SERIES 74 SOLID GURGULT[®] SEMICONDUCTOR NETWORKS[†]

HIGH-SPEED SATURATED DIGITAL CIRCUITS FOR GENERAL-PURPOSE INDUSTRIAL APPLICATIONS

description

Series 74 integroted circuits hove been designed and chorocterized for high-speed, generol-purpose digitol opplicotions where high d-c noise morgin and low power dissipation are important system considerations. Definitive specifications are provided for operating characteristics over the temperature range of 0°C to 70°C. This logic series includes the basic goting and flip-flop elements needed to perform practically all functions required of generol-purpose industrial digital systems.

TYPE SN7400 PRIOR TO CAPPING

features

LOW SYSTEM COST

• maximum number of circuits per package through use of 14-lead package

OPTIMUM CIRCUIT PERFORMANCE

- high speed typical propagation delay time 13 nsec
- high d-c noise margin typically one volt
- Iow output impedance provides low a-c noise susceptibility
- waveform integrity over full range of loading and temperature conditions
- low power dissipation 10 mw per gate at 50% duty cycle
- full fan-out of 10

CONTENTS	Page
TYPICAL CHARACTERISTICS	∖ 23 24

*Patented by Texas Instruments Incorporated.

SERIES 74 SOLID GURGULT[®] SEMICONDUCTOR NETWORKS

design characteristics

Series 74 digital integrated circuits effect an optimization between saturated logic circuitry and monolithic semiconductor technology yielding high performance at lowest cost. In discrete component circuitry maximum use is made of lower cost components (diades and resistors) instead of the higher priced transistors. However, in monolithic circuitry it costs no more to build transistors than diades or resistors. Therefore, in Series 74, transistors are used to buffer the fluctuations in currents that accur as resistor values change. Also, the Series 74 multiple emitter transistor can easily be built in a monolithic bor to eliminate the need for conventional input diades.

circuit operation

The transistor-transistor logic (TTL) used in Series 74 is analogous to diade-transistor logic (DTL) in certain respects. As shown in figure A, a low voltage at inputs A or B will allow current to flow through the diade associated with the low input, and no drive current will pass through diade D_3 . If inputs A and B are raised to a high voltage, drive current will then pass through diade D_3 .

In Series 74 TTL circuitry, the multiple-emitter transistor performs the some function as the diodes in DTL (see figure B). However, the transistor oction of the multiple-emitter transistor couses transistor \mathbf{Q}_1 to turn-off more rapidly, thus providing on inherent switching-time advantage over the DTL circuit.

Although one-volt d-c noise morgins ore typical for Series 74 circuits, an obsolute guorontee of 400 millivolts is ossured for every unit. This is accomplished by testing eoch output ond input os shown in figures C ond D.

Each output is tested over the full temperature range to ensure that the logical 1 output voltage will not foll below 2.4 volts. This is done with full fon-out, lowest V_{CC} , and 0.8 volts on the input - 400 mv more than the logical 0 maximum.

Each output is tested over the full temperature range to ensure that the logical 0 output valtage will not exceed 0.4 volts. This is done with full fan out, lowest V_{CC} , and 2 volts on the input - 400 mv less than the logical 1 minimum.

In octual system aperation, the majority of circuits do not experience worst-cose conditions of fon-out, supply voltage, temperature, and input voltage simultaneously. In addition, the threshold voltage of the Series 74 circuits is about 1.5 volts. These choracteristics allow a larger voltage change on on input without folse triggering. This typical noise margin is shown in figure E.

Another important feature of the design is the output configuration which both supplies current (in the logical 1 state) and sinks current (in the logical 0 state) from a low impedance. Typically, logical 0 output impedance is 12 Ω and logical 1 output impedance is 100 Ω . This low output impedance in either state rejects capacitively coupled a-c pulses and ensures small R-C time constants which preserve wave-shape integrity.

SERIES 74 SOLID GIRGUIT[®] SEMICONDUCTOR NETWORKS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply Voltoge, V _{CC} (See Note 1)	•	•					•	•		•	•	•			•	•	•	•		•			•	
Input Voltage, V _{in} (See Notes 1 ond	2)					•		•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	5.5 v
Operating Free-Air Temperature Ror	ıge			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• 0°C to +70°C
Storage Temperoture Ronge	•	•	•	•	•	•	•	•	•	•	·	•	•	•	•	•	•	•	•	•	•	•	•	. –65°C to ⊡ 150°C

NOTES: 1. Voltage values are with respect to network ground terminol.

