The Engineering Staff of
TEXAS INSTRUMENTS INCORPORATED Components Group

TEXAS INSTRUMENTS

TYPE NUMBER INDEX

TRANSISTOR SELECTION GUIDES

TRANSISTOR INTERCHANGEABILITY

TRANSISTOR DATA SHEETS

TRANSISTOR CHIP CHARACTERIZATION

TRANSISTOR QUALITY AND RELIABILITY INFORMATION

DIODE PRODUCT SPECTRUM

DIODE SELECTION GUIDES

DIODE INTERCHANGEABILITY

DIODE DATA SHEETS

SENSISTORS ${ }^{\circledR}$

TI Worldwide Sales Offices

ALABAMA: Humtsville, 4717 University Dr., Suite 101 Huntsville. AL 35805, (205) 837-7530

Agizoma: Pheaniz, P.O. Box 35160,8102 N.. 23rd Ave., Suite A. Phoenix, AZ 85069, (602) 249-1313.
 92626, (714) 540-7311; Et Sopunde, 831'S. Douglas St, Et Segundo. CA 90245. (213) $973-2571$: 8atare Dieg, 4333 View 278-9600; Sinmale, P.O. Box 9064. 776 Palomar Ave.. Sunnyvale, CA 94086, (408) 732-1840.

CoLORADO: Demver, 9725 E. Hampden St:, Suite 301, Denver, C0 80231, (303) 751-1780.
Cownecricut: Handon, 2405 Whitney Ave., Hamden, CT 06518. (203) 281-0074.

FLOADA: Clompoter, 2280 U.S. Hwy 19 N., Suite 232 , Clearwater. FL 33515. (813) 725-1861: R. Lauderdate, 4600 733-3300; Whmer Poik. 1850 Lee Rd., Suite 115. Wint Park. FL 32709, (305) 644-3535.
EEORHIA: Alama, 330 Northeast Expy., Suite 9, Atlanta, GA 30341. (404) 458-3140.

LLImOHS: Allimetem Hoinhts, 515 W . Algonquin, Arlington Heights, IL 60005, (312) $640-3000$

MM(19AMA: Ft. Wyyne, 2020 inwood Dr., Ft. Wayne, IN 46805
(219) 424-5174: Indianateplis, 5726 Protessional Cir., Suite 103. Indianapotis. in 4624t, (317) 248-8555.
mastaciveserts: Wathem, 504 Totten Pond Rd., Waltham. MA 02154, (617) 890-7400.
mertacan: Sauthitith, Central Park Plaza. 26211 Contral 353-0830.
mamesota: Elina, A.I.C. Bidg.. Suite 202. 7615 Metro Elvd., Edina, MN 55435, (612) 835-2900.
 Louis. M0 63141. (314) 569-0801.

HEW JERsEY: Clant, 1245 Westield Ave., Clark. NJ 07066. (201) 574-9800.
 Albuquarque. NM 87110 . (505) $265-8491$

WEw YORX: Ead 8 8 racuse, 6700 Old Collamer Rd. East Syracuse. NY 13057, (315) 463-9291: Endieett, 112 Nanticoke Ave., PO. BOX 618, Endicott, NY 13760, (607) $754-3900$. Meville, 1 Huntington Ouadrangle, Suite $1 \mathrm{CO1}$, Melville, NY 11746, (516) 293-2560: Pocthteapsit, 201 South Ave.. Pougtikeepsie. NY RoCnostof, NY 14623. (716) 461-1800.

MOATH CAROLIMA: Charteta, 1 Woodtawn Green, Woodlawn Rd. Charlotte. NC 28210, (704) 527-0930; Raldil, 4130.
C. 2 Camelot Or. Ralaigh, NC 27609, (819) 787-9376.

OHiO: Cleveland, Bolmont Bldg., Suite 120, 28790 Chagrin Kingsiey Blag., 4124 tinden Ave., Dayton, OH 45432, (513) Kingsiey
$253-3121$.
OXLanomat Tulsa, 3105 E. Skelly Dr., Suite 110, Tulsa, OK 74128. (918) 749-9548.

Onegow: Beaverten, 10700 S.W. Beaverton Hwy. Suite 565, Beaverten, OR 97005, (503) 643-6759.

PENHSYLVANA: Ft. Wishioton, 275 Commerce Or., Suite 300, Ft. Washington. PA 19034, (215) 643-6450.
TEMNESsEE: Johasea City, P.O. Drawer 1255, Erwin Hwy. Johnson City. TN 37601. (615) 926-1167.
FEXAS: Daties, 6000 Denten Dr., P.O. Bex 225012, M/S 366. Dallas. TX 75265. (214) 238-6805; Hondon, 9000 Southwest Frwy., Suite 400, Houston. TX 77036, (713) 7766511.

Vinamua: Arliftem, Crystal Square 4, 17 a5 Jefferson Davis
Hwy, Suite 600 Arlington, $v a$ 22202, (703) $553-2200$: Hwy. Suite 600, Arlington. VA 22202, (703) 553-2200. Rietimead, 3930 Beulah Rd.. Richmond. VA 23234, (804) 275-8148
wasmagiont Bellevue, 700 t12th N.E.. Suite 10, Bellevue. WA 98004, (206) 455-3480

CAMABA: SH. Laurnan, 945 McCaffery St. St. Laurent 280 Centre St. E. Pichmond Hifl L4C181, Ontario. Canada (416) 884-9181.

AREENTMA, Toxas instrumants Argentina S.A.I.C.F: Km. 25,5 Ruta Panamericana Don torcuato, C.C. 2296. 1000-Correo Centrai, Suenos Aires, Argentina, 748-1141.

Asta, Texas Instrumants Asia Lid: 902, Asian House, 1, Hennessy Rd., Hong Kong, 05-279041; P.0. Box 2093, 990 Bendemeer Rd., Singapore 1, Republic of Singapors. 65-2581122; Goom 507, Chia Hsin BIdg, 96 Chung Shan North Rd., Sec. 2, Tajpei, Taiwan, 02-563073t; Aoyama Minato-Ku., Tokyo, Japan 107, 03-402-6171.

Anstralla, Texas Instruments Australia Lid: Unit 1 A 5 Byfitd St.. P.O. 80x 106,
Sydney, Australia, 02-887-1122.

Qustrth, Toxas Instruments Ges. m.b.H: Rennweg 17. 1030 Vienna, Austria 0222-724186

EELCiUm, Texas Instruments $\$ / \mathbf{A}$: Mercure Centre, Rakntstrall, Rue De La Fuset 100. 1130 Brussels. Beigium. 02-7208000.

BRazil, Toxas instrumentos Electronicos do Brasil Ltda: Rus Padre Pareira Da Andrade, 591 Cep-05469 Sao Paule. Brazil, 011-260-6347

NEwMAN, Texas instruments AD: Marielundvej 46 E .2730 Heriev. Denmark. 02-917400.
FWLAND, Texas instruments Fintand OY: Fressenkatu 6, P.L. 217, 00101 Heisinki 10. Finland, 80-408300

Fratice, Texas Instruments France: La Boursidiere. Bat A. R.N. 186, 92350 Le Plessis Robinson, France, 01-6302343: 31 Quai Rambaud, 69002 lyon. France, 078-373585; 1. Av. de la Chartreuse, 38240 Meylan, France, 076-904574; 9 , Place de Brotange, 35000 Rennes, France, 099-795481; 100-102 Alty de Barcelone, Residence L'Autay. 31000 Joulouse. France, 061-213032.

GERMAMY, Texas Instruments Deutschland GmbH: Kurfuerstendamm 146, 1000 Berlin 31, Germany, 030-6927063; Lazarattstrasse 19, 4300 Essen. Germany, 0201-233551: O6azit-399061; Haggertystrasse 1, 8050 Freising, Germany, $08161-801$; Riethorst 4, 3000 Hanover 51. Germany, 0511648021 Frankfurter Ring 243, 8000 Munich 40, Germany. 089-325011/3; Krefolderstrasse 11-15, 7000 Stuttgart 50 . Germany, 0711-547001.
ITAXY, Texas Instruments italia Spa: Via Europa 38/44, Cologno Monzese. Milan, Italy 02-253-2451; Va Salaria 10124 Turin, Italy, 011 - 62276.

Mrxico, Texas Instruments de Mexico S.A: Poniente 116 *489, Col. Incustrial Valleio. Mexico City 15, O.F., Mexico. 905-567-9200.

METMERLAMDS, Texas instruments Holland BV: Laan Vas de Helende Meesters 421 A. P. O. 80x 283, 1180 AG Amstelveen. Holland. 020-473391

WORWAY, Taxis Instruments A/S: Ryensvingen t5, Osle 6 , Norway, 02-689487.

PORTUQAL, Texas instruments Equipamento Etectronico LDA: Rua Eng. Frederico Ulich, 2650 Moreira Da Maia Douro. Portugal, 948-1003.

8PMM, Texas Instruments Espana S.A: Balmes 89. 12 Barcelona 12, Spain.

SWEDEW, Taxas instruments International Trade Corporstion (Sverigefilialen): Morra Hennvagen 3, Fack S- 1005 Stockholm 39. Sweden. 08-235480

UMrted WMgenom, Fraxas instruments Ltd: Manton Lane

The
 Transistor and Diode Data Book for Design Engineers

First Edition

Texas Instruments
 INCORPORATED

IMPORTANT NOTICES

Texas Instruments reserves the right to make changes at any time in order to improve design and to supply the best product possible.

TI cannot assume any responsibility for any circuits shown or represent that they are free from patent infringement.

Copyright © 1973
Texas Instruments incorporated

THE TRANSISTOR AND DIODE DATA BOOK

Since 1954, when Texas Instruments introduced the first silicon transistor to the marketplace, and later with the invention of the integrated circuit, TI has been pre-eminent in the semiconductor industry.

New semiconductor products are introduced almost daily; new applications for semiconductor products are being found or comtemplated at an ever-increasing rate, especially in the consumer and automotive fields. It is a difficult task for the equipment design engineer to stay abreast of all of the discrete and integrated-circuit products available to him in his efforts to choose the best device at the optimum cost effectiveness. It is the aim of Texas Instruments to provide the design engineer with the maximum amount of accurate product data organized in such a manner that the pertinent data may be located in the least amount of time.

Due to the amount of data involved, it would be inconvenient to present TI 's complete line of standard discrete products in a single volume. TI's broad line of power products are described in The Power Semiconductor Data Book for Design Engineers, First Edition (CC-404); optoelectronic products are presented in The Optoelectronics Data Book for Design Engineers, First Edition (CC-405). For ease of reference, all current devices listed in those two volumes are contained in the Type Number Index (Section O) herein. This 1248 -page volume is designed to complement those two volumes and essentially complete the current description of TI's line of discrete semiconductors by adding all low-power silicon transistors and diodes. (Generally, "low-power" denotes free-air power dissipation of one watt or less.)

This volume contains over 800 silicon transistor types (grown-junction, multijunction, unijunction, and fieldeffect transistors) and over 500 silicon diode types (switching, rectifying, voltage-regulating, voltage-variable-capacitance, and general purpose diodes as well as multielement diode arrays and matrices), over 150 of which are being announced for the first time.

Although this volume offers specification and interchangeability data only for low-power silicon transistors and diodes, complete technical information for all TI semiconductor products is available from your nearest TI field-sales office, local authorized TI distributor, or by writing direct to: Marketing and Information Services, Texas Instruments Incorporated, P.O. Box 5012, Dallas, Texas 75222.

We hope that you will find The Transistor and Diode Data Book for Design Engineers a useful addition to your technical library.

Type Number Index

TYPE NUMBER INDEX

[^0]

TYPE NUMBER INDEX

[^1]| TYPE NO. | SEC..-PAGE | TYPE NO. | SEC.PAGE | TYPE No. | SEC.Page |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2N2394 | 4.121 | 2N2916A | 4.163 | 2N3043 | 4-183 |
| 2N2395 | 4-123 | 2N2917 | 4.163 | 2N3044 | 4-183 |
| 2N2396 | 4-123 | 2N2918 | 4-163 | 2N3045 | 4-183 |
| 2N2432 | . 44125 | 2N2919 | 4-163 | 2N3046 | 4-183 |
| 2N2432A | $4-125$ | 2N2919A | 4.163 | 2N3047 | 4-183 |
| 2N2453 | 4127 | 2N2920 | 4.163 | 2N3048 | 4-183 |
| 2N2483 | 4-129 | 2N2920A | 4-163 | 2N3049 | 4-185 |
| 2N2484 | 4-129 | 2N2944 | 4-167 | 2N3050 | . 4-185 |
| 2N2497 | 4-131 | 2N2944A | . 4.167 | 2N3051 | 4-185 |
| 2N2498 | 4-131 | 2N2945 | 4-167 | 2N3052 | 4-187 |
| 2N2499 | 4-131 | 2N2945A | 4-167 | 2N3053 | . 4-189 |
| 2N2500 | . 4.131 | 2N2946 | . 4.167 | 2N3055 | POWER |
| 2N2537 | 4-132 | 2N2946A | 4-167 | 2N3114 | 4-190 |
| 2N2538 | . 4 -132 | 2N2972 | 4-169 | 2N3117 | 4-192 |
| 2N2539 | . 4-132 | 2N2973 | - 4-169 | 2N3244 | . 4-194 |
| 2N2540 | 4-132 | 2N2974 | . 4-169 | 2N3245 | 4-194 |
| 2N2586 | 4-136 | 2N2975 | . 4.169 | 2N3250 | . 4.199 |
| 2N2604 | - 4-138 | 2N2976 | - 4-169 | 2N3250A | 4-199 |
| 2N2605 | 4-138 | 2N2977 | - 4-169 | 2N3251 | 4-199 |
| 2N2608 | 4-142 | 2N2978 | . 4.169 | 2N3251A | 4-199 |
| 2N2609 | 4142 | 2N2979 | - 4-169 | 2N3252 | 4-201 |
| 2N2639 | 4.143 | 2N2987 | . Power | 2N3253 | 4-201 |
| 2N2640 | 4.143 | 2N2988 | . POWER | 2N3263 | . POWER |
| 2N2641 | 4-143 | 2N2989 | - POWER | 2N3264 | POWER |
| 2N2642 | 4.143 | 2N2990 | POWER | 2N3265 | . POWER |
| 2N2643 | 4-143 | 2N2991 | - Power | 2N3266 | . POWER |
| 2N2644 | 4-143 | 2N2992 | . POWER | 2N3329 | . 4-203 |
| 2N2646 | 4-145 | 2N2993 | . POWER | 2N3330 | . 4-203 |
| 2N2647 | 4-145 | 2N2994 | - Power | 2N3331 | . $4-203$ |
| 2N2802 | 4-147 | 2N3001 | - POWER | 2N3332 | 4-203 |
| 2N2803 | . 4 -147 | 2N3002 | - POWER | 2N3347 | . $4-204$ |
| 2N2804 | 4-147 | 2N3003 | - POWER | 2N3348 | . 4-204 |
| 2N2805 | 4-147 | 2N3004 | . Power | 2N3349 | 4-204 |
| 2N2806 | 4.147 | 2N3005 | . POWER | 2N3350 | 4-204 |
| 2N2807 | . 4-147 | 2N3006 | - Power | 2N3351 | . 4202 |
| 2N2880 | POWER | 2N3007 | . Power | 2N3352 | . 4-204 |
| 2N2894 | 4.149 | 2N3008 | . POWER | 2N3418 | . POWER |
| 2N2904 | 4-151 | 2N3012 | 4-173 | 2N3419 | . POWER |
| 2N2904A | 4-151 | 2N3015 | . 4-175 | 2N3420 | . POWER |
| 2N2905 | 4-151 | 2N3021 | . POWER | 2N3421 | . POWER |
| 2N2905A | 4-151 | 2N3022 | . Power | 2N3439 | . POWER |
| 2N2906 | 4-151 | 2N3023 | . POWER | 2N3440 | . Power |
| 2N2906A | 4.151 | 2N3024 | . POWER | 2N3444 | 4-208 |
| 2N2907 | 4-151 | 2N3025 | - Power | 2N3458 | . 42210 |
| 2N2907A | 4-151 | 2N3026 | POWER | 2N3459 | . $4-210$ |
| 2N2913 | 4-163 | 2N3036 | . 4-177 | 2N3460 | - 4-210 |
| 2N2914 | . 4 -163 | 2N3037 | 4-179 | 2N3467 | . 4-212 |
| 2N2915 | . $4-163$ | 2N3038 | . 4-179 | 2N3468 | 4-212 |
| 2N2915A | . 4163 | 2N3039 | . 4-181 | 2N3485 | . $4-215$ |
| 2N2916 | - 4-163 | 2N3040 | - 4-181 | 2N3485A | . . 4-215 |

POWER-Refer to The Power Semiconductor Data Book for Design Engineers, First Edition (CC-404).

TYPE NUMBER INDEX

TYPE NO.	sec.page	TYPE NO.	SEC.PAGE	TYPE NO.	sec.page
2N3486	4215	2N3790	POWER	2N4005	POWER
2N3486A	$4-215$	2N3791	POWER	2N4013	4.302
2N3494	4.217	2N3792	- POWER	2N4014	. 4.302
2N3495	4217	2N3798	. 4-265	2N4026	. 4.305
2N3496	4-217	2N3799	. 4-265	2N4027	4-305
2N3497	$4-217$	2N3806	4-267	2N4028	4-305
2N3502	4-223	2N3807	. 4-267	2N4029	4.305
2N3503	4-223	2N3808	. 4-267	2N4030	. 4.305
2N3504	4-223	2N3809	. 4-267	2N4031	4305
2N3505	4-223	2N3810	. 4-267	2N4032	. 4.305
2N3551	POWER	2N3811	4-267	2N4033	. 4 -305
2N3552	POWER	2N3819	. 4-270	2N4058	. 4.311
2N3554	4-229	2N3820	4-271	2N4059	. 4.311
2N3570	4-233	2N3821	. 4.272	2N4060	. 4.311
2N3571	4-233	2N3822	. 4-272	2N4061	- 4-311
2N3572	4-233	2N3823	. 4-272	2N4062	4.319
2N3576	4-237	2N3824	. 4-272	2N4091	. 4.313
2N3583	POWER	2N3829	. 4-278	2N4092	. 4.313
2N3584	POWER	2N3838	. 4-280	2N4093	. 4-313
2N3585	POWER	2N3846	. POWER	2N4104	. 4.316
2N3634	4-239	2N3847	. POWER	2N4123	. 4.318
2N3635	4-239	2N3902	- POWER	2N4124	4-318
2N3636	4-239	2N3903	. 4.283	2N4125	. 4.321
2N3637	4.239	2N3904	. 4.283	2N4126	- 4321
2N3680	4-248	2N3905	. 4-286	2N4138	. 4-324
2N3702	4-250	2N3906	. 4-286	2N4220	. 4.326
2N3703	4-250	2N3909	. 4-289	2N4220A	. 4.326
2N3704	4-252	2N3909A	. 4-289	2N4221	- 4.326
2N3705	$4-252$	2N3962	. 4-290	2N4221A	. 4.326
2N3706	4-252	2N3963	. 42920	2 N 4222	4.326
2N3707	4-254	2N3964	. 4-290	2N4222A	. 4.326
2N3708	4-254	2N3965	. 4-290	2N4223	. 43228
2N3709	4-254	2N3966	. 4-293	2N4224	4.328
2N3710	. 4-254	2N3970	. 4-295	2N4240	- POWER
2N3711	4-254	2N3971	. 4-295	2N4252	. 43332
2N3713	. POWER	2N3972	. 4-295	2N4253	. 4.332
2N3714	POWER	2N3980	. 4-298	2N4260	. 43333
2N3715	POWER	2N3993	. 4-300	2N4261	. 43333
2N3716	. POWER	2N3993A	. 4-300	2N4300	. POWER
2N3719	POWER	2N3994	. 4-300	2N4301	. POWER
2N3720	POWER	2N3994A	. 4-300	2N4391	. 4-337
2N3724	4-256	2N3996	. POWER	2N4392	. 43337
2N3724A	4-256	2N3997	- POWER	2N4393	. 4-337
2N3725	4-256	2N3998	. POWER	2N4398	. POWER
2N3725A	. 4-256	2N3999	. POWER	2N4399	. POWER
2N3734	4-262	2N4000	. POWER	2N4402	- 4-340
2N3735	. 4.262	2N4001	. POWER	2N4403	. 4.340
2N3771	POWER	2N4002	- POWER	2N4409	. 4.343
2N3772	POWER	2N4003	. POWER	2N4410	. 4343
2N3789	. POWER	2N4004	. . . POWER	2N4416	4-345

TYPE NO.	SEC.PAGE	TYPE NO.	SEC.PAgE	TYPE NO.	SEC.PAGE
2N4416A.	4.345	2N5047	4-365	2N5385	POWER
2 N 4423	4348	2N5058	. 4 -367	2N5386	. POWER
2N4851	4.350	2N5059	. 4-367	2N5387	POWER
2N4852	4.350	2N5060	. POWER	2N5388	. POWER
2N4853	4-350	2N5061	. POWER	2N5389	POWER
2N4854	4-352	2N5062	POWER	2N5390	POWER
2N4855	. 4-352	2N5063	. POWER	2N5397	. 4-403
2N4856	4-355	2N5064	. POWER	2N5398	. 4-405
2N4856A	4-355	2N5067	POWER	2N5399	4-407
2N4857	4-355	2N5068	. POWER	2N5400	. 4-414
2N4857A	4355	2N5069	POWER	2N5401	4-414
2N4858	4-355	2N5086	4-371	2N5447	4-416
2N4858A	4-355	2N5087	. 4-371	2N5448	4-416
2N4859	4-355	2N5147	. POWER	2N5449	. $4-418$
2N4859A	4-355	2N5148	POWER	2N5450	4-418
2N4860	4-355	2N5149	. POWER	2N5451	4-418
2N4860A	4-355	2N5150	POWER	2N5460	4-420
2N4861	4-355	2N5151	. POWER	2N5461	4-420
2N4861A	4-355	2N5152	POWER	2N5462	$4-420$
2N4891	4-359	2N5153	POWER	2N5525	. 4-422
2N4892	4-359	2N5154	. POWER	2N5526	4-422
2N4893	4.359	2N5157	POWER	2N5545	4.423
2N4894	4-359	2N5209	. 4.375	2N5546	4-423
2N4901	POWER	2N5210	4.375	2N5547	4-423
2N4902	POWER	2N5219	4.377	2N5549	4-425
2N4903	POWER	2N5220	. 4.379	2N5550	. 4-427
2N4904	POWER	2N5221	4.381	2N5551	. 4-427
2N4905	POWER	2N5222	4.383	2N5671	POWER
2N4906	POWER	2N5223	4.385	2N5672	. POWER
2N4913	POWER	2N5225	4.387	2N5683	POWER
2N4914	POWER	2N5226	4.389	2N5684	POWER
2N4915	POWER	2N5227	4.391	2N5685	. POWER
2N4947	4-361	2N5241	POWER	2N5686	. POWER
2N4948	4-361	2N5245	4-393	2N5758	POWER
2N4949	4-361	2N5246	4-393	2N5759	. POWER
2N4996	4.363	2N5247	4.393	2N5760	. POWER
2N4997	4.363	2N5248	4.396	2N5867	. POWER
2N4998	POWER	2N5301	- POWER	2N5868	. POWER
2N4999	POWER	2N5302	POWER	2N5869	. POWER
2N5000	POWER	2N5303	POWER	2N5870	POWER
2N5001	POWER	2N5332	4-397	2N5871	. POWER
2N5002	POWER	2N5333	. POWER	2N5872	POWER
2N5003	POWER	2N5358	4-400	2N5873	POWER
2N5003	POWER	2N5359	4-400	2N5874	POWER
2N5004	POWER	2N5360	4-400	2N5875	. POWER
2N5005	POWER	2N5361	4-400	2N5876	POWER
2N5038	POWER	2N5362	. 4400	2N5877	POWER
2N5039	POWER	2N5363	4-400	2N5878	. POWER
2N5045	4-365	2N5364	. 4-400	2N5879	. POWER
2N5046	. 4 -365	2N5384	. . POWER	2N5880	POWER

POWER-Refer to The Power Semiconductor Data Book for Design Engineers, First Edition (CC-404).

TYPE NO.		.	SEC.PAGE
3N35	.	.	.

TYPE NO.		.
A5C.		

POWER-Refer to The Power Semiconductor Data Book for Design Engineers, First Edition (CC-404).

TYPE NO.	SEC.PAGE	TYPE NO.	SEC.PAGE
A5T4409	4-343	A8T4026	4308
A5T4410	4343	A8T4027	4-308
A5T5058 4-369	A8T4028	4-308
A5T5059 4-369	A8T4029	4.308
A5T5096	4-371	A8T4058	4.311
A5T5087 4-371	A8T4059	. 4.311
A5T5172 4-373	A8T4060	4311
A5T5209	4-375	A8T4061	4.311
A5T5210	. 4.375	A8T4062	. 4.311
A5T5219	. 4-377	A855172	4.373
A5T5220	4-379	D2T918	4.50
A5t5221	. 4-381	D2T2218	4.97
A5T5223 4-385	D2T2218A	4.97
A5T5225	. 4.387	D2T2219	4.97
A5T5226	- 4-389	D2T2219A	. 4.97
A5T5227	. 4-391	D2T2904	. 4.154
A5T5400 4-414	D2T2904A	. 41154
A5T5401	. 4-414	D2T2905	. 4-154
A5T5460	. 4-420	D2T2905A	. 4-154
A5T5461 4-420	G129	10.64
A5T5462 4-420	G130	. 10-66
A5T5550	4-427	H19	. OPTO
A5T5551	. 4-427	H35	. OPTO
A5T6116	- 4-435	H38	OPTO
A5T6117	4-435	H60	. OPTO
A5T6118 4-435	H61	. OPTO
A5T6449	- 4-439	H62	. OPTO
A5T6450	4-439	LS400	. OPTO
A6T5222	. 4-383	LS600	OPTO
A7T3391	. 4-206	0212222	. 4-103
A7T3391A	- 4-206	0212905	. 4157
A7T3392	. . 4-206	0273244	. 4-197
A7T5172	4-373	0273725	. 4-260
A7T6027	- $4-431$	TG1/8	. 11-1
A7T6028 4-431	T151	- 10.68
A8T404	417	TI52	. $10-68$
A8T404A	. 4-17	TI53	. 10-68
A8T3391	. 4 -206	TI54	. 10.68
A8T3391A	4-206	TI55	. 10-68
A8T3392	. . 4-208	T156	- 10-68
A8T3702	. 4-250	T157	. 10.68
A8T3703	. $4-250$	TI58	. 10.68
A8T3704	. 4-252	T159	. 10-68
A8T3706	. 4-252	T160	- 10.68
A8T3706	. 4.252	T171	. 10.69
A8T3707	. 4.254	TI72	. 1069
A8T3708	. . 4-254	T173	10.69
A8T3709	. . 4-254	T174	. $10-69$
A8T3710	. 4.254	T175	10.69
A8T3711	. . 4-254	TI145A SER	POWER

[^2]

TYPE NUMBER INDEX

TYPE NO.	SEC.PAGE	TYPE NO.	SEC.PAGE
TID125	10.76	TIP SERIES	POWER
TID126	10-76	TIS25	4-497
TID129	10-76	TIS26	4-497
TID130	10-76	TIS27	4-497
TID131	10-76	TIS37	4-499
TID132	. 10-76	TIS38	4-499
TID133	10,76	TIS43	4.501
TID134	10-76	TIS58	4-503
TIDI35N	10-90	TIS59	4-503
TID136N	10-90	TIS62A	4.505
TID139F	10-90	TIS63A	4-505
TID139N	10.90	TIS64A	4-505
TID140F	10.90	TIS69	4.507
TID140N	10-90	TIS70	4-507
TID141F	10-90	TIS73	4.509
TID141N	. $10-90$	TIS74	4.509
TID142F	10-90	TIS75	4-509
TID142N	10.90	TIS84	4-511
TID143F	- 10-90	TIS86	4-514
TID143N	10-90	TIS87	4-514
TID144F	10-90	TIS90	4-516
TID144N	1090	TIS90M	4.516
TID381	10.96	TIS91	4.516
TID382	10-96	TIS91M	4.516
TID383	10-96	TIS92	$4-516$
TID384	10-96	TIS92M	$4-516$
TID385	10-96	TIS93	4-516
TID777	10.98	TIS93M	4.516
TID778	10-98	TiS94	$4-518$
TIDM155F	10-100	TIS95	4.518
TIDM155J	10-100	TIS96	4.518
TIDM166F	10-100	TIS97	4.518
TIDM166J	10-100	TIS98	$4-518$
TIDM168F	10-100	TIS99	$4-518$
TIDM168J	10-100	TIS100	4.520
TIDM185F	10-100	TIS101	4.520
TIDM185J	10-100	TIS105	4522
TIDM186F	10-100	TIS108	4-525
TIDM186J	10-100	TIS109	4-528
TIDM255F	10-100	TIS110	$4-528$
TIDM255J	10-100	TIS111	4-528
TIDM266F	10-100	TIS112	4533
TIDM266J	$10-100$	TIS125	4-536
TIDM268F	10-100	TIS126	4.538
TIDM268,	10-100	TIS128	4.541
TIDM285F	10-100	TIS129	4-543
TIDM285.J	. 10-100	TIS133	4-545
TIDM286F	10-100	TIS134	4.545
TIDM286J	. 10-100	TIS135	4.545
til series	. OPTO	TIS136	4.545

OPTO-Refer to The Optoelectronics Data Book for Design Engineers, First Edition (CC-405).
POWER-Refer to The Power Semiconductor Data Book for Design Enginears, First Edition (CC-404).

Glossary

INDEX

General

Terms and Definitions 1-1
Letter Symbols, Terms, and Definitions 1-3
Signal Diodes and Rectifiers
Terms and Definitions 1-7
Letter Symbols, Terms, and Definitions 1-7
Voltage-Regulator and Voltage-Reference Diodes
Terms and Definitions 1-12
Letter Symbols, Terms, and Definitions 1-12
Voltage-Variable-Capacitance Diodes
Terms and Definitions 1-14
Letter Symbois, Terms, and Definitions 1-14
Multijunction Transistors
Terms and Definitions 1.15
Letter Symbols, Terms, and Definitions 1.17
Unijunction Transistors
Terms and Definitions 1.27
Letter Symbols, Terms, and Definitions $1-27$
Field-Effect Transistors
Terms and Definitions 1.29
Letter Symbols, Terms, and Definitions $1-31$
Standards Documents 1-37

GLOSSARY

Introduction

This glossary contains letter symbols, abbreviations, terms, and definitions commonly used with semiconductor devices. Most of the information was obtained from JEDEC Publication No. 77. That document has over-riding authority where any conflict may occur.

GENERAL

Terms and Definitions

anode
The electrode from which the forward current flows within the
device.

reverse bias | The bias which tends to produce current flow in the reverse |
| :--- |
| direction. |

reverse direction

Letter Symbols, Terms, and Definitions

Symbol	Term
$\overline{\mathrm{F}}$ or $\overline{N F}^{*}$	average noise figure ${ }^{\dagger}$
	or
	average noise factor ${ }^{\dagger}$

For NF*	spot noise figure ${ }^{\dagger}$ or spot noise factor ${ }^{\dagger}$
'F	forward current, dc
$1 n$	noise current, equivalent input
I_{R}	reverse current, dc
R_{θ} (formerly $\boldsymbol{\theta}$)	thermal resistance
$\mathrm{R}_{\theta \mathrm{CA}}$	thermal resistance, case-to-ambient
$R_{\boldsymbol{\theta J A}}$ (formerly θ J-A)	thermal resistance, junction-to-ambient
$R_{\theta J C}$ (formerly $\boldsymbol{\theta}_{\mathrm{J}-\mathrm{C} \text {) }}$	thermal resistance, junction-to-case
	forward transmission coefficient

Definition

The ratio of (1) the total output noise power within a designated output frequency band when the noise temperature of the input termination(s) is at the reference noise temperature, T_{0}, at all frequencies to (2) that part of (1) caused by the noise temperature of the designated signal-input termination within a designated signal-input frequency band.

The ratio of (1) the total output noise power per unit bandwidth (spectral density) at a designated output frequency when the noise temperature of the input termination(s) is at the reference noise temperature, To. at all frequencies to (2) that part of (1) caused by the noise temperature of the designated signal-input termination at a designated signal-input frequency.

The dc current that flows through a semiconductor junction in the forward direction.

The noise current of an ideal current source (having a source impedance equal to infinity) in parallel with the input terminals of the device that, together with the equivalent input noise voltage, represents the noise of the device.

The dc current that flows through a semiconductor junction in the reverse direction.

Refer to thermal resistance (steady-state), page 1-2.
The thermal resistance (steady-state) from the device case to the ambient.

The thermal resistance (steady-state) from the semiconductor junction (s) to the ambient.

The thermal resistance (steady-state) from the semiconductor junction(s) to a stated location on the case.

The ratio of the voltage at the output port to the voltage incident on the input port with the output port terminated in a purely resistive reference impedance equal to the impedance of the source of the incident voltage.

Symbol	Term	Definition
s_{i} or s s_{11}	input reflection coefficient	The ratio of the voltage reflected from the input port to the voltage incident on the input port with the output port terminated in a purely resistive reference impedance equal to the impedance of the source of the incident voltage.
so or s22	output reflection coefficient	The ratio of the voltage reflected from the output port to the voltage incident on the output port with the input port terminated in a purely resistive reference impedance equal to the impedance of the source of the incident voltage.
sfors12	reverse transmission coefficient	The ratio of the voltage at the input port to the voltage incident on the output port with the input port terminated in a purely resistive reference impedance equal to the impedance of the source of the incident voltage.
TA	free-air temperature or ambient temperature	The air temperature measured below a device, in an environment of substantially uniform temperature, cooled only by natural air convection and not materially affected by reflective and radiant surfaces. (Ref MIL-S-19500D Par. 20.20.1)
T_{C}	case temperature	The temperature measured at a specified location on the case of a device. (Ref MIL-S-19500D Par. 20.20.2)
TJ	virtual junction temperature	A temperature representing the temperature of the junction(s) calculated on the basis of a simplified model of the thermal and electrical behavior of the semiconductor device.
		NOTE: This term "virtual junction temperature" is taken from IEC standards. It is particularly applicable to multijunction semiconductors and is used in this publication to denote the temperature of the active semiconductor element when required in specifications and test methods. The term "virtual junction temperature" is used interchangeably with the term "junction temperature" in this publication.
$\mathrm{T}_{\text {stg }}$	storage temperature	The temperature at which the device, without any power applied, is stored. (Ref MIL-S-19500D Par. 20.20.3)

Symbol	Term	Definition
T_{n}	noise temperature	The uniform physical absolute temperature (kelvin) at which a network (and all its sources, if a multiport) would have to be maintained if it (and its sources) were passive in order to make available (or deliver) the same random noise power per unit bandwidth (spectral density) at a given frequency as is actually available (or delivered) from the network.
T_{0}	reference noise temperature	A specified absolute temperature (kelvin) to be assumed as a noise temperature at the input ports of a network when calculating certain noise parameters, and for normalizing purposes. When the reference noise temperature is 290 K , it is considered to be the standard reference noise temperature.
t_{d}	delay time	The time interval from the point at which the leading edge of the input pulse has reached 10 percent of its maximum amplitude to the point at which the leading edge of the output pulse has reached 10 percent of its maximum amplitude. (Ref MIL-S-195000 Par. 20.11)
$\mathbf{t f}^{\text {f }}$	fall time	The time duration during which the trailing edge of a pulse is decreasing from 90 to 10 percent of its maximum amplitude. (Ref MIL-S-19500D Par. 20.12)
$t_{\text {off }}$	turn-off time	The sum of $\mathrm{t}_{\mathbf{s}}+\mathrm{t}_{\mathbf{f}}$.
ton	tum-on time	The sum of $t_{d}+t_{r}$.
$t_{\text {p }}$	pulse time	The time duration from the point on the leading edge which is 90 percent of the maximum amplitude to the point on the trailing edge which is 90 percent of the maximum amplitude. (Ref MIL-S-19500D Par. 20.15)
t_{r}	rise time	The time duration during which the leading edge of a pulse is increasing from 10 to 90 percent of its maximum amplitude. (Ref MIL-S-19500 Par. 20.13)
t_{s}	storage time	The time interval from a point 90 percent of the maximum amplitude on the trailing edge of the input pulse to a point 90 percent of the maximum amplitude on the trailing edge of the output pulse. (Ref MIL-S-19500D Par. 20.14)

glossary

general

Symbol	Term
\mathbf{t}_{w}	pulse average time

Definition

The time duration from the point on the leading edge which is 50 percent of the maximum amplitude to a point on the trailing edge which is $\mathbf{5 0}$ percent of the maximum amplitude. (Ref MIL-S-19500D Par. 20.10)

dIAGRAM ILLUSTRATING PULSE TIME SYMBOLOGY

V_{F}	forward voltage, dc		
V_{n}	The dc voltage across a semiconductor junction associated with the flow of forward current.		
equivalent input			The noise voltage of an ideal voltage source (having a
:---			
source impedance equal to zero) in series with the			
input terminals of the device that, together with the			
equivalent input noise current, represents the noise of			
the device.			

GLOSSARY
 SIGNAL DIODES AND RECTIFIERS

SIGNAL DIODES AND RECTIFIERS

Terms and Definitions

Letter Symbols, Terms, and Definitions
(For illustration of the following currents refer to diagrams on page 1-10)

Symbol	Term	Definition
	forward current (see table, page 1-11)	The respective value of current that flows through a semiconductor diode or rectifier diode in the forward direction.
Ifrm	forward current, repetitive peak	The peak value of the forward current including all repetitive transient currents.
IFSM	forward current, surge peak	The maximum (peak) surge forward current having a specified waveform and a short specified time interval.
10	average rectified forward current	The value of the forward current averaged over a full cycle of hatf-sine-wave operation at 60 Hz with a conduction angle of 180°.
$I_{\text {R(RMS })} I_{r}$. $I_{R}, I_{R(A V)}$. $i_{R}, I_{R M}$	reverse current (see table, page 1-11)	The respective value of current that flows through a semiconductor diode or rectifier diode in the reverse direction.
íR(REC). IRM(REC)	reverse recovery current (see table, page 1-11)	The transient component of reverse current associated with a change from forward conduction to reverse voltage.
IRRM	reverse current, repetitive peak	The maximum (peak) repetitive instantaneous reverse current.
IRSM	reverse current. surge peak	The maximum (peak) surge reverse current having a specified waveform and a short specified time interval.

GLOSSARY

SIGNAL DIODES AND RECTIFIERS

$\begin{aligned} & \text { Symbol } \\ & \text { PF, } P_{F}(A V) . \\ & \text { PF, PFM } \end{aligned}$	Term forward power dissipation (see table, page 1-11)	Definition The power dissipation resulting from the flow of the respective forward current.
$\begin{aligned} & P_{R}, P_{R}(A V), \\ & P_{R}, P_{R M} \end{aligned}$	reverse power dissipation (see table, page 1-11)	The power dissipation resulting from the flow of the respective reverse current.
Qs	stored charge	The total amount of charge recovered from a diode minus the capacitive component of that charge when the diode is switched from a specified conductive condition to a specified non-conductive condition with other circuit conditions (as described in EIAJEDEC Suggested Standard No. 1) optimized to recover the largest possible amount of charge.
$\mathbf{R}_{\boldsymbol{\theta}}$	thermal resistance	See pages 1-2 and 1-3.
TJ	junction temperature	See page 1-4.
tfr	forward recovery time	The time required for the current or voltage to recover to a specified value after instantaneous switching from a stated reverse voltage condition to a stated forward current or voltage condition in a given circuit.
t_{p}	pulse time	See pages 1-5 and 1-6.
t_{r}	rise time	See pages 1-5 and 1-6.
$t_{\text {rr }}$	reverse recovery time	The time required for the current or voltage to recover to a specified value after instantaneous switching from a stated forward current condition to a stated reverse voltage or current condition in a given circuit.

Symbol	Term		
t_{w}	pulse average time	\quad	See page 1-6.
:---			

gLOSSARY
 SIGNAL DIODES AND RECTIFIERS

DIAGRAMS ILLUSTRATING SYMBOLS FOR DIODE CURRENTS AND VOLTAGES

I. FORWARD CURRENT AND VOLTAGE:

II. REVERSE CURRENT AND VOLTAGE:

TABLE OF SYMBOLS FOR CURRENT, POWER, AND VOLTAGE

	Total RMS Value	RMS Value of Altarnating Component	DC Value, No Alternating Component	DC Value, With Alternating Component	Instantaneous Total Value	Maximum (Peak) Total Value
Forward Current	IF(RMS)	${ }_{\text {If }}$	If	${ }^{\text {IF }}$ (AV)	${ }^{\text {if }}$	IFM
Forward Current, Average, 180°						
Conduction Angle,	-	-	-	'0	-	-
$60-\mathrm{Hz}$, Half Sine Wave						
Forward Current,						
Repetitive Peak	-	-	-	-	-	Ifrm
Forward Current, Surge Peak	-	-	-	-	-	IFSM
Reverse Current	IR(RMS)	Ir	$I_{\text {R }}$	IR(AV)	$i_{\text {R }}$	IRM
Reverse Recovery Current	-	-	-	-	iR(REC)	IRM(REC)
Forward Power Dissipation	-	-	PF	$\left.\mathrm{P}_{\mathrm{F}(\mathrm{AV}}\right)$	PF	PFM
Reverse Power Dissipation	-	-	P_{R}	$\mathrm{P}_{\mathrm{R}}(\mathrm{AV})$	PR	PRM
Forward Voltage	$\mathrm{V}_{\text {F (RMS }}$	v_{f}	V_{F}	$\mathrm{V}_{\mathrm{F}(\mathrm{AV})}$	vF	VFM
Reverse Voltage	$V_{\text {R(RMS }}$	v_{r}	$v_{\text {R }}$	$V_{\text {R }}(\mathrm{AV})$	vR	VRM
Reverse Voltage, Working Peak	-	-	-	-	-	$V_{\text {RWM }}$
Reverse Voltage, Repetitive Peak	-	-	-	-	-	VRRM
Reverse Voltage, Nonrepetitive Peak	-	-	-	-	-	VRSM
Breakdown Voltage	-	-	$V_{\text {(BR) }}$	-	v (BR)	-

glossary
 voltage-regulator and voltage-reference diodes

VOLTAGE-REGULATOR AND VOLTAGE-REFERENCE DIODES

Terms and Definitions
anode
cathode
device when it is biased to operate in its breakdown region.

Letter Symbols, Terms, and Definitions
(For illustration of the following currents and voltages refer to diagrams on page 1-13)

If Symbol	Term forward current, dc	Definition The value of dc current that flows through the diode in the forward direction.
I_{R}	reverse current, dc	The value of dc current that flows through the diode in the reverse direction.
Iz, IZK, IZM	regulator current, reference current (dc, dc near breakdown knee. dc maximum-rated current)	The value of dc reverse current that flows through the diode when it is biased to operate in its breakdown region and at a point on its voltage-current characteristic as follows: I_{Z} : a specified operating point between IZK and IZM IZK: a specified point near the breakdown knee $I Z M$: a specified point based on the maximum-rated power.
TJ	junction temperature	See page 1-4.

GLOSSARY
 VOLTAGE-REGULATOR AND VOLTAGE-REFERENCE DIODES

Symbol	Term	Definition
V_{F}	forward voltage, dc	The voltage drop in the diade, resulting from the dc forward current.
V_{R}	reverse voltage, dc	The voltage applied to the diode which causes the dc current to flow in the reverse direction.
$\begin{aligned} & v_{Z} \\ & v_{\mathrm{ZM}} \end{aligned}$	regulator voltage, reference voltage (dc, dc at maximumrated current)	The value of dc voltage across the diode when it is biased to operate in its breakdown region and at a specified point in its voltage-current characteristic as follows: $\mathbf{V}_{\mathbf{Z}}$: at IZ (see previous page) $V_{Z M}$: at IZM (see previous page)
$\begin{aligned} & \mathbf{z}_{z_{1}} \\ & \mathbf{z}_{\mathbf{z k}} \\ & \mathbf{z z m}^{2} \end{aligned}$	regulator impedance, reference impedance, (small-signal, at IZ. at IZK, at IZM)	The small-signal impedance of the diode when it is biased to operate in its breakdown region and at a specified point in its voltage-current characteristic as follows: $\mathbf{z}_{\mathbf{z}}$: at IZ (see previous page) $\mathbf{z z k}_{\mathbf{z}}$: at IZK (see previous page) $\mathbf{z z m}_{\text {: }}$ at IZM (see previous page)

VOLTAGE-VARIABLE-CAPACITANCE DIODES

Terms and Definitions

Term

voltage-variable-
capacitance diode
(varactor diode)
tuning diode

Definition

A two-terminal semiconductor device in which use is made of the property that its capacitance varies with the applied voltage.

A voltage-variable-capacitance diode used for if tuning. This includes functions such as automatic frequency control (AFC) and automatic fine tuning (AFT).

Letter Symbols, Terms, and Definitions

Symbol α_{C}	Term temperature coefficient of capacitance
C_{c}	case capacitance
c_{j}	junction capacitance
C_{t}	total capacitance
$\frac{c_{t 1}}{c_{t 2}}$	capacitance ratio
f_{co}	cut-off frequency
L_{s}	series inductance
η	efficiency
0	figure of merit
$\mathrm{r}_{\text {s }}$	series resistance, small-signal
TJ	junction temperature

Definition

The ratio of the change in capacitance to the change in temperature. The ratio is an average value for the total temperature change. (For symbol: Ref USAS Y10.5-1968 Par. 3.6)

The capacitance between the diode terminals of the case with the semiconductor chip not installed or with the semiconductor chip instalied but not connected.

The small-signal capacitance between the contacts of an uninstalied semiconductor chip.

The total small-signal capacitance between the diode terminals of a complete device. ($\left.\mathrm{C}_{\mathbf{t}} \approx \mathrm{C}_{\mathbf{c}}+\mathrm{C}_{\mathrm{j}}\right)$.

The ratio of total capacitance at one voltage to total capacitance at another voltage.

The frequency at which the figure of merit \mathbf{Q} is equal to 1 .

The inductance between specified points on the diode terminals.

The ratio of output power to input power.
Two pi (2π) times the ratio of the energy stored per cycle to the energy dissipated per cycle.

The total small-signal resistance between the diode terminals.

See page 1-4.

GLOSSARY
 MULTLUUNCTION TRANSISTORS

MULTIJUNCTION TRANSISTORS

Terms and Definitions

base (B, b)* | A region which lies between an emitter and a collector of a |
| :--- |
| transistor and into which minority carriers are injected. (Ref. 60 |

NOTE: In the graphic symbols, the envelope is optional if no element is connected to the envelope.

N-P-N TRIODE P-N-P TRIODE

N-P.N, DOUBLE-BASE
P-NP DOUBLE-EMITTER

*References to bese, collector and amitter symbolism (B, b, C, C, E, and e) refer to the device terminals connected to those regions.

Term

Definition

transistor, programmable unijunction

A P-N-P-N thyristor that, together with two external resistors, can generate a current-voltage characteristic similar to that of a unijunction transistor. The unijunction parameters $\eta, r_{B B}, I_{P}$, and IV (see pages 1-27 and 1-28) can be varied by selection of the values of the two resistors.

PROGRAMMABLE UNIJUNCTION CIRCUIT

DIAGRAM ILLUSTRATING CURRENT-VOLTAGE CHARACTERISTIC OF THE PROGRAMMABLE UNIJUNCTION CIRCUIT

GLOSSARY MULTLUUNCTION TRANSISTORS

Letter Symbols, Terms, and Definitions

Symbol	Term
C_{cb}.	interterminal
$\mathrm{C}_{\text {ce }}$,	capacitance (collector-to-base, C_{eb}
	collector-to-emitter, emitter-to-base)

Cibo, $C_{i e o}$	open-circuit input capacitance (common-base, common-emitter)
Cibs, Cies	short-circuit input capacitance (common-base, common-emitter)
Cobo, Coeo	open-circuit output capacitance (common-base, common-emitter)
$\mathrm{C}_{\text {obs }}$. Coes	short-circuit output capacitance (common-base, commonemitter)
Crbs, Cres	short-circuit reverse transfer capacitance (common-base, common-emitter)
$\begin{aligned} & \mathrm{C}_{\mathrm{tc}} \\ & \mathrm{c}_{\mathrm{te}} \end{aligned}$	depletion-layer capacitance (collector, emitter)

Definition

The direct interterminal capacitance between the terminal indicated by the first subscript and the reference terminal indicated by the second subscript, with the respective junction (collector-base, collectoremitter, emitter-base) reverse-biased and with the remaining terminal (emitter, base, collector) opencircuited to dc, but ac-connected to the guard terminal of a three-terminal bridge.
This capacitance includes the interelement capacitances plus capacitance to the shield where the shield is connected to one of the terminals under measurement.

The capacitance measured across the input terminals (emitter and base, base and emitter) with the collector open-circuited for ac. (Ref IEEE 255)

The capacitance measured across the input terminals (emitter and base, base and emitter) with the collector short-circuited to the reference terminal for ac. (Ref IEEE 255)

The capacitance measured across the output terminals (collector and base, collector and emitter) with the input open-circuited to ac. (Ref IEEE 255)

The capacitance measured across the output terminals (collector and base, collector and emitter) with the third terminal short-circuited to the reference terminal for ac. (Ref IEEE 255)

The capacitance measured from the output terminal to the input terminal with the respective reference terminal (base or emitter) and the case, (unless connected internally to another terminal) connected to the guard terminal of a three-terminal bridge and with the device biased into the active region.

The part of the capacitance across the (collector-base, emitter-base) junction that is associated with its depletion layer.

NOTE: This capacitance is a function of the total potential difference across the depletion layer. (Ref IEC 147-0 Par. II-4.8, 4.9)

Symbol \bar{F} or F	Term noise figure, average or spot
finfb, fhfe	small-signal short- circuit forward current transfer ratio cutoff frequency (common-base, common-emitter)
$f_{\text {max }}$	maximum frequency of oscillation
${ }^{\mathbf{f}} \boldsymbol{T}$	transition frequency or frequency at which small-signal forward current transfer ratio (common-emitter) extrapolates to unity
f1	frequency of unity current transfer ratio
GPB, Gpe	large-signal insertion power gain (commonbase, common-emitter)
Gpb. Gpe	small-signal insertion power gain (commonbase, common-emitter)
GTB, GTE	large-signal transducer power gain (common-base, common-emitter)
\mathbf{G}_{tb}. $G_{\text {te }}$	small-signal transducer power gain (common-base, common-emitter)
hFB, hFE	static forward current transfer ratio (commonbase, commonemitter)

Definition

See page 1-3.
The lowest frequency at which the modulus (magnitude) of the small-signal short-circuit forward current transfer ratio is 0.707 of its value at a specified low frequency (usually $1 \mathbf{k H z}$ or less). (Ref IEEE 255)

The maximum frequency at which a transistor can be made to oscillate under specified conditions.

NOTE: This approximates to the frequency at which the maximum available power gain has decreased to unity. (Ref IEC 147.0 Par. II-4.17)

The product of the modulus (magnitude) of the common-emitter small-signal short-circuit forward current transfer ratio, $\mathrm{h}_{\mathrm{fe}} \mid$, and the frequency of measurement when this frequency is sufficiently high so that $\left|h_{f e}\right|$ is decreasing with a slope of approximately 6 dB per octave. (Ref IEEE 255)

The frequency at which the modulus (magnitude) of the common-emitter small-signal short-circuit forward current transfer ratio, Mfel, has decreased to unity. (Ref IEC 147-0 Par. 11-4.19)

The ratio, usually expressed in $d B$, of the signal power delivered to the load to the large-signal power delivered to the input.

The ratio, usually expressed in dB, of the signal power delivered to the load to the small-signal power delivered to the input.

The ratio, usually expressed in dB , of the signal power delivered to the load to the maximum largesignal power available from the source.

The ratio, usually expressed in dB , of the signal power delivered to the load to the maximum smallsignal power available from the source.

The ratio of the dc output current to the dc input current. (Ref MIL-S-19500D Par. 30.28)

glossary
 MULTIJUNCTION TRANSISTORS

Symbod	Term
$h_{f b}$. $h_{f e}$	small-signal short-
	circuit forward
	current transfer
	ratio (common-base,
	common-emitter)
$h_{i b}$,	small-signal short-
$h_{\text {ie }}$	circuit input impedance
	(common-base,
	common emitter)
$\begin{gathered} h_{\text {ie (imag }} \text { or } \\ \operatorname{lm}\left(h_{i e}\right) \end{gathered}$	imaginary part of the
	small-signal short-
	circuit input impedance,
	(common-emitter)
$h_{i e}$ (real) or Re(hie)	real part of the small-
	signal short-circuit
	input impedance,
	(common-emitter)
hob, $h_{\text {oe }}$	small-signal open-
	circuit output
	admittance
	(common-base,
	common-mitter)
$\begin{gathered} \left.h_{\text {oe (imag }}\right) \\ \text { or } \\ \operatorname{lm}\left(h_{\text {oe }}\right) \end{gathered}$	imaginary part of the
	small-signal open-circuit
	output admittance,
	(common-emitter)
hoe(real) or Re(hoe)	real part of the small-
	signal open-circuit
	output admittance,
	(common-emitter)
$\begin{aligned} & h_{r b}, \\ & h_{r e} \end{aligned}$	small-signal open-
	circuit reverse voltage
	transfer ratio
	(common-base,
	common-emitter)
I_{B}, IC. IE	current, dc
	(base-terminal,
	collector-terminal,
	emitter-terminal)
${ }^{\prime} b$ I_{c} I_{e}	current, rms value of alternating component (base-terminal, collector-terminal, emitter-terminal)

Definition

The ratio of the ac output current to the small-signal ac input current with the output short-circuited to ac. (Ref MIL-S-19500D Par. 30.20)

The ratio of the small-signal ac input voltage to the ac input current with the output short-circuited to ac. (Ref MIL-S-19500D Par. 30.24)

The ratio of the out-of-phase (imaginary) component of the small-signal ac base-emitter voltage to the ac base current with the collector terminal shortcircuited to the emitter terminal for ac.

The ratio of the in-phase (real) component of the small-signal ac base-emitter voltage to the ac base current with the collector terminal short-circuited to the emitter terminal for ac.

The ratio of the ac output current to the small-signal ac output voltage applied to the output terminal. with the input open-circuited to ac. (Ref MIL-S-19500D Par. 30.15)

The ratio of the ac collector current to the out-ofphase (imaginary) component of the small-signal collector-emitter voltage with the base terminal opencircuited to ac.

The ratio of the ac collector current to the in-phase (real) component of the small-signal collector-emitter voltage with the base terminal open-circuited to ac.

The ratio of the ac input voltage to the small-signal ac output voltage with the input open-circuited to ac. (Ref MIL-S-19500D Par. 30.18)

The value of the dc current into the terminal indicated by the subscript.

The root-mean-square value of alternating current into the terminal indicated by the subscript.

DIAGRAM ILLUSTRATING SYMBOLS AND TERMS FOR CURRENTS (Ref IEEE 255)

IBEV	base cutoff current, dc
ICBO	collector cutoff current, dc, emitter open

The dc current into the base terminal when it is biased in the reverse direction with respect to the emitter terminal and there is a specified voltage between the collector and emitter terminals.

The de current into the collector terminal when it is biased in the reverse direction with respect to the base terminal and the emitter terminal is opencircuited. (Ref IEEE 255)

GLOSSARY MULTLUNCTION TRANSISTORS

Symbol	Term	Dafinition
ICEO,	collector cutoff current, dc, with (base open,	The dc current into the collector terminal when it is biased in the reverse direction* with respect to the emitter terminal and the base terminal is (as indicated by the last subscript letter as follows):
ICER,	resistance between base and emitter,	$0=$ open-circuited. R = returned to the emitter terminal through a specified resistance.
ICES	base short-circuited to emitter,	$S=$ short-circuited to the emitter terminal. $\mathbf{V}=$ returned to the emitter terminal through a specified voltage.
ICEV.	voitage between base and emitter,	$X=$ returned to the emitter terminal through a specified circuit.
ICEX		(Ref IEEE 255)
	base and emitter)	*For these parameters, the collector terminal is considered to be biased in the reverse direction when it is made positive for N-P-N transistors or negative for P-N-P transistors with respect to the emitter terminal.
IE1E2(off)	emitter cutoff current	The current into the emitter- 1 terminal of a doubleemitter transistor when the emitter-1 terminal is biased with respect to the emitter-2 terminal and the transistor is in the off state (the collector-base diode is not forward-biased) with specified termination of the collector and base terminals.
IEBO	emitter cutoff current, dc, collector open	The dc current into the emitter terminal when it is biased in the reverse direction with respect to the base terminal and the collector terminal is opencircuited. (Ref IEEE 255)
IEC(ofs)	emitter-collector offset current	The external short-circuit current between the emitter and collector when the base-collector diode is reverse biased.
IECS	emitter cutoff current, dc, base short-circuited to collector	The dc current into the emitter terminal when it is biased in the reverse direction* with respect to the collector terminal and the base terminal is shortcircuited to the collector terminal. (Ref IEEE 255)
		*For this parameter the emitter terminal is considered to be biased in the reverse direction when it is made positive for N-P-N transistors or negative for P-N-P transistors with respect to the collector terminal.
Im(Yie)		See preferred symbol yie(imag)

MULTIJUNCTION TRANSISTORS

$\begin{gathered} \text { Symbol } \\ \operatorname{Im}\left(y_{\text {oe }}\right) \end{gathered}$	Term	Definition See preferred symbol Yoe(imag)
I_{n}	noise current, equivalent input	See page 1-3.
$\overline{N F}$ or NF^{*}	noise figure, average or spot	See page 1-3.
$\begin{aligned} & P_{\text {IB }} \\ & P_{\text {IE }} \end{aligned}$	large-signal input power (common-base, commonemitter)	The product of the large-signal ac input current and voltage with the common reference terminal circuit configuration.
$\begin{aligned} & \mathbf{P}_{i b}, \\ & P_{i e} \end{aligned}$	small-signal input power (common-base, common-emitter)	The product of the small-signal ac input current and voltage with the common reference terminal circuit configuration.
POB, Poe	large-signal output power (common-base, common-emitter)	The product of the large-signal ac output current and voltage with the common reference terminal circuit configuration.
$\begin{aligned} & P_{o b}, \\ & P_{o e} \end{aligned}$	small-signal output power (common-base, common-emitter)	The product of the small-signal ac output current and voltage with the common reference terminal circuit configuration.
$\mathrm{P}_{\mathbf{T}}$	total nonreactive power input to all terminals	The sum of the products of the dc input currents and voltages, i.e., $\begin{aligned} & v_{B E} \cdot I_{B}+v_{C E} \cdot I_{C} \text { or } \\ & v_{B E} \cdot I_{E}+v_{C B} \cdot I_{C} \end{aligned}$
$\mathrm{rb}^{\prime} \mathrm{C}_{\mathrm{c}}$	collector-base time constant	The product of the intrinsic base resistance and collector capacitance under specified small-signal conditions.
${ }^{\text {r C E }}$ (sat)	saturation resistance, collector-to-emitter	The resistance between the collector and emitter terminals for the saturation conditions specified. (Ref IEEE 255)
Re($\mathrm{y}_{\text {ie }}$)		See preferred symbol Yie(real)
Re (Yoe)		See preferred symbol yoe(real)
re1e2(on)	small-signal emitter- emitter on-state resistance	The small-signal resistance between the emitter terminals of a double-emitter transistor when the base-collector diode is forward-biased.
$\mathrm{R}_{\boldsymbol{\theta}}$	thermal resistance	See pages 1-2 and 1-3.
sfb or s21b. Sfe or s21e Srb or s 12 b . Sre or s12e	forward transmission coefficient (common-base, common-emitter) reverse transmission coefficient (common-base, common-emitter)	The respective forward or reverse transmission coefficient with the transistor in the indicated configuration. See pages 1-3 and 1-4.

GLOSSABY
 MULTLUUNCTION TRANSISTORS

[^3]\quad Symbol
$V_{(B R) C E O}$
(formerly $B V_{\text {CEO }}$
$V_{(B R) C E R}$ (formerly BVCER)
$V_{\text {(BR)CES }}$
(fromerly $\mathrm{BV}_{\text {CES }}$)
$V_{\text {(BR)CEV }}$
(formerly $\mathrm{BV}_{\mathrm{CEV}}$)
$V_{\text {(BR)CEX }}$ (formerly BVCEX)
$V_{\text {(BR)E1E2 }}$

V(BR)EBO
(formerly $\mathrm{BV}_{\mathrm{EBO}}$)
$V_{\text {(BR) }}$ ECO
(formerly $\mathrm{BV}_{\mathrm{ECO}}$)

$V_{C B}(f I)$,	dc open-circuit valtage
$V_{C E}(f)$.	(floating potential)
$V_{E B(f)}$	(collector-to-base,
$V_{E C}(f)$	collector-to-emitter,
	emitter-to-base.
	emitter-to-coliector)

V_{CB} (fi),
$V_{C E}(f)$.
$V_{E B(f)}$.
$V_{E C}(f)$

Term
breakdown voltage, collector-to-emitter with (base open,
resistance between base and emitter,
base short-circuited to emitter,
voltage between base and emitter,
circuit between base and emitter)
emitter-emitter breakdown voltage
breakdown voltage, emitter-to-base, collector open
breakdown voltage, emitter-to-collector, base open
dc open-circuit valtage
(floating potential)
collector-to-base emitter-to-base. emitter-to-collector)

Definition

The breakdown voltage between the collector terminal and the emitter terminal when the collector terminal is biased in the reverse direction* with respect to the emitter terminal and the base terminal is (as indicated by the last subscript letter as follows):
$\mathrm{O}=$ open-circuited.
$R=$ returned to the emitter terminal through a specified resistance.
$\mathrm{S}=$ short-circuited to the emitter terminal.
$V=$ returned to the emitter terminal through a specified voltage.
X $=$ returned to the emitter terminal through a specified circuit.

(Ref IEEE 255)

*For these parameters, the collector terminal is considered to be biased in the reverse direction when it is made positive for N-P-N transistors or negative for P-N-P transistors with respect to the emitter terminal.

The breakdown voltage between the emitter terminals, of a double-mitter transistor, with specified termination between collector and base.

The breakdown voltage between the emitter and base terminals when the emitter terminal is biased in the reverse direction with respect to the base terminal and the collector terminal is open-circuited. (Ref IEEE 255)

The breakdown voltage between the emitter and collector terminals when the emitter terminal is biased in the reverse direction* with respect to the collector terminal and the base terminal is opencircuited.
*For this parameter the emitter terminal is considered to be biased in the reverse direction when it is made positive for N-P-N transistors or negative for P-N-P transistors with respect to the collector terminal.

The dc open-circuit voltage (floating potential) between the terminal indicated by the first subscript and the reference terminal when the remaining terminal is biased in the reverse direction with respect to the reference terminal. (Ref IEEE 255)

GLOSSARY
 MULTLUNCTION TRANSISTORS

Symbol	Term	Definition
$V_{\text {CBO }}$	collector-to-base voltage, dc, emitter open	The dc voltage between the collector terminal and the base terminal when the emitter terminal is opencircuited.
VCE(ofs)	collector emitter offset voltage	The open-circuit voltage between the collector and emitter terminals when the base-emitter diode is forward-biased.
$V_{C E}$ (sat)	saturation voltage, collector-to-emitter	The dc voltage between the collector and the emitter terminals for specified saturation conditions. (Ref IEEE 255)
VCEO.	collector-to-emitter voltage, dc, with (base open,	The dc voltage between the collector terminal and the emitter terminal when the base terminal is (as indicated by the last subscript letter as follows):
VCER,	resistance between base and emitter,	$\mathrm{O}=$ open circuited. $R=$ returned to the emitter terminal through a specified resistance.
VCES,	base short-circuited to emitter,	$\mathbf{S}=$ short-circuited to the emitter terminal. $V=$ returned to the emitter terminal through a specified voltage.
VCEV,	voltage between base and emitter,	$X=$ returned to the emitter terminal through a specified circuit.
$V_{\text {cex }}$	circuit between base and emitter)	
Vebo	emitter-to-base voltage, dc. coliector open	The dc voltage between the emitter terminal and the base terminal with the collector terminal opencircuited.
VEC(ofs)	emitter-collector offset voltage	The open-circuit voltage between the emitter and collector when the base-collector diode is forwardbiased.
$\mid V_{\text {e1e2 }}$ (ofs) \mid	magnitude of the emitter-emitter offset voltage	The absolute value of the open-circuit voltage between the two emitters of a double-emitter transistor when the base-collector diode is forwardbiased.
$\mid\left.\Delta V_{E 1 E 2}($ ofs $)\right\|_{\Delta I_{B}}$	magnitude of the change in offset voltage with base current	The absolute value of the algebraic difference between the emitter-emitter offset voltages of a double-emitter transistor at two specified base currents.
$\mid\left.\Delta V_{E 1 E 2}($ ofs $)\right\|_{\Delta T_{A}}$	magnitude of the change in offset voltage with temperature	The absolute value of the algebraic difference between the emitter emitter offset voltages of a double-emitter transistor at two specified ambient temperatures.
V_{n}	noise voltage, equivalent input	See page 1-6.

Yfb, Yfe	small-signal shortcircuit forwardtransfer admittance (common-base, common-emitter)
Yib, Yie	small-signal shortcircuit input admittance (common-base, common-emitter)
Yie(imag) or Im(y_{ie})	imaginary part of the small-signal short-circuit input admittance (common-emitter)
Yie(real) or $\operatorname{Re}\left(y_{i e}\right)$	real part of the small-signal shortcircuit input admittance (common-emitter)
Yob. Yoe	small-signal shortcircuit output admittance (common-base, common-emitter)
$\begin{gathered} \text { Yoe(imag) } \\ \text { or } \\ \operatorname{lm}\left(y_{\text {oee }}\right) \end{gathered}$	imaginary part of the small-signal short-circuit output admittance (commonemitter)
Yoe(real) or Re(yoe)	real part of the small-signal shortcircuit output admittance (commonemitter)
Yrb, Yre	small-signal shortcircuit reverse transfer admittance (common-base, commonemitter)

Definition

That value of reverse collector-to-base voltage at which the space-charge region of the collector-base junction extends to the space-charge region of the emitter-base junction. (Ref IEEE 255)

The ratio of rms output current to rms input voltage with the output short-circuited to ac.

The ratio of rms input current to rms input voltage with the output short-circuited to ac.

The ratio of rms input current to the rms out-ofphase (imaginary) component of the input voltage with the output short-circuited to ac.

The ratio of rms input current to the rms in-phase (real) component of the input voltage with the output short-circuited to ac.

The ratio of rms output current to rms output voltage with the input short-circuited to ac.

The ratio of rms output current to the out-of-phase (imaginary) component of the rms output voltage with the input short-circuited to ac.

The ratio of rms output current to the in-phase (real) component of the rms output voltage with the input short-circuited to ac.

The ratio of rms input current to rms output voltage with the input short-circuited to ac.

GLOSSARY
 UNLUNCTION TRANSISTORS

UNIJUNCTION TRANSISTORS

Terms and Definitions

A region of a semiconductor device into which minority carriers are injected.

A region from which charge carriers that are minority carriers in the base are injected into the base. (Ref. 60 IRE 28.S1)

A serniconductor junction normally biased in the forward direction to inject minority carriers into the base. (Ref 60 IRE 28.S1)

The point on the emitter current-voltage characteristic corresponding to the lowest current at which $\mathrm{dV}_{\mathrm{EB}} 1 / \mathrm{dI} \mathrm{E}=0$.

See page 1-16.

The point on the emitter current-voltage characteristic corresponding to the second lowest current at which $\mathrm{dV}_{\mathrm{EB}} 1 / \mathrm{dl} \mathrm{E}=0$.
unijunction transistor
A three-terminal semiconductor device having one junction and a stable negative-resistance characteristic over a wide temperature range.

Graphic symbols for unijunction transistors (Ref. ANS Y32.2):

P-N (N-Type Base)

NOTE: In the graphic symbols, the envelope is optional if no element is connected to the envelope.

Letter Symbols, Terms, and Definitions

Symbol	Term
η	intrinsic standoff ratio
IB2(mod) $^{\text {IEB2O }}$	interbase modulated current
	emitter reverse current

ip
peak-point current

Definition

The ratio $\left(V_{P}-V_{F}\right) / V_{B 2 B 1}$, where V_{F} is the forward voltage drop of the emitter junction.

The current into the base-2 terminal when the emitter current is greater than the valley-point current.

The current into the emitter terminal when it is biased in the reverse direction with respect to the base-2 terminal and the base-1 terminal is opencircuited.

The emitter current at the peak point.

UNLUNCTION TRANSISTORS

DIAGRAM ILLUSTRATING CURRENT-VOLTAGE CHARACTERISTIC

GLOSSARY
 FIELD-EFFECT TRANSISTORS

FIELD-EFFECT TRANSISTORS

Terms and Definitions

Term

channel
depletion-mode operation .

A region of semiconductor material in which current flow is influenced by a transverse electrical field. A channel may physically be an inversion layer, a diffused layer, or bulk material. The type of channel is determined by the type of majority carriers during conduction; i.e., p-channel or n-channel.

Term

n-channel
field-effect transistor
p-channel

Definition

A field-effect transistor that has an n-type conduction channel.

A field-effect transistor that has a p-type conduction channel.
field-effect transistor
source (S, s)
A region from which majority carriers flow into the channel.
substrate (U, u) (of a junction
A semiconductor material that contains a channel, a source, and a
field-effect transistor or an insulated-
gate field-effect transistor)
substrate (of a thin-film.
field-effect transistor)
tetrode field-effect transistor .
triode field-effect transistor
drain and which may be connected to a terminal.

An insulating material that supports the thin semiconductor layer, the insulating layer, and the source, gate, and drain electrodes.

A field-effect transistor having two independent gates, a source, and a drain. An active substrate terminated externally and independently of other elements is considered a gate for the purpose of this definition.

A field-effect transistor having a gate, a source, and a drain.

GRAPHIC SYMBOLS FOR FIELD-EFFECT TRANSISTORS

		JUNCTION-GATE	INSULATED.GATE	
		DEPLETION-TYPE		ENHANCEMENT-TYPE
				G2
岂	$\begin{aligned} & \frac{\mu}{a} \\ & \frac{0}{\tilde{I}} \\ & \hline \end{aligned}$			
$\left\|\begin{array}{c} \mathbf{4} \\ \mathbf{U} \\ \dot{Q} \end{array}\right\|$				

In the above drawings of the insulated-gate devices, the substrate (bulk) is shown terminated either internally or externally. The symbol at the right illustrates an

GLOSSARY
 FIELD-EFFECT TRANSISTORS

Letter Symbols, Terms, and Definitions	
Symbol Ter	
$\mathrm{b}_{\text {fs, }}$	common-source small-
$\mathrm{b}_{\text {is }}$.	signal (forward transfer,
$b_{\text {os, }}$	input, output, reverse
brs	transfer) susceptance
$C_{d s}$	drain-source capacitance
$C_{\text {du }}$	drain-substrate capacitance
$\mathrm{C}_{\text {iss }}$	short-circuit input
	capacitance, common-
	source
Coss	short-circuit output
	capacitance, commonsource
Crss	short-circuit reverse
	transfer capacitance, common-source
\bar{F} or F	noise figure, average or spot
Gfs, Gis, gos. grs	common-source small-
	signal (forward transfer,
	input, output, reverse
	transfer) conductance
$\begin{aligned} & \mathrm{G}_{\mathrm{pg}}, \\ & \mathrm{G}_{\mathrm{ps}} \end{aligned}$	small-signal insertion
	power gain, (common-
	gate, common-source)
$\begin{aligned} & \mathrm{G}_{\mathrm{tg}} \\ & \mathrm{G}_{\mathrm{ts}} \end{aligned}$	small-signal transducer
	power gain (common-
	gate, common-source)
10	drain current, dc
IDloff)	drain cutoff current

Definition

The imaginary part of the corresponding admittance. See Yfs. Yis, Yos, and Yrs. Symbols in the forms b_{xx} and $y_{x x}$ (imag) are equivalent.

The capacitance between the drain and source terminals with the gate terminal connected to the guard terminal of a three-terminal bridge.

The capacitance between the drain and substrate terminals with the gate and source terminals connected to the guard terminal of a three-terminal bridge.

The capacitance between the input terminals (gate and source) with the drain short-circuited to the source for alternating current. (Ref. IEEE 255)

The capacitance between the output terminals (drain and source) with the gate short-circuited to the source for alternating current. (Ref. IEEE 255)

The capacitance between the drain and gate terminals with the source connected to the guard terminal of a three-terminal bridge.

See page 1-3.

The real part of the corresponding admittance. See Yfs. Yis, Yos, and Yrs. Symbols in the forms g_{xx} and $Y_{x x}$ (real) are equivalent.

The ratio, usually expressed in dB , of the signal power delivered to the load to the signal power delivered to the input.

The ratio, usually expressed in dB , of the signal power delivered to the load to the maximum signal power available from the source.

The direct current into the drain terminal.

The direct current into the drain terminal of a depletion-type transistor with a specified reversa gate-source voltage applied to bias the device to the off state.

Symbol	Term	Definition
ID(on)	on-state drain current	The direct current into the drain terminal with a specified forward gate-source voltage applied to bias the device to the on state.
' DSS	zero-gate-voltage drain current	The direct current into the drain terminal when the gate-source voltage is zero. This is an on-state current in a depletion-type device, an off-state current in an enhancement-type device.
${ }^{1} \mathbf{G}$	gate current, dc	The direct current into the gate terminal.
IGF	forward gate current	The direct current into the gate terminal with a forward gate-source voltage applied. See VGSF.
IGR	reverse gate current	The direct current into the gate terminal with a reverse gate-source voltage applied. See $\mathrm{V}_{\text {GSR }}$ -
IGSS	reverse gate current, drain short-circuited to source	The direct current into the gate terminal of a junction-gate field-effect transistor when the gate terminal is reverse-biased with respect to the source terminal and the drain terminal is short-circuited to the source terminal.
IGSSF	forward gate current, drain short-circuited to source	The direct current into the gate terminal of an insulated-gate field-effect transistor with a forward gate-source voltage applied and the drain terminal short-circuited to the source terminal. See VGSF.
IGSSR	reverse gate current, drain short-circuited to source	The direct current into the gate terminal of an insulated-gate field-effect transistor with a reverse gate-source voltage applied and the drain terminal short-circuited to the source terminal. See $\mathrm{V}_{\mathrm{GSR}}$.
In	noise current, equivalent input	See page 1-3.
$\begin{aligned} & \operatorname{Im}\left(y_{\mathrm{fs}}\right), \\ & \operatorname{Im}\left(y_{i s}\right), \\ & \operatorname{Im}\left(y_{o s}\right), \\ & \operatorname{Im}\left(y_{r s}\right) \end{aligned}$		See preferred symbols: $b_{f s}$ or $\mathrm{yfs}_{\mathrm{f}}$ (imag). $b_{\text {is }}$ or $\mathrm{Vis}(\mathrm{imag})$. $b_{0 s}$ or Yos(imag). $b_{r s}$ or $\mathrm{Yrs}_{\text {(imag) }}$
Is	source current, dc	The direct current into the source terminal.
${ }^{1}$ S(off)	source cutoff current	The direct current into the source terminal of a depletion-type transistor with a specified gate-drain voltage applied to bias the device to the off state.
${ }^{\prime}$ SDS	zero-gate-voltage source current	The direct current into the source terminal when the gate-drain voltage is zero. This is an on-state current in a depletion-type device, an off-state current in an enhancement-type device.

GLOSSARY
 FIELD-EFFECT TRANSISTORS

Symbol	Term	Definition
$\overline{N F}$ or NF*	noise figure, average or spot	See page 1-3.
$\mathrm{r}_{\text {ds }}(\mathrm{On})$	small-signal drainsource on-state resistance	The small-signal resistance between the drain and source terminals with a specified gate-source voltage applied to bias the device to the on state. For a depletion-type device, this gate-source voltage may be zero.
rDS(on)	static drain-source on-state resistance	The dc resistance between the drain and source terminals with a specified gate-source voltage applied to bias the device to the on state. For a depletiontype device, this gate-source voltage may be zero.
Re(yfs), Re(yis), Re(Yos). Re(Yrs)		See preferred symbols: $\mathrm{gfs}_{\mathrm{f}}$ or $\mathrm{Yfs}($ real), $g_{\text {is }}$ or $y_{\text {is }}($ real $)$, gos or Yos(real). Grs or Y_{rs} (real)
$\mathbf{R}_{\boldsymbol{\theta}}$	thermal resistance	See pages 1-2 and 1-3.
Sfg or $\mathbf{5 2 1 g}$. Sfs or s21s	forward transmission coefficient (common-gate, common-source)	The respective forward or reverse transmission coefficient with the transistor in the indicated configuration. See pages 1-3 and 1-4.
$\begin{aligned} & \mathrm{s}_{\text {rg }} \text { or } \mathrm{s} 12 \mathrm{~g} \\ & \mathrm{~s}_{\text {rs }} \text { or }{ }^{2} 2 \mathrm{~s} \end{aligned}$	reverse transmission coefficient (common-gate, common-source)	
$\mathrm{sig}_{\mathrm{ig}}$ or $\mathrm{S}_{1} 1 \mathrm{~g}$. sis or s_{11} s	input refiection coefficient (common-gate, common-source)	The respective input or output reflection coefficient with the transistor in the indicated configuration. See page 1-4.
sog or s22g. sos or S22s	output reflection coefficient (common-gate, common-source)	
TJ	junction temperature	See page 1-4.
${ }^{\text {t }}$ ($($ off)	turn-off delay time	The time interval from a point 90 percent of the maximum amplitude on the trailing edge of the input pulse to a point 90 percent of the maximum amplitude on the trailing edge of the output pulse. This corresponds to storage time for a multijunction transistor. See pages 1-5 and 1-6. NOTE: This definition assumes a device initially in the off state with an input pulse applied of proper polarity to switch the device to the on state.

- $\overline{N F}$ and NF bboreviations are often used for sumbols \bar{F} and F; however, the symbols \bar{F} and F are preferred.

GLOSSARY
 FIELD-EFFECT TRANSISTORS

Symbol	Term	Definition
$t_{\text {d }}(\mathrm{on})$	turn-on delay time	The time interval from a point 10 percent of the maximum amplitude on the leading edge of the input
		pulse to a point 10 percent of the maximum amplitude on the leading edge of the output pulse.
		This corresponds to delay time for a multijunction transistor. See pages 1-5 and 1.6.
		NOTE: This definition assumes a device initially in the off state with an input pulse applied of proper polarity to switch the device to the on state.
$\mathbf{t f}^{\text {f }}$	fall time	See pages 1-5 and 1-6.
toff	turn-off time	The sum of $t_{d}(\mathrm{off})+\mathrm{tf}^{\text {. See pages }} 1.5$ and 1-6.
τ_{0}	turn-on time	The sum of $t_{d}(\mathrm{on})+t_{\text {r }}$. See pages 1.5 and 1.6.
${ }_{\text {t }}$	pulse time	See pages 1-5 and 1-6.
$\mathrm{tr}_{\mathbf{r}}$	rise time	See pages 1-5 and 1-6.
t_{w}	pulse average time	See page 1-6.
$V_{(B R) G S S}$	gate-source breakdown voltage	The breakdown voltage between the gate and source terminals with the drain terminal short-circuited to the source terminal.
		NOTE: The symbol V(BR)GSS is primarily used with junction-gate field-effect transistors. The
		symbols $V_{\text {(BR) GSSR }}$ or $V_{\text {(BR) }}$ GSSF should be used with insulated-gate transistors having shunting diodes or similar voltage-limiting devicas.
$V_{\text {(BR) }}$ GSSF	forward gate-source breakdown voltage	The breakdown voltage between the gate and source terminals with a forward gate-source voltage applied and the drain terminal short-circuited to the source terminal. See VGSF.
$V_{\text {(BR) }}$ GSSR	reverse gate-source breakdown voltage	The breakdown voltage between the gate and source terminals with a reverse gate-source voltage applied and the drain terminal short-circuited to the source terminal. See VGSR.
$\begin{aligned} & \text { VDD. } \\ & \text { VGG }_{\text {GG }}, \\ & \text { V }_{\text {SS }} \end{aligned}$	supply voltage, dc (drain, gate, source)	The dc supply voltage applied to a circuit connected to the reference terminal.
VDG	drain-gate voltage	The dc voltage between the drain and gate terminals.
VDS	drain-source voltage	The dc voltage between the drain and source terminals.

GLOSSARY
 FIELD-EFFECT TRANSISTORS

Symbol	Term	Definition
$V_{\text {DS }}(0 n)$	drain-source on-state voltage	The dc voltage between the drain and source terminals with a specified forward gate-source voltage applied to bias the device to the on state.
VDU	drain-substrate voltage	The dc voltage between the drain and substrate terminals.
$V_{\text {GS }}$	gate-source voltage	The dc voltage between the gate and source terminals.
VGSF	forward gate-source voltage	The dc voltage between the gate and source terminals of such polarity that an increase in its magnitude causes the channel resistance to decrease.
$\mathbf{V}_{\text {GSR }}$	reverse gate-source voltage	The dc voltage between the gate and source terminals of such polarity that an increase in its magnitude causes the channel resistance to increase.
$\mathbf{V}_{\mathbf{G S} \text { (off) }}$	gate-source cutoff voltage	The reverse gate-source voltage at which the magnitude of the drain current of a depletion-type field-effect transistor has been reduced to a specified low value.
$\mathbf{V}_{\mathbf{G S}(\mathrm{th})}$	gate-source threshold voltage	The forward gate-source voltage at which the magnitude of the drain current of an enhancement-type field-effect transistor has been increased to a specified low value.
$V_{\text {GU }}$	gate-substrate voltage	The dc voltage between the gate and substrate terminals.
V_{n}	noise voltage, equivalent input	See page 1-6.
$\mathbf{V}_{\mathbf{S U}}$	source-substrate voltage	The dc voltage between the source and substrate terminals.
Yfs	common-source smallsignal short-circuit forward transfer admittance	The ratio of rms drain current to rms gate-source voltage with the drain terminal ac short-circuited to the source terminal.
Yis	common-source smallsignal short-circuit input admittance	The ratio of rms gate current to rms gate-source voltage with the drain terminal ac short-circuited to the source terminal.
Yos	common-source smallsignal short-circuit output admittance	The ratio of rms drain current to rms drain-source voltage with the gate terminal ac short-circuited to the source terminal.

Symbol	Term	
Yrs	common-source small- signal short-circuit reverse transfer admittance	The ratio of rms gate current to rms drain-source voltage
the source therminal.		

SEMICONDUCTOR STANDARDS DOCUMENTS

Following are sources of standards material relating to low-power transistors and diodes:

EIA and JEDEC Standards

Electronic Industries Association
2001 Eye St. N.W.
Washington, D.C. 20006
Telephone: 202-659-2200
Registered Outlines and Gauges for Semiconductor Devices-JEDEC Publication No. 12
Preferred Lead Configurations for Field-Effect Transistors-JEDEC Publication No. 69A
JEDEC Recommendations for Letter Symbols, Abbreviations, Terms, and Definitions for Semiconductor Device Data Sheets and Specifications-JEDEC Publication No. 77
Recommended Practice for Measurement of Transistor Lead Temperature-JEDEC Publication No. 84
Quality Program Requirements for Solid-State Device Manufacturers-JEDEC Publication No. 85
Standard Test Methods for Electronic Component Parts-EIA Standard RS-186-C
Test Methods for the Collector-Base Time Constant and the Resistive Part of the Common-Emitter Input Impedance-EIA Standard RS-284

Forward Transient Measurement on Semiconductor Diodes-EIA Standard RS-286
Measurement of Small-Signal HF, VHF, and UHF Power Gain of Transistors-EIA Standard RS-306
Voltage Regulator Diode Noise Voltage Measurement-EIA Standard RS-307
Measurement of Transistor Noise Figure at MF through VHF-EIA Standard RS-311A
Measurement of Reverse Recovery Time for Semiconductor Diodes-EIA Standard RS-318
Characterization of a Reverse Recovery Test Fixture-EIA Standard RS-318-1
Thermal Equilibrium Conditions for Measurement of Diode Static Parameters-EIA Standard RS-320
Numbering of Electrodes in Multiple Electrode Semiconductor Devices and Designation of Units in Multiple Unit Semiconductor Devices-EIA Standard RS-321A

The Measurement of ICrel-EIA Standard RS-340
The Measurement of Transistor Noise Figure at Frequencies up to 20 kHz by Sinusoidal Signal-Generator Method-EIA Standard RS-353

Measurement of Transistor Equivalent Noise Voltage and Equivalent Noise Current at Frequencies up to 20 kHz -EIA Standard RS-354

Designation System for Discrete Semiconductor Devices-EIA Standard RS-370
The Measurement of Small-Signal VHF-UHF Transistor Short-Circuit Forward Current Transfer Ratio-EIA Standard RS-371

The Measurement of Small-Signal VHF.UHF Transistor Admittance Parameters-EIA Standard RS. 372
Method of Diode "O" Measurement-EIA Standard RS-381
Measurement of Small Values of Transistor Capacitance-EIA Standard RS-398
Method of Direct Measurement of Diode Stored Charge-JEDEC Suggested Standard No. 1
The Measurement of Small-Signal Transistor Scattering Parameters-JEDEC Tentative Standard No. 10

STANDARDS

International Electrotechnical Commission (IEC) Standards
American National Standards Institute, Inc.
1430 Broadway
New York, N.Y. 10018
Telephone: 212-868-1220
Publication 147: Essential Ratings and Characteristics of Semiconductor Devices and General Principles of Measuring Methods.

Part 0 - General and Terminology
Part 1 - Essential Ratings and Characteristics
Part 2 - General Principles of Measuring Methods
Part 3 - Reference Methods of Measurement
Publication 148: Letter Symbols for Semiconductor Devices and Integrated Microcircuits
Publication 191: Mechanical Standardization of Semiconductor Devices

Military Standards

Commanding Officer
U.S. Naval Publications and Forms Center

5801 Tabor Avenue
Philadelphia, Pa. 19120
MIL-S-19500: Semiconductor Devices, General Specification for
MIL-STD-105: Sampling Procedures and Tables for Inspection by Attributes
MIL-STD-202: Test Methods for Electronic and Electrical Component Parts
MIL-STD-750: Test Methods for Semiconductor Devices
MIL-STD-883: Test Methods and Procedures for Microelectronics

Transistor
 Selection Guides

TRANSISTOR SELECTION GUIDES

These guides are arrayed into families according to transistor structure and applications. These families are:
FAMILY GUIDE Page
N.P.N Low-Level Amplifiers 2.1
P-N-P Low-Level Amplifiers $2-2$
N-P.N High-Voltage Amplifiers 2.3
P-N-P High-Voltage Amplifiers $2 \cdot 3$
N-P-N High-Frequency Amplifiers 2-4
P-N.P High-Frequency Amplifiers 2-4
N-P-N General Purpose 2-5
P-N-P General Purpose 2-7
N-P.N Switches 2.9
P-N-P Switches $2 \cdot 10$
N-P-N Choppers $2-11$
P-N-P Choppers 2.11
N-P-N Matched Duals 2-12
P-N-P Matched Duals 2.12
N-P-N Unmatched Duals $2 \cdot 13$
P-N-P Unmatched Duals 2-13
N-P-N and
P-N-P Quads 2.13
JFET N-Channel Low-Frequency, Low-Noise Amplifiers 2.14
JFET P-Channel Low-Frequency, Low-Noise Amplifiers 2.14
JFET N-Channel General Purpose Amplifiers 2-15
JFET P-Channel General Purpose Amplifiers 2-15
JFET High-Frequency Amplifiers $2 \cdot 16$
IGFET High-Frequency Amplifiers 2-16
JFET N-Channel Switches and Choppers $2 \cdot 17$
JFET P-Channel Switches and Choppers 2-17
IGFET N-Channel Switches and Choppers 2.18
IGFET P-Channel Switches and Choppers 2-18
JFET Duals $2-18$
IGFET Duals $2-18$
Unijunction, Conventional $2 \cdot 19$
Unijunction, Programmable 2-19

The tabular entries within these families are not made on the usual manner of increasing type number, which would have little inherent utility, but rather are ranked by the most-significant electrical characteristic of that family. Where there is more than one transistor type having the identical primary characteristic, the types within that group are further ranked by a secondary characteristic, and so on.

This form of organization works most efficiently when the user's selection criteria coincides with the organizational lay-out, but should not present undue difficulties if it does not.

It should be noted that the entries are nonexclusive; that is a transistor type may appear in more than one family if its specifications so dictate.

Grown-junction transistors and certain other types not recommended for new design do not appear in these guides.

N-P-N LOW-LEVEL AMPLIFIERS

${ }^{1} \mathrm{IC}$	MIN-MAX	$V_{\text {(BR)CEO }}$ MIN	NOISE FIGURE F f F (NOISE BW) MAX	DEVICE TYPE	PACKAGE* -See page 2-20.	CHIP
$10 \mu \mathrm{~A}$	$30-$	30 V		2N4138	T0-46	N18
$10 \mu \mathrm{~A}$	30.	30 V		2N2432	TO-18	N18
$10 \mu \mathrm{~A}$	30.	45 V		2N2432A	T0-18	N18
$10 \mu \mathrm{~A}$	40-120	45 V	4 dB (15.7 kHz)	2N929	T0-18	N11
$10 \mu \mathrm{~A}$	40-120	60 V	4 dB @ 1 kHz	2N2483	TO-18	N11
$10 \mu \mathrm{~A}$	100-300	45 V	उdB $(15.7 \mathrm{kHz})$	2N930	TO-18	N11
$10 \mu \mathrm{~A}$	100-500	60 V	3 dB @ 1 kHz	2N2484	TO-18	N11
$10 \mu \mathrm{~A}$	120-360	45 V		2N2586	TO-18	N11
$10 \mu \mathrm{~A}$	250-500	60 V	15 dB @ 10 Hz	2N3117	TO-18	N11
$10 \mu \mathrm{~A}$	400-800	60 V	15 dB @ 10 Hz	2N4104	TO-18	N11
$100 \mu \mathrm{~A}$	100-300	50 V	उठB (15.7 kHz)	2N5209	TO-92	N21
$100 \mu \mathrm{~A}$	100-300	50 V	3 dB (15.7 kHz)	A5T5209	AAA	N21
$100 \mu \mathrm{~A}$	100-400	30 V	$5 \mathrm{~dB}(15.7 \mathrm{kHz})$	A8T3707	TO-92	N21
$100 \mu \mathrm{~A}$	100-400	30 V	$\overline{5 \mathrm{~dB}}(15.7 \mathrm{kHz})$	2N3707	TO-92	N21
$100 \mu \mathrm{~A}$	100-400	30 V	$\overline{5 \mathrm{~dB}}(15.7 \mathrm{kHz})$	A5T3707	AAA	N21
$100 \mu \mathrm{~A}$	200-600	50 V	$2 \mathrm{~dB}(15.7 \mathrm{kHz})$	2N5210	TO-92	N21
$100 \mu \mathrm{~A}$	200-600	50 V	$2 \overline{d \bar{B}}(15.7 \mathrm{kHz})$	A5T5210	AAA	N21
$100 \mu \mathrm{~A}$	250-700	40 V	2 dB @ 1 kHz	TIS94	TO-92	N21
$100 \mu \mathrm{~A}$	250-700	40 V	2 dB @ 1 kHz	TIS97	AAA	N21
1 mA	45-165	30 V		A813709	TO-92	N21
1 mA	45-165	30 V		2N3709	TO-92	N21
1 mA	45-165	30 V		A5T3709	AAA	N21
1 mA	45-660	30 V		A8T3708	TO-92	N21
1 mA	45-660	30 V		2N3708	TO.92	N21
1 mA	45-660	30 V		A5T3708	AAA	N21
1 mA	90-330	30 V		A8T3710	TO-92	N21
1 mA	90-330	30 V		2N3710	TO-92	N21
1 mA	90-330	30 V		A5T3710	AAA	N21
1 mA	100-300	60 V		TiS95	TO-92	N21
1 mA	100-300	60 V		TIS98	AAA	N21
1 mA	150-600	25 V		A5T3565	AAA	N21
1 mA	180-660	30 V		A813711	TO-92	N21
1 mA	180-660	30 V		2N3711	TO-92	N21
1 mA	180-660	30 V		A5T3711	AAA	N21
2 mA	35-500	15 V		2N5219	TO-92	N21
2 mA	35-500	15 V		A5T5219	AAA	N21
2 mA	50-800	20 V		2N5223	TO-92	N21
2 mA	50-800	20 V		A5T5223	AAA	N21
2 mA	150-300	25 V		A5T3392	AAA	N21
2 mA	150-300	25 V		A7T3392	TO-92	N21
2 mA	150-300	25 V		A8T3392	TO-92	N21
2 mA	250-500	25 V		A5T3391	AAA	N21
2 mA	250-500	25 V	$\overline{5 \mathrm{~dB}} \mathbf{(1 5 . 7} \mathrm{kHz})$	A5T3391A	AAA	N21
2 mA	250-500	25 V		A7T3391	TO-92	N21
2 mA	250-500	25 V	$5 \mathrm{~dB}(15.7 \mathrm{kHz})$	ATT3391A	TO-92	N21
2 mA	250-500	25 V		A8T3391	TO-92	N21
2 mA	250-500	25 V	$5 \mathrm{~dB}(15.7 \mathrm{kHz})$	A8T3391A	T0-92	N21
100 mA	55-300	65 V		TIS96	TO-92	N21
100 mA	55-300	65 V		TIS99	AAA	N21

P-NP LOW-LEVEL AMPLIFIERS

(3) ${ }^{1} \mathbf{C}$	MIN-MAX	$V_{\text {(BR)CEO }}$ MIN	$\begin{aligned} & \text { NOISE FIGURE } \\ & \text { F@f} \\ & \bar{F} \text { (NOISE BW) } \\ & \text { MAX } \end{aligned}$	Device TYPE	PACKAGE*	CHIP
$10 \mu \mathrm{~A}$	40-120	45 V	$\overline{4 \mathrm{~dB}}$ (15.7 kHz)	A5T 2604	AAA	P19
$10 \mu \mathrm{~A}$	40-120	45 V	4 dB (15.7 kHz)	2N2604	TO-46	P19
$10 \mu \mathrm{~A}$	100-300	45 V	$\overline{3 \mathrm{~dB}}(45.7 \mathrm{kHz})$	A5T 2605	AAA	P19
$10 \mu \mathrm{~A}$	100-300	45 V	3 ${ }^{\text {dB }}$ (15.7 kHz)	2N2605	TO-46	P19
$10 \mu \mathrm{~A}$	100-300	60 V	$3 \mathrm{~dB} @ 1 \mathrm{kHz}$	2N3962	TO. 18	P18
$10 \mu \mathrm{~A}$	100-300	80 V	3 dB @ 1 kHz	2N3963	TO-18	P18
$10 \mu A$	100-400	30 V	$5 \mathrm{~dB}(15.7 \mathrm{kHz})$	2N4058	TO-92	P18
$10 \mu \mathrm{~A}$	100-400	30 V	$5 \mathrm{~dB}(15.7 \mathrm{kHz})$	A5T4058	AAA	P18
$10 \mu \mathrm{~A}$	250-500	45 V	2 dB @ 1 kHz	2N3964	TO-18	P18
$10 \mu \mathrm{~A}$	250-500	60 V	2 dB @ 1 kHz	2N3965	TO-18	P18
$100 \mu \mathrm{~A}$	50-	40 V		A5T4248	AAA	P18
$100 \mu \mathrm{~A}$	100-300	60 V	3 dB @ 1 kHz	A5T4249	AAA	P18
$100 \mu \mathrm{~A}$	100-400	30 V	$5 \mathrm{~dB}(15.7 \mathrm{kHz})$	A8T4058	TO-92	P18
$100 \mu \mathrm{~A}$	150-500	50 V	3 dB @ 1 kHz	2N5086	TO-92	P18
$100 \mu \mathrm{~A}$	150-500	50 V	3 dB @ 1 kHz	A5T5086	AAA	P18
$100 \mu \mathrm{~A}$	250-700	40 V	2 dB @ 1 kHz	A5T4250	AAA	P18
$100 \mu \mathrm{~A}$	250-800	50 V	2 dB @ 1 kHz	2N5087	TO-92	P18
$100 \mu \mathrm{~A}$	250-800	50 V	2 dB @ 1 kHz	A5T5087	AAA	P18
$500 \mu \mathrm{~A}$	150-450	60 V	3 dB @ 1 kHz	2N3798	TO-18	P19
$500 \mu \mathrm{~A}$	300-900	60 V	1.5 dB @ 1 kHz	2N3799	TO-18	P19
1 mA	25.	32 V		TIS38	TO-92	P24
1 mA	25-	32 V		TIS138	AAA	P24
1 mA	30.	35 V		2N2946	TO-46	P14
1 mA	40.	20 V		2N2945	TO-46	P14
1 mA	45-	32 V	2.5 dB typ @ 1 MHz	TIS37	TO-92	P24
1 mA	45-	32 V	2.5 d8 typ@ 1 MHz	TIS137	AAA	P24
1 mA	45-165	30 V		A8T4060	TO-92	P18
1 mA	45-165	30 V		2N4060	TO-92	P18
1 mA	45-165	30 V		A5T4060	AAA	P18
1 mA	45-660	30 V		A8T4059	TO-92	P18
1 mA	45-660	30 V		2N4059	T0.92	P18
1 mA	45-660	30 V		A5T4059	AAA	P18
1 mA	50	35 V		2N2946A	TO-46	P14
1 mA	70.	20 V		2N2945A	TO-46	P14
1 mA	80	10 V		2N2944	TO-46	P14
1 mA	90.330	30 V		A8T4061	TO-92	P18
1 mA	90-330	30 V		2N4061	TO-92	P18
1 mA	90-330	30 V		A5T4061	AAA	P18
1 mA	100.	10 V		2N2944A	TO-46	P14
1 mA	180-660	30 V		A8T4062	TO-92	P18
1 mA	180-660	30 V		2N4062	TO-92	P18
1 mA	180-660	30 V		A5T4062	AAA	P18
2 mA	50-700	30 V		A5T5227	AAA	P18
2 mA	50-700	30 V		2N5227	TO-92	P18
12 mA	30-400	24 V		A8T404	T0.92	P14
12 mA	30-400	35 V		A8T404A	TO-92	P14
12 mA	30-400	24 V		A5T404	AAA	P14
12 mA	30-400	35 V		A5T404A	AAA	P14

[^4]N-P-N HIGH-VOLTAGE AMPLIFIERS

$\begin{gathered} \mathbf{V}_{\text {(BR)CEO }} \\ \text { MIN } \end{gathered}$	$h_{\text {FE }}$		DEVICE TYPE	PACKAGE*	CHIP
	@ lc	MIN-MAX			
140 V	1 mA	60-	2N5550	TO-92	N27
140 V	1 mA	60	A5T5550	AAA	$\mathbf{N} 27$
150 V	30 mA	30-120	2N3114	TO-39	N15
150 V	25 mA	$30-$	TIS101	AAA	N27
160 V	1 mA	80	2N5551	TO-92	N27
160 V	1 mA	80	A5T5551	AAA	N27
180 V	25 mA	30.	TIS100	AAA	N27
250 V	30 mA	30-150	A5T5059	AAA	N15
	30 mA	30-150	2N5059	TO-39	N15
300 V	30 mA	35-150	A5T5058	AAA	N15
300 V	30 mA	35-150	2N5058	TO-39	N15

P-N-P HIGH-VOLTAGE AMPLIFIERS

$\begin{gathered} \mathrm{V}_{\text {tBR)CEO }} \\ \text { MIN } \end{gathered}$	${ }_{9} \mathbf{C}$	MIN-MAX	DEVICE TYPE	PACKAGE*	CHIP
80 V	1 mA	40-	2N3494	TO-5	P17
80 V	1 mA	40.	A5T3496	AAA	P17
80 V	1 mA	40-	2N3496	T0-18	P17
120 V	1 mA	40-	2N3495	TO-5	P17
120 V	1 mA	40-	A5T3497	AAA	P17
120 V	1 mA	40	2N3497	TO-18	P17
120 V	10 mA	40-180	A5T5400	AAA	P22
120 V	10 mA	40-180	2N5400	TO-92	P22
140 V	50 mA	50-150	2N3634	TO-39	P22
140 V	50 mA	100-300	2N3635	TO-39	P22
150 V	10 mA	60-240	A5T5401	AAA	P22
150 V	10 mA	60-240	2N5401	TO-92	P22
175 V	50 mA	50-150	2N3636	TO-39	P22
175 V	50 mA	100-300	2N3637	T0-39	P22

*See package drawings on page 2-20.

TRANSISTOR SELECTION GUIDES

N-P-N HIGH-FREQUENCY AMPLIFIERS

fT	V(br)ceo	CAPACITANCE		DEVICE TYPE	PACKAGE*	CHIP
MIN	MIN	PARAMETER	MAX			
500 MHz	12 V	Ccb	1.3 pF	TIS64A	AAA	N22
300 MHz	45 V	ccb	1 pF	TIS105	AAA	N20
350 MHz	30 V	Cres	0.4 pF	TIS84	AAA	N17
350 MHz	30 V	Cres	0.4 pF	TIS108	AAA	N17
500 MHz	12 V	Ccb	1.3 pF	TIS63A	AAA	N22
450 MHz	30 V	Cce	0.3 pF	TIS125	AAA	N26
450 MHz	15 V	Ccb	1.3 pF	2N5222	TO-92	N24
450 MHz	15 V	Ccb	1.3 pF	A6T5222	AAA	N24
500 MHz	12 V	$\mathrm{C}_{\text {cb }}$	1.3 pF	TIS62A	AAA	N22
500 MHz	30 V	Cres	0.45 pF	TIS86	AAA	N16
500 MHz	45 V	Cres	0.45 pF	TIS87	AAA	N16
500 MHz	15 V	Cobo	1.7 pF	2N917	TO-72	N22
600 MHz	15 V	Cobo	1.7 pF	2N918	TO.72	N22
600 MHz	18 V	Ccb	0.45 pF	2N4252	TO-72	N16
600 MHz	18 V	Ccb	0.45 pF	2N4253	TO-72	N16
600 MHz	18 V	Ccb	0.65 pF	2N4996	AAA	N16
600 MHz	18 V	Ccb	0.65 pF	2N4997	AAA	N16
600 MHz	40 V	Ccb	0.36 pF	TIS126	AAA	N29
800 MHz	25 V	$\mathrm{C}_{\text {cb }}$	0.8 pF	TIS129	AAA	N30
1000 MHz	13 V	Ccb	0.85 pF	A5T3572	AAA	N28
1000 MHz	13 V	Ccb	0.85 pF	2N3572	TO-72	N28
1200 MHz	15 V	Ccb	0.85 pF	A5T3571	AAA	N28
1200 MHz	15 V	Ccb	0.85 pF	2N3571	TO-72	N28
1500 MHz	15 V	ccb	0.75 pF	2N3570	TO-72	N28

P-NP HIGH-FREQUENCY AMPLIFIERS

${ }^{\text {f }}$	V(BR)CEO MIN	CAPACITANCE		DEVICE	PACKAGE*	CHIP
MIN		PARAMETER	MAX	TYPE		
50 MHz	32 V	Ccb	1.7 pF	TIS38	TO-92	P24
50 MHz	32 V	Ccb	1.7 pF	TIS138	AAA	P24
80 MHz	32 V	Ccb	1.7 pF	TIS37	TO-92	P24
$80 \mathrm{MHz}$	32 V	Ccb	1.7 pF	TIS137	AAA	P24
650 MHz	45 V	$\mathrm{C}_{\text {ce }}$	0.3 pF	TIS128	AAA	P25
1600 MHz	15 V	Ccb	2.5 pF	2N4260	TO-72	P27
1600 MHz	15 V	Ccb	2.5 pF	A5T4260	AAA	P27
2000 MHz	15 V	Ccb	2.5 pF	2N4261	TO. 72	P27
2000 MHz	15 V	Ccb	2.5 pF	A5T4261	AAA	P27

[^5]N-P-N GENERAL PURPOSE

V(br)ceo	hfe		$\begin{gathered} \mathrm{f} \mathrm{~T} \\ \mathrm{MiN} \end{gathered}$	DEVICE TYPE	PACKAGE*	CHIP
MIN	- IC	MIN-MAX				
15 V	50 mA	30-600	100 MHz	2N5220	TO-92	N24
15 V	50 mA	30-600	100 MHz	A5T5220	AAA	N24
20 V	50 mA	30-600	100 MHz	A8T3706	TO-92	N24
20 V	50 mA	30-600	100 MHz	2N3706	TO-92	N24
20 V	50 mA	30-600	100 MHz	2N5451	AAA	N24
25 V	1 mA	150-600	40 MHz	A5T3565	AAA	N21
25 V	2 mA	120-360	300 MHz	A5T4124	AAA	N14
25 V	2 mA	120-360	300 MHz	2N4124	TO-92	N14
25 V	2 mA	150-300		A5T3392	AAA	N21
25 V	2 mA	150-300		A7T3392	TO-92	N21
25 V	2 mA	150-300		A8T3392	T0-92	N21
25 V	2 mA	250-500		A5T3391	AAA	N21
25 V	2 mA	250-500		A5T3391A	AAA	N21
25 V	2 mA	250-500		A7T3391	TO-92	N21
25 V	2 mA	250-500		A7T3391A	T0.92	N21
25 V	2 mA	250-500		A8T3391	T0.92	N21
25 V	2 mA	250-500		A873391A	TO-92	N21
25 V	10 mA	100-500		A5T5172	AAA	N21
25 V	10 mA	100-500		ATT5172	TO-92	N21
25 V	10 mA	100-500		A8T5172	T0-92	N21
25 V	50 mA	30-600	50 MHz	2N5225	TO-92	N24
25 V	50 mA	30-600	50 MHz	A5T5225	AAA	N24
30 V	2 mA	50-150	250 MHz	A5T4123	AAA	N14
30 V	2 mA	50-150	250 MHz	2N4123	TO-92	N14
30 V	10 mA	1000-	200 MHz	2N5526	T0-92	N21
30 V	10 mA	$5000-$	200 MHz	2N5525	TO-92	N21
30 V	50 mA	50-150	100 MHz	A8T3705	TO-92	N24
30 V	50 mA	50-150	100 MHz	2N3705	TO.92	N24
30 V	50 mA	50-150	100 MHz	2N5450	AAA	N24
30 V	50 mA	100-300	100 MHz	A8T3704	TO-92	N24
30 V	50 mA	100-300	100 MHz	2N3704	TO-92	N24
30 V	50 mA	100-300	100 MHz	2N5449	AAA	N24
30 V	150 mA	20-60	250 MHz	2N2217	TO-5	N24
30 V	150 mA	20-60	250 MHz	2N2220	TO-18	N24
30 V	150 mA	40-120	250 MHz	2N2218	TO-5	N24
30 V	150 mA	40-120	250 MHz	2N2221	TO-18	N24
30 V	150 mA	100-400	250 MHz	TIS109	AAA	N24
30 Vt	150 mA	100-300	70 MHz	2N956	TO-18	N24
30 V	150 mA	100-300	50 MHz	2N1420	TO-5	N24
30 V	150 mA	100-300	50 MHz	2N1507	TO-5	N24
30 V	150 mA	100-300	250 MHz	2N2219	TO-5	N24
30 V	150 mA	100-300	250 MHz	Q2T2222	TO-116	N24
30 V	150 mA	100-300	250 MHz	A5T2222	AAA	N 24
30 V	150 mA	100-300	250 MHz	2N2222	TO. 18	N24
40 V	$100 \mu \mathrm{~A}$	250-700	200 MHz	TIS94	TO-92	N21
40 V	$100 \mu \mathrm{~A}$	250.700	200 MHz	TIS97	AAA	N21
40 V	10 mA	50-150	250 MHz	A5T3903	AAA	N14
40 V	10 mA	- 50-150	250 MHz	2N3903	TO-92	N14
40 V	10 mA	100-300	300 MHz	A5T3904	AAA	N14

-See package drawings on page 2-20. $\quad t V_{(B R) C E O}$ approximated from $V_{\text {(BR)CER }}$.

N-P-N GENERAL PURPOSE (Continued)

$\mathbf{V}_{\text {(BR)CEO }}$ MIN	(2) ${ }^{\text {c }}$	MIN-MAX	$\begin{aligned} & \text { TT } \\ & \text { MIN } \end{aligned}$	DEVICE TYPE	PACKAGE*	CHIP
40 V	10 mA	100-300	300 MHz	2N3904	TO-92	N14
40 V	50 mA	100-300		TIS90	TO-92	N24
40 V	50 mA	100-300		TIS92	AAA	N24
40 V	100 mA	7000-70,000		2N997	TO-18	N23
40 V	150 mA	20-60	40 MHz	2N696	TO-5	N24
$40 \mathrm{~V} \ddagger$	150 mA	20-60	40 MHz	2N717	TO-18	N24
40 V	150 mA	20-60	40 MHz	2N730	TO-18	N24
40 V	150 mA	20-60	50 MHz	2N2194	T0-39	N23
40 V	150 mA	20-60	50 MHz	2N2194A	TO-39	N23
$40 \mathrm{~V} \ddagger$	150 mA	40-120	50 MHz	2N697	TO-5	N24
$40 \mathrm{~V} \ddagger$	150 mA	40-120	50 MHz	2N718	TO-18	N24
$40 \mathrm{~V}{ }^{\top}$	150 mA	40-120	60 MHz	2N718A	TO-18	N24
40 V	150 mA	40-120	50 MHz	2N731	TO-18	N24
$40 \mathrm{~V}{ }^{\dagger}$	150 mA	40-120	60 MHz	2N1613	TO-5	N24
40 V	150 mA	40-120	250 MHz	2N2218A	TO-5	N24
40 V	150 mA	40-120	250 MHz	2N2221A	TO-18	N24
40 V	150 mA	50-150	200 MHz	TIS110	AAA	N24
40 V	150 mA	50-250	100 MHz	2N3053	TO. 39	N13
40 V	150 mA	100-300	250 MHz	TIS111	AAA	N24
$40 \mathrm{~V} \dagger$	150 mA	100-300	70 MHz	2N1711	TO-5	N24
40 V	150 mA	100-300	50 MHz	A5T2192	AAA	N23
40 V	150 mA	100-300	50 MHz	2N2192	TO.39	N23
40 V	150 mA	100-300	50 MHz	2N2192A	TO-39	N23
40 V	150 mA	100-300	300 MHz	2N2219A	TO-5	N24
40 V	150 mA	100-300	300 MHz	2N2222A	TO-18	N24
45 V	150 mA	50-200	100 MHz	2N2270	T0.39	N23
50 V	10 mA	60-400	60 MHz	2N4409	TO-92	N23
50 V	10 mA	60-400	60 MHz	A5T4409	AAA	N23
50 V	150 mA	40-120	50 MHz	A5T2193	AAA	N23
50 V	150 mA	40-120	50 MHz	2N2193	TO-39	N23
50 V	150 mA	40-120	50 MHz	2N2193A	TO-39	N23
60 V	1 mA	100-300	200 MHz	TIS95	TO-92	N21
60 V	1 mA	100-300	200 MHz	TIS98	AAA	N21
60 V	5 mA	60-200	60 MHz	2N1566	TO-39	N23
60 V	10 mA	15.	40 MHz	2N1975	TO-39	N23
60 V	10 mA	15.	40 MHz	2N912	TO-18	N23
60 V	10 mA	35.	50 MHz	2N911	TO-18	N23
60 V	10 mA	35	50 MHz	2N1974	TO. 39	N23
60 V	10 mA	75	60 MHz	2N910	TO-18	N23
60 V	10 mA	75	60 MHz	2N1973	T0-39	N23
60 V	10 mA	1600-8000		2N998	TO-72	N23
60 V	100 mA	7000-70,000		2N999	TO-72	N23
60 V	150 mA	20-60	40 MHz	2N698	TO-39	N23
$60 \mathrm{~V}{ }^{\dagger}$	150 mA	20-60	40 MHz	2N719	TO-18	N23
60 V	150 mA	20-60	40 MHz	2N719A	TO.18	N23
$60 \mathrm{~V}{ }^{\dagger}$	150 mA	40-120	50 MHz	2N699	TO-39	N23
$60 \mathrm{~V}{ }^{\dagger}$	150 mA	40-120	50 MHz	2N720	T0-18	N23
60 V	150 mA	40-120	50 MHz	2N870	TO-18	N23

[^6]NP-N GENERAL PURPOSE (Continued)

$\begin{gathered} \hline \text { V(BR)CEO } \\ \text { MIN } \end{gathered}$	- Ic_{6}	MIN-MAX	$\begin{aligned} & \text { IT } \\ & \text { MIN } \end{aligned}$	DEVICE TYPE	PACKAGE*	CHIP
60 V	150 mA	40-120	50 MHz	2N1889	T0.39	N23
60 V	150 mA	100-300	60 MHz	2N871	TO-18	N23
60 V	150 mA	100-300	60 MHz	2N1890	TO. 39	N23
65 V	150 mA	40-120	60 MHz	2N2102	T0.39	N23
65 V	150 mA	40-120	60 MHz	2N2102A	T0.39	N23
65 V	100 mA	55-300	200 MHz	TIS96	T0.92	N21
65 V	100 mA	56-300	200 MHz	TIS98	AAA	N21
80 V	10 mA	60-400	60 MHz	2N4410	TO-92	N23
80 V	10 mA	60-400	60 MHz	A5T4410	AAA	N23
80 V	150 mA	40.120	50 MHz	2N720A	TO-18	N23
80 V	160 mA	40-120	50 MHz	2N1893	T0-39	N23
80 V	160 mA	40-120	50 MHz	A5T2243	AAA	N23
80 V	150 mA	40-120	50 MHz	2N2243	TO-39	N23
80 V	150 mA	40-120	50 MHz	2N2243A	T0-39	N23
80 V	150 mA	50-150	50 MHz	2N3036	T0.39	N23

P.N.P GENERAL PURPOSE

V(BR)CEO	hfe		$\begin{gathered} \mathbf{F T}^{\prime} \\ \text { MIN } \end{gathered}$	DEVICE TYPE	PACKACE*	CHIP
MIN	- Ic	MIN-MAX				
15V	60 mA	30-600	100 MHz	A5T5221	AAA	P20
15 V	50 mA	$30-600$	100 MHz	2N5221	TO-92	P20
25 V	2 mA	120-360	250 MHz	2N4126	TO-92	P15
25 V	2 mA	120-360	250 MHz	A5T4126	AAA	P15
25 V	50 mA	30.	100 MHz	A5T3638	AAA	P20
25 V	50 mA	30-600	50 MHz	2N5226	TO-92	P20
25 V	60 mA	30-600	50 MHz	A5T5226	AAA	P20
25 V	50 mA	60-300	100 MHz	2N3702	TO-92	P20
25 V	50 mA	60-300	100 MHz	A8T3702	TO-92	P20
25 V	50 mA	60-300	100 MHz	2N5447	AAA	P20
25 V	50 mA	100-	150 MHz	A5T3638A	AAA	P20
30 V	2 mA	50-150	200 MHz	A5T4125	AAA	P15
30 V	2 mA	50-150	200 MHz	2N4125	TO-92	P15
30 V	50 mA	30-150	100 MHz	2N3703	TO-92	P20
30 V	50 mA	30-150	100 MHz	A8T3703	T0.92	P20
30 V	50 mA	30-150	100 MHz	2N5448	AAA	P20
35 V	150 mA	$20-45$	50 MHz	2N721	TO-18	P20
35 V	150 mA	20-46	50 MHz	2N1131	T0-39	P20
35 V	150 mA	30-90	60 MHz	2N722	T0-18	P20
35 V	150 mA	30-90	60 MHz	2N1132	T0.39	P20
35 V	150 mA	75-200	60 MHz	2N2303	TO-5	P20
40 V	10 mA	50-160	250 MHz	2N3250	TO-18	P23
40 V	10 mA	50-150	200 MHz	A5T3905	AAA	P15
40 V	10 mA	50-150	200 MHz	2N3905	TO-92	P15
40 V	10 mA	100-300	300 MHz	2N3251	TO-18	P23
40 V	10 mA	100-300	250 MHz	A5T3906	AAA	P15
40 V	10 mA	100-300	250 MHz	2N3906	TO-92	P15
40 V	50 mA	100-300		TIS91	TO-92	P20
40 V	50 mA	100-300		TiS93	AAA	P20

*See pack ege drawings on page 2-20.

transistor selection guides

P-N-P GENERAL PURPOSE (Continued)

V(BR)CEO	hFE		$\mathbf{f}_{\mathbf{T}}$MIN	DEVICE TYPE	PACKACE*	CHIP
MIN	- Ic	MIN-MAX				
40 V	150 mA	40-120	200 MHz	2N2904	TO-6	P20
40 V	150 mA	40-120	200 MHz	2N2906	TO-18	P20
40 V	150 mA	40-120	200 MHz	2N3485	TO-46	P20
40 V	150 mA	50-150	150 MHz	A5T4402	AAA	P20
40 V	150 mA	50-150	150 MHz	2N4402	TO.92	P20
40 V	150 mA	100-300	200 MHz	TIS112	AAA	P20
40 V	150 mA	100-300	200 MHz	Q2T2905	TO-116	P20
40 V	150 mA	100-300	200 MHz	2N2905	TO-5	P20
40 V	150 mA	100-300	200 MHz	A5T2907	AAA	P20
40 V	150 mA	100-300	200 MHz	2N2907	TO-18	P20
40 V	150 mA	100-300	200 MHz	2N3486	TO-46	P20
40 V	150 mA	100-300	200 MHz	A5T4403	AAA	P20
40 V	150 mA	100-300	200 MHz	2N4403	TO-92	P20
45 V	150 mA	100-300	200 MHz	2N3502	TO-5	P20
45 V	150 mA	100-300	200 MHz	A5T3504	AAA	P20
45 V	150 mA	100-300	200 MHz	2N3504	TO-18	P20
45 V	150 mA	100-300	200 MHz	A5T3644	AAA	P20
60 V	10 mA	50-150	250 MHz	2N3250A	TO-18	P23
60 V	10 mA	100-300	300 MHz	2N3251A	T0-18	P23
60 V	100 mA	40-120	100 MHz	A8T4026	TO-92	P16
60 V	100 mA	40-120	100 MHz	A5T4026	AAA	P16
60 V	100 mA	40-120	100 MHz	2N4026	TO-18	P16
60 V	100 mA	40-120	100 MHz	2N4030	TO-39	P16
60 V	100 mA	100-300	150 MHz	A8T4028	TO-92	P16
60 V	100 mA	100-300	150 MHz	A5T4028	AAA	P16
60 V	100 mA	100-300	150 MHz	2N4028	TO-18	P16
60 V	100 mA	100-300	150 MHz	2N4032	T0-39	P16
60 V	150 mA	40-120	200 MHz	2N2904A	TO-5	P20
60 V	150 mA	40-120	200 MHz	2N2906A	TO-18	P20
60 V	150 mA	40-120	200 MHz	2N3485A	TO-46	P20
60 V	150 mA	100-300	200 MHz	2N2905A	TO-5	P20
60 V	160 mA	100-300	200 MHz	2N2907A	TO-18	P20
60 V	150 mA	100-300	200 MHz	2N3486A	TO-46	P20
60 V	150 mA	100-300	200 MHz	2N3503	TO-5	P20
60 V	150 mA	100-300	200 MHz	A5T3505	AAA	P20
60 V	150 mA	100-300	200 MHz	2N3505	TO-18	P20
60 V	150 mA	100-300	200 MHz	A5T3645	AAA	P20
80 V	100 mA	40-120	100 MHz	A8T4027	TO-92	P16
80 V	100 mA	40-120	100 MHz	A6T4027	AAA	P16
80 V	100 mA	40-120	100 MHz	2N4027	TO-18	P16
80 V	100 mA	40-120	100 MHz	2N4031	TO-39	P16
80 V	100 mA	100-300	150 MHz	A8T4029	TO-92	P16
80 V	100 mA	100-300	150 MHz	A5T4029	AAA	P16
80 V	100 mA	100-300	150 MHz	2N4029	TO-18	P16
80 V	100 mA	100-300	150 MHz	2N4033	TO-39	P16

[^7]
TRANSISTOR SELECTION GUIDES

NP-N SWITCHES

SWITCHING TIMES			V(Br)ceo MIN		device TYPE	PACKAGE*	CHIP
- ic	ton MAX	$\begin{aligned} & \text { toff }^{\text {MAX }} \end{aligned}$					
10 mA	70 ns	225 ns	40 V	0.2 V (10 mA	A5T3903	AAA	N14
10 mA	70 ns	225 ns	40 V	0.2 V (10 10 mA	2N3903	TO-92	N14
10 mA	70 ns	250 ns	40 V	$0.2 \mathrm{~V}=10 \mathrm{~mA}$	A6T3904	AAA	N14
10 mA	70 ns	250 ns	40 V	$0.2 \mathrm{~V} \odot 10 \mathrm{~mA}$		то.92	N14
10 mA	22 typ ns	32 typ ns	30 V	$0.3 V$ ¢ 50 mA	2N4123	TO-92	N14
10 mA	22 typ ns	32 typ ns	30 V	0.3 V - 50 mA	A6T4123	AAA	N14
10 mA	22 typ ns	32 typ ns	25 V	0.3 V ¢ 50 mA	2N4124	TO-92	N14
10 mA	22 typ ns	32 typ ns	25 V	$0.3 \mathrm{~V} @ 50 \mathrm{~mA}$	A5T4124	AAA	N14
160 mA	20 typ ns	113 typ ns	40 V	$0.4 V$ ¢ 150 mA	TIS110	AAA	N24
150 mA	20 typ ns	113 typ ns	40 V	$0.4 V$ ¢ 150 mA	TIS111	AAA	N24
150 mA	35 ns	285 ns	40 V	$0.3 \mathrm{~V} @ 160 \mathrm{~mA}$	2N2218A	TO-5	N24
160 mA	35 ns	285 ns	40 V	$0.3 V$ ¢ 150 mA	2N2218A	TO-5	N24
160 mA	35 ns	285 ns	40 V	0.3 V 9150 mA	2N2221A	TO-18	N24
150 mA	36 ns	285 ns	40 V	$0.3 \mathrm{~V}-150 \mathrm{~mA}$	2N2222A	T0-18	N24
150 mA	40 ns	40 ns	30 V	0.45 V - 150 mA	2N2537	TO-5	N19
150 mA	40 ns	40 ns	30 V	0.45 V - 150 mA	2N2538	TO-5	N19
$150 \mathrm{~mA}$	40 ns	40 ns	30 V	0.45 V - 150 mA	2N2539	TO-18	N18
150 mA	40 ns	40 ns	30 V	0.45 V -150 mA	2N2540	TO-18	N19
150 mA	20 typ ns	113 typ ns	30 V	0.4 V -150 mA	TIS109	AAA	N24
150 mA	20 typ ns	113 typ ns	30 V	0.4 V ¢ 150 mA	$2 N 2217$	TO-5	N24
150 mA	20 typ ns	113 typ ns	30 V	0.4 V 9150 mA	2N2218	TO-5	N24
150 mA	20 typ ns	113 typ ns	30 V	0.4 V © 150 mA	2N2219	TO-5	N24
160 mA	20 typ ns	113 typ ns	30 V	0.4 V ¢ 150 mA	2N2220	TO-18	N24
150 mA	20 typ ns	113 typ ns	30 V	0.4 V -150 mA	2N2221	T0-18	N24
150 mA	20 typ ns	113 typ ns	30 V	0.4 V © 150 mA	O2T2222	TO-116	N24
150 mA	20 typ ns	113 typ ns	30 V	0.4 V ¢ 150 mA	A5T2222	AAA	N24
150 mA	20 typ ns	113 typ ns	30 V	0.4 V - 150 mA	2N2222	TO. 18	N24
600 mA	35 ns	60 ns	30 V	0.65 V ¢ 500 mA	TIS133	AAA	N13
500 mA	35 ns	60 ns	30 V	$0.72 \mathrm{~V} \oplus 500 \mathrm{~mA}$	TiS134	AAA	N13
500 mA	35 ns	60 ns	50 V	0.65 V ¢ 5000 mA	TIS 135	AAA	N13
500 mA	35 ns	60 ns	40 V	0.72 V @ 500 mA	TIS136	AAA	N13
600 mA	35 ns	60 ns	30 V	0.42 V © 500 mA	2N3724	T0.39	N13
500 mA	35 ns	65 ns	40 V	0.52 V 500 mA	0213725	TO-116	N13
500 mA	35 ns	60 ns	50 V	0.62 V @ 500 mA	2N3725	T0-39	N13
500 mA	36 ns	60 ns	30 V	0.42 V ¢ 500 mA	2N4013	TO-18	N13
500 mA	35 ns	60 ns	60 V	$0.52 \mathrm{~V} \oplus 500 \mathrm{~mA}$	2N4014	T0-18	N13
500 mA	40 ns	60 ns	30 V	1 V ¢ 500 mA	2N3015	TO-5	N19
500 mA	45 ns	70 ns	30 V	0.5 V ¢ 500 mA	2N3252	T0-39	N13
600 mA	50 ns	70 ns	40 V	0.6 V @ 500 mA	2N3253	T0.39	N13
500 mA	50 ns	70 ns	50 V	$0.6 \mathrm{~V} \oplus 500 \mathrm{~mA}$	2N3444	TO-39	N13
1 A	30 ns	50 ns	30 V	0.76 V ¢ 1 A	2N3724A	T0.39	N13
1 A	30 ns	50 ns	50 V	$0.9 \mathrm{~V} \bigcirc 1 \mathrm{~A}$	2N3725A	T0.39	N13
1 A	48 ns	60 ns	30 V	0.9 V ¢ 1 A	2N3734	T0-39	N13
1 A	48 ns	60 ns	50 V	0.9 V -1 A	2N3735	T0-39	N13
1 A	50 ns	105 ns	30 V	1 V ¢ 1 A	2N3554	TO-39	N13

*See package drawings on page 2-20.

P-N-P SWITCHES

SWITCHING TIMES			$V_{\text {(BR)CEO }}$ MIN	$\mathbf{V C E}_{\text {(sat) }}$ @ IC	DEVICE TYPE	PACKACE*	CHIP
Olc	$\begin{array}{r} \text { ton } \\ \text { MAX } \end{array}$	$\begin{aligned} & \mathbf{t}_{\text {off }} \\ & \text { MAX } \end{aligned}$					
10 mA	30 ns	50 ns	15 V	0.15 V ¢ 10 mA	2N3576	TO-18	P11
10 mA	70 ns	225 ns	40 V	0.25 V ¢ 10 mA	2N3250	TO-18	P23
10 mA	70 ns	225 ns	60 V	0.25 V ¢ 10 mA	2N3250A	TO-18	P23
10 mA	70 ns	250 ns	40 V	0.25 V @ 10 mA	2N3251	TO-18	P23
10 mA	70 ns	250 ns	60 V	0.25 V @ 10 mA	2N3251A	TO-18	P23
10 mA	70 ns	260 ns	40 V	0.25 V @ 10 mA	A5T3905	AAA	P15
10 mA	70 ns	260 ns	40 V	0.25 V @ 10 mA	2N3906	TO-92	P15
10 mA	70 ns	300 ns	40 V	0.25 V @ 10 mA	A5T3906	AAA	P15
10 mA	70 ns	300 ns	40 V	0.25 V © 10 mA	2N3906	TO.92	P15
10 mA	26 typ ns	82 typ ns	30 V	0.4 V @ 50 mA	A5T4125	AAA	P15
10 mA	26 typ ns	82 typ ns	30 V	0.4 V ¢ 50 mA	2N4125	TO-92	P15
10 mA	26 typ ns	82 typ ns	25 V	0.4 V @ 50 mA	A5T4126	AAA	P15
10 mA	26 typ ns	82 typ ns	25 V	0.4 V ¢ 50 mA	2N4126	TO-92	P15
30 mA	25 ns	65 ns	20 V	0.18V @ 30 mA	2N3829	TO-62	P11
30 mA	60 ns	75 ns	12 V	0.2 V @ 30 mA	2N3012	T0.18	P11
30 mA	60 ns	90 ns	12 V	0.2 V @ 30 mA	2N2894	TO.18	P11
150 mA	35 ns	255 ns	40 V	0.4 V © 150 mA	A5T4402	AAA	P20
150 mA	35 ns	255 ns	40 V	0.4 V @ 150 mA	2N4402	TO-92	P20
150 mA	35 ns	255 ns	40 V	0.4 V @ 150 mA	A5T4403	AAA	P20
150 mA	35 ns	255 ns	40 V	0.4 V @ 150 mA	2N4403	TO-92	P20
150 mA	45 ns	140 ns	40 V	0.4 V @ 150 mA	TIS112	AAA	P20
150 mA	45 ns	100 ns	40 V	0.4 V @ 150 mA	2N2904	TO-5	P20
150 mA	45 ns	100 ns	60 V	0.4 V @ 150 mA	2N2904A	TO-5	P20
150 mA	45 ns	100 ns	40 V	$0.4 \mathrm{~V} @ 150 \mathrm{~mA}$	Q2T2905	TO-116	P20
150 mA	45 ns	100 ns	40 V	0.4 V @ 150 mA	2N2905	TO.5	P20
150 mA	45 ns	100 ns	60 V	0.4 V @ 150 mA	2N2905A	TO-5	P20
150 mA	45 ns	100 ns	40 V	0.4 V ¢ 150 mA	2N2906	TO-18	P20
150 mA	45 ns	100 ns	60 V	$0.4 \mathrm{~V} @ 150 \mathrm{~mA}$	2N2906A	TO-18	P20
150 mA	45 ns	100 ns	40 V	0.4 V (150 mA	A5T2907	AAA	P20
150 mA	45 ns	100 ns	40 V	0.4 V @ 150 mA	2N2907	TO-18	P20
150 mA	45 ns	100 ns	60 V	0.4 V @ 150 mA	2N2907A	TO-18	P20
150 mA	50 ns	110 ns	40 V	$0.4 \mathrm{~V} @ 150 \mathrm{~mA}$	2N3485	70-46	P20
150 mA	50 ns	110 ns	60 V	0.4 V @ 150 mA	2N3485A	TO-46	P20
150 mA	50 ns	110 ns	40 V	0.4 V @ 150 mA	2N3486	TO-46	P20
150 mA	50 ns	110 ns	60 V	0.4 V © 150 mA	2N3486A	TO-46	P20
150 mA	19 typ ns	80 typ ns	35 V	1.5 V @ 150 mA	2N721	TO-18	P20
150 mA	19 typ ns	80 typ ns	35 V	1.5 V @ 150 mA	2N722	TO-18	P20
300 mA	40 ns	100 ns	45 V	1 V @ 300 mA	2N3502	TO-5	P20
300 mA	40 ns	100 ns	60 V	1 V @ 300 mA	2N3503	TO-5	P20
300 mA	40 ns	100 ns	45 V	1 V @ 300 mA	A5T3504	AAA	P20
300 mA	40 ns	100 ns	60 V	1 V ¢ 300 mA	A5T3505	AAA	P20
300 mA	40 ns	100 ns	45 V	1 V @ 300 mA	2N3504	TO-18	P20
300 mA	40 ns	100 ns	60 V	1 V @ 300 mA	2N3505	TO-18	P20
300 mA	40 ns	100 ns	45 V	1 V © 300 mA	A5T3644	AAA	P20
300 mA	40 ns	100 ns	60 V	1 V @ 300 mA	A5T3645	AAA	P20
300 mA	75 ns	170 ns	25 V	1 V @ 300 mA	A5T3638	AAA	P20
300 mA	75 ns	170 ns	25 V	1 V @ 300 mA	A5T3638A	AAA	P20
500 mA	40 ns	90 ns	40 V	0.5 V @ 500 mA	2N3467	TO.39	P12

[^8]
transistor selection guides

P-N-P SWITCHES (Continued)

SWITCHING TIMES			$\begin{aligned} & \text { V(BR)CEO } \\ & \text { MIN } \end{aligned}$	VCe(sat) ${ }^{\text {e }} \mathbf{I C}$	DEVICE TYPE	PACKAGE*	CHIP
- Ic	$\begin{aligned} & t_{\text {on }} \\ & \text { MAX } \end{aligned}$	$\begin{aligned} & \text { toff }_{\text {off }} \end{aligned}$					
500 mA	40 ns	90 ns	50 V	$0.6 \mathrm{~V} @ 500 \mathrm{~mA}$	2N3468	TO.39	P12
500 mA	55 ns	165 ns	50 V	$0.6 \mathrm{~V} @ 500 \mathrm{~mA}$	2N3245	TO-39	P12
500 mA	50 ns	185 ns	40 V	$0.5 \mathrm{~V} @ 500 \mathrm{~mA}$	0273244	TO-116	P12
500 mA	50 ns	185 ns	40 V	$0.5 \mathrm{~V} @ 500 \mathrm{~mA}$	2N3244	TO-39	P12
500 mA	100 ns	400 ns	60 V	$0.5 \mathrm{~V} @ 500 \mathrm{~mA}$	A5T4026	AAA	P16
500 mA	100 ns	400 ns	60 V	$0.5 \mathrm{~V} @ 500 \mathrm{~mA}$	2N4026	TO-18	P16
500 mA	100 ns	400 ns	60 V	$0.5 \mathrm{~V} @ 500 \mathrm{~mA}$	A5T4028	AAA	P16
500 mA	100 ns	400 ns	60 V	$0.5 \mathrm{~V} @ 500 \mathrm{~mA}$	2N4028	TO-18	P16
500 mA	100 ns	400 ns	60 V	$0.5 \mathrm{~V} @ 500 \mathrm{~mA}$	2N4030	TO-39	P16
500 mA	100 ns	400 ns	60 V	0.5 V @ 500 mA	2N4032	TO.39	P16
500 mA	100 ns	400 ns	80 V	0.5 V @ 500 mA	A5T4027	AAA	P16
500 mA	100 ns	400 ns	80 V	$0.5 \mathrm{~V} @ 500 \mathrm{~mA}$	2N4027	TO-18	P16
500 mA	100 ns	400 ns	80 V	$0.5 \mathrm{~V} @ 500 \mathrm{~mA}$	A5T4029	AAA	P16
500 mA	100 ns	400 ns	80 V	0.5 V @ 500 mA	2N4029	TO-18	P16
500 mA	100 ns	400 ns	80 V	$0.5 \mathrm{~V} @ 500 \mathrm{~mA}$	2N4031	TO. 39	P16
500 mA	100 ns	400 ns	80 V	$0.5 \mathrm{~V} @ 500 \mathrm{~mA}$	2N4033	TO-39	P16

N-P-N CHOPPERS

Offset voltage Veclofs) MAX	ON-STATE RESISTANCE Pecion) $r_{\text {ele }}{ }^{\text {§ }}$	$h_{\text {FE (inv) }}$ MIN	$V_{\text {(BR)EBO }}$ MIN	Device TYPE	POLARITY	PACKAGE*	CHIP
\$50 $\mu \mathrm{V}$ @ 1 mA	840Ω		18 V	3N74	NPN	TO-72	N12
§100 $\mu \mathrm{V}$ @ 1 mA	§40 Ω		18 V	3N75	NPN	T0-72	N12
$\$ 50 \mu \mathrm{~V}$ @ 1 mA	\$50 Ω		12 V	3N77	NPN	TO.72	N12
\$200 $\mu \mathrm{V}$ @ 1 mA	850Ω		18 V	3N76	NPN	TO-72	N12
$\$ 100 \mu \mathrm{~V}$ @ 1 mA	§50 Ω		12 V	3N78	NPN	TO-72	N12
$8200 \mu \mathrm{~V}$ @ 1 mA	$\S 60 \Omega$		12 V	3N79	NPN	T0-72	N12
0.7 mV @ 1 mA	15Ω	3	18 V	2N2432A	NPN	TO-18	N18
1 mV @1 mA	20Ω	2	15 V	2N2432	NPN	TO-18	N18
1 mV @1 1 mA	20Ω	2	15 V	2N4138	NPN	TO-46	N18

P-N-P CHOPPERS

OFFSET VOLTAGE VEC(ofs) VE1E2(ofs) ${ }^{\text {§ }}$ @ $\mathbf{I B}_{B}$ MAX	ON-STATE RESISTANCE \qquad $r_{e 1 e} 2^{8}$	hFE(inv) MIN	$V_{\text {(BR)EBO }}$ MIN	DEVICE TYPE	POLARITY	PACKAGE*	CHIP
$830 \mu \mathrm{~V}$ @ 1 mA	§50 Ω		50 V	3N108	PNP	TO-72	P13
§30 $\mu \mathrm{V}$ @ 1 mA	850Ω		30 V	3N110	PNP	T0-72	P13
$\S 150 \mu \mathrm{~V}$ @ 1 mA	§50 Ω		50 V	3N109	PNP	TO. 72	P13
§ $150 \mu \mathrm{~V}$ @ 1 mA	§50 Ω		30 V	3N111	PNP	T0-72	P13
0.6 mV @ 1 mA	4Ω	50	15 V	2N2944A	PNP	TO-46	P14
0.6 mV @ 1 mA	20Ω	6	15 V	2N2944	PNP	TO-46	P14
$1 \mathrm{mV} @ 1 \mathrm{~mA}$	6Ω	30	25 V	2N2945A	PNP	TO-46	P14
1 mV @ 1 mA	35Ω	4	25 V	2N2945	PNP	T0-46	P14
$2 \mathrm{mV} @ 1 \mathrm{~mA}$	8Ω	20	40 V	2N2946A	PNP	TO-46	P14
2 mV @ 1 mA	45Ω	3	40 V	2N2946	PNP	TO-46	P14

[^9]N-P-N MATCHED DUALS

(1) ${ }^{\text {c }}$	MIN-MAX	$\begin{aligned} & \text { hFE1 } \\ & \text { hFE2 } \\ & \text { MIN } \end{aligned}$	$\Delta V_{B E}$ MAX	$\frac{\Delta V_{B E}}{\Delta T}$	DEVICE TYPE	POLARITY	PACKAGE*	CHIP
$10 \mu \mathrm{~A}$	50-300	0.9	5 mV	$10 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$	2N2639	NPN	T0-78	N11
$10 \mu \mathrm{~A}$	50-300	0.8	10 mV	$20 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$	2N2640	NPN	TO-78	N11
$10 \mu \mathrm{~A}$	60-240	0.9	1.5 mV	$5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$	2N2915A	NPN	TO.78	N11
$10 \mu \mathrm{~A}$	60-240	0.9	1.5 mV	$5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$	2N2919A	NPN	T0-78	N11
$10 \mu \mathrm{~A}$	60-240	0.9	3 mV	$10 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$	2N2919	NPN	T0-78	N11
$10 \mu \mathrm{~A}$	60-240	0.9	3 mV	$10 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$	2N2974	NPN	T0.71	N11
$10 \mu \mathrm{~A}$	60-240	0.9	3 mV	$10 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$	2N2915	NPN	T0-78	N11
$10 \mu \mathrm{~A}$	60-240	0.9	3 mV	$10 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$	2N2978	NPN	TO-71	N11
$10 \mu \mathrm{~A}$	60-240	0.8	5 mV	$20 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$	2N2917	NPN	TO-78	N11
$10 \mu \mathrm{~A}$	60-240	0.8	5 mV	$20 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$	2N2976	NPN	TO-71	N11
$10 \mu \mathrm{~A}$	100-300	0.9	5 mV	$10 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$	2N2642	NPN	T0.78	N11
$10 \mu \mathrm{~A}$	100-300	0.8	10 mV	$20 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$	2N2643	NPN	T0.78	N11
$10 \mu \mathrm{~A}$	$150-600$	0.9	1.5 mV	$5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$	2N2920A	NPN	T0.78	N17
$10 \mu \mathrm{~A}$	150-600	0.9	1.5 mV	$5 \mu \mathrm{~V} \rho^{\circ} \mathrm{C}$	2N2916A	NPN	TO-78	N11
$10 \mu \mathrm{~A}$	150-600	0.9	3 mV	$10 \mu \mathrm{VPC}$	2N2916	NPN	TO-78	N11
$10 \mu \mathrm{~A}$	150-600	0.9	3 mV	$5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$	2N3680	NPN	T0.78	N11
$10 \mu \mathrm{~A}$	150-600	0.9	3 mV	$10 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$	2N2920	NPN	TO-78	N11
$10 \mu \mathrm{~A}$	150-600	0.9	3 mV	$10 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$	2N2975	NPN	T0.71	N11
$10 \mu \mathrm{~A}$	150-600	0.9	3 mV	$10 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$	2N2979	NPN	TO-71	N11
$10 \mu \mathrm{~A}$	150-600	0.8	5 mV	$20 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$	2N2918	NPN	T0-78	N11
$10 \mu \mathrm{~A}$	150-600	0.8	5 mV	$20 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$	2N2977	NPN	TO-71	N11
$100 \mu \mathrm{~A}$	25-150	0.9	5 mV	$25 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$	2N2223A	NPN	TO-78	N23
$100 \mu \mathrm{~A}$	25-150	0.8	15 mV	$25 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$	2N2223	NPN	T0.78	N23
$100 \mu \mathrm{~A}$	30-90	0.9	5 mV	$10 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$	2N2060	NPN	TO-78	N23
1 mA	150-600	0.9	3 mV	$10 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$	2N2453	NPN	TO-78	N11

P-N-P MATCHED DUALS

$h_{\text {FE }}$		$\begin{aligned} & \frac{h_{\text {FE }}}{} \\ & \hline h_{\text {FE2 }} \\ & \text { MIN } \end{aligned}$	$\Delta V_{B E}$ MAX	$\frac{\Delta V_{B E}}{\Delta_{T}}$	DEVICE TYPE	POLARITY	PACKAGE*	CHIP
$10 \mu \mathrm{~A}$	40-300	0.9	5 mV	$10 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$	2N3347	PNP	TO-78	P19
$10 \mu \mathrm{~A}$	40.300	0.8	10 mV	$20 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$	2N3348	PNP	TO-78	P19
$10 \mu \mathrm{~A}$	40-300	0.6	20 mV	$40 \mu \mathrm{~V}{ }^{\circ} \mathrm{C}$	2N3349	PNP	TO-78	P19
$10 \mu \mathrm{~A}$	100-300	0.9	5 mV	$10 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$	2N3350	PNP	10.78	P19
$10 \mu \mathrm{~A}$	100-300	0.8	10 mV	$20 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$	2N3351	PNP	TO-78	P19
$10 \mu \mathrm{~A}$	100-300	0.6	20 mV	$40 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$	2N3352	PNP	TO-78	P19
$100 \mu \mathrm{~A}$	20-120	0.9	5 mV	$10 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$	2N2802	PNP	T0-78	P19
$100 \mu \mathrm{~A}$	20-120	0.8	10 mV	$20 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$	2N2803	PNP	TO-78	P19
$100 \mu \mathrm{~A}$	40-120	0.9	5 mV	$10 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$	2N2805	PNP	TO-78	P19
$100 \mu \mathrm{~A}$	40-120	0.8	10 mV	$20 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$	2N2806	PNP	T0-78	P19
$100 \mu \mathrm{~A}$	150-450	0.9	3 mV	$10 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$	2N3810	PNP	T0.78	P19
$100 \mu \mathrm{~A}$	150-450	0.8	5 mV	$20 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$	2N3808	PNP	T0-78	P19
$100 \mu \mathrm{~A}$	300-900	0.9	3 mV	$10 \mu \mathrm{~V} /{ }^{\circ} \mathrm{V}$	2N3811	PNP	T0.78	P19
$100 \mu \mathrm{~A}$	300-900	0.8	5 mV	$20 \mu \mathrm{~V} / \mathrm{V}$	2N3809	PNP	TO-78	P19

[^10]N-P-N UNMATCHED DUALS

¢ IC	E MIN-MAX	$\begin{gathered} \mathbf{V}_{\text {(BR)CEO }} \\ \text { MIN } \end{gathered}$	NOISE FIGURE Fef \bar{F} (Noise BW) MAX	DEVICE TYPE	POLARITY	PACKAGE*	CHIP
$10 \mu \mathrm{~A}$	50-300	45 V	$4 \mathrm{~dB}(15.7 \mathrm{kHz})$	2N2641	NPN	T0.78	N11
$10 \mu \mathrm{~A}$	60-240	45 V	4 dB @ 1 kHz	2N2913	NPN	T0.78	N11
$10 \mu \mathrm{~A}$	60-240	45 V	4 dB @ 1 kHz	2N2972	NPN	T0.71	N11
$10 \mu \mathrm{~A}$	100-300	45 V	4 dB (15.7 kHz)	2N2644	NPN	T0-78	N11
$10 \mu \mathrm{~A}$	150-600	45 V	3 dB @ 1 kHz	2N2914	NPN	TO-78	N11
$10 \mu \mathrm{~A}$	150-600	45 V	3 dB @ 1 kHz	2N2973	NPN	T0.71	N11
3 mA	20.	15 V	$6 \mathrm{~dB} @ 60 \mathrm{MHz}$	D2T918	NPN	TO-78	N22
50 mA	100-300	40 V		TIS90M	NPN	TO-92	N24
50 mA	100-300	40 V		TIS92M	NPN	AAA	N24
150 mA	40-120	30 V		D2T2218	NPN	TO-78	N24
150 mA	40-120	40 V		D2T22184	NPN	T0-78	N24
150 mA	40-120	40 V	8 dB @ 1 kHz	2N4855	N/P	TO-78	N24, P20
150 mA	100-300	30 V		D2T2219	NPN	TO-78	N24
150 mA	100-300	40 V		D2T2219A	NPN	TO-78	N24
150 mA	100-300	40 V	$8 \mathrm{dB@1} \mathrm{kHz}$	2N4854	N/P	TO-78	N24, P20

P-N.P UNMATCHED DUALS

elc	E MIN-MAX	$\begin{gathered} \text { V(BRICEO } \\ \text { MIN } \end{gathered}$	NOISE FIGURE Fef \bar{F} (Noise BW) MAX	DEVICE TYPE	POLARITY	PACKAGE*	CHIP
$100 \mu \mathrm{~A}$	20-120	20 V	$4 \mathrm{~dB}(15.7 \mathrm{kHz})$	2N2804	PNP	T0.78	P19
$100 \mu \mathrm{~A}$	40-120	20 V	$\overline{4 \mathrm{~dB}}$ (15.7 kHz)	2N2807	PNP	T0-78	P19
1 mA	150-450	60 V	3 dB @ 1 kHz	2N3806	PNP	T0-78	P19
1 mA	300-900	60 V	1.5 dB @ 1 kHz	2N3807	PNP	TO-78	P19
50 mA	100-300	40 V		TIS91M	PNP	TO-92	P20
50 mA	100-300	40 V		TIS93M	PNP	AAA	P20
150 mA	40-120	40 V		D2T2904	PNP	TO-78	P20
150 mA	40-120	40 V	8 dB @ 1 kHz	2N4855	N/P	T0-78	N24, P20
150 mA	40-120	60 V		D2T2904A	PNP	T0.78	P20
150 mA	100-300	40 V		D2T2905	PNP	T0-78	P20
150 mA	100-300	40 V	8 dB @ 1 kHz	2N4854	N/P	T0-78	N24, P20
150 mA	100-300	60 V		D2T2905A	PNP	T0-78	P20

N.P-N AND P-N-P QUADS

POLARITY	$\begin{gathered} V_{\text {(BR)CEO }} \\ \text { MIN } \end{gathered}$	hfe		DEVICE TYPE	PACKAGE*	CHIP
		- ic	MIN-MAX			
N-P-N	30 V	150 mA	100-300	O2T2222		N24
N-P.N	40 V	100 mA	60-200	0273725	IDUAL-IN-LINE	N13
P-N-P	40 V	150 mA	100-300	02 T 2905	(DUAL-IN-LINE	P20
P-N-P	40 V	500 mA	50-150	0273244		P12

[^11]
TRANSISTOR SELECTION GUIDES

JFET N-CHANNEL LOW-FREQUENCY, LOW-NOISE AMPLIFIERS

$\begin{gathered} \text { NOISE FIGURE } \\ \text { F f } \\ \text { MAX } \end{gathered}$	$\begin{gathered} \text { IDSS } \\ \text { MIN-MAX } \end{gathered}$	$V_{\text {(BR)GSS }}$ MIN	DEVICE TYPE	CHANNEL POLARITY	PACKAGE*	CHIP
1.5 dB @ 10 Hz	$5 \mathrm{~mA}-20 \mathrm{~mA}$	20 V	2N6451	N	TO-72	JN55
1.5 dB @ 10 Hz	$15 \mathrm{~mA}-50 \mathrm{~mA}$	20 V	2N6453	N	TO-72	JN55
2.5 dB @ 100 Hz	$0.8 \mathrm{~mA}-1.6 \mathrm{~mA}$	40 V	2N5359	N	TO-72	JN51
2.5 dB @ 10 Hz	$5 \mathrm{~mA}-20 \mathrm{~mA}$	25 V	2N6452	N	TO-72	JN55
2.5 dB @ 100 Hz	$9 \mathrm{~mA}-18 \mathrm{~mA}$	40 V	2N5364	N	T0.72	JN51
$2.5 \mathrm{~dB} @ 10 \mathrm{~Hz}$	$15 \mathrm{~mA}-50 \mathrm{~mA}$	25 V	2N6454	N	TO-72	JN55
5 dB @ 10 Hz	$0.5 \mathrm{~mA}-2.5 \mathrm{~mA}$	50 V	A5T3821	N	AAA	JN51
5 dB @ 10 Hz	$0.5 \mathrm{~mA}-2.5 \mathrm{~mA}$	50 V	2N3821	N	TO-72	JN51
5 dB @ 10 Hz	$2 \mathrm{~mA}-10 \mathrm{~mA}$	50 V	2N3822	N	TO-72	JN51
5 dB @ 10 Hz	$2 \mathrm{~mA}-10 \mathrm{~mA}$	50 V	A5T3822	N	AAA	JN51
4 dB @ 20 Hz	$0.2 \mathrm{~mA}-1 \mathrm{~mA}$	50 V	2N3460	N	TO-18	JN51
4 dB @ 20 Hz	$0.8 \mathrm{~mA}-4 \mathrm{~mA}$	50 V	2N3459	N	T0.18	JN51
6 dB @ 20 Hz	$3 \mathrm{~mA}-15 \mathrm{~mA}$	50 V	2N3458	N	TO-18	JN51
2.5 dB @ 100 Hz	$0.5 \mathrm{~mA}-1 \mathrm{~mA}$	40 V	2N5358	N	T0.72	JN51
2.5 dB @ 100 Hz	$1.5 \mathrm{~mA}-3 \mathrm{~mA}$	40 V	2N5360	N	TO. 72	JN51
2.5 dB @ 100 Hz	$2.5 \mathrm{~mA}-5 \mathrm{~mA}$	40 V	2N5361	N	TO-72	JN51
$2.5 \mathrm{~dB} @ 100 \mathrm{~Hz}$	$4 \mathrm{~mA}-8 \mathrm{~mA}$	40 V	2N5362	N	TO-72	JN51
2.5 dB @ 100 Hz	7 mA 14 mA	40 V	2N5363	N	TO. 72	JN51
2 dB @ 1000 Hz	$2.5 \mathrm{~mA}-5 \mathrm{~mA}$	30 V	2N5953	N	AAA	JN51
2 dB @ 1000 Hz	4 mA 8 mA	30 V	2N5952	N	AAA	JN51
2 dB @ 1000 Hz	7 mA 13 mA	30 V	2N5951	N	AAA	JN51
2 dB @ 1000 Hz	$10 \mathrm{~mA}-15 \mathrm{~mA}$	30 V	2N5950	N	AAA	JN51
2 dB @ 1000 Hz	12 mA -18 mA	30 V	2N5949	N	AAA	JN51

JFET P-CHANNEL LOW-FREQUENCY, LOW-NOISE AMPLIFIERS

$\begin{aligned} & \text { NOISE FIGURE } \\ & \text { F © f } \\ & \text { MAX } \\ & \hline \end{aligned}$	$\begin{gathered} \text { IDSS } \\ \text { MIN-MAX } \end{gathered}$	$\begin{gathered} \mathbf{V}_{\text {(BR)GSS }} \\ \text { [V(BR)DGO] } \\ \text { MIN } \end{gathered}$	DEVICE TYPE	CHANNEL POLARITY	PACKAGE*	CHIP
5 dB @ 10 Hz	$1 \mathrm{~mA}-6 \mathrm{~mA}$	[20 V]	2N2500	P	TO-5	JP71
5 dB @ 10 Hz	1 mA 6 mA	20 V	2N3332	P	TO. 72	JP71
2.5 dB @ 100 Hz	1 mA 5 mA	40 V	2N5460	P	TO-92	JP71
2.5 dB @ 100 Hz	$1 \mathrm{~mA}-5 \mathrm{~mA}$	40 V	A5T5460	P	AAA	JP71
2.5 dB @ 100 Hz	$2 \mathrm{~mA}-9 \mathrm{~mA}$	40 V	2N5461	P	TO-92	JP71
2.5 dB @ 100 Hz	$2 \mathrm{~mA}-9 \mathrm{~mA}$	40 V	A5T5461	P	AAA	JP71
2.5 dB @ 100 Hz	$4 \mathrm{~mA}-16 \mathrm{~mA}$	40 V	2N5462	P	TO-92	JP71
2.5 dB @ 100 Hz	$4 \mathrm{~mA}-16 \mathrm{~mA}$	40 V	A5T5462	P	AAA	JP71
3 dB @ 1000 Hz	$0.9 \mathrm{~mA}-4.5 \mathrm{~mA}$	30 V	2N2608	P	TO-18	JP71
3 dB @ 1000 Hz	$1 \mathrm{~mA}-3 \mathrm{~mA}$	[20 V]	2N2497	P	TO-5	JP71
3 dB @ 1000 Hz	$1 \mathrm{~mA}-3 \mathrm{~mA}$	20 V	2N3329	P	TO-72	JP71
3 dB @ 1000 Hz	2 mA 6 mA	[20 V]	2N2498	P	TO-5	JP71
3 dB @ 1000 Hz	$2 \mathrm{~mA}-6 \mathrm{~mA}$	20 V	2N3330	P	TO.72	JP71
3 dB @ 1000 Hz	$2 \mathrm{~mA}-10 \mathrm{~mA}$	30 V	2N2609	P	TO-18	JP71
4 dB @ 1000 Hz	$5 \mathrm{~mA} \cdot 15 \mathrm{~mA}$	[20 V]	2N2499	P	TO-5	JP71
4 dB @ 1000 Hz	$5 \mathrm{~mA}-15 \mathrm{~mA}$	20 V	2N3331	P	TO-72	JP71

[^12]JFET N-CHANNEL GENERAL PURPOSE AMPLIFIERS

$\begin{aligned} & \text { IDss } \\ & \text { MIN-MAX } \end{aligned}$	$\begin{aligned} & \text { Wfilef } \\ & \text { MIN-MAX } \end{aligned}$	$\begin{gathered} \mathbf{V}_{\text {(BR)GSS }} \\ \text { MIN } \end{gathered}$	DEVICE TYPE	CHANNEL POLARITY	PACKAGE*	CHIP
$0.5 \mathrm{~mA}-1 \mathrm{~mA}$	1.3 mmho 01 kHz	40 V	2N5358	N	TO-72	JN51
0.5 mA 3 mA	$1-4$ mmho © 1 kHz	30 V	2N4220	N	T0-72	JN51
$0.5 \mathrm{~mA}-3 \mathrm{~mA}$	1.4 mmho 1 kHz	30 V	2N4220A	N	T0.72	JN51
$0.8 \mathrm{~mA}-1.6 \mathrm{~mA}$	1.2-3.6 mmho 1 ¢ 1 kz	40 V	2N5359	N	T0.72	JN51
$1.5 \mathrm{~mA}-3 \mathrm{~mA}$	$1.44 .2 \mathrm{mmho}{ }^{\text {e }} 1 \mathrm{kHz}$	40 V	2N5360	N	T0.72	JN51
$2 \mathrm{~mA}-6 \mathrm{~mA}$	$2-5 \mathrm{mmho}$ - 1 kHz	30 V	2N4221	N	T0-72	JN51
$2 \mathrm{~mA}-6 \mathrm{~mA}$	2-5 mmho 1 kHz	30 V	2N4221A	N	T0.72	JN51
$2 \mathrm{~mA}-10 \mathrm{~mA}$	$0.6-3 \mathrm{mmho} 1 \mathrm{kHz}$	200 V	A5T6450	N	AAA	JN54
$2 \mathrm{~mA}-10 \mathrm{~mA}$	$0.5-3 \mathrm{mmho}$ - 1 kHz	200 V	2N6450	N	TO-39	JN54
$2 \mathrm{~mA}-10 \mathrm{~mA}$	$0.5-3 \mathrm{mmho}$ - 1 kHz	300 V	A5T6449	N	AAA	JN54
$2 \mathrm{~mA}-10 \mathrm{~mA}$	$0.5-3$ mmho 1 kHz	300 V	2N6449	N	T0.39	JN54
$2 \mathrm{~mA}-10 \mathrm{~mA}$	$3-6.5$ mmho e 1 kHz	50 V	2N3822	N	TO-72	JN51
2 mA .10 mA	3.6 .5 mmho 1 kHz	50 V	A5T3822	N	AAA	JN51
$2 \mathrm{~mA}-20 \mathrm{~mA}$	2-6.5 mmho 1 kHz	25 V	2N3819	N	TO.92	JN51
2.5 mA .5 mA	1.5-4.5 mmho 1 kHz	40 V	2N5361	N	TO-72	JN51
$2.5 \mathrm{~mA}-5 \mathrm{~mA}$	$2-6.5$ mmho 01 kHz	30 V	2N5953	N	AAA	JN51
$2.5 \mathrm{~mA}-8 \mathrm{~mA}$	4 typ mmho 1 kHz	25 V	TIS58	N	TO-92	JN51
$4 \mathrm{~mA}-8 \mathrm{~mA}$	2-5.5 mmho © 1 kHz	40 V	2N5362	N	T0.72	JN51
$4 \mathrm{~mA}-8 \mathrm{~mA}$	$2-6.5$ mmho $@ 1 \mathrm{kHz}$	30 V	2N5952	N	AAA	JN51
$5 \mathrm{~mA}-15 \mathrm{~mA}$	2.56 mmho @ 1 kHz	30 V	2N4222	N	T0.72	JN5
$5 \mathrm{~mA}-15 \mathrm{~mA}$	$2.5-6 \mathrm{mmho} 91 \mathrm{kHz}$	30 V	2N4222A	N	T0.72	JN51
$6 \mathrm{~mA}-25 \mathrm{~mA}$	4.8 typ mmho © 1 kHz	25 V	TIS59	N	T0-92	JN51
$7 \mathrm{~mA}-13 \mathrm{~mA}$	3.5-6.6 mmho © 1 kHz	30 V	2N5951	N	AAA	JN51
$7 \mathrm{~mA}-14 \mathrm{~mA}$	$2.5-8 \mathrm{mmho}$ © 1 kHz	40 V	2N5363	N	TO-72	JN51
9 mA 18 mA	2.7-6.5 mmho ${ }^{\text {© }} 1 \mathrm{kHz}$	40 V	2N5364	N	TO-72	JN51
$10 \mathrm{~mA}-16 \mathrm{~mA}$	3.5-7.5 mmho @ 1 kHz	30 V	2N5950	N	AAA	JN51
$12 \mathrm{~mA}-18 \mathrm{~mA}$	3.5-7.5 mmho © 1 kHz	30 V	2N5949	N	AAA	JN51
$12 \mathrm{~mA}-24 \mathrm{~mA}$		50 V	2N3824	N	TO.72	JN51
$12 \mathrm{~mA}-24 \mathrm{~mA}$		50 V	A5T3824	N	AAA	JN51

JFET P-CHANNEL GENERAL PURPOSE AMPLIFIERS

$\begin{aligned} & \text { IDss } \\ & \text { MINAMX } \end{aligned}$	$\begin{aligned} & \text { Mfslef } \\ & \text { MaNHAX } \end{aligned}$	$\begin{gathered} \text { Vibr)Gss } \\ \text { MIN } \end{gathered}$	DEVICE TYPE	CHANNEL POLARITY	PACKAGE*	CHIP
$0.3 \mathrm{~mA}-15 \mathrm{~mA}$	0.8-5 mmho 9 \% 1 kHz	20 V	2N3820	P	TO-92	JP71
$0.3 \mathrm{~mA}-15 \mathrm{~mA}$	1.5 mmho © 1 kHz	20 V	2N3909	P	T0-72	JP71
1 mA 5 mA	$1-4$ mmho 1 kHz	40 V	2N5460	P	TO-92	JP71
$1 \mathrm{~mA}-6 \mathrm{~mA}$	14 mmho 1 kHz	40 V	A5T5460	P	AAA	JP71
$1 \mathrm{~mA}-15 \mathrm{~mA}$	2.2-6 mmho 1 kHz	20 V	2N2386A	P	TO-5	JP71
$1 \mathrm{~mA}-15 \mathrm{~mA}$	2.2-6 mmho 1 kHz	20 V	2N3909A	P	T0.72	JP71
$2 \mathrm{~mA}-9 \mathrm{~mA}$	1.5-5 mmho © 1 kHz	40 V	2N5461	P	TO-92	JP71
$2 \mathrm{~mA}-9 \mathrm{~mA}$	$1.5-5$ mmho 1 kHz	40 V	A5T5461	P	AAA	JP71
$4 \mathrm{~mA}-16 \mathrm{~mA}$	2.6 mmho - 1 kHz	40 V	2N5462	P	T0.92	JP71
$4 \mathrm{~mA}-16 \mathrm{~mA}$	2.6 mmho $1 . \mathrm{kHz}$	40 V	A5T5462	P	AAA	JP71

[^13]
JFET HIGH-FREQUENCY AMPLIFIERS (N-CHANNEL)

$\begin{aligned} & C_{\text {MAX }} \\ & \end{aligned}$	\|yficis MIN	NOISE FIGURE Fef MAX	$\begin{aligned} & \hline \text { GAIN } \\ & \text { G}_{\text {ps }} \text { © } \\ & \text { MIN } \end{aligned}$	DEVICE TYPE	PACKAGE*	CHIP
0.8 pF	4 mmho (100 MHz	4 dB 9400 MHz	10 dB 9400 MHz	2N4416	T0-72	JN53
0.8 pF	4 mmho (400 MHz	$4 \mathrm{~dB} \bigcirc 400 \mathrm{MHz}$	10 dB (9) 400 MHz	2N4416A	TO.72	JN53
1 pF	2.5 mmho © 400 MHz			2N5246	AAA	JN63
1 pF	4 mmho 9 400 MHz	4 dB ¢ 400 MHz	10 dB -9 400 MHz	2N5245	AAA	JN63
1 pF	4 mmho 400 MHz			2N5247	AAA	JN53
1.2 pF	5.5 mmho 460 MHz	3.5 dB 9450 MHz	15 dB - 450 MHz	2N6397	TO.72	
1.3 pF	5 mmho -460 MHz			2N6398	T0.72	
2 pF	0.8 mmho (100 MHz	2.5 dB -100 Hz		2NE358	T0.72	JN51
2 pF	0.9 mmho 100 MHz	2.6 dB -100 Hz		2N6389	TO-72	JNE1
2 pF	1.4 mmho 100 MHz	2.5 dB © 100 Hz		2N6360	T0.72	JN51
2 pF	1.7 mmho 100 MHz	2.6 dB © 100 Hz		2NE361	T0.72	JN51
2 pF	1.7 mmho A 200 MHz			2N4224	T0.72	JN51
2 pF	1.8 mmho 100 MHz	2.6 dB 9100 Hz		2N5362	TO.72	JN61
2 pF	2.1 mmho © 100 MHz	2.6 dB ¢ 100 Hz		2N5363	TO-72	JNE1
2 pF	2.2 mmho 100 MHz	2.6 dB ¢ 100 Hz		2N5364	TO.72	JN51
2 pF	2.7 mmho © 200 MHz	$5 \mathrm{~dB} \oplus 200 \mathrm{MHz}$	10 dB (9) 200 MHz	2N4223	TO.72	JN51
2 pF	3 mmho - 200 MHz			2N5248	TO-92	JN51
2 pF	3.2 mmho © 200 MHz	2.5 dB ¢ 100 MHz		2N3823	T0.72	JN54
2 pF	3.2 mmho © 200 MHz	2.5 dB @ 100 MHz		A5T3823	AAA	JN51

IGFET HIGH-FREQUENCY AMPLIFIERS (N-CHANNEL, DEPLETION-TYPE)

$C_{\text {ress }}$ MAX	Vislef MIN-MAX	$\begin{gathered} \text { NOISE FIGURE } \\ \text { F F f } \\ \text { MAX } \\ \hline \end{gathered}$	$\begin{aligned} & \hline \text { GAIN } \\ & \mathbf{G}_{\mathrm{ps}} \boldsymbol{1} \mathrm{f} \\ & \text { MIN } \\ & \hline \end{aligned}$	DEVICE TYPE	PACKACE*	CHIP
0.03 pF	7.17 mmho 1 kHz	4 dB @ 45 MHz	25 dB ¢ 46 MHz	3N206	TO-72	MN81
0.03 pF	7.15 mmho © 1 kHz	6 dB @ 45 MHz	20 dB @ 45 MHz	3N203	T0.72	MN81
0.03 pF	$8-20$ mmho 1 kHz	4.5 dB © 200 MHz	15 dB @ 200 MHz	3N201	TO-72	MN81
0.03 pF	$8-20$ mmho @ 1 kHz		15 dB ¢ 200 MHz	3N202	T0.72	MN81
0.03 pF	$10-22$ mmho @ 1 kHz	$\mathbf{5}$ dB © 450 MHz	14 dB 9450 MHz	3N204	T0.72	MN81
0.03 pF	10.22 mmho - 1 kHz		17 dB (3) 200 MHz	3N205	T0-72	MN81
0.05 pF	15.35 mmho 1 kHz	4 dB @ 45 MHz	27 dB @ 45 MHz	3N213	T0-72	MN85
0.06 pF	17-40 mmho © 1 kHz	3.5 dB ¢ 200 MHz	24 dB ¢ 200 MHz	3N211	T0.72	MN85
0.05 pF	17-40 mmho 1 kHz		21 dB (4) 200 MHz	3N212	T0-72	MN85
0.35 pF	5.12 mmho @ 1 kHz	5 dB ¢ 200 MHz	13.5 dB @ 200 MHz	3N128	T0-72	MN82

[^14]JFET N-CHANNEL SWITCHES AND CHOPPERS

$\begin{aligned} & r_{\text {dsfon) }} \\ & \text { MAX } \end{aligned}$	Vas ioff) MIN-MAX	$\mathbf{V}_{\text {(br) }}$ (fiss MIN	Ioss MIN-MAX	DEvice TYPE	Packace*	CHIP
25Ω	410 V	30 V	$50-\mathrm{mA}$	Tis73	AAA	JN52
25Ω	4.10 V	30 V	50- mA	2N4859	T0-18	JN52
25Ω	4.10 V	30 V	$50-\mathrm{mA}$	2N4859A	T0.18	JN52
25Ω	$4-10 \mathrm{~V}$	40 V	50- mA	2N4856	T0.18	JN52
25Ω	4.10 V	40 V	$50-\mathrm{mA}$	2N4856A	T0.18	JN62
30Ω	$4-10 \mathrm{~V}$	40 V	50-150 mA	2N3970	T0.18	JN52
30Ω	$4-10 \mathrm{~V}$	40 V	50-150 mA	2N4391	T0-18	JN52
30Ω	6.10 V	40 V	$30 . \mathrm{mA}$	2N4091	T0.18	JN52
40Ω	2-6 V	30 V	20.100 mA	TIS74	AAA	JN62
40Ω	2.6 V	30 V	20-100 mA	2N4860	T0-18	JN52
40Ω	2.6 V	30 V	20.100 mA	2N4860A	T0-18	JN52
40Ω	2.6 V	40 V	20.100 mA	2N4857A	T0-18	JN52
40Ω	2-6V	40 V	20-100 mA	2N4857	T0-18	JN52
50Ω	2.7 V	40 V	15- mA	2N4092	T0-18	JN52
60Ω	0.8-4 V	30 V	$8-80 \mathrm{~mA}$	TIS75	AAA	JN62
60Ω	0.84 V	30 V	8-80 mA	2N4861	TO-18	JN62
60Ω	0.84 V	30 V	8.80 mA	2N4861A	T0-18	JN52
60Ω	0.8-4 V	40 V	8.80 mA	2N4858	T0.18	JN52
60Ω	0.8-4 V	40 V	8-80 mA	2N4858A	T0-18	JN52
60Ω	2.5 V	40 V	25-75 mA	2N3971	T0-18	JN52
60Ω	2-5 V	40 V	25-75 mA	2N4392	T0.18	JN52
80Ω	1.5 V	40 V	8 - mA	2N4093	T0-18	JN52
100Ω	0.5-3 V	40 V	5.30 mA	2N3972	T0-18	JN52
100Ω	0.5-3 V	40 V	5-30 mA	2N4393	T0-18	JN52
100Ω	2-6 V	40 V	10.60 mA	2N5549	TO-18	JN52
200Ω	3-7 V	30 V	12.18 mA	2N5949	AAA	JN51
210Ω	2.5-6 V	30 V	10.15 mA	2N5950	AAA	JN51
220Ω	4.6 V	30 V	2. mA	2N3966	T0.72	JN51
250Ω		50 V	12-24 mA	2N3824	TO-72	JN51
250Ω		50 V	12.24 mA	A5T3824	AAA	JN51

JFET P-CHANNEL SWITCHES AND CHOPPERS

rds(on) MAX	$V_{\text {gS }}($ off $)$ MIN-MAX	$\begin{gathered} \hline \mathbf{V}_{\text {(BR)GSS }} \\ \text { MIN } \\ \hline \end{gathered}$	$\begin{aligned} & \text { IDSs } \\ & \text { MIN-MAX } \end{aligned}$	$\begin{gathered} \hline \text { DEVICE } \\ \text { TYPE } \\ \hline \end{gathered}$	PACKAGE*	CHIP
300Ω	1-5.5 V	25 V	2- mA	2N3994	T0.72	JP72
300Ω	1-5.5 V	25 V	2- mA	2N3994A	T0.72	JP72
400Ω	$1.8-9 \mathrm{~V}$	40 V	4.16 mA	2N5462	т0.92	JP71
400Ω	$1.8-9 \mathrm{~V}$	40 V	4-16 mA	A5T5462	AAA	JP71
800Ω	1-7.5 V	40 V	$2-9 \mathrm{~mA}$	2N5461	T0.92	JP71
800Ω	1.7 .5 V	40 V	2.9 mA	A5T5461	AAA	JP71

[^15]TRANSISTOR SELECTION GUIDES

IGFET NCHANNEL SWITCHES AND CHOPPERS

$r_{\text {ds }}(o n)$ MAX	$\begin{aligned} & V_{\text {GS }(t h)} \\ & \text { MIN-MAX } \end{aligned}$	\mathbf{V} (BR)DSS MIN	ID(on) MIN-MAX		DEVICE TYPE	ENH/DEPL	PACKAEE*	CHIP
20Ω		20 V	50	mA	3N214	D	T0.72	MN84
35Ω		20 V	$50-$	mA	3N215	D	TO-72	MN84
50Ω		20 V	50	$m A$	3N216	D	T0.72	MN84
70Ω		20 V	50.	$m A$	3N217	D	T0.72	MN84
200Ω	0.6-1.5 V	25 V	10-	mA	3N169	E	TO.72	MN83
200Ω	1-2 V	25 V	10-	$m A$	3N170	E	T0-72	MN83
200Ω	1.5-3 V	25 V	10-	$m A$	3N171	E	T0.72	MN83
300Ω		20 V	$5-$	mA	3N153	D	TO. 72	MN82

IGFET P-CHANNEL SWITCHES AND CHOPPERS

$\begin{aligned} & \mathbf{r}_{\text {dsax }} \text { (on) } \\ & \text { MAX } \end{aligned}$	$\begin{aligned} & \mathbf{V G S}(t h) \\ & \text { MINMAX } \end{aligned}$	$V_{(B R) D S S}$ MIN	ID(on) MINMAX	DEvice TYPE	ENH/DEPL	PACKAGE*	CHIP
60 typ Ω	1.5-5 V	25 V	40-120 mA	3N160	E	T0.72	MP92
60 typ Ω	1.5-5 V	25 V	40-120 mA	3N161	E	T0.72	MP92
250Ω	2-5 V	40 V	5-30 mA	3N163	E	T0.72	MP91
300Ω	2-5 V	30 V	3-30 mA	3N164	E	T0.72	MP91
300Ω	1.5-3.2 V	50 V	5- mA	3N165A	E	TO-72	MP91
300Ω	3-5 V	50 V	5. mA	3N156A	E	T0.72	MP91
600Ω	1.5-3.2 V	50 V	5- mA	3N155	E	TO-72	MP91
600Ω	3-5 V	50 V	5- mA	3N166	E	T0.72	MP91
1000Ω	$2-6 \mathrm{~V}$	30 V	3-12 mA	3N174	E	TO.72	MP93

JFET DUALS (N-CHANNEL)

IDSS MIN-MAX	$\begin{aligned} & \text { IDSS1 } \\ & \text { IDSS2 } \\ & \text { MIN } \end{aligned}$	$\begin{aligned} & \frac{\left\|V_{\mathrm{fs}}\right\|}{\left\|\mathrm{ffs}_{\mathrm{s}}\right\|} \\ & \text { MIN } \end{aligned}$	$\Delta V \mathbf{G S}$ MAX	device TYPE	PACKAGE*	CHIP
$0.5-8 \mathrm{~mA}$	0.95	0.97	5 mV	2N5545	TO-71	JN51
0.6-8 mA	0.95	0.95	5 mV	2N5045	T0.71	JN51
0.5-8 mA	0.95	0.95	5 mV	TIS25	T0.78	JN51
0.5-8 mA	0.9	0.95	10 mV	2N5546	TO.71	JN51
0.6-8 mA	0.9	0.9	10 mV	TIS69	2 T0.92	JN61
0.5-8 mA	0.9	0.9	10 mV	2N5046	T0.71	JN51
0.5-8 mA	0.9	0.9	15 mV	2N5547	T0.71	JN51
$0.5-8 \mathrm{~mA}$	0.9	0.9	10 mV	TIS28	T0.78	JN54
0.5-8 mA	0.8	0.8	15 mV	2N5047	T0-71	JN51
$0.5-8 \mathrm{~mA}$	0.8	0.8	15 mV	TiS27	T0-78	JN61
0.6-8 mA	0.8	0.8	15 mV	TIS70	2 T0.92	JN51

IGFET DUALS (P-CHANNEL, ENHANCEMENT-TYPE)

rdsion) MAX	VGS(th) MIN/MAX	ID(on) MIN	DEVICE TYPE	PACKAGE*	CHIP
400Ω	$-3 /-6 \mathrm{~V}$	-1.5 mA	3N207	TO-76	MP94
400Ω	$-3 /-6 \mathrm{~V}$	-1.5 mA	3N208	TO-76	MP94

[^16]
UNIJUNCTION, CONVENTIONAL

$\frac{\eta}{\text { MIN-MAX }}$	I_{p}	$\begin{gathered} \text { IV } \\ \text { MIN } \end{gathered}$	rBB MIN-MAX	DEVICE TYPE	PACKAGE*	CHIP
0.47-0.62	$6 \mu \mathrm{~A}$	8 mA	$4.7-9.1 \mathrm{k} \Omega$	2N1671B	U	
0.47-0.62	$25 \mu \mathrm{~A}$	8 mA	4.7-9.1 k	2N1671	U	
0.47-0.62	$25 \mu \mathrm{~A}$	8 mA	4.7-9.1 k Ω	2N1671A	U	BAR
0.47-0.80	$25 \mu \mathrm{~A}$	8 mA	4-12 k Ω	2N2160	\cup	
0.51-0.62	$6 \mu \mathrm{~A}$	8 mA	$4.7-6.8 \mathrm{k} \Omega$	2N489B	U	BAR
0.51-0.62	$6 \mu \mathrm{~A}$	8 mA	$6.2-9.1 \mathrm{k} \Omega$	2N490B	U	BAR
0.51-0.62	$12 \mu \mathrm{~A}$	8 mA	$4.7-6.8 \mathrm{k} \Omega$	2N489	U	BAR
0.51-0.62	$12 \mu \mathrm{~A}$	8 mA	$4.7-6.8 \mathrm{k} \Omega$	2N489A	U	BAR
0.51-0.62	$12 \mu \mathrm{~A}$	8 mA	$6.2-9.1 \mathrm{k} \Omega$	2N490	U	R
0.51-0.62	$12 \mu \mathrm{~A}$	8 mA	6.2-9.1 k	2N490A	U	
0.51-0.69	$2 \mu \mathrm{~A}$	4 mA	$4-9.1 \mathrm{k} \Omega$	2N4892	AAA	U42
0.51-0.69	$2 \mu \mathrm{~A}$	4 mA	$4-9.1 \mathrm{k} \Omega$	2N4947	000	U42
0.55-0.82	$2 \mu \mathrm{~A}$	2 mA	4-12 k Ω	2N4893	AAA	$\mathbf{4 2}$
0.55-0.82	$2 \mu \mathrm{~A}$	2 mA	$4-12 \mathrm{k} \Omega$	2N4948	000	U42
0.55-0.82	$5 \mu A$	2 mA	4-9.1 ks	TIS43	TO-92	U42
0.55-0.82	$5 \mu \mathrm{~A}$	2 mA	$4.9 .1 \mathrm{k} \Omega$	2N4891	AAA	U42
0.56-0.68	$6 \mu A$	8 mA	$4.7-6.8 \mathrm{k} \Omega$	2N491B	U	BAR
0.56-0.68	$6 \mu \mathrm{~A}$	8 mA	$6.2-9.1 \mathrm{k} \Omega$	2N492B	U	BAR
0.56-0.68	$12 \mu \mathrm{~A}$	8 mA	$4.7-6.8 \mathrm{k} \Omega$	2N491	U	R
0.56-0.68	$12 \mu \mathrm{~A}$	8 mA	$4.7-6.8 \mathrm{kS}$	2N491A	U	BAR
0.56-0.68	$12 \mu \mathrm{~A}$	8 mA	$6.2-9.1 \mathrm{k} \Omega$	2 N 492	U	
0.56-0.68	$12 \mu \mathrm{~A}$	8 mA	$6.2-9.1 \mathrm{k} \Omega$	2N492A	U	BAR
0.56-0.75	$5 \mu \mathrm{~A}$	4 mA	4.7-9.1 k	2N2646	000	U42
0.56-0.75	$2 \mu \mathrm{~A}$	2 mA	4.7-9.1 k	2N4851	000	U42
0.62-0.75	$6 \mu \mathrm{~A}$	8 mA	$4.7-6.8 \mathrm{k} \Omega$	2N493B	U	BAR
0.62-0.75	$12 \mu \mathrm{~A}$	8 mA	$4.7-6.8 \mathrm{k} \Omega$	2N493	U	BAR
0.62-0.75	$12 \mu \mathrm{~A}$	8 mA	$4.7 .6 .8 \mathrm{k} \Omega$	2N493A	U	BAR
0.68-0.82	$2 \mu \mathrm{~A}$	8 mA	$4.7-9.1 \mathrm{k} \Omega$	2N2647	000	U42
0.68-0.82	$2 \mu \mathrm{~A}$	1 mA	4-8 k Ω	2N3980	000	U42
0.70-0.85	$2 \mu \mathrm{~A}$	4 mA	$4.7-9.1 \mathrm{k} \Omega$	2N4852	000	442
0.70-0.85	$0.4 \mu \mathrm{~A}$	6 mA	$4.7-9.1 \mathrm{k} \Omega$	2N4853	000	U42
0.74-0.86	$1 \mu \mathrm{~A}$	2 mA	4-12 k Ω	2N4894	AAA	442
0.74-0.86	$1 \mu \mathrm{~A}$	2 mA	4-12 k Ω	2N4949	000	U42

UNIJUNCTION, PROGRAMMABLE

$\mathbf{I P}_{\mathbf{p}}{ }^{(1)} \mathbf{R}_{\mathbf{G}}$ MAX	IV $\mathbf{R e}_{G}$ MIN	DEVICE TYPE	PACKAGE*	CHIP
$1 \mu \mathrm{~A} @ 10 \mathrm{k} \Omega$	$25 \mu \mathrm{~A} @ 10 \mathrm{k}$ ת	A7T6028	TO-92	$U 4$
$1 \mu \mathrm{~A} @ 10 \mathrm{k} \Omega$	$50 \mu \mathrm{~A}$ ¢ $10 \mathrm{k} \Omega$	2N6118	TO-18	U41
$1 \mu \mathrm{~A} @ 10 \mathrm{k} \Omega$	$50 \mu \mathrm{~A}$ @ $10 \mathrm{k} \Omega$	A5T6118	AAA	441
$2 \mu \mathrm{~A}$ @ $10 \mathrm{k} \Omega$	$50 \mu \mathrm{~A}$ @ $10 \mathrm{k} \Omega$	2N6117	TO-18	U41
$2 \mu \mathrm{~A} @ 10 \mathrm{k} \Omega$	$50 \mu \mathrm{~A} @ 10 \mathrm{k} \Omega$	A5T6117	AAA	U41
$\cdot 5 \mu \mathrm{~A} @ 10 \mathrm{k} \Omega$	$70 \mu \mathrm{~A} @ 10 \mathrm{k} \Omega$	A7T6027	TO-92	U41
$5 \mu \mathrm{~A} @ 10 \mathrm{k} \Omega$	$70 \mu \mathrm{~A} @ 10 \mathrm{k} \Omega$	2N6116	TO-18	U41
$5 \mu \mathrm{~A} @ 10 \mathrm{k} \Omega$	$70 \mu \mathrm{~A} @ 10 \mathrm{k} \Omega$	A5T6116	AAA	441

[^17]TRANSISTOR SELECTION GUIDES

Transistor Interchangeability

TRANSISTOR INTERCHANGEABILITY

These lists of low-power (generally one watt or less of power dissipation in free-air) transistors are designed to assist the design engineer in determining the recommended TI replacement when only the device type number is known. Also included is a summary of the significant ratings and electrical characteristics of the referenced types.

