

1967-68
INTEGRATED OHRGUITS CATALOG

## Notes on This First Edition

This first edition of TI's Integrated Circuits catalog contains currently published data sheets covering SOLID CIRCUIT ${ }^{\circledR}$ semiconductor networks. As new data sheets are published, they will be distributed for insertion in the appropriate sections of this basic Tightleaf ${ }^{\circledR}$ catalog.

This catalog replaces collections of loose integrated circuits data sheets. Many of the data sheets in this book have been revised, and therefore cancel and supersede earlier editions.

Please give your present collection to a co-worker who can make use of it; the largest part of the old data is still current.

Note that certain large blocks of page numbers have intentionally been omitted, to permit simplified numbering of insert pages.

## To insert pages: Turn to colored page, Page 1251.



## CONTENTS

Page
How to Use the Indexes ..... 2
Table of Data Sheet Contents ..... 3
Integrated Circuits Selection Guides ..... 4
Numeric Index ..... 6
Data Sheets ..... 1001
How to Insert Pages ..... 1251
Interface Components ..... 9501

## HOW TO USE THE INDEXES

If you know only the category of device, look in the Table of Data Sheet Contents, page 3.

If you know only the device number, look in the Numeric Index, page 6.

The first page of a data sheet is always a right-hand page.

## INTEGRATED CIRCUIT SELECTION GUIDES

For assistance in selecting devices to meet your requirements, use the Selection Guides, pages 4 and 5.

## SPECIAL INFORMATION

TI Field Sales Office Addresses page 7TI Authorized Distributor Addressespage 8
TI Microlibrary Information ..... page 4512

# TABLE OF DATA SHEET CONTENTS <br> (Updated with each mailing of new data sheets) 

Full Military Temperature Range Digital Circuits
Transistor-Transistor-Logic (TTL) -55

Full Military Temperature Range Digital Circuits
Transistor-Transistor-Logic (TLL) $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
SERIES 54
SN5400 Quadruple 2-Input Positive NAND Gate 1005
SN5410 Triple 3-Input Positive NAND Gate 1006
SN5430 8-In 4-Input Positive NAND Gate 1008
SN5440 Dual 4-Input Positive NAND Buffer 1009
SN5450 Expandable Dual 2-Wide 2-Input 1010
SN5451 Dual 2-Wide 2-Input AND-OR- 1010 INVERT Gate
SN5453 Expandable 4-Wide 2-Input AND-OR- 1012 INVERT Gate
SN5 560 4-Wide 2-Input AND-OR-INVERT Gate 1012
SN5470
SN5472 J-K Master-Slave Flip-Flop 1018
SN5474 Dual D-Type Edge-Triggered Flip-Flop 1024
SN5480 Gated Full Adder 1027

54930 RIES 54
SN54 932 Dual 4-input Positive NAND Gate 1502
SN54 946 Quadruple 2-Input Positive NAND 1502
SN54 948 Master-Slave Flip-Flop 1503
SN54 962 Triple 3-Input Positive NAND Gate 1502
SN54 966 Dual 2-Wide 2-Input 1502
AND-OR-INVERT Gate

Modified Diode-Transistor Logic (Modified DTL) $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$

| SERIES 53 |  | 2001 |
| :---: | :--- | ---: |
| SN5300 | J-K Flip-Flop With Preset | 2005 |
| SN5301 | J-K Flip-Flop With Preset and Clear | 2007 |
| SN5302 | Dual J-K Flip-Flop With Preset | 2009 |
| SN5304 | Dual J-K Flip-Flop With Preset and Clear 2011 |  |
| SN5310 | 5-Input Expandable NAND/NOR Gate 2013 |  |
| SN5311 | Dual 5-Input NAND/NOR Gate | 2015 |
| SN5315 | 10-Input Expandable NAND/NOR Gate 2016 |  |
| SN5320 | 5-Input Expandable AND/OR Gate | 2018 |
|  | (Also Usable as 5-Input Expander) |  |
| SN5330 | Dual 3-Input NAND/NOR Gate | 2020 |
| SN5331 | Triple 3-Input NAND/NOR Gate | 2021 |
| SN5340 | Dual AND/OR Gate | 2023 |
| SN5350 | Quadruple Inverter/Driver | 2024 |
| SN5360 | Quadruple 2-Input NAND/NOR Gate | 2025 |
| SN5370 | Dual AND-OR-INVERT Gate | 2026 |
| SN5380 | ONE-SHOT Monostable Multivibrator | 2027 |

## Diode-Transistor Logic (DTL) $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$

| SERIES 15 | 93 | 3001 |  |
| ---: | :--- | :--- | :--- |
| SN15 | 930 | Dual 4-Input NAND/NOR Gate | 3005 |
| SN15 | 931 | Flip-Flop With Set and Clear | 3007 |
| SN15 | 932 | Dual 4-Input NAND/NOR Buffer | 3009 |
| SN15 933 | Dual 4-Input Expander | 3011 |  |
| SN15 944 | Dual 4-Input NAND/NOR | 3012 |  |
|  |  | Power Gate |  |
| SN15 | 945 | Flip-Flop With Set and Clear | 3014 |
| SN15 946 | Quadruple 2-Input NAND/NOR Gate | 3017 |  |
| SN15 948 | Flip-Flop With Set and Clear | 3019 |  |
| SN15 950 | Pulse-Triggered Binary | 3022 |  |
| SN15 951 | Monostable Multivibrator | 3024 |  |
| SN15 962 | Triple 3-Input NAND/NOR Gate | 3026 |  |

* Operating free-air temperature range of $-55^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ and operating case temperature range of $-55^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$
$\dagger$ Operating free-air temperature range of $-55^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$ and operating case temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$


## Full Military Temperature Range Linear Circuits

SERIES $52\left(-55^{\circ} \mathrm{C}\right.$ to $\left.125^{\circ} \mathrm{C}\right)$
SN521A
SN522A
SN523A
SN5231L
SN524A
SN524AL
SN525
SN526 General-Purpose Differential Amplifier 4017
SERIES $55\left(-55^{\circ} \mathrm{C}\right.$ to $\left.125^{\circ} \mathrm{C}\right)$ 4501
SN5500 Sense Amplifier With One-Shot Output 4501
SN5510*
Wideband Video Amplifier 4505
Industrial Temperature Range Digital Circuits
Transistor-Transistor Logic (TTL) $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
SERIES 74
5001
SN7400 Quadruple 2-Input Positive NAND Gate 5005
SN7410 Triple 3-Input Positive NAND Gate 5006
SN7420 Dual 4-Input Positive NAND Gate 5007
SN7430 8-Input Positive NAND Gate 5008
SN7440 Dual 4-Input Positive NAND Buffer 5009
SN7450 Expandable Dual 2-Wide 2-Input 5010
AND-OR-INVERT Gate
SN7451 Dual 2-Wide 2-Input 5010 AND-OR-INVERT Gate
SN7453 Expandable 4-Wide 2-Input 5012

SN7454 4-Wide 2-Input AND-OR-INVERT Gate 5012
SN7460 Dual 4-Input Expander 5014
SN7470 J-K Flip-Flop 5015
SN7472 J-K Master-Slave Flip-Flop 5018
SN7473 Dual J-K Master-Slave Flip-Flop 5021
SN7474 Dual D-Type Edge-Triggered Flip-Flop 5024
SN7480 Gated Full Adder 5027
SERIES 749305501
SN74 930 Dual 4-Input Positive NAND Gate 5502
SN74 932 Dual 4-Input Positive NAND Buffer 5502
SN74 946 Quadruple 2-Input Positive NAND 5502
SN74 948 Master-Slave Flip-Flop 5503
SN74 962 Triple 3-Input Positive NAND Gate 5502
SN74 965 8-Input Positive NAND Gate 5502
SN74 966 Dual 2-Wide 2-Input 5502
AND-OR-INVERT Gate
SERIES 74N
6001
SN7400N Quadruple 2-Input Positive NAND 6002
SN7410N Triple 3-Input Positive NAND Gate 6002
SN7420N Dual 4-Input Positive NAND Gate 6002
SN7430N 8-Input Positive NAND Gate 6002
SN7440N Dual 4-Input Positive NAND Buffer 6003
SN7450N Expandable Dual 2-Wide 2-Input 6003
SN7451N Dual 2-Wide 2-Input 6003 AND-OR-INVERT Gate
SN7453N Expandable 4-Wide 2-Input 6003
SN754N AND-OR-INVERT Gate
SN7454N 4-Wide 2-Input
SN7460N Dual 4-Input Expander 6003
SN7470N J-K Flip-Flop 6004
SN7472N J-K Master-Slave Flip-Flop 6004
SN7473N Dual J-K Master-Slave Flip-Flop 6005
SN7474N Dual D-Type Edge-Triggered Flip-Flop 6005
SN7480N Gated Full Adder 6006
Modified Diode-Transistor Logic (Modified DTL) $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ SERIES 73

SN7300 J-K Flip-Flop With Preset 6505
SN7301 J-K Flip-Flop With Preset and Clear 6507
SN7302 Dual J-K Flip-Flop With Preset 6509
SN7304 Dual J-K Flip-Flop With Preset and Clear 6511
SN7310 5-Input Expandable NAND/NOR Gate 6513

|  |  | Page |
| :--- | :--- | :--- |
| SN7311 | Dual 5-Input NAND/NOR Gate | 6515 |
| SN7315 | 10-Input Expandable NAND/NOR Gate | 6516 |
| SN7320 | 5-Input Expander | 6517 |
| SN7330 | Dual 3-Input NAND/NOR Gate | 6518 |
| SN7331 | Triple 3-Input NAND/NOR Gate | 6519 |
| SN7350 | Quadruple Inverter/Driver | 6520 |
| SN7360 | Quadruple 2-Input NAND/NOR Gate | 6521 |
| SN7370 | Dual AND-OR-INVERT Gate | 6522 |
| SN7380 | ONE-SHOT Monostable Multivibrator | 6523 |

## Diode-Transistor Logic (DTL) $0^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$

| SERIES 15830 |  | 7001 |
| :---: | :---: | :---: |
| SN15 830 | Dual 4-Input NAND/NOR Gate | 7005 |
| SN15 831 | Flip-Flop With Set and Clear | 7007 |
| SN15 832 | Dual 4-Input NAND/NOR Buffer | 7009 |
| SN15 833 | Dual 4-Input Expander | 7011 |
| SN15 844 | Dual 4-Input NAND/NOR Power Gate | 7012 |
| SN15 845 | Flip-Flop With Set and Clear | 7014 |
| SN15 846 | Quadruple 2-Input NAND/NOR Gate | 7017 |
| SN15 848 | Flip-Flop With Set and Clear | 7019 |
| SN15 850 | Pulse-Triggered Binary | 7022 |
| SN15 851 | Monostable Multivibrator | 7024 |
| SN15 862 | Triple 3-Input NAND/NOR Gate | 7026 |
| SERIES $15830 \mathrm{~N}\left(0^{\circ} \mathrm{C}\right.$ to $75^{\circ} \mathrm{C}$ ) |  | 7501 |
| SN15 830N | Dual 4-Input NAND/NOR Gate | 7503 |
| SN15 831N | Flip-Flop With Set and Clear | 7502 |


| SN15 | 832 N | Dual 4-Input NAND/NOR Buffer | 7503 |
| :---: | :---: | :---: | :---: |
| SN15 | 833 N | Dual 4-Input Expander | 7503 |
| SN15 | 844N | Dual 4-Input NAND/NOR Power Gate | 7503 |
| SN15 | 845N | Flip-Flop With Set and Clear | 7502 |
| SN15 | 846 N | Quadruple 2-Input NAND/NOR Gate | 7503 |
| SN15 | 848N | Flip-Flop With Set and Clear | 7502 |
| SN15 | 850 N | Pulse-Triggered Binary | 7502 |
| SN15 | 851 N | Monostable Multivibrator | 7504 |
| SN15 | 862 N | Triple 3-Input NAND/NOR Gate | 7503 |

## Industrial Temperature Range Linear Circuits

SERIES $72\left(0^{\circ} \mathrm{C}\right.$ to $\left.70^{\circ} \mathrm{C}\right) \quad 8001$
SN723 General-Purpose Differential Amplifier 8001
SN7231L General-Purpose Differential Amplifier 8005
SN724 General-Purpose Differential Amplifier 8005
SN724L
General-Purpose Operational Amplifier 8009
SERIES $75\left(0^{\circ} \mathrm{C}\right.$ to $\left.70^{\circ} \mathrm{C}\right)$
8501
SN7500 Sense Amplifier With One-Shot Output
SN7501 Sense Amplifier With Flip-Flop Output
SN7502 Sense Amplifier With One-Shot Output
Experimental Circuits
Optoelectronic Pulse Amplifier
8504
8506
8508

Interface Components
SN15 831N Flip-Flop With Set and Clear 7502

## DIGITAL INTEGRATED CIRCUITS SELECTION GUIDE

| TYPICAL CHARACTERISTICS |  |  | TEMPERATURERANGE | $\begin{gathered} \text { TYPE } \\ \text { OF } \\ \text { LOGIC } \end{gathered}$ | LOGIC FAMILY | CATALOG |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PROPAGATION DELAY TIME | $\begin{gathered} \text { POWER } \\ \text { DISSIPATION } \\ \text { (each gate) } \end{gathered}$ | NOISE IMMUNITY |  |  |  |  |
| HIGH SPEED - HIGH A-C AND D-C NOISE MARGINS |  |  |  |  |  |  |
| 13 ns | 10 mW | 1000 mV | $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ | TTL | Series 54 | 1001 |
| 13 ns | 10 mW | 1000 mV | $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ | TTL | Series 54930 | 1501 |
| 13 ns | 10 mW | 1000 mV | $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ | TTL | Series 74 | 5001 |
| 13 ns | 10 mW | 1000 mV | $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ | TTL | Series 74930 | 5501 |
| MEDIUM SPEED - HIGH D-C NOISE MARGIN |  |  |  |  |  |  |
| 25 ns | 8 mW | 750 mV | $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ | DTL | Series 15930 | 3001 |
| 25 ns | 8 mW | 750 mV | $0^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$ | DTL | Series 15830 | 7001 |
| ECONOMICAL PLUG-IN PACKAGE |  |  |  |  |  |  |
| 13 ns | 10 mW | 1000 mV | $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ | TTL | Series 74N | 6001 |
| 25 ns | 8 mW | 750 mV | $0^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$ | DTL | Series 15830 N | 7501 |
| MODIFIED DTL |  |  |  |  |  |  |
| 30 ns | 10 mW | 300 mV | $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ | $\begin{array}{c\|} \hline \text { Modified } \\ \text { DTL } \end{array}$ | Series 53 | 2001 |
| 30 ns | 10 mW | 300 mV | $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ | $\begin{array}{c\|} \hline \text { Modified } \\ \hline \text { DTL } \end{array}$ | Series 73 | 6501 |

## LINEAR INTEGRATED CIRCUITS SELECTION GUIDE DIFFERENTIAL／OPERATIONAL AMPLIFIERS

| PARAMETER |  | 폴 N N | $\begin{aligned} & \text { ్ㅜㅇ } \\ & \text { 苍 } \end{aligned}$ |  | 貝总资 | $\begin{aligned} & \text { N్N } \\ & \text { N్ర } \end{aligned}$ | 菡 | $\begin{aligned} & \text { 을 } \\ & \text { 怘 } \\ & \text { 雭 } \end{aligned}$ | N | $\begin{aligned} & \text { 方 } \\ & \text { N } \\ & \text { N } \end{aligned}$ | 들 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Avs | Open－loop voltage gain | 62 | 62 | 72 | 63 | 90 | 66 | 40 | 69 | 61 | dB |
| BW | Bandwidth（ -3 dB ） | 50 | 50 | 180 | 140 | 45 | 120 | 40，000 | 150 | 140 | kHz |
| $\mathrm{Z}_{\text {in }}$ | Input impedance | － | － | 15 | 1，000 | 140 | 1，000 | 6 | 10 | 800 | k $\boldsymbol{\Omega}$ |
| $\mathrm{C}_{\text {in }}$ | Input capacitance | － | － | 55 | 60 | 250 | 50 | 7 | 55 | 60 | pF |
| $V_{D I}$ | Differential－input offset voltage | 1 | 1 | 2.2 | 12 | 1 | 3 | 3 | 4 | 15 | mV |
| $I_{D I}$ | Differential－input offset current | 0.2 | 0.2 | 0.5 | 0.02 | 0.016 | 0.006 | 3 | 1 | 0.044 | $\mu \mathrm{A}$ |
| $\alpha_{\mathrm{VDI}}$ | Differential－input offset voltage temperature coefficient | 8 | 8 | 9 | 25 | 5 | 10 | 10 | 10 | 30 | $\mu \mathrm{V} / \mathrm{deg}$ |
| $\mathrm{V}_{\text {CMIM }}$ | Maximum common－mode input voltage range | $\pm 3$ | $\pm 3$ | $\pm 5$ | $\pm 5$ | $\pm 7$ | $\pm 7$ | $\pm 1$ | $\pm 5$ | $\pm 5$ | V |
| $V_{\text {смо }}$ | Common－mode output offset voltage | 0.5 | 0.5 | 0.5 | － | 0.25 | 0.22 | 3.1 | 0.6 | － | V |
| $Z_{\text {out }}$ | Output impedance | 10，000 | 160 | 200 | 200 | 10，000 | － | 35 | 250 | 300 | $\Omega$ |
| Vom | Maximum peak－to－peak output voltage | 8.2 | 5.4 | 24 | 15 | 18 | 11.7 | 4.0 | 20 | 12 | V |
| CMRR | Common－mode rejection ratio | 60 | 60 | 90 | 55 | 100 | 77 | 85 | 80 | 55 | dB |
| $\mathrm{P}_{\mathrm{T}}$ | Total power dissipation | 28 | 72 | 100 | 120 | 100 | 132 | 165 | 100 | 120 | mW |
| $\mathrm{I}_{\text {in }}$ | Input current | 2 | 2 | 5 | 0.08 | 0.45 | 0.05 | 40 | 6.5 | 0.11 | $\mu \mathrm{A}$ |
|  | CATALOG PAGE | 4001 | 4001 | $\begin{aligned} & 4005 \\ & 4009 \end{aligned}$ | 4013 | 4017 | 4023 | 4505 | $\begin{aligned} & 8001 \\ & 8005 \end{aligned}$ | 8009 |  |

SENSE AMPLIFIERS

| PARAMETER |  | TYPE | 薟 | － | \％ | 皆 | 氛 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $V_{T}$ | Differential－input threshold voltage |  | 17 | 17 | 17 | 21 | mV |
| $\mathrm{V}_{\text {CMF }}$ | Common－mode input firing voltage |  | 2 | 2 | 2 | 2.5 | V |
| $V_{\text {out（1）}}$ | Logical 1 output voltage |  | 3.2 | 3.2 | 3.2 | 3.2 | V |
| $\mathrm{V}_{\text {out（0）}}$ | Logical 0 output voltage |  | 0.2 | 0.2 | 0.2 | 0.2 | V |
| $\mathrm{I}_{\text {in }}$（1） | Logical 1 level input current （strobe or reset） |  | 1.2 | 1.2 | － | － | mA |
| $\mathrm{I}_{\text {in（0）}}$ | Logical 0 level input current （strobe or reset） |  | － | － | －1．1 | －1．1 | mA |
| $\mathrm{Z}_{\text {in }} \mathrm{D}$ | Differential－input impedance |  | 0.2 | 0.2 | 5 | 5 | k $\Omega$ |
| $\mathrm{l}_{\mathrm{CCl}}$ | $V_{\text {ccı }}$ supply current |  | 15 | 15 | 18 | 15 | mA |
| $\mathrm{lcC2}$ | $\mathrm{V}_{\mathrm{CC} 2}$ supply current |  | －10 | －10 | －10 | －8 | mA |
| $\mathrm{I}_{\text {ref }}$ | $V_{\text {ref }}$ supply current |  | － | － | 2.5 | 2.5 | mA |
| $\mathrm{t}_{\text {cyc（min）}}$ | Minimum cycle time |  | 1.5 | 1.5 | 0.7 | 1.5 | $\mu \mathrm{S}$ |
|  |  | CATALOG PAGE | 4501 | 8504 | 8506 | 8508 |  |

## NUMERIC INDEX <br> (Updated with each mailing of new data sheets)

This index is presented for the user who is not familiar with the "series system" of designating integrated circuits. It is therefore arranged in strict ascending numerical order, disregarding letter prefixes and series relationships.

|  | page |  | page |  | page |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Series 52 | 4001 | 5500 |  | 15800 |  |
| Series 53 | 2001 | SN5500 | 4501 | Series 15830 | 7001 |
| Series 54 | 1001 | SN5510 | 4505 | Series 15 830N | 7501 |
| Series 55 | 4501 | SN5510L | 4505 | SN15 830 | 7005 |
| Series 72 | 8001 |  |  | SN15 830N | 7503 |
| Series 73 | 6501 | 7200 |  | SN15 831 | 7007 |
| Series 74 | 5001 | SN7231L | 8005 | SN15 831N | 7502 |
| Series 74N | 6001 | 7300 |  | SN15 832 | 7009 |
| Series 75 | 8501 | SN7300 | 6505 | SN15 832N | 7503 |
| 500 |  | SN7301 | 6507 | SN15 833 | 7011 |
| SN521A | 4003 | SN7302 | 6509 | SN15 833N | 7503 |
| SN522A | 4003 | SN7304 | 6511 | SN15 844 | 7012 |
| SN523A | 4007 | SN7310 | 6513 | SN15 844N | 7503 |
| SN524A | 4015 | SN7311 | 6515 | SN15 845 | 7014 |
| SN524AL | 4015 | SN7315 | 6516 | SN15 845N | 7502 |
| SN525 | 4019 | SN7320 | 6517 | SN15 846 | 7017 |
| SN526 | 4025 | SN7330 | 6518 | SN15 846N | 7503 |
| 700 |  | SN7331 | 6519 | SN15 848 | 7019 |
| SN723 | 8001 | SN7350 | 6520 | SN15 848N | 7502 |
| SN724 | 8009 | SN7360 | 6521 | SN15 850 | 7022 |
| SN724L | 8009 | SN7370 | 6522 | SN15 850N | 7502 |
|  |  | SN7380 | 6523 | SN15 851 | 7024 |
| 1300 |  |  |  | SN15 851N | 7504 |
| SNX1304 | 9001 | 7400 |  | SN15 862 | 7026 |
| 5200 |  | SN7400 | 5005 | SN15 862N | 7503 |
| SN5231L | 4011 | SN7400N | 6002 | 15900 |  |
| 5300 |  | SN7410 | 5006 | Series 15930 | 3001 |
| SN5300 | 2005 | SN7410N | 6002 | SN15 930 | 3005 |
| SN 5301 | 2007 | SN7420 | 5007 | SN15 931 | 3007 |
| SN 5302 | 2009 | SN7420N | 6002 | SN15 932 | 3009 |
| SN5304 | 2011 | SN7430 | 5008 | SN15 933 | 3011 |
| SN5310 | 2013 | SN7430N | 6002 | SN15 944 | 3012 |
| SN5311 | 2015 | SN7440 | 5009 | SN15 945 | 3014 |
| SN5315 | 2016 | SN7440N | 6003 | SN15 946 | 3017 |
| SN5320 | 2018 | SN7450 | 5010 | SN15 948 | 3019 |
| SN5330 | 2020 | SN7450N | 6003 | SN15 950 | 3022 |
| SN5331 | 2021 | SN7451 | 5010 | SN15 951 | 3024 |
| SN5340 | 2023 | SN7451N | 6003 | SN15 962 | 3026 |
| SN5350 | 2024 | SN7453 | 5012 |  |  |
| SN5360 | 2025 | SN7453N | 6003 | ries 54930 |  |
| SN5370 | 2026 | SN7454 | 5012 | Series 54930 | 1502 |
| SN5380 | 2027 | SN7454N | 6003 | SN54 930 | 1502 |
|  |  | SN7460 | 5014 | SN54 932 | 1502 |
| 5400 |  | SN7460N | 6003 | SN54 946 | 1502 |
| SN5400 | 1005 | SN7470 | 5015 | SN54 948 | 1503 |
| SN5410 | 1006 | SN7470N | 6004 | SN54 962 | 1502 |
| SN5420 | 1007 | SN7472 | 5018 | SN54 965 | 1502 |
| SN5430 | 1008 | SN7472N | 6004 | SN54 966 | 1502 |
| SN5440 | 1009 | SN7473 | 5021 | 74900 |  |
| SN5450 | 1010 | SN7473N | 6005 | Series 74930 | 5501 |
| SN5451 | 1010 | SN7474 | 5024 | SN74 930 | 5502 |
| SN5453 | 1012 | SN7474N | 6005 | SN74 932 | 5502 |
| SN5454 | 1012 | SN7480 | 5027 | SN74 946 | 5502 |
| SN5460 | 1014 | SN7480N | 6006 | SN74 948 | 5503 |
| SN5470 | 1015 | SN7480N |  | SN74 962 | 5503 |
| SN5472 | 1018 | 7500 |  | SN74 962 | 5502 |
| SN5473 | 1021 | SN7500 | 8504 | SN74 965 | 5502 |
| SN 5474 | 1024 | SN7501 | 8506 | SN74 966 | 5502 |
| SN5480 | 1027 | SN7502 | 8508 | Interface Components | 9501 |

## FIELD SALES OFFICE ADDRESSES

BALA-CYNWYD, PA. 19004
1015 Barclay Building
One Belmont Avenue
Phone: 215 TE 9-6380

DENVER, COLORADO 80222
Geophoto Services, Inc., Building
2149 South Holly Street
Phone: 303-757-8329

ENDICOTT, NEW YORK 13760
Post Office Box 87
2209 East Main
Phone: 607 ST 5-9987

ORLANDO, FLORIDA 32801
618 East South Street Suite 114
Phone: 305 GA 2-9894

PALO ALTO, CALIFORNIA 94306
230 California Avenue Suite 201
Phone: 415 DA 6-6770

GARDEN CITY, L.I., NEW YORK 11532
600 Old Country Road
Phone: 516 PI 2-1515
CHICAGO, ILLINOIS 60646
Executive Towers, Suite 205 5901 North Cicero Avenue Phone: 312-286-1000

HOLLYWOOD, CALIFORNIA 90028
1800 North Argyle Avenue
Phone: 213-466-7251

POUGHKEEPSIE, NEW YORK 12603
131 Fulton Avenue, J-2
Phone: 914 GR 1-6095

HOUSTON, TEXAS 77006
3334 Richmond Avenue Suite 102
Phone: 713 JA 6-3268, 9

DALLAS, TEXAS 75222

SRO Department
Post Office Box 5012
Phone: 214 AD 5-2381
HUNTSVILLE, ALABAMA 35801
Sahara Office Park Building Suite 111
3313 Memorial Parkway, S.W.
Phone: 205-881-4061, 4102

DAYTON, OHIO 45439
Paul Welch Building
3300 South Dixie Drive
Phone: 513 AX 8-7513

INGLEWOOD, CALIFORNIA 90301 5005 West Century Boulevard Suite 208
Phone: 213-673-3943

RICHMOND HILLS, ONTARIO, CANADA
280 Centre East
Phone: 416-925-1035, 416-285-7112

SAN DIEGO, CALIFORNIA 92116
4185 Adams Avenue
Phone: 714-284-1181

SANTA ANA, CALIFORNIA 92701
1505 East 17th Street Suite 201
Phone: 714 KI 7-6506

UNION, NEW JERSEY 07083
U. S. Highway \#22

Post Office Box 366
Phone: 687-7200, New Jersey
Phone: 682-7951, New York
SOUTHFIELD, MICHIGAN 48075 Suite 706
Northland Towers Building Phone: 313-357-1703

ST. PAUL, MINNESOTA 55104 Griggs-Midway Building, Room 154 1821 University Avenue Phone: 612 MI 6-2755

SYRACUSE, NEW YORK 13202
501 East Fayette Street
Phone: 315 GR 6-4031

WASHINGTON, D.C. 20009 1875 Connecticut Avenue, N.W. Suite 913
Phone: 202 AD 4.9320

WALTHAM, MASS. 02154
60 Hickory Drive
Phone: 617-891-8450

WOODBRIDGE, CONN. 06525
300 Amity Road
Phone: 203-389-4521

## AUTHORIZED DISTRIBUTORS

## FOR TEXAS INSTRUMENTS SEMICONDUCTORS AND COMPONENTS

## ALABAMA

ACK SEMICONDUCTORS INC
3101 Fourth Avenue South/FA 2-0588 Birmingham, Alabama 35233
2407 North Memorial Parkway/539-3456 Huntsville, Alabama 35810

## ARIZONA

KIERULFF ELECTRONICS, INC.
2633 East Buckeye Road/273-7331 Phoenix, Arizona 85034

## CALIFORNIA

CALIFORNIA ELECTRONICS SUPPLY, INC.
1911 Armacost Avenue/TR 9-0760
West Los Angeles, California 90025
KIERULFF ELECTRONICS, INC.
2484 Middlefield Road/968-6292 Mt. View, California 94041

NEWARK ELECTRONICS CO., INC. 4747 West Century Boulevard/OR 8-0441 Inglewood, California 90301

MILO OF CALIFORNIA 2060 India Street/BE 2-8951 San Diego, California 92101
RADIO PRODUCTS SALES, INC.
1501 South Hill Street/RI 8-1271 Los Angeles, California 90015
R. V. WEATHERFORD COMPANY

1651 South State College Blvd./KI 7-7521 Anaheim, California 92805
6921 San Fernando Road/VI 9-3451 Glendale, California 91201 3240 Hillview Drive
Stanford Industrial Park/DA 1-5373 Palo Alto, California 94304

TI SUPPLY COMPANY 1651 Tenth Street/393-6733
Santa Monica, California 90404

## COLORADO

NEWARK-DENVER ELECTRONIC SUPPLY CORP.
2170 South Grape Street/757-3351
Denver, Colorado 80222

FLORIDA
ELECTRONIC WHOLESALERS, INC.
345 Graham Avenue/841-1550 Orlando, Florida 32814
9390 N.W. 27th Avenue/OX 6-1620 Miami, Florida 33147

## gEORGIA

ACK SEMICONDUCTORS INC.
554 Deering, N.W./873-5246 Atlanta, Georgia 30309

## ILLINOIS

ALLIED ELECTRONICS CORPORATION
100 North Western Avenue/TA 9-9100 Chicago, Illinois 60680
MERQUIP ELECTRONICS, INC.
4939 North Elston Avenue/AV 2-5400 Chicago, Illinois 60630

NEWARK ELECTRONICS CORPORATION
500 North Pulaski Road/638-4411
Chicago, Illinois 60624

## INDIANA

RADIO DISTRIBUTING COMPANY
812 North Senate Avenue/ME 7-5571 Indianapolis, Indiana 46206

## IOWA

DEECO, INC.
618 First Street, N.W./EM 5-7751 Cedar Rapids, Iowa 72405

## LOUISIANA

ELECTRONIC PRODUCTS CORPORATION 3622 Toulouse Street/HU 6-3777 New Orleans, Louisiana 70119

## MARYLAND

ELECTRONIC WHOLESALERS, INC. 3004 Wilkens Avenue/WI 5-3400 Baltimore, Maryland 21223 MILGRAY/WASHINGTON 5133 Lawrence Place/864-6330 Hyattsville, Maryland 20781

MASSACHUSETTS DEMAMBRO ELECTRONICS
1095 Commonwealth Avenue/783-1200 Boston, Massachusetts 02215

TI SUPPLY COMPANY 480 Neponset Road/828-5020 Canton, Massachusetts 02021
LAFAYETTE INDUSTRIAL ELECTRONICS 1400 Worcester Road/969-6100 Natick, Massachusetts 01710

## MICHIGAN

NEWARK-DETROIT ELECTRONICS, INC. 20700 Hubbell Avenue/UN 1-6700 Detroit, Michigan 48237
NEWARK-INDUSTRIAL
ELECTRONICS CORP.
2114 South Division/CH 1-5695
Grand Rapids, Michigan 49507

## MINNESOTA

STARK ELECTRONIC SUPPLY CO.
112 Third Avenue N/FE 2-1325 Minneapolis, Minnesota 55401

## MISSOURI

TI SUPPLY COMPANY
1660 Broadway/HA 1-5670
Kansas City, Missouri 64108
ELECTRONIC COMPONENTS FOR INDUSTRY
2605 South Hanley Road/MI 7-5505 St. Louis, Missouri 63144

## NEW JERSEY

GENERAL RADIO SUPPLY COMPANY, INC. 600 Penn Street/W0 4-8560 Camden, New Jersey 08102

TI SUPPLY COMPANY
U. S. Highway \#22

Post Office Box 366/687-0213
Union, New Jersey 07083
LAFAYETTE INDUSTRIAL ELECTRONICS
24 Central Avenue/MI 3-6868
Newark, New Jersey 07102

## NEW MEXICO

KIERULFF ELECTRONICS, INC. 6405 Acoma Road, S.E./AM 8-3901 Albuquerque, New Mexico 87108

## NEW YORK

GENESEE RADIO \& PARTS CO., INC. 2550 Delaware Avenue/TR 3-9661 Buffalo, New York 14216

LAFAYETTE INDUSTRIAL ELECTRONICS
165-08 Liberty Avenue/AX 1-7000
Jamaica, New York 11431
MILGRAY/NEW YORK
160 Varick Street/YU 9-1600
New York, New York 10013
ROCHESTER RADIO SUPPLY CO., INC
140 West Main Street/454-7800 Rochester, New York 14614

## NORTH CAROLINA

ELECTRONIC WHOLESALERS, INC.
938 Burke Street/PA 5-8711
Winston-Salem, North Carolina 27101

## OHIO

NEWARK-HERRLINGER
ELECTRONICS CORP.
112 East Liberty Street/GA 1-5282 Cincinnati, Ohio 45210
SREPCO ELECTRONICS, INC.
314 Leo Street/BA 4-3871 Dayton, Ohio 45404

ESCO ELECTRONICS INC.
3130 Valleywood Drive/298-0191 Dayton, Ohio 45429
W. M. PATTISON SUPPLY CO.

777 Rockwell Avenue/621-7320 Cleveland, Ohio 44101

## OKLAHOMA

TI SUPPLY COMPANY
1124 East 4th Street/LU 3-8121 Tulsa, Oklahoma 74110

PENNSYLVANIA
MILGRAY/DELAWARE VALLEY INC.
2532 North Broad Street/BA 8-2000 Philadelphia, Pennsylvania 19107
RADIO PARTS COMPANY, INC.
6401 Penn Avenue/EM 1-4600
Pittsburgh, Pennsylvania 15206

TEXAS
TI SUPPLY COMPANY
6000 Denton Drive/FL 7-6121
Dallas, Texas 75235
5240 Elm Street/M0 6-2175
Houston, Texas 77036
HARRISON EQUIPMENT COMPANY, INC.
1422 San Jacinto Street/CA 4-9131 Houston, Texas 77001
MIDLAND SPECIALTY COMPANY
2235 Wyoming Avenue/KE 3-9555 El Paso, Texas 79903

## UTAH

STANDARD SUPPLY COMPANY
225 East Sixth South St./EL 5-2971 Salt Lake City, Utah 84110

WASHINGTON
ALMAC-STROUM ELECTRONICS
621 South Michigan Street/723-7310 Seattle, Washington 98108

WASHINGTON, D.C.
ELECTRONIC WHOLESALERS, INC. 2345 Sherman Avenue, N.W./HU 3-5200 Washington, D.C. 20001

## CANADA

CANADIAN ELECTRONICS LTD.
Calgary, Alberta
Edmonton, Alberta
Lethbridge, Alberta
Medicine Hat, Alberta
Vancouver, B.C.
CAM GARD SUPPLY LTD.
Saskatoon, Saskatchewan
Winnipeg, Manitoba
CESCO ELECTRONICS LTD.
Montreal, Quebec
Quebec, Quebec
Ottawa, Ontario
Toronto, Ontario
TI SUPPLY COMPANY
Montreal, Quebec

## HIGH-SPEED SATURATED TRANSISTOR-TRANSISTOR LOGIC CIRCUITS FOR GENERAL-PURPOSE DIGITAL SYSTEM APPLICATIONS

## description

Series 54 integrated circuits have been designed and characterized for high-speed, general-purpose digital applications where high d-c noise margin and relatively low power dissipation are important system considerations. Definitive specifications are provided for operating characteristics over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. This logic series includes the basic gates, flip-flop elements, and complex logic and storage elements needed to perform all functions of general-purpose digital systems.


TYPE SN5400 PRIOR TO CAPPING

## features

## LOW SYSTEM COST

- maximum number of circuits per package through use of 14-lead package


## OPTIMUM CIRCUIT PERFORMANCE

- high speed - typical gate propagation delay time of 13 ns
- high d-c noise margin - typically one volt
- low output impedance provides low a-c noise susceptibility
- waveform integrity over full range of loading and temperature conditions
- low power dissipation - $\mathbf{1 0} \mathbf{~ m W}$ per gate at $\mathbf{5 0 \%}$ duty cycle
- full fan-out of 10


[^0]

## design characteristics

Series 54 digital integrated circuits effect an optimization between saturated logic circuitry and monolithic semiconductor technology yielding high performance at lowest cost. In discrete-component circuitry maximum use is made of lower cost components (diodes and resistors) instead of the higher priced transistors. However, in monolithic circuitry it costs no more to build transistors than diodes or resistors. Therefore, in Series 54, transistors are used to buffer the fluctuations in currents that occur as resistor values change. Also, the Series 54 multiple-emitter transistor can easily be built in a monolithic bar to eliminate the need for conventional input diodes.

## circuit operation

The transistor-transistor logic (TTL) used in Series 54 is analogous to diode-transistor logic (DTL) in certain respects. As shown in figure $A$, a low voltage at inputs $A$ or $B$ will allow current to flow through the diode associated with the low input, and no drive current will pass through diode $D_{3}$. If inputs $A$ and $B$ are raised to a high voltage, drive current will then pass through diode $D_{3}$.


In Series 54 TTL circuitry, the multiple-emitter transistor performs the same function as the diodes in DTL (see figure B). However, the transistor action of the multiple-emitter transistor causes transistor $Q_{1}$ to turn-off more rapidly, thus providing an inherent switching-time advantage over the DTL circuit.
Although one-volt d-c noise margins are typical for Series 54 circuits, an absolute guarantee of 400 millivolts is assured for every unit. This is accomplished by testing each output and input as shown in figures $C$ and $D$.



Each output is tested to ensure that the logical 1 output voltage will not fall below 2.4 volts. This is done with full fan-out, lowest $\mathrm{V}_{\mathrm{CC}}$, and 0.8 volt on the input -400 mV more than the logical 0 maximum.

Each output is tested to ensure that the logical 0 output voltage will not exceed 0.4 volt. This is done with full fanout, lowest $\mathrm{V}_{\mathrm{CC}}$, and 2 volts on the input -400 mV less than the logical 1 minimum.

In actual system operation, the majority of circuits do not experience worst-case conditions of fan-out, supply voltage, temperature, and input voltage simultaneously. In addition, the threshold voltage of the Series 54 circuits is about 1.5 volts. These characteristics allow a larger voltage change on an input without false triggering. This typical noise margin is shown in figure $E$.


Figure E - Typical D-C Margin vs Temperature

Another important feature of the design is the output configuration which both supplies current (in the logical 1 state) and sinks current (in the logical 0 state) from a low impedance. Typically, logical 0 output impedance is $12 \Omega$ and logical 1 output impedance is $70 \Omega$. This low output impedance in either state rejects capacitively coupled a-c pulses and ensures small R-C time constants which preserve waveshape integrity.

## SERIES 54 

standard line summary

| SN5400 See page 1005 <br> QUADRUPLE 2-INPUT POSITIVE NAND GATE |  | See page 1006 <br> 3-INPUT <br> NAND GATE | SN5420 | See page 1007 <br> -INPUT AND GATE | SN5430 <br> POSITIVE | See page 1008 <br> UT <br> AND GATE |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | ee page 1010 <br> LE DUAL -INPUT VERT GATE | DUAL 2 <br> AND-OR | See page 1010 <br> DE 2-INPUT VERT GATE | SN5453 <br> EXPAN <br> AND- | ee page 1012 <br> LE 4-WIDE IPUT VERT GATE |
| SN5454 See page 1012 <br> 4-WIDE 2-INPUT AND-OR-INVERT GATE | SN5460 <br> DUAL 4-I | ee page 1014 <br> t EXPANDER |  | See page 1015 <br> P-FLOP |  | TER-SLAVE FLOP |
| SN5473 See page 1021 <br> DUAL J-K MASTER-SLAVE FLIP-FLOP |  | SN5474 See page 1024 <br> DUAL D-TYPE <br> EDGE-TRIGGERED FLIP-FLOP |  |  | SN5480 See page 1027 <br> GATED FULL ADDER |  |

# absolute maximum ratings over operating free-air temperature range (unless otherwise noted) <br> Supply Voltage $\mathrm{V}_{\mathrm{Cc}}($ See Note 1) . . . . . . . . . . . . . . . . . . . . . . 7 V <br> Input Voltage $\mathrm{V}_{\text {in }}$ (See Notes 1 and 2) . . . . . . . . . . . . . . . . . . . . 5.5 V <br> Operating Free-Air Temperature Range . . . . . . . . . . . . . . . . $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ <br> Storage Temperature Range . . . . . . . . . . . . . . . . . . . $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ 

NOTES: 1. Voltage values are with respect to network ground terminal.
2. Input signals must be zero or positive with respect to network ground terminal.

## logic definition

Series 54 logic is defined in terms of standard POSITIVE LOGIC using the following definitions:

$$
\begin{aligned}
\text { LOW VOLTAGE } & =\text { LOGICAL } 0 \\
\text { HIGH VOLTAGE } & =\text { LOGICAL } 1
\end{aligned}
$$

## input-current requirements

Input-current requirements reflect worst-case conditions for $T_{A}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V . Each input of the multiple-emitter input transistor requires that no more than -1.6 mA flow out of the input at a logical 0 voltage level; therefore, one load $(N=1)$ is -1.6 mA maximum. Each input requires current into the input at a logical 1 voltage level. This current is $40 \mu \mathrm{~A}$ maximum for each emitter input. Currents into the input terminals are specified as positive values. Arrows on the d-c test circuits indicate the actual direction of current flow.

## fan-out capability

Fan-out reflects the ability of an output to sink current from a number of loads ( N ) at a logical 0 voltage level and to supply current at a logical 1 voltage level. Each standard output is capable of sinking current or supplying current to 10 loads $(N=10)$. The buffer gate is capable of sinking current or supplying current to 30 loads ( $\mathrm{N}=30$ ). The carry output $\left(\mathrm{C}_{\mathrm{n}}+1\right.$ ) of the full adder is capable of driving 5 loads $(N=5)$ and the $A^{\star}$ and $B^{\star}$ nodes may be used to drive 3 loads ( $N=3$ ). Load currents (out of the output terminal) are specified as negative values. Arrows on the d-c test circuits indicate the actual direction of current flow.

## unused inputs

For optimum switching times, unused gate inputs should be tied to a positive voltage source of 2.4 V to 5.5 V . This eliminates the distributed capacitance associated with the floating input-transistor emitter, bond wire, and package lead, and ensures that no degradation will occur in the propagation delay times. Supply voltage $\mathrm{V}_{\mathrm{cc}}$, if regulated to 5.5 V maximum, may be used.

If the supply voltage $\mathrm{V}_{\mathrm{cc}}$ cannot be limited to 5.5 V the following alternatives are recommended:
a. Connect unused gate inputs to an independent supply voltage source of 2.4 V to 5.5 V .
b. Connect unused inputs to a used input if maximum fan-out of the driving output will not be exceeded.

In all cases, unused Jぇ and $\mathrm{K}^{\star}$ inputs of the SN5470 must be connected to ground.
Instructions for terminating unused inputs of the SN5480 are provided in the applications shown for that device.
schematic (each gate)


Component values shown are nominal.


## recommended operating conditions


electrical characteristics, $\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$

| PARAMETER | TEST FIGURE | TEST CONDITIONS | MIN | TYP MAX | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Logical 1 input voltage required <br> $\mathrm{V}_{\text {in(1) }}$ at all input terminals to ensure logical 0 level at output | 1 | $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{~V}_{\text {out }(0)} \leq 0.4 \mathrm{~V}$ | 2 |  | V |
| Logical 0 input voltage required <br> $V_{\text {in(0) }}$ at any input terminal to ensure logical 1 level at output | 2 | $\mathrm{V}_{\mathrm{cc}}=4.5 \mathrm{~V}, \quad \mathrm{~V}_{\text {out }(1)} \geq 2.4 \mathrm{~V}$ |  | 0.8 | V |
| $\mathrm{V}_{\text {out (1) }}$ Logical 1 output voltage | 2 | $\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=4.5 \mathrm{~V}, \quad \mathrm{~V}_{\text {in }}=0.8 \mathrm{~V}, \\ & \mathrm{I}_{\text {load }}=-400 \mu \mathrm{~A} \end{aligned}$ | 2.4 | $3.3 \ddagger$ | V |
| $\mathrm{V}_{\text {out(0) }}$ Logical 0 output voltage | 1 | $\begin{array}{ll} V_{c \mathrm{Cc}}=4.5 \mathrm{~V}, & \mathrm{~V}_{\mathrm{in}}=2 \mathrm{~V} \\ \mathrm{I}_{\text {sink }}=16 \mathrm{~mA} \end{array}$ |  | 0.22 $\ddagger 0.4$ | V |
| $\mathrm{I}_{\text {in(0) }}$ Logical 0 level input current (each input) | 3 | $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\text {in }}=0.4 \mathrm{~V}$ |  | -1.6 | mA |
|  | 4 | $\mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\text {in }}=2.4 \mathrm{~V}$ |  | 40 | $\mu \mathrm{A}$ |
| in(1) Logical 1 level input current (each input) | 4 | $\mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\text {in }}=5.5 \mathrm{~V}$ |  | 1 | mA |
| $\mathrm{I}_{\text {OS }}$ Short-circuit output current $\dagger$ | 5 | $\mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}$ | -20 | -55 | mA |
| ${ }^{1} \mathrm{CC}(0)$ Logical 0 level supply current (each gate) | 6 | $\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V}, \quad \mathrm{~V}_{\text {in }}=5 \mathrm{~V}$ |  | 3 | mA |
| $\mathrm{I}_{\mathrm{CC}}(1)$ Logical I level supply current (each gate) | 6 | $\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V}, \quad \mathrm{~V}_{\text {in }}=0$ |  | 1 | mA |

switching characteristics, $\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V}, \mathbf{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{N}=10$

| PARAMETER | $\begin{aligned} & \text { TEST } \\ & \text { FIGURE } \end{aligned}$ | TEST CONDITIONS | MIN TYP | MAX | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ${ }^{\text {pdo }}$ ( Propagation delay time to logical 0 level | 50 | $\mathrm{C}_{1}=15 \mathrm{pF}$ | 8 | 15 | ns |
| $t_{\text {pdi }}$ Propagation delay time to logical 1 level | 50 | $\mathrm{C}_{1}=15 \mathrm{pF}$ | 18 | 29 | ns |

$\dagger$ Not more than one output should be shorted at a time.
$\ddagger$ These typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

## schematic (each gate)



Component values shown are nominal.


## recommended operating conditions


electrical characteristics, $\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$

| PARAMETER | $\begin{gathered} \text { TEST } \\ \text { FIGURE } \end{gathered}$ | TEST CONDITIONS |  | MIN | TYP | MAX | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Logical 1 input voltage required <br> $\mathrm{V}_{\mathrm{in}(1)}$ at all input terminals to ensure logical 0 level at output | 1 | $\mathrm{V}_{\mathrm{cc}}=4.5 \mathrm{~V}$, | $\mathrm{V}_{\text {out }(0)} \leq 0.4 \mathrm{~V}$ | 2 |  |  | V |
| Logical 0 input voltage required <br> $V_{\text {in(0) }}$ at any input terminal to ensure logical 1 level at output | 2 | $\mathrm{V}_{\mathrm{cc}}=4.5 \mathrm{~V}$ | $\mathrm{V}_{\text {out }(1)} \geq 2.4 \mathrm{~V}$ |  |  | 0.8 | V |
| $\mathrm{V}_{\text {out } 1 \text { ] }}$ Logical 1 output voltage | 2 | $\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=4.5 \mathrm{~V} \\ & \mathrm{I}_{\text {load }}=-400 \mu \mathrm{~A} \end{aligned}$ | $V_{\mathrm{in}}=0.8 \mathrm{~V}$ | 2.4 | 3.37 |  | V |
| $\mathrm{V}_{\text {out }(0)}$ Logical 0 output voltage | 1 | $\begin{aligned} & V_{\mathrm{CC}}=4.5 \mathrm{~V}, \\ & \mathrm{I}_{\text {sink }}=16 \mathrm{~mA} \end{aligned}$ | $\mathrm{V}_{\mathrm{in}}=2 \mathrm{~V},$ |  | 0.22 $\ddagger$ | 0.4 | V |
| $\mathrm{I}_{\text {in }(0)}$ Logical 0 level input current (each input) | 3 | $\mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}$, | $\mathrm{V}_{\text {in }}=0.4 \mathrm{~V}$ |  |  | -1.6 | mA |
|  | 4 | $\mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}$, | $\mathrm{V}_{\text {in }}=2.4 \mathrm{~V}$ |  |  | 40 | $\mu \mathrm{A}$ |
| in(1) |  | $\mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}$ | $\mathrm{V}_{\text {in }}=5.5 \mathrm{~V}$ |  |  | 1 | mA |
| $\mathrm{I}_{\text {OS }}$ Short-circuit output current $\dagger$ | 5 | $\mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}$ |  | -20 |  | -55 | mA |
| $\mathrm{I}_{\mathrm{CC}(0)}$ Logical 0 level supply current (each gate) | 6 | $\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V}$, | $\mathrm{V}_{\text {in }}=5 \mathrm{~V}$ |  | 3 |  | mA |
| $\mathrm{I}_{\mathrm{CC}(1)}$ Logical 1 level supply current (each gate) | 6 | $\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V}$, | $\mathrm{V}_{\mathrm{in}}=0$ |  | 1 |  | mA |

switching characteristics, $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{N}=\mathbf{1 0}$

| PARAMETER | $\begin{aligned} & \text { TEST } \\ & \text { FIGURE } \end{aligned}$ | TEST CONDITIONS | MIN | TYP | MAX | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ${ }^{\dagger}$ pdo Propagation delay time to logical 0 level | 50 | $\mathrm{C}_{1}=15 \mathrm{pF}$ |  | 8 | 15 | ns |
| $\dagger_{\text {pdl }}$ Propagation delay time to logical 1 level | 50 | $C_{1}=15 \mathrm{pF}$ |  | 18 | 29 | ns |

$\dagger$ Not more than one output should be shorted at a time.
$\ddagger$ These typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

## schematic (each gate)



Component values shown are nominal.

recommended operating conditions
Supply Voltage $\mathrm{V}_{\mathrm{C}}$. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.5 V to 5.5 V
Fan-Out From Each Output, N
1 to 10
electrical characteristics, $\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$

| PARAMETER | TEST FIGURE | TEST CONDITIONS |  | MIN | TYP MAX | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Logical 1 input voltage required <br> $\mathrm{V}_{\mathrm{in}(1)}$ at all input terminals to ensure logical 0 level at output | 1 | $\mathrm{V}_{\mathrm{cc}}=4.5 \mathrm{~V}$, | $\mathrm{V}_{\text {out(0) }} \leq 0.4 \mathrm{~V}$ | 2 |  | V |
| Logical 0 input voltage required <br> $\mathrm{V}_{\mathrm{in}(0)}$ at any input terminal to ensure logical I level at output | 2 | $\mathrm{V}_{\mathrm{cc}}=4.5 \mathrm{~V}$ | $\mathrm{V}_{\text {out(1) }} \geq 2.4 \mathrm{~V}$ |  | 0.8 | V |
| $\mathrm{V}_{\text {out(1) }}$ Logical I output voltage | 2 | $\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=4.5 \mathrm{~V} \\ & \mathrm{I}_{\text {load }}=-400 \mu \mathrm{~A} \end{aligned}$ | $\mathrm{V}_{\mathrm{in}}=0.8 \mathrm{~V},$ | 2.4 | 3.3才 | V |
| $\mathrm{V}_{\text {out }}$ (0) Logical 0 output voltage | 1 | $\begin{aligned} & V_{c C}=4.5 \mathrm{~V} \\ & \mathrm{I}_{\text {sink }}=16 \mathrm{~mA} \end{aligned}$ | $\mathrm{V}_{\mathrm{in}}=2 \mathrm{~V}$, |  | $0.22 \ddagger 0.4$ | V |
| $\mathrm{I}_{\text {in(0) }}$ Logical 0 level input current (each input) | 3 | $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$, | $\mathrm{V}_{\mathrm{in}}=0.4 \mathrm{~V}$ |  | -1.6 | mA |
| Logical 1 level input current (each input) | 4 | $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$ | $\mathrm{V}_{\mathrm{in}}=2.4 \mathrm{~V}$ |  | 40 | $\mu \mathrm{A}$ |
| Logical 1 level input current (each inpul) |  | $\mathrm{V}_{C C}=5.5 \mathrm{~V}$, | $\mathrm{V}_{\text {in }}=5.5 \mathrm{~V}$ |  | 1 | mA |
| Ios Short-circuit output current $\dagger$ | 5 | $\mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}$ |  | -20 | -55 | mA |
| ${ }^{\text {I CCl }}$ ( $)$ Logical 0 level supply current (each gate) | 6 | $\mathrm{V}_{C C}=5 \mathrm{~V}$ | $V_{i n}=5 \mathrm{~V}$ |  | 3 | mA |
| $\mathrm{I}_{\text {CC(1) }}$ Logical 1 level supply current (each gate) | 6 | $\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V}$, | $\mathrm{V}_{\text {in }}=0$ |  | 1 | mA |

switching characteristics, $\mathrm{V}_{\mathrm{CC}}=\mathbf{5} \mathrm{V}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{N}=\mathbf{1 0}$

| PARAMETER | $\begin{gathered} \text { TEST } \\ \text { FIGURE } \end{gathered}$ | TEST CONDITIONS | MIN | TYP | MAX | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $t_{\text {pdo }}$ Propagation delay time to logical 0 level | 50 | $\mathrm{C}_{1}=15 \mathrm{pF}$ |  | 8 | 15 | ns |
| ${ }^{\text {pdi }}$ P Propagation delay time to logical 1 level | 50 | $\mathrm{C}_{1}=15 \mathrm{pF}$ |  | 18 | 29 | ns |

[^1]

Component values shown are nominal.


