4 to D, and Pin 5 to B			_	15			
Connect Pin 3 to C, Pin 5 to D, and Pin 4 to B			_	15			
Connect Pin 3 to C, Pin 6 to D, and Pin 2 to B				15			•
Connect Pin 3 to C, Pin 7 to D, and Pin 1 to B			_	15			
Connect Pin 3 to C, Pin 8 to D, and Pin 10 to B			_	15			

NOTE: Letter denotes test circuit connection points. Number subscripts denote device pin

QUALITY ASSURANCE PROVISIONS

Qualification approval: Required.

Qualification inspection: Group A and group B inspections as shown in Tables I and II. Sampling shall be in accordance with Appendix D of MIL-M-23700.

Quality conformance inspection: Group A and group B inspections as shown in Tables I and II. Sampling for group A inspection shall be in accordance with procedure I, Appendix D of MIL-M-23700. Procedure IC may be used. A device having one or more defects shall be counted as one defective. Sampling for group B inspection shall be in accordance with procedure I (procedure IC may be used), of Appendix D of MIL-M-23700, except for life tests which shall be in accordance with procedure II.

Quality conformance inspection information: When specified in the contract or order, one copy of the quality conformance inspection data pertinent to the inspection lot shall accompany the shipments.

USN ME3 (continued)

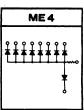
TABLE II GROUP B INSPECTION

	MIL-STD-750		Lim	its			Max Acc
Examination or Test	Method	Symbol	Min	Max	Unit	LTPD	Number
SUBGROUP I Physical Dimensions	2066	_	_	-	_	20	5
SIBGROUP 2 Soldering Heat (1 Cycle)	2031	_		_	_		
Temperature Cycling (T = 175°C)	1051 Condition B	—	_	_	-	20	5
Thermal Shock (Glass Strain)	1056 Condition A	_	_	_	-	20	ľ
Moisture Resistance End Points: Same As Subgroup 7	1021	-	-	-	-		
SUBGROUP 3 Constant Acceleration (10,000G, X ₁ , Y ₁ , Y ₂)	2006	_	_	_	_		
Shock (500G, 1 msec, 5 blows each in orientation X_1 , Y_2 , total of 15 blows.)	2016	_	_	_		20	5
Vibration Fatigue (10G)	2046 Non-operating	-	-	-	_		
Vibration, Variable Frequency (l0G) <u>End Points:</u> Same As Subgroup 7	2056	_	-	-	-		
SUBGROUP 4 (Notes 1, 2) Terminal Strength (3 leads at random)	2036 Condition E	_	-	_	_	20	5
SIBGROUP 5 (Notes 1, 3) Salt Atmosphere (Corrosion)	1041	_		_	-	20	5
SUBGROUP 6 High Temperature Life (T _A = 175 ⁰ C) <u>End Points</u> : Same As Subgroup 7	1031 Non-operating	_	-	-	-	λ=20	_
SUBGROUP 7 Steady State Operation Life $\begin{subarray}{ll} Steady State Operation Life \\ \begin{subarray}{ll} $^{r}1, 2, 4$ thru 10-3=10$ V, f=60$ cps \\ P_D(R_1) = P_D(R_2) = P_D(R_3) = P_D(R_4) = 100$ mW \end{subarray}$	1026	_	_	_	_	λ= 20	_
End Points: (Subgroups 2, 3, 6 and 7) Forward Current VD-1 = 10 Vdc VD-2 = 10 Vdc VD-4 thru 10 = 10 Vdc Reverse Current	4011 4016	I ₃₋₁ I ₃₋₂ I ₃₋₄ thru 10	7. 8 7. 8 7. 8	10.6 10.6	m Adc μ Adc		
V ₁₋₃ = 10 Vdc V ₂₋₃ = 10 Vdc V ₄ thru 10-3 = 10 Vdc		I ₁₋₃ I ₂₋₃ I ₄ thru 10-3	Ξ	1.0 1.0 1.0			

NOTE 1. Tests listed in these subgroups are considered destructive.

NOTE 2. At the conclusion of the testing in subgroup 4, the device shall be examined for evidence of mechanical damage.

NOTE 3. The device shall be examined for destructive corrosion and illegible marking.


USN **ME4** MIL-M-23700/4 (NAVY)

USN ME DTL SERIES

CASE 71 (TO-5)

8-Diode AND Gate.

ABSOLUTE MAXIMUM RATINGS (TA = 25°C)

Characteristics	Symbol	Rating	Unit
Forward Current	I _F	20	mA
Reverse Voltage	v_{R}	10	Volts
Total Device Dissipation Derate above 25 ^o C	P _D	100 0.667	mW mW/ ^o C
Operating Temperature Range	T _A	-55 to +125	°С
Storage Temperature Range	T_{stg}	-65 to +175	°C

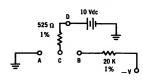
TABLE I GROUP A INSPECTION (TA = 25°C)

7	MIL-STD		Lir	nits			Max Acc
Examination or Test	750 Method	Symbol	Min	Max	Unit	LTPD	Number
SUBGROUP I							
Visual and Mechanical Examination	2071		_	_	_	20	4
SUBGROUP 2 Forward Current (each diode - Fig. 2) $V_{D-1} = 10 \text{ Vdc}$ $V_{D-2} = 10 \text{ Vdc}$ $V_{D-4} = 10 \text{ Vdc}$	4011	I ₃₋₁ I ₃₋₂ I ₃₋₄ thru 10	8.3	10. 1 10. 1 10. 1	m Adc	5	4
Reverse Current (each diode) V1-3 = 10 Vdc V2-3 = 10 Vdc V4 thru 10-3 = 10 Vdc	4016	I ₁₋₃ I ₂₋₃ I _{4 thru 10-3}		0. 1 0. 1 0. 1	μAdc		·
SUBGROUP 3 Differential Voltage (Fig. 2) $V_{D-5} = 10 \text{ Vdc}, I_{D-4} = 0.5 \text{ mAdc}$ $V_{D-6} = 10 \text{ Vdc}, I_{D-4} = 0.5 \text{ mAdc}$ $V_{D-7} = 10 \text{ Vdc}, I_{D-4} = 0.5 \text{ mAdc}$ $V_{D-8} = 10 \text{ Vdc}, I_{D-4} = 0.5 \text{ mAdc}$ $V_{D-9} = 10 \text{ Vdc}, I_{D-4} = 0.5 \text{ mAdc}$ $V_{D-10} = 10 \text{ Vdc}, I_{D-4} = 0.5 \text{ mAdc}$ $V_{D-1} = 10 \text{ Vdc}, I_{D-4} = 0.5 \text{ mAdc}$ $V_{D-2} = 10 \text{ Vdc}, I_{D-4} = 0.5 \text{ mAdc}$ $V_{D-2} = 10 \text{ Vdc}, I_{D-4} = 0.5 \text{ mAdc}$		V4-5 V4-6 V4-7 V4-8 V4-9 V4-10 V4-1 V4-2	=======================================	0.30 0.30 0.30 0.30 0.30 0.30 0.30	Vdc	5	4
SUBGROUP 4						_	_
Capacitance (each diode) V1, 2, 4 thru10-3 = 10 Vdc, f = 100 kc		C _{1, 2, 4} thru 10-3	_	4	pf nsec	5	4
Reverse Recovery Time (Fig. 3) Connect Pin 3 to C, Pin 4 to D, alternately connect Pins 1, 2, 5, 6, 7, 8, 9, and 10 to B Connect Pin 3 to C, Pin 1 to D, and Pin 4 to B	4031	^t 2 ^{- t} 11	=	15 15			-

NOTE: Letter subscripts denote test circuit connection points. Number subscripts denote device pin connections.

USN ME4 (continued)

TABLE II GROUP B INSPECTION


			Lim	its			
Examination or Test	MIL-STD-750 Method	Symbol	Min	Max	Unit	LTPD	Max Acc Number
SUBGROUP I Physical Dimensions	2066	_	_	_		20	5
SUBGROUP 2 Soldering Heat (1 Cycle) Temperature Cycling (T = 175°C) Thermal Shock (Glass Strain) Molsture Resistance End Points: Same As Subgroup 7	2031 1051 Condition B 1056 Condition A 1021	= - -	_ _ _		_ _ _	20	5
SUBGROUP 3 Constant Acceleration (10,000G, X ₁ , Y ₁ , Y ₂) Shock (500G, 1 msec, 5 blows each in orientation X ₁ , Y ₁ , Y ₂ , total of 15 blows.) Vibration Fatigue (10G) Vibration, Variable Frequency (10G) End Points: Same As Subgroup 7	2006 2016 2046 Non-operating 2056	_ _ _ _				20	5
SUBGROUP 4 (Notes 1, 2) Terminal Strength (3 leads at random) SUBGROUP 5 (Notes 1, 3) Salt Atmosphere (Corrosion)	2036 Condition E	_		1		20 20	5 5
SUBGROUP 6 High Temperature Life (T _A = 175°C) End Points: Same As Subgroup 7	1031 Non-operating	-	-	-	-	λ=20	_
SUBGROUP 7 Steady State Operation Life 'r 1, 2, 4 thru 10-3 = 10V, f - 60 cps PD = 100 mW End Points: (Subgroups 2, 3, 6 and 7) Forward Current (Fig 2) VD-1 = 10 Vdc VD-2 = 10 Vdc VD-4 thru 10 = 10 Vdc Reverse Current	1026 4011 4016	I ₃₋₁ I ₃₋₂ I ₃₋₄ thru 10	7.8 7.8 7.8	10. 6 10. 6 10. 6	mAdc μAdc	λ=20	_
V ₁₋₃ = 10 Vdc V ₂₋₃ = 10 Vdc V ₄ thru 10-3 = 10 Vdc	4010	I ₁₋₃ I ₂₋₃ I ₄ thru 10-3	<u> </u>	1. 0 1. 0 1. 0	μΑας		

NOTE 1. Tests listed in these subgroups are considered destructive.

NOTE 2. At the conclusion of the testing in subgroup 4, the device shall be examined for evidence of mechanical damage.

NOTE 3. The device shall be examined for destructive corrosion and illegible marking.

DIFFERENTIAL VOLTAGE AND FORWARD CURRENT TEST CIRCUIT AND TERMINAL CONNECTIONS

TERMINAL TEST CONNECTIONS DIFFERENTIAL VOLTAGE

ALTERNATELY CONNECT A TO	1, 2, 5 THRU 10
CONNECT B TO	4
CONNECT C TO	3

TERMINAL TEST CONNECTIONS FORWARD CURRENT

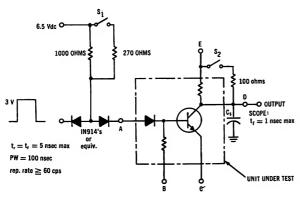
ALTERNATELY CONNECT A TO	1, 2, 4 THRU 10
CONNECT D TO	3
B NOT CONNECTED	

USN ME5 MIL-M-23700/5 (NAVY)

USN ME DTL SERIES

ME 5

CASE 71 (TO-5)



Dual high-speed, NPN transistor inverters.

ABSOLUTE MAXIMUM RATINGS (TA = 25°C)

Characteristic	Symbol	Rating	Unit
Reverse Voltage	V ₁₀₋₂ V ₅₋₃ V ₅₋₇ V ₁₀₋₈	10.0 10.0 7.0 7.0	Vdc
Total Device Dissipation Derate above 25°C	P _D	250 1.67	mW mW/°C
Individual Gate Dissipation Derate above 25°C	P _D	125 0.83	mW mW/°C
Resistor Dissipation R ₁ or R ₂ Derate above 25 ^o C R ₃ or R ₄ Derate above 25 ^o C	PD	100 0.67 25 0.17	mW mW/ ^O C mW mW/ ^O C
Operating Temperature Range	1'A	-55 to +125	°С
Storage Temperature Range	Tstg	-65 to +175	°C

SWITCHING TIME TEST CIRCUIT

TERMINAL	Q,	Q,
A	6	9
В	7	8
С	5	10
D	4	1
E	3	2

- NUTS

 (1) Turnon time for the circuit is defined as the time interval from a point 10% up from the minimum amplitude on the leading edge of the input pulse to a point 90% down from the maximum amplitude on the leading edge of the output pulse.
- (2) Turn-off time for the circuit is defined as the time interval from a point 10% down from the maximum amplitude on the trailing edge of the input pulse to a point 50% down from the maximum amplitude on the trailing edge of the output pulse.
- (3) Adjust C₅ to 20 pf (includes scope and stray capacitance.)

USN ME5 (continued)

TABLE I GROUP A INSPECTION

Examination or Test	MIL-STD-7			Limits Min/Max		LPTD	Max Acc Number
SUBGROUP I					-		
Visual and Mechanical Examination	2071		_	_		20	4
SUBGROUP 2 - Q1						_	
Static Input Voltage Drop $I_{4-5} = 35$ mAdc, $I_{6-5} = 1.5$ mAdc		v ₆₋₅	12	1.7	Vdc		
Collector - Emitter Saturation Voltage	3071	V _{CE(sat)4-5}			Vdc		
I ₄₋₅ = 35 mAdc, I ₆₋₅ = 1.5 mAdc Base - Emitters Conduction Current		I ₇₋₅	_	0. 35	mAdc		
V ₇₋₅ = 10 Vdc		±7-5	50	1.84	made		
Collector Resistor Current V ₃₋₄ = 3 Vdc		I ₃₋₄	8, 82	8, 35	mAdc		
Turn-On Time (Fig. 2)		ton	0. 02		nsec	5	4
$V_{7-5} = -6.5 \text{ Vdc}, V_{3-5} = +3 \text{ Vdc}, \text{ Close}$		on		20			
switch S ₂ Turn-Off Time (Fig. 2)		t _{off}	_	20	пвес		
$V_{7-5} = -6.5 \text{ Vdc}$, $V_{3-5} = +3 \text{ Vdc}$, Close switch S_1		-011		45			
			_			_	
SUBGROUP 3 - Q ₂							
Static Input Voltage Drop I ₁₋₁₀ = 35 mAdc, I ₉₋₁₀ = 1.5 mAdc		v ₉₋₁₀	1. 2	1.7	Vdc		
Collector - Emitter Saturation Voltage	3071	Vome			Vdc		
$I_{1-10} = 35 \text{ mAdc}, I_{9-10} = 1.5 \text{ mAdc}$	••••	V _{CE(sat)1-10}	_	0.35			
Base-Emitter Conduction Current		I ₈₋₁₀	1, 50	1.84	mAdc	_	
V ₈₋₁₀ = 10 Vdc Collector Resistor Current		I ₂₋₁	1. 50	1.04	mAdc	5	4
V ₂₋₁ = 3 Vdc		-2-1	8.82	8.35	mauc		
Turn-On Time (Fig. 2)		· ton			nsec		
$V_{8-10} = -6.5 \text{ Vdc}, V_{2-10} = +3 \text{ Vdc}, \text{ Close}$ switch S_2				20			
Turn-Off Time (Fig. 2)		^t off			nsec		
V ₈₋₁₀ = -6.5 Vdc, V ₂₋₁₀ = +3 Vdc, Close switch S ₁				45			
			_				
SUBGROUP 4 High Temperature Operation							
Collector - Emitter Cutoff Current	3041				μ Adc	5	4
$V_{3-5} = 10 \text{ Vdc}, V_{7-5} = -6.5 \text{ Vdc}, T_A = +85^{\circ}\text{C}$		I ₃₋₅	_	3	•		
$V_{2-10} = 10 \text{ Vdc}, V_{8-10} = -6.5 \text{ Vdc}, T_A = +85^{\circ}\text{C}$		I ₂₋₁₀	_	3			
SUBGROUP 5						_	_
Low Temperature Operation						5	4
DC Forward Current Transfer Ratio V _A = 0.5 Vdc, I _A = 35 mAdc, T _A = -55°C		h _{FE}	15		_	3	7
$V_{4-5} = 0.5 \text{ Vdc}, I_{4-5} = 35 \text{ mAdc}, T_A = -55^{\circ}\text{C}$ $V_{1-10} = 0.5 \text{ Vdc}, I_{1-10} = 35 \text{ mAdc}, T_A = -55^{\circ}\text{C}$:		15	_			
SUBGROUP 6			_			_	
DC Forward - Current Transfer Ratio	3076	$^{ m h}_{ m FE}$	35		_		
V ₄₋₅ = 0.5 Vdc, I ₄₋₅ = 35 mAdc V ₁₋₁₀ = 0.5 Vdc, I ₁₋₁₀ = 35 mAdc			35	_			
Collector - Emitter Cutoff Current	3041				μAdc	5	4
$I_{3-5} = 10 \text{ Vdc}, V_{7-5} = -6.5 \text{ Vdc}$		I3-5		0. 05 0. 05			
I ₂₋₁₀ = 10 Vdc, V ₈₋₁₀ = -6.5 Vdc Reverse Current	4016	2-10	_	J. 00	mAdc		
V ₇₋₆ = 10 Vdc	4010	I7-6	_	100			
$V_{8-9}^{7-9} = 10 \text{ Vdc}$		I ₈₋₉		100			

QUALITY ASSURANCE PROVISIONS

Qualification approval: Required.

Qualification inspection: Group A and group B inspections as shown in Tables I and II. Sampling shall be in accordance with Appendix D of MIL-M-23700.

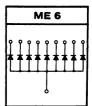
Quality conformance inspection: Group A and group B inspections as shown in Tables I and II. Sampling for group A inspection shall be in accordance with procedure I, Appendix D of MIL-M-23700. Procedure IC may be used. A device having one or more defects shall be counted as one defective. Sampling for group B inspection shall be in accordance with procedure I (procedure IC may be used), of Appendix D of MIL-M-23700, except for life tests which shall be in accordance with procedure II.

Quality conformance inspection information: When specified in the contract or order, one copy of the quality conformance inspection data pertinent to the inspection lot shall accompany the shipments.

USN ME5 (continued)

TABLE II GROUP B INSPECTION

			Limi	ts			May Ass
Examinatio: or Test	MIL-STD-750 Method	Symbol	Min	Max	Unit	LTPD	Max Acc Number
SUBGROUP I							_
Physical Dimensions	2066		⊨			20	5
SUBGROUP 2 Soldering Heat (1 Cycle)	2031	l		<u> </u>		ļ	1
Temperature Cycling	1051	_	1		_ '	1	ì
$(T = 175^{\circ}C)$	Condition B		<u> -</u>	 —		20	5
Thermal Shock	1056	l	1		l —	20	, ,
(Glass Strain)	Condition A		<u> </u>	l—	1	ł	1
Moisture Resistance	1021	—		<u> </u>	—		
End Points: Same As Subgroup 7		 	<u> </u>		<u> </u>		
SUBGROUP 3	2006	İ			l		l
Constant Acceleration (10, 000G, X ₁ , Y ₁ , Y ₂)	2000	-	-	_	-	ł	l
Shock (500G, 1 msec, 5 blows each in orientation	2016	l	<u> </u>		l	ļ	(
X_1 , Y_1 , Y_2 , total of 15 blows.)	2010			I		20	5
	2016		1	l	l	20	l "
Vibration Fatigue (10G)	2046 Non-operating	ı —		-	l —		i
Vibration, Variable Frequency	2056	l —	I —	<u> </u>		l	1
(10G)		ì	l	1		1	[
End Points: Same As Subgroup 7		<u> </u>					
SUBGROUP 4 (Notes 1, 2)		1					
Terminal Strength	2036	l —	<u> </u>	<u> </u>	—		i _
(3 leads at random)	Condition E				ļ	20	5
SUBGROUP 5 (Notes 1, 3)		l			l		
Salt Atmosphere (Corrosion)	1041					20	5
SUBGROUP 6		l					
High Temperature Life (T _A = 175 ^o C)	1031	I —		 -	_	λ=20	_
(TA = 175°C) End Points: Same As Subgroup 7	Non-operating	ļ	l	l		l	1
Elia Politis. Same As Subgroup (-		-		 	
SUBGROUP 7		1				1	
Steady State Operation Life	1026	I —		1		λ=20	_
$V_{3-5} = 6.3$ Vdc, Pin 7 connected to pin 3, 400 Ω resistor connected between pins 3 and 4,				1			
$5K \Omega$ resistor connected between pins 3 and 6		ł	1	1			
$V_{2-10} = 6.3$ Vdc, pin 8 connected to pin 2,		1			1		
400Ω resi .or connected between pins 1 and 2,			1	1	i		
5 KΩ resistor connected between pins 2 and 9 End Points: (Subgroups 2, 3, 6, and 7)	į.	ļ	l —	-			
Collector - Emitter Cutoff current	3041	1	1	1	m Adc		l
V ₃₋₅ = 10 Vdc, V ₇₋₅ = -6.5 Vdc V ₂₋₁₀ = 10 Vdc, V ₈₋₁₀ = -6.5 Vdc	3041	I ₃₋₅	I —	500	I III AGC	1	1
		I ₂₋₁₀	-	500	l		
Base - Emitter Conduction Current	_	١.			mAdc		
V ₇₋₅ = 10 Vdc V ₈₋₁₀ = 10 Vdc		I ₇₋₅ I ₈₋₁₀	1.33	2. 01 2. 01			
Collector Resistor Current	l <u> </u>	1		1	mAdc		
V ₃₋₄ = 3 Vdc V ₂₋₁ = 3 Vdc	1	I3-4	6. 06	9.09			
	1	I ₂₋₁	6, 06	9.09	I		
Reverse Current V ₇₋₆ = 10 Vdc	4016	١,	1	1.0	μAdc		
V ₈₋₉ = 10 Vdc		I ₇₋₆ I ₈₋₉		1.0	Ī	1	
DC Forward Current Transfer Ratio	3076	hFE			_		
$V_{4-5} = 0.5$ Vdc, $I_{4-5} = 35$ mAdc $V_{1-10} = 0.5$ Vdc, $I_{1-10} = 35$ mAdc		""	25	I –]	
v ₁₋₁₀ = 0. 5 vac, I ₁₋₁₀ = 35 mAdc	L		25	$\perp =$			


NOTE 1. Tests listed in these subgroups are considered destructive.

NOTE 2. At the conclusion of the testing in subgroup 4, the device shall be examined for evidence of mechanical damage.

NOTE 3. The device shall be examined for destructive corrosion and illegible marking.

USN **ME6** MIL-M-23700/6 (NAVY)

USN ME DTL SERIES

9-Diode Common-P Gate.

MAXIMUM RATINGS (At 25°C)

Characteristic	Symbol	Rating	Unit
Reverse Voltage (Each Diode)	v _R	40	Volts
Total Device Current (Derate 2mA/°C)	I _F	300	mA
Individual Diode Current (Derate 2mA/`C)	IF	300	mA
Operating Temperature Range	T _A	-65 to +175	°c

TABLE I GROUP A INSPECTION

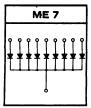
	MIL-STD-750		Limi	ts			Max Acc
Examination or Test	Method	Symbol	Min	Max	Unit	LTPD	Number
SUBGROUP I Visual and Mechanical Examination	2071		_			20	4
SUBGROUP 2							
Forward Voltage I _{Fl-2} thru 10 ^{= 300} mAdc	4011	v _{F1-2 thru 10}	_	1. 2	Vdc		
Reverse Current V _{R2} thru 10-1 = 20 Vdc	4016	^I R2 thru 10-1	_	2.0	μ A dc	5	4
Breakdown Voltage IR2 thru $10-1 = 10 \mu \text{Adc}$		V _{R2 thru 10-1}	40		Vdc		
SUBGROUP 3							
Junction Capacitance V_2 thru $10-1 = 10$ Vdc, $f = 100$ kc	4001	C _{2 thru 10-1}	_	8. 0	pf		
Reverse Recovery Time $(I_F = 300 \text{mAdc}, I_R 10 \text{ thru } 2\text{-}1 = 60 \text{mAdc}, R_L = 2.5 \Omega, \text{Scope Input Capacitance} \le 4pt)$	4031 Condition B (Except t _r measured at I _R /3)	^t rr 10 thru 2-1		90	nsec	5	4

USN ME6 (continued)

TABLE II GROUP B INSPECTION

	MIL-STD-750		Lim	its			Max Acc
Examination or Test	Method	Symbol	Min	Max	Unit	LTPO	Number
SUBGROUP I							
Physical Dimensions	2066	-	1		_	20	5
SUBGROUP 2							
Soldering Heat (1 Cycle)	2031	_	-	-	- 1		
Temperature Cycling (T = 175°C)	1051 Condition B	_	_	_	_	20	5
Thermal Shock (Glass Strain)	1056 Condition A	_	_	_	_	20	
Moisture Resistance	1021	_	_	_	-		
End Points: Same As Subgroup 7							
SUBGROUP 3			•				
Constant Acceleration (10,000G, X ₁ , Y ₁ , Y ₂)	2006	_	-	-	-		
Shock (500G, 1 msec, 5 blows each in orientation	2016	-	-	-	-	20	5
X ₁ , Y ₁ , Y ₂ , total of 15 blows.) Vibration Fatigue (10G)	2046 Non-operating	_	-	-	-		
Vibration, Variable Frequency (10G)	2056	-	_	-	-		
End Points: Same As Subgroup 7							1
SUBGROUP 4 (Notes 1, 2)						•	
Terminal Strength (3 leads at random)	2036 Condition E	_	_	_	_	20	5
SUBGROUP 5 (Notes 1, 3)							
Salt Atmosphere (Corrosion)	1041	_	_	_	_	20	5
SUBGROUP 6							
High Temperature Life (T _A = 175°C)	1031 Non-operating	_	-	-	-	λ=20	-
End Points: Same As Subgroup 7							1
SUBGROUP 7							
Steady State Operation Life lo 2thru 10-1 = 300 mAdc, f = 60 cps r1-2 thru 10=32 Vdc End Points: (Subgroups 2, 3, 6, and 7)	1026	_	_	_	_	λ = 20	-
Forward Voltage IF1-2 thru 10 = 300 mAdc	4011	VF1-2 thru 10	_	1.5	Vdc		
Reverse Current VR2 thru 10-1 = 20 Vdc	4016	^I R2 thru 10-1	_	20	μAdc		

 $\ensuremath{\text{NOTE}}$ 1. Tests listed in these subgroups are considered destructive.


NOTE 2. At the conclusion of the testing in subgroup 4, the device shall be examined for evidence of mechanical damage.

NOTE 3. The device shall be examined for destructive corrosion and illegible marking.

----- Motorola Integrated Circuits -----

USN **ME7** MIL-M-23700/7 (NAVY)

USN ME DTL SERIES

CASE 71 (TO-5)

9-Diode Common-N Gate.