These lists are extensive (approximately 4600 entries) but not definitive. An attempt was made to include all current and recently obsolete domestic types, both JEDEC registered and nonregistered. Undoubtedly there are some inadvertent omissions. Purposely amitted are the European PROELECTRON types, Japanese 2S types, and "hobbyist" types.

Careful engineering judgement has been used to provide the recommended TI replacement based on the specifications alone; final application might dictate another choice. Equally careful judgement should be used in selecting a replacement except where the recommended replacement type number coincides with the referenced type.

In most cases, the recommended replacement has the same general package as the referenced type; that is, plastic for plastic and metal for metal. For plastic-encapsulated devices, the "recommended" replacement has the same or similar terminal assignments as the referenced type although this terminal assignment may not be truly preferred. The user may consider this.

ORGANIZATION

These interchangeability lists are divided into six broad classes as follows:
Master List of Registered Types 3-1
Master List of Nonregistered Types 3.63
Registered Field-Effect Transistors 3.92
Nonregistered Field-Effect Transistors 3-104
Registered Unijunction Transistors 3-115
Nonregistered Unijunction Transistors 3-117

The Field-Effect Transistor and Unijunction Transistor lists are subsets of the appropriate Master List, either registered or nonregistered.

Every effort has been made to ensure the accuracy of each entry. However, TI makes no warranty as to the information furnished and the user assumes all risk in the use thereof.

KEY TO MANUFACTURER CODES

CR - Crystallonics Division, Teledyne Incorporated
F - Fairchild Semiconductor Corporation
GE - General Electric Company
GI - General Instrument Corporation
IN - Intersil, Incorporated

M - Motorola Semiconductor Products
NA - National Semiconductor Corporation
RC - RCA Corporation
SI - Siliconix, Incorporated
TI - Texas Instruments Incorporated

TRANSISTOR INTERCHANGEABILITY MASTER LIST OF REGISTERED TYPES

TYF NUME		CLASSIFICATION	TImemacementOR MEARESTEOUNALENT	MAXIMUM RATMNOS			ELCTILCAL CHARACTELSIICS			
				$\begin{gathered} \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ { }^{\mathrm{T}} \mathrm{C}=25^{\circ} \mathrm{C} \\ (\mathrm{~mW}) \end{gathered}$	VCBO (V)	$V_{\text {ceo }}$ (V)	hTE MNN MAX ic			
$\left\lvert\, \begin{aligned} & 2 \mathrm{~N} 117 \\ & 2 \mathrm{~N} 118 \\ & 2 \mathrm{~N} 118 \mathrm{~A} \\ & 2 \mathrm{~N} 119 \end{aligned}\right.$	$\begin{aligned} & \text { NPN } \\ & \text { NPN } \\ & \text { NPN } \\ & \text { NPN } \end{aligned}$	$\begin{aligned} & G P \\ & G P \\ & G P \\ & G P \end{aligned}$	$\begin{aligned} & \text { 2N117 } \\ & \text { 2N118 } \\ & \text { 2N118A } \\ & \text { 2N119 } \end{aligned}$	$\begin{aligned} & 150 \\ & 150 \\ & 150 \\ & 150 \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \\ & 45 \\ & 30 \end{aligned}$					
$\begin{aligned} & 2 \mathrm{~N} 120 \\ & 2 \mathrm{~N} 160 \\ & 2 \mathrm{~N} 160 \mathrm{~A} \\ & 2 \mathrm{~N} 161 \end{aligned}$	NPN NPN NTN NPN	$\begin{aligned} & G P \\ & G P \\ & G P \\ & G P \end{aligned}$	$\begin{aligned} & \text { 2N120 } \\ & \text { 2N2217 } \\ & \text { 2N2217 } \\ & \text { 2N2217 } \end{aligned}$	$\begin{aligned} & 150 \\ & 150 \\ & 150 \\ & 150 \end{aligned}$	$\begin{aligned} & 45 \\ & 40 \\ & 40 \\ & 40 \end{aligned}$		$\begin{gathered} 76-333 \\ 9-19 \\ 9-19 \\ 19-39 \end{gathered}$			
$\begin{aligned} & 2 \mathrm{~N} 161 \mathrm{~A} \\ & 2 \mathrm{~N} 162 \\ & 2 \mathrm{~N} 162 \mathrm{~A} \\ & 2 \mathrm{~N} 163 \end{aligned}$	$\begin{aligned} & \text { NPN } \\ & \text { NPN } \\ & \text { NPN } \\ & \text { NPN } \end{aligned}$		$\begin{aligned} & \text { 2N2217 } \\ & \text { 2N2218 } \\ & \text { 2N2218 } \\ & \text { 2N2218 } \end{aligned}$	$\begin{aligned} & 150 \\ & 150 \\ & 150 \\ & 150 \end{aligned}$	$\begin{array}{r} 40 \\ 40 \\ 40 \\ 40 \end{array}$		$\begin{aligned} & 19-39 \\ & 19-199 \\ & 19-199 \\ & 39-199 \end{aligned}$			
$\begin{aligned} & \text { 2N163A } \\ & \text { 2N243 } \\ & 2 N 244 \\ & 2 N 258 \end{aligned}$	NPN NPN NPN PNP	$\begin{aligned} & \text { GP } \\ & \text { GP } \\ & \text { GP } \\ & \text { GP } \end{aligned}$	$\begin{aligned} & \text { 2N2218 } \\ & \text { 2N243 } \\ & \text { 2N244 } \\ & \text { 2N2906 } \end{aligned}$	$\begin{aligned} & 150 \\ & 750 \\ & 750 \\ & 250 \end{aligned}$	$\begin{aligned} & 40 \\ & 60 \\ & 60 \\ & 30 \end{aligned}$	30	39-199		15	
$\begin{aligned} & \text { 2N259 } \\ & \text { 2N260 } \\ & \text { 2N260A } \\ & \text { 2N261 } \end{aligned}$	$\begin{aligned} & P N P \\ & P N P \\ & P N P \\ & P N P \end{aligned}$	$\begin{aligned} & G P \\ & G P \\ & G P \\ & G P \end{aligned}$	$\begin{aligned} & \text { 2N2906 } \\ & \text { 2N2906 } \\ & \text { 2N2906 } \\ & \text { 2N2906 } \end{aligned}$	$\begin{aligned} & 250 \\ & 200 \\ & 200 \\ & 200 \end{aligned}$	$\begin{aligned} & 30 \\ & 10 \\ & 30 \\ & 75 \end{aligned}$	30			32	
$\begin{array}{\|l\|} \text { 2N262 } \\ \text { 2N262A } \\ \text { 2N263 } \\ \text { 2N264 } \end{array}$	PNP PNP NPN NPN	$\begin{aligned} & G P \\ & G P \\ & G P \\ & G P \end{aligned}$	$\begin{aligned} & \text { 2N2906 } \\ & \text { 2N2906 } \\ & \text { 2N2218 } \\ & \text { 2N2217 } \end{aligned}$	$\begin{aligned} & 200 \\ & 200 \\ & 150 \\ & 150 \end{aligned}$	$\begin{aligned} & 10 \\ & 30 \\ & 45 \\ & 45 \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \end{aligned}$	$\begin{array}{ll} 45-150 & 10 \\ 20-55 & 10 \end{array}$	$\begin{array}{ll} 1.5 & 10 \\ 1.5 & 10 \end{array}$	39	
$\begin{aligned} & \text { 2N327 } \\ & \text { 2N327A } \\ & \text { 2N327: } \\ & \text { 2N328 } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { PNP } \\ \text { PNP } \\ \text { PNP } \\ \text { PNP } \end{array}$	GP GP GP GP	$\begin{aligned} & \text { 2N2904 } \\ & \text { 2N2904 } \\ & \text { 2N2904 } \\ & \text { 2N2904 } \end{aligned}$	$\begin{aligned} & 350 \\ & 385 \\ & 385 \\ & 350 \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \\ & 50 \\ & 35 \end{aligned}$	40	$\begin{array}{ll} 9-22 & 3 \\ 9-22 & 3 \end{array}$	$\begin{array}{ll} .3 & 5 \\ .3 & 5 \end{array}$	18	
$\begin{aligned} & 2 \mathrm{~N} 328 \mathrm{~A} \\ & 2 \mathrm{~N} 3288 \\ & 2 \mathrm{~N} 329 \\ & 2 \mathrm{~N} 329 \mathrm{~A} \end{aligned}$	PNP PNP PNP PNP	GP GP GP GP	2N2904 2N2904 2N2904 2N2904	$\begin{aligned} & 385 \\ & 385 \\ & 350 \\ & 385 \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \\ & 30 \\ & 50 \end{aligned}$	$\begin{aligned} & 35 \\ & 35 \\ & 30 \end{aligned}$	$18-44$ 3 $18-44$ 3 $36-88$ 3	.5 10 .5 10 .6 15	36	
$\begin{aligned} & \text { 2N3290 } \\ & \text { 2N330 } \\ & \text { 2N330A } \\ & \text { 2N332 } \end{aligned}$	$\begin{aligned} & \text { PNP } \\ & \text { PNP } \\ & \text { PNP } \\ & \text { NPN } \end{aligned}$	GP GP GP GP	2N2904 2N2906 2N2908 2N332	$\begin{aligned} & 385 \\ & 350 \\ & 385 \\ & 150 \end{aligned}$	$\begin{aligned} & 50 \\ & 45 \\ & 50 \\ & 45 \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \end{aligned}$	36-88 3	. 615	9	
$\begin{aligned} & \text { 2N332A } \\ & \text { 2N333 } \\ & \text { 2N333A } \\ & \text { 2N334 } \end{aligned}$	NPN NPN NPN NPN	GP GP GP GP	$\begin{aligned} & \text { 2N332A } \\ & \text { 2N333 } \\ & \text { 2N333A } \\ & \text { 2N334 } \end{aligned}$	$\begin{aligned} & 500 \\ & 150 \\ & 500 \\ & 150 \end{aligned}$	$\begin{aligned} & 45 \\ & 45 \\ & 45 \\ & 45 \end{aligned}$	45		1 5 1 5		

TRANSISTOR INTERCHANGEABILITY
 MASTER LIST OF REGISTERED TYPES

TYPE RUMEER	$\begin{aligned} & 8 \\ & 8 \\ & 8 \end{aligned}$	$\begin{aligned} & z \\ & 6 \\ & 8 \\ & 8 \\ & 8 \\ & 8 \end{aligned}$	$\begin{aligned} & \text { TI } \\ & \text { REPLACEMENT } \\ & \text { OR NIEAREST } \\ & \text { EQUVALENT } \end{aligned}$	MAXIMUM RATMVOS			EECTRICAL CHARACTEISTICS			
				$\begin{gathered} P_{T} \\ T_{A}=25^{\circ} \mathrm{C} \\ { }^{{ }^{\prime} \mathrm{T}} \mathbf{C}-25^{\circ} \mathrm{C} \\ (\mathrm{~mW}) \end{gathered}$	Vceo (V)	VCEO (V)	hFE MIN MAX (mA)	$V_{C E}$ (cent) MAX IC (V) (mA)	$\begin{array}{\|c\|} \hline h_{f} \\ \\ 1 \mathrm{kftz} \\ \text { Mind } \\ \hline \end{array}$	
$\begin{aligned} & \text { 2N334A } \\ & \text { 2N334B } \\ & \text { 2N335 } \\ & \text { 2N335A } \end{aligned}$	NPN NPN NPN NPN	GP GP GP GP	$\begin{aligned} & \text { 2N334A } \\ & \text { 2N334A } \\ & \text { 2N335 } \\ & \text { 2N335A } \end{aligned}$	$\begin{aligned} & 500 \\ & 500 \\ & 150 \\ & 500 \end{aligned}$	45 60 45 45	$\begin{aligned} & 45 \\ & 60 \\ & 45 \end{aligned}$		$\begin{array}{ll} 1 & 5 \\ 1 & 5 \\ 1 & 5 \end{array}$	18	
$\begin{array}{\|l\|} \hline 2 N 3358 \\ 2 N 336 \\ 2 N 336 A \\ 2 N 337 \end{array}$	NPN NPN NPN NPN	GP GP GP GP	$\begin{aligned} & \text { 2N335A } \\ & \text { 2N336 } \\ & \text { 2N336A } \\ & \text { 2N337 } \end{aligned}$	$\begin{aligned} & 500 \\ & 150 \\ & 500 \\ & 125 \end{aligned}$	$\begin{aligned} & 60 \\ & 45 \\ & 45 \\ & 45 \end{aligned}$	$\begin{aligned} & 60 \\ & 45 \\ & 30 \end{aligned}$	20-55 10	$\begin{array}{ll} 1 & 5 \\ 1 & 5 \end{array}$	37	
$\begin{aligned} & \text { 2N337A } \\ & \text { 2N338 } \\ & \text { 2N338A } \\ & \text { 2N339 } \end{aligned}$	NPN NPN NPN NPN	$\begin{aligned} & G P \\ & G P \\ & G P \\ & G P \end{aligned}$	$\begin{aligned} & \text { 2N337 } \\ & \text { 2N338 } \\ & \text { 2N338A } \\ & \text { 2N339 } \end{aligned}$	500 125 500 IW	45 45 45 55	30 30 30 55	$20-55$ 10 $45-150$ 10 $45-150$ 10		$\begin{aligned} & 19 \\ & 39 \end{aligned}$	
$\begin{aligned} & 2 N 339 A \\ & 2 N 340 \\ & 2 N 340 A \\ & 2 N 341 \end{aligned}$	NPN NPN NPN NPN	$\begin{aligned} & \text { GP } \\ & G P \\ & G P \\ & G P \end{aligned}$	$\begin{aligned} & \text { 2N339 } \\ & \text { 2N340 } \\ & \text { 2N340 } \\ & \text { 2N341 } \end{aligned}$	16 16 16 16	60 85 85 125	60 85 85 85			$\begin{aligned} & 25 \\ & 25 \end{aligned}$	10 10
$\begin{aligned} & 2 N 341 A \\ & 2 N 342 \\ & 2 N 342 A \\ & 2 N 342 B \end{aligned}$	NPN NPN NPN NPN	$\begin{aligned} & G P \\ & G P \\ & G P \\ & G P \end{aligned}$	$\begin{aligned} & \text { 2N341A } \\ & \text { 2N342 } \\ & \text { 2N342A } \\ & \text { 2N342B } \end{aligned}$	IW iW 16 750	125 60 85 85	$\begin{array}{r} 125 \\ 60 \\ 85 \\ 85 \end{array}$			25	10
$\begin{array}{\|l} \text { 2N343 } \\ \text { 2N343A } \\ \text { 2N343B } \\ \text { 2N354 } \end{array}$	NPN NPN NPN PNP	$\begin{aligned} & G P \\ & G P \\ & G P \\ & G P \end{aligned}$	$\begin{aligned} & \text { 2N343 } \\ & \text { 2N343 } \\ & \text { 2N343 } \\ & \text { 2N2906 } \end{aligned}$	$1 W$ $1 W$ 750 150	60 60 65 25	$\begin{aligned} & 60 \\ & 60 \\ & 65 \end{aligned}$			28 9	
$\begin{aligned} & \text { 2N355 } \\ & \text { 2N470 } \\ & \text { 2N471 } \\ & \text { 2N471A } \end{aligned}$	PNP NPN NPN NPN	$\begin{aligned} & G P \\ & G P \\ & G P \\ & G P \end{aligned}$	$\begin{aligned} & \text { 2N2906 } \\ & \text { 2N2217 } \\ & \text { 2N2217 } \\ & \text { 2N2217 } \end{aligned}$	$\begin{aligned} & 150 \\ & 200 \\ & 200 \\ & 200 \end{aligned}$	10 15 30 30	$\begin{aligned} & 15 \\ & 30 \\ & 30 \end{aligned}$.15 5 1.5 5 1 5 1 5	9 10 10 10	8 8 8
$\begin{aligned} & \text { 2N472 } \\ & \text { 2N472A } \\ & \text { 2N473 } \\ & \text { 2N474 } \end{aligned}$	NPN NPN NPN NPN	GP GP GP GP	$\begin{aligned} & \text { 2N2217 } \\ & \text { 2N2217 } \\ & \text { 2N2217 } \\ & \text { 2N2217 } \end{aligned}$	200 200 200 200	45 45 15 30	$\begin{aligned} & 45 \\ & 45 \\ & 15 \\ & 30 \end{aligned}$		$\begin{array}{rr} 1.5 & 5 \\ 1 & 5 \\ 1.5 & 5 \\ 1.5 & 5 \end{array}$	10 10 20 20	8 8 8 8
$\begin{aligned} & \text { 2N474A } \\ & \text { 2N475 } \\ & \text { 2N475A } \\ & \text { 2N47S } \end{aligned}$	NPN NPN NPN NPN	GP GP GP GP	$\begin{aligned} & \text { 2N2217 } \\ & \text { 2N2217 } \\ & \text { 2N2217 } \\ & \text { 2N2217 } \end{aligned}$	200 200 200 200	30 45 45 15	30 45 45 15		$\begin{array}{rl} 1 & 5 \\ 1.5 & 5 \\ 1 & 5 \\ 1.5 & 5 \end{array}$	20 20 20 30	8 8 8 12
$\begin{aligned} & \text { 2N477 } \\ & \text { 2N478 } \\ & \text { 2N479 } \\ & \text { 2N479A } \end{aligned}$	NPN NPN NPN NPN	GP GP GP GP	$\begin{aligned} & \text { 2N2217 } \\ & \text { 2N2218 } \\ & \text { 2N2217 } \\ & \text { 2N2217 } \end{aligned}$	$\begin{aligned} & 200 \\ & 200 \\ & 200 \\ & 200 \end{aligned}$	$\begin{aligned} & 30 \\ & 15 \\ & 30 \\ & 30 \end{aligned}$	$\begin{aligned} & 30 \\ & 15 \\ & 30 \\ & 30 \end{aligned}$		$\begin{array}{rr}1.5 & 5 \\ 1.5 & 5 \\ 1.5 & 5 \\ 1 & 5\end{array}$	30 40 40 40	12 20 20 20

TRANSISTOR INTERCHANGEABILITY MASTER LIST OF REGISTERED TYPES

TYPE		7$\frac{7}{5}$5$\frac{2}{4}$$\frac{3}{8}$		maximum ratinos			ELECTRKCAL CHARACTERISTICS					
				$\begin{array}{\|ccc} \hline P_{T} & & \\ \mathrm{~T}_{A}=25^{\circ} \mathrm{C} & V_{C 20} & V_{C E O} \\ { }^{*} \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C} & & \\ (\mathrm{~mW}) & \text { (V) } & \text { (V) } \\ \hline \end{array}$					$\mathbf{V}_{\text {CEIset }}$		$\begin{gathered} \mathrm{h} \% \\ 1 \mathrm{kHt} \\ \mathrm{~mm} \end{gathered}$	
2 N 48 O 2N460A 2N4B9 2N469A	$\begin{aligned} & \mathrm{N} \neq \mathrm{N} \\ & \mathrm{~N} \neq \mathrm{N} \\ & \mathrm{P} \cdot \mathrm{~N} \\ & \mathrm{P}-\mathrm{N} \end{aligned}$	$\begin{aligned} & G P \\ & G P \\ & \text { GP } \\ & U J \\ & U J \end{aligned}$	$\begin{aligned} & \text { 2N2217 } \\ & \text { 2N2217 } \\ & \text { 2N489 } \\ & \text { 2N489A } \end{aligned}$	$\begin{aligned} & 200 \\ & 200 \\ & \text { SEE UNL } \\ & \text { SEE UNI } \end{aligned}$	45 45 UNCTIO UNCTIO		angeal NGEA		1.5	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	40 40	20 20
2N4898 2 N 49 O 2N490A 2NA9OB	$\begin{aligned} & P-N \\ & P-N \\ & P-N \\ & P-N \end{aligned}$	$\left[\begin{array}{l} u \\ u \\ u \\ u \\ u \\ u \\ \hline \end{array}\right.$	2NAB98 2N490 2N490A 2N4903									
	$\begin{aligned} & P-N \\ & P-N \\ & P-N \\ & P-N \end{aligned}$	$\left\lvert\, \begin{aligned} & \text { uJ } \\ & \text { UJ } \\ & \text { u } \\ & \text { UJ } \end{aligned}\right.$	2Na91 2N491A 2N4918 2N492			NTERC interc INTERC INIERC	HANGEABILT HANGEAB HANGEABHTI HANGEABH	$\begin{aligned} & \text { UST } \\ & \text { UST } \\ & \text { LST } \end{aligned}$				
$\begin{array}{\|l\|} \hline 2 \mathrm{~N} / 92 \mathrm{~A} \\ \text { 2N4928 } \\ \text { 2N493 } \\ \text { 2N493A } \end{array}$	$\begin{aligned} & P-N \\ & P-N \\ & P-N \\ & P-N \end{aligned}$	虽	$\begin{aligned} & \text { 2N492A } \\ & \text { 2N4928 } \\ & \text { 2N493 } \\ & \text { 2N493A } \end{aligned}$	SEE UN SEE UNI SEE UN SEE UN		NTERC INTERC INTERC INTERC						
2N4938 2N494 2N494A 2N4948	$\begin{aligned} & P-N \\ & P-N \\ & P-N \\ & P-N \end{aligned}$	$\left[\begin{array}{l} u J \\ u J \\ u J \\ u J \\ u J \end{array}\right.$	2N493E	SEE UNI SEE UN SEE UN SEE UN	UNCTIO NCTIO NCTION UNCTON	INTERCH INTERC INTERCH INTERC	ANGEABITIT ANGEADIT ANGEABLIT ANGEABII					
2N494C 2N495 2N496 2N497	$\begin{array}{\|l\|l} \mathbf{P}-\mathbf{N} \\ \text { PNP } \\ \text { PNP } \\ \text { PNPN } \end{array}$	$\begin{aligned} & \text { UJ } \\ & \text { SW } \\ & \text { SW } \\ & \text { GP } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { 2N2944 } \\ \text { 2N2944 } \\ \text { 2N2102 } \end{array}$	$\begin{aligned} & \text { SEE UNUI } \\ & 150 \\ & 150 \\ & \cdot 4 W \\ & \hline \end{aligned}$	UCTION 25 10 60	INTERC		$\begin{array}{r} 15 \\ 200 \end{array}$. 15	5	15 9	7.2
2N497A 2N498 2N498A 2N541	$\begin{aligned} & \text { NPN } \\ & \text { NPN } \\ & \text { NPN } \\ & \text { NPN } \end{aligned}$	$\begin{aligned} & G P \\ & G P \\ & G P \\ & G P \\ & G P \end{aligned}$	2N2102 2N3036 2N3036 2N2218	-5W -4W -5W 200	$\begin{array}{r} 60 \\ 100 \\ 100 \\ 15 \end{array}$	$\begin{array}{r} 60 \\ 100 \\ 100 \end{array}$	$\begin{aligned} & 12.36 \\ & 12.36 \\ & 12.36 \end{aligned}$	$\begin{aligned} & 200 \\ & 200 \\ & 200 \end{aligned}$	1.5	5	80	10
2N541A 2N542 2N542A 2N543	$\begin{aligned} & \text { NPN } \\ & \text { NPN } \\ & \text { NNN } \\ & \text { NPN } \end{aligned}$	GP GP GP GP	$\begin{array}{\|l\|l\|} \text { 2N2218 } \\ \text { 2N2219 } \\ \text { 2N2219 } \\ \text { 2N2218 } \end{array}$	$\begin{aligned} & 200 \\ & 200 \\ & 200 \\ & 200 \end{aligned}$	$\begin{aligned} & 15 \\ & 30 \\ & 30 \\ & 50 \end{aligned}$	15 30 50	80.	1	$\begin{array}{r} 1 \\ 1.5 \\ 1 \\ 1.5 \end{array}$	$\begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 80 \\ & 80 \\ & 80 \\ & 80 \end{aligned}$	8 10 10 10
2N543A 2N545 2N546 2N547	NPN NPN NPN NPN	$\begin{aligned} & G P \\ & G P \\ & G P \\ & G P \end{aligned}$	$\begin{aligned} & \text { 2N2218 } \\ & \text { 2N2102 } \\ & \text { 2N2102 } \\ & \text { 2N2102 } \end{aligned}$	$\begin{aligned} & 200 \\ & \cdot 5 w \\ & \cdot 5 w \\ & * 5 w \end{aligned}$	$\begin{aligned} & 45 \\ & 60 \\ & 30 \\ & 60 \end{aligned}$	$\begin{aligned} & 45 \\ & 60 \\ & 30 \\ & 60 \end{aligned}$	$\begin{aligned} & 15-80 \\ & 15-80 \\ & 20-80 \end{aligned}$	$\begin{aligned} & 500 \\ & 500 \\ & 500 \end{aligned}$	1 5 3 5	5 500 500 500	80	10
2N548 2NS49 2NS50 2N351	NPN NPN NPN NPN	$\begin{aligned} & G P \\ & G P \\ & G P \\ & G P \end{aligned}$	$\begin{aligned} & \text { 2N2102 } \\ & \text { 2N2270 } \\ & \text { 2N2270 } \\ & \text { 2N2270 } \end{aligned}$	$\begin{aligned} & \cdot 5 w \\ & \cdot 5 w \\ & \cdot 5 w \\ & \cdot 5 w \end{aligned}$	$\begin{aligned} & 30 \\ & 60 \\ & 30 \\ & 80 \end{aligned}$	$\begin{aligned} & 30 \\ & 60 \\ & 30 \\ & 60 \end{aligned}$	$\begin{aligned} & 20-80 \\ & 20-80 \\ & 20-80 \\ & 20-80 \end{aligned}$	$\begin{array}{r} 500 \\ 200 \\ 200 \\ 50 \end{array}$	$\begin{aligned} & 3 \\ & 4 \\ & 4 \\ & 2 \end{aligned}$	$\begin{array}{r} 500 \\ 200 \\ 200 \\ 50 \\ 50 \end{array}$		4 4 4 3

TRANSISTOR INTERCHANGEABILITY MASTER LIST OF REGISTERED TYPES

TYFE NUMEER		$\begin{aligned} & \frac{7}{8} \\ & \frac{3}{8} \\ & \frac{3}{3} \\ & 8 \end{aligned}$	$\begin{aligned} & \text { TI } \\ & \text { REPLACEMENT } \\ & \text { OR NIAREST } \\ & \text { EPUVALENT } \end{aligned}$	MAXLINLM RATINOS			EIECIRICAL CMARACTERSTICS					
				$\begin{gathered} P_{T} \\ \mathbf{T}_{A}-25^{\circ} \mathrm{C} \\ { }^{{ }^{\circ} \mathrm{T} C=25^{\circ} \mathrm{C}} \\ (\mathrm{~mW}) \end{gathered}$	Vcso (V)	Vcro (V)	hpe	$\begin{gathered} \mathbf{I C} \\ (\mathrm{mA}) \end{gathered}$	VCE MAX (V)	$\begin{aligned} & \text { set } \\ & \hline \mathrm{IC} \\ & (\mathrm{~mA}) \end{aligned}$		$\begin{gathered} T \\ \text { MiN } \\ \left(M_{1}+z\right) \end{gathered}$
$\begin{aligned} & \text { 2N552 } \\ & \text { 2N560 } \\ & \text { 2N619 } \\ & \text { 2N620 } \end{aligned}$	NPN NPN NPN NPN	$\begin{aligned} & G P \\ & G P \\ & G P \\ & G P \end{aligned}$	$\begin{aligned} & \text { 2N2270 } \\ & \text { 2N1893 } \end{aligned}$	+5W 500 175 175	30 60 50 50	30 60 40 35	$20-80$ $20-$ $9-22$ $18-4$	50 100 5 5	2 .5 .5 .4	50 10 8 8		3
$\begin{array}{\|l\|} \text { 2N621 } \\ \text { 2N622 } \\ \text { 2N656 } \\ \text { 2N656A } \end{array}$	NPN NPN NPN NPN	$\begin{array}{\|l} \text { GP } \\ \text { SW } \\ \text { GP } \\ \text { GP } \end{array}$	2N2432 2N3036 2N3036	$\begin{array}{r} 175 \\ 385 \\ -4 W \\ \hline 5 W \end{array}$	$\begin{aligned} & 50 \\ & 50 \\ & 60 \\ & 60 \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \\ & 60 \\ & 60 \end{aligned}$	$\begin{aligned} & 36-88 \\ & \\ & 30-90 \\ & 30-90 \end{aligned}$	$\begin{array}{r} 5 \\ 200 \\ 200 \end{array}$. 3	8		
$\begin{array}{\|l\|} \hline \text { 2N657 } \\ \text { 2N657A } \\ \text { 2N696 } \\ \text { 2N696A } \end{array}$	NPN NPN NPN NPN	$\begin{aligned} & G P \\ & G P \\ & G P \\ & G P \end{aligned}$	$\begin{aligned} & \text { 2N3036 } \\ & \text { 2N3036 } \\ & \text { 2N696 } \\ & \text { 2N696 } \end{aligned}$	$\begin{aligned} & 4 W \\ & * 5 w \\ & 600 \\ & 800 \end{aligned}$	$\begin{array}{r} 100 \\ 100 \\ 60 \\ 60 \end{array}$	$\begin{array}{r} 100 \\ 100 \\ \\ 35 \end{array}$	$\begin{aligned} & 30-90 \\ & 30-90 \\ & 20-60 \\ & 20-60 \end{aligned}$	$\begin{aligned} & 200 \\ & 200 \\ & 150 \\ & 150 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 150 \\ & 150 \end{aligned}$	15	40
$\begin{aligned} & \text { 2N697 } \\ & \text { 2N697A } \\ & \text { 2N698 } \\ & \text { 2N699 } \end{aligned}$	$\begin{aligned} & \text { NPN } \\ & \text { NPN } \\ & \text { NPN } \\ & \text { NPN } \end{aligned}$	$\begin{aligned} & G P \\ & G P \\ & G P \\ & G P \end{aligned}$	$\begin{aligned} & \text { 2N697 } \\ & \text { 2N697 } \\ & \text { 2N698 } \\ & \text { 2N699 } \end{aligned}$	$\begin{aligned} & 600 \\ & 800 \\ & 800 \\ & 600 \end{aligned}$	$\begin{array}{r} 60 \\ 60 \\ 120 \\ 120 \end{array}$	35	$\begin{aligned} & 40-120 \\ & 40-120 \\ & 20-60 \\ & 40-120 \end{aligned}$	$\begin{aligned} & 150 \\ & 150 \\ & 150 \\ & 150 \end{aligned}$	1.5 1.5 1.2 5	$\begin{aligned} & 150 \\ & 150 \\ & 150 \\ & 150 \end{aligned}$	25 15 35	40 50 40 50
$\begin{aligned} & \text { 2N699A } \\ & \text { 2N6994 } \\ & \text { 2N702 } \\ & \text { 2N703 } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { NPN } \\ \text { NPN } \\ \text { NPN } \\ \text { NPN } \end{array}$	$\begin{aligned} & G P \\ & G P \\ & G P \\ & G P \end{aligned}$	$\begin{aligned} & \text { 2N699 } \\ & \text { 2N699 } \\ & \text { 2N2220 } \\ & \text { 2N2221 } \end{aligned}$	$\begin{aligned} & 800 \\ & 870 \\ & 300 \\ & 300 \end{aligned}$	$\begin{array}{r} 120 \\ 120 \\ 25 \\ 25 \end{array}$	$\begin{aligned} & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & 40.120 \\ & 40-120 \\ & 20-60 \\ & 40-100 \end{aligned}$	$\begin{array}{r} 150 \\ 150 \\ 10 \\ 10 \end{array}$	5 1.2 .5 .5	$\begin{array}{r} 150 \\ 50 \\ 10 \\ 10 \end{array}$	$\begin{aligned} & 35 \\ & 35 \end{aligned}$	50 60 70 70
$\left\lvert\, \begin{aligned} & \text { 2N706 } \\ & \text { 2N706A } \\ & \text { 2N706B } \\ & \text { 2N706C } \end{aligned}\right.$	NPN NPN NPN NPN	$\begin{aligned} & s w \\ & s w \\ & s w \\ & s w \end{aligned}$		$\begin{aligned} & 300 \\ & 300 \\ & 300 \\ & 360 \end{aligned}$	$\begin{aligned} & 25 \\ & 25 \\ & 25 \\ & 40 \end{aligned}$		$\begin{aligned} & 20 \\ & 20-60 \\ & 20-60 \\ & 20-60 \end{aligned}$	10 10 10 10	. 6	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$		200 200 200 200
$\begin{aligned} & \text { 2N707 } \\ & \text { 2N707A } \\ & \text { 2N708 } \\ & \text { 2N708A } \end{aligned}$	NPN NPN NPN NPN	RF RF SW SW		$\begin{aligned} & 300 \\ & 500 \\ & 360 \\ & 360 \end{aligned}$	$\begin{aligned} & 56 \\ & 70 \\ & 40 \\ & 50 \end{aligned}$	40	$9-$ $9-50$ $30-120$ $40-120$	10 10 10 10	.6 .6 .4 .15	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$		70 300 300
$\begin{array}{\|l} \text { 2N709 } \\ \text { 2N709A } \\ \text { 2N715 } \\ \text { 2N716 } \end{array}$	NPN NPN NPN NPN	$\begin{aligned} & S W \\ & S W \\ & R F \\ & R F \end{aligned}$	2N4875 2N4875	$\begin{aligned} & 300 \\ & 300 \\ & 500 \\ & 500 \end{aligned}$	15 15 50 70	6 6 35 40	$\begin{aligned} & 20-120 \\ & 30-90 \\ & 10-50 \\ & 10-50 \end{aligned}$	10 10 15 15	.3 .3 1.2 1.2	$\begin{array}{r} 3 \\ 3 \\ 15 \\ 15 \end{array}$		600 600 70 70
$\begin{aligned} & \text { 2N717 } \\ & \text { 2N718 } \\ & \text { 2N718A } \\ & \text { 2N719 } \end{aligned}$	NPN NPN NPN NPN	GP GP GP GP	$\begin{aligned} & \text { 2N717 } \\ & \text { 2N718 } \\ & \text { 2N718A } \\ & \text { 2N719 } \end{aligned}$	$\begin{aligned} & 400 \\ & 400 \\ & 500 \\ & 400 \end{aligned}$	$\begin{array}{r} 60 \\ 60 \\ 75 \\ 120 \end{array}$		$\begin{aligned} & 20-60 \\ & 40-120 \\ & 40-120 \\ & 20-60 \end{aligned}$	$\begin{aligned} & 150 \\ & 150 \\ & 150 \\ & 150 \end{aligned}$	$\begin{array}{r} 1.5 \\ 1.5 \\ 1.5 \\ 5 \end{array}$	$\begin{aligned} & 150 \\ & 150 \\ & 150 \\ & 150 \end{aligned}$	30 15	40 50 60 40
$\begin{array}{\|l} \text { 2N719A } \\ \text { 2N720 } \\ \text { 2N720A } \\ \text { 2N721 } \end{array}$	NPN NPN NPN PNP	GP GP GP GP	$\begin{aligned} & \text { 2N719A } \\ & \text { 2N720 } \\ & \text { 2N720A } \\ & \text { 2N721 } \end{aligned}$	$\begin{array}{r} 500 \\ 400 \\ 500 \\ 400 \end{array}$	$\begin{array}{r} 120 \\ 120 \\ 120 \\ 50 \end{array}$		$\begin{aligned} & 20-60 \\ & 40-120 \\ & 40-120 \\ & 20-45 \end{aligned}$	$\begin{aligned} & 150 \\ & 150 \\ & 150 \\ & 150 \end{aligned}$	$\begin{array}{r} 1.2 \\ 5 \\ 5 \\ 1.5 \end{array}$	$\begin{array}{r} 50 \\ 150 \\ 150 \\ 150 \end{array}$	15 35 30 15	40 50 50 50

TRANSISTOR INTERCHANGEABILITY
MASTER LIST OF REGISTERED TYPES

TYPE number		CLASSHFICATION	$\begin{aligned} & \text { TI } \\ & \text { REPLACEMENT } \\ & \text { OR MEAREST } \\ & \text { EOUNALENT } \end{aligned}$	I MAXIMUM RATINOS			EECTRICAL CHARACTERISTICS					
				$\begin{gathered} \mathrm{PT} \\ \mathrm{~T}_{A}=25^{\circ} \mathrm{C} \\ { }^{{ }^{1} \mathrm{~T} C=25^{\circ} \mathrm{C}} \\ (\mathrm{~mW}) \\ \hline \end{gathered}$	Vceo (V)	VCEO (V)	MN Max	$\begin{gathered} e \\ \hline(\mathrm{~mA}) \\ \hline \end{gathered}$		$\begin{aligned} & \text { (set) } \\ & \hline \mathbf{I C} \\ & \text { (mA) } \end{aligned}$	$\begin{gathered} \mathrm{hfo}_{\mathrm{f}} \\ 1 \mathrm{kftz} \\ \text { MiN } \end{gathered}$	$\begin{gathered} \mathrm{f} \\ \mathrm{MNN} \\ (\mathrm{MHz}) \\ \hline \end{gathered}$
$\begin{aligned} & \text { 2N757 } \\ & \text { 2N757A } \\ & \text { 2N758 } \\ & \text { 2N758A } \end{aligned}$	NPN NPN NPN NPN	$\begin{aligned} & G P \\ & G P \\ & G P \\ & G P \end{aligned}$	$\begin{aligned} & \text { 2N2221 } \\ & \text { 2N2221 } \\ & \text { 2N2221 } \\ & \text { 2N2221 } \end{aligned}$	500 500 500 500	45 60 45 60	45 60 45 60			1 1 1 1	10 10 10 10	$\begin{aligned} & 18 \\ & 18 \\ & 18 \\ & 18 \end{aligned}$	
$\begin{aligned} & \text { 2N7588 } \\ & \text { 2N759 } \\ & \text { 2N759A } \\ & 2 N 7598 \end{aligned}$	NPN NPN NPN NPN	$\begin{aligned} & \text { GP } \\ & \text { GP } \\ & \text { GP } \\ & \text { GP } \end{aligned}$	$\begin{aligned} & \text { 2N2221 } \\ & \text { 2N2222 } \\ & \text { 2N2222 } \\ & \text { 2N2222 } \end{aligned}$	500 500 500 500	60 45 60 60	60 45 60 60	12 $25-$	1 1	.5 1 1 .5	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 18 \\ & 36 \\ & 36 \\ & 36 \end{aligned}$	
$\begin{aligned} & \text { 2N760 } \\ & 2 N 760 A \\ & 2 N 7608 \\ & 2 N 761 \end{aligned}$	NPN NPN NPN NPN	$\begin{aligned} & \text { GP } \\ & \text { GP } \\ & G P \\ & G P \end{aligned}$	$\begin{aligned} & \text { 2N2222 } \\ & \text { 2N2222 } \\ & \text { 2N2222 } \\ & \text { 2N2218A } \end{aligned}$	500 500 500 500	45 60 60 50	45 60 60 30	20-55	10	1 1 .5 1	10 10 10 10	$\begin{aligned} & 76 \\ & 76 \\ & 76 \\ & 19 \end{aligned}$	
$\left\lvert\, \begin{aligned} & \text { 2N762 } \\ & 2 N 770 \\ & 2 N 771 \\ & 2 N 772 \end{aligned}\right.$	$\begin{aligned} & \mathrm{NPN} \\ & \mathrm{NPN} \\ & \mathrm{NPN} \\ & \mathrm{NPN} \end{aligned}$	GP SW SW SW	2N2218A	$\begin{aligned} & 500 \\ & 150 \\ & 150 \\ & 150 \end{aligned}$	50 20 20 25	30 15 15 25	$\begin{aligned} & 45-150 \\ & 12-60 \\ & 30-150 \\ & 20- \end{aligned}$	10 20 20 10	1 .25 .25 .25	10 10 10 10	39	75 100 75
$\begin{aligned} & \text { 2N773 } \\ & \text { 2N774 } \\ & \text { 2N775 } \\ & \text { 2N776 } \end{aligned}$	NPN NPN NPN NPN	GP GP GP GP		$\begin{aligned} & 150 \\ & 150 \\ & 150 \\ & 150 \end{aligned}$	20 20 20 20	15 15 15 15	$4-16$ 7.30 $20-80$ $4-16$	1.5 1.5 1.5 1.5			6 11 28 6	
$\begin{aligned} & \text { 2N777 } \\ & \text { 2N778 } \\ & \text { 2N780 } \\ & \text { 2N783 } \end{aligned}$	NPN NPN NPN NPN	GP GP GP SW	2N2220	$\begin{array}{r} 150 \\ 150 \\ +1 w \\ 300 \end{array}$	$\begin{aligned} & 20 \\ & 20 \\ & 45 \\ & 40 \end{aligned}$	$\begin{aligned} & 15 \\ & 15 \end{aligned}$	$\begin{aligned} & 7-30 \\ & 20-80 \\ & 35.140 \\ & 20-60 \end{aligned}$	$\begin{array}{r} 1.5 \\ 1.5 \\ .5 \\ 10 \end{array}$	1 .25	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	118	60 200
$\begin{aligned} & \text { 2N784 } \\ & \text { 2N784A } \\ & \text { 2N789 } \\ & \text { 2N790 } \end{aligned}$	NPN NPN NPN NPN	sw SW GP GP		$\begin{aligned} & 300 \\ & 350 \\ & 150 \\ & 150 \end{aligned}$	$\begin{aligned} & 30 \\ & 40 \\ & 45 \\ & 45 \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \end{aligned}$	$\begin{aligned} & 25- \\ & 25.150 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \end{aligned}$.19 .65 1 1	$\begin{array}{r} 10 \\ 100 \\ 5 \\ 5 \end{array}$	9 18	200 300
$\begin{aligned} & \text { 2N791 } \\ & \text { 2N792 } \\ & \text { 2N793 } \\ & \text { 2NB34 } \end{aligned}$	NPN NPN NPN NPN	GP GP GP SW		150 150 150 300	$\begin{aligned} & 45 \\ & 45 \\ & 45 \\ & 40 \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \\ & 30 \end{aligned}$	25-	10	1 1 1 .25	$\begin{array}{r} 5 \\ 5 \\ 5 \\ 10 \end{array}$	18 36 76	350
$\begin{aligned} & \text { 2N834A } \\ & \text { 2N835 } \\ & \text { 2N839 } \\ & \text { 2N84O } \end{aligned}$	NPN NPN NPN NPN	$\begin{aligned} & \text { SW } \\ & \text { SW } \\ & G P \\ & G P \end{aligned}$	$\begin{aligned} & \text { 2N2222 } \\ & \text { 2N2221A } \end{aligned}$	$\begin{aligned} & 360 \\ & 300 \\ & 300 \\ & 300 \end{aligned}$	$\begin{aligned} & 40 \\ & 25 \\ & 45 \\ & 45 \end{aligned}$	$\begin{aligned} & 20 \\ & 45 \\ & 45 \end{aligned}$	$\begin{aligned} & 25- \\ & 20- \\ & 15-50 \\ & 30-100 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$. . .3 2 2	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$	20 40	500 300 30 30
$\begin{aligned} & \text { 2N841 } \\ & \text { 2N842 } \\ & \text { 2N843 } \\ & \text { 2N844 } \end{aligned}$	NPN NPN NPN NPN	GP GP GP GP	$\begin{aligned} & \text { 2N2222A } \\ & \text { 2N2221 } \\ & \text { 2N2222 } \\ & \text { 2N718A } \end{aligned}$	$\begin{aligned} & 300 \\ & 300 \\ & 300 \\ & 300 \end{aligned}$	$\begin{aligned} & 45 \\ & 45 \\ & 45 \\ & 60 \end{aligned}$	$\begin{aligned} & 45 \\ & 45 \\ & 45 \end{aligned}$	$\begin{aligned} & 60-400 \\ & 20-55 \\ & 45-150 \\ & 40-120 \end{aligned}$	$\begin{array}{r} 10 \\ 10 \\ 10 \\ 5 \end{array}$	2 1.2 1.2 .8	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$	80 20 40	40 30 40 50

TRANSISTOR INTERCHANGEABILITY MASTER LIST OF REGISTERED TYPES

TYPE NUMEER			$\begin{aligned} & \text { II } \\ & \text { REMLACENENT } \\ & \text { OR NBARET } \\ & \text { EOUVARENT } \end{aligned}$	MAXIMUM RATMES			EECTICAL CHARACTIEISTICS					
				$\begin{gathered} P_{T} \\ T_{A}=25^{\circ} \mathrm{C} \\ { }^{\circ} \mathrm{T}_{\mathbf{C}}=25^{\circ} \mathrm{C} \\ (\mathrm{~mW}) \\ \hline \end{gathered}$	$V_{\text {ceo }}$ (V)	$V_{C E O}$ (V)	Man M	$\begin{gathered} c \\ (\mathrm{~mA}) \end{gathered}$		$\begin{gathered} \text { (set) } \\ (\mathrm{mA}) \end{gathered}$		$\begin{gathered} \text { f } \\ \text { Min } \\ \text { (MHz) } \end{gathered}$
$\begin{aligned} & \text { 2N845 } \\ & \text { 2N847 } \\ & \text { 2N848 } \\ & \text { 2N849 } \end{aligned}$	NPN NPN NPN NPN	$\begin{aligned} & G P \\ & s w \\ & s w \\ & s w \end{aligned}$	2N718A 2N849	300 200 200 300	100 20 40 25	15 25 15	$\begin{aligned} & 40-120 \\ & 20-60 \end{aligned}$	5 10	.8 1.5 1.5 .6	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$		$\begin{gathered} 50 \\ \vdots \\ 600 \end{gathered}$
$\begin{aligned} & \text { 2N850 } \\ & \text { 2N851 } \\ & \text { 2N852 } \\ & \text { 2N858 } \end{aligned}$	NPN NPN NPN PNP	$\begin{aligned} & s w \\ & s w \\ & s w \\ & G P \end{aligned}$	$\begin{aligned} & \text { 2N850 } \\ & \text { 2N851 } \\ & \text { 2N852 } \\ & \text { 2N2906 } \end{aligned}$	$\begin{aligned} & 300 \\ & 300 \\ & 300 \\ & 150 \end{aligned}$	$\begin{aligned} & 25 \\ & 20 \\ & 20 \\ & 40 \end{aligned}$	$\begin{aligned} & 15 \\ & 12 \\ & 12 \\ & 40 \end{aligned}$	$\begin{aligned} & 40-120 \\ & 20-60 \\ & 40-120 \\ & 10-60 \end{aligned}$	$\begin{array}{r} 10 \\ 10 \\ 10 \\ 5 \end{array}$.6 .15	10 5	15	$\begin{array}{r} 600 \\ 300 \\ 300 \\ 5 \end{array}$
$\begin{aligned} & \text { 2N859 } \\ & \text { 2N860 } \\ & \text { 2N861 } \\ & \text { 2N862 } \end{aligned}$	PNP PNP PNP PNP	$\begin{aligned} & \text { GP } \\ & \text { GP } \\ & \text { GP } \\ & \text { GP } \end{aligned}$	$\begin{aligned} & \text { 2N2906 } \\ & \text { 2N2906 } \\ & \text { 2N2906 } \\ & \text { 2N2906 } \end{aligned}$	$\begin{aligned} & 150 \\ & 150 \\ & 150 \\ & 150 \end{aligned}$	$\begin{aligned} & 40 \\ & 25 \\ & 25 \\ & 15 \end{aligned}$	$\begin{aligned} & 40 \\ & 25 \\ & 25 \\ & 15 \end{aligned}$	$\begin{aligned} & 25-100 \\ & 10-40 \\ & 25-75 \\ & 12-48 \end{aligned}$	5 5 5 5	.15 .15 .15 .15	$\begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$	30 15 30 20	6 6.5 7.5 8
$\begin{aligned} & \text { 2N863 } \\ & \text { 2N864 } \\ & \text { 2N864A } \\ & \text { 2N865 } \end{aligned}$	$\begin{aligned} & \text { PNP } \\ & \text { PNNP } \\ & \text { PNNP } \\ & \text { PNNP } \end{aligned}$	$\begin{aligned} & \text { GP } \\ & \text { GP } \\ & \text { GP } \\ & \text { GP } \end{aligned}$	$\begin{aligned} & \text { 2N2906 } \\ & \text { 2N2906 } \\ & \text { 2N2906 } \\ & \text { 2N2906 } \end{aligned}$	150 150 300 150	$\begin{array}{r} 15 \\ 6 \\ 6 \\ 10 \end{array}$	$\begin{array}{r} 15 \\ 6 \\ 6 \\ 6 \end{array}$	$\begin{aligned} & 25-100 \\ & 20-100 \\ & 20-250 \\ & 45-125 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$.15 .1 .1 .1	$\begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$	$\begin{array}{r} 40 \\ 25 \\ 25 \\ 100 \end{array}$	10 16 16 24
$\begin{array}{\|l} \text { 2N865A } \\ \text { 2N866 } \\ \text { 2N867 } \\ \text { 2N869 } \end{array}$	$\begin{array}{\|l} \text { PNP } \\ \text { NPN } \\ \text { NPN } \\ \text { PNP } \end{array}$	GP GP GP GP	2N2906 2N2906	$\begin{aligned} & 300 \\ & 500 \\ & 500 \\ & 360 \end{aligned}$	$\begin{aligned} & 10 \\ & 30 \\ & 30 \\ & 25 \end{aligned}$	10 18	$\begin{aligned} & 45-400 \\ & 15-45 \\ & 30-90 \\ & 20-120 \end{aligned}$	$\begin{array}{r} 5 \\ 150 \\ 150 \\ 10 \end{array}$	$\begin{array}{r} .1 \\ 1.5 \\ 1.5 \\ 1 \end{array}$	$\begin{array}{r} 5 \\ 150 \\ 150 \\ 10 \end{array}$	100	24 40 50 100
$\begin{aligned} & \text { 2N869A } \\ & \text { 2N870 } \\ & \text { 2N871 } \\ & \text { 2N902 } \end{aligned}$	PNP NPN NPN NPN	$\begin{aligned} & \text { GP } \\ & \text { GP } \\ & \text { GP } \\ & \text { GP } \end{aligned}$	$\begin{aligned} & \text { 2N2906 } \\ & \text { 2N870 } \\ & \text { 2N871 } \\ & \text { 2N2221 } \end{aligned}$	$\begin{aligned} & 360 \\ & 500 \\ & 500 \\ & 150 \end{aligned}$	$\begin{array}{r} 25 \\ 100 \\ 100 \\ 45 \end{array}$	18 30	$\begin{array}{r} 40-120 \\ 40-120 \\ 100-300 \end{array}$	$\begin{array}{r} 30 \\ 150 \\ 150 \end{array}$.15 1.2 1.2 1	$\begin{array}{r} 10 \\ 50 \\ 50 \\ 5 \end{array}$	30 50 9	400 50 60 1
$\begin{aligned} & \text { 2N903 } \\ & \text { 2N904 } \\ & \text { 2N905 } \\ & \text { 2N906 } \end{aligned}$	NPN NPN NPN NPN	GP GP GP GP	$\begin{aligned} & \text { 2N2221 } \\ & \text { 2N2221 } \\ & \text { 2N2221 } \\ & \text { 2N2221 } \end{aligned}$	150 150 150 150	45 45 45 45	30 30 30 30			1 1 1 1	$\begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$	18 18 36 76	
$\begin{aligned} & \text { 2N907 } \\ & \text { 2N908 } \\ & \text { 2N909 } \\ & \text { 2N910 } \end{aligned}$	NPN NPN NPN NPN	GP GP GP GP	$\begin{aligned} & \text { 2N2221 } \\ & \text { 2N2221 } \\ & \text { 2N2222 } \\ & \text { 2N910 } \end{aligned}$	$\begin{aligned} & 150 \\ & 150 \\ & 400 \\ & 500 \end{aligned}$	$\begin{array}{r} 45 \\ 45 \\ 60 \\ 100 \end{array}$	$\begin{aligned} & 30 \\ & 30 \end{aligned}$	$\begin{gathered} 20-55 \\ 45-150 \\ 110-350 \\ 75 . \end{gathered}$	$\begin{aligned} & 10 \\ & 10 \\ & 50 \\ & 10 \end{aligned}$			19 39 40 76	12 25 50 60
$\begin{aligned} & \text { 2N911 } \\ & \text { 2N912 } \\ & \text { 2N914 } \\ & \text { 2N914A } \end{aligned}$	NPN NPN NPN NPN	GP GP SW sw	$\begin{aligned} & \text { 2N911 } \\ & \text { 2N912 } \end{aligned}$	$\begin{aligned} & 500 \\ & 500 \\ & 360 \\ & 360 \end{aligned}$	$\begin{array}{r} 100 \\ 100 \\ 40 \\ 40 \end{array}$		$\begin{aligned} & 35- \\ & 15- \\ & 30-120 \\ & 30-120 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & .4 \\ & .4 \\ & .7 \\ & .4 \end{aligned}$	$\begin{array}{r} 10 \\ 10 \\ 200 \\ 200 \end{array}$	$\begin{aligned} & 36 \\ & 18 \end{aligned}$	50 40 300 300
$\begin{aligned} & \text { 2N915 } \\ & \text { 2N916 } \\ & \text { 2N916A } \\ & \text { 2N917 } \end{aligned}$	NPN NPN NPN NPN	GP GP GP RF	$\begin{aligned} & \text { 2N2222A } \\ & \text { 2N2222A } \\ & \text { 2N2222A } \\ & \text { 2N917 } \end{aligned}$	$\begin{aligned} & 360 \\ & 360 \\ & 360 \\ & 200 \end{aligned}$	$\begin{aligned} & 70 \\ & 45 \\ & 45 \\ & 30 \end{aligned}$	$\begin{aligned} & 50 \\ & 25 \\ & 25 \\ & 15 \end{aligned}$	$\begin{aligned} & 50-200 \\ & 50-200 \\ & 50-200 \\ & 20-200 \end{aligned}$	$\begin{array}{r} 10 \\ 10 \\ 10 \\ 3 \end{array}$	$\begin{aligned} & 1 \\ & .5 \\ & .5 \\ & .5 \end{aligned}$	$\begin{array}{r} 10 \\ 10 \\ 10 \\ 3 \end{array}$	50 50 50	$\begin{aligned} & 250 \\ & 300 \\ & 300 \\ & 500 \end{aligned}$

TRANSISTOR INTERCHANGEABILITY

 MASTER LIST OF REGISTERED TYPES| TYPE MUMEER | | | $\begin{aligned} & \text { TI } \\ & \text { REPLACEMENT } \\ & \text { OR NEAREST } \\ & \text { EOUIVALENT } \end{aligned}$ | MAXIMUM RATINES | | | ELECTRICAL CHARACTERISTICS | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | $\begin{gathered} T_{A}=25^{\circ} \mathrm{C} \\ { }^{*} \mathrm{C}=25^{\circ} \mathrm{C} \\ (\mathrm{~mW}) \end{gathered}$ | VCBO
 (V) | $\mathbf{V}_{\text {CEO }}$
 (V) | HFE | $\begin{gathered} \mathrm{IC} \\ (\mathrm{~mA}) \end{gathered}$ | | (sal)
 1 lC
 (mA) | $\begin{gathered} h_{f 0} \\ 0 \\ 1 \mathrm{kHz} \\ \text { MIN } \end{gathered}$ | fT
 MIN
 (MHz) |
| $\begin{aligned} & \text { 2N917A } \\ & \text { 2N918 } \\ & \text { 2N919 } \\ & \text { 2N920 } \end{aligned}$ | NPN
 NPN
 NPN
 NPN | $\left\lvert\, \begin{aligned} & R F \\ & \text { RF } \\ & S W \\ & S W \end{aligned}\right.$ | $\begin{aligned} & \text { 2N917 } \\ & \text { 2N918 } \end{aligned}$ | $\begin{aligned} & 200 \\ & 200 \\ & 360 \\ & 360 \end{aligned}$ | 30 30 25 25 | 15 15 15 15 | $\begin{aligned} & 20-200 \\ & 20- \\ & 20-60 \\ & 40-120 \end{aligned}$ | 3 3 10 10 | .4 .4 .2 .2 | $\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$ | | $\begin{aligned} & 600 \\ & 600 \\ & 200 \\ & 200 \end{aligned}$ |
| $\begin{aligned} & \text { 2N921 } \\ & \text { 2N922 } \\ & \text { 2N923 } \\ & \text { 2N924 } \end{aligned}$ | $\begin{aligned} & \text { NPN } \\ & \mathbf{N P N} \\ & \text { PNP } \\ & \text { PNP } \end{aligned}$ | $\begin{aligned} & S W \\ & S W \\ & G P \\ & G P \end{aligned}$ | $\begin{aligned} & \text { 2N2906 } \\ & \text { 2N2906 } \end{aligned}$ | 360 360 250 250 | 50 50 40 40 | 20 20 25 25 | $\begin{aligned} & 20-60 \\ & 40-120 \end{aligned}$ | $\begin{aligned} & 10 \\ & 10 \end{aligned}$ | .3 .3 .5 .5 | 10 10 5 5 | $\begin{aligned} & 12 \\ & 24 \end{aligned}$ | $\begin{aligned} & 200 \\ & 200 \end{aligned}$ |
| $\begin{aligned} & \text { 2N925 } \\ & \text { 2N926 } \\ & \text { 2N927 } \\ & \text { 2N928 } \end{aligned}$ | $\begin{aligned} & \text { PNP } \\ & \text { PNP } \\ & \text { PNP } \\ & \text { PNP } \end{aligned}$ | $\begin{aligned} & G P \\ & G P \\ & G P \\ & G P \end{aligned}$ | $\begin{aligned} & \text { 2N2906 } \\ & \text { 2N2906 } \\ & \text { 2N2906 } \\ & \text { 2N2906 } \end{aligned}$ | 250 250 250 250 | 50 50 70 70 | 40 40 60 60 | | | .5 .5 .5 .5 | $\begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$ | $\begin{array}{r} 10 \\ 20 \\ 8 \\ 18 \end{array}$ | |
| $\begin{aligned} & \text { 2N929 } \\ & \text { 2N929A } \\ & \text { 2N930 } \\ & \text { 2N930A } \end{aligned}$ | NPN
 NPN
 NPN
 NPN | GP
 GP
 GP
 GP | $\begin{aligned} & \text { 2N929 } \\ & \text { 2N930 } \end{aligned}$ | $\begin{aligned} & 300 \\ & 500 \\ & 300 \\ & 500 \end{aligned}$ | $\begin{aligned} & 45 \\ & 60 \\ & 45 \\ & 60 \end{aligned}$ | $\begin{aligned} & 45 \\ & 45 \\ & 45 \\ & 45 \end{aligned}$ | $\begin{array}{r} 40-120 \\ 40-120 \\ 100-300 \\ 100-300 \end{array}$ | $\begin{aligned} & .01 \\ & .01 \\ & .01 \\ & .01 \end{aligned}$ | 1 .5 1 .5 | $\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$ | $\begin{array}{r} 60 \\ 60 \\ 150 \\ 150 \end{array}$ | 30 45 30 45 |
| $\begin{aligned} & \text { 2N9308 } \\ & \text { 2N935 } \\ & \text { 2N936 } \\ & \text { 2N937 } \end{aligned}$ | NPN PNP PNP PNP | GP
 GP
 GP
 GP | $\begin{aligned} & \text { 2N2907A } \\ & \text { 2N2907A } \\ & \text { 2N2907A } \end{aligned}$ | $\begin{aligned} & 500 \\ & 250 \\ & 250 \\ & 250 \end{aligned}$ | $\begin{aligned} & 60 \\ & 50 \\ & 50 \\ & 50 \end{aligned}$ | $\begin{aligned} & 45 \\ & 40 \\ & 35 \\ & 30 \end{aligned}$ | $\begin{gathered} 100-300 \\ 9-22 \\ 18-44 \\ 36-88 \end{gathered}$ | . 01 | .5 .3 .5 .6 | $\begin{array}{r} 10 \\ 5 \\ 5 \\ 5 \end{array}$ | 150 | 45 |
| $\begin{aligned} & \text { 2N938 } \\ & \text { 2N939 } \\ & \text { 2N940 } \\ & \text { 2N941 } \end{aligned}$ | PNP PNP PNP PNP | GP
 GP
 GP
 GP | $\begin{aligned} & \text { 2N2907A } \\ & \text { 2N2907A } \\ & \text { 2N2907A } \\ & \text { 2N2907A } \end{aligned}$ | 250 250 250 250 | 40 40 40 25 | 35 35 35 | 10. | 1 | .3 .3 .3 | $\begin{aligned} & 5 \\ & 5 \\ & 5 \end{aligned}$ | 9 18 36 25 | 16 |
| $\left(\begin{array}{l} 2 \mathrm{~N} 942 \\ \text { 2N943 } \\ \text { 2N944 } \\ \text { 2N945 } \end{array}\right.$ | PNP
 PNP
 PNP
 PNP | GP GP GP GP | $\begin{aligned} & \text { 2N2907A } \\ & \text { 2N2907A } \\ & \text { 2N2907A } \\ & \text { 2N2907A } \end{aligned}$ | $\begin{aligned} & 250 \\ & 250 \\ & 250 \\ & 250 \end{aligned}$ | $\begin{aligned} & 25 \\ & 40 \\ & 40 \\ & 50 \end{aligned}$ | $\begin{aligned} & 18 \\ & 18 \\ & 50 \end{aligned}$ | 10 10 10 | $\begin{aligned} & \text { 3UA } \\ & \text { 4UA } \\ & \text { 5UA } \end{aligned}$ | | | 25 25 25 25 | 10 |
| $\begin{aligned} & \text { 2N946 } \\ & \text { 2N947 } \\ & \text { 2N956 } \\ & \text { 2N957 } \end{aligned}$ | PNP
 NPN
 NPN
 NPN | GP
 SW
 GP
 GP | 2N2907A
 2N956
 2N2221 | $\begin{aligned} & 250 \\ & 360 \\ & 500 \\ & 250 \end{aligned}$ | $\begin{aligned} & 80 \\ & 20 \\ & 75 \\ & 40 \end{aligned}$ | 80
 20 | $\begin{aligned} & 10- \\ & 20- \\ & 100-300 \\ & 45- \end{aligned}$ | $\begin{array}{r} 5 U A \\ 10 \\ 150 \\ 10 \end{array}$ | $\begin{array}{r} .4 \\ 1.5 \\ 1.5 \end{array}$ | $\begin{array}{r} 5 \\ 150 \\ 10 \end{array}$ | 25 50 | 200 70 200 |
| $\begin{aligned} & \text { 2N958 } \\ & \text { 2N959 } \\ & \text { 2N978 } \\ & \text { 2N981 } \end{aligned}$ | NPN
 NPN
 PNP
 NPN | SW SW GP GP | $\begin{aligned} & \text { 2N2906 } \\ & \text { 2N720A } \end{aligned}$ | 250 250 330 500 | 25 25 30 80 | 15 15 20 80 | $20-$ 40 $15-60$ $36-$ | 10 10 150 1 | .2 .2 1.5 3 | $\begin{array}{r} 10 \\ 10 \\ 150 \\ 10 \end{array}$ | 36 | 200 200 40 |
| 2N986
 2N988
 2N989
 2N995 | NPN
 NPN
 NPN PNP | GP
 GP
 GP
 SW | $\begin{aligned} & \text { 2N2221 } \\ & \text { 2N2221 } \end{aligned}$ | $\begin{aligned} & 500 \\ & 300 \\ & 300 \\ & 360 \end{aligned}$ | $\begin{array}{r} 100 \\ 20 \\ 20 \\ 20 \end{array}$ | $\begin{aligned} & 10 \\ & 10 \\ & 15 \end{aligned}$ | $20-120$ $20-120$ $35-140$ | 10 10 20 | .5 .5 .2 | 10 10 20 | | 300 300 100 |

TRANSISTOR INTERCHANGEABILITY MASTER LIST OF REGISTERED TYPES

$\begin{gathered} \text { TYF } \\ \text { MUMER } \end{gathered}$		$\begin{aligned} & \frac{8}{8} \\ & \frac{8}{8} \\ & \frac{8}{8} \\ & 8 \end{aligned}$	$\begin{aligned} & \text { II } \\ & \text { momacement } \\ & \text { or manest } \\ & \text { EOUVALBNT } \end{aligned}$	MAXIMUM RATMvos			BECHECAL CHARACTINTICS					
				$\begin{gathered} \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ { }^{\circ} \mathrm{C}=25^{\circ} \mathrm{C} \\ (\mathrm{~mW}) \end{gathered}$	VCBO (V)	$V_{C E O}$ (V)	$H^{\text {F }}$		Vels(med)			$\begin{gathered} \mathbf{F}_{T} \\ \text { MNN } \\ \text { (MNz) } \end{gathered}$
							MNN M	$\begin{gathered} k \\ \text { (ma) } \end{gathered}$		$\begin{array}{r} \hline \mathbf{l} \\ (\mathrm{mA}) \\ \hline \end{array}$		
$\begin{aligned} & \text { 2N995A } \\ & \text { 2N996 } \\ & \text { 2N997 } \\ & \text { 2N998 } \end{aligned}$	$\begin{aligned} & \text { PNP } \\ & \text { PNP } \\ & \text { NPN } \\ & \text { NPN } \end{aligned}$	SW GP DA DA	2N2906 2N997 2N998	$\begin{aligned} & 360 \\ & 360 \\ & 500 \\ & 500 \end{aligned}$	$\begin{array}{r} 20 \\ 15 \\ 75 \\ 100 \end{array}$	$\begin{aligned} & 15 \\ & 12 \\ & 40 \\ & 60 \end{aligned}$	$\begin{aligned} & 35-140 \\ & 35- \\ & 7 K-70 K \\ & 1.6 K-8 K \end{aligned}$	$\begin{array}{r} 20 \\ 20 \\ 100 \\ 10 \end{array}$.2 .3 1.6 1.2	$\begin{array}{r} 20 \\ 60 \\ 100 \\ 50 \end{array}$	1000	100 100
$\begin{aligned} & \text { 2N999 } \\ & \text { 2N1005 } \\ & \text { 2N1006 } \\ & \text { 2N1024 } \end{aligned}$	$\begin{aligned} & \text { NPN } \\ & \text { NPN } \\ & \text { NPN } \\ & \text { PN } \end{aligned}$	DA GP GP SW	$\begin{aligned} & \text { 2N999 } \\ & \text { 2N2217 } \\ & \text { 2N2218 } \\ & \text { 2N3250 } \end{aligned}$	$\begin{aligned} & 500 \\ & 150 \\ & 150 \\ & 250 \end{aligned}$	$\begin{aligned} & 60 \\ & 15 \\ & 15 \\ & 18 \end{aligned}$	60 15 15	$\begin{aligned} & 7 K-70 K \\ & 10-25 \\ & 25-150 \end{aligned}$	$\begin{array}{r} 100 \\ 10 \\ 10 \end{array}$	1.6 .6 .6	$\begin{array}{r} 100 \\ 10 \\ 10 \end{array}$	9	
$\begin{aligned} & \text { 2N1025 } \\ & \text { 2N1026 } \\ & \text { 2N1027 } \\ & \text { 2N1028 } \end{aligned}$		$\begin{aligned} & s w \\ & s w \\ & s w \\ & s w \end{aligned}$	$\begin{aligned} & \text { 2N3250 } \\ & \text { 2N3250 } \\ & \text { 2N3250 } \\ & \text { 2N3250 } \end{aligned}$	$\begin{aligned} & 250 \\ & 250 \\ & 250 \\ & 250 \end{aligned}$	$\begin{aligned} & 40 \\ & 40 \\ & 18 \\ & 12 \end{aligned}$						9 18 18 9	7.2
$\begin{aligned} & \text { 2N1034 } \\ & \text { 2N1035 } \\ & \text { 2N1036 } \\ & \text { 2N1037 } \end{aligned}$	$\begin{aligned} & \text { PNP } \\ & \text { PNP } \\ & \text { PNP } \\ & \text { PNP } \end{aligned}$	GP GP $G P$ GP		250 250 250 250	50 50 50 50	40 35 30 35			.5 .4 .3 .5	8 8 8 8	9 18 34 9	
$\begin{aligned} & \text { 2N1051 } \\ & \text { 2N1052 } \\ & \text { 2N1054 } \\ & 2 N_{1055} \end{aligned}$	$\begin{aligned} & \text { NPN } \\ & \text { NPN } \\ & \text { NPN } \\ & \text { NPN } \end{aligned}$	GP $G P$ GP GP	$\begin{aligned} & \text { 2N2218 } \\ & \text { 2N3114 } \\ & \text { 2N3114 } \end{aligned}$	$\begin{aligned} & 500 \\ & 150 \\ & 600 \\ & 200 \end{aligned}$	$\begin{array}{r} 40 \\ 200 \\ 125 \\ 100 \end{array}$	$\begin{array}{r} 40 \\ 115 \\ 100 \end{array}$	$\begin{aligned} & 25- \\ & 20-80 \\ & 20 \\ & 20-80 \end{aligned}$	$\begin{array}{r} 50 \\ 200 \\ 200 \\ 50 \end{array}$	$\begin{aligned} & 3 \\ & 5 \\ & 2 \end{aligned}$	$\begin{array}{r} 50 \\ 200 \\ 50 \end{array}$	$\begin{aligned} & 30 \\ & 15 \end{aligned}$	80 8 3
$\begin{aligned} & 2 \mathrm{~N} 1060 \\ & 2 \mathrm{~N} 1074 \\ & 2 \mathrm{~N} 1075 \\ & 2 \mathrm{~N} 1076 \end{aligned}$	NPN NPN NPN NPN	$\begin{aligned} & \text { GP } \\ & \text { GP } \\ & \text { GP } \\ & \text { GP } \end{aligned}$	$\begin{aligned} & \text { 2N2217 } \\ & \text { 2N2218 } \\ & \text { 2N2218 } \\ & \text { 2N2218 } \end{aligned}$	250 250 250 250	40 50 50 50	40 40 35 30	17	5	. 3	5	9 18 36	
2N1077 2N1082 2N1103 2N1104	NPN NPN NPN NPN	$\begin{aligned} & G P \\ & G P \\ & G P \\ & G P \end{aligned}$	$\begin{aligned} & \text { 2N2218 } \\ & \text { 2N2221 } \\ & \text { 2N2221 } \\ & \text { 2N2221 } \end{aligned}$	$\begin{aligned} & 250 \\ & 200 \\ & 125 \\ & 125 \end{aligned}$	$\begin{aligned} & 50 \\ & 25 \\ & 45 \\ & 45 \end{aligned}$	35 35 35	$\begin{aligned} & 10-50 \\ & 30-65 \\ & 45-150 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \end{aligned}$	$\begin{array}{r} 1 \\ 1.5 \\ 1.5 \end{array}$	$\begin{array}{r} 8 \\ 10 \\ 10 \end{array}$	9 10 20 40	7
2N1105 2N1106 2N1116 2N1117	NPN NPN NPN NPN	$\begin{aligned} & \text { GP } \\ & \text { GP } \\ & \text { GP } \\ & \text { GP } \end{aligned}$	2N698 2N698 2N2192 2N2193	$\begin{aligned} & 800 \\ & 800 \\ & 600 \\ & 600 \end{aligned}$	$\begin{array}{r} 60 \\ 100 \\ 60 \\ 60 \end{array}$	$\begin{array}{r} 60 \\ 100 \\ 60 \\ 60 \end{array}$	$\begin{aligned} & 12-36 \\ & 12-36 \\ & 40-150 \\ & 40-150 \end{aligned}$	$\begin{aligned} & 200 \\ & 200 \\ & 500 \\ & 200 \end{aligned}$	5 5 5 4	$\begin{aligned} & 200 \\ & 200 \\ & 500 \\ & 200 \end{aligned}$		6 4
2N1118 2N1118A 2N1119 2N1131	$\begin{aligned} & \text { PNP } \\ & \text { PNP } \\ & \text { PNP } \\ & \text { PNP } \end{aligned}$	$\begin{aligned} & \text { SW } \\ & \text { SW } \\ & \text { GP } \\ & \text { GP } \end{aligned}$	$\begin{aligned} & \text { 2N3250 } \\ & \text { 2N3250 } \\ & \text { 2N1131 } \end{aligned}$	$\begin{aligned} & 150 \\ & 150 \\ & 150 \\ & 600 \end{aligned}$	$\begin{aligned} & 25 \\ & 25 \\ & 10 \\ & 50 \end{aligned}$	35	2515. 20-45	$\begin{array}{r} 15 \\ 15 \\ 150 \end{array}$	$\begin{aligned} & .15 \\ & 1.5 \end{aligned}$	$\begin{array}{r} 5 \\ 150 \end{array}$	$\begin{aligned} & 15 \\ & 15 \\ & 15 \end{aligned}$	8 8 7.2 50
2N1131A 2N1132 2N1132A 2N11328	$\begin{aligned} & \text { PNP } \\ & \mathbf{P N P} \\ & \mathbf{N N P} \\ & \text { PNP } \end{aligned}$	$\begin{aligned} & G P \\ & G P \\ & G P \\ & G P \end{aligned}$	2N1131 2N1132 2N1132 2N1132	$\begin{aligned} & 600 \\ & 600 \\ & 600 \\ & 600 \end{aligned}$	$\begin{aligned} & 60 \\ & 50 \\ & 60 \\ & 70 \end{aligned}$	$\begin{aligned} & 40 \\ & 35 \\ & 40 \\ & 45 \end{aligned}$	$\begin{aligned} & 20-45 \\ & 30-90 \\ & 30-90 \\ & 30-90 \end{aligned}$	$\begin{aligned} & 150 \\ & 150 \\ & 150 \\ & 150 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \\ & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 150 \\ & 150 \\ & 150 \\ & 150 \end{aligned}$	$\begin{aligned} & 15 \\ & 25 \\ & 25 \\ & 25 \end{aligned}$	50 60 60 60

TRANSISTOR INTERCHANGEABILITY MASTER LIST OF REGISTERED TYPES

TYPK NUME思		$\begin{aligned} & 8 \\ & \frac{8}{8} \\ & \frac{8}{8} \\ & 8 \end{aligned}$	7 replacement OR NEAREST ERUMYALENT	MAXXMUM RATmas			EPCTRICAL CHARACTEISTICS				
				$\begin{gathered} T_{A}=25^{\circ} \mathrm{C} \\ { }^{T_{C}} \mathrm{C}=25^{\circ} \mathrm{C} \\ (\mathrm{~mW}) \end{gathered}$	Veno (V)	Vcro (V)	hri MIN (MAX)		$\begin{gathered} \text { hfe } \\ 1 \mathrm{kHz} \\ \text { MiN } \end{gathered}$	$\begin{array}{c\|} \hline \text { f } \\ \text { Man } \\ (\mathrm{MHAz}) \\ \hline \end{array}$	
$\left\lvert\, \begin{aligned} & 2 N 1135 \\ & 2 N 1135 A \\ & 2 N 1139 \\ & 2 N 1149 \end{aligned}\right.$	$\begin{aligned} & \text { PNP } \\ & \text { PNP } \\ & \text { NPN } \\ & \text { NPN } \end{aligned}$	$\begin{aligned} & G P \\ & G P \\ & G P \\ & G P \end{aligned}$	$\begin{aligned} & \text { 2N2904 } \\ & \text { 2N2904 } \\ & \text { 2N2218 } \\ & \text { 2N1149 } \end{aligned}$	100 100 100 150	12 12 15 45	12 12 15	$\begin{array}{cr}20-200 & 10 \\ 9-20 & 1\end{array}$. 710		$\begin{gathered} 5.6 \\ 5.6 \\ 100 \end{gathered}$	
$\left\{\begin{array}{l} 2 N i 150 \\ 2 N: 151 \\ 2 N 1152 \\ 2 N \\| 153 \end{array}\right.$	NPN NPN NPN NPN	$\begin{aligned} & G P \\ & G P \\ & G P \\ & G P \end{aligned}$	2N1150 2N1151 2N1152 2N1153	$\begin{aligned} & 150 \\ & 150 \\ & 150 \\ & 150 \end{aligned}$	$\begin{aligned} & 45 \\ & 45 \\ & 45 \\ & 45 \end{aligned}$		$\begin{array}{ll}18-40 & 1 \\ 18-90 & 1 \\ 36-90 & 1 \\ 76-333 & 1\end{array}$				
$\begin{aligned} & 2 N 1154 \\ & 2 N 1155 \\ & 2 N 1156 \\ & 2 N 1196 \end{aligned}$	$\begin{aligned} & \text { NPN } \\ & \text { NPN } \\ & \text { NPN } \\ & \text { PNP } \end{aligned}$	$\begin{aligned} & G P \\ & G P \\ & G P \\ & G P \end{aligned}$	2N1154 2N1155 2N1156	$\begin{aligned} & 750 \\ & 750 \\ & 750 \\ & 350 \end{aligned}$	$\begin{array}{r} 50 \\ 80 \\ 120 \\ 70 \end{array}$	70	$9-$ 5 9. 5 9. 5 $5-30$ 2				
$\begin{aligned} & 2 N 1197 \\ & 2 N 1199 \\ & 2 N 1199 A \\ & 2 N 1200 \end{aligned}$	PNP NPN NPN NPN	$\begin{aligned} & \text { GP } \\ & \text { SW } \\ & \text { SW } \\ & \text { RF } \end{aligned}$		$\begin{aligned} & 350 \\ & 150 \\ & 150 \\ & 100 \end{aligned}$	$\begin{aligned} & 70 \\ & 20 \\ & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 70 \\ & 15 \\ & 15 \\ & 15 \end{aligned}$	$\begin{array}{cr}5-30 \\ 12-60 & 2 \\ 12-60 & 20 \\ 7-200 & 20 \\ \end{array}$	$\begin{array}{ll} .25 & 10 \\ .25 & 10 \end{array}$	9	75 75	
$\begin{aligned} & \text { 2N1201 } \\ & \text { 2N1219 } \\ & \text { 2N1220 } \\ & \text { 2N1221 } \end{aligned}$	NPN PNP PNP PNP	RF SW SW SW	$\begin{aligned} & \text { 2N3250 } \\ & \text { 2N3250 } \\ & \text { 2N3250 } \end{aligned}$	100 250 250 250	20 30 30 30	$\begin{aligned} & 15 \\ & 25 \\ & 25 \\ & 25 \end{aligned}$	$\begin{array}{cr}7.200 & 1.5 \\ 18 . & 5 \\ 9 . & 5\end{array}$		$\begin{gathered} 9 \\ 18 \end{gathered}$		
$\begin{aligned} & \text { 2N1222 } \\ & \text { 2N1223 } \\ & \text { 2N1228 } \\ & \text { 2N1229 } \end{aligned}$	$\begin{array}{\|l} \text { PNP } \\ \text { PNP } \\ \text { PNP } \\ \text { PNP } \end{array}$	sW SW GP GP	2N3250 2N3250 2N2904 2N2904	250 250 400 400	30 40 15 15	25 40 15 15		.2 10 .2 10	9 6 14 28		
$\begin{aligned} & \text { 2N1230 } \\ & \text { 2N1231 } \\ & \text { 2N1232 } \\ & \text { 2N1233 } \end{aligned}$	PNP PNP PNP PNP	GP GP GP GP	$\begin{aligned} & \text { 2N2904 } \\ & \text { 2N2904 } \\ & \text { 2N2905A } \\ & \text { 2N2905A } \end{aligned}$	400 400 400 400	35 35 60 60	35 35 60 60		.2 10 .2 10 .2 10 .2 10	14 28 14 28		
$\begin{aligned} & 2 N 1234 \\ & 2 N 1238 \\ & 2 N 1239 \\ & 2 N 1240 \end{aligned}$	PNP PNP PNP PNP	GP SW SW SW	2N3494	400 16 16 16	110 15 15 35	110 15 15 35		.2 10 .2 10 .2 10 .2 10	14 14 28 14		
$\begin{aligned} & 2 \mathrm{~N} 1241 \\ & 2 \mathrm{~N} 1242 \\ & 2 \mathrm{~N} 1243 \\ & 2 \mathrm{~N} 1244 \end{aligned}$	PNP PNP PNP PNP	$\begin{aligned} & s w \\ & s w \\ & S W \\ & s w \end{aligned}$		16 16 16 16	35 60 60 110	35 60 60 110		.2 10 .2 10 .2 10 .2 10	28 14 28 14		
$\begin{aligned} & \text { 2N1247 } \\ & \text { 2N1248 } \\ & \text { 2N1249 } \\ & \text { 2N1252 } \end{aligned}$	NPN NPN NPN NPN	GP GP GP SW	$\begin{aligned} & \text { 2N2222 } \\ & \text { 2N2222 } \\ & \text { 2N2222 } \\ & \text { 2N2537 } \end{aligned}$	$\begin{array}{r} 30 \\ 30 \\ 30 \\ 600 \end{array}$	$\begin{array}{r} 6 \\ 6 \\ 6 \\ 30 \end{array}$	$\begin{aligned} & 6 \\ & 6 \\ & 6 \end{aligned}$	$15-$ 5 UA $15-$.02 $20-$.03 $15-45$ 150	1.5150		40	

TRANSISTOR INTERCHANGEABILITY MASTER LIST OF REGISTERED TYPES

TYPE NUMEE	$\begin{aligned} & \frac{\xi}{3} \\ & \frac{8}{2} \end{aligned}$	88888		MAXIMUM RATINOS			EMcIRICAL CHARACTEISTICS					
				$\begin{gathered} \mathrm{r}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ { }^{{ }^{\circ} \mathrm{T} \mathrm{C}=25^{\circ} \mathrm{C}} \\ (\mathrm{~mW}) \end{gathered}$	Veno (V)	Veso (V)			Ver (mat)		$\begin{gathered} h_{10} \\ 1 \mathrm{kdtz} \\ \text { MiN } \end{gathered}$	$\begin{gathered} \mathrm{T} \\ \text { MiN } \\ \text { (MNz) } \end{gathered}$
							MIN MAXIC 		$\begin{array}{\|lr\|} \hline \max & \mathrm{IC} \\ \mathrm{IV}) & (\mathrm{ma}) \\ \hline \end{array}$			
$\begin{aligned} & \text { 2N1252A } \\ & \text { 2N1253 } \\ & \text { 2N1253A } \\ & \text { 2N1254 } \end{aligned}$	NPN	SW	2N2537	800	60	30	15-45	150	1.5	150		40
	NPN	SW	2N2537	600	30		30-90	150	1.5	150		50
	NPN	SW	2N2537	800	60	30	30-90	150	1.5	150		50
	PNP	GP	2N1131	275	30	30	25-50	10	. 3	10		30
$\begin{aligned} & 2 \mathrm{~N} 1255 \\ & 2 \mathrm{~N} 1256 \\ & 2 \mathrm{~N} 1257 \\ & 2 \mathrm{~N} 1258 \end{aligned}$	PNP	GP	2N1132	275	30	30	40-80	10	. 3	10		50
	PNP	GP	2N1131	275	40	40	25-50	10	. 3	10		30
	PNP	GP	2N1132	275	40	40	40-80	10	. 3	10		50
	PNP	GP	2N2905	275	30	30	75-150	10	. 6	10		50
$\begin{aligned} & \text { 2N1259 } \\ & \text { 2N1267 } \\ & \text { 2N1268 } \\ & \text { 2N1269 } \end{aligned}$	PNP	GP	2N2904	275		50	25-100	10	. 3	10		40
	NPN	RF		150	20	15	$4-16$	1.5			6	
	NPN	RF		150	20	15	7-30	1.5			11	
	NPN	RF		150	20	15	20-80	1.5			28	
$\begin{aligned} & 2 \mathrm{~N} 1270 \\ & 2 \mathrm{~N} 1271 \\ & 2 \mathrm{~N} 1272 \\ & 2 \mathrm{~N} 1275 \end{aligned}$	NPN	RF		150	20	15	4-16	1.5			6	
	NPN	RF		150	20	15	7.30	1.5			11	
	NPN	RF		150	20	15	20-80	1.5			28	
	PNP	GP		250	100	80	9-25	1	. 3	5		
$\left\lvert\, \begin{aligned} & \text { 2N1276 } \\ & \text { 2N1277 } \\ & \text { 2N1278 } \\ & \text { 2N1279 } \end{aligned}\right.$									1	5	9	
	NPN	GP		150	40	30			1	5	18	
	NPN	GP		150	40	30			1	5	37	
	NPN	GP		150	40	30				5	76	
$\begin{aligned} & \text { 2N1335 } \\ & \text { 2N1336 } \\ & \text { 2N1337 } \\ & \text { 2N1338 } \end{aligned}$	NPN			800	120	45	10-150	30				70
	NPN	$G P$		800	120	45	10-150	30				70
	NPN	GP		800	120	45	10-150	30				70
	NPN	GP		800	80	25	$10-150$	30				70
$\begin{aligned} & 2 \mathrm{~N} 1339 \\ & 2 \mathrm{~N} 1340 \\ & 2 \mathrm{~N} 1341 \\ & 2 \mathrm{~N} 1342 \end{aligned}$	NPN	GP		800	120	50	10-150	30				
	MPN	GP		800	120	50	10-150	30				70
	NPN	GP		800	120	50	10-150	30				70
	NPN	GP		800	150	65	10-150	30				70
$\begin{aligned} & 2 N 1386 \\ & 2 N 1387 \\ & 2 N 1388 \\ & 2 N 1389 \end{aligned}$	NPN	GP	2N2222	300	25	25	30-90	10				
	NPN	GP	2N2222	300	30	30	20-40	10		5		
	NPN	GP	2N2222	300	45	25	15-55	10			30	
	NPN	GP	2N2222	300	50	50				5		24
$\begin{aligned} & 2 N 1390 \\ & 2 N 1409 \\ & 2 N 1409 A \\ & 2 N 1410 \end{aligned}$	NPN	GP	2N2222	300	20		30.150	10			10	
	NPN	SW	2N2537	600	30	25	15-45	150				200
	NPN	SW	2N2537	800	30	25	15-45	150				200
	NPN	SW	2N2537	600	45	30	30-90	150				130
$\begin{array}{\|l} \text { 2N1410A } \\ \text { 2N1417 } \\ \text { 2N1418 } \\ \text { 2N1420 } \end{array}$	NPN	Sw	2N2537	800	30	30	30.90	150				130
	NPN	GP	2N2218	150	15	15					30	
	NPN	GP	2N2218	150	30	30					30	
	NPN	GP	2N1420	600	60		100-300	150	1.5	150		50

TRANSISTOR INTERCHANGEABILITY MASTER LIST OF REGISTERED TYPES

$\begin{aligned} & \text { TYPE } \\ & \text { NUMBER } \end{aligned}$		$\begin{aligned} & \mathbf{7} \\ & \frac{2}{3} \\ & 5 \\ & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & \text { TI } \\ & \text { RERLACEMENT } \\ & \text { OR MGAREST } \\ & \text { EOUYALENT } \end{aligned}$	MAXIMUM RATENOS			ELECTICAL CHARACTIEMSTICS					
				$\begin{gathered} \mathrm{P}_{\mathrm{T}} \\ \mathrm{r}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ { }^{+} \mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C} \\ (\mathrm{~mW}) \end{gathered}$	Veso (V)	Vceo(v)	hpe		Vces(eat)			
							MIN Ma	$\begin{gathered} c \\ (m A) \end{gathered}$	MaX (V)	$\begin{array}{r} 1 c \\ (\mathrm{ma}) \\ \hline \end{array}$		
$\begin{aligned} & \text { 2N1420A } \\ & \text { 2N1428 } \\ & \text { 2N1429 } \\ & \text { 2N1439 } \end{aligned}$	NFN PNP PNP PNP	GP GP GP GP	2N1420 2N2904 2N2907A	800 100 100 400	60 6 6 50	$\begin{array}{r} 6 \\ 6 \\ 50 \end{array}$	$\begin{aligned} & 100-300 \\ & 12 . \\ & 12 . \end{aligned}$	$\begin{array}{r} 150 \\ 5 \\ 5 \end{array}$	$\begin{array}{r} 1.5 \\ .1 \\ .1 \\ .25 \end{array}$	$\begin{array}{r} 150 \\ 5 \\ 5 \\ 5 \\ \hline \end{array}$	25 25 9	$\begin{aligned} & 60 \\ & 16 \\ & 16 \end{aligned}$
2N1440 2N1441 2N1442 2N1443	PNP PNP PNP PNP	GP GP GP GP	$\begin{aligned} & \text { 2N2907A } \\ & \text { 2N2907A } \\ & \text { 2N2907A } \\ & \text { 2N2907 } \end{aligned}$	400 400 400 400	60 50 50 50	50 35 30 15			.25 .25 .25 .25	5 5 5 5	9 18 30 50	
2N1444 2N1469 2N1472 2N1474	NPN PNP NPN PNP	$\begin{aligned} & G P \\ & G P \\ & S W \\ & G P \end{aligned}$	2N2906 2N2906A	$\begin{aligned} & 500 \\ & 250 \\ & 150 \\ & 250 \end{aligned}$	$\begin{aligned} & 60 \\ & 40 \\ & 25 \\ & 60 \end{aligned}$	20 25	20 20	250	1.5 .25	250 10	$\begin{aligned} & 36 \\ & 12 \end{aligned}$	75
$\begin{aligned} & \text { 2N1474A } \\ & \text { 2N1475 } \\ & \text { 2N1476 } \\ & \text { 2N1477 } \end{aligned}$	$\begin{aligned} & \text { PNP } \\ & \text { PNP } \\ & \text { PNP } \\ & \text { PNP } \end{aligned}$	$\begin{aligned} & G P \\ & G P \\ & G P \\ & G P \end{aligned}$	$\begin{aligned} & \text { 2N2906A } \\ & \text { 2N2906A } \\ & \text { 2N3495 } \\ & \text { 2N3495 } \end{aligned}$	$\begin{aligned} & 250 \\ & 250 \\ & 250 \\ & 250 \end{aligned}$	$\begin{array}{r} 60 \\ 60 \\ 100 \\ 100 \end{array}$						18 36 12 30	
$\begin{aligned} & 2 \mathrm{~N} 1491 \\ & 2 \mathrm{~N} 1492 \\ & 2 \mathrm{~N} 1493 \\ & 2 \mathrm{~N} 1507 \end{aligned}$	NPN NPN NPN NPN	$\begin{aligned} & G P \\ & G P \\ & G P \\ & G P \end{aligned}$	$\begin{aligned} & \text { 2N2218 } \\ & \text { 2N2192 } \\ & \text { 2N5059 } \\ & \text { 2N1507 } \end{aligned}$	*3W *3W *3W 600	$\begin{array}{r} 30 \\ 60 \\ 100 \\ 60 \end{array}$		100-300	150	1.5	150	15 15 15	50
$\left\lvert\, \begin{aligned} & 2 N 1508 \\ & 2 N 1509 \\ & 2 N 1528 \\ & 2 N 1564 \end{aligned}\right.$	NPN NFN NPN NPN	$\begin{aligned} & \text { GP } \\ & \text { GP } \\ & \text { GP } \\ & \text { GP } \end{aligned}$	$\begin{aligned} & \text { 2N2102 } \\ & \text { 2N2102 } \\ & \text { 2N2218 } \\ & \text { 2N2218 } \end{aligned}$	$\begin{aligned} & 1 w \\ & 1 w \\ & 150 \\ & 600 \end{aligned}$	$\begin{array}{r} 100 \\ 60 \\ 25 \\ 80 \end{array}$	$\begin{aligned} & 55 \\ & 35 \\ & 60 \end{aligned}$	$\begin{aligned} & 20-60 \\ & 20-60 \\ & 15-50 \end{aligned}$	$\begin{array}{r} 600 \\ 600 \\ 5 \end{array}$	$\begin{array}{r} 3.6 \\ 3.6 \\ 1 \end{array}$	$\begin{array}{r} 600 \\ 600 \\ \\ 10 \end{array}$	10 20	50 50
$\begin{aligned} & \text { 2N1 565 } \\ & \text { 2N1566 } \\ & \text { 2N1572 } \\ & \text { 2N1573 } \end{aligned}$	$\begin{aligned} & \text { NPN } \\ & \text { NPN } \\ & \text { NPN } \\ & \text { NPN } \end{aligned}$	$\begin{aligned} & G P \\ & G P \\ & G P \\ & G P \end{aligned}$	$\begin{aligned} & \text { 2N2218 } \\ & \text { 2N1566 } \\ & \text { 2N698 } \\ & \text { 2N1893 } \end{aligned}$	$\begin{aligned} & 600 \\ & 600 \\ & 600 \\ & 600 \end{aligned}$	$\begin{array}{r} 60 \\ 80 \\ 125 \\ 125 \end{array}$	$\begin{aligned} & 30 \\ & 60 \\ & 80 \\ & 80 \end{aligned}$	$\begin{aligned} & 30-100 \\ & 60-200 \\ & 15-50 \\ & 30-100 \end{aligned}$	5 5 5 5	1 1 1 1	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$	40 80 20 40	
$\left\lvert\, \begin{aligned} & \text { 2N1574 } \\ & \text { 2N1586 } \\ & \text { 2N1587 } \\ & \text { 2N1588 } \end{aligned}\right.$	$\begin{aligned} & \text { NPN } \\ & \text { NPN } \\ & \text { NPN } \\ & \text { NPN } \end{aligned}$	GP GP GP GP	2N1890	$\begin{aligned} & 600 \\ & 125 \\ & 125 \\ & 125 \end{aligned}$	$\begin{array}{r} 125 \\ 15 \\ 30 \\ 60 \end{array}$	80 10 20 40	$\begin{gathered} 60-200 \\ 5-27 \\ 5-27 \\ 5-27 \end{gathered}$	5 1 1 1	1 1.5 1.5 1.5	10 5 5 5	80 9 9 9	
$\begin{aligned} & \text { 2N1589 } \\ & \text { 2N1590 } \\ & \text { 2N1591 } \\ & \text { 2N1592 } \end{aligned}$	$\begin{aligned} & \text { NPN } \\ & \text { NPN } \\ & \text { NPN } \\ & \text { NPN } \end{aligned}$	GP GP GP GP		$\begin{aligned} & 125 \\ & 125 \\ & 125 \\ & 125 \end{aligned}$	$\begin{aligned} & 15 \\ & 30 \\ & 60 \\ & 15 \end{aligned}$	$\begin{aligned} & 10 \\ & 20 \\ & 40 \\ & 10 \end{aligned}$	$\begin{aligned} & 20-75 \\ & 20-75 \\ & 20-75 \\ & 40-210 \end{aligned}$	1 1 1	1.5 1.5 1.5 1.5	$\begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$	25 25 25 70	
2N1593 2N1594 2N1606 2N1607	$\begin{aligned} & \text { NPN } \\ & \text { NPN } \\ & P N P \\ & \text { PNP } \end{aligned}$	GP GP SW SW		$\begin{aligned} & 125 \\ & 125 \\ & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 30 \\ & 60 \\ & 10 \\ & 10 \end{aligned}$	20 40	$\begin{gathered} 40-210 \\ 40-210 \\ 6-30 \\ 6-30 \end{gathered}$	1 1 15 15	1.5 1.5 .15 .15	5 5 5 5	70	7.2 10

TRANSISTOR INTERCHANGEABILITY MASTER LIST OF REGISTERED TYPES

TYPE NUMEER	忘$\frac{8}{8}$8		11 REPLACEMENT OR NEAREST EQUIVALENT	MAXIMUM RATINGS			EECTRICAL CHARACTERISTICS					
				$\begin{gathered} \mathrm{P}_{\boldsymbol{T}} \\ \mathrm{T}_{A}=25^{\circ} \mathrm{C} \\ { }^{{ }^{\circ} \mathrm{T}^{\prime} \mathrm{C}=25^{\circ} \mathrm{C}} \\ (\mathrm{~mW}) \end{gathered}$	VCBO (V)	Vceo (V)	MN M	$\begin{gathered} c \\ (\mathrm{ma}) \end{gathered}$	VC MAX (V)	$\begin{aligned} & (\mathrm{sen}) \\ & \hline \text { IC } \\ & \hline(\mathrm{mA}) \end{aligned}$		
$\begin{aligned} & \text { 2N1608 } \\ & \text { 2N1613 } \\ & \text { 2N1613A } \\ & 2 N 16138 \end{aligned}$	PNP NPN NPN NPN	SW GP GP GP	$\begin{aligned} & \text { 2N1613 } \\ & \text { 2N1613 } \\ & \text { 2N2243 } \end{aligned}$	$\begin{aligned} & 100 \\ & 800 \\ & 1 W \\ & 1 W \end{aligned}$	$\begin{array}{r} 10 \\ 75 \\ 75 \\ 120 \end{array}$		$\begin{gathered} 6-30 \\ 40-120 \\ 40-120 \\ 40-120 \end{gathered}$	$\begin{array}{r} 15 \\ 150 \\ 150 \\ 150 \end{array}$	$\begin{array}{r} .15 \\ 1.5 \\ 1 \\ .2 \end{array}$	$\begin{array}{r} 5 \\ 150 \\ 150 \\ 150 \end{array}$	$\begin{aligned} & 30 \\ & 30 \\ & 30 \end{aligned}$	25 60 60 60
$\begin{aligned} & \text { 2N1615 } \\ & \text { 2N1623 } \\ & \text { 2N1640 } \\ & \text { 2N1641 } \end{aligned}$	NPN PNP PNP PNP	GP GP SW SW	715101 2N2904	600 250 250 250	100 50 30 30	100 20	25. $9-40$ $6-$ 10	5 1 .1 .1	5 .	50		2
2N1642 2N1643 2N1644 2N1654	$\begin{aligned} & \text { PNP } \\ & \text { PNP } \\ & \text { NPN } \\ & \text { PNP } \end{aligned}$	sw SW GP GP	$\begin{aligned} & \text { 2N2218 } \\ & \text { 2N3495 } \end{aligned}$	$\begin{array}{r} 250 \\ 250 \\ * 2 w \\ 250 \end{array}$	$\begin{array}{r} 30 \\ 25 \\ 60 \\ 100 \end{array}$	80	$\begin{aligned} & 15- \\ & 10-25 \\ & 40-120 \\ & 20-45 \end{aligned}$	$\begin{array}{r} .1 \\ .1 \\ 150 \\ 1 \end{array}$	1.5 .3	150		50
2N1655 2N1656 2N1663 2N1671	$\begin{aligned} & \text { PNP } \\ & \text { PNP } \\ & \text { NPN } \\ & \text { P-N } \end{aligned}$	$\begin{aligned} & \text { GP } \\ & \text { GP } \\ & 5 W \\ & U J \end{aligned}$	$\begin{aligned} & \text { 2N3495 } \\ & \text { 2N3495 } \\ & \text { 2N1671 } \end{aligned}$	$\begin{gathered} 250 \\ 250 \\ 150 \\ \text { SEE UNIU } \end{gathered}$	$\begin{gathered} 125 \\ 125 \\ 20 \\ \text { UNCTION } \end{gathered}$	$\begin{array}{r} 100 \\ 100 \\ 15 \\ \text { NTERCH } \end{array}$	$\begin{gathered} 10-20 \\ 20-45 \\ 30-150 \\ \text { ANGEABILIT } \end{gathered}$	$\begin{array}{r} 1 \\ 1 \\ 20 \end{array}$.3 .3 .25	5 5 10		100
$\begin{aligned} & \text { 2N1671A } \\ & \text { 2N1671B } \\ & \text { 2N1674 } \\ & \text { 2N1676 } \end{aligned}$	$\begin{aligned} & \text { P-N } \\ & \mathbf{P - N} \\ & \mathbf{N P N} \\ & \text { PNNP } \end{aligned}$	$\begin{aligned} & U J \\ & U J \\ & G P \\ & S W \end{aligned}$	$\begin{aligned} & \text { 2N1671A } \\ & \text { 2N1671B } \\ & \text { 2N2218 } \end{aligned}$	SEE UNIJ SEE UNIJ 200 100	UNCTION UNCTION 45 4.5	INTERCH INTERCH 45	ANGEABHITT ANGEABLIT		1.5 .1	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	50	20 16
2N1677 2N1679 2N1680 2N1682	PNP NPN NPN NPN	SW GP GP SW	2N2102 2N2102 2N2537	$\begin{aligned} & 100 \\ & 1 w \\ & 1 w \\ & 500 \end{aligned}$	$\begin{array}{r} 4.5 \\ 100 \\ 60 \\ 25 \end{array}$	$\begin{aligned} & 55 \\ & 35 \end{aligned}$	$\begin{aligned} & 40-120 \\ & 40-120 \\ & 20- \end{aligned}$	$\begin{array}{r} 600 \\ 600 \\ 10 \end{array}$.1 3.6 3.6 .6	$\begin{array}{r} 5 \\ 600 \\ 600 \\ 10 \end{array}$	25	16 50 50 200
$\begin{aligned} & \text { 2N1700 } \\ & \text { 2N1704 } \\ & \text { 2N1708 } \\ & \text { 2N1708A } \end{aligned}$	NPN NPN NPN NPN	GP GP SW SW	$\begin{aligned} & \text { 2N2102 } \\ & \text { 2N2218 } \end{aligned}$	$\begin{array}{r} 5 \mathrm{~W} \\ 150 \\ * 1 \mathrm{~W} \\ 300 \end{array}$	$\begin{aligned} & 60 \\ & 45 \\ & 25 \\ & 40 \end{aligned}$	$\begin{aligned} & 45 \\ & 12 \end{aligned}$	$\begin{aligned} & 20-80 \\ & 50-200 \\ & 20- \\ & 30-120 \end{aligned}$	$\begin{array}{r} 100 \\ 1 \\ 10 \\ 10 \end{array}$	$\begin{gathered} 12.5 \\ 1 \\ .22 \\ .22 \end{gathered}$	$\begin{aligned} & 2.5 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$	4	$\begin{aligned} & 200 \\ & 300 \end{aligned}$
$\begin{aligned} & \text { 2N1711 } \\ & \text { 2N171 IA } \\ & \text { 2N171 1B } \\ & \text { 2N1763 } \end{aligned}$	NPN NPN NPN NPN	GP GP GP SW	2N1711 2N1711 2N1711 2N2537	$\begin{aligned} & 800 \\ & 1 W \\ & 1 w \\ & 300 \end{aligned}$	$\begin{array}{r} 75 \\ 75 \\ 120 \\ 40 \end{array}$	25	$\begin{aligned} & 100-300 \\ & 100-300 \\ & 100-300 \end{aligned}$	$\begin{aligned} & 150 \\ & 150 \\ & 150 \end{aligned}$	$\begin{array}{r} 1.5 \\ 1 \\ .2 \\ 1.5 \end{array}$	$\begin{array}{r} 150 \\ 150 \\ 150 \\ 10 \end{array}$	$\begin{aligned} & \mathbf{5 0} \\ & \mathbf{5 0} \\ & \mathbf{5 0} \end{aligned}$	70 70 70
$\begin{aligned} & \text { 2N1764 } \\ & \text { 2N1837 } \\ & \text { 2N1837A } \\ & \text { 2N1837B } \end{aligned}$	NPN NPN NPN NPN	SW GP GP GP	$\begin{aligned} & \text { 2N2537 } \\ & \text { 2N2218 } \\ & \text { 2N2218 } \\ & \text { 2N2218 } \end{aligned}$	$\begin{aligned} & 300 \\ & 800 \\ & 800 \\ & 800 \end{aligned}$	$\begin{aligned} & 20 \\ & 80 \\ & 80 \\ & 80 \end{aligned}$	$\begin{aligned} & 15 \\ & 30 \\ & 30 \\ & 30 \end{aligned}$	40-120 40-120 40-120	$\begin{aligned} & 150 \\ & 150 \\ & 150 \end{aligned}$	$\begin{array}{r} 1.5 \\ .8 \\ .8 \\ .8 \end{array}$	$\begin{array}{r} 10 \\ 150 \\ 150 \\ 150 \end{array}$		140 140 140
$\begin{aligned} & \text { 2N1838 } \\ & \text { 2N1839 } \\ & \text { 2N1840 } \\ & \text { 2N1889 } \end{aligned}$	NPN NPN NPN NPN	GP GP GP GP	$\begin{aligned} & \text { 2N2218 } \\ & \text { 2N2217 } \\ & \text { 2N2218 } \\ & \text { 2N1889 } \end{aligned}$	600 600 800 800	$\begin{array}{r} 45 \\ 45 \\ 25 \\ 100 \end{array}$	$\begin{aligned} & 20 \\ & 20 \\ & 15 \end{aligned}$	$\begin{aligned} & 40-150 \\ & 12-50 \\ & 10-100 \\ & 40-120 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \\ & 150 \\ & 150 \end{aligned}$	1.4 1.4 1.4 5	$\begin{aligned} & 100 \\ & 150 \\ & 150 \\ & 150 \end{aligned}$	30	90 90 90 50

TRANSISTOR INTERCHANGEABILITY
MASTER LIST OF REGISTERED TYPES

TYPE NUMEER		$\begin{aligned} & \text { 名 } \\ & \frac{3}{3} \\ & \frac{1}{5} \\ & 3 \end{aligned}$		MAXIMUM RATINOS			ELECIRICAL CMARACTERISTICS					
				$\begin{gathered} \mathrm{PY} \\ \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ { }^{{ }^{\mathrm{T}} \mathrm{C}=25^{\circ} \mathrm{C}} \\ (\mathrm{~mW}) \\ \hline \end{gathered}$	$\mathbf{V C B O}$ (V)	Vceo (V)	MFE	$\begin{gathered} \mathrm{IC} \\ (\mathrm{~mA}) \end{gathered}$	MaX (V)	(ICl) (ma)	$\begin{gathered} \text { Mfo } \\ 1 \mathrm{kdtz} \\ \text { MNY } \end{gathered}$	
2N1890 2N1893 2N1917 2N1918	NPN NPN PNP PNP	$\begin{aligned} & \text { GP } \\ & \text { GP } \\ & S W \\ & S W \end{aligned}$	$\begin{aligned} & \text { 2N1890 } \\ & \text { 2N1893 } \end{aligned}$	$\begin{aligned} & 800 \\ & 800 \\ & 250 \\ & 250 \end{aligned}$	$\begin{array}{r} 100 \\ 120 \\ 25 \\ 25 \end{array}$	$\begin{aligned} & 8 \\ & 8 \end{aligned}$	$\begin{array}{r} 100-300 \\ 40-120 \end{array}$	$\begin{aligned} & 150 \\ & 150 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 150 \\ & 150 \end{aligned}$	$\begin{aligned} & 50 \\ & 30 \\ & 25 \\ & 25 \end{aligned}$	60 50 16 10
$\begin{aligned} & \text { 2N1919 } \\ & \text { 2N1920 } \\ & \text { 2N1921 } \\ & \text { 2N1922 } \end{aligned}$	$\begin{aligned} & \text { PNP } \\ & \text { PNP } \\ & \text { PNP } \\ & \text { PNP } \end{aligned}$	$\begin{aligned} & \text { sw } \\ & \text { sw } \\ & \text { Sw } \\ & \text { sw } \end{aligned}$		250 250 250 250	40 40 50 80	18 18 50 80						
$\begin{aligned} & 2 \mathrm{~N} 1923 \\ & 2 \mathrm{~N} 1941 \\ & 2 \mathrm{~N} 1943 \\ & 2 \mathrm{~N} 1944 \end{aligned}$	NPN NPN NPN NPN	GP GP GP GP	$\begin{aligned} & \text { 2N2243 } \\ & \text { 2N2219A } \\ & \text { 2N2192 } \\ & \text { 2N2219A } \end{aligned}$	$\begin{aligned} & 750 \\ & 600 \\ & 800 \\ & 600 \end{aligned}$	$\begin{aligned} & 85 \\ & 45 \\ & 60 \\ & 20 \end{aligned}$	$\begin{aligned} & 85 \\ & 60 \end{aligned}$	$\begin{gathered} 4-90 \\ 30-150 \\ 30-90 \\ 150-450 \end{gathered}$	$\begin{array}{r} 10 \\ 200 \\ 1 \end{array}$	$\begin{array}{r} 7 \\ 1.5 \\ 5 \end{array}$	$\begin{array}{r} 20 \\ 5 \\ 200 \end{array}$	$\begin{array}{r} 28 \\ 40 \\ 12 \\ 100 \end{array}$	$\begin{aligned} & 60 \\ & 60 \end{aligned}$
$\begin{aligned} & \text { 2N1945 } \\ & \text { 2N1946 } \\ & \text { 2N1947 } \\ & \text { 2N1948 } \end{aligned}$	$\left\lvert\, \begin{aligned} & \mathbf{N P N} \\ & \mathbf{N P N} \\ & \mathbf{N P N} \\ & \mathbf{N P N} \end{aligned}\right.$	GP GP GP GP	$\begin{aligned} & \text { 2N2219A } \\ & \text { 2N2219A } \end{aligned}$	$\begin{aligned} & 600 \\ & 600 \\ & 600 \\ & 600 \end{aligned}$	$\begin{aligned} & 30 \\ & 40 \\ & 20 \\ & 30 \end{aligned}$		$\begin{aligned} & 150-450 \\ & 150-450 \\ & 500-800 \\ & 500-800 \end{aligned}$	$\begin{array}{r} 1 \\ 1 \\ 100 \\ 100 \end{array}$			$\begin{aligned} & 100 \\ & 100 \\ & 100 \\ & 100 \end{aligned}$	60 60 60 60
$\begin{aligned} & \text { 2N1949 } \\ & \text { 2N1950 } \\ & \text { 2N1951 } \\ & \text { 2N1952 } \end{aligned}$	NPN NPN NPN NPN	GP GP GP GP		$\begin{aligned} & 600 \\ & 600 \\ & 600 \\ & 600 \end{aligned}$	$\begin{aligned} & 40 \\ & 20 \\ & 30 \\ & 40 \end{aligned}$		$\begin{aligned} & 500-800 \\ & 250-500 \\ & 250-500 \\ & 250-500 \end{aligned}$	100 100 100 100			$\begin{array}{r} 100 \\ 75 \\ 75 \\ 75 \end{array}$	60 60 60 60
$\begin{aligned} & 2 \mathrm{~N} 1953 \\ & 2 \mathrm{~N} 1958 \\ & 2 \mathrm{~N} 1958 \mathrm{~A} \\ & 2 \mathrm{~N} 1959 \end{aligned}$	NPN NPN NPN NPN	$\begin{aligned} & G P \\ & S W \\ & S W \\ & S W \end{aligned}$	$\begin{aligned} & \text { 2N2537 } \\ & \text { 2N2537 } \end{aligned}$	$\begin{aligned} & 600 \\ & 600 \\ & 600 \\ & 600 \end{aligned}$	$\begin{aligned} & 20 \\ & 60 \\ & 60 \\ & 60 \end{aligned}$		$\begin{aligned} & 15-150 \\ & 20-60 \\ & 20-60 \\ & 40-120 \end{aligned}$	$\begin{array}{r} 10 \\ 150 \\ 150 \\ 150 \end{array}$.45 .45 .45	$\begin{aligned} & 150 \\ & 150 \\ & 150 \end{aligned}$	28	40 100 100
$\begin{aligned} & \text { 2N1959A } \\ & \text { 2N1962 } \\ & \text { 2N1963 } \\ & \text { 2N1964 } \end{aligned}$	NPN NPN NPN NPN	$\begin{aligned} & s w \\ & s w \\ & s w \\ & s w \end{aligned}$	$\begin{aligned} & \text { 2N2537 } \\ & \text { 2N2537 } \\ & \text { 2N2537 } \\ & \text { 2N2539 } \end{aligned}$	$\begin{aligned} & 600 \\ & 400 \\ & 400 \\ & 400 \end{aligned}$	$\begin{aligned} & 60 \\ & 40 \\ & 30 \\ & 60 \end{aligned}$		$\begin{aligned} & 40-120 \\ & 20-60 \\ & 25- \\ & 20-60 \end{aligned}$	150 10 10 150	.45 .25 .16 .45	$\begin{array}{r} 150 \\ 10 \\ 10 \\ 150 \end{array}$		100 200 200 100
2N1965 2 N 1972 2N1973 2N1974	NPN NPN NPN NPN	SW GP GP GP	$\begin{aligned} & \text { 2N2539 } \\ & \text { 2N2219 } \\ & \text { 2N1973 } \\ & \text { 2N1974 } \end{aligned}$	$\begin{aligned} & 400 \\ & 600 \\ & 800 \\ & 800 \end{aligned}$	$\begin{array}{r} 60 \\ 60 \\ 100 \\ 100 \end{array}$		$\begin{aligned} & 40-120 \\ & 110-350 \\ & 75- \\ & 35- \end{aligned}$	$\begin{array}{r} 150 \\ 50 \\ 10 \\ 10 \end{array}$	$\begin{array}{r} 45 \\ 2 \\ 1.2 \\ 1.2 \end{array}$	150 50 50 50	40 76 36	100 50 60 50
2N1975 2N1983 2N1984 2N1985	NPN NPN NPN NPN	GP GP GP GP	$\begin{aligned} & \text { 2N1975 } \\ & \text { 2N2218 } \\ & \text { 2N2217 } \\ & \text { 2N2217 } \end{aligned}$	$\begin{aligned} & 800 \\ & 600 \\ & 600 \\ & 600 \end{aligned}$	100 50 50 50	$\begin{aligned} & 25 \\ & 25 \\ & 25 \end{aligned}$	15	10	1.2	50	18 70 35 15	40 40 40 40
2N1986 2N1987 2N1988 2N1989	NPN NPN NPN NPN	GP GP GP GP	$\begin{aligned} & \text { 2N2219 } \\ & \text { 2N2217 } \\ & \text { 2N2218A } \\ & \text { 2N2217 } \end{aligned}$	$\begin{aligned} & 600 \\ & 600 \\ & 600 \\ & 600 \end{aligned}$	$\begin{array}{r} 50 \\ 50 \\ 100 \\ 100 \end{array}$	$\begin{aligned} & 25 \\ & 25 \\ & 45 \\ & 45 \end{aligned}$	$\begin{aligned} & 60-210 \\ & 20-80 \\ & 35-120 \\ & 20-60 \end{aligned}$	$\begin{array}{r} 150 \\ 150 \\ 30 \\ 30 \end{array}$	2	$\begin{aligned} & 30 \\ & 30 \end{aligned}$	20 10	40 40 40 40

TRANSISTOR INTERCHANGEABILITY MASTER LIST OF REGISTERED TYPES

TYFEMUMES:	$\begin{aligned} & E \\ & \frac{5}{5} \end{aligned}$		$\begin{gathered} \text { TI } \\ \text { REPLCEMENT } \\ \text { OH NEAREST } \\ \text { EQUVALENT } \end{gathered}$	MAXIMUM RATENOS			EXCTICAL CHANACTERSTICS						
				$\begin{gathered} \mathbf{P}_{\mathbf{T}} \\ \mathbf{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ { }^{*} \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C} \\ (\mathrm{~mW}) \\ \hline \end{gathered}$	$\mathbf{V}_{\text {CEO }}$ (V)	Vceo	hre		VCE(sel)		$\begin{gathered} \mathrm{h}_{0} \\ 0 \\ 1 \mathrm{k}+\mathrm{mz} \\ \mathrm{MN} \end{gathered}$	$\begin{gathered} \text { F } \\ \text { Min } \\ \text { (MNBI } \end{gathered}$	
				$\begin{gathered} { }^{*} \mathrm{~T} \mathrm{C}=25^{\circ} \mathrm{C} \\ (\mathrm{~mW}) \\ \hline \end{gathered}$			MIN MAXIC (mA)		Max IC (V) (ma)				
2N1991	PNP	GP	$\begin{aligned} & \text { 2N2904 } \\ & \text { 2N2221 } \end{aligned}$	600	30	20	$\begin{aligned} & 15-60 \\ & 30-120 \end{aligned}$	$\begin{array}{r} 150 \\ 1 \end{array}$	1.5.25	$\begin{array}{r} 150 \\ 10 \end{array}$		40300	
2N1992	NPN	GP		350	15	15							
2N2002	PNP	SW		250	30	5							
2N2003	PNP	SW				5							
	PNP	SW		250	50	15	12.	1			15		
2N2005 2N2006	PNP	SW		250	50	15							
2N2007	PNP	SW		250 250	60 60	35 35							
2N2008	NPN	GP	2N3114	800	175	110	30.90	10	2.5	25	20	40	
2N2017	NPN	GP	2N2270	1w	60	60	50.200	200			30		
2N2038	NPN	GP	2N2217	600	45	45	12-36	200	6	200		2	
2N2039	NPN	GP	2N698	600	75	75	12-36	200	6	200		2	
2N2040	NPN	GP	2N2218	600	45	45	30-90	200	6	200		2	
2N2041	NPN	GP	2N1893	600	75	75	30-90	200	6	200		2	
2N2049	NPN	GP	2N2219A	800	75		100-300	150	. 4	10	75	50	
2N2060	NPN	DU	2N2060	500	100		50-150	10	1.2	50	50	60	
	NPN	DU	2N2060	500	100	60	50-150	10	. 6	50	50		
2N2060B	NPN	DU	2N2060	500	100							60	
2N2086	NPN	SW		600	120		20.	150	. 7	150		150	
2N2087	NPN	SW		600	120		40.120	150	. 5	150		150	
	NPN	GP	2N2102	*5W	120	65	35.	10	. 5	150	35		
2N2102A	NPN	GP	2N2102A	-5W	120	65	40-120	150	. 3	150	30		
2N2104	PNP	SW	2N2904	800	50	35	25-80	150	1.5	150		60	
		SW	2N2904	800	50	35	15-40	150	1.5	150		50	
	NPN	GP	2N696	1w	60		12-36	200	5	200			
2N2107	NPN	GP	2N697	IW	60		30-90	200		200			
\|2N2108	NPN	GP	2N1711	1w	60		75-200	200		200			
	P-N	UJ	2N2160	SEE UNUU	NCTION	INTERCH	VGEABLITY						
		sw	2N2222	200	55	35	60-160	10	1.5	10	75		
2N2162	PNP	sw	2N2946	150	30	30						14	
2N2163	PNP	SW	2N2945	150	15	15						14	
2N2164	PNP	SW	2N2944	150		8						24	
2N2165	PNP	SW	2N2946	150	30	30						10	
2N2166	PNP	SW	2N2945	150	15	15						10	
2N2167	PNP	SW	2N2944	150	12	8						16	
2N2175	PNP	GP		100		6	30.	. 02				10	
2N2176				100	6	6	30.	. 02				10	
2N2177	PNP	GP		100	6	6	15.	5UA			50		
2N2178	PNP	GP		100	6	6	15.	5UA			50		
2N2181	PNP	SW	2N2945					5				6	

TRANSISTOR INTERCHANGEABILITY MASTER LIST OF REGISTERED TYPES

TYPE NUMPER		$\begin{aligned} & \text { Z } \\ & \frac{1}{k} \\ & \mathbf{S} \\ & \frac{1}{5} \\ & \frac{3}{4} \end{aligned}$	$\begin{gathered} \text { TI } \\ \text { REPLACEMENT } \\ \text { OR NBAREST } \\ \text { EQUNALENT } \end{gathered}$	MAXIMUM RATINOS			EIECTRICAL CHARACTERISTICS					
				$\begin{gathered} P_{T} \\ T_{A}=25^{\circ} \mathrm{C} \\ { }^{*} \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C} \\ (\mathrm{~mW}) \end{gathered}$	VCBO (V)	$V_{C E O}$ (V)	hre	$\begin{gathered} \text { lc } \\ (\mathrm{mA}) \end{gathered}$	$\mathbf{V C E}_{\text {(}}$ MAX (V)	sat) (mA)	$\begin{gathered} \mathrm{hfo}_{6} \\ 1 \mathrm{kfzz} \\ \text { MN } \end{gathered}$	$\begin{array}{c\|} \hline \boldsymbol{T} \\ \text { MIN } \\ (M \mathrm{Mz}) \end{array}$
$\begin{aligned} & \text { 2N2182 } \\ & \text { 2N2183 } \\ & \text { 2N2184 } \\ & \text { 2N2185 } \end{aligned}$	PNP PNP PNP PNP	$\begin{aligned} & s w \\ & s w \\ & s w \\ & s w \end{aligned}$	$\begin{aligned} & \text { 2N2945 } \\ & \text { 2N2944 } \\ & \text { 2N2944 } \\ & \text { 2N2946 } \end{aligned}$	150 150 150 150	25 15 15 30	$\begin{aligned} & 25 \\ & 10 \\ & 10 \\ & 30 \end{aligned}$	10 10 10	5 5 5				6 6 6 6.5
$\begin{aligned} & \text { 2N2186 } \\ & \text { 2N2187 } \\ & \text { 2N2192 } \\ & \text { 2N2192A } \end{aligned}$	PNP PNP NPN NPN	$\begin{aligned} & S W \\ & S W \\ & G P \\ & G P \end{aligned}$	$\begin{aligned} & \text { 2N2946 } \\ & \text { 2N2946 } \\ & \text { 2N2192 } \\ & \text { 2N2192A } \end{aligned}$	$\begin{aligned} & 150 \\ & 150 \\ & 800 \\ & 800 \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \\ & 60 \\ & 60 \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \\ & 40 \\ & 40 \end{aligned}$	$\begin{aligned} & 100-300 \\ & 100-300 \end{aligned}$	$\begin{aligned} & 150 \\ & 150 \end{aligned}$. 35	$\begin{aligned} & 150 \\ & 150 \end{aligned}$		6.5 6.5 50 50
$\begin{aligned} & \text { 2N2192B } \\ & \text { 2N2193 } \\ & \text { 2N2193A } \\ & \text { 2N2193B } \end{aligned}$	NPN NPN NPN NPN	$\begin{aligned} & G P \\ & G P \\ & G P \\ & G P \end{aligned}$	$\begin{aligned} & \text { 2N2192A } \\ & \text { 2N2193 } \\ & \text { 2N2193A } \\ & \text { 2N2193A } \end{aligned}$	$\begin{aligned} & 800 \\ & 800 \\ & 800 \\ & 800 \end{aligned}$	60 80 80 80	40 50 50 50	$\begin{array}{r} 100-300 \\ 40-120 \\ 40-120 \\ 40-120 \end{array}$	150 150 150 150	.18 .35 .25 .18	150 150 150 150		50 50
$\begin{aligned} & \text { 2N2194 } \\ & \text { 2N2194A } \\ & \text { 2N2194B } \\ & \text { 2N2195 } \end{aligned}$	NPN NPN NPN NPN	$\begin{aligned} & \text { GP } \\ & \text { GP } \\ & \text { GP } \\ & \text { GP } \end{aligned}$	$\begin{aligned} & \text { 2N2194 } \\ & \text { 2N2194A } \\ & \text { 2N2194A } \\ & \text { 2N2243 } \end{aligned}$	$\begin{aligned} & 800 \\ & 800 \\ & 800 \\ & 800 \end{aligned}$	60 60 60 45	40 40 40 25	$20-60$ $20-60$ $20-60$ $20-$	150 150 150 150	.35 .25 .18 .35	150 150 150 150		50 50
$\begin{aligned} & \text { 2N2195A } \\ & \text { 2N2195B } \\ & \text { 2N2198 } \\ & \text { 2N2205 } \end{aligned}$	$\begin{aligned} & \text { NPN } \\ & \mathbf{N P N} \\ & \mathbf{N P N} \\ & \mathbf{N P N} \end{aligned}$	GP GP GP SW	$\begin{aligned} & \text { 2N2243 } \\ & \text { 2N2243 } \\ & \text { 2N2102 } \end{aligned}$	$\begin{array}{r}800 \\ 800 \\ * \\ * \\ * \\ \hline 1 W\end{array}$	45 45 80 25	25 25 80 12	$20-$ 20. $35-55$ $20-$	150 150 100 10	.25 .18 6 .22	$\begin{array}{r} 150 \\ 150 \\ 200 \\ 10 \end{array}$		4
$\begin{aligned} & \text { 2N2214 } \\ & \text { 2N2216 } \\ & \text { 2N2217 } \\ & \text { 2N2218 } \end{aligned}$	NPN PNP NPN NPN	SW SW GP GP	$\begin{aligned} & \text { 2N2217 } \\ & \text { 2N2218 } \end{aligned}$	$\begin{array}{r} 250 \\ +3 W \\ 800 \\ 800 \end{array}$	25 150 60 60	15 100 30 30	$\begin{aligned} & 25- \\ & 25-120 \\ & 20-60 \\ & 40-120 \end{aligned}$	10 50 150 150	.2 5 4 .4	10 50 150 150		200 50 250 250
$\begin{aligned} & \text { 2N2218A } \\ & \text { 2N2219 } \\ & \text { 2N2219A } \\ & \text { 2N2220 } \end{aligned}$	NPN NPN NPN NPN	GP GP GP GP	$\begin{aligned} & \text { 2N2218A } \\ & \text { 2N2219 } \\ & \text { 2N2219A } \\ & \text { 2N2220 } \end{aligned}$	$\begin{aligned} & 800 \\ & 800 \\ & 800 \\ & 500 \end{aligned}$	$\begin{aligned} & 75 \\ & 60 \\ & 75 \\ & 60 \end{aligned}$	$\begin{aligned} & 40 \\ & 30 \\ & 40 \\ & 30 \end{aligned}$	$\begin{gathered} 40-120 \\ 100-300 \\ 100-300 \\ 20-60 \end{gathered}$	$\begin{aligned} & 150 \\ & 150 \\ & 150 \\ & 150 \end{aligned}$	$\begin{aligned} & .3 \\ & .4 \\ & .3 \\ & .4 \end{aligned}$	$\begin{aligned} & 150 \\ & 150 \\ & 150 \\ & 150 \end{aligned}$	30 50	250 250 300 250
$\begin{aligned} & \text { 2N2221 } \\ & \text { 2N2221A } \\ & \text { 2N2222 } \\ & \text { 2N2222A } \end{aligned}$	NPN NPN NPN NPN	GP GP GP GP	$\begin{aligned} & \text { 2N2221 } \\ & \text { 2N2221A } \\ & \text { 2N2222 } \\ & \text { 2N2222A } \end{aligned}$	$\begin{aligned} & 500 \\ & 500 \\ & 500 \\ & 500 \end{aligned}$	$\begin{aligned} & 60 \\ & 75 \\ & 60 \\ & 75 \end{aligned}$	$\begin{aligned} & 30 \\ & 40 \\ & 30 \\ & 40 \end{aligned}$	$\begin{array}{r} 40-120 \\ 40-120 \\ 100-300 \\ 100-300 \end{array}$	$\begin{aligned} & 150 \\ & 150 \\ & 150 \\ & 150 \end{aligned}$.4 .3 .4 .3	$\begin{aligned} & 150 \\ & 150 \\ & 150 \\ & 150 \end{aligned}$	30 50	250 250 250 300
$\begin{aligned} & \text { 2N2222B } \\ & \text { 2N2223 } \\ & \text { 2N2223A } \\ & \text { 2N222A } \end{aligned}$	NPN NPN NPN NPN	GP DU DU GP	$\begin{aligned} & \text { 2N2222B } \\ & \text { 2N2223 } \\ & \text { 2N2223A } \\ & \text { 2N2218A } \end{aligned}$	$\begin{aligned} & 500 \\ & 500 \\ & 500 \\ & 800 \end{aligned}$	$\begin{array}{r} 75 \\ 100 \\ 100 \\ 65 \end{array}$	40 40	$\begin{array}{r} 100-300 \\ 50-200 \\ 50-200 \\ 35-115 \end{array}$	150 10 10 10	$\begin{array}{r} .3 \\ 1.2 \\ 1.2 \\ .4 \end{array}$	$\begin{array}{r} 150 \\ \quad 50 \\ 50 \\ 150 \end{array}$	50 40 40	300 50 50 250
$\begin{aligned} & \text { 2N2236 } \\ & \text { 2N2237 } \\ & \text { 2N2239 } \\ & \text { 2N2240 } \end{aligned}$	NPN NPN NPN NPN	GP GP GP GP	$\begin{aligned} & \text { 2N2218 } \\ & \text { 2N2218 } \\ & \text { 2N2218 } \end{aligned}$	$\begin{aligned} & 575 \\ & 575 \\ & 1 W \\ & 600 \end{aligned}$	$\begin{aligned} & 40 \\ & 40 \\ & 60 \\ & 25 \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 15-60 \\ & 40-125 \\ & 30-200 \\ & 40-100 \end{aligned}$	$\begin{array}{r} 100 \\ 100 \\ 200 \\ 1 \end{array}$.25 .25 3 1	100 100 200 50		50 50

TRANSISTOR INTERCHANGEABILITY MASTER LIST OF REGISTERED TYPES

TY/ mumate	$\begin{aligned} & E \\ & \frac{E}{2} \\ & 8 \end{aligned}$	$\begin{aligned} & \frac{8}{8} \\ & \frac{8}{2} \\ & 8 \\ & 8 \end{aligned}$		MAXPMUM RATNVOS			ELCDRLCAL CHARACTEASTICS					
				$\left\{\begin{array}{c} \mathrm{T}_{A}=25^{\circ} \mathrm{C} \\ { }^{{ }^{\circ} \mathrm{C}=25^{\circ} \mathrm{C}} \\ (\mathrm{~mW}) \end{array}\right.$	Veso (V)	Veso (V)	$h_{\text {Fe }}$		Vex(sat)			$\begin{gathered} \text { T } \\ \text { MNN } \\ \text { (MHz) } \end{gathered}$
							$\operatorname{min~Max}$	$\begin{gathered} \hline \boldsymbol{L} \\ (\mathrm{mA}) \end{gathered}$	max (V)	- k (mA)		
$\begin{aligned} & \text { 2N2241 } \\ & \text { 2N2242 } \\ & \text { 2N2243 } \\ & \text { 2N2243A } \end{aligned}$	NPN NFN NPN NPN	GP SW GP GP	$\begin{aligned} & \text { 2N2219A } \\ & \text { 2N2243 } \\ & \text { 2N22434 } \end{aligned}$	$\begin{aligned} & 600 \\ & 360 \\ & 800 \\ & 800 \end{aligned}$	$\begin{array}{r} 25 \\ 40 \\ 120 \\ 120 \end{array}$	$\begin{aligned} & 20 \\ & 15 \\ & 60 \\ & 80 \end{aligned}$	$\begin{array}{r} 100-200 \\ 40-120 \\ 40-120 \\ 40-120 \end{array}$	$\begin{array}{r} 1 \\ 10 \\ 150 \\ 150 \end{array}$	1 .7 .35 .25	50 100 150 150		50 250 50 50
$\begin{aligned} & \text { 2N2244 } \\ & \text { 2N2245 } \\ & \text { 2N2246 } \\ & \text { 2N2247 } \end{aligned}$	NPN NPN NPN NPN	GP GP GP GP	$\begin{aligned} & \text { 2N2220 } \\ & \text { 2N2220 } \\ & \text { 2N2220 } \\ & \text { 2N2220 } \end{aligned}$	$\begin{aligned} & 500 \\ & 500 \\ & 500 \\ & 500 \end{aligned}$	20 20 20 45	$\begin{aligned} & 20 \\ & 20 \\ & 20 \\ & 45 \end{aligned}$	$\begin{array}{r} 5-15 \\ 10-30 \\ 5-15 \\ 5-15 \end{array}$	$\begin{aligned} & 2 U A \\ & 2 U A \\ & 2 U A \\ & 2 U A \end{aligned}$.2 .2 .2 .2	1 1 1 1	40 80 40 40	60 60 60 60
$\begin{aligned} & \text { 2N2248 } \\ & \text { 2N2249 } \\ & \text { 2N2250 } \\ & \text { 2N2251 } \end{aligned}$	NPN NPN NPN NPN	GP G © GP	$\begin{aligned} & \text { 2N2220 } \\ & \text { 2N2221 } \\ & \text { 2N2220 } \\ & \text { 2N2220 } \end{aligned}$	$\begin{aligned} & 500 \\ & 500 \\ & 500 \\ & 500 \end{aligned}$	$\begin{aligned} & 45 \\ & 45 \\ & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & 45 \\ & 45 \\ & 20 \\ & 20 \end{aligned}$	$\begin{array}{r} 10-30 \\ 20-60 \\ 5-15 \\ 10-30 \end{array}$	$\begin{aligned} & 2 \mathrm{UA} \\ & 2 \mathrm{UA} \\ & 2 \mathrm{UA} \\ & 2 \mathrm{UA} \end{aligned}$.2 .2 .2 .2	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{array}{r} 80 \\ 150 \\ 40 \\ 80 \end{array}$	60 60 60 60
$\begin{aligned} & \text { 2N2252 } \\ & \text { 2N2253 } \\ & \text { 2N22S4 } \\ & \text { 2N2255 } \end{aligned}$	NPN NPN NPN NPN	GP GP ©P GP	$\begin{aligned} & \text { 2N2221 } \\ & \text { 2N2220 } \\ & \text { 2N2220 } \\ & \text { 2N2221 } \end{aligned}$	$\begin{aligned} & 500 \\ & 500 \\ & 500 \\ & 500 \end{aligned}$	25 45 45 45	$\begin{aligned} & 20 \\ & 50 \\ & 50 \\ & 50 \end{aligned}$	$\begin{array}{r} 20-60 \\ 5-15 \\ 10-30 \\ 20-60 \end{array}$	$\begin{aligned} & 2 U A \\ & 2 U A \\ & 2 U A \\ & 2 U A \end{aligned}$.2 .2 .2 .2	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{array}{r} 150 \\ 40 \\ 80 \\ 150 \end{array}$	60 60 60 60
$\begin{aligned} & \text { 2N2256 } \\ & \text { 2N2257 } \\ & \text { 2N2270 } \\ & \text { 2N2272 } \end{aligned}$	NPN NPN NRN NPN	SW SW GP GP	$\begin{aligned} & \text { 2N2270 } \\ & \text { 2N929 } \end{aligned}$	$\begin{array}{r} 300 \\ 300 \\ -5 w \\ 360 \end{array}$	$\begin{array}{r} 7 \\ 7 \\ 60 \\ 40 \end{array}$	45	$\begin{aligned} & 17- \\ & 40- \\ & 30- \\ & 80-240 \end{aligned}$	$\begin{array}{r} 10 \\ 10 \\ 1 \\ 10 \end{array}$	$.9$	$\begin{aligned} & 150 \\ & 200 \end{aligned}$	50	
$\begin{aligned} & \text { 2N2274 } \\ & \text { 2N2275 } \\ & \text { 2N2275 } \\ & \text { 2N2277 } \end{aligned}$		$\left\lvert\, \begin{aligned} & \text { sw } \\ & \text { sw } \\ & \text { sw } \\ & \text { sw } \end{aligned}\right.$	$\begin{aligned} & \text { 2N2946 } \\ & \text { 2N2946 } \\ & \text { 2N2944 } \\ & \text { 2N2944 } \end{aligned}$	150 150 150 150	25 25 15 15	25 25 10 10	10 10 10 10	5 5 5 5				6 6 6 6
2N2278 2N2279 2N22s0 2N2297	$\begin{aligned} & \text { PNP } \\ & \mathbf{N N P} \\ & P N P \\ & N P N \end{aligned}$	$\begin{aligned} & \text { SW } \\ & \text { SW } \\ & \text { SW } \\ & \text { GP } \end{aligned}$	2N2945 2N2945 2N2944 2N3036	$\begin{aligned} & 150 \\ & 150 \\ & 150 \\ & 800 \end{aligned}$	15 15 10 80	$\begin{array}{r} 15 \\ 15 \\ 6 \\ 35 \end{array}$	40.120	150	. 1	$\begin{array}{r} 5 \\ 150 \end{array}$		7.6 7.6 16 60
$\begin{aligned} & \text { 2N2303 } \\ & \text { 2N2307 } \\ & \text { 2N2309 } \\ & \text { 2N2310 } \end{aligned}$	$\begin{aligned} & \text { PNP } \\ & \text { P-N } \\ & \text { NPN } \\ & \text { NPN } \end{aligned}$	$\begin{aligned} & G P \\ & U J \\ & G P \\ & G P \end{aligned}$	2N2303 2N2218	$\begin{aligned} & 600 \\ & \text { SEE UNLUU } \\ & 600 \\ & 350 \end{aligned}$	30 JNCTION 30 60	$\begin{array}{c\|} \\ \text { ITERCH } \\ 30 \\ 60 \end{array}$	$\begin{gathered} 75-200 \\ \text { ANGEAMLITY } \\ 25-125 \\ 12-36 \end{gathered}$	$\begin{array}{r} 150 \\ 5 T \\ .2 \\ 200 \end{array}$	1.5 5	$\begin{aligned} & 150 \\ & 200 \end{aligned}$	40	60
$\begin{aligned} & \text { 2N2311 } \\ & \text { 2N2312 } \\ & \text { 2N2313 } \\ & \text { 2N2314 } \end{aligned}$	NPN NPN NPN NPN	GP GP GP GP		$\begin{aligned} & 350 \\ & 350 \\ & 350 \\ & 350 \end{aligned}$	$\begin{array}{r} 100 \\ 60 \\ 100 \\ 60 \end{array}$	$\begin{array}{r} 100 \\ 60 \\ 100 \end{array}$	$\begin{aligned} & 12-36 \\ & 30-90 \\ & 30-90 \\ & 20-60 \end{aligned}$	$\begin{aligned} & 200 \\ & 200 \\ & 200 \\ & 150 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 200 \\ & 200 \\ & 200 \\ & 150 \end{aligned}$	15	40
$\begin{aligned} & \text { 2N2315 } \\ & \text { 2N2316 } \\ & \text { 2N2317 } \\ & \text { 2N2318 } \end{aligned}$	NHN NPN NPN NPN	GP $\boldsymbol{G P}$ GP SW		$\begin{aligned} & 350 \\ & \mathbf{3 5 0} \\ & 350 \\ & \mathbf{3 6 0} \end{aligned}$	$\begin{array}{r} 60 \\ 120 \\ 75 \\ 30 \end{array}$		$\begin{aligned} & 40.120 \\ & 40.120 \\ & 40.120 \\ & 15 . \end{aligned}$	$\begin{array}{r} 150 \\ 150 \\ 150 \\ .1 \end{array}$	$\begin{array}{r} 1.5 \\ 5 \\ 1.5 \\ .35 \end{array}$	$\begin{array}{r} 150 \\ 150 \\ 150 \\ 20 \end{array}$	$\begin{aligned} & \mathbf{2 5} \\ & 30 \\ & 30 \end{aligned}$	$\begin{array}{r} 50 \\ 50 \\ 60 \\ 300 \end{array}$

TRANSISTOR INTERCHANGEABILITY

MASTER LIST OF REGISTERED TYPES

TYPM NUMEN:		$\begin{aligned} & 8 \\ & \frac{8}{3} \\ & 8 \end{aligned}$	$\begin{aligned} & \text { I } \\ & \text { RIPLACMANT } \\ & \text { OR NLANBS } \\ & \text { ROUNALBNT } \end{aligned}$	MAXIMUM (ATMVOS			CTETILCAL CHARACTEASTICS					
				$\begin{gathered} T_{A}=2 \theta^{\circ} \mathrm{C} \\ { }^{-1} \mathrm{C}=28^{\circ} \mathrm{C} \\ (\mathrm{~mW}) \end{gathered}$	v_{ClO} (V)	Vero (V)	MIN MAX	$\begin{gathered} \hline \mathbf{I C} \\ (\mathrm{ma}) \\ \hline \end{gathered}$		+ $\begin{array}{r} 16 \\ (\mathrm{ma}) \\ \hline \end{array}$		
$\begin{aligned} & \text { 2N2319 } \\ & \text { 2N2320 } \\ & \text { 2N2330 } \\ & \text { 2N2331 } \end{aligned}$	NPN NPN NPN NPN	$\begin{aligned} & \text { sw } \\ & \text { sw } \\ & \text { sw } \\ & \text { sw } \end{aligned}$	2N2432	$\begin{aligned} & 300 \\ & 600 \\ & 800 \\ & 500 \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \\ & 30 \\ & 30 \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \end{aligned}$	13. 15- 50. 50.	$\begin{aligned} & .1 \\ & .1 \\ & 10 \\ & 10 \end{aligned}$. 35	$\begin{aligned} & 20 \\ & 20 \end{aligned}$		$\begin{aligned} & 300 \\ & 300 \\ & 100 \\ & 100 \end{aligned}$
$\begin{aligned} & \text { 2N2332 } \\ & \text { 2N2333 } \\ & \text { 2N2334 } \\ & \text { 2N233s } \end{aligned}$	$\begin{aligned} & \text { PNP } \\ & \text { PNP } \\ & \text { PNP } \\ & \text { PNP } \end{aligned}$	$\begin{aligned} & s w \\ & s w \\ & s w \\ & s w \end{aligned}$		150 150 150 150	15 15 30 30	15 5 15 15						
$\begin{aligned} & \text { 2N2336 } \\ & \text { 2N2337 } \\ & \text { 2N2349 } \\ & \text { 2N2350 } \end{aligned}$	$\begin{aligned} & \text { PNP } \\ & \text { PNP } \\ & \text { NPN } \\ & \text { NPN } \end{aligned}$	sW SW GP GP	$\begin{aligned} & \text { 2N929 } \\ & \text { 2N2222A } \end{aligned}$	$\begin{aligned} & 150 \\ & 150 \\ & 150 \\ & 400 \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \\ & 40 \\ & 60 \end{aligned}$	$\begin{aligned} & 35 \\ & 35 \\ & 24 \\ & 40 \end{aligned}$	$\begin{aligned} & 120-250 \\ & 100-300 \end{aligned}$	$\begin{array}{r} 10 \\ 150 \end{array}$	$\begin{aligned} & 1.5 \\ & .35 \end{aligned}$	$\begin{array}{r} 10 \\ 150 \end{array}$	60	250
$\begin{aligned} & \text { 2N2350A } \\ & \text { 2N2351 } \\ & \text { 2N2351A } \\ & \text { 2N2352 } \end{aligned}$	NPN NPN NPN NPN	GP GP GP GP	$\begin{aligned} & \text { 2N2222A } \\ & \text { 2N2193 } \\ & \text { 2N2193 } \\ & \text { 2N2194 } \end{aligned}$	$\begin{array}{r} 400 \\ 400 \\ 400 \\ 400 \end{array}$	$\begin{aligned} & 60 \\ & 80 \\ & 80 \\ & 60 \end{aligned}$	$\begin{aligned} & 40 \\ & 50 \\ & 50 \\ & 40 \end{aligned}$	$\begin{array}{r} 100-300 \\ 40-120 \\ 40-120 \\ 20-60 \end{array}$	$\begin{aligned} & 150 \\ & 150 \\ & 150 \\ & 150 \end{aligned}$.25 .35 .25 .35	$\begin{aligned} & 150 \\ & 150 \\ & 150 \\ & 150 \end{aligned}$		250 250 250 250
$\begin{aligned} & \text { 2N2352A } \\ & \text { 2N2353 } \\ & \text { 2N2353A } \\ & \text { 2N2356 } \end{aligned}$	NPN NPN NPN NPN	GP GP GP SW	2N2194 2N2221 2N2221	$\begin{aligned} & 400 \\ & 400 \\ & 400 \\ & 600 \end{aligned}$	$\begin{aligned} & 60 \\ & 45 \\ & 45 \\ & 25 \end{aligned}$	$\begin{array}{r} 40 \\ 25 \\ 25 \\ 7 \end{array}$	$\begin{aligned} & 20-60 \\ & 20- \\ & 20- \end{aligned}$	$\begin{aligned} & 150 \\ & 150 \\ & 150 \end{aligned}$.25 .35 .25	$\begin{aligned} & 150 \\ & 150 \\ & 150 \end{aligned}$		250 250 250 50
$\begin{aligned} & \text { 2N2356A } \\ & \text { 2N2364 } \\ & \text { 2N2364A } \\ & \text { 2N2368 } \end{aligned}$	NPN NPN NPN NPN	$\begin{aligned} & s w \\ & s w \\ & s w \\ & s w \end{aligned}$		$\begin{aligned} & 600 \\ & 400 \\ & 400 \\ & 360 \end{aligned}$	$\begin{array}{r} 25 \\ 120 \\ 120 \\ 40 \end{array}$	$\begin{array}{r} 7 \\ 80 \\ 80 \end{array}$	$\begin{aligned} & 40-120 \\ & 40-120 \\ & 20-60 \end{aligned}$	$\begin{array}{r} 150 \\ 150 \\ 10 \end{array}$.35 .25 .25	$\begin{array}{r} 150 \\ 150 \\ 10 \end{array}$		50 50 50 400
$\begin{aligned} & \text { 2N2369 } \\ & \text { 2N2369A } \\ & \text { 2N2370 } \\ & \text { 2N2371 } \end{aligned}$	NPN NPN PNP PNP	SW SW GP GP		$\begin{aligned} & 390 \\ & 360 \\ & 200 \\ & 200 \end{aligned}$	$\begin{aligned} & 40 \\ & 40 \\ & 15 \\ & 15 \end{aligned}$	$\begin{aligned} & 15 \\ & 15 \end{aligned}$	$\begin{aligned} & 40-120 \\ & 40-120 \\ & 15 . \\ & 20 . \end{aligned}$	$\begin{array}{r} 10 \\ 10 \\ 250 \\ 250 \end{array}$.25 .35	10 10	15 20	500 500
$\begin{aligned} & \text { 2N2372 } \\ & \text { 2N2373 } \\ & \text { 2N2377 } \\ & \text { 2N2378 } \end{aligned}$	PNP PNP PNP PNP	GP GP SW SW	$\begin{aligned} & \text { 2N3798 } \\ & \text { 2N3798 } \end{aligned}$	$\begin{aligned} & 150 \\ & 150 \\ & 150 \\ & 150 \end{aligned}$	15 15 25 10	15 15 25 10	$15-$ 20. 10.100 15.	$\begin{array}{r} 25 U \\ 25 U \\ 5 \\ 15 \end{array}$			15 20 15	8 7.2
$\begin{aligned} & \text { 2N2380 } \\ & \text { 2N2380A } \\ & \text { 2N2386 } \\ & \text { 2N2386A } \end{aligned}$	NPN NPN PCH PCH	GP GP FE FE	$\begin{aligned} & \text { 2N2193 } \\ & \text { 2N2193 } \\ & \text { 2N2386 } \\ & \text { 2N2386A } \end{aligned}$	$\begin{aligned} & 600 \\ & 600 \\ & \text { SEE FET } \\ & \text { SEE FET } \end{aligned}$	$\begin{array}{r} 80 \\ 80 \\ \text { INTERCH } \\ \text { INTERCH } \end{array}$	$\begin{array}{r} 40 \\ 40 \\ \text { IANGEABM } \\ \text { HNGEABM } \end{array}$	$\begin{array}{\|l} 20-120 \\ 20-120 \\ \text { LITY LIST } \\ \text { LITY LIST } \end{array}$	$\begin{aligned} & 150 \\ & 150 \end{aligned}$	$\begin{aligned} & 1.3 \\ & 1.3 \end{aligned}$	$\begin{aligned} & 150 \\ & 150 \end{aligned}$		100 100
$\begin{aligned} & \text { 2N2387 } \\ & \text { 2N2388 } \\ & \text { 2N2389 } \\ & \text { 2N2390 } \end{aligned}$	NPN NPN NPN NPN	GP GP GP GP	$\begin{aligned} & \text { 2N2387 } \\ & \text { 2N2388 } \\ & \text { 2N2389 } \\ & \text { 2N2390 } \end{aligned}$	$\begin{aligned} & 300 \\ & 300 \\ & 450 \\ & 450 \end{aligned}$	$\begin{aligned} & 45 \\ & 45 \\ & 75 \\ & 75 \end{aligned}$	$\begin{aligned} & 45 \\ & 45 \end{aligned}$	$\begin{array}{r} 40-120 \\ 100-300 \\ 40.120 \\ 100-300 \end{array}$	$\begin{aligned} & .01 \\ & .01 \\ & 150 \\ & 150 \end{aligned}$	$\begin{array}{r} 1 \\ 1 \\ 1.5 \\ 1.5 \end{array}$	$\begin{array}{r} 10 \\ 10 \\ 150 \\ 150 \end{array}$	60 150 30 50	 0 30 00 00 70

TRANSISTOR INTERCHANGEABILITY MASTER LIST OF REGISTERED TYPES

MYM	8			Maximum ratives			Escmical Chanactursice					
							hri		$\mathrm{V}_{\text {cli(men) }}$		$\begin{gathered} h_{6} \\ 1 \text { kets } \\ \text { MN } \end{gathered}$	
								$\begin{gathered} \hline \mathbf{I C} \\ (m A) \\ \hline \end{gathered}$	$\begin{aligned} & \max \\ & (\mathrm{V}) \\ & \hline \end{aligned}$	$\begin{array}{ll} 1 \\ \text { It } \\ (\mathrm{mA}) \end{array}$		
$\left\lvert\, \begin{aligned} & \text { 2N2391 } \\ & \text { 2N2392 } \\ & \text { 2N2393 } \\ & \text { 2N2394 } \end{aligned}\right.$	$\begin{aligned} & \text { PNP } \\ & \text { NP } \\ & \text { NNP } \\ & \text { PNP } \end{aligned}$	$\begin{aligned} & G P \\ & G P \\ & G P \\ & G P \\ & G P \end{aligned}$	$\begin{aligned} & \text { 2N2393 } \\ & \text { 2N2394 } \end{aligned}$	300 300 450 450	25 25 50 50	$\begin{aligned} & 20 \\ & 20 \\ & 35 \\ & 35 \end{aligned}$	15-45 $30-90$ 20-45 30-90	$\begin{array}{r} 10 \\ 10 \\ 150 \\ 150 \end{array}$	$\begin{array}{r} .6 \\ .6 \\ 1.5 \\ 1.5 \end{array}$	$\begin{array}{r} 10 \\ 10 \\ 150 \\ 150 \end{array}$	$\begin{aligned} & 15 \\ & 90 \\ & 15 \\ & 25 \end{aligned}$	140 140 50 60
$\begin{aligned} & \text { 2N2395 } \\ & \text { 2N2396 } \\ & \text { 2N2397 } \\ & \text { 2N2403 } \end{aligned}$	$\begin{aligned} & \text { NPN } \\ & \text { NPN } \\ & \text { NFN } \\ & \text { NFN } \end{aligned}$	GP GP SW SW	$\begin{aligned} & \text { 2N239s } \\ & \text { 2N2396 } \end{aligned}$	450 450 300 $1 W$	60 60 35 60	$\begin{aligned} & 40 \\ & 40 \\ & 15 \\ & 60 \end{aligned}$	$\begin{aligned} & 20-60 \\ & 40.120 \\ & 25-120 \\ & 20-60 \end{aligned}$	150 150 10 600	1 1 .3 1.5	150 150 10 600		40 50 200 147
$\begin{aligned} & \text { 2N2404 } \\ & \text { 2N2405 } \\ & \text { 2N2410 } \\ & \text { 2N2411 } \end{aligned}$	$\begin{aligned} & \text { NPN } \\ & \text { N N } \\ & \text { NPN } \\ & \text { PNP } \end{aligned}$	$\begin{aligned} & \text { SW } \\ & \text { GP } \\ & \text { SW } \\ & \text { SW } \end{aligned}$	$\begin{aligned} & \text { 2N1893 } \\ & \text { 2N2410 } \end{aligned}$	$\begin{aligned} & 1 w \\ & .5 w \\ & 800 \\ & 300 \end{aligned}$	60 120 60 25	$\begin{aligned} & 60 \\ & 90 \\ & 30 \\ & 20 \end{aligned}$	40-120 40-200 30-120 20-60	$\begin{array}{r} 600 \\ 150 \\ 10 \\ 10 \end{array}$	$\begin{array}{r} 1.5 \\ .5 \\ .2 \end{array}$	600 150 10	50	147 200 140
2N2412 2N2413 2N2414 2N2417	$\begin{aligned} & \text { PNP } \\ & \text { NPN } \\ & \text { NPN } \\ & \text { P-N } \end{aligned}$	$\begin{aligned} & \text { sw } \\ & \text { Gp } \\ & \text { Du } \\ & u J \end{aligned}$	2N2221 2N2060 2N489	$\begin{gathered} 300 \\ 300 \\ 500 \\ \text { sEE UNI. } \end{gathered}$	$\begin{gathered} 25 \\ 40 \\ 60 \\ \text { IUNCTION } \end{gathered}$	$\begin{aligned} & 20 \\ & 18 \end{aligned}$	$\begin{aligned} & 40.120 \\ & 30.120 \\ & 50-250 \end{aligned}$ ANGEABITT	$\begin{aligned} & 10 \\ & 10 \\ & 10 \end{aligned}$	$\begin{array}{r}.2 \\ .4 \\ \hline 1.2\end{array}$	$\begin{aligned} & 10 \\ & 10 \\ & 50 \end{aligned}$	50	140 300 50
2N2417A 2N2417B 2N2418 2N2418A	$\begin{aligned} & P \cdot N \\ & P \cdot N \\ & P \cdot N \\ & P \cdot N \end{aligned}$	$\left\lvert\, \begin{aligned} & u J \\ & u J \\ & u J \\ & u J \\ & u J \end{aligned}\right.$		SEE UNUUNCTION INTERCHANGEABHITY LIST SEE UNUUNCTION INTERCHANGEABLTTY LIST SEE UNIUUNCTION INTERCHANGEABLITY UST SEE UNIUUNCTION INTERCHANGEABLITY LST								
2N2418B 2N2419 2N2419A 2N2A198	$\begin{aligned} & P-N \\ & P-N \\ & P-N \\ & P-N \end{aligned}$	$\begin{array}{\|l\|} \hline u J \\ u J \\ u J \\ u J \\ u J \end{array}$	2N4908 2N491 2N491A 2N491B	SEE UNIJUNCTION INTERCHANGEAELITY LIST SEE UNIJUNCTION INTERCHANGEABLITY LIST SEE UNIUUNCTION INTERCHANGEABHITY LIST SEE UNIJUNCTION INTERCHANGEABLLTY UST								
	$\begin{aligned} & P \cdot N \\ & P \cdot N \\ & P \cdot N \\ & P-N \\ & \hline \end{aligned}$	$\begin{aligned} & u \\ & u \\ & u \\ & u \\ & u J \\ & u J \\ & u J \end{aligned}$	$\begin{aligned} & \text { 2N492 } \\ & \text { 2N492A } \\ & \text { 2N4923 } \\ & \text { 2N493 } \end{aligned}$	SEE UNLUNCTION INTERCHANGEABILTY LIST SEE UNIUUNCTION INTERCHANGEABLLTY LIST SEE UNIJUNCTION INTERCHANGEAEHLTY LIST SEE UNIUUNCTION INTERCHANGEABLITY UST								
	$\begin{aligned} & \text { P-N } \\ & P-N \\ & P-N \\ & P N P N \end{aligned}$	$\begin{aligned} & \text { us } \\ & \text { uJ } \\ & \text { us } \\ & \text { sw } \end{aligned}$	$\begin{aligned} & \text { 2N493A } \\ & \text { 2N493B } \end{aligned}$	SEE UNUUNCTION INTERCHANGEABHLTY UST SEE UNIJUNCTION NTTERCHANGEABLLTY LUST SEE UNIUUNCTION INTERCHANGEABLUTY LIST					. 3	15		
$\begin{aligned} & \text { 2N2425 } \\ & \text { 2N2427 } \\ & \text { 2N2432 } \\ & \text { 2N2432A } \end{aligned}$	PNP NPN NPN NPN	$\begin{aligned} & s w \\ & s w \\ & s w \\ & s w \end{aligned}$	$\begin{array}{\|l} \text { 2N2432 } \\ \text { 2N2432A } \end{array}$	$\begin{aligned} & 375 \\ & 500 \\ & 300 \\ & 300 \end{aligned}$	50 40 30 45	$\begin{aligned} & 10 \\ & 40 \\ & 30 \\ & 45 \end{aligned}$	$25-110$ $20-60$ 50 $50-$	5 .01 1 1	$\begin{array}{r} .3 \\ .15 \\ .15 \end{array}$	$\begin{aligned} & 15 \\ & 10 \\ & 10 \end{aligned}$	40	50 20 20
2N2433 2N2434 2N2435	NPN NPN NPN NPN	$\begin{aligned} & s w \\ & s w \\ & s w \\ & s w \end{aligned}$		$\begin{aligned} & 500 \\ & 500 \\ & 500 \\ & 500 \end{aligned}$	$\begin{array}{r} 75 \\ 75 \\ 720 \\ 120 \end{array}$	$\begin{aligned} & 45 \\ & 45 \\ & 80 \\ & 80 \end{aligned}$	$\begin{array}{r} 40-120 \\ 100-300 \\ 40-120 \\ 100-300 \end{array}$	$\begin{aligned} & 150 \\ & 150 \\ & 150 \\ & 150 \end{aligned}$	$\begin{array}{r} 1.5 \\ 1.5 \\ 3 \\ 3 \end{array}$	$\begin{aligned} & 150 \\ & 150 \\ & 150 \\ & 150 \end{aligned}$	30 50 30 50	80 90 80 90