## recommended operating conditions

```
Supply Voltage V CC . Fan-Out From Output, N

1 to 10
electrical characteristics, \(\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}\) to \(125^{\circ} \mathrm{C}\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline PARAMETER & \[
\begin{gathered}
\text { TEST } \\
\text { FIGURE }
\end{gathered}
\] & TEST CONDITIONS & MIN & TYP MAX & UNIT \\
\hline \begin{tabular}{l}
Logical 1 input voltage required \\
\(V_{\text {in(1) }}\) at all input terminals to ensure logical 0 level at output
\end{tabular} & 1 & \(\mathrm{v}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{~V}_{\text {out }(0)} \leq 0.4 \mathrm{~V}\) & 2 & & V \\
\hline \begin{tabular}{l}
Logical 0 input voltage required \\
\(V_{i n(0)}\) at any input terminal to ensure logical 1 level at output
\end{tabular} & 2 & \(\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{~V}_{\text {out }(1)} \geq 2.4 \mathrm{~V}\) & & 0.8 & V \\
\hline \(\mathrm{V}_{\text {out(1) }}\) Logical 1 output voltage & 2 & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{cc}}=4.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{in}}=0.8 \mathrm{~V}, \\
& \mathrm{I}_{\text {load }}=-400 \mu \mathrm{~A}
\end{aligned}
\] & 2.4 & 3.37 & V \\
\hline \(\mathrm{V}_{\text {out (0) }}\) Logical 0 output voltage & 1 & \[
\begin{array}{ll}
V_{\mathrm{CC}}=4.5 \mathrm{~V}, & \mathrm{~V}_{\text {in }}=2 \mathrm{~V} \\
\mathrm{I}_{\text {sink }}=16 \mathrm{~mA}
\end{array}
\] & & \(0.22 \ddagger \quad 0.4\) & V \\
\hline \(\mathrm{I}_{\text {in(0) }}\) Logical 0 level input current (each input) & 3 & \(\mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\text {in }}=0.4 \mathrm{~V}\) & & -1.6 & mA \\
\hline 1 In 1 & 4 & \(\mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{in}}=2.4 \mathrm{~V}\) & & 40 & \(\mu \mathrm{A}\) \\
\hline in(1) & & \(\mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\text {in }}=5.5 \mathrm{~V}\) & & 1 & mA \\
\hline Ios Short-circuit output current & 5 & \(\mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}\) & -20 & -55 & mA \\
\hline \({ }^{\mathrm{I} C(0)}\) Logical 0 level supply current & 6 & \(\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{in}}=5 \mathrm{~V}\) & & 3 & mA \\
\hline \(\mathrm{I}_{\mathrm{CC}(1)}\) Logical 1 level supply current & 6 & \(\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{in}}=0\) & & 1 & mA \\
\hline
\end{tabular}
switching characteristics, \(V_{C C}=\mathbf{5} V, \mathrm{~T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}, \mathrm{N}=\mathbf{1 0}\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline PARAMETER & \begin{tabular}{c} 
TEST \\
FIGURE
\end{tabular} & TEST CONDITIONS & MIN & TYP & MAX
\end{tabular} UNIT
\(\ddagger\) These typical values are at \(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\).

\section*{schematic (each gate)}


\section*{recommended operating conditions}

Supply Voltage \(V_{C C}\)
\(4.5 \vee\) to 5.5 V
Fan-Out From Output, \(N\)
1 to 30
electrical characteristics, \(\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}\) to \(125^{\circ} \mathrm{C}\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline PARAMETER & TEST FIGURE & TEST CONDITIONS & MIN & TYP MAX & UNIT \\
\hline \begin{tabular}{l}
Logical 1 input voltage required \\
\(V_{\text {in(1) }}\) at all input terminals to ensure logical 0 level at output
\end{tabular} & 1 & \(\mathrm{V}_{\mathrm{cc}}=4.5 \mathrm{~V}, \quad \mathrm{~V}_{\text {out }(0)} \leq 0.4 \mathrm{~V}\) & 2 & & V \\
\hline \begin{tabular}{l}
Logical 0 input voltage required \\
\(V_{\text {in(0) }}\) at any input terminal to ensure logical 1 level at output
\end{tabular} & 2 & \(\mathrm{V}_{\text {cc }}=4.5 \mathrm{~V}, \quad \mathrm{~V}_{\text {out }(1)} \geq 2.4 \mathrm{~V}\) & & 0.8 & V \\
\hline \(\mathrm{V}_{\text {out (1) Logical }} 1\) output voltage & 2 & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{cc}}=4.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{in}}=0.8 \mathrm{~V} \\
& \mathrm{I}_{\text {load }}=-1.2 \mathrm{~mA}
\end{aligned}
\] & 2.4 & 3.3才 & V \\
\hline \(\mathrm{V}_{\text {out(0) }}\) Logical 0 output voltage & 1 & \[
\begin{aligned}
& V_{\mathrm{cc}}=4.5 \mathrm{~V}, \quad \mathrm{~V}_{\text {in }}=2 \mathrm{~V}, \\
& \mathrm{I}_{\text {sink }}=48 \mathrm{~mA}
\end{aligned}
\] & & \(0.28 \ddagger 0.4\) & V \\
\hline \(\mathrm{I}_{\text {in(0) }}\) Logical 0 level input current (each input) & 3 & \(\mathrm{V}_{\mathrm{Cc}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\text {in }}=0.4 \mathrm{~V}\) & & -1.6 & mA \\
\hline 1 & 4 & \(\mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\text {in }}=2.4 \mathrm{~V}\) & & 40 & \(\mu \mathrm{A}\) \\
\hline & & \(\mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\text {in }}=5.5 \mathrm{~V}\) & & 1 & mA \\
\hline IOS Short-circuit output current \(\dagger\) & 5 & \(\mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}\) & -20 & -70 & mA \\
\hline \(\mathrm{I}_{\mathrm{CC}(0)}\) Logical 0 level supply current (each gate) & 6 & \(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{~V}_{\text {in }}=5 \mathrm{~V}\) & & 8.6 & mA \\
\hline \(\mathrm{I}_{\mathrm{CC}(1)}\) Logical 1 level supply current (each gate) & 6 & \(V_{C C}=5 \mathrm{~V}, \quad V_{\text {in }}=0\) & & 2 & mA \\
\hline
\end{tabular}
switching characteristics, \(V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}, \mathrm{N}=\mathbf{3 0}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{PARAMETER} & TEST FIGURE & TEST CONDITIONS & MIN & TYP & MAX & UNIT \\
\hline \({ }^{\text {p }}\) do & Propagation delay time to logical 0 level & 50 & \(\mathrm{C}_{1}=15 \mathrm{pF}\) & & 8 & 15 & ns \\
\hline \({ }^{+}{ }_{\text {pd1 }}\) & Propagation delay time to logical 1 level & 50 & \(\mathrm{C}_{1}=15 \mathrm{pF}\) & & 18 & 29 & ns \\
\hline
\end{tabular}
\(\dagger\) Not more than one output should be shorted at a time.
\(\ddagger\) These typical values are at \(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\).

\section*{schematic (each gate)}

2. Both SN5450 expander inputs are used simultaneously for expanding with the SN5460.
3. If expander is not used leave pins (1) and (2) open.
4. Make no external connection to pins (1) and (2) of the SN5451.
5. A total of four expander gates may be connected to the SN5450 expander inputs.

\section*{recommended operating conditions}

electrical characteristics, \(\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}\) to \(125^{\circ} \mathrm{C}\), pins (1) and (2) open
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & PARAMETER & \[
\begin{aligned}
& \text { TEST } \\
& \text { FIGURE } \\
& \hline
\end{aligned}
\] & TEST CONDITIONS & MIN & TYP & MAX & UNIT \\
\hline \(\mathrm{V}_{\mathrm{in}(1)}\) & Logical 1 input voltage required at both input terminals of either AND section to ensure logical 0 at output & 7 & \(\mathrm{V}_{\mathrm{cc}}=4.5 \mathrm{~V}, \mathrm{~V}_{\text {out }(0)} \leq 0.4 \mathrm{~V}\) & 2 & & & V \\
\hline \(\mathrm{V}_{\mathrm{in}(0)}\) & Logical 0 input voltage required at one input terminal of each AND section to ensure logical 1 at output & 8 & \(\mathrm{V}_{\text {cc }}=4.5 \mathrm{~V}, \mathrm{~V}_{\text {out }(1)} \geq 2.4 \mathrm{~V}\) & & & 0.8 & V \\
\hline \(V_{\text {out (1) }}\) & Logical 1 output voltage & 8 & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{cc}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{in}}=0.8 \mathrm{~V}, \\
& \mathrm{I}_{\text {load }}=-400 \mu \mathrm{~A}
\end{aligned}
\] & 2.4 & \(3.3 \ddagger\) & & V \\
\hline \(V_{\text {out (0) }}\) & Logical 0 output voltage & 7 & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{cc}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{in}}=2 \mathrm{~V}, \\
& \mathrm{I}_{\text {sink }}=16 \mathrm{~mA}
\end{aligned}
\] & & 0.22 \(\ddagger\) & 0.4 & V \\
\hline \(\mathrm{I}_{\mathrm{in}(0)}\) & Logical 0 level input current (each input) & 9 & \(\mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {in }}=0\) & & & -1.6 & mA \\
\hline \multirow[b]{2}{*}{\(\mathrm{l}_{\text {in(1) }}\)} & \multirow[b]{2}{*}{Logical I level input current (each input)} & \multirow[t]{2}{*}{10} & \(\mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\text {in }}=2.4 \mathrm{~V}\) & & & 40 & \(\mu \mathrm{A}\) \\
\hline & & & \(\mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {in }}=5.5 \mathrm{~V}\) & & & 1 & mA \\
\hline Ios & Short-circuit output current \(\dagger\) & 11 & \(\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}\) & -20 & & -55 & mA \\
\hline \({ }^{\text {cce(0) }}\) & Logical 0 level supply current (each gate) & 12 & \(\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V}, \quad \mathrm{~V}_{\text {in }}=5 \mathrm{~V}\) & & 3.7 & & mA \\
\hline \({ }^{\text {cce(1) }}\) & Logical 1 level supply current (each gate) & 13 & \(\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{in}}=0\) & & 2 & & mA \\
\hline
\end{tabular}
\(\dagger\) Not more than one output should be shorted at a time.
\(\ddagger\) These typical values are at \(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\).

\section*{TYPES SN5450, SN5451 \\ DUAL 2-WIDE 2-INPUT AND-OR-INVERT GATES}
electrical characteristics (SN5450 only) using expander inputs, \(\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & PARAMETER & TEST FIGURE & TEST CONDITIONS & MIN & TYP & MAX & UNIT \\
\hline \({ }^{\prime} \mathrm{X}\) & Expander current & 14 & \[
\begin{aligned}
& V_{\mathrm{cc}}=4.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathbf{1}}=0.4 \mathrm{~V} \\
& \mathrm{I}_{\text {sink }}=16 \mathrm{~mA}
\end{aligned}
\] & & & 2.9 & mA \\
\hline \(\mathrm{V}_{\text {BE }}(\mathrm{P} \mid\) ] & Base-emitter voltage of output transistor (Q) & 15 & \[
\begin{array}{ll}
\mathrm{V}_{\mathrm{cc}}=4.5 \mathrm{~V}, & \mathrm{I}_{\text {sink }}=16 \mathrm{~mA}, \\
\mathrm{I}_{1}=0.41 \mathrm{~mA}, & \mathrm{R}_{1}=0
\end{array}
\] & & & 1 & V \\
\hline \(V_{\text {out(1) }}\) & Logical 1 output voltage & 16 & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{cc}}=4.5 \mathrm{~V}, \quad \mathrm{I}_{\text {load }}=-400 \mu \mathrm{~A}, \\
& \mathrm{I}_{1}=0.15 \mathrm{~mA}, \quad \mathrm{I}_{2}=-0.15 \mathrm{~mA}
\end{aligned}
\] & 2.4 & 3.3 \(\ddagger\) & & V \\
\hline \(\mathrm{V}_{\text {out (0) }}\) & Logical 0 output voltage & 15 & \[
\begin{array}{ll}
\mathrm{V}_{\mathrm{Cc}}=4.5 \mathrm{~V}, & \mathrm{I}_{\text {sink }}=16 \mathrm{~mA}, \\
\mathrm{I}_{1}=0.3 \mathrm{~mA}, & \mathrm{R}_{1}=138 \Omega
\end{array}
\] & & 0.22 \(\ddagger\) & 0.4 & V \\
\hline
\end{tabular}
\(\ddagger\) These typical values are at \(\mathbf{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\).
switching characteristics, \(V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\), pins (1) and (2) open, \(\mathrm{N}=10\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & PARAMETER & TEST FIGURE & TEST CONDITIONS & MIN TYP & MAX & UNIT \\
\hline \({ }^{\text {t }}\) do & Propagation delay time to logical 0 level & 50 & \(\mathrm{C}_{1}=15 \mathrm{pF}\) & 8 & 15 & ns \\
\hline \({ }^{\dagger}{ }^{\text {pdI }}\) & Propagation delay time to logical 1 level & 50 & \(\mathrm{C}_{1}=15 \mathrm{pF}\) & 18 & 29 & ns \\
\hline
\end{tabular}

\section*{schematic}


NOTES: 1. Component values shown are nominal.
2. Both SN5453 expander inputs are used simultaneously for expanding with the SN5460.
3. If SN5453 expander is not used leave pins (1) and (2) open.
4. Make no external connection to pins (1) and (2) of the SN5454.
5. A total of four expander gates may be connected to the SN5453 expander inputs.


\section*{recommended operating conditions}
\[
\begin{aligned}
& \text { Supply Voltage } V_{\text {CC }} \\
& \text { Fan-Out From Each Output, N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . } 1 \text { to } 10
\end{aligned}
\]
electrical characteristics, \(T_{A}=-55^{\circ} \mathrm{C}\) to \(125^{\circ} \mathrm{C}\), pins (1) and (2) open
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & PARAMETER & TEST FIGURE & TEST CONDITIONS & MIN & TYP & MAX & UNIT \\
\hline \(\mathrm{V}_{\mathrm{in}(1)}\) & Logical 1 input voltage required at both input terminals of either AND section to ensure logical 0 at output & 7 & \(\mathrm{V}_{\mathrm{cc}}=4.5 \mathrm{~V}, \mathrm{~V}_{\text {out }(0)} \leq 0.4 \mathrm{~V}\) & 2 & & & V \\
\hline \(V_{\text {in }(0)}\) & Logical 0 input voltage required at one input terminal of each AND section to ensure logical 1 at output & 8 & \(\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\text {out }(1)} \geq 2.4 \mathrm{~V}\) & & & 0.8 & V \\
\hline \(V_{\text {out(1) }}\) & Logical 1 output voltage & 8 & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{cc}}=4.5 \mathrm{~V}, \mathrm{~V}_{\text {in }}=0.8 \mathrm{~V}, \\
& \mathrm{I}_{\text {load }}=-400 \mu \mathrm{~A}
\end{aligned}
\] & 2.4 & \(3.3 \ddagger\) & & V \\
\hline \(V_{\text {out }}(0)\) & Logical 0 output voltage & 7 & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{cc}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{in}}=2 \mathrm{~V} \\
& \mathrm{I}_{\mathrm{sink}}=16 \mathrm{~mA}
\end{aligned}
\] & & 0.22 \(\ddagger\) & 0.4 & V \\
\hline \(\mathrm{I}_{\text {in }(0)}\) & Logical 0 level input current (each input) & 9 & \(\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{in}}=0\) & & & -1.6 & mA \\
\hline \multirow[b]{2}{*}{\(\mathrm{I}_{\mathrm{in}(1)}\)} & \multirow[b]{2}{*}{Logical 1 level input current (each input)} & \multirow[t]{2}{*}{10} & \(\mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {in }}=2.4 \mathrm{~V}\) & & & 40 & \(\mu \mathrm{A}\) \\
\hline & & & \(\mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {in }}=5.5 \mathrm{~V}\) & & & 1 & mA \\
\hline Ios & Short-circuit output current \(\dagger\) & 11 & \(\mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}\) & -20 & & -55 & mA \\
\hline I \(\mathrm{CC}(0)\) & Logical 0 level supply current & 12 & \(\mathrm{v}_{\mathrm{cc}}=5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{in}}=5 \mathrm{~V}\) & & 5.1 & & mA \\
\hline \({ }^{\text {cc(1) }}\) & Logical I level supply current & 13 & \(V_{c c}=5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{in}}=0\) & & 4 & & mA \\
\hline
\end{tabular}

\footnotetext{
\(\dagger\) Not more than one output should be shorted at a time.
}
\(\ddagger\) These typical values are of \(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\).

\title{
TYPES SN5453, SN5454 \\ 4-WIDE 2-INPUT AND-OR-INVERT GATES
}
electrical characteristics (SN5453 only) using expander inputs, \(\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & PARAMETER & \[
\begin{aligned}
& \text { TEST } \\
& \text { FIGURE }
\end{aligned}
\] & TEST CONDITIONS & MIN & TYP & MAX & UNIT \\
\hline \({ }^{1} \mathrm{X}\) & Expander current & 14 & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{cc}}=4.5 \mathrm{~V}, \quad \mathrm{~V}_{1}=0.4 \mathrm{~V}, \\
& \mathrm{I}_{\text {sink }}=16 \mathrm{~mA}
\end{aligned}
\] & & & 2.9 & mA \\
\hline \(V_{\text {be }}(\underline{Q})\) & Base-emitter voltage of output transistor (Q) & 15 & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{Cc}}=4.5 \mathrm{~V}, \\
& \mathrm{I}_{1} \text { sink }=16 \mathrm{~mA}, \\
& =0.41 \mathrm{~mA}, \\
& \mathrm{R}_{1}=0
\end{aligned}
\] & & & 1 & V \\
\hline \(V_{\text {out(1) }}\) & Logical 1 output voltage & 16 & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{cc}}=4.5 \mathrm{~V}, \quad \mathrm{I}_{\text {load }}=-400 \mu \mathrm{~A}, \\
& \mathrm{I}_{1}=0.15 \mathrm{~mA}, \quad \mathrm{I}_{2}=-0.15 \mathrm{~mA}
\end{aligned}
\] & 2.4 & \(3.3 \ddagger\) & & V \\
\hline \(V_{\text {out (0) }}\) & Logical 0 output voltage & 15 & \[
\begin{array}{ll}
\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, & \mathrm{I}_{\text {sink }}=16 \mathrm{~mA}, \\
\mathrm{I}_{1}=0.3 \mathrm{~mA}, & \mathrm{R}_{1}=138 \Omega
\end{array}
\] & & 0.22 \(\ddagger\) & 0.4 & V \\
\hline
\end{tabular}
\(\ddagger\) These typical values are of \(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\).
switching characteristics (SN5453 and SN5454), \(V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\), pins (1) and (2) open, \(\mathrm{N}=10\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & PARAMETER & TEST FIGURE & TEST CONDITIONS & MIN & TYP & MAX & UNIT \\
\hline \({ }^{\dagger}\) pdo & Propagation delay time to logical 0 level & 50 & \(\mathrm{C}_{1}=15 \mathrm{pF}\) & & 8 & 15 & ns \\
\hline \({ }^{\dagger} \mathrm{pd} 1\) & Propagation delay time to logical 1 level & 50 & \(\mathrm{C}_{1}=15 \mathrm{pF}\) & & 18 & 29 & ns \\
\hline
\end{tabular}

\section*{DUAL 4-INPUT EXPANDER}

\section*{schematic}


NOTES: 1. Connect pin (2) or (13) to pin (2) of SN5450 or SN5453.
2. Connect pin (1) or (14) to pin (1) of SN5450 or SN5453.
3. Component values shown are nominal.


\section*{recommended operating conditions}

Supply Voltage \(\mathrm{V}_{\mathrm{cc}}\). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.5 V to 5.5 V
Maximum number of expanders that may be fanned-in to one SN5450 or one SN5453
electrical characteristics (unless otherwise noted \(\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}\) to \(125^{\circ} \mathrm{C}\) )
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & PARAMETER & \[
\begin{array}{|c|}
\hline \text { TEST } \\
\text { FIGURE }
\end{array}
\] & TEST CONDITIONS & MIN & TYP & MAX & UNIT \\
\hline \(V_{\text {in(1) }}\) & Logical I input voltage required at all input terminals to ensure output on level & 17 & \[
\begin{array}{ll}
\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, & \mathrm{~V}_{1}=1 \mathrm{~V} \\
\mathrm{R}=1.1 \mathrm{k} \Omega, & \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}
\end{array}
\] & 2 & & & V \\
\hline \(\mathrm{V}_{\mathrm{in}(0)}\) & Logical 0 input voltage required at any input terminal to ensure output off level current & 18 & \[
\begin{array}{ll}
\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, & \mathrm{~V}_{1}=4.5 \mathrm{~V} \\
\mathrm{R}=1.2 \mathrm{k} \Omega, & \mathrm{I}_{\mathrm{off}}=0.15 \mathrm{~mA}, \\
\mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} & \\
\hline
\end{array}
\] & & & 0.8 & V \\
\hline \(V_{\text {on }}\) & Output voltage on level & 17 & \[
\begin{array}{ll}
\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, & \mathrm{~V}_{\mathrm{in}}=2 \mathrm{~V}, \\
\mathrm{~V}_{1}=1 \mathrm{~V} & \mathrm{R}=1.1 \mathrm{k} \Omega \\
\mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} &
\end{array}
\] & & & 0.4 & V \\
\hline \(I_{\text {off }}\) & Output off level current & 18 & \[
\begin{array}{ll}
\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, & \mathrm{~V}_{\mathrm{in}}=0.8 \mathrm{~V}, \\
\mathrm{~V}_{1}=4.5 \mathrm{~V}, & \mathrm{R}=1.2 \mathrm{k} \Omega, \\
\mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} & \\
\hline
\end{array}
\] & & & 150 & \(\mu \mathrm{A}\) \\
\hline \(I_{\text {on }}\) & Output on level current & 19 & \[
\begin{array}{ll}
\mathrm{V}_{\mathrm{cc}}=4.5 \mathrm{~V}, & \mathrm{~V}_{\mathrm{in}}=2 \mathrm{~V} \\
\mathrm{~V}_{1}=1 \mathrm{~V}, & \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}
\end{array}
\] & -0.3 & & & mA \\
\hline \(\mathrm{I}_{\mathrm{in}(0)}\) & Logical 0 level input current (each input) & 18 & \(\mathrm{V}_{\text {cc }}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\text {in }}=0.4 \mathrm{~V}\), & & & -1.6 & mA \\
\hline \multirow[b]{2}{*}{\(\mathrm{I}_{\text {in(1) }}\)} & \multirow[b]{2}{*}{Logical 1 level input current (each input)} & \multirow[b]{2}{*}{20} & \(\mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\text {in }}=2.4 \mathrm{~V}\) & & & 40 & \(\mu \mathrm{A}\) \\
\hline & & & \(\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\text {in }}=5.5 \mathrm{~V}\) & & & 1 & mA \\
\hline \({ }^{\text {ccelon) }}\) & On level supply current (each gate) & 21 & \[
\begin{array}{ll}
\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V}, & \mathrm{~V}_{\mathrm{in}}=5 \mathrm{~V}, \\
\mathrm{~V}_{1}=0.85 \mathrm{~V} &
\end{array}
\] & & 0.6 & & mA \\
\hline \({ }^{\text {c Cloff }}\) ) & Off level supply current (each gate) & 21 & \[
\begin{array}{ll}
V_{c c}=5 V & V_{i n}=0, \\
V_{1}=0.85 V &
\end{array}
\] & & 1 & & mA \\
\hline
\end{tabular}
switching characteristics, \(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{N}=10\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{PARAMETER} & \[
\begin{gathered}
\hline \text { TEST } \\
\text { FIGURE }
\end{gathered}
\] & TEST CONDITIONS & MIN & TYP & MAX & UNIT \\
\hline \({ }^{\dagger}\) pdo & Propagation delay time to logical 0 level (through SN5450 or SN5453) & 51 & \(\mathrm{C}_{1}=15 \mathrm{pF}\) & & 10 & 20 & ns \\
\hline \({ }^{\text {t }}\) pd 1 & Propagation delay time to logical 1 level (through SN5450 or SN5453) & 51 & \(C_{1}=15 \mathrm{pF}\) & & 20 & 34 & ns \\
\hline
\end{tabular}

\section*{logic}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{ TRUTH TABLE } \\
\hline \multicolumn{2}{|c|}{\(t_{n}\)} & \(t_{n+1}\) \\
\hline\(J\) & \(K\) & \(Q\) \\
\hline 0 & 0 & \(Q_{n}\) \\
\hline 0 & 1 & 0 \\
\hline 1 & 0 & 1 \\
\hline 1 & 1 & \(\overline{Q_{n}}\) \\
\hline
\end{tabular}

NOTES: \(1 . \mathrm{J}=\mathrm{J} \cdot \mathrm{J} 2 \cdot \overline{\mathrm{~J}}\).
2. \(K=K 1 \cdot K 2 \cdot \overline{K \star}\).
3. \(\mathrm{t}_{\mathrm{n}}=\) Bit time before clock pulse.
4. \(\mathrm{t}_{\mathrm{n}+1}=\) Bit time after clock pulse.
5. If inputs \(3 \star\) or \(k \star\) are not used they must be grounded.


\section*{description}

The SN5470 is a monolithic, edge-triggered J-K flip-flop featuring gated inputs, direct clear and preset inputs, and complementary \(Q\) and \(\bar{Q}\) outputs. Input information is transferred to the outputs on the positive edge of the clock pulse.

Direct-coupled clock triggering occurs at a specific voltage level of the clock pulse; and after the clock input threshold voltage has been passed, the gated inputs are locked out.

The SN5470 flip-flop is ideally suited for medium- to high-speed applications, and can be used for a significant saving in system power dissipation and package count where input gating is required.

\section*{recommended operating conditions}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|l|}{} & \\
\hline \multicolumn{9}{|l|}{Fan-Out From Each Output, N . . . . . . . . . . . . . . . . . . . . . . 1 to 10} \\
\hline \multicolumn{9}{|l|}{Clock Pulse Transition Time to Logical 1 Level, \(\mathrm{t}_{1 \text { (clock) }}\) (See Figure 53) . . . . . . . . 5 to 150 ns} \\
\hline \multicolumn{9}{|l|}{Width of Clock Pulse, \(\mathrm{t}_{\text {plcock }}(\) See Figure 53) . . . . . . . . . . . . . . . . . \(\geq 20\) n} \\
\hline \multicolumn{9}{|l|}{Width of Preset Pulse, \(\mathrm{t}_{\mathrm{plpraset} \text { ) }}(\) See Figure 52) . . . . . . . . . . . . . . . . . \(\geq 25 \mathrm{~ns}\)} \\
\hline \multicolumn{9}{|l|}{Width of Clear Pulse, \(\mathrm{t}_{\mathrm{p} \text { clear) }}\) (See Figure 52) . . . . . . . . . . . . . . . . . \(\geq 2\)} \\
\hline
\end{tabular}
electrical characteristics, \(\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}\) to \(125^{\circ} \mathrm{C}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & PARAMETER & \[
\begin{aligned}
& \text { TEST } \\
& \text { FIGURE }
\end{aligned}
\] & TEST CONDITIONS & MIN & TYP & MAX & UNIT \\
\hline \(V_{\text {in(1) }}\) & Input voltage required to ensure logical 1 at any input terminal & 22 & \(\mathrm{V}_{\mathrm{cc}}=4.5 \mathrm{~V}\) & 2 & & & V \\
\hline \(V_{\text {in(0) }}\) & Input voltage required to ensure logical 0 at any input terminal & 23 & \(\mathbf{V}_{\mathbf{c c}}=4.5 \mathrm{~V}\) & & & 0.8 & V \\
\hline \(V_{\text {out }}\) (1) & Logical 1 output voltage & 22 & \(\mathrm{V}_{\mathrm{Cc}}=4.5 \mathrm{~V}, \mathrm{I}_{\text {load }}=-400 \mu \mathrm{~A}\) & & \(3.5 \ddagger\) & & V \\
\hline \(V_{\text {out }}\) (0) & Logical 0 output voltage & 23 & \(\mathrm{V}_{\mathrm{cc}}=4.5 \mathrm{~V}, \quad \mathrm{I}_{\text {sink }}=16 \mathrm{~mA}\) & & 0.22 \(\ddagger\) & 0.4 & V \\
\hline \(\mathrm{I}_{\text {in(0) }}\) & Logical 0 level input current at J1, J2, J \(\star, K 1, K 2, K \star\), or clock & 24 & \(\mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{in}}=0.4 \mathrm{~V}\) & & & -1.6 & mA \\
\hline \(\mathrm{I}_{\text {in }(0)}\) & Logical 0 level input current at preset or clear & 24 & \(\mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {in }}=0.4 \mathrm{~V}\) & & & -3.2 & mA \\
\hline \multirow[b]{2}{*}{\(\mathrm{I}_{\text {in(1) }}\)} & \multirow[t]{2}{*}{Logical 1 level input current at J1, J2, Jぇ, K1, K2, K \(\star\), or clock} & \multirow[t]{2}{*}{25} & \(\mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {in }}=2.4 \mathrm{~V}\) & & & 40 & \(\mu \mathrm{A}\) \\
\hline & & & \(\mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {in }}=5.5 \mathrm{~V}\) & & & 1 & mA \\
\hline \multirow[t]{2}{*}{\(\mathrm{I}_{\text {in(1) }}\)} & \multirow[t]{2}{*}{Logical 1 level input current at preset or clear} & \multirow[t]{2}{*}{25} & \(\mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {in }}=2.4 \mathrm{~V}\) & & & 80 & \(\mu \mathrm{A}\) \\
\hline & & & \(\mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {in }}=5.5 \mathrm{~V}\) & & & 1 & mA \\
\hline los & Short-circuit output current \(\dagger\) & 26 & \(\mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}_{\mathrm{i}} \quad \mathrm{V}_{\text {in }}=0\) & -20 & & -57 & mA \\
\hline \(\mathrm{I}_{\mathrm{CC}}\) & Supply current & 25 & \(\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{in}}=5 \mathrm{~V}\) & \multicolumn{3}{|c|}{13} & mA \\
\hline
\end{tabular}
\(\dagger\) Not more than one output should be shoried at a time.
\(\ddagger\) These typical values are at \(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\).
switching characteristics, \(V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathbf{2 5 ^ { \circ }} \mathrm{C}, \mathrm{N}=10\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & PARAMETER & \[
\begin{gathered}
\text { TEST } \\
\text { FIGURE }
\end{gathered}
\] & TEST CONDITIONS & MIN & TYP & MAX & UNIT \\
\hline \(\mathrm{f}_{\text {clock }}\) & Maximum clock frequency & 53 & \(\mathrm{C}_{1}=15 \mathrm{pF}\) & 20 & 35 & & MHz \\
\hline \({ }^{\text {setup }}\) & Minimum input setup time & 53 & \(\mathrm{C}_{1}=15 \mathrm{pF}\) & & 10 & 20 & ns \\
\hline \({ }^{\text {hold }}\) & Minimum input hold time & 53 & \(\mathrm{C}_{1}=15 \mathrm{pF}\) & & 0 & 5 & ns \\
\hline \({ }^{\text {t }}\) pd1 & Propagation delay time to logical 1 level from clear or preset to output & 52 & \(\mathrm{C}_{1}=15 \mathrm{pF}\) & & & 50 & ns \\
\hline \({ }^{\text {tpdo }}\) & Propagation delay time to logical 0 level from clear or preset to output & 52 & \(\mathrm{C}_{1}=15 \mathrm{pF}\) & & & 50 & ns \\
\hline \(t_{\text {pd }}\) & Propagation delay time to logical 1 level from clock to output & 53 & \(\mathrm{C}_{1}=15 \mathrm{pF}\) & 10 & 27 & 50 & ns \\
\hline \({ }^{\text {t }}\) ¢do & Propagation delay time to logical 0 level from clock to output & 53 & \(C_{1}=15 \mathrm{pF}\) & 10 & 18 & 50 & ns \\
\hline
\end{tabular}
schematic


Component values shown are nominal.

\section*{logic}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{ TRUTH TABLE } \\
\hline \multicolumn{2}{|c|}{\(t_{n}\)} & \(t_{n}+1\) \\
\hline\(J\) & \(K\) & \(Q\) \\
\hline 0 & 0 & \(Q_{n}\) \\
\hline 0 & 1 & 0 \\
\hline 1 & 0 & 1 \\
\hline 1 & 1 & \(\bar{Q}_{n}\) \\
\hline
\end{tabular}

NOTES: \(1 . \mathrm{J}=\mathrm{Jl} \cdot \mathrm{J2} \cdot \mathrm{J3}\)
2. \(\mathrm{K}=\mathrm{K} 1 \cdot \mathrm{~K} 2 \cdot \mathrm{~K} 3\)
3. \(\mathrm{t}_{\mathrm{n}}=\) Bit time before clock pulse.
4. \(\mathrm{t}_{\mathrm{n}+1}=\) Bit time after clock pulse.

\section*{description}

The SN5472 J-K flip-flop is based on the master-slave principle. This device has AND gate inputs for entry into the master section which are controlled by the clock pulse. The clock pulse also regulates the state of the coupling transistors which connect the master and slave sections. The sequence of operation is as follows:
1. Isolate slave from master
2. Enter information from AND gate inputs to master
3. Disable AND gate inputs
4. Transfer information from master to slave.


\section*{recommended operating conditions}

electrical characteristics, \(\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}\) to \(125^{\circ} \mathrm{C}\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline & PARAMETER & \[
\begin{aligned}
& \text { TEST } \\
& \text { FIGURE }
\end{aligned}
\] & TEST CONDITIONS & MIN TYP MAX & UNIT \\
\hline \(V_{\text {in(1) }}\) & Input voltage required to ensure logical 1 at any input terminal & 27 & \(\mathrm{V}_{C C}=4.5 \mathrm{~V}\) & 2 & V \\
\hline \(V_{\text {in }(0)}\) & Input voltage required to ensure logical 0 at any input terminal & 27 & \(\mathrm{V}_{\mathrm{cc}}=4.5 \mathrm{~V}\) & 0.8 & V \\
\hline \(V_{\text {out (1) }}\) & Logical 1 output voltage & 27 & \(\mathrm{V}_{\mathrm{cc}}=4.5 \mathrm{~V}, \mathrm{I}_{\text {load }}=-400 \mu \mathrm{~A}\) & \(2.43 .5 \ddagger\) & V \\
\hline \(V_{\text {out }}\) (0) & Logical 0 output voltage & 28 & \(\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{I}_{\text {sink }}=16 \mathrm{~mA}\) & \(0.22 \ddagger \quad 0.4\) & V \\
\hline \(t_{\text {in }(0)}\) & Logical 0 level input current at J1, J2, J3, K1, K2, or K3 & 29 & \(\mathrm{v}_{\mathrm{cc}}=5.5 \mathrm{~V}, \mathrm{v}_{\text {in }}=0.4 \mathrm{~V}\) & -1.6 & mA \\
\hline \(\mathrm{I}_{\mathrm{in}(0)}\) & Logical 0 level input current at preset, clear, or clock & 29 & \(\mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {in }}=0.4 \mathrm{~V}\) & -3.2 & mA \\
\hline \multirow[b]{2}{*}{\(\mathrm{I}_{\mathrm{in}(1)}\)} & \multirow[t]{2}{*}{Logical 1 level input current at J1, J2, J3, K1, K2, or K3} & \multirow[t]{2}{*}{30} & \(\mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {in }}=2.4 \mathrm{~V}\) & 40 & \(\mu \mathrm{A}\) \\
\hline & & & \(\mathrm{V}_{C C}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {in }}=5.5 \mathrm{~V}\) & 1 & mA \\
\hline \multirow[b]{2}{*}{\(\mathrm{I}_{\text {in(1) }}\)} & \multirow[t]{2}{*}{Logical I level input current at preset, clear, or clock} & \multirow[t]{2}{*}{30} & \(\mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{in}}=2.4 \mathrm{~V}\) & 80 & \(\mu \mathrm{A}\) \\
\hline & & & \(\mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {in }}=5.5 \mathrm{~V}\) & 1 & mA \\
\hline Ios & Short-circuit output current \(\dagger\) & 31 & \(\mathrm{V}_{c c}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {in }}=0\) & \(-20 \quad-57\) & mA \\
\hline \(\mathrm{I}_{\mathrm{CC}}\) & Supply current & 30 & \(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{\text {in }}=5 \mathrm{~V}\) & 8 & mA \\
\hline
\end{tabular}
\(\dagger\) Not more than one output should be shorted at a time.
\(\ddagger\) These typical values are at \(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\).
switching characteristics, \(V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}, \mathrm{N}=\mathbf{1 0}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & PARAMETER & \[
\begin{gathered}
\text { TEST } \\
\text { FIGURE }
\end{gathered}
\] & TEST CONDITIONS & MIN & TYP & MAX & UNIT \\
\hline \(\mathrm{f}_{\text {clock }}\) & Maximum clock frequency & 54 & \(\mathrm{C}_{1}=15 \mathrm{pF}\) & 10 & 15 & & MHz \\
\hline \({ }^{\dagger}{ }_{\text {pd }}\) & Propagation delay time to logical 1 level from clear or preset to output & 55 & \(C_{1}=15 \mathrm{pF}\) & & 26 & 50 & ns \\
\hline \({ }^{\dagger}\) pdo & Propagation delay time to logical 0 level from clear or preset to output & 55 & \(\mathrm{C}_{1}=15 \mathrm{pF}\) & & 34 & 50 & ns \\
\hline \({ }^{\dagger}{ }^{\text {pd }} 1\) & Propagation delay time to logical 1 level from clock to output & 54 & \(\mathrm{C}_{1}=15 \mathrm{pF}\) & 10 & 26 & 50 & ns \\
\hline \({ }^{\dagger}\) pdo & Propagation delay time to logical 0 level from clock to output & 54 & \(C_{1}=15 \mathrm{pF}\) & 10 & 34 & 50 & ns \\
\hline
\end{tabular}

\section*{J-K MASTER-SLAVE FLIP-FLOP}
functional block diagram

schematic


Component values shown are nominal.

\section*{logic}


\section*{description}

The SN5473 J-K flip-flop is based on the master-slave principle. Inputs to the master section are controlled by the clock pulse. The clock pulse also regulates the state of the coupling transistors which connect the master and slave sections. The sequence of operation is as follows
1. Isolate slave from master
2. Enter information from \(J\) and \(K\) inputs to master
3. Disable J and \(K\) inputs
4. Transfer information from master to slave.

\section*{recommended operating conditions}

electrical characteristics, \(\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}\) to \(125^{\circ} \mathrm{C}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & PARAMETER & TEST FIGURE & TEST CONDITIONS & MIN & TYP MAX & UNIT \\
\hline \(V_{\text {in( }}\) ( \()\) & Input voltage required to ensure logical 1 at any input terminal & 32 & \(\mathrm{V}_{\mathrm{cc}}=4.5 \mathrm{~V}\) & 2 & & V \\
\hline \(\mathrm{V}_{\mathrm{in}(0)}\) & Input voltage required to ensure logical 0 at any input terminal & 32 & \(\mathrm{V}_{\mathrm{cc}}=4.5 \mathrm{~V}\) & & 0.8 & V \\
\hline \(V_{\text {out (1) }}\) & Logical 1 output voltage & 32 & \(\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{I}_{\text {load }}=-400 \mu \mathrm{~A}\) & 2.4 & 3.5 \(\ddagger\) & V \\
\hline \(V_{\text {out }}\) (0) & Logical 0 output voltage & 33 & \(\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{I}_{\text {sink }}=16 \mathrm{~mA}\) & & \(0.22 \ddagger 0.4\) & V \\
\hline \(\mathrm{I}_{\text {in(0) }}\) & Logical 0 level input current at J or K & 34 & \(\mathrm{v}_{\mathrm{cc}}=5.5 \mathrm{~V}, \mathrm{v}_{\mathrm{in}}=0.4 \mathrm{~V}\) & & -1.6 & mA \\
\hline \(\mathrm{I}_{\text {in(0) }}\) & Logical 0 level input current at clear or clock & 34 & \(\mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {in }}=0.4 \mathrm{~V}\) & & -3.2 & mA \\
\hline \multirow[b]{2}{*}{\(\mathrm{I}_{\mathrm{in}(1)}\)} & \multirow[t]{2}{*}{Logical 1 level input current at J or K} & \multirow[b]{2}{*}{35} & \(\mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\text {in }}=2.4 \mathrm{~V}\) & & 40 & \(\mu \mathrm{A}\) \\
\hline & & & \(\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\text {in }}=5.5 \mathrm{~V}\) & & 1 & mA \\
\hline \multirow[b]{2}{*}{\[
I_{i n(1)}
\]} & \multirow[t]{2}{*}{Logical 1 level input current at clear or clock} & \multirow[b]{2}{*}{35} & \(\mathrm{V}_{C C}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\text {in }}=2.4 \mathrm{~V}\) & & 80 & \(\mu \mathrm{A}\) \\
\hline & & & \(\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\text {in }}=5.5 \mathrm{~V}\) & & 1 & mA \\
\hline Ios & Short-circuit output current \(\dagger\) & 36 & \(\mathrm{V}_{C C}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {in }}=0\) & -20 & -57 & mA \\
\hline \(I_{\text {cc }}\) & Supply current (each flip-flop) & 35 & \(\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V}, \quad \mathrm{~V}_{\text {in }}=5 \mathrm{~V}\) & & 8 & mA \\
\hline
\end{tabular}
\(\dagger\) Not more than one output should be shorted at a time.
\(\ddagger\) These typical values are at \(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}^{\prime} \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\).
switching characteristics, \(\mathrm{V}_{\mathrm{CC}}=\mathbf{5} \mathrm{V}, \mathrm{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}, \mathrm{N}=\mathbf{1 0}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & PARAMETER & TEST FIGURE & TEST CONDITIONS & MIN & TYP & MAX & UNIT \\
\hline \(\mathrm{f}_{\text {clock }}\) & Maximum clock frequency & 54 & \(\mathrm{C}_{1}=15 \mathrm{pF}\) & 10 & 15 & & MHz \\
\hline \({ }^{\text {P }}\) pd \({ }^{\text {d }}\) & Propagation delay time to logical 1 level from clear to output & 55 & \(\mathrm{C}_{1}=15 \mathrm{pF}\) & & 26 & 50 & ns \\
\hline \({ }^{\dagger}{ }_{\text {pdo }}\) & Propagation delay time to logical 0 level from clear to output & 55 & \(\mathrm{C}_{1}=15 \mathrm{pF}\) & & 34 & 50 & ns \\
\hline \({ }^{+}{ }_{\text {pdı }}\) & Propagation delay time to logical 1 level from clock to output & 54 & \(\mathrm{C}_{1}=15 \mathrm{pr}\) & 10 & 26 & 50 & ns \\
\hline \({ }^{\dagger} \mathrm{pdo}\) & Propagation delay time to logical 0 level from clock to output & 54 & \(\mathrm{C}_{1}=15 \mathrm{pF}\) & 10 & 34 & 50 & ns \\
\hline
\end{tabular}
functional block diagram (each flip-flop)

schematic (each flip-flop)


\footnotetext{
Component values shown are nominal.
}
logic

TRUTH TABLE (Each Flip-Flop)
\begin{tabular}{|c|c|c|}
\hline\(t_{n}\) & \multicolumn{2}{|c|}{\(t_{n+1}\)} \\
\hline INPUT D & \begin{tabular}{c} 
OUTPUT \\
\(Q\)
\end{tabular} & \begin{tabular}{c} 
OUTPUT \\
\(\bar{Q}\)
\end{tabular} \\
\hline 0 & 0 & 1 \\
\hline 1 & 1 & 0 \\
\hline
\end{tabular}

NOTES: 1. \(\mathrm{t}_{\mathrm{n}}=\) bit time before clock pulse.
2. \(t_{n+1}=\) bit time after. clock pulse.


\section*{description}

The SN5474 is a monolithic, dual, D-type, edge-triggered flip-flop featuring direct clear and preset inputs and complementary \(Q\) and \(\bar{Q}\) outputs. Input information is transferred to the \(\mathbf{Q}\) output on the positive edge of the clock pulse.
Clock triggering occurs at a voltage level of the clock pulse and is not directly related to the transition time of the positive going pulse. After the clock input threshold voltage has been passed the data input ( \(D\) ) is locked out.
The SN5474 dual flip-flop has the same clocking characteristics as the SN5470 gated (edge-triggered) flip-flop and both are ideally suited for medium-to-high-speed applications. The SN5474 can be used at a significant saving in system power dissipation and package count in applications where input gating is not required.

\section*{recommended operating conditions}
Supply Voltage \(\mathrm{V}_{\mathrm{Cc}}\) ..... 4.5 V to 5.5 V
Fan-Out From Each Output, N ..... 1 to 10
Width of Clock Pulse, \(t_{\text {piclock) }}\) (See Figure 56) . ..... \(\geq 30 \mathrm{~ns}\)
Width of Preset Pulse, \(t_{\text {plpreset) }}\) (See Figure 53) ..... \(\geq 30 \mathrm{~ns}\)
Width of Clear Pulse, \(t_{\text {plclear) }}\) (See Figure 53) . ..... \(\geq 30 \mathrm{~ns}\)
electrical characteristics, \(\mathrm{T}_{\mathrm{A}}=\mathbf{- 5 5}{ }^{\circ} \mathrm{C}\) to \(125^{\circ} \mathrm{C}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & PARAMETER & \begin{tabular}{|l|l|}
\hline TEST \\
FIGURE
\end{tabular} & \multicolumn{2}{|r|}{TEST CONDITIONS} & MIN & TYP & MAX & UNIT \\
\hline \(\mathrm{V}_{\mathrm{in}(1)}\) & Input voltage required to ensure logical I at any input terminal & 37 & \multicolumn{2}{|l|}{\(V_{c c}=4.5 \mathrm{~V}\)} & \multicolumn{3}{|l|}{2} & V \\
\hline \(V_{\text {in }(0)}\) & Input voltage required to ensure logical 0 at any input terminal & 37 & \multicolumn{2}{|l|}{\(\mathrm{V}_{\mathrm{cc}}=4.5 \mathrm{~V}\)} & \multicolumn{3}{|r|}{0.8} & V \\
\hline \(\mathrm{V}_{\text {out (1) }}\) & Logical 1 output voltage & 37 & \(\mathrm{V}_{\mathrm{cc}}=4.5 \mathrm{~V}\), & \(\mathrm{I}_{\text {load }}=-400 \mu \mathrm{~A}\) & & \(3.5 \ddagger\) & & V \\
\hline \(\mathrm{V}_{\text {out }}\) (0) & Logical 0 output voltage & 38 & \(\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}\), & \(\mathrm{I}_{\text {sink }}=16 \mathrm{~mA}\) & & \(0.22 \ddagger\) & 0.4 & V \\
\hline \(\mathrm{I}_{\text {in(0) }}\) & Logical 0 level input current at preset or D & 39 & \(\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}\) & \(\mathrm{V}_{\mathrm{in}}=0.4 \mathrm{~V}\) & & & -1.6 & mA \\
\hline \(I_{\text {in(0) }}\) & Logical 0 level input current at clear or clock & 39 & \(\mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}\) & \(V_{\text {in }}=0.4 \mathrm{~V}\) & & & -3.2 & mA \\
\hline \multirow[b]{2}{*}{\(\mathrm{I}_{\text {in(1) }}\)} & \multirow[t]{2}{*}{Logical I level input current at D} & \multirow[t]{2}{*}{40} & \(\mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}\), & \(\mathrm{V}_{\text {in }}=2.4 \mathrm{~V}\) & & & 40 & \(\mu \mathrm{A}\) \\
\hline & & & \(\mathrm{V}_{C C}=5.5 \mathrm{~V}\), & \(\mathrm{V}_{\text {in }}=5.5 \mathrm{~V}\) & & & 1 & mA \\
\hline \multirow[b]{2}{*}{\(\mathrm{l}_{\text {in(1) }}\)} & \multirow[t]{2}{*}{Logical 1 level input current at preset or clock} & \multirow[t]{2}{*}{40} & \(\mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}\) & \(\mathrm{V}_{\text {in }}=2.4 \mathrm{~V}\) & & & 80 & \(\mu \mathrm{A}\) \\
\hline & & & \(\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}\), & \(\mathrm{V}_{\text {in }}=5.5 \mathrm{~V}\) & & & 1 & mA \\
\hline \multirow[t]{2}{*}{\(\mathrm{I}_{\text {in(1) }}\)} & \multirow[t]{2}{*}{Logical 1 level input current at clear} & \multirow[t]{2}{*}{40} & \(\mathrm{V}_{C C}=5.5 \mathrm{~V}\), & \(\mathrm{V}_{\text {in }}=2.4 \mathrm{~V}\) & & & 120 & \(\mu \mathrm{A}\) \\
\hline & & & \(\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}\), & \(\mathrm{V}_{\text {in }}=5.5 \mathrm{~V}\) & & & 1 & mA \\
\hline Ios & Short-circuit output current \(\dagger\) & 41 & \(\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}\) & \(V_{\text {in }}=0\) & -20 & & -57 & mA \\
\hline \(I_{\text {cc }}\) & Supply current (each flip-flop) & 40 & \(\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}\), & \(\mathrm{V}_{\text {in }}=5 \mathrm{~V}\) & \multicolumn{3}{|c|}{8.5} & mA \\
\hline
\end{tabular}
\(\dagger\) Not more than one output should be shorted at a time.
\(\ddagger\) These typical values are at \(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}\).
switching characteristics, \(V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{N}=10\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & PARAMETER & \[
\begin{aligned}
& \text { TEST } \\
& \text { FIGURE }
\end{aligned}
\] & TEST CONDITIONS & MIN & TYP & MAX & UNIT \\
\hline \(f_{\text {clock }}\) & Maximum clock frequency & 56 & \(\mathrm{C}_{1}=15 \mathrm{pF}\) & 15 & 25 & & MHz \\
\hline \({ }^{\text {setup }}\) & Minimum input setup time & 56 & \(\mathrm{C}_{1}=15 \mathrm{pF}\) & & 15 & 20 & ns \\
\hline \(t_{\text {hold }}\) & Minimum input hold time & 56 & \(\mathrm{C}_{1}=15 \mathrm{pF}\) & & 2 & 5 & ns \\
\hline \({ }^{\dagger}{ }^{\text {pd }}\) & Propagation delay time to logical 1 level from clear or preset to output & 53 & \(\mathrm{C}_{1}=15 \mathrm{pF}\) & & & 25 & ns \\
\hline \({ }^{\dagger}\) pdo & Propagation delay time to logical 0 level from clear or preset to output & 53 & \(\mathrm{C}_{1}=15 \mathrm{pF}\) & & & 40 & ns \\
\hline \({ }^{\dagger}{ }_{\text {pdı }}\) & \begin{tabular}{l}
Propagation delay time to logical \\
1 level from clock to output
\end{tabular} & 56 & \(\mathrm{C}_{1}=15 \mathrm{pF}\) & 10 & 28 & 35 & ns \\
\hline \({ }^{\text {t }}\) do & Propagation delay time to logical 0 level from clock to output & 56 & \(\mathrm{C}_{1}=15 \mathrm{pF}\) & 10 & 20 & 50 & ns \\
\hline
\end{tabular}
functional block diagram (each flip-flop)

schematic (each flip-flop)


\footnotetext{
Component values shown are nominal.
}

\section*{Iogic}

TRUTH TABLE (See Notes 1, 2, and 3)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \(\mathbf{C}_{\mathbf{n}}\) & \(\mathbf{B}\) & \(\mathbf{A}\) & \(\overline{C_{n}+1}\) & \(\bar{\Sigma}\) & \(\Sigma\) \\
\hline 0 & 0 & 0 & \(\mathbf{1}\) & 1 & 0 \\
\hline \(\mathbf{0}\) & 0 & 1 & 1 & 0 & 1 \\
\hline 0 & 1 & 0 & 1 & 0 & 1 \\
\hline 0 & 1 & 1 & 0 & 1 & 0 \\
\hline 1 & 0 & 0 & 1 & 0 & 1 \\
\hline 1 & 0 & 1 & 0 & 1 & 0 \\
\hline 1 & 1 & 0 & 0 & 1 & 0 \\
\hline 1 & 1 & 1 & 0 & 0 & 1 \\
\hline
\end{tabular}

NOTES: I. \(A=\overline{A \star \cdot A_{c}}, B=\overline{B \hbar \cdot B_{C}}\)
where \(A \star=\overline{A_{1} \bullet A_{2}}, B \star=\overline{B_{1} \bullet B_{2}}\)
2. When \(A \star\) or \(B \star\) are used as inputs, \(A_{1}\) and \(A_{2}\) or \(B_{1}\) and \(B_{2}\) respectively must be connected to \(G N D\).
3. When \(A_{1}\) and \(A_{2}\) or \(B_{9}\) and \(B_{2}\) are used as inputs, \(A \star\) or \(B \star\) respectively must be open or used to perform Dot-OR logic.


\section*{description}

The SN5480 is a single-bit, high-speed, binary full adder with gated complementary inputs, complementary sum ( \(\Sigma\) and \(\bar{\Sigma}\) ) outputs and inverted carry output. Designed for medium-to-high-speed, multiple-bit, parallel-add/serial-carry applications, the circuit (see schematic diagram) utilizes diode-transistor logic (DTL) for the gated inputs, and high-speed, high-fan-out transistor-transistor logic (TTL) for the sum and carry outputs. The circuit is entirely compatible with both DTL and TTL logic families. The implementation of a single-inversion, high-speed, Darlington-connected serial-carry circuit minimizes the necessity for extensive "look-ahead" and carry-cascading circuits. The power dissipation level has been maintained considerably below that attainable with equivalent standard integrated circuits connected to perform full-adder functions.
recommended operating conditions
Supply Voltage Vcc Maximum Allowable Fan-Out From Outputs:
\(\overline{\mathrm{C}_{\mathrm{n}+1}}, \mathrm{~N}\) ..... 1 to 5
\(\Sigma\) or \(\vec{\Sigma}, N\) ..... 1 to 10
\(A^{\star}\) or \(B \star, N\) ..... 1 to 3
electrical characteristics, \(\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}\) to \(125^{\circ} \mathrm{C}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & PARAMETER & TEST FIGURE & TEST CONDITIONS & MIN & TYP MAX & UNIT \\
\hline \(V_{\text {in(1) }}\) & Logical 1 input voltage & 42 and 43 & \[
\begin{array}{ll}
v_{c c}=4.5 \mathrm{~V}, & v_{\text {in }(0)}=0.8 \mathrm{~V} \\
v_{\text {out }(1)} \geq 2.4 \mathrm{~V}, & v_{\text {out }(0)} \leq 0.4 \mathrm{~V}
\end{array}
\] & 2 & & V \\
\hline \(V_{\text {in(0) }}\) & Logical 0 input voltage & 42 and 43 & \[
\begin{array}{ll}
\mathrm{V}_{\mathrm{cc}}=4.5 \mathrm{~V}, & \mathrm{~V}_{\text {in(1) }}=2 \mathrm{~V} \\
\mathrm{~V}_{\text {out }(1)} \geq 2.4 \mathrm{~V}, & \mathrm{~V}_{\text {out }(0)} \leq 0.4 \mathrm{~V}
\end{array}
\] & & 0.8 & v \\
\hline \(V_{\text {out (1) }}\) & Logical 1 output voltage & 43 & \(\mathrm{V}_{\mathrm{cc}}=4.5 \mathrm{~V}\) & 2.4 & \(3.5 \ddagger\) & V \\
\hline \(V_{\text {out }}(0)\) & Logical 0 output voltage & 42 & \(\mathrm{V}_{\mathrm{cc}}=4.5 \mathrm{~V}\) & & 0.22 \(\ddagger\) & V \\
\hline \(\mathrm{I}_{\text {in } 10]}\) & Logical 0 level input current at \(A_{1}, A_{2}, B_{1}\), \(B_{2}, A_{c}\) or \(B_{c}\) & 44 & \(\mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{in}}=0.4 \mathrm{~V}\) & & - 1.6 & mA \\
\hline \(I_{\text {in } \mid \text { 0 }}\) & Logical 0 level input current at \(A \star\) or \(B \star\) & 45 & \(\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{in}}=0.4 \mathrm{~V}\) & & -2.6 & mA \\
\hline \(\mathrm{I}_{\text {in }}\) (0) & Logical 0 level input current at \(C_{n}\) & 45 & \begin{tabular}{l}
\[
V_{C C}=5.5 \mathrm{~V}, \quad V_{\mathrm{in}}=0.4 \mathrm{~V}
\] \\
(all inputs and outputs open)
\end{tabular} & & -8 & mA \\
\hline \multirow[b]{2}{*}{\(t_{\text {in(1) }}\)} & \multirow[t]{2}{*}{Logical 1 level input current at \(A_{1}, A_{2}, B_{1}, B_{2}, A_{c}\) or \(B_{c}\)} & \multirow[b]{2}{*}{46} & \(\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{in}}=2.4 \mathrm{~V}\) & & 15 & \(\mu \mathrm{A}\) \\
\hline & & & \(\mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {in }}=5.5 \mathrm{~V}\) & & 1 & mA \\
\hline \multirow[b]{2}{*}{\(\mathrm{I}_{\mathrm{in}(1)}\)} & \multirow[t]{2}{*}{Logical 1 level input current at \(\mathrm{C}_{\mathrm{n}}\)} & \multirow[b]{2}{*}{47} & \(\mathrm{V}_{\text {CC }}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {in }}=2.4 \mathrm{~V}\) & & 200 & \(\mu \mathrm{A}\) \\
\hline & & & \(\mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {in }}=5.5 \mathrm{~V}\) & & 1 & mA \\
\hline Ios & Short-circuit output current at \(\Sigma\) or \(\bar{\Sigma} \dagger\) & 48 & \(\mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}\) & -20 & -57 & mA \\
\hline los & Short-circuit output current at \(\overline{\mathrm{C}_{n+1}} \dagger\) & 48 & \(\mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}\) & -20 & -70 & mA \\
\hline Icc & Supply Current & 49 & \(\mathrm{v}_{\mathrm{cc}}=5 \mathrm{~V}\) & & 21 & mA \\
\hline
\end{tabular}
\(\dagger\) Not more than one output should be shorted at a time.
\(\ddagger\) These typical values are at \(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}\).
switching characteristics, \(\mathbf{V}_{\mathrm{CC}}=\mathbf{5 V}, \mathbf{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline PARAMETER 7 & FROM INPUT & TO OUTPUT & FIGURE 57 TEST NO. & TEST CONDITIONS & MIN TYP & MAX & UNIT \\
\hline \({ }^{\text {p }{ }_{\text {d }}}\) & \multirow[b]{2}{*}{\(C_{n}\)} & \multirow[t]{2}{*}{\(\overline{C_{n+1}}\)} & 1 & \(N=5\) & 13 & 17 & ns \\
\hline \({ }^{\dagger}{ }_{\text {pdo }}{ }^{\text {d }}\) & & & 2 & \(N=5\) & 3 & 7 & ns \\
\hline \(t_{\text {pd1 }}\) & \multirow[b]{2}{*}{\(B_{C}\)} & \multirow[t]{2}{*}{\(\overline{C_{n+1}}\)} & 3 & \(N=5\) & 18 & 25 & ns \\
\hline \({ }^{\dagger}{ }_{\text {pdo }}{ }^{\text {d }}\) & & & 4 & \(N=5\) & 38 & 55 & ns \\
\hline \({ }^{\text {p }}\) plı & \multirow[t]{2}{*}{\(A_{c}\)} & \multirow[t]{2}{*}{\(\Sigma\)} & 5 & \(N=10\) & 52 & 70 & ns \\
\hline \({ }^{\text {pdo }}\) & & & 6 & \(N=10\) & 62 & 80 & ns \\
\hline \({ }^{\text {p }}\) dil & \multirow[b]{2}{*}{\(B_{C}\)} & \multirow[t]{2}{*}{\(\bar{\Sigma}\)} & 7 & \(N=10\) & 38 & 55 & ns \\
\hline \(t_{\text {pdo }}\) & & & 8 & \(\mathrm{N}=10\) & 56 & 75 & ns \\
\hline \(t_{\text {pdi }}\) & \multirow[b]{2}{*}{\(A_{1}\)} & \multirow[t]{2}{*}{Aᄎ} & 9 & \(\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}\) & 48 & 65 & ns \\
\hline \({ }^{\text {t }}\) pdo & & & 10 & \(C_{L}=15 \mathrm{pF}\) & 17 & 25 & ns \\
\hline \(t_{\text {pd }}\) & \multirow[b]{2}{*}{\(B_{1}\)} & \multirow[t]{2}{*}{B \({ }^{\text {* }}\)} & 11 & \(C_{L}=15 \mathrm{pF}\) & 48 & 65 & ns \\
\hline \({ }^{\text {pdo }}\) & & & 12 & \(C_{L}=15 \mathrm{pF}\) & 17 & 25 & ns \\
\hline
\end{tabular}

\footnotetext{
\(\mathrm{I}_{\mathrm{pd}}\) is propagation delay time to logical 1 level. \(\mathrm{t}_{\mathrm{pdo}}\) is propagation delay time to logical 0 level.
}

\section*{TYPICAL APPLICATIONS}

\section*{n-bit binary adder or subtractor (see figures \(F\) and \(G\) )}

The SN5480 is designed specifically for N -bit adder or subtractor operations without external gates or inverters. In both applications, the sum or difference functions are generated in parallel while the carry functions are obtained serially. When the number of stages is small, the add or subtract time determines the maximum system clock rate. However, as the number of bits increases, the time required for the carry function to ripple through each bit becomes the limiting factor. Normally the ripple time of adders built with standard integrated circuits is excessive, and the resulting system speed is so slow that other more complex methods are required to perform these functions.

In the SN5480, two methods are used to reduce the carry delay. The carry circuit employs a high-speed Darlington output, and the logic gating has only one inversion between the \(C_{n}\) input and the \(\overline{C_{n+1}}\) output. This logic configuration results in an inverted carry output, and consequently an inverted carry input to the succeeding stage. To counteract this inverted input without sacrificing propagation time through the carry, gates are provided within the circuit to invert the \(A\) and \(B\) inputs and the resulting sum or difference output. This
interconnection method is illustrated by bit 2 and bit 4 of the adder (figure F). The inverted carry output is a true carry from bit 2 and bit 4, enabling the use of noninverted \(A\) and \(B\) inputs for the odd-numbered bits.

When performing subtraction (figure \(G\) ) the \(C_{n}\) input to bit 1 is connected to a logical 1 and input bits and input control functions for the subtrahend (memory or register \(B\) ) are effectively inverted.

The input control is used to disable the \(A\) and \(B\) inputs when memory or register information is being shifted. A logical 0 applied to this line will bring each sum or difference output to a logical 0 condition and maintain this level regardless of the state of the input information into each bit. For the adder (figure \(F\) ), input control is applied to \(A_{2}\) and \(B_{2}\) of odd-numbered bits and to \(A_{c}\) and \(B_{c}\) of even-numbered bits. For the subtractor (figure \(G\) ), input control is applied to \(A_{2}\) and \(B_{c}\) of the odd-numbered bits and to \(A_{c}\) and \(B_{2}\) of the even-numbered bits. These alternating patterns are necessary to complement the varying input sequence which they control.


\section*{TYPICAL APPLICATIONS}

\section*{n-bit binary adder with register selection (see figure}

This application fully utilizes the flexibility of the input gating available within the SN5480. Two " \(A\) " registers and two " \(B\) " registers drive a single adder for each bit required. Register selection is performed internally for registers \(A_{1}\) and \(B_{1}\) and externally by a type SN15 946 DTL gate for registers \(A_{2}\) and \(B_{2}\). Dot-OR logic is performed at the \(A \star\) and \(B \star\) nodes within the adder when the register selection is made.

Operation is as follows: To add the contents of Register \(A_{1}\) to Register \(B_{1}, A_{2}\) and \(B_{2}\) control lines are brought to the logical 0 state. (If the input to these lines is from a logic gate, fan-out rules should be observed.) In similar fashion, the contents of register \(A_{1}\) are added to register \(B_{2}\) by holding \(A_{2}\) and \(B_{1}\) control lines at a logical 0. Four register combinations may be used. Even-numbered input bits from each register must be inverted since the \(A \star\) and \(B \star\) inputs are being used to perform Dot-OR logic. This is not a configuration restriction for flip-flop type registers and memories, but may require additional logic elements if other storage configurations are used as inputs.

The input control function is available as in the previous application and is implemented by bringing all four register control lines and the input control line to a logical 0 level. This condition ensures a logical 0 at each \(\Sigma\) output regardless of " \(A\) " and " \(B\) " register logic levels.

Up to four " \(A\) " registers and four " \(B\) " registers may be implemented in a fashion analogous to that shown in figure H . Inputs from the register-control gates (SN15 946) of the additional registers would be Dot-OR connected with \(A_{2}\) and \(B_{2}\) registers at the \(A \star\) and \(B \star\) inputs.

To perform \(N\)-bit subtraction, the \(C_{n}\) input at bit 1 is connected to a logical 1 and bit inputs from each register or memory used as a subtrahend must consist of the complement of bit inputs shown for the adder addend. Input control remains the same.


\section*{schematic diagram}


Component values shown are nominal.
Resistor values are in ohms.

PARAMETER MEASUREMENT INFORMATION
d-c test circuits§

§Arrows indicate actual direction of current flow.

PARAMETER MEASUREMENT INFORMATION
d-c test circuits§ (continued)
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
1. Each AND section tested separately. \\
FIGURE 7
\end{tabular} & 1. Each pair of inputs tested separately. FIGURE 8 \\
\hline 1. Each input tested separately. FIGURE 9 & \begin{tabular}{l}
1. Each input tested separately. \\
FIGURE 10
\end{tabular} \\
\hline \begin{tabular}{l}
1. Each gate tested separately. \\
FIGURE 11
\end{tabular} &  \\
\hline
\end{tabular}
§Arrows indicate actual direction of current flow.

\section*{PARAMETER MEASUREMENT INFORMATION}
d-c test circuits§ (continued)
\begin{tabular}{|c|c|}
\hline FIGURE 13 &  \\
\hline FIGURE 15 & FIGURE 16 \\
\hline \begin{tabular}{l}
1. All inputs tested simultaneously. \\
FIGURE 17
\end{tabular} & \begin{tabular}{l}
1. Each input tested separately. \\
FIGURE 18
\end{tabular} \\
\hline
\end{tabular}

\footnotetext{
§Arrows indicate actual direction of current flow.
}

PARAMETER MEASUREMENT INFORMATION
d-c test circuits§ (continued)

§Arrows indicate actual direction of current flow.

\section*{PARAMETER MEASUREMENT INFORMATION}
d-c test circuits§ (continued)

§ Arrows indicate actual direction of current flow.

\section*{PARAMETER MEASUREMENT INFORMATION}
d-c test circuits \(\$\) (continued)

I. Each output is tested separately.

FIGURE 27

\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{TEST TABLE} \\
\hline \[
\begin{aligned}
& \text { Apply } \mathrm{V}_{\text {in }} \\
& \text { (Test }_{\text {in }(0)} \text { ) }
\end{aligned}
\] & Apply Momentary GND, then 4.5 V & \[
\begin{aligned}
& \text { Apply } \\
& 4.5 \mathrm{~V}
\end{aligned}
\] \\
\hline Clock & Preset & J1, J2, J3, K1, K2, and K3 \\
\hline Clock & Clear & J1, J2, J3, K1, K2, and K3 \\
\hline Preset & None & J1, J2, J3, K1, K2, and K3 \\
\hline Clear & None & J1, J2, J3, K1, K2, and K3 \\
\hline J & Clear & Clock, J2, and J3 \\
\hline J2 & Clear & Clock, J1, and J3 \\
\hline J3 & Clear & Clock, J 1 , and J 2 \\
\hline K1 & Preset & Clock, K2, and K3 \\
\hline K2 & Preset & Clock, K1, and K3 \\
\hline K3 & Preset & Clock, K1, and K2 \\
\hline
\end{tabular}
1. Each input is tested separately.
FIGURE 29

1. Each input is tested separately.
FIGURE 30
§Arrows indicate actual direction of current flow.

\section*{PARAMETER MEASUREMENT INFORMATION}
d-c test circuits § (continued)

§Arrows indicate actual direction of current flow.

\section*{PARAMETER MEASUREMENT INFORMATION}
d-c test circuits \(\S\) (continued)


\footnotetext{
§Arrows indicate actual direction of current flow.
}

PARAMETER MEASUREMENT INFORMATION
d-c test circuits§ (continued)

§Arrows indicate actual direction of current flow.

\section*{d-c test circuits \(\S\) (continued)}


TEST TABLE
\begin{tabular}{|l|c|}
\multicolumn{2}{c|}{ TEST TABLE } \\
\hline Output Under Test & \(1_{\text {sink }}\) (Min) \\
\hline\(\Sigma\) or \(\bar{\Sigma}\) & 16 mA \\
\hline\(\overline{C_{n+1}}\) & 8 mA \\
\hline\(A \star\) or \(B \star\) & 4.8 mA \\
\hline
\end{tabular}
1. Each input or output is fested separately.
2. When \(A \star\) is tested \(A_{1}\) and \(A_{2}\) are at GND. When \(B t\) is tested \(B_{1}\) and \(B_{2}\) are at GND.
3. When \(A_{1}\) and \(A_{2}\) or \(B_{1}\) and \(B_{2}\) is tested, \(A \notin\) or \(B t\) respectively, is open.

FIGURE 42


TEST TABLE
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{c|}{ TEST TABLE } \\
\hline Output Under Test & I load \((\mathrm{Min})\) \\
\hline\(\Sigma\) or \(\Sigma\) & \(-400 \mu \mathrm{~A}\) \\
\hline\(\overline{C_{n}+1}\) & \(-200 \mu \mathrm{~A}\) \\
\hline\(A t\) or \(B t\) & \(-120 \mu \mathrm{~A}\) \\
\hline
\end{tabular}
1. Each input or output is tested separately.
2. When \(A \star\) is tested \(A_{1}\) and \(A_{2}\) are at GND. When \(B \star\) is tested \(B_{1}\) and \(B_{2}\) are at GND.
3. When \(A_{1}\) and \(A_{2}\) or \(B_{1}\) and \(B_{2}\) are tested \(A \star\) or \(B \star\), respectively, is open.
§Arrows indicate actual direction of current flow.

PARAMETER MEASUREMENT INFORMATION
d-c test circuits §(continued)

§Arrows indicate actual direction of current flow.

\section*{PARAMETER MEASUREMENT INFORMATION}

\section*{d-c test circuits§(continued)}

§ Arrows indicate actual direction of current flow.

\section*{PARAMETER MEASUREMENT INFORMATION}

\section*{switching characteristics}

test circuit


\section*{VOLTAGE WAVEFORMS}

NOTES: 1 . The generator has the following characteristics: \(\mathrm{t}_{0}=\mathrm{t}_{1} \leq 15 \mathrm{~ns}, \mathrm{t}_{\mathrm{p}}=0.5 \mu \mathrm{~s}, \mathrm{PRR}=1 \mathrm{MHz}, \mathrm{Z}_{\text {out }} \approx 50 \Omega\).
2. All transistors are 2 N 2368 .
3. All diodes are 1 N916.
4. Test \(S N 5440\) with \(R_{1}=130 \Omega, C_{2}=150 \mathrm{pF}\).
5. \(\mathrm{t}_{\mathrm{pd}}=\frac{\mathrm{t}_{\mathrm{pdo}}+\mathrm{t}_{\mathrm{pdr}}}{2}\)
6. \(C_{1}\) includes probe and iig capacitance.

\section*{PARAMETER MEASUREMENT INFORMATION}
switching characteristics (continued)


TEST CIRCUIT


VOLTAGE WAVEFORMS

NOTES: 1. The generator has the following characteristics: \(\mathrm{t}_{0}=\mathrm{t}_{1} \leq 15 \mathrm{~ns}, \mathrm{t}_{\mathrm{p}}=0.5 \mu \mathrm{~s}, \mathrm{PRR}=1 \mathrm{MHz}, \mathrm{z}_{\text {out }} \approx 50 \Omega\).
2. All transistors are 2 N 2368 .
3. All diodes are 1 N916.
4. \(t_{\mathrm{pd}}=\frac{t_{\mathrm{pdo}}+t_{\mathrm{pd} I}}{2}\)
5. \(C_{1}\) includes probe and iig capacitance.

FIGURE 51 - EXPANDER PROPAGATION DELAY TIMES

PARAMETER MEASUREMENT INFORMATION
switching characteristics (continued)


TEST CIRCUIT SN5474
NOTES: 1. Present or clear function of the SNS470 can occur only when clock input is low. Gated inputs are inhibited.
2. Clear and preset inputs of the SN5474 dominate regardess of the state of clock or \(D\) inputs.
3. All transistors are 2 N2368.
4. All diodes are 1 N916.
5. \(C_{1}\) includes probe and jig capacitance.
figure 52 - SN5470 AND SN5474 PRESET/CLEAR PROPAGATION DELAY tIMES (SHEET 1 OF 2)

\section*{PARAMETER MEASUREMENT INFORMATION}
switching characteristics (continued)


\footnotetext{
FIGURE 52 - SN5470 AND SN5474 PRESET/CLEAR PROPAGATION DELAY TIMES (SHEET 2 OF 2)
}
switching characteristics (continued)


\author{
SERIES 54 \\ 
}

\section*{PARAMETER MEASUREMENT INFORMATION}

\section*{switching characteristics (continued)}


NOTES: 1 . Clock, \(J\), and \(K\) input pulse characteristics: \(V_{i n(0)}=0.4 \mathrm{~V}, \mathrm{C}_{\mathrm{in}(1)}=2.4 \mathrm{~V}, \mathrm{t}_{1}=\mathrm{t}_{0}=15 \mathrm{~ns}, \mathrm{t}_{\mathrm{p}}=20 \mathrm{~ns}\), and \(\mathrm{PRR}=1 \mathrm{MHz}\). When testing \(\mathrm{f}_{\mathrm{cl} \text { ock }}\), vary PRR.
2. For the SN5472, \(\mathrm{J}=\mathrm{Jl} \cdot \mathrm{J} 2 \cdot \mathrm{~J} 3\) and \(\mathrm{K}=\mathrm{K} 1 \cdot \mathrm{~K} 2 \cdot \mathrm{~K} 3\).
3. Gated inputs (shown with dotted lines) are for the SN5472 only. The SN5473 Dual Flip-Flop has direct J and K inputs and preset is not available.
4. All transistors are 2 N 2368 .
5. All diodes are 1 N 916.
6. \(C_{1}\) includes probe and iig capacitance.

FIGURE 54 - SN5472, SN5473 FLIP-FLOP SWITCHING TIMES

PARAMETER MEASUREMENT INFORMATION

\section*{switching characteristics (continued)}


NOTES: 1. Clear or preset inputs dominate regardess of the state of clock or J-K inputs.
2. Clear or preset input pulse characteristics: \(\mathbf{V}_{\text {in }(0)}=0.4 \mathrm{~V}, \mathbf{V}_{\text {in(1) }}=2.4 \mathrm{~V}, \mathrm{t}_{1}=\mathrm{t}_{0}=15 \mathrm{~ns}, \mathrm{t}_{\text {p(clear) }}=\mathrm{t}_{\text {p(preset })}=25 \mathrm{~ns}\), and PRR \(=1 \mathrm{MHz}\).
3. Gated inputs (shown with dotted lines) are for the SN5472 only. The SN5473 Dual Flip-Flop has direct Jand \(\mathbf{K}\) inputs and preset is not available.
4. All transistors are 2 N 2368 .
5. All diodes are IN916.
6. \(C_{1}\) includes probe and i g capacitance.

FIGURE 55 - SN5472 AND SN5473 PRESET/CLEAR PROPAGATION DELAY TIMES

\section*{PARAMETER MEASUREMENT INFORMATION}
switching characteristics (continued)


\section*{VOLTAGE WAVEFORMS}

NOTES: 1. Clock input pulse has the following characteristics: \(\mathrm{V}_{\mathrm{in}(0)}=0.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{in}(1)}=2.4 \mathrm{~V}, \mathrm{t}_{1}=\mathrm{t}_{0}=15 \mathrm{~ns}, \mathrm{t}_{\mathrm{p}}=30 \mathrm{~ns}\), and \(\operatorname{PRR}=1 \mathrm{mHz}\). When testing \(\mathrm{f}_{\text {clock }}\), vary. PRR.
2. \(\mathbf{D}\) input (pulse \(A\) ) is used to measure \(t_{p d 1}\) at \(Q\) and \(t_{\text {pd0 }}\) at \(\bar{Q}\). Pulse \(B\) is used to measure \(t_{p d 1}\) at \(\bar{Q}\) and \(t_{\text {pdo }}\) at \(\mathbf{Q}\). \(D\) input (pulse \(A\) ) has the following characteristics: \(\mathrm{t}_{1}=\mathrm{t}_{0}=15 \mathrm{~ns}, \mathrm{t}_{\text {setup }}=20 \mathrm{~ns}, \mathrm{t}_{\mathrm{p}}=60 \mathrm{~ns}\), and PRR is \(50 \%\) of the clock PRR. D input (pulse B) has the following characteristics: \(\mathrm{t}_{1}=\mathrm{t}_{0}=\) \(15 \mathrm{~ns}, \mathrm{t}_{\text {hold }}=5 \mathrm{~ns}, \mathrm{t}_{\mathrm{p}}=60 \mathrm{~ns}\), and PRR is \(50 \%\) of the clock PRR.
3. All transistors are 2 N 2368 .
4. All diodes are 1 N 916 .
5. \(C_{1}\) includes probe and jig capacitance.

FIGURE 56 - SN5474 FLIP-FLOP SWITCHING TIME

\section*{SOy Tm Crimewre \({ }^{\circledR}\) SEMICONDUCTOR NETWORKS}

\section*{PARAMETER MEASUREMENT INFORMATION}
switching characteristics (continued)

1. Perform test in accordance with test table.
2. Each oufput is tested separately.
3. Voltage values are with respect to network GND terminal.
4. The generator has the following characteristics: \(\mathbf{V}_{\text {gen }}=3 \mathbf{V}, \mathbf{t}_{1}=\mathbf{t}_{0} \leq 15 \mathrm{~ns}\),
\({ }^{\mathrm{t}_{\mathrm{p}}}=0.5 \mu \mathrm{~s}, \mathrm{PRR}=1 \mathrm{MHz}\), and \(\mathrm{z}_{\text {out }} \approx 50 \Omega\).
5. Inputs and outputs not otherwise specified are open.
6. \(C_{L}\) and \(C_{1}\) include probe and jig capacitance.
test circuit
7. Load circuit 3 simulates output load of 5 .
8. All transistors are 2N2368.
9. All diodes are IN916.

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline TEST NO. & OUTPUT UNDER TEST & APPLY INPUT \(\bar{Y}\) TO & APPLY INPUT Y TO & \[
\begin{gathered}
\text { APPLY } \\
+2.4 \mathrm{~V} \text { T0 }
\end{gathered}
\] & \[
\begin{aligned}
& \text { APPLY } \\
& \text { GND TO }
\end{aligned}
\] & APPLY
OUTPUT LOADING TO \\
\hline 1 & \(\overline{C_{n+1}}\) & None & \(\mathrm{C}_{\mathrm{n}}\) & None & \(\mathrm{B}_{1}\) & \(\overline{C_{n+1}} \quad(N=5)\) \\
\hline 2 & \(\overline{c_{n+1}}\) & None & \(c_{n}\) & None & \(B_{1}\) & \(\bar{C}_{n+1} \quad(N=5)\) \\
\hline 3 & \(\overline{\bar{C}+1}\) & \(B_{c}\) & None & \(C_{n}\) & \(A_{1}, B_{1}\) & \(\overline{c_{n+1}} \quad(N=5)\) \\
\hline 4 & \(\overline{c_{n+1}}\) & \(B_{c}\) & None & \(\mathrm{C}_{n}\) & \(A_{1}, B_{1}\) & \(\overline{c_{n+1}} \quad(N=5)\) \\
\hline \multirow{3}{*}{5} & \multirow{3}{*}{\(\Sigma\)} & \multirow{3}{*}{\(A_{c}\)} & \multirow{3}{*}{None} & \multirow{3}{*}{\(c_{n}\)} & \multirow{3}{*}{\(A_{1}, B_{1}\)} & \(\sum \quad(N=10)\) \\
\hline & & & & & & \(\sum \quad(N=10)\) \\
\hline & & & & & & \(\overline{C_{n}+1} \quad(N=5)\) \\
\hline \multirow{3}{*}{6} & \multirow{3}{*}{\(\Sigma\)} & \multirow{3}{*}{\({ }^{\text {c }}\) c} & \multirow{3}{*}{None} & \multirow{3}{*}{\(c_{n}\)} & \multirow{3}{*}{\(A_{1}, B_{1}\)} & \(\Sigma \quad(N=10)\) \\
\hline & & & & & & \(\Sigma \quad(N=10)\) \\
\hline & & & & & & \(\overline{C_{n}+1} \quad(N=5)\) \\
\hline 7 & \(\bar{\Sigma}\) & \(B_{c}\) & None & \(c_{n}\) & \(\mathrm{B}_{1}\) & \(\bar{\Sigma} \quad(N=10)\) \\
\hline 8 & \(\Sigma\) & \({ }^{\text {B }}\) & None & \(C_{n}\) & \(\mathrm{B}_{1}\) & \(\Sigma \quad(N=10)\) \\
\hline 9 & A* & None & \(\mathrm{A}_{1}\) & \(\mathrm{A}_{2}\) & None & \(A \star \quad\left(C_{L}=15 \mathrm{pF}\right)\) \\
\hline 10 & A* & None & \(\mathrm{A}_{1}\) & \(\mathrm{A}_{2}\) & None & A* ( \(\left.C_{L}=15 \mathrm{pF}\right)\) \\
\hline 11 & B* & None & \(B_{1}\) & \(\mathrm{B}_{2}\) & None & \(B \star \quad\left(C_{L}=15 \mathrm{pF}\right)\) \\
\hline 12 & B* & None & \(B_{1}\) & \(B_{2}\) & None & \(B \star \quad\left(C_{L}=15 \mathrm{pF}\right)\) \\
\hline
\end{tabular}


Voltage waveforms

FIGURE 57 - SN5480 SWITCHING tIMES

TYPICAL CHARACTERISTICS §
logical I output voltage
vs
load current

logical o output voltage
vs
SINK CURRENT

§ Unless otherwise noted, data as shown is applicable for SN5400, SN5410, SN5420, SN5430, SN5450, SN5451, SN5453, and SN5454.

\section*{TYPICAL CHARACTERISTICS §}


PROPAGATION DELAY TIME TO LOGICAL 0 LEVEL
vs

\(\mathrm{T}_{\mathrm{A}}\) - Free-Air Temperature - \({ }^{\circ} \mathrm{C}\)
§ Unless otherwise noted, data as shown is applicable for SN5400, SN5410, SN5420, SN5430, SN5450, SN5451, SN5453, and SN5454.

TYPICAL CHARACTERISTICS §

PROPAGATION DELAY TIME TO LOGICAL 1 LEVEL
vs
FREE-AIR TEMPERATURE


PROPAGATION DELAY TIME
vs
FREE-AIR TEMPERATURE

§ Unless otherwise noted, data as shown is applicable for SN5400, SN5410, SN5420, SN5430, SN5450, SN545I, SN5453, and SN5454.
general

Series 54 semiconductor networks are mounted in glass-to-metal hermetically sealed, welded packages. Package body and leads are gold-plated F-15 \(\ddagger\) glass-sealing alloy. Approximate weight is

\section*{geral}

\section*{MECHANICAL DATA}
0.1 gram. All external surfaces are metallic and are insulated from leads and circuit. All Series 54 networks are available with formed leads, insulator attached, and/or mounted in a Mech-Pak carrier.


\section*{leads}

Gold-plated F -15 \(\ddagger\) leads require no additional cleaning or processing when used in soldered or welded assembly. Formed leads are available to facilitate planar mounting of networks on flat circuit boards. Standard lead length is 0.175 inch. Networks can be removed from Mech-Pak carriers with lead lengths up to 0.175 inch.

\section*{insulator}

An insulator, secured to the back surface of the package, permits mounting networks on circuit boards which have conductors passing beneath the package. The insulator is 0.0025 inch thick and has an insulation resistance of greater than 10 megohms at \(25^{\circ} \mathrm{C}\).

\section*{mech-pak carrier}

The Mech-Pak carrier facilitates handling the network, and is compatible with automatic equipment used for testing and assembly. The carrier is particularly appropriate for mechanized assembly operations and will withstand temperatures of \(125^{\circ} \mathrm{C}\) for indefinite periods.

\section*{ordering instructions}

Variations in mechanical configuration of semiconductor networks are identified by suffix numbers shown in a table at the right.

\section*{+Patented by Texas Instruments}


NOTES: a. All dimensions in inches.
b. Not applicable in Mech-Pak Carrier.
c. Measured from center of lead to bottom of package where lead emerges from body.

\begin{tabular}{|l|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{3}{|c|}{\begin{tabular}{c} 
NO MECH-PAK \\
CARRIER
\end{tabular}} & \multicolumn{4}{c|}{\begin{tabular}{c}
\multicolumn{2}{c|}{ MECH-PAK } \\
CARRIER
\end{tabular}} \\
\hline Lead Length & \multicolumn{3}{|c|}{0.175 Inch } & \multicolumn{3}{c|}{ Not Applicable } \\
\hline Formed Leads & No & No & Yes & Yes & No & No & Yes & Yes \\
\hline Insulators & No & Yes & No & Yes & No & Yes & No & Yes \\
\hline \begin{tabular}{l} 
Ordering \\
Suffix
\end{tabular} & None & -6 & -7 & -1 & -2 & -3 & -4 & -5 \\
\hline
\end{tabular}
\(\ddagger\) F-15 is the ASTM designation for an iron-nickel-cobalt alloy containing nominally \(\mathbf{5 3} \%\) iron, \(\mathbf{2 9} \%\) nickel, and \(\mathbf{1 7 \%}\) cobalt.

If cannot assume any responsibility for any circuits shown
or represent that they are free from patent infringement.

\section*{How to Insert Pages}
1. Place pile of insert pages at right of book.
2. Grasp plastic tabs and pull all three straps out of book.
3. Work from back of book to front, placing insert sheets in numerical order by page number*, aligning their holes with holes in book.
4. After all insert sheets are in place, with left hand slip long ends of all three straps into right-hand holes.
5. With right hand, slip short ends of straps into left-hand holes. The book is now re-bound.

To delete pages, tear them out one at a time as you would tear sheets from a tablet.
*Certain large blocks of page numbers have intentionally been omitted from the bound book. These numbers are reserved for insert pages.

\title{
DIGITAL SEMICONDUCTOR NETWORKS \\ IN -A PLUG-IN FLAT PACKAGE
}

\section*{Description}

Series 74P consists of Series 74 general-purpose digital circuits mounted in 16 -pin hermetically sealed plug-in flat packages.

\section*{Package features}
- plug-in pin configuration ideal for economical flow-soldering techniques
- pins on \(100-\mathrm{mil}\) grid spacings for industrial-type circuit-boards
- economical package construction
- sturdy pins for easy insertion
- welded hermetic seal
- low profile for space savings


INDUSTRIAL 16-PIN PLUG-IN FLAT PACKAGE

This inexpensive plug-in package is adaptable to conventional low-cost assembly and design rechniques, including high-volume manual or automatic insertion, flow- or wave-soldering, and the use of economical circuit boards designed with \(100-\mathrm{mil}\) grid spacings. The package has two rows of firm pins out the bottom with the rows spaced 200 mils apart. A flange tab is provided for indexing, simplifying both manual and automatic insertion. The package has a rugged ceramic-fo-metal construction and a welded-metal hermetic seal, assuring the highesf degree of network sigidity and reliability.

\section*{Mechanical data}

Series 74P networks are mounted in a ceramic-io-metal, hermetically sealed, plug-in package. The circuir and leads are insulated from the package. Leads require no additional cleaning op processing prior to soldering.


Specifications, logic symbols, and pin numbers
Schematic diagrams, fan-out rules and specifications for all Series 74 P networks are identical to those of the corresponding Séries 74 network. Logic symbols for all Series 74 P networks are shown here to provide external circuit pin connections. The absence of internal connections to a package is indicated by NC.

TYPE SN7400P
QUADRUPLE 2-INPUT POSITIVE NAND GATE


TYPE SN7420P
dUAL 4-INPUT POSITIVE NAND GATE


TYPE SN7410P
TRIPLE 3-INPUT POSITIVE NAND GATE


TYPE SN7430P 8-INPUT POSITIVE NAND GATE


Manufacturer.
Texas Instruments, Inc., Semiconductor Components Division, P. O. Box 5012, Dallas, Texas.

\section*{logic definition}

Series 74P logic is defined in terms of standard POSITIVE LOGIC using the following definitions: LOW VOLTAGE = LOGICAL 0
HIGH VOLTAGE = LOGICAL 1

TYPE SN7440P
DUAL 4-INPUT POSITIVE RAND "POWER" GATE


TYPE SN7460P
DUAL 4-INPUT EXPANDER FOR SN7450P
connect pin (3) or (14) (collector) to pin (3) of SN7450P.
connect pin (2) or (15) (emitter) to pin (2) of SN7450P.


TYPE SN7450P
EXPANDABLE DUAL EXCLUSIVE-OR GATE
Both expander inputs are used simultaneously for expanding with
the SN7460p. If expander is not used leave pins (2) and (3) open


TYPE SN7470P J-K FLIP.FLOP


\section*{HIGH-SPEED TTL DIGITAL SEMICONDUCTOR NETWORKS IN DTL PIN CONFIGURATIONS}

\section*{description}

Series 54930 consists of Texas Instruments high-speed TTL circuits with pin configurations and logic functions that make them electrically compatible and mechanically interchangeable with Series 15930 DTL circuits. In addition to five interchangeable networks, an 8 -input NAND gate and a dual AND-OR-INVERT gate are available.
\begin{tabular}{|c|c|c|}
\hline comparative features & \[
\begin{gathered}
\text { SERIES } 15930 \\
\text { DTL } \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\text { SERIES } 54930 \\
\text { TTL }
\end{gathered}
\] \\
\hline \begin{tabular}{l}
Gate propagation delay time (typically) \\
Fan-out capability \\
(DTL can drive 8 DTL or 5 TTL loads, TTL can drive 10 TTL or 10 DTL loads)
\end{tabular} & \[
\begin{gathered}
25 \mathrm{~ns} \\
8
\end{gathered}
\] & \[
\begin{aligned}
& 13 \mathrm{~ns} \\
& 10
\end{aligned}
\] \\
\hline Noise immunity (guaranteed) . . . . & 350 mV & 400 mV \\
\hline
\end{tabular}
standard line summary
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ FUNCTION } & \multicolumn{1}{|c|}{ TYPES } & \multicolumn{1}{|c|}{ SIMILAR DTL CIRCUIT } \\
\hline Dual 4-Input Positive NAND Gate & SN54 930 & SN15 930 \\
\hline Dual 4-Input Positive NAND Buffer & SN54 932 & SN15 932 \\
\hline Quadruple 2-Input Positive NAND Gate & SN54 946 & SN15946 \\
\hline Triple 3-Input Positive NAND Gate & SN54 962 & SN15 962 \\
\hline 8-Input Positive NAND Gate & SN54 965 & None \\
\hline Dual 2-Wide 2-Input AND-OR-INVERT Gate & SN54 966 & None \\
\hline Master-Slave Flip-Flop & SN54 948 & SN15 931/SN15 945/SN15 948 \\
\hline
\end{tabular}

\section*{specifications}

Schematic diagrams, fan-out rules, maximum ratings, temperature ranges, and electrical characteristics are identical to those of the corresponding Series 54 type number.
\begin{tabular}{|c|c|}
\hline SERIES 54 930 TYPE & \begin{tabular}{c} 
CORRESPONDING \\
SERIES 54 TYPE
\end{tabular} \\
\hline SN54 930 & SN5420 \\
\hline SN54 932 & SN5440 \\
\hline SN54946 & SN5400 \\
\hline SN54948 & See Note 1 \\
\hline SN54 962 & SN5410 \\
\hline SN54 965 & SN5430 \\
\hline SN54 966 & SN5451 \\
\hline
\end{tabular}

NOTE 1: The SN54 948 has no corresponding Series 54 type. Electrical and switching characteristics are included in this data sheet.

\footnotetext{
\(\dagger\) Patented by Texas Instruments
}

\section*{Texas Instruments}

PIN CONFIGURATIONS


SN54 946
QUADRUPLE 2-INPUT POSITIVE NAND GATE


SN54 965
8-INPUT POSITIVE NAND GATE


DUAL 4-INPUT POSITIVE NAND BUFFER


SN54 962
TRIPLE 3-INPUT POSITIVE NAND GATE


DUAL 2-WIDE 2-INPUT AND-OR-INVERT GATE


\section*{logic}
truth tables
\begin{tabular}{|l|l|l|l|l|}
\hline \multicolumn{5}{|c|}{ R-S MODE } \\
\hline \multicolumn{4}{|c|}{\(t_{n}\)} & \multicolumn{2}{|c|}{\(t_{n+1}\)} \\
\hline\(S_{1}\) & \(S_{2}\) & \(C_{1}\) & \(C_{2}\) & \(Q\) \\
\hline 0 & \(X\) & 0 & \(X\) & \(Q_{n}\) \\
\hline 0 & \(X\) & \(X\) & 0 & \(Q_{n}\) \\
\hline\(X\) & 0 & 0 & \(X\) & \(Q_{n}\) \\
\hline\(X\) & 0 & \(X\) & 0 & \(Q_{n}\) \\
\hline 0 & \(X\) & 1 & 1 & 0 \\
\hline\(X\) & 0 & 1 & 1 & 0 \\
\hline 1 & 1 & 0 & \(X\) & 1 \\
\hline 1 & 1 & \(X\) & 0 & 1 \\
\hline 1 & 1 & 1 & 1 & Indeterminate \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{3}{|c|}{\(J-K ~ M O D E\)} \\
\hline \multicolumn{2}{|c|}{\(t_{n}\)} & \(t_{n+1}\) \\
\hline\(S_{1}\) & \(C_{1}\) & \(Q\) \\
\hline 0 & 0 & \(Q_{n}\) \\
\hline 0 & 1 & 0 \\
\hline 1 & 0 & 1 \\
\hline 1 & 1 & \(Q_{n}\) \\
\hline
\end{tabular}

NOTES: \(1 . t_{n}=\) bit lime before clock pulse.
2. \(\mathbf{t}_{\mathrm{n}+\mathrm{l}}=\) bit time after clock pulse.
3. \(X\) indicates that either a logical 1 or a logical 0 may be present.

4. Logical 1 is more positive than logical 0 .
5. For operation in the J-K mode connect \(S_{2}\) to \(\bar{Q}\) and \(C_{2}\) to \(Q\).

\section*{description}

The SN54 948 flip-flop is based on the master-slave principle. This device has AND gate inputs for entry into the master section which are controlled by the clock pulse. The clock pulse also regulates the state of the coupling transistors which connect the master and slave sections. The sequence of operation is as follows:
1. Isolate slave from master.

2. Enter information from AND gate inputs to master.
3. Disable AND gate inputs.
4. Transfer information from master to slave.

\section*{recommended operating conditions}
Supply Voltage \(V_{c c} .\).
Fan-Out From Each Output,
N.
electrical characteristics, \(\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}\) to \(125^{\circ} \mathrm{C}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & PARAMETER & TEST FIGURE & TEST CONDITIONS & MIN & TYP & MAX & UNIT \\
\hline \(\mathrm{V}_{\text {in(1) }}\) & Logical 1 input voltage & 1 & \(\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}\) & 2 & & & V \\
\hline \(V_{\text {in(0) }}\) & Logical 0 input voltage & 1 & \(\mathrm{V}_{\mathrm{cc}}=4.5 \mathrm{~V}\) & & & 0.8 & V \\
\hline \(V_{\text {out (1) }}\) & Logical I output voltage & 1 & \(\mathrm{V}_{\mathrm{cc}}=4.5 \mathrm{~V}, \mathrm{I}_{\text {load }}=-400 \mu \mathrm{~A}\) & 2.4 & 3.5\% & & V \\
\hline \(\mathrm{V}_{\text {out }}(0)\) & Logical 0 output voltage & 2 & \(\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{I}_{\text {sink }}=16 \mathrm{~mA}\) & & 0.22\% & 0.4 & V \\
\hline \(\mathrm{I}_{\mathrm{in}(0)}\) & Logical 0 level input current at \(C_{1}, C_{2}, S_{1}\), or \(S_{2}\) & 3 & \(\mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{in}}=0.4 \mathrm{~V}\) & & & -1.6 & mA \\
\hline \(\mathrm{I}_{\mathrm{in}(0)}\) & Logical 0 level input current at \(C_{D}\) or \(S_{D}\) & 3 & \(\mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {in }}=0.4 \mathrm{~V}\) & & & -3.2 & mA \\
\hline \(\mathrm{I}_{\mathrm{in}(0)}\) & Logical 0 level input current at CP & 3 & \(\mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{in}}=0.4 \mathrm{~V}\) & & & -4.8 & mA \\
\hline \multirow[t]{2}{*}{\(\mathrm{I}_{\mathrm{in}(1)}\)} & \multirow[t]{2}{*}{Logical 1 level input current at \(C_{1}, C_{2}, S_{1}\), or \(S_{2}\)} & \multirow[t]{2}{*}{4} & \(\mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{in}}=2.4 \mathrm{~V}\) & & & 40 & \(\mu \mathrm{A}\) \\
\hline & & & \(\mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{in}}=5.5 \mathrm{~V}\) & & & 1 & mA \\
\hline \multirow[b]{2}{*}{\(l_{\text {in(1) }}\)} & \multirow[b]{2}{*}{Logical I level input current at \(C_{D}\) or \(S_{D}\)} & \multirow[b]{2}{*}{4} & \(\mathrm{V}_{\mathrm{Cc}}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {in }}=2.4 \mathrm{~V}\) & & & 80 & \(\mu \mathrm{A}\) \\
\hline & & & \(\mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {in }}=5.5 \mathrm{~V}\) & & & 1 & mA \\
\hline \multirow[t]{2}{*}{\(\mathrm{I}_{\mathrm{in}(1)}\)} & \multirow[t]{2}{*}{Logical 1 level input current at CP} & \multirow[t]{2}{*}{4} & \(\mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {in }}=2.4 \mathrm{~V}\) & & & 120 & \(\mu \mathrm{A}\) \\
\hline & & & \(\mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {in }}=5.5 \mathrm{~V}\) & & & 1 & mA \\
\hline Ios & Short-circuit output current \(\dagger\) & 5 & \(\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {in }}=0\) & -20 & & -57 & mA \\
\hline \(\mathrm{I}_{\mathrm{CC}}\) & Supply current & 4 & \(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{in}}=5 \mathrm{~V}\) & & 8 & & mA \\
\hline
\end{tabular}
\(\dagger\) Not more than one output should be shorted at a time.
\(\ddagger\) These typical values are at \(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}\).
switching characteristics, \(\mathrm{V}_{\mathrm{CC}}=\mathbf{5} \mathrm{V}, \mathrm{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}, \mathbf{N}=\mathbf{1 0}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & PARAMETER & \[
\begin{aligned}
& \text { TEST } \\
& \text { FIGURE }
\end{aligned}
\] & TEST CONDITIONS & MIN & TYP & MAX & UNIT \\
\hline \(f_{\text {clock }}\) & Maximum clock frequency & 6 & & 10 & 15 & & MHz \\
\hline \({ }^{\text {tpd1 }}\) & Propagation delay time to logical I level from \(C_{D}\) or \(S_{D}\) to output & 7 & & & 26 & 50 & ns \\
\hline \({ }^{\text {t }}\) pdo & Propagation delay time to logical 0 level from \(C_{D}\) or \(S_{D}\) to output & 7 & & & 34 & 50 & ns \\
\hline \({ }^{\text {tpd1 }}\) & Propagation delay time to logical 1 level from \(\mathrm{C}_{1}, \mathrm{C}_{2}\), \(\mathrm{S}_{1}\), or \(\mathrm{S}_{2}\) to output & 6 & & 10 & 26 & 50 & ns \\
\hline \({ }^{\text {t }}\) pdo & Propagation delay time to logical 1 level from \(\mathrm{C}_{1}, \mathrm{C}_{2}\), \(\mathrm{S}_{1}\), or \(\mathrm{S}_{2}\) to output & 6 & & 10 & 34 & 50 & ns \\
\hline
\end{tabular}

\section*{functional block diagram}

schematic


\section*{PARAMETER MEASUREMENT INFORMATION}

\section*{d-c test circuits \(\dagger\)}


\footnotetext{
†Arrows indicate actual direction of current flow.
}

\section*{PARAMETER MEASUREMENT INFORMATION}
d-c test circuits \(\dagger\) (continued)

\(\dagger\) Arrows indicate actual direction of current flow.
swiłching characteristics


NOTES: 1. Input pulse characteristics: \(\boldsymbol{V}_{\text {in(0) }} \leq 0.4 \mathrm{~V}, \boldsymbol{V}_{\mathrm{in}(1)} \geq 2.4 \mathrm{~V}, \mathrm{t}_{1}=\mathrm{t}_{0} \leq 15 \mathrm{~ns}, \mathrm{t}_{\mathrm{p}}=20 \mathrm{~ns}\), and PRR \(=1 \mathrm{MHz}\). When testing \(\mathrm{f}_{\text {clock, }}\), vary PRR.
2. All transistors are 2N2368.
3. All diodes are 1 N 916 .
4. \(C_{L}\) includes probe and jig capacitance.

FIGURE 6 - PROPAGATION DELAY TIMES FROM CLOCKED INPUTS

\section*{TYPE SN54 948}

MASTER-SLAVE FLIP-FLOP

\section*{PARAMETER MEASUREMENT INFORMATION}

\section*{switching characteristics (continued)}


NOTES: 1. \(C_{D}\) or \(S_{D}\) inputs dominate regardless of the state of clock, \(C_{1}, C_{2}\) or \(S_{1}, S_{2}\) inputs.
2. \(C_{D}\) or \(S_{D}\) input pulse characteristics: \(V_{\text {in }(0)} \leq 0.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{in}(1)} \geq 2.4 \mathrm{~V}, \mathrm{t}_{1}=\mathrm{t}_{0} \leq 15 \mathrm{~ns}, \mathrm{t}_{\mathrm{P}(\mathrm{CD})}=\mathrm{t}_{\mathrm{P}(\mathrm{SD})}=25 \mathrm{~ns}\), and \(\mathrm{PRR}=1 \mathrm{MHz}\).
3. All transistors are 2 N 2368 .
4. All diodes are 1 N 916 .
5. \(C_{L}\) includes probe and iig capacitance.

FIGURE \(7-C_{D}\) AND \(S_{D}\) PROPAGATION DELAY TIMES

\title{
DIGITAL SEMICONDUCTOR NETWORKS FOR GENERAL PURPOSE SYSTEM APPLICATIONS
}

\section*{application}

Series 53 semiconductor networks are ideally suited for general-purpose digital applications, including computer, data handling, and control systems. Series 53 is designed and characterized for use over the full military temperature range of \(-55^{\circ} \mathrm{C}\) to \(125^{\circ} \mathrm{C}\).

\section*{features}

\section*{LOW SYSTEM COST}
- multifunction devices offering lowest cost per logic function

\section*{ADVANCED PERFORMANCE}
- attractive speed/power ratio
- high a-c noise rejection from low output impedance
- waveshape integrity maintained over rated temperature and loading conditions by double-ended output stage

\section*{EASE OF DESIGN}
- complete family available - 15 networks
- modified DTL circuitry simplifies system design
- fan-out of 10 from each double-ended output


DUAL J-K FLIP-FLOP BAR

\section*{description}

Series 53 is a compatible line of digital semiconductor networks capable of performing all basic and some special logic functions. All basic logic functions are offered as multifunction networks. Utilization of this complete line of compatible networks reduces systems engineering design time, while the use of multifunction networks reduces system cost per logic function.

Series 53 logic employs a modified form of diode-transistor logic (DTL) where transistors replace conventional diodes in order to improve circuit performance. Input transistors reduce drive requirements while offset transistors improve switching speed. The Series 53 lowimpedance output stage maintains symmetrical waveshapes over wide ranges of d-c fan-out, capacitive loads, and operating temperatures. The low-impedance output also provides a high degree of protection against capacitively coupled noise transients on system information lines.


\footnotetext{
\(\dagger\) Patented by Texas Instruments
}
typical operating characteristics, \(\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}\) to \(125^{\circ} \mathrm{C}\), supply voltage \(\mathrm{V}_{\mathrm{cc}}=\mathbf{3} \mathbf{V}\) to 4 V Speed: Gate Propagation Delay . . . . . . . . . . . . . . . . . . . . 35 ns

Flip-flop Toggle Rate 4 MHz Fan-Out Capability (Double-ended Outputs) . . . . . . . . . . . . . . . . 10 Fan-In With Expanders

25 max
 Output Impedance
Average Power Dissipation: Per
Gate . . . . . . . . . . . . . . . .
12 mW Average Power Dissipation: \(\begin{gathered}\text { Per Gafe } \\ \text { Per Flip-flop . . . . . . . . . . . . . . . . . . . } \\ \mathbf{1 2} \mathbf{~ m W}\end{gathered}\)

\section*{design characteristics}

Series 53 is a compatible line of digital semiconductor integrated circuits built and characterized for mediumspeed applications (up to 4 MHz ) over the full military temperature range. The networks are fabricated from triple-diffused planar silicon, and employ a modified form of diode-transistor logic selected to take advantage of inherent integrated-circuit characteristics.
As in conventional diode logic (Figure A), logic is performed at node A of a Series 53 gate (Figure B).
 diodes increases the effective drive capability of the preceding stage. The voltage at node \(\mathbf{A}\) is now a function of \(I_{i n}, R_{1}\), and the \(p-n\)-p transistor gain, rather than only \(I_{\text {in }}\) and \(R_{1}\) as in diode logic. The effect of the transistor gain is to minimize the importance of the resistor value in the circuit's performance. Since silicon resistors have inherently wide production tolerances and high temperature coefficients, the transistor gain makes fabrication of Series 53 networks more economical while assuring greater stability over the full military temperature range.

The n-p-n transistor which replaces the offset diode \(D_{1}\) also has gain, increasing the circuit drive capability and improving the waveshapes at node A.

This basic AND logic configuration is coupled with an inverting double-ended output stage (Figure C) in each Series 53 NAND/NOR gate and each flip-flop.


The most important feature of the Series 53 NAND/NOR gate or flip-flop output stage is its ability to supply load and sink current with low output impedance. This provides high d-c fan-out to both types of loads and simplifies interface design. Low output impedance in either state ensures that turn-on and turn-off waveshapes will remain sharp and symmetrical over a wide range of d-c and capacitive loadings throughout the temperature range. The low output impedance of these outputs ensure that every information line will have a low-impedance termination, providing valuable protection against a-c coupled noise transients.

All Series 53 networks are fabricated using a 4 -step planar diffusion process. First, an \(n\)-type diffusion is made in the \(p\)-type substrate, forming the \(n-p-n\) collectors only. A second \(n\)-type diffusion is made forming the base area of the \(p-n-p\) transistors, isolation region of the resistors, one section of the capacitors, and further forming the \(n-p-n\) collectors. This sequence reduces the \(n-p-n\) transistor \(r_{\text {CE|sat) }}\) to approximately 30 ohms, while keeping the \(p-n-p\) base width narrow and the gain high (typically 12). The next step is a p-type diffusion which forms the p-n-p emitters, \(n-p-n\) bases, resistors, and another portion of the capacitors. The final diffusion is an \(n\)-type, forming the \(n-p-n\) emitters and completing the capacitors.


FIGURE D. Series 53 Triple-Diffused Structure
Two AND/OR gates, the SN5320 and SN5340, provide additional flexibility for the logic designer. These gates may be used in applications where noniiverted signals and/or reduced propagation delay times are necessary and high fan-out is not a requirement. Characteristics of the AND/OR gates limit the number which may be cascaded (connected in series) between any Series 53 circuit and Series 53 flip-flops or inverter/drivers.
\[
\text { SERIES } 53 \text { AND/OR GATE CASCADING CAPABILITY }
\]
\begin{tabular}{|l|c|c|c|}
\hline Minimum \(\mathrm{V}_{\mathrm{CC}}\) & 3.2 V & 3.6 V & 4.0 V \\
\hline \begin{tabular}{l} 
Maximum number of AND/OR \\
gates which may be cascaded
\end{tabular} & 1 & 2 & 3 \\
\hline
\end{tabular}
standard line summary
\begin{tabular}{|c|c|c|}
\hline J-K FLIP-FLOP WITH PRESET & J-K FLIP-FLOP WITH PRESET AND CLEAR & DUAL J-K FLIP-FLOP WITH PRESET \\
\hline \begin{tabular}{l}
DUAL J-K \\
FLIP-FLOP WITH PRESET AND CLEAR
\end{tabular} & 5-INPUT EXPANDABLE NAND/NOR GATE & \begin{tabular}{l}
See Page 2015 \\
DUAL 5-INPUT NAND/NOR GATE
\end{tabular} \\
\hline \begin{tabular}{l}
SN5315 \\
See Page 2016 \\
10-INPUT EXPANDABLE NAND/NOR GATE
\end{tabular} & \begin{tabular}{l}
SN5320 \\
5-INPUT EXPANDABLE AND/OR GATE (ALSO USABLE AS 5-INPUT EXPANDER)
\end{tabular} & \begin{tabular}{l}
SN5330 \\
See Page 2020 \\
DUAL 3-INPUT NAND/NOR GATE
\end{tabular} \\
\hline \begin{tabular}{l}
SN533 1 \\
See Page 2021 \\
TRIPLE 3-INPUT NAND/NOR GATE
\end{tabular} & \begin{tabular}{l}
SN5340 \\
See Page 2022 \\
DUAL AND/OR GATE
\end{tabular} & \begin{tabular}{l}
SN535,0 \\
See Page 2024 \\
QUADRUPLE INVERTER/DRIVER
\end{tabular} \\
\hline \begin{tabular}{l}
SN5360 \\
See Page 2025 \\
QUADRUPLE 2-INPUT NAND/NOR GATE
\end{tabular} & \begin{tabular}{l}
SN5370 \\
See Page 2026 \\
DUAL EXCLUSIVE-OR GATE
\end{tabular} & \begin{tabular}{l}
ONE-SHOT \\
MONOSTABLE MULTIVIBRATOR
\end{tabular} \\
\hline
\end{tabular}

> absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
> Supply Voltage Vcc (See Note 1) . . . . . . . . . . . . . . . . . . . . . . +7 V
> Supply Voltage \(\mathrm{V}_{\mathrm{EE}}\) With Respect to \(\mathrm{V}_{\mathrm{CC}}\) (SN5320 and SN5340) . . . . . . . . . . . . -7 V
> Input Voltage \(\mathrm{V}_{\text {in }}\) (See Notes 1 and 2) . . . . . . . . . . . . . . . . . . . . . V Cc
> Operating Free-Air Temperature Range . . . . . . . . . . . . . . . . \(-55^{\circ} \mathrm{C}\) to \(125^{\circ} \mathrm{C}\)
> Storage Temperature Range . . . . . . . . . . . . . . . . . . . . \(-65^{\circ} \mathrm{C}\) to \(150^{\circ} \mathrm{C}\)

NOTES: 1. Voltage values (with the exception of the \(\mathbf{V}_{\text {EE }}\) rating above) are with respect to network ground terminal.
2. Input signals must be zero or positive with respect to network ground terminal.

\section*{logic definition}

Series 53 logic is defined in terms of standard POSITIVE LOGIC using the following definitions:
\[
\text { LOW VOLTAGE = LOGICAL } 0
\]

HIGH VOLTAGE = LOGICAL 1

\section*{input current requirements}

Weighted values of input current requirements reflect worst-case conditions for \(\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}\) to \(125^{\circ} \mathrm{C}\) and \(\mathrm{V}_{\mathrm{cc}}=3 \mathrm{~V}\) to 4 V . One positive load ( \(\mathrm{N}+=1\) ) requires current into the input at a logical 1 voltage level \(\left(0.5 \mathrm{~mA}\right.\) at \(\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}\) or \(\mathrm{V}_{\mathrm{cc}}=4 \mathrm{~V}\) ). One negative load ( \(\mathrm{N}-=1\) ) requires current out of the input at a logical 0 voltage level ( 0.25 mA at \(\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}\), or 0.19 mA at \(\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}\) ). Currents into the input terminals are specified as positive values. Arrows on the d -c test circuits indicate the actual direction of current flpw.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{WEIGHTED VALUES OF INPUT CURRENT REQUIREMENTS} \\
\hline NETWORK & TYPE & INPUT & N+ LOADS & N - LOADS \\
\hline \multirow[t]{5}{*}{FLIP-FLOPS} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 5300,5301 \\
& 5302
\end{aligned}
\]} & \[
\begin{aligned}
& \text { J, J } \star, \text { K, K } \star \text {, } \\
& \text { Preset, Clear }
\end{aligned}
\] & 1 & 0 \\
\hline & & Clock & 2.5 & 2.5 \\
\hline & \multirow[t]{3}{*}{5304} & J, K, Preset & 1 & 0 \\
\hline & & Clear & 2 & 0 \\
\hline & & Clock & 5 & 5 \\
\hline GATES AND EXPANDER & \[
\begin{aligned}
& 5310,531, \\
& 5315,5320, \\
& 5330,5331, \\
& 5340,5360, \\
& 5370
\end{aligned}
\] & Each Input & 0 & 1 \\
\hline ONE-SHOT & 5380 & T, T太 & 1 & 0 \\
\hline INVERTER & 5350 & Each Input & 2 & 0 \\
\hline
\end{tabular}

\section*{output drive capability}

Weighted values of fan-out reflect the ability of an output to drive current to \(N+\) loads and sink current from N - loads under worst-case conditions. Load currents (out of the output terminal) are specified as negative values. Arrows on the d-c test circuits indicate the actual direction of current flow.
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{4}{|c|}{ WEIGHTED VALUES OF FAN-OUT } \\
\hline \multicolumn{1}{|c|}{ NETWORK } & OUTPUT & N + LOADS & N- LOADS \\
\hline \begin{tabular}{l} 
FLIP-FLOPS, NAND/NOR \\
GATES, AND \\
ONE-SHOT
\end{tabular} & Each Output & 10 & 10 \\
\hline \multirow{2}{*}{ INVERTER (SN5350) } & Each Output & 10 & 10 \\
\cline { 2 - 4 } & \begin{tabular}{l}
4 Inverters \\
in parallel
\end{tabular} & 40 & 40 \\
\hline \begin{tabular}{l} 
AND/OR GATES \\
SN5320 and SN5340
\end{tabular} & Each Output & 4 & 4 \\
\hline
\end{tabular}

\section*{pin identification}

Pin identification for Series 53 networks is shown in the illustration at the right. Symbolization on package denotes orientation. For dimensions see mechanical data.

\section*{CAUTION:}

Pin numbers of the 10 -pin package have been renumbered in accordance with TO-89. The electrical functions are in the same physical location as shown on all previous data. Former pin numbers of 10 -pin package are shown for reference.


FORMER PIN NOS.

logic
\begin{tabular}{|l|l|l|}
\hline \multicolumn{3}{|c|}{\(J \star=K \star=1\)} \\
\hline \multicolumn{2}{|c|}{\(t_{n}\)} & \(t_{n+1}\) \\
\hline\(J\) & \(K\) & \(Q\) \\
\hline 0 & 0 & \(Q_{n}\) \\
\hline 0 & 1 & 0 \\
\hline 1 & 0 & 1 \\
\hline 1 & 1 & \(\bar{Q}{ }_{n}\) \\
\hline \multicolumn{4}{|c|}{\(J=K=0\)} \\
\hline \multicolumn{3}{|c|}{\(t_{n}\)} \\
\hline\(J \star\) & \(K \star\) & \(t_{n+1}\) \\
\hline 0 & 0 & \(\bar{Q}\) \\
\hline 0 & 1 & 1 \\
\hline 1 & 0 & 0 \\
\hline 1 & 1 & \(Q_{n}\) \\
\hline
\end{tabular}

TRUTH TABLES
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{ ADDITIONAL INPUT } \\
\multicolumn{5}{|c|}{ LOGIC COMBINATIONS } \\
\hline \multicolumn{1}{|c|}{} & \(\mathrm{t}_{\mathrm{n}}+1\) \\
\hline J & K & J & \(\mathrm{~K} \star\) & Q \\
\hline 0 & 1 & 0 & 0 & \(\bar{Q}_{n}\) \\
\hline 1 & 0 & 0 & 0 & \(\bar{Q}_{n}\) \\
\hline 1 & 1 & 0 & 0 & \(\bar{Q}_{n}\) \\
\hline 0 & 1 & 0 & 1 & \(\bar{Q}_{n}\) \\
\hline 1 & 1 & 0 & 1 & \(\bar{Q}_{n}\) \\
\hline 1 & 0 & 1 & 0 & \(\bar{Q}_{n}\) \\
\hline 1 & 1 & 1 & 0 & \(\bar{Q}_{n}\) \\
\hline 1 & 0 & 0 & 1 & 1 \\
\hline 0 & 1 & 1 & 0 & 0 \\
\hline
\end{tabular}
\(t_{n}=\) Bit time before clock puise
\(t_{n+1}=\) Bit time after clock pulse


High input to preset sets \(Q\) to logical 1

\section*{recommended operating conditions}

Supply Voltage \(V_{c c}\)
Maximum Fan-out From Each Output Into Positive Loads, N+ . . . . . . . . . . . . . . 10
Maximum Fan-out From Each Output Into Negative Loads, N- . . . . . . . . . . . . . 10
Fall Time of Clock Pulse \(\mathrm{t}_{\mathrm{f}(\mathrm{clock})}\). . . . . . . . . . . . . . . . . . . . 20 to 150 ns
Minimum Width of Clock Pulse \(t_{\text {p(clock) }}\). . . . . . . . . . . . . . . . . . . . . 50 ns
Rise Time of Clock Pulse \(\mathrm{t}_{\mathrm{r}[\text { lock } \mid}\). . . . . . . . . . . . . . . . . . . . 10 to 500 ns
electrical characteristics (unless otherwise noted, \(\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}\) to \(125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}\) to 4 V )
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & PARAMETER & TEST FIGURE & TEST CONDITIONS & MIN & TYP & MAX & UNIT \\
\hline \multirow[b]{2}{*}{\(\mathrm{V}_{\mathrm{in}(1)}\)} & \multirow[t]{2}{*}{Input voltage required to ensure logical 1 at J, \(K, J \star, K \star\), preset, and clock} & \multirow[b]{2}{*}{1,2} & \(V_{C C}=3 \mathrm{~V}\) & 1.5 & & 3 & V \\
\hline & & & \(\mathrm{V}_{\mathrm{cc}}=4 \mathrm{~V}\) & 1.5 & & 4 & V \\
\hline \(\mathrm{V}_{\mathrm{in}(0)}\) & Input voltage required to ensure logical 0 at \(J, K, J \star, K \star\), preset, and clock & 1,2 & & 0 & & 0.3 & V \\
\hline \multirow[t]{2}{*}{\(\mathrm{V}_{\text {out(1) }}\)} & \multirow[t]{2}{*}{Logical 1 output voltage (off level)} & \multirow[t]{2}{*}{3} & \(\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}, \mathrm{~N}+=10\left(\mathrm{l}_{\text {load }}=-5 \mathrm{~mA}\right)\) & 1.7 & & 3 & V \\
\hline & & & \(\mathrm{V}_{C C}=4 \mathrm{~V}, \mathrm{~N}+=10\left(\mathrm{l}_{\text {load }}=-5 \mathrm{~mA}\right)\) & 2.7 & & 4 & V \\
\hline \multirow[t]{2}{*}{\(V_{\text {out }}(0)\)} & \multirow[t]{2}{*}{Logical 0 output voltage (on level)} & \multirow[b]{2}{*}{3} & \(\mathrm{N}-=10\left(\mathrm{l}_{\text {sink }}=2.5 \mathrm{~mA}\right), \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}\) & 0 & & 0.3 & V \\
\hline & & & \(\mathrm{N}-=10\left(\mathrm{I}_{\text {sink }}=1.9 \mathrm{~mA}\right), \mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}\) & 0 & & 0.3 & V \\
\hline \(\mathrm{I}_{\mathrm{in}}\) & \(J, K, J \star, K \star\), or preset input current & 3 & \(\mathrm{V}_{\mathrm{in}}=2.7 \mathrm{~V}\) & 0 & & 0.5 & mA \\
\hline \multirow[t]{3}{*}{} & \multirow{3}{*}{Clock input current} & \multirow{3}{*}{3} & \(\mathrm{V}_{\mathrm{in}}=2 \mathrm{~V}\) & 0 & & 1.25 & mA \\
\hline & & & \(\mathrm{V}_{\text {in }}=0.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}\) & & & -0.625 & mA \\
\hline & & & \(\mathrm{V}_{\text {in }}=0.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=125^{\circ} \mathrm{C}\) & & & -0.475 & mA \\
\hline \multirow[t]{2}{*}{\({ }^{\text {cce(av) }}\)} & \multirow[t]{2}{*}{Average supply current} & \multirow[t]{2}{*}{4} & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}, \mathrm{~N}+=\mathrm{N}-=0, \\
& \text { Toggle }=1 \mathrm{MHz}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\end{aligned}
\] & & 9 & & mA \\
\hline & & & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{Cc}}=4 \mathrm{~V}, \mathrm{~N}+=\mathrm{N}=0, \\
& \text { Toggle }=1 \mathrm{MHz}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\end{aligned}
\] & & 13 & & mA \\
\hline
\end{tabular}

\section*{CAUTION:}

This device was formerly TYPE SN530. Pin numbers of the SN5300 have been renumbered in accordance with TO-89. The electrical functions of the SN530 and the SN5300 are in the same physical location. See pin identification, page 2004, for SN530 pin numbers.
switching characteristics, \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathbf{C}, \mathbf{V}_{\mathrm{cc}}=3.5 \mathrm{~V}, \mathbf{N}+=\mathbf{N}-=\mathbf{0}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & PARAMETER & TEST FIGURE & TEST CONDITIONS & TYP & MAX & UNIT \\
\hline \[
\begin{aligned}
& t_{d} \\
& t_{r} \\
& t_{s} \\
& t_{f} \\
& \hline
\end{aligned}
\] & Delay Time Rise Time Storage Time Fall Time & 22 & \[
\begin{aligned}
& \text { Clock Input: } V_{\text {in }}=2.5 \mathrm{~V}, \mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}, \\
& \mathrm{t}_{\mathrm{p}}=500 \mathrm{~ns}, \mathrm{f}=1 \mathrm{MHz} \\
& \mathrm{~J}_{1}, J \star, K \text { and } K \star \text { Input: } V_{\text {in }}=\mathrm{V}_{\mathrm{CC}} \\
& \text { Preset Input: } \mathrm{V}_{\text {in }}=0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 20 \\
& 20 \\
& 40 \\
& 25
\end{aligned}
\] & \[
\begin{aligned}
& 30 \\
& 45 \\
& 60 \\
& 40
\end{aligned}
\] & \[
\begin{aligned}
& \text { ns } \\
& \text { ns } \\
& \text { ns } \\
& \text { ns }
\end{aligned}
\] \\
\hline \({ }^{\text {sett(1) }}\) & \begin{tabular}{l}
Time to Set a Logical 1: \(J\) or \(K\) \\
\(J \star\) or \(K \star\)
\end{tabular} & \multirow[t]{2}{*}{23} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Clock Input: } V_{i n}=2.5 \mathrm{~V}, t_{f}=20 \mathrm{~ns}, \\
& t_{p}=500 \mathrm{~ns}, f=1 \mathrm{MHz} \\
& J_{,} J \star, K \text { or } K \star \operatorname{Input:} V_{\text {in }(1)}=2.5 \mathrm{~V}, \\
& V_{\text {in }(0)}=0, t_{r}=t_{f}=50 \mathrm{~ns}
\end{aligned}
\]} & \[
\begin{aligned}
& 50 \\
& 35
\end{aligned}
\] & & \[
\begin{aligned}
& \text { ns } \\
& \text { ns }
\end{aligned}
\] \\
\hline \(t_{\text {set }}(0)\) & \begin{tabular}{l}
Time to Set a Logical 0 : J or K \\
J \(\star\) or K \(\star\)
\end{tabular} & & & \[
\begin{aligned}
& 40 \\
& 40
\end{aligned}
\] & & \[
\begin{aligned}
& \mathrm{ns} \\
& \mathrm{~ns} \\
& \hline
\end{aligned}
\] \\
\hline \({ }^{\text {preset }}\) & Preset Time & 24 & \[
\begin{aligned}
& \text { Clock Input: } \mathrm{V}_{\text {in }}=0 \\
& \text { Preset Input: } \mathrm{V}_{\mathrm{in}}=2.5 \mathrm{~V}, \mathrm{t}_{\mathrm{f}}=50 \mathrm{~ns}
\end{aligned}
\] & 55 & & ns \\
\hline
\end{tabular}
schematic


NOTES: a. Component values shown are nominal.
b. Resistor values are in ohms.
logic
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|r|}{\(J \star=K \star=1\)} & \multicolumn{5}{|r|}{\multirow[t]{2}{*}{ADDITIONAL INPUT LOGIC COMBINATIONS}} \\
\hline \multicolumn{2}{|c|}{\({ }^{\text {n }}\)} & \(t_{n+1}\) & & & & & \\
\hline J & K & Q & \multicolumn{4}{|c|}{\(t_{n}\)} & \(t_{n+1}\) \\
\hline 0 & 0 & Qn & J & K & J & K & Q \\
\hline 0 & 1 & 0 & 0 & 1 & 0 & 0 & \(\bar{Q}_{n}\) \\
\hline 1 & 0 & 1 & 1 & 0 & 0 & 0 & \(\bar{Q}_{n}\) \\
\hline 1 & 1 & Qn & 1 & 1 & 0 & 0 & Qn \\
\hline & & & 0 & 1 & 0 & 1 & \(\bar{Q}_{\mathbf{n}}\) \\
\hline & =K & & 1 & 1 & 0 & 1 & Qn \\
\hline & & \(t_{n+1}\) & 1 & 0 & 1 & 0 & Qn \\
\hline J* & K & Q & 1 & 1 & & & \\
\hline 0 & 0 & Qn & 1 & 1 & 1 & 0 & Qn \\
\hline 0 & 1 & 1 & 1 & 0 & 0 & 1 & 1 \\
\hline 1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\
\hline
\end{tabular}
\(t_{n}=\) Bit time before clock pulse
\(t_{\mathrm{n}+\boldsymbol{1}}=\) Bit time after clock pulse


NC - No internal connection.

\section*{positive logic}

High input to preset sets \(Q\) to logical 1 High input to clear sets \(Q\) to logical 0

\section*{recommended operating conditions}
Supply Voltage \(\mathrm{V}_{\mathrm{cc}}\) ..... 3 V to 4 V
Maximum Fan-out From Each Output Into Positive Loads, N+ ..... 10
Maximum Fan-out From Each Output Into Negative Loads, N - ..... 10
Fall Time of Clock Pulse \(\mathbf{t}_{\text {f(clock) }}\) ..... 20 to 150 ns
Minimum Width of Clock Pulse \(\mathrm{t}_{\mathrm{p} \text { (clock) }}\) ..... -. 50 ns
Rise Time of Clock Pulse \(\mathrm{t}_{\text {[(clock) }}\) ..... 10 to 500 ns
electrical characteristics (unless otherwise noted, \(\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}\) to \(125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{cc}}=3 \mathrm{~V}\) to 4 V )
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & PARAMETER & TEST FIGURE & TEST CONDITIONS & MIN & TYP & MAX & UNIT \\
\hline \multirow[t]{2}{*}{\(V_{\text {in(1) }}\)} & \multirow[t]{2}{*}{Input voltage required to ensure logical 1 at J, K, J \(\star\), \(K \star\), preset, clock and clear} & \multirow[t]{2}{*}{1,2} & \(\mathrm{V}_{\mathrm{Cc}}=3 \mathrm{~V}\) & 1.5 & & 3 & V \\
\hline & & & \(v_{c c}=4 \mathrm{~V}\) & 1.5 & & 4 & V \\
\hline \(\mathrm{V}_{\mathrm{in}(0)}\) & Input voltage required to ensure logical 0 at J, K, J \(\star\), \(K \star\), preset, clock and clear & 1,2 & & 0 & & 0.3 & V \\
\hline \multirow[t]{2}{*}{\(V_{\text {out(1) }}\)} & \multirow[t]{2}{*}{Logical I output voltage (off level)} & \multirow[t]{2}{*}{3} & \(\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}, \mathrm{~N}+=10\left(\mathrm{I}_{\text {load }}=-5 \mathrm{~mA}\right)\) & 1.7 & & 3 & V \\
\hline & & & \(\mathrm{V}_{C C}=4 \mathrm{~V}, \mathrm{~N}+=10\left(\mathrm{I}_{\text {load }}=-5 \mathrm{~mA}\right)\) & 2.7 & & 4 & V \\
\hline \multirow[t]{2}{*}{\(V_{\text {out }}\) (0)} & \multirow[t]{2}{*}{Logical 0 output voltage (on level)} & \multirow[t]{2}{*}{3} & \(\mathrm{N}-=10\left(\mathrm{I}_{\text {sink }}=2.5 \mathrm{~mA}\right), \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}\) & 0 & & 0.3 & V \\
\hline & & & \(\mathrm{N}-=10\left(\mathrm{I}_{\text {sink }}=1.9 \mathrm{~mA}\right), \mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}\) & 0 & & 0.3 & V \\
\hline \(\mathrm{I}_{\text {in }}\) & J, K, J \(\star, K \star\), preset, or clear input current & 3 & \(\mathrm{V}_{\mathrm{in}}=2.7 \mathrm{~V}\) & 0 & & 0.5 & mA \\
\hline \multirow{3}{*}{\(\mathrm{I}_{\text {in }}\)} & \multirow{3}{*}{Clock input current} & \multirow{3}{*}{3} & \(\mathrm{v}_{\mathrm{in}}=2 \mathrm{~V}\) & 0 & & 1.25 & mA \\
\hline & & & \(\mathrm{V}_{\text {in }}=0.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}\) & & & -0.625 & mA \\
\hline & & & \(\mathrm{V}_{\text {in }}=0.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=125^{\circ} \mathrm{C}\) & & & -0.475 & mA \\
\hline \multirow[t]{2}{*}{\(\left.{ }^{1} \mathrm{CClav}\right)\)} & \multirow[t]{2}{*}{Average supply current} & \multirow[t]{2}{*}{4} & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{cc}}=3 \mathrm{~V}, \mathrm{~N}+=\mathrm{N}-=0, \\
& \text { Toggle }=1 \mathrm{MHz}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\end{aligned}
\] & & 9 & & mA \\
\hline & & & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}}=4 \mathrm{~V}, \mathrm{~N}+=\mathrm{N}-=0, \\
& \text { Toggle }=1 \mathrm{MHz}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}
\end{aligned}
\] & & 13 & & mA \\
\hline
\end{tabular}
switching characteristics, \(\mathbf{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}, \mathbf{V}_{\mathrm{cc}}=\mathbf{3 . 5} \mathbf{V}, \mathbf{N}+=\mathbf{N}-=\mathbf{0}\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline PARAMETER & TEST FIGURE & TEST CONDITIONS & TYP & MAX & UNIT \\
\hline \begin{tabular}{ll} 
& \\
\hline \(\mathbf{t}_{\mathbf{d}}\) & Delay Time \\
\(\mathbf{t}_{\mathbf{r}}\) & Rise Time \\
\(\mathbf{t}_{\mathbf{s}}\) & Storage Time \\
\(\mathbf{t}_{\mathbf{f}}\) & Fall Time
\end{tabular} & 22 & \[
\begin{aligned}
& \text { Clock Input: } V_{\text {in }}=2.5 \mathrm{~V}, \mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}, \\
& { }_{\mathrm{t}}=500 \mathrm{~ns}, f=1 \mathrm{MHz} \\
& \mathrm{~J}, \mathrm{~J} t, K \text { and } K \star \text { Input: } \mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{Cc}} \\
& \text { Preset Input: } \mathrm{V}_{\mathrm{in}}=0 \\
& \text { Clear Input: } \mathrm{V}_{\mathrm{in}}=0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 20 \\
& 20 \\
& 40 \\
& 25
\end{aligned}
\] & \[
\begin{aligned}
& 30 \\
& 45 \\
& 60 \\
& 40
\end{aligned}
\] & ns
ns
ns
ns \\
\hline \begin{tabular}{ll}
\(\mathbf{t}_{\text {set (1) }}\) & Time to Set a Logical 1: \\
& Jor K \\
J \(\star\) or \(K \star\)
\end{tabular} & \multirow[b]{2}{*}{23} & \multirow[t]{2}{*}{\begin{tabular}{l}
Clock Input: \(\mathrm{V}_{\text {in }}=2.5 \mathrm{~V}, \mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}\), \(t_{\mathrm{p}}=500 \mathrm{~ns}, \mathrm{f}=1 \mathrm{MHz}\) \\
\(J, J \star, K\) and \(K \star \operatorname{Input}: V_{i n(1)}=2.5 \mathrm{~V}\),
\[
v_{i n(0)}=0, t_{r}=t_{f}=50 \mathrm{~ns}
\]
\end{tabular}} & \[
\begin{aligned}
& 50 \\
& 35
\end{aligned}
\] & & \[
\begin{aligned}
& \text { ns } \\
& \text { ns }
\end{aligned}
\] \\
\hline \begin{tabular}{ll}
\(\mathrm{t}_{\text {sot }}\) Ol \\
& \begin{tabular}{l} 
Time to Set a Logical 0: \\
J or \(K\) \\
\(\mathrm{~J} \star\) or \(K \star\)
\end{tabular} \\
\hline
\end{tabular} & & & \[
\begin{array}{r}
40 \\
40
\end{array}
\] & & \[
\begin{aligned}
& \mathrm{ns} \\
& \mathrm{~ns} \\
& \hline
\end{aligned}
\] \\
\hline \({ }^{\text {Preset }}\) ( Preset Time & 24 & \begin{tabular}{l}
Clock Input: \(\mathrm{V}_{\text {in }}=0\) \\
Preset Input: \(\mathrm{V}_{\mathrm{in}}=2.5 \mathrm{~V}, \mathrm{t}_{\mathrm{f}}=50 \mathrm{~ns}\)
\end{tabular} & 55 & & ns \\
\hline \({ }^{+}\)cloar Clear Time & 24 & \[
\begin{aligned}
& \text { Clock Input: } V_{i n}=0 \\
& \text { Clear Input: } V_{i n}=2.5 \mathrm{~V}, \mathrm{t}_{\mathrm{f}}=50 \mathrm{~ns}
\end{aligned}
\] & 75 & & ns \\
\hline
\end{tabular}
schematic


NOTES: a. Component values shown are nominal.
b. Resistor values are in ohms.

\section*{logic}

TRUTH TABLE EACH FLIP-FLOP
\begin{tabular}{|l|l|l|}
\hline \multicolumn{2}{|c|}{\(t_{n}\)} & \(t_{n+1}\) \\
\hline\(J\) & \(K\) & \(Q\) \\
\hline 0 & 0 & \(Q_{n}\) \\
\hline 0 & 1 & 0 \\
\hline 1 & 0 & 1 \\
\hline 1 & 1 & \(\bar{Q}_{\mathrm{n}}\) \\
\hline
\end{tabular}
\(t_{n}=\) Bit time before clock pulse
\(\mathrm{t}_{\mathrm{n}+1}=\) Bit time after clock pulse


\section*{positive logic}

High input to preset sets \(Q\) to logical 1

\section*{recommended operating conditions}

> Supply Voltage Vcc 3 V to 4 V
> Maximum Fan-out From Each Output Into Positive Loads, N+
electrical characteristics (unless otherwise noted, \(\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}\) to \(125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}\) to 4 V )
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & PARAMETER & TEST
FIGURE & TEST CONDITIONS & MIN & TYP & MAX & UNIT \\
\hline \multirow[b]{2}{*}{\(V_{\text {in(1) }}\)} & \multirow[t]{2}{*}{Input voltage required to ensure logical 1 at J, K, preset, and clock} & \multirow[b]{2}{*}{1,2} & \(\mathrm{V}_{\mathrm{cc}}=3 \mathrm{~V}\) & 1.5 & & 3 & V \\
\hline & & & \(\mathrm{V}_{\mathrm{cc}}=4 \mathrm{~V}\) & 1.5 & & 4 & V \\
\hline \(V_{\text {in(0) }}\) & Input voltage required to ensure logical 0 at \(J, K\), preset, and clock & 1,2 & & 0 & & 0.3 & V \\
\hline \multirow[b]{2}{*}{\(V_{\text {out(1) }}\)} & \multirow[t]{2}{*}{Logical 1 output voltage (off level)} & \multirow[t]{2}{*}{3} & \(\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}, \mathrm{~N}+=10\left(\mathrm{I}_{\text {load }}=-5 \mathrm{~mA}\right)\) & 1.7 & & 3 & V \\
\hline & & & \(\mathrm{V}_{C C}=4 \mathrm{~V}, \mathrm{~N}+=10\left(\mathrm{I}_{\text {load }}=-5 \mathrm{~mA}\right)\) & 2.7 & & 4 & V \\
\hline \multirow[t]{2}{*}{\(V_{\text {out(0) }}\)} & \multirow[t]{2}{*}{Logical 0 output voltage (on level)} & \multirow[t]{2}{*}{3} & \(\mathrm{N}-=10\left(\mathrm{I}_{\text {sink }}=2.5 \mathrm{~mA}\right), \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}\) & 0 & & 0.3 & V \\
\hline & & & \(\mathrm{N}-=10\left(\mathrm{I}_{\text {sink }}=1.9 \mathrm{~mA}\right), \mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}\) & 0 & & 0.3 & V \\
\hline \(\mathrm{I}_{\text {in }}\) & J, K,or preset input current & 3 & \(\mathrm{V}_{\text {in }}=2.7 \mathrm{~V}\) & 0 & & 0.5 & mA \\
\hline \multirow[t]{3}{*}{} & \multirow{3}{*}{Clock input current} & \multirow{3}{*}{3} & \(\mathrm{V}_{\text {in }}=2 \mathrm{~V}\) & 0 & & 1.25 & mA \\
\hline & & & \(\mathrm{V}_{\mathrm{in}}=0.3 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}\) & & & -0.625 & mA \\
\hline & & & \(\mathrm{V}_{\text {in }}=0.3 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=125^{\circ} \mathrm{C}\) & & & -0.475 & mA \\
\hline \multirow[t]{2}{*}{\({ }^{\text {CCC(av) }}\)} & \multirow[t]{2}{*}{Average supply current (each flip-flop)} & \multirow[t]{2}{*}{4} & \[
\begin{aligned}
& \mathrm{v}_{\mathrm{cc}}=3 \mathrm{~V}, \quad \mathrm{~N}+=\mathrm{N}-=0, \\
& \text { Toggle }=1 \mathrm{MHz}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\end{aligned}
\] & & 9 & & mA \\
\hline & & & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{cc}}=4 \mathrm{~V}, \quad \mathrm{~N}+=\mathrm{N}=0, \\
& \text { Toggle }=1 \mathrm{MHz}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\
& \hline
\end{aligned}
\] & & 13 & & mA \\
\hline
\end{tabular}
switching characteristics, \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{cc}}=3.5 \mathrm{~V}, \mathrm{~N}+=\mathbf{N}-=\mathbf{0}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{PARAMETER} & TEST FIGURE & TEST C & CONDITIONS & TYP & MAX & UNIT \\
\hline \({ }^{\text {d }}\) d & Delay Time & \multirow{4}{*}{22} & Clock Input: & \(\mathrm{V}_{\mathrm{in}}=2.5 \mathrm{~V}, \mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}\), & 20 & 30 & ns \\
\hline \(t_{r}\) & Rise Time & & \(\mathrm{t}_{\mathrm{p}}=500 \mathrm{~ns}\), & \(\mathbf{f}=1 \mathrm{MHz}\) & 20 & 45 & ns \\
\hline \({ }_{\text {t }}\) & Storage Time & & \(J\) and K Input: & \(v_{\text {in }}=v_{\text {cc }}\) & 40 & 60 & ns \\
\hline \(t_{\text {f }}\) & Fall Time & & Preset Input: & \(v_{\text {in }}=0\) & 25 & 40 & ns \\
\hline \({ }^{\text {setat }}\) (1) & Time to Set a Logical 1: J or K & \multirow[b]{2}{*}{23} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\begin{array}{ll}
\text { Clock Input: } & V_{\text {in }}=2.5 \mathrm{~V}, \mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}, \\
t_{\mathrm{p}}=500 \mathrm{~ns}, & \mathrm{f}=1 \mathrm{MHz} \\
J_{\text {and }} K \operatorname{Input:} & V_{\text {in }(1)}=2.5 \mathrm{~V}, \\
V_{\text {in }(0)}=0, & t_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=50 \mathrm{~ns} \\
\hline
\end{array}
\]}} & 50 & & ns \\
\hline \(\boldsymbol{t}_{\text {set }}\) (0) & Time to Set a Logical 0: J or K & & & & 40 & & ns \\
\hline \({ }^{\text {preset }}\) & Preset Time & 24 & \begin{tabular}{l}
Clock Input: \\
Preset Input:
\end{tabular} & \[
\begin{aligned}
& v_{i n}=0 \\
& v_{\text {in }}=2.5 \mathrm{~V}, \mathrm{t}_{\mathrm{f}}=50 \mathrm{~ns}
\end{aligned}
\] & 75 & & ns \\
\hline
\end{tabular}
schematic (each flip-flop)


NOTES: a. Component values shown are nominal.
b. Resistor values are in ohms.

\section*{logic}
truth table
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{c|}{ EACH FLIP-FLOP } \\
\hline \multicolumn{2}{|c|}{\(\mathbf{t}_{\mathrm{n}}\)} & \(\mathbf{t}_{\mathrm{n}+1}\) \\
\hline J & K & \(\mathbf{Q}\) \\
\hline 0 & 0 & \(\mathbf{Q n}_{n}\) \\
\hline 0 & 1 & 0 \\
\hline 1 & 0 & 1 \\
\hline 1 & 1 & \(\bar{Q}_{\mathrm{n}}\) \\
\hline
\end{tabular}
\(t_{n}=\) Bit time before clock pulse
\(t_{n+1}=\) Bit time after clock pulse


\section*{recommended operating conditions}
\[
\begin{aligned}
& \text { Supply Voltage } \mathrm{V}_{\mathrm{cc}} \text {. . . . . . . . . . . . . . . . . . . . . . . . } 3 \text { V to } 4 \mathrm{~V} \\
& \text { Maximum Fan-out From Each Output Into Positive Loads, N+ }
\end{aligned}
\]
electrical characteristics (unless otherwise noted, \(\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}\) to \(125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{cc}}=3 \mathrm{~V}\) to 4 V )
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & PARAMETER & \[
\begin{array}{c|}
\hline \text { TEST } \\
\text { FIGURE }
\end{array}
\] & TEST CONDITIONS & MIN & TYP & MAX & UNIT \\
\hline \multirow[b]{2}{*}{\(\mathrm{V}_{\text {in(1) }}\)} & \multirow[t]{2}{*}{Input voltage required to ensure logical 1 at \(\mathrm{J}, \mathrm{K}\), preset, clock and clear} & \multirow[b]{2}{*}{1,2} & \(\mathrm{v}_{\mathrm{cc}}=3 \mathrm{~V}\) & 1.5 & & 3 & V \\
\hline & & & \(\mathrm{V}_{\mathrm{cc}}=4 \mathrm{~V}\) & 1.5 & & 4 & V \\
\hline \(V_{\text {in }(0)}\) & Input voltage required to ensure logical 0 at \(J, K\), preset, clock and clear & 1,2 & & 0 & & 0.3 & V \\
\hline \multirow[t]{2}{*}{\(\mathrm{V}_{\text {out(1) }}\)} & \multirow[t]{2}{*}{Logical 1 output voltage (off level)} & \multirow[b]{2}{*}{3} & \(\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}, \mathrm{~N}+=10\left(\mathrm{l}_{\text {load }}=-5 \mathrm{~mA}\right)\) & 1.7 & & 3 & V \\
\hline & & & \(\mathrm{V}_{\mathrm{CC}}=4 \mathrm{~V}, \mathrm{~N}+=10\left(\mathrm{l}_{\text {load }}=-5 \mathrm{~mA}\right)\) & 2.7 & & 4 & V \\
\hline \multirow[t]{2}{*}{\(\mathrm{V}_{\text {out(0) }}\)} & \multirow[t]{2}{*}{Logical 0 output voltage (on level)} & \multirow[t]{2}{*}{3} & \(\mathrm{N}-=10\left(\mathrm{I}_{\text {sink }}=2.5 \mathrm{~mA}\right), \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}\) & 0 & & 0.3 & V \\
\hline & & & \(\mathrm{N}-=10\left(\mathrm{I}_{\text {sink }}=1.9 \mathrm{~mA}\right), \mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}\) & 0 & & 0.3 & V \\
\hline \(\mathrm{I}_{\text {in }}\) & J, K,or preset input current & 3 & \(\mathrm{V}_{\text {in }}=2.7 \mathrm{~V}\) & 0 & & 0.5 & mA \\
\hline \multirow{3}{*}{\(\mathrm{I}_{\text {in }}\)} & \multirow{3}{*}{Clock input current} & \multirow{3}{*}{3} & \(\mathrm{V}_{\text {in }}=2 \mathrm{~V}\) & 0 & & 2.5 & mA \\
\hline & & & \(\mathrm{V}_{\text {in }}=0.3 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}\) & & & -1.25 & mA \\
\hline & & & \(\mathrm{V}_{\text {in }}=0.3 \mathrm{~V}\), \(\quad \mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}\) & & & -0.95 & mA \\
\hline \(\mathrm{I}_{\text {in }}\) & Clear input current & 3 & \(\mathrm{V}_{\text {in }}=2.7 \mathrm{~V}\) & 0 & & 1 & mA \\
\hline \multirow[t]{2}{*}{\({ }^{\text {ccelav }}\)} & \multirow[t]{2}{*}{Average supply current (each flip-flop)} & \multirow[t]{2}{*}{4} & \[
\begin{array}{ll}
\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}, & \mathrm{~N}+=\mathrm{N}-=0, \\
\text { Toggle }=1 \mathrm{MHz}, & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\end{array}
\] & & 9 & & mA \\
\hline & & & \[
\begin{array}{ll}
\mathrm{V}_{\mathrm{CC}}=4 \mathrm{~V}, & \mathrm{~N}+=\mathrm{N}=0, \\
\text { Toggle }=1 \mathrm{MHz}_{\mathrm{z}}, & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\
\hline
\end{array}
\] & & 13 & & mA \\
\hline
\end{tabular}

\section*{TYPE SN5304 \\ DUAL J-K FLIP-FLOP WITH PRESET AND CLEAR}
switching characteristics, \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{Cc}}=3.5 \mathrm{~V}, \mathrm{~N}+=\mathrm{N}-=\mathbf{0}\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline PARAMETER & TEST FIGURE & TEST CONDITIONS & TYP & MAX & UNIT \\
\hline \begin{tabular}{ll}
\(\mathbf{t}_{\mathbf{d}}\) & Delay Time \\
\(\mathbf{t}_{\mathbf{r}}\) & Rise Time \\
\(\mathbf{t}_{\mathbf{s}}\) & Storage Time \\
\(\mathbf{t}_{\mathbf{f}}\) & Fall Time
\end{tabular} & 22 & \[
\begin{aligned}
& \text { Clock Inpuf: } \quad V_{\text {in }}=2.5 \mathrm{~V}, \quad t_{\mathrm{f}}=20 \mathrm{~ns}, \\
& \mathrm{t}_{\mathrm{p}}=500 \mathrm{~ns}, \mathrm{f}=1 \mathrm{MHz} \\
& \mathrm{~J}_{\text {and }} K \text { Input: } \mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{cc}} \\
& \text { Preset Input: } \mathrm{V}_{\text {in }}=0 \\
& \text { Clear Input: } \quad \mathrm{V}_{\text {in }}=0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 20 \\
& 20 \\
& 40 \\
& 25
\end{aligned}
\] & \[
\begin{aligned}
& 30 \\
& 45 \\
& 60 \\
& 40
\end{aligned}
\] &  \\
\hline \[
\begin{aligned}
& \text { Time to Set a Logical 1: } \\
& \boldsymbol{t}_{\text {set }(1)} \text { J or K }
\end{aligned}
\] & \multirow[b]{2}{*}{23} & \multirow[t]{2}{*}{\[
\begin{array}{ll}
\text { Clock Input: } & V_{\text {in }}=2.5 \mathrm{~V}, \\
t_{\mathrm{p}}=500 \mathrm{~ns}, & \mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}, \\
J_{\text {or } K} \operatorname{lnpu}, & V_{\text {in }(1)}=2.5 \mathrm{~V}, \\
V_{\text {in }(0)}=0, & t_{\mathrm{r}}=t_{\mathrm{f}}=50 \mathrm{~ns}
\end{array}
\]} & 50 & & ns \\
\hline \[
\begin{array}{ll} 
\\
\boldsymbol{t}_{\text {set }(0)} & \text { Time to Set a Logical 0: } \\
\mathrm{J} \text { or K }
\end{array}
\] & & & 40 & & ns \\
\hline \(\mathrm{t}_{\text {preset }}\) Preset Time & 24 & \[
\begin{array}{ll}
\text { Clock Input: } & V_{i n}=0 \\
\text { Preset Input: } & V_{i n}=2.5 \mathrm{~V}, \quad t_{\mathrm{f}}=50 \mathrm{~ns}
\end{array}
\] & 75 & & ns \\
\hline \({ }^{\text {t clear }}\) Clear Time & 24 & \(\begin{array}{ll}\text { Clock Input: } & \mathrm{V}_{\text {in }}=0 \\ \text { Clear Input: } & \mathrm{V}_{\text {in }}=2.5 \mathrm{~V}, \quad \mathrm{t}_{\mathrm{f}}=50 \mathrm{~ns}\end{array}\) & 100 & & ns \\
\hline
\end{tabular}
schematic (each flip-flop)


NOTES: a. Component values shown are nominal.
b. Resistor values are in ohms.

\section*{schematic}


NOTES: a. Component values shown are nominal.

b. Four SN5320 expanders may be fanned into one SN5310 to provide a total fan-in of 25. If expander is not used, leave pin (1) open.

\section*{recommended operating conditions}

Supply Voltage \(\mathrm{V}_{\mathrm{cc}}\). . . . . . . . . . . . . . . . . . . . . . . . 3 V to 4 V
Maximum Fan-out Into Positive Loads, N+ . . . . . . . . . . . . . . . . . . . . 10
Maximum Fan-out Into Negative Loads, \(\mathrm{N}-. \quad . \quad .10\)
electrical characteristics (unless otherwise noted \(\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}\) to \(125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{cc}}=3 \mathrm{~V}\) to 4 V )
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & PARAMETER & \[
\begin{aligned}
& \text { TEST } \\
& \text { FIGURE }
\end{aligned}
\] & TEST CONDITIONS & MIN & TYP & MAX & UNIT \\
\hline \multirow[b]{2}{*}{\(V_{\text {in(1) }}\)} & \multirow[t]{2}{*}{Logical 1 input voltage required at all input terminals to ensure logical 0 (on level) at output} & \multirow[b]{2}{*}{5} & \(\mathrm{V}_{\mathrm{cc}}=3 \mathrm{~V}\) & 1.7 & & 3 & V \\
\hline & & & \(\mathrm{V}_{\mathrm{cc}}=4 \mathrm{~V}\) & 2.5 & & 4 & V \\
\hline \multirow{4}{*}{\(V_{\text {in(1) }}\)} & \multirow[t]{4}{*}{Input voltage required at expander node (pin (1) to ensure logical 0 (on level) at output} & \multirow{4}{*}{6} & \(\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}\) & 2.35 & & 3 & V \\
\hline & & & \(\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V} \mathrm{~T}_{\mathrm{A}}=125^{\circ} \mathrm{C}\) & 1.9 & & 3 & V \\
\hline & & & \(\mathrm{V}_{C C}=4 \mathrm{~V}, \mathrm{~T}_{A}=-55^{\circ} \mathrm{C}\) & 3.15 & & 4 & V \\
\hline & & & \(\mathrm{V}_{\mathrm{CC}}=4 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=125^{\circ} \mathrm{C}\) & 2.7 & & 4 & V \\
\hline \(\mathrm{V}_{\mathrm{in}(0)}\) & Logical 0 input voltage required at any input terminal to ensure logical 1 (off level) at output & 7 & & 0 & & 0.3 & V \\
\hline \multirow[t]{2}{*}{\(V_{\text {in }(0) X}\)} & \multirow[t]{2}{*}{Input voltage required at expander node (pin (1)) to ensure logical 1 (off level) at output} & \multirow[t]{2}{*}{8} & \(\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}\) & 0 & & 1.5 & V \\
\hline & & & \(\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}\) & 0 & & 0.95 & V \\
\hline
\end{tabular}

CAUTION:
This device was formerly TYPE SN531. Pin numbers of the SN5310 have been renumbered in accordance with TO-89. The electrical functions of the SN531 and the SN5310 are in the same physical location. See pin identification, page 2004, for SN531 pin numbers.

\section*{electrical characteristics (continued)}
(unless otherwise noted, \(\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}\) to \(125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{cc}}=\mathbf{3 V}\) to 4 V )
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & PARAMETER & TEST FIGURE & TEST CONDITIONS & MIN & TYP & MAX & UNIT \\
\hline \multirow[b]{2}{*}{\(\mathbf{V}_{\text {out (1) }}\)} & \multirow[b]{2}{*}{Logical 1 output voltage (off level)} & \multirow[b]{2}{*}{7} & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}, \quad \mathrm{~V}_{\text {in }}=0.3 \mathrm{~V} \\
& \mathrm{~N}+=10\left(\mathrm{I}_{\mathrm{load}}=-5 \mathrm{~mA}\right)
\end{aligned}
\] & 1.7 & & 3 & V \\
\hline & & & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}}=4 \mathrm{~V}, \quad \mathrm{~V}_{\text {in }}=0.3 \mathrm{~V} \\
& \mathrm{~N}+=10\left(\mathrm{I}_{\text {load }}=-5 \mathrm{~mA}\right)
\end{aligned}
\] & 2.7 & & 4 & V \\
\hline \multirow[b]{2}{*}{\(\mathrm{V}_{\text {out }}\) (0)} & \multirow[t]{2}{*}{Logical 0 output voltage (on level)} & \multirow[b]{2}{*}{5} & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}, \mathrm{~V}_{\text {in }}=1.7 \mathrm{~V}, \quad \mathrm{~N}-=10 \\
& \left(\mathrm{I}_{\text {sink }}=2.5 \mathrm{~mA}\right), \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}
\end{aligned}
\] & & & 0.3 & V \\
\hline & & & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}, \quad \mathrm{~V}_{\text {in }}=1.7 \mathrm{~V}, \quad \mathrm{~N}-=10 \\
& \left(\mathrm{I}_{\text {sink }}=1.9 \mathrm{~mA}\right), \mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}
\end{aligned}
\] & 0 & & 0.3 & V \\
\hline \multirow[b]{2}{*}{\(l_{\text {in }}\)} & \multirow[b]{2}{*}{Input current (each input)} & \multirow[b]{2}{*}{7} & \(\mathrm{V}_{\text {in }}=0.3 \mathrm{~V}, \mathrm{~N}+=\mathrm{N}-=0, \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}\) & & & -0.25 & mA \\
\hline & & & \(\mathrm{V}_{\text {in }}=0.3 \mathrm{~V}, \mathrm{~N}+=\mathrm{N}-=0, \mathrm{~T}_{\mathrm{A}}=125^{\circ} \mathrm{C}\) & & & -0.19 & mA \\
\hline \multirow[b]{2}{*}{\(\mathrm{I}_{\text {ccion }}\)} & \multirow[t]{2}{*}{On level supply current (each gate)} & \multirow[t]{2}{*}{9} & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{in}}=3 \mathrm{~V}, \mathrm{~N}+=\mathrm{N}-=0, \\
& \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\end{aligned}
\] & & 3.3 & & mA \\
\hline & & & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{in}}=4 \mathrm{~V}, \mathrm{~N}+=\mathrm{N}-=0, \\
& \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\end{aligned}
\] & & 4.5 & & mA \\
\hline \multirow[b]{2}{*}{\({ }^{\text {cccloff }}\)} & \multirow[t]{2}{*}{Off level supply current (each gate)} & \multirow[t]{2}{*}{9} & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{cc}}=3 \mathrm{~V}, \quad \mathrm{~V}_{\text {in }}=0.3 \mathrm{~V} \\
& \mathrm{~N}+=\mathrm{N}-=0, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\end{aligned}
\] & & 1.2 & & mA \\
\hline & & & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}}=4 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{in}}=0.3 \mathrm{~V} \\
& \mathrm{~N}+=\mathrm{N}-=0, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\end{aligned}
\] & & 1.6 & & mA \\
\hline \multirow[b]{2}{*}{\(\mathrm{R}_{1}\)} & \multirow[b]{2}{*}{Resistance value of \(\mathrm{R}_{1}\)} & \multirow[b]{2}{*}{10} & \(\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}\) & 1.24 & & 2.6 & k \(\Omega\) \\
\hline & & & \(\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}\) & 1.7 & & 3.25 & k \(\Omega\) \\
\hline
\end{tabular}
switching characteristics, \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{cc}}=3.5 \mathrm{~V}, \mathrm{~N}-=1\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & PARAMETER & TEST FIGURE & TEST CONDITIONS & TYP & MAX & UNIT \\
\hline \({ }^{\prime}{ }_{\text {d }}\) & Delay Time & \multirow{4}{*}{25} & \multirow{4}{*}{\[
\begin{aligned}
& \text { Input: } V_{i n}=2.5 \mathrm{~V}, f=1 \mathrm{MHz} \\
& t_{\mathrm{p}}=500 \mathrm{~ns}, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}
\end{aligned}
\]} & 35 & 45 & ns \\
\hline \(t_{r}\) & Rise Time & & & 40 & 50 & ns \\
\hline \(t_{s}\) & Storage Time & & & 25 & 45 & ns \\
\hline \(\mathrm{t}_{\mathrm{f}}\) & Fall Time & & & 30 & 40 & ns \\
\hline \(t_{\text {pd }}\) & Propagation Delay Time & 26 & & 30 & & ns \\
\hline
\end{tabular}
schematic (each gate)


Component values shown are nominal

recommended operating conditions
Supply Voltage Vcc . . . . . . . . . . . . . . . . . . . . . . . . 3 V to 4 V
Maximum Fan-out From Each Output Into Positive Loads, N+ . . . . . . . . . . . . . 10
Maximum Fan-out From Each Output Into Negative Loads, N- . . . . . . . . . . . . . 10
electrical characteristics (unless otherwise noted, \(\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}\) to \(125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{cc}}=3 \mathrm{~V}\) to 4 V )
\begin{tabular}{|c|c|c|c|c|c|}
\hline PARAMETER & \[
\begin{array}{c|}
\text { TEST } \\
\text { FIGURE }
\end{array}
\] & TEST CONDITIONS & MIN & TYP MAX & UNIT \\
\hline Logical 1 input voltage required at all input terminals to & \multirow[b]{2}{*}{5} & \(\mathrm{V}_{\mathrm{cc}}=3 \mathrm{~V}\) & 1.7 & 3 & V \\
\hline \(\mathrm{V}_{\text {in(1) }}\) ensure logical 0 (on level) at output & & \(\mathrm{V}_{\mathrm{cc}}=4 \mathrm{~V}\) & 2.5 & 4 & V \\
\hline \(V_{\text {in }(0)}\)\begin{tabular}{l} 
Logical 0 input voltage required \\
at any input terminal to \\
ensure logical 1 (off level) \\
at output
\end{tabular} & 7 & & 0 & 0.3 & V \\
\hline \multirow[t]{2}{*}{\[
\mathrm{V}_{\text {out(1) }} \begin{aligned}
& \text { Logical } 1 \text { output voltage } \\
& \text { (off level) }
\end{aligned}
\]} & \multirow[t]{2}{*}{7} & \[
\begin{aligned}
& V_{c C}=3 \mathrm{~V}, \mathrm{~V}_{\text {in }}=0.3 \mathrm{~V} \\
& \mathrm{~N}+10\left(\mathrm{I}_{\text {load }}=-5 \mathrm{~mA}\right)
\end{aligned}
\] & 1.7 & 3 & V \\
\hline & & \[
\begin{aligned}
& V_{C C}=4 \mathrm{~V}, V_{\text {in }}=0.3 \mathrm{~V} \\
& N+=10\left(I_{\text {load }}=-5 \mathrm{~mA}\right)
\end{aligned}
\] & 2.7 & 4 & V \\
\hline \multirow[t]{2}{*}{\[
\mathrm{V}_{\text {out }(0)} \begin{aligned}
& \text { Logical } 0 \text { output voltage } \\
& \text { (on level) }
\end{aligned}
\]} & \multirow[t]{2}{*}{5} & \[
\begin{aligned}
& V_{\text {CC }}=3 \mathrm{~V}, \mathrm{~V}_{\text {in }}=1.7 \mathrm{~V}, \mathrm{~N}-=10 \\
& \left(\mathrm{I}_{\text {sink }}=2.5 \mathrm{~mA}\right), \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}
\end{aligned}
\] & 0 & 0.3 & V \\
\hline & & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{cC}}=3 \mathrm{~V}, \mathrm{~V}_{\text {in }}=1.7 \mathrm{~V}, \mathrm{~N}-=10 \\
& \left(\mathrm{I}_{\text {sink }}=1.9 \mathrm{~mA}\right), \mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}
\end{aligned}
\] & 0 & 0.3 & V \\
\hline \multirow[b]{2}{*}{Input current (each input)} & \multirow[t]{2}{*}{7} & \(\mathrm{V}_{\text {in }}=0.3 \mathrm{~V}, \mathrm{~N}+=\mathrm{N}-=0, \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}\) & & -0.25 & mA \\
\hline & & \(\mathrm{V}_{\text {in }}=0.3 \mathrm{~V}, \mathrm{~N}+=\mathrm{N}-=0, \mathrm{~T}_{\mathrm{A}}=125^{\circ} \mathrm{C}\) & & -0.19 & mA \\
\hline \multirow[t]{2}{*}{On level supply current \({ }^{1} \mathrm{CClonf}\) (each gate)} & \multirow[t]{2}{*}{9} & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{in}}=3 \mathrm{~V}, \mathrm{~N}+=\mathrm{N}-=0, \\
& \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\end{aligned}
\] & & 3.3 & mA \\
\hline & & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\text {in }}=4 \mathrm{~V}, \mathrm{~N}+=\mathrm{N}-=0, \\
& \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\end{aligned}
\] & & 4.5 & mA \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
\({ }^{\mathrm{CCl}}{ }^{(o f f)}\) (each gate) \\
Off level supply current
\end{tabular}} & \multirow[t]{2}{*}{9} & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}, \mathrm{~V}_{\text {in }}=0.3 \mathrm{~V}, \\
& \mathrm{~N}+=\mathrm{N}-=0, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\end{aligned}
\] & & 1.2 & mA \\
\hline & & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}}=4 \mathrm{~V}, \mathrm{~V}_{\mathrm{in}}=0.3 \mathrm{~V} \\
& \mathrm{~N}+=\mathrm{N}-=0, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\end{aligned}
\] & & 1.6 & mA \\
\hline
\end{tabular}
switching characteristics, \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=\mathbf{3 . 5} \mathrm{V}, \mathrm{N}-=1\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & PARAMETER & \[
\begin{array}{c|}
\text { TEST } \\
\text { FIGURE }
\end{array}
\] & TEST CONDITIONS & TYP & MAX & UNIT \\
\hline \(t_{\text {d }}\) & Delay Time & & & 20 & 30 & ns \\
\hline \(t{ }_{\text {r }}\) & Rise Time & 25 & Input: \(\mathrm{V}_{\text {in }}=2.5 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}\), & 25 & 45 & ns \\
\hline \(t_{s}\) & Storage Time & 25 & \(t_{p}=500 \mathrm{~ns}, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}\) & 25 & 45 & ns \\
\hline \(\mathrm{t}_{\mathrm{f}}\) & Fall Time & & & 25 & 40 & ns \\
\hline \({ }_{\text {t }}^{\text {pd }}\) & Propagation Delay Time & 26 & & 25 & & ns \\
\hline
\end{tabular}

\section*{schematic}


NOTES: a. Component values shown are nominal.
b. Three SN5320 expanders may be fanned into one SN5315 to provide a total fan-in of 25 . If expander is not used leave pin (10) open.


\section*{recommended operating conditions}

Supply Voltage \(\mathrm{V}_{\mathrm{cc}}\). . . . . . . . . . . . . . . . . . . . . . . . 3 V to 4 V
Maximum Fan-out Into Positive Loads, N+ . . . . . . . . . . . . . . . . . . . 10
Maximum Fan-out Into Negative Loads, N- . . . . . . . . . . . . . . . . . . . 10
electrical characteristics (unless otherwise noted, \(\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}\) to \(125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{cc}}=3 \mathrm{~V}\) to 4 V )
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & PARAMETER & TEST FIGURE & TEST CONDITIONS & MIN & TYP & MAX & UNIT \\
\hline \multirow[b]{2}{*}{\(\mathbf{V}_{\mathrm{in}(1)}\)} & \multirow[t]{2}{*}{Logical 1 input voltage required at all input terminals to ensure logical 0 (on level) at output} & \multirow[b]{2}{*}{5} & \(\mathrm{v}_{\mathrm{cc}}=3 \mathrm{~V}\) & 1.7 & & 3 & V \\
\hline & & & \(\mathrm{V}_{C C}=4 \mathrm{~V}\) & 2.5 & & 4 & V \\
\hline \multirow{4}{*}{\[
\mathrm{V}_{\mathrm{in}(1) \mathrm{X}}{ }_{\mathrm{e}}^{\mathrm{p}}
\]} & \multirow{4}{*}{Input voltage required at expander node (pin (10)) to ensure logical 0 (on level) at output} & \multirow{4}{*}{6} & \(\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=-50^{\circ} \mathrm{C}\) & 2.35 & & 3 & V \\
\hline & & & \(\mathrm{v}_{\mathrm{CC}}=3 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=125^{\circ} \mathrm{C}\) & 1.9 & & 3 & V \\
\hline & & & \(\mathrm{V}_{\mathrm{cc}}=4 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=-50^{\circ} \mathrm{C}\) & 3.15 & & 4 & V \\
\hline & & & \(\mathrm{V}_{\mathrm{CC}}=4 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=125^{\circ} \mathrm{C}\) & 2.7 & & 4 & V \\
\hline \[
v_{i n(0)}
\] & Logical 0 input voltage required at any input terminal to ensure logical 1 (off level) at output & 7 & & 0 & & 0.3 & V \\
\hline \multirow[t]{2}{*}{\(\mathrm{V}_{\text {in(0) }}\)} & \multirow[t]{2}{*}{Input voltage required at expander node pin (pin 10) to ensure logical 1 (off level) at output} & \multirow[t]{2}{*}{8} & \(\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}\) & 0 & & 1.5 & V \\
\hline & & & \(\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}\) & 0 & & 0.95 & V \\
\hline
\end{tabular}
electrical characteristics (continued)
(unless otherwise noted, \(\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}\) to \(125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{cc}}=3 \mathrm{~V}\) to 4 V )
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & PARAMETER & \[
\begin{array}{c|}
\hline \text { TEST } \\
\text { FIGURE } \\
\hline
\end{array}
\] & TEST CONDITIONS & MIN & TYP & MAX & UNIT \\
\hline \multirow[b]{2}{*}{\(\mathrm{V}_{\text {out(1) }}\)} & \multirow[t]{2}{*}{Logical 1 output voltage (off level)} & \multirow[b]{2}{*}{7} & \[
\begin{aligned}
& \mathrm{V}_{c \mathrm{c}}=3 \mathrm{~V}, \mathrm{~V}_{\text {in }}=0.3 \mathrm{~V}, \\
