HIGH-SPEED SATURATED DIGITAL CIRCUITS FOR GENERAL-PURPOSE INDUSTRIAL APPLICATIONS

description

Series 74 integroted circuits hove been designed and chorocterized for high-speed, generol-purpose digitol opplicotions where high d-c noise morgin and low power dissipation are importont system considerotions. Definitive specificotions ore provided for operoting chorocteristics over the temperoture ronge of $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$. This logic series includes the bosic goting ond flip-flop elements needed. to perform procticolly all functions required of generol-purpose industriol digital systems.

IYPE SN7400 PRIOR TO CAPPING

features

LOW SYSTEM COST

- maximum number of circuits per package through use of 14-lead package

OPTIMUM CIRCUIT PERFORMANCE

- high speed - typical propagation delay time 13 nsec
- high d-c noise margin-typically one volt
- low output impedance provides low a-c noise susceptibility
- waveform integrity over full range of loading and temperature conditions
- low power dissipation - 10 mw per gate af 50% duty cycle
- full fan-out of 10

[^0]TEXAS Instruments
INCORPORATED
SEMICONDUCTOR-COMPONENTS DIVISION POSTOFFICE BOX 5012 - DALLAS 22. TEXAS

design characteristics

Series 74 digitol integrated circuits effect on optimizotion between soturoted logic circuitry ond monolithic semiconducfor technology yielding high performonce at lowest cost. In discrete component circuitry maximum use is made of lower cost components (diodes ond resistors) insteod of the higher priced tronsistors. However, in monolithic circuitry it costs no more to build tronsistors thon diodes or resistors. Therefore, in Series 74, tronsistors ore used to buffer the fluctuotions in currents thot occur os resistor volues chonge. Also, the Series 74 multiple emitter tronsistor con eosily be built in o monolithic bor to eliminate the need for conventionol input diodes.

circuit operation

The tronsistor-transistor logic (TTL) used in Series 74 is onol. ogous to diode-transistor logic (DTL) in certain respects. As shown in figure A, a low voltage at inputs A or B will ollow current to flow through the diode ossocioted with the low input, ond no drive current will pass through diode D_{3}. If inputs A ond B ore roised to a high voltage, drive current will then pass through diode D_{3}.

In Series 74 TTL circuitry, the multiple.emitter transistor performs the some function as the diodes in DTL (see figure B). However, the tronsistor oction of the multiple-emitter tronsistor couses tronsistor Q_{1} to turnoff more ropidly, thus providing on inherent switching.time odvontoge over the DTL circuit.

Although one.volt d.e noise morgins ore typical for Series 74 circuits, an obsolute guorontee of 400 millivolts is ossured for every unit. This is accomplished by testing eoch output ond input os shown in figures C and D.

Eoch output is tested over the full temperoture ronge to ensure thot the logicol 1 output voltoge will not foll below 2.4 volts. This is done with full fon-out, lowest V_{CC}, ond 0.8 volts on the input - 400 mv more than the logicol 0 moximum.
Eoch output is tested over the full temperoture ronge to ensure thot the logical 0 output valtoge will not exceed 0.4 volts. This is done with full fan-out, lowest V_{CC}, and 2 volts on the input - 400 mv less thon the logicol 1 minimum.
In octuol system aperation, the mojority of circuits do not experience worst-cose conditions of fon-out, supply voltoge, temperoture, and input voltoge simultoneously. In addition, the threshold voltoge of the Series 74 circuits is obout 1.5 volts. These chorocteristics allow o larger voltage chonge on on input without folse triggering. This typical noise margin is shown in figure E.

Figure E - Typical D.C Margin vs Temperature

[^1]absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

NOTES: 1. Voltage values are with respest to network ground terminol.
2. Input signals must be zera or posilive with respect to network grouid terminol.

logic definition

Series 74 logic is defined in terms of stondord POSITIVE LOGIC using the following definitions:

$$
\begin{aligned}
& \text { LOW VOLTAGE }=\text { LOGICAL } 0 \\
& \text { HIGH VOLTAGE }=\text { LOGICAL } 1
\end{aligned}
$$

input-current requirements

Input-current requirements reflect worst-cose conditions for $T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ ond $V_{C C}=4.75$ to 5.25 v . Each input of the multiple-emitter input tronsistor requires thot no more thon 1.6 ma flow out of the input ot o logical 0 voltoge level; therefore, one load ($N=1$) is 1.6 mo moximum. The flip-flop preset and cleor inputs supply two multiple-emitter tronsistors; thus, each preset or cleor input is the equivolent of $N=2$ loads. Eoch input requires current into the input at a logical 1 voltoge level. This current is 40μ a moximum for oll inputs except for the preset ond cleor which ore $80 \mu \mathrm{a}$ moximum.

fan-out capability

Fon-out reflects the obility of an output to sink current from o number of loods (N) ot o logical 0 voltage level and to supply current of o logical 1 voltoge level. Each output is copoble of sinking current or supplying current to 10 loods ($N=10$). The "power" gate is copoble of sinking current or supplying current to 30 loods ($\mathrm{N}=30$).
unused inputs
All unused inputs except $J \star$ ond $K \star$ should be connected to $V_{C C}$. Unused $J \star$ or $K \star$ input should be connected to ground.
standard line summary
SN7400 See page 4

TYPE SN7400

QUADRUPLE 2-INPUT POSITIVE NAND GATE

schematic (each gate)

Companent values shown are nominal.