TRANSISTOR INTERCHANGEABILITY MASTER LIST OF REGISTERED TYPES

TYFE NUMEER	$\frac{3}{8}$	$\begin{aligned} & \frac{8}{8} \\ & \frac{8}{3} \\ & \frac{8}{8} \\ & 8 \end{aligned}$	7 REPLACEMENT OR NEAREST ECUIVALENT	MAXIMUM RATMES			ELCMRKAL CHARACTERSTICS					
				$\begin{gathered} \mathrm{PT}_{\mathrm{T}} \\ \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ { }^{\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}} \\ (\mathrm{~mW}) \\ \hline \end{gathered}$	$V_{C B O}$ (V)	Vceo (V)	\square	$\begin{gathered} \hline \mathrm{lc} \\ (\mathrm{~mA}) \\ \hline \end{gathered}$	VCE! MAX (V)	$\begin{gathered} (\operatorname{set}) \\ \hline L C \\ (\mathrm{~mA}) \\ \hline \end{gathered}$		$\begin{gathered} \mathrm{T} \\ \mathrm{MmN} \\ (\mathrm{MHz}) \\ \hline \end{gathered}$
$\begin{aligned} & \text { 2N2437 } \\ & \text { 2N2438 } \\ & \text { 2N2439 } \\ & \text { 2N2440 } \end{aligned}$	NPN NPN NPN NPN	$\begin{aligned} & s w \\ & s w \\ & s w \\ & G P \end{aligned}$	2N2102	$\begin{aligned} & 500 \\ & 500 \\ & 500 \\ & 300 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \\ & 100 \\ & 120 \end{aligned}$	$\begin{aligned} & 75 \\ & 75 \\ & 75 \\ & 80 \end{aligned}$	$\begin{gathered} 15- \\ 35- \\ 75- \\ 100-300 \end{gathered}$	$\begin{array}{r} 10 \\ 10 \\ 10 \\ 150 \end{array}$.2 .4 .4 .4	$\begin{aligned} & 10 \\ & 50 \\ & 50 \\ & 50 \end{aligned}$	$\begin{aligned} & 18 \\ & 36 \\ & 76 \\ & 50 \end{aligned}$	70 80 90 90
$\left\lvert\, \begin{aligned} & \text { 2N2443 } \\ & \text { 2N2452 } \\ & \text { 2N2453 } \\ & \text { 2N2453A } \end{aligned}\right.$	$\begin{aligned} & \text { NPN } \\ & \text { NPN } \\ & \text { NPN } \\ & \text { NPN } \end{aligned}$	GP GP DU DU	$\begin{aligned} & \text { 2N2102 } \\ & \text { 2N2453 } \\ & \text { 2N2453 } \end{aligned}$	$\begin{aligned} & 800 \\ & 500 \\ & 500 \\ & 500 \end{aligned}$	$\begin{array}{r} 120 \\ 100 \\ 60 \\ 80 \end{array}$	100 30 50	$\begin{array}{r} 50-150 \\ 150-600 \\ 150-600 \end{array}$	$\begin{gathered} 50 \\ 1 \\ 1 \end{gathered}$	1.2 1	$\begin{gathered} 50 \\ 5 \\ 5 \end{gathered}$	$\begin{array}{r} 45 \\ 150 \\ 150 \end{array}$	$\begin{aligned} & 50 \\ & 60 \\ & 60 \end{aligned}$
$\begin{aligned} & \text { 2N2459 } \\ & \text { 2N2460 } \\ & \text { 2N2461 } \\ & \text { 2N2462 } \end{aligned}$	$\begin{aligned} & \text { NPN } \\ & \text { NPN } \\ & \text { NPN } \\ & \text { NPN } \end{aligned}$	GP GP GP GP		$\begin{aligned} & 400 \\ & 400 \\ & 400 \\ & 400 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \\ & 100 \\ & 100 \end{aligned}$	60 60 60 60	$\begin{aligned} & 10- \\ & 20- \\ & 40- \\ & 60- \end{aligned}$	$\begin{aligned} & .1 \\ & .1 \\ & .1 \\ & .1 \end{aligned}$	$\begin{aligned} & .3 \\ & .3 \\ & .3 \\ & .3 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$	$\begin{array}{r} 40 \\ 70 \\ 115 \\ 160 \end{array}$	$\begin{aligned} & 100 \\ & 120 \\ & 140 \\ & 160 \end{aligned}$
$\begin{aligned} & \text { 2N2463 } \\ & \text { 2N2464 } \\ & \text { 2N2465 } \\ & \text { 2N2466 } \end{aligned}$	NPN NPN NPN NPN	GP GP GP GP		$\begin{aligned} & 500 \\ & 500 \\ & 500 \\ & 500 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \\ & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 60 \\ & 60 \\ & 60 \\ & 60 \end{aligned}$	$\begin{aligned} & 10- \\ & 20- \\ & 40- \\ & 60- \end{aligned}$	$\begin{aligned} & .1 \\ & .1 \\ & .1 \\ & .1 \end{aligned}$	$\begin{aligned} & .3 \\ & .3 \\ & .3 \\ & .3 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$	$\begin{array}{r} 40 \\ 70 \\ 115 \\ 160 \end{array}$	$\begin{aligned} & 100 \\ & 120 \\ & 140 \\ & 160 \end{aligned}$
$\begin{aligned} & \text { 2N2475 } \\ & \text { 2N2476 } \\ & \text { 2N2477 } \\ & \text { 2N2478 } \end{aligned}$	NPN NPN NPN NPN	$\begin{aligned} & s W \\ & S W \\ & S W \\ & G P \end{aligned}$	2N2218	$\begin{gathered} 300 \\ +2 W \\ \cdot 2 W \\ 600 \end{gathered}$	$\begin{array}{r} 15 \\ 60 \\ 60 \\ 120 \end{array}$	$\begin{array}{r} 6 \\ 20 \\ 20 \\ 40 \end{array}$	$\begin{aligned} & 20- \\ & 20- \\ & 40- \\ & 30- \end{aligned}$	$\begin{array}{r} 50 \\ 150 \\ 150 \\ 150 \end{array}$.4 .4 .	150 150 150		600 250 250 200
$\begin{aligned} & \text { 2N2479 } \\ & \text { 2N2480 } \\ & \text { 2N2480A } \\ & \text { 2N2481 } \end{aligned}$	NPN NPN NPN NPN	GP DU DU SW	2N2218 2N2060 2N2060	$\begin{aligned} & 600 \\ & 300 \\ & 300 \\ & 400 \end{aligned}$	$\begin{aligned} & 80 \\ & 75 \\ & 80 \\ & 40 \end{aligned}$	$\begin{aligned} & 40 \\ & 40 \\ & 40 \\ & 15 \end{aligned}$	$\begin{aligned} & 30-120 \\ & 30-350 \\ & 50-200 \\ & 40-120 \end{aligned}$	$\begin{array}{r} 150 \\ 1 \\ 1 \\ 10 \end{array}$.85 1.3 1.2 .25	150 50 50 10	$\begin{aligned} & 60 \\ & 50 \end{aligned}$	150 50 50 300
$\begin{aligned} & \text { 2N2483 } \\ & \text { 2N2484 } \\ & \text { 2N2484A } \\ & \text { 2N2497 } \end{aligned}$	NPN NPN NPN PCH	GP GP GP FE	$\begin{aligned} & \text { 2N2483 } \\ & \text { 2N2484 } \\ & \text { 2N2484 } \\ & \text { 2N2497 } \end{aligned}$	$\begin{gathered} 360 \\ 360 \\ 360 \\ \text { SEE FET } \end{gathered}$	$\begin{array}{r} 60 \\ 60 \\ 60 \\ \text { WTERCH } \end{array}$	$\begin{array}{r} 60 \\ 60 \\ 60 \end{array}$	$\begin{array}{r} 40-120 \\ 100-500 \\ 100-500 \end{array}$ ITY LST	$\begin{aligned} & .01 \\ & .01 \\ & .01 \end{aligned}$.35 .35 .35	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	80 150 150	12 15 60
$\begin{aligned} & \text { 2N2498 } \\ & \text { 2N2499 } \\ & \text { 2N2500 } \\ & \text { 2N2501 } \end{aligned}$	PCH PCH PCH NPN	FE FE FE SW	$\begin{aligned} & \text { 2N2498 } \\ & \text { 2N2499 } \\ & \text { 2N2500 } \\ & \text { 2N2537 } \end{aligned}$	SEE FET SEE FET SEE FET 360	INTERCH INTERC INTERCH 40	ANGEABIL ANGEABH ANGEABIL 20	ITY LIST ITY LIST ITY LIST $50-150$	10				350
$\begin{aligned} & \text { 2N2509 } \\ & \text { 2N2510 } \\ & \text { 2N2511 } \\ & \text { 2N2514 } \end{aligned}$	NPN NPN NPN NPN	GP GP GP GP	2N3117	$\begin{aligned} & 400 \\ & 400 \\ & 400 \\ & 400 \end{aligned}$	$\begin{array}{r} 125 \\ 100 \\ 80 \\ 80 \end{array}$	80 65 50 60	$\begin{gathered} 25- \\ 150-500 \\ 240-750 \\ 15-50 \end{gathered}$.01 10 10 5	1 1 1 .5	$\begin{array}{r} 5 \\ 5 \\ 5 \\ 10 \end{array}$	20	(45
$\begin{aligned} & \text { 2N2515 } \\ & \text { 2N2516 } \\ & \text { 2N2517 } \\ & \text { 2N2518 } \end{aligned}$	NPN NPN NPN NPN	GP GP GP GP		$\begin{array}{r} 400 \\ 400 \\ 400 \\ 400 \end{array}$	$\begin{array}{r} 80 \\ 80 \\ 125 \\ 125 \end{array}$	60 60 80 80	$\begin{aligned} & 30-100 \\ & 60-200 \\ & 15-50 \\ & 30-100 \end{aligned}$	5 5 5 5	.5 .5 .5 .5	10 10 10 10	40 60 20 40	60 100 0 30

TRANSISTOR INTERCHANGEABILITY MASTER LIST OF REGISTERED TYPES

TYPE NUMBER	$\frac{2}{8}$$\frac{8}{8}$$\frac{8}{8}$	Z8$\frac{8}{8}$$\frac{1}{2}$8	$\begin{gathered} \text { n } \\ \text { REMLACEMENT } \\ \text { OR NEAREST } \\ \text { ECUYALENT } \end{gathered}$	MAXIMUM RATENES			EECTRICAL CHARACTERISTICS					
				$\begin{gathered} P_{T} \\ T_{A}=25^{\circ} \mathrm{C} \\ { }^{\circ} \mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C} \\ (\mathrm{~mW}) \end{gathered}$	VCBO (V)	Vceo (V)	hfe		$\mathbf{V C E}_{\text {(sed) }}$		$\begin{gathered} \mathrm{h}_{\mathrm{fe}} \\ 1 \mathrm{kdtz} \\ \text { MEN } \end{gathered}$	$\begin{gathered} \mathbf{f}_{\mathrm{T}} \\ \mathrm{MH} \\ \hline \mathrm{MHz} \end{gathered}$
							$\text { MIN MAX } \begin{gathered} \mathrm{IC} \\ (\mathrm{~mA}) \\ \hline \end{gathered}$		$\begin{array}{\|lr\|} \hline M A X & \mathbf{C} \\ (V) & (\mathrm{mA}) \\ \hline \end{array}$			
2N2519 2N2520	NPN	GP		400		80	60-200	5	. 5	10	80183676	100
2N2520	NPN	GP		400	60	60	12.	1	. 5	10		
$\begin{array}{\|l\|l\|} \text { 2N2521 } \\ \text { 2N2522 } \end{array}$	NPN	GP		400	60	60	25-	1	. 5	10		
		GP		400	60	60	50.	1	. 5	10		
2N2523	NPN	GP	$\begin{aligned} & \text { 2N929 } \\ & \text { 2N930 } \end{aligned}$	400	60	45	40-120	. 01	. 5	10	60	45
2N2524	NPN	GP		400	60	45	100-300	. 01	. 5	10	150	
2N2529	NPN	GP		150	45	40	10-20	1	2	10	12	
2N2530	NPN	GP		150	45	40	12-35	1	2	10	18	
2N2531	NPN	GP		150	45	40	20-80	1	2	10	36	
2N2532	NPN	GP		150	45	40	45.185	1	2	10	76	
2N2533	NPN	GP		150	45	40	20-55	10	1.5	10	19	
2N2534	NPN	GP		150	45	40	45-150	10	1.5	10	39	
2N2537	NPN	SW	2N2537	800	60	30	50-150	150	. 45	150		250
2N2538	NPN	SW	2N2538	800	60	30	100.300	150		150		250
2N2539	NPN	sw	2N2539	500	60	30	50.150	150	. 45	150		250
2N2540	NPN	SW	2N2540	500	60	30	100-300	150	. 45	150		250
2N2551	PNP	GP				150	15-45	100	1.2	100		
2N2569	NPN	SW		300	20	5	50.	. 1				100
2N2570	NPN	SW		300	20	5	50	. 1				100
2N2571	NPN	SW		300	20	15	50.	100				100
2N2572	NPN	SW	2N2586	300	20	15	$\begin{aligned} & 50- \\ & 120-360 \\ & 10- \\ & 20- \end{aligned}$	$\begin{array}{r} 100 \\ .01 \\ .1 \\ .1 \end{array}$.5.4.4		1504070	5070
2N2586	NPN	GP		300	60	45				10		
2N2590	PNP	GP		400	100	60				10		
2N2591	PNP	GP		400	100	60				10		
2N2592 2N2593			$\begin{aligned} & \text { 2N3036 } \\ & \text { 2N3496 } \end{aligned}$	400	100	60	$\begin{aligned} & 40- \\ & 60- \\ & 50-150 \\ & 15-60 \end{aligned}$	$\begin{array}{r} .1 \\ .1 \\ 100 \\ 5 \end{array}$.4.41.5	10	$\begin{array}{r} 115 \\ 160 \\ 15 \\ 20 \end{array}$	901104030
2N2593 2N2594	PNP	GP		400	100	60				10		
2N2594	NPN	GP		${ }^{\circ} 5 \mathrm{~W}$	80					200		
2N2595	PNP	GP		400	80	60				10		
$\begin{aligned} & \text { 2N2596 } \\ & \text { 2N2597 } \\ & \text { 2N2598 } \\ & \text { 2N2599 } \end{aligned}$	PNP PNP PNP PNP	$\begin{aligned} & \text { GP } \\ & \text { GP } \\ & \text { GP } \\ & \text { GP } \end{aligned}$	2N3496 2N3496 2N3497 2N3497	400	80	60	$\begin{aligned} & 30-120 \\ & 60-240 \\ & 15-60 \\ & 30-120 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$.5.5.5.5	10	40802040	40603040
				400	80	60				10		
				400	125	80				10		
				400	125	80				10		
$\begin{aligned} & \text { 2N2599A } \\ & \text { 2N2600 } \\ & \text { 2N2600A } \\ & \text { 2N2601 } \end{aligned}$	$\begin{array}{\|l\|} \text { PNP } \\ \text { PNP } \\ \text { PNP } \\ \text { PNP } \end{array}$	$\begin{aligned} & G P \\ & G P \\ & G P \\ & G P \end{aligned}$	2N3497 2N3497 2N3497 2N3798	400	125	100	$\begin{aligned} & 30-120 \\ & 60-240 \\ & 60-240 \\ & 12- \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 1 \end{aligned}$	$\begin{aligned} & .5 \\ & .5 \\ & .5 \\ & .5 \end{aligned}$	10	40808018	40606020
				400	125	80				10		
				400	125	100				10		
				400	60	60				10		
$\begin{aligned} & \text { 2N2602 } \\ & \text { 2N2603 } \\ & \text { 2N2604 } \\ & \text { 2N2605 } \end{aligned}$	PNP PNP PNP PNP	GP GP GP GP	2N3798 2N3799 2N2604 2N2605	400	60	60	$\begin{array}{r} 25- \\ 50- \\ 40 \\ 100 \end{array}$	1		10	36	
				400	60	60		1	. 5	10	76	60
				400	60	45		. 01	. 5	10	60	30
				400	60	45		. 01	. 5	10	150	30

TRANSISTOR INTERCHANGEABILITY MASTER LIST OF REGISTERED TYPES

TYPE NUMEE	$\begin{aligned} & E \\ & \frac{2}{8} \\ & \frac{8}{8} \end{aligned}$	$\begin{aligned} & \frac{z}{0} \\ & \frac{2}{3} \\ & \frac{3}{6} \\ & 3 \end{aligned}$	$\begin{aligned} & \text { II } \\ & \text { REPLACEMENT } \\ & \text { OR NBAREST } \\ & \text { EOUVALENT } \end{aligned}$	maximum ratavas			ELECRICAL CHARACIEMSTICS					
				$\begin{gathered} \mathrm{T}_{A}=25^{\circ} \mathrm{C} \\ { }^{{ }^{\circ} \mathrm{T}} \mathrm{C}=25^{\circ} \mathrm{C} \\ (\mathrm{~mW}) \\ \hline \end{gathered}$	VeBo (V)	Vceo (V)	MN MAX	$\begin{gathered} c \\ \hline(\mathrm{~mA}) \end{gathered}$		Ic (ma)	$\begin{gathered} \mathrm{hfo}_{\mathrm{o}} \\ 1 \mathrm{kHtz} \\ \text { MNN } \end{gathered}$	
$\begin{aligned} & \text { 2N2605A } \\ & \text { 2N2606 } \\ & \text { 2N2607 } \\ & \text { 2N2608 } \end{aligned}$	$\begin{aligned} & \text { PNP } \\ & \text { PCH } \\ & \text { PCH } \\ & P C H \end{aligned}$	$\begin{aligned} & \text { GP } \\ & \text { FE } \\ & \text { FE } \\ & \text { FE } \end{aligned}$	2N3799 2N2608	SEE FET MTERCHANGEABLLITY UST SEE FET INTERCHANGEABILITY LIST SEE FET INTERCHANGEABHLITY LIST					. 25	10	200	45
$\begin{aligned} & \text { 2N2609 } \\ & \text { 2N2610 } \\ & \text { 2N2615 } \\ & \text { 2N2616 } \end{aligned}$	$\begin{aligned} & \text { PCH } \\ & \text { NPN } \\ & \text { NPN } \\ & \text { NPN } \end{aligned}$	$\begin{aligned} & F E \\ & G P \\ & R F \\ & R F \end{aligned}$	$\begin{aligned} & \text { 2N2609 } \\ & \text { 2N918 } \\ & \text { 2N918 } \end{aligned}$	$\begin{aligned} & \text { SEE FET II } \\ & 150 \\ & 300 \\ & 300 \end{aligned}$	NTERCH 45 30 30	$\begin{gathered} \text { NGEABIL } \\ 40 \\ 15 \\ 15 \end{gathered}$	$\begin{aligned} & \text { IY LIST } \\ & 20-200 \\ & 20-200 \end{aligned}$	3 3	1 .5 .4	5 3 10	9	500 600
$\begin{aligned} & \text { 2N2617 } \\ & \text { 2N2618 } \\ & \text { 2N2631 } \\ & \text { 2N2639 } \end{aligned}$	$\begin{aligned} & \text { PNP } \\ & \text { NPN } \\ & \text { NPN } \\ & \text { NPN } \end{aligned}$	GP GP GP DU	$\begin{aligned} & \text { 2N2219 } \\ & \text { 2N2639 } \end{aligned}$	250 600 $.8 W$ 300	25 60 45	40 80 45	$\begin{aligned} & 15-80 \\ & 25- \\ & 8- \\ & 50-300 \end{aligned}$	20 10 200 .01	1	10	$\begin{aligned} & 25 \\ & 30 \\ & 65 \end{aligned}$	$\begin{array}{r} 200 \\ 35 \end{array}$
$\begin{aligned} & \text { 2N2640 } \\ & \text { 2N2641 } \\ & \text { 2N2642 } \\ & \text { 2N2643 } \end{aligned}$	NPN NPN NPN NPN	DU DU DU DU	$\begin{aligned} & \text { 2N2640 } \\ & \text { 2N2641 } \\ & \text { 2N2642 } \\ & \text { 2N2643 } \end{aligned}$	$\begin{aligned} & 300 \\ & 300 \\ & 300 \\ & 300 \end{aligned}$	45 45 45 45	45 45 45 45	$\begin{array}{r} 50-300 \\ 50-300 \\ 100-300 \\ 100-300 \end{array}$.01 .01 .01 .01	1 1 1 1	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$	65 65 130 130	35 35 35 35
$\begin{aligned} & \text { 2N2644 } \\ & \text { 2N2645 } \\ & \text { 2N2646 } \\ & \text { 2N2647 } \end{aligned}$	NPN NPN P-N P-N	$\begin{aligned} & \text { DU } \\ & \text { GP } \\ & \text { UJ } \\ & \text { UJ } \end{aligned}$	$\begin{aligned} & \text { 2N2644 } \\ & \text { 2N2222A } \\ & \text { 2N2646 } \\ & \text { 2N2647 } \end{aligned}$	SEE UNIJUNCTION INTERCHANGEABILTY LIST SEE UNLUUNCTION INTERCHANGEABILTY LIST					1 .4	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	130 75	35 50
$\begin{aligned} & \text { 2N2651 } \\ & \text { 2N2652 } \\ & \text { 2N2652A } \\ & \text { 2N2656 } \end{aligned}$	NPN NPN NPN NPN	SW DU DU GP	$\begin{aligned} & \text { 2N2223A } \\ & \text { 2N2223A } \\ & \text { 2N2222 } \end{aligned}$	360 300 300 360	40 100 100 25	20 60 60 15	$\begin{aligned} & 25- \\ & 50-200 \\ & 50-200 \\ & 40-160 \end{aligned}$	10 1 1 .1	.25 1.2 1.2 .5	10 50 50 10	50 50	350 60 60 250
2N2673 2N2674 2N2675 2N2676	NPN NPN NPN NPN	GP GP GP GP	2N2222A	$\begin{aligned} & 250 \\ & 250 \\ & 250 \\ & 250 \end{aligned}$	60 60 60 60	$\begin{aligned} & 45 \\ & 45 \\ & 45 \\ & 45 \end{aligned}$	$\begin{aligned} & 8-22 \\ & 12-40 \\ & 22-76 \\ & 45-290 \end{aligned}$	1 1 1 1	1.5 1.5 1.5 1.5	$\begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$	9 18 37 76	
$\begin{aligned} & \text { 2N2677 } \\ & \text { 2N2678 } \\ & \text { 2N2692 } \\ & \text { 2N2693 } \end{aligned}$	NPN NPM NPN NPN	$\begin{aligned} & \text { GP } \\ & \text { GP } \\ & \text { GP } \\ & \text { GP } \end{aligned}$	$\begin{aligned} & \text { 2N2220 } \\ & \text { 2N2221 } \\ & \text { 2N2483 } \\ & \text { 2N2483 } \end{aligned}$	250 250 300 300	45 45 45 45	35 35 30 30	$20-55$ $45-150$ $90-360$ 40	1 1 .1 .01	1.5 1.5 .12 .12	5 5 .1 .1	19 39	42
$\begin{aligned} & \text { 2N2694 } \\ & \text { 2N2695 } \\ & \text { 2N2708 } \\ & \text { 2N2709 } \end{aligned}$	NPN PNP NPN PNP	GP GP RF GP	$\begin{aligned} & \text { 2N929 } \\ & \text { 2N3485 } \\ & \text { 2N918 } \end{aligned}$	300 360 200 240	45 25 35 50	20 25 20 35	20 $30-130$ $30-200$ $10-22$.01 50 2 .2	.12 .25 .4	$\begin{array}{r} .1 \\ 50 \end{array}$	25 30	42 100
$\begin{aligned} & \text { 2N2710 } \\ & \text { 2N2711 } \\ & \text { 2N2712 } \\ & \text { 2N2713 } \end{aligned}$	NPN NPN NPN NPN	SW RF RF GP	2N3705	360 200 200 360	40 18 18 18	20 18 18 18	$40-$ $30-90$ $75-225$ $30-90$	10 2 2 2	$.25$ $.3$	10 50		500

TRANSISTOR INTERCHANGEABILITY
 MASTER LIST OF REGISTERED TYPES

TRANSISTOR INTERCHANGEABILITY
 MASTER LIST OF REGISTERED TYPES

TYPE NUMBER	$\frac{\xi}{2}$ $\frac{8}{8}$	$\begin{aligned} & \frac{Z}{6} \\ & \frac{1}{6} \\ & \frac{3}{2} \\ & \frac{12}{S} \\ & \frac{5}{3} \end{aligned}$		MAXIMUM RATMVGS			EECTRICAL CHARACTERISTICS					
				$\begin{gathered} \mathrm{T}_{A}=25^{\circ} \mathrm{C} \\ { }^{{ }^{\mathrm{T}} \mathrm{C}=25^{\circ} \mathrm{C}} \\ (\mathrm{~mW}) \end{gathered}$	Veso (V)	VeEO (V)	HfE	$\begin{gathered} \text { Ic } \\ (\mathrm{mA}) \\ \hline \end{gathered}$	Vce MAX (V)	$\begin{array}{cc} \text { (sat) } \\ \hline \mathbf{I C} \\ (\mathrm{mA}) \\ \hline \end{array}$	$\begin{gathered} h_{f e} \\ 1 \mathrm{kHz} \\ \mathrm{MWN} \end{gathered}$	
2N2845 2N2846 2N2847 2N2048	NPN NPN NPN NPN	$\left\lvert\, \begin{aligned} & s w \\ & s w \\ & s w \\ & s w \end{aligned}\right.$	$\begin{aligned} & \text { 2N2539 } \\ & \text { 2N2537 } \\ & \text { 2N2539 } \\ & \text { 2N2537 } \end{aligned}$	$\begin{aligned} & 360 \\ & 800 \\ & 360 \\ & 800 \end{aligned}$	60 60 60 60	30 30 20 20	$30-120$ $30-120$ $40-140$ $40-140$	150 150 150 150	.4 .4 .4 .4	150 150 150 150		$\begin{aligned} & 250 \\ & 250 \\ & 250 \\ & 250 \end{aligned}$
$\begin{aligned} & \text { 2N2849 } \\ & \text { 2N2850 } \\ & \text { 2N2851 } \\ & \text { 2N2852 } \end{aligned}$	NPN NPN NPN NPN	$\begin{aligned} & \text { SW } \\ & \text { SW } \\ & \text { SW } \\ & 5 W \end{aligned}$		$\begin{aligned} & 850 \\ & 850 \\ & 850 \\ & 850 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \\ & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 80 \\ & 80 \\ & 80 \\ & 80 \end{aligned}$	$\begin{gathered} 100-300 \\ 40-120 \\ 40-120 \\ 20-60 \end{gathered}$	$\begin{aligned} & 1 A \\ & 1 A \\ & 1 A \\ & 1 A \end{aligned}$.4 .25 .4 .4	$\begin{aligned} & \text { 1A } \\ & \text { 1A } \\ & \text { 1A } \\ & \text { 1A } \end{aligned}$		30 30 30 30
$\begin{aligned} & \text { 2N2853 } \\ & \text { 2N2854 } \\ & \text { 2N2855 } \\ & \text { 2N2856 } \end{aligned}$	NPN NPN NPN NPN	$\begin{aligned} & s w \\ & s w \\ & s w \\ & s w \end{aligned}$		$\begin{aligned} & 850 \\ & 850 \\ & 850 \\ & 850 \end{aligned}$	60 60 60 60	40 40 40 40	$\begin{aligned} & 40- \\ & 100-300 \\ & 40-120 \\ & 20-60 \end{aligned}$	14 14 14 14	1.5 .4 .4 .4	$\begin{aligned} & \text { 5A } \\ & \text { 1A } \\ & \text { 1A } \\ & 1 \mathrm{~A} \end{aligned}$		30 30 30 30
$\begin{aligned} & \text { 2N2857 } \\ & \text { 2N2858 } \\ & \text { 2N2859 } \\ & \text { 2N2861 } \end{aligned}$	NPN NPN NPN PNP	$\begin{aligned} & \text { RF } \\ & \text { GP } \\ & \text { GP } \\ & \text { GP } \end{aligned}$	$\begin{aligned} & \text { 2N3572 } \\ & \text { 2N3036 } \\ & \text { 2N2861 } \end{aligned}$	$\begin{aligned} & 200 \\ & 600 \\ & 600 \\ & 300 \end{aligned}$	$\begin{array}{r} 30 \\ 100 \\ 120 \\ 25 \end{array}$	$\begin{array}{r} 15 \\ 80 \\ 100 \\ 20 \end{array}$	$\begin{aligned} & 30-150 \\ & 20-60 \\ & 20-60 \\ & 30-120 \end{aligned}$	$\begin{aligned} & 3 \\ & 1 \mathrm{~A} \\ & 1 \mathrm{~A} \\ & .01 \end{aligned}$.3 .3 .2	$\begin{aligned} & 1 A \\ & 1 A \\ & 10 \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \end{aligned}$	10 1 1 60
$\begin{aligned} & \text { 2N2882 } \\ & \text { 2N2883 } \\ & \text { 2N2864 } \\ & \text { 2N2865 } \end{aligned}$	PNP NPN NPN NPN	$\begin{aligned} & \text { GP } \\ & \text { GP } \\ & \text { GP } \\ & \text { RF } \end{aligned}$	2N2862 2N2219 2N2219 2N3572	$\begin{aligned} & 300 \\ & 800 \\ & 800 \\ & 200 \end{aligned}$	25 60 60 25	20 25 25 13	$\begin{aligned} & 12-120 \\ & 30-200 \\ & 30-200 \\ & 20-200 \end{aligned}$.01 200 200 4	.2 1 1 .4	$\begin{array}{r} 10 \\ 500 \\ 500 \\ 10 \end{array}$	$\begin{aligned} & 25 \\ & 20 \end{aligned}$	45 150 150 600
$\begin{aligned} & \text { 2N2868 } \\ & \text { 2N2871 } \\ & \text { 2N2872 } \\ & \text { 2N2883 } \end{aligned}$	NPN PNP PNP NPN	RF SW SW RF	$\begin{aligned} & \text { 2N899 } \\ & \text { 2N2883 } \end{aligned}$	$\begin{aligned} & 800 \\ & 400 \\ & 400 \\ & 800 \end{aligned}$	$\begin{array}{r} 60 \\ 60 \\ 110 \\ 40 \end{array}$	$\begin{array}{r} 40 \\ 60 \\ 110 \\ 20 \end{array}$	$\begin{aligned} & 40.120 \\ & 15- \\ & 15 . \\ & 20 . \end{aligned}$	$\begin{array}{r} 150 \\ 1 \\ 1 \\ 100 \end{array}$	$.25$ $.5$	$\begin{aligned} & 150 \\ & 100 \end{aligned}$		50 .2 .2 400
$\left\lvert\, \begin{aligned} & \text { 2N2884 } \\ & \text { 2N2885 } \\ & \text { 2N2886 } \\ & \text { 2N2890 } \end{aligned}\right.$	NPN NPN NPN NPN	RF SW GP GP	$\begin{aligned} & \text { 2N2884 } \\ & \text { 2N2219 } \\ & \text { 2N3036 } \end{aligned}$	$\begin{aligned} & 800 \\ & 150 \\ & 800 \\ & 800 \end{aligned}$	$\begin{array}{r} 40 \\ 40 \\ 50 \\ 100 \end{array}$	20 15 40 80	20 $30-120$ 22.45 $30-90$	100 10 5 14	.5 .4 1.2 .5	$\begin{array}{r} 100 \\ 10 \\ 8 \\ 14 \end{array}$	30	$\begin{array}{r} 400 \\ 300 \\ 30 \end{array}$
$\begin{array}{\|l} \text { 2N2891 } \\ \text { 2N2894 } \\ \text { 2N2894A } \\ \text { 2N2895 } \end{array}$	NPN PNP PNP NPN	GP SW SW GP	$\begin{aligned} & \text { 2N3036 } \\ & \text { 2N2894 } \\ & \text { 2N2894 } \\ & \text { 2N870 } \end{aligned}$	$\begin{aligned} & 800 \\ & 360 \\ & 360 \\ & 500 \end{aligned}$	$\begin{array}{r} 100 \\ 12 \\ 12 \\ 120 \end{array}$	$\begin{aligned} & 80 \\ & 12 \\ & 65 \end{aligned}$	$\begin{aligned} & 50-150 \\ & 40-150 \\ & 40- \\ & 40-120 \end{aligned}$	$\begin{array}{r} 14 \\ 30 \\ 30 \\ 150 \end{array}$	$\begin{array}{r} .5 \\ .15 \\ .6 \end{array}$	$1 A$ 10 150	50 50	30 400 800 120
2N2896 2N2897 2N2898 2N2899	NPN NPN NPN NPN	GP GP GP GP	$\begin{aligned} & \text { 2N720 } \\ & \text { 2N956 } \end{aligned}$	$\begin{aligned} & 500 \\ & 500 \\ & 500 \\ & 500 \end{aligned}$	$\begin{array}{r} 140 \\ 60 \\ 120 \\ 140 \end{array}$	$\begin{aligned} & 90 \\ & 45 \\ & 65 \\ & 90 \end{aligned}$	$\begin{aligned} & 60-200 \\ & 50-200 \\ & 40-120 \\ & 60-200 \end{aligned}$	$\begin{aligned} & 150 \\ & 150 \\ & 150 \\ & 150 \end{aligned}$	$\begin{gathered} .6 \\ 1 \\ .6 \\ .6 \end{gathered}$	$\begin{aligned} & 150 \\ & 150 \\ & 150 \\ & 150 \end{aligned}$	50 50 50 50	120 120 120 120
$\begin{aligned} & \text { 2N2900 } \\ & \text { 2N2901 } \\ & \text { 2N2903 } \\ & \text { 2N2903A } \end{aligned}$	NPN NPN NPN NPN	GP SW DU DU	$\begin{aligned} & \text { 2N2917 } \\ & \text { 2N2915 } \end{aligned}$	$\begin{aligned} & 500 \\ & 360 \\ & 200 \\ & 200 \end{aligned}$	$\begin{aligned} & 60 \\ & 20 \\ & 60 \\ & 60 \end{aligned}$	$\begin{aligned} & 45 \\ & 10 \\ & 30 \\ & 30 \end{aligned}$	$\begin{aligned} & 50-200 \\ & 30- \\ & 125-625 \\ & 125-625 \end{aligned}$	$\begin{array}{r} 150 \\ 10 \\ 1 \\ 1 \end{array}$	$\begin{array}{r} 1 \\ .15 \\ 1 \\ 1 \end{array}$	150 10 5 5	$\begin{gathered} 50 \\ 150 \\ 150 \end{gathered}$	120 300 60 60

TRANSISTOR INTERCHANGEABILITY MASTER LIST OF REGISTERED TYPES

TMF Numere:		$\begin{aligned} & \frac{8}{8} \\ & \frac{8}{8} \\ & 8 \end{aligned}$		MAXIMUM RATINOS			CIECRICAL CHARACTEISTICS					
				$\begin{array}{ccc} \mathrm{T}_{A}=25^{\circ} \mathrm{C} & \mathrm{VCBO} & \mathrm{VCBO}_{\mathrm{C}} \\ { }^{-T_{C}}=25^{\circ} \mathrm{C} & & \\ (\mathrm{~mW}) & (\mathrm{V}) & (\mathrm{V}) \end{array}$			$h_{\text {F }}$		$V_{\text {ce }}$ (ent)			
							MIN Ma	$\begin{gathered} c \\ (\mathrm{~mA}) \end{gathered}$		$\begin{aligned} & 1 c \\ & (\mathrm{~mA}) \end{aligned}$		
2N2904 2N2904A 2N2905 2N29054		GP GP GP GP	$\begin{aligned} & \text { 2N2904 } \\ & \text { 2N2904A } \\ & \text { 2N2905 } \\ & \text { 2N2905A } \end{aligned}$	$\begin{aligned} & 600 \\ & 600 \\ & 600 \\ & 600 \end{aligned}$	$\begin{aligned} & 60 \\ & 60 \\ & 60 \\ & 60 \end{aligned}$	$\begin{aligned} & 40 \\ & 60 \\ & 40 \\ & 60 \end{aligned}$	$\begin{array}{r} 40-120 \\ 40-120 \\ 100-300 \\ 100-300 \end{array}$	$\begin{aligned} & 150 \\ & 150 \\ & 150 \\ & 150 \end{aligned}$.4 .4 .4 .4	$\begin{aligned} & 150 \\ & 150 \\ & 150 \\ & 150 \end{aligned}$		200 200 200 200
$\begin{aligned} & \text { 2N2906 } \\ & 2 \mathrm{~N} 2906 \mathrm{~A} \\ & 2 \mathrm{~N} 2907 \\ & 2 \mathrm{~N} 2907 \mathrm{~A} \end{aligned}$		GP GP GP GP	$\begin{aligned} & \text { 2N2906 } \\ & \text { 2N2906A } \\ & \text { 2N2907 } \\ & \text { 2N2907A } \end{aligned}$	$\begin{array}{r} 400 \\ 400 \\ 400 \\ 400 \end{array}$	$\begin{aligned} & 60 \\ & 60 \\ & 60 \\ & 60 \end{aligned}$	$\begin{aligned} & 40 \\ & 60 \\ & 40 \\ & 60 \end{aligned}$	$\begin{array}{r} 40-120 \\ 40-120 \\ 100-300 \\ 100-300 \end{array}$	$\begin{aligned} & 150 \\ & 150 \\ & 150 \\ & 150 \end{aligned}$. 4	$\begin{aligned} & 150 \\ & 150 \\ & 150 \\ & 150 \end{aligned}$		200 200 200 200
$\begin{aligned} & \text { 2N2909 } \\ & 2 \mathrm{~N} 2910 \\ & 2 \mathrm{~N} 2911 \\ & 2 \mathrm{~N} 213 \end{aligned}$	NPN NPN NPN NPN	GP DU SW DU	$\begin{aligned} & \text { 2N2221A } \\ & \text { 2N2640 } \\ & \text { 2N2913 } \end{aligned}$	$\begin{array}{r} 400 \\ 300 \\ \cdot 5 W \\ 300 \end{array}$	$\begin{array}{r} 60 \\ 45 \\ 150 \\ 45 \end{array}$	$\begin{array}{r} 40 \\ 25 \\ 125 \\ 45 \end{array}$	$\begin{aligned} & 40-120 \\ & 70 . \\ & 20-60 \\ & 60-240 \end{aligned}$	150 .1 14 .01	.25 1 .3 .35	$\begin{array}{r} 150 \\ 10 \\ 1 \mathrm{~A} \\ 1 \end{array}$	50	50 11 1 60
$\begin{aligned} & \text { 2N2914 } \\ & \text { 2N2915 } \\ & \text { 2N2915A } \\ & \text { 2N2916 } \end{aligned}$	$\begin{aligned} & \text { NPN } \\ & \text { NPN } \\ & \text { NPN } \\ & \text { NPN } \end{aligned}$	DU DU DU DU	$\begin{aligned} & \text { 2N2914 } \\ & \text { 2N2915 } \\ & \text { 2N2915A } \\ & \text { 2N2916 } \end{aligned}$	$\begin{aligned} & 300 \\ & 300 \\ & 300 \\ & 300 \end{aligned}$	$\begin{aligned} & 45 \\ & 45 \\ & 45 \\ & 45 \end{aligned}$	$\begin{aligned} & 45 \\ & 45 \\ & 45 \\ & 45 \end{aligned}$	$\begin{array}{r} 150-600 \\ 60-240 \\ 60-240 \\ 150-600 \end{array}$	$\begin{aligned} & .01 \\ & .01 \\ & .01 \\ & .01 \end{aligned}$.35 .35 .35 .35	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$		60 60 60 60
$\begin{aligned} & \text { 2N2916A } \\ & \text { 2N2917 } \\ & \text { 2N2918 } \\ & \text { 2N2919 } \end{aligned}$	$\begin{aligned} & \text { NPN } \\ & \text { NPN } \\ & \text { NPN } \\ & \text { NPN } \end{aligned}$	DU DU DU DU	$\begin{aligned} & \text { 2N2916A } \\ & \text { 2N2917 } \\ & \text { 2N2918 } \\ & \text { 2N2919 } \end{aligned}$	$\begin{aligned} & 300 \\ & 300 \\ & 300 \\ & 300 \end{aligned}$	$\begin{aligned} & 45 \\ & 45 \\ & 45 \\ & 60 \end{aligned}$	$\begin{aligned} & 45 \\ & 45 \\ & 45 \\ & 60 \end{aligned}$	$\begin{array}{r} 150-600 \\ 60-240 \\ 150-600 \\ 60-240 \end{array}$	$\begin{aligned} & .01 \\ & .01 \\ & .01 \\ & .01 \end{aligned}$.35 .35 .35 .35	1 1 1 1		.60 60 60 60
$\begin{array}{\|l} \text { 2N2919A } \\ \text { 2N2920 } \\ \text { 2N2920A } \\ \text { 2N2921 } \end{array}$	NPN NPN NPN NPN	DU DU DU GP	$\begin{aligned} & \text { 2N2919A } \\ & \text { 2N2920 } \\ & \text { 2N2920A } \end{aligned}$	$\begin{aligned} & 300 \\ & 300 \\ & 300 \\ & 200 \end{aligned}$	$\begin{aligned} & 60 \\ & 60 \\ & 60 \\ & 25 \end{aligned}$	$\begin{aligned} & 60 \\ & 60 \\ & 60 \\ & 25 \end{aligned}$	$\begin{array}{r} 60-240 \\ 150-600 \\ 150-600 \end{array}$	$\begin{aligned} & .01 \\ & .01 \\ & .01 \end{aligned}$.35 .35 .35	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	35	60 60 60
$\begin{aligned} & \text { 2N2922 } \\ & \text { 2N2923 } \\ & \text { 2N2924 } \\ & \text { 2N2925 } \end{aligned}$		$\begin{aligned} & G P \\ & G P \\ & G P \\ & G P \end{aligned}$	2N3710 2N3710 2N3711	200 360 360 360	25 25 25 25	$\begin{aligned} & 25 \\ & 25 \\ & 25 \\ & 25 \end{aligned}$					55 90 150 235	
2N2926 2N2927 2N2936 2N2937	NPN PNP NPN NPN	$\begin{aligned} & G P \\ & G P \\ & G P \\ & G P \end{aligned}$	$\begin{aligned} & \text { 2N3708 } \\ & \text { 2N2904 } \\ & \text { 2N2484 } \\ & \text { 2N2484 } \end{aligned}$	$\begin{aligned} & 200 \\ & 800 \\ & 300 \\ & 300 \end{aligned}$	$\begin{aligned} & 25 \\ & 25 \\ & 60 \\ & 60 \end{aligned}$	$\begin{aligned} & 25 \\ & 25 \\ & 55 \\ & 55 \end{aligned}$	$\begin{array}{r} 30-130 \\ 100-300 \\ 100-300 \end{array}$	$\begin{array}{r} 50 \\ .01 \\ .01 \\ \hline \end{array}$.25 .3 .3	$\begin{array}{r} 50 \\ 2 \\ 2 \\ \hline \end{array}$	$\begin{array}{r} 35 \\ 25 \\ 150 \\ 150 \end{array}$	100 30 30
$\begin{aligned} & \text { 2N2938 } \\ & \text { 2N2939 } \\ & \text { 2N2940 } \\ & \text { 2N2941 } \end{aligned}$	NPN NPN NPN NRN	SW RF RF RF		$\begin{aligned} & 300 \\ & 800 \\ & 800 \\ & 800 \end{aligned}$	$\begin{array}{r} 25 \\ 75 \\ 120 \\ 150 \end{array}$	$\begin{array}{r} 13 \\ 60 \\ 80 \\ 100 \end{array}$	30. 60-240 60.240 60-240	$\begin{array}{r} 50 \\ 150 \\ 150 \\ 150 \end{array}$. 4	$\begin{array}{r} 50 \\ 150 \\ 150 \end{array}$		500 150 150 150
$\begin{aligned} & 2 \mathrm{~N} 2944 \\ & 2 \mathrm{~N} 2944 \mathrm{~A} \\ & 2 \mathrm{~N} 2945 \\ & 2 \mathrm{~N} 2945 \mathrm{~A} \end{aligned}$	PNP PAP PNP PNP	$\begin{aligned} & s w \\ & s w \\ & s w \\ & s w \end{aligned}$	$\begin{aligned} & \text { 2N2944 } \\ & \text { 2N2944A } \\ & \text { 2N2945 } \\ & \text { 2N2945A } \end{aligned}$	400 400 400 400	15 15 25 25	10 10 20 20	80 100 40 100	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$				10 15 5 10

TRANSISTOR INTERCHANGEABILITY MASTER LIST OF REGISTERED TYPES

TYF NUMET		$\begin{aligned} & 8 \\ & 5 \\ & 5 \\ & 8 \\ & 8 \end{aligned}$	$\begin{gathered} \text { II } \\ \text { REPACMENT } \\ \text { OR MBAREST } \\ \text { EOUYALENT } \end{gathered}$	Maximum Ratives			EICTRICAL CHAMAGTIESTKS					
				$\begin{gathered} \mathrm{PY} \\ \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ { }^{-1} \mathrm{C}=25^{\circ} \mathrm{C} \\ (\mathrm{~mW}) \\ \hline \end{gathered}$	Veso (V)	Vceo (V)		$\begin{gathered} \mathbf{I c} \\ (\mathrm{mA}) \end{gathered}$		$\begin{aligned} & \text { (sed) } \\ & \hline \text { Ic } \\ & \text { (mA) } \end{aligned}$	$\begin{aligned} & \text { ho } \\ & \text { I khe } \\ & \text { MIN } \end{aligned}$	
$\begin{aligned} & \text { 2N2946 } \\ & \text { 2N2946A } \\ & \text { 2N2954 } \\ & \text { 2N2958 } \end{aligned}$	$\left\lvert\, \begin{aligned} & \text { PNP } \\ & \text { PNP } \\ & \text { PNP } \\ & \text { PNP } \end{aligned}\right.$	SW SW RF GP	$\begin{aligned} & \text { 2N2946 } \\ & \text { 2N2946A } \\ & \text { 2N918 } \\ & \text { 2N2218 } \end{aligned}$	$\begin{array}{r}400 \\ 400 \\ 200 \\ \hline 3 W\end{array}$	40 40 30 60	35 35 20 20	$\begin{aligned} & 30- \\ & 50- \\ & 25-300 \\ & 40-120 \end{aligned}$	$\begin{array}{r} 1 \\ 1 \\ 2 \\ 150 \end{array}$. 5	150	25	3 5 300 250
$\begin{aligned} & \text { 2N2959 } \\ & \text { 2N2960 } \\ & \text { 2N2961 } \\ & \text { 2N2967 } \end{aligned}$	$\begin{aligned} & \text { PNP } \\ & \text { PNP } \\ & \text { PNP } \\ & \text { NPN } \end{aligned}$	$\begin{aligned} & G P \\ & G P \\ & G P \\ & S W \end{aligned}$	$\begin{aligned} & \text { 2N2219 } \\ & \text { 2N2219A } \\ & \text { 2N2219A } \end{aligned}$	$\begin{aligned} & * 3 W \\ & * 3 W \\ & * 3 W \\ & 300 \end{aligned}$	$\begin{aligned} & 60 \\ & 60 \\ & 60 \\ & 12 \end{aligned}$	$\begin{array}{r} 20 \\ 30 \\ 30 \\ 6 \end{array}$	$\begin{array}{r} 100-300 \\ 100-300 \\ 100-300 \\ 20.120 \end{array}$	$\begin{array}{r} 150 \\ 150 \\ 150 \\ 10 \end{array}$.5 .5 .5 .3	$\begin{array}{r} 150 \\ 150 \\ 150 \\ 3 \end{array}$		$\begin{aligned} & 250 \\ & 250 \\ & 250 \\ & 400 \end{aligned}$
$\begin{aligned} & \text { 2N2968 } \\ & \text { 2N2969 } \\ & \text { 2N2970 } \\ & \text { 2N2971 } \end{aligned}$	$\begin{aligned} & \text { PNP } \\ & \text { PNP } \\ & \text { PNP } \\ & \text { PNP } \end{aligned}$	$\left\lvert\, \begin{aligned} & s w \\ & s w \\ & s w \\ & s w \end{aligned}\right.$	$\begin{aligned} & \text { 2N3250 } \\ & \text { 2N3250 } \\ & \text { 2N3250 } \\ & \text { 2N3250 } \end{aligned}$	$\begin{aligned} & 150 \\ & 150 \\ & 150 \\ & 150 \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \\ & 30 \\ & 30 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 20 \\ & 20 \end{aligned}$	15. 15. 10. 10	.1 .1 .1 .1	.6 .6 .8 .8	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$		8 8 4 4
$\begin{aligned} & \text { 2N2972 } \\ & \text { 2N2973 } \\ & \text { 2N2974 } \\ & \text { 2N2975 } \end{aligned}$	$\begin{array}{\|l\|} \mathbf{N P N} \\ \mathbf{N P N} \\ \text { NPN } \\ \mathbf{N P N} \end{array}$	$\left\lvert\, \begin{aligned} & D U \\ & D U \\ & D U \\ & D U \end{aligned}\right.$	$\begin{aligned} & \text { 2N2972 } \\ & \text { 2N2973 } \\ & \text { 2N2974 } \\ & \text { 2N2975 } \end{aligned}$	$\begin{aligned} & 250 \\ & 250 \\ & 250 \\ & 250 \end{aligned}$	$\begin{aligned} & 45 \\ & 45 \\ & 45 \\ & 45 \end{aligned}$	$\begin{aligned} & 45 \\ & 45 \\ & 45 \\ & 45 \end{aligned}$	$\begin{array}{r} 60-240 \\ 150-600 \\ 60-240 \\ 150-600 \end{array}$.01 .01 .01 .01	.35 .35 .35 .35	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$		60 60 60 60
$\begin{array}{\|l\|} \text { 2N2976 } \\ \text { 2N2977 } \\ \text { 2N2978 } \\ \text { 2N2979 } \end{array}$	$\left\lvert\, \begin{aligned} & \text { NPN } \\ & \text { NPN } \\ & \text { NPN } \\ & \text { NPN } \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & D U \\ & D U \\ & D U \\ & D U \end{aligned}\right.$	$\begin{aligned} & \text { 2N2976 } \\ & \text { 2N2977 } \\ & \text { 2N2978 } \\ & \text { 2N2979 } \end{aligned}$	$\begin{aligned} & 250 \\ & 250 \\ & 250 \\ & 250 \end{aligned}$	$\begin{aligned} & 45 \\ & 45 \\ & 60 \\ & 60 \end{aligned}$	$\begin{aligned} & 45 \\ & 45 \\ & 60 \\ & 60 \end{aligned}$	$\begin{array}{r} 60-240 \\ 150-600 \\ 60-240 \\ 150-600 \end{array}$.01 .01 .01 .01	.35 .35 .35 .35	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$		60 60 60 60
$\begin{aligned} & \text { 2N2980 } \\ & \text { 2N2981 } \\ & \text { 2N2982 } \\ & \text { 2N3009 } \end{aligned}$	NPN NPN NPN NPN	DU DU DU SW	$\begin{aligned} & \text { 2N2060 } \\ & \text { 2N2223 } \\ & \text { 2N2223A } \end{aligned}$	$\begin{aligned} & 250 \\ & 250 \\ & 250 \\ & 360 \end{aligned}$	$\begin{array}{r} 100 \\ 100 \\ 100 \\ 40 \end{array}$	$\begin{aligned} & 60 \\ & 60 \\ & 60 \\ & 15 \end{aligned}$	$\begin{aligned} & 25-75 \\ & 50-200 \\ & 50-200 \\ & 30-120 \end{aligned}$	$\begin{aligned} & .01 \\ & 10 \\ & 10 \\ & 30 \end{aligned}$	$\begin{aligned} & 1.2 \\ & 1.2 \\ & 1.2 \\ & .18 \end{aligned}$	50 50 50 30	50 40 40	60 50 50 350
$\begin{aligned} & \text { 2N3010 } \\ & \text { 2N3011 } \\ & \text { 2N3012 } \\ & \text { 2N3013 } \end{aligned}$	NPN NFN PNP NPN	$\begin{aligned} & \text { sw } \\ & \text { sw } \\ & \text { sw } \\ & \text { sw } \end{aligned}$	2N3012	$\begin{aligned} & 300 \\ & 360 \\ & 360 \\ & 360 \end{aligned}$	$\begin{aligned} & 15 \\ & 30 \\ & 12 \\ & 40 \end{aligned}$	$\begin{array}{r} 6 \\ 12 \\ 12 \\ 15 \end{array}$	$\begin{aligned} & 25-125 \\ & 30-120 \\ & 30-120 \\ & 30-120 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 30 \\ & 30 \end{aligned}$.25 .2 .2 .18	10 10 30 30		600 400 400 350
$\begin{aligned} & \text { 2N3014 } \\ & \text { 2N3015 } \\ & \text { 2N3019 } \\ & \text { 2N3020 } \end{aligned}$	NPN NPN NPN NPN	sW 8W OP OP	$\begin{aligned} & \text { 2N301s } \\ & \text { 2N2243A } \\ & \text { 2N1893 } \end{aligned}$	$\begin{aligned} & 360 \\ & 600 \\ & 800 \\ & 800 \end{aligned}$	$\begin{array}{r} 40 \\ 60 \\ 140 \\ 140 \end{array}$	$\begin{aligned} & 20 \\ & 30 \\ & 80 \\ & 80 \end{aligned}$	$\begin{array}{r} 30-120 \\ 30-120 \\ 100-300 \\ 40-120 \end{array}$	$\begin{array}{r} 30 \\ 150 \\ 150 \\ 150 \end{array}$	$\begin{array}{r} .18 \\ .4 \\ .2 \\ .2 \end{array}$	$\begin{array}{r} 10 \\ 150 \\ 150 \\ 150 \end{array}$	60 30	350 250 100 80
$\begin{aligned} & \text { 2N3033 } \\ & \text { 2N3034 } \\ & \text { 2N303s } \\ & \text { 2N3036 } \end{aligned}$	NPN NPN NPN NPN	$\begin{aligned} & s W \\ & s w \\ & s W \\ & o p \end{aligned}$	2N3036	$\begin{aligned} & 300 \\ & 300 \\ & 300 \\ & 800 \end{aligned}$	100 70 50 120	80	50.150	150	1 1 1 .25	$\begin{aligned} & 100 \\ & 100 \\ & 100 \\ & 150 \end{aligned}$	40	50
$\begin{aligned} & 2 N 3037 \\ & 2 N 3038 \\ & 2 N 3039 \\ & 2 N 3040 \end{aligned}$	NPN NPN PNP PNP	GP GP OP GP	$\begin{aligned} & \text { 2N3037 } \\ & \text { 2N3038 } \\ & \text { 2N3039 } \\ & \text { 2N3040 } \end{aligned}$	$\begin{aligned} & 360 \\ & 360 \\ & 360 \\ & 360 \end{aligned}$	$\begin{array}{r} 120 \\ 100 \\ 50 \\ 40 \end{array}$	$\begin{aligned} & 70 \\ & 60 \\ & 35 \\ & 30 \end{aligned}$	$\begin{aligned} & 40-120 \\ & 80-240 \\ & 20-80 \\ & 40-160 \end{aligned}$	$\begin{aligned} & 150 \\ & 150 \\ & 150 \\ & 150 \end{aligned}$	$\begin{aligned} & .2 \\ & .2 \\ & .2 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \end{aligned}$	30 60 20 40	50 50 50 50

TRANSISTOR INTERCHANGEABILITY MASTER LIST OF REGISTERED TYPES

TYPEnUMDER	$\begin{aligned} & 5 \\ & \frac{5}{8} \end{aligned}$			MAXIMUM RATINOS			Elictical charactemstics					
				$\begin{gathered} P_{T} \\ T_{A}=25^{\circ} \mathrm{C} \\ { }^{*}{ }^{\prime} \mathrm{C}=25^{\circ} \mathrm{C} \\ (\mathrm{~mW}) \\ \hline \end{gathered}$	v_{CBO} (V)	$V_{c E O}$ (V)	MiN Max	$\begin{gathered} 1 c \\ (\mathrm{~mA}) \end{gathered}$	$\begin{array}{\|l\|} \hline V_{C l} \\ \hline \begin{array}{l} \text { max } \\ (v) \end{array} \\ \hline \end{array}$		$\begin{gathered} h_{0} \\ \bullet \\ 1 \mathrm{ktt} \\ \text { min } \end{gathered}$	
$\begin{aligned} & \text { 2N3043 } \\ & \text { 2N } 3044 \\ & \text { 2N3045 } \\ & \text { 2N3046 } \end{aligned}$	NPN NPN NPN NPN	$\begin{aligned} & D U \\ & D U \\ & D U \\ & D U \\ & D U \end{aligned}$	$\begin{aligned} & 2 N 3043 \\ & 2 N 3044 \end{aligned}$	$\begin{aligned} & 250 \\ & 250 \\ & 250 \\ & \mathbf{2 5 0} \\ & \mathbf{2 5 0} \end{aligned}$	$\begin{aligned} & 45 \\ & 45 \\ & 45 \\ & 45 \end{aligned}$	$\begin{aligned} & 45 \\ & 45 \\ & 45 \\ & 45 \end{aligned}$	$\begin{array}{r} 100-300 \\ 100-300 \\ 100-300 \\ 50-200 \end{array}$	$\begin{aligned} & .01 \\ & .01 \\ & .01 \\ & .01 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$	$\begin{array}{r} 130 \\ 130 \\ 130 \\ 65 \end{array}$	30 30 30 30
	$\begin{aligned} & \text { NPN } \\ & \text { NPN } \\ & \text { PNP } \\ & \text { PNP } \end{aligned}$	$\begin{aligned} & \text { DU } \\ & \text { DU } \\ & \text { DU } \\ & \text { DU } \end{aligned}$	$\begin{array}{r} \text { 2N3049 } \\ \text { 2N3050 } \end{array}$	$\begin{aligned} & 250 \\ & 250 \\ & 250 \\ & 250 \end{aligned}$	$\begin{aligned} & 45 \\ & 45 \\ & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & 45 \\ & 45 \\ & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 50-200 \\ & 50-200 \\ & 20.120 \\ & 20.120 \end{aligned}$	$\begin{aligned} & .01 \\ & .01 \\ & .01 \\ & .01 \end{aligned}$	1 1 . .2	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$	65 65 30 30	30 30 60 60
$\begin{aligned} & \text { 2N3051 } \\ & \text { 2N3052 } \\ & \text { 2N3053 } \\ & \text { 2N3053A } \end{aligned}$	PNP NPN NPN NPN	$\begin{aligned} & \text { DU } \\ & \text { DU } \\ & \text { GP } \\ & \text { GP } \end{aligned}$	$\begin{aligned} & \text { 2N3051 } \\ & \text { 2N3052 } \\ & \text { 2N3053 } \\ & \text { 2N3053 } \end{aligned}$	250 250 .50 $* 5 W$	$\begin{aligned} & 25 \\ & 35 \\ & 60 \\ & 80 \end{aligned}$	$\begin{aligned} & 20 \\ & 15 \\ & 40 \\ & 60 \end{aligned}$	$\begin{aligned} & 20-120 \\ & 25-130 \\ & 50-250 \\ & 50-250 \end{aligned}$	$\begin{array}{r} .01 \\ 10 \\ 150 \\ 150 \end{array}$.2 .25 1.4 .3	$\begin{array}{r} 10 \\ 10 \\ 150 \\ 150 \end{array}$	30	60 200 100 100
$\begin{aligned} & \text { 2N3056 } \\ & \text { 2N3056A } \\ & \text { 2N3057 } \\ & \text { 2N3057A } \end{aligned}$	$\begin{aligned} & \text { NPN } \\ & \text { NPN } \\ & \text { NPN } \\ & \text { NPN } \end{aligned}$	$\begin{aligned} & \text { GP } \\ & \mathbf{G P} \\ & \mathbf{G P} \\ & \mathbf{G P} \end{aligned}$		400 400 400 400	$\begin{aligned} & 100 \\ & 140 \\ & 100 \\ & 140 \end{aligned}$	$\begin{aligned} & 60 \\ & 80 \\ & 60 \\ & 80 \end{aligned}$	$\begin{array}{r} 40-120 \\ 40.120 \\ 100-300 \\ 100-300 \end{array}$	$\begin{aligned} & 150 \\ & 150 \\ & 150 \\ & 150 \end{aligned}$	$\begin{array}{r} .25 \\ .25 \\ .25 \\ .2 \end{array}$	$\begin{aligned} & 150 \\ & 150 \\ & 150 \\ & 150 \end{aligned}$	30 30 80 80	80 80 100 100
2N3058 2N3059 2N3060 2N3061	$\begin{aligned} & \text { PNP } \\ & \text { PNP } \\ & \text { PNNP } \\ & \text { PNNP } \end{aligned}$	$\begin{aligned} & s w \\ & s w \\ & s w \\ & s w \\ & s w \end{aligned}$	$\begin{aligned} & \text { 2N2944 } \\ & \text { 2N2944 } \\ & \text { 2N2944 } \\ & \text { 2N2944 } \end{aligned}$	400 400 400 400	6 10 70 70	6 10 60 60	40.120 100.300 30.90 $00-180$	100 .01 1 1			40 100 30 60	
2N3062 2N3063 2N3064 2N3085	$\begin{aligned} & \text { PNP } \\ & \mathbf{P N P} \\ & \mathbf{P N P} \\ & \mathbf{P N P} \end{aligned}$	$\begin{aligned} & s w \\ & s w \\ & s w \\ & s w \end{aligned}$	$\begin{aligned} & 2 \mathrm{~N} 2944 \\ & \text { 2N2944 } \end{aligned}$	400 400 400 400	90 90 200 110	80 80 110 100	$20-80$ 50.150 $15-45$ 30.90	1 1 1			20 50 15 30	
2N3066 2N3067 2N3068 2N3069	NCH NCH NCH NCH	$\begin{array}{\|l\|l\|} \hline \mathbf{F E} \\ \mathbf{F E} \\ \mathrm{FE} \\ \mathrm{FE} \end{array}$	$\begin{aligned} & \text { 2N3459 } \\ & \text { 2N3460 } \\ & \text { 2N3458 } \end{aligned}$	SEE FET INTERCHANGEABLITY LST SEE PET INTEACHANGEABLTTY LST 6EE FET INTERCHANGEAELITY LIST SEE FET INTERCHANGEABLITY LST								
$\begin{aligned} & \text { 2N3070 } \\ & \text { 2N3071 } \\ & \text { 2N3072 } \\ & \text { 2N3073 } \end{aligned}$	$\begin{array}{\|l\|l\|} \mathrm{NCH} \\ \mathrm{NCH} \\ \mathrm{NNP} \\ \mathrm{NNP} \end{array}$	$\begin{aligned} & \text { FE } \\ & \text { FE } \\ & \text { OP } \\ & G P \\ & \hline \end{aligned}$	2N3459 2N3460 2N2904 2N2906	SEE FET INTERCHANGEABLITY LIST SEE FLT INTERCHANGEABLITY LIST								
$\begin{aligned} & \text { 2N3077 } \\ & \text { 2N3078 } \\ & \text { 2N3081 } \\ & \text { 2N301 } \\ & \text { 2N3082 } \end{aligned}$	NPN NPN PNP NPN	$\begin{aligned} & G P \\ & G P \\ & G P \\ & G P \\ & S W \end{aligned}$	$\begin{aligned} & \text { 2N930 } \\ & \text { 2N929 } \\ & \text { 2N2904A } \\ & \text { 3N76 } \end{aligned}$	$\begin{aligned} & 360 \\ & 360 \\ & 600 \\ & 500 \end{aligned}$	$\begin{aligned} & 80 \\ & 80 \\ & 70 \\ & 25 \end{aligned}$	$\begin{aligned} & 60 \\ & 60 \\ & 50 \\ & 7 \end{aligned}$	$\begin{aligned} & 100-400 \\ & 40-120 \\ & 20- \\ & 100- \end{aligned}$	$\begin{aligned} & .01 \\ & .01 \\ & 500 \\ & .25 \end{aligned}$	$\begin{array}{r} .35 \\ .35 \\ .3 \end{array}$	$\begin{array}{r} 1 \\ 1 \\ 150 \end{array}$	$\begin{array}{r} 120 \\ 50 \end{array}$	15 15 150 100
2N3083 2N3084 2N3085 2N3086	NPN NCH NCH NCH	$\begin{aligned} & \mathbf{S W} \\ & \hline \mathbf{F E} \\ & \mathbf{F E} \\ & \text { FE } \end{aligned}$	3N74 2N3459 2N3459 2N3459									100

TRANSISTOR INTERCHANGEABILITY MASTER LIST OF REGISTERED TYPES

TRANSISTOR INTERCHANGEABILITY MASTER LIST OF REGISTERED TYPES

TYPE NUMEER			$\begin{aligned} & \text { II } \\ & \text { RENLACEMENT } \\ & \text { OR MEAREST } \\ & \text { ECUVAIENT } \end{aligned}$	MAXIMUUM RATENGS			ELECPICAL CHARACTERISTICS					
				$\begin{array}{ccc} \mathrm{P}_{\mathbf{T}} & & \\ \mathrm{T}_{\mathbf{A}}=25^{\circ} \mathrm{C} & \mathrm{~V}_{\mathrm{CBO}} & \mathrm{~V}_{\mathrm{CE}} \mathrm{O} \\ { }^{*} \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C} & & \\ (\mathrm{~mW}) & \text { (V) } & \text { (V) } \\ \hline \end{array}$			hre		$V_{\text {cE }}$ (rat)		$\begin{gathered} \mathrm{hfo}_{0} \\ \mathrm{M} \mathrm{kAz} \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline \mathbf{T} \\ \\ \text { MNX } \\ \text { (MHz) } \\ \hline \end{array}$
$\left\lvert\, \begin{aligned} & \text { 2N3309 } \\ & \text { 2N3309A } \\ & \text { 2N3310 } \\ & \text { 2N3317 } \end{aligned}\right.$	$\begin{aligned} & \text { NPN } \\ & \text { NPN } \\ & \text { NPN } \\ & \text { PNP } \end{aligned}$	$\begin{aligned} & R F \\ & R F \\ & R F \\ & R W \end{aligned}$	$\begin{aligned} & \text { 2N3866 } \\ & \text { 2N3866 } \\ & \text { 2N918 } \\ & \text { 2N2944 } \end{aligned}$	800 $* 5 W$ 300 150	50 60 35 30	$\begin{aligned} & 15 \\ & 30 \end{aligned}$	$5-100$ $8-80$ 10	30 50 20		$\begin{array}{r} 250 \\ 250 \\ 20 \end{array}$		$\begin{aligned} & 300 \\ & 300 \\ & 300 \\ & 6.4 \end{aligned}$
$\begin{aligned} & \text { 2N3318 } \\ & \text { 2N3319 } \\ & \text { 2N3326 } \\ & \text { 2N3328 } \end{aligned}$	$\left\lvert\, \begin{aligned} & \text { PNP } \\ & \text { PNP } \\ & \mathrm{NPN} \\ & \text { PCH } \end{aligned}\right.$	$\begin{aligned} & S W \\ & S W \\ & G P \\ & \text { FE } \end{aligned}$	$\begin{aligned} & \text { 2N2944 } \\ & \text { 2N2944 } \\ & \text { 2N2218A } \\ & \text { 2N3328 } \end{aligned}$	$\begin{gathered} 150 \\ 150 \\ 800 \\ \text { SEE FET } \end{gathered}$	$\begin{gathered} 15 \\ 10 \\ 60 \\ \text { INTERCHA } \end{gathered}$	$\begin{array}{r} 15 \\ 6 \\ 45 \end{array}$	LTY LIST	150	4	150		$\begin{array}{r} 7.6 \\ 12 \\ 250 \end{array}$
$\begin{array}{\|l\|} \text { 2N3329 } \\ \text { 2N3330 } \\ \text { 2N3331 } \\ \text { 2N3332 } \end{array}$	PCH PCH PCH PCH	FE FE FE FE	$\begin{aligned} & \text { 2N3329 } \\ & \text { 2N3330 } \\ & \text { 2N3331 } \\ & \text { 2N3332 } \end{aligned}$	SEE FET SEE FET SEE FET SEE FET	NTERCH NTERCH NTERCH NTERCH	NGEABILI NGEABILIT NGEABLIT NGEABILIT	TY LIST TY LIST TY LIST TY LST					
$\begin{aligned} & \text { 2N3333 } \\ & \text { 2N3334 } \\ & \text { 2N3335 } \\ & \text { 2N3336 } \end{aligned}$	PCH PCH PCH PCH	FE FE FE FE	$\begin{aligned} & \text { 2N3333 } \\ & \text { 2N3334 } \\ & \text { 2N3335 } \\ & \text { 2N3336 } \end{aligned}$	SEE FET SEE FET SEE FET SEE FET	INTERCH INTERCH INTERCH INTERCH	angeabll ANGEABIL ANGEABIL ANGEABIL	ITY LIST ITY LIST TTY LIST ITY LIST					
$\begin{aligned} & \text { 2N3337 } \\ & \text { 2N3338 } \\ & \text { 2N3339 } \\ & \text { 2N3340 } \end{aligned}$	NPN NPN NPN NPN	RF RF RF SW	2N2883 2N2883 2N2883	$\begin{aligned} & 300 \\ & 300 \\ & 300 \\ & 400 \end{aligned}$	40 40 40 30	40 40 40 20	$30-300$ $30-300$ $30-300$ 40	$\begin{array}{r} 4 \\ 4 \\ 4 \\ .01 \end{array}$. 2	. 01	30 30 30	$\begin{array}{r} 400 \\ 400 \\ 400 \\ 70 \end{array}$
$\begin{aligned} & \text { 2N3341 } \\ & \text { 2N3342 } \\ & \text { 2N3343 } \\ & \text { 2N3344 } \end{aligned}$	$\begin{aligned} & \text { PNP } \\ & \text { PNP } \\ & \text { PNP } \\ & \text { PNP } \end{aligned}$	$\begin{aligned} & s w \\ & s w \\ & s w \\ & s w \end{aligned}$		400 250 250 250	30 20 25 30	20 8 8 30	40 30 20 $25-$.01 5 .25 1	.25 .1	.01 5		50 2 2
$\begin{aligned} & \text { 2N3345 } \\ & \text { 2N3346 } \\ & \text { 2N3347 } \\ & \text { 2N3348 } \end{aligned}$	$\begin{aligned} & \text { PNP } \\ & \text { PNP } \\ & \text { PNP } \\ & \text { PNP } \end{aligned}$	$\begin{aligned} & \text { SW } \\ & \text { SW } \\ & \text { DU } \\ & \text { DU } \end{aligned}$	$\begin{aligned} & \text { 2N3347 } \\ & \text { 2N3348 } \end{aligned}$	$\begin{aligned} & 250 \\ & 250 \\ & 300 \\ & 300 \end{aligned}$	50 50 60 60	50 50 45 45	$\begin{aligned} & 15- \\ & 25- \\ & 40-300 \\ & 40-300 \end{aligned}$	$\begin{array}{r} 1 \\ 1 \\ .01 \\ .01 \end{array}$	$.5$	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	60 60	2 2 60 60
$\begin{aligned} & \text { 2N3349 } \\ & \text { 2N3350 } \\ & \text { 2N3351 } \\ & \text { 2N3352 } \end{aligned}$	$\begin{array}{\|l} \text { PNP } \\ \text { PNPP } \\ \text { PNP } \\ \text { PNP } \end{array}$	DU DU DU DU	$\begin{aligned} & \text { 2N3349 } \\ & \text { 2N3350 } \\ & \text { 2N3351 } \\ & \text { 2N3352 } \end{aligned}$	$\begin{aligned} & 300 \\ & 300 \\ & 300 \\ & 300 \end{aligned}$	$\begin{aligned} & 60 \\ & 60 \\ & 60 \\ & 60 \end{aligned}$	$\begin{aligned} & 45 \\ & 45 \\ & 45 \\ & 45 \end{aligned}$	$\begin{array}{r} 40-300 \\ 100-300 \\ 100-300 \\ 100.300 \end{array}$.01 .01 .01 .01	.5 .5 .5 .5	10 10 10 10	60 150 150 150	60 60 60 60
$\begin{aligned} & \text { 2N3365 } \\ & \text { 2N3366 } \\ & \text { 2N3367 } \\ & \text { 2N3368 } \end{aligned}$	NCH NCH NCH NCH	FE FE FE FE	$\begin{aligned} & \text { 2N3459 } \\ & \text { 2N3460 } \\ & \text { 2N3458 } \end{aligned}$	SEE FET INTERCHANGEABLLTY LIST SEE FET INTERCHANGEABILTY LIST SEE FET INTERCHANGEABLLTY LIST SEE FET INTERCHANGEABLITY LST								
$\begin{aligned} & \text { 2N3369 } \\ & \text { 2N3370 } \\ & \text { 2N3374 } \\ & \text { 2N3376 } \end{aligned}$	NCH NCH NPN PCH	$\begin{aligned} & \text { FE } \\ & \text { FE } \\ & \text { RF } \\ & \text { RE } \end{aligned}$	$\begin{aligned} & \text { 2N3460 } \\ & \text { 2N3460 } \\ & \text { 2N3329 } \end{aligned}$	SEE FET INTERCHANGEABILITY LISTSEE FRT INTERCHANGEABIUTY LIST" $5 \mathrm{~W} \quad 80 \quad 80$ \| $10-$SEE FET INTERCHANGEABILITY LIST					. 3	150		230

TRANSISTOR INTERCHANGEABILITY MASTER LIST OF REGISTERED TYPES

type	$\begin{aligned} & \underset{K}{k} \\ & \frac{K}{2} \\ & \hline \end{aligned}$						bectincal Charactarisics					
							min max	$\begin{gathered} c \\ {\left[\begin{array}{c} c \\ (\mathrm{~m}) \end{array}\right.} \\ \hline \end{gathered}$		$\begin{aligned} & \text { (set) } \\ & \hline \cdot \mathrm{Ic} \\ & \hline(\mathrm{~mA}) \\ & \hline \end{aligned}$		$\begin{gathered} \text { TT } \\ \text { Min } \\ \text { (MHza) } \end{gathered}$
$\begin{array}{\|l\|} \text { 2N3377 } \\ \text { 2N3378 } \\ \text { 2N3379 } \\ \text { 2N3380 } \end{array}$	$\begin{aligned} & \mathrm{PCH} \\ & \mathrm{PCCH} \\ & \mathrm{PCCH} \\ & \mathrm{PCH} \end{aligned}$	$\begin{aligned} & \text { FE } \\ & \text { FE } \\ & \text { FE } \\ & \text { FE } \end{aligned}$	2N3331	SEE FET INTERCHANGENGHITY UST SEE FET INTERCHANGEABIITY UST SEE FET INTERCHANGEAGLITY UST SEE FET INTERCHANGEABILTY LIST								
$\begin{array}{\|l\|l\|} \text { 2N3381 } \\ \text { 2N3382 } \\ \text { 2N3383 } \\ \text { 2N3384 } \end{array}$	$\begin{aligned} & \mathrm{PCH} \\ & \mathrm{PCH} \\ & \mathrm{PCH} \\ & \mathrm{PCH} \end{aligned}$	$\begin{aligned} & \text { FE } \\ & \hline \mathbf{F E} \end{aligned}$	$\begin{aligned} & \text { 2N3994 } \\ & \text { 2N3993 } \end{aligned}$	SEE FET INTERCHANGEABLITY LIST SEE FET INTERCHANGEABLUTY LST SEE FET INTERCHANGEABLITY LST SEE FET INTERCHANGEABHLTY LST								
$\begin{aligned} & \text { 2N3385 } \\ & \text { 2N3386 } \\ & \text { 2N3387 } \\ & \text { 2N3388 } \end{aligned}$	$\begin{aligned} & \mathrm{PCH} \\ & \mathrm{PCH} \\ & \mathrm{PCH} \\ & \mathrm{NCH} \\ & \mathrm{NPN} \end{aligned}$	$\begin{aligned} & \mathrm{FE} \\ & \mathrm{FE} \\ & \mathrm{FE} \\ & \mathrm{SW} \end{aligned}$	2N3993	SEE FET INTERCHANGEABMTY UST SEE FET INTERCHANGEABHLTY UST SEE FET INTERCHANGEABHITY UST					1	2.5		36
$\begin{array}{\|l\|} \hline \text { 2N3369 } \\ \text { 2N3390 } \\ \text { 2N3391 } \\ \text { 2N3391A } \end{array}$	$\begin{aligned} & \text { NPN } \\ & \text { NPN } \\ & \text { NPN } \\ & \text { NPN } \end{aligned}$	$\begin{aligned} & \text { SW } \\ & \text { GP } \\ & \text { GP } \\ & \text { GP } \end{aligned}$	71594 A7T3391 ATT3391A	$\begin{aligned} & 600 \\ & 360 \\ & 360 \\ & 360 \end{aligned}$	$\begin{array}{r} 195 \\ 18 \\ 25 \\ 25 \end{array}$	$\begin{array}{r} 160 \\ 18 \\ 25 \\ 25 \end{array}$	$\begin{gathered} 60- \\ 400-800 \\ 250-500 \\ 250-500 \end{gathered}$	$\begin{aligned} & 7 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$	1	7	400	36
$\begin{aligned} & \text { 2N3392 } \\ & \text { 2N3393 } \\ & \text { 2N3394 } \\ & \text { 2N3395 } \end{aligned}$	$\begin{aligned} & \text { NPN } \\ & \text { NPN } \\ & \text { NPN } \\ & \text { NPN } \end{aligned}$	GP GP GP GP	ATT3392 TIS95 7596 T1594	360 360 360 360	25 25 25 25	25 25 25 25	$150-300$ $90-180$ $55-110$ $150-500$	2 2 2 2				
2N3396 2N3397 2N3398 2N3401	$\begin{array}{\|l\|l} \text { NPN } \\ \text { NPN } \\ \text { NPN } \\ \text { PNP } \end{array}$	$\begin{array}{\|l} G P \\ G P \\ G P \\ S W \end{array}$	7594 7594 TIS94 2N2944	360 360 360 250	25 25 25 25	25 25 25 25	$90-500$ $55-500$ $55-800$	2 2 2	. 25	5	4	. 1
2N3402 2N3403 2N3404 2N3. 4	$\begin{aligned} & \text { NPN } \\ & \text { NPN } \\ & \text { NPN } \\ & \text { NPN } \end{aligned}$	$\begin{aligned} & G P \\ & G P \\ & G P \\ & G P \\ & G P \end{aligned}$	2N3705 2N3704 2N3705 2N3704	$\begin{aligned} & 560 \\ & 560 \\ & 560 \\ & 560 \end{aligned}$	$\begin{aligned} & 25 \\ & 25 \\ & 50 \\ & 50 \end{aligned}$	$\begin{aligned} & 25 \\ & 25 \\ & 50 \\ & 50 \end{aligned}$	$\begin{array}{r} 75-225 \\ 180.540 \\ 75-225 \\ 180-540 \end{array}$	$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$.3 .3 .3 .3	$\begin{aligned} & 50 \\ & 50 \\ & 50 \\ & 50 \end{aligned}$	75 180 75 180	
2N3406 2N3407 2N3409 2N3410	$\begin{aligned} & \text { PN } \\ & \text { NPN } \\ & \text { NPN } \\ & \text { NPN } \end{aligned}$	$\begin{aligned} & \mathrm{U} \\ & \mathrm{RF} \\ & \mathrm{DU} \\ & \mathrm{DU} \end{aligned}$	2N918 2N2640 2N2639	$\begin{aligned} & \text { SEE UNIJ } \\ & 200 \\ & 500 \\ & 500 \end{aligned}$	$\begin{gathered} \text { UNCTIO } \\ 35 \\ 60 \\ 60 \end{gathered}$	INTERCH 18 30 30	$\begin{gathered} \text { ANGEABIUT } \\ 10.100 \\ 30.120 \\ 20.100 \end{gathered}$	$\begin{array}{r} 10 \\ .1 \\ .01 \end{array}$	$\begin{aligned} & .15 \\ & .15 \end{aligned}$		10	300 250 250
2N3411 2N3413 2N3414 2N3415	NPN PNP NPN NPN	$\begin{array}{\|l\|l} \text { DU } \\ G P \\ G P \\ G P \\ G P \end{array}$	2N2639 2N3705 2N3704	$\begin{aligned} & 500 \\ & 400 \\ & 360 \\ & 360 \end{aligned}$	$\begin{array}{r} 60 \\ 150 \\ 25 \\ 25 \end{array}$	$\begin{array}{r} 30 \\ 150 \\ 25 \\ 25 \end{array}$	$\begin{gathered} 20-100 \\ 10-45 \\ 75-225 \\ 180-540 \end{gathered}$.01 50 2 2	1.5 1.2 .3 .3	10 100 50 50	75 180	250 .25
2N3416 2N3417 2N3423 2N3424	NPN NPN NPN NPN	$\begin{aligned} & \text { GP } \\ & \text { GP } \\ & \text { DU } \\ & \text { DU } \end{aligned}$	2N3705 2N3704 D2T918 D2T918	$\begin{aligned} & 360 \\ & 360 \\ & 300 \\ & 300 \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \\ & 30 \\ & 30 \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \\ & 15 \\ & 15 \end{aligned}$	$\begin{array}{r} 75-225 \\ 180-540 \\ 20-200 \\ 20-200 \end{array}$	$\begin{aligned} & 2 \\ & 2 \\ & 3 \\ & 3 \end{aligned}$. .3 .3 .4 .4	$\begin{aligned} & 50 \\ & 50 \\ & 10 \\ & 10 \end{aligned}$	75 180	600 600

TRANSISTOR INTERCHANGEABILITY
 MASTER LIST OF REGISTERED TYPES

TYPE MUMBER	总学8	7$\frac{3}{\mathbf{3}}$$\mathbf{3}$$\frac{1}{7}$53	π REPLACEMENT OR NEAREST EOUTVALENT	MAXIMUM RATINGS			ELECTRICAL CHARACTERISTICS					
				$\begin{gathered} \mathrm{P}_{\mathrm{T}} \\ \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ { }^{*} \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C} \\ (\mathrm{~mW}) \\ \hline \end{gathered}$	Vcbo (V)	$\mathbf{V}_{\text {CEO }}$(V)	$h_{\text {FE }}$		VCE(sat)		Hf_{f} 1 kHz MIN	$\begin{gathered} \mathrm{T} \\ \text { MIN } \\ (\text { MHz }) \end{gathered}$
							MIN MAX	- le (mA)	MAX (V)	(mA)		
2N3425	NPN	DU		300	40	15	30-120	10	. 4	10	20	300
2N3426	NPN	SW	2N3724	600	25	12	30-120	300		300		450
2N3436	NCH	FE	2N3458	SEE FET INTERCHANGEABHLTYY LIST SEE FET INTERCHANGEABLLITY LIST								
2N3437	NCH	FE	2N3459									
2N3438	NCH	FE	2N3460	SEE FET INTERCHANGEABILITY LIST								
2N3439	NPN	GP		IW	450	350	40-160	20			25	15
2N3440	NPN	GP	2N5058	1w	300	250	40-160	20			25	15
2N3444	NPN	SW	2N3444	1W	80	50	20-60	500	. 35	150		150
2N3450	NPN	SW	2N2243	600	120	60	40.120	150	. 5	150		100
2N3451	PNP	SW	2N3576	300	6	6	30-120	10		10		500
2N3452	NCH	FE	2N3821	SEE FET INTERCHANGEABILITY LIST SEE FET INTERCHANGEABILITY LIST								
2N3453	NCH	FE	2N3821									
2N3454	NCH	FE		SEE FET INTERCHANGEABILITY LIST SEE FET INTERCHANGEABILITY LIST SEE FET INTERCHANGEABHLTY LIST SEE FET INTERCHANGEABILITY LIST								
2N3455	NCH	FE	2N3821									
2N3456	NCH	FE	2N3821									
2N3457	NCH	FE										
2N3458	NCH	FE	2N3458	SEE FET INTERCHANGEABILITY LIST SEE FET INTERCHANGEABILITY LIST SEE FET INTERCHANGEABILITY LIST								
2N3459	NCH	FE	2N3459									
2N3460	NCH	FE	2N3460									
2N3462	NPN	GP	2N930	300	50	35	100-300	. 01	. 35	5	150	10
2N3463	NPN	GP	2N2586	300	60	45	120-360	. 01	. 35	1	150	45
2N3464	NPN	GP	2N2270	*5W	60	40	35-100	200	1	200	30	50
$\left\{\begin{array}{l} \text { 2N3465 } \\ \text { 2N3466 } \end{array}\right.$	$\begin{aligned} & \mathrm{NCH} \\ & \mathrm{NCH} \end{aligned}$	$\left\lvert\, \begin{aligned} & \text { FE } \\ & \text { FE } \end{aligned}\right.$	2N3821	SEE FET INTERCHANGEABMITY LISt SEE FET INTERCHANGEABILTYY LIST								
2N3467	PNP	Sw	2N3467	IW	40	40	40-120	500	. 3	150		175
2N3468	PNP	SW	2N3468	1w	50	50	25-75	500	. 35	150		150
2N3478	NPN	RF	2N3570	200	30	15	25-150	2			25	750
2N3479	P-N	US	2N1671A	SEE UNIUUNCTION INTERCHANGEABILITY LIST								
2N3480	P-N	UJ	2N2646	SEE UNIJUNCTION INTERCHANGEABILITY LIST SEE UNIJUNCTION INTERCHANGEABLITY LIST SEE UNIJUNCTION INTERCHANGEABILITY LIST SEE UNIJUNCTION INTERCHANGEABILITY LIST								
2N3481	P-N	UJ	2N4853									
2N3482	P-N	US										
2N3483	P-N	UJ										
2N3484	P-N	UJ		SEE UNIJUNCTION INTERCHANGEABILITY LIST								
2N3485	PNP	GP	2N3485	400	60	40	40-120	150	. 4	150		200
2N3485A	PNP	GP	2N3485A	400	60	60	40-120	150	. 4	150		200
2N3486	PNP	GP	2N3486	400	60	40	100-300	150	. 4	150		200
2N3486A	PNP	GP	2N3486A	400	60	60	100-300	150	. 4	150		200
2N3493	NPN	SW		150	12	8	40-120	. 5	. 15	. 01		400
2N3494	PNP	GP	2N3494	600	80	80	$35-$	100	. 3	10	40	200
2N3495	PNP	GP	2N3495	600	120	120	35.	. 1	. 35	10	40	150

TRANSISTOR INTERCHANGEABILITY MASTER LIST OF REGISTERED TYPES

	3$\frac{5}{5}$8	$\begin{aligned} & 3 \\ & 8 \\ & 8 \\ & 8 \\ & 8 \end{aligned}$	TIRERACEMENTOR NEARESTEOUVALENT	MAXIMUM RATIVNS			EPCHRCAL CMARACTİRIES					
				$\begin{gathered} \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ { }^{\circ} \mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C} \\ (\mathrm{~mW}) \end{gathered}$	VCBO (V)	VCEO (V)	hre		VCE(met)		$\begin{gathered} \mathrm{h}_{\mathrm{fo}} \\ \mathrm{I} \text { kdtz } \\ \text { MNN } \end{gathered}$	fr
							MiN MAX - lc		\max $i c$ (V) (mA)			
2N3496	PNP	GP	2N3496	400	80	80	35.	100	. 3	10	40	200
2N3497	PNP	GP	2N3497	400	120	120	35.	. 1	. 35	10	40	150
2N3498	NPN	$G P$	2N2102	IW	100	100	40-120	150	. 2	10	50	150
2N3499	NPN	GP	2N2102	1W	100	100	100-300	150	. 2	10	75	150
2N3500	NPN	${ }^{\text {GP }}$	2N2102	1w	150	150	40.120	150	. 2	10	50	150
2N3501	NPN	GP	2N2102	1w	150	150	100-300	150	. 2	10	75	150
2N3502	PNP	GP	2N3502	700	45	45	115-300	50	. 25	50	135	200
			2N3503	700	60	60	115-300	50	. 25	50	135	200
$\begin{aligned} & 2 N 3504 \\ & 2 N 3505 \\ & 2 N 3506 \\ & 2 N 3507 \end{aligned}$	$\begin{aligned} & \text { PNP } \\ & \text { PNP } \\ & \text { NPN } \\ & \text { NPN } \end{aligned}$	$\begin{aligned} & \text { GP } \\ & \text { GP } \\ & S W \\ & S W \end{aligned}$	2N3504 2N3505	400	45	45	115-300	50	. 25	50	135	
				400	60	60	115-300	50	. 25	50	135	200
				1W	60	40	40-200	1.5	1	1.5		60
				IW	80	50	30.150	1.5	1	1.5		60
$\begin{aligned} & \text { 2N3500 } \\ & \text { 2N3509 } \\ & 2 N 3510 \\ & 2 N 3511 \end{aligned}$	$\begin{aligned} & \text { NPN } \\ & \text { NPN } \\ & \text { NPN } \\ & \text { NPN } \end{aligned}$	SW	2N3724	400	40	20	40-120	10	. 25	10		500
		SW	2N3724	400	40	20	100-300	10		10		500
		SW	2N3724	360	40	10	25.150	150		10		350
				360	40	15	30.120	150	. 25	10		450
$\begin{aligned} & \text { 2N3512 } \\ & \text { 2N3513 } \\ & \text { 2N3514 } \\ & \text { 2N3515 } \end{aligned}$	NPN NPN NPN NPN		2N2537		60	35						
		DU	2N2640	250	80	40	$50-200$	1	1.2	50	50	50
		DU		250	80	40	50-200	1	1.2	50	50	50
		DU		250	80	40	50-200	1	1.2	50	50	50
$\begin{aligned} & \text { 2N3516 } \\ & \text { 2N3517 } \\ & \text { 2N3518 } \\ & \text { 2N3519 } \end{aligned}$			2N2639	250	100	60		1				
		DU		250	100	60	50-200	1	1.2	50	50	60
		$1 D U$		250	100	60	50-200	1	1.2	50	50	60
				250	60	30	$150-600$	1	1	5	150	60
$\begin{aligned} & \text { 2N3520 } \\ & \text { 2N3521 } \\ & \text { 2N3522 } \\ & \text { 2N3523 } \end{aligned}$	NPN NPN NPN NPN			250	60	30					150	
		DU	2N2643	300	70	55	100-300	. 01		10		30
		DU	2N2643	250	70	55	100-300	. 01	1	10		30
		DU		250	70	55	100-300	. 01	1	10		30
2N3524 2N3526 2N3527 2N3544	NPN NPN PNP NPN		2N2640									30
		CP		800	130	120	30-120	30	1	50	25	40
		SW	2N2944	400	30	30	25-75	. 1			100	5
				300	25		25.	10				600
2N3545 2N3546 2N3547 2N3548	PNP PNP PNP PNP	GP	2N3978	360	20	20	40-120	10	. 2	10		250
		SW	2N3576	360	15	12	30-120	10	. 15	10		700
		GP	2N3799	360	60	60	100-500	1	1	10	120	45
		GP	2N2604	400	60	45	100-300	. 01	1	10	150	60
2N3549 2N35s0 2N3553 2N3554	$\begin{aligned} & \text { PNP } \\ & \text { PNP } \\ & \text { NPN } \\ & \text { NPN } \end{aligned}$	GP	2N2604	400	60	60	100-500	. 01	1	10	150	60
		SW	2N2944	400	60	45	200-600	. 01	. 9	5	300	60
			2N3553	*W	65	40	10.100	250	1	250		400
		SW	2N3554	800	60	30	25-100	750		750		150

TRANSISTOR INTERCHANGEABILITY
MASTER LIST OF REGISTERED TYPES

TYFI NUMMER		$\begin{aligned} & \frac{7}{6} \\ & \frac{8}{2} \\ & \frac{0}{6} \\ & 8 \end{aligned}$	$\begin{gathered} \text { II } \\ \text { REMACEMENT } \\ \text { OR NBAREST } \\ \text { EOUVALENT } \end{gathered}$	maximum ratines			EECTRICAL CHARACTEISTICS					
				$\begin{gathered} \mathrm{P}_{\mathrm{Y}} \\ \mathrm{~T}_{A}=25^{\circ} \mathrm{C} \\ { }^{*} \mathrm{~T}_{\mathrm{C}}-25^{\circ} \mathrm{C} \\ (\mathrm{~mW}) \\ \hline \end{gathered}$	VCBO (V)	VCEO (V)	hfE	$\begin{gathered} \mathrm{IC} \\ (\mathrm{~mA}) \end{gathered}$	$\mathbf{V C E}$ Max (V)	set) (mA)	$\begin{gathered} h_{50} \\ 1 \mathrm{kHz} \\ \text { MiN } \end{gathered}$	T MiN (MHz)
2N3563 2N3564 2N3565 2N3566	NPN NPN NPN NPN	$\begin{aligned} & R F \\ & R F \\ & G P \\ & G P \end{aligned}$	TIS62 2N4996 A5T3565 TIS97	$\begin{aligned} & 200 \\ & 200 \\ & 200 \\ & 300 \end{aligned}$	30 30 30 40	12 15 25 30	$\begin{aligned} & 20-200 \\ & 20- \\ & 150-600 \\ & 150-600 \end{aligned}$	$\begin{array}{r} 8 \\ 15 \\ 1 \\ 10 \end{array}$.3 .35 1	$\begin{array}{r} 20 \\ 1 \\ 100 \\ \hline \end{array}$	20	$\begin{array}{r} 600 \\ 400 \\ 40 \\ 40 \end{array}$
$\begin{aligned} & \text { 2N3567 } \\ & \text { 2N3568 } \\ & \text { 2N3569 } \\ & \text { 2N3570 } \end{aligned}$	NPN NPN NPN NPN	$\begin{aligned} & \text { GP } \\ & G P \\ & G P \\ & \text { RF } \end{aligned}$	A5T3567 A5T3568 A5T3569 2N3570	$\begin{aligned} & 300 \\ & 300 \\ & 300 \\ & 200 \end{aligned}$	80 80 80 30	40 60 40 15	$\begin{array}{r} 40-120 \\ 40-120 \\ 100-300 \\ 20-150 \end{array}$	150 150 150 5	.25 .25 .35	150 150 150	20	60 60 60 150
$\begin{aligned} & \text { 2N3571 } \\ & \text { 2N3572 } \\ & \text { 2N3573 } \\ & \text { 2N3574 } \end{aligned}$	$\begin{aligned} & \text { NPN } \\ & \text { NPN } \\ & \text { PCH } \\ & \text { PCH } \end{aligned}$	$\begin{aligned} & \text { RF } \\ & \text { RF } \\ & \text { FE } \\ & \text { FE } \end{aligned}$	$\begin{aligned} & \text { 2N3571 } \\ & \text { 2N3572 } \\ & \text { 2N3573 } \\ & \text { 2N3574 } \end{aligned}$	$\begin{aligned} & 200 \\ & 200 \\ & \text { SEE FET } \\ & \text { SEE FET } \end{aligned}$		$\begin{array}{r} 15 \\ 13 \\ \text { NGEABMIT } \\ \text { NGEABILIT } \end{array}$	$\begin{aligned} & 20-200 \\ & 20-300 \\ & \text { TY LIST } \\ & \text { TY LIST } \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$			$\begin{aligned} & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 150 \\ & 100 \end{aligned}$
$\begin{array}{\|l\|} \hline \text { 2N3575 } \\ \text { 2N3576 } \\ \text { 2N3578 } \\ \text { 2N3579 } \end{array}$	$\left\lvert\, \begin{aligned} & \text { PCH } \\ & \text { PNP } \\ & \text { PCH } \\ & \text { PNP } \end{aligned}\right.$	$\begin{array}{\|l\|} \hline F E \\ \text { SW } \\ \text { FE } \\ \text { GP } \end{array}$	$\begin{aligned} & \text { 2N3575 } \\ & \text { 2N3576 } \\ & \text { 2N2608 } \\ & \text { 2N3799 } \end{aligned}$	SEE FET 360 SEE FET 400	$\begin{aligned} & \text { NTERCHA } \\ & 20 \\ & \text { NTERCHA } \\ & 60 \end{aligned}$	$\begin{gathered} \text { NGEABILIT } \\ 15 \\ \text { NGEABIL } \\ 60 \end{gathered}$	$\begin{aligned} & \text { IY LIST } \\ & \text { 40-120 } \\ & \text { TY LIST } \\ & 30-120 \end{aligned}$	$\begin{array}{r} 10 \\ 1 \end{array}$	$\begin{array}{r} .15 \\ .5 \end{array}$	$\begin{array}{r} 10 \\ 5 \end{array}$	30	400 80
$\begin{aligned} & \text { 2N3580 } \\ & \text { 2N35s1 } \\ & \text { 2N3582 } \\ & \text { 2N3586 } \end{aligned}$	$\begin{aligned} & \text { PNP } \\ & \text { PNP } \\ & \text { PNP } \\ & \text { PNP } \end{aligned}$	$\begin{aligned} & G P \\ & G P \\ & G P \\ & S W \end{aligned}$	$\begin{aligned} & \text { 2N3799 } \\ & \text { 2N3799 } \\ & \text { 2N3799 } \\ & \text { 3N108 } \end{aligned}$	400 400 400 125	$\begin{aligned} & 60 \\ & 50 \\ & 50 \\ & 45 \end{aligned}$	60 40 40 45	$\begin{array}{r} 60-240 \\ 50-150 \\ 100-300 \end{array}$	1 .1 .1	.5 .5 .5	$\begin{aligned} & 5 \\ & 5 \\ & 5 \end{aligned}$	60 50 100	80 30 30 .1
$\begin{aligned} & \text { 2N3587 } \\ & \text { 2N3600 } \\ & \text { 2N3608 } \\ & \text { 2N3609 } \end{aligned}$	$\begin{aligned} & \mathrm{NPN} \\ & \mathrm{NPN} \\ & \mathrm{PCH} \\ & \mathrm{PCH} \end{aligned}$	$\begin{aligned} & \mathrm{DU} \\ & \mathrm{RF} \\ & \mathrm{FE} \\ & \mathrm{FE} \end{aligned}$	2N2640 2N4252 3N155	$\begin{aligned} & 300 \\ & 200 \\ & \text { SEE FET } \\ & \text { SEE FET } \end{aligned}$	$\begin{gathered} 60 \\ 30 \\ \text { INTERCHA } \end{gathered}$ NTERCH	$\begin{array}{r} 45 \\ 15 \\ \text { NGEABHII } \\ \text { NGEABMII } \end{array}$	$\begin{aligned} & 80-500 \\ & 20-150 \\ & \text { TY LIST } \\ & \text { TY LIST } \end{aligned}$	1	1	10	40	80 850
$\begin{aligned} & \text { 2N3610 } \\ & \text { 2N3631 } \\ & \text { 2N3633 } \\ & \text { 2N3634 } \end{aligned}$	PCH NCH NPN PNP	FE FE SW GP	2N3634	$\begin{aligned} & \text { SEE FET } \\ & \text { SEE FET } \\ & 300 \\ & \text { IW } \end{aligned}$	$\begin{gathered} \text { INTERCH } \\ \text { INTERCH } \\ 15 \\ 140 \end{gathered}$	NGEABLLIT NGEABIIIT 6 140	$\begin{aligned} & \text { ITY LIST } \\ & \text { ITY LIST } \\ & 50-150 \\ & 50.150 \end{aligned}$	$\begin{aligned} & 10 \\ & 50 \end{aligned}$	$\begin{array}{r} .21 \\ .5 \end{array}$	$\begin{array}{r} 3 \\ 50 \end{array}$	40	1.30 150
$\begin{aligned} & \text { 2N3635 } \\ & \text { 2N3636 } \\ & \text { 2N3637 } \\ & \text { 2N3638 } \end{aligned}$	PNP PNP PNP PNP	GP GP © SW	$\begin{aligned} & \text { 2N3635 } \\ & \text { 2N3636 } \\ & \text { 2N3637 } \\ & \text { AST3638 } \end{aligned}$	$\begin{aligned} & 16 \\ & 10 \\ & 16 \\ & 300 \end{aligned}$	$\begin{array}{r} 140 \\ 175 \\ 175 \\ 25 \end{array}$	$\begin{array}{r} 140 \\ 175 \\ 175 \\ 25 \end{array}$	$\begin{aligned} & 100-300 \\ & 50-150 \\ & 100-300 \\ & 30- \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \\ & 50 \\ & 50 \end{aligned}$	$\begin{array}{r} .5 \\ .5 \\ .5 \\ .25 \end{array}$	$\begin{aligned} & 50 \\ & 50 \\ & 50 \\ & 50 \end{aligned}$	80 40 80	200 150 200 100
$\begin{aligned} & \text { 2N3638A } \\ & \text { 2N3639 } \\ & \text { 2N3640 } \\ & \text { 2N3641 } \end{aligned}$	PNP PNP PNP NPN	$\begin{aligned} & \text { SW } \\ & \text { SW } \\ & \text { SW } \\ & R F \end{aligned}$	A5T3638A 2N5449	$\begin{aligned} & 300 \\ & 200 \\ & 200 \\ & 350 \end{aligned}$	$\begin{array}{r} 25 \\ 6 \\ 12 \\ 60 \end{array}$	$\begin{array}{r} 25 \\ 6 \\ 12 \\ 30 \end{array}$	$\begin{aligned} & 100- \\ & 30-120 \\ & 30-120 \\ & 40-120 \end{aligned}$	$\begin{array}{r} 50 \\ 10 \\ 10 \\ 150 \end{array}$	$\begin{array}{r} .25 \\ .16 \\ .2 \\ .22 \end{array}$	$\begin{array}{r} 50 \\ 10 \\ 10 \\ 150 \end{array}$		150 500 500 250
$\begin{aligned} & \text { 2N3642 } \\ & \text { 2N3643 } \\ & \text { 2N3644 } \\ & 2 N 3645 \end{aligned}$	NPN NPN PNP PNP	$\begin{aligned} & R F \\ & R F \\ & \text { SW } \\ & S W \end{aligned}$	2N5449 2N5449 A5T3644 A5T3645	$\begin{aligned} & 350 \\ & 350 \\ & 300 \\ & 300 \end{aligned}$	$\begin{aligned} & 60 \\ & 60 \\ & 45 \\ & 60 \end{aligned}$	$\begin{aligned} & 45 \\ & 30 \\ & 45 \\ & 60 \end{aligned}$	$\begin{array}{r} 40-120 \\ 100-300 \\ 100-300 \\ 100-300 \end{array}$	$\begin{aligned} & 150 \\ & 150 \\ & 150 \\ & 150 \end{aligned}$.22 .22 .4 .4	$\begin{aligned} & 150 \\ & 150 \\ & 150 \\ & 150 \end{aligned}$		250 250 200 200

TRANSISTOR INTERCHANGEABILITY MASTER LIST OF REGISTERED TYPES

TYFE NUMLE	$\begin{aligned} & 8 \\ & 8 \\ & 8 \end{aligned}$	8888888	$\begin{gathered} \text { II } \\ \text { Rupactmant } \\ \text { OR MANEST } \\ \text { ROUVAIENT } \end{gathered}$	MAXIMUM RATMNOS			Pactical CMANAGTEISIICS					
				$\begin{gathered} \mathrm{PT}_{\mathrm{T}} \\ \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ { }^{{ }^{2} \mathrm{C}=25^{\circ} \mathrm{C}} \\ (\mathrm{~mW}) \end{gathered}$	Vceo	Vceo (V)	MiN MA	$\begin{gathered} \mathbf{L} \\ (\mathrm{mA}) \end{gathered}$	$\begin{array}{\|l\|} \hline \mathbf{V C u} \\ \hline \begin{array}{l} \text { Max } \\ (V) \end{array} \\ \hline \end{array}$	$\begin{aligned} & (\mathrm{min}) \\ & \hline \mathrm{Ic} \\ & (\mathrm{~mA}) \end{aligned}$		$\begin{gathered} \text { Y } \\ \text { MN } \\ \text { (MHz) } \end{gathered}$
$\begin{aligned} & \text { 2N3646 } \\ & \text { 2N3647 } \\ & \text { 2N3648 } \\ & \text { 2N3659 } \end{aligned}$	$\begin{aligned} & \text { NPN } \\ & \text { NPN } \\ & \text { NPN } \\ & \text { NPN } \end{aligned}$	$\begin{aligned} & \text { SW } \\ & \text { SW } \\ & \text { SW } \\ & \text { GP } \end{aligned}$	A5T3903 2N5058	$\begin{array}{r} 200 \\ 400 \\ 400 \\ 4 W \end{array}$	$\begin{array}{r} 40 \\ 40 \\ 40 \\ 220 \end{array}$	$\begin{array}{r} 15 \\ 10 \\ 15 \\ 170 \end{array}$	$\begin{aligned} & 30-120 \\ & 25-150 \\ & 30-120 \\ & 20 . \end{aligned}$	$\begin{array}{r} 30 \\ 150 \\ 150 \\ 10 \end{array}$	$\begin{array}{r} .3 \\ .25 \\ .25 \end{array}$	$\begin{aligned} & 30 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \\ & 20 \end{aligned}$	$\begin{array}{r} 350 \\ 350 \\ 450 \\ 50 \end{array}$
$\begin{aligned} & \text { 2N3660 } \\ & \text { 2N3661 } \\ & \text { 2N3662 } \\ & \text { 2N3663 } \end{aligned}$	$\begin{aligned} & \text { PNP } \\ & \text { PNP } \\ & \text { NPN } \\ & \text { NPN } \end{aligned}$	$\begin{aligned} & \mathbf{G P} \\ & \mathbf{G P} \\ & \mathbf{R F} \\ & \mathbf{R F} \end{aligned}$	2N4030 2N4030 TIS62 T1562	+ $5 W$ $.5 W$ 200 200	40 60 18 30	30 50 12 12	$25-100$ $25-100$ 20. 20.	500 500 8 8	1.2 1.2 .6 .6	500 500 10 10		25 25 700 700
$\begin{array}{\|l\|} \text { 2N3664 } \\ \text { 2N3665 } \\ \text { 2N3666 } \\ \text { 2N3671 } \end{array}$	$\begin{aligned} & \text { NPN } \\ & \text { NPN } \\ & \text { NPN } \\ & \text { PNP } \end{aligned}$	$\begin{array}{\|l} \text { RF } \\ \text { SW } \\ \text { SW } \\ \text { GP } \end{array}$	2N2905	$\begin{gathered} 5 w \\ \cdot 5 W \\ \cdot 5 w \\ 600 \end{gathered}$	$\begin{array}{r} 60 \\ 120 \\ 120 \\ 60 \end{array}$	$\begin{aligned} & 60 \\ & 80 \\ & 80 \\ & 50 \end{aligned}$	$\begin{array}{r} 8-80 \\ 40-120 \\ 100-300 \\ 75-225 \end{array}$	$\begin{array}{r} 50 \\ 150 \\ 150 \\ 150 \end{array}$.75 .5 .5 .4	$\begin{aligned} & 250 \\ & 150 \\ & 150 \\ & 150 \end{aligned}$		300 60 60 200
$\begin{aligned} & \text { 2N3672 } \\ & \text { 2N3673 } \\ & \text { 2N3677 } \\ & \text { 2N3678 } \end{aligned}$	$\begin{aligned} & \text { PNP } \\ & \text { PNP } \\ & \text { PNP } \\ & \text { NPN } \end{aligned}$	GP GP SW ${ }^{6}$	$\begin{aligned} & \text { 2N2907 } \\ & \text { 2N3486A } \\ & \text { 2N2944 } \\ & \text { 2N2218A } \end{aligned}$	400 350 400 800	60 60 30 75	50 50 20 55	$\begin{aligned} & 75-225 \\ & 75-225 \\ & 40-120 \end{aligned}$	$\begin{aligned} & 150 \\ & 150 \\ & 150 \end{aligned}$	$\begin{aligned} & .4 \\ & .4 \\ & .4 \end{aligned}$	$\begin{aligned} & 150 \\ & 150 \\ & 150 \end{aligned}$		200 200 5 250
$\begin{aligned} & \text { 2N3679 } \\ & \text { 2N3680 } \\ & \text { 2N3681 } \\ & \text { 2N3682 } \end{aligned}$	P-N NPN NPN NPN	$\begin{aligned} & \text { UJ } \\ & \text { DU } \\ & \text { RF } \\ & \text { RF } \end{aligned}$	$\begin{aligned} & \text { 2N3680 } \\ & \text { 2N3570 } \\ & \text { 2N918 } \end{aligned}$	$\begin{array}{ccc}\text { SEE UNIUUNCTION } & \text { INTERCH } \\ 300 & 60 & 50 \\ 200 & 10 & 7 \\ 360 & 40 & 15\end{array}$			$\begin{aligned} & \text { ANGEABLII } \\ & 150-600 \\ & 20-220 \\ & 40-120 \end{aligned}$	ST $\begin{array}{r} .01 \\ 2 \\ 10 \end{array}$	$\begin{array}{r} .7 \\ .37 \end{array}$	$\begin{array}{r} 10 \\ 4 \end{array}$	300 20 45	$\begin{array}{r} 60 \\ 1.30 \\ 600 \end{array}$
2N3683 2N3604 2N3685 2N3686	NPN NCH NCH NCH	$\begin{aligned} & \text { RF } \\ & \text { FE } \\ & \text { FE } \\ & \text { FE } \end{aligned}$	$\begin{aligned} & \text { 2N3570 } \\ & \text { 2N3822 } \\ & \text { 2N3821 } \\ & \text { 2N3821 } \end{aligned}$								30	16
$\begin{aligned} & \text { 2N3687 } \\ & \text { 2N3688 } \\ & \text { 2N3689 } \\ & \text { 2N3690 } \end{aligned}$	NCH NPN NPN NPN	$\begin{aligned} & \mathbf{F E} \\ & \text { RF } \\ & \text { RF } \\ & \text { RF } \end{aligned}$	TIS84 T1584 7584	$\begin{aligned} & \text { SEE FET II } \\ & 200 \\ & 200 \\ & 200 \end{aligned}$	$\begin{gathered} \text { NTERCHA } \\ 40 \\ 40 \\ 40 \end{gathered}$	$\begin{gathered} \text { NGEABLL } \\ 40 \\ 40 \\ 40 \end{gathered}$	$\begin{array}{r} \text { Y LIST } \\ 30 \\ 30 . \\ 30 . \end{array}$	4				400 400 400
$\begin{aligned} & 2 N 3691 \\ & \text { 2N3692 } \\ & 2 N 3699 \\ & 2 N 3694 \end{aligned}$	NPN NPN NPN NPN	OP GP RF RF	$\begin{aligned} & \text { T1599 } \\ & \text { T1598 } \\ & 2 N 4994 \\ & 2 N 4995 \end{aligned}$	$\begin{aligned} & 200 \\ & 200 \\ & 200 \\ & 200 \end{aligned}$	$\begin{aligned} & 35 \\ & 35 \\ & 45 \\ & 45 \end{aligned}$	$\begin{aligned} & 25 \\ & 25 \\ & 45 \\ & 45 \end{aligned}$	$\begin{array}{r} 40 \\ 100 \\ 40 \\ 100 \end{array}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$	$.7$	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\begin{array}{r} 40 \\ 100 \end{array}$	$\begin{aligned} & 200 \\ & 200 \\ & 200 \\ & 200 \end{aligned}$
$\begin{aligned} & \text { 2N3695 } \\ & \text { 2N3696 } \\ & \text { 2N3697 } \\ & \text { 2N3698 } \end{aligned}$	PCH PCH PCH PCH	FE PR FE FE	$\begin{aligned} & \text { 2N3329 } \\ & \text { 2N3329 } \end{aligned}$	SEE FET INTERCHANOEAEHITY LIST SEE FET INTERCHANGEABLLTY LIST geE FET INTERCHANOEABUTY LIST SEE FET INTLACHANGEABLITY LIST								
$\begin{aligned} & \text { 2N3700 } \\ & \text { 2N3701 } \\ & \text { 2N3702 } \\ & \text { 2N3703 } \end{aligned}$	NPN NPN PNP PNP	GP GP OP GP	$\begin{aligned} & \text { 2N720A } \\ & \text { 2N720A } \\ & \text { 2N3702 } \\ & \text { 2N3703 } \end{aligned}$	$\begin{aligned} & 500 \\ & 300 \\ & 360 \\ & 360 \end{aligned}$	$\begin{array}{r} 140 \\ 140 \\ 40 \\ 50 \end{array}$	80 80 25 30	$\begin{array}{r} 100-300 \\ 40.120 \\ 60-300 \\ 30-150 \end{array}$	$\begin{array}{r} 150 \\ 150 \\ 50 \\ 50 \end{array}$	$\begin{array}{r} .2 \\ .2 \\ .25 \\ .25 \end{array}$	$\begin{array}{r} 150 \\ 150 \\ 50 \\ 50 \end{array}$	$\begin{aligned} & 80 \\ & 30 \end{aligned}$	100 80 100 100

TRANSISTOR INTERCHANGEABILITY MASTER LIST OF REGISTERED TYPES

TYPE NUMDEE		888888	$\begin{gathered} \text { TI } \\ \text { RERLACEMENT } \\ \text { OR NEAREST } \\ \text { ECUIVALENT } \end{gathered}$	MAXIMLUM RATMVOS			ERCTRICAL CHANACTERISTICS					
				$\begin{gathered} \mathrm{P} \\ \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ { }^{*} \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C} \\ (\mathrm{~mW}) \end{gathered}$	Veso (V)	VCEO (V)	M Min max	$\begin{gathered} \hline \mathrm{L} \\ (\mathrm{~mA}) \end{gathered}$	Max M)	$\begin{aligned} & \text { (sent) } \\ & \hline \mathrm{IC} \\ & \text { (mA) } \end{aligned}$	Mfo 1 kftz MN	f Mins (MHz)
$\begin{aligned} & \text { 2N3704 } \\ & \text { 2N3705 } \\ & \text { 2N3706 } \\ & \text { 2N3707 } \end{aligned}$	NPN NPN NPN NPN	GP GP GP GP	2N3704 2N3705 2N3706 2N3707	$\begin{aligned} & 360 \\ & 360 \\ & 360 \\ & 360 \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \\ & 40 \\ & 30 \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \\ & 20 \\ & 30 \end{aligned}$	$\begin{array}{r} 100-300 \\ 50-150 \\ 30-600 \\ 100-400 \end{array}$	$\begin{aligned} & 50 \\ & 50 \\ & 50 \\ & .1 \end{aligned}$.6 .8 1 1	$\begin{array}{r} 100 \\ 100 \\ 100 \\ 10 \end{array}$		$\begin{aligned} & 100 \\ & 100 \\ & 100 \\ & 100 \end{aligned}$
$\begin{aligned} & \text { 2N3708 } \\ & \text { 2N3709 } \\ & \text { 2N3710 } \\ & \text { 2N3711 } \end{aligned}$	NPN NPN NPN NPN	GP GP GP GP	$\begin{aligned} & \text { 2N3708 } \\ & \text { 2N3709 } \\ & \text { 2N3710 } \\ & \text { 2N3711 } \end{aligned}$	$\begin{aligned} & 360 \\ & 360 \\ & 360 \\ & 360 \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \\ & 30 \\ & 30 \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \\ & 30 \\ & 30 \end{aligned}$	$\begin{array}{r} 45-660 \\ 45-165 \\ 90-330 \\ 180-660 \end{array}$	1 1 1	1 1 1 1	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$	$\begin{array}{r} 45 \\ 45 \\ 90 \\ 180 \end{array}$	
$\begin{array}{\|l\|} \text { 2N3712 } \\ \text { 2N3721 } \\ \text { 2N3722 } \\ \text { 2N3723 } \end{array}$	NPN NPN NPN NPN	GP GP SW SW	$\begin{aligned} & \text { 2N3711 } \\ & \text { 2N3725 } \end{aligned}$	$\begin{aligned} & 800 \\ & 360 \\ & 800 \\ & 800 \end{aligned}$	$\begin{array}{r} 150 \\ 18 \\ 80 \\ 100 \end{array}$	$\begin{array}{r} 150 \\ 18 \\ 60 \\ 80 \end{array}$	$\begin{aligned} & 30-150 \\ & 60-660 \\ & 40-150 \\ & 40-150 \end{aligned}$	$\begin{array}{r} 30 \\ 10 \\ 100 \\ 100 \end{array}$	$\begin{array}{r} 2 \\ .22 \\ .25 \end{array}$	$\begin{array}{r} 50 \\ 100 \\ 10 \end{array}$	25	$\begin{gathered} 40 \\ 300 \\ 300 \end{gathered}$
$\begin{aligned} & \text { 2N3724 } \\ & \text { 2N372AA } \\ & \text { 2N3725 } \\ & \text { 2N3725A } \end{aligned}$	NPN NPN NPN NPN	$\left\lvert\, \begin{aligned} & s w \\ & s w \\ & s w \\ & s w \end{aligned}\right.$	$\begin{aligned} & \text { 2N3724 } \\ & \text { 2N3724A } \\ & \text { 2N3725 } \\ & \text { 2N3725A } \end{aligned}$	800 IW 800 1W	$\begin{aligned} & 50 \\ & 50 \\ & 80 \\ & 80 \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \\ & 50 \\ & 50 \end{aligned}$	$\begin{aligned} & 60-150 \\ & 60-150 \\ & 60-150 \\ & 60-150 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \\ & 100 \\ & 100 \end{aligned}$	$\begin{array}{r} .2 \\ .2 \\ .26 \\ .26 \end{array}$	$\begin{aligned} & 100 \\ & 100 \\ & 100 \\ & 100 \end{aligned}$		$\begin{aligned} & 300 \\ & 300 \\ & 300 \\ & 300 \end{aligned}$
$\begin{aligned} & \text { 2N3726 } \\ & \text { 2N3727 } \\ & \text { 2N3728 } \\ & \text { 2N3729 } \end{aligned}$	$\begin{aligned} & \text { PNP } \\ & \text { PNP } \\ & \text { NPN } \\ & \text { NPN } \end{aligned}$	$\left\lvert\, \begin{aligned} & D U \\ & D U \\ & D U \\ & D U \end{aligned}\right.$	$\begin{aligned} & \text { 2N3810 } \\ & \text { 2N3810 } \\ & \text { 2N2060 } \\ & \text { 2N2060 } \end{aligned}$	$\begin{aligned} & 400 \\ & 400 \\ & 450 \\ & 450 \end{aligned}$	$\begin{aligned} & 45 \\ & 45 \\ & 60 \\ & 60 \end{aligned}$	$\begin{aligned} & 45 \\ & 45 \\ & 30 \\ & 30 \end{aligned}$	$\begin{array}{r} 135-350 \\ 135-350 \\ 80-280 \\ 80-280 \end{array}$	$\begin{array}{r} 1 \\ 1 \\ 150 \\ 150 \end{array}$	$\begin{aligned} & .25 \\ & .25 \\ & .22 \\ & .22 \end{aligned}$	$\begin{array}{r} 50 \\ 50 \\ 150 \\ 150 \end{array}$	$\begin{array}{r} 135 \\ 135 \\ 50 \\ 50 \end{array}$	$\begin{aligned} & 200 \\ & 200 \\ & 250 \\ & 250 \end{aligned}$
$\begin{aligned} & \text { 2N3734 } \\ & \text { 2N373AA } \\ & \text { 2N3735 } \\ & \text { 2N3735A } \end{aligned}$	$\begin{aligned} & \text { NPN } \\ & \text { NPN } \\ & \text { NPN } \\ & \text { NPN } \end{aligned}$	$\begin{aligned} & \text { SW } \\ & \text { sw } \\ & \text { SW } \\ & \text { sw } \end{aligned}$	$\begin{aligned} & \text { 2N3734 } \\ & \text { 2N3734 } \\ & \text { 2N3735 } \\ & \text { 2N3735 } \end{aligned}$	$\begin{aligned} & \text { iw } \\ & \text { iw } \\ & \text { iw } \\ & \text { iw } \end{aligned}$	50 50 75 75	30 30 50 50	$\begin{aligned} & 30-120 \\ & 30-120 \\ & 20-80 \\ & 20-80 \end{aligned}$	14 14 14 1A	.2 .9 .2 .9	10 14 10 14		300 250 250 250
$\left\lvert\, \begin{aligned} & \text { 2N3736 } \\ & \text { 2N3736A } \\ & \text { 2N3737 } \\ & \text { 2N3737A } \end{aligned}\right.$	$\begin{aligned} & \text { NPN } \\ & \text { NPN } \\ & \text { NPN } \\ & \text { NPN } \end{aligned}$	$\left\lvert\, \begin{aligned} & s w \\ & s w \\ & s w \\ & s w \end{aligned}\right.$		$\begin{aligned} & 500 \\ & 500 \\ & 500 \\ & 500 \end{aligned}$	50 50 75 75	$\begin{aligned} & 30 \\ & 30 \\ & 50 \\ & 50 \end{aligned}$	$\begin{aligned} & 30-120 \\ & 30-120 \\ & 20-80 \\ & 20-80 \end{aligned}$	14 14 14 14	.2 .9 .2 .9	10 14 10 14		300 250 250 250
$\begin{aligned} & \text { 2N3742 } \\ & \text { 2N3743 } \\ & \text { 2N3762 } \\ & \text { 2N3763 } \end{aligned}$	$\begin{aligned} & \text { NPN } \\ & \text { PNP } \\ & \text { PNP } \\ & \text { PNP } \end{aligned}$	$\left\lvert\, \begin{aligned} & G P \\ & G P \\ & S W \\ & S W \end{aligned}\right.$	$\begin{aligned} & \text { 2N5058 } \\ & \text { 2N3244 } \\ & \text { 2N3245 } \end{aligned}$	$\begin{aligned} & \text { iw } \\ & \text { iw } \\ & \text { iw } \\ & \text { iw } \end{aligned}$	$\begin{array}{r} 300 \\ 300 \\ 40 \\ 60 \end{array}$	$\begin{array}{r} 300 \\ 300 \\ 40 \\ 60 \end{array}$	$\begin{aligned} & 20-200 \\ & 25-250 \\ & 30-120 \\ & 20-80 \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \\ & \text { 1A } \\ & \text { 1A } \end{aligned}$	1 5 .1 .1	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$	20 30	30 30 180 150
$\begin{aligned} & \text { 2N3764 } \\ & \text { 2N3765 } \\ & \text { 2N3774 } \\ & \text { 2N3775 } \end{aligned}$	PNP PNP PNP PNP	$\begin{aligned} & \text { GP } \\ & \text { GP } \\ & \text { GP } \\ & \text { GP } \end{aligned}$	$\begin{aligned} & \text { 2N3486 } \\ & \text { 2N3486A } \\ & \text { 2N4030 } \\ & \text { 2N4030 } \end{aligned}$	$\begin{array}{r} 500 \\ 500 \\ \cdot 5 w \\ \cdot 5 w \end{array}$	$\begin{aligned} & 40 \\ & 60 \\ & 40 \\ & 60 \end{aligned}$	$\begin{aligned} & 40 \\ & 60 \\ & 60 \end{aligned}$	$\begin{aligned} & 30-120 \\ & 20-80 \\ & 20-60 \\ & 20-60 \end{aligned}$	14 14 200 200	.1 .1 .2 .2	10 10 200 200		180 150 1 1
$\begin{aligned} & \text { 2N3776 } \\ & \text { 2N3777 } \\ & \text { 2N3778 } \\ & \text { 2N3779 } \end{aligned}$	PNP PNP PNP PNP	$\begin{aligned} & G P \\ & G P \\ & G P \\ & G P \end{aligned}$		$\begin{aligned} & \text { "5w } \\ & * 5 w \\ & * 5 W \\ & \cdot 5 w \end{aligned}$	$\begin{array}{r} 80 \\ 100 \\ 40 \\ 60 \end{array}$	80 100 40 60	$\begin{aligned} & 20-60 \\ & 20-60 \\ & 10-40 \\ & 10-40 \end{aligned}$	200 200 200 200	.2 .2 .2 .2	200 200 200 200		1 1 1 1

TRANSISTOR INTERCHANGEABILITY MASTER LIST OF REGISTERED TYPES

TYPENUMBER			$\begin{aligned} & \text { TI } \\ & \text { REMLACEMENT } \\ & \text { OR NEAREST } \\ & \text { EQUVAULENT } \end{aligned}$	maximum ratines			aECTRICAL Characteristics					
							hPE		$\mathrm{V}_{\text {cz(ser) }}$		$\left\{\begin{array}{c} h_{60} \\ 1 \mathrm{k} k \mathrm{tz} \\ \mathrm{MmN} \end{array}\right.$	
							Min max	$\begin{gathered} \mathrm{Ic} \\ (\mathrm{~mA}) \end{gathered}$	$\begin{aligned} & \max \\ & \text { (v) } \end{aligned}$	$\begin{gathered} \mathbf{I C} \\ (\mathrm{mA}) \end{gathered}$		
${ }^{2 N} 3780$	PNP	GP		*5W	80	80	10-40	200	. 2	200		1
2N3781	PNP	GP		*5W	100	100	10.40	200	. 2	200		1
2N3782	PNP	GP	2N4030	*5W	40	40	10.60	1A	. 75	14		1
2N3795	PNP	GP		-5W	120	120	12-36	10	. 2	10		. 5
$\begin{array}{\|l\|} \text { 2N3796 } \\ \text { 2N3797 } \\ \text { 2N3798 } \\ \text { 2N3799 } \end{array}$	$\begin{array}{\|l\|} \mathrm{NCH} \\ \mathrm{NCH} \\ \mathrm{NCH} \\ \mathrm{PNP} \\ \mathrm{PNP} \end{array}$	$\begin{aligned} & \mathrm{FE} \\ & \mathrm{FE} \\ & \mathrm{GP} \\ & \mathrm{GP} \end{aligned}$	$\begin{aligned} & \text { 2N3798 } \\ & \text { 2N3799 } \end{aligned}$	SEE FET INTERCHANGEABILTY LIST SEE FET INTERCHANGEABIUTY LIST								
					60	60	150-450	. 5	. 2	. 1	150	30
					60	60	300.900	. 5	. 2	. 1	300	30
$\begin{array}{\|l\|l} \text { 2N3800 } \\ \text { 2N3801 } \\ \text { 2N3802 } \\ \text { 2N3803 } \end{array}$	PNP	DU	2N3352	250	60	60	150-450	. 1	. 2	. 1	150	100
	PNP	DU	2N3352	250	60	60	300-900	. 1	. 2	. 1	300	100
	PNP	DU	2N3347	250	60	60	150-450	. 1	. 2	. 1	150	100
	PNP	DU	2N3351	250	60	60	300-900	. 1	. 2	. 1	300	100
$\begin{aligned} & \text { 2N3804 } \\ & \text { 2N3804A } \\ & \text { 2N3805 } \\ & \text { 2N3805A } \end{aligned}$	PNP	DU	2N3350	250	60	60	150-450	. 1	. 2	. 1	150	100
	PNP	DU	2N3350	250	60	60	150-450	. 1	. 2	. 1	150	30
	PNP	DU	2N3350	250	60	60	300-900	. 1	. 2	. 1	300	100
	PNP	DU	2N3350	250	60	60	300-900	. 1	. 2	. 1	300	30
2N3806 2N3807 2N3808 2N3809	PNP	DU	2N3806	500	60	60	150-450	. 1	. 2	. 1	150	100
	PNP	DU	2N3807	500	60	60	300-900	. 1	. 2	. 1	300	100
	PNP	DU	2N3808	500°	60	60	150450	. 1	. 2	. 1	150	100
	PNP	DU	2N3809	500	60	∞	300-900	. 1	. 2	. 1	300	100
2N3810 2N3810A 2N3811 2N3811A	PNP	DU	2N3810	500	60	∞	150-450	. 1	. 2	. 1	150	100
	PNP	DU	2N3810	500	60	60	150-450	. 1	. 2	. 1	150	30
	PNP	DU	2N3811	500	60	60	300-900	. 1	. 2	. 1	300	100
	PNP	DU	2N3811	500	60	60	300-900	. 1	. 2	. 1	300	30
2N3812 2 N 3813 2N3814 2N3815	PNP	DU		350	60	60	150-450	. 1	. 2	. 1	150	100
	PNP	DU		350	60	60	300-900	. 1	. 2	. 1	300	100
	PNP	DU		350	60	60	150-450	. 1	. 2	. 1	150	100
	PNP	DU		350	60	60	300-900	. 1	. 2	. 1	300	100
2N3816 2N3816A 2N3817 2N3817A	PNP	DU		350	60	60	150-450	. 1	. 2	. 1	150	100
	PNP	DU		250	60	60	$150-450$. 1	. 2	. 1	150	30
	PNP	DU		350	60	60	300-900	. 1	. 2	. 1	300	100
	PNP	DU		250	60	60	300-900	. 1	. 2	. 1	300	30
2N3819 2N3820 2N3821 2N3822	NCH	fE	2N3819	SEE FET INTERCHANGEABLLTY LIST SEE FET INTERCHANGEABILTYY LIST SEE FET INTERCHANGEABLITYY LIST SEE FET INTERCHANGEABILTY LIST								
	PCH	FE	2N3820									
	NCH	FE	2N3821									
	NCH	FE	2N3822									
$\begin{aligned} & \text { 2N3823 } \\ & \text { 2N3824 } \\ & \text { 2N3825 } \\ & \text { 2N3826 } \end{aligned}$	NCH NCH NPN NPN	$\begin{array}{\|l\|l} \hline \mathbf{F E} \\ \mathrm{FE} \\ \mathrm{RF} \\ \mathrm{RF} \end{array}$	2N3823	SEE FET INTERCHANGEABLITY LIST SEE FET INTERCHANGEABILITY LIST								
			2N3824									
									. 25	2		
			2N4994	360	60	45	40-160	10				200

TRANSISTOR INTERCHANGEABILITY MASTER LIST OF REGISTERED TYPES

TYPE NUMEER	$\begin{aligned} & \text { 息 } \\ & \frac{8}{6} \end{aligned}$	83333	$\begin{aligned} & \text { T1 } \\ & \text { REPLACEMENT } \\ & \text { OR MEAREST } \\ & \text { ECUIVALENT } \end{aligned}$	MAXIMOM RATNVOS			ELECTRLCAL CHARACTERISTICS					
				$\begin{gathered} T_{A}=25^{\circ} \mathrm{C} \\ { }^{*} \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C} \\ (\mathrm{~mW}) \\ \hline \end{gathered}$	Vcso (V)	Vceo (V)	MBN MAX	$\begin{gathered} \mathbf{L C}^{\prime} \\ (\mathrm{ma}) \\ \hline \end{gathered}$		(set) (ma)	$\begin{aligned} & \mathrm{h}_{\mathrm{fe}} \\ & \mathrm{I} \text { kdz } \\ & \operatorname{MiN} \end{aligned}$	TT
$\begin{aligned} & \text { 2N3827 } \\ & \text { 2N3828 } \\ & \text { 2N3829 } \\ & \text { 2N3830 } \end{aligned}$	NPN NPN PNP NPN	$\begin{aligned} & \text { RF } \\ & \text { RF } \\ & \text { SW } \\ & \text { GP } \end{aligned}$	$\begin{aligned} & \text { 2N4997 } \\ & \text { 2N3829 } \\ & \text { 2N2193 } \end{aligned}$	$\begin{aligned} & 360 \\ & 300 \\ & 360 \\ & 1 W \end{aligned}$	60 40 35 80	45 40 20 50	$\begin{array}{r} 100-400 \\ 30-200 \\ 30-120 \\ 30- \end{array}$	$\begin{array}{r} 10 \\ 12 \\ 30 \\ 150 \end{array}$.18 .3	10 150		200 360 350 200
$\begin{aligned} & \text { 2N3831 } \\ & \text { 2N3832 } \\ & \text { 2N3838 } \\ & \text { 2N3839 } \end{aligned}$	$\begin{aligned} & \text { NPN } \\ & \mathbf{N P N} \\ & N / P \\ & \text { NPN } \end{aligned}$	$\begin{array}{\|l} \text { GP } \\ \text { SW } \\ G P \\ R F \end{array}$	2N2193 2N3571	$\begin{aligned} & 1 W \\ & 200 \\ & 250 \\ & 200 \end{aligned}$	70 15 60 30	40 6 40 15	$\begin{aligned} & 35- \\ & 25-125 \\ & 100-300 \\ & 30- \end{aligned}$	$\begin{array}{r} 150 \\ 2 \\ 150 \\ 3 \end{array}$.3 .4 .4	$\begin{array}{r} 150 \\ 10 \\ 150 \end{array}$	60	$\begin{aligned} & 200 \\ & 800 \\ & 200 \\ & 200 \end{aligned}$
$\begin{aligned} & \text { 2N3840 } \\ & \text { 2N3841 } \\ & 2 N 3842 \\ & 2 N 3843 \end{aligned}$	$\begin{aligned} & \text { PNP } \\ & \text { PNP } \\ & \text { PNP } \\ & \mathbf{N P N} \end{aligned}$	$\begin{aligned} & \text { SW } \\ & \text { SW } \\ & \text { SW } \\ & \text { RF } \end{aligned}$	$\begin{aligned} & \text { 2N2946 } \\ & \text { 2N2946 } \\ & \text { 2N2946 } \\ & \text { T1594 } \end{aligned}$	$\begin{aligned} & 400 \\ & 300 \\ & 300 \\ & 200 \end{aligned}$	$\begin{array}{r} 50 \\ 100 \\ 120 \\ 30 \end{array}$	$\begin{array}{r} 50 \\ 100 \\ 120 \\ 30 \end{array}$	30. 15- 10. 20-40	.2 .2 1 2	$\begin{array}{r} .1 \\ .12 \\ 1 \end{array}$	$\begin{gathered} 5 \\ 5 \\ 10 \end{gathered}$		6 1.5 1 60
$\begin{aligned} & \text { 2N3843A } \\ & \text { 2N3844 } \\ & \text { 2N3844A } \\ & \text { 2N3845 } \end{aligned}$	$\left\lvert\, \begin{aligned} & \text { NPN } \\ & \text { NPN } \\ & \text { NPN } \\ & \text { NPN } \end{aligned}\right.$	$\begin{aligned} & \text { RF } \\ & \text { RF } \\ & \text { RF } \\ & \text { RF } \end{aligned}$	$\begin{aligned} & \text { TIS94 } \\ & \text { TIS94 } \\ & \text { TIS94 } \\ & \text { TIS94 } \end{aligned}$	200 200 200 200	30 30 30 30	30 30 30 30	$\begin{aligned} & 20-40 \\ & 35-70 \\ & 35-70 \\ & 60-120 \end{aligned}$	2 2 2 2	1 1 1 1	10 10 10 10		60 90 90 120
$\begin{aligned} & \text { 2N3845A } \\ & \text { 2N385A } \\ & \text { 2N3854A } \\ & \text { 2N3855 } \end{aligned}$	NPN NPN NPN NPN	$\begin{aligned} & R F \\ & R F \\ & R F \\ & R F \end{aligned}$	$\begin{aligned} & \text { TIS94 } \\ & \text { TIS94 } \\ & \text { TIS94 } \\ & \text { TIS94 } \end{aligned}$	$\begin{aligned} & 200 \\ & 200 \\ & 200 \\ & 200 \end{aligned}$	30 18 30 18	$\begin{aligned} & 30 \\ & 18 \\ & 30 \\ & 18 \end{aligned}$	$\begin{aligned} & 60-120 \\ & 35-70 \\ & 35-70 \\ & 60-120 \end{aligned}$	2 2 2 2	1 .2 .2 .2	10 10 10 10		120 100 100 130
$\begin{aligned} & \text { 2N3855A } \\ & \text { 2N3856 } \\ & \text { 2N3856A } \\ & \text { 2N3858 } \end{aligned}$	NPN NPN NPN NPN	$\begin{aligned} & \text { RF } \\ & \text { RF } \\ & \text { RF } \\ & \text { RF } \end{aligned}$	$\begin{aligned} & \text { TIS94 } \\ & \text { TIS94 } \\ & \text { TIS94 } \\ & \text { TIS95 } \end{aligned}$	$\begin{aligned} & 200 \\ & 200 \\ & 200 \\ & 360 \end{aligned}$	$\begin{aligned} & 30 \\ & 18 \\ & 30 \\ & 30 \end{aligned}$	$\begin{aligned} & 30 \\ & 18 \\ & 30 \\ & 30 \end{aligned}$	$\begin{array}{r} 60-120 \\ 100-200 \\ 100-200 \\ 60-120 \end{array}$	2 2 2 2	.2 .2 .2 .125	10 10 10 10		130 140 140 90
$\begin{aligned} & \text { 2N3858A } \\ & \text { 2N3859 } \\ & \text { 2N3859A } \\ & \text { 2N3860 } \end{aligned}$	NPN NPN NPN NPN	$\begin{aligned} & R F \\ & R F \\ & R F \\ & R F \\ & R F \end{aligned}$	$\begin{aligned} & \text { TIS95 } \\ & \text { TIS95 } \\ & \text { TIS95 } \\ & \text { TIS95 } \end{aligned}$	$\begin{aligned} & 360 \\ & 360 \\ & 360 \\ & 360 \end{aligned}$	$\begin{aligned} & 60 \\ & 30 \\ & 60 \\ & 30 \end{aligned}$	$\begin{aligned} & 60 \\ & 30 \\ & 60 \\ & 30 \end{aligned}$	$\begin{array}{r} 60.120 \\ 100-200 \\ 120-200 \\ 150-300 \end{array}$	2 2 2 2	.125 .125 .125 .125	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$		90 90 90 90
$\begin{aligned} & \text { 2N3862 } \\ & \text { 2N3866 } \\ & \text { 2N3866A } \\ & \text { 2N3867 } \end{aligned}$	NPN NPN NPN PNP	SW RF RF SW	$\begin{aligned} & \text { 2N3866 } \\ & \text { 2N3866 } \end{aligned}$	$\begin{array}{r} 360 \\ -5 W \\ 5 W \\ 1 W \end{array}$	$\begin{aligned} & 50 \\ & 55 \\ & 55 \\ & 40 \end{aligned}$	20 30 30 40	$\begin{aligned} & 50-150 \\ & 10-200 \\ & 25-200 \\ & 40-200 \end{aligned}$	10 50 50 1.5	.25 1 1 .75	$\begin{array}{r} 10 \\ 100 \\ 100 \\ 1.5 \end{array}$		600 500 800 60
$\begin{array}{\|l} \text { 2N3868 } \\ \text { 2N3869 } \\ \text { 2N3877 } \\ \text { 2N3877A } \end{array}$	PNP NPN NPN NPN	SW RF GP GP	$\begin{aligned} & \text { 2N5550 } \\ & \text { 2N5550 } \end{aligned}$	$1 W$ 800 360 360	60 40 70 85	60 20 70 85	$30-150$ 20.150 20 20	1.5 30 2 2	.75 .7 1 1	1.5 450 10 10		60 400
$\begin{aligned} & \text { 2N3880 } \\ & \text { 2N3881 } \\ & \text { 2N3882 } \\ & \text { 2N3900 } \end{aligned}$	NPN NPN PCH NPN	RF RF FE GP	$\begin{aligned} & \text { 2N3570 } \\ & \text { 2N3711 } \end{aligned}$	$\begin{gathered} 200 \\ 600 \\ \text { SEE FET } \\ 360 \end{gathered}$	$\begin{gathered} 30 \\ 60 \\ \text { INTERCH } \\ 18 \end{gathered}$	$\begin{gathered} 15 \\ 35 \\ \text { ANGEABLL } \\ 18 \end{gathered}$	$\begin{aligned} & 30-200 \\ & \text { UST } \\ & 250-500 \end{aligned}$	3 2	1.5	150	$\begin{array}{r} 50 \\ 50 \\ 170 \end{array}$	1.26 70

TRANSISTOR INTERCHANGEABILITY MASTER LIST OF REGISTERED TYPES

TYPE Number		$\begin{aligned} & 8 \\ & \frac{8}{8} \\ & \frac{8}{5} \\ & 8 \end{aligned}$	IImemacrmantOR MimasestEOUNAIENT	MAXIMUM RATMESS			ELECTRICAL CHANACTEXISTICS					
				$\begin{gathered} \mathrm{PT}_{\mathrm{Y}} \\ \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ { }^{*} \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C} \\ (\mathrm{~mW}) \\ \hline \end{gathered}$	Veso (V)	Veso(V)	hre		VCE(sat)		$\begin{gathered} \text { Mfo } \\ \text { M hits } \\ \text { MMN } \end{gathered}$	$\begin{gathered} \text { TT } \\ \text { min } \\ \text { (MOHz) } \end{gathered}$
							M M M M	$\begin{gathered} V_{C} \\ (\mathrm{ma}) \end{gathered}$	$\begin{aligned} & \mathrm{max} \\ & (\mathrm{~V}) \\ & \hline \end{aligned}$	$\begin{array}{r} \mathrm{LC} \\ (\mathrm{~mA}) \\ \hline \end{array}$		
$\begin{aligned} & \text { 2N3900A } \\ & \text { 2N3901 } \\ & \text { 2N3903 } \\ & \text { 2N3904 } \end{aligned}$	NPN NPN NPN NPN	GP GP SW SW	$\begin{aligned} & 2 N 3711 \\ & 2 N 3711 \\ & 2 N 3903 \\ & 2 N 3904 \end{aligned}$	$\begin{aligned} & 360 \\ & 360 \\ & 310 \\ & 310 \end{aligned}$	$\begin{aligned} & 18 \\ & 18 \\ & 60 \\ & 60 \end{aligned}$	$\begin{aligned} & 18 \\ & 18 \\ & 40 \\ & 40 \end{aligned}$	$\begin{array}{r} 250-500 \\ 350-700 \\ 50-150 \\ 100-300 \end{array}$	$\begin{array}{r} 2 \\ 2 \\ 10 \\ 10 \end{array}$. 2	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 170 \\ & 350 \end{aligned}$	250 300
$\begin{aligned} & \text { 2N3905 } \\ & \text { 2N3906 } \\ & \text { 2N3907 } \\ & \text { 2N3908 } \end{aligned}$	PNP PNP NPN NPN	SW SW DU DU	2N3905 2N3906 2N2915 2N2916	$\begin{aligned} & 310 \\ & 310 \\ & 300 \\ & 300 \end{aligned}$	$\begin{aligned} & 40 \\ & 40 \\ & 60 \\ & 60 \end{aligned}$	$\begin{aligned} & 40 \\ & 40 \\ & 45 \\ & 60 \end{aligned}$	$\begin{array}{r} 50-150 \\ 100-300 \\ 60-300 \\ 100-500 \end{array}$	10 10 .01 .01	.25 .25 .35 .35	$\begin{array}{r} 10 \\ 10 \\ 1 \\ 1 \end{array}$		200 250 60 60
$\begin{aligned} & \text { 2N3909 } \\ & \text { 2N3910 } \\ & \text { 2N3911 } \\ & \text { 2N3910 } \end{aligned}$	$\begin{aligned} & \mathrm{PCH} \\ & \text { PNP } \\ & \text { PNP } \\ & \text { PNNP } \end{aligned}$	$\left\lvert\, \begin{aligned} & \text { FE } \\ & \text { SW } \\ & \text { SW } \\ & \text { SW } \end{aligned}\right.$	$\begin{aligned} & \text { 2N3909 } \\ & \text { 2N2946A } \\ & \text { 2N2946A } \\ & \text { 2N2946A } \end{aligned}$	$\begin{aligned} & \text { SEE FET } \\ & 500 \\ & 500 \\ & 500 \end{aligned}$	60 60 60	$\begin{aligned} & 50 \\ & 40 \\ & 30 \end{aligned}$	$\begin{aligned} & \text { IY LST } \\ & 40-160 \\ & 60-240 \\ & 90- \end{aligned}$	1 1	.3 .3 .3	$\begin{aligned} & 10 \\ & 10 \\ & 10 \end{aligned}$		4 8 10
$\begin{aligned} & \text { 2N3913 } \\ & \text { 2N3914 } \\ & \text { 2N3915 } \\ & \text { 2N3916 } \end{aligned}$	$\begin{aligned} & \text { PNP } \\ & \text { PNP } \\ & \text { PNP } \\ & \text { NPN } \end{aligned}$	$\begin{aligned} & \text { SW } \\ & \text { SW } \\ & \text { SW } \\ & \text { GP } \end{aligned}$		400 400 400 $* 5 W$	60 60 60 150	50 40 30 150	$\begin{aligned} & 40-160 \\ & 60-240 \\ & 90 \\ & 40-200 \end{aligned}$	1 1 1 150	.3 .3 .3 5	$\begin{array}{r} 10 \\ 10 \\ 10 \\ 150 \end{array}$	30	4 8 10 50
2N3921 2N3922 2N3923 2N3930	NCH NCH NPN PNP	$\begin{aligned} & \text { FE } \\ & \text { FE } \\ & \text { GP } \\ & \mathbf{G P} \end{aligned}$	2N5545	SEE FET SEE FET 800 400	SEE FET INTERCHANGEARMTY LIST SEE FET INTERCHANGEAEMITY LIST			$\begin{aligned} & 25 \\ & 10 \end{aligned}$	$\begin{array}{r} 1 \\ .25 \end{array}$	$\begin{aligned} & 25 \\ & 10 \end{aligned}$	20 100	40 40
2N3931 2N3932 2N3933 2N3934	PNP NPN NPN NCH	$\begin{aligned} & \text { GP } \\ & \text { RF } \\ & \text { RF } \\ & \text { FE } \end{aligned}$	$\begin{aligned} & \text { 2N6937 } \\ & \text { 2N3571 } \\ & \text { 2N5545 } \end{aligned}$	$\begin{gathered} 700 \\ 200 \\ 200 \\ \text { SEE FET } \end{gathered}$	$\begin{array}{r} 180 \\ 30 \\ 40 \\ \text { NTERCHA } \end{array}$	$\begin{array}{r} 180 \\ 20 \\ 30 \end{array}$	$\begin{aligned} & 80-300 \\ & 40-150 \\ & 60-200 \\ & \text { LST } \end{aligned}$	10 2 2	. 25	10	100 50 60	40 750 750
$\begin{aligned} & \text { 2N3935 } \\ & \text { 2N3941 } \\ & \text { 2N3942 } \\ & \text { 2N3943 } \end{aligned}$	NCH NPN NPN NPN	$\text { \| } \begin{aligned} & \text { FE } \\ & \text { DU } \\ & \text { DU } \\ & \text { DU } \end{aligned}$	2N5546	$\begin{gathered} \text { SEE FET } \\ 300 \\ 300 \\ 500 \end{gathered}$	ITERCHA 60 60 60	$\begin{aligned} & \text { VEABL } \\ & 45 \\ & 45 \\ & 45 \end{aligned}$	$\begin{aligned} & \text { Y LIST } \\ & 400-1200 \\ & 400.1200 \\ & 400.1200 \end{aligned}$	$\begin{aligned} & .01 \\ & .01 \\ & .01 \end{aligned}$			$\begin{aligned} & 300 \\ & 300 \\ & 300 \end{aligned}$	200 200 200
$\begin{aligned} & \text { 2N3944 } \\ & \text { 2N3945 } \\ & \text { 2N3946 } \\ & \text { 2N3947 } \end{aligned}$	NPN NPN NPN NPN	DU GP GP GP	$\begin{aligned} & \text { 2N2270 } \\ & \text { 2N2217 } \\ & \text { 2N2219 } \end{aligned}$	$\begin{array}{r} 500 \\ -5 W \\ 360 \\ 360 \end{array}$	$\begin{aligned} & 60 \\ & 70 \\ & 60 \\ & 60 \end{aligned}$	$\begin{aligned} & 45 \\ & 50 \\ & 40 \\ & 40 \end{aligned}$	$\begin{gathered} 400-1200 \\ 40-250 \\ 50-150 \\ 100-300 \end{gathered}$	$\begin{array}{r} .01 \\ 150 \\ 10 \\ 10 \end{array}$	$\begin{aligned} & .5 \\ & .3 \\ & .3 \end{aligned}$	$\begin{array}{r} 150 \\ 50 \\ 50 \end{array}$	$\begin{array}{r} 300 \\ 50 \\ 100 \end{array}$	200 60 250 300
$\begin{aligned} & \text { 2N3948 } \\ & \text { 2N3953 } \\ & \text { 2N3954 } \\ & \text { 2N3955 } \end{aligned}$	NPN NPN NCH NCH	$\begin{aligned} & \mathbf{R F} \\ & \mathbf{R F} \\ & \hline \mathbf{F E} \\ & \mathbf{F E} \end{aligned}$	$\begin{aligned} & 2 N 3571 \\ & 2 N 5546 \end{aligned}$	$\begin{aligned} & \text { 1W } \\ & \text { 200 } \\ & \text { SEE FET it } \\ & \text { SEE FET It } \end{aligned}$	SEE FET INTERCHAMGEABUITY LIST SEE FET INTERCHANGEABHITY LIST			$\begin{array}{r} 50 \\ 2 \end{array}$			40	700 1.36
$\begin{aligned} & \text { 2N3956 } \\ & \text { 2N3957 } \\ & \text { 2N3958 } \\ & \text { 2N3959 } \end{aligned}$	NCH NCH NCH NPN	FE FE FE SW	$\begin{aligned} & \text { 2N5547 } \\ & \text { 2N5547 } \\ & \text { 2N5547 } \end{aligned}$	SEE FET INTERCHANGEABMITY LIST SEE FET INTERCHANGEABUTYY LIST SEE FET INTERCHANGEABLITY LST					. 3	30		1.36

TRANSISTOR INTERCHANGEABILITY
 MASTER LIST OF REGISTERED TYPES

TYPE NUMBER	$\begin{aligned} & \frac{\Sigma}{6} \\ & \frac{1}{\frac{1}{2}} \\ & \frac{1}{6} \end{aligned}$	Z 最 \mathbf{y} $\frac{1}{2}$ $\mathbf{3}$	II REPLACEMENT OR NEAREST EQUIVALENT	MAXIMUM RATINGS			ELECTRICAL CHARACTERISTICS					
				$\begin{gathered} \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ { }^{\circ} \mathrm{T} \mathrm{C}=25^{\circ} \mathrm{C} \\ (\mathrm{~mW}) \end{gathered}$	Vceo (V)	$V_{C E O}$ (V)	MFE	$\begin{gathered} \text { lc } \\ (\mathrm{mA}) \\ \hline \end{gathered}$	VCE MAX (V)	$\begin{gathered} (\mathrm{sect}) \\ \hline \\ \hline(\mathrm{mA}) \\ \hline \end{gathered}$	Mfo 1 kHz MIN	$\begin{gathered} \mathrm{f} \\ \mathrm{MIN} \\ (\mathrm{MHz}) \end{gathered}$
$\begin{aligned} & \text { 2N3960 } \\ & \text { 2N3962 } \\ & \text { 2N3963 } \\ & \text { 2N3964 } \end{aligned}$	NPN PNP PNP PNP	$\begin{aligned} & S W \\ & G P \\ & G P \\ & G P \end{aligned}$	2N3962 2N3963 2N3964	$\begin{aligned} & 400 \\ & 360 \\ & 360 \\ & 360 \end{aligned}$	$\begin{aligned} & 20 \\ & 60 \\ & 80 \\ & 45 \end{aligned}$	$\begin{aligned} & 12 \\ & 60 \\ & 80 \\ & 45 \end{aligned}$	$\begin{array}{r} 40-200 \\ 100-300 \\ 100-300 \\ 250-500 \end{array}$	$\begin{aligned} & 10 \\ & .01 \\ & .01 \\ & .01 \end{aligned}$	$\begin{array}{r} .3 \\ .25 \\ .25 \\ .25 \end{array}$	30 10 10 10	$\begin{aligned} & 100 \\ & 100 \\ & 250 \end{aligned}$	1.6 G 40 40 50
$\begin{aligned} & \text { 2N3965 } \\ & \text { 2N3966 } \\ & \text { 2N3967 } \\ & \text { 2N3968 } \end{aligned}$	$\left\lvert\, \begin{aligned} & \mathrm{PNP} \\ & \mathrm{NCH} \\ & \mathrm{NCH} \\ & \mathrm{NCH} \end{aligned}\right.$	$\begin{aligned} & \mathrm{GP} \\ & \mathrm{FE} \\ & \mathrm{FE} \\ & \mathrm{FE} \end{aligned}$	$\begin{aligned} & \text { 2N3965 } \\ & \text { 2N3966 } \\ & \text { 2N3822 } \\ & \text { 2N3822 } \end{aligned}$	360 60 60 $250-500$ SEE FET INTERCHANGEABHITY LIST SEE FET INTERCHANGEABILITY LIST SEE FET NTERCHANGEABILITY LIST					. 25	10	250	50
$\begin{aligned} & \text { 2N3969 } \\ & \text { 2N3970 } \\ & \text { 2N3971 } \\ & \text { 2N3972 } \end{aligned}$	NCH NCH NCH NCH	$\begin{aligned} & \text { FE } \\ & \text { FE } \\ & \text { FE } \\ & \text { FE } \end{aligned}$	$\begin{aligned} & \text { 2N3821 } \\ & \text { 2N3970 } \\ & \text { 2N3971 } \\ & \text { 2N3972 } \end{aligned}$	SEE FET INTERCHANGEABILITY LIST SEE FET INTERCHANGEABILLTY LIST SEE FET INTERCHANGEABILITY LIST SEE FET INTERCHANGEABILITY LIST								
$\begin{aligned} & \text { 2N3973 } \\ & \text { 2N3974 } \\ & \text { 2N3975 } \\ & \text { 2N3976 } \end{aligned}$	NPN NPN NPN NPN	$\begin{aligned} & s w \\ & s w \\ & s w \\ & s w \end{aligned}$	TIS 133 TIS133 TIS133 TIS 133	$\begin{aligned} & 360 \\ & 360 \\ & 360 \\ & 360 \end{aligned}$	60 60 60 60	30 30 30 30	$\begin{aligned} & 35-100 \\ & 55-200 \\ & 35-100 \\ & 55-200 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$.3 .3 .3 .3	150 150 150 150		200 200 200 200
$\begin{aligned} & \text { 2N3977 } \\ & \text { 2N3978 } \\ & \text { 2N3979 } \\ & \text { 2N3980 } \end{aligned}$	PNP PNP PNP P-N	SW SW SW UJ	$\begin{aligned} & \text { 2N2944 } \\ & \text { 2N2944 } \\ & \text { 2N2944 } \\ & \text { 2N3980 } \end{aligned}$	$\begin{aligned} & 400 \\ & 400 \\ & 400 \end{aligned}$ SEE UNI	$\begin{aligned} & 15 \\ & 25 \\ & 40 \end{aligned}$ JUNCTIO	$\begin{aligned} & 10 \\ & 20 \\ & 35 \end{aligned}$ N INTERCI	$\begin{aligned} & 40- \\ & 30- \\ & 20- \end{aligned}$ ANGEABILITY	$\begin{array}{r} 5 \\ 5 \\ 5 \\ \text { LIST } \quad \end{array}$.1 .15 .15	5		1 1 1
$\begin{aligned} & \text { 2N3981 } \\ & \text { 2N3982 } \\ & \text { 2N3983 } \\ & \text { 2N3984 } \end{aligned}$	NPN NPN NPN NPN	$\begin{aligned} & \text { GP } \\ & \text { GP } \\ & \text { RF } \\ & \text { RF } \end{aligned}$	$\begin{aligned} & \text { 2N2219 } \\ & \text { 2N2218 } \\ & \text { TIS62 } \\ & \text { TIS63 } \end{aligned}$	800 800 200 200	60 50 30 30	30 20 12 12	$30-120$ $40-140$ $30-$ $20-$	150 150 4 4	. 4	150 150		250 250 500 400
2N3985 2N3993 2N3994 2N4006	NPN PCH PCH PNP	RF FE FE SW	TIS64 2N3993 2N3994 2N2944A	200 30 12 $20-$ SEE FET INTERCHANGEABILITY LIST SEE FET INTERCHANGEABILITY LIST 400 10 6							40	300 20
2N4007 2N4008 2N4009 2N4010	PNP PNP PNP PNP	$\begin{aligned} & s w \\ & s w \\ & s w \\ & s w \end{aligned}$	$\begin{aligned} & \text { 2N2945A } \\ & \text { 2N2946A } \end{aligned}$	400 400 400 400	20 35 10 20	15 30 6 15					30 20 40 30	15 15 20 15
2N4011 2N4013 2N4014 2N4015	PNP NPN NPN PNP	$\begin{aligned} & s w \\ & s w \\ & s w \\ & D U \end{aligned}$	2N4O13 2N4014 2N3350	$\begin{aligned} & 400 \\ & 360 \\ & 360 \\ & 400 \end{aligned}$	35 60 80 60	$\begin{aligned} & 30 \\ & 40 \\ & 50 \\ & 60 \end{aligned}$	$\begin{array}{r} 60-150 \\ 60-150 \\ 135-350 \end{array}$	$\begin{array}{r} 100 \\ 100 \\ 1 \end{array}$. 25	50	$\begin{array}{r} 20 \\ 135 \end{array}$	15 300 300 200
2N4016 2N4017 2N4018 2N4019	$\begin{array}{\|l} \text { PNP } \\ \text { PNP } \\ \text { PNP } \\ \text { PNP } \end{array}$	DU DU DU DU	$\begin{aligned} & \text { 2N3350 } \\ & \text { 2N3352 } \\ & \text { 2N3352 } \\ & \text { 2N3350 } \end{aligned}$	600 600 400 400	60 80 60 45	60 80 60 45	$135-350$ $100-500$	1	. 25	50	135 100 250	200 40 7

TRANSISTOR INTERCHANGEABILITY MASTER LIST OF REGISTERED TYPES

TRANSISTOR INTERCHANGEABILITY MASTER LIST OF REGISTERED TYPES

TYP NUMEM		$\begin{aligned} & 8 \\ & 8 \\ & 8 \\ & 8 \end{aligned}$	$\begin{gathered} \text { II } \\ \text { RIPMACAMNT } \\ \text { OR NLARMST } \\ \text { COUVALINT } \end{gathered}$	MAXMMUM RATINOS			CLCHRLCA CMANACTLESTICS					
									$\mathbf{V}_{\mathbf{C}}(\text { (wat) }$			
$\begin{aligned} & \text { 2N4086 } \\ & \text { 2N4087 } \\ & \text { 2N4087A } \\ & \text { 2N408B } \end{aligned}$	NPN NPN NPN PCH	OP 0 OP FE	71398 71597 71897 2N3331	$\begin{gathered} 200 \\ 200 \\ 200 \\ \text { SEE FET } \end{gathered}$	$\begin{array}{r} 12 \\ 12 \\ 12 \\ \text { NTERCH } \end{array}$	$\begin{array}{r} 12 \\ 12 \\ 12 \end{array}$	$\begin{aligned} & 150-300 \\ & 250-500 \\ & 250-500 \\ & \text { TY LIST } \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 2 \end{aligned}$			$\begin{aligned} & 150 \\ & 250 \\ & 250 \end{aligned}$	
$\begin{aligned} & \text { 2N4089 } \\ & \text { 2N4090 } \\ & \text { 2N4091 } \\ & \text { 2N4092 } \end{aligned}$	$\begin{aligned} & \mathrm{PCH} \\ & \mathrm{PCH} \\ & \mathrm{NCH} \\ & \mathrm{NCH} \end{aligned}$	$\begin{aligned} & \text { FE } \\ & \text { FE } \\ & \text { FE } \\ & \text { FE } \end{aligned}$	$\begin{aligned} & \text { 2N3330 } \\ & \text { 2N3329 } \\ & \text { 2N4091 } \\ & \text { 2N4092 } \end{aligned}$	SEE PRT SEE FET SEE FET SEE HET		NOEABLIT NGEABLITY NGEABHIT NGEABLLT	$\begin{aligned} & \text { Y LIST } \\ & \text { YY LST } \\ & \text { YY LST } \\ & \text { IY LIS } \end{aligned}$					
$\begin{aligned} & \text { 2N4093 } \\ & \text { 2N4094 } \\ & \text { 2N4095 } \\ & \text { 2N4099 } \end{aligned}$	$\begin{aligned} & \mathrm{NCH} \\ & \mathrm{NCH} \\ & \mathrm{NCH} \\ & \mathrm{NPN} \end{aligned}$	F FE FE DU	$\begin{aligned} & \text { 2N4093 } \\ & \text { 2N4856 } \\ & \text { 2N4857 } \end{aligned}$	$\begin{gathered} \text { SEE PET } \\ \text { SEE PLT } \\ \text { SEE FET } \\ 300 \end{gathered}$	NTERCH NTERCH NTERCH 53	NOEABLIT NOEABILT NGEABILIT 55	Y List Y LIST Y LIST 175.	1				150
2NA100 2N4104 2N4117 2N4117A	NPN NPN NCH NCH	$\begin{aligned} & \text { DU } \\ & \text { GP } \\ & \text { FE } \\ & \text { FE } \end{aligned}$	2N4104	$\begin{aligned} & 400 \\ & 300 \\ & \text { SEE FEI } \\ & \text { SEE FEI } \end{aligned}$		$\left.\begin{array}{r}35 \\ 60\end{array} \right\rvert\,$	175. TY LIST TY LIST	1			1400	150 540
$\begin{aligned} & \text { 2N4117A } \\ & \text { 2N4118 } \\ & 2 N 4119 \\ & 2 N 4120 \end{aligned}$	$\begin{aligned} & \mathrm{NCH} \\ & \mathrm{NCH} \\ & \mathrm{NCH} \\ & \mathrm{PCH} \end{aligned}$	$\begin{aligned} & \mathrm{FE} \\ & \mathrm{FE} \\ & \mathrm{FE} \\ & \mathrm{FE} \\ & \mathrm{FE} \end{aligned}$	3N174	SEE FET SEE FE SEE PE SEE FE	NTERC NTERC NTERC NTERCH	NGEABILI NGEABLIT NGEABILI NGEABILIT	TIST TY LIST TY LIST TY LIST					
2N4120A 2N4121 2N4122 2N4123	PCH PNP PNP NPN	FE GP GP SW	A5T2907 A5T2907 2N4123	$\begin{gathered} \text { SEE FE1 } \\ 200 \\ 200 \\ 310 \end{gathered}$	$\begin{aligned} & \text { VTERC1 } \\ & 40 \\ & 40 \\ & 40 \end{aligned}$	$\begin{aligned} & \text { NGEABILI } \\ & 40 \\ & 40 \\ & 30 \end{aligned}$	$\begin{array}{\|l} \text { TY LIST } \\ 70-200 \\ 150-300 \\ 50-150 \end{array}$	$\begin{array}{r} 10 \\ 10 \\ 2 \end{array}$	$\begin{array}{r} .14 \\ .3 \end{array}$	$\begin{aligned} & 10 \\ & 50 \end{aligned}$	50	450 250
2NA124 2N4125 2N4126 2N4134	NPN PNP PNP NPN	SW SW SW RF	2N4124 2N4125 2N4126 2N4252	$\begin{aligned} & 310 \\ & 310 \\ & 310 \\ & 200 \end{aligned}$	$\begin{aligned} & 40 \\ & 30 \\ & 25 \\ & 30 \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \\ & \mathbf{2 5} \\ & \mathbf{3 0} \end{aligned}$	120-300 50-150 120-360	2 2 2	.3 .4 .4	$\begin{aligned} & 50 \\ & 50 \\ & 50 \end{aligned}$	$\begin{array}{r} 120 \\ 50 \\ 120 \\ 200 \end{array}$	300 200 250 350
2N4135 2N4138 2N4139 2N4140	NPN NPN NCH NPN	RF SW FE GP	2N4252 2N4138 2N3458 TIS 110	$\begin{gathered} 200 \\ 300 \\ \text { SEE FE1 } \\ 210 \end{gathered}$	$\begin{gathered} 30 \\ 30 \\ \text { NTERCH } \\ 60 \end{gathered}$	$\begin{gathered} 30 \\ 30 \\ \text { NNGEABILI } \\ 30 \end{gathered}$	$\begin{aligned} & 50- \\ & \text { iTY LIST } \\ & 40-120 \end{aligned}$	$\begin{array}{r} 1 \\ 150 \end{array}$. 4	150	200	425 20 250
2N4141 2N4142 2N4143 2N4207	NPN PNP PNP PNP	GP GP GP SW	A.5T2222 A.5T2907 AST2907	$\begin{aligned} & 200 \\ & 200 \\ & 200 \\ & 300 \end{aligned}$	$\begin{array}{r} 60 \\ 60 \\ 60 \\ 6 \end{array}$	30 40 40 6	$\begin{array}{r} 100-300 \\ 40-120 \\ 100-300 \\ 50-120 \end{array}$	$\begin{array}{r} 150 \\ 150 \\ 150 \\ 10 \end{array}$. 4	$\begin{aligned} & 150 \\ & 150 \\ & 150 \end{aligned}$		250 200 200 650
$\begin{aligned} & \text { 2N4208 } \\ & \text { 2N4209 } \\ & \text { 2N4220 } \\ & \text { 2N4220A } \end{aligned}$	$\begin{array}{\|l} \text { PNP } \\ \text { PNP } \\ \mathrm{NCH} \\ \mathrm{NCH} \end{array}$	SW SW FE FE	2N4220	$\begin{gathered} 300 \\ 300 \\ \text { SEE FE } \\ \text { SEEEE } \end{gathered}$		$\begin{gathered} 12 \\ 15 \\ \text { ANGEABILI } \\ \text { ANGEABILI } \end{gathered}$	$\begin{array}{r} 30.120 \\ 50-120 \end{array}$ ITY LIST ITY LIST	$\begin{aligned} & 10 \\ & 10 \end{aligned}$				700 850

TRANSISTOR INTERCHANGEABILITY MASTER LIST OF REGISTERED TYPES

TYPE NUMEER		$\begin{aligned} & 3 \\ & \frac{8}{8} \\ & 8 \\ & \frac{5}{4} \\ & 8 \end{aligned}$	TIREPLACEMENTOR NEARESTECUYMALENT	MAXIMUM RATINOS			EAECTRICAL CHARAGTEMSTICS					
				$\begin{gathered} P_{T} \\ T_{A}=25^{\circ} \mathrm{C} \\ { }^{{ }^{\circ}{ }^{\prime} \mathrm{C}=25^{\circ} \mathrm{C}} \\ (\mathrm{~mW}) \end{gathered}$	Veno (V)	VCEO (V)	her	$\begin{gathered} c \\ (\mathrm{~mA}) \end{gathered}$		set (mA)	$\left\lvert\, \begin{gathered} \mathrm{h}_{\mathrm{f}} \\ 6 \\ 1 \mathrm{kdz} \\ \text { MAN } \end{gathered}\right.$	Min
$\begin{aligned} & 2 N 4343 \\ & 2 N 4351 \\ & 2 N 4352 \\ & 2 N 4353 \end{aligned}$	$\begin{aligned} & \mathrm{PCH} \\ & \mathrm{NCH} \\ & \mathrm{NCH} \\ & \mathrm{PCH} \end{aligned}$	$\begin{aligned} & \mathrm{FE} \\ & \mathrm{FE} \\ & \mathrm{FE} \\ & \mathrm{FE} \\ & \mathrm{FE} \end{aligned}$	2N3993 3N169 3N160 3N161	SEE FET INTERCHANGEABILITY LIST SEE FET MTERCHANGEABBLTY LIST SEE FET INTERCHANGEABILITY LIST SEE FET INTERCHANGEABILTTY LIST								
2N4354 2N4355 2N4356 2N4357		$\begin{aligned} & G P \\ & G P \\ & G P \\ & G P \end{aligned}$	AST2907 A5T2907 AST2907	$\begin{aligned} & 350 \\ & 350 \\ & 350 \\ & 400 \end{aligned}$	$\begin{array}{r} 60 \\ 60 \\ 80 \\ 240 \end{array}$	$\begin{array}{r} 60 \\ 60 \\ 60 \\ 240 \end{array}$	$\begin{array}{r} 50-500 \\ 100-400 \\ 50-250 \\ 80-300 \end{array}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$	1 1 1 .5	$\begin{aligned} & 1 A \\ & 1 A \\ & 1 A \\ & 10 \end{aligned}$	100	$\begin{array}{r} 100 \\ 100 \\ 100 \\ 40 \end{array}$
$\begin{aligned} & 2 \mathrm{~N} 4358 \\ & 2 \mathrm{~N} 4359 \\ & 2 \mathrm{~N} 4360 \\ & 2 \mathrm{~N} 4381 \end{aligned}$	$\begin{aligned} & \text { PNP } \\ & \text { PNP } \\ & \text { PCH } \\ & \text { PCH } \end{aligned}$	$\begin{aligned} & \text { GP } \\ & \text { GP } \\ & \text { FE } \\ & \text { FE } \end{aligned}$	$\begin{aligned} & \text { 2N3798 } \\ & \text { A5T5462 } \end{aligned}$	SEE FET INTERCHANGEABILITY LIST SEE FET INTERCHANGEABILITY LIST					. 5	10 10	$\begin{array}{r} 100 \\ 50 \end{array}$	40
$\begin{aligned} & \text { 2N4382 } \\ & 2 N 4383 \\ & 2 \mathrm{~N} 4384 \\ & 2 \mathrm{~N} 4385 \end{aligned}$	PCH NPN NPN NPN	FE GP GP GP	2N2484	$\begin{array}{ccc}\text { SEE FET INTERCHANGEABLL } \\ \mathbf{8 0 0} & 40 & 30 \\ 500 & 40 & 30 \\ 800 & 40 & 30\end{array}$			$\begin{aligned} & \text { TY LIST } \\ & 100-500 \\ & 100-500 \\ & 40-500 \end{aligned}$.01 .01 .01	.2 .2 .2	$\begin{aligned} & 10 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \\ & 100 \end{aligned}$	30 30 30
$\begin{aligned} & \text { 2N4386 } \\ & \text { 2N4389 } \\ & \text { 2N4390 } \\ & \text { 2N4391 } \end{aligned}$	NPN PNP NPN NCH	GP SW GP FE	2N2483 2N4423 2N3114 2N4391	$\begin{gathered} 500 \\ 200 \\ 500 \\ \text { SEE FET } \end{gathered}$	$\begin{array}{r} 40 \\ 12 \\ 120 \\ \text { INTERCH } \end{array}$	$\begin{array}{r} 30 \\ 12 \\ 120 \\ \text { NGEABIL } \end{array}$	$\begin{aligned} & 40-500 \\ & 30-180 \\ & 20- \\ & \text { TY LIST } \end{aligned}$.01 10 2	.2 .15 .3	10 10 20	100	30 50
$\left\lvert\, \begin{aligned} & \text { 2N4392 } \\ & \text { 2N4393 } \\ & \text { 2N } 4397 \\ & 2 N 4400 \end{aligned}\right.$	NCH NCH NPN NPN	FE FE RF SW	2N4392 2N4393 2N4252 TSS 110	SEE FET INTERCHANGEABILITY LIST SEE FET INTERCHANGEABILITY LIST					. 4	150	40 20	600 200
2 N 4 Cl 2 N 4402 2N4403 2 N 404	NPN PNP PNP PNP	sw SW SW GP	TISIII AST2907 A.5T2907	$\begin{array}{r} 310 \\ 310 \\ 310 \\ +5 W \end{array}$	$\begin{aligned} & 60 \\ & 40 \\ & 40 \\ & 80 \end{aligned}$	$\begin{aligned} & 40 \\ & 40 \\ & 40 \\ & 80 \end{aligned}$	$\begin{array}{r} 100-300 \\ 50-150 \\ 100-300 \\ 40-120 \end{array}$	$\begin{aligned} & 150 \\ & 150 \\ & 150 \\ & 150 \end{aligned}$	$\begin{array}{r} .4 \\ .4 \\ .4 \\ .15 \end{array}$	$\begin{array}{r} 150 \\ 150 \\ 150 \\ 10 \end{array}$	40 30 60	250 150 200 200
2N4405 2N406 2N4407 2N4409	PNP PNP PNP NPN	$\begin{aligned} & G P \\ & G P \\ & G P \\ & G P \end{aligned}$	2N4409	$\begin{array}{r} 4 \mathrm{~W} \\ +5 \mathrm{~W} \\ +5 \mathrm{~W} \\ 310 \end{array}$	80 80 80 80	80 80 80 50	$\begin{array}{r} 100-300 \\ 30-100 \\ 80-250 \\ 60-400 \end{array}$	150 500 500 1	15 .2 .2 .2	10 150 150 1		200 150 150 60
2N4A10 2N4411 2N4412 2N4412A	NPN PNP PNP PNP	GP RF GP GP	2N4410	$\begin{aligned} & 310 \\ & 150 \\ & 600 \\ & 600 \end{aligned}$	$\begin{array}{r} 120 \\ 15 \\ 40 \\ 60 \end{array}$	$\begin{aligned} & 80 \\ & 12 \\ & 30 \\ & 60 \end{aligned}$	$\begin{aligned} & 60-400 \\ & 40- \\ & 100-500 \\ & 100-500 \end{aligned}$	$\begin{array}{r} 1 \\ .5 \\ .01 \\ .01 \end{array}$	$\begin{aligned} & .2 \\ & .2 \\ & .2 \end{aligned}$	$\begin{array}{r} 1 \\ 10 \\ 10 \end{array}$	120 120	60 400 20 20
2 NA 413 2N443A 2 N 4414 2N4414A	$\begin{array}{\|l\|l\|} \text { PNP } \\ \text { PNP } \\ \text { PNP } \\ \text { PNP } \end{array}$	GP GP GP GP	$\begin{aligned} & \text { 2N3964 } \\ & \text { 2N3965 } \end{aligned}$	$\begin{aligned} & 400 \\ & 400 \\ & 600 \\ & 600 \end{aligned}$	$\begin{aligned} & 40 \\ & 60 \\ & 40 \\ & 60 \end{aligned}$	$\begin{aligned} & 30 \\ & 60 \\ & 30 \\ & 60 \end{aligned}$	$\begin{array}{r} 100-500 \\ 100-500 \\ 40-500 \\ 40-500 \end{array}$.01 .01 .01 .01	.2 .2 .2 .2	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$	120 120 120 120	20 20 20 20