& \mathrm{~N}+=10\left(1_{\text {lood }}=-5 \mathrm{~mA}\right)
\end{aligned}
\] & 1.7 & & .\(^{3}\) & V \\
\hline & & & \[
\begin{aligned}
& \mathrm{v}_{\mathrm{cc}}=4 \mathrm{~V}, \mathrm{v}_{\text {in }}=0.3 \mathrm{~V} \\
& \mathrm{~N}+=10\left(\mathrm{l}_{\text {lood }}=-5 \mathrm{~mA}\right)
\end{aligned}
\] & 2.7 & & 4 & v \\
\hline \multirow[t]{2}{*}{\(V_{\text {outiol }}\)} & \multirow[t]{2}{*}{Logical 0 output voltage (on level)} & \multirow[t]{2}{*}{5} & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}, \mathrm{~V}_{\text {in }}=1.7 \mathrm{~V}, \mathrm{~N}=10 \\
& \left(\mathrm{l}_{\text {sink }}=2.5 \mathrm{~mA}\right), \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}
\end{aligned}
\] & 0 & & 0.3 & v \\
\hline & & & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{cc}}=3 \mathrm{~V}, \mathrm{~V}_{\text {in }}=1.7 \mathrm{~V}, \mathrm{~N}-=10 \\
& \left(\mathrm{I}_{\text {sink }}=1.9 \mathrm{~mA}\right), \mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}
\end{aligned}
\] & 0 & & 0.3 & \(v\) \\
\hline \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{Input current (each input)} & \multirow[t]{2}{*}{7} & \(\mathrm{V}_{\text {in }}=0.3 \mathrm{~V}, \mathrm{~N}+=\mathrm{N}-=0, \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}\) & & & -0.25 & mA \\
\hline & & & \(\mathrm{V}_{\text {in }}=0.3 \mathrm{~V}, \mathrm{~N}+=\mathrm{N}-=0, \mathrm{~T}_{\mathrm{A}}=125^{\circ} \mathrm{C}\) & & & -0.19 & mA \\
\hline \multirow[t]{2}{*}{\({ }^{\text {cclan) }}\)} & \multirow[t]{2}{*}{On level supply current} & \multirow[t]{2}{*}{9} & \[
\begin{aligned}
& V_{c \mathrm{Cl}}=\mathrm{V}_{\text {in }}=3 \mathrm{~V}, \mathrm{~N}+=\mathrm{N}-\mathrm{A} \\
& \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\end{aligned}
\] & & 3.3 & & mA \\
\hline & & & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{Cc}}=\mathrm{V}_{\mathrm{in}}=4 \mathrm{~V}, \mathrm{~N}+=\mathrm{N}-=0, \\
& \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\end{aligned}
\] & & 4.5 & & mA \\
\hline \multirow[t]{2}{*}{\({ }^{1} \mathrm{CCloff}\)} & \multirow[t]{2}{*}{Off level supply current} & \multirow[t]{2}{*}{9} & \[
\begin{aligned}
& \mathrm{v}_{\mathrm{cc}}=3 \mathrm{~V}, \mathrm{v}_{\text {in }}=0.3 \mathrm{~V} \\
& \mathrm{~N}+=\mathrm{N}-=0, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\end{aligned}
\] & & 1.2 & & mA \\
\hline & & & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{cc}}=4 \mathrm{~V}, \mathrm{~V}_{\text {in }}=0.3 \mathrm{~V} \\
& \mathrm{~N}+=\mathrm{N}-=0, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\end{aligned}
\] & & 1.6 & & mA \\
\hline \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{Resistance value of \(\mathrm{R}_{1}\)} & \multirow[t]{2}{*}{10} & \(\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}\) & 1.24 & & 2.6 & \(\mathrm{k} \boldsymbol{\Omega}\) \\
\hline & & & \(\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}\) & 1.7 & & 3.25 & \(\mathrm{k} \Omega\) \\
\hline
\end{tabular}
switching characteristics, \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{cc}}=3.5 \mathrm{~V}, \mathrm{~N}-=1\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & PARAMETER & TEST FIGURE & TEST CONDITIONS & TYP & MAX & UNIT \\
\hline & Delay Time & & & 35 & & ns \\
\hline \(t_{r}\) & Rise Time & 25 & Input: \(\mathrm{V}_{\text {in }}=2.5 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}\), & 40 & 50 & ns \\
\hline \(t_{5}\) & Storage Time & 25 & \(\mathbf{t}_{\mathbf{p}}=500 \mathrm{~ns}, \mathrm{t}_{\mathbf{r}}=\mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}\) & 25 & \[
45
\] & ns \\
\hline \(t_{f}\) & Full Time & & & 30 & & ns \\
\hline \({ }^{\text {p }}\) d & Propagation Delay Time & 26 & & 30 & & ns \\
\hline
\end{tabular}

\section*{ALSO USABLE AS 5-INPUT EXPANDER}

\section*{schematic}


NOTES: a. When used as an expander for the SN5310, SN5315 or another SN5320, leave \(V_{C C}\) and \(V_{E E}\) terminals open.
b. Three expánders may be fanned into one SNS315 or 4 expanders may be fanned into one SN5310 or SN5320 to provide a total fan-in of 25.
c. Component values shown are nominal.

recommended operating conditions
Supply Voltage \(\mathrm{V}_{\mathrm{cc}}\). . . . . . . . . . . . . . . . . . . . . . . . 3 V to 4 V
Supply Voltage \(\mathrm{V}_{\mathrm{EE}}\). -3V
Maximum Fan-out Into Positive Loads, N+ . . . . . . . . . . . . . . . . . . . . 4
Maximum Fan-out Into Negative Loads, N- . . . . . . . . . . . . . . . . . . . . 4 NOTE: For cascading capabilities see design characteristics, page 2.
electrical characteristics
(unless otherwise noted, \(\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}\) to \(125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}\) to \(4 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-3 \mathrm{~V}\) )
\begin{tabular}{|c|c|c|c|c|c|}
\hline & PARAMETER & TEST FIGURE & TEST CONDITIONS & MIN TYP MAX & UNIT \\
\hline \multirow[b]{2}{*}{\(V_{\text {in(1) }}\)} & \multirow[t]{2}{*}{Logical 1 input voltage required at all input terminals to ensure off level at output} & \multirow{2}{*}{11} & \(v_{c c}=3 \mathrm{~V}\) & 1.73 & V \\
\hline & & & \(\mathrm{V}_{\mathrm{cc}}=4 \mathrm{~V}\) & 2.54 & V \\
\hline \(V_{\text {in(0) }}\) & Logical 0 input voltage required at any input terminal to ensure logical 0 (on level) at output & 12 & & \(0 \quad 0.3\) & V \\
\hline \multirow[t]{2}{*}{\(V_{\text {out }}\) (0)} & \multirow[t]{2}{*}{Logical 0 output voltage (on level)} & \multirow[t]{2}{*}{12} & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}, \mathrm{~V}_{\text {in }}=0.3 \mathrm{~V}, \\
& \mathrm{~N}-=4\left(\mathrm{I}_{\text {sink }}=1 \mathrm{~mA}\right), \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \\
& \hline
\end{aligned}
\] & \(0 \quad 0.3\) & V \\
\hline & & & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}, \mathrm{~V}_{\text {in }}=0.3 \mathrm{~V} \\
& \mathrm{~N}-=4\left(\mathrm{I}_{\text {sink }}=0.76 \mathrm{~mA}\right), \mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C} \\
& \hline
\end{aligned}
\] & \(0 \quad 0.3\) & V \\
\hline \multirow[t]{2}{*}{\(V_{\text {outiol }}\)} & \multirow[t]{2}{*}{Expander node output voltage (off level) with logical 0 at any input} & \multirow[t]{2}{*}{13} & \(\mathrm{V}_{\mathrm{CC}}=4 \mathrm{~V}, \mathrm{~V}_{\text {in }}=0.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}\) & 1.5 & \(\checkmark\) \\
\hline & & & \(\mathrm{V}_{\mathrm{CC}}=4 \mathrm{~V}, \mathrm{~V}_{\mathrm{in}}=0.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=125^{\circ} \mathrm{C}\) & 0.95 & V \\
\hline \multirow{4}{*}{\(\mathrm{V}_{\text {out }}\) (1)X} & \multirow{4}{*}{Expander node output voltage (on level) with logical 1 at all inputs} & \multirow{4}{*}{14} & \(\mathrm{V}_{\mathrm{cc}}=3 \mathrm{~V}, \mathrm{~V}_{\text {in }}=1.7 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}\) & 2.35 & \(\checkmark\) \\
\hline & & & \(V_{C C}=3 \mathrm{~V}, \mathrm{~V}_{\text {in }}=1.7 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=125^{\circ} \mathrm{C}\) & 1.9 & V \\
\hline & & & \(\mathrm{V}_{\mathrm{CC}}=4 \mathrm{~V}, \mathrm{~V}_{\text {in }}=2.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}\) & 3.15 & V \\
\hline & & & \(\mathrm{V}_{\mathrm{CC}}=4 \mathrm{~V}, \mathrm{~V}_{\text {in }}=2.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=125^{\circ} \mathrm{C}\) & 2.7 & V \\
\hline
\end{tabular}

CAUTION:
This device was formerly TYPE SN532. Pin numbers of the SN5320 have been renumbered in accordance with TO-89. The electrical functions of the SN532 and the SN5320 are in the same physical location. See pin identification, page 2004, for SN532 pin numbers.
electrical characteristics, continued
(unless otherwise noted, \(\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}\) to \(125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}\) to \(4 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-3 \mathrm{~V}\) )
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & PARAMETER &  & TEST CONDITIONS & MIN & TYP & MAX & UNIT \\
\hline \multirow[b]{2}{*}{\(\Delta \mathbf{V}_{(1)}\)} & \multirow[t]{2}{*}{Voltage difference from input to output when logical 1 level is applied to all inputs} & \multirow[t]{2}{*}{11} & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{cc}}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{in}}=1.7 \mathrm{~V}, \\
& \mathrm{~N}+=4\left(\mathrm{l}_{\text {load }}=-2 \mathrm{~mA}\right)
\end{aligned}
\] & & & 0.4 & V \\
\hline & & & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{cc}}=4 \mathrm{~V} \mathrm{~V}_{\mathrm{in}}=2.5 \mathrm{~V} \\
& \mathrm{~N}+=4\left(\mathrm{l}_{\mathrm{lood}}=-2 \mathrm{~mA}\right)
\end{aligned}
\] & & & 0.4 & \(\checkmark\) \\
\hline \multirow[b]{2}{*}{\(\mathrm{I}_{\text {in }}\)} & \multirow[b]{2}{*}{Input current (each input)} & \multirow[b]{2}{*}{12} & \(\mathrm{V}_{\text {in }}=0.3 \mathrm{~V}, \mathrm{~N}+=\mathrm{N}-=0, \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}\) & & & -0.25 & mA \\
\hline & & & \(\mathrm{V}_{\text {in }}=0.3 \mathrm{~V}, \mathrm{~N}+=\mathrm{N}-=0, \mathrm{~T}_{\mathrm{A}}=125^{\circ} \mathrm{C}\) & & & -0.19 & mA \\
\hline \multirow[b]{2}{*}{\({ }^{\text {ccionl }}\)} & \multirow[t]{2}{*}{On level \(\mathrm{V}_{\text {Cc }}\) supply current (each gate)} & \multirow[t]{2}{*}{15} & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{in}}=0.3 \mathrm{~V}, \mathrm{~N}+=\mathrm{N}-=0, \\
& \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\end{aligned}
\] & & 2.60 & & mA \\
\hline & & & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{cc}}=4 \mathrm{~V}, \mathrm{~V}_{\mathrm{in}}=0.3 \mathrm{~V}, \mathrm{~N}+=\mathrm{N}-=0, \\
& \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\end{aligned}
\] & & 3.1 & & mA \\
\hline \multirow[b]{2}{*}{\(I_{\text {EEIon) }}\)} & \multirow[t]{2}{*}{On level \(\mathbf{V}_{\text {EE }}\) supply current (each gate)} & \multirow[t]{2}{*}{15} & \[
\begin{aligned}
& V_{c c}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{in}}=0.3 \mathrm{~V}, \mathrm{~N}+=\mathrm{N}-=0, \\
& \mathrm{I}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\end{aligned}
\] & & 1.7 & & mA \\
\hline & & & \[
\begin{aligned}
& V_{C C}=4 \mathrm{~V}, \mathrm{~V}_{\text {in }}=0.3 \mathrm{~V}, \mathrm{~N}+=\mathrm{N}-=0, \\
& \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\end{aligned}
\] & & 1.7 & & mA \\
\hline \multirow[b]{2}{*}{\({ }^{\text {I Ccloff }}\)} & \multirow[t]{2}{*}{Off level \(\mathrm{V}_{\mathrm{CC}}\) supply current (each gate)} & \multirow[t]{2}{*}{15} & \[
\begin{aligned}
& V_{c C}=V_{i n}=3 \mathrm{~V}, \mathrm{~N}+=\mathrm{N}-=0, \\
& \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\end{aligned}
\] & & 2.6 & & mA \\
\hline & & & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{cc}}=\mathrm{V}_{\mathrm{in}}=4 \mathrm{~V}, \mathrm{~N}+=\mathrm{N}-=0, \\
& \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\end{aligned}
\] & & 3.05 & & mA \\
\hline \multirow[t]{2}{*}{\(\mathrm{I}_{\text {EIIoff }}\)} & \multirow[t]{2}{*}{Off level \(\mathrm{V}_{\text {EE }}\) supply current (each gate)} & \multirow[t]{2}{*}{15} & \[
\begin{aligned}
& V_{c c}=V_{i n}=3 \mathrm{~V}, \mathrm{~N}+=\mathrm{N}-=0, \\
& \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\end{aligned}
\] & & 2.6 & & mA \\
\hline & & & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{cc}}=\mathrm{V}_{\mathrm{in}}=4 \mathrm{~V}, \mathrm{~N}+=\mathrm{N}-=0, \\
& \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\end{aligned}
\] & & 3.05 & & mA \\
\hline \multirow[b]{2}{*}{\(\mathrm{R}_{1}\)} & \multirow[b]{2}{*}{Resistance value of \(\mathbf{R}_{1}\)} & \multirow[b]{2}{*}{15} & \(\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}\) & 1.24 & & 2.6 & k \(\Omega\) \\
\hline & & & \(\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}\) & 1.7 & & 3.25 & k \(\Omega\) \\
\hline
\end{tabular}
switching characteristics, \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=3.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-3 \mathrm{~V}, \mathrm{~N}-=1\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & PARAMETER & \[
\begin{gathered}
\text { TEST } \\
\text { FIGURE }
\end{gathered}
\] & TEST CONDITIONS & TYP & MAX & UNIT \\
\hline \({ }^{\text {d }}{ }^{\prime}\) & Delay Time 1 & & & 5 & 10 & ns \\
\hline \(t_{\text {r }}\) & Rise Time & 27 & Input: \(\mathrm{V}_{\text {in }}=2.5 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}\), & 40 & 200 & ns \\
\hline \({ }^{\text {d }}\) 2 & Delay Time 2 & 27 & \(\mathrm{t}_{\mathrm{p}}=500 \mathrm{~ns}, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}\) & 5 & 10 & ns \\
\hline \(t_{f}\) & Fall Time & & & 75 & 100 & ns \\
\hline \({ }^{\text {t }}\) pd & Propagation Delay Time & 26 & & 5 & & ns \\
\hline
\end{tabular}

\section*{dUAL 3-INPUT NAND/NOR GATE}
schematic (each gate)


Component values shown are nominal
recommended operating conditions


Supply Voltage \(\mathrm{V}_{\mathrm{cc}}\)
Maximum Fan-out From Each Output Into Positive Loads, N+ . . . . . . . . . . . . . . 10
Maximum Fan-out From Each Output Into Negative Loads, N- .
electrical characteristics (unless otherwise noted, \(\mathrm{T}_{\mathrm{A}}=\mathbf{- 5 5 ^ { \circ }} \mathrm{C}\) to \(125^{\circ} \mathrm{C}, \mathbf{V}_{\mathrm{cc}}=\mathbf{3} \mathbf{V}\) to \(\mathbf{4} \mathbf{V}\) )
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & PARAMETER & TEST FIGURE & TEST CONDITIONS & MIN & TYP & MAX & UNIT \\
\hline \multirow[b]{2}{*}{\(V_{\text {in(I) }}\)} & \multirow[t]{2}{*}{Logical 1 input voltage required at all input terminals that will ensure logical 0 (on level) at output} & \multirow[b]{2}{*}{5} & \(v_{c c}=3 \mathrm{~V}\) & 1.7 & & 3 & V \\
\hline & & & \(\mathrm{V}_{\mathrm{cc}}=4 \mathrm{~V}\) & 2.5 & & 4 & V \\
\hline \(V_{\text {in(0) }}\) & Logica 0 input voltage required at any input terminal that will ensure logical 1 (off level) at output & 7 & & 0 & & 0.3 & V \\
\hline \multirow[b]{2}{*}{\(\mathrm{V}_{\text {out(1) }}\)} & \multirow[t]{2}{*}{Logical 1 output voltage (off level)} & \multirow[t]{2}{*}{7} & \[
\begin{aligned}
& V_{c c}=3 \mathrm{~V}, V_{i n}=0.3 \mathrm{~V} \\
& N+=10\left(I_{\text {load }}=-5 \mathrm{~mA}\right)
\end{aligned}
\] & 1.7 & & 3 & V \\
\hline & & & \[
\begin{aligned}
& V_{c c}=4 \mathrm{~V}, V_{\text {in }}=0.3 \mathrm{~V} \\
& N+=10\left(I_{\text {load }}=-5 \mathrm{~mA}\right)
\end{aligned}
\] & 2.7 & & 4 & V \\
\hline \multirow[b]{2}{*}{\(V_{\text {out }}\) (0)} & \multirow[b]{2}{*}{Logical 0 output voltage (on level)} & \multirow[t]{2}{*}{5} & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}, \mathrm{~V}_{\text {in }}=1.7 \mathrm{~V}, \mathrm{~N}-=10 \\
& \left(\mathrm{I}_{\text {sink }}=2.5 \mathrm{~mA}\right), \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \\
& \hline
\end{aligned}
\] & 0 & & 0.3 & V \\
\hline & & & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}, \mathrm{~V}_{\text {in }}=1.7 \mathrm{~V}, \mathrm{~N}-=10 \\
& \left(\mathrm{I}_{\text {sink }}=1.9 \mathrm{~mA}\right), \mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}
\end{aligned}
\] & 0 & & 0.3 & V \\
\hline \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{Input current (each input)} & \multirow[t]{2}{*}{7} & \(\mathrm{V}_{\text {in }}=0.3 \mathrm{~V}, \mathrm{~N}+=\mathrm{N}-=0, \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}\) & & & -0.25 & mA \\
\hline & & & \(\mathrm{V}_{\text {in }}=0.3 \mathrm{~V}, \mathrm{~N}+=\mathrm{N}-=0, \mathrm{~T}_{\mathrm{A}}=125^{\circ} \mathrm{C}\) & & & -0.19 & mA \\
\hline \multirow[b]{2}{*}{\({ }^{\text {cccion }}\)} & \multirow[t]{2}{*}{On level supply current (each gate)} & \multirow[t]{2}{*}{9} & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{in}}=3 \mathrm{~V}, \mathrm{~N}+=\mathrm{N}-=0, \\
& \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\end{aligned}
\] & & 3.3 & & mA \\
\hline & & & \[
\begin{aligned}
& V_{\mathrm{cc}}=\mathrm{V}_{\mathrm{in}}=4 \mathrm{~V}, \mathrm{~N}+=\mathrm{N}-=0, \\
& \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\end{aligned}
\] & & 4.5 & & mA \\
\hline \multirow[t]{2}{*}{'ccloff} & \multirow[t]{2}{*}{Off level supply current (each gate)} & \multirow[t]{2}{*}{9} & \[
\begin{aligned}
& \mathbf{V}_{\mathrm{CC}}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{in}}=0.3 \mathrm{~V}, \\
& \mathrm{~N}+=\mathrm{N}+0, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\
& \hline
\end{aligned}
\] & & 1.2 & & mA \\
\hline & & & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}}=4 \mathrm{~V}, \mathrm{~V}_{\text {in }}=0.3 \mathrm{~V} \\
& \mathrm{~N}+=\mathrm{N}+0, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\end{aligned}
\] & & 1.6 & & mA \\
\hline
\end{tabular}
switching characteristics, \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{cc}}=\mathbf{3 . 5} \mathrm{V}, \mathrm{N}-=1\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & PARAMETER & TEST FIGURE & TEST CONDITIONS & TYP & MAX & UNIT \\
\hline \({ }^{\text {d }}\) & Delay Time & & & 20 & 30 & ns \\
\hline \(t_{r}\) & Rise Time & 25 & Input: \(\mathrm{V}_{\text {in }}=2.5 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}\), & 25 & 45 & ns \\
\hline \(\mathrm{t}_{\text {s }}\) & Storage Time & & \(t_{p}=500 \mathrm{~ns}, t_{r}=t_{f}=20 \mathrm{~ns}\) & 25 & 45 & ns \\
\hline \(t_{\text {f }}\) & Fall Time & & & 25 & 40 & ns \\
\hline \({ }^{\text {t }}\) pd & Propagation Delay Time & 26 & & 25 & & ns \\
\hline
\end{tabular}

\section*{CAUTION:}

This device was formerly TYPE SN533. Pin numbers of the SN5330 have been renumbered in accordance with TO-89. The electrical functions of the SN533 and the SN5330 are in the same physical location. See pin identification, page 2004, for SN533 pin numbers.
schematic (each gate)


Component values shown are nominal.


\section*{recommended operating conditions}
\[
\begin{aligned}
& \text { Supply Voltage Vcc . . . . . . . . . . . . . . . . . . . . . . . . } 3 \text { V to } 4 \text { V } \\
& \text { Maximum Fan-out From Each Output Into Positive Loads, N+ . . . . . . . . . . . . . . . . } 10
\end{aligned}
\]
\[
\text { Maximum Fan-out From Each Output Into Negative Loads, N- . . . . . . . . . . . . . } 10
\]
electrical characteristics (unless otherwise noted, \(T_{A}=-55^{\circ} \mathrm{C}\) to \(125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{cc}}=3 \mathrm{~V}\) to 4 V )
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & PARAMETER & \[
\begin{aligned}
& \text { TEST } \\
& \text { FIGURE }
\end{aligned}
\] & TEST CONDITIONS & MIN & TYP & MAX & UNIT \\
\hline \multirow[b]{2}{*}{\(\mathrm{V}_{\mathrm{in}(1)}\)} & \multirow[t]{2}{*}{Logical 1 input voltage required at all input terminals to ensure logical 0 (on level) at output} & \multirow[b]{2}{*}{5} & \(\mathrm{v}_{\mathrm{cc}}=3 \mathrm{~V}\) & 1.7 & & 3 & V \\
\hline & & & \(\mathrm{V}_{\mathrm{CC}}=4 \mathrm{~V}\) & 2.5 & & 4 & V \\
\hline \(V_{\text {in(0) }}\) & Logical 0 input voltage required at any input terminal to ensure logical 1 (off level) at output & 7 & & 0 & & 0.3 & V \\
\hline \multirow[b]{2}{*}{\(V_{\text {outll }}\)} & \multirow[t]{2}{*}{Logical 1 output voltage (off level)} & \multirow[t]{2}{*}{7} & \[
\begin{aligned}
& V_{c C}=3 V, V_{\text {in }}=0.3 V \\
& N+=10\left(I_{\text {load }}=-5 \mathrm{~mA}\right)
\end{aligned}
\] & 1.7 & & 3 & V \\
\hline & & & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{Cc}}=4 \mathrm{~V}, \mathrm{~V}_{\mathrm{in}}=0.3 \mathrm{~V} \\
& \mathrm{~N}+=10\left(\mathrm{I}_{\text {load }}=-5 \mathrm{~mA}\right)
\end{aligned}
\] & 2.7 & & 4 & V \\
\hline \multirow[b]{2}{*}{\(V_{\text {out }}\) (0)} & \multirow[t]{2}{*}{Logical 0 output voltage (on level)} & \multirow[t]{2}{*}{5} & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}, \mathrm{~V}_{\text {in }}=1.7 \mathrm{~V}, \mathrm{~N}-=10 \\
& \left(\mathrm{I}_{\text {sink }}=2.5 \mathrm{~mA}\right), \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}
\end{aligned}
\] & 0 & & 0.3 & V \\
\hline & & & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{cc}}=3 \mathrm{~V}, \mathrm{~V}_{\text {in }}=1.7 \mathrm{~V}, \mathrm{~N}^{\circ}=10 \\
& \left(1_{\text {sink }}=1.9 \mathrm{~mA}\right), \mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C} \\
& \hline
\end{aligned}
\] & 0 & & 0.3 & V \\
\hline \multirow[t]{2}{*}{} & \multirow[b]{2}{*}{Input current (each input)} & \multirow[t]{2}{*}{7} & \(\mathrm{V}_{\text {in }}=0.3 \mathrm{~V}, \mathrm{~N}+=\mathrm{N}-=0, \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}\) & & & -0.25 & mA \\
\hline & & & \(\bar{V}_{\text {in }}=0.3 \mathrm{~V}, \mathrm{~N}+=\mathrm{N}-=0, \mathrm{~T}_{\mathrm{A}}=125^{\circ} \mathrm{C}\) & & & -0.19 & mA \\
\hline \multirow[t]{2}{*}{Iccion)} & \multirow[t]{2}{*}{On level supply current (each gate)} & \multirow[t]{2}{*}{9} & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{in}}=3 \mathrm{~V}, \mathrm{~N}+=\mathrm{N}-=0, \\
& \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\end{aligned}
\] & & 3.3 & & mA \\
\hline & & & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{in}}=4 \mathrm{~V}, \mathrm{~N}+=\mathrm{N}-=0, \\
& \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\end{aligned}
\] & & 4.5 & & mA \\
\hline \multirow[t]{2}{*}{\({ }^{\text {ccloff }}\)} & \multirow[t]{2}{*}{Off level supply current (each gate)} & \multirow[t]{2}{*}{9} & \[
\begin{array}{|l}
\hline \mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}, \mathrm{~V}_{\text {in }}=0.3 \mathrm{~V} \\
\mathrm{~N}+=\mathrm{N}-=0, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\
\hline
\end{array}
\] & & 1.2 & & mA \\
\hline & & & \[
\begin{aligned}
& \mathrm{v}_{\mathrm{CC}}=4 \mathrm{~V}, \mathrm{v}_{\mathrm{in}}=0.3 \mathrm{~V} \\
& \mathrm{~N}+=\mathrm{N}-=0, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\end{aligned}
\] & & 1.6 & & mA \\
\hline
\end{tabular}
switching characteristics, \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{cc}}=3.5 \mathrm{~V}, \mathrm{~N}-=1\)
\begin{tabular}{|l|c|c|c|c|c|}
\hline & PARAMETER & TEST & TEST CONDITIONS & TYP & MAX
\end{tabular} UNIT \begin{tabular}{l} 
FIGURE
\end{tabular}

\section*{schematic}


NOTES: a. Component values shown are nominal.
b. Do not connect pins (2) and (4) together.

positive logic
\(2=1 \cdot 10\)
\(4=5 \cdot 6 \cdot 7\)

\section*{recommended operating conditions}

Supply Voltage Vcc . . . . . . . . . . . . . . . . . . . . . . . . 3 V to 4 V
Supply Voltage \(\mathrm{V}_{\mathrm{EE}}\). . . . . . . . . . . . . . . . . . . . . . . . . . . -3 V
Maximum Fan-out From Each Output Into Positive Loads, N+ . . . . . . . . . . . . . . 4
Maximum Fan-out From Each Output Into Negative Loads, N- . . . . . . . . . . . . . . 4 NOTE: For cascading capabilities see design characteristics, page 2.

\section*{electrical characteristics}
(unless otherwise noted, \(\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}\) to \(125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}\) to \(4 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-3 \mathrm{~V}\) )
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & PARAMETER & TEST FIGURE & TEST CONDITIONS & MIN & MAX & UNIT \\
\hline \multirow[b]{2}{*}{\(V_{\text {in(1) }}\)} & \multirow[t]{2}{*}{Logical 1 input voltage required at all input terminals to ensure logical 1 (off level) at output} & \multirow[b]{2}{*}{11} & \(\mathrm{V}_{\mathrm{cc}}=3 \mathrm{~V}\) & 1.7 & 3 & V \\
\hline & & & \(\mathrm{V}_{\mathrm{cc}}=4 \mathrm{~V}\) & 2.5 & 4 & V \\
\hline \(V_{\text {in(0) }}\) & Logical 0 input voltage required at any input terminal to ensure logical 0 (on level) at output & 12 & & 0 & 0.3 & V \\
\hline \multirow[t]{2}{*}{\(\Delta \mathbf{V}_{(1)}\)} & \multirow[t]{2}{*}{Voltage difference from input to output when logical 1 level is applied to all inputs} & \multirow[t]{2}{*}{11} & \[
\begin{aligned}
& \mathbf{V}_{\mathrm{cc}}=3 \mathrm{~V}, \mathrm{~V}_{\text {in }}=1.7 \mathrm{~V}, \\
& \mathrm{~N}+=4\left(\mathrm{I}_{\text {load }}=-2 \mathrm{~mA}\right)
\end{aligned}
\] & & 0.4 & V \\
\hline & & & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{Cc}}=4 \mathrm{~V}, \mathrm{~V}_{\text {in }}=2.5 \mathrm{~V} \\
& \mathrm{~N}+=4\left(\mathrm{I}_{\text {load }}=-2 \mathrm{~mA}\right)
\end{aligned}
\] & & 0.4 & V \\
\hline \multirow[t]{2}{*}{\(V_{\text {out(0) }}\)} & \multirow[t]{2}{*}{Logical 0 output voltage (on level)} & \multirow[t]{2}{*}{12} & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{cc}}=3 \mathrm{~V}, \mathrm{v}_{\mathrm{in}}=0.3 \mathrm{~V}, \mathrm{~N}-=4 \\
& \left(\mathrm{I}_{\text {sink }}=1 \mathrm{~mA}\right), \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}
\end{aligned}
\] & 0 & 0.3 & V \\
\hline & & & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{cC}}=3 \mathrm{~V}, \mathrm{~V}_{\text {in }}=0.3 \mathrm{~V}, \mathrm{~N}-=4 \\
& \left(\mathrm{I}_{\text {sink }}=0.76 \mathrm{~mA}\right), \mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}
\end{aligned}
\] & 0 & 0.3 & V \\
\hline
\end{tabular}

\section*{CAUTION:}

This device was formerly TYPE SN534. Pin numbers of the SN5340 have been renumbered in accordance with TO-89. The electrical functions of the SN534 and the SN5340 are in the same physical location. See pin identification, page 2004, for SN534 pin numbers.
electrical characteristics, continued
(unless otherwise noted \(\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}\) to \(125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}\) to \(4 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-\mathbf{3} \mathrm{V}\) )
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & PARAMETER & \[
\begin{gathered}
\text { TEST } \\
\text { FIGURE }
\end{gathered}
\] & TEST CONDITIONS & MIN & TYP MAX & UNIT \\
\hline \multirow[t]{2}{*}{\(\mathrm{l}_{\text {in }}\)} & \multirow[t]{2}{*}{Input current (each input)} & \multirow[t]{2}{*}{12} & \(\mathrm{V}_{\text {in }}=0.3 \mathrm{~V}, \mathrm{~N}+=\mathrm{N}-=0, \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}\) & & -0.25 & mA \\
\hline & & & \(\mathrm{V}_{\text {in }}=0.3 \mathrm{~V}, \mathrm{~N}+=\mathrm{N}-=0, \mathrm{~T}_{\mathrm{A}}=125^{\circ} \mathrm{C}\) & & -0.19 & mA \\
\hline \multirow[t]{2}{*}{\({ }^{\text {cccion }}\)} & \multirow[t]{2}{*}{On level \(\mathrm{V}_{\mathrm{CC}}\) supply current (each gate)} & \multirow[b]{2}{*}{15} & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}, \mathrm{~V}_{\text {in }}=0.3 \mathrm{~V}, \mathrm{~N}+=\mathrm{N}-=0, \\
& \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\end{aligned}
\] & & 2.6 & mA \\
\hline & & & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{cc}}=4 \mathrm{~V}, \mathrm{~V}_{\mathrm{in}}=0.3 \mathrm{~V}, \mathrm{~N}+=\mathrm{N}-=0, \\
& \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\end{aligned}
\] & & 3.1 & mA \\
\hline \multirow[b]{2}{*}{\(\mathrm{I}_{\text {EE(on) }}\)} & \multirow[b]{2}{*}{On level \(\mathrm{V}_{\mathrm{EE}}\) supply current (each gate)} & \multirow[b]{2}{*}{15} & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{Cc}}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{in}}=0.3 \mathrm{~V}, \mathrm{~N}+=\mathrm{N}-=0, \\
& \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\end{aligned}
\] & & 1.7 & mA \\
\hline & & & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}}=4 \mathrm{~V}, \mathrm{~V}_{\text {in }}=0.3 \mathrm{~V}, \mathrm{~N}+=\mathrm{N}-=0, \\
& \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\end{aligned}
\] & & 1.7 & mA \\
\hline \multirow[t]{2}{*}{\({ }^{\text {ccloff }}\)} & \multirow[t]{2}{*}{Off level \(\mathrm{V}_{\mathrm{Cc}}\) supply current (each gate)} & \multirow[t]{2}{*}{15} & \[
\begin{aligned}
& \mathbf{v}_{\mathrm{cc}}=\mathrm{v}_{\mathrm{in}}=3 \mathrm{~V}, \quad \mathrm{~N}+=\mathrm{N}-=0, \\
& \mathbf{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\end{aligned}
\] & & 2.6 & mA \\
\hline & & & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{cc}}=\mathrm{V}_{\mathrm{in}}=4 \mathrm{~V}, \mathrm{~N}+=\mathrm{N}-=0, \\
& \mathrm{r}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\end{aligned}
\] & & 3.05 & mA \\
\hline \multirow[t]{2}{*}{\(\mathrm{I}_{\mathrm{EE} \text { (off) }}\)} & \multirow[t]{2}{*}{Off level \(\mathrm{V}_{\text {EE }}\) supply current (each gate)} & \multirow[t]{2}{*}{15} & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{cc}}=\mathrm{V}_{\mathrm{in}}=3 \mathrm{~V}, \mathrm{~N}+=\mathrm{N}-=0, \\
& \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\end{aligned}
\] & & 2.6 & mA \\
\hline & & & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{in}}=4 \mathrm{~V}, \mathrm{~N}+=\mathrm{N}-=0, \\
& \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\end{aligned}
\] & & 3.05 & mA \\
\hline
\end{tabular}
switching characteristics, \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{cc}}=\mathbf{3 . 5} \mathrm{V}, \mathrm{N}-=\mathbf{1}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & PARAMETER & TEST FIGURE & TEST CONDITIONS & TYP & MAX & UNIT \\
\hline \(\mathrm{t}_{\mathrm{d} 1}\) & Delay Time 1 & \multirow{4}{*}{27} & \multirow{4}{*}{\[
\begin{aligned}
& \text { Input: } V_{i n}=2.5 \mathrm{~V}, f=1 \mathrm{MHz} \\
& t_{\mathrm{p}}=500 \mathrm{~ns}, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}
\end{aligned}
\]} & 5 & 10 & ns \\
\hline \(t_{\text {r }}\) & Rise Time & & & 40 & 200 & ns \\
\hline \(t_{\text {d } 2}\) & Delay Time 2 & & & 5 & 10 & ns \\
\hline \(t_{\text {f }}\) & Fall Time & & & 75 & 100 & ns \\
\hline \(t_{\text {pd }}\) & Propagation Delay Time & 26 & & 5 & & ns \\
\hline
\end{tabular}
schematic (each inverter)


Component values shown are nominal


\section*{recommended operating conditions}

Supply Voltage \(V_{c c}\) 3 V to 4 V
Maximum Fan-out From Each Output Into Positive Loads, N+ . . . . . . . . . . . . . . 10
Maximum Fan-out From Each Output Into Negative Loads, N- . . . . . . . . . . . . . . 10
electrical characteristics (unless otherwise noted, \(\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}\) to \(125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{Cc}}=3 \mathrm{~V}\) to 4 V )
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & PARAMETER & TEST FIGURE & TEST CONDITIONS & MIN & TYP & MAX & UNIT \\
\hline \multirow[b]{2}{*}{\(V_{\text {in(1) }}\)} & \multirow[t]{2}{*}{Logical 1 input voltage required to ensure logical 0 (on level) at output} & \multirow{2}{*}{16} & \(\mathrm{v}_{\mathrm{cc}}=3 \mathrm{~V}\) & 1.5 & & 3 & V \\
\hline & & & \(\mathrm{V}_{\mathrm{Cc}}=4 \mathrm{~V}\) & 1.5 & & 4 & V \\
\hline \(V_{\text {in } 0 \text { ) }}\) & Logical 0 input voltage required to ensure logical 1 (off level) at output & 16 & & 0 & & 0.3 & V \\
\hline \multirow[t]{2}{*}{\(\mathrm{V}_{\text {out(1) }}\)} & \multirow[t]{2}{*}{Logical 1 output voltage (off level)} & \multirow[t]{2}{*}{16} & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{cc}}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{in}}=0.3 \mathrm{~V} \\
& \mathrm{~N}+=10\left(\mathrm{I}_{\text {load }}=-5 \mathrm{~mA}\right)
\end{aligned}
\] & 1.7 & & 3 & V \\
\hline & & & \[
\begin{aligned}
& V_{c c}=4 \mathrm{~V}, \mathrm{~V}_{\text {in }}=0.3 \mathrm{~V} \\
& N+=10\left(\mathrm{I}_{\text {load }}=-5 \mathrm{~mA}\right)
\end{aligned}
\] & 2.7 & & 4 & V \\
\hline \multirow[t]{2}{*}{\(V_{\text {cutiol }}\)} & \multirow[t]{2}{*}{Logical 0 output voltage (on level)} & \multirow[t]{2}{*}{16} & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{cc}}=3 \mathrm{~V}, \mathrm{~V}_{\text {in }}=1.7 \mathrm{~V}, \mathrm{~N}-=10 \\
& \left(\mathrm{I}_{\text {sink }}=2.5 \mathrm{~mA}\right), \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}
\end{aligned}
\] & 0 & & 0.3 & V \\
\hline & & & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}, \mathrm{~V}_{\text {in }}=1.7 \mathrm{~V}, \mathrm{~N}-=10 \\
& \left(\mathrm{I}_{\text {sink }}=1.9 \mathrm{~mA}\right), \mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}
\end{aligned}
\] & 0 & & 0.3 & V \\
\hline \(\mathrm{I}_{\text {in }}\) & Input current & 16 & \(\mathrm{v}_{\mathrm{cc}}=4 \mathrm{~V}, \mathrm{v}_{\text {in }}=2.7 \mathrm{~V}, \mathrm{~N}+=\mathrm{N}-=0\) & & & 1 & mA \\
\hline \multirow[t]{2}{*}{\({ }^{\text {c }}\) Clon)} & \multirow[t]{2}{*}{On level supply current (each inverter)} & \multirow[t]{2}{*}{16} & \[
\begin{aligned}
& V_{c c}=V_{i n}=3 \mathrm{~V}, \mathrm{~N}+=\mathrm{N}-=0, \\
& T_{A}=25^{\circ} \mathrm{C}
\end{aligned}
\] & \multicolumn{3}{|c|}{3.3} & mA \\
\hline & & & \[
\begin{aligned}
& V_{C C}=V_{i n}=4 V, N+=N-=0, \\
& T_{A}=25^{\circ} \mathrm{C}
\end{aligned}
\] & \multicolumn{3}{|c|}{4.5} & mA \\
\hline
\end{tabular}
switching characteristics, \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=\mathbf{3 . 5} \mathrm{V}, \mathrm{N}-=\mathbf{1}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & PARAMETER & TEST FIGURE & TEST CONDITIONS & TYP & MAX & UNIT \\
\hline \(t_{d}\) & Delay Time & \multirow{4}{*}{25} & \multirow[b]{4}{*}{Input: \(\mathrm{V}_{\mathrm{in}}=2.5 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}\),
\[
t_{\mathrm{p}}=500 \mathrm{~ns}, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}
\]} & 20 & 30 & ns \\
\hline \(t_{r}\) & Rise Time & & & 25 & 45 & ns \\
\hline \(t_{\text {s }}\) & Storage Time & & & 25 & 45 & ns \\
\hline \({ }_{\text {t }}\) & Fall Time & & & 25 & 40 & ns \\
\hline \(t_{\text {pd }}\) & Propagation Delay Time & 26 & & 25 & & ns \\
\hline
\end{tabular}

\section*{CAUTION:}

This device was formerly TYPE SN535. Pin numbers of the SN5350 have been renumbered in accordance with TO-89. The electrical functions of the SN535 and the SN5350 are in the same physical location. See pin identification, page 2004, for SN535 pin numbers.
schematic (each gate)


Component values shown are nominal

recommended operating conditions
Supply Voltage \(\mathrm{V}_{\mathrm{cc}}\). . . . . . . . . . . . . . . . . . . . . . . . 3 V to 4 V
Maximum Fan-out From Each Output Into Positive Loads, N+ . . . . . . . . . . . . . . 10
Maximum Fan-out From Each Output Into Negative Loads, N-
. 10
electrical characteristics (unless otherwise noted, \(\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}\) to \(125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{cc}}=\mathbf{3} \mathrm{V}\) to 4 V )
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & PARAMETER & TEST FIGURE & TEST CONDITIONS & MIN & TYP & MAX & UNIT \\
\hline \multirow[b]{2}{*}{\(V_{\text {in }}(1)\)} & \multirow[t]{2}{*}{Logical 1 input voltage required at all input terminals to ensure logical 0 (on level) at output} & \multirow[b]{2}{*}{5} & \(\mathrm{V}_{\mathrm{cc}}=3 \mathrm{~V}\) & 1.7 & & 3 & V \\
\hline & & & \(\mathrm{V}_{\mathrm{cc}}=4 \mathrm{~V}\) & 2.5 & & 4 & V \\
\hline \(V_{\text {in } 10)}\) & Logical 0 input voltage required at any input terminal to ensure logical 1 (off level) at output & 7 & & 0 & & 0.3 & V \\
\hline \multirow[t]{2}{*}{\(V_{\text {cut }}\) (l)} & \multirow[t]{2}{*}{Logical 1 output voltage (off level)} & \multirow[t]{2}{*}{7} & \[
\begin{aligned}
& V_{c c}=3 V, V_{\text {in }}=0.3 \mathrm{~V} \\
& N+=10\left(I_{\text {load }}=-5 \mathrm{~mA}\right)
\end{aligned}
\] & 1.7 & & 3 & V \\
\hline & & & \[
\begin{array}{|l|}
\hline \mathrm{V}_{\mathrm{cc}}=4 \mathrm{~V}, \mathrm{~V}_{\mathrm{in}}=0.3 \mathrm{~V} \\
\mathrm{~N}+=10\left(\mathrm{I}_{\text {load }}=-5 \mathrm{~mA}\right) \\
\hline
\end{array}
\] & 2.7 & & 4 & V \\
\hline \multirow[t]{2}{*}{\(V_{\text {out }}\) (0)} & \multirow[t]{2}{*}{Logical 0 output voltage (on level)} & \multirow[t]{2}{*}{5} & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{Cc}}=3 \mathrm{~V}, \mathrm{~V}_{\text {in }}=1.7 \mathrm{~V}, \mathrm{~N}=10, \\
& \left(\mathrm{I}_{\text {sink }}=2.5 \mathrm{~mA}\right), \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}
\end{aligned}
\] & 0 & & 0.3 & V \\
\hline & & & \[
\begin{aligned}
& V_{c c}=3 \mathrm{~V}, V_{\text {in }}=1.7 \mathrm{~V}, \mathrm{~N}-=10, \\
& \left(\mathrm{I}_{\text {sink }}=1.9 \mathrm{~mA}\right), \mathrm{T}_{\mathrm{A}}=-125^{\circ} \mathrm{C} \\
& \hline
\end{aligned}
\] & 0 & & 0.3 & V \\
\hline \multirow[b]{2}{*}{\(\mathrm{I}_{\text {in }}\)} & \multirow[b]{2}{*}{Input current (each input)} & \multirow[t]{2}{*}{7} & \(\mathrm{V}_{\text {in }}=0.3 \mathrm{~V}, \mathrm{~N}+=\mathrm{N}=0, \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}\) & & & -0.25 & mA \\
\hline & & & \(\mathrm{V}_{\text {in }}=0.3 \mathrm{~V}, \mathrm{~N}+=\mathrm{N}-=0, \mathrm{~T}_{\mathrm{A}}=125^{\circ} \mathrm{C}\) & & & -0.19 & mA \\
\hline \multirow[t]{2}{*}{\({ }^{\text {ccionl }}\)} & \multirow[t]{2}{*}{On level supply current (each gate)} & \multirow[t]{2}{*}{9} & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{cc}}=\mathrm{V}_{\mathrm{in}}=3 \mathrm{~V}, \mathrm{~N}+=\mathrm{N}=0 \\
& \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\end{aligned}
\] & & 3.3 & & mA \\
\hline & & & \[
\begin{aligned}
& V_{c c}=V_{i n}=4 \mathrm{~V}, \mathrm{~N}+=\mathrm{N}=0, \\
& \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\end{aligned}
\] & & 4.5 & & mA \\
\hline \multirow[t]{2}{*}{\(\mathrm{I}_{\text {cciofi }}\)} & \multirow[t]{2}{*}{Off level supply current (each gate)} & \multirow[t]{2}{*}{9} & \[
\begin{aligned}
& \mathrm{v}_{\mathrm{cc}}=3 \mathrm{~V}_{1} \mathrm{v}_{\text {in }}=0.3 \mathrm{~V} \\
& \mathrm{~N}+=\mathrm{N}-=0, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\end{aligned}
\] & & 1.2 & & mA \\
\hline & & & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}}=4 \mathrm{~V}, \mathrm{~V}_{\text {in }}=0.3 \mathrm{~V} \\
& \mathrm{~N}+=\mathrm{N}-=0, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\end{aligned}
\] & & 1.6 & & mA \\
\hline
\end{tabular}
switching characteristics, \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=3.5 \mathrm{~V}, \mathrm{~N}-=1\)
\begin{tabular}{|ll|c|l|l|c|}
\hline & PARAMETER & TEST & TEST CONDITIONS & MIN & TYP MAX
\end{tabular} UNIT \begin{tabular}{c} 
FIGURE
\end{tabular}
schematic (each gate)


Component values shown are nominal

\section*{recommended operating conditions}

Supply Voltage \(\mathrm{V}_{\mathrm{cc}}\). . . . . . . . . . . . . . . . . . . . . . . 3 V to 4 V
Maximum Fan-out From Each Output Into Positive Loads, N+ . . . . . . . . . . . . . 10
Maximum Fan-out From Each Output Into Negative Loads, N- . . . . . . . . . . . . . 10
electrical characteristics (unless otherwise noted, \(\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}\) to \(125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}\) to 4 V )
\begin{tabular}{|c|c|c|c|c|c|}
\hline PARAMETER & FIGURE & TEST CONDITIONS & MIN & TYP MAX & UNIT \\
\hline Logical 1 input voltage required
at both input terminals of at both input terminals of either & \multirow[t]{2}{*}{17} & \(\mathrm{V}_{\mathrm{cc}}=3 \mathrm{~V}\) & 1.7 & 3 & V \\
\hline in(1) AND section to ensure logical 0 (on level) at output & & \(\mathrm{v}_{\mathrm{cc}}=4 \mathrm{~V}\) & 2.5 & 4 & V \\
\hline \(V_{\text {in(0) }}\)\begin{tabular}{l} 
Logical 0 input voltage required \\
at one input terminal of each \\
AND section to ensure logical 1 \\
(off level) at output
\end{tabular} & 18 & & 0 & 0.3 & v \\
\hline \multirow[t]{2}{*}{\[
\mathrm{V}_{\text {out (1) }} \begin{aligned}
& \text { Logical I output voltage } \\
& \text { (off level) }
\end{aligned}
\]} & \multirow[t]{2}{*}{18} & \[
\begin{aligned}
& V_{\mathrm{cc}}=3 \mathrm{~V}, \\
& \mathrm{~N}+=10\left(\mathrm{I}_{\text {load }}=-5 \mathrm{~mA}\right)
\end{aligned}
\] & 1.7 & 3 & V \\
\hline & & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}}=4 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{in}}=0.3 \mathrm{~V} \\
& \mathrm{~N}+=10\left(\mathrm{l}_{\text {load }}=-5 \mathrm{~mA}\right)
\end{aligned}
\] & 2.7 & 4 & V \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& \mathbf{V}_{\text {out }(0)} \begin{array}{l}
\text { Logical } 0 \text { output voltage } \\
\text { (on level) }
\end{array}
\end{aligned}
\]} & \multirow[t]{2}{*}{17} & \[
\begin{array}{ll}
\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}, & \mathrm{~V}_{\text {in }}=1.7 \mathrm{~V}, \\
\mathrm{~N}-=10\left(\mathrm{I}_{\text {sink }}=2.5 \mathrm{~mA}\right), & \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}
\end{array}
\] & 0 & 0.3 & V \\
\hline & & \[
\begin{array}{ll}
\mathrm{V}_{\mathrm{cc}}=3 \mathrm{~V}, & \mathrm{~V}_{\text {in }}=1.7 \mathrm{~V} \\
\mathrm{~N}-=10\left(\mathrm{I}_{\text {sink }}=1.9 \mathrm{~mA}\right), & \mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}
\end{array}
\] & 0 & 0.3 & V \\
\hline \multirow[b]{2}{*}{Input current (each input)} & \multirow[b]{2}{*}{18} & \(\mathrm{V}_{\text {in }}=0.3 \mathrm{~V}, \mathrm{~N}+=\mathrm{N}-=0, \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}\) & & -0.25 & mA \\
\hline & & \(\mathrm{V}_{\text {in }}=0.3 \mathrm{~V}, \mathrm{~N}+=\mathrm{N}-=0, \mathrm{~T}_{\mathrm{A}}=125^{\circ} \mathrm{C}\) & & -0.19 & mA \\
\hline \multirow[t]{2}{*}{On level supply current \({ }^{\prime} \mathrm{CC}(\mathrm{on})\) (each gate)} & \multirow[t]{2}{*}{17} & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{in}}=3 \mathrm{~V}, \quad \mathrm{~N}+=\mathrm{N}-=0, \\
& \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\end{aligned}
\] & & 3.3 & mA \\
\hline & & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{Cc}}=\mathrm{V}_{\mathrm{in}}=4 \mathrm{~V}, \quad \mathrm{~N}+=\mathrm{N}-=0, \\
& \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\end{aligned}
\] & & 4.5 & mA \\
\hline \multirow[t]{2}{*}{Off level supply current \(I^{C C l o f f l}\) (each gate)} & \multirow[t]{2}{*}{18} & \[
\begin{array}{ll}
\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}, & \mathrm{~V}_{\text {in }}=0.3 \mathrm{~V} \\
\mathrm{~N}+=\mathrm{N}-=0, & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\
\hline
\end{array}
\] & & 1.2 & mA \\
\hline & & \[
\begin{array}{ll}
\mathrm{v}_{\mathrm{CC}}=4 \mathrm{~V}, & \mathrm{~V}_{\text {in }}=0.3 \mathrm{~V}, \\
\mathrm{~N}+=\mathrm{N}-=0, & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\end{array}
\] & & 1.6 & mA \\
\hline
\end{tabular}
switching characteristics, \(\mathbf{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathbf{V}_{\mathrm{cc}}=\mathbf{3 . 5} \mathrm{V}, \mathrm{N}-=\mathbf{1}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{PARAMETER} & TEST FIGURE & TEST CON & IONS & TYP & MAX & UNIT \\
\hline \(t_{d}\) & Delay Time & \multirow{4}{*}{25} & \multirow{4}{*}{\[
\begin{aligned}
& V_{i n}=2.5 \mathrm{~V} \\
& t_{\mathrm{p}}=500 \mathrm{~ns},
\end{aligned}
\]} & \multirow{4}{*}{\[
\begin{aligned}
& f=1 \mathrm{MHz} \\
& \mathbf{t}_{\mathrm{r}}=\mathbf{t}_{\mathrm{f}}=20 \mathrm{~ns}
\end{aligned}
\]} & 30 & 60 & ns \\
\hline \(t_{r}\) & Rise Time & & & & 30 & 60 & ns \\
\hline \({ }_{\text {t }}\) & Storage Time & & & & 100 & 200 & ns \\
\hline \(t_{\text {f }}\) & Fall Time & & & & 100 & 200 & ns \\
\hline \(t_{\text {pd }}\) & Propagation Delay Time & 26 & & & 65 & & ns \\
\hline
\end{tabular}

\section*{logic}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|r|}{positive logic} \\
\hline & T & & \(\star\) & \\
\hline \(t_{n}\) & \(t_{n+1}\) & \(t_{n}\) & \(t_{n+1}\) & \\
\hline 1 & 1 & .. & .. & INHIBITED (logical 1) \\
\hline .. & . & 0 & 0 & INHIBITED (logical 1) \\
\hline 0 & 0 & 1 & 0 & ONE-SHOT (logical 0 for \(t_{p n s}\) ) \\
\hline 0 & 1 & 1 & 1 & ONE-SHOT (logical 0 for \(t_{p n s}\) ) \\
\hline
\end{tabular}
\(t_{n}=\) bit time before change in input levels
\(t_{n+1}=\) bit time after change in inpul levels


\section*{recommended operating conditions}
Supply Voltage Vcc ..... 3 V to 4 V
Maximum Fan-out Into Positive Loads, N+ ..... 10
Maximum Fan-out Into Negative Loads, \(N\) - . ..... 10
Minimum Set-Up Time, \(\mathrm{t}_{\text {set-up }} \dagger\) ..... 400 ns
electrical characteristics (unless otherwise noted, \(\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}\) to \(125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{cc}}=3 \mathrm{~V}\) to \(\mathbf{4} \mathrm{V}\) )
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & PARAMETER & \[
\begin{gathered}
\text { TEST } \\
\text { FIGURE }
\end{gathered}
\] & TEST CONDITIONS & MIN & TYP & MAX & UNIT \\
\hline \multirow[b]{2}{*}{\(V_{\text {in(1) }}\)} & \multirow[t]{2}{*}{Input voltage required to ensure logical 1 at \(T\) or \(T \star\) input terminal} & \multirow[b]{2}{*}{19} & \(\mathrm{v}_{\mathrm{Cc}}=3 \mathrm{~V}\) & 1.7 & & 3 & \(\checkmark\) \\
\hline & & & \(\mathrm{V}_{\mathrm{cc}}=4 \mathrm{~V}\) & 2.5 & & 4 & \(v\) \\
\hline \(\mathrm{V}_{\text {in(0) }}\) & Input voltage required to ensure logical 0 at \(T\) or \(T \star\) terminal & 19 & & 0 & & 0.3 & v \\
\hline \multirow[b]{2}{*}{\(V_{\text {out(1) }}\)} & \multirow[t]{2}{*}{Logical 1 output voltage (off level)} & \multirow[b]{2}{*}{20} & \(\mathrm{V}_{\text {cC }}=3 \mathrm{~V}, \mathrm{~N}+=10\left(\mathrm{l}_{\text {oad }}=-5 \mathrm{~mA}\right)\) & 1.7 & & 3 & v \\
\hline & & & \(\mathrm{V}_{\text {cC }}=4 \mathrm{~V}, \mathrm{~N}+=10\left(\mathrm{l}_{\text {load }}=-5 \mathrm{~mA}\right)\) & 2.7 & & 4 & v \\
\hline \multirow[t]{2}{*}{\(V_{\text {out }}\) (0)} & \multirow[t]{2}{*}{Logical 0 output voltage (on level)} & \multirow[t]{2}{*}{20} & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{cc}}=3 \mathrm{~V}, \mathrm{v}_{\overparen{O}}=0.3 \mathrm{~V}, \text { pin }(10) \text { open } \\
& \mathrm{N}-=10\left(\mathrm{l}_{\text {sink }}=2.5 \mathrm{~mA}\right), \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}
\end{aligned}
\] & 0 & & 0.3 & v \\
\hline & & & \[
\begin{aligned}
& \mathrm{V}_{\text {CC }}=4 \mathrm{~V}, \mathrm{~V}_{\overparen{O}}=0.3 \mathrm{~V}, \text { pin } 10 \text { open } \\
& \mathrm{N}-=10\left(I_{\text {sink }}=1.9 \mathrm{~mA}\right), \mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}
\end{aligned}
\] & 0 & & 0.3 & v \\
\hline \(\mathrm{I}_{\text {in }}\) & Input current (each input) & 19 & \(\mathrm{V}_{\text {in }}=2.7 \mathrm{~V}, \mathrm{~N}+=\mathrm{N}-=0\) & & & 0.5 & mA \\
\hline \multirow[b]{2}{*}{\({ }^{\text {'cC(av) }}\)} & \multirow[b]{2}{*}{Average supply current} & \multirow[b]{2}{*}{21} & \[
\begin{aligned}
& V_{c c}=3 \mathrm{~V}, \mathrm{~N}+=\mathrm{N}-=0 \\
& \text { Duty cycle }=50 \%, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\end{aligned}
\] & \multicolumn{3}{|c|}{4.8} & mA \\
\hline & & & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{cc}}=4 \mathrm{~V}, \mathrm{~N}+=\mathrm{N}-=0, \\
& \text { Duty cycle }=50 \%, \mathrm{~T}_{\mathrm{A}}=\mathbf{2 5} 5^{\circ} \mathrm{C}
\end{aligned}
\] & & 6.3 & & mA \\
\hline
\end{tabular}
this is the minimum time necessary for the input signal to dwell before the triggering transition begins and applies when pin (6) is shorted to pin (7) and pin (2) is shorted to pin (10). Set-up time begins only after the occurrence of the \(10 \%\) point of the output fall time.
\(\ddagger\) Pin (6) shorted to pin (7) and pin (2) shorted to pin (10) unless otherwise noted.

\section*{CAUTION:}

Pin numbers of the SN5380 have been renumbered in accordance with TO-89. The electrical functions are in the same physical location. See pin identification, page 2004, for former pin numbers.
switching times, \(\mathbf{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{cc}}=\mathbf{3 . 5} \mathrm{V}\), fan-out \(\mathrm{N}-=\mathbf{1}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline PARAMETER & TEST FIGURE & TEST CONDITIONS \(\ddagger\) & MIN & TYP & MAX & UNIT \\
\hline \begin{tabular}{ll}
\(t_{d 1}\) & \begin{tabular}{l} 
Delay Time after Positive-going \\
Transition at \(T\) (pin (5) )
\end{tabular} \\
&
\end{tabular} & & & & 90 & 130 & ns \\
\hline \(t_{d 2}\) Delay Time after Negative-going Transition at \(T \star\) (pin (4)) & 28 & Input: \(\mathrm{V}_{\text {in }}=2.5 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}, \mathrm{t}_{\mathrm{p}}=400 \mathrm{~ns}\), \(\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}\) & & 90 & 130 & ns \\
\hline \(\dagger_{r} \quad\) Rise Time & & & & 35 & 60 & ns \\
\hline \(\mathrm{t}_{\mathrm{f}} \quad\) Fall Time & & & & 35 & 60 & ns \\
\hline \(t_{\text {p }} \quad\) Output Pulse Width & 28 & Input: \(\mathrm{V}_{\mathrm{in}}=2.5 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}, \quad \mathrm{t}_{\mathrm{p}}=400 \mathrm{~ns}\), \(\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}\) & 100 & 250 & 400 & ns \\
\hline
\end{tabular}
\(\ddagger\) Pin (6) shoried to pin (7) and pin (2) shorted to pin (10) unless otherwise noted.

\section*{schematic}


NOTES: a. Component values shown are nominal.
b. Output pulse width \(i_{p}\) is proportional to \(\mathbb{R}_{(t \mathrm{p})} \mathcal{C}_{(t \mathrm{p})}\). Output pulse width may be modified using pins (1), (2), (8) and (10) to change effective values of of \(R_{(t p)}\) and \(C_{(t p)}\). Nominal value of internal \(R_{(t p)}\) is \(8 \mathrm{k} \Omega\) and \(C_{(t p)}\) is 25 pF . Value of modified \(R_{(t p)}\) should be maintained between \(6 \mathrm{k} \Omega\) and \(15 \mathrm{k} \Omega\).

\section*{CAUTION:}

When the effective value of \(C_{(t p)} \geq 0.1 \mu F\), a \(560-\Omega\) resistor must be connected in series with the external portion of \(C_{(t p)}\) (between pins (1) and (2)).
c. Delay time \(\left(t_{d}\right)\) may be modified using pins (3), (6), (7), and (8) to change effective values of \(R_{(t d)}\) and \(C_{(t d)}\). Nominal value of internal \(R_{(t d)}\) is \(2 \mathrm{k} \Omega\). Value of modified \(\mathrm{R}_{(\mathrm{td})}\) should be maintained between \(2 \mathrm{k} \Omega\) and \(10 \mathrm{k} \Omega\).
d. \(T\) triggers on a positive transition to logical 1 level, and \(T \star\) triggers on a negative transition to logical 0 level. When triggering with \(\mathbf{T}\) input, hold \(\mathbf{T}\) 解 logical 1. When triggering with \(\mathrm{T} \star\) input, hold T at logical 0.

\section*{CAUTION:}

Pin numbers of the SN5380 have been renumbered in accordance with TO-89. The electrical functions are in the same physical location. See pin identification, page 2004, for former pin numbers.

\section*{PARAMETER MEASUREMENT INFORMATION}

\section*{d-c test circuits \(\dagger\)}
(

\section*{PARAMETER MEASUREMENT INFORMATION}
d-c test circuits \(\dagger\) (continued)


\section*{PARAMETER MEASUREMENT INFORMATION}
d-c test circuits \(\dagger\) (continued)


\footnotetext{
\(\dagger\) Arrows indicate actual direction of current flow
}

PARAMETER MEASUREMENT INFORMATION

\section*{d-c test circuits \(\dagger\) (continued)}


\section*{CAUTION:}

Pin numbers of the SN5380 have been renumbered in accordance with TO-89. The electrical functions are in the same physical location. See pin identification, page 2004, for former pin numbers.
switching characteristics


\section*{PARAMETER MEASUREMENT INFORMATION}
switching characteristics (continued)

figure 23. time to set a logical level voltage waveforms


\section*{PARAMETER MEASUREMENT INFORMATION}
switching characteristics (continued)


FIGURE 25. NAND/NOR GATE SWITCHING TEST CIRCUIT AND VOLTAGE WAVEFORMS


NOTES: 1. The generator has the following characteristics: \(t_{r}=t_{f}=20 \mathrm{~ns}, t_{p}=500 \mathrm{~ns}, \mathrm{PRR}=1 \mathrm{MHz}, \mathrm{Z}_{\text {out }} \simeq 50 \Omega\).
2. Propagation delay: \(t_{\mathrm{pd}}=\frac{t_{1}+t_{2}}{4}\)

FIGURE 26. GATE PROPAGATION DELAY TEST CIRCUIT AND VOLTAGE WAVEFORMS
switching characteristics (continued)

figure 27. and/or gate switching test circuit and voltage waveforms


FIGURE 28. ONE-SHOT VOLTAGE WAVEFORMS

\section*{MECHANICAL DATA}

Series 53 semiconductor networks are mounted in glass-to-metal hermetically sealed, welded packages. Package body and leads are gold-plated F-15\$ glass-sealing alloy. Approximate weight is
0.1 gram. All external surfaces are metallic and are insulated from leads and circuit. All Series 53 networks are available with formed leads, insulator attached, and/or mounted in a Mech-Pak carrier.

leads
Gold-plated F-15 \(\ddagger\) leads require no additional cleaning or processing when used in soldered or welded assembly. Formed leads are available to facilitate planar mounting of networks on flat circuit boards. Standard lead length is 0.175 inch. Networks can be removed from Mech-Pak carriers with lead lengths up to 0.175 inch.

\section*{insulator}

An insulator, secured to the back surface of the package, permits mounting networks on circuit boards which have conductors passing beneath the package. The insulator is 0.0025 inch thick and has an insulation resistance of greater than 10 megohms at \(25^{\circ} \mathrm{C}\).

\section*{mech-pak carrier}

The Mech-Pak carrier facilitates handling the network, and is compatible with automatic equipment used for testing and assembly. The carrier is particularly appropriate for mechanized assembly operations and will withstand temperatures of \(125^{\circ} \mathrm{C}\) for indefinite periods.

\section*{ordering instructions}

Variations in mechanical configuration of semiconductor networks are identified by suffix numbers shown in a table at the right.

\section*{\(\dagger\) Patented by Texas Instruments}

\section*{DIODE-TRANSISTOR LOGIC (DTL) NETWORKS FOR DIGITAL SYSTEMS}

\section*{application}
The series 15930 networks are designed for use in medium to high-speed digital applications, including data handling, computer and control systems. Definitive specifications are provided for operating characteristics over the full military temperature range of \(-55^{\circ} \mathrm{C}\) to \(125^{\circ} \mathrm{C}\).

\section*{features}

\section*{LOW SYSTEM COST}
- multifunction gates offering low cost per logic function
- electrically designed specifically for monolithic integrated-circuit technology

\section*{PERFORMANCE}
- high speed
- high d-c noise margins
- low power dissipation
- good fan-out capability

\section*{EASE OF DESIGN}
- familiar logic configuration (DTL)
- single-ended output - dot-OR logic
- complete family for design flexibility
- single power supply


TYPE SN15 950 PULSE-TRIGGERED BINARY BAR

\section*{description}

Series 15930 is a complete family of diodetransistor logic (DTL) which is most attractive when high performance and low cost per function are necessities to system design.

The basic family consists of NAND gates, an expander, a buffer, a power gate, master-slave flip-flops, a pulse-triggeted binary and a monostable multivibrator. Dual, triple, and quadruple multi-function gates are available to minimize system package count.

This line features a unique combination of high speed, high d-c noise margin, and low power dissipation. The single-ended output lends itself readily to performing dot-OR logic thus reducing the number of different type functional blocks in a system.


\footnotetext{
\(\dagger\) Patented by Texas Instruments
}


Texas Instruments
INCORPORATED
SEMICONDUCTOR-COMPONENTS DIVISION POST OFFICE BOX 5012 • DALLAS 22. TEXAS
typical operating characteristics, \(\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}\) to \(125^{\circ} \mathrm{C}\), supply voltage \(\mathrm{V}_{\mathrm{Cc}}=4.5 \mathrm{~V}\) to 5.5 V
Speed: Gate Propagation Delay . . . . . . . . . . . . . . . . . . . 25 ns
Monostable Multivibrator Propagation Delay . . . . . . . . . . . . 20 ns
Flip-Flop Clock Rate (SN15 931, SN15 945, SN15 948) . . . . . . . . . . 7 MHz
Pulse-Triggered Binary Clock Rate . . . . . . . . . . . . . . . 20 MHz
Fan-Out Capability: Standard Gates (SN15 930, SN15 946, SN15 962) . . . . . . . 8
Buffer (SN15 932) . . . . . . . . . . . . . . . . . 25
Power Gate (SN15 944) . . . . . . . . . . . . . . . 27
Monostable Multivibrator (SN15 951) . . . . . . . . . . . 10
Flip-Flops: SN15 931 . . . . . . . . . . . . . . . . 7
SN15 945 . . . . . . . . . . . . . . . . 10
SNI5 948 . . . . . . . . . . . . . . . . 9
Pulse-Triggered Binary . . . . . . . . . . . . . . . 8
D-C Margin: At logical 1 . . . . . . . . . . . . . . . . . . . . 500 mV

Average Power Dissipation: Per Gate . . . . . . . . . . . . . . . . . 5 mW
Per Flip-Flop . . . . . . . . . . . . . . . 20 mW

\section*{design characteristics}

Series 15930 is a complete line of high-speed, high noise-margin, low-power-dissipation, saturated DTL logic. The circuitry is a modification of the conventional DTL in that it utilizes only one power supply and provides a nonsaturating offset transistor in place of one of the offset diodes.


Replacing the offset diode \(D_{1}\) with transistor \(Q_{1}\) offers both the manufacturer and the customer a number of advantages:
1. Elimination of the \(V_{B B}\) power supply makes one more pin available for multifunction capability, which in turn reduces system package count.
2. Reduction of size of resistor \(R_{3}\) from \(20 \mathrm{k} \Omega\) to \(5 \mathrm{k} \Omega\) invites a substantial reduction in the overall size of the monolithic chip and improves yields. Both of these factors contribute heavily to reducing manufacturing costs.
3. Reduction of turn-off current transients on signal lines is accomplished because the stored charge on the output transistor \(Q_{2}\) is removed locally by \(R_{3}\) rather than through diodes \(D_{1}\) and \(D_{2}\) onto the input signal lines. These transients are also reduced during switching by the offset transistor \(Q_{1}\) which operates in the unsaturated mode. This technique eliminates the necessity of producing low-speed, high-stored-charge diodes in the same monolithic bar with fast input diodes.
4. The offset transistor \(Q_{1}\) provides additional drive current to the output transistor \(Q_{2}\) without requiring high input currents when the input is in the low state. High input currents would limit fan-out of the driving gates. The additional drive to the output transistor invites the use of a smaller base resistor \(R_{3}\) and relaxes the \(h_{F E}\) requirement of the output transistor thus producing higher manufacturing yields.

In order to drive high-fan-out or high-capacity loads, a buffer is available which has a modified double-ended output. This output has a high-sink-current capability when in the ON state and a low-impedance emitterfollower output in the OFF state.

The master-slave flip-flops have AND gate inputs to the master section which are controlled by the clock pulse. The clock pulse also regulates the state of the coupling transistors which connect the master and slave sections. The sequence of operation is as follows (see figure C ):
1. Isolate slave from master
2. Enter information from AND gate inputs to master
3. Disable AND gate inputs
4. Transfer information from master to slave.


The pulse-triggered binary has two 70-pF capacitors in the clock line which provide an input-differentiating network for high-speed clocking applications.

\section*{standard line summary}

Input and output pin numbers are shown for reference. For all networks shown \(\mathrm{V}_{\mathrm{CC}}\) is pin (14) (unless otherwise noted) and GND is pin (7). See referenced page for complete pin configuration.


\title{
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
}

Supply Voltage \(V_{c c}\) (See Note 1)
Continuous Output Sink Current (SN15930, SNi 5 931, SN15945, SN15946, SNi5948, SN15962) . . . . 30 mA
Continuous Output Sink Current (SN15950, SN15 951) . . . . . . . . . . . . . . . . . . . 50 mA
Continuous Output Sink Current (SN15932, SN15944) . . . . . . . . . . . . . . . . . . 150 mA
Current Out of Input Terminal . . . . . . . . . . . . . . . . . . . . . . . . . . -10 mA
Current Into Input Terminal (except SN15950 and SN15951 pin 10) . . . . . . . . . . . . . 1 mA
Current Into Input Terminal (SN15 950 and SN15 951 pin (10) . . . . . . . . . . . . . . . . 5 mA
Operating Free-Air Temperature Range (See Note 2) . . . . . . . . . . . . . . . \(-55^{\circ} \mathrm{C}\) to \(125^{\circ} \mathrm{C}\)
Storage Temperature Range . . . . . . . . . . . . . . . . . . . . . . . \(-65^{\circ} \mathrm{C}\) to \(150^{\circ} \mathrm{C}\)
NOTES: 1 . Voltage values are with respect to network ground terminal.
2. This rating applies for networks operating at \(\mathbf{V}_{\mathrm{CC}}=5.5 \mathrm{~V}\), all inputs \(\dagger\) at 5.5 V , and the following output sink current:

logic definition
Series 15930 logic is defined in terms of standard POSITIVE LOGIC using the following definitions:
\[
\begin{aligned}
& \text { LOW VOLTAGE }=\text { LOGICAL } 0 \\
& \text { HIGH VOLTAGE }=\text { LOGICAL } 1
\end{aligned}
\]

\section*{input current requirements}

Weighted values of input current requirements reflect worst-case conditions for \(\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}\) to \(125^{\circ} \mathrm{C}\) and \(\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}\) to 5.5 V . Each gate input requires that no more than -1.6 mA flow out of the input at a logical 0 input voltage level; therefore, one input load is -1.6 mA maximum. Currents into the input terminals are specified as positive values. Arrows on the d-c test circuits indicate the actual direction of current flow.
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{WEIGHTED VALUES OF INPUT CURRENT REQUIREMENTS} \\
\hline NETWORK & TYPE & INPUT & NUMBER OF LOADS \\
\hline GATES AND EXPANDER & \begin{tabular}{l}
SN15 930 \\
SN15 932 \\
SN15 933 \\
SN15 944 \\
SN15 946 \\
SN15 962
\end{tabular} & Each Input & 1 \\
\hline \multirow{4}{*}{FLIP-FLOPS} & \multirow[t]{2}{*}{SN15 931} & Each Input (Synchronous or Asynchronous) & 2/3 \\
\hline & & Clock & 2 \\
\hline & \multirow[b]{2}{*}{SN15 945 and SN15 948} & Synchronous Inputs & 2/3 \\
\hline & & Asynchronous and Clock Inputs & 2 \\
\hline PULSE-TRIGGERED BINARY & SN15 950 & Synchronous or Asynchronous & \(11 / 2\) \\
\hline MONOSTABLE MULTIVIBRATOR & SN15 951 & Each Input & 2 \\
\hline
\end{tabular}

\section*{output drive capability}

Weighted values of fan-out reflect the ability of an output to sink current (into the output terminal) under recommended operating conditions and are specified as positive values. Load currents (out of the output terminal) are specified as negative values. Arrows on the d-c test circuits indicate the actual direction of current flow.
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{WEIGHTED VALUES OF FAN-OUT} \\
\hline NETWORK & TYPE & OUTPUT & LOADS \\
\hline GATES & \[
\begin{aligned}
& \text { SN15 } 930 \\
& \text { SNI5 } 946 \\
& \text { SN15 } 962
\end{aligned}
\] & Each Output & 8 \\
\hline BUFFER & SN15 932 & Each Output & 25 \\
\hline POWER GATE & SN15 944 & Each Output & 27 \\
\hline \multirow{3}{*}{FLIP-FLOPS} & SN15 931 & \(\mathbf{Q}\) or \(\mathbf{Q}\) & 7 \\
\hline & SN15945 & \(Q\) or \(\bar{Q}\) & 10 \\
\hline & SN15 948 & \(Q\) or \(\bar{Q}\) & 9 \\
\hline PULSE-TRIGGERED BINARY & SN15950 & \(Q\) or \(\overline{\mathbf{Q}}\) & 8 \\
\hline MONOSTABLE MULTIVIBRATOR & SN15951 & Each Output & 10 \\
\hline
\end{tabular}
schematic (each gate)


\section*{recommended operating conditions}

Supply Voltage \(\mathrm{V}_{\mathrm{CC}}\). . . . . . . . . . . . . . . . . . . . . . . . . . . 4.5 V to 5.5 V
Maximum Fan-Out From Each Output

\section*{electrical characteristics}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & PARAMETER & TEST FIGURE & TEST CONDITIONS \(\dagger\) & MIN & MAX & UNIT \\
\hline \multirow{3}{*}{\(V_{\text {out }}\) (0)} & \multirow{3}{*}{Logical 0 output voltage (on level)} & \multirow{3}{*}{1} & \[
\begin{array}{ll}
\mathrm{V}_{\mathrm{Cc}}=4.5 \mathrm{~V}, & \mathrm{~V}_{\mathrm{in}}=1.9 \mathrm{~V}, \\
\mathrm{I}_{\text {sink }}=12 \mathrm{~mA}, & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\end{array}
\] & & 0.4 & V \\
\hline & & & \[
\begin{array}{ll}
\mathrm{V}_{\mathrm{cc}}=4.5 \mathrm{~V}, & \mathrm{~V}_{\text {in }}=2.1 \mathrm{~V}, \\
\mathrm{I}_{\text {sink }}=11.4 \mathrm{~mA}, & \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}
\end{array}
\] & & 0.4 & V \\
\hline & & & \[
\begin{array}{ll}
\mathrm{V}_{\mathrm{cc}}=4.5 \mathrm{~V}, & \mathrm{~V}_{\text {in }}=1.7 \mathrm{~V} \\
\mathrm{I}_{\text {sink }}=10.8 \mathrm{~mA}, & \mathrm{~T}_{\mathrm{A}}=125^{\circ} \mathrm{C}
\end{array}
\] & & 0.45 & V \\
\hline \multirow{3}{*}{\(V_{\text {out (1) }}\)} & \multirow{3}{*}{Logical l output voltage (off level)} & \multirow{3}{*}{2} & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{cc}}=4.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{in}}=1.1 \mathrm{~V} \\
& \mathrm{I}_{\text {load }}=-0.12 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\end{aligned}
\] & 2.6 & & V \\
\hline & & & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{cc}}=4.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{in}}=1.4 \mathrm{~V}, \\
& \mathrm{I}_{\text {load }}=-0.12 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}
\end{aligned}
\] & 2.5 & & V \\
\hline & & & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{cc}}=4.5 \mathrm{~V}, \quad \mathrm{~V}_{\text {in }}=0.8 \mathrm{~V} \\
& \mathrm{I}_{\text {load }}=-0.12 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=125^{\circ} \mathrm{C}
\end{aligned}
\] & 2.5 & & V \\
\hline
\end{tabular}

\footnotetext{
\(\dagger\) Expander nodes are open unless otherwise noted.
}

\section*{electrical characteristics (continued)}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & PARAMETER & \[
\begin{gathered}
\text { TEST } \\
\text { FIGURE }
\end{gathered}
\] & TEST CONDITIONS \(\dagger\) & MIN & MAX & UNIT \\
\hline \[
v_{\text {out (1) }}
\] & Logical 1 output voltage (off level) with low voltage at expander input node, \(V_{\text {in } X}\) & 3 & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{cc}}=4.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{in} \mathrm{x}}=1.8 \mathrm{~V}, \\
& \mathrm{I}_{\text {load }}=-0.12 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\end{aligned}
\] & 2.6 & & v \\
\hline \multirow[b]{2}{*}{\(\mathrm{I}_{\text {in(1) }}\)} & \multirow[t]{2}{*}{Logical 1 level input current} & \multirow[b]{2}{*}{4} & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\text {in }}=4 \mathrm{~V}, \\
& \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \text { and }-55^{\circ} \mathrm{C}
\end{aligned}
\] & & 2 & \(\mu \mathrm{A}\) \\
\hline & & & \[
\begin{array}{ll}
\mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}, & \mathrm{~V}_{\mathrm{in}}=4 \mathrm{~V}, \\
\mathrm{~T}_{\mathrm{A}}=125^{\circ} \mathrm{C} &
\end{array}
\] & & 5 & \(\mu \mathrm{A}\) \\
\hline \multirow[b]{2}{*}{\(\mathrm{I}_{\text {in(0) }}\)} & \multirow[b]{2}{*}{Logical 0 level input current} & \multirow[t]{2}{*}{5} & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\text {in }}=0, \mathrm{~V}_{\mathrm{R}}=4 \mathrm{~V}, \\
& \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \text { and }-55^{\circ} \mathrm{C}
\end{aligned}
\] & & -1.6 & mA \\
\hline & & & \[
\begin{array}{ll}
\mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}, & \mathrm{~V}_{\mathrm{in}}=0, \mathrm{~V}_{\mathrm{R}}=4 \mathrm{~V}, \\
\mathrm{~T}_{\mathrm{A}}=125^{\circ} \mathrm{C}
\end{array}
\] & & - 1.5 & mA \\
\hline \(\mathrm{I}_{\text {out(1) }}\) & Output reverse current (off level) & 6 & \(\mathrm{V}_{\mathrm{cc}}=\mathrm{V}_{\text {out }}=4.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) & & 50 & \(\mu \mathrm{A}\) \\
\hline \multirow{3}{*}{Ios} & \multirow{3}{*}{Short-circuit output current} & \multirow{3}{*}{7} & \[
\begin{array}{ll}
\mathrm{V}_{\text {cc }}=5.5 \mathrm{~V}, & \mathrm{~V}_{\text {out }}=0, \\
\mathrm{r}_{\mathrm{A}}=25^{\circ} \mathrm{C} & \\
\hline
\end{array}
\] & -0.6 & -1.34 & mA \\
\hline & & & \[
\begin{array}{ll}
\mathrm{V}_{\mathrm{cC}}=5.5 \mathrm{~V}, & \mathrm{~V}_{\text {out }}=0, \\
\mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} & \\
\hline
\end{array}
\] & & -1.34 & mA \\
\hline & & & \[
\begin{array}{ll}
\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, & \mathrm{~V}_{\text {out }}=0, \\
\mathrm{~T}_{\mathrm{A}}=125^{\circ} \mathrm{C} & \\
\hline
\end{array}
\] & & -1.3 & mA \\
\hline \(\mathrm{I}_{\mathrm{CC}(0)}\) & Logical 0 level supply current (both gates) & 8 & \(\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) & & 6.5 & mA \\
\hline \(\mathrm{I}_{\mathrm{CC}(1)}\) & Logical I level supply current at maximum \(\mathrm{V}_{\mathrm{cc}}\) (both gates) & 9 & \(\mathrm{V}_{\mathrm{cc}}=8 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) & & 5.5 & mA \\
\hline
\end{tabular}
switching characteristics, \(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & PARAMETER & TEST FIGURE & TEST CONDITIONS † & MIN & MAX & UNIT \\
\hline \(t_{\text {pd(0) }}\) & Propogation delay time to logical 0 level & \multirow[b]{2}{*}{51} & \(\mathrm{R}_{1}=400 \Omega, \quad \mathrm{C}_{\mathrm{L}}:=50 \mathrm{pF}\) & 10 & 30 & ns \\
\hline \(t_{\text {pd(1) }}\) & Propogation delay time to logical 1 level & & \(\mathrm{R}_{1}=3.9 \mathrm{k} \Omega, \quad \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}\) & 25 & 80 & ns \\
\hline
\end{tabular}
\(\dagger\) Expander nodes are open unless otherwise noted.

\section*{logic}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{5}{|r|}{R-S MODE} & \multicolumn{3}{|r|}{J-K MODE} \\
\hline \multicolumn{4}{|c|}{\(\mathrm{t}_{\mathrm{n}}\)} & \(t_{n+1}\) & \multicolumn{2}{|c|}{\(t_{n}\)} & \(t_{n+1}\) \\
\hline \(\mathrm{S}_{1}\) & \(\mathrm{S}_{2}\) & \(\mathrm{C}_{1}\) & \(\mathrm{C}_{2}\) & Q & \(\mathrm{S}_{1}\) & \(\mathrm{C}_{1}\) & Q \\
\hline 0 & X & 0 & X & Qn & 0 & 0 & Qn \\
\hline 0 & X & X & 0 & Qn & 0 & 1 & 0 \\
\hline X & 0 & 0 & X & Qn & 1 & 0 & 1 \\
\hline X & 0 & X & 0 & Qn & 1 & 1 & \(\overline{\text { Q }}\) \\
\hline 0 & X & 1 & 1 & 0 & & & \\
\hline X & 0 & , & 1 & 0 & & & \\
\hline 1 & 1 & 0 & X & 1 & & & \\
\hline 1 & 1 & X & 0 & 1 & & & \\
\hline 1 & 1 & 1 & 1 & Indeterminate & & & \\
\hline
\end{tabular}

NOTES: 1. \(\mathrm{t}_{\mathrm{n}}=\) bit time before clock pulse.
2. \(\mathrm{t}_{\mathrm{n}+\mathrm{i}}=\) bit time after clock pulse.
3. \(X\) indicates that either a logical 1 or a logical 0 may be present.
4. Logical 1 is more positive than logical 0 .
5. For operation in the \(J-K\) mode connect \(S_{2}\) to \(\bar{Q}\) and \(c_{2}\) to \(\bar{Q}\).
recommended operating conditions


electrical characteristics
\begin{tabular}{|c|c|c|c|c|c|}
\hline & PARAMETER & TEST FIGURE & TEST CONDITIONS & MIN MAX & UNIT \\
\hline \multirow{3}{*}{\(V_{\text {out }}(0)\)} & \multirow{3}{*}{Logical 0 output voltage (on level) at \(Q\) or \(\bar{Q}\)} & \multirow{3}{*}{10} & \[
\begin{array}{ll}
\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, & \mathrm{~V}_{\mathrm{CP}(\mathrm{~S})}=0.95 \mathrm{~V} \\
\mathrm{I}_{\text {sink }}=10.6 \mathrm{~mA}, & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\end{array}
\] & 0.4 & V \\
\hline & & & \[
\begin{array}{ll}
\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, & \mathrm{~V}_{\mathrm{CP}(\mathrm{~S})}=1.1 \mathrm{~V} \\
\mathrm{I}_{\text {sink }}=10 \mathrm{~mA}, & \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \\
\hline
\end{array}
\] & 0.4 & V \\
\hline & & & \[
\begin{array}{ll}
\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, & \mathrm{~V}_{\mathrm{CP}(\mathrm{~S})}=0.75 \mathrm{~V}, \\
\mathrm{I}_{\text {sink }}=9.5 \mathrm{~mA}, & \mathrm{~T}_{\mathrm{A}}=125^{\circ} \mathrm{C}
\end{array}
\] & 0.45 & V \\
\hline \multirow{3}{*}{\(V_{\text {outl }}\)} & \multirow{3}{*}{Logical 1 output voltage (off level) at \(Q\) or \(\bar{Q}\)} & \multirow{3}{*}{11} & \[
\begin{array}{ll}
\mathrm{V}_{\mathrm{cc}}=4.5 \mathrm{~V}, & \mathrm{~V}_{1}=1.9 \mathrm{~V}, \mathrm{~V}_{2}=1.1 \mathrm{~V}, \\
\mathrm{I}_{\text {load }}=-0.12 \mathrm{~mA}, & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\end{array}
\] & 2.6 & V \\
\hline & & & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{cc}}=4.5 \mathrm{~V}, \\
& \mathrm{I}_{\text {load }}=-0.12 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}
\end{aligned}
\] & 2.5 & V \\
\hline & & & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{cc}}=4.5 \mathrm{~V}, \quad \mathrm{~V}_{1}=1.7 \mathrm{~V}, \mathrm{~V}_{2}=0.8 \mathrm{~V}, \\
& \mathrm{I}_{\text {load }}=-0.12 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=125^{\circ} \mathrm{C}
\end{aligned}
\] & 2.5 & V \\
\hline \multirow{3}{*}{\(V_{\text {out }}(1)\)} & \multirow{3}{*}{Logical 1 output voltage (off level) at \(\mathbf{Q}\) or \(\overline{\mathbf{Q}}\)} & \multirow{3}{*}{12} & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{cc}}=4.5 \mathrm{~V}, \quad \mathrm{~V}_{1}=1.9 \mathrm{~V}, \mathrm{~V}_{2}=1.1 \mathrm{~V} \\
& \mathrm{I}_{\text {load }}=-0.12 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\end{aligned}
\] & 2.6 & V \\
\hline & & & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{cc}}=4.5 \mathrm{~V}, \quad \mathrm{~V}_{1}=2.1 \mathrm{~V}, \mathrm{~V}_{2}=1.4 \mathrm{~V} \\
& \mathrm{I}_{\text {load }}=-0.12 \mathrm{~mA},
\end{aligned}
\] & 2.5 & V \\
\hline & & & \[
\begin{array}{ll}
V_{\mathrm{cc}}=4.5 \mathrm{~V}, & \mathrm{~V}_{1}=1.7 \mathrm{~V}, \\
\mathrm{I}_{\text {load }}=-0.12 \mathrm{~mA}, & \mathrm{~T}_{\mathrm{A}}=125^{\circ} \mathrm{C}
\end{array}
\] & 2.5 & V \\
\hline \multirow{3}{*}{\(I_{C P(0)}\)} & \multirow{3}{*}{Logical 0 level clock-input forward current} & \multirow{3}{*}{13} & \(\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\text {in }}=1.1 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) & -3.4 & mA \\
\hline & & & \(\mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\text {in }}=1.4 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}\) & -3.4 & mA \\
\hline & & & \(\mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\text {in }}=0.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=125^{\circ} \mathrm{C}\) & -3 & mA \\
\hline \multirow[t]{2}{*}{\(\mathrm{I}_{\mathbf{C P}(1)}\)} & \multirow[t]{2}{*}{Logical 1 level clock-input reverse current} & \multirow[t]{2}{*}{14} & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{C P}=4 \mathrm{~V}, \\
& \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \text { and }-55^{\circ} \mathrm{C}
\end{aligned}
\] & 20 & \(\mu \mathrm{A}\) \\
\hline & & & \(\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{CP}}=4 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=125^{\circ} \mathrm{C}\) & 30 & \(\mu \mathrm{A}\) \\
\hline
\end{tabular}

\section*{electrical characteristics (continued)}
\begin{tabular}{|l|c|l|l|l|}
\hline PARAMETER & \multicolumn{1}{c|}{\begin{tabular}{c} 
TEST \\
FIGURE
\end{tabular}} & \multicolumn{1}{c|}{ TEST CONDITIONS } & MIN & MAX
\end{tabular} UNIT
switching characteristics, \(V_{c C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & PARAMETER & \begin{tabular}{l}
TEST \\
FIGURE
\end{tabular} & TEST CONDITIONS & MIN & MAX & UNIT \\
\hline \({ }^{t} \mathrm{pd}(0)\) & Propagation delay time to logical 0 level & \multirow{2}{*}{52} & \(\mathrm{R}_{1}=400 \Omega, \quad C_{l}=50 \mathrm{pF}\) & 35 & 75 & ns \\
\hline \(t_{p d(1)}\) & Propagation delay time to logical 1 level & & \(\mathrm{R}_{1}=3.9 \mathrm{k} \Omega, \quad \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}\) & 35 & 75 & ns \\
\hline
\end{tabular}

\section*{schematic}



\section*{recommended operating conditions}

Supply Voltage \(V_{C C}\)
Maximum Fan-Out From Each Output .

\section*{electrical characteristics}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & PARAMETER & TEST FIGURE & TEST CONDITIONS \({ }^{\dagger}\) & MIN & MAX & UNIT \\
\hline \multirow{3}{*}{\(V_{\text {out }}\) (0)} & \multirow{3}{*}{Logical 0 output voltage (on level)} & \multirow{3}{*}{1} & \[
\begin{array}{ll}
\mathrm{V}_{\mathrm{cc}}=4.5 \mathrm{~V}, & \mathrm{~V}_{\text {in }}=1.9 \mathrm{~V}, \\
\mathrm{I}_{\text {sink }}=36 \mathrm{~mA}, & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\
\hline
\end{array}
\] & & 0.4 & V \\
\hline & & & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{in}}=2.1 \mathrm{~V} \\
& \mathrm{I}_{\text {sink }}=34 \mathrm{~mA}, \quad \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}
\end{aligned}
\] & & 0.4 & V \\
\hline & & & \[
\begin{array}{ll}
\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, & \mathrm{~V}_{\text {in }}=1.7 \mathrm{~V} \\
\mathrm{I}_{\text {sink }}=32 \mathrm{~mA}, & \mathrm{~T}_{\mathrm{A}}=125^{\circ} \mathrm{C}
\end{array}
\] & & 0.45 & V \\
\hline \multirow{3}{*}{\(V_{\text {out(1) }}\)} & \multirow{3}{*}{Logical 1 output voltage (off level)} & \multirow{3}{*}{2} & \[
\begin{array}{ll}
\mathrm{V}_{\mathrm{cc}}=4.5 \mathrm{~V}, & \mathrm{~V}_{\text {in }}=1.1 \mathrm{~V} \\
\mathrm{I}_{\text {load }}=-2.5 \mathrm{~mA}, & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\end{array}
\] & 2.6 & & V \\
\hline & & & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{in}}=1.4 \mathrm{~V} \\
& \mathrm{I}_{\text {load }}=-2 \mathrm{~mA}, \quad \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}
\end{aligned}
\] & 2.5 & & \(V\) \\
\hline & & & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{cc}}=4.5 \mathrm{~V}, \quad \mathrm{~V}_{\text {in }}=0.8 \mathrm{~V}, \\
& \mathrm{I}_{\text {load }}=-4 \mathrm{~mA}, \quad \mathrm{~T}_{\mathrm{A}}=125^{\circ} \mathrm{C}
\end{aligned}
\] & 2.5 & & V \\
\hline
\end{tabular}

\footnotetext{
\(\dagger\) Expander nodes are open unless otherwise noted.
}
electrical characteristics (continued)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & PARAMETER & TEST & TEST CONDITIONS \({ }^{\dagger}\) & MIN & MAX & UNIT \\
\hline \[
V_{\text {out }(1)}
\] & Logical 1 output voltage (off level) with low voltage input at expander node, \(\mathrm{V}_{\mathrm{in} X}\) & 3 & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{cc}}=4.5 \mathrm{~V}, \quad \mathrm{~V}_{\text {inx }}=1.8 \mathrm{~V} \\
& \mathrm{I}_{\text {load }}=-2.5 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\end{aligned}
\] & 2.6 & & V \\
\hline \multirow[b]{2}{*}{\(\mathrm{I}_{\text {in(1) }}\)} & \multirow[b]{2}{*}{Logical 1 level input current} & \multirow[b]{2}{*}{4} & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{cC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\text {in }}=4 \mathrm{~V}, \\
& \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \text { and }-55^{\circ} \mathrm{C}
\end{aligned}
\] & & 2 & \(\mu \mathrm{A}\) \\
\hline & & & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{in}}=4 \mathrm{~V}, \\
& \mathrm{~T}_{\mathrm{A}}=125^{\circ} \mathrm{C}
\end{aligned}
\] & & 5 & \(\mu \mathrm{A}\) \\
\hline \multirow[b]{2}{*}{\(\mathrm{I}_{\text {in(0) }}\)} & \multirow[b]{2}{*}{Logical 0 level input current} & \multirow[b]{2}{*}{5} & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{in}}=0, \mathrm{~V}_{\mathrm{R}}=4 \mathrm{~V}, \\
& \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \text { and }-55^{\circ} \mathrm{C}
\end{aligned}
\] & & -1.6 & mA \\
\hline & & & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{in}}=0, \mathrm{~V}_{\mathrm{R}}=4 \mathrm{~V}, \\
& \mathrm{~T}_{\mathrm{A}}=125^{\circ} \mathrm{C}
\end{aligned}
\] & & -1.5 & mA \\
\hline \(\mathrm{I}_{\text {out(1) }}\) & Output reverse current (off level) & 6 & \(\mathrm{V}_{\mathrm{cc}}=\mathrm{V}_{\text {out }}=4.5 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) & & 50 & \(\mu \mathrm{A}\) \\
\hline \multirow{2}{*}{Ios} & \multirow[t]{2}{*}{Short-circuit output current} & \multirow[t]{2}{*}{7} & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\text {out }}=0, \\
& \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\end{aligned}
\] & -18 & & mA \\
\hline & & & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\text {out }}=0, \\
& \mathrm{~T}_{\mathrm{A}}=125^{\circ} \mathrm{C} \text { and }-55^{\circ} \mathrm{C}
\end{aligned}
\] & -16 & & mA \\
\hline \({ }^{\text {cce(0) }}\) & Logical 0 level supply current (both gates) & 8 & \(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) & & 26.6 & mA \\
\hline \({ }^{\text {cce(1) }}\) & Logical 1 level supply current at maximum \(\mathrm{V}_{\mathrm{CC}}\) (both gates) & 9 & \(\mathrm{V}_{\mathrm{Cc}}=8 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) & & 6 & mA \\
\hline
\end{tabular}
switching characteristics, \(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\)
\begin{tabular}{|c|c|c|c|c|}
\hline PARAMETER & TEST FIGURE & TEST CONDITIONS \({ }^{\dagger}\) & MIN MAX & UNIT \\
\hline \[
\begin{array}{ll}
t_{\mathrm{pd}(0)} & \text { Propagation delay time } \\
\text { to logical } 0 \text { level }
\end{array}
\] & \multirow[t]{2}{*}{51} & \(\mathrm{R}_{1}=150 \Omega, \quad \mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}\) & 1540 & ns \\
\hline  & & \(\mathrm{R}_{1}=510 \Omega, \quad C_{l}=500 \mathrm{pF}\) & 2580 & ns \\
\hline
\end{tabular}

\footnotetext{
\(\dagger\) Expander nodes are open unless otherwise noted.
}
schematic (each expander)


electrical characteristics
\begin{tabular}{|c|c|c|c|c|c|}
\hline PARAMETER & TEST FIGURE & TEST CONDITIONS & MIN & MAX & UNIT \\
\hline \multirow{3}{*}{Input diode forward voltage} & \multirow{3}{*}{21} & \(\mathrm{l}_{\text {out }}=2 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) & 0.7 & 0.82 & V \\
\hline & & \(\mathrm{l}_{\text {out }}=2 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}\) & 0.85 & 0.98 & V \\
\hline & & \(\mathrm{I}_{\text {out }}=2 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=125^{\circ} \mathrm{C}\) & 0.5 & 0.65 & V \\
\hline \multirow{3}{*}{Input diode reverse current} & \multirow{3}{*}{22} & \(\mathrm{V}_{\text {in }}=4 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) & & 2 & \(\mu \mathrm{A}\) \\
\hline & & \(\mathrm{V}_{\text {in }}=4 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}\) & & 2 & \(\mu \mathrm{A}\) \\
\hline & & \(\mathrm{V}_{\text {in }}=4 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=125^{\circ} \mathrm{C}\) & & 5 & \(\mu \mathrm{A}\) \\
\hline \multirow[t]{2}{*}{Anode-to-substrate reverse current} & \multirow{2}{*}{23} & \(\mathrm{V}_{\text {out }}=4 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) and \(-55^{\circ} \mathrm{C}\) & & 10 & \(\mu \mathrm{A}\) \\
\hline & & \(\mathrm{V}_{\text {out }}=4 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=125^{\circ} \mathrm{C}\) & & 25 & \(\mu \mathrm{A}\) \\
\hline
\end{tabular}

NOTE: A total of four expanders may be connected to an expandable gate to provide a fan-in of \(\mathbf{2 0}\).


\section*{recommended operating conditions}

Supply Voltage \(\mathrm{V}_{\mathrm{Cc}}\). . . . . . . . . . . . . . . . . . . . . . . . . . . 4.5 V to 5.5 V
Maximum Fan-Out From Each Output . . . . . . . . . . . . . . . . . . . . . . . . . 27
electrical characteristics
\begin{tabular}{|c|c|c|c|c|c|}
\hline & PARAMETER & \[
\begin{gathered}
\text { TEST } \\
\text { FIGURE }
\end{gathered}
\] & TEST CONDITIONS \(\dagger\) & MIN MAX & UNIT \\
\hline \multirow{3}{*}{\(V_{\text {out(0) }}\)} & \multirow{3}{*}{Logical 0 output voltage (on level)} & \multirow{3}{*}{1} & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{cc}}=4.5 \mathrm{~V}, \mathrm{~V}_{\text {in }}=1.9 \mathrm{~V}, \\
& \mathrm{I}_{\text {sink }}=40 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\end{aligned}
\] & 0.4 & V \\
\hline & & & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{cc}}=4.5 \mathrm{~V}, \mathrm{~V}_{\text {in }}=2.1 \mathrm{~V} \\
& \mathrm{I}_{\text {sink }}=36 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}
\end{aligned}
\] & 0.4 & V \\
\hline & & & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{cc}}=4.5 \mathrm{~V}, \mathrm{~V}_{\text {in }}=1.7 \mathrm{~V} \\
& \mathrm{I}_{\text {sink }}=36 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=125^{\circ} \mathrm{C}
\end{aligned}
\] & 0.45 & V \\
\hline \(V_{\text {out(1) }}\) & Logical 1 output voltage (off level) & 24 & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{I}_{\text {sink }}=5 \mathrm{~mA}, \\
& \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\end{aligned}
\] & 6 & V \\
\hline \multirow[b]{2}{*}{\(\mathrm{l}_{\text {in(1) }}\)} & \multirow[b]{2}{*}{Logical 1 level input current} & \multirow[t]{2}{*}{4} & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {in }}=4 \mathrm{~V}, \\
& \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \text { and }-55^{\circ} \mathrm{C} \\
& \hline
\end{aligned}
\] & 2 & \(\mu \mathrm{A}\) \\
\hline & & & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {in }}=4 \mathrm{~V}, \\
& \mathrm{~T}_{\mathrm{A}}=125^{\circ} \mathrm{C}
\end{aligned}
\] & 5 & \(\mu \mathrm{A}\) \\
\hline
\end{tabular}

\footnotetext{
\(\dagger\) Expander nodes are open unless otherwise noted.
}

\section*{electrical characteristics (continued)}
\begin{tabular}{|c|c|c|c|c|c|}
\hline & PARAMETER & TEST FIGURE & TEST CONDITIONS \(\dagger\) & MIN MAX & UNIT \\
\hline \multirow{2}{*}{\(\mathrm{I}_{\text {in|0] }}\)} & \multirow[t]{2}{*}{Logical 0 level input current} & \multirow[t]{2}{*}{5} & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {in }}=0, \mathrm{~V}_{\mathrm{R}}=4 \mathrm{~V}, \\
& \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \text { and }-55^{\circ} \mathrm{C}
\end{aligned}
\] & -1.6 & mA \\
\hline & & & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {in }}=0, \mathrm{~V}_{\mathrm{R}}=4 \mathrm{~V}, \\
& \mathrm{~T}_{\mathrm{A}}=125^{\circ} \mathrm{C}
\end{aligned}
\] & -1.5 & mA \\
\hline \multirow{3}{*}{\(\mathrm{I}_{\text {out }}\) (1)} & \multirow{3}{*}{Output reverse current (off level, worst-case voltage at any input)} & \multirow{3}{*}{25} & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {in }}=1.1 \mathrm{~V}, \\
& \mathrm{~V}_{\text {out }}=4.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\end{aligned}
\] & 100 & \(\mu \mathrm{A}\) \\
\hline & & & \[
\begin{array}{ll}
\mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\text {in }}=1.4 \mathrm{~V}, \\
\mathrm{~V}_{\text {out }}=4.5 \mathrm{~V}, & \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}
\end{array}
\] & 50 & \(\mu \mathrm{A}\) \\
\hline & & & \[
\begin{array}{ll}
\mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}, & \mathrm{~V}_{\text {in }}=0.8 \mathrm{~V} \\
\mathrm{~V}_{\text {out }}=4.5 \mathrm{~V}, & \mathrm{~T}_{\mathrm{A}}=125^{\circ} \mathrm{C}
\end{array}
\] & 200 & \({ }_{\mu} \mathrm{A}\) \\
\hline \(\mathrm{I}_{\text {out (1) }}\) & Output reverse current (off level, worst-case voltage at expander input) & 26 & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\text {in }}=1.8 \mathrm{~V}, \\
& \mathrm{~V}_{\text {out }}=4.5 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\end{aligned}
\] & 100 & \(\mu \mathrm{A}\) \\
\hline \({ }^{\text {cce }}\) (0) & Logical 0 level supply current (both gates) & 8 & \(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) & 20 & mA \\
\hline \({ }^{\text {ICC(1) }}\) & Logical 1 level supply current at maximum \(\mathrm{V}_{\mathrm{cc}}\) (both gates) & 9 & \(\mathrm{V}_{\mathrm{cc}}=8 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) & 6 & mA \\
\hline
\end{tabular}
switching characteristics, \(V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & PARAMETER & TEST FIGURE & TEST CONDITIONS \(\dagger\) & MIN & MAX & UNIT \\
\hline \({ }^{\text {pd }}\) (0) & Propagation delay time to logical 0 level & \multirow{2}{*}{51} & \(\mathrm{R}_{1}=150 \Omega, \quad C_{L}=100 \mathrm{pF}\) & 10 & 35 & ns \\
\hline \(\mathrm{t}_{\mathrm{pd}(1)}\) & Propagation delay time to logical 1 level & & \(\mathrm{R}_{1}=510 \Omega, \quad C_{L}=20 \mathrm{pF}\) & 15 & 50 & ns \\
\hline
\end{tabular}
\(\dagger\) Expander nodes are open unless otherwise noted.
logic
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{5}{|r|}{R-S MODE} & \multicolumn{3}{|r|}{J-K MODE} \\
\hline \multicolumn{4}{|c|}{\(t_{n}\)} & \(t_{n+1}\) & \multicolumn{2}{|r|}{\(t_{n}\)} & \(t_{n+1}\) \\
\hline \(S_{1}\) & \(\mathrm{S}_{2}\) & \(\mathrm{C}_{1}\) & \(\mathrm{C}_{2}\) & Q & \(\mathrm{S}_{1}\) & \(\mathrm{C}_{1}\) & Q \\
\hline 0 & X & 0 & X & Qn & 0 & 0 & Qn \\
\hline 0 & X & X & 0 & Qn & 0 & 1 & 0 \\
\hline X & 0 & 0 & X & Qn & 1 & 0 & 1 \\
\hline X & 0 & X & 0 & Qn & 1 & 1 & \(\overline{\text { Q }}\) \\
\hline 0 & X & 1 & 1 & 0 & & & \\
\hline X & 0 & 1 & 1 & 0 & & & \\
\hline 1 & 1 & 0 & X & 1 & & & \\
\hline 1 & 1 & X & 0 & 1 & & & \\
\hline 1 & 1 & 1 & 1 & Indeterminate & & & \\
\hline
\end{tabular}

NOTES: \(1 . \mathrm{t}_{\mathrm{n}}=\) bit time before clock pulse.
2. \(\mathrm{t}_{\mathrm{n}+1}=\) bit time after clock pulse.
3. \(X\) indicates that either a logical 1 or a logical 0 may be present.
4. Logical 1 is more positive than logical 0 .
5. For operation in the \(J-K\) mode connect \(S_{2}\) to \(\bar{Q}\) and \(C_{2}\) to \(Q\).

\section*{recommended operating conditions}

electrical characteristics
\begin{tabular}{|c|c|c|c|c|c|}
\hline & PARAMETER & TEST FIGURE & TEST CONDITIONS & MIN MAX & UNIT \\
\hline \multirow{3}{*}{\(V_{\text {out }(0)}\)} & \multirow{3}{*}{Logical 0 output voltage (on level) at \(Q\) or \(\bar{Q}\)} & \multirow{3}{*}{\begin{tabular}{l}
27. \\
and \\
28
\end{tabular}} & \[
\begin{array}{lll}
\mathrm{V}_{\mathrm{cc}}=4.5 \mathrm{~V}, & \mathrm{~V}_{1}=1.1 \mathrm{~V}, & \mathrm{~V}_{2}=1.9 \mathrm{~V}, \\
\mathrm{~V}_{3}=4.5 \mathrm{~V}, & \mathrm{I}_{\text {sink }}=15.2 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\end{array}
\] & 0.4 & V \\
\hline & & & \[
\begin{array}{ll}
\mathrm{V}_{\mathrm{Cc}}=4.5 \mathrm{~V}, & \mathrm{~V}_{1}=1.4 \mathrm{~V}, \quad \mathrm{~V}_{2}=2.1 \mathrm{~V} \\
\mathrm{~V}_{3}=4.5 \mathrm{~V}, & \mathrm{I}_{\text {sink }}=14.6 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}
\end{array}
\] & 0.4 & V \\
\hline & & & \[
\begin{array}{lll}
\mathrm{V}_{\mathrm{Cc}}=4.5 \mathrm{~V}, & \mathrm{~V}_{1}=0.8 \mathrm{~V}, & \mathrm{~V}_{2}=1.7 \mathrm{~V} \\
\mathrm{~V}_{3}=4.5 \mathrm{~V}, & \mathrm{I}_{\text {sink }}=13.8 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=125^{\circ} \mathrm{C}
\end{array}
\] & 0.45 & V \\
\hline \multirow{3}{*}{\(V_{\text {out (1) }}\)} & \multirow{3}{*}{Logical 1 output voltage (off level) at \(Q\) or \(\bar{Q}\)} & \multirow{3}{*}{12} & \[
\begin{array}{ll}
\mathrm{V}_{\mathrm{cc}}=4.5 \mathrm{~V}, & \mathrm{~V}_{1}=4.5 \mathrm{~V}, \\
\mathrm{I}_{\text {load }}=-0.12 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} & \mathrm{~V}_{2}=1.1 \mathrm{~V},
\end{array}
\] & 2.6 & V \\
\hline & & & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{cc}}=4.5 \mathrm{~V}, \quad \mathrm{~V}_{1}=4.5 \mathrm{~V}, \quad \mathrm{~V}_{2}=1.4 \mathrm{~V}, \\
& \mathrm{I}_{\text {load }}=-0.12 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}
\end{aligned}
\] & 2.5 & V \\
\hline & & & \[
\begin{array}{lll}
\mathrm{V}_{\mathrm{cc}}=4.5 \mathrm{~V}, & \mathrm{~V}_{1}=4.5 \mathrm{~V}, & \mathrm{~V}_{2}=0.8 \mathrm{~V}, \\
\mathrm{I}_{\text {load }}=-0.12 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}} & =125^{\circ} \mathrm{C} &
\end{array}
\] & 2.5 & V \\
\hline \multirow{3}{*}{\({ }^{\text {CP }(0)}\)} & \multirow{3}{*}{Logical 0 level clock-input forward current} & \multirow{3}{*}{29} & \[
\begin{array}{lll}
\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, & \mathrm{~V}_{\mathrm{in}}=1.1 \mathrm{~V}, & \mathrm{~V}_{\mathrm{CP}}=0, \\
\mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\end{array}
\] & -3.2 & mA \\
\hline & & & \[
\begin{array}{lll}
\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, & \mathrm{~V}_{\mathrm{in}}=1.4 \mathrm{~V}, & \mathrm{~V}_{\mathrm{CP}}=0, \\
\mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}
\end{array}
\] & -3.2 & mA \\
\hline & & & \[
\begin{array}{lll}
V_{C C}=5.5 \mathrm{~V}, & V_{\text {in }}=0.8 \mathrm{~V}, & V_{C P}=0, \\
T_{A}=125^{\circ} \mathrm{C} &
\end{array}
\] & -2.8 & mA \\
\hline \multirow[t]{2}{*}{\(I_{C P(1)}\)} & \multirow[t]{2}{*}{Logical 1 level clock-input reverse current} & \multirow[t]{2}{*}{30} & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}}=4 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{CP}}=4 \mathrm{~V}, \\
& \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \text { and }-55^{\circ} \mathrm{C}
\end{aligned}
\] & 10 & \(\mu \mathrm{A}\) \\
\hline & & & \(\mathrm{V}_{\mathrm{CC}}=4 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{CP}}=4 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=125^{\circ} \mathrm{C}\) & 20 & \(\mu \mathrm{A}\) \\
\hline
\end{tabular}

\section*{electrical characteristics (continued)}
\begin{tabular}{|c|c|c|c|c|c|}
\hline & PARAMETER & TEST
FIGURE & TEST CONDITIONS & MIN MAX & UNIT \\
\hline \multirow[b]{2}{*}{\(\mathrm{l}_{\text {in(1) }}\)} & \multirow[b]{2}{*}{Logical 1 level synchronous-input current} & \multirow[b]{2}{*}{15} & \[
\begin{aligned}
& V_{C c}=5.5 \mathrm{~V}, V_{\text {in }}=4 \mathrm{~V} \\
& T_{A}=25^{\circ} \mathrm{C} \text { and }-55^{\circ} \mathrm{C}
\end{aligned}
\] & 2 & \(\mu \mathrm{A}\) \\
\hline & & & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{Cc}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{in}}=4 \mathrm{~V}, \\
& \mathrm{~T}_{\mathrm{A}}=125^{\circ} \mathrm{C}
\end{aligned}
\] & 5 & \(\mu \mathrm{A}\) \\
\hline \multirow[t]{2}{*}{\(\mathrm{I}_{\text {in(0) }}\)} & \multirow[t]{2}{*}{Logical 0 level synchronous-input current} & \multirow[t]{2}{*}{31} & \[
\begin{aligned}
& V_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\text {in }}=0, \quad V_{1}=4 \mathrm{~V}, \\
& V_{\mathrm{CP}}=4 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \text { and }-55^{\circ} \mathrm{C}
\end{aligned}
\] & -1.07 & mA \\
\hline & & & \[
\begin{array}{ll}
V_{c \mathrm{cc}}=5.5 \mathrm{~V}, & \mathrm{~V}_{\mathrm{in}}=0, \\
\mathrm{~V}_{\mathrm{CP}}=4 \mathrm{~V}, & \mathrm{~V}_{\mathrm{A}}=4 \mathrm{~V}, \\
=125^{\circ} \mathrm{C}
\end{array}
\] & -1 & mA \\
\hline \multirow[b]{2}{*}{\(\mathrm{I}_{\text {in(1) }}\)} & \multirow[b]{2}{*}{Logical 1 level asynchronous-input current} & \multirow[b]{2}{*}{32} & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{cC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {in }}=4 \mathrm{~V}, \quad \mathrm{~V}_{1}=5.5 \mathrm{~V}, \\
& \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \text { and }-55^{\circ} \mathrm{C}
\end{aligned}
\] & 2 & \(\mu \mathrm{A}\) \\
\hline & & & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {in }}=4 \mathrm{~V}, \quad \mathrm{~V}_{1}=5.5 \mathrm{~V}, \\
& \mathrm{~T}_{\mathrm{A}}=125^{\circ} \mathrm{C}
\end{aligned}
\] & 5 & \(\mu \mathrm{A}\) \\
\hline \multirow[t]{2}{*}{\(\mathrm{I}_{\text {in[0] }}\)} & \multirow[t]{2}{*}{Logical 0 level asynchronous-input current} & \multirow[t]{2}{*}{33} & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {in }}=0, \\
& \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \text { and }-55^{\circ} \mathrm{C}
\end{aligned}
\] & -2.4 & mA \\
\hline & & & \(\mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{in}}=0, \quad \mathrm{~T}_{\mathrm{A}}=125^{\circ} \mathrm{C}\) & -2.1 & mA \\
\hline \multirow[t]{2}{*}{} & \multirow[b]{2}{*}{Short-circuit output current} & \multirow[t]{2}{*}{18} & \[
\begin{array}{ll}
\mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}, & \mathrm{~V}_{\text {in }}=5.5 \mathrm{~V}, \\
\mathrm{~V}_{\text {out }}=0, & T_{A}=25^{\circ} \mathrm{C} \text { and }-55^{\circ} \mathrm{C}
\end{array}
\] & -0.7-1.33 & mA \\
\hline & & & \[
\begin{array}{ll}
\mathrm{V}_{\text {cc }}=5.5 \mathrm{~V}, & \mathrm{~V}_{\text {i }}=5.5 \mathrm{~V}, \\
\mathrm{~V}_{\text {out }}=0, & \mathrm{~T}_{\mathrm{A}}=125^{\circ} \mathrm{C}
\end{array}
\] & -0.625 -1.3 & mA \\
\hline \({ }_{\mathrm{cc}(0)}\) & Logical 0 level supply current & 19 & \(\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) & 14 & mA \\
\hline \(\mathrm{ICCl}_{(1)}\) & Logical 1 level supply current at maximum \(\mathrm{V}_{\mathrm{cc}}\) & 20 & \(\mathrm{V}_{\mathrm{cc}}=8 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) & 16 & mA \\
\hline
\end{tabular}
switching characteristics, \(\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & PARAMETER & \[
\begin{aligned}
& \text { TEST } \\
& \text { FIGURE }
\end{aligned}
\] & \multicolumn{2}{|l|}{TEST CONDITIONS} & MIN & MAX & UNIT \\
\hline \({ }^{\text {pod }}\) (0) & Propagation delay time to logical 0 level & \multirow[b]{2}{*}{52} & \(\mathrm{R}_{1}=330 \mathrm{~s}^{\prime}\) & \(\mathrm{C}_{1}=50 \mathrm{pF}\) & & 75 & ns \\
\hline \({ }^{\text {pod(1) }}\) & Propagation delay time to logical 1 level & & \(\mathrm{R}_{1}=2 \mathrm{k} \mathrm{l}^{\prime}\) & \(\mathrm{C}_{\mathrm{t}}=30 \mathrm{pF}\) & & 75 & ns \\
\hline
\end{tabular}

\section*{schematic}


NOTE: Pins (1), 8 , and (13) - no infernal connection.

\section*{schematic (each gate)}


Component values shown are nominal.


\section*{recommended operating conditions}

Supply Voltage \(\mathrm{V}_{\mathrm{CC}}\). . . . . . . . . . . . . . . . . . . . . . . . . . . 4.5 V to 5.5 V
Maximum Fan-Out From Each Output . . . . . . . . . . . . . . . . . . . . . . . . . . 8
electrical characteristics
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & PARAMETER & TEST
FIGURE & TEST CONDITIONS & MIN & MAX & UNIT \\
\hline \multirow{3}{*}{\(V_{\text {out }}\) (0)} & \multirow{3}{*}{Logical 0 output voltage (on level)} & \multirow{3}{*}{1} & \[
\begin{array}{ll}
\mathrm{V}_{\mathrm{cc}}=4.5 \mathrm{~V}, & \mathrm{~V}_{\mathrm{in}}=1.9 \mathrm{~V}, \\
\mathrm{t}_{\text {sink }}=12 \mathrm{~mA}, & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\end{array}
\] & & 0.4 & V \\
\hline & & & \[
\begin{array}{ll}
\mathrm{V}_{\mathrm{cC}}=4.5 \mathrm{~V}, & \mathrm{~V}_{\text {in }}=2.1 \mathrm{~V} \\
\mathrm{I}_{\text {sink }}=11.4 \mathrm{~mA}, & \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}
\end{array}
\] & & 0.4 & V \\
\hline & & & \[
\begin{array}{ll}
\mathrm{V}_{\mathrm{cc}}=4.5 \mathrm{~V}, & \mathrm{~V}_{\text {in }}=1.7 \mathrm{~V}, \\
\mathrm{I}_{\text {sink }}=10.8 \mathrm{~mA}, & \mathrm{~T}_{\mathrm{A}}=125^{\circ} \mathrm{C}
\end{array}
\] & & 0.45 & V \\
\hline \multirow{3}{*}{\(V_{\text {out(1) }}\)} & \multirow{3}{*}{Logical 1 output voltage (off level)} & \multirow{3}{*}{2} & \[
\begin{array}{ll}
V_{c \mathrm{c}}=4.5 \mathrm{~V}, & \mathrm{~V}_{\mathrm{in}}=1.1 \mathrm{~V}, \\
\mathrm{I}_{\text {load }}=-0.12 \mathrm{~mA}, & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\end{array}
\] & 2.6 & & V \\
\hline & & & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{in}}=1.4 \mathrm{~V} \\
& \mathrm{I}_{\text {lood }}=-0.12 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}
\end{aligned}
\] & 2.5 & & V \\
\hline & & & \[
\begin{array}{ll}
V_{c \mathrm{c}}=4.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{in}}=0.8 \mathrm{~V}, \\
\mathrm{I}_{\text {load }}=-0.12 \mathrm{~mA}, & \mathrm{~T}_{\mathrm{A}}=125^{\circ} \mathrm{C}
\end{array}
\] & 2.5 & & V \\
\hline
\end{tabular}
electrical characteristics (continued)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & PARAMETER & \[
\begin{aligned}
& \text { TEST } \\
& \text { FIGURE }
\end{aligned}
\] & TEST CONDITIONS & MIN & MAX & UNIT \\
\hline \multirow[b]{2}{*}{\(\mathrm{I}_{\text {in(1) }}\)} & \multirow[t]{2}{*}{Logical I level input current} & \multirow[t]{2}{*}{4} & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\text {in }}=4 \mathrm{~V}, \\
& \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \text { and }-55^{\circ} \mathrm{C}
\end{aligned}
\] & & 2 & \(\mu \mathrm{A}\) \\
\hline & & & \[
\begin{array}{ll}
\mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}, & \mathrm{~V}_{\mathrm{in}}=4 \mathrm{~V}, \\
\mathrm{~T}_{\mathrm{A}}=125^{\circ} \mathrm{C} &
\end{array}
\] & & 5 & \(\mu \mathrm{A}\) \\
\hline \multirow[b]{2}{*}{\(\mathrm{I}_{\text {in(0) }}\)} & \multirow{2}{*}{Logical 0 level input current} & \multirow[b]{2}{*}{5} & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\text {in }}=0, \mathrm{~V}_{\mathrm{R}}=4 \mathrm{~V}, \\
& \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \text { and }-55^{\circ} \mathrm{C}
\end{aligned}
\] & & -1.6 & mA \\
\hline & & & \[
\begin{array}{ll}
\mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}, & \mathrm{~V}_{\mathrm{in}}=0, \mathrm{~V}_{\mathrm{R}}=4 \mathrm{~V}, \\
\mathrm{~T}_{\mathrm{A}}=125^{\circ} \mathrm{C}
\end{array}
\] & & -1.5 & mA \\
\hline \(\mathrm{I}_{\text {out(1) }}\) & Output reverse current (off level) & 6 & \(\mathrm{V}_{\mathrm{cc}}=\mathrm{V}_{\text {out }}=4.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) & & 50 & \(\mu \mathrm{A}\) \\
\hline \multirow{3}{*}{Ios} & \multirow{3}{*}{Short-circuit output current} & \multirow{3}{*}{7} & \[
\begin{array}{ll}
\hline \mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}, & \mathrm{~V}_{\text {out }}=0, \\
\mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} & \\
\hline
\end{array}
\] & -0.6 & \(-1.34\) & mA \\
\hline & & & \[
\begin{array}{ll}
\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, & \mathrm{~V}_{\text {out }}=0, \\
\mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} & \\
\hline
\end{array}
\] & & -1.34 & mA \\
\hline & & & \[
\begin{array}{ll}
\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\text {out }}=0, \\
\mathrm{~T}_{\mathrm{A}}=125^{\circ} \mathrm{C}
\end{array}
\] & & -1.3 & mA \\
\hline \({ }^{\mathrm{cc}(0)}\) & Logical 0 level supply current (all gates) & 8 & \(\mathrm{V}_{C C}=5 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) & & 13 & mA \\
\hline \(\mathrm{I}_{\mathrm{CC}(1)}\) & Logical 1 level supply current at maximum \(\mathrm{V}_{\mathrm{cc}}\) (all gates) & 9 & \(\mathrm{V}_{\mathrm{CC}}=8 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) & & 11 & mA \\
\hline
\end{tabular}
switching characteristics, \(V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & PARAMETER & \[
\begin{array}{c|}
\hline \text { TEST } \\
\text { FIGURE }
\end{array}
\] & TEST CONDITIONS & MIN & MAX & UNIT \\
\hline \({ }^{\text {pod }}\) (0) & Propagation delay time to logical 0 level & \multirow{2}{*}{51} & \(\mathrm{R}_{1}=400 \Omega, \mathrm{C}_{\mathrm{t}}=50 \mathrm{pF}\) & 10 & 30 & ns \\
\hline \({ }^{\text {pdd(1) }}\) & Propagation delay time to logical 1 level & & \(\mathrm{R}_{1}=3.9 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{t}}=30 \mathrm{pF}\) & 25 & 80 & ns \\
\hline
\end{tabular}

\section*{TYPE SN15 948 FLIP-FLOP WITH SET AND CLEAR}

\section*{logic}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|r|}{R-S MODE} \\
\hline \multicolumn{4}{|c|}{\(t_{n}\)} & \(t_{n+1}\) \\
\hline \(\mathrm{S}_{1}\) & \(\mathrm{S}_{2}\) & \(C_{1}\) & \(\mathrm{C}_{2}\) & Q \\
\hline 0 & X & 0 & X & Qn \\
\hline 0 & X & X & 0 & Qn \\
\hline X & 0 & 0 & X & Qn \\
\hline X & 0 & X & 0 & Qn \\
\hline 0 & X & 1 & 1 & 0 \\
\hline X & 0 & 1 & 1 & 0 \\
\hline 1 & 1 & 0 & X & 1 \\
\hline 1 & 1 & X & 0 & 1 \\
\hline 1 & & 1 & 1 & Indeterminate \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{3}{|c|}{ J-K MODE } \\
\hline \multicolumn{2}{|c|}{\(t_{n}\)} & \(t_{n+1}\) \\
\hline\(S_{1}\) & \(C_{1}\) & \(Q\) \\
\hline 0 & 0 & \(Q_{n}\) \\
\hline 0 & 1 & 0 \\
\hline 1 & 0 & 1 \\
\hline 1 & 1 & \(\bar{Q} n\) \\
\hline
\end{tabular}


\section*{recommended operating conditions}

Supply Voltage \(\mathrm{V}_{c c}\). . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.5 V to 5.5 V
Maximum Fan-Out From Each Output
9

\section*{electrical characteristics}
\begin{tabular}{|c|c|c|c|c|c|}
\hline & PARAMETER & \[
\begin{gathered}
\text { TEST } \\
\text { FIGURE }
\end{gathered}
\] & TEST CONDITIONS & MIN MAX & UNIT \\
\hline \multirow{3}{*}{\(\mathrm{V}_{\text {out (0) }}\)} & \multirow{3}{*}{Logical 0 output voltage (on level) at \(Q\) or \(\bar{Q}\)} & \multirow{3}{*}{\[
\begin{gathered}
27 \\
\text { and } \\
28
\end{gathered}
\]} & \[
\begin{array}{lll}
\mathrm{V}_{\mathrm{cc}}=4.5 \mathrm{~V}, & \mathrm{~V}_{1}=1.1 \mathrm{~V}, & \mathrm{~V}_{2}=1.9 \mathrm{~V}, \\
\mathrm{~V}_{3}=4.5 \mathrm{~V}, & \mathrm{I}_{\text {sink }}=13.6 \mathrm{~mA}, & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\
\hline
\end{array}
\] & 0.4 & V \\
\hline & & & \[
\begin{array}{lll}
\mathrm{V}_{\mathrm{cc}}=4.5 \mathrm{~V}, & \mathrm{~V}_{1}=1.4 \mathrm{~V}, & \mathrm{~V}_{2}=2.1 \mathrm{~V} \\
\mathrm{~V}_{3}=4.5 \mathrm{~V}, & \mathrm{I}_{\text {sink }}=13 \mathrm{~mA}, & \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \\
\hline
\end{array}
\] & 0.4 & v \\
\hline & & & \[
\begin{array}{lll}
\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, & \mathrm{~V}_{1}=0.8 \mathrm{~V}, & \mathrm{~V}_{2}=1.7 \mathrm{~V} \\
\mathrm{~V}_{3}=4.5 \mathrm{~V}, & \mathrm{I}_{\text {sink }}=12.3 \mathrm{~mA}, & \mathrm{~T}_{\mathrm{A}}=125^{\circ} \mathrm{C} \\
\hline
\end{array}
\] & 0.45 & V \\
\hline \multirow{3}{*}{\(\mathrm{V}_{\text {out(1) }}\)} & \multirow{3}{*}{Logical 1 output voltage (off level) at \(Q\) or \(\bar{Q}\)} & \multirow{3}{*}{12} & \[
\begin{array}{lll}
\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, & \mathrm{~V}_{1}=4.5 \mathrm{~V}, & \mathrm{~V}_{2}=1.1 \mathrm{~V}, \\
\mathrm{I}_{\text {load }}=-0.12 \mathrm{~mA}, & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} &
\end{array}
\] & 2.6 & v \\
\hline & & & \[
\begin{array}{lll}
\mathrm{V}_{\mathrm{cc}}=4.5 \mathrm{~V}, & \mathrm{~V}_{1}=4.5 \mathrm{~V}, & \mathrm{~V}_{2}=1.4 \mathrm{~V} \\
\mathrm{I}_{\text {load }}=-0.12 \mathrm{~mA}, & \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} & \\
\hline
\end{array}
\] & 2.5 & v \\
\hline & & & \[
\begin{array}{lll}
\mathrm{V}_{\mathrm{cc}}=4.5 \mathrm{~V}, & \mathrm{~V}_{1}=4.5 \mathrm{~V}, & \mathrm{~V}_{2}=0.8 \mathrm{~V}, \\
\mathrm{I}_{\text {load }}=-0.12 \mathrm{~mA}, & \mathrm{~T}_{\mathrm{A}}=125^{\circ} \mathrm{C} & \\
\hline
\end{array}
\] & 2.5 & V \\
\hline \multirow{3}{*}{\(\mathrm{I}_{\text {cP(0) }}\)} & \multirow{3}{*}{Logical 0 level clock-input forward current} & \multirow{3}{*}{29} & \[
\begin{array}{lll}
\mathrm{V}_{\mathrm{CCC}}=5.5 \mathrm{~V}, & \mathrm{~V}_{\mathrm{in}}=1.1 \mathrm{~V}, & \mathrm{~V}_{\mathrm{CP}}=0, \\
\mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\end{array}
\] & -2.56 & mA \\
\hline & & & \[
\begin{array}{lll}
\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, & \mathrm{~V}_{\mathrm{in}}=1.4 \mathrm{~V}, & \mathrm{~V}_{\mathrm{CP}}=0, \\
\mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} &
\end{array}
\] & -2.56 & mA \\
\hline & & & \[
\begin{array}{lll}
\mathrm{V}_{C C}=5.5 \mathrm{~V}, & \mathrm{~V}_{\text {in }}=0.8 \mathrm{~V}, & \mathrm{~V}_{\mathrm{CP}}=0, \\
T_{A}=125^{\circ} \mathrm{C}
\end{array}
\] & -2.2 & mA \\
\hline \multirow[t]{2}{*}{\(\mathrm{I}_{\mathrm{CP}(1)}\)} & \multirow[t]{2}{*}{Logical 1 level clock-input reverse current} & \multirow[t]{2}{*}{30} & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}}=4 \mathrm{~V}, \quad \mathrm{~V}_{\text {CP }}=4 \mathrm{~V}, \\
& \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \text { and }-55^{\circ} \mathrm{C}
\end{aligned}
\] & 10 & \(\mu \mathrm{A}\) \\
\hline & & & \(\mathrm{V}_{\mathrm{CC}}=4 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{CP}}=4 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=125^{\circ} \mathrm{C}\) & 20 & \(\mu \mathrm{A}\) \\
\hline
\end{tabular}
electrical characteristics (continued)
\begin{tabular}{|c|c|c|c|c|c|}
\hline & PARAMETER & TEST FIGURE & TEST CONDITIONS & MIN MAX & UNIT \\
\hline \multirow[b]{2}{*}{\(I_{\text {in }(1)}\)} & \multirow[t]{2}{*}{Logical 1 level synchronous-input current} & \multirow[t]{2}{*}{15} & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{Cc}}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {in }}=4 \mathrm{~V}, \\
& \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \text { and }-55^{\circ} \mathrm{C}
\end{aligned}
\] & 2 & \(\mu \mathbf{A}\) \\
\hline & & & \[
\begin{aligned}
& V_{C C}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{in}}=4 \mathrm{~V} \\
& \mathrm{~T}_{\mathrm{A}}=125^{\circ} \mathrm{C}
\end{aligned}
\] & 5 & \(\mu \mathrm{A}\) \\
\hline \multirow[b]{2}{*}{\(I_{\text {in10 }}\)} & \multirow[t]{2}{*}{Logical 0 level synchronous-input current} & \multirow[t]{2}{*}{31} & \[
\begin{aligned}
& V_{C C}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {in }}=0, \quad \mathrm{~V}_{1}=4 \mathrm{~V}, \\
& \mathrm{~V}_{\mathrm{CP}}=4 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \text { and }-55^{\circ} \mathrm{C}
\end{aligned}
\] & -1.07 & mA \\
\hline & & & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{in}}=0, \quad \mathrm{~V}_{1}=4 \mathrm{~V}, \\
& \mathrm{~V}_{\mathrm{CP}}=4 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=125^{\circ} \mathrm{C}
\end{aligned}
\] & -1 & mA \\
\hline \multirow[b]{2}{*}{\(I_{\text {inf(1) }}\)} & \multirow[b]{2}{*}{Logical 1 level asynchronous-input current} & \multirow[b]{2}{*}{32} & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{in}}=4 \mathrm{~V}, \mathrm{~V}_{1}=5.5 \mathrm{~V}, \\
& \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \text { and }-55^{\circ} \mathrm{C}
\end{aligned}
\] & 2 & \(\mu \mathrm{A}\) \\
\hline & & & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{in}}=4 \mathrm{~V}, \mathrm{~V}_{1}=5.5 \mathrm{~V}, \\
& \mathrm{~T}_{\mathrm{A}}=125^{\circ} \mathrm{C}
\end{aligned}
\] & 5 & \(\mu \mathrm{A}\) \\
\hline \multirow[t]{2}{*}{\(\mathrm{I}_{\text {inf0) }}\)} & \multirow[t]{2}{*}{Logical 0 level asynchronous-input current} & \multirow[t]{2}{*}{33} & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{in}}=0, \\
& \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \text { and }-55^{\circ} \mathrm{C}
\end{aligned}
\] & -2.4 & mA \\
\hline & & & \(\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {in }}=0, \mathrm{~T}_{\mathrm{A}}=125^{\circ} \mathrm{C}\) & -2.1 & mA \\
\hline \multirow[t]{2}{*}{los} & \multirow[t]{2}{*}{Short-circuit output current} & \multirow[t]{2}{*}{18} & \[
\begin{array}{ll}
\mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}, & \mathrm{~V}_{\text {in }}=5.5 \mathrm{~V}, \\
\mathrm{~V}_{\text {out }}=0, & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \text { and }-55^{\circ} \mathrm{C}
\end{array}
\] & -2.1 -3.96 & mA \\
\hline & & & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {in }}=5.5 \mathrm{~V}, \\
& \mathrm{~V}_{\text {out }}=0, \quad \mathrm{~T}_{\mathrm{A}}=125^{\circ} \mathrm{C}
\end{aligned}
\] & -3.54 & mA \\
\hline \(I_{\text {cciol }}\) & Logical 0 level supply current & 19 & \(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) & 16.2 & mA \\
\hline \(\mathrm{I}_{\mathrm{cc}(1)}\) & Logical 1 level supply current at maximum \(V_{C C}\) & 20 & \(\mathrm{V}_{\mathrm{CC}}=8 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) & 16 & mA \\
\hline
\end{tabular}
switching characteristics, \(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & PARAMETER & \[
\begin{aligned}
& \text { TEST } \\
& \text { FIGURE }
\end{aligned}
\] & TEST CONDITIONS & MIN & MAX & UNIT \\
\hline \(t_{\text {pd(0) }}\) & Propagation delay time to logical 0 level & \multirow[b]{2}{*}{52} & \(\mathrm{R}_{1}=330 \Omega, \mathrm{C}_{\mathrm{t}}=50 \mathrm{pF}\) & 5 & 65 & ns \\
\hline \({ }^{t} \mathrm{pd}(1)\) & Propagation delay time to logical 1 level & & \(\mathrm{R}_{1}=2 \mathrm{k} \Omega, \quad \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}\) & 5 & 75 & ns \\
\hline
\end{tabular}


NOTE: Pins (1) and (13) no internal connection.

\section*{logic}

TRUTH TABLES
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{SYNCHRONOUS} \\
\hline \multicolumn{4}{|c|}{PULSE \({ }^{n}\) NPUT} & \multicolumn{2}{|r|}{OUTPUT} \\
\hline S & C & PT, & \(\mathrm{PT}_{2}\) & Q & \(\overline{\mathbf{Q}}\) \\
\hline 1 & X & X & 1 & Qn & Qn \\
\hline X & 1 & 1 & X & Qn & Q \({ }^{\text {n }}\) \\
\hline 0 & 1 & 0 & X & 1 & 0 \\
\hline 0 & X & 0 & 1 & 1 & 0 \\
\hline 1 & 0 & X & 0 & 0 & 1 \\
\hline X & 0 & 1 & 0 & 0 & 1 \\
\hline 0 & 0 & 0 & 0 & Inde & minate \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{ ASYNCHRONOUS } \\
\hline \begin{tabular}{|c|c|c|c|}
\hline DIRECT \\
INPUT
\end{tabular} & \multicolumn{2}{|c|}{ OUTPUT } \\
\hline \(\mathrm{S}_{\mathrm{D}}\) & \(\mathrm{C}_{\mathrm{D}}\) & Q & \(\overline{\mathrm{Q}}\) \\
\hline 1 & 1 & \(\mathrm{Qn}_{n}\) & \(\bar{Q}_{\mathrm{n}}\) \\
\hline 0 & 1 & 0 & 1 \\
\hline 1 & 0 & 1 & 0 \\
\hline 0 & 0 & 1 & 1 \\
\hline
\end{tabular}

notes:
1. \(X\) indicates that either a logical 1 or a logical 0 may be present.
2. Logical 1 is more positive than logical 0 .
3. Logical states shown for pulse inputs \(\mathrm{Pr}_{1}\) and \(\mathrm{PT}_{\mathbf{2}}\) indicate that a transition to that state has just occurred.
4. Truth tables reflect individual conditions at the inputs. Either direct input may be used to inhibit its corresponding pulse input.

\section*{recommended operating conditions}

Supply Voltage \(\mathrm{V}_{\mathrm{Cc}}\). . . . . . . . . . . . . . . . . . . . . . . . . . 4.5 V to 5.5 V
Maximum Fan-Out From Each Output

\section*{electrical characteristics}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & PARAMETER & TEST FIGURE & TEST CONDITIONS & MIN & MAX & UNIT \\
\hline \multirow{3}{*}{\(V_{\text {out }}\) (0)} & \multirow{3}{*}{Logical 0 output voltage (on level) at \(\mathbf{Q}\) or \(\overline{\mathbf{Q}}\)} & \multirow{3}{*}{34} & \[
\begin{array}{ll}
V_{c C}=4.5 \mathrm{~V}, & V_{\text {in }}=1.9 \mathrm{~V}, \\
\mathrm{I}_{\text {sink }}=12 \mathrm{~mA}, & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\end{array}
\] & & 0.4 & V \\
\hline & & & \[
\begin{aligned}
& V_{c c}=4.5 \mathrm{~V}, \quad V_{i n}=2.1 \mathrm{~V}, \\
& \mathrm{I}_{\text {sink }}=11.4 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}
\end{aligned}
\] & & 0.4 & V \\
\hline & & & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{Cc}}=4.5 \mathrm{~V}, \quad \mathrm{~V}_{\text {in }}=1.7 \mathrm{~V}, \\
& \mathrm{I}_{\text {sink }}=10.8 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=125^{\circ} \mathrm{C}
\end{aligned}
\] & & 0.45 & V \\
\hline \multirow{3}{*}{\(V_{\text {out(1) }}\)} & \multirow{3}{*}{Logical 1 output voltage (off level) at \(\mathbf{Q}\) or \(\overline{\mathbf{Q}}\)} & \multirow{3}{*}{35} & \[
\begin{array}{lll}
V_{c c}=4.5 \mathrm{~V}, & V_{1}=1.1 \mathrm{~V}, & V_{2}=1.9 \mathrm{~V} \\
V_{3}=4.5 \mathrm{~V}, & I_{\text {load }}=-1.5 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\end{array}
\] & 2.6 & & V \\
\hline & & & \[
\begin{array}{ll}
\mathrm{V}_{\mathrm{cc}}=4.5 \mathrm{~V}, & \mathrm{~V}_{1}=1.4 \mathrm{~V}, \quad \mathrm{~V}_{2}=2.1 \mathrm{~V} \\
\mathrm{~V}_{3}=4.5 \mathrm{~V}, & \mathrm{I}_{\text {load }}=-1.5 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}
\end{array}
\] & 2.5 & & V \\
\hline & & & \[
\begin{array}{ll}
\mathrm{V}_{\mathrm{cc}}=4.5 \mathrm{~V}, & \mathrm{~V}_{1}=0.8 \mathrm{~V}, \quad \mathrm{~V}_{2}=1.7 \mathrm{~V} \\
\mathrm{~V}_{3}=4.5 \mathrm{~V}, & \mathrm{I}_{\text {load }}=-1.5 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=125^{\circ} \mathrm{C}
\end{array}
\] & 2.5 & & V \\
\hline \multirow[t]{2}{*}{\(\mathrm{I}_{\text {in PT }}\)} & \multirow[t]{2}{*}{Pulse-triggered-input current} & \multirow[t]{2}{*}{36} & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\text {in }}=8 \mathrm{~V}, \\
& \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \text { and }-55^{\circ} \mathrm{C}
\end{aligned}
\] & & 2 & \(\mu \mathrm{A}\) \\
\hline & & & \[
\begin{array}{ll}
\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, & \mathrm{~V}_{\text {in }}=8 \mathrm{~V}, \\
\mathrm{~T}_{\mathrm{A}}=125^{\circ} \mathrm{C} & \\
\hline
\end{array}
\] & & 5 & \(\mu \mathrm{A}\) \\
\hline \multirow[t]{2}{*}{\(I_{\text {inf( })}\)} & \multirow[t]{2}{*}{Logical 0 level input current at C or S} & \multirow[b]{2}{*}{37} & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\text {in }}=0, \\
& \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \text { and }-55^{\circ} \mathrm{C}
\end{aligned}
\] & & -2.4 & mA \\
\hline & & & \[
\begin{array}{ll}
\mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{in}}=0, \\
\mathrm{~T}_{\mathrm{A}}=125^{\circ} \mathrm{C}
\end{array}
\] & & -2.25 & mA \\
\hline \multirow[t]{2}{*}{\(I_{\text {inf(0) }}\)} & \multirow[t]{2}{*}{Logical 0 level input current at \(\mathrm{C}_{\mathrm{D}}\) or \(\mathrm{S}_{\mathrm{D}}\)} & \multirow[t]{2}{*}{37} & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\text {in }}=0, \\
& \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \text { and }-55^{\circ} \mathrm{C}
\end{aligned}
\] & & -1.82 & mA \\
\hline & & & \[
\begin{aligned}
& V_{\mathrm{cc}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{in}}=0, \\
& \mathrm{~T}_{\mathrm{A}}=125^{\circ} \mathrm{C}
\end{aligned}
\] & & -1.62 & mA \\
\hline
\end{tabular}
electrical characteristics (continued)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & PARAMETER & TEST
FIGURE & TEST CONDITIONS & MIN & MAX & UNIT \\
\hline \multirow[b]{2}{*}{\(\mathrm{I}_{\text {in(1) }}\)} & \multirow[t]{2}{*}{Logical 1 level input current at \(C_{D}\) or \(S_{D}\)} & \multirow[t]{2}{*}{38} & \[
\begin{aligned}
& V_{C C}=5.5 \mathrm{~V}, V_{\text {in }}=4 \mathrm{~V}, \\
& T_{\mathrm{A}}=25^{\circ} \mathrm{C} \text { and }-55^{\circ} \mathrm{C}
\end{aligned}
\] & & 2 & \(\mu \mathrm{A}\) \\
\hline & & & \[
\begin{aligned}
& V_{C C}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {in }}=4 \mathrm{~V} \\
& \mathrm{~T}_{\mathrm{A}}=125^{\circ} \mathrm{C}
\end{aligned}
\] & & 5 & \(\mu \mathrm{A}\) \\
\hline \(\mathrm{I}_{\mathrm{RC}}\) & Current through resistor \(\mathrm{R}_{\mathbf{C}}\) & 39 & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{in}}=0, \\
& \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\end{aligned}
\] & -4.22 & -7.35 & mA \\
\hline \multirow[b]{2}{*}{los} & \multirow[t]{2}{*}{Short-circuit output current} & \multirow[b]{2}{*}{40} & \[
\begin{aligned}
& V_{c C}=5.5 \mathrm{~V}, V_{\text {out }}=0, \\
& T_{A}=25^{\circ} \mathrm{C} \text { and }-55^{\circ} \mathrm{C}
\end{aligned}
\] & -15.7 & -27 & mA \\
\hline & & & \[
\begin{aligned}
& \mathrm{V}_{\text {cc }}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {out }}=0, \\
& \mathrm{~T}_{\mathrm{A}}=125^{\circ} \mathrm{C}
\end{aligned}
\] & -14.6 & -26 & mA \\
\hline \(\mathrm{l}_{\text {out(1) }}\) & Output reverse current (off level) & 40 & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\text {out }}=4.5 \mathrm{~V}, \\
& \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\end{aligned}
\] & & 50 & \(\mu \mathrm{A}\) \\
\hline \(\mathrm{ICC}_{(0)}\) & Logical 0 level supply current & 41 & \(\mathrm{V}_{C C}=5 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) & & 8.7 & mA \\
\hline \({ }^{\mathrm{ICCO}}(1)\) & Logical 1 level supply current at maximum \(\mathrm{V}_{\mathrm{cc}}\) & 42 & \(\mathrm{V}_{\mathrm{CC}}=8 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) & & 18.4 & mA \\
\hline
\end{tabular}
switching characteristics, \(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & PARAMETER & TEST FIGURE & TEST CONDITIONS & MIN & MAX & UNIT \\
\hline \({ }^{\text {tod }}\) (0) & Propagation delay time to logical 0 level & \multirow[b]{2}{*}{53} & \(\mathrm{R}_{1}=400 \Omega, \quad C_{1}=100 \mathrm{pF}\) & 5 & 32 & ns \\
\hline \(t_{\text {pd(1) }}\) & Propagation delay time to logical 1 level & & \(\mathrm{R}_{1}=3.9 \mathrm{k} \Omega, \quad \mathrm{C}_{1}=100 \mathrm{pF}\) & 5 & 25 & ns \\
\hline
\end{tabular}

\section*{schematic}

logic
TRUTH TABLE
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|c|}{INPUT} & \multicolumn{2}{|c|}{\begin{tabular}{l}
\({ }^{\dagger_{n}+1}\) \\
INPUT
\end{tabular}} & \multirow[t]{2}{*}{OUTPUT} \\
\hline A & B & A & B & \\
\hline 1 & 1 & 1 & 1 & INHIBIT \\
\hline 1 & 1 & 1 & 0 & ONE-SHOT \\
\hline 1 & 1 & 0 & 1 & ONE-SHOT \\
\hline 1 & 1 & 0 & 0 & ONE-SHOT \\
\hline 0 & 1 & X & X & INHIBIT \\
\hline 1 & 0 & X & X & INHIBIT \\
\hline 0 & 0 & X & X & INHIBIT \\
\hline
\end{tabular}

NOTES: a. \(t_{n}=\) time before input transition.
b. \(\boldsymbol{t}_{\mathrm{n}+1}=\) time after input transition.
c. \(X\) indicates that either a logical 1 or a logical 0 may be present.


NOTES: I. External resistor and capacitor may be used between pins (10), (11), and (14) to control one-shot pulse width
2. To use the internal timing resistor, connect pin (9) to pin (14).
3. Input sensitivity can be decreased by adding a capacitor from pin (5) to ground.

\section*{recommended operating conditions}
\[
\text { Supply Voltage } \mathrm{V}_{\mathrm{cc}} \text {. . . . . . . . . . . . . . . . . . . . . . . . . . . } 4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}
\]
Maximum Fan-Out From Each Output10
Input Pulse Characteristics:
Minimum Negative-Going Transition ..... 1 V
Maximum Input Fall Time Per Volt . ..... 25 ns/V
Maximum Duty Cycle ..... 40\%

\section*{electrical characteristics}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & PARAMETER & TEST FIGURE & TEST CONDITIONS \(\dagger\) & MIN & MAX & UNIT \\
\hline \multirow[t]{2}{*}{\(V_{\text {out (0) }}\)} & \multirow[t]{2}{*}{Logical 0 output voltage (on level)} & \multirow[b]{2}{*}{43} & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{I}_{\text {sink }}=15 \mathrm{~mA}, \\
& \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \text { and }-55^{\circ} \mathrm{C}
\end{aligned}
\] & & 0.4 & V \\
\hline & & & \[
\begin{aligned}
& V_{c C}=4.5 \mathrm{~V}, \mathrm{I}_{\text {sink }}=14 \mathrm{~mA}, \\
& T_{A}=125^{\circ} \mathrm{C}
\end{aligned}
\] & & 0.45 & V \\
\hline \multirow[t]{2}{*}{\(V_{\text {out }}(1)\)} & \multirow[t]{2}{*}{Logical 1 output voltage (off level)} & \multirow[t]{2}{*}{44} & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{Cc}}=4.5 \mathrm{~V}, \mathrm{I}_{\text {load }}=-0.18 \mathrm{~mA}, \\
& \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\end{aligned}
\] & 2.6 & & V \\
\hline & & & \[
\begin{aligned}
& V_{C C}=4.5 \mathrm{~V}, I_{\text {load }}=-0.18 \mathrm{~mA}, \\
& T_{A}=125^{\circ} \mathrm{C} \text { and }-55^{\circ} \mathrm{C}
\end{aligned}
\] & 2.5 & & V \\
\hline \multirow[t]{2}{*}{\(\mathrm{I}_{\text {in(1) }}\)} & \multirow[t]{2}{*}{Logical 1 level input current} & \multirow[t]{2}{*}{45} & \[
\begin{aligned}
& V_{C C}=5.5 \mathrm{~V}, V_{\text {in }}=4 \mathrm{~V}, \\
& \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \text { and }-55^{\circ} \mathrm{C}
\end{aligned}
\] & & 2 & \(\mu \mathrm{A}\) \\
\hline & & & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{in}}=4 \mathrm{~V} \\
& \mathrm{~T}_{\mathrm{A}}=125^{\circ} \mathrm{C}
\end{aligned}
\] & & 5 & \(\mu \mathrm{A}\) \\
\hline \multirow[t]{2}{*}{\(\mathrm{I}_{\text {in(0) }}\)} & \multirow[t]{2}{*}{Logical 0 level input current} & \multirow[t]{2}{*}{46} & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}, \mathrm{~V}_{1}=4 \mathrm{~V}, \mathrm{~V}_{2}=0, \\
& \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \text { and }-55^{\circ} \mathrm{C}
\end{aligned}
\] & -1.6 & -3.1 & mA \\
\hline & & & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{1}=4 \mathrm{~V}, \mathrm{~V}_{2}=0, \\
& \mathrm{~T}_{\mathrm{A}}=125^{\circ} \mathrm{C}
\end{aligned}
\] & \(-1.4\) & -3 & mA \\
\hline
\end{tabular}

\footnotetext{
\(\dagger\) Expander node is open unless otherwise noted.
}

\section*{electrical characteristics (continued)}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & PARAMETER & TEST & TEST CONDITIONS \(\dagger\) & MIN & MAX & UNIT \\
\hline \(\mathrm{I}_{\mathrm{Rr}}\) & Current through internal timing resistor \(R_{T}\) & 47 & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\text {in }}=5.5 \mathrm{~V}, \\
& \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\end{aligned}
\] & 0.5 & 0.75 & mA \\
\hline \multirow[b]{2}{*}{\(\mathrm{I}_{\text {sc }}\)} & \multirow[b]{2}{*}{Short-circuit current at expander node or pin} & \multirow[t]{2}{*}{48} & \[
\begin{aligned}
& \mathrm{V}_{C C}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\text {in }}=0, \\
& \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \text { and }-55^{\circ} \mathrm{C}
\end{aligned}
\] & \multicolumn{2}{|l|}{-0.8} & mA \\
\hline & & & \[
\begin{array}{ll}
V_{C C}=5.5 \mathrm{~V}, \quad V_{\text {in }}=0, \\
T_{A}=125^{\circ} \mathrm{C}
\end{array}
\] & -0.75 & & mA \\
\hline \(\mathrm{I}_{\mathrm{cc}}\) & Supply current & 49 & \(\mathrm{V}_{C C}=5 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) & & 9 & mA \\
\hline \(\mathrm{I}_{\mathrm{CC}(\text { max }}\) & Supply current at maximum \(\mathrm{V}_{\mathrm{cc}}\) & 50 & \(\mathrm{V}_{\mathrm{CC}}=8 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) & & 20 & mA \\
\hline
\end{tabular}
switching characteristics, \(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & PARAMETER & TEST & TEST CONDITIONS \(\dagger\) & MIN & MAX & UNIT \\
\hline \({ }^{\text {ppd }}\) (0) & Propagation delay time to logical 0 level & \multirow{3}{*}{54} & \multirow{3}{*}{\(\mathrm{R}_{1}=300 \Omega, \mathrm{C}_{\mathrm{t}}=50 \mathrm{pF}\)} & & 50 & ns \\
\hline \({ }^{\text {pd }(1)}\) & Propagation delay time to logical 1 level & & & & 50 & ns \\
\hline & Pulse width & & & 90 & 160 & ns \\
\hline
\end{tabular}
\(\dagger\) Expander node is open unless otherwise noted.

\section*{schematic}


NOTES: 1. External resistor and capacitor may be used (as indicated above) between pins (10), (11) and to control one-shot pulse width. 2. To use the internal timing resistor, connect pin (9) to pin (14).
3. Input sensitivity can be decreased by adding a capacitor from pin (5) to ground.
schematic (each gate)



\section*{recommended operating conditions}

Supply Voltage \(\mathrm{V}_{\mathrm{Cc}}\). . . . . . . . . . . . . . . . . . . . . . . . . . . 4.5 V to 5.5 V
Maximum Fan-Out From Each Output . . . . . . . . . . . . . . . . . . . . . . . . . . 8
electrical characteristics
\begin{tabular}{|c|c|c|c|c|}
\hline PARAMETER & \begin{tabular}{c} 
TEST \\
FIGURE
\end{tabular} & \multicolumn{1}{c|}{ TEST CONDITIONS } & MIN & MAX
\end{tabular} UNIT

\section*{TYPE SN15 962 \\ TRIPLE 3-INPUT NAND/NOR GATE}

\section*{electrical characteristics (continued)}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & PARAMETER & \[
\begin{aligned}
& \text { TEST } \\
& \text { FIGURE }
\end{aligned}
\] & TEST CONDITIONS & MIN & MAX & UNIT \\
\hline \multirow[t]{2}{*}{\(\mathrm{I}_{\text {in(1) }}\)} & \multirow[t]{2}{*}{Logical 1 level input current} & \multirow[t]{2}{*}{4} & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\text {in }}=4 \mathrm{~V}, \\
& \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \text { and }-55^{\circ} \mathrm{C}
\end{aligned}
\] & & 2 & \(\mu \mathrm{A}\) \\
\hline & & & \[
\begin{array}{ll}
\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, & \mathrm{~V}_{\mathrm{in}}=4 \mathrm{~V}, \\
\mathrm{~T}_{\mathrm{A}}=125^{\circ} \mathrm{C} &
\end{array}
\] & & 5 & \(\mu \mathrm{A}\) \\
\hline \multirow[t]{2}{*}{\(\mathrm{I}_{\text {in(0) }}\)} & \multirow[t]{2}{*}{Logical 0 level input current} & \multirow[t]{2}{*}{5} & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{cC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\text {in }}=0, \mathrm{~V}_{\mathrm{R}}=4 \mathrm{~V}, \\
& \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \text { and }-55^{\circ} \mathrm{C}
\end{aligned}
\] & & -1.6 & mA \\
\hline & & & \[
\begin{aligned}
& V_{c C}=5.5 \mathrm{~V}, \quad V_{i n}=0, V_{R}=4 V, \\
& T_{A}=125^{\circ} \mathrm{C}
\end{aligned}
\] & & -1.5 & mA \\
\hline \(\mathrm{I}_{\text {out(1) }}\) & Output reverse current (off level) & 6 & \(\mathrm{V}_{\text {cc }}=\mathrm{V}_{\text {out }}=4.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) & & 50 & \(\mu \mathrm{A}\) \\
\hline \multirow{3}{*}{Ios} & \multirow{3}{*}{Short-circuit output current} & \multirow{3}{*}{7} & \[
\begin{array}{ll}
\hline \mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}, & \mathrm{~V}_{\text {out }}=0, \\
\mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} & \\
\hline
\end{array}
\] & -0.6 & -1.34 & mA \\
\hline & & & \[
\begin{array}{ll}
V_{c \mathrm{CC}}=5.5 \mathrm{~V}, & \mathrm{~V}_{\text {out }}=0, \\
\mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} & \\
\hline
\end{array}
\] & & -1.34 & mA \\
\hline & & & \[
\begin{array}{ll}
\mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}, & \mathrm{~V}_{\text {out }}=0, \\
\mathrm{~T}_{\mathrm{A}}=125^{\circ} \mathrm{C} & \\
\hline
\end{array}
\] & & -1.3 & mA \\
\hline \(\mathrm{I}_{\mathrm{cc}(0)}\) & Logical 0 level supply current (all gates) & 8 & \(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) & & 9.75 & mA \\
\hline \(\mathrm{ICCO}_{(1)}\) & Logical 1 level supply current at maximum \(V_{c c}\) (all gates) & 9 & \(\mathrm{V}_{C C}=8 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) & & 8.25 & mA \\
\hline
\end{tabular}
switching characteristics, \(\mathbf{V}_{\mathrm{CC}}=\mathbf{5} \mathbf{V}, \mathbf{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & PARAMETER & \[
\begin{array}{|c|}
\hline \text { TEST } \\
\text { FIGURE }
\end{array}
\] & TEST CONDITIONS & MIN & MAX & UNIT \\
\hline \({ }^{\text {pd }}\) (0) \({ }^{\text {d }}\) & Propagation delay time to logical 0 level & \multirow{2}{*}{51} & \(\mathrm{R}_{\mathrm{T}}=400 \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}\) & 10 & 30 & ns \\
\hline \({ }^{\text {pd (1) }}\) & Propagation delay time to logical 1 level & & \(\mathrm{R}_{1}=3.9 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}\) & 25 & 80 & ns \\
\hline
\end{tabular}
d-c test circuits \(\dagger\)
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
SN15 930, SN15 932, SN15 944, SN15 946, and SN15 962 \\
FIGURE 1 - \(\mathbf{V}_{\text {out(0) }}\)
\end{tabular} & \begin{tabular}{l}
SN15 930, SN15 932, SN15 946, and SN15 962 \\
1. Each input is fested separately. \\
FIGURE 2 - \(\mathbf{V}_{\text {out(1) }}\)
\end{tabular} \\
\hline \begin{tabular}{l}
SN15 930 and SN15 932 \\
FIGURE 3 - \(\mathbf{V}_{\text {out }}\) (1)
\end{tabular} & \begin{tabular}{l}
SN15 930, SN15 932, SN1 5 944, SN15 946, and SN15 962 \\
FIGURE 4 - \(\mathbf{I}_{\text {in(1) }}\)
\end{tabular} \\
\hline \begin{tabular}{l}
SN15 930, SN15 932, SN15 944, SN15 946, and SNI5 962 \\
1. Each input is tested separately. \\
FIGURE 5 - \(I_{\text {in(0) }}\)
\end{tabular} & \begin{tabular}{l}
SN15 930, SN15 932, SN15 946, and SN15 962 \\
FIGURE 6 - \(\mathbf{I}_{\text {out }}\) (1)
\end{tabular} \\
\hline
\end{tabular}

\footnotetext{
\(\dagger\) Arrows indicate actual direction of current flow.
}

\section*{ \\ SEMICONDUCTOR NETWORKS}

\section*{PARAMETER MEASUREMENT INFORMATION}
d-c test circuits \({ }^{\dagger}\) (continued)
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
SN15 930, SN15 932, SN1 5 946, and SN15 962 \\
FIGURE 7 - Ios
\end{tabular} & \begin{tabular}{l}
SN15 930, SN1 5 932, SN15 944, SN15 946,and SN15 962 \\
FIGURE \(8{ }^{-} I_{\mathrm{cC}(0)}\)
\end{tabular} \\
\hline \begin{tabular}{l}
SN15 930, SN15 932, SN15 944, SN15 946, and SN15 962 \\
FIGURE \(9-\mathrm{I}_{\mathrm{CC}(1)}\)
\end{tabular} &  \\
\hline  & \begin{tabular}{l}
SN15 931, SN15 945, and SN15 948 VOLTAGE \\
WAVEFORM \\
1. Output \(Q\) is tested by grounding \(S_{1}\) and \(S_{2}\), applying \(V_{1}\) to \(C_{D}\) and \(V_{2}\) to \(S_{D}\), and loading \(Q\). \\
2. Output \(\bar{Q}\) is tested by grounding \(C_{1}\) and \(C_{2}\), applying \(V_{1}\) to \(S_{D}\) and \(V_{2}\) to \(C_{D}\), and loading \(\bar{Q}\). \\
FIGURE 12 - \(V_{\text {out(1) }}\)
\end{tabular} \\
\hline
\end{tabular}
\(\dagger\) Arrows indicate actual direction of current flow.

\section*{PARAMETER MEASUREMENT INFORMATION}
d-c test circuits \({ }^{\dagger}\) (continued)
\begin{tabular}{|c|c|}
\hline  & \begin{tabular}{l}
SN15 931 \\
FIGURE 14 - \(I_{C P(I)}\)
\end{tabular} \\
\hline \begin{tabular}{l}
SN15 931, SN15 945 and SN15 948 \\
1. \(V_{\text {in }}\) is opplied 10 each input separately. FIGURE \(15-I_{\text {in(1) }}\)
\end{tabular} & \begin{tabular}{l}
SN15 931 \\
1. \(V_{\text {in }}\) is applied to each input separately. \\
FIGURE 16 - \(I_{\text {in(0) }}\)
\end{tabular} \\
\hline SN15 931 & \begin{tabular}{l}
CLOCK INPUT VOLTAGE \\
1. Logical 0 level input current at \(C_{D}\) is tested with \(S_{D}, S_{2}\), and \(\bar{a}\) grounded and CP open. \\
2. Logical 0 level input current at \(S_{D}\) is tested with \(C_{D}, C_{2}\), and \(Q\) grounded and \(C P\) open. \\
3. Short-circuit output current at \(Q\) is tested by applying \(V_{\text {in }}\) to \(C_{D}\) and \(S_{D}\), grounding \(C_{1}\) and \(C_{2}\) and applying clock input. \\
4. Short-circuit output current at \(\bar{Q}\) is tested by applying \(V_{\text {in }}\) to \(C_{D}\) and \(S_{D}\) grounding \(S_{1}\) and \(S_{2}\) and applying clock input. \\
FIGURE \(18-I_{\text {in(0) }}\) and \(I_{\text {OS }}\)
\end{tabular} \\
\hline
\end{tabular}
\(\dagger\) Arrows indicate actual direction of current flow.

\section*{PARAMETER MEASUREMENT INFORMATION}
d-c test circuits \({ }^{\dagger}\) (continued)
SN15 931, SNI5 945 and SN15 948
\(\dagger\) Arrows indicate actual direction of current flow.

\section*{PARAMETER MEASUREMENT INFORMATION}
d-c test circuits \(\dagger\) (continued)
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
SN15 944 \\
1. Each input is tested separately. \\
FIGURE 25 - \(I_{\text {out(1) }}\)
\end{tabular} & \begin{tabular}{l}
SN15 944 \\
FIGURE 26 - \(I_{\text {out }(1)}\)
\end{tabular} \\
\hline SN15 945 and SN15 948 & \begin{tabular}{l}
SN15 945 and SN15 948 \\
1. Inputs' \(S_{1}\) and \(S_{2}\) are tested separately. \\
FIGURE \(28-V_{\text {out }(0)}\)
\end{tabular} \\
\hline \begin{tabular}{l}
SN15 945 and SN15 948 \\
1. \(V_{\text {in }}\) is applied to \(S_{D}\) or \(C_{D}\) separately. \\
FIGURE 29 - \(I_{C P(0)}\)
\end{tabular} & \begin{tabular}{l}
SN15 945 and SN15 948 \\
1. Ground is applied separately to \(C_{1}, C_{2}\) and \(S_{D}\) or to \(S_{1}, S_{2}\) and \(C_{D}\). \\
FIGURE 30 - \(I_{C P(1)}\)
\end{tabular} \\
\hline
\end{tabular}
\(\dagger\) Arrows indicate actual direction of current flow.

PARAMETER MEASUREMENT INFORMATION
d-c test circuits \({ }^{\dagger}\) (continued)

\(\dagger\) Arrows indicafe actual direction of current flow.

PARAMETER MEASUREMENT INFORMATION
d-c test circuits \({ }^{\dagger}\) (continued)
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
SN15 950 \\
1. Each input is tested separately with all other inputs open-circuited. \\
FIGURE \(37-I_{\text {ind0 }}\)
\end{tabular} & \begin{tabular}{l}
SN15 950 \\
1. Each asynchronous input is tested separately. \\
2. When testing \(C_{D}\) ground \(S\) and apply \(\mathrm{V}_{\text {inPT }}\) to \(\mathrm{PT}_{2}\). \\
3. When testing \(S_{D}\) ground \(C\) and apply \(V_{\text {inPT }}\) to \(P_{1}\). \\
FIGURE 38 - \(\mathrm{I}_{\text {inf( })}\)
\end{tabular} \\
\hline  & \begin{tabular}{l}
SN15 950 \\
1. When testing output \(\mathbf{Q}\) ground \(S_{D}\). \\
2. When testing output \(\bar{Q}\) ground \(\mathcal{C}_{D}\). \\
FIGURE 40 - \(I_{\text {OS }}\) and \(I_{\text {out(1) }}\)
\end{tabular} \\
\hline \begin{tabular}{l}
SN15 950 \\
FIGURE 41-I \(\mathrm{I}_{\mathrm{CC}(0)}\)
\end{tabular} & SN15 950 \\
\hline
\end{tabular}
\(\dagger\) Arrows indicate actual direction of current flow.

\section*{PARAMETER MEASUREMENT INFORMATION}
d-c test circuits \({ }^{\dagger}{ }^{\dagger}\) (continued)
SNI 951

\footnotetext{
\(\dagger\) Arrows indicate actual direction of current flow.
}

PARAMETER MEASUREMENT INFORMATION
d-c test circuits \({ }^{\dagger}\) (continued)

\(\dagger\) Arrows indicate actual direction of current flow.
switching characteristics


NOTES: 1. Each gate is tested separately.
2. All diodes are 1 N 916 . Use sufficient 1 N 916 diodes to make \(\mathbf{V}_{\mathbf{F} \text { totall }}=1.9 \mathrm{~V}\) to 2.5 V at 2 mA of current.
3. The generator has the following characteristics:
\(\mathrm{V}_{\text {out }}=3 \mathrm{~V}, \mathrm{f}_{\mathrm{r}} \leq 15 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 15 \mathrm{~ns}, \mathrm{t}_{\mathrm{p}}=300 \mathrm{~ns}, \mathrm{PRR}=1 \mathrm{MHz}, \mathrm{z}_{\text {out }} \cong 50 \Omega\).
4. The driving network is of the same type as the gate under test.
5. Voltage values are with respect to network ground terminal.
6. When testing the \(\mathbf{S N 1 5} 944\), connect the \(2-\mathrm{k} \Omega\) resistor as shown, omit all diodes, and connect resistor \(\mathbf{R}_{\mathbf{1}}\) to capacitor \(\boldsymbol{C}_{\mathbf{L}}\) and output.

FIGURE 51 - GATE PROPAGATION DELAY

\section*{PARAMETER MEASUREMENT INFORMATION}

\section*{switching characteristics (continued)}


VOLTAGE WAVEFORMS

NOTES: 1. The generator has the following characteristics:
\(V_{\text {out }}=3 \mathrm{~V}, \mathrm{t}_{\mathrm{r}} \leq 15 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 15 \mathrm{~ns}, \mathrm{t}_{\mathrm{p}}=300 \mathrm{~ns}, \operatorname{PRR}=1 \mathrm{MHz}, \mathrm{z}_{\text {out }} \simeq 50 \Omega\).
2. All diodes are 1 N 916 . Use sufficient 1 N 916 diodes to make \(\mathrm{V}_{\mathrm{F} \text { (total) }}=1.9 \mathrm{~V}\) to 2.5 V at \(\mathbf{2 m A}\) of current.
3. Voltage values are with respect to network ground terminal.
4. Test circuit shows loading when output \(\bar{Q}\) is tested. When output \(Q\) is tested, loading is interchanged as indicated by the dotted lines.

FIGURE 52 - FLIP-FLOP PROPAGATION DELAY
switching characteristics (continued)

SN15 950

test circuit


\section*{VOLTAGE WAVEFORMS}

NOTES: 1. The generator has the following characteristics:
\(\mathbf{V}_{\text {out }}=3 \mathrm{~V}, \mathrm{t}_{\mathrm{r}} \leq 15 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 15 \mathrm{~ns}, \mathrm{t}_{\mathrm{p}}=300 \mathrm{~ns}, \mathrm{PRR}=1 \mathrm{MHz}, \mathrm{I}_{\text {out }} \simeq 50 \Omega\).
2. All diodes are 1 N 916 . Use sufficient 1 N 916 diodes to make \(\mathrm{V}_{\mathrm{F}(\text { total })}=1.9 \mathrm{~V}\) to 2.5 V at 2 mA of current.
3. Voltage values are with respect to nefwork ground terminal.
4. Test circuit shows loading when output \(\bar{Q}\) is tested. When output \(\mathbf{Q}\) is tested, loading is interchanged as indicated by the dotted lines.
```