recommended operating conditions
Supply Voltage, V_{cc}. 4.75 v to 5.25 v
Moximum Fan-Out From Each Output, N
electrical characteristics, $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

	PARAMETER	TEST FIGURE	TEST CONDITIONS	MIN	TYP	MAX	UNIT
$V_{\text {in(1) }}$	Logical 1 input voltage required at all input terminols that will ensure logical 0 level of output	1	$\begin{aligned} & V_{c c}=4.75 \mathrm{v}, \mathrm{~V}_{\text {out } 101} \leq 0.4 \mathrm{v} \\ & \mathrm{R}=272 \Omega \end{aligned}$	2			v
$V_{\text {in }(0)}$	Logical 0 input valtage required at any input terminol that will ensure logicol 1 level at output	2	$\begin{aligned} & V_{\mathrm{cc}}=4.75 \mathrm{v}, \mathrm{~V}_{\text {out }(1)} \geq 2.4 \mathrm{v} \\ & \mathrm{R}=6 \mathrm{k} \Omega \end{aligned}$			0.8	v
$V_{\text {out111 }}$	Logicol 1 output valtage	2	$\begin{array}{ll} V_{\mathrm{cc}}=4.5 \mathrm{v} & V_{\text {in }}=0.8 \mathrm{v} \\ \mathrm{I}_{\text {load }} \geq 400 \mu \mathrm{a}, & R=6 \mathrm{k} \Omega \\ \hline \end{array}$	2.4			v
$V_{\text {out }}(0)$	Logicol 0 output voltage	1	$\begin{aligned} & V_{\mathrm{cc}}=4.75 \mathrm{v}, V_{\text {in }}=2 \mathrm{v} \\ & \mathrm{I}_{\text {sink }} \geq 16 \mathrm{ma}, \mathrm{R}=272 \Omega \end{aligned}$			0.4	v
$\mathrm{I}_{\text {in }}$	Input current (each input)	3	$\mathrm{V}_{\text {CC }}=5.25 \mathrm{v}, \mathrm{V}_{\text {in }}=0.4 \mathrm{v}$			1.6	mo
$\mathrm{I}_{\text {in }}$	Input current (each input)	4	$\mathrm{V}_{\mathrm{cc}}=5.25 \mathrm{v}, \mathrm{V}_{\text {in }}=4.75 \mathrm{v}$			40	$\mu \mathrm{a}$
I_{OS}	Short-circuit output current \dagger	5	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{v}$	18		55	ma
$\mathrm{I}_{\mathrm{CC}[0]}$	Logical 0 level supply current (eoch gate)	6	$\mathrm{V}_{\mathrm{cc}}=\mathrm{V}_{\mathrm{in}}=5 \mathrm{~V}$		3		mo
$\mathrm{I}_{\mathrm{CCl1]}}$	Logical 1 level supply current (each gate)	6	$\mathrm{V}_{C C}=5 \mathrm{v}, \quad \mathrm{v}_{\text {in }}=0$		1		ma

switching characteristics, $V_{C C}=5 \quad \mathbf{v}, T_{A}=25^{\circ} \mathrm{C}$

	PARAMETER	TEST FIGURE	TEST CONDITIONS	TYP	MAX
$\mathbf{t}_{\text {do }}$	Prapagatian time to logicol 0	27	$C_{1}=15 \mathrm{pf}$	$\mathrm{N}=10$	8
$\mathrm{t}_{\mathrm{d} 1}$	Propagation time ta lagical 1	27	$\mathrm{C}_{1}=15 \mathrm{pf}$	$\mathrm{N}=1$	nsec

[^2]schematic (each gate)

Companent values shawn are naminal.

$$
\begin{gathered}
\text { positive logic } \\
X=\overline{A B C}
\end{gathered}
$$

recommended operating conditions

Supply Voltoge, VCC

Moximum Fon-Out From Each Output, N . 10
electrical characteristics, $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

	PARAMETER	TEST FIGURE	TEST CONDITIONS	MIN	TYP	MAX	UNIT
$V_{\text {in(1) }}$	Logicol 1 input voltoge required ot all input ferminals thot will ensure logical 0 level at output	1	$\begin{aligned} & V_{C C}=4.75 \mathrm{v}, \mathrm{~V}_{\text {out }(0)} \leq 0.4 \mathrm{v} \\ & \mathrm{R}=272 \Omega \end{aligned}$	2			v
$V_{\text {in }(0)}$	Logicol 0 input voltage required ot ony input terminol thot will ensure logical 1 level at output	2	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=4.75 \mathrm{v}, \mathrm{~V}_{\mathrm{out} \mid \mathrm{l}} \geq 2.4 \mathrm{v} \\ & \mathrm{R}=6 \mathrm{k} \Omega \end{aligned}$			0.8	\checkmark
$V_{\text {out(}}$ ($)$	Logical 1 output voltage	2	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=4.75 \mathrm{v}, \mathrm{~V}_{\text {in }}=0.8 \mathrm{v} \\ & \mathrm{I}_{\text {load }} \geq 400 \mu \mathrm{a}, \mathrm{R}=6 \mathrm{k} \Omega \end{aligned}$	2.4			v
$V_{\text {out(0) }}$	Logicol 0 output voltage	1	$\begin{aligned} & V_{\mathrm{CC}}=4.75 \mathrm{v}, \mathrm{~V}_{\mathrm{in}}=2 \mathrm{v} \\ & \mathrm{I}_{\text {sink }} \geq 16 \mathrm{ma}, \mathrm{R}=272 \Omega \end{aligned}$			0.4	v
$\mathrm{I}_{\text {in }}$	Input eurrent (each input)	3	$\mathrm{V}_{\mathrm{cc}}=5.25 \mathrm{v}, \mathrm{V}_{\text {in }}=0.4 \mathrm{~V}$			1.6	ma
$\mathrm{I}_{\text {in }}$	Input current (each input)	4	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{v}, \mathrm{V}_{\text {in }}=4.75 \mathrm{v}$			40	$\mu 0$
los	Short-circuit output current \dagger	5	$V_{c c}=5.25 \mathrm{~V}$	18		55	ma
$I_{\text {cclo }}$	Logicol 0 level supply current (eoch gate)	6	$V_{c c}=V_{i n}=5 \mathrm{~V}$		3		mo
$\mathrm{I}_{\mathrm{CCl\mid l}}$	Logical I level supply current (eoch gate)	6	$\mathrm{V}_{\mathrm{cc}}=5 \mathrm{v}, \quad \mathrm{V}_{\mathrm{in}}=0$		1		ma