TRANSISTOR INTERCHANGEABILITY MASTER LIST OF REGISTERED TYPES

	E38	$\begin{aligned} & \mathbf{z} \\ & 0 \\ & 8 \\ & 8 \\ & 8 \\ & 8 \end{aligned}$	$\begin{aligned} & \text { TI } \\ & \text { REPLACEMENT } \\ & \text { OR NEAREST } \\ & \text { EQUVALENT } \end{aligned}$	MAXIMUM RATINOS			EECTRICAL CHARACTEIUSIICS					
TYPE Numben				$\begin{array}{ccc} \hline P_{T} & & \\ T_{A}=25^{\circ} \mathrm{C} & V_{C=O} & V_{C E O} \\ { }^{{ }^{\circ} \mathrm{T} C=25^{\circ} \mathrm{C}} & & \\ (\mathrm{~mW}) & \text { (V) } & \text { (V) } \\ \hline \end{array}$			\qquad	$\begin{gathered} k c \\ (\mathrm{~mA}) \end{gathered}$		$\begin{aligned} & \mathrm{nel}) \\ & \mathrm{k} \\ & (\mathrm{~mA}) \end{aligned}$	$\begin{gathered} h_{f 0} \\ 1 \mathrm{kdzz} \\ \text { MiN } \end{gathered}$	
2N4859A 2N4860 2N4860A 2N4861	$\begin{aligned} & \mathrm{NCH} \\ & \mathrm{NCH} \\ & \mathrm{NCH} \\ & \mathrm{NCH} \end{aligned}$	$\begin{array}{\|l\|} \mathbf{F E} \\ \text { FE } \\ \hline \mathbf{F E} \\ \mathbf{F E} \end{array}$	$\begin{aligned} & \text { 2N4859A } \\ & \text { 2N4860 } \\ & \text { 2N4860A } \\ & \text { 2N486) } \end{aligned}$	SEE FET INTERCHANGEABLLTY LIST SEE FET INTERCHANGEABILTY UST SEE FET NTERCHANGEABILTY UST SEE FET NTERCHANGEABHITY LIST								
2N4861A 2N4867 2N4868 2NA869	$\begin{aligned} & \mathrm{NCH} \\ & \mathrm{NCH} \\ & \mathrm{NCH} \\ & \mathrm{NCH} \end{aligned}$	$\begin{aligned} & \text { FE } \\ & \text { FE } \\ & F E \\ & \text { FE } \end{aligned}$	2N4861A	SEE FET INTERCHANGEABLITY LIST SEE FET NTERCHANGEABLLTY LIST SEE FET INTERCHANGEABILTY UST SEE FET INTERCHANGEABLLTY LIST								
$\begin{aligned} & \text { 2N4870 } \\ & \text { 2N4871 } \\ & \text { 2N4872 } \\ & \text { 2N4873 } \end{aligned}$	P-N P-N PNP NPN	$\begin{aligned} & \text { UJ } \\ & \text { UJ } \\ & \text { SW } \\ & \text { SW } \end{aligned}$	2N4891 2N4891	SEE UNUUNCTION INTERCHANGEABILTTY LIST SEE UNIJUNCTION INTERCHANGEABILITY LIST					.13 .2	1 10		900 900
$\begin{aligned} & \text { 2N4874 } \\ & \text { 2N4875 } \\ & \text { 2N4876 } \\ & \text { 2N4878 } \end{aligned}$	NPN NPN NPN NPN	$\begin{aligned} & \text { RF } \\ & \text { RF } \\ & \text { RF } \\ & \text { DU } \end{aligned}$	2N4874 2N4875 2N4876	720 720 720 300	30 40 40 60	20 25 30 60	200-600	. 01	. 35	1	200 200 200	900 800 650 200
$\begin{aligned} & \text { 2N4879 } \\ & \text { 2N4880 } \\ & \text { 2N4881 } \\ & \text { 2N4882 } \end{aligned}$	NPN NPN NCH NCH	DU DU FE FE	2N6449 2N6449	SEE FET INTERCHANGEABILITY LIST SEE FET INTERCHANGEABELITY LIST					. 35	$\begin{aligned} & 1 \\ & 1 \end{aligned}$		150 150
2N4883 2N4884 2N4885 2N4886	NCH NCH NCH NCH	FE FE FE FE	2N6450 2N6450 2N6450 2N6450	SEE FET INTERCHANGEABHLTY LIST SEE FET INTERCHANGEABILLTY LIST SEE FET INTERCHANGEABIETY LIST SEE FET NTERCHANGEABLITY LIST								
2N4888 2N4889 2N4890 2N4891	$\begin{aligned} & \text { PNP } \\ & \text { PNP } \\ & \text { PNP } \\ & \text { P-N } \end{aligned}$	GP GP GP UJ	A5T5401 A5T5401 2N2905 2N4891	$\begin{gathered} 300 \\ 300 \\ \text { IW } \\ \text { SEE UN } \end{gathered}$	$\begin{array}{r} 150 \\ 150 \\ 60 \\ \text { UUNCTIO } \end{array}$	$\begin{array}{r} 150 \\ 150 \\ 40 \end{array}$ N INTERCH	$\begin{aligned} & 30- \\ & 70 . \\ & 50-250 \end{aligned}$ HANGEABLITY	$\begin{array}{r} 1 \\ 1 \\ 150 \\ \hline \end{array}$.5 .5 1.4	10 10 150		30 40 100
2N4892 2N4893 2N4894 2N4916	$\begin{aligned} & \text { P-N } \\ & P-N \\ & P-N \\ & \text { PNP } \end{aligned}$	$\begin{aligned} & \text { UJ } \\ & \text { UJ } \\ & \text { UJ } \\ & \text { GP } \end{aligned}$	2N4892 2N4893 2N4894 A5T3905	SEE UNLUUNCTION INTERCHANGEABILITY LIST SEE UNUUNCTION INTERCHANGEABLITY LIST SEE UNIUUNCTION INTERCHANGEABILITY LIST					. 14	10		400
2 N 4917 2N4924 2N4925 2N4926	PNP NPN NPN NPN	GP GP GP GP	A5T3906 2N3114 2N3114 2N5059	$\begin{aligned} & 200 \\ & 10 \\ & \text { iw } \\ & \text { iw } \end{aligned}$	$\begin{array}{r} 30 \\ 100 \\ 150 \\ 200 \end{array}$	$\begin{array}{r} 30 \\ 100 \\ 150 \\ 200 \end{array}$	$\begin{array}{r} 150-300 \\ 40-200 \\ 40-200 \\ 20-200 \end{array}$	10 150 150 30	.14 .4 .4 2	10 50 50 30	25	450 100 100 30
$\begin{aligned} & \text { 2N4927 } \\ & \text { 2N492B } \\ & \text { 2N4929 } \\ & \text { 2N4930 } \end{aligned}$	NPN PNP PNP PNP	GP GP GP GP	$\begin{aligned} & \text { 2N5059 } \\ & \text { 2N3634 } \\ & \text { 2N3634 } \end{aligned}$	$\begin{aligned} & 1 W \\ & 600 \\ & 600 \\ & 600 \end{aligned}$	$\begin{aligned} & 250 \\ & 100 \\ & 150 \\ & 200 \end{aligned}$	250 100 150 200	$\begin{aligned} & 20-200 \\ & 25-200 \\ & 25-200 \\ & 20-200 \end{aligned}$	30 10 10 10	2 .5 .5 5	30 10 10 10	25	30 100 100 20

TRANSISTOR INTERCHANGEABILITY MASTER LIST OF REGISTERED TYPES

TRANSISTOR INTERCHANGEABILITY
MASTER LIST OF REGISTERED TYPES

TYPENUMBER		$\begin{aligned} & z \\ & \frac{z}{8} \\ & \frac{8}{3} \\ & 3 \\ & 3 \end{aligned}$	$\begin{gathered} \text { TI } \\ \text { REPLACEMENT } \\ \text { OR NEAREST } \\ \text { EOUVALENT } \end{gathered}$	MAXINUM RATINES			ELECTRICAL CHARACTERISTICS					
				$\begin{gathered} \mathrm{P}_{\mathrm{T}} \\ \mathrm{~T}_{A}=25^{\circ} \mathrm{C} \\ { }^{\circ} \mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C} \\ (\mathrm{~mW}) \\ \hline \end{gathered}$	VCBO (V)	- Vceo (V)	$\begin{aligned} & \text { hre } \\ & \hline \operatorname{MiN} \operatorname{Max} \end{aligned}$	$\begin{gathered} \mathrm{k} \\ (\mathrm{~mA}) \\ \hline \end{gathered}$	$\mathbf{V C E}$ MaX (V)	$\begin{aligned} & \text { (sot) } \\ & \hline 6 \mathrm{IC} \\ & \text { (mA) } \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline \mathrm{h}_{\mathrm{fe}} \\ \hline 1 \mathrm{kftz} \\ \mathrm{MiN} \\ \hline \end{array}$	
2N4979 2N4980 2N4981 2N4982	$\begin{array}{\|l} \mathrm{NCH} \\ \text { PNP } \\ \text { PNP } \\ \text { PNP } \end{array}$	FE SW SW SW	2N2946A	SEE FET INTERCHANGEABILITY LIST								10 5 3
2N4994 2 N 4995 2N4996 2N4997	$\begin{aligned} & \text { NPN } \\ & \text { NPN } \\ & \text { NPN } \\ & \text { NPN } \end{aligned}$	$\begin{aligned} & \text { RF } \\ & \hline R F \\ & \text { RF } \\ & \text { RF } \end{aligned}$	2N4994 2N4995 2N4996 2N4997	360 360 250 250	60 60 30 30	45 45 18 18	$40-160$ $100-400$ 50 30	10 10 2 2				$\begin{aligned} & 200 \\ & 200 \\ & 600 \\ & 600 \end{aligned}$
$\begin{aligned} & \text { 2N5010 } \\ & \text { 2N5011 } \\ & \text { 2N5012 } \\ & \text { 2N5013 } \end{aligned}$	NPN NPN NPN NPN	$\begin{aligned} & G P \\ & G P \\ & G P \\ & G P \end{aligned}$		*2W *2W *2W *2W	$\begin{aligned} & 500 \\ & 600 \\ & 700 \\ & 800 \end{aligned}$		$30-180$ $30-180$ $30-180$ $30-180$	25 25 25 20	1.4 1.5 1.6 1.6	$\begin{aligned} & 25 \\ & 25 \\ & 25 \\ & 20 \end{aligned}$		
$\begin{aligned} & \text { 2N5014 } \\ & \text { 2N5015 } \\ & \text { 2N5018 } \\ & \text { 2N5019 } \end{aligned}$	NPN NPN PCH PCH	GP GP FE FE	2N3993	$\begin{aligned} & \cdot 2 W \\ & \cdot 2 W \end{aligned}$ SEE FET SEE FET	$\begin{gathered} 900 \\ 1 \mathrm{~K} \\ \text { INTERCH } \\ \text { INTERCH } \end{gathered}$	ANGEABLL ANGEABIL	$\begin{aligned} & 30-180 \\ & 30-180 \end{aligned}$ TY LIST Y LIST	20	1.6 1.8	20 20		
$\begin{aligned} & \text { 2N5020 } \\ & \text { 2N5021 } \\ & \text { 2N5022 } \\ & \text { 2N5023 } \end{aligned}$	$\begin{aligned} & \text { PCH } \\ & \text { PCH } \\ & \text { PNP } \\ & \text { PNP } \end{aligned}$	FE FE SW SW		SEE FET SEE FET 1W iW	$\begin{gathered} \text { INTERCH. } \\ \text { INTERCH } \\ 50 \\ 30 \end{gathered}$	ANGEABIL ANGEABIL 50 30	$\begin{aligned} & \text { TY LIST } \\ & \text { TY LIST } \\ & 25-100 \\ & 40-100 \end{aligned}$	$\begin{aligned} & 500 \\ & 500 \end{aligned}$.2 .17	100 100		
$\begin{aligned} & \text { 2N5024 } \\ & \text { 2N5027 } \\ & \text { 2N5028 } \\ & \text { 2N5029 } \end{aligned}$	NPN NPN NPN NPN	RF SW SW SW	2N3570	$\begin{aligned} & 200 \\ & \mathbf{3 2 0} \\ & \mathbf{3 2 0} \\ & 320 \end{aligned}$	20	$\begin{aligned} & 10 \\ & 30 \\ & 30 \\ & 15 \end{aligned}$	$\begin{aligned} & 25- \\ & 50-150 \\ & 100-300 \\ & 40-120 \end{aligned}$	$\begin{array}{r} 10 \\ 150 \\ 150 \\ 10 \end{array}$.45 .45 .25	$\begin{array}{r} 150 \\ 150 \\ 10 \end{array}$	13	13 C
$\begin{aligned} & \text { 2N5030 } \\ & \text { 2N5031 } \\ & \text { 2N5032 } \\ & \text { 2N5033 } \end{aligned}$	NPN NPN NPN PCH	SW RF RF FE	$\begin{aligned} & \text { 2N3571 } \\ & \text { 2N3571 } \\ & \text { A5T5460 } \end{aligned}$	$\begin{gathered} 320 \\ 200 \\ 200 \\ \text { SEE FET } \end{gathered}$		$\begin{array}{r} 12 \\ 10 \\ 10 \\ \text { HANGEABILI } \end{array}$	$\begin{array}{\|l} 30 \\ 25-300 \\ 25-300 \\ \text { TY LIST } \end{array}$	10 1 1	. 25	10		
2N5040 2N5041 2N5042 2N5045	$\begin{aligned} & \text { PNP } \\ & \text { PNP } \\ & \text { PNP } \\ & \text { NCH } \end{aligned}$	GP GP GP FE	A5T4026 A5T4026 2N4030 2N5045	$\begin{gathered} 300 \\ 300 \\ 800 \\ \text { SEE FET } \end{gathered}$	$\begin{gathered} 25 \\ 40 \\ 40 \\ \text { INTERCH } \end{gathered}$	$\begin{array}{r} 25 \\ 40 \\ 40 \end{array}$ IANGEABIL	30 $40-150$ $40-150$ TY LIST	150 150 150	1 .5 1.1	500 500 500		80 100 100
$\begin{aligned} & \text { 2N5046 } \\ & \text { 2N5047 } \\ & \text { 2N5053 } \\ & \text { 2N5054 } \end{aligned}$	NCH NCH NPN NPN	$\begin{aligned} & \mathrm{FE} \\ & \hline \mathbf{F E} \\ & \text { RF } \\ & \mathbf{R F} \end{aligned}$	$\begin{aligned} & \text { 2N5046 } \\ & \text { 2N5047 } \\ & \text { 2N3572 } \\ & \text { 2N3572 } \end{aligned}$	$\begin{gathered} \text { SEE FET } \\ \text { SEE FET } \\ 200 \\ 200 \end{gathered}$	$\begin{gathered} \text { INTERCH } \\ \text { INTERCH } \\ 30 \\ 30 \end{gathered}$	ANGEABIL ANGEABIL 15 15	$\begin{aligned} & \text { TY LIST } \\ & \text { TY LIST } \\ & \begin{array}{r} 25-150 \\ 25-150 \end{array} \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	-	,		13 C 13 C
$\begin{aligned} & \text { 2N5055 } \\ & \text { 2N5056 } \\ & \text { 2N5057 } \\ & \text { 2N5058 } \end{aligned}$	$\begin{aligned} & \text { PNP } \\ & \text { PNNP } \\ & \text { PNP } \\ & \text { NPN } \end{aligned}$	$\begin{aligned} & S W \\ & S W \\ & S W \\ & G P \end{aligned}$	2N4423 2N3829 2N3829 2N5058	$\begin{aligned} & 200 \\ & 360 \\ & 360 \\ & 1 W \end{aligned}$	$\begin{array}{r} 12 \\ 15 \\ 15 \\ 300 \end{array}$	12 15 15 300	$\begin{aligned} & 30-100 \\ & 30-100 \\ & 40-100 \\ & 35-150 \end{aligned}$	30 30 30 30	.19 .13 .13	$\begin{array}{r} 30 \\ \times \quad 1 \\ \times \quad 1 \end{array}$		550

TRANSISTOR INTERCHANGEABILITY MASTER LIST OF REGISTERED TYPES

nymer				maximum ratines			Elctical chatactindics					
				$\begin{array}{\|ccc} \hline P_{T} & & \\ T_{A}=25^{\circ} \mathrm{C} & v_{C 20} & v_{C=O} \\ { }^{*} T_{C}=25^{\circ} \mathrm{C} & & \\ (\mathrm{~mW}) & \text { (V) } & \text { (V) } \\ \hline \end{array}$			$h_{\text {F }}$		$\mathbf{V C l}_{\text {(mat) }}$		$\left\{\begin{array}{l} \mathrm{m}_{10} \\ 1 \mathrm{kdz} \\ \mathrm{miN} \end{array}\right.$	$\begin{gathered} \text { tT } \\ \text { MiN } \\ \text { (Mhz) } \end{gathered}$
							$\min \max$	$\begin{gathered} \mathrm{IC} \\ (\mathrm{~mA}) \end{gathered}$	$\begin{array}{\|l\|} \hline \max \\ \text { (V) } \\ \hline \end{array}$	$\begin{aligned} & \quad \mathrm{C} \\ & (\mathrm{ma}) \end{aligned}$		
$\begin{aligned} & \text { 2N5059 } \\ & \text { 2N5060 } \\ & \text { 2N5061 } \\ & \text { 2N5062 } \end{aligned}$	NPN	$\begin{aligned} & G P \\ & C R \\ & C R \\ & C R \\ & C R \end{aligned}$	2N5059 2N5060 2N5061 2N5062	SCR - SEE POWER DATA BOO SCR - SEE POWER DATA BOO SCR - SEE POWER DATA BOO			$30-150$	30				
$\begin{aligned} & \text { 2N5063 } \\ & \text { 2N5064 } \\ & \text { 2NS5065 } \\ & \text { 2N5066 } \end{aligned}$	$\begin{array}{\|l\|l\|} \hline N P N \\ \text { NFN } \end{array}$	$\begin{aligned} & C R \\ & C R \\ & \mathrm{SW} \\ & \mathrm{SW} \end{aligned}$	2N5063 2N5064 2N2432A	$\begin{gathered} \text { SCR }- \text { SI } \\ \text { SR }-31 \\ 600 \\ 400 \\ \hline \end{gathered}$	SCR - SEE POWER DATA BOOK SCR - SEE POWER DATA BOOK			300	. 23	100		550 5
$\left\lvert\, \begin{aligned} & \text { 2N5078 } \\ & \text { 2N5079 } \\ & \text { 2N50e0 } \\ & \text { 2N50e1 } \end{aligned}\right.$	$\begin{array}{\|l\|l\|} \hline N C H \\ \text { NPN } \\ \text { NPN } \\ \text { NPN } \end{array}$	FE GP GP OP	2N4416 2N956 2N2484	$\begin{gathered} \text { SEE FET } \\ 400 \\ 400 \\ 360 \end{gathered}$	$\begin{gathered} \text { NTERCMA } \\ 60 \\ 60 \\ 70 \end{gathered}$	$\begin{gathered} \text { NGEABL } \\ 30 \\ 30 \\ 50 \end{gathered}$	$\begin{aligned} & \text { Tr ust } \\ & 100-300 \\ & 200-500 \\ & 100-400 \end{aligned}$	$\begin{array}{r} 150 \\ 150 \\ 1 \end{array}$.2 .2 .2	$\begin{array}{r} 150 \\ 150 \\ 10 \end{array}$	100	400 500 600
2N5082 2NS086 2N5087 2NS03		GP GP GP GP	$\begin{aligned} & \text { 2N2484 } \\ & \text { 2N5086 } \\ & \text { 2N5007 } \\ & \text { Tis94 } \end{aligned}$	$\begin{aligned} & 360 \\ & 310 \\ & 310 \\ & 310 \end{aligned}$	$\begin{aligned} & 60 \\ & 50 \\ & 50 \\ & 35 \end{aligned}$	$\begin{aligned} & 30 \\ & 50 \\ & 50 \\ & 30 \end{aligned}$	$100-400$ 150.500 250-800 $300-900$	$\begin{aligned} & 1 \\ & .1 \\ & .1 \\ & .1 \end{aligned}$	$\begin{aligned} & .2 \\ & .3 \\ & .3 \\ & .3 \end{aligned}$	10 10 10 10	$\begin{aligned} & 100 \\ & 150 \\ & 250 \\ & 350 \end{aligned}$	600 40 40 50
2N5089 2N5103 2N5104 2NS105	NPN NCH NCH NCH	$\begin{aligned} & \mathrm{GP} \\ & \mathrm{FE} \\ & \mathrm{FE} \\ & \mathrm{FE} \\ & \hline \end{aligned}$	T1594 2N4:16	SEE PLT INTERCHANGEABMITY LIST sei fet interchangeamuty ust SEE FET INTERCHANGEAMUTY LST					. 5	10	450	50
2NS106 2NS107 2NSI14 2N5115	NPN NPN NPN PCH PCH	$\begin{aligned} & \mathbf{G P} \\ & \mathbf{G P} \\ & \mathbf{F E} \\ & \mathbf{F E} \\ & \hline \end{aligned}$		$\begin{aligned} & 800 \\ & 360 \\ & \text { SEE FET } \\ & \text { SEE FET } \end{aligned}$	SEE FET INTERCHANGEABHITY LIST SEE FET INTERCHANGEABMUTY UST			$\begin{aligned} & 150 \\ & 150 \end{aligned}$	$\begin{array}{\|l} .22 \\ .22 \end{array}$	$\begin{aligned} & 150 \\ & 150 \end{aligned}$		250 250
2N5116 2N5117 2NS118 2N5119	$\begin{aligned} & \mathrm{PCH} \\ & \mathrm{PNP} \\ & \mathrm{PNP} \\ & \mathrm{PNP} \end{aligned}$	$\begin{aligned} & \text { FE } \\ & \text { DU } \\ & \text { DU } \\ & \text { DU } \end{aligned}$		$\begin{gathered} \text { SEE FET } \\ 400 \\ 400 \\ 400 \end{gathered}$	NTERCHA 45 45 45	MGEABH 45 45 45		$\begin{aligned} & .01 \\ & .01 \\ & .01 \end{aligned}$				100 100 100
2N5120 2N5121 2N5122	$\begin{aligned} & \text { PNP } \\ & \text { PNP } \\ & \text { PNP } \\ & \text { PNP } \end{aligned}$	$\begin{aligned} & \text { DU } \\ & \text { DU } \\ & \text { DU } \\ & \text { DU } \end{aligned}$		$\begin{aligned} & 300 \\ & 300 \\ & 300 \\ & 400 \end{aligned}$	$\begin{aligned} & 45 \\ & 45 \\ & 45 \\ & 45 \end{aligned}$	$\begin{aligned} & 45 \\ & 45 \\ & 45 \\ & 45 \end{aligned}$	$\begin{array}{r} 100-300 \\ 100-300 \\ 50-800 \\ 100-300 \end{array}$	$\begin{aligned} & .01 \\ & .01 \\ & .01 \\ & .01 \end{aligned}$				100 100 100 100
2N5124 2N5123 2NS126 2N5127		$\begin{aligned} & \mathrm{DU} \\ & \mathrm{DU} \\ & \mathrm{RF} \\ & \mathrm{RF} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{Tis98} \\ & \mathrm{TS9} \mathrm{\%} \end{aligned}$	$\begin{aligned} & 400 \\ & 400 \\ & 200 \\ & 200 \end{aligned}$	$\begin{aligned} & 45 \\ & 45 \\ & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 45 \\ & 45 \\ & 20 \\ & 12 \end{aligned}$	$\begin{array}{r} 100-300 \\ 50-800 \\ 20-350 \\ 15-300 \end{array}$	$\begin{array}{r} .01 \\ .01 \\ 4 \\ 2 \end{array}$	$\begin{aligned} & 2 \\ & .3 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \end{aligned}$		100 100 300 150
2NS128 2N5129 2N5130 2N5131	NPN NPN NPN NWN	$\begin{aligned} & \text { RF } \\ & \text { RF } \\ & \text { RF } \\ & \text { GP } \end{aligned}$	2N5451 2N5451 2N5451 71598	$\begin{aligned} & 300 \\ & 200 \\ & 200 \\ & 200 \end{aligned}$	$\begin{aligned} & 15 \\ & 15 \\ & 30 \\ & 20 \end{aligned}$	$\begin{aligned} & 12 \\ & 12 \\ & 12 \\ & 15 \end{aligned}$	$\begin{aligned} & 35-350 \\ & 35-350 \\ & 15-250 \\ & 30-500 \end{aligned}$	$\begin{array}{r} 50 \\ 50 \\ 8 \\ 10 \end{array}$.25 .25 .6 1	$\begin{array}{r} 150 \\ 150 \\ 10 \\ 10 \end{array}$		200 200 450 100

TRANSISTOR INTERCHANGEABILITY
MASTER LIST OF REGISTERED TYPES

TYP: NUMEER		$\begin{aligned} & 8 \\ & \frac{8}{2} \\ & 8 \\ & 8 \\ & 8 \end{aligned}$		MAXIMUM RATINOS			EPCRICAL CHANACTERISTICS					
				$\begin{gathered} T_{A}=25^{\circ} \mathrm{C} \\ { }^{\circ} \mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C} \\ (\mathrm{~mW}) \end{gathered}$	$V_{C E O}$	Veso (V)		$\begin{gathered} C C \\ (m A) \end{gathered}$	max (V)	sail) (ma	$\begin{gathered} h_{0} \\ 1 \mathrm{kdtz} \\ \text { MiN } \end{gathered}$	fit
2N5132 2N5133 2N5134 2N5135	NPN NPN NPN NPN	Rf SW GP	2N5451 AST3708 A5T3903 AST3708	200 200 200 300	20 20 20 30	20 18 10 25	$\begin{aligned} & 30-400 \\ & 60-1000 \\ & 60-150 \\ & 50-600 \end{aligned}$	10 1 10 10	2 .4 .25 1	10 1 10 100		200 40 250 40
2N5136 2N5137 2N5138 2N5139	$\begin{aligned} & \text { NPN } \\ & \text { NPN } \\ & \text { PNP } \\ & \text { PNP } \end{aligned}$	$\begin{aligned} & G P \\ & G P \\ & G P \\ & S W \end{aligned}$	2N5451 2N5451 A5T4058 A5T4126	$\begin{aligned} & 300 \\ & 220 \\ & 200 \\ & 200 \end{aligned}$	30 30 30 20	20 20 30 20	$\begin{aligned} & 20-400 \\ & 20-400 \\ & 50-800 \\ & 40 . \end{aligned}$	150 150 .1 10	.25 .25 .3 .2	150 150 10 10		40 40 30 300
$\begin{aligned} & \text { 2N5140 } \\ & \text { 2N5141 } \\ & \text { 2N5142 } \\ & \text { 2N5143 } \end{aligned}$	$\begin{aligned} & \text { PNP } \\ & \text { PNP } \\ & \text { PNP } \\ & \text { PNP } \end{aligned}$	$\begin{aligned} & s w \\ & s w \\ & s w \\ & s w \end{aligned}$	2N4423 A.5T3644 A.5T3644	200 200 300 200	5 6 20 20	5 6 20 20	$\begin{aligned} & 20-140 \\ & 25- \\ & 30- \\ & 30- \end{aligned}$	10 10 50 50	.2 .2 .5 .5	10 10 50 50		400 300 100 100
2N5144 2N5145 2N5158 2N5159	$\left\lvert\, \begin{aligned} & \text { NPN } \\ & \text { NPN } \\ & \text { NCH } \\ & \text { NCH } \end{aligned}\right.$	$\begin{aligned} & \mathrm{SW} \\ & \mathrm{SW} \\ & \mathrm{FE} \\ & \mathrm{FE} \end{aligned}$		$\begin{aligned} & 360 \\ & 800 \end{aligned}$ SEE FET SEE FET		30 30 NGEABILIT NGEABLIT	$\begin{array}{r} 60-150 \\ 60-150 \\ \text { TY LIST } \\ \text { TY LIST } \end{array}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$. 2	100 100		300 300
$\begin{aligned} & \text { 2N5163 } \\ & \text { 2N5172 } \\ & \text { 2NSi74 } \\ & \text { 2N5175 } \end{aligned}$	$\begin{aligned} & \text { NCH } \\ & \text { NPN } \\ & \text { NPN } \\ & \text { NPN } \end{aligned}$		$\begin{aligned} & \text { 2N5246 } \\ & \text { ATT5172 } \\ & \text { 2N5550 } \\ & \text { 2N5550 } \end{aligned}$	$\begin{gathered} \text { SEE FET } \\ 360 \\ 360 \\ 200 \end{gathered}$	$\begin{gathered} \text { NTERCHA } \\ 25 \\ 90 \\ 130 \end{gathered}$	$\begin{gathered} \text { NGEABH } \\ 25 \\ 75 \\ 100 \end{gathered}$	$\begin{array}{\|l} \hline \text { TY LIST } \\ 100-500 \\ 40-600 \\ 55-160 \end{array}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & .25 \\ & .95 \\ & .95 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \end{aligned}$	$\begin{array}{r} 100 \\ 40 \\ 35 \end{array}$	
$\begin{aligned} & \text { 2N5176 } \\ & \text { 2N5179 } \\ & \text { 2N5180 } \\ & \text { 2N5181 } \end{aligned}$	$\begin{aligned} & \mathbf{N P N} \\ & \mathbf{N P N} \\ & \mathbf{N P N} \\ & \mathbf{N P N} \end{aligned}$	$\begin{aligned} & \mathbf{G P} \\ & R F \\ & R F \\ & R F \end{aligned}$	$\begin{aligned} & \text { 2N5550 } \\ & \text { 2N3572 } \\ & \text { 2N3572 } \end{aligned}$	200 200 180 180	130 20 30 45	100 12 15	$140-300$ $25-250$ $20-200$ 27.	10 3 2 1	.95 .4	10 10	140 25	900 650 400
$\begin{aligned} & \text { 2N5182 } \\ & \text { 2N5183 } \\ & \text { 2N5184 } \\ & \text { 2N5185 } \end{aligned}$	NPN NPN NPN NPN	RF GP GP GP	$\begin{aligned} & \text { 2N956 } \\ & \text { 2N5059 } \end{aligned}$	180 500 500 $1 W$	35 18	18 120 120	27 75 10 10	1 10 50 50			70	400 62 50
$\begin{array}{\|l} \text { 2N5186 } \\ \text { 2N5187 } \\ \text { 2NS188 } \\ \text { 2N5189 } \end{array}$	NPN NPN NPN NPN	$\begin{aligned} & \text { sw } \\ & \text { sw } \\ & \text { sw } \\ & \text { sw } \end{aligned}$	$\begin{aligned} & \text { 2N2537 } \\ & \text { 2N3724 } \end{aligned}$	300 1W 800 IW	10 25 60 60		25. $30-$ $25-$ 15.	10 10 150 14	.3 .25 .5 1	$\begin{array}{r} 10 \\ 10 \\ 150 \\ 14 \end{array}$		
$\begin{aligned} & \text { 2N5196 } \\ & \text { 2NS197 } \\ & \text { 2NS198 } \\ & \text { 2N5199 } \end{aligned}$	NCH NCH NCH NCH	FE FE FE FE	$\begin{aligned} & \text { 2N5545 } \\ & \text { 2N5546 } \\ & \text { 2N5547 } \end{aligned}$	SEE FET SEE FET SEE FET SEE FET	NTERCH NTERCH NTERCH NTERCH	ANGEABIL angeabilit aNGEABIL ANGEABIL	TY LIST TY LIST ITY LIST ITY LIST					
$\begin{aligned} & \text { 2N5200 } \\ & \text { 2N5201 } \\ & \text { 2N5208 } \\ & \text { 2N5209 } \end{aligned}$	NPN NPN PNP NPM	GP GP RF GP	2N5209	$\begin{aligned} & 300 \\ & 300 \\ & 310 \\ & 310 \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \\ & 30 \\ & 50 \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \\ & 25 \\ & 50 \end{aligned}$	$\begin{array}{r} 50-150 \\ 75-150 \\ 20-120 \\ 100-300 \end{array}$	$\begin{array}{r} 10 \\ 10 \\ 2 \\ .1 \end{array}$	$\begin{aligned} & .5 \\ & .5 \\ & .7 \end{aligned}$	$\begin{array}{r} 50 \\ 50 \\ 10 \end{array}$	150	900 1.16 300 30

TRANSISTOR INTERCHANGEABILITY MASTER LIST OF REGISTERED TYPES

TYP Numanix				MAXLMUM RATMEOS			ELECTICAL CHARACTERISTICS										
				$\begin{gathered} \mathrm{P}_{\mathrm{T}} \\ \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ { }^{{ }^{\circ} \mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}} \\ (\mathrm{~mW}) \end{gathered}$	Vceo(V)	Veso (V)	$h_{\text {Fere }}$		Ven(uat)		$\begin{gathered} \text { hos } \\ 1 \mathrm{kdta} \\ \text { ANM } \end{gathered}$	4 MIN (MM3)					
							MIN MAXIC (mA)		$\begin{array}{\|lll\|} \hline \operatorname{MAX} & \mathrm{IC} \\ \mathrm{IV}) & \text { (mA) } \\ \hline \end{array}$								
2 N 210	NPN	GP	2N5210	310	50	50	200-600 . 1		. 710		250	30					
2N5219	NPN	GP	2N5219	310	20	15	$35-500$	2	. 4	10	35	150					
2N5220	NPN	GP	2N5220	310	15	15	30-600 50		. 5150		30	100100					
2N5221	PNP	$G P$	2N522 1	310	15	15	30-600	50	. 5	150	30						
$\begin{aligned} & \text { 2N5222 } \\ & \text { 2N5223 } \\ & \text { 2N5224 } \\ & \text { 2N5225 } \end{aligned}$	$\begin{aligned} & \text { NPN } \\ & \text { NPN } \\ & \text { NPN } \\ & \text { NPN } \end{aligned}$	$\left\lvert\, \begin{aligned} & R F \\ & G P \\ & S W \\ & O P \end{aligned}\right.$	$\begin{aligned} & \text { 2N5222 } \\ & \text { 2N5223 } \\ & \text { 2N3903 } \\ & \text { 2N522S } \end{aligned}$	$\begin{aligned} & 310 \\ & 310 \\ & 310 \\ & 310 \end{aligned}$	$\begin{aligned} & 20 \\ & 25 \\ & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & 15 \\ & 20 \\ & 12 \\ & 25 \end{aligned}$	$\begin{aligned} & 50-1500 \\ & 50-800 \\ & 40-400 \\ & 30-600 \end{aligned}$	421050	$\begin{array}{r} 1 \\ .7 \\ .35 \\ .8 \end{array}$	4	$\begin{aligned} & 20 \\ & 50 \\ & 30 \end{aligned}$	$\begin{array}{r} 450 \\ 150 \\ 250 \\ 50 \end{array}$					
										10							
										10							
										100							
$\begin{aligned} & \text { 2N5226 } \\ & \text { 2N5227 } \\ & \text { 2N5228 } \\ & \text { 2N5230 } \end{aligned}$	$\begin{aligned} & \text { PNP } \\ & \text { PNP } \\ & \text { PNP } \\ & \text { PNP } \end{aligned}$	$\left\lvert\, \begin{aligned} & G P \\ & G P \\ & S W \\ & S W \end{aligned}\right.$	$\begin{aligned} & \text { 2N5226 } \\ & \text { 2N5227 } \\ & \text { 2N2945A } \end{aligned}$	$\begin{aligned} & 310 \\ & 310 \\ & 310 \\ & 400 \end{aligned}$	$\begin{array}{r} 25 \\ 30 \\ 5 \\ 30 \end{array}$	$\begin{array}{r} 25 \\ 30 \\ 5 \\ 20 \end{array}$	$\begin{aligned} & 30-600 \\ & 50-700 \\ & 30- \\ & 50- \end{aligned}$	$\begin{array}{r} 50 \\ 2 \\ 10 \\ .1 \end{array}$	$\begin{array}{rr}.8 & 100 \\ .4 & 10 \\ .4 & 10\end{array}$		$\begin{aligned} & 30 \\ & 50 \end{aligned}$	$\begin{array}{r} 50 \\ 100 \\ 300 \end{array}$					
$\begin{aligned} & \text { 2N5231 } \\ & \text { 2N5232 } \\ & \text { 2N5232A } \\ & \text { 2N5233 } \end{aligned}$	PNP NPN NPN NPN	$\begin{aligned} & S W \\ & G P \\ & G P \\ & G P \end{aligned}$	2N2940A T1895 TIS95 TIS95	$\begin{aligned} & 400 \\ & 360 \\ & 360 \\ & 330 \end{aligned}$	$\begin{aligned} & 50 \\ & 70 \\ & 70 \\ & 80 \end{aligned}$	$\begin{aligned} & 30 \\ & 50 \\ & 50 \\ & 60 \end{aligned}$	$\begin{aligned} & 50- \\ & 250-500 \\ & 250-500 \\ & 100-300 \end{aligned}$	$\begin{array}{r} .1 \\ 2 \\ 2 \\ 10 \end{array}$	$\begin{aligned} & .125 \\ & .125 \\ & .125 \end{aligned}$		$\begin{aligned} & 250 \\ & 250 \\ & 100 \end{aligned}$						
										10							
										10							
										10							
$\begin{aligned} & \text { 2N5234 } \\ & \text { 2N5235 } \\ & \text { 2N5236 } \\ & \text { 2N5242 } \end{aligned}$	NPN NPN NPN PNP	$\begin{aligned} & G P \\ & G P \\ & \text { RF } \\ & S W \end{aligned}$	71594	330	80	60	$250-500$	10	. 125	10	$\begin{aligned} & 250 \\ & 400 \end{aligned}$	$\begin{aligned} & 500 \\ & 170 \end{aligned}$					
				330	80	60	400-800	10	. 125	10							
				600	40	20	30.120	50	. 2	50							
				500	20		25-100	500	. 2	100							
$\begin{aligned} & \text { 2N5243 } \\ & \text { 2N5244 } \\ & \text { 2N5246 } \\ & \text { 2N5246 } \end{aligned}$	$\begin{array}{\|l\|l} \text { PNP } \\ \text { PNP } \\ \text { NCH } \\ \text { NCH } \end{array}$	SW SW FE FE	$\begin{aligned} & \text { 2N5245 } \\ & \text { 2N5246 } \end{aligned}$	50030			$\begin{aligned} & 25-100 \\ & 150-300 \\ & \text { uSt } \\ & \text { UST } \end{aligned}$	$\begin{array}{r} 500 \\ 10 \end{array}$. 212	$\begin{array}{r} 100 \\ 10 \end{array}$		$\begin{aligned} & 170 \\ & 450 \end{aligned}$					
				360		40											
				SEE FET INTERCHANGEAELLTY LST SEE FET INTERCHANGEABLITY UST													
$\begin{aligned} & \text { 2N5247 } \\ & \text { 2N5248 } \\ & \text { 2N5249 } \\ & \text { 2N5249A } \end{aligned}$	$\begin{aligned} & \mathrm{NCH} \\ & \mathrm{NCH} \\ & \mathrm{NPN} \\ & \mathrm{NPN} \end{aligned}$	FE FE GP GP	$\begin{aligned} & \text { 2N5247 } \\ & \text { 2N5248 } \\ & \text { T1594 } \\ & \text { TiS94 } \end{aligned}$	SEE FET INTERCHANGEABHLTY LIST SEE PET INTERCHANGEABLLTY LIST					.125 10 .125 10		$\begin{aligned} & 400 \\ & 400 \end{aligned}$						
				360	70	50	400-800	2									
				360	70	50	400-800	2									
$\begin{aligned} & \text { 2N5252 } \\ & \text { 2N5253 } \\ & \text { 2N5262 } \\ & \text { 2N5265 } \end{aligned}$	$\begin{aligned} & \text { NPN } \\ & \text { NPN } \\ & \text { NPN } \\ & \text { PCH } \end{aligned}$	$\begin{aligned} & G P \\ & G P \\ & G P \\ & \text { GP } \\ & \text { FE } \end{aligned}$	2N5058	${ }^{*} 7 \mathrm{w}$	300	300	40.120	100	$\begin{array}{rr} 1 & 200 \\ 1 & 200 \\ .8 & 14 \end{array}$			30 30					
				$\begin{gathered} * W \\ \text { IW } \end{gathered}$	30075	300	80-25035-	100100			30						
						50			$.8 \quad 14$								
				SEE FET INTERCHANGEABLITY LIST													
$\begin{array}{\|l\|} \hline \text { 2N5266 } \\ \text { 2N5267 } \\ \text { 2N5268 } \\ \text { 2N5269 } \end{array}$	$\begin{aligned} & \mathrm{PCH} \\ & \mathrm{PCH} \\ & \mathrm{PCH} \\ & \mathrm{PCH} \end{aligned}$	$\begin{aligned} & \text { FE } \\ & \text { FE } \\ & \text { FE } \\ & \text { FE } \end{aligned}$		SEE FET INTERCHANGEABILTTY LIST SEE FET INTERCHANGEABLITY LIST SEE FET INTERCHANGEABILTY LIST SEE FET INTERCHANGEABILTTY LIST													
2N5270	PCH NPN NPN NCH	$\begin{aligned} & \text { FE } \\ & \text { SW } \\ & \text { SW } \\ & \text { FE } \end{aligned}$		SEE FET INTERCHANGEARHL			Y LIST		$\begin{array}{rrr}.25 & 10 \\ .2 & 20\end{array}$								
2N5272				360	40	20	100-400	10				500					
2N5276				360	25	15	30-90	1				600					
2N5277				SEE PET INTERCHANGEABHITY LIST													

TRANSISTOR INTERCHANGEABILITY
 MASTER LIST OF REGISTERED TYPES

TRANSISTOR INTERCHANGEABILITY
 MASTER LIST OF REGISTERED TYPES

TYPE NUMBER		$\begin{aligned} & Z \\ & \frac{8}{2} \\ & \frac{3}{3} \\ & \frac{1}{Z} \\ & \frac{4}{4} \end{aligned}$	$\begin{gathered} \text { II } \\ \text { REPACEMENT } \\ \text { OR NEAREST } \\ \text { ECUNAIENT } \end{gathered}$	MAXIMUM RATMVES			EECTRICAL CHARACTERISTICS					
				$\begin{gathered} \mathrm{PT} \\ \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ { }^{\circ} \mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C} \\ (\mathrm{~mW}) \end{gathered}$	VCBO (V)	$\mathbf{V}_{\mathrm{CEO}}$(V)	$h_{\text {Pre }}$		VCE(sot)		$\begin{gathered} h_{f_{0}} \\ 1 \\ 1 \mathrm{kftz} \\ \text { MiN } \end{gathered}$	$\begin{gathered} \text { fit } \\ \text { Min } \\ \text { (MHz) } \end{gathered}$
							MiN MA	$\begin{gathered} C \\ (\mathrm{~mA}) \end{gathered}$	$\begin{aligned} & \text { MaX } \\ & (V) \end{aligned}$	$\begin{array}{r} \mathrm{L} \\ (\mathrm{~mA}) \end{array}$		
2N5380	NPN	SW	A573903	310	60	40	50.150	10	. 2	10		250
2N5381	NPN	SW	A573904	310	60	40	100-300	10	. 2	10		300
2N5382	PNP	SW	A5T3905	310	40	40	50.150	10		10		200
2N5383	PNP	SW	A573906	310	40	40	100.300	10	. 25	10		250
2N5391	NCH	FE	2N5359	SEE FET INTERCHANGEABLITY LIST SEE FET INTERCHANGEABLITY LIST SEE FET INTERCHANGEABLLTY LIST SEE FET NTERCHANGEABLLITY LIST								
2N5392	NCH	FE	2N5361									
2N5393	NCH	FE	2N5362									
2N5394	NCH	FE	2N5362									
2N5395	NCH	FE	2N5362	SEE FET INTERCHANGEABUTYY LST SEE FET INTERCHANGEABLITY LIST SEE FET INTERCHANGEABLLTY LIST SEE FET INTERCHANGEABLLTY LIST								
2N5396	NCH	FE	2N5363									
2N5397	NCH	FE	2N5397									
2N5398	NCH	FE	2N5398									
2N5399	NPN	SW		360	25	15						600
2N5400	PNP	GP	2N5400	310	130	120	40.180	10	. 2	10	30	100
2N5401	PNP	GP	2N5401	310	160	150	60-240	10	. 2	10	40	100
2N5413	NPN	SW	2N3724	IW	60	40	25-100	24	. 25	150		
2N5414	NPN	SW	2N3725	1w			25-100		. 25	150		
2N5415	PNP	GP	2N3636	IW	200	200	30-1.50	50				15
2N5416	PNP	GP		IW	350	300	30-120	50				15
2N5417	NPN	SW		500	40	35	80-250	150	. 55	150		250
2N5418	NPN	GP	2N3705	400	25		40-120					
2N5419	NPN	GP	2N3704	400	25	25	100-300	50	. 25	50		
2N5420	NPN	GP	2N3706	400	25	25	250-500	50		50		
2N5431	P-N	UJ		SEE UNIJUNCTION INTERCHANGEABHITY LIST								
2N5432	NCH	FE		SEE FET INTERCHANGEABHLTTY LIST SEE FET INTERCHANGEABHLITY LIST SEE FET INTERCHANGEABILITY LIST								
2N5433	NCH	FE										
2N5434	NCH	FE										
2N5447	PNP	GP	2N5447						. 25	50		100
2N5448	PNNP	GP	2N5448	360	50	30	30-150	50	. 25	50		100
2N5449	NPN	GP	2N5449	360	50	30	100-300	50	. 6	100		100
2N5450	NPN	GP	2N5450	360	50	30	50-150	50	. 8	100		100
2N5451	NPN	GP	2N5451	360	40	20	30-600	50	1	100		100
2N5452	NCH	FE	2N5545	SEE FET INTERCHANGEABLITY LST SEE FET INTERCHANGEablLTY LST SEE FET INTERCHANGEABLITY LIST								
2N5453	NCH	FE	2N5545									
2N5454	NCH	FE	2N5546									
2N5455	PNP	SW		340	15	15	30-120	30	. 5	300		450
2N5456	PNP	SW		340	25	25	30-120	30	. 55	300		450
2N5457	NCH	FE	2N5953	SEE FET INTERCHANGEABHITY LIST SEE FET INTERCHANGEABILTTY LIST SEE FET INTERCHANGEABILITY LIST								
2N5458	NCH	FE	2N5952									
2N5459	NCH	FE	2N5951									

TRANSISTOR INTERCHANGEABILITY MASTER LIST OF REGISTERED TYPES

TYP: mumet	E 	3$\frac{2}{2}$3333	TIREPLACEMENTOR MBARESTEOUYALENT	MAXIMUM RATMES			EECTIUCAL CHARACTERISTICS					
				$\begin{gathered} \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ { }^{\circ} \mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C} \\ (\mathrm{~mW}) \end{gathered}$	$V_{\text {CBO }}$(V)	$\mathbf{V}_{\mathrm{CEO}}$$(\mathrm{V})$	hre		Vces(ant)		$\begin{gathered} h_{0} \\ 1 \mathrm{klts} \\ \text { MiN } \end{gathered}$	TMN(Mtz)
							MWN Max	- k (mA)	MAX (V)	$\begin{array}{r} \mathrm{IC} \\ (\mathrm{~mA}) \end{array}$		
2N5550	NPN	GP	2N5550	310	160	140	60-250	10	. 15	10	50	100
2N5551	NPN	GP	2N5551	310	180	160	80.250	10	. 15	10	50	100
2N5555	NCH	FE	2N5949	SEE FET INTERCHANGEARUTY LIST SEE FET INTERCHANGEAGUTY LIST								
2N5558	NCH											
2N5556	NCH	FE	2N3821	SEE FET INTERCHANGEABLTY LIST SEE FET INTERCMANGEABUTY LST SEE FET INTERCHANGEABUTTY UST SEE FET INTERCHANGEABLITY LST								
2N5557	NCH	FE	2N5361									
2N5561	NCH	FE										
2N5562	NCH	FE	2N5545									
2N5563	NCH	FE	2N5547	SEE FET INTERCHANGEABMTY UST SEE FET INTERCHANGEABHITY UST SEE FET INTERCHANGEABILTY LST SEE FET INTERCHANGEABLITY LST								
2N5564	NCH	FE										
2N5565	NCH	FE										
2N15566	NCH	FE										
2N5581	NPN	GP	2N2221A	*2W	75	40	40-120	150	. 3	150		250
2N5582	NPN	GP	2N2222A	*2W	75	40	100-300	150		150		300
2N5583	PNNP	RF		*5W	30	30	25-100	100		100		1.36
2N5592	NCH	FE		SEE FET INTERCHANGEABHITY LIST								
2N5593	NCH	FE		see fet interchangeabluty list SEE FET INTERCHANGEABLITY UST SEE FET INTERCHANGEABLITY LST SEE FET INTERCHANGEAELITY LST								
2N5594	NCH	FE										
2N5638	NCH	FE	TIS73									
2N5639	NCH	FE	T1574									
2N5640	NCH	FE	T1575	SEE FET INTERCHANGEABHITY LIST SEE FET INTERCHANGEABLITY LIST SEE FET INTERCHANGEABLITY LIST SEE FET INTERCHANGEABLITY UST								
2N5647	NCH	FE										
2N5648	NCH	FE										
2N5649	NCH	FE										
2N5651	NPN	RF	2N3570		20	15	30.300	3				20
2N5652	NPN	RF	2N3570	150	20	15	30-300	3				26
2N5653	NCH	\|FE	TIS74	SEE FET INTERCHANGEABMITY LIST SEE FET INTERCHANGEABLITY LIST								
2N5654	NCH	\|FE	T1575									
2N5668	NCH	FE	2N5953	SEE FET INTERCHANGEABLITY UST SEE FET INTERCHANGEABLITY LST SEE FET INTERCHANGEABUTY LIST 150 20 15 $30-300$								
2N5669	NCH	FE	2N5952									
2N5670	NCH	FE	2N5950									
2N5690	NPN	RF	2N3570									20
2N5716	NCH	FE		SEE FET INTERCHANGEABHLTY LIST SEE FET INTERCHANGEAELLTY UST SEE FET INTERCHANGEARLITY LIST								
2N5717	NCH	FE										
2N5718	NCH	FE	2N5953									
2N5769	NPN	SW		625	40	15	40.120	10	. 5	10		500
2N5770	NPN	RF	2N4996	625	30	15	20.	3	. 4	10		900
2N5771	PNP	SW		625	15	15	50.120	10		10		850
2N5772	MPN	SW		625	40	15	30.120	30		30		350
2N5777	NPN	DA		200	25	25	2500.					

TRANSISTOR INTERCHANGEABILITY MASTER LIST OF REGISTERED TYPES

	$\begin{aligned} & \frac{y}{k} \\ & \frac{1}{6} \\ & \frac{1}{2} \end{aligned}$	z2$\mathbf{3}$$\mathbf{3}$$\frac{1}{2}$33	n REPLACEMENT OR NEAREST EQUIVALENT	MAXIMUM RATINES			EECTRICAL CHARACTERISTICS					
TYPE NUMEER				$\begin{gathered} P_{T} \\ T_{A}=25^{\circ} \mathrm{C} \\ { }^{{ }^{2} T_{C}=25^{\circ} \mathrm{C}} \\ (\mathrm{~mW}) \end{gathered}$	$V_{C B O}$ (V)	VCEO (V)		$\begin{gathered} \mathrm{I} C \\ (\mathrm{~mA}) \end{gathered}$		(sat) (mA)		
$\begin{aligned} & \text { 2N5778 } \\ & \text { 2N5779 } \\ & \text { 2N5780 } \\ & \text { 2N5793 } \end{aligned}$	NPN NPN NPN NPN	$\left\lvert\, \begin{aligned} & D A \\ & D A \\ & D A \\ & D U \end{aligned}\right.$		$\begin{aligned} & 200 \\ & 200 \\ & 200 \\ & 500 \end{aligned}$	$\begin{aligned} & 40 \\ & 25 \\ & 40 \\ & 75 \end{aligned}$	$\begin{aligned} & 40 \\ & 25 \\ & 40 \\ & 40 \end{aligned}$	$\begin{aligned} & 2500 \\ & 5000- \\ & 5000 \\ & 40-120 \end{aligned}$	150	. 9	300		
$\begin{aligned} & \text { 2N5794 } \\ & \text { 2N5795 } \\ & \text { 2N5796 } \\ & \text { 2N5797 } \end{aligned}$	NPN NPN NPN PCH	$\begin{array}{\|l} D U \\ D U \\ D U \\ F E \end{array}$		$\begin{gathered} 500 \\ 500 \\ 500 \\ \text { SEE FET } \end{gathered}$	75 60 60 NTERCHA	$\begin{array}{r} 40 \\ 60 \\ 60 \end{array}$	$\begin{array}{r} 100-300 \\ 40-120 \\ 100-300 \end{array}$ TY UST	150 150 150	.9 1.6 1.6	300 $\mathbf{5 0 0}$ $\mathbf{5 0 0}$		
2N5798 2N5799 2N5800 2N5801	$\begin{aligned} & \mathrm{PCH} \\ & \mathrm{PCH} \\ & \mathrm{PCH} \\ & \mathrm{NCH} \end{aligned}$	$\begin{aligned} & \text { FE } \\ & \text { FE } \\ & \text { FE } \\ & \text { FE } \end{aligned}$	2N4858	SEE FET SEE FET SEE FET SEE FET	NTERCH NTERCHA NTERCHA NTERCHA	NGEABHIT NGEABILI NGEABILI NGEABHIT	TY LIST TY LIST TY LIST TY LIST					
2N5802 2N5803 2N5810 2N5811	$\begin{aligned} & \mathrm{NCH} \\ & \mathrm{NCH} \\ & \mathrm{NPN} \\ & \text { PNP } \end{aligned}$	$\begin{aligned} & \text { FE } \\ & \text { FE } \\ & \text { GP } \\ & \text { GP } \end{aligned}$	$\begin{aligned} & \text { 2N5549 } \\ & \text { 2N5549 } \\ & \text { A5T2222 } \\ & \text { A5T2907 } \end{aligned}$	SEE FET SEE FET 500 500	$\begin{gathered} \text { NTERCHA } \\ \text { NTERCHA } \\ 35 \\ 35 \end{gathered}$	NGEABHIT NGEABILI 25 25	$\begin{aligned} & \text { TY LIST } \\ & \text { TY LIST } \\ & \begin{array}{r} 60-200 \\ 60-200 \end{array} \end{aligned}$	2	.75 .75	500 500		$\begin{aligned} & 100 \\ & 100 \end{aligned}$
$\begin{aligned} & \text { 2N5812 } \\ & \text { 2N5813 } \\ & \text { 2N5814 } \\ & \text { 2N5815 } \end{aligned}$	$\left\lvert\, \begin{aligned} & \text { NPN } \\ & \text { PNP } \\ & \text { NPN } \\ & \text { PNP } \end{aligned}\right.$	$\begin{aligned} & G P \\ & G P \\ & G P \\ & G P \end{aligned}$	A5T2222 A5T2907	$\begin{aligned} & 500 \\ & 500 \\ & 500 \\ & 500 \end{aligned}$	$\begin{aligned} & 35 \\ & 35 \\ & 50 \\ & 50 \end{aligned}$	$\begin{aligned} & 25 \\ & 25 \\ & 40 \\ & 40 \end{aligned}$	$\begin{array}{r} 150-500 \\ 150-500 \\ 60-120 \\ 60-120 \end{array}$	2 2 2 2	.75 .75 .75 .75	$\begin{aligned} & 500 \\ & 500 \\ & 500 \\ & 500 \end{aligned}$		$\begin{aligned} & 135 \\ & 135 \\ & 100 \\ & 100 \end{aligned}$
$\begin{aligned} & \text { 2N5816 } \\ & \text { 2N5817 } \\ & \text { 2N5818 } \\ & \text { 2N5819 } \end{aligned}$	$\begin{array}{\|l} \text { NPN } \\ \text { PNP } \\ \text { NPN } \\ \text { PNP } \end{array}$	$\begin{aligned} & \text { GP } \\ & \text { GP } \\ & \text { GP } \\ & \text { GP } \end{aligned}$	A5T2222 A5T2907	$\begin{aligned} & 500 \\ & 500 \\ & 500 \\ & 500 \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \\ & 50 \\ & 50 \end{aligned}$	$\begin{aligned} & 40 \\ & 40 \\ & 40 \\ & 40 \end{aligned}$	$\begin{aligned} & 100-200 \\ & 100-200 \\ & 150-300 \\ & 150-300 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$.75 .75 .75 .75	$\begin{aligned} & 500 \\ & 500 \\ & 500 \\ & 500 \end{aligned}$		$\begin{aligned} & 120 \\ & 120 \\ & 135 \\ & 135 \end{aligned}$
$\begin{aligned} & \text { 2N5820 } \\ & \text { 2N5821 } \\ & \text { 2N5822 } \\ & \text { 2N5823 } \end{aligned}$	NPN PNP NPN PNP	$\begin{aligned} & G P \\ & G P \\ & G P \\ & G P \end{aligned}$	A5T2907 A5T2907	$\begin{aligned} & 500 \\ & 500 \\ & 500 \\ & 500 \end{aligned}$	$\begin{aligned} & 70 \\ & 70 \\ & 70 \\ & 70 \end{aligned}$	$\begin{aligned} & 60 \\ & 60 \\ & 60 \\ & 60 \end{aligned}$	$\begin{array}{r} 60-120 \\ 60-120 \\ 100-200 \\ 100-200 \end{array}$	$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & .75 \\ & .75 \\ & .75 \\ & .75 \end{aligned}$	$\begin{aligned} & 500 \\ & 500 \\ & 500 \\ & 500 \end{aligned}$		$\begin{aligned} & 100 \\ & 100 \\ & 120 \\ & 120 \end{aligned}$
$\begin{aligned} & \text { 2N5824 } \\ & \text { 2N5825 } \\ & \text { 2N5826 } \\ & \text { 2N5827 } \end{aligned}$	NPN NPN NPN NPN	GP GP GP GP	TIS99 TIS98 TIS98 TIS97	$\begin{aligned} & 360 \\ & 360 \\ & 360 \\ & 360 \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \\ & 50 \\ & 50 \end{aligned}$	$\begin{aligned} & 40 \\ & 40 \\ & 40 \\ & 40 \end{aligned}$	$\begin{array}{r} 60-120 \\ 100-200 \\ 150-300 \\ 250-500 \end{array}$	$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & .125 \\ & .125 \\ & .125 \\ & .125 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$	$\begin{array}{r} 60 \\ 100 \\ 150 \\ 250 \end{array}$	90 90 90 90
$\begin{array}{\|l\|} \text { 2N5828 } \\ \text { 2N5829 } \\ \text { 2N5830 } \\ \text { 2N5831 } \end{array}$	$\begin{aligned} & \text { NPN } \\ & \text { PNP } \\ & \text { NPN } \\ & \text { NPN } \end{aligned}$	GP RF GP GP	TIS97 2N4260 A.5T2243	$\begin{aligned} & 360 \\ & 200 \\ & 310 \\ & 310 \end{aligned}$	$\begin{array}{r} 50 \\ 30 \\ 120 \\ 160 \end{array}$	$\begin{array}{r} 40 \\ 30 \\ 100 \\ 140 \end{array}$	$\begin{array}{r} 400-800 \\ 20-150 \\ 80-500 \\ 80-250 \end{array}$	$\begin{array}{r} 2 \\ 2 \\ 10 \\ 10 \end{array}$	$\begin{aligned} & .125 \\ & .25 \\ & .25 \end{aligned}$	$\begin{aligned} & 10 \\ & 50 \\ & 50 \end{aligned}$	$\begin{array}{r} 400 \\ 60 \\ 60 \end{array}$	90
$\begin{array}{\|l} \text { 2N5832 } \\ \text { 2N5833 } \\ \text { 2N5835 } \\ \text { 2N5836 } \end{array}$	NPN NPN NPN NPN	GP GP SW SW		$\begin{array}{r} 310 \\ 310 \\ 200 \\ * 2 W \end{array}$	$\begin{array}{r} 160 \\ 200 \\ 15 \\ 15 \end{array}$	140 180 10 10	$\begin{aligned} & 175-500 \\ & 50-250 \\ & 25- \\ & 25- \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 50 \end{aligned}$	$\begin{aligned} & .25 \\ & .25 \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \end{aligned}$	125 50	

TRANSISTOR INTERCHANGEABILITY MASTER LIST OF REGISTERED TYPES

TYP MUMC				MAXIMUM RATMVOS			HECTRICAL CHARACTERSTICS					
				$\begin{gathered} { }_{1 A}=25^{\circ} \mathrm{C} \\ { }^{\circ} \mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C} \\ (\mathrm{~mW}) \end{gathered}$	VCBO(V)	$V_{\mathrm{cEO}}$$(V)$	h-		VCE(sat)			$\left\{\begin{array}{c} \mathrm{T} \\ \mathrm{MNN} \\ \text { (MNX) } \end{array}\right.$
							M M M	$\begin{aligned} & \mathrm{lc} \\ & (\mathrm{ma}) \\ & \hline \end{aligned}$	$\begin{aligned} & \text { MAX } \\ & \text { (V) } \end{aligned}$	$\begin{aligned} & 16 \\ & (\mathrm{man}) \end{aligned}$		
$\begin{aligned} & 2 N 5837 \\ & 2 N 5841 \\ & 2 N 5842 \\ & 2 N 5843 \end{aligned}$	$\begin{aligned} & \text { NPN } \\ & \text { NPN } \\ & N P N+ \\ & \text { PN: } \end{aligned}$	$\begin{aligned} & \text { SW } \\ & \text { RF } \\ & \text { RF } \\ & \text { DU } \end{aligned}$	2N3347	$*$ $*$ 350 350 500	10 20 20 50	5 10 10 40	25- 25-200 25-250 50-150	100 25 25 .1				
$\begin{aligned} & \text { 2N5844 } \\ & \text { 2N5845 } \\ & \text { 2N5845A } \\ & \text { 2N5851 } \end{aligned}$	$\begin{aligned} & \text { PNP } \\ & \text { NPN } \\ & \text { NPN } \\ & \text { NPN } \end{aligned}$	$\begin{aligned} & \text { DU } \\ & \text { SW } \\ & \text { SW } \\ & \text { RF } \end{aligned}$	2N3350 2N3572	$\begin{aligned} & 500 \\ & 500 \\ & 500 \\ & 200 \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \\ & 50 \\ & 30 \end{aligned}$	$\begin{aligned} & 40 \\ & 40 \\ & 40 \\ & 15 \end{aligned}$	$\begin{aligned} & 100-300 \\ & 25-150 \\ & 35-150 \\ & 40- \end{aligned}$	$\begin{array}{r} .1 \\ 500 \\ 500 \\ 10 \end{array}$. 6	$\begin{aligned} & 500 \\ & 500 \end{aligned}$		$\begin{aligned} & 200 \\ & 250 \\ & 800 \end{aligned}$
$\begin{aligned} & \text { 2N5852 } \\ & \text { 2N5855 } \\ & \text { 2N5856 } \\ & \text { 2N5857 } \end{aligned}$	NPN PNP NPN PNP	$\begin{aligned} & \text { RF } \\ & \text { GP } \\ & \text { GP } \\ & \text { GP } \end{aligned}$	2N3571 A.5T4030 AST2192 AST4030	$\begin{aligned} & 200 \\ & 750 \\ & 750 \\ & 750 \end{aligned}$	30 60 60 80	15 60 60 80	$\begin{aligned} & 40- \\ & 50-300 \\ & 50-300 \\ & 50-300 \end{aligned}$	$\begin{array}{r} 10 \\ 150 \\ 150 \\ 150 \end{array}$. 4	$\begin{aligned} & 150 \\ & 150 \\ & 150 \end{aligned}$		1.16
$\begin{aligned} & \text { 2M5858 } \\ & \text { 2N5902 } \\ & \text { 2N5903 } \\ & \text { 2N5904 } \end{aligned}$	$\begin{aligned} & \mathrm{NPN} \\ & \mathrm{NCH} \\ & \mathrm{NCH} \\ & \mathrm{NCH} \end{aligned}$	GP FE FE FE	A.512243	750 SEE FET SEE FET SEE FET	80 NTERCH VIERCH TERCH	80 NGEABM NGEAB: NGEAOH	$\begin{aligned} & 50-300 \\ & \text { ITY LST } \\ & \text { ITY LST } \\ & \text { TY LST } \end{aligned}$	150	4	150		
$\begin{aligned} & \text { 2N5905 } \\ & \text { 2N5906 } \\ & \text { 2N5907 } \\ & 2 \mathrm{~N} 5908 \end{aligned}$	$\begin{aligned} & \mathrm{NCH} \\ & \mathrm{NCH} \\ & \mathrm{NCH} \\ & \mathrm{NCH} \end{aligned}$	FE FE FE FE		SEZ FET SEE FET SEE FET SEE FET	NTERCH ITERCH NTERCH VTERCH	NGEABL NGEABL VGEABLI NGEABIL	TY LIST TY LIST TY LIST TY LIST					
$\begin{aligned} & \text { 2N5909 } \\ & \text { 2N5910 } \\ & \text { 2N5911 } \\ & \text { 2N5912 } \end{aligned}$	$\begin{aligned} & \mathrm{NCH} \\ & \text { PNP } \\ & \mathrm{NCH} \\ & \mathrm{NCH} \end{aligned}$	FE SW FE FE		SEE FET 200 SEE FET SEE FET	NTERCH 20 NTERCH NTERCH	NGEABL 20 NGEABIL NGEABM	TY LST 30.120 TY LIST TY LIST	10	. 5	50		700
$\begin{aligned} & \text { 2N5943 } \\ & \text { 2N5949 } \\ & \text { 2N5950 } \\ & \text { 2N5951 } \end{aligned}$	NPN NCH NCH NCH	$\begin{aligned} & \text { RF } \\ & \text { FE } \\ & \text { FE } \\ & F E \end{aligned}$	$\begin{aligned} & \text { 2N5949 } \\ & \text { 2N5950 } \\ & \text { 2N5951 } \end{aligned}$	IW SEE FET SEE FET SEE FET	40 NTERCH TIERCH TERCH	30 VGEABLI VEABLI vGEABLIT	$25-300$ IY LIST TY UST TY UST	50	. 2	100	25	
$\begin{aligned} & \text { 2N5952 } \\ & 2 \mathrm{~N} 5953 \\ & 2 \mathrm{~N} 5961 \\ & 2 \mathrm{~N} 5962 \end{aligned}$	NCH NCH NPN NPN	$\begin{aligned} & F E \\ & \text { FE } \\ & \text { GP } \\ & \text { GP } \end{aligned}$	2N5952 2N5953 TIS94	$\begin{aligned} & \text { SEE FET } \\ & \text { SEE FET } \\ & 200 \\ & 200 \end{aligned}$	TERCH NTERCH		$\begin{aligned} & \text { TY LIST } \\ & \text { TY LST } \\ & \begin{array}{l} 150.950 \\ 600.1550 \end{array} \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \end{aligned}$				
2N5963 2N5998 2N5999 2N6000	NPN NPN PNP NPN	GP GP GP Sw	$\begin{aligned} & \text { 2N3710 } \\ & \text { 2N4061 } \\ & \text { A573904 } \end{aligned}$	$\begin{array}{r} 200 \\ 400 \\ 400 \\ 400 \end{array}$	$\begin{aligned} & 35 \\ & 35 \\ & 35 \end{aligned}$	$\begin{aligned} & 30 \\ & 25 \\ & 25 \\ & 25 \end{aligned}$	$\begin{gathered} 1200-2200 \\ 150-300 \\ 150-300 \\ 100-300 \end{gathered}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & .25 \\ & .25 \\ & .08 \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \\ & 10 \end{aligned}$	$\begin{array}{r} 150 \\ 150 \\ 70 \end{array}$	140 140 150
$\begin{aligned} & \text { 2N6001 } \\ & \text { 2N6002 } \\ & \text { 2N6003 } \\ & \text { 2N6004 } \end{aligned}$	$\begin{aligned} & \text { PNP } \\ & \text { NPN } \\ & \text { PNP } \\ & \text { NPN } \end{aligned}$	$\begin{aligned} & s w \\ & s w \\ & s w \\ & o p \end{aligned}$	A.573906 T\$111	$\begin{array}{r} 400 \\ 400 \\ 400 \\ 400 \end{array}$	$\begin{aligned} & 35 \\ & 35 \\ & 35 \\ & 50 \end{aligned}$	$\begin{aligned} & 25 \\ & 25 \\ & 25 \\ & 40 \end{aligned}$	$\begin{aligned} & 100.300 \\ & 250.500 \\ & 250.500 \\ & 100.300 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$	$\begin{array}{r} .1 \\ .08 \\ .1 \\ .08 \end{array}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$	$\begin{array}{r} 85 \\ 175 \\ 235 \\ 70 \end{array}$	$\begin{aligned} & 225 \\ & 165 \\ & 250 \\ & 150 \end{aligned}$

$\begin{gathered} \text { TYPR } \\ \text { NUMBER } \end{gathered}$		$\begin{aligned} & \mathbf{8} \\ & \frac{8}{2} \\ & \frac{8}{8} \\ & 8 \\ & 8 \end{aligned}$	$\begin{gathered} \text { TI } \\ \text { REPLACMMENT } \\ \text { OR NGAREST } \\ \text { ECUYALENT } \end{gathered}$	MAXIMMM RATINOS			EMCTRICAL CHARACTERISTICS					
							Mre		$\mathrm{VCE}_{\text {(sen) }}$		$\begin{gathered} \mathrm{h}_{\mathrm{f}} \\ 1 \mathrm{ldta} \\ \operatorname{MiN} \end{gathered}$	MT MN (MH2)
2N6005 2N6006 2N6007 2N6008	$\begin{aligned} & \text { PNP } \\ & \text { NPN } \\ & \text { PNP } \\ & \text { NPN } \end{aligned}$	$\begin{aligned} & G P \\ & G P \\ & G P \\ & G P \end{aligned}$	A5T2907 2N3711	$\begin{array}{r} 400 \\ 400 \\ 400 \\ 400 \end{array}$	$\begin{aligned} & 50 \\ & 50 \\ & 50 \\ & 35 \end{aligned}$	$\begin{aligned} & 40 \\ & 40 \\ & 40 \\ & 25 \end{aligned}$	$\begin{aligned} & 100-300 \\ & 250-500 \\ & 250-500 \\ & 250-500 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$	$\begin{array}{r} .1 \\ .08 \\ .1 \\ .25 \end{array}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 50 \end{aligned}$	$\begin{array}{r} 85 \\ 175 \\ 235 \\ 250 \end{array}$	$\begin{aligned} & 225 \\ & 165 \\ & 250 \\ & 140 \end{aligned}$
$\begin{aligned} & \text { 2N6009 } \\ & \text { 2N6010 } \\ & \text { 2N6011 } \\ & \text { 2N6012 } \end{aligned}$	PNP NPN PNP NPN	$\begin{aligned} & G P \\ & G P \\ & G P \\ & G P \end{aligned}$	2N4062 AST2222 A5T2907	$\begin{aligned} & 400 \\ & 500 \\ & 500 \\ & 500 \end{aligned}$	$\begin{aligned} & 35 \\ & 50 \\ & 50 \\ & 50 \end{aligned}$	$\begin{aligned} & 25 \\ & 40 \\ & 40 \\ & 40 \end{aligned}$	$\begin{aligned} & 250-500 \\ & 100-300 \\ & 100-300 \\ & 250-500 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & .25 \\ & .05 \\ & .08 \\ & .05 \end{aligned}$	$\begin{aligned} & 50 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$	$\begin{array}{r} 250 \\ 65 \\ 90 \\ 155 \end{array}$	$\begin{array}{r} 140 \\ 350 \\ 75 \\ 500 \end{array}$
$\begin{aligned} & \text { 2N6013 } \\ & \text { 2N6014 } \\ & \text { 2N6015 } \\ & \text { 2N6016 } \end{aligned}$	$\begin{aligned} & \text { PNP } \\ & \text { NPN } \\ & \text { PNP } \\ & \text { NPN } \end{aligned}$	$\begin{aligned} & G P \\ & G P \\ & G P \\ & G P \end{aligned}$	A572907	$\begin{aligned} & 500 \\ & 500 \\ & 500 \\ & 500 \end{aligned}$	$\begin{aligned} & 50 \\ & 70 \\ & 70 \\ & 70 \end{aligned}$	$\begin{aligned} & 40 \\ & 60 \\ & 60 \\ & 60 \end{aligned}$	$\begin{aligned} & 250-500 \\ & 100-300 \\ & 100-300 \\ & 250-500 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & .08 \\ & .05 \\ & .08 \\ & .05 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$	$\begin{array}{r} 225 \\ 65 \\ 90 \\ 155 \end{array}$	$\begin{array}{r} 120 \\ 105 \\ 75 \\ 150 \end{array}$
$\begin{aligned} & \text { 2N6017 } \\ & \text { 2N6027 } \\ & \text { 2N6028 } \\ & \text { 2N6067 } \end{aligned}$	$\left\lvert\, \begin{aligned} & \text { PNP } \\ & \text { PUT } \\ & \text { PUT } \\ & \text { PNP } \end{aligned}\right.$	$\begin{aligned} & \text { GP } \\ & \text { UJ } \\ & \text { UJ } \\ & \text { SW } \end{aligned}$	$\begin{aligned} & \text { ATT6027 } \\ & \text { ATT6087 } \end{aligned}$	500 SEE UNLU SEE UNIJ 625	70 UNCTIO UNCTIO 50	$\begin{gathered} 60 \\ N \text { INTERCH } \\ \text { N INTERCH } \\ 40 \end{gathered}$	$\begin{aligned} & 250-500 \\ & \text { IANGEABLIT } \\ & \text { IANGEABLIT } \\ & 25-150 \end{aligned}$	10 500	.08 .6	$\begin{array}{r} 10 \\ 500 \end{array}$	$\begin{aligned} & 225 \\ & 150 \end{aligned}$	120
$\begin{aligned} & \text { 2N6076 } \\ & \text { 2N608s } \\ & \text { 2N6086 } \\ & \text { 2N6087 } \end{aligned}$	$\begin{aligned} & \text { PNP } \\ & \mathbf{N P N} \\ & \mathbf{N P N} \\ & \text { NPN } \end{aligned}$	$\begin{aligned} & G P \\ & D U \\ & D U \\ & D U \end{aligned}$	2N4061 2N2917 2N2918 2N2915	$\begin{array}{r} 360 \\ 300 \\ 300 \\ 300 \end{array}$	$\begin{aligned} & 25 \\ & 45 \\ & 45 \\ & 45 \end{aligned}$	$\begin{aligned} & 25 \\ & 45 \\ & 45 \\ & 45 \end{aligned}$	$\begin{array}{r} 100-500 \\ 60-240 \\ 150-600 \\ 60-240 \end{array}$	10 .01 .01 .01	.25 .35 .35 .35	$\begin{array}{r} 10 \\ 1 \\ 1 \\ 1 \end{array}$	100	60 60 60
$\begin{aligned} & \text { 2N6098 } \\ & \text { 2N6089 } \\ & \text { 2N6090 } \\ & \text { 2N6091 } \end{aligned}$	NPN NPN NPN NPN	DU DU DU DU	2N2916 2N2917 2N2918 2N2919	$\begin{aligned} & 300 \\ & 300 \\ & 300 \\ & 300 \end{aligned}$	$\begin{aligned} & 45 \\ & 45 \\ & 45 \\ & 60 \end{aligned}$	$\begin{aligned} & 45 \\ & 45 \\ & 45 \\ & 60 \end{aligned}$	$\begin{array}{r} 150-600 \\ 60-240 \\ 150-600 \\ 60-240 \end{array}$.01 .01 .01 .01	.35 .35 .35 .35	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$		60 60 60 60
$\begin{aligned} & \text { 2N6092 } \\ & \text { 2N6027 } \\ & \text { 2N6028 } \\ & \text { 2N6!14 } \end{aligned}$	NPN PUT PUT P-N	$\begin{aligned} & \text { DU } \\ & \text { UJ } \\ & \text { UJ } \\ & \text { UJ } \end{aligned}$	2N2920 ATt6027 AT6028	300 SEE UNI SEE UNIJ SEE UNL	60 UNCTIO UUNCTIO UNCTIO	$\begin{array}{r} 60 \\ \text { N INTERCK } \\ \text { N INTERCH } \\ \text { N INTERCF } \end{array}$	$150-600$ HANGEABLLIT HANGEABMI HANGEABLLIT	$\begin{aligned} & .01 \\ & \text { IST } \\ & \text { IST } \\ & \text { IST } \end{aligned}$. 35			60
$\begin{aligned} & \text { 2N6115 } \\ & \text { 2N6116 } \\ & \text { 2N6117 } \\ & \text { 2N6118 } \end{aligned}$	$\left\lvert\, \begin{aligned} & \text { P-N } \\ & \text { PUT } \\ & \text { PUT } \\ & \text { PUT } \end{aligned}\right.$	UJ UJ UJ UJ	2N6116 2N6117 2N6118	SEE UNL sEE DATA sEE DATA SEE DATA	JUNCTIO A 3HEET A SHEET A SHEET	N INTERC ON 2N6 ON 2N6 ON 2N6	hanceanlit 116 117 118					
$\begin{aligned} & \text { 2N6119 } \\ & \text { 2N6120 } \\ & 2 \mathrm{~N} 6137 \\ & 2 \mathrm{~N} 6138 \end{aligned}$	$\begin{array}{\|l} \text { PUT } \\ \text { PUT } \\ \text { PUT } \\ \text { PUT } \end{array}$	$\begin{aligned} & \text { UJ } \\ & \text { UJ } \\ & \text { UJ } \\ & \mathbf{U J} \end{aligned}$		SEE UNI set UNI SEE UNI SEE UNU	JUNCTIO JUNCTIO JUNCTIO JUNCTIO	N INTERC N INTERC N INTERC N INTERC	HANGEABHIT HANGEABIIT HANGEABILTY HANOEABLIT					
$\begin{aligned} & \text { 2N6218 } \\ & \text { 2N6219 } \\ & \text { 2N6220 } \\ & \text { 2N6221 } \end{aligned}$	NPN NPN NPN NPN	GP GP GP GP	A.575058 AST5058 TIS100 TIS 101	$\begin{aligned} & 500 \\ & 500 \\ & 500 \\ & 500 \end{aligned}$	$\begin{aligned} & 300 \\ & 250 \\ & 200 \\ & 150 \end{aligned}$	$\begin{aligned} & 300 \\ & 250 \\ & 200 \\ & 150 \end{aligned}$	$\begin{aligned} & 20- \\ & 20- \\ & 20- \\ & 20- \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \\ & 20 \\ & 20 \end{aligned}$	1 1 2 2.3	$\begin{aligned} & 10 \\ & 10 \\ & 20 \\ & 20 \end{aligned}$	20 20 20 20	50 50 50 50

TRANSISTOR INTERCHANGEABILITY MASTER LIST OF REGISTERED TYPES

TRANSISTOR INTERCHANGEABILITY
 MASTER LIST OF REGISTERED TYPES

TYPE NUME			$\begin{aligned} & \text { II } \\ & \text { REPLCUMENT } \\ & \text { OR NBAREST } \\ & \text { EQUVALENT } \end{aligned}$	MNXIMUM RATMNOS		EETRICAL CHMRACILMSTCS			
				$\begin{gathered} \mathbf{T}_{A}=23^{\circ} \mathrm{C} \\ { }^{\bullet} \mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C} \\ (\mathrm{~mW}) \\ \hline \end{gathered}$	$V_{\text {cso }} \quad V_{\text {cso }}$ (V) (V)	hre	VCl(ent) Max erc (V) (ma)	$\begin{gathered} \mathrm{M}_{1} \\ 1 \mathrm{kNHz} \\ \text { MiN } \end{gathered}$	
3N95 3N96 3N97 3N98	$\begin{aligned} & \mathrm{PNP} \\ & \mathrm{PCH} \\ & \mathrm{PCH} \\ & \mathrm{NCH} \end{aligned}$	SW PE FE FE	3N109	300 SEE FET IN SEE FET 1 SEE FET	50 NTERCHANGEAEM NTERCMANGEABL NTERCHANGEAEL	Y LIST TY LST N LIST			
3N99 3N100 3N101 3N102	$\begin{aligned} & \mathrm{NCH} \\ & \text { PNP } \\ & \text { PNP } \\ & \text { PNP } \end{aligned}$	FE SW SW SW	3N128 3N110 3NI 10 3N1 10	$\begin{aligned} & \text { SEE FET IT } \\ & 300 \\ & 300 \\ & 300 \end{aligned}$	NTERCHANGEAB 20 30 40	LIST			
$\begin{aligned} & 3 N 103 \\ & 3 N 104 \\ & 3 N 105 \\ & 3 N 106 \end{aligned}$	$\left\lvert\, \begin{aligned} & \text { PNP } \\ & \text { PNP } \\ & \text { PNP } \\ & \text { PNP } \end{aligned}\right.$	$\begin{aligned} & \text { SW } \\ & \text { SW } \\ & \text { SW } \\ & \text { sW } \end{aligned}$	3N111 3N111 3N111 3NIII	$\begin{aligned} & 300 \\ & 300 \\ & 300 \\ & 300 \end{aligned}$	$\begin{aligned} & 50 \\ & 60 \\ & 20 \\ & 40 \end{aligned}$				
$\begin{aligned} & 3 N 107 \\ & 3 N 108 \\ & 3 N 109 \\ & 3 N 110 \end{aligned}$	$\left\{\begin{array}{l} P N P \\ P N P \\ P N P \\ P N P \end{array}\right.$	$\begin{aligned} & s w \\ & s w \\ & s w \\ & s w \end{aligned}$	$\begin{aligned} & \text { 3N109 } \\ & \text { 3N108 } \\ & \text { 3N109 } \\ & \text { 3N1 } 10 \end{aligned}$	$\begin{aligned} & 300 \\ & 300 \\ & 300 \\ & 300 \end{aligned}$	$\begin{aligned} & 60 \\ & 50 \\ & 50 \\ & 50 \end{aligned}$				12 12 12
$\text { 3N111 } \begin{aligned} & 3 N 112 \\ & 3 N 113 \\ & 3 N 114 \end{aligned}$	PNP PNP PNP PNP	$\begin{aligned} & \text { sw } \\ & \text { SW } \\ & \text { Sw } \\ & \text { SW } \end{aligned}$	3N111 3NI 10	$\begin{aligned} & 300 \\ & 200 \\ & 200 \\ & 200 \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \\ & 50 \\ & 30 \end{aligned}$				12 6 6 12
$\begin{aligned} & 3 N 117 \\ & 3 N 116 \\ & 3 N 118 \\ & 3 N 119 \end{aligned}$	PNP PNP PNP PNP	SW SW SW sw	3NI 10 3N111 3N111 3N111	$\begin{aligned} & 300 \\ & 300 \\ & 300 \\ & 300 \end{aligned}$	$\begin{aligned} & 50 \\ & 30 \\ & 50 \\ & 50 \end{aligned}$				12 12 12 12
3N120 3N121 3N123 3N124	NPN NPN PNP NCH	$\begin{aligned} & \text { SW } \\ & \text { SW } \\ & \text { SW } \\ & \text { FE } \end{aligned}$.	$\begin{aligned} & 200 \\ & 200 \\ & 100 \\ & \text { SEE FRT } \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \\ & 30 \end{aligned}$ NTERCHANGEAD	Y LST			40
$\begin{aligned} & 3 N 125 \\ & 3 N 126 \\ & 3 N 127 \\ & 3 N 128 \end{aligned}$	NCH NCH NPN NCH	FE FE SW FE	$\begin{aligned} & \text { 3N206 } \\ & \text { 3N128 } \end{aligned}$	SEE FET SEE FET 200 SEE FET	NTERCMANOEAE INTERCHANCEA 30	ITY LIST ITY LST TTY LIST			40
$\begin{aligned} & 3 N 129 \\ & 3 N 130 \\ & 3 N 131 \\ & 3 N 132 \end{aligned}$	PNP PNP PNP PNP	$\begin{aligned} & \text { SW } \\ & \text { SW } \\ & \text { SW } \\ & \text { SW } \end{aligned}$	3N1 10 3N110 3N110 3N108	$\begin{aligned} & 300 \\ & 300 \\ & 300 \\ & 300 \end{aligned}$	$\begin{aligned} & 20 \\ & 30 \\ & 40 \\ & 50 \end{aligned}$				
$\begin{aligned} & 3 N 133 \\ & 3 N 134 \\ & 3 N 135 \\ & 3 N 136 \end{aligned}$	PNP PNP PNP PNP	$\begin{aligned} & \text { Sw } \\ & \text { Sw } \\ & \text { Sw } \\ & s w \end{aligned}$	3N108 3N110 3NI 10 3N108	$\begin{aligned} & 300 \\ & 300 \\ & 300 \\ & 300 \end{aligned}$	$\begin{aligned} & 60 \\ & 20 \\ & 40 \\ & 60 \end{aligned}$				

> TRANSISTOR INTERCHANGEABILITY MASTER LIST OF REGISTERED TYPES

TYPENUMOER	总88	$\begin{aligned} & z \\ & \frac{0}{6} \\ & \mathbf{3} \\ & \frac{4}{4} \\ & \frac{3}{3} \end{aligned}$	$\begin{gathered} \text { TI } \\ \text { REPLACEMENT } \\ \text { OR NEAREST } \\ \text { ECUVALENT } \end{gathered}$	MAXIMUM RATNES	PIECTRICAL CHARACTERISTICS			
				$\begin{array}{ccc} \mathrm{P}_{\mathbf{T}} \\ \mathbf{T}_{\mathbf{A}}=25^{\circ} \mathrm{C} & \mathbf{V}_{\mathrm{CBO}} \quad \mathbf{V}_{\mathrm{CEO}} \end{array}$	hre	VCE(set)	h_{6}	4
				$\begin{align*} & { }^{*} \mathrm{~T} \mathrm{C}=25^{\circ} \mathrm{C} \\ & (\mathrm{~mW}) \quad(\mathrm{V}) \tag{V} \end{align*}$	Min MAXIc (ma)	$\begin{array}{llr} \hline \operatorname{MAX} & \mathrm{C} \\ \mathrm{LV}) & (\mathrm{mA}) \\ \hline \end{array}$	MNT	Mins (MHz)
3N138	NCH	FE		SEE FET INTERCHANGEABLITY LIST SEE FET NTERCHANGEABLITY LIST SEE FET NNTERCHANGEABLLTY LIST SEE FET INTERCHANGEABILTY LIST				
3N139	NCH	FE	3N203					
3N140	NCH	FE	3N201					
3N141	NCH		3N201					
3N142	NCH	FE	3N201	See fet interchangeablity list SEE FET INTERCHANGEABLITY UST SEE FET INTERCHANGEABILTY LLST SEE FET INTERCHANGEABUTY LUST			-	
3N143	NCH	FE	3N128					
3N145	PCH	fe	3NI74					
3N146	PCH	FE	3N174					
3N147	PCH	FE	3N208	SEE FET INTERCHANGEABLITY LIST SEE FET INTERCHANGEABLITY LST SEE FET INTERCHANGEABILITY LIST SEE FET INTERCHANGEABNLTY LST				
3N148	PCH	FE	3N208					
3N149	PCH	FE	3N161					
3N150	PCH	FE	3N161					
3N151	PCH	FE		SEE FET INTERCHANGEABLITY UST SEE FET INTERCHANGEABLLTY LIST SEE FET INTERCHANGEABLITY LST SEE FET INTERCHANGEABIITY UST				
3N152	NCH	FE	3N128					
3N153	NCH	FE	3N153					
3N154	NCH		3N128					
3N155	PCH	FE	3N155	SEE FET INTERCHANGEABLITY LIST SEE FET INTERCHANGEABLITY LIST SEE FET INTERCHANGEABLITY UST SEE FET INTERCHANGEABLLTY LIST				
3N155A	PCH	FE	3N155A					
3N156	PCH	FE	3N156					
			3N156A					
3N157	PCH	FE	3N157	SEE FET INTERCHANGEABRLTTY LIST SEE FET INTERCHANGEABLITY LIST SEE FET INTERCHANGEABHLTY LIST SEE FET INTERCHANGEABIITY LST.				
3N157A	PCH	FE	3N157A					
$\text { 3N1 } 58$	PCH	FE	3N158					
3N158A								
3N159	NCH	FE		SEE FET INTERCHANGEABLITY LIST SEE FET INTERCHANGEABLITY LIST SEE FET INTERCHANGEAOHLTY LST SEE FET INTERCHANGEABHITY LST				
3N160	PCH	FE						
3N161	PCH	$F E$	3N161					
3N162	PCH							
3N163	PCH	FE	3N163	SEE FET INTERCHANGEABMITY UST SEE FET INTERCHANGEABLITY UST SEE FET INTERCHANGEABUTY UST SEE FET INTERCHANGEABULTY LIST				
3N164	PCH	FE	3N164					
3N165	PCH	FE						
3N166	PCH	FE						
3N167	PCH	FE		SEE FET INTERCHANGEABIUTY LIST SEE FET INTERCHANGEABILTY LIST SEE FET INTERCHANGEABLITY UST SEE FET INTERCHANGEABLITY LIST				
3N168	PCH	FE	3N160					
3N169	NCH	FE	3N169					
3N170	NCH	FE						
3N171	NCH	FE	3N171	SEE FET interchangeablity list SEE FET INTERCHANGEABMITY LIST SEE FET INTERCHANGEABILTY UST SEE FET INTERChANGEABILTY LUST				
3N172	PCH	FE	3N161					
3N173	PCH	FE	3N161					
3N174	PCH	FE						

TRANSISTOR INTERCHANGEABILITY MASTER LIST OF NONREGISTERED TYPES

TYPE		$\begin{aligned} & \frac{\zeta}{2} \\ & \frac{2}{8} \\ & \hline \end{aligned}$			maximum ratinos			EECTRICAL CHARACTERISTICS					
					$\begin{gathered} P_{T} \\ T_{A}=25^{\circ} \mathrm{C} \\ { }^{*} \mathrm{~T}=25^{\circ} \mathrm{C} \\ (\mathrm{~mW}) \\ \hline \end{gathered}$	$V_{\text {ceo }}$ (V)	$\mathbf{V}_{\text {Ceo }}$ (V)	hat		$\mathbf{V}_{\text {CE(set) }}$		$\begin{gathered} h_{60} \\ 1 \mathrm{kltz} \\ \text { miv } \end{gathered}$	$\begin{gathered} \text { ft } \\ \text { min } \\ \text { (Mintx) } \end{gathered}$
								min max	$\begin{array}{cc} \hline & \mathrm{IC} \\ (\mathrm{ma}) \\ \hline \end{array}$	$\begin{array}{\|l} \hline \max \\ \text { (v) } \\ \hline \end{array}$	$\begin{aligned} & 1 \mathrm{l} \\ & (\mathrm{~mA}) \end{aligned}$		
2243TP	T	NPN	GP	${ }^{\text {A }}$ - 572243	625	120	80	40.120	150	. 35	150		50
2484TP	π	NPN	GP	A 453707	360	60	60	100-500	. 01	. 35	1	150	60
2925TP	π	NPN	GP	AST3711	360	25	25					235	
3245TP		PNP	sw		625	50	50	30.90	500	. 6	500		150
33901P	π	NPN	GP	11597	360	18	18	400-800	2			400	
3391TP	7	NPN	GP	AST3391	360	25	25	$250-500$	2				
33927P	π	NPN	GP	AST3392	360	25	25	150-300	2				
3405TP	π	NPN	GP	2N5449	360	50	50	180-540	2	. 3	50	180	
34157 P	π	NPN	GP	2N5449	360	25	25	180-540	2	. 3	50	180	
3417 P	π	NPN	GP	2N5449	360	50	50	180-540	2	. 3	50	180	
35047 P	π	PNP	GP	AST2907	360	45	45	100-300	150	. 4	150	135	
3563TP	π	NPN	RF	Tis62	360	30	12	20-200	8			20	600
35647 P		NPN	RF	2N4996	360	30	15	20.	15	. 3	20	20	
3565TP	π	NPN	GP	A573565	360	30	25	150.600	1	. 35	1		40
${ }^{3566 T P}$	π	NPN	GP	A.5T2222	360	40	30	150.600	10	1	100		40
3567P	π	NPN	GP	AST2222	360	80	40	40-120	150	. 25	150		60
35687P 35707P	π	NPN	GP	AST2222	300	80	60	40.120	150	. 25	150		60
${ }^{35701 P}$	T1	NPN	RF	A AT3571 $^{\text {S }}$	350	30	15	20-150	5			20	1500
${ }^{35717 P}$	π	NPN	RF	A5T3571	360	25	15	20-200	5			20	1200
36387P	TI	PNP	SW	A.5T3638	300	25	25	30.	50	. 25	50		100
36407 P		PNP	sw	2N4423	360	12	12	30-120	10	. 2	10		500
3641TP	π	NPN	RF	2N5449	360	60	30	40.120	150	. 22	150		250
3643 PP	T1	NPN	${ }_{\text {RF }}$	2N5449	360	60	30	100.300	150	. 22	150		250
3646TP		NPN	sw	AST3903	360	40	15	30.120	30	. 3	30		350
3663TP		NPN	RF	TIS62	200	30	12	20.	8	. 6	10		
37247P	π	NPN	sw	715133	625	50	30	80.150	100	. 3	100		300
40082	RC	NPN	${ }^{\text {RF }}$		-5w								
40084	RC	NPN	GP	2N2222	500	∞	40	50-250	150	1.4	150		
40231	RC	NPN	GP	2N2221	500	18	18					55	
40232	RC	NPN	GP	2N2222	500	18	18					90	
40233	RC	NPN	GP	2N2222	500	18	18					90	
40234	RC	NPN	GP	2N2221	500	18	18			. 2	50	35	
40235	${ }^{\text {RC }}$	NPN	${ }_{\text {RF }}$	2N4252	180	45		40.170	1				
40236	RC	NPN	RF	2N4252	180	45		40-275	1				
40237	RC	NPN	RF	2N4252	180	45		27-275	1				
40238	RC	NPN	RF	2N4252	180	45		40-170	,				
40239	RC	NPAN	${ }^{\text {ar }}$	2N4252	180	45		27-100	1				
40240	RC	NPN	RF	2N4252	180	45		27-275	1				
40242	RC	NPN	RF	2N4252	180	45		40.170	1				
40243	RC	NPN	RF	2 N 4252	180	45		40.170	1				

TRANSISTOR INTERCHANGEABILITY
MASTER LIST OF NONREGISTERED TYPES

TYPE NUMEER	\qquad	$\begin{aligned} & \frac{\Sigma}{N} \\ & \frac{y}{k} \\ & \frac{8}{8} \end{aligned}$	$\begin{aligned} & \frac{z}{6} \\ & \frac{0}{2} \\ & \frac{0}{i n} \\ & \frac{4}{4} \end{aligned}$	7 REPLACEMENT OR NEAREST ECUIVALENT	maximum ratmics			ELECTRICAL CHARACTERISTICS					
					$\begin{gathered} \mathrm{P}_{\mathrm{T}} \\ \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ { }^{\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}} \\ (\mathrm{~mW}) \end{gathered}$	$\mathrm{V}_{\mathrm{CBO}}$ (V)	$\mathbf{V}_{\text {CEO }}$ (v)	hat	$\begin{gathered} \mathrm{IC} \\ (\mathrm{~mA}) \end{gathered}$	$\begin{array}{\|l} \mid \text { VCE } \\ \hline \begin{array}{l} \text { MAX } \\ \text { (V) } \end{array} \\ \hline \end{array}$			$\begin{gathered} \mathbf{f}_{\boldsymbol{T}} \\ \mathrm{MiN} \\ \text { (MHzz)} \end{gathered}$
$\begin{aligned} & 40244 \\ & 40245 \\ & 40246 \\ & 40290 \end{aligned}$	RC RC RC RC	NPN NPN NPN NPN	$\begin{aligned} & \text { RF } \\ & R F \\ & R F \\ & R F \end{aligned}$	2N4252 2N4252 2N4252 2N4252	180 180 180 $7 W$	45 45 45	45 45 45 15	$27-170$ $70-275$ $27-90$	1 1 1				
$\begin{aligned} & 40294 \\ & 40295 \\ & 40296 \\ & 40305 \end{aligned}$	$\left\lvert\, \begin{aligned} & R C \\ & R C \\ & R C \\ & R C \end{aligned}\right.$	NPN NPN NPN NPN	$\begin{aligned} & R F \\ & R F \\ & R F \\ & R F \\ & R F \end{aligned}$	$\begin{aligned} & \text { 2N3571 } \\ & \text { 2N918 } \\ & \text { 2N3571 } \end{aligned}$	200 200 200 $* / W$	30 35 30 65	15 20 15 40	$\begin{aligned} & 30-150 \\ & 30-200 \\ & 30-150 \\ & 10 \end{aligned}$	$\begin{array}{r} 3 \\ 2 \\ 3 \\ 150 \end{array}$	1	250		
4030TP 40309 40311 40314	$\left\|\begin{array}{l} \mathrm{T} \\ \mathrm{R} C \\ \mathrm{RC} \\ \mathrm{RC} \end{array}\right\|$	PNP NPN NPN NPN	$\begin{aligned} & \text { GP } \\ & \text { GP } \\ & \text { GP } \\ & \text { GP } \end{aligned}$	$\begin{aligned} & \text { A5T4026 } \\ & \text { 2N2270 } \\ & \text { 2N2270 } \\ & \text { 2N2102 } \end{aligned}$	$\begin{aligned} & 625 \\ & 1 W \\ & 1 W \\ & 1 W \end{aligned}$	60	$\begin{aligned} & 60 \\ & 18 \\ & 30 \\ & 40 \end{aligned}$	$\begin{aligned} & 40-120 \\ & 70-350 \\ & 70-350 \\ & 35-150 \end{aligned}$	$\begin{array}{r} 100 \\ 50 \\ 50 \\ 50 \end{array}$	$.5$ 1.4	500 150		100
$\begin{aligned} & 40315 \\ & 40317 \\ & 40319 \\ & 40320 \end{aligned}$	$\begin{aligned} & R C \\ & R C \\ & R C \\ & R C \\ & R C \end{aligned}$	NPN NPN PNP NPN	$\begin{aligned} & G P \\ & G P \\ & G P \\ & G P \end{aligned}$	$\begin{aligned} & \text { 2N2270 } \\ & \text { 2N2270 } \\ & \text { 2N1030 } \\ & \text { 2N2270 } \end{aligned}$	1w 1w iw iw		35 40 40 40	$70-350$ $40-200$ $35-200$ $40-200$	50 10 50 10				
$\begin{aligned} & 40321 \\ & 40323 \\ & 40326 \\ & 40327 \end{aligned}$	$\begin{aligned} & \mathrm{RC} \\ & \mathrm{RC} \\ & \mathrm{RC} \\ & \mathrm{RC} \end{aligned}$	NPN NPN NPN NPN	$\begin{aligned} & \text { GP } \\ & \text { GP } \\ & \text { GP } \\ & \text { GP } \end{aligned}$	$\begin{aligned} & \text { 2N5058 } \\ & \text { 2N2270 } \\ & \text { 2N2270 } \\ & \text { 2N5058 } \end{aligned}$	$\begin{aligned} & 1 w \\ & 1 w \\ & \text { iw } \\ & \text { iw } \end{aligned}$		$\begin{array}{r} 300 \\ 18 \\ 40 \\ 300 \end{array}$	$\begin{aligned} & 25-200 \\ & 70-350 \\ & 40-200 \\ & 40-250 \end{aligned}$	$\begin{aligned} & 20 \\ & 50 \\ & 10 \\ & 20 \end{aligned}$				
$\begin{aligned} & 40346 \\ & 40347 \\ & 40348 \\ & 40349 \end{aligned}$	$\begin{aligned} & \mathrm{RC} \\ & \mathrm{RC} \\ & \mathrm{RC} \\ & \mathrm{RC} \end{aligned}$	NPN NPN NPN NPN	GP GP GP GP	$\begin{aligned} & \text { 2N3114 } \\ & \text { 2N2270 } \\ & \text { 2N2102 } \end{aligned}$	$\begin{aligned} & 1 \mathrm{w} \\ & 1 \mathrm{w} \\ & 1 \mathrm{w} \\ & 1 \mathrm{w} \end{aligned}$	$\begin{aligned} & 60 \\ & 90 \end{aligned}$	$\begin{array}{r} 175 \\ 40 \\ 65 \\ 140 \end{array}$	$\begin{aligned} & 25- \\ & 25-100 \\ & 30-100 \\ & 25-100 \end{aligned}$	$\begin{array}{r} 10 \\ 450 \\ 300 \\ 150 \end{array}$.5 1 .75 .5	$\begin{array}{r} 10 \\ 450 \\ 300 \\ 150 \end{array}$		10
$\begin{array}{\|l} 40354 \\ 40355 \\ 40360 \\ 40361 \end{array}$	$\begin{aligned} & \mathbf{R C} \\ & \mathbf{R C} \\ & \mathbf{R C} \\ & \mathbf{R C} \end{aligned}$	NPN NPN NPN NPN	GP GP GP GP	$\begin{aligned} & \text { 2N5059 } \\ & \text { 2N2102 } \\ & \text { 2N2102 } \end{aligned}$	$\begin{aligned} & 500 \\ & 1 w \\ & 1 w \\ & 1 w \end{aligned}$		$\begin{array}{r} 150 \\ 150 \\ 70 \\ 70 \end{array}$	$\begin{aligned} & 40-200 \\ & 70-350 \end{aligned}$	$\begin{aligned} & 10 \\ & 50 \end{aligned}$	5 5 1.4 1.4	$\begin{array}{r} 1 \\ 1 \\ 150 \\ 150 \end{array}$		50 50
$\begin{aligned} & 40362 \\ & 40366 \\ & 40367 \\ & 40385 \end{aligned}$	$\begin{aligned} & \mathbf{R C} \\ & \mathbf{R C} \\ & \mathbf{R C} \\ & \mathbf{R C} \end{aligned}$	$\left\lvert\, \begin{aligned} & \text { PNP } \\ & \text { NPN } \\ & \text { NPN } \\ & \text { NPN } \end{aligned}\right.$	GP GP GP GP	2N4032 2N2102 2N2102	$\begin{aligned} & 16 \\ & 16 \\ & 10 \\ & 10 \end{aligned}$	$\begin{array}{r} 100 \\ 450 \end{array}$	$\begin{array}{r} 70 \\ 65 \\ 55 \\ 350 \end{array}$	$\begin{aligned} & 35-200 \\ & 40-120 \\ & 35-100 \\ & 40-160 \end{aligned}$	50 150 200 20	1.4 .5 1.4 .5	$\begin{array}{r} 150 \\ 150 \\ 200 \\ 4 \end{array}$		
$\begin{aligned} & 40397 \\ & 40398 \\ & 40399 \\ & 40400 \end{aligned}$	$\begin{aligned} & R C \\ & R C \\ & R C \\ & R C \end{aligned}$	$\begin{array}{\|l\|} \mathbf{N P N} \\ \mathbf{N P N} \\ \text { NPN } \\ \mathbf{N P N} \end{array}$	GP GP GP GP	2N2222 2N2222	$\begin{aligned} & 500 \\ & 500 \\ & 500 \\ & 500 \end{aligned}$		$\begin{aligned} & 25 \\ & 25 \\ & 18 \\ & 18 \end{aligned}$	$\begin{array}{r} 165-600 \\ 175-300 \\ 165-600 \\ 75-300 \end{array}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$.25 .25 .2 .2	10 10 5 5	$\begin{array}{r} 165 \\ 75 \end{array}$	50 50 50 50
$\begin{aligned} & 40405 \\ & 40406 \\ & 40407 \\ & 40408 \end{aligned}$	$\begin{aligned} & R C \\ & R C \\ & R C \\ & R C \end{aligned}$	$\begin{array}{\|l\|} \mathbf{N P N} \\ \text { PNP } \\ \text { NPN } \\ \text { NPN } \end{array}$	RF GP GP GP	2N4030 2N2270 2N2102	$\begin{aligned} & 300 \\ & 10 \\ & \text { iw } \\ & \text { iw } \end{aligned}$		$\begin{aligned} & 16 \\ & 50 \\ & 50 \\ & 90 \end{aligned}$	$\begin{aligned} & 20- \\ & 30-200 \\ & 40-200 \\ & 40-200 \end{aligned}$	$\begin{array}{r} 100 \\ .1 \\ 1 \\ 10 \end{array}$	1.4	150		300

TRANSISTOR INTERCHANGEABILITY MASTER LIST OF NONREGISTERED TYPES

TRANSISTOR INTERCHANGEABILITY MASTER LIST OF NONREGISTERED TYPES

TYPE NUMES		$\begin{aligned} & 8 \\ & 8 \\ & 8 \end{aligned}$		71 REPLACEMENT OR NHAREST LCUIVALENT	maximum ratives			EECTRICAL CHARACTERISTICS					
					$\begin{gathered} P_{T} \\ T_{A}=25^{\circ} \mathrm{C} \\ { }^{{ }^{-1} \mathrm{C}=25^{\circ} \mathrm{C}} \\ (\mathrm{~mW}) \\ \hline \end{gathered}$	VCBO (V)	VCEO (V)	MIN MAX	$\begin{gathered} \mathrm{IC} \\ \text { (mA) } \\ \hline \end{gathered}$	$V_{C E}$ Max (V)	$\begin{gathered} \text { (set) } \\ \hline \mathrm{LC} \\ \text { (mA) } \\ \hline \end{gathered}$	H_{H} 1 kdz MIN	$\begin{gathered} \mathrm{T} \\ \mathrm{MNN} \\ (\mathrm{MHz}) \end{gathered}$
$\begin{aligned} & 40382 \\ & 40600 \\ & 40601 \\ & 40602 \end{aligned}$	$\begin{array}{\|l\|} R C \\ R C \\ R C \\ R C \end{array}$	NPN NCH NCH NCH	$\begin{aligned} & \text { RF } \\ & \text { FE } \\ & \text { FE } \\ & \text { FE } \end{aligned}$	$\begin{aligned} & \text { 3N211 } \\ & \text { 3N211 } \\ & \text { 3N211 } \end{aligned}$	\qquad SEE FET INTERCHANGEABILTY LIST SEE FET INTERCHANGEABILITY LIST SEE FET WTERCHANOEABILITY LIST								
$\begin{aligned} & 40603 \\ & 40604 \\ & 40608 \\ & 40611 \end{aligned}$	$\begin{aligned} & R C \\ & R C \\ & R C \\ & R C \\ & R C \end{aligned}$	$\begin{aligned} & \text { NCH } \\ & \text { NCH } \\ & \text { NPN } \\ & \text { NPN } \end{aligned}$	$\begin{aligned} & \text { FE } \\ & \text { FE } \\ & \text { RF } \\ & \text { GP } \end{aligned}$	$\begin{aligned} & \text { 3N211 } \\ & \text { 3N211 } \\ & \text { 2N2270 } \end{aligned}$	SEE FET INTERCHANGEABILITY LIST SEE FET INTERCHANGEABILITY LIST					1	50		700
$\begin{aligned} & 40616 \\ & 40634 \\ & 40635 \\ & 40637 \end{aligned}$	$\begin{aligned} & \text { RC } \\ & R C \\ & R C \\ & R C \\ & R C \end{aligned}$	NPN PNP NPN NPN	GP GP GP RF	$\begin{aligned} & \text { 2N2270 } \\ & \text { 2N4030 } \\ & \text { 2N2270 } \end{aligned}$	$\begin{aligned} & 16 \\ & 1 w \\ & 1 w \\ & 300 \end{aligned}$		$\begin{aligned} & 32 \\ & 75 \\ & 95 \\ & 30 \end{aligned}$	$70-500$ $50-250$ $50-250$	50 150 150		150 150		300
$\begin{aligned} & 40673 \\ & 42487 P \\ & 4274 \mathrm{TP} \\ & 43605 \mathrm{P} \end{aligned}$	$\begin{aligned} & \text { RC } \\ & \mathrm{TI} \\ & \mathrm{TI} \\ & \mathrm{TI} \end{aligned}$	NCH PNP NPN PCH	FE GP SW FE	3N211 A5T4248 A5T3903 A5T5462	SEE FET INTERCHANGEABILITY LIST 360 40 40 $50-$ 360 30 12 $30-120$ SEE FET INTERCHANGEABILITY UST					.25 .2	10 10	50	40 400
$\left\{\begin{array}{l} 400 T P \\ 44017 P \\ 4402 T P \\ 44097 P \end{array}\right.$	$\begin{aligned} & T I \\ & \pi \\ & \pi \\ & T I \\ & \pi \end{aligned}$	NPN NPN PNP NPN	$\begin{aligned} & s W \\ & S W \\ & S W \\ & G P \end{aligned}$	A5T2222 A5T2222 A5T2907 2N4409	$\begin{aligned} & 360 \\ & 360 \\ & 360 \\ & 360 \end{aligned}$	$\begin{aligned} & 60 \\ & 60 \\ & 40 \\ & 80 \end{aligned}$	$\begin{aligned} & 40 \\ & 40 \\ & 40 \\ & 50 \end{aligned}$	$\begin{array}{r} 50-150 \\ 100-300 \\ 50-150 \\ 60-400 \end{array}$	$\begin{array}{r} 150 \\ 150 \\ 150 \\ 1 \end{array}$.4 .4 .4 .2	$\begin{array}{r} 150 \\ 150 \\ 150 \\ 1 \end{array}$	20 40 30	200 250 150 60
$\begin{aligned} & 44107 P \\ & 4888 T P \\ & 4916 T P \\ & 4917 T P \end{aligned}$	$\begin{aligned} & \pi 1 \\ & \pi 1 \\ & \pi 1 \\ & \pi 1 \end{aligned}$	NPN PNP PNP PNP	$G P$ GP GP GP	2N4410 A5T5401 A573905 A.573906	$\begin{aligned} & 360 \\ & 360 \\ & 360 \\ & 360 \end{aligned}$	$\begin{array}{r} 120 \\ 150 \\ 30 \\ 30 \end{array}$	$\begin{array}{r} 80 \\ 150 \\ 30 \\ 30 \end{array}$	$\begin{aligned} & 60-400 \\ & 30- \\ & 70-200 \\ & 150-300 \end{aligned}$	1 1 10 10	.2 .5 .14 .14	$\begin{array}{r} 1 \\ 10 \\ 10 \\ 10 \end{array}$		60 30 400 450
$\begin{aligned} & \text { 5033TP } \\ & \text { 5088TP } \\ & 50897 P \\ & 5172 T P \end{aligned}$	$\begin{aligned} & \mathrm{TI} \\ & \mathrm{TI} \\ & \mathrm{TI} \\ & \mathrm{TI} \end{aligned}$	PCH NPN NPN NPN	FE GP GP GP	A5T5460 TIS94 TISP4 AST5172	SEE FET INTERCHANGEABLITY LIST 310 35 30 $300-900$ 310 30 25 $400-1200$ 360 25 25 $100-500$.1 .1 10	.5 .5 .25	10 10 10	350 450 100	(1) 50
$\begin{aligned} & \text { 5209TP } \\ & 5210 T P \\ & 54007 P \\ & \text { A.5T404 } \end{aligned}$	$\begin{aligned} & \pi \\ & \pi 1 \\ & 71 \\ & \pi 1 \end{aligned}$	NPN NPN PNP PNP	GP GP GP SW	A5T5209 A5T5210 AST5400 A5T404	$\begin{aligned} & 360 \\ & 360 \\ & 360 \\ & 625 \end{aligned}$	$\begin{array}{r} 50 \\ 50 \\ 130 \\ 25 \end{array}$	50 50 120 24	$\begin{array}{r} 100-300 \\ 200-600 \\ 40-180 \\ 30-400 \end{array}$.1 .1 10 12	.7 .7 .2 .15	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 12 \end{aligned}$	150 250 30	30 0 30 0 100
A5T404A AST2192 AST2193 A.5T2222	$\begin{aligned} & 71 \\ & 71 \\ & \pi \\ & 71 \end{aligned}$	PNP NPN NPN NPN	SW GP GP GP	A5T404A A5T2192 A5T2193 A.5T2222	$\begin{aligned} & 625 \\ & 625 \\ & 625 \\ & 625 \end{aligned}$	$\begin{aligned} & 40 \\ & 60 \\ & 80 \\ & 60 \end{aligned}$	$\begin{aligned} & 35 \\ & 40 \\ & 50 \\ & 30 \end{aligned}$	$\begin{array}{r} 30-400 \\ 100-300 \\ 40-120 \\ 100-300 \end{array}$	12 150 150 150	.15 .35 .35 .4	$\begin{array}{r} 12 \\ 150 \\ 150 \\ 150 \end{array}$		50 50 250
AST2243 A5T2907 A573391 A573391A	TI π π π 1	NPN PNP NPN NPN	GP GP GP GP	A5T2243 A512907 A.5T3391 A5T3391A	625 625 625 625	120 60 25 25	80 40 25 25	$40-120$ 100.300 $250-500$ $250-500$	150 150 2 2	.25 .4	150 150		200

TRANSISTOR INTERCHANGEABILITY MASTER LIST OF NONREGISTERED TYPES

TYFE					maximum ratmes			ELECTRICAL CHARACTERISTICS											
					$\begin{gathered} P_{T} \\ T_{A}=25^{\circ} \mathrm{C} \\ { }^{\circ} \mathrm{T}^{\mathrm{C}}=25^{\circ} \mathrm{C} \\ (\mathrm{~mW}) \\ \hline \end{gathered}$	$\mathrm{V}_{\mathrm{CHO}}$ (V)	Veto (v)	hft		$V_{\text {cle }}$ (set)			$\begin{gathered} \text { AT } \\ \text { Min } \\ \text { (MH3) } \end{gathered}$						
								Min max	$\begin{aligned} & -\mathrm{IC} \\ & (\mathrm{~mA}) \end{aligned}$	$\begin{array}{\|lll} \hline \max & \mathrm{IC} \\ \text { (V) } & \text { (ma) } \end{array}$									
AST3392	π	NPN	GP	A5T3392	625	25	25	150-300	2				$\begin{array}{r}200 \\ 200 \\ \hline\end{array}$						
AST3504	Ti	PNP	GP	AST3504	625	45	45	100.300	150	. 4	150	135							
AST3505	11	PNP	${ }^{\text {OP }}$	AST3505	625	60	60	100.300	150	. 4	150	135							
A5T3565	7	NPN	OP	AST3565	625	30	25	150-600	1	. 35	1	120							
Ast3s71		$\begin{aligned} & \text { NPN } \\ & \text { NPN } \\ & \text { PNP } \\ & \text { PNP } \end{aligned}$	$\begin{aligned} & R P \\ & R P \\ & G P \\ & G P \\ & G P \end{aligned}$	AST3571 AST3572 A573638 AST3638A	$\begin{aligned} & 625 \\ & 625 \\ & 625 \\ & 625 \end{aligned}$	$\begin{aligned} & 25 \\ & 25 \\ & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & 15 \\ & 13 \\ & 25 \\ & 25 \end{aligned}$	$\begin{gathered} 20-200 \\ 20-350 \\ 30- \\ 100 . \end{gathered}$	$\begin{array}{r} 5 \\ 5 \\ 50 \\ 50 \end{array}$.25 50 .25 50		$\begin{aligned} & 20 \\ & 20 \end{aligned}$	$\begin{array}{r} 1200 \\ 10 \\ 100 \\ 150 \end{array}$						
A.573572																			
A5T3638																			
AST3638A																			
A5T3644	$\left\lvert\, \begin{aligned} & \mathrm{m} \\ & \pi \\ & \pi \\ & \pi \\ & \pi \end{aligned}\right.$	$\begin{array}{\|l\|l} \text { PNP } \\ \text { PNP } \\ \text { NPN } \\ \text { NPN } \end{array}$	$\begin{aligned} & G P \\ & G P \\ & G P \\ & G P \end{aligned}$	AST3644 A573645 A5T3707 A5T3708	$\begin{aligned} & 625 \\ & 625 \\ & 625 \\ & 625 \end{aligned}$	45 60 30 30	$\begin{aligned} & 45 \\ & 60 \\ & 30 \\ & 30 \end{aligned}$	$\begin{array}{r} 100-300 \\ 100-300 \\ 100.400 \\ 45-660 \end{array}$	$\begin{array}{r} 150 \\ 150 \\ .1 \\ 1 \end{array}$.4411	$\begin{array}{r\|} \hline 150 \\ 150 \\ 10 \\ 10 \end{array}$	$\begin{array}{r} 100 \\ 100 \\ 100 \\ 45 \end{array}$	200						
A573645																			
AST3707																			
AST3708																			
AST3709	$\begin{aligned} & \pi \\ & \pi \\ & \pi \\ & \pi \\ & \pi \end{aligned}$	NPN NPN NPN NCH	$\begin{aligned} & \text { GP } \\ & \text { GP } \\ & \text { GP } \\ & \mathrm{FE} \end{aligned}$		$\begin{array}{ccc} \hline 625 & 30 & 30 \\ 625 & 30 & 30 \\ 625 & 30 & 30 \end{array}$			$\begin{aligned} & 45-165 \\ & 90.330 \\ & 180-660 \\ & \text { f L5т } \end{aligned}$		$\begin{array}{ll} \hline 1 & 10 \\ 1 & 10 \\ 1 & 10 \end{array}$		$\begin{array}{r} 45 \\ 90 \\ 180 \end{array}$							
AST3710																			
AST3711																			
AST3821																			
AST3822	$\left\lvert\, \begin{aligned} & \pi \\ & \pi \\ & \pi \\ & \pi \\ & \pi \end{aligned}\right.$	NCH NCH NCH NPN	$\begin{aligned} & \text { FE } \\ & \text { FE } \\ & \text { FE } \\ & \text { FW } \\ & \mathbf{S W} \end{aligned}$	AST3822 AST3823 A.573824 A5T3903	SEE FET INTERCHANGEABILTY UST SEE FET INTERCHANGEABLITY LIST SEE FET INTERCHANGEABHITY LST							50	250						
AST3823																			
A5T3824																			
AST3903					625	60	40	50-150	10	. 2	10								
A573904	$\begin{aligned} & \mathbf{\pi} \\ & \pi \\ & \pi \\ & \pi \\ & \pi \end{aligned}$	$\begin{aligned} & \text { NPN } \\ & \text { PNP } \\ & \text { PNP } \\ & \text { PNP } \end{aligned}$	$\begin{aligned} & \mathbf{s w} \\ & \mathbf{s w} \\ & \mathbf{s w} \\ & \mathbf{G P} \end{aligned}$	A.5T3904 A5T3905 A.573906 A.5T4026	$\begin{aligned} & 625 \\ & 625 \\ & 625 \\ & 625 \end{aligned}$	$\begin{aligned} & 60 \\ & 40 \\ & 40 \\ & 60 \end{aligned}$	$\begin{aligned} & 40 \\ & 40 \\ & 40 \\ & 60 \end{aligned}$	$\begin{array}{r} 100-300 \\ 50.150 \\ 100-300 \\ 40.120 \end{array}$	$\begin{array}{r} 10 \\ 10 \\ 10 \\ 100 \end{array}$	$\begin{array}{r} .2 \\ .25 \\ .25 \\ .5 \end{array}$	10	$\begin{array}{r} 100 \\ 50 \\ 100 \end{array}$	300200250100						
A5T3903											10								
AsT3906											10								
AST4026											500								
A574027	$\begin{aligned} & \pi \\ & \pi \\ & \pi \\ & \pi \\ & \pi \end{aligned}$	$\begin{aligned} & \text { PNP } \\ & \text { PNP } \\ & \text { PNP } \\ & \text { PNP } \end{aligned}$	GP OP ${ }^{O P}$ GP	A5T4027 A5T4028 A5T4029 AST4058	625	80	80	40.120	100	. 5	500		100150150						
AST4028					625	60	60	100-300	100	. 5	500								
AST4029					625	80	80	100-300	100	. 3	500								
					625	30	30	100-400	. 1	. 7	10	100							
AST4059	$\begin{aligned} & \pi \\ & \pi \\ & \pi \\ & \pi \\ & \pi i \end{aligned}$	$\begin{aligned} & \text { PNP } \\ & \text { PNP } \\ & \text { PNP } \\ & \text { PNP } \end{aligned}$	$\begin{aligned} & G P \\ & G P \\ & G P \\ & G P \end{aligned}$	A.ST4059 AST4060 A.5T4061 A.5T4062	625	30	30	45-660				454590180							
A574060					625	30	30	45.165	1	. 7	10								
A574061					625	30	30	90-330	1	. 7	10								
A5T4062					625	30	30	180.600	1	. 7									
${ }^{\text {A STA123 }}$	$\begin{aligned} & \pi \\ & \pi \\ & \pi \\ & \pi \\ & \pi \end{aligned}$	NPN NPN PNP PNP	$\begin{aligned} & \text { sw } \\ & \text { SW } \\ & \text { SW } \\ & \text { SW } \end{aligned}$	A5T4123 A5T4124 A5T4125 A5T4126	$\begin{aligned} & 625 \\ & 625 \\ & 625 \\ & 625 \end{aligned}$	$\begin{aligned} & 40 \\ & 30 \\ & 30 \\ & 25 \end{aligned}$	$\begin{aligned} & 30 \\ & 25 \\ & 30 \\ & 25 \end{aligned}$	$\begin{array}{r} 50.150 \\ 120-360 \\ 50-150 \\ 120-360 \end{array}$			50								
AST4124									2	. 3	50	120	300						
A 5 T4125									2	. 4	50	50	200						
A514126									2	. 4	50	120	250						
A514248	$\begin{aligned} & \pi \\ & \pi \\ & \pi \\ & \pi \\ & \pi \end{aligned}$	$\begin{aligned} & \text { PNP } \\ & \text { PNP } \\ & \text { PNP } \\ & \text { PNP } \end{aligned}$	$\begin{aligned} & G P \\ & G P \\ & G P \\ & \text { GF } \end{aligned}$	A5T4248 A5T4249 A5T4250 A.ST4260	625	40	40	50.	.1	. 25	10		4040501600						
AST4249					625	60	¢0	100.300	. 1	. 25	10	100							
A544250					625	40	40	250.700	. 1	. 25	10	250							
A 514260					200	20	15	30.	10	. 35	10								

TYPE NLMERA	\qquad	$\frac{2}{8}$	$\begin{aligned} & 3 \\ & \frac{8}{8} \\ & \frac{3}{8} \\ & 8 \end{aligned}$	$\begin{aligned} & \text { II } \\ & \text { REPLACEMENT } \\ & \text { OR NFAREST } \\ & \text { ECUIVALENT } \end{aligned}$	MNXIMUM RATINES			ELCTRICAL CHARACTEXESTICS					
					$\left\{\begin{array}{ccc} \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} & \mathrm{VCSO} & \mathrm{VCSO} \\ { }^{{ }^{\top} \mathrm{T}=25^{\circ} \mathrm{C}} & & \\ \text { (mW) } & \text { (V) } & \text { (V) } \end{array}\right.$			MFE MIN				$\begin{gathered} \text { ho } \\ 1 \text { kdta } \\ \text { Min } \end{gathered}$	
A5T4261 A5T4402 A5T4403 A5T4409	$\begin{aligned} & \mathrm{TI} \\ & \mathrm{r} \\ & \mathrm{TI} \\ & \mathrm{TI} \end{aligned}$	PNP PNP PNP NPN	RF SW SW GP	A5T4261 A5T4402 A5T4403 A574409	$\begin{aligned} & 200 \\ & 625 \\ & 625 \\ & 625 \end{aligned}$	$\begin{aligned} & 20 \\ & 40 \\ & 40 \\ & 80 \end{aligned}$	$\begin{aligned} & 15 \\ & 40 \\ & 40 \\ & 50 \end{aligned}$	$\begin{aligned} & 30- \\ & 50-150 \\ & 100-300 \\ & 60-400 \end{aligned}$	$\begin{array}{r} 10 \\ 150 \\ 150 \\ 1 \end{array}$	$\begin{array}{r} .35 \\ .4 \\ .4 \\ .2 \end{array}$	$\begin{array}{r} 10 \\ 150 \\ 150 \\ 1 \end{array}$	$\begin{aligned} & 30 \\ & 60 \end{aligned}$	$\begin{array}{r} 20 \\ 150 \\ 200 \\ 60 \end{array}$
$\begin{array}{\|l\|l\|l\|l\|l\|} \hline \text { AST4 } 40 \\ \text { AST5058 } \\ \text { AST5059 } \\ \text { AST5086 } \end{array}$	$\left\lvert\, \begin{aligned} & \mathrm{T} \\ & \mathrm{TI} \\ & \mathrm{~T} 1 \\ & \mathrm{Ti} \end{aligned}\right.$	NPN NPN NPN PNP	$\begin{aligned} & G P \\ & G P \\ & G P \\ & G P \end{aligned}$	A5T4410 A5T5058 A.5T5059 A5T5086	$\begin{aligned} & 625 \\ & 800 \\ & 800 \\ & 625 \end{aligned}$	$\begin{array}{r} 120 \\ 300 \\ 250 \\ 50 \end{array}$	$\begin{array}{r} 80 \\ 300 \\ 250 \\ 50 \end{array}$	$\begin{array}{r} 60-400 \\ 35-150 \\ 30-150 \\ 150-500 \end{array}$	1 30 30 .1	.2 1 1 .3	$\begin{gathered} 1 \\ 30 \\ 30 \\ 10 \end{gathered}$	150	60 30 30 40
$\begin{aligned} & \text { AST5087 } \\ & \text { AST5172 } \\ & \text { AST5209 } \\ & \text { AST5210 } \end{aligned}$	$\left\lvert\, \begin{aligned} & \pi \\ & \pi \\ & \pi \\ & \pi \\ & \pi \end{aligned}\right.$	$\begin{aligned} & \text { PNP } \\ & \text { NPN } \\ & \text { NPN } \\ & \text { NPN } \end{aligned}$	$\begin{aligned} & G P \\ & G P \\ & G P \\ & G P \end{aligned}$	A5T5087 A5T5172 A575209 A5T5210	$\begin{aligned} & 625 \\ & 625 \\ & 625 \\ & 625 \end{aligned}$	$\begin{aligned} & 50 \\ & 25 \\ & 50 \\ & 50 \end{aligned}$	$\begin{aligned} & 50 \\ & 25 \\ & 50 \\ & 50 \end{aligned}$	$\begin{aligned} & 250-800 \\ & 100-500 \\ & 100-300 \\ & 200-600 \end{aligned}$.1 10 .1 .1	.3 .25 .7 .7	10 10 10 10	250 100 150 250	40 30 30
$\begin{aligned} & \text { AST5219 } \\ & \text { AST5220 } \\ & \text { AST5221 } \\ & \text { AST5223 } \end{aligned}$	$\left\lvert\, \begin{aligned} & \pi 1 \\ & \pi \\ & \pi \\ & \pi 1 \\ & \pi \end{aligned}\right.$	$\begin{aligned} & \text { NPN } \\ & \text { NPN } \\ & \text { PNP } \\ & \text { NPN } \end{aligned}$	GP GP GP GP	A5T5219 A.5T5220 AST5221 AST5223	$\begin{aligned} & 625 \\ & 625 \\ & 625 \\ & 625 \end{aligned}$	20 15 15 25	15 15 15 20	$\begin{aligned} & 35-500 \\ & 30-600 \\ & 30-600 \\ & 50-800 \end{aligned}$	$\begin{array}{r} 2 \\ 50 \\ 50 \\ 2 \end{array}$.4 .5 .5 .7	$\begin{array}{r} 10 \\ 150 \\ 150 \\ 10 \end{array}$	35 30 30 50	150 100 100 150
A5T5225 A5T5226 AST5227 A5T5400	$\left\lvert\, \begin{aligned} & \mathrm{m} \\ & \mathrm{n} \\ & \mathrm{n} \\ & \mathrm{n} \\ & \mathrm{n} \end{aligned}\right.$	NPN PNP PNP PNP	GP GP GP GP	AST5225 AST5226 A5T5227 A5T5400	$\begin{aligned} & 625 \\ & 625 \\ & 625 \\ & 625 \end{aligned}$	$\begin{array}{r} 25 \\ 25 \\ 30 \\ 130 \end{array}$	$\begin{array}{r} 25 \\ 25 \\ 30 \\ 120 \end{array}$	$\begin{aligned} & 30-600 \\ & 30-600 \\ & 50-700 \\ & 40-180 \end{aligned}$	$\begin{array}{r} 50 \\ 50 \\ 2 \\ 10 \end{array}$.8 .8 .4 .2	100 100 10 10	30 30 50 30	50 50 100 100
A5T5401 A5T5460 A5T5461 A575462	$\begin{aligned} & 11 \\ & n \\ & n \\ & 11 \\ & 1 \end{aligned}$	$\left\lvert\, \begin{aligned} & \text { PNP } \\ & \hline P C H \\ & P C H \end{aligned}\right.$	$\begin{aligned} & \text { GP } \\ & \text { FE } \\ & \text { FE } \\ & \text { FE } \end{aligned}$	A.5T5401 A575460 A.5T5461 AST5462	625 SEE FET SEE FET SEE FET	160 INTERCH INTERCH INTERCH	150 ANGEABLL ANGEABIL	60-240 ITY LIST ITY LIST ITY LIST	10	. 2	10	40	100
A5T5550 A5T5551 AST6116 A576117	$\begin{aligned} & \pi \\ & \pi \\ & \pi \\ & \pi \\ & \pi \end{aligned}$	NPN NPN	$\begin{aligned} & \text { GP } \\ & \text { GP } \\ & \text { UJ } \\ & \text { UJ } \end{aligned}$	AST5550 A575551 AST61 16 AST6117	$\begin{gathered} 625 \\ 625 \\ \text { SEE DA } \\ \text { SEE DA } \end{gathered}$	$\begin{gathered} 160 \\ 180 \\ \text { A SHEET } \\ \text { A SHEET } \end{gathered}$	$\begin{array}{r} 140 \\ 160 \\ \text { ON A.5T61 } \\ \text { ON A.5T61 } \end{array}$	$\begin{aligned} & 60-250 \\ & 16^{80-250} \\ & 17 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & .15 \\ & .15 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	50 50	$\begin{aligned} & 100 \\ & 100 \end{aligned}$
A.5T6118 A5T6449 A576450 A6T5222	$t I$	NCH NCH NPN	UJ FE FE RF	A.576118 A5T6449 A5T6450 A6T5222	SEE DA SEE FET SEE FET 625	A SHEET INTERCH INTERCH 20	ON ASTO ANGEABH ANGEABIL 15	118 TV LIST ITY LIST 20-1500	4	1	4	20	450
A7T3391 ATT3391A ATT3392 AT5172	$\begin{aligned} & \mathrm{Ti} \\ & \mathrm{Ti} \\ & \mathrm{TH} \\ & \mathrm{TI} \end{aligned}$	NPN NPN NPN NPN	GP GP GP GP	AT3391 ATt3391A A7T3392 ATTS172	$\begin{aligned} & 625 \\ & 625 \\ & 625 \\ & 625 \end{aligned}$	25 25 25 25	25 25 25 25	$\begin{aligned} & 250-500 \\ & 250-500 \\ & 150-300 \\ & 100-500 \end{aligned}$	2 2 2 10	. 25	10	$\begin{array}{r} 20 \\ 100 \end{array}$	600
A576116 A5T6117 AST6118 ATT6027	$\begin{aligned} & \mathrm{TI} \\ & \mathrm{TI} \\ & \mathrm{~T} \\ & \mathrm{TI} \end{aligned}$	$\begin{aligned} & \text { PUT } \\ & \text { PUT } \\ & \text { PUT } \\ & \text { PUT } \end{aligned}$	$\begin{aligned} & \mathrm{UJ} \\ & \mathrm{UJ} \\ & \mathrm{UJ} \\ & \mathrm{UJ} \end{aligned}$	A576116 AST61 17 A5761 18 ATT6027	SEE UNIJUNCTION INTERCHANGEABLITY LIST SEE UNUUNCTION INTERCHANGEABLITY LIST SEE UNIJUNCTION INTERCHANGEABLITY UST SEE UNIJUNCTION INTERCHANGEABLITTY LIST								

TRANSISTOR INTERCHANGEABILITY MASTER LIST OF NONREGISTERED TYPES

TRANSISTOR INTERCHANGEABILITY

MASTER LIST OF NONREGISTERED TYPES

TRANSISTOR INTERCHANGEABILITY MASTER LIST OF NONREGISTERED TYPES

TRANSISTOR INTERCHANGEABILITY
 MASTER LIST OF NONREGISTERED TYPES

TYPE NUMBER		$\begin{aligned} & k \\ & \frac{k}{6} \\ & \frac{2}{6} \\ & 6 \end{aligned}$	$z$$\frac{2}{1}$$\frac{4}{4}$$\frac{1}{4}$$\frac{1}{4}$3		MAXIMUM RATINGS			ELECTRICAL CHARACTERISTICS					
					$\begin{gathered} P_{T} \\ T_{A}=25^{\circ} \mathrm{C} \\ { }^{\circ} \mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C} \\ (\mathrm{~mW}) \\ \hline \end{gathered}$	$V_{C B O}$ (V)	$\mathbf{V}_{\text {ceo }}$ (V)	hfe	$\begin{gathered} \mathrm{lc} \\ (\mathrm{~mA}) \end{gathered}$	$V_{C E}$ MAX (V)	sat) (mA mA		$\begin{array}{c\|} \hline \boldsymbol{T} \\ \\ \text { MIN } \\ \text { (MHz) } \\ \hline \end{array}$
EN2369A EN2484 EN2894A EN2905	F	NPN NPN PNP PNP	$\begin{aligned} & S W \\ & G P \\ & S W \\ & G P \end{aligned}$	A5T3707 2N4423 A.5T2907	200 200 200 300	40 60 12 60	15 60 12 40	$40-$ $100-500$ $40-120$ $100-300$	10 .01 30 150	.2 .35 .19 .4	10 1 30 150	150	500 60 800 200
EN2907 EN3009 EN3011 EN3013	F	PNP NPN NPN NPN	$\begin{aligned} & \text { GP } \\ & \text { SW } \\ & \mathbf{S W} \\ & \mathbf{S W} \end{aligned}$	$\begin{aligned} & \text { A5T2907 } \\ & \text { 2N3903 } \\ & \text { 2N3903 } \\ & \text { 2N3903 } \end{aligned}$	200 200 200 200	60 40 30 40	40 15 12 15	$100-300$ $30-120$ $30-120$ $30-120$	150 30 10 30	.4 .18 .2 .18	150 30 10 30		150 350 400 350
EN3014 EN3250 EN3502 EN3504	$\left\lvert\, \begin{aligned} & \mathbf{F} \\ & \mathbf{F} \\ & \mathbf{F} \end{aligned}\right.$	NPN PNP PNP PNP	$\left\lvert\, \begin{aligned} & \text { SW } \\ & \text { SW } \\ & \text { GP } \\ & \text { GP } \end{aligned}\right.$	2N3903 A5T3504 A5T3504	200 200 300 200	40 40 45 45	20 40 45 45	$30-120$ $50-150$ $100-300$ $100-300$	30 10 150 150	.18 .25 .4 .4	30 10 150 150		350 250 150 150
$\begin{aligned} & \text { EN3962 } \\ & \text { FE0654A } \\ & \text { FE0654B } \\ & \text { FE3819 } \end{aligned}$	$\left\lvert\, \begin{aligned} & F \\ & F \\ & F \\ & F \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & \mathrm{PNP} \\ & \mathrm{NCH} \\ & \mathrm{NCH} \\ & \mathrm{NCH} \end{aligned}\right.$	GP FE FE FE	$\begin{aligned} & \text { AST4061 } \\ & \text { 2N5950 } \\ & \text { 2N5951 } \\ & \text { 2N5953 } \end{aligned}$	200 60 60 (60 SEE FET INTERCHANGEABILITY LIST SEE FET INTERCHANGEABILITY LIST SEE FET INTERCHANGEABILITY LIST					. 25	1	100	
$\begin{aligned} & \text { FE5245 } \\ & \text { FE5246 } \\ & \text { FE5247 } \\ & \text { FE5457 } \end{aligned}$	$\left\lvert\, \begin{aligned} & F \\ & F \\ & F \\ & F \end{aligned}\right.$	$\begin{aligned} & \mathrm{NCH} \\ & \mathrm{NCH} \\ & \mathrm{NCH} \\ & \mathrm{NCH} \end{aligned}$	FE FE FE FE	$\begin{aligned} & \text { 2N5245 } \\ & \text { 2N5246 } \\ & \text { 2N5247 } \\ & \text { 2N5953 } \end{aligned}$	SEE FET INTERCHANGEABLLITY LIST SEE FET INTERCHANGEABILITY LIST SEE FET INTERCHANGEABILITY LIST SEE FET INTERCHANGEABILITY LIST								
$\begin{aligned} & \text { FE5458 } \\ & \text { FE5459 } \\ & \text { FE5484 } \\ & \text { FE5485 } \end{aligned}$	$\left\lvert\, \begin{aligned} & F \\ & F \\ & F \end{aligned}\right.$	NCH NCH NCH NCH	FE FE FE FE	$\begin{aligned} & \text { 2N5952 } \\ & \text { 2N5950 } \\ & \text { 2N5953 } \\ & \text { 2N5952 } \end{aligned}$	SEE FET INTERCHANGEABILITY LIST SEE FET INTERCHANGEABILITY LIST SEE FET INTERCHANGEABILTY LIST SEE FET INTERCHANGEABLLTY LIST								
FE5486 FT0654A FT0654B FT0654C	F F F F	NCH NCH NCH NCH	FE FE FE FE	2N5949	SEE FET INTERCHANGEABILITY LIST SEE FET INTERCHANGEABALITY LIST SEE FET INTERCHANGEABILITY LIST SEE FET INTERCHANGEABILITY LIST								
FT0654D FT701 FT703 FT704	$\begin{aligned} & F \\ & f \\ & F \\ & F \end{aligned}$	NCH PCH PCH PCH	FE FE FE FE	3N207 3N160 3N163	SEE FET INTERCHANGEABLLITY LIST SEE FET INTERCHANGEABLLITY LIST SEE FET INTERCHANGEABILITY LIST SEE FET INTERCHANGEABILITY LIST								
$\begin{aligned} & \text { FT3567 } \\ & \text { FT3568 } \\ & \text { FT3569 } \\ & \text { FT3641 } \end{aligned}$	$\begin{aligned} & F \\ & F \\ & F \\ & F \end{aligned}$	NPN NPN NPN NPN	GP GP GP RF	TIS 110	$\begin{aligned} & 500 \\ & 500 \\ & 500 \\ & 450 \end{aligned}$	$\begin{aligned} & 80 \\ & 80 \\ & 80 \\ & 60 \end{aligned}$	$\begin{aligned} & 40 \\ & 60 \\ & 40 \\ & 30 \end{aligned}$	$\begin{array}{r} 40-120 \\ 40-120 \\ 100-300 \\ 40-120 \end{array}$	$\begin{aligned} & 150 \\ & 150 \\ & 150 \\ & 150 \end{aligned}$.25 .25 .25 .22	$\begin{aligned} & 150 \\ & 150 \\ & 150 \\ & 150 \end{aligned}$		60 60 250
$\begin{aligned} & \text { FT3642 } \\ & \text { FT3643 } \\ & \text { FT3644 } \\ & \text { FT3645 } \end{aligned}$	F	NPN NPN PNP PNP	RF RF GP GP	TIS 110 A5T2222 AST3644 A.5T3645	$\begin{aligned} & 450 \\ & 450 \\ & 450 \\ & 450 \end{aligned}$	60 60 45 60	45 30 45 60	$\begin{array}{r} 40-120 \\ 100-300 \\ 100-300 \\ 100-300 \end{array}$	150 150 150 150	.22 .22 .4 .4	150 150 150 150		250 250 200 200

TRANSISTOR INTERCHANGEABILITY MASTER LIST OF NONREGISTERED TYPES

TRANSISTOR INTERCHANGEABILITY

MASTER LIST OF NONREGISTERED TYPES

TYPI NUMCES			$\begin{aligned} & 8 \\ & 8 \\ & 8 \\ & 8 \\ & 8 \end{aligned}$	$\begin{aligned} & \text { II } \\ & \text { RBPLACBMENT } \\ & \text { OR NHAREBY } \\ & \text { EQUYALBNT } \end{aligned}$		ELCTRLCAL CHARACTERISTICS			
						MIN MAX 1	VClent) MAX IC (V) (mA)	$\begin{gathered} \mathrm{h}_{8} \\ \mathrm{e} \\ \mathrm{k} \mathrm{kHz} \\ \mathrm{MiN} \end{gathered}$	
unp3935A MF3956 MF3957 MP3958	$\left\{\begin{array}{l} \mathbb{N} \\ \mathbb{N} \\ \mathbb{N} \\ \mathbb{N} \end{array}\right.$	NCH NCH NCH NCH	F FE 限 FE	2NS546 2N5547 2N5547 2N5045	SEE FET NTERCHANGEABHTIY LIST SEE PET INTERCHANGEABILITY LST SEE FET INTERCHANGEABLLTY LIST SEE FET INTERCHANGEABILTYY LST				
T108 IT109 III700 IT1701	$\left\lvert\, \begin{aligned} & \mathbb{N} \\ & \mathbb{N} \\ & \mathbb{N} \\ & \mathbb{N} \\ & \mathbb{N} \end{aligned}\right.$	NCH NCH PCH PCH	$\begin{aligned} & \text { FE } \\ & \text { FE } \\ & \text { FE } \\ & \text { FE } \end{aligned}$	$\begin{aligned} & \text { 2N5245 } \\ & \text { 3N163 } \\ & \text { 3N163 } \end{aligned}$	SEE FET INTERCHANGEABLITY LIST SER FET INTERCHANGEABILITY LIST SEE FET INTERCHANGEABLLITY LST sEE FET INTERCHANGEABLITY LIST				
171702 IT1750 172700 T2701	$\left\lvert\, \begin{aligned} & \mathbf{N} \\ & \mathbf{N} \\ & \mathbf{N} \\ & \mathbf{N} \\ & \mathbf{N} \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & \mathrm{PCH} \\ & \mathrm{NCH} \\ & \mathrm{PCH} \\ & \mathrm{PCH} \end{aligned}\right.$	$\begin{aligned} & \text { FE } \\ & \text { FE } \\ & \text { FE } \\ & \text { FE } \end{aligned}$	3 Nl 63	SEE FET NTERCHANGEABILTY LST SEE FET iNTERCHANGEABLLTY LIST SEE FET INTERCHANGEABILITY LIST SEE FET INTERCHANGEABLLITY LIST				
$\begin{aligned} & \text { ITESO66 } \\ & \text { TESE067 } \\ & \text { TESO68 } \\ & \text { TESHII7 } \end{aligned}$	$\begin{aligned} & \mathbb{N} \\ & \mathbb{N} \\ & \mathbb{N} \\ & \mathbb{N} \\ & \mathbb{N} \end{aligned}$	$\begin{aligned} & \mathrm{NCH} \\ & \mathrm{NCH} \\ & \mathrm{NCH} \\ & \mathrm{NCH} \end{aligned}$	$\begin{aligned} & \text { FE } \\ & \text { FE } \\ & \text { FE } \\ & \text { FE } \end{aligned}$	$\begin{aligned} & \text { 2N5953 } \\ & \text { 2N3460 } \end{aligned}$	see fet interchangeablity list SEE FET INTERCHANGEABLLITY LIST SEE FET INTERCHANGEABILITY LIST SEE FET INTERCHANGEABILITY LIST				
TE4118 TTE419 TEA338 TrE4339	$\left\lvert\, \begin{aligned} & \mathbf{N} \\ & \mathbb{N} \\ & \mathbb{N} \\ & \mathbb{N} \\ & \mathbf{N} \end{aligned}\right.$	$\begin{aligned} & \mathrm{NCH} \\ & \mathrm{NCH} \\ & \mathrm{NCH} \\ & \mathrm{NCH} \end{aligned}$	FE FE FE FE	$\begin{aligned} & \text { 2N3460 } \\ & \text { 2N3460 } \end{aligned}$	SEE FET INTERCHANGEABILTTY LIST SEE FET INTERCHANGEABILITY LIST SEE FET INTERCHANGEABILTY LIST see fet interchangeablety list				
$\begin{aligned} & \text { ITEA340 } \\ & \text { TEA341 } \\ & \text { TEA391 } \\ & \text { TE\&392 } \end{aligned}$	$\left\lvert\, \begin{aligned} & \mathbb{N} \\ & \mathbb{N} \\ & \mathbb{N} \\ & \mathbb{N} \\ & \mathbb{N} \end{aligned}\right.$	NCH NCH NCH NCH	FE FE FE FE	2N5953 2N5953 TIS73 TIS74	SEE FET INTERCHANGEABLITY LIST SEE FET INTERCHANGEABLITTY LIST SEE FET INTERCHANGEABLITYY UST SEE FET INTERCHANGEABMTTY LIST				
ITEA393 TTE4416 ITEA867 ITEA868	$\left\{\begin{array}{l} \mathbb{N} \\ \mathbb{N} \\ \mathbb{N} \\ \mathbb{N} \end{array}\right.$	NCH NCH NCH NCH	$\begin{aligned} & \text { FE } \\ & \text { FE } \\ & \text { FE } \\ & \text { FE } \end{aligned}$	TIS75 2N5245 2N3460 2N3459	see fet interchangeabllity list SEE FET INTERCHANGEABLITYY LIST SEE FET INTERCHANGEABILITY LIST SEE FET INTERCHANGEABLIITY LIST				
ITEA869 KE3684 KE3685 KE3686	$\left\lvert\, \begin{aligned} & \mathbf{N} \\ & \mathbf{N} \\ & \mathbf{N} \\ & \mathbf{N} \end{aligned}\right.$	NCH NCH NCH NCH	FE FE FE FE	$\begin{aligned} & \text { 2N5953 } \\ & \text { 2N5953 } \\ & \text { A5T3821 } \end{aligned}$	SEE FET INTERCHANGEABILITY LIST SEE FET INTERCHANGEABILITY LIST SEE FET INTERCHANGEABILITY LIST SEE FET INTERCHANGEABILITY LIST				
$\begin{aligned} & \text { KE3687 } \\ & \text { KE3823 } \\ & \text { KE3970 } \\ & \text { KE3971 } \end{aligned}$	$\begin{aligned} & \mathbb{N} \\ & \mathbb{N} \\ & \mathbb{N} \\ & \mathbb{N} \end{aligned}$	NCH NCH NCH NCH	$\begin{aligned} & \text { FE } \\ & \text { FE } \\ & \text { FE } \\ & \text { FE } \end{aligned}$	A5T3823 TIS73 TIS74	SEE FET INTERCHANGEABILITY LIST SEE FET INTERCHANGEABILITY LIST SEE FET INTERCHANGEABILITY LIST SEE FET INTERCHANGEABILTY LIST				
$\begin{aligned} & \text { KE3972 } \\ & \text { KE4091 } \\ & \text { KE4092 } \\ & \text { KE4093 } \end{aligned}$	$\left\lvert\, \begin{aligned} & \mathbb{N} \\ & \mathbb{N} \\ & \mathbb{N} \\ & \mathbf{N} \end{aligned}\right.$	NCH NCH NCH NCH	$\begin{aligned} & \text { FE } \\ & \text { FE } \\ & \text { FE } \\ & \text { FE } \end{aligned}$	TIS75 TIS73 TIS74 T1575	SEE FET INTERCHANGEABLLLTY LIST SEE FET INTERCHANGEABLLITY LIST SEE FET INTERCHANGEABLLTY LIST SEE FET INTERCHANGEABILTTY LIST				

TRANSISTOR INTERCHANGEABILITY MASTER LIST OF NONREGISTERED TYPES

typlnumber		$\begin{gathered} \text { K } \\ \frac{5}{5} \end{gathered}$	$\begin{aligned} & \frac{7}{6} \\ & \frac{5}{5} \\ & \frac{5}{5} \\ & \frac{6}{3} \end{aligned}$	$\begin{aligned} & \text { II } \\ & \text { REPACEMENT } \\ & \text { OR NEAREST } \\ & \text { EGUIVALINT } \end{aligned}$	maximum rativos			ELECTRICAL CHARACTERISTICS					
					$\begin{array}{ccc} \mathrm{T}_{A}=25^{\circ} \mathrm{C} & \text { VCEO } & \text { VCEO }^{{ }^{\circ} \mathrm{P}_{\mathrm{C}}=23^{\circ} \mathrm{C}} \\ (\mathrm{~mW}) & \text { (V) } & \text { (V) } \\ \hline \end{array}$			hre		$\mathrm{V}_{\text {ces }}^{\text {(sel }}$)		$\begin{gathered} h_{80} \\ \theta_{1} \mathrm{kdt} \\ \text { Mw } \end{gathered}$	
								MIN M/	$\begin{aligned} & \text { Ic } \\ & \text { (ma) } \end{aligned}$		$\begin{array}{ll} \hline \mathrm{Ic} \\ (\mathrm{~mA}) \end{array}$		
KEA220	\mathfrak{N}	NCH	FE	A ${ }^{\text {ST3821 }}$	SEE FET INTERCHANGEABLITY LST SEE FET INTERCHANGEABILTY LIST SEE FET INTERCHANGEABITY LIST SEE FET INTERCHANGEAGLLTY UST								
KL4221	IN	NCH	FE	A 453822									
KEA222	N	NCH	FE	A5T3822									
KEA223	IN	NCH	FE	2NS950									
KEA224	IN	NCH	PR	2N5949	SEE FET INTERCHANGEABHLTY LIST SEE FET INTERCHANGEABLITY LIST SEE FET INTERCHANGEABLITY LIST SEE FET INTERCHANGEABLLTY LIST								
KE4391	N	NCH	FE	T1573									
KE4392	IN	NCH	FE	T1574									
KE4393	IN	NCH	FE	T1875									
KE4416	IN	NCH	PE	2N5245	See fet interchangeability ust SEE FET INTERCHANGEADIUTY LST SEE FET INTERCHANGEADILTYY LST SEE FET INTERCHANGEABLITY LST								
KE4856	IN	NCH	FE	7573									
KE4857	IN	NCH	PE	Tis74									
KE4858	IN	NCH	FE	T1575									
KE4859	IN	NCH	FE	71573	SEE FET INTERCHANGEABLITY LIST SEE FET INTERCHANGEABLLTYY LST SEE FET NTERCHANGEABMITY LST SEE FET INTERCHANGEABLLTY LIST								
KEA860	IN	NCH	FE	T1574									
KE4861	IN	NCH	FE	Tis75									
KE5103	1 N	NCH	FE	2N5952									
KES104	\mathfrak{N}	NCH	PE	2N5953	SEE FET INTERCHANGEABLITY LIST SEE FET INTERCHANGEABLITY LIST SEE FET INTERCHANGEABLUTY LST see fet interchangeablity list								
KE5105	IN	NCH	FE	2NS245									
M100	SI	NCH	FE										
M101		NCH	FE										
M103		PCH	FE	3N161	SEE fET INTERCHANGEABLITY LIST SEE FET INTERCHANGEABLITY LST SEe fet interchangeablity list SEE FET INTERCHANGEABLITY LIST								
M104	S1	PCH	FE	3N161									
M106	51	PCH	FE	3N208									
M107	51	PCH	FE	3N208									
M108	st	PCH	FE	3N207	SEE FET INTERCHANGEABILTY LIST SEE FET INTERCHANGEAELITY LIST SEE FET INTERCHANGEABMTYY LIST SEE fet interchangeablity list								
M113	SI	PCH	FE	3N158									
M114	SI	PCH	FE	3N160									
M116		NCH	FE	3N161									
M117		NCH	FE	3N160	SEE fET INTERCHANGEABLITY LIST SEE FET INTERCHANGEABILITY LIST SEE FET INTERCHANGEABLITYY LIST SEE FET INTERCHANGEABHITY LIST								
M119	SI	PCH	FE	3N161									
M511	SI	PCH	FE	3N161									
MSIIA	SI	PCH	FE	3N161									
M517 MD708 MD708A MD708B	$\begin{aligned} & s i \\ & M \\ & M \\ & M \end{aligned}$	PCH		3N161	SEE fet interchanceability list								
		NPN	DU		400	40	15	10-200	10				
		NPN	DU		400	40	15	40-200	10	. 2	10		300 300
		NPN	DU		400		15	40-200	10		10		300
MD918	M	NPN	DU	D2T918	400	30	15	50.	1		10		
MD918A	M	NPN	DU	D2T918	400	30	15	50.	1	. 2	10		600
M09188	M	NPN	DU	D2T918	400	30	15	so.	1	. 2	10		400
MD984	M	PNP	DU	D2T2905	600	40	20	25.	10		10		

TRANSISTOR INTERCHANGEABILITY MASTER LIST OF NONREGISTERED TYPES

TYPE NUMEES			$\begin{aligned} & 5 \\ & \frac{8}{8} \\ & 8 \\ & 8 \\ & 8 \end{aligned}$		MAXIMUM RATINOS			EECTRICAL CHARACTIRISTICS					
					$\begin{gathered} P_{T} \\ T_{A}=25^{\circ} \mathrm{C} \\ { }^{T_{C}-25^{\circ} \mathrm{C}} \\ (\mathrm{~mW}) \\ \hline \end{gathered}$	Vcso (V)	Vceo (V)	$\begin{aligned} & \text { hFE } \\ & \text { MIN MAX } \end{aligned}$	$\begin{gathered} 1 c \\ (\mathrm{~mA}) \end{gathered}$	$$	seil) (ma)		
MD986 MD1 120 MD1 121 MD1 122	$\begin{aligned} & M \\ & M \\ & M \\ & M \end{aligned}$	N/P NPN NPN NPN	DU DU DU DU	2N4854 D2T2219 D2T2219 D2T2219	$\begin{aligned} & 600 \\ & 600 \\ & 600 \\ & 600 \end{aligned}$	$\begin{aligned} & 40 \\ & 60 \\ & 60 \\ & 60 \end{aligned}$	$\begin{aligned} & 15 \\ & 30 \\ & 30 \\ & 30 \end{aligned}$	$\begin{aligned} & 25- \\ & 50-200 \\ & 50-200 \\ & 50-200 \end{aligned}$	10 10 10 10	.3 .1 .1 .1	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$		$\begin{aligned} & 200 \\ & 250 \\ & 250 \\ & 250 \end{aligned}$
MD1 126 MD1 127 MDII28 MD1 129	$\begin{aligned} & M \\ & M \\ & M \\ & M \end{aligned}$	NPN NPN NPN NPN	$\text { DU } \begin{aligned} & D U \\ & D U \\ & D U \end{aligned}$	D2T2219	$\begin{array}{r} 400 \\ 400 \\ 400 \\ 600 \end{array}$	$\begin{array}{r} 40 \\ 40 \\ 40 \\ 60 \end{array}$	$\begin{aligned} & 15 \\ & 15 \\ & 15 \\ & 30 \end{aligned}$	$\begin{gathered} 30 . \\ 30- \\ 25 . \\ 100-300 \end{gathered}$	10 10 10 .1	.4 .25 .3 .1	10 10 10 10		300 300 350 200
MDII30 MDI131 MDI 132 MDI 134	$\begin{aligned} & M \\ & M \\ & M \\ & M \end{aligned}$	$\begin{aligned} & \text { PNP } \\ & \text { NPN } \\ & \text { NPN } \\ & \text { NPN } \end{aligned}$	DU	$\begin{aligned} & \text { D2T2905 } \\ & \text { D2T918 } \\ & \text { D2T918 } \\ & \text { D2T918 } \end{aligned}$	$\begin{aligned} & 600 \\ & 400 \\ & 400 \\ & 600 \end{aligned}$	$\begin{aligned} & 60 \\ & 30 \\ & 30 \\ & 40 \end{aligned}$	$\begin{aligned} & 40 \\ & 15 \\ & 15 \\ & 15 \end{aligned}$	$\begin{aligned} & 100-300 \\ & 50- \\ & 50- \\ & 30- \end{aligned}$	1 1 1 10	.25 .4 .4 .25	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$		$\begin{aligned} & 200 \\ & 600 \\ & 600 \\ & 500 \end{aligned}$
$\begin{aligned} & \mathrm{MD} 2218 \\ & \mathrm{MD} 2218 \mathrm{~A} \\ & \mathrm{MD} 2119 \\ & \mathrm{MD2219A} \end{aligned}$	$\left(\begin{array}{l} M \\ M \\ M \\ M \end{array}\right.$	NPN NPN NPN NPN	$\begin{aligned} & D U \\ & D U \\ & D U \\ & D U \end{aligned}$	D2T2219 D2T2219 D272219 D2T2219	$\begin{aligned} & 600 \\ & 600 \\ & 600 \\ & 600 \end{aligned}$	$\begin{aligned} & 60 \\ & 75 \\ & 60 \\ & 75 \end{aligned}$	$\begin{aligned} & 30 \\ & 40 \\ & 30 \\ & 40 \end{aligned}$	$\begin{aligned} & 40-120 \\ & 40.120 \\ & 40-120 \\ & 40-120 \end{aligned}$	$\begin{aligned} & 150 \\ & 150 \\ & 150 \\ & 150 \end{aligned}$.4 .3 .4 .3	$\begin{aligned} & 150 \\ & 150 \\ & 150 \\ & 150 \end{aligned}$		200 200 200 200
$\begin{aligned} & \text { MD2369 } \\ & \text { MD2369A } \\ & \text { MD23698 } \\ & \text { MD2904 } \end{aligned}$	$\begin{aligned} & M \\ & M \\ & M \\ & M \end{aligned}$	$\begin{aligned} & \text { NPN } \\ & \text { NPN } \\ & \text { NPN } \\ & \text { PNP } \end{aligned}$	DU DU DU DU	D2T2905	$\begin{aligned} & 600 \\ & 600 \\ & 600 \\ & 600 \end{aligned}$	$\begin{aligned} & 40 \\ & 40 \\ & 40 \\ & 60 \end{aligned}$	$\begin{aligned} & 15 \\ & 15 \\ & 15 \\ & 40 \end{aligned}$	$\begin{aligned} & 40-140 \\ & 40-140 \\ & 40-140 \\ & 40-120 \end{aligned}$	$\begin{array}{r} 10 \\ 10 \\ 10 \\ 150 \end{array}$.25 .25 .25 .4	$\begin{array}{r} 10 \\ 10 \\ 10 \\ 150 \end{array}$		500 500 500 200
$\begin{aligned} & \text { MD2904A } \\ & \text { MD2905 } \\ & \text { MD2905A } \\ & \text { MD3250 } \end{aligned}$	$\begin{aligned} & M \\ & M \\ & M \\ & M \end{aligned}$	PNP PNP PNP PNP	DU DU DU DU	D2T2905 0272905 D2T2905 2N3347	$\begin{aligned} & 600 \\ & 600 \\ & 600 \\ & 600 \end{aligned}$	$\begin{aligned} & 60 \\ & 60 \\ & 60 \\ & 50 \end{aligned}$	$\begin{aligned} & 60 \\ & 40 \\ & 40 \\ & 40 \end{aligned}$	$\begin{array}{r} 40-120 \\ 100-300 \\ 100-300 \\ 50-150 \end{array}$	$\begin{array}{r} 150 \\ 150 \\ 150 \\ .1 \end{array}$.4 .4 .4 .25	150 150 150 10	50	200 200 200 200
$\begin{aligned} & \text { MD3250A } \\ & \text { MD3251 } \\ & \text { MD3251A } \\ & \text { MD3467 } \end{aligned}$	$\begin{aligned} & M \\ & M \\ & M \\ & M \end{aligned}$	$\begin{array}{\|l\|l} \text { PNP } \\ \text { PNP } \\ \text { PNP } \\ \text { PNP } \end{array}$	DU DU DU DU	$\begin{aligned} & \text { 2N3347 } \\ & \text { 2N3350 } \\ & \text { 2N3350 } \end{aligned}$	$\begin{aligned} & 600 \\ & 600 \\ & 600 \\ & 600 \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \\ & 50 \\ & 40 \end{aligned}$	$\begin{aligned} & 40 \\ & 40 \\ & 40 \\ & 40 \end{aligned}$	$\begin{aligned} & 50-150 \\ & 100-300 \\ & 100-300 \\ & 20- \end{aligned}$	$\begin{array}{r} .1 \\ .1 \\ .1 \\ 500 \end{array}$.25 .25 .25 .35	$\begin{array}{r} 10 \\ 10 \\ 10 \\ 500 \end{array}$	50 100 100	$\begin{aligned} & 200 \\ & 150 \end{aligned}$
$\begin{aligned} & \text { MD3725 } \\ & \text { MD3762 } \\ & \text { MD4957 } \\ & \text { MD5000 } \end{aligned}$	$\begin{aligned} & M \\ & M \\ & M \\ & M \end{aligned}$	$\begin{aligned} & \text { NPN } \\ & \text { PNN } \\ & \text { PNNP } \\ & \text { PNP } \end{aligned}$	DU DU DU DU		$\begin{aligned} & 600 \\ & 600 \\ & 400 \\ & 400 \end{aligned}$	65 40 30 20	40 40 30 15	$50-150$ 20 $20-150$ $20-$	100 14 2 3	$\begin{array}{r} .26 \\ 1 \end{array}$	$\begin{array}{r} 100 \\ 14 \\ 10 \end{array}$		250 150 16 600
$\begin{aligned} & \text { MD5000A } \\ & \text { MD5000 } \\ & \text { MD6001 } \\ & \text { MD6002 } \end{aligned}$	$\begin{aligned} & M \\ & M \\ & M \\ & M \end{aligned}$	$\begin{aligned} & \text { PNP } \\ & \text { PNN } \\ & N / P \\ & N / P \end{aligned}$	DU DU DU DU	$\begin{aligned} & \text { 2N4855 } \\ & \text { 2N4854 } \end{aligned}$	$\begin{aligned} & 400 \\ & 400 \\ & 600 \\ & 600 \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \\ & 60 \\ & 60 \end{aligned}$	$\begin{aligned} & 15 \\ & 15 \\ & 30 \\ & 30 \end{aligned}$	$\begin{aligned} & 20- \\ & 20- \\ & 40-120 \\ & 100-300 \end{aligned}$	$\begin{array}{r} 3 \\ 3 \\ 150 \\ 150 \end{array}$.4 .4 .4 .4	$\begin{array}{r} 10 \\ 10 \\ 150 \\ 150 \end{array}$		600 600 200 200
MD6003 MEMSII MEMSIIC MEM517	$\left\lvert\, \begin{aligned} & M \\ & G 1 \\ & G 1 \\ & G 1 \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & \mathrm{N} / \mathrm{P} \\ & \mathrm{PCH} \\ & \mathrm{PCH} \\ & \mathrm{PCH} \end{aligned}\right.$	$\begin{aligned} & \text { DU } \\ & \text { FE } \\ & \text { fE } \\ & \text { FE } \end{aligned}$	$\begin{aligned} & \text { 2N4854 } \\ & \text { 3N174 } \\ & \text { 3N174 } \end{aligned}$	600 SEE FE SEE FE SEE FE	50 INTERCH INTERC INTERCI	30 ANGEABI ANGEABLI ANGEABI	70. ITY LIST ITY LIST ITY LIST	150	. 4	150		200