ABSOLUTE MAXIMUM RATINGS (At 25°C)

Characteristic	Rating	Unit	Symbol
Reverse Voltage (Each Diode)	v _R	40	Volts
Total Device Current (Derate 2mA/ C)	I _F	300	mA
Individual Diode Current (Derate 2mA/ C)	IF	300	mA
Operating Temperature Range	TA	-65 to +175	°C

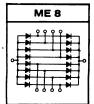
TABLE I GROUP A INSPECTION

	MIL-STD-750		Lim	its			Max Acc
Examination or Test	Method	Symbol	Min	Max	Unit	LTPD	Number
SUBGROUP I							
Visual and Mechanical Examination	2071	_	-	-	_	20	4
SUBGROUP 2							
Forward Voltage IF 2 thru 10-1 = 300m Adc	4011	V _{F 2 thru 10-1}	_	1. 2	Vdc		
Reverse Current VR 1 - 2 thru 10 = 20Vdc	4016	^I R 1 - 2 thru 10	_	2.0	μAdc	5	4
Breakdown Voltage ^I R 1 - 2 thru 10 ⁼ 10 μAdc		V _{R 1} - 2 thru 10	40	_	Vdc		
SUBGROUP 3							
Junction Capacitance V ₁ - 2 thru 10 = 10Vdc, f = 100 kc	4001	C _{1 - 2 thru 10}	_	8.0	pf		
	4031 Condition B (Except t _{rr} measured at I _{R/3})	^t rr1-10 thru 2	1	90	nseç	5	4

USN ME7 (continued)

TABLE II GROUP B INSPECTION

	44U CYD 35C		Lim	its			Max Acc
Examination or Test	MIL-STD-750 Method	Symbol	Min	Max	Unit	LTPD	Number
SUBGROUP I							
Physical Dimensions	2066	-	_		ı	20	5
SUBGROUP 2							
Soldering Heat (1 Cycle)	2031	-		-	_	1	1
Temperature Cycling (T = 175 ⁰ C)	1051 Condition B	_	_	_	_	20	5
Thermal Shock (Glass Strain)	1056 Condition A	_	_	_	_		
Moisture Resistance	1021		-	-	_		
End Points: Same As Subgroup 7							
SUBGROUP 3							
Constant Acceleration (10,000G, X ₁ , Y ₁ , Y ₂)	2006	_	_	-	-		
Shock (500G, 1 msec, 5 blows each in orientation	2016		-	-	-	20	5 ₋
X ₁ , Y ₁ , Y ₂ , total of 15 blows.) Vibration Fatigue (10G)	2046 Non-operating	_	-	-	-		Ì
Vibration, Variable Frequency (10G)	2056	_	-	-	-		
End Points: Same As Subgroup 7							
SUBGROUP 4 (Notes 1, 2)							
Terminal Strength (3 leads at random)	2036 Condition E		-	-	_	20	5
SUBGROUP 5 (Notes 1, 3)							
Salt Atmosphere (Corrosion)	1041	_	<u> </u> _	 —		20	5.
SUBGROUP 6							
High Temperature Life (T _A = 175 ⁰ C)	1031 Non-operating	-	_	-	-	λ=20	-
End Points: Same As Subgroup 7						l	
SUBGROUP 7			Ī.				
Steady State Operation Life Io 1-2 thru 10 = 300 mAdc,	1026	_		1	_	λ= 20	-
^v r 2 thru 10-1 = 32 V, f 60 cps			-	-			
End Points: (Subgroups 2, 3, 6, and 7)							
Forward Voltage IF 2 thru 10-1 = 300 mAdc	4011 _	V _{F 2 thru 10-1}	-	1.5	·Vdc		
Reverse Current VR 1-2 thru 10 = 20 Vdc	4016	I _{R 1-2 thru 10}	_	20	μ Adc		


NOTE 1. Tests listed in these subgroups are considered destructive.

NOTE 2. At the conclusion of the testing in subgroup 4, the device shall be examined for evidence of mechanical damage.

NOTE 3. The device shall be examined for destructive corrosion and illegible marking.

USN **ME8** MIL-M-23700/8 (NAVY)

USN ME DTL SERIES

CASE 71 (TO-5)

16-Diode Series/Parallel Matrix.

ABSOLUTE MAXIMUM RATINGS (At 25°C)

Characteristic	Symbol	Rating	Unit
Reverse Voltage (Each Diode)	v _R	40	Volts
Total Device Current (Derate 2mA/ C)	I _F	300	mA
Individual Diode Current (Derate 2mA/C)	IF	300	mA
Operating Temperature Range	TA	-65 to +175	°C

TABLE I GROUP A INSPECTION (At 25°C)

	MIL-STD-750 Limits			Ĭ	Max Acc		
Examination or Test	Method	Symbol	Min	Max	Unit	LTPD	Number
SUBGROUP Visual and Mechanical Examination	2071	_	_	_	_	20	4
SUBGROUP 2							
Forward Voltage IF2 thru 5-1 = 300 mAdc IF7 thru 10-1 = 300 mAdc IF6-2 thru 5 = 300 mAdc IF6-7 thru 10 = 300 mAdc	4011	VF2 thru 5-1 VF7 thru 10-1 VF6-2 thru 5 VF6-7 thru 10	=	1. 2 1. 2 1. 2 1. 2	Vdc		
Reverse Current VR1-2 thru 5 = 20 Vdc VR1-7 thru 10 = 20 Vdc VR2 thru 5-6 = 20 Vdc VR7 thru 10-6 = 20 Vdc	4016	I _{R1-2} thru 5 I _{R1-7} thru 10 I _{R2} thru 5-6 I _{R7} thru 10-6	1111	2.0 2.0 2.0 2.0	μ Ad c	5	4
Breakdown Voltage IR1-2 thru 5 = 10 μ Adc IR1-7 thru 10 = 10 μ Adc IR2 thru 5-6 = 10 μ Adc IR7 thru 10-6 = 10 μ Adc		V _{R1-2} thru 5 V _{R1-7} thru 10 V _{R2} thru 5-6 V _{R7} thru 10-6	40 40 40 40		Vdc		-
SUBGROUP 3 Capacitance V2 thru 5-6 = 10 Vdc, f== 100 kc V7 thru 10-6 = 10 Vdc, f = 100 kc V1-2 thru 5 = 10 Vdc, f = 100 kc V1-7 thru 10 = 10 Vdc, f = 100kc	4001	C ₂ thru 5-6 C ₇ thru 10-6 C ₁₋₂ thru 5 C ₁₋₇ thru 10		16.0 16.0 16.0	pf		
Reverse Recovery Time IF6-2 thru 5 = 300 mAdc, I _R = 60 mAdc IF6-7 thru 10 = 300 mAdc, I _R = 60 mAdc IF2 thru 5-1 = 300 mAdc, I _R = 60 mAdc, R _L = 2.5 Ω , Scope input capacitance	4031 Condition B (Except t _{rr} measured at I _B /3)	trr 6-2 thru 5 trr 6-7 thru 10	=	90 90	nsec	5	4
$K_L = 2.33$, scope input capacitance ≤ 4 pf IF7 thru $10-1 = 300$ mAdc, $I_R = 60$ mAdc, $R_L = 2.5 \Omega$, Scope input capacitance ≤ 4 pf	R/.0/	^t rr 2 thru 5-1	-	90			
≤4 pf		^t rr 7 thru 10-1		90		J	

USN ME8 (continued)

TABLE II GROUP B INSPECTION

			Lin	nits			M A
Examination or Test	MIL-STD-750 Method	Symbol	Min	Max	Unit	LTPO	Max Acc Number
SUBGROUP I Physical Dimensions	2066	_	_			20	5
SUBGROUP 2 Soldering Heat (1 Cycle)	2031	_	_	-	_		
Temperature Cycling (T = 175°C)	1051 Condition B	_	_	_	-	20	5
Thermal Shock (Glass Strain)	1056 Condition A	_	_	_	_	20	
Moisture Resistance	1021	_	-	-	_		
End Points: Same As Subgroup 7							
SUBGROUP 3 Constant Acceleration (10,000G, X ₁ , Y ₁ , Y ₂)	2006	_	-	-	_		
Shock (500G. 1 mseq. 5 blows each in orientation X_1 , Y_1 , Y_2 , total of 15 blows.)	2016	_	-	-	-	20	5
Vibration Fatigue (10G)	2046 Non-operating	_	-	-	-		
Vibration, Variable Frequency (10G)	2056	_	-	-	-		
End Points: Same As Subgroup 7							
SUBGROUP 4 (Notes 1, 2) Terminal Strength (3 leads at random)	2036 Condition E	_	-	-	-	20	5
SUBGROUP 5 (Notes 1, 3) Salt Atmosphere (Corrosion)	1041	_	_	-	_	20	5
SUBGROUP 6 High Temperature Life (T _A = 175°C) End Points: Same As Subgroup 7	1031 Non-operating	_	-	-	_	λ=20	_
SUBGROUP 7 Steady State Operation Life Connect pins 2, 3, 4, 5, 6, 7, 8, 9, and 10 together, connect resistors from pin 6 to ground and from pin 1 to ground (0) $v_{2-0} = 32 \text{ Vac. } 1_{2-6} = 300 \text{ mA}, 1_{2-1} = 300 \text{ mA}$ $f = 60 \text{ cps}$ (currents are average for 1/2 cycle)	1026	_			_	λ = 20	
End Points: (Subgroups 2, 3, 6, and 7) Forward Voltage IF2 thru 5-1 = 300 mAdc IF7 thru 10-1 = 300 mAdc IF6-2 thru 5 = 300 mAdc IF6-7 thru 10 = 300 mAdc	4011	VF2 thru 5-1 VF7 thru 10-1 VF6-2 thru 5 VF6-7 thru 10	1-	1.5 - 1.5 - 1.5			
Reverse Current VRI-2 thru 5 = 20 Vdc VRI-7 thru 10 = 20 Vdc VR2 thru 5-6 = 20 Vdc VR7 thru 10-6 = 20 Vdc	4016	IR1-2 thru 5 IR1-7 thru 10 IR2 thru 5-6 IR7 thru 10-6	1-	20 20 20 20 20	μAdc		

NOTE 1. Tests listed in these subgroups are considered destructive.

NOTE 2. At the conclusion of the testing in subgroup 4, the device shall be examined for evidence of mechanical damage.

NOTE 3. The device shall be examined for destructive corrosion and illegible marking.

MC 1111 DTL series

CASE 71 (TO-5)

Monolithic integrated Diode Transistor Logic circuits designed to provide all the basic logic functions in a digital computer. The MC1111 Series is intended for high-speed computer applications with a temperature range of -55 to $+125^{\circ}$ C.

Туре	Description	Recovery Time (nsec)	Switch t _{on} (nsec)	ing Time t _{off} (nsec)	Power Dissipation (mW)
MC1111	3-4 Diode AND Gate	15		_	200
MC1112	2-2-2 Diode AND Gate	15	_	_	300
MC1113	1-1-1-2 Diode AND Gate	15	_	_	400
MC1114	8-Diode AND Gate	15	_	_	100
MC1115	Dual Inverters	_	20	45	250
MC1116	9-Diode Common-P Gate	90	_	_	_
MC1117	9-Diode Common-N Gate	90	_	_	_
MC1118	16-Diode Series/Parallel Matrix	90	_	_	_

MC 1111

MC1111-MC1118 DTL SERIES

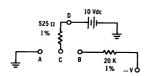
3-4 Diode AND Gate.

MAXIMUM RATINGS (TA = 25°C unless otherwise noted)

Characteristic	Symbol	Rating	Unit
Forward Current	I _F	20	mA
Reverse Voltage	v_{R}	10	Volts
Total Device Dissipation Derate above 25 OC	P _D	200 1.33	mW mW/ ^o C
Resistor Dissipation (Each Resistor) Derate above 25 ^o C	PD	100 0.67	mW mW/ ^O C
Operating Temperature Range	T _A	-55 to +125	°C
Storage Temperature Range	T _{stg}	-65 to +175	°C

CIRCUIT SCHEMATIC 6 O D₁ D₂ TO D₃ R₁ 1K 1K 1 O D₄ D₅ 1 O D₄ 1 O D₄ 2 O D₇ 4 DIODE "AND" GATE

MC1111 (continued)


ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Max	Unit
Forward Current (each diode - Fig. 2) $V_{D-1} = 10 \text{ Vdc}$ $V_{D-2} = 10 \text{ Vdc}$ $V_{D-4} \text{ thru } 10 = 10 \text{ Vdc}$	I ₃₋₁ I ₃₋₂ I ₃₋₄ thru 10	8.3 8.3 8.3	10.1 10.1 10.1	mAdc
Reverse Current (each diode) V ₁₋₃ = 10 Vdc V ₂₋₃ = 10 Vdc V ₄ thru 10-3 = 10 Vdc	I ₁₋₃ I ₂₋₃ I _{4 thru 10-3}	=	0.1 0.1 0.1	μAdc
Differential Voltage (Fig. 2) $ \begin{array}{lllllllllllllllllllllllllllllllllll$	V5-6 V5-7 V5-8 V4-1 V4-2 V4-9 V4-10		0.30 0.30 0.30 0.30 0.30 0.30 0.30	Vdc
Capacitance (each diode) V1, 2, 4 thru 10-3 = 10 Vdc, f = 100 kc	C _{1, 2,} 4 thru 10-3	_	4	pf
Reverse Recovery Time (Fig. 3) Connect Pin 3 to C, Pin 4 to D, alternately connect Pins 1, 2, 9, and 10 to B	t ₂ - t ₁	_	15	nsec
Connect Pin 3 to C, Pin 5 to D, alternately connect Pins 6, 7, and 8 to B		_	15	
Connect Pin 3 to C, Pin 2 to D, and Pin 4 to B		-	15	
Connect Pin 3 to C, Pin 6 to D, and Pin 5 to B			15	

NOTE: Letter subscripts denote test circuit connection points.

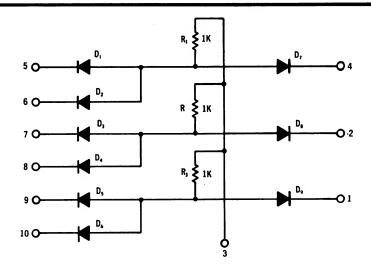
Number subscripts denote device pin connections.

DIFFERENTIAL VOLTAGE AND FORWARD CURRENT TEST CIRCUIT AND TERMINAL CONNECTIONS

DIFFERENTIAL VOLTAGE							
ALTERNATELY CONNECT A TO							
CONNECT B TO	5	4					
CONNECT C TO	3	3					

FORWARD CURRENT						
ALTERNATELY CONNECT A TO	1, 2, 4 THRU 10					
CONNECT D TO	3					
NO CONNECTION TO B						

MC 1112


MC1111-MC1118 DTL SERIES

2-2-2 Diode AND Gate.

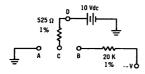
MAXIMUM RATINGS (Ta = 25°C unless otherwise noted)

Characteristic	Symbol	Rating	Unit
Forward Current	I _F	20	mA
Reverse Voltage	v _R	10	Volts
Total Device Dissipation Derate above 25 ^o C	P _D	300 2	mW mW/ ⁰ C
Resistor Dissipation (Each Resistor) Derate above 25 ^O C	PD	100 0.67	mW mW/°C
Operating Temperature Range	TA	-55 to +125	°C
Storage Temperature Range	T _{stg}	-65 to +175	°C

CIRCUIT SCHEMATIC

2 - 2 - 2 DIODE "AND" GATE

MC1112 (continued)


ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted

Characteristic	Symbol	Min	Max	Unit
Forward Current (each diode - Fig. 2) V_{D-1} = 10 Vdc V_{D-2} = 10 Vdc V_{D-4} thru 10 = 10 Vdc	I3-1 I ₃₋₂ I3-4 thru 10	8.3 8.3 8.3	10.1 10.1 10.1	mAdc
Reverse Current (each diode) V ₁₋₃ = 10 Vdc V ₂₋₃ = 10 Vdc V ₄ thru 10-3 = 10 Vdc	I ₁₋₃ I ₂₋₃ I ₄ thru 10-3	111	0.1 0.1 0.1	μAde
$\begin{array}{lll} \mbox{Differential Voltage (Fig. 2)} \\ \mbox{V}_{D-5} = 10 \mbox{ Vdc, } \mbox{I}_{D-4} = 0.5 \mbox{ mAdc} \\ \mbox{V}_{D-6} = 10 \mbox{ Vdc, } \mbox{I}_{D-2} = 0.5 \mbox{ mAdc} \\ \mbox{V}_{D-7} = 10 \mbox{ Vdc, } \mbox{I}_{D-2} = 0.5 \mbox{ mAdc} \\ \mbox{V}_{D-8} = 10 \mbox{ Vdc, } \mbox{I}_{D-1} = 0.5 \mbox{ mAdc} \\ \mbox{V}_{D-10} = 10 \mbox{ Vdc, } \mbox{I}_{D-1} = 0.5 \mbox{ mAdc} \\ \mbox{V}_{D-10} = 10 \mbox{ Vdc, } \mbox{I}_{D-1} = 0.5 \mbox{ mAdc} \\ \mbox{V}_{D-10} = 10 \mbox{ Vdc, } \mbox{I}_{D-1} = 0.5 \mbox{ mAdc} \\ \mbox{V}_{D-10} = 10 \mbox{ Vdc, } \mbox{I}_{D-1} = 0.5 \mbox{ mAdc} \\ \mbox{V}_{D-10} = 10 \mbox{ Vdc, } \mbox{I}_{D-1} = 0.5 \mbox{ mAdc} \\ \mbox{V}_{D-10} = 10 \mbox{ Vdc, } \mbox{I}_{D-1} = 0.5 \mbox{ mAdc} \\ \mbox{V}_{D-10} = 10 \mbox{ Vdc, } \mbox{I}_{D-1} = 0.5 \mbox{ mAdc} \\ \mbox{V}_{D-10} = 10 \mbox{ Vdc, } \mbox{I}_{D-1} = 0.5 \mbox{ mAdc} \\ \mbox{V}_{D-10} = 10 \mbox{ Vdc, } \mbox{I}_{D-1} = 0.5 \mbox{ mAdc} \\ \mbox{V}_{D-10} = 10 \mbox{ Vdc, } \mbox{I}_{D-1} = 0.5 \mbox{ mAdc} \\ \mbox{V}_{D-10} = 10 \mbox{ Vdc, } \mbox{I}_{D-1} = 0.5 \mbox{ mAdc} \\ \mbox{V}_{D-10} = 10 \mbox{ Vdc, } \mbox{V}_{D-10} = 0.5 \mbox{ mAdc} \\ \mbox{V}_{D-10} = 10 \mbox{Vdc, } \mbox{V}_{D-10} = 0.5 \mbox{V}_{D-10} = 0.5 \mbox{V}_{D-10} \\ \mbox{V}_{D-10} = 0.5 \mbox{V}_{D-10} = 0.5 \mbox{V}_{D-10} \\ \mbox{V}_{D-10} = 0.5 \mbox{V}_{D-10} = 0.5 \mbox{V}_{D-10} \\ \mbox{V}_{D-10} = 0.5 \mbox{V}_{D-10} = 0.5 \mbox{V}_{D-10} \\ \mbox{V}_{D-10} = 0.5 \mbox{V}_{D-10} = 0.5 \mbox{V}_{D-10} \\ \mbox{V}_{D-10} = 0.5 \mbox{V}_{D-10} = 0.5 \mbox{V}_{D-10} \\ \mbox{V}_{D-10} = 0.5 \mbox{V}_{D-10} = 0.5 \mbox{V}_{D-10} \\ \mbox{V}_{D-10} = 0.5 \mbox{V}_{D-10} = 0.5 \mbox{V}_{D-10} \\ \mbox{V}_{D-10} = 0.5 \mbox{V}_{D-10} = 0.5 \mbox{V}_{D-10} \\ \mbox{V}_{D-10} = 0.5 \mbox{V}_{D-10} = 0.5 \mbox{V}_{D-10} \\ \mbox{V}_{D-10} = 0.5 \mbox{V}_{D-10} = 0.5 \mbox{V}_{D-10} \\ \mbox{V}_{D-10} = 0.5 \mbox{V}_{D-10} = 0.5 \mbox{V}_{D-10} \\ \mbox{V}_{D-10} = 0.5 \mbox{V}_{D-10} = 0.5 \mbox{V}_{D-10} \\ \mbox{V}_{D-10} = 0.5 \mb$	V ₄₋₅ V ₄₋₆ V ₂₋₇ V ₂₋₈ V ₁₋₉ V ₁₋₁₀	111111	0.30 0.30 0.30 0.30 0.30 0.30	Vdc
Capacitance (each diode) V1, 2, 4 thru 10-3 = 10 Vdc, f = 100 kc	C _{1, 2, 4, thru 10-3}	1	4	pf
Reverse Recovery Time (Fig. 3)	t ₂ - t ₁			nsec
Connect Pin 3 to C, Pin 1 to D, alternately connect Pins 9 and 10 to B		_	15	
Connect Pin 3 to C, Pin 2 to D, alternately connect Pins 7 and 8 to B		_	15	
Connect Pin 3 to C, Pin 4 to D, alternately connect Pins 5 and 6 to B		_	15	
Connect Pin 3 to C, Pin 9 to D, and Pin 1 to B		-	15	
Connect Pin 3 to C, Pin 7 to D, and Pin 2 to B		_	15	
Connect Pin 3 to C, Pin 5 to D, and Pin 4 to B		_	15	

NOTE: Letter subscripts denote test circuit connection points.

Number subscripts denote device pin connections.

DIFFERENTIAL VOLTAGE AND FORWARD CURRENT TEST CIRCUIT AND TERMINAL CONNECTIONS

DIFFERENTIAL VOLTAGE				
ALTERNATELY CONNECT A TO	9, 10	7, 8	5, 6	
CONNECT B TO	1	2	4	
CONNECT C TO	3	3	3	

TERMINAL TEST CONNECTIONS
FORWARD CURRENT

ALTERNATELY
CONNECT A TO 1, 2, 4 THRU 10

CONNECT D TO 3

NO CONNECTION TO B

мс1113

MC1111-MC1118 DTL SERIES

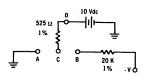
1-1-1-2 Diode AND Gate.

MAXIMUM RATINGS (TA = 25°C)

Characteristic	Symbol	Rating	Unit
Forward Current	$I_{\mathbf{F}}$	20	mA
Reverse Voltage	$\overline{v_R}$	10	Volts
Total Device Dissipation Derate above 25 ⁰ C	P _D	400 2.67	mW mW/ ^o C
Resistor Dissipation (Each Resistor) Derate above 25 ⁰ C	P _D	100 0.67	mW mW/°C
Operating Temperature Range	TA	-55 to +125	°C
Storage Temperature Range	T _{stg}	-65 to +175	°C

1-1-1-2 DIODE "AND" GATE

MC1113 (continued)


ELECTRICAL CHARACTERISTICS ($T_A = 25 \, ^{\circ}\text{C}$ unless otherwise noted)

Characteristic	Symbol	Min	Max	Unit
Forward Current (each diode - Fig. 2) V _{D-1} = 10 Vdc V _{D-2} = 10 Vdc V _{D-4} thru 10 = 10 Vdc	I ₃₋₁ I ₃₋₂ I ₃₋₄ thru 10	8.3 8.3 8.3	10.1 10.1 10.1	mAdc
Reverse Current (each diode) V ₁₋₃ = 10 Vdc V ₂₋₃ = 10 Vdc V ₄ thru 10-3 = 10 Vdc	I ₁₋₃ I ₂₋₃ I ₄ thru 10-3		0.1 0.1 0.1	μAdc
$\begin{array}{llllllllllllllllllllllllllllllllllll$	V10-8 V10-9 V1-7 V2-6 V4-5	11111	0.30 0.30 0.30 0.30 0.30	Vdc
Capacitance (each diode) V1, 2, 4 thru 10-3 = 10 Vdc, f = 100 kc	C _{1, 2, 4 thru 10-3}	-	4	pf
Reverse Recovery Time (Fig. 3) Connect Pin 3 to C, Pin 10 to D, alternately connect Pins 8 and 9 to B Connect Pin 3 to C, Pin 1 to D, and Pin 7 to B Connect Pin 3 to C, Pin 2 to D, and Pin 6 to B Connect Pin 3 to C, Pin 4 to D, and Pin 5 to B Connect Pin 3 to C, Pin 5 to D, and Pin 4 to B	t ₂ - t ₁	11111	15 15 15 15	nsec
Connect Pin 3 to C, Pin 6 to D, and Pin 2 to B Connect Pin 3 to C, Pin 7 to D, and Pin 1 to B Connect Pin 3 to C, Pin 8 to D, and Pin 10 to B		- -	15 15 15	

NOTE: Letter denotes test circuit connection points.

Number subscripts denote device pin connections.

DIFFERENTIAL VOLTAGE AND FORWARD CURRENT TEST CIRCUIT AND TERMINAL CONNECTIONS

DIFFERENTIAL VOLTAGE					
ALTERNATELY CONNECT A TO	8, 9	7	6	5	
CONNECT B TO	10	1	2	4	
CONNECT C TO	3	3	3	3	

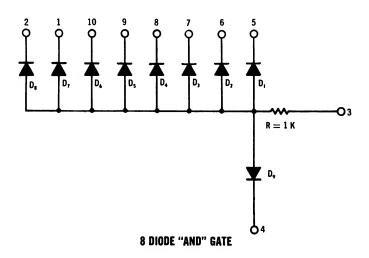
TERMINAL TEST CONNECTIONS FORWARD CURRENT

ALTERNATELY CONNECT A TO 1, 2, 4 THRU 10

CONNECT D TO 3

B NOT CONNECTED.

MC1114

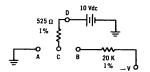

MC1111-MC1118 DTL SERIES

8-Diode AND Gate.

MAXIMUM RATINGS (TA = 25°C)

Characteristic	Symbol	Rating	Unit
Forward Current	IF	20	mA
Reverse Voltage	v_R	10	Volts
Total Device Dissipation Derate above 25 ⁰ C	P _D	100 0.667	mW mW/ ^O C
Operating Temperature Range	TA	-55 to +125	°C
Storage Temperature Range	T _{stg}	-65 to +175	°C

CIRCUIT SCHEMATIC


MC1114 (continued)

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Max	Unit
Forward Current (each diode - Fig. 2) VD-1 = 10 Vdc VD-2 = 10 Vdc VD-4 thru 10 = 10 Vdc	I ₃₋₁ I ₃₋₂ I ₃₋₄ thru 10	8.3 8.3 8.3		mAdc
Reverse Current (each diode) V ₁₋₃ = 10 Vdc V ₂₋₃ = 10 Vdc V ₄ thru 10-3 = 10 Vdc	I ₁₋₃ I ₂₋₃ I ₄ thru 10-3	111	0.1 0.1 0.1	μAdc
Differential Voltage (Fig. 2) $ \begin{array}{lllllllllllllllllllllllllllllllllll$	V4-5 V4-6 V4-7 V4-8 V4-9 V4-10 V4-1 V4-2	11111111	0.30 0.30 0.30 0.30 0.30 0.30 0.30	Vdc
Capacitance (each diode) V1, 2, 4 thru 10-3 = 10 Vdc , f = 100 kc	C _{1, 2, 4 thru 10-3}	1	4	pf
Reverse Recovery Time (Fig. 3) Connect Pin 3 to C, Pin 4 to D, alternately connect Pins 1, 2, 5, 6, 7, 8, 9, and 10 to B	t ₂ - t ₁	_	15	nsec
Connect Pin 3 to C, Pin 1 to D, and Pin 4 to B		-	15	

NOTE: Letter subscripts denote test circuit connection points.

Number subscripts denote device pin connections.

TERMINAL TEST CONNECTIONS DIFFERENTIAL VOLTAGE

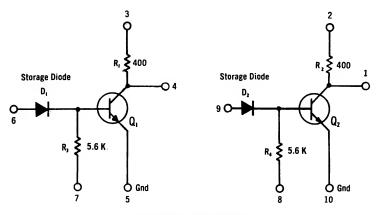
DITTERENTIAL TOLINGE			
ALTERNATELY CONNECT A TO	1, 2, 5 THRU 10		
CONNECT B TO	4		
CONNECT C TO	3		

TERMINAL TEST CONNECTIONS FORWARD CURRENT

ALTERNATELY CONNECT A TO	1, 2, 4 THRU 10
CONNECT D TO	3
B NOT CONNECTED	

DIFFERENTIAL VOLTAGE AND FORWARD CURRENT TEST CIRCUIT AND TERMINAL CONNECTIONS

MC1115


MC1111-MC1118 DTL SERIES

Dual high-speed, NPN transistor inverters.