switching characteristics, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{v}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER		TEST FIGURE	TEST CONDITIONS	MIN TYP	MAX	UNIT
${ }^{\text {\% }}$ do	Propagation time to logical 0	27	$\mathrm{C}_{1}=15 \mathrm{pf}, \mathrm{N}=10$	8	15	nsec
${ }^{\text {d }}$ d	Propagotion time to logicol 1	27	$\mathrm{C}_{1}=15 \mathrm{pf}, \mathrm{N}=1$	18	29.	nsec

\dagger Nat mare than one output should be shorted at a time.

DUAL 4-INPUT POSITIVE NAND GATE

schematic (each gate)

Component valuas shown are nominal.

recommended operating conditions

Supply Voltage, $V_{\text {cc }}$. 4.75 r to 5.25 v
Maximum Fon-Oul From Eoch Output, N
10
electrical characteristics, $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

	PARAMETER	$\begin{aligned} & \text { TEST } \\ & \text { FIGURE } \end{aligned}$	TEST CONDITIONS	MIN	TYP	MAX	UNIT
$V_{\text {in }}$ (1)	Lagical 1 input voltage required at all input terminals that will ensure logical 0 level at output	1	$\begin{aligned} & \mathrm{v}_{\mathrm{cc}}=4.75 \mathrm{v}, \mathrm{v}_{\text {out }(0)} \leq 0.4 \mathrm{v} \\ & \mathrm{R}=272 \Omega \end{aligned}$	2			\checkmark
$V_{\text {in }\{0]}$	Lagical 0 input valtage required at any input terminal that will ensure lagical 1 level at autput	2	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{v}, \mathrm{~V}_{\text {out }(1)} \geq 2.4 \mathrm{v} \\ & \mathrm{R}=6 \mathrm{k} \Omega \end{aligned}$			0.8	v
$V_{\text {out (1) }}$	Logical 1 output voltage	2	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=4.75 \mathrm{v}, \mathrm{v}_{\text {in }}=0.8 \mathrm{v} \\ & \mathrm{I}_{\text {load }} \geq 400 \mu \mathrm{o}, \mathrm{R}=6 \mathrm{k} \Omega \end{aligned}$	2.4			\checkmark
$V_{\text {out (0) }}$	Lagical 0 output valtage	1	$\begin{aligned} & V_{c c}=4.75 \mathrm{v}, \mathrm{~V}_{\mathrm{in}}=2 \mathrm{v}, \\ & \mathrm{I}_{\text {sink }} \geq 16 \mathrm{ma}, \mathrm{R}=272 \Omega \end{aligned}$			0.4	\checkmark
$\mathrm{I}_{\text {in }}$	Input current (each input)	3	$\mathrm{V}_{\mathrm{cc}}=5.25 \mathrm{v}, \mathrm{V}_{\text {in }}=0.4 \mathrm{v}$			1.6	ma
$\mathrm{I}_{\text {in }}$.	Input current (each input)	4	$\mathrm{V}_{\mathrm{cc}}=5.25 \mathrm{v}, \mathrm{V}_{\text {in }}=4.75 \mathrm{v}$			40	$\mu \mathrm{a}$
l_{OS}	Short-circuit aulput current \dagger	5	$\mathrm{V}_{\mathrm{cc}}=5.25 \mathrm{v}$	18		55	ma
$\mathrm{I}_{\mathrm{CCl}}(0)$	Lagical 0 level supply current (each gate)	6	$\mathrm{V}_{\mathrm{cc}}=\mathrm{V}_{\mathrm{in}}=5 \mathrm{v}$		3		ma
${ }^{\text {CCCli }}$	Lagical 1 level supply current (each gate)	6	$\mathrm{V}_{\mathrm{cc}}=5 \mathrm{v}, \quad \mathrm{V}_{\text {in }}=0$		1		ma

switching characteristics, $V_{C C}=5 \quad \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER		TEST FIGURE	TEST CONDITIONS	MIN TYP	MAX	UNIT
${ }^{\dagger}$ do	Propagotion time to logical 0	27	$\mathrm{C}_{1}=15 \mathrm{pf}, \mathrm{N}=10$	8	15	nsec
$t_{d 1}$	Propagation time to logicol 1	27	$\mathrm{C}_{\mathrm{l}}=15 \mathrm{pf}, \mathrm{N}=1$	18	29	nsec