FIGURE 53 - PULSE-TRIGGERED BINARY PROPAGATION DELAY

```
switching characteristics (continued)


\section*{MECHANICAL DATA}

\section*{general}

SOLID CIRCUIT semiconductor networks are mounted in a glass-to-metal hermetically sealed, welded package. Package body and leads are gold-plated \(\mathrm{F}-15 \ddagger\) glass-sealing alloy. Approximate weight is 0.1 gram. All external surfaces are
metalic and are insulated from leads and circuit. All Series 15930 networks are available with formed leads, insulator attached, and/or mounted in a Mech-Pack carrier.

leads
Gold-plated F-15 leads require no additional cleaning or processing when used in soldered or welded assembly. Formed leads are available to facilitate planar mounting of networks on flat circuit boards. Standard lead length is 0.175 inches. Networks can be removed from Mech-Pak carriers with lead lengths up to 0.175 inches.

\section*{insulator}

An insulator, secured to the back surface of the package, permits mounting networks on circuit boards which have conductors passing beneath the package. The insulator is 0.0025 inches thick and has an insulation resistance of greater than 10 megohms at \(25^{\circ} \mathrm{C}\).

\section*{mech-pak carrier}

The Mech-Pak carrier facilitates handling the network, and is compatible with automatic equipment used for testing and assembly. The carrier is particularly appropriate for mechanized assembly operations and will withstand temperatures of \(125^{\circ} \mathrm{C}\) for indefinite periods.

\section*{ordering instructions}

Variations in mechanical configuration of semiconductor networks are identified by suffix numbers shown in a table at the right.

\footnotetext{
\(\dagger\) Patented by Texas Instruments
}


NOTES: 1. All dimensions are nominal in inches unless otherwise specified. 2. Overall thickness is 0.175 and nestled height is 0.150 each.
\begin{tabular}{|l|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{4}{|c|}{\begin{tabular}{c} 
NO MECH-PAK \\
CARRIER
\end{tabular}} & \multicolumn{4}{c|}{\begin{tabular}{c} 
MECH-PAK \\
CARRIER
\end{tabular}} \\
\hline Lead Length & \multicolumn{3}{|c|}{0.175 inch } & \multicolumn{3}{c|}{ Not Applicable } \\
\hline Formed Leads & No & No & Yes & Yes & No & No & Yes & Yes \\
\hline Insulators & No & Yes & No & Yes & No & Yes & No & Yes \\
\hline \begin{tabular}{l} 
Ordering \\
Suffix
\end{tabular} & Non & -6 & -7 & -1 & -2 & -3 & -4 & -5 \\
\hline
\end{tabular}

\footnotetext{
\(\ddagger\) F-15 is the ASTM designation for an iron-nickel-cobalt alloy containing nominally \(53 \%\) iron, \(29 \%\) nickel, and \(\mathbf{1 7 \%}\) cobalt.
}

\section*{SERIES 52 OPERATIONAL AMPLIFIERS}
for application in

\author{
Military \& Industrial Control Systems • Analog-to-Digital Convertors • Analog Computers Improved Version of SN521 and SN522
}

\section*{description}

Each of these networks is a general-purpose operational amplifier. The SN521A single-ended amplifier has both inverting and noninverting inputs. The SN522A, in addition to both types of inputs, features a single-ended output with higher output current drive capability.

The SN521A and SN522A, two of Texas Instruments Series 52 catalog line integrated circuits, offer higher reliability, lower cost, smaller size, and lower weight than equivalent discrete component circuits. Each Series 52 device is a monolithic semiconductor structure comprising diffused resistors and both \(n-p-n\) and p-n-p transistors.

\section*{typical operating characteristics and conditions}
\[
\begin{aligned}
& \text { Open-loop voltage gain . . . . . . . . . . . . . . . . . . . . . . . . } 62 \mathrm{db} \\
& \text { Common-mode rejection . . . . . . . . . . . . . . . . . . . . . . . . } 60 \mathrm{db} \\
& \text { Dynamic output voltage range . . . . . . . . . . . . . . . . . . . . . . } \pm 2.5 \mathrm{r} \\
& \text { Frequency response . . . . . . . . . . . . . . . . . . . . . . . . DC to } 50 \mathrm{kc} \\
& \text { Operating ambient temperature range . . . . . . . . . . . . . . . . . }-55^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C} \\
& \text { Supply voltages: } \mathrm{V}_{\mathrm{cc} 1} \text {. . . . . . . . . . . . . . . . . . . . . . . . . }+10 \mathrm{v} \\
& \mathrm{~V}_{\mathrm{cC} 2} \text {. . . . . . . . . . . . . . . . . . . . . . . . . }+6 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{cc} 3} \text {. . . . . . . . . . . . . . . . . . . . . . . . . }-9 \mathrm{v}
\end{aligned}
\]
circuit diagrams

CIRCUIT DIAGRAM SN521A


NOTES: PIN (0) IS FOR FREQUENCY SHAPING
PINS (1), (2), AND (6)-NO INTERNAL CONNECTION

CIRCUIT DIAGRAM SN522A


NOTES: PINS (0) and (1) are for frequency shaping PINS (2) AND (6) - No INTERNAL CONNECTION

\footnotetext{
\(\dagger\) Patented by Texas Instruments
}

\section*{absolute maximum ratings}


\section*{electrical characteristics over operating ambient temperature range (unless otherwise noted)}

All measurements shown are with amplifier in the open-loop condition and with the following supply voltages: \(\mathrm{V}_{\mathrm{cc} 1}=+10 \mathrm{v} \pm 0.2 \mathrm{v} ; \mathrm{V}_{\mathrm{cc} 2}=+6 \mathrm{v} \pm 0.2 \mathrm{v} ; \mathrm{V}_{\mathrm{cC} 3}=-9 \mathrm{v} \pm 0.2 \mathrm{v}\).
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{SN521A SN522A} \\
\hline \begin{tabular}{l}
Voltage Gain, Open Loop \\
Output Voltage, \(\mathrm{E}_{\mathrm{o}}=1 \mathrm{v}\) rms; \(\mathrm{f}=1 \mathrm{kc}\)
\end{tabular} & Min 54 & \[
\begin{gathered}
\text { Typ } \\
62
\end{gathered}
\] & Max & Min 54 & \[
\begin{gathered}
\text { Typ } \\
62
\end{gathered}
\] & Max & Units db \\
\hline Common Mode Rejection Output Voltage, \(\mathrm{E}_{\mathrm{o}}=1 \mathrm{vrms} ; \mathrm{f}=1 \mathrm{kc}\) & 50 & 60 & & 50 & 60 & & db \\
\hline \begin{tabular}{l}
Dynamic (Linear) Output Voltage Range \\
Peak or dc with output open-circuited \\
(Note 1)
\[
\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\] \\
Peak or dc with external load resistance of: (Important: See Note 2)
\[
\begin{aligned}
R_{L} & =2000 \Omega, T_{A}=25^{\circ} \mathrm{C} \\
R_{L} & =8000 \Omega, T_{A}=25^{\circ} \mathrm{C}
\end{aligned}
\]
\end{tabular} & \(\pm 2.5\) & \(\pm 4.1\) & & \(\pm 2.5\) & \(\pm 2.7\) & & \begin{tabular}{l}
\(v\) \\
\(v\)
\end{tabular} \\
\hline \begin{tabular}{l}
Input Resistance \\
Noninverting input; with inverting input shorted to ground, \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) \\
Inverting input; with noninverting input shorted to ground, \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\)
\end{tabular} & \begin{tabular}{l}
\[
6
\] \\
30
\end{tabular} & \[
\begin{array}{r}
12 \\
100
\end{array}
\] & & 6
30 & \begin{tabular}{l}
12 \\
100
\end{tabular} & & \[
\begin{aligned}
& \mathrm{k} \Omega \\
& \mathrm{k} \Omega
\end{aligned}
\] \\
\hline Output Resistance; \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) & 5 & 10 & & & 0.16 & 0.40 & k \(\Omega\) \\
\hline Input Current; either input; \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) & & 2 & & & 2 & & \(\mu \mathrm{a}\) \\
\hline \begin{tabular}{l}
Output Offset Voltage \\
Both inputs with \(510 \Omega \pm 1 \%\) to ground;
\[
T_{A}=25^{\circ} \mathrm{C}
\]
\end{tabular} & & -0.5 & \(\pm 2\) & & -0.5 & \(\pm 2\) & \(v\) \\
\hline \begin{tabular}{l}
D-C Drift referred to Input \\
Both inputs with \(510 \Omega \pm 1 \%\) to ground
\end{tabular} & & 8 & 25 & & 8 & 25 & \(\mu \mathrm{v} / \mathrm{C}^{\circ}\) \\
\hline \begin{tabular}{l}
Frequency Response \\
Half-Power Point ( -3 db ); \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) \\
Unity Gain (0 db); \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\)
\end{tabular} & 30 & \[
\begin{aligned}
& 50 \\
& 10
\end{aligned}
\] & & 30 & \[
\begin{aligned}
& 50 \\
& 10
\end{aligned}
\] & & \begin{tabular}{l}
kc \\
Mc
\end{tabular} \\
\hline Power Drain; no external load, \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) & & 28 & & & 72 & & mw \\
\hline
\end{tabular}

NOTES: 1. The open-circuit tondition of the amplifier is defined as that condition in which the external load resistance applied between the output of the circuit and ground is equal to or greater than \(200 \mathrm{k} \Omega\).
2. Under no circumstances are either of these networks to be operated with on external load of less than \(200 \Omega\) between the output of the amplifier and ground. Permanent damage to the semiconductor network may occur if this rule is not followed.

\title{
TYPES SN521A, SN522A \\ GENERAL-PURPOSE OPERATIONAL AMPLIFIERS
}

\section*{TYPICAL CHARACTERISTICS}


\section*{mechanical data}

These operational amplifiers are mounted in glass-to-metal hermetically sealed welded packages meeting TO-89. Leads are gold-plated F-15 \(\ddagger\) glass-sealing alloy. Approximate weight is 0.1 gram. All external surfaces are metallic and are insulated from leads and circuit. Both are available with formed leads, insulator attached, and/or mounted in a Mech-Pak carrier. See Ordering Instructions.

\section*{ORDERING INSTRUCTIONS}
\begin{tabular}{|l|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{4}{|c|}{ NO MECH-PAK CARRIER } & \multicolumn{4}{|c|}{ MECH-PAK CARRIER } \\
\hline Lead Length & \multicolumn{4}{|c|}{0.175 Inch } & \multicolumn{3}{|c|}{ Not Applicable } \\
\hline Formed Leads & \(N_{0}\) & No \(_{0}\) & Yes & Yes & \(N_{0}\) & No & Yes & Yes \\
\hline Insulators & \(N_{0}\) & Yes & No & Yes & \(N_{0}\) & Yes & No & Yes \\
\hline \begin{tabular}{l} 
Ordering \\
Suffix
\end{tabular} & None & -6 & -7 & -1 & -2 & -3 & -4 & -5 \\
\hline
\end{tabular}

\(\ddagger\) F-15 is the ASTM designation for an iron-nickel-cobalt alloy containing nominally \(53 \%\) iron, \(\mathbf{2 9 \%}\) nickel, and \(\mathbf{1 7 \%}\) cobalt.

\section*{TYPICAL APPLICATION}
noninverting operational amplifier


\section*{conditions}

Pin (7) ; \(V_{c c_{1}}=+10 \mathrm{~V}\)
Pin (8) ; \(V_{c c 2}=+6 \mathrm{~V}\)
Pin (3) ; \(V_{\mathrm{cc} 3}=-9 \mathrm{v}\)
Frequency Shaping Network; connect the network as show


SERIES 52 SEMICONDUCTOR-NETWORK GENERAL-PURPOSE AMPLIFIER
for application as
- Comparator
- Differential Amplifier
- Level Detector
- Voltage Regulator
- Military \& Industrial Control Systems - Analog-to-Digital Converters - Analog Computers

\section*{description}

The SN523A, offering differential inputs and differential emitterfollower outputs, incorporates a resistance network in the emitters of the input stage to facilitate gain adjustment. From the wide range of total resistance available, a particular value may be selected by connecting the resistor-network pins in a configuration which produces the desired gain. Maximum-gain configuration is with pin (1) shorted to pin (6).
The SN523A, one of Texas Instruments Series 52 catalog line of linear integrated circuits, offers higher reliability, lower cost, smaller size, and lower weight than equivalent discrete-component circuits. Each Series 52 device is a monolithic semiconductor structure comprising diffused resistors and both \(n-p-n\) and \(p-n-p\) transistors.

\section*{mechanical data}

The SN523A is mounted in a glass-to-metal hermetically sealed welded package meeting TO-84. Leads are gold-plated F-15 \(\ddagger\) glass-sealing alloy. Approximate weight is 0.1 gram. All external surfaces are metallic and are insulated from leads and circuit. The SN523A is available with formed leads, insulator attached, and/or mounted in a Mech-Pak carrier. See Ordering Instructions.


NOTE: Component values shown are nominal. SCHEMATIC DIAGRAM

ORDERING INSTRUCTIONS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{4}{|l|}{NO MECH.PAK CARRIER} & \multicolumn{4}{|l|}{MECH-PAK CARRIER} \\
\hline Lead Length & \multicolumn{4}{|c|}{0.175 Inch} & \multicolumn{4}{|r|}{Not Applicable} \\
\hline Formed Leads & No & No & Yes & Yes & No & No & Yes & Yes \\
\hline Insulators & No & Yes & No & Yes & No & Yes & No & Yes \\
\hline Ordering Suffix & None & -6 & -7 & -1 & -2 & -3 & -4 & -5 \\
\hline
\end{tabular}

OUTLINE DRAWING - SEMICONDUCTOR NETWORK WELDED PACKAGE

\(\dagger\) Patented by Texas Instruments
\(\ddagger\) F- 15 is the ASTM designation for an iron-nickel-cobalt alloy containing nominally \(53 \%\) iron, \(24 \%\) nickel, and \(17 \%\) cobalt.
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply Voltages (See Note 1): \(\mathbf{V}_{\text {Cc1 }}\). . . . . . . . . . . . . . . . . . . . . . . . . . . . +15 V
\(V_{\mathrm{cC} 2}\) ..... \(-15 \mathrm{~V}\)
Differential Input Voltage ..... \(\pm 6 \mathrm{~V}\)
Input Voltage (Either Input, See Note 1) ..... \(\pm 10 \mathrm{~V}\)
Duration of Short-Circuit Output Current ..... 5 s
Continuous Total Power Dissipation at (or below) \(25^{\circ} \mathrm{C}\) Free-Air Temperature (See Note 2) .....  . 300 mW
Operating Free-Air Temperature Range ..... \(-55^{\circ} \mathrm{C}\) to \(125^{\circ} \mathrm{C}\)
Storage Temperature Range ..... \(-65^{\circ} \mathrm{C}\) to \(150^{\circ} \mathrm{C}\)

NOTES: 1. These voltage values are with respect to network ground.
2. Derate linearly to 120 mW af \(125^{\circ} \mathrm{C}\) free-air temperafure at the rate of \(1.8 \mathrm{~mW} /\) deg.
electrical characteristics at \(25^{\circ} \mathrm{C}\) free-air temperature (unless otherwise noted)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & PARAMETER & TEST CONDITIONS§ & MIN & TYP & MAX & UNIT \\
\hline \(\mathrm{V}_{\mathrm{DI}}\) & Differential-input offset voltage & & & 2.2 & 12 & mV \\
\hline \(\alpha_{\text {VDI }}\) & Differential-input offset voltage temperature coefficient & \(\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}\) to \(125^{\circ} \mathrm{C}\) & & 9 & & \(\mu \mathrm{V} / \mathrm{deg}\) \\
\hline \(\mathrm{V}_{\text {cMO }}\) & Common-mode output offset voltage & & & 500 & & mV \\
\hline \(\mathrm{I}_{\text {in }}\) & Input current & & & 5 & & \(\mu \mathrm{A}\) \\
\hline \(\mathrm{I}_{\mathrm{DI}}\) & Differential-input offset current & & & 0.5 & 2 & \(\mu \mathrm{A}\) \\
\hline \multirow[b]{2}{*}{\(V_{\text {OM }}\)} & \multirow[b]{2}{*}{Maximum peak-to-peak output voltage} & Differential output, \(\mathrm{f}=1 \mathrm{kc} / \mathrm{s}\) & & 24 & & V \\
\hline & & Differential output, \(f=1 \mathrm{kc} / \mathrm{s}\),
\[
\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C}
\] & 20 & & & V \\
\hline \(\mathrm{V}_{\text {CMIM }}\) & Maximum common-mode input voltage & & & \(\pm 5\) & & V \\
\hline \multirow{7}{*}{\(A_{\text {vd }}\)} & \multirow{7}{*}{Differential voltage gain} & \(\mathrm{f}=1 \mathrm{kc} / \mathrm{s}\) & & 4000 & & \\
\hline & & \(\mathrm{f}=1 \mathrm{kc} / \mathrm{s}, \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}\) to \(125^{\circ} \mathrm{C}\) & 2500 & & & \\
\hline & & \(f=1 \mathrm{kc} / \mathrm{s}\), pins (1) and (5) open & & 135 & & \\
\hline & & \[
\begin{aligned}
& f=1 \mathrm{kc} / \mathrm{s}, \text { pin (1) shorted to pin (3), } \\
& \text { pin (1) open }
\end{aligned}
\] & & 830 & & \\
\hline & & \(f=1 \mathrm{kc} / \mathrm{s}\), pin (2) shorted to pin (5), pins (1) and (6) open & & 465 & & \\
\hline & & \(f=1 \mathrm{kc} / \mathrm{s}\), pin (3) shorted to pin (5), pins (1) and (1) open & & 325 & & \\
\hline & & \[
\begin{aligned}
& f=1 \mathrm{kc} / \mathrm{s}, \text { pin (2) shorted to pin (1), } \\
& \text { pin (1) open }
\end{aligned}
\] & & 680 & & \\
\hline CMRR & Common-mode rejection ratio & \(f=1 \mathrm{kc} / \mathrm{s}\) & & 90 & & dB \\
\hline BW B & Bandwidth ( -3 dB ) & & 70 & 180 & & kc/s \\
\hline \(\mathrm{Z}_{\text {in }} \quad \mathrm{l}\) & Input impedance & \(f=1 \mathrm{kc} / \mathrm{s}\) & 5 & 15 & & \(\mathrm{k} \Omega\) \\
\hline \(\mathrm{Z}_{\text {out }}\) & Output impedance & \(f=1 \mathrm{kc} / \mathrm{s}\) & & 200 & & \(\Omega\) \\
\hline \(\mathrm{P}_{\mathrm{T}}\) & Total power dissipation & & & 100 & & mW \\
\hline
\end{tabular}

\section*{§unless otherwise noted, test conditions are}
\(\mathbf{V}_{\mathrm{CC} 1}=+12 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=-12 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}\) applied, no external loading; pin (1) grounded, pin (1) shorted to pin (6), and pins (2), (3), (5), (5) and (B) open. letter symbol and parameter definitions
\(V_{D I} \quad\) That d-c voltage which must be applied between the input terminals to obtain zero-differential-output voltage. The application of this voltage balances the amplifier.
\(V_{\text {CMO }} \quad\) That d-c voltage level which exists between either output terminal and ground when the outputs are balanced.
\(I_{\text {in }} \quad\) The current into either input of the amplifier.
\(I_{D I} \quad\) The difference in the currents into the two input terininals when the output is balanced.
\(\mathrm{V}_{\mathrm{OM}}\). The maximum peak-to-peak output voltage swing that can be obtained without clipping when the output is balanced.
\(V_{\text {CMIM }}\) The maximum common-mode voltage that can be impressed on the input terminals while maintaining differential operation.
CMRR The ratio of the differential-mode voltage gain to the common-mode voltage gain.
BW The range of frequencies within which the open-loop voltage gain is within 3 dB of the mid-frequency value.
\(Z_{\text {in }} \quad\) The impedance between either input terminal and ground with the other input terminal a-c grounded and the output balanced.
\(\mathbf{Z}_{\text {out }} \quad\) The impedance between the output terminal and ground when the output is balanced.

\section*{TYPICAL CHARACTERISTICS§}

§Unless otherwise noted, test conditions are: \(\mathbf{V}_{C C 1}=+12 \mathrm{~V}, \mathbf{V}_{\mathrm{CC} 2}=-12 \mathrm{~V}, \mathrm{~V}_{\mathrm{D} 1}\) applied, no external loading, pin (11) grounded, pin (1) shorted to pin (6), and pins (2), (3), (5), (9) and (1) open.

\section*{TYPICAL CHARACTERISTICS§}

§Unless otherwise noted, test conditions are:
\(V_{C C 1}=+12 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC} 2}=-12 \mathrm{~V}, \mathrm{~V}_{\mathrm{DI}}\) applied, no external loading, pin(1)grounded; pin(1) shorted to pin(6), and pins(2),(3),(5),(9) and (13) open.

\section*{SERIES 52 SEMICONDUCTOR-NETWORK GENERAL-PURPOSE AMPLIFIER for application as}

\author{
- Comparator \\ - Level Detector \\ - Differential Amplifier \\ - Voltage Regulator
}

\section*{- Military \& Industrial Control Systems - Analog-to-Digital Converters - Analog Computers}

\section*{description}

The SN5231L offers differential inputs and differential emitterfollower outputs. Two stages of differential amplification are used to provide high gain at frequencies up to 1 MHz . A high degree of component matching, which assures stable operation over the temperature range of \(-55^{\circ} \mathrm{C}\) to \(125^{\circ} \mathrm{C}\), is achieved by the monolithic construction.

The SN5231L, one of Texas Instruments Series 52 catalog line of linear integrated circuits, offers higher reliability, lower cost, smaller size, and lower weight than equivalent discrete-component circuits. Each Series 52 device is a monolithic semiconductor structure comprising diffused resistors and both n-p-n and p-n-p transistors.


NOTE: Component values shown are nominal. SCHEMATIC DIAGRAM

\section*{mechanical data}

The SN5231L package outline is same as JEDEC TO-100 except for diameter of standoff.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)


NOTES: 1 . These voltage values are with respect to network ground.
2. Derate linearly to 120 mW at \(125^{\circ} \mathrm{C}\) free-air temperature at the rate of \(1.8 \mathrm{~mW} / \mathrm{deg}\).

\footnotetext{
\(\dagger\) Patented by Texas Instruments
}
electrical characteristics at \(25^{\circ} \mathrm{C}\) free-air temperature (unless otherwise noted)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & PARAMETER & TEST CONDITIONS§ & MIN & TYP & MAX & UNIT \\
\hline \(\mathrm{V}_{\mathrm{DI}}\) & Differential-input offset voltage & & & 2.2 & 12 & mV \\
\hline \(\alpha\) voi' & Differential-input offset voltage temperature coefficient & \(\mathrm{T}_{\mathrm{A}(1)}=125^{\circ} \mathrm{C}, \mathrm{T}_{\mathrm{A}(2)}=-55^{\circ} \mathrm{C}\) & & 9 & & \(\mu \mathrm{V} / \mathrm{deg}\) \\
\hline \(\mathrm{V}_{\text {cmo }}\) & Common-mode output offset voltage & & & 500 & & mV \\
\hline \(\mathrm{I}_{\text {in }}\) & Input current & & & 5 & & \(\mu \mathrm{A}\) \\
\hline \(\mathrm{I}_{\mathrm{DI}}\) & Differential-input offset current & & & 0.5 & 2 & \(\mu \mathrm{A}\) \\
\hline & & Differential output, \(f=1 \mathrm{kHz}\) & & 24 & & V \\
\hline \(V_{\text {OM }}\) & Maximum peak-to-peak output voltage & Differential output, \(f=1 \mathrm{kHz}\),
\[
\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C}
\] & 20 & & & V \\
\hline \(\mathrm{V}_{\text {CMIM }}\) & Maximum common-mode input voltage & & & \(\pm 5\) & & \(\checkmark\) \\
\hline & & \(\mathrm{R}_{\mathrm{S}}=50 \Omega, \mathrm{f}=1 \mathrm{kHz}\) & & 4000 & & \\
\hline AvD & & \(\mathrm{R}_{\mathrm{S}}=50 \Omega, \mathrm{f}=1 \mathrm{kHz}, \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}\) to \(125^{\circ} \mathrm{C}\) & 2500 & & & \\
\hline CMRR & Common-mode rejection ratio & \(\mathrm{R}_{\mathrm{S}}=50 \Omega, \mathrm{f}=1 \mathrm{kHz}\) & & 90 & & dB \\
\hline BW & Bandwidth (-3 dB) & & 70 & 180 & & kHz \\
\hline \(\mathrm{Z}_{\text {in }}\) & Input impedance & \(f=1 \mathrm{kHz}\) & 5 & 15 & & \(\mathrm{k} \Omega\) \\
\hline \(\mathrm{Z}_{\text {out }}\) & Output impedance & \(\mathrm{f}=1 \mathrm{kHz}\) & & 200 & & \(\Omega\) \\
\hline \(\mathrm{P}_{\mathrm{T}}\) & Total power dissipation & & & 100 & & mW \\
\hline
\end{tabular}
§Unless otherwise noted, test conditions are: \(\mathrm{V}_{\mathrm{CC} 1}=+12 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC} 2}=-12 \mathrm{~V}, \mathrm{~V}_{\mathrm{D} 1}\) applied, no external loading and pin 6 grounded.

\section*{letter symbol and parameter definitions}
\(V_{D I} \quad\) That d-c voltage which must be applied between the input terminals to obtain zero-differential-output voltage. The application of this voltage balances the amplifier.
\(\alpha_{\text {YDI }} \quad\) Temperature coefficient averaged over the specified temperature range and defined by the equation:
\[
\alpha{ }_{V D I}=\frac{\left(V_{D I} @ T_{A(1)}\right)-\left(V_{D I} @ T_{A(2)}\right)}{T_{A(1)}-T_{A(2)}}
\]
\(\mathrm{V}_{\text {CMO }} \quad\) That d-c voltage level which exists between either output terminal and ground when the outputs are balanced.
\(I_{\text {in }}\) The current into either input of the amplifier.
\(I_{D I} \quad\) The difference in the currents into the two input terminals when the output is balanced.
\(\mathrm{V}_{\mathrm{OM}} \quad\) The maximum peak-to-peak output voltage swing that can be obtained without clipping when the output is balanced.
\(\mathrm{V}_{\text {CMIM }}\) The maximum common-mode voltage that can be impressed on the input terminals while maintaining differential operation.
CMRR The ratio of the differential-mode voltage gain to the commmon-mode voltage gain.
BW The range of frequencies within which the open-loop voltage gain is within 3 dB of the mid-frequency value.
\(Z_{\text {in }} \quad\) The impedance between either input terminal and ground with the other input terminal a-c grounded and the output balanced.
\(Z_{\text {out }} \quad\) The impedance between either output terminal and ground when the output is balanced.

\title{
TYPE SN5231L GENERAL-PURPOSE DIFFERENTIAL AMPLIFIER
}

\section*{TYPICAL CHARACTERISTICS§}


FIGURE 1

SINGLE-ENDED VOLTAGE GAIN
vs


FIGURE 3

MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE
vs


FIGURE 2

DIFFERENTIAL VOLTAGE GAIN


FIGURE 4
§Unless otherwise noted, test conditions are: \(\mathrm{V}_{\mathrm{CC} 1}=+12 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC} 2}=-12 \mathrm{~V}, \mathrm{v}_{\mathrm{D} 1}\) applied, no external loading and pin (6) grounded.

TYPICAL CHARACTERISTICS §

§Unless otherwise noted, test conditions are: \(\mathbf{v}_{\mathrm{CC} 1}=+12 \mathrm{v}, \mathbf{v}_{\mathrm{CC} 2}=-12 \mathrm{v}, \mathrm{v}_{\mathrm{DI}}\) applied, no external loading and pin(6) grounded.

\author{
SERIES 52 SEMICONDUCTOR-NETWORK GENERAL-PURPOSE AMPLIFIERS for application as \\ - Buffer Amplifier \\ - Multivibrator \\ - Differentiator \\ - Level Detector \\ - Integrator \\ - Summing Amplifier
}

\section*{description}

Each of these networks is a general-purpose operational amplifier consisting of two differential-gain stages and a single-ended emitter-follower output. The input stage utilizes Darlington-connected n-p-n transistors for high input impedance.

The SN524A and SN524AL, two of Texas Instruments Series 52 catalog line of linear integrated circuits, offers higher reliability, lower cost, smaller size, and lower weight than equivalent discrete component circuits. Each Series 52 device is a monolithic semiconductor structure comprising diffused resistors and both n-p-n and p-n-p transistors.


NOTE: Component values shown are nominal.
SCHEMATIC DIAGRAM

\section*{mechanical data}

The SN524A operational amplifier is mounted in a glass-to-metal hermetically sealed welded package meeting TO-89. Leads are gold-plated \(\mathrm{F}-15 \ddagger\) glass-sealing alloy. Approximate weight is 0.1 gram. All external surfaces are metallic and are insulated from leads and circuit. The SN524A is available with formed leads, insulator attached, and/or mounted in a Mech-Pak carrier. See Ordering Instructions.

\section*{SN524A ORDERING INSTRUCTIONS}
\begin{tabular}{|l|c|c|c|l|l|l|l|l|l|}
\hline & \multicolumn{4}{|c|}{ NO MECH-PAK CARRIER } & \multicolumn{4}{|c|}{ MECH-PAK CARRIER } \\
\hline Lead Length & \multicolumn{4}{|c|}{0.175 Inch } & \multicolumn{3}{c|}{ Not Applicable } \\
\hline Formed Leads & No & No & Yes & Yes & No & No & Yes & Yes \\
\hline lnsulators & No & Yes & No & Yes & \(N_{0}\) & Yes & No & Yes \\
\hline \begin{tabular}{l} 
Ordering \\
Suffix
\end{tabular} & None & -6 & -7 & -1 & -2 & -3 & -4 & -5 \\
\hline
\end{tabular}


The SN524AL package outline is same as JEDEC TO-76 except for case height.


\footnotetext{
\(\dagger\) Patented by Texas Instruments.
\(\ddagger \mathrm{F}-15\) is the ASTM designation for an iron-nickel-cobalt alloy containing nominally \(53 \%\) iron, \(\mathbf{2 9 \%}\) nickel, and \(\mathbf{1 7 \%}\) cobalt.
}
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply Voltages (See Note 1): \(\mathrm{V}_{\mathrm{Cc} 1}\). . . . . . . . . . . . . . . . . . . . . . . . . . . . . +15 V
\(\mathrm{V}_{\mathrm{CC} 2} \cdot\). . . . . . . . . . . . . . . . . . . . . . . . . . . . -15 V
Differential Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 V
Common-Mode Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . \(\pm 10 \mathrm{~V}\)
Operating Free-Air Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . \(-55^{\circ} \mathrm{C}\) to \(125^{\circ} \mathrm{C}\)
Storage Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . \(-65^{\circ} \mathrm{C}\) to \(150^{\circ} \mathrm{C}\)

NOTE 1: Voltage values are with respect to network ground.
electrical characteristics at \(25^{\circ} \mathrm{C}\) free-air temperature (unless otherwise noted)
\begin{tabular}{|c|c|c|c|c|c|}
\hline & PARAMETER & TEST CONDITIONS§ & MIN TYP & MAX & UNIT \\
\hline \multirow[b]{2}{*}{\(V_{\text {DI }}\)} & \multirow[b]{2}{*}{Differential-input offset voltage} & & 12 & & mV \\
\hline & & \(\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}\) to \(125^{\circ} \mathrm{C}\) & & 40 & mV \\
\hline \(\alpha_{\text {VDI }}\) & Differentia-input offset voltage temperature coefficient & \(\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}\) to \(125^{\circ} \mathrm{C}\) & 25 & & \(\mu \mathrm{V} / \mathrm{deg}\) \\
\hline \(\mathrm{I}_{\text {in }}\) & Input Current & & 80 & 350 & \(n \mathrm{~A}\) \\
\hline \multirow{3}{*}{\({ }^{\text {D }}\)} & \multirow{3}{*}{Differential-input offset current} & & 20 & & nA \\
\hline & & \(\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}\) & 60 & & nA \\
\hline & & \(\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}\) & 6 & & nA \\
\hline \multirow{4}{*}{\(\mathrm{V}_{\text {OM }}\)} & \multirow{4}{*}{Maximum peak-to-peak output voltage} & \(\mathrm{f}=1 \mathrm{kc} / \mathrm{s}, \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}\) to \(125^{\circ} \mathrm{C}\) & 11 & & V \\
\hline & & \(f=1 \mathrm{kc} / \mathrm{s}\) & 16 & & V \\
\hline & & \(10 \mathrm{k} \Omega\) load, \(\mathrm{f}=1 \mathrm{kc} / \mathrm{s}, \quad \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}\) to \(125^{\circ} \mathrm{C}\) & 9 & & V \\
\hline & & \(10 \mathrm{k} \Omega\) load, \(\mathrm{f}=1 \mathrm{kc} / \mathrm{s}\) & 15 & & V \\
\hline \(\mathrm{V}_{\text {CMIM }}\) & Maximum common-mode input voltage & & \(\pm 5\) & & V \\
\hline \multirow[b]{2}{*}{\(A_{V}\)} & \multirow[b]{2}{*}{Voltage gain} & \(\mathrm{f}=1 \mathrm{kc} / \mathrm{s}, \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}\) to \(125^{\circ} \mathrm{C}\) & 630 & & \\
\hline & & \(\mathrm{f}=1 \mathrm{kc} / \mathrm{s}\) & 1400 & & \\
\hline CMRR & Common-mode rejection ratio & \(\mathrm{f}=1 \mathrm{kc} / \mathrm{s}, \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}\) to \(125^{\circ} \mathrm{C}\) & 55 & & dB \\
\hline BW & Bandwidth ( -3 dB ) & & \(70 \quad 140\) & & kc/s \\
\hline \(\mathrm{Z}_{\text {in }}\) & Input impedance & \(\mathrm{f}=1 \mathrm{kc} / \mathrm{s}\) & \(350 \quad 1000\) & & \(\mathrm{k} \Omega\) \\
\hline \(\mathrm{Z}_{\text {out }}\) & Output impedance & \(\mathrm{f}=1 \mathrm{kc} / \mathrm{s}\) & 200 & & \(\Omega\) \\
\hline \(\mathrm{P}_{\mathrm{T}}\) & Total power dissipation & No input signal, no external load & 120 & & mW \\
\hline
\end{tabular}
§Unless otherwise noted test conditions are: \(\mathbf{V}_{\mathrm{CC}}=+12 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=-12 \mathbf{V}\), ground and \(\mathbf{V}_{\mathrm{DI}}\) applied; roll-off terminal open, no external loading. The unused input is grounded for all tests except when common-mode characteristics are under test.

\section*{letter symbol and parameter definitions}
\(V_{\text {DI }} \quad\) That d-c voltage which must be applied between the input terminals to obtain zero-output voltage referenced to ground. The application of this voltage balances the amplifier.
\(\mathrm{I}_{\text {in }} \quad\) The current into either input of the amplifier.
\(I_{D I} \quad\) The difference in the currents into the two input terminals when the output is balanced.
\(\mathrm{V}_{\mathrm{OM}} \quad\) The maximum peak-to-peak output voltage swing that can be obtained without clipping when the output is balanced.
\(V_{\text {CMIM }}\) The maximum common-mode voltage that can be impressed on the input terminals while maintaining differential operation.
CMRR The ratio of the differential-mode voltage gain to the common-mode voltage gain.
BW The range of frequencies within which the voltage gain is within 3 dB of the mid-frequency value.
\(Z_{i n} \quad\) The impedance between either input terminal and ground with the other input terminal a-c grounded and the output balanced.
\(Z_{\text {out }} \quad\) The impedance between the output terminal and ground when the output is balanced.

\section*{TYPES SN524A, SN524AL GENERAL-PURPOSE OPERATIONAL AMPLIFIERS}

\section*{TYPICAL CHARACTERISTICS §}


Eigure 1


MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE
vs


FIGURE 2


FIGURE 4
§Unless otherwise noted test conditions are: \(\mathbf{V}_{\mathrm{CC}_{1}}=+12 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC} 2}=-12 \mathrm{~V}\), ground and \(\mathrm{V}_{\mathrm{DI}}\) applied; roll-off terminal open, no external loading. The unused input is grounded for all tests except when common-mode characteristics are under test.

\section*{TYPICAL CHARACTERISTICS §}

§Unless otherwise noted test conditions are: \(\mathbf{V}_{\mathrm{CC}}=+12 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC} 2}=-12 \mathrm{~V}\), ground and \(\mathrm{V}_{\mathrm{DI}}\) applied; roll-off terminal open, no external loading. The unused input is grounded for all tests except when common-mode characteristics are under test.

\section*{A SERIES 52 AMPLIFIER}

\section*{featuring}
- Open-Loop Gain ... 90 dB

\section*{description}

The SN525 is a high-performance amplifier featuring an open-loop gain of 90 dB , yet it is unconditionally stable when used with external capacitors in the frequency-response shaping circuit. A feedback loop provides high com-mon-mode rejection. Both differential input and output terminals are available.

Texas Instruments Series 52 catalog line of linear integrated circuits offers higher reliability, lower cost, smaller size, and less weight than equivalent discrete component circuits. Each Series 52 device is a monolithic semiconductor structure comprising diffused resistors and both n-p-n and p-n-p transistors.

\section*{mechanical data}

The SN5 25 semiconductor network is mounted in a glass-to-metal hermetically sealed welded package. Leads are gold-plated F-15 \(\ddagger\) glasssealing alloy. Approximate weight is 0.1 gram. All external surfaces are metallic and are insulated from leads and circuit. The SN525 is available with formed leads, insulator attached, and/or mounted in a Mech-Pak carrier. See ordering instructions.
- Typical CMRR ... 100 dB


SCHEMATIC

\section*{ORDERING INSTRUCTIONS}
\begin{tabular}{|l|l|l|l|l|l|l|l|l|}
\hline & \multicolumn{4}{|c|}{ NO MECH-PAK CARRIER } & \multicolumn{4}{c|}{ MECH-PAK CARRIER } \\
\hline lead Length & \multicolumn{4}{|c|}{0.175 Inch } & \multicolumn{4}{c|}{ Not Applicable } \\
\hline Formed Leads & No & No & Yes & Yes & No & No & Yes & Yes \\
\hline Insulators & No & Yes & No & Yes & No & Yes & No & Yes \\
\hline \begin{tabular}{l} 
Ordering \\
Suffix
\end{tabular} & None & -6 & -7 & -1 & -2 & -3 & -4 & -5 \\
\hline
\end{tabular}

\(\dagger\) Patented by Texas Instruments
\(\ddagger\) F-15 is the ASTM designation for an iron-nickel-cobalt alloy containing nominally \(53 \%\) iron, \(29 \%\) nickel, and \(\mathbf{1 7 \%}\) cobalt.
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply Voltages (See Note 1): \(\mathrm{V}_{\mathrm{cc} 1}\). . . . . . . . . . . . . . . . . . . . +15 V
\(V_{\mathrm{cc} 2}\). . . . . . . . . . . . . . . . . . . . -15 V
Differential Input Voltage . . . . . . . . . . . . . . . . . . . . . . . 5 V
Common-Mode Input Voltage . . . . . . . . . . . . . . . . . . . . . . \(\pm 12 \mathrm{~V}\)
. Operating Free-Air Temperature Range . . . . . . . . . . . . . . . . \(-55^{\circ} \mathrm{C}\) to \(125^{\circ} \mathrm{C}\)
Storage Temperature Range . . . . . . . . . . . . . . . . . . . \(-65^{\circ} \mathrm{C}\) to \(150^{\circ} \mathrm{C}\)
NOTE 1: Voltage values are with respect to network ground terminal.
electrical characteristics at \(25^{\circ} \mathrm{C}\) free-air temperature (unless otherwise noted)
\begin{tabular}{|c|c|c|c|c|c|}
\hline & PARAMETER & TEST CONDITIONS § & MIN TYP & MAX & UNIT \\
\hline \multirow[b]{2}{*}{\(V_{\text {DI }}\)} & \multirow[b]{2}{*}{Differential-input offset voltage} & & 1 & 3 & mV \\
\hline & & \(\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}\) to \(125^{\circ} \mathrm{C}\) & & 4 & mV \\
\hline \(\mathrm{V}_{\text {Смо }}\) & Common-mode output offset voltage & & 250 & 1000 & \(\mathrm{m} V\) \\
\hline \multirow{3}{*}{\(\mathrm{I}_{\text {in }}\)} & \multirow{3}{*}{Input current} & \(\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}\) & 270 & 700 & nA \\
\hline & & & 450 & 900 & nA \\
\hline & & \(\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}\) & 750 & 1500 & nA \\
\hline \multirow{3}{*}{\(I_{D 1}\)} & \multirow{3}{*}{Differential-input offset current} & \(\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}\) & 12 & 200 & \(n \mathrm{~A}\) \\
\hline & & & 16 & 200 & \(n \mathrm{~A}\) \\
\hline & & \(\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}\) & 38 & 550 & nA \\
\hline \multirow[b]{2}{*}{\(\mathrm{V}_{\text {OM }}\)} & \multirow[b]{2}{*}{Maximum peak-to-peak output voltage} & Single-ended output, \(f=1 \mathrm{kHz}\) & 18 & & V \\
\hline & & Single-ended output, \(f=1 \mathrm{kHz}\), \(\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}\) to \(125^{\circ} \mathrm{C}\) & 14 & & V \\
\hline \(\mathrm{V}_{\text {CMIM }}\) & Maximum common-mode input voltage & & \(\pm 7\) & & V \\
\hline \multirow[t]{2}{*}{Avs} & \multirow[t]{2}{*}{Small-signal single-ended voltage gain} & \(\mathrm{f}=1 \mathrm{kHz}\) & \(20000 \quad 32000\) & & \\
\hline & & \(\mathrm{f}=1 \mathrm{kHz}, \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}\) to \(125^{\circ} \mathrm{C}\) & 10000 & & \\
\hline A VCMS & Small-signal common-mode single-ended voltage gain & \(\mathrm{f}=1 \mathrm{kHz}\) & & 0.9 & \\
\hline CMRR & Small-signal common-mode rejection ratio & \(\mathrm{f}=1 \mathrm{kHz}\) & 100 & & dB \\
\hline BW & Bandwidth ( -3 dB ) & & 45 & & kHz \\
\hline \(\mathrm{z}_{\text {in }}\) & Input impedance & \(f=1 \mathrm{kHz}\) & \(50 \quad 140\) & & \(\mathrm{k} \Omega\) \\
\hline \(\mathrm{z}_{\text {out }}\) & Output impedance & \(\mathrm{f}=1 \mathrm{kHz}\) & 10 & & \(\mathrm{k} \Omega\) \\
\hline SVRR & Supply voltage rejection ratio & \(\triangle \mathrm{V}_{\text {CC }} \leq 0.5 \mathrm{~V}\) & 25 & & \(\mu \mathrm{V} / \mathrm{V}\) \\
\hline \(\mathrm{P}_{\mathrm{T}}\) & Total power dissipation & & 100 & 135 & mW \\
\hline
\end{tabular}
\(\S\) Unless otherwise noted, test conditions include: \(\mathrm{V}_{\mathrm{CC} 1}=+12 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC} 2}=-12 \mathrm{~V}\), ground and \(\mathrm{V}_{\mathrm{D} 1}\) applied, no external load, external 250 -pF capacitor connected between pins (7) and (8) and other frequency-compensation pins open.

\section*{letter symbol and parameter definitions}
\(V_{D I} \quad\) That d-c voltage which must be applied between the input terminals to obtain zero-differential-output voltage. The application of this voltage balances the amplifier.
\(\mathrm{V}_{\mathrm{CMO}}\) That d-c voltage level which exists between either output terminal and ground when the outputs are balanced.
\(I_{\text {in }} \quad\) The current into either input of the amplifier.
\(I_{D I} \quad\) The difference in the currents into the two input terminals when the output is balanced.
\(\mathrm{V}_{\mathrm{OM}}\) The maximum peak-to-peak output voltage swing that can be obtained without clipping when the output is balanced.
\(\mathrm{V}_{\text {CMIM }}\) The maximum common-mode voltage that can be impressed on the input terminals while maintaining differential operation.
CMRR The ratio of the differential-mode voltage gain to the common-mode voltage gain.
BW The range of frequencies within which the open-loop voltage gain is within 3 dB of the mid-frequency value.
\(\mathbf{z}_{\text {in }} \quad\) The impedance between either input terminal and ground with the other input terminal a-c grounded and the output balanced.
\(z_{\text {out }} \quad\) The impedance between either output terminal and ground when the output is balanced.
SVRR The ratio of the change in input offset voltage to the change in power supply voltage which produces the variation.

\section*{compensation requirements}

External capacitance must be connected between pins (7) and (8) to stabilize the amplifier if symmetrical compensation to ground is not used on pins (3) and (5) or pins (1) and (6).

\section*{TYPE SN525 GENERAL-PURPOSE DIFFERENTIAL AMPLIFIER}

\section*{TYPICAL CHARACTERISTICS §}

§ Unless otherwise noted, fest conditions include: \(V_{C C 1}=+12 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC} 2}=-12 \mathrm{~V}\), ground and \(\mathrm{V}_{\mathrm{DI}}\) applied, no external load, external \(250-\mathrm{pF}\) capacitor connected between pins 7 and 8 , and other frequency-compensation pins open.

\section*{TYPICAL CHARACTERISTICS §}

SMALL-SIGNAL SINGLE-ENDED VOLTAGE GAIN


SMALL-SIGNAL SINGLE-ENDED VOLTAGE GAIN vs FREQUENCY


SMALL-SIGNAL SINGLE-ENDED VOLTAGE GAIN


FIGURE 6

SMALL-SIGNAL SINGLE-ENDED VOLTAGE GAIN
vs
FREQUENCY

\(\S\) Unless otherwise noted, test conditions include: \(\mathrm{V}_{\mathrm{CC} 1}=+12 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC} 2}=-12 \mathrm{~V}\), ground and \(\mathrm{V}_{\mathrm{D} 1}\) applied, no external load, external \(250-\mathrm{pF}\) capacitor connected between pins (7) and (8), and other frequency-compensation pins open.

\section*{TYPE SN525 GENERAL-PURPOSE DIFFERENTIAL AMPLIFIER}

\section*{TYPICAL CHARACTERISTICS §}

SMALL-SIGNAL SINGLE-ENDED VOLTAGE GAIN
vs


SMALL-SIGNAL SINGLE-ENDED VOLTAGE GAIN vs
GAIN-CONTROL RESISTOR VALUE


SMALL-SIGNAL SINGLE-ENDED VOLTAGE GAIN
vs

\(\S\) Unless otherwise noted, test conditions include: \(\mathbf{V}_{\mathrm{CC} 1}=+12 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC} 2}=-12 \mathrm{~V}\), ground and \(\mathrm{V}_{\mathrm{DI}}\) applied, no external load, external \(250-\mathrm{pF}\) capacitor connected between pins (7) and (8), and other frequency-compensation pins open.

\section*{TYPICAL UNITY-GAIN CONFIGURATION}


\section*{ \\ \({ }^{\text {® }}\) GENERAL-PURPOSE DIFFERENTIAL AMPLIFIER}

\section*{A SERIES 52 AMPLIFIER}

\section*{featuring}
- Minimum \(\mathbf{Z}_{\text {in }} \ldots 350 \mathbf{k} \Omega\)
- Differential or Class B Power Output

\section*{description}

The SN526 semiconductor-network amplifier features Darlington high-impedance differen-tial-input stages and a Class B output power amplifier with high-voltage-and current-range capabilities. Common-mode input signals are rejected by use of common-mode feedback to the input amplifier.

The SN526, one of Texas Instruments Series 52 catalog line of linear integrated circuits, offers higher reliability, lower cost, smaller size, and less weight than equivalent discretecomponent circuits. Each Series 52 device is a monolithic semiconductor structure comprising diffused resistors and both \(n-p-n\) and \(p-n-p\) transistors.

\section*{mechanical data}

The SN526 is mounted in a glass-to-metal hermetically sealed welded package. Leads are gold-plated \(\mathrm{F}-15 \ddagger\) glass sealing alloy. Approximate weight is 0.1 gram. All external surfaces are metallic and are insulated from leads and circuit. The SN526 is available with formed leads, insulator attached, and/or mounted in a Mech-Pak carrier. See Ordering Instructions.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|c|}{ORDERING INSTRUCTIONS} \\
\hline & \multicolumn{4}{|l|}{NO MECH-PAK CARRIER} & \multicolumn{4}{|l|}{MECH-PAK CARRIER} \\
\hline Lead Length & \multicolumn{4}{|c|}{0.175 Inch} & \multicolumn{4}{|c|}{Not Applicable} \\
\hline Formed Leads & No & No & Yes & Yes & No & No & Yes & Yes \\
\hline Insulators & No & Yes & No & Yes & No & Yes & No & Yes \\
\hline \begin{tabular}{l}
Ordering \\
Suffix
\end{tabular} & None & -6 & -7 & -1 & -2 & -3 & -4 & -5 \\
\hline
\end{tabular}

\(\dagger\) Patented by Texas Instruments.
\(\ddagger\) F-15 is the ASIM designation for an iron-nickel-cobalt alloy containing nominally \(53 \%\) iron, \(29 \%\) nickel, and \(17 \%\) cobalt.

\title{
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
}
\[
\begin{aligned}
& \text { Supply Voltages (See Note 1): Vcc1 . . . . . . . . . . . . . . . . . . . . }+15 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{CC} 2} \text {. . . . . . . . . . . . . . . . . . . . }-15 \mathrm{~V} \\
& \text { Differential Input Voltage . . . . . . . . . . . . . . . . . . . . . . . } 10 \mathrm{~V} \\
& \text { Common-Mode Input Voltage . . . . . . . . . . . . . . . . . . . . . . } \pm 12 \mathrm{~V} \\
& \text { Continuous Total Power Dissipation at (or below) } 100^{\circ} \mathrm{C} \text { Case Temperature (See Note 2) . . . } 250 \mathrm{~mW} \\
& \text { Operating Free-Air Temperature Range . . . . . . . . . . . . . . . . }-55^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C} \\
& \text { Storage Temperature Range . . . . . . . . . . . . . . . . . . . }-65^{\circ} \mathrm{C} \text { to } 150^{\circ} \mathrm{C}
\end{aligned}
\]

NOTES: 1. These voltage values are with respect to network ground.
2. Derate linearly above \(100^{\circ} \mathrm{C}\) case temperature at a rate of \(5 \mathrm{~mW} /\) deg.
electrical characteristics at \(25^{\circ} \mathrm{C}\) free-air temperature (unless otherwise noted)
\begin{tabular}{|c|c|c|c|c|}
\hline PARAMETER & TEST CONDITIONS § & MIN TYP & MAX & UNIT \\
\hline \multirow[b]{2}{*}{Differential-input offset voltage} & & 3 & 17 & mV \\
\hline & \(\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}\) to \(125^{\circ} \mathrm{C}\) & & 20 & mV \\
\hline \(\mathrm{V}_{\text {CMO }}\) Common-mode output offset voltage & & 220 & 750 & mV \\
\hline \multirow{3}{*}{Input current} & \(\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}\) & 9 & 100 & nA \\
\hline & & 50 & 300 & nA \\
\hline & \(\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}\) & 230 & 1000 & nA \\
\hline \multirow{3}{*}{Differential-input offset current} & \(\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}\) & 1.5 & 50 & nA \\
\hline & & 6 & 100 & nA \\
\hline & \(\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}\) & 60 & 500 & nA \\
\hline \multirow[b]{2}{*}{Maximum peak-to-peak output voltage} & \[
\begin{aligned}
& \text { Class B output (See Note 3) } \\
& R_{L}=600 \Omega, f=1 \mathrm{kHz}
\end{aligned}
\] & 11.7 & & V \\
\hline & Class B output (See Note 3)
\[
\begin{aligned}
& \mathrm{R}_{\mathrm{L}}=600 \Omega, \mathrm{f}=1 \mathrm{kHz} \\
& \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C}
\end{aligned}
\] & 10 & & V \\
\hline \(\mathrm{V}_{\text {CMIM }}\) Maximum common-mode input voltage & & \(\pm 7\) & & V \\
\hline \multirow[b]{2}{*}{Small-signal single-ended voltage gain} & \(\mathrm{f}=1 \mathrm{kHz}\) & \(800 \quad 1200\) & & \\
\hline & \(\mathrm{f}=1 \mathrm{kHz}, \quad \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}\) to \(125^{\circ} \mathrm{C}\) & 630 & & \\
\hline A \(_{\text {VCMS }}\) Small-signal single-ended common-mode voltage gain & \(\mathrm{f}=1 \mathrm{kHz}\) & 0.14 & 0.5 & \\
\hline CMRR Small-signal common-mode rejection ratio & \(\mathrm{f}=1 \mathrm{kHz}\) & 77 & & dB \\
\hline BW Bandwidth ( -3 dB ) & & 120 & & kHz \\
\hline \(\mathrm{z}_{\text {in }}\) Input impedance & \(\mathrm{f}=1 \mathrm{kHz}\) & \(0.35 \quad 1\) & & \(M \Omega\) \\
\hline \(\mathrm{P}_{\mathrm{T}} \quad\) Total power dissipation & & 132 & 190 & mW \\
\hline
\end{tabular}
\(\S\) Unless otherwise noted, test conditions include: \(\mathrm{V}_{\mathrm{CC1}}=+12 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC} 2}=-12 \mathrm{~V}\), ground and \(\mathrm{V}_{\mathrm{D} 1}\) applied, no external load, and a \(0.05-\mu \mathrm{F}\) capacitor between pin 3 and ground. All parameters except \(V_{O M}\) are measured with pin 5 grounded and pin \((1)\) open.
Note 3: Pin (5) is connected to pin (6) or pin (10).
letter symbol and parameter definitions
\(V_{D 1}\) That d-c voltage which must be applied between the input terminals to obtain zero-differential-output voltage. The application of this voltage balances the amplifier.
\(\mathrm{V}_{\text {CMO }}\) That d-c voltage level which exists between either output terminal and ground when the outputs are balanced.
\(I_{\text {in }} \quad\) The current into either input of the amplifier.
\(I_{D I}\) The difference in the currents into the two input terminals when the output is balanced.
\(\mathrm{V}_{\mathrm{OM}}\) The maximum peak-to-peak output voltaye swing that can be obtained without clipping when the output is balanced.
\(\mathrm{V}_{\text {CMIM }}\) The maximum common-mode voltage that can be impressed on the input terminals while maintaining differential operation.
CMRR The ratio of the differential-mode voltage gain to the common-mode voltage gain.
BW The range of frequencies within which the open-loop voltage gain is within 3 dB of the mid-frequency value.
\(z_{\text {in }} \quad\) The impedance between either input terminal and ground with the other input terminal a-c grounded and the output balanced.
\(z_{\text {out }} \quad\) The impedance between either output terminal and ground when the output is balanced.

\section*{compensation requirements}

External capacitance must be connected between pin 3 and ground to stabilize the amplifier if symmetrical compensation is not used on pins (6) and (10).

\title{
TYPE SN526 \\ GENERAL-PURPOSE DIFFERENTIAL AMPLIFIER
}

TYPICAL CHARACTERISTICS §

§ Unless otherwise noted, test conditions include: \(\mathbf{V}_{\mathrm{CCl}}=+12 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=-12 \mathrm{~V}\), ground and \(\mathrm{V}_{\mathrm{DI}}\) applied, no external load, and a \(0.05-\mu \mathrm{F}\) capacitor between pin 3) and ground. All parameters except \(V_{O M}\) are measured with pin 5 grounded and pin \((1\) open.

\section*{TYPICAL CHARACTERISTICS §}


MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE
vs
FREQUENCY


FIGURE 7


FREQUENCY RESPONSE TEST CIRCUIT
FIGURE 8
\(\S\) Unless otherwise noted, test conditions include: \(\mathbf{V}_{\mathrm{CC1}}=+12 \mathbf{V}, \mathbf{V}_{\mathrm{CC} 2}=-12 \mathbf{V}\), ground and \(\mathbf{V}_{\mathrm{D} 1}\) applied, no external load, and a \(0.05-\mu \mathbf{F}\) capacitor between pin (3) and ground. All parameters except \(V_{O M}\) are measured with pin 5 grounded and pin \((1\) open.

\section*{TYPICAL CHARACTERISTICS §}

§ Unless otherwise noted, test conditions include: \(\mathbf{V}_{\mathrm{CC1}}=+12 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC} 2}=-12 \mathrm{~V}\), ground and \(\mathrm{V}_{\mathrm{DI}}\) applied, no external load, and a \(0.05-\mu \mathbf{F}\) capacitor between pin 3 and ground. All parameters except \(V_{O M}\) are measured with pin (5) grounded and pin \((1\) open.

TYPE SN526
GENERAL-PURPOSE DIFFERENTIAL AMPLIFIER

\section*{TYPICAL CHARACTERISTICS §}

\(\S\) Unless otherwise noted, test conditions include: \(\mathbf{V}_{\mathrm{CC1}}=+12 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC} 2}=-12 \mathrm{~V}\), ground and \(\mathrm{V}_{\mathrm{DI}}\) applied, no external load, and a \(0.05-\mu \mathrm{F}\) capacitor between pin 3 and ground. All parameters except \(V_{O M}\) are measured with pin 5 grounded and pin 1 open.

\title{
A SERIES 55 HIGH-SPEED SEMICONDUCTOR NETWORK SENSE AMPLIFIER FOR APPLICATION IN MAGNETIC CORE MEMORIES FOR - DIGITAL COMPUTER SYSTEMS • DATA HANDLING SYSTEMS • CONTROL SYSTEMS
}

\section*{description}

The SN5500 sense amplifier detects bipolar (positive or negative) differential-input signals from a magnetic core memory and provides the interface circuitry between the memory unit and the logic circuitry. In performing this function the sense amplifier accepts low-level pulses originating in the memory, discriminates between those representing logical 1 and those representing logical 0 , and converts them to logic levels compatible with standard integrated logic circuitry.

The SN5500 is an amplitude-discriminating sense amplifier incorporating a threshold circuit with a narrow region of uncertainty. Signals of either polarity are accepted. A strobe input is provided so the threshold detector can be enabled when the signal-to-noise ratio is a maximum during the system read cycle and inhibited during the write cycle. It is recommended for core memory application with cycle times as low as two microseconds.

An internal one-shot pulse amplifier provides a standard-width negative-going output pulse when triggered by the threshold detector.

FUNCTIONAL BLOCK DIAGRAM


PULSE TRUTH TABLE
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|l|}{INPUT CONDITION} & \multirow[b]{2}{*}{OUTPUT} \\
\hline INPUT VOLTAGE MAGNITUDE & STROBE INPUT & \\
\hline \(\left|\mathrm{V}_{\text {in }}\right|<\mathrm{V}_{\mathrm{T}}\) & Lo & \(V_{\text {off }}\) \\
\hline \(\left|\mathrm{V}_{\text {in }}\right|<\mathrm{V}_{\mathrm{T}}\) & Hi & \(V_{\text {off }}\) \\
\hline \(\left|\mathrm{V}_{\text {in }}\right|>V_{\text {r }}\) & Lo & \(V_{\text {off }}\) \\
\hline \(\left|\mathrm{V}_{\text {in }}\right|>\mathrm{V}_{\mathrm{T}}\) & Hi & \(V_{\text {on }}\) \\
\hline \(\pm V_{\text {CMR }}\) & Lo & \(V_{\text {off }}\) \\
\hline \(\pm \mathrm{V}_{\text {CMR }}\) & Hi & \(V_{\text {off }}\) \\
\hline
\end{tabular}

\section*{mechanical data}

The SN5500 Semiconductor Network is mounted in a glass-to-metal hermetically sealed welded package. Leads are goldplated F -15 \(\ddagger\) glass-sealing alloy. Approximate weight is 0.1 gram. All external surfaces are metallic and are insulated from leads and circuit. The SN5500 is available with formed leads, insulator attached, and/or mounted in a Mech-Pak carrier. See ordering instructions.

\(\dagger\) Patented by Texas Instruments
\(\ddagger \mathrm{F}-15\) is the ASTM designation for an iron-nickel-cobalt alloy containing nominally \(53 \%\) iron, \(29 \%\) nickel, and \(17 \%\) cobalt.
absolute maximum ratings over operating free-air temperature range

electrical characteristics, \(\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) (unless otherwise noted)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{PARAMETER} & TES & CONDITIONS & MIN & MAX & UNIT \\
\hline \multirow[b]{2}{*}{\(V_{T}\)} & \multirow[t]{2}{*}{Input threshold voltage level} & & \multirow{9}{*}{\[
\begin{aligned}
& \mathrm{V}_{\mathrm{cC1}}=+4.5 \mathrm{v}, \mathrm{~V}_{\mathrm{cC} 2}=-4.5 \mathrm{v}, \\
& \mathrm{~V}_{\text {strobe }}=+2.5 \mathrm{v}, \\
& \mathrm{t}_{\mathrm{p} \mid \text { strobe })}=100 \mathrm{nsec},
\end{aligned}
\]} & 10 & 30 & mv \\
\hline & & \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) & & 15 & 19 & mv \\
\hline \(V_{\text {то }}\) & Input threshold offset voltage & & & & 4 & mv \\
\hline \(\mathrm{R}_{\text {in }}\) & Differential-input resistance & & & 150 & 300 & \(\Omega\) \\
\hline \(I_{s}\) & Strobe input current & & & & 2.5 & ma \\
\hline \(V_{\text {off }}\) & Off output level & \(l_{\text {load }}=-3 \mathrm{ma}\) & & 2.5 & & \(v\) \\
\hline \(V_{\text {on }}\) & On output level & \(\mathrm{I}_{\text {sink }}=3 \mathrm{ma}\) & & & 0.5 & \(v\) \\
\hline \(V_{\text {CMR }}\) & Common-mode rejection voltage & \[
\begin{aligned}
& t_{r}=t_{f}=20 \mathrm{nsec}, \\
& t_{p}=100 \mathrm{nsec} \\
& \hline
\end{aligned}
\] & & 1 & & \(v\) \\
\hline \(\mathrm{P}_{\mathrm{T}}\) & Total power dissipation & & & & 200 & mw \\
\hline
\end{tabular}
switching characteristics, \(\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & PARAMETER & \multicolumn{2}{|r|}{TEST CONDITIONS} & MIN & MAX & UNIT \\
\hline \(\mathrm{t}_{\mathrm{p} \text { (out) }}\) & Output pulse width & \(\mathrm{V}_{\text {diff }}=50 \mathrm{mv}\) & \multirow[t]{3}{*}{\[
\begin{aligned}
& \mathrm{V}_{\mathrm{cC1}}=+4.5 \mathrm{v}, \mathrm{~V}_{\mathrm{cC} 2}=-4.5 \mathrm{v}, \\
& \mathrm{~V}_{\text {strobe }}=+2.5 \mathrm{v}, \\
& \mathrm{t}_{\mathrm{p} \text { (strobel }}=100 \mathrm{nsec}, \\
& \text { See Figure } 4
\end{aligned}
\]} & 200 & 800 & nsec \\
\hline \(\mathrm{t}_{\mathrm{pd}}\) & Propagation delay time & \(\mathrm{V}_{\text {diff }}=50 \mathrm{mv}\) & & & 125 & nsec \\
\hline \(t_{\text {od }}\) & Differential input overload recovery time & \(\mathrm{V}_{\text {diff }}=250 \mathrm{mv}\) & & & 100 & nset \\
\hline
\end{tabular}

\section*{letter symbol and parameter definitions}
\(V_{T}\) - Differential input signal level just sufficient to cause an output when coincident with a strobe signal. See Figure 2.
\(\mathrm{V}_{\mathrm{TO}}\) - Input threshold offset to opposite polarity input signals, \(\left|\mathrm{V}_{\mathrm{T}}(1)-\mathrm{V}_{\mathrm{T}}(10)\right|\).
\(\mathrm{R}_{\text {in }}\) - D-c resistance between input terminals.
\(I_{s} \quad\) - Strobe input current.
\(\mathrm{V}_{\text {off }}\) - High output-voltage level while supplying specified current.
\(\mathrm{V}_{\text {on }}\) - Low output-voltage level while sinking specified current.
\(\mathrm{V}_{\mathrm{CMR}}\) - Common-mode signal that will not cause an output when a strobe signal is present.
\(t_{\text {plout) }}\) - Output pulse width measured at 50 -percent levels (see Figure 4).
\(\mathrm{V}_{\text {diff }}\) - Differential voltage between input terminals.
\(\boldsymbol{t}_{\mathrm{pd}}\) - Propagation delay time from input leading edge to output leading edge measured at 50 -percent levels with \(50-\mathrm{mv}\) input.
\(\boldsymbol{t}_{\text {od }}\) - Strobe delay time after a specified differential overload noise signal required to inhibit an output.


NOTES: 1. \(\mathrm{dV}_{1}\) is the core output voltage developed when a read current pulse is applied to a core in the disturbed logical I state
2. \(d V_{z}\) is the core output voltage developed when a read current pulse is applied to a core in the disturbed logical 0 state.


FIGURE 2 - THRESHOLD CHARACTERISTICS
(Referred to Typical Coincident-Current Memory Core \(d V_{1}\) and \(d V_{z}\) Output Voltage Waveforms)

\section*{PARAMETER MEASUREMENT INFORMATION}


FIGURE 3 - TYPICAL SYSTEM TIMING DIAGRAM

Pulse ( \(50 \Omega\) Source) \(t_{r}, t_{f} \leq 20 \mathrm{nsec}\) Repetition Rate \(=100 \mathrm{kc}\)

Strobe Input ( \(50 \Omega\) Source) \(t_{r}, t_{f} \leq 20 \mathrm{nsec}\)

Output for \(V_{\text {in }}>V_{T}\)

figure 4 - TESt timing diagram for threshold and switching characteristics

SERIES 55 WIDE-BAND VIDEO AMPLIFIERS
FEATURING
Flat Frequency Response with Low Phase-Shift from DC to 40 MHz

\section*{description}

Each of these wide-band video amplifiers features a flat frequency response and low phase-shift from dc to 40 MHz . Differential inputs and outputs are provided which permit them to be used as highfrequency differential amplifiers.

Elements of the Series 55 video-amplifier bar include transistors with transition frequency as high as 1.2 GHz under low-current and low- \(V_{C E}\) conditions. Circuit frequency response from dc to greater than 100 MHz is possible.

\section*{mechanical data}

The SN5510 wide-band video amplifier is mounted in a glass-tometal hermetically sealed welded package meeting TO-89. Leads are gold-plated \(\mathrm{F}-15 \ddagger\) glass-sealing alloy. Approximate weight is 0.1 gram. All external surfaces are metallic and are insulated from leads and circuit. The SN5510 is available with formed leads, insulator attached, and/or mounted in a Mech-Pak carrier. See


\section*{SN5510 ORDERING INSTRUCTIONS}
\begin{tabular}{|l|c|c|c|c|c|c|c|c|}
\hline & NO MECH-PAK CARRIER & \multicolumn{5}{|c|}{ MECH-PAK CARRIER } \\
\hline Lead Length & \multicolumn{3}{|c|}{0.175} & Inch & \multicolumn{3}{c|}{ Not Applicable } \\
\hline Formed Leads & No & No & Yes & Yes & No & No & Yes & Yes \\
\hline Insulators & No & Yes & No & Yes & No & Yes & Ho & Yes \\
\hline Ordering Suffix & Hone & -6 & -7 & -1 & -2 & -3 & -4 & -5 \\
\hline
\end{tabular} Ordering Instructions.


The SN5510L package outline is same as JEDEC TO-99 except for diameter of standoff.


\footnotetext{
\(\dagger\) Patented by Texas Instruments
\(\ddagger \mathrm{F}-15\) is the ASTM designation for an iron-nickel-cobalt alloy containing nominally \(53 \%\) iran, \(\mathbf{2 9 \%}\) nickel, and \(\mathbf{1 7 \%}\) cobalt.
}

\section*{absolute maximum ratings over operating free-air temperature range (unless otherwise noted)}


NOTE 1: These voltage values are with respect to network ground.
electrical characteristics, \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC} 1}=+6 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}_{2}}=-6 \mathrm{~V}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & PARAMETER & TEST FIGURE & TEST CONDITIONS & MIN & TYP & MAX & UNIT \\
\hline \(\mathrm{V}_{\mathrm{DO}}\) & Differential-output offset voltage & 1 & & & 0.5 & 1.3 & V \\
\hline \(V_{\text {CMO(av) }}\) & Average common-mode output offset voltage & 1 & & 2.6 & 3.1 & 3.5 & V \\
\hline \(\mathrm{I}_{\text {in }}\) & Input current & 1 & & & 40 & 80 & \(\mu \mathrm{A}\) \\
\hline \(\mathrm{I}_{\mathrm{DI}}\) & Differential-input offset current & 1 & & & 3 & 20 & \(\mu \mathrm{A}\) \\
\hline \(\mathrm{D}_{\mathrm{s}}\) & Single-ended output distortion & 2 & \[
\begin{aligned}
& \text { Load resistance }=5 \mathrm{k} \Omega, \\
& \text { input distortion }<0.2 \%, \\
& \mathrm{~V}_{\text {out }}=1 \mathrm{Vrms}, \mathrm{f}=10 \mathrm{kHz}
\end{aligned}
\] & & 1.5 & 5 & \% \\
\hline \(V_{\overline{N(i n)}}\) & Equivalent average input noise voltage & 3 & \[
\begin{aligned}
& \text { Single-ended, } R_{S}=0 \\
& f=10 \mathrm{~Hz} \text { to } 500 \mathrm{kHz}
\end{aligned}
\] & & 5 & & \(\mu \mathrm{V}\) \\
\hline \(V_{\text {CMIM }}\) & Maximum common-mode input voltage & & & & \(\pm 1\) & & V \\
\hline \(\mathrm{A}_{\mathrm{vs}}\) & Small-signal voltage gain & 2 & \[
\begin{aligned}
& \text { Single-ended, load resistance }=5 \mathrm{k} \Omega \\
& f=100 \mathrm{kHz}
\end{aligned}
\] & 75 & 93 & 110 & \\
\hline \(\mathrm{A}_{\mathrm{vcm}}\) & Common-mode-input voltage gain & 4 & Single-ended, load resistance \(=5 \mathrm{k} \Omega\), \(V_{\text {in }}=0.3 \mathrm{Vrms}, f=100 \mathrm{kHz}\) & & -45 & --30 & dB \\
\hline CMRR & Common-mode rejection ratio & 4 & Load resistance \(=5 \mathrm{k} \Omega, \mathrm{f}=100 \mathrm{kHz}\) & & 85 & & dB \\
\hline BW & Bandwidth (-3 dB) & 2 & & & 40 & & MHz \\
\hline \(\mathrm{r}_{\text {in }}\) & Input resistance & 5 & \(f=100 \mathrm{kHz}\) & & 6 & & kS \\
\hline \(\mathrm{C}_{\text {in }}\) & Input capacitance & 5 & \(\mathrm{f}=100 \mathrm{kHz}\) & & 7 & & pF \\
\hline \(\mathrm{z}_{\text {out }}\) & Output impedance & 5 & \(\mathrm{f}=100 \mathrm{kHz}\) & & 35 & & S \\
\hline \(\mathrm{P}_{\mathrm{T}}\) & Total power dissipation & 1 & No input signal, no external load & & 165 & 220 & mW \\
\hline \(t_{r}\) & Rise time & 6 & Single-ended, \(\mathrm{V}_{\text {in }}=5 \mathrm{mV}\) & & 9 & 12 & ns \\
\hline \(\mathrm{t}_{\mathrm{f}}\) & Fall time & 6 & Single-ended, \(\mathrm{V}_{\mathrm{in}}=5 \mathrm{mV}\) & & 9 & 12 & ns \\
\hline
\end{tabular}

\section*{TYPES SN5510, SN5510L WIDE-BAND VIDEO AMPLIFIERS}

\section*{TYPICAL CHARACTERISTICS §}


\[
\S v_{\mathrm{CC} 1}=+6 \mathrm{~V} \text { and } \mathrm{v}_{\mathrm{CC} 2}=-6 \mathrm{v}
\]

figure 17 - OSCILLOSCOPE PRESENTATION OF PULSE RESPONSE

\section*{TYPICAL CHARACTERISTICS \&}

SMALL-SIGNAL VOLTAGE GAIN


FIGURE 11


FIGURE 13

SMALL-SIGNAL VOLTAGE GAIN VARIATION
vs


FIGURE 12

SMALL-SIGNAL VOLTAGE GAIN


FIGURE 14

\footnotetext{
§Unless otherwise noted \(\mathbf{v C C 1}=+6 \mathbf{V}, \mathbf{v}_{\mathrm{CC} 2}=-6 \mathrm{~V}\).
}

\title{
TYPES SN5510, SN5510L WIDE-BAND VIDEO AMPLIFIERS
}

\section*{letter symbol and parameter definitions}
\(V_{D O} \quad\) The d-c differential voltage that exists between the output terminals when the input terminals are at ground.
\(\mathrm{V}_{\text {CMO(av) }}\) The average of the d -c output voltages with respect to ground when the input terminals are grounded.
\(I_{D I} \quad\) The difference in the currents into the two input terminals.
\(V_{\text {CMIM }} \quad\) The maximum common-mode voltage that can be impressed on the input terminals while maintaining differential operation.

CMRR The ratio of the differential-mode voltage gain to the common-mode voltage gain.
BW The range of frequencies within which the open-loop voltage gain is within 3 dB of the mid-frequency value.

PARAMETER MEASUREMENT INFORMATION
test circuits

test circuits (continued)
(

\section*{TYPICAL CHARACTERISTICS :}

§Unless otherwise noted \(V_{C C 1}=+6 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC} 2}=-6 \mathrm{~V}\).

\section*{TI Microlibrary Books for Creative Circuit Designers}

\author{
AUDIO AND AM/FM CIRCUIT DESIGN HANDBOOK 220 Pages • 79 Illustrations • Published June '66 • \$3.00 \\ TV CIRCUIT DESIGN HANDBOOK 126 Pages • 65 Illustrations • Published June '66 • \$2.00 \\ TI SERIES 54/74 INTEGRATED CIRCUITS \\ 204 Pages - 80 Illustrations - Published May '66 - \$3.00 \\ Transistor Circuit Design \\ 523 pages • 526 illustrations • published Jan. '63 • \(\$ 15.00\) \\ Field-effect Transistors - L. J. Sevin \\ 138 pages • 137 illustrations • published April '65 • \$10.00 \\ Silicon Semiconductor Technology • W. R. Runyan
256 pages • 301 illustrations \(\bullet\) published May '65 \(~ \$ 16.50\) \\ Communications Handbook (in two parts) \\ 366 pages total - 417 illustrations - published Mar. '65 • \$3.50/set
}

Solid-State Communications
Design of Communications Equipment Using Semiconductors; a hardback edition of Communications Handbook.

366 pages • 417 illustrations • published April '66 • \$12.50

Power Seminar
214 pages - 149 illustrations • published Nov. '64 • \(\$ 2.00\)

Computer Seminar
127 pages • 106 illustrations • revised May '65 • \$2.00

Terms: U.S.: F.O.B. destination, bulk rate. method of shipment, add shipp
method of shipment, add shipping charges
Indicate method of shipment, add shipping charges.

\section*{HIGH-SPEED SATURATED TRANSISTOR-TRANSISTOR LOGIC CIRCUITS FOR GENERAL-PURPOSE DIGITAL SYSTEM APPLICATIONS}

\section*{description}

Series 74 integrated circuits have been designed and characterized for high-speed, general-purpose digital applications where high d-c noise margin and relatively low power dissipation are important system considerations. Definitive specifications are provided for operating characteristics over the temperature range of \(0^{\circ} \mathrm{C}\) to \(70^{\circ} \mathrm{C}\). This logic series includes the basic gates, flip-flop elements, and complex logic and storage elements needed to perform all functions required of general purpose industrial digital systems.


TYPE SN7400 PRIOR TO CAPPING

\section*{features}

\section*{LOW SYSTEM COST}
- maximum number of circuits per package through use of 14-lead package

\section*{OPTIMUM CIRCUIT PERFORMANCE}
- high speed - typical gate propagation delay time of 13 ns
- high d-c noise margin - typically one volt
- low output impedance provides low a-c noise susceptibility
- waveform integrity over full range of loading and temperature conditions
- low power dissipation - 10 mW per gate at \(\mathbf{5 0 \%}\) duty cycle
- full fan-out of 10


\footnotetext{
\(\dagger\) Patented by Texas Instruments.
}


TEXAS INSTRUMENTS
INCORPORATED
SEMICONDUCTOR-COMPONENTS DIVISION POST OFFICE BOX 5012 - DALLAS. TEXAS 75222

\section*{design characteristics}

Series 74 digital integrated circuits effect an optimization between saturated logic circuitry and monolithic semiconducfor technology yielding high performance at lowest cost. In discrete-component circuitry maximum use is made of lower cost components (diodes and resistors) instead of the higher priced transistors. However, in monolithic circuitry it costs no more to build transistors than diodes or resistors. Therefore, in Series 74, transistors are used to buffer the fluctuations in currents that occur as resistor values change. Also, the Series 74 multiple-emitter transistor can easily be built in a monolithic bar to eliminate the need for conventional input diodes.

\section*{circuit operation}

The transistor-transistor logic (TTL) used in Series 74 is analogous to diode-transistor logic (DTL) in certain respects. As shown in figure \(A\), a low voltage at inputs \(A\) or \(B\) will allow current to flow through the diode associated with the low input, and no drive current will pass through diode \(D_{3}\). If inputs \(A\) and \(B\) are raised to a high voltage, drive current will then pass through diode \(D_{3}\).


In Series 74 TTL circuitry, the multiple-emitter transistor performs the same function as the diodes in DTL (see figure B). However, the transistor action of the multiple-emitter transistor causes transistor \(Q_{1}\) to turn-off more rapidly, thus providing an inherent switching-time advantage over the DTL circuit.
Although one-volt d-c noise margins are typical for Series 74 circuits, an absolute guarantee of 400 millivolts is assured for every unit. This is accomplished by testing each output and input as shown in figures \(C\) and \(D\).



Each output is tested to ensure that the logical 1 output voltage will not fall below 2.4 volts. This is done with full fan-out, lowest \(\mathrm{V}_{\mathrm{CC}}\), and 0.8 volt on the input -400 mV more than the logical 0 maximum.

Each output is tested to ensure that the logical 0 output voltage will not exceed 0.4 volt. This is done with full fanout, lowest \(\mathrm{V}_{\mathrm{CC}}\), and 2 volts on the input -400 mV less than the logical 1 minimum.

In actual system operation, the majority of circuits do not experience worst-case conditions of fan-out, supply voltage, temperature, and input voltage simultaneously. In addition, the threshold voltage of the Series 74 circuits is about 1.5 volts. These characteristics allow a larger voltage change on an input without false triggering. This typical noise margin is shown in figure \(E\).


Figure E - Typical D-C Margin vs Temperafure
Another important feature of the design is the output configuration which both supplies current (in the logical 1 state) and sinks current (in the logical 0 state) from a low impedance. Typically, logiral 0 output impedance is \(12 \Omega\) and logical 1 output impedance is \(70 \Omega\). This low output impedance in either state rejects capacitively coupled a-c pulses and ensures small R-C time constants which preserve waveshape integrity.
standard line summary
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
SN7400 See Page 5005 \\
QUADRUPLE 2-INPUT POSITIVE NAND GATE
\end{tabular} & \begin{tabular}{l}
SN7410 See Page 5006 \\
TRIPLE 3-INPUT POSITIVE NAND GATE
\end{tabular} & SN7420 See Page 5007 &  \\
\hline  & \begin{tabular}{l}
SN7450 See Page 5010 \\
EXPANDABLE DUAL 2-WIDE 2-INPUT AND-OR-INVERT GATE
\end{tabular} & \begin{tabular}{l}
SN7451 See Page 5010 \\
DUAL 2-WIDE 2-INPUT AND-OR-INVERT GATE
\end{tabular} & \begin{tabular}{l}
SN7453 See Page 5012 \\
EXPANDABLE 4-WIDE 2-INPUT AND-OR-INVERT GATE
\end{tabular} \\
\hline \begin{tabular}{l}
SN7454 See Page 5012 \\
4-WIDE 2-INPUT AND-OR-INVERT GATE
\end{tabular} & \begin{tabular}{l}
SN7460 See Page 5014 \\
DUAL 4-INPUT EXPANDER
\end{tabular} & \begin{tabular}{l}
SN7470 See Page 5015 \\
J-K FLIP-FLOP
\end{tabular} & J-K MASTER-SLAVE FLIP-FLOP \\
\hline DUAL J-K MASTER-SLAVE FLIP-FLOP & \multicolumn{2}{|c|}{\begin{tabular}{l}
SN7474 See Page 5024 \\
DUAL D-TYPE \\
EDGE-TRIGGERED FLIP-FLOP
\end{tabular}} & \begin{tabular}{l}
SN7480 See Page 5027 \\
GATED FULL ADDER
\end{tabular} \\
\hline
\end{tabular}

\section*{absolute maximum ratings over operating free-air temperature range (unless otherwise noted)}

Supply Voltage \(\mathrm{V}_{\mathrm{cc}}\) (See Note 1) . . . . . . . . . . . . . . . . . . . . . . 7 V
Input Voltage \(\mathrm{V}_{\text {in }}\) (See Notes 1 and 2) . . . . . . . . . . . . . . . . . . . . 5.5 V
Operating Free-Air Temperature Range . . . . . . . . . . . . . . . . \(0^{\circ} \mathrm{C}\) to \(70^{\circ} \mathrm{C}\)
Storage Temperature Range . . . . . . . . . . . . . . . . . . . \(-65^{\circ} \mathrm{C}\) to \(150^{\circ} \mathrm{C}\)
NOTES: 1. Voltage values are with respect to network ground terminal.
2. Input signals must be zero or positive with respect to network ground terminal.

\section*{logic definition}

Series 74 logic is defined in terms of standard POSITIVE LOGIC using the following definitions:
\[
\begin{aligned}
\text { LOW VOLTAGE } & =\text { LOGICAL } 0 \\
\text { HIGH VOLTAGE } & =\text { LOGICAL } 1
\end{aligned}
\]

\section*{input-current requirements}

Input-current requirements reflect worst-case conditions for \(T_{A}=0^{\circ} \mathrm{C}\) to \(70^{\circ} \mathrm{C}\) and \(\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}\) to 5.25 V . Each input of the multiple-emitter inpur transistor requires that no more than -1.6 mA flow out of the input at a logical 0 voltage level; therefore, one load \((N=1)\) is -1.6 mA maximum. Each input requires current into the input at a logical 1 voltage level. This current is \(40 \mu \mathrm{~A}\) maximum for each emitter input. Currents into the input terminals are specified as positive values. Arrows on the \(d\)-c test circuits indicate the actual direction of current flow.

\section*{fan-out capability}

Fan-out reflects the ability of an output to sink current from a number of loads ( N ) at a logical 0 voltage level and to supply current at a logical 1 voltage level. Each standard output is capable of sinking current or supplying current to 10 loads \((N=10)\). The buffer gate is capable of sinking current or supplying current to 30 loads ( \(N=30\) ). The carry output \(\left(C_{n+1}\right)\) of the full adder is capable of driving 5 loads ( \(N=5\) ) and the \(A^{\star}\) and \(B^{\star}\) nodes may be used to drive 3 loads ( \(N=3\) ). Load currents (out of the output terminal) are specified as negative values. Arrows on the d-c test circuits indicate the actual direction of current flow.

\section*{unused inputs}

For optimum switching times, unused gate inputs should be tied to a positive voltage source of 2.4 V to 5.5 V . This eliminates the distributed capacitance associated with the floating input-transistor emitter, bond wire, and package lead, and ensures that no degradation will occur in the propagation delay times. Supply voltage \(\mathrm{V}_{\mathrm{cc}}\), if regulated to 5.5 V maximum, may be used.

If the supply voltage \(\mathrm{V}_{\mathrm{cc}}\) cannot be limited to 5.5 V the following alternatives are recommended:
a. Connect unused gate inputs to an independent supply voltage source of 2.4 V to 5.5 V .
b. Connect unused inputs to a used input if maximum fan-out of the driving output will not be exceeded.
In all cases, unused J \({ }^{\star}\) and \(K^{\star}\) inputs of the SN7470 must be connected to ground.
Instructions for terminating unused inputs of the SN7480 are provided in the applications shown for that device.
schematic (each gate)


Component values shown are nominal.

\[
\begin{aligned}
& \text { positive logic } \\
& Y=\overline{A B}
\end{aligned}
\]

\section*{recommended operating conditions}
\[
\begin{aligned}
& \text { Supply Voltage } \mathrm{V}_{\mathrm{Cc}} \text {. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . } 4.75 \mathrm{~V} \text { to } 5.25 \mathrm{~V} \\
& \text { Fan-Out From Each Output, } N
\end{aligned}
\]
electrical characteristics, \(\mathrm{T}_{\mathrm{A}}=\mathbf{0}^{\circ} \mathrm{C}\) to \(70^{\circ} \mathrm{C}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline PARAMETER & \[
\begin{gathered}
\text { TEST } \\
\text { FIGURE }
\end{gathered}
\] & \multicolumn{2}{|r|}{TEST CONDITIONS} & MIN & TYP & MAX & UNIT \\
\hline \begin{tabular}{l}
Logical I input voltage required \\
\(V_{\text {in(1) }}\) at all input terminals to ensure logical 0 level at output
\end{tabular} & 1 & \(\mathrm{V}_{\mathrm{cc}}=4.75 \mathrm{~V}\) & \(\mathrm{V}_{\text {out (0) }} \leq 0.4 \mathrm{~V}\) & 2 & & & V \\
\hline \begin{tabular}{l}
Logical 0 input voltage required \\
\(V_{i n(0)}\) at any input terminal to ensure logical 1 level at output
\end{tabular} & 2 & \(\mathrm{V}_{\mathrm{cc}}=4.75 \mathrm{~V}\) & \(V_{\text {out(1) }} \geq 2.4 \mathrm{~V}\) & & & 0.8 & V \\
\hline \(\mathbf{V}_{\text {out (1) }}\) Logical 1 output voltage & 2 & \[
\begin{aligned}
& \mathbf{v}_{\mathrm{cc}}=4.75 \mathrm{~V} \\
& \mathrm{I}_{\text {lond }}=-400 \mu \mathrm{~A}
\end{aligned}
\] & \[
\mathrm{V}_{\mathrm{in}}=0.8 \mathrm{~V}
\] & 2.4 & \(3.3 \ddagger\) & & V \\
\hline \(\mathbf{V}_{\text {out (0) }}\) Logical 0 output voltage & 1 & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{cc}}=4.75 \mathrm{~V} \\
& \mathrm{I}_{\text {sink }}=16 \mathrm{~mA}
\end{aligned}
\] & \[
v_{i n}=2 v,
\] & & 0.22 \(\ddagger\) & 0.4 & V \\
\hline \(\mathrm{I}_{\text {in(0) }}\) Logical 0 level input current (each input) & 3 & \(\mathrm{V}_{\text {cc }}=5.25 \mathrm{~V}\), & \(\mathrm{V}_{\text {in }}=0.4 \mathrm{~V}\) & & & -1.6 & mA \\
\hline & 4 & \(\mathrm{V}_{\mathrm{cc}}=5.25 \mathrm{~V}\) & \(\mathrm{V}_{\text {in }}=2.4 \mathrm{~V}\) & & & 40 & \(\mu \mathrm{A}\) \\
\hline & 4 & \(\mathrm{V}_{\mathrm{cc}}=5.25 \mathrm{~V}\), & \(\mathrm{V}_{\mathrm{in}}=5.5 \mathrm{~V}\) & & & 1 & mA \\
\hline Ios Short-circuit output current \(\dagger\) & 5 & \(\mathrm{V}_{\mathrm{cc}}=5.25 \mathrm{~V}\), & & -18 & & -55 & mA \\
\hline \(\mathrm{I}_{\mathrm{CC}(0)}\) Logical 0 level supply current (each gate) & 6 & \(\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V}\) & \(\mathrm{V}_{\text {in }}=5 \mathrm{~V}\) & & 3 \(\ddagger\) & & mA \\
\hline \({ }^{\text {CCCII }}\) Logical 1 level supply current (each gate) & 6 & \(\mathrm{V}_{c c}=5 \mathrm{~V}\), & \(\mathrm{V}_{\mathrm{in}}=0\) & & \(1 \ddagger\) & & mA \\
\hline
\end{tabular}
switching characteristics, \(V_{C C}=5 \mathrm{~V}, \mathbf{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{N}=\mathbf{1 0}\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline PARAMETER & \begin{tabular}{c} 
TEST \\
FIGURE
\end{tabular} & TEST CONDITIONS & MIN & TYP & MAX
\end{tabular} UNIT
\(\dagger\) Not more than one oulput should be shorted at a time.
\(\ddagger\) These typical values are at \(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\).

\section*{schematic (each gate)}


Component values shown are nominal.


\section*{recommended operating conditions}
\[
\begin{aligned}
& \begin{array}{l}
\text { Supply Voltage } \mathrm{V}_{\mathrm{cc}} \\
\text { Fan-Out }
\end{array} \text {. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . } 4.75 \text { V to } 5.25 \text { V } \\
& \text { Output, } \mathrm{N}
\end{aligned} \text {. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . } 1 \text { to } 10 \text {. }
\]
electrical characteristics, \(\mathrm{T}_{\mathrm{A}}=\mathbf{0}^{\circ} \mathrm{C}\) to \(70^{\circ} \mathrm{C}\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline PARAMETER & \[
\begin{gathered}
\text { TEST } \\
\text { FIGURE }
\end{gathered}
\] & TEST CONDITIONS & MIN & TYP MAX & UNIT \\
\hline \begin{tabular}{l}
Logical 1 input voltage required \\
\(V_{\text {in(1) }}\) at all input terminals to ensure logical 0 level at output
\end{tabular} & 1 & \(\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \quad \mathrm{~V}_{\text {out }}(0) \leq 0.4 \mathrm{~V}\) & 2 & & V \\
\hline \begin{tabular}{l}
Logical 0 input voltage required \\
\(V_{\text {in(0) }}\) at any input terminal to ensure logical 1 level at output
\end{tabular} & 2 & \(\mathrm{V}_{\text {cC }}=4.75 \mathrm{~V}, \quad \mathrm{~V}_{\text {out }(1)} \geq 2.4 \mathrm{~V}\) & & 0.8 & V \\
\hline \(\mathrm{V}_{\text {out }(1)}\) Logical 1 output voltage & 2 & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{cc}}=4.75 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{in}}=0.8 \mathrm{~V}, \\
& \mathrm{I}_{\text {load }}=-400 \mu \mathrm{~A}
\end{aligned}
\] & 2.4 & 3.3才 & V \\
\hline \(\mathrm{V}_{\text {out }(0)}\) Logical 0 output voltage & 1 & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{cc}}=4.75 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{in}}=2 \mathrm{~V} \\
& \mathrm{I}_{\text {sink }}=16 \mathrm{~mA}
\end{aligned}
\] & & 0.22¥ 0.4 & V \\
\hline \(\mathrm{I}_{\text {in(0) }}\) Logical 0 level input current (each input) & 3 & \(\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \quad \mathrm{~V}_{\text {in }}=0.4 \mathrm{~V}\) & & -1.6 & mA \\
\hline & 4 & \(\mathrm{V}_{\mathrm{cc}}=5.25 \mathrm{~V}, \quad \mathrm{~V}_{\text {in }}=2.4 \mathrm{~V}\) & & 40 & \(\mu \mathrm{A}\) \\
\hline in(1) & 4 & \(\mathrm{V}_{\mathrm{cc}}=5.25 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{in}}=5.5 \mathrm{~V}\) & & 1 & mA \\
\hline Ios Short-circuit output current \(\dagger\) & 5 & \(\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}\) & -18 & -55 & mA \\
\hline \(\mathrm{I}_{\mathrm{CC}(0)}\) Logical 0 level supply current (each gate) & 6 & \(\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V}, \quad \mathrm{~V}_{\text {in }}=5 \mathrm{~V}\) & & \(3 \ddagger\) & mA \\
\hline \(\mathrm{I}_{\mathrm{CC}}(1)\) Logical 1 level supply current (each gate) & 6 & \(V_{c c}=5 \mathrm{~V}, \quad V_{\text {in }}=0\) & & \(1 \ddagger\) & mA \\
\hline
\end{tabular}
switching characteristics, \(V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}, \mathrm{N}=\mathbf{1 0}\)
\begin{tabular}{|cc|c|c|cc|c|}
\hline & PARAMETER & TEST & TEST CONDITIONS & MIN & TYP & MAX
\end{tabular} UNIT \begin{tabular}{c} 
FIGURE
\end{tabular}
†Not more than one output should be shorted at a time.
\(\ddagger\) These typical values are at \(V_{C C}=5 \mathrm{~V}_{\mathrm{C}} \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\).

\section*{schematic (each gate)}


Component values shown are nominal.

recommended operating conditions
Supply Voltage \(\mathrm{V}_{\mathrm{CC}}\). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.75 V to 5.25 V Fan-Out From Each Output, N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 to 10
electrical characteristics, \(\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\) to \(70^{\circ} \mathrm{C}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline PARAMETER & TEST FIGURE & \multicolumn{2}{|r|}{TEST CONDITIONS} & MIN & TYP MAX & UNIT \\
\hline \begin{tabular}{l}
Logical 1 input voltage required \\
\(\mathrm{V}_{\mathrm{in}(1)}\) at all input terminals to ensure logical 0 level at output
\end{tabular} & 1 & \(\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}\) & \(\mathrm{V}_{\text {out }(0)} \leq 0.4 \mathrm{~V}\) & 2 & & V \\
\hline \begin{tabular}{l}
Logical 0 input voltage required \\
\(\mathrm{V}_{\mathrm{in}(0)}\) at any input terminal to ensure logical 1 level at output
\end{tabular} & 2 & \(\mathrm{V}_{\mathrm{cc}}=4.75 \mathrm{~V}\) & \(\mathrm{V}_{\text {out(1) }} \geq 2.4 \mathrm{~V}\) & & 0.8 & V \\
\hline \(\mathrm{V}_{\text {out (1) }}\) Logical 1 output voltage & 2 & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V} \\
& \mathrm{I}_{\text {load }}=-400 \mu \mathrm{~A}
\end{aligned}
\] & \[
v_{\mathrm{in}}=0.8 \mathrm{~V}
\] & 2.4 & \(3.3 \ddagger\) & V \\
\hline \(\mathrm{V}_{\text {out (0) }}\) Logical 0 output voltage & 1 & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{cc}}=4.75 \mathrm{~V}, \\
& \mathrm{I}_{\text {sink }}=16 \mathrm{~mA}
\end{aligned}
\] & \[
v_{i n}=2 v,
\] & & \(0.22 \ddagger 0.4\) & V \\
\hline \(\mathrm{I}_{\text {in(0) }}\) Logical 0 level input current (each input) & 3 & \(\mathrm{V}_{\mathrm{cc}}=5.25 \mathrm{~V}\) & \(\mathrm{V}_{\text {in }}=0.4 \mathrm{~V}\) & & -1.6 & mA \\
\hline 1 & 4 & \(\mathrm{V}_{c c}=5.25 \mathrm{~V}\), & \(\mathrm{V}_{\text {in }}=2.4 \mathrm{~V}\) & & 40 & \(\mu \mathrm{A}\) \\
\hline \(1)\) & & \(\mathrm{V}_{\mathrm{cc}}=5.25 \overline{\mathrm{~V}}_{\text {, }}\) & \(\mathrm{V}_{\text {in }}=5.5 \mathrm{~V}\) & & 1 & mA \\
\hline \(\mathrm{I}_{\text {OS }}\) Short-circuit output current \(\dagger\) & 5 & \(\mathrm{V}_{\mathrm{Cc}}=5.25 \mathrm{~V}\) & & -18 & -55 & mA \\
\hline \({ }^{\mathrm{I} C(0)}\) Logical 0 level supply current (each gate) & 6 & \(\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V}\) & \(\mathrm{V}_{\text {in }}=5 \mathrm{~V}\) & & 3 \(\ddagger\) & mA \\
\hline \(\mathrm{I}_{\mathrm{CC}(1)}\) Logical 1 level supply current (each gate) & 6 & \(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}\), & \(\mathrm{V}_{\text {in }}=0\) & & \(1 \ddagger\) & mA \\
\hline
\end{tabular}
switching characteristics, \(\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{N}=10\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{PARAMETER} & TEST FIGURE & TEST CONDITIONS & MIN & TYP & MAX & UNIT \\
\hline \({ }^{\dagger} \mathrm{pdo}\) & Propagation delay time to logical 0 level & 50 & \(\mathrm{C}_{1}=15 \mathrm{pF}\) & & 8 & 15 & ns \\
\hline \({ }^{\text {p }}\) d1 & Propagation delay time to logical 1 level & 50 & \(\mathrm{C}_{1}=15 \mathrm{pF}\) & & 18 & 29 & ns \\
\hline
\end{tabular}
\(\dagger\) Not more than one output should be shorted at a time.
\(\ddagger\) These typical values are at \(\mathbf{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\).

\section*{schematic}


Component values shown are nominal.


\section*{recommended operating conditions}

Supply Voltage \(\mathrm{V}_{\mathrm{CC}}\). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.75 V to 5.25 V
fan-Out From Output, N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 to 10
electrical characteristics, \(\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\) to \(70^{\circ} \mathrm{C}\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline PARAMETER & \[
\begin{gathered}
\text { TEST } \\
\text { FIGURE }
\end{gathered}
\] & TEST CONDITIONS & MIN & TYP MAX & UNIT \\
\hline \begin{tabular}{l}
Logical 1 input voltage required \\
\(V_{\text {in(1) }}\) at all input terminals to ensure logical 0 level at output
\end{tabular} & 1 & \(\mathrm{V}_{\mathrm{cc}}=4.75 \mathrm{~V}, \quad \mathrm{~V}_{\text {out }(0)} \leq 0.4 \mathrm{~V}\) & 2 & & V \\
\hline \begin{tabular}{l}
Logical 0 input voltage required \\
\(V_{\text {in }(0)}\) at any input terminal to ensure logical 1 level at output
\end{tabular} & 2 & \(\mathrm{v}_{\mathrm{cc}}=4.75 \mathrm{~V}, \quad \mathrm{v}_{\text {out }(1)} \geq 2.4 \mathrm{~V}\) & & 0.8 & V \\
\hline \(\mathrm{V}_{\text {out(1) }}\) Logical 1 output voltage & 2 & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{cc}}=4.75 \mathrm{~V}, \quad \mathrm{~V}_{\text {in }}=0.8 \mathrm{~V}, \\
& \mathrm{I}_{\text {load }}=-400 \mu \mathrm{~A}
\end{aligned}
\] & 2.4 & \(3.3 \ddagger\) & V \\
\hline \(\mathrm{V}_{\text {out (0) }}\) Logical 0 output voltage & 1 & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{cc}}=4.75 \mathrm{~V}, \quad \mathrm{~V}_{\text {in }}=2 \mathrm{~V} \\
& \mathrm{I}_{\text {sink }}=16 \mathrm{~mA}
\end{aligned}
\] & & 0.22¢ 0.4 & V \\
\hline \(\mathrm{I}_{\text {in(0) }}\) Logical 0 level input current (each input) & 3 & \(\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}\), \(\mathrm{V}_{\text {in }}=0.4 \mathrm{~V}\) & & -1.6 & mA \\
\hline & 4 & \(\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \quad \mathrm{~V}_{\text {in }}=2.4 \mathrm{~V}\) & & 40 & \(\mu \mathrm{A}\) \\
\hline inf(1) & 4 & \(\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \quad \mathrm{~V}_{\text {in }} \doteq 5.5 \mathrm{~V}\) & & 1 & mA \\
\hline \(\mathrm{I}_{\text {OS }}\) Short-circuit output current & 5 & \(\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}\) & -18 & -55 & mA \\
\hline \({ }^{1} \mathrm{CC}(0)\) Logical 0 level supply current & 6 & \(V_{c c}=5 \mathrm{~V}, \quad V_{\text {in }}=5 \mathrm{~V}\) & & \(3 \ddagger\) & mA \\
\hline \({ }^{\text {CCC(1) }}\) Logical 1 level supply current & 6 & \(\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{in}}=0\) & & \(1 \ddagger\) & mA \\
\hline
\end{tabular}
switching characteristics, \(V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}, \mathrm{N}=\mathbf{1 0}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{PARAMETER} & \[
\begin{aligned}
& \text { TEST } \\
& \text { FIGURE }
\end{aligned}
\] & TEST CONDITIONS & MIN & TYP & MAX & UNIT \\
\hline \(t_{\text {pdo }}\) & Propagation delay time to logical 0 level & 50 & \(\mathrm{C}_{1}=15 \mathrm{pF}\) & & 8 & 15 & ns \\
\hline \({ }^{\text {p }}\) d1 & Propagation delay time to logical 1 level & 50 & \(\mathrm{C}_{1}=15 \mathrm{pF}\) & & 18 & 29 & ns \\
\hline
\end{tabular}
\(\ddagger\) These typical values are at \(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\).
schematic (each gate)


\section*{recommended operating conditions}

Supply Voltage \(\mathrm{V}_{\mathrm{CC}}\)
4.75 V to 5.25 V

Fan-Out From Output, \(N\)
schematic (each gate)


NOTES: 1. Component values shown are nominal.
2. Both SN7450 expander inputs are used simultaneously for expanding with the SN7460.
3. If expander is not used leave pins (1) and (2) open.
4. Make no external connection to pins (1) and (2) of the SN7451.
5. A total of four expander gates may be connected to the SN7450 expander.

\section*{recommended operating conditions}

electrical characteristics, \(\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\) to \(70^{\circ} \mathrm{C}\), pins (1) and (2) open
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & PARAMETER & \[
\begin{aligned}
& \text { TEST } \\
& \text { FIGURE }
\end{aligned}
\] & TEST CONDITIONS & MIN & TYP MAX & UNIT \\
\hline \(V_{\text {in(1) }}\) & Logical 1 input voltage required at both input terminals of either AND section to ensure logical 0 at output & 7 & \(\mathrm{V}_{\mathrm{cc}}=4.75 \mathrm{~V}, \mathrm{~V}_{\mathrm{out}(0)} \leq 0.4 \mathrm{~V}\) & 2 & & V \\
\hline \(V_{\text {in }(0)}\) & Logical 0 input voltage required at one input terminal of each AND section to ensure logical 1 at output & 8 & \(\mathrm{V}_{\mathrm{cc}}=4.75 \mathrm{~V}, \mathrm{~V}_{\text {out }(1)} \geq 2.4 \mathrm{~V}\) & & 0.8 & V \\
\hline \(\mathbf{V}_{\text {out (1) }}\) & Logical 1 output voltage & 8 & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{cc}}=4.75 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{in}}=0.8 \mathrm{~V} \\
& \mathrm{I}_{\text {lood }}=-400 \mu \mathrm{~A}
\end{aligned}
\] & 2.4 & \(3.3 \ddagger\) & V \\
\hline \(V_{\text {out }}\) (0) & Logical 0 output voltage & 7 & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{cc}}=4.75 \mathrm{~V}, \quad \mathrm{~V}_{\text {in }}=2 \mathrm{~V}, \\
& \mathrm{I}_{\text {sink }}=16 \mathrm{~mA}
\end{aligned}
\] & & 0.22 \(\ddagger 0.4\) & V \\
\hline \(\mathrm{I}_{\mathrm{in}(0)}\) & Logical 0 level input current (each input) & 9 & \(\mathrm{V}_{\mathrm{cc}}=5.25 \mathrm{~V}, \mathrm{~V}_{\text {in }}=0\) & & -1.6 & mA \\
\hline \multirow[t]{2}{*}{\(I_{\text {in(1) }}\)} & \multirow[t]{2}{*}{Logical 1 level input current (each input)} & \multirow[t]{2}{*}{10} & \(\mathrm{V}_{\mathrm{cc}}=5.25 \mathrm{~V}, \mathrm{~V}_{\text {in }}=2.4 \mathrm{~V}\) & & 40 & \(\boldsymbol{\mu A}\) \\
\hline & & & \(\mathrm{V}_{\mathrm{cc}}=5.25 \mathrm{~V}, \quad \mathrm{~V}_{\text {in }}=5.5 \mathrm{~V}\) & & 1 & mA \\
\hline Ios & Short-circuit output current \(\dagger\) & 11 & \(\mathrm{V}_{\mathrm{cc}}=5.25 \mathrm{~V}\) & -18 & -55 & mA \\
\hline \({ }^{1} \mathrm{CC}(0)\) & Logical 0 level supply current (each gate) & 12 & \(\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{in}}=5 \mathrm{~V}\) & & \(3.7 \ddagger\) & mA \\
\hline \({ }^{\text {cce }}\) (1) & Logical 1 level supply current (each gate) & 13 & \(v_{c c}=5 \mathrm{~V}, \quad \mathrm{~V}_{\text {in }}=0\) & & \(2 \ddagger\) & mA \\
\hline
\end{tabular}
\(\dagger\) Not more than one output should be shorted at a time.
\(\ddagger\) These typical values are at \(\mathbf{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\).
electrical characteristics (SN7450 only) using expander inputs, \(\mathrm{T}_{\mathrm{A}}=\mathbf{0}^{\circ} \mathrm{C}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & PARAMETER & \[
\begin{gathered}
\text { TEST } \\
\text { FIGURE }
\end{gathered}
\] & TEST CONDITIONS & MIN & TYP & MAX & UNIT \\
\hline \({ }^{\prime} \times\) & Expander current & 14 & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{cc}}=4.75 \mathrm{~V}, \mathrm{~V}_{1}=0.4 \mathrm{~V}, \\
& \mathrm{I}_{\text {sink }}=16 \mathrm{~mA}
\end{aligned}
\] & & & 3.1 & mA \\
\hline \(\mathrm{V}_{\mathrm{BE}(\mathrm{P})}\) & Base-emitter voltage of output transistor (Q) & 15 & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{cc}}=4.75 \mathrm{~V}, \mathrm{I}_{\text {sink }}=16 \mathrm{~mA}, \\
& \mathrm{I}_{1}=0.62 \mathrm{~mA}, \mathrm{R}_{1}=0
\end{aligned}
\] & & & 1 & V \\
\hline \(V_{\text {out(1) }}\) & Logical 1 output voltage & 16 & \[
\begin{aligned}
& V_{c c}=4.75 \mathrm{~V}, \mathrm{I}_{\text {load }}=-400 \mu \mathrm{~A}, \\
& \mathrm{I}_{1}=0.15 \mathrm{~mA}, \mathrm{I}_{2}=-0.15 \mathrm{~mA}
\end{aligned}
\] & 2.4 & 3.3 \(\ddagger\) & & V \\
\hline \(V_{\text {out (0) }}\) & Logical 0 output voltage & 15 & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{cc}}=4.75 \mathrm{~V}, \mathrm{I}_{\text {sink }}=16 \mathrm{~mA}, \\
& \mathrm{I}_{1}=0.43 \mathrm{~mA}, \mathrm{R}_{1}=130 \Omega
\end{aligned}
\] & & 0.22 \(\ddagger\) & 0.4 & V \\
\hline
\end{tabular}
\(\ddagger\) These typical values are af \(\mathbf{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\).
switching characteristics, \(V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\), pins (1) and (2) open, \(\mathrm{N}=10\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline PARAMETER & TEST FIGURE & TEST CONDITIONS & MIN TYP & MAX & UNIT \\
\hline \(t_{\text {pdo }}\) Propagation delay time to logical 0 level & 50 & \(\mathrm{C}_{1}=15 \mathrm{pF}\) & 8 & 15 & ns \\
\hline t Propagation delay time to \({ }^{\dagger}\) pdl logical 1 level & 50 & \(\mathrm{C}_{1}=15 \mathrm{pF}\) & 18 & 29 & ns \\
\hline
\end{tabular}

\section*{schematic}


NOTES: 1. Component values shown are nominal.
2. Both SN7453 expander inputs are used simultaneously for expanding with the SN7460.
3. If SN7453 expander is not used leave pins (1) and (2) open.
4. Make no external connection to pins (1) and (2) of the SN7454.
5. A total of four expander gates may be connected to the SH7453 expander inputs.


\section*{recommended operating conditions}
\[
\begin{aligned}
& \text { Supply Voltage } \mathrm{V}_{\mathrm{Cc}} \text {. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . } 4.75 \mathrm{~V} \text { to } 5.25 \mathrm{~V} \\
& \text { Fan-Out From Each Output, } \mathrm{N} \text {. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . } 1 \text { to } 10
\end{aligned}
\]
electrical characteristics, \(T_{A}=0^{\circ} \mathrm{C}\) to \(70^{\circ} \mathrm{C}\), pins (1) and (2) open
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & PARAMETER & TEST FIGURE & TEST CONDITIONS & MIN & TYP MAX & UNIT \\
\hline \(V_{\text {in(1) }}\) & Logical 1 input voltage required at both input terminals of either AND section to ensure logical 0 at output & 7 & \(\mathrm{V}_{\mathrm{cc}}=4.75 \mathrm{~V}, \quad \mathrm{~V}_{\text {out }}(0) \leq 0.4 \mathrm{~V}\) & 2 & & V \\
\hline \(\mathrm{V}_{\mathrm{in}(0)}\) & Logical 0 input voltage required at one input terminal of each AND section to ensure logical 1 at output & 8 & \(\mathrm{V}_{\text {cc }}=4.75 \mathrm{~V}, \quad \mathrm{~V}_{\text {out }(1)} \geq 2.4 \mathrm{~V}\) & & 0.8 & V \\
\hline \(V_{\text {out (1) }}\) & Logical 1 output voltage & 8 & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{cc}}=4.75 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{in}}=0.8 \mathrm{~V} \\
& \mathrm{I}_{\text {load }}=-400 \mu \mathrm{~A}
\end{aligned}
\] & 2.4 & \(3.3 \ddagger\) & V \\
\hline \(V_{\text {out (0) }}\) & Logical 0 output voltage & 7 & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{cc}}=4.75 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{in}}=2 \mathrm{~V}, \\
& \mathrm{I}_{\text {sink }}=16 \mathrm{~mA}
\end{aligned}
\] & & \(0.22 \ddagger \quad 0.4\) & V \\
\hline \(\mathrm{I}_{\mathrm{in}(0)}\) & Logical 0 level input current (each input) & 9 & \(\mathrm{V}_{\mathrm{Cc}}=5.25 \mathrm{~V}, \quad \mathrm{~V}_{\text {in }}=0\) & & -1.6 & mA \\
\hline \multirow[t]{2}{*}{\(\mathrm{I}_{\mathrm{in}(1)}\)} & \multirow[t]{2}{*}{Logical 1 level input current (each input)} & \multirow[t]{2}{*}{10} & \(\mathrm{V}_{\mathrm{cc}}=5.25 \mathrm{~V}, \quad \mathrm{~V}_{\text {in }}=2.4 \mathrm{~V}\) & & 40 & \(\mu \mathrm{A}\) \\
\hline & & & \(\mathrm{V}_{\mathrm{cc}}=5.25 \mathrm{~V}, \mathrm{~V}_{\text {in }}=5.5 \mathrm{~V}\) & & 1 & mA \\
\hline Ios & Short-circuit output current \(\dagger\) & 11 & \(\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}\) & -18 & -55 & mA \\
\hline \(\mathrm{I}_{\mathrm{CC}(0)}\) & Logical 0 level supply current & 12 & \(\mathrm{v}_{\mathrm{cc}}=5 \mathrm{~V}, \quad \mathrm{v}_{\mathrm{in}}=5 \mathrm{~V}\) & & 3.7 \# & mA \\
\hline \(\mathrm{I}_{\mathrm{CC}(1)}\) & Logical 1 level supply current & 13 & \(\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{in}}=0\) & & \(2 \ddagger\) & mA \\
\hline
\end{tabular}
\(\dagger\) Wot more than one output should be shorted at a time.
\(\ddagger\) These typical values are of \(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\).
electrical characteristics (SN7453 only) using expander inputs, \(\mathrm{T}_{\mathrm{A}}=\mathbf{0}^{\circ} \mathrm{C}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & PARAMETER & TEST FIGURE & \multicolumn{2}{|c|}{TEST CONDITIONS} & MIN & TYP & MAX & UNIT \\
\hline \({ }^{\text {I }}\) ( & Expander current & 14 & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{cc}}=4.75 \mathrm{~V} \\
& \mathrm{I}_{\text {sink }}=16 \mathrm{~mA}
\end{aligned}
\] & \[
V_{1}=0.4 V_{1}
\] & & & 3.1 & mA \\
\hline \(\mathrm{V}_{\text {BE(P) }}\) & Base-emitter voltage of output transistor (Q) & 15 & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{cc}}=4.75 \mathrm{~V}, \\
& \mathrm{I}_{1}=0.62 \mathrm{~mA}
\end{aligned}
\] & \[
\begin{aligned}
& I_{\text {sink }}=16 \mathrm{~mA}, \\
& R_{1}=0
\end{aligned}
\] & & & 1 & V \\
\hline \(V_{\text {out(1) }}\) & Logical 1 output voltage & 16 & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \\
& \mathrm{I}_{1}=0.15 \mathrm{~mA}
\end{aligned}
\] & \[
\begin{aligned}
& l_{\text {load }}=-400 \mu \mathrm{~A}, \\
& 1_{2}=-0.15 \mathrm{~mA}
\end{aligned}
\] & 2.4 & \(3.3 \ddagger\) & & V \\
\hline \(V_{\text {out (0) }}\) & Logical 0 output voltage & 15 & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{cc}}=4.75 \mathrm{~V}, \\
& \mathrm{I}_{1}=0.43 \mathrm{~mA},
\end{aligned}
\] & \[
\begin{aligned}
& I_{\text {sink }}=16 \mathrm{~mA}, \\
& \mathrm{R}_{1}=130 \Omega \\
& \hline
\end{aligned}
\] & & 0.22 \(\ddagger\) & 0.4 & V \\
\hline
\end{tabular}
\(\ddagger\) These typical values are at \(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\).
switching characteristics (SN7453 andSN7454), \(V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\), pins (1) and (2) open, \(\mathrm{N}=10\)
\begin{tabular}{|l|c|c|c|c|c|}
\hline PARAMETER & \begin{tabular}{c} 
TEST \\
FIGURE
\end{tabular} & \multicolumn{1}{|c|}{ TEST CONDITIONS } & MIN & TYP & MAX
\end{tabular} UNIT \(\mid\)

\section*{DUAL 4-INPUT EXPANDER}
schematic

notes: 1. Connect pin (2) or (13) to pin (2) of SN7450 or SN7453.
2. Connect pin (1) or (14) to pin (1) of SN7450 or SN7453.
3. Component values shown are nominal.


\section*{recommended operating conditions}

Supply Voltage VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.75 V to 5.25 V
Maximum number of expanders that may be fanned-in to one SN7450 or one SN7453
electrical characteristics (unless otherwise noted \(\mathrm{T}_{\mathrm{A}}=\mathbf{0}^{\circ} \mathrm{C}\) to \(70^{\circ} \mathrm{C}\) )
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & PARAMETER & \[
\begin{array}{|c|}
\hline \text { TEST } \\
\text { FIGURE }
\end{array}
\] & TEST CONDITIONS & MIN & TYP MAX & UNIT \\
\hline \(V_{\text {in }(1)}\) & Logical 1 input voltage required at all input terminals to ensure output on level & 17 & \[
\begin{array}{ll}
\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, & \mathrm{~V}_{1}=1 \mathrm{~V} \\
\mathrm{R}=1.1 \mathrm{k} \Omega, & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}
\end{array}
\] & 2 & & V \\
\hline \(V_{\text {in }(0)}\) & Logical 0 input voltage required at any input terminal to ensure output off level current & 18 & \[
\begin{array}{ll}
\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, & \mathrm{~V}_{1}=4.5 \mathrm{~V}, \\
\mathrm{R}=1.2 \mathrm{k} \Omega, & \mathrm{I}_{\text {off }}=0.15 \mathrm{~mA}, \\
\mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} & \\
\hline
\end{array}
\] & & 0.8 & V \\
\hline \(V_{\text {on }}\) & Output voltage on level & 17 & \[
\begin{array}{ll}
\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, & \mathrm{~V}_{\mathrm{in}}=2 \mathrm{~V}, \\
\mathrm{~V}_{1}=1 \mathrm{~V}, & \mathrm{R}=1.1 \mathrm{k} \Omega \\
\mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} &
\end{array}
\] & & 0.4 & V \\
\hline \(l_{\text {off }}\) & Output off level current & 18 & \[
\begin{array}{ll}
\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, & \mathrm{~V}_{\text {in }}=0.8 \mathrm{~V}, \\
\mathrm{~V}_{1}=4.5 \mathrm{~V}, & \mathrm{R}=1.2 \mathrm{k} \Omega, \\
\mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} &
\end{array}
\] & & 270 & \(\mu \mathrm{A}\) \\
\hline \(I_{\text {on }}\) & Output on level current & 19 & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{cc}}=4.75 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{in}}=2 \mathrm{~V}, \\
& \mathrm{~V}_{1}=1 \mathrm{~V}
\end{aligned}
\] & -0.43 & & mA \\
\hline \(\mathrm{I}_{\mathrm{in}(0)}\) & Logical 0 level input current (each input) & 18 & \(\mathrm{V}_{\mathrm{Cc}}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{in}}=0.4 \mathrm{~V}\) & & -1.6 & mA \\
\hline \multirow[t]{2}{*}{\(\mathrm{I}_{\mathrm{in}(1)}\)} & \multirow[t]{2}{*}{Logical 1 level input current (each input)} & \multirow[t]{2}{*}{20} & \(\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \quad \mathrm{~V}_{\text {in }}=2.4 \mathrm{~V}\) & & 40 & \(\mu \mathrm{A}\) \\
\hline & & & \(\mathrm{V}_{\mathrm{cc}}=5.25 \mathrm{~V}, \quad \mathrm{~V}_{\text {in }}=5.5 \mathrm{~V}\) & & 1 & mA \\
\hline \(\mathrm{I}_{\mathrm{CC}(0 n)}\) & On level supply current (each gate) & 21 & \[
\begin{array}{ll}
\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V}, & \mathrm{~V}_{\text {in }}=5 \mathrm{~V}, \\
\mathrm{~V}_{1}=0.85 \mathrm{~V} &
\end{array}
\] & & \(0.6 \ddagger\) & mA \\
\hline \(\mathrm{I}_{\text {ccloff }}\) & Off level supply current (each gate) & 21 & \[
\begin{array}{ll}
\mathrm{v}_{\mathrm{cc}}=5 \mathrm{~V} & \mathrm{v}_{\mathrm{in}}=0, \\
\mathrm{v}_{1}=0.85 \mathrm{~V} & \\
\hline
\end{array}
\] & & \(1 \ddagger\) & mA \\
\hline
\end{tabular}
switching characteristics, \(\mathbf{V}_{\mathrm{cc}}=\mathbf{5} \mathrm{V}, \mathrm{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}, \mathbf{N}=\mathbf{1 0}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & PARAMETER & \[
\begin{gathered}
\text { TEST } \\
\text { FIGURE }
\end{gathered}
\] & TEST CONDITIONS & MIN & TYP & MAX & UNIT \\
\hline \({ }^{\dagger}{ }_{\text {pdo }}\) & Propagation delay time to logical 0 level (through SN7450 or SN7453) & 51 & \(\mathrm{C}_{1}=15 \mathrm{pF}\) & & 10 & 20 & ns \\
\hline \({ }^{\dagger}\) pd1 & Propagation delay time to logical 1 level (through SN7450 or SN7453) & 51 & \(\mathrm{c}_{1}=15 \mathrm{pF}\) & & 20 & 34 & ns \\
\hline
\end{tabular}
\(\ddagger\) These typical values are af \(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\).

\section*{logic}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{ TRUTH TABLE } \\
\hline \multicolumn{2}{|c|}{\(t_{n}\)} & \(t_{n+1}\) \\
\hline\(J\) & \(K\) & \(Q\) \\
\hline 0 & 0 & \(Q_{n}\) \\
\hline 0 & 1 & 0 \\
\hline 1 & 0 & 1 \\
\hline 1 & 1 & \(\overline{Q_{n}}\) \\
\hline
\end{tabular}
notes: \(1 . \mathrm{J}=\mathrm{J} \cdot \mathrm{J2} \cdot \overline{\mathrm{~J} \hbar}\).
2. \(\mathrm{K}=\mathrm{K}_{1} \cdot \mathrm{~K}_{2} \cdot \overline{\mathrm{Kk}}\).
3. \(\mathrm{t}_{\mathrm{n}}=\) Bit time before clock pulss.
4. \(t_{n+1}=\) Bit time after clock pulse.
5. If inputs \(\mathrm{J} \star\) or \(K \star\) are not used they must be grounded.


\section*{description}

The SN7470 is a monolithic, edge-triggered J-K flip-flop featuring gated inputs, direct clear and preset inputs, and complementary \(Q\) and \(\bar{Q}\) outputs. Input information is transferred to the outputs on the positive edge of the clock pulse.

Direct-coupled clock triggering occurs at a specific voltage level of the clock pulse; and after the clock input threshold voltage has been passed, the gated inputs are locked out.

The SN7470 flip-flop is ideally suited for medium-and high-speed applications, and can be used for a significant saving in system power dissipation and package count where input gating is required.

\section*{recommended operating conditions}

Supply Voltage \(\mathrm{V}_{\mathrm{cc}}\). . . . . . . . . . . . . . . . . . . . . . 4.75 V to 5.25 V
Fan-Out From Each Output, N . . . . . . . . . . . . . . . . . . . . . . 1 to 10
Clock Pulse Transition Time to Logical 1 Level, \(\mathrm{t}_{1(\text { (lock })}\) (See Figure 53) . . . . . . . . 5 to 150 ns
Width of Clock Pulse, \(t_{\text {p }(c l o c k)}\) (See Figure 53) . . . . . . . . . . . . . . . . . 20 ns
Width of Preset Pulse, \(\mathrm{t}_{\mathrm{plpraset\mid}}\) (See Figure 52) . . . . . . . . . . . . . . . . . 22 ns
Width of Clear Pulse, tplclear) (See Figure 52) . . . . . . . . . . . . . . . . . \(\geq 25\) ns
electrical characteristics, \(\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\) to \(70^{\circ} \mathrm{C}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & PARAMETER & \[
\begin{aligned}
& \text { TEST } \\
& \text { FIGURE }
\end{aligned}
\] & TEST CONDITIONS & MIN & TYP & MAX & UNIT \\
\hline \(V_{\text {in(1) }}\) & Input voltage required to ensure logical 1 at any input terminal & 22 & \(\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}\) & 2 & & & V \\
\hline \(V_{\text {in(0) }}\) & Input voltage required to ensure logical 0 at any input terminal & 23 & \(\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}\) & & & 0.8 & V \\
\hline \(V_{\text {out }}\) (1) & Logical 1 output voltage & 22 & \(\mathrm{V}_{\mathrm{cc}}=4.75 \mathrm{~V}, \mathrm{I}_{\text {lood }}=-400 \mu \mathrm{~A}\) & 2.4 & \(3.5 \ddagger\) & & V \\
\hline \(V_{\text {out }}\) (0) & Logical 0 output voltage & 23 & \(\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{I}_{\text {sink }}=16 \mathrm{~mA}\) & & \(0.22 \ddagger\) & 0.4 & V \\
\hline \(\mathrm{I}_{\text {in(0) }}\) & Logical 0 level input current at J1, J2, J \(\star\), K1, K2, K \(\star\), or clock & 24 & \(\mathrm{V}_{\mathrm{Cc}}=5.25 \mathrm{~V}, \mathrm{~V}_{\text {in }}=0.4 \mathrm{~V}\) & & & -1.6 & mA \\
\hline \(I_{\text {in(0) }}\) & Logical 0 level input current at preset or clear & 24 & \(\mathrm{V}_{\mathrm{cc}}=5.25 \mathrm{~V}, \mathrm{~V}_{\text {in }}=0.4 \mathrm{~V}\) & & & -3.2 & mA \\
\hline \multirow[b]{2}{*}{\(\mathrm{I}_{\text {in(1) }}\)} & \multirow[t]{2}{*}{Logical 1 level input current at J1, J2, J太, K1, K2, K \(\star\), or clock} & \multirow[t]{2}{*}{25} & \(\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\text {in }}=2.4 \mathrm{~V}\) & & & 40 & \(\mu \mathrm{A}\) \\
\hline & & & \(\mathrm{V}_{\mathrm{cc}}=5.25 \mathrm{~V}, \mathrm{~V}_{\text {in }}=5.5 \mathrm{~V}\) & & & 1 & mA \\
\hline \multirow[t]{2}{*}{\(\mathrm{I}_{\text {in(1) }}\)} & \multirow[t]{2}{*}{Logical 1 level input current at preset or clear} & \multirow[t]{2}{*}{25} & \(\mathrm{V}_{\mathrm{cc}}=5.25 \mathrm{~V}, \mathrm{~V}_{\text {in }}=2.4 \mathrm{~V}\) & & & 80 & \(\mu \mathrm{A}\) \\
\hline & & & \(\mathrm{V}_{\mathrm{cc}}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{in}}=5.5 \mathrm{~V}\) & & & 1 & mA \\
\hline los & Short-circuit output current \(\dagger\) & 26 & \(\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\text {in }}=0\) & -18 & & -57 & mA \\
\hline Icc & Supply current & 25 & \(\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{in}}=5 \mathrm{~V}\) & \multicolumn{3}{|c|}{13才} & mA \\
\hline
\end{tabular}
\(\dagger\) Not more than one output should be shorted at a time.
\(\ddagger\) These typical values are at \(\mathbf{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\).
switching characteristics, \(V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{N}=10\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & PARAMETER & \[
\begin{gathered}
\text { TEST } \\
\text { FIGURE }
\end{gathered}
\] & TEST CONDITIONS & MIN & TYP & MAX & UNIT \\
\hline \(f_{\text {clock }}\) & Maximum clock frequency & 53 & \(\mathrm{C}_{1}=15 \mathrm{pF}\) & 20 & 35 & & MHz \\
\hline \({ }^{\text {s }}\) stup & Minimum input setup time & 53 & \(\mathrm{C}_{1}=15 \mathrm{pF}\) & & 10 & 20 & ns \\
\hline \(t_{\text {hold }}\) & Minimum input hold time & 53 & \(\mathrm{C}_{1}=15 \mathrm{pF}\) & & 0 & 5 & ns \\
\hline \({ }^{\text {tpdı }}\) & Propagation delay time to logical 1 level from clear or preset to output & 52 & \(\mathrm{C}_{1}=15 \mathrm{pF}\) & & & 50 & ns \\
\hline \({ }^{\text {tpdo }}\) & \begin{tabular}{l}
Propagation delay time to logical \\
0 level from rlear or preset \\
to output
\end{tabular} & 52 & \(\mathrm{c}_{1}=15 \mathrm{pF}\) & & & 50 & ns \\
\hline \(t_{\text {pdy }}\) & Propagation delay time to logical 1 level from clock to output & 53 & \(C_{1}=15 \mathrm{pF}\) & 10 & 27 & 50 & ns \\
\hline \({ }^{\dagger}\) pdo & Propagation delay time to logical 0 level from clock to output & 53 & \(\mathrm{C}_{1}=15 \mathrm{pF}\) & 10 & 18 & 50 & ns \\
\hline
\end{tabular}

\section*{schematic}


Component values shown are nominal.

\section*{logic}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{ TRUTH TABLE } \\
\hline \multicolumn{2}{|c|}{\(t_{\mathrm{n}}\)} & \(t_{\mathrm{n}+1}\) \\
\hline\(J\) & \(K\) & \(Q\) \\
\hline 0 & 0 & \(Q_{\mathrm{n}}\) \\
\hline 0 & 1 & 0 \\
\hline 1 & 0 & 1 \\
\hline 1 & 1 & \(\bar{Q}_{\mathrm{n}}\) \\
\hline
\end{tabular}
\[
\begin{array}{ll}
\text { NOTES: } & 1 . \mathrm{J}=\mathrm{J} 1 \cdot \mathrm{~J} 2 \cdot \mathrm{~J} 3 \\
& \text { 2. } \mathrm{K}=\mathrm{K} 1 \cdot \mathrm{~K} 2 \cdot \mathrm{~K} 3 \\
& \text { 3. } \mathrm{t}_{\mathrm{n}}=\mathrm{Bit} \text { time before clock pulse. } \\
\text { 4. } \mathrm{t}_{\mathrm{n}+1}=\text { Bit time after clock pulse. }
\end{array}
\]


\section*{description}

The SN7472 J-K flip-flop is based on the master-slave principle. This device has AND gate inputs for entry into the master section which are controlled by the clock pulse. The clock pulse also regulates the state of the coupling transistors which connect the master and slave sections. The sequence of operation is as follows:
1. Isolate slave from master
2. Enter information from AND gate inputs to master
3. Disable AND gate inputs


\section*{recommended operating conditions}

electrical characteristics, \(\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\) to \(70^{\circ} \mathrm{C}\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline & PARAMETER & \[
\begin{aligned}
& \text { TEST } \\
& \text { FIGURE }
\end{aligned}
\] & TEST CONDITIONS & MIN TYP MAX & UNIT \\
\hline \(V_{\text {in(1) }}\) & Input voltage required to ensure logical 1 at any input terminal & 27 & \(\mathrm{V}_{\mathrm{cc}}=4.75 \mathrm{~V}\) & 2 & V \\
\hline \(V_{\text {in }(0)}\) & Input voltage required to ensure logical 0 at any input terminal & 27 & \(\mathrm{V}_{\mathrm{cc}}=4.75 \mathrm{~V}\) & 0.8 & V \\
\hline \(V_{\text {out }}\) (1) & Logical 1 output voltage & 27 & \(\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \quad \mathrm{I}_{\text {load }}=-400 \mu \mathrm{~A}\) & \(2.4 \quad 3.5 \ddagger\) & V \\
\hline \(\mathrm{V}_{\text {out }}(0)\) & Logical 0 output voltage & 28 & \(\mathrm{V}_{\mathrm{cc}}=4.75 \mathrm{~V}, \quad \mathrm{I}_{\text {sink }}=16 \mathrm{~mA}\) & \(0.22 \ddagger 0.4\) & V \\
\hline \(I_{\text {in(0) }}\) & Logical 0 level input current at J1, J2, J3, K1, K2, or K3 & 29 & \(\mathrm{V}_{\mathrm{cc}}=5.25 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{in}}=0.4 \mathrm{~V}\) & -1.6 & mA \\
\hline \(\mathrm{I}_{\text {in(0) }}\) & Logical 0 level input current at preset, clear, or clock & 29 & \(\mathrm{V}_{\text {cc }}=5.25 \mathrm{~V}, \quad \mathrm{~V}_{\text {in }}=0.4 \mathrm{~V}\) & -3.2 & mA \\
\hline \multirow[b]{2}{*}{\(\mathrm{I}_{\text {in(1) }}\)} & \multirow[t]{2}{*}{Logical 1 level input current at J1, J2, J3, K1, K2, or K3} & \multirow[t]{2}{*}{30} & \(\mathrm{V}_{\mathrm{cc}}=5.25 \mathrm{~V}, \quad \mathrm{~V}_{\text {in }}=2.4 \mathrm{~V}\) & 40 & \(\mu \mathrm{A}\) \\
\hline & & & \(\mathrm{V}_{\text {CC }}=5.25 \mathrm{~V}, \quad \mathrm{~V}_{\text {in }}=5.5 \mathrm{~V}\) & 1 & mA \\
\hline \multirow[b]{2}{*}{\(\mathrm{I}_{\mathrm{in}(1)}\)} & \multirow[t]{2}{*}{Logical 1 level input current at preset, clear, or clock} & \multirow[t]{2}{*}{30} & \(\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\text {in }}=2.4 \mathrm{~V}\) & 80 & \(\mu \mathrm{A}\) \\
\hline & & & \(\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \quad \mathrm{~V}_{\text {in }}=5.5 \mathrm{~V}\) & 1 & mA \\
\hline \(\mathrm{I}_{\mathrm{OS}}\) & Short-circuit output current \(\dagger\) & 31 & \(\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \quad \mathrm{~V}_{\text {in }}=0\) & \(-18 \quad-57\) & mA \\
\hline \(\mathrm{I}_{\mathrm{Cc}}\) & Supply current & 30 & \(\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{in}}=5 \mathrm{~V}\) & \(8 \ddagger\) & mA \\
\hline
\end{tabular}
\(\dagger\) Not more than one outpul should be shorted at a time.
\(\ddagger\) These typical values are at \(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\).
switching characteristics, \(\mathbf{V}_{\mathrm{CC}}=\mathbf{5} \mathrm{V}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{N}=\mathbf{1 0}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & PARAMETER & \[
\begin{aligned}
& \text { TEST } \\
& \text { FIGURE }
\end{aligned}
\] & TEST CONDITIONS & MIN & TYP & MAX & UNIT \\
\hline \(\mathrm{f}_{\text {clock }}\) & Maximum clock frequency & 54 & \(\mathrm{C}_{1}=15 \mathrm{pF}\) & 10 & 15 & & MHz \\
\hline \({ }^{\text {t }}{ }_{\text {d }} 1\) & Propagation delay time to logical 1 level from clear or preset to output & 55 & \(C_{1}=15 \mathrm{pF}\) & & 26 & 50 & ns \\
\hline \({ }^{\dagger}\) pdo & Propagation delay time to logical 0 level from clear or preset to output & 55 & \(C_{1}=15 \mathrm{pF}\) & & 34 & 50 & ns \\
\hline \({ }^{\dagger} \mathrm{pdl}\) & Propagation delay time to logical 1 level from clock to output & 54 & \(\mathrm{C}_{1}=15 \mathrm{pF}\) & 10 & 26 & 50 & ns \\
\hline \({ }^{+}{ }^{\text {pdo }}\) & Propagation delay time to logical 0 level from clock to output & 54 & \(C_{1}=15 \mathrm{pF}\) & 10 & 34 & 50 & ns \\
\hline
\end{tabular}
functional block diagram

schematic


Component values shown are nominal.

\section*{logic}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{ TRUTH TABLE (Each Flip-Flop) } \\
\hline \multicolumn{2}{|c|}{\(t_{n}\)} & \(t_{n}+1\) \\
\hline\(J\) & \(K\) & \(Q\) \\
\hline 0 & 0 & \(Q_{n}\) \\
\hline 0 & 1 & 0 \\
\hline 1 & 0 & 1 \\
\hline 1 & 1 & \(\bar{Q}_{n}\) \\
\hline
\end{tabular}
\(\begin{array}{ll}\text { NOTES: } & \text { 1. } t_{n}=\text { Bit time before clock pulse. } \\ & \text { 2. } t_{n+1}=\text { Bit time after slock pulse. }\end{array}\)


\section*{description}

The SN7473 J-K flip-flop is based on the master-slave principle. Inputs to the master section are controlled by the clock pulse. The clock pulse also regulates the state of the coupling transistors which connect the master and slave sections. The sequence of operation is as follows:
1. Isolate slave from master
2. Enter information from \(J\) and \(K\) inputs to master
3. Disable J and K inputs
4. Transfer information from master to slave.


\section*{recommended operating conditions}

electrical characteristics, \(\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\) to \(70^{\circ} \mathrm{C}\)
\begin{tabular}{|l|c|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ PARAMETER } & \multicolumn{1}{c|}{\begin{tabular}{c} 
TEST \\
FIGURE
\end{tabular}} & TEST CONDITIONS & MIN & TYP & MAX
\end{tabular} UNIT
\(\dagger\) Not more than one output should be shorted at a time.
\(\ddagger\) These typical values are at \(\mathbf{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{r}_{\mathrm{A}}=25^{\circ} \mathrm{C}\).
switching characteristics, \(V_{C C}=\mathbf{5} V, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{N}=\mathbf{1 0}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & PARAMETER & \[
\begin{array}{c|}
\hline \text { TEST } \\
\text { FIGURE }
\end{array}
\] & TEST CONDITIONS & MIN & TYP & MAX & UNIT \\
\hline \(f_{\text {clock }}\) & Maximum clock frequency & 54 & \(\mathrm{C}_{1}=15 \mathrm{pF}\) & 10 & 15 & & MHz \\
\hline \({ }^{\text {tpd }} 1\) & Propagation delay time to logical 1 level from clear to output & 55 & \(\mathrm{C}_{1}=15 \mathrm{pF}\) & & 26 & 50 & ns \\
\hline \({ }^{\text {t }}\) pdo & Propagation delay time to logical 0 level from clear to output & 55 & \(\mathrm{C}_{1}=15 \mathrm{pF}\) & & 34 & 50 & ns \\
\hline \({ }^{\text {tpd }} 1\) & Propagation delay time to logical 1 level from clock to output & 54 & \(\mathrm{C}_{1}=15 \mathrm{pF}\) & 10 & 26 & 50 & ns \\
\hline \({ }^{\text {¢ }}\) pdo & Propagation delay time to logical 0 level from clock toroutput & 54 & \(\mathrm{C}_{1}=15 \mathrm{pF}\) & 10 & 34 & 50 & ns \\
\hline
\end{tabular}

\section*{functional block diagram (each flip-flop)}

schematic (each flip-flop)


Component values shown are nominal.

\section*{logic}

TRUTH TABLE (Each Flip-Flop)
\begin{tabular}{|c|c|c|}
\hline\(t_{n}\) & \multicolumn{2}{|c|}{\(t_{n+1}\)} \\
\hline INPUT D & \begin{tabular}{c} 
OUTPUT \\
\(Q\)
\end{tabular} & \begin{tabular}{c} 
OUTPUT \\
\(\bar{Q}\)
\end{tabular} \\
\hline 0 & 0 & 1 \\
\hline 1 & 1 & 0 \\
\hline
\end{tabular}

NOTES: \(\quad\). \(\mathrm{t}_{\mathrm{n}}=\) bit time before clock pulse.
2. \(\mathrm{t}_{\mathrm{n}+\mathrm{l}}=\) bit time after clock pulse.

\section*{description}

The SN7474 is a monolithic, dual, D-type, edge-triggered flip-flop featuring direct clear and preset inputs and complementary \(\mathbf{Q}\) and \(\bar{Q}\) outputs. Input information is transferred to the \(\mathbf{Q}\) output on the positive edge of the clock pulse.

Clock triggering occurs at a voltage level of the clock pulse and is not directly related to the transition time of the positive going pulse. After the clock input threshold voltage has been passed the data input ( \(D\) ) is locked out.

The SN7474 dual flip-flop has the same clocking characteristics as the SN7470 gated (edge-triggered) flip-flop and both are ideally suited for medium- and high-speed applications. The SN7474 can be used at a significant saving in system power dissipation and package count in applications where input gating is not required.

\section*{recommended operating conditions}


\section*{electrical characteristics, \(\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\) to \(70^{\circ} \mathrm{C}\)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & PARAMETER & \[
\begin{array}{|c|}
\hline \text { TEST } \\
\text { FIGURE }
\end{array}
\] & \multicolumn{2}{|r|}{TEST CONDITIONS} & MIN & TYP & MAX & UNIT \\
\hline \(V_{\text {in(1) }}\) & Input voltage required to ensure logical 1 at any input terminal & 37 & \multicolumn{2}{|l|}{\(\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}\)} & \multicolumn{3}{|l|}{2} & V \\
\hline \(V_{\text {in(0) }}\) & Input voltage required to ensure logical 0 at any input terminal & 37 & \multicolumn{2}{|l|}{\(\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}\)} & \multicolumn{3}{|r|}{0.8} & V \\
\hline \(\mathrm{V}_{\text {out (1) }}\) & Logical 1 output voltage & 37 & \(\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}\) & \(\mathrm{I}_{\text {load }}=-400 \mu \mathrm{~A}\) & 2.4 & \(3.5 \ddagger\) & & V \\
\hline \(V_{\text {out }}\) (0) & Logical 0 output voltage & 38 & \(\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}\), & \(\mathrm{I}_{\text {sink }}=16 \mathrm{~mA}\) & & \(0.22 \ddagger\) & 0.4 & V \\
\hline \(\mathrm{I}_{\text {in }(0)}\) & Logical 0 level input current at preset or D & 39 & \(\mathrm{V}_{\mathrm{cc}}=5.25 \mathrm{~V}\) & \(\mathrm{V}_{\text {in }}=0.4 \mathrm{~V}\) & & & -1.6 & mA \\
\hline \(I_{\text {in }|0|}\) & Logical 0 level input current at clear or clock & 39 & \(\mathrm{V}_{\mathrm{cc}}=5.25 \mathrm{~V}\) & \(\mathrm{V}_{\text {in }}=0.4 \mathrm{~V}\) & & & -3.2 & mA \\
\hline \multirow[b]{2}{*}{\(\mathrm{I}_{\mathrm{in}(1)}\)} & \multirow[t]{2}{*}{Logical 1 level input current at D} & \multirow[t]{2}{*}{40} & \(\mathrm{V}_{\mathrm{cc}}=5.25 \mathrm{~V}\), & \(\mathrm{V}_{\text {in }}=4.5 \mathrm{~V}\) & & & 40 & \(\mu \mathrm{A}\) \\
\hline & & & \(\mathrm{V}_{C C}=5.25 \mathrm{~V}\), & \(\mathrm{V}_{\text {in }}=5.5 \mathrm{~V}\) & & & 1 & mA \\
\hline \multirow[t]{2}{*}{\(\mathrm{I}_{\mathrm{in}(1)}\)} & \multirow[t]{2}{*}{Logical 1 level input current at preset or clock} & \multirow[t]{2}{*}{40} & \(\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}\), & \(\mathrm{V}_{\text {in }}=2.4 \mathrm{~V}\) & & & 80 & \(\mu \mathrm{A}\) \\
\hline & & & \(\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}\), & \(\mathrm{V}_{\text {in }}=5.5 \mathrm{~V}\) & & & 1 & mA \\
\hline \multirow[t]{2}{*}{\(\mathrm{I}_{\mathrm{in}(1)}\)} & \multirow[t]{2}{*}{Logical 1 level input current at clear} & \multirow[t]{2}{*}{40} & \(\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}\) & \(\mathrm{V}_{\text {in }}=2.4 \mathrm{~V}\) & & & 120 & \(\mu \mathrm{A}\) \\
\hline & & & \(\mathrm{V}_{C C}=5.25 \mathrm{~V}\) & \(\mathrm{V}_{\text {in }}=5.5 \mathrm{~V}\) & & & 1 & mA \\
\hline Ios & Short-circuit output current \(\dagger\) & 41 & \(\mathrm{V}_{\mathrm{cc}}=5.25 \mathrm{~V}\), & \(V_{\text {in }}=0\) & -18 & & -57 & mA \\
\hline \(I_{\text {cc }}\) & Supply current (each flip-flop) & 40 & \(\mathrm{v}_{\mathrm{cc}}=5 \mathrm{~V}\), & \(\mathrm{V}_{\text {in }}=5 \mathrm{~V}\) & \multicolumn{3}{|c|}{\(8.5 \ddagger\)} & mA \\
\hline
\end{tabular}
\(\dagger\) Not more than one output should be shorted at a time.
\(\ddagger\) These typical values are at \(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\).
switching characteristics, \(\mathrm{V}_{\mathrm{CC}}=\mathbf{5} \mathrm{V}, \mathrm{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}, \mathrm{N}=\mathbf{1 0}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & PARAMETER & \[
\begin{aligned}
& \text { TEST } \\
& \text { FIGURE }
\end{aligned}
\] & TEST CONDITIONS & MIN & TYP & MAX & UNIT \\
\hline \(\mathrm{f}_{\text {clock }}\) & Maximum clock frequency & 56 & \(\mathrm{C}_{1}=15 \mathrm{pF}\) & 15 & 25 & & MHz \\
\hline \(t_{\text {setup }}\) & Minimum input setup time & 56 & \(\mathrm{C}_{1}=15 \mathrm{pF}\) & & 15 & 20 & ns \\
\hline \({ }_{\text {hold }}\) & Minimum input hold time & 56 & \(\mathrm{C}_{1}=15 \mathrm{pF}\) & & 2 & 5 & ns \\
\hline \({ }^{\text {t }}{ }_{\text {d }}{ }\) & Propagation delay time to logical 1 level from clear or preset to output & 53 & \(C_{1}=15 \mathrm{pF}\) & & & 25 & ns \\
\hline \({ }^{\dagger} \mathrm{pdo}\) & Propagation delay time to logical 0 level from clear or preset to output & 53 & \(\mathrm{C}_{1}=15 \mathrm{pF}\) & & & 40 & ns \\
\hline \({ }^{\dagger}{ }_{\text {pd }}\) & Propagation delay time to logical 1 level from clock to output & 56 & \(\mathrm{C}_{1}=15 \mathrm{pF}\) & 10 & 28 & 35 & ns \\
\hline \({ }^{\dagger} \mathrm{pdo}\) & Propagation delay time to logical 0 level from clock to output & 56 & \(\mathrm{C}_{1}=15 \mathrm{pF}\) & 10 & 20 & 50 & ns \\
\hline
\end{tabular}

\section*{DUAL D-TYPE EDGE-TRIGGERED FLIP-FLOP}

\section*{functional block diagram (each flip-flop)}

schematic (each flip-flop)


\footnotetext{
Component values shown are nominal.
}

\section*{logic}
truth table (See Notes 1, 2, and 3)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \(\mathbf{C}_{n}\) & \(\mathbf{B}\) & \(\mathbf{A}\) & \(\overline{\mathbf{C}_{n}+1}\) & \(\bar{\Sigma}\) & \(\Sigma\) \\
\hline 0 & 0 & 0 & 1 & 1 & 0 \\
\hline 0 & 0 & 1 & 1 & 0 & 1 \\
\hline 0 & 1 & 0 & 1 & 0 & 1 \\
\hline 0 & 1 & 1 & 0 & 1 & 0 \\
\hline 1 & 0 & 0 & 1 & 0 & 1 \\
\hline 1 & 0 & 1 & 0 & 1 & 0 \\
\hline 1 & 1 & 0 & 0 & 1 & 0 \\
\hline 1 & 1 & 1 & 0 & 0 & 1 \\
\hline
\end{tabular}

NOTES: I. \(A=\overline{A \hbar \cdot A_{c}}, B=\overline{B \hbar \cdot B_{c}}\)
where \(A \star=\overline{A_{1} \cdot A_{2}}, B \star=\overline{B_{1} \cdot B_{2}}\)
2. When \(A \star\) or \(B \star\) are used as inputs, \(A_{1}\) and \(A_{2}\) or \(B_{1}\) and \(B_{2}\) respectively must be connected to GND.
3. When \(A_{1}\) and \(A_{2}\) or \(B_{1}\) and \(B_{2}\) are used as inputs, \(A \star\) or \(B \star\) respectively must be open or used to perform Dot-OR logic.


\section*{description}

The SN7480 is a single-bit, high-speed, binary full adder with gated complementary inputs, complementary sum ( \(\Sigma\) and \(\bar{\Sigma}\) ) outputs and inverted carry output. Designed for medium-and high-speed, multiple-bit, parallel-add/serial-carry applications, the circuit (see schematic diagram) utilizes diode-transistor logic (DTL) for the gated inputs, and high-speed, high-fan-out transistor-transistor logic (TTL) for the sum and carry outputs. The circuit is entirely compatible with both DTL and TTL logic families. The implementation of a single-inversion, high-speed, Darlington-connected serial-carry circuit minimizes the necessity for extensive "look-ahead" and carry-cascading circuits. The power dissipation level has been maintained considerably below that attainable with equivalent standard integrated circuits connected to perform full-adder functions.

\section*{recommended operating conditions}
Supply Voltage Vcc . . . . . . . . . . . . . . . . . . . . . . 4.75 V to 5.25 V
Maximum Allowable Fan-Out From Outputs:


    \(A^{\star}\) or \(B^{\star}, N\). . . . . . . . . . . . . . . . . . . . . . . . . . 1 to 3
electrical characteristics, \(\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\) to \(70^{\circ} \mathrm{C}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & PARAMETER & TEST FIGURE & TEST CONDITIONS & MIN & TYP MAX & UNIT \\
\hline \(V_{\text {in }}(1)\) & Logical 1 input voltage & 42 and 43 & \[
\begin{array}{ll}
\mathrm{V}_{\mathrm{cc}}=4.75 \mathrm{~V}, & \mathrm{~V}_{\text {in }(0)}=0.8 \mathrm{~V} \\
\mathrm{~V}_{\text {out }(1)} \geq 2.4 \mathrm{~V}, & \mathrm{~V}_{\text {out }(0)} \leq 0.4 \mathrm{~V}
\end{array}
\] & 2 & & V \\
\hline \(V_{\text {in(0) }}\) & Logical 0 input voltage & 42 and 43 & \[
\begin{array}{ll}
\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, & \mathrm{~V}_{\text {in }(1)}=2 \mathrm{~V} \\
\mathrm{~V}_{\text {out }(1)} \geq 2.4 \mathrm{~V}, & \mathrm{~V}_{\text {out }(0)} \leq 0.4 \mathrm{~V}
\end{array}
\] & & 0.8 & \(\checkmark\) \\
\hline \(V_{\text {out }}(1)\) & Logical 1 output voltage & 43 & \(\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}\) & 2.4 & \(3.5 \ddagger\) & V \\
\hline \(\mathrm{V}_{\text {out }}\) & Logical 0 output voltage & 42 & \(\mathrm{V}_{\mathrm{cc}}=4.75 \mathrm{~V}\) & & \(0.22 \ddagger 0.4\) & \(\checkmark\) \\
\hline \(I_{\text {inf0 }}\) & Logical 0 level input current at \(A_{1}, A_{2}, B_{1}\), \(B_{2}, A_{c}\) or \(B_{c}\) & 44 & \(\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{in}}=0.4 \mathrm{~V}\) & & -1.6 & mA \\
\hline \(\mathrm{I}_{\text {in(0) }}\) & Logical 0 level input current at \(A \star\) or \(B \star\) & 45 & \(\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \quad \mathrm{~V}_{\text {in }}=0.4 \mathrm{~V}\) & & -2.6 & mA \\
\hline \(\mathrm{I}_{\mathrm{in}(0)}\) & Logical 0 level input current at \(C_{n}\) & 45 & \(\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \quad \mathrm{~V}_{\text {in }}=0.4 \mathrm{~V}\) & & -8 & mA \\
\hline \multirow[b]{2}{*}{\(\mathrm{I}_{\text {in(1) }}\)} & \multirow[t]{2}{*}{Logical 1 level input current at \(A_{1}, A_{2}, B_{1}, B_{2}, A_{c}\) or \(B_{c}\)} & \multirow[b]{2}{*}{46} & \(\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\text {in }}=2.4 \mathrm{~V}\) & & 15 & \(\mu \mathrm{A}\) \\
\hline & & & \(\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\text {in }}=5.5 \mathrm{~V}\) & & 1 & mA \\
\hline \multirow[b]{2}{*}{\(\mathrm{I}_{\text {in(1) }}\)} & \multirow[t]{2}{*}{Logical 1 level input current
\[
\text { at } C_{n}
\]} & \multirow[b]{2}{*}{47} & \(\mathrm{V}_{C C}=5.25 \mathrm{~V}, \mathrm{~V}_{\text {in }}=2.4 \mathrm{~V}\) & & 200 & \(\mu \mathrm{A}\) \\
\hline & & & \(\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\text {in }}=5.5 \mathrm{~V}\) & & 1 & mA \\
\hline Ios & Short-circuit output current at \(\Sigma\) or \(\bar{\Sigma} \dagger\) & 48 & \(\mathrm{V}_{\mathrm{cc}}=5.25 \mathrm{~V}\) & -18 & - 57 & mA \\
\hline Ios & Short-circuit output current at \(\overline{\mathrm{C}_{\mathrm{n}+1}} \dagger\) & 48 & \(V_{C C}=5.25 \mathrm{~V}\) & -18 & -70 & mA \\
\hline Icc & Supply current & 49 & \(\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V}\) & & 21 \(\ddagger\) & mA \\
\hline
\end{tabular}
\(\dagger\) Not more than one output should be shorted at a time.
\(\ddagger\) These typical values are of \(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\).
switching characteristics, \(V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline PARAMETER \(\mathbb{T}\) & FROM INPUT & \[
\begin{gathered}
\text { TO } \\
\text { OUTPUT }
\end{gathered}
\] & FIGURE 57 TEST NO. & TEST CONDITIONS & MIN TYP & MAX & UNIT \\
\hline \(t_{p d 1}\) & \multirow[b]{2}{*}{\(C_{n}\)} & \multirow[t]{2}{*}{\(\overline{C_{n+1}}\)} & 1 & \(N=5\) & 13 & 17 & ns \\
\hline \(\dagger_{\text {pdo }}\) & & & 2 & \(N=5\) & 3 & 7 & ns \\
\hline \(t_{\text {pdi }}\) & \multirow[b]{2}{*}{\(B_{C}\)} & \multirow[t]{2}{*}{\(\overline{C_{n+1}}\)} & 3 & \(N=5\) & 18 & 25 & ns \\
\hline \(\dagger_{\text {pdo }}\) & & & 4 & \(N=5\) & 38 & 55 & ns \\
\hline \(t_{\text {pdl }}\) & \multirow[b]{2}{*}{\(A_{C}\)} & \multirow[b]{2}{*}{\(\Sigma\)} & 5 & \(N=10\) & 52 & 70 & ns \\
\hline \({ }^{\text {p }}\) pdo & & & 6 & \(N=10\) & 62 & 80 & ns \\
\hline \(t_{\text {pdi }}\) & \multirow[b]{2}{*}{\(B_{C}\)} & \multirow[t]{2}{*}{\(\bar{\Sigma}\)} & 7 & \(N=10\) & 38 & 55 & ns \\
\hline \({ }^{\text {pdo }}\) d & & & 8 & \(N=10\) & 56 & 75 & ns \\
\hline \({ }^{\text {p }{ }_{\text {d }} 1}\) & \multirow[b]{2}{*}{\(A_{1}\)} & \multirow[t]{2}{*}{A*} & 9 & \(\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}\) & 48 & 65 & ns \\
\hline \({ }^{\text {p }{ }_{\text {pdo }}}\) & & & 10 & \(\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}\) & 17 & 25 & ns \\
\hline \({ }^{\text {p }{ }_{\text {pd }} \text { d }}\) & \multirow[b]{2}{*}{\(B_{1}\)} & \multirow[t]{2}{*}{B*} & 11 & \(C_{L}=15 \mathrm{pF}\) & 48 & 65 & ns \\
\hline \(\dagger_{\text {pdo }}\) & & & 12 & \(\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}\) & 17 & 25 & ns \\
\hline
\end{tabular}

\footnotetext{
IIt \(\mathrm{pd}_{\mathrm{p}}\) is propagation delay fime to logical 1 level. \(t_{\text {pdo }}\) is propagation delay time to logical 0 level.
}

\section*{TYPE SN7480 GATED FULL ADDER}

\section*{TYPICAL APPLICATIONS}

\section*{n-bit binary adder or subtractor (see figures \(F\) and \(G\) )}

The SN7480 is designed specifically for N-bit adder or subtractor operations without external gates or inverters. In both applications, the sum or difference functions are generated in parallel while the carry functions are obtained serially. When the number of stages is small, the add or subtract time determines the maximum system clock rate. However, as the number of bits incteases, the time required for the carry function to ripple through each bit becomes the limiting factor. Normally the ripple time of adders built with standard integrated circuits is excessive, and the resulting system speed is so slow that other more complex methods are required to perform these functions.

In the SN7480, two methods are used to reduce the carry delay. The carry circuit employs a high-speed Darlington output, and the logic gating has only one inversion between the \(C_{n}\) input and the \(\overline{C_{n+1}}\) output. This logic configuration results in an inverted carry output, and consequently an inverted carry input to the succeeding stage. To counteract this inverted input without sacrificing propagation time through the carry, gates are provided within the circuit to invert the \(A\) and \(B\) inputs and the resulting sum or difference output. This
interconnection method is illustrated by bit 2 and bit 4 of the adder (figure F). The inverted carry output is a true carry from bit 2 and bit 4, enabling the use of noninverted \(A\) and \(B\) inputs for the odd-numbered bits.

When performing subtraction (figure \(G\) ) the \(C_{n}\) input to bit 1 is connected to a logical 1 and input bits and input control functions for the subtrahend (memory or register B) are effectively inverted.

The input control is used to disable the \(A\) and \(B\) inputs when memory or register information is being shifted. A logical 0 applied to this line will bring each sum or difference output to a logical 0 condition and maintain this level regardless of the state of the input information into each bit. For the adder (figure \(F\) ), input control is applied to \(A_{2}\) and \(B_{2}\) of odd-numbered bits and to \(A_{c}\) and \(B_{c}\) of even-numbered bits. For the subtractor (figure \(G\) ), input control is applied to \(A_{2}\) and \(B_{c}\) of the odd-numbered bits and to \(A_{c}\) and \(B_{2}\) of the even-numbered bits. These alternating patterns are necessary to complement the varying input sequence which they control.


\section*{TYPICAL APPLICATIONS}

\section*{n-bit binary adder with register selection (see figure}
H)

This application fully utilizes the flexibility of the input gating available within the SN7480. Two " A " registers and two " \(B\) " registers drive a single adder for each bit required. Register selection is performed internally for registers \(A_{1}\) and \(B_{1}\) and externally by a type SN15 846 DTL gate for registers \(A_{2}\) and \(B_{2}\). Dot-OR logic is performed at the \(A \star\) and \(B \star\) nodes within the adder when the register selection is made.

Operation is as follows: To add the contents of Register \(A_{1}\) to Register \(B_{1}, A_{2}\) and \(B_{2}\) control lines are brought to the logical 0 state. (If the input to these lines is from a logic gate, fan-out rules should be observed.) In similar fashion, the contents of register \(A_{1}\) are added to register \(B_{2}\) by holding \(A_{2}\) and \(B_{1}\) control lines at a logical 0 . Four register combinations may be used. Even-numbered input bits from each register must be inverted since the \(A \star\) and \(B \star\) inputs are being used to perform Dot-OR logic. This is not a configuration restriction for flip-flop type registers and memories, but may require additional logic elements if other storage configurations are used as inputs.

The input control function is available as in the previous application and is implemented by bringing all four register control lines and the input control line to a logical 0 level. This condition ensures a logical 0 at each \(\Sigma\) output regardless of " \(A\) " and " \(B\) " register logic levels.

Up to four " \(A\) " registers and four " \(B\) " registers may be implemented in a fashion analogous to that shown in figure H . Inputs from the register-control gates (SN15 846) of the additional registers would be Dot-OR connected with \(A_{2}\) and \(B_{2}\) registers at the \(A \star\) and \(B \star\) inputs.

To perform \(N\)-bit subtraction, the \(C_{n}\) input at bit 1 is connected to a logical 1 and bit inputs from each register or memory used as a subtrahend must consist of the complement of bit inputs shown for the adder addend: Input control remains the same.


NOTE: Functions noted as NC are open.

FIGURE H. N-BIT BINARY ADDER WITH REGISTER SELECTION
schematic diagram


Component values shown are nominal.
Resistor values are in ohms.

PARAMETER MEASUREMENT INFORMATION
d-c test circuits§

§Arrows indicate actual direction of current flow.

\section*{PARAMETER MEASUREMENT INFORMATION}
d-c test circuits§ (continued)

§Arrows indicate actual direction of current flow.
d-c test circuits§ (continued)

§Arrows indicate actual direction of current flow.

PARAMETER MEASUREMENT INFORMATION
d-c test circuits§ (continued)

§Arrows indicate actual direction of current flow.

PARAMETER MEASUREMENT INFORMATION
d-c test circuits§ (continued)

§ Arrows indicate actual direction of current flow.

\section*{PARAMETER MEASUREMENT INFORMATION}

\section*{d-c test circuits§ (continued)}


\footnotetext{
§Arrows indicate actual direction of current flow.
}

\section*{PARAMETER MEASUREMENT INFORMATION}
d-c test circuits § (continued)

§Arrows indicate actual direction of current flow.

PARAMETER MEASUREMENT INFORMATION
```