2. Input signals must be zera ar positive with respect to network ground terminol.

logic definition

Series 74 logic is defined in terms of stondord POSITIVE LOGIC using the following definitions:

LOW VOLTAGE = LOGICAL 0 HIGH VOLTAGE = LOGICAL 1

input-current requirements

Input-current requirements reflect worst-cose conditions for $T_A = 0^{\circ}C$ to $70^{\circ}C$ and $V_{CC} = 4.75$ to 5.25 v. Each input of the multiple-emitter input transistor requires that no more than 1.6 ma flow out of the input at a logical 0 voltage level; therefore, one load (N = 1) is 1.6 mo maximum. The flip-flop preset and clear inputs supply two multiple-emitter transistors; thus, each preset or clear input is the equivalent of N = 2 loads. Each input requires current into the input at a logical 1 voltage level. This current is 40 μ a maximum for oll inputs except for the preset and clear which are 80 μ a maximum.

fan-out capability

Fon-out reflects the obility of an output to sink current from o number of loods (N) ot o logical 0 voltage level and to supply current ot o logical 1 voltage level. Each output is copoble of sinking current or supplying current to 10 loods (N = 10). The "power" gate is copoble of sinking current or supplying current to 30 loods (N=30).

unused inputs

All unused inputs except $J\star$ ond $K\star$ should be connected to V_{CC} . Unused $J\star$ or $K\star$ input should be connected to ground.

SN7400 SN7420 SN7430 SN7410 See page 4 See page 5 See page 6 See page 7 **QUADRUPLE 2-INPUT TRIPLE 3-INPUT DUAL 4-INPUT** 8-INPUT **POSITIVE NAND GATE POSITIVE NAND GATE POSITIVE NAND GATE POSITIVE NAND GATE** SN7440 SN7450 SN7460 See page 8 See page 9 See page 11 SN7470 See page 12 **DUAL 4-INPUT EXPANDABLE DUAL DUAL 4-INPUT** POSITIVE NAND "POWER" J-K FLIP-FLOP **EXCLUSIVE-OR GATE** EXPANDER FOR SN7450 GATE

standard line summary

TYPE SN7400 QUADRUPLE 2-INPUT POSITIVE NAND GATE

schematic (each gate)

recommended operating conditions

Supply Voltage, V _{CC}	•	•	•	•	•	•	•	•	•	•	·	•	•	•	•	•	·	·	•	•	•	•	·	4.	75	v t	o 5.	25 v	
Moximum Fan-Out From Each Output, N .											•						•	•	•	•	•	•	•	•		•	•	10)

electrical characteristics, $T_{\text{A}} \equiv 0^{\circ}\text{C}$ to 70°C

	PARAMETER	TEST FIGURE	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _{in(1)}	Logical 1 input voltage required at all input terminols that will ensure logical 0 level ot output	1	V_{CC} = 4.75 v, $V_{out[0]}$ \leq 0.4 v, R = 272 Ω	2			v
V _{in(0]}	Logical 0 input valtage required at any input terminol that will ensure logicol 1 level at output	2	$\label{eq:V_CC} \begin{split} V_{\text{CC}} &= 4.75 \text{ v}, \text{ V}_{\text{out(1)}} \geq 2.4 \text{ v}, \\ \text{R} &= 6 \text{ k} \Omega \end{split}$			0.8	v
V _{out(1)}	Logicol 1 output voltage	2		2.4			v
V _{out(0)}	Logicol 0 output voltage	1	$V_{CC}=$ 4.75 v, $V_{in}=$ 2 v, $I_{sink}\geq$ 16 ma, R = 272 Ω			0.4	v
l _{in}	Input current (each input)	3	$V_{\rm CC} = 5.25 \rm v, V_{in} = 0.4 \rm v$			1.6	mo
l _{in}	Input current (each input)	4	$V_{\rm CC} =$ 5.25 v, $V_{\rm in} =$ 4.75 v			40	μα
los	Short-circuit output current [†]	5	$V_{CC} = 5.25 v$	18		55	ma
ICC(0)	Logical O level supply current (eoch gate)	6	$V_{CC} = V_{in} = 5 v$		3		mo
Iccm	Logical 1 level supply current (each gate)	6	$V_{CC} = 5 v$, $V_{in} = 0$	ļ	1		ma

switching characteristics, $V_{cc} = 5 v$, $T_A = 25^{\circ}C$

	PARAMETER	TEST FIGURE	TEST CONDITIONS	TYP	MAX	UNIT
t _{d0}	Prapagatian time to logicol O	27	$C_1 = 15 \text{ pf}, N = 10$	8	15	nsec
tdı	Propagation time ta lagical 1	27	$C_1 = 15 \text{ pf}, N = 1$	18	29	nsec

 \ddagger Nat more than one autput should be sharted at a time.