[^3]
schematic (each gate)

recommended operating conditions

Supply Voltage, V_{CC}
Maximum Fan-Out From Each Output, N
electrical characteristics, $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

	PARAMETER	TEST FIGURE	TEST CONDITIONS	MIN	TYP	MAX	UNIT
$\mathrm{V}_{\mathrm{in}(1)}$	Logical 1 input voltage required at oll input terminals that will ensure lagical 0 level at autput	1	$\begin{aligned} & V_{\mathrm{CC}}=4.75 \mathrm{v}, \mathrm{~V}_{\text {out }(0)} \leq 0.4 \mathrm{v} \\ & \mathrm{R}=272 \Omega \end{aligned}$	2			v
$V_{\text {in(0) }}$	Logical 0 input valtage required ot any input terminal that will ensure logical 1 level at output	2	$\begin{aligned} & V_{C C}=4.75 \mathrm{v}, V_{\text {out }(1)} \geq 2.4 \mathrm{v} \\ & R=6 \mathrm{k} \Omega \end{aligned}$			0.8	v
$V_{\text {out }}$ (1)	Logical I autput voltage	2	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=4.75 \mathrm{v}, \mathrm{~V}_{\text {in }}=0.8 \mathrm{v} \\ & \mathrm{I}_{\text {load }} \geq 400 \mu \mathrm{a}, \mathrm{R}=6 \mathrm{k} \Omega \end{aligned}$	2.4			\checkmark
$V_{\text {out }}$ (0)	Lagical 0 autput valtage	1	$\begin{aligned} & V_{\mathrm{CC}}=4.75 \mathrm{v}, \mathrm{~V}_{\text {in }}=2 \mathrm{v} \\ & \mathrm{I}_{\text {sink }} \geq 16 \mathrm{ma}, \mathrm{R}=272 \Omega \\ & \hline \end{aligned}$			0.4	\checkmark
I_{in}	Input current (each input)	3	$\mathrm{V}_{\mathrm{cc}}=5.25 \mathrm{v}, \mathrm{V}_{\text {in }}=0.4 \mathrm{v}$			1.6	ma
$\mathrm{I}_{\text {in }}$	Input eurrent (each input)	4	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{v}, \mathrm{V}_{\text {in }}=4.75 \mathrm{v}$			40	$\mu \mathrm{a}$
Ios	Short-circuit autput current	5	$\mathrm{V}_{\text {cc }}=5.25 \mathrm{v}$	18		55	ma
$\mathrm{I}_{\mathrm{cc}(0)}$	Lagical 0 level supply current (each gate)	6	$\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\text {in }}=5 \mathrm{~V}$		3		ma
$\mathrm{I}_{\mathrm{CC}(1)}$	Lagical 1 level supply current (eoch gate)	6	$V_{c c}=5 \mathrm{v}_{\mathrm{c}} \quad \mathrm{V}_{\text {in }}=0$		1		ma

switching characteristics, $V_{C C}=5 \quad \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER		TEST FIGURE	TEST CONDITIONS	MIN TYP	MAX	UNIT
	Prapagatian time ta lagical 0	27	$\mathrm{C}_{1}=15 \mathrm{pf}, \mathrm{N}=10$	8	15	nsec
$t_{d!}$	Propagation time to logical 1	27	$\mathrm{C}_{1}=15 \mathrm{pf}, \mathrm{N}=1$	18	29	nsec

schematic (each gate)

Component volues shawn are nominal

recommended operating conditions

Supply Valtage, $V_{c c} . \quad 4.75 \mathrm{v}$ to 5.25 v
Maximum Fan Out from Each Output, N . 30
electrical characteristics, $T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

	PARAMETER	TEST FIGURE	TEST CONDITIONS	MIN	TYP	MAX	UNIT
$V_{\text {in(1) }}$	Lagical 1 input voltage required ot all input terminols that will ensure logical 0 level at output	1	$\begin{aligned} & V_{\mathrm{Cc}}=4.75 \mathrm{v}, V_{\text {out }(0)} \leq 0.4 \mathrm{v} \\ & \mathrm{R}=90 \Omega \end{aligned}$	2			v
$V_{\text {in }(0)}$	Logical 0 input voltage required ot ony input terminol that will ensure logical 1 level at output	2	$\begin{aligned} & \mathrm{V}_{\mathrm{Cc}}=4.75 \mathrm{v}, \mathrm{~V}_{\text {out }[1]} \geq 2.4 \mathrm{v} \\ & \mathrm{R}=2 \mathrm{k} \Omega \end{aligned}$			0.8	ψ
$V_{\text {out }}$ (1)	Logicol 1 output voltoge	2	$\begin{aligned} & V_{\mathrm{Cc}}=4.75 \mathrm{v}, \mathrm{~V}_{\text {in }}=0.8 \mathrm{v} \\ & \mathrm{I}_{\text {load }} \geq 1.2 \mathrm{ma}, \mathrm{R}=2 \mathrm{k} \Omega \end{aligned}$	2.4			Y
$V_{\text {out }}(0)$	Logical 0 output voltage	1	$\begin{aligned} & V_{\mathrm{cc}}=4.75 \mathrm{v}, \mathrm{~V}_{\mathrm{in}}=2 \mathrm{v}, \\ & \mathrm{I}_{\text {sink }} \geq 16 \mathrm{ma}, \mathrm{R}=90 . \Omega \end{aligned}$			0.4	V
$\mathrm{I}_{\text {in }}$	Input current (eoch input)	3	$\mathrm{V}_{\mathrm{cc}}=5.25 \mathrm{v}, \mathrm{V}_{\text {in }}=0.4 \mathrm{v}$			1.6	mo
$\mathrm{I}_{\text {in }}$	Input current (each input)	4	$\mathrm{V}_{c c}=5.25 \mathrm{v}, \mathrm{V}_{\text {in }}=4.75 \mathrm{v}$			40	$\mu \mathrm{a}$
Ios	Short-circuit output current \dagger	5	$\mathrm{V}_{\mathrm{Cc}}=5.25 \mathrm{~V}$	18		70	mo
$\mathrm{I}_{\mathrm{cc}(0)}$	Logical 0 level supply current (each gate)	6	$V_{\text {cc }}=V_{\text {in }}=5 \mathrm{v}$		8.6		ma
$\mathrm{ICc}_{\text {(1) }}$	Logicol I level supply current (eoch gate)	6	$\mathrm{V}_{\mathrm{cc}}=5 \mathrm{v}, \quad \mathrm{V}_{\mathrm{in}}=0$		2		mo