TRANSISTOR INTERCHANGEABILITY MASTER LIST OF NONREGISTERED TYPES

TRANSISTOR INTERCHANGEABILITY MASTER LIST OF NONREGISTERED TYPES

TYPE NUMBER		288	$\begin{aligned} & \text { Z } \\ & \frac{5}{\mathbf{2}} \\ & \frac{\mathbf{2}}{\mathbf{3}} \\ & \mathbf{3} \end{aligned}$	$\begin{gathered} \text { MI } \\ \text { REPLACEMENT } \\ \text { OR NEAREST } \\ \text { EOUVAUENT } \end{gathered}$	MAXIMUM RATMNSS			EECTRICAL CMARACTERISTICS					
					$\begin{gathered} P_{T} \\ { }^{T_{A}=25^{\circ} \mathrm{C}} \\ { }^{\circ}{ }^{\circ} \mathrm{C}=25^{\circ} \mathrm{C} \\ (\mathrm{~mW}) \\ \hline \end{gathered}$	VC3O (V)	$V_{c E O}$ (V)	MIN MAX	$\begin{gathered} \mathbf{k} \\ (\mathrm{mA}) \\ \hline \end{gathered}$		$\begin{aligned} & \text { sefi) } \\ & \hline(\mathrm{mA}) \\ & \hline \end{aligned}$		\qquad
MFE2133 MFE3001 MFE3002 MFE3003	$\begin{aligned} & M \\ & M \\ & M \\ & M \end{aligned}$	NCH NCH NCH PCH	$\begin{array}{\|l\|l} \text { FE } \\ \text { FE } \\ \text { FE } \end{array}$	2N4860 3N128 3N169 3N156	set fet interchangeabluit list SEE FET INTERCHANGEABHITY LST SEE FET INTERCHANGEABLLTY LIST SEE FET INTERCHANGEABLLTTY LIST								
$\begin{aligned} & \text { MFE } 3004 \\ & \text { MFE } 3005 \\ & \text { MFE3006 } \\ & \text { MFE } \end{aligned}$	$\begin{aligned} & M \\ & M \\ & M \\ & M \end{aligned}$	NCH NCH NCH NCH	$\begin{aligned} & \mathrm{FE} \\ & \mathrm{FE} \\ & \mathrm{FE} \\ & \mathrm{FE} \end{aligned}$	$\begin{aligned} & \text { 3N203 } \\ & \text { 3N201 } \end{aligned}$	SEE FET INTERCHANGEABMLTY LIST SEE FET INTERCHANGEABLLITY LIST SEE FET INTERCHANGEABHITY LIST SEE FET INTERCHANGEABILITY LIST								
$\begin{aligned} & \text { MFE3008 } \\ & \text { MFE3020 } \\ & \text { MFE3021 } \\ & \text { MFE4007 } \end{aligned}$	$\begin{aligned} & M \\ & M \\ & M \\ & M \end{aligned}$	$\begin{aligned} & \mathrm{NCH} \\ & \mathrm{PCH} \\ & \mathrm{PCH} \\ & \mathrm{PCH} \end{aligned}$	$\begin{aligned} & \mathrm{FE} \\ & \mathrm{FE} \\ & \mathrm{FE} \\ & \mathrm{FE} \end{aligned}$	$\begin{aligned} & \text { 3N203 } \\ & \text { 3N207 } \end{aligned}$	SEE FET INTERCHANGEABILITY LIST SEE PET INTERCHANGEABILITY LIST SEE FET INTERCHANGEABHLITY LIST SEE FET INTERCHANGEABILTTY LIST								
$\begin{aligned} & \text { MFE } 4008 \\ & \text { MFE4009 } \\ & \text { MFE } 4010 \\ & \text { MFE4011 } \end{aligned}$	$\begin{aligned} & M \\ & M \\ & M \\ & M \end{aligned}$	$\left\lvert\, \begin{aligned} & \mathrm{PCH} \\ & \mathrm{PCH} \\ & \mathrm{PCH} \\ & \mathrm{PCH} \end{aligned}\right.$	FE FE FE FE		SEE FET INTERCHANGEABILTYY LIST SEE FET INTERCHANGEABLLITY LIST SEE FET INTERCHANGEABMTYY UST SEE FET INTERCHANGEABLITY UST								
MFE4012 M420 MJ421 M 18100	$\begin{aligned} & M \\ & M \\ & M \\ & M \end{aligned}$	$\begin{aligned} & \text { PCH } \\ & \text { NPN } \\ & \text { NPN } \\ & \text { PNP } \end{aligned}$	FE GP GP GP	$\begin{aligned} & \text { 2N5059 } \\ & \text { 2N5058 } \end{aligned}$	SEE FET 800 800 10W	$\begin{gathered} \text { NTERCH } \\ 275 \\ 350 \\ 60 \end{gathered}$	$\begin{aligned} & \text { ANGEABML } \\ & 250 \\ & 325 \\ & 60 \end{aligned}$	$\begin{array}{\|l\|l} \text { TY } \\ \text { LIST } \\ 25-250 \\ 25-250 \\ 25-180 \end{array}$	$\begin{aligned} & 30 \\ & 30 \\ & 2 \mathrm{AA} \end{aligned}$	5 5 .7	30 30 24		15 15 30
M 8101 mM709 MM1803 MM1812	$\begin{aligned} & M \\ & M \\ & M \\ & M \end{aligned}$	PNP NPN NPN NPN	GP SW RF GP	2N5059	$\begin{array}{r} 10 \mathrm{w} \\ 400 \\ 800 \\ 1 \mathrm{w} \end{array}$	80 15 50 175	80 8 25 175	$25-180$ $15-120$ $40-160$ $40-300$	$2 A$ 10 50 100	.7 .35 .3 .6	$\begin{array}{r} 2 A \\ 3 \\ 50 \\ 100 \end{array}$	50	30 300
MM1941 MM2258 MM2259 MM2260	$\begin{aligned} & M \\ & M \\ & M \\ & M \end{aligned}$	NPN NPN NPN NPN	RF GP GP GP	$\begin{aligned} & \text { 2N5059 } \\ & \text { 2N5059 } \\ & \text { 2N5059 } \end{aligned}$	$\begin{aligned} & 300 \\ & 16 \\ & 16 \\ & 1 W \end{aligned}$	$\begin{array}{r} 30 \\ 120 \\ 175 \\ 175 \end{array}$	20 120 175 175	$25-$ $35-$ $50-$ 50	10 50 50 50	. 4	$\begin{aligned} & 25 \\ & 25 \\ & 25 \end{aligned}$		600 150 150 150
$\begin{aligned} & \text { MM2483 } \\ & \text { MW2484 } \\ & \text { MM2894 } \\ & \text { MM3000 } \end{aligned}$	$\begin{aligned} & M \\ & M \\ & M \\ & M \end{aligned}$	NPN NPN PNP NPN	GP GP SW GP	2N2483 2N2484 2N2894 2N5059	360 360 360 $1 W$	60 60 15	60 60 12 100	$40-120$ $100-500$ $40-150$ $20-$.01 .01 30 10	.35 .35 .2	$\begin{array}{r} 1 \\ 1 \\ 30 \end{array}$	80 150	60 60 400 150
$\begin{aligned} & \text { MM3001 } \\ & \text { MM3002 } \\ & \text { MM3003 } \\ & \text { MM3008 } \end{aligned}$	$\begin{aligned} & M \\ & M \\ & M \\ & M \end{aligned}$	NPN NPN NPN NPN	GP GP GP GP	2N5059 2N5059 2N5059 2N3114	iw iw iw iw		$\begin{aligned} & 150 \\ & 200 \\ & 250 \\ & 120 \end{aligned}$	$20-$ 20 $20-$ $30-$	10 10 10 30				150 150 150 50
$\begin{aligned} & \text { MM3009 } \\ & \text { MM3724 } \\ & \text { MM3725 } \\ & \text { MM3726 } \end{aligned}$	$\begin{aligned} & M \\ & M \\ & M \\ & M \end{aligned}$	NPN NPN NPN PNP	GP SW SW SW	$\begin{aligned} & \text { 2N5059 } \\ & \text { 2N3724 } \\ & \text { 2N3725 } \end{aligned}$	$\begin{aligned} & \text { 1w } \\ & \text { 1W } \\ & \text { iw } \\ & \text { iw } \end{aligned}$		$\begin{array}{r} 180 \\ 30 \\ 50 \\ 50 \end{array}$	$\begin{aligned} & 30- \\ & 25-150 \\ & 25-150 \\ & 30-120 \end{aligned}$	$\begin{array}{r} 30 \\ 500 \\ 500 \\ 500 \end{array}$.6 .6 .6	500 500 500		50 200 200 200

TRANSISTOR INTERCHANGEABILITY MASTER LIST OF NONREGISTERED TYPES

tryme		$\begin{aligned} & \frac{\xi}{2} \\ & \frac{6}{2} \end{aligned}$	$\begin{aligned} & \text { K } \\ & \frac{8}{5} \\ & \frac{5}{4} \\ & \frac{5}{3} \end{aligned}$	$\begin{aligned} & \text { TI } \\ & \text { REMACEMONT } \\ & \text { OR NEAREST } \\ & \text { ECUHVAIENT } \end{aligned}$	maximum ratmes			Eectircal chatacteristics					
					$\begin{array}{ccc} P_{T} & & \\ { }^{\mathrm{T}_{A}-25^{\circ} \mathrm{C}} & \mathrm{VCBO} & \mathrm{~V}_{\mathrm{CE}} \\ { }^{\circ} \mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C} & & \\ (\mathrm{~mW}) & \text { (V) } & \text { (V) } \\ \hline \end{array}$			hre		$\mathbf{V C E}_{\text {(mat) }}$		$\begin{gathered} \mathrm{m}_{\mathrm{f}_{6}} \\ 1 \mathrm{kNtz} \\ \text { mwn } \end{gathered}$	
м 43903 Mu3904 M43905 M43906	${\underset{M}{M}}_{M}^{M}$	$\begin{array}{\|l} \text { NPN } \\ \text { NPN } \\ \text { PNP } \\ \text { PNP } \end{array}$	$\begin{aligned} & s w \\ & \text { sw } \\ & \text { sw } \\ & s w \end{aligned}$		$\begin{aligned} & 360 \\ & 360 \\ & 360 \\ & 360 \end{aligned}$	$\begin{aligned} & 60 \\ & 80 \\ & 40 \\ & 40 \end{aligned}$	$\begin{aligned} & 40 \\ & 40 \\ & 40 \\ & 40 \end{aligned}$	50-150 100-300 50.150 100.300	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$	$\begin{array}{\|r} .2 \\ .2 \\ .25 \\ .25 \end{array}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$	$\begin{array}{r} 50 \\ 100 \\ 50 \\ 100 \end{array}$	250 300 200 250
M44000 MM4001 MM4002 MM4003	$\begin{aligned} & M \\ & M \\ & M \\ & M \end{aligned}$	$\begin{array}{\|l} \text { PNP } \\ \text { PNP } \\ \text { PNP } \\ \text { PNP } \end{array}$	$\begin{aligned} & \text { GP } \\ & \text { GP } \\ & \text { GP } \\ & \text { GP } \end{aligned}$	$\begin{aligned} & \text { 2N3634 } \\ & \text { 2N3635 } \end{aligned}$	$\begin{aligned} & 1 w \\ & 1 w \\ & 1 w \\ & 1 w \end{aligned}$	$\begin{aligned} & 100 \\ & 150 \\ & 200 \\ & 250 \end{aligned}$	$\begin{aligned} & 100 \\ & 150 \\ & 200 \\ & 250 \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \\ & 20 \\ & 20 . \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$.6 .6 .6 .6	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$		
M M 4018 MW4019 M44048 MM4049	$\begin{aligned} & M \\ & M \\ & M \\ & M \end{aligned}$	$\begin{aligned} & \text { PNP } \\ & \text { PNP } \\ & \text { PNP } \\ & \text { PNP } \end{aligned}$	$\begin{aligned} & \mathrm{RF} \\ & \mathrm{RF} \\ & \mathrm{RF} \\ & \mathrm{GP} \\ & \mathrm{RF} \end{aligned}$	2N3798	$\begin{aligned} & 800 \\ & 800 \\ & 360 \\ & 200 \end{aligned}$	40 60 45 15	$\begin{aligned} & 20 \\ & 40 \\ & 45 \\ & 10 \end{aligned}$	$\begin{aligned} & 10- \\ & 10- \\ & 150-450 \\ & 20-80 \end{aligned}$	$\begin{array}{r} 50 \\ 250 \\ .5 \\ 25 \end{array}$. 1	250 .5		900 750 100 20
MM4052 MM4645 MM4646 MM4647	$\begin{gathered} M \\ M \\ M \\ M \\ M \end{gathered}$	$\left\lvert\, \begin{aligned} & \mathbf{P N P} \\ & \mathbf{P N P} \\ & \mathbf{P N P} \\ & \mathbf{P N P} \end{aligned}\right.$	$\begin{aligned} & s w \\ & G P \\ & G P \\ & G P \end{aligned}$		$\begin{array}{r} 500 \\ \cdot 5 w \\ \cdot 5 w \\ \cdot 5 w \end{array}$	200 300 400	$\begin{array}{r} 30 \\ 200 \\ 300 \\ 400 \end{array}$	15 20 20 20	$\begin{aligned} & 150 \\ & 500 \\ & 500 \\ & 500 \end{aligned}$	1 1.2 1.5	$\begin{aligned} & 500 \\ & 500 \\ & 500 \end{aligned}$	20	12 40 40 30
	$\begin{aligned} & M \\ & M \\ & M \\ & M \end{aligned}$	$\begin{aligned} & \text { PNP } \\ & \text { PNP } \\ & \text { PNP } \\ & \text { NPN } \end{aligned}$	$\begin{aligned} & \text { GP } \\ & \text { GP } \\ & \text { GP } \\ & \text { RF } \end{aligned}$	2N4030	$\begin{aligned} & 1.5 \\ & 1.5 \\ & 1.5 \\ & 3.5 \end{aligned}$	$\begin{array}{r} 80 \\ 100 \\ 120 \\ 40 \end{array}$	$\begin{array}{r} 60 \\ 80 \\ 100 \\ 30 \end{array}$	$\begin{aligned} & 50-250 \\ & 50-250 \\ & 50-250 \\ & 30 \end{aligned}$	$\begin{array}{r} 150 \\ 200 \\ 250 \\ 50 \end{array}$.5 .5 .5	$\begin{aligned} & 150 \\ & 150 \\ & 150 \end{aligned}$		30 30 30 700
MM8001 m43002 mue006 MM8007	$\begin{array}{\|c} \hline M \\ M \\ M \\ M \\ M \end{array}$	NPN NPN NPN NPN	$\begin{array}{\|l\|} \hline \mathbf{R F} \\ \mathbf{R F} \\ \hline \mathbf{R F} \\ \mathbf{R F} \end{array}$	$\begin{array}{\|l\|l\|} \text { 2N3571 } \\ \text { 2N3571 } \end{array}$	3.5 3.5 200 200	40 40 15 15	30 30 10 10	30. 30. 25. 25.	50 50 1 1				900 1200 16 16
M48009 MMT3823 MPF 102 MPF103	$\left\lvert\, \begin{aligned} & M \\ & M \\ & M \\ & M \end{aligned}\right.$	NPN NCH NCH NCH	$\begin{aligned} & \mathrm{RF} \\ & \mathrm{FE} \\ & \mathrm{FE} \\ & \mathrm{FE} \\ & \mathrm{FE} \end{aligned}$	2N3823 2N3819 2N5953	3.5 SEE FET SEE FET SEE FET	55 TERCHAN TERCHA tercha		$\begin{aligned} & \mathbf{Y} \text { ust } \\ & \mathbf{Y} \text { ust } \\ & \mathbf{Y} \text { uST } \end{aligned}$. 5	100		100
MPF104 MPF105 MPF106 MPF107	$\begin{aligned} & M \\ & M \\ & M \\ & M \end{aligned}$	NCH NCH NCH NCH	$\begin{array}{\|l\|l} \mathrm{FE} \\ \mathrm{FE} \\ \mathrm{FE} \\ \mathrm{FE} \\ \mathrm{FE} \end{array}$	2N5952 2N5951 2N5952 2N5950	SEE FET IN SEE FET IN SEE FET IN SEE FET IN			$\begin{aligned} & \text { Y UST } \\ & \text { Y UST } \\ & \text { Y UST } \\ & \text { Y UST } \end{aligned}$					
MPF108 MPF109 MPF111 MPFI12	$\begin{aligned} & M \\ & M \\ & M \\ & M \end{aligned}$	NCH NCH NCH NCH	FE fE FE FE	2N3819 2N3819 2N3819 2N3819	SEE FET SEE FET IN SEE FET IN SEE FET IN		NGEABHIT TGEASLIT NGEABLIT HGEABLC	$\begin{aligned} & \text { Y ust } \\ & \text { Y ust } \\ & \text { Y uss } \\ & \text { Y ust } \end{aligned}$					
MPF120 MPF121 MPF122 MPF161	$\begin{aligned} & M \\ & M \\ & M \\ & M \end{aligned}$	NCH NCH NCH PCH	FE FE FE FE	2N5462	SEE FET IN SEE FET IN SEE FET SEE FET IN	TERCHA TERCHAN TERCHAN TERCHAN		$\begin{aligned} & \text { Y UST } \\ & \text { Y UST } \\ & \text { Y UST } \\ & \text { Y UST } \end{aligned}$					

TRANSISTOR INTERCHANGEABILITY MASTER LIST OF NONREGISTERED TYPES

TYPE NUMBER		$\begin{aligned} & \frac{k}{k} \\ & \frac{1}{x} \\ & \frac{1}{6} \end{aligned}$	3$\frac{6}{6}$$\frac{3}{2}$$\frac{1}{2}$$\frac{5}{4}$	7 REPLACEMENT OR NEAREST EOUIVALENT	MAXIMUM RATINGS			ELECTRICAL CHARACTERISTICS					
					$\begin{gathered} \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ { }^{{ }^{\mathrm{T}} \mathrm{C}=25^{\circ} \mathrm{C}} \\ (\mathrm{~mW}) \end{gathered}$	$\mathbf{V C B O}$ (V)	Vceo (V)	hFE	$\left.\begin{array}{c} \mathrm{l} C \\ (\mathrm{~mA}) \end{array}\right]$		(sot) (mA)		$\begin{gathered} \mathbf{f}_{\boldsymbol{T}} \\ \mathbf{M I N} \\ (\mathbf{M H z}) \\ \hline \end{gathered}$
MPQ3303 MPQ3725 MPS404 MP5404A	$\begin{aligned} & M \\ & M \\ & M \\ & M \end{aligned}$	NPN NPN PNP PNP	$\begin{aligned} & \text { sw } \\ & \text { sw } \\ & \text { sw } \\ & \text { sw } \end{aligned}$	Q273725 A8T404 A8T404A	600 600 310 310	$\begin{aligned} & 25 \\ & 25 \\ & 40 \end{aligned}$	12 40 24 35	$40-200$ $35-200$ $30-400$ $30-400$	300 100 12 12	.33 .45 .15 .15	300 500 12 12		400 250
MPS706 MPS706A MPS834 MPS918	$\begin{aligned} & M \\ & M \\ & M \\ & M \end{aligned}$	NPN NPN NPN NPN	$\begin{array}{\|l} \text { SW } \\ \text { SW } \\ \text { SW } \\ \text { RF } \end{array}$	$\begin{aligned} & \text { 2N3903 } \\ & \text { TIS62 } \end{aligned}$	$\begin{aligned} & 310 \\ & 310 \\ & 310 \\ & 310 \end{aligned}$	$\begin{aligned} & 25 \\ & 25 \\ & 40 \\ & 30 \end{aligned}$	$\begin{aligned} & 15 \\ & 15 \\ & 15 \end{aligned}$	$20-$ $20-60$ $25-$ $20-$	10 10 10 3	.6 .6 .25 .4	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$		$\begin{aligned} & 200 \\ & 200 \\ & 350 \\ & 600 \end{aligned}$
$\begin{aligned} & \text { MPS2369 } \\ & \text { MPS2711 } \\ & \text { MPS2712 } \\ & \text { MPS2713 } \end{aligned}$	$\begin{aligned} & M \\ & M \\ & M \\ & M \end{aligned}$	NPN NPN NPN NPN	$\begin{aligned} & \text { SW } \\ & \text { GP } \\ & \text { GP } \\ & \text { SW } \end{aligned}$	A8T3709 A873710 2N3903	$\begin{aligned} & 310 \\ & 310 \\ & 310 \\ & 310 \end{aligned}$	40 18 18 18	15 18 18 18	$40-120$ $30-90$ $75-225$ $30-90$	10 2 2 2	. 25	10	30 80 30	500
$\begin{aligned} & \text { MPS2714 } \\ & \text { MPS2923 } \\ & \text { MPS2924 } \\ & \text { MPS2925 } \end{aligned}$	$\left(\begin{array}{l} M \\ M \\ M \\ M \end{array}\right.$	NPN NPN NPN NPN	$\begin{aligned} & \text { SW } \\ & G P \\ & G P \\ & G P \end{aligned}$	$\begin{aligned} & \text { 2N3904 } \\ & \text { A8T3710 } \\ & \text { A8T3710 } \\ & \text { A8T3711 } \end{aligned}$	310 200 200 200	18 25 25 25	$\begin{aligned} & 18 \\ & 25 \\ & 25 \\ & 25 \end{aligned}$	75-225	2			80 90 150 235	
$\begin{aligned} & \text { MPS2926 } \\ & \text { MPS3392 } \\ & \text { MPS3393 } \\ & \text { MPS3394 } \end{aligned}$	$\begin{aligned} & M \\ & M \\ & M \\ & M \end{aligned}$	NPN NPN NPN NPN	GP GP GP GP	A8T3709 AT3392 TIS95 TIS96	$\begin{aligned} & 310 \\ & 310- \\ & 310 \\ & 310 \end{aligned}$	$\begin{aligned} & 18 \\ & 25 \\ & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & 18 \\ & 25 \\ & 25 \\ & 25 \end{aligned}$	$150-300$ $90-180$ $55-110$	2 $\mathbf{2}$ $\mathbf{2}$			35 150 90 55	
$\begin{aligned} & \text { MPS3395 } \\ & \text { MPS3563 } \\ & \text { MPS3638 } \\ & \text { MPS3638A } \end{aligned}$	$\left\lvert\, \begin{aligned} & M \\ & M \\ & M \\ & M \end{aligned}\right.$	NPN NPN PNP PNP	GP RF GP GP	TIS94 TIS63 A5T3638 AST3638A	$\begin{aligned} & 310 \\ & 310 \\ & 310 \\ & 310 \end{aligned}$	$\begin{aligned} & \mathbf{2 5} \\ & 30 \\ & \mathbf{2 5} \\ & \mathbf{2 5} \end{aligned}$	$\begin{aligned} & 25 \\ & 12 \\ & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & 150-500 \\ & 20-200 \\ & 30- \\ & 100- \end{aligned}$	$\begin{array}{r} 2 \\ 8 \\ 50 \\ 50 \end{array}$	$\begin{aligned} & .25 \\ & .25 \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \end{aligned}$	$\begin{array}{r} 150 \\ 25 \\ 100 \end{array}$	600 100 150
$\begin{aligned} & \text { MP53639 } \\ & \text { MPS3640 } \\ & \text { MPS3646 } \\ & \text { MPS3693 } \end{aligned}$	$\begin{aligned} & M \\ & M \\ & M \\ & M \end{aligned}$	PNP PNP NPN NPN	SW SW SW RF	2N4423 2N4423 2N3903 2N4994	$\begin{aligned} & 200 \\ & 310 \\ & 200 \\ & 310 \end{aligned}$	$\begin{array}{r} 6 \\ 12 \\ 40 \\ 45 \end{array}$	$\begin{array}{r} 6 \\ 12 \\ 15 \\ 45 \end{array}$	$\begin{aligned} & 30-120 \\ & 30-120 \\ & 30-120 \\ & 40-160 \end{aligned}$	10 10 30 10	.16 .2 .2	10 10 30		500 500 350 200
$\begin{aligned} & \text { MPS3694 } \\ & \text { MPS3702 } \\ & \text { MPS3703 } \\ & \text { MPS3704 } \end{aligned}$	$\begin{aligned} & M \\ & M \\ & M \\ & M \end{aligned}$	NPN PNP PNP NPN	RF GP GP GP	2N4995 A8T3702 A8T3703 A873704	$\begin{aligned} & 310 \\ & 310 \\ & 310 \\ & 310 \end{aligned}$	$\begin{aligned} & 45 \\ & 40 \\ & 50 \\ & 50 \end{aligned}$	$\begin{aligned} & \mathbf{4 5} \\ & \mathbf{2 5} \\ & 30 \\ & \mathbf{3 0} \end{aligned}$	$\begin{array}{r} 100-400 \\ 60-300 \\ 30-150 \\ 100-300 \end{array}$	10 50 50 50	.25 .25 .6	50 50 100		200 100 100 100
$\begin{aligned} & \text { MPS3705 } \\ & \text { MPS3706 } \\ & \text { MPS3707 } \\ & \text { MPS } 3708 \end{aligned}$	$\begin{aligned} & M \\ & M \\ & M \\ & M \end{aligned}$	NPN NPN NPN NPN	GP GP GP GP	A8T3705 A873706 A873707 A8T3708	$\begin{array}{r} 310 \\ 310 \\ 310 \\ 310 \end{array}$	$\begin{aligned} & 50 \\ & 40 \\ & 30 \\ & 30 \end{aligned}$	$\begin{aligned} & 30 \\ & 20 \\ & 30 \\ & 30 \end{aligned}$	$\begin{array}{r} 50-150 \\ 30-600 \\ 100-400 \\ 45-660 \end{array}$	50 50 .1 1	.8 1 1 1	100 100 10 10	100 45	100 100
MPS3709 MPS3710 MPS3711 MPS3721	$\begin{aligned} & M \\ & M \\ & M \\ & M \end{aligned}$	NPN NPN NPN NPN	GP GP GP GP	A873709 A8T3710 A873711 TIS96	$\begin{aligned} & 310 \\ & 310 \\ & 310 \\ & 310 \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \\ & 30 \\ & 18 \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \\ & 30 \\ & 18 \end{aligned}$	$45-165$ $90-330$ $180-660$	1 1 1	1 1 1	10 10 10	45 90 180 60	

TRANSISTOR INTERCHANGEABILITY MASTER LIST OF NONREGISTERED TYPES

TRANSISTOR INTERCHANGEABILITY

MASTER LIST OF NONREGISTERED TYPES

		$\begin{aligned} & \frac{6}{6} \\ & \frac{1}{6} \end{aligned}$	$\begin{aligned} & 8 \\ & \frac{8}{3} \\ & 8 \\ & 8 \end{aligned}$	$\begin{aligned} & \text { TI } \\ & \text { REPLACTMINT } \\ & \text { OR NBAREST } \\ & \text { COUNALENT } \end{aligned}$	MAXIMUM RATINOS			EACMmCAL CHARAGTEISTICS					
TYFE MUMBER					$\begin{array}{ccc} P_{T} & & \\ T_{A}=23^{\circ} \mathrm{C} & \mathbf{V}_{\text {ceo }} & \mathrm{V}_{\mathrm{CHO}} \\ { }^{\circ} \mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C} & & \\ (\mathrm{~mW}) & (\mathrm{V}) & (\mathrm{V}) \\ \hline \end{array}$			hn/		VCl(sat)			$\begin{gathered} \text { T } \\ \text { MuN } \\ \text { (MHz) } \\ \hline \end{gathered}$
MPS-A05 MPS-A06 MPS-A09 MPS-A10	$\begin{aligned} & M \\ & M \\ & M \\ & M \end{aligned}$	NPN NPN NPN NPN	GP GP GP GP	TIS96 TIS96 A873707 TIS96	$\begin{aligned} & 500 \\ & 500 \\ & 310 \\ & 300 \end{aligned}$	$\begin{aligned} & 60 \\ & 80 \\ & 50 \end{aligned}$	60 80 50 40	$\begin{aligned} & 50- \\ & 50- \\ & 100-600 \\ & 40-400 \end{aligned}$	$\begin{array}{r} 10 \\ 10 \\ .1 \\ 5 \end{array}$.25 .25 .9	$\begin{array}{r} 100 \\ 100 \\ 10 \end{array}$		50 50 30 50
$\begin{aligned} & \text { MPS-A12 } \\ & \text { MPS-A13 } \\ & \text { MPS-A14 } \\ & \text { MPS-A20 } \end{aligned}$	$\begin{aligned} & M \\ & M \\ & M \\ & M \end{aligned}$	NPN NPN NPN NPN	DA DA DA GP	$\begin{aligned} & \text { 2N5525 } \\ & \text { 2N5525 } \\ & \text { 2N5525 } \\ & \text { TIS94 } \end{aligned}$	$\begin{aligned} & 500 \\ & 500 \\ & 500 \\ & 300 \end{aligned}$	$\begin{aligned} & 20 \\ & 30 \\ & 30 \end{aligned}$	40	$\begin{aligned} & 20 \mathrm{~K}- \\ & 5 \mathrm{~K}- \\ & 10 \mathrm{~K}- \\ & 40-400 \end{aligned}$	10 10 10 5	1 1.5 1.5 .25	$\begin{array}{r} 10 \\ 100 \\ 100 \\ 10 \end{array}$		125 125 125
$\begin{aligned} & \text { MPS-A55 } \\ & \text { MPS-A56 } \\ & \text { MPS-A65 } \\ & \text { MPS-A66 } \end{aligned}$	$\begin{aligned} & M \\ & M \\ & M \\ & M \end{aligned}$	\|PNP	$\begin{aligned} & \text { GP } \\ & \text { GP } \\ & D A \\ & D A \end{aligned}$	$\begin{aligned} & \text { A.5T2907 } \\ & \text { A5T2907 } \end{aligned}$	$\begin{aligned} & 500 \\ & 500 \\ & 500 \\ & 500 \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \end{aligned}$	$\begin{aligned} & 60 \\ & 80 \\ & 30 \\ & 30 \end{aligned}$	$\begin{array}{r} 50- \\ 50- \\ 50 \mathrm{~K}- \\ 75 \mathrm{~K}- \end{array}$	$\begin{array}{r} 100 \\ 100 \\ 10 \\ 10 \end{array}$	$\begin{aligned} & .25 \\ & .25 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$		50 50 100 100
$\begin{aligned} & \text { MPS-A70 } \\ & \text { MPS-H02 } \\ & \text { MPS-H04 } \\ & \text { MPS-H05 } \end{aligned}$	$\begin{aligned} & M \\ & M \\ & M \\ & M \end{aligned}$	PNP NPN NPN NPN	$\begin{aligned} & \text { GP } \\ & \text { RF } \\ & \text { RF } \\ & \text { RF } \end{aligned}$	$\begin{aligned} & \text { A8T3702 } \\ & \text { TIS84 } \\ & \text { TIS94 } \\ & \text { TIS94 } \end{aligned}$	$\begin{aligned} & 300 \\ & 500 \\ & 300 \\ & 300 \end{aligned}$	$\begin{aligned} & 20 \\ & 80 \\ & 80 \end{aligned}$	$\begin{aligned} & 40 \\ & 20 \\ & 80 \\ & 80 \end{aligned}$	$\begin{aligned} & 40-400 \\ & 20-200 \\ & 30-120 \\ & 30-150 \end{aligned}$	$\begin{array}{r} 5 \\ 4 \\ 1.5 \\ 1.5 \end{array}$	$\begin{aligned} & .25 \\ & .25 \\ & .25 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \end{aligned}$		125 375 80 80
$\begin{aligned} & \text { MPS-H07 } \\ & \text { MPS-H08 } \\ & \text { MPS-H10 } \\ & \text { MPS-H11 } \end{aligned}$	$\begin{aligned} & M \\ & M \\ & M \\ & M \end{aligned}$	$\begin{aligned} & \text { NPN } \\ & \text { NPN } \\ & \text { NPN } \\ & \text { NPN } \end{aligned}$	$\begin{aligned} & R F \\ & R F \\ & R F \\ & R F \end{aligned}$	$\begin{aligned} & \text { TIS125 } \\ & \text { TIS125 } \end{aligned}$	500 500 310 310	30 30 30 30	30 30 25 25	20 20 $60-$ 60	3 3 4 4	. 5	4		400 500 650 650
$\begin{aligned} & \text { MPS-H20 } \\ & \text { MPS-H24 } \\ & \text { MPS-H30 } \\ & \text { MPS-H31 } \end{aligned}$	$\left\lvert\, \begin{aligned} & M \\ & M \\ & M \end{aligned}\right.$	NPN PNP NPN NPN	$\begin{aligned} & \text { RF } \\ & \text { RF } \\ & \text { RF } \\ & \text { RF } \end{aligned}$	TIS86 TIS 126 TIS 108 TIS 108	$\begin{aligned} & 310 \\ & 500 \\ & 310 \\ & 310 \end{aligned}$	$\begin{aligned} & 40 \\ & 40 \\ & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \\ & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 25- \\ & 30- \\ & 20-200 \\ & 20-200 \end{aligned}$	4 4 4 4	3 3	10 10		400 400 300 300
$\begin{aligned} & \text { MPS-H32 } \\ & \text { MPS-H34 } \\ & \text { MPS-H37 } \\ & \text { MPS-H54 } \end{aligned}$	$\begin{aligned} & M \\ & M \\ & M \\ & M \end{aligned}$	NPN NPN NPN PNP	$\begin{aligned} & \text { RF } \\ & \text { RF } \\ & \text { RF } \\ & \text { GP } \end{aligned}$	T1584 TIS126 2N4994 TIS 104	$\begin{aligned} & 500 \\ & 500 \\ & 310 \\ & 300 \end{aligned}$	$\begin{aligned} & 40 \\ & 45 \\ & 80 \end{aligned}$	30 45 40 80	$27-200$ $40-$ $25-$ $30-120$	4 7 5 1.5	3 .5 .5 .25	10 20 10 10		300 500 300 80
MPS.H55 MPS-H83 MP5-LOI MPS-L07	$\begin{aligned} & M \\ & M \\ & M \\ & M \end{aligned}$	$\begin{aligned} & \text { PNP } \\ & \text { PNP } \\ & \text { NPN } \\ & \text { PNP } \end{aligned}$	RF RF GP SW	TIS104 2N5550 2N4423	$\begin{aligned} & 300 \\ & 625 \\ & 310 \\ & 310 \end{aligned}$	$\begin{array}{r} 80 \\ 30 \\ 140 \\ 12 \end{array}$	$\begin{array}{r} 80 \\ 30 \\ 120 \\ 6 \end{array}$	$\begin{aligned} & 30-150 \\ & 20- \\ & 50-300 \\ & 30-120 \end{aligned}$	$\begin{array}{r} 1.5 \\ 2.5 \\ 10 \\ 10 \end{array}$	$\begin{array}{r} .25 \\ .2 \\ .15 \end{array}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \end{aligned}$	30	80 600 60 500
MPS-L08 MPS-L5 1 MU4891 MU4892	$\begin{aligned} & M \\ & M \\ & M \\ & M \end{aligned}$	$\left\lvert\, \begin{aligned} & \text { PNP } \\ & \text { PNP } \\ & \text { P-N } \\ & \text { P-N } \end{aligned}\right.$	SW GP UJ UJ	2N4423 2N5400 2N4891 2N4892	$\begin{aligned} & 310 \\ & 310 \end{aligned}$ SEE UN SEE UN		$\begin{array}{r}6 \\ 100 \\ \hline\end{array}$ I INTERCH	$\begin{aligned} & 30-120 \\ & 40-250 \end{aligned}$ HANGEABILIT HANGEABHLI	$\begin{array}{r} 10 \\ \text { IST } \\ \\ 50 \\ \text { IST } \end{array}$	$\begin{array}{r} 15 \\ .3 \end{array}$	$\begin{aligned} & 10 \\ & 50 \end{aligned}$	20	700 60
MU4893 MU4894 NF500 NF501	$\left\|\begin{array}{c} M \\ M \\ \mathrm{NA} \end{array}\right\|$ $\|\mathrm{NA}\|$	$\left\lvert\, \begin{aligned} & \text { P-N } \\ & \mathrm{P}-\mathrm{N} \\ & \mathrm{NCH} \\ & \mathrm{NCH} \end{aligned}\right.$	$\begin{aligned} & \text { UJ } \\ & \text { UJ } \\ & \text { FE } \\ & \text { FE } \end{aligned}$	2N4893 2N4894 2N3823 2N3823	SEE UNUUNCTION INTERCHANGEABMLTY LIST SEE UNUUNCTION INTERCHANGEABILITY LIST SEE FET INTERCHANGEABILITY LIST SEE FET INTERCHANGEABILITY LIST								

TRANSISTOR INTERCHANGEABILITY MASTER LIST OF NONREGISTERED TYPES

TYP NUME			88888	TIRMACMANTOR NDARESTGEUNALENT	MaxII	UM RA	108	InCTRICAI CMARACTLISIICS					
					$\left\lvert\, \begin{array}{ccc} \mathrm{T}_{A}-23^{\circ} \mathrm{C} & \text { VCNO } & \text { VCCO } \\ { }^{\circ} \mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C} & & \\ (\mathrm{~mW}) & \text { (V) } & \text { (V) } \\ \hline \end{array}\right.$			$h_{\text {P }}$		Vclent)		$\begin{gathered} h_{40} \\ 1 \mathrm{kdts} \\ \text { MiN } \end{gathered}$	$\begin{gathered} \text { H } \\ \text { MN } \\ \text { (MHz) } \end{gathered}$
								MiN M	- lc (ma)	$\begin{aligned} & \max \\ & (\mathrm{V}) \\ & \hline \end{aligned}$	$\begin{aligned} & C \\ & (\mathrm{ma}) \end{aligned}$		
NFSO6	NA	NCH	FE	2NA416	SEE FET INTERCHANGEABILITY LIST SEE FET INTERCHANGEABLITY LST SEE FET INTERCHANGEABLITYY LIST SEE FET INTERCHANGEABHITY LIST								
NF510	NA	NCH	FE	2N4861									
NF511	NA	NCH	FE	2N4861									
NF520	NA	NCH	FE	2N3822									
NF521	NA	NCH	FE	2N3821	SEE FET INTERCHANGEABLITY LIST SEE FET INTERCHANGEABIUTY LIST SEE FET INTERCHANGEABLLTY UST SEE FET INTERCHANGEABILTY LIST								
NF522	NA	NCH	FE	2N3822									
NF523	NA	NCH	FE	2N3821									
NF530	MA	NCH	FE	2N3459									
NF531	NA	NCH	FE	2N3460	SEE FET INTERCHANGEABLLTTY UST SEE FET INTERCHANGEABILTY LIST SEE FET INTERCHANGEABLITY LIST SEE FET INTERCHANGEABILTY LST								
NF532	NA	NCH	FE	2N3459									
NF533	MA	NCH	FE	2N3460									
NF580	NA	NCH	FE										
NF581	NA				SEE FET INTERCHANGEABLITY LIST SEE FET INTERCHANGEABUTY LIST SEE FET INTERCHANGEABLITY LIST SEE FET INTERCHANGEABLLTY LST								
NF582	NA	NCH	FE										
NF583	NA	NCH	FE										
NF584	NA	NCH	FE										
NF585	NA	NCH	FE		SEE FET INTERCHANGEABILTYY LIST SEE FET INTERCHANGEABLITY LIST SEE FET INTERCHANGEABLITY LIST SEE FET INTERCHANGEABLITY LIST								
NF4445	NA	NCH	FE										
NF4446	NA	NCH	FE										
			FE										
NF4448	NA	NCH	FE		SEE FET INTERCHANGEABILITY LIST SEE FET INTERCHANGEABILITY LIST SEE FET INTERCHANGEABILITY LIST SEE FET INTERCHANGEABILITY LIST								
NF5457	NA	NCH	FE	2N3459									
NF5458	NA	NCH	FE	2N3459									
NF5459	NA	NCH	FE	2N3458									
NP5485	NA	NCH	FE	2 N 4416	SEE FET INTERCHANGEABILITY LIST SEE FET INTERCHANGEABILTY LIST SEE FET INTERCHANGEAMLITY LST SEE FET INTERCHANGEABLITY LIST								
NP5486	NA	NCH	FE	2N4416									
NF5555	Na	NCH	FE										
	NA	NCH	FE	2N4391									
NF5639	NA	NCH	FE	2N4392	SEE FET INTERCHANGEABILTYY LIST SEE FET INTERCHANGEABILTY LIST SEE FET INTERCHANGEABILTY LIST SEE FET INTERCHANGEABILTY UST								
NF5640	NA	NCH	FE	2N4393									
NF5653	NA	NCH	FE	2N4856									
NF5654	NA	NCH	FE	2N4857									
Q272222	7	NPN	GP	Q272222	1.5	60	30	100-300	150	. 4	150		250
Q272905	T1	PNP	GP	Q2T2905	1.5	60	40	100.300	150	. 4	150		200
Q273244	TI	PNP	SW	Q273244	1.5	40	40	50-150	500	. 5	500		175
Q273725	7	NPN	SW	Q2T3725	1.5	60	40	60-200	100		500		250
SE1001	F	NPN	RF	2N4994	200	45	45	40-160	10				200
SE1002	F	NPN	RF	2N4995	200	45	45	100-400	10				200
SE1010	F	NPN	GP	T1595	200	30	15	20.	2				200
SE1132	F	PNP	GP	2N5448	300	50	35	30-90	150	1.5	150	25	60

TRANSISTOR INTERCHANGEABILITY MASTER LIST OF NONREGISTERED TYPES

TYPE NUMERE		ξ3$\$$	$z$$\frac{8}{8}$$\frac{8}{6}$38	$\begin{aligned} & \text { II } \\ & \text { REPLACEMENT } \\ & \text { OR NEAREST } \\ & \text { ECUTVALENT } \end{aligned}$	MAXIMUM RATENOS			ETCTRICAL CNARACTIEISILCS					
					$\begin{gathered} P_{T} \\ T_{A}=25^{\circ} \mathrm{C} \\ { }^{-1} \mathrm{C}=25^{\circ} \mathrm{C} \\ (\mathrm{~mW}) \end{gathered}$	Veso (V)	Veeo (V)		$\begin{gathered} C \\ (m A) \end{gathered}$	MaX (V)	$\begin{array}{\|l\|} \hline(0 n) \\ \hline \\ \hline \end{array}$		f_{T} MN $\mathrm{MOHz}_{\mathrm{M}}$
$\begin{aligned} & \text { SE2001 } \\ & \text { SE2002 } \\ & \text { SE3001 } \\ & \text { SE3002 } \end{aligned}$	F F F	NPN NPN NPN NPN	$\begin{aligned} & \text { GP } \\ & \text { GP } \\ & \text { RF } \\ & \text { RF } \end{aligned}$	2N5450 2N5449 TIS62 TIS62	$\begin{aligned} & 200 \\ & 200 \\ & 200 \\ & 200 \end{aligned}$	35 35 30 30	20 20 12 12	$40-160$ $100-400$ 20. 20	10 10 8 8	.7 .7 .6 .6	10 10 10 10		$\begin{aligned} & 200 \\ & 200 \\ & 600 \\ & 600 \end{aligned}$
$\begin{aligned} & \text { sE3005 } \\ & \text { sE4001 } \\ & \text { sE4002 } \\ & \text { sE4010 } \end{aligned}$	F \mathbf{F} \mathbf{F} \mathbf{F}	NPN NPN NPN NPN	RF GP GP GP	A5T3571 A5T3710 A5T3711 A5T3711	$\begin{aligned} & 200 \\ & 200 \\ & 200 \\ & 200 \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \\ & 30 \\ & 30 \end{aligned}$	$\begin{aligned} & 15 \\ & 25 \\ & \mathbf{2 5} \\ & \mathbf{2 5} \end{aligned}$	$\begin{gathered} 45-300 \\ 200-1000 \\ 200-1000 \\ 200-1000 \end{gathered}$	5 1 1 1	.35 .35 .35	1 1 1		800 40 60 60
$\begin{aligned} & \text { SE4020 } \\ & \text { SE4021 } \\ & \text { SE4022 } \\ & \text { SE5001 } \end{aligned}$	$\begin{aligned} & F \\ & F \\ & F \\ & F \end{aligned}$	NPN NPN NPN NPN	GP GP GP RF	$\begin{aligned} & \text { TIS97 } \\ & \text { TIS97 } \\ & \text { TIS108 } \end{aligned}$	$\begin{aligned} & 200 \\ & 200 \\ & 200 \\ & 200 \end{aligned}$	$\begin{aligned} & 60 \\ & 45 \\ & 30 \\ & 40 \end{aligned}$	$\begin{aligned} & 60 \\ & 45 \\ & 30 \\ & 40 \end{aligned}$	$\begin{gathered} 150-950 \\ 600-1550 \\ 1200-2200 \\ 30 \end{gathered}$	10 10 10 4	. 2	$\begin{aligned} & 10 \\ & 10 \\ & 10 \end{aligned}$		$\begin{aligned} & 100 \\ & 150 \\ & 200 \\ & 400 \end{aligned}$
$\begin{array}{\|l} \text { SES002 } \\ \text { SES003 } \\ \text { SES006 } \\ \text { SES025 } \end{array}$	$\left\lvert\, \begin{aligned} & F \\ & F \\ & F \\ & F \end{aligned}\right.$	$\begin{aligned} & \text { NPN } \\ & \text { NPN } \\ & \text { NPN } \\ & \text { NPN } \end{aligned}$	$\begin{aligned} & \text { RF } \\ & \text { RF } \\ & \text { RF } \\ & \text { RF } \end{aligned}$	T15108 TIS84 TIS84 TIS86	200 200 200 250	40 40 40 30	40 40 40 30	$30-$ $30-$ $30-$ $20-$	4 4 4 10	. 6	10 20		400 400 400 300
$\begin{array}{\|l\|l} \text { SE6001 } \\ \text { SE6002 } \\ \text { SE6020 } \\ \text { SE6020A } \end{array}$	F	$\begin{aligned} & \text { NPN } \\ & \text { NPN } \\ & \text { NPN } \\ & \text { NPN } \end{aligned}$	$\begin{aligned} & \text { GP } \\ & G P \\ & G P \\ & G P \end{aligned}$	$\begin{aligned} & \text { TIS99 } \\ & \text { TIS97 } \\ & \text { TS111 } \\ & \text { TS111 } \end{aligned}$	$\begin{aligned} & 300 \\ & 300 \\ & 300 \\ & 500 \end{aligned}$	$\begin{aligned} & 40 \\ & 40 \\ & 60 \\ & 60 \end{aligned}$	30 30 60 60	$\begin{array}{r} 50-200 \\ 150-600 \\ 100-300 \\ 100-300 \end{array}$	$\begin{array}{r} 10 \\ 10 \\ 150 \\ 150 \end{array}$	1 1 .18 .18	$\begin{aligned} & 100 \\ & 100 \\ & 150 \\ & 150 \end{aligned}$		40 40 250 250
$\begin{array}{\|l} \text { SE6021 } \\ \text { SE6021A } \\ \text { SE6022 } \\ \text { SE6023 } \end{array}$	F	NPN NPN NPN NPN	GP GP GP GP	TSIII	$\begin{aligned} & 300 \\ & 500 \\ & 220 \\ & 220 \end{aligned}$	$\begin{aligned} & 80 \\ & 80 \\ & 60 \\ & 80 \end{aligned}$	$\begin{aligned} & 80 \\ & 80 \\ & 60 \\ & 80 \end{aligned}$	$\begin{aligned} & 100-300 \\ & 100-300 \\ & 100-300 \\ & 100-300 \end{aligned}$	$\begin{aligned} & 150 \\ & 150 \\ & 150 \\ & 150 \end{aligned}$	$\begin{aligned} & .18 \\ & .18 \\ & .18 \\ & .18 \end{aligned}$	$\begin{aligned} & 150 \\ & 150 \\ & 150 \\ & 150 \end{aligned}$		250 250 250 250
$\begin{aligned} & \text { SE7015 } \\ & \text { SE7016 } \\ & \text { SE7017 } \\ & \text { SE8012 } \end{aligned}$	$\left\lvert\, \begin{aligned} & F \\ & F \\ & F \end{aligned}\right.$	NPN NPN NPN NPN	GP GP GP RF		$\begin{array}{r} 450 \\ 450 \\ 450 \\ 500 \end{array}$	$\begin{aligned} & 100 \\ & 140 \\ & 180 \\ & 100 \end{aligned}$	$\begin{array}{r} 100 \\ 140 \\ 180 \\ 60 \end{array}$	$\begin{aligned} & 50-275 \\ & 50-275 \\ & 20-275 \\ & 40- \end{aligned}$	$\begin{array}{r} 50 \\ 50 \\ 50 \\ 100 \end{array}$	$\begin{array}{r} 2 \\ 2 \\ 2 \\ .75 \end{array}$	$\begin{array}{r} 25 \\ 25 \\ 25 \\ 500 \end{array}$	$\begin{array}{r} 40 \\ 40 \\ 40 \end{array}$	50 50 50 300
$\begin{aligned} & \text { SE8040 } \\ & \text { SE8540 } \\ & \text { SU2028 } \\ & \text { SU2029 } \end{aligned}$	$\begin{array}{\|l} \mathbf{F} \\ \mathbf{F} \\ \mathbb{N} \\ \mathbb{N} \\ \mathbb{N} \end{array}$	$\begin{aligned} & \mathrm{NPN} \\ & \mathrm{PNP} \\ & \mathrm{NCH} \\ & \mathrm{NCH} \end{aligned}$	$\begin{aligned} & \text { GP } \\ & \text { GP } \\ & \text { FE } \\ & \text { FE } \end{aligned}$	$\begin{aligned} & \text { AST2222 } \\ & \text { AST2907 } \end{aligned}$	$\begin{aligned} & 500 \\ & 500 \\ & \text { SEE FET } \\ & \text { SEE FET } \end{aligned}$	$\begin{gathered} 30 \\ 30 \\ \text { INTERCH } \\ \text { INTERCHA } \end{gathered}$		$\begin{aligned} & 40-540 \\ & 40-540 \\ & \text { TY LIST } \\ & \text { TY LST } \end{aligned}$	$\begin{aligned} & 150 \\ & 150 \end{aligned}$	$\begin{aligned} & .12 \\ & .25 \end{aligned}$	$\begin{aligned} & 150 \\ & 150 \end{aligned}$		$\begin{aligned} & 130 \\ & 100 \end{aligned}$
$\begin{aligned} & \text { SU2031 } \\ & \text { SU2032 } \\ & \text { SU2033 } \\ & \text { SU2034 } \end{aligned}$	$\begin{aligned} & \mathbb{N} \\ & \mathbb{N} \\ & \mathbb{N} \\ & \mathbb{N} \\ & \mathfrak{N} \end{aligned}$	$\begin{aligned} & \mathrm{NCH} \\ & \mathrm{NCH} \\ & \mathrm{NCH} \\ & \mathrm{NCH} \end{aligned}$	$\begin{aligned} & \text { FE } \\ & \text { FE } \\ & \text { FE } \\ & \text { FE } \end{aligned}$	$\begin{aligned} & \text { 2N5545 } \\ & \text { 2N5545 } \\ & \text { 2N5547 } \end{aligned}$	SEE FET SEE FET SEE FET SEE FET	NTERCH NTERCH NTERCH NTERCH	NGEABI NGEAEI NGEABI NGEABI	TY LST TY LUST TY UST TY UST					
$\begin{aligned} & \text { SU2035 } \\ & \text { SU2098 } \\ & \text { SU2098A } \\ & \text { SU2098B } \end{aligned}$	$\begin{aligned} & \mathbb{N} \\ & \mathbb{N} \\ & \mathbb{N} \\ & \mathbb{N} \\ & \mathbb{N} \end{aligned}$	$\begin{aligned} & \mathrm{NCH} \\ & \mathrm{NCH} \\ & \mathrm{NCH} \\ & \mathrm{NCH} \end{aligned}$	$\begin{aligned} & \text { FE } \\ & \text { FE } \\ & \text { FE } \\ & \text { FE } \end{aligned}$	$\begin{aligned} & \text { 2N5547 } \\ & \text { 2N5545 } \\ & \text { 2N5545 } \end{aligned}$	SEE FET SEE FET SEE FET SEE FET	NTERCH NTERCH NTERCH NTERCH	NGEABIL NGEAB ANGEAB ANGEABI	TY UST TY LIST TY LIST TY LIST					

TRANSISTOR INTERCHANGEABILITY MASTER LIST OF NONREGISTERED TYPES

TYPE NUMBER		E888			MAXIMUM RATINGS			EECTRICAL CHARACTERISTICS					
					$\begin{gathered} \mathrm{PT} \\ \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ \\ { }^{{ }^{\circ} \mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}} \\ (\mathrm{~mW}) \end{gathered}$	$\mathbf{V}_{\text {CBO }}$ (V)	VCEO (V)	hre		VCE(sat)			$\begin{array}{c\|} \hline \boldsymbol{T} \\ \text { MWN } \\ \left(M H_{z}\right) \\ \hline \end{array}$
								MIN MA	$\begin{gathered} I_{C} \\ (\mathrm{ma}) \end{gathered}$		$\begin{aligned} & \mathrm{IC} \\ & \text { (mA) } \end{aligned}$		
SU2099	IN	NCH	FE	2N5547	SEE FET INTERCHANGEABILITY LIST SEE FET INTERCHANGEABILITY LIST								
SU2099A	IN	NCH	FE	2N5547									
SX37	TI	PNP	RF	TIS137	360	35	32	45-	1				80
5×38	π	PNP	RF	TIS138	360	35	32	25.	1				50
5X3391	π	NPN	GP	A5T3391	625	25	25	250-500	2				
SX3702	T1	PNP	GP	2N5447	360	40	25	60-300	50		50		100
SX3703	T1	PNP	GP	2N5448	360	50	30	30-150	50	. 25	50		100
SX3704	TI	NPN	GP	2N5449	360	50	30	100-300	50	. 6	100		100
S×3705	71	NPN	GP	2N5450	360	50	30	50-150	50	. 8	100		100
5x3706	71	NPN	GP	2N5451	360	40	20	30-600	50	1	100		100
SX3707	II	NPN	GP	A5T3707	360	30	30	100.400	. 1	1	10	100	
5×3708	71	NPN	GP	A5T3708	360	30	30	45-660	1	1	10	45	
5x3709	π	NPN	GP	A5T3709	360	30	30	45-165	1	1	10	45	
5×3710	TI	NPN	GP	A573710	360	30	30	90-330	1	1	10	90	
5x3711	T1	NPN	GP	A573711	360	30	30	180-660	1	1	10	180	
5X3819	17	NCH	FE	2N5949/53	SEE FET INTERCHANGEABMII			Y LIST					
Sx3820	It	PCH	FE	A.5T5460/62	SEE FET INTERCHANGEABILITY LIST								
SX4058	71	PNP	GP	A.574058	360	30	30	100.400	. 1	. 7	10	100	
SX4059	π	PNP	GP	A5T4059	360	30	30	45-660	1	. 7	10	45	
SX4060	71	PNP	GP	A.5T4060	360	30	30	45.165	1	. 7	10	45	
SX4061	TI	PNP	GP	A574061	360	30	30	90.330	1	. 7	10	90	
5X4062	T	PNP	GP	A5T4062	360	30	30	180-660	1	. 7	10	180	
SX4254	II	NPN	RF	2N4996	250	30	18	50.	2				600
71407	71	NPN	RF	T1562	200	30	12	30.	4				500
7408	T	NPN	RF	T1563	200	30	12	20.	4				400
T409	TI	NPN	RF	TIS64	200	30	12	20.					300
71412	1	NPN	GP	2N3704	360	50	30	100-300	50	. 6	100		100
T1413	11	NPN	GP	2N3705	360	50	30	50.150	50	. 8	100		100
T1414	1	NPN	GP	2N3706	360	40	20	30-600	50		100		100
T1415	71	NPN	GP	2N3707	360	30	30	100-400	. 1	1	10	100	
7416	71	NPN	GP	2N3708	360	30	30	45-660	1	1	10	45	
11417	TI	NPN	GP	2N3710	360	30	30	90.330	1	1	10	90	
T1418	II	NPN	GP	2N3711	360	30	30	180-660	1	1	10	180	
T1480	71	NPN	GP	2N339	600	50	40					9	
T1481	71	NPN	GP	2N340	600	80	70					9	
T482	TI	NPN	GP	2N2217	600	20	20	20.	150	1.5	150		40
T483	TI	NPN	GP	2N2217	600	40	20	20-60	150	1.5	150		40
T1484	71	NPN	GP	2N2218	600	40	20	40-120	150		150		40
T1492	T1	NPN	GP	2N332A	150	40	20					15	
T1493	11	NPN	GP	2N332A	125	40	20	15-45	10				

TRANSISTOR INTERCHANGEABILITY MASTER LIST OF NONREGISTERED TYPES

TYPE NUMEER		$\begin{aligned} & \frac{k}{N} \\ & \frac{5}{3} \\ & \frac{1}{2} \end{aligned}$	$\begin{aligned} & Z \\ & \frac{0}{6} \\ & \frac{3}{2} \\ & \frac{1}{2} \\ & 3 \end{aligned}$	7 REPLACEMENT Or nearest ECUVALENT	MAXIMMM RATINES			EECTRICAL CHARACTERISTICS					
					$\begin{gathered} \mathrm{PT}_{\mathrm{T}} \\ \mathrm{r}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ { }^{{ }^{2} \mathrm{~T} \mathrm{C}=25^{\circ} \mathrm{C}} \\ (\mathrm{~mW}) \end{gathered}$	$V_{\text {CBO }}$ (V)	$V_{\text {CEO }}$ (V)	hfe	$\begin{gathered} l_{C} \\ (\mathrm{~mA}) \\ \hline \end{gathered}$	max (V)	sed) - Ic (mA)	h_{fe} $\boldsymbol{1} \mathrm{kHz}$ MIN	TT MNN $(M \mathrm{~Hz})$
TL494 T1495 TM96 TISO3	$\left\lvert\, \begin{aligned} & \pi \\ & \pi 1 \\ & \pi \\ & \pi \end{aligned}\right.$	NPN NPN NPN PNP	GP GP GP GP	$\begin{aligned} & \text { 2N335A } \\ & \text { 2N2219A } \\ & \text { 2N340 } \\ & \text { 2N3702 } \end{aligned}$	125 125 600 300	40 40 70 40	20 20 25	$\begin{aligned} & 40-125 \\ & 120-250 \\ & 10- \\ & 60-300 \end{aligned}$	$\begin{array}{r} 10 \\ 10 \\ 3 \\ 50 \end{array}$	$\begin{aligned} & 1.5 \\ & 2.5 \end{aligned}$	$\begin{array}{r} 3 \\ 50 \end{array}$		100
TISO4 TIS14 TIS 18 TIS25	$\left\lvert\, \begin{aligned} & \mathrm{TI} \\ & \mathrm{TI} \\ & \mathrm{TI} \\ & \mathrm{TI} \end{aligned}\right.$	PNP NCH NPN NCH	$\begin{aligned} & \mathrm{GP} \\ & \mathrm{FE} \\ & \mathrm{RF} \\ & \mathrm{FE} \end{aligned}$	2N3703 TIS14 TIS62 TIS25	300 SEE FET 200 SEE FET	$\begin{gathered} 50 \\ \text { NTERCHA } \\ 25 \\ \text { NTERCHA } \end{gathered}$	30 13 NGEABHII		50 10	2.5	50		$\begin{aligned} & 100 \\ & 600 \end{aligned}$
$\begin{array}{\|l} \text { TIS26 } \\ \text { TIS27 } \\ \text { TIS28 } \\ \text { TIS29 } \end{array}$	$\begin{aligned} & \mathrm{T} \\ & \mathrm{TI} \\ & \mathrm{TI} \\ & \mathrm{TI} \end{aligned}$	NCH NCH NPN NPN	$\begin{aligned} & \mathrm{FE} \\ & \mathrm{FE} \\ & \mathrm{RF} \\ & \mathrm{RF} \end{aligned}$	$\begin{aligned} & \text { TIS26 } \\ & \text { TIS27 } \\ & \text { TIS84 } \\ & \text { TIS84 } \end{aligned}$	SEE FET SEE FET 200 200	$\begin{aligned} & \text { INTERCH } \\ & \text { INTERCHA } \\ & 40 \\ & 40 \end{aligned}$	NGEABILIT NGEABILIT 40 40	$\begin{array}{r} \text { TY LIST } \\ \text { TY LIST } \\ 30- \\ 30- \end{array}$	4				630 500
$\begin{array}{\|l} \text { TIS30 } \\ \text { TIS31 } \\ \text { TIS34 } \\ \text { TIS37 } \end{array}$	$\begin{aligned} & \mathrm{TI} \\ & \mathrm{TI} \\ & \mathrm{TI} \\ & \mathrm{TI} \end{aligned}$	NPN NPN NCH PNP	$\begin{aligned} & \text { RF } \\ & \text { RF } \\ & \text { FE } \\ & \text { RF } \end{aligned}$	TIS 108 TIS108 2N5248 TIS37	$\begin{aligned} & 200 \\ & 200 \\ & \text { SEE FET } \\ & 625 \end{aligned}$	40 40 NTERCH 35	40 40 angeabil 32	$\begin{array}{r} 30- \\ 30- \\ T Y \text { LIST } \\ 45- \end{array}$	$\begin{aligned} & 4 \\ & 4 \\ & 1 \end{aligned}$				500 500 80
$\begin{aligned} & \text { TIS38 } \\ & \text { TIS42 } \\ & \text { TIS43 } \\ & \text { TIS44 } \end{aligned}$	$\left[\begin{array}{l} \mathrm{TI} \\ \mathrm{TI} \\ \mathrm{TI} \\ \mathrm{TI} \end{array}\right.$	PNP NCH P-N NPN	RF FE UJ SW	$\begin{aligned} & \text { TIS38 } \\ & \text { TIS75 } \\ & \text { TIS43 } \end{aligned}$	625 SEE FET SEE UNI 250	35 NTERCH UNCTIO 25	32 ANGEABILI N INTERCH 20	$\begin{aligned} & 25- \\ & \text { TY LIST } \\ & \text { IANGEABILITY } \\ & 20 \text {. } \end{aligned}$	1 10	. 6	10		$\begin{array}{r} 50 \\ 200 \end{array}$
TIS45 TIS46 TIS47 TIS48	$\begin{aligned} & \mathbf{n} \\ & \mathrm{n} \\ & \mathrm{n} \\ & \mathrm{n} \end{aligned}$	NPN NPN NPN NPN	SW SW SW SW		$\begin{aligned} & 250 \\ & 250 \\ & 250 \\ & 250 \end{aligned}$	40 40 40 40	$\begin{aligned} & 15 \\ & 15 \\ & 15 \\ & 15 \end{aligned}$	$\begin{aligned} & 30-120 \\ & 30-120 \\ & 20-60 \\ & 40-120 \end{aligned}$	10 10 10 10	.4 .25 .25 .25	$\begin{aligned} & 10 \\ & 20 \\ & 10 \\ & 10 \end{aligned}$		300 300 400 500
$\begin{aligned} & \text { TIS49 } \\ & \text { TIS50 } \\ & \text { TIS51 } \\ & \text { TIS52 } \end{aligned}$	$\begin{aligned} & \mathrm{TI} \\ & \mathrm{TI} \\ & \mathrm{TI} \\ & \mathrm{TI} \end{aligned}$	NPN PNP NPN NPN	$\begin{aligned} & s w \\ & s w \\ & s w \\ & s w \end{aligned}$	2N4423	$\begin{aligned} & 250 \\ & 250 \\ & 250 \\ & 250 \end{aligned}$	40 12 30 40	15 12 12 20	$\begin{array}{r} 40-120 \\ 40-150 \\ 30-120 \\ 30-120 \end{array}$	10 30 10 30	. 25 .2 .2 .2	$\begin{aligned} & 30 \\ & 30 \\ & 10 \\ & 30 \end{aligned}$		500 400 400 350
$\begin{aligned} & \text { TIS53 } \\ & \text { TIS54 } \\ & \text { TIS55 } \\ & \text { TIS58 } \end{aligned}$	$\left\lvert\, \begin{array}{ll} \mathrm{TI} \\ \mathrm{TI} \\ \mathrm{TI} \\ \mathrm{TI} \end{array}\right.$	PNP PNP NPN NCH	$\begin{aligned} & \text { SW } \\ & \text { SW } \\ & \text { SW } \\ & \text { FE } \end{aligned}$	2N5952/53	$\begin{gathered} 250 \\ 250 \\ 250 \\ \text { SEE FET } \end{gathered}$	$\begin{array}{r} 6 \\ 12 \\ 40 \\ \text { INTERCR } \end{array}$	$\begin{array}{r} 6 \\ 12 \\ 15 \\ \text { ANGEABILI } \end{array}$	$\begin{aligned} & 30-120 \\ & 30-120 \\ & 30-120 \end{aligned}$ TY LIST	$\begin{aligned} & 10 \\ & 10 \\ & 30 \end{aligned}$	r .16 .2 .2	10 10 30		500 500 350
TIS59 TIS60 TIS61 TIS62	71 71 71 1	NCH NPN PNP NPN	FE GP GP RF	2N5949/51 TIS60 TIS61 TIS62A	$\begin{aligned} & \text { SEE FET } \\ & 625 \\ & 625 \\ & 625 \end{aligned}$	$\begin{gathered} \text { INTERCH } \\ 40 \\ 40 \\ 30 \end{gathered}$	ANGEABIL 25 25 12	$\begin{aligned} & \text { ITY LIST } \\ & 100-300 \\ & 100-300 \\ & 30- \end{aligned}$	50 50 4	. 6	100 50		500
TIS63 TIS64 TIS67 11568	$\left\lvert\, \begin{aligned} & \pi \\ & \pi \\ & \pi \\ & \pi \\ & I \\ & \hline \end{aligned}\right.$	NPN NPN PCH NCH	$\begin{aligned} & \mathrm{RF} \\ & \mathrm{RF} \\ & \mathrm{FE} \\ & \mathrm{FE} \end{aligned}$	TIS63A TIS6.A T1569	$\begin{aligned} & 625 \\ & 625 \\ & \text { SEE FET } \\ & \text { SEE FET } \end{aligned}$	$\begin{gathered} 30 \\ 30 \\ \text { INTERCH } \\ \text { INTERCH } \\ \hline \end{gathered}$	$\begin{array}{r} 12 \\ 12 \\ \text { IANGEABIL } \\ \text { IANGEABIL } \\ \hline \end{array}$	$\begin{array}{r} 20- \\ 20 \\ \text { ITY LIST } \\ \text { ITY LST } \end{array}$	$\begin{aligned} & 4 \\ & 4 \end{aligned}$				400 300

TRANSISTOR INTERCHANGEABILITY MASTER LIST OF NONREGISTERED TYPES

TYFE Number		$\begin{aligned} & k \\ & \frac{k}{k} \\ & \frac{8}{6} \end{aligned}$	$\begin{aligned} & z \\ & \frac{2}{2} \\ & \mathbf{y} \\ & \frac{12}{K} \\ & \frac{3}{3} \end{aligned}$	$\begin{aligned} & \text { II } \\ & \text { REPLACEMENT } \\ & \text { OR NEAREST } \\ & \text { EQUNALENT } \end{aligned}$	MAXIMUM RATMNOS			ELECTRICAL CHARACTEISISICS					
					$\begin{gathered} \mathbf{P}_{\mathbf{T}} \\ \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ { }^{*} \mathbf{T}_{\mathrm{C}}=25^{\circ} \mathrm{C} \\ (\mathrm{~mW}) \\ \hline \end{gathered}$	$\forall_{C B O}$ (V)	Vceo (V)	$\operatorname{MNN} M$		$\begin{array}{\|l} \|c\| \\ \hline \begin{array}{l} \text { Max } \\ \text { (V) } \end{array} \\ \hline \end{array}$	$\begin{aligned} & \text { (sat) } \\ & \hline k c \\ & \text { (mA) } \end{aligned}$		$\begin{gathered} \text { TT } \\ \text { MN } \\ \text { MNX } \end{gathered}$
$\begin{aligned} & \text { TIS69 } \\ & \text { T1570 } \\ & \text { TIS73 } \\ & \text { TIS74 } \end{aligned}$	$\begin{aligned} & \pi \\ & \pi \\ & \pi \\ & \pi \\ & \pi \end{aligned}$	NCH NCH NCH NCH	$\begin{aligned} & \text { FE } \\ & \text { FE } \\ & \text { FE } \\ & \text { FE } \end{aligned}$	TIS69 TIS70 TIS73 TIS74	SEE FET INTERCHANGEABIUTY LIST SEE FET INTERCHANGEABIUTY LIST SEE FET INTERCHANGEABUTY LIST SEE FET INTERCHANGEABILTY LIST								
$\begin{aligned} & \text { TIS75 } \\ & \text { TIS78 } \\ & \text { TIS79 } \\ & \text { TIS83 } \end{aligned}$	$\begin{aligned} & \pi \\ & \pi \\ & \pi \\ & \pi \end{aligned}$	NCH NCH NCH NPN	$\begin{aligned} & \text { FE } \\ & \text { FE } \\ & \text { FE } \\ & \text { RF } \end{aligned}$	TIS75 AST6449 A.576450	SEE FET INTERCHANGEABHLTY LIST SEE FET INTERCHANGEABLITY LIST SEE FET INTERCHANGEABLLTY LIST								600
TIS84 TIS85 T1586 TIS87	$\begin{aligned} & \pi \\ & \pi \\ & \pi \\ & \pi \\ & \pi \end{aligned}$	NPN NPN NPN NPN	$\begin{aligned} & \text { RF } \\ & \text { RF } \\ & \text { RF } \\ & \text { RF } \end{aligned}$	TIS84 TIS 108 T1586 TS88	$\begin{aligned} & 625 \\ & 250 \\ & 625 \\ & 625 \end{aligned}$	40 40 30 45	$\begin{aligned} & 30 \\ & 30 \\ & 30 \\ & 45 \end{aligned}$	$\begin{aligned} & 30- \\ & 25- \\ & 40-200 \\ & 30-150 \end{aligned}$	$\begin{array}{r} 4 \\ 4 \\ 4 \\ 12 \end{array}$. 5	15 15		$\begin{aligned} & 350 \\ & 350 \\ & 500 \\ & 500 \end{aligned}$
TIS88 T1589 TIS90 TIS91	$\left\lvert\, \begin{aligned} & \pi \\ & \pi \\ & \pi \\ & \pi \\ & \pi \end{aligned}\right.$	NCH NPN NPN PNP	$\begin{aligned} & \text { FE } \\ & \text { RF } \\ & \text { GP } \\ & \text { GP } \end{aligned}$	$\begin{aligned} & \text { 2N5245 } \\ & \text { TIS86 } \\ & \text { TS90 } \\ & \text { TIS91 } \end{aligned}$	$\begin{aligned} & \text { SEE FET } \\ & 400 \\ & 625 \\ & 625 \end{aligned}$	NTERCHA 35 40 40	$\begin{gathered} \text { NGEABIL } \\ 35 \\ 40 \\ 40 \end{gathered}$	$\begin{aligned} & \text { F LIST } \\ & 30-200 \\ & 100-300 \\ & 100-300 \end{aligned}$	$\begin{array}{r} 4 \\ 50 \\ 50 \end{array}$.5 .25 .25	15 50 50		500
TIS92 TIS93 TIS94 TIS95	T1	NPN PNP NPN NPN	$\begin{aligned} & \text { GP } \\ & \text { GP } \\ & \text { GP } \\ & \text { GP } \end{aligned}$	$\begin{aligned} & \text { TIS92 } \\ & \text { TIS93 } \\ & \text { TIS94 } \\ & \text { nS95 } \end{aligned}$	625 625 625 625	40 40 60 80	40 40 40 60	$\begin{aligned} & 100-300 \\ & 100-300 \\ & 250-700 \\ & 100-300 \end{aligned}$	50 50 .1 1	$\begin{array}{r} .25 \\ .25 \\ .5 \end{array}$	$\begin{array}{r} 50 \\ 50 \\ 100 \end{array}$	250 100	200 200
TS96 T1S97 T1598 71599	$\begin{aligned} & \mathbf{T} \\ & \mathbf{N} \\ & \mathbf{T} \\ & \mathbf{T} \end{aligned}$	NPN NPN NPN NPN	$\begin{aligned} & \text { GP } \\ & \text { GP } \\ & \text { GP } \\ & \text { GP } \end{aligned}$	TIS96 71597 TIS98 TIS99	$\begin{aligned} & 625 \\ & 625 \\ & 625 \\ & 625 \end{aligned}$	$\begin{aligned} & 80 \\ & 60 \\ & 80 \\ & 80 \end{aligned}$	$\begin{aligned} & 65 \\ & 40 \\ & 60 \\ & 65 \end{aligned}$	$\begin{array}{r} 55-300 \\ 250-700 \\ 100-300 \\ 55-300 \end{array}$	$\begin{array}{r} 100 \\ .1 \\ 1 \\ 100 \end{array}$	$\begin{aligned} & .5 \\ & .5 \\ & .5 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \\ & 100 \end{aligned}$	$\begin{array}{r} 60 \\ 250 \\ 100 \\ 60 \end{array}$	200 200 200 200
TIS100 75101 TIS 102 TIS103	T	NPN NPN NPN NPN	$\begin{aligned} & G P \\ & G P \\ & G P \\ & G P \end{aligned}$	TIS100 TIS 101 2N5059 2N5059	$\begin{aligned} & 625 \\ & 625 \\ & 800 \\ & 800 \end{aligned}$	$\begin{aligned} & 180 \\ & 150 \\ & 180 \\ & 150 \end{aligned}$	$\begin{aligned} & 180 \\ & 150 \\ & 180 \\ & 150 \end{aligned}$	$30-$ 30 30 30	25 25 25 25	1 1 1 1	25 25 25 25		80 80 80 80
TIS104 TIS 105 TIS 106 TIS107	T1	PNP NPN NPN NPN	RF RF GP GP	TIS104 TIS105 TIS98 TIS97	$\begin{aligned} & 625 \\ & 625 \\ & 360 \\ & 360 \end{aligned}$	$\begin{aligned} & 60 \\ & 45 \\ & 80 \\ & 60 \end{aligned}$	$\begin{aligned} & 60 \\ & 45 \\ & 65 \\ & 40 \end{aligned}$	$\begin{array}{r} 100-500 \\ 30-150 \\ 65-300 \\ 35-300 \end{array}$	$\begin{array}{r} 1 \\ 10 \\ 100 \\ 100 \end{array}$	$\begin{aligned} & .6 \\ & .5 \\ & .5 \\ & .5 \end{aligned}$	$\begin{array}{r} 20 \\ 20 \\ 100 \\ 100 \end{array}$	100 60	90 300 200 200
TIS108 75109 TIS 110 TIS 111	TI	NPN NPN NPN NPN	$\begin{aligned} & R F \\ & G P \\ & G P \\ & G P \end{aligned}$	TIS108 TIS109 75110 TISIII	$\begin{aligned} & 625 \\ & 625 \\ & 625 \\ & 625 \end{aligned}$	$\begin{aligned} & 40 \\ & 60 \\ & 60 \\ & 60 \end{aligned}$	30 30 40 40	$\begin{aligned} & 25- \\ & 100-400 \\ & 50-150 \\ & 100-300 \end{aligned}$	$\begin{array}{r} 4 \\ 150 \\ 150 \\ 150 \end{array}$. 4	$\begin{aligned} & 150 \\ & 150 \\ & 150 \end{aligned}$		350 250 200 250
TIS 112 TIS113 TIS114 TIS115	T1	PNP NPN NPN NPN	$\begin{aligned} & \text { GP } \\ & \text { SW } \\ & \text { SW } \\ & \text { SW } \end{aligned}$	$\begin{aligned} & \text { TIS112 } \\ & \text { TIS133 } \\ & \text { TIS134 } \\ & \text { TIS135 } \end{aligned}$	$\begin{aligned} & 625 \\ & 700 \\ & 700 \\ & 700 \end{aligned}$	$\begin{aligned} & 60 \\ & 50 \\ & 50 \\ & 80 \end{aligned}$	40 30 30 50	$\begin{array}{r} 100-300 \\ 60.150 \\ 50-150 \\ 60-150 \end{array}$	$\begin{aligned} & 150 \\ & 100 \\ & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & .4 \\ & .3 \\ & .4 \\ & .3 \end{aligned}$	$\begin{aligned} & 150 \\ & 100 \\ & 100 \\ & 100 \end{aligned}$		200 300 300 300

TRANSISTOR INTERCHANGEABILITY MASTER LIST OF NONREGISTERED TYPES

TYPE NUMBER		$\begin{aligned} & \text { 立 } \\ & \frac{1}{8} \\ & 8 \end{aligned}$	$\begin{aligned} & \frac{0}{2} \\ & \frac{2}{3} \\ & \frac{14}{5} \\ & \frac{3}{3} \end{aligned}$		MAXIMUM RATEVES			EIECTRICAL CHARACTERISTICS					
					$\begin{gathered} \mathrm{P}_{\mathrm{T}} \\ \mathrm{~T}_{\mathbf{A}}=25^{\circ} \mathrm{C} \\ { }^{*} \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C} \\ (\mathrm{~mW}) \end{gathered}$	$V_{C B O}$ (V)	VCEO (V)	$h_{\text {FE }}$		$V_{C E}$ (sat)		hfe \qquad 1 kHz MIN	
$\begin{aligned} & \text { TIS116 } \\ & \text { TIS125 } \\ & \text { TIS126 } \\ & \text { TIS } 128 \end{aligned}$	$\begin{aligned} & \pi \\ & \pi \\ & \pi \\ & \pi \\ & \pi \end{aligned}$	NPN NPN NPN NPN	$\begin{aligned} & \text { SW } \\ & \text { RF } \\ & R F \\ & R F \end{aligned}$	$\begin{aligned} & \text { TIS } 136 \\ & \text { TIS } 125 \\ & \text { TIS } 126 \\ & \text { TIS128 } \end{aligned}$	700 625 625 250	80 40 40 60	50 30 30 45	$\begin{aligned} & 50-150 \\ & 30- \\ & 25- \\ & 30- \end{aligned}$	$\begin{array}{r} 100 \\ 4 \\ 10 \\ 2 \end{array}$		$\begin{array}{r} 100 \\ 30 \end{array}$		$\begin{aligned} & 300 \\ & 450 \\ & 600 \\ & 650 \end{aligned}$
$\left\lvert\, \begin{aligned} & \text { TIS129 } \\ & \text { TIS133 } \\ & \text { TIS134 } \\ & \text { TIS135 } \end{aligned}\right.$	$\begin{aligned} & \pi \\ & \pi 1 \\ & \pi 1 \\ & \pi I \end{aligned}$	NPN NPN NPN NPN	RF SW SW SW	$\begin{aligned} & \text { TIS129 } \\ & \text { TIS133 } \\ & \text { TIS134 } \\ & \text { TIS135 } \end{aligned}$	$\begin{aligned} & 250 \\ & 700 \\ & 700 \\ & 700 \end{aligned}$	$\begin{aligned} & 40 \\ & 50 \\ & 50 \\ & 80 \end{aligned}$	25 30 30 50	$\begin{aligned} & 60- \\ & 60-150 \\ & 50-150 \\ & 60-150 \end{aligned}$	4 100 100 100	.5 .3 .4 .3	$\begin{array}{r} 4 \\ 100 \\ 100 \\ 100 \end{array}$		$\begin{aligned} & 800 \\ & 250 \\ & 250 \\ & 250 \end{aligned}$
$\begin{aligned} & \text { TIS136 } \\ & \text { TIS137 } \\ & \text { TIS138 } \\ & \text { UII } 10 \end{aligned}$	$\left\lvert\, \begin{array}{ll} \mathrm{TI} \\ \mathrm{TI} \\ \mathrm{TI} \\ \mathrm{si} \end{array}\right.$	$\begin{aligned} & \text { NPN } \\ & \text { PNP } \\ & \text { PNP } \\ & \text { PCH } \end{aligned}$	$\begin{array}{\|l} \hline S W \\ R F \\ R F \\ \text { FE } \end{array}$		$\begin{gathered} 700 \\ 625 \\ 625 \\ \text { SEE FET } \end{gathered}$	$\begin{gathered} 80 \\ 35 \\ 35 \\ \text { NTERCHA } \end{gathered}$	$\begin{array}{r} 50 \\ 32 \\ 32 \\ \text { NGEABIL } \end{array}$	$\begin{array}{r} 50-150 \\ 45- \\ 25- \\ \hline \text { IY LIST } \\ \hline \end{array}$	$\begin{array}{r} 100 \\ 1 \\ 1 \end{array}$. 4	100		250 80 50
U112 U146 U147 U148	$\left\lvert\, \begin{aligned} & \mathbf{S I} \\ & \mathbf{S I} \\ & \mathbf{S I} \\ & \mathbf{S I} \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & \mathrm{PCH} \\ & \mathrm{PCH} \\ & \mathrm{PCH} \\ & \mathrm{PCH} \end{aligned}\right.$	$\begin{aligned} & \text { FE } \\ & \mathrm{FE} \\ & \mathrm{FE} \\ & \mathrm{FE} \end{aligned}$		SEE FET SEE FET SEE FET SEE FET	NTERCH NTERCH NTERCH NTERCHA	NGEABIL NGEABL NGEABIL NGEABIL	ITY LIST TY LIST TY LIST TY LIST					
U149 U133 U168 U182	$\left\lvert\, \begin{aligned} & S I \\ & S I \\ & S I \\ & \mathbf{N} \end{aligned}\right.$	$\begin{aligned} & \mathrm{PCH} \\ & \mathrm{PCH} \\ & \mathrm{PCH} \\ & \mathrm{NCH} \end{aligned}$	$\begin{aligned} & \mathrm{FE} \\ & \mathrm{FE} \\ & \mathrm{FE} \\ & \mathrm{FE} \end{aligned}$	$\begin{aligned} & \text { 2N2608 } \\ & \text { 2N4860 } \end{aligned}$	SEE FET SEE FET SEE FET SEE FET	NTERCH NTERCHA NTERCH NTERCHA	NGEABIL NGEABI NGEABI NGEABI	ITY LIST TY LIST TY LIST TY LIST					
U183 U184 U197 U198	$\left\lvert\, \begin{aligned} & \mathbf{s} 1 \\ & \mathbf{s i} \\ & \mathbf{s} \\ & \mathbf{s i} \end{aligned}\right.$	$\begin{aligned} & \mathrm{NCH} \\ & \mathrm{NCH} \\ & \mathrm{NCH} \\ & \mathrm{NCH} \end{aligned}$	FE FE FE FE	$\begin{aligned} & \text { 2N3458 } \\ & \text { 2N4416 } \\ & \text { 2N3460 } \\ & \text { 2N3459 } \end{aligned}$	SEE FET SEE FET SEE FET SEE FET	NTERCH NTERCH NTERCH NTERCH	NGEABI NGEABIL NGEABI NGEABI	TY LIST ITY LIST ITY LIST ITY LST					
$\begin{aligned} & \text { U199 } \\ & \text { U200 } \\ & \text { U201 } \\ & \text { U202 } \end{aligned}$	$\left\lvert\, \begin{aligned} & \mathbf{5 I} \\ & 5! \\ & 51 \\ & \mathbf{s I} \end{aligned}\right.$	$\begin{aligned} & \mathrm{NCH} \\ & \mathrm{NCH} \\ & \mathrm{NCH} \\ & \mathrm{NCH} \end{aligned}$	FE FE FE FE	2N3458 2N5549 2N4861 2N4860	$\begin{aligned} & \text { SEE FET } \\ & \text { SEE FET } \\ & \text { SEE FET } \\ & \text { SEE FET } \end{aligned}$	NTERCH NTERCH NTERCH NTERCH	NGEABI NGEABI NGEABI NGEABI	ITY LIST ITY LIST ITY LIST ITY LIST					
U221 U222 U231 U232	$\begin{aligned} & 5! \\ & 5! \\ & \mathbf{I N} \\ & \mathbf{N} \end{aligned}$	$\left\lvert\, \begin{aligned} & \mathrm{NCH} \\ & \mathrm{NCH} \\ & \mathrm{NCH} \\ & \mathrm{NCH} \end{aligned}\right.$	FE FE FE FE	$\begin{aligned} & \text { 2N5545 } \\ & \text { 2N5546 } \end{aligned}$	SEE FET SEE FET SEE FET SEE FET	INTERCH NTERCH NTERCH NTERCH	NGEAB: NGEABI NGEABI NGEAB	ITY LIST ITY LIST ITY LIST ITY LIST					
$\begin{array}{\|l} \mathbf{U} 233 \\ \text { U234 } \\ \text { U235 } \\ \text { U240 } \end{array}$	$\left\lvert\, \begin{aligned} & \mathbf{N} \\ & \mathbf{N} \\ & \mathbf{N} \\ & \mathbf{N} \\ & \mathbf{S} \end{aligned}\right.$	NCH NCH NCH NCH	FE FE FE FE	$\begin{aligned} & \text { 2N5547 } \\ & \text { 2N5547 } \\ & \text { 2N5045 } \end{aligned}$	SEE FET SEE FET SEE FET SEE FET	INTERCH INTERCH INTERCH INTERCH	ANGEAB ANGEAB NGEAB ANGEAB	ITY LIST ITY LIST ITY LIST ITY LIST					
U241 U242 U243 U248	$\begin{aligned} & \mathbf{S I} \\ & \mathbf{s i} \\ & \mathbf{S I} \\ & \mathbb{N} \end{aligned}$	NCH NCH NCH NCH	FE FE FE FE		see fet SEE FET SEE FET SEE FET	INTERCH INTERCH INTERCH INTERCH	ANGEAB angeab ANGEAB ANGEAB	ITY LIST ITY LIST ITY LIST ITY LIST 1					

TRANSISTOR INTERCHANGEABILITY MASTER LIST OF NONREGISTERED TYPES

		E$\frac{2}{3}$8	$\begin{aligned} & \frac{8}{8} \\ & \frac{8}{8} \\ & 8 \end{aligned}$	TIREMLACEMENTOR NEANESTEQUNAIENT	MAXIMUM RATINOS	EECTRICAL CMARACTERISTICS			
					$\begin{array}{ccc} P_{T} & \\ T_{A}=25^{\circ} \mathrm{C} & V_{\mathrm{CNO}} & V_{\mathrm{CEO}} \end{array}$	hTE	$V_{C E}$ (cat)	h_{6} -	
					$\left\lvert\, \begin{array}{cc} { }^{*} \mathrm{C} \mathrm{C}=25^{\circ} \mathrm{C} \\ (\mathrm{~mW}) & \text { (V) } \end{array}\right.$	$\text { MN MAX } \quad \begin{gathered} \mathrm{V} \\ (\mathrm{~mA}) \\ \hline \end{gathered}$	$\begin{array}{lr} M A X & \mathrm{C} \\ (\mathrm{~V}) & (\mathrm{mA}) \\ \hline \end{array}$	MM	$\begin{aligned} & \text { MW } \\ & \text { (MHz) } \end{aligned}$
$\begin{aligned} & \text { U248A } \\ & \text { U249 } \\ & \mathbf{U 2 4 9 A} \\ & \text { U250 } \end{aligned}$	$\begin{aligned} & \mathbf{N} \\ & \mathbf{N} \\ & \mathbf{N} \\ & \mathbf{N} \\ & \mathbf{N} \end{aligned}$	$\left\lvert\, \begin{aligned} & \mathrm{NCH} \\ & \mathrm{NCH} \\ & \mathrm{NCH} \\ & \mathrm{NCH} \end{aligned}\right.$	PE FE FE FE		SEE FET INTERCHANGEABHITY UST SEE FET INTERCHANGEADILTY LST SEE FET INTERCHANGEABLITY LST SEE FET INTERCHANGEABLITY LIST				
$\begin{aligned} & \text { U250A } \\ & \text { U251 } \\ & \text { U251A } \\ & \text { U252 } \end{aligned}$	$\left\lvert\, \begin{aligned} & \mathbb{N} \\ & \mathbb{N} \\ & \mathbb{N} \\ & \mathbb{N} \\ & \mathbb{N} \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & \mathrm{NCH} \\ & \mathbf{N C H} \\ & \mathbf{N C H} \\ & \mathbf{N C H} \end{aligned}\right.$	$\begin{aligned} & \text { FE } \\ & \text { FE } \\ & \text { FE } \end{aligned}$ FE		SEE FET INTERCHANGEABLLTY LST SEE FET INTERCHANGEABLITY LST SEE FET INTERCHANGEABLLTY LST SEE FET INTERCHANGEABLITY UST				
$\begin{aligned} & \text { U253 } \\ & \text { U254 } \\ & \text { U255 } \\ & \text { U256 } \end{aligned}$	$\begin{aligned} & \mathbb{N} \\ & \mathbb{N} \\ & \mathbb{N} \\ & \mathbb{N} \\ & \mathbb{N} \end{aligned}$	$\begin{aligned} & \mathrm{NCH} \\ & \mathrm{NCH} \\ & \mathrm{NCH} \\ & \mathrm{NCH} \end{aligned}$	$\begin{aligned} & \text { FE } \\ & \text { FE } \\ & \text { FE } \\ & \text { FE } \end{aligned}$		SEE FET NNTERCHANGEABLITY LIST SEE FET INTERCHANGEABLITY LIST SEE FET INTERCHANGEASILTY UST SEE FET INTERCHANGEABLLTY LIST				
$\begin{array}{\|l} \text { U257 } \\ \text { U273 } \\ \text { U273A } \\ \text { U274 } \end{array}$	$\left\lvert\, \begin{aligned} & \mathbb{N} \\ & \mathbf{N} \\ & \mathbf{S} \\ & \mathbf{S I} \\ & \mathbf{S I} \end{aligned}\right.$	$\begin{aligned} & \mathrm{NCH} \\ & \mathrm{NCH} \\ & \mathrm{NCH} \\ & \mathrm{NCH} \end{aligned}$	$\begin{aligned} & \text { FE } \\ & \text { FE } \\ & \text { FE } \\ & \text { FE } \end{aligned}$	2N5047	SEE FET INTERCHANGEABHLTY LIST SEE FET INTERCHANGEABLLTY LIST SEE FET INTERCHANGEABIITY LIST SEE FET INTERCHANGEABLTTY LST				
$\begin{aligned} & \text { U274A } \\ & \text { U275 } \\ & \text { U275A } \\ & \text { U280 } \end{aligned}$	$\left\lvert\, \begin{aligned} & \mathbf{S i} \\ & \mathbf{S i} \\ & \mathbf{S i} \\ & \mathbf{S i} \end{aligned}\right.$	$\begin{aligned} & \mathrm{NCH} \\ & \mathrm{NCH} \\ & \mathrm{NCH} \\ & \mathrm{NCH} \\ & \mathrm{NCH} \end{aligned}$	FE FE FE FE		SEE FET INTERCHANGEABLLTY LLST SEE FET INTERCHANGEABILTY LIST SEE FET INTERCHANGEABLITY LIST SEE FET INTERCHANGEABULTY LIST				
U281 U282 U2E3 U2e4	$\left\lvert\, \begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s N} \end{aligned}\right.$	$\begin{aligned} & \mathrm{NCH} \\ & \mathrm{NCH} \\ & \mathrm{NCH} \\ & \mathrm{NCH} \end{aligned}$	Ft FE FE FE		SEE FET INTERCHANGEABLITY UST SEE FET INTERCHANGEABLITY LST SEE FET INTERCHANGEABLITY LST SEE FET INTERCHANGEAEHLTY UST				
U245 U290 U291 U300	$\left\lvert\, \begin{aligned} & \mathbf{S I} \\ & \mathbf{s i} \\ & \mathbf{S I} \\ & \mathbf{S I} \end{aligned}\right.$	$\begin{aligned} & \mathrm{NCH} \\ & \mathrm{NCH} \\ & \mathrm{NCH} \\ & \mathrm{PCH} \end{aligned}$	FE FE FE FE		SEE FET INTERCHANGEABLITY LIST SEE FET INTERCHANGEABUTTY LIST SEE FET INTERCHANGEABLLTY LST SEE FET INTERCHANGEABLTTY LST				
U301 U304 U305 U306	$\left\lvert\, \begin{aligned} & \$ 1 \\ & \mathbf{S} \\ & \mathbf{S i} \\ & \mathbf{S i} \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & \mathrm{PCH} \\ & \mathrm{PCH} \\ & \mathrm{PCH} \\ & \hline \mathrm{PCH} \end{aligned}\right.$	FE FE FE FE		SEE FET INTERCHANGEAEILITY LIST SEE FET INTERCHANGEABLITY LST SEE FET INTERCHANGEABLITY LIST SEE FET INTERCHANGEABILTY LIST				
U310 U312 U1277 U1278	$\left\lvert\, \begin{aligned} & \mathbf{S I} \\ & \mathbf{S !} \\ & \mathbb{N} \\ & \mathbb{N} \\ & \mathbb{N} \end{aligned}\right.$	NCH NCH NCH NCH	$\begin{aligned} & \text { FE } \\ & \text { FE } \end{aligned}$	$\begin{aligned} & \text { 2N55.19 } \\ & \text { 2N5397 } \\ & \text { 2N5361 } \\ & \text { 2N5359 } \end{aligned}$	SEE FET INTERCHANGEABHLTY UST SEE FET INTERCHANGEABLITY LIST SEE FET INTERCHANGEABLITY LIST SEE FET NTERCHANGEAPLITY LST				
V1279 U1260 U1281 U1282	$\left\lvert\, \begin{aligned} & \mathbf{N} \\ & \mathbf{N} \\ & \mathbf{N} \\ & \mathbf{N} \\ & \mathbf{N} \end{aligned}\right.$	NCH NCH NCH NCH	$\begin{aligned} & \text { FE } \\ & \text { FE } \\ & \text { FE } \\ & \text { FE } \end{aligned}$	$\begin{aligned} & \text { 2N5362 } \\ & \text { 2N5359 } \\ & \text { 2N5549 } \\ & \text { 2N3458 } \end{aligned}$	SEE FET INTERCHANGEABLITY UST SEE FET INTERCHANGEABLITY LIST SEE FET NTERCHANGEABLITY UST SEE FET INTERCHANGEABHITY LIST				

TYPE		K$\frac{k}{2}$88		$\begin{aligned} & \text { TI } \\ & \text { REPLACEMENT } \\ & \text { OR NEAREST } \\ & \text { EGUVALENT } \end{aligned}$		EECTRICAL CHARACTRISTICS			
						hat $\operatorname{MIN} \operatorname{MaX}$ IC (mA)		$\begin{gathered} \mathrm{h}_{\mathrm{f}} \\ \mathrm{I} \text { ktt } \\ \text { Min } \end{gathered}$	$\begin{array}{c\|} \hline \mathbf{T} \\ \\ \mathbf{M N N} \\ (\mathbf{M H z}) \\ \hline \end{array}$
U1283 U1284 U1285 U1286	$\begin{aligned} & \mathbf{N} \\ & \mathbb{N} \\ & \mathbb{N} \\ & \mathbb{N} \\ & \mathbb{N} \end{aligned}$	NCH NCH NCH NCH	$\begin{aligned} & \mathrm{FE} \\ & \mathbf{F E} \\ & \mathbf{F E} \\ & \mathbf{F E} \\ & \mathbf{F E} \end{aligned}$	$\begin{aligned} & \text { 2N3459 } \\ & \text { 2N3458 } \\ & \text { 2N3459 } \end{aligned}$	SEE FET INTERCHANGEABI SEE FET INTERCHANGEABI SEE FET INTERCHANGEABI SEE FET INTERCHANGEABI	TY LIST TY List TY LIST TY LIST			
U1287 U1321 U1322 U1323	$\left\lvert\, \begin{aligned} & \mathbb{N} \\ & \mathbb{N} \\ & \mathbb{N} \\ & \mathbb{N} \\ & \mathbb{N} \end{aligned}\right.$	NCH NCH NCH NCH	$\begin{aligned} & \text { FE } \\ & \text { FE } \\ & \text { FE } \\ & \text { FE } \end{aligned}$	$\begin{aligned} & \text { 2N4860 } \\ & \text { 2N3966 } \\ & \text { 2N3459 } \\ & \text { 2N3459 } \end{aligned}$	SEE FET INTERCHANGEAB SEE FET INTERCHANGEAB SEE FET INTERCHANGEAB see fet interchangeab	TY LIST TY LIST TY LIST TY LIST			
U1324 U1325 U1714 U1837E	$\begin{aligned} & \mathbb{N} \\ & \mathbb{N} \\ & \mathbb{N} \\ & \mathbb{N} \end{aligned}$	$\begin{aligned} & \mathrm{NCH} \\ & \mathrm{NCH} \\ & \mathrm{NCH} \\ & \mathrm{NCH} \end{aligned}$	$\begin{aligned} & \text { FE } \\ & \text { FE } \\ & \text { FE } \\ & \text { FE } \end{aligned}$	$\begin{aligned} & \text { 2N5362 } \\ & \text { 2N3459 } \\ & \text { 2N5245 } \end{aligned}$	SEE FET INTERCHANGEAB SEE FET INTERCHANGEAB seE fet interchangeab see fet interchangeab	TY LIST TY LIST TY LIST TY LIST			
U1897E U1898E U1899E U1994E	$\left\lvert\, \begin{aligned} & \mathbb{N} \\ & \mathbb{N} \\ & \mathbb{N} \\ & \mathbb{N} \\ & \mathbb{N} \end{aligned}\right.$	$\begin{aligned} & \mathrm{NCH} \\ & \mathrm{NCH} \\ & \mathrm{NCH} \\ & \mathrm{NCH} \end{aligned}$	$\begin{array}{l\|l\|} \hline \text { FE } \\ \text { FE } \\ \text { FE } \\ \text { FE } \end{array}$	$\begin{array}{\|l} \text { TIS73 } \\ \text { TIS74 } \\ \text { TIS75 } \\ \text { 2NS245 } \end{array}$	SEE FET INTERCHANGEAB SEE FET INTERCHANGEAB SEE FET INTERCHANGEAB SEE FET INTERCHANGEAB	TY LIST ITY LST ITY LIST TY LIST			
U3000 U3001 U3002 U3010	$\left\lvert\, \begin{aligned} & \mathbb{N} \\ & \mathbb{N} \\ & \mathbb{N} \\ & \mathbb{N} \\ & \mathbb{N} \end{aligned}\right.$	$\begin{array}{\|l\|l} \mathrm{NCH} \\ \mathrm{NCH} \\ \mathrm{NCH} \\ \mathrm{NCH} \end{array}$	$\begin{aligned} & \mathrm{FE} \\ & \mathrm{FE} \\ & \mathrm{FE} \\ & \mathrm{FE} \\ & \mathrm{FE} \end{aligned}$	$\begin{aligned} & \text { 2N3459 } \\ & \text { 2N3459 } \\ & \text { 2N3458 } \end{aligned}$	SEE FET INTERCHANGEAB See fet interchangeab see fet interchangeab see fet interchangeab	TY LIST TY LST TV LIST TTY LIST			
$\begin{aligned} & \text { U3011 } \\ & \text { U3012 } \\ & \text { UC20 } \\ & \text { UC21 } \end{aligned}$	$\left\lvert\, \begin{aligned} & \mathbb{N} \\ & \mathbb{N} \\ & \mathbb{N} \\ & \mathbb{N} \\ & \mathbb{N} \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & \mathrm{NCH} \\ & \mathrm{NCH} \\ & \mathrm{NCH} \\ & \mathrm{NCH} \end{aligned}\right.$	FE FE FE FE FE	$\begin{aligned} & \text { 2N3459 } \\ & \text { 2N3460 } \\ & \text { 2N5358 } \end{aligned}$	SEE FET INTERCHANGEAB SEE FET INTERCHANGEAB SEE FET INTERCHANGEA See fet interchangeal	ITY LIST ITY LIST ITY LIST ITY LIST			
UC100 UC1 10 UC115 UCl30	$\left\lvert\, \begin{aligned} & \mathbb{N} \\ & \mathbb{N} \\ & \mathbb{N} \\ & \mathbb{N} \\ & \mathbb{N} \end{aligned}\right.$	$\begin{aligned} & \mathrm{NCH} \\ & \mathrm{NCH} \\ & \mathrm{NCH} \\ & \mathrm{NCH} \end{aligned}$	$\begin{array}{\|l\|} \mathbf{F E} \\ \mathbf{F E} \\ \mathbf{F E} \\ \mathbf{F E} \end{array}$	$\begin{aligned} & \text { 2N5361 } \\ & \text { 2N5360 } \\ & \text { 2N3459 } \end{aligned}$	SEE FET INTERCHANGEAB SEE FET INTERCHANGEAB SEE FET INTERCHANGEAB SEE FET INTERCHANGEAB	ITY ust ITY LIST ITY LIST ITY LIST			
UC155 UC200 UC201 UC210	$\left\lvert\, \begin{aligned} & \mathbb{N} \\ & \mathbb{N} \\ & \mathbb{N} \\ & \mathbb{N} \\ & \mathbb{N} \end{aligned}\right.$	$\begin{array}{\|l\|} \mathrm{NCH} \\ \mathrm{NCH} \\ \mathrm{NCH} \\ \mathrm{NCH} \\ \hline \end{array}$	$\begin{aligned} & \mathbf{F E} \\ & \mathbf{F E} \\ & \mathbf{F E} \\ & \mathbf{F E} \end{aligned}$	$\begin{aligned} & \text { 2N5364 } \\ & \text { 2N5364 } \\ & \text { 2N5362 } \end{aligned}$	SEE FET INTERCHANGEAI SEE FET INTERCHANGEAD SEE FET INTERCHANGEAB SEE FET INTERCHANGEAB	ITY LIST ITY UST ITY LIST ITY LIST			
$\begin{aligned} & \text { UC220 } \\ & \text { UC240 } \\ & \text { UC241 } \\ & \text { UC250 } \end{aligned}$	$\left\lvert\, \begin{aligned} & \mathbb{N} \\ & \mathbb{N} \\ & \mathbb{N} \\ & \mathbb{N} \\ & \mathbb{N} \end{aligned}\right.$	$\begin{array}{\|l\|} \mathrm{NCH} \\ \mathrm{NCH} \\ \mathrm{NCH} \\ \mathrm{NCH} \end{array}$		$\begin{aligned} & \text { 2N5360 } \\ & \text { 2N3459 } \\ & \text { 2NS361 } \\ & \text { 2N4391 } \end{aligned}$	SEE FET INTERCHANGEA SEE FET INTERCHANGEA SEE FET INTERCHANGEA SEE FET INTERCHANGEA	ITY LIST ITY LST ITY LIST ITY LIST			
UC251 UC400 UC401 UC410	$\left\lvert\, \begin{aligned} & \mathbf{N} \\ & \mathbf{N} \\ & \mathbf{N} \\ & \mathbf{N} \\ & \mathbf{N} \end{aligned}\right.$	$\begin{array}{\|l\|} \mathrm{NCH} \\ \mathrm{PCH} \\ \mathrm{PCH} \\ \mathrm{PCCH} \\ \hline \end{array}$	FE FE FE FE FE	$\begin{aligned} & \text { 2N4392 } \\ & \text { 2N3331 } \\ & \text { 2N3994 } \\ & \text { 2N3330 } \end{aligned}$	SEE FET INTERCHANGEA SEE FET INTERCHANGEA SEE FET INTERCHANGEA SEE FET INTERCHANGEA	ITY LIST ITY LIST ITY LIST ITY LIST			

TRANSISTOR INTERCHANGEABILITY
 MASTER LIST OF NONREGISTERED TYPES

TME NUMBER		$\begin{aligned} & \frac{5}{6} \\ & \frac{5}{3} \\ & \frac{8}{8} \end{aligned}$	7 REPACEMENT OR NEAREST EOUVALENT	2ATED DRANS GATE VOLTACE (V)	Elccibical charactensincs					
					loss	lyad	C_{68}	OTH	PARA	
					$\begin{array}{ll} \operatorname{MNN} & M A X \\ (m A) & (m A) \end{array}$	Mind MaX (mmhe) (mmaha)	max (pl)	symeor	$\mathbf{M A X}$	$\begin{aligned} & f \\ & (H x) \end{aligned}$
$\begin{aligned} & \text { 2N2386 } \\ & \text { 2N2386A } \\ & \text { 2N2497 } \\ & \text { 2N2498 } \end{aligned}$	$\begin{array}{ll}P & J \\ P & J \\ P & J \\ P & J\end{array}$	$\begin{aligned} & \text { FE } \\ & \text { FE } \\ & \text { FE } \\ & \text { FE } \end{aligned}$	$\begin{aligned} & \text { 2N2386 } \\ & \text { 2N2386A } \\ & \text { 2N2497 } \\ & \text { 2N2498 } \end{aligned}$	$\begin{array}{r} 20 \\ 20 \\ \cdot 20 \\ \cdot 20 \end{array}$	$\begin{aligned} & .9-9 \\ & 1-15 \\ & 1-3 \\ & 2-6 \end{aligned}$	$\begin{gathered} 1- \\ 2.2-5 \\ 1-2 \\ 1.5-3 \end{gathered}$	$\begin{aligned} & 50 \\ & 10 \\ & 32 \\ & 32 \end{aligned}$	NF NF NF NF	$\begin{aligned} & 2 \mathrm{DB} \\ & 2 \mathrm{DA} \\ & 3 \mathrm{DB} \\ & 3 \mathrm{DB} \end{aligned}$	
$\begin{aligned} & \text { 2N2499 } \\ & \text { 2N2500 } \\ & \text { 2N2606 } \\ & \text { 2N2607 } \end{aligned}$	$\left\|\begin{array}{ll} P & J \\ P & J \\ P & J \\ P & J \end{array}\right\|$	$\begin{aligned} & \text { FE } \\ & \text { FE } \\ & \text { FE } \\ & \text { FE } \end{aligned}$	$\begin{aligned} & \text { 2N2499 } \\ & \text { 2N2500 } \end{aligned}$	$\begin{array}{r} 20 \\ 20 \\ 30 \\ 30 \end{array}$	$\begin{aligned} & 5-15 \\ & 1.6 \\ & .1-.5 \\ & .3-1.5 \end{aligned}$	$\begin{aligned} & 24 \\ & 1-2.2 \\ & .11 \\ & .33 \end{aligned}$	$\begin{array}{r} 32 \\ 32 \\ 6 \\ 10 \end{array}$	NF NF NF NF	$\begin{aligned} & 4 \mathrm{DB} \\ & 1 \mathrm{DE} \\ & 3 \mathrm{DB} \\ & 3 \mathrm{DS} \end{aligned}$	10 M 10 M
$\begin{aligned} & 2 \mathrm{~N} 2608 \\ & 2 \mathrm{~N} 2609 \\ & 2 \mathrm{~N} 2841 \\ & 2 \mathrm{~N} 2842 \end{aligned}$	$\left\|\begin{array}{ll} P & J \\ P & J \\ P & J \\ P & J \end{array}\right\|$	$\begin{aligned} & \text { FE } \\ & \text { FE } \\ & \text { FE } \\ & \text { FE } \end{aligned}$	$\begin{aligned} & \text { 2N2608 } \\ & \text { 2N2609 } \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \\ & 30 \\ & 30 \end{aligned}$	$\begin{gathered} .9-4.5 \\ 2-10 \\ .025-.125 \\ .065-.325 \end{gathered}$	$\begin{array}{r} 1- \\ 2.5 \\ .06 \\ .18 \end{array}$	$\begin{array}{r} 17 \\ 30 \\ 6 \\ 10 \end{array}$	NF NF NF NF	$\begin{aligned} & 3 \mathrm{DB} \\ & 3 \mathrm{DA} \\ & 3 \mathrm{DB} \\ & 3 \mathrm{DB} \end{aligned}$	IM 1M IK 1K
$\begin{aligned} & \text { 2N2843 } \\ & \text { 2N2844 } \\ & \text { 2N3066 } \\ & \text { 2N3067 } \end{aligned}$	$\begin{array}{ll} P & J \\ P & J \\ N & J \\ N & J \end{array}$	FE FE FE FE	$\begin{aligned} & \text { 2N3459 } \\ & \text { 2N3460 } \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \\ & 50 \\ & 50 \end{aligned}$	$\begin{aligned} & .2-1 \\ & .44-2.2 \\ & .8-4 \\ & .2-1 \end{aligned}$	$\begin{gathered} .54 \\ 1.8 \\ .4-1 \\ .3-1 \end{gathered}$	$\begin{aligned} & 17 \\ & 30 \\ & 10 \\ & 10 \end{aligned}$	NF NF NF NF	$\begin{aligned} & 3 \mathrm{Ds} \\ & 3 \mathrm{Ds} \\ & 3 \mathrm{Ds} \\ & 3 \mathrm{Ds} \end{aligned}$	$\begin{aligned} & \text { 1K } \\ & \mathbf{1 K} \\ & \mathbf{1 K} \\ & \mathbf{1 K} \end{aligned}$
$\begin{aligned} & \text { 2N3068 } \\ & \text { 2N3069 } \\ & \text { 2N3070 } \\ & \text { 2N3071 } \end{aligned}$	$\begin{array}{ll} \mathbf{N} & J \\ \mathbf{N} & J \\ \mathbf{N} & J \\ \mathbf{N} & J \end{array}$	$\begin{aligned} & \text { FE } \\ & \text { FE } \\ & \text { FE } \\ & \text { FE } \end{aligned}$	2N3458 2N3459 2N3460	$\begin{aligned} & 50 \\ & 50 \\ & 50 \\ & 50 \end{aligned}$	$\begin{gathered} .05-.25 \\ 2-10 \\ .5-2.5 \\ .1-.6 \end{gathered}$	$\begin{array}{r} .2-1 \\ 1-2.5 \\ .75-2.5 \\ .5-2.5 \end{array}$	$\begin{aligned} & 10 \\ & 15 \\ & 15 \\ & 15 \end{aligned}$	NF NF NF NF	$\begin{aligned} & 3 \mathrm{Ds} \\ & 3 \mathrm{Ds} \\ & 3 \mathrm{Ds} \\ & 3 \mathrm{Ds} \end{aligned}$	$\begin{aligned} & \mathbf{1 K} \\ & \mathbf{1 K} \\ & \mathbf{1 K} \\ & \mathbf{1 K} \end{aligned}$
$\left\lvert\, \begin{aligned} & \text { 2N } 3084 \\ & \text { 2N3085 } \\ & \text { 2N3086 } \\ & \text { 2N3087 } \end{aligned}\right.$	$\begin{array}{ll} \mathbf{N} & J \\ \mathbf{N} & J \\ \mathbf{N} & J \\ \mathbf{N} & J \end{array}$	FE FE FE FE	2N3459 2N3459 2N3459 2N3459	$\begin{aligned} & 30 \\ & 30 \\ & 40 \\ & 40 \end{aligned}$	$\begin{aligned} & .8-3 \\ & .8-3 \\ & .8-3 \\ & .8-3 \end{aligned}$	$\begin{aligned} & .4-1.2 \\ & .4-1.2 \\ & .4-1.2 \\ & .4-1.2 \end{aligned}$				
$\begin{aligned} & \text { 2N3088 } \\ & \text { 2N3088A } \\ & \text { 2N3089 } \\ & \text { 2N3089A } \end{aligned}$	$\begin{array}{ll} \mathbf{N} & J \\ \mathbf{N} & J \\ \mathbf{N} & J \\ \mathbf{N} & J \end{array}$	$\begin{aligned} & \text { FE } \\ & \text { FE } \\ & \text { FE } \\ & \text { FE } \end{aligned}$	$\begin{aligned} & \text { 2N3460 } \\ & \text { 2N3460 } \\ & \text { 2N3460 } \\ & \text { 2N3460 } \end{aligned}$	$\begin{aligned} & 15 \\ & 15 \\ & 30 \\ & 15 \end{aligned}$	$\begin{array}{r} .5-2 \\ .5-2 \\ .5-2 \\ .5-2 \end{array}$	$\begin{aligned} & .3- \\ & .9-2 \\ & .3-2 \\ & .9-2 \end{aligned}$	$\begin{array}{r} 14 \\ 6 \\ 14 \end{array}$	NF NF NF NF	$\begin{gathered} 3 \mathrm{DB} \\ .5 \mathrm{DB} \\ 3 \mathrm{DB} \\ .5 \mathrm{DB} \end{gathered}$	$\begin{aligned} & 1 M \\ & 10 \\ & 1 M \end{aligned}$
2N3112 2N3113 2N3277 2N3278	$\begin{array}{ll}\text { P } & J \\ \mathbf{P} & J \\ \mathbf{P} & J \\ \mathbf{P} & \\ \end{array}$	FE FE FE FE		$\begin{aligned} & 20 \\ & 20 \\ & 25 \\ & 25 \end{aligned}$	$\begin{gathered} .035-.175 \\ .035-.175 \\ .15-.5 \\ .4 .9 \end{gathered}$	$\begin{gathered} .05-.11 \\ .05 .11 \\ .1- \\ .15 \end{gathered}$	$\begin{array}{r} 3.5 \\ 2 \\ 4.5 \\ 4.5 \end{array}$			
$\begin{aligned} & \text { 2N3328 } \\ & \text { 2N3329 } \\ & \text { 2N3330 } \\ & \text { 2N3331 } \end{aligned}$	$\left\lvert\, \begin{array}{ll} P & J \\ \mathbf{P} & J \\ \mathbf{P} & J \\ \mathbf{P} & J \end{array}\right.$	FE FE FE FE	$\begin{aligned} & \text { 2N3328 } \\ & \text { 2N3329 } \\ & \text { 2N3330 } \\ & \text { 2N3331 } \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \\ & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & -1 \\ & 1-3 \\ & 2-6 \\ & 5-15 \end{aligned}$	$\begin{array}{r} 1- \\ 1-2 \\ 1.5-3 \\ 2-4 \end{array}$		NF NF NF NF	$\begin{aligned} & 3 \mathrm{DA} \\ & 3 \mathrm{DB} \\ & 3 \mathrm{DB} \\ & 4 \mathrm{DB} \end{aligned}$	$\begin{aligned} & \text { IK } \\ & \text { 1K } \\ & \text { IK } \\ & \text { 1K } \end{aligned}$
$\begin{aligned} & \text { 2N3332 } \\ & \text { 2N3333 } \\ & \text { 2N3334 } \\ & \text { 2N3335 } \end{aligned}$	$\left\lvert\, \begin{array}{ll} P & J \\ P & J \\ P & J \\ P & J \end{array}\right.$	$\begin{aligned} & \text { FE } \\ & \text { FE } \\ & \text { FE } \\ & F E \end{aligned}$	$\begin{aligned} & \text { 2N3332 } \\ & \text { 2N3333 } \\ & \text { 2N3334 } \\ & \text { 2N3335 } \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \\ & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 1-6 \\ & .3-1 \\ & .3-1 \\ & .3-1 \\ & \hline \end{aligned}$	$\begin{gathered} 1-2.2 \\ .6-1.8 \\ .6-1.8 \\ .6-1.8 \end{gathered}$	$\begin{aligned} & 20 \\ & 30 \\ & 30 \\ & 30 \\ & \hline \end{aligned}$	NF	1 DB	

TRANSISTOR INTERCHANGEABILITY REGISTERED FIELD-EFFECT TRANSISTORS

TYPE NUMBER	$\begin{array}{ll} \vdots & \frac{m}{2} \\ \frac{2}{3} & \frac{2}{2} \\ \frac{2}{2} & \frac{m}{2} \end{array}$			rated DRARMGATE VOLTAGE (V)	EECTULCAL CHARACTERISTICS					
					$\begin{gathered} \text { LDSs } \\ \text { *D(on) } \end{gathered}$	brad	Cbes max (pF F)	OTHER PARAMETER		
					$\begin{array}{ll} \operatorname{Mn} & \max \\ (\mathrm{mA}) & (\mathrm{ma}) \end{array}$	$\begin{array}{\|cc} \text { Mand } & \text { MaX } \\ \text { (mmho) } & \text { (manho) } \\ \hline \end{array}$		SYMEOL	MAX	$\begin{gathered} e^{f} \\ \left(\mathrm{H}_{\mathrm{z}}\right) \end{gathered}$
$\begin{aligned} & \text { 2N3336 } \\ & \text { 2N3365 } \\ & \text { 2N3366 } \\ & \text { 2N3367 } \end{aligned}$	$\begin{array}{ll}\mathbf{P} & J \\ \mathbf{N} & J \\ \mathbf{N} & J \\ \mathbf{N} & J\end{array}$	$\begin{aligned} & \hline \mathrm{FE} \\ & \mathrm{FE} \\ & \mathrm{FE} \\ & \mathrm{FE} \\ & \mathrm{FE} \end{aligned}$	$\begin{aligned} & \text { 2N3336 } \\ & \text { 2N3459 } \\ & \text { 2N3460 } \end{aligned}$	$\begin{aligned} & 20 \\ & 40 \\ & 40 \\ & 40 \end{aligned}$	$\begin{gathered} .3-1 \\ .8-4 \\ .2-1 \\ .05-.25 \end{gathered}$	$\begin{gathered} .6-1.8 \\ .4-2 \\ .25-1 \\ .1-1 \end{gathered}$	$\begin{aligned} & 30 \\ & 15 \\ & 15 \\ & 15 \end{aligned}$			
$\begin{aligned} & \text { 2N3368 } \\ & \text { 2N3369 } \\ & \text { 2N3370 } \\ & \text { 2N3376 } \end{aligned}$	$\begin{array}{ll} \mathbf{N} & J \\ \mathbf{N} & J \\ \mathbf{N} & J \\ \mathbf{P} & J \end{array}$	$\begin{aligned} & \text { FE } \\ & \hline F \end{aligned}$	$\begin{aligned} & \text { 2N3458 } \\ & \text { 2N3460 } \\ & \text { 2N3460 } \\ & \text { 2N3329 } \end{aligned}$	$\begin{array}{r} 40 \\ 40 \\ 40 \\ 30 \end{array}$	$\begin{aligned} & 2-12 \\ & .5-2.5 \\ & .1-.6 \\ & .6-6 \end{aligned}$	$\begin{aligned} & 1-4 \\ & .6-2.5 \\ & .3-2.5 \\ & .8-2.3 \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \\ & 20 \end{aligned}$			
$\begin{aligned} & \text { 2N3377 } \\ & \text { 2N3378 } \\ & \text { 2N3379 } \\ & \text { 2N3380 } \end{aligned}$	$\begin{array}{ll}\mathbf{P} & J \\ \mathbf{P} & J \\ \mathbf{P} & J \\ \mathbf{P} & J\end{array}$	$\left\{\begin{array}{l} \mathrm{FE} \\ \mathrm{FE} \\ \mathrm{FE} \\ \mathrm{FE} \end{array}\right.$	2N3331	$\begin{aligned} & 30 \\ & 30 \\ & 30 \\ & 30 \end{aligned}$	$\begin{aligned} & .6-6 \\ & 3-6 \\ & 3-6 \\ & 3-20 \end{aligned}$	$\begin{array}{r} .8-2.3 \\ 1.5-2.3 \\ 1.5-2.3 \\ 1.5-3 \end{array}$				
$\begin{aligned} & \text { 2N3381 } \\ & \text { 2N3382 } \\ & \text { 2N3383 } \\ & \text { 2N3384 } \end{aligned}$	$\left\lvert\, \begin{array}{ll} P & J \\ P & J \\ P & J \\ P & J \end{array}\right.$	$\begin{aligned} & \text { FE } \\ & \mathrm{FE} \\ & \mathrm{FE} \\ & \mathrm{FE} \end{aligned}$	$\begin{aligned} & \text { 2N3994 } \\ & \text { 2N3993 } \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \\ & 30 \\ & 30 \end{aligned}$	$\begin{array}{r} 3-20 \\ 3-30 \\ 3-30 \\ 15-30 \end{array}$	$\begin{aligned} & 1.5-3 \\ & 4.5-12 . \\ & 2.5-7 \\ & 7.5-12 \end{aligned}$				
2N3385 2N3386 2N3387 2N3436	$\begin{array}{ll} P & J \\ P & J \\ P & J \\ N & J \end{array}$	$\begin{array}{\|l\|l} \hline \mathbf{F E} \\ \text { FE } \\ \text { FE } \\ \text { FE } \end{array}$	2N3993 2N3458	$\begin{aligned} & 30 \\ & 30 \\ & 30 \\ & 50 \end{aligned}$	$\begin{array}{r} 15-30 \\ 15-50 \\ 15-50 \\ 3-15 \end{array}$	$\begin{array}{r} 5-7 \\ 7.5-15 \\ 5-10 \\ 2.5-10 \end{array}$	18	NF	2 DB	1K
$\begin{aligned} & \text { 2N3437 } \\ & \text { 2N3438 } \\ & \text { 2N3452 } \\ & \text { 2N3453 } \end{aligned}$	$\begin{array}{ll} \mathbf{N} & J \\ \mathbf{N} & J \\ \mathbf{N} & J \\ \mathbf{N} & J \end{array}$	$\begin{aligned} & \mathrm{FE} \\ & \mathrm{FE} \\ & \mathrm{FE} \\ & \mathrm{FE} \\ & \mathrm{FE} \end{aligned}$	$\begin{aligned} & \text { 2N3459 } \\ & \text { 2N3460 } \\ & \text { 2N3821 } \\ & \text { 2N3821 } \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \\ & 50 \\ & 50 \end{aligned}$	$\begin{aligned} & .8-4 \\ & .2-1 \\ & .8-4 \\ & .2-1 \end{aligned}$	$\begin{aligned} & 1.5-6 \\ & .8-4.5 \\ & .2-1.2 \\ & .15-.9 \end{aligned}$	$\begin{array}{r} 18 \\ 18 \\ 6 \\ 6 \end{array}$	$\begin{aligned} & \mathrm{NF} \\ & \mathrm{NF} \\ & \mathrm{NF} \\ & \mathrm{NF} \end{aligned}$	$\begin{aligned} & 2 \mathrm{DB} \\ & 2 \mathrm{DB} \\ & 2 \mathrm{DB} \\ & 2 \mathrm{DB} \end{aligned}$	$\begin{aligned} & \mathbf{1 K} \\ & \mathbf{1 K} \end{aligned}$
$\begin{aligned} & \text { 2N3454 } \\ & \text { 2N3455 } \\ & \text { 2N3456 } \\ & \text { 2N3457 } \end{aligned}$	$\begin{array}{ll} \mathbf{N} & J \\ \mathbf{N} & J \\ \mathbf{N} & J \\ \mathbf{N} & J \end{array}$	FE FE FE FE	$\begin{aligned} & \text { 2N3821 } \\ & \text { 2N3821 } \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \\ & 50 \\ & 50 \end{aligned}$	$\begin{gathered} .05-.25 \\ .8-4 \\ .2-1 \\ .05-.25 \end{gathered}$	$\begin{gathered} .1-.6 \\ .4-1.2 \\ .3-.9 \\ .15-.6 \end{gathered}$	$\begin{aligned} & 6 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & \mathrm{NF} \\ & \mathrm{NF} \\ & \mathrm{NF} \\ & \mathrm{NF} \end{aligned}$	$\begin{aligned} & 2 \mathrm{OB} \\ & 4 \mathrm{DB} \\ & 4 \mathrm{DB} \\ & 4 \mathrm{DB} \end{aligned}$	
$\begin{aligned} & \text { 2N3458 } \\ & \text { 2N3459 } \\ & \text { 2N3460 } \\ & \text { 2N3465 } \end{aligned}$	$\begin{array}{ll} \mathbf{N} & J \\ \mathbf{N} & J \\ \mathbf{N} & J \\ \mathbf{N} & J \end{array}$	FE FE FE FE		$\begin{aligned} & 50 \\ & 50 \\ & 50 \\ & 40 \end{aligned}$	$\begin{aligned} & 3-15 \\ & .8-4 \\ & .2-1 \\ & 1-5 \end{aligned}$	$\begin{aligned} & 2.5-10 \\ & 1.5-6 \\ & .8-4.5 \\ & .4-1.2 \end{aligned}$	$\begin{aligned} & 18 \\ & 18 \\ & 18 \end{aligned}$	$\begin{aligned} & \text { NF } \\ & \text { NF } \\ & \mathbf{N F} \\ & \mathbf{N F} \end{aligned}$	$\begin{aligned} & 6 \mathrm{DB} \\ & 4 \mathrm{DB} \\ & 4 \mathrm{DB} \\ & 5 \mathrm{DB} \end{aligned}$	20 20 20
$\begin{aligned} & \text { 2N3466 } \\ & \text { 2N3573 } \\ & \text { 2N3574 } \\ & \text { 2N3575 } \end{aligned}$	$\begin{array}{ll} \mathbf{N} & J \\ \mathbf{P} & J \\ \mathbf{P} & J \\ \mathbf{P} & J \end{array}$	FE FE FE FE	2N3821 2N3573 2N3574 2N3575	$\begin{aligned} & 40 \\ & 25 \\ & 25 \\ & 25 \end{aligned}$	$\begin{gathered} 1-5 \\ .02 .1 \\ .075-.37 \\ .2-1 \end{gathered}$	$\begin{aligned} & .4-1.2 \\ & .1-.3 \\ & .2-.6 \\ & .3-.9 \end{aligned}$	$\begin{aligned} & 6 \\ & 6 \\ & 6 \end{aligned}$	NF NF CRSS CRSS	$\begin{aligned} & 5 \mathrm{DB} \\ & 3 \mathrm{DB} \\ & 2 \mathrm{PF} \\ & 2 \mathrm{PF} \end{aligned}$	
$\begin{aligned} & \text { 2N3578 } \\ & \text { 2N3608 } \\ & \text { 2N3609 } \\ & \text { 2N3610 } \\ & \hline \end{aligned}$	\mathbf{P} \mathbf{J} \mathbf{P} IG \mathbf{P} IG \mathbf{P} $\mathbf{I G}$	FE FE FE FE	$\begin{aligned} & \text { 2N2608 } \\ & \text { 3N155 } \end{aligned}$	$\begin{aligned} & 20 \\ & 30 \\ & 25 \\ & 20 \end{aligned}$	$\begin{gathered} .9-4.5 \\ * 4-7 \\ 2.25-3.25 \\ .4-.6 \\ \hline \end{gathered}$	$\begin{gathered} 1.2-3.5 \\ .8- \end{gathered}$	65	CRSS CRSS CRSS	$\begin{aligned} & 3 \mathrm{PF} \\ & 2 \mathrm{PF} \\ & 6 \mathrm{PF} \end{aligned}$	$\begin{aligned} & 1 \mathrm{M} \\ & \mathrm{IM} \end{aligned}$

TYF NUMEER		CIASSIFICATION	TIRERLACEMENTOR NEARESTECUIYALENT	RATED DRANGATE Voltace (V)	EECTRICAL CHARACTERISTICS					
					$\begin{aligned} & \text { loss } \\ & \text { *LD(on) } \end{aligned}$	\|rat	$C_{\text {iss }}$ Max (pF)	OTHER PARAMETER		
					$\begin{array}{ll} \operatorname{man} & \operatorname{MAX} \\ (\mathrm{mA}) & (\mathrm{mA}) \\ \hline \end{array}$	MNN MAX (mmho) (mmho)		SYMBOL	MAX	$\begin{gathered} f \\ (\mathrm{~Hz}) \end{gathered}$
$\begin{aligned} & \text { 2N3631 } \\ & \text { 2N3684 } \\ & \text { 2N3684A } \\ & \text { 2N3685 } \end{aligned}$	$\left\|\begin{array}{ll} \mathbf{N} & \mathbf{I} \\ \mathbf{N} & J \\ \mathbf{N} & J \\ \mathbf{N} & J \end{array}\right\|$	FE FE FE FE	$\begin{aligned} & \text { 2N3822 } \\ & \text { 2N3822 } \\ & \text { 2N3821 } \end{aligned}$	$\begin{aligned} & 20 \\ & 50 \\ & 50 \\ & 50 \end{aligned}$	$\begin{gathered} 2-10 \\ 2.5-7.5 \\ 2.5-7.5 \\ 1-3 \end{gathered}$	$\begin{gathered} 1.4-2.8 \\ 2-3 \\ 2-3 \\ 1.5-2.5 \end{gathered}$	$\begin{array}{r} 7.5 \\ 4 \\ 4 \\ 4 \end{array}$	CRSS NF NF NF	$\begin{gathered} 1.6 \mathrm{PF} \\ .5 \mathrm{DB} \\ .5 \mathrm{DB} \\ .5 \mathrm{DB} \end{gathered}$	$\begin{array}{r} 1 K \\ 100 \\ 100 \\ 100 \end{array}$
$\begin{aligned} & \text { 2N3685A } \\ & \text { 2N3686 } \\ & \text { 2N3686A } \\ & \text { 2N3687 } \end{aligned}$	$\begin{array}{ll} \mathbf{N} & J \\ \mathbf{N} & J \\ \mathbf{N} & J \\ \mathbf{N} & J \end{array}$	$\begin{aligned} & \text { FE } \\ & \text { FE } \\ & \text { FE } \\ & \text { FE } \end{aligned}$	$\begin{aligned} & \text { 2N3821 } \\ & \text { 2N3821 } \\ & \text { 2N3821 } \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \\ & 50 \\ & 50 \end{aligned}$	$1-3$ $.4-1.2$ $.4-1.2$ $.1-.5$	$\begin{aligned} & 1.5-2.5 \\ & 1-2 \\ & 1-2 \\ & .5-1.5 \end{aligned}$	$\begin{aligned} & 4 \\ & 4 \\ & 4 \end{aligned}$	NF NF NF NF	$\begin{aligned} & .5 \mathrm{DB} \\ & .5 \mathrm{DB} \\ & .5 \mathrm{DB} \\ & .5 \mathrm{DB} \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \\ & 100 \\ & 100 \end{aligned}$
$\begin{aligned} & \text { 2N3687A } \\ & \text { 2N3695 } \\ & \text { 2N3696 } \\ & \text { 2N3697 } \end{aligned}$	$\begin{array}{ll} \mathbf{N} & J \\ \mathbf{P} & J \\ \mathbf{P} & J \\ \mathbf{P} & J \end{array}$	FE FE FE FE	$\begin{aligned} & \text { 2N3329 } \\ & \text { 2N3329 } \end{aligned}$	$\begin{aligned} & 50 \\ & 30 \\ & 30 \\ & 30 \end{aligned}$	$\begin{gathered} .1-.5 \\ 1.25-3.75 \\ . .5-1.5 \\ =.2-.6 \end{gathered}$	$\begin{gathered} .5-1.5 \\ 1-1.75 \\ .75-1.25 \end{gathered}$	4	NF NF NF	$\begin{aligned} & .5 \mathrm{DB} \\ & .5 \mathrm{DB} \\ & .5 \mathrm{DB} \end{aligned}$	$\begin{aligned} & 100 \\ & 10 \mathrm{M} \\ & 10 \mathrm{~m} \end{aligned}$
$\begin{aligned} & \text { 2N3698 } \\ & \text { 2N3798 } \\ & \text { 2N3797 } \\ & \text { 2N3819 } \end{aligned}$	P J N $1 G$ N $1 G$ N J	$\begin{aligned} & \text { FE } \\ & \text { FE } \\ & \text { FE } \\ & \text { AF } \end{aligned}$	2N3819	$\begin{aligned} & 30 \\ & 25 \\ & 20 \\ & 25 \end{aligned}$	$\begin{aligned} & .05-.25 \\ & .5-3 \\ & 2-6 \\ & 2-20 \end{aligned}$	$\begin{gathered} .25-.75 \\ .9-1.8 \\ 1.5-3 \\ 2-6.5 \end{gathered}$	$\begin{aligned} & 7 \\ & 8 \\ & 8 \end{aligned}$	$\begin{array}{r} \text { NF } \\ \text { CRSS } \\ \text { CRSS } \\ \text { CRSS } \end{array}$	$\begin{aligned} & .5 \mathrm{DB} \\ & .8 \mathrm{PF} \\ & .8 \mathrm{PF} \\ & 4 \mathrm{PF} \end{aligned}$	$\begin{array}{r} 10 \mathrm{M} \\ 1 \mathrm{~K} \\ 1 \mathrm{M} \\ 1 \mathrm{M} \end{array}$
$\begin{array}{\|l\|} \text { 2N3820 } \\ \text { 2N3821 } \\ \text { 2N3822 } \\ \text { 2N3823 } \end{array}$	$\begin{array}{ll} \mathbf{P} & J \\ \mathbf{N} & J \\ \mathbf{N} & J \\ \mathbf{N} & J \end{array}$	$\begin{aligned} & \mathrm{AF} \\ & \mathrm{FE} \\ & \mathrm{FE} \\ & \mathrm{FE} \end{aligned}$	$\begin{aligned} & \text { 2N3820 } \\ & \text { 2N3821 } \\ & \text { 2N3822 } \\ & \text { 2N3823 } \end{aligned}$	$\begin{aligned} & 20 \\ & 50 \\ & 50 \\ & 30 \end{aligned}$	$\begin{gathered} .3-15 \\ .5-2.5 \\ 2-10 \\ 4-20 \end{gathered}$	$\begin{array}{r} .8-5 \\ 1.5- \\ 3- \\ 3.2- \end{array}$	$\begin{array}{r} 32 \\ 6 \\ 6 \\ 6 \end{array}$	CRSS NF NF NF	$\begin{array}{r} 16 \mathrm{PF} \\ 5 \mathrm{DB} \\ 5 \mathrm{DB} \\ 2.5 \mathrm{DB} \end{array}$	$\begin{array}{r} 1 M \\ 10 \\ 10 \\ 100 \mathrm{M} \end{array}$
$\begin{aligned} & \text { 2N3824 } \\ & \text { 2N3882 } \\ & \text { 2N3909 } \\ & \text { 2N3909A } \end{aligned}$	$\begin{array}{cc} N & J \\ P & 1 G \\ P & J \\ P & J \end{array}$	FE FE FE FE	$\begin{aligned} & \text { 2N3824 } \\ & \text { 2N3909 } \\ & \text { 2N3909A } \end{aligned}$	$\begin{aligned} & 50 \\ & 30 \\ & 20 \\ & 20 \end{aligned}$	$\begin{gathered} *-1 \\ .3-15 \\ 1-15 \end{gathered}$	$\begin{gathered} 1-2.5 \\ 1-5 \\ 2.2-5 \end{gathered}$	6 32	$\begin{gathered} \text { CRSS } \\ \text { NF } \end{gathered}$	$\begin{aligned} & 3 \mathrm{PF} \\ & 3 \mathrm{DB} \end{aligned}$	$\begin{array}{r} 1 \mathrm{M} \\ 10 \mathrm{~K} \end{array}$
2N3921 2N3922 2N3934 2N3935	$\begin{array}{ll} \mathbf{N} & J \\ \mathbf{N} & J \\ \mathbf{N} & J \\ \mathbf{N} & J \end{array}$	$\begin{array}{\|l\|} \hline F E \\ \text { FE } \\ \text { FE } \\ \text { FE } \end{array}$	2N5545 2N5545 2N5546	$\begin{aligned} & 50 \\ & 50 \\ & 50 \\ & 50 \end{aligned}$	$\begin{gathered} 1-10 \\ 1-10 \\ .25-1.3 \\ .25-1.3 \end{gathered}$	$\begin{gathered} 1.5-7.5 \\ 1.5-7.5 \\ .3- \\ .3- \end{gathered}$	$\begin{aligned} & 18 \\ & 18 \end{aligned}$	NF NF NF NF	$\begin{aligned} & 2 \mathrm{DB} \\ & 2 \mathrm{DB} \\ & 2 \mathrm{DB} \\ & 2 \mathrm{DB} \end{aligned}$	$\begin{aligned} & \text { IK } \\ & \text { IK } \end{aligned}$
$\begin{aligned} & \text { 2N3954 } \\ & \text { 2N3954A } \\ & \text { 2N3955 } \\ & \text { 2N3955A } \end{aligned}$	$\begin{array}{ll} N & J \\ N & J \\ N & J \\ N & J \end{array}$	FE 限 FE FE		$\begin{aligned} & 50 \\ & 50 \\ & 50 \\ & 50 \end{aligned}$	$.5-5$ $.5-5$ $.5-5$ $.5-5$	$\begin{aligned} & 1- \\ & 1-3 \\ & 1- \\ & 1-3 \end{aligned}$	4	NF NF NF NF	$\begin{aligned} & .5 \mathrm{DB} \\ & .5 \mathrm{DB} \\ & .5 \mathrm{DB} \\ & .5 \mathrm{DB} \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$
$\begin{array}{\|l\|} \hline \text { 2N3956 } \\ \text { 2N3957 } \\ \text { 2N3958 } \\ \text { 2N3966 } \end{array}$	$\begin{array}{ll} \mathbf{N} & J \\ \mathbf{N} & J \\ \mathbf{N} & J \\ \mathbf{N} & J \end{array}$	FE FE FE FE	2N5547 2N5547 2N5547 2N3966	50 50 50 40	$.5-5$ $.5-5$ $.5-5$ 2.	1.	6	$\begin{array}{r} \mathrm{NF} \\ \mathrm{NF} \\ \mathbf{N F} \\ \text { CRSS } \end{array}$	$\begin{array}{r} .5 \mathrm{DB} \\ .5 \mathrm{DB} \\ .5 \mathrm{DB} \\ 1.5 \mathrm{PF} \end{array}$	
$\begin{aligned} & \text { 2N3967 } \\ & \text { 2N3967A } \\ & \text { 2N3968 } \\ & \text { 2N3968A } \end{aligned}$	$\begin{array}{ll} \mathbf{N} & J \\ \mathbf{N} & J \\ \mathbf{N} & J \\ \mathbf{N} & J \end{array}$	$\begin{array}{\|l\|l\|} \hline F E \\ \text { FE } \\ \text { FE } \\ \text { FE } \\ \hline \end{array}$	$\begin{aligned} & \text { 2N3822 } \\ & \text { 2N3822 } \\ & \text { 2N3822 } \\ & \text { 2N3821 } \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \\ & 30 \\ & 30 \end{aligned}$	$\begin{gathered} 2.5-10 \\ 2.5-10 \\ 1-5 \\ 1.5 \\ \hline \end{gathered}$	$\begin{aligned} & 1.6-2.4 \\ & 1.6-2.4 \\ & 1.4-2 \\ & 1.4-2 \\ & \hline \end{aligned}$	5 5 5 5	NF NF NF NF	$\begin{array}{r} 1.5 \mathrm{DB} \\ 1 \mathrm{DB} \\ 1.5 \mathrm{DB} \\ 1 \mathrm{DB} \end{array}$	$\begin{aligned} & 1 K \\ & 1 K \end{aligned}$

TRANSISTOR INTERCHANGEABILITY REGISTERED FIELD-EFFECT TRANSISTORS

TYFENuMER				π erenacement OR NEABEST ECUTVALENT	RATED DRANGATE VOLTACE	Electincal charactentics					
						bss ${ }^{\prime \prime} \mathrm{D}(\mathrm{~m})$	brad	c_{b} max (pf)	OTHER PARMMETER		
						$\left\|\begin{array}{ll} \text { min } & \text { max } \\ (\mathrm{ma}) & (\mathrm{ma}) \end{array}\right\|$	$\begin{array}{\|cl\|} \hline \text { min } & \text { max } \\ \text { (manho) } & \text { (mmanol } \end{array}$		SYmbor	max	$\begin{aligned} & \text { e } \\ & \left(\mathrm{H}_{\mathrm{z}}\right) \end{aligned}$
2N3969 2N3969A 2N3970 2N3971	$\begin{aligned} & \mathbf{N} \\ & \mathbf{N} \\ & \mathbf{N} \\ & \mathbf{N} \end{aligned}$	$\begin{aligned} & \mathbf{\jmath} \\ & \mathbf{j} \\ & \mathbf{j} \end{aligned}$	$\begin{array}{\|l\|l} \hline \mathbf{F E} \\ \mathbf{F E} \\ \mathbf{F E} \\ \mathbf{F E} \end{array}$	2N3821 2N3821 2N3970 2N3971	$\begin{aligned} & 30 \\ & 30 \\ & 40 \\ & 40 \end{aligned}$	$\begin{aligned} & .4 .2 \\ & .4-2 \\ & 50-150 \\ & 25-75 \end{aligned}$	$\begin{aligned} & .95-1.4 \\ & .95-1.4 \end{aligned}$	$\begin{array}{r} 5 \\ 5 \\ 25 \\ 25 \end{array}$	$\begin{gathered} \mathbf{N F} \\ \mathbf{N F} \\ \text { CRSS } \\ \text { CRSS } \end{gathered}$	$\begin{aligned} & 1.5 \mathrm{DE} \\ & 1 \mathrm{DB} \\ & 6 \mathrm{PF} \\ & 6 \mathrm{PF} \end{aligned}$	$\begin{aligned} & 1 K \\ & 1 M \\ & 1 M \end{aligned}$
2N3972 2N3993 2N3993A 2N3994	$\begin{array}{\|l\|l} \mathrm{N} \\ \mathrm{P} \\ \mathbf{P} \\ \mathrm{P} \end{array}$	$\begin{aligned} & \mathbf{\jmath} \\ & \mathbf{j} \\ & \mathbf{j} \end{aligned}$	FE FE FE FE	2N3972 2N3993 2N3993A 2N3994	$\begin{aligned} & 40 \\ & 25 \\ & 25 \\ & 25 \end{aligned}$	$\begin{gathered} 5.30 \\ 10- \\ 10- \\ 2 . \end{gathered}$		$\begin{aligned} & 25 \\ & 16 \\ & 12 \\ & 16 \end{aligned}$	$\begin{aligned} & \text { CRSS } \\ & \text { CRSS } \\ & \text { CRSS } \\ & \text { CRSS } \end{aligned}$	$\begin{array}{r} 6 \mathrm{PF} \\ 4.5 \mathrm{PF} \\ 3 \mathrm{PF} \\ 5 \mathrm{PFF} \end{array}$	IM
2N3994A 2N4038 2N4039 2N4065	$\begin{aligned} & \mathbf{P} \\ & \mathbf{N} \\ & \mathbf{N} \\ & \mathbf{P} \end{aligned}$	$\begin{aligned} & \text { J } \\ & \text { IG } \\ & \text { IG } \\ & \text { IG } \end{aligned}$	$\begin{aligned} & \mathbf{F E} \\ & \mathbf{F E} \\ & \mathbf{F E} \\ & \mathbf{F E} \end{aligned}$	2N3994A 3N174	$\begin{aligned} & 25 \\ & 50 \\ & 50 \\ & 25 \end{aligned}$	2. . 1 .1-1.5 3-6	$\begin{gathered} 1.5-2.5 \\ 1.5-2.5 \\ .4 .5 \end{gathered}$	12 4.5	CRSS CRSS	3.5 PF $.7 \mathrm{PF}$	
2N4066 2N4067 2N4082 2N4083	$\left\lvert\, \begin{aligned} & \mathbf{p} \\ & \mathbf{p} \\ & \mathbf{N} \\ & \mathbf{N} \end{aligned}\right.$	$\begin{aligned} & \text { IG } \\ & \text { IG } \\ & \mathbf{J} \end{aligned}$	$\begin{array}{\|l\|l} \mathbf{F E} \\ \mathbf{F E} \\ \mathbf{F E} \\ \mathbf{F E} \\ \mathbf{F E} \end{array}$	$\begin{aligned} & \text { 3N207 } \\ & \text { 3N207 } \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \\ & 50 \\ & 50 \end{aligned}$	$\begin{array}{r} +10-50 \\ *-10-50 \\ .25-1.3 \\ .25-1.3 \end{array}$	$\begin{gathered} 2.5- \\ 2.5 \\ .3- \\ .3- \end{gathered}$	7	$\begin{gathered} \text { CRSS } \\ \text { CRSS } \\ \mathrm{NF} \\ \mathrm{NF} \end{gathered}$	$\begin{array}{r} 1.5 \mathrm{PF} \\ 1.5 \mathrm{PF} \\ 2 \mathrm{DB} \\ 2 \mathrm{DB} \end{array}$	${ }_{1 M}$
2N4OP4 2 N4O85 2 N 4088 2N4089	$\left\lvert\, \begin{aligned} & \mathbf{N} \\ & \mathbf{N} \\ & \mathbf{P} \\ & \mathbf{P} \end{aligned}\right.$	$\begin{aligned} & \mathbf{\jmath} \\ & \mathbf{j} \\ & \mathbf{j} \end{aligned}$	$\begin{array}{\|l\|l} \hline \mathbf{F E} \\ \mathbf{F E} \\ \mathbf{F E} \\ \mathbf{F E} \end{array}$	$\begin{aligned} & \text { 2N5545 } \\ & \text { 2N5546 } \\ & \text { 2N3331 } \\ & \text { 2N3330 } \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \\ & 30 \\ & 30 \end{aligned}$	$\begin{aligned} & 1-10 \\ & 1-10 \\ & 5.15 \\ & 2.8 \end{aligned}$	$\begin{array}{r} 1.5-7.5 \\ 1.5-7.5 \\ 1.1 .6 \\ .8-1.1 \end{array}$	$\begin{aligned} & 18 \\ & 18 \\ & 10 \\ & 10 \end{aligned}$	NF NF NF NF	$\begin{array}{r} 2 \mathrm{DE} \\ 2 \mathrm{DB} \\ 1.5 \mathrm{DB} \\ 1.5 \mathrm{DE} \end{array}$	$\begin{aligned} & \mathbf{1 K} \\ & \mathbf{K} \end{aligned}$
2N4090 2N4091 2N4091A 2N4092	P \mathbf{N} \mathbf{N} \mathbf{N}	$\begin{aligned} & \mathrm{\jmath} \\ & \mathbf{\jmath} \\ & \mathbf{j} \end{aligned}$	$\begin{aligned} & \mathbf{F E} \\ & \mathbf{F E} \\ & \mathbf{F E} \\ & \mathbf{F E} \end{aligned}$	$\begin{aligned} & \text { 2N3329 } \\ & \text { 2N4091 } \\ & \text { 2N4091 } \\ & \text { 2N4092 } \end{aligned}$	$\begin{aligned} & 30 \\ & 40 \\ & 50 \\ & 40 \end{aligned}$	$\begin{aligned} & .4-2.5 \\ & 30 . \\ & 30 \\ & 15- \end{aligned}$.5-9	$\begin{aligned} & 10 \\ & 16 \\ & 16 \\ & 16 \end{aligned}$	$\begin{aligned} & \text { NF } \\ & \text { CRSS } \\ & \text { CRSS } \\ & \text { CRSS } \end{aligned}$	$\begin{array}{r} 1.5 \mathrm{DB} \\ 5 \mathrm{Pf} \\ 5 \mathrm{PF} \\ 5 \mathrm{PF} \end{array}$	$\begin{aligned} & 1 M \\ & 1 M \\ & 1 M \end{aligned}$
2N4092A 2 N 4093 2N4093A 2N4094	$\begin{aligned} & \mathbf{N} \\ & \mathbf{N} \\ & \mathbf{N} \\ & \mathbf{N} \end{aligned}$	$\begin{aligned} & j \\ & j \\ & j \\ & j \end{aligned}$	$\begin{array}{\|l\|l} \mathbf{F E} \\ \mathbf{F E} \\ \mathbf{F E} \\ \mathbf{F E} \\ \mathbf{F E} \end{array}$	$\begin{aligned} & \text { 2N4092 } \\ & \text { 2N4093 } \\ & \text { 2N4093 } \\ & \text { 2N4856 } \end{aligned}$	$\begin{aligned} & 50 \\ & 40 \\ & 50 \\ & 40 \end{aligned}$	$\begin{gathered} 15- \\ 8- \\ 8- \\ 75- \end{gathered}$		$\begin{aligned} & 16 \\ & 16 \\ & 16 \\ & 32 \end{aligned}$	CRSS CRSS CRSS CRSS	$\begin{aligned} & 5 \mathrm{PF} \\ & 5 \mathrm{PF} \\ & 5 \mathrm{Pf} \\ & 7 \mathrm{Pf} \end{aligned}$	$\mathrm{Im}_{1 \mathrm{~m}}^{1 \mathrm{~m}}$
2N4095 2N4117 2N4117A 2N4118	$\begin{aligned} & \mathbf{N} \\ & \mathbf{N} \\ & \mathbf{N} \\ & \mathbf{N} \end{aligned}$	$\begin{aligned} & \mathrm{d} \\ & \mathrm{\jmath} \\ & \mathrm{j} \end{aligned}$	$\begin{array}{\|l\|l} \mathbf{F E} \\ \mathbf{F E} \\ \mathbf{F E} \\ \mathbf{F E} \end{array}$	2N4857	$\begin{aligned} & 40 \\ & 40 \\ & 40 \\ & 40 \end{aligned}$	$\begin{aligned} & 20 \\ & .03 .09 \\ & .03 .09 \\ & .08-.24 \end{aligned}$	$\begin{aligned} & .07-.21 \\ & .07-21 \\ & .08-.25 \end{aligned}$	$\begin{array}{r} 32 \\ 3 \\ 3 \\ 3 \end{array}$	CRSS CRSS CRSS CRSS	$\begin{array}{r} 7 \mathrm{Pf} \\ 1.5 \mathrm{PF} \\ 1.5 \mathrm{PF} \\ 1.5 \mathrm{PF} \end{array}$	19 19 19
2N4118A 2N4119 2N4119A 2N4120	$\left\lvert\, \begin{aligned} & \mathbf{N} \\ & \mathbf{N} \\ & \mathbf{N} \\ & \mathbf{p} \end{aligned}\right.$	$\begin{gathered} J \\ j \\ j \\ 16 \end{gathered}$	$\begin{array}{\|l\|l} \mathbf{P E} \\ \mathbf{P E} \\ \mathbf{P E} \\ \mathbf{F E} \end{array}$	3N174	$\begin{aligned} & 40 \\ & 40 \\ & 40 \\ & 25 \end{aligned}$	$\begin{gathered} .08-.24 \\ .2 .6 \\ .2 .6 \\ 5-12 \end{gathered}$	$\begin{aligned} & .08 .25 \\ & .1 .33 \\ & .1 . .33 \\ & .7- \end{aligned}$	$\begin{array}{r} 3 \\ 3 \\ 3 \\ 4.5 \end{array}$	CRSS CRSS CRSS CRSS	$\begin{aligned} & 1.5 \mathrm{PF} \\ & 1.5 \mathrm{PF} \\ & 1.5 \mathrm{PF} \\ & .7 \mathrm{PF} \end{aligned}$	19 19 19
2N4139 2N4220 2N4220A 2N4221	$\begin{array}{\|l\|} \mathbf{N} \\ \mathbf{N} \\ \mathbf{N} \\ \mathbf{N} \\ \hline \end{array}$	$\begin{aligned} & \mathrm{J} \\ & \mathrm{j} \\ & \mathrm{~J} \\ & \hline \end{aligned}$	$\begin{array}{\|l\|l} \mathbf{F E} \\ \mathbf{P E} \\ \mathbf{F E} \\ \mathbf{F E} \\ \hline \end{array}$	$\begin{aligned} & \text { 2N3458 } \\ & \text { 2N4220 } \\ & \text { 2N4220A } \\ & \text { 2N4221 } \\ & \hline \end{aligned}$	$\begin{aligned} & 50 \\ & 30 \\ & 30 \\ & 30 \\ & \hline \end{aligned}$	$\begin{aligned} & 8-11 \\ & .5-3 \\ & .5-3 \\ & .2-6 \\ & \hline \end{aligned}$	$\begin{gathered} 3.5-7 \\ 1-4 \\ .75-4 \\ 2.5 \\ \hline \end{gathered}$	$\begin{array}{r} 18 \\ 6 \\ 6 \\ 6 \\ \hline \end{array}$	$\begin{gathered} \text { NF } \\ \text { CRSS } \\ \text { NF } \\ \text { CRss } \\ \hline \end{gathered}$	$\begin{array}{r} 2 \mathrm{DB} \\ 2 \mathrm{PF} \\ 2.5 \mathrm{DB} \\ 2 \mathrm{PF} \\ \hline \end{array}$	$\begin{array}{r}100 \\ 1 K \\ \hline\end{array}$

TRANSISTOR INTERCHANGEABILITY REGISTERED FIELD-EFFECT TRANSISTORS

TYPE NUMEER			TI REPLACEMENT OR NEAREST ECUIVALENT	RATED DRAINGATE VOLTACE	ELECTRICAL CHARACTERISTICS					
					$\begin{aligned} & \text { IDSs } \\ & \text { ID(on) } \end{aligned}$	brad	$C_{i s s}$	OTH:	IER PARAM	TER
					$\left\lvert\, \begin{array}{ll} \mathrm{M} N & \mathrm{MAX} \\ (\mathrm{~mA}) & (\mathrm{mA}) \end{array}\right.$	MIN MAX (mmho) (mmho)	$\begin{aligned} & \text { MAX } \\ & \text { (} \mathrm{PF} \text {) } \end{aligned}$	SYMBOL	MAX	$\begin{aligned} & f \\ & \left(\mathrm{H}_{2}\right) \end{aligned}$
$\begin{aligned} & \text { 2N4221A } \\ & \text { 2N4222 } \\ & \text { 2N4222A } \\ & \text { 2N4223 } \end{aligned}$	$\begin{array}{ll} \mathbf{N} & J \\ \mathbf{N} & J \\ \mathbf{N} & J \\ \mathbf{N} & J \end{array}$	$\begin{aligned} & \mathrm{FE} \\ & \mathrm{FE} \\ & \mathrm{FE} \\ & \mathrm{FE} \end{aligned}$	$\begin{aligned} & \text { 2N4221A } \\ & \text { 2N4222 } \\ & \text { 2N4222A } \\ & \text { 2N4223 } \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \\ & 30 \\ & 30 \end{aligned}$	$\begin{aligned} & 2-6 \\ & 2-6 \\ & 5-15 \\ & 3-18 \end{aligned}$	$\begin{aligned} & .75- \\ & 2.5-6 \\ & .75- \\ & 3-7 \end{aligned}$	$\begin{aligned} & 6 \\ & 6 \\ & 6 \\ & 6 \end{aligned}$	$\begin{array}{r} \text { NF } \\ \text { CRSS } \\ \mathbf{N F} \\ \mathbf{N F} \end{array}$	$\begin{array}{r} 2.5 \mathrm{DB} \\ 2 \mathrm{PF} \\ 2.5 \mathrm{DB} \\ 5 \mathrm{DB} \end{array}$	$\begin{array}{r} 100 \\ 1 K \\ 100 \\ 200 \mathrm{M} \end{array}$
$\begin{aligned} & \text { 2N4223A } \\ & \text { 2N4224 } \\ & \text { 2N4224A } \\ & \text { 2N4267 } \end{aligned}$	$\left\lvert\, \begin{array}{cc} \mathbf{N} & J \\ \mathbf{N} & J \\ \mathbf{N} & J \\ \mathbf{P} & \mathbf{I G} \end{array}\right.$	$\begin{aligned} & \mathrm{FE} \\ & \mathrm{FE} \\ & \mathrm{FE} \\ & \mathrm{FE} \end{aligned}$	3N160	$\begin{aligned} & 30 \\ & \mathbf{3 0} \\ & 30 \\ & \mathbf{3 0} \end{aligned}$	$\begin{gathered} 3-18 \\ 2-20 \\ 2-20 \\ * 20-100 \end{gathered}$	$\begin{aligned} & 2.7 \\ & 1.7 \\ & 1.7 \end{aligned}$	$\begin{array}{r} 6 \\ 6 \\ 6 \\ 14 \end{array}$	$\begin{array}{r} \text { NF } \\ \text { CRSS } \\ \text { CRSS } \\ \text { CRSS } \end{array}$	5 DB 2 PF 2 PF 3 PF	200M 1 M 1 M
2N4268 2N4302 2N4303 2N4304	$\left\|\begin{array}{ll} p & \mathbf{I} \\ N & J \\ N & J \\ N & J \end{array}\right\|$	$\begin{aligned} & \text { FE } \\ & \text { FE } \\ & \text { FE } \\ & \text { FE } \end{aligned}$	$\begin{aligned} & \text { 3N160 } \\ & \text { 2N5953 } \\ & \text { 2N5952 } \\ & \text { 2N5951 } \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \\ & 30 \\ & 30 \end{aligned}$	$\begin{gathered} 20-100 \\ .5-5 \\ 4-10 \\ .5-15 \end{gathered}$	$1-$ $2-1$ $1-$	$\begin{array}{r} 14 \\ 6 \\ 6 \\ 6 \end{array}$	CRSS NF NF NF	$\begin{aligned} & 3 \mathrm{PF} \\ & 2 \mathrm{DB} \\ & 2 \mathrm{DB} \\ & 3 \mathrm{DB} \end{aligned}$	$\begin{aligned} & \text { 1K } \\ & \text { 1K } \\ & 1 K \end{aligned}$
2N4338 2N4339 2N4340 2N4341	$\begin{array}{ll} \mathbf{N} & J \\ N & J \\ N & J \\ N & J \end{array}$		$\begin{aligned} & \text { 2N3460 } \\ & \text { 2N3459 } \\ & \text { 2N3458 } \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \\ & 50 \\ & 50 \end{aligned}$	$\begin{gathered} .2-.6 \\ .5-1.5 \\ 1.2-3.6 \\ 3-9 \end{gathered}$	$\begin{gathered} .6-1.8 \\ .8-2.4 \\ 1.3-3 \\ 2-4 \end{gathered}$	$\begin{aligned} & 7 \\ & 7 \\ & 7 \\ & 7 \end{aligned}$	NF NF NF NF	$\begin{aligned} & 1 \mathrm{DB} \\ & 1 \mathrm{DB} \\ & 1 \mathrm{DB} \\ & 1 \mathrm{DB} \end{aligned}$	$\begin{aligned} & 1 K \\ & 1 K \\ & 1 K \\ & 1 K \end{aligned}$
2N4342 2N4343 2N4343 2N4351	$\begin{array}{lc} P & J \\ P & J \\ P & J \\ N & I G \end{array}$	$\begin{aligned} & \mathbf{A F} \\ & \mathbf{A F} \\ & \mathbf{F E} \\ & \mathbf{F E} \end{aligned}$	2N3994 2N3993 2N3993 3N169	$\begin{aligned} & 25 \\ & 25 \\ & 25 \\ & 25 \end{aligned}$	$\begin{array}{r} 4-12 \\ 10-30 \\ 10-30 \\ 3- \end{array}$	$\begin{aligned} & 2-6 \\ & 4-8 \\ & 4-8 \end{aligned}$	$\begin{array}{r} 20 \\ 20 \\ 20 \\ 6 \end{array}$	$\begin{array}{r} \text { NF } \\ \mathbf{N F} \\ \mathbf{N F} \\ \text { CRSS } \end{array}$	$\begin{aligned} & 1.5 \mathrm{DB} \\ & 1.5 \mathrm{DB} \\ & 1.5 \mathrm{DB} \\ & 1.5 \mathrm{PF} \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \\ & 1 \mathrm{M} \end{aligned}$
2N4352 2N4353 2N4360 2N4381	$\begin{array}{ll} P & I G \\ P & I G \\ P & J \\ P & J \end{array}$	FE FE AF FE	3N160 3N161 A5T5482	$\begin{aligned} & 25 \\ & 30 \\ & 20 \\ & 25 \end{aligned}$	$\begin{aligned} & * 30- \\ & 3-30 \\ & 10-30 \end{aligned}$	$\begin{aligned} & 1-4 \\ & 2-8 \\ & 2- \end{aligned}$	$\begin{array}{r} 5 \\ 12 \\ 20 \\ 20 \end{array}$	$\begin{array}{r} \text { CRSS } \\ \text { CRSS } \\ \text { NF } \\ \text { CRSS } \end{array}$	$\begin{array}{r} 1.3 \mathrm{PF} \\ 4 \mathrm{PF} \\ 5 \mathrm{DB} \\ 5 \mathrm{PF} \end{array}$	100
$\begin{aligned} & \text { 2N4382 } \\ & \text { 2N4391 } \\ & \text { 2N4392 } \\ & \text { 2N4393 } \end{aligned}$	$\begin{array}{ll} \mathbf{P} & \mathbf{J} \\ \mathbf{N} & J \\ \mathbf{N} & J \\ \mathbf{N} & \mathbf{J} \end{array}$	FE FE FE FE	2N4391 2N4392 2N4393	$\begin{aligned} & 25 \\ & 40 \\ & 40 \\ & 40 \end{aligned}$	$\begin{gathered} 10-30 \\ 50-150 \\ 25-75 \\ 5-30 \end{gathered}$	4.	$\begin{aligned} & 20 \\ & 14 \\ & 14 \\ & 14 \end{aligned}$	CRSS CRSS CRSS CRSS	$\begin{array}{r} \text { 5 PF } \\ \text { 3.5 PF } \\ \text { 3.5 PF } \\ \text { 3.5 PF } \end{array}$	$\begin{aligned} & 1 M \\ & 1 M \\ & 1 M \end{aligned}$
2N4416 2N4416A 2N4417 2N4445	$\left\lvert\, \begin{array}{ll} \mathbf{N} & J \\ \mathbf{N} & J \\ \mathbf{N} & J \\ \mathbf{N} & J \end{array}\right.$	FE FE FE FE	2N4416 2N4416A	$\begin{aligned} & 30 \\ & 35 \\ & 30 \\ & 25 \end{aligned}$	$\begin{array}{r} 5-15 \\ 5-15 \\ 5-15 \\ 150- \end{array}$	$\begin{array}{r} 4.5-7.5 \\ 4.5-7.5 \\ 4.5-7.5 \end{array}$	$\begin{array}{r} 4 \\ 4 \\ 3.5 \\ 50 \end{array}$	$\begin{array}{r} \mathrm{NF} \\ \mathrm{NF} \\ \mathrm{NF} \\ \text { CRSS } \end{array}$	$\begin{gathered} 2 \mathrm{DB} \\ 2 \mathrm{DB} \\ 2 \mathrm{DB} \\ 25 \mathrm{PF} \end{gathered}$	$\begin{aligned} & 100 \mathrm{~m} \\ & 100 \mathrm{M} \\ & 100 \mathrm{~m} \end{aligned}$
2N446 2N4447 2N4448 2N4856	$\begin{array}{ll} \mathbf{N} & J \\ \mathbf{N} & J \\ \mathbf{N} & J \\ \mathbf{N} & J \end{array}$	FE FE FE FE	2N4856	$\begin{aligned} & 25 \\ & 20 \\ & 20 \\ & 40 \end{aligned}$	100. 150. 100 $50-$		$\begin{aligned} & 50 \\ & 50 \\ & 50 \\ & 18 \end{aligned}$	CRSS CRSS CRSS CRSS	$\begin{array}{r} 25 \mathrm{PF} \\ 25 \mathrm{PF} \\ 25 \mathrm{PF} \\ 8 \mathrm{PF} \end{array}$	$1 \mathrm{M}$
$\begin{aligned} & \text { 2N4856A } \\ & \text { 2N4857 } \\ & \text { 2N4857A } \\ & \text { 2N4858 } \\ & \hline \end{aligned}$	$\begin{array}{ll} N & J \\ N & J \\ N & J \\ N & J \end{array}$	$\begin{aligned} & \text { FE } \\ & \text { FE } \\ & \text { FE } \\ & \text { FE } \end{aligned}$	2N4856A 2N4857 2N4857A 2N4858	$\begin{aligned} & 40 \\ & 40 \\ & 40 \\ & 40 \end{aligned}$	$\begin{aligned} & 50- \\ & 20-100 \\ & 20-100 \\ & 8-80 \end{aligned}$		$\begin{aligned} & 10 \\ & 18 \\ & 10 \\ & 18 \\ & \hline \end{aligned}$	CRSS CRSS CRSS CRSS	$\begin{array}{r} 4 \mathrm{PF} \\ 8 \mathrm{PF} \\ 3.5 \mathrm{PF} \\ 8 \mathrm{PF} \\ \hline \end{array}$	$\begin{aligned} & 1 M \\ & 1 M \\ & 1 M \\ & 1 M \end{aligned}$

TRANSISTOR INTERCHANGEABILITY REGISTERED FIELD-EFFECT TRANSISTORS

TYPE Mumbent		$\frac{e_{2}^{2}}{6}$	333338	7 RTPLACEMENT OR MEAREST ECUVALENT	RATED DEANK GATE VOLTACE	EECTRACAL CHARACTENSTICS					
						$\begin{aligned} & \text { LDSs } \\ & \text { *D(en) } \end{aligned}$	Iral	$\mathbf{C}_{\mathrm{ides}}$	OTHER PARANETER		
						$\begin{array}{ll} \text { MNN } & M A X \\ (m A) & (m A) \end{array}$	$\begin{array}{\|rl\|} \text { MiN } & \text { max } \\ \text { (mmho) } & \text { (manho) } \end{array}$	MAX (p F)	symicol	max	- f (Hz)
$\begin{aligned} & \text { 2N4858A } \\ & \text { 2N4859 } \\ & \text { 2N4859A } \\ & \text { 2N4860 } \end{aligned}$	N \mathbf{N} \mathbf{N} \mathbf{N}	J J J J	$\begin{aligned} & \text { FE } \\ & \text { FE } \\ & \text { FE } \\ & \text { FE } \end{aligned}$	$\begin{aligned} & \text { 2N4858A } \\ & \text { 2N4859 } \\ & \text { 2N4859A } \\ & \text { 2N4860 } \end{aligned}$	$\begin{aligned} & 40 \\ & 30 \\ & 30 \\ & 30 \end{aligned}$	$\begin{aligned} & 8-80 \\ & 50- \\ & 50- \\ & 20-100 \end{aligned}$		$\begin{aligned} & 10 \\ & 18 \\ & 10 \\ & 18 \end{aligned}$	CR5S CRSS CRSS CRSS	$\begin{array}{r} 3.5 \mathrm{PF} \\ 8 \mathrm{PF} \\ 4 \mathrm{PF} \\ 8 \mathrm{PF} \end{array}$	$\begin{aligned} & 1 \mathrm{M} \\ & 1 \mathrm{M} \\ & 1 \mathrm{M} \\ & 1 \mathrm{M} \end{aligned}$
$\begin{aligned} & \text { 2N4B60A } \\ & 2 N 4861 \\ & 2 N 4861 A \\ & 2 N 4867 \end{aligned}$	N \mathbf{N} \mathbf{N} \mathbf{N}	J J j j	$\begin{array}{\|l\|} \hline \text { FE } \\ \text { FE } \\ \text { FE } \\ \text { FE } \end{array}$	2N4860A 2N4861 2N4861A	$\begin{aligned} & 30 \\ & 30 \\ & 30 \\ & 40 \end{aligned}$	$\begin{gathered} 20-100 \\ 8-80 \\ 8-80 \\ .4-1.2 \end{gathered}$.7-2	$\begin{aligned} & 10 \\ & 18 \\ & 10 \\ & 25 \end{aligned}$	CRSS CRSS CRSS NF	$\begin{array}{r} 3.5 \mathrm{PF} \\ \text { 8 PF } \\ 3.5 \mathrm{PF} \\ 1 \mathrm{DB} \end{array}$	$\begin{aligned} & 1 M \\ & 1 M \\ & 1 M \\ & 1 K \end{aligned}$
$\begin{aligned} & \text { 2N4867A } \\ & \text { 2N4868 } \\ & \text { 2N4868A } \\ & \text { 2N4869 } \end{aligned}$	\mathbf{N} \mathbf{N} \mathbf{N} \mathbf{N}	$\begin{aligned} & \mathbf{J} \\ & \mathbf{J} \\ & \mathbf{J} \\ & \mathbf{J} \end{aligned}$	FE FE FE FE		$\begin{aligned} & 40 \\ & 40 \\ & 40 \\ & 40 \end{aligned}$	$\begin{gathered} 4-1.2 \\ 1-3 \\ 1-3 \\ 2.5-7.5 \end{gathered}$	$\begin{array}{r} .7 \cdot 2 \\ 1-3 \\ 1-3 \\ 1.3-4 \end{array}$	$\begin{aligned} & 25 \\ & 25 \\ & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & \mathbf{N F} \\ & \mathbf{N F} \\ & \mathbf{N F} \\ & \mathbf{N F} \end{aligned}$	$\begin{aligned} & 1 \mathrm{DB} \\ & 1 \mathrm{DB} \\ & 1 \mathrm{DB} \\ & 1 \mathrm{DB} \end{aligned}$	IK IK IK IK
2N4069A 2N4881 2 N 4082 2N4883	N \mathbf{N} \mathbf{N} \mathbf{N}	$\begin{aligned} & \mathbf{J} \\ & \mathbf{j} \\ & \mathbf{j} \end{aligned}$	FE ft FE FE	$\begin{aligned} & \text { 2N5361 } \\ & \text { 2N6449 } \\ & \text { 2N6449 } \\ & \text { 2N6450 } \end{aligned}$	$\begin{array}{r} 40 \\ 300 \\ 300 \\ 200 \end{array}$	$\begin{gathered} 2.5-7.5 \\ .4-2 \\ 1.5-7.5 \\ .4-2 \end{gathered}$	$\begin{aligned} & 1.3-4 \\ & .35-1 \\ & .6-1.5 \\ & .35-1 \end{aligned}$	$\begin{aligned} & 25 \\ & 15 \\ & 15 \\ & 15 \end{aligned}$	$\begin{aligned} & \mathbf{N F} \\ & \mathbf{N F} \\ & \mathbf{N F} \\ & \mathbf{N F} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 3 \\ & \text { DB } \\ & 3 \\ & 3 \\ & 3 \end{aligned}$	1 K
2N4884 2N4885 2N4086 2 N 4977	\mathbf{N} \mathbf{N} \mathbf{N} \mathbf{N}	$\begin{aligned} & \mathbf{j} \\ & \mathbf{j} \\ & \mathbf{j} \\ & \mathbf{j} \end{aligned}$	FE FE FE FE	$\begin{aligned} & \text { 2NG450 } \\ & \text { 2N6450 } \\ & \text { 2N6450 } \end{aligned}$	$\begin{array}{r} -200 \\ 125 \\ 125 \\ 30 \end{array}$	$\begin{gathered} 1.5-7.5 \\ .4-2 \\ 1.5-7.5 \\ 50 . \end{gathered}$	$\begin{gathered} .6-1.5 \\ .35-1 \\ .6-1.5 \end{gathered}$	$\begin{aligned} & 15 \\ & 15 \\ & 15 \\ & 35 \end{aligned}$	$\begin{array}{r} \text { MF } \\ \text { NF } \\ \text { NF } \\ \text { CRSS } \end{array}$	$\begin{aligned} & 3 \mathrm{DB} \\ & 3 \mathrm{DB} \\ & 3 \mathrm{DB} \\ & 8 \mathrm{PF} \end{aligned}$	
$\begin{aligned} & \text { 2N4978 } \\ & \text { 2N4979 } \\ & \text { 2N5018 } \\ & \text { 2N5019 } \end{aligned}$		$\begin{aligned} & \mathbf{J} \\ & \mathbf{J} \\ & \mathbf{J} \\ & \mathbf{J} \end{aligned}$	FE FE FE FE	2N3993	$\begin{aligned} & 30 \\ & 30 \\ & 30 \\ & 30 \end{aligned}$	$\begin{array}{r} 15 \\ 7.5 \\ 10 \\ 5 \end{array}$		$\begin{aligned} & 35 \\ & 35 \\ & 45 \\ & 45 \end{aligned}$	CRSS CRSS CRSS CRSS	$\begin{array}{r} 8 \mathrm{PF} \\ 8 \mathrm{PF} \\ 10 \mathrm{PF} \\ 10 \mathrm{PF} \end{array}$	
$\begin{aligned} & \text { 2N5020 } \\ & \text { 2N5021 } \\ & \text { 2N5033 } \\ & \text { 2N5045 } \end{aligned}$		$\begin{aligned} & \mathbf{J} \\ & \mathbf{J} \\ & \mathbf{J} \\ & \mathbf{j} \end{aligned}$	FE FE GP FE	$\begin{aligned} & \text { A5T5460 } \\ & \text { 2N5045 } \end{aligned}$	$\begin{aligned} & 25 \\ & 25 \\ & 20 \\ & 50 \end{aligned}$	$\begin{aligned} & .3-1.2 \\ & 1-3.5 \\ & .3-3.5 \\ & .5-8 \end{aligned}$	$\begin{gathered} 1-3.5 \\ 1.5-5 \\ 1 . \\ 1.5-6 \end{gathered}$	$\begin{array}{r} 25 \\ 25 \\ 25 \\ 8 \end{array}$	$\begin{array}{r} \text { NF } \\ \text { CRSS } \\ \mathbf{N F} \\ \mathbf{N F} \end{array}$	$\begin{aligned} & 3 \mathrm{DB} \\ & 7 \mathrm{PF} \\ & 2 \mathrm{DB} \\ & 5 \mathrm{DB} \end{aligned}$	1K 10
$\begin{aligned} & \text { 2N5046 } \\ & \text { 2N5047 } \\ & \text { 2N5078 } \\ & \text { 2N5103 } \end{aligned}$	$\begin{aligned} & N \\ & N \\ & N \\ & N \end{aligned}$	$\begin{aligned} & \mathbf{J} \\ & \mathbf{j} \\ & \mathbf{J} \\ & \mathbf{J} \end{aligned}$	$\begin{aligned} & \text { FE } \\ & \text { FE } \\ & \text { FE } \\ & \text { FE } \end{aligned}$	$\begin{aligned} & \text { 2N5046 } \\ & \text { 2N5047 } \\ & \text { 2NH16 } \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \\ & 30 \\ & 25 \end{aligned}$	$\begin{aligned} & .5-8 \\ & .5-8 \\ & 4-25 \\ & 1-8 \end{aligned}$	$\begin{gathered} 1.5-6 \\ 1.5-6 \\ 4- \\ 2-8 \end{gathered}$	$\begin{aligned} & 8 \\ & 8 \\ & 6 \\ & 5 \end{aligned}$	NF NF NF	$\begin{array}{r} 5 \mathrm{DE} \\ 4 \mathrm{DB} \\ \mathrm{I} .5 \mathrm{DB} \end{array}$	$\begin{aligned} & 10 \\ & 100 \end{aligned}$
2N5104 2N5103 2N5114 2N5115	N \mathbf{N} \mathbf{P} \mathbf{P}	$\begin{aligned} & \mathbf{J} \\ & \mathbf{J} \\ & \mathbf{j} \\ & \mathbf{j} \end{aligned}$	$\begin{aligned} & \text { FE } \\ & \text { FE } \\ & \text { FE } \\ & \text { FE } \end{aligned}$	2N4416	$\begin{aligned} & 25 \\ & 25 \\ & 30 \\ & 30 \end{aligned}$	$\begin{array}{r} 2-6 \\ 5-15 \\ 30-90 \\ 15-60 \end{array}$	$\begin{gathered} 3.5-7.5 \\ 5.10 \end{gathered}$	$\begin{array}{r} 5 \\ 5 \\ 25 \\ 25 \end{array}$	$\begin{gathered} \mathrm{NF} \\ \mathrm{MF} \\ \text { Cass } \\ \text { CRSS } \end{gathered}$	$\begin{array}{r} 1.5 \mathrm{DB} \\ 1.5 \mathrm{DB} \\ 7 \mathrm{PF} \\ 7 \mathrm{PF} \end{array}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$
2N5116 2N5158 2N5159 2N5163	$\begin{aligned} & \mathrm{P} \\ & \mathrm{~N} \\ & \mathrm{~N} \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & \mathbf{J} \\ & \mathbf{j} \\ & \mathbf{j} \\ & \mathbf{j} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { FE } \\ & \text { FE } \\ & \text { FE } \\ & \text { RF } \\ & \hline \end{aligned}$	2N5246	$\begin{array}{r} 30 \\ 40 \\ 40 \\ 25 \\ \hline \end{array}$	$\begin{aligned} & 5-25 \\ & 100- \\ & 200- \\ & 1-40 \end{aligned}$	$2-9$	$\begin{aligned} & 25 \\ & 50 \\ & 50 \\ & 20 \end{aligned}$	CRSS CRSS CRSS CRSS	$\begin{array}{r} 7 \mathrm{PF} \\ 25 \mathrm{PF} \\ 25 \mathrm{PF} \\ 5 \mathrm{PF} \end{array}$	$1 \mathrm{M}$