TYPE SN7410 TRIPLE 3-INPUT POSITIVE NAND GATE

schematic (each gate)

recommended operating conditions

Supply Voltoge, V _{CC}	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	4,	.75	v te	o 5.2	5 v
Moximum Fon-Out From Each Output, N .																												10

electrical characteristics, $T_{\text{A}} = 0^{\circ}\text{C}$ to 70°C

	PARAMETER	TEST FIGURE	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _{in(1)}	Logicol 1 input voltoge required ot oll input terminols thot will ensure logical 0 level at output	1		2			v
V _{in(0)}	Logicol 0 input voltage required ot ony input terminol thot will ensure logical 1 level at output	2	$\label{eq:V_CC} \begin{split} V_{\text{CC}} &= 4.75 \; \text{v}, \; V_{\text{out} 1 } \geq 2.4 \; \text{v}, \\ R &= 6 \; \text{k} \; \Omega \end{split}$			0.8	v
V _{out(1)}	Logical 1 output voltage	2	$V_{CC} = 4.75 \text{ v}, V_{in} = 0.8 \text{ v}, $ $J_{load} \ge 400 \ \mu \sigma, R = 6 \ k \ \Omega$	2.4			v
V _{out(0)}	Logicol 0 output voltage	1	$V_{CC} = 4.75 \text{ v}, V_{in} = 2 \text{ v}, I_{sink} \ge 16 \text{ ma}, R = 272 \Omega$			0.4	v
l _{in}	Input current (each input)	3	$V_{CC} = 5.25 v, V_{in} = 0.4 v$			1.6	ma
l _{in}	Input current (each input)	4	$V_{CC} = 5.25 \text{ v}, V_{in} = 4.75 \text{ v}$			40	μο
los	Short-circuit output current†	5	$V_{\rm CC} = 5.25 v$	18		55	ma
I _{CC[0]}	Logicol O level supply current (eoch gate)	6	$V_{\rm CC} = V_{\rm in} = 5 \rm v$		3		mo
I _{CC[1]}	Logicol 1 level supply current (eoch gate)	6	$V_{CC} = 5 v, V_{in} = 0$		1		ma

switching characteristics, $V_{\rm cc}\,{=}\,5$ v, $T_{\scriptscriptstyle A}\,{=}\,25^\circ C$

	PARAMETER	TEST FIGURE	TEST CONDITIONS	MIN	TYP	MAX	UNIT
^f t _{d0}	Propagation time to logical O	27	$C_1 = 15 \text{ pf}, N = 10$		8	15	nsec
t _{dl}	Propagotion time to logicol 1	27	$C_1 = 15 \text{ pf}, N = 1$		18	29.	nsec

†Nat mare than one output should be shorted at a time.

TYPE SN7420 DUAL 4-INPUT POSITIVE NAND GATE

schematic (each gate)

recommended operating conditions

Supply Voltage, V _{CC}	•	•	•	•	•	•	·	•	•	•	•	•	•	•	•	•	·	•	•	•	•	•	•	4.75 v to 5.25 v	r
Maximum Fon-Out From Each Output, N .		•	•	•	•					•	•	•	•		•	•	•	•	•	•	•	•	•	10)