switching characteristics, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{v}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

	PARAMETER	TEST FIGURE	TEST CONDITIONS	MIN TYP	MAX	UNIT
${ }^{\text {d } 0}$	Propogation time to logical 0	27	$\mathrm{C}_{1}=15 \mathrm{pf}, \mathrm{N}=10$	8	15	nsec
$\mathrm{t}_{\mathrm{d} 1}$	Propagatian time to logical I	27	$\mathrm{C}_{1}=15 \mathrm{pf}, \mathrm{N}=1$	18	29	nsec

[^4]schematic (each gate)

NOIES:

1. Companent values shown are nominal.
2. Aath expandet inputs are used simultaneausly for expanding with the SN7460.
3. If expander is nel used leove pins (1) and (2) open.

recommended operating conditions

Supply Voltage, VCC . 4.75 v to 5.25 v

$$
\text { Maximum Fan-Out Fram Each Output, N . } 10
$$

electrical characteristics, $T_{A}=-0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$, pins (1) and (2) open

[^5]electrical characteristics using expander inputs, $T_{A}=0^{\circ} \mathrm{C}$

	PARAMETER	$\begin{gathered} \text { TEST } \\ \text { FIGURE } \end{gathered}$	TEST CONDITIONS	MIN MAX	UNIT
${ }^{\prime}(x)$	Expander current	14	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{v}, \mathrm{V}_{1}=0.4 \mathrm{v}, \quad \mathrm{l}_{\text {sink }}=16 \mathrm{ma}$	1.53	ma
$\mathrm{V}_{\text {BEI }}$ ($)$	Output transistor (Q) base-emitter voltage	15	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{v}, \mathrm{~V}_{2}=1.4 \mathrm{v} \\ & \mathrm{I}_{\text {sink }}=16 \mathrm{ma}, \mathrm{I}_{1}=1.7 \mathrm{mo}, \mathrm{R}=272 \Omega \end{aligned}$	1	v
$\mathrm{V}_{\text {out }}$ (0)	Lagical 0 output voltage	15	$\begin{aligned} & V_{\mathrm{cC}}=4.75 \mathrm{v}, \mathrm{~V}_{2}=1.4 \mathrm{v}, \\ & \mathrm{I}_{\text {sink }}=16 \mathrm{ma}, \mathrm{I}_{1}=1.7 \mathrm{ma}, \mathrm{R}=272 \Omega \end{aligned}$	0.4	v
$\mathrm{V}_{\text {out(1) }}$	Logical 1 output voltage	16	$\begin{aligned} & V_{\mathrm{CC}}=4.75 \mathrm{v}, \mathrm{I}_{\text {Ioad }}=400 \mu \mathrm{a} \\ & \mathrm{I}_{1}=0.27 \mathrm{ma}, \mathrm{I}_{2}=0.27 \mathrm{maR}=6 \mathrm{k} \Omega \end{aligned}$	2.4	v

switching characteristics, $\mathrm{V}_{\mathrm{cc}}=5 \mathrm{v}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER		TEST FIGURE	TEST CONDITIONS	MIN TYP	MAX	UNIT
${ }^{\text {d }}$ do	Propagation time to logical 0	27	$\mathrm{C}_{1}=15 \mathrm{pf}, \mathrm{N}=10$	8	15	nsec
${ }^{\text {d }}$ d	Propagation time to logical 1	27	$\mathrm{C}_{1}=15 \mathrm{pf}, \mathrm{N}=1$	18	29	nsec

schematic

NOTES: 1. Connect pin (2) or (13) 10 pin (9) of SN7450.
2. connect pin (1) or (4) to pin (1) of SN7450.
3. Component values shown are nominal.

recommended operating conditions

Supply Valtage, V_{Cc}. 4.75 v to 5.25 v Maximum number of expanders that may be fanned-in to one SN7450
electrical characteristics (unless otherwise noted $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$)