TRANSISTOR INTERCHANGEABILITY REGISTERED FIELD-EFFECT TRANSISTORS

TRANSISTOR INTERCHANGEABILITY REGISTERED FIELD-EFFECT TRANSISTORS

TYF NUMEER		世E皆8	$\begin{aligned} & 8 \\ & \frac{8}{8} \\ & 8 \\ & 8 \\ & 8 \end{aligned}$	$\begin{gathered} \text { II } \\ \text { REPACEMENT } \\ \text { OR NIAREST } \\ \text { ECUTVALENT } \end{gathered}$	RateD DRAIN. OATE VOLTACE	EECTRICAL CHARACTEXHTICS					
						IDss ${ }^{-1} \mathrm{D}(\mathrm{m})$	lat	MAX (${ }^{(p)}$	OTHER PARAMIER		
						$\begin{array}{\|ll\|} \hline \text { MNN } & M A X \\ (\mathrm{~mA}) & (\mathrm{mA}) \\ \hline \end{array}$	$\begin{array}{\|cc\|} \hline \text { MiN } & \text { MaX } \\ \text { (mmho) } & \text { (mmahe) } \\ \hline \end{array}$		SYMEO max (Hz)		
$\begin{aligned} & \text { 2N5454 } \\ & \text { 2N5457 } \\ & \text { 2N5458 } \\ & \text { 2N5459 } \end{aligned}$	N \mathbf{N} \mathbf{N} \mathbf{N}	J J J J	$\begin{aligned} & \text { FE } \\ & \text { FE } \\ & \text { FE } \\ & \text { FE } \end{aligned}$	2N5546 2N5953 2N5952 2N5951	$\begin{aligned} & 50 \\ & 25 \\ & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & .5-5 \\ & 1-5 \\ & 2-9 \\ & 4-16 \end{aligned}$	$\begin{gathered} 1-3 \\ 1-5 \\ 1.5-5.5 \\ 2-6 \end{gathered}$	$\begin{aligned} & 4 \\ & 7 \\ & 7 \\ & 7 \end{aligned}$	$\begin{aligned} & \text { NF } \\ & \text { CRSS } \\ & \text { CRSS } \\ & \text { CRSS } \end{aligned}$	5 DP 3 PF 3 PF 3 PF	$\begin{aligned} & 1 M \\ & 1 M \\ & 1 M \end{aligned}$
$\begin{aligned} & \text { 2N5460 } \\ & \text { 2N5461 } \\ & \text { 2N5462 } \\ & \text { 2N5463 } \end{aligned}$		J \mathbf{J} J J	FE AF AF AF	2N5460 2N5461 2N5462	$\begin{aligned} & 40 \\ & 40 \\ & 40 \\ & 60 \end{aligned}$	$\begin{aligned} & 1-5 \\ & 2-9 \\ & 4-16 \\ & 1-5 \end{aligned}$	$\begin{array}{r} 1-4 \\ 1.5-5 \\ 2-6 \\ 1-4 \end{array}$	$\begin{aligned} & 7 \\ & 7 \\ & 7 \\ & 7 \end{aligned}$	NF NF NF NF	$\begin{aligned} & 2.5 \mathrm{DB} \\ & 2.5 \mathrm{DB} \\ & 2.5 \mathrm{DB} \\ & 2.5 \mathrm{DB} \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \\ & 100 \\ & 100 \end{aligned}$
$\begin{aligned} & \text { 2N5464 } \\ & \text { 2N5465 } \\ & \text { 2N5471 } \\ & \text { 2N5472 } \end{aligned}$	P	J J J J	AF AF FE FE		$\begin{aligned} & 60 \\ & 60 \\ & 40 \\ & 40 \end{aligned}$	$\begin{gathered} 2.9 \\ 4.16 \\ .02 .06 \\ .05-.12 \end{gathered}$	$\begin{aligned} & 1.5-5 \\ & .2-6 \\ & .06-18 \\ & .09-.225 \end{aligned}$	$\begin{aligned} & 7 \\ & 7 \\ & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & \mathbf{N F} \\ & \mathbf{N F} \\ & \mathbf{N F} \\ & \mathbf{N F} \end{aligned}$	$\begin{aligned} & 2.5 \mathrm{DB} \\ & 2.5 \mathrm{DB} \\ & \text { 2.5 DB } \\ & 2.5 \mathrm{DB} \end{aligned}$	$\begin{array}{r} 100 \\ 100 \\ 1 K \\ 1 K \end{array}$
$\begin{aligned} & \text { 2N5473 } \\ & \text { 2N5474 } \\ & \text { 2N5475 } \\ & \text { 2N5476 } \end{aligned}$	Pr	j J J J	FE FE FE FE		$\begin{array}{r} 40 \\ 40 \\ 40 \\ 40 \end{array}$	$\begin{aligned} & .1-.25 \\ & .2-.5 \\ & .4-1 \\ & .8-2 \end{aligned}$	$\begin{gathered} .12 .3 \\ .16-.4 \\ .2-.5 \\ .26-.65 \end{gathered}$	$\begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$	$\begin{array}{r} \text { NF } \\ \text { CRSS } \\ \text { CRSS } \\ \text { CRSS } \end{array}$	$\begin{array}{r} 2.5 \mathrm{DB} \\ 1 \mathrm{PF} \\ 1 \mathrm{PF} \\ 1 \mathrm{PF} \end{array}$	1K
2N5484 2N5485 2N5486 2N5505	N \mathbf{N} \mathbf{N} \mathbf{P}	J J J J	$\begin{aligned} & \text { RF } \\ & \text { RF } \\ & \hline \mathbf{R F} \\ & \hline \mathbf{F E} \end{aligned}$	$\begin{aligned} & \text { 2N5246 } \\ & \text { 2N5245 } \\ & \text { 2N5247 } \end{aligned}$	$\begin{aligned} & \mathbf{2 5} \\ & \mathbf{2 5} \\ & \mathbf{2 5} \\ & 30 \end{aligned}$	$\begin{gathered} 1-5 \\ 4-10 \\ 8-20 \\ * .8-7 \end{gathered}$	$\begin{gathered} 3-6 \\ 3.5-7 \\ 4-8 \\ 1-3.5 \end{gathered}$	$\begin{array}{r} 5 \\ 5 \\ 5 \\ 16 \end{array}$	NF NF NF NF	$\begin{array}{r} 2.5 \mathrm{DB} \\ 2.5 \mathrm{DB} \\ 2.5 \mathrm{DB} \\ 2 \mathrm{DB} \end{array}$	$\begin{aligned} & 1 K \\ & 1 K \\ & 1 K \\ & 1 K \end{aligned}$
2N5506 2N5507 2N5508 2N5509	P	J J J J	FE FE FE FE		$\begin{aligned} & 30 \\ & 30 \\ & 30 \\ & 30 \end{aligned}$	$\begin{aligned} & .8-7 \\ & .8-7 \\ & .8-7 \\ & . .8-7 \end{aligned}$	$\begin{aligned} & 1-3.5 \\ & 1-3.5 \\ & 1-3.5 \\ & 1-3.5 \end{aligned}$	$\begin{aligned} & 16 \\ & 16 \\ & 16 \\ & 16 \end{aligned}$	$\begin{aligned} & \text { NF } \\ & \text { NF } \\ & \mathbf{N F} \\ & \mathbf{N F} \end{aligned}$	$\begin{aligned} & 2 \mathrm{DB} \\ & 2 \mathrm{DB} \\ & 2 \mathrm{DB} \\ & 2 \mathrm{DB} \end{aligned}$	$1 K$ $1 K$ $1 K$ $1 K$
2N5514 2N5515 2N5516 2N5517		J J J J	FE FE FE FE	$\begin{aligned} & \text { 2N5545 } \\ & \text { 2N5546 } \end{aligned}$	$\begin{aligned} & 30 \\ & 40 \\ & 40 \\ & 40 \end{aligned}$	$\begin{gathered} 30-90 \\ .5-7.5 \\ .5-7.5 \\ .5-7.5 \end{gathered}$	$\begin{aligned} & 1-4 \\ & 1-4 \\ & 1-4 \end{aligned}$	$\begin{aligned} & 25 \\ & 25 \\ & 25 \\ & 25 \end{aligned}$	CRSS CRSS CRSS CRSS	$\begin{aligned} & 7 \mathrm{PF} \\ & 5 \mathrm{PF} \\ & 5 \mathrm{PF} \\ & 5 \mathrm{PF} \end{aligned}$	$\begin{aligned} & 1 M \\ & 1 M \\ & 1 M \end{aligned}$
$\begin{aligned} & \text { 2N5518 } \\ & \text { 2N5519 } \\ & \text { 2N5520 } \\ & \text { 2N5521 } \end{aligned}$	N N N N	$\begin{aligned} & \mathbf{J} \\ & \mathbf{J} \\ & \mathbf{J} \\ & \mathbf{J} \end{aligned}$	FE FE FE FE	$\begin{aligned} & \text { 2N5547 } \\ & \text { 2N5045 } \\ & \text { 2N5545 } \end{aligned}$	$\begin{array}{r} 40 \\ 40 \\ 40 \\ 40 \end{array}$	$\begin{array}{r} .5-7.5 \\ .5-7.5 \\ .5-7.5 \\ .5-7.5 \end{array}$	$\begin{aligned} & 1-4 \\ & 1-4 \\ & 1-4 \\ & 1-4 \end{aligned}$	$\begin{aligned} & 25 \\ & 25 \\ & \mathbf{2 5} \\ & \mathbf{2 5} \end{aligned}$	CRSS CRSS CRSS CRSS	$\begin{aligned} & 5 \mathrm{PF} \\ & 5 \mathrm{PF} \\ & 5 \mathrm{PF} \\ & 5 \mathrm{PF} \end{aligned}$	$\begin{aligned} & 1 M \\ & 1 M \\ & 1 M \\ & 1 M \end{aligned}$
$\begin{aligned} & \text { 2N5522 } \\ & \text { 2N5523 } \\ & \text { 2N5524 } \\ & \text { 2N5543 } \end{aligned}$	$\begin{aligned} & \mathbf{N} \\ & \mathbf{N} \\ & \mathbf{N} \\ & \mathbf{N} \end{aligned}$	$\begin{aligned} & \mathbf{J} \\ & \mathbf{j} \\ & \mathbf{j} \\ & \mathbf{j} \end{aligned}$	FE FE FE FE	$\begin{aligned} & \text { 2N5546 } \\ & \text { 2N5547 } \\ & \text { 2N5045 } \\ & \text { 2N6449 } \end{aligned}$	$\begin{aligned} & 40 \\ & 40 \\ & 40 \\ & 75 \end{aligned}$	$\begin{gathered} .5-7.5 \\ .5-7.5 \\ .5-7.5 \\ 2-10 \end{gathered}$	$\begin{gathered} 1-4 \\ 1-4 \\ 1-4 \\ .75-3 \end{gathered}$	$\begin{aligned} & \mathbf{2 5} \\ & \mathbf{2 5} \\ & \mathbf{2 5} \\ & 10 \end{aligned}$	CRSS CRSS CRSS CRSS	$\begin{aligned} & 5 \mathrm{PF} \\ & 5 \mathrm{PF} \\ & 5 \mathrm{PF} \\ & 2 \mathrm{PF} \end{aligned}$	$\begin{aligned} & 1 M \\ & 1 M \\ & 1 M \\ & 1 M \end{aligned}$
$\begin{aligned} & \text { 2N5544 } \\ & \text { 2N5545 } \\ & \text { 2N5546 } \\ & \text { 2N5547 } \\ & \hline \end{aligned}$	$\begin{aligned} & \mathbf{N} \\ & \mathbf{N} \\ & \mathbf{N} \\ & \mathbf{N} \end{aligned}$	$\begin{aligned} & \mathrm{J} \\ & \mathbf{j} \\ & \mathrm{~J} \\ & \mathrm{j} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { FE } \\ & \hline \end{aligned}$	2N6450 2N5545 2N5546 2N5547	$\begin{aligned} & 50 \\ & 50 \\ & 50 \\ & 50 \\ & \hline \end{aligned}$	$\begin{aligned} & 2-10 \\ & .5-8 \\ & .5-8 \\ & .5-8 \\ & \hline \end{aligned}$	$\begin{aligned} & .75-3 \\ & 1.5-6 \\ & 1.5-6 \\ & 1.5-6 \end{aligned}$	$\begin{array}{r} 10 \\ 6 \\ 6 \\ 6 \\ \hline \end{array}$	$\begin{array}{r} \text { CRSS } \\ \mathrm{NF} \\ \mathrm{NF} \\ \text { CRSS } \end{array}$	$\begin{array}{r} 2 \mathrm{PF} \\ 3.5 \mathrm{DB} \\ 5 \mathrm{DB} \\ 2 \mathrm{PF} \end{array}$	$\begin{aligned} & 1 M \\ & 10 \\ & 10 \\ & 10 \end{aligned}$

TRANSISTOR INTERCHANGEABILITY REGISTERED FIELD-EFFECT TRANSISTORS

TYPE NUMEER		88888	7 REPLACEMENT OR NEAREST ECUTVALENT	RATED DRAN GATE VOLTACE (V)	ETECTILCAL CHARACTENSTICS					
					$\begin{aligned} & \text { IDss } \\ & \text { ID(en) } \end{aligned}$	brad	$C_{\text {ine }}$ max (P)	OTHER PARAMETE		
					$\left\lvert\, \begin{array}{ll} \min & \operatorname{Max} \\ (\mathrm{ma}) & (\mathrm{ma}) \end{array}\right.$	$\begin{array}{\|rl\|} \hline \text { MiN } & \text { MAX } \\ \text { (mmho) } & \text { (mmuhe) } \\ \hline \end{array}$		SYMAOL MAX (Hz)		
$\begin{aligned} & \text { 2N5548 } \\ & \text { 2N5549 } \\ & \text { 2N5555 } \\ & \text { 2N5556 } \end{aligned}$	$\left\lvert\, \begin{array}{cc} P & 1 G \\ N & J \\ N & J \\ N & J \end{array}\right.$	SW FE SW FE	$\begin{aligned} & \text { 2N5549 } \\ & \text { 2N5949 } \\ & \text { 2N3821 } \end{aligned}$	$\begin{aligned} & 25 \\ & 40 \\ & 25 \\ & 30 \end{aligned}$	$\begin{aligned} & * 40-120 \\ & 10-60 \\ & 15- \\ & .5-2.5 \end{aligned}$	$\begin{gathered} 3.5-6.5 \\ 6-15 \\ 1.5-6.5 \end{gathered}$	$\begin{array}{r} 10 \\ 8 \\ 5 \\ 6 \end{array}$	CRSS CRSS CRSS CRSS	$\begin{array}{r} 4 \mathrm{PF} \\ 2 \mathrm{PF} \\ 1.2 \mathrm{PF} \\ 3 \mathrm{PF} \end{array}$	IM 1 M 1 M
$\begin{aligned} & \text { 2N5557 } \\ & \text { 2N5558 } \\ & \text { 2N5561 } \\ & \text { 2N5562 } \end{aligned}$	$\left\lvert\, \begin{array}{ll} \mathbf{N} & J \\ \mathbf{N} & J \\ \mathbf{N} & J \\ \mathbf{N} & J \end{array}\right.$	$\begin{aligned} & \text { FE } \\ & \text { FE } \\ & F E \\ & F E \end{aligned}$	$\begin{aligned} & \text { 2N5361 } \\ & \text { 2N5362 } \\ & \text { 2N5545 } \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \\ & 50 \\ & 50 \end{aligned}$	$\begin{aligned} & 2-5 \\ & 4-10 \\ & 1-10 \\ & 1-10 \end{aligned}$	$\begin{gathered} 1.5-6.5 \\ 1.5-6.5 \\ 1.5- \\ 2-3 \end{gathered}$	$\begin{aligned} & 6 \\ & 6 \\ & 7 \\ & 7 \end{aligned}$	$\begin{gathered} \text { CRSS } \\ \text { CRSS } \\ \mathrm{NF} \\ \mathrm{NF} \end{gathered}$	$\begin{aligned} & 3 \mathrm{PF} \\ & 3 \mathrm{PF} \\ & 1 \mathrm{DE} \\ & 1 \mathrm{DE} \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \end{aligned}$
$\begin{aligned} & \text { 2N5563 } \\ & \text { 2N5564 } \\ & \text { 2N5565 } \\ & \text { 2N5566 } \end{aligned}$	$\begin{array}{ll} \mathbf{N} & J \\ \mathbf{N} & J \\ \mathbf{N} & J \\ \mathbf{N} & J \end{array}$	$\begin{array}{l\|l\|} \hline F E \\ \text { FE } \\ \hline F E \\ \hline \end{array}$	2N5547	$\begin{aligned} & 50 \\ & 40 \\ & 40 \\ & 40 \end{aligned}$	$\begin{aligned} & 1-10 \\ & 5-30 \\ & 5-30 \\ & 5-30 \end{aligned}$	$\begin{gathered} 2-3 \\ 7.5-12.5 \\ 7.5-12.5 \\ 7.5-12.5 \end{gathered}$	$\begin{array}{r} 7 \\ 12 \\ 12 \end{array}$	NF NF NF	$\begin{aligned} & 108 \\ & 1008 \\ & 108 \end{aligned}$	10 10 10
2N5592 2N5593 2N5594 2N5638	$\begin{array}{ll} \mathbf{N} & J \\ \mathbf{N} & J \\ \mathbf{N} & J \\ \mathbf{N} & J \end{array}$	$\begin{array}{\|l} \mathrm{FE} \\ \mathrm{FE} \\ \mathrm{FE} \\ \mathrm{SW} \end{array}$	T1573	$\begin{aligned} & 50 \\ & 50 \\ & 50 \\ & 30 \end{aligned}$	$\begin{aligned} & 1.10 \\ & 1.10 \\ & 1.10 \\ & 50 \end{aligned}$	$2-7$ $2-7$ $2-7$	$\begin{aligned} & 20 \\ & 20 \\ & 20 \\ & 10 \end{aligned}$	$\begin{array}{r} \text { NF } \\ \text { NF } \\ \text { NF } \\ \text { CRSS } \end{array}$	$\begin{array}{r} 2.6 \mathrm{DB} \\ 1 \mathrm{DE} \\ 10 \mathrm{DB} \\ 4 \mathrm{PF} \end{array}$	IM
2N5639 2N5640 2N5647 2N5648	$\begin{array}{ll} \mathbf{N} & J \\ N & J \\ N & J \\ N & J \end{array}$	sw 5W FE FE	$\begin{aligned} & \text { TIS74 } \\ & \text { TIS75 } \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \\ & 50 \\ & 50 \end{aligned}$	$\begin{gathered} 25- \\ 5- \\ .3-.6 \\ .5-1 \end{gathered}$	$\begin{aligned} & .3-65 \\ & .4 .8 \end{aligned}$	$\begin{array}{r} 10 \\ 10 \\ 3 \\ 3 \end{array}$	CRSS CRS5 NF NF	$\begin{aligned} & 4 \mathrm{PF} \\ & 4 \mathrm{PF} \\ & 1 \mathrm{DB} \\ & 1 \mathrm{DB} \end{aligned}$	$\begin{aligned} & 1 M \\ & 1 M \\ & 1 K \\ & 1 K \end{aligned}$
2N5649 2N5653 2N5654 2N5668	$\begin{array}{ll} \mathbf{N} & J \\ \mathbf{N} & J \\ \mathbf{N} & J \\ \mathbf{N} & J \end{array}$	FE SW SW RF	TIS74 T1575 2N5953	$\begin{aligned} & 50 \\ & 30 \\ & 30 \\ & 25 \end{aligned}$	$\begin{aligned} & .8-1.6 \\ & 40- \\ & 15- \\ & 1-5 \end{aligned}$	$\begin{aligned} & .45-.9 \\ & 1.5-6.5 \end{aligned}$	$\begin{array}{r} 3 \\ 10 \\ 10 \\ 7 \end{array}$	$\begin{array}{r} \text { NF } \\ \text { CRSS } \\ \text { CRSS } \\ \mathrm{NF} \end{array}$	$\begin{aligned} & 1 \mathrm{DB} \\ & 3.5 \mathrm{PF} \\ & 3.5 \mathrm{PF} \\ & 2.5 \mathrm{DB} \end{aligned}$	$\begin{array}{r} 1 K \\ 1 \mathrm{M} \\ 1 \mathrm{M} \\ 100 \mathrm{~m} \end{array}$
$\begin{aligned} & \text { 2N5669 } \\ & \text { 2N5670 } \\ & \text { 2N5716 } \\ & \text { 2N5717 } \end{aligned}$	$\begin{array}{ll}\mathbf{N} & J \\ \mathbf{N} & J \\ \mathbf{N} & J \\ \mathbf{N} & J\end{array}$	$\begin{aligned} & \text { RF } \\ & \text { RF } \\ & \text { AF } \\ & \text { AF } \end{aligned}$	$\begin{aligned} & \text { 2N5952 } \\ & \text { 2N5950 } \end{aligned}$	$\begin{aligned} & 25 \\ & 25 \\ & 40 \\ & 40 \end{aligned}$	$\begin{array}{r} 4-10 \\ 8-20 \\ .05-.2 \\ .2-1 \end{array}$	$\begin{aligned} & 2-6.5 \\ & 3-7.5 \\ & .2-1 \\ & .4-1.6 \end{aligned}$	$\begin{aligned} & 7 \\ & 7 \\ & 5 \\ & 5 \end{aligned}$	$\begin{array}{r} \text { NF } \\ \text { NF } \\ \text { CRSS } \\ \text { CRSS } \end{array}$	$\begin{aligned} & 2.5 \mathrm{DB} \\ & 2.5 \mathrm{DB} \\ & 1.5 \mathrm{PF} \\ & 1.5 \mathrm{PF} \end{aligned}$	$\begin{array}{r} 100 \mathrm{M} \\ 100 \mathrm{M} \\ \mathrm{IM} \\ 1 \mathrm{M} \end{array}$
$\begin{aligned} & \text { 2N5718 } \\ & \text { 2N5797 } \\ & \text { 2N5798 } \\ & \text { 2N5799 } \end{aligned}$	$\begin{array}{ll}\text { N } & J \\ P & J \\ \mathbf{P} & J \\ P & \\ \end{array}$	AF FE FE FE	2N5953	$\begin{aligned} & 40 \\ & 40 \\ & 40 \\ & 40 \end{aligned}$	$\begin{aligned} & .8-4 \\ & .02-.10 \\ & .08-.40 \\ & .25-1 \end{aligned}$	$\begin{gathered} .5-2 \\ .06-.22 \\ .1-.4 \\ .16 .5 \end{gathered}$	$\begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$	CRSS CRSS CRSS CRSS	$\begin{array}{r} 1.5 \mathrm{PF} \\ 1 \mathrm{PF} \\ 1 \mathrm{PF} \\ 1 \mathrm{PF} \end{array}$	1 m
$\begin{aligned} & \text { 2N5800 } \\ & \text { 2N5801 } \\ & \text { 2N5802 } \\ & \text { 2N5803 } \end{aligned}$	$\begin{array}{ll} P & J \\ N & J \\ \mathbf{N} & J \\ \mathbf{N} & J \end{array}$	$\begin{aligned} & \text { FE } \\ & \text { FE } \\ & \text { FE } \\ & \text { FE } \end{aligned}$	2N4858 2N5549 2N5549	$\begin{aligned} & 40 \\ & 40 \\ & 40 \\ & 40 \end{aligned}$	$\begin{array}{r} 70-2 \\ 2-15 \\ 10-40 \\ 30-80 \end{array}$	$\begin{aligned} & .25-.7 \\ & 4.5-12 \\ & 6.5-14 \\ & 8-17 \end{aligned}$	$\begin{array}{r} 5 \\ 15 \\ 15 \\ 15 \end{array}$	$\begin{array}{r} \text { CRSS } \\ \mathrm{NF} \\ \mathrm{NF} \\ \mathrm{NF} \end{array}$	$\begin{aligned} & 1 \mathrm{PF} \\ & 1 \mathrm{DB} \\ & 1 \mathrm{DE} \\ & 1 \mathrm{DE} \end{aligned}$	
$\begin{aligned} & \text { 2N5902 } \\ & \text { 2N5903 } \\ & \text { 2N5904 } \\ & \text { 2N5905 } \\ & \hline \end{aligned}$	$\begin{array}{ll} \mathbf{N} & J \\ \mathbf{N} & J \\ \mathbf{N} & J \\ N & J \end{array}$	FE FE FE FE		$\begin{aligned} & 40 \\ & 40 \\ & 40 \\ & 40 \end{aligned}$	$\begin{aligned} & .03-.5 \\ & .03-.5 \\ & .03-.5 \\ & .03-.5 \end{aligned}$	$\begin{aligned} & .07-.25 \\ & .07-.25 \\ & .07 .25 \\ & .07-.25 \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \\ & 3 \\ & 3 \end{aligned}$	NF $\mathbf{N F}$ $\mathbf{N F}$ $\mathbf{N F}$	$\begin{aligned} & 3 \mathrm{DB} \\ & 3 \mathrm{DB} \\ & 3 \mathrm{DB} \\ & 3 \mathrm{DB} \\ & \hline \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \\ & 100 \\ & 100 \\ & \hline \end{aligned}$

TRANSISTOR INTERCHANGEABILITY REGISTERED FIELD-EFFECT TRANSISTORS

TYPE NUMBER			3000$\frac{1}{5}$55	II REPLACEMENT OR NEAREST ECUFVALENT	RATED DRAINGATE VOLTAGE (V)	ELECTRICAL CHARACTERISTICS					
						$\begin{aligned} & \text { IDSS } \\ & \text { *ID(on) } \end{aligned}$	brad	C_{135} MAX (pF)	OTHER PARAMETER		
						$\begin{array}{ll} \mathrm{MIN} & \mathrm{MaX} \\ (\mathrm{~mA}) & (\mathrm{mA}) \\ \hline \end{array}$	$\begin{array}{\|rl\|} \text { MBN } & \text { MAX } \\ \text { (mmol } & \text { (mmmo) } \\ \hline \end{array}$		SYMEOL MAX - f (Hz)		
$\begin{aligned} & \text { 2N5906 } \\ & \text { 2N5907 } \\ & \text { 2N5908 } \\ & \text { 2N5909 } \end{aligned}$	N \mathbf{N} \mathbf{N} \mathbf{N}	$\begin{aligned} & \mathbf{J} \\ & \mathbf{J} \\ & \mathbf{j} \\ & \mathbf{J} \end{aligned}$	FE FE FE FE		$\begin{aligned} & 40 \\ & 40 \\ & 40 \\ & 40 \end{aligned}$	$\begin{aligned} & .03-.5 \\ & .03-.5 \\ & .03-.5 \\ & .03-.5 \end{aligned}$	$\begin{aligned} & .07-.25 \\ & .07-.25 \\ & .07-.25 \\ & .07-.25 \end{aligned}$	$\begin{aligned} & \mathbf{3} \\ & \mathbf{3} \\ & \mathbf{3} \\ & \mathbf{3} \end{aligned}$	NF NF NF NF	$\begin{aligned} & 1 \text { DB } \\ & 1 \text { DB } \\ & 1 \text { DB } \\ & 1 \text { DB } \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \\ & 100 \\ & 100 \end{aligned}$
$\begin{aligned} & \text { 2N5911 } \\ & \text { 2N5912 } \\ & \text { 2N5949 } \\ & \text { 2N5950 } \end{aligned}$	$\begin{aligned} & \mathbf{N} \\ & \mathbf{N} \\ & \mathbf{N} \\ & \mathbf{N} \end{aligned}$	$\begin{aligned} & \mathbf{J} \\ & \mathbf{j} \\ & \mathbf{j} \end{aligned}$	$\begin{aligned} & \text { FE } \\ & \text { FE } \\ & \text { GP } \\ & \text { GP } \end{aligned}$	$\begin{aligned} & \text { 2N5949 } \\ & \text { 2N5950 } \end{aligned}$	$\begin{aligned} & 25 \\ & \mathbf{2 5} \\ & 30 \\ & 30 \end{aligned}$	$\begin{array}{r} 7.40 \\ 7.40 \\ 12-18 \\ 10-15 \end{array}$	$\begin{array}{r} 5-10 \\ 5-10 \\ 3.5-7.5 \\ 3.5-7.5 \end{array}$	$\begin{aligned} & 5 \\ & 5 \\ & 6 \\ & 6 \end{aligned}$	NF NF NF NF	$\begin{aligned} & 1 \mathrm{DB} \\ & 1 \mathrm{DB} \\ & 2 \mathrm{DB} \\ & 2 \mathrm{DB} \end{aligned}$	$\begin{array}{r} 10 K \\ 10 K \\ 1 K \\ 1 K \end{array}$
2N5951 2N5952 2N5953 2N6449	$\begin{aligned} & N \\ & N \\ & N \\ & N \end{aligned}$	$\begin{aligned} & \mathbf{J} \\ & \mathbf{J} \\ & \mathbf{J} \\ & \mathbf{j} \end{aligned}$	$\begin{aligned} & \text { GP } \\ & \text { GP } \\ & \text { GP } \\ & \text { FE } \end{aligned}$	2N5951 2N5952 2N5953 2N6449	$\begin{array}{r} 30 \\ 30 \\ 30 \\ 300 \end{array}$	$\begin{gathered} 7-13 \\ 4-8 \\ 2.5-5 \\ 2-10 \end{gathered}$	$\begin{aligned} & 3.5-6.5 \\ & 2-6.5 \\ & 2-6.5 \\ & .5-3 \end{aligned}$	$\begin{array}{r} 6 \\ 6 \\ 6 \\ 10 \end{array}$	$\begin{array}{r} \mathrm{NF} \\ \mathbf{N F} \\ \mathbf{N F} \\ \text { CRSS } \end{array}$	$\begin{aligned} & 2 \mathrm{DB} \\ & 2 \mathrm{DB} \\ & 2 \mathrm{DB} \\ & 5 \mathrm{PF} \end{aligned}$	$\begin{aligned} & \mathbf{1 K} \\ & \mathbf{1 K} \\ & \mathbf{1 K} \end{aligned}$
2N6450 2N6d51 2N6452 2N6453	$\begin{aligned} & N \\ & N \\ & N \\ & N \end{aligned}$	$\begin{aligned} & \mathbf{j} \\ & \mathbf{j} \\ & \mathbf{j} \\ & \mathbf{j} \end{aligned}$	$\begin{aligned} & \text { FE } \\ & \text { FE } \\ & \text { FE } \\ & \text { FE } \end{aligned}$	2N6450 2N6451 2N6452 2N6453	$\begin{array}{r} 200 \\ 20 \\ 20 \\ 20 \end{array}$	$\begin{array}{r} 2-10 \\ 5-20 \\ 5-20 \\ 15-50 \end{array}$	$\begin{gathered} .5-3 \\ 15-30 \\ 15-30 \\ 15-30 \end{gathered}$	$\begin{aligned} & 10 \\ & \mathbf{2 5} \\ & \mathbf{2 5} \\ & 25 \end{aligned}$	CRSS VN VN VN	$\begin{array}{r} 5 \mathrm{PF} \\ 5 \mathrm{NV} \\ 10 \mathrm{NV} \\ 5 \mathrm{NV} \end{array}$	
2N6454 3N89 3N96 3N97		$\begin{aligned} & \mathbf{J} \\ & \mathbf{J} \\ & \mathbf{J} \\ & \mathbf{J} \end{aligned}$	FE FE FE FE	2N6454	$\begin{aligned} & \mathbf{2 5} \\ & \mathbf{3 0} \\ & \mathbf{3 0} \\ & \mathbf{3 0} \end{aligned}$	$\begin{array}{r} 15-50 \\ .5-2.5 \\ .5-2.5 \\ .5-2.5 \end{array}$	$\begin{aligned} & 20-40 \\ & .45-1.3 \\ & .45-1.3 \\ & .45-1.3 \end{aligned}$	25	VN NF NF	$\begin{aligned} & 10 \mathrm{NV} \\ & 4 \mathrm{DB} \\ & 4 \mathrm{DB} \end{aligned}$	1K 1K
3N98 3N99 3N124 3N125	$\begin{aligned} & \mathbf{N} \\ & \mathbf{N} \\ & \mathbf{N} \\ & \mathbf{N} \end{aligned}$	$\begin{aligned} & \text { IG } \\ & \text { IG } \\ & \text { J } \\ & \text { J } \end{aligned}$	$\begin{aligned} & \mathrm{FE} \\ & \mathrm{FE} \\ & \mathrm{FE} \\ & \mathrm{FE} \end{aligned}$	3N128	$\begin{aligned} & 32 \\ & 32 \\ & \mathbf{5 0} \\ & \mathbf{5 0} \end{aligned}$	$\begin{gathered} 3.5-7.7 \\ 5-10 . \\ .2-2 \\ 1.5-4.5 \end{gathered}$	$\begin{gathered} 1-3 \\ 1-4 \\ .25-1 \\ .4-1.6 \end{gathered}$	$\begin{array}{r} 7 \\ 7 \\ 14 \\ 14 \end{array}$	$\begin{array}{r} \text { CRSS } \\ \text { CRSS } \\ \text { NF } \\ \text { NF } \end{array}$	$\begin{aligned} & .5 \mathrm{PF} \\ & .5 \mathrm{PF} \\ & 4 \mathrm{DB} \\ & 4 \mathrm{DB} \end{aligned}$	IK IK
3N126 3N128 3N138 3N139	$\begin{aligned} & N \\ & N \\ & N \\ & N \end{aligned}$	$\begin{aligned} & \text { J } \\ & \text { IG } \\ & \text { IG } \\ & \text { IG } \end{aligned}$	fE FE FE FE	3N128 3N203	$\begin{aligned} & 50 \\ & 20 \\ & 45 \\ & 45 \end{aligned}$	$\begin{aligned} & 3-9 \\ & 5-25 \\ & 5-25 \end{aligned}$	$\begin{gathered} .6-2.7 \\ 5-12 \\ 3-7.5 \end{gathered}$	$\begin{array}{r} 14 \\ 7 \\ 5 \\ 7 \end{array}$	$\begin{array}{r} \mathbf{N F} \\ \mathbf{N F} \\ \text { CRSS } \end{array}$	$\begin{array}{r} 4 \mathrm{DB} \\ 5 \mathrm{DB} \\ .25 \mathrm{PF} \end{array}$	200M 1 M
3N140 3N141 3N142 3N143	N \mathbf{N} \mathbf{N} N	$\begin{aligned} & \text { IG } \\ & \text { IG } \\ & \text { IG } \\ & \text { IG } \end{aligned}$	FE FE FE FE	$\begin{aligned} & \text { 3N201 } \\ & \text { 3N201 } \\ & \text { 3N201 } \\ & \text { 3N128 } \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \\ & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 5-30 \\ & 5-30 \\ & 5-25 \\ & 5-30 \end{aligned}$	$\begin{aligned} & 6-1.8 \\ & 5- \\ & 5-12 \end{aligned}$		$\begin{aligned} & \mathbf{N F} \\ & \mathbf{N F} \end{aligned}$	4.5 DB 5 DB	$\begin{aligned} & 200 \mathrm{M} \\ & 100 \mathrm{~m} \end{aligned}$
3N145 3N146 3N147 3N148	P \mathbf{P}	$\begin{aligned} & \text { IG } \\ & \text { IG } \\ & \text { IG } \end{aligned}$	FE FE FE FE	$\begin{aligned} & \text { 3N174 } \\ & \text { 3N174 } \\ & \text { 3N208 } \\ & \text { 3N208 } \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \\ & 30 \\ & 30 \end{aligned}$	$\begin{aligned} & * 3 \\ & * 3 \\ & * 8 \\ & * \\ & * \\ & * \end{aligned}$					
$\begin{aligned} & \text { 3N149 } \\ & \text { 3N150 } \\ & \text { 3N151 } \\ & \text { 3N152 } \end{aligned}$	P \mathbf{P} \mathbf{P} \mathbf{N}	$\begin{aligned} & \text { IG } \\ & \text { IG } \\ & \text { IG } \\ & \text { IG } \end{aligned}$	$\begin{aligned} & \hline \text { FE } \\ & \text { FE } \\ & \text { FE } \\ & \text { FE } \end{aligned}$	3N161 3N161 3N128	$\begin{aligned} & 30 \\ & 30 \\ & 30 \\ & 20 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { *16- } \\ & * 16- \\ & * 3- \\ & 5-30 \end{aligned}$	$\begin{aligned} & .5-3 \\ & 5-12 \\ & \hline \end{aligned}$	12	$\begin{aligned} & \mathbf{N F} \\ & \mathbf{N F} \end{aligned}$	$\begin{array}{r} 10 \mathrm{DB} \\ \text { 3.5 DB } \\ \hline \end{array}$	$\begin{array}{r} 100 \\ 200 \mathrm{M} \end{array}$

TRANSISTOR INTERCHANGEABILITY
 REGISTERED FIELD-EFFECT TRANSISTORS

TYPE MUMEER		CLASSIFCATION	7 REPACEMENT OR NEAREST ECUIVALENT	RATED DRABF GATE VOLTACE (V)	EECTILCAL CHARACTERETICS					
					$\begin{aligned} & \text { loss } \\ & \text { *LD(on) } \end{aligned}$	bay	$c_{\text {bes }}$ max (pr)	OTMER PARAMETER		
					$\left\|\begin{array}{ll} \min & \max \\ (\mathrm{mA}) & (\mathrm{mA}) \end{array}\right\|$	$\begin{array}{\|rl\|} \text { MIN } & \text { MAX } \\ \text { (mmho) } & \text { (mandho) } \end{array}$		SYMBOL MAX © f (14s)		
3N153 3N154 3N155 3N155A	$\begin{array}{ll} N & I G \\ N & I G \\ P & I G \\ P & 1 G \end{array}$	$\begin{aligned} & \hline \mathbf{F E} \\ & \text { FE } \\ & \hline \mathbf{F E} \\ & \hline \mathbf{F E} \end{aligned}$	$\begin{aligned} & \text { 3N153 } \\ & \text { 3N128 } \\ & \text { 3N155 } \\ & \text { 3N155A } \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \\ & 50 \\ & 50 \end{aligned}$	$\begin{aligned} & * 5- \\ & 10-25 \\ & * 5- \\ & * 5- \end{aligned}$	5-12	8	$\begin{gathered} \text { CRSS } \\ \text { NF } \\ \text { CRSS } \\ \text { CRSS } \end{gathered}$	$\begin{array}{r} .6 \mathrm{PF} \\ 5 \mathrm{DB} \\ 1.3 \mathrm{PF} \\ 1.3 \mathrm{PF} \end{array}$	$\begin{array}{r} 1 \mathrm{M} \\ 200 \mathrm{M} \\ 140 \mathrm{~K} \\ 140 \mathrm{~K} \end{array}$
$\begin{aligned} & \text { 3N156 } \\ & \text { 3N156A } \\ & \text { 3N157 } \\ & \text { 3N157A } \end{aligned}$	$\left\lvert\, \begin{array}{ll} P & I G \\ P & I G \\ P & I G \\ P & I G \end{array}\right.$	FE FE FE FE	3N156 3N156A 3N157 3N157A	$\begin{aligned} & 50 \\ & 50 \\ & 50 \\ & 50 \end{aligned}$	$\begin{aligned} & * 5 \\ & * 5- \\ & * 5 \\ & * 5 \end{aligned}$	1.4	$\begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$	CRSS CRSS CRSS CRSS	$\begin{aligned} & \text { 1.3 PF } \\ & \text { 1.3 PF } \\ & \text { 1.3 PF } \\ & \text { 1.3 PF } \end{aligned}$	$\begin{aligned} & 140 K \\ & 140 K \\ & 140 K \\ & 140 K \end{aligned}$
$\begin{array}{\|l} \text { 3N158 } \\ \text { 3N158A } \\ \text { 3N159 } \\ \text { 3N160 } \end{array}$	$\begin{cases}P & 1 G \\ P & 1 G \\ N & I G \\ P & 1 G\end{cases}$	$\begin{aligned} & \mathrm{FE} \\ & \mathrm{FE} \\ & \mathrm{FE} \\ & \mathrm{FE} \end{aligned}$	3N158 3N158A 3N160	$\begin{aligned} & 50 \\ & 50 \\ & 20 \\ & 25 \end{aligned}$	$\begin{gathered} * 5- \\ \cdot 5- \\ 5-30 \\ * 40-120 \end{gathered}$	$\begin{gathered} 1-4 \\ 1-4 \\ 7-18 \\ 3.5-6.5 \end{gathered}$	$\begin{array}{r} 5 \\ 5 \\ 7 \\ 10 \end{array}$	$\begin{gathered} \text { CRSS } \\ \text { CRSS } \\ \text { NF } \\ \text { CRSS } \end{gathered}$	$\begin{gathered} 1.3 \mathrm{PF} \\ 1.3 \mathrm{PF} \\ 3.5 \mathrm{DB} \\ 4 \mathrm{PF} \end{gathered}$	$\begin{array}{r} 140 \mathrm{~K} \\ 140 \mathrm{~K} \\ 200 \mathrm{~K} \\ 1 \mathrm{M} \end{array}$
$\begin{aligned} & 3 N 161 \\ & 3 N 162 \\ & 3 N 163 \\ & 3 N 164 \end{aligned}$	P IG P IG P IG P IG	$\begin{aligned} & \text { FE } \\ & \text { FE } \\ & \text { FE } \\ & \text { FE } \end{aligned}$	3N161 3N162 3N163 3N164	$\begin{aligned} & 25 \\ & \mathbf{2 5} \\ & \mathbf{4 0} \\ & 30 \end{aligned}$	$\begin{aligned} & * 40-120 \\ & * 25- \\ & * 5-30 \\ & * 3-30 \end{aligned}$	$\begin{gathered} 3.5-6.5 \\ 2-4 \\ 1-4 \end{gathered}$	$\begin{aligned} & 10 \\ & 20 \\ & 2.5 \\ & 2.5 \end{aligned}$	CRSS CRSS CRSS CRSS	$\begin{array}{r} 4 \mathrm{PF} \\ 10 \mathrm{PF} \\ .7 \mathrm{PF} \\ .7 \mathrm{PF} \end{array}$	$\begin{aligned} & 1 M \\ & 1 M \\ & 1 M \\ & 1 M \end{aligned}$
$\begin{aligned} & \text { 3N165 } \\ & 3 N 166 \\ & \text { 3N167 } \\ & \text { 3N168 } \end{aligned}$	$\begin{array}{ll} P & I G \\ P & I G \\ P & I G \\ P & I G \end{array}$	$\begin{aligned} & \text { FE } \\ & \text { FE } \\ & \text { FE } \\ & \text { FE } \end{aligned}$	3N160	$\begin{aligned} & 40 \\ & 40 \\ & 30 \\ & 25 \end{aligned}$	$\begin{aligned} & * 5-30 \\ & * 5-30 \\ & 200- \\ & 100- \end{aligned}$	$\begin{aligned} & 1.5-3 \\ & 1.5-3 \end{aligned}$	$\begin{array}{r} 3 \\ 3 \\ 35 \\ \mathbf{3 5} \end{array}$	CRSS CRSS CRSS CRSS	$\begin{aligned} & .7 \mathrm{PF} \\ & .7 \mathrm{PF} \\ & .3 \mathrm{PF} \\ & .3 \mathrm{PF} \end{aligned}$	$\begin{aligned} & 1 M \\ & 1 M \\ & 1 M \\ & 1 M \end{aligned}$
3N169 3N170 3N171 3N172	$\left\lvert\, \begin{array}{ll} N & 1 G \\ N & 1 G \\ N & 1 G \\ P & 1 G \end{array}\right.$	$\begin{aligned} & \text { FE } \\ & \text { FE } \\ & \text { FE } \\ & \text { FE } \end{aligned}$	3N169 3N170 3N171 3N161	$\begin{aligned} & 35 \\ & 35 \\ & 35 \\ & 40 \end{aligned}$	* 10 - 10 - 10 -5-30	1.5-4	$\begin{array}{r} 5 \\ 5 \\ 5 \\ 3.5 \end{array}$	CRSS CRSS CRSS CRSS	$\begin{array}{r} 1.3 \mathrm{PF} \\ \text { 1.3 PF } \\ 1.3 \mathrm{PF} \\ 1 \mathrm{PF} \end{array}$	$\begin{aligned} & 1 M \\ & 1 M \\ & 1 M \\ & 1 M \end{aligned}$
3N173 3N174 3N175 3N176	$\begin{array}{ll} P & 1 G \\ P & 1 G \\ N & 1 G \\ N & 1 G \end{array}$	FE FE FE FE	3N161 3N174 3N170 3N170	$\begin{aligned} & 40 \\ & 30 \\ & 30 \\ & 25 \end{aligned}$	$\begin{aligned} & * 5-30 \\ & * 3-12 \\ & * 20 \\ & * 15 \end{aligned}$	$\begin{gathered} 1.4 \\ .4 \end{gathered}$	$\begin{array}{r} 3.5 \\ 4 \\ 5 \\ 5 \end{array}$	CRSS CRSS CRSS CRSS	$\begin{aligned} & 1 \mathrm{PF} \\ & .7 \mathrm{PF} \\ & .5 \mathrm{PF} \\ & .5 \mathrm{PF} \end{aligned}$	$\begin{aligned} & 1 M \\ & 1 M \\ & 1 M \\ & 1 M \end{aligned}$
$\begin{aligned} & 3 \mathrm{~N} 177 \\ & \text { 3N178 } \\ & \text { 3N179 } \\ & \text { 3N180 } \end{aligned}$	$\begin{array}{ll} N & 1 G \\ P & 1 G \\ P & 1 G \\ P & 1 G \end{array}$	FE FE FE FE	3N171 3N174	$\begin{aligned} & 20 \\ & 75 \\ & 60 \\ & 40 \end{aligned}$	$\begin{array}{r} 10 \\ 3 \\ 3 \\ 3 \\ 3 \end{array}$		$\begin{array}{r} 7 \\ 3.5 \\ 4.5 \\ 5 \end{array}$	CRSS CRSS CRSS CRSS	$\begin{array}{r} .75 \mathrm{PF} \\ .25 \mathrm{PF} \\ .35 \mathrm{PF} \\ .5 \mathrm{PF} \end{array}$	$\begin{aligned} & 1 M \\ & 1 M \\ & 1 M \\ & 1 M \end{aligned}$
3N181 3N182 3N183 3N184	$\begin{array}{ll} P & I G \\ P & 1 G \\ P & 1 G \\ P & 1 G \end{array}$	$\begin{array}{\|l\|l} \text { FE } \\ \text { FE } \end{array}$		$\begin{aligned} & 30 \\ & 30 \\ & \mathbf{2 5} \\ & \mathbf{3 5} \end{aligned}$	$\begin{aligned} & 40- \\ & +40 \\ & * 25- \\ & * 20- \end{aligned}$		$\begin{array}{r} 25 \\ 25 \\ 30 \\ 9 \end{array}$	CRSS CRSS CRSS CRSS	$\begin{array}{r} 8 \mathrm{PF} \\ 10 \mathrm{PF} \\ 12 \mathrm{PF} \\ 3.5 \mathrm{PF} \end{array}$	$\begin{aligned} & 1 M \\ & 1 M \\ & 1 M \\ & 1 M \end{aligned}$
3N185 3N186 3N188 3N189	$\left\lvert\, \begin{array}{ll} p & 16 \\ p & 1 G \\ p & 1 G \\ p & 1 G \end{array}\right.$	FE FE FE FE		$\begin{aligned} & 30 \\ & 25 \\ & 40 \\ & 40 \end{aligned}$	$\begin{aligned} & \text { 15- } \\ & \cdot 10 \\ & * 5-30 \\ & * 5-30 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.5-4 \\ & 1.5-4 \end{aligned}$	$\begin{array}{r} 10 \\ 11 \\ 4.5 \\ 4.5 \\ \hline \end{array}$	CRSS CRSS CRSS Chss	$\begin{aligned} & \text { 4.5 PF } \\ & \text { 5.5 PF } \\ & 1.5 \mathrm{PF} \\ & 1.5 \mathrm{PF} \\ & \hline \end{aligned}$	$\begin{aligned} & 1 M \\ & 1 M \\ & 1 M \\ & 1 M \end{aligned}$

TRANSISTOR INTERCHANGEABILITY REGISTERED FIELD-EFFECT TRANSISTORS

TVFE Mumes		$\begin{aligned} & 8 \\ & \frac{8}{8} \\ & 8 \\ & 8 \end{aligned}$	IIREPACEMENTOR MEARESTECUNAMENT	LATED DRAMGATE Voltace	EECTRICAL CHAMACTERISTICS					
					IDSS - b(en)	Irad	$c_{\text {ins }}$	OTM	mer Para	TER
					$\begin{array}{\|ll\|} \hline \operatorname{MNN} & \operatorname{MAX} \\ (m A) & (m A) \\ \hline \end{array}$	$\begin{array}{\|rl\|} \hline \text { mind } & \text { max } \\ \text { (manho) } & \text { (mumho) } \\ \hline \end{array}$	max (pl)	symear	max	$\begin{gathered} 1 \\ \left(H_{z}\right) \end{gathered}$
3N190 3N191 3N192 3N193	$\begin{array}{ll}P & 1 G \\ P & 1 G \\ N & 1 G \\ N & 1 G\end{array}$	$\begin{aligned} & \text { FE } \\ & \text { FE } \\ & \text { FE } \\ & \text { FE } \end{aligned}$		$\begin{array}{r} 40 \\ 40 \\ 20 \\ 20 \end{array}$	$\begin{array}{r} \text { } 5-30 \\ +5-30 \\ 3-30 \\ 1-20 \end{array}$	$\begin{gathered} 1.5-4 \\ 1.5-4 \\ 8-24 \\ 6-22 \end{gathered}$	$\begin{array}{r} 4.5 \\ 4.5 \\ 6 \\ 7 \end{array}$	CRSS CRSS CRSS CRSS	$\begin{array}{r} 1 \mathrm{PF} \\ 1 \mathrm{PF} \\ .6 \mathrm{PF} \\ .6 \mathrm{PF} \end{array}$	$\begin{aligned} & 1 M \\ & 1 M \\ & 44 M \\ & 44 M \end{aligned}$
$\begin{aligned} & \text { 3N200 } \\ & \text { 3N201 } \\ & \text { 3N202 } \\ & \text { 3N203 } \end{aligned}$	$\begin{array}{ll} N & 1 G \\ N & 1 G \\ N & 1 G \\ N & 1 G \end{array}$	FE FE FE FE	3N201 3N202 3N203	$\begin{aligned} & 20 \\ & 30 \\ & 30 \\ & 30 \end{aligned}$	$\begin{gathered} .5-12 \\ 6-30 \\ 6-30 \\ 3-15 \end{gathered}$	$\begin{array}{r} 10-20 \\ 8-20 \\ 8-20 \\ 7-15 \end{array}$		CRSS CRSS CRSS CRSS	$\begin{aligned} & .03 \mathrm{PF} \\ & .03 \mathrm{PF} \\ & .03 \mathrm{PF} \\ & .03 \mathrm{PF} \end{aligned}$	$\begin{aligned} & 1 M \\ & 1 M \\ & 1 M \\ & 1 M \end{aligned}$
$\left\lvert\, \begin{aligned} & \text { 3N204 } \\ & \text { 3N205 } \\ & \text { 3N206 } \\ & \text { 3N207 } \end{aligned}\right.$	$\begin{array}{ll} N & I G \\ N & I G \\ N & I G \\ P & I G \end{array}$	$\begin{aligned} & \text { FE } \\ & \text { FE } \\ & \text { FE } \\ & \text { FE } \end{aligned}$	$\begin{aligned} & \text { 3N204 } \\ & \text { 3N205 } \\ & \text { 3N206 } \\ & \text { 3N207 } \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \\ & 30 \\ & \mathbf{2 5} \end{aligned}$	$\begin{aligned} & 6.30 \\ & 6-30 \\ & 3.15 \\ & 1.5- \end{aligned}$	$\begin{array}{r} 10-22 \\ 10-22 \\ 7-17 \end{array}$	4	$\begin{array}{r} \text { NF } \\ \text { CRSS } \\ \text { NF } \\ \text { CRSS } \end{array}$	$\begin{array}{r} 3.5 \mathrm{DB} \\ .03 \mathrm{PF} \\ 4 \mathrm{DB} \\ 2.5 \mathrm{PF} \end{array}$	$\begin{array}{r} 1 \mathrm{M} \\ 45 \mathrm{~m} \\ 1 \mathrm{M} \end{array}$
$\begin{aligned} & \text { 3N208 } \\ & \text { 3N211 } \\ & \text { 3N212 } \\ & \text { 3N213 } \end{aligned}$	$\left\lvert\, \begin{array}{ll} P & I G \\ N & I G \\ N & I G \\ N & I G \end{array}\right.$	FE FE FE FE	$\begin{aligned} & \text { 3N208 } \\ & \text { 3N211 } \\ & \text { 3N212 } \\ & \text { 3N213 } \end{aligned}$	$\begin{aligned} & 25 \\ & 35 \\ & 35 \\ & 40 \end{aligned}$	1.5-6-40 $6-40$ $6-40$	$\begin{aligned} & 17-40 \\ & 17-40 \\ & 15-35 \end{aligned}$	4	$\begin{gathered} \text { CRSS } \\ \text { NF } \\ \text { CRSS } \\ \text { CRSS } \end{gathered}$	$\begin{gathered} \text { 2.5 PF } \\ \text { 3.5 DB } \\ .05 \mathrm{PF} \\ .05 \mathrm{PF} \end{gathered}$	$\begin{array}{r} 1 \mathrm{M} \\ 200 \mathrm{M} \\ 1 \mathrm{M} \\ 1 \mathrm{M} \end{array}$
$\left\lvert\, \begin{aligned} & \text { 3N214 } \\ & \text { 3N215 } \\ & \text { 3N216 } \\ & \text { 3N217 } \end{aligned}\right.$	$\begin{array}{ll} N & 1 G \\ N & 1 G \\ N & 1 G \\ N & 1 G \end{array}$	$\begin{aligned} & \text { FE } \\ & \text { FE } \\ & \text { FE } \\ & \text { FE } \end{aligned}$	3N214 3N215 3N216 3N217	$\begin{aligned} & 20 \\ & 20 \\ & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 50 \\ & .50- \\ & 50 \\ & 50 \\ & \text { - } \end{aligned}$		$\begin{aligned} & 6 \\ & 6 \\ & 6 \\ & 6 \end{aligned}$	CRSS CRSS CRSS CRSS	$\begin{aligned} & 2 \mathrm{PF} \\ & 2 \mathrm{PF} \\ & 2 \mathrm{PF} \\ & 2 \mathrm{PF} \end{aligned}$	$\begin{aligned} & 1 M \\ & 1 M \\ & 1 M \\ & 1 M \end{aligned}$

TRANSISTOR INTERCHANGEABILITY
 NONREGISTERED FIELD-EFFECT TRANSISTORS

TRANSISTOR INTERCHANGEABILITY NONREGISTERED FIELD-EFFECT TRANSISTORS

TME MUMOE:				$\begin{aligned} & 8 \\ & \frac{8}{8} \\ & \frac{8}{8} \\ & 8 \end{aligned}$	TIREDACBMENTOR NBARESTEOUVALENT	RATED DRANF GATE VOLTACE (V)	EECTRICAL CHARACTERISTICS						
				loss $\omega_{0}(o n)$			lyad	$C_{\text {ivs }}$ max (pF)	OTHEA PARAMTER				
				$\begin{array}{\|ll\|} \hline \text { min } & \text { max } \\ (\mathrm{ma}) & (\mathrm{ma}) \\ \hline \end{array}$			$\begin{array}{\|rl\|} \hline \text { MMN } & \text { MAX } \\ \text { (mmho) } & \text { (mmho) } \\ \hline \end{array}$		SYMBOL MaX - f (Hz)				
CM644 CM645 CM646 CMO47	$C R$ $C R$ $C R$ $C R$		$\begin{aligned} & \mathbf{J} \\ & \mathbf{J} \\ & \mathbf{J} \\ & \mathbf{J} \end{aligned}$			2N4858 2N4857 2N4856 2N4856	$\begin{aligned} & 30 \\ & 30 \\ & 30 \\ & 30 \end{aligned}$	$\begin{aligned} & 10- \\ & 15- \\ & 30- \\ & 50- \end{aligned}$			CRSS CRSS CRSS CRSS	5 PF 5 PF 5 PF 5 PF	$\begin{aligned} & 1 M \\ & 1 M \\ & 1 M \\ & 1 M \end{aligned}$
CM697 CMX740 DU4339 DU4340			$\begin{aligned} & \mathbf{J} \\ & \mathbf{J} \\ & \mathbf{J} \\ & \mathbf{J} \end{aligned}$			2N5047	$\begin{aligned} & 25 \\ & 30 \\ & 50 \\ & 50 \end{aligned}$	$\begin{gathered} 30- \\ 500 \\ .5-1.5 \\ 1.2-3.6 \end{gathered}$	$\begin{gathered} .8-2.4 \\ 1.3-3 \end{gathered}$	$\begin{aligned} & 7 \\ & 7 \end{aligned}$	CRSS CRSS CRSS CRSS	$\begin{array}{r} 20 \mathrm{PF} \\ 60 \mathrm{PF} \\ 3 \mathrm{PF} \\ 3 \mathrm{PF} \end{array}$	$\begin{aligned} & 1 M \\ & 1 M \\ & 1 M \\ & 1 M \end{aligned}$
$E 100$ E101 E102 E103			$\begin{aligned} & \mathbf{J} \\ & \mathbf{j} \\ & \mathbf{j} \\ & \mathbf{j} \end{aligned}$		2N5950 A5T3821 2N5953 2N5950	$\begin{aligned} & 30 \\ & 30 \\ & 30 \\ & 30 \end{aligned}$	$\begin{aligned} & .2-20 \\ & .2-1 \\ & .9-4.5 \\ & 4-20 \end{aligned}$	$\begin{array}{r} .5 \\ .5 \\ 1- \\ 1.5- \end{array}$	$\begin{aligned} & 8 \\ & 8 \\ & 8 \\ & 8 \end{aligned}$	CRSS CRSS CRSS CRSS	$\begin{aligned} & 3 \mathrm{PF} \\ & 3 \mathrm{PF} \\ & 3 \mathrm{PF} \\ & 3 \mathrm{PF} \end{aligned}$	$\begin{aligned} & 1 M \\ & 1 M \\ & 1 M \\ & 1 M \end{aligned}$	
E108 E109 El10 $E 111$	$\begin{aligned} & \mathbb{N} \\ & \mathbb{N} \\ & \mathbb{N} \\ & \mathbb{N} \end{aligned}$		$\begin{aligned} & \text { J } \\ & \mathbf{j} \\ & \mathbf{J} \\ & \mathbf{J} \end{aligned}$		T1573	$\begin{aligned} & 20 \\ & 20 \\ & 20 \\ & 25 \end{aligned}$	$\begin{aligned} & 80- \\ & 40 . \\ & 10 . \\ & 20- \end{aligned}$		$\begin{aligned} & 85 \\ & 85 \\ & 85 \\ & 28 \end{aligned}$	CRSS CRSS CRSS CRSS	$\begin{array}{r} 15 \mathrm{PF} \\ 15 \mathrm{PF} \\ 15 \mathrm{PF} \\ 5 \mathrm{PF} \end{array}$	$\begin{aligned} & 1 M \\ & 1 M \\ & 1 M \\ & 1 M \end{aligned}$	
$\begin{aligned} & \text { E112 } \\ & \text { E113 } \\ & \text { E300 } \\ & \text { PE0654A } \end{aligned}$	$\left(\begin{array}{l} \mathbb{N} \\ \mathbb{N} \\ \mathbb{N} \\ \mathbf{N} \end{array}\right.$		$\begin{aligned} & \mathbf{J} \\ & \mathbf{J} \\ & \mathbf{J} \\ & \mathbf{J} \end{aligned}$		$\begin{aligned} & \text { TIS74 } \\ & \text { Tis75 } \\ & \text { 2N5245 } \\ & \text { 2N5950 } \end{aligned}$	$\begin{aligned} & 25 \\ & 25 \\ & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & 5- \\ & 2- \\ & 6-30 \\ & 10-40 \end{aligned}$	$\begin{aligned} & 4.5- \\ & 4.5-9 \end{aligned}$	$\begin{array}{r} 28 \\ 28 \\ 5.5 \\ 20 \end{array}$	CRSS CRSS CRSS CRSS	$\begin{array}{r} 5 \mathrm{PF} \\ 5 \mathrm{PF} \\ 1.7 \mathrm{PF} \\ 5 \mathrm{PF} \end{array}$	$\begin{aligned} & 1 M \\ & 1 M \\ & 1 M \\ & 1 M \end{aligned}$	
Pt06548 FE3819 FE5245 FR5246	F		$\begin{aligned} & \mathbf{J} \\ & \mathbf{J} \\ & \mathbf{J} \\ & \mathbf{j} \end{aligned}$		$\begin{aligned} & \text { 2N5951 } \\ & \text { 2N5953 } \\ & \text { 2N5245 } \\ & \text { 2N5246 } \end{aligned}$	$\begin{aligned} & \mathbf{2 5} \\ & \mathbf{2 5} \\ & 30 \\ & 30 \end{aligned}$	$\begin{aligned} & 3-12 \\ & 2-20 \\ & 5-15 \\ & 1.5-7 \end{aligned}$	$\begin{aligned} & 3.5-8 \\ & 2-6.5 \\ & 4- \\ & 2.5- \end{aligned}$	$\begin{array}{r} 20 \\ 8 \\ 4.5 \\ 4.5 \end{array}$	$\begin{aligned} & \text { CRSS } \\ & \text { CRSS } \\ & \text { CRSS } \\ & \text { CRSS } \end{aligned}$	$\begin{array}{r} 5 \mathrm{PF} \\ 4 \mathrm{PF} \\ 1.2 \mathrm{PF} \\ 1.2 \mathrm{PF} \end{array}$	$\begin{aligned} & 1 M \\ & 1 M \\ & 1 M \\ & 1 M \end{aligned}$	
FES247 FES457 FES458 FES459	F	N N N N	$\begin{aligned} & \mathbf{J} \\ & \mathbf{J} \\ & \mathbf{j} \\ & \mathbf{J} \end{aligned}$		$\begin{aligned} & \text { 2N5247 } \\ & \text { 2N5953 } \\ & \text { 2N5952 } \\ & \text { 2N5950 } \end{aligned}$	$\begin{aligned} & 30 \\ & 25 \\ & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & 8-2.4 \\ & 1-5 \\ & 2.9 \\ & 4-16 \end{aligned}$	$\begin{gathered} 4 . \\ 1.5 \\ 1.5-5.5 \\ 2-6 \end{gathered}$	$\begin{array}{r} 4.5 \\ 7 \\ 7 \\ 7 \end{array}$	CRSS CR5S CRSS CRSS	$\begin{array}{r} 1.2 \mathrm{PF} \\ 3 \mathrm{PF} \\ 3 \mathrm{PF} \\ 3 \mathrm{PF} \end{array}$	$\begin{aligned} & 1 M \\ & 1 M \\ & 1 M \\ & 1 M \end{aligned}$	
FES484 PES485 PES486 F065AA	FF F F	N \mathbf{N} \mathbf{N} N	$\begin{aligned} & \mathrm{J} \\ & \mathrm{~J} \\ & \mathrm{~J} \\ & \mathrm{~J} \end{aligned}$		2N5953 2N5952 2N5949	$\begin{aligned} & 25 \\ & 25 \\ & 25 \\ & 50 \end{aligned}$	$\begin{gathered} 1-5 \\ 1-5 \\ 4-10 \\ 10-40 \end{gathered}$	$\begin{gathered} 2.5- \\ 2.5- \\ 3- \\ 4.5-9 \end{gathered}$	$\begin{array}{r} 5 \\ 5 \\ 5 \\ 20 \end{array}$	CRSS CRSS CRSS CRSS	$\begin{array}{r} \text { 1.2 PF } \\ \text { 1.2 PF } \\ \text { 1.2 PF } \\ 5 \mathrm{PF} \end{array}$	$\begin{aligned} & 1 M \\ & 1 M \\ & 1 M \\ & 1 M \end{aligned}$	
FT06548 FT0654C FT0654D FT701	F F F F	$\begin{aligned} & \mathbf{N} \\ & \mathbf{N} \\ & \mathbf{N} \\ & \mathbf{P} \end{aligned}$	$\begin{aligned} & \mathrm{J} \\ & \mathrm{~J} \\ & \mathrm{~J} \end{aligned}$		3N207	$\begin{aligned} & 50 \\ & 50 \\ & 50 \\ & 30 \end{aligned}$	$\begin{array}{r} 10-40 \\ 3-12 \\ 3-12 \end{array}$	$\begin{aligned} & 4.5-9 \\ & 3.5-8 \\ & 3.5-8 \\ & 1.2- \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \\ & 20 \end{aligned}$	CRSS CRSS CRSS	$\begin{aligned} & 5 \mathrm{PF} \\ & 5 \mathrm{PF} \\ & 5 \mathrm{PF} \end{aligned}$	$\begin{aligned} & 1 M \\ & 1 M \\ & 1 M \end{aligned}$	
$\begin{aligned} & \text { F7703 } \\ & \text { PT704 } \\ & \text { FT3820 } \\ & \text { LMF3954 } \end{aligned}$	F \mathbf{F} \mathbf{F} $\mathbf{I N}$	$\begin{aligned} & P \\ & \mathbf{P} \\ & \mathbf{p} \\ & \mathbf{N} \end{aligned}$	$\begin{aligned} & \text { IG } \\ & \text { IG } \\ & \text { J } \\ & \text { J } \end{aligned}$		3N160 3N163 A5T5460 2N5545	$\begin{aligned} & 30 \\ & 30 \\ & 20 \\ & 40 \end{aligned}$	$\begin{aligned} & .3-15 \\ & .5-5 \\ & \hline \end{aligned}$	$\begin{gathered} 2.5- \\ .3- \\ .8-5 \\ 1- \end{gathered}$	$\begin{array}{r} 15 \\ 4.5 \\ 32 \end{array}$	$\begin{aligned} & \text { CRSS } \\ & \text { CRSS } \\ & \text { CRSS } \end{aligned}$	$\begin{aligned} & 3 \mathrm{PF} \\ & .7 \mathrm{PF} \end{aligned}$ $16 \text { PF }$	$\begin{aligned} & 1 M \\ & 1 M \\ & 1 M \end{aligned}$	

TRANSISTOR INTERCHANGEABILITY
 NONREGISTERED FIELD-EFFECT TRANSISTORS

TRANSISTOR INTERCHANGEABILITY NONREGISTERED FIELD-EFFECT TRANSISTORS

			$\begin{aligned} & \frac{\mathbf{E}}{E} \\ & \text { 总 } \end{aligned}$		π remacement OR MEAREST EquIVALENT	RATED DRAIN. GATE voltace	LLCTILCAL CHARACTIRESTICS					
							loss ${ }^{4} \mathrm{O}(\mathrm{on})$	\|rat	$\begin{aligned} & c_{\text {iss }} \\ & \text { max } \\ & \text { (pF) } \end{aligned}$	Otheis paramitir		
							$\begin{array}{ll} \text { MIN } & \max \\ (\mathrm{mA}) & (\mathrm{mA}) \end{array}$	MIN MaX (mmmho) (mumho)		symber	max	(Hz)
$\begin{aligned} & \hline \text { KELO92 } \\ & \text { KEL093 } \\ & \text { KEE220 } \\ & \text { KEL221 } \\ & \hline \end{aligned}$	IN	N	$\begin{aligned} & \mathbf{J} \\ & \mathbf{j} \\ & \mathbf{j} \end{aligned}$		TIS74 T1575 A5T3821 A5T3822	$\begin{aligned} & 40 \\ & 40 \\ & 30 \\ & 30 \end{aligned}$	$\begin{gathered} 15- \\ 8- \\ .5-3 \\ 2-6 \end{gathered}$	$\begin{aligned} & 1-4 \\ & 2-5 \end{aligned}$	$\begin{array}{r} 16 \\ 16 \\ 6 \\ 6 \end{array}$	CRSS CRSS CRSS CRSS	$\begin{aligned} & 5 \mathrm{PF} \\ & 5 \mathrm{PF} \\ & 2 \mathrm{PF} \\ & 2 \mathrm{PF} \end{aligned}$	$\begin{aligned} & \mathrm{IM} \\ & \mathrm{IM} \\ & \mathrm{IM} \\ & \mathrm{IM} \end{aligned}$
$\begin{array}{\|l\|l\|} \hline K E 4222 \\ \text { KE4223 } \\ \text { KE4224 } \\ K E 4391 \end{array}$	IN IN IN IN IN	N \mathbf{N} \mathbf{N}	$\begin{aligned} & J \\ & j \\ & j \end{aligned}$		A5T3822 2N5950 2N5949 TIS73	$\begin{aligned} & 30 \\ & 30 \\ & 30 \\ & 40 \end{aligned}$	$\begin{gathered} 5-15 \\ 3-18 \\ 2-20 \\ 50-150 \end{gathered}$	$\begin{aligned} & 2.5-6 \\ & 2.7 \\ & 1.7 \end{aligned}$	$\begin{array}{r} 6 \\ 6 \\ 6 \\ 14 \end{array}$	CRSS CRSS CRSS CRSS	$\begin{array}{r} 2 \mathrm{PF} \\ 2 \mathrm{PF} \\ 2 \mathrm{PF} \\ 3.5 \mathrm{PF} \end{array}$	$\begin{aligned} & 1 \mathrm{M} \\ & \mathrm{im} \\ & \mathrm{im} \\ & \mathrm{im} \end{aligned}$
$\begin{array}{\|l\|l\|} \mathrm{KE} E 4392 \\ \mathrm{KEA393} \\ \mathrm{KEA416} \\ \mathrm{KEAB56} \end{array}$	IN IN IN IN N	N N N N N	$\begin{aligned} & j \\ & j \\ & j \end{aligned}$		$\begin{aligned} & \text { TIS74 } \\ & \text { TS75 } \\ & \text { 2N5245 } \\ & \text { TIS73 } \end{aligned}$	$\begin{aligned} & 40 \\ & 40 \\ & 30 \\ & 40 \end{aligned}$	$\begin{array}{r} 25-75 \\ 5-30 \\ 5-15 \\ 50 \end{array}$	4.	$\begin{gathered} 14 \\ 14 \\ 4 \\ 18 \end{gathered}$	$\begin{aligned} & \text { CRSS } \\ & \text { CRSS } \\ & \text { CRSS } \\ & \text { CRSS } \end{aligned}$	$\begin{aligned} & \text { 3.5 PF } \\ & 3.5 \mathrm{PF} \\ & 1.2 \mathrm{PP} \\ & 8 \mathrm{PF} \end{aligned}$	$\begin{aligned} & 1 \mathrm{M} \\ & \mathrm{IM} \\ & \mathrm{IM} \\ & \mathrm{IM} \end{aligned}$
KEA857 KE4858 KE4859 KE4860	IN IN IN IN IN N	N N N N N	$\begin{aligned} & \text { J } \\ & \text { j } \\ & \text { j } \end{aligned}$		TIS74 T1575 TIS73 T1574	$\begin{aligned} & 40 \\ & 40 \\ & 30 \\ & 30 \end{aligned}$	$\begin{aligned} & 20-100 \\ & 8-80 \\ & 50 \\ & 20-100 \end{aligned}$		$\begin{aligned} & 18 \\ & 18 \\ & 18 \\ & 18 \end{aligned}$	$\begin{aligned} & \text { CRSS } \\ & \text { CRSS } \\ & \text { CRSS } \\ & \text { CRSS } \end{aligned}$	8 PF 8 PF 8 PF 8 PF	1 M 1 M $1 M$ 1M
$\begin{aligned} & \text { KEA861 } \\ & \text { KES103 } \\ & \text { KES104 } \\ & \text { KES105 } \end{aligned}$	IN IN IN N IN	N N N N N	j		$\begin{aligned} & \text { 71575 } \\ & \text { 2N5952 } \\ & \text { 2N5953 } \\ & \text { 2N5245 } \end{aligned}$	$\begin{aligned} & 30 \\ & 25 \\ & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & 8-80 \\ & 1-8 \\ & 2-6 \\ & 5-15 \end{aligned}$	$\begin{gathered} 2.8 \\ 3.5-7.5 \\ 5-10 \end{gathered}$	$\begin{array}{r} 18 \\ 5 \\ 5 \\ 5 \end{array}$	CRSS CR5S CRSS CRSS	$\begin{array}{r} 8 \mathrm{PF} \\ 1.2 \mathrm{PF} \\ 1.2 \mathrm{PF} \\ \text { 1.2 PF } \end{array}$	19 19 19 19
$\begin{aligned} & \text { M100 } \\ & \text { M101 } \\ & \text { M103 } \\ & \text { M104 } \end{aligned}$	St $\mathbf{S I}$ $\mathbf{s i}$ $\mathbf{S I}$	N	$\begin{aligned} & \text { IG } \\ & \text { IG } \\ & \text { IG } \\ & \text { IG } \end{aligned}$		$\begin{aligned} & \text { 3N161 } \\ & \text { 3N161 } \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \\ & 30 \\ & 30 \end{aligned}$	$1.5-4.5$ 4.12	$\begin{array}{r} 1-2.2 \\ 1.5-3.3 \end{array}$	$\begin{aligned} & 7.5 \\ & 7.5 \end{aligned}$	$\begin{aligned} & \text { CRSS } \\ & \text { CRSS } \end{aligned}$	$\begin{gathered} 4 \mathrm{PF} \\ .5 \mathrm{PF} \end{gathered}$	1 M
M106 M107 M108 M113	$\begin{array}{\|l\|l\|} \hline \mathbf{s i} \\ \mathbf{s i} \\ \mathbf{s I} \\ \mathbf{s I} \end{array}$	P	$\begin{aligned} & \mathbf{I G} \\ & \mathbf{I G} \\ & \mathbf{I G} \\ & \mathbf{I G} \end{aligned}$		$\begin{aligned} & \text { 3N208 } \\ & \text { 3N208 } \\ & \text { 3N207 } \\ & \text { 3N156 } \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \\ & 30 \\ & 30 \end{aligned}$	$\begin{array}{r} 10 \\ \cdot 10 \\ \cdot 10 \end{array}$	$2-$ $2-$ $2-$		CRSS CRSS CRSS CRSS	$\begin{aligned} & 4 \mathrm{PF} \\ & 4 \mathrm{PF} \\ & 4 \mathrm{PF} \\ & 4 \mathrm{PF} \end{aligned}$	19 19 $1 M$ $1 M$
M114 M116 M117 M119	$\begin{aligned} & \text { SI } \\ & \text { SI } \\ & \text { SI } \\ & \text { SI } \end{aligned}$	P $\begin{aligned} & \text { P } \\ & N \\ & N \\ & \mathbf{N}\end{aligned}$	$\begin{aligned} & \text { IG } \\ & 1 G \\ & 1 G \\ & 1 G \end{aligned}$		$\begin{aligned} & \text { 3N160 } \\ & \text { 3N161 } \\ & \text { 3N160 } \\ & \text { 3N161 } \end{aligned}$	$\begin{aligned} & 40 \\ & 30 \\ & 50 \\ & 80 \end{aligned}$	-8.200	2-4	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & \text { CRSS } \\ & \hline \end{aligned}$	$\begin{array}{r} 4 \mathrm{Pf} \\ 10 \mathrm{PF} \\ 8 \mathrm{PF} \\ 8 \mathrm{PF} \end{array}$	$\begin{aligned} & 1 M \\ & 1 M \\ & 1 M \\ & 1 M \end{aligned}$
M511 MSIIA M517 MEM51	SI SI SI GI	P	$\begin{aligned} & \text { IG } \\ & \text { IG } \\ & \text { IG } \\ & \text { IG } \end{aligned}$		3N161 3N161 3N161 3N174	$\begin{aligned} & 30 \\ & 30 \\ & 30 \\ & 30 \end{aligned}$	$\begin{gathered} .01 \\ -.01 \\ .3- \end{gathered}$	$\begin{aligned} & 1 . \\ & 1 . \\ & 1 . \end{aligned}$		CRSS CRSS CRSS CRSS	$\begin{array}{r} \text { 4 PF } \\ 2.5 \mathrm{PF} \\ 7 \mathrm{PF} \\ 2.5 \mathrm{PF} \end{array}$	$\begin{aligned} & 1 M \\ & 1 M \\ & 1 M \\ & 1 M \end{aligned}$
MEMSIIC MEM517 MEMS17A MEMS17C	$\begin{aligned} & \mathbf{G I} \\ & \mathbf{G I} \\ & \mathbf{G I} \\ & \mathbf{G I} \end{aligned}$	P $\begin{aligned} & \text { P } \\ & p \\ & p\end{aligned}$	$\begin{array}{r} 1 G \\ \text { IG } \\ \text { IG } \\ \text { IG } \end{array}$		3N174	$\begin{aligned} & 25 \\ & 25 \\ & 25 \\ & 25 \\ & \hline \end{aligned}$	$\begin{array}{r} 32 \\ * 25- \\ * 25 \\ * 20 \\ \hline \end{array}$	$\begin{array}{r} 1- \\ 1.2- \\ 1.2- \\ 1.2- \\ \hline \end{array}$		$\begin{aligned} & \text { CRSS } \\ & \hline \end{aligned}$	$\begin{array}{r} 4 \mathrm{PF} \\ 10 \mathrm{PF} \\ 10 \mathrm{PF} \\ 15 \mathrm{PF} \\ \hline \end{array}$	$\begin{aligned} & 1 M \\ & 1 M \\ & 1 M \\ & 1 M \end{aligned}$

TRANSISTOR INTERCHANGEABILITY NONREGISTERED FIELD-EFFECT TRANSISTORS

TYPE NUMBER		$\begin{aligned} & 5 \\ & 5 \\ & \hline \end{aligned}$		$\begin{aligned} & \frac{8}{8} \\ & \frac{5}{3} \\ & \frac{5}{8} \\ & 8 \end{aligned}$	π REPLACEMENT OR NBAREST ECUIVALENT	Rated DRAINOATE VOLTACE (V)	EECTRICAL CHARACTERISTICS					
							$\begin{aligned} & \text { Ioss } \\ & \text { *Io(on) } \end{aligned}$	\|rad	C_{155} max (PF)	OTHEX PARAMETE		
							$\begin{array}{\|ll\|} \hline M I N & M A X \\ (m A) & (m A) \\ \hline \end{array}$	$\begin{array}{\|rl\|} \hline \text { MIN } & \text { MaX } \\ \text { (mmho) } & \text { (mmho) } \\ \hline \end{array}$		\qquad		
MEM520 MEM520C MEM550 MEMS50C	GI GI GI GI		$\begin{aligned} & I G \\ & I G \\ & I G \\ & I G \end{aligned}$		$\begin{aligned} & \text { 3N174 } \\ & \text { 3N174 } \\ & \text { 3N208 } \\ & \text { 3N207 } \end{aligned}$	$\begin{aligned} & 40 \\ & 25 \\ & 30 \\ & 25 \end{aligned}$	$\begin{array}{r} 3- \\ 3 \\ \cdot 1.5 \\ \cdot 1.5 \end{array}$	1. 1. . 5		CRSS CRSS CRSS CRSS	$\begin{array}{r} 2.5 \mathrm{PF} \\ 4 \mathrm{PF} \\ 1.1 \mathrm{PF} \\ 4 \mathrm{PF} \end{array}$	$\begin{aligned} & 1 M \\ & 1 M \\ & 1 M \\ & 1 M \end{aligned}$
MEM551 MEM551C MEM554 MEM554C	$\begin{aligned} & \mathbf{G I} \\ & \mathbf{G I} \\ & \mathbf{G} \\ & \mathbf{G I} \end{aligned}$		$\begin{aligned} & \text { IG } \\ & \text { IG } \\ & \text { IG } \\ & \text { IG } \end{aligned}$		$\begin{aligned} & \text { 3N208 } \\ & \text { 3N207 } \\ & \text { 3N201 } \\ & \text { 3N2O1 } \end{aligned}$	$\begin{aligned} & 30 \\ & 25 \\ & 20 \\ & 20 \end{aligned}$	*1.5- *1.5- $\begin{aligned} & 3-30 \\ & 3-30 \end{aligned}$	$\begin{aligned} & .5- \\ & .5- \\ & 10-13 \\ & 8-11 \end{aligned}$		$\begin{aligned} & \text { CRSS } \\ & \text { CRSS } \end{aligned}$	$\begin{array}{r} 1.1 \mathrm{PF} \\ 4 \mathrm{PF} \end{array}$	$\begin{aligned} & 1 M \\ & 1 M \end{aligned}$
MEM556 MEM556C MEM557 MEM557C	$\left\lvert\, \begin{aligned} & \mathbf{G I} \\ & \mathbf{G I} \\ & \mathbf{G I} \\ & \mathbf{G I} \end{aligned}\right.$		$\begin{aligned} & \text { IG } \\ & \text { IG } \\ & \text { IG } \\ & \text { IG } \end{aligned}$		$\begin{aligned} & \text { 3N174 } \\ & 3 \mathrm{~N} 174 \end{aligned}$	$\begin{aligned} & 50 \\ & 45 \\ & 20 \\ & 20 \end{aligned}$	3 +3 3 $3-$ $3-$	8 .8 $8-$ $6-$	5	CRSS CRSS	$\begin{aligned} & .5 \mathrm{PF} \\ & .7 \mathrm{PF} \end{aligned}$	$\begin{aligned} & 1 M \\ & 1 M \end{aligned}$
MEM560 MEM560C MEM562 MEM562C	GI GI GI GI		$\begin{aligned} & \text { IG } \\ & \text { IG } \\ & \text { IG } \\ & \text { IG } \end{aligned}$		3NI61 3N161	$\begin{aligned} & 35 \\ & 30 \\ & 30 \\ & 30 \end{aligned}$	$\begin{array}{r} 15- \\ * 10 \\ * 5 \\ * 5 \end{array}$	$\begin{aligned} & 2- \\ & 2- \\ & 1 . \\ & 1 . \end{aligned}$	$\begin{array}{r} 9 \\ 11 \\ 4 \\ 5 \end{array}$	CRSS CRSS CRSS CRSS	$\begin{array}{r} \text { 3.5 PF } \\ \text { 4.5 PF } \\ \text {. } 5 \mathrm{PF} \\ .6 \mathrm{PF} \end{array}$	$\begin{aligned} & 1 M \\ & 1 M \\ & 1 M \\ & 1 M \end{aligned}$
MEM563 MEM564C MEM57IC MEM575	$\begin{aligned} & \mathbf{G} 1 \\ & \mathbf{G} 1 \\ & \mathbf{G} 1 \\ & \mathbf{G} \mid \end{aligned}$		$\begin{aligned} & \text { IG } \\ & \text { IG } \\ & \text { IG } \\ & \text { IG } \end{aligned}$			$\begin{aligned} & 30 \\ & 20 \\ & 30 \\ & 25 \end{aligned}$	$\begin{array}{r} 15- \\ 3- \\ 3- \\ * 50 \end{array}$	$\begin{array}{r} 2- \\ 8- \\ 8- \\ 10 \end{array}$	$\begin{array}{r} 5 \\ 8 \\ 6 \\ 50 \end{array}$	CRSS CRSS CRSS CRSS	$\begin{aligned} & .6 \mathrm{PF} \\ & .5 \mathrm{PF} \\ & 20 \mathrm{PF} \end{aligned}$	$\begin{aligned} & 1 M \\ & 1 M \\ & 1 M \\ & 1 M \end{aligned}$
MEM614 MEM655 MEM660 MFE2000	GI GI GI M		IG IG IG J		$\begin{aligned} & 3 \mathrm{~N} 203 \\ & \text { 3N214 } \\ & \text { 2N4416 } \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \\ & 20 \\ & 25 \end{aligned}$	$\begin{array}{r} 1-20 \\ 1-20 \\ -10 \\ 4-10 \end{array}$	$\begin{aligned} & 6-10 \\ & 6 \\ & 2.5-6 \end{aligned}$	$\begin{aligned} & 8 \\ & 7 \\ & 7 \\ & 5 \end{aligned}$	CR5S	$\begin{aligned} & 1 \mathrm{PF} \\ & 1 \mathrm{PF} \end{aligned}$	$1 \mathrm{M}$
MFE2001 MFE2004 MFE2005 MFE2006	$\begin{aligned} & M \\ & M \\ & M \\ & M \end{aligned}$		$\begin{aligned} & \mathbf{J} \\ & \mathbf{j} \\ & \mathbf{j} \\ & \mathbf{j} \end{aligned}$		$\begin{aligned} & \text { 2N5247 } \\ & \text { 2N4860 } \\ & \text { 2N4859 } \\ & \text { 2N4859 } \end{aligned}$	$\begin{aligned} & 25 \\ & 30 \\ & 30 \\ & 30 \end{aligned}$	$\begin{aligned} & 8-20 \\ & 8- \\ & 15- \\ & 30- \end{aligned}$	4-8	$\begin{array}{r} 5 \\ 16 \\ 16 \\ 16 \end{array}$	CRSS CRSS CRSS CRSS	$\begin{aligned} & 1 \mathrm{PF} \\ & 5 \mathrm{PF} \\ & 5 \mathrm{PF} \\ & 5 \mathrm{PF} \end{aligned}$	$\begin{aligned} & 1 M \\ & 1 M \\ & 1 M \\ & 1 M \end{aligned}$
MFE2007 MFE2008 MFE2009 MFE2010	$\begin{aligned} & M \\ & M \\ & M \\ & M \end{aligned}$	N N N N N	$\begin{aligned} & \mathbf{J} \\ & \mathbf{j} \\ & \mathbf{J} \\ & \mathbf{j} \end{aligned}$		$\begin{aligned} & \text { 2N4860 } \\ & \text { 2N4859 } \\ & \text { 2N4859 } \\ & \text { 2N4859 } \end{aligned}$	$\begin{aligned} & \mathbf{2 5} \\ & \mathbf{2 5} \\ & \mathbf{2 5} \\ & \mathbf{2 5} \end{aligned}$	$\begin{array}{r} 8- \\ 20- \\ 50- \\ 15- \end{array}$		$\begin{aligned} & 30 \\ & 30 \\ & 30 \\ & 50 \end{aligned}$	CRSS CRSS CRSS CRSS	$\begin{aligned} & 15 \mathrm{PF} \\ & 15 \mathrm{PF} \\ & 15 \mathrm{PF} \\ & 20 \mathrm{PF} \end{aligned}$	$\begin{aligned} & 1 M \\ & 1 M \\ & 1 M \\ & 1 M \end{aligned}$
$\begin{aligned} & \text { MFE2011 } \\ & \text { MFE2012 } \\ & \text { MFE2093 } \\ & \text { MFE2094 } \end{aligned}$	$\begin{aligned} & M \\ & M \\ & M \\ & M \end{aligned}$	$\begin{aligned} & \mathbf{N} \\ & \mathbf{N} \\ & \mathbf{N} \\ & \mathbf{N} \end{aligned}$	$\begin{aligned} & \mathrm{J} \\ & \mathrm{~J} \\ & \mathbf{J} \\ & \mathrm{~J} \end{aligned}$		$\begin{aligned} & \text { 2N5358 } \\ & \text { 2N5359 } \end{aligned}$	$\begin{aligned} & 25 \\ & 25 \\ & 50 \\ & 50 \end{aligned}$	$\begin{gathered} 40 . \\ 100 . \\ .1-.7 \\ .4-1.4 \end{gathered}$	$.25-.5$	$\begin{array}{r} 50 \\ 50 \\ 6 \\ 6 \end{array}$	CRSS CRSS CRSS CRSS	$\begin{aligned} & 20 \mathrm{PF} \\ & 20 \mathrm{PF} \\ & 2 \mathrm{PF} \\ & 2 \mathrm{PF} \end{aligned}$	$\begin{aligned} & 1 M \\ & 1 M \\ & 1 M \\ & 1 M \end{aligned}$
MFE2095 MFE2133 MFE3001 MFE3002	$\begin{aligned} & M \\ & M \\ & M \\ & M \\ & \hline \end{aligned}$		$\begin{aligned} & \text { J } \\ & \text { IG } \\ & \text { IG } \end{aligned}$		$\begin{aligned} & \text { 2N5360 } \\ & \text { 2N4860 } \\ & \text { 3N128 } \\ & \text { 3N169 } \\ & \hline \end{aligned}$	$\begin{aligned} & 50 \\ & 30 \\ & 30 \\ & 20 \end{aligned}$	$\begin{gathered} 1-3 \\ 25- \\ .5-6 \end{gathered}$	$\begin{aligned} & .4-8 \\ & 12- \\ & .7-3.5 \end{aligned}$	$\begin{array}{r} 6 \\ 20 \\ 5 \\ 5 \\ \hline \end{array}$	CRSS CRSS CRSS CRSS	$\begin{array}{r} 2 \mathrm{PF} \\ 5 \mathrm{PF} \\ 1.5 \mathrm{PF} \\ 1 \mathrm{PF} \end{array}$	$\begin{aligned} & 1 M \\ & 1 M \\ & 1 M \\ & 1 M \end{aligned}$

TRANSISTOR INTERCHANGEABILITY NONREGISTERED FIELD-EFFECT TRANSISTORS

TYPE NUMAER		$\begin{aligned} & k \\ & \frac{k}{2} \\ & \hline \end{aligned}$		$\begin{aligned} & \mathbf{Z} \\ & \frac{2}{2} \\ & \mathbf{S} \\ & \frac{2}{3} \\ & \mathbf{3} \\ & \mathbf{S} \end{aligned}$	7 REPLACEMENT OR MEAREST EQUIVALENT	RATED DRAINGATE VOLTAGE (V)	EECTRICAL CHARACTERISTICS						
				foss ${ }^{*}{ }^{1}($ (on)			lval	Ciss max (pF)	OTHER PANAMSTER				
				$\begin{array}{\|ll\|} \hline \text { MIN } & M A X \\ (\mathrm{~mA}) & (\mathrm{mA}) \\ \hline \end{array}$			$\begin{array}{\|rl\|} \text { MIN } & \text { MaX } \\ \text { (mohe) } & \text { (manhe) } \end{array}$		$\begin{array}{cc} \text { sYMBO: MAX ef } \\ & \\ \hline \end{array}$				
$\begin{aligned} & \text { MFE3003 } \\ & \text { MFE3004 } \\ & \text { MFE3005 } \\ & \text { MFE3006 } \end{aligned}$	M M M M	P \mathbf{N} \mathbf{N} \mathbf{N}	IG IG IG IG			3N156 3N203	$\begin{aligned} & 20 \\ & 20 \\ & 20 \\ & 35 \end{aligned}$	$\begin{aligned} & 2-10 \\ & 2-10 \\ & 2-18 \end{aligned}$	2. 2. 8-18	$\begin{array}{r} 5 \\ 4.5 \\ 4.5 \\ 6 \end{array}$	CRSS CRSS CRSS	$\begin{aligned} & 1 \mathrm{PF} \\ & .2 \mathrm{PF} \\ & .2 \mathrm{PF} \end{aligned}$	$\begin{aligned} & 1 M \\ & 1 M \\ & 1 M \end{aligned}$
$\begin{aligned} & \text { MFE3007 } \\ & \text { MFE3008 } \\ & \text { MFE3020 } \\ & \text { MFE3021 } \end{aligned}$	M M M M	N \mathbf{N} \mathbf{P} \mathbf{P}	$\begin{aligned} & \text { IG } \\ & \text { IG } \\ & \text { IG } \\ & \text { IG } \end{aligned}$			3 N 2 OI 3N203 3N207	$\begin{aligned} & 35 \\ & 35 \\ & 25 \\ & 25 \end{aligned}$	$\begin{array}{r} 5-20 \\ 2-20 \\ * 10-75 \\ * 10-75 \end{array}$	$\begin{aligned} & 10-18 \\ & 8-18 \\ & .5- \\ & .5- \end{aligned}$	$\begin{array}{r} 5.5 \\ 6 \\ 7 \\ 7 \end{array}$	$\begin{aligned} & \text { CRSS } \\ & \text { CRSS } \end{aligned}$	$\begin{aligned} & \text { 1.5 PF } \\ & \text { 1.5 PF } \end{aligned}$	$\begin{aligned} & 1 M \\ & 1 M \end{aligned}$
$\begin{aligned} & \text { MFE4007 } \\ & \text { MFE4008 } \\ & \text { MFE4009 } \\ & \text { MFE4010 } \end{aligned}$	M M M M		$\begin{aligned} & \mathbf{j} \\ & \mathbf{j} \\ & \mathbf{j} \end{aligned}$			$\begin{aligned} & 40 \\ & 40 \\ & 40 \\ & 40 \end{aligned}$	$\begin{aligned} & .5-1 \\ & .8-1.6 \\ & 1.5-3 \\ & 2.5-5 \end{aligned}$	$\begin{gathered} .9-2.7 \\ 1-3 \\ 1.5-3.5 \\ 2-4 \end{gathered}$	$\begin{aligned} & 7 \\ & 7 \\ & 7 \\ & 7 \end{aligned}$	CRSS CRSS CRSS CRSS	$\begin{aligned} & 2 \mathrm{PF} \\ & 2 \mathrm{PF} \\ & 2 \mathrm{PF} \\ & 2 \mathrm{PF} \end{aligned}$	$\begin{aligned} & 1 M \\ & 1 M \\ & 1 M \\ & 1 M \end{aligned}$	
MFELOII MPF 102 MPF108 MFE4012	M M M M		$\begin{aligned} & \mathbf{j} \\ & \mathbf{j} \\ & \mathbf{j} \end{aligned}$		$\begin{aligned} & \text { 2N3819 } \\ & \text { 2N3819 } \end{aligned}$	$\begin{aligned} & 40 \\ & 25 \\ & 25 \\ & 40 \end{aligned}$	$\begin{array}{r} 4-8 \\ 2-20 \\ 1.5-24 \\ 7-14 \end{array}$	$\begin{array}{r} 2.2-4.5 \\ 2-7.5 \\ 2-7.5 \\ 2.5-5 \end{array}$	$\begin{array}{r} 7 \\ 7 \\ 6.5 \\ 7 \end{array}$	CRSS CRSS CRSS CRSS	$\begin{array}{r} 2 \mathrm{PF} \\ 3 \mathrm{PF} \\ 2.5 \mathrm{PF} \\ 2 \mathrm{PF} \end{array}$	$\begin{aligned} & 1 M \\ & 1 M \\ & 1 M \\ & 1 M \end{aligned}$	
MMT3823 MPF102 MPF103 MPF104	$\begin{aligned} & M \\ & M \\ & M \\ & M \end{aligned}$	N \mathbf{N} \mathbf{N} \mathbf{N}	$\begin{aligned} & \mathbf{j} \\ & \mathbf{j} \\ & \mathbf{j} \\ & \mathbf{j} \end{aligned}$	RF	2N3823 2N3819 2N5953 2N5952	$\begin{aligned} & 30 \\ & 25 \\ & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & 5-20 \\ & 2-20 \\ & 1-5 \\ & 2-9 \end{aligned}$	$\begin{gathered} 3-8 \\ 2-7.5 \\ 1-5 \\ 1.5-5.5 \end{gathered}$	$\begin{aligned} & 7 \\ & 7 \\ & 7 \\ & 7 \end{aligned}$	$\begin{aligned} & \text { CRSS } \\ & \text { CRSS } \\ & \text { CRSS } \\ & \text { CRSS } \end{aligned}$	$\begin{aligned} & 3 \mathrm{PF} \\ & 3 \mathrm{PF} \\ & 3 \mathrm{PF} \\ & 3 \mathrm{PF} \end{aligned}$	$\begin{aligned} & 1 M \\ & 1 M \\ & 1 M \\ & 1 M \end{aligned}$	
MPF105 MPF106 MPF107 MPF108	$\begin{aligned} & M \\ & M \\ & M \\ & M \end{aligned}$	N \mathbf{N} \mathbf{N} \mathbf{N}	$\begin{aligned} & \mathbf{J} \\ & \mathbf{J} \\ & \mathbf{J} \\ & \mathbf{J} \end{aligned}$	RF	2N5951 2N5952 2N5950 2N3819	$\begin{aligned} & 25 \\ & 25 \\ & 25 \\ & 25 \end{aligned}$	$\begin{array}{r} 4-16 \\ 4-10 \\ 8-20 \\ 1.5-24 \end{array}$	$\begin{aligned} & 2-6 \\ & 2.5- \\ & 4- \\ & 2-7.5 \end{aligned}$	$\begin{array}{r} 7 \\ 5 \\ 5 \\ 6.5 \end{array}$	CRSS CR5S CRSS Nf	$\begin{array}{r} \text { 3 PF } \\ \text { 1.2 PF } \\ \text { 1.2 PF } \\ \text { 2.5 } \mathrm{DB} \end{array}$	$\begin{aligned} & 1 M \\ & 1 M \\ & 1 M \\ & 1 K \end{aligned}$	
MPF109 MPF111 MPFI 12 MPF1 20	$\begin{aligned} & M \\ & M \\ & M \\ & M \end{aligned}$	N \mathbf{N} \mathbf{N} \mathbf{N}	$\begin{gathered} \text { J } \\ \text { J } \\ \text { IG } \end{gathered}$	GP GP RF	2N3819 2N3819 2N3819	$\begin{aligned} & 25 \\ & 20 \\ & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & .5-24 \\ & .5-20 \\ & 1-25 \\ & 2-18 \end{aligned}$	$\begin{aligned} & .8-6 \\ & .5-3 \\ & 1.7 .5 \\ & 8-18 \end{aligned}$	$\begin{array}{r} 7 \\ 4.5 \\ 4.5 \end{array}$	$\begin{aligned} & \text { NF } \\ & \text { CRSS } \\ & \text { CRSS } \end{aligned}$	$\begin{array}{r} 2.5 \mathrm{DB} \\ 1.5 \mathrm{PF} \\ 7 \mathrm{PF} \end{array}$	$\begin{aligned} & 1 K \\ & 1 M \\ & 1 M \end{aligned}$	
MPF121 MPF 122 MPF161 NF500	$\left\|\begin{array}{l} M \\ M \\ M \\ \mathrm{NA} \end{array}\right\|$		$\begin{aligned} & \text { IG } \\ & \text { IG } \\ & \text { J } \end{aligned}$	GP	$\begin{aligned} & \text { 2N5462 } \\ & \text { 2N3823 } \end{aligned}$	$\begin{aligned} & 25 \\ & 25 \\ & 40 \\ & 25 \end{aligned}$	$\begin{array}{r} 5-30 \\ 2-20 \\ .5-14 \\ 1-30 \end{array}$	$\begin{gathered} 10-20 \\ 8-18 \\ .8-6 \\ 2- \end{gathered}$	$\begin{array}{r} 4.5 \\ 4.5 \\ 7 \\ 5 \end{array}$	$\begin{gathered} \text { CRSS } \\ \text { CRSS } \\ \text { NF } \\ \text { CRSS } \end{gathered}$	$\begin{array}{r} 6 \mathrm{PF} \\ 7 \mathrm{PF} \\ 2.5 \mathrm{DB} \\ 1.2 \mathrm{PF} \end{array}$	$\begin{aligned} & 1 M \\ & 1 M \\ & 1 K \\ & 1 M \end{aligned}$	
NF501 NF506 NF510 NF511	$\left\|\begin{array}{l} \mathrm{NA} \\ \mathrm{NA} \\ \mathrm{NA} \\ \mathrm{NA} \end{array}\right\|$	N N N N	$\begin{aligned} & \text { J } \\ & \text { J } \\ & \text { J } \end{aligned}$		2N3823 2N4418 2N4861 2N4861	$\begin{aligned} & 15 \\ & 25 \\ & 30 \\ & 20 \end{aligned}$	$\begin{aligned} & 1-30 \\ & 4-15 \\ & 5- \\ & 5 . \end{aligned}$	$\begin{array}{r} 2- \\ 2.5 \end{array}$	$\begin{array}{r} 5 \\ 4 \\ 20 \\ 20 \end{array}$	$\begin{aligned} & \text { CRSS } \\ & \text { CRSS } \end{aligned}$	$\begin{array}{r} 1.2 \mathrm{PF} \\ 1 \mathrm{PF} \end{array}$	$\begin{aligned} & 1 M \\ & 1 M \end{aligned}$	
NF520 NF521 NF522 NF523	$\begin{array}{\|c\|} \mathrm{NA} \\ \mathrm{NA} \\ \mathrm{NA} \\ \mathrm{NA} \end{array}$	$\begin{aligned} & \mathbf{N} \\ & \mathbf{N} \\ & \mathbf{N} \\ & \mathbf{N} \end{aligned}$	J J J		$\begin{aligned} & \text { 2N3822 } \\ & \text { 2N3821 } \\ & \text { 2N3822 } \\ & \text { 2N3821 } \\ & \hline \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \\ & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 1-10 \\ & .1-2 \\ & 1-10 \\ & .1-2 \end{aligned}$. 5 - .4 .5- .4					

TRANSISTOR INTERCHANGEABILITY
 NONREGISTERED FIELD-EFFECT TRANSISTORS

TYPE NUMEER	\qquad			$\begin{aligned} & \frac{3}{6} \\ & \frac{2}{3} \\ & \frac{8}{3} \\ & \frac{1}{3} \\ & 3 \end{aligned}$	II REPLACEMENT OR NEAREST EQUVVALENT	RATED DRAINGATE VOLTAGE(V)	EIECTRICAL CHARACTERISTICS						
				IDSS ${ }^{1} \mathrm{D}\left(\mathrm{~m}_{1}\right)$			lyad	$c_{\text {iss }}$ max (pF)	OTHER PARAMETER				
				$\left\|\begin{array}{ll} \text { MIN } & \text { MAX } \\ (\mathrm{mA}) & (\mathrm{mA}) \end{array}\right\|$			MIN MAX (mmho) (mmho)		SYMBCOL	MAX	$\begin{aligned} & f \\ & (\mathrm{~Hz}) \end{aligned}$		
NF530 NF531 NF532 NF533	$\left.\begin{array}{l\|l} \mathrm{NA} \\ \mathrm{NA} \\ \mathrm{NA} \\ \mathrm{NA} \end{array} \right\rvert\,$	N \mathbf{N} N N	$\begin{aligned} & \mathbf{J} \\ & \mathbf{J} \\ & \mathbf{J} \\ & \mathbf{J} \end{aligned}$			$\begin{aligned} & \text { 2N3459 } \\ & \text { 2N3460 } \\ & \text { 2N3459 } \\ & \text { 2N3460 } \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \\ & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 1-10 \\ & .1-2 \\ & 1-10 \\ & .1-2 \end{aligned}$	$\begin{aligned} & .5 \\ & .4- \\ & .5 \\ & .4 \end{aligned}$				
NF580 NF581 NF582 NF583	$\left\|\begin{array}{l} \mathrm{NA} \\ \mathrm{NA} \\ \mathrm{NA} \\ \mathrm{NA} \end{array}\right\|$	N N N N	$\begin{aligned} & \text { J } \\ & \text { J } \\ & \text { J } \end{aligned}$				$\begin{aligned} & 25 \\ & 25 \\ & 25 \\ & 25 \end{aligned}$			$\begin{aligned} & \mathbf{2 5} \\ & \mathbf{2 5} \\ & \mathbf{2 5} \\ & \mathbf{2 5} \end{aligned}$	CRSS CRSS CRSS CRSS	$\begin{aligned} & 13 \mathrm{PF} \\ & 13 \mathrm{PF} \\ & 13 \mathrm{PF} \\ & 13 \mathrm{PF} \end{aligned}$	$\begin{aligned} & 1 M \\ & 1 M \\ & 1 M \\ & 1 M \end{aligned}$
NF584 NF585 NF4445 NF4446	$\left\|\begin{array}{l} N A \\ N A \\ N A \\ N A \end{array}\right\|$	N N N N	$\begin{aligned} & \mathbf{J} \\ & \mathbf{J} \\ & \mathbf{J} \\ & \mathbf{J} \end{aligned}$			$\begin{aligned} & 15 \\ & 15 \\ & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & 150 \\ & 100 \end{aligned}$		$\begin{aligned} & 25 \\ & 25 \\ & 50 \\ & 50 \end{aligned}$	CRSS CRSS CRSS CRSS	$\begin{aligned} & 13 \mathrm{PF} \\ & 13 \mathrm{PF} \\ & 25 \mathrm{PF} \\ & 25 \mathrm{PF} \end{aligned}$	$\begin{aligned} & 1 M \\ & 1 M \\ & 1 M \\ & 1 M \end{aligned}$	
NF4447 NF4448 NF5457 NF5458	$\left\|\begin{array}{l} N A \\ N A \\ N A \\ N A \end{array}\right\|$		$\begin{aligned} & \mathbf{j} \\ & \mathbf{j} \\ & \mathbf{j} \\ & \mathbf{j} \end{aligned}$		$\begin{aligned} & \text { 2N3459 } \\ & \text { 2N3459 } \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \\ & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & 150- \\ & 100- \\ & 1-5 \\ & 2-9 \end{aligned}$	$\begin{gathered} 1-5 \\ 1.5-5.5 \end{gathered}$	$\begin{array}{r} 50 \\ 50 \\ 7 \\ 7 \end{array}$	CRSS CRSS CRSS CRSS	$\begin{array}{r} 25 \mathrm{PF} \\ 25 \mathrm{PF} \\ 3 \mathrm{PF} \\ 3 \mathrm{PF} \end{array}$	$\begin{aligned} & 1 M \\ & 1 M \\ & 1 M \\ & 1 M \end{aligned}$	
NF5459 NF5485 NF5486 NF5555	$\begin{aligned} & \text { NA } \\ & \text { NA } \\ & \text { NA } \\ & N A \end{aligned}$	N \mathbf{N} \mathbf{N} \mathbf{N}	$\begin{aligned} & \mathbf{j} \\ & \mathbf{j} \\ & \mathbf{j} \\ & \mathbf{j} \end{aligned}$		2N3458 2N4416 2N4416	$\begin{aligned} & 25 \\ & 25 \\ & 25 \\ & 25 \end{aligned}$	$\begin{array}{r} 4-16 \\ 4-10 \\ 8-20 \\ 15- \end{array}$	$\begin{gathered} 2-6 \\ 3- \\ 3.5- \end{gathered}$	$\begin{aligned} & 7 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & \text { CRSS } \\ & \text { CRSS } \\ & \text { CRSS } \\ & \text { CRSS } \end{aligned}$	$\begin{array}{r} 3 \mathrm{PF} \\ 1 \mathrm{PF} \\ 1 \mathrm{PF} \\ 1.2 \mathrm{PF} \end{array}$	$\begin{aligned} & 1 M \\ & 1 M \\ & 1 M \\ & 1 M \end{aligned}$	
$\begin{array}{\|l\|} \mathbf{N F 5 6 3 8} \\ \text { NF5639 } \\ \text { NF5640 } \\ \text { NF5653 } \end{array}$	$\begin{aligned} & \mathrm{NA} \\ & \mathrm{NA} \\ & \mathrm{NA} \\ & \mathrm{NA} \end{aligned}$	N N N N	$\begin{aligned} & \mathrm{J} \\ & \mathrm{~J} \\ & \mathrm{~J} \\ & \mathrm{~J} \end{aligned}$		$\begin{aligned} & \text { 2N4391 } \\ & \text { 2N4392 } \\ & \text { 2N4393 } \\ & \text { 2N4856 } \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \\ & 30 \\ & 30 \end{aligned}$	$\begin{array}{r} 50 \\ 25- \\ 5- \\ 40 \end{array}$		$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$	CRSS CRSS CRSS CRSS	$\begin{array}{r} 4 \mathrm{PF} \\ 4 \mathrm{PF} \\ 4 \mathrm{PF} \\ 3.5 \mathrm{PF} \end{array}$	$\begin{aligned} & 1 M \\ & 1 M \\ & 1 M \\ & 1 M \end{aligned}$	
$\begin{aligned} & \text { NFS654 } \\ & \text { SU2028 } \\ & \text { SU2029 } \\ & \text { SU2031 } \end{aligned}$	$\begin{aligned} & \mathbf{N} \mathbf{n} \\ & \mathbf{N} \\ & \mathbf{N} \\ & \mathbf{N} \\ & \mathbf{N} \end{aligned}$	$\begin{aligned} & N \\ & N \\ & N \\ & N \end{aligned}$	$\begin{aligned} & \mathbf{J} \\ & \mathbf{J} \\ & \mathbf{J} \\ & \mathbf{J} \end{aligned}$		2N4857	$\begin{aligned} & 30 \\ & 50 \\ & 50 \\ & 50 \end{aligned}$	$\begin{aligned} & 15- \\ & .25-1.3 \\ & .8-3 \\ & .8-3 \end{aligned}$	$\begin{aligned} & .3- \\ & .4 \\ & \hline \end{aligned}$	10	CRSS	3.5 PF	1 M	
$\begin{aligned} & \text { SU2032 } \\ & \text { SU2033 } \\ & \text { SU2034 } \\ & \text { SU2035 } \end{aligned}$	N IN N N IN	N \mathbf{N} \mathbf{N} \mathbf{N}	$\begin{aligned} & \mathbf{J} \\ & \mathbf{J} \\ & \mathbf{J} \\ & \mathbf{j} \end{aligned}$		2N5545 2N5545 2N5547 2N5547	$\begin{aligned} & 50 \\ & 50 \\ & 50 \\ & 50 \end{aligned}$	$\begin{aligned} & 1-10 \\ & 5-20 \\ & 1-10 \\ & 5-20 \end{aligned}$	$\begin{aligned} & 1.5- \\ & 2.5- \\ & 1.5- \\ & 2.5- \end{aligned}$					
$\begin{aligned} & \text { SU2098 } \\ & \text { SU2098A } \\ & \text { SU2098B } \\ & \text { SU2099 } \end{aligned}$	IN	$\begin{aligned} & \mathrm{N} \\ & \mathrm{~N} \\ & \mathrm{~N} \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & \mathbf{J} \\ & \mathbf{J} \\ & \mathbf{J} \\ & \mathbf{J} \end{aligned}$		2N5545 2N5545 2N5547	$\begin{aligned} & 30 \\ & 50 \\ & 50 \\ & 30 \end{aligned}$	$\begin{aligned} & 1-8 \\ & 1-8 \\ & 1-8 \\ & 1-8 \end{aligned}$	$\begin{array}{r} 1- \\ 1.5 \\ 1.5- \\ 1 \end{array}$					
SU2099A 5X3819 5X3820 TIS 14	$\begin{aligned} & \mathrm{IN} \\ & \mathrm{TI} \\ & \mathrm{TI} \\ & \mathrm{TI} \end{aligned}$	N \mathbf{N} \mathbf{P} \mathbf{N}	$\begin{aligned} & \mathrm{J} \\ & \mathrm{~J} \\ & \mathrm{~J} \\ & \mathrm{~J} \end{aligned}$	AF	2N5547 2N5949/53 A5T5460/62 TIS14	$\begin{aligned} & 50 \\ & 25 \\ & 20 \\ & 30 \end{aligned}$	$\begin{aligned} & 1-8 \\ & 2-20 \\ & .3-15 \\ & .5-15 \end{aligned}$	$\begin{aligned} & 1.5- \\ & 2-6.5 \\ & .8-5 \\ & 1-7.5 \end{aligned}$	$\begin{array}{r}8 \\ 32 \\ 8 \\ \hline\end{array}$	$\begin{aligned} & \text { CRSS } \\ & \text { CRSS } \\ & \text { CRSS } \\ & \hline \end{aligned}$	$\begin{array}{r} 4 \mathrm{PF} \\ 16 \mathrm{PF} \\ 4 \mathrm{PF} \end{array}$	$\begin{aligned} & 1 \mathrm{M} \\ & 1 \mathrm{M} \\ & 1 \mathrm{M} \end{aligned}$	

TRANSISTOR INTERCHANGEABILITY NONREGISTERED FIELD-EFFECT TRANSISTORS

TYPE NUMEER		$\left\lvert\, \begin{array}{ll} \frac{2}{2} & E \\ \frac{3}{3} & E \\ 2 & 3 \end{array}\right.$		7853333	$\begin{gathered} \text { II } \\ \text { RERACEMENT } \\ \text { OR NEAREST } \\ \text { ECUNALENT } \end{gathered}$	RATED DRAN GATE VOLTAGE (V)	EECTRICAL CHARACTEASIICS						
				loss ${ }^{-10}\left(e_{n}\right)$			bral	Cite max (PF)	OHTE PARAMETER				
				$\begin{array}{ll} \operatorname{MIN} & M A X \\ (\mathrm{~mA}) & (\mathrm{mA}) \end{array}$			$\begin{array}{\|cl\|} \text { MWN } & \text { MNX } \\ \text { (nomblo) } & \text { (manho) } \\ \hline \end{array}$		SYMEOL				
$\begin{aligned} & \text { TIS25 } \\ & \text { TIS26 } \\ & \text { TIS27 } \\ & \text { TIS34 } \end{aligned}$	$\begin{aligned} & \pi \\ & \pi \\ & \pi \\ & \pi \end{aligned}$	N N N N N	$\begin{aligned} & \mathbf{J} \\ & \mathbf{j} \\ & \mathbf{j} \\ & \mathbf{j} \end{aligned}$		RF	T1525 7526 TIS27 2N5248	$\begin{aligned} & 30 \\ & 30 \\ & 30 \\ & 30 \end{aligned}$	$\begin{aligned} & .5-8 \\ & .5-8 \\ & .5-8 \\ & 4-20 \end{aligned}$	$\begin{array}{r} 2-6.5 \\ 2-6.5 \\ 2-6.5 \\ 3.5-6.5 \end{array}$	$\begin{aligned} & 6 \\ & 6 \\ & 6 \\ & 6 \end{aligned}$	CRSS CRSS Cass CRSS	$\begin{aligned} & 2 \mathrm{PF} \\ & 2 \mathrm{PF} \\ & 2 \mathrm{PF} \\ & 2 \mathrm{PF} \end{aligned}$	$\begin{aligned} & 1 M \\ & 1 M \\ & 1 M \\ & 1 M \end{aligned}$
$\begin{aligned} & \text { TIS42 } \\ & \text { TIS58 } \\ & \text { TIS59 } \\ & \text { TS67 } \end{aligned}$	$\begin{aligned} & \pi \\ & n \\ & \pi \\ & \pi \\ & \pi \end{aligned}$	N \mathbf{N} \mathbf{N} \mathbf{P}	$\begin{aligned} & \mathbf{J} \\ & \mathbf{J} \\ & \mathbf{J} \\ & \mathbf{J} \end{aligned}$		SW GP GP GP	$\begin{aligned} & \text { n575 } \\ & \text { 2N5952/53 } \\ & \text { 2N5949/51 } \end{aligned}$	$\begin{aligned} & 25 \\ & 25 \\ & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & 10- \\ & 2.5-8 \\ & 6-25 \\ & * 40-120 \end{aligned}$	$\begin{aligned} & 1.3-4 \\ & 2.5-5 \\ & 3.5-6.5 \end{aligned}$	$\begin{array}{r} 18 \\ 6 \\ 6 \\ 10 \end{array}$	CRSS CRSS CRSS CRSS	$\begin{aligned} & 9 \mathrm{PF} \\ & 3 \mathrm{PF} \\ & 3 \mathrm{PF} \\ & 4 \mathrm{PF} \end{aligned}$	$\begin{aligned} & 1 M \\ & 1 M \\ & 1 M \\ & 1 M \end{aligned}$
TIS68 TIS69 TE570 TIS73	$\begin{aligned} & \pi \\ & \pi \\ & \pi \\ & \pi \end{aligned}$	N N N N N	$\left.\begin{aligned} & \mathbf{J} \\ & \mathbf{J} \\ & \mathbf{J} \\ & \mathbf{J} \end{aligned} \right\rvert\,$	GP GP GP SW	TIS69 TIS69 TIS70 71573	$\begin{aligned} & 25 \\ & 25 \\ & 25 \\ & 30 \end{aligned}$	$\begin{aligned} & .5-8 \\ & .5-8 \\ & .5-8 \\ & 50- \end{aligned}$	$\begin{aligned} & 1.6 \\ & 1.6 \\ & 1.6 \end{aligned}$	$\begin{array}{r} 8 \\ 8 \\ 8 \\ 18 \end{array}$	CRSS CRSS CRSS CRSS	$\begin{aligned} & 4 \mathrm{PF} \\ & 4 \mathrm{PF} \\ & 4 \mathrm{PF} \\ & 8 \mathrm{PF} \end{aligned}$	$\begin{aligned} & 1 M \\ & 1 M \\ & 1 M \\ & 1 M \end{aligned}$	
T1574 TIS75 TIS78 T1579	TI	\mathbf{N} \mathbf{N} \mathbf{N} \mathbf{N}	$\begin{aligned} & \mathbf{J} \\ & \mathbf{J} \\ & \mathbf{J} \\ & \mathbf{J} \end{aligned}$	$\begin{aligned} & S W \\ & H V \\ & H V \end{aligned}$	$\begin{aligned} & \text { TIS74 } \\ & \text { TIS75 } \\ & \text { A5T6449 } \\ & \text { AST6450 } \end{aligned}$	$\begin{array}{r} 30 \\ 30 \\ 300 \\ 200 \end{array}$	$\begin{gathered} 20-100 \\ 8-80 \\ 2-10 \\ 2-10 \end{gathered}$	$\begin{aligned} & .75-3 \\ & .75-3 \end{aligned}$	$\begin{aligned} & 18 \\ & 18 \\ & 15 \\ & 15 \end{aligned}$	CRSS CRSS CRSS CRSS	$\begin{aligned} & 8 \mathrm{PF} \\ & 8 \mathrm{PF} \\ & 3 \mathrm{PF} \\ & 3 \mathrm{PF} \end{aligned}$	$\begin{aligned} & 1 M \\ & 1 M \\ & 1 M \\ & 1 M \end{aligned}$	
71588 U110 U112 U146	$\left\lvert\, \begin{array}{l\|} 71 \\ S I \\ S I \\ S I \end{array}\right.$	$\begin{aligned} & \mathbf{N} \\ & \mathbf{P} \\ & \mathbf{P} \\ & \mathbf{P} \end{aligned}$	$\begin{aligned} & \mathrm{J} \\ & \mathrm{~J} \\ & \mathrm{~J} \\ & \mathrm{~J} \end{aligned}$	RF	T1588	$\begin{aligned} & 30 \\ & 20 \\ & 20 \\ & 20 \end{aligned}$	$\begin{gathered} 5-15 \\ .1-1 \\ .9-9 \\ 025- \end{gathered}$	$\begin{gathered} 4.5-7.5 \\ .11- \\ 1- \\ .06- \end{gathered}$	$\begin{array}{r} 4.5 \\ 6 \\ 17 \\ 6 \end{array}$	NF	2 D8	100\%	
U147 U148 U149 U133	$\left\lvert\, \begin{aligned} & \mathbf{S I} \\ & \mathbf{S I} \\ & \mathbf{S I} \\ & \mathbf{S I} \end{aligned}\right.$	$\begin{aligned} & \mathbf{P} \\ & \mathbf{P} \\ & \mathbf{P} \\ & \mathbf{P} \end{aligned}$	$\begin{aligned} & \mathbf{J} \\ & \mathbf{J} \\ & \mathbf{J} \\ & \mathbf{J} \end{aligned}$			$\begin{aligned} & 20 \\ & 20 \\ & 20 \\ & 50 \end{aligned}$	$\begin{aligned} & 065- \\ & .2 . \\ & .44 \\ & .3-1.5 \end{aligned}$	$\begin{aligned} & .18 \\ & .54 \\ & 1.4 \\ & .33 \end{aligned}$	$\begin{aligned} & 10 \\ & 17 \\ & 30 \\ & 10 \end{aligned}$				
U168 U182 U183 U184	SI IN SI SI 	P N \mathbf{N} \mathbf{N}	$\begin{aligned} & \text { J } \\ & \text { J } \\ & \mathbf{J} \\ & \text { J } \end{aligned}$		$\begin{aligned} & \text { 2N2608 } \\ & \text { 2N4860 } \\ & \text { 2N3458 } \\ & \text { 2N4416 } \end{aligned}$	$\begin{aligned} & 20 \\ & 40 \\ & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & .6-6 \\ & 40-120 \\ & 2-20 \\ & 3-30 \end{aligned}$.8- 1.6-3-8.5	$\begin{array}{r} 65 \\ 20 \\ 8 \\ 4 \end{array}$	$\begin{aligned} & \text { CRSS } \\ & \text { CRSS } \\ & \text { CR5S } \end{aligned}$	$\begin{aligned} & 6 \mathrm{PF} \\ & 4 \mathrm{PF} \\ & 1 \mathrm{PF} \end{aligned}$	$\begin{aligned} & 1 M \\ & 1 M \\ & 1 M \end{aligned}$	
U197 U198 U199 U200	SI SI SI SI	$\begin{aligned} & \mathbf{N} \\ & \mathbf{N} \\ & \mathbf{N} \\ & \mathbf{N} \end{aligned}$	$\begin{aligned} & \mathbf{J} \\ & \mathbf{J} \\ & \mathbf{J} \\ & \mathbf{j} \end{aligned}$		$\begin{aligned} & \text { 2N3460 } \\ & \text { 2N3459 } \\ & \text { 2N3458 } \\ & \text { 2N5549 } \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \\ & 30 \\ & 30 \end{aligned}$	$\begin{aligned} & .1-1 \\ & .6-6 \\ & .3-20 \\ & 3-25 \end{aligned}$	$\begin{array}{r} .2 \\ .6 \\ 1.5 \end{array}$	$\begin{array}{r} 7 \\ 7 \\ 7 \\ 30 \end{array}$	CRSS	8 PF	1 M	
U201 U202 U221 U222	$\left\lvert\, \begin{aligned} & \mathbf{S I} \\ & \mathbf{S I} \\ & \mathbf{S I} \\ & \mathbf{S I} \end{aligned}\right.$	$\begin{aligned} & \mathbf{N} \\ & \mathbf{N} \\ & \mathbf{N} \\ & \mathbf{N} \end{aligned}$	$\begin{aligned} & \mathbf{j} \\ & \mathbf{j} \\ & \mathbf{j} \\ & \mathbf{j} \end{aligned}$		2N4861 2N4860	$\begin{aligned} & 30 \\ & 30 \\ & 50 \\ & 50 \end{aligned}$	$\begin{array}{r} 15-75 \\ 30-150 \\ 50-110 \\ 100-250 \end{array}$	$\begin{aligned} & 15-40 \\ & 20-50 \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \\ & 28 \\ & 28 \end{aligned}$	CRSS CRSS CRSS CRSS	$\begin{aligned} & 8 \mathrm{PF} \\ & 8 \mathrm{PF} \\ & 7 \mathrm{PF} \\ & 7 \mathrm{PF} \end{aligned}$	$\begin{aligned} & 1 M \\ & 1 M \\ & 1 M \\ & 1 M \end{aligned}$	
$\begin{aligned} & \mathbf{U} 231 \\ & \text { U232 } \\ & \text { U233 } \\ & \text { U234 } \end{aligned}$	$\begin{aligned} & \mathbb{N} \\ & \mathbb{N} \\ & \mathbb{N} \\ & \mathbb{N} \\ & \mathbf{N} \end{aligned}$	$\begin{aligned} & \mathbf{N} \\ & \mathbf{N} \\ & \mathbf{N} \\ & \mathbf{N} \end{aligned}$	$\begin{aligned} & \mathbf{j} \\ & \mathbf{j} \\ & \mathbf{j} \\ & \mathbf{j} \\ & \hline \end{aligned}$		$\begin{aligned} & \text { 2N5545 } \\ & \text { 2N5546 } \\ & \text { 2N5547 } \\ & \text { 2N5547 } \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \\ & 50 \\ & 50 \end{aligned}$	$\begin{aligned} & .5-5 \\ & .5-5 \\ & .5-5 \\ & .5-5 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 . \\ & 1 . \\ & 1 . \\ & 1 . \end{aligned}$					

TRANSISTOR INTERCHANGEABILITY
 NONREGISTERED FIELD-EFFECT TRANSISTORS

TYPE NUMBER			CLASSIFICATION	π REPLACEMENT OR NEAREST EQUIVALENT	RATED DRANF GATE VOLTACE	EECTRICAL CHARACTERISTICS					
						$\begin{gathered} \text { ldss } \\ \text { *ID(on) } \end{gathered}$	\|yat	$C_{\text {iss }}$	OTHER PARAMTEER		
						$\begin{array}{\|ll\|} \hline \text { MiN } & \text { MAX } \\ (\mathrm{mA}) & (\mathrm{mA}) \\ \hline \end{array}$	MIN MAX (mmho) (mmho)	MAX (pF)	SYMEOL	MAX	- 1 (Hz)
$\begin{aligned} & \text { U235 } \\ & \text { U240 } \\ & \text { U241 } \\ & \text { U242 } \end{aligned}$	$\left\lvert\, \begin{aligned} & \mathbf{N} \\ & \text { SI } \\ & \text { SI } \\ & \text { SI } \end{aligned}\right.$	$\begin{array}{ll} \mathbf{N} & J \\ \mathbf{N} & J \\ \mathbf{N} & J \\ \mathbf{N} & J \end{array}$		2N5045	$\begin{aligned} & 50 \\ & 25 \\ & 25 \\ & 20 \end{aligned}$	$\begin{aligned} & .5-5 \\ & 150- \\ & 10 \\ & 150- \end{aligned}$	1 -	$\begin{aligned} & 70 \\ & 70 \\ & 70 \end{aligned}$	$\begin{aligned} & \text { CRSS } \\ & \text { CRSS } \\ & \text { CRSS } \end{aligned}$	35 PF 35 PF 35 PF	$\begin{aligned} & 1 M \\ & 1 M \\ & 1 M \end{aligned}$
U243 U248 U248A U249	SI IN \mathbb{N} IN	$\left[\begin{array}{ll} \mathbf{N} & J \\ \mathbf{N} & J \\ \mathbf{N} & J \\ \mathbf{N} & J \end{array}\right.$			$\begin{aligned} & 20 \\ & 40 \\ & 40 \\ & 40 \end{aligned}$	$\begin{aligned} & 100 \\ & .03-5 \\ & .03-.5 \\ & .03-.5 \end{aligned}$		70	CRSS	35 PF	1 M
U249A U250 U250A U251	$\left\lvert\, \begin{aligned} & \operatorname{IN} \\ & \mathbb{N} \\ & \mathbb{N} \\ & \mathbb{N} \end{aligned}\right.$	$\left(\begin{array}{ll} \mathbf{N} & J \\ \mathbf{N} & J \\ \mathbf{N} & J \\ \mathbf{N} & J \end{array}\right.$			$\begin{aligned} & 40 \\ & 40 \\ & 40 \\ & 40 \end{aligned}$	$\begin{aligned} & .03-.5 \\ & .03-.5 \\ & .03-.5 \\ & .03-.5 \end{aligned}$					
U251A U252 U253 U254	IN	$\left\lvert\, \begin{array}{ll} N & J \\ N & J \\ N & J \\ N & J \end{array}\right.$		2N4859	$\begin{aligned} & 40 \\ & 25 \\ & 25 \\ & 30 \end{aligned}$	$\begin{array}{r} .03-.5 \\ 7-40 \\ 7-40 \\ 50- \end{array}$	$\begin{aligned} & 5-10 \\ & 5-10 \end{aligned}$	18	$\begin{aligned} & \text { CRSS } \\ & \text { CRSS } \\ & \text { CRSS } \end{aligned}$	$\begin{array}{r} 1.2 \mathrm{PF} \\ 1.2 \mathrm{PF} \\ 8 \mathrm{PF} \end{array}$	$\begin{aligned} & 1 M \\ & 1 M \\ & 1 M \end{aligned}$
$\begin{aligned} & \mathrm{U} 255 \\ & \mathrm{U} 256 \\ & \mathrm{U} 257 \\ & \mathrm{U} 273 \end{aligned}$	IN	$\begin{array}{ll}N & J \\ N & J \\ N & J \\ N & J\end{array}$			$\begin{aligned} & 30 \\ & 30 \\ & 25 \\ & 30 \end{aligned}$	$\begin{gathered} 20-100 \\ 8-80 \\ 5-40 \\ .5-2 \end{gathered}$	$\begin{aligned} & 5-10 \\ & .5- \end{aligned}$	$\begin{array}{r} 18 \\ 18 \\ 2 \end{array}$	CRSS CRSS CRSS CRSS	$\begin{array}{r} 8 \mathrm{PF} \\ 8 \mathrm{PF} \\ 1.2 \mathrm{PF} \\ .5 \mathrm{PF} \end{array}$	$\begin{aligned} & 1 M \\ & 1 M \\ & 1 M \\ & 1 M \end{aligned}$
U273A U274 U274A U275	SI	$\begin{array}{ll}N & J \\ N & J \\ N & J \\ N & J\end{array}$			$\begin{aligned} & 30 \\ & 30 \\ & 30 \\ & 30 \end{aligned}$	$\begin{aligned} & .5-2 \\ & 1-4 \\ & 1-4 \\ & 3-6.5 \end{aligned}$	$\begin{aligned} & .5 \\ & .6 \\ & .6 \\ & .8 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$	CRSS CRSS CRSS CRSS	$\begin{aligned} & .5 \mathrm{PF} \\ & .5 \mathrm{PF} \\ & .5 \mathrm{PF} \\ & .5 \mathrm{PF} \end{aligned}$	$\begin{aligned} & 1 M \\ & 1 M \\ & 1 M \\ & 1 M \end{aligned}$
U275A U280 U281 U282	SI	$\left\lvert\, \begin{array}{ll} N & J \\ N & J \\ N & J \\ N & J \end{array}\right.$			$\begin{aligned} & 30 \\ & 50 \\ & 50 \\ & 50 \end{aligned}$	$\begin{aligned} & 3-6.5 \\ & .5-6 \\ & .5-6 \\ & .5-6 \end{aligned}$	$\begin{aligned} & .8 . \\ & 1-3 \\ & 1.3 \\ & 1-3 \end{aligned}$	$\begin{aligned} & 2 \\ & 6 \\ & 6 \\ & 6 \end{aligned}$	CRSS CRSS CRSS CRSS	$\begin{aligned} & .5 \mathrm{PF} \\ & 1.7 \mathrm{PF} \\ & 1.7 \mathrm{PF} \\ & 1.7 \mathrm{PF} \end{aligned}$	$\begin{aligned} & 1 M \\ & 1 M \\ & 1 M \\ & 1 M \end{aligned}$
U283 U284 U285 U290	SI	$\left\lvert\, \begin{array}{ll} \mathbf{N} & J \\ \mathbf{N} & J \\ \mathbf{N} & J \\ \mathbf{N} & J \end{array}\right.$			$\begin{aligned} & 50 \\ & 50 \\ & 50 \\ & 30 \end{aligned}$	$\begin{array}{r} .5-6 \\ .5-6 \\ .5-6 \\ 500- \end{array}$	$\begin{aligned} & 1-3 \\ & 1-3 \\ & 1-3 \end{aligned}$	$\begin{aligned} & 6 \\ & 6 \\ & 6 \end{aligned}$	CRSS CRSS CRSS CRSS	1.7 PF 1.7 PF 1.7 PF 30 PF	$1 M$ $1 M$ $1 M$ $1 M$
U291 U300 U301 U304	SI	$\begin{array}{ll}N & J \\ P & J \\ P & J \\ P & J\end{array}$			$\begin{aligned} & 30 \\ & 40 \\ & 40 \\ & 30 \end{aligned}$	$\begin{aligned} & 200 . \\ & 30-90 \\ & 15-60 \\ & 30-90 \end{aligned}$	$\begin{aligned} & 8-12 \\ & 8-12 \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \\ & 27 \end{aligned}$	CRSS CRSS CRSS CRSS	$\begin{aligned} & 30 \mathrm{PF} \\ & \text { 5.5 PF } \\ & \text { 5.5 PF } \\ & 7 \mathrm{PF} \end{aligned}$	$\begin{aligned} & 1 M \\ & 1 M \\ & 1 M \\ & 1 M \end{aligned}$
$\left\lvert\, \begin{aligned} & \text { U305 } \\ & \text { U306 } \\ & \text { U310 } \\ & \text { U312 } \end{aligned}\right.$	$\begin{aligned} & \text { SI } \\ & \hline \mathbf{S I} \\ & \mathbf{S I} \\ & \mathbf{S I} \\ & \hline \end{aligned}$	$\begin{array}{ll} P & J \\ \mathbf{P} & J \\ N & J \\ N & J \end{array}$		$\begin{aligned} & \text { 2N5549 } \\ & \text { 2N5397 } \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \\ & 25 \\ & \mathbf{2 5} \end{aligned}$	$\begin{array}{r} 15-60 \\ 5-25 \\ 20-60 \\ 10-30 \end{array}$	$\begin{array}{r} 10-20 \\ 6-10 \\ \hline \end{array}$	$\begin{aligned} & 27 \\ & 27 \end{aligned}$	CRSS CRSS CRSS CRSS	$\begin{array}{r} 7 \mathrm{PF} \\ 7 \mathrm{PF} \\ 2.5 \mathrm{PF} \\ 1.2 \mathrm{PF} \\ \hline \end{array}$	$\begin{aligned} & 1 M \\ & 1 M \\ & 1 M \\ & 1 M \end{aligned}$

TRANSISTOR INTERCHANGEABILITY NONREGISTERED FIELD－EFFECT TRANSISTORS

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{TYF Numen} \& \multirow{3}{*}{} \& \multicolumn{2}{|l|}{\multirow{3}{*}{}} \& \multirow{3}{*}{\[
\begin{aligned}
\& 8 \\
\& 8 \\
\& 8 \\
\& 3 \\
\& 8 \\
\& 8
\end{aligned}
\]} \& \multirow{3}{*}{\begin{tabular}{l}
\(\pi\) \\
mpacemmit \\
On NEAKLSt EOUVALENT
\end{tabular}} \& \multirow[b]{3}{*}{LATB DRAMN GATE VOLTAEE
\[
(\mathrm{V})
\]} \& \multicolumn{6}{|c|}{} \\
\hline \& \& \& \& \& \& \& toss
*O(on) \& bed \& \(G_{10 x}\) \& OH \& ni PaRa \& TER \\
\hline \& \& \& \& \& \& \& \[
\begin{array}{|ll|}
\hline \text { MAN } \& \text { MAX } \\
\text { (mA) } \& \text { (mA) } \\
\hline
\end{array}
\] \& \[
\begin{array}{|rl|}
\hline \text { MNN } \& \text { MAX } \\
\text { (manho) } \& \text { (mamhe) } \\
\hline
\end{array}
\] \& \[
\begin{aligned}
\& \text { Max } \\
\& (p f)
\end{aligned}
\] \& SYMEOL \& max \& \begin{tabular}{l}
－ 1 \\
（ H ）
\end{tabular} \\
\hline \[
\begin{aligned}
\& U 1277 \\
\& U 1278 \\
\& U 1279 \\
\& U 1280
\end{aligned}
\] \& 隹 \& N
\(\mathbf{N}\)
\(\mathbf{N}\)
\(\mathbf{N}\) \& \(J\)
\(J\)
\(J\) \& \& \[
\begin{aligned}
\& \text { 2N5361 } \\
\& \text { 2N5359 } \\
\& \text { 2N5362 } \\
\& \text { 2N5359 }
\end{aligned}
\] \& \[
\begin{aligned}
\& 50 \\
\& 50 \\
\& 50 \\
\& 50
\end{aligned}
\] \& \[
\begin{gathered}
1.5-8 \\
.5-3 \\
.2-1.5 \\
.1-10
\end{gathered}
\] \& \[
\begin{aligned}
\& .45- \\
\& .35- \\
\& .25- \\
\& .25-
\end{aligned}
\] \& \[
\begin{aligned}
\& 6 \\
\& 6 \\
\& 6 \\
\& 6
\end{aligned}
\] \& \begin{tabular}{l}
CRSS \\
CRSS \\
CRSS \\
CRSS
\end{tabular} \& \[
\begin{aligned}
\& \text { 1.2 PF } \\
\& \text { 1.2 PF } \\
\& \text { 1.2 PF } \\
\& \text { 1.2 PF }
\end{aligned}
\] \& \[
\begin{aligned}
\& 1 M \\
\& 1 M \\
\& 1 M \\
\& 1 M
\end{aligned}
\] \\
\hline \[
\begin{array}{|l|}
\hline U 1281 \\
U 1282 \\
U 1283 \\
U 1284
\end{array}
\] \& 发 \& \(\mathbf{N}\)
\(\mathbf{N}\)
\(\mathbf{N}\)
\(\mathbf{N}\) \& \[
\begin{aligned}
\& \mathbf{\jmath} \\
\& \mathbf{J} \\
\& \mathbf{J} \\
\& \mathbf{J}
\end{aligned}
\] \& \& \begin{tabular}{l}
2N5549 \\
2N3458 \\
2N3459 \\
2N3458
\end{tabular} \& \[
\begin{aligned}
\& 50 \\
\& 50 \\
\& 50 \\
\& 50
\end{aligned}
\] \& \[
\begin{aligned}
\& 8 . \\
\& 4-20 \\
\& 1.10 \\
\& .2-40
\end{aligned}
\] \& \[
\begin{gathered}
2.5 \\
1.5 \\
1-
\end{gathered}
\] \& \[
\begin{aligned}
\& 18 \\
\& 18 \\
\& 18 \\
\& 18
\end{aligned}
\] \& \begin{tabular}{l}
CRSS \\
CRSS \\
CRSS \\
CRSS
\end{tabular} \& \[
\begin{aligned}
\& 5 \mathrm{PF} \\
\& 5 \mathrm{PF} \\
\& 5 \mathrm{PF} \\
\& 5 \mathrm{PF}
\end{aligned}
\] \& \[
\begin{aligned}
\& 1 \mathrm{~m} \\
\& \mathrm{IM} \\
\& \mathrm{IM} \\
\& \mathrm{IM}
\end{aligned}
\] \\
\hline \[
\begin{aligned}
\& U 1285 \\
\& U 1266 \\
\& U 1287 \\
\& U 1321
\end{aligned}
\] \& \& \(\mathbf{N}\)
\(\mathbf{N}\)
\(\mathbf{N}\)
\(\mathbf{N}\) \& \[
\begin{aligned}
\& \mathbf{J} \\
\& \mathbf{j} \\
\& \mathbf{j}
\end{aligned}
\] \& \& \begin{tabular}{l}
2N3459 \\
2N4860 \\
2N3966
\end{tabular} \& 30
30
30
30 \& \[
\begin{aligned}
\& 1 . \\
\& .2
\end{aligned}
\] \& \[
\begin{aligned}
\& .2-1.2 \\
\& 1-10
\end{aligned}
\] \& \& \begin{tabular}{l}
CRSS \\
CRSS \\
Cass \\
CRSS
\end{tabular} \& \[
\begin{array}{r}
2 \mathrm{PF} \\
8 \mathrm{PF} \\
20 \mathrm{PF} \\
1.3 \mathrm{PF}
\end{array}
\] \& \[
\begin{aligned}
\& 1 M \\
\& 1 M \\
\& 1 M \\
\& 1 M
\end{aligned}
\] \\
\hline \[
\left\lvert\, \begin{aligned}
\& U 1322 \\
\& U 1323 \\
\& \text { U1324 } \\
\& \text { U1325 }
\end{aligned}\right.
\] \& 傦 \& \(N\)
\(N\)
\(N\)
\(N\) \& \[
\begin{aligned}
\& \mathbf{J} \\
\& \mathbf{J} \\
\& \mathbf{J}
\end{aligned}
\] \& \& \& \[
\begin{aligned}
\& 30 \\
\& 30 \\
\& 30 \\
\& 30
\end{aligned}
\] \& \[
\begin{aligned}
\& 2.5-10 \\
\& 1-5 \\
\& .4-2 \\
\& .1-.5
\end{aligned}
\] \& \[
\begin{array}{r}
1.2 \\
.5
\end{array}
\] \& \[
\begin{aligned}
\& 6 \\
\& 6 \\
\& 6 \\
\& 6
\end{aligned}
\] \& \begin{tabular}{l}
CRSS \\
Cass \\
CRSS \\
CRSS
\end{tabular} \& \[
\begin{aligned}
\& 1.3 \mathrm{PF} \\
\& 1.3 \mathrm{PF} \\
\& 1.3 \mathrm{PF} \\
\& 1.3 \mathrm{PF}
\end{aligned}
\] \& \[
\begin{aligned}
\& I M \\
\& 1 M \\
\& 1 M \\
\& I M
\end{aligned}
\] \\
\hline \begin{tabular}{l}
U1714 \\
U1837E \\
U1897E \\
U1898E
\end{tabular} \& N
\(\sim\)
\(N\)
\(N\)
\(N\)
\(N\) \& \(N\)
\(N\)
\(N\)
\(N\)
\(N\) \& \[
\begin{aligned}
\& \text { J } \\
\& \text { J } \\
\& \text { J }
\end{aligned}
\] \& \& \begin{tabular}{l}
2N3459 \\
2N5245 \\
T1573 \\
11574
\end{tabular} \& \[
\begin{array}{r}
25 \\
30 \\
40 \\
40
\end{array}
\] \& \[
\begin{aligned}
\& .5-5 \\
\& 4-25 \\
\& 30- \\
\& 15-
\end{aligned}
\] \& \[
4
\] \& \[
\begin{array}{r}
3 \\
6 \\
16 \\
16
\end{array}
\] \& \begin{tabular}{l}
CRSS \\
CRSS \\
CR5S \\
CRSS
\end{tabular} \& \[
\begin{array}{r}
1.2 \mathrm{PF} \\
2 \mathrm{PF} \\
5 \mathrm{PF} \\
5 \mathrm{PF}
\end{array}
\] \& \[
\begin{aligned}
\& 1 \mathrm{M} \\
\& 1 \mathrm{M} \\
\& 1 \mathrm{M} \\
\& 1 \mathrm{M}
\end{aligned}
\] \\
\hline U1899E U1994E U3000 U3001 \& 趐 \& \(N\)
\(N\)
\(N\) \& \[
\begin{aligned}
\& \mathbf{J} \\
\& \mathbf{j} \\
\& \mathbf{J}
\end{aligned}
\] \& \& \begin{tabular}{l}
\(T 1575\) \\
2N5245 \\
2N3459 \\
2N3459
\end{tabular} \& \[
\begin{aligned}
\& 40 \\
\& 30 \\
\& 30 \\
\& 30
\end{aligned}
\] \& \[
\begin{gathered}
8- \\
5-15 \\
1.5-7.5 \\
.4-2
\end{gathered}
\] \& \[
\begin{array}{r}
4 \\
.3 \\
.25
\end{array}
\] \& \[
\begin{array}{r}
16 \\
4
\end{array}
\] \& \begin{tabular}{l}
CRSS \\
CRSS \\
CRSS \\
CRSS
\end{tabular} \& \[
\begin{aligned}
\& 5 \mathrm{PF} \\
\& 1 \mathrm{PF} \\
\& 2 \mathrm{PF} \\
\& 2 \mathrm{PF}
\end{aligned}
\] \& \[
\begin{aligned}
\& 1 \mathrm{M} \\
\& 1 \mathrm{M} \\
\& 1 \mathrm{M} \\
\& 1 \mathrm{M}
\end{aligned}
\] \\
\hline \[
\begin{aligned}
\& \text { U3002 } \\
\& \text { U3010 } \\
\& \text { U3011 } \\
\& \text { U3012 }
\end{aligned}
\] \& （1） \(\begin{aligned} \& \mathbb{N} \\ \& \mathbb{N} \\ \& \mathbf{N} \\ \& \mathbf{N} \\ \& \mathbf{N}\end{aligned}\) \& \(N\)
\(N\)
\(N\)
\(N\) \& \(J\)
\(J\)
\(J\) \& \& 2N3458
2N3459
2N3460 \& \[
\begin{aligned}
\& 30 \\
\& 30 \\
\& 30 \\
\& 30
\end{aligned}
\] \& \[
\begin{aligned}
\& .1-.5 \\
\& 3-15 \\
\& .8-4 \\
\& .2-1
\end{aligned}
\] \& \[
\begin{array}{r}
.2- \\
.75 \\
.6 \\
.5
\end{array}
\] \& \& \begin{tabular}{l}
CRSS \\
CRSS \\
CRSS \\
CRSS
\end{tabular} \& \[
\begin{aligned}
\& 2 \mathrm{PF} \\
\& 3 \mathrm{PF} \\
\& 3 \text { PF } \\
\& 3 \mathrm{PF}
\end{aligned}
\] \& \[
\begin{aligned}
\& 1 M \\
\& 1 M \\
\& 1 M \\
\& 1 M
\end{aligned}
\] \\
\hline \begin{tabular}{l}
uc20 \\
UC21 \\
UC100 \\
UC1 10
\end{tabular} \& \(\mathbb{N}\)
\(\mathbb{N}\)
\(\mathbf{N}\)
\(\mathbf{N}\)
\(\mathbf{N}\) \& N
N
N
N \& \[
\begin{aligned}
\& \mathbf{J} \\
\& \mathbf{j} \\
\& \mathbf{J} \\
\& \mathbf{j}
\end{aligned}
\] \& \& \begin{tabular}{l}
2 N 5358 \\
2N5361 \\
2 145360
\end{tabular} \& \[
\begin{aligned}
\& 30 \\
\& 30 \\
\& 30 \\
\& 30
\end{aligned}
\] \& \[
\begin{gathered}
.4-2 \\
.12 .6 \\
2.5-7.5 \\
1.3
\end{gathered}
\] \& \[
\begin{array}{r}
.3 \\
.2 \\
2 \\
1.5
\end{array}
\] \& \[
\begin{aligned}
\& 2 \\
\& 2 \\
\& 5 \\
\& 5
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { CRSS } \\
\& \text { CRSS } \\
\& \text { CRSS } \\
\& \text { CRSS }
\end{aligned}
\] \& \[
\begin{array}{r}
.8 \mathrm{PF} \\
.8 \mathrm{PF} \\
1.5 \mathrm{PF} \\
1.5 \mathrm{PF}
\end{array}
\] \& \[
\begin{aligned}
\& 1 \mathrm{M} \\
\& 1 \mathrm{M} \\
\& 1 \mathrm{M} \\
\& 1 \mathrm{M}
\end{aligned}
\] \\
\hline \begin{tabular}{l}
UC1 15 \\
UC130 \\
UC155 \\
UC200
\end{tabular} \& N
\(\mathbf{N}\)
\(\mathbf{N}\)
\(\mathbf{N}\)

\mathbf{N}
\mathbf{N} \& N
N
N
N

N \& $$
\begin{aligned}
& \mathbf{J} \\
& \mathbf{J} \\
& \mathbf{j} \\
& \mathbf{J}
\end{aligned}
$$ \& \& \& \[

$$
\begin{aligned}
& 30 \\
& 30 \\
& 30 \\
& 50
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 1-3 \\
& 1-.5 \\
& 10- \\
& 10-30
\end{aligned}
$$

\] \& \[

$$
\begin{array}{r}
1.5 \\
.5 \\
6
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& 5 \\
& 5 \\
& 4 \\
& 7
\end{aligned}
$$

\] \& | CRSS |
| :--- |
| CRSS |
| CRSS |
| CRSS | \& \[

$$
\begin{array}{r}
1.5 \mathrm{PF} \\
1.5 \mathrm{PF} \\
1 \mathrm{PF} \\
2 \mathrm{PF}
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& 1 M \\
& 1 M \\
& 1 M \\
& 1 M
\end{aligned}
$$
\]

\hline | UC201 |
| :--- |
| UC210 |
| UC220 |
| UC240 | \& \[

$$
\begin{aligned}
& \mathbf{N} \\
& \mathbb{N} \\
& \mathbf{N} \\
& \mathbf{N} \\
& \mathbf{N} \\
& \hline
\end{aligned}
$$

\] \& | \mathbf{N} |
| :--- |
| \mathbf{N} |
| \mathbf{N} |
| \mathbf{N} | \& \[

$$
\begin{aligned}
& \mathbf{J} \\
& \mathbf{j} \\
& \mathbf{j} \\
& \mathbf{j}
\end{aligned}
$$

\] \& \& \[

$$
\begin{aligned}
& \text { 2N5364 } \\
& \text { 2N5362 } \\
& \text { 2N5360 } \\
& \text { 2N3459 }
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 50 \\
& 50 \\
& 50 \\
& 50
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 15- \\
& 4-12 \\
& 1.5 \\
& 1-10 \\
& \hline
\end{aligned}
$$

\] \& \[

$$
\begin{array}{r}
4.5 \\
3 \\
1.2
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
7 \\
7 \\
7 \\
18
\end{array}
$$

\] \& | CRSS |
| :--- |
| CRSS |
| CRSS |
| CRSS | \& \[

$$
\begin{aligned}
& 4 \mathrm{PF} \\
& 2 \mathrm{PF} \\
& 2 \mathrm{PF} \\
& 5 \mathrm{PF}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 1 M \\
& 1 M \\
& 1 M \\
& 1 M
\end{aligned}
$$
\]

\hline
\end{tabular}

TRANSISTOR INTERCHANGEABILITY
NONREGISTERED FIELD-EFFECT TRANSISTORS

$\begin{gathered} \text { TYME } \\ \text { numbien } \end{gathered}$				8$\frac{8}{2}$$\frac{8}{2}$888	π miplacemint OR MEAREST hounaimet	matio Deank GATI voltace						
							loss ${ }^{4} \mathrm{D}$ (on)	lvas	$\begin{aligned} & c_{\text {me }} \\ & \text { max } \\ & \text { (pr) } \end{aligned}$	OTHER PARAMIIE		
							$\left\|\begin{array}{ll} \min & \max \\ (m a) & (m A) \end{array}\right\|$	$\begin{array}{\|cc\|} \text { MIN } & \text { MaX } \\ (\text { mmho }) & \text { (mmho) } \\ \hline \end{array}$		symber	max	$\begin{aligned} & 01 \\ & (1 \pm \leq) \\ & \hline \end{aligned}$
UC241 UC2SO UC2S1 UC10	$\begin{aligned} & \mathbf{N} \\ & \mathbb{N} \\ & \mathbb{N} \\ & \mathbb{N} \\ & \mathbb{N} \end{aligned}$	N N N \mathbf{N}	$\begin{aligned} & \text { J } \\ & \text { J } \\ & \text { J } \end{aligned}$		$\begin{aligned} & \text { 2N5361 } \\ & \text { 2N4391 } \\ & \text { 2N4392 } \\ & \text { 2N3931 } \end{aligned}$	$\begin{aligned} & 50 \\ & 30 \\ & 30 \\ & 30 \end{aligned}$	$\begin{gathered} 1.10 \\ 50.150 \\ 7.5-75 \\ 5.15 \end{gathered}$	2. 3.	$\begin{aligned} & 20 \\ & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & \text { Cnss } \\ & \text { Cliss } \\ & \text { Class } \\ & \text { CRss } \end{aligned}$	$\begin{array}{r} 5 \mathrm{FF} \\ 7 \mathrm{FF} \\ 7 \mathrm{FP} \\ 2.5 \mathrm{FF} \end{array}$	$\begin{aligned} & \mathrm{IM} \\ & \mathbf{I M} \\ & \mathrm{IM} \\ & \mathrm{IM} \end{aligned}$
UCAOI UCA10 venzo UC703	$\begin{aligned} & \mathbb{N} \\ & \mathbb{N} \\ & \mathbb{N} \\ & \mathbb{N} \\ & \mathbb{N} \end{aligned}$	P \mathbf{p} \mathbf{p} \mathbf{N}	J j d		2N3994 2N3330 2N3329 2N5362	$\begin{aligned} & 30 \\ & 30 \\ & 30 \\ & 40 \end{aligned}$	$\begin{aligned} & 8 \\ & 2-6 \\ & .5-2.3 \\ & .1 \cdot 10 \end{aligned}$	$\begin{gathered} \text { 2.25. } \\ \text { 1.5-5.-5 } \end{gathered}$	$\begin{aligned} & 8 \\ & 8 \\ & 8 \\ & 6 \end{aligned}$	CRSS Cnss CRSS	$\begin{array}{r} 4 \mathrm{PF} \\ 2.5 \mathrm{PF} \\ 2.5 \mathrm{PF} \end{array}$	$\begin{aligned} & 1 \mathrm{M} \\ & 1 \mathrm{M} \\ & 1 \mathrm{~m} \end{aligned}$
$\begin{aligned} & \text { UC70A } \\ & \text { UC70s } \\ & \text { UC707 } \\ & \text { UC714 } \end{aligned}$	$\left\|\begin{array}{c} \mathbf{N} \\ \mathbb{N} \\ \mathbb{N} \\ \mathbb{N} \end{array}\right\|$	N N N N N	$\begin{aligned} & d \\ & j \\ & j \end{aligned}$		2N5364 2N5364 2N4061 2N3823	$\begin{aligned} & 40 \\ & 40 \\ & 20 \\ & 30 \end{aligned}$	$.2-24$ $.5-50$ $2.5-250$ 2.20	$\begin{aligned} & 1.10 \\ & 2.20 \\ & 5.50 \\ & 2-6.5 \end{aligned}$	$\begin{gathered} 1 \\ 12 \\ 30 \\ 8 \end{gathered}$	CR5S	4 PF	1 M
$\begin{aligned} & \text { UC714E } \\ & \text { UC734 } \\ & \text { UCC34E } \\ & \text { UC751 } \end{aligned}$	$\left\|\begin{array}{c} \mathbb{N} \\ \mathbb{N} \\ \mathbb{N} \\ \mathbb{N} \\ \mathbb{N} \end{array}\right\|$	N N N N N	$\begin{aligned} & j \\ & j \\ & j \end{aligned}$		2N5950 2N4416 2N5245 2N3458	$\begin{aligned} & 30 \\ & 30 \\ & 30 \\ & 30 \end{aligned}$	$2-20$ 4.20 4.20 .1.	$\begin{aligned} & 2-6.5 \\ & 3 . \\ & 3- \\ & .35 . \end{aligned}$	$\begin{array}{r} 8 \\ 4 \\ 4.5 \\ 10 \end{array}$	CRSS CRSS CRSS	$\begin{gathered} 4 \mathrm{PF} \\ .8 \mathrm{PF} \\ 1 \mathrm{PF} \end{gathered}$	$\begin{aligned} & 1 m \\ & 1 m \\ & 1 m \end{aligned}$
$\begin{aligned} & \text { UC752 } \\ & \text { UC753 } \\ & \text { UC754 } \\ & \text { UC755 } \end{aligned}$	$\begin{aligned} & \mathbb{N} \\ & \mathbb{N} \\ & \text { N } \\ & \mathbb{N} \end{aligned}$	N N N N N	$\begin{aligned} & \mathbf{J} \\ & \mathbf{j} \\ & \mathbf{j} \end{aligned}$		$\begin{aligned} & \text { 2N3458 } \\ & \text { 2N3458 } \\ & \text { 2N3458 } \\ & \text { 2N3458 } \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \\ & 30 \\ & 30 \end{aligned}$	$\begin{aligned} & .3 \\ & .9 \\ & .5 \\ & 4-10 \end{aligned}$	$\begin{array}{r} 1 . \\ 2.5 \\ 1 . \\ 2 . \end{array}$	$\begin{array}{r} 17 \\ 25 \\ 6 \\ 6 \end{array}$	CRSS CRSS	$\begin{aligned} & 3 \text { PF } \\ & 3 \text { PF } \end{aligned}$	19 $1 m$
UC756 UC814 UC851 UC853	$\left\{\begin{array}{l} \mathbf{N} \\ \mathbf{N} \\ \mathbf{N} \\ \mathbf{N} \\ \mathbf{N} \end{array}\right.$	N $\begin{aligned} & \text { N } \\ & p \\ & p \\ & p\end{aligned}$	J j j		2N3458 2N3331 2N2608 2N3822	$\begin{aligned} & 30 \\ & 25 \\ & 20 \\ & 20 \end{aligned}$	$.5-15$ $.3-15$ $.9-9$ $.065-$	$\begin{gathered} 1 . \\ .8-5 \\ 1 . \\ .18 . \end{gathered}$	$\begin{array}{r} 6 \\ 16 \\ 17 \\ 10 \end{array}$	$\begin{aligned} & \text { CRSS } \\ & \text { CRSS } \end{aligned}$	$\begin{aligned} & 3 \mathrm{PF} \\ & 8 \mathrm{PF} \end{aligned}$	$\begin{aligned} & 1 M \\ & 1 M \end{aligned}$
$\begin{aligned} & \text { UC854 } \\ & \text { UC855 } \\ & \text { UC1700 } \\ & \text { UC1764 } \end{aligned}$	$\begin{array}{\|l\|} \mathbf{N} \\ \mathbb{N} \\ \mathbb{N} \\ \mathbb{N} \\ \mathbb{N} \end{array}$	P	$\begin{gathered} J \\ J \\ \text { IG } \\ \mathbf{I G} \end{gathered}$		2N2608 2N2609 3N163	$\begin{aligned} & 25 \\ & 25 \\ & 40 \\ & 30 \end{aligned}$	$\begin{aligned} & .2- \\ & .44- \\ & .3-30 \end{aligned}$	$\begin{gathered} .54 \\ 1.4 \\ 2.4 \end{gathered}$	$\begin{array}{r} 17 \\ 25 \\ 5 \\ 3 \end{array}$	$\begin{aligned} & \text { CRSS } \\ & \text { CRSS } \end{aligned}$	$\begin{array}{r} 1.2 \mathrm{PF} \\ 1 \mathrm{PF} \end{array}$	$\begin{aligned} & 1 M \\ & 1 M \end{aligned}$
$\begin{aligned} & \text { UC2130 } \\ & \text { UC2132 } \\ & \text { UC2134 } \\ & \text { UC2136 } \end{aligned}$	$\begin{aligned} & \mathbb{N} \\ & \mathbb{N} \\ & \mathbb{N} \\ & \mathbb{N} \\ & \mathbb{N} \end{aligned}$	N N N N	$\begin{aligned} & \mathbf{J} \\ & \mathbf{j} \\ & \mathbf{j} \end{aligned}$		$\begin{aligned} & \text { 2N5545 } \\ & \text { 2N5546 } \\ & \text { 2N5547 } \\ & \text { 2N5045 } \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \\ & 50 \\ & 50 \end{aligned}$	$\begin{array}{r} .5-4.5 \\ .5-4.5 \\ .5-4.5 \\ .5-4.5 \end{array}$	1.				
UC2138 UC2139 UC2147	$\begin{aligned} & \mathbb{N} \\ & \mathbb{N} \\ & \mathbb{N} \\ & \mathbb{N} \end{aligned}$	N \mathbf{N} \mathbf{N} \mathbf{N}	$\begin{aligned} & \mathbf{j} \\ & \mathbf{j} \\ & \mathbf{j} \end{aligned}$		$\begin{aligned} & \text { 2N5046 } \\ & \text { 2N5047 } \\ & \text { 2N5047 } \\ & \text { 2N5047 } \end{aligned}$	50 30 30 50	$.5-4.5$ $.2-6$ $.5-$.2.	$\begin{array}{r} 1 . \\ .75 \\ 1 . \\ 2 . \end{array}$				
$\begin{array}{\|l} \begin{array}{l} \text { UC2149 } \\ \text { UC1766 } \end{array} \end{array}$	$\left\lvert\, \begin{aligned} & \mathbb{N} \\ & \mathbb{N} \end{aligned}\right.$		$\begin{aligned} & \text { J } \\ & \text { IG } \end{aligned}$		$\begin{aligned} & \text { 2N5047 } \\ & \text { 2N5047 } \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \end{aligned}$	$\begin{array}{\|c} .5-15 \\ 5-30 \end{array}$	1.	3.5	CRSS	1 PF	1 M

TRANSISTOR INTERCHANGEABILITY REGISTERED UNLUUNCTION TRANSISTORS

TYPE NUMETA			T REPLACEMENT		CHARACTEAISTICS				
				Po $(m W)$	(kn)	$\boldsymbol{\eta}$	IV $(m A)$	$(\mu \mathrm{A})$	1EBEO ($\mu \mathrm{A})$
$\begin{aligned} & 2 \mathrm{~N} 499 \\ & 2 \mathrm{~N} 49 \% \mathrm{~A} \\ & 2 \mathrm{~N} 49 \% \\ & 2 \mathrm{~N} 490 \end{aligned}$	$\begin{aligned} & \text { UT } \\ & \text { UT } \\ & \text { UT } \\ & \text { UT } \end{aligned}$	$\begin{aligned} & P+N \\ & P N \\ & P+N \\ & \mathbf{N} \end{aligned}$	$\begin{aligned} & \text { 2N4CO } \\ & \text { 2N408A } \\ & \text { 2N4OM } \\ & 2 N 490 \end{aligned}$	$\begin{aligned} & 600 \\ & 600 \\ & 600 \\ & 600 \end{aligned}$	$\begin{aligned} & 4.78 .8 \\ & 4.7 .8 .8 \\ & 4.74 .8 \\ & 6.29 .1 \end{aligned}$	$\begin{aligned} & .51-.62 \\ & .51-.62 \\ & .51 . .62 \\ & .51-.62 \end{aligned}$	8	$\begin{array}{r} 12 \\ 12 \\ 6 \\ 12 \end{array}$	$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$
$\begin{aligned} & 2 N 4 P O A \\ & 2 N / 990 \\ & 2 N / 91 \\ & 2 N / P 1 A \end{aligned}$	$\begin{aligned} & U T \\ & U T \\ & U / T \\ & U / T \end{aligned}$	P+N PN PN P-N	$\begin{aligned} & 2 N 4904 \\ & 2 N 4901 \\ & 2 N 491 \\ & 2 N 4914 \end{aligned}$	$\begin{aligned} & 600 \\ & 600 \\ & 600 \\ & 600 \end{aligned}$	$\begin{aligned} & 6.2 \cdot 9.1 \\ & 6.2-9.1 \\ & 4.76 .8 \\ & 4.76 .1 \end{aligned}$	$\begin{aligned} & .51 .06 \\ & .51 .62 \\ & .56 .60 \\ & .56 .69 \end{aligned}$	$\begin{aligned} & 1 \\ & 8 \end{aligned}$	$\begin{array}{r} 12 \\ 6 \\ 12 \\ 12 \end{array}$	$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$
$\begin{aligned} & \text { 2N491B } \\ & \text { 2N492 } \\ & \text { 2N492A } \\ & \text { 2N4920 } \end{aligned}$	UT UT ил UTT	PN $P+N$ PN PN	2 M 4918 $2 \mathrm{M} 4 \mathrm{H}_{2}$ 2M492A 2N402:	600 600 600 600	$\begin{aligned} & 4.7-8.8 \\ & 6.2-9.1 \\ & 6.2 \cdot 9.1 \\ & 6.2-9.1 \end{aligned}$	$\begin{aligned} & .56 .68 \\ & .56-.68 \\ & .56 .68 \\ & .56 .60 \end{aligned}$	8	$\begin{array}{r} 6 \\ 12 \\ 12 \\ 6 \end{array}$	$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$
2N493 2N493A 2N493 2N494	$\begin{aligned} & \text { UTT } \\ & \text { UTH } \\ & \text { UTT } \\ & \text { UTT } \end{aligned}$	PN $P \cdot \mathbf{N}$ P-N P-N	2×498 2N4934 2Naps	600 600 600 600	$\begin{aligned} & 4.7-4.8 \\ & 4.7-6.8 \\ & 4.7-6.8 \\ & 6.2-9.1 \end{aligned}$	$\begin{array}{r} .62 .75 \\ .62 .75 \\ .62 .75 \\ .62 .75 \end{array}$	8	$\begin{gathered} 12 \\ 12 \\ 6 \\ 12 \end{gathered}$	$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$
$\begin{aligned} & \text { 2N494A } \\ & \text { 2N494 } \\ & \text { 2N494C } \\ & \text { 2N1671 } \end{aligned}$	$\begin{aligned} & \text { UJ } \\ & \text { UT } \\ & \text { UST } \\ & \text { UT } \end{aligned}$	PN PN P-N P.N	2N1671	600 600 600 450	$\begin{aligned} & 6.1 \cdot 9.1 \\ & 6.2-9.1 \\ & 6.2 \cdot 9.1 \\ & 4.7-9.1 \end{aligned}$	$\begin{aligned} & .62-.75 \\ & .62 . .75 \\ & .62 . .75 \\ & .47-.62 \end{aligned}$	8 8 8 8	12 6 2 5	$\begin{gathered} 2 \\ 2 \\ .02 \\ 12 \end{gathered}$
$\begin{aligned} & 2 \mathrm{~N} 1671 \mathrm{~A} \\ & 2 \mathrm{~N} 16718 \\ & 2 \mathrm{~N} 2160 \\ & 2 \mathrm{~N} 2307 \end{aligned}$	UST ur UT UJ	P-N PAN P-N P-N	2N1671A 2N16718 2 N 2160	$\begin{array}{r} 450 \\ 450 \\ 450 \\ 250 \end{array}$	$\begin{gathered} 4.7-9.1 \\ 4.7-9.1 \\ 4.12 \\ 4.5-9.1 \end{gathered}$	$\begin{aligned} & .47-.62 \\ & .47-.62 \\ & .47-.80 \\ & .45-.70 \end{aligned}$	8	25 6 25	$\begin{array}{r} 12 \\ .2 \\ 12 \\ 10 \end{array}$
$\begin{aligned} & \text { 2N2417 } \\ & \text { 2N2417A } \\ & \text { 2N2417 } \\ & \text { 2N2418 } \end{aligned}$	UTI UJT UT UT	$P \cdot N$ PN P-N PN	2 N 489 zandera 2 N 498 2NMO	$\begin{aligned} & 350 \\ & 350 \\ & 350 \\ & \mathbf{3 5 0} \end{aligned}$	$\begin{aligned} & 4.7-6.8 \\ & 4.7 .6 .8 \\ & 4.7 .6 .8 \\ & 6.2-9.1 \end{aligned}$	$\begin{aligned} & .51-.62 \\ & .51-.62 \\ & .51-.62 \\ & .51-.62 \end{aligned}$	5 5 5	$\begin{array}{r} 20 \\ 20 \\ 6 \\ 20 \end{array}$	$\begin{aligned} & 12 \\ & 12 \\ & 12 \\ & 12 \end{aligned}$
$\begin{aligned} & \text { 2N2418A } \\ & \text { 2N24186 } \\ & \text { 2N2419 } \\ & \text { 2N2419A } \end{aligned}$	UT UT UTT UT	P-N P-N P-N P-N	2nagoa 2N4908 2N4日1 2N491A	$\begin{aligned} & 350 \\ & 350 \\ & 350 \\ & 350 \end{aligned}$	$\begin{aligned} & 6.2-9.1 \\ & 6.2-9.1 \\ & 4.7-6.8 \\ & 4.7-6.8 \end{aligned}$	$\begin{aligned} & .51 . .62 \\ & .51 . .62 \\ & .56 .68 \\ & .50 .68 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & 5 \end{aligned}$	20 6 20 20	$\begin{aligned} & 12 \\ & 12 \\ & 12 \\ & 12 \end{aligned}$
$\begin{aligned} & 2 N 24198 \\ & 2 N 2420 \\ & 2 N 2420 \mathrm{~A} \\ & 2 \mathrm{~N} 24208 \end{aligned}$	UTT UT UT UT	P+N PN P-N PAN	2×4918 2 N 922 2 N 492 A 2N492	$\begin{aligned} & 350 \\ & 350 \\ & 350 \\ & 350 \end{aligned}$	$\begin{aligned} & 4.7-6.6 \\ & 6.2-9.1 \\ & 6.2-9.1 \\ & 6.2-9.1 \end{aligned}$	$\begin{aligned} & .50-.68 \\ & .56-68 \\ & .50 .68 \\ & .56 .68 \end{aligned}$		$\begin{array}{r} 6 \\ 20 \\ 20 \\ 6 \end{array}$	$\begin{aligned} & 12 \\ & 12 \\ & 12 \\ & 12 \end{aligned}$
$\begin{aligned} & \text { 2N2421 } \\ & \text { 2N2421A } \\ & \text { 2N24218 } \\ & \text { 2N2422 } \end{aligned}$	$\begin{aligned} & \text { UJT } \\ & \text { UTT } \\ & \text { UJT } \\ & \text { UST } \end{aligned}$	$\begin{aligned} & \text { P-N } \\ & \text { P-N } \\ & \text { P-N } \\ & \text { P-N } \end{aligned}$	2 N 493 2 N 493 A 2N493s	$\begin{aligned} & 350 \\ & 350 \\ & 350 \\ & 350 \end{aligned}$	$\begin{aligned} & 4.7-6.8 \\ & 4.7-6.8 \\ & 4.7-6.8 \\ & 6.2-9.1 \end{aligned}$	$\begin{aligned} & .62-.75 \\ & .62-.75 \\ & .62-.75 \\ & .62 . .75 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & 8 \\ & 5 \end{aligned}$	$\begin{array}{r} 20 \\ 20 \\ 6 \\ 20 \end{array}$	$\begin{aligned} & 12 \\ & 12 \\ & 12 \\ & 12 \end{aligned}$
$\begin{aligned} & \text { 2N2422A } \\ & \text { 2N2422S } \end{aligned}$	$\begin{aligned} & \text { UTT } \\ & \text { UJT } \end{aligned}$	$\begin{aligned} & P-\mathbf{N} \\ & P-N \end{aligned}$		$\begin{aligned} & 350 \\ & 350 \end{aligned}$	$\begin{array}{r} 6.2-9.1 \\ 6.2-9.1 \end{array}$	$\begin{aligned} & .62 .75 \\ & .62 .75 \end{aligned}$	5	20 6	$\begin{aligned} & 12 \\ & 12 \end{aligned}$

TRANSISTOR INTERCHANGEABILITY

REGISTERED UNLUUNCTION TRANSISTORS

					CHARACTERISTICS				
TYPE NUMBER		$\begin{aligned} & \frac{2}{c} \\ & \frac{1}{c} \\ & 0 \\ & 0 \end{aligned}$	H REPLACEMENT	$\mathbf{P D}_{\mathbf{D}}$ (mW)	rBB ($\mathbf{k} \Omega$)	η	IV (mA)	Ip $(\mu \mathrm{A})$	IEB20 (1 A)
$\begin{aligned} & \text { 2N2646 } \\ & \text { 2N2647 } \\ & \text { 2N2840 } \\ & \text { 2N3406 } \end{aligned}$	UJT Uת UJI Uת	$\begin{aligned} & \text { P-N } \\ & \text { P-N } \\ & \text { P-N } \\ & \text { P-N } \end{aligned}$	$\begin{aligned} & \text { 2N2646 } \\ & \text { 2N2647 } \\ & \text { 2N3980 } \end{aligned}$	$\begin{aligned} & 300 \\ & 300 \\ & 300 \\ & 450 \end{aligned}$	$\begin{aligned} & 4.7-9.1 \\ & 4.7-9.1 \\ & 4.7-9.1 \\ & 6.2-9.1 \end{aligned}$	$\begin{aligned} & .56-.75 \\ & .60-.82 \\ & .40-.85 \\ & .53-.59 \end{aligned}$	4 8 .8 8	5 2 10 20	$\begin{array}{r} 12 \\ .2 \\ 1 \\ 12 \end{array}$
$\begin{aligned} & \text { 2N3479 } \\ & \text { 2N3480 } \\ & \text { 2N3481 } \\ & \text { 2N3482 } \end{aligned}$	UJT UJT UTT UTT	$\begin{aligned} & P-N \\ & P-N \\ & P-N \\ & P-N \end{aligned}$	2N1671A 2N2646 2N4853	$\begin{aligned} & 400 \\ & 400 \\ & 400 \\ & 400 \end{aligned}$	$\begin{aligned} & 4.7-9.1 \\ & 4.7-9.1 \\ & 4.7 \cdot 9.1 \\ & 4.7-8.8 \end{aligned}$	$\begin{aligned} & .47-.62 \\ & .56-.75 \\ & .70 . .85 \\ & .51-.62 \end{aligned}$	$\begin{aligned} & 6 \\ & 4 \\ & 6 \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \\ & 20 \\ & 2 \end{aligned}$	$\begin{aligned} & 12 \\ & 12 \\ & 12 \\ & .02 \end{aligned}$
$\begin{aligned} & \text { 2N3483 } \\ & \text { 2N3484 } \\ & \text { 2N3679 } \\ & \text { 2N3980 } \end{aligned}$	UJT UJT UTT UJT	$\begin{aligned} & \text { P-N } \\ & \text { P-N } \\ & \text { P-N } \\ & \text { P-N } \end{aligned}$	2N3980	$\begin{aligned} & 400 \\ & 400 \\ & 250 \\ & 360 \end{aligned}$	$\begin{gathered} 4.7-9.1 \\ 6.2-9.1 \\ 4.7-9.1 \\ 48 \end{gathered}$	$\begin{aligned} & .60 .72 \\ & .70 .85 \\ & .60-.00 \\ & .66-.82 \end{aligned}$	$\begin{array}{r} 8 \\ 8 \\ 4.2 \\ 1 \end{array}$	$\begin{aligned} & 5 \\ & 5 \\ & 2 \end{aligned}$	$\begin{array}{r} 1 \\ .2 \\ 12 \\ .01 \end{array}$
$\begin{aligned} & \text { 2N4851 } \\ & \text { 2N4852 } \\ & \text { 2N4853 } \\ & \text { 2N4870 } \end{aligned}$	UTT UJT UST UJT	$\begin{aligned} & \text { P-N } \\ & \text { P-N } \\ & \text { P-N } \\ & \text { P-N } \end{aligned}$	$\begin{aligned} & \text { 2N4851 } \\ & \text { 2N4852 } \\ & \text { 2N4853 } \\ & \text { 2N4891 } \end{aligned}$	$\begin{aligned} & 300 \\ & 300 \\ & 300 \\ & 300 \end{aligned}$	$\begin{array}{r} 4.7 \cdot 9.1 \\ 4.7-9.1 \\ 4.7-9.1 \\ 4-9.1 \end{array}$	$\begin{aligned} & .56-75 \\ & .70 .85 \\ & .70-.85 \\ & .56-.75 \end{aligned}$	$\begin{aligned} & 2 \\ & 4 \\ & 6 \\ & 2 \end{aligned}$	2 2 4 5	$\begin{array}{r} 5 \\ .1 \\ .05 \\ 1 \end{array}$
2N4871 2N4891 $2 N 4892$ 2N4893	UTT UJT UTT UTT	$\begin{aligned} & \text { P-N } \\ & \text { P-N } \\ & \text { P-N } \\ & \text { P-N } \end{aligned}$	2 N 4891 2N4891 2N4891 2N4893	$\begin{aligned} & 300 \\ & 360 \\ & 360 \\ & 360 \end{aligned}$	$\begin{aligned} & 4-9.1 \\ & 4-9.1 \\ & 4-9.1 \\ & 4-12 \end{aligned}$	$\begin{aligned} & .70-.85 \\ & .55-.82 \\ & .51-.69 \\ & .55 .82 \end{aligned}$	$\begin{aligned} & 4 \\ & 2 \\ & 4 \\ & 2 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & 2 \\ & 2 \end{aligned}$	$\begin{gathered} 1 \\ .01 \\ .01 \\ .01 \end{gathered}$
$\begin{aligned} & \text { 2N4694 } \\ & \text { 2N4947 } \\ & \text { 2N4948 } \\ & \text { 2N4949 } \end{aligned}$	UT UJT UJT UJT	P-N P-N P-N P-N	2 N 4893 2N4947 2 N 4948	$\begin{aligned} & 360 \\ & 360 \\ & 360 \\ & 360 \end{aligned}$	$\begin{aligned} & 4-12 \\ & 4-9.1 \\ & 4-12 \\ & 4-12 \end{aligned}$	$\begin{aligned} & .74-.86 \\ & .51-.69 \\ & .55-.82 \\ & .74-.86 \end{aligned}$	2 4 2 2	1 2 2 1	.01 .01 .01 .01
$\begin{aligned} & \text { 2NS431 } \\ & \text { 2N6027 } \\ & \text { 2N6028 } \\ & \text { 2N6114 } \end{aligned}$	UT PUT PUT UTT	$\begin{array}{r} \text { P-N } \\ \text { PNPN } \\ \text { PNPN } \\ \text { P-N } \end{array}$	$\begin{aligned} & \text { ATr6027 } \\ & \text { ATT6028 } \end{aligned}$	$\begin{aligned} & 300 \\ & S e e D c \\ & \text { See Dc } \\ & 300 \end{aligned}$	$\begin{array}{r} 6-8.5 \\ \text { Sheet On } \\ \text { Sheet On A } \\ 5.5-8.2 \end{array}$	$\begin{aligned} & .72-.00 \\ & .58-.62 \end{aligned}$	2 1	4 5	.01 .01
2N6115 2N6116 2N6117 2N6118	UJT PUT PUT PUT	P-N PNPN PNPN PNPN	$\begin{aligned} & \text { 2N6116 } \\ & \text { 2N6117 } \\ & \text { 2N6118 } \end{aligned}$	$\begin{aligned} & 300 \\ & S_{e e} \\ & S_{e e} \\ & S_{e e} \end{aligned}$.58-. 62	1	15	. 1
2N6119 2N6120 2N6137 2N6138	PUT PUT PUT PUT	PNPN PNPN PNPN PNPN							

TRANSISTOR INTERCHANGEABILITY NONREGISTERED UNLUUNCTION TRANSISTORS

					CHARACTERISTICS					
TYPE NUMBER			$\frac{2}{6}$ $\frac{1}{6}$ $\frac{1}{2}$	$\begin{gathered} \text { TI } \\ \text { REPLACEMENT } \end{gathered}$	(mW)	rBB (k)	η	Iv $(m A)$	Ip ($\mu \mathrm{A})$	IEB2O ($\mu \mathrm{A})$
A5T61 16 A5T6117 A5T6118 ATS6027	$\begin{aligned} & \pi \\ & \pi \\ & \pi \\ & \pi \\ & \pi \end{aligned}$	$\left\lvert\, \begin{aligned} & \text { PUT } \\ & \text { PUT } \\ & \text { PUT } \\ & \text { PUT } \end{aligned}\right.$	PNPN PNPN PNPN PNPN	A.5T6116 A5T6117 A5T6118 AT6027	See D Seo D See D See D					
A7T6028 MU4891 MU4892 MU4893	$\begin{aligned} & 7 \\ & M \\ & M \\ & M \end{aligned}$	$\left\lvert\, \begin{aligned} & \text { PUT } \\ & \text { UTT } \\ & \text { UTT } \\ & \text { UTT } \end{aligned}\right.$	PNPN	$\begin{aligned} & \text { ATr6028 } \\ & \text { 2N4891 } \\ & \text { 2N4892 } \\ & \text { 2N4893 } \end{aligned}$	$\begin{aligned} & \text { See Do } \\ & 300 \\ & 300 \\ & 300 \end{aligned}$	$\begin{aligned} & \text { eet On } \\ & 4-9.1 \\ & 4-9.1 \\ & 4-12 \end{aligned}$	$\begin{array}{r} .55-.82 \\ .51-.69 \\ .55-.82 \end{array}$	2 2 2	$\begin{aligned} & 5 \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & .01 \\ & .01 \\ & .01 \end{aligned}$
Mu4894 T1343 THS43	$\begin{aligned} & M \\ & \mathbf{T} \\ & \mathbf{T} \end{aligned}$	UJ UTT UTT	$\begin{aligned} & \text { P-N } \\ & \text { P-N } \\ & \text { P-N } \end{aligned}$	2N4894 T1S43 2 N 4891	$\begin{aligned} & 300 \\ & 300 \\ & 300 \end{aligned}$	$\begin{aligned} & 4-12 \\ & 4.9 .1 \\ & 4-9.1 \end{aligned}$	$\begin{aligned} & .74-.86 \\ & .55-.82 \\ & .55-.82 \end{aligned}$	2 2 2	1 5 5	.01 .01 .01

Transistor Data Sheets

TRANSISTOR DATA SHEETS

CONTENTS

In this section are data sheets for most of the Texas Instruments line of standard, low-power silicon transistors. (For reference to TI's line of silicon power transistors, see either Section 0, Type Number Index, or The Power Semiconductor Data Book.