MAXIMUM RATINGS (TA = 25°C)

Characteristic	Symbol	Rating	Unit
Reverse Voltage			Vdc
	V ₁₀₋₂	10.0 10.0	
	V ₅₋₃ V ₅₋₇	7.0	
	v ₁₀₋₈	7. 0	
Total Device Dissipation	P _D	250	mW
Derate above 25°C		1.67	mW/ ^o C
Individual Gate Dissipation	P _D	125	mW
Derate above 25°C	-	0.83	mW/°C
Resistor Dissipation	$\overline{P_{D}}$		
R ₁ or R ₂		100	mW .
Derate above 25 ^o C		0.67	mW/°C
R ₃ or R ₄		25	mW
Derate above 25 ^o C	:	0.17	mW/ ^o C
Operating Temperature Range	TA	-55 to +125	°C
Storage Temperature Range	T _{stg}	-65 to +175	°С

CIRCUIT SCHEMATIC

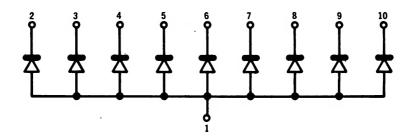
HIGH-SPEED DUAL INVERTER

MC1115 (continued)

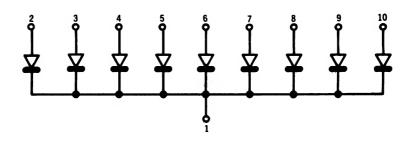
ELECTRICAL CHARACTERISTICS ($T_A = 25$ °C unless otherwise noted)

Characteristic	Symbol	Min	Max	Unit
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	v ₆₋₅ v ₉₋₁₀	1.2 1.2	1.7 1.7	Vdc
Collector-Emitter Saturation Voltage I ₄₋₅ = 35 mAdc, I ₆₋₅ = 1.5 mAdc Q ₁ I ₁₋₁₀ = 35 mAdc, I ₉₋₁₀ = 1.5 mAdc Q ₂	V _{CE(sat)} · 4-5 V _{CE(sat)} 1-10	=	0.35 0.35	Vdc
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	I ₇₋₅ I ₈₋₁₀	1.50 1.50		mAdc
Collector Resistor Current V3-4 = 3 Vdc Q1 V2-1 = 3 Vdc Q2	I ₃₋₄ I ₂₋₁	6.82 6.82		mAdc
	I ₃₋₅ I ₃₋₅ I ₂₋₁₀ I ₂₋₁₀	1111	0.05 3 0.05 3	μAdc
Reverse Current V ₇₋₆ = 10 Vdc V ₈₋₉ = 10 Vdc	I ₇₋₆ I ₈₋₉	=	100 100	nA
DC Forward Current Transfer Ratio $ \begin{array}{lllllllllllllllllllllllllllllllllll$	h _{FE}	35 15 35 15		_
Turn-On Time (Fig. 2) $V_{7-5} = -6.5 \text{ Vdc}, V_{3-5} = +3 \text{ Vdc}, \text{ close switch } S_2 Q_1 V_{8-10} = -6.5 \text{ Vdc}, V_{2-10} = +3 \text{ Vdc}, \text{ close switch } S_2 Q_2$	ton	=	20 20	nsec
Turn-Off Time (Fig. 2) $V_{7-5} = -6.5 \text{ Vdc}, V_{3-5} = +3 \text{ Vdc}, \text{ close switch } S_1 = V_{8-10} = -6.5 \text{ Vdc}, V_{2-10} = +3 \text{ Vdc}, \text{ close switch } S_1 = 0.00$		=	45 45	nsec

NOTE: Number subscripts denote device pin connections


mc1116 mc1117 mc1118

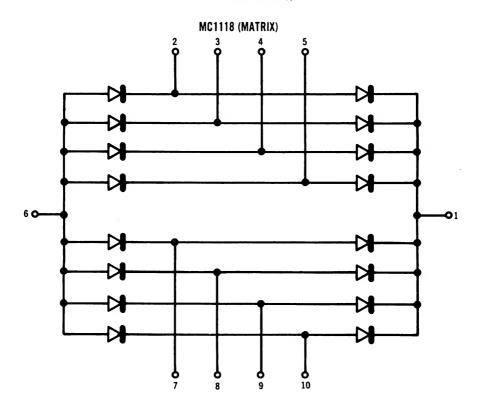
MC1111-MC1118 DTL SERIES


Multi-diode Gates. The MC1116 is a 9-Diode Common-P Gate, the MC1117 is a 9-Diode Common-N Gate and the MC1118 is a 16-Diode Series/Parallel Matrix.

MAXIMUM RATINGS (All Types at 25°C)

Characteristic	Symbol	Rating	Unit
Reverse Voltage (Each Diode)	v_R	40	Volts
Total Device Current (Derate 2mA/°C)	IF	300	mA
Individual Diode Current (Derate 2mA/°C)	IF	300	mA
Operating Temperature Range	TA	-65 to +175	°C

MC1116 (common P)


MC1117 (common N)

MC1116, MC1117, MC1118 (continued)

ELECTRICAL CHARACTERISTICS (Each Diode)-(25°C unless otherwise noted)

Characteristic	Symbol	Min	Max	Unit
Forward Voltage I _F = 300mAdc	v _F		1. 2	Vdc
Reverse Current V _R = 20Vdc	$I_{\mathbf{R}}$		2. 0	μAdc
Breakdown Voltage I _R = 10 μAdc	v _R	40		Vdc
Junction Capacitance V _R = 10Vdc, f = 100KC	cj			pf
MC1116, MC1117 MC1118*			8. 0 16. 0*	
Reverse Recovery Time (IF = 300mAdc, IR = 60mAdc, RL = 2.5 Ω , Scope Input Capacitance \leq 4pf)	t _{rr}		90	nsec.

^{*} The actual capacitance of the individual diodes in the MC1118 is the same as in the MC1116/7. However, the measured capacitance is higher as shown, due to the series/parallel effects of the interconnection scheme.

MC908 series

MC908 MILLIWATT RTL SERIES

CASE 96

The Milliwatt RTL Line consists of seven monolithic, integrated Resistor-Transistor Logic circuits. These devices are designed for use over the full military temperature range of -55 to +125 $^{\circ}$ C.

MC908G

Adder

MC909G

Buffer

The mW RTL series

MC910G

Dual 2-Input Gate
4-Input Gate

MC911G MC912G

Half-Adder

MC913G

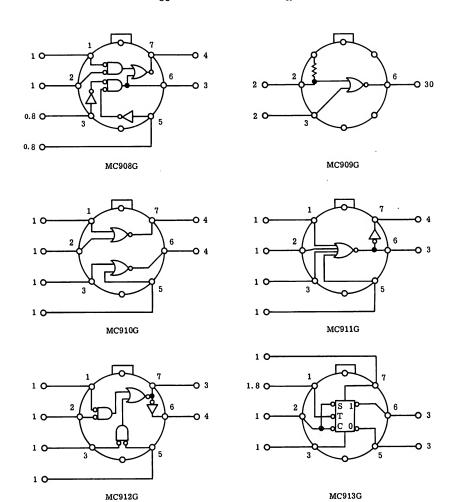
Type D Flip-Flop

MC921G

Gate Expander

MAXIMUM RATINGS (TA = 25°C)

Characteristic	Rating	Unit
Maximum Applied Voltage to pin 8 (pulsed, ≤1 sec)	12	Vdc
Maximum Applied Voltage to pin 8 (continuous)	8	Vdc
Maximum Applied Voltage to any input	±4	Vdc
Operating Temperature Range	-55 to +125	°C
• Storage Temperature Range	-65 to +150	°c
Maximum Power Dissipation	250	mW


TEST CONDITI	ON TOLERANCES
V _{CC} = ±10mV	$V_{IN} = \pm 2mV$
V _{LL} = ± 2mV	V _{ON} = ±2mV
V _{BOT} = +10mV	V _{OFF} = ±2mV
V _{RL} = ±1%	V _{RH} = ±1%

----- Motorola Integrated Circuits -----

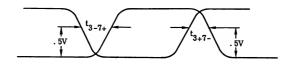
MC908 MILLIWATT RTL SERIES

LOADING DIAGRAM (TOP VIEW)

Valid for $\rm V_{CC}$ = 3.00 volts \pm 10% and $\rm T_A$ -55° C to +125° C

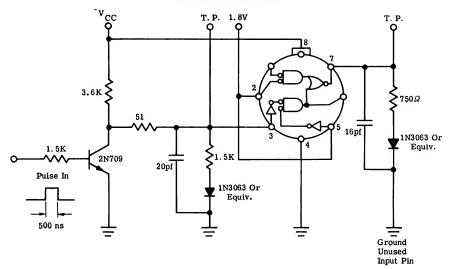
MC 908G

mW RTL SERIES

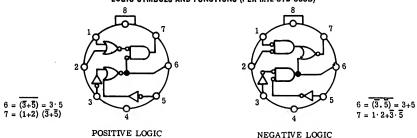


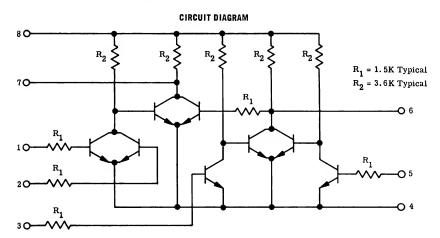
The MC908 is an RTL Adder. The binary half-adder function can be performed by connecting pin 1 to pin 3 and pin 2 to pin 5. The sum is available on pin 7 while the carry is available on pin 6. The device may also be used as a data selector by connecting pin 1 to pin 3 and using pins 2 and 5 as data inputs. A full adder can be made utilizing two MC908s and one MC911. Average power dissipation is 10MW at 25°C.

ELECTRICAL CHARACTERISTICS


	Test -55 Condition: +25 (Volts) +125	. 970 . 805 . 590	. 935 . 750 . 555	1. 8 1. 8 1. 8	. 650 . 450 . 260	3, 00 3, 00 3, 00		MC908G										
	Symbol										Test Limits							
Charac- teristics	Pin No. in ()	V _{IN} Pin	Von Pin	V _{BOT}	Voff Pin	Vcc Pin	V _{LL} Pin	Gnd. Pin	Open Pin				5°C Max		25°C Max	Unit		
Input Current	I _{IN (1)}	1		2		8		3, 4, 5	6,7		125		130		110	μAde		
Current	I _{IN (2)}	2		1		8		3, 4, 5	6, 7		125		130		110	μ Adc		
	. 8 I _{IN} (3)	3				8		1, 2, 4, 5	6, 7		100		104		88	μAde		
	. 8 I _{IN} (5)	5				8		1, 2, 3, 4	6,7		100		104	Ì	88	μAde		
Output Current																		
	I _{A3} (6)	6	3,5			8		1,2,4	7	350		364		308		μAde		
	I _{A4} (7)	7	1		3,5	8		2,4	6	475		494		418		μAde		
	1 _{A4} (7)	7	2		3, 5	8		I, 4	6	475		494		418		μ Adc		
Saturation Voltage	V _{CE} (6)			3	5	8		1, 2, 4	6,7		220		220		220	m Vdc		
,	V _{CE} (6)			5	3	8		1, 2, 4	6,7		220		220		220	mVdc		
	V _{CE} (7)				1,2	8		3, 4, 5	6,7		220		220		220	mVdc		
	V _{CE} (7)	6		1,2,3,5		8		4	7		220		220		220	mVde		
Output Voltage	V _{ОUТ} (7)		6	1,2,3,5		8		4	7		620		300		230	mVde		
Leakage Current	1 _L (8)						8	1, 2, 3, 4, 5	6,7		100		100		100	μAde		
Switching Time		Pulse In	Pulse Out															
Turn-On Delay	^t 3+7-	3	7	2,5		8		1, 4	6				80			nsec		
Turn-Off Delay	13-7+	3	7	2,5		8		1,4	6				100			nsec		

SWITCHING TIME WAVE FORM



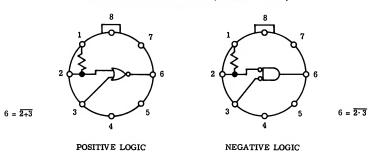

MC908G (continued)

SWITCHING TIME TEST CIRCUIT

LOGIC SYMBOLS AND FUNCTIONS (PER MIL-STD-806B)

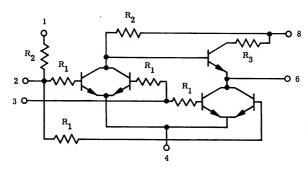
MC 909G

mW RTL SERIES

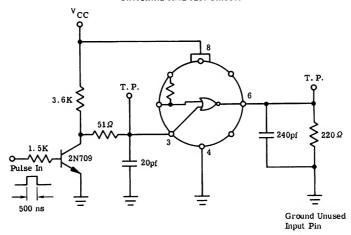

The MC909 is an RTL Buffer designed to drive a greater number of loads than the basic Resistor Transistor Logic circuit. Returning an input resistor to V_{CC} allows for capacitive coupling in multivibrator and differentiator applications. Average power dissipation at 25°C and 50% duty cycle is 10 mW.

ELECTRICAL CHARACTERISTICS

	Test -55 Condition: +25 (Volts) +125	. 970 . 805 . 590	. 935 . 750 . 555	1.8 1.8 1.8	. 650 . 450 . 260		4. 27 KΩ 4. 3 KΩ 5 KΩ			MC909G									
	Symbol										Test Limits								
Charac- teristics	Pin No. in()	ViN	Von Pin	V _{BOT}	Voff Pin	Vcc Pin	V _{RH} * Pin	Gnd. Pin	Open Pin	—5 Min	5°C Max		5°C Max	+12 Min	25°C Max	Unit			
Input	^{2I} IN (2)	2		3		8		4	1, 5, 6, 7	141111	250	IMIII	260	141111	220	μAdc			
	2 ^I IN (3)	3		2		8		4	1, 5, 6, 7		250		260		220	μAdc			
Output Current	I _{AB} (6)	6			2, 3	8		4	1, 5, 7	3.75		4.0		3.3		mAdc			
Output Voltage	V _{OUT (6)}		2			8	6	3, 4	1,5,7		620		300		230	mVdc			
	VOUT (6)		3			8	6	2,4	1,5,7		620		300		230	mVde			
Saturation Voltage	V _{CE (6)}	2				8	6	3,4	1,5,7		220		220		220	mVde			
	V _{CE (6)}	3				8	6	2, 4	1,5,7		220		220		220	mVde			
Leakage Current	^I L (8)					8		2,3,4	1, 5, 6, 7		100		100		100	μAdc			
Switching Time		Pulse In	Pulse Out																
Turn-On Delay	^t 3+6-	3	6			8		2,4	1,5,7				90			nsec			
Turn-Off Delay	t ₃₋₆₊	3	6			8		2, 4	1,5,7				70			nsec			


^{*} Resistor to V_{CC}

LOGIC SYMBOLS AND FUNCTIONS (PER MIL-STD-806B)


MC909G (continued)

CIRCUIT DIAGRAM

Typical Resistors: $R_1 = 1.5K$ $R_2 = 3.6K$ $R_3 = 100 \Omega$

SWITCHING TIME TEST CIRCUIT

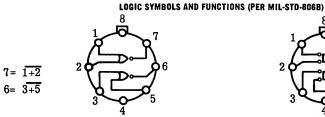
SWITCHING TIME WAVE FORM

MC 910G

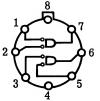
mW RTL SERIES

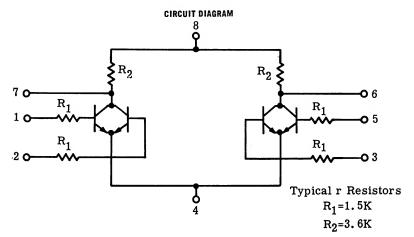
DUAL 2 - INPUT GATE

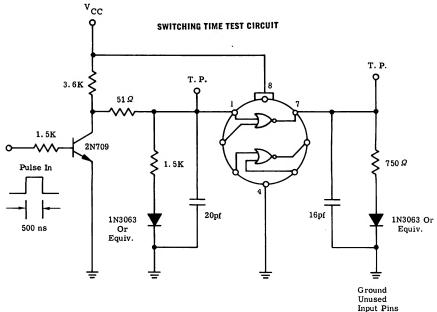
The MC910 Dual (2-2) Input Gate consists of a pair of NOR Gates. It may also be used as a pair of inverters, a double inverter or as an R-S Flip-Flop. Average power dissipation at 25°C is 4 mW.


ELECTRICAL CHARACTERISTICS

	Test -55 Condition: +25 (Volts) +125	. 970 . 805 . 590	. 935 . 750 . 555	1.8	. 650 . 450 . 260	3, 00 3, 00 3, 00	. 500 . 400 . 300	MC910G											
	Symbol												Limits						
Charac- teristics	Pin No.	VIN	VON	V BOT	VOFF		Vιι	Grounded		_	5°C	<u> </u>	5°C	_	25°C]			
	in()	Pin	Pin	Pin	Pin	Pin	Pin	Pin	Pin	Min	Max	Min	Max	Min	Max	Unit			
Input Current	¹ IN ⁽¹⁾	1		2		8		3, 4, 5	6,7		125		130		110	μAde			
	I _{IN} (2)	2		1	İ	8		3, 4, 5	6,7		125		130		110	μ Ade			
	1 _{IN} (3)	3		5		8		1, 2, 4	6, 7		125		130		110	μ Adc			
	1 _{IN} (5)	5		3		8		1,2,4	6,7		125		130		110	μAdc			
Output Current																			
	I _{A4} /I _{AM (7)}	7		3	1,2	8		4, 5	6	475	730	494	815	418	830	μAdc			
	I _{A4/} I _{AM (6)}	6		2	3, 5	8		1,4	7	475	730	494	815	418	830	μAdc			
Output Voltage	V _{OUT (7)}		1			8		2, 3, 4, 5	6, 7		620		300		230	mVdc			
vollage	V _{OUT (7)}		2			8		1,3,4,5	6,7		620		300		230	mVdc			
	VOUT (6)		3			8		1, 2, 4, 5	6, 7		620		300		230	m Vdc			
	V _{OUT (6)}		5			8		1, 2, 3, 4	6,7.		620		300		230	mVdc			
Saturation Voltage	V _{CE (6)}	3				8		1, 2, 4, 5	6,7		220		220		220	mVdc			
,	V _{CE (6)}	5				8		1, 2, 3, 4	6, 7		220		220		220	mVdc			
	V _{CE (7)}	1				8		2, 3, 4, 5	6, 7		220		220		220	mVdc			
	V _{CE (7)}	2				8		1, 3, 4, 5	6,7		220		220		220	mVdc			
Leakage Current	¹ L (8)					8		1, 2, 3, 4, 5	6, 7		100		100		100	μAdc			
Switching Time		Pulse In	Pulse Out																
Turn-On Delay	t ₁₊₇ -	1	7			8		2, 3, 4, 5	6				40			nsec			
Turn-Off Delay	t ₁₋₇₊	1	7			8		2, 3, 4, 5	6				50			nsec			


SWITCHING TIME WAVE FORM


MC910G (continued)



Positive Logic

Negative Logic

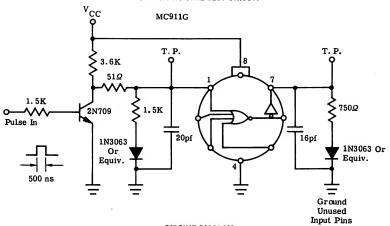
MC**911G**

mW RTL SERIES

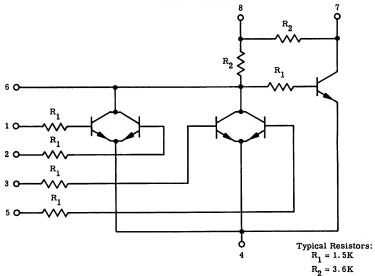


The MC911 4-Input Gate provides the NOR function on pin 6 and the OR function on pin 7. Average power dissipation at 25°C is 4 mW.

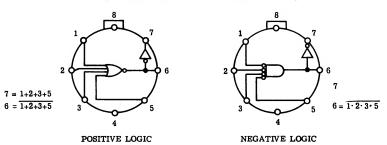
ELECTRICAL CHARACTERISTICS


	Test -55 Condition: +25 (Volts) +125	. 970 . 805 . 590	. 935 . 750 . 555	1. 8 1. 8 1. 8	.650 .450 .260	3, 00 3, 00 3, 00					MC	911G				
	Symbol									Test Limits						
Charac- teristics	Pin No.	ViN	Von Pin	V _{BOT} Pin	Vore	Vçc	VLL.	Grounded Pin	Open	_	5°C		5°C	_	25°C	1
	<u> </u>		rın		Pin	Pin	Pin	Pin	Pin	Min	Max	Min	Max	Min	Max	Unit
Input Current	^I IN (1)	1		2,3,5		8		4	6, 7		125		130		110	μ Ade
	^I IN (2)	2		1,3,5		8		4	6,7		125		130		110	μAde
	I _{IN} (3)	3		1, 2, 5		8		4	6, 7		125	ŀ	130		110	μ Ade
	^I IN (5)	5		1, 2, 3		8		4	6,7		125		130		110	μAdc
Output Current																
	^I A3 (6)	6			1, 2, 3, 5	8		4	7	350		364		308		μ Adc
	^I A4/ ^I AM (7)	7			6	8		1, 2, 3, 4, 5		475	730	494	815	418	830	μ Adc
Output Voltage	V _{OUT (6)}		1			8		2, 3, 4, 5	6,7		620		300		230	mVdc
Volume	V _{OUT (6)}		2			8		1,3,4,5	6, 7		620		300		230	m Vdc
	V _{OUT} (6)		3			8		1, 2, 4, 5	6,7		620	İ	300		230	m Vdc
	V _{OUT} (6)		5			8		1,2,3,4	6,7		620		300		230	mVdc
	V _{OUT (7)}		6			8		1, 2, 3, 4, 5	7		620		300		230	mVdc
Saturation Voltage	V _{CE (6)}	1		0		8		2,3,4,5	6,7		220		220		220	m Vdc
,	V _{CE (6)}	2				8		1,3,4,5	6,7		220		220		220	mVdc
	V _{CE (6)}	3				8		1, 2, 4, 5	6, 7		220		220		220	mVdc
	V _{CE (6)}	5				8		1, 2, 3, 4	6,7		220		220		220	mVdc
	V _{CE (7)}	6				8		1, 2, 3, 4, 5	7		220		220		220	mVdc
Leakage Current	^I L (8)						8	1, 2, 3, 4, 5	6,7		100		100		100	μAdc
Switching Time		Pulse In	Pulse Out													
Turn-On Delay		1	7			8		2,3,4,5	6				70			nsec
Turn-Off Delay	t ₁₊₇₊	1	7			8		2, 3, 4, 5	6				90			nsec

SWITCHING TIME WAVE FORM



MC911G (continued)

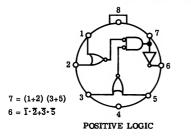

SWITCHING TIME TEST CIRCUIT

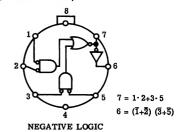
CIRCUIT DIAGRAM

LOGIC SYMBOLS AND FUNCTIONS (PER MIL-STD-806B)

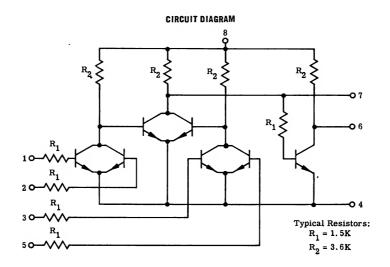
MC 912G HALF-ADDER

mW RTL SERIES

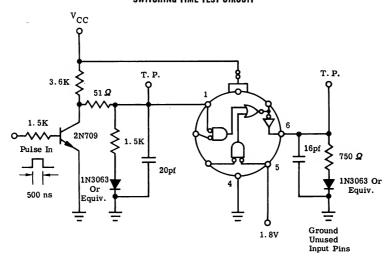


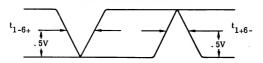

The MC912 is an RTL Half-Adder. By applying the complement of pins 1 and 2 to pins 3 and 5, the SUM and NOT SUM functions of a binary half-adder are produced on pin 7 and 6 respectively. Average power dissipation at 25° C is 8 mW.

ELECTRICAL CHARACTERISTICS


	Test -55 Condition: +25 (Volts) +125	. 970 . 805 . 590	. 935 . 750 . 555	1. 8 1. 8 1. 8	.650 .450 .260	3.00 3,00 3.00	. 500 . 400 . 300	100 MC9126											
	Symbol									Test Limits									
Charac- teristics	Pin No.	V _{IN} Pin	Von	V _{BOT} Pin	Voff Pin	Vcc Pin	V _{LL} Pin	Gnd. Pin	Open		5°C	<u> </u>	5°C	+125°C]			
	"(/				FIII		F 111	Pin	Pin	Min	Max	Min	Max	Min	Max	Unit			
Input Current	^I IN (1)	1		2		8		3, 4, 5	6, 7	i	125		130		110	μ Ade			
	^I IN (2)	2		1		8		3, 4, 5	6, 7		125		130		110	μ Adc			
	^I IN (3)	3		5		8		1, 2, 4	6,7		125		130		110	μ Adc			
	^I IN (5)	5		3		8		1,2,4	6, 7		125		130		110	μ Adc			
Output Current																			
	I _{A3 (7)}	7	1,3			8		2, 4, 5	6	350		364		308		μ Adc			
	I _{A3 (7)}	7	2, 5			8		1, 3, 4	6	350		364		308		μ Adc			
	I _{A4 (6)}	6				8		1, 2, 3, 4, 5	7	475		494		418		μ Adc			
Output Voltage	V _{OUT (6)}		7	1, 2, 3, 5		8		4	6		620		300		230	mVde			
Saturation Voltage	V _{CE (6)}	7		1,2,3,5		8		4	6		220		220		220	mVdc			
vortage	V _{CE (7)}			3,5	1, 2	8		4	6,7		220		220		220	mVdc			
	V _{CE (7)}			1,2	3,5	8		4	6, 7		220		220		220	mVdc			
Leakage Current	^I L (8)						8	1, 2, 3, 4, 5	6, 7		100		100		100	μ Adc			
Switching Time		Pulse In	Pulse Out																
Turn-On Delay		1	6	5		8		2, 3, 4	7				100			nsec			
Turn-Off Delay	t ₁₋₆ ÷	1	6	5		8		2,3,4	7				80			nsec			

LOGIC SYMBOLS AND FUNCTIONS (PER MIL-STD-806B)




MC912G (continued)

SWITCHING TIME TEST CIRCUIT

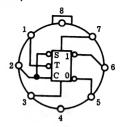
SWITCHING TIME WAVE FORM

MC 913G

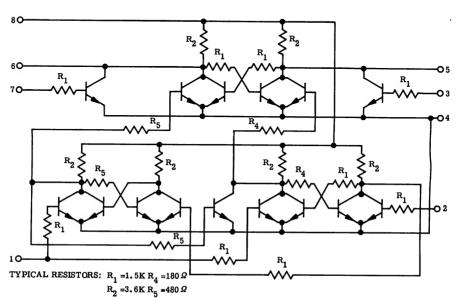
mW RTL SERIES

The MC913 RTL Type D Flip-Flop is a storage element that stores the state of pin 2 during negative transitions of pin 1. The flip-flop is not affected by changes of pin 2 during either the low or high state of the clock. Using pins 3 and 7 as inputs produces a standard R-S flip-flop. Average power dissipation at 25°C is 12 mW.