electrical characteristics, $T_A = 0^\circ C$ to $70^\circ C$

	PARAMETER	TEST FIGURE	TEST CONDITIONS	MIN	TYP	мах	UNIT
V _{in(1)}	Lagical 1 input voltage required at all input terminals that will ensure logical 0 level at output	1	$\rm V_{CC}$ = 4.75 v, $\rm V_{out[0]}$ \leq 0.4 v, R = 272 Ω	2			v
V _{in[0]}	Lagical 0 input valtage required at any input terminal that will ensure lagical 1 level at autput	2	$\label{eq:V_CC} \begin{array}{l} V_{CC} = 4.75 \ v, \ V_{out[1]} \geq 2.4 \ v, \\ R = \ 6 \ k \ \Omega \end{array}$			0.8	v
V _{out(1)}	Logical 1 output voltage	2	$V_{CC} = 4.75 \text{ v}, V_{in} = 0.8 \text{ v}, \\ H_{load} \ge 400 \mu\text{o}, R = 6 \text{ k} \Omega$	2.4			Y
V _{out(0)}	Lagical 0 output valtage	1	$V_{CC} = 4.75 \text{ v}, V_{in} = 2 \text{ v}, \\ I_{sink} \ge 16 \text{ ma}, R = 272 \Omega$			0.4	v
I _{in}	Input current (each input)	3	$V_{\rm CC} = 5.25 \text{ v}, V_{\rm in} = 0.4 \text{ v}$			1.6	ma
l _{in} s	Input current (each input)	4	$V_{CC} = 5.25 \text{ v}, V_{in} = 4.75 \text{ v}$			40	μα
los	Short-circuit autput current†	5	$V_{CC} = 5.25 v$	18		55	ma
1 _{CC(0)}	Lagical O level supply current (each gate)	6	$V_{CC} = V_{in} = 5 v$		3		ma
Icchi	Lagical 1 level supply current (each gate)	6	$V_{CC} = 5 v$, $V_{in} = 0$		1		ma

switching characteristics, $V_{cc}\!=\!5~v,~T_{A}\!=\!25^\circ C$

	PARAMETER	TEST FIGURE	TEST CONDITIONS	MIN	ТҮР	мах	UNIT
t _{d0}	Propagotion time to logical 0	27	$C_1 = 15 \text{ pf}, N = 10$		8	15	nsec
†d1	Propagatian time to logicol 1	27	$C_1 = 15 \text{ pf}, N = 1$		18	29	лѕес

†Nat more than ane autput shauld be shorted at a time.

TYPE SN7430 8-INPUT POSITIVE NAND GATE

schematic (each gate)

recommended operating conditions

Supply Voltage, V _{CC}	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	4	,75	v te	o 5.2	25 v
Maximum Fan-Out From Each Output, N .		•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	10

electrical characteristics, $T_{\text{A}} \equiv 0^{\circ}\text{C}$ to 70°C

	PARAMETER	TEST FIGURE	TEST CONDITIONS	MIN	TYP	мах	UNIT
V _{in(1)}	Logical 1 input voltage required at oll input terminals that will ensure lagical 0 level at autput	I	$\begin{array}{l} V_{CC}=~4.75~v,~V_{out[0]}\leq~0.4~v,\\ R~=~272~\Omega \end{array}$	2			×
V _{in(0)}	Logical 0 input valtage required ot any input terminal that will ensure logical 1 level at output	2	$\label{eq:V_CC} \begin{split} \mathbf{V}_{\text{CC}} &= \textbf{4.75 v, } \mathbf{V}_{\text{out[1]}} \geq \textbf{2.4 v,} \\ \mathbf{R} &= \textbf{6} \textbf{k} \Omega \end{split}$			0.8	v
V _{out(1)}	Logical I autput voltage	2	$V_{CC} = 4.75 \text{ v}, V_{in} = 0.8 \text{ v}, \\ I_{load} \ge 400 \ \mu \alpha, R = 6 \ k \ \Omega$	2.4		_	v
V _{out(0)}	Lagical 0 autput voltage	1	$V_{CC}=$ 4.75 v, $V_{in}=$ 2 v, $I_{sink}\geq$ 16 ma, R = 272 Ω			0.4	v
l _{in}	Input current (each input)	3	$V_{\rm CC} = 5.25 \rm v, V_{\rm in} = 0.4 \rm v$			1.6	ma
l _{in}	Input current (each input)	4	$V_{CC} = 5.25 v, V_{in} = 4.75 v$			40	μα
los	Short-circuit autput current	5	V _{CC} = 5.25 v	18		55	ma
I _{CC[0]}	Lagical O level supply current (each gate)	6	$V_{CC} = V_{in} = 5 v$		3		ma
I _{CC(1}	Lagical 1 level supply current (eoch gate)	6	$V_{CC} = 5 v$, $V_{in} = 0$		1		ma

switching characteristics, $V_{cc} = 5 v$, $T_{A} = 25^{\circ}C$

PARAMETER	TEST FIGURE	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{d0} Prapagatian time ta lagical 0	27	$C_1 = 15 \text{ pf}, N = 10$		8	15	nsec
t _{d1} Propagation time to logical 1	27	$C_1 = 15 \text{ pf}, N = 1$		18	29	nsec