Excluded from this volume are data sheets for certain obsolescent types listed and so indicated in Section 0, Type Number Index. Loose-leaf data sheets for these devices may be available upon request.

DERIVED TYPES

Many of the JEDEC-registered types are available in repackaged form. The designations of these repackaged devices are derived from the original JEDEC type numbers by replacing the 2 N or 3 N prefix with a prefix explained in the table below.
"Repackaging" may mean providing a plastic-encapsulated (Silect ${ }^{\dagger}$) equivalent for a metal-cased type (for example, the A5T2222 is a Silect $100-\mathrm{mil}$ pin-circle equivalent for the metal-cased 2N2222) or perhaps different basing (lead locations) from the registered type (for example, the A5T3904 is a Silect $100-\mathrm{mil}$ pin-circle equivalent of the plastic-encapsulated, 2N3904 which is registered with the in-line-lead TO-92 package.) In the case of the A4T prefix for unmounted transistor chips, "repackaging" means no package at all.

In any case, the specifications for the prefixed devices are as close to the registered devices as packaging will permit.
PREFIXES FOR REPACKAGED TRANSISTORS

ORGANIZATION

Data Sheets are organized in alphanumeric order with numbers taking precedence over letters. The exception to this is that derived types are placed immediately after the registered types from which they were derived.

CHIP-CHARACTERIZATION REFERENCE

Transistor chip families are characterized in Section 5. Reference to the related chip family is made on the lower right-hand corner of each data sheet, if appropriate.

Excaptions:

- Grown-junction bars are not characterized.
- Bar-type unijunction transistors are not characterized.
- When the observed values of the characteristics of the basic chips are not applicable to specific devices because of highly selective screening or special diffusions, chip-family references are omitted.
- Transistor types containing two darlington-connected chips do have the chip-family reference but it should be noted that while the characterization data does apply to the individual chips, it does not apply directly to the darlington-connected pairs.

TYPE 2N17 N-P-N GROWN-JUNCTION SILICON TRANSISTOR

9 to 20 beta sproad
 Specificilly dosignod for high gain at high temperatures

mechanical data

Welded case with glass-to-metal hermetic seal between case and leads. Approximate weight is 1.7 grams.

absolute maximum refings at $23^{\circ} \mathrm{C}$ amblent (oxcopt where advanced temporatures ane indieatod)
Collector Voltage Referred to Base 45 V
Emitter Voltage Referred to Base 1 V
Collector Current 25 mA
Emitter Current -25 mA
Collector Dissipation $\}$. 150 mW
at $100^{\circ} \mathrm{C}$
100 mW
ut $\left.150^{\circ} \mathrm{C}\right\}$. 50 mW
|unction temperature
Maximum Range -65º to $+175^{\circ} \mathrm{C}$
common base design characteristics at $\boldsymbol{T}=25^{\circ} \mathrm{C}$ toxcept whore advanced tomperetures are indicatod)

		test condlimens		min.	dasignt center	max.	unlt
BV cso	Collector Breakdown Voltage	Ic $=50 \mu \mathrm{~A}$	$\mathrm{I}_{E}=0$	45			Volt
Icso	Collector Cutoll Current $\}$	$V_{C B}=30 \mathrm{~V}$	$I_{E}=0$			2	$\mu \mathrm{A}$
	at $100^{\circ} \mathrm{C}$ \}	$V_{C E}=5 V$	$I_{E}=0$			10	$\mu \mathrm{A}$
	at $\left.150^{\circ} \mathrm{C}\right\}$	$V_{C B}=5 \mathrm{~V}$	$\mathrm{I}_{\mathrm{E}}=0$			50	$\mu \mathrm{A}$
his	Input Impedance	$V_{C B}=5 V$	$I_{E}=-\operatorname{lm} A$	30	42	80	Ohm
$h_{\text {ob }}$	Output Admitance	$V_{C B}=5 V$	$I_{E}=-\operatorname{lm} A$	0	0.4	1.2	$\mu \mathrm{mino}$
hris	Feedback Voltage Ratio	$V_{C B}=5 V$	$I_{E}=-\operatorname{lm} A$	25	120	500	$\times 10-6$
$h_{\text {fib }}$	Current Transfer Ratio	$V_{C B}=5 V$	$I_{E}=-1 m A$	-0.9	-0.925	-0.953	
PG_{E}	Power Gain* \dagger	$V_{C E}=20 \mathrm{~V}$	$I_{E}=-2 m A$		35		db
NF	Noise Figure* \ddagger	$V_{G E}=5 \mathrm{~V}$	$I_{E}=-\operatorname{lm} A$		20		db
fab	Frequency Cutoff	$V_{C B}=5 \mathrm{~V}$	$I_{E}=-\operatorname{lm} A$		4		mc
$\mathrm{C}_{\text {ab }}$	Output Capacitance (1me)	$V_{C B}=5 \mathrm{~V}$	$l_{E}=-\operatorname{lm} A$		7		$\mu \mu{ }^{\text {m }}$
$\mathrm{R}_{\text {cs }}$	Saturation Resistance*	$\mathrm{I}_{\mathrm{B}}=2.2 \mathrm{~mA}$	$\mathrm{I}_{\mathrm{c}}=5 \mathrm{~mA}$		100	200	Ohm

[^18]
18 to 40 beta spread Specifically dosignod for high gain at high tomperatures

mechanical data
Welded case with glass-to-metal hermetic seal between case and leads. Approximate weight is 1.7 grams.

junction temperature
Maximum Range
$-65^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$

		rest conditions		min.	destign center	max.	wnit
$\mathrm{BV}_{\mathrm{cso}}$	Collector Breakdown Voltage	$\mathrm{I}_{C}=50_{\mu} \mathrm{A}$	$\mathrm{I}_{\mathrm{E}}=0$	45			Volt
$\mathrm{I}_{\text {ceo }}$	Collector Cutoff Current\}	$\mathrm{V}_{\text {CB }}=30 \mathrm{~V}$	$\mathrm{I}_{\mathrm{E}}=0$			2	$\mu \mathrm{A}$
	at $100^{\circ} \mathrm{C}$	$V_{C B}=5 \mathrm{~V}$	$\mathrm{I}_{\mathrm{E}}=0$			10	${ }_{\mu A}$
	at $150^{\circ} \mathrm{C}$	$V_{C B}=5 \mathrm{~V}$	$\mathrm{I}_{\mathrm{E}}=0$			50	$\mu \mathrm{A}$
hib	Input Impedance	$V_{c s}=5 V$	$\mathrm{I}_{\mathrm{E}}=-1 \mathrm{~mA}$	30	42	80	Ohm
hob	Output Admittance	$V_{C B}=5 \mathrm{~V}$	$\mathrm{I}_{\mathrm{E}}=-\operatorname{lmA}$	0	0.4	1.2	$\mu \mathrm{mho}$
$h_{\text {cob }}$	Feedback Voltage Ratio	$V_{C B}=5 V$	$\mathrm{I}_{\mathrm{E}}=-1 \mathrm{~mA}$	25	250	1000	$\times 10^{-6}$
$h_{f b}$	Current Transter Ratio	$V_{C B}=5 V$	$1 \mathrm{E}=-1 m \mathrm{~A}$	-0.948	-0.96	-0.976	
PG_{6}	Power Gain* \dagger	$V_{\text {ce }}=20 \mathrm{~V}$	$\mathrm{IE}_{\mathrm{E}}=-2 \mathrm{~mA}$		39		${ }^{\text {db }}$
NF	Noise Figure* \ddagger	$V_{\text {ce }}=5 \mathrm{~V}$	$1 \mathrm{E}=-1 \mathrm{~mA}$		20		db
$\mathrm{f}_{\text {ab }}$	Frequency Cutoff	$V_{\text {ce }}=5 \mathrm{~V}$	$\mathrm{I}_{\mathrm{E}}=-1 \mathrm{~mA}$		5		mc
	Output Capacitances (Imc) Saturation Resistance**	$\begin{aligned} & \\ & V_{C B}=5 V \\ & V_{B}=2.2 \mathrm{~mA}\end{aligned}$	$\mathrm{I}_{\mathrm{E}}=-1 \mathrm{~mA}$ $\mathrm{IC}_{\mathrm{C}}=5 \mathrm{~mA}$		$\begin{array}{r} 7 \\ 100 \end{array}$	200	${ }_{\text {Onmi }}^{\text {mim }}$

-Commen Emilter
$t_{L}=1 k ; R_{L}=20 k$

18 to 86 beta spread
 Specifically designed for high gain at high temperatures

mechanical dara
Welded case with glass-to-metal hermetic seal between case and leads. Approximate weight is 1.7 grams.

absolute maximum ratings at $25^{\circ} \mathrm{C}$ amblent texcept where advanced temperatures are indicoted)
Collector Voltage Referred to Base 45 V
Emitter Voltage Referred to Base 1 V
Collector Current 25 mA
Emitter Current -25 mA
Collector Dissipation $\}$. 150 mW
at $\left.100^{\circ} \mathrm{C}\right\}$. 100 mW
at $\left.150^{\circ} \mathrm{C}\right\}$. 50 mW
junction temperature
Maximum Range .
$-65^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$
common base design characteristics at $\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ [except where advanced temperatures are indicated]

		7est conditions		min.	design centor	max.	unit
$\mathrm{BV}_{\text {CB0 }}$	Collector Breakdown Voltage	$\mathrm{I}_{\mathrm{C}}=50 \mu \mathrm{~A}$	$\mathrm{I}_{\mathrm{E}}=0$	45			Volt
1 CBO	Collector Cutoff Current\}	$V_{C B}=30 \mathrm{~V}$	$I_{E}=0$			2	$\mu \mathrm{A}$
	at $\left.100^{\circ} \mathrm{C}\right\}$	$V_{C B}=5 \mathrm{~V}$	$\mathrm{I}_{\mathrm{E}}=0$			10	$\mu \mathrm{A}$
	at $150^{\circ} \mathrm{C}$ \}	$V_{C B}=5 \mathrm{~V}$	$\mathrm{I}_{\mathrm{E}}=0$			50	$\mu \mathrm{A}$
$h_{\text {ib }}$	Input Impedance	$V_{C B}=5 \mathrm{~V}$	$I_{E}=-1 m A$	30	42	80	Ohm
hob	Output Admittance	$V_{C B}=5 \mathrm{~V}$	$I_{E}=-1 m A$	0	0.4	1.2	$\mu \mathrm{mho}$
$h_{\text {rb }}$	Feedback Voltage Ratio	$V_{C B}=5 \mathrm{~V}$	$\mathrm{I}_{\mathrm{E}}=-1 \mathrm{~mA}$	50	400	1000	X10-6
$h_{\text {fb }}$	Current Transfer Ratio	$V_{C B}=5 \mathrm{~V}$	$\mathrm{I}_{\mathrm{E}}=-1 \mathrm{~mA}$	-0.948	-0.975	-0.989	
PG_{8}	Power Gain* \dagger	$V_{C E}=20 \mathrm{~V}$	$\mathrm{I}_{\mathrm{E}}=-2 \mathrm{~mA}$		39		db
NF	Noise Figure \ddagger	$V_{C E}=5 \mathrm{~V}$	$i_{E}=-1 m A$		20		$d b$
$\mathrm{f}_{\text {ab }}$	Frequency Cutoff	$V_{C B}=5 \mathrm{~V}$.	$\mathrm{I}_{\mathrm{E}}=-\operatorname{lm} A$	8			me
$\mathrm{Cob}_{\text {b }}$	Output Capacitance (1mc)	$V_{C B}=5 \mathrm{~V}$	$I_{E}=-1 m A$		7	20	m ${ }^{\text {f }}$
$\mathrm{R}_{\text {cs }}$	Saturation Resistance*	$\mathrm{I}_{\mathrm{B}}=2.2 \mathrm{~mA}$	$I_{C}=5 \mathrm{~mA}$		100	200	Ohm

*Common Emitter $\quad t R_{\mathbf{E}}=\mathbf{1 k} ; \mathrm{R}_{\mathbf{L}}=\mathbf{2 0 k}$
\mp Conventional Noise-Compared to $\mathbf{1 0 0 0}$ ohm resistor, $\mathbf{1 0 0 0} \mathrm{cps}$ and $\mathbf{1}$ cycle band width

36 to 86 beta spread
 Specifically designed for high gain at high temperatures

mechanical data
Welded case with glass-to-metal hermetic seal between case and leads. Approximate weight is 1.7 grams.

absolute maximum ratings af $25^{\circ} \mathrm{C}$ ambient lexcept where advanced temperatures are indicated)

junction temperature
Maximum Range $-\mathbf{6 5}{ }^{\circ} \mathrm{C}$ to $+\mathbf{1 7 5}{ }^{\circ} \mathrm{C}$
common base design characterisfics at $\mathbf{T} \mathbf{j}=25^{\circ} \mathrm{C}$ texcopt where advanced tomperatures are indicated)

		test' conditions		min.	design center	max.	unit
BVc8o	Collector Breakdown Voltage	$\mathrm{IC}_{\mathrm{C}}=50 \mu \mathrm{~A}$	$I_{E}=0$	45			Volt
Icao	Collector Cutoff Current\}	$V_{C B}=30 \mathrm{~V}$	$\mathrm{I}_{\mathrm{E}}=0$			2	$\mu \mathrm{A}$
	at $\left.100^{\circ} \mathrm{C}\right\}$	$V_{C B}=5 \mathrm{~V}$	$\mathrm{I}_{\mathrm{E}}=0$			10	$\mu \mathrm{A}$
	at $\left.150^{\circ} \mathrm{C}\right\}$	$V_{C B}=5 \mathrm{~V}$	$I_{E}=0$			50	$\mu \mathrm{A}$
$h_{\text {ib }}$	Input Impedance	$V_{C B}=5 \mathrm{~V}$	$I_{E}=-1 m A$	30	42	80	Ohm
$h_{\text {ab }}$	Output Admittance	$V_{C B}=5 V$	$I_{E}=-1 m A$	0	0.4	1.2	$\mu \mathrm{mho}$
$h_{\text {rb }}$	Feedback Voltage Ratio	$V_{C B}=5 \mathrm{~V}$	$\mathrm{I}_{\mathrm{E}}=-1 \mathrm{~mA}$	50	400	1000	X10-6
$h_{\text {fb }}$	Current Transfer Ratio	$V_{C B}=5 \mathrm{~V}$	$I_{E}=-1 m A$	-0.9735	-0.98	-0.989	
$P{ }^{\text {P }}$	Power Gain* \dagger	$V_{C E}=20 \mathrm{~V}$	$I_{E}=-2 m A$		42		db
NF	Noise Figure $\ddagger \ddagger$	$V_{C E}=5 \mathrm{~V}$	$I_{E}=-1 m A$		20		$d b$
$\mathrm{f}_{\text {cb }}$	Frequency Cutoff	$V_{C B}=5 \mathrm{~V}$	$I_{E}=-1 m A$		6		mc
$\mathrm{C}_{\text {ob }}$	Output Capacitance (1mc) Saturation Resistance**	$\begin{aligned} V_{C B} & =5 \mathrm{~V} \\ \mathrm{I}_{\mathrm{B}} & =2.2 \mathrm{~mA}\end{aligned}$	$\begin{aligned} & I_{E}=-\operatorname{lm} A \\ & I_{C}=5 m A \end{aligned}$		7 100		$\mu \mu \mathrm{f}$ Ohm
$\mathrm{R}_{\mathbf{c t}}$	Saturation Resistance**	$\mathrm{I}_{\mathrm{B}}=2.2 \mathrm{~mA}$	$\mathrm{I}_{\mathrm{C}}=5 \mathrm{~mA}$		100	200	Onm

[^19]
76 to 333 beta spread Specifically designed for high gain at high temperatures

mechanical data

Welded case with glass-to-metal hermetic seal between case and leads. Approximate weight is 1.7 grams.

absolute maximum ratings af $25^{\circ} \mathrm{C}$ ambient lexcept where advanced temperatures are indicated]
Collector Voltage Referred to Base 45 V
Emitter Voltage Referred to Base 1 V
Collector Current 25 mA
Emitter Current -25 mA
Collector Dissipation $\}$. 150 mW
at $\left.100^{\circ} \mathrm{C}\right\}$. 100 mW
at $\left.150^{\circ} \mathrm{C}\right\}$. 50 mW
junction temperature
Maximum Range $-65^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$

	characterioks at	tost conditions		min.	design center	max.	unit
$\mathrm{BV}_{C B O}$	Collector Breakdown Voitage	Ic $=50 \mu \mathrm{~A}$	$\mathrm{I}_{\mathrm{E}}=0$	45			Volt
$l_{\text {cbo }}$	Collector Cutoff Current ${ }^{\text {a }}$	$V_{C B}=30 \mathrm{~V}$	$\mathrm{I}_{\mathrm{E}}=0$			2	${ }_{\mu} \mathrm{A}$
	at $100^{\circ} \mathrm{C}$ \}	$V_{C B}=5 \mathrm{~V}$	$\mathrm{I}_{\mathrm{E}}=0$			10	$\mu \mathrm{A}$
	at $150^{\circ} \mathrm{C}$ \}	$V_{C B}=5 V$	$\mathrm{I}_{\mathrm{E}}=0$			50	$\mu \mathrm{A}$
${ }^{\text {ib }}$	Input Impedance	$V_{C B}=5 \mathrm{~V}$	$\mathrm{I}_{\mathrm{E}}=-1 \mathrm{~mA}$	30	42	80	Ohm
$h_{0 b}$	Output Admittance	$V_{C B}=5 V$	$\mathrm{I}_{\mathrm{E}}=-1 \mathrm{~mA}$	0	0.4	1.2	$\mu \mathrm{mho}$
$h_{\text {rb }}$	Feedback Voltage Ratio	$V_{C B}=5 V$	$\mathrm{I}_{\mathrm{E}}=-\mathrm{lmA}$	50	400	1000	X10-6
${ }^{\text {hib }}$	Current Transfer Ratio	$V_{C B}=5 \mathrm{~V}$	$\mathrm{I}_{\mathrm{E}}=-\operatorname{lmA}$	-0.987	-0.99	-0.997	
$\mathrm{PG}^{\text {e }}$	Power Gain* \dagger	$V_{\text {Ce }}=20 \mathrm{~V}$	$\mathrm{I}_{\mathrm{E}}=-2 \mathrm{~mA}$		42.5		db
NF	Noise Figure*t	$V_{\text {CE }}=5 \mathrm{~V}$	$\mathrm{I}_{\mathrm{E}}=-\operatorname{ImA}$		20		db
${ }_{\text {fab }}$	Frequency Cutoff	$V_{C B}=5 V$	$I_{E}=-1 m A$		7		mc
$\mathrm{C}_{\text {ob }}$	Output Capacitance (1mc)	$V_{C B}=5 V$	$\mathrm{I}_{\mathrm{E}}=-1 \mathrm{~mA}$		${ }^{7}$		$\mu \mu{ }^{\text {f }}$
Res	Saturation Resistance*	$1 \mathrm{~B}=2.2 \mathrm{~mA}$	$\mathrm{I}_{\mathrm{C}}=5 \mathrm{~mA}$		100	200	Ohm

$$
\text { *Common Emittor } \quad t R_{E}=\mathbf{1 k} ; \mathbf{R}_{\mathrm{L}}=20 \mathrm{k} \quad \ddagger \text { Conventional Noise-Compared to } 1000 \text { ohm Iesislor, } 1000 \mathrm{cps} \text { and } \mathrm{I} \text { cycle band width }
$$

TYPES 2N243, 2N244
 N-P-N GROWN-JUNCTION SILICON TRANSISTORS

Oval Welded Package

mechanical data

The transistor is in an oval welded package with glass-to-metal hermetic seal between case and leads. Unit weight is approximately 1 gram. The mounting clip is hardware supplied with the transistor.

[^20]WOIE: 1. Derute linearly to $150^{\circ} \mathrm{C}$ case temperature at the rate of $6 \mathrm{mw} /{ }^{\circ} \mathrm{C}$.
*JEDEC registered data
electrical charmcteristics of $25^{\circ} \mathrm{C}$ case fomperature (unless otherwise noted)

paremeter		Hest conditions		types	min*	typ	max*	unit
l_{60}	Collector Cutoff Cursent	$V_{c t}=30 \mathrm{v}$,	$\mathrm{I}_{\mathrm{E}}=0$	All			1	$\mu 0$
Icro	Collector Cutofí Current	$\begin{aligned} & Y_{\mathrm{cs}}=30 \mathrm{y} \\ & \mathrm{~T}_{\mathrm{C}}=150^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{t}_{\mathrm{E}}=0$	All		15		$\mu \mathrm{a}$
$\mathrm{BV}_{\text {cio }}$	Colledor-Base Ereokdown Yoltage	$\mathrm{l}_{\mathrm{c}}=50 \mu \mathrm{a}$,	$\mathrm{IE}_{\mathrm{E}}=0$	A A	60			v
$\mathrm{BV}_{\text {ceo }}$	Collector-Emitter Braakdown Voltage	$\mathrm{l}_{\mathrm{c}}=100 \mu \mathrm{a}$,	$\mathrm{I}_{1}=0$	All		60		v
$V_{\text {be }}$	Iaso-Emither Voltage	$L_{8}=3 \mathrm{ma}$,	$\mathrm{l}_{\mathrm{c}}=20 \mathrm{ma}$	All			1	v
	DC Colloctor-Emifter Soturation Resistanca	$\mathrm{I}_{\mathrm{s}}=3 \mathrm{ma}$	$\mathrm{Ic}_{\mathrm{c}}=20 \mathrm{ma}$	All			350	ohm
$h_{\text {H }}$	AC Common-bose Forward Current Transfor Ratio	$\begin{aligned} & V_{C B}=10 \mathrm{v}, \\ & \mathrm{f}=1 \mathrm{kt} \end{aligned}$	$\mathrm{I}_{\mathrm{E}}=-5 \mathrm{ma}$	$\begin{aligned} & 2 N 243 \\ & 2 N 244 \end{aligned}$	$\begin{array}{\|r\|} \hline-0.9 \\ -0.961 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline-0.94 \\ -0.97 \\ \hline \end{array}$	$\begin{array}{r} -0.968 \\ -0.989 \end{array}$	
hib	AC Common-base Input Impedonce	$\begin{aligned} & V_{\mathrm{ct}}=10 \mathrm{v}, \\ & \mathrm{i}=1 \mathrm{kc} \\ & \hline \end{aligned}$	$\mathrm{I}_{\mathrm{E}}=-5 \mathrm{ma}$	All		12	30	obm
$h_{\text {rb }}$	AC Common-Base Reverse Voltage Iranster Notio	$\begin{aligned} & v_{c ı}=10 v_{0} \\ & f=1 \mathrm{kc} \end{aligned}$	$I_{\mathrm{E}}=-5 \mathrm{ma}$	Ald		60×10^{-4}	300×10^{-6}	

functional tests at $25^{\circ} \mathrm{C}$ case temperature

[^21]
Bota From 9 to 20
 Specifically designed for high gain at high tomperatures

meshenicell dete

Welded case with glass-to-metal hermetic seal between case and leads. Unit weight is approximately 1 gram. All JEDEC TO-5 dimensions and notes are applicable.

abselufe maximum raflags at $25^{\circ} \mathrm{C}$ amblemf [oxcept where advanced tomperatures are indicatod]

junction remperature
Maximum Range $-65^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$
cemmen besse design characteristles of $\mathbf{T j}=25^{\circ} \mathrm{C}$ [except where advanced temperatures are indicetod]

		test condillous		min.	design	mex.	mah
$8 \mathrm{~V}_{\text {coo }}$	Collector Breakdown Voltage	lc $=50 \mu \mathrm{~A}$	If $=0$	45			Volt
leno	Collector Cutoff Current\}	$V_{\text {ct }}=30 \mathrm{~V}$	$1:=0$			2	$\mu \mathrm{A}$
	at $100^{\circ} \mathrm{C}$ \}	$V_{\text {ct }}=5 \mathrm{~V}$	$t=0$			10	$\mu \mathrm{A}$
	- $150^{\circ} \mathrm{C}$	$V_{c ı}=5 V$	$1:=0$			50	$\mu \mathrm{A}$
	Input Impedance	$V_{\text {ct }}=5 \mathrm{~V}$	$1:=-1 m A$	30	55	80	Ohm
hob !	Output Admitiance	$V_{c ı}=\mathrm{EV}$	$i=-1 m A$	0	0.5	1.2	${ }^{\mu}$ mho
hrbit	Feedback Voltage Ratio	$V_{c a}=5 \mathrm{~V}$	$L_{E}=-1 \mathrm{~mA}$	0	195	500	$\times 10^{-6}$
$h_{n}{ }^{\text {f }}$	Current Transfor Ratio	$V_{c a}=5 V$	$h=-\operatorname{lmA}$	-0.9	-0.925	-0.963	
NF	Noise Figure ${ }^{\text {\# }}$	$V_{\text {ca }}=5 \mathrm{~V}$	$I_{1}=-1 \mathrm{~mA}$		20	30	db
fab	Frequency Cutolf	$V_{c t}=5 \mathrm{~V}$	$l_{\text {a }}=-\operatorname{ImA}$	1	6		me
Cob	Output Capacitanee (Ime)	$V_{c t}=5 \mathrm{~V}$	$\mathrm{LE}=-\mathrm{ImA}$		10	30	$\mu \mu f$
Res	Saturation Rosistance*	$I_{1}=2.2 \mathrm{~mA}$	$I_{c}=5 \mathrm{~mA}$		70	200	Ohm

-Common Emitter $\quad\{f=1$ ke \quad Conventional Nolse-Compared to 1000 ohm restitor, 1000 eps and 1 cycle band width

Bota From 18 to 40 Specifically designed for high gain of high femperetures

mechanfical date

Welded case with glass-to-metal hermetic seal between case and leads. Unit weight is approximately 1 gram. All JEDEC TO-5 dimensions and notes are applicable.

|unction temperature
Maximum Range

$$
\mathrm{C} \text { to }+175^{\circ} \mathrm{C}
$$

common bese design chareetoristies of $\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ [oxeept where advanced temperatures are indicated]

		teet eandiliong		minm.	doalone	mem.	unt
$\begin{aligned} & \text { BVeco } \\ & \mathrm{l}_{\text {ceo }} \end{aligned}$	Collector Breakdown Voltage Collector Cutoff Currentt $\left.\begin{array}{l}\left.\begin{array}{l}a+100^{\circ} \mathrm{C} \\ +150^{\circ} \mathrm{C}\end{array}\right\}\end{array}\right\}$	$\begin{aligned} & l_{c}=50 \mu A \\ & V_{e e}=30 V \\ & V_{c e}=5 V \\ & V_{e x}=5 V \end{aligned}$	$I_{1}=0$ $l_{1}=0$ $I_{1}=0$ $I_{2}=0$	45		2 10 50	Volt MA $\boldsymbol{\mu A}$
$h_{16}{ }^{\text {t }}$	Input Impedance	$V_{c c}=5 V$	$H_{1}=-1 \mathrm{~mA}$	30	65	80	${ }_{\text {Ohm }}$
hatt	Oufput Admittance	$V_{c a}=5 V$	$1 \mathrm{~A}=-1 \mathrm{~mA}$	0	0.8	1.2	${ }^{\mu} \mathrm{mh} /{ }^{\text {a }}$
hat $h_{\text {ht }}$	Feedbeck Voltage Ratio	$V_{c a}=5 V$ $V_{c a}=5 Y$	$H_{1}=-1 \mathrm{~mA}$	0	370	1000	$\times 10^{-6}$
NF	Noise Figurs**	$V_{\text {a }}=5 V$	$1=-\operatorname{lmA}$	-	20.96	30	db
fab	Frequency Cutoff	$V_{c a}=5 V$	$1:=-1 m A$	2	8		me
$\mathrm{C}_{\mathbf{6}}$	Output Capectionce (1 mc)	$V_{\text {ce }}=5 V$	$f=-1 \mathrm{~mA}$		10	30	Mpf
Res	Saturation Resistance*	$H_{1}=2.2 \mathrm{~mA}$	$i_{c}=5 \mathrm{~mA}$		70	200	Ohm

[^22]
Beta From 18 to 90

Specifically designed for high gain at high temperatures
mechanical data
Welded case with glass-to-metal hermetic seal between case and leads. Unit weight is approximately 1 gram. All JEDEC TO-5 dimensions and notes are applicable.

abselute maximum retings at $25^{\circ} \mathrm{C}$ ambient [oxeept where advanced temperatures are indicated]

junction temperature
Maximum Range $-65^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$
common base design charaeteristics at $\mathbf{T}_{\mathbf{j}}=25^{\circ} \mathrm{C}$ [oxcopt where advanced tomporatures are indicated]

[^23]
Beta From 36 to 90 Specifically designed for high gain at high temperatures

mechanical dofa

Welded case with glass-to-metal hermetic seal between case and leads. Unit weight is approximately 1 gram. All JEDEC TO- 5 dimensions and notes are applicable.

absolute maximum ratings at $25^{\circ} \mathrm{C}$ ambient lexcept where advanced tomperatures are indicated

junction semperature
Maximum Range $-65^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$
common base design eharacteristies at $\mathbf{T}_{\mathbf{i}}=25^{\circ} \mathrm{C}$ lexcept where advanced temperatures are indicated)

		test condifiows		min.	design center	max.	math
BVCw	Collector Breakdown Voltage		$I_{E}=0$	45			
Icoo	Collector Cutoff Current	$v_{c:}=30 \mathrm{~V}$	$\mathrm{I}_{\mathrm{E}}=0$			2	$\mu \mathbf{A}$
	at $100^{\circ} \mathrm{C}$	$v_{c B}=5 v$	$E_{E}=0$			10	$\mu \mathrm{A}$
	$\text { at } \left.150^{\circ} \mathrm{C}\right\}$	$v_{c}=5 \mathrm{~V}$	$I_{E}=0$			50	
$h_{\text {ib }}{ }^{\dagger}$	Input Impedance	$V_{\text {cs }}=5 \mathrm{~V}$	$l_{E}=-1 \mathrm{~mA}$	30	55	80	Ohm
$h_{06} \dagger$	Output Admittance	$V_{C u}=5 \mathrm{~V}$	$I_{E}=-1 \mathrm{~mA}$	0	0.3	1.2	$\mu \mathrm{mho}$
$h_{\text {rb }}{ }^{\prime}$	Feedback Voltage Ratio	$V_{C E}=5 \mathrm{~V}$	$I_{E}=-1 \mathrm{~mA}$	0	600	1000	$\times 10^{-6}$
$h_{f b}{ }^{\prime}$	Current Transfor Ratio	$v_{c t}=5 v$	$I_{\varepsilon}=-1 m A$	-0.9735	-0.98	-0.989	
NF	Noiso Figure*:	$V_{C E}=5 V$	$\mathrm{I}_{\mathrm{E}}=-\operatorname{Im} A$		20	30	db
$f{ }^{\text {fob }}$	Frequency Cutoff	$V_{c e}=5 \mathrm{~V}$	$I_{E}=-\operatorname{Im} A$	2	11		me
$C_{o b}$ Rcs	Output Capacitance (1me) Saturation Resistance*	$V_{C B}=5 \mathrm{~V}$	$I_{E}=-I m A$		10	30	$\mu \mu f$
Res	Saturation Resistance*	$\mathrm{I}_{\mathrm{B}}=2.2 \mathrm{~mA}$	$1 \mathrm{c}=5 \mathrm{~mA}$		70	200	Ohm

[^24]
Beta From 76 to 333

Specifically designed for high gain at high temperatures
mechanical data
Welded case with glass-to-metal hermetic seal between case and leads. Unit weight is approximately 1 gram. All JEDEC TO-5 dimensions and notes are applicable.

absolute maximum ratings at $25^{\circ} \mathrm{C}$ ambient [oxcept where advancod tomporatures are indicated]

junction temperature
Maximum Range
$-65^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$
common base design characteristics of $\mathbf{T}_{\mathbf{i}}=25^{\circ} \mathrm{C}$ [except where advanced temperatures are indicated]

		test condifions		min.	design center	mex.	unit
$\mathrm{BV}_{\text {cıo }}$	Collector Breakdown Voltage	$I_{c}=50 \mu \mathrm{~A}$	$\mathrm{I}_{\mathrm{E}}=0$	45			Volt
Íco	Collector Cutoff Current	$V_{C l}=30 \mathrm{~V}$	$l_{E}=0$			2	$\mu \mathrm{A}$
	$\left.a+100^{\circ} \mathrm{C}\right\}$	$V_{c ı}=5 \mathrm{~V}$	$\mathrm{I}_{5}=0$			10	$\mu \mathrm{A}$
	$\left.a+150^{\circ} \mathrm{C}\right\}$	$V_{C B}=5 \mathrm{~V}$	$\mathrm{l}_{\mathrm{E}}=0$			50	$\mu \mathrm{A}$
$h_{\text {is }} \dagger$	Input Impedance	$V_{c i}=5 \mathrm{~V}$	$\mathrm{I}_{\mathrm{E}}=-1 \mathrm{~mA}$	30	55	80	Ohm
hob ${ }^{\text {a }}$	Output Admittance	$V_{\text {ct }}=5 \mathrm{~V}$	$y_{z}=-1 \mathrm{~mA}$	0	0.25	1.2	Mmho
$h_{\text {rb }} \dagger$	Feedback Voltage Ratio	$V_{c i}=5 \mathrm{~V}$	$l_{E}=-1 \mathrm{~mA}$	0	700	1000	$\times 10^{-4}$
hibl	Current Transfer Ratio	$V_{\text {ce }}=5 \mathrm{~V}$	$\mathrm{I}_{\mathrm{E}}=-1 \mathrm{~mA}$	-0.987	-0.99	-0.997	
NF	Noise Figure*	$V_{C E}=5 Y$	$l_{\mathrm{E}}=-\operatorname{lmA}$		20	30	
$\mathrm{fa}_{\text {b }}$	Frequeney Cutoff	$V_{\text {ct }}=5 \mathrm{~V}$	$I_{E}=-1 \mathrm{~mA}$	2	13		
Cob	Output Capacitance (Ime)	$V_{\text {et }}=5 \mathrm{~V}$	$l_{E}=-1 \mathrm{~mA}$		10 70	30 200	$\mu \mu \dagger$ Ohm
Rcs	Saturation Resistance*	$I_{1}=2.2 \mathrm{~mA}$	$l_{c}=5 \mathrm{~mA}$		70	200	Ohm

- Commen Emitter $\quad \ddagger f=1 \mathrm{kc} \quad \ddagger$ Conventional Noise-Compared to 1000 ohm resistor, 1000 cps and I eycle band width

FOR SWITCHING AND GENERAL PURPOSE APPLICATIONS
 - Guaranteed 20-55 DC Beta
 - 10 mc min Alpha-Cutoff
 - Low Collector Capacity
 - High Gain af Low Levels

mechanical data

Welded case with glass-to-metal hermetic seal between case and leads. Unit weight is approximately 1 gram. All JEDEC TO-5 dimensions and notes are applicable.

absalute maximum ratings at $25^{\circ} \mathrm{C}$ ambiont temperature (unless otherwise noted)
Collector-Base Valtage 45 v
Collector-Emitter Voltage 30 v
Colloctor Current 20 ma
Emitter Current 20 ma
Total Device Dissipation (Derate $1 \mathrm{mw} /{ }^{\circ} \mathrm{C}$ for Advanced Temperatures) 125 mw
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
olectrieal charactaribties at $25^{\circ} \mathrm{C}$ ambiont temperature (unless otherwive noted)

	paramefers	test condifions	min	typ	max	unit
${ }^{\prime} \mathrm{CeO}$	Colicitor Reverse Current	$\mathrm{v}_{\mathrm{CB}}=20 \mathrm{~V} \quad \mathrm{I}_{\mathrm{E}}=0$			1	μ
${ }^{\text {coso }}$	Collictor tiverse Currans	$v_{C B}=20 . \quad y_{E}=0 \mathrm{~T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$			100	μ^{\bullet}
$\mathrm{VN}_{\text {ceo }}$	Colfecter-Less troakdown Veltegs	$\mathrm{i}_{\mathrm{c}}=50 \mu \mathrm{l} \mathrm{I}_{\mathrm{E}}=0$	45			v
${ }^{51} \mathrm{CEO}$	Colloctor-Emitior ilveckiown Yeliage	$\mathrm{I}_{\mathrm{c}}=100 \mu^{0} \mathrm{I}_{1}=0$	30			v
$\mathrm{EVEO}_{\text {EHO}}$	Emiltor-Base Ereokdown Volicge	$\mathrm{l}_{\mathrm{E}}=50 \mu \mathrm{l} \mathrm{l}_{\mathrm{C}}=0$	1			v
h_{ib}	A-C Comman-lise Iaput Impedence	$\mathrm{v}_{\mathrm{CB}}=20 \mathrm{v} \quad \mathrm{l}_{\mathrm{E}}=-1 \mathrm{mat}=1 \mathrm{kc}$	30	50	80	ohm
h_{0}	A-C Commen-Sase Dutwi Admittence	$\mathrm{V}_{\mathrm{CI}}=20 \mathrm{v} \quad \mathrm{l}_{\mathrm{E}}=-1 \mathrm{ma} 1=1 \mathrm{kc}$		0.2	1	$\mu \mathrm{mmo}$
${ }^{\text {rb }}$	A-C Commen-Base Rowrs-Yoltage Trenster tatio	$\mathrm{v}_{\mathrm{ct}}=20 \mathrm{v} \quad \mathrm{l}_{\mathrm{E}}=-1 \mathrm{ma} 9=1 \mathrm{kc}$		200	2000	$\times 10^{-6}$
$h_{\text {fb }}$	A.C Common-lese Ferwerd-Current Trewsior Ratie	$\mathbf{v}_{\mathrm{CI}}=20 \mathrm{v} \quad \mathrm{l}_{\mathrm{E}}=-1 \mathrm{ma} f=1 \mathrm{kc}$	-0.95	$\rightarrow 0.985$		
$H_{\text {re* }}{ }^{\text {c }}$	D-C Forward-Currant Tressfor Rotio	$v_{C E}=5 \mathrm{v} \quad i_{c}=10 \mathrm{ma}$	20		35	
$\left\|h_{\text {fo }}\right\|$	A-C Common-Emitler Forward Current Iremsfor Ratio	$\mathbf{v}_{\mathrm{Ct}}=20 \mathrm{v} \quad \mathrm{l}_{\mathrm{E}}=-1 \mathrm{mc} \quad \mathrm{t}=2.5 \mathrm{mc}$	14	22		db
${ }^{\text {d }}$ b ${ }_{\text {b }}$	Common-Sase Alphe-Crioff frequency	${ }^{V_{C B}}=20{ }^{\text {r }}$ V $\quad \mathrm{I}_{E}=-1 \mathrm{ma}$	10	20		me
${ }_{6}{ }^{6}$	Commen-lase Outpul Capecitence	$\mathbf{v}_{\mathbf{C B}}=20 \mathrm{r} \quad \mathrm{I}_{\mathrm{E}}=0 \quad 1=1 \mathrm{~mm}$		2	3	$\mu \mu^{\prime \prime}$
	O-C Commen-Emither Seturation Resistonce	$\mathrm{I}_{8}=1 \mathrm{me} \mathrm{I}_{\mathrm{C}}=10 \mathrm{ma}$		80	150	ohm

avitehing characteriaties

	Turn-en Time [Intludes delay time $\left.\left(\mathrm{f}_{\mathrm{d}}\right)\right]$ Storage Time Fall time	See Test Circuit	$\begin{aligned} & 0.05 \\ & 0.02 \\ & 0.08 \end{aligned}$	

- These paramoters must be moesured using pulse tochniques. $\mathrm{PW}=\mathbf{3 0 0} \mu \mathrm{sec}$, Duty $\mathrm{Cyclo} \leq \mathbf{7 \%}$.
teet eireuit

PRINTED IN U.S.A
II cannol assume any responsibility for any circuits shown
or represent that they are free from patent infringement.

for switching and general purpose applications
 - Guaranteed 45-150 DC Beta
 - Low Collector Capacity
 - 20 mc min Alpha-Cutoff
 - High Gain af Low Levels

mechanical data

Welded case with glass-to-metal hermetic seal between case and leads. Unit weight is approximately 1 gram. All JEDEC TO-5 dimensions and notes are applicable.

absolute maximum ratings at $25^{\circ} \mathrm{C}$ ambient temperature (unless otherwise noted)

electrical characteristics at $25^{\circ} \mathrm{C}$ ambient temperature (unless otherwise noted)

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \& permmoters \& test cenditions \& min \& typ \& max \& unit \\
\hline \begin{tabular}{l}
\({ }^{\prime} \mathrm{CoO}\) \\
\({ }^{\prime} \mathrm{ceo}\) \\
\({ }^{\mathbf{V Y}_{\text {CeO }}}\) \\
\({ }^{B_{V}} \mathbf{C E O}\) \\
\({ }^{51} V_{\text {EGO }}\) \\
\(H_{i b}\) \\
\({ }^{6}\) ob \\
\({ }^{6}\) \\
\(H_{16}\) \\
\({ }^{H_{F E}}{ }^{*}\) \\
|nt \\
\({ }^{f_{\boldsymbol{\alpha}}} \mathbf{b}\) \\
Cob \\
\({ }^{\text {P }}\) CEISNA"
\end{tabular} \& \begin{tabular}{l}
Collector Reverse Currtint \\
Cellecter, lioverse Curreal \\
Colisctor-Iase Breakdown Voltage \\
Collocter-Emitter Iteokdown Voltoge \\
Emilter-Ease Breakdown Voltage \\
A-C Common-lose Iapul Impedance \\
A-C Comanom-Mose Output Admitjanca \\
A-C Common-Rase Revarse-Yollage Trensfer Ratio \\
A-C Common-Dase Ferward-Curreat Transfer thatio \\
0-C Forward-Current Transtar Ratio \\
A-C Common-Emitter Forward-Current Trensfor Matio \\
Cemmon-Bes: Mlpha-Cutoff Frequeacy \\
Common-Bose Dutput Capacitence \\
O-C Cemmon-Emittor Saturatien Resistance
\end{tabular} \& \& 45
30
1
30

-0.975
45
20

20 \& | 50 |
| :--- |
| 0.2 |
| 300 |
| -0.99 |
| 80 |
| 24 |
| 30 |
| 2 |
| 80 | \& \[

$$
\begin{array}{r}
1 \\
100 \\
\\
\hline 60 \\
1 \\
2000 \\
150 \\
\hline \\
\hline
\end{array}
$$

\] \& | μ |
| :--- |
| μ^{4} |
| v |
| v |
| v |
| ohm |
| $\mu^{\text {mano }}$ |
| $\times 10^{-6}$ |
| db |
| me |
| $\mu \mu^{\dagger}$ |
| ohm |

\hline
\end{tabular}

switching characteristics

$\begin{aligned} & \mathbf{t o n}^{\prime} \\ & t_{s} \\ & i_{f} \end{aligned}$	Turn-on Time [Inctudes deloy time (1d)] Slorage Time Fall Time	See Test Circuit	0.05 0.02 0.08	$\begin{aligned} & \mu \mathrm{sec} \\ & \mu_{\text {sec }} \\ & \mu^{\text {sec }} \end{aligned}$

- These perematers must be measured using pulse tochniquas. PW $=300 \mu$ sec, Duly cyclo $\leq 2 \%$.
test circuit

TYPES 2N339 THRU 2N343
 N-P-N GROWN-JUNCTION SILICON TRANSISTORS

1 Watt at $25^{\circ} \mathrm{C}$ Case Temperature
 Designed for
 Audio and Servo Amplifier Applications

mechanical data

The transistor is in an welded package with glass-to-metal hermetic seal between case and leads. Unit weight is approximately 1.5 grams. *JEDEC TO-11.
A non-insulated mounting clip (TI P/N 10-31-052-006) is provided with each transistor. Material is beryllium copper, cadmium plated-gold iridited.

all leads are insulated from the case

absolute maximum ratings at $25^{\circ} \mathrm{C}$ case temperature (unless otherwise noted)

* Collector Current
*Total Device Dissipation (see note i)
*Total Device Dissipation at $100^{\circ} \mathrm{C}$ Cas 1000 mw
*Total Device Dissipation at $125^{\circ} \mathrm{C}$ Case Temperatur
Total Device Dissipation of $125^{\circ} \mathrm{C}$ Case Temperature (see note 1) 200 mw
*Storage and Operating Collector Junction Temperature Range -65° to $+150^{\circ} \mathrm{C}$
Storage and Operating Collector Junction Temperature Range (TI Guarantee) . . . -65° to $+175^{\circ} \mathrm{C}$

*electrical characteristics af $25^{\circ} \mathrm{C}$ cose femperature (unless otherwice meted)

Paremmeter		tent cenditions	2N339		2N340		2N341		2N392		2N943		unit	
		min	max	min	mex	min	max	min	max	min	max			
$\mathrm{ICNO}^{\text {cos }}$	Cellecter Culofl Corrent		$V_{\text {cs }}=30 \vee \quad \mathrm{I}_{\mathrm{E}}=0$		1		1		1		1		1	μ
leno	Collecter Cutolf Corront	$\begin{aligned} & y_{c s}=30 v \quad I_{5}=0 \\ & T_{c}=+15 e^{\circ} \mathrm{C} \end{aligned}$		250		250		250		254		250	μ	
${ }^{\mathbf{V}} \mathbf{C + 0}$	Coflector-tese Iroskdown Voltage	${ }^{1} \mathrm{c}=50 \mu \mathrm{cos} \mathrm{I}_{5}=0$	55		85		125		00		4		V	
${ }^{\text {Pex }}$	Cellecter-Eminter Prestiown Voltape	$\mathrm{I}_{\mathrm{c}}=100 \mu \mathrm{l}=0$	55		85		85		6		40		V	
HEO_{6}	Emittor-ieso Irockitowin Volteg*	$\mathrm{I}_{\mathrm{E}}=100 \mu \mathrm{l} \quad \mathrm{I}_{\mathbf{C}}=0$	1		1		1		1		1		V	
Pcraset)	$\begin{aligned} & \text { OC Colforfer-Emitter } \\ & \text { Seburation Resistance } \end{aligned}$	$\mathrm{t}_{\mathrm{s}}=3 \mathrm{~mm} \quad \mathrm{t}_{\mathrm{c}}=20 \mathrm{~mm}$		300		350		400		354		350	\cdots	
$\mathrm{m}_{\text {fb }}$	AC Commen-lese Ferwerd Corrent Trensier tavio	$\begin{aligned} & y_{c s}=10 \mathrm{v} \quad \mathrm{l}_{\mathrm{E}}=-5 \mathrm{me} \\ & \mathrm{f}=1 \mathrm{kc} \end{aligned}$	-0.9	-0.94\%	-0.9	-4.769	-4.9	-0.949	-1.9	-0.97	-0.96	-0.9\%		
$\mathrm{H}_{\text {ib }}$	AC Cemancon-Eiess laput Impedeme	$\begin{aligned} & Y_{c s}=10 v \quad l_{t}=-5 \text { ma } \\ & f=1 \mathrm{kc} \end{aligned}$		30		39		0		30		\boldsymbol{x}	cmm	
${ }^{\text {b }}$	$\begin{aligned} & \text { AC Comen-tere } \\ & \text { Output Adeniftemes } \end{aligned}$	$\begin{aligned} & y_{c e}=10 . \quad I_{E}=-5 \mathrm{ma} \\ & \mathrm{i} 1 \mathrm{kc} \end{aligned}$		2		2		2		2		2	mane	
$W_{\text {rb }}$	$\begin{aligned} & \text { AC Comem-liase teverse } \\ & \text { Vollege Irensfer tatio } \end{aligned}$	$\begin{aligned} & Y_{C B}=10 \mathrm{y} \quad \mathrm{I}_{\mathrm{E}}=-5 \mathrm{mo} \\ & \mathrm{f}=1 \mathrm{ke} \end{aligned}$		$\begin{array}{r} 300 \\ \times 10-6 \\ \hline \end{array}$		[$\begin{array}{r}300 \\ \times 10^{-6}\end{array}$		(3009		300 $\times 10^{-6}$		300 $\times 10-4$		

- Imallates JEDEC ropistorad dite

TYPES 2N339 THRU 2N343 N-P-N GROWN-JUNCTION SILICON TRANSISTORS

*functional teste at $25^{\circ} \mathrm{C}$ case temperature

	perametor	tost conditions	type	mln	typ	max	unit
	Common-Emifter Powar Gain	$\begin{aligned} & \hline V_{c a}=26 \mathrm{v} ; I_{c}=20 \mathrm{ma} \\ & \Omega_{4}=1 \mathrm{k} \Omega_{;} f=1 \mathrm{kc} \\ & V_{g}=0.2 \mathrm{v} \end{aligned}$	$\begin{aligned} & \hline 201339 \\ & 2 N 342 \\ & 2 N 343 \\ & \hline \end{aligned}$	30			db
		$\begin{aligned} & V_{e r}=45 \mathrm{v} ; \mathrm{l}_{\mathrm{c}}=15 \mathrm{ma;} \\ & a_{1}=2 \mathrm{k} \Omega ; f=1 \mathrm{kc} \\ & v_{0}=0.2 \mathrm{v} \end{aligned}$	2N340	30			¢
		$\begin{aligned} & Y_{c t}=67.5 v_{i} I_{c}=10 \mathrm{ma} \\ & R_{4}=4 \mathrm{k} \Omega ; f=1 \mathrm{kc} \\ & V_{g}=0.2 \mathrm{v} \end{aligned}$	2N341	30			b

POWER GAIN TEST CIRCUIT

- Inilicetes JEDEC ruglatered data

THERMAL CHARACTERISTICS

DISSIPATION DERATING CURVE

TYPES A5T404, A5T404A, ABT404, ABT404A P-N-P SILICON TRANSISTORS

BULLETIN NO. DL-8 7311979 , MARCH 1873

SILECT ${ }^{\dagger}$ TRANSISTORS \ddagger
 FOR LOW-COST REPLACEMENT OF GERMANIUM 2N404, 2N404A
 - A5T404, A5T404A Have Standard TO.18 100-mil Pin-Circle Configuration
 - A8T404, A8T404A Have Same Outline and Basing as Motorola MPS404, MPS404A

mechanical data

These transistors are encapsulated in a plastic compound specifically designed for this purpose, using a highly mechanized process developed by Texas Instruments. The case will withstand soldering temperatures without deformation. These devices exhibit stable characteristics under highthumidity conditions and are capable of meeting MIL-STD-202C, Method 106B. The transistors are Insensitive to light.

absolute maximum ratings at $\mathbf{2 5}{ }^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

TYPES A5T404, A5T404A, A8T404, ABT404A P-N-P SILICON TRANSISTORS

electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER	TEST CONDITIONS		AET404 A8T404	A5T404A A8T404A	UNIT
			MIN MAX	MIN MAX	
$V_{(B R) C B O}$ Collector-Base Breakdown Voitage	${ }^{1} C=-10 \mu A, \quad I_{E}=0$		-25	-40	V
$\mathrm{V}_{\text {(BR) CEO }}$ Collector-Emitter Braakdown Voltage	$I_{C}=-10 \mathrm{~mA}, \mathrm{I}_{B}=0$,	See Note 4	-24	-35	V
$\mathrm{V}_{\text {(BR)EBO }}$ Emitter-Base Breakdown Voltage	$I_{E}=-10 \mu A, \quad I_{C}=0$		-12	-25	V
ICBO Collector Cutoff Current	$\mathrm{V}_{C B}=-12 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0$		-100	-100	nA
IEBO Emitter Cutoff Current	$\mathrm{VEB}=-10 \mathrm{~V}, \mathrm{I}^{\prime}=0$		-100	-100	nA
hFE Static Forward Current Transfer Ratio	$V_{C E}=-0.15 \mathrm{~V}, \mathrm{IC}=-12 \mathrm{~mA}$		$30 \quad 400$	$30 \quad 400$	
	$V_{C E}=-0.2 \mathrm{~V}, \mathrm{I}^{\prime}=-24 \mathrm{~mA}$		24	24	
Vbe Base-Emitter Voltage (See Note 5)	$\mathrm{I}_{\mathrm{B}}=-0.4 \mathrm{~mA}, \mathrm{I}^{\prime}=-12 \mathrm{~mA}$	See Note 4	-0.85	-0.85	V
	$I_{B}=-1 \mathrm{~mA}, \quad I_{C}=-24 \mathrm{~mA}$		-1	-1	
$V_{\text {ceisat }}$ Col	$\mathrm{I}_{\mathrm{B}}=-0.4 \mathrm{~mA}, \mathrm{I}^{\prime} \mathrm{C}=-12 \mathrm{~mA}$	See Note 4	-0.15	-0.15	V
	$I_{B}=-1 \mathrm{~mA}, \quad \mathrm{IC}^{=}=-24 \mathrm{~mA}$		-0.2	-0.2	
Cobo Common-Base Open-Circuit Output Capacitance	$V_{C B}=-6 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{E}}=0$,	$\mathrm{f}=1 \mathrm{MHz}$	20	20	pF
thfb Small-Signal Common-Base Forwerd Current Transfer Ratio Cutoff Frequency	$V_{C B}=-6 \mathrm{~V}, \quad \mathrm{lE}=1 \mathrm{~mA}$		4	4	$\mathbf{M H z}$

NOTES: 4. These parameters must be measured using pulse techniquas. $t_{w}=\mathbf{3 0 0} \mu \mathrm{s}$, duty cycle $<\mathbf{2 \%}$.
5. The base-amitter voltage is the principal characteristic difference between these devices and their germanium counterparts. The V_{BE} maximum limits for the 2 N 404 and 2 N 404 A are -0.36 V at $\mathrm{IC}=-12 \mathrm{~mA}$, and -0.4 V at $\mathrm{IC}=-24 \mathrm{~mA}$.
switching characteristics at $\mathbf{2 5}{ }^{\circ} \mathrm{C}$ free-air temperature

PARAMETER		TEST CONDITIONS ${ }^{\text { }}$	A.5T404 A8T404			A5T404A A8T404A			UNIT	
		MIN	TYP	MAX	MIN	TYP	MAX			
t_{d}	Delay Time		$\begin{aligned} & V_{C C}=-10 \mathrm{~V}, \\ & I_{B}=-10 \mathrm{~mA}, \\ & \mathrm{I}_{\mathrm{B}(1)}=-1 \mathrm{~mA}, \\ & \mathrm{~S}_{\mathrm{BE}} \text { Figure } 1 \end{aligned}$		65			80		ns
t_{5}	Rise Time			55			100		ns	
t_{8}	Storage Time	$\begin{aligned} & V_{C C}=-10 V, \\ & I_{B}(1)=-1 \mathrm{~mA}, \\ & I_{B}=-10 \mathrm{~mA}, \\ & S_{B e} \text { Figure } 1 \end{aligned}$		400			400		ns	
t_{f}	Fall Time			70			100		ns	
$\mathrm{O}_{\mathbf{T}}$	Total Control Charge	See Figure 2			1.8			1.8	nc	

†Voltage and current values shown are nominal; exact values vary silightly with translstor parameters.

TYPES A5T404, A5T404A, ABT404, ABT404A P-N-P SILICON TRANSISTORS

PARAMETER MEASUREMENT INFORMATION

FIGURE 1-SWITCHING TIMES

TEST CIRCUIT

VOLTAGE WAVEFORMS

FIGURE 2-TOTAL CONTROL CHARGE

NOTES: a. The input waveform has the following characteristics: $\mathrm{t}_{\mathbf{r}} \leqslant 1 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leqslant 1 \mathrm{~ns}, \mathrm{t}_{\mathbf{w}} \geqslant 5 \mu \mathrm{~s}$, duty cycle $\leqslant 2 \%$.
b. Waveforms are monitored on an oscilloscope with the following characteristics: $\mathrm{t}_{\mathrm{r}} \leqslant 4 \mathrm{~ns}, \mathrm{R}_{\text {in }} \geqslant 100 \mathrm{k} \Omega, \mathrm{C}_{\text {in }} \leqslant 12 \mathrm{pF}$.
c. $\mathrm{Q}_{\mathrm{T}} \leqslant \mathbf{i . 8} \mathbf{n C}$ when the transistor turns off monotonically as shown by the solid line.

TYPES 2N489 THRU 2N493, 2N489A THRU 2N493A, 2N489B THRU 2N493B P-N BAR-TYPE SILICON UNIJUNCTION TRANSISTORS

Designed for Medium-Power Switching, Oscillator and Pulse Timing Circuits
- Highly Stable Negative Resistance and Firing Voltage
- Low firing Current
- High Pulse Current Capabilities
- Simplified Circuit Design

*mechanical data

Package outline is similar to JEDEC TO-5 except for lead position. Approximate weight is one gram.

*absolute maximum ratings at $\mathbf{2 5}{ }^{\circ} \mathbf{C}$ free-air temperature (uniess otherwise noted)

MOTES 1. For maximum interbass voltoge see Figure
2. Derate linearly to $140^{\circ} \mathrm{C}$ free-air temperature ot the rate of $3.9 \mathrm{mw} /{ }^{\circ} \mathrm{C}$.
3. Derate linearly to $175^{\circ} \mathrm{C}$ hee-air temperature of the rale of $4.0 \mathrm{mw} /{ }^{\circ} \mathrm{C}$
4. Total interbase power dissipation must be limited by external circuit.

[^25]
TYPES 2N489 THRU 2N493, 2N489A THRU 2N493A, 2N489B THRU 2N493B P-N BAR-TYPE SILICON UNIJUNCTION TRANSISTORS

*electrical characteristics at $25^{\circ} \mathrm{C}$ free-air femperature (unless otherwise noted)

PARAMETER		TEST CONDITIONS	TYPE	PARENT SERIES		A SERES		B Smins		UNIT	
		MIN		MAX	MIN	MAX	MIN	MAX			
${ }^{\text {P }}$	Static Interbest Resistence		$\mathbf{v}_{\mathbf{m b l}}=3 \mathrm{v}, \mathrm{J}_{\mathrm{E}}=0$	2N489, 2N491, 2m43	4.1	6.4	4.7	6.8	4.7	6.8	k
		2N490, 2N492		6.2	9.1	6.2	9.1	6.2	9.1	kn	
$\boldsymbol{\eta}$	Intrinsic Standofi Ratio	$\begin{aligned} & y_{\text {Eiti }}=10 v \\ & \text { Seo Figore } 5 \end{aligned}$	2N469, 21490	0.51	0.62	0.51	0.62	0.51	0.62		
			2M491, 2N492	0.56	0.60	0.56	0.68	0.56	0.48		
			24193	0.62	0.75	0.62	0.75	0.62	0.75		
Itaben	Modulatod Intorbese Currnot	$\mathrm{v}_{\mathbf{2 2 H 1}}=10 \mathrm{v}_{1} \mathrm{I}_{\mathrm{E}}=50 \mathrm{ma}$	All Types	6.8	22	6.8	22	6.8	22	ma	
$\mathrm{I}_{\text {elzo }}$	Emitior Remorse Curreat	$\mathrm{V}_{12 \mathrm{E}}=60 \mathrm{v}_{\text {, }} \quad \mathrm{I}_{\mathrm{Bl} 1}=0$	All Types		-2		-2		-2	μ	
		$\mathrm{V}_{\mathrm{BE}}=30 \mathrm{v}_{\mathrm{r}} \quad \mathrm{I}_{\mathrm{Bl}}=0$	All Typos						-0.2	μ	
		$\begin{aligned} & \mathbf{v}_{\mathrm{B} 2 \mathrm{E}}=10 \mathrm{v}, \mathrm{I}_{\mathrm{B} 1}=0 \\ & \mathrm{~T}_{\mathrm{J}}=150^{\circ} \mathrm{C} \end{aligned}$	All Types		-20		-20		-20	$\mu \mathrm{A}$	
1 p	Powk-Paint Emither Corrent	$\mathrm{V}_{8201}=25 \mathrm{r}$	All Types		12		12		6	μ	
$\mathbf{v}_{\text {EBH\|sa+ }}$	Enitter less-0ne Safuration Veltage	$\mathrm{V}_{\mathrm{Bza}}=10 \mathrm{v}, \mathrm{I}_{\mathrm{E}}=50 \mathrm{md}$	2M409, 2M4\%		5.0		4.0		4.0	v	
			2N491, 2N492		5.0		4.3		4.3	v	
			$2 \mathrm{N493}$		5.0		4.4		4.6	v	
IV	Valloy-Point Emither Current	$\mathrm{V}_{\text {B2 }}=20 \mathrm{v}_{1} \mathrm{R}_{\text {B2 }}=100 \Omega$	All Types	8		8		1		me	
$V_{\text {OBI }}$	Cose-Ono Prok Puiso Voltage	$\begin{aligned} & V_{1}=200 \\ & R_{10}=20 \Omega \\ & \text { Soe Figure } 4 \end{aligned}$	All Types			3.0		3.0		\checkmark	

FIGURE I-INTERBASE VOLTAGE RATING CURVE
$r_{\text {s }}$ - STATIC INTERBASE RESISTANCE $-\mathrm{k} \Omega$

EXAMPLE:
FOR r_{m} OF $6 \mathrm{k} \Omega$
AND T_{A} OF $50^{\circ} \mathrm{C}$, MAX. ALLOWABLE V ${ }^{\circ}$ WOULD BE 58 VOLTS
-Inelleates JEDEC megistorvd data

TYPES 2N489 THRU 2N493, 2N489A THRU 2N493A, 2N489B THRU 2N493B P-N BAR-TYPE SILICON UNIJUNCTION TRANSISTORS

PARAMETER MEASUREMENT INFORMATION

FIGURE 2 -UNIJUNCTION TRANSISTOR NOMENCLATURE

FIGURE 3-GENERAL STATIC EMITTER CHARACTERISTIC CURVE

FIGURE 4 - $V_{\text {OBI }}$ TEST CIRCUIT

$\boldsymbol{\eta}$ - Intrinsic Standoff Ratio - This parameter is defined in terms of the peak-point voltage, V_{p}, by means of the equation: $V_{p}=\boldsymbol{\eta}$ $V_{\text {E2n }}+V_{F}$, where V_{F} is obout 0.56 volt at $25^{\circ} \mathrm{C}$ and decreases with temperature of about 2 millivolts/deg.

The circuit used to measure η is shown in the figure. In this circuit, R_{1}, C_{1} and the unijunction transistor form a relaxation oscillator, and the remainder of the circuit serves os a peak-voltage defector with the diode D_{1} aufomatically subtracting the voltage V_{F}. To use the circuit, the "cal" button is pushed, and R_{3} is adjusted to make the current meter M_{1} read full scale. The "cal" button then is released and the value of η is read directly from the meter, with $\eta=1$ corresponding to full:scale deflection of $100 \mu \mathrm{~h}$.
D_{1}; IW457, or equivelent, with the followiag charactoristics:
$V_{F}=0.565$ V at $I_{F}=50 \mu \mathrm{~A}$,
$\mathrm{I}_{\mathrm{R}} \leq 2 \mu \mathrm{~A}$ at $\mathrm{V}_{\mathrm{R}}=20 \mathrm{~V}$

FIGURE 5 - TEST CIRCUIT FOR INTRINSIC STANDOFF RATIO (\boldsymbol{n})

Highly Roliable, Vorsatile Devices Designod for Amplificr, Switching and Osdilator Applications from $<0.1 \mathrm{ma}$ to $>150 \mathrm{ma}$ de to 30 mc

\author{

- High Voltage - Low Leakage
 - Useful hre Over Wide Current Range
}
*mechanical deta
Device types 2N717, 2N718, 2N718A, 2N730, 2N731, and 2N956 are in JEDEC TO-18 packages. Device types 2N696, 2N697, 2N1420, 2N1507, 2N1613, and 2N1711 are in JEDEC TO-5 packages.

*absolute maximum rafings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

	$\begin{aligned} & \text { 2N696 } \\ & \text { 2N697 } \\ & \hline \end{aligned}$	$\begin{aligned} & 2 \mathrm{2N717} \\ & 2 \mathrm{~N} 718 \\ & \hline \end{aligned}$	2N718A	$\begin{aligned} & 2 \mathrm{~N} 730 \\ & 2 \mathrm{NT31} \end{aligned}$	2N956	$\begin{aligned} & 2 \mathrm{~N} 1420 \\ & 2 \mathrm{~N} 1507 \end{aligned}$	2N1613	2N1711	UNIT
Collactor-Lase Voltage	60	60	75	60	75	60	75	75	V
Collictor-Emittor Voltage (Sen Moto I)	40	40	50	40	50	30	50	50	v
Colisctor-Emitter Voltage (Soe Note 2)			32						v
Emither-Lose Voltaje	5	5	7	5	7	5	7	7	V
Collictor Current				1.0		1.0		1.0	0
Total Dovica Dissipotion at (or bolow) $25^{\circ} \mathrm{C}$ Freo-Alr Tempereture (Seo Mote Indicated In Porenthesos) \rightarrow	$\begin{aligned} & \hline 0.6 \\ & \dagger \\ & (3) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.4 \\ & t \dagger \\ & (5) \\ & \hline \end{aligned}$	0.5 (7)	$\begin{aligned} & 0.5 \\ & \dagger \dagger \\ & 19 \\ & \hline \end{aligned}$	0.5 (7)	$\begin{gathered} 0.6 \\ \dagger \\ \text { (3) } \end{gathered}$	$\begin{aligned} & 0.8 \\ & (10) \\ & \hline \end{aligned}$	0.8 (10)	w
Totad Dovico Dissipation at (or below) $25^{\circ} \mathrm{C}$ Case Tempercture (See Noto Indicated in Paranthoses) \rightarrow	$\begin{gathered} 20 \\ \dagger \\ (4) \\ \hline \end{gathered}$	$\begin{aligned} & 1.5 \\ & \dagger \dagger \\ & 16 \\ & (6) \\ & \hline \end{aligned}$	1.8 (8)	$\begin{aligned} & 1.5 \\ & \dagger \\ & 1 \\ & (6) \end{aligned}$	1.8 (8)	$\begin{gathered} 2.0 \\ \dagger \\ \text { (4) } \\ \hline \end{gathered}$	3.0 (11)	3.0 (11)	W
Totol Dovice Dissipation of $100^{\circ} \mathrm{C}$ Case Tomperature	$\begin{aligned} & 1.0 \\ & i \end{aligned}$	$\begin{aligned} & 0.75 \\ & +1 \end{aligned}$	1.0	0.75	1.0	$\begin{aligned} & 1.0 \\ & + \end{aligned}$	1.7	1.7	*
Operating Collictor Junction Tamperatere	175 \dagger	175 $\dagger \dagger$	200	175†t	200	175†	200	200	${ }^{\circ} \mathrm{C}$
Storage Tomporaturi Range	$-65^{\circ} \mathrm{C}$ 10 $200^{\circ} \mathrm{C}$								

 10 -mms.
2. This velue epplios when the treso-minitior aliote is emen-circuliod.
3. Devale lineorly to $175^{\circ} \mathrm{C}$ troe-air temperstive at the rete of $4.0 \mathrm{~mm} / \mathrm{C}^{\circ}$.
4. Berate lineerty to $175^{\circ} \mathrm{C}$ ense remperatione of the rate of $13.3 \mathrm{mw} / \mathrm{C}^{\circ}$.

6. Tonate limerly to $175^{\circ} \mathrm{C}$ come temperetive of the rethe of $10.0 \mathrm{~mm} / \mathrm{C}^{\circ}$.
7. Everule limerriy to $2000^{\circ} \mathrm{C}$ heo-air temperative of the reth of $2.06 \mathrm{~mm} / \mathrm{c}^{\circ}$.
8. Derate liamerly to $200^{\circ} \mathrm{C}$ cues tramperature of the rete of $10.3 \mathrm{~mm} / \mathrm{C}^{\circ}$.
9. Doraln limenty to $175^{\circ} \mathrm{C}$ frow-air memperature at in rute of $3.33 \mathrm{~mm} / \mathrm{C}^{\circ}$
18. Berale lineerly to $200^{\circ} \mathrm{C}$ freo-elr temperation of the rate of $4.56 \mathrm{~mm} / \mathrm{C}^{\circ}$.
11. Bevale Heserily te $200^{\circ} \mathrm{C}$ cose tempentiore of the rate of $17.2 \mathrm{mw} / \mathrm{C}^{\circ}$.
†Toxes Imstruments guarontces its types $\mathbf{2 M 6 9 6}$, 2N697, 2N1420, and 2N1507 to be capatle of the same dioctpation as reglotered and shown for types $2 N 1613$ cad 201711 with epprepriate cration focters shown in Motes 10 and 11.
\dagger †Toxes Instruments suarmatees its typer 2w717, 2N718, $2 N 730$, and 20431 to to capphle of the some ditsclpation as registoriod and shown for types 2N718A and 2M956 with oppropitete derwiling fectors shown in Notes 7 and 8 .
*Imikents JEDEC rogistercd dete.
*electricel characteristics at $25^{\circ} \mathrm{C}$ free-alr tomperature (unioss otherwise noted)

PARAMITMA					$\begin{aligned} & \text { aN717 } \\ & \text { 2N780 } \\ & \hline \end{aligned}$	$\begin{array}{\|l\|l\|} \hline \text { 2N7IB } \\ \text { 2N7SI } \\ \hline \end{array}$	UNIT	
		2NGS	2N697					
		MIN MAX	MIN MAX	MIN MAX	MIN Max			
			$\mathrm{I}_{\mathrm{c}}=100 \mu \mathrm{a}_{1} \mathrm{I}_{1}=0$	6	0	6	0	v
Vinucio	Colcector-Emittor Insekdown Voltage		$\mathrm{I}_{\mathrm{c}}=20 \mathrm{me} \mathrm{I}_{\mathrm{s}}=0$, gen Mote It					y
$V_{\text {V }}^{\text {mjecun }}$	Collocior-Emilior Irandewn Veltage	$\mathrm{I}_{\mathrm{c}}=100 \mathrm{ma}_{\text {, }} \mathrm{m}_{\mathrm{m}}=10 \mathrm{n}^{\text {, }}$ Se0 Molo 12	40	40	40	4	V	
Viminio	Emititer-lost Irackdown Valtage	$I_{\mathrm{I}}=100 \mu \mathrm{a}, \mathrm{I}_{\mathrm{c}}=0$ Exuept 2N17,2NTIG $\mathbf{I}_{1}=1 \mathrm{mu}$	5	5	5	5	\checkmark	
${ }^{\text {cto }}$	Collectior Cutoft Current	$V_{C s}=50 v_{i} I_{1}=0$	1.0	1.0	1.0	1.0	μ	
		$V_{c s}=30 y_{1} I_{1}=0, \quad T_{A}=150^{\circ} \mathrm{C}$	100	100	100	100	$\mu \mathrm{s}$	
		$V_{C B}=60 v_{1} 1_{1}=0$					μ	
		$V_{C A}=60 v_{1} T_{1}=0, \quad T_{A}=150^{\circ} \mathrm{C}$					μ	
$\mathrm{I}_{\text {cas }}$	Collector Cutoff Curromi						μ	
Itio	Emitor Cutofl Curroal	$v_{\text {If }}=5 v_{0} \quad l_{C}=0$					μ	
$h_{\text {Hf }}$	Stattc Forward Curront Transier Ratle	$V_{c E}=10 \mathrm{v}, \mathrm{l}_{\mathrm{c}}=10 \mu$						
		$V_{C!}=10 \mathrm{v}, \mathrm{l}_{\mathrm{C}}=100 \mu$						
		$V_{C!}=10 \mathrm{v}, \mathrm{c}_{\mathrm{C}}=10 \mathrm{ma}, \mathrm{Sos}^{\text {Nota } 12}$						
		$\begin{aligned} & \mathrm{v}_{\mathrm{ca}}=10 v_{1} \mathrm{I}_{\mathrm{C}}=10 \mathrm{mo}, \mathrm{I}_{\mathrm{A}}=-35^{5} \mathrm{C} \\ & \text { Sot Hole } 12 \end{aligned}$						
		$V_{C I}=10 v_{\text {c }} I_{C}=150 \mathrm{~mm}, 500$ Mole 12	20.60	40180	$20 \quad 60$	$40 \quad 120$		
		$v_{C E}=10 v_{0} I_{C}=500$ men, Se0 Moto 12						
$V_{\text {時 }}$	Dan-Emitar Voltage	$\mathrm{I}_{1}=15 \mathrm{~ms}, \mathrm{I}_{\mathrm{C}}=150 \mathrm{~mm}$, Soe Mote 12	1.3	1.3	1.3	1.3	η	
$V_{\text {Cla }}(\underline{W}+1$	Collictar-Emilitr Soturation Voltage	$\mathrm{I}_{\mathrm{s}}=15 \mathrm{ma}, \mathrm{I}_{\mathrm{c}}=150 \mathrm{~mm}, \mathrm{Sm}$ Nots 12	1.5	1.5	1.5	1.5	v	
$h_{\text {lb }}$	Small-Signal Commen-Rast Input Impedence	$V_{C a}=1 v_{1} I_{c}=1 \mathrm{mo}, \quad 1=1 \mathrm{kc}$					anm	
		$V_{C B}=10 \mathrm{v}, \mathrm{l}_{\mathrm{C}}=5 \mathrm{mot}, \quad t=1 \mathrm{kc}$					thm	
$\mathrm{hrb}^{\text {rb }}$	Smell.Signal Commen-Dase Reverse Voltage Iramior Retio	$\mathbf{v}_{\mathbf{c s}}=5 \mathrm{v}_{\mathrm{c}} \quad \mathrm{l}_{\mathbf{c}}=1 \mathrm{~ms}, \quad 1=1 \mathrm{kc}$						
		$\boldsymbol{v}_{\mathbf{C a}}=10 \mathrm{v}, \mathrm{l}_{\mathbf{C}}=5 \mathrm{ma}, \quad 1=1 \mathrm{kc}$						
$h_{\text {ob }}$	Small-Signal Commen-Lost Output Admiftante	$\mathrm{V}_{\mathrm{Cs}}=5 \mathrm{r}, \mathrm{I}_{\mathrm{c}}=1 \mathrm{ma}, \quad 1=1 \mathrm{kc}$					μ meo	
		$\mathrm{V}_{\mathrm{CB}}=10 \mathrm{v}_{1} \mathrm{l}_{\mathrm{C}}=5 \mathrm{ma}, 1=1 \mathrm{kc}$					$\mu \mathrm{mhe}$	
h_{6}	Small-Signal Common-Emittor Ferward Curront Trassfor Ratio	$V_{C E}=5 \mathrm{v}_{1} \mathrm{l}_{\mathrm{C}}=1 \mathrm{ma}, \quad 1=1 \mathrm{kc}$						
		$\mathrm{v}_{\text {CE }}=10 \mathrm{r}, \mathrm{I}_{\mathrm{C}}=5 \mathrm{mo}, 1=1 \mathrm{kc}$						
$\left\|h_{\text {fol }}\right\|$	Small-Signal Commen-Emititer Forward Current Tramsfor Ratio	$v_{\text {ce }}=10 \mathrm{v}, \mathrm{l}_{\mathrm{c}}=50 \mathrm{~mm}, \quad f=20 \mathrm{mc}$	2.0	2.5	2.0	2.5		
$c_{\text {ab }}$	Common-Bass Open-Ciruit Outpyl Capocitance	$v_{\mathrm{ct}}=10 \mathrm{v}, \mathrm{l}_{\mathrm{E}}=0 . \quad i=1 \mathrm{mk}$	35	35	35	35	pf	
$c_{i b}$	Commen-less Open-Ciccult Input Capacitans:	$v_{\mathrm{EB}}=0.5 \mathrm{v}, \mathrm{l}_{\mathrm{c}}=0, \quad \mathrm{f}=1 \mathrm{mc}$			¢	80	pf	

[^26]
*Indicalos JEDEC registored data

Highly Rollable, Vorsatlle Dovices Designed for Amplifior, Switshing and Oselliator Applications from $<0.1 \mathrm{ma}$ to $>150 \mathrm{ma}$ de to 30 me

\author{

- High Voltago - Low Loakago
 - Usotul $h_{\text {fe }}$ Over Wido Current Rango
}
mechanical dafa
Device types 2N719, 2N719A, 2N720, 2N720A, 2N870 and 2N871 are in JEDEC TO-18 packages".
Device types 2N698, 2N699, 2N1889, 2N1890, and 2N1893 are in JEDEC TO-39 packages*.

*absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

	2N698	2N699	$\begin{aligned} & \text { 2N719 } \\ & \text { 2N720 } \end{aligned}$	2N719A	2N720A	$\begin{array}{\|l\|l\|} \hline 2 N 870 \\ 2 N 871 \end{array}$	$\left.\begin{array}{\|l\|} \hline 2 N 1889 \\ 2 N 1890 \end{array} \right\rvert\,$	2N1893	UNIT
Collector-Base Volliage	120	120	120	120	120	100	100	120	V
Coilector-Emilter Voltoge (Seo Note 1)	80	80	80	80	100	80	80	100	v
Colloctor-Emitter Voltage (See Note 2)	60			60	80	60	60	80	v
Emitter-Base Voltage	7	5	5	7	7	7	7	7	v
Collector Current				1.0				0.5	0
Total Device Dissipation of (or below) $25^{\circ} \mathrm{C}$ Fres-Air Temperature (See Note Indicated in Parentheses) \longrightarrow	$\begin{aligned} & 0.8 \\ & (3) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 0.6 \\ t \\ (5) \\ \hline \end{gathered}$	$\begin{array}{r} \hline 0.4 \\ \ddagger \\ (7) \\ \hline \end{array}$	$\begin{aligned} & 0.5 \\ & (9) \end{aligned}$	$\begin{aligned} & 0.5 \\ & \text { (9) } \end{aligned}$	$\begin{aligned} & 0.5 \\ & \text { (9) } \\ & \hline \end{aligned}$	0.8 (3)	(3)	W
Total Device Dissipation of (or below) $25^{\circ} \mathrm{C}$ Case Temperature (See Note Indicated in Parentheses) \longrightarrow	$\begin{array}{r} 3.0 \\ + \\ (4) \\ \hline \end{array}$	$\begin{array}{r} 2.0 \\ t \\ (6) \\ \hline \end{array}$	$\begin{array}{r} 1.5 \\ \ddagger \\ (8) \\ \hline \end{array}$	$\begin{array}{r} 1.8 \\ (10) \\ \hline \end{array}$	$\begin{aligned} & 1.8 \\ & (10) \\ & \hline \end{aligned}$	$\begin{aligned} & 1.8 \\ & (10) \\ & \hline \end{aligned}$	$\begin{gathered} 3.0 \\ t \\ 1 \\ \hline \end{gathered}$	$\begin{array}{r} 3.0 \\ t \\ (4) \\ \hline \end{array}$	W
Slorage Temperature Ronge	$-65^{\circ} \mathrm{C}$ to $200^{\circ} \mathrm{C}$								

MOTES: 1. This values epplios whan the bese-mitter resistence (n_{me}) is equel to or less than 10 ahms.
2. This values applios when the base-emifiter didede is epmen-circuited.
3. Devale linearly to $200^{\circ} \mathrm{C}$ froe-air temperature at the rate of $4.57 \mathrm{~mm} /{ }^{\circ} \mathrm{C}$.
4. Derate lineserly $10200^{\circ} \mathrm{C}$ cesse temperature at the rete of $17.2 \mathrm{~mm} /{ }^{\circ} \mathrm{C}$.
5. Derate limewrly to $175^{\circ} \mathrm{C}$ froo-air temperature at the rate of $4.0 \mathrm{~mm} /{ }^{\circ} \mathrm{C}$.
6. Derale linearly to $175^{\circ} \mathrm{C}$ case temperature at the rate of $13.3 \mathrm{~mm} /{ }^{\circ} \mathrm{C}$.
J. Derale linearily to $175^{\circ} \mathrm{C}$ fres-air thempenature at the rats of $2.07 \mathrm{~mm} /{ }^{\circ} \mathrm{C}$.
8. Bercole linverly to $175^{\circ} \mathrm{C}$ cose temperature at the rate of $10.0 \mathrm{mw} /{ }^{\circ} \mathrm{C}$.
9. Derale linearty to $760^{\circ} \mathrm{C}$ free-sir temperature at the rate of $2.86 \mathrm{~mm} /{ }^{\circ} \mathrm{C}$.
10. Derate Iinearly te $200^{\circ} \mathrm{C}$ cose temperature at the rete of $10.3 \mathrm{~mm} /{ }^{\circ} \mathrm{C}$.

-JEDEC reghatered data.

*The JEDEC regintered outlime for these devices is TO-5.
TO-39 falls within TO-5 with the exception of lead langth.
${ }^{\dagger}$ Texas Instruments guarantses these devices in TO-39 packages dato-coded 7328 or hisher to be capable of incrocesed distipetion ms follows: 0.8 w at $\mathrm{T}_{A}<25^{\circ} \mathrm{C}$ dernted linearly to $\mathrm{T}_{A}=200^{\circ} \mathrm{C}$ at at $\mathrm{T}_{A}<25^{\circ} \mathrm{C}$ derated linetrly to $\mathrm{T}_{A}=200^{\circ} \mathrm{C}$ at
the rate of $4.57 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$, or 10 W at $\mathrm{T}_{\mathrm{C}}<25^{\circ} \mathrm{C}$ (5.71 W at $\mathrm{T}_{C}=100^{\circ} \mathrm{C}$) derated linearly to $\mathrm{T}_{\mathrm{C}}=200^{\circ} \mathrm{C}$ at the rate of $57.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
\ddagger Toxas Instruments quarantese its types 2N719 and 2N720 to be cepable of the same diveipation at registered end shown for types 2N719A, 2N720A, 2N870, and 2N871 with sppropriate derating factors dhown in Notes 9 and 10.

TYPES 2N698, 2N699, 2N719, 2N719A N-P-N SILICON TRANSISTORS

*eloctrical charactoristics at $25^{\circ} \mathrm{C}$ free-air temperature (unless othorwise notod)

MOTE 11 Those peramelors must be mensurad usime pulse techalques. Tw ≤ 300 $\mu s o c$., Duty cycle $\leq 2 \%$. Pulse width must be such that hoiving or doobling doen net cowse a chenge grester them the roquirad accuracy of the moosuremont.
*Iadicatos JEDEC rogistwed dete.

TYPES 2N696, 2N697, 2N77, 2N718, 2N718A, 2N730, 2N731, 2N956, $2 N 1420,2 N 1507,2 N 1613,2 N 711$ N-P-N SILICON TRANSISTORS
 BULLETIN NO. DL-S 693471. MAY 1963-REVISED AUGUST 1969

Highly Reliable, Versatile Devices Designed for
 Amplifier, Switching and Osdilator Applications
 from $<0.1 \mathrm{ma}$ to $>150 \mathrm{ma}$, dk to 30 mc

- High Voltage - Low Leakage
*mechanical defa
Device types 2N717, 2N718, 2N718A, 2N730, 2N731, and 2N956 are in JEDEC TO-18 packages. Device types 2N696, 2N697, 2N1420, 2N1507, 2N1613, and 2N1711 are in JEDEC TO-5 packages.

*absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

	$\begin{array}{\|l\|} \hline \text { 2N696 } \\ \text { 2N697 } \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 2 \mathrm{NF} 17 \\ 2 \mathrm{NT18} \\ \hline \end{array}$	2N718A	$\begin{array}{r} 2 N 730 \\ 2 N 731 \\ \hline \end{array}$	2N956	$\begin{array}{\|l\|} 2 \mathrm{~N} 142 \mathrm{O} \\ 2 \mathrm{~N} 1507 \\ \hline \end{array}$	2N1613	2N1711	UNIT
Collector-Base Voltoge	60	60	75	60	75	60	75	75	v
Collector-Emitter Yolitage (See Note 1)	40	40	50	40	50	30	50	50	v
Collector-Emitter Voltage (See Note 2)			32						v
Emitar-Aase Voltage	5	5	7	5	7	5	7	7	v
Collector Current				1.0		1.0		1.0	a
Total Device Dissipation of (or below) $25^{\circ} \mathrm{C}$ Free-Air Temperature (See Note Indicated in Parentheses) \rightarrow	$\begin{aligned} & \hline 0.6 \\ & \vdots \\ & (3) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.4 \\ & \dagger \dagger \\ & 1 \\ & \hline \end{aligned}$	(7)	$\begin{aligned} & \hline 0.5 \\ & \dagger \\ & 1 \dagger \\ & \text { (9) } \end{aligned}$	(7)	$\begin{aligned} & \hline 0.6 \\ & \vdots \\ & \text { (3) } \\ & \hline \end{aligned}$	0.8 (10)	0.8 (10)	w
Total Device Dissipation of (or below) $25^{\circ} \mathrm{C}$ Case Temperature (See Note Indicoted in Parenthesas) \rightarrow	$\begin{gathered} 2.0 \\ \vdots \\ (4) \\ \hline \end{gathered}$	$\begin{aligned} & 1.5 \\ & \dagger \dagger \\ & 1 \\ & (6) \\ & \hline \end{aligned}$	1.8 (8)	$\begin{aligned} & 1.5 \\ & 1 \dagger \\ & 1 . \\ & \hline \end{aligned}$	1.8 (8)	$\begin{gathered} 2.0 \\ \dagger \\ (4) \\ \hline \end{gathered}$	3.0 (11)	3.0 (11)	W
Total Device Dissipotion af $100^{\circ} \mathrm{C}$ Case Temperatura	$\begin{aligned} & 1.0 \\ & i \\ & \hline \end{aligned}$	$\begin{aligned} & 0.75 \\ & \dagger \dagger \\ & \hline \end{aligned}$	1.0	$\begin{aligned} & 0.75 \\ & i t \\ & \hline \end{aligned}$	1.0	$\begin{aligned} & 1.0 \\ & + \\ & \hline \end{aligned}$	1.7	1.7	w
Operating Collector Junction Temperature	175 \dagger	175¢†	200	175†t	200	175 \dagger	200	200	${ }^{\circ} \mathrm{C}$
Storuge Temperature Runge	$-65^{\circ} \mathrm{C}$ to $200^{\circ} \mathrm{C}$								

NOTES: 1. This value applies when the base-emittor resistence (Rye) is equal to or less then 10 ohms.
2. This value applios whon the base-militer diode is epen-circuited.
3. Derate linearly to $175^{\circ} \mathrm{C}$ tree-alr tomporature af the rate of $4.0 \mathrm{~mm} / \mathrm{c}^{\circ}$.
4. Derate linearly to $175^{\circ} \mathrm{C}$ cose tamperature at the rate of $13.3 \mathrm{nmw} / \mathrm{C}^{\circ}$.
5. Derati liseasty to $175^{\circ} \mathrm{C}$ free-alt temperature at the rate of $2.67 \mathrm{mw} / \mathrm{c}^{\circ}$.
6. Derate linearly to $175^{\circ} \mathrm{C}$ case tomperatore af the rate of $10.0 \mathrm{mw} / \mathrm{c}^{\circ}$.
7. Derats linearly to $200^{\circ} \mathrm{C}$ fros-oir temperature of the rate of $2.06 \mathrm{mw} / \mathrm{C}^{\circ}$.
3. Derefe linserly to $200^{\circ} \mathrm{C}$ cass temporature at the rete of $10.3 \mathrm{mw} / \mathrm{c}^{\circ}$.
9. Derete linearly to $175^{\circ} \mathrm{C}$ free-air temperalure of the rate of $3.33 \mathrm{mw} / \mathrm{c}^{\circ}$.
10. Derate linearly to $200^{\circ} \mathrm{C}$ freo-sir tamperature of the rete of $4.56 \mathrm{~mm} / \mathrm{c}^{\circ}$.
II. Derate linearly to $200^{\circ} \mathrm{C}$ case temperature of the rate of $17.2 \mathrm{~mm} / \mathrm{C}^{\circ}$.
†Toxis Instruments guarantees its types 2N696, 2N697, 2N1420, and 2 M1 507 to be capmble of the same disslpation as registered and shown for types 2 Ni 613 and 2 N 1711 with appropiote derating factors shown in Moles 10 and 11.
\dagger †toxas Instruments guarantees its types 2N717, 2N718, 2N730, and 2M731 to be capable of the same dissipation as rogistored and ahown for types 2N718A and 2N956 with appropriate derating facfors shown in Notes 7 and 8.

[^27]
TYPES 2N696, 2N697, 2N717, 2N718, 2N718A, 2N730, 2N731 N-P-N SILICON TRANSISTORS

*electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

PARAMETER		TEST CONDITIONS \quad TO. $5 \rightarrow$			$\begin{aligned} & \text { 2N717 } \\ & 2 N 730 \end{aligned}$	$\begin{array}{\|l\|l\|} \hline \text { 2N718 } \\ \hline \end{array}$	UNIT	
		2N696	2N697					
		MIN Max	MIN MAX	MIN max	MIN max			
$V_{\text {Ifereo }}$	Collector-Base Braokdown Veltage		$\mathrm{I}_{\mathbf{C}}=100 \mu \mathrm{c}, \mathrm{I}_{\mathrm{E}} \neq 0$	40	40	60	60	V
$V_{\text {(u) }}$	Collcator-Emittor krakdown Voltage		${ }^{1} \mathrm{C}=30 \mathrm{ma}, \mathrm{I}_{\mathrm{B}}=0, \quad$ See Note 12					V
$V_{\text {(ma) }{ }^{\text {ceer }}}$	Cellecter-Emittor Ireakdown Voltage	$\mathrm{I}_{\mathrm{C}}=100 \mathrm{ma}, \mathrm{R}_{\text {de }}=10 \mathrm{n}$. Sees Mote 12	40	40	40	40	V	
	Emilter-loss Irenkdown Veltaga	$I_{E}=100 \mu 0, I_{C}=0$ Except 2N717,24718: $\mathrm{I}_{\mathrm{E}}=1 \mathrm{ma}$	5	5	5	5	V	
${ }^{\prime} \mathrm{Cso}$	Colloctor Cutoff Curront	$v_{C B}=30 \mathrm{v}, \mathrm{l}_{\mathrm{E}}=0$	1.0	1.0	1.0	1.0	μ	
		$V_{C E}=30 \mathrm{r}, \mathrm{T}_{\mathrm{E}}=0, \quad \mathrm{~T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$	100	100	100	100	μ	
		$\mathrm{V}_{\mathrm{CB}}=\mathbf{\omega} \mathrm{r}, \mathrm{I}_{\mathrm{E}}=0$					μ	
		$v_{C B}=00 v_{1} \mathrm{I}_{\mathrm{E}}=0, \quad \mathrm{~T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$					μ	
${ }^{\text {ceer }}$	Colloctor Cuteff Current	$\mathrm{v}_{\text {CE }}=20 \mathrm{v}, \mathrm{n}_{\text {EE }}=100 \mathrm{k} \mathrm{\Omega}$					μ	
$\mathrm{I}_{\text {EWO }}$	Emitter Cutoff Current						μ	
$h_{\text {FE }}$	Static Forword Curreat Transfer Ratio	$v_{C E}=10 r_{\text {c }} \mathrm{I}_{C}=10 \mu$						
		$V_{C E}=10 \mathrm{v}, \mathrm{I}_{\mathrm{C}}=100 \mu \mathrm{~m}$						
		$V_{C E}=10 \mathrm{v},{ }^{\prime}{ }_{C}=10 \mathrm{~ms}$, Soe Mote 12						
		$\begin{aligned} & \mathrm{V}_{\mathrm{CE}}=10 \mathrm{v}, \mathrm{I}_{\mathrm{C}}=10 \mathrm{ma}, \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \\ & \mathrm{Sot} \text { Note } 12 \end{aligned}$						
		$V_{C E}=10 \mathrm{v}, \mathrm{t}_{\mathbf{C}}=150 \mathrm{mo}$, S00 Mote 12	$20 \quad 6$	40.120	$20 \quad 60$	$40 \quad 120$		
		$V_{C E}=10 \mathrm{v}, \mathrm{I}_{C}=500 \mathrm{~mm}$, Se0 Mote 12						
$V_{\text {EE }}$	Caso-Emittor Voltage	$\mathrm{I}_{\mathrm{s}}=15 \mathrm{ma}, \mathrm{I}_{C}=150 \mathrm{ma}$, See Mote 12	1.3	1.3	1.3	1.3	v	
$\mathbf{V}_{\text {CEs sath }}$	Collecter-Emittor Saluration Yoliage	$\mathrm{I}_{\mathrm{B}}=15 \mathrm{ma}, \mathrm{I}_{\mathrm{C}}=150 \mathrm{ma}$, Soet Wote 12	1.5	1.5	1.5	1.5	V	
$h_{i b}$	Small-Signal Cemmen-lase Input Impedence	$\mathbf{v}_{\mathbf{c s}}=5 \mathrm{v}, \mathrm{l}_{\mathbf{c}}=1 \mathrm{ma}, \quad \mathrm{f}=1 \mathrm{kc}$					dmm	
							anm	
$h_{\text {rb }}$	Small-Signol Common-Sase Reversa Voltage Transfer Ratio	$\mathbf{v}_{\mathrm{CB}}=5 \mathrm{v}, \quad \mathbf{l}_{\mathrm{c}}=1 \mathrm{ma}, \quad \mathrm{l}=1 \mathrm{kc}$						
		$\mathbf{v}_{\mathbf{C s}}=10 \mathrm{v}, \mathrm{I}_{\mathbf{c}}=5 \mathrm{~mm}, \quad 1=1 \mathrm{kc}$						
$h_{\text {ob }}$	Small-Signal Commen-Lase Output Admittance	$v_{\mathrm{ct}}=5 \mathrm{v}, \mathrm{l}_{\mathrm{c}}=1 \mathrm{ma}, \quad f=1 \mathrm{kt}$					$\mu \mathrm{mme}$	
		$\mathrm{V}_{\mathrm{CB}}=10 \mathrm{v}, \mathrm{I}_{\mathrm{C}}=5 \mathrm{me}, \quad f=1 \mathrm{kt}$					$\mu \mathrm{mmp}$	
h_{60}	Small-Signal Commen-Emifter formard Current Trensfer Ratio	$V_{C E}=5 \mathrm{v}_{1} \quad \mathrm{I}_{\mathrm{C}}=1 \mathrm{ma}, \quad \mathrm{f}=1 \mathrm{kc}$						
		$V_{C E}=10 \mathrm{v}, \mathrm{l}_{\mathrm{C}}=5 \mathrm{ma}, \quad 1=1 \mathrm{kc}$						
$\left\|h_{\text {fo }}\right\|$	Small-Signal Commen-Emitter Forward Curreml Transfor Ratie	$\mathbf{v}_{\mathbf{C E}}=10 \mathrm{v}, \mathrm{l}_{\mathbf{C}}=50 \mathrm{ma}, \quad \mathrm{f}=20 \mathrm{mc}$	2.0	2.5	2.0	2.5		
$C_{\text {ab }}$	Common-Less Open-Circuit Output Capadtance	$\mathbf{v}_{\mathbf{C E}}=10 \mathrm{v}, \mathrm{l}_{\mathbf{E}}=0, \quad 1=1 \mathrm{mc}$	35	35	35	35	*	
$c_{i b}$	Common-base Open-Circuit Input Capecitance	$v_{\mathrm{E}}=0.5 \mathrm{v}, \mathrm{l}_{\mathrm{c}}=0, \quad t=1 \mathrm{mc}$			0	0	f	

 a charge greeter then the repuirut ucturacy of the measurummat.

[^28]
TYPES 2N77, 2N718, 2N718A, 2N956, 2N1420, 2N1507, 2N1613, 2N1711 N-P-N SILICON TRANSISTORS

*electrical characteristics at $25^{\circ} \mathrm{C}$ froe-air tomperature (unless otherwise noted)

[^29][^30]TYPES 2N77, 2N718, 2N718A, 2N956, 2N1613, 2N711 N-P-N SILICON TRANSISTORS
*operating characteristics at $\mathbf{2 5}{ }^{\circ} \mathrm{C}$ free-air temperafure

PARAMETER	TEST CONDITIONS	TO-18 \rightarrow	$\frac{2 N 956}{2 N 1711}$		$\begin{aligned} & \frac{2 N 718 A}{2 N 1613} \end{aligned}$		UNIT
		TO-5 \longrightarrow					
			TYP	MAX	TYP	MaX	
NF Spot Moise Figure	$\begin{aligned} & V_{C E}=10 \mathrm{v}, \mathrm{Ic}_{\mathrm{c}}=300 \mu \mathrm{a} \\ & R_{G}=510 \Omega, f=1 \mathrm{kc} \end{aligned}$		5	8	6	12	db

* switching characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER	TEST CONDITIONS	$\xrightarrow{\text { TO-18 }} \rightarrow$	$\begin{aligned} & \hline \text { 2N718A } \\ & \hline 2 N 1613 \\ & \hline \end{aligned}$		UNIT
			TYP	MAX	
\dagger_{T} Total Switching Time	See Figure 1		20	30	nsec

*PARAMETER MEASUREMENT INFORMATION

FIGURE 1 - SWITCHING TIME MEASUREMENT CIRCUIT FOR 2N7IBA AND 2NI613
WOTES: 13. The input wovolorm is suppliod by a mercury rolay pulse generetor with the following choracteristics: $\mathrm{t}_{\mathrm{r}} \leq 1$ nsec, $\mathrm{t}_{\mathrm{i}} \leq 1$ nsec, $\mathrm{PW}=15$ nsec. Adjust \mathbf{R}_{1} and the input pulse amplitede to ebtain the specifiod voltage lovels at Point A.
14. Wevaforms are monitered on a sompliag oscilloscope ($\mathrm{i}_{\mathrm{r}} \leq 0.4$ nssc) using a 2000Ω probo.
*Indicates JEDEC regislered data (Iypical deta excloded)

TYPES 2N698, 2N699, 2N718, 2N718A, 2N720, 2N720A, 2N87O, 2N871, 2N1889, 2N1890, 2N1893 N-P-N SILICON TRAMSISTORS

Highly Reliable, Versatile Devicess Designod for Amplifior, Switching and Oscillator Applications from $<0.1 \mathrm{ma}$ to $>150 \mathrm{ma}$, de to 30 mc
- High Voltage - Low Leakage
- Useful $h_{f l}$ Over Wide Current Range

mochonical defa
Device types 2N719, 2N719A, 2N720, 2N720A, 2N870 and 2N871 are in JEDEC TO-18 packages*.
Device types $2 \mathrm{~N} 698,2 \mathrm{~N} 699,2 \mathrm{~N} 1889,2 \mathrm{~N} 1890$, and 2 N 1893 are in JEDEC TO-39 packages*.

*absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless ofherwise noted)

	2N698	2N699	$\begin{array}{\|l\|} \hline 2 N 719 \\ \text { 2N720 } \end{array}$	2N719A	2N720A	$\begin{array}{\|l\|l\|} \hline 2 N A 70 \\ 2 N 871 \end{array}$	$\begin{array}{\|l\|} \hline 2 N 1889 \\ 2 N 1890 \end{array}$	2N1893	UNIT
Collector-Ease Vollage	120	120	120	120	120	100	100	120	v
Colliector-Emitter Voltuge (Seo Nofe 1)	80	80	80	80	100	80	80	100	v
Collector-Emitter Volhoge (See Note 2)	60			60	80	60	60	80	v
Emither-Lase Vollage	7	5	5	7	7	7	7	7	v
Collector Current				1.0				0.5	a
Total Device Dissipation of (or telow) $25^{\circ} \mathrm{C}$ Froe-Air Tomperature (See Mote Indicaled in Porentheses) \longrightarrow	$\begin{aligned} & 0.8 \\ & \text { (3) } \\ & \hline \end{aligned}$	$\begin{gathered} 0.6 \\ t \\ (5) \\ \hline \end{gathered}$	$\begin{array}{r} 0.4 \\ \ddagger \\ (7) \\ \hline \end{array}$	$\begin{aligned} & 0.5 \\ & \text { (9) } \end{aligned}$	$\begin{aligned} & 0.5 \\ & \text { (9) } \end{aligned}$	$\begin{aligned} & 0.5 \\ & (9) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.8 \\ & \text { (3) } \\ & \hline \end{aligned}$	0.8 (3)	w
Total Device Dissipation at (or below) $25^{\circ} \mathrm{C}$ Cose Temperoture (Seo Note Indictoted in Porentheses) \longrightarrow	$\begin{gathered} 3.0 \\ + \\ (4) \end{gathered}$	$\begin{gathered} 2.0 \\ t \\ (6) \end{gathered}$	$\begin{gathered} 1.5 \\ \ddagger \\ \ddagger \\ (8) \end{gathered}$	$\begin{aligned} & 1.8 \\ & (10) \end{aligned}$	1.8 (10)	$\begin{aligned} & 1.8 \\ & (10) \end{aligned}$	$\begin{gathered} 3.0 \\ + \\ (4) \end{gathered}$	$\begin{gathered} 3.1 \\ \hline .0 \\ \dagger \\ \text { (4) } \end{gathered}$	w
Slorage Pemperature Range	$-65^{\circ} \mathrm{C}$ to $200^{\circ} \mathrm{C}$								

MOTES: 1. This values epplies whan the bese-mititer mesistence (Res) is equal to er less then 10 chms.

3. Gorate linevily to $200^{\circ} \mathrm{C}$ frot-air temperature at the rate of $4.57 \mathrm{mw} /{ }^{\circ} \mathrm{C}$.
4. Borcte lineorly to $200^{\circ} \mathrm{C}$ case temparatere at the rate of $17.2 \mathrm{mw} /{ }^{\circ} \mathrm{C}$.

6. Borcte linearly to $175^{\circ} \mathrm{C}$ cese tomperature of the refe of $13.3_{\mathrm{mm}}{ }^{\circ} \mathrm{C}$.

D. Devale liacerly $\mathrm{to} 175^{\circ} \mathrm{C}$ cese temperatura at the rate of $10.0 \mathrm{~mm} /{ }^{\circ} \mathrm{C}$.
9. Derate lineerly io $280^{\circ} \mathrm{C}$ fres-alt temperatere at the rate of $2.25 \mathrm{~mm} /{ }^{\circ} \mathrm{C}$.
10. Derente Inenerly to $200^{\circ} \mathrm{C}$ eane temperation ot the rate of $10.3 \mathrm{~mm} /{ }^{\circ} \mathrm{C}$.

JEDEC regintered data.

The JEDEC registered ourline for theme devices is TO-5.
TO. 39 fells within TO-5 with the excepption of lead length.
†Texas Instruments quarantees these devices in TO-39 packages deto-coded 7328 or higher to be capebte of incromed dispipation as followe: 0.8 W at $T_{A}<25^{\circ} \mathrm{C}$ derated tineerly to $\mathrm{T}_{A}=200^{\prime \prime} \mathrm{C}$ at the rate of $4.57 \mathrm{~mW} / \mathrm{C}^{\circ} \mathrm{C}$, or 10 W at $\mathrm{T}_{\mathrm{C}}<25^{\circ} \mathrm{C}$ (5.71 W at $\mathrm{T}_{\mathrm{C}}=100^{\circ} \mathrm{C}$) derated linearly to

\ddagger Texes Inctruments gumentees its types 2N719 and 2 N 720 to be capable of the same diseipation at registered and shown for typee 2N719A, 2N720A, 2N870, and 2N871 with mppropriate derating factors shown in Notes 9 and 10.

TYPES 2N698, 2N699, 2N719, 2N719A, 2N720, 2N720A N-P-N SILICON TRAMSISTORS

*electrical charactoristics at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

NOTE 11 These parometers muss bo masurad using pulst lachniques. PW $\leq 300 \mu$ sec., Duty cycle $\leq \mathbf{2 \%}$.
Pulse width must be swh that halving or doubling does nol cevse a change proster then the
required accuracy of the measurament.
-Indicalos JEDEC registored data.

TYPES 2N719, 2N718A, 2N720, 2N720A, 2N870, 2N871, 2N1889, 2N1890, 2N1893 M-P-N SILICON TRANSISTORS
*olectricel charceforlstics of $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	70-12-	2N720		2N720A		2N370		2N871		UNIT
			10-39			2N1893		2N1099		2N1890		
				MIN	max	MIN	MAX	MIN	MAX	MiN	max	
$V_{\text {Imaceo }}$	Collectiv-lese Dreekdiven Vellige	$I_{c}=100 \mu, I_{1}=0$		120		121		100		100		V
$V_{\text {Imjero }}$	Colicotw-Emitior Broakdown Voliepe	$\mathrm{I}_{\mathrm{c}}=30 \mathrm{mb}, \quad \mathrm{I}_{\mathrm{s}}=0 . \quad \mathrm{Sen}$	111			0		60		60		\checkmark
Y (micas	Colloctor-Enitter Brockdown Veltepe	$\mathrm{Ic}_{\mathrm{c}}=100 \mathrm{~m}, \mathrm{I}_{\mathrm{m}}=10 \mathrm{n}, \mathrm{sen}$	11	0		100		0		80		V
Y/emineo	Emither-ilese Brackdown Vofiage	$\mathrm{I}_{1}=100 \mu \mathrm{~L}, 1_{c}=0$				7		1		1		V
		$\mathrm{l}_{5}=1 \mathrm{~mm}, \quad \mathrm{l}_{c}=0$		5								v
ICos	Colloctar coleth Curront	$v_{C B}=0 v_{1} \quad I_{E}=0$			2							μ
		$V_{C S}=60 v_{1} \quad 1 \begin{aligned} & \text { a }\end{aligned}$	$150^{\circ} \mathrm{C}$		290							$\mu \mathrm{m}$
		$v_{c a}=75 v_{1} \quad 18=0$							0.010		0.010	$\mu \mathrm{m}$
		$V_{C E}=75 v_{1} \quad I_{E}=0_{1} \quad I_{A}$	$180^{\circ} \mathrm{C}$						15		15	$\mu \mathrm{m}$
		$v_{c_{0}}=N_{0} v_{1} \quad I_{5}=0$					0.010					μ
		$\mathrm{V}_{\mathrm{Cl}}=\mathrm{v}_{1} \mathrm{v}_{1} \quad \mathrm{I}_{\mathrm{E}}=0, \quad \mathrm{~T}_{\mathrm{A}}$	$150^{\circ} \mathrm{C}$				15					μ
140	Emititer Cuteff Cerromi	$r_{11}=2 v_{1}, \quad l_{C}=0$										$\mu \mathrm{m}$
							0.010		0.010		0.010	μ
Hre	Statk Fownond Current Trension Ratio	$v_{\text {cti }}=10 v_{0}, I_{C}=100 \mu$				24		20				
		$v_{\text {cte }}=10 v_{1} v_{c}=10 \mathrm{ma}$ Sot	N11			35		35				
		$\begin{aligned} & Y_{c i}=10 \mathrm{v}, \quad I_{\mathrm{C}}=10 \mathrm{~mm}, I_{\mathrm{A}} \\ & \text { sot mote } 11 \end{aligned}$	$-55^{\circ} \mathrm{C}$			20		8				
			te 11	4	120		120	41	140		300	
	lese-Emitter Volicye	$\mathrm{I}_{1}=5 \mathrm{~mm}, \quad \mathrm{I}_{\mathrm{c}}=50 \mathrm{ma}$ Sem	te 11				0.9		0.9		0.1	v
		$\mathrm{I}_{1}=15 \mathrm{~mm}, \mathrm{I}_{\mathrm{c}}=150 \mathrm{~mm}, \mathrm{sen}$	W 11		1.8		1.3		1.3		1.8	v
$V_{\text {cutan }}$	Colloctor-Emitior Scturation Velepo	$\mathrm{I}_{1}=5 \mathrm{~ms}, \mathrm{I}_{\mathrm{C}}=50 \mathrm{~mm}, \mathrm{sm}$	te 11				1.2		1.2		1.2	v
		$\mathrm{l}_{1}=15 \mathrm{~mm}, \mathrm{l}_{c}=150 \mathrm{ma}, \mathrm{sen}$	to 11		5		5		5		5	\checkmark
H_{10}	Small-SigalComan-lenelaput Imperanco	$\mathbf{v}_{\mathrm{Cs}}=5 \mathrm{v}, \quad \mathrm{I}_{\mathrm{c}}=1$ ma, 1		20	31		30	20	30		80	anm
		$v_{C s}=10 v_{1}, \mathrm{l}_{C}=5 \mathrm{~mm}, 1=$			10	4	t	4	1	4	8	atm
${ }^{\text {rb }}$	small.Signel Commen-lese Rewasu Yeltage Treator Rictio	$v_{c a}=5 v_{0} \quad I_{c}=1 \mathrm{~mm}, 1=$			$\begin{array}{r} 2.5 x \\ 10^{-4} \\ \hline \end{array}$		$\begin{array}{r} 1.25 \mathrm{x} \\ 10-4 \\ \hline \end{array}$		$\begin{gathered} 1.25 \times \\ 10^{-4} \\ \hline \end{gathered}$		$\begin{gathered} 1.5 x \\ 10^{-4} \\ \hline \end{gathered}$	
		$\mathrm{V}_{\mathbf{C s}}=10 \mathrm{v}, \quad \mathrm{I}_{\mathbf{c}}=3$ me, $1=$			$\begin{gathered} 3 x \\ 10^{-4} \end{gathered}$		$\begin{gathered} 1.52 \\ 10^{-4} \end{gathered}$		$\begin{array}{c\|} \hline 1.5 x \\ 10^{-4} \end{array}$		$\begin{aligned} & 1.5 x \\ & 10-4 \end{aligned}$	
${ }^{*}{ }_{\text {b }}$	Smallisignal Commen-Iote Outpel Adentience	$v_{c t}=5 v_{0} \quad t_{c}=1 \mathrm{mo}, 1=$		0.1	0.5		0.5		0.5		0.3	$\mu \mathrm{mlve}$
		$v_{c i}=10 \mathrm{v}, \quad \mathrm{I}_{\mathbf{C}}=5 \mathrm{~mm}, \quad 1=$			1.0		0.5		0.5		0.3	$\mu \mathrm{mme}$
$h_{\text {f }}$	Smell-Sigmal Commen-Emither Forward Cursual Treaster Ratio	$v_{\text {cis }}=5 \mathrm{v}_{\mathrm{t}} \quad \mathrm{Ic}_{\mathrm{c}}=1 \mathrm{ma}, \quad 1=$		35	100	30	100		100		200	
		$v_{\text {ct }}=10 \mathrm{v}^{\prime}, \mathrm{I}_{\mathrm{c}}=5 \mathrm{~mm}, 1=$		45		45		45	150		380	
$\left\|h_{\text {mo }}\right\|$	Smell-Signel Commen-Emifter Ferwerd Curteal Trunstor Ratle	$v_{c i n}=10 v_{1}, l_{c}=90 \mathrm{ma}, 1=20 \mathrm{mc}$		2.5		2.5		2.5		2.0		
Cob	Comman-ision Open-Cirall Oulpul Cepactitente		$\begin{aligned} & 1 \mathrm{me} \\ & 140 \mathrm{kt} \end{aligned}$		28		15		15		15	M
$c_{\text {c }}$	Common-lese Opma-Clecult Input Copactianes		$\begin{aligned} & 1 \mathrm{me} \\ & 140 \mathrm{ke} \end{aligned}$		55		15		15		${ }^{5}$	\%

royuled eceurecy of the measuromeat.
-Imeliceter JEDEC mikitord deta.

BULLETIN NO. DL-S 7311976 , JUNE 1973

FOR MEDIUM-SPEED, MEDIUM-POWER, GENERAL PURPOSE AMPLIFIER APPLICATIONS

- fT . . . $60 \mathrm{MHz} \min (2 N 722)$
*mechanical data

*absolute maximum ratings at $\mathbf{2 5}{ }^{\circ} \mathbf{C}$ free-air temperature (unless otherwise noted)

Collector-Base Voltaga																	
Collector-Emitter Voltage (See Note 1)																	
Collector-Emitter Voltage (See Note 2)																	
Emitter-Base Voltage																	
Continuous Device Dissipation at (or below) $\mathbf{2 5}{ }^{\circ} \mathrm{C}$ Free-Air Temperature (See Note 3) 0.4 W																	
Continuous Device Dissipation at (or below) $25^{\circ} \mathrm{C}$ Case Temperature (See Note 4) 1.5 W																	
Storage Temperature Range . $-65^{\circ} \mathrm{C}$ to $\mathbf{2 0 0}{ }^{\circ} \mathrm{C}$																	

NOTES: 1. This value applies when the base-amitter diode is open-circuited.
2. This value applies when the base-amitter rasistanca $R_{\mathrm{BE}}<10 \Omega$.
3. Derate linesily to $175^{\circ} \mathrm{C}$ free-air tempersture at the rate of $2.87 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
4. Derate linearly to $175^{\circ} \mathrm{C}$ cese temperature at the rate of $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.

[^31]
TYPES 2N721, 2N722 P-N-P SILICON TRANSISTORS

*electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

NOTE 5. These parameters must be measured using puise techniques. $t_{w}=300 \mu s$, duty cycle $\leqslant 1 \%$. *JEDEC registered data

THERMAL INFORMATION

FREE-AIR TEMPERATURE

CASE TEMPERATURE DISSIPATION DERATING CURVE

TYPES 2N696, 2N697, 2N717, 2N718, 2N718A, 2N730, 2N731, 2N956, 2N1420, 2N1507, 2N1613, 2N7H1 N-P-N SILICON TRANSISTORS

Highly Roliable, Versatile Devices Designed for Amplifier, Switching and Oscillator Applications from $<0.1 \mathrm{ma}$ to $>150 \mathrm{ma}$, de to 30 mc

\author{

- High Voltage - Low Leakage
 - Usoful h_{fE} Over Wide Current Range
}

*mechanical data

Device types 2N717, 2N718, 2N718A, 2N730, 2N731, and 2N956 are in JEDEC TO-18 packages.
Device types 2N696, 2N697, 2N1420, 2N1507, 2N1613, and 2N1711 are in JEDEC TO-5 packages.

*absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

	$\begin{array}{\|l\|} \hline 2 \mathrm{~N} 696 \\ 2 \mathrm{~N} 697 \\ \hline \end{array}$	$\begin{array}{r} 2 \mathrm{~N} 717 \\ 2 \mathrm{~N} 718 \\ \hline \end{array}$	2N718A	$\begin{array}{r} 2 N 730 \\ 2 N 731 \\ \hline \end{array}$	2N956	$\begin{array}{\|l\|} \hline 2 N 1420 \\ \text { 2Nis07 } \\ \hline \end{array}$	2N1613	2N1711	UNIT
Collector-Cose Voltage	60	60	75	60	75	60	75	75	v
Colloctor-Emittor Voltage (See Note 1)	40	40	50	40	50	30	50	50	v
Collector-Emitter Voltage (See Note 2)			32						v
Emitter-Base Voltage	5	5	7	5	7	5	7	7	v
Collector Current				1.0		1.0		1.0	0
Total Devica Dissipation at (or below) $25^{\circ} \mathrm{C}$ Froe-Air Temperature (See Note Indicuted in Parentheses) \rightarrow	$\begin{gathered} 0.6 \\ \vdots \\ \vdots \\ \hline \end{gathered}$	$\begin{aligned} & 0.4 \\ & \dagger \dagger \\ & 1 \dagger \\ & \hline \end{aligned}$	$\begin{aligned} & 0.5 \\ & (7) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.5 \\ & 1 \dagger \\ & (9) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.5 \\ & (7) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.6 \\ & \dagger \\ & \vdots \\ & \hline \end{aligned}$	$\begin{aligned} & 0.8 \\ & (10) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.8 \\ & (10) \end{aligned}$	W
Total Device Dissipation at (or below) $25^{\circ} \mathrm{C}$ Case Temperature (See Mote Indicated in Parentheses) \rightarrow	$\begin{aligned} & 2.0 \\ & \vdots \\ & 1 \\ & (4) \end{aligned}$	$\begin{aligned} & 1.5 \\ & t \\ & 16 \\ & \hline \end{aligned}$	1.8 (8)	$\begin{aligned} & 1.5 \\ & t \\ & 1 . \\ & \hline(6) \end{aligned}$	1.8 (8)	$\begin{aligned} & 2.0 \\ & i \\ & \text { (4) } \\ & \hline \end{aligned}$	$\begin{aligned} & 3.0 \\ & \text { (11) } \\ & \hline \end{aligned}$	3.0 (11)	W
Total Dovice Dissipation at $100^{\circ} \mathrm{C}$ Case Tomperoture	$\begin{aligned} & 1.0 \\ & \dagger \\ & \hline \end{aligned}$	$\begin{aligned} & 0.75 \\ & i+ \\ & \hline \end{aligned}$	1.0	$\begin{aligned} & 0.75 \\ & \text { t } \\ & \hline \end{aligned}$	1.0	$\begin{aligned} & 1.0 \\ & + \\ & \hline \end{aligned}$	1.7	1.7	W
Operating Collector Junction Temperature	175†	175it	200	175t†	200	175†	200	200	${ }^{\circ} \mathrm{C}$
Storage Temperature Ronge				-6	${ }^{\circ} \mathrm{C}$ to 20	$0^{\circ} \mathrm{C}$			

NOTES: 1. This value applies when the beso-amitior resistence (fice) is oqual to or less than 10 chmm.
2. This value applies when the base-omilter diode is opon-circuited.
3. Derate lineerly to $175^{\circ} \mathrm{C}$ tree-ale tomperature at the rate of $4.0 \mathrm{~mm} / \mathrm{c}^{\circ}$. 4. Derats Iinearly to $175^{\circ} \mathrm{C}$ cass tomperature at the rate of $13.3 \mathrm{mw} / \mathrm{c}^{\circ}$.
5. Derate limearly to $175^{\circ} \mathrm{C}$ fres-alr temperature at the rale of $2.07 \mathrm{~mm} / \mathrm{C}^{\circ}$.
4. Derats limenty te $175^{\circ} \mathrm{C}$ cose temperature of the rate of $10.0 \mathrm{~mm} / \mathrm{C}^{\circ}$.
7. Devals linearly to $200^{\circ} \mathrm{C}$ hot-air temperature at the rate of $2.06 \mathrm{~mm} / \mathrm{C}^{\circ}$
8. Borcte linearly to $200^{\circ} \mathrm{C}$ cese temperature af the rate of $10.3 \mathrm{~mm} / \mathrm{C}^{\circ}$.
9. Derels limourly to $175^{\circ} \mathrm{C}$ fros-air temporature at the rate of $3.33 \mathrm{mw} / \mathrm{C}^{\circ}$
10. Derste linesily to $200^{\circ} \mathrm{C}$ frem-air temperature at the rate of $4.56 \mathrm{mw} / \mathrm{c}^{\circ}$.
11. Derate linearly to $290^{\circ} \mathrm{C}$ esee tomperature of the rate of $17.2 \mathrm{~mm} / \mathrm{C}^{\circ}$.
fToxas Instruments guarentes: ins types 2N646 2N697, 2 N1420, and 2 N1507 to be capathe of the same ditaipation as regloterod and shown fer types 2N1613 and 2N1711 with approprlate derationg factors shown in Metes 10 and 11.
$\dagger \dagger$ Toxas Instruments guarantees its types 210717, 2N71s, 2N730, and 2N781 to we cappote of the same dilislpation as reglatored and shown for types 2N718A and 2N956 with eppropplate derating fortors shown In Metes 7 and e.
-Indkatos JEDEC regisiorad deta.

*electrical characteristics af $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

PARAMETER					$\begin{aligned} & 2 N 717 \\ & 2 N 730 \end{aligned}$	$\begin{array}{\|l\|} \hline \text { 2N718 } \\ \text { 2N731 } \\ \hline \end{array}$	UNIT	
		2N696	2N697					
		MIN Max	MIN MAX	Min max	MIN max			
			$\mathrm{I}_{\mathrm{C}}=100 \mu \mathrm{~m}, \mathrm{I}_{\mathrm{E}}=0$	ω	ω	60	10	v
Vinuceo	Colicater-Emititer Broekdown Vollege		$\mathrm{I}_{\mathrm{c}}=30 \mathrm{mo}, \mathrm{I}_{1}=0, \quad$ Soe Note 12					
$V_{\text {(m) }}$	Collocter-Emittor Brackdem Yoliteg	$\mathrm{I}_{\mathrm{c}}=100 \mathrm{mos}, \mathrm{I}_{\text {E }}=10 \mathrm{\Omega}$, Seo Nota 12	40	40	10	40	v	
VIEREDO	Emitter-bose Prackivw Voliage	$I_{E}=100 \mu_{0}, I_{c}=0$ Except 20V17,21V1): $\mathrm{I}_{\mathrm{E}}=1 \mathrm{ma}$	5	5	5	5	\checkmark	
${ }^{1} \mathbf{C D O}$	Callecter Cutoff Cerreat	$v_{C!}=30 v, I_{E}=0$	1.0	1.0	1.0	1.0	$\mu \mathrm{a}$	
		$V_{C E}=30 \mathrm{v}, \mathrm{I}_{\mathrm{E}}=0, \quad \mathrm{~T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$	100	100	100	100	$\mu \mathrm{c}$	
		$\mathrm{v}_{\mathrm{CE}}=60 \mathrm{v}_{\mathrm{t}} \mathrm{I}_{\mathrm{E}}=0$					μ	
		$V_{C A}=60 v_{,} \mathrm{I}_{\mathrm{E}}=0, \quad \mathrm{I}_{\mathrm{A}}=150^{\circ} \mathrm{C}$					$\mu 0$	
${ }^{\text {CeER }}$	Collocitor Cutofl Cwrrat	$\mathbf{v}_{\text {CE }}=22 \mathrm{v}, \mathrm{R}_{\text {PE }}=100 \mathrm{k} \mathrm{\Omega}$					$\mu 0$	
Ceor	Emitier Cuteff Curront	$v_{\text {E }}=5 \mathrm{v}, \mathrm{l}_{\mathbf{c}}=0$					μ	
${ }^{4} \mathbf{f z}$	Static Fonwed Carmat Trensfor latte	$v_{C E}=10 v, l_{C}=10 \mu \mathrm{~m}$						
		$v_{C E}=10 y_{r} 1_{C}=100 \mu_{0}$						
		$V_{C E}=10 r_{1} I_{C}=10 \mathrm{mo}$, See Motic 12						
		$Y_{C E}=10 v_{1} I_{C}=10 \mathrm{ma}, \quad \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ Sen Note 12						
		$V_{C E}=10 v_{i} I_{C}=150 \mathrm{ma}$, Stot Mote 12	20.60	$40 \quad 120$	$20 \quad 60$	$40 \quad 120$		
		$Y_{C E}=10 \mathrm{r}, \mathrm{I}_{C}=500 \mathrm{ma}$, See Mote 12						
$V_{\text {me }}$	Bess-Emittor Yoltage	$\mathrm{l}_{\mathrm{B}}=15 \mathrm{ma}, \mathrm{I}_{\mathrm{c}}=150 \mathrm{ma}$, Sen Mott 12	1.3	1.3	1.3	1.3	*	
$\mathrm{V}_{\text {CEsati }}$	Colfecter-Emititer Soturation Velteyo	$\mathrm{I}_{\mathrm{B}}=15 \mathrm{mo}, \mathrm{I}_{\mathrm{c}}=150 \mathrm{ma}$, See Mola 12	1.5	1.5	1.5	1.5	V	
$h_{i b}$	Smail-Signal Commm-lose Inpul Iapedence	$\mathrm{V}_{\mathrm{c},}=5 \mathrm{y}, \mathrm{l}_{\mathrm{c}}=1 \mathrm{ma}, 1=1 \mathrm{kc}$					chem	
		$v_{C I}=10 \mathrm{v}, \mathrm{I}_{\mathrm{C}}=5 \mathrm{ma}, \quad f=1 \mathrm{kc}$					cmm	
${ }^{\text {brb }}$	Small-Signed Commen-Vase Rowws Voltage Itcmster Retio	$\mathbf{v}_{\mathbf{C s}}=5 \mathrm{v}, \mathrm{I}_{\mathbf{c}}=1 \mathrm{~mm}, \quad \mathrm{f}=1 \mathrm{kc}$						
		$v_{\text {ces }}=10 \mathrm{r}, \mathrm{l}_{\mathrm{c}}=5 \mathrm{ma}, \quad f=1 \mathrm{kc}$						
b_{0}	Smali-Signal (cmama-Sent Outpot Admittence	$v_{\mathrm{cs}}=5 \mathrm{v}, \mathrm{I}_{\mathrm{c}}=1 \mathrm{mb}, \quad 1=1 \mathrm{k}$					μ mine	
							$\mu \mathrm{mmb}$	
h_{6}	Smell-Signal Commen-Emilter Forward Curroat Trunsfor Ratio	$\mathbf{Y}_{\mathbf{C E}}=5 \mathrm{v}, \mathrm{l}_{\mathbf{C}}=1 \mathrm{me}, f=1 \mathrm{kc}$						
		$v_{C E}=10 v_{0} \mathrm{l}_{\mathrm{C}}=5 \mathrm{ma}, \quad i=1 \mathrm{kc}$						
$\left\|h_{\text {fol }}\right\|$	Smell-Signal Connmon-Emittor Forward Curronal Trenstor Ratio	$\mathbf{v}_{\mathbf{C E}}=10 \mathrm{v}, \mathrm{l}_{\mathbf{C}}=50 \mathrm{ma}, f=20 \mathrm{mc}$	2.0	2.5	2.0	2.5		
${ }_{\text {c }}{ }^{\text {b }}$	Commen-Lase Open-Circuit Outpul Capacitonce	$\mathbf{v}_{\mathbf{C s}}=10 \mathrm{v}, \mathrm{l}_{\mathbf{E}}=0, \quad i=1 \mathrm{mc}$	35	35	35	35	Pf	
$c_{i b}$	Cammen-lose Open-Gircult Input Capacitancs	$\mathrm{v}_{\mathrm{ft}}=0.5 \mathrm{v}, \mathrm{l}_{\mathrm{c}}=0, \quad i=1 \mathrm{mc}$			80	80	pf	

 a chenge groter then the reyulnot eccwecy of the meosureamist.
*Indicetes JEBEC misistorad data

TYPES 2N849, 2N850
 N-P-N SILICON TRANSISTORS

DESIGNED FOR HIGH-SPEED SWITCHING APPLICATIONS

mechanical data
The transistors are in a hermetically sealed welded package meeting the JEDEC TO-50 outline.

*absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)
Collector-Base Voltage
Collector-Emitter Voltage (see note 1). 25 v

Collector-Emitter Voltage (see note 1) . 15 r
Emitter-Bose Voltage . 5 v
Collector Current . 50 ma
Total Device Dissipation at $25^{\circ} \mathrm{C}$ Free-Air Temperature (see note 2) 0.3 w
Total Device Dissipation at $25^{\circ} \mathrm{C}$ Case Temperature (see note 3) 1.2 w
Collector Junction Operating Temperature $175^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
*electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

PARAMETER		TEST CONDITONS		MIN	MAX	UNIT
$\mathrm{I}_{\text {cıo }}$	Collector Cutofl Current	$V_{C B}=15 v_{\text {c }} \mathrm{t}_{\mathrm{E}}=0$,			0.5	$\mu 0$
Icso	Collector Cutoff Current	$V_{C B}=15 v, \mathrm{I}_{\mathrm{E}}=0 \quad \mathrm{~T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$			30	$\mu \mathrm{O}$
$\mathrm{I}_{\mathbf{c} 80}$	Collector Cutoff Current	$V_{C E}=25 v, I_{E}=0$			10	$\mu \mathrm{a}$
$l_{\text {CER }}$	Collector Cutoff Current	$V_{C E}=20 \mathrm{v}, \mathrm{R}_{\text {BE }}=100 \mathrm{k} \Omega$			10	$\mu \mathrm{a}$
$\mathrm{l}_{\text {EBO }}$	Emitter Cutoff Current	$V_{E B}=5 \mathrm{v}_{2} \quad \mathrm{I}_{\mathbf{C}}=0$			10	$\mu \mathrm{a}$
+V $V_{\text {far)ceo }}$	Collector-Emitter Breakdown Voltage	$\mathrm{l}_{\mathrm{c}}=10 \mathrm{ma}, \mathrm{I}_{\mathrm{B}}=0$		15		μ
	Collector-Emitter Breakdown Voltoge	$\mathrm{I}_{\mathrm{C}}=10 \mathrm{mo}, \mathrm{R}_{\text {bE }}=10 \Omega$		20		V
$Y_{\text {(Ea) }}$	Collector-Base Breakdown Voltage	$l_{c}=10 \mu \mathrm{a}, \mathrm{l}_{\mathrm{E}}=0$		25		\checkmark
$\mathbf{V}_{\text {(m) }}$	Emitter-Base Breakdown Voltage	$\mathrm{I}_{\mathrm{E}}=10 \mu \mathrm{a}, \mathrm{I}_{C}=0$		5		V
$\dagger^{\text {fre }}$	Static Forward Current Transler Ratio	$V_{C E}=1 \mathrm{v}, \quad \mathrm{I}_{\mathrm{C}}=10 \mathrm{ma}$	2N849	20	60	
			2N850	40	120	
$\dagger_{\text {f }} \mathrm{V}_{\text {PE }}$	Base-Emilter Voltage	$\mathrm{I}_{\mathrm{s}}=1 \mathrm{ma}, \quad \mathrm{I}_{\mathrm{c}}=10 \mathrm{ma}$		0.7	0.9	y
${ }^{+V_{\text {celsat }}}$	Collector-Emitter Saturation Voltage	$I_{B}=1 \mathrm{ma}, I_{c}=10 \mathrm{ma}$			0.6	v
$\left\|h_{\text {ral }}\right\|$	Small-Signal Common-Emitter Forward Current Transfer Ratio	$V_{C E}=10 \mathrm{v}, \mathrm{I}_{\mathrm{E}}=-10 \mathrm{mo}, f=100 \mathrm{mc}$		6		db
$C_{\text {cb }}$	Common-Base Oufput Capacitance	$V_{C S}=5 v_{,} \mathrm{I}_{\mathrm{E}}=0, \quad f=1 \mathrm{mc}$			5	pf

*switching characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

	PARAME	TEST CONDITIONS		MAX	UNIT
$t_{\text {on }}$	Tum-On Time	$\begin{aligned} & I_{\mathbb{A}(1)}=3 \mathrm{mo}, I_{\mathrm{a}(2)}=-1 \mathrm{mo} \\ & V_{\mathrm{CC}}=3 \mathrm{v}, \quad \mathbf{R}_{\mathrm{L}}=270 \Omega \text {, (see Circuit A) } \end{aligned}$		40	nsec
t dff	Turn-Off Time			75	nsec
t_{5}	Storage Time		21.849	25	nsec
			21850	35	nsec

†These porameters must be measurad with a pulse duration of 300 microseconds and a duty cycle of 2 percent.
NOTES: 1. This volue applies when the base-amitter diode is opan-circuited.
2. Derate linearly to $775^{\circ} \mathrm{C}$ free-air temperature at the rate of $2 \mathrm{~mm} /{ }^{\circ} \mathrm{C}$.
3. Derate linearly to $175^{\circ} \mathrm{C}$ case temparature at the rate of $8 \mathrm{mw} /{ }^{\circ} \mathrm{C}$.
*Indicates JEDEC registered data.

TYPES 2N849, 2N850 N-P-N SILICON TRANSISTORS

"circuit A

input and output pulse wavefonms

circuit a

input and output pulse wayirorms

NOTES: ©) All eapeaituncen in $\mu \boldsymbol{\mu}$.
b) All renintors $\pm 1 \%, 0.1 \mathrm{~m}$, HRR.
c) Decoupling capaciton ($\mathbf{2 5} \mu \mathrm{f}$) are ploced across the power supply terminals to V_{Cc} and $\mathrm{V}_{\text {es }}$.
d) The input to each circuit is supplied by a Model 303 Lumatron Mercury-Relay Pulse Generator ($z_{\text {eut }}=50$ @) or equivalent. Pulse rise time ≤ 1 nsec. PW ≥ 400 nasc, Duty Cycle $\leq 2 \%$.
-) Output waveforma are menitored by a Model 12.AB Lumatron Sampling Oceiloscope ($Z_{\text {in }}=50 \mathrm{a}$, rise time ≤ 1 nsck) or equivalent.

TYPES 2N851, 2N852
 N-P-N SILICON TRANSISTORS

DESIGNED FOR HIGH-SPEED SWITCHING APPLICATIONS

*absolute maximum ratings at $\mathbf{2 5}{ }^{\circ} \mathrm{C}$ froe-alr temporature(unless otherwise noted)
Collector-Base Voltage . 20 r

Collector-Emitter Voltage (see note 1) . 12 v
Emitter-Base Voltage . 5 r
Collector Current . 200 ma
Total Device Dissipation at $25^{\circ} \mathrm{C}$ Free-Air Temperature (see note 2) 0.3 w
Total Device Dissipation at $25^{\circ} \mathrm{C}$ Case Temperature (see note 3) 1.2 w
Collector Junction Operating Temperature $175^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}^{\circ}$ to $+200^{\circ} \mathrm{C}$
*olectrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature (unless othorwise noted)

PARAMETER	TEST CONDITIONS		MIN	MAX	UNIT
Iens Collactor Culoff Current	$V_{C I}=20 \mathrm{r}, \quad \mathrm{V}_{\mathrm{m}}=0$			1	$\mu 0$
ICas Colloctor Cutoff Currant	$V_{\text {Cl }}=20 \mathrm{~V}_{1} \quad V_{\mathrm{E}}=0, \quad \mathrm{I}_{\mathrm{A}}=170^{\circ} \mathrm{C}$			100	μ
Icix Collector Culoff Currant	$\mathrm{V}_{\mathrm{CI}}=.10 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{B}}=+0.35 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=100^{\circ} \mathrm{C}$			30	μ
leos Emittor Cutoff Current	$V_{1 s}=5 \mathrm{v}, \quad \mathrm{l}_{\mathrm{c}}=0$			10	$\mu \mathrm{O}$
tV eukceo Colloctor-Emitter Braokdown Voitoge	$\mathrm{I}_{\mathrm{c}}=10 \mathrm{ma}, \mathrm{I}_{\mathrm{B}}=0$		12		-
$V_{\text {carcio }}$ Colloctor-Bose Breakdown Vollage	$L_{c}=10 \mu a_{1} l_{t}=0$		20		v
Y wayuo Emithor-Base Braokdown Voltage	$\mathrm{L}_{1}=10 \mu 0, \mathrm{k}_{\mathrm{c}}=0$		5		v
Static Forword Current Transter Ratio	$V_{c t}=0.25 \mathrm{v}, \mathrm{l}_{\mathrm{c}}=1 \mathrm{ma}$	$2 \mathrm{2N851}$	10		
		2N852	20		
Static Forward Current Iramstor Ratio	$V_{\text {ct }}=0.35 \mathrm{v}, \mathrm{I}_{\mathrm{c}}=10 \mathrm{ma}$	24651	20	60	
		214852	40	120	
Statik Forword Current Pranster Ratio	$V_{\text {ce }}=1.0 \mathrm{v}, \quad \mathrm{I}_{\mathrm{c}}=100 \mathrm{mo}$	$2 \mathrm{2N051}$	10		
		24852	20		
Stotk Forword Currant Trunster Ratio	$V_{C E}=0.35 \mathrm{v}, \mathrm{I}_{\mathrm{c}}=10 \mathrm{ma}, \quad \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$	24051	10		
		2 W 652	20		
$V_{\text {m }}$ Bas-Emittor Yoltage	$\mathrm{l}_{\mathrm{L}}=1 \mathrm{ma}, \quad \mathrm{l}_{\mathrm{c}}=10 \mathrm{ma}$		0.65	0.85	V
tVe Base-Emitter Voltage	$\mathrm{I}_{\mathrm{s}}=10 \mathrm{ma}, \quad \mathrm{l}_{\mathrm{c}}=100 \mathrm{mo}$			1.5	v
Ve Coso-Emither Voltage	$\mathrm{I}_{\mathrm{B}}=1 \mathrm{mo}, \quad \mathrm{I}_{\mathrm{c}}=10 \mathrm{ma}, \quad \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$			1.1	v
tV $\mathrm{V}_{\text {me }} \quad$ Base-Emither Voltage	$\mathrm{I}_{\mathrm{B}}=10 \mathrm{ma}, \quad \mathrm{I}_{\mathrm{C}}=100 \mathrm{ma}, \quad \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$			1.6	\checkmark
Veluay Collector-Emilter Saturation Voltoge	$\mathrm{I}_{\mathrm{t}}=1 \mathrm{ma}, \quad \mathrm{I}_{\mathrm{c}}=10 \mathrm{ma}, \quad \mathrm{T}_{\mathrm{A}}=170^{\circ} \mathrm{C}$			0.35	v
$\pm V_{\text {celuet }}$ Collector-Emitter Saturation Voltage	$\mathrm{I}_{1}=10 \mathrm{ma}, \mathrm{I}_{\mathrm{C}}=100 \mathrm{ma}, \mathrm{T}_{\mathrm{A}}=170^{\circ} \mathrm{C}$			1.0	v
$\left\|h_{\text {me }}\right\| \quad \begin{aligned} & \text { Small-Signal Common-Emifthr } \\ & \text { Forwend Current Pranstor Ratio }\end{aligned}$	$V_{c t}=10 \mathrm{v}_{1} \quad \mathrm{Ic}_{\mathrm{c}}=10 \mathrm{ma}, \quad f=100 \mathrm{mc}$		9		db
Cob Commen-Bose Output Capesitance	$V_{C l}=5 \mathrm{v}, \quad h_{1}=0, \quad t=1 \mathrm{mc}$			5	M

*swlithing charactoristics at $23^{\circ} \mathrm{C}$ free-air temperature

	PARAMITR	TIST CONDITIONS		Max	UNIT
${ }^{\text {fan }}$	Tum-On TIme			16	nsch
		$\mathrm{Ic}_{\mathrm{c}} \approx 100 \mathrm{me}$ In Crumita		12	mact
$t_{\text {det }}$	Purnoff IIme	Ic $=10 \mathrm{mo} \mathrm{in} \mathrm{Crailf} \mathrm{A}$	2ME51	24	mat
			2 M852	24	$\underline{\mathrm{mac}}$
		$\mathrm{Ic}_{\mathrm{c}} \approx 100 \mathrm{ma}$ in Cruil A	2 N 551	40	mact
			$2 \mathrm{NeS2}$	45	mact
t. Storage Iime			2 N051	14	mact
		2 ME52	18	nsec	

thene paremsters must be meosurad with equle duration of 300 microneconds mad a duty eycle of 2 percent.

Wadicatit JEDET mgitiorod date.
3. Berate linearly to $175^{\circ} \mathrm{C}$ case temperature at the rate of $8 \mathrm{~mm} /{ }^{\circ} \mathrm{C}$.

TYPES 2N851, 2N852 N-P-N SILICON TRANSISTORS

PARAMETER MEASUREMENT INFORMATION

CIRCUIT A

nfut and output pulse wavtrome
CIRCUIT CONDITIONS

$\underset{m a^{*}}{\mathrm{I}_{\mathrm{c}}}$	$\operatorname{lman}_{\mathrm{ma}}$	$\begin{aligned} & I_{\text {IM } 21} \\ & m a^{*} \end{aligned}$		$V_{c c}$	$R_{1}=R_{2}$	R2	$\begin{aligned} & \overline{R_{4}} \end{aligned}$	${ }_{6}$	t_{0}		leat	
10	3	-1.5	-1.5	3.0	3.3 K	50			ver	V1m, r	120,	$\mathrm{V}_{\mathrm{ln}, \mathrm{y}}$
100	40	-20.0	-24	60	330 (b)			0	-3.0	15.0	12.0	-15.0
				6.0		56	0	1 K	-4.5	20.0	$15.3{ }^{(d)}$	-20.0

*Approximofo values.
*Prior baso-mmitter voltoge, "OfF" state.
CIRCUIT:

mput and output puls wayirorms

NOPES, a) All capactanees in μ f.
b) All resittors $£ 1 \%, 0.1 \mathrm{w}$, HFR except $\mathrm{R2}$ is 0.5 w at 100 ma .
-) Decoupling capacitors ($\mathbf{2 5} \mu$) are placed across the power supply terminals to $V_{C C}$ and $V_{\text {as }}$.
d) V_{BL} is pulsed for 1.5 sec at less than $\mathbf{1 0 \%}$ duly cycle for $100 \mathrm{ma} \mathrm{t}_{\mathrm{off}}$ to keop ease temperature below $\mathbf{3 0}{ }^{\circ} \mathrm{C}$.
-) The input to each sircult is supplied by a Model 303 Lumatron Mercury-helay Pule Generator ($\mathrm{Z}_{\text {eut }}=50$ @) or equivalent. Pulse rise times 1 nsec. PW ≥ 300 nsec, Duty Cyele $\leq 2 \%$.
f) Output waveforms are monitored by a Model 12-At Lumatron Sampling Ocellioseope ($\mathrm{Z}_{\mathrm{in}}=50 \Omega$, rist time \leq insec) or equivalent.

Highly Relliable, Versatile Devices Designed for Amplifier, Switching and Oscillator Applications from $<0.1 \mathrm{ma}$ to $\boldsymbol{>} \mathbf{1 5 0} \mathrm{ma}$, de to $\mathbf{3 0} \mathrm{me}$
 - High Voltage - Low Leakage
 - Useful $h_{\text {fe }}$ Over Wide Current Range

mechanical data
Device types 2N719, 2N719A, 2N720, 2N720A, 2N870 and 2N871 are in JEDEC TO-18 packages*.
Device types 2N698, 2N699, 2N1889, 2N1890, and 2N1893 are in JEDEC TO-39 packages*.

*absolute maximum rafings at $25^{\circ} \mathrm{C}$ free-air temperature (unless ofherwise noted)

	2N698	2N699	$\begin{aligned} & 2 N 719 \\ & 2 N 720 \end{aligned}$	2N719A	2N720A	$\left\lvert\, \begin{aligned} & 2 \mathrm{~N} 870 \\ & 2 \mathrm{~N} 871 \end{aligned}\right.$	$\begin{array}{\|l\|} \hline 2 \mathrm{~N} 1889 \\ 2 \mathrm{~N} 1890 \end{array}$	2N1893	UNIT
Collector-Base Voltage	120	120	120	120	120	100	100	120	v
Collector-Emitior Vohage (See Note 1)	80	80	80	80	100	80	80	100	v
Collector-Emitter Voltage (See Note 2)	60			60	80	60	60	80	v
Emittor-Base Voltage	7	5	5	7	7	7	7	7	v
Colloctor Current				1.0				0.5	0
Total Device Dissipation at (or below) $25^{\circ} \mathrm{C}$ Free-Air Temperature (See Note Indicated in Parenthessas) \longrightarrow	0.8 (3)	$\begin{array}{r} 0.6 \\ t \\ (5) \\ \hline \end{array}$	$\begin{array}{r} 0.4 \\ \ddagger \\ (7) \\ \hline \end{array}$	$\begin{aligned} & 0.5 \\ & \text { (9) } \end{aligned}$	$\begin{aligned} & 0.5 \\ & \text { (9) } \end{aligned}$	$\begin{aligned} & 0.5 \\ & \text { (9) } \end{aligned}$	(3)	(3)	w
Totol Devise Dissipation of (or below) $25^{\circ} \mathrm{C}$ Case Temperature (See Mote Indicated in Parenthesses) \longrightarrow	$\begin{gathered} 3.0 \\ \uparrow \\ \text { (4) } \end{gathered}$	$\begin{gathered} 2.0 \\ + \\ \text { (6) } \\ \hline \end{gathered}$	$\begin{gathered} 1.5 \\ \ddagger \\ \text { (8) } \\ \hline \end{gathered}$	$\begin{aligned} & 1.8 \\ & (10) \\ & \hline \end{aligned}$	$\begin{aligned} & 1.8 \\ & (10) \\ & \hline \end{aligned}$	1.8 (10)	$\begin{gathered} 3.0 \\ \dagger \\ \text { (4) } \\ \hline \end{gathered}$	$\begin{gathered} 3.0 \\ t \\ \text { (4) } \\ \hline \end{gathered}$	W
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $200^{\circ} \mathrm{C}$								

MOTES: 1. This values applies when the baso-omitter rosisteme ($\mathrm{R}_{\text {efe }}$) is equal to or tess than 10 shms.
2. This velues epplies when the hen-emmititer diedo is open-chiculiced.
3. Derste linearly te $200^{\circ} \mathrm{C}$ fret-air temperature of the rate of $4.57 \mathrm{mw} /{ }^{\circ} \mathrm{C}$.
4. Derete lineerly $10200^{\circ} \mathrm{C}$ cese temperature at the rate of $17.2 \mathrm{~mm} /{ }^{\circ} \mathrm{C}$.
5. Derate linoerly to $175^{\circ} \mathrm{C}$ froo-air temparature of the rate of $4.0 \mathrm{~mm} /{ }^{\circ} \mathrm{C}$.
4. Derate linecerly to $175^{\circ} \mathrm{C}$ cose temparature at the rate of $13.3^{\mathrm{mm}} /{ }^{\circ} \mathrm{C}$.
7. Derate Ineorly $10175^{\circ} \mathrm{C}$ free-eis tempenature at the rate of $2.67 \mathrm{~mm} /{ }^{\circ} \mathrm{C}$.
B. Derate linearly to $175^{\circ} \mathrm{C}$ cese temparature at the rate of $10.0 \mathrm{~mm} /{ }^{\circ} \mathrm{C}$.
9. Derate linesily to $200^{\circ} \mathrm{C}$ tree-air temperature at the rate of $2.05 \mathrm{~mm} /{ }^{\circ} \mathrm{C}$.
10. Derols lineerly is $200^{\circ} \mathrm{C}$ case tempmature at the rats of $10.3 \mathrm{~mm} /{ }^{\circ} \mathrm{C}$.
*JEDEC reglstered data.
-The JEDEC repisterred ourline for thoe dovices is TO-5.
TO-39 folls within TO-S with the exeeption of lead length.

TTexes Imbtrumente quarmintes theoe devices in TO-39 packages dote-coded 7328 or higther to be capebile of inereseed dissipetion as follown: 0.8 W at $\mathrm{T}_{A}<25^{\circ} \mathrm{C}$ derated Hinearly to $\mathrm{T}_{A}=200^{\circ} \mathrm{C}$ at the rate of $4.57 \mathrm{~mW} / \mathrm{C}$, or 10 W at $\mathrm{T}_{\mathrm{C}}<25^{\circ} \mathrm{C}$ (B.71 W at $\mathrm{TC}_{\mathrm{C}}=100^{\circ} \mathrm{C}$) derated linearly to $T_{C}=200^{\circ} \mathrm{C}$ at the rete of $57.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
\ddagger Taxes Instruments guerentow its typee 2N718 and 2 N 720 to be cepoble of the seme diseipation and reglaterred and hown for typee 2N719A, 2N720A, 2N870, and 2NS71 with mppropriate derating factors thown in Notess and 10.

TYPES 2N720. 2N720A, 2N870, 2N871, 2N1889, 2N1890, 2N1893 N-P-N SILICON TRANSISTORS

*electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

PARAMETER		TEST CONDITIONS	$\begin{array}{c\|} 10-18- \\ \hline 10-39-1 \end{array}$	2N720		2N720A		2N870		$2 \mathrm{Na71}$		UNIT	
			MiN	MaX	MIN	max	MIN	max	MIN	MAX			
$V_{\text {(mp)ceo }}$	Collector-iase Dreakdown Voltoge		$\mathrm{I}_{\mathbf{c}}=100 \mu \mathrm{a}, \mathrm{I}_{\mathrm{E}}=0$		120		120		100		100		\vee
v Imalceo	Collector-Emifter Ireakdewn Voltage	$\mathrm{I}_{\mathrm{c}}=30 \mathrm{ma}, \quad \mathrm{I}_{\mathrm{s}}=0 . \quad$ See Mote 11				80		60		60		v	
$V_{\text {(}}^{\text {(R) CER }}$	Collecter-Emifter Breakdown Voltage	${ }^{I_{c}}=100 \mathrm{ma}, \mathrm{R}_{\text {dee }}=10 \Omega$, Seot Mote 11		30		100		0		60		v	
$V_{\text {IURJESO }}$	Emitter-Dase Braokdown Voltoge	$\mathrm{I}_{\mathbf{E}}=100 \mu \mathrm{a}, \mathrm{I}_{\mathbf{C}}=0$				7		7		7		V	
		$\mathrm{I}_{\mathrm{E}}=1 \mathrm{mo}, \quad \mathrm{I}_{C}=0$		5								v	
${ }^{\mathbf{C}} \mathbf{C O}$	Coltecter Cutoft Current	$v_{C I}=60 v_{1} \quad t_{E}=0$			2							μ	
		$v_{C B}=60 \mathrm{v}, \quad \mathrm{I}_{\mathrm{E}}=0, \quad \mathrm{~T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$			200							$\mu \mathrm{m}$	
		$V_{C s}=75 v_{1}, \quad I_{E}=0$							0.010		0.010	$\mu \mathrm{L}$	
		$\mathrm{V}_{\mathrm{CB}}=75 \mathrm{v}, \quad \mathrm{I}_{\mathrm{E}}=0, \quad \mathrm{~T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$							15		15	$\mu \mathrm{ma}$	
		$\mathrm{V}_{\mathrm{CE}}=90 \mathrm{v}, \mathrm{I}_{\mathrm{E}}=0$				0.010						$\mu \mathrm{a}$	
		$v_{C I}=90 v_{1} \quad I_{E}=0, \quad \mathrm{~T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$					15					μ	
${ }_{\text {Eta }}$	Emittor Cutofl Curcent	$v_{E B}=2 v_{1} \quad \mathbf{I}_{\mathbf{c}}=0$						0.010				μ	
						0.010				0.010		μ	
		$V_{C E}=10 \mathrm{r},{ }^{1} \mathrm{C}=100 \mu \mathrm{e}$				20		20					
		$v_{C E}=10 \mathrm{r}, \quad \mathrm{l}_{C}=10 \mathrm{ma}, \mathrm{sec}$	Wete 11			35		35					
$h_{\text {fe }}$	Tronsfor Ratio	$\begin{aligned} & V_{C E}=10 \mathrm{v}, \quad I_{C}=10 \mathrm{ma}, I_{A} \\ & \text { Soe Mote } 11 \end{aligned}$	$=-55^{\circ} \mathrm{C}_{0}$			20		20					
		$\mathbf{v}_{\text {CE }}=10 \mathrm{v}, \quad \mathrm{I}_{\mathrm{C}}=150 \mathrm{ma}$, See	dell 11	40	120	4	120	40	120	100	300		
	East-	$\mathrm{I}_{\mathrm{B}}=5 \mathrm{ma}, \quad t_{C}=50 \mathrm{ma}, \mathrm{see}$	ate 11				0.9		0.9		0.9	V	
${ }^{\text {BE }}$		$\mathrm{I}_{\mathrm{B}}=15 \mathrm{ma}, \mathrm{I}^{\mathrm{C}}=150 \mathrm{ma}, \mathrm{sec}$	Wote 11		1.3		1.3		1.3		1.3	V	
$V_{\text {ceicelt }}$	Collector-Emitter	$\mathrm{t}_{\mathrm{B}}=5 \mathrm{ma}, \quad \mathrm{I}_{\mathrm{c}}=50 \mathrm{ma}, 500$	Ote 11				1.2		1.2		1.2	v	
CEIsetI	Saturation Volage	$\mathrm{I}_{1}=15 \mathrm{ma}, \quad \mathrm{I}_{C}=150 \mathrm{ma}, \mathrm{sec}$	ole 11		5		5		5		5	v	
	Small-signal Commen-lesa	$\mathbf{v}_{\mathrm{cs}}=5 \mathrm{v}, \quad \mathrm{l}_{\mathbf{c}}=1 \mathrm{ma}, \mathrm{f}=$		20	30	20	30	20	30	20	30	ctm	
	Iaput Impodance	$\mathrm{v}_{\mathrm{CB}}=10 \mathrm{v}, \quad \mathrm{I}_{\mathrm{C}}=5 \mathrm{ma}, 1=$			10	4	1	4	1	4	8	otm	
	Small-Signal Common-lase	$\mathrm{v}_{\mathrm{cs}}=5 \mathrm{v}, \quad \mathrm{l}_{\mathrm{c}}=1 \mathrm{ma}, \quad 1=$			$\begin{gathered} 2.5 x \\ 10^{-4} \\ \hline \end{gathered}$		$\begin{array}{r} 1.25 \times \\ 10^{-4} \\ \hline \end{array}$		$\begin{gathered} 1.25 \times \\ 10^{-4} \\ \hline \end{gathered}$		$\begin{gathered} 1.5 x \\ 10^{-4} \end{gathered}$		
${ }^{6}$	Reverse Voltage Transter Ratio	$\mathbf{v}_{\mathbf{C E}}=10 \mathrm{r}, \quad \mathrm{l}_{\mathbf{C}}=5 \mathrm{ma}, \quad \mathbf{t}=$			$\begin{gathered} 3 x \\ 10-4 \end{gathered}$		$\begin{gathered} 1.5 x \\ 10^{-4} \end{gathered}$		$\begin{array}{c\|} \hline 1.5 \times \\ 10^{-4} \end{array}$		$\begin{aligned} & 1.5 x \\ & 10^{-4} \end{aligned}$		
h_{0}	Smoll-Signal Commen-Ease	$\mathbf{v}_{\mathrm{Ca}}=5 \mathrm{v}, \quad \mathrm{I}_{\mathrm{c}}=1 \mathrm{ma}, 1=$		0.1	0.5		0.5		0.5		0.3	Henle	
	Output Admittanse	$\mathbf{v}_{\mathbf{C B}}=10 \mathrm{v}, \quad \mathrm{I}_{\mathrm{C}}=5 \mathrm{ma}, \quad \mathrm{f}=$	1 kt		1.0		0.5		0.5		0.3	$\mu \mathrm{mine}$	
	Smell-Signal Common-Emittier	$\mathbf{v}_{\text {ce }}=5 \mathrm{v}, \quad \mathrm{I}_{\mathbf{c}}=1 \mathrm{ma}, \quad 1=$		35	100	30	100	30	100		200		
\% 6	Forward Current Transfer Ratio	$\mathbf{v}_{\mathbf{C E}}=10 \mathrm{r}, \quad \mathrm{l}_{\mathrm{c}}=5 \mathrm{ma}, \quad \mathrm{f}=$	1 kt	45		45		45	150		300		
$\left\|h_{\text {fol }}\right\|$	Small-Signal Commen-Eminter Ferward Curtent Transfor Ratio	$\mathbf{v}_{\mathbf{C E}}=10 \mathrm{v}, \quad \mathrm{I}_{\mathbf{C}}=50 \mathrm{ma}, \mathrm{f}=$	20 mc	2.5		2.5		2.5		3.6			
$c_{\text {ab }}$	Common-Rase Open-Circuit Oulput Capacitance	$\mathbf{v}_{\mathbf{C B}}=10 \mathrm{v}, \quad \underset{\text { Except 2N720: }}{\mathrm{I}_{\mathrm{E}}=0,} \quad \mathbf{f =}$	$\begin{aligned} & 1 \mathrm{mc} \\ & 140 \mathrm{kc} \end{aligned}$		20		15		15		15	p	
$c_{i b}$	Common-Bose Open-Circuit Input Capacitance	$\mathbf{v}_{\mathrm{Et}}=0.5 \mathrm{v}, \quad \mathrm{I}_{\mathbf{c}}=0, \quad 1=$	$\begin{aligned} & 1 \mathrm{mc} \\ & 140 \mathrm{kc} \end{aligned}$		85		85		85		85	pf	

NOTE 11: These porameters must be measored using pulse techniques. PW $\leq 300 \mu$ sec., Dufy cycle $\leq \mathbf{2 \%}$.
Pulse width must be such that holving or doubling does not couse o chonge greater thon the
required accuracy of the measurement.
${ }^{\bullet}$ Indicates JEDEC regisferod data.

HIGHLY RELIABLE, VERSATILE DEVICES CHARACTERIZED ESPECIALLY FOR SMALL-SIGNAL APPLICATIONS

\author{

- High Voltage - Low Leakage
 - Useful hfe Over Wide Current Range
 - Both Common-Emitter and Common-Base Small-Signal Characterization
}
mechanical data
2N910, 2N911, $2 N 912$
absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

NOTES: 1. This value applies when the base-mitter resistance $R_{\mathrm{BE}} \mathbf{< 1 0 \Omega} \mathbf{\Omega}$.
2. This value applies when the base-emitter diode is open-circuited.
3. For $2 \mathrm{~N} 910,2 \mathrm{~N} 911$, and 2 N 912 , derate linearly to $200^{\circ} \mathrm{C}$ free-air temperature at the rate of $2.86 \mathrm{mw} / \mathrm{C}$.
4. For $2 \mathrm{~N} 1973,2 \mathrm{~N} 1974$, and 2 N 1975 , derate linearly to $200^{\circ} \mathrm{C}$ free-air temperature at the rate of $4.57 \mathrm{mw} /{ }^{\circ} \mathrm{C}$.
5. For $2 \mathrm{~N} 910,2 \mathrm{~N} 911$, and 2 N 912 , derate linearly to $200^{\circ} \mathrm{C}$ case temperature at the rate of $10.3 \mathrm{mw} /{ }^{\circ} \mathrm{C}$.
6. For $2 \mathrm{~N} 1973,2 \mathrm{~N} 1974$, and 2 N 1975 , derate linearly to $200^{\circ} \mathrm{C}$ case temperature at the rates of $57.1 \mathrm{mw} /{ }^{\circ} \mathrm{C}$ for the 10 -watt rating and $17.2 \mathrm{mw} /{ }^{\circ} \mathrm{C}$ for the 3 -watt (JEDEC reglstered) rating.