LOGIC SYMBOLS AND FUNCTIONS (PER MIL-STD-806B)


DIRECT INPUT (1)

3	7	6	5
L	L	NC	NC ⁽²⁾
L	H	L	H
H	L	H	L
Н	H	L	L


GATED INPUT (3) $t = n \quad t = n + 1$

2	6	5
H	H	L H

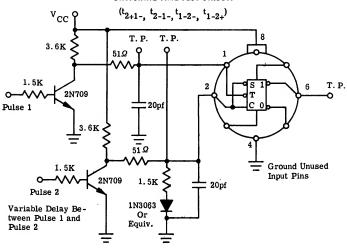
- 1. PIN 1 MUST BE HIGH
- 2. NC = NO CHANGE
- 3. PINS 3 AND 7 MUST BE

CIRCUIT DIAGRAM

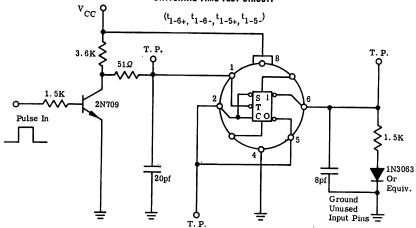
— Motorola Integrated Circuits ——

MC913G (continued)

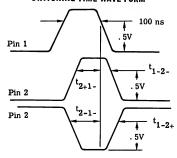
ELECTRICAL CHARACTERISTICS


	Test -55 Condition: +25 (Volts) +125	. 970 . 805 . 590	. 935 . 750 . 555	1.8 1.8 1.8	. 650 . 450 . 260	3. 00 3. 00 3. 00	. 500 . 400 . 300				М	9130	3			
	Symbol												imits			
Charac-	Pin No.	V _{IN} Pin	Von Pin	V _{BOT}	Voff Pin	Vcc Pin	V _{LL} Pin	Grounded Pin	Open Pin	_	5°C	_	5°C		25°C Max	Unit
teristics	in ()		FIII	FIII			Fill		-	MIN	Max	MID	Max	MIIII	_	
Input Current	I _{IN} (2) *	2			I	8		3, 4, 7	5,6		125		130		110	μAdc
	I _{IN} (3) *	3		2	1	8		4,7	5, 6		125		130		110	μAdc
	I _{IN (7)} *	7			1	8		2, 3, 4	5, 6		125		130		110	μAdc
	I. 8 I _{IN} (1)	1				8		2,3,4,7	5,6		225		234		198	μ Adc
	1.8 I _{IN} (1)	1		2		8		3,4,7	5,6		225		234		198	μ Ad c
Output																
Current	^I A3 (5)	5	1	2,7	3	8		4	6	350		364		308		μ Adc
		6	1	3	7	8		2.4	5	350		364		308		μ Adc
	I _{A3} (6)		•													ľ
	I _{A3} (5) *	5		7	1,3	8		2,4	6	350		364		308		μAde
	I _{A3 (6)} *	6	2	3	1,7	8		4	5	350		364		308		μAdc
Output	V _{OUT (5)}		3	1,7		8		2, 4	5, 6		620		300		230	mVdc
Voltage	V _{OUT (6)}		7	1,3		8		2,4	5,6		620		300		230	mVdc
	V _{OUT} (5)		6	1		8	1	2,3,4,7	5		620		300		230	mVdc
	V _{OUT} (6)		5	1		8		2,3,4,7	6		620		300		230	mVdc
Saturation	V _{CE (5)}	3.		1,7		8		2, 4	5, 6		220	\vdash	220		220	mVdc
Voltage	V _{CE} (6)	7		1,3		8		2, 4	5,6		220		220		220	mVdc
	V _{CE: (5)}	6		1		8		2,3,4,7	5		220		220		220	mVdc
	V _{CE} (6)	5		1		8		2, 3, 4, 7	6		220		220		220	mVdc
	V _{CE} (5) *		2	7	1	8		3, 4	5,6		220		220		220	mVdc
	V _{CE (6)} *			3	1,2	8		4,7	5,6		220		220		220	mVdc
Leakage Current	¹ L (8)						8	1, 2, 3, 4, 7	5,6		100		100		100	μAdc
Switching Time		Pulse In	Pulse Out	Pulse I In	Pulse 2 In											
	t ₁₋₆₋ **	ı	6			8		3, 4, 7	5	 			80			nsec
	1-6- t ₁₋₆₊ **	1	6			8		3,4,7	5				120			nsec
	1-6+ t _{I-5-} **	1	5			8		3, 4, 7	6				80	1		nsec
	t ₁₋₅₊ **	1	5			8		3, 4, 7	6				120			nsec
	1-5+ 1 ₂₊₁₋		6	1	2	8		3, 4, 7	5			60				nsec
	t ₁₋₂₋		6	1	2	8		3, 4, 7	5			30				nsec
	t ₂₋₁₋		6 .	1	2	8		3, 4, 7	5			60	-			nsec
	t ₁₋₂₊		6	1	2	8		3,4,7	5			30				nsec

^{*} The voltage applied to pin 1 will change from V_{RL} to specified value prior to making measurements.


^{**} Tie Pin 2 to pin 5.

MC913G (continued)


SWITCHING TIME TEST CIRCUIT

SWITCHING TIME WAVE FORM

SWITCHING TIME WAVE FORM

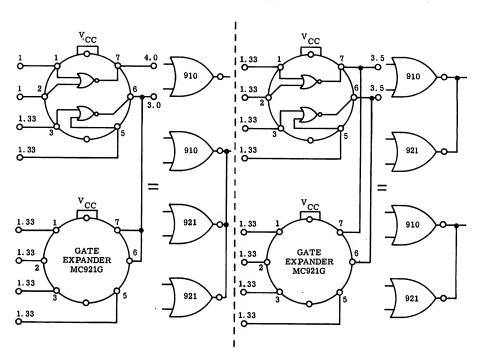
MC **921G**GATE EXPANDER

mW RTL SERIES

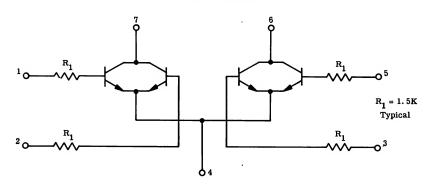
The MC921G Gate Expander is designed to increase the fan-in capability of the MC910 and MC911 Gates. Average power dissipation is considered negligible.

ELECTRICAL CHARACTERISTICS

	Test -55 Condition: +25 (Volts) +125	. 970 . 805 . 590	. 935 . 750 . 555	1.8	. 650 . 450 . 260	.300 .300 .300	4. 27 K Ω 4. 3 K Ω 5 K Ω	2. 8KΩ 2. 7KΩ 3KΩ				MC	921	G			
	Symbol													t Lim			
Charac-	Symbol Pin No.	VIN	Von	V вот	Voff	Vçc	V _{RH} *	V _{RL} *	Grounded	Open		5°C				25°C	
teristics	.in()	Pin	Pin	Pin	Pin	Pin	Pin	Pin	Pin	Pin	Min	Max	Min	Max	Min	Max	Unit
Input Current	I _{IN (1)}	1		2		8	7	!	3, 4, 5	6		125		130		110	μ Adc
	^I IN (2)	2		1		8	7		3, 4, 5	6		125		130		110	μAdc
	I _{IN} (3)	3		5		8	6		1, 2, 4	7		125		130		110	μ Adc
	^I IN (5)	5		3		8	6		1, 2, 4	7		125		130		110	μAdc
Output Voltage	V _{OUT (7)}		1			8		7	2, 3, 4, 5	6		620		300		230	mVde
Voltage	V _{OUT (7)}		2			8		7	1, 3, 4, 5	6		620	l	300		230	mVdc
	V _{OUT} (6)		3			8		6	1, 2, 4, 5	7	l	620	1	300		230	mVdc
	V _{OUT (6)}		5			8		6	1, 2, 3, 4	7		620		300		230	mVdc
Saturation Voltage	V _{CE (6)}	3				8		6	1, 2, 4, 5	7		220		220		220	mVdc
voltage	V _{CE} (6)	5		ŀ		8	ļ	6	1, 2, 3, 4	7	ł	220		220	l	220	mVdc
	V _{CE (7)}	1			ŀ	8	,	7	2, 3, 4, 5	6	١	220	Ì	220	l	220	mVdc
	V _{CE (7)}	2				8		7	1, 3, 4, 5	6		220		220		220	mVdc
Output	ICEX (7)	7			1, 2	8			3, 4, 5	6		5		5		5	μAdc
Current	I _{CEX} (6)	6	1		3, 5	8			1, 2, 4	7		5		5		5	μAdc
Leakage Current	I _L (6, 7, 8)					6, 7, 8			1, 2, 3, 4, 5			100		100		100	μ Adc


^{*}Resistor to V_{CC}

NOTES FOR THE USE OF THE MC921G


- 1. The input loading factor of the expanded gate is 1.33.
- 2. Pin 8 of the MC921G must be connected to V_{CC}.
- The output loading factor of the expanded gate is decreased 0.5 load for every added node.

MC921G (continued)

USE OF GATE EXPANDER

CIRCUIT DIAGRAM

MC400 series

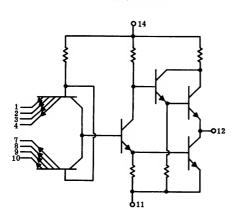
TTL SERIES

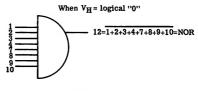
Monolithic integrated Transistor-Transistor Logic circuits for high-speed logic applications requiring high fan-out into high-capacitance lines. The MC400 Series operates over the full military temperature of -55 to $\pm 125^{\circ}$ C.

Series MC400 T ² L Circuits	FAN-OUT	STORAGE TIME TYPICAL	DELAY TIME TYPICAL
MC401 8-Input NAND/NOR Gate	15	30 nsec	15 nsec
MC402 Dual 4-Input NAND/NOR Gate	15	30 nsec	15 nsec

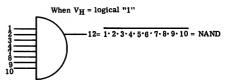
мс401

MC400 TTL SERIES




8-Input Transistor-Transistor Logic NAND/NOR Gate.

CASE 83


8-INPUT NAND/NOR GATE

NOR GATE

NAND GATE

MC 401 (continued)

ELECTRICAL CHARACTERISTICS

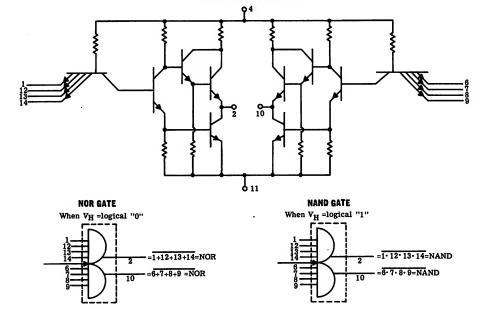
Characteristic	Minimum	Maximum	Unit
Output "On" Voltage L ₁₂ = 20 mA			
$v_1^{12}, v_2^{1}, v_3^{1}, v_4^{1}, v_7^{1}, v_8^{1}, v_9^{1}$ and $v_{10}^{10} = 2.0$		0.5	Vdc
Output "Off" Voltage			
I ₁₂ = -2 mA			
$v_1, v_2, v_3, v_4, v_7, v_8, v_9 \text{ or } v_{10} = 0.8 \text{ V}$	2.4		Vdc
Unused pins = open			
Input Leakage Current			
$V_1, V_2, V_3, V_4, V_7, V_8, V_9 \text{ or } V_{10} = 4.5 \text{ V}$ All unused pins at 0		150	μА
Grounded Input Current			
$V_1, V_2, V_3, V_4, V_7, V_8, V_9 \text{ or } V_{10} = 0 \text{ V}$		-1.6	mA
Grounded Output Current			
$V_1, V_2, V_3, V_4, V_7, V_8, V_9 \text{ and } V_{10}, V_{12} = 0 \text{ V}$	-20	-45	mA
Power Drain			
$V_1, V_2, V_3, V_4, V_7, V_8, V_9$ or $V_{10} = 0$ V		3	mA
$V_1, V_2, V_3, V_4, V_7, V_8, V_9, \text{ and } V_{10} = \text{open}$		5	m A
Switching Characteristics			
Fan-Out 1 and 15 (worst Case)			
Storage Time			
C _O = 150 pf C _O = 600 pf		65 100	nsec nsec
Rise Time		100	iibcc
C _O = 150 pf C _O 600 pf		45 70	nsec nsec
Delay Time		10	nsec
C _O = 150 pf		50	nsec
$C_0 = 600 \text{ pf}$ Fall Time		80	nsec
C ₀ = 150 pf		35	nsec
C _O = 600 pf		50	nesc

мс402

MC400 TTL SERIES

Dual 4-Input Transistor-Transistor Logic NAND/NOR Gate.

ELECTRICAL CHARACTERISTICS


Characteristics	Minimum	Maximum	Units
Output "On" Voltage			
$I_2 = 20 \text{ mA}, V_1, V_{12}, V_{13} \text{ and } V_{14} = 2.0V$		0.5	Vdc
$l_{10} = 20 \text{ mA}, V_6, V_7, V_8 \text{ and } V_9 = 2.0 \text{ V}$		0.5	Vdc
	,		
Output "Off" Voltage $I_2 = -2 \text{ mA}, V_1, V_{12}, V_{13} \text{ and } V_{14} = 0.8V$	2. 4		Vdc
	2. 4		Vdc
$I_{10} = -2mA$, V_6 , V_7 , V_8 and $V_9 = 0.8 \text{ V}$	2. 4		vac
Input Leakage Current			
V ₁ , V ₁₂ , V ₁₃ or V ₁₄ = 4.5 Vdc		150	μΑ
V ₆ , V ₇ , V ₈ or V ₉ = 4.5 Vdc		150	μΑ
All unused inputs at 0 V			
Grounded Input Current			
V ₁ , V ₁₂ , V ₁₃ or V ₁₄ = 0 V		-1.6	mA
$V_6, V_7, V_8, \text{ or } V_9 = 0 \text{ V}$		-1.6	mA
Grounded Output Current V_1, V_{12}, V_{13} and $V_{14} = 0 V$ $V_2 = O_V$	-20	-45	mA
<u> </u>	-20	-45	mA
$V_6, V_7, V_8 \text{ and } V_9 = 0V \qquad V_{10} = O_V$	-20	-40	in A
Power Drain		_	
$V_1, V_{12}, V_{13} \text{ or } V_{14} \text{ and } V_6, V_7, V_8 \text{ or } V_9 = 0 \text{ V}$		6	mA
V_1, V_{12}, V_{13} and V_{14} and V_2, V_7, V_9 and $V_0 = open$		12	m A
v_1, v_{12}, v_{13} and v_{14} and v_6, v_7, v_8 and v_9 = open		12	mA

MC402 (continued)

SWITCHING CHARACTERISTICS

Characteristic	Min	Max	Unit
Fan-Out = 1 and 15 (worst case)			
Storage Time		1 1	
C _o = 150 pf		65	nsec
C = 600 pf		100	nsec
· ·			ų.
Rise Tim e			
C ₀ = 150 pf		45	nsec
C ₀ = 600 pf		70	nsec
Delay Time			
C _o = 150 pf		50	nsec
C ₀ = 600 pf		80	nsec
Fall Time			
C _o = 150 pf		35	nsec
C ₀ = 600 pf		50	nsec

DUAL 4-INPUT NAND/NOR GATE

----- Motorola Integrated Circuits -----

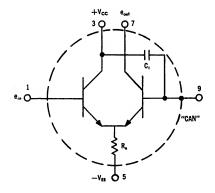
MOTOROLA LINEAR CIRCUITS

Linear Integrated Circuits

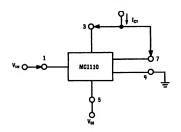
MC1110	Emitter-Coupled Amplifier
MC1513F	A/D Ladder Network
MC1519	Wideband Differential Amplifier
MC1524	1 W Power Amplifier
MC1525	NPN Differential Amplifier
MC1526	NPN Darlington-Input Differential Amplifier
MC1527	PNP Differential Amplifier
MC1528	PNP Darlington-Input Differential Amplifier

MC1110

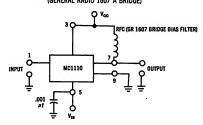
LINEAR CIRCUIT SERIES


 $G_T = 22 \text{ db } @ 100 \text{ Mc}$ NF = 6 db @ 100 Mc

Emitter-coupled, integrated circuit linear amplifier for IF and RF applications. Frequency range is DC to $300\ MC$.

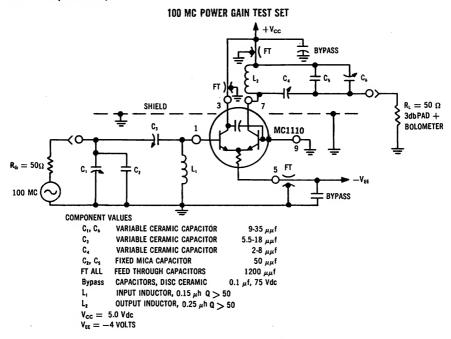

MAXIMUM RATINGS (at 25°C ambient)

Characteristic	Symbol	Rating	Unit
Power Supply Voltage	v _{cc}	10	Vdc
Power Supply Voltage	VEE	14	Vdc
Total Power Dissipation (Derate 5 mW/ $^{\circ}$ C above $T_{A} = 25^{\circ}$ C)	PD	0.5	Watt
Operating Temperature Range	_T _j	-55 to+125	°C
Storage Temperature Range	T _{stg}	-65 to+200	°C
Maximum Input Level (RMS)	v _{in}	2	V (RMS)

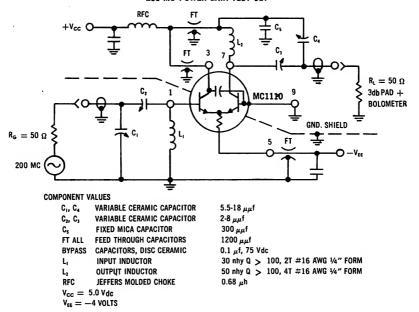


CIRCUIT SCHEMATIC

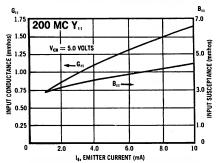
DC CHARACTERISTICS TEST CIRCUIT

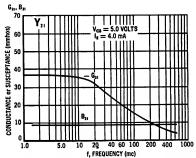


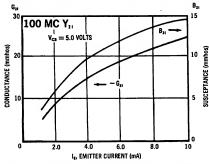
SHORT CIRCUIT ADMITTANCE TEST CIRCUIT (GENERAL RADIO 1607 A BRIDGE)

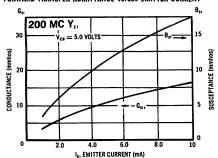


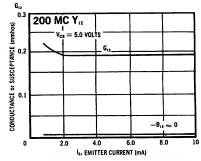
ELECTRICAL CHARACTERISTICS (AtT_A = 25°C unless otherwise noted)

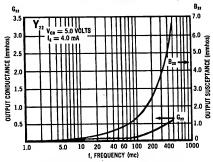

Characteristic	Symbol	Min	Тур	Max	Unit
DC CHARACTERISTICS					
Input Leakage Current (V ₃ = 5 Vdc; I ₅ , I ₇ , I ₉ = 0)	11			10	nAdc
Output Leakage Current $(V_7 = 5 \text{ Vdc}; I_1, I_3, I_5 = 0)$	I ₉			10	nAdc
Operating Current (V _{CC} = 5 Vdc, V _{EE} =-4.7 Vdc, V _{in} = 0) Figure :	I _{CT}	3. 8	4	4. 2	mAdc
Input Operating Current (V _{CC} = 5 Vdc, V _{EE} = -10 Vdc, V _{in} = 0) Figure 2	2 11			250	μ Adc
Reference Operating Current (V _{CC} = 5 Vdc, V _{EE} = -10 Vdc, V _{in} = 0) Figure 2	I I9			250	μ Adc
Current Balance ($V_{CC} = 5 \text{ Vdc}, V_{EE} = -10 \text{ Vdc}, V_{in} = 0$) Figure : ($V_{CC} = 5 \text{ Vdc}, V_{EE} = -1 \text{ Vdc}, V_{in} = 0$) Figure :		0. 90 0. 90		1.10 1.10	
Large Signal Transconductance (V_{CC} = 5 Vdc, V_{EE} = -4 Vdc, ΔV_{in} = 50 mV)	G ₂₁	26	28		m-mhos
SMALL SIGNAL CHARACTERISTICS					
Small Signal Current Gain ($V_{CC} = 5 \text{ V, } I_E = -4 \text{ mA, } f = 100 \text{ mc}$)	h ₂₁	6.0	9.0		
Short Circuit Admittances (V _{CC} = 5 V, V _{EE} = -4V, f = 100 mc) Input Admittance Reverse Transfer Admittance Forward Transfer Admittance Output Admittance			2.0 0.064 16.3 1.2		m-mhos
Transducer Power Gain $(V_{CC} = 5V, V_{EE} = -4V, f = 100 \text{ mc}, BW = 3 \text{ mc})$ Figure 2 $(V_{CC} = 5V, V_{EE} = -4V, f = 200 \text{ mc}, BW = 6 \text{ mc})$ Figure 2	G _T	22 15	26 18		db
Noise Figure $(V_{CC} = 5V, V_{EE} = -4V, f = 100 \text{ mc}, R_g = R_{SO})$	NF		4	6	đb

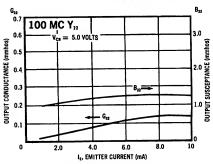

200 MC POWER GAIN TEST SET

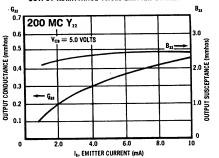


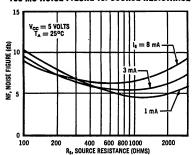

FORWARD TRANSFER ADMITTANCE VERSUS FREQUENCY

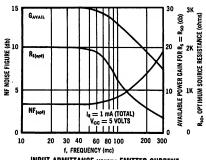

FORWARD TRANSFER ADMITTANCE versus EMITTER CURRENT

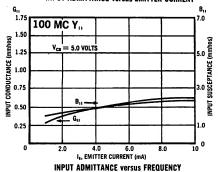

FORWARD TRANSFER ADMITTANCE versus EMITTER CURRENT

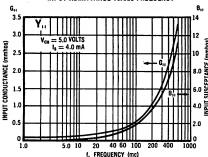

REVERSE TRANSFER ADMITTANCE versus EMITTER CURRENT


DUTPUT ADMITTANCE versus FREQUENCY,

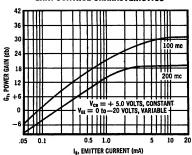

OUTPUT ADMITTANCE versus EMITTER CURRENT


OUTPUT ADMITTANCE versus EMITTER CURRENT

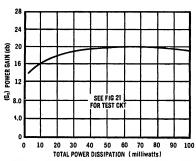


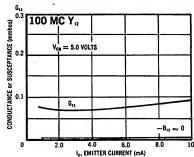


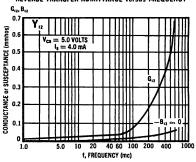
OPTIMUM NOISE FIGURE, OPTIMUM SOURCE RESISTANCE AND AVAILABLE POWER GAIN Versus FREQUENCY



INPUT ADMITTANCE versus EMITTER CURRENT




GAIN CONTROL CHARACTERISTICS


200 MC TRANSDUCER POWER GAIN (GT) versus POWER DISSIPATION

REVERSE TRANSFER ADMITTANCE VERSUS EMITTER CURRENT

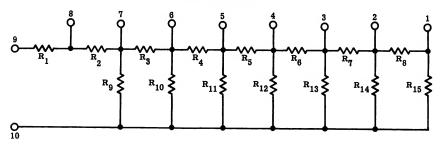
REVERSE TRANSFER ADMITTANCE versus FREQUENCY

mc 1513F

LINEAR CIRCUIT SERIES

 $P_D = 500 \text{ mW}$ 1% ratio tolerance

Analogue/digital ladder network of thin-film resistors on passivated silicon for application as a binary reference voltage divider.


MAXIMUM RATINGS (At 25°C)

Applied Voltage	30 Vdc
Power Dissipation, Total (derate 3.3mW/°C above 25°C)	500mW
Power Dissipation, Each Resistor (derate 0.67mW/°C above 25°C)	100mW
Operating Temperature Range	-55 to +125°C
Storage Temperature Range	-65 to +175° C

ELECTRICAL CHARACTERISTICS (At 25°C)

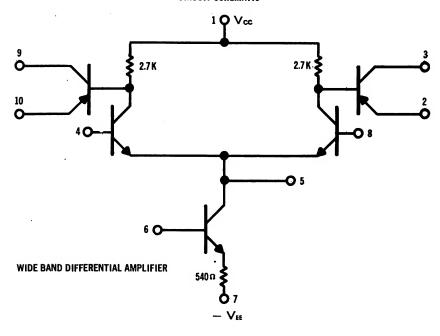
Characteristic	Symbol	Minimum	Typical	Maximum	Unit
Resistance	R _{1 thru 8}	4.4	4.7	5.0	KΩ
Resistance	R _{9 thru 15}	8.8	9.4	10.0	KΩ
Voltage Ratio	v ₁ :v ₂ ,v ₂ :v ₃	0, 495	0, 500	0. 505	•
Ratio Temp. Tracking (-55 to +125°C)	$\frac{v_1:v_2,v_2:v_3}{0.500}$			10	PPM/°C
Resistance Temp. Coefficient	R _{1 thru 15}			100	PPM/°C

CIRCUIT SCHEMATIC

Mc 1519

LINEAR CIRCUIT SERIES

 $A_{dd}=67~db$ $V_{10}=6~mV$ CMR=89~db BW=0.7~Mc



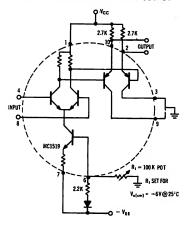
Integrated circuit wideband differential amplifier featuring NPN inputs and PNP outputs.

MAXIMUM RATINGS (TA = 25°C unless otherwise noted)

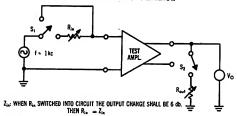
` Characteristic	Symbol	Rating	Unit
Power Supply Voltage	v _{cc}	+14	Vdc
Power Supply Voltage	v_{EE}	-14	Vdc
Differential Input Signal	v _{in}	±5	Vdc
Total Power Dissipation Derate above 25 ⁰ C	₽D	300 2. 0	mW mW/ ^o C
Operating Temperature Range	T,	-55 to +125	°C
Storage Temperature Range	Tstg	-65 to +175	°C

CIRCUIT SCHEMATIC

MC1519 (continued)

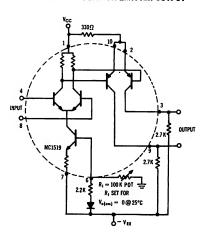

ELECTRICAL CHARACTERISTICS

($V_{CC} = +12 \text{ Vdc}$, $V_{EE} = -12 \text{ Vdc}$, $T_A = 25^{\circ}\text{C}$ unless otherwise noted)

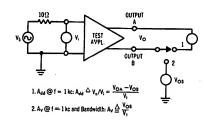

Characteristic	Figure No.	Symbol	Min	Тур	Max	Unit
Differential Voltage Gain Circuit A (CE) Circuit B (CC)	3, 8	A _{dd}	67 40	73 45	7 9 50	db
Single Ended Voltage Gain Circuit A (CE) Circuit B (CC)	3	A _V		67 38	=	db
Maximum Output Swing Circuit A (CE) Circuit B (CC)	4	v _o	12.0 8.0	14.0 10.0	=	v _(p-p)
Input Offset Voltage Circuit A (CE) Circuit B (CC)	5, 9	v _{IO}	_	2.0	6.0 6.0	mVdc
Input Offset Voltage Drift Circuit A (CE) Circuit B (CC)	5, 9	v _{IOD}	=	5.0 5.0	= .	μV/ ^o C
Input Offset Current Circuit A (CE) Circuit B (CC)	6, 10	IO	=	1.0 2.0	4.0 8.0	μAdc
Input Current Circuit A (CE) Circuit B (CC)	6, 11	ī _i	=	40.0 60.0	70.0 90.0	μAdc
Common Mode Rejection Circuit A (CE) Circuit B (CC)	7	CM _{Rej}	=	89.0 86.0	=	db
Bandwidth - 3 db Circuit A (CE) Circuit B (CC)	3, 12	BW	0.70 5.0	1.0 8.0	=	mc
Differential Input Impedance Circuit A (CE) Circuit B (CC)	2	$\overline{z_{in}}$	1.8	2.6 1.2		kohms
Single Ended Output Impedance Circuit A (CE) Circuit B (CC)	2	Z _{out}	=	2.7 0.048	0.120	kohms

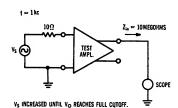
MC1519 (continued)

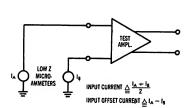
CIRCUIT B COMMON COLLECTOR OUTPUT

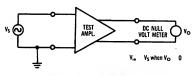


DIFFERENTIAL INPUT IMPEDANCE AND SINGLE ENDED OUTPUT IMPEDANCE

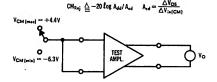

 $\rm Z_{out}\colon WHEN\,R_{out}SWITCHED$ INTO CIRCUIT THE OUTPUT CHANGE SHALL BE 6 db. THEN $\rm R_{out}=~\rm Z_{out}$

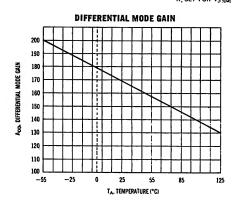

CIRCUIT A COMMON EMITTER OUTPUT

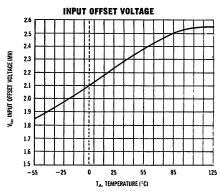


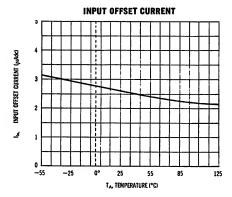

DIFFERENTIAL VOLTAGE GAIN SINGLE ENDED VOLTAGE GAIN AND BANDWIDTH

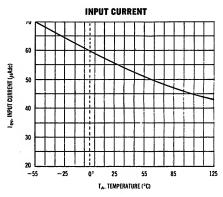
V; = 1.0mVrms

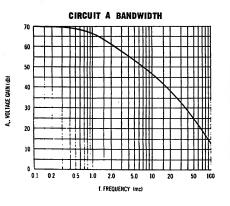


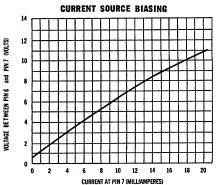

 V_{S} is calibrated variable DC millivolt source with output impedance of 10Ω




 Δv_{OS} recorded for a change in the common mode input bias from $+4.4\,\text{TO}-6.3\,\text{V}$


MC1519 (continued)

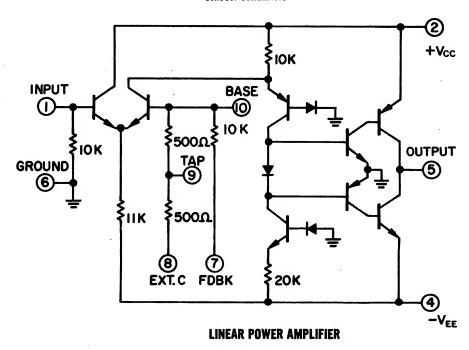

EFFECT OF TEMPERATURE ON CIRCUIT B CHARACTERISTICS R, SET FOR V_{3,504} : 6V AT 1:25°C



мс 1524

LINEAR CIRCUIT SERIES

 $Z_L = 16 - 100 \Omega$ THD = 0.6% Typ A_V = 10, 20 or 30

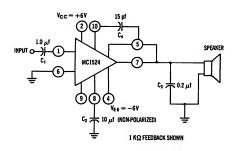

CASE 71 (TO-5)

Integrated circuit 1-W audio power amplifier.