TYPE SN7440 DUAL 4-INPUT POSITIVE NAND "POWER" GATE

schematic (each gate)

recommended operating conditions

Supply	Valtage,	v _{cc}								•				•		•			•	•								4	.75	i v f	to 5.	25 v
Maximu	m Fan-Ou	t From	ı E	ach	0	utp	ut,	М	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	30

electrical characteristics, $T_A = 0^{\circ}C$ to $70^{\circ}C$

	PARAMETER	TEST FIGURE	TEST CONDITIONS	MIN	түр	мах	UNIT
V _{in{1}}	Lagical 1 input voltage required ot all input terminols that will ensure logical 0 level at output	1	$\label{eq:V_CC} \begin{split} V_{\text{CC}} &= 4.75 \text{ v}, V_{\text{out}\{0\}} \leq 0.4 \text{ v}, \\ \text{R} &= 90 \ \Omega \end{split}$	2			v
V _{in(0)}	Logical 0 input voltage required ot ony input terminol that will ensure logical 1 level at output	2	$\label{eq:V_CC} \begin{split} V_{CC} &= 4.75 \; \text{v}, \; V_{out[1]} \geq 2.4 \; \text{v}, \\ R &= \; 2 \; \text{k} \; \Omega \end{split}$			0.8	۲.
V _{out(1)}	Logicol 1 output voltoge	2	$\begin{array}{l} V_{CC}=4.75 \text{ v, } V_{in}=0.8 \text{ v,} \\ I_{load}\geq 1.2 \text{ ma, } R=2 \text{ k} \Omega \end{array}$	2.4			v
V _{out{0}}	Logical 0 output voltage	1	$V_{CC} = 4.75 \text{ v}, V_{in} = 2 \text{ v}, I_{sink} \ge 16 \text{ ma}, R = 90^{\circ} \Omega$			0.4	v
I _{in}	Input current (eoch input)	3	$V_{CC} = 5.25 \text{ v}, V_{in} = 0.4 \text{ v}$			1.6	mo
I _{in}	Input current (each input)	4	$V_{\rm CC} = 5.25 \text{ v}, V_{\rm in} = 4.75 \text{ v}$			40	μα
los	Short-circuit output current†	5	$V_{CC} = 5.25 v$	18		70	mo
I _{CC(0)}	Logical O level supply current (each gate)	6	$V_{CC} = V_{in} = 5 v$		8.6		ma
I _{CC(1)}	Logicol 1 level supply current (eoch gate)	6	$V_{CC} = 5 v$, $V_{in} = 0$		2		mo

switching characteristics, $V_{\text{cc}} = 5~v,~T_{\text{A}} = 25^{\circ}C$

	PARAMETER	TEST FIGURE	TEST CONDITIONS	MIN	түр	мах	UNIT
t _{do}	Propogation time to logical 0	27	$C_1 = 15 \text{ pf}, N = 10$		8	15	nsec
tai	Propagatian time to logical 1	27	$C_1 = 15 \text{ pf}, N = 1$		18	29	nsec

 $^+_1$ Not more than one output should be shorted at a time.

TYPE SN7450 EXPANDABLE DUAL EXCLUSIVE-OR GATE

NOTES: 1. Component values shown are nominal.

2. Both expander inputs are used simultaneously for expanding with the SN7460.

3. If expander is not used leave pins (1) and (2) open.

recommended operating conditions

Supply Voltage, V _{CC}	•	•	 •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	4	1.75	5 v t	o 5.	25 v
Maximum Fan-Out Fram Each Output, N .																								10

TEST FIGURE PARAMETER **TEST CONDITIONS** MIN TYP MAX UNIT Logical 1 input valtage required $\rm V_{CC}\,=\,4.75$ v, $\rm V_{out(0)}\,\leq\,0.4$ v, V_{in(1)} at all input terminals that will 7 2 ۷ $R = 272 \Omega$ ensure logical 0 level ot output Logical 0 input voltage required $\rm V_{CC}\,=\,4.75$ v, $\rm V_{out(1)}\,\geq\,2.4$ v, V_{in{0}} at any input terminal that will 8 0.8 ۷ $R = \delta k \Omega$ ensure logical 1 level at output $V_{CC} = 4.75 v, V_{in} = 0.8 v,$ Logical 1 output voltage 8 2.4 $V_{out(1)}$ $I_{load} \ge 400 \ \mu a, \ R = 6 \ k \ \Omega$ v $\begin{array}{l} V_{CC}=4.75~\text{v},~V_{in}=2~\text{v},\\ I_{sink}\geq16~\text{ma},~R=272~\Omega \end{array}$ V_{out(0)} Logical 0 output valtage 7 0.4 v l_{in} Input current (each input) 9 $V_{CC} = 5.25 v, V_{in} = 0.4 v$ ma 1.6 Input current (each input) $V_{\rm CC}$ = 5.25 v, $V_{\rm in}$ = 4.75 v l_{in} 10 40 μa Short-circuit output current† $\rm V_{CC}\,=\,5.25~v$ los 11 18 55 ma $V_{CC} = V_{in} = 5 v$ $V_{CC} = 5 v$, $V_{in} = 0$ Lagical O level supply current (each gate) ICC(0) 12 3.7 ma Logical 1 level supply current (each gate) 13 2 Icc(1) ma