d-c test circuits§ (continued)

```


\footnotetext{
§Arrows indicate aetual direction of current flow.
}

\section*{PARAMETER MEASUREMENT INFORMATION}
d-c test circuits§ (continued)

§Arrows indicate actual direction of current flow.

1. Each input or output is tested separately.
2. When \(A \star\) is tested \(A_{1}\) and \(A_{2}\) are af GND. When \(B \star\) is tested \(B_{1}\) and \(B_{2}\) are at GND.
3. When \(A_{1}\) and \(A_{2}\) or \(B_{1}\) and \(B_{2}\) is tested, \(A \star\) or \(B \star\) respectively, is open.


TEST TABLE
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Output Under Test } & \(I_{\text {lood }}\) (Min) \\
\hline\(\Sigma \overline{\mathrm{E} \text { or } \mathrm{S}}\) & \(-400 \mu \mathrm{~A}\) \\
\hline\(\overline{C_{n}+1}\) & \(-200 \mu \mathrm{~A}\) \\
\hline\(A \star\) or \(\mathrm{B} \star\) & \(-120 \mu \mathrm{~A}\) \\
\hline
\end{tabular}
1. Each input or output is tested separately.
2. When \(A \star\) is lested \(A_{1}\) and \(A_{2}\) are at GND. When \(B t\) is tested \(B_{1}\) and \(B_{2}\) are at GND.
3. When \(A_{1}\) and \(A_{2}\) or \(B_{1}\) and \(B_{2}\) are tested \(A \star\) or \(B \star\), respectively, is open.
§Arrows indicate actual direction of current flow.

\section*{PARAMETER MEASUREMENT INFORMATION}
d-c test circuits§(continued)

§Arrows indicate actual direction of current flow.

\section*{PARAMETER MEASUREMENT INFORMATION}
d-c test circuits§(continued)

§ Arrows indicate actual direction of current flow.

\section*{PARAMETER MEASUREMENT INFORMATION}

\section*{switching characteristics}

test circuit

voltage waveforms
NOTES: 1. The generator has the following characteristics: \(\mathrm{t}_{0}=\mathrm{t}_{1} \leq 15 \mathrm{~ns}, \mathrm{t}_{\mathrm{p}}=0.5 \mu \mathrm{~s}, \mathrm{PRR}=1 \mathrm{MHz}, \mathrm{z}_{\text {out }} \approx 50 \Omega\).
2. All transistors are 2 N 2368 .
3. All diodes are 1 N916.
4. Test SN7440 with \(R_{1}=130 \Omega, C_{2}=150 \mathrm{pF}\).
5. \(t_{\mathrm{pd}}=\frac{t_{\mathrm{pdo}}+t_{\mathrm{pd} 1}}{2}\)
6. \(C_{1}\) includes probe and jig capacitance.

\section*{PARAMETER MEASUREMENT INFORMATION}
switching characteristics (continued)

test circuit


VOLTAGE WAVEFORMS

NOTES: 1. The generator has the following characteristics: \(\mathrm{t}_{0}=\mathrm{t}_{1} \leq 15 \mathrm{~ns}, \mathrm{t}_{\mathrm{p}}=0.5 \mu \mathrm{~s}, \mathrm{PRR}=1 \mathrm{MHz}, \mathrm{z}_{\text {out }} \approx 50 \Omega\).
2. All transistors are 2 N 2368 .
3. All diodes are \(1 \times 916\).
4. \(t_{\mathrm{pd}}=\frac{t_{\mathrm{pdo}}+t_{\mathrm{pd}}}{2}\)
5. \(C_{1}\) includes probe and jig capacitance.

\section*{BOETD CERCTIE \({ }^{\circledR}\) SEMICONDUCTOR NETWORKS}

PARAMETER MEASUREMENT INFORMATION
switching characteristics (continued)

test circuit sn7470


TEST CIRCUIT SN7474
NOTES: 1. Present or clear function of the SN7470 can occur only when clock input is low. Gated inputs are inhibited.
2. Clear and preset inputs of the SN7474 dominate regardless of the state of clock or D inputs.
3. All transistors are 2 N 2368 .
4. All diodes are 1 N 916 .
5. \(C_{1}\) includes probe and iig capacitance.

FIGURE 52 - SN7470 AND SN7474 PRESET/CLEAR PROPAGATION DELAY TIMES (SHEET 1 OF 2)
switching characteristics (continued)


PARAMETER MEASUREMENT INFORMATION

\section*{switching characteristics (continued)}


\section*{PARAMETER MEASUREMENT INFORMATION}
switching characteristics (continued)


NOTES: 1. Clock, J, and \(K\) input pulse characteristics: \(V_{i n(0)}=0.4 V, C_{i n(1)}=2.4 V, t_{1}=t_{0}=15 \mathrm{~ns}, t_{p}=20 \mathrm{~ns}\), and \(P R R=1 \mathrm{MHz}\). When testing \(f_{\text {clock }}\), vary PRR.
2. For the \(\mathrm{SN} 7472, \mathrm{~J}=\mathrm{J} 1 \bullet \mathrm{~J} 2 \bullet \mathrm{~J} 3\) and \(\mathrm{K}=\mathrm{K} 1 \bullet \mathrm{~K} 2 \bullet \mathrm{~K} 3\).
3. Gated inputs (shown with dotted lines) are for the SN7472 only. The SN7473 Dual Flip-Flop has direct Jand Kinputs and preset is not available.
4. All transistors are 2N2368.
5. All diodes are 1 N 916 .
6. \(C_{1}\) includes probe and jig capacitance.

FIGURE 54 - SN7472, SN7473 FLIP-FLOP SWITCHING TIMES

PARAMETER MEASUREMENT INFORMATION
switching characteristics (continued)


PARAMETER MEASUREMENT INFORMATION
switching characteristics (continued)


NOTES: 1. Clock input pulse has the following characteristics: \(\mathrm{V}_{\mathrm{in}(0)}=0.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{in}(1)}=2.4 \mathrm{~V}, \mathrm{t}_{1}=\mathrm{t}_{0}=15 \mathrm{~ns}, \mathrm{t}_{\mathrm{p}}=30 \mathrm{~ns}\), and PRR \(=1 \mathrm{MHz}\). When testing \(\mathrm{f}_{\mathrm{clock}}\) vary PRR.
2. \(\mathbf{D}\) input (pulse \(A\) ) is used to measure \(t_{p d 1}\) at \(Q\) and \(t_{p o 0}\) at \(\bar{Q}\). Pulse \(B\) is used to measure \(t_{p d 1}\) at \(\bar{Q}\) and \(t_{p d 0}\) at \(Q\). \(D\) input (pulse A) has the following characteristics: \(t_{1}=t_{0}=15 \mathrm{~ns}, \mathrm{t}_{\text {setup }}=20 \mathrm{~ns}, \mathrm{t}_{\mathrm{p}}=60 \mathrm{~ns}\), and PRR is \(50 \%\) of the clock PRR. \(\mathbf{D}\) input (pulse \(B\) ) has the following characteristics: \(\mathrm{t}_{1}=\mathrm{t}_{0}=\) \(15 \mathrm{~ns}, \mathrm{t}_{\text {hold }}=5 \mathrm{~ns}, \mathrm{t}_{\mathrm{p}}=60 \mathrm{~ns}\), and PRR is \(50 \%\) of the clock PRR.
3. All transistors are 2 N 2368 .
4. All diodes are 1 N916.
5. \(C_{1}\) includes probe and iig capacitance. FIGURE 56 - SN7474 FLIP-FLOP SWITCHING TIME

\section*{PARAMETER MEASUREMENT INFORMATION}

\section*{switching characteristics (continued)}


FIGURE 57 - SN7480 SWITCHING TIMES

TYPICAL CHARACTERISTICS §
logical 1 OUTPUT VOLtage
vs
LOAD CURRENT

logical o output voltage
vs
SINK CURRENT


TYPICAL CHARACTERISTICS §


PROPAGATION DELAY tIME TO LOGICAL O LEVEL
vs


\section*{TYPICAL CHARACTERISTICS §}


\section*{MECHANICAL DATA}

Series 74 semiconductor networks are mounted in glass-to-metal hermetically sealed, welded packages. Package body and leads are gold-plated F-15 \(\ddagger\) glass-sealing alloy. Approximate weight is
0.1 gram. All external surfaces are metallic and are insulated from leads and circuit. All Series 74 networks are available with formed leads, insulator attached, and/or mounted in a Mech-Pak carrier.


\section*{leads}

Gold-plated F - \(15 \$\) leads require no additional cleaning or processing when used in soldered or welded assembly. Formed leads are available to facilitate planar mounting of networks on flat circuit boards. Standard lead length is 0.175 inch. Networks can be removed from Mech-Pak carriers with lead lengths up to 0.175 inch.

\section*{insulator}

An insulator, secured to the back surface of the package, permits mounting networks on circuit boards which have conductors passing beneath the package. The insulator is 0.0025 inch thick and has an insulation resistance of greater than 10 megohms at \(25^{\circ} \mathrm{C}\).

\section*{mech-pak carrier}

The Mech-Pak carrier facilitates handling the network, and is compatible with automatic equipment used for testing and assembly. The carrier is particularly appropriate for mechanized assembly operations and will withstand temperatures of \(125^{\circ} \mathrm{C}\) for indefinite periods.

\section*{ordering instructions}

Variations in mechanical configuration of semiconductor networks are identified by suffix numbers shown in a table at the right.
\(\dagger\) Patented by Texas Instruments
\(\mathbf{+ F}\) - 15 is the ASTM designation for on iron-nickel-cobalt alloy containing nominally \(53 \%\) iron, \(29 \%\) nickel, and \(17 \%\) cobalt.

\section*{HIGH-SPEED TTL DIGITAL SEMICONDUCTOR NETWORKS IN DTL PIN CONFIGURATIONS}

\section*{description}

Series 74930 consists of Texas Instruments high-speed TTL circuits with pin configurations and logic functions that make them electrically compatible and mechanically interchangeable with Series 15830 DTL circuits. In addition to five interchangeable networks, an 8 -input NAND gate and a dual AND-OR-INVERT gate are available.
\begin{tabular}{|c|c|c|}
\hline comparative features & SERIES 15830 DTL & \[
\text { SERIES } 74930
\]
TTL \\
\hline Gate propagation delay time (typically) & 25 ns & 13 ns \\
\hline Fan-out capability . . . . . . . . . & 8 & 10 \\
\hline (DTL can drive 8 DTL or 5 TTL loads, TTL can drive 10 TTL or 10 DTL loads) & & \\
\hline Noise immunity (guaranteed) . . . & 350 mV & 400 mV \\
\hline
\end{tabular}
standard line summary
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ FUNCTION } & \multicolumn{1}{|c|}{ TYPES } & \multicolumn{1}{|c|}{ SIMILAR DTL CIRCUIT } \\
\hline Dual 4-Input Positive NAND Gate & SN74 930 & SN15 830 \\
\hline Dual 4-Input Positive NAND Buffer & SN74 932 & SN15 832 \\
\hline Quadruple 2-Input Positive NAND Gate & SN74 946 & SN15 846 \\
\hline Triple 3-Input Positive NAND Gate & SN74 962 & SN15 862 \\
\hline 8-Input Positive NAND Gate & SN74 965 & None \\
\hline Dual 2-Wide 2-Input AND-OR-INVERT Gate & SN74966 & None \\
\hline Master-Slave Flip-Flop & SN74 948 & SN15 831/SN15 845/SN15 848 \\
\hline
\end{tabular}

\section*{specifications}

Schematic diagrams, fan-out rules, maximum ratings, temperature ranges, and electrical characteristics are identical to those of the corresponding Series 74 type number.
\begin{tabular}{|c|c|}
\hline SERIES 74 930 TYPE & \begin{tabular}{c} 
CORRESPONDING \\
SERIES 74 TYPE
\end{tabular} \\
\hline SN74 930 & SN7420 \\
\hline SN74 932 & SN7440 \\
\hline SN74 946 & SN7400 \\
\hline SN74 948 & See Note 1 \\
\hline SN74 962 & SN7410 \\
\hline SN74 965 & SN7430 \\
\hline SN74 966 & SN7451 \\
\hline
\end{tabular}

NOTE 1: The SN74 948 has no corresponding Series 74 type. Electrical and switching characteristics are included in this data sheet.

\footnotetext{
\(\dagger\) Patented by Texas Instruments
}


\section*{PIN CONFIGURATIONS}

SN74 930
DUAL 4-INPUT POSITIVE NAND GATE


SN74 946


SN74 965
8-INPUT POSITIVE NAND GATE


SN74 932
DUAL 4-INPUT POSITIVE NAND BUFFER


SN74 962
TRIPLE 3-INPUT POSITIVE NAND GATE


SN74 966
DUAL 2-WIDE 2-INPUT AND-OR-INVERT GATE


\section*{logic}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & & & & & & & \\
\hline \multicolumn{5}{|r|}{R-S MODE} & \multicolumn{3}{|r|}{J-K MODE} \\
\hline \multicolumn{4}{|c|}{\(\mathrm{t}_{\mathrm{n}}\)} & \(t_{n+1}\) & \multicolumn{2}{|c|}{\(t_{n}\)} & \(\mathrm{t}_{\mathrm{n}+1}\) \\
\hline \(\mathrm{S}_{1}\) & \(\mathrm{S}_{2}\) & \(\mathrm{C}_{1}\) & \(\mathrm{C}_{2}\) & Q & \(\mathrm{S}_{1}\) & \(\mathrm{C}_{1}\) & Q \\
\hline 0 & X & 0 & X & Qn & 0 & 0 & Qn \\
\hline 0 & X & X & 0 & Qn & 0 & 1 & 0 \\
\hline X & 0 & 0 & X & Qn & 1 & 0 & 1 \\
\hline X & 0 & X & 0 & Qn & 1 & 1 & \(\overline{\text { Q }}\) \\
\hline 0 & X & 1 & 1 & 0 & & & \\
\hline X & 0 & 1 & 1 & 0 & & & \\
\hline 1 & 1 & 0 & X & 1 & & & \\
\hline 1 & 1 & X & 0 & 1 & & & \\
\hline 1 & 1 & 1 & 1 & Indeterminate & & & \\
\hline
\end{tabular}

NOTES: \(1 . t_{n}=\) bit time before clock pulse.
2. \(\mathrm{t}_{\mathrm{n}+1}=\) bit time after clock pulse.
3. \(X\) indicates that either a logical 1 or a logical 0 may be

4. Logical 1 is more positive than logical 0 .
5. For operation in the J-K mode connect \(S_{2}\) to \(\bar{Q}\) and \(C_{2}\) to \(\mathbb{Q}\).

\section*{description}

The SN74 948 flip-flop is based on the master-slave principle. This device has AND gate inputs for entry into the master section which are controlled by the clock pulse. The clock pulse also regulates the state of the coupling transistors which connect the master and slave sections. The sequence of operation is as follows:
1. Isolate slave from master.
2. Enter information from AND gate inputs to master.

3. Disable AND gate inputs.
4. Transfer information from master to slave.

\section*{recommended operating conditions}
\[
\text { Supply Voltage } \mathrm{V}_{\mathrm{cc}} \text {. . . . . . . . . . . . . . . . . . . . . . } 4.75 \mathrm{~V} \text { to } 5.25 \mathrm{~V}
\]

Fan-Out From Each Output, \(N\)
Width of Clock Pulse, \(\mathrm{t}_{\mathrm{p}(\mathrm{clock})}\) (See Figure 6) . . . . . . . . . . . . . . . . . . \(\geq 20 \mathrm{~ns}\)
Width of Direct Set Pulse, \(\mathrm{t}_{\mathrm{p}|\mathrm{Sp}|}\) (See Figure 7) . . . . . . . . . . . . . . . . . \(\geq 25 \mathrm{~ns}\)
Width of Direct Clear Pulse, \(\mathrm{t}_{\mathrm{P}|\mathrm{CD}|}\) (See Figure 7) . . . . . . . . . . . . . . . . \(\geq 25 \mathrm{~ns}\)
Input Setup Time, \(\mathrm{t}_{\text {setup }}\) (See Figure 6) . . . . . . . . . . . . . . applied clock pulse width
Input Hold Time, \(\mathrm{t}_{\text {hold }}\). . . . . . . . . . . . . . . . . . . . . . . . . . \(\geq 0\)
electrical characteristics, \(\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\) to \(70^{\circ} \mathrm{C}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & PARAMETER & TEST FIGURE & TEST CONDITIONS & MIN & TYP & MAX & UNIT \\
\hline \(V_{\text {in(1) }}\) & Logical 1 input voltage & 1 & \(\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}\) & 2 & & & V \\
\hline \(V_{\text {in }(0)}\) & Logical 0 input voltage & 1 & \(\mathrm{V}_{\mathrm{cc}}=4.75 \mathrm{~V}\) & & & 0.8 & V \\
\hline \(\mathrm{V}_{\text {out (1) }}\) & Logical 1 output voltage & 1 & \(\mathrm{V}_{\text {CC }}=4.75 \mathrm{~V}, \mathrm{I}_{\text {load }}=-400 \mu \mathrm{~A}\) & 2.4 & 3.5 + & & \(V\) \\
\hline \(\mathrm{V}_{\text {out }}\) (0) & Logical 0 output voltage & 2 & \(\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{I}_{\text {sink }}=16 \mathrm{~mA}\) & & 0.22 & 0.4 & V \\
\hline \(I_{\text {in }(0)}\) & Logical 0 level input current at \(C_{1}, C_{2}, S_{1}\), or \(S_{2}\) & 3 & \(\mathrm{V}_{\mathrm{cc}}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{in}}=0.4 \mathrm{~V}\) & & & -1.6 & mA \\
\hline \(\mathrm{I}_{\mathrm{in}(0)}\) & Logical 0 level input current at \(C_{D}\) or \(S_{D}\) & 3 & \(\mathrm{V}_{\mathrm{cc}}=5.25 \mathrm{~V}, \mathrm{~V}_{\text {in }}=0.4 \mathrm{~V}\) & & & -3.2 & mA \\
\hline \(\mathrm{I}_{\mathrm{in}(0)}\) & Logical 0 level input current at CP & 3 & \(\mathrm{V}_{\mathrm{cc}}=5.25 \mathrm{~V}, \mathrm{~V}_{\text {in }}=0.4 \mathrm{~V}\) & & & -4.8 & mA \\
\hline \multirow[b]{2}{*}{\(\mathrm{I}_{\text {in(1) }}\)} & \multirow[t]{2}{*}{Logical I level input current at \(C_{1}, C_{2}, S_{1}\), or \(S_{2}\)} & \multirow[t]{2}{*}{4} & \(\mathrm{V}_{\mathrm{cc}}=5.25 \mathrm{~V}, \mathrm{~V}_{\text {in }}=2.4 \mathrm{~V}\) & & & 40 & \(\mu \mathrm{A}\) \\
\hline & & & \(\mathrm{V}_{\mathrm{cc}}=5.25 \mathrm{~V}, \mathrm{~V}_{\text {in }}=5.5 \mathrm{~V}\) & & & 1 & mA \\
\hline \multirow[b]{2}{*}{\(\mathrm{i}_{\text {in(1) }}\)} & \multirow[t]{2}{*}{Logical 1 level input current at \(C_{D}\) or \(S_{D}\)} & \multirow[t]{2}{*}{4} & \(\mathrm{V}_{\mathrm{cc}}=5.25 \mathrm{~V}, \mathrm{~V}_{\text {in }}=2.4 \mathrm{~V}\) & & & 80 & \(\mu \mathrm{A}\) \\
\hline & & & \(\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\text {in }}=5.5 \mathrm{~V}\) & & & 1 & mA \\
\hline \multirow[b]{2}{*}{\(\mathrm{I}_{\mathrm{in}(1)}\)} & \multirow[b]{2}{*}{Logical I level input current at CP} & \multirow[t]{2}{*}{4} & \(\mathrm{V}_{\mathrm{cc}}=5.25 \mathrm{~V}, \mathrm{~V}_{\text {in }}=2.4 \mathrm{~V}\) & & & 120 & \(\mu \mathrm{A}\) \\
\hline & & & \(\mathrm{V}_{\mathrm{Cc}}=5.25 \mathrm{~V}, \mathrm{~V}_{\text {in }}=5.5 \mathrm{~V}\) & & & 1 & mA \\
\hline Ios & Short-circuit output current \(\dagger\) & 5 & \(\mathrm{V}_{\mathrm{cc}}=5.25 \mathrm{~V}, \mathrm{~V}_{\text {in }}=0\) & -18 & & -57 & mA \\
\hline \(\mathrm{I}_{\mathrm{CC}}\) & Supply current & 4 & \(\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{in}}=5 \mathrm{~V}\) & & 8 & & mA \\
\hline
\end{tabular}
\(\dagger\) Not more than one output should be shorted at a time.
\(\ddagger\) These typical values are at \(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\).
switching characteristics, \(V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}, \mathrm{N}=10\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & PARAMETER & \[
\begin{aligned}
& \text { TEST } \\
& \text { FIGURE }
\end{aligned}
\] & TEST CONDITIONS & MIN & TYP & MAX & UNIT \\
\hline \(\mathrm{f}_{\text {clock }}\) & Maximum clock frequency & 6 & & 10 & 15 & & MHz \\
\hline  & Propagation delay time to logical 1 level from \(C_{D}\) or \(S_{D}\) to output & 7 & & & 26 & 50 & ns \\
\hline \({ }^{\dagger}\) pdo & Propagation delay time to logical 0 level from \(C_{D}\) or \(\mathrm{S}_{\mathrm{D}}\) to output & 7 & & & 34 & 50 & ns \\
\hline \({ }^{\text {t }}\) ¢ \({ }^{\text {1 }}\) & Propagation delay time to logical 1 level from \(\mathrm{C}_{1}, \mathrm{C}_{2}\), \(\mathrm{S}_{1}\), or \(\mathrm{S}_{2}\) to output & 6 & & 10 & 26 & 50 & ns \\
\hline \({ }^{\text {p }}\) ¢0 & Propagation delay time to logical 1 level from \(\mathrm{C}_{1}, \mathrm{C}_{2}\), \(\mathrm{S}_{1}\), or \(\mathrm{S}_{2}\) to output & 6 & & 10 & 34 & 50 & ns \\
\hline
\end{tabular}

\section*{functional block diagram}

schematic


\section*{PARAMETER MEASUREMENT INFORMATION}

\section*{d-c test circuits \(\dagger\)}

†Arrows indicate actual direction of current flow.

\section*{PARAMETER MEASUREMENT INFORMATION}

\section*{d-c test circuits \(\dagger\) (continued)}

\(\dagger\) Arrows indicate actual direction of current flow.
switching characteristics


NOTES: 1. Input pulse characteristics: \(\mathbf{V}_{\text {in }(0)} \leq 0.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{in}(1)} \geq 2.4 \mathrm{~V}, \mathrm{t}_{1}=\mathrm{t}_{0} \leq 15 \mathrm{~ns}, \mathrm{t}_{\mathrm{p}}=20 \mathrm{~ns}\), and PRR \(=1 \mathrm{MHz}\). When testing \(\mathrm{f}_{\mathrm{clock}}\), vary PRR.
2. All transistors are 2 N 2368 .
3. All diodes are 1 N 916 .
4. \(\mathrm{C}_{\mathrm{L}}\) includes probe and iig capacitance.

FIGURE 6 - PROPAGATION DELAY TIMES FROM CLOCKED INPUTS

\section*{MASTER-SLAVE FLIP-FLOP}

\section*{PARAMETER MEASUREMENT INFORMATION}

\section*{switching characteristics (continued)}

test circuit


NOTES: I. \(C_{D}\) or \(S_{D}\) inputs dominate regardless of the state of clock, \(C_{1}, C_{2}\) or \(S_{Y}, S_{2}\) inputs.
2. \(C_{D}\) or \(S_{D}\) input pulse characteristics: \(V_{\text {in }(0)} \leq 0.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{in}(1)} \geq 2.4 \mathrm{~V}, \mathrm{t}_{1}=\mathrm{t}_{0} \leq 15 \mathrm{~ns}, \mathrm{t}_{\mathrm{p}(\mathrm{CD})}=\mathrm{t}_{\mathrm{p}(\mathrm{SD})}=25 \mathrm{~ns}\), and \(\mathrm{PRR}=1 \mathrm{MHz}\).
3. All transistors are 2 N 2368 .
4. All diodes are 1 N916.
5. \(\mathrm{C}_{\mathrm{L}}\) includes probe and iig capacitance.
\[
\text { FIGURE } 7-C_{D} \text { AND } S_{D} \text { PROPAGATION DELAY TIMES }
\]

\section*{TRANSISTOR-TRANSISTOR-LOGIC SEMICONDUCTOR NETWORKS IN}

MOLDED PLUG-IN PACKAGES

\section*{description}

Series 74 N consists of the Series 74 general-purpose TTL circuits mounted within a 14 -pin plastic package and characterized for operation over the temperature range of \(0^{\circ} \mathrm{C}\) to \(70^{\circ} \mathrm{C}\).

\section*{features}
- high speed - typical gate propagation delay time of 13 ns
- high d-c noise margin-typically 1 V
- low power dissipation - 10 mW per gate at \(50 \%\) duty cycle
- low output impedance - less than \(100 \Omega\) at logical 1 output state
- full fan-out of 10
- plug-in configuration ideal for flow-soldering techniques
- pins on \(100-\mathrm{mil}\) grid spacings for industrial-type circuit-boards

\section*{specifications, logic symbols, and terminal designations}

Schematic diagrams, fan-out rules, maximum ratings, and electrical characteristics for Series 74 N networks are identical to those of the corresponding Series 74 type number. Terminal designations for the Series 74 N networks are shown in this data sheet.

\section*{mechanical data}

Series 74 N networks are mounted on a 14 -lead frame and encapsulated within a plastic compound. The compound will withstand soldering temperatures with no deformation and circuit performance characteristics remain stable when operated in high-humidity conditions.


SN7400N
QUADRUPLE 2-INPUT POSITIVE NAND GATE

positive logic
\[
\mathbf{Y}=\overline{\mathrm{AB}}
\]

SN7420N
DUAL 4-INPUT POSITIVE NAND GATE


SN7410N
TRIPLE 3-INPUT POSITIVE NAND GATE


SN7430N 8-INPUT POSITIVE NAND GATE


\footnotetext{
NC - No internal connection.
\(\dagger\) Patented by Texas Instruments
}

SN7440N
DUAL 4-INPUT POSITIVE NAND BUFFER


SN7453N, SN7454N
4-WIDE 2-INPUT AND-OR-INVERT GATES


NOTE: Expander nodes \(X\) and \(\bar{X}\) are on the SN7453N only.

DUAL 2-WIDE 2-INPUT AND-OR-INVERT GATES


NOTE: Expander nodes \(X\) and \(\bar{X}\) are on the SN7450N only. Make no external connection to pins (11) and (12) of the SN745IN.

SN7460N
DUAL 4-INPUT EXPANDER


Note: Connect pin (9) or (12) to pin (12) of SN7450N or SN7453N. Connect pin (11) or (11) to pin (11) of SNT45ON or SN7453W.

\footnotetext{
NC - No internal connection.
\(\dagger\) Patented by Texas Instruments
}

SN7470N
J-K FLIP-FLOP


NOTE: Clock must be af logical 0 prior to the application of preset or clear functions.
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{ TRUTH TABLE } \\
\hline \multicolumn{2}{|c|}{\(t_{n}\)} & \(t_{n}+1\) \\
\hline\(J\) & \(K\) & \(Q\) \\
\hline 0 & 0 & \(Q_{n}\) \\
\hline 0 & 1 & 0 \\
\hline 1 & 0 & 1 \\
\hline 1 & 1 & \(\bar{Q}_{n}\) \\
\hline
\end{tabular}

NOTES: \(\quad 1 . \mathrm{J}=\mathrm{J} \cdot \mathrm{J} 2 \cdot \overline{\mathrm{~J}}\)
2. \(k=k 1 \cdot K 2 \cdot \bar{k}\)
3. \(\mathrm{t}_{\mathrm{n}}=\) bit time before clock pulse.
4. \(t_{n+1}=\) bit time after clock pulse.
5. If inputs \(J \star\) or \(K \star\) are not used they must be grounded.

SN7472N
J-K MASTER-SLAVE FLIP-FLOP

\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{ TRUTH TABLE } \\
\hline \multicolumn{2}{|c|}{\(t_{n}\)} & \(t_{n+1}\) \\
\hline\(J\) & \(K\) & \(Q\) \\
\hline 0 & 0 & \(Q_{n}\) \\
\hline 0 & 1 & 0 \\
\hline 1 & 0 & 1 \\
\hline 1 & 1 & \(\bar{Q}_{n}\) \\
\hline
\end{tabular}

NOTES: \(\mathbf{1} . \mathrm{J}=\mathrm{Jl} \cdot \mathbf{J} \mathbf{2} \cdot \mathrm{J} 3\)
2. \(K=K 1 \cdot K 2 \cdot K 3\)
3. \(t_{n}=\) bit time before clock pulse.
4. \(\mathrm{t}_{\mathrm{n}+1}=\) bit time after clock pulse.

SN7473N
DUAL J-K MASTER-SLAVE FLIP-FLOP

\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{ TRUTH TABLE (Each Flip-Flop) } \\
\hline \multicolumn{2}{|c|}{\(t_{n}\)} & \(t_{n}+1\) \\
\hline\(J\) & \(K\) & \(Q\) \\
\hline 0 & 0 & \(Q_{n}\) \\
\hline 0 & 1 & 0 \\
\hline 1 & 0 & 1 \\
\hline 1 & 1 & \(\bar{Q}_{n}\) \\
\hline
\end{tabular}

NOTES: \(1 . t_{\mathrm{n}}=\) bit time before clock pulse. 2. \(\mathrm{t}_{\mathrm{n}+1}=\) bit time after clock pulse.

SN7474N
DUAL D-TYPE EDGE-TRIGGERED FLIP-FLOP

truth table (Each Flip-Flop)
\begin{tabular}{|c|c|c|}
\hline \multirow{2}{*}{\(t_{n}\)} & \multicolumn{2}{|c|}{\(t_{n+1}\)} \\
\hline INPUT D & \begin{tabular}{c} 
OUTPUT \\
\(Q\)
\end{tabular} & \begin{tabular}{c} 
OUTPUT \\
\(\bar{Q}\)
\end{tabular} \\
\hline 0 & 0 & 1 \\
\hline 1 & 1 & 0 \\
\hline
\end{tabular}

NOTES: \(\quad\). \(\mathrm{t}_{\mathrm{n}}=\) bit time before clock pulse.
2. \(\mathrm{t}_{\mathrm{n}+1}=\) bit time after clock pulse.


TRUTH TABLE
(See Notes 1, 2,and 3)
\begin{tabular}{|c|c|c|c|c|c|}
\hline\(C_{n}\) & \(B\) & \(A\) & \(\overline{C_{n+1}}\) & \(\bar{\Sigma}\) & \(\Sigma\) \\
\hline 0 & 0 & 0 & 1 & 1 & 0 \\
\hline 0 & 0 & 1 & 1 & 0 & 1 \\
\hline 0 & 1 & 0 & 1 & 0 & 1 \\
\hline 0 & 1 & 1 & 0 & 1 & 0 \\
\hline 1 & 0 & 0 & 1 & 0 & 1 \\
\hline 1 & 0 & 1 & 0 & 1 & 0 \\
\hline 1 & 1 & 0 & 0 & 1 & 0 \\
\hline 1 & 1 & 1 & 0 & 0 & 1 \\
\hline
\end{tabular}

NOTES: 1. \(A=\overline{A \star \cdot A_{C}}, B=\overline{B \star \cdot B_{C}}\) where \(A t=\overline{A_{1} \cdot A_{2}}\) and \(B t=\overline{B_{1} \cdot B_{2}}\).
2. When \(A \star\) or \(B \star\) are used as inputs, \(A_{1}\) and \(A_{2}\) or \(B_{1}\) and \(B_{2}\) respectively must be connected to \(G N D\).
3. When \(A_{1}\) and \(A_{2}\) or \(B_{1}\) and \(B_{2}\) are used as inputs, \(A \star\) or \(B \star\) respectively must be open, or used to perform Dot-OR logic.


\footnotetext{
\(\dagger\) Patented by Texas Instruments
}

\section*{TEXAS INSTRUMENTS}

I NCORPORATED
SEMICONDUCTOR-COMPONENTS DIVISION
typical operating characteristics, \(\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\) to \(70^{\circ} \mathrm{C}\), supply voltage \(\mathrm{V}_{\mathrm{cc}}=3 \mathrm{v}\) to 4 v


\section*{design characteristics}

Series 73 is a compatible line of digital semiconductor intergrated circuits built and characterized for mediumspeed applications (up to 4 Mc ) in industrial environments. The networks are fabricated from triple-diffused planar silicon, and employ a modified form of diodetransistor logic selected to take advantage of inherent integrated-circuit characteristics.

As in conventional diode logic (Figure A), logic is performed at node A of a Series 73 gate (Figure B).


The gain of the p-n-p transistors replacing the input diodes increases the effective drive capability of the preceding stage. The voltage at node \(A\) is now a function of \(\mathrm{I}_{\text {in }}, \mathrm{R}_{1}\), and the \(\mathrm{p}-\mathrm{n}-\mathrm{p}\) transistor gain, rather than only \(l_{\text {in }}\) and \(R_{1}\) as in diode logic. The effect of the transistor gain is to minimize the importance of the resistor value in the circuit's performance. Since silicon resistors have inherently wide production tolerances and high temperature coefficients, the transistor gain makes fabrication of Series 73 networks more economical while assuring greater stability over the temperature range.
The n-p-n transistor which replaces the offset diode \(D_{1}\) also has gain, increasing the circuit drive capability and improving the waveshapes at node \(A\).
This basic AND logic configuration is coupled with an inverting double-ended output stage (Figure C) in each Series 73 gate.


The most important feature of the Series 73 output stage is its ability to supply load and sink current with low output impedance. This provides high d-c fan-out to both types of loads and simplifies interface design. Low output impedance in either state ensures that turn-on and turn-off waveshapes will remain sharp and symmetrical over a wide range of \(d-c\) and capacitive loadings throughout the temperature range. The low output impedance of each output ensures that every information line will have a low-impedance termination, providing valuable protection against a-c coupled noise transients.
All Series 73 networks are fabricated using a 4-step planar diffusion process. First, an n-type diffusion is made in the p-type substrate, forming the \(n\)-p-n collectors only. A second \(n\)-type diffusion is made forming the base area of the p-n-p transistors, isolation region of the resistors, one section of the capacitors, and further forming the n-p-n collectors. This sequence reduces the \(n-p-n\) transistor \(\mathrm{r}_{\mathrm{CE}(\text { sat) }}\) to approximately 30 ohms, while keeping the p-n-p base width narrow and the gain high (typically 12). The next step is a p-type diffusion which forms the p-n-p emitters, n-p-n bases, resistors, and another portion of the capacitors. The final diffusion is an n-type, forming the n-p-n emitters and completing the capacitors.

standard line summary
SN7300

\title{
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
}
Supply Voltage, \(\mathrm{V}_{\mathrm{cc}}\) (See Note 1) . . . . . . . . . . . . . . . . . . . . . +7 V

Input Voltage, \(\mathrm{V}_{\text {in }}\) (See Notes 1 and 2) . . . . . . . . . . . . . . . . . . . . . V cc
Operating Free-Air Temperature Range . . . . . . . . . . . . . . . . \(0^{\circ} \mathrm{C}\) to \(70^{\circ} \mathrm{C}\)
Storage Temperature Range . . . . . . . . . . . . . . . . . . . \(-65^{\circ} \mathrm{C}\) to \(125^{\circ} \mathrm{C}\)
NOTES: 1. Voltage values are with respect to network ground terminal.
2. Input signals must be zero or positive with respect to network ground terminal.

\section*{logic definition}

Series 73 logic is defined in terms of standard POSITIVE LOGIC using the following definitions:
\[
\begin{aligned}
& \text { LOW VOLTAGE }=\text { LOGICAL } 0 \\
& \text { HIGH VOLTAGE }=\text { LOGICAL } 1
\end{aligned}
\]

\section*{input current requirements}

Weighted values of input current requirements reflect worst-case conditions for \(T_{A}=0^{\circ}\) to \(70^{\circ} \mathrm{C}\) and \(V_{C C}=3\) to 4 v . One positive load ( \(N+=1\) ) requires current into the input at a logical 1 voltage level ( 0.5 ma at \(\mathrm{V}_{\mathrm{CC}}=3 \mathrm{v}\), and 0.8 ma at \(V_{c c}=4 \mathrm{v}\) ). One negative load ( \(\mathrm{N}-=1\) ) requires current out of the input at a logical 0 voltage level ( -0.2 ma ). Currents into the input terminals are specified as positive values. Arrows on the d-c test circuits indicate the actual direction of current flow.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{WEIGHTED VALUES OF INPUT CURRENT REQUIREMENTS} \\
\hline NETWORK & TYPE & INPUT & N+ LOADS & N- LOADS \\
\hline \multirow[t]{5}{*}{FLIP-FLOPS} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 7300,7301 \\
& 7302
\end{aligned}
\]} & \begin{tabular}{l}
\[
J, J \star, K, K \star,
\] \\
Preset, Clear
\end{tabular} & 1 & 0 \\
\hline & & Clock & 2.5 & 2.5 \\
\hline & \multirow[t]{3}{*}{7304} & J, K, Preset & 1 & 0 \\
\hline & & Clear & 2 & 0 \\
\hline & & Clock & 5 & 5 \\
\hline GATES AND EXPANDER & \[
\begin{array}{ll}
\hline 7310, & 7311 \\
7315, & 7320 \\
7330, & 7331 \\
7360, & 7370 \\
\hline
\end{array}
\] & Each Input & 0 & 1 \\
\hline ONE-SHOT & 7380 & T, T \(\star\) & 1 & 0 \\
\hline INVERTER & 7350 & Each Input & 2 & 0 \\
\hline
\end{tabular}

\section*{output drive capability}

Weighted values of fan-out reflect the ability of an output to drive current to \(N+\) loads and sink current from N - loads under worst-case conditions. Load currents (out of the output terminal) are specified as negative values. Arrows on the d-c test circuits indicate the actual direction of current flow.
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{ WEIGHTED VALUES OF FAN-OUT } \\
\hline NETWORK & OUTPUT & N+ LOADS & N- LOADS \\
\hline \begin{tabular}{l} 
FLIP-FLOPS, GATES, AND \\
ONE-SHOT
\end{tabular} & Each Output & 10 & 10 \\
\hline \multirow{3}{*}{ INVERTER (SN7350) } & \begin{tabular}{l} 
Each Output
\end{tabular} & 10 & 10 \\
\hline
\end{tabular}

\section*{pin identification}

Pin identification for Series 73 networks is shown in the illustration at the right. Symbolization on package denotes orientation. For dimensions see mechanical data.


\section*{logic}

TRUTH TABLES
\begin{tabular}{|l|l|l|}
\hline \multicolumn{3}{|c|}{\(J \star=K \star=1\)} \\
\hline \multicolumn{2}{|c|}{\(t_{n}\)} & \(t_{n+1}\) \\
\hline\(J\) & \(K\) & \(Q\) \\
\hline 0 & 0 & \(Q_{n}\) \\
\hline 0 & 1 & 0 \\
\hline 1 & 0 & 1 \\
\hline 1 & 1 & \(\bar{Q}{ }_{n}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{ ADDITIONAL INPUT } \\
LOGIC COMBINATIONS \\
\hline \multicolumn{4}{|c|}{\(t_{n}\)} & \(t_{n}+1\) \\
\hline\(J\) & \(K\) & \(J \star\) & \(K \star\) & \(Q\) \\
\hline 0 & 1 & 0 & 0 & \(\bar{Q}_{n}\) \\
\hline 1 & 0 & 0 & 0 & \(\bar{Q}_{n}\) \\
\hline 1 & 1 & 0 & 0 & \(\bar{Q}_{n}\) \\
\hline 0 & 1 & 0 & 1 & \(\bar{Q}_{n}\) \\
\hline 1 & 1 & 0 & 1 & \(\bar{Q}_{n}\) \\
\hline 1 & 0 & 1 & 0 & \(\bar{Q}_{n}\) \\
\hline 1 & 1 & 1 & 0 & \(\bar{Q}_{n}\) \\
\hline 1 & 0 & 0 & 1 & 1 \\
\hline 0 & 1 & 1 & 0 & 0 \\
\hline
\end{tabular}
\(\mathrm{t}_{\mathrm{n}}=\) Bit time before clock pulse
\(t_{n+1}=\) Bit time after clock pulse

\section*{recommended operating conditions}

Supply Voltage, \(\mathrm{V}_{\mathrm{cc}}\). . . . . . . . . . . . . . . . . . . . . . . . 3 v to 4 r
Maximum Fan-out From Each Output Into Positive Loads, N+ . . . . . . . . . . . . . . 10
Maximum Fan-out From Each Output Into Negative Loads, N- . . . . . . . . . . . . . . 10
Fall Time of Clock Pulse, \(\mathbf{t}_{\text {f(clock) }}\). . . . . . . . . . . . . . . . . . . 20 to 150 nsec
Minimum Width of Clock Pulse, \(\mathrm{t}_{\mathrm{p}(\mathrm{clock})}\). . . . . . . . . . . . . . . . . . . . 50 nsec
electrical characteristics (unless otherwise noted \(\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\) to \(70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{cc}}=\mathbf{3 v}\) to \(\mathbf{4 v}\) )
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & PARAMETER & TEST FIGURE & TEST CONDITIONS & MIN & TYP & MAX & UNIT \\
\hline \multirow[t]{2}{*}{\(V_{\text {in(1) }}\)} & \multirow[t]{2}{*}{Input voltage required to ensure logical 1 at J, K, J \(\star\), \(K \star\), and preset inputs} & \multirow[t]{2}{*}{1} & \(V_{c c}=3 \mathrm{v}\) & 1.7 & & 3 & \(v\) \\
\hline & & & \(\mathrm{v}_{\mathrm{cc}}=4 \mathrm{v}\) & 2.4 & & 4 & v \\
\hline \multirow[t]{2}{*}{\(V_{\text {in(1) }}\)} & \multirow[t]{2}{*}{Input voltage required to ensure logical 1 at clock input} & \multirow{2}{*}{2} & \(\mathrm{V}_{\mathrm{cc}}=3 \mathrm{v}\) & 1.5 & & 3 & v \\
\hline & & & \(\mathrm{v}_{\mathrm{cc}}=4 \mathrm{v}\) & 2.2 & & 4 & v \\
\hline \(V_{\text {inl0 }}\) & Input voltage required to ensure logical 0 at J, K, J \(\star\), \(K \star\), preset, and clock inputs & 1,2 & & 0 & & 0.4 & \(v\) \\
\hline \multirow[t]{2}{*}{\(V_{\text {out(1) }}\)} & \multirow[t]{2}{*}{Logical 1 output voltage (off level)} & \multirow[t]{2}{*}{3} & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{cc}}=3 \mathrm{v}_{\prime} \\
& \mathrm{N}+=10\left(\mathrm{I}_{\text {load }}=-5 \mathrm{ma}\right)
\end{aligned}
\] & 1.7 & & & \(v\) \\
\hline & & & \[
\begin{aligned}
& V_{c c}=4 v_{\prime} \\
& \mathrm{N}+=10\left(\mathrm{l}_{\text {lodd }}=-8 \mathrm{ma}\right)
\end{aligned}
\] & 2.6 & & & V \\
\hline \multirow[t]{2}{*}{\(V_{\text {out }}\) (0)} & \multirow[t]{2}{*}{Logical 0 output voltage (on level)} & \multirow[t]{2}{*}{3} & \[
\begin{aligned}
& V_{\mathrm{Cc}}=3 \mathrm{v}_{\prime_{1}} \\
& \mathrm{~N}-=10\left(\mathrm{I}_{\text {sink }}=2 \mathrm{ma}\right)
\end{aligned}
\] & & & 0.3 & v \\
\hline & & & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{cc}}=4 \mathrm{v}, \\
& \mathrm{~N}-=10\left(\mathrm{I}_{\text {sink }}=2 \mathrm{ma}\right)
\end{aligned}
\] & & & 0.3 & V \\
\hline \multirow[b]{2}{*}{\(\mathrm{I}_{\text {in }}\)} & \multirow[t]{2}{*}{J, K, J太, K \(\star\), and preset input current} & \multirow[t]{2}{*}{3} & \(\mathrm{V}_{\mathrm{in}}=1.7 \mathrm{v}\) & & & 0.5 & ma \\
\hline & & & \(\mathrm{V}_{\text {in }}=2.6 \mathrm{v}\) & & & 0.8 & ma \\
\hline \multirow{3}{*}{\(\mathrm{I}_{\mathrm{in}}\)} & \multirow[t]{3}{*}{Clock input current} & \multirow{3}{*}{3} & \(\mathrm{V}_{\text {in }}=1.7 \mathrm{v}\) & & & 1.25 & ma \\
\hline & & & \(\mathrm{V}_{\text {in }}=2.4 \mathrm{v}\) & & & 2 & ma \\
\hline & & & \(\mathrm{V}_{\mathrm{in}}=0.3 \mathrm{v}\) & & & -0.5 & ma \\
\hline \multirow[t]{2}{*}{\({ }^{\text {'cClav) }}\)} & \multirow[b]{2}{*}{Average supply current} & \multirow[t]{2}{*}{4} & \begin{tabular}{l}
\(\mathrm{V}_{\mathrm{CC}}=3 \mathrm{v}, \mathrm{N}+=\mathrm{N}-=0\), \\
Toggle \(=1 \mathrm{Mc}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\)
\end{tabular} & & 9 & & ma \\
\hline & & & \[
V_{c c}=4 v, N+=N-=0
\]
\[
\text { Toggle }=1 \mathrm{Mc}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\] & & 13 & & ma \\
\hline
\end{tabular}

\section*{TYPE SN7300}

\section*{J-K FLIP-FLOP WITH PRESET}
switching characteristics, \(\mathbf{T}_{\mathbf{A}}=25^{\circ} \mathrm{C}, \mathbf{V}_{\mathbf{c c}}=\mathbf{3 . 5} \mathbf{v}, \mathrm{N}+=\mathbf{N}-=0\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & PARAMETER & \[
\begin{gathered}
\text { TEST } \\
\text { FIGURE }
\end{gathered}
\] & TEST CONDITIONS & TYP & MAX & UNIT \\
\hline \[
\begin{aligned}
& \hline t_{d} \\
& t_{r} \\
& t_{s} \\
& t_{f} \\
& \hline
\end{aligned}
\] & Delay Time Rise Time Storage Time Fall Time & 19 & \[
\begin{aligned}
& \text { Clock Input: } V_{\text {in }}=2.5 \mathrm{v}, \quad t_{f}=20 \text { nsec, } \\
& t_{p}=500 \text { nsec, } f=1 \mathrm{Mc} \\
& \mathrm{~J}, J \star, K \text { and } K \star \text { Input: } V_{\text {in }}=V_{\mathrm{Cc}} \\
& \text { Preset Inpuf: } V_{\text {in }}=0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 20 \\
& 20 \\
& 40 \\
& 25
\end{aligned}
\] & \[
\begin{aligned}
& 30 \\
& 45 \\
& 60 \\
& 40
\end{aligned}
\] & \begin{tabular}{l}
nsec \\
nsec \\
nsec \\
nsec
\end{tabular} \\
\hline \(t_{\text {set }}\) (1) & Time to Set a Logical 1: J or K J \(\star\) or K* & \multirow[b]{2}{*}{20} & \multirow[t]{2}{*}{\begin{tabular}{l}
Clock Input: \(\mathrm{V}_{\mathrm{in}}=2.5 \mathrm{v}, \quad \mathrm{t}_{\mathrm{f}}=\mathbf{2 0} \mathrm{nsec}\), \(\dagger_{p}=500 \mathrm{nsec}, f=1 \mathrm{Mc}\) \\
\(J, J \star, K\) or \(K \star\) input: \(V_{\text {in(1) }}=2.5 \mathrm{v}\), \\
\(V_{i n(0)}=0, t_{r}=t_{f}=50 \mathrm{nsec}\)
\end{tabular}} & \[
\begin{aligned}
& 50 \\
& 35
\end{aligned}
\] & & nsec
nsec \\
\hline \(t_{\text {set }}(0)\) & ```
Time to Set a Logical 0:
J or K
J\star or K*
``` & & & \[
\begin{aligned}
& 40 \\
& 40
\end{aligned}
\] & & \begin{tabular}{l}
nsec \\
nsec
\end{tabular} \\
\hline \(t_{\text {preset }}\) & Preset Time & 21 & \[
\begin{aligned}
& \text { Clock Input: } V_{\text {in }}=0 \\
& \text { Preset Input: } V_{\text {in }}=2.5 \mathrm{v}, \mathrm{t}_{\mathrm{f}}=50 \mathrm{nsec}
\end{aligned}
\] & 55 & & nsec \\
\hline
\end{tabular}