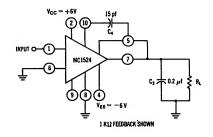
MAXIMUM RATINGS (TA = 25°C unless otherwise noted)

Characteristics	Symbol	Ratings	Unit	
Power Supply Voltage	v _{cc}	12	Vdc	
Power Supply Voltage	v _{EE}	-12	Vdc	
Operating Temperature Range	TA	-55 to +125	°C	
Storage Temperature Range	T _{stg}	-65 to +175	°C	
Maximum Audio Output Power $(T_A = -55^{\circ}C \text{ to } +125^{\circ}C)$	P _{out(max)}	1.0	Watt	

CIRCUIT SCHEMATIC



MC1524 (continued)

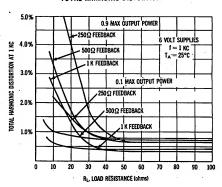

ELECTRICAL CHARACTERISTICS $(V_{CC} = +6V, V_{EE} = -6V, T_A = 25^{\circ}C.)$

Characteristic	Load Impedance ohms	Feedback Tap ohms	Symbol	Min	Тур	Max	Units
Maximum Peak-to-Peak Output Voltage for THD < 3% @ 1 kc	16	1000	V _{Omax}	9.0	10.0	_	V _(P-P)
Voltage Gain @ 1 kc		250	A _V	_	37.9	_	_
	16	500	İ	-	20,0	_	l
		1000		10.0	11.5	12.5	
		250		_	41.2	_	
	100	500		_	21.3	÷	
		1000		11.0	12.3	13.5	
Input Impedance @ 1 kc	_	1000	z _{in}	6.0	8.5	_	kohms
Output Impedance @ 1 kc	_	1000	Z _{out}	_	0.58	0.80	ohms
Bandwidth		250	BW	_	350	_	ke
	16	500	1	_	480	-	
		1000		300	770		
		250		-	340	-	
	40	500		-	480	-	
		1000			790		
		250		_	320	-	
	100	500		-	480	-	
		1000			810	_	
Zero Signal Current Drain (Each Supply)	16	1000	I _S	-	1.5	4.0	mA
Low Level Total Harmonic Distortion @ 1 kc _(50 mVrms in)	16	1000	THD	_	0.6	2.0	%

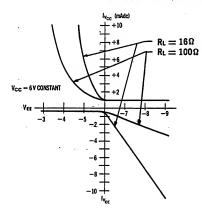
AC COUPLED CIRCUIT

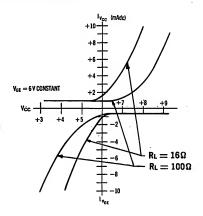
DC COUPLED CIRCUIT

MC1524 (continued)

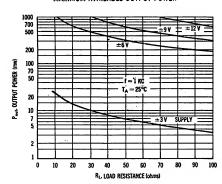

Notes:

- 1) R_L should be greater than 5 ohms for dc stability.
- 2) Power supplies should be balanced, have low source impedances, and should be turned on and off simultaneously. (See fig. 6 for Standby Current vs. supply unbalance.)
- 3) Capacitors C₃ and C₄ provide high-frequency stability. For most loads, at temperatures below 70°C, C₄ may be omitted.
- 4) Low frequency rolloff of AC coupled circuit is determined by C₁ and C₂. Fig 1 is recommended for loudspeaker loads because of DC stability introduced by C₂.
- 5) Open loop operation is not recommended. Feed-back taps are connected as follows:

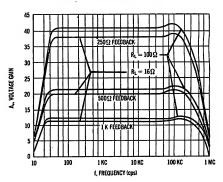

Feedback Tap Pin Connection


1 KΩ	8 to C ₂ (AC) or ground (DC)
500Ω	9 to C ₂ (AC) or ground (DC)
250Ω	8 to 10; 9 to C ₂ (AC) or ground (DC)

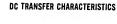
TOTAL HARMONIC DISTORTION



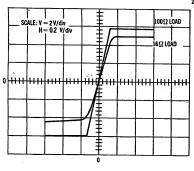
STANDBY CURRENT VARIATION DUE TO SUPPLY UNBALANCE

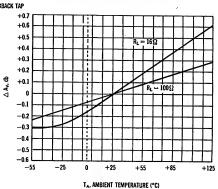


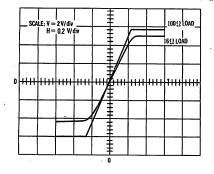
MAXIMUM AVAILABLE OUTPUT POWER

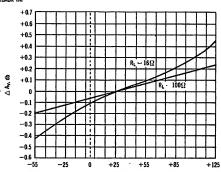


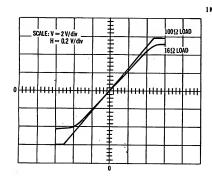
AC COUPLED FREQUENCY RESPONSE

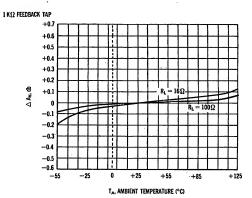

----- Motorola Integrated Circuits


MC1524 (continued)




VOLTAGE GAIN versus TEMPERATURE




500Ω FEEDBACK TAP

TA, AMBIENT TEMPERATURE (°C)

– Motorola Integrated Circuits —

MC 1525мс 1526 мс 1527 мс 1528

LINEAR CIRCUIT SERIES

 $A_{dd} = 65-140$ $V_{10} = 5.7 \text{ mV}$ CMR = 80 dbBW = 0.3-1.4 Mc

MC1525 MC1526 **DIFFERENTIAL AMPLIFIERS**

MC1527

DARLINGTON INPUT DIFFERENTIAL AMPLIFIERS MC1528

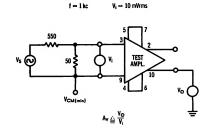
PNP

NPN

(TO-5)

Integrated circuit complementary differential amplifiers designed to permit direct-coupled cascading for applications requiring extremely high gain.

MAXIMUM RATINGS (TA = 25°C unless otherwise noted)

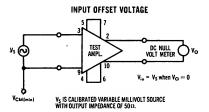

	0	R	ating	Unit
Characteristic	Symbol	NPN	PNP	
Power Supply Voltage	v _{cc}	+14	-14	Vdc
Power Supply Voltage	v _{ee}	-14	+14	Vde
Differential Input Signal	v _{in}	± 5		Vdc
Operating Temperature Range	$\mathbf{T_{J}}$	-55 to +125		°C
Storage Temperature Range	T _{stg}	- 65 to + 175		°C
Total Power Dissipation Derate above 25 ^O C	$P_{\mathbf{D}}$	300 2		mW mW/ ⁰ C

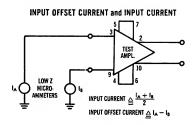
DIFFERENTIAL VOLTAGE GAIN

f = 1 kc $V_i = 10 \text{ mVrms}$ INPIIT

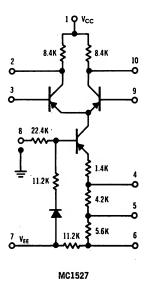
 $A_{dd} \triangleq V_O/V_i = \frac{V_{OA} - V_{OB}}{V_i}$

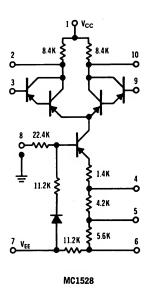
SINGLE - ENDED VOLTAGE GAIN

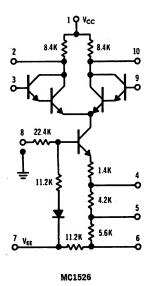


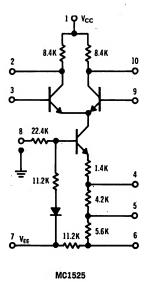

----- Motorola Integrated Circuits -----

MC1525, MC1526, MC1527, MC1528 (continued)

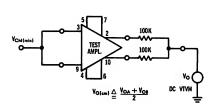

ELECTRICAL CHARACTERISTICS

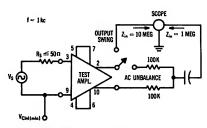

Characteristic	Fig No	Symbol	Min	Typical	Max	Unit
Differential Voltage Gain MC1525, MC1527 MC1526, MC1528	5, 15	A _{dd}	120 50	140 65	160 75	_
Single Ended Voltage Gain MC1525, MC1527 MC1526, MC1528	6	A _v		75 45	<u>-</u>	
Output Voltage, Common Mode All Types	7, 16	V _{o(CM)}	6.0	7.0	8.0	Vdc
Maximum Output Swing All Types	8	v _o	7.0	I	_	V _(p-p)
AC Uńbalance All Types	8	U	_	-	300	mV _(p-p)
Input Offset Voltage MC1525, MC1527 MC1526, MC1528	9, 17	v _{io}	_	11	5 7	mVdc
Input Offset Current MC1525, MC1527 MC1526 MC1528	10, 18	I _{io}		111	4 2 0.5	μAdc
Input Current MC1525, MC1527 MC1526 MC1528	10, 20	Iin	<u>-</u>	111	20 3.5 2.0	μAdc
Common Mode Rejection All Types	11, 19	CM _{Rej}	80	_	1	db
Bandwidth MC1525, MC1527 MC1526 MC1528	12	BW	1400 500 300	111	=	kc
Differential Input Impedance MC1525, MC1527 MC1526 MC1528	13	z _{in}	2.0 60 80	=	=	kΩ
Single Ended Output Impedance All Types	14	Z _{out}		_	11	kΩ





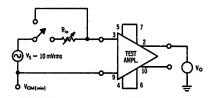
MC1525, MC1526, MC1527, MC1528 (continued)



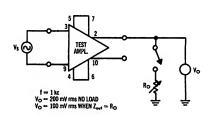


MC1525, MC1526, MC1527, MC1528 (continued)

OUTPUT VOLTAGE — COMMON MODE



MAXIMUM OUTPUT SWING


V_S INCREASED UNTIL V_O REACHES FULL CUTOFF.
OUTPUT SWING AND AC UNBALANCE GIVEN IN VOLTS P.P.

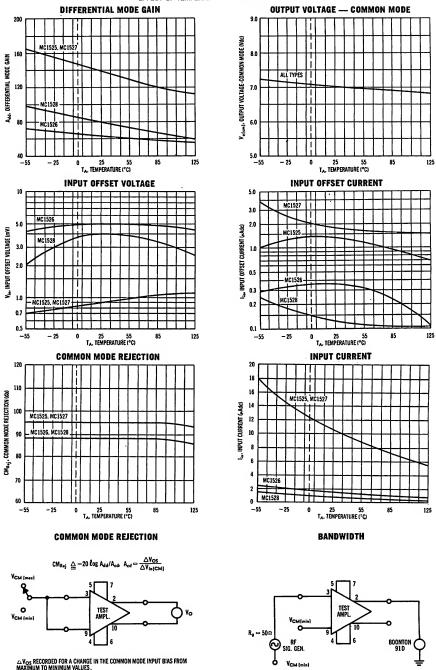
DIFFERENTIAL MODE GAIN

WHEN $R_{\rm in}$ switched into circuit the output change shall be 6 dd. Then $Z_{\rm in}=R_{\rm in}$

SINGLE ENDED OUTPUT IMPEDANCE

BIASING ARRANGEMENT

In the emitter of the current source transistor of each of the differential amplifiers, there are four resistors of different values which may be consected in seven ways. The resultant effective resistance in conjunction with a given V_{st} makes provision for different current levels. For convenience, the seven methods together with their effective resistances are tabulated below.


		14	5 5	6	-0.7
$\neg \gamma$	1.4K	4.2 K	5.6 K	11.2K	Υ΄
					O ver

 $^{\circ}\text{Pin}$ 7 is connected to the substrate and must be connected to the Vgg supply for proper circuit operation.

METHOD	1	2	3	4	5	6	7
PIN CONNECTIONS	4-7	4-6, 5-7	4-5, 6-7	4-6	4-5	5-6	4,5,6 OPEN
EFFECTIVE RESISTANCE	1.4 K	3.37 K	7.0 K	12.6 K	18.2 K	21.8 K	22.4 K

MC1525, MC1526, MC1527, MC1528 (continued)

EFFECT OF TEMPERATURE ON CHARACTERISTICS

REFERENCE MATERIAL

Articles in this section:

- How to Get More Value Out of a Transistor Data Sheet
- Determining Maximum Reliable Load Lines for Power Transistors
- Factors Influencing Selection of Commercial Power Transistor Heat Sinks
- Understanding Transistor Response Parameters
- Significance of Q_T In Switching Circuits
- High-Power Varactor Diodes Theory and Applications
- Optimizing SCR Turn-Off Parameters with Negative Bias

artine .

The second of th a tribun da tribun da tribun da tribun da tribun da tribun da tribun da tribun da tribun da tribun da tribun d A tribun da tribun da tribun da tribun da tribun da tribun da tribun da tribun da tribun da tribun da tribun d A tribun da tribun da tribun da tribun da tribun da tribun da tribun da tribun da tribun da tribun da tribun d

HOW TO GET MORE VALUE OUT OF A TRANSISTOR DATA SHEET

Engineers involved in the design of transistor circuits can gain many benefits from the proper use of transistor data sheets that have well specified characteristics. The extreme requirements of today's designs can only lead to confusion if the engineer does not have the proper limits within which to design. This report is intended to explain the relationship between published characteristics and design requirements.

A modern, well-prepared, informative data sheet should provide the design engineer with all the necessary information for selecting a transistor capable of performing a particular job. To accomplish this, the data sheet is normally divided into six general sections. A description of the device is given first, followed by sections on absolute ratings, and electrical and thermal characteristics. Mechanical data and applications information are also included.

The description of the device usually gives the broad general application which permits the designer to classify transistors according to his specific requirements. Thus, a typical power transistor description might indicate whether the unit was designed for audio work or switching applications. In addition, the power and/or current rating is specified, the polarity (whether PNP or NPN) is given, and the type of material is called out. At a glance, therefore, the engineer can determine if a particular transistor or group of transistors, is generally suitable for a particular purpose.

From here on, however, the selection of a specific transistor for a particular object becomes more involved. The unit must be considered from its various electrical ratings and characteristics to make sure that it fits the application from every conceivable standpoint. And, the engineer is generally faced with the problem of selecting the least expensive transistor which will perform adequately in his proposed circuit. This requires a comprehensive study and evaluation of the information usually given in the finer print. Only a thorough understanding of this information will permit him to do his job satisfactorily.

DISTINCTION BETWEEN RATINGS AND CHARACTERISTICS

A rating is defined as a limiting value assigned by the manufacturer which, if exceeded, may result in permanent damage to the device. On the other hand, a characteristics is a measurable property of the device under specific operating conditions for which the transistor will provide reliable performance.

ABSOLUTE MAXIMUM RATINGS

Absolute Maximum Ratings are those ratings beyond which degradation of a transistor may be expected. These ratings are established by each manufacturer based on the internal physical construction, semiconductor material and manufacturing processes. Because these are "ratings," most data sheets will not indicate test conditions under which these "ratings" are specified. Therefore, "ratings" are the extreme capabilities of a transistor and are not to be used as design conditions.

For example, under absolute maximum ratings the parameter BVCEO indicates that the B when placed before a characteristic symbol usually means breakdown. Therefore, BVCBO, BVCEO, BVCES, BVCEX, and BVEBO, are

the breakdown ratings of the device. It is a very well known fact in the semiconductor industry that when transistor ratings are exceeded an avalanche or breakdown condition may take place. This avalanche or breakdown condition in almost every instance will destroy a transistor. Breakdown is dependent upon temperature and a certain voltage and current condition, the combination of which can trigger an avalanching effect leading to instant destruction.

As a practical example, the graph in Figure 1 illustrates the typical output characteristics of a Motorola 2N1530 power transistor. The absolute maximum voltage $BV_{CE,O}$ is 45 volts. The absolute maximum current is 5 amps.

With an absolute maximum power rating of 90 W as shown on the data sheet for this particular transistor, it is now possible for the design engineer to calculate and plot a maximum voltage current relationship which can't be exceeded without endangering the life of the transistor.

It is obvious from the graph that the absolute maximum voltage and the absolute maximum current cannot be applied at the same time. While it is conceivable that an occasional excursion beyond this absolute maximum power for a short period of time will do no harm to the transistor, this practice is not recommended where reliability is concerned.

Thermal characteristics, also listed under the absolute maximum ratings, are expressed in degrees C per watt and define the dissipation capability of the transistor regarding the junction temperature in relation to case temperature.

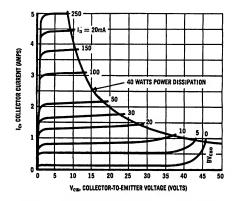


Figure 1 — Typical Output Characteristics, Motorola 2N1530

ELECTRICAL CHARACTERISTICS

It is in this portion of the data sheet that the design engineer can find the limits on those electrical parameters which are most important to his particular circuit design. Whereas the absolute maximum specifications provide the limits beyond which reliable operation cannot be obtained, the electrical characteristics give the design centers around which practical circuits can evolve. When discussing any specific characteristics, the test conditions must be specified in order that a common understanding is held by both the user and the manufacturer of the transistor. Almost every parameter listed on a data sheet is subject to variation among manufacturers because of difficult test conditions. We shall now refer to the Motorola data sheet on the power transistor series from 2N1539 thru 2N1548 and discuss each parameter in order. (See Figure 2)

COLLECTOR-BASE LEAKAGE CURRENTS

ICBO is a very common term loosely used by designer and manufacturer and initially used to signify the quality of a transistor. Actually, there exist three very definite ICBO's which are important to the designer. The first is the reading taken at some low collector-base voltage, in this case 2 volts, with a maximum value of IC indicated at this voltage.

This for all practical purposes represents the thermal component of the collector current, which cannot be reduced by further decrease of VCB. This is true for a given temperature and is subject to change with temperature. As the ambient temperature increases, the leakage current increases.

ELECTRICAL CHARACTERISTICS, GENERAL (At 25°C Mounting Base Temperature)

PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT
Collector-Base Cutoff Current	I _{CBO}				
V _{CB} = -25V 2N1539, 2N1544	620	-	-	2.0	mA
V _{CB} = -40V 2N1540, 2N1545		-	-	2.0	mA
V _{CB} = -55V 2N1541, 2N1546		-	-	2.0	mA
V _{CB} = -65V 2N1542, 2N1547	i	_	_	2.0	mA
V _{CB} = -80V 2N1543, 2N1548		-	_	2. 0	mA
CB ,	ļ				
Collector-Base Cutoff Current	I _{CBO}				
V _{CB} = -2V (all types)		-	-	200	μΑ
Collector-Base Cutoff Current	I _{CBO}				
at T _B = +90°C	L C20	_	-	20	mA
at V _{CB} = 1/2 BV _{CES} rating		1			
	<u> </u>		ļ		
Emitter-Base Cutoff Current	I _{EBO}				
V _{EB} = 12V (all types)		-	-	0.5	mA
Collector-Emitter Breakdown Voltage	BVCES				
$I_C = 500 \text{mA}, V_{EB} = 0$	CES				
2N1539, 2N1544		30	_	-	volts
2N1540, 2N1545		45	-	-	volts
2N1541, 2N1546 2N1542, 2N1547		60 75	1 -	-	volts volts
2N1542, 2N1548		90	-	-	volts
Collector-Emitter Leakage Current	ICEX				
V _{BE} = 1.0V	CLA				1
V _{CE} = 40 2N1539, 2N1544		-	-	20	mA
V _{CE} = 60 2N1540, 2N1545		-	-	20	mA
V _{CE} = 80 2N1541, 2N1546		-	-	20	mA
V _{CE} = 100 2N1542, 2N1547		-	-	20	m:A
V _{CE} = 120 2N1543, 2N1548		-	-	20	mA
Collector-Emitter Breakdown Voltage	BV _{CEO}			-	
I _C = 500mA, I _B = 0	- CEO	1			[
2N1539, 2N1544		20	_	l _	volts
2N1540, 2N1545	1	30	-	-	volts
2N1540, 2N1545 2N1541, 2N1546	1	40	-	-	volts
2N1542, 2N1547 2N1543, 2N1548	1	50 60	1 :	[volts volts
Collector-Base Breakdown Voltage	PV	+	 		1
_	вусво	1			
I _C = 20mA 2N1539, 2N1544		40	_	_	volts
2N1539, 2N1544 2N1540, 2N1545		60	-	-	volts
2N1541, 2N1546	1	80	-	-	volts
2N1542, 2N1547 2N1543, 2N1548	1	100 120	:	:	volts volts
2112010, 2112010			<u> </u>		

Figure 2 — Electrical Characteristics as given on a typical Motorola data sheet

ELECTRICAL CHARACTERISTICS, COMMON EMITTER(At 25°C)

PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT
Current Gain V _{CE} = -2V, I _C = 3A	h _{FE}	=			
2N1539, 2N1540, 2N1541, 2N1542, 2N1543 2N1544, 2N1545, 2N1546, 2N1547, 2N1548		50 75	-	100 150	• • •
Base-Emitter Drive Voltage I _C = 3A, I _R = 300mA	v _{BE}				
2N1539, 2N1540, 2N1541, 2N1542, 2N1543 2N1544, 2N1545, 2N1546, 2N1547, 2N1548		- -	-	0.7 0.5	volts volts
Collector Saturation Voltage I _C = 3A, I _R = 300mA	V _{CE(SAT)}				
2N1539, 2N1540, 2N1541, 2N1542, 2N1543 2N1544, 2N1545, 2N1546, 2N1547, 2N1548		· <u>-</u>	Ö. 2 0. 1	0.6 0.3	volts volts
Frequency Cutoff	f _{ae}				
V_{CE} = -2V, I_{C} = 3A 2N1539, 2N1540, 2N1541, 2N1542, 2N1543 2N1544, 2N1545, 2N1546, 2N1547, 2N1548		-	4 4	-	kc kc
Switching Characteristics I _C = 3A					,
Delay + Rise Time	t _d + t _r				
2N1539, 2N1540, 2N1541, 2N1542, 2N1543 2N1544, 2N1545, 2N1546, 2N1547, 2N1548		-	5 5	-	μsec μsec
Storage Time	t _s	-			,
2N1539, 2N1540, 2N1541, 2N1542, 2N1543 2N1544, 2N1545, 2N1546, 2N1547, 2N1548 Fall Time	t _e	-	.3 ·3	-	μsec μsec
2N1539, 2N1540, 2N1541, 2N1542, 2N1543 2N1544, 2N1545, 2N1546, 2N1547, 2N1548		- -	5 8	<u>-</u>	μsec μsec
Transconductance	g _{FE}	lei.		٠	
$V_{CE} = -2V, I_{C} = 3A$					
2N1539, 2N1540, 2N1541, 2N1542, 2N1543 2N1544, 2N1545, 2N1546, 2N1547, 2N1548		3.0 5.0	6.0 7.5		mhos mhos

Figure 2 (continued) — Electrical Characteristics as given on a typical Motorola data sheet

With this value, the designer can easily predict what the leakage will be at some higher temperature. Using the emperical rule that the thermal component of current will double for every 10°C, the design engineer can pinpoint the temperature component of the leakage current.

COLLECTOR-BASE VOLTAGE CHARACTERISTICS

The other ICBO which is important in high-temperature usage is that current due to the portion of the collector-base voltage characteristics which adds another maximum ICBO to the temperature complement of the total leakage. The data-sheet indicates that VCB at 25 volts on the Motorola 2N1539 power transistor gives a maximum leakage of 2 milliamps. This voltage component is not temperature sensitive. Therefore, the design engineer, wishing to determine his leakage value at some higher temperature (e.g. TJ75°C), can safely assume that the maximum increase in the thermal component of leakage current (IC) will be 32 times 200 microamps. Adding to this the 2 milliamp voltage component

he could arrive at a value of 8.4 milliamps maximum leakage at 75°C with 25 volts across the transistor. All future references to temperature in this report will refer to the transistor case temperature and not the ambient temperature.

HIGH-TEMPERATURE COLLECTOR-BASE LEAKAGE CURRENTS

Since there are many voltages and many applications to be considered, it is difficult for any manufacturer to specify leakage under all voltages at all temperatures. Motorola has led the way in specifying a guaranteed maximum leakage at 90°C at a voltage which is within reliable usage of any given transistor. In this case, it is one-half the BVCES rating. The selection of the one-half BVCES voltage rating for the high-temperature test is an arbitrary one, but at a point where the device will be in a reliable operating area.

EMITTER-BASE CUTOFF CURRENT (I_{ERO})

One of the least used parameters on a data sheet is IEBO. It is well to know the IEBO limit of any given junction within a transistor; therefore this limit is shown at a region where most design will be taking place. In most Motorola power transistors the emitter-base diode breakdown voltage rating is far greater than the 12 volts shown on the data sheet. This is indicated by the BVEBO listed under the absolute maximum ratings.

COLLECTOR-EMITTER LEAKAGE CURRENT (ICEX)

The X in this symbol means that there is some known back-bias voltage applied to the base-emitter diode. And, for each transistor this back-bias voltage must be specified as a test condition for any given ICEX or BVCEX rating. This rating is very useful in the design of converters. In this switching application, while one transistor is conducting the other transistor has been back-biased on the off condition thus waiting for transformer action to turn it back on. This rating is given as ICEX rather than BVCEX.

It is much easier for a transistor to stand off a given voltage and guarantee that the current will not be above a certain maximum value than to apply a test current and see if the voltage will be above a certain minimum value. This test could be related to a second breakdown type of relationship. On many diodes, applying a given test current could show a voltage rating of many volts above the listed rating.

Let us assume a condition where we apply 20 milliamps to the collector from a constant current source with a one volt base-emitter back bias. In some extreme cases, the collector-emitter voltage could go to 150 or 200 volts giving an extreme power dissipation problem, putting the device into the very dangerous second breakdown region; thus, the reason for specifying ICEX rather than BVCEX. The reverse is true of the breakdown voltage collector to emitter (BVCES), with the base and emitter short circuits.

COLLECTOR-EMITTER BREAKDOWN (BVCES)

The most important rating that the engineer can consider when selecting the transistor for his circuit is BVCES. (See Figure 3)

Most all power transistor applications require source voltages, collector-toemitter. This forces VCE ratings to be equal to or larger than the source voltage. Inductive loads will make this requirement higher. For the design engineer, a useful rating would be BVCER which falls between BVCES and BVCEO in applications utilizing alloy transistors. The test current of 500 milliamps for Motorola power transistors was selected to insure an adequate range of operation under this condition. On many of these test conditions, high dissipation can be experienced with the combination of test voltage and test current. Therefore, many of these tests are specified as sweep tests or pulse tests where the duty cycle is low enough that the maximum junction temperature is not exceeded. These tests should be performed with the transistor mounted on an adequate heat sink.

COLLECTOR-EMITTER BREAKDOWN VOLTAGE WITH THE BASE OPEN (BV_{CEO})

This test is related to I_{CBO} and the gain characteristic h_{FE} . With the base open, a condition can be reached where h_{FE} will multiply the I_{CBO} at a given voltage and start an avalanche condition as the junction temperature rises due to self-heating. This can quickly reach breakdown conditions if not carefully tested by the sweep method.