electrical characteristics, $T_A = -0^{\circ}C$ to $70^{\circ}C$, pins (1) and (2) open

+Nat more than one autput should be shorted at a time.

TYPE SN7450 EXPANDABLE DUAL EXCLUSIVE-OR GATE

na de l'Englementaria de la forma de la companya d La companya de la comp La companya de la comp

	PARAMETER	TEST FIGURE	TEST CONDITIONS	MIN	MAX	זואט
1 _(X)	Expander current	14	$V_{CC} = 4.75 v, V_1 = 0.4 v, I_{sink} = 16 ma$	1.5	3.1	ma
V _{BE(Q)}	Output transistor (Q) base-emitter voltage	15	$V_{CC} = 4.75 v, V_2 = 1.4 v,$ $I_{sink} = 16 ma, I_1 = 1.7 mo, R = 272 \Omega$		1	v
V _{out(0}}	Lagical 0 output voltage	15	$V_{CC} = 4.75 v$, $V_2 = 1.4 v$, $I_{sink} = 16 ma$, $I_1 = 1.7 ma$, $R = 272 \Omega$		0.4	v
V _{out(1)}	Logical 1 output voltage	16	$V_{CC} = 4.75 \text{ v}, \text{ I}_{load} = 400 \ \mu \text{a}$ $I_1 = 0.27 \text{ ma}, \text{ I}_2 = 0.27 \text{ ma}, \text{ R} = 6 \text{ k} \Omega$	2.4		v

electrical characteristics using expander inputs, $T_{\text{A}} = \ 0^{\circ}C$

switching characteristics, $V_{cc} = 5 v$, $T_A = 25^{\circ}C$

	PARAMETER	TEST FIGURE	TEST CONDITIONS	MIN	ТҮР	MAX	UNIT
t _{d0}	Propagation time to logical 0	27	$C_1 = 15 \text{ pf}, N = 10$		8	15	nsec
† _{d1}	Propagation time to logical 1	27	$C_1 = 15 \text{ pf}, N = 1$		18	29	nsec

TYPE SN7460 DUAL 4-INPUT EXPANDER FOR SN7450

schematic

NOTES: 1. Connect pin (2) or (3) to pin (2) of SN7450. 2. Connect pin (1) or (3) to pin (1) of SN7450. 3. Component values shown are nominal.

recommended operating conditions

electrical characteristics (unless otherwise noted $T_{\scriptscriptstyle A}=0^\circ C$ to $70^\circ C$)

	PARAMETER	TEST FIGURE	TEST CONDITIONS	MIN	TYP	MAX	UNIT
v _{in(1)}	Logicol 1 input voltage required ot all input terminals that will ensure output on level	17	$V_{CC} = 4.75 v, V_{in} = 2 v, V_{l} = 1 v, R = 1.1 k \Omega, T_A = 0°C$	2			v
V _{in[0]}	Lagicol 0 input voltage at any input terminal that will ensure autput off level current	18	$ \begin{array}{l} V_{CC} = 4.75 \ v, \ V_{in} = 0.8 \ v, \\ V_1 = 4.75 \ v, \ R = 1.2 \ k \ \Omega, \\ I_{off} = 0.27 \ ma, \ T_A = 0^{\circ}C \end{array} $			0.8	v
Von	Output voltage on level	17	$V_{CC} = 4.75 v, V_{in} = 2 v,$ $V_1 = 1 v, R = 1.1 k \Omega, T_A = 0^{\circ}C$			0.4	v
I _{off}	Output off level current	18				270	μα
l _{on}	Output an level current	19	$V_{CC} = 4.75 v, V_{in} = 2 v,$ $V_1 = 1 v, I_2 = 1.5 ma$	1.7			mo
1 _{in}	Input current (each input)	18	$V_{CC} = 5.25 v, V_{in} = 0.4 v$			1.6	ma
1 _{in}	Input current (eoch input)	20	$V_{CC} = 5.25 v, V_{in} = 4.75 v, T_A = 70^{\circ}C$			40	μα
ICC[on]	On level supply current (each gate)	21	$V_{CC} = V_{in} = 5 v, V_1 = 0.85 v$		0.6		ma
I _{CC[off]}	Off level supply current (eoch gote)	21	$V_{CC} = 5 v, V_{in} = 0,$ $V_{l} = 0.85 v$		1		mo