\section*{schematic}


NOTES: a. Component values shown are nominal.
b. Resistor values are in ohms.
logic
truth tables
\begin{tabular}{|l|l|l|}
\hline \multicolumn{3}{|c|}{\(J \star=K \star=1\)} \\
\hline \multicolumn{2}{|c|}{\(t_{n}\)} & \(t_{n+1}\) \\
\hline\(J\) & \(K\) & \(Q\) \\
\hline 0 & 0 & \(Q_{n}\) \\
\hline 0 & 1 & 0 \\
\hline 1 & 0 & 1 \\
\hline 1 & 1 & \(\bar{Q}{ }_{n}\) \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{3}{|c|}{\(J=K=0\)} \\
\hline \multicolumn{2}{|c|}{\(t_{n}\)} & \(t_{n+1}\) \\
\hline\(J \star\) & \(K \star\) & \(Q\) \\
\hline 0 & 0 & \(\bar{Q}_{n}\) \\
\hline 0 & 1 & 1 \\
\hline 1 & 0 & 0 \\
\hline 1 & 1 & \(Q_{n}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{ ADDITIONAL INPUT } \\
LOGIC COMBINATIONS \\
\hline \multicolumn{4}{|c|}{\(t_{n}\)} & \(t_{n}+1\) \\
\hline\(J\) & \(K\) & \(J \star\) & \(K \star\) & \(Q\) \\
\hline 0 & 1 & 0 & 0 & \(\bar{Q}_{n}\) \\
\hline 1 & 0 & 0 & 0 & \(\bar{Q}_{n}\) \\
\hline 1 & 1 & 0 & 0 & \(\bar{Q}_{n}\) \\
\hline 0 & 1 & 0 & 1 & \(\bar{Q}_{n}\) \\
\hline 1 & 1 & 0 & 1 & \(\bar{Q}_{n}\) \\
\hline 1 & 0 & 1 & 0 & \(\bar{Q}_{n}\) \\
\hline 1 & 1 & 1 & 0 & \(\bar{Q}_{n}\) \\
\hline 1 & 0 & 0 & 1 & 1 \\
\hline 0 & 1 & 1 & 0 & 0 \\
\hline
\end{tabular}
\(t_{n}=\) Bit time before clock pulse
\(t_{n+1}=\) Bit time after clock pulse


\section*{recommended operating conditions}
\[
\text { Supply Voltage, } \mathrm{V}_{\mathrm{cc}}
\]

Maximum Fan-out From Each Output Into Positive Loads, N+
Maximum Fan-out From Each Output Into Negative Loads, N- . . . . . . . . . . . . . . 10
Fall Time of Clock Pulse, \(\boldsymbol{t}_{f(c l o c k)}\). . . . . . . . . . . . . . . . . . . 20 to 150 nsec
Minimum Width of Clock Pulse, \(\mathrm{t}_{\mathrm{p}(\mathrm{clock})}\). . . . . . . . . . . . . . . . . . . 50 nsec
electrical characteristics (unless otherwise noted \(T_{A}=0^{\circ} \mathrm{C}\) to \(70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{cc}}=3 \mathrm{v}\) to 4 v )
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & PARAMETER & TEST FIGURE & TEST CONDITIONS & MIN & TYP MAX & UNIT \\
\hline \multirow[t]{2}{*}{\(V_{i n(1)}\)} & \multirow[t]{2}{*}{Input voltage required to ensure logical 1 at J, K, J \(\star\), \(K \star\), preset, and clear inputs} & \multirow[t]{2}{*}{1} & \(\mathrm{V}_{\mathrm{CC}}=3 \mathrm{v}\) & 1.7 & 3 & v \\
\hline & & & \(\mathrm{V}_{\mathrm{Cc}}=4 \mathrm{v}\) & 2.4 & 4 & v \\
\hline \multirow[t]{2}{*}{\(V_{\text {in(1) }}\)} & \multirow[t]{2}{*}{Input voltage required to ensure logical 1 at clock input} & \multirow[t]{2}{*}{2} & \(\mathrm{V}_{\mathrm{cc}}=3 \mathrm{v}\) & 1.5 & 3 & V \\
\hline & & & \(\mathrm{V}_{\mathrm{CC}}=4 \mathrm{v}\) & 2.2 & 4 & v \\
\hline \(V_{\text {in(0) }}\) & Input voltage required to ensure logical 0 at J, K, J \(\star\), \(K \star\), preset, clock, and clear inputs & 1, 2 & & 0 & 0.4 & v \\
\hline \multirow[t]{2}{*}{\(V_{\text {out(1) }}\)} & \multirow[t]{2}{*}{Logical 1 output voltage (off level)} & \multirow[t]{2}{*}{3} & \[
\begin{aligned}
& V_{C C}=3 v, \\
& N+=10\left(I_{\text {load }}=-5 \mathrm{ma}\right)
\end{aligned}
\] & 1.7 & & v \\
\hline & & & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{cc}}=4 \mathrm{v} \\
& \mathrm{~N}+=10\left(\mathrm{I}_{\text {load }}=-8 \mathrm{ma}\right)
\end{aligned}
\] & 2.6 & & \(v\) \\
\hline \multirow[t]{2}{*}{\(V_{\text {out(0) }}\)} & \multirow[t]{2}{*}{Logical 0 output voltage (on level)} & \multirow[t]{2}{*}{3} & \[
\begin{aligned}
& V_{C C}=3 v^{\prime} \\
& N-=10\left(I_{\text {sink }}=2 \mathrm{ma}\right)
\end{aligned}
\] & & 0.3 & v \\
\hline & & & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}}=4 \mathrm{v}, \\
& \mathrm{~N}-=10\left(\mathrm{I}_{\text {sink }}=2 \mathrm{ma}\right)
\end{aligned}
\] & & 0.3 & v \\
\hline \multirow[t]{2}{*}{\(\mathrm{I}_{\text {in }}\)} & \multirow[t]{2}{*}{J, K, J \(\star\), K \(\star\), preset, and clear input current} & \multirow[t]{2}{*}{3} & \(\mathrm{V}_{\text {in }}=1.7 \mathrm{v}\) & & 0.5 & ma \\
\hline & & & \(\mathrm{V}_{\text {in }}=2.6 \mathrm{v}\) & & 0.8 & ma \\
\hline \multirow[t]{3}{*}{} & \multirow{3}{*}{Clock input current} & \multirow{3}{*}{3} & \(V_{\text {in }}=1.7 \mathrm{v}\) & & 1.25 & ma \\
\hline & & & \(V_{\text {in }}=2.4 \mathrm{v}\) & & 2 & ma \\
\hline & & & \(V_{\text {in }}=0.3 \mathrm{v}\) & & -0.5 & ma \\
\hline \multirow[t]{2}{*}{\(\mathrm{I}_{\text {cclav }}\)} & \multirow[t]{2}{*}{Average supply current} & \multirow[t]{2}{*}{4} & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{cc}}=3 \mathrm{v}, \mathrm{~N}+=\mathrm{N}=0, \\
& \text { Toggle }=1 \mathrm{Mc}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\
& \hline
\end{aligned}
\] & & 9 & ma \\
\hline & & & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}}=4 \mathrm{v}, \mathrm{~N}+=\mathrm{N}-=0, \\
& \text { Toggle }=1 \mathrm{Mc}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\end{aligned}
\] & & 13 & ma \\
\hline
\end{tabular}
switching characteristics, \(\mathbf{T}_{\mathbf{A}}=25^{\circ} \mathrm{C}, \mathbf{V}_{\mathrm{cc}}=3.5 \mathrm{v}, \mathrm{N}+=\mathbf{N}-=\mathbf{0}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & PARAMETER & \[
\begin{gathered}
\text { TEST } \\
\text { FIGURE }
\end{gathered}
\] & TEST CONDITIONS & TYP & MAX & UNIT \\
\hline  & Delay Time Rise Time Storage Time Fall Time & 19 & \begin{tabular}{l}
Clock Input: \(\mathrm{V}_{\text {in }}=2.5 \mathrm{v}, \quad \mathrm{t}_{\mathrm{f}}=20 \mathrm{nsec}\), \(t_{p}=500 \mathrm{nsec}, f=1 \mathrm{Mc}\) \\
\(J, J \star, K\) and \(K \star\) Input: \(V_{i n}=V_{C C}\) \\
Preset Input: \(\mathrm{V}_{\text {in }}=0\) \\
Clear Input: \(\mathrm{V}_{\text {in }}=0\)
\end{tabular} & \[
\begin{aligned}
& 20 \\
& 20 \\
& 40 \\
& 25
\end{aligned}
\] & \[
\begin{aligned}
& 30 \\
& 45 \\
& 60 \\
& 40
\end{aligned}
\] & nsec nsec nsec nsec \\
\hline \(t_{\text {set }}\) (1) & ```
Time to Set a Logical 1:
J or K
J* or K*
``` & \multirow[b]{2}{*}{20} & \multirow[t]{2}{*}{\begin{tabular}{l}
Clock Input: \(\mathrm{V}_{\text {in }}=2.5 \mathrm{v}, \quad t_{\mathrm{f}}=20 \mathrm{nsec}\), \(t_{p}=500 \mathrm{nsec}, f=1 \mathrm{Mc}\) \\
\(J, J \star, K\) or \(K \star \operatorname{Input}: V_{\text {in(1) }}=2.5 \mathrm{v}\), \\
\(V_{i n(0)}=0, t_{r}=t_{f}=50 \mathrm{nsec}\)
\end{tabular}} & \[
\begin{aligned}
& 50 \\
& 35
\end{aligned}
\] & & nsec nsec \\
\hline \(\mathrm{t}_{\text {set }+(0)}\) & ```
Time to Set a Logical 0:
J or K
J\star or K\star
``` & & & \[
\begin{aligned}
& 40 \\
& 40
\end{aligned}
\] & & nsec \\
\hline \(t_{\text {preset }}\) & Preset Time & 21 & \[
\begin{aligned}
& \text { Clock Input: } \mathrm{V}_{\text {in }}=0 \\
& \text { Preset Input: } \mathrm{V}_{\text {in }}=2.5 \mathrm{v}, \mathrm{t}_{\mathrm{f}}=50 \mathrm{nsec}
\end{aligned}
\] & 55 & & nsec \\
\hline \({ }^{\text {clear }}\) & Clear Time & 21 & \begin{tabular}{l}
Clock Input: \(\mathrm{V}_{\text {in }}=0\) \\
Clear Input: \(\mathrm{V}_{\mathrm{in}}=2.5 \mathrm{v}, \mathrm{t}_{\mathrm{f}}=50 \mathrm{nsec}\)
\end{tabular} & \multicolumn{2}{|l|}{75} & nsec \\
\hline
\end{tabular}

\section*{schematic}


NOTES: a. Component values shown are nominal.
b. Resistor values are in ohms.

\section*{logic}
TRUTH TABLE
EACH FLIP-FLOP
\begin{tabular}{|l|l|l|}
\hline & \(t_{n}\) & \(t_{n+1}\) \\
\hline\(J\) & \(K\) & \(\bar{Q}\) \\
\hline 0 & 0 & \(Q_{n}\) \\
\hline 0 & 1 & 0 \\
\hline 1 & 0 & 1 \\
\hline 1 & 1 & \(\overline{Q_{n}}\) \\
\hline
\end{tabular}
\(t_{n}=\) Bit time before clock pulse
\(t_{n+1}=\) Bit time after clock pulse


\section*{positive logic}

High input to preset sets \(Q\) to logical 1

\section*{recommended operating conditions}
\[
\text { Supply Voltage, } \mathrm{V}_{\mathrm{cc}} \text {. . . . . . . . . . . . . . . . . . . . . . . . } 3 \text { v to } 4 \text { v }
\]
Maximum Fan-out From Each Output Into Positive Loads, N+ ..... 10
Maximum Fan-out From Each Output Into Negative Loads, N - ..... 10
Fall Time of Clock Pulse, \(\mathrm{t}_{\text {f(clock) }}\). ..... 20 to 150 nsec
Minimum Width of Clock Pulse, \(t_{\text {p(clock) }}\) ..... 50 nsec
electrical characteristics (unless otherwise noted \(T_{A}=0^{\circ} \mathbf{C}\) to \(70^{\circ} \mathrm{C}, \mathbf{V}_{\mathbf{c c}}=\mathbf{3 v}\) to \(\mathbf{4} \mathbf{v}\) )
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & PARAMETER & \[
\begin{aligned}
& \text { TEST } \\
& \text { FIGURE }
\end{aligned}
\] & TEST CONDITIONS & MIN & TYP & MAX & UNIT \\
\hline \multirow[t]{2}{*}{\(V_{\text {inf1) }}\)} & \multirow[t]{2}{*}{Input voltage required to ensure logical 1 at J, K, and preset inputs} & \multirow[t]{2}{*}{1} & \(\mathrm{V}_{\mathrm{cc}}=3 . \mathrm{v}\) & 1.7 & & 3 & \(v\) \\
\hline & & & \(\mathrm{V}_{\mathrm{cc}}=4 \mathrm{v}\) & 2.4 & & 4 & \(v\) \\
\hline \multirow[b]{2}{*}{\(V_{\text {in(1) }}\)} & \multirow[t]{2}{*}{input voltage required to ensure logical 1 at clock input} & \multirow[t]{2}{*}{2} & \(\mathrm{V}_{\mathrm{cc}}=3 \mathrm{v}\) & 1.5 & & 3 & \(v\) \\
\hline & & & \(\mathrm{V}_{\mathrm{cc}}=4 \mathrm{v}\) & 2.2 & & 4 & \(\checkmark\) \\
\hline \(V_{\text {in'0) }}\) & Input voltage required to ensure logical 0 at J, K, preset, and clock inputs & 1,2 & & 0 & & 0.4 & \(v\) \\
\hline \multirow[t]{2}{*}{\(V_{\text {out(11 }}\)} & \multirow[t]{2}{*}{Logical 1 output voltage (off level)} & \multirow[t]{2}{*}{3} & \[
\begin{aligned}
& \begin{array}{l}
v_{c c}=3 v_{\prime} \\
N+=10\left(I_{\text {load }}=-5 \mathrm{ma}\right) \\
\hline
\end{array} \\
& \hline
\end{aligned}
\] & 1.7 & & & \(v\) \\
\hline & & & \[
\begin{aligned}
& V_{c c}=4 \mathrm{v}, \\
& \mathrm{~N}+=10\left(\mathrm{l}_{\text {load }}=-8 \mathrm{ma}\right) \\
& \hline
\end{aligned}
\] & 2.6 & & & v \\
\hline \multirow[t]{2}{*}{\(\mathrm{V}_{\text {outiol }}\)} & \multirow[t]{2}{*}{Logical 0 output voltage (on level)} & \multirow[t]{2}{*}{3} & \[
\begin{aligned}
& v_{c c}=3 v_{i} \\
& N-=10\left(I_{\text {sink }}=2 \mathrm{ma}\right)
\end{aligned}
\] & & & 0.3 & \(v\) \\
\hline & & & \[
\begin{aligned}
& V_{c c}=4 v_{1} \\
& N-=10\left(I_{\text {sink }}=2 \mathrm{ma}\right)
\end{aligned}
\] & & & 0.3 & \(\checkmark\) \\
\hline \multirow[b]{2}{*}{\(\mathrm{I}_{\text {in }}\)} & \multirow[t]{2}{*}{J, K, and preset input current} & \multirow[t]{2}{*}{3} & \(V_{\text {in }}=1.7 \mathrm{v}\) & & & 0.5 & ma \\
\hline & & & \(\mathrm{V}_{\text {in }}=2.6 \mathrm{v}\) & & & 0.8 & ma \\
\hline \multirow[t]{3}{*}{} & \multirow{3}{*}{Clock input current} & \multirow{3}{*}{3} & \(\mathrm{V}_{\mathrm{in}}=1.7 \mathrm{v}\) & & & 1.25 & ma \\
\hline & & & \(\mathrm{V}_{\text {in }}=2.4 \mathrm{v}\) & & & 2 & ma \\
\hline & & & \(\mathrm{V}_{\text {in }}=0.3 \mathrm{v}\) & & & -0.5 & ma \\
\hline \multirow[t]{2}{*}{\({ }^{\text {c CClav1 }}\)} & \multirow[t]{2}{*}{Average supply current (each flip-flop)} & \multirow[t]{2}{*}{4} & \[
\begin{aligned}
& V_{c c}=3 \mathrm{v}, \mathrm{~N}+=\mathrm{N}=0, \\
& \text { Toggle }=1 \mathrm{Mc}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\end{aligned}
\] & & 9 & & ma \\
\hline & & & \[
\begin{aligned}
& V_{c c}=4 \mathrm{v}, \mathrm{~N}+=\mathrm{N}=0, \\
& \text { Toggle }^{2} \mathrm{Mc} \mathrm{Mc}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\end{aligned}
\] & & 13 & & ma \\
\hline
\end{tabular}
switching characteristics, \(\mathbf{T}_{\mathbf{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{cc}}=3.5 \mathrm{v}, \mathrm{N}+=\mathbf{N}-=\mathbf{0}\)
\begin{tabular}{|l|c|l|l|l|l|}
\hline \multicolumn{1}{|c|}{ PARAMETER } & TEST \\
FIGURE
\end{tabular}\(\quad\)\begin{tabular}{c} 
TEST CONDITIONS
\end{tabular}
schematic (each flip-flop)


NOTES: a. Component values shown are nominal.
b. Resistor values are in ohms.

\section*{logic}
\begin{tabular}{|l|l|l|}
\multicolumn{3}{c|}{ TRUTH TABLE } \\
EACH FLIP-FLOP
\end{tabular}
\(t_{n}=\) Bit time before clock pulse
\(t_{n+1}=\) Bit time after clock pulse


\section*{positive logic}

High input to preset sets \(Q\) to logical 1
High input to clear sets Q1 and Q2 to logical 0

\section*{recommended operating conditions}

Supply Voltage, \(\mathrm{V}_{\mathrm{cc}}\). . . . . . . . . . . . . . . . . . . . . . . . 3 r to 4 v
Maximum Fan-out From Each Output Into Positive Loads, N+ . . . . . . . . . . . . . 10
Maximum Fan-out From Each Output Into Negative Loads, N- . . . . . . . . . . . . . 10
Fall Time of Clock Pulse, \(\mathbf{t}_{f(c l o c k)}\). . . . . . . . . . . . . . . . . . . 20 to 150 nsec
Minimum Width of Clock Pulse, \(\mathrm{t}_{\mathrm{p} \mid \text { (clcck) }}\). . . . . . . . . . . . . . . . . . . . 50 nsec
electrical characteristics (unless otherwise noted \(\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\) to \(70^{\circ} \mathrm{C}, \mathrm{V}_{\mathbf{c c}}=\mathbf{3 v}\) to 4 v )
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & PARAMETER & \[
\begin{array}{c|}
\hline \text { TEST } \\
\text { FIGURE }
\end{array}
\] & TEST CONDITIONS & MIN & TYP MAX & UNIT \\
\hline \multirow[t]{2}{*}{\(V_{\text {in(1) }}\)} & \multirow[t]{2}{*}{Input voltage required to ensure logical 1 at J, K, preset, and clear inputs} & \multirow[t]{2}{*}{1} & \(\mathrm{V}_{\mathrm{Cc}}=3 \mathrm{~V}\) & 1.7 & 3 & v \\
\hline & & & \(\mathrm{V}_{C C}=4 \mathrm{v}\) & 2.4 & 4 & V \\
\hline \multirow[t]{2}{*}{\(V_{\text {in(1) }}\)} & \multirow[t]{2}{*}{Input voltage required to ensure logical 1 at clock input} & \multirow[t]{2}{*}{2} & \(\mathrm{V}_{\mathrm{CC}}=3 \mathrm{v}\) & 1.5 & 3 & v \\
\hline & & & \(\mathrm{V}_{\mathrm{cc}}=4 \mathrm{v}\) & 2.2 & 4 & v \\
\hline \(V_{\text {inl0) }}\) & Input voltage required to ensure logical 0 at J, K, preset, clear, and clock inputs & 1, 2 & & 0 & 0.4 & \(v\) \\
\hline \multirow[t]{2}{*}{\(V_{\text {out }}\) (1)} & \multirow[t]{2}{*}{Logical 1 output voltage (off level)} & \multirow[t]{2}{*}{3} & \[
\begin{aligned}
& V_{c c}=3 v_{\prime} \\
& N+=10\left(I_{\text {load }}=-5 \mathrm{ma}\right)
\end{aligned}
\] & 1.7 & & v \\
\hline & & & \[
\begin{aligned}
& V_{c c}=4 v \\
& N+=10\left(I_{\text {load }}=-8 \mathrm{ma}\right)
\end{aligned}
\] & 2.6 & & v \\
\hline \multirow[t]{2}{*}{\(V_{\text {out }}\) (0)} & \multirow[t]{2}{*}{Logical 0 output voltage (on level)} & \multirow[t]{2}{*}{3} & \[
\begin{aligned}
& V_{c c}=3 \mathrm{v} \\
& \mathrm{~N}-=10\left(\mathrm{I}_{\text {sink }}=2 \mathrm{ma}\right) \\
& \hline
\end{aligned}
\] & & 0.3 & \(v\) \\
\hline & & & \[
\begin{aligned}
& V_{c c}=4 v_{1} \\
& N-=10\left(l_{\text {sink }}=2 \mathrm{ma}\right)
\end{aligned}
\] & & 0.3 & v \\
\hline \multirow[b]{2}{*}{\(I_{\text {in }}\)} & \multirow[t]{2}{*}{J, K, and preset input current} & \multirow[t]{2}{*}{3} & \(\mathrm{V}_{\text {in }}=1.7 \mathrm{v}\) & & 0.5 & ma \\
\hline & & & \(\mathrm{V}_{\text {in }}=2.6 \mathrm{v}\) & & 0.8 & ma \\
\hline \multirow{3}{*}{\(I_{\text {in }}\)} & \multirow{3}{*}{Clock input current} & \multirow{3}{*}{3} & \(\mathrm{V}_{\text {in }}=1.7 \mathrm{v}\) & & 2.5 & ma \\
\hline & & & \(\mathrm{V}_{\text {in }}=2.4 \mathrm{v}\) & & 4 & ma \\
\hline & & & \(V_{\text {in }}=0.3 \mathrm{v}\) & & -1 & ma \\
\hline \multirow[t]{2}{*}{\(\mathrm{I}_{\text {in }}\)} & \multirow[t]{2}{*}{Clear input current} & \multirow[t]{2}{*}{3} & \(\mathrm{V}_{\text {in }}=1.7 \mathrm{v}\) & & 1 & ma \\
\hline & & & \(\mathrm{V}_{\text {in }}=2.6 \mathrm{v}\) & & 1.6 & ma \\
\hline \multirow[t]{2}{*}{\({ }^{\text {cclavl }}\)} & \multirow[t]{2}{*}{Average supply current (each flip-flop)} & \multirow[t]{2}{*}{4} & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}}=3 \mathrm{v}, \mathrm{~N}+=\mathrm{N}-=0, \\
& \text { Toggle }=1 \mathrm{Mc}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\end{aligned}
\] & & 9 & ma \\
\hline & & & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}}=4 \mathrm{v}, \mathrm{~N}+=\mathrm{N}=0 \\
& \text { Toggle }=1 \mathrm{Mc}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\end{aligned}
\] & & 13 & ma \\
\hline
\end{tabular}
switching characteristics, \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{cc}}=3.5 \mathrm{v}, \mathrm{N}+=\mathrm{N}-=\mathbf{0}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & PARAMETER & \[
\begin{aligned}
& \text { TEST } \\
& \text { FIGURE }
\end{aligned}
\] & TEST CONDITIONS & TYP & MAX & UNIT \\
\hline \(t_{d}\)
\(t_{r}\)
\(t_{s}\)
\(t_{f}\) & Delay Time Rise Time Storage Time Fall Time & 19 & \[
\begin{aligned}
& \text { Clock Input: } V_{\text {in }}=2.5 \mathrm{v}, \mathrm{t}_{\mathrm{f}}=20 \text { nsec, } \\
& t_{\mathrm{p}}=500 \text { nsec }, f=1 \mathrm{Mc} \\
& J_{\text {and }} K \text { Input: } V_{\text {in }}=V_{\mathrm{cc}} \\
& \text { Preset Input: } V_{\text {in }}^{=}=0 \\
& \text { Clear Input: } V_{\text {in }}=0
\end{aligned}
\] & \[
\begin{aligned}
& 20 \\
& 20 \\
& 40 \\
& 25
\end{aligned}
\] & \[
\begin{aligned}
& 30 \\
& 45 \\
& 60 \\
& 40
\end{aligned}
\] & nsec nsec nsec nsec \\
\hline \(t_{\text {set(1) }}\) & ```
Time to Set a Logical 1:
J or K
``` & \multirow[b]{2}{*}{20} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Clock Input: } V_{\text {in }}=2.5 \mathrm{v}, t_{f}=20 \mathrm{nsec}, \\
& t_{p}=500 \text { nsec, } f=1 \mathrm{Mc} \\
& J_{\text {or } K \text { Input: }} V_{\text {in } 11}=2.5 \mathrm{v}, \\
& V_{\text {intol }}=0, t_{r}=t_{f}=50 \mathrm{nsec}
\end{aligned}
\]} & 50 & & nsec \\
\hline \(t_{\text {setiol }}\) & Time to Set a Logical 0: J or K & & & 40 & & nsec \\
\hline \({ }^{\text {tpreset }}\) & Preset Time & 21 & \begin{tabular}{l}
Clock Input: \(\mathrm{V}_{\text {in }}=0\) \\
Preset Input: \(V_{i n}=2.5 \mathrm{v}, \mathrm{t}_{\mathrm{f}}=50 \mathrm{nsec}\)
\end{tabular} & 75 & & nsec \\
\hline \({ }^{\text {chear }}\) & Clear Time & 21 & \begin{tabular}{l}
Clock Input: \(\mathrm{V}_{\text {in }}=0\) \\
Clear Input: \(\mathrm{V}_{\text {in }}=2.5 \mathrm{v}, \mathrm{t}_{\mathrm{f}}=50 \mathrm{nsec}\)
\end{tabular} & 100 & & nsec \\
\hline
\end{tabular}
schematic (each flip-flop)


NOTES: a. Component values shown are nominal.
b. Resistor values are in ohms.

\section*{schematic}

recommended operating conditions
\[
\text { Supply Voltage, } \mathrm{V}_{\mathrm{cc}} \text {. . . . . . . . . . . . . . . . . . . . . . . . } 3 \mathrm{v} \text { to } 4 \mathrm{r}
\]

Maximum Fan-out Into Positive Loads, N+ . . . . . . . . . . . . . . . . . . . 10
Maximum Fan-out Into Negative Loads, \(\mathrm{N}_{-}\). . . . . . . . . . . . . . . . . . . 10
electrical characteristics (unless otherwise noted \(T_{A}=0^{\circ} \mathrm{C}\) to \(70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{cc}}=3 \mathrm{v}\) to 4 v )
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & PARAMETER & TEST
FIGURE & TEST CONDITIONS & MIN & TYP MAX & UNIT \\
\hline \multirow[b]{2}{*}{\(V_{\text {inf11 }}\)} & \multirow[t]{2}{*}{Logical 1 input voltage required at all input terminals to ensure logical 0 (on level) at output.} & \multirow{2}{*}{5} & \(\mathrm{v}_{\text {cc }}=3 \mathrm{v}\) & 1.7 & 3 & \(\checkmark\) \\
\hline & & & \(\mathrm{v}_{\mathrm{cc}}=4 \mathrm{v}\) & 2.4 & 4 & \(v\) \\
\hline \multirow{2}{*}{\[
V_{i n+11 x}
\]} & \multirow[t]{2}{*}{Input voltage required at expander node (pin (1) ) to ensure logical 0 (on level) at output} & \multirow[b]{2}{*}{8} & \(\mathrm{v}_{\mathrm{cc}}=3 \mathrm{v}\) & 2.1 & 3 & \(v\) \\
\hline & & & \(\mathrm{v}_{\mathrm{cc}}=4 \mathrm{v}\) & 2.9 & 4 & \(v\) \\
\hline \(V_{\text {in10] }}\) & Logical 0 input voltage required at any input terminal to ensure logical 1 (off level) at output & 6 & & 0 & 0.4 & v \\
\hline \multirow[b]{2}{*}{\(V_{\text {inIOIX }}\)} & \multirow[t]{2}{*}{Input voltage required at expander node (pin (1) ) to ensure logical 1 (off level) at output} & \multirow[t]{2}{*}{7} & \(\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\) & 0 & 1.2 & \(\checkmark\) \\
\hline & & & \(\mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}\) & 0 & 1 & \(\checkmark\) \\
\hline \multirow[t]{2}{*}{\(V_{\text {outl11 }}\)} & \multirow[t]{2}{*}{Logical 1 output voltage (off level)} & \multirow[t]{2}{*}{6} & \[
\begin{aligned}
& v_{c c}=3 v_{1} v_{\text {in }}=0.4 v_{1} \\
& N+=10\left(I_{\text {ladd }}=-5 \mathrm{ma}\right)
\end{aligned}
\] & 1.7 & & \(v\) \\
\hline & & & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{cC}}=4 \mathrm{v}, \mathrm{~V}_{\text {in }}=0.4 \mathrm{v}, \\
& N+=10\left(I_{\text {load }}=-8 \mathrm{ma}\right)
\end{aligned}
\] & 2.6 & & \(v\) \\
\hline \multirow[t]{2}{*}{\(V_{\text {outiol }}\)} & \multirow[t]{2}{*}{Logical 0 output voltage (on level)} & \multirow[t]{2}{*}{5} & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{cc}}=3 \mathrm{v}, \mathrm{~V}_{\text {in }}=1.7 \mathrm{v}, \\
& \mathrm{~N}-=10\left(\mathrm{I}_{\text {sink }}=2 \mathrm{ma}\right)
\end{aligned}
\] & & 0.3 & \(\checkmark\) \\
\hline & & & \[
\begin{aligned}
& V_{c c}=4 v_{i} V_{\text {in }}=2.4 \mathrm{vi} \\
& N-=10\left(I_{\text {sink }}=2 \mathrm{ma}\right)
\end{aligned}
\] & & 0.3 & \(\checkmark\) \\
\hline
\end{tabular}

\footnotetext{
Characteristics continued next page.
}
electrical characteristics continued
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & PARAMETER & TEST FIGURE & TEST CONDITIONS & MIN & TYP & MAX & UNIT \\
\hline \(\mathrm{I}_{\mathrm{in}}\) & Input current (each input) & 6 & \[
\begin{aligned}
& V_{\text {in }}=0.3 \mathbf{v} \\
& N+=N-=0
\end{aligned}
\] & & & -0.2 & ma \\
\hline \multirow[b]{2}{*}{\({ }^{\text {ccion) }}\)} & \multirow[t]{2}{*}{On level supply current} & \multirow[t]{2}{*}{9} & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{in}}=3 \mathrm{v}, \\
& \mathrm{~N}+=\mathrm{N}=0, \\
& \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\end{aligned}
\] & \multicolumn{3}{|c|}{3.3} & ma \\
\hline & & & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\text {in }}=4 \mathrm{v}, \\
& \mathrm{~N}+=\mathrm{N}=0, \\
& \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\end{aligned}
\] & \multicolumn{3}{|c|}{4.5} & ma \\
\hline \multirow[b]{2}{*}{\({ }^{\text {ccloffl }}\)} & \multirow[b]{2}{*}{Off level supply current} & \multirow[b]{2}{*}{9} & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}}=3 \mathrm{v}, \mathrm{~V}_{\text {in }}=0.3 \mathrm{v}, \\
& \mathrm{~N}+=\mathrm{N}-=0, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\end{aligned}
\] & \multicolumn{3}{|c|}{1.2} & ma \\
\hline & & & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}}=4 \mathrm{v}, \mathrm{~V}_{\text {in }}=0.3 \mathrm{v}_{\prime} \\
& \mathrm{N}+=\mathrm{N}-=0, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\end{aligned}
\] & \multicolumn{3}{|c|}{1.6} & ma \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\(\mathrm{R}_{\text {l/effl }} \quad \mathrm{R}\), Effective resistance}} & \multirow[t]{2}{*}{10} & \(\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\) & 1.35 & & 2.6 & \(\mathrm{k} \Omega\) \\
\hline & & & \(\mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}\) & 1.5 & & 2.8 & \(k \Omega\) \\
\hline
\end{tabular}
switching characteristics, \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{cc}}=3.5 \mathrm{v}, \mathrm{N}-=1\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & PARAMETER & \[
\begin{gathered}
\text { TEST } \\
\text { FIGURE }
\end{gathered}
\] & TEST CONDITIONS & TYP & MAX & UNIT \\
\hline \(t_{d}\) & Delay Time & \multirow{4}{*}{22} & \multirow{4}{*}{Input: \(\mathrm{V}_{\mathrm{in}}=2.5 \mathrm{v}, \mathrm{f}=1 \mathrm{Mc}\), \(t_{p}=500 \mathrm{nsec}, t_{r}=t_{f}=20 \mathrm{nsec}\)} & 35 & 45 & nsec \\
\hline \(t_{r}\) & Rise Time & & & 40 & 50 & nsec \\
\hline \(t_{s}\) & Storage Time & & & 25 & 45 & nsec \\
\hline \(\mathrm{t}_{\mathrm{f}}\) & Fall Time & & & 30 & 40 & nsec \\
\hline \(t_{\text {pd }}\) & Propagation Delay Time & 23 & & 30 & & nsec \\
\hline
\end{tabular}

\section*{schematic (each gate)}


Component values shown are nominal


\section*{recommended operating conditions}

Maximum Fan-out From Each Output Into Negative Loads, N- . . . . . . . . . . . . . 10
electrical characteristics (unless otherwise noted \(\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\) to \(70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{cc}}=\mathbf{3 v}\) to \(\mathbf{4 v}\) )
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & PARAMETER & \[
\begin{gathered}
\text { TEST } \\
\text { FIGURE }
\end{gathered}
\] & TEST CONDITIONS & MIN & TYP & MAX & UNIT \\
\hline \multirow[t]{2}{*}{\(V_{i n(1)}\)} & \multirow[t]{2}{*}{Logical 1 input voltage required at all input terminals to ensure logical 0 (on level) at output} & \multirow[t]{2}{*}{5} & \(\mathrm{V}_{\mathrm{cc}}=3 \mathrm{v}\) & 1.7 & & 3 & v \\
\hline & & & \(\mathrm{V}_{\mathrm{cc}}=4 \mathrm{v}\) & 2.4 & & 4 & v \\
\hline \(V_{\text {in(0) }}\) & Logical 0 input voltage required at any input terminal to ensure logical 1 (off level) at output & 6 & & 0 & & 0.4 & v \\
\hline \multirow[b]{2}{*}{\(V_{\text {out(1) }}\)} & \multirow[b]{2}{*}{Logical 1 output voltage (off level)} & \multirow[b]{2}{*}{6} & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{cc}}=3 \mathrm{v}, \mathrm{~V}_{\text {in }}=0.4 \mathrm{v}, \\
& \mathrm{~N}+=10\left(\mathrm{l}_{\text {load }}=-5 \mathrm{ma}\right)
\end{aligned}
\] & 1.7 & & & \(\checkmark\) \\
\hline & & & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{cc}}=4 \mathrm{v}_{1} \mathrm{~V}_{\text {in }}=0.4 \mathrm{v}, \\
& \mathrm{~N}+=10\left(I_{\text {load }}=-8 \mathrm{ma}\right)
\end{aligned}
\] & 2.6 & & & v \\
\hline \multirow[b]{2}{*}{\(V_{\text {out }}\) (0)} & \multirow[b]{2}{*}{Logical 0 output voltage (on level)} & \multirow[b]{2}{*}{5} & \[
\begin{aligned}
& V_{C C}=3 v, V_{\text {in }}=1.7 \mathrm{v}, \\
& \mathrm{~N}-=10\left(\mathrm{I}_{\text {sink }}=2 \mathrm{ma}\right)
\end{aligned}
\] & & & 0.3 & v \\
\hline & & & \[
\begin{aligned}
& V_{c C}=4 v_{1} V_{\text {in }}=2.4 v, \\
& N-=10\left(l_{\text {sink }}=2 \mathrm{ma}\right)
\end{aligned}
\] & & & 0.3 & V \\
\hline \(\mathrm{I}_{\text {in }}\) & Input current (each input) & 6 & \(\mathrm{V}_{\text {in }}=0.3 \mathrm{v}, \mathrm{N}+=\mathrm{N}-=0\) & & & -0.2 & ma \\
\hline \multirow[b]{2}{*}{\({ }^{\text {ccionl }}\)} & \multirow[b]{2}{*}{On level supply current (each gate)} & \multirow[b]{2}{*}{9} & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{cc}}=\mathrm{V}_{\mathrm{in}}=3 \mathrm{v}, \mathrm{~N}+=\mathrm{N}-=0, \\
& \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\end{aligned}
\] & & 3.3 & & ma \\
\hline & & & \[
\begin{aligned}
& V_{C C}=V_{i n}=4 \mathrm{v}, \mathrm{~N}+=\mathrm{N}-=0, \\
& \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\end{aligned}
\] & & 4.5 & & ma \\
\hline \multirow[b]{2}{*}{\(\mathrm{I}_{\text {CCloffl }}\)} & \multirow[t]{2}{*}{Off level supply current (each gate)} & \multirow[t]{2}{*}{9} & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}}=\mathbf{3 v ,} \mathrm{V}_{\mathrm{in}}=\mathbf{0 . 3 \mathbf { v }} \\
& \mathrm{N}+=\mathrm{N}-=0, \mathrm{~T}_{\mathbf{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}
\end{aligned}
\] & & 1.2 & & ma \\
\hline & & & \[
\begin{aligned}
& V_{C C}=4 \mathrm{v}, V_{\text {in }}=0.3 \mathrm{v}, \\
& \mathrm{~N}+=\mathrm{N}-=0, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\end{aligned}
\] & & 1.6 & & ma \\
\hline
\end{tabular}
switching characteristics, \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{cc}}=3.5 \mathrm{v}, \mathrm{N}-=1\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & PARAMETER & \[
\begin{aligned}
& \text { TEST } \\
& \text { FIGURE }
\end{aligned}
\] & TEST CONDITIONS & TYP & MAX & UNIT \\
\hline \(t_{\text {d }}\) & Delay Time & \multirow{4}{*}{22} & \multirow[b]{4}{*}{Input: \(\mathrm{V}_{\mathrm{in}}=2.5 \mathrm{v}, \mathrm{f}=1 \mathrm{Mc}\), \(t_{p}=500 \mathrm{nsec}, t_{r}=t_{f}=20 \mathrm{nsec}\)} & 20 & 30 & nsec \\
\hline \(t_{r}\) & Rise Time & & & 25 & 45 & nsec \\
\hline \(t_{s}\) & Storage Time & & & 25 & 45 & nsec \\
\hline \(t_{\text {f }}\) & Fall Time & & & 25 & 40 & nsec \\
\hline \(t_{\text {pd }}\) & Propagation Delay Time & 23 & & 25 & & nsec \\
\hline
\end{tabular}

\section*{schematic}


NOTES: a. Component values shown are nominal.
b. Three SN7320 expanders may be fanned into one SN7315 to provide a total fan-in of 25 . If expander is not used leave pin (10) open.

recommended operating conditions
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{5}{*}{Maximum Fan-out Into Positive Loads, \(\mathrm{N}+\). . . . . . . . . . . . . . . . . .}} \\
\hline & \\
\hline & \\
\hline & \\
\hline & \\
\hline
\end{tabular}

Maximum Fan-out Into Negative Loads, \(\mathrm{N}-\). . . . . . . . . . . . . . . . . . . 10
electrical characteristics (unless otherwise noted \(\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\) to \(70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{cc}}=3 \mathrm{v}\) to 4 v )
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & PARAMETER & TEST FIGURE & TEST CONDITIONS & MIN & TYP & MAX & UNIT \\
\hline \multirow{2}{*}{\(V_{\text {in } 11}\)} & \multirow[t]{2}{*}{Logical 1 input voltage required at all input terminals to ensure logical 0 (on level) at output.} & \multirow{2}{*}{5} & \(\mathrm{v}_{\mathrm{cc}}=3 \mathrm{v}\) & 1.7 & & 3 & v \\
\hline & & & \(\mathrm{V}_{\mathrm{cc}}=4 \mathrm{v}\) & 2.4 & & 4 & \(v\) \\
\hline \multirow{2}{*}{\(V_{\text {in(1) }}\)} & \multirow[t]{2}{*}{Input voltage required at expander node (pin (10) ) to ensure logical 0 (on level) at output} & \multirow{2}{*}{8} & \(\mathrm{V}_{\mathrm{CC}}=3 \mathrm{v}\) & 2.1 & & 3 & \(v\) \\
\hline & & & \(\mathrm{V}_{\mathrm{cc}}=4 \mathrm{v}\) & 2.9 & & 4 & \(v\) \\
\hline \(V_{\text {in(0) }}\) & Logical 0 input voltage required at any input terminal to ensure logical 1 (off level) at output & 6 & & 0 & & 0.4 & v \\
\hline \multirow{2}{*}{\(V_{\text {in } 101 \mathrm{x}}\)} & \multirow[t]{2}{*}{Input voltage required at expander node (pin (10) to ensure logical 1 (off level) at output} & \multirow{2}{*}{7} & \(\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\) & 0 & & 1.2 & \(v\) \\
\hline & & & \(\mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}\) & 0 & & 1 & \(v\) \\
\hline \multirow[b]{2}{*}{\(\mathrm{V}_{\text {out(1) }}\)} & \multirow[b]{2}{*}{Logical 1 output voltage (off level)} & \multirow[b]{2}{*}{6} & \[
\begin{aligned}
& V_{c c}=3 v, V_{\text {in }}=0.4 \mathrm{v}, \\
& N+=10\left(I_{\text {load }}=-5 \mathrm{ma}\right)
\end{aligned}
\] & 1.7 & & & \(v\) \\
\hline & & & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{cc}}=4 \mathrm{v}, \mathrm{~V}_{\mathrm{in}}=0.4 \mathrm{v} \\
& \mathrm{~N}+=10\left(I_{\text {load }}=-8 \mathrm{ma}\right)
\end{aligned}
\] & 2.6 & & & \(v\) \\
\hline \multirow[b]{2}{*}{\(V_{\text {out (0) }}\)} & \multirow[t]{2}{*}{Logical 0 output voltage (on level)} & \multirow[t]{2}{*}{5} & \[
\begin{aligned}
& V_{c c}=3 v, V_{\text {in }}=1.7 \mathrm{v} \\
& \mathrm{~N}-=10\left(I_{\text {sink }}=2 \mathrm{ma}\right)
\end{aligned}
\] & & & 0.3 & \(v\) \\
\hline & & & \[
\begin{aligned}
& V_{c c}=4 v, V_{\text {in }}=2.4 v, \\
& N-=10\left(I_{\text {sink }}=2 \mathrm{ma}\right)
\end{aligned}
\] & & & 0.3 & \(v\) \\
\hline \(I_{\text {in }}\) & Input current (each input) & 6 & \[
\begin{aligned}
& \mathbf{V}_{\mathrm{in}}=\mathbf{0 . 3} \mathbf{v} \\
& \mathrm{N}+=\mathrm{N}-=0
\end{aligned}
\] & & & -0.2 & ma \\
\hline \multirow[t]{2}{*}{\({ }^{\text {cccion) }}\)} & \multirow[t]{2}{*}{On level supply current} & \multirow[t]{2}{*}{9} & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{in}}=3 \mathrm{v}, \\
& \mathrm{~N}+\mathrm{N}=0, \\
& \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\
& \hline
\end{aligned}
\] & & 3.3 & & ma \\
\hline & & & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\text {in }}=4 \mathrm{v}_{1} \\
& N+=N-=0, \\
& T_{A}=25^{\circ} \mathrm{C} \\
& \hline
\end{aligned}
\] & & 4.5 & & ma \\
\hline
\end{tabular}

\footnotetext{
Characteristics continued next page.
}
electrical characteristics continued
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline PARAMETER & \[
\begin{gathered}
\text { TEST } \\
\text { FIGURE }
\end{gathered}
\] & TEST CONDITIONS & MIN & TYP & MAX & UNIT \\
\hline \multirow[t]{2}{*}{Off level supply current} & \multirow[t]{2}{*}{9} & \[
\begin{aligned}
& \mathrm{v}_{C C}=3 \mathrm{v}, \mathrm{v}_{\text {in }}=0.3 \mathrm{v}, \\
& \mathrm{~N}+=\mathrm{N}-=0, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\end{aligned}
\] & \multicolumn{3}{|c|}{1.2} & ma \\
\hline & & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}}=4 \mathrm{v}, \mathrm{~V}_{\text {in }}=0.3 \mathrm{v}, \\
& \mathrm{~N}+=\mathrm{N}-=0, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\end{aligned}
\] & \multicolumn{3}{|c|}{1.6} & ma \\
\hline \multirow[t]{2}{*}{\(\mathrm{R}_{1}\) Effective resistance} & \multirow[t]{2}{*}{10} & \(\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\) & 1.35 & & 2.6 & k \(\Omega\) \\
\hline & & \(\mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}\) & 1.5 & & 2.8 & \(\mathrm{k} \Omega\) \\
\hline
\end{tabular}
switching characteristics, \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{cc}}=3.5 \mathrm{v}, \mathrm{N}-=1\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & PARAMETER & \[
\begin{gathered}
\text { TEST } \\
\text { FIGURE }
\end{gathered}
\] & TEST CONDITIONS & TYP & MAX & UNIT \\
\hline \(t_{d}\) & Delay Time & \multirow{4}{*}{22} & \multirow{4}{*}{Input: \(\mathrm{V}_{\mathrm{in}}=2.5 \mathrm{v}, \mathrm{f}=1 \mathrm{Mc}\), \(t_{p}=500 \mathrm{nsec}, t_{r}=t_{f}=20 \mathrm{nsec}\)} & 35 & 45 & nsec \\
\hline \(t_{r}\) & Rise Time & & & 40 & 50 & nsec \\
\hline \(\mathrm{t}_{\mathrm{s}}\) & Storage Time & & & 25 & 45 & nsec \\
\hline \(t_{f}\) & Fall Time & & & 30 & 40 & nsec \\
\hline \({ }^{\text {t }}\) pd & Propagation Delay Time & 23 & & 30 & & nsec \\
\hline
\end{tabular}

\section*{TYPE SN7320 5-INPUT EXPANDER}

\section*{schematic}

\(\dagger\) Connect output to expander node of SN7310 (pin (1)) or SN7315 (pin (10)).


Do not make external connection at pins (2), (8), or (9).
positive logic
\(1=4 \cdot 5 \cdot 6 \cdot 7 \cdot 10\)
electrical characteristics (unless otherwise noted \(T_{A}=0^{\circ} \mathrm{C}\) to \(70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{cc}}=3 \mathrm{v}\) to 4 v )
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & PARAMETER & \[
\begin{aligned}
& \text { TEST } \\
& \text { FIGURE }
\end{aligned}
\] & TEST CONDITIONS & MIN & MAX & UNIT \\
\hline \(\mathrm{I}_{\text {in }}\) & Input Current (each input) & 11 & \(\mathrm{V}_{\text {in }}=0.3 \mathrm{v}\) & & -0.2 & ma \\
\hline \multirow[b]{2}{*}{\(V_{\text {out (0) }}\)} & \multirow[t]{2}{*}{Expander node output voltage (off level) with logical 0 at any input} & \multirow[t]{2}{*}{11} & \(\mathrm{V}_{\mathrm{CC}}=4 \mathrm{v}, \mathrm{V}_{\text {in }}=0.3 \mathrm{v}, \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\) & & 1.2 & \(\checkmark\) \\
\hline & & & \(\mathrm{V}_{\mathrm{CC}}=4 \mathrm{v}, \mathrm{V}_{\text {in }}=0.3 \mathrm{v}, \mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}\) & & 1 & v \\
\hline \multirow[t]{2}{*}{\(V_{\text {out }}\) (1)X} & \multirow[t]{2}{*}{Expander node output. voltage (on level) with logical 1 at all inputs} & \multirow[t]{2}{*}{12} & \(\mathrm{v}_{\text {CC }}=3 v, \dot{V}_{\text {in }}=1.7 \mathrm{v}\) & 2.1 & & v \\
\hline & & & \(\mathrm{V}_{\mathrm{cc}}=4 \mathrm{v}, \mathrm{V}_{\text {in }}=2.6 \mathrm{v}\) & 2.9 & & v \\
\hline
\end{tabular}

NOTES: The SN7320 \(\mathrm{V}_{\mathrm{in}(1)}\) and \(\mathrm{V}_{\text {in }(0)}\) limits are the same as defined for the SN7310 and the SN7315.
Four SN7320 expanders may be fanned into one SN7310 to provide a total fan-in of 25 . Three SN7320 expanders may be fanned into one SN7315 to provide a total fan-in of 25.

\section*{schematic (each gate)}


Component values shown are nominal
recommended operating conditions
Supply Voltage, \(\mathrm{V}_{\mathrm{cc}}\). . . . . . . . . . . . . . . . . . . . . . . . 3 v to 4 v
Maximum Fan-out From Each Output Into Positive Loads, N+ . . . . . . . . . . . . . 10
Maximum Fan-out From Each Output Into Negative Loads, N- . . . . . . . . . . . . 10
electrical characteristics (unless otherwise noted \(T_{A}=0^{\circ} \mathrm{C}\) to \(70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{cc}}=\mathbf{3 v}\) to \(\mathbf{4 v}\) )
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & PARAMETER & \[
\begin{gathered}
\text { TEST } \\
\text { FIGURE }
\end{gathered}
\] & TEST CONDITIONS & MIN & TYP & MAX & UNIT \\
\hline \multirow{2}{*}{\(V_{\text {in(1) }}\)} & \multirow[t]{2}{*}{Logical 1 input voltage required at all input terminals to ensure logical 0 (on level) at output} & \multirow{2}{*}{5} & \(\mathrm{V}_{c c}=3 \mathrm{v}\) & 1.7 & & 3 & v \\
\hline & & & \(\mathrm{V}_{\mathrm{cc}}=4 \mathrm{v}\) & 2.4 & & 4 & v \\
\hline \(V_{\text {in101 }}\) & Logical 0 input voltage required at any input terminal to ensure logical 1 (off level) at output & 6 & & 0 & & 0.4 & \(\checkmark\) \\
\hline \multirow[b]{2}{*}{\(\mathrm{V}_{\text {out(1) }}\)} & \multirow[t]{2}{*}{Logical 1 output voltage (off level)} & \multirow[b]{2}{*}{6} & \[
\begin{aligned}
& V_{c c}=3 v_{r} V_{\text {in }}=0.4 v_{\prime} \\
& N+=10\left(l_{\text {load }}=-5 \mathrm{ma}\right)
\end{aligned}
\] & 1.7 & & & v \\
\hline & & & \[
\begin{aligned}
& V_{c c}=4 v_{1} V_{\text {in }}=0.4 v_{\prime} \\
& N+=10\left(l_{\text {load }}=-8 \mathrm{ma}\right)
\end{aligned}
\] & 2.6 & & & v \\
\hline \multirow[b]{2}{*}{\(V_{\text {outiol }}\)} & \multirow[t]{2}{*}{Logical 0 output voltage (on level)} & \multirow[t]{2}{*}{5} & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{cc}}=3 \mathrm{v}, \mathrm{~V}_{\text {in }}=1.7 \mathrm{v}, \\
& \mathrm{~N}-=10\left(\mathrm{I}_{\text {sink }}=2 \mathrm{ma}\right)
\end{aligned}
\] & & & 0.3 & v \\
\hline & & & \[
\begin{aligned}
& V_{c c}=4 v_{,} V_{\text {in }}=2.4 \mathrm{v}, \\
& N-=10\left(I_{\text {sink }}=2 \mathrm{ma}\right)
\end{aligned}
\] & & & 0.3 & \(v\) \\
\hline \(\mathrm{I}_{\text {in }}\) & Input current (each input) & 6 & \(\mathrm{V}_{\text {in }}=0.3 \mathrm{v}, \mathrm{N}+=\mathrm{N}-=0\) & & & -0.2 & ma \\
\hline \multirow[b]{2}{*}{\({ }^{\text {ccionl }}\)} & \multirow[t]{2}{*}{On level supply current (each gate)} & \multirow[t]{2}{*}{9} & \[
\begin{aligned}
& V_{\mathrm{CC}}=\mathrm{V}_{\text {in }}=3 \mathrm{v}, \mathrm{~N}+=\mathrm{N}-=0, \\
& \mathrm{~T}_{\mathrm{A}}=\mathbf{2 5 ^ { \circ } \mathrm { C }}
\end{aligned}
\] & & 3.3 & & ma \\
\hline & & & \[
\begin{aligned}
& V_{C C}=V_{i n}=4 \mathrm{v}, \mathrm{~N}+=\mathrm{N}-=0, \\
& T_{A}=25^{\circ} \mathrm{C}
\end{aligned}
\] & & 4.5 & & ma \\
\hline \multirow[b]{2}{*}{\(l_{\text {ccloff }}\)} & \multirow[t]{2}{*}{Off level supply current (each gate)} & \multirow[t]{2}{*}{9} & \[
\begin{aligned}
& V_{C C}=3 v, V_{\text {in }}=0.3 v_{\prime} \\
& N+=N-=0, T_{A}=25^{\circ} \mathrm{C}
\end{aligned}
\] & & 1.2 & & ma \\
\hline & & & \[
\begin{aligned}
& V_{C C}=4 \mathrm{v}, \mathrm{~V}_{\mathrm{in}}=0.3 \mathrm{v} \\
& \mathrm{~N}+=\mathrm{N}-=0, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\end{aligned}
\] & & 1.6 & & ma \\
\hline
\end{tabular}
switching characteristics, \(\mathbf{T}_{\mathrm{A}}=2 \mathbf{5}^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{cc}}=\mathbf{3 . 5} \mathrm{v}, \mathrm{N}-=1\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & PARAMETER & TEST
FIGURE & TEST CONDITIONS & TYP & MAX & UNIT \\
\hline \(t_{\text {d }}\) & Delay Time & \multirow{4}{*}{22} & \multirow[b]{4}{*}{Input: \(\mathrm{V}_{\mathrm{in}}=2.5 \mathrm{v}, \mathrm{f}=1 \mathrm{Mc}\), \(t_{p}=500 \mathrm{nsec}, t_{r}=t_{f}=20 \mathrm{nsec}\)} & 20 & 30 & nsec \\
\hline \(t_{r}\) & Rise Time & & & 25 & 45 & nsec \\
\hline \(t_{s}\) & Storage Time & & & 25 & 45 & nsec \\
\hline \(t_{\text {f }}\) & Fall Time & & & 25 & 40 & nsec \\
\hline \({ }_{\text {t }}\) & Propagation Delay Time & 23 & & 25 & & nsec \\
\hline
\end{tabular}

\section*{schematic (each gate)}


Component values shown are nominal.


\section*{recommended operating conditions}
\[
\text { Supply Voltage, } \mathrm{V}_{\mathrm{cc}} \text {. . . . . . . . . . . . . . . . . . . . . . . . } 3 \mathrm{v} \text { to } 4 \mathrm{v}
\]

Maximum Fan-out From Each Output Into Positive Loads, N+ . . . . . . . . . . . . . 10
Maximum Fan-out From Each Output Into Negative Loads, N- . . . . . . . . . . . . . 10
electrical characteristics (unless otherwise noted \(\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\) to \(70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{cc}}=\mathbf{3 v}\) to \(\mathbf{4 v}\) )
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & PARAMETER & \[
\begin{aligned}
& \text { TEST } \\
& \text { FIGURE }
\end{aligned}
\] & TEST CONDITIONS & MIN & TYP & MAX & UNIT \\
\hline \multirow[t]{2}{*}{\(V_{\text {in(1) }}\)} & \multirow[t]{2}{*}{Logical 1 input voltage required at all input terminals to ensure logical 0 (on level) at output} & \multirow[t]{2}{*}{5} & \(\mathrm{V}_{C C}=3 \mathrm{v}\) & 1.7 & & 3 & v \\
\hline & & & \(\mathrm{V}_{\mathrm{Cc}}=4 \mathrm{v}\) & 2.4 & & 4 & v \\
\hline \(V_{\text {inl0 }}\) & Logical 0 input voltage required at any input terminal to ensure logical 1 (off level) at output & 6 & & 0 & & 0.4 & v \\
\hline \multirow[b]{2}{*}{\(V_{\text {out(1) }}\)} & \multirow[t]{2}{*}{Logical 1 output voltage (off level)} & \multirow[t]{2}{*}{6} & \[
\begin{aligned}
& V_{c c}=3 v, V_{\text {in }}=0.4 \mathrm{v} \\
& N+=10\left(I_{\text {load }}=-5 \mathrm{ma}\right)
\end{aligned}
\] & 1.7 & & & v \\
\hline & & & \[
\begin{aligned}
& v_{c c}=4 v, v_{\text {in }}=0.4 v_{\prime} \\
& N+=10\left(l_{\text {load }}=-8 \mathrm{ma}\right)
\end{aligned}
\] & 2.6 & & & v \\
\hline \multirow[b]{2}{*}{\(V_{\text {out }}\) (0)} & \multirow[t]{2}{*}{Logical 0 output voltage (on level)} & \multirow[b]{2}{*}{5} & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}}=3 \mathrm{v}, \mathrm{~V}_{\mathrm{in}}=1.7 \mathrm{v}, \\
& \mathrm{~N}-=10\left(\mathrm{l}_{\mathrm{sink}}=2 \mathrm{ma}\right)
\end{aligned}
\] & & & 0.3 & v \\
\hline & & & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{cc}}=4 \mathrm{v}, \mathrm{~V}_{\text {in }}=2.4 \mathrm{v}, \\
& \mathrm{~N}-=10\left(\mathrm{I}_{\text {sink }}=2 \mathrm{ma}\right)
\end{aligned}
\] & & & 0.3 & \(v\) \\
\hline \(\mathrm{I}_{\text {in }}\) & Input current (each input) & 6 & \(\mathrm{V}_{\text {in }}=0.3 \mathrm{v}, \mathrm{N}+=\mathrm{N}-=0\) & & & -0.2 & ma \\
\hline \multirow[b]{2}{*}{\({ }^{\text {ccion) }}\)} & \multirow[t]{2}{*}{On level supply current (each gate)} & \multirow[t]{2}{*}{9} & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\text {in }}=3 \mathrm{v}, \mathrm{~N}+=\mathrm{N}-=0, \\
& \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\end{aligned}
\] & & 3.3 & & ma \\
\hline & & & \[
\begin{aligned}
& V_{C C}=V_{i n}=4 \mathrm{v}, \mathrm{~N}+=\mathrm{N}-=0, \\
& \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\end{aligned}
\] & & 4.5 & & ma \\
\hline \multirow[b]{2}{*}{\(\mathrm{I}_{\text {ccloff }}\)} & \multirow[b]{2}{*}{Off level supply current (each gate)} & \multirow[t]{2}{*}{9} & \[
\begin{aligned}
& V_{C C}=3 \mathrm{v}, \mathrm{~V}_{\text {in }}=0.3 \mathrm{v}_{\prime} \\
& \mathrm{N}+=\mathrm{N}-=0, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\end{aligned}
\] & & 1.2 & & ma \\
\hline & & & \[
\begin{aligned}
& V_{c c}=4 \mathrm{v}, V_{\text {in }}=0.3 v_{\prime} \\
& N+=N-=0, T_{A}=25^{\circ} \mathrm{C}
\end{aligned}
\] & & 1.6 & & ma \\
\hline
\end{tabular}
switching characteristics, \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{cc}}=\mathbf{3 . 5} \mathrm{v}, \mathrm{N}-=1\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & PARAMETER & \[
\begin{aligned}
& \text { TEST } \\
& \text { FIGURE }
\end{aligned}
\] & TEST CONDITIONS & TYP & MAX & UNIT \\
\hline \(\mathrm{t}_{\mathrm{d}}\) & Delay Time & \multirow{4}{*}{22} & \multirow[b]{4}{*}{Input: \(\mathrm{V}_{\text {in }}=2.5 \mathrm{v}, \mathrm{f}=1 \mathrm{Mc}\), \(t_{p}=500 \mathrm{nsec}, t_{r}=t_{f}=20 \mathrm{nsec}\)} & 20 & 30 & nsec \\
\hline \(\mathrm{t}_{\mathrm{r}}\) & Rise Time & & & 25 & 45 & nsec \\
\hline \(t_{s}\) & Storage Time & & & 25 & 45 & nsec \\
\hline \(t_{\text {f }}\) & Fall Time & & & 25 & 40 & nsec \\
\hline \(t_{\text {pd }}\) & Propagation Delay Time & 23 & & 25 & & nsec \\
\hline
\end{tabular}
schematic (each inverter)


Component values shown are nominal

positive logic
\(6=\overline{5}\)
\(9=\overline{2}\)
\(7=\overline{4}\)
\(10=\overline{1}\)

\section*{recommended operating conditions}

Supply Voltage, \(\mathrm{V}_{\mathrm{cc}}\). . . . . . . . . . . . . . . . . . . . . . . . 3 v to 4 v
Maximum Fan-out From Each Output Into Positive Loads, N+ . . . . . . . . . . . . . 10
Maximum Fan-out From Each Output Into Negative Loads, N- . . . . . . . . . . . . 10
electrical characteristics (unless otherwise noted \(\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\) to \(70^{\circ} \mathrm{C}, \mathrm{V}_{\mathbf{c c}}=\mathbf{3 v}\) to 4 v )
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & PARAMETER & TEST FIGURE & TEST CONDITIONS & MIN & TYP & MAX & UNIT \\
\hline \multirow[b]{2}{*}{\(V_{\text {in(1) }}\)} & \multirow[t]{2}{*}{Logical 1 input voltage required to ensure logical 0 (on level) at output} & \multirow[t]{2}{*}{13} & \(\mathrm{V}_{\mathrm{cc}}=3 \mathrm{v}\) & 1.7 & & 3 & \(\checkmark\) \\
\hline & & & \(\mathrm{V}_{\mathrm{cc}}=4 \mathrm{v}\) & 2.4 & & 4 & v \\
\hline \(V_{\text {inf01 }}\) & Logical 0 input voltage required to ensure logical 1 (off level) at output & 13 & & 0 & & 0.4 & v \\
\hline \multirow[b]{2}{*}{\(V_{\text {out }}\) (1)} & \multirow[t]{2}{*}{Logical 1 output voltage (off level)} & \multirow[t]{2}{*}{13} & \[
\begin{aligned}
& V_{c c}=3 v, V_{\text {in }}=0.4 v \\
& N+=10\left(I_{\text {load }}=-5 \mathrm{ma}\right)
\end{aligned}
\] & 1.7 & & & v \\
\hline & & & \[
\begin{aligned}
& V_{c c}=4 \mathrm{v}, \mathrm{~V}_{\text {in }}=0.4 \mathrm{v}, \\
& N+=10\left(I_{\text {load }}=-8 \mathrm{ma}\right)
\end{aligned}
\] & 2.6 & & & v \\
\hline \multirow[t]{2}{*}{\(V_{\text {outlol }}\)} & \multirow[t]{2}{*}{Logical 0 output voltage (on level)} & \multirow[t]{2}{*}{13} & \[
\begin{aligned}
& V_{c c}=3 \mathrm{v}, V_{\text {in }}=1.7 \mathrm{v}, \\
& \mathrm{~N}-=10\left(\mathrm{I}_{\text {sink }}=2 \mathrm{ma}\right)
\end{aligned}
\] & & & 0.3 & v \\
\hline & & & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{cc}}=4 \mathrm{v}, \mathrm{~V}_{\mathrm{in}}=2.4 \mathrm{v}, \\
& \mathrm{~N}-=10\left(\mathrm{I}_{\mathrm{sink}}=2 \mathrm{ma}\right)
\end{aligned}
\] & & & 0.3 & \(\checkmark\) \\
\hline \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{Input current} & \multirow[t]{2}{*}{13} & \(\mathrm{V}_{c c}=3 \mathrm{v}, \mathrm{V}_{\text {in }}=1.7 \mathrm{v}, \mathrm{N}+=\mathrm{N}-=0\) & & & 1 & ma \\
\hline & & & \(\mathrm{V}_{\text {cc }}=4 \mathrm{v}, \mathrm{V}_{\text {in }}=2.6 \mathrm{v}, \mathrm{N}-\mathrm{i}-=\mathrm{N}-=0\) & & & 1.6 & ma \\
\hline \multirow[t]{2}{*}{Icclonl} & \multirow[t]{2}{*}{On level supply current (each inverter)} & \multirow[t]{2}{*}{13} & \[
\begin{aligned}
& V_{C C}=V_{i n}=3 v, N+=N-=0, \\
& T_{A}=25^{\circ} \mathrm{C}
\end{aligned}
\] & & 3.3 & & ma \\
\hline & & & \[
\begin{aligned}
& V_{C C}=V_{i n}=4 \mathrm{v}, \mathrm{~N}+=\mathrm{N}-=0, \\
& T_{A}=25^{\circ} \mathrm{C}
\end{aligned}
\] & & 4.5 & & ma \\
\hline
\end{tabular}
switching characteristics, \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{cc}}=\mathbf{3 . 5} \mathrm{v}, \mathrm{N}-=1\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & PARAMETER & \[
\begin{gathered}
\text { TEST } \\
\text { FIGURE }
\end{gathered}
\] & TEST CONDITIONS & TYP & MAX & UNIT \\
\hline \(t_{d}\) & Delay Time & \multirow{4}{*}{22} & \multirow{4}{*}{Input: \(\mathrm{V}_{\text {in }}=2.5 \mathrm{v}, \mathrm{f}=1 \mathrm{Mc}\), \(t_{p}=500 \mathrm{nsec}, t_{r}=t_{f}=20 \mathrm{nsec}\)} & 20 & 30 & nsec \\
\hline \(t_{\text {r }}\) & Rise Time & & & 25 & 45 & nsec \\
\hline \(t_{s}\) & Storage Time & & & 25 & 45 & nsec \\
\hline \(t_{\text {f }}\) & Fall Time & & & 25 & 40 & nsec \\
\hline \(t_{\text {pd }}\) & Propagation Delay Time & 23 & & 25 & & nsec \\
\hline
\end{tabular}

\section*{schematic (each gate)}


Component values shown are nominal


\section*{recommended operating conditions}

Supply Voltage, \(\mathrm{V}_{\mathrm{cc}}\). . . . . . . . . . . . . . . . . . . . . . . . 3 v to 4 r
Maximum Fan-out From Each Output Into Positive Loads, N+ . . . . . . . . . . . . . 10
Maximum Fan-out From Each Output Into Negative Loads, N- . . . . . . . . . . . . . 10
electrical characteristics (unless otherwise noted \(\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\) to \(\mathbf{7 0}{ }^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{cc}}=\mathbf{3 v}\) to 4 v )
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & PARAMETER & \[
\begin{aligned}
& \text { TEST } \\
& \text { FIGURE }
\end{aligned}
\] & TEST CONDITIONS & MIN & TYP & MAX & UNIT \\
\hline \multirow[t]{2}{*}{\(V_{\text {inl11 }}\)} & \multirow[t]{2}{*}{Logical 1 input voltage required at all input terminals to ensure logical 0 (on level) at output} & \multirow[t]{2}{*}{5} & \(\mathrm{V}_{\mathrm{cc}}=3 \mathrm{v}\) & 1.7 & & 3 & \(v\) \\
\hline & & & \(\mathrm{v}_{\mathrm{cc}}=4 \mathrm{v}\) & 2.4 & & 4 & \(\checkmark\) \\
\hline \(V_{\text {in101 }}\) & Logical 0 input voltage required at any input terminal to ensure logical 1 (off level) at output & 6 & & 0 & & 0.4 & v \\
\hline \multirow[b]{2}{*}{\(\mathrm{V}_{\text {out11 }}\)} & \multirow[b]{2}{*}{Logical 1 output voltage (off level)} & \multirow[t]{2}{*}{6} & \[
\begin{aligned}
& V_{c c}=3 v, V_{\text {in }}=0.4 v_{\prime} \\
& N+=10\left(l_{\text {lood }}=-5 \mathrm{ma}\right) \\
& v
\end{aligned}
\] & 1.7 & & & v \\
\hline & & & \[
\begin{aligned}
& V_{c c}=4 \mathrm{v}, V_{\text {iod }}=0.4 \mathrm{v}_{\mathrm{i}} \\
& \mathrm{~N}+=10\left(\mathrm{l}_{\text {locd }}=-8 \mathrm{ma}\right)
\end{aligned}
\] & 2.6 & & & v \\
\hline \multirow[t]{2}{*}{\(V_{\text {outiol }}\)} & \multirow[t]{2}{*}{Logical 0 output voltage (on level)} & \multirow[t]{2}{*}{5} & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{Cc}}=3 \mathrm{v}, \mathrm{~V}_{\mathrm{in}}=1.7 \mathrm{v}_{\mathrm{t}} \\
& \mathrm{~N}-=10\left(\mathrm{I}_{\text {sink }}=2 \mathrm{ma}\right)
\end{aligned}
\] & & & 0.3 & \(v\) \\
\hline & & & \[
\begin{aligned}
& V_{c C}=4 V_{\prime} V_{\text {in }}=2.4 \mathrm{~V}_{\prime} \\
& N-=10\left(I_{\text {sink }}=2 \mathrm{ma}\right) \\
& \hline
\end{aligned}
\] & & & 0.3 & \(v\) \\
\hline \(\mathrm{T}_{\text {in }}\) & Input current (each input) & 6 & \(\mathrm{V}_{\text {in }}=0.3 \mathrm{v}, \mathrm{N}+=\mathrm{N}-=0\) & & & -0.2 & ma \\
\hline \multirow[b]{2}{*}{\(I_{\text {ccion) }}\)} & \multirow[t]{2}{*}{On level supply current (each gate)} & \multirow[b]{2}{*}{9} & \[
\begin{aligned}
& V_{C C}=V_{\text {in }}=3 \mathrm{v}, \mathrm{~N}+=\mathrm{N}-=0, \\
& T_{A}=25^{\circ} \mathrm{C}
\end{aligned}
\] & & 3.3 & & ma \\
\hline & & & \[
\begin{aligned}
& \mathrm{A} \\
& \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\text {in }}=4 \mathrm{v}, \mathrm{~N}+=\mathrm{N}-=0, \\
& \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\end{aligned}
\] & & 4.5 & & ma \\
\hline \multirow[b]{2}{*}{Icclofil} & \multirow[b]{2}{*}{Off level supply current (each gate)} & \multirow[b]{2}{*}{9} &  & & 1.2 & & ma \\
\hline & & & \[
\begin{aligned}
& V_{\mathrm{cc}}=4 \mathrm{v}_{\mathrm{r}} \mathrm{~V}_{\text {in }}=0.3 \mathrm{v} \mathrm{v}^{\circ} \\
& \mathrm{N}+=\mathrm{N}-=0, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\end{aligned}
\] & & 1.6 & & ma \\
\hline
\end{tabular}
switching characteristics, \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{cc}}=3.5 \mathrm{v}, \mathrm{N}-=1\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & PARAMETER & \[
\begin{aligned}
& \text { TEST } \\
& \text { FIGURE }
\end{aligned}
\] & TEST CONDITIONS & TYP & MAX & UNIT \\
\hline \(t_{d}\) & Delay Time & \multirow{4}{*}{22} & \multirow{4}{*}{Input: \(\mathrm{V}_{\text {in }}=2.5 \mathrm{v}, \mathrm{f}=1 \mathrm{Mc}\), \(t_{p}=500 \mathrm{nsec}, t_{r}=t_{f}=20 \mathrm{nsec}\)} & 20 & 30 & nsec \\
\hline \(t_{r}\) & Rise Time & & & 25 & 45 & nsec \\
\hline \(t_{s}\) & Storage Time & & & 25 & 45 & nsec \\
\hline \(t_{f}\) & Fall Time & & & 25 & 40 & nsec \\
\hline \(t_{\text {pd }}\) & Propagation Delay Time & 23 & & 25 & & nsec \\
\hline
\end{tabular}
schematic (each gate)


Component values shown are nomina

recommended operating conditions
Supply Voltage, \(\mathrm{V}_{\mathrm{cc}}\). . . . . . . . . . . . . . . . . . . . . . . . 3 v to 4 v
Maximum Fan-out From Each Output Into Positive Loads, N+ . . . . . . . . . . . . . 10
Maximum Fan-out From Each Output Into Negative Loads, N- . . . . . . . . . . . . . 10
electrical characteristics (unless otherwise noted \(\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\) to \(70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{cc}}=\mathbf{3 v}\) to 4 v )
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & PARAMETER & TEST FIGURE & TEST CONDITIONS & MIN & TYP & MAX & UNIT \\
\hline \multirow{2}{*}{\(V_{\text {in(0) }}\)} & \multirow[t]{2}{*}{Logical 1 input voltage required at both input terminals of either AND section to ensure logical 0 (on level) at output} & \multirow{2}{*}{14} & \(\mathrm{V}_{\mathrm{Cc}}=3 \mathrm{v}\) & 1.7 & & 3 & v \\
\hline & & & \(\mathrm{V}_{\mathrm{Cc}}=4 \mathrm{v}\) & 2.4 & & 4 & v \\
\hline \(\mathrm{V}_{\text {in(1) }}\) & Logical 0 input voltage required at one input terminal of each AND section to ensure logical 1 (off level) at output & 15 & & 0 & & 0.4 & \(v\) \\
\hline \multirow[t]{2}{*}{\(V_{\text {out }}\) (1)} & \multirow[t]{2}{*}{Logical 1 output voltage (off level)} & \multirow[t]{2}{*}{15} & \[
\begin{aligned}
& V_{c c}=3 v, V_{\text {in }}=0.4 \mathrm{v}, \\
& N+=10\left(I_{\text {load }}=-5 \mathrm{ma}\right)
\end{aligned}
\] & 1.7 & & & v \\
\hline & & & \[
\begin{aligned}
& V_{c c}=4 v_{1} V_{\text {in }}=0.4 v_{\prime} \\
& N+=10\left(I_{\text {losd }}=-8 \mathrm{ma}\right) \\
& \hline
\end{aligned}
\] & 2.6 & & & v \\
\hline \multirow[t]{2}{*}{\(V_{\text {out }}\) (0)} & \multirow[t]{2}{*}{Logical 0 output voltage (on level)} & \multirow[t]{2}{*}{14} & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{cc}}=3 \mathrm{v}, \mathrm{~V}_{\mathrm{in}}=1.7 \mathrm{v}, \\
& \mathrm{~N}-=10\left(\mathrm{I}_{\text {sink }}=2 \mathrm{ma}\right)
\end{aligned}
\] & & & 0.3 & \(\checkmark\) \\
\hline & & & \[
\begin{aligned}
& V_{\mathrm{cc}}=4 \mathrm{v}_{\prime} \mathrm{V}_{\mathrm{in}}=2.4 \mathrm{v}, \\
& \mathrm{~N}-=10\left(\mathrm{I}_{\text {sink }}=2 \mathrm{ma}\right)
\end{aligned}
\] & & & 0.3 & v \\
\hline \(\mathrm{I}_{\text {in }}\) & Input current (each input) & 15 & \(\mathrm{V}_{\text {in }}=0.3 \mathrm{v}, \mathrm{N}+=\mathrm{N}-=0\) & & & 0.2 & ma \\
\hline \multirow[t]{2}{*}{Iccion)} & \multirow[t]{2}{*}{On level supply current (each gate)} & \multirow[b]{2}{*}{14} & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{Cc}}=\mathrm{V}_{\text {in }}=3 \mathrm{v}, \mathrm{~N}+=\mathrm{N}-=0, \\
& \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\end{aligned}
\] & & 3.3 & & ma \\
\hline & & & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{Cc}}=\mathrm{V}_{\mathrm{in}}=4 \mathrm{v}, \mathrm{~N}+=\mathrm{N}-=0, \\
& \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\end{aligned}
\] & & 4.5 & & ma \\
\hline \multirow[t]{2}{*}{\(I_{\text {CCloffl }}\)} & \multirow[t]{2}{*}{Off level supply current (each gate)} & \multirow[t]{2}{*}{15} & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}}=3 \mathrm{v}, \mathrm{~V}_{\text {in }}=0.3 \mathrm{v}_{\prime} \\
& \mathrm{N}+=\mathrm{N}=0, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\end{aligned}
\] & & 1.2 & & ma \\
\hline & & & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}}=4 \mathrm{v}, \mathrm{~V}_{\mathrm{in}}=0.3 \mathrm{v}_{1} \\
& \mathrm{~N}+=\mathrm{N}-=0, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\end{aligned}
\] & & 1.6 & & ma \\
\hline
\end{tabular}
switching characteristics, \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{cc}}=3.5 \mathrm{v}, \mathrm{N}-=1\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & PARAMETER & \[
\begin{array}{c|}
\hline \text { TEST } \\
\text { FIGURE }
\end{array}
\] & TEST CONDITIONS & TYP & MAX & UNIT \\
\hline \(t_{d}\) & Delay Time & \multirow{4}{*}{22} & \multirow[b]{4}{*}{Input: \(V_{\text {in }}=2.5 \mathrm{v}, f=1 \mathrm{Mc}\), \(t_{p}=500 \mathrm{nsec}, t_{r}=t_{f}=20 \mathrm{nsec}\)} & 30 & 60 & nsec \\
\hline \(\mathrm{t}_{\mathrm{r}}\) & Rise Time & & & 30 & 60 & nsec \\
\hline \(t_{s}\) & Storage Time & & & 100 & 200 & nsec \\
\hline \(t_{f}\) & Fall Time & & & 100 & 200 & nsec \\
\hline \(t_{\text {pd }}\) & Propagation Delay Time & 23 & & 65 & & nsec \\
\hline
\end{tabular}

\section*{logic}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|r|}{positive logic} \\
\hline \multicolumn{2}{|r|}{T} & \multicolumn{2}{|r|}{T*} & \multirow{2}{*}{OUTPUT} \\
\hline \(t_{n}\) & \(t_{n+1}\) & \(t_{n}\) & \(t_{n+1}\) & \\
\hline 1 & 1 & .. & .. & INHIBITED (logical 1) \\
\hline .. & .. & 0 & 0 & INHIBITED (logical 1) \\
\hline 0 & 0 & 1 & 0 & ONE-SHOT (logical 0 for \(t_{p}\) nsec) \\
\hline 0 & 1 & 1 & 1 & ONE-SHOT (logical 0 for \(t_{p}\) nsed) \\
\hline
\end{tabular}
\(t_{n}=\) bit time before change in input levels
\(t_{n+1}=\) bit time after change in input levels

\section*{recommended operating conditions}

electrical characteristics (unless otherwise noted \(\mathrm{T}_{\mathrm{A}}=\mathbf{0}^{\circ} \mathrm{C}\) to \(70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{cc}}=\mathbf{3 v}\) to \(\mathbf{4 v}\) )
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & PARAMETER & TEST FIGURE & TEST CONDITIONS \(\ddagger\) & MIN & TYP & MAX & UNIT \\
\hline \multirow[b]{2}{*}{\(V_{\text {in(1) }}\)} & \multirow[t]{2}{*}{Input voltage required to ensure logical 1 at Tor \(T \star\) input} & \multirow{2}{*}{16} & \(\mathrm{V}_{\mathrm{cc}}=3 \mathrm{v}\) & 1.7 & & 3 & \(v\) \\
\hline & & & \(\mathrm{v}_{\mathrm{cc}}=4 \mathrm{v}\) & 2.4 & & 4 & v \\
\hline \(V_{\text {in(0) }}\) & Input voltage required to ensure logical 0 at Tor \(\mathrm{T} \star\) input & 16 & & 0 & & 0.4 & v \\
\hline \multirow[b]{2}{*}{\(V_{\text {out } 11}\)} & \multirow[b]{2}{*}{Logical 1 output voltage (off level)} & \multirow[b]{2}{*}{17} & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{cc}}=3 \mathrm{v} \\
& \mathrm{~N}+=10\left(\mathrm{I}_{\text {load }}=-5 \mathrm{ma}\right)
\end{aligned}
\] & 1.7 & & & v \\
\hline & & & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}}=4 \mathrm{v}_{1} \\
& \mathrm{~N}+=10\left(l_{\text {load }}=-8 \mathrm{ma}\right)
\end{aligned}
\] & 2.6 & & & v \\
\hline \multirow[b]{2}{*}{\(V_{\text {out }}\) (0)} & \multirow[t]{2}{*}{Logical 0 output voltage (on level)} & \multirow[t]{2}{*}{17} & \[
\begin{aligned}
& V_{\mathrm{Cc}}=3 \mathrm{v}, \mathrm{~V}^{2}=0.3 \mathrm{v}, \text { pin (10) open, } \\
& \mathrm{N}-=10\left(1_{\text {sink }}=2 \mathrm{ma}\right)
\end{aligned}
\] & & & 0.3 & v \\
\hline & & & \(V_{C C}=4 \mathrm{v}, V_{(2)}=0.3 \mathrm{v}\), pin (10) open, \(\mathrm{N}-=10\left(1_{\text {sink }}=2 \mathrm{ma}\right)\) & & & 0.3 & \(v\) \\
\hline \multirow[t]{2}{*}{} & \multirow[b]{2}{*}{Input current (each input)} & \multirow[b]{2}{*}{16} & \(\mathrm{v}_{\mathrm{cc}}=3 \mathrm{v}, \mathrm{V}_{\text {in }}=1.7 \mathrm{v}, \mathrm{N}+=\mathrm{N}-=0\) & & & 0.5 & ma \\
\hline & & & \(\mathrm{V}_{\mathrm{cc}}=4 \mathrm{v}, \mathrm{V}_{\text {in }}=2.6 \mathrm{v}, \mathrm{N}+=\mathrm{N}-=0\) & & & 0.8 & ma \\
\hline \multirow[b]{2}{*}{\({ }^{\text {I CClave }}\)} & \multirow[b]{2}{*}{Average supply current} & \multirow[t]{2}{*}{18} & \[
\begin{aligned}
& V_{C C}=3 v, N+=N-=0, \\
& \text { Duty Cycle }=50 \%, T_{A}=25^{\circ} \mathrm{C}
\end{aligned}
\] & & 4.8 & & ma \\
\hline & & & \[
\begin{aligned}
& V_{c c}=4 \mathrm{v}, \mathrm{~N}+=\mathrm{N}-=0, \\
& \text { Duły Cycle }=50 \%, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\end{aligned}
\] & & 6.3 & & ma \\
\hline
\end{tabular}

This is the minimum time necessary for the input signal to dwell before the triggering transition begins and applies when pin (6) is shorted to pin (7) and pin (2) is shorted to pin (10). Set-up time begins only after the occurrence of the \(10 \%\) point of the output fall time.
\#pin (6) shorted to pin (7) and pin (2) shorted to pin (10) unless otherwise noted.
switching times, \(\mathbf{T}_{\mathbf{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{cc}}=3.5 \mathrm{v}\), fan-out \(\mathrm{N}-=1\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline PARAMETER & \[
\begin{array}{c|}
\hline \text { TEST } \\
\text { FIGURE }
\end{array}
\] & TEST CONDITIONS \(\ddagger\) & MIN & TYP & MAX & UNIT \\
\hline \(t_{d}\), Delay Time after Positive-going Transition at T (pin(5) & & & & 90 & 130 & nsec \\
\hline \(\dagger_{d 2}\) Delay Time after Negative-going Transition at \(T \star\) (pin (4)) & 24 & Input: \(V_{\text {in }}=2.5 \mathrm{v}, \mathrm{f}=1 \mathrm{Mc}, \mathrm{t}_{\mathrm{p}}=400 \mathrm{nsec}\), \(t_{r}=t_{f}=20 \mathrm{nsec}\) & & 90 & 130 & nsec \\
\hline \(\dagger_{r} \quad\) Rise Time & & & & 35 & 60 & nsec \\
\hline \(t_{f} \quad\) Fall Time & & & & 35 & 60 & nsec \\
\hline \(t_{p}\) Output Pulse Width & 24 & \[
\begin{aligned}
& \operatorname{lnput:} V_{\text {in }}=2.5 \mathrm{v}, \mathrm{f}=1 \mathrm{Mc}, \mathrm{t}_{\mathrm{p}}=400 \mathrm{nsec}, \\
& t_{\mathrm{r}}=t_{\mathrm{f}}=20 \mathrm{nsec}
\end{aligned}
\] & 100 & 250 & 400 & nsec \\
\hline
\end{tabular}
\#pin (6) shorted to pin (7) and pin (2) shorted to pin (10) unless otherwise noted.

\section*{schematic}


NOTES: a. Component values shown are nominal.
b. Output pulse width \(t_{p}\) is proportional to \(R_{(t p)} C_{(t p)}\). Output pulse width may be modified using pins (1). (2), (8), and (10) to change effective values of \(\mathbb{R}_{(t p)}\) and \(C_{(t p)}\). Nominal value of internal \(R_{(t p)}\) is \(8 \mathrm{k} \Omega\) and \(C_{(t p)}\) is 25 pf . Value of modified \(\mathbf{R}_{(t p)}\) should be maintained between \(6 \mathrm{k} \Omega\) and \(15 \mathrm{k} \Omega\).
CAUTION:
When the effective valve of \(\mathrm{C}_{(t \mathrm{p})} \geq 0.1 \mu f\), a \(560-\Omega\) resistor must be connected in series with the external portion of \(\mathrm{C}_{[\mathrm{tp\mid}]}\) (between pins (1) and (2)).
c. Delay time \(\left(t_{d}\right)\) may be modified using pins (3), (6) (7), and (8) to change effective values of \(\mathbb{R}_{(t \mathrm{dd})}\) and \(C_{(t d)}\). Nominal value of internal \(\mathbb{R}_{[t \mathrm{~d})}\) is \(2 \mathrm{k} \Omega\). Value of modified \(\mathbb{R}_{[t \mathrm{~d}]}\) should be maintained between \(2 \mathrm{k} \Omega\) and \(10 \mathrm{k} \Omega\).
d. T triggers on a positive fransition to logical 1 level, and \(\mathrm{T} \star\) triggers on a negative transition to logical 0 level. When triggering with T input, hold \(\mathrm{T} \star\) at logical 1 . When friggering with \(\mathrm{T} \star\) input, hold T at logical 0 .

PARAMETER MEASUREMENT INFORMATION §
d-c test circuits
(

\footnotetext{
§ Arrows indicate actual direction of current flow.
}

\section*{PARAMETER MEASUREMENT INFORMATION§}
d-c test circuits (continued)
(s)
§ Arrows indicate actual direction of current flow.

\section*{PARAMETER MEASUREMENT INFORMATION§}
```