	PARAMETER	TEST FIGURE	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
$V_{\text {in }}$ l1	Logicol 1 input voltage required ot all input terminals that will ensure output on level	17	$\begin{aligned} & \mathrm{v}_{\mathrm{CC}}=4.75 \mathrm{v}, \mathrm{v}_{\mathrm{in}}=2 \mathrm{v}, \mathrm{v}_{1}=1 \mathrm{v} \\ & \mathrm{R}=1.1 \mathrm{k} \Omega, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \end{aligned}$	2			v	
$V_{\text {in }}$ (0)	Legicol 0 input voltage at any input terminal that will ensure autput off level current	18	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=4.75 \mathrm{v}, \mathrm{~V}_{\text {in }}=0.8 \mathrm{v} \\ & \mathrm{~V}_{1}=4.75 \mathrm{v}, \mathrm{R}=1.2 \mathrm{k} \mathrm{\Omega}, \\ & \mathrm{I}_{\text {off }}=0.27 \mathrm{ma}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \end{aligned}$			0.8	v	
$V_{\text {on }}$	Output voltage on level	17	$\begin{aligned} & v_{C C}=4.75 \mathrm{v}, \mathrm{~V}_{\mathrm{in}}=2 \mathrm{v} \\ & \mathrm{~V}_{1}=1 \mathrm{v}, \mathrm{R}=1.7 \mathrm{k} \Omega, \mathrm{I}_{\mathrm{A}}=0^{\circ} \mathrm{C} \end{aligned}$			0.4	\checkmark	
${ }^{\text {off }}$	Output off level current	18	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{v}, \mathrm{~V}_{\mathrm{in}}=0.8 \mathrm{v} \\ & \mathrm{~V}_{1}=4.75 \mathrm{v}, \mathrm{R}=1.2 \mathrm{k} \Omega \\ & \mathrm{~T}_{\mathrm{A}}=0^{a} \mathrm{C} \end{aligned}$			270	$\mu \mathrm{a}$	
Ion	Output an level current	19	$\begin{aligned} & v_{\mathrm{cc}}=4.75 \mathrm{v}, \mathrm{v}_{\mathrm{in}}=2 \mathrm{v} \\ & \mathrm{v}_{1}=1 \mathrm{v}, \mathrm{I}_{2}=1.5 \mathrm{mc} \end{aligned}$	1.7			mo	
$\mathrm{I}_{\text {in }}$	Input current (each input)	18	$\mathrm{v}_{\mathrm{cc}}=5.25 \mathrm{v}, \mathrm{v}_{\text {in }}=0.4 \mathrm{v}$			1.6	ma	
$\mathrm{l}_{\text {in }}$	Input current (eoch input)	20	$\begin{aligned} & \mathrm{v}_{\mathrm{CC}}=5.25 \mathrm{v}, \mathrm{v}_{\mathrm{in}}=4.75 \mathrm{v} \\ & \mathrm{I}_{\mathrm{A}}=70^{\circ} \mathrm{C} \end{aligned}$			40	$\mu \mathrm{c}$	
${ }^{\text {c }}$ C\|on		On level supply current (each gate)	21	$\mathrm{v}_{\mathrm{cc}}=\mathrm{V}_{\text {in }}=5 \mathrm{v}, \mathrm{V}_{1}=0.85 \mathrm{v}$		0.6		ma
${ }^{\text {c Cclotil }}$	Off level supply current (eoch gote)	21	$\begin{aligned} & v_{c c}=5 v, v_{\text {in }}=0, \\ & v_{1}=0.85 v \end{aligned}$		1		mo	

switching characteristics, $V_{C C}=5 \quad \mathbf{v}, T_{A}=25^{\circ} \mathrm{C}$

	PARAMETER	TEST FIGURE	TEST CONDITIONS	MIN TYP	MAX	UNIT
${ }^{\text {d }}$ d	Propagation time ta lagical 0 (through SN7450)	28	$\mathrm{c}_{1}=15 \mathrm{pf}, \mathrm{N}=10$	10	20	nsec
${ }^{t}{ }^{\text {d }}$	Propagatian time to logical 1 (through SN7450)	28	$\mathrm{C}_{1}=15 \mathrm{pf}, \mathrm{N}=1$	20	34	nsec

logic

TRUTH TABLE		
t_{n}		t_{n+1}
J	K	Q
0	0	Q_{n}
0	1	0
1	0	1
1	1	\bar{Q}_{n}

NOTES: 1. J $=\mathrm{Jl} \cdot \mathrm{J2} \cdot \mathrm{~J} \star$
2. $\mathrm{K}=\mathrm{K} 1 \cdot \mathrm{~K} 2 \cdot \overline{\mathrm{~K}} \star$
3. $\mathrm{I}_{\mathrm{n}}=$ Bil time before clock pulse.
4. $i_{n+1}=$ Bir time after clock pulse.
5. If inputs $J \star$ or $k \star$ are not used they must be grounded.

recommended operating conditions

Supply Volioge, V ${ }_{\text {CC }}$. 4.75 v to 5.25 y
Moximum Fan Out From Each Oulput, $\mathrm{N} . \mathrm{P}_{\mathrm{l}}$. 10
Moximum Rise Time of Clock Pulse, $\mathbf{t}_{\text {rlclockl }}$. 150 nsec
Minimum Width of Clock Pulse, $\mathrm{t}_{\text {plelockl }}$. 20 nsec
Toggle Frequency, ftoggle . 0 to 25 Mc
Minimum Set-UR Jime At Inputs $\mathrm{J} \star$ or $K \star_{\text {; }} \mathrm{t}_{\text {set-up }}$. 20 nsec
Minimum Hold Time At Inputs JI, J2, K1, or K2; thold . 15 nsec
Minimum Preset Time, $\mathrm{t}_{\text {presat }}$. 25 nsec
Minimum Cleor Time, tclear . 25 nsec
electrical characteristics (unless otherwise noted $\mathrm{V}_{\mathrm{cc}}=4.75 \mathrm{v}$ to $5.25 \mathrm{v}, \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$)