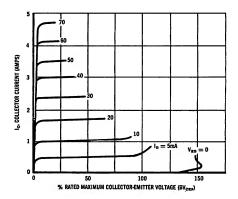


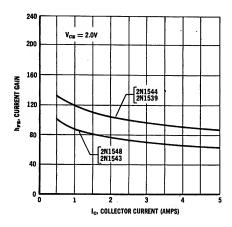
Figure 3 - Collector Characteristics, Common Emitter

Although BVCEO is the most difficult of all tests to meet, especially at high voltages, it is a condition which is occasionally met in actual operation, such as in series regulated power supplies and power amplifiers. In switching circuits this condition can be met instantaneously when the transistor is switched from on to off, thus passing a region where the base has infinite resistance or is essentially open. Motorola protects for this condition by showing the BVCEO rating on their data sheet and making it a part of their safe area curves.

COLLECTOR-BASE BREAKDOWN VOLTAGE (BV_{CRO})

This rating will show the limitation of the collector-base junction, but is a rating which is only occasionally used in actual circuit considerations. Many engineers make the error of selecting a transistor based on this parameter putting themselves into a high priced, low availability category, when actually the true ratings could have been defined by BVCES. Circuits should be carefully analyzed to determine if BVCBO or some collector-to-emitter rating is the controlling factor.

CURRENT GAIN (hee)


This is the most arbitrary of all test conditions listed on a data sheet. Motorola in designing power transistors, has calculated the structure to center upon or yield a given gain at a given collector current depending upon market requirements. For alloy transistors, current-gain is a function of collector-current and in most cases will decrease when IC increases. (See Figure 4)

It is best to design around data sheet limits. However, circuit requirement could dictate current gain spreads. Under these circumstances, it would be beneficial for the design engineer to work closely with the manufacturer to obtain a special device. This parameter is one that will vary to some degree with

life, and is therefore used as an end-of-life characteristic. It is with this realization that Motorola introduced their Meg-A-Life Program where end-of-life limits are given for both $h_{\rm FE}$ and $I_{\rm CBO}$ on industrial transistors.

BASE TO EMITTER VOLTAGE (VRE)

This parameter is very important to those who require knowledge of the input voltage at the specified test condition, especially to people designing converters and switching circuits. See Figure 5. The test for this parameter is usually performed with the transistor in saturation.

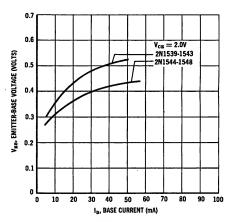
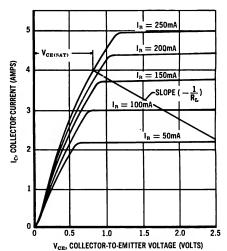


Figure 4 - Current Gain versus Collector Current


Figure 5 — Emitter-Base Voltage versus Base Current

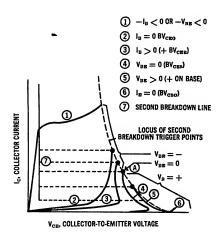
SATURATION VOLTAGE (V_{CE sat})

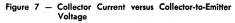
Saturation voltage, V_{CEsat} (See Figure 6) is the minimum voltage necessary to sustain normal transistor action at a particular collector-current. At collector voltages, lower than V_{CEsat}

the base-collector diode is forward biased and the current-voltage relationship changes abruptly. Thus, the saturation voltage is the minimum collector-emitter voltage required to maintain full conduction when enough base drive is supplied. Further applications of base drive will reduce VCEsat with diminishing effect. Since the VCEsat VS IC curve is almost a straight line, some transistor manufacturers list the characteristic as saturation resistance (VCEsat). VCEsat is part of the output characteristic.

Transistor efficiency in converters is a function of switching speed and power dissipated in the fully-on condition. A very low saturation

power dissipated in the fully-on Figure 6 — Output Characteristics, Saturation condition. A very low saturation Region, Motorola 2N351A


voltage is extremely desirable and is a function of the collector-current and base-current drive. Saturation voltage will increase with an increase in collector current and will also be inversely related to the gain (h_{FE}) of the transistor.


COMMON EMITTER-CUTOFF FREQUENCY (fae)

Current gain frequency cutoff (f_{ae}) for the common emitter configuration, (also called the beta cutoff frequency) is the frequency where the small-signal, forward-current gain is .707 of the current gain value to be found at a given reference frequency. The .707 point represents a 3 db. reduction in current gain. The common emitter cutoff frequency F_{ab} is usually between 5 K_c and 10 K_c for power transistors. The common base frequency cutoff F_{ab} (generally not specified for power transistors) is approximately equal to h_{fe} times f_{ae} .

SECOND BREAKDOWN VOLTAGE

Second Breakdown Voltage, a destructive condition, was first observed when the first breakdown condition (VBE = 0) was allowed to continue until point "A" was reached as illustrated by line 4 (BVCES) of Figure 7. The current was allowed to increase after the curve had entered into the first negative resistance portion and a second negative resistance occurred which switched the characteristic onto Line 7 of Figure 7. Further investigation has shown that other base-emitter conditions trigger second breakdown. If the base-shorted-to-theemitter ($V_{BE} = 0$) condition is used as a reference point, there exists a locus of points where second breakdown is initiated for both negative and positive base-to-emitter voltage conditions, which is shown by the dashed line. Thus, high negative base drive will cause second breakdown to be generated at much greater collector current by a lower collector voltage than at the $V_{BE} = 0$ point. When the base is positive, the locus is more difficult to determine since the trigger point lies in a negative resistance region. The exact locus varies considerably from one device to the next. However, if the collector diode breakdown and the BVCES are within specifications for the transistor, the locus will always be to the right of and above lines D-E and E-F shown in Figure 8.

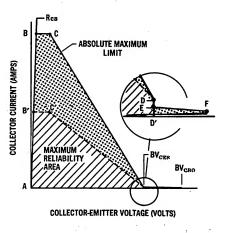


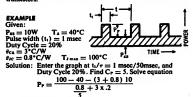
Figure 8 — Reliable V_C — I_C Areas

Triggering second breakdown from positive base drive almost always results in a collector-to-emitter short or a drastically altered transistor. Negative drive action does not appear to be as drastic and usually the phenomenon can be observed repeatedly on a curve tracer.

The exact physical reaction is still somewhat of a mystery, although the results of other types of breakdown have been fully described. Second breakdown seems to result in a "channeling of current" between the collector and emitter. In second breakdown the collector-to-base junction exhibits certain instabilities when high voltage is applied. The point at which these instabilities occur is controlled by the voltage imposed on the base-to-emitter junction. This spot heating can actually melt the germanium and allow the indium of the collector and the emitter to flow together producing a collector-emitter short.

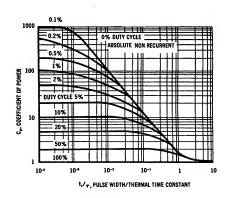
The locus of points where second breakdown occurs is independent of temperature within normal operating ranges. However, as temperature changes, a particular point on the locus will shift with a certain base-emitter condition. For instance, as temperature increases, the $V_{BE}=0$ point will shift toward the $I_B=0$ line. This is because more I_{CBO} flows through the internal base resistance ($R_{BB'}$) which causes the internal base-emitter junction to see a more negative voltage on the base side. In fact, high I_{CBO} current will cause the $V_{BE}=0$ line to lose its negative resistance portion (the tail) and approach the low temperature $I_B=0$ case.

DETERMINATION OF PEAK POWER


The peak allowable power is:

$$P_{P} = \frac{(T_{I} - T_{A} - \theta_{IA} P_{EE})}{\theta_{IC} \left(\frac{1}{C_{P}}\right) + \theta_{CA} \left(t_{I}/t\right)}$$

C_r is a coefficient of power as obtained from the chart. T_s is junction temperature in "C; T_s is ambient temperature in "C; is is ambient temperature in "C; is is incline to case thermal resistance in "C/W; $\theta_{s,i}$ is the sum $\theta_{s,i}$ + $\theta_{s,i}$ to it is pulse width; it is the pute period; (in/i) is the $\theta_{s,i}$ is a constant power dissipation and $P_{s,i}$ and the addition. In allowable pulse power dissipation above the amount of $P_{s,i}$ and $P_{s,i}$ is the sum of $P_{s,i}$ and $P_{s,i}$ is the sum of $P_{s,i}$ and $P_{s,i}$ is the sum of $P_{s,i}$ and $P_{s,i}$ is the sum of $P_{s,i}$ and $P_{s,i}$ is the sum of $P_{s,i}$ and $P_{s,i}$ is the sum of $P_{s,i}$ and $P_{s,i}$ is the sum of $P_{s,i}$ and $P_{s,i}$ is the sum of $P_{s,i}$ and $P_{s,i}$ is the sum of $P_{s,i}$ and $P_{s,i}$ is the sum of $P_{s,i}$ and $P_{s,i}$ is the sum of $P_{s,i}$ and $P_{s,i}$ is the sum of $P_{s,i}$ and $P_{s,i}$ is the sum of $P_{s,i}$ and $P_{s,i}$ is the sum of $P_{s,i}$ in the sum of $P_{s,i}$ is the sum of $P_{s,i}$ in the sum of $P_{s,i}$ is the sum of $P_{s,i}$ in the sum of $P_{s,i}$ is the sum of $P_{s,i}$ in the sum of $P_{s,i}$ in the sum of $P_{s,i}$ is the sum of $P_{s,i}$ in the sum of $P_{s,i}$ in the sum of $P_{s,i}$ is the sum of $P_{s,i}$ in the sum of $P_{s,i}$ in the sum of $P_{s,i}$ is the sum of $P_{s,i}$ in the sum of $P_{s,i}$ in the sum of $P_{s,i}$ is the sum of $P_{s,i}$ in the sum of $P_{s,i}$ in the sum of $P_{s,i}$ is the sum of $P_{s,i}$ in the sum of $P_{s,i}$ in the sum of $P_{s,i}$ in the sum of $P_{s,i}$ is the sum of $P_{s,i}$ in the sum of $P_{s,i}$ in the sum of $P_{s,i}$ is the sum of $P_{s,i}$ in the sum of $P_{s,i}$ in the sum of $P_{s,i}$ in the sum of $P_{s,i}$ is the sum of $P_{s,i}$ in the sum of $P_{s,i}$ in the sum of $P_{s,i}$ is the sum of $P_{s,i}$ in the sum of $P_{s,i}$ in the sum of $P_{s,i}$ is the sum of $P_{s,i}$ in the sum of $P_{s,i}$ in the sum of $P_{s,i}$ is the sum of $P_{s,i}$ in the sum of $P_{s,i}$ in the sum of $P_{s,i}$ in the sum of $P_{s,i}$ i


The above equation is usable when a heat sink is used which has thermal capacity very much larger than the transistors thermal capacity.

The chart is normalized with respect to the thermal time constant, which is on the order of 50 milliseconds for these power transistors.

P_p = 29 watts in addition to the steady 10 watts resulting in 39 watts peak.

PEAK POWER DERATING CURVE

Caution In all cases the peak pulse power should stay within the Safe Operating Area.

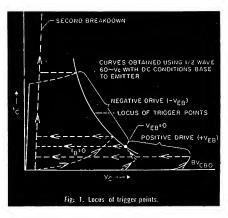
Figure 9 — Peak Power Derating

A well specified transistor data sheet will contain all of the above information. Some designs do not require specifications other than voltage, power dissipation and gain. The extreme requirements of present day industrial equipment as well as military specifications in most cases taxes the ingenuity of the design engineer and the time available for him to design the best equipment. TIME WHICH CAN BE SAVED DUE TO PROPER SPECIFICATION IS JUST AS IMPORTANT AS TIME SAVED DUE TO PROPER DESIGN. Because the semiconductor industry is relatively new and because of the questions and problems that can arise involving the use of semiconductors, a design engineer can lose much valuable time if he is forced to discontinue design operations due to the lack of information. A good data sheet can clearly eliminate this delay.

DETERMINING MAXIMUM RELIABLE LOAD LINES FOR POWER TRANSISTORS

Operation of power transistors within their power-temperature ratings alone is not a sufficient safeguard to guarantee circuit reliability. An additional consideration of the allowable collector-emitter voltage vs. collector current must be taken into account, otherwise a distinctive condition termed "secondary breakdown" can occur.

To avoid this secondary breakdown condition, it is necessary to maintain the load line within safe voltage and current limits.


As described later, secondary breakdown is a function of time in addition to voltage or current and, since transistors can be operated at an infinite number of time intervals and operating points, reliable load line operation is specified by safe operating areas including time as a parameter.

SECONDARY BREAKDOWN

For a fixed bias on the base-emitter junction, as collector voltage is increased on a power transistor the collector current increases slowly to a certain point at which the increase becomes rapid and an avalanche condition exists. The collector voltage at which avalanche occurs is determined by the voltage condition across the emitter-base junction. In other words, the transistor bias condition determines the point of avalanche. Avalanche in itself is nondestructive if power dissipation is limited, but a destructive breakdown can occur if the collector current is allowed to increase to a high value. This is called "second breakdown" 1, 2, 3.

Second breakdown is associated with the collector-base junction, and is controlled by the emitter-base junction. The electrical interplay of the junctions is such that second breakdown is triggered at lower voltages as collector current is increased. The locus of secondary breakdown trigger points is shown in Figure 1 for a 1/2 wave 60 cps pulse.

The exact action of second breakdown is not known but seems to be associated with a sudden concentration of energy into a small area, the energy being a function of collector voltage, collector current, and time. This concentrated energy dissipates power in a very small volume which causes the temperature to exceed the melting point of the semiconductor material. The two junctions can then flow together causing a collector-toemitter short.

PULSE TEST

To establish safe operating areas, through destructive testing, for various pulse widths, the test circuit shown in Fig. 2 was developed. In this circuit, a reverse bias sufficient to keep the transistor cut off until the pulse is applied, is always present between base and emitter. The 10-ohm resistor in the bias circuit is necessary to permit a negative voltage to build up and turn on the transistor when the pulse is applied.

The pulse test signal is obtained from a pulse generator and a transistor amplifier. The amplifier transistor must be a high-speed germanium device such as a 2N2832. The pulse amplitude is controlled by setting the output of the pulse generator high enough to saturate the amplifier transistor. The signal into the transistor under test is controlled by varying the collector supply voltage.

The output waveform is monitored on an XY oscilloscope across a sensing resistor which is made from Canthol type A-1 flat ribbon. A 0.1-ohm sensing resistor is used for collector currents below five amperes and a 0.01-ohm sensing resistor is used at higher collector currents.

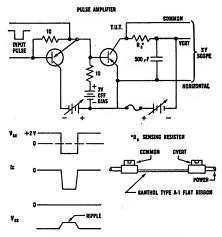


Fig. 2 Circuit used to establish safe operating areas.

To keep the voltage drop in the interconnecting wiring to a negligible value, number 10 wire is used for circuit connections and number 4 stranded cable is employed for connecting to the batteries used as the voltage source.

The 500 μ f capacitor bypasses voltage transients resulting from the rapid change of current through the inductance of the connecting leads. The fuse or circuit breaker is necessary to prevent burning out the sensing resistor or other components when the transistor shorts.

The source voltage is set at a fixed level in steps of 12 volts each. Collector current is increased by increasing the base drive until second breakdown occurs. A short occurs, since no current limiting is used.

PLOT OF BREAKDOWNS

The voltage and current failure point is observed on the XY scope and recorded on a graph similar to Fig. 3. To establish a usable safe area curve, at least 5 to 10 transistors are tested and destroyed at each pulse width and voltage. To construct the safe area curve on the graph, a line is drawn connecting the worst-case points of each voltage group.

Notice that, regardless of the pulse width, as current is increased the device will withstand less voltage.

Using an average of the failure points from Fig. 3, the typical graph of energy in watt-seconds required for second breakdown is plotted in Fig. 4. The shape of these curves is logical since as current increases the effective emitter area

decreases and as voltage increases the effective base width decreases. Thus, as current and voltage increase there is a continuous shrinking of the active volume containing the energy.

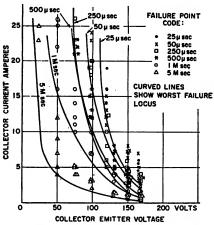


Fig. 3. Graph shows typical failure points for 2N2528 transistor.

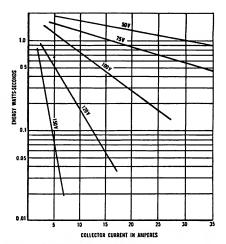


Fig. 4. Typical energy required to cause transistor failure is plotted against current with a constant voltage applied.

It is difficult to relate the results theoretically, due to all the variables which affect current crowding, although the effect of base width changing with voltage is a well-known expression. Also, since base width decreases with voltage, the effective base resistance increases due to the transverse area shrinking, which intensifies the current crowding.

DC TESTS

The test circuit used to determine failures under dc and long-time pulse conditions is shown in Fig. 5. A common-base circuit is used for this test to prevent thermal runaway.

Also, since power levels approaching 200 watts may be encountered during tests, a water-cooled heat sink is necessary. The heat sink consists of a 4" X 4" X 1/8" copper sheet with a "U" shaped copper tubing soldered to it around the transistor mounting area. Ice water is circulated through the tubing to remove heat from the copper plate.

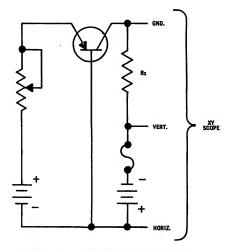


Fig. 5. Circuit used to establish do safe operating areas.

The dc failure points were determined in a similar manner as previously described for the pulse tests.

POWER-TEMPERATURE DERATING VS SAFE AREA

This application note shows safe area curves for many Motorola Power Transistors and includes de-ratings due to temperature effects. In addition to the Safe Areas, a power dissipation curve is plotted for each device. This power curve represents the allowable average power which could be dissipated at a given case temperature (usually 25°C) without exceeding the particular maximum junction temperature. At higher case temperatures the allowable average power will be less depending on thermal resistance and the power area would be represented by a curve drawn to the left and below the one shown. In general, the allowable power at 25°C (case) is beyond the allowable dc and longtime pulse safe areas and the device is breakdown-voltage limited. However, at higher case temperatures the device may be power-dissipation limited.

In any event, both average power-temperature de-rating and safe areas must be obeyed. In addition, the switching of power causes time-dependent temperature increases which are of concern but are separate from the safe area considerations.

This temperature dependency is associated with the thermal time constant of the transistor and a discussion is included in the Motorola Power Transistor Handbook and on most data sheets under a heading of "Peak Power" or "Pulse Power".

The proper control of temperature rise and peak power will insure that the maximum junction temperature is not exceeded. In addition, the proper control of pulse load line to stay within the applicable Safe Area curve will insure that a collector to emitter short will not be caused.

EXTENSION TO COLLECTOR-BASE BREAKDOWN

Some devices have a collector-base breakdown rating greater than the collector-emitter breakdown. Operation is allowable in the region between VCE(max) and VCB(max); however, it is recommended that the current be kept as low as possible by back biasing of the base-emitter junction.

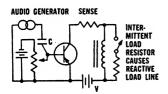
APPLICATION CHECKS

The safe areas were double checked in the following applications to see if the pulse safe area curves were meaningful: (1) audio, (2) solenoid driver, (3) power inverter, and for dc safe area, (4) low frequency audio and dc regulators.

(1) Audio

The audio application was used to test low-frequency effects which should correlate with the 5 millisecond safe areas. Devices were put into the class A circuit shown in Fig. 6, with an ac resistive load, the dc being bypassed by a shunt inductance. The input was deliberately overdriven and then the load resistor removed to obtain a reactive load line.

It was hoped that an elliptical load line could be obtained with an excursion controlled by drive voltage and with time of the excursion controlled by frequency. While this did occur, the excursion was very low at high frequencies and thus the fast pulse areas could not be probed. At frequencies between 50-200 cps, a large excursion was possible and failures were caused by exceeding the 5 msec safe area curve.


(2) Solenoid Driver

The solenoid driver consisted of controlling the load line with a suppression diode across the inductance or a zener diode across the transistor. The diode across the inductance clamps the load line excursion at the dc source voltage as indicated in Fig. 7. The zener diode method resulted in a rectangular load line as indicated in Fig. 8 and clamping occurs at the zener voltage.

A word of caution is necessary concerning this application. The fast switching can cause induced voltage in long lead lengths to the power supply. Thus, it is necessary to connect the suppression diode as close to the collector as possible and use a clamping capacitor from the emitter to the connecting point of the diode and inductance. When using the zener diode it should be soldered as close to the emitter and collector pin as possible. No failures occurred when the load line was contained within the $25-\mu sec$ safe area curve.

(3) Power Inverters

One of the most critical operations of power transistors is in inverter circuits similar to that shown in Fig. 9. A typical inverter circuit was used to test several types of power transistors. The load line was observed while holding the peak current constant and increasing the voltage until failures occurred. Then the current was increased at a constant supply voltage until failures were encountered. Cases of failure occurred after the load line was well beyond the 25-usec safe area.

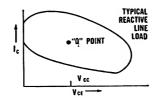
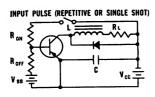



Fig. 6. Transistor arrangement for a class A audio circuit.

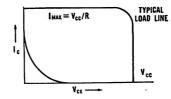
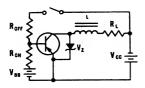



Fig. 7 Circuit for a transistor solenoid driver with diode suppression.

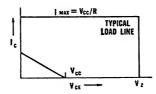
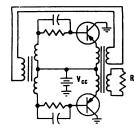



Fig. 8. Circuit for transistorized solenoid driver with zener diode.

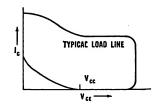


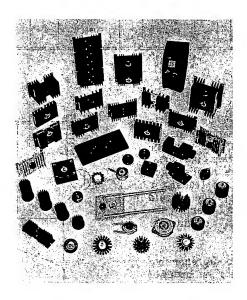
Fig. 9. Circuit arrangement for inverter.

(4) DC and Low Frequency Audio

In dc applications such as voltage regulators and in low frequency (below 100 cycle) audio circuits, the dc safe-area curve in conjunction with the power-temperature derating curve establishes reliable operating limits. Depending upon the device type and case temperature, the load line may be limited by either the power dissipation rating or the dc safe-area rating. In some instances, the dc safe limit and the power dissipation limit can cross. In this case, the load line limit would be established at low currents and high voltage by the dc safe limit and by the power dissipation limit at high current and low voltage.

The above discussion also applies to low duty cycle surge conditions such as encountered in incandescent lamp flashers where low initial resistance of the lamp permits a high-current surge for 50 to 100 milliseconds. This can trigger secondary breakdown even though succeeding current pulses are very low after the lamp resistance increases.

BIBILOGRAPHY


- Ralph Greenburg, Breakdown Voltage in Power Transistors, Semiconductor Products vol. 4, No. 11, November 1961, p 21-24.
- 2. Ralph Miller, Dependence of Power Transistor Failures on Their Energy Characteristics, Semiconductor Products, July 1962.
- 3. Schafft and J. C. French, Second Breakdown in Transistors, IRE Trans Electronic Devices, March 1962.

FACTORS INFLUENCING SELECTION OF COMMERCIAL

POWER TRANSISTOR HEAT SINKS

Among the vast number of commercial power transistor heat sinks (over 200 catalog types), there are several factors which influence choice of types for given applications. The photograph in Figure 1 is a good illustration of the wide variety available. The results of tests compare the thermal resistance of various heat sinks with variations in weight, area, volume, shape and color and a selection chart will facilitate the best choice of heat sink.

TEST PROCEDURES

Tests were organized to establish the heat sink-to-ambient thermal resistance of 31 different types, and the weight, area and volume were measured for each.

TO-3 and TO-36 power transistor packages were used depending upon the hole pattern in the samples. The bench test setup was as indicated in Figure 3. A correlation setup was also used in a closed oven, but with such close results that the open air bench test was used for convenience. All types were tested with the fins held in a vertical plane.

A constant power, usually 5 or 10 watts, was dissipated in the transistor. Regulated current and voltage were supplied from sources such as shown in Figure 4. The current and voltage were measured to an accuracy of 2 per cent. The ambient temperature was measured with a bulb type mercury thermometer at a point six inches away from the lower edge of the heat sink. The heat sink temperatures were measured by staking a thermocouple into a small silicone

grease-filled hole. The case temperature of TO-36 "doorknob" transistors was measured by staking a thermocouple into a hole drilled into the stud to a depth almost level with the round mounting base. The case temperatures of the TO-3 "diamond" transistors were measured by soldering a thermocouple to a solder lug which was fastened between the case and one of the mounting screws. These methods are detailed in Figure 5. The heat sink temperatures were calculated by subtracting an estimated interface thermal resistance of $0.2\,^{\circ}\text{C/W}$ between heat sink and transistor.

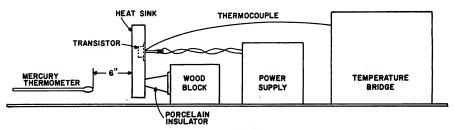


Figure 3 - Bench test set-up.

No attempt was made to investigate the various considerations of restricted air flow, surface temperature, nearby reflecting surfaces, etc. In actual practice almost each installation is unique, and transistor cases in prototype equipment should be monitored with a thermocouple under the worst conditions.

TEST RESULTS

Table Ia and Ib are comprehensive listings of test results in order of heat sink code number. From these tables important factors about a heat sink may be obtained, such as shape, size, weight, exposed surface area, and volume, which allow the designer to determine whether a particular heat sink fits into his packaging plan. The finish and thermal resistance are also included.

To compare performance of cylindrical-fin heat sinks with that of flatfin types, the area versus thermal resistance has been plotted in Figure 6. The graph in Figure 6 shows four average slopes of thermal resistance surface area versus total for: (1) sheets of square bright inch aluminum; (2) flat 1/8

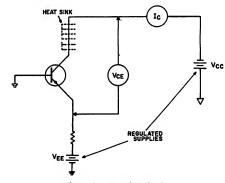


Figure 4 — Electrical circuit.

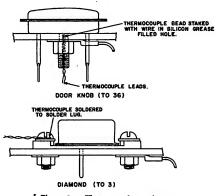


Figure 5 — Thermocouple attachment.

vertical-finned, black-finished types (these are usually aluminum extrusions); (3) vertical cylindrical fluted types, black finish (aluminum castings); (4) cylindrical horizontal fins, black finish (sheet metal rings). It should be noted that heat sinks 2, 3, 12, and 14 have flat vertical fins but are not painted black, and thus have somewhat higher thermal resistance due to less heat radiation.