d-c test circuits (continued)

```


\footnotetext{
§ Arrows indicate actual direction of current flow.
}

\section*{PARAMETER MEASUREMENT INFORMATION§}
d-c test circuits (continued)

§ Arrows indicate actual direction of current flow.

PARAMETER MEASUREMENT INFORMATION
switching characteristics

figure 20. time to set a logical level voltage waveforms

\section*{PARAMETER MEASUREMENT INFORMATION}
switching characteristics (continued)

figure 22. GATE SWITCHING TEST CIRCUIT AND VOLTAGE WAVEFORMS

PARAMETER MEASUREMENT INFORMATION
switching characteristics (continued)


GENERATOR OUTPUT

INPUT
output

generator output
 Off LEVEL ON Level

NOTES: 1. The generator has the following characteristics: \(t_{r}=t_{f}=20\) nsec, \(t_{p}=500 \mathrm{nsec}, \operatorname{PRR}=1 \mathrm{Mc}, \mathrm{z}_{\text {out }} \simeq 50 \Omega\).
2. Propagation delay: \(t_{p d}=\frac{t_{1}+t_{2}}{4}\)
```

figure 23. GATE PROPAGATION DELAY test CIRCUIT AND VOLTAGE WAVEFORMS

```


FIGURE 24. ONE-SHOT VOLTAGE WAVEFORMS

\section*{MECHANICAL DATA}
general

Series 73 semiconductor networks are mounted in glass-to-metal hermetically sealed, welded packages. Package body and leads are gold-plated F-15\# glass-sealing alloy. Approximate weight is
0.1 gram. All external surfaces are metallic and are insulated from leads and circuit. All Series 73 networks are available with formed leads, insulator attached, and/or mounted in a Mech-Pak carrier.


\section*{leads}

Gold-plated \(\mathrm{F}-15 \$\) leads require no additional cleaning or processing when used in soldered or welded assembly. Formed leads are available to facilitate planar mounting of networks on flat circuit boards. Standard lead length is 0.175 inches. Networks can be removed from Mech-Pak carriers with lead lengths up to 0.175 inches.

\section*{insulator}

An insulator, secured to the back surface of the package, permits mounting networks on circuit boards which have conductors passing beneath the package. The insulator is 0.0025 inch thick and has an insulation resistance of greater than 10 megohms at \(25^{\circ} \mathrm{C}\).

\section*{mech-pak carrier}

The Mech-Pak carrier facilitates handling the network, and is compatible with automatic equipment used for testing and assembly. The carrier is particularly appropriate for mechanized assembly operations and will withstand temperatures of \(125^{\circ} \mathrm{C}\) for indefinite periods.
 prods.


\section*{ordering instructions}

Variations in mechanical configuration of semiconductor networks are identified by suffix numbers shown in a table at the right.

\footnotetext{
\(\nrightarrow\) Patented by Texas Instruments
}
\begin{tabular}{|l|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{4}{|c|}{\begin{tabular}{c} 
NO MECH-PAK \\
CARRIER
\end{tabular}} & \multicolumn{5}{c|}{\begin{tabular}{c} 
MECH-PAK \\
CARRIER
\end{tabular}} \\
\hline Lead Length & \multicolumn{3}{|c|}{0.175 inch } & \multicolumn{3}{c|}{ Not Applicable } \\
\hline formed Leads & No & No & Yes & Yes & No & No & Yes & Yes \\
\hline Insulators & No & Yes & No & Yes & No & Yes & No & Yes \\
\hline \begin{tabular}{l} 
Ordering \\
Suffix
\end{tabular} & None & -6 & -7 & -1 & -2 & -3 & -4 & -5 \\
\hline
\end{tabular}
\(\boldsymbol{F}\)-15 is the ASTM designation for an iron-nickel-cobalt alloy containing nominally \(53 \%\) iron, \(\mathbf{2 9 \%}\) nickel, and \(\mathbf{1 7 \%}\) cobalt.

DIODE-TRANSISTOR LOGIC (DTL) NETWORKS FOR DIGITAL SYSTEMS

\section*{application}

The series 15830 networks are designed for use in medium to high-speed digital applications, including data handling, computer and control systems. Definitive specifications are provided for operating characteristics over the temperature range of \(0^{\circ} \mathrm{C}\) to \(75^{\circ} \mathrm{C}\).

\section*{features}

\section*{LOW SYSTEM COST}
- multifunction gates offering low cost per logic function
- electrically designed specifically for monolithic integrated-circuit technology


TYPE SN15 850 PULSE-TRIGGERED BINARY BAR

\section*{PERFORMANCE}
- high speed
- high d-c noise margins
- low power dissipation
- good fan-out capability

\section*{EASE OF DESIGN}
- familiar logic configuration (DTL)
- single-ended output - dot-OR logic
- complete family for design flexibility
- single power supply

\section*{description}

Series 15830 is a complete family of diodetransistor logic (DTL) which is most attractive when high performance and low cost per function are necessities to system design.
The basic family consists of NAND gates, an expander, a buffer, a power gate, master-slave flip-flops, a pulse-triggered binary and a monostable multivibrator. Dual, triple, and quadruple multifunction gates are available to minimize system package count.

This line features a unique combination of high speed, high d-c noise margin, and low power dissipation. The single-ended output lends itself readily to performing dot-OR logic thus reducing the number of different type functional blocks in a system.


\footnotetext{
\(\dagger\) Patented by Texas Instruments
}
typical operating characteristics, \(\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\) to \(75^{\circ} \mathrm{C}\), supply voltage \(\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V}\)
Speed: Gate Propagation Delay ..... 25 ns
Monostable Multivibrator Propagation Delay ..... 20 ns
Flip-Flop Clock Rate (SN15 831, SN15 845, SN15 848) ..... 7 MHz
Pulse-Triggered Binary Clock Rate ..... 20 MHz
Fan-Out Capability: Standard Gates (SN15 830, SN15 846, SN15 862) ..... 8
Buffer (SN15 832) ..... 25
Power Gate (SN15 844) ..... 27
Monostable Multivibrator (SN15 851) ..... 10
Flip-Flops: SN15 831 ..... 7
SN15 845 ..... 12
SN15 848 ..... 11
Pulse-Triggered Binary ..... 10
D-C Margin: At logical 1 ..... 500 mV
At logical 0 ..... 500 mV
Average Power Dissipation: Per Gate ..... 5 mW
Per Flip-Flop ..... 20 mW

\section*{design characteristics}

Series 15830 is a complete line of high-speed, high-noise-margin, low-power-dissipation, saturated DTL logic. The circuitry is a modification of the conventional DTL in that it utilizes only one power supply and provides a nonsaturating offset transistor in place of one of the offset diodes.


Replacing the offset diode \(D_{1}\) with transistor \(Q_{1}\) offers both the manufacturer and the customer a number of advantages:
1. Elimination of the \(V_{B B}\) power supply makes one more pin available for multifunction capability, which in turn reduces system package count.
2. Reduction of size of resistor \(R_{3}\) from \(20 \mathrm{k} \Omega\) to \(5 \mathrm{k} \Omega\) produces a substantial reduction in the overall size of the monolithic chip and improves yields. Both of these factors contribute heavily to reducing manufacturing costs.
3. Reduction of turn-off current transients on signal lines is accomplished because the stored charge on the output transistor \(Q_{2}\) is removed locally by \(R_{3}\) rather than through diodes \(D_{1}\) and \(D_{2}\) onto the input signal lines. These transients are also reduced during switching by the offset transistor \(Q_{1}\) which operates in the unsaturated mode. This technique eliminates the necessity of producing low-speed, high-stored-charge diodes in the same monolithic bar with fast input diodes.
4. The offset transistor \(Q_{1}\) provides additional drive current to the output transistor \(Q_{2}\) without requiring high input currents when the input is in the low state. High input currents would limit fan-out of the driving gates. The additional drive to the output transistor permits the use of a smaller base resistor \(R_{3}\) and relaxes the \(h_{\text {FE }}\) requirement of the output transistor thus producing higher manufacturing yields.

In order to drive high-fan-out or high-capacity loads, a buffer is available which has a modified double-ended output. This output has a high-sink-current capability when in the ON state and a low-impedance emitterfollower output in the OFF state.

The master-slave flip-flops have AND gate inputs to the master section which are controlled by the clock pulse. The clock pulse also regulates the state of the coupling transistors which connect the master and slave sections. The sequence of operation is as follows (see figure C ):
1. Isolate slave from master
2. Enter information from AND gate inputs to master
3. Disable AND gate inputs
4. Transfer information from master to slave.


\footnotetext{
The pulse-triggered binary has two \(70-\mathrm{pF}\) capacitors in the clock line which provide an input-differentiating network for high-speed clocking applications.
}

\section*{standard line summary}

Input and output pin numbers are shown for reference. For all networks shown, \(\mathrm{V}_{\mathrm{CC}}\) is pin (14)(unless otherwise noted) and GND is pin (7). See referenced page for complete pin configuration.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
SN15 830 . \\
- See Page 7005 \\
SN15 832 (Buffer) . . . . . See Page 7009 \\
SN15 844 (Power Gate). . . . See Page 7012 \\
DUAL 4-INPUT NAND/NOR GATES
\end{tabular}} & SN15 831 . SN15 845 . SN15 848 . &  & \\
\hline \begin{tabular}{l}
SN15 833 . . See Page 7011 (No \(\mathrm{V}_{\mathrm{cc}}\) Terminal) \\
DUAL 4-INPUT EXPANDER
\end{tabular} & \multicolumn{2}{|l|}{\begin{tabular}{l}
SN15 846 . . See Page 7017 \\
QUADRUPLE 2-INPUT NAND/NOR GATE
\end{tabular}} & \begin{tabular}{l}
SN15 850 . . See Pa \\
PULSE-TRIGGERED BI
\end{tabular} & \begin{tabular}{l}
(11) \\
(3)
\end{tabular} \\
\hline \begin{tabular}{l}
SN15 851 \\
NOTE: External capacitance is added resistance bypasses internal timing resist
\end{tabular} & \begin{tabular}{l}
TERNAL TIMING SISTOR (CONN \({ }^{V_{C C}}\) IF USED) \\
pins
\end{tabular} & ernal & \multicolumn{2}{|l|}{\begin{tabular}{l}
SN15 862 . . . . See Page 7026 \\
TRIPLE 3-INPUT NAND/NOR GATE
\end{tabular}} \\
\hline
\end{tabular}
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)


NOTES: 1. Voltage values are with respect to network ground terminal.
2. This rating applies for networks operating at \(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}\), all inputs \(\dagger\) at 5 V , and the following outpul sink current:


\section*{logic definition}

Series 15830 logic is defined in terms of standard POSITIVE LOGIC using the following definitions:
\[
\begin{aligned}
& \text { LOW VOLTAGE }=\text { LOGICAL } 0 \\
& \text { HIGH VOLTAGE }=\text { LOGICAL } 1
\end{aligned}
\]

\section*{input current requirements}

Weighted values of input current requirements reflect worst case conditions for \(T_{A}=0^{\circ} \mathrm{C}\) to \(75^{\circ} \mathrm{C}\) and \(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}\). Each gate input requires that no more than -1.4 mA flow out of the input at a logical 0 input voltage level; therefore, one input load is -1.4 mA maximum. Currents into the input terminals are specified as positive values. Arrows on the d-c test circuits indicate the actual direction of current flow.
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{WEIGHTED VALUES OF INPUT CURRENT REQUIREMENTS} \\
\hline NETWORK & TYPE & INPUT & NUMBER OF LOADS \\
\hline GATES AND EXPANDER & \begin{tabular}{l}
SN15 830 \\
SN15 832 \\
SN15 833 \\
SN15 844 \\
SN15 846 \\
SN15 862
\end{tabular} & Each Input & 1 \\
\hline \multirow{4}{*}{FLIP-FLOPS} & \multirow[t]{2}{*}{SNT5 831} & Each Input (Synchronous or Asynchronous) & 2/3 \\
\hline & & Clock & 2 \\
\hline & \multirow[b]{2}{*}{SN15 845 and SN15 848} & Synchronous Inputs & 2/3 \\
\hline & & Asynchronous and Clock Inputs & 2 \\
\hline PULSE-TRIGGERED BINARY & SN15 850 & Synchronous or Asynchronous & \(11^{1 / 2}\) \\
\hline MONOSTABLE MULTIVIBRATOR & SN15 851 & Each Input & 2 \\
\hline
\end{tabular}

\section*{output drive capability}

Weighted values of fan-out reflect the ability of an output to sink current (into the output terminal) under recommended operating conditions and are specified as positive values. Load currents (out of the output terminal) are specified as negative values. Arrows on the d-c test circuits indicate the actual direction of current flow.
\begin{tabular}{|l|c|l|c|}
\hline \multicolumn{4}{|c|}{ WEIGHTED VALUES OF FAN-OUT } \\
\hline \multicolumn{1}{|c|}{ NETWORK } & TYPE & \multicolumn{1}{c|}{ OUTPUT } & LOADS \\
\hline \multirow{3}{*}{ GATES } & \begin{tabular}{c} 
SN15 830 \\
SN15 846 \\
SN15 862
\end{tabular} & Each Output & 8 \\
\hline BUFFER & SN15 832 & Each Output & 25 \\
\hline POWER GATE & SN15 844 & Each Output & 27 \\
\hline \multirow{3}{*}{ FLIP-FLOPS } & SN15 831 & Q or \(\bar{Q}\) & 7 \\
\cline { 2 - 4 } & SN15 845 & Q or \(\overline{\mathbb{Q}}\) & 12 \\
\cline { 2 - 4 } & SN15 848 & Q or \(\bar{Q}\) & 11 \\
\hline \begin{tabular}{l} 
PULSE-TRIGGERED \\
BINARY
\end{tabular} & SN15 850 & Q or \(\bar{Q}\) & 8 \\
\hline \begin{tabular}{l} 
MONOSTABLE \\
MULTIVIBRATOR
\end{tabular} & SN15 851 & Each Output & 10 \\
\hline
\end{tabular}

recommended operating conditions
\[
\text { Supply Voltage } \mathrm{V}_{\mathrm{CC}} \text {. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . } 5 \mathrm{~V}
\]

Maximum Fan-Out From Each Output
electrical characteristics at \(\mathbf{V}_{\mathbf{c c}}=5 \mathrm{~V}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & PARAMETER & \[
\begin{array}{|c|c|}
\hline \text { TEST } \\
\text { FIGURE }
\end{array}
\] & TEST CONDITIONS \(\dagger\) & MIN & MAX & UNIT \\
\hline \multirow{3}{*}{\(\mathrm{V}_{\text {out }}(0)\)} & \multirow{3}{*}{Logical 0 output voltage (on level)} & \multirow{3}{*}{1} & \[
\begin{aligned}
& \mathrm{V}_{\text {in }}=1.9 \mathrm{~V}, \quad \mathrm{I}_{\text {sink }}=12 \mathrm{~mA}, \\
& \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\end{aligned}
\] & & 0.45 & v \\
\hline & & & \[
\begin{aligned}
& V_{\text {in }}=2 \mathrm{~V}, \quad I_{\text {sink }}=12 \mathrm{~mA}, \\
& T_{A}=0^{\circ} \mathrm{C}
\end{aligned}
\] & & 0.45 & v \\
\hline & & & \[
\begin{aligned}
& \mathrm{V}_{\text {in }}=1.8 \mathrm{~V}, \quad \mathrm{I}_{\text {sink }}=11.4 \mathrm{~mA}, \\
& \mathrm{~T}_{\mathrm{A}}=75^{\circ} \mathrm{C}
\end{aligned}
\] & & 0.5 & v \\
\hline \multirow{3}{*}{\(V_{\text {out(1) }}\)} & \multirow{3}{*}{Logical 1 output voltage (off level)} & \multirow{3}{*}{2} & \[
\begin{aligned}
& \mathrm{V}_{\text {in }}=1.1 \mathrm{~V}, \quad \mathrm{I}_{\text {load }}=-0.12 \mathrm{~mA}, \\
& \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\end{aligned}
\] & 2.6 & & v \\
\hline & & & \[
\begin{aligned}
& \mathrm{V}_{\text {in }}=1.2 \mathrm{~V}, \quad \mathrm{I}_{\text {load }}=-0.12 \mathrm{~mA}, \\
& \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}
\end{aligned}
\] & 2.6 & & v \\
\hline & & & \[
\begin{aligned}
& \mathrm{V}_{\text {in }}=0.95 \mathrm{~V}, \mathrm{I}_{\text {load }}=-0.12 \mathrm{~mA}, \\
& \mathrm{~T}_{\mathrm{A}}=75^{\circ} \mathrm{C}
\end{aligned}
\] & 2.5 & & v \\
\hline
\end{tabular}

\footnotetext{
\(\dagger\) Expander nodes are open unless otherwise noted:
}

\section*{TYPE SN15 830}

\section*{DUAL 4-INPUT NAND/NOR GATE}
electrical characteristics (continued) at \(V_{c c}=5 \mathrm{~V}\) (unless otherwise noted)
\begin{tabular}{|c|c|c|c|c|c|}
\hline & PARAMETER & TEST FIGURE & TEST CONDITIONS \(\dagger\) & MIN MAX & UNIT \\
\hline \[
V_{\text {out }(1)}
\] & Logical 1 output voltage (off level) with low voltage at expander input node, \(\mathrm{V}_{\mathrm{in} \mathrm{X}}\) & 3 & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{inx}}=1.8 \mathrm{~V}, \quad \mathrm{I}_{\text {load }}=-0.12 \mathrm{~mA}, \\
& \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\end{aligned}
\] & 2.6 & V \\
\hline \multirow{2}{*}{\(\mathrm{I}_{\text {in(1) }}\)} & \multirow{2}{*}{Logical 1 level input current} & \multirow{2}{*}{4} & \(\mathrm{V}_{\text {in }}=4 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) and \(0^{\circ} \mathrm{C}\) & 5 & \(\mu \mathrm{A}\) \\
\hline & & & \(\mathrm{V}_{\text {in }}=4 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=75^{\circ} \mathrm{C}\) & 10 & \(\mu \mathrm{A}\) \\
\hline \multirow{2}{*}{\(\mathrm{I}_{\text {in(0) }}\)} & \multirow{2}{*}{Logical 0 level input current} & \multirow[t]{2}{*}{5} & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{in}}=0.45 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{R}}=4 \mathrm{~V}, \\
& \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \text { and } 0^{\circ} \mathrm{C}
\end{aligned}
\] & -1.4 & mA \\
\hline & & & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{in}}=0.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{R}}=4 \mathrm{~V}, \\
& \mathrm{~T}_{\mathrm{A}}=75^{\circ} \mathrm{C}
\end{aligned}
\] & -1.33 & mA \\
\hline \(I_{\text {out }}(1)\) & Output reverse current (off level) & 6 & \(\mathrm{V}_{\text {out }}=5 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) & 100 & \(\mu \mathrm{A}\) \\
\hline \multirow{3}{*}{Ios} & \multirow{3}{*}{Short-circuit output current} & \multirow{3}{*}{7} & \(\mathrm{V}_{\text {out }}=0, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) & -1.3 & mA \\
\hline & & & \(\mathrm{V}_{\text {out }}=0, \quad \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\) & -1.3 & mA \\
\hline & & & \(V_{\text {out }}=0, \quad \mathrm{~T}_{\mathrm{A}}=75^{\circ} \mathrm{C}\) & -1.25 & mA \\
\hline \({ }^{\mathrm{ICCO}(0)}\) & Logical 0 level supply current (both gates) & 8 & \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) & 8 & mA \\
\hline \({ }^{\text {cce(1) }}\) & Logical 1 level supply current at maximum \(\mathrm{V}_{\mathrm{CC}}\) (both gates) & 9 & \(\mathrm{V}_{\mathrm{CC}}=8 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) & 8 & mA \\
\hline
\end{tabular}
switching characteristics, \(V_{c c}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & PARAMETER & \[
\begin{gathered}
\text { TEST } \\
\text { FIGURE }
\end{gathered}
\] & TEST CONDITIONS \(\dagger\) & MIN & MAX & UNIT \\
\hline \({ }^{\dagger} \mathrm{pd}(0)\) & Propagation delay time to logical 0 level & \multirow{2}{*}{51} & \(\mathrm{R}_{1}=400 \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}\) & 10 & 30 & ns \\
\hline \({ }^{+}{ }_{\text {pd}(1) ~}\) & Propagation delay time to logical 1 level & & \(\mathrm{R}_{1}=3.9 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}\) & 25 & 80 & ns \\
\hline
\end{tabular}

\footnotetext{
\(\dagger\) Expander nodes are open unless otherwise noted.
}

\section*{logic}

TRUTH TABLES
\begin{tabular}{|l|l|l|l|l|l|}
\hline \multicolumn{5}{|c|}{} & \multicolumn{2}{|c|}{\(t_{n+1}\)} \\
\hline \multicolumn{3}{|c|}{\(t_{n}\)} \\
\hline\(S_{1}\) & \(S_{2}\) & \(C_{1}\) & \(C_{2}\) & \(Q\) \\
\hline 0 & \(X\) & 0 & \(X\) & \(Q_{n}\) \\
\hline 0 & \(X\) & \(X\) & 0 & \(Q_{n}\) \\
\hline\(X\) & 0 & 0 & \(X\) & \(Q_{n}\) \\
\hline\(X\) & 0 & \(X\) & 0 & \(Q_{n}\) \\
\hline 0 & \(X\) & 1 & 1 & 0 \\
\hline\(X\) & 0 & 1 & 1 & 0 \\
\hline 1 & 1 & 0 & \(X\) & 1 \\
\hline 1 & 1 & \(X\) & 0 & 1 \\
\hline 1 & 1 & 1 & 1 & Indeterminate \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{3}{|c|}{\(J-K ~ M O D E ~\)} \\
\hline \multicolumn{2}{|c|}{\(t_{n}\)} & \(t_{n}+1\) \\
\hline\(S_{1}\) & \(C_{1}\) & \(Q\) \\
\hline 0 & 0 & \(Q_{n}\) \\
\hline 0 & 1 & 0 \\
\hline 1 & 0 & 1 \\
\hline 1 & 1 & \(\bar{Q}_{n}\) \\
\hline
\end{tabular}

NOTES: \(1 . \dagger_{\mathrm{n}}=\) bit time before clock pulse.
2. \(\mathbf{t}_{\mathrm{n}+\mathrm{q}}=\) bit time after clock pulse.
3. \(X\) indicates that either a logical 1 or a logical 0 may be present.
4. Logical 1 is more positive than logical 0 .
5. For operation in the J-K mode connect \(S_{2}\) to \(\bar{Q}\) and \(C_{2}\) to \(Q\).
recommended operating conditions
Supply Voltage \(V_{c c}\). \(\dot{C}\). . .

\begin{tabular}{|c|c|c|c|c|c|}
\hline & PARAMETER & \[
\begin{gathered}
\text { TEST } \\
\text { FIGURE }
\end{gathered}
\] & TEST CONDITIONS & MIN MAX & UNIT \\
\hline \multirow{3}{*}{\(\mathrm{V}_{\text {out }}\) (0)} & \multirow{3}{*}{Logical 0 output voltage on level at \(Q\) or \(\bar{Q}\)} & \multirow{3}{*}{10} & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{CPP(S)}}=0.95 \mathrm{~V}, \mathrm{I}_{\text {sink }}=10.5 \mathrm{~mA}, \\
& \mathrm{~T}_{\mathrm{A}} \xlongequal{=} 25^{\circ} \mathrm{C}
\end{aligned}
\] & 0.45 & v \\
\hline & & & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{CPPSS}}=1 \mathrm{~V}, \quad \mathrm{I}_{\text {sink }}=10.5 \mathrm{~mA}, \\
& \mathrm{~T}_{\mathrm{A} /}=0^{\circ} \mathrm{C}
\end{aligned}
\] & 0.45 & V \\
\hline & & & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{CP(S})}=0.85 \mathrm{~V}, \mathrm{I}_{\text {sink }}=10.2 \mathrm{~V}, \\
& \mathrm{~T}_{\mathrm{A}}=75^{\circ} \mathrm{C}
\end{aligned}
\] & 0.5 & v \\
\hline \multirow{3}{*}{\(\mathrm{V}_{\text {out(1) }}\)} & \multirow{3}{*}{Logical 1 output voltage off level at \(Q\) or \(\overline{\mathbf{Q}}\)} & \multirow{3}{*}{11} & \[
\begin{array}{ll}
V_{1}=1.9 \mathrm{~V}, & V_{2}=1.1 \mathrm{~V} \\
\mathrm{I}_{\text {load }}=-0.12 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}} & =25^{\circ} \mathrm{C}
\end{array}
\] & 2.6 & v \\
\hline & & & \[
\begin{aligned}
& \mathrm{V}_{1}=2 \mathrm{~V}, \quad \mathrm{~V}_{2}=1.2 \mathrm{~V}, \\
& \mathrm{I}_{\text {load }}=-0.12 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}
\end{aligned}
\] & 2.6 & v \\
\hline & & & \[
\begin{array}{ll}
\hline \mathrm{V}_{1}=1.8 \mathrm{~V}, & \mathrm{~V}_{2}=0.95 \mathrm{~V}, \\
\mathrm{I}_{\text {load }}=-0.12 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=75^{\circ} \mathrm{C} \\
\hline
\end{array}
\] & 2.5 & v \\
\hline \multirow{3}{*}{\(\mathrm{V}_{\text {out(1) }}\)} & \multirow{3}{*}{Logical 1 output voltage off level at \(Q\) or \(\bar{Q}\)} & \multirow{3}{*}{12} & \[
\begin{array}{ll}
\hline \mathrm{V}_{1}=1.9 \mathrm{~V}, \quad \mathrm{~V}_{2}=1.1 \mathrm{~V}, \\
\mathrm{I}_{\text {load }}=-0.12 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\end{array}
\] & 2.6 & \(\checkmark\) \\
\hline & & & \[
\begin{aligned}
& \mathrm{V}_{1}=2 \mathrm{~V}, \quad \mathrm{~V}_{2}=1.2 \mathrm{~V}, \\
& \mathrm{I}_{\text {load }}=-0.12 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}
\end{aligned}
\] & 2.6 & v \\
\hline & & & \[
\begin{array}{ll}
\hline \mathrm{V}_{1}=1.8 \mathrm{~V}, & \mathrm{~V}_{2}=0.95 \mathrm{~V}, \\
\mathrm{I}_{\text {load }}=-0.12 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}} & =75^{\circ} \mathrm{C} \\
\hline
\end{array}
\] & 2.5 & V \\
\hline \multirow{3}{*}{\({ }^{\text {cPP(0) }}\)} & \multirow{3}{*}{Logical 0 level clock-input forward current} & \multirow{3}{*}{13} & \[
\begin{aligned}
& \hline \mathrm{V}_{\text {in }}=1.1 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{CP}(0)}=0.45 \mathrm{~V}, \\
& \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\end{aligned}
\] & -2.8 & mA \\
\hline & & & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{in}}=1.2 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{CP}(0)}=0.45 \mathrm{~V}, \\
& \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}
\end{aligned}
\] & -2.8 & mA \\
\hline & & & \[
\begin{array}{lll}
\mathrm{V}_{\text {in }}=0.95 \mathrm{~V}, & \mathrm{~V}_{\mathrm{CP}(0)}=0.5 \mathrm{~V}, \\
\mathrm{~T}_{\mathrm{A}}=75^{\circ} \mathrm{C} & \\
\hline
\end{array}
\] & -2.67 & mA \\
\hline \multirow[b]{2}{*}{\({ }^{\text {CPP(1) }}\)} & \multirow[b]{2}{*}{Logical 1 level clock-input reverse current} & \multirow[b]{2}{*}{14} & \(\mathrm{V}_{\mathrm{CP}}=4 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) and \(0^{\circ} \mathrm{C}\) & 30 & \(\mu \mathrm{A}\) \\
\hline & & & \(\mathrm{V}_{\mathrm{CP}}=4 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=75^{\circ} \mathrm{C}\) & 40 & \(\mu \mathrm{A}\) \\
\hline
\end{tabular}
electrical characteristics (continued) at \(V_{c c}=5 \mathrm{~V}\) (unless otherwise noted)
\begin{tabular}{|c|c|c|c|c|c|}
\hline & PARAMETER & TEST FIGURE & TEST CONDITIONS & MIN MAX & UNIT \\
\hline \multirow[b]{2}{*}{\(\mathrm{I}_{\text {in }(1)}\)} & \multirow[t]{2}{*}{Logical 1 level synchronous-input current} & \multirow[b]{2}{*}{15} & \(\mathrm{V}_{\text {in }}=4 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) and \(0^{\circ} \mathrm{C}\) & 5 & \(\mu \mathrm{A}\) \\
\hline & & & \(\mathrm{V}_{\text {in }}=4 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=75^{\circ} \mathrm{C}\) & 10 & \(\mu \mathrm{A}\) \\
\hline \multirow[b]{2}{*}{\(I_{\text {in(0) }}\)} & \multirow[t]{2}{*}{Logical 0 level synchronous-input current} & \multirow[b]{2}{*}{16} & \(\mathrm{V}_{\text {in }}=0.45 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) and \(0^{\circ} \mathrm{C}\) & \(-1.05\) & mA \\
\hline & & & \(\mathrm{V}_{\text {in }}=0.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=75^{\circ} \mathrm{C}\) & -1 & mA \\
\hline \multirow[b]{2}{*}{\(\mathrm{l}_{\mathrm{in}(1)}\)} & \multirow[t]{2}{*}{Logical 1 level asynchronous-input current} & \multirow[b]{2}{*}{17} & \(\mathrm{V}_{\text {in }}=4 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) and \(0^{\circ} \mathrm{C}\) & 5 & \(\mu \mathrm{A}\) \\
\hline & & & \(\mathrm{V}_{\text {in }}=4 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=75^{\circ} \mathrm{C}\) & 10 & \(\mu \mathrm{A}\) \\
\hline \multirow[b]{2}{*}{\(i_{\text {inf0 }}\)} & \multirow[t]{2}{*}{Logical 0 level asynchronous-input current} & \multirow[b]{2}{*}{18} & \(\mathrm{V}_{\text {in }}=0.45 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) and \(0^{\circ} \mathrm{C}\) & -0.95 & mA \\
\hline & & & \(\mathrm{V}_{\text {in }}=0.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=125^{\circ} \mathrm{C}\) & -0.9 & mA \\
\hline \({ }^{\text {cclo }}\) & Logical 0 level supply current & 19 & \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) & 14 & mA \\
\hline \({ }^{1} \mathrm{CC}(1)\) & Logical 1 level supply current at maximum \(\mathrm{V}_{\mathrm{CC}}\) & 20 & \(\mathrm{V}_{\mathrm{CC}}=8 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) & 18 & mA \\
\hline
\end{tabular}
switching characteristics, \(\mathbf{V}_{\mathbf{c c}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline PARAMETER & \[
\begin{gathered}
\text { TEST } \\
\text { FIGURE }
\end{gathered}
\] & TEST CONDITIONS & MIN & MAX & UNIT \\
\hline \begin{tabular}{ll}
\(t_{\mathrm{pd}(0)}\) & \begin{tabular}{l} 
Propagation delay time \\
to logical 0 level
\end{tabular}
\end{tabular} & \multirow[b]{2}{*}{52} & \(\mathrm{R}_{1}=400 \Omega \quad \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}\) & 5 & 75 & ns \\
\hline \[
\begin{aligned}
& \text { Propagation delay time } \\
& \dagger_{\mathrm{pd}(1)} \text { to logical } 1 \text { level }
\end{aligned}
\] & & \(\mathrm{R}_{1}=3.9 \mathrm{k} \Omega \quad \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}\) & 5 & 75 & ns \\
\hline
\end{tabular}
schematic


recommended operating conditions
Supply Voltage \(\mathrm{V}_{\mathrm{CC}}\). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 V
Maximum Fan-Out From Each Output . . . . . . . . . . . . . . . . . . . . . . . . . 25
electrical characteristics at \(\mathbf{V}_{\text {cc }}=5 \mathrm{~V}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & PARAMETER & TEST FIGURE & TEST CONDITIONS \({ }^{\dagger}\) & MIN & MAX & UNIT \\
\hline \multirow{3}{*}{\[
V_{\text {out }(0)}
\]} & \multirow{3}{*}{Logical 0 output voltage (on level)} & \multirow{3}{*}{1} & \[
\begin{aligned}
& \mathrm{V}_{\text {in }}=1.9 \mathrm{~V}, \quad \mathrm{I}_{\text {sink }}=36 \mathrm{~mA}, \\
& \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\end{aligned}
\] & & 0.45 & V \\
\hline & & & \[
\begin{aligned}
& V_{\text {in }}=2 \mathrm{~V}, \quad I_{\text {sink }}=36 \mathrm{~mA}, \\
& T_{\mathrm{A}}=0^{\circ} \mathrm{C}
\end{aligned}
\] & & 0.45 & V \\
\hline & & & \[
\begin{aligned}
& \mathrm{V}_{\text {in }}=1.8 \mathrm{~V}, \quad \mathrm{I}_{\text {sink }}=34 \mathrm{~mA}, \\
& \mathrm{~T}_{\mathrm{A}}=75^{\circ} \mathrm{C}
\end{aligned}
\] & & 0.5 & V \\
\hline \multirow{3}{*}{\(V_{\text {out(1) }}\)} & \multirow{3}{*}{Logical 1 output voltage (off level)} & \multirow{3}{*}{2} & \[
\begin{aligned}
& \mathrm{V}_{\text {in }}=1.1 \mathrm{~V}, \quad \mathrm{I}_{\text {load }}=-2.5 \mathrm{~mA}, \\
& \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\end{aligned}
\] & 2.6 & & V \\
\hline & & & \[
\begin{aligned}
& \mathrm{V}_{\text {in }}=1.2 \mathrm{~V}, \quad \mathrm{I}_{\text {load }}=-2 \mathrm{~mA}, \\
& \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}
\end{aligned}
\] & 2.6 & & V \\
\hline & & & \[
\begin{aligned}
& V_{\text {in }}=0.95 \mathrm{~V}, \mathrm{I}_{\text {lood }}=-3 \mathrm{~mA}, \\
& \mathrm{~T}_{\mathrm{A}}=75^{\circ} \mathrm{C}
\end{aligned}
\] & 2.5 & & V \\
\hline
\end{tabular}

\footnotetext{
\(\dagger\) Expander nodes are open unless otherwise noted
}
electrical characteristics (continued) at \(\mathbf{V}_{\text {cc }}=5 \mathrm{~V}\) (unless otherwise noted)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & PARAMETER & TEST FIGURE & TEST CONDITIONS \(\dagger\) & MIN & MAX & UNIT \\
\hline \[
V_{\text {out }(1)}
\] & Logical 1 output voltage (off level) with low voltage input at expander node, \(\mathrm{V}_{\mathrm{inX}}\) & 3 & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{inX}}=1.8 \mathrm{~V}, \quad \mathrm{I}_{\text {load }}=-2.5 \mathrm{~mA}, \\
& \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\end{aligned}
\] & 2.6 & & V \\
\hline \multirow{2}{*}{\(\mathrm{I}_{\text {in(1) }}\)} & \multirow[b]{2}{*}{Logical 1 level input current} & \multirow{2}{*}{4} & \(\mathrm{V}_{\text {in }}=4 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) and \(0^{\circ} \mathrm{C}\) & & 5 & \(\mu \mathrm{A}\) \\
\hline & & & \(\mathrm{V}_{\mathrm{in}}=4 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=75^{\circ} \mathrm{C}\) & & 10 & \(\mu \mathrm{A}\) \\
\hline \multirow[b]{2}{*}{\(\mathrm{I}_{\text {in(0) }}\)} & \multirow[b]{2}{*}{Logical 0 level input current} & \multirow[b]{2}{*}{5} & \[
\begin{aligned}
& \mathrm{V}_{\text {in }}=0.45 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{R}}=4 \mathrm{~V}, \\
& \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \text { and } 0^{\circ} \mathrm{C}
\end{aligned}
\] & & -1.4 & mA \\
\hline & & & \[
\begin{array}{ll}
\mathrm{V}_{\text {in }}=0.5 \mathrm{~V}, & \mathrm{~V}_{\mathrm{R}}=4 \mathrm{~V}, \\
\mathrm{~T}_{\mathrm{A}}=75^{\circ} \mathrm{C} &
\end{array}
\] & & -1.33 & mA \\
\hline \(\mathrm{I}_{\text {out(1) }}\) & Output reverse current (off level) & 6 & \(\mathrm{V}_{\text {out }}=5 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) & & 100 & \(\mu \mathrm{A}\) \\
\hline \multirow{3}{*}{Ios} & \multirow{3}{*}{Short-circuit output current} & \multirow{3}{*}{7} & \(\mathrm{V}_{\text {out }}=0, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) & -16 & & mA \\
\hline & & & \(\mathrm{V}_{\text {out }}=0, \quad \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\) & -15 & & mA \\
\hline & & & \(\mathrm{V}_{\text {out }}=0, \quad \mathrm{~T}_{\mathrm{A}}=75^{\circ} \mathrm{C}\) & -14 & & mA \\
\hline \({ }^{1} \mathrm{CC}(0)\) & Logical 0 level supply current (both gates) & 8 & \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) & & 30 & mA \\
\hline \({ }^{\text {c }}\) ( \({ }^{\text {(1) }}\) & Logical 1 level supply current at maximum \(\mathrm{V}_{\mathrm{CC}}\) (both gates) & 9 & \(\mathrm{V}_{\mathrm{CC}}=8 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) & & 8 & mA \\
\hline
\end{tabular}
switching characteristics, \(\mathbf{V}_{\text {cc }}=5 \mathrm{~V}, \mathbf{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & PARAMETER & TEST FIGURE & TEST CONDITIONS \(\dagger\) & MIN & MAX & UNIT \\
\hline \({ }^{\text {pd }}\) (0) & Propagation delay time to logical 0 level & \multirow{2}{*}{51} & \(\mathrm{R}_{1}=150 \Omega, \mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}\) & 15 & 40 & ns \\
\hline \({ }^{\dagger}{ }_{\text {pd(1) }}\) & Propagation delay time to logical 1 level & & \(\mathrm{R}_{1}=510 \Omega, \mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}\) & 25 & 80 & ns \\
\hline
\end{tabular}
\(\dagger\) Expander nodes are open unless otherwise noted.
schematic (each expander)



\section*{electrical characteristics}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{PARAMETER} & \[
\begin{aligned}
& \text { TEST } \\
& \text { FIGURE }
\end{aligned}
\] & \multicolumn{2}{|l|}{TEST CONDITIONS} & MIN & MAX & UNIT \\
\hline \multirow{3}{*}{\(V_{F}\)} & \multirow{3}{*}{Input diode forward voltage} & \multirow{3}{*}{21} & \(\mathrm{I}_{\text {out }}=2 \mathrm{~mA}\), & \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) & 0.68 & 0.82 & V \\
\hline & & & \(\mathrm{I}_{\text {out }}=2 \mathrm{~mA}\), & \(\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\) & 0.75 & 0.9 & V \\
\hline & & & \(\mathrm{I}_{\text {out }}=2 \mathrm{~mA}\), & \(\mathrm{T}_{\mathrm{A}}=75^{\circ} \mathrm{C}\) & 0.6 & 0.75 & V \\
\hline \multirow{3}{*}{\(\mathrm{I}_{\mathrm{in} \mathrm{R}}\)} & \multirow{3}{*}{Input diode reverse current} & \multirow{3}{*}{22} & \(\mathrm{V}_{\mathrm{in}}=4 \mathrm{~V}\), & \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) & & 5 & \(\mu \mathrm{A}\) \\
\hline & & & \(\mathrm{V}_{\mathrm{in}}=4 \mathrm{~V}\), & \(\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\) & & 5 & \(\mu \mathrm{A}\) \\
\hline & & & \(V_{\text {in }}=4 \mathrm{~V}\), & \(\mathrm{T}_{\mathrm{A}}=75^{\circ} \mathrm{C}\) & & 10 & \(\mu \mathrm{A}\) \\
\hline \(\mathrm{I}_{\text {out R }}\) & Anode-to-substrate reverse current & 23 & \(\mathrm{v}_{\text {out }}=4 \mathrm{~V}\), & \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) & & 10 & \(\mu \mathrm{A}\) \\
\hline
\end{tabular}

NOTE: A total of four expanders may be connected to an expandable gate to provide a fan-in of \(\mathbf{2 0}\).


\section*{recommended operating conditions}

> Supply Voltage \(\mathrm{V}_{\mathrm{cc}}\). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 V
> Maximum Fan-Out From Each Output . . . . . . . . . . . . . . . . . . . . . . . . . 27
electrical characteristics at \(\mathbf{V}_{\text {cc }}=5 \mathrm{~V}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & PARAMETER & TEST FIGURE & TEST CONDITIONS \(\dagger\) & MIN & MAX & UNIT \\
\hline \multirow{3}{*}{\(V_{\text {out }}(0)\)} & \multirow{3}{*}{Logical 0 output voltage (on level)} & \multirow{3}{*}{1} & \[
\begin{aligned}
& \mathrm{V}_{\text {in }}=1.9 \mathrm{~V}, \quad \mathrm{I}_{\text {sink }}=40 \mathrm{~mA}, \\
& \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\end{aligned}
\] & & 0.45 & V \\
\hline & & & \[
\begin{array}{ll}
\mathrm{V}_{\text {in }}=2 \mathrm{~V}, \quad \mathrm{I}_{\text {sink }}=40 \mathrm{~mA}, \\
\mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} &
\end{array}
\] & & 0.45 & V \\
\hline & & & \[
\begin{array}{ll}
\mathrm{V}_{\text {in }}=1.8 \mathrm{~V}, & \mathrm{I}_{\text {sink }}=36 \mathrm{~mA}, \\
\mathrm{~T}_{\mathrm{A}}=75^{\circ} \mathrm{C} &
\end{array}
\] & & 0.5 & V \\
\hline \(\mathrm{V}_{\text {out(1) }}\) & Logical 1 output voltage (off level) & 24 & \(\mathrm{I}_{\text {sink }}=5 \mathrm{~mA}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) & 6 & & V \\
\hline \multirow[b]{2}{*}{\(I_{\text {in(1) }}\)} & \multirow[t]{2}{*}{Logical 1 level input current} & \multirow[b]{2}{*}{4} & \(\mathrm{V}_{\text {in }}=4 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) and \(0^{\circ} \mathrm{C}\) & & \(j\) & \(\mu \mathrm{A}\) \\
\hline & & & \(\mathrm{V}_{\text {in }}=4 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=75^{\circ} \mathrm{C}\) & & 10 & \(\mu \mathrm{A}\) \\
\hline
\end{tabular}
\(\dagger\) Expander nodes are open unless otherwise noted.
electrical characteristics (continued) at \(\mathbf{V}_{\text {cc }}=5 \mathrm{~V}\) (unless otherwise noted)
\begin{tabular}{|c|c|c|c|c|c|}
\hline & PARAMETER & \[
\begin{aligned}
& \text { TEST } \\
& \text { FIGURE }
\end{aligned}
\] & TEST CONDITIONS \(\dagger\) & MIN MAX & UNIT \\
\hline \multirow[t]{2}{*}{\(\mathrm{I}_{\text {in(0) }}\)} & \multirow[t]{2}{*}{Logical 0 level input current} & \multirow[b]{2}{*}{5} & \[
\begin{aligned}
& V_{\text {in }}=0.45 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{R}}=4 \mathrm{~V}, \\
& \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \text { and } 0^{\circ} \mathrm{C}
\end{aligned}
\] & -1.4 & mA \\
\hline & & & \[
\begin{array}{ll}
\mathrm{V}_{\text {in }}=0.5 \mathrm{~V}, & \mathrm{~V}_{\mathrm{R}}=4 \mathrm{~V}, \\
\mathrm{~T}_{\mathrm{A}}=75^{\circ} \mathrm{C} &
\end{array}
\] & -1.33 & mA \\
\hline \multirow{3}{*}{\(\mathrm{I}_{\text {out (1) }}\)} & \multirow[b]{3}{*}{Output reverse current (off level, worst-case voltage at any input)} & \multirow{3}{*}{25} & \[
\begin{array}{ll}
\mathrm{V}_{\text {in }}=1.1 \mathrm{~V}, & \mathrm{~V}_{\text {out }}=4.5 \mathrm{~V}, \\
\mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} & \\
\hline
\end{array}
\] & 100 & \(\mu \mathrm{A}\) \\
\hline & & & \[
\begin{array}{ll}
\mathrm{V}_{\text {in }}=1.2 \mathrm{~V}, & \mathrm{~V}_{\text {out }}=4.5 \mathrm{~V}, \\
\mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} &
\end{array}
\] & 100 & \(\mu \mathrm{A}\) \\
\hline & & & \[
\begin{array}{ll}
\mathrm{V}_{\text {i }}=0.95 \mathrm{~V}, & \mathrm{~V}_{\text {out }}=4.5 \mathrm{~V}, \\
\mathrm{~T}_{\mathrm{A}}=75^{\circ} \mathrm{C} &
\end{array}
\] & 200 & \(\mu \mathrm{A}\) \\
\hline \(\mathrm{I}_{\text {out (1) }}\) & Output reverse current (off level, worst-case voltage at expander input) & 26 & \[
\begin{array}{ll}
\mathrm{V}_{\text {inx }}=1.8 \mathrm{~V}, & \mathrm{~V}_{\text {out }}=4.5 \mathrm{~V}, \\
\mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\end{array}
\] & 100 & \(\mu \mathrm{A}\) \\
\hline \({ }^{\text {ccc}}\) (0) & Logical 0 level supply current (both gates) & 8 & \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) & 24 & mA \\
\hline \({ }^{\prime} \mathrm{cc}(1)\) & Logical 1 level supply current at maximum \(\mathrm{V}_{\mathrm{CC}}\) (both gates) & 9 & \(\mathrm{V}_{\mathrm{CC}}=8 \mathrm{~V} \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) & 8 & mA \\
\hline
\end{tabular}
switching characteristics, \(\mathrm{V}_{\mathrm{CC}}=\mathbf{5} \mathrm{V}, \mathrm{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{PARAMETER} & \[
\begin{aligned}
& \text { TEST } \\
& \text { FIGURE }
\end{aligned}
\] & \multicolumn{2}{|r|}{TEST CONDITIONS \(\dagger\)} & MIN & MAX & UNIT \\
\hline \({ }^{\text {p }{ }^{\text {d }} \text { (0) }}\) & Propagation delay time to logical 0 level & \multirow[b]{2}{*}{51} & \(\mathrm{R}_{1}=150 \Omega\), & \(\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}\) & 10 & 35 & ns \\
\hline \({ }^{\text {pdd(1) }}\) & Propagation delay time to logical 1 level & & \(\mathrm{R}_{1}=510 \Omega\), & \(\mathrm{C}_{\mathrm{L}}=20 \mathrm{pF}\) & 15 & 50 & ns \\
\hline
\end{tabular}
\(\dagger\) Expander nodes are open unless otherwise noted.
logic
\begin{tabular}{|c|c|c|c|c|}
\hline & & & & truth tables \\
\hline \multicolumn{5}{|r|}{R-S MODE} \\
\hline \multicolumn{4}{|c|}{\(t_{n}\)} & \(t_{n+1}\) \\
\hline \(\mathrm{S}_{1}\) & \(\mathrm{S}_{2}\) & \(\mathrm{C}_{1}\) & \(\mathrm{C}_{2}\) & Q \\
\hline 0 & X & 0 & X & Qn \\
\hline 0 & X & X & 0 & Qn \\
\hline X & 0 & 0 & X & Qn \\
\hline X & 0 & X & 0 & Qn \\
\hline 0 & X & 1 & 1 & 0 \\
\hline X & 0 & 1 & 1 & 0 \\
\hline 1 & 1 & 0 & X & 1 \\
\hline 1 & 1 & X & 0 & 1 \\
\hline 1 & 1 & 1 & 1 & Indeterminate \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{3}{|c|}{\(J-K ~ M O D E\)} \\
\hline \multicolumn{2}{|c|}{\(t_{n}\)} & \(t_{n+1}\) \\
\hline\(S_{1}\) & \(C_{1}\) & \(Q\) \\
\hline 0 & 0 & \(Q\) \\
\hline 0 & 1 & 0 \\
\hline 1 & 0 & 1 \\
\hline 1 & 1 & \(\bar{Q}\) \\
\hline
\end{tabular}

recommended operating conditions
\[
\begin{aligned}
& \begin{array}{l}
\text { Supply Voltage } \mathrm{V}_{\text {cc }} \text {. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . } \\
\text { Maximum Fan-Out From Each Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . } \\
12
\end{array}
\end{aligned}
\]

\section*{electrical characteristics at \(\mathbf{V}_{\mathrm{cc}}=5 \mathrm{~V}\) (unless otherwise noted)}
\begin{tabular}{|c|c|c|c|c|c|}
\hline & PARAMETER & \[
\begin{gathered}
\text { TEST } \\
\text { FIGURE }
\end{gathered}
\] & TEST CONDITIONS & MIN MAX & UNIT \\
\hline \multirow{3}{*}{\(\mathrm{V}_{\text {out (0) }}\)} & \multirow{3}{*}{Logical 0 output voltage (on level) at \(Q\) or \(\bar{Q}\)} & \multirow{3}{*}{\[
\begin{gathered}
27 \\
\text { and } \\
28
\end{gathered}
\]} & \[
\begin{array}{ll}
\mathrm{V}_{1}=1.1 \mathrm{~V}, & \mathrm{~V}_{2}=1.9 \mathrm{~V}, \\
\mathrm{v}_{3}=5 \mathrm{~V}, & \mathrm{I}_{\text {sink }}=16.8 \mathrm{~mA}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\end{array}
\] & 0.45 & V \\
\hline & & & \[
\begin{array}{ll}
\mathrm{V}_{1}=1.2 \mathrm{~V}, & \mathrm{~V}_{2}=2 \mathrm{~V}, \\
\mathrm{~V}_{3}=5 \mathrm{~V}, & \mathrm{I}_{\text {sink }}=16.8 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}
\end{array}
\] & 0.45 & V \\
\hline & & & \[
\begin{array}{ll}
\mathrm{V}_{1}=0.95 \mathrm{~V}, & \mathrm{~V}_{2}=1.8 \mathrm{~V}, \\
\mathrm{v}_{3}=5 \mathrm{~V}, & \mathrm{I}_{\text {sink }}=16 \mathrm{~mA}, \quad \mathrm{~T}_{\mathrm{A}}=75^{\circ} \mathrm{C}
\end{array}
\] & 0.5 & V \\
\hline \multirow{3}{*}{\(V_{\text {out (1) }}\)} & \multirow{3}{*}{Logical 1 output voltage (off level) at \(Q\) or \(\bar{Q}\)} & \multirow{3}{*}{12} & \[
\begin{array}{ll}
\mathrm{V}_{1}=5 \mathrm{~V}, & \mathrm{~V}_{2}=1.1 \mathrm{~V} \\
\mathrm{I}_{\text {load }}=-0.12 \mathrm{~mA}, & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\end{array}
\] & 2.6 & V \\
\hline & & & \[
\begin{array}{ll}
\mathrm{V}_{1}=5 \mathrm{~V}, & V_{2}=1.2 \mathrm{~V}, \\
\mathrm{I}_{\text {load }}=-0.12 \mathrm{~mA}, & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}
\end{array}
\] & 2.6 & V \\
\hline & & & \[
\begin{array}{ll}
\mathrm{V}_{1}=5 \mathrm{~V}, & \mathrm{~V}_{2}=0.95 \mathrm{~V}, \\
\mathrm{I}_{\text {load }}=-0.12 \mathrm{~mA}, & \mathrm{~T}_{\mathrm{A}}=75^{\circ} \mathrm{C}
\end{array}
\] & 2.5 & V \\
\hline \multirow{3}{*}{\({ }^{\text {CP(0) }}\)} & \multirow{3}{*}{Logical 0 level clock-input forward current} & \multirow{3}{*}{29} & \[
\begin{array}{ll}
\mathrm{V}_{\text {in }}=1.1 \mathrm{~V}, & \mathrm{~V}_{\mathrm{CP}}=0.45 \mathrm{~V}, \\
\mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} &
\end{array}
\] & -2.8 & mA \\
\hline & & & \[
\begin{aligned}
& \mathrm{V}_{\text {in }}=1.2 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{CP}}=0.45 \mathrm{~V}, \\
& \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}
\end{aligned}
\] & -2.8 & mA \\
\hline & & & \[
\begin{array}{ll}
\mathrm{V}_{\mathrm{in}}=0.95 \mathrm{~V}, & \mathrm{~V}_{\mathrm{CP}}=0.5 \mathrm{~V}, \\
\mathrm{~T}_{\mathrm{A}}=75^{\circ} \mathrm{C} &
\end{array}
\] & -2.67 & mA \\
\hline \multirow[t]{2}{*}{\({ }^{\text {CPP(i) }}\)} & \multirow[t]{2}{*}{Logical 1 level clock-input reverse current} & \multirow[t]{2}{*}{30} & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}}=4 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{CP}}=4 \mathrm{~V}, \\
& \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \text { and } 0^{\circ} \mathrm{C}
\end{aligned}
\] & 20 & \(\mu \mathrm{A}\) \\
\hline & & & \(\mathrm{V}_{\mathrm{CC}}=4 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{CP}}=4 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=75^{\circ} \mathrm{C}\) & 30 & \(\mu \mathrm{A}\) \\
\hline
\end{tabular}
electrical characteristics (continued) at \(\mathbf{V}_{\text {cc }}=5 \mathrm{~V}\) (unless otherwise noted)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & PARAMETER & \[
\begin{gathered}
\text { TEST } \\
\text { FIGURE }
\end{gathered}
\] & TEST CONDITIONS & MIN & MAX & UNIT \\
\hline \multirow[b]{2}{*}{\(\mathrm{I}_{\text {in }}(1)\)} & \multirow[t]{2}{*}{Logical 1 level synchronous-input current} & \multirow[b]{2}{*}{15} & \(\mathrm{V}_{\text {in }}=4 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) and \(0^{\circ} \mathrm{C}\) & & 5 & \(\mu \mathrm{A}\) \\
\hline & & & \(\mathrm{V}_{\text {in }}=4 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=75^{\circ} \mathrm{C}\) & & 10 & \(\mu \mathrm{A}\) \\
\hline \multirow[b]{2}{*}{\(I_{\text {in }(0)}\)} & \multirow[b]{2}{*}{Logical 0 level synchronous-input current} & \multirow[b]{2}{*}{31} & \[
\begin{array}{ll}
\mathrm{V}_{\text {in }}=0.45 \mathrm{~V}, & \mathrm{~V}_{1}=4 \mathrm{~V} \\
\mathrm{~V}_{\mathrm{CP}}=4 \mathrm{~V}, & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \text { and } 0^{\circ} \mathrm{C}
\end{array}
\] & & -0.95 & mA \\
\hline & & & \[
\begin{array}{ll}
\mathrm{V}_{\text {in }}=0.5 \mathrm{~V}, & \mathrm{~V}_{1}=4 \mathrm{~V} \\
\mathrm{~V}_{\mathrm{CP}}=4 \mathrm{~V}, & \mathrm{~T}_{\mathrm{A}}=75^{\circ} \mathrm{C}
\end{array}
\] & & -0.9 & mA \\
\hline \multirow[b]{2}{*}{\(\mathrm{I}_{\text {in(1) }}\)} & \multirow[b]{2}{*}{Logical 1 level asynchronous-input current} & \multirow[b]{2}{*}{32} & \[
\begin{aligned}
& \mathrm{V}_{\text {in }}=4 \mathrm{~V}, \quad \mathrm{~V}_{1}=5 \mathrm{~V}, \\
& \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \text { and } 0^{\circ} \mathrm{C}
\end{aligned}
\] & & 5 & \(\mu \mathrm{A}\) \\
\hline & & & \[
\begin{array}{ll}
V_{\text {in }}=4 \mathrm{~V}, & V_{1}=5 \mathrm{~V}, \\
\mathrm{~T}_{\mathrm{A}}=75^{\circ} \mathrm{C} &
\end{array}
\] & & 10 & \(\mu \mathrm{A}\) \\
\hline \multirow[b]{2}{*}{\(\mathrm{I}_{\text {in }(0)}\)} & \multirow[t]{2}{*}{Logical 0 level asynchronous-input current} & \multirow[b]{2}{*}{33} & \(\mathrm{V}_{\text {in }}=0.45 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) and \(0^{\circ} \mathrm{C}\) & & -2.1 & mA \\
\hline & & & \(\mathrm{V}_{\text {in }}=0.5 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=75^{\circ} \mathrm{C}\) & & -2 & mA \\
\hline \multirow[t]{2}{*}{Ios} & \multirow[t]{2}{*}{Short-circuit output current} & \multirow[t]{2}{*}{18} & \[
\begin{aligned}
& \mathrm{V}_{\text {in }}=5 \mathrm{~V}, \quad \mathrm{~V}_{\text {out }}=0, \\
& \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \text { and } 0^{\circ} \mathrm{C}
\end{aligned}
\] & -0.59 & -1.41 & mA \\
\hline & & & \[
\begin{array}{ll}
V_{\text {in }}=5 \mathrm{~V}, & V_{\text {out }}=0, \\
T_{A}=75^{\circ} \mathrm{C} &
\end{array}
\] & -0.55 & -1.38 & mA \\
\hline \({ }^{1} \mathrm{CC}(0)\) & Logical 0 level supply current & 19 & \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) & & 15 & mA \\
\hline \({ }^{1} \mathrm{CC}(1)\) & Logical 1 level supply current at maximum \(V_{\mathrm{CC}}\) & 20 & \(\mathrm{V}_{\mathrm{CC}}=8 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) & & 17 & mA \\
\hline
\end{tabular}
switching characteristics, \(\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & PARAMETER & \[
\begin{aligned}
& \text { TEST } \\
& \text { FIGURE }
\end{aligned}
\] & TEST & ONDITIONS & MIN & MAX & UNIT \\
\hline \({ }^{\dagger} \mathrm{pd}(0)\) & Propagation delay time to logical 0 level & \multirow[b]{2}{*}{52} & \(\mathrm{R}_{1}=330 \Omega\), & \(\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}\) & 5 & 75 & ns \\
\hline \({ }^{\dagger}{ }_{\text {pd(1) }}\) & Propagation delay time to logical 1 level & & \(\mathrm{R}_{1}=2 \mathrm{k} \Omega\), & \(\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}\) & 5 & 75 & ns \\
\hline
\end{tabular}
schematic


NOTE: Pins (1), and (13) no internal connection.

\section*{schematic (each gate)}


\section*{recommended operating conditions}
\[
\begin{aligned}
& \text { Supply Voltage } \mathrm{V}_{\mathrm{CC}} \text {. . . . . . . . . . . . . . . . . . . . . . . . . . . . . } 5 \mathrm{~V} \\
& \text { Maximum Fan-Out from Each Output }
\end{aligned}
\]
electrical characteristics at \(\mathbf{V}_{\mathrm{cc}}=5 \mathrm{~V}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & PARAMETER & \[
\begin{aligned}
& \text { TEST } \\
& \text { FIGURE }
\end{aligned}
\] & test Conditions & MIN & MAX & UNIT \\
\hline \multirow{3}{*}{\(\mathrm{V}_{\text {out }}(0)\)} & \multirow{3}{*}{Logical 0 output voltage (on level)} & \multirow{3}{*}{1} & \[
\begin{aligned}
& \mathrm{V}_{\text {in }}=1.9 \mathrm{~V}, \quad \mathrm{I}_{\text {sink }}=12 \mathrm{~mA}, \\
& \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\end{aligned}
\] & & 0.45 & v \\
\hline & & & \[
\begin{aligned}
& \mathrm{V}_{\text {in }}=2 \mathrm{v}, \quad \mathrm{I}_{\text {sink }}=12 \mathrm{~mA}, \\
& \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}
\end{aligned}
\] & & 0.45 & v \\
\hline & & & \[
\begin{aligned}
& V_{\text {in }}=1.8 \mathrm{~V}, \quad I_{\text {sink }}=11.4 \mathrm{~mA}, \\
& T_{A}=75^{\circ} \mathrm{C}
\end{aligned}
\] & & 0.5 & v \\
\hline \multirow{3}{*}{\(\mathrm{V}_{\text {out(1) }}\)} & \multirow{3}{*}{Logical 1 output voltage (off level)} & \multirow{3}{*}{2} & \[
\begin{aligned}
& \mathrm{V}_{\text {in }}=1.1 \mathrm{~V}, \quad \mathrm{I}_{\text {load }}=-0.12 \mathrm{~mA}, \\
& \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\end{aligned}
\] & 2.6 & & v \\
\hline & & & \[
\begin{aligned}
& \mathrm{V}_{\text {in }}=1.2 \mathrm{~V}, \quad I_{\text {load }}=-0.12 \mathrm{~mA}, \\
& T_{\mathrm{A}}=0^{\circ} \mathrm{C}
\end{aligned}
\] & 2.6 & & v \\
\hline & & & \[
\begin{aligned}
& \mathrm{V}_{\text {in }}=0.95 \mathrm{~V}, \quad \mathrm{l}_{\text {load }}=-0.12 \mathrm{~mA}, \\
& \mathrm{~T}_{\mathrm{A}}=75^{\circ} \mathrm{C}
\end{aligned}
\] & 2.5 & & v \\
\hline
\end{tabular}

\section*{electrical characteristics (continued) at \(\mathbf{V}_{\text {cc }}=5 \mathrm{~V}\) (unless otherwise noted)}
\begin{tabular}{|c|c|c|c|c|c|}
\hline & PARAMETER & \[
\begin{aligned}
& \text { TEST } \\
& \text { FIGURE }
\end{aligned}
\] & TEST CONDITIONS & MIN MAX & UNIT \\
\hline \multirow[b]{2}{*}{\({ }^{\text {in(1) }}\)} & \multirow[t]{2}{*}{Logical 1 level input current} & \multirow[b]{2}{*}{4} & \(\mathrm{V}_{\text {in }}=4 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) and \(0^{\circ} \mathrm{C}\) & 5 & \(\mu \mathrm{A}\) \\
\hline & & & \(\mathrm{V}_{\text {in }}=4 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=75^{\circ} \mathrm{C}\) & 10 & \(\mu \mathrm{A}\) \\
\hline \multirow[b]{2}{*}{\(\mathrm{I}_{\text {in(0) }}\)} & \multirow[t]{2}{*}{Logical 0 level input current} & \multirow[t]{2}{*}{5} & \[
\begin{aligned}
& \mathrm{V}_{\text {in }}=0.45 \mathrm{~V}, \mathrm{~V}_{\mathrm{R}}=4 \mathrm{~V}, \\
& \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \text { and } 0^{\circ} \mathrm{C}
\end{aligned}
\] & -1.4 & mA \\
\hline & & & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{in}}=0.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{R}}=4 \mathrm{~V}, \\
& \mathrm{~T}_{\mathrm{A}}=75^{\circ} \mathrm{C}
\end{aligned}
\] & -1.33 & mA \\
\hline \(\mathrm{I}_{\text {out }}(1)\) & Output reverse current (off level) & 6 & \(\mathrm{V}_{\text {out }}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) & 100 & \(\mu \mathrm{A}\) \\
\hline \multirow{3}{*}{Ios} & \multirow{3}{*}{Short-circuit output current} & \multirow{3}{*}{7} & \(\mathrm{V}_{\text {out }}=0, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) & -1.3 & mA \\
\hline & & & \(V_{\text {out }}=0, \quad T_{A}=0^{\circ} \mathrm{C}\) & -1.3 & mA \\
\hline & & & \(\mathrm{V}_{\text {out }}=0, \quad \mathrm{~T}_{\mathrm{A}}=75^{\circ} \mathrm{C}\) & -1.25 & mA \\
\hline \({ }^{\text {c }}\) (10) & Logical 0 level supply current (all gates) & 8 & \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) & 16 & mA \\
\hline \({ }^{1} \mathrm{CC}(1)\) & Logical I level supply current at maximum \(\mathrm{V}_{\mathrm{CC}}\) (all gates) & 9 & \(\mathrm{V}_{\mathrm{CC}}=8 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) & 16 & mA \\
\hline
\end{tabular}
switching characteristics, \(\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & PARAMETER & \[
\begin{aligned}
& \text { TEST } \\
& \text { FIGURE }
\end{aligned}
\] & TEST CONDITIONS & MIN & MAX & UNIT \\
\hline \({ }^{\text {ppdia) }}\) & Propagation delay time to logical 0 level & \multirow{2}{*}{51} & \(\mathrm{R}_{1}=400 \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}\) & 10 & 30 & ns \\
\hline \({ }^{\dagger} \mathrm{pd}(1)\) & Propagation delay time to logical 1 level & & \(\mathrm{R}_{1}=3.9 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}\) & 25 & 80 & ns \\
\hline
\end{tabular}

\section*{logic}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{TRUTH TABLES} \\
\hline \multicolumn{5}{|r|}{R-S MODE} & \multicolumn{3}{|r|}{J-K MODE} \\
\hline \multicolumn{4}{|c|}{\(\mathrm{t}_{\mathrm{n}}\)} & \(t_{n+1}\) & \multicolumn{2}{|r|}{\(t_{n}\)} & \(t_{n+1}\) \\
\hline \(\mathrm{S}_{1}\) & \(\mathrm{S}_{2}\) & \(\mathrm{C}_{1}\) & \(\mathrm{C}_{2}\) & Q & \(\mathrm{S}_{1}\) & \(\mathrm{C}_{1}\) & Q \\
\hline 0 & X & 0 & X & Qn & 0 & 0 & Qn \\
\hline 0 & X & X & 0 & Qn & 0 & 1 & 0 \\
\hline X & 0 & 0 & X & Qn & 1 & 0 & 1 \\
\hline X & 0 & X & 0 & Qn & 1 & 1 & \(\overline{\mathbf{Q}}\) \\
\hline 0 & X & 1 & 1 & 0 & & & \\
\hline X & 0 & 1 & 1 & 0 & & & \\
\hline 1 & 1 & 0 & X & 1 & & & \\
\hline 1 & 1 & X & 0 & 1 & & & \\
\hline 1 & 1 & 1 & 1 & Indeterminate & & & \\
\hline
\end{tabular}

NOTES: \(1 . \mathrm{t}_{\mathrm{n}}=\) bit time before clock pulse.
2. \(\mathrm{t}_{\mathrm{n}+\mathrm{q}}=\) bit time after clock pulse.

recommended operating conditions
Supply Voltage \(\mathrm{V}_{\mathrm{cc}}\) • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 V
Maximum Fan-Out From Each Output
electrical characteristics at \(\mathbf{V}_{\text {cc }}=5 \mathrm{~V}\) (unless otherwise noted)
\begin{tabular}{|c|c|c|c|c|c|}
\hline & PARAMETER & \[
\begin{aligned}
& \text { TEST } \\
& \text { FIGURE }
\end{aligned}
\] & TEST CONDITIONS & MIN MAX & UNIT \\
\hline \multirow{3}{*}{\(V_{\text {out (0) }}\)} & \multirow{3}{*}{Logical 0 output voltage (on level) at \(Q\) or \(\bar{Q}\)} & \multirow{3}{*}{\begin{tabular}{l}
27 \\
and
\[
28
\]
\end{tabular}} & \[
\begin{array}{ll}
\mathrm{V}_{1}=1.1 \mathrm{~V}, & \mathrm{~V}_{2}=1.9 \mathrm{~V}, \\
\mathrm{~V}_{3}=5 \mathrm{~V}, & \mathrm{I}_{\text {sink }}=15.4 \mathrm{~mA}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\
\hline
\end{array}
\] & 0.45 & V \\
\hline & & & \[
\begin{array}{ll}
\mathrm{V}_{1}=1.2 \mathrm{~V}, & \mathrm{~V}_{2}=2 \mathrm{~V}, \\
\mathrm{~V}_{3}=5 \mathrm{~V}, & \mathrm{I}_{\text {sink }}=15.4 \mathrm{~mA}, \quad \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}
\end{array}
\] & 0.45 & V \\
\hline & & & \[
\begin{array}{ll}
\mathrm{V}_{1}=0.95 \mathrm{~V}, & \mathrm{~V}_{2}=1.8 \mathrm{~V}, \\
\mathrm{~V}_{3}=5 \mathrm{~V}, & \mathrm{I}_{\text {sink }}=14.6 \mathrm{~mA}, \quad \mathrm{~T}_{\mathrm{A}}=75^{\circ} \mathrm{C}
\end{array}
\] & 0.5 & V \\
\hline \multirow{3}{*}{\(V_{\text {out(1) }}\)} & \multirow{3}{*}{Logical 1 output voltage (off level) at \(Q\) or \(\bar{Q}\)} & \multirow{3}{*}{12} & \[
\begin{array}{ll}
\mathrm{V}_{1}=5 \mathrm{~V}, & \mathrm{~V}_{2}=1.1 \mathrm{~V} \\
\mathrm{I}_{\text {load }}=-0.12 \mathrm{~mA}, & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\
\hline
\end{array}
\] & 2.6 & V \\
\hline & & & \[
\begin{array}{ll}
\mathrm{V}_{1}=5 \mathrm{~V}, & \mathrm{~V}_{2}=1.2 \mathrm{~V}, \\
\mathrm{I}_{\text {load }}=-0.12 \mathrm{~mA}, & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}
\end{array}
\] & 2.6 & V \\
\hline & & & \[
\begin{array}{ll}
\mathrm{V}_{1}=5 \mathrm{~V}, & \mathrm{~V}_{2}=0.95 \mathrm{~V}, \\
\mathrm{I}_{\text {load }}=-0.12 \mathrm{~mA}, & \mathrm{~T}_{\mathrm{A}}=75^{\circ} \mathrm{C}
\end{array}
\] & 2.5 & V \\
\hline \multirow{3}{*}{\(\mathrm{I}_{\mathrm{CP}(0)}\)} & \multirow{3}{*}{Logical 0 level clock-input forward current} & \multirow{3}{*}{29} & \[
\begin{array}{ll}
\mathrm{V}_{\text {in }}=1.1 \mathrm{~V}, & \mathrm{~V}_{\mathrm{CP}}=0.45 \mathrm{~V}, \\
\mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} &
\end{array}
\] & -2.8 & mA \\
\hline & & & \[
\begin{array}{ll}
\mathrm{V}_{\text {in }}=1.2 \mathrm{~V}, & \mathrm{~V}_{\mathrm{CP}}=0.45 \mathrm{~V}, \\
\mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} &
\end{array}
\] & -2.8 & mA \\
\hline & & & \[
\begin{array}{ll}
\mathrm{V}_{\mathrm{in}}=0.95 \mathrm{~V}, & \mathrm{~V}_{\mathrm{CP}}=0.5 \mathrm{~V}, \\
\mathrm{~T}_{\mathrm{A}}=75^{\circ} \mathrm{C} &
\end{array}
\] & -2.67 & mA \\
\hline \multirow[t]{2}{*}{\(\mathrm{I}_{\mathrm{CP}(1)}\)} & \multirow[t]{2}{*}{Logical 1 level clock-input reverse current} & \multirow[t]{2}{*}{30} & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}}=4 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{CP}}=4 \mathrm{~V}, \\
& \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \text { and } 0^{\circ} \mathrm{C}
\end{aligned}
\] & 20 & \(\mu \mathrm{A}\) \\
\hline & & & \(\mathrm{V}_{\mathrm{CC}}=4 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{CP}}=4 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=75^{\circ} \mathrm{C}\) & 30 & \(\mu \mathrm{A}\) \\
\hline
\end{tabular}
electrical characteristics (continued) at \(\mathbf{V}_{\mathrm{cc}}=5 \mathrm{~V}\) (unless otherwise noted)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & PARAMETER & TEST FIGURE & TEST CONDITIONS & MIN & MAX & UNIT \\
\hline \multirow[b]{2}{*}{\(\mathrm{I}_{\text {in(1) }}\)} & \multirow[t]{2}{*}{Logical 1 level synchronous-input current} & \multirow[b]{2}{*}{15} & \(\mathrm{V}_{\text {in }}=4 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) and \(0^{\circ} \mathrm{C}\) & & 5 & \(\mu \mathrm{A}\) \\
\hline & & & \(\mathrm{V}_{\text {in }}=4 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=75^{\circ} \mathrm{C}\) & & 10 & \(\mu \mathrm{A}\) \\
\hline \multirow[b]{2}{*}{\(\mathrm{I}_{\text {in(0) }}\)} & \multirow[b]{2}{*}{Logical 0 level synchronous-input current} & \multirow[b]{2}{*}{31} & \[
\begin{array}{ll}
\mathrm{V}_{\text {in }}=0.45 \mathrm{~V}, & \mathrm{~V}_{1}=4 \mathrm{~V}, \\
\mathrm{~V}_{\mathrm{CP}}=4 \mathrm{~V}, & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \text { and } 0^{\circ} \mathrm{C}
\end{array}
\] & & -0.95 & mA \\
\hline & & & \[
\begin{array}{ll}
\mathrm{V}_{\text {in }}=0.5 \mathrm{~V}, & \mathrm{~V}_{1}=4 \mathrm{~V}, \\
\mathrm{~V}_{\mathrm{CP}}=4 \mathrm{~V}, & \mathrm{~T}_{\mathrm{A}}=75^{\circ} \mathrm{C}
\end{array}
\] & & -0.9 & mA \\
\hline \multirow[b]{2}{*}{\(\mathrm{I}_{\text {in(1) }}\)} & \multirow[b]{2}{*}{Logical 1 level asynchronous-input current} & \multirow[t]{2}{*}{32} & \[
\begin{aligned}
& \mathrm{V}_{\text {in }}=4 \mathrm{~V}, \quad \mathrm{~V}_{1}=5 \mathrm{~V}, \\
& \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \text { and } 0^{\circ} \mathrm{C}
\end{aligned}
\] & & 5 & \(\mu \mathrm{A}\) \\
\hline & & & \[
\begin{array}{ll}
\mathrm{V}_{\text {in }}=4 \mathrm{~V}, & \mathrm{~V}_{1}=5 \mathrm{~V}, \\
\mathrm{~T}_{\mathrm{A}}=75^{\circ} \mathrm{C} &
\end{array}
\] & & 10 & \(\mu \mathrm{A}\) \\
\hline \multirow[b]{2}{*}{\(\mathrm{I}_{\text {in(0) }}\)} & \multirow[t]{2}{*}{Logical 0 level asynchronous-input current} & \multirow[b]{2}{*}{33} & \(\mathrm{V}_{\text {in }}=0.45 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) and \(0^{\circ} \mathrm{C}\) & & -2.1 & mA \\
\hline & & & \(\mathrm{V}_{\text {in }}=0.5 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=75^{\circ} \mathrm{C}\) & & -2 & mA \\
\hline \multirow[t]{2}{*}{Ios} & \multirow[t]{2}{*}{Short-circuit output current} & \multirow[t]{2}{*}{18} & \[
\begin{aligned}
& \mathrm{V}_{\text {in }}=5 \mathrm{~V}, \quad \mathrm{~V}_{\text {out }}=0, \\
& \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \text { and } 0^{\circ} \mathrm{C}
\end{aligned}
\] & -0.59 & -1.41 & mA \\
\hline & & & \[
\begin{array}{ll}
V_{\text {in }}=5 \mathrm{~V}, & V_{\text {out }}=0, \\
T_{A}=75^{\circ} \mathrm{C} &
\end{array}
\] & -0.55 & -1.38 & mA \\
\hline \(\mathrm{I}_{\mathrm{CC}(0)}\) & Logical 0 level supply current & 19 & \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) & & 15 & mA \\
\hline \({ }^{1} \mathrm{CC}(1)\) & Logical I level supply current at maximum \(\mathrm{V}_{\mathrm{Cc}}\) & 20 & \(\mathrm{V}_{C C}=8 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) & & 17 & mA \\
\hline
\end{tabular}
switching characteristics, \(\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & PARAMETER & \[
\begin{aligned}
& \text { TEST } \\
& \text { FIGURE }
\end{aligned}
\] & TEST & NDITIONS & MIN & MAX & UNIT \\
\hline \({ }^{+} \mathrm{pd}(0)\) & Propagation delay time to logical 0 level & \multirow[b]{2}{*}{52} & \(\mathrm{R}_{1}=330 \Omega\), & \(\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}\) & 5 & 65 & ns \\
\hline \({ }^{\dagger}{ }_{\text {pd }}(1)\) & Propagation delay time to logical 1 level & & \(\mathrm{R}_{1}=2 \mathrm{k} \Omega\), & \(C_{L}=30 \mathrm{pF}\) & 5 & 75 & ns \\
\hline
\end{tabular}
schematic


NOTE: Pins (1). 8 and (13)-no internal connection.

\section*{logic}

TRUTH TABLES
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{SYNCHRONOUS} \\
\hline \multicolumn{4}{|c|}{\[
\text { PULSE }{ }^{t_{n}} \text { INPUT }
\]} & \multicolumn{2}{|r|}{OUTPUT} \\
\hline S & C & \(\mathrm{PT}_{1}\) & \(\mathrm{PT}_{2}\) & Q & \(\overline{\mathbf{Q}}\) \\
\hline 1 & X & X & 1 & Qn & Qn \\
\hline X & 1 & 1 & X & Qn & \(\overline{\mathbf{Q}} \mathbf{n}\) \\
\hline 0 & 1 & 0 & X & 1 & 0 \\
\hline 0 & X & 0 & 1 & 1 & 0 \\
\hline 1 & 0 & X & 0 & 0 & 1 \\
\hline X & 0 & 1 & 0 & 0 & 1 \\
\hline 0 & 0 & 0 & 0 & Inde & minate \\
\hline
\end{tabular}

NOTES:
1. X indicates that either a logical 1 or a logical 0 may be present.
\begin{tabular}{|c|c|l|l|}
\hline \multicolumn{4}{|c|}{ ASYNCHRONOUS } \\
\hline \multicolumn{3}{|c|}{\begin{tabular}{c} 
DIRECT \\
INPUT
\end{tabular}} & \multicolumn{2}{|c|}{ OUTPUT } \\
\hline \(\mathrm{S}_{\mathrm{D}}\) & \(\mathrm{C}_{\mathrm{D}}\) & Q & \(\overline{\mathrm{Q}}\) \\
\hline 1 & 1 & \(\mathrm{Qn}_{n}\) & \(\overline{Q_{n}}\) \\
\hline 0 & 1 & 0 & 1 \\
\hline 1 & 0 & 1 & 0 \\
\hline 0 & 0 & 1 & 1 \\
\hline
\end{tabular}
2. Logical 1 is more positive than logical 0 .
3. Logical states shown for pulse inputs \(\mathrm{PT}_{1}\) and \(\mathrm{PT}_{2}\) indicate that a transition to that state has just occurred.
4. Truth tables reflect individual conditions at the inputs. Either direct input may be used to inhibit its corresponding pulse input.

\section*{recommended operating conditions}

Supply Voltage \(\mathrm{V}_{\mathrm{CC}}\). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 V
Maximum Fan-Out From Each Output
electrical characteristics at \(\mathbf{V}_{\text {cc }}=5 \mathrm{~V}\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline & PARAMETER & TEST FIGURE & TEST CONDITIONS & MIN MAX & UNIT \\
\hline \multirow{3}{*}{\(V_{\text {out }}\) (0)} & \multirow{3}{*}{Logical 0 output voltage (on level) at \(\mathbf{Q}\) or \(\overline{\mathbf{Q}}\)} & \multirow{3}{*}{34} & \[
\begin{aligned}
& \mathrm{V}_{\text {in }}=1.9 \mathrm{~V}, \quad \mathrm{I}_{\text {sink }}=12 \mathrm{~mA}, \\
& \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\end{aligned}
\] & 0.45 & V \\
\hline & & & \[
\begin{aligned}
& \mathrm{V}_{\text {in }}=2 \mathrm{~V}, \quad \mathrm{I}_{\text {sink }}=12 \mathrm{~mA}, \\
& \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}
\end{aligned}
\] & 0.45 & V \\
\hline & & & \[
\begin{aligned}
& \mathrm{V}_{\text {in }}=1.8 \mathrm{~V}, \quad \mathrm{I}_{\text {sink }}=11.4 \mathrm{~mA}, \\
& \mathrm{~T}_{\mathrm{A}}=75^{\circ} \mathrm{C}
\end{aligned}
\] & 0.5 & V \\
\hline \multirow{3}{*}{\(\mathrm{V}_{\text {out (1) }}\)} & \multirow{3}{*}{Logical 1 output voltage (off level) at \(\mathbf{Q}\) or \(\overline{\mathbf{Q}}\)} & \multirow{3}{*}{35} & \[
\begin{array}{ll}
\mathrm{V}_{1}=1.1 \mathrm{~V}, & \mathrm{~V}_{2}=1.9 \mathrm{~V}, \\
\mathrm{~V}_{3}=5 \mathrm{~V}, & \mathrm{I}_{\text {load }}=-1.5 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\end{array}
\] & 2.6 & V \\
\hline & & & \[
\begin{array}{ll}
V_{1}=1.2 \mathrm{~V}, & \mathrm{~V}_{2}=2 \mathrm{~V}, \\
\mathrm{~V}_{3}=5 \mathrm{~V}, & \mathrm{I}_{\text {load }}=-1.5 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}
\end{array}
\] & 2.6 & V \\
\hline & & & \[
\begin{array}{ll}
\mathrm{V}_{1}=0.95 \mathrm{~V}, & \mathrm{~V}_{2}=1.8 \mathrm{~V}, \\
\mathrm{~V}_{3}=5 \mathrm{~V}, & \mathrm{I}_{\text {load }}=-1.5 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=75^{\circ} \mathrm{C}
\end{array}
\] & 2.5 & V \\
\hline \multirow[b]{2}{*}{\(\mathrm{I}_{\text {inPT }}\)} & \multirow[t]{2}{*}{Pulse-triggered-input current} & \multirow[b]{2}{*}{36} & \(\mathrm{V}_{\text {in }}=8 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) and \(0^{\circ} \mathrm{C}\) & 5 & \(\mu \mathrm{A}\) \\
\hline & & & \(\mathrm{V}_{\text {in }}=8 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=75^{\circ} \mathrm{C}\) & 10 & \(\mu \mathrm{A}\) \\
\hline \multirow[b]{2}{*}{\(I_{\text {in(0) }}\)} & \multirow[t]{2}{*}{Logical 0 level-input current at C or S} & \multirow[b]{2}{*}{37} & \(\mathrm{V}_{\text {in }}=0.45 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) and \(0^{\circ} \mathrm{C}\) & -2.1 & mA \\
\hline & & & \(\mathrm{V}_{\text {in }}=0.5 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=75^{\circ} \mathrm{C}\) & -2 & mA \\
\hline \multirow[b]{2}{*}{\(\mathrm{I}_{\mathrm{in}(0)}\)} & \multirow[t]{2}{*}{Logical 0 level at \(C_{D}\) or \(S_{D}\) input current} & \multirow[b]{2}{*}{37} & \(\mathrm{V}_{\text {in }}=0.45 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) and \(0^{\circ} \mathrm{C}\) & -1.6 & mA \\
\hline & & & \(\mathrm{V}_{\text {in }}=0.5 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=75^{\circ} \mathrm{C}\) & -1.52 & mA \\
\hline
\end{tabular}
electrical characteristics (continued) at \(V_{c c}=5 \mathrm{~V}\) (unless otherwise noted)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{PARAMETER} & TEST FIGURE & \multicolumn{2}{|l|}{TEST CONDITIONS} & MIN & MAX & UNIT \\
\hline \multirow[b]{2}{*}{\(\mathrm{I}_{\text {in(1) }}\)} & \multirow[t]{2}{*}{Logical 1 level input current at \(C_{D}\) or \(S_{D}\)} & \multirow[t]{2}{*}{38} & \(\mathrm{V}_{\text {in }}=4 \mathrm{~V}\), & \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) and \(0^{\circ} \mathrm{C}\) & & 5 & \(\mu \mathrm{A}\) \\
\hline & & & \(\mathrm{V}_{\text {in }}=4 \mathrm{~V}\), & \(\mathrm{T}_{\mathrm{A}}=75^{\circ} \mathrm{C}\) & & 10 & \(\mu \mathrm{A}\) \\
\hline \(\mathrm{I}_{\mathrm{RC}}\) & Current through resistor \(\mathrm{R}_{\mathrm{C}}\) & 39 & \(V_{\text {in }}=0\), & \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) & -3.3 & -7.9 & mA \\
\hline \multirow[b]{2}{*}{Ios} & \multirow[t]{2}{*}{Short-circuit output current} & \multirow[b]{2}{*}{40} & \(V_{\text {out }}=0\), & \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) and \(0^{\circ} \mathrm{C}\) & -13.7 & -29 & mA \\
\hline & & & \(\mathrm{v}_{\text {out }}=0\), & \(\mathrm{T}_{\mathrm{A}}=75^{\circ} \mathrm{C}\) & -12.6 & -28 & mA \\
\hline \(\mathrm{I}_{\text {out(1) }}\) & Output reverse current (off level) & 40 & \(\mathrm{V}_{\text {out }}=4.5 \mathrm{~V}\), & \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) and \(0^{\circ} \mathrm{C}\) & & 150 & \(\mu \mathrm{A}\) \\
\hline \({ }^{\text {c }}\) ( 01 & Logical 0 level supply current & 41 & \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) & & & 9.3 & mA \\
\hline \({ }^{\text {CCO(1) }}\) & Logical I level supply current at maximum \(\mathrm{V}_{\mathrm{CC}}\) & 42 & \(\mathrm{V}_{\mathrm{cc}}=8 \mathrm{~V}\), & \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) & & 19.6 & mA \\
\hline
\end{tabular}
switching characteristics, \(\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{PARAMETER} & \[
\begin{gathered}
\text { TEST } \\
\text { FIGURE }
\end{gathered}
\] & \multicolumn{2}{|l|}{TEST CONDITIONS} & MIN & MAX & UNIT \\
\hline \(t_{\text {pd }}(0)\) & Propagation delay time to logical 0 level. & \multirow{2}{*}{53} & \(\mathrm{R}_{1}=400 \Omega\), & \(C_{L}=100 \mathrm{pF}\) & 5 & 32 & ns \\
\hline \({ }^{\text {pdd }}\) (1) & Propagation delay time to logical 1 level & & \(\mathrm{R}_{1}=3.9 \mathrm{k} \Omega\), & \(C_{L}=100 \mathrm{pF}\) & 5 & 25 & ns \\
\hline
\end{tabular}
schematic


\section*{logic}

TRUTH TABLE
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|c|}{\(\stackrel{t_{n}}{\text { INPUT }_{n}^{n}}\)} & \multicolumn{2}{|c|}{\[
\begin{aligned}
& \mathrm{t}_{\mathrm{n}+1} \\
& \text { INPUT }
\end{aligned}
\]} & \multirow[t]{2}{*}{OUTPUT} \\
\hline A & B & A & B & \\
\hline 1 & 1 & 1 & 1 & INHIBIT \\
\hline 1 & 1 & 1 & 0 & ONE-SHOT \\
\hline 1 & 1 & 0 & 1 & ONE-SHOT \\
\hline 1 & 1 & 0 & 0 & ONE-SHOT \\
\hline 0 & 1 & X & X & INHIBIT \\
\hline 1 & 0 & X & X & INHIBIT \\
\hline 0 & 0 & X & X & INHIBIT \\
\hline
\end{tabular}

NOTES: a. \(t_{n}=\) time before input transition.
b. \(\mathbf{t}_{\mathrm{n}+1}=\) time after input fransition.
c. X indicates that either a logical 1 or a logical 0 may be present.


NOTES: 1. External resistor and capacitor may be used between pins (10). (11), and (14) to control one-shot pulse width.
2. To use the internal timing resistor, connect pin (9) to pin (14)
3. Input sensitivity can be decreased by adding a capacitor from pin (5) to ground.

\section*{recommended operating conditions}
Supply Voltage \(\mathrm{V}_{\mathrm{cc}}\). ..... 5 V
Maximum Fan-Out From Each Output ..... 10
Input Pulse Characteristics:
Minimum Negative-Going Transition ..... 1 V
Maximum Input Fall Time Per Volt ..... 25 ns/V
Maximum Duty Cycle ..... 40\%
electrical characteristics at \(\mathbf{V}_{\mathbf{c c}}=5 \mathbf{V}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & PARAMETER & TEST FIGURE & TEST CONDITIONS \(\dagger\) & MIN & MAX & UNIT \\
\hline \multirow[b]{2}{*}{\(V_{\text {out (0) }}\)} & \multirow[t]{2}{*}{Logical 0 output voltage (on level)} & \multirow[b]{2}{*}{43} & \(\mathrm{I}_{\text {sink }}=15 \mathrm{~mA}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) and \(0^{\circ} \mathrm{C}\) & & 0.45 & \(V\) \\
\hline & & & \(\mathrm{I}_{\text {sink }}=14.5 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=75^{\circ} \mathrm{C}\) & & 0.5 & V \\
\hline \multirow[b]{2}{*}{\(\mathrm{V}_{\text {out(1) }}\)} & \multirow[t]{2}{*}{Logical 1 output voltage (off level)} & \multirow[b]{2}{*}{44} & \(\mathrm{I}_{\text {load }}=-0.18 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) and \(0^{\circ} \mathrm{C}\) & 2.6 & & V \\
\hline & & & \(\mathrm{I}_{\text {load }}=-0.18 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=75^{\circ} \mathrm{C}\) & 2.5 & & V \\
\hline \multirow[b]{2}{*}{\(\mathrm{I}_{\text {in }(1)}\)} & \multirow[t]{2}{*}{Logical 1 level input current} & \multirow[b]{2}{*}{45} & \(\mathrm{V}_{\mathrm{in}}=4 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) and \(0^{\circ} \mathrm{C}\) & & 5 & \(\mu \mathrm{A}\) \\
\hline & & & \(\mathrm{V}_{\text {in }}=4 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=75^{\circ} \mathrm{C}\) & & 10 & \(\mu \mathrm{A}\) \\
\hline \multirow[b]{2}{*}{\(\mathrm{l}_{\text {in(0) }}\)} & \multirow[b]{2}{*}{Logical 0 level input current} & \multirow[b]{2}{*}{46} & \[
\begin{aligned}
& \mathrm{V}_{1}=4 \mathrm{~V}, \quad \mathrm{~V}_{2}=0.45 \mathrm{~V}, \\
& \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \text { and } 0^{\circ} \mathrm{C}
\end{aligned}
\] & \(-1.35\) & -2.8 & mA \\
\hline & & & \[
\begin{array}{ll}
\mathrm{V}_{1}=4 \mathrm{~V}, & \mathrm{~V}_{2}=0.5 \mathrm{~V}, \\
\mathrm{~T}_{\mathrm{A}}=75^{\circ} \mathrm{C} &
\end{array}
\] & \(-1.25\) & -2.63 & mA \\
\hline
\end{tabular}
\(\dagger\) Expander node is open unless otherwise noted.
electrical characteristics (continued) at \(\mathbf{V}_{\mathrm{cc}}=5 \mathrm{~V}\) (unless otherwise noted)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & PARAMETER & TEST FIGURE & TEST CONDITIONS \(\dagger\) & MIN & MAX & UNIT \\
\hline \(\mathrm{I}_{\mathrm{R}}\) & Current through internal timing resistor \(\mathrm{R}_{\mathrm{T}}\) & 47 & \(\mathrm{V}_{\text {in }}=5 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) & 0.4 & 0.75 & mA \\
\hline \multirow[b]{2}{*}{\(\mathrm{I}_{\text {sc }}\)} & \multirow[t]{2}{*}{Short circuit current at expander node or pin} & \multirow[t]{2}{*}{48} & \(\mathrm{V}_{\text {in }}=0, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) and \(0^{\circ} \mathrm{C}\) & -0.8 & & mA \\
\hline & & & \(\mathrm{V}_{\text {in }}=0, \quad \mathrm{~T}_{\mathrm{A}}=75^{\circ} \mathrm{C}\) & -0.75 & & mA \\
\hline \(I_{\text {cc }}\) & Supply current & 49 & \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) & & 12 & mA \\
\hline \(\mathrm{I}_{\mathrm{CC}(\text { max })}\) & Supply current at maximum \(\mathrm{V}_{\mathrm{CC}}\) & 50 & \(\mathrm{V}_{\mathrm{CC}}=8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) & & 26.7 & mA \\
\hline
\end{tabular}
switching characteristics, \(V_{c c}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & PARAMETER & TEST FIGURE & TEST CONDITIONS \(\dagger\) & MIN & MAX & UNIT \\
\hline \({ }^{t} \mathrm{pd}(0)\) & Propagation delay time to logical 0 level & \multirow{3}{*}{54} & \multirow{3}{*}{\(\mathrm{R}_{1}=300 \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}\)} & & 50 & ns \\
\hline \({ }^{t_{\mathrm{pd}}(1)}\) & Propagation delay time to logical 1 level & & & & 50 & ns \\
\hline \({ }^{\text {t }}\) p & Pulse width & & & 50 & 175 & ns \\
\hline
\end{tabular}
\(\dagger\) Expander nodes are open unless otherwise noted.
schematic


NOTES: 1. External resistor and capacitor may be used (as indicated above) between pins (10), (11), and (14) to controt one-shot pulse width.
2. To use the internal timing resistor, connect pin (9) to pin (14).
3. Input sensitivity can be decreased by adding a capacitor from pin (5) to ground.
schematic (each gate)


\section*{recommended operating conditions}

Supply Voltage \(\mathrm{V}_{\mathrm{CC}}\). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 V
Maximum Fan-Out From Each Output . . . . . . . . . . . . . . . . . . . . . . . . . . 8
electrical characteristics at \(\mathbf{V}_{\mathbf{c c}}=5 \mathbf{V}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & PARAMETER & TEST FIGURE & TEST CONDITIONS & MIN & MAX & UNIT \\
\hline \multirow{3}{*}{\(V_{\text {out (0) }}\)} & \multirow{3}{*}{Logical 0 output voltage (on level)} & \multirow{3}{*}{1} & \[
\begin{aligned}
& \mathrm{V}_{\text {in }}=1.9 \mathrm{~V}, \quad \mathrm{I}_{\text {sink }}=12 \mathrm{~mA}, \\
& \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\end{aligned}
\] & & 0.45 & V \\
\hline & & & \[
\begin{aligned}
& \mathrm{V}_{\text {in }}=2 \mathrm{~V}, \quad \mathrm{I}_{\text {sink }}=12 \mathrm{~mA}, \\
& \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}
\end{aligned}
\] & & 0.45 & V \\
\hline & & & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{in}}=1.8 \mathrm{~V}, \quad \mathrm{I}_{\text {sink }}=11.4 \mathrm{~mA}, \\
& \mathrm{~T}_{\mathrm{A}}=75^{\circ} \mathrm{C}
\end{aligned}
\] & & 0.5 & V \\
\hline \multirow{3}{*}{\(V_{\text {out(1) }}\)} & \multirow{3}{*}{Logical 1 output voltage (off level)} & \multirow{3}{*}{2} & \[
\begin{aligned}
& \mathrm{V}_{\text {in }}=1.1 \mathrm{~V}, \quad \mathrm{I}_{\text {load }}=-0.12 \mathrm{~mA}, \\
& \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\end{aligned}
\] & 2.6 & & V \\
\hline & & & \[
\begin{aligned}
& \mathrm{V}_{\text {in }}=1.2 \mathrm{~V}, \quad \mathrm{I}_{\text {load }}=-0.12 \mathrm{~mA}, \\
& \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}
\end{aligned}
\] & 2.6 & & V \\
\hline & & & \[
\begin{aligned}
& \mathrm{V}_{\text {in }}=0.95 \mathrm{~V}, \mathrm{I}_{\text {(load) }}=-0.12 \mathrm{~mA}, \\
& \mathrm{~T}_{\mathrm{A}}=75^{\circ} \mathrm{C}
\end{aligned}
\] & 2.5 & & V \\
\hline
\end{tabular}
electrical characteristics (continued) at \(\mathbf{V}_{\text {cc }}=5 \mathrm{~V}\) (unless otherwise noted)
\begin{tabular}{|c|c|c|c|c|c|}
\hline & PARAMETER & TEST FIGURE & TEST CONDITIONS & MIN MAX & UNIT \\
\hline \multirow[b]{2}{*}{\(\mathrm{I}_{\text {in(1) }}\)} & \multirow[t]{2}{*}{Logical 1 level input current} & \multirow[b]{2}{*}{4} & \(\mathrm{V}_{\text {in }}=4 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) and \(0^{\circ} \mathrm{C}\) & 5 & \(\mu \mathrm{A}\) \\
\hline & & & \(\mathrm{V}_{\text {in }}=4 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=75^{\circ} \mathrm{C}\) & 10 & \(\mu \mathrm{A}\) \\
\hline \multirow[b]{2}{*}{\(\mathrm{I}_{\text {in(0) }}\)} & \multirow[t]{2}{*}{Logical 0 level input current} & \multirow[b]{2}{*}{5} & \[
\begin{aligned}
& \mathrm{V}_{\text {in }}=0.45 \mathrm{~V}, \mathrm{~V}_{\mathrm{R}}=4 \mathrm{~V}, \\
& \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \text { and } 0^{\circ} \mathrm{C}
\end{aligned}
\] & -1.4 & mA \\
\hline & & & \[
\begin{aligned}
& V_{\text {in }}=0.5 \mathrm{~V}, \quad V_{R}=4 \mathrm{~V}, \\
& T_{A}=75^{\circ} \mathrm{C}
\end{aligned}
\] & -1.33 & mA \\
\hline \(\mathrm{I}_{\text {out }}\) (1) & Output reverse current (off level) & 6 & \(\mathrm{V}_{\text {out }}=5 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) & 100 & \(\mu \mathrm{A}\) \\
\hline \multirow{3}{*}{los} & \multirow[b]{3}{*}{Short-circuit output current} & \multirow{3}{*}{7} & \(\mathrm{V}_{\text {out }}=0, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) & -1.3 & mA \\
\hline & & & \(\mathrm{V}_{\text {out }}=0, \quad \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\) & -1.3 & mA \\
\hline & & & \(\mathrm{V}_{\text {out }}=0, \quad \mathrm{~T}_{\mathrm{A}}=75^{\circ} \mathrm{C}\) & -1.25 & mA \\
\hline \({ }^{\mathrm{I} C(0)}\) & Logical 0 level supply current (all gates) & 8 & \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) & 12 & mA \\
\hline \({ }^{1} \mathrm{CC}(1)\) & Logical 1 level supply current at maximum \(\mathrm{V}_{\mathrm{CC}}\) (all gates) & 9 & \(\mathrm{V}_{\mathrm{CC}}=8 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) & 12 & mA \\
\hline
\end{tabular}
switching characteristics, \(\mathbf{V}_{\mathbf{c c}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & PARAMETER & TEST & TEST CONDITIONS & MIN & MAX & UNIT \\
\hline \({ }^{+} \mathrm{pd}(0)\) & Propagation delay time to logical 0 level & \multirow[b]{2}{*}{51} & \(\mathrm{R}_{1}=400 \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}\) & 10 & 30 & ns \\
\hline \({ }^{\text {pdd }}\) (1) & Propagation delay time to logical 1 level & & \(\mathrm{R}_{1}=3.9 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}\) & 25 & 80 & ns \\
\hline
\end{tabular}

\section*{PARAMETER MEASUREMENT INFORMATION}
d-c test circuits \(\dagger\)
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
SN1 5 830, SN 15 832, SN15 844, SN15 846, and SN15 862 \\
FIGURE 1 - \(\mathbf{V}_{\text {out(0) }}\)
\end{tabular} & \begin{tabular}{l}
SN15 830, SN15 832, SN15 846, and SN1 5862 \\
1. Each input is tested separately. \\
FIGURE 2 - \(\mathbf{V}_{\text {out(1) }}\)
\end{tabular} \\
\hline \begin{tabular}{l}
SN15 830 and SN15 832 \\
FIGURE 3 - \(\mathbf{V}_{\text {out(1) }}\)
\end{tabular} & \begin{tabular}{l}
SN1 5 830, SN15 832, SN1 5 844, SN15 846, and SN15 862 \\
FIGURE 4 - \(\mathbf{I}_{\text {in(1) }}\)
\end{tabular} \\
\hline \begin{tabular}{l}
SN15 830, SN15 832, SN15 844, SN15 846, and SN15 862 \\
1. Each input is tested separately. \\
FIGURE 5 - \(I_{\text {in(0) }}\)
\end{tabular} & \begin{tabular}{l}
SN15 830, SN1 5 832, SN15 846, and SN15 862 \\
FIGURE 6-I \(\mathbf{I}_{\text {out(1) }}\)
\end{tabular} \\
\hline
\end{tabular}
\(\dagger\) Arrows indicate actual direction of current flow.

\section*{PARAMETER MEASUREMENT INFORMATION}
d-c test circuits \({ }^{\dagger}\) (continued)
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
SN15 830, SN15 832, SN15 846, and SN15 862 \\
FIGURE \(7-\mathrm{I}_{\text {os }}\)
\end{tabular} & SN15 830, SN1 5 832, SN1 5 844,SN15 846,and SN15 862 \\
\hline \begin{tabular}{l}
SN1 5 830, SN1 5 832, SN1 5 844, SN1 5 846, and SN1 582 \\
FIGURE 9 - \(I_{\text {cC(1) }}\)
\end{tabular} & \begin{tabular}{l}
1. Output \(Q\) is tested by grounding \(S_{1}\) and applying a momentary ground to \(\bar{Q} . I_{\text {sink }}\) is driven into \(\mathbf{Q}\). \\
2. Output \(\bar{Q}\) is tested by grounding \(C_{1}\) and applying a momentary ground to \(\mathbf{Q}\). \(I_{\text {sink }}\) is driven into \(\bar{Q}\). \\
FIGURE \(10-V_{\text {out }(0)}\)
\end{tabular} \\
\hline  &  \\
\hline
\end{tabular}

\section*{PARAMETER MEASUREMENT INFORMATION}
d-c test circuits \({ }^{\dagger}\) (continued)

\(\dagger\) Arrows indicate actual direction of current flow.

\title{
SERIES 15830 \\  \\ SEMICONDUCTOR NETWORKS
}

\section*{PARAMETER MEASUREMENT INFORMATION}
d-c test circuits \({ }^{\dagger}\) (continued)
SN15 831, SNI5 845, and SN15 848

\footnotetext{
\(\dagger\) Arrows indicate actual direction of current flow.
}

PARAMETER MEASUREMENT INFORMATION
d-c test circuits \(\dagger\) (continued)
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
SN15 844 \\
I. Each input is tested separately. \\
FIGURE 25 - \(I_{\text {out(1) }}\)
\end{tabular} & \begin{tabular}{l}
SN15 844 \\
FIGURE 26 - \(I_{\text {out(1) }}\)
\end{tabular} \\
\hline SN15 845 and SN15 848 & \begin{tabular}{l}
SN15 845 and SN15 848 \\
1. Inputs \(S_{1}\) and \(S_{2}\) are tested separately. \\
FIGURE \(28-V_{\text {out }(0)}\)
\end{tabular} \\
\hline \begin{tabular}{l}
SN15 845 and SN15 848 \\
1. \(V_{\text {in }}\) is applied to \(S_{D}\) or \(C_{D}\) separately. \\
FIGURE 29 - \(\mathbf{I}_{\mathrm{CP}(0)}\)
\end{tabular} & \begin{tabular}{l}
SN15 845 and SN15 848 \\
1. Ground is applied separately to \(C_{1}, C_{2}\) and \(S_{D}\) or to \(S_{1}, S_{2}\) and \(C_{D}\). \\
FIGURE \(30-I_{C P(1)}\)
\end{tabular} \\
\hline
\end{tabular}
\(\dagger\) Arrows indicate actual direction of current flow.

PARAMETER MEASUREMENT INFORMATION
d-c test circuits \({ }^{\dagger}\) (continued)

†Arrows indicate actual direction of current flow.

PARAMETER MEASUREMENT INFORMATION
d-c test circuits \({ }^{\dagger}\) (continued)
(

\footnotetext{
\(\dagger\) Arrows indicate actual direction of current flow.
}

\section*{PARAMETER MEASUREMENT INFORMATION}
```