	PARAMETER	TEST FIGURE	TEST CONDITIONS	MIN	TYP	MAX	UNIT
$V_{\text {in(1) }}$	Input voltoge thot will ensure logicol 1 ot ony input terminol	22	$V_{C C}=4.75 \mathrm{v}$	2			\checkmark
$V_{\text {inf0 }}$	Input voltage thot will ensure logicol 0 ot ony input terminol	22	$\mathrm{V}_{C C}=5.25 \mathrm{v}$			0.8	\checkmark
$V_{\text {out }}$ [1]	Logical 1 output voltoge	22	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{v}, \mathrm{I}_{\text {load }}=400 \mu 0, \mathrm{R}=6 \mathrm{k} \Omega$	2.4			v
$V_{\text {out }}$ (0]	Logicol 0 output voltoge	23	$\mathrm{V}_{C C}=4.75 \mathrm{v}_{1} \mathrm{l}_{\text {sink }}=16 \mathrm{mo}, \mathrm{R}=272 \Omega$			0.4	v
I_{in}	$\mathrm{J} 1, \mathrm{~J} 2, J \star, \mathrm{~K} 1, \mathrm{~K} 2, \mathrm{~K} \star$ or clock input current	24	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{v}, \mathrm{V}_{\text {in }}=0.4 \mathrm{v}$			1.6	mo
I_{in}	Preset or cleor input current	24	$\mathrm{V}_{\mathrm{cc}}=5.25 \mathrm{v}, \mathrm{V}_{\mathrm{in}}=0.4 \mathrm{v}$			3.2	ma
$\mathrm{I}_{\text {in }}$	$\mathrm{J} 1, \mathrm{~J} 2, \mathrm{~J} \star, \mathrm{~J} 1, \mathrm{~K} 2, \mathrm{~K} \star \text {, }$ or clock input current	25	$v_{C C}=5.25 \mathrm{v}, \mathrm{V}_{\mathrm{in}}=4.75 \mathrm{v}, \mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$			40	$\mu 0$
$\mathrm{I}_{\text {in }}$	Preset or clear input current	25	$\mathrm{v}_{\mathrm{CC}}=5.25 \mathrm{v}, \mathrm{v}_{\mathrm{in}}=4.75 \mathrm{v}, \mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$			80	μ
Ios	Short-circuit output current \dagger	26	$V_{c c}=5.25 \mathrm{v}, \mathrm{V}_{\text {in }}=0$	18		57	mo
${ }^{\text {cClay }}$	Averoge supply current	25	$V_{\text {cc }}=V_{\text {in }}=5 \mathrm{~V}$		14		mo

\dagger Nol more thon one output should be shorted at a lime.
switching characteristics, $V_{C C}=5 \mathrm{v}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

	PARAMETER	TEST FIGURE	TEST CONDITIONS	MIN TYP	MAX	UNIT
$t_{\text {set-up }}$	Minimum Input Set-Up Time	29		15		nsec
$t_{\text {hold }}$	Minimum Input Hold Time			10		nsec
${ }^{\text {preset }}$ t	Minimum Preset Time	30		15		nsec
${ }^{+}$clear	Minimum Clear Time			15		nsec
$t_{\text {do }}$	Propogotion time to logical 0	29	$\mathrm{C}_{1}=15 \mathrm{pf}, \mathrm{N}=10$	30	50	nsec
$t_{\text {d }}$	Propogotion time to logicol I	29	$\mathrm{C}_{1}=15 \mathrm{pf}, \mathrm{N}=1$	30	50	nsec

functional block diagram

PARAMETER MEASUREMENT INFORMATION

d-c test circuits

SERIES 74

PARAMETER MEASUREMENT INFORMATION

```
d-c test circuits (continued)
```

1. Each AND section fested seporately. FIGURE 7	1. Each pair af inputs tested separately. FIGURE 8
1. Each input tested separately. FIGURE 9	1. Each input tested separately. FIGURE 10
1. Each gate tested separately. FIGURE 11	 FIGURE 12

PARAMETER MEASUREMENT INFORMATION

d-c test circuits (continued)
(
d-c test circuits (continued)

FIGURE 23

PARAMETER MEASUREMENT INFORMATION
d-c test circuits (continued)

PARAMETER MEASUREMENT INFORMATION

switching characteristics

NOTES: 1 . The generotor hos the following choracteristics: $I_{r}=I_{f} \leq 15$ nsec, $I_{p}=9.5 \mu \mathrm{sec}, \mathrm{PRR}=100 \mathrm{kc}, \mathrm{I}_{\mathrm{out}} \approx 50 \mathrm{~s}$.
2. All tronsistars ore 2 N 2368 .
3. All diodes are IN916.
4. Test $S N 7440$ with $R_{2}=100 \Omega, C_{3}=145 \mathrm{pt}, \mathrm{N}=30$ for ${ }^{t} \mathrm{do}$, and $\mathrm{N}^{\prime}=1$ for ${ }^{4} \mathrm{dl}$.
5. $t_{\mathrm{pd}}=\frac{t_{\mathrm{d} 0}+t_{\mathrm{d}}}{2}$.