TABLE Ia FREE AIR TYPES

Code No.	Shape	Surface Area (sq. in)	L (in.)	W (in.)	H (in.)	Vol. Vol. (cu. in)		Finish	Thermal Resistance °C/W
1	Flat-finned Extrusion	65	3.0	3.6	1.0	10.8	114	Anod. Black	2.4
2	Flat-finned Extrusion	65	3.0	3.6	1.0	10.8	114	Bright Alum.	3.0
3	Flat-finned Extrusion	65	3.0	3.6	1.0	10.8	114	Gray	2.8
4	Flat-finned Extrusion	60	3.0	4.0	. 69	8.3	123	Anod. Black	2.8
5	Flat-finned Extrusion	95	3.0	4.0	1.28	15.3	189	Anod. Black	2.1
6	Flat-finned Extrusion	64	3.0	3.8	1.3	15.0	155	Black Paint	2.2
7	Flat-finned Extrusion	83	3.0	4.0	1.25	15.0	140	Anod. Black	2. 2
8	Flat-finned Extrusion	44	1.5	4.0	1. 25	7.5	75	Anod. Black	3.0
9	Flat-finned Extrusion	137	3.0	4.0	2.63	31.5	253	Anod. Black	1.45
10	Flat-finned Extrusion	250	5.5	4.0	2.63	58.0	461	Anod. Black	1.10
11	Flat-finned Extrusion	130	6	3.6	1.0	21.5	253	Anod. Black	1.75
12	Flat-finned Extrusion	78	3.0	3.8	1.1	12.5	190	Gray MMI	2.9
13	Flat-finned Extrusion	62	3.0	3.8	1.3	15.0	170	Gray MMI	2.2
14	Flat-finned Extrusion	78	3.0	4.5	1.0	13.5	146	Gold Alodine	3.0
15	Cylindrical Horizontal Fin, Machined Casting	30	1.75 Dia.		0.84	2.0	40	Anod. Black	8.5
16	Cylindrical Horizontal Fin, Machined Casting	50	1.75 Dia.		1.5	3.6	67	Anod. Black	7.1
17	Cylindrical Horizontal Fin, Machined Casting	37	1.75 Dia.		1.5	3.6	48	Anod. Black	6.65
18	Cylindrical Vertical Fins, Casting	7.5	1.5 Dia.		0.9	4.4	33	Anod. Black	8.1
19	Cylindrical Vertical Fins, Casting	12	1.5 Dia.		1.4	6.9	51	Anod. Black	7.0
20	Cylindrical Vertical Fins, Casting	25	1.5 Dia.		2.9	14. 2	112	Anod. Black	5.6
21	Cylindrical Vertical Fins, Casting	35	1.5 Dia.		3.4	16.7	132	Anod. Black	5.1
22	Cylindrical Vertical Fins, Casting	32	2.5 Dia.		1.5	7.4	94	Anod. Black	4.5
23	Cylindrical Vertical Fins, Casting	20	2.5 Dia.		0.5	2.45	48	Anod. Black	6.6
24	Flat-Finned Casting	23	1.86	1.86	1.2	4.15	87	Anod. Black	5.06
25	Square Vertical Fin, Sheet Metal	12	1.7	1.7	1.0	2.9	19	Anod. Black	7.4
26	Cylindrical Vertical Fin, Sheet Metal	15	2.31 Dia.		0.81	3.35	18	Black	7.1
27	Cylindrical Horizontal Fin, Sheet Metal	6	1.81 Dia.		0.56	1.44	20	Anod. Black	9.15
28	Cylindrical Horizontal Fin, Sheet Metal	55	2.5 Dia.		1.1	5.4	115	Gold Irridate	7.9

The empirical expression, θ_{SA} 32. 6A-. 472, fits the "square aluminum" line, where A is total surface area in square inches, and θ_{SA} is in °C/W. Both the flat-finned types and vertical fluted cylindrical types had almost identical slopes, compared to the single square fin, indicating for a given change in area, the change in sink-to-ambient thermal resistance would be approximately the same for both types. The ring horizontal fin types showed a much slope although these were mounted with the fins in the vertical plane.

TA	В	ĻĿ	;]	lb
_	_	_	_	-

Fig. 1 & 2 Code No.	Conditions	Thermal Resistance
	AIR COOLED TYPES	
29	10 cu ft/min of air	0.4°C/W
30	10 cu ft/min of air	1.2°C/W
	WATER COOLED TYPES	
31	0.04 cu ft/min	0.45°C/W
MISCE	LLANEOUS TYPES - NO TES	T RESULTS

This indicates there is rélatively little change in thermal resistance with variations in the surface area of the ring horizontal fin types.

Figure 7 shows the thermal resistance plotted as a function of volume displacement. According to these tests, heat sinks No. 2 (bright aluminum), No. 3 (gray finish), No. 12 (gray MMI), and No. 14 (gold alodine) have approximately 0.3 to 0.8 °C/W higher thermal resistance than the flat vertical fins with black finish. The performance of cylindrical vertical fin casting types 22, 23, flat-finned casting type No. 24, and a cylindrical vertical fin sheet metal type 25, corresponds very closely with that of the square, 1/8 inch bright aluminum heat sink with respect to volume.

Another important consideration is the heat sink weight. The thermal resistance as a function of weight is plotted in Figure 8. The correlation line for flat vertical fins is very similiar to the area and volume results. This is to be expected, since all the heat sinks were made of aluminum of about the same thickness. The correlation lines for both cylindrical types (vertical and horizontal fins) are similar to the area results. However, the weight results approach the square aluminum fin performance more so that did the area re-

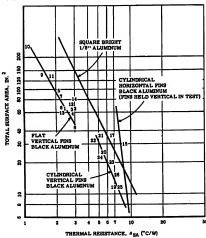


Figure 6 - Surface area vs. θ_{BA} .

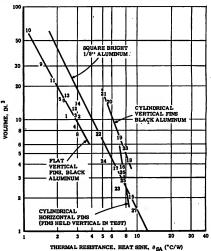
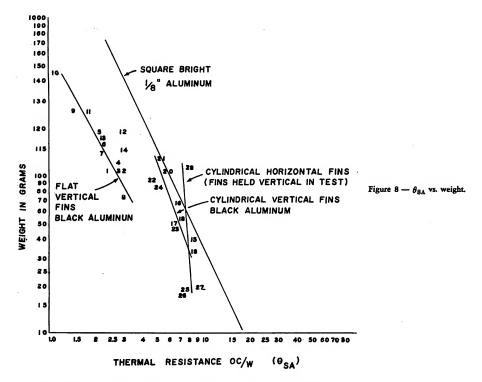



Figure 7 — Volume vs. θ_{8A} .

sults. Thus, from weight considerations there is an advantage of using the flat vertical fin design.

According to Figures 6, 7, and 8, the flat extruded fin type heat sink is the most efficient for heat transfer. Of the flat fin types tested, the thermal resistance ranged from about 3°C/W with a surface area of 44 sq. in. to 1.1°C/W with an area of 250 sq. in. The same change in thermal resistance occurs with change in volume of the flat fin types. Since the slope of thermal resistance for 1/8 inch aluminum sheets is approximately the same as the black flat fins, the aluminum sheets painted black would probably offer similar performance and less cost.

Heat transfer, and consequently thermal resistance, is dependent mainly on exposed surface area, and changes in shape and volume offer relatively little advantage. The shape is important only in that it affects the final packaging configuration. Of course power level, type of chassis, and whether or not blowers or water cooling is available, must also be considered.

CHOICE OF HEAT SINK

As has been noted, many considerations affect the choice of the best heat sink to do a specific job. The value of necessary thermal resistance is, of course, the primary consideration and a designer should not exceed maximum thermal resistances in making his selection. However, it is not always easy to use one with the smallest volume and least area which would have adequately low thermal resistance. Indeed the shape factor, flat or round, etc., is the reason for so many available types.

Table II provides a logical method of selecting the best heat sink for a given application. First consideration is thermal resistance. The results listed are from tests in free air. In the equipment package there are air restrictions, chassis heat conduction, and other heat sources which were not considered in these tests. Thus several other types having a lower thermal resistance than required should be considreed to assure a safety margin after packaging. A choice should also be maintained in the second consideration - shape. Three common conditions are listed - (1) the standard 3 inch chassis where the heat sink would be mounted vertically on the side of the chassis; (2) circuit card, where a small heat is useful; (3) some type of cylindrical container.

Other considerations should include availability of air or water cooling and whether or not several transistors are to be stacked. The following list of heat sink manufacturers, compiled at the time of this article, should be contacted for additional information and exact specifications.

TABLE II

Heat Sink Selection Guide

Considera- tion	Conditions	Heat Sink Choice (by code number - see Tables Ia & Ib & Figures 1 & 2)		
Thermal				
Resistance	0 to 0.5°C/W	31 (water cooled)		
	0. 51 to 1. 0	(Note 1)		
	1. 01 to 2. 0	9, 10, 11		
1	2. 01 to 3. 0	1, 2, 3, 4, 5, 6, 7, 8, 12, 13, 14		
	3. 01 to 5. 0	22		
	5. 01 to 7. 0	17, 19, 20, 21, 23, 24		
:	7. 01 to 10. 0	15, 18, 25, 26, 27, 28		
Shape				
Factor	3" Chassis	1, 2, 3, 4, 5, 6, 7, 8, 9, 13, 14		
	Circuit Card	15, 18, 25, 26, 27, 28, 33		
	Cylindrical Container	16, 17, 19, 20, 21, 22, 23		
Blower	Self			
•	Channeled Air	29, 30, 40		
	Forced Air	All except 18, 19, 20, 21, 31, 32		
Water	Circulating Water	31, 32		
Stacked Sinks	Easily Stacked	4, 5, 14, 30		
Price & Availability	This we leave	to the reader.		
1. Many of the heat sinks will fall in these				

Many of the heat sinks will fall in these lower categories if blown air is used.

UNDERSTANDING TRANSISTOR RESPONSE PARAMETERS

THE RANGE OF FREQUENCIES over which a transistor performs a useful circuit function is limited by inherent parameters. Manufacturers' data sheets usually specify only one or two of these parameters, while the user may need others. Therefore, a clear understanding of these parameters and the relationships between them is of value evaluating transistor performance.

Typical of such parameters is h_{fb} (alpha, the common base a-c short-circuit forward current gain). As frequency is increased, h_{fb} remains approximately equal to h_{fbo} (the value of h_{fb} at 1 kc). After the upper frequency limit is reached, h_{fb} begins to decrease rapidly.

The frequency at which a significant decrease in hfb occurs provides a basis for comparison of the expected high frequency performance of different transistors. The common base current gain cutoff frequency, $f_{\alpha b}$, is defined as that frequency at which hfb is 3 db below hfbo. Expressed in magnitude, hfb at $f_{\alpha b}$, is 70.7 per cent of hfbo. Power gains, current gains, and voltage gains for a few common decibel values are found in Table 1. A curve of hfb versus frequency for a transistor with an $f_{\alpha b}$ of 1 mc is shown in Fig. 1.

This curve has the following significant characteristics: (1) at frequencies below $f_{\alpha b}$, h_{fb} is nearly constant and approximately equal to h_{fbo} ; (2) h_{fb} begins to decrease significantly in the region of $f_{\alpha b}$; (3) above $f_{\alpha b}$, the rate of decrease in h_{fb} with increasing frequency approaches 6 db per octave in the limit.

The curve of common base current gain versus frequency for any transistor has these characteristics, and the same general appearance as the curve of Fig. 1.

The common emitter parameter which corresponds to $f_{\alpha b}$ is $f_{\alpha e}$, the common emitter current gain cutoff frequency. By definition, $f_{\alpha e}$ is the frequency at which h_{fe} (beta, the common emitter of a-c short-circuit current gain), has decreased 3 db below h_{fe0} (the value of h_{fe} at 1 kc). A typical curve of h_{fe} versus frequency for a transistor with an $f_{\alpha e}$ of 100 kc is shown in Fig. 2.

Table 1: Conversion table for power, voltage, and current ratios into decibels.

db	Pow- er Ratio	rent	db	Pow- er Ratio	Volt- age or Cur- rent Ratio
0	1.00	1.00	10	10.0	3.2
0.5	1.12	1.06	15	31.6	5.6
1.0	1.26	1.12	20	100	10
1.5	1.41	1.19	25	316	18
2.0	1.58	1.26	30	1,000	32
3.0	2.00	1.41	40	10,000	100
4.0	2.51	1.58	50	10 ⁵	316
5.0	3.16	1.78	60	10 ⁶	1,000
6.0	3.98	2.00			
7.0	5.01	2.24			
8.0	6.31	2.51			
9.0	7.94	2.82			

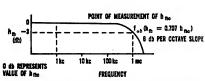


Fig. 1. Graph represents a curve of a common base current gain plotted against frequency variations.

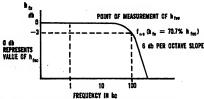


Fig. 2. Common emitter current gain is plotted against frequency in the curve shown.

This curve also has the significant characteristics listed for Fig. 1. These characteristics allow such a curve to be constructed for a particular transistor by knowing only h_{fe0} and $f_{\alpha e}$. From the curve, h_{fe} at any frequency could be determined. Furthermore, if $f_{\alpha e}$, is not known, a curve could also be constructed if h_{fe0} and h_{fe} at any frequency above $f_{\alpha e}$ were known. Thus to determine h_{fe} at any frequency, it is necessary to know only h_{fe0} and either $f_{\alpha e}$ or h_{fe} at some frequency f, where f is greater than $f_{\alpha e}$.

Sometimes, h_{fe0} is needed and only h_{fb0} is given, or vice versa. The quantities h_{fb0} and h_{fe0} are related by the following:

$$h_{feo} = \frac{h_{fbo}}{1 - h_{fbo}} \tag{1}$$

$$h_{fbo} = \frac{h_{feo}}{h_{feo} + 1}$$
 (2)

Equations 1 and 2 are plotted in Fig. 3. To further facilitate computations, the low frequency current gain scales of Fig. 7-10 contain both an h_{fb0} and an h_{fe0} scale, and may be entered with a knowledge of either quantity.

RELATIONSHIP BETWEEN fae AND fab

Suppose two transistors are considered for a particular application where performance at high frequencies is of interest. The data sheets are compared and it is discovered that one specifies $f_{\alpha b}$ and the other $f_{\alpha e}$. What prelimi-

nary comparisons can be made from this without making any laboratory measurements?

Phillips 1 gives a discussion of the relationships between $f_{\alpha e}$ and $f_{\alpha b}$ with the following result:

$$f_{\alpha e} = K_{\theta} (1-h_{fbo}) f_{\alpha b}$$

where K_{θ} is a function of excess phase value between 0.5 and 1.0. Table 2 gives approximate values of K_{θ} for a number of transistor types.

The value of 0.82 applies to all alloy junction transistors. For high-

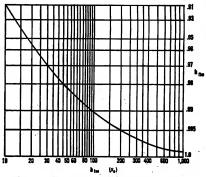


Fig. 3. The relationship between h_{loo} and h_{loo} is given by the graph shown.

frequency transistors, selection of K_{θ} is based on original design of the device regardless of how it may be specified later. For example, the 2N741 is a germanium mesa amplifier which is manufactured on a switching transistor production line; therefore, the germanium mesa switch K_{θ} is used for the 2N741.

The nomograms provide solutions for values of K_{θ} of 0.9, 0.8, and 0.6. These three values of K_{θ} give reasonable results for most transistor types, and if more specific information for K_{θ} is available, the results obtained from the nomograms are corrected accordingly.

The quantity $f_{\alpha e}$ is normally a much lower frequency that $f_{\alpha b}$ for the same transistor. For example, consider the Motorola 2N1141 germanium mesa amplifier. The data sheets give typical values $f_{\alpha b}=1,000$ mc and $h_{fbo}=0.98$. K_{θ} from Table 2 is 0.80. Substituting in Eq. 3 yields $f_{\alpha e}=0.80$ (1-0.98) 1,000 = 16 mc.

Table 2: Approximate values of K_{θ}

Transistor Type	$K_{oldsymbol{ heta}}$
Alloy Transistor (GPA, Alloy Power)	0.82
Germanium Mesa Switch	0.90 -1.0
Germanium Epitaxial Mesa Amplifier	0.80
Germanium Non- Epitaxial Mesa Amplifier	0.70
Silicon Annular and Planar	0.80 - 1.0
MADT	0.60

This result is in approximate agreement with the hfe versus frequency curve of the manufacturer's 2N1141 data sheet.

GLOSSARY OF SYMBOLS

Symbol	Definition
h _{fb}	Common base a-c forward current gain (alpha)
h _{fbo}	Value of h _{fb} at 1 kc.
^h fe	Common emitter a-c forward current gain. (beta)
h _{feo}	Value of h _{fe} at 1 kc.
f_{α_b}	Common base current gain cutoff frequency. Frequency at which h_{fb} has decreased to a value 3 db below h_{fb0} . ($h_{fb} = 0.707 h_{fb0}$)
f _{αe}	Common emitter current gain cutoff frequency. Frequency at which hie has decreased to a value of 3 db below hieo (hie = 0.707 hieo)
f _T	Gain bandwidth product. Frequency at which $h_{\mbox{fe}} = 1$ (0 db).
G _e	Common emitter power gain
f _{max}	Maximum frequency of oscillation. Frequency at which $G_e = 1$ (0 db).
κ_{θ}	Excess phase shifter factor. Factor which is a function of excess phase shift of current in the base of a transistor.

For the practical application of Eq. 3, refer to Fig. 7 and 9. When any two of the quantities $f_{\alpha e}$, $f_{\alpha b}$, h_{fbo} , or h_{feo} are known, use the nomograms to find the third quantity.

A common high-frequency parameter is f_T , the gain bandwidth product and is defined as that frequency at which $h_{fe} = 1$ (0 db).

The value f_T is sometimes specified indirectly on high-frequency transistor data sheets. This is done by specifying h_{fe} at some frequency above $f_{\alpha e}$, thus, f_T is then obtained by multiplying the magnitude of h_{fe} by the frequency of measurement. This relationship arises from the 6 db per octave characteristic of the h_{fe} versus frequency curve above $f_{\alpha e}$. Since 6 db represents a current gain magnitude of 2, h_{fe} is halved each time frequency is doubled, and vice versa. Therefore, the product of h_{fe} and frequency on the sloping portion of the curve yields f_T .

For example, consider the Motorola 2N2217 silicon star planar transistor. The data sheet gives a typical h_{fe} of 4.0 at 100 mc. Multiplication of h_{fe} times the frequency of measurement yields $f_T = 4.0 \times 100 = 400$ mc. This is in agreement with the data sheet which specifies a typical f_T of 400 mc.

The parameter fT is also equal to the product of h_{fe0} and $f_{\alpha e}$, expressed by

$$f_T = h_{feo} \times f_{\alpha e}$$
 (4)

with h_{feo} known, Eq. 4 provides a simple means of finding $f_{\alpha e}$ when f_T is known or vice versa. (See Fig. 5.)

Philips also develops the following relationship between for and for:

$$f_{T} = K_{\theta} h_{fho} f_{\phi h}$$
 (5)

where K_{θ} is the same quantity as in Eq. 3. Notice that since K_{θ} lies between 0.5 and 1.0, the f_T of a transistor is approximately equal to or slightly less than its $f_{\alpha b}$. (See Fig. 8 and 10.)

RULES FOR DETERMINING h

The following rules summarize how to determine hee at some frequency f:

Rule 1. When $f < f_{\alpha e}$, $h_{fe} \approx h_{feo}$

Rule 2. When $f \approx f_{\alpha e}$, $h_{fe} \approx 0.7 h_{feo}$

Rule 3. When $f > f_{\alpha e}$, consider h_{fe} to be decreasing at 6 db per octave at frequency f and use Fig. 4 to find h_{fe} .

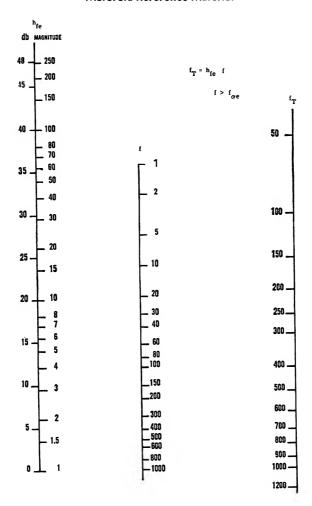
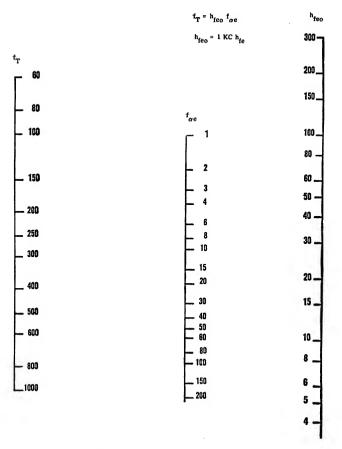



Fig. 4. This nomogram is useful in finding h_{10} when a frequency $f > f \alpha_0$.

- Rule 4. (A) If $h_{\mbox{\scriptsize fbO}}$ not $h_{\mbox{\scriptsize feO}}$ is known, use Fig. 3 find $h_{\mbox{\scriptsize feO}}$.
 - (B) If f_T is not known use Fig. 5 to find f_T if h_{feO} and $f_{\alpha e}$ are known or Fig. 8 to find f_T if $f_{\alpha b}$ is known (Fig. 10 for MADT types).
 - (C) If $f_{\alpha e}$ is not known, use Fig. 5 to find $f_{\alpha e}$ if f_{T} is known (Fig. 7 to find $f_{\alpha e}$ if $f_{\alpha b}$ is known (Fig. 9 for MADT types).

Though common emitter current gain is equal to 1 at f_T , there may still be considerable power gain at f_T due to different input and output impedance levels.

♣ Fig. 5. The quantity f_r is found from this nomogram once f_{α} and h_{tc} are known.

Thus, f_T is not necessarily the highest useful frequency of operation of a transistor, and an additional parameter, the maximum frequency of oscillation (f_{max}), is sometimes encountered. The term f_{max} is the frequency at which common emitter power gain is equal to 1, and is related to f_T by

$$f_{\text{max}} \approx \sqrt{\frac{f_{\text{T}}}{8 \pi r_{\text{B}}' \text{ Cc}}}$$
 (6)

where r_{B} ' is the base resistance and Cc is the collector capacitance.

A plot of common emitter power gain versus frequency also has the characteristics shown in Fig. 1. This leads to another gain bandwidth product

$$f_{\text{max}} \approx f \sqrt{\text{Power Gain}}$$
 (7)

where f is the frequency of measurement and power gain is expressed in magnitude not in decibels. Hence, fmax may be found by measuring power gain at some frequency on the 6 db per octave portion of the power gain versus frequency curve, and multiplying the square root of the power gain with the frequency of measurement (see Fig. 6). The symbol for common emitter power gain is Ge.

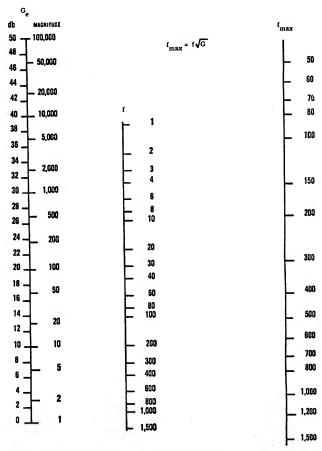
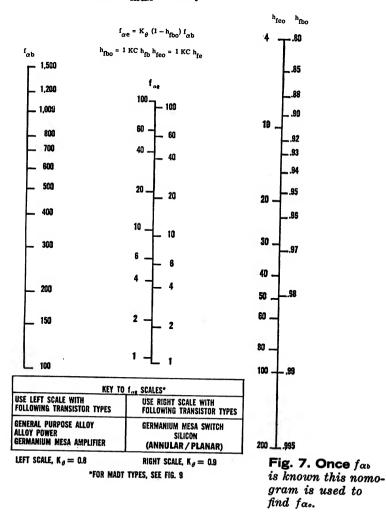



Fig. 6. Maximum frequency is found from this nomogram knowing the frequency and power gain.

The parameters are voltage and current dependent, and operating point must be considered in all cases. For example, the high-frequency h_{fe} measurement at one collector voltage and current must not be used to calculate f_T directly at another voltage and/or current without considering the added effects of the different operating point. Most of the mesa data sheets have curves showing typical variations of f_T with collector voltage and current.

The parameter $f_{\alpha e}$ for present mesa transistors usually lies in the region between 10 and 50 mc. The term h_{fe} , measured at any frequency above this region is assumed on the 6 db per octave portion of h_{fe} versus frequency curve and is used to calculate f_T directly.

Mesa transistor power gain measured at any frequency above 50 mc is assumed on the 6 db per octave portion of the power gain versus frequency curve and is used to calculate f_{max} directly.

INSTRUCTIONS FOR CURVES AND NOMOGRAMS

The nomograms assume no shift in operating point. Known parameters used to find an unknown must be measured at the same collector voltage and collector current as the desired unknown.

Frequency scales on the nomograms are calibrated in numbers only without units. Furthermore, all nomograms contain two frequency scales. Decimal points may be shifted on the frequency scales of any nomogram as long as they are shifted the same amount on both scales (i.e., both frequency scales of a nomogram must be multiplied by 10 to the same power). This enables the same nomogram to be used for both high and low-frequency transistors.

The nomograms assume that both power gain and current gain decrease with increasing frequency at a rate of 6 db per octave at high frequencies.

All power gain and current gain scales (except h_{fbO} and h_{feO}) are calibrated in both actual magnitudes and decibel values for convenience.

EXAMPLE 1

To find h_{fe0} when h_{fb0} is known or vice versa, enter Fig. 3 with the known value and read the unknown directly. Given: $h_{fb0} = 0.96$. Find: h_{fe0} , Answer = 24.

EXAMPLE 2

Figure 4 is a nomogram of fT and h_{fe} at some frequency f, where $f > f_{\alpha e}$. Given: h_{fe} at 100 mc is 6 db. Find: h_{fe} at 75 mc. Answer: 4, or 12 db.

EXAMPLE 3

There are no special instructions for the nomogram of Fig. 5, merely use it to find the unknown parameter when any two are known. Given: $h_{feo} = 40$ and $f_T = 400$ mc. Find: $f_{\alpha e}$. Answer: 10 mc.

EXAMPLE 4

Figure 6 is a nomogram of f_{max} and common emitter power gain measured at some frequency f where power gain is known to be decreasing at 6 db per octave. Given: power gain at 400 mc is 6 db. Find: f_{max} . Answer: 800 mc. Given: $f_{max} = 1000$ mc. Find: power gain at 250 mc. Answer: 12 db.

EXAMPLE 5

Fig. 7 is a nomogram of $f_{\alpha b}$, $f_{\alpha e}$, and either h_{fb0} or h_{fe0} . To account for variations in this relationship with different transistor types, there are two $f_{\alpha e}$ scales, with a guide to which one to use. Given: for a GPA transistor, $f_{\alpha b}$ = 1 mc and h_{fb0} = 0.90. Find: $f_{\alpha e}$. Answer: 80 kc. For MADT types, see Fig. 9.

EXAMPLE 6

Figure 8 is a nomogram of f_T , $f_{\alpha b}$, and either h_{fb0} or h_{foe} . To account for variations in this relationship with different transistor types, there are two f_T

scales, with a guide to which one to use. Given: for a germanium mesa switching transistor, $f_T = 400$ mc and $h_{fbO} = 0.90$. Find: $f_{\alpha b}$. Answer: 494 mc. For MADT types, see Fig. 10.

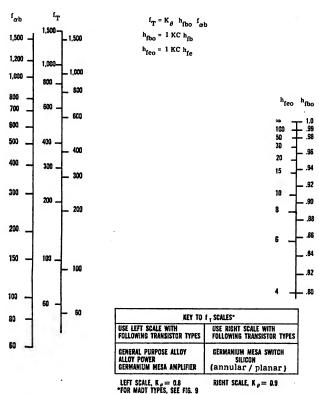


Fig. 8. This nomogram represents f_{τ} , f_{\bullet} , and either $h_{t^{\bullet \bullet}}$ or $h_{t^{\bullet \bullet}}$.

EXAMPLE 7

Figure 9 is a nomogram which is identical to Fig. 7 except that it is for use with MADT transistors (see instructions for Fig. 7).

EXAMPLE 8

Figure 10 is a nomogram which is identical to Fig. 8 except that it is for use with MADT transistors (see instructions for Fig. 8).

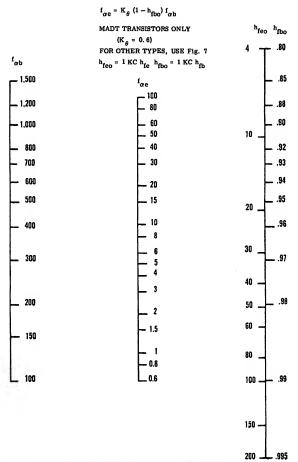


Fig. 9. This nomogram is identical to Fig. 7 but is used for MADT transistors.

-----Motorola Reference Material -----

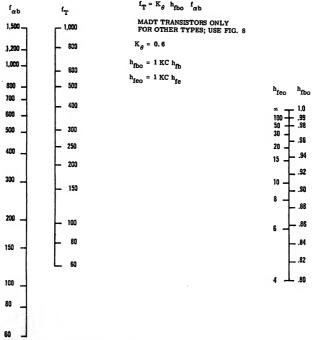


Fig. 10. Identical to Fig. 8, this nomogram is used only for MADT transistors.

REFERENCE

 A. B. Phillips, "Transistor Engineering," McGraw-Hill Book Company, Inc., New York, N.Y., Chapter 14.

SIGNIFICANCE OF Q_T IN SWITCHING CIRCUITS

The charge factor (Q) in a transistorized pulse system is a figure of merit in much the same manner that gain-bandwidth product (f_t) is a figure of merit for an amplifier. Consider briefly a pulse transmission system where the voltage of a line must be changed by V volts. Since a finite capacity C is associated with the line, a charge Q = CV must be moved in order to effect this change. To move this charge in a given time t, a certain current I is required; viz. Q = It. Thus with a given current, low Q is synonymous with fast switching.