switching characteristics, $V_{CC} = 5 v$, $T_A = 25^{\circ}C$

	PARAMETER	TEST FIGURE	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{d0}	Propagatian time ta lagical 0 (through SN7450)	28	$C_1 = 15 \text{ pf}, N = 10$		10	20	nsec
t _{d1}	Propagatian time to logical 1 (through SN7450)	28	$C_1 = 15 \text{ pf}, N = 1$		20	34	nsec

TYPE SN7470 J-K FLIP-FLOP

logic

т	RUTH T	ABLE
	t _n	t _{n+1}
J	к	Q
0	0	Q
0	1	0
1	0	1
1	1	Q,

NOTES: 1. $J = J1 \cdot J2 \cdot \overline{J} \star$ 2. $K = K1 \cdot K2 \cdot \overline{K} \star$

- 3. $I_n = Bil time before clock pulse.$ 4. $I_{n+1} =$ Bit time after clock pulse.
- 5. If inputs J* or K* are not used they must be grounded.

recommended operating conditions

Supply Voltoge, V _{CC}															4.7	5 v	to 5.:	25 v
Moximum Fan-Out From Each Output, N .	•																	10
Moximum Rise Time of Clock Pulse, triclock																	150	nsec
minimum width of Clock Pulse, totolocki	•																20	nsec
loggie rrequency, t _{togale}	•	• •					•									0 t	o 25	Mc
Minimum Set-Up Time At Inputs J* or K*;	1.4																20	nsec
minimum field lime At Inputs J1, J2, K1, or	K2;	thold	•							•	•						15 .	nsec
Minimum Preset lime, t _{preset}	•																25 1	nsec
Minimum Cleor Time, t _{clear}	•					•			•	•				•			25 1	nsec

electrical characteristics (unless otherwise noted $V_{cc}=$ 4.75 v to 5.25 v, $T_A=0^{\circ}C$ to 70°C)

Sanno and Antes

PARAMETER		TEST FIGURE	TEST CONDITIONS	MIN	TYP	МАХ	UNIT
V _{in(1)}	Input voltoge that will ensure logical 1 at any input terminal	22	$V_{CC} = 4.75 v$	2			v
V _{in(0)}	Input voltage that will ensure logical 0 at any input terminal	22	$V_{CC} = 5.25 v$			0.8	v
V _{out[1]}	Logical 1 output voltoge	22	$V_{CC} = 4.75 \text{ v}, I_{load} = 400 \mu\text{o}, R = 6 \text{k}\Omega$	2.4			v
V _{out(0)}	Logicol 0 output voltoge	23	$V_{CC} = 4.75 \text{ v}, I_{sink} = 16 \text{ mo}, R = 272 \Omega$			0.4	v
l _{in}	J1, J2, J★, K1, K2, K★ or clock input current	24	$V_{CC} = 5.25 v, V_{in} = 0.4 v$			1.6	mo
l _{in}	Preset or cleor input current	24	$V_{\rm CC} = 5.25 \rm v, V_{\rm in} = 0.4 \rm v$			3.2	ma
l _{in}	J1, J2, J★, J1, K2, K★, or clock input current	25	$V_{CC} = 5.25 v, V_{in} = 4.75 v, T_A = 70^{\circ}C$			40	μο
l _{in}	Preset or clear input current	25	$V_{CC} = 5.25 v, V_{in} = 4.75 v, T_A = 70^{\circ}C$			80	μο
los	Short-circuit output current‡	26	$V_{\rm CC} = 5.25 v, V_{\rm in} = 0$	18		57	mo
ICC(av)	Averoge supply current	25	$V_{\rm CC} = V_{\rm in} = 5 \mathrm{v}$		14		mo

TNot more than one output should be shorted at a time.