FIGURE 27 - GATE PROPAGATION DELAY

PARAMETER MEASUREMENT INFORMATION

switching characteristics (continued)

VOLTAGE WAVEFORMS

NOTES: 1. The generator has the following characteristics: $t_{r}=I_{f} \leq 15$ nsec, $t_{p}=9.5 \mu \mathrm{sec}, \mathrm{PRR}=100 \mathrm{kc}, \mathrm{z}_{\text {out }} \approx 50 \Omega$.
2. All transistars are 2 N 2368 .
3. All diodes are 1 N916.
4. $t_{\mathrm{pd}}=\frac{t_{\mathrm{d} 0}+t_{\mathrm{d} 1}}{2}$

FIGURE 28 - EXPANDER PROPAGATION DELAY

SERIES 74

PARAMETER MEASUREMENT INFORMATION

switching characteristics (continued)

test circuit

TEST TABLE					
TEST NO.	TEST	INPUT A	INPUT B	+2.4 v	GND
1	$\mathrm{t}_{\mathrm{do}}(\overline{\mathrm{Q}})$	$\mathrm{J} \star$	$\mathrm{J} 1, \mathrm{~J} 2$	$\mathrm{~K} 1, \mathrm{~K} 2$	$\mathrm{~K} \star$
2	$\mathrm{t}_{\mathrm{d} 1}(\overline{\mathrm{Q}})$	$\mathrm{K} \star$	$\mathrm{K} 1, \mathrm{~K} 2$	$\mathrm{~J} 1, \mathrm{~J} 2$	$\mathrm{~J} \star$
3	$\mathrm{t}_{\mathrm{d} 0}(\mathrm{Q})$	$\mathrm{K} \star$	$\mathrm{K} 1, \mathrm{~K} 2$	$\mathrm{~J} 1, \mathrm{~J} 2$	$\mathrm{~J} \star$
4	$\mathrm{t}_{\mathrm{d} 9}(\mathrm{Q})$	$\mathrm{J} \star$	$\mathrm{J} 1, \mathrm{~J} 2$	$\mathrm{~K} 1, \mathrm{~K} 2$	$\mathrm{~K} \star$

NOTES: 1. All tronsistors ore 2 N 2368 .
2. All diodes are 1×916.

voltage waveforms

PARAMETER MEASUREMENT INFORMATION

switching characteristics (continued)

TEST CIRCUIT

NOTES: 1. All Iransistors are 2 N2368.
2. All diodes ore 1 N916.
3. Clock input of 5 Mc is used to verify that preset or clear input inhibits the clock function.

$$
\text { FIGURE } 30 \text { - PRESET/CLEAR TIME }
$$

OUTPUT VOLTAGE vs input Voltage

PROPAGATION TIME TO LOGICAL O vs TEMPERATURE

PROPAGATION TIME TO LOGICAL I vs TEMPERATURE

PROPAGATION DELAY TIME vs TEMPERATURE

OUTPUT VOLTAGE vs SINK CURRENT

MECHANICAL DATA

general

SOLID CIRCUIT semiconductor netwarks are maunted in a glass-to-metal hermetically sealed, welded package. Package body and leads are gold-plated $\mathrm{F}-15 \ddagger$ glass-sealing alloy. Approximate weight is 0.1 gram. All external surfaces are
metallic and are insulated fram leads and circuit. All Series 74 netwarks are available with farmed leads, insulatar attached, and/ar mounted in a Mech-Pak carrier.

leads

Gold-plated $\mathrm{F}-15$ leads require na additianal cleaning ar processing when used in saldered ar welded assembly. Farmed leads are available ta facilitate planar mounting af netwarks an flat circuit baards. Standard lead length is 0.185 inches. Netwarks can be removed fram Mech-Pak carriers with lead lengths up ta 0.185 inches.

insulator

An insulator, secured ta the back surface af the package, permits maunting networks on circuit boards which have canductars passing beneath the package. The insulator is 0.0025 inches thick and has an insulatian resistance of 10 megahms at $25^{\circ} \mathrm{C}$.

mech-pak carrier

The Mech-Pak carrier facilitates handling the network, and is campatible with autamatic equipment used for testing and assembly. The carrier is particularly apprapriate far mechanized assembly operations and will withstand temperatures of $125^{\circ} \mathrm{C}$ for indefinite periads.

ordering instructions

Variatians in mechanical canfiguratian af semicanductar netwarks are identified by suffix numbers shown in a table at the right.

[^6]

	NO MECH-PAK CARRIER				MECH-PAK CARRIER			
Lead Length	0.185 inch			Not Applicable				
Formed Leads	No	No	Yes	Yes	No	No	Yes	Yes
Insulators	No	Yes	No	Yes	No	Yes	No	Yes
Ordering Suffix	None	-6	-7	-1	-2	-3	-4	-5

*F-15 is the ASIM designation for an iran-nickel-cobalt alloy containing nominally 53% iron, 29% nickel, and 17% cabalt.

[^0]: \dagger Patented by Texas Inslitumenls Incorporaled.

[^1]: Another importont feoture of the design is the output con. figurotion which both supplies current (in the logical 1 stote) ond sinks current (in the logical 0 state) from a low imped. once. Typically, logical 0 output impedonce is 12 ? ond logical 1 output impedonce is 100 5?. This low output imped. once in either stote rejects capocitively coupled a.c pulses ond ensures small R.C time constants which preserve wove. shape integrity.

[^2]: \dagger Nal mare than ane aulput shauld be sharted at a time.

[^3]: \dagger Nat more than ane output shauld be shorted at a tlme.

[^4]: \dagger Not more thon one output should be shorted ot a lime.

[^5]: † Mot mare than ane autput should be sharted af a time.

[^6]: †Patented by Texas Insliuments Incorporated.