The concept of total control charge, Q_T, is not only a figure of merit but is a useful tool in the design of transistor circuits particularly where capacitors are used for triggering or R-C networks are used to improve response time.

The concept is most easily understood by examining the familiar linear circuit of Figure 1. It is well known that if the time constant of the speed up network, $\tau_1 = R_1C_1$, equals the time constant, $\tau_2 = R_2C_2$, the waveform at point C will be a perfect reproduction of that at B, but reduced in amplitude according to the ratio of R_1 and R_2 . During the time that a constant level is applied at point A, charge Q_1 developed on Q_2 developed on Q_2 .

The impedance of this network, of course, decreases with frequency so that the signal at B may show rise time deterioration compared to the signal from the source at point A. However, there is no distortion of the signal in passing from B to C.

Several authors have shown that all frequency effects of a transistor can be represented by an R-C network from internal base to emitter. Base spreading resistance $\mathbf{r'}_b$ can be lumped with $\mathbf{R_s}$. If a transistor were substituted for the network $\mathbf{R_2C_2}$, by adjusting $\boldsymbol{\tau_1}$ for a square wave output, the transistor input impedance could

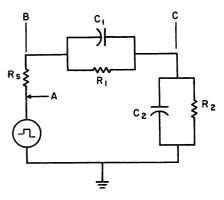
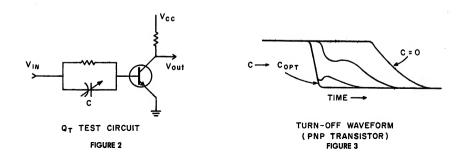


FIGURE 1 Linear Circuit Compensation

be deduced. If the transistor were driven into saturation, a square wave output would occur during turn-on regardless of the value of τ_1 , but information can be gained by observing the waveform during turn-off. Since a transistor in saturation is grossly non-linear, approximating its behavior by a linear network is not satisfactory. But the use of a speedup network to find the charge required to turn off a transistor has proven to be valuable.

When a transistor is held in a conductive state by a base current I_B , a charge Q_S is developed or "stored" in the transistor. If I_B were suddenly removed, the transistor would continue to conduct until Q_S is removed from the active regions through an external path or through internal recombination. Since the internal recombination time is long compared to the ultimate capability of a transistor, for fast switching the designer needs to know the value of the internal charge. Q_S may be written as —

$$Q_s = Q_I + Q_V + Q_X$$


 Q_{I} is the charge required to develop the required collector current. This charge is primarily a function of alpha cutoff frequency. Q_{V} is the charge required to change the collector-emitter voltage. It is primarily caused by collector-base feedback capacity. Q_{X} is excess charge resulting from over-drive, i.e., operation in saturation. The carriers which result compromise Q_{X} and are stored in the base and collector regions.

The charge required to turn a transistor "on" to the edge of saturation is $Q_I + Q_V$ but to turn it off, the full charge Q_S must be removed. Referring to the circuit of Figure 1, if the charge on the speedup capacitor Q_T equals the charge on the transistor Q_S , then when point B is grounded turn-off would be immediate if transistor r'_b were zero. In practice, point A is a more convenient place to ground and R_S and r'_b limits circuit speed.

A test circuit which measures Q_T is shown in Figure 2. C is adjusted to the minimum value which will produce a waveform similar to the one indicated by the solid trace in Figure 3. This will be where the "bumps" just disappear. It has not been established under this condition of turn-off that the charge Q_T on C actually equals the charge Q_S in the device, but Q_T certainly represents the charge necessary to control the turn-off of the transistor from a circuit designer's point of view. The charge is given by —

$$Q_T = C (V_{in} - V_{BE})$$

Using this relation, the designer may optimize C for any input voltage if $Q_{\mathbf{T}}$ at the desired operating point is known.

When making measurements with this circuit it is important that the input pulse be long enough to allow carrier equilibrium to be reached. One μ sec is long enough for VHF transistors. For greatest accuracy pulse instrumentation should have capability to at least 15 ns rise time and utmost care must be given to the selection and mounting of the R-C network and transistor socket. A low source impedance also makes the effects of capacitor adjustment easier to discern.

Charge measurements of representative silicon logic transistors are shown in Figure 4. It is evident that the low figures for the 2N834 permit faster switching in any given circuit since low charge means less current is required to switch the transistor in any given time. The curves also permit optimum values of speedup capacitors to be selected.

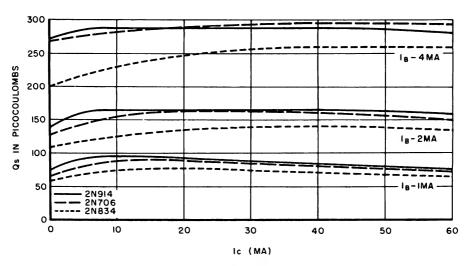


FIGURE 4
COMPARATIVE Q₁

Using too large a speedup capacitor will cause a slight reduction in response time but a heavy penalty will be paid in circuit recovery time which will limit pulse repetition frequency.

HIGH-POWER VARACTOR DIODES THEORY AND APPLICATION

Conventionally speaking, when we refer to a semiconductor diode we normally visualize a 2-terminal p-n junction operated in the forward conduction region (as a rectifier) or in the reverse avalanche region (as a zener diode). From this standpoint, the word diode applied to a varactor is actually a misnomer—for while the varactor is indeed a 2-terminal p-n junction, it operates neither as a rectifier, nor as an avalanche device. Rather, it operates principally in the region between forward conduction and reverse breakdown—the very region in which a conventional diode is considered to be cut off.

In this operating region the p-n junction can be represented by a capacitor in series with a resistor, Fig. 1. The capacitance, known as junction capacitance, is inherently associated with all p-n junctions and, while it represents an undesirable parasitic in conventional diode operation, it is the specific mechanism that permits the device to function as a varactor, or frequency multiplier. This is true because the capacitance value, as will be seen later, actually varies as a function of applied voltage and it is this factor that encourages the generation of harmonic frequencies.

The resistor is the result of bulk and contact resistance of the semiconductor material. In varactor operation this resistance is the primary parasitic affecting varactor quality. Great pains are taken in varactor design, therefore, to hold this resistance value to an absolute minimum.

Figure 1 - Equivalent circuit of a varactor diode.

HOW THEY WORK

The cause and behavior of the junction capacitance can be determined from basic semiconductor theory, as follows:

When a junction is formed between n-type and p-type material, there is a cross-migration of charges across the junction. Electrons from the n-region cross the junction to neutralize positive carriers near the junction in the p-region, and "holes" from the p-region cross the junction to neutralize the "excess" electrons near the junction in the n-region. As a result of this migration, all free charged particles are swept out of the immediate vicinity of the junction, creating a "depletion layer" in the junction area. And, in the process, a contact potential or space charge (about 0.5V for silicon) appears across the junction, Fig. 2a.

This structure acts very much like a slightly charged capacitor, with the depletion layer representing the dielectric and the semiconductor material adjacent to the depletion layer representing the two conductive plates.

If an external voltage is connected across the p-n junction so as to reinforce the contact potential (reverse bias), the depletion layer increases, resulting in a capacitance decrease, Fig. 2b. If a forward voltage is applied, the depletion layer decreases, Fig. 2c. However, if the external forward voltage is made large enough to overcome the contact potential, forward conduction occurs and the capacitance effect is destroyed (except at very high frequencies, as discussed later).

It is obvious, therefore, that the value of the junction capacitance is a function of the externally applied voltage, so long as the junction itself remains reverse biased. This relationship is as follows:

$$C = \frac{C_O}{(1 = V/\phi)^{\gamma}} = \frac{\phi^{\gamma} C_O}{(\phi + V)^{\gamma}}$$

where C = capacitance at voltage V

 C_0 = capacitance at zero bias

V = voltage across the diode (reverse bias)

 ϕ = contact potential

γ = power law of the junction, determined by impurity gradient.

A plot of this equation, Figure 3, shows that the capacitance - voltage relationship is nonlinear. Just how this condition is useful for frequency multiplication will be seen from the following derivation.

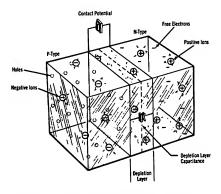


Figure 2 — (A) A representative p-n junction. The battery represents the contact potential which must be overcome before current can flow. Current carriers act as capacitor plates and the depletion layer is the dielectric.

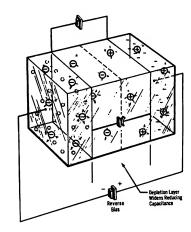


Figure 2 — (B) Reverse voltage forces carriers away from junction. This widens the depletion layer and reduces capacitance.

Assume that the voltage across a capacitor is given by the well-known relationship

$$V = \frac{Q}{C}$$

where Q = the charge on the capacitor

C = the capacitance

When a sinusodial current is applied to a capacitance

Figure 2 — (C) Forward voltage forces carriers closer to junction or across junction again changing capacitance.

(3)

$$Q = \int idt$$

$$= \int I_1 \sin \omega_1 tdt$$

$$= A - \frac{I_1}{\omega_1} \cos \omega_1 t$$

where i = instantaneous current

 I_1 = maximum amplitude of the input current

 $\omega_1 = 2\pi f_1$

f₁ = input frequency '

A = constant of integration relating to the initial charge when time (t) = zero

Substituting Equations (1) and (3) into Equation (2) yields

$$V = \frac{A - \frac{I_1}{\omega_1} \cos \omega_1 t}{\frac{\phi^{\gamma} C_0}{(\phi + V)^{\gamma}}}$$
(4)

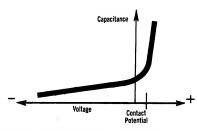


Figure 3 — Voltage-capacitance relationship for a typical varactor diode.

or, where $V >> \phi$

$$\frac{V}{V^{\gamma}} = V^{1} - \gamma = \frac{A - \frac{1}{\omega_{1}} \cos \omega_{1} t}{\phi^{\gamma} C_{0}}$$
 (5)

The exponent γ is a function of the impurity gradient of the p-n junction. It may vary from approximately 1/2, for step junctions, to about 1/6 for special graded junctions. If we consider the common case of a step junction, ($\gamma = 1/2$) Equation (5) resolves to

$$V = \left(\frac{A - \frac{I_1}{\omega_1} \cos \omega_1 t}{\frac{1}{\phi}^{1/2} C_0}\right)^2 = \frac{A^2 - 2A \frac{I_1}{\omega_1} \cos \omega_1 t + \left(\frac{I_1}{\omega_1}\right)^2 \cos^2 \omega_1 t}{\phi C_0^2}$$
(6)

Looking at each of the terms in Equation (6) we find that the voltage (V) across the varactor consists of a dc term $\left(\frac{A^2}{\phi^C_0^2}\right)$, a fundamental component

$$\left(\frac{2A\frac{I_1}{\omega_1}\cos\omega_1 t}{\phi^{C_0^2}}\right), \text{ and the term } \left(\frac{\frac{I_1}{\omega_1}\right)^2\cos^2\omega_1 t}{\phi^{C_0^2}}$$

The latter, through trigonometric identities, expands to

$$\left(\frac{I_1}{\omega_1}\right)^2 \frac{\left(\frac{1}{2} + \frac{1}{2}\cos 2 \omega_1 t\right)}{\phi C_0^2},$$

which reduces to another dc component plus a second harmonic component.

Although quite simplified, the above derivations clearly show the generation of second harmonic voltages across the varactor diode. This second harmonic voltage can be used to produce power at that frequency simply by providing a path and a load for the second harmonic current.

In the case of a step-junction device, the second harmonic is the only harmonic frequency directly available. While it is possible, through the use of graded junctions ($\gamma < 1/2$) to obtain higher harmonics directly, the second harmonic always predominates. In fact, it is normally more efficient to obtain higher harmonics by means of the doubling and mixing action of the varactor, through the use of idler circuits (see Fig. 4), than to try to obtain a desired higher harmonic directly.

⁽¹⁾ Penfield & Rafuse, "Varactor Applications", MIT Press, Copyright 1962.

VARACTOR CHARACTERISTICS

When operating as a frequency multiplier, the important varactor characteristics are: efficiency as a multiplier, power handling capability, and, in some applications, linearity of power output with changes in input power.

Efficiency

The efficiency of a varactor is a function of the cutoff frequency of the

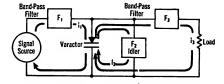


Figure 4 — Simplified multiplier circuit illustrating the use of an idler configuration to develop third and fourth harmonics.

An idler circuit is simply a tuned filter which permits the flow of a harmonic current needed to generate the desired output. If the third harmonic is desired, filter F, is tuned to the fundamental, idler F, is tuned to the 2nd harmonic, and F, is tuned to the 3rd harmonic. To obtain the fourth harmonic, F, is simply tuned to the fourth harmonic and permits the flow of the doubled 2nd harmonic current.

device which, in turn, is dependent on the diode quality factor (Q), defined as

$$Q = \frac{1}{2\pi f CR_S}$$
 (7)

From this, it is seen that Q is a function of both R_S and C. The ability to obtain a high Q device is directly related to the ability to make R_S extremely low. The cutoff frequency is arbitrarily defined as that frequency at which Q = 1, or where $\frac{1}{2\pi f C} = R_S$. Accordingly, cutoff frequency is given as

$$f_{c} = \frac{1}{2\pi CR_{S}} \tag{8}$$

Since both RS and C are voltage dependent, it is obvious that f_C , too, will vary with applied voltage. As reverse voltage increases, f_C will also increase. This is important in a comparative evaluation of devices since, in order to obtain a valid comparison, the f_C for the devices must be obtained at the same voltage.

Now, for varactors with step junctions, the maximum obtainable efficiency may be approximated from the expressions:(1)

For input frequencies of 0.01 f_c or less,

$$\epsilon = 1 - K \frac{f_1}{f_c} \tag{9}$$

For input frequencies of 0.2 fc or higher,

$$\epsilon = B \frac{f_c^2}{f_1^2} \tag{10}$$

where $f_c = \text{cutoff frequency at } V_B$

f₁ = input frequency

K and B = constants whose values depend on the desired order of the harmonic.

For doublers, K and B of Equations 9 and 10 are equal to 20 and .0039 respectively.

For triplers and quadruplers, K is equal to 35 and 62 respectively.

From these equations it is evident that the theoretical efficiency of varactors is quite high at input frequencies of 0.01 $f_{\rm C}$ or less.

Power Handling Capability

The relationship between power handling capability (P_r) and other varactor characteristics is given by

$$P_{r} \propto C_{o} V_{B}^{2} \tag{11}$$

where $V_{\mathbf{R}}$ = voltage breakdown of the junction

C = junction capacity at zero bias.

The validity of this proportionality is evident from the fact that the input power is obviously proportional to the square of the input voltage swing, which is limited at one end by V_B and on the other by the permissible amount of forward conduction. If the voltage swing in the forward direction is very much smaller than V_B , it can be neglected, and the input power is approximately proportional to V_B^2 .

For large power handling capability it is desirable to make V_B as large as possible (assuming that the signal source can provide the necessary voltage swing from V_B to approximately zero). This requires that the resistivity of the material near the junction (at least on one side of the junction) be high. Yet, a high resistivity leads to a relatively high R_S which, in turn, lowers the Q of the diode and, consequently, the efficiency. Therefore, varactor diode design normally is a compromise between high power handling capability and high efficiency.

NEW VARACTOR DESIGN IMPROVES POWER HANDLING CAPABILITY

Until recently most varactors for harmonic generator applications have been designed with step junctions and their characteristics closely follow the above discussion. Some improvement in performance has been observed in varactors of the 1N4386 type whose impurity profile, Fig. 5, differs considerably from that of the customary step-junction device. These improvements include:

- 1) higher power handling capability at a given frequency,
- 2) greater linearity of power output with changes in power input.

The increase in power handling capability can be explained as follows:

To increase P_r , it is necessary to increase V_B which demands a higher resistivity material at least on one side of the junction. If one attempts to in-

crease the resistivity of a step-junction device, the value of Re is increased significantly and efficiency is reduced accordingly. But, by employing the impurity profile shown in Fig. 5, the resistivity near the junction can be made comparatively high without changing the average resistivity. Moreover, when reverse voltage is applied, the spread of the depletion layer into the high resistivity regions actually dissipates them, leaving only the extremely low resistivity portion of the material to contribute to Rs. And, since the time that the varactor is in the reverse-voltage condition is very large compared with the time in the forward-biased condition. the average total series resistance

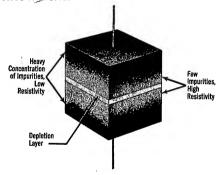


Figure 5 — Resistivity of 1N4386 is high near the junction and low near the lead contacts. When a reverse voltage is applied the depletion layer rapidly dissipates the high resistivity regions and thus, the average series resistance (R_3) is low.

is substantially reduced despite the increase in resistivity at the junction and a resulting increase in $V_{\rm R}$.

By this means, it is possible to almost double the power handling capability of varactors over step-junction devices, without adversely affecting efficiency, at least as it is affected by R_S.

It might be argued that the impurity profile used in the 1N4386 type should result in lower efficiency because the capacity-voltage law (γ in Equation 1) is reduced to about a 1/5 power, thus reducing the degree of reactive nonlinearity. Indeed, this would result in a lower efficiency of harmonic generation if it were not compensated by the reduction of series resistance described above.

In addition there appears to be an added nonlinearity resulting directly from the parabolic graded impurity profile — the phenomenon of "step-recovery". Not only does step-recovery make up for the reduced junction-capacity nonlinearity, but it leads to a linear power output advantage when driven slightly into the forward bias region at the positive peak of the signal swing.

Step-recovery is a result of charge storage — a familiar phenomenon in the application of semiconductor devices. When a p-n junction is forward biased, charged carriers from one region are injected into the other to form minority carriers in that area. If permitted to wander around in the area long enough, these minority carriers will combine with majority carriers and produce a current flow. The interval between injection and recombination is related to the minority carrier "lifetime" of the material. In the interval between the time of injection and recombination, these minority carriers are effectively stored charges contributing to junction capacitance.

If the period of the applied forward voltage is less than the carrier lifetime, as is usually the case, most of the injected carriers can be brought back to the point of origin before recombination. Step-recovery comes about when the injected minority carriers are returned to the point of origin in a compact bunch. Such a movement of carriers constitutes a current waveform as shown in Fig. 6. Because of the sudden cessation of reverse current when all of the carriers are returned to their original regions, the waveform is rich in harmonics which can be utilized as an added nonlinearity to enhance multiplier action.

The impurity profile of Fig. 7 enhances step-recovery because the electric fields set up by the steep impurity gradient a short distance away from the depletion region keep the minority carriers close to the depletion layer, rather than permitting them to wander to random depths in the opposite regions. Thus, when the voltage is reversed, they return to their point of origin in a compact bunch.

The step - recovery phenomenon, which is not as pronounced in step junctions Electric Field

Figure 6 — When a forward voltage is applied, carriers are injected across the junction. However, before they can combine and result in a dc current flow, the applied voltage reverses and the carriers are returned to the point of origin in a bunch. This results in an abrupt cessation of reverse current and the waveform is rich in harmonics.

because of the constant impurity level in such devices, provides an additional nonlinearity to the 1N4386 which contributes to harmonic generation.

Step-recovery results also in a device with more linear power characteristics because the percentage of harmonic current generation is not a function of signal level. It is only a function of the waveform and the abruptness of the decline of reverse current. And if self-biasing is employed, the shape of the current wave remains constant over a considerable power input range. This leads to a more constant efficiency of harmonic generation as a function of sig-

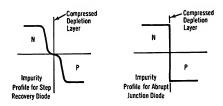


Figure 7 — Comparison of the impurity profiles for a step recovery and step junction diodes.

nal level than obtainable with devices dependent on junction-capacitance variations alone. This is an important feature when using varactors in amplitude modulated circuits.

VARACTORS VS TRANSISTORS

In view of the fact that varactors provide no amplification, but merely convert an applied signal of one frequency to some higher frequency, one might logically ask, "Why not use transistors to directly generate the desired signal?" The answer to this is simply that there are no transistors that will provide the amount of power obtainable from varactors in the VHF and UHF regions. The best transistors today are limited to producing about 25 watts at 100 mc, and about 5 watts at 500 mc. Varactors, by contrast, can supply about three times that amount of power at those frequencies. Moreover, many VHF and UHF transmitters demand crystal control, which requires a relatively low-frequency oscillator with subsequent frequency multiplication. And, as yet, no other device operates as efficiently as a varactor for this purpose.

Even as transistors are improved, it is reasonable to assume that varactor development will keep pace, so that the latter will remain well ahead of transistors in power-frequency capabilities. As a result, it is anticipated that the varactor will become an increasingly important component in high-power, high-frequency applications.

HARMONIC GENERATOR CIRCUITS

Development of a varactor multiplier circuit is illustrated in Fig. 8. The basic premise, as shown in (a) is the conversion of a signal from a signal source to a harmonic current through the load (R_L) by means of a varactor. The necessary considerations entail 1) provisions for the necessary current paths and associated filters, 2) proper matching of source to load, and 3) development of suitable bias voltage for the varactor.

The first step in the design is the addition of suitable current paths, as shown in (b). If the output is to be the second harmonic, filter F1 is tuned to the fundamental frequency, and F2 is tuned to the 2nd harmonic. In designing the tuned circuits, the capacitance of the varactor must be taken into account. Since this varies over the applied signal cycle, the "average" varactor capacitance should be used. This can be approximated by the capacitance value at one-third the voltage breakdown rating of the varactor (assuming a signal voltage swing from about V_{R} to some small positive value) Since this average capacitance varies with signal power, some circuit detuning occurs if input power is changed appreciably. This detuning effect is less pronounced with devices of the 1N4386 structure than with step-junction devices.

If the desired load current is at the third or fourth harmonic, the configuration in (c) may be used. Here, F_1 is again tuned to the fundamental and F_2 is an idler tuned to the 2nd harmonic. This permits fundamental and 2nd harmonic current flow to mix in the varactor to provide a voltage component of F_1 , F_2 , $F_1 + F_2$, and $2F_2$ across the varactor. (Even if F_2 were omitted,

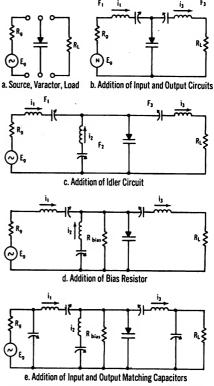


Figure 8 — Development of a harmonic generator circuit.

there would be components of higher order harmonics, such as F_3 and F_4 across the varactor, but, as mentioned previously, it is normally more efficient to employ a suitable addition or multiple of the fundamental and second harmonic.) Filter F_3 is then tuned to the desired third or fourth harmonic so that only the desired current will flow through the load.

Bias voltage for the varactor is obtained by shunting the varactor with a high value (around 100 K Ω) bias resistor, as in (d). Bias current is provided when the varactor is driven slightly into conduction at the peaks of the applied signal.

Proper matching between source and load can be accomplished by adding matching capacitors as shown in (e). Tapped input and output coils could accomplish the same purpose.

Obviously, the simple circuit developed in Fig. 8 can be improved upon from a performance standpoint. Higher-frequency, distributed-element circuits could be fabricated based on a circuit equivalent to Fig. 8. More complex filters, such as double-tuned circuits, may be employed for greater bandwidth and better rejection of spurious signals. In practical applications, the final circuit almost always will be more complex.

CHARACTERISTICS OF 1N4386

The 1N4386 varactor was designed to handle efficiently more than 50 watts of input power with output frequencies up to 300 mc. Typical efficiency of the device as a function of power input at 50 mc (tripler operation) is shown in Fig. 9. Additional technical information can be obtained by writing to the Technical Information Center, Motorola Semiconductor Products Inc., P. O. Box 955, Phoenix, Arizona 85001.

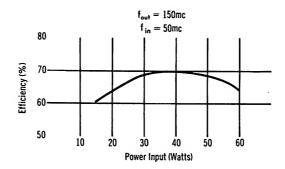


Figure 9 — Typical efficiency vs power input curve for the 1N4386 in a tripler circuit.

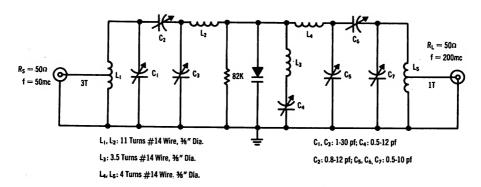


Figure 10 - 50-200 mc Varactor quadrupler

OPTIMIZING SCR TURN-OFF PARAMETERS WITH NEGATIVE BIAS

Although it is not often discussed in the literature, almost all SCR's exhibit some degree of turn-off gain.

At normal values of anode current, negative gate current will not have sufficient effect upon the internal feedback loop of the device to cause any significant change in anode current. However, it does have a marked effect at low anode current levels where it can be put to advantage to modify certain device parameters. Specifically, turn-off time may be reduced and hold current may be increased. Reduction of turn-off time and increase of hold current are useful in such circuits as inverters or in full-wave phase control circuits in which inductance is present.

Negative gate current may, of course, be produced by use of an external bias supply. It may also be produced by taking advantage of the fact that during conduction the gate is positive with respect to the cathode and providing an external conduction path such as a gate-to-cathode resistor. All Motorola SCR's are already constructed with a build in gate-to-cathode shunt, which produces a certain amount of negative gate current. Further change in characteristics, however, can be produced by use of an external shunt. Shunting does not produce as much of a change in characteristics as does negative bias, since the negative gate current, even with an external short circuit, is limited. When using external negative bias the current must be limited, and care must be taken to avoid driving the gate into the avalanche region.

All Motorola SCR lines show an improvement in turn-off time of about one-third by using negative bias up to the point where no further significant improvement is obtained. The increase in hold current by use of an external shunt resistor ranges typically between 5 and 75 percent, whereas with negative bias, the range of improvement runs typically between 2-1/2 and 7 times the open gate value.

In summary, it may be said that by use of negative gate bias, the turn-off time and hold current of Motorola SCR's may be improved significantly so that they may be used in higher frequency inverter circuits or in circuits in which higher residual currents are present.

The second secon

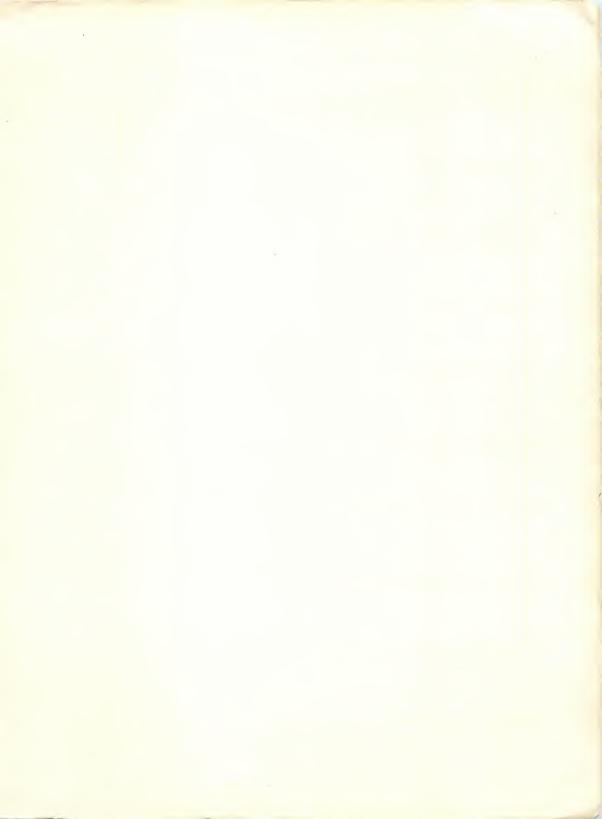
SILICON ZENER DIODES

SILICON RECTIFIERS

SILICON RECTIFIER ASSEMBLIES

SILICON CONTROLLED RECTIFIERS

POWER TRANSISTORS


LOW-FREQUENCY, LOW-POWER TRANSISTORS

HIGH-FREQUENCY TRANSISTORS

SPECIAL AND MULTIPLE TRANSISTORS

SPECIAL PURPOSE SILICON DIODES

INTEGRATED CIRCUITS