	PARAMETER	TEST FIGURE	TEST CONDITIONS	MIN T	YP	MAX	UNIT
t _{set-up}	Minimum Input Set-Up Time				15		nsec
t _{hold}	Minimum Input Hold Time	- 29		10			nsec
tpreset	Minimum Preset Time				15		nsec
t _{clear}	Minimum Clear Time	30			15		nsec
t _{d0}	Propogotion time to logical O	29	$C_1 = 15 \text{ pf}, N = 10$		30	50	nsec
t _{d1}	Propogotion time to logicol 1	29	$C_1 = 15 \text{ pf}, N = 1$		30	50	nsec

switching characteristics, $V_{cc} = 5 v$, $T_A = 25^{\circ}C$

SERIES 74 SOLLD GIRGULT[®] SEMICONDUCTOR NETWORKS

PARAMETER MEASUREMENT INFORMATION

d-c test circuits

PARAMETER MEASUREMENT INFORMATION

SERIES 74 SOLID GIRGULT[®] SEMICONDUCTOR NETWORKS

PARAMETER MEASUREMENT INFORMATION

SOLID GIRGUIT[®] SEMICONDUCTOR NETWORKS

PARAMETER MEASUREMENT INFORMATION

SERIES 74 SOLID GURGULT[®] SEMICONDUCTOR NETWORKS

PARAMETER MEASUREMENT INFORMATION

SOLID GIRGUIT[®] SEMICONDUCTOR NETWORKS

PARAMETER MEASUREMENT INFORMATION

switching characteristics

SERIES 74 SOLID GIRGULT[®] SEMICONDUCTOR NETWORKS

PARAMETER MEASUREMENT INFORMATION

switching characteristics (continued)

··· 1

SOLID GIRGUIT[®] SEMICONDUCTOR NETWORKS

PARAMETER MEASUREMENT INFORMATION

switching characteristics (continued)

SERIES 74 SOLID GIRGUIT[®] SEMICONDUCTOR NETWORKS

PARAMETER MEASUREMENT INFORMATION

switching characteristics (continued)

TYPICAL CHARACTERISTICS

OUTPUT VOLTAGE vs INPUT VOLTAGE

PROPAGATION TIME TO LOGICAL 1 vs TEMPERATURE

OUTPUT VOLTAGE vs LOAD CURRENT

PROPAGATION TIME TO LOGICAL 0 vs TEMPERATURE

OUTPUT VOLTAGE vs SINK CURRENT

SERIES 74 SOLID CIRCULT[®] SEMICONDUCTOR NETWORKS†

MECHANICAL DATA

general

SOLID CIRCUIT semiconductor networks are maunted in a glass-to-metal hermetically sealed, welded package. Package body and leads are gold-plated F-15‡ glass-sealing alloy. Approximate weight is 0.1 gram. All external surfaces are metallic and are insulated fram leads and circuit. All Series 74 netwarks are available with farmed leads, insulatar attached, and/ar mounted in a Mech-Pak carrier.

leads

Gold-plated F-15[‡] leads require na additianal cleaning ar processing when used in saldered ar welded assembly. Farmed leads are available ta facilitate planar mounting af netwarks an flat circuit baards. Standard lead length is 0.185 inches. Netwarks can be removed fram Mech-Pak carriers with lead lengths up ta 0.185 inches.

insulator

An insulator, secured ta the back surface af the package, permits maunting networks on circuit boards which have canductars passing beneath the package. The insulator is 0.0025 inches thick and has an insulatian resistance of 10 megahms at 25°C.

mech-pak carrier

The Mech-Pak carrier facilitates handling the network, and is campatible with autamatic equipment used for testing and assembly. The carrier is particularly apprapriate far mechanized assembly operations and will withstand temperatures of 125°C for indefinite periads.

ordering instructions

Variatians in mechanical canfiguratian af semicanductar netwarks are identified by suffix numbers shown in a table at the right.

*F-15 is the ASTM designation far an iran-nickel-cobalt alloy cantaining nominally S3% iron, 29% nickel, and 17% cabalt.

	MECH-PAK			MECH-PAK CARRIER				
Lead Length		0.185 inch			Not Applicable			
Formed Leads	No	No	Yes	Yes	No	No	Yes	Yes
Insulators	No	Yes	No	Yes	No	Yes	No	Yes
Ordering Suffix	None	-6	-7	-1	-2	-3	-4	-5

PRINTED IN USA

' **~**

TEXAS INSTRUMENTS INCORPORATED SEMICONDUCTOR-COMPONENTS DIVISION POST OFFICE BOX 5012 • DALLAS 22, TEXAS TI connot assume any responsibility for any circuits shown or represent that they are free fram patent infringement. TEXAS INSTRUMENTS RESERVES THE RIGHT TD MAKE CHANGES AT ANY TIME

IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.