d-c test circuits ${ }^{\dagger}$ (continued)

```
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
SN15 851 \\
1. Output 0 is tested by applying ground separately to pins 5 and 10 and loading output 0 . \\
2. Output 1 is tested by applying 5 V to pin 9 and loading output 1. \\
FIGURE 43 - \(V_{\text {outiol }}\)
\end{tabular} & \begin{tabular}{l}
SN15 851 \\
1. Output 0 is tested by applying \(5 \mathbf{V}\) to pin 9 and loading output 0 . \\
2. Output 1 is tested by applying ground to pin 10 and loading output 1 . \\
FIGURE 44 - \(\mathbf{V}_{\text {out(1) }}\)
\end{tabular} \\
\hline \begin{tabular}{l}
SN15 851 \\
1. Each input is tested separately. \\
FIGURE \(45-I_{\text {infl) }}\)
\end{tabular} & \begin{tabular}{l}
SN15 851 \\
1. Each input is tested separately by applying \(\mathbf{V}_{\mathbf{2}}\) to input under test and \(V_{1}\) to the other input. \\
FIGURE \(46-I_{\text {in(0) }}\)
\end{tabular} \\
\hline \begin{tabular}{l}
SN15 851 \\
FIGURE 47 - \(I_{\text {RT }}\)
\end{tabular} & \begin{tabular}{l}
SN15 851 \\
FIGURE 48 - \(\mathrm{I}_{\mathrm{sc}}\)
\end{tabular} \\
\hline
\end{tabular}

\footnotetext{
\(\dagger\) Arrows indicate actual direction of current flow.
}

\section*{PARAMETER MEASUREMENT INFORMATION}
d-c test circuits \({ }^{\dagger}\) (continued)
\begin{tabular}{|c|c|}
\hline FIGURE 49 - \(I_{\text {cc }}\) & \begin{tabular}{l}
SN15 851 \\
FIGURE 50 - \(I_{\mathrm{CC}(\text { max })}\)
\end{tabular} \\
\hline
\end{tabular}
\(\dagger\) Arrows indicate actual direction of current flow.
switching characteristics


\section*{PARAMETER MEASUREMENT INFORMATION}

\section*{switching characteristics (continued)}


NOTES: 1. The generator has the following characteristics:
\(V_{\text {out }}=3 \mathrm{~V}, \mathrm{t}_{\mathrm{r}} \leq 15 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 15 \mathrm{~ns}, \mathrm{t}_{\mathrm{p}}=300 \mathrm{~ns}, \mathrm{PRR}=1 \mathrm{MHz}, \mathrm{z}_{\text {out }} \simeq 50 \Omega\).
2. Alf diodes are 1 N 916 . Use sufficient 1 N 916 diodes to make \(\mathrm{V}_{\mathrm{F}(\text { total })}=1.9 \mathrm{~V}\) to 2.5 V at 2 mA of current.
3. Volfage values are with respect to network ground terminal.
4. Test circuit shows loading when output \(\bar{Q}\) is tested. When output \(\mathbb{Q}\) is tested, loading is interchanged as indicated by the dofted lines.

FIGURE 52 - FLIP-FLOP PROPAGATION DELAY

\section*{switching characteristics (continued)}


\section*{switching characteristics (continued)}


\section*{MECHANICAL DATA}

\section*{general}

SOLID CIRCUIT semiconductor networks are mounted in a glass-to-metal hermetically sealed, welded package. Package body and leads are gold-plated F-15 \(\ddagger\) glass-sealing alloy. Approximate weight is 0.1 gram. All external surfaces are
metallic and are insulated from leads and circuit. All Series 15830 networks are available with formed leads, insulator attached, and/or mounted in a Mech-Pak carrier.


\section*{leads}

Gold-plated F-15 \(\ddagger\) leads require no additional cleaning or processing when used in soldered or welded assembly. Formed leads are available to facilitate planar mounting of networks on flat circuit boards. Standard lead length is 0.175 inch. Networks can be removed from Mech-Pak carriers with lead lengths up to 0.175 inch.

\section*{insulator}

An insulator, secured to the back surface of the package, permits mounting networks on circuit boards which have conductors passing beneath the package. The insulator is 0.0025 inch thick and has an insulation resistance of greater than 10 megohms at \(25^{\circ} \mathrm{C}\).

\section*{mech-pak carrier}

The Mech-Pak carrier facilitates handling the network, and is compatible with automatic equipment used for testing and assembly. The carrier is particularly appropriate for mechanized assembly operations and will withstand temperatures of \(125^{\circ} \mathrm{C}\) for indefinite periods.

\section*{ordering instructions}

Variations in mechanical configuration of semiconductor networks are identified by suffix numbers shown in a table at the right.

\footnotetext{
†Patented by Texas Instruments
}


NOTES: a. All dimensions in inches.
b. Not applicable in Mech-Pak Carrier.
c. Measured from center of lead to bottom of package where lead emerges from body.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{4}{|c|}{NO MECH.PAK CARRIER} & \multicolumn{4}{|c|}{MECH-PAK CARRIER} \\
\hline Lead Length & \multicolumn{4}{|c|}{0.175 Inch} & \multicolumn{4}{|c|}{Not Applicable} \\
\hline Formed Leads & No & No & Yes & Yes & No & No & Yes & Yes \\
\hline Insulators & No & Yes & No & Yes & No & Yes & No & Yes \\
\hline Ordering Suffix & None & -6 & -7 & \(-1\) & -2 & -3 & -4 & -5 \\
\hline
\end{tabular}

\footnotetext{
\(\ddagger \mathbf{F}-15\) is the ASTM designation for an iron-nickel-cobalt alloy containing nominally \(53 \%\) iran, \(\mathbf{2 9 \%}\) nickel, and \(\mathbf{1 7 \%}\) cobalt.
}

\section*{DIODE-TRANSISTOR-LOGIC SEMICONDUCTOR NETWORKS}

\section*{IN}

MOLDED PLUG-IN PACKAGES
description
Series 15830 N consists of the Series 15830 general-purpose DTL circuits mounted within a 14 -pin plastic package and characterized for operation over the temperature range of \(0^{\circ} \mathrm{C}\) to \(75^{\circ} \mathrm{C}\).

\section*{features}

LOW SYSTEM COST
- multifunction gates offering low cost per logic function
- electrically designed specifically for monolithic integrated-circuit technology
- plug-in configuration ideal for flow-soldering techniques
- pins on 100-mil grid spacings for industrial-type circuit-boards

PERFORMANCE
- high speed
- high d-c noise margins
- low power dissipation
- good fan-out capability

\section*{EASE OF DESIGN}
- familiar logic configuration (DTL)
- single-ended output-dot-OR logic
- complete family for design flexibility
- single power supply
specifications, logic symbols and terminal designations
Schematic diagrams, fan-out rules, maximum ratings, and electrical characteristics for Series 15830 N networks are identical to those of the corresponding Series 15830 type numbers except for maximum propagation delay times \(\$\). Terminal designations for the Series 15830 N networks are shown in this data sheet.

\section*{mechanical data}

Series 15830 N networks are mounted on a 14 -lead frame and encapsulated within a plastic compound. The compound will withstand soldering temperatures with no deformation, and circuit performance characteristics remain stable when operated in high-humidity conditions.


\footnotetext{
\(\dagger\) Patented by Texas Instruments
}
\(\ddagger\) Maximum \({ }_{\text {pdı }}\) and \(\mathrm{t}_{\mathrm{pdo}}\) for Series 15830 N are 5 ns higher than for Series 15830 . The increase in the typical or median value is negligible.

\section*{SN15 831N, SN15 845N, SN15 848N \\ MASTER-SLAVE FLIP-FLOPS}


TRUTH TABLES
\begin{tabular}{|l|l|l|l|l|}
\hline \multicolumn{5}{|c|}{ R-S MODE } \\
\hline \multicolumn{3}{|c|}{\(t_{n}\)} & \multicolumn{3}{c|}{\(t_{n+1}\)} & \multicolumn{3}{|c|}{ J-K MODE } \\
\hline\(S_{1}\) & \(S_{2}\) & \(C_{1}\) & \(C_{2}\) & \(Q\) \\
\hline 0 & \(X\) & 0 & \(X\) & \(Q_{n}\) \\
\hline 0 & \(X\) & \(X\) & 0 & \(Q_{n}\) \\
\hline\(X\) & 0 & 0 & \(X\) & \(Q_{n}\) \\
\hline \multicolumn{2}{|c|}{\(t_{n}\)} & \(t_{n+1}\) \\
\hline\(X\) & 0 & \(X\) & 0 & \(Q_{n}\) \\
\hline 0 & \(X\) & 1 & 1 & \(C_{1}\) \\
\hline 0 & 0 & \(Q\) \\
\hline 0 & 1 & 0 \\
\hline 1 & 0 & 1 \\
\hline 1 & 1 & \(Q_{n}\) \\
\hline
\end{tabular}

SN15 850N
PULSE-TRIGGERED BINARY


TRUTH TABLES
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{SYNCHRONOUS} \\
\hline \multicolumn{4}{|l|}{\begin{tabular}{l}
, \\
PULSE INPUT
\end{tabular}} & \multicolumn{2}{|r|}{\[
\begin{gathered}
t_{n}+1 \\
\text { OUTPUT }
\end{gathered}
\]} \\
\hline S & C & PT & \(\mathrm{PT}_{2}\) & Q & \(\overline{\mathbf{Q}}\) \\
\hline 1 & X & X & 1 & Qn & Qn \\
\hline X & 1 & 1 & X & Qn & \(\overline{\mathbf{Q}} \mathbf{n}\) \\
\hline 0 & 1 & 0 & X & 1 & 0 \\
\hline 0 & X & 0 & 1 & 1 & 0 \\
\hline 1 & 0 & X & 0 & 0 & 1 \\
\hline X & 0 & 1 & 0 & 0 & 1 \\
\hline 0 & 0 & 0 & 0 & Inde & minate \\
\hline
\end{tabular}
\begin{tabular}{|c|c|l|l|}
\hline \multicolumn{4}{|c|}{ ASYNCHRONOUS } \\
\hline \multicolumn{2}{|c|}{\begin{tabular}{c} 
DIRECT \\
INPUT
\end{tabular}} & \multicolumn{2}{|c|}{ OUTPUT } \\
\hline\(S_{D}\) & \(C_{D}\) & \(Q\) & \(\bar{Q}\) \\
\hline 1 & 1 & \(Q_{n}\) & \(\mathbf{Q}_{n}\) \\
\hline 0 & 1 & 0 & 1 \\
\hline 1 & 0 & 1 & 0 \\
\hline 0 & 0 & 1 & 1 \\
\hline
\end{tabular}

NOTES:
1. X indicates that either a logical 1 or a logical 0 may be present.
2. Logical 1 is more positive than logical 0 .
3. Logical states shown for pulse inputs \(\mathrm{PT}_{1}\) and \(\mathrm{PT}_{2}\) indicate that a transition to that state has just occurred.
4. Truth tables reflect individual conditions at the inputs. Either direct input may be used to inhibit its corresponding pulse input.

SN15 830N, SN15 832N (BUFFER), SN15 844N (POWER) DUAL 4-INPUT NAND/NOR GATES


SN15 846N
QUADRUPLE 2-INPUT NAND/NOR GATE


SN15 833N
DUAL 4-INPUT EXPANDER


SN15 862N
TRIPLE 3-INPUT NAND/NOR GATE


SN15 851N
MONOSTABLE MULTIVIBRATOR


SERIES 72 SEMICONDUCTOR-NETWORK GENERAL-PURPOSE AMPLIFIER for application as

\author{
- Comparator \\ - Level Detector \\ - Differential Amplifier \\ - Voltage Regulator
}

\section*{- Military \& Industrial Control Systems - Analog-to-Digital Converters - Analog Computers}

\section*{description}

The SN723, offering differential inputs and differential emitterfollower outputs, incorporates a resistance network in the emitters of the input stage to facilitate gain adjustment. From the wide range of total resistance available, a particular value may be selected by connecting the resistor-network pins in a configuration which produces the desired gain. Maximum-gain configuration is with pin (1) shorted to pin (b).
The SN723, one of Texas Instruments Series 72 catalog line of linear integrated circuits, offers higher reliability, lower cost, smaller size, and lower weight than equivalent discrete-component circuits. Each Series 72 device is a monolithic semiconductor structure comprising diffused resistors and both \(n-p-n\) and \(p-n-p\) transistors.

\section*{mechanical data}

The SN723 is mounted in a glass-to-metal hermetically sealed welded package meeting TO-84. Leads are gold-plated F-15 \(\ddagger\) glass-sealing alloy. Approximate weight is 0.1 gram. All external surfaces are metallic and are insulated from leads and circuit. The SN723 is available with formed leads, insulator attached, and/or mounted in a Mech-Pak carrier. See Ordering Instructions.


NOTE: Component values shown are nominal. SCHEMATIC DIAGRAM

\section*{ORDERING INSTRUCTIONS}
\begin{tabular}{|l|c|l|l|l|l|l|l|l|}
\hline & \multicolumn{4}{|c|}{ NO MECH-PAK CARRIER } & \multicolumn{4}{|c|}{ MECH-PAK CARRIER } \\
\hline Lead Length & \multicolumn{4}{|c|}{0.175 Inch } & \multicolumn{3}{|c|}{ Not Aplicable } \\
\hline Formed leads & \(N_{0}\) & No & Yes & Yes & No & No & Yes & Yes \\
\hline Insulators & No & Yes & No & Yes & No & Yes & No & Yes \\
\hline \begin{tabular}{l} 
Ordering \\
Suffix
\end{tabular} & None & -6 & \(\mathbf{- 7}\) & \(\mathbf{- 1}\) & -2 & \(\mathbf{- 3}\) & -4 & \(\mathbf{- 5}\) \\
\hline
\end{tabular}


\footnotetext{
\(\dagger\) Patented by Texas Instruments.
\(\ddagger F-15\) is the ASTM designation for an iron-nickel-cobalt alloy containing nominally \(53 \%\) iron, \(24 \%\) nickel, and \(17 \%\) cobalt.
}
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply Voltages (See Note 1): \(\mathrm{VCl}_{\mathrm{Cl}}\). . . . . . . . . . . . . . . . . . . . . . . . . . . . +15 V \(\mathbf{V}_{\mathrm{CC} 2}\) • . . . . . . . . . . . . . . . . . . . . . . . . . . . - 15 V
Differential Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . \(\pm 6\) V
Input Voltage (Either Input, See Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . \(\pm 10 \mathrm{~V}\)
Duration of Short-Circuit Output Current . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 s
Continuous Total Power Dissipation at (or below) \(25^{\circ} \mathrm{C}\) Free-Air Temperature (See Note 2) . . . . . . . . . . 300 mW
Operating Free-Air Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . \(0^{\circ} \mathrm{C}\) to \(70^{\circ} \mathrm{C}\)
Storage Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . . . \(-65^{\circ} \mathrm{C}\) to \(150^{\circ} \mathrm{C}\)

NOTES: 1. These voltage values are with respect to network ground.
2. Derate linearly to 220 mW at \(70^{\circ} \mathrm{C}\) free-air temperature at the rate of \(1.8 \mathrm{~mW} / \mathrm{deg}\).
electrical characteristics at \(25^{\circ} \mathrm{C}\) free-air temperature (unless otherwise noted)

§Unless otherwise noted, test conditions are:
\(\mathbf{V}_{\mathbf{C C 1}}=+12 \mathbf{V}, \mathbf{V}_{\mathbf{C C} 2}=-12 \mathbf{V}, \mathbf{V}_{\mathbf{D} 1}\) applied, no external loading; pin (1) grounded, pin (1) shorted to pin (6), and pins (2), (3), (5), (3) and (1) open.

\section*{letter symbol and parameter definitions}
\(V_{D I} \quad\) That d-c voltage which must be applied between the input terminals to obtain zero-differential-output voltage. The application of this voltage balances the amplifier.
\(\mathbf{V}_{\text {CMO }} \quad\) That d-c voltage level which exists between either output terminal and ground when the outputs are balanced.
\(I_{\text {in }} \quad\) The current into either input of the amplifier.
\(I_{D I} \quad\) The difference in the currents into the two input terminals when the output is balanced.
\(V_{O M}\) The maximum peak-to-peak output voltage swing that can be obtained without clipping when the output is balanced.
\(V_{\text {CMIM }}\) The maximum common-mode voltage that can be impressed on the input terminals while maintaining differential operation.
CMRR The ratio of the differential-mode voltage gain to the common-mode voltage gain.
BW The range of frequencies within which the open-loop voltage gain is within 3 dB of the mid-frequency value.
\(\mathrm{Z}_{\text {in }} \quad\) The impedance between either input terminal and ground with the other input terminal a-c grounded and the output balanced.
\(\mathrm{Z}_{\text {out }} \quad\) The impedance between the output terminal and ground when the output is balanced.

\section*{TYPICAL CHARACTERISTICS§}

§Unless otherwise noted, test conditions are:


\section*{TYPICAL CHARACTERISTICS \(§\)}

§Unless otherwise noted, test conditions are:
\(\mathbf{V}_{\mathrm{CC}}=+12 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC} 2}=-12 \mathrm{~V}, \mathrm{~V}_{\mathrm{DI}}\) applied, no external loading, pin (11) grounded, pin (1) shorted to pin (6), and pins (2), (3), (5), (9) and (13) open.

\title{
SERIES 72 SEMICONDUCTOR-NETWORK GENERAL-PURPOSE AMPLIFIER for application as
}

\author{
- Comparator \\ - Level Detector \\ - Differential Amplifier - Voltage Regulator
}

\section*{- Military \& Industrial Control Systems - Analog-to-Digital Converters - Analog Computers}

\section*{description}

The SN7231L offers differential inputs and differential emitterfollower outputs. Two stages of differential amplification are used to provide high gain at frequencies up to 1 MHz . A high degree of component matching, which assures stable operation over the temperature range of \(0^{\circ} \mathrm{C}\) to \(70^{\circ} \mathrm{C}\), is achieved by the monolithic construction.

The SN7231L, one of Texas Instruments Series 72 catalog line of linear integrated circuits, offers higher reliability, lower cost, smaller size, and lower weight than equivalent discrete-component circuits. Each Series 72 device is a monolithic semiconductor structure comprising diffused resistors and both n-p-n and p-n-p transistors.


NOTE: Component values shown are nominal. SCHEMATIC DIAGRAM
mechanical data
The SN7231L package outline is same as JEDEC TO-100 except for diameter of standoff.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)


NOTES: 1. These voltage values are with respect to network ground.
2. Derate linearly to 220 mW at \(70^{\circ} \mathrm{C}\) free-air temperature at the rate of \(1.8 \mathrm{~mW} / \mathrm{deg}\).
\(\dagger\) Patented by Texas Instruments
electrical characteristics at \(25^{\circ} \mathrm{C}\) free-air temperature (unless otherwise noted)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{PARAMETER} & TEST CONDITIONS§ & MIN & TYP & MAX & UNIT \\
\hline \(\mathrm{V}_{\mathrm{DI}}\) & Differential-input offset voltage & & & 4 & 15 & mV \\
\hline \(\alpha_{\text {voi }}\) & Differential-input offset voltage temperature coefficient & \(\mathrm{T}_{\mathrm{A}(1)}=70^{\circ} \mathrm{C}, \mathrm{T}_{\mathrm{A}(2)}=0^{\circ} \mathrm{C}\) & & 10 & & \(\mu \mathrm{V} / \mathrm{deg}\) \\
\hline \(\mathrm{V}_{\text {CMO }}\) & Common-mode output offset voltage & & & 600 & & mV \\
\hline \(\mathrm{I}_{\text {in }}\) & Input current & & & 6.5 & & \(\mu \mathrm{A}\) \\
\hline \(\mathrm{I}_{\mathrm{DI}}\) & Differential-input offset current & & & 1 & 4 & \(\mu \mathrm{A}\) \\
\hline & & Differential output, \(f=1 \mathrm{kHz}\) & & 20 & & V \\
\hline \(\mathrm{V}_{\text {о }}\) & Maximum peak-to-peak output voltage & \[
\begin{aligned}
& \text { Differential output, } \mathrm{f}=1 \mathrm{kHz}, \\
& \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C}
\end{aligned}
\] & 15 & & & \(v\) \\
\hline \(\mathrm{V}_{\text {CMIM }}\) & Maximum common-mode input voltage & & & \(\pm 5\) & & \(v\) \\
\hline Ayb & Differential voltage gain & \(\mathrm{R}_{\mathrm{S}}=50 \Omega, \mathrm{f}=1 \mathrm{kHz}\) & & 3000 & & \\
\hline & & \(\mathrm{R}_{\mathrm{S}}=50 \Omega, \mathrm{f}=1 \mathrm{kHz}, \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\) to \(70^{\circ} \mathrm{C}\) & 1250 & & & \\
\hline CMRR & Common-mode rejection ratio & \(\mathrm{R}_{\mathrm{s}}=50 \Omega, \mathrm{f}=1 \mathrm{kHz}\) & & 80 & & dB \\
\hline BW & Bandwidth ( -3 dB ) & & 60 & 150 & & kHz \\
\hline \(\mathrm{Z}_{\text {in }}\) & Input impedance & \(\mathrm{f}=1 \mathrm{kHz}\) & 4 & 1 & & \(\mathrm{k} \Omega\) \\
\hline \(\mathrm{Z}_{\text {out }}\) & Output impedance & \(\mathrm{f}=1 \mathrm{kHz}\) & & 250 & & \(\Omega\) \\
\hline \(\mathrm{P}_{\mathrm{T}}\) & Total power dissipation & & & 100 & & mW \\
\hline
\end{tabular}
§Unless otherwise noted, test conditions are: \(\mathbf{v}_{\mathrm{CC} 1}=+12 \mathbf{v}, \mathbf{v}_{\mathrm{CC} 2}=-12 \mathbf{v}, \mathbf{V}_{\mathrm{D} 1}\) applied, no external loading and pin (6) grounded.

\section*{letter symbol and parameter definitions}
\(V_{D I} \quad\) That d-c voltage which must be applied between the input terminals to obtain zero-differential-output voltage. The application of this voltage balances the amplifier.
\(\alpha_{\text {VDI }} \quad\) Temperature coefficient averaged over the specified temperature range and defined by the equation:
\[
\alpha_{V D I}=\frac{\left(V_{D I} @ T_{A(1)}\right)-\left(V_{D I} @ T_{A(2)}\right)}{T_{A(1)}-T_{A(2)}}
\]
\(V_{\text {CMO }} \quad\) That d-c voltage level which exists between either output terminal and ground when the outputs are balanced.
\(I_{\text {in }} \quad\) The current into either input of the amplifier.
\(I_{D I} \quad\) The difference in the currents into the two input terminals when the output is balanced.
\(\mathrm{V}_{\mathrm{OM}}\) The maximum peak-to-peak output voltage swing that can be obtained without clipping when the output is balanced.
\(\mathbf{V}_{\text {CMIM }}\) The maximum common-mode voltage that can be impressed on the input terminals while maintaining differential operation.
CMRR The ratio of the differential-mode voltage gain to the commmon-mode voltage gain.
BW The range of frequencies within which the open-loop voltage gain is within 3 dB of the mid-frequency value.
\(Z_{\text {in }} \quad\) The impedance between either input terminal and ground with the other input terminal a-c grounded and the output balanced.
\(\mathrm{Z}_{\text {out }} \quad\) The impedance between either output terminal and ground when the output is balanced.

\title{
TYPE SN7231L GENERAL-PURPOSE DIFFERENTIAL AMPLIFIER
}

\section*{TYPICAL CHARACTERISTICS §}


FIGURE 1


FIGURE 3


FIGURE 2

DIFFERENTIAL VOLTAGE GAIN

§Unless otherwise noted, test conditions are: \(\mathbf{v}_{\mathrm{CC}}=+12 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC} 2}=-12 \mathrm{~V}, \mathrm{~V}_{\mathrm{DI}}\) applied, no external loading and pin(6) grounded.

\section*{TYPICAL CHARACTERISTICS §}

§Unless otherwise noted, test conditions are: \(\mathbf{V}_{\mathrm{CC}}=+12 \mathrm{~V}, \mathbf{V}_{\mathrm{CC} 2}=-12 \mathrm{~V}, \mathrm{~V}_{\mathrm{DI}}\) applied, no external loading and pin (6) grounded.

\title{
SERIES 72 SEMICONDUCTOR-NETWORK GENERAI.-PURPOSE AMPLIFIERS for application as
}

\author{
- Buffer Amplifier \\ - Multivibrator \\ - Differentiator \\ - Integrator \\ - Level Detector \\ - Summing Amplifier
}

\section*{description}

Each of these networks is a general-purpose operational amplifier consisting of two differential-gain stages and a single-ended emitter-follower output. The input stage utilizes Darlington-connected n-p-n transistors for high input impedance.

The SN724 and SN724L, two of Texas Instruments Series 72 catalog line of linear integrated circuits, offers higher reliability, lower cost, smaller size, and lower weight than equivalent discrete component circuits. Each Series 72 device is a monolithic semiconductor structure comprising diffused resistors and both n-p-n and \(\mathrm{p}-\mathrm{n}-\mathrm{p}\) transistors.

\section*{mechanical data}


NOTE: Component values shown are nominal.
SCHEMATIC DIAGRAM
SN724 ORDERING INSTRUCTIONS
\begin{tabular}{|l|c|l|l|l|l|l|l|l|}
\hline & \multicolumn{4}{|c|}{ NO MECH-PAK CARRIER } & \multicolumn{4}{c|}{ MECH-PAK CARRIER } \\
\hline Lead Length & \multicolumn{4}{|c|}{0.175 Inch } & \multicolumn{3}{c|}{ Not Aplicable } \\
\hline Formed Leads & No & No & Yes & Yes & No & No & Yes & Yes \\
\hline Insulators & No & Yes & No & Yes & No & Yes & No & Yes \\
\hline \begin{tabular}{l} 
Ordering \\
Suffix
\end{tabular} & None & \(\mathbf{- 6}\) & -7 & -1 & -2 & -3 & -4 & \(\mathbf{- 5}\) \\
\hline
\end{tabular}

The SN724 operational amplifier is mounted in a glass-to-metal hermetically sealed welded package meeting TO-89. Leads are gold-plated \(\mathrm{F}-15 \ddagger\) glass-sealing alloy. Approximate weight is 0.1 gram. All external surfaces are metallic and are insulated from leads and circuit. The SN724 is available with formed leads, insulator attached, and/or mounted in a Mech-Pak carrier. See Ordering Instructions.


The SN724L package outline is same as JEDEC TO-76 except for case height.


\footnotetext{
\(\dagger\) Patented by Texas Instruments.
}
\(\ddagger \mathrm{F}-15\) is the ASTM designation for an iron-nickel-cobalt alloy containing nominally \(53 \%\) iron, \(\mathbf{2 9 \%}\) nickel, and \(17 \%\) cobalt.

\section*{absolute maximum ratings over operating free-air temperature range (unless otherwise noted)}


NOTE 1: Voltage values are with respect to network ground.
electrical characteristics at \(25^{\circ} \mathrm{C}\) free-air temperature (unless otherwise noted)

§Unless otherwise noted test conditions are: \(\mathrm{V}_{\mathrm{CC} 1}=+12 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}_{2}}=-12 \mathrm{~V}\), ground and \(\mathrm{V}_{\mathrm{DI}}\) applied; roll-off terminal open, no external loading. The unused input is grounded for all tests except when common-mode characteristics are under test.

\section*{letter symbol and parameter definitions}
\(V_{\text {DI }} \quad\) That d-c voltage which must be applied between the input terminals to obtain zero-output voltage referenced to ground. The application of this voltage balances the amplifier.
\(I_{\text {in }} \quad\) The current into either input of the amplifier.
\(I_{\text {DI }} \quad\) The difference in the currents into the two input terminals when the output is balanced.
\(\mathrm{V}_{\mathrm{OM}} \quad\) The maximum peak-to-peak output voltage swing that can be obtained without clipping when the output is balanced.
\(\mathrm{V}_{\text {CMIM }}\) The maximum common-mode voltage that can be impressed on the input terminals while maintaining differential operation.
CMRR The ratio of the differential-mode voltage gain to the common-mode voltage gain.
BW The range of frequencies within which the voltage gain is within 3 dB of the mid-frequency value.
\(Z_{i n} \quad\) The impedance between either input terminal and ground with the other input terminal a-c grounded and the output balanced.
\(Z_{\text {out }} \quad\) The impedance between the output terminal and ground when the output is balanced.

\title{
TYPES SN724, SN724L GENERAL-PURPOSE OPERATIONAL AMPLIFIERS
}

\section*{TYPICAL CHARACTERISTICS§}

figure 1

figure 3

MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE
Vs


FIGURE 2

COMMON-MODE REJECTION RATIO
vs


FIGURE 4
§Unless otherwise noted test conditions are: \(V_{C C 1}=+12 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC} 2}=-12 \mathrm{~V}\), ground and \(\mathrm{V}_{\mathrm{D} 1}\) applied; roll-off terminal open, no external loading. The unused input is grounded for all tests except when common-mode characteristics are under test.

\section*{TYPICAL CHARACTERISTICS§}

§Unless otherwise noted test conditions are: \(\mathrm{V}_{\mathrm{CC}}=+12 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}_{2}}=-12 \mathrm{~V}\), ground and \(\mathrm{V}_{\mathrm{DI}}\) applied; roll-off terminal open, no external loading. The unused input is grounded for all tests except when common-mode characteristics are under test. NETWORKS \(\dagger\)
\(\square\)

\section*{features}

\section*{PERFORMANCE}
- perform both time and amplitude signal discrimination
- adjustable input-threshold voltage level
- extremely narrow region of threshold voltage uncertainty
- good fan-out capability
- typical differential input to logic-output propagation delay time of 50 ns
- fast overload recovery time

\section*{EASE OF DESIGN}
- choice of output circuit function
- TTL or DTL drive capability
- standard logic supply voltages


TYPE SN7500 CIRCUIT BAR

\section*{description}

The SN7500 and SN7502 are sense amplifiers with one-shot-output circuits. The SN7500 features a double-ended output with high fan-out capability. The SN7502 features a variablethreshold differential-input circuit, externally controlled output pulse width, and a singleended output capable of performing dot-OR logic.
The SN7501 is a sense amplifier with flip-flop output circuit. It also features a variable-threshold differential-input circuit. Functions of the internal R-S flip-flop include direct reset and complementary outputs.

All three networks incorporate a strobe input so that threshold detection will occur when the signal-to-noise ratio is at a maximum.
\begin{tabular}{llllllllll|}
\hline & & & CONTENTS & & & & & & \\
DESIGN CHARACTERISTICS &. &. &. &. &. &. &. &. &.
\end{tabular}.

\footnotetext{
\(\dagger\) Patented by Texas Instruments
}

Texas Instruments
INCORPORATED
SEMICONDUCTOR-COMPONENTS DIVISION
POST OFFICE BOX 5012 - DALLAS, TEXAS 75222

\section*{design characteristics}

Series 75 sense amplifiers have been designed for use with coincident-current memory systems. The sense amplifiers detect bipolar differential-input signals from the memory and provide the interface circuitry between the memory and the logic section. The low-level pulses originating in the memory are transformed into logic levels compatible with the logic section.
A distinct feature of these amplifiers is the extremely narrow region of uncertainty of the threshold circuit. This is accomplished by the high over-all gain coupled with a regenerative output stage. The threshold level of the design is well-defined and any change in this level due to temperature or external reference control can be readily predicted.
A strobe or enable gate is included in the design so the threshold detector can be enabled when the signal-tonoise ratio is a maximum during the system read cycle and inhibited during the write cycle.
The output circuits are designed to be compatible with the available DTL and TTL integrated logic circuits and are characterized for operation with these devices.

\section*{circuit operation}

The basic Series 75 sense amplifier circuit is shown in figure \(A\).


The differential-amplifier outputs are used as inputs for a current-mode-logic (CML) circuit. The reference voltage for the CML circuit is determined by the reference amplifier which is common-mode coupled to the input amplifier through the current sources. This common-mode loop stabilizes the reference-amplifier output voltage with respect to the input-amplifier output voltage. The design voltage levels are such that the reference voltage is positive with respect to the amplifier output voltage levels by an amount directly related to the threshold voltage. The result is that the CML output voltage is high if no differential-input voltage is present. A differentialinput voltage large enough in amplitude to swing one amplifier output voltage more positive than the reference voltage will switch the CML circuit, thus causing a negative voltage transient at the CML output. The strobe transistor enables or inhibits action of the CML circuit.

\section*{input threshold voltage}

Since the input threshold voltage is related to the ref-erence-amplifier output voltage, the threshold voltage, developed across resistor \(R_{X}\) (figures \(A\) and \(B\) ) in the SN7500, can be made externally adjustable by providing a method to vary the reference-amplifier input voltage. The reference input terminal \(\left(V_{\text {ref }}\right)\) is provided on the SN7501 and SN7502 to allow external generation of the reference voltage.

\section*{SN7500}

The SN7500 sense amplifier with one-shot output requires no external components for operation in a conventional \(2-\mu \mathrm{s}\) memory. The circuit is shown in figure \(\mathbf{B}\).


The SN7500 incorporates a one-shot to provide regeneration and to extend the output pulse width. The pulse width is established internally by the time constant of the \(R_{1} C_{1}\) combination. To minimize the external circuitry, sense-line terminations to a signal ground are included in the design. Since these resistors are fabricated using standard diffusion processes, they will exhibit a temperature coefficient of approximately +0.2 percent per centigrade degree. Match of the two termination resistors is nominally 2 percent.
The threshold voltage of the SN7500 is nominally 17 mV , a value chosen to be compatible with most coin-cident-current memories in the \(2-\mu \mathrm{s}\) range. The threshold reference voltage ( \(\mathrm{V}_{\text {ref }}\) ) is generated internally to eliminate the need for external components.
The output is an inverting, double-ended (totem-pole) circuit providing capability for sinking load current or supplying source current. This output will drive highcapacitance loads with good rise and fall times with little degradation in output waveform.

\section*{SN7502}

The SN7502 is very similar to the SN7500 in function and design, except that external components are utilized to increase the flexibility of the circuit. Figure C shows the circuitry for the SN7502.


Unlike the SN7500, the output-pulse width of the SN7502 can be varied by \(\mathrm{C}_{\text {ext }}\) and the input-thresholdvoltage level can be adjusted by \(\mathrm{V}_{\text {ref }}\). Dual DTL strobe inputs increase strobing flexibility and an inverting, single-ended output stage is used to provide a wired-OR output capability. The SN7502, when connected to operate with minimum output pulse width, can be used in the \(1-\mu \mathrm{s}\) memory range.

\section*{SN7501}

The SN7501 sense amplifier offers maximum flexibility.
The device includes a flip-flop with a direct reset capability and complementary outputs. The flip-flop is "set" by a differential input greater than the input-thresholdvoltage level which may be adjusted by the external \(V_{\text {ref }}\) supply. Figure D shows the circuit for the SN7501. The flip-flop output circuit can be used as a temporary data storage element.


Both the stored information and its complement appear in the flip-flop after reading from the memory and are available as inputs to the logic section.

\section*{output drive capability}

The output circuits for the SN7500, SN7501, and SN7502 feature the ability to both sink or supply load current. This capability permits direct use with both DTLand TTL-type loads.

\section*{input current requirements}

Input current requirements reflect worst-case conditions for \(\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\) to \(70^{\circ} \mathrm{C}\) and \(\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC} 2}=\) -5 V , and \(\mathrm{V}_{\text {in }}\) as indicated in the table.

INPUT CURRENT REQUIREMENTS
\begin{tabular}{|l|l|c|c|}
\hline TYPE & INPUT & \(V_{\text {in }}\) & \(\mathrm{I}_{\text {in }}(\mathrm{MAX})\) \\
\hline SN7500 & Strobe & 2.6 V & 2.5 mA \\
\hline \multirow{2}{*}{ SN7501 } & \multirow{2}{*}{\begin{tabular}{l} 
Strobe or \\
Reset
\end{tabular}} & 5 V & \(5 \mu \mathrm{~A}\) \\
\cline { 3 - 4 } & 0 V & -1.6 mA \\
\hline \multirow{2}{*}{ SN7502 } & \multirow{2}{*}{ Strobe } & 5 V & \(5 \mu \mathrm{~A}\) \\
\cline { 3 - 4 } & & 0 V & -1.6 mA \\
\hline
\end{tabular}

> absolute maximum ratings over operating free-air temperature range (unless otherwise noted) Supply Voltages:
> \(\mathrm{V}_{\mathrm{ref}}\). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +7 V
> Strobe and Reset Input Voltages . . . . . . . . . . . . . . . . . . . . . . . . . . +6 V
> Operating Free-Air Temperature Range . . . . . . . . . . . . . . . . . . . . . \(0^{\circ} \mathrm{C}\) to \(70^{\circ} \mathrm{C}\)
> Storage Temperature Range . . . . . . . . . . . . . . . . . . . . . . . \(-65^{\circ} \mathrm{C}\) to \(150^{\circ} \mathrm{C}\)
> NOTE: Valtage values are with respect to network ground terminal.

\section*{logic definition}

Standard POSITIVE LOGIC with the following definitions is used for specifying digital-level signals:
\[
\begin{aligned}
& \text { LOW VOLTAGE }=\text { LOGICAL } 0 \\
& \text { HIGH VOLTAGE }=\text { LOGICAL } 1
\end{aligned}
\]

\section*{schematic}

recommended operating conditions

> Supply Voltages: \(\mathrm{V}_{\mathrm{Cc} 1}\)
> \(\mathrm{~V}_{\mathrm{CC} 2}\) -5 V
> Strobe Input Voltages: Logical 0 Level 0 to +0.5 V
> Logical 1 Level +2 V to +5 V
electrical characteristics (unless otherwise noted, \(\mathrm{V}_{\mathrm{cc} 1}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{cC} 2}=-5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\) to \(70^{\circ} \mathrm{C}\) )
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{PARAMETER} & \[
\begin{array}{|c|}
\hline \text { TEST } \\
\text { FIGURE } \\
\hline
\end{array}
\] & TEST CONDITIONS \(\dagger\) & MIN & TYP & MAX & UNIT \\
\hline \multirow[b]{2}{*}{\(V_{T}\)} & \multirow[t]{2}{*}{Differential-input threshold voltage (see note 1)} & & & 10 & & 30 & mV \\
\hline & & 1 & \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) & 10 & 17 & 30 & mV \\
\hline & & & \[
\begin{aligned}
& \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\
& \text { Strobe Input: }
\end{aligned}
\] & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{2}} & \multirow[b]{2}{*}{v} \\
\hline \(\mathrm{V}_{\text {CMF }}\) & Common-mode-input firing voltage (see note 2) & & \begin{tabular}{l}
\[
v_{\text {ins }}=2.6 \mathrm{~V}
\] \\
Common-Mode Input Pulse:
\[
\begin{aligned}
& t_{r}=t_{f}=50 \mathrm{~ns}, \\
& t_{p(i n)}=150 \mathrm{~ns} \\
& \hline
\end{aligned}
\]
\end{tabular} & & & & \\
\hline \(\mathrm{V}_{\text {out(1) }}\) & Logical 1 output voltage & 2 & \(\mathrm{l}_{\text {load }}=-8 \mathrm{~mA}\) & 2.6 & & & V \\
\hline \(\mathrm{V}_{\text {out }}\) (0) & Logical 0 output voltage & 3 & \(\mathrm{I}_{\text {sink }}=8 \mathrm{~mA}\) & & & 0.4 & V \\
\hline \(\mathrm{I}_{\text {in }(1 / \mathrm{s}}\) & Logical 1 level strobe-input current & 4 & \(\mathrm{V}_{\text {ins }}=2.6 \mathrm{~V}\) & & 1.2 & 2.5 & mA \\
\hline \(\mathrm{r}_{\text {ind }}\) & Differential-input d-c resistance & 6 & Supply voltages are not applied & 150 & 200 & 300 & \(\Omega\) \\
\hline \({ }^{\text {cCl }}\) & \(\mathrm{V}_{\mathrm{CC1}}\) supply current & 7 & & & 15 & & mA \\
\hline \(\mathrm{I}_{\mathrm{CC2}}\) & \(\mathrm{V}_{\mathrm{CC} 2}\) supply current & 7 & & & -10 & & mA \\
\hline
\end{tabular}
\(\dagger\) Signal-ground terminal is open.

NOTES: 1. The differential-input threshold voltage \(\left(V_{T}\right)\) is defined as that pulse or \(\mathrm{d}-\mathrm{c}\) input voltage \(\left(\mathrm{V}_{\text {in }}\right)\) iust sufficient to cause the output to switch. For testing and correlation purposes a \(d-c\) input voltage is desirable.
2. Common-mode-input firing voltage is the common-mode voltage that will exceed the dynamic range of the input at the specified conditions and cause the output to switch. The specified common-mode-input signal is applied with a strobe-enable signal present.
switching characteristics, \(\mathrm{V}_{\mathrm{Cc} 1}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC} 2}=-5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & PARAMETER & TEST FIGURE & TEST CONDITIONS \(\dagger\) & MIN & TYP & MAX & UNIT \\
\hline \({ }^{\text {pda }}\) (0) \({ }^{\text {d }}\) & Propagation delay time to logical 0 level (differential input-to-output) & 8 & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{inD}}=50 \mathrm{mV}, \quad \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \\
& \mathrm{I}_{\text {sink }}=8 \mathrm{~mA}
\end{aligned}
\] & & 50 & 125 & ns \\
\hline \(\mathrm{t}_{\text {pd(0) }}\) & Propagation delay time to logical 0 level (strobe input-to-output) & 9 & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{inD}}=50 \mathrm{mV}, \quad \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \\
& \mathrm{I}_{\text {sink }}=8 \mathrm{~mA}
\end{aligned}
\] & & 45 & 100 & ns \\
\hline \(t_{p(0)}\) & Logical 0 output pulse width & 8 & \[
\begin{aligned}
& V_{\text {ind }}=50 \mathrm{mV}, \quad \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \\
& \mathrm{I}_{\text {sink }}=8 \mathrm{~mA}
\end{aligned}
\] & 200 & 500 & 800 & ns \\
\hline \({ }^{\text {orD }}\) & Differential-input overload recovery time (see note 1) & & Differential Input Pulse:
\[
V_{\mathrm{inD}}=2 \mathrm{~V}, \quad t_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}
\] & & 20 & & ns \\
\hline \({ }_{\text {torcm }}\) & Common-mode-input overload recovery time (see note 2) & & Common-Mode Input Pulse:
\[
v_{\mathrm{inCM}}= \pm 2 \mathrm{~V}, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}
\] & & 20 & & ns \\
\hline \(\mathrm{t}_{\text {cyd }}\) (min) & Minimum cycle time & & \(\mathrm{t}_{\mathrm{ps}}=100 \mathrm{~ns}\) & & 1.5 & & \(\mu \mathrm{s}\) \\
\hline
\end{tabular}
\(\dagger\) Signal-ground terminal is open

NOTES: I. Differential-input overload recovery time is the time necessary for the device to recover from the specified differential-input overload signal prior to the strobeenable signal.
2. Common-mode-input overload recovery time is the time necessary for the device to recover from the specified common-mode-input overload signal prior to the strobe-enable signal.

\section*{TYPICAL CHARACTERISTICS}


\section*{schematic}


\section*{recommended operating conditions}

electrical characteristics, \(\mathrm{V}_{\mathrm{CC} 1}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC} 2}=-5 \mathrm{~V}\) (unless otherwise noted, \(\mathrm{T}_{\mathrm{A}}=\mathbf{0}^{\circ} \mathrm{C}\) to \(70^{\circ} \mathrm{C}\) )
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & PARAMETER & \[
\begin{gathered}
\text { TEST } \\
\text { FIGURE }
\end{gathered}
\] & TEST CONDITIONS \(\dagger\) & MIN & TYP & MAX & UNIT \\
\hline \multirow{3}{*}{\(V_{T}\)} & \multirow[t]{3}{*}{Differential-input threshold voltage (see note 1 )} & \multirow{3}{*}{1} & \(\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\) & 12 & & 20 & mV \\
\hline & & & \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) & 14 & & 20 & mV \\
\hline & & & \(\mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}\) & 14 & & 24 & mV \\
\hline \(\mathrm{V}_{\text {CMF }}\) & Common-mode inpyt firing voltage (see note 2) & & \begin{tabular}{l}
\[
T_{A}=25^{\circ} \mathrm{C}
\] \\
Strobe Input:
\[
\mathrm{V}_{\mathrm{ins}}=2.6 \mathrm{~V}
\] \\
Common-Mode-Input Pulse:
\[
t_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=50 \mathrm{~ns}, \quad t_{\mathrm{p}}=150 \mathrm{~ns}
\]
\end{tabular} & \multicolumn{3}{|c|}{2} & V \\
\hline \(V_{\text {out(1) }}\) & Logical 1 output voltage & 2 & \(\mathrm{I}_{\text {load }}=-1 \mathrm{~mA}\) & 2.6 & & & V \\
\hline \(V_{\text {out (0) }}\) & Logical 0 output voltage & 3 & \(\mathrm{I}_{\text {sink }}=4 \mathrm{~mA}\) & & & 0.4 & V \\
\hline \(\mathrm{I}_{\text {in(1) }}\) & Logical 1 level strobe or reset input current & 4 & \(\mathrm{V}_{\text {in }}=5 \mathrm{~V}\) & & & 5 & \(\mu \mathrm{A}\) \\
\hline \(\mathrm{I}_{\text {in(0) }}\) & Logical 0 level strobe or reset input current & 5 & \(\mathrm{V}_{\mathrm{in}}=0\) & & & -1.6 & mA \\
\hline \(\mathrm{z}_{\text {inD }}\) & Differential-input impedance (see note 3) & & \(\mathrm{f}=1 \mathrm{kHz}\) & & 5 & & k \(\Omega\) \\
\hline \({ }_{\mathrm{c}_{\mathrm{Cl}}}\) & \(\mathrm{V}_{\mathrm{cC} 1}\) supply current & 7 & & & 18 & & mA \\
\hline \({ }^{\text {cl2 }}\) & \(\mathrm{V}_{\mathrm{CC} 2}\) supply current & 7 & & & -10 & & mA \\
\hline \(\mathrm{I}_{\text {ref }}\) & \(\mathrm{V}_{\text {ref }}\) supply current & 7 & & & 2.5 & 3 & mA \\
\hline
\end{tabular}
\[
\dagger v_{\text {rof }}=+4 v
\]

NOTES: 1. The differential-input threshold voltage \(\left(V_{T}\right)\) is defined as that pulse or \(d\)-c input voltage \(\left(V_{i n}\right)\) just sufficient to cause the output to switch. For testing and correlation purposes a d-c input voltage is desirable.
2. Common-mode-input firing voltage is the common-mode voltage that will exceed the dynamic range of the input af the specified conditions and cause the output to switch. The specified common-mode-input signal is applied with a strobe-enable signal present.
3. The differential-input impedance parameter is shown for reference only. This input impedance will not appreciably shunt a low impedance sense-line termination.
switching characteristics, \(V_{\mathrm{CC}_{1}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC} 2}=-5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & PARAMETER & \[
\begin{aligned}
& \text { TEST } \\
& \text { FIGURE }
\end{aligned}
\] & TEST CONDITIONS \(\dagger\) & MIN TYP & MAX & UNIT \\
\hline \({ }^{\text {pod }}\) (1) \({ }^{\text {d }}\) & Propagation delay time to logical 1 level (differential input to output) & 8 & \[
\begin{aligned}
& \mathrm{V}_{\text {ind }}=30 \mathrm{mV}, \quad \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \\
& \mathrm{I}_{\text {load }} \leq-10 \mu \mathrm{~A}
\end{aligned}
\] & 45 & 75 & ns \\
\hline  & \begin{tabular}{l}
Propagation delay time to logical 0 level \\
(differential input to output)
\end{tabular} & 8 & \[
\begin{aligned}
& V_{\text {ind }}=30 \mathrm{mV}, \quad C_{\mathrm{L}}=15 \mathrm{pF}, \\
& I_{\text {sink }}=4 \mathrm{~mA}
\end{aligned}
\] & 45 & 75 & ns \\
\hline  & Propagation delay time to logical 1 level (reset input to output) & 8 & \[
\begin{aligned}
& V_{\text {ind }}=30 \mathrm{mV}, \quad C_{\mathrm{L}}=15 \mathrm{pF}, \\
& \mathrm{I}_{\text {load }} \leq-10 \mu \mathrm{~A}
\end{aligned}
\] & 20 & 75 & ns \\
\hline \({ }^{\text {pdi } 0 \mid \text { R }}\) & Propagation delay time to logical 0 level (reset input to output) & 8 & \[
\begin{aligned}
& \mathrm{V}_{\text {ind }}=30 \mathrm{mV}, \quad \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \\
& \mathrm{I}_{\text {sink }}=4 \mathrm{~mA}
\end{aligned}
\] & 20 & 75 & ns \\
\hline \({ }^{\text {pda }}\) [1] \({ }^{\text {d }}\) & Propagation delay time to logical 1 level (strobe input to output) & 9 & \[
\begin{aligned}
& \mathrm{V}_{\text {ind }}=30 \mathrm{mV}, \quad \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \\
& \mathrm{I}_{\text {load }} \leq-10 \mu \mathrm{~A}
\end{aligned}
\] & 45 & 75 & ns \\
\hline \({ }^{\text {pdofols }}\) & Propagation delay time to logical 0 level (strobe input to output) & 9 & \[
\begin{aligned}
& V_{\text {ind }}=30 \mathrm{mV}, \quad C_{\mathrm{L}}=15 \mathrm{pF}, \\
& I_{\text {sink }}=4 \mathrm{~mA}
\end{aligned}
\] & 45 & 75 & ns \\
\hline \({ }_{\text {orD }}\) & Differential-input overload recovery time (see note 1) & & Differential Input Pulse:
\[
V_{\mathrm{inD}}=2 \mathrm{~V}, \quad t_{\mathrm{r}}=t_{\mathrm{f}}=20 \mathrm{~ns}
\] & 20 & & ns \\
\hline \({ }^{\text {orcm }}\) & Common-mode input overload recovery time (see note 2) & & Common-Mode Input Pulse:
\[
V_{\mathrm{inCM}}= \pm 2 \mathrm{~V}, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}
\] & 20 & & ns \\
\hline \(\mathrm{t}_{\text {cyc(min) }}\) & Minimum cycle time & & \(\mathrm{t}_{\mathrm{pS}}=100 \mathrm{~ns}, \quad \mathrm{t}_{\mathrm{pR}}=100 \mathrm{~ns}\) & 0.7 & & \(\mu \mathrm{s}\) \\
\hline
\end{tabular}
\(\dagger \mathrm{v}_{\text {ref }}=+4 \mathrm{v}\)
NOTES: 1. Differential-input overload recovery time is the time necessary for the device to recover from the specified differential-input-overload signal prior to the strobeenable signal.
2. Common-mode-input overioad recovery time is the time necessary for the device to recover from the specified common-mode-input overload signal prior to the strobe-enable signal.

\section*{TYPICAL CHARACTERISTICS}


\section*{schematic}


\section*{recommended operating conditions}

electrical characteristics, \(\mathrm{V}_{\mathrm{CC} 1}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC} 2}=-5 \mathrm{~V}\) (unless otherwise noted, \(\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\) to \(70^{\circ} \mathrm{C}\) )
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{PARAMETER} & \[
\begin{gathered}
\text { TEST } \\
\text { FIGURE }
\end{gathered}
\] & TEST CONDITIONS \(\dagger\) & MIN & TYP MAX & UNIT \\
\hline \multirow{3}{*}{\(V_{T}\)} & \multirow{3}{*}{Differential-input threshold voltage (see note 1)} & \multirow[t]{3}{*}{1} & \(\mathrm{C}_{\text {ext }}=47 \mathrm{pF}, \quad \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\) & 14 & 24 & mV \\
\hline & & & \(\mathrm{C}_{\text {ext }}=47 \mathrm{pF}, \quad \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) & 17 & 24 & mV \\
\hline & & & \(\mathrm{C}_{\text {ext }}=47 \mathrm{pF}, \quad \mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}\) & 17 & 27 & mV \\
\hline \(\mathrm{V}_{\text {CMF }}\) & Common-mode input firing voltage (see note 2) & & \(\mathrm{C}_{\text {ext }}=47 \mathrm{pF}, \quad \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\)
Strobe Input:
\(\mathrm{V}_{\text {ins }}=2.6 \mathrm{~V}\)
Common-Mode Input Pulse:
\(\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=50 \mathrm{~ns}, \mathrm{t}_{\mathrm{p}}=150 \mathrm{~ns}\) & & 2.5 & v \\
\hline \(\mathrm{V}_{\text {out(1) }}\) & Logical 1 output voltage & 2 & \(\mathrm{I}_{\text {load }}=-150 \mu \mathrm{~A}\) & 2.6 & & V \\
\hline \(\mathrm{V}_{\text {outio) }}\) & Logical 0 output voltage & 3 & \(t_{\text {sink }}=15 \mathrm{~mA}\) & & 0.4 & V \\
\hline \(\mathrm{I}_{\text {in(1) }}\) & Logical I level strobe input current & 4 & \(\mathrm{V}_{\mathrm{in}}=5 \mathrm{~V}\) & & 5 & \(\mu \mathrm{A}\) \\
\hline \(\mathrm{I}_{\text {inl0) }}\) & Logical 0 level strobe input current & 5 & \(\mathrm{v}_{\mathrm{ins}}=0\) & & -1.1-1.6 & mA \\
\hline \(\mathrm{z}_{\text {ind }}\) & Differential-input impedance (see note 3) & & \(\mathrm{f}=1 \mathrm{kHz}\) & & 5 & k \(\Omega\) \\
\hline \({ }^{\text {ccl }}\) & \(\mathrm{V}_{\mathrm{CC} 1}\) supply current & 7 & & & 15 & mA \\
\hline \(\mathrm{I}_{\mathrm{CC2}}\) & \(\mathrm{V}_{\mathrm{CC} 2}\) supply current & 7 & & & -8 & mA \\
\hline \(\mathrm{I}_{\text {ref }}\) & \(\mathrm{V}_{\text {ref }}\) supply current & 7 & & & 2.5 & mA \\
\hline
\end{tabular}
\[
\dagger v_{\text {ref }}=+4.5 \mathrm{v} \text { and } \mathrm{R}_{\mathrm{ext}}=2 \mathrm{k} \Omega
\]

NOTES: 1. The differential-input threshold voltage \(\left(V_{\mathrm{T}}\right)\) is defined as that pulse or d-c input voltage ( \(\mathrm{V}_{\mathrm{in}}\) ) just sufficient to cause the output to switch. For testing and correlation purposes a d-c input voltage is desirable.
2. Common-mode-input firing voltage is the common-mode voltage that will exceed the dynamic range of the input at the specified conditions and cause the output to switch. The specified common-mode-input signal is applied with a strobe-enable signal present.
3. The differential-input impedance parameter is shown for reference only. This input impedance will not appreciably shunt a low-impedance sense-line termination.
switching characteristics, \(\mathrm{V}_{\mathrm{CC} 1}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC} 2}=-5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & PARAMETER & TEST FIGURE & TEST CONDITIONS \(\dagger\) & MIN & TYP & MAX & UNIT \\
\hline \(t_{\text {pd }(0) \mathrm{D}}\) & Propagation delay time to logical 0 level (differential input-to-output) & 8 & \[
\begin{aligned}
& V_{\mathrm{inD}}=30 \mathrm{mV}, \quad C_{\mathrm{L}}=15 \mathrm{pF} \\
& \mathrm{I}_{\text {sink }}=15 \mathrm{~mA}
\end{aligned}
\] & & 60 & 100 & ns \\
\hline \(\mathrm{t}_{\mathrm{pd}(0) \mathrm{S}}\) & \begin{tabular}{l}
Propagation delay time to logical 0 level \\
(strobe input-to-output)
\end{tabular} & 9 & \[
\begin{aligned}
& V_{i n D}=30 \mathrm{mV}, \quad C_{\mathrm{L}}=15 \mathrm{pF} \\
& \mathrm{I}_{\text {sink }}=15 \mathrm{~mA}
\end{aligned}
\] & & 50 & 100 & ns \\
\hline \({ }^{t}(0)\) & Logical 0 output pulse width & 8 & \(\mathrm{V}_{\mathrm{inD}}=30 \mathrm{mV}, \mathrm{I}_{\text {sink }}=15 \mathrm{~mA}\) & 150 & & 300 & ns \\
\hline \({ }^{\text {ord }}\) & Differential-input overload recovery time (see note 1) & & Differential Input Pulse:
\[
V_{\mathrm{inD}}=2 \mathrm{~V}, \quad t_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}
\] & & 20 & & ns \\
\hline \(t_{\text {orCm }}\) & Common-mode input overload recovery time (see note 2) & & Common-Mode Input Pulse:
\[
\mathrm{V}_{\mathrm{inCM}}= \pm 2 \mathrm{~V}, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}
\] & & 20 & & ns \\
\hline \(\dagger_{\text {cyc }}\) min) & Minimum cycle time & & \(\mathrm{t}_{\mathrm{ps}}=100 \mathrm{~ns}\) & & 1.5 & & \(\mu \mathrm{s}\) \\
\hline
\end{tabular}
\(\dagger \mathrm{v}_{\text {ref }}=+4.5 \mathrm{v}, \mathrm{R}_{\mathrm{ext}}=2 \mathrm{k} \Omega\) and \(\mathrm{C}_{\mathrm{ext}}=47 \mathrm{pF}\)
NOTES: 1. Differential-input overload recovery time is the time necessary for the device to recover from the specified differential-input-overload signal prior to the strobe-enable signal.
2. Common-mode-input overload recovery time is the time necessary for the device to recover from the specified common-mode-input-overload signal prior to the strobeenable signal.

\section*{TYPICAL CHARACTERISTICS§}


\section*{PARAMETER MEASUREMENT INFORMATION}

\section*{d-c test circuits \(\dagger\)}

1. Both inputs are tested with voltages of the same polarity.
2. Strobe and reset input pulses are as shown in figure 8.
3. Both outputs are tested.
4. The differential-input threshold voltage \(\left(V_{T}\right)\) is defined as that pulse or \(d\)-c input voltage ( \(\boldsymbol{V}_{\text {in }}\) ) iust sufficient to cause the output (or outputs) to switch. For testing and correlation purposes o dec input voltage is desirable.

FIGURE 1

1. When testing the SN7501, the output under test is set to logical 1 by applying a momentary ground to the opposite output.
2. Each output of the SN7501 is tested separately.

FIGURE 2
FIGURE 3
\(\dagger\) Arrows indicate actual direction of current flow.

PARAMETER MEASUREMENT INFORMATION
d-c test circuits \(\dagger\) (continued)

\(\dagger\) Arrows indicate actual direction of current flow.

\section*{PARAMETER MEASUREMENT INFORMATION}
switching characteristics \(\dagger\)

test circuit


VOLTAGE WAVEFORMS
NOTES:
1. Each strobe input of the SN7502 is tested separately. The unused strobe input is connected to \(V_{\mathrm{CCl}}\).
2. Strobe input pulse characteristics: \(\mathbf{v}_{\text {ins }}=3 \mathbf{V}, \mathbf{t}_{\mathbf{r}}=\mathbf{t}_{\mathrm{f}}=20 \mathrm{~ns}\).
3. Reset input pulse characteristics: \(\mathbf{v}_{\mathrm{inR}}=\mathbf{3} \mathbf{V}, \mathrm{t}_{\mathrm{r}}={t_{f}}_{\mathrm{f}}=20 \mathrm{~ns}\).
4. Differential-input pulse characteristics: \(\mathrm{t}_{\mathbf{r}}=\mathbf{t}_{\mathrm{f}}=20 \mathrm{~ns}, \mathrm{PRR}=100 \mathrm{kHz}\), source impedance \(=50 \Omega\).
5. All \(t_{r}\) and \(t_{f}\) specifications are from the \(10 \%\) to \(90 \%\) levels.

FIGURE 8 - DIFFERENTIAL AND RESET INPUT-TO-OUTPUT PROPAGATION DELAY TIME
\(\dagger\) Arrows indicate actual direction of current flow.

\section*{PARAMETER MEASUREMENT INFORMATION}
switching characteristics \(\dagger\) (continued)


NOTES: 1. Each strobe input of the SN7502 is tested separately. The unused strobe input is connected to \(\mathrm{V}_{\mathrm{CC1}}\).
2. Differential-input pulse characteristics: \(t_{r}=t_{f}=20 \mathrm{~ns}, P R R=100 \mathrm{kHz}\), source impedance \(=50 \Omega\).
3. Strobe-input pulse characteristics: \(\mathbf{V}_{\mathrm{ins}}=3 \mathbf{V}, \mathrm{t}_{\mathbf{r}}=\mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}\).
4. Reset-input pulse characteristics: \(V_{i n R}=3 \mathbf{V}, t_{r}=t_{f}=20 \mathrm{~ns}\).
5. All \(t_{r}\) and \(t_{f}\) specifications are from the \(10 \%\) to \(90 \%\) levels.

FIGURE 9 - STROBE-INPUT-TO-OUTPUT PROPAGATION DELAY TIME

\footnotetext{
\(\dagger\) Arrows indicate actual direction of current flow.
}

\section*{TYPICAL APPLICATION DATA}

\section*{coincident-current memory application}

This application fully utilizes the flexibility of the SN7501 in a typical coincident-current memory design. See figure 10 .
One SN7501 sense amplifier is used to read-out the information from one plane (up to 4096 cores) of the memory, representing one bit in a stored word. A word is read-out by reading one bit from each plane in parallel. A location is selected by coincident currents in approriate \(x\) and \(y\) address lines. Cores in the "one" state switch to the "zero" state causing voltage pulses on their sense lines. Cores in the "zero" state do not switch but cause smaller amptitude voltage pulses on their sense lines. The sense amplifiers discriminate between these pulses representing stored logical "ones" and stored logical "zeros."
Since read-out is destructive, the information destroyed by read-out must be rewritten into the memory if it is to be retained for future use. A memory usually incor-
porates an inhibit register for this purpose. An important advantage of the SN7501 is that it contains a flipflop that can be used as the inhibit register for its plane. "Ones" read from the memory "set" the flip-flops while "zeros" leave the flip-flops in their initial state. After read-out, therefore, the flip-flops of the SN7501's contain the information that was stored in the selected location. Since both outputs of the SN7501 flip-flops are brought out, both the selected word and its complement are available for use in the logic. The word thus stored in the SN7501's is available for use with the logic and for feedback to the inhibit drivers until a reset pulse clears the register prior to the next word read-out.

The variable-threshold capability of the SN7501 further extends its usefulness by allowing an optimum setting of the threshold level for a particular memory design. The threshold levels of the SN7501's in a memory may be adjusted either individually or in parallel.


FIGURE 10 - COINCIDENT-CURRENT MEMORY USING SN7501 SENSE AMPLIFIERS

\section*{TYPICAL APPLICATIONS}

\section*{variable threshold adjustment}

The differential-input-threshold-voltage levels of the SN7501 or SN7502 may be adjusted for optimum memory performance by varying the amplitude of \(\mathrm{V}_{\text {ref }} . \mathrm{V}_{\text {ref }}\) should be derived from \(V_{C C 1}\) or generated with respect to \(\mathrm{V}_{\mathrm{CC}}\) rather than with respect to ground. (See figure 11) Any variations in \(\mathrm{V}_{\mathrm{CC}}\) or \(\mathrm{V}_{\text {ref }}\) will then cause minimal changes in the input-threshold-voltage level.


Using one of these methods, adjust \(\mathrm{V}_{\text {ref }}\) to obtain the desired threshold voltage. \(R_{1}\) may be calculated as:
\[
\mathrm{R}_{1}=\frac{\mathrm{V}_{\mathrm{CC} 1}-V_{\mathrm{ref}}}{\mathrm{I}_{\mathrm{ref}}}
\]

This may apply for one sense amplifier or several sense amplifiers connected to the \(\mathrm{V}_{\text {ref }}\) supply. \(\mathrm{V}_{1}\) can be measured and fixed. Some bypassing may be necessary at the \(\mathrm{V}_{\text {ref }}\) terminal to eliminate noise problems where long leads are used.

\section*{SN7502 dot-OR capability}

This application utilizes the output current sink capability of the SN7502 to perform the dot-OR function. The internal output load resistor of the SN7502 is approximately \(7.5 \mathrm{k} \Omega\). The output sink current is conservatively specified at 15 mA for a maximum \(\mathrm{V}_{\text {out }(0)}\) of 0.4 V . For
this maximum \(\mathrm{V}_{\text {out }(0)}\) the nominal internal load current for the SN7502 is computed as follows:
\[
\frac{V_{\mathrm{CC} 1}-V_{\text {out }(0)}}{R_{\mathrm{L}}}=\frac{5-0.4 \mathrm{~V}}{7.5 \mathrm{k} \Omega}=0.61 \mathrm{~mA}
\]

To drive a worst-case DTL or TTL input requires a sink current capability of 1.6 mA . The remaining 13.4 mA may be used for sinking dot-OR-connected outputs. (See figure 12) Additional dot-OR connections may be made to utilize the remaining 13.4 mA of sink current up to a maximum number \(N\) of:
\[
N=\frac{13.4}{0.61}=22
\]


FIGURE 12 - SN7502 DOT-OR-CONNECTED OUTPUTS
Since less than 22 outputs will normally be dot-ORconnected to each SN7502 output, the remaining current can be supplied from an external load resistor \(\mathrm{R}_{\mathrm{L}}\). The load resistor reduces the output-voltage rise time to provide better capacitive-line driving capability. Value of the load resistor \(R_{L}\) may be calculated for a worst case ( 1.6 mA ) DTL or TTL gate input load as follows:
\[
R_{L}=\frac{4.6}{13.4-n(0.61)} k \Omega
\]
where \(n=\) one less than the number of SN7502 outputs connected to perform the dot-OR function.

\section*{TYPICAL CHARACTERISTICS§}


LOGical 0 OUtPut VOLtage
SINK CURRENT


\section*{MECHANICAL DATA}

\section*{general}

These three semiconductor networks are mounted in glass-to-metal hermetically sealed, welded packages. Package body and leads are gold-plated \(\mathrm{F}-15 \ddagger\) glass-sealing alloy. Approximate weight is
0.1 gram. All external surfaces are metallic and are insulated from leads and circuit. All three networks are available with formed leads, insulators attached, and/or mounted in Mech-Pak carriers.


\section*{leads}

Gold-plated F-15 tional cleaning or processing when used in soldered or welded assembly. Formed leads are available to facilitate planar mounting of networks on flat circuit boards. Standard lead length is 0.175 inches. Networks can be removed from Mech-Pak carriers with lead lengths up to 0.175 inches.

insulator
An insulator, secured to the back surface of the package, permits mounting networks on circuit boards which have conductors passing beneath the package. The insulator is 0.0025 inch thick and has an insulation resistance of greater than 10 megohms at \(25^{\circ} \mathrm{C}\).

\section*{mech-pak carrier}

The Mech-Pak carrier facilitates handling the network, and is compatible with automatic equipment used for testing and assembly. The carrier is particularly appropriate for mechanized assembly operations and will withstand temperatures of \(125^{\circ} \mathrm{C}\) for indefinite periods.


\section*{ordering instructions}

Variations in mechanical configuration of semiconductor networks are identified by suffix numbers shown in a table at the right.
+Patented by Texas Instruments
\begin{tabular}{|l|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{4}{|c|}{\begin{tabular}{c} 
NO MECH-PAK \\
CARRIER
\end{tabular}} & \multicolumn{4}{c|}{\begin{tabular}{c} 
MECH-PAK \\
CARRIER
\end{tabular}} \\
\hline Lead Length & \multicolumn{3}{|c|}{0.175 Inch } & \multicolumn{3}{c|}{ Not Applicable } \\
\hline Formed Leads & No & No & Yes & Yes & No & No & Yes & Yes \\
\hline Insulators & No & Yes & No & Yes & No & Yes & No & Yes \\
\hline \begin{tabular}{l} 
Ordering \\
Suffix
\end{tabular} & None & -6 & -7 & -1 & -2 & -3 & -4 & -5 \\
\hline
\end{tabular}
\(\neq F-15\) is the ASTM designation for an iron-nickel-cobalt alloy containing nominally \(\mathbf{5 3} \%\) iron, \(\mathbf{2 9 \%}\) nickel, and \(\mathbf{1 7 \%}\) cobalt.

\title{
 \\ AN EXPERIMENTAL OPTICALLY COUPLED \\ DIGITAL INTEGRATED CIRCUIT
}

\section*{description}

The SNX1304 is an experimental Optoelectronic Pulse Amplifier (OPA) for engineering evaluation. The OPA consists of a gallium arsenide p-n junction light emitter optically coupled to an integrated silicon photodetector feedback-amplifier circuit. The high input-output isolation of the optical coupling allows the OPA to function as a broad-band pulse transformer with response extending to zero frequency. The OPA is compatible for use with other digital integrated circuits. Applications include transmission of a-c or d-c signals across computer subsystem interfaces where circulating currents prevent interconnection of subsystem grounds, and rejection of common-mode noise at the end of a long data-transmission line. circuit symbol and pin identification


NOTES: 1. Forward input polarity is indicated.
2. NC - no internal connection.

\section*{mechanical data}

The SNX1304 pulse amplifier is mounted in a glass-to-metal hermetically sealed, welded package. Package outline meets JEDEC TO-89. Leads are gold-plated F-15\$ glass-sealing alloy. Approximate weight is 0.1 gram. All external surfaces are metallic and are insulated from leads and circuit.


\footnotetext{
\(\dagger\) Patented by Texas !astruments Incorporated
\(\ddagger \mathrm{F}-15\) is the ASTM designation for an iron-nickel-cobalt alloy containing nominally \(53 \%\) iron, \(29 \%\) nickel, and \(17 \%\) cobalt.
}
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)


\section*{electrical characteristics}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[t]{2}{*}{PARAMETER}} & \multicolumn{2}{|r|}{\multirow[t]{2}{*}{TEST CONDITIONS}} & \multicolumn{2}{|l|}{\(\mathbf{v}_{\mathrm{cc}}=\mathbf{3 v}\)} & \multicolumn{2}{|l|}{\(\mathrm{V}_{\mathrm{cc}}=6 \mathrm{~V}\)} & \multirow[t]{2}{*}{UNIT} \\
\hline & & & & TYP & MAX & TYP & MAX & \\
\hline \multirow[b]{2}{*}{\(\mathrm{I}_{\text {in(th }}\)} & \multirow[t]{2}{*}{Forward Input Threshold Current} & \(\mathrm{V}_{\text {out }}=0.5 \mathrm{~V}\), & \(\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}\) & 5 & 10 & 5 & 10 & mA \\
\hline & & \(\mathrm{V}_{\text {out }}=0.5 \mathrm{~V}\), & \(\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}\) & 3 & & 3 & & mA \\
\hline \multirow[t]{2}{*}{\(V_{F}\)} & \multirow[b]{2}{*}{Forward Input Voltage} & \(\mathrm{I}_{\text {in }}=1.3 \mathrm{I}_{\text {in }(\text { th) }}\) & \(\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}\) & 1.1 & & 1.1 & & V \\
\hline & & \(\mathrm{I}_{\text {in }}=1.3 \mathrm{l}_{\text {in }(\text { th) }}\) & \(\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}\) & 1.4 & & 1.4 & & V \\
\hline \multirow{3}{*}{\(V_{\text {out (ofi) }}\)} & \multirow{3}{*}{"Off" Output Voltage} & \(\mathrm{I}_{\mathrm{in}}=0\), & \(\mathrm{N}_{\mathrm{DC}}=0, \quad \mathrm{~T}_{\mathrm{A}}=125^{\circ} \mathrm{C}\) & 2.5 & & 5.2 & & \(V\) \\
\hline & & \(\mathrm{I}_{\mathrm{in}}=0\), & \(\mathrm{N}_{\mathrm{DC}}=15, \mathrm{~T}_{\mathrm{A}}=125^{\circ} \mathrm{C}\) & 2.3 & & 5 & & \(V\) \\
\hline & & \(\mathrm{I}_{\text {in }}=0\), & \(\mathrm{N}_{\mathrm{DC}}=15, \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}\) & 1.9 & & 4.2 & & V \\
\hline \multirow[t]{2}{*}{\(V_{\text {oution }}\)} & \multirow[t]{2}{*}{"On" Output Voltage} & \(\mathrm{I}_{\text {in }}=1.3 \mathrm{I}_{\text {in }(\text { th })}\) & \(\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}\) & 0.2 & & 0.25 & & V \\
\hline & & \(\mathrm{I}_{\text {in }}=1.3 \mathrm{I}_{\text {in }(\text { th) }}\) & \(\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}\) & 0.1 & & 0.2 & & V \\
\hline \multirow[t]{2}{*}{\(\mathrm{P}_{\mathrm{A}}\)} & \multirow[t]{2}{*}{Amplifier Power Dissipation (See Note 2)} & \(\mathrm{I}_{\text {in }}=\mathrm{I}_{\text {in }(\text { f }}\) ) , & \(\mathrm{N}_{\mathrm{DC}}=0, \quad \mathrm{I}_{A}=25^{\circ} \mathrm{C}\) & 2.5 & & 15 & & mW \\
\hline & & \(\mathrm{I}_{\text {in }}=0\), & \(\mathrm{N}_{\mathrm{DC}}=0, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) & 3 & & 20 & & mW \\
\hline
\end{tabular}

\section*{switching characteristics}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[t]{2}{*}{PARAMETER}} & \multirow[t]{2}{*}{test Conditions} & \(\mathbf{v}_{\text {cC }}=\mathbf{3 V}\) & \(\mathbf{v}_{\text {cc }}=\mathbf{6 V}\) & \multirow[t]{2}{*}{UNIT} \\
\hline & & & TYP & TYP & \\
\hline \(t_{\text {d }}\) & Delay Time & \multirow{4}{*}{\(\mathrm{l}_{\text {in }}=1.3 \mathrm{I}_{\text {in }(t h)}, \quad \mathrm{N}_{\mathrm{DC}}=1, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\),
See Note} & 300 & 250 & ns \\
\hline \(\mathrm{t}_{\mathrm{r}}\) & Rise Time & & 200 & 150 & ns \\
\hline \(\mathrm{t}_{5}\) & Storage Time & & 350 & 250 & ns \\
\hline \(t_{f}\) & Fall Time & & 250 & 200 & ns \\
\hline
\end{tabular}

NOTES: 1. One \(d-c\) load \(\left(N_{D C}=1\right)\) is defined by a circuit where \(C_{s}\) (see figure \(A\) ) is selected so that the total capacitance of the test fixture, connectors, oscilloscope probe and \(C_{s}\) aggregates 50 pF . This rates fan-out in the same manner as Texas Instruments Series 51 networks.
2. This does not include the input power to the light-emitter diode.
3. The inpuf pulse has the following characteristics: \(t_{p}=5 \mu \mathrm{~s}, \mathrm{t}_{\mathrm{r}} \leq 10 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 10 \mathrm{~ns}, \mathrm{f}=40 \mathrm{kHz}\).


\section*{INTERFACE COMPONENTS}


Texas Instruments line of Interface Components has been designed to meet the broad range of requirements for military, space, industrial, and consumer applications.
Interface Components are available in a variety of microminiature packages described on the following pages. These packages include the Compatible Components:TO-50, Thin-Pac, and Flat-Pack; and the plastic-ceramic packages: Chip-Pak, Pellet-Pak, and Flip-Channel-Pak; the components are also available as raw chips and slices.
More than 5000 different silicon small-signal planar device types can be fabricated into these standard packages. Selection of the package configuration can be made by considering the requirements for reliability, size, assembly in hybrid circuits, and cost.


\section*{What are COMPATIBLE COMPONENTS?}

Discrete components which are electrically and mechanically compatible with integrated circuits. TI Compatible Components are used to perform functions supplementary to integrated circuits. At the same time, they can be handled, tested, and assembled with the same or essentially similar techniques and tools used for integrated circuits.

In addition, because of the form factors which are required to make components compatible with integrated circuits, most are also adaptable to circuit approaches requiring microminiature discrete components such as thin-film circuits.


THIN-PAC

The TO-50 hermetically sealed transistor package, introduced by Texas Instruments as the \(\mu\) mesa* transistor package, is 0.210 inch in diameter and 0.050 inch thick. *Trademark of Texas Instruments

The THIN-PAC power transistor package was developed by Texas Instruments to meet the power requirements of miniature circuits. It offers 40 watts dissipation at 100 degrees C case temperature in a package only 0.680 inch in diameter by 0.170 inch thick.

\section*{STANDARD COMPATIBLE COMPONENT DEVICE TYPES}

There are now more than two dozen EIA registered small-signal Compatible Components available from TI, plus many custom devices. Two types of compatible power transistors and a large number of diode types in miniature packages are also available.
\begin{tabular}{|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { NEAREST } \\
& \text { STANDARD* }
\end{aligned}
\] & DESCRIPTION & \multicolumn{3}{|c|}{\[
\begin{aligned}
& \text { COMPATIBLE } \\
& \text { COMPONENT }
\end{aligned}
\]} \\
\hline 2N929/2N2639 & NPN Diff. Amp 10\% Match & 2N3046 & Flat Pack & Dual \\
\hline 2N929/2N2640 & NPN Diff. Amp 20\% Match & 2N3047 & Flat Pack & Dual \\
\hline 2N929/2N2641 & NPN Unmatched & 2N3048 & Flat Pack & Dual \\
\hline 2N930/2N2642 & NPN Diff. Amp. \(10 \%\) Match & 2N3043 & Flat Pack & Dual \\
\hline 2N930/2N2643 & NPN Diff. Amp 20\% Match & 2N3044 & Flat Pack & Dual \\
\hline 2N930/2N2644 & NPN Unmatched & 2N3045 & Flat Pack & Dual \\
\hline 2N2412/2N2805 & PNP Diff. Amp 10\% Match & 2N3049 & Flat Pack & Dual \\
\hline 2N2412/2N2806 & PNP Diff. Amp 20\% Match & 2N3050 & Flat Pack & Dual \\
\hline 2N2412/2N2807 & PNP Unmatched & 2N3051 & Flat Pack & Dual \\
\hline 2N914 & NPN Driver & 2N3052 & Flat Pack & Dual \\
\hline 2N2497 FET & P-Channel FET Diff. Amp 5\% Match & 2N3333 & Flat Pack & Dual \\
\hline 2N2497 FET & P-Channel FET Dual Unmatched & 2N3336 & Flat Pack & Dual \\
\hline 2N2222/2N2907 & Complementary Pair & 2N3838 & Flat Pack & Dual \\
\hline 2N706A & NPN Switch & 2N849 & TO-50 & \\
\hline 2N753 & NPN Switch & 2N850 & TO-50 & \\
\hline 2N743 & NPN Switch & 2N851 & TO-50 & \\
\hline 2N744 & NPN Switch & 2N852 & TO-50 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { NEAREST } \\
& \text { STANDARD* }
\end{aligned}
\] & DESCRIPTION & \multicolumn{2}{|l|}{COMPATIBLE COMPONENT} \\
\hline 2N929 & NPN High-Gain Amp & 2N2387 & TO-50 \\
\hline 2N930 & NPN High-Gain Amp & 2N2388 & TO-50 \\
\hline 2N696 & NPN General Purpose & 2N2395 & TO-50 \\
\hline 2N697 & NPN General Purpose & 2N2396 & TO-50 \\
\hline 2N1613 & NPN General Purpose & 2N2389 & TO-50 \\
\hline 2N1711 & NPN General Purpose & 2N2390 & TO-50 \\
\hline 2N2243 & NPN General Purpose & 2N3037 & TO-50 \\
\hline 2N1890 & NPN General Purpose & 2N3038 & TO-50 \\
\hline 2N1131 & PNP General Purpose & 2N2393 & TO-50 \\
\hline 2N1132 & PNP General Purpose & 2N2394 & TO-50 \\
\hline 2N2904 & PNP General Purpose & 2N3040 & TO-50 \\
\hline New Product & NPN 10-Amp Power Switch ( 60 v) & 2N3551 & Thin-Pac \\
\hline New Product & NPN 10-Amp Power Switch (80 v) & 2N3553 & Thin-Pac \\
\hline
\end{tabular}


FLAT PACK


CUSTOM FLAT PACK

The dual SCN hermetically sealed FLAT PACK offers component miniaturization with no compromise in electrical or mechanical characteristics. The package measures 0.250 by 0.150 by 0.050 inch.

CUSTOM FLAT PACK configurations are also available for Compatible Components. Custom devices may be supplied in the \(6-10\)-, or 14 -lead hermetically sealed package. Four discrete planar transistors can be supplied in one FLAT PACK with all leads isolated. Five to six transistors in one package are possible with certain interconnections. Custom configurations are the same size as the dual SCN FLAT PACK.

The CHIP-PAC is the ultimate in discrete transistor miniaturization. Transistor chips are alloyed to a metalized ceramic base and are plastic encapsulated. The package provides a relatively high degree of environmental protection. The gold-plated leads are weldable and solderable. Standard CHIP-PAC devices include:
\begin{tabular}{ccc}
\hline \begin{tabular}{c} 
Nearest \\
Standard
\end{tabular} & Description & CHIP-PAC \\
\hline 2N929 & NPN Diff. Amp. & TIS22 \\
2N930 & NPN Diff. Amp. & TIS23 \\
2N2484 & NPN Diff. Amp. & TIS24 \\
\hline
\end{tabular}

\section*{HOW RELIABLE ARE COMPATIBLE COMPONENTS?}

More than five thousand TI Compatible Components have been subjected to high-level stepstress tests as a part of the extensive quality and reliability testing requirements of the Component Quality Assurance Program (CQAP) for the Minuteman II Program. The program has as its goal component use-condition failure rates in the order of ten-thousandths of a percent (.000X\%) per thousand hours. The program is keyed to constant product improvement, using destructive testing techniques to determine potential failure mechanisms. At TI this means that the active chips themselves, as well as the package in which the chips are contained, are undergoing constant process improvement. Tests results are analyzed, and even subtle and very obscure failure mechanisms are isolated and attacked systematically through the process improvement feedback loop. Extensive reliability data is available. Contact your TI Field Sales Engineer.


HIGH-FREQUENCY PELIET-PAK

\section*{RAW CHIPS AND SLICES}

Silicon transistors in raw chip and slice form have the lowest initial cost and smallest possible size. Although relatively sophisticated bonding and alloying technologies are required, substantial savings may be achieved in non-critical operations. Texas Instruments can supply any device from its broad line of silicon planar transistors in either chip or slice form.

PELLET-PAK devices are low-cost fully tested microminiature packages available with both solderable and weldable leads designed for automated assembly. They feature a plastic sealed ceramic header and low thermal resistance. High-frequency models with low lead inductance are also available. Their environmental capabilities match those of canned transistors.

The FLIP-CHANNEL-PAK is specially designed for leadless automated thermal or ultrasonic bonding to film substrates. It retains all other features of the PELLET. PAK configuration.


\section*{WHERE ARE INTERFACE COMPONENTS USED?}

In any application requiring a high-quality miniature semiconductor. Here are some applications where TI Interface Components are being used today:
- Digital and analog interface circuits, for integrated circuits - Driver circuits - Sense amplifiers - Thin-film circuits - Critical differential amplifiers - High-impedance amplifiers - Special analog circuits •D-c amplifiers • Diode matrixes • Complementary (NPN/PNP) circuits • Power switching to 5 amps
Functionally, the devices fall into the following categories:
- Differential amplifiers (dual elements), NPN and PNP • Low-level, low-noise amplifiers (dual elements), NPN and PNP - Low-level switching (dual elements), NPN and PNP • Dual drivers, NPN • High-current driver and power switches, NPN • Drivers (single), NPN and PNP • High-speed switches (single) NPN • Multiple diodes in most common configurations
```


[^0]:    $\dagger$ Patented by Texas Instruments.

[^1]:    $\dagger$ Not more than one output should be shorted at a time.
    $\ddagger$ These typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{v}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