- JEDEC registered dats. This data sheet contains all applicable registered deta in effect at the time of publication.
-The JEDEC registered outline for these devices is TO-5. TO-39 falis within TO-5 with the exception of lead length.
$t_{\text {This value is }}$ guaranteed by Texas Instruments in addition to the JEDEC registered value which is aiso shown.
USES CHIP N23

TYPES 2N910, 2N911, 2N912, 2N1973, 2N1974, 2N1975 N-P-N SILICON TRANSISTORS

*operating characteristics at $\mathbf{2 5}{ }^{\circ} \mathrm{C}$ free-air temperature

PARAMETER	TEST CONDITIONS	TO-18 \rightarrow	2N910	2N911	2N912	UNIT
		70-39 \rightarrow	2N1973	2N1974	2N1975	
			MAX	MAX	MAX	
MF Spot Moise Flgure	$\begin{aligned} & V_{c \Delta}=10 \mathrm{v}, \mathrm{I}_{\mathrm{c}}=300 \mu \mathrm{\mu}, \mathrm{R}_{\boldsymbol{G}}=510 \Omega \\ & \mathrm{I}=1 \mathrm{kc}, \text { Woise Bondwith }=200 \mathrm{qs} \end{aligned}$		12	15	18	db

 - dengege greoter then the required eccurecy of the monswremont.
-Indicates JeDEC Registerad Data.

designed for use in vhf and uhf amplifier AND OSCILLATOR APPICATIONS

- Guaranteed Unneutralized Power Gain - 9 db min at $\mathbf{2 0 0} \mathbf{~ M c}$
- Low Cobo- 1.7 pf max
- Low Noise Figure - 3 db typ at 60 Mc
*mechanical data

t10.12 outline is same as $\mathbf{T 0}-18$ outitine with the addition of a fourih lead.
*absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

*electrical characteristics at $\mathbf{2 5}{ }^{\circ} \mathbf{C}$ free-air temperature (unless otherwise noted)

PARAMETER	TEST CONDITIONS ${ }^{+}$	MIN	MAX	UNIT
$\mathrm{V}_{\text {[m]cso }}$ Colledor-Base Breakdown Voltage	$\mathrm{I}_{\mathrm{C}}=1 \mu \mathrm{a}, \quad \mathrm{l}_{\mathrm{E}}=0$	30		V
$V_{\text {(ra) CEO }}$ Collector-Emitfer Breakdown Voltage	$\mathrm{I}_{\mathrm{c}}=3 \mathrm{ma}, \quad \mathrm{I}_{\mathrm{s}}=0, \quad$ See Note 4	15		v
$\mathbf{V}_{\text {[R] }}$ Emo Emitler-Base Breakdown Voltage	$\mathrm{I}_{\mathrm{E}}=10 \mu \mathrm{O}, \quad \mathrm{I}_{\mathrm{C}}=0$	3		v
	$V_{\text {Cs }}=15 \mathrm{v}, \mathrm{I}_{\mathrm{E}}=0$		1	na
Icso Colledor Culoff Current	$\mathrm{V}_{C B}=15 \mathrm{v}_{1} \quad \mathrm{I}_{\mathrm{E}}=0, \quad \mathrm{~T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$		0.1	$\mu \mathrm{a}$
$\mathrm{h}_{\text {fe }} \quad$ Static Forward Current Yransfer Ratio	$\mathrm{V}_{\mathrm{CE}}=1 \mathrm{v}, \quad \mathrm{I}_{\mathrm{C}}=3 \mathrm{ma}$	20	200	
$\mathrm{V}_{\mathrm{DE}} \quad$ Base-Emitter Voltage	$\mathrm{l}_{\mathrm{s}}=0.15 \mathrm{ma}, \mathrm{l}_{\mathrm{C}}=3 \mathrm{ma}$		0.87	v
$\mathrm{V}_{\text {CEIsat] }}$ Collector-Emitter Soturation Voltage	$\mathrm{I}_{\mathrm{B}}=0.15 \mathrm{ma}, \mathrm{I}_{\mathrm{C}}=3 \mathrm{ma}$		0.5	v
$\left\|\mathrm{h}_{\mathrm{te}}\right\| \quad$Small-Signal Commen-Emitter Forward Current Transier Ratio	$\mathrm{V}_{\mathrm{CE}}=10 \mathrm{v}, \quad \mathrm{l}_{\mathrm{c}}=4 \mathrm{ma}, \mathrm{f}=100 \mathrm{Mc}$	5		
$\begin{array}{\|ll} \hline \text { C }_{\text {obo }} & \begin{array}{l} \text { Common-Base Open-Circuit } \\ \text { Output Copocitance } \end{array} \\ \hline \end{array}$	$V_{C E}=10 \mathrm{v}, \quad \mathrm{I}_{\mathrm{E}}=0, \quad \mathrm{f}=140 \mathrm{kc}$		1.7	pf
$\mathrm{C}_{\text {ibo }}$ Common-Base Open-Circuit Inpul Capacitance	$\mathrm{V}_{\mathrm{EB}}=0.5 \mathrm{v}, \mathrm{I}_{\mathrm{C}}=0, \quad \mathrm{f}=140 \mathrm{kc}$		1.6	pf
$\mathrm{ra}^{\prime} \mathrm{C}_{\mathrm{c}} \quad$ Collector-Base Time Constant	$V_{C B}=10 \mathrm{v}, I_{C}=4 \mathrm{ma}, f=40 \mathrm{mc}$		75	psec

NOTES: 1. This value applies when the base-emitter diade is open-circuited.
2. Derale linearly to $200^{\circ} \mathrm{C}$ free-air temperature at the rate of $1.14 \mathrm{~mm} / \mathrm{C}^{\circ}$.
3. Derale lineorly to $200^{\circ} \mathrm{C}$ case temperature at the rate of $1.72 \mathrm{~mm} / \mathrm{C}^{\circ}$.
4. This parameter must be measured using pulse techniques. $\mathrm{PW}=300 \mu \mathrm{sec}$, Duty Cycla $\leq 1 \%$.

+ The fourth lead (case) is sloating for all measurements excepl Power Gain. For this parameter the fourth lead is grounded.
Indicates JEDEC registered data.
*opereffing characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

	PARAMLTER	TEST CONDITIONS ${ }^{\text {+ }}$	MIN	MAX	UNIT
MF	Spot Hoise figure	$\begin{aligned} & y_{C E}=6 \mathrm{v}, \quad I_{C}=1 \mathrm{ma}, R_{6}=400 \Omega, \\ & i=60 \mathrm{mc} . \end{aligned}$		6	db
6 po	Unneutralized Smal-Signol CommonEmitter Insertion Power Gain	$v_{C E}=10 \mathrm{v}, \mathrm{l}_{\mathrm{C}}=5 \mathrm{ma}, f=200 \mathrm{mc},$ See Figura 1	9		db
P。	Oscillator Power Output	$v_{c c}=15 \mathrm{v}, \mathrm{I}_{\mathrm{c}}=8 \mathrm{ma}, f=500 \mathrm{mc},$ 500 Figure 2	10		mw

* PARAMETER MEASUREMENT INFORMATION

CIRCUIT COMPONENT INFORMATION
C1, C2, and C9: $0.05 \mu \mathrm{f}$
C3: 1.5 - 10 pf
C4 and C5: 1000 pf
C6 and C7: 3-15 pf
C8: $25 \mu \mathrm{f}$
R1: $2.2 \mathrm{k} \Omega$
Ll: IT 12 AWG, 2 cm ID
L2 and L3: 200 Mc RFC
L4: $1 / 2$ T 112 AWG, 3 cm ID
D1 and D2: IN3063 (or equivalent)

FIGURE 1 - UNNEUTRALIZED 200-Mc INSERTION POWER GAIN TEST CIRCUIT

FIGURE $2 \mathbf{- 5 0 0}-\mathrm{Mc}$ OSCILLATOR POWER OUTPUT TEST CIRCUIT

[^32]
FOR VHF AND UHF AMPLIFIER AND OSCILLATOR APPLICATIONS

- Low Nolse Figure . . . 8 dB max at 60 MHz
- High Neutralized Power Gain . . . 15 dB min at 200 MHz
- High Oscillator Powar Output . . . 30 mW min at 500 MHz
*mechanical data

THE ACTIVE ELEMENTS ARE ELICTRICALLY INBULATED FAOM THE CABE

ALL JEDEC TO-72 DIMENSIONS AND NOTES ARE APPLICABLE
*absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)
Collector-Base Voltage . 30 V
Collector-Emitter Voltage (See Note 1) . 15 V
Emitter-Base Voltage . 3 V
Continuous Collector Current . 50 mA
Continuous Device Dissipation at (or below) $25^{\circ} \mathrm{C}$ Free-Air Temperature (See Note 2) 200 mW
Continuous Device Dissipation at (or below) $25^{\circ} \mathrm{C}$ Case Temperature (See Note 3) 300 mW
Storage Temperature Range . $-65^{\circ} \mathrm{C}$ to $200^{\circ} \mathrm{C}$
Lead Temperature $1 / 16$ Inch from Case for $\mathbf{6 0}$ Seconds . $300^{\circ} \mathrm{C}$
*electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

PARAMETER	TEST CONDITIONS ${ }^{\dagger}$	MIN	TYP MAX	UNIT
$V_{\text {(BR) }}$ CBO Collector-Base Breakdown Voltage	$I_{C}=1 \mu A, \quad I_{E}=0$	30		V
V(BR)CEO Collector-Emitter Breakdown Voltage	$\mathrm{I}_{\mathrm{C}}=3 \mathrm{~mA}, \quad \mathrm{I}_{\mathrm{B}}=0, \quad$ See Note 4	15		V
V(BR)EBO Emitter-Base Breakdown Voltage	$\mathrm{IE}^{\prime}=10 \mu \mathrm{~A}, \mathrm{I}_{C}=0$	3		V
Collector Cutoff Current	$V_{C B}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0$		10	nA
	$V_{C B}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0, \quad \mathrm{~T}_{A}=150^{\circ} \mathrm{C}$		1	$\mu \mathrm{A}$
hFE Static Forward Current Transfer Ratio	$V_{C E}=1 \mathrm{~V}, \mathrm{I}^{\prime} \mathrm{C}=3 \mathrm{~mA}$	20		
VEE Base-Emitter Voltage	$\mathrm{I}_{B}=1 \mathrm{~mA}, \mathrm{I}^{\prime}=10 \mathrm{~mA}$		1	V
$\mathrm{V}_{\text {CE }}$ (sat) Collector-Emitter Saturation Voltage	$\mathrm{I}_{\mathrm{B}}=1 \mathrm{~mA}, \mathrm{IC}^{\prime}=10 \mathrm{~mA}$		0.4	V
\|hfel Small-Signal Common-Emitter Forward Current Transfer Ratio	$V_{C E}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=4 \mathrm{~mA}, f=100 \mathrm{MHz}$	6	9	
Common-Base Open-Circuit	$V_{C B}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0, \quad f=140 \mathrm{kHz}$		1.7	pF
Cobo Output Capacitance	$V_{C B}=0, \quad I E=0, \quad f=140 \mathrm{kHz}$		3	
Cibo Common-Base Open-Circuit Input Capacitance	$V_{E B}=0.5 \mathrm{~V}, \mathrm{IC}=0, \quad f=140 \mathrm{kHz}$		2	pF
$\mathrm{rb}^{\prime} \mathrm{C}_{\mathrm{c}} \quad$ Collector-Base Time Constant	$\mathrm{V}_{\mathrm{CB}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=-4 \mathrm{~mA}, \mathrm{f}=79.8 \mathrm{MHz}$		8	ps

NOTES: 1. This value applies when the beee-emitter diode is open-circulted.
2. Derate linearly to $200^{\circ} \mathrm{C}$ free-air temperature at the rate of $1.14 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
3. Derate IInearly to $200^{\circ} \mathrm{C}$ case temperature at the rate of $1.71 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
4. This parameter must be messured using pulse techniques. $t_{w}=300 \mu \mathrm{~s}$, duty cycle $<\mathbf{2 \%}$.
*JEDEC registered data. This data sheet contein all applicable regiatared data in effect at the time of publication.
tThe fourth lesd (cese) is floating for all measurements except power gain. For this mesurement, the fourth leed is grounded.
USES CHIP N22

TYPE 2N918
 N-P-N SILICON TRANSISTOR

*operating characteristics at $25^{\circ} \mathrm{C}$ freo-air temperature

PARAMETE		TEST CONDITIONS ${ }^{\dagger}$			MIN	MAX	UNIT
F	Spot Noine Figure	$\begin{aligned} & V_{C E}=6 \mathrm{~V}, \\ & f=60 \mathrm{MHz} \end{aligned}$	$I_{C}=1 \mathrm{~mA},$	$R_{G}=400 n$		6	dB
$\boldsymbol{G}_{\text {pe }}$	Noutralized Small-Signal CommonEmitter Insertion Power Gain	$V_{C B}=12 V,$ See Figure 1	$1 c=8 \mathrm{~mA},$	f=200 MHz	18		dB
Po	Oncillator Pownr Output	$V_{C B}=18 \mathrm{~V}$.	$\mathrm{lc}=8 \mathrm{~mA}$,	f $=500 \mathrm{MHz}$	30		mW
η	Collector Efficioncy	See Figure 2			25\%		

*PARAMETER MEASUREMENT INFORMATION

CIRCUIF SCNEMATIC

NEUTRALIZATION ADJUSYMENT PROCEDURE

After funing amplifier as for nermal gain measurement, reverte input and output connections and tune $\mathbf{L 2}$ for minimum indication on detector. This sequence is repeoted until optimum settingt ore obtained for all variables.

CIRCUIT COMPONINT INFORMATION

C1: 3-12 pF C6: $0.08 \mu \mathrm{~F}$
and C7: 1000 pF R1: 100Ω
C3: 1.5-7.6 pF
R2: $1 \mathrm{k} \Omega$
: 3\% T \#16 AWG, 5/18" ID, 7/18" length Turna Ratio 2 to 1

3: 8 T \#16 AWG 1/8' ID, 7/8' length.
: 200 MHz RFC

FIOURE 1-NEUTRALIZED 200-MHz INSERTION POWER GAIN

CIRCUIT SChEMATIC

FIGURE 2-500-MHz OSCILLATOR POWER OUTPUT
-JEDEC registered data
${ }^{\dagger}$ The fourth lead (case) is floating for all maasurements except power gain. For this meesurement, the fourth lead is grounded.

TWO TRANSISTORS IN ONE PACKAGE FOR VHF AND UHF AMPLIFIER AND OSCILLATOR APPLICATIONS

- Low Noise Figure . . . 6 dB max at 60 MHz
- High Neutralized Power Gain . . . 15 dB min at 200 MHz
- High Oscillator Power Output . . . $\mathbf{3 0} \mathbf{~ m W}$ min at 500 MHz
mechanical data

absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

$$
\text { Collector-Base Voltage . } 30 \text { V }
$$

Collector-Emitter Voltage (See Note 1) 15 V
Emitter-Base Voltage 3 V
Continuous Collector Current 50 mA
Continuous Device Dissipation at (or below) $\mathbf{2 5}{ }^{\circ} \mathrm{C}$ Free-Air Temperature (See Note 2): Each Triade 200 mW

Storage Temperature Range
Lead Temperature 1/16 Inch from Case for 10 Seconds $300^{\circ} \mathrm{C}$
electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

PARAMETER		TEST CONDITIONS	MIN	TYP MAX	UNIT
$V_{\text {(BR) }}$ CBO	Collector-Base Breakdown Voltage	$\mathrm{I}^{\prime}=1 \mu \mathrm{~A}, \quad \mathrm{IE}^{2}=0$	30		V
$V_{\text {(BR)CEO }}$	Collector-Emitter Breakdown Voltage	$I_{C}=3 \mathrm{~mA}, \quad \mathrm{I}_{\mathrm{B}}=0, \quad$ See Note 3	15		V
V(BR)EBO	Emitter-Base Breakdown Voltage	$\mathrm{I}_{\mathrm{E}}=10 \mu \mathrm{~A}, ~ I_{C}=0$	3		V
${ }^{\prime} \mathrm{CBO}$	Collector Cutoff Current	$V_{C B}=15 V_{1} I_{E}=0$		10	nA
		$\mathrm{V}_{C B}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0, \quad \mathrm{~T}_{A}=150^{\circ} \mathrm{C}$		1	$\mu \mathrm{A}$
hFE	Static Forward Current Transfor Ratio	$\mathrm{V}_{C E}=1 \mathrm{~V}, \mathrm{IC}^{\prime}=3 \mathrm{~mA}$	20		
$\mathrm{V}_{\text {BE }}$	Baso-Emitter Voltage	$\mathrm{I}_{\mathrm{B}}=1 \mathrm{~mA}, \mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}$		1	V
$\mathrm{V}_{\text {CE }}$ (sat)	Collector-Emitter Saturation Voltage	$\mathrm{I}_{\mathrm{B}}=1 \mathrm{~mA}, \mathrm{IC}^{2}=10 \mathrm{~mA}$		0.4	V
\|hfel	Small-Signal Common-Emitter Forwerd Current Transfer Ratio	$V_{C E}=10 \mathrm{~V}, \mathrm{IC}=4 \mathrm{~mA}, f=100 \mathrm{MHz}$	6	9	
Cobo	Common-Base Open-Circuit	$\mathrm{V}_{C B}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0, \quad \mathrm{i}=1 \mathrm{MHz}$		1.7	pF
	Output Ceppacitance	$\mathrm{V}_{C B}=0, \quad \mathrm{IE}_{\mathrm{E}}=0, \quad \mathrm{f}=1 \mathrm{MHz}$		3	
$\mathrm{C}_{\text {ibo }}$	Common-Bese Open-Circuit Input Capacitance	$\mathrm{V}_{\mathrm{EB}}=0.5 \mathrm{~V}, \mathrm{IC}=0, \quad \mathrm{f}=1 \mathrm{MHz}$		2	pF
$\mathrm{rb}^{\prime} \mathrm{C}_{\mathrm{c}}$	Collector-Base Time Constant	$\mathrm{V}_{C B}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=-4 \mathrm{~mA}, \mathrm{f}=79.8 \mathrm{MHz}$		8	ps

NOTES: 1. This velue applies when the base-emitter diode is open-circuited.
2. Derate linearly to $175^{\circ} \mathrm{C}$ frea-air temperature at the rates of $1.33 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for each triode and $2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for the total device.
3. This parameter must be measured using pulse tachniques. $t_{w}=\mathbf{3 0 0} \mu \mathrm{s}$, duty cycle $<\mathbf{2 \%}$.

TYPE D2T918
 DUAL N-P-N SILICON TRANSISTOR

operating characteristics at $25^{\circ} \mathrm{C}$ free-air temperature						
	PARAMETER	TEST CONDITIONS		MIN	MAX	UNIT
F	Spot Noise Figure	$\begin{aligned} & V_{C E}=6 \mathrm{~V}, \quad I C=1 \mathrm{~mA}, \\ & \mathrm{f}=60 \mathrm{MHz} \end{aligned}$	$\mathrm{R}_{\mathrm{G}}=400 \Omega$,		6	dB
$\mathbf{G}_{\mathbf{p e}}$	Neutralized Small-Signal Common- Emitter Insertion Power Gain	$V_{C B}=12 \mathrm{~V}, \quad I_{C}=6 \mathrm{~mA},$ $\text { Soe Figure } 1$	$\mathrm{f}=\mathbf{2 0 0 ~ M H z}$	15		dB
Po	Oscillator Power Output	$\mathrm{V}_{\mathrm{CB}}=15 \mathrm{~V}, \mathrm{IC}=8 \mathrm{~mA}$,	$f=500 \mathrm{MHz}$	30		mW
η	Collector Efficiency	See Figure 2		25\%		

PARAMETER MEASUREMENT INFORMATION

NEUTRALIZATION ADJUSTMENT PROCEDURE
After tuning amplifier as for normal gain measurement, reverse input and output connections and tune $\mathbf{L 2}$ for minimum indication on defector. This sequence is repeated until optimum settings are obtained for all variables.

CIRCUIT COMPONENT INFORMATION

C1: $3-12 \mathrm{pF}$	C6: $0.05 \mu \mathrm{~F}$
C2 and $\mathrm{C} 7: 1000 \mathrm{pF}$	R1: 100Ω
C3: $1.5-7.5 \mathrm{pF}$	R2: $1 \mathrm{k} \Omega$

R2: $1 \mathrm{k} \Omega$
C4 and C5: $0.01 \mu \mathrm{~F}$

CIRCUIT SChematic

FIGURE 2-500-MHz OSCILLATOR POWER OUTPUT

FOR LOW-LEVEL, LOW-NOISE, HIGH-GAN, AMPLIFIER APPLCATIONS

- Guaranteed $h_{\text {FE }}$ of $10 \mu \mathrm{ar} \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ and $25^{\circ} \mathrm{C}$
- Guaruntoed Low-Noise Cheracteristics at $10 \mu \mathrm{~m}$
- Usable at Collector Currents as Low as 1 pa
*mechanical data

*absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unloss otherwise noted)

motes: 1 . This valee applios when the wase-milter diado is epen-cirevited.

2. Berate linearly to $175^{\circ} \mathrm{C}$ fros-atr ismperature at the rate $2.0 \mathrm{~mm} / \mathrm{C}^{\circ}$.
3. Doecate lineorly to $175^{\circ} \mathrm{C}$ case temperature at the rate of $4.0 \mathrm{~mm} / \mathrm{C}^{\circ}$.
*Indikates JEOEC mofistored data

TYPES 2N929, 2N930
 N-P-N SILICON TRANSISTORS

*electrical characteristics of $25^{\circ} \mathrm{C}$ free-alr temperature (unless otherwise noted)

PARAMETER		TEST CONDITIONS	2N929		2N930		UNIT	
		MIN	max	MIN	Max			
$\mathbf{V}_{\text {(ra) }}$ cto	Collocter-Emither Brockiown Voltope		$\mathrm{Ic}_{\mathrm{c}}=10 \mathrm{mos}, \mathrm{I}_{5}=0, \quad$ (500 Mole 4)	45		45		V
$V_{\text {(m)EEO }}$	Enither-mase Ireekcown Volioge	$\mathrm{l}_{\mathrm{E}}=10 \mathrm{nc} \quad \mathrm{l}_{\mathrm{c}}=0$	5		5		v	
$\mathrm{ICm}_{\text {ceo }}$	Collecter Covoff Current	$v_{\text {cm }}=45 \mathrm{v}, \mathrm{I}_{\mathrm{E}}=0$		10		10	ma	
Icas	Collactor Cuteff Current (sen Moto 5)	$V_{C E}=45 y_{1} \quad V_{E E}=0$		10		10	mo	
		$\mathrm{V}_{\text {ce }}=45 \mathrm{y}, \quad \mathrm{V}_{\mathrm{mE}}=0, \quad \mathrm{~V}_{\mathrm{A}}=170{ }^{\circ} \mathrm{C}$		10		10	$\mu \mathrm{m}$	
Icro	Collecter Cutoff Curment	$V_{C E}=5 \mathrm{v}, \quad \mathrm{l}_{8}=0$		2		2	ma	
Luo	Emither Cutoff Corrout	$V_{t a}=5 \mathrm{v}_{\mathrm{t}} \quad \mathrm{I}_{\mathrm{c}}=0$		10		10	± 0	
hre	Static Forward Curnant Treastor tratio	$V_{C E}=5 \mathrm{v}, \quad \mathrm{l}_{\mathrm{c}}=10 \mu \mathrm{c}$	40	120	100	300		
		$\mathrm{V}_{\mathrm{CE}}=5 \mathrm{v}, \quad \mathrm{I}_{\mathrm{c}}=10 \mu \mathrm{~s}, \quad \mathrm{r}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$	10		20			
		$V_{C E}=5 \mathrm{v}, \quad \mathrm{I}_{\mathrm{c}}=500 \mu \mathrm{l}$	- 60		150			
				350		600		
$V_{\text {m }}$	Dese-Emither Volteyo		0.6	1.0	0.6	1.0	v	
$V_{\text {cuph }}$	Collector-Emithor Saturation Valtage	$I_{8}=0.5 \mathrm{ma}, I_{c}=10 \mathrm{ma},($ See Mots 4)		1.0		1.0	v	
$h_{\text {ib }}$	Small-Sigal Common-iase Input Impedance	$\mathrm{V}_{\mathrm{CB}}=5 \mathrm{v}, \quad \mathrm{l}_{\mathrm{E}}=-1 \mathrm{ma}, \mathrm{f}=1 \mathrm{kc}$	25	32	25	32	othen	
$h_{\text {rb }}$	Small-Symol Commen-Lase Reverse Vohtope Truaster Ratio	$V_{\text {ct }}=5 \mathrm{y}, \quad \mathrm{lt}=-1 \mathrm{ma}, \mathrm{f}=1 \mathrm{kc}$	0	$\begin{aligned} & 6.0 x \\ & 10^{-4} \end{aligned}$	0	$\begin{aligned} & 6.0 \mathrm{x} \\ & 10^{-4} \end{aligned}$		
$h_{\text {cb }}$	Smali-Signal Comamon-Rase Output Admittance	$V_{C i}=5 \mathrm{y}, \quad l_{E}=-1 \mathrm{mog}, \mathrm{f}=1 \mathrm{kc}$	0	1.0	0	1.0	$\mu \mathrm{mhn}$	
$h_{\text {\% }}$	Smali-Signal Common-Emititor Forward Current Iransfor metio	$V_{\mathbf{C E}}=5 \mathrm{v}, \quad \mathrm{I}_{\mathbf{C}}=1 \mathrm{mag}, \quad 1=1 \mathrm{kc}$	60	350	150	600		
$\left\|h_{\text {on }}\right\|$	Smoth-Signal Common-Emitior Forward Curront Trassior hatio	$V_{C E}=5 \mathrm{v}, \quad \mathrm{I}_{\mathrm{C}}=500 \mu \mathrm{O}, \mathrm{i}=30 \mathrm{mc}$	1.0		1.0			
C_{0}	Common-Lase Opme-Qrailt Output Cepectionce	$V_{c t}=5 \mathrm{v}, \quad \mathrm{l}_{\mathrm{E}}=0, \quad 1=1 \mathrm{mx}$		8		1	pf	

*operating charactoristices at $25^{\circ} \mathrm{C}$ free-air tomperature

PARAMITER	TEST CONDITIONS	2N929	2N930	UNIT
釆 Avorage Mose Figure	$\begin{aligned} & \mathrm{Y}_{\mathrm{cE}}=5 \mathrm{v}, \mathrm{I}_{\mathrm{c}}=10 \mu \mu_{\mathrm{a}}, R_{\mathrm{s}}=10 \mathrm{k} \Omega \\ & \text { Molse tandwidh } 10 \mathrm{qs} \text { to } 15.7 \mathrm{kc} \end{aligned}$	4	3	品

Highly Reliable, Versatile Devices Designed for Amplifier, Switching and Oscillafor Applications from $<0.1 \mathrm{ma}$ to $\mathbf{> 1 5 0} \mathrm{ma}$, de to $\mathbf{3 0} \mathbf{~ m c}$
 - High Voltage - Low Leakage
 - Useful $h_{\text {fE }}$ Over Wide Current Range

*mechanical deta

Device types 2N717, 2N718, 2N718A, 2N730, 2N731, and 2N956 are in JEDEC TO-18 packages. Device types 2N696, 2N697, 2N1420, 2N1507, 2N1613, and 2N1711 are in JEDEC TO-5 packages.

*absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

	$\begin{aligned} & \text { 2N696 } \\ & \text { 2N697 } \end{aligned}$	$\begin{aligned} & 2 N 717 \\ & 2 N 718 \\ & \hline \end{aligned}$	2N718A	$\begin{aligned} & 2 \mathrm{~N} 730 \\ & 2 \mathrm{~N} 731 \end{aligned}$	2N956	$\begin{aligned} & \text { 2N1420 } \\ & \text { 2N1507 } \\ & \hline \end{aligned}$	2N1613	2N1711	UNIT
Collector-Base Voltage	60	60	75	60	75	60	75	75	V
Collector-Emitter Voltage (See Note 1)	40	40	50	40	50	30	50	50	v
Collector-Emitter Voltage (See Note 2)			32						v
Emitter-Base Voltage	5	5	7	5	7	5	7	7	v
Collector Current				1.0		1.0		1.0	0
Total Device Dissipation at (or below) $25^{\circ} \mathrm{C}$ Free-Air Temperature (See Note Indicated in Parentheses) \rightarrow	$\begin{gathered} 0.6 \\ \vdots \\ \vdots \\ \hline \end{gathered}$	$\begin{aligned} & \hline 0.4 \\ & +\dagger \\ & +(5) \\ & \hline \end{aligned}$	0.5 (7)	$\begin{aligned} & \hline 0.5 \\ & \dagger \\ & 1+ \\ & 99 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.5 \\ & \text { (7) } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.6 \\ & \dagger \\ & 13) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.8 \\ & (10) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.8 \\ & (10) \\ & \hline \end{aligned}$	w
Total Device Dissipation at (or below) $25^{\circ} \mathrm{C}$ Case Temperature (See Note Indicated in Purentheses) \rightarrow	$\begin{aligned} & 2.0 \\ & \vdots \\ & \vdots \\ & \text { (4) } \end{aligned}$	$\begin{aligned} & 1.5 \\ & \dagger \\ & (6) \\ & \hline \end{aligned}$	1.8 (8)	$\begin{aligned} & 1.5 \\ & 1 \dagger \\ & (6) \\ & \hline \end{aligned}$	1.8 (8)	$\begin{gathered} 2.0 \\ \vdots \\ \text { (4) } \\ \hline \end{gathered}$	3.0 (11)	3.0 (II)	W
Total Device Dissipation at $100^{\circ} \mathrm{C}$ Case Temperature	$\begin{aligned} & 1.0 \\ & \dagger \\ & \hline \end{aligned}$	$\begin{aligned} & 0.75 \\ & i+ \\ & \hline i \end{aligned}$	1.0	$\begin{aligned} & 0.75 \\ & i t \\ & \hline \end{aligned}$	1.0	$\begin{aligned} & 1.0 \\ & \dagger \\ & \hline \end{aligned}$	1.7	1.7	w
Operating Collector Junction Temperature	175 \dagger	$175 \dagger \dagger$	200	175t†	200	175 \dagger	200	200	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $200^{\circ} \mathrm{C}$								

NOTES: 1. This value applias when the basa-eacitter resistance (F_{ge}) is equal to or less than 10 ohms.
2. This value applies when the base-omitter diode is apen-cireviled.
3. Derate linearly to $175^{\circ} \mathrm{C}$ fres-alt temperatere at the rate of $4.0 \mathrm{mw} / \mathrm{c}^{\circ}$.
4. Derate linestly to $175^{\circ} \mathrm{C}$ case temperature at the rate of $13.3 \mathrm{~mm} / \mathrm{c}^{\circ}$.
5. Derate Inearly to $175^{\circ} \mathrm{C}$ fro-alr temposalure at the rale of $2.67 \mathrm{~mm} / \mathrm{l}^{\circ}$.
6. Derale Iinearly to $175^{\circ} \mathrm{C}$ case temperaturs at the rate of $10.0 \mathrm{mw} / \mathrm{C}^{\circ}$.
7. Derate linearly to $200^{\circ} \mathrm{C}$ tros-air temperature at the rate of $2.26 \mathrm{mw} / \mathrm{C}^{\circ}$.
8. Deraie linearly to $200^{\circ} \mathrm{C}$ case temparature of the rate of $10.3 \mathrm{mw} / \mathrm{C}^{\circ}$.
9. Derate Ilineariy to $175^{\circ} \mathrm{C}$ treo-air temperature at the rate of $3.33 \mathrm{~mm} / \mathrm{C}^{\circ}$.
10. Derate linearly to $200^{\circ} \mathrm{C}$ fres-air temperaturs of the rats of $4.56 \mathrm{mw} / \mathrm{C}^{\circ}$.
11. Derate lineorly to $200^{\circ} \mathrm{C}$ case temperature at the rate of $17.2 \mathrm{mw} / \mathrm{C}^{\circ}$.
\dagger Texas instruments guarantoes lis types 2N696, 2N697, 2N1420, and 2N1507 to be capeble of the same dissipation as reglatored and shown for types 2N1613 and 2N1711 whth appereprate derating foctors shown in Mates 10 and 11.
††texas Instruments guarantees its types 2N717, 2N718, 2N730, and 20731 to be capable of the same dissipation as registered and shown for types 2N718A and. 2N956 with appropilate derating factors shown in Motes 7 and 8.

[^33]
TYPES 2N718A, 2N956, 2N142O, 2N1507, 2N1613, 2N771 N-P-N SILICON TRANSISTORS

*electrical charmeteristics of $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

PARAMETER		TEST CONDITIONS \quad TO-18-9	2m718A			2N956	UNIT	
		2N1613	2N1420	2N1507	2N1711			
		MIN MAX	min max	min max	min max			
$V_{\text {Imeeso }}$	Collector-bene Broekdown Yoltige		$\mathrm{I}_{\mathrm{c}}=100 \mu \mathrm{~m}_{\mathrm{E}}=0$	75	6	4	75	v
Víluceo	Collecter-Emither Irockiown Volliepo		$\mathrm{I}_{\mathrm{C}}=30 \mathrm{~mm}, \mathrm{I}_{\mathrm{B}}=0, \quad$ Sot Mote 12			25		V
Y(a)ces	Collecter-Emither Braddewn Volleye	$\mathrm{I}_{\mathrm{C}}=100 \mathrm{mos} \mathrm{R}_{\text {值 }}=10 \Omega$, Soen Mote 12	50	30	30	50	V	
Y/mines	Emitter-lose Irodiown Voltepe	$\mathrm{I}_{\mathrm{E}}=100 \mu \mathrm{~m}, \mathrm{I}_{\mathbf{C}}=0$	7			7	V	
'cro Collocter Cutefl currmi		$\mathrm{V}_{\mathrm{C}_{8}}=30 \mathrm{v}_{1} \mathrm{I}_{\mathrm{E}}=0$		1.0	1.0		μ	
		$v_{C B}=30 v_{6} \quad I_{E}=0, \quad t_{A}=150^{\circ} \mathrm{C}$		109	50		μ	
		$v_{C B}=0 v_{1} I_{E}=0$	0.010			0.010	μ	
		$V_{C S}=00 r_{1} \mathrm{I}_{\mathrm{E}}=0 . \quad \mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$	10			10	μ	
$\mathrm{I}_{\text {CE }}$	Collocter Cuteff Curment	$v_{C E}=20 v_{1} \mathrm{E}_{\mathrm{vE}}=100 \mathrm{k}$ \%			10		$\mu \mathrm{m}$	
$\mathrm{I}_{\text {EDO }}$	Emittor Coloff Curront	$v_{\text {ge }}=5 v_{0}, l_{c}=0$	0.01		100	0.005	μ	
$h_{\text {PE }}$	Stetic Forwerd Curemat Trunshor Ratio	$\mathrm{V}_{\mathbf{C E}}=10 v_{1} \mathrm{I}_{\mathbf{C}}=10 \mu \mathrm{l}$				20		
		$V_{C E}=10 v_{1} I_{C}=100 \mu$	29			35		
		$V_{C E}=10 v_{0} I_{C}=10 \mathrm{~ms}$, Soe Mote 12	35			75		
		$\begin{aligned} & V_{\mathrm{ce}}=10 \mathrm{v}_{1} \mathrm{I}_{\mathrm{c}}=10 \mathrm{ma}, \quad \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}, \\ & \text { Sen Mota } 12 \end{aligned}$	20			35		
			40.120	$100 \quad 300$	$100 \quad 300$	$100 \quad 300$		
		$V_{C E}=10 \mathrm{~V}_{1} \mathrm{I}_{\mathrm{C}}=500 \mathrm{~mm}$, See Nete 12	20			40		
$V_{\text {cis }}$	Base-Emiltar Voltage	$\mathrm{I}_{1}=15 \mathrm{me}, \mathrm{I}_{\mathrm{C}}=150 \mathrm{ma}$, See Mote 12	1.3	1.3	1.3	1.3	v	
$V_{\text {cetrat }}$	Collocter-Emither Saturation Voltape	$\mathrm{I}_{1}=15 \mathrm{mo}, \mathrm{I}_{\mathrm{c}}=150 \mathrm{ma}$, Sot Mote 12	1.5	1.5	1.5	1.5	v	
$h_{i b}$	Small-Signal Commea-liost Input Impedence	$v_{c s}=5 v_{1} \quad l_{c}=1 \mathrm{~ms}, \quad f=1 \mathrm{kc}$	$24 \quad 34$			$24 \quad 34$	\cdots	
		$\mathrm{V}_{\mathrm{CB}}=10 \mathrm{r}, \mathrm{l}_{\mathrm{C}}=5 \mathrm{~mm}, \quad i=1 \mathrm{kc}$	4 1			41	stm	
${ }_{\text {rb }}$	Small-Signal Commen-Ease Reverse Voltege Tramsior Retle	$\mathrm{V}_{\mathrm{ca}}=5 \mathrm{v}, \quad \mathrm{l}_{\mathrm{c}}=1 \mathrm{ma}, \quad 1=1 \mathrm{lc}$	$\begin{array}{c\|} \hline 3 x \\ 10^{-4} \\ \hline \end{array}$			$\begin{gathered} 5 \times \\ 10-4 \\ \hline \end{gathered}$		
		$\mathbf{v}_{\mathbf{c s}}=10 \mathrm{v}, \mathrm{l}_{\mathbf{c}}=5 \mathrm{ma}, \quad \mathrm{f}=1 \mathrm{kc}$	$\begin{gathered} \hline 3 x \\ 10-4 \\ \hline \end{gathered}$			$\begin{gathered} 5 x \\ 10^{-4} \\ \hline \end{gathered}$		
$h_{\text {ob }}$	Small-Signal Commen-Losso Output Mdwiltuence	$v_{C B}=5 \mathrm{v}_{\mathrm{c}}, \mathrm{l}_{\mathrm{c}}=1 \mathrm{ma}, \quad 1=1 \mathrm{kc}$	0.10 .5			0.10 .5	μ mine	
		$\mathbf{v}_{\mathbf{c t f}}=10 \mathrm{v}_{1} \mathrm{l}_{\mathbf{c}}=5 \mathrm{me}, \quad f=1 \mathrm{kc}$	0.11 .0			0.11 .0	μ mino	
h_{6}	Smali-Signal Cownon-Emilter Forwand Cwient Transfor latile	$V_{C E}=5 \mathrm{v}, \mathrm{I}_{\mathrm{C}}=1 \mathrm{ma}, \quad f=1 \mathrm{kc}$	38.100			50800		
		$V_{C E}=10 v_{r} l_{C}=5 \mathrm{ma}, \quad i=1 \mathrm{kc}$	35150			$70 \quad 300$		
$\left\|h_{6}\right\|$	Small-Signal Common-Emitior Forward Current Tramber Ratio	$\mathbf{v}_{\mathbf{C E}}=10 \mathrm{v}, \mathrm{l}_{\mathbf{C}}=50 \mathrm{ma}, f=20 \mathrm{~mm}$	3.0	2.5	2.5	3.5		
$C_{\text {ab }}$	Common-Lese Open-Cirait Output Coperitence	$\mathbf{v}_{\mathrm{cs}}=10 \mathrm{v}, \mathrm{l}_{\mathrm{E}}=0, \quad \mathrm{i}=1 \mathrm{mc}$	25	35	35	25	-f	
$c_{\text {ib }}$	Commen-Ease Open-Circuit Input Capecilenet	$v_{\mathrm{Ea}}=0.5 \mathrm{v}, \mathrm{l}_{\mathrm{c}}=0, \quad \mathrm{f}=1 \mathrm{mc}$	80			80	ff	

See switching characteristics for types 2N718A and 2N1613 on pages 4-30 or 4-72.
"operating characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER	TEST CONDITIONS	$\begin{aligned} & 10-18 \longrightarrow \\ & 10-5 \rightarrow \end{aligned}$	$\frac{2 \text { N9S6 }}{2 \text { N171I }}$		$\frac{2 N 718 A}{2 N 1613}$		UNIT
			TYP	max	TYP	MAX	
NF Spol Moise Figure	$\begin{aligned} & V_{c k}=10 v_{,} I_{c}=300 \mu 0 \\ & R_{B}=510 \Omega_{i} \quad 1 \mathrm{kt} \end{aligned}$		5	8	6	12	あ

NOTE 12: These paramuters must te measured using pulse techniques. PW $\leq 300 \mu s e c$, Duty Cycie $\leq \mathbf{2 \%}$. Pulse width must te such that halving or deubling deess net cause - change groeter than the requircte accurecy of the measurement.
*Indicates JEDEC registered data

TWO TRIODES INTERNALLY CONNECTED IN DARLINGTON CONFIGURATION

- Very High Gain . . . 1000 min at $100 \mu \mathrm{~A}$
- Low Leakage . . . 10 nA max at 60 V
- Rugged Internal Connections

*electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

PARAMETER	TEST CONDITIONS		MIN MAX	UNIT
$\mathrm{V}_{\text {(BR) }}$ CBO Collector-Base Breakdown Voltage	$l^{\prime} C=100 \mu A$,	$I_{E}=0$	75	V
$V_{\text {(BR) }}$ CEO Collector-Emitter Breakdown Voltage	$\mathrm{I}^{\prime} \mathrm{C}=30 \mathrm{~mA}$,	$1_{B}=0, \quad$ See Note 4	40	V
V(BR)EBO Emitter-Base Breakdown Voltage	$T_{E}=100 \mu A$,	${ }^{1} C=0$	7	V
	$V_{C B}=60 \mathrm{~V}$,	$I_{E}=0$	10	nA
ICBO Collector Cutoff Current	$V_{C B}=60 \mathrm{~V}$,	$I_{E}=0, \quad T_{A}=150^{\circ} \mathrm{C}$	10	$\mu \mathrm{A}$
Iebo Emitter Cutoff Current	$\mathrm{VEB}^{\text {c }}=5 \mathrm{~V}$,	${ }^{1} \mathbf{C}=0$	10	nA
	$\mathrm{V}_{C E}=10 \mathrm{~V}$,	$\mathrm{I}_{\mathrm{C}}=100 \mu \mathrm{~A}$	1000	
	$V_{C E}=10 \mathrm{~V}$.	${ }^{1} \mathrm{C}=10 \mathrm{~mA}$	4000	
hFE Static Forward Current Transfer Ratio	$V_{C E}=10 \mathrm{~V}$,	$\mathrm{I}_{C}=100 \mathrm{~mA}$, See Note 4	$7000 \quad 70000$	
	$V_{C E}=10 \mathrm{~V}$ See Note 4	$I_{C}=100 \mathrm{~mA}, T_{A}=-55^{\circ} \mathrm{C}$	1000	
VBE Base-Emitter Voltage	$V_{\text {CE }}=10 \mathrm{~V}$,	${ }^{1} \mathrm{C}=100 \mathrm{~mA}$, See Note 4	$0.9 \quad 1.8$	V
VCE(sat) Collector-Emitter Saturation Voltage	$\mathrm{I}_{\mathrm{B}}=1 \mathrm{~mA}$,	$I_{C}=100 \mathrm{~mA}$, See Note 4	1.6	V
Cobo Common-Base Open-Circuit Output Capacitance	$V_{C B}=10 \mathrm{~V}$,	$\mathrm{IE}=0, \quad f=1 \mathrm{MHz}$	35	DF

NOTES: 1. This value applies when the emitter-base diode is open-circuited.
2. Derate Inearly to $175^{\circ} \mathrm{C}$ free-air temperature at the rate of $3.33 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
3. Derate linearly to $175^{\circ} \mathrm{C}$ case temperature at the rate of $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
4. These parsmeters must be measured using pulse zechniques. $t_{w}=300 \mu 5$, dutv cycle $\leqslant 2 \%$.

- JEDEC registered data. This data sheet contains all applicable registered data in effect at the time of publication.

TWO TRIODES INTERNALLY CONNECTED IN DARLINGTON CONFIGURATION

- Very High hfe . . . 1600 min at 10 mA
- Low ICBO . . . 10 nA max at 90 V
- Rugged Internal Connections
*mechanical data

*absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (uniess otherwise noted)
Collector-Base Voltage 100 V
Collector-Emitter Voltage (See Note 1) 60 V
Emitter-Base Voltage 15 V
Continuous Collector Current 500 mA
Continuous Device Dissipation at (or below) $25^{\circ} \mathrm{C}$ Free-Air Temperature (See Note 2) 0.5 W
Continuous Device Dissipation at (or below) $25^{\circ} \mathrm{C}$ Case Temperature (See Note 3) 1.8 W
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $200^{\circ} \mathrm{C}$
Lead Temperature 1/16 Inch from Case for 10 Seconds $300^{\circ} \mathrm{C}$

NOTES: 1. This value applies when the emitter-base diodes are open-circuited.
2. Derate linearly to $200^{\circ} \mathrm{C}$ free-air temperature at the rate of $2.86 \mathrm{mw} /{ }^{\circ} \mathrm{C}$.
3. Derate linearly to $200^{\circ} \mathrm{C}$ case temperature at the rate of $10.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
-JEDEC registered data. This data sheet contains all applicable registered data in effect at the time of publicetion.

N-P-N DARLINGTON-CONNECTED SILICON TRANSISTOR

*electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise notad)

	PARAMETER	TEST CONDITIONS ${ }^{\text {t }}$	MIN MAX	UNIT
$V_{\text {(BR) }}$ CBO	Collector-Base Breakdown Voltage	$I_{C}=100 \mu A, I_{E}=0$	100	V
$V_{\text {(BR)CEO }}$	Collector-Emitter Breakdown Voltaga	$\mathrm{I}^{\prime}=30 \mathrm{~mA}, \quad \mathrm{I}_{\mathrm{B}}=0, \quad$ See Note 4	60	V
$V_{\text {(BR)EBO }}$	Emitter-Base Breakdown Voltage	$I_{E}=100 \mu A, I_{C}=0$	15	V
I'cBo	Collector Cutoff Current	$\mathrm{V}_{\mathrm{CB}}=90 \mathrm{~V}, \mathrm{IE}=0$	10	nA
		$V_{C B}=90 \mathrm{~V}, \mathrm{IE}=0, \quad \mathrm{~T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$	15	$\mu \mathrm{A}$
IEBO	Emitter Cutoff Current	$V_{E B}=10 \mathrm{~V}, \mathrm{IC}=0$	10	nA
$h_{\text {FE }}$	Static Forward Current Transfer Ratio (Total Device)	$V_{C E}=5 \mathrm{~V}, \quad \mathrm{IC}^{\prime}=1 \mathrm{~mA}$	800	
		$V_{C E}=5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}$, See Note 4	16008000	
		$\mathrm{V}_{C E}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=100 \mathrm{~mA}$, See Note 4	2000	
hfe	Static Forward Current Transfer Ratio (Each Triode)	$V_{C E}=5 \mathrm{~V}, \quad \mathrm{IC}=10 \mathrm{~mA}$, See Note 4	25	
$V_{\text {BE }}$	Base-Emitter Voltage	$\mathrm{I}_{\mathrm{B}}=0.5 \mathrm{~mA}, \mathrm{I}_{\mathrm{C}}=50 \mathrm{~mA}$, See Note 4	1.8	V
V_{CE} (sat)	Collector-Emitter Saturation Voltage	$\mathrm{I}_{\mathrm{B}}=0.5 \mathrm{~mA}, \mathrm{I}_{\mathrm{C}}=50 \mathrm{~mA}$, See Note 4	1.2	V
hfe	Small-Signal Common-Emitter Forward Current Transfer Ratio	$V_{C E}=5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}, \quad f=1 \mathrm{kHz}$	1000	
Cobo	Common-Base Open-Circuit Output Capacitance	$\mathrm{V}_{C B}=10 \mathrm{~V}, \mathrm{IE}=0, \quad f=1 \mathrm{MHz}$	30	pF
Cibo	Common-Base Open-Circuit Input Capacitance	$V_{E B}=0.5 \mathrm{~V}, \mathrm{IC}=0, \quad f=1 \mathrm{MHz}$	50	pF

*operating characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER	TEST CONDITIONS	MIN MAX	UNIT
F Spot Noise Figure	$\begin{array}{lll} V_{C E}=10 \mathrm{~V}, & I_{C}=0.1 \mathrm{~mA}, & I_{B 2}=-20 \mu \mathrm{~A}, \\ R_{\mathrm{G}}=5 \mathrm{k} \Omega & f=1 \mathrm{kHz}, & B=200 \mathrm{~Hz} \end{array}$	6	dB

NOTE 4: These parameters must be measured using puise techniques. $\mathbf{t}_{\mathbf{w}}=\mathbf{3 0 0} \mu$, duty cycle $\leqslant \mathbf{1 \%}$.
*JEDEC registered data
${ }^{\dagger}$ All measurements except $h_{F E}$ (each triode) and F are made with the emitter-1, base-2 terminal (lead 4) open.

FIGURE 1

FIGURE 2

TWO TRIODES INTERNALLY CONNECTED IN DARLINGTON CONFIGURATION

- Very High hfe . . . 4000 min at 10 mA
- Low ICBO . . . 10 nA max at $\mathbf{6 0} \mathrm{V}$
- Rugged Internal Connections
*mechanical data

*absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)
Collector-Base Voltage 60 V
Collector-Emitter Voltage (See Note 1) 60 V
Emitter-Base Voltage 15 V
Continuous Collector Current 500 mA
Continuous Device Dissipation at (or below) $25^{\circ} \mathrm{C}$ Free-Air Temperature (See Note 2) 0.5 W
Continuous Device Dissipation at (or below) $\mathbf{2 5}{ }^{\circ} \mathrm{C}$ Case Temperature (See Note 3) 1.8 W
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $200^{\circ} \mathrm{C}$
Lead Temperature 1/16 Inch from Case for 10 Seconds $300^{\circ} \mathrm{C}$
NOTES: 1. This value applies when the emitter-base diodes are open-circuited

2. Derate linearly to $200^{\circ} \mathrm{C}$ free-air temperature at the rate of $2.86 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
3. Derate linearly to $200^{\circ} \mathrm{C}$ case temperature at the rate of $10.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
[^34]N-P-N DARLINGTON-CONNECTED SILICON TRANSISTOR
*electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS ${ }^{\text {t }}$	MIN MAX	UNIT
$V_{\text {(BR) }}$ CBO	Collector-Base Breakdown Voltage	$\mathrm{I}_{\mathrm{C}}=100 \mu \mathrm{~A}, \quad \mathrm{I}_{\mathrm{E}}=0$	60	V
$V_{\text {(BR) }}$ CEO	Collector-Emitter Breakdown Voltage	$\mathrm{I}_{\mathrm{C}}=30 \mathrm{~mA}, \quad \mathrm{I}_{\mathrm{B}}=0, \quad$ See Note 4	60	V
$V_{\text {(BR)EBO }}$	Emitter-Base Breakdown Voltage	$\mathrm{I}_{\mathrm{E}}=100 \mu \mathrm{~A}, \mathrm{I}^{\prime} \mathrm{C}=0$	15	V
${ }^{\text {c CBO }}$	Collector Cutoff Current	$V_{C B}=60 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0$	10	nA
		$V_{C B}=60 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0, \quad \mathrm{~T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$	10	$\mu \mathrm{A}$
IEbo	Emitter Cutoff Current	$V_{E B}=10 \mathrm{~V}, I^{\prime}=0$	10	nA
hfe	Static Forward Current Transfer Ratio (Total Device)	$V_{C E}=10 \mathrm{~V}, I^{\prime}=0.1 \mathrm{~mA}$	1000	
		$V_{C E}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}$, See Note 4	4000	
		$V_{C E}=10 \mathrm{~V}, I_{C}=100 \mathrm{~mA}$, See Note 4	7000 70,000	
		$V_{C E}=10 \mathrm{~V}, \mathrm{I}^{\mathrm{C}}=100 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C},$ See Note 4	1000	
hFE	Static Forward Current Transfer Ratio (Each Triode)	$V_{C E}=10 \mathrm{~V}, \mathrm{I}^{\text {c }} \mathbf{C}=10 \mathrm{~mA}$, See Note 4	25	
$V_{\text {BE }}$	Base-Emitter Voltage	$I_{B}=1 \mathrm{~mA}, \quad I_{C}=100 \mathrm{~mA}$, See Note 4	1.8	V
$V_{\text {CE }}$ (sat)	Collector-Emitter Saturation Voltage	$\mathrm{I}_{\mathrm{B}}=1 \mathrm{~mA}, \quad \mathrm{I}_{\mathrm{C}}=100 \mathrm{~mA}$, See Note 4	1.6	V
Cobo	Common-Base Open-Circuit Output Capacitance	$V_{C B}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0, \quad \mathrm{f}=140 \mathrm{kHz}$	20	pF
$\mathrm{C}_{\text {ibo }}$	Common-Base Open-Circuit Input Capacitance	$V_{E B}=0.5 \mathrm{~V}, \mathrm{I} C=0, \quad f=140 \mathrm{kHz}$	10	pF

*JEDEC registered data
${ }^{\dagger}$ All measurements except $h_{\text {FE }}$ (each triode) are made with the emitter-1, base-2 terminal (lead 4) open.
NOTE 4: These parameters must be measured using pulse techniques. $\mathrm{t}_{\mathbf{w}}=\mathbf{3 0 0} \mu \mathrm{s}$, duty $\mathbf{c y c l e} \leqslant 1 \%$.

THERMAL INFORMATION

FREE-AIR TEMPERATURE DISSIPATION DERATING CURVE

FIGURE 1

CASE TEMPERATURE DISSIPATION DERATING CURVE

FIGURE 2
texas mstruments reserves the right to make changes at any time in order io improve desigh and to supply the best product possible.

TYPES 2N1131, 2N1132
 P-N-P SILICON TRANSISTORS

GENERAL PURPOSE MEDIUM-POWER TRANSISTORS
 - 2 Watts at $25^{\circ} \mathrm{C}$ Case Temperafure
 - Complements to 2N696 and 2N697
 - 10-ohm Saturation Resistance (max)

mechanical data

absolute maximum ratings at $\mathbf{2 5}^{\circ} \mathrm{C}$ ambient temperature (unless otherwise noted)

NOTES: 1. This value applies when the base-emitter diode is open-eircuited.
2. Derate linearly to $175^{\circ} \mathrm{C}$ case temperature at the rate of $13.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
3. Derate linearly to $175^{\circ} \mathrm{C}$ ambient temperature at the rate of $4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
electrical characteristics af $25^{\circ} \mathbf{C}$ ambient temperature (unless otherwise noted)

Paromefor		Test Conditions	Type	Min.	Max.	Unt
ICuo	Collector Reverse Current	$\mathrm{v}_{\mathrm{CB}}=-30{\mathrm{v}, \mathrm{I}_{\mathrm{E}}=0}$			-1.0	$\mu \mathrm{a}$
Icmo	Collector Reverse Current	$\begin{aligned} & V_{C B}=-30 v_{,} I_{E}=0 \\ & T_{A}=+150^{\circ} \mathrm{C} \end{aligned}$			-100	μ
IEso	Emitter Reverse Current	$\mathrm{v}_{\mathrm{EB}}=-2 \mathrm{v}, \mathrm{l}_{\mathrm{c}}=0$			-100	$\mu \mathrm{a}$
	Collector-Base Breakdown Voltage	$\mathrm{I}_{\mathbf{c}}=-100 \mu \mathrm{a}, \mathrm{I}_{\mathrm{E}}=0$		-50		v
${ }^{*} V_{\text {(m) }}$ ceeo	Collector-Emitter Breakdown Voltage	$\mathbf{I}_{\mathbf{c}}=-100 \mathrm{ma}, \mathrm{I}_{\mathrm{g}}=0$		-35		v
${ }^{*} \boldsymbol{V}_{\text {(IX) }}$ CER	Collector-Emister Breakdown Voltage	$\begin{aligned} & I_{c}=-100 \mathrm{ma}, \\ & R_{\mathrm{BE}}=10 \mathrm{oms} \end{aligned}$		-50		v
${ }^{*}{ }_{\text {fet }}$	DC Forward Current Transfer Ratio	$\begin{aligned} & V_{C E}=-10 v_{1} \\ & I_{c}=-150 \mathrm{ma} \end{aligned}$	$2 \mathrm{~N} 1131$ $2 \mathrm{Nl} 132$	$\begin{aligned} & 20 \\ & 30 \end{aligned}$	$\begin{aligned} & 45 \\ & 90 \end{aligned}$	
$*_{\text {hfe }}$	DC forward Curent Transfer Ratio	$v_{C E}=-10 \mathrm{v}, \mathrm{l}_{c}=-5 \mathrm{mo}$	$\begin{aligned} & \hline 2 \mathrm{HIL31} \\ & 2 \mathrm{Kl132} \end{aligned}$	$\begin{aligned} & 15 \\ & 25 \end{aligned}$		
${ }^{*} V_{\text {E }}$	Base-Emitfer Voltage	$\mathrm{l}_{\mathrm{B}}=-15 \mathrm{ma}, \mathrm{l}_{\mathrm{C}}=-150 \mathrm{ma}$			-1.3	v
${ }^{*} V_{\text {CE }}(w+1$	Collector-Emitter Saturation Voltage	$\mathrm{l}_{\mathrm{g}}=-15 \mathrm{ma}, \mathrm{l}_{\mathrm{c}}=-150 \mathrm{ma}$			-1.5	v
$\mathrm{hfo}_{\text {for }}$	AC Common-Emitter Forward Current Transfer Ratio	$\begin{aligned} & \mathrm{v}_{\mathrm{CE}}=-10 \mathrm{v}, \mathrm{l}_{\mathrm{c}}=-50 \mathrm{ma} \\ & \mathrm{f} \end{aligned}$	2 N 1131 2 N 1132	$\begin{aligned} & 2.5 \\ & 3 \end{aligned}$		
c_{ib}	Common-Base Input Capacilance	$\begin{aligned} & v_{E B}=-0.5 v, l_{C}=0 \\ & f=1 \mathrm{mc} \end{aligned}$			80	pf
${ }_{\text {c }}$ b	Common-Base Output Capacitante	$\begin{aligned} & v_{C B}=-10 v_{,} l_{E}=0 \\ & f=1 \mathrm{mc} \end{aligned}$			45	pf
h_{6}	AC Common-Emitter Forward Current Transier Ratio	$\begin{aligned} V_{\mathrm{CE}} & =-5 \mathrm{v}, \mathrm{I}_{\mathrm{C}}=-1 \mathrm{ma} \\ \mathrm{f} & =1 \mathrm{kc} \end{aligned}$	$\begin{aligned} & 2 \mathrm{NII31} \\ & 2 \mathrm{NII} 32 \end{aligned}$	$\begin{aligned} & 15 \\ & 25 \end{aligned}$	$\begin{aligned} & 50 \\ & 100 \end{aligned}$	
hf_{6}	AC Common-Emitter Forward Current Transter Ratio	$\begin{aligned} & V_{C E E}=-10 \mathrm{v}, \mathrm{l}_{\mathrm{C}}=-5 \mathrm{ma} \\ & \mathrm{f}=1 \mathrm{kc} \end{aligned}$	$\begin{aligned} & 2 \mathrm{NI} 131 \\ & 2 \mathrm{NII} 132 \end{aligned}$	$\begin{aligned} & 20 \\ & 30 \end{aligned}$		
$\mathrm{h}_{\text {ib }}$	AC Common-Base Input Impedance	$\begin{aligned} & V_{C B}=-5 \mathrm{v}, \mathrm{l}_{\mathrm{E}}=1 \mathrm{ma} \\ & \mathrm{f}=1 \mathrm{kc} \\ & \mathrm{~V}_{\mathrm{CB}}=-10 \mathrm{v}, \mathrm{I}_{\mathrm{E}}=5 \mathrm{ma} \\ & \mathrm{f}=1 \mathrm{kc} \end{aligned}$		25	$\begin{aligned} & 35 \\ & 10 \end{aligned}$	ohms ohms
$\mathrm{h}_{\text {cb }}$	AC Common-Base Output Admittance	$\begin{aligned} & V_{C B}=-5 v_{,} l_{E}=1 \mathrm{ma} \\ & f=1 \mathrm{kc} \\ & V_{C B}=-10 v_{1} i_{E}=5 \mathrm{ma} \\ & f=1 \mathrm{kc} \end{aligned}$		0	1	μ mho μ mho
$\mathrm{h}_{\text {rb }}$	AC Common-Base Reverse Voltage Iransfer Ratio	$\begin{aligned} V_{C B} & =-5 \mathrm{v}, \mathrm{l}_{\mathrm{E}}=1 \mathrm{ma} \\ f & =1 \mathrm{kc} \\ \mathrm{v}_{\mathrm{CB}} & =-10 \mathrm{v}, \mathrm{l}_{\mathrm{E}}=5 \mathrm{ma} \\ \mathrm{f} & =1 \mathrm{kc} \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 8 \times 10^{-4} \\ & 8 \times 10^{-4} \end{aligned}$	

*These measurements must be made with a pulse duration ≤ 300 microseconds and a duty cycle ≤ 2 percent.

Oval Welded Package

mechnonical deta

The tronsistor is in an oval welded package with glass-to-metal hermetic seal between case and leads. Unit weight is approximately 1 gram.

*eloselute maximum repinge at $25^{\circ} \mathrm{C}$ free-air semperafure (unless otherwise noted)

TYPES 2N1149 THRU 2N1153

N-P-N GROWN-JUNCTION SILICON TRANSISTORS
electrical characteristics at $25^{\circ} \mathrm{C}$ free-air femperature (unless otherwise noted)

	parameter	tost conditions	types	min *	typ	$\max ^{*}$	unit
lewo	Collector Cutoff Current	$V_{C 1}=30 \mathrm{~V} \quad l_{1}=0$	All			2	$\mu \mathrm{a}$
		$\begin{aligned} & Y_{c B}=30 \mathrm{~V} \quad I_{G}=0 \\ & T_{A}=150^{\circ} \mathrm{C} \end{aligned}$	ALL		3		μ
		$\begin{aligned} & V_{C 1}=5 r \\ & T_{A}=100^{\circ} \mathrm{C} \end{aligned}$	ALL			10	μ
		$\begin{aligned} & V_{\mathrm{ct}}=5 \mathrm{~V} \quad \mathrm{I}_{\mathrm{t}}=0 \\ & \mathrm{~T}_{\mathrm{A}}=150^{\circ} \mathrm{C} \end{aligned}$	ALL		0.5	50	μ
${ }^{81} \mathrm{~V}_{10}$	Collector-base Braakdown Voltage	$l_{c}=50 \mu \mathrm{l} \mathrm{I}_{\mathrm{E}}=0$	All	45			V
rceisut)	DC Collector-Emiltor Soturation Resistonte	$\mathrm{I}_{\mathrm{B}}=2.2 \mathrm{ma} \mathrm{l}_{\mathrm{C}}=5 \mathrm{ma}$	ALL		100	200	ohm
Cob	Common-Base Output Capocitance	$\begin{aligned} & V_{c t}=5 \mathrm{r} \quad \mathrm{l}_{\mathrm{E}}=0 \\ & \mathrm{i}=1 \mathrm{mc} \end{aligned}$	All		7		pf
Into	Common-Base Alpho Cuseff Froquency	$V_{\text {cis }}=5 \mathrm{v} \quad \mathrm{I}_{\mathrm{E}}=-1 \mathrm{mo}$	$\begin{aligned} & \hline 2 \mathrm{~N} 1149 \\ & 2 \mathrm{~N} 1150 \\ & 2 \mathrm{~N} 1151 \\ & 2 N 1152 \\ & 2 \mathrm{~N} 1153 \\ & \hline \end{aligned}$	8	$\begin{aligned} & 12 \\ & 13 \\ & 14 \\ & 15 \\ & 16 \end{aligned}$		m
$h_{\text {fob }}$	AC Common-Base Forward Current Tronsfor Ratio	$\begin{aligned} & v_{c ı}=5 \mathrm{v} \quad l_{\mathrm{E}}=-1 \mathrm{mo} \\ & f=1 \mathrm{kc} \end{aligned}$	$\begin{aligned} & 2 N 1149 \\ & 2 N 1150 \\ & 2 N 1151 \\ & 2 N 1152 \\ & 2 N 1153 \\ & \hline \end{aligned}$	$\begin{aligned} & -0.9 \\ & -0.948 \\ & -0.948 \\ & -0.9735 \\ & -0.987 \\ & \hline \end{aligned}$	$\begin{aligned} & -0.925 \\ & -0.96 \\ & -0.975 \\ & -0.98 \\ & -0.99 \\ & \hline \end{aligned}$	$\begin{aligned} & -0.953 \\ & -0.976 \\ & -0.989 \\ & -0.989 \\ & -0.997 \end{aligned}$	
h_{16}	$\begin{aligned} & \text { AC Common-8ase } \\ & \text { laput Impodance } \end{aligned}$	$\begin{array}{ll} V_{c a}=5 \mathrm{v} & \mathrm{l}_{\mathrm{E}}=-1 \mathrm{ma} \\ f=1 \mathrm{kc} \end{array}$	ALL	30	42	80	ohm
$h_{\text {co }}$	$\begin{aligned} & \text { AC Common-Base } \\ & \text { Output Admiltance } \end{aligned}$	$\begin{aligned} & V_{c \mathrm{c}}=5 \mathrm{r} \quad \mathrm{I}_{\mathrm{i}}=-1 \mathrm{ma} \\ & \mathrm{f}=1 \mathrm{kc} \end{aligned}$	ALL	0	0.4	1.2	$\boldsymbol{\mu}$ mino
$h_{\text {rb }}$	AC Common-Aase Revarse Voliage Transfor Ratio	$\begin{aligned} & V_{\mathrm{ct}}=5 \mathrm{v} \quad \mathrm{l}_{\mathrm{E}}=-1 \mathrm{mo} \\ & \mathrm{f}=1 \mathrm{kc} \end{aligned}$	$\begin{aligned} & \hline 2 N 1149 \\ & 2 N 1150 \\ & 2 N 1151 \\ & 2 N 1152 \\ & 2 N 1153 \\ & \hline \end{aligned}$	0 0 0 0 0	$\begin{aligned} & 120 \times 10^{-6} \\ & 250 \times 10^{-6} \\ & 400 \times 10^{-6} \\ & 400 \times 10^{-6} \\ & 400 \times 10^{-6} \end{aligned}$	$\begin{aligned} & 500 \times 10^{-6} \\ & 1000 \times 10^{-6} \end{aligned}$	

*Indkates JEDEC raglsterad data
functional tests at $25^{\circ} \mathrm{C}$ free-air temperature

	parametar	test conditions	types	min	typ	max	Unlt
G_{p}	Common-Emitter Power Gain	$\begin{array}{ll} V_{C E}=20 \mathrm{v} & \mathrm{l}_{\mathrm{E}}=-2 \mathrm{mu} \\ R_{\epsilon}=1 \mathrm{k} \Omega & R_{L}=20 \mathrm{~K} \Omega \\ f=1 \mathrm{kc} & V_{\theta}=0.02 \mathrm{v} \end{array}$	$\begin{aligned} & \hline 2 N 1149 \\ & 2 N 1150 \\ & 2 N 1151 \\ & 2 N 1152 \\ & 2 N 1153 \\ & \hline \end{aligned}$		$\begin{aligned} & \hline 35 \\ & 39 \\ & 39 \\ & 42 \\ & 42.5 \\ & \hline \end{aligned}$		あ
	Spot Noise Figure	$\begin{aligned} & V_{C E}=5 \mathrm{v} \quad I_{E}=-1 \mathrm{mo} \\ & R_{G}=1 \mathrm{k} \Omega \quad \mathrm{f}=1 \mathrm{kc} \\ & B W=1 \mathrm{cydo} / \mathrm{sec} \\ & \hline \end{aligned}$	ALL		20		あ

POWER GAIN TEST CIRCUIT

FORMERLY TYPES 951, 952, AND 953, RESPICTIVELY

mechanical dafa

The transistor is in an oval welded package with glass-to-metal hermetic seal between case and leads. Unit weight is approximately 1 gram. The mounting clamp is hardware supplied with the transistor.

*absolute maximum ratings at $25^{\circ} \mathrm{C}$ case temperature (unless otherwise noted)

HOTE 1: Derate linearly to $150^{\circ} \mathrm{C}$ case tumperalive at the rete of $\mathbf{0} \mathbf{m w} /{ }^{\circ} \mathrm{C}$.

- Indicates JEDEC ragistered data

TYPES 2N1154, 2N1155, 2N1156
 N-P-N GROWN-JUNCTION SILICON TRANSISTORS

*electrical characteristics at $25^{\circ} \mathrm{C}$ case temperature

	parameter	test conditions	type	min	max	unit
$1 \mathbf{l o s}$	Collector Cutoff Current	$V_{C B}=50 \mathrm{~V} \quad \mathrm{I}_{\mathrm{E}}=0$	2N1154		5	$\mu \mathrm{a}$
		$V_{C B}=80 \mathrm{v} \quad \mathrm{I}_{\mathrm{E}}=0$	2N1155		6	$\mu \mathrm{a}$
		$\mathrm{V}_{\mathrm{CB}}=120 \mathrm{v} \quad \mathrm{I}_{\mathrm{E}}=0$	2N1156		8	μ
$V_{\text {bE }}$	Base-Emitter Voltage	$\mathrm{I}_{\mathrm{B}}=2.2 \mathrm{ma} \quad \mathrm{I}_{\mathrm{C}}=20 \mathrm{ma}$	2N1154		1	\vee
		$\mathrm{I}_{\mathrm{B}}=2.2 \mathrm{ma} \quad \mathrm{I}_{\mathrm{C}}=15 \mathrm{ma}$	2N1155		1	v
		$\mathrm{I}_{\mathrm{B}}=2.2 \mathrm{ma} \quad \mathrm{I}_{\mathrm{C}}=10 \mathrm{ma}$	2N1156		1	v
${ }^{\text {ceelsat }}$)	DC Collector-Emitter Saturation Resistance	$\mathrm{I}_{\mathrm{B}}=2.2 \mathrm{ma} \quad \mathrm{IC}_{\mathrm{c}}=20 \mathrm{ma}$	2N1154		300	ohm
		$\mathrm{I}_{\mathrm{B}}=2.2 \mathrm{mo} \quad \mathrm{I}_{\mathrm{C}}=15 \mathrm{ma}$	2N1155		350	ohm
		$\mathrm{I}_{\mathrm{B}}=2.2 \mathrm{ma} \quad \mathrm{I}_{\mathrm{C}}=10 \mathrm{ma}$	2N1156		400	ohm
h_{fb}	AC Common-Base Forward Current Transfer Ratio	$\begin{aligned} & V_{C B}=10 v \quad I_{E}=-5 \mathrm{ma} \\ & \mathrm{f}=1 \mathrm{kc} \end{aligned}$	2N1154 2N1155 2N1156	-0.9	-1	
$h_{\text {ib }}$	AC Common-Base Input Impedance	$\begin{aligned} & V_{\mathrm{CB}}=10 \mathrm{v} \quad \mathrm{I}_{\mathrm{E}}=-5 \mathrm{ma} \\ & \mathrm{f}=1 \mathrm{kc} \end{aligned}$	$\begin{aligned} & 2 \mathrm{~N} 1154 \\ & 2 \mathrm{~N} 1155 \\ & 2 \mathrm{~N} 1156 \end{aligned}$		30	ohm
$h_{\text {ob }}$	AC Common-Base Output Admittance	$\begin{aligned} & V_{C B}=10 \mathrm{v} \quad I_{\mathrm{E}}=-5 \mathrm{ma} \\ & \mathrm{f}=1 \mathrm{kc} \end{aligned}$	2H1154 2 N 1155 2N1156		2	$\mu \mathrm{mho}$
	AC Common-Base Reverse Voltage Transfer Retio	$\begin{aligned} & V_{C B}=10 \mathrm{v} \quad \mathrm{I}_{\mathrm{E}}=-5 \mathrm{ma} \\ & \mathrm{f}=1 \mathrm{kc} \end{aligned}$	2N1154 $2 N 1155$ 2N1156		$\begin{aligned} & 300 x \\ & 10^{-6} \end{aligned}$	

*functional tests at $25^{\circ} \mathrm{C}$ case temperature

G_{pe}	Common-Emitter Power Gain (See Circuit)	$\begin{array}{ll} V_{C E}=28 \mathrm{v} & \mathrm{I}_{\mathrm{C}}=20 \mathrm{ma} \\ \mathbf{R}_{\mathrm{L}}=1 \mathrm{k} \Omega & \mathrm{f}=1 \mathrm{kc} \\ \mathbf{V}_{\mathbf{q}}=0.2 \mathrm{v} & \\ \hline \end{array}$	2N1154	30	db
		$\begin{array}{ll} V_{C E}=45 \mathrm{v} & \mathrm{I}_{\mathrm{C}}=15 \mathrm{ma} \\ \mathbf{R}_{\mathrm{L}}=2 \mathrm{k} \Omega & \mathrm{I}=1 \mathrm{kc} \\ \mathrm{~V}_{\mathrm{g}}=0.2 \mathrm{v} & \end{array}$	2N1155	30	db
		$\begin{array}{ll} V_{C E}=67.5 \mathrm{v} & \mathrm{I}_{\mathrm{C}}=10 \mathrm{ma} \\ \mathbb{R}_{\mathbf{L}}=4 \mathrm{k} \Omega & \mathrm{f}=1 \mathrm{kc} \\ \mathbf{V}_{\mathrm{g}}=0.2 \mathrm{v} & \\ \hline \end{array}$	2N1156	30	db

[^35]
TYPES 2N1154, 2N1155, 2N1156 N-P-N GROWN-JUNCTION SILICON TRANSISTORS

TYPICAL CHARACTERISTICS

Highly Reliable, Versatile Devices Designed for Amplifier, Switching and Oscillator Applications from $<0.1 \mathrm{ma}$ to $>\mathbf{1 5 0} \mathrm{ma}$ de to $\mathbf{3 0} \mathrm{mc}$
 - High Voltage - Low Leakage
 - Useful $h_{\text {FE }}$ Over Wide Current Range

*mechanical data
Device types 2N717, 2N718, 2N718A, 2N730, 2N731, and 2N956 are in JEDEC TO-18 packages. Device types 2N696, 2N697, 2N1420, 2N1507, 2N1613, and 2N1711 are in JEDEC TO-5 packages.

*absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

	$\begin{aligned} & 2 \mathrm{~N} 696 \\ & 2 \mathrm{~N} 697 \\ & \hline \end{aligned}$	$\begin{aligned} & 2 N 717 \\ & 2 N 718 \\ & \hline \end{aligned}$	2N718A	$\begin{array}{r} 2 \mathrm{~N} 730 \\ 2 \mathrm{~N} 731 \\ \hline \end{array}$	2N956	$\begin{aligned} & 2 N 1420 \\ & 2 N 1507 \\ & \hline \end{aligned}$	2N1613	2N1711	UNIT
Collector-Bass Voltage	60	60	75	60	75	60	75	75	v
Collictor-Emittor Voltage (seo Mote 1)	40	40	50	40	50	30	50	50	v
Collector-Emittor Voltage (See Mote 2)			32						v
Emilter-Lose Voltage	5	5	7	5	7	5	7	7	v
Collector Current				1.0		1.0		1.0	0
Total Deviose Dissipation at (or below) $25^{\circ} \mathrm{C}$ free-Air Temperature (See Mote Indicated in Parentheses) \rightarrow	$\begin{gathered} 0.6 \\ \dagger \\ 13) \\ \hline \end{gathered}$	$\begin{aligned} & 0.4 \\ & \dagger \\ & \dagger \\ & (5) \\ & \hline \end{aligned}$	0.5 (7)	$\begin{aligned} & 0.5 \\ & \dagger \dagger \\ & 19) \\ & \hline \end{aligned}$	0.5 (7)	$\begin{aligned} & 0.6 \\ & i \\ & 13) \\ & \hline \end{aligned}$	0.8 (10)	$\begin{aligned} & 0.8 \\ & (10) \\ & \hline \end{aligned}$	W
Total Dovice Dissipation at (or below) $25^{\circ} \mathrm{C}$ Case Temperoture (See Mote Indicatod in Parentheses) \rightarrow	$\begin{aligned} & 2.0 \\ & \dagger \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.5 \\ & \dagger \\ & 16 \\ & \hline \end{aligned}$	1.8 (8)	$\begin{aligned} & 1.5 \\ & 1 \dagger \\ & (6) \\ & \hline \end{aligned}$	1.8 (8)	$\begin{gathered} 2.0 \\ \dagger \\ (4) \end{gathered}$	3.0 (11)	$\begin{aligned} & 3.0 \\ & \text { (11) } \end{aligned}$	W
Total Device Dissipation of $100^{\circ} \mathrm{C}$ Cose Temporature	$\begin{aligned} & 1.0 \\ & i \\ & \hline \end{aligned}$	$\begin{aligned} & 0.75 \\ & \dagger \dagger \\ & \hline \end{aligned}$	1.0	$\begin{aligned} & 0.75 \\ & i+ \\ & \hline \end{aligned}$	1.0	$\begin{aligned} & 1.0 \\ & i \end{aligned}$	1.7	1.7	w
Operating Collector Junction Temperuture	175 \dagger	$175 \dagger \dagger$	200	175 $\dagger \dagger$	200	175†	200	200	${ }^{\circ} \mathrm{C}$
Storoge Temperature Range	$-65^{\circ} \mathrm{C}$ to $200^{\circ} \mathrm{C}$								

MOTES: 1. This velwe applios when the bess-amitter rosistance $\left(\mathbb{R}_{\mathrm{B}}\right)$ is equal to of less than 10 chms.
2. Thls value epplites when the beso-mmitter diode is open-circulited.
3. Derate linearly to $175^{\circ} \mathrm{C}$ fron-air temperatere at the rate of $4.0 \mathrm{mw} / \mathrm{c}^{\circ}$.
4. Derate limestly to $175^{\circ} \mathrm{C}$ cese temperature at the rate of $13.3 \mathrm{~mm} / \mathrm{C}^{\circ}$.
5. Derate linentry to $175^{\circ} \mathrm{C}$ tres-alr temparature at the rate of $2.67 \mathrm{~mm} / \mathrm{c}^{\circ}$.
6. Devate linearly to $175^{\circ} \mathrm{C}$ cese semparature at the rath of $10.0 \mathrm{~mm} / \mathrm{c}^{\circ}$.
7. Derate linearly to $200^{\circ} \mathrm{C}$ freo-air temperature of the rate of $2.26 \mathrm{~mm} / \mathrm{c}^{\circ}$.
8. Derate linearly to $200^{\circ} \mathrm{C}$ case temperature of the rate of $10.1 \mathrm{mw} / \mathrm{C}^{\circ}$.
9. Devate limearly to $175^{\circ} \mathrm{C}$ troe-alt temperature af the rate of $3.33 \mathrm{~mm} / \mathrm{C}^{\circ}$.
10. Berafe linesily to $200^{\circ} \mathrm{C}$ froo-air temperatare af the rate of $4.56 \mathrm{~mm} / \mathrm{C}^{\circ}$.
11. Derate Ilnearly te $200^{\circ} \mathrm{C}$ cese temperatura at the rate of $17.2 \mathrm{mw} / \mathrm{C}^{\circ}$.
†Texas Instruments gucrantions ith types 2M696, 2M697, 2N1420, and 2N1507 to be eapoble of the same dilasipation as raglatered and shown for typer 2N1613 and 2N1711 whith appreprlate derefling factors shown in Mates 10 and 11.
$\dagger \dagger$ Toxas Instrumonts guorantees ins types 2N717, $2 N 714,2 N 730$, and $2 N 731$ to be capeble of the same dissipation as registored and shown for types 207114 A and. $2 \mathrm{N956}$ with appropilafe derating fasfors shown lin Nofes 7 and 8.
*Indiceles Jepec ropistered data.

TYPES 2N718A, 2N956, 2N1420, 2N1507, 2N1613, 2N1711 N-P-N SILICON TRANSISTORS

*electrical characteristics of $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

Parammiter		TEST CONDITIONSTO-18 $10-5 \rightarrow$	2N718A			2N956	UNIT	
		2N1613	2N1420	2N1507	2N1711			
		MIN MAX	min max	MIN Max	min max			
			$\mathrm{I}_{\mathbf{C}}=160 \mu 0, \mathrm{I}_{\mathrm{E}}=0$	75	4	ω	75	v
Vimicio Collocter-Emithor Irockdown Viltope			$\mathrm{I}_{\mathrm{c}}=30 \mathrm{~mm}, \mathrm{I}_{1}=0, \quad$ Sen Mote 12			25		v
$V_{\text {fajces }}$	Collcker-Emitter Brokkown Voltap	$\mathrm{I}_{\mathrm{c}}=100 \mathrm{ma}, \mathrm{C}_{\text {他 }}=10 \Omega$, Soe Mote 12	50	30	30	50	v	
Y(m)Em	Emilter-lose liceokdown Yoltuge	$\mathrm{I}_{\mathbf{E}}=100 \mu_{4, l_{C}}=0$	7			7	v	
$I_{\text {ceo }}$	Collecter Cutaff Curreat	$v_{c!}=30 \mathrm{v}, \mathrm{I}_{\mathrm{E}}=0$		1.0	1.0		μ.	
		$v_{C B}=30 \mathrm{v}, \mathrm{I}_{\mathrm{E}}=0, \quad \mathrm{~T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$		100	50		μ	
		$r_{c t}=64, I_{\mathrm{E}}=0$	0.010			0.010	$\mu \mathrm{e}$	
		$v_{C B}=00 \% \mathrm{I}_{\mathrm{E}}=0, \quad \mathrm{~T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$	10			10	$\mu \mathrm{m}$	
${ }^{\text {Cex }}$	Collectoc Curoff Currout	$\mathrm{v}_{\mathrm{CE}}=20 \mathrm{v}, \mathrm{R}_{\mathrm{EE}}=100 \mathrm{kM}$			10		μ	
$\mathrm{I}_{\mathrm{EDO}}$	Emilter Cutoff Curront	$\mathrm{V}_{\mathrm{E}}=5 \mathrm{y}, \mathrm{I}_{\mathrm{C}}=0$	0.01		100	0.005	μ	
$h_{\text {FE }}$	Stetic Fowward Corrent Tramsler Retio	$V_{C E}=10 \mathrm{r}, \mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~s}$				20		
		$v_{C E}=10 \mathrm{r}, \mathrm{I}_{C}=100 \mu \mathrm{a}$	20			35		
		$\mathrm{r}_{C E}=10 \mathrm{r}, \mathrm{I}_{\mathrm{C}}=10 \mathrm{ma}$, Seo Mote 12	35			73		
		$\begin{aligned} & Y_{C E}=10 \mathrm{v}, \mathrm{I}_{\mathrm{C}}=10 \mathrm{ma}, \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}, \\ & \text { Sen Moto } 12 \end{aligned}$	20			35		
		$V_{C E}=10 y_{,} I_{C}=150 \mathrm{~mm}$, See Mote 12	40180	$100 \quad 300$	$100 \quad 300$	$100 \quad 300$		
		$V_{C E}=10 \mathrm{v}_{1} \mathrm{I}_{C}=500 \mathrm{~mm}$, Soe Mote 12	20			40		
$V_{\text {me }}$	Cose-Emiltor Voltage	$\mathrm{I}_{8}=15 \mathrm{~mm}, \mathrm{I}_{\mathrm{C}}=150 \mathrm{~mm}$, Seo Mole 12	1.3	1.3	1.3	1.3	v	
$\nabla_{\text {CEIsat }}$	Colloctor-Emitter Saturation Voltaye	$\mathrm{I}_{5}=15 \mathrm{ma}, \mathrm{I}_{C}=150 \mathrm{me}$, Soe Note 12	1.5	1.5	1.5	1.5	v	
${ }^{\text {ib }}$	Sraill-Sigatil Commmon-inse Input Impedente	$v_{C I}=5 v_{1} \quad 1_{C}=1 \mathrm{mo}, 1=1 \mathrm{kc}$	$24 \quad 34$			$24 \quad 34$	chm	
		$V_{C B}=10 \mathrm{v}^{\prime} \mathrm{I}_{\mathrm{C}}=5 \mathrm{~mm}, \quad 1=1 \mathrm{kc}$	4 B			48	cinm	
${ }_{\text {brb }}$	Smell-Sigual Corimen-Laso Reverse Voliege Tremstor Rathe	$\mathbf{v}_{\mathrm{cs}}=5 \mathrm{v}, \quad \mathrm{l}_{\mathbf{c}}=1 \mathrm{~ms}, \quad i=1 \mathrm{kc}$	$\begin{gathered} \hline 3 x \\ 10-4 \\ \hline \end{gathered}$			$\begin{gathered} 5 x \\ 10-4 \end{gathered}$		
		$\mathbf{v}_{\mathbf{c a}}=10 \mathrm{v}^{\prime} \mathrm{l}_{\mathbf{C}}=5 \mathrm{ma}, \quad 1=1 \mathrm{kc}$	$\begin{gathered} 3 x \\ 10^{-4} \end{gathered}$			$\begin{gathered} 5 x \\ 10^{-4} \end{gathered}$		
$h_{\text {ob }}$	Smell-Sigenl Commen-lesa Output Adiniftemci	$\mathrm{v}_{\mathrm{Cs}}=5 \mathrm{v}, \mathrm{l}_{\mathrm{c}}=1 \mathrm{ma}, \quad 1=1 \mathrm{kc}$	0.10 .5			0.10 .5	$\mu \mathrm{mmio}$	
		$v_{\text {ct }}=10 v_{0} \quad I_{\mathrm{c}}=5 \mathrm{ma}, \quad 1=1 \mathrm{kc}$	$0.1 \quad 1.0$			0.11 .0	$\mu \mathrm{mmo}$	
W_{6}	Small-Signal Commen-Emittry Fowwerl Curroat Trensior liatio		$30 \quad 100$			$50 \quad 200$		
		$y_{C E}=10 \mathrm{v}, \mathrm{I}_{\mathrm{C}}=5 \mathrm{ma}, \quad 1=1 \mathrm{kc}$	$35 \quad 150$			$70 \quad 300$		
$\left\|h_{\text {fol }}\right\|$	Small-Signal (comman-Emitter Forward (erremt Irronstor Retio	$v_{C E}=10 \mathrm{v}, \mathrm{I}_{\mathrm{C}}=50 \mathrm{ma}, \quad t=20 \mathrm{mx}$	3.0	2.5	2.5	3.5		
$c_{\text {cb }}$	Common-lese Open-Circuit Output Cepeciteace	$\mathbf{v}_{\mathrm{ca}}=10 \mathrm{v}, \mathrm{l}_{\mathrm{E}}=0, \quad t=1 \mathrm{mc}$	25	35	35	25	pf	
$c_{i b}$	Common-Dose Open-Girculf Input Copecitence	$\mathbf{v}_{\mathrm{Es}}=0.5 \mathrm{v} . \mathrm{l}_{\mathrm{c}}=0, \quad t=1 \mathrm{mc}$	00			60	p ${ }^{\text {f }}$	

See operating and switching characteristics for types 2N718A, 2N956, 2N1613, and 2N1711 on paga 4-30.

WOTE 12: These meramolen must the mossurad using polse techniqws. PW $\leq \mathbf{3 0 0} \mu \mathrm{sec}$, Duty Cycle $\leq \mathbf{2 \%}$. Pulse width must be sucb that halving or doubling does not casso - change groator then the repuind ecewrey of the measuramont.
*Imalicalos JEEEC registarad dato

FOR GENERAL PURPOSE AMPLIFIER APPLICATIONS

- V(BR)CEO . . . 60 V Min
- hFE... 60 to 200
mechanical data

THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE CASE

ALL JEDEC TO-39 DIMENSIONS AND NOTES ARE APPLICABLE*

*absolute maximum ratings at $\mathbf{2 5}{ }^{\circ} \mathbf{C}$ free-air temperature (unless otherwise noted)
Collector-Base Voltage 80 VCollector-Emitter Voltage (See Note 1)60 V
Emitter-Base Voltage 5 V
Continuous Collector Current 50 mA
Continuous Device Dissipation at (or below) $25^{\circ} \mathrm{C}$ Free-Air Temperature (See Note 2) 600 mW
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $200^{\circ} \mathrm{C}$ $-65^{\circ} \mathrm{C}$ to $200^{\circ} \mathrm{C}$Lead Temperature 1/16 Inch from Case for 10 Seconds$230^{\circ} \mathrm{C}$
electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

PARAMETER	TEST CONDITIONS		MIN MAX	$\begin{array}{\|c\|} \hline \text { UNIT } \\ \hline V \\ \hline \end{array}$
$V_{\text {(BR) }}$ CBO Collactor-Base Breakdown Voltage	${ }^{1} \mathrm{C}=10 \mu \mathrm{~A}, \quad I_{E}=0$		80*	
$\mathbf{V}_{\text {(BR) }}$ CEO Collector-Emitter Breakdown Voltage	$\mathrm{I}^{\prime} \mathrm{C}=10 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0$,	See Note 3	60^{*}	V
Collector Cutoff Current	$V_{C B}=40 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0$		$1{ }^{17}$	$\mu \mathrm{A}$
	$\mathrm{V}_{\mathrm{CB}}=40 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0$,	$\mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$	100	
IEBO Emitter Cutoff Current	$\mathrm{V}_{\mathrm{EB}}=5 \mathrm{~V}, \quad \mathrm{IC}=0$		10*	$\mu \mathrm{A}$
hFE Static Forward Current Transfer Ratio	$\mathrm{V}_{C E}=5 \mathrm{~V}, \mathrm{I}^{\prime} \mathrm{C}=5 \mathrm{~mA}$,	See Note 3	$60^{*} \quad 200^{*}$	
VBE Base-Emitter Voltage	$\mathrm{I}_{\mathrm{B}}=2 \mathrm{~mA}, \quad \mathrm{I}^{\prime}=10 \mathrm{~mA}$,	See Note 3	0.35* 1.5^{*}	V
VCE(sat) Collector-Emitter Saturation Voltage	$I_{B}=2 \mathrm{~mA}, \quad I_{C}=10 \mathrm{~mA}$,	See Note 3	1*	V
$h_{\text {ie }}$ Small-Signal Common-Emitter Input Impedance	$V_{C E}=5 \mathrm{~V}, \quad \mathrm{I}^{\prime}=5 \mathrm{~mA}$,	$\mathrm{f}=1 \mathrm{kHz}$	1.8*	$k \Omega$
Small-Signal Common-Emitter Forward Current Transfer Ratio	$V_{C E}=5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}$	$f=1 \mathrm{kHz}$	60	
	$V_{C E}=5 \mathrm{~V}, \mathrm{I}^{\prime} \mathrm{C}=5 \mathrm{~mA}$		80* 200*	
	$\begin{aligned} & V_{C E}=5 \mathrm{~V}, \quad I^{\prime}=5 \mathrm{~mA}, \\ & T_{A}=-55^{\circ} \mathrm{C} \end{aligned}$		40	
$h_{\text {fel }} \quad$Small-Signal Common-Emitter Forward Current Transfer Ratio	$V_{C E}=5 \mathrm{~V}, \quad I^{\prime}=5 \mathrm{~mA}$,	$f=30 \mathrm{MHz}$	2	
Cobo Common-Base Open-Circuit Output Capacitance	$V_{C B}=5 \mathrm{~V}, \quad I^{\prime}=0$,	$f=1 \mathrm{MHz}$	10*	pF

NOTES: 1. This value applies when the base-emitter diode is open-circuited.
2. Derate linearly to $175^{\circ} \mathrm{C}$ free-air temperature at the rate of $4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
3. These parameters must be measured using pulse techniques. $t_{w}=300 \mu$ s, duty cycle $<\mathbf{2 \%}$.

[^36]- JEDEC registored data. This data sheet contains all applicable registered data in effect at the time of publication.

USES CHIP N23

Highly Roliable, Versatile Devices Designed for Amplifier, Switching and Oscillator Applications from $<0.1 \mathrm{ma}$ to $>150 \mathrm{ma}$, de to 30 mc

\author{

- High Voltage - Low Leakage
 - Useful h_{fE} Over Wide Current Range
}

*mechanical data

Device types 2N717, 2N718, 2N718A, 2N730, 2N731, and 2N956 are in JEDEC TO-18 packages. Device types 2N696, 2N697, 2N1420, 2N1507, 2N1613, and 2N1711 are in JEDEC TO-5 packages.

*absolute maximum ratings of $25^{\circ} \mathrm{C}$ free-air tempercture (unless otherwise noted)

	$\begin{array}{\|l\|} \hline 2 \mathrm{~N} 696 \\ \hline 2 \mathrm{~N} 697 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 2 \mathrm{NF} 17 \\ 2 \mathrm{NF} 18 \\ \hline \end{array}$	2N718A	$\begin{array}{\|l} 2 N 730 \\ 2 N 731 \\ \hline \end{array}$	2N956	$\begin{array}{\|l\|} \hline 2 \mathrm{~N} 1420 \\ 2 \mathrm{~N} 1507 \\ \hline \end{array}$	2N1613	2N1711	UNIT
Collector-Base Voltage	60	60	75	60	75	60	75	75	v
Collector-Emitter Volioge (Sen Note 1)	40	40	50	40	50	30	50	50	v
Colloctor-Emitter Voltage (Seo Noto 2)			32						V
Emitter-Base Voltage	5	5	7	5	7	5	7	7	V
Collector Current				1.0		1.0		1.0	0
Total Dovica Dissipation of (or below) $25{ }^{\circ} \mathrm{C}$ Free-Air Temperature (See Mote Indikated in Parenthesss) \rightarrow	$\begin{gathered} 0.6 \\ \dagger \\ (3) \\ \hline \end{gathered}$	$\begin{aligned} & 0.4 \\ & f \dagger \\ & (5) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.5 \\ & (7) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.5 \\ & \dagger \\ & 1 \\ & (9) \\ & \hline \end{aligned}$	0.5 (7)	$\begin{aligned} & 0.6 \\ & \dagger \\ & 13) \\ & \hline \end{aligned}$	0.8 (10)	0.8 (10)	W
Total Dovice Dissipation af (or below) $25^{\circ} \mathrm{C}$ Case Temporature (Se0 Hote Indicated in Porentheses) \rightarrow	$\begin{gathered} 2.0 \\ \dagger \\ 1 \\ \text { (4) } \\ \hline \end{gathered}$	$\begin{aligned} & 1.5 \\ & \dagger \dagger \\ & (6) \\ & \hline \end{aligned}$	1.8 (8)	$\begin{aligned} & 1.5 \\ & \dagger \dagger \\ & (6) \\ & \hline \end{aligned}$	$\begin{aligned} & 1.8 \\ & \text { (8) } \\ & \hline \end{aligned}$	$\begin{aligned} & 2.0 \\ & \dagger \\ & \text { (4) } \\ & \hline \end{aligned}$	$\begin{aligned} & 3.0 \\ & \text { (11) } \\ & \hline \end{aligned}$	3.0 (11)	w
Total Device Dissipotion of $100^{\circ} \mathrm{C}$ Case Temporature	$\begin{aligned} & 1.0 \\ & \dagger \end{aligned}$	$\begin{aligned} & 0.75 \\ & \dagger \dagger \end{aligned}$	1.0	0.75	1.0	$\frac{1.0}{i}$	1.7	1.7	w
Operating Collector Junction Temperature	175†	175t†	200	175††	200	175 \dagger	200	200	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $200^{\circ} \mathrm{C}$								

MOTES: 1. This value applins whto the best-anitter resisitace (fes) is equal to ar lass then 10 dhams.
2. This value applios whem the beso-minitar diedo is apen-circuited.

1. Derofe limenty to $175^{\circ} \mathrm{C}$ froe-alir temperature of the rete of $4.0 \mathrm{~mm} / \mathrm{c}^{\circ}$.
2. Dorate lineerty to $175^{\circ} \mathrm{C}$ cast tumperatione of the rete of $13.3 \mathrm{~mm} / \mathrm{C}^{\circ}$.
3. Derate linocrly to $175^{\circ} \mathrm{C}$ froo-air temperature at the rets of $2.67 \mathrm{~mm} / \mathrm{C}^{\circ}$.
4. Borate lineerly to $175^{\circ} \mathrm{C}$ cesse temperature af the rate of $10.0 \mathrm{~mm} / \mathrm{c}^{\circ}$.
5. Derats linearly te $200^{\circ} \mathrm{C}$ freo-air temperation at the rate of $2.66 \mathrm{~mm} / \mathrm{c}^{\circ}$.
6. Derate linearly to $200^{\circ} \mathrm{C}$ cass temprature at the rete of $10.3 \mathrm{~mm} / \mathrm{C}^{\circ}$.
7. Derete lineerly to $175^{\circ} \mathrm{C}$ free-atir temporature of the rate of $3.33 \mathrm{mw} / \mathrm{C}^{\circ}$.
8. Derate Ineorly to $200^{\circ} \mathrm{C}$ frow-air temporative at the rate of $4.56 \mathrm{~mm} / \mathrm{C}^{\circ}$.
9. Derate lineerly to $200^{\circ} \mathrm{C}$ cese tmaperature at the rete of $17.2 \mathrm{~mm} / \mathrm{C}^{\circ}$.
trexes Instruments guarantees lis types 2M696, 2N697, 2N1420, and 2N1507 to be capmble of the same dilsalpation as registerod and shown for types 2N1613 and 2W1511 wht appropilate dereting foctors shown in Motes 10 and 11.
$\dagger \dagger$ Texas Instruments guaranteen in rypes 206717, 2NF18, 2N730, and 2N731 to be eappible of the same dimplpation as registored and shown for types
 toess shewi \ln Noles 7 and 8.
[^37]
TYPES 2N718A, 2N956, 2N1420, 2N1507, 2N1613, 2N1711 N-P-N SILICON TRANSISTORS

*electrical characteristics af $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

*operating characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

Parameter	TEST CONDITIONS	$\begin{aligned} & T 0-18 \rightarrow \\ & 70-5 \rightarrow \end{aligned}$	2N956		$\frac{2 \text { N718A }}{2 \text { N1613 }}$		UNIT
			TYP	MAX	TYP	max	
NF Spot Moss Flaurs	$\begin{aligned} & V_{c t}=10 v_{,} I_{c}=300 \mu \mathrm{ag} \\ & R_{G}=510 \Omega, f=1 \mathrm{kc} \end{aligned}$		5	8	6	12	db

*awitching characteristics at $25^{\circ} \mathrm{C}$ froe-air temperature

PARAMETER	TEST CONDITIONS	10-18 \rightarrow	$\frac{2 N 718 A}{2 N 1613}$		UNIT
		70.5 -			
			TYP	MAX	
${ }_{1}$ Total Swithing Time	Sen Figure ${ }^{*}$		20	30	nsot

NOTE 12: Those perametors must we meseried using pulse tochniques. PW $\leq \mathbf{3 0 0} \mu \mathrm{sec}$, Duty Cycle $\leq \mathbf{2 \%}$. Puise width must be such that haiving of doubling does not couse a change greater than the required accuracy of the measurament.
*Indicotos JEDEC ragistarad data

- The referenced figure is shown on page 4-30.

Designed for Medium-Power Switching, Oscillator and Pulse Timing Circuits
- Highly Stable Negative Resistance
and Firing Voltage
- Low Firing Current
- High Pulse Current Capebiltities
- Simplified Circuit Design

*mechanical data

Package outline is similar to JEDEC TO-5 except for lead position. Approximately weight is $\mathbf{1}$ gram.

*all leads insulated from case. NOTES A. This zone is controfled for attomatic handling. The variation in actual diameter within this zone shall not exceed 0.010 . B. Measured from max. diameter of the actual device. C. The specified lead diameter applies in the zone between 0.050 and 0.250 trom the base sest. Between 0.250 mdd 1.5 maximum of 0.021 dam. eter is held. Oulside of these zones the lead diameter is not controlled. DIMENSIONS ARE IN INCNES UNLESS OTHERWISE SPRCIFIED	

*absolute maximum ratings at $\mathbf{2 5}{ }^{\circ} \mathrm{C}$ free-air femperature (unless otherwise notod)

*Indicatos JEDEC rogistored data

TYPES 2N1671, 2N1671A, 2N1671B, 2N2160 P-N BAR-TYPE SILICON UNIJUNCTION TRANSISTORS

*electrical characteristies at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER		TEST CONDITIONS	2N1671		2N16714		2N16718		2 M 2160		UNIT	
		MIN	max	MIN	MAX	MIN	max	MIN	MAX			
Pemer	Slafic Iatarose Resitrence		$v_{\text {man }}=3 y_{1} 1_{5}=0$	4.7	8.1	4.1	9.1	4.7	9.1	4.6	12	40
η	Intrinsk stendifi mevie	$\begin{aligned} & V_{\text {bivn }}=10 \mathrm{v} \\ & \text { Sen Fipure } 1 \end{aligned}$	0.47	0.08	0.47	0.62	0.47	0.62	0.47	0.00		
Isalameti)	Medralated latortese Curront	$\mathrm{V}_{\mathrm{mat}}=10 \mathrm{r}_{1} \mathrm{I}_{\mathrm{E}}=50 \mathrm{ma}$	4.8	21	6.4	22	6.8	22	6.4	\cdots	me	
IEROO	Emititer Rownse Cormint			-12		-12		-0.2		-12	μ	
Ip	Poelc-Foini Emithor Corrout	$\gamma_{\text {bin }}=25 \mathrm{v}$		23		25		1		25	$\mu \mathrm{m}$	
$Y_{\text {genteat }}$	Emiltor Selvration Yolteso			5		5		5			\checkmark	
I_{1}	Velley-Polat Emitior Curront	$v_{m 01}=20 y_{1} n_{2}=100 n$	1		1		1		1		m	
Vobt	Iaso-Dwe Prom Pulse Yeltago	$v_{1}=20 v_{1} n_{n 1}=20 \Omega$ Sex Figune 2			3		1		3		V	

*Indicatos JEDEC ragisternd date

PARAMETER MEASUREMENT INFORMATION

$M_{1}: 100 \mu \mathrm{~A}$ Full Scale
$\boldsymbol{\eta}$ - Intrinsic Standoff Ratio - This parameter is defined in tarms of the peak-point voltage, $\mathbf{V}_{\mathbf{p}}$, by means of the equation: $\mathbf{V}_{\mathbf{p}}=\eta$ $V_{\mathrm{Bn}}+V_{f}$, where V_{f} is obout 0.56 volt of $25^{\circ} \mathrm{C}$ and decreases with temperature at about 2 millivalts/deg.

The circuit used to meosure η is shown in the figure. In this cireuif, $\mathbf{R}_{\mathbf{t}}, C_{1}$ and the unijunction transistor form a relaxation oscillator, and the remainder of the circuit serves as a peok-voltage detector with the diode D_{1} automatically subtracting the voltage V_{f}. To use the circuit, the "cal" button is pushed, and R_{3} is adjusted to make the current mater M_{1} read full scale. The "eal" button then is released and the value of η is read directly from the meter, with $\eta=1$ corresponding to fulliscale deflection of $100 \mu \mathrm{~A}$.
D_{1} : 1N457, or aquivalent, with the following charestaristics:
$V_{F}=0.565 V_{\text {at }} I_{f}=50 \mu \mathrm{~A}$,
$\mathrm{I}_{\mathrm{R}} \leq 2 \mu \mathrm{~A}$ of $\mathrm{V}_{\mathrm{R}}=20 \mathrm{~V}$
OR INTRINSIC STANDOFF RATIO (η
-BASE-ONE VOLTAGE
vs
EMITTER CURRENT

FIGURE 3- GENERAL STATIC EMITTER CHARACTERISTIC CURVE

Highly Reliable, Versatile Devices Designed for Amplifier, Switching and Oscillator Applications from $<0.1 \mathrm{ma}$ to $>150 \mathrm{ma}$, de to 30 mc

\author{

- High Voltage - Low Leakage
 - Useful h_{fE} Over Wide Curremt Range
}

*mechanical dafa

Device types 2N717, 2N718, 2N718A, 2N730, 2N731, and 2N956 are in JEDEC TO-18 packages.
Device types 2N696, 2N697, 2N1420, 2N1507, 2N1613, and 2N1711 are in JEDEC TO-5 packages.

*absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

	$\begin{array}{r} \text { 2N696 } \\ \text { 2N697 } \\ \hline \end{array}$	$\begin{array}{r} 2 N 717 \\ 2 N 718 \\ \hline \end{array}$	2N718A	$\begin{aligned} & 2 \mathrm{~N} 730 \\ & 2 \mathrm{~N} 731 \\ & \hline \end{aligned}$	2N956	$\begin{aligned} & 2 \mathrm{~N} 1420 \\ & 2 \mathrm{~N} 1507 \\ & \hline \end{aligned}$	2N1613	2N1711	UNIT
Colliector-Base Voltoge	60	60	75	60	75	60	75	75	v
Collector-Emitter Voltage (See Note 1)	40	40	50	40	50	30	50	50	v
Collictor-Emitter Voliage (Soe Note 2)			32						v
Emitter-Base Voltage	5	5	7	5	7	5	7	7	v
Collector Current				1.0		1.0		1.0	0
Total Device Dissipation at (ar below) $25^{\circ} \mathrm{C}$ Freo-Air Temperature (See Mote Indicated in Parentheses) \rightarrow	$\begin{gathered} 0.6 \\ \dagger \\ \vdots \\ \hline \end{gathered}$	$\begin{aligned} & 0.4 \\ & \dagger \\ & (5) \\ & \hline \end{aligned}$	0.5 (7)	$\begin{aligned} & 0.5 \\ & 1+ \\ & (9) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.5 \\ & (7) \\ & \hline \end{aligned}$	$\begin{gathered} 0.6 \\ \dagger \\ \text { (3) } \\ \hline \end{gathered}$	$\begin{aligned} & \hline 0.8 \\ & (10) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.8 \\ & (10) \\ & \hline \end{aligned}$	w
Total Device Dissipation ot (or below) $25^{\circ} \mathrm{C}$ Cose Temperature (See Note Indicated in Porenthoses) \rightarrow	$\begin{gathered} 2.0 \\ \dagger \\ \text { (4) } \\ \hline \end{gathered}$	$\begin{aligned} & 1.5 \\ & \dagger \dagger \\ & (6) \end{aligned}$	1.8 (8)	$\begin{aligned} & 1.5 \\ & \dagger \\ & \text { (6) } \\ & \hline \end{aligned}$	1.8 (8)	$\begin{aligned} & 2.0 \\ & \dagger \\ & \text { (4) } \end{aligned}$	3.0 (11)	3.0 (11)	*
Total Device Dissipation of $100^{\circ} \mathrm{C}$ Case Temperature	1.0	$\begin{aligned} & 0.75 \\ & \dagger \dagger \end{aligned}$	1.0	$\begin{aligned} & 0.75 \\ & t+ \end{aligned}$	1.0	i	1.7	1.7	w
Operating Collector Junction Temperature	175 \dagger	175¢†	200	$175 \dagger \dagger$	200	175 \dagger	200	200	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $200^{\circ} \mathrm{C}$								

WOTES: 1 . This valwe applies when the beso-mitter rassitance ($R_{\text {mes }}$) is equal to or less thea 10 chms.
2. This valwe applies whan the base-maititer diade is epen-circuitod.
3. Derate linearly to $175^{\circ} \mathrm{C}$ free-air temperature af ths rate of $4.0 \mathrm{~mm} / \mathrm{C}^{\circ}$.
4. Derate lineserly to $175^{\circ} \mathrm{C}$ case temperature of the reto of $13.3 \mathrm{~mm} / \mathrm{c}^{\circ}$.
5. Deratio Ilinearly to $175^{\circ} \mathrm{C}$ free-air remperature at the rele of $2.67 \mathrm{mw} / \mathrm{c}^{\circ}$.
6. Derate IIncasly to $175^{\circ} \mathrm{C}$ case temperature of the rate of $10.0 \mathrm{~mm} / \mathrm{c}^{\circ}$.
7. Derete linearly to $200^{\circ} \mathrm{C}$ fret-air temperature at the rate of $2.06 \mathrm{~mm} / \mathrm{c}^{\circ}$.
8. Derate lineoriy to $200^{\circ} \mathrm{C}$ cese semperature at the reta of $10.3 \mathrm{mw} / \mathrm{C}^{\circ}$.
9. Derate linearily to $173^{\circ} \mathrm{C}$ fres-air temperature at the rate of $3.33 \mathrm{~mm} / \mathrm{c}^{\circ}$.
10. Berate Inesarly to $200^{\circ} \mathrm{C}$ free-alr memperature at the rate of $4.56 \mathrm{~mm} / \mathrm{c}^{\circ}$.
11. Derate linearly to $200^{\circ} \mathrm{C}$ case temperature at the rate of $17.2 \mathrm{mw} / \mathrm{c}^{\circ}$.
\dagger Toxas Instruments guaramiess is types-2M696, 2N697, 2N1420, and 2M1507 to be capable of the mome divipation as registorad and shown for types 2 N 1613 ond 2 NI 711 with appropiate deration fectors shown in Wofes 10 and 11.
††Texas Instruments guarentees its types 2N717, 2N71s, $2 N 730$, and 2N731 to be capmble of the same dissipation as reglaterad and shown for types
 rers shown in Motes 7 and 8.

[^38]
TYPES 2N718A, 2N956, 2N1420, 2N1507, 2N1613, 2NT71 N-P-N SILICON TRANSISTORS

*electrical characteristics af $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

See switching characteristics for types 2N718A and 2N613 on peges 4-30 or 4-72.
*operating characteristics at $25^{\circ} \mathrm{C}$ free-air temperafure

PARAMETER	TEST CONDITIONS		$\xrightarrow{10.18 \rightarrow}$	$\frac{2 \text { N956 }}{2 N 1711}$		$\begin{aligned} & \hline \text { 2N718A } \\ & \hline 2 N 1613 \end{aligned}$		UNIT
				TYP	max	TYP	MAX	
MF Spol Moise ligure	$\begin{aligned} & V_{c E}=10 v, I_{c}= \\ & R_{G}=510 \hat{\Omega}, 1 \end{aligned}$	$\begin{aligned} & 300 \mu \mathrm{l} \\ & \mathrm{lkc} \end{aligned}$		5	8	6	12	db

NOTE 12: These parameters must be mrasured using pulse tochniques. pw ≤ 300 μ sec, Duty Cycle $\leq 2 \%$. Pulse width must be such that halving or doubling does nat cause a change greater than the required accurecy of the measurement.
*Indicalus JEDEC registered date

Highly Reliable, Versatile Devices Dasigned for Amplifier, Switching and Oscillator Applications from $<0.1 \mathrm{ma}$ to $>150 \mathrm{ma}$ de to $\mathbf{3 0} \mathbf{~ m c}$

- High Voltage - Low Leakage
mechanical dafa
Device types $2 N 719,2 N 719 A, 2 N 720,2 N 720 A, 2 N 870$ and $2 N 871$ are in JEDEC TO-18 packages*. Device types 2N698, 2N699, 2N1889, 2N1890, and 2N1893 are in JEDEC TO-39 packages*.

*absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

	2N698	2N699	$\begin{array}{\|l\|} \hline \text { 2N719 } \\ \text { 2N720 } \\ \hline \end{array}$	2N719A	2N720A	$\begin{aligned} & \text { 2N870 } \\ & 2 N 871 \end{aligned}$	$\left.\begin{array}{\|c\|} \hline 2 N 1889 \\ 2 N 1890 \end{array} \right\rvert\,$	2N1893	UNIT
Collector-Base Voltage	120	120	120	120	120	100	100	120	v
Collector-Emitter Voltage (See Note 1)	80	80	80	80	100	80	80	100	v
Collector-Emitter Voltage (See Note 2)	60			60	80	60	60	80	v
Emitter-Base Voltoge	7	5	5	7	7	7	7	7	v
Collector Current				1.0				0.5	0
Total Device Dissipation at (or below) $25^{\circ} \mathrm{C}$ Free-Air Temperature (See Note Indicated in Parentheses) \qquad	0.8 (3)	$\begin{gathered} 0.6 \\ t \\ (5) \end{gathered}$	$\begin{array}{r} 0.4 \\ \ddagger \\ (7) \\ \hline \end{array}$	$\begin{aligned} & 0.5 \\ & (9) \\ & \hline \end{aligned}$	0.5 (9)	0.5 (9)	0.8 (3)	(3)	w
Total Device Dissipation at (or below) $25^{\circ} \mathrm{C}$ Case Temperature (See Note Indicated in Porentheses) \qquad	$\begin{array}{r} 3.0 \\ + \\ (4) \\ \hline \end{array}$	$\begin{array}{r} 2.0 \\ \uparrow \\ \text { (6) } \\ \hline \end{array}$	$\begin{array}{r} 1.5 \\ \ddagger \\ (8) \\ \hline \end{array}$	$\begin{aligned} & 1.8 \\ & (10) \\ & \hline \end{aligned}$	$\begin{array}{r} 1.8 \\ (10) \\ \hline \end{array}$	$\begin{aligned} & 1.8 \\ & (10) \\ & \hline \end{aligned}$	$\begin{gathered} 3.0 \\ t \\ (4) \\ \hline \end{gathered}$	$\begin{array}{r} 3.0 \\ \dagger \\ \text { (4) } \\ \hline \end{array}$	w
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $200^{\circ} \mathrm{C}$								

WOTES: I. This values applies whan the bese-minter resistance ($R_{\text {me }}$) is equal to or less than 10 ehmes.
2. This volues applies when the base-emitrer diede is apen-circuited.
3. Derale linearly to $200^{\circ} \mathrm{C}$ free-air temperatere of the rete of $4.57 \mathrm{~mm} /{ }^{\circ} \mathrm{C}$.
4. Derate linearly $10200^{\circ} \mathrm{C}$ case temperalure at the rate of $17.2 \mathrm{mw} /{ }^{\circ} \mathrm{C}$.
S. Derete linearly to $175^{\circ} \mathrm{C}$ free-air tmmperatione at the rate of $4.0 \mathrm{~mm} /{ }^{\circ} \mathrm{C}$.
6. Derate linesrly to $175^{\circ} \mathrm{C}$ case temperature at the rete of $13.3 \mathrm{~mm} /{ }^{\circ} \mathrm{C}$.
7. Derate linearly to $175^{\circ} \mathrm{C}$ freo-air temperatwe at the rete of $2 . \mathbf{V}^{\mathrm{mm}} /{ }^{\circ} \mathrm{C}$.
8. Derate linearly to $175^{\circ} \mathrm{C}$ case temperature of the rate of $10.0 \mathrm{mw} /{ }^{\circ} \mathrm{C}$.
9. Derate linearly to $200^{\circ} \mathrm{C}$ free-air temperature at the rate of $2 . \mathrm{Ke} \mathrm{mw} /{ }^{\circ} \mathrm{C}$.
10. Derate linearly $10200^{\circ} \mathrm{C}$ case temperature ot the rele of $10.3 \mathrm{~mm} /{ }^{\circ} \mathrm{C}$.

*JEDEC registered data.

-The JEDEC registered outline for these devices is TO-5.
TO-39 falls within TO-5 with the exception of lesd length.
'Toxes Instruments guarantoes these devices in TO-39 packeges dete-coded 7326 or highar to be cepable of increseed diecipation as follows: 0.8 W at $\mathrm{T}_{A}<25^{\circ} \mathrm{C}$ derated tineerly to $\mathrm{T}_{A}=200^{\circ} \mathrm{C}$ at the rate of $4.57 \mathrm{~mW} / /^{\circ} \mathrm{C}$, or 10 W at $\mathrm{T}_{\mathrm{C}}<25^{\circ} \mathrm{C}$ (5.71 W at $\mathrm{T}^{2}=100^{\circ} \mathrm{C}$) derated limatry to $\mathrm{T}_{\mathrm{C}}=\mathbf{2 0 0 ^ { \circ }} \mathrm{C}$ at the rate of $57.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
\ddagger Texes Instruments guarantees its types 2N719 and 2N720 to be capable of the same diszipation registored and shown for types 2N719A. 2N720A, 2N870, and 2N871 with eppropriate derating factors shown in Notes 9 and 10.

TYPES 2N720. 2N720A, 2N870, 2N871, 2N1889, 2N1890, 2N1893 M-P-N SILICON TRANSISTORS

*electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

MOTE 11: These paramelers must be measured usidy pulse techniques. PW $\leq 300 \mu$ sace., Duty cycle $\leq 2 \%$
pulse width must be such that halving or doubling does not couse a change greater than the
required accuracy of the measurement.
*Indicates JEDEC registured data.

HIGHLY RELIABLE, VERSATILE DEVICES CHARACTERIZED ESPECIALLY FOR SMALL-SIGNAL APPLICATIONS

- High Voltage - Low Leakage
- Useful hfe Over Wide Current Range
- Both Common-Emitter and Common-Base Small-Signal Characterization

mechanical data

| 2NO10, $2 N 911,2 N 912$ |
| :--- | :--- | :--- |

absoluta maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

TYPES 2N910, 2N911, 2N912, 2N1973, 2N1974, 2N1975 N-P-N SILICON TRANSISTORS

*electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

*operating characteristics at $\mathbf{2 5}{ }^{\circ} \mathbf{C}$ free-air temperature

paramettr	TEST CONDITIONS	10.18 -	2N910	2N911	2N912	UNIT
		T0.39 \rightarrow	2N1973	2N1974	2N1975	
			MAX	MAX	MaX	
WF Spot Moise Eigure	$\begin{aligned} & V_{C!}=10 v, l_{c}=300 \mu \mathrm{c}, \mathrm{R}_{G}=510 \Omega \\ & \mathrm{f}=1 \mathrm{kc} . \text { Molse Bondwidth }=200 \mathrm{qs} \end{aligned}$		12	15	18	db

 a change greater then the repulrod eccurscy of the measurament.
*Indieates JEOEC Rugisterad Dala.

TWO TRANSISTORS IN ONE PACKAGE FOR DIFFERENTIAL AMPLIFIER APPLICATIONS

- Medium Power
- High Operating Voltaga

*mechanical data

*absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

		2060		$\begin{aligned} & 223 \\ & 2234 \end{aligned}$	
	$\begin{aligned} & \text { EACH } \\ & \text { TRIODE } \end{aligned}$	TOTAL DEVICE	$\begin{gathered} \text { EACH } \\ \text { TRIODE } \end{gathered}$	TOTAL DEVICE	T
Collector-Base Voltage	100		100		V
Collector-Emitter Voltage (See Note 1)	80		80		V
Collector-Emitter Voltage (See Note 2)	60		60		V
Emitter-Base Voltage	7		7		V
Continuous Collector Current	500		500		mA
Continuous Device Dissipation at (or below) $25^{\circ} \mathrm{C}$ Free-Air Temperature (See Note 3)	0.5	0.6	0.5	0.6	W
Continuous Device Dissipation at (or below) $25^{\circ} \mathrm{C}$ Case Temperature (See Notes 4 and 5)	1.5	3	1.6	3	W
Continuous Device Dissipation at $100^{\circ} \mathrm{C}$ Case Temperature	0.86	1.7	0.91	1.7	W
Operating Collector Junction Temperature	200		200		C
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $200^{\circ} \mathrm{C}$				
Lead Temperature 1/16 Inch from Case for 10 Seconds	$300^{\circ} \mathrm{C}$				

NOTES: 1. These values apply when the base-emitter resistance (A_{BE}) is equal to or less than 10 ohms.
2. These values apply when the base-emitter diode is open-circuited.
3. Derate linearly to $200^{\circ} \mathrm{C}$ free-air temperature at the rate of $2.86 \mathrm{~mW} / f^{\circ} \mathrm{C}$ for each triode and $3.43 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for total device.
4. Derate $2 N 2060$ linearly to $200^{\circ} \mathrm{C}$ case temperature at the rate of $8.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for each triode and $17.2 \mathrm{~mW} / /^{\circ} \mathrm{C}$ for total device.
5. Derste 2 N 2223 and 2 N 2223 A linearly to $200^{\circ} \mathrm{C}$ case temperature at the rate of $9.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for each triode and $17.2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for total device.
6. The terminals of the triode not under rest are open-circuited for the measurement of these characteristics.
7. This parameter must be measured using pulse techniques. $t_{w}=300 \mu \mathrm{~s}$, duty cycle $\leqslant \mathbf{1 \%}$.
8. The lower of the two $h_{F E}$ reading is taken as $h_{F E I}$.
9. This parameter is measured in an amplifier with response down 3 dB at 25 Hz and 10 kHz and a high-frequency rolloff of 6 dB/octave.
*electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)
individual triode characteristics (see note 6)

PARAMETER		TEST CONDITIONS	2N2060	$\begin{array}{\|c\|} \hline \text { 2N2223 } \\ \text { 2N2223A } \\ \hline \end{array}$	UN:T	
		MIN MAX	MIN MAX			
$V_{\text {(BR) }}$ CBO	Collector-Base Breakdown Voltage		$I_{C}=100 \mu A, I_{E}=0$	100	100	V
$V_{(B R) C E O}$	Collector-Emitter Breakdown Voltage	$\mathrm{I}_{\mathrm{C}}=30 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0, \quad$ See Note 7	60	60	V	
V(BR)CER	Collector-Emitter Breakdown Voltage	$\mathrm{I}^{\prime} \mathrm{C}=100 \mathrm{~mA}, \mathrm{R}_{\mathrm{BE}}=10 \Omega$, See Note 7	80	80	V	
V(BR)EBO	Emitter-Base Breakdown Voltaga	$\mathrm{I}_{\mathrm{E}}=100 \mu \mathrm{~A}, \mathrm{I}^{\prime} \mathrm{C}=0$	7	7	V	
ICBO	Collector Cutoff Current	$V_{C B}=80 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0$	2	10.	nA	
		$V_{C B}=80 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0, \quad \mathrm{~T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$	10	15	$\mu \mathrm{A}$	
IEbo	Emitter Cutoff Current	$V_{E B}=5 \mathrm{~V}, \quad I_{C}=0$	2	10	nA	
hFE	Static Forward Current Transfer Ratio	$V_{C E}=5 \mathrm{~V}, \quad I_{C}=10 \mu \mathrm{~A}$	$25 \quad 75$	15		
		$V_{C E}=5 \mathrm{~V},{ }^{\prime} \mathrm{C}=100 \mu \mathrm{~A}$	$30 \quad 90$	$25 \quad 150$		
		$V_{C E}=5 \mathrm{~V}, \quad \mathrm{I}_{\mathbf{C}}=1 \mathrm{~mA}$	$40 \quad 120$			
		$V_{C E}=5 \mathrm{~V},{ }^{1} \mathrm{C}=10 \mathrm{~mA}$, See Note 7	50150	$50 \quad 200$		
$V_{B E}$	Base-Emitter Voltage	$I_{B}=5 \mathrm{~mA}, \quad I_{C}=50 \mathrm{~mA}$	0.9	0.9	V	
$V_{\text {ce }}$ (sat)	Collector-Emitter Saturation Voltage	$I_{B}=5 \mathrm{~mA}, \quad I_{C}=50 \mathrm{~mA}$	1.2	1.2	V	
$h_{\text {ib }}$	Small-Signal Common-Base Input Impedance	$V_{C B}=5 \mathrm{~V}, \quad \mathrm{l}=1 \mathrm{~mA}, \quad f=1 \mathrm{kHz}$	$20 \quad 30$	$20 \quad 30$	Ω	
$h_{\text {rb }}$	Small-Signal Common-Base Reverse Voltage Transfer Ratio			$\underset{10^{-4}}{3 x}$		
hob	Smali-Signal Common-Base Output Admittance			0.5	$\mu \mathrm{mho}$	
$h_{\text {ie }}$	Small-Signal Common-Emitter Input Impedance	$V_{C E}=5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}, \quad f=1 \mathrm{kHz}$	10004000		Ω	
$h_{\text {fe }}$	Small-Signal Common-Emitter Forward Current Transfer Ratio		$50 \quad 150$	40200		
$h_{\text {Oe }}$	Small-Signal Common-Emitter Output Admittance		16		$\mu \mathrm{mho}$	
\|hel	Small-Signal Common-Emitter Forward Current Transfer Ratio	$V_{C E}=10 \mathrm{~V}, \mathrm{I}^{\prime}=50 \mathrm{~mA}, f=20 \mathrm{MHz}$	3	2.5		
Cobo	Common-Base Open-Circuit Output Capacitance	$V_{C B}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0, \quad f=1 \mathrm{MHz}$	15	15	pF	
Cibo	Common-Base Open-Circuit Input Capacitance	$V_{E B}=0.5 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=0, \quad f=1 \mathrm{MHz}$	85	85	pF	

triode matching characteristics

*operating characteristics at $25^{\circ} \mathrm{C}$ free-air temperature
individual triode characteristics (see note 6)

PARAMETER	TEST CONDITIONS	$\begin{array}{\|c\|} \hline \text { 2N2060 } \\ \hline \text { MAX } \\ \hline \end{array}$	UNIT
F Spot Noise Figure	$\mathrm{V}_{\text {CE }}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=300 \mu \mathrm{~A}, \mathrm{R}_{\mathrm{G}}=510 \Omega, \mathrm{f}=1 \mathrm{kHz}$	8	dB
F Average Noise Figure	$V_{C E}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=300 \mu \mathrm{~A}, \mathrm{R}_{\mathrm{G}}=1 \mathrm{k} \Omega$, Noise Bandwidth $=15.7 \mathrm{kHz}$, See Note 9	8	dB

- JEDEC registered data

FOR MEDIUM-POWER, GENERAL PURPOSE APPLICATIONS

- High Breakdown Voltage Combined with Low Saturation Voltage
- hFE ... Guaranteed from $10 \mu \mathrm{~A}$ to 1 A
mechanical data

absolute maximum ratings at $\mathbf{2 5}^{\circ} \mathbf{C}$ case temperature (unless otherwise noted)
Collector-Base Voltage $120 V^{*}$
Collector-Emitter Voltage (See Note 1) $65 V^{*}$
Collector-Emitter Voltage (See Note 2) $80 V^{*}$
Emitter-Base Voltage 7 V*
Continuous Collector Current $1 A^{*}$
Continuous Device Dissipation at (or below) $\mathbf{2 5}{ }^{\circ} \mathrm{C}$ Free-Air Temperature (See Note 3) 1 W*
Continuous Device Dissipation at (or below) $\mathbf{2 5}{ }^{\circ} \mathrm{C}$ Case Temperature (See Note 4) $10 W^{\dagger}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $200^{\circ} \mathrm{C}$ *
Lead Temperature 1/16 Inch from Case for 10 Seconds $300^{\circ} \mathrm{C}^{*}$

NOTES: 1. This value applies when the base-emitter diode is open-circuited.
2. This value applies when the base-emitter resistance $\mathrm{R}_{\mathrm{BE}}<10 \Omega$.
3. Derate linearly to $200^{\circ} \mathrm{C}$ free-air temperature at the rate of $5.71 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
4. Derate the 10 -watt rating linearly to $200^{\circ} \mathrm{C}$ case temperature at the rate of $57.1 \mathrm{mw} /{ }^{\circ} \mathrm{C}$. Derate the 5 -watt (JEDEC registered) rating linearly to $200^{\circ} \mathrm{C}$ case temperature at the rate of $28.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.

[^39]
TYPES 2N2102, 2N2102A N-P-N SILICON TRANSISTORS

*electrical characteristics at $\mathbf{2 5}{ }^{\circ} \mathbf{C}$ case temperature (unless otherwise noted)

NOTES: 5. These parameters must be measured using pulse techniques. $\mathrm{t}_{\mathrm{w}}=\mathbf{3 0 0} \mu \mathrm{s}$, duty cycle $\leqslant \mathbf{2 \%}$.
6. $V_{R T}$ is determined by measuring the emitter-base floating potential, $V_{E B(f)}$. Collector-base voltage, $V_{C B}$, is increased until $V_{E B(f)}=1.5 \mathrm{~V}$; this value of $V_{C B}=\left(V_{R T}+1.5 \mathrm{~V}\right)$.

*thermal characteristics

	PARAMETER	MAX	UNIT
$R_{\theta J C}$	Junction-to-Case Thermal Resistance	35	${ }^{\circ} \mathrm{CN}$
$\mathbf{R}_{\theta \text { JA }}$	Junction-to-Free-Air Thermal Resistance	175	

[^40]
TYPES 2N2102, 2N2102A N-P-N SILICON TRANSISTORS

*operating charactaristics at $\mathbf{2 5}{ }^{\circ} \mathrm{C}$ case temperature

	PARAMETER	TEST CONDITIONS	MIN MAX	UNIT
	Spot Noise Figure	$\begin{aligned} & V_{C E}=10 \mathrm{~V}, \quad \mathrm{IC}=0.3 \mathrm{~mA}, f=1 \mathrm{kHz}, \\ & R_{\mathrm{G}}=1 \mathrm{k} \Omega \end{aligned}$	6	dB

*switching characteristics at $\mathbf{2 5}{ }^{\circ} \mathrm{C}$ case temperature

PARAMETER	TEST CONDITIONS	MIN	MAX	UNIT
t \quad Total Switching Time	See Figure 1	30	n 5	

*PARAMETER MEASUREMENT INFORMATION

FIGURE 1-SWITCHING TIME MEASUREMENT CIRCUIT

NOTES: 7. The input waveform is supplied by a mercury relay pulse generator with the following characteristica: $t_{r}<1 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}}<\mathbf{1} \mathrm{ns}$, $t_{\text {w }}=15 \mathrm{~ns}, Z_{\text {out }}=50 \Omega$. Adjust R1 and the input pulse amplitude to obtain the specified voltege levels at Point A
8. Waveforms are monitored on a sampling oscilloscope ($\mathrm{t}_{\mathrm{r}}<0.4 \mathrm{~ns}$) using a 2-k Ω probe.
*JEDEC registered data

TYPES 2N1671, 2N1671A, 2N167BB, 2N2160 P-N BAR-TYPE SILICON UNLJUNCTION TRANSISTORS

Designed for Medium-Power Switching, Oscillator and Pulse Timing Circuits
- Highly Stable Negative Resistance
and Firing Voltage
- Low Firing Current
- High Pulse Current Capabilities
- Simplified Circuit Design

mechanical dafa
Package outline similar to JEDEC TO-5 except for lead position. Approximate weight 1 gram.

*absolute maximum ratings af $25^{\circ} \mathrm{C}$ free-air temperafure (unless otherwise noted)

NOTES: 1. Capocitor discharge $-10 \mu \mathrm{f}$ or less, 30 woits or less - fotal interbase power fissipation mest be limited by externat cirrultry.
2. Derole linearly to $140^{\circ} \mathrm{C}$ froe-air temperature of the rate of $3.9 \mathrm{mw} /{ }^{\circ} \mathrm{C}$. $\left\{2 \mathrm{~W} 1671\right.$ serias only, thermal resistence to cast $\left.=0.10^{\circ} \mathrm{C} / \mathrm{mm}.\right)$
3. Texas tastruments guarantees a maximum eqereting temperature of $175^{\circ} \mathrm{C}$ free-air. Berste lineorly at the refe of $3 \mathrm{mw} /{ }^{\circ} \mathrm{C}$.
4. Texes linstruments guarantees a maximum sterege femparature of $175^{\circ} \mathrm{C}$.
*Indicates JEDEC registerad dato

TYPES 2N1671, 2N1671A, 2N1671B, 2N2160 P-N BAR-TYPE SILICON UNIJUNCTION TRANSISTORS

*electrical charecteristics af $25^{\circ} \mathrm{C}$ free-alir temperafure

PARAMETER		TEST COmpITIOMS	20161671		2N1671A		2N16718		2N2100		UNIT	
		MUN	MAX	Man	MAX	MIN	MAX	MIN	MAX			
In			$v_{\text {en }}=3 v_{\text {g }} \mathrm{l}_{\mathrm{g}}=0$	4.7	9.1	4.7	1.1	4.7	4.1	4.1	12	10
η	Intriosk Stentert inetio	$\begin{aligned} & \operatorname{lngmal}=10 \% \\ & \operatorname{sen} \text { Fiyme } 1 \end{aligned}$	0.47	0.4	0.4	0.62	0.47	0.6	0.47	0.00		
Intmant	Movelated Intertere Curreal		4.8	22	6.4	22	4.8	2	6.4	31	m	
Itato	Emittor Rewown Curruat	$\mathrm{V}_{\mathrm{at}}=30 \mathrm{v}_{\mathrm{l}} \mathrm{m}_{\mathrm{m}}=0$		-12		-12		-8.2		-12	$\mu 0$	
t.	Poum-Pinat Emither Corrout	$\mathrm{V}_{8 \mathrm{~m}}=8 \mathrm{~s}$		25		25		1		25	μ	
	Emither Salvetion Vellage	$v_{\text {man }}=10 v_{0} 1_{5}=50 \mathrm{mo}$		5		5		5			\checkmark	
Iv	Valley-Pidal Emither Comem		1		4		1		1		me	
V_{001}	Soso-0m Pat fube Yoltep	$y_{1}=20 y_{n}=20 \Omega$ Son Fipun 1			3		3		3		v	

-Iadizates JEDEC registerad data

PARAMETER MEASUREMENT INFORMATION

M1 $100 \mu \mathrm{~A}$ Full scole
$\boldsymbol{\eta}$-Intrinsic Standoff Ratio - This parameter is defined in terms of the peak-point valtage, \mathbf{V}_{p}, by means of the equation: $\mathbf{V}_{p} \boldsymbol{\eta}$ $V_{\text {min }}$, V_{f}, where V_{f} is about 0.56 valt at $25^{\circ} \mathrm{C}$ and decreases with temperature at about 2 millivalts/deg.

The circuit used to measure η is shown in the figure. In this cirevit, R, C, and $^{\text {a }}$ the unijunction transistor form a relaxation aseil lator, and the remainder of the circuit serves as a peak-valtage defector with the diode D_{1} automatically subtrocting the voltage V_{f}. To use the circuit, the "cal" bumon is pushed, and R_{3} is adjusted to make the current meter M_{1} read full scale. The "cal" button then is released and the value of η is read directly from the meter, with $\eta \quad$ l corresponding to fulliscale deflection of $100 \mu \mathrm{~A}$.
D_{1} : 1MA57, or equivalent, with the following chaceateristics:
$V_{F}=0.565 \mathrm{~V}$ at $\mathrm{I}_{\mathrm{F}}=50 \mu \mathrm{~A}$,
$I_{R} \leq 2 \mu A$ of $V_{R}=20 V$
FIGURE 1 - TEST CIRCUIT FOR INTRINSIC STANDOFF RAIIO (η)

EMITTER-BASE-ONE VOLTAGE
VM
EMITTER CURRENT

FIGURE 3 - GENTRAL STATIC EMITTER CHARACTERISTIC CURVE

FOR MEDIUM-POWER SWITCHING AND AMPLIFIER APPLICATIONS

- High Breakdown Voltage Combined with Very Low Saturation Voltage
- hFE-Guaranteed from 100μ a to 1 amp
mechanical data

absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

	$\begin{array}{r} \hline \text { 2N2192 } \\ \text { 2N2192A } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { 2N2193 } \\ \text { 2N2193A } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { 2N2194 } \\ \text { 2N2194A } \\ \hline \end{array}$	$\begin{gathered} \text { 2N2243 } \\ \text { 2N2243A } \\ \hline \end{gathered}$	UNIT
Collector-Base Voltage	60*	80*	60*	120^{*}	v
Collector-Emitter Voltage (See Note 1)	40*	50^{*}	40*	80*	v
Emitter-Base Voltage	5*	8^{*}	5 *	7*	v
Collector Current	1^{*}	${ }^{\text {² }}$	1^{*}	1*	a
Total Device Dissipation at (or below) $25^{\circ} \mathrm{C}$ Free-Air Temperature-(See Note 2)	0.8*	0.8*	0.8*	0.8*	w
Total Device Dissipation at (or below) $25^{\circ} \mathrm{C}$ Case Temperature (See Note 3)	$\begin{array}{r} 10^{\dagger} \\ 2.8^{*} \\ \hline \end{array}$	$\begin{array}{r} 10^{\dagger} \\ 2.8^{*} \\ \hline \end{array}$	$\begin{array}{r} 10^{\dagger} \\ 2.8^{\prime \prime} \\ \hline \end{array}$	$\begin{array}{r} 10^{\dagger} \\ 2.8^{*} \\ \hline \end{array}$	w
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $200^{\circ} \mathrm{C}^{\prime \prime}$				
Lead Temperature 1/16 Inch from Case for 10 Seconds	$300^{\circ} \mathrm{C}{ }^{*}$				

NOTES: 1, This value applies when the base-emitter diode is open-circulted.
2. Derate linearly to $200^{\circ} \mathrm{C}$ free-air temperature at the rate of $4.57 \mathrm{mw} /{ }^{\circ} \mathrm{C}$.
3. Derate the 10 -watt rating linearly to $200^{\circ} \mathrm{C}$ cage temperature at the rate of $57.1 \mathrm{mw} /{ }^{\circ} \mathrm{C}$. Derate the 2.8 -watt (JEDEC registered) reting linearly to $200^{\circ} \mathrm{C}$ case temperature at the rate of $16 \mathrm{mw} /{ }^{\circ} \mathrm{C}$.

[^41]
TYPES 2N2192, 2N2192A, 2N2193, 2N2193A, 2N2194, 2N2184A N-P-N SILICON TRAN8ISTORS

*electrical charactoristics af $28^{\circ} \mathrm{C}$ free-air tomporature (unless othorwise noted)

*switching characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER	TEST CONDITIONS	2N2192 2N2192A 2N2193 2N2193A 2N2194 2N2194A	UNIT
		MAX	
$t_{\text {tr }} \quad$ Rise Time	See Figure 1	70	nsec
$t_{3} \quad$ Storage Time		150	nsec
$t_{f} \quad$ Fall Time		50	nsec

MOTE 4: These paramoters must te masured esing pulse texhmiqws. PW $=\mathbf{3 0 0} \mu \mathrm{sec}$, Duty Cycle $\leq \mathbf{2 \%}$.

[^42]
TYPES 2N2192, 2N2192A, 2N2193, 2N2193A, 2N2194, 2N2194A N-P-N SILICON TRANSISTORS

PARAMETER MEASUREMENT INFORMATION

See Notes a and b VOLTAGE WAVEFORMS

test circuit

CIRCUIT CONDITIONS

	2N2192, 92A	2N2193, 93A 2N2194,94A
$\mathrm{V}_{1 \mathrm{~N}}$	7.5 V	15 V
$\mathrm{~V}_{\mathrm{B}}$	7.5 V	15 V

*FIEURE 1 - SWITCHINE TIMES - $i_{\text {r }}, t_{p} t_{s}$

NOTES: a. The input waveform is supplied by a generator with the following characteristics: $t_{r}=20 \boldsymbol{n s e c}, t_{f}=20 \mathrm{nsec}, \boldsymbol{Z}_{\text {out }}=50 \boldsymbol{\Omega}$, $\mathrm{PW}=10 \mu \mathrm{sec}, \mathrm{PRR}=\mathbf{5 k c}$.
b. Waveforms are monitored on an oscilloscope with the following characteristics: $t_{r} \leqslant 14 \mathrm{nsec}, \mathrm{R}_{\text {in }}=10 \mathrm{M} \Omega$. $\mathrm{C}_{\text {in }}=11.5 \mathrm{pf}$. *Indicates JEDEC registered data

TEXAS INSTRUMENTS POST OFFICE mOX 5012 - DALLAS, TEXAS 78222

SILECT ${ }^{\dagger}$ TRANSISTORS \ddagger FOR MEDIUM-POWER SWITCHING AND AMPLIFIER APPLICATIONS

- High V(BR)CBO ... 80 V Min (A5T2193)
- hFE Guaranteed from $100 \mu \mathrm{~A}$ to 1 A
- fT . . . 50 MHz Min
- Electrically Similar to 2N2192A, 2N2193A

mechanical data

These transistors are encapsulated in a plastic compound specifically designed for this purpose, using a highly mechanized process developed by Texas Instruments. The case will withstand soldering temperatures without deformation. These devices exhibit stable characteristics under high-humidity conditions and are capable of meeting MIL-STD-202C, Method 106B. The transistors are insensitive to light.

absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

| A5T2192 | A5T2193 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

NOTES: 1. These values apply when the base-emitter diode is open-circuited.
2. Derate linearly to $150^{\circ} \mathrm{C}$ free-air temperature at the rate of $5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
3. Derse linearly to $150^{\circ} \mathrm{C}$ lead temperature at the rate of $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$. Lead temperature is measured on the collector lead $\mathbf{1 / 1 6}$ inch from the case.
4. This rating applies with the entire case (including the leads) maintained at $25^{\circ} \mathrm{C}$. Derate linearly to $150^{\circ} \mathrm{C}$ case-and-lead temperature at the rate of $12.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
\dagger Trademark of Texas Instruments USES CHIP N23
\ddagger U.S. Patent No. 3,439,238

TYPES A5T2192, A5T2193

N-P-N SILICON TRANSISTORS
electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

Parameter	TEST CONDITIONS	A5T2192	A5T2193	UNIT
		MIN MAX	MIN MAX	
$\mathrm{V}_{\text {(BR) }}$ CBO Collector-Base Breakdown Voltage	$\mathrm{I}_{\mathrm{C}}=100 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{E}}=0$	60	80	v
$V_{\text {(BR)CEO }}$ Collector-Emitter Breakdown Voltage	$\mathrm{I}^{\prime}=25 \mathrm{~mA}, \quad \mathrm{I}_{\mathrm{B}}=0, \quad$ See Note 5	40	50	v
$\mathrm{V}_{\text {(BR)EBO }}$ Emitter-Base Breakdown Voltage	$\mathrm{I}_{\mathrm{E}}=100 \mu \mathrm{~A}, \mathrm{I}^{\prime}=0$	5	8	V
Coilector Cutoff Current	$\mathrm{V}_{C B}=30 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0$	10		nA
	$V_{C B}=30 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0, \quad \mathrm{~T}_{\mathrm{A}}=100^{\circ} \mathrm{C}$	1		$\mu \mathrm{A}$
	$\mathrm{V}_{\mathrm{CB}}=60 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0$		10	nA
	$V_{C B}=60 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0, \quad \mathrm{~T}_{\mathrm{A}}=100^{\circ} \mathrm{C}$		2	$\mu \mathrm{A}$
Emitter Cutoff Current	$V_{E B}=3 V_{\text {, }} \quad I_{C}=0$	50		nA
	$V_{E B}=5 \mathrm{~V}$, $\mathrm{IC}^{\prime}=0$		50	
Static Forward Current Transfer Ratio	$V_{C E}=10 \mathrm{~V}, \mathrm{IC}=100 \mu \mathrm{~A}$	15	15	
	$\mathrm{V}_{C E}=10 \mathrm{~V}, \mathrm{I}^{\text {C }}=10 \mathrm{~mA}$	75	30	
	V $\mathrm{V}_{\text {CE }}=10 \mathrm{~V}, 1 \mathrm{IC}=150 \mathrm{~mA}$	100 300	$40 \quad 120$	
	$\mathrm{V}_{\text {CE }}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=500 \mathrm{~mA}$ See Note 5	35	20	
	$\mathrm{V}_{\text {CE }}=10 \mathrm{~V}, \mathrm{IC}^{\prime}=1 \mathrm{~A}$	15	15	
	$\mathrm{V}_{\text {CE }}=1 \mathrm{~V}, \mathrm{I}^{\prime} \mathrm{C}=150 \mathrm{~mA}$	70	30	
VBE Base-Emitter Voltage	$\mathrm{I}_{\mathrm{B}}=15 \mathrm{~mA}, \quad \mathrm{I}_{\mathrm{C}}=150 \mathrm{~mA}$, See Note 5	1.3	1.3	V
$\mathrm{V}_{\text {CEI }}$ sat) Collector-Emitter Saturation Voltage	$\mathrm{I}_{\mathrm{B}}=15 \mathrm{~mA}, \mathrm{I}_{\mathrm{C}}=150 \mathrm{~mA}$, See Note 5	0.25	0.25	v
$\mathbf{h}_{\text {fel }}$ Small-Signal Common-Emitter Forward Current Transfer Ratio	$\mathrm{V}_{C E}=10 \mathrm{~V}, \mathrm{IC}=50 \mathrm{~mA}, \mathrm{f}=20 \mathrm{MHz}$	2.5	2.5	
cobo $\begin{aligned} & \text { Common-Base Open-Circuit } \\ & \text { Output Capacitance }\end{aligned}$	$V_{C B}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0, \quad f=1 \mathrm{MHz}$	20	20	pF

switching characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER	TEST CONDITIONS	A5T2192	A5T2193	UNIT
		MIN MAX	MIN MAX	
${ }_{4}$ H Rise Time	See Figure 1	70	70	ns
$t_{s} \quad$ Storage Time		150	150	ns
t_{f} (Fall Time		50	50	ns

NOTE 5: These parameters must be measured using pulse techniques. $t_{w}=300 \mu \mathrm{~s}$, duty cycle $\leqslant 2 \%$.

NOTES: a. The input waveform is supplied by a generator with the following characteristics: $t_{r}=20 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}, \mathrm{Z}_{\text {out }}=50 \Omega, \mathrm{t}_{\mathrm{w}}=\mathbf{2}=\boldsymbol{1 0} \mu_{\text {, }}$ $P R R=5 \mathrm{kHz}$.
b. Waveforms are monitored on an oscilloscope with the following charactaristics: $t_{r} \leqslant 14 \mathrm{~ns}, \mathrm{R}_{\mathrm{in}}=10 \mathrm{M} \Omega, \mathrm{C}_{\mathrm{in}}=11.5 \mathrm{pF}$.

TYPES 2N2217 THRU 2N2222, 2N2218A, 2N2219A, 2N2221A, 2N2222A
 N-P-N SILICON TRANSISTORS

BULLETIN NO. DL-S 7311916, MARCH 1973

DESIGNED FOR HIGH-SPEED, MEDIUM-POWER SWITCHING AND GENERAL PURPOSE AMPLIFIER APPLICATIONS

- hFE .. . Guaranteed from $\mathbf{1 0 0} \mu \mathrm{A}$ to $\mathbf{5 0 0} \mathrm{mA}$
- High fT at 20 V, 20 mA . . 300 MHz (2N2219A, 2N2222A) 250 MHz (all others)
- 2N2218, 2N2221 for Complementary Use with 2N2904, 2N2906
- 2N2219, 2N2222 for Complementary Use with 2N2905, 2N2906
*mechanical data
Device types 2N2217, 2N2218, 2N2218A, 2N2219, and 2N2219A are in JEDEC TO-5 packages.
Device types 2N2220, 2N2221, 2N2221A, 2N2222, and 2N2222A are in JEDEC TO-18 packages.

*absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

	$\begin{array}{\|l\|} \hline \text { 2N2217 } \\ \text { 2N2218 } \\ \text { 2N2219 } \end{array}$	$\left\lvert\, \begin{aligned} & \text { 2N2218A } \\ & \text { 2N2219A } \end{aligned}\right.$	$\begin{array}{\|l\|} \hline \text { 2N2220 } \\ \text { 2N2221 } \\ \text { 2N2222 } \end{array}$	$\left\lvert\, \begin{aligned} & \text { 2N2221A } \\ & \text { 2N2222A } \end{aligned}\right.$	UNIT
Collector-Base Voltage	60	75	60	75	V
Collector-Emitter Voltage (See Note 1)	30	40	30	40	V
Emitter-Base Voltage	5	6	5	6	V
Continuous Collector Current	0.8	0.8	0.8	0.8	A
Continuous Device Dissipation at (or below) $25^{\circ} \mathrm{C}$ Free-Air Temperature (See Notes 2 and 3)	0.8	0.8	0.5	0.5	W
Continuous Device Dissipation at (or below) $25^{\circ} \mathrm{C}$ Case Temperature (See Notes 4 and 5)	3	3	1.8	1.8	W
Operating Collector Junction Temperature Range	-65 to 175				C
Storage Temperature Range	-65 to 200				C
Lead Temperature 1/16 Inch from Case for 10 Seconds	230				C

NOTES: 1. Thesa values apply between 0 and 500 mA collector current when the base-emitter diode is open-circuited.
2. Derate $2 N 2217,2 N 2218,2 N 2218 A, 2 N 2219$, and $2 N 2219 A$ linearly to $175^{\circ} \mathrm{C}$ free-air temperature at the rate of $5.33 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
3. Derate 2 N2 220, 2 N2221, $2 N 2221 A, 2 N 2222$, and $2 N 2222 A$ linearly to $175^{\circ} \mathrm{C}$ free-air temperature at the rate of $3.33 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
4. Derate 2 N2217, $2 N 2218,2 N 2218 A, 2 N 2219$, and $2 N 2219 A$ linearly to $175^{\circ} \mathrm{C}$ case temperature at the rate of $20.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
5. Derate $2 N 2220,2 N 2221,2 N 2221 A, 2 N 2222$, and $2 N 2222 A$ linearly to $176^{\circ} \mathrm{C}$ case temperature at the rate of $12.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.

- JEDEC registered data. This data sheet contains all applicable registered data in effect at the time of publication.

USES CHIP N24

TYPES 2N2217 THRU 2N2222, 2N2218A, 2N2219A, 2N2221A, 2N2222A N-P-N SILICON TRANSISTORS

2N2217 THRU 2N2222

*electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

PARAMETER		TEST CONDITIONS	$\begin{aligned} & \text { TO-5 } \rightarrow \\ & \text { TO-18 } \rightarrow \end{aligned}$	$\begin{aligned} & \hline \text { 2N2217 } \\ & \hline \text { 2N2220 } \\ & \hline \end{aligned}$		$\begin{aligned} & \hline \text { 2N2218 } \\ & \hline \text { 2N2221 } \\ & \hline \end{aligned}$		$\begin{aligned} & \text { 2N2219 } \\ & \hline \text { 2N2222 } \end{aligned}$		UNIT	
		MIN		MAX	MIN	MAX	MIN	MAX			
$\mathrm{V}_{\text {(BR) } \mathrm{CBO}}$	Collector-Base Breakdown Voltage		$\mathrm{I}^{\prime}=10 \mu \mathrm{~A}, \quad \mathrm{I}_{\mathrm{E}}=0$		60		60		60		v
$V_{\text {(BR)CEO }}$	Collector-Emitter	$\mathrm{I}^{\prime}=10 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0$.	See Note 6	30		30		30		v	
	Breakdown Voltage										
$V_{\text {(bR)Ebo }}$	Emitter-Base Breakdown Voltage	$\mathrm{I}_{\mathrm{E}}=10 \mu \mathrm{~A}, ~ \mathrm{I}_{\mathrm{C}}=0$		5		5		5		v	
	Collector Cutoff Current	$\mathrm{V}_{C B}=50 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0$		10		10		10		nA	
		$\begin{array}{ll}\mathrm{V}_{C B}=50 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0, & \mathrm{~T}_{A}=150^{\circ} \mathrm{C} \\ \mathrm{V}_{E B}=3 \mathrm{~V}, \mathrm{I}^{\prime}=0 & \end{array}$		10		10		10		$\mu \mathrm{A}$	
IEBO	Emitter Cutoff Current				10	10			10	$\stackrel{\mu}{n} \mathrm{~A}$	
hfe	Static Forward Current Transfer Ratio	$\mathrm{V}_{\mathrm{CE}}=10 \mathrm{~V}, \mathrm{I}^{\text {C }}=100 \mu \mathrm{~A}$				20		35			
		$V_{C E}=10 \mathrm{~V}, \mathrm{C}=1 \mathrm{~mA}$		12		25		50			
		$\begin{array}{\|l\|} \hline V_{C E}=10 \mathrm{~V}, I_{C}=150 \mathrm{~mA} \\ V_{C E}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=500 \mathrm{~mA} \\ \hline \end{array}$	See Note 6	17		35		75			
				20	60	40	120	$100 \quad 300$			
						20		30			
		$\mathrm{V}_{\mathrm{CE}}=1 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=150 \mathrm{~mA}$		10		20		50			
$V_{\text {be }}$	Base-Emitter Voltage	$\mathrm{I}_{\mathrm{B}}=15 \mathrm{~mA}, \mathrm{I}_{\mathrm{C}}=150 \mathrm{~mA}$	See Note 6	1.3		1.3		1.3		\checkmark	
		$\mathrm{I}_{\mathrm{B}}=50 \mathrm{~mA}, \mathrm{I}_{\mathrm{C}}=500 \mathrm{~mA}$					2.6		2.6		
$V_{\text {CE }}$ (sat)	Collector-Emitter Saturation Voltage	$\mathrm{I}_{\mathrm{B}}=15 \mathrm{~mA}, \mathrm{I}_{\mathrm{C}}=150 \mathrm{~mA}$	See Note 6		0.4		0.4		0.4	\checkmark	
		$\mathrm{I}_{\mathrm{B}}=50 \mathrm{~mA}, \mathrm{I}^{\prime}=500 \mathrm{~mA}$					1.6		1.6		
Pfel	Small-Signal Common-Emitter Forward Current Transfer Ratio	$V_{C E}=20 \mathrm{~V}, I_{C}=20 \mathrm{~mA}, f=100 \mathrm{MHz}$		2.5		2.5		2.5			
${ }_{\text {f }}$	Transition Frequency	$\mathrm{V}_{\text {CE }}=20 \mathrm{~V}, \mathrm{IC}=20 \mathrm{~mA}$,	See Note 7	250		250		250		MHz	
Cobo	Common-Base Open-Circuit Output Capacitance	$V_{C B}=10 \mathrm{~V}, \mathrm{l}_{\mathrm{E}}=0, \quad \mathrm{f}=1 \mathrm{MHz}$		8		8		8		pF	
$h_{\text {ielreal }}$	Real Part of Small-Signal Common-Emitter Input Impedance	$V_{C E}=20 \mathrm{~V}, 1 \mathrm{C}=20 \mathrm{~mA}, f=300 \mathrm{MHz}$		60		60		60		Ω	

NOTES: 6. These parameters must be measured using puise techniques. $t_{w}=300 \mu \mathrm{~s}$, duty cycle $\leqslant 2 \%$.
7. To obtain f_{T}, the $h_{\text {fe }}$ l response with frequency is extrapolated at the rate of -6 dB per octave from $f=100 \mathrm{MHz}$ to the frequency at which $h_{f e} l=1$.
switching characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER		TEST CONDITIONS ${ }^{\text { }}$			TYP	UNIT
t_{d}	Delay Time	$\mathrm{V}_{\mathrm{CC}}=30 \mathrm{~V}$, $\mathrm{I}_{\mathrm{C}}=150 \mathrm{~mA}$, $\mathrm{V}_{\mathrm{BE}(\mathrm{Off})}=-0.5 \mathrm{~V}$, $=15 \mathrm{~mA}$, V_{CC} See Figure 1 ,			5	ns
$t_{\text {tr }}$	Rise Time				15	ns
${ }_{\text {t }}$	Storage Time	$\mathrm{V}_{\mathrm{CC}}=30 \mathrm{~V}$, $\mathrm{IC}=150 \mathrm{~mA}$, $\mathrm{I}_{\mathrm{B}(2)}=-15 \mathrm{~mA}(1)=15 \mathrm{~mA}$, See Figure 2			190	ns
${ }_{\text {t }}$	Fall Time				23	ns

[^43]
TYPES 2N2217 THRU 2N2222, 2N2218A, 2N2219A, 2N2221A, 2N2222A N-P-N SILICON TRANSISTORS

2N2218A, 2N2219A, 2N2221A, 2N2222A

*electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

PARAMETER		TEST CONDITIONS	TO-5 \rightarrow	2N2218A		2N2219A		UNIT	
		TO-18 \rightarrow	2N2221A		2N2222A				
		MIN	MAX	MIN	MAX				
$V_{\text {(BR) }}$ CBO	Collector-Base Breakdown Voltage		$I_{C}=10 \mu A, \quad I_{E}=0$		75		75		V
$V_{\text {(BR)CEO }}$	Collector-Emitter Breakdown Voitage	$I_{C}=10 \mathrm{~mA}, I_{B}=0$,	See Note 6	40		40		V	
V(BR)EBO	Emitter-Base Breakdown Voltage	$I_{E}=10 \mu A, I_{C}=0$		6		6		V	
ICBO	Collector Cutoff Current	$V_{C B}=60 \mathrm{~V}, \mathrm{IE}_{\mathrm{E}}=0$			10		10	nA	
		$V_{C B}=60 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0$,	$T_{A}=150^{\circ} \mathrm{C}$		10		10	$\mu \mathrm{A}$	
lcev	Collector Cutoff Current	$V_{C E}=60 \mathrm{~V}, V_{B E}=-3 \mathrm{~V}$			10		10	nA	
IBEV	Base Cutoff Current	$V_{C E}=60 \mathrm{~V}, \mathrm{~V}_{\mathrm{BE}}=-3 \mathrm{~V}$			-20		-20	nA	
IE8O	Emitter Cutoff Current	$V_{E B}=3 \mathrm{~V}, \mathrm{I}^{2}=0$			10		10	nA	
hfe	Stetic Forwerd Current Transfer Ratio	$V_{C E}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=100 \mu \mathrm{~A}$		20		35			
		$V_{C E}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}$		25		50			
		$V_{\text {CE }}=10 \mathrm{~V}, \mathrm{I}^{\text {C }}=10 \mathrm{~mA}$	See Note 6	35		75			
		$\mathrm{V}_{\text {CE }}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=150 \mathrm{~mA}$		40	120	100	300		
		$V_{C E}=10 \mathrm{~V}, 1 \mathrm{C}=500 \mathrm{~mA}$		25		40			
		$V_{C E}=1 \mathrm{~V}, I_{C}=150 \mathrm{~mA}$		20		50			
		$\begin{aligned} & V_{C E}=10 \mathrm{~V}, I_{C}=10 \mathrm{~mA}, \\ & T_{A}=-55^{\circ} \mathrm{C} \end{aligned}$		15		35			
VeE	Base-Emitter Voltage	$\mathrm{I}_{\mathrm{B}}=15 \mathrm{~mA}, \mathrm{I}^{\prime}=150 \mathrm{~mA}$	See Note 6	0.6	1.2	0.6	1.2	V	
		$I_{B}=50 \mathrm{~mA}, I_{C}=500 \mathrm{~mA}$			2		2		
VCEisat)	Collector-Emitter Saturation Voltage	$\mathrm{I}_{B}=15 \mathrm{~mA}, I^{\prime}=150 \mathrm{~mA}$	See Note 6		0.3		0.3	V	
		$I_{B}=50 \mathrm{~mA}, I_{C}=500 \mathrm{~mA}$			1		1		
$h_{\text {ise }}$	Small-Signal Common-Emitter Input Impedence	$V_{C E}=10 \mathrm{~V}, I^{\prime}=1 \mathrm{~mA}$	$\mathrm{f}=1 \mathrm{kHz}$	1	3.5	2	8	$k \Omega$	
		$V_{C E}=10 \mathrm{~V}, I_{C}=10 \mathrm{~mA}$		0.2	1	0.25	1.25		
$\mathrm{hfa}_{\text {fa }}$	Small-Signal Forward Current Transfer Ratio	$V_{C E}=10 \mathrm{~V}, I_{C}=1 \mathrm{~mA}$		30	150	50	300		
		$V_{C E}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}$		50	300	75	375		
$h_{\text {re }}$	Smail-Signal Common-Emitter Reverse Voltage Transfer Ratio	$V_{C E}=10 \mathrm{~V}, I_{C}=1 \mathrm{~mA}$			5×10^{-4}		8×10^{-4}		
		$V_{C E}=10 \mathrm{~V}, I_{C}=10 \mathrm{~mA}$			2.5×10^{-4}		4×10^{-4}		
$h_{\text {ce }}$	Small-Signal Common-Emitter Output Admittance	$V_{C E}=10 \mathrm{~V}, I_{C}=1 \mathrm{~mA}$		3	15	5	35	$\mu \mathrm{mho}$	
		$V_{C E}=10 \mathrm{~V}, I^{\prime}=10 \mathrm{~mA}$		10	100	25	200		
Mfel	Small-Signal Common-Emitter Forward Current Tranafer Ratio	$V_{C E}=20 \mathrm{~V}, 1 \mathrm{C}=20 \mathrm{~mA}$,	$f=100 \mathrm{MHz}$	2.5		3			
4	Transition Frequency	$V_{C E}=20 \mathrm{~V}, 1 \mathrm{C}=20 \mathrm{~mA}$,	See Note 7	250		300		MHz	
Cobo	Common-Base Open-Circuit Output Capacitance	$V_{C B}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0$,	$f=100 \mathrm{kHz}$		8		8	pF	
$\mathrm{C}_{\text {ibo }}$	Common-Bese Open-Circuit Input Capacitance	$V_{E E}=0.5 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=0$,	$\mathrm{f}=100 \mathrm{kHz}$		25		25	pF	
$h_{\text {iel }}$ (real)	Real Part of Small-Signal Common-Emitter Input Impedance	$V_{C E}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=20 \mathrm{~mA}$,	$f=300 \mathrm{MHz}$		60		60	Ω	
$\mathrm{rb}_{\mathrm{b}}{ }^{\text {c }}{ }_{c}$	Collector-Base Time Constant	$V_{C E}=20 \mathrm{~V}, \mathrm{I}^{\prime}=20 \mathrm{~mA}$,	$f=31.8 \mathrm{MHz}$		150		150	ps	

NOTES: 6. Theas permeters must be measured using pulse techniques. $t_{w}=300 \mu s$, duty cycle $<2 \%$.
7. To obtain f_{T}, the M_{f} el remponse with frequency is extrapolated at the rate of $-\mathbf{6 d B}$ per octave from $\mathrm{f}=100 \mathrm{MHz}$ to the frequency at which $\left|h_{f o}\right|=1$.

- JEDEC registered data

TYPES 2N2217 THRU 2N2222, 2N2218A, 2N2219A, 2N2221A, 2N2222A N-P-N SILICON TRANSISTORS

*operating characteristics at $\mathbf{2 5}{ }^{\circ} \mathrm{C}$ free-air temperature

PARAMETER	TEST CONDITIONS	2N2218A	2N2219A	UNIT
		2N2221A	2N2222A	
		MAX	MAX	
F Spot Noise Figure	$V_{C E}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=100 \mu \mathrm{~A}, \mathrm{R}_{\mathrm{G}}=1 \mathrm{k} \Omega, \mathrm{f}=1 \mathrm{kHz}$		4	dB

*switching characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER	TEST CONDITIONS ${ }^{\dagger}$	TO-5 \rightarrow	2N2218A	2N2219A	UNIT
		TO-18 \rightarrow	2N2221A	2N2222A	
			MAX	MAX	
t ${ }_{\text {d }}$ Delay Time	$\begin{aligned} & V_{C C}=30 \mathrm{~V}, \quad I C=150 \mathrm{~mA}, \\ & V_{B E(\text { off })}=-0.5 \mathrm{~V}, \end{aligned}$	$I_{B(1)}=15 \mathrm{~mA},$ See Figure 1	10	10	ns
$\mathrm{If}_{\mathbf{r}}$ Rise Time			25	26	ns
${ }^{\text {r A A Active Region Time Constant }} \ddagger$			2.5	2.5	ns
$\mathrm{t}_{\mathbf{3}}$ Storage Time	$\begin{aligned} & V_{C C}=30 V, \quad I_{C}=150 \mathrm{~mA}, \\ & I_{B(2)}=-15 m A \end{aligned}$	$I_{\mathrm{B}}(1)=15 \mathrm{~mA} \text {, }$ See Figure 2	225	225	ns
tf Fall Time			60	60	ns

tVoltege and current values shown are nominal; exact values vary silghty with translator parameters.
\#Under the given conditions τ_{A} is equal to $\frac{t_{r}}{10}$.
*PARAMETER MEASUREMENT INFORMATION

FIGURE 1-DELAY AND RISE TIMES

NOTES: a. The input waveforms have the following characteristica: For Figure $1, \mathrm{t}_{\mathrm{r}}<\mathbf{2} \mathrm{ns}, \mathrm{t}_{\mathrm{w}}<\mathbf{2 0 0} \mathrm{ns}$, duty eycle $<\mathbf{2 \%}$; for Figure $\mathbf{2}$ $t_{f} \leqslant 5 \mathrm{~ns}, \mathrm{t}_{\mathrm{w}} \approx 100 \mu \mathrm{~s}$, duty evcie $\leqslant 17 \%$.
b. All waveforme are monitored on an oscilloscope with the following characteristics: $\mathrm{t}_{\mathrm{r}} \leqslant 5 \mathrm{~ns}, \mathrm{R}_{\mathrm{In}} \geqslant 100 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{in}} \leqslant 12 \mathrm{pF}$.
*JEDEC registered data

TYPES D2T2218, D2T2218A, D2T2219, D2T2219A DUAL N-P-N SILICON TRANSISTORS

TWO GENERAL PURPOSE TRANSISTORS IN ONE PACKAGE

- Each Triode Electrically Simliar to 2N2218, 2N2218A, 2N2219, 2N2219A Transistors
- For Complementary Use with D2T2904, D2T2904A, D2T2905, D2T2905A Dual P-N-P Transistors
mechanical data

absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

		$\begin{aligned} & \hline \text { D2T2218 } \\ & \text { D2T2219 } \end{aligned}$	$\begin{aligned} & \text { D2T2218A } \\ & \text { D2T2219A } \end{aligned}$	UNIT
Collector-Base Voltage		60	75	V
Collector-Emitter Voltage (See Note 1)		30	40	V
Emitter-Base Voltage		5	6	V
Continuous Collector Current		800		mA
Continuous Device Dissipation at (or below) $25^{\circ} \mathrm{C}$	Each Triode			mW
Free-Air Temperature (See Note 2)	Total Device	600		
Continuous Device Dissipation at (or below) $25^{\circ} \mathrm{C}$	Each Triode	1		W
Case Temperature (See Note 3)	Total Device			
Storage Temperature Range		-65 to 200		C
Lead Temperature 1/16 Inch from Case for 10 Seconds		300		C

NOTES: 1. These values apply batween 0 and $\mathbf{5 0 0} \mathrm{mA}$ collector current when the bese-emitter is open-clrcuited.
2. Derate ilnearly to $200^{\circ} \mathrm{C}$ fres-air tempersture at the rate of $2.28 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for each triode and $3.43 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for the total device.
3. Derate linearly to $200^{\circ} \mathrm{C}$ cese temperature ot the rates of $5.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for each triode and $11.4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for the total devica.

TYPES D2T2218, D2T2218A, D2T2219, D2T2219A
 DUAL N-P-N SILICON TRANSISTORS

D2T2218, D2T2219
 electrical characteristics at $\mathbf{2 5}{ }^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

PARAMETER	TEST CONDITIONS		D2T2218	D2T2219	UNIT
			MIN MAX	MIN MAX	
$\mathrm{V}_{(B R)}$ CBO Collector-Base Breakdown Voltage	$I_{C}=10 \mu A, \quad I_{E}=0$		60	60	V
$\bar{V}_{(B R) C E O}$ Collector-Emitter Breakdown Voltage	$\mathrm{I}^{\prime} \mathrm{C}=10 \mathrm{~mA}, \quad \mathrm{I}_{\mathrm{B}}=0$,	See Nate 4	30	30	V
$\mathbf{V}_{\text {(BR)EBO }}$ Emitter-Base Breakdown Voltage	$I_{E}=10 \mu A, \quad I^{\prime} C=0$		5	5	V
Icbo Collector Cutoff Current	$\mathrm{V}_{C B}=50 \mathrm{~V}, \mathrm{IE}=0$		10	10	nA
	$V_{C B}=50 \mathrm{~V}, \quad \mathrm{IE}^{\prime}=0$,	$T_{A}=150^{\circ} \mathrm{C}$	10	10	$\mu \mathrm{A}$
IEBO Emitter Cutoff Current	$V_{E B}=3 \mathrm{~V}$, IC $=0$		10	10	nA
hFE Static Forward Current Transfer Ratio	$V_{C E}=10 \mathrm{~V}, \quad I_{C}=100 \mathrm{~mA}$		20	35	
	$V_{C E}=10 \mathrm{~V}, \quad I_{C}=1 \mathrm{~mA}$		25	50	
	$V_{\text {CE }}=10 \mathrm{~V}, I_{C}=10 \mathrm{~mA}$	See Note 4	35	75	
	$V_{C E}=10 \mathrm{~V}, \mathrm{I}^{\prime}=150 \mathrm{~mA}$		$40 \quad 120$	$100 \quad 300$	
	$V_{C E}=10 \mathrm{~V}, \quad I_{C}=500 \mathrm{~mA}$		20	30	
	$V_{C E}=1 \mathrm{~V}, \quad I_{C}=150 \mathrm{~mA}$		20	50	
VBE Base-Emitter Voltege	$I_{B}=15 \mathrm{~mA}, \quad I_{C}=150 \mathrm{~mA}$	See Note 4	1.3	1.3	V
	$\mathrm{I}_{\mathrm{B}}=50 \mathrm{~mA}, \quad \mathrm{I}_{\mathrm{C}}=500 \mathrm{~mA}$		2.6	2.6	
Collector-Emitter Saturation Voltege	$I_{B}=15 \mathrm{~mA}, \quad I_{C}=150 \mathrm{~mA}$	See Note 4	0.4	0.4	V
	$I_{B}=50 \mathrm{~mA}, \quad I_{C}=500 \mathrm{~mA}$		1.6	1.6	
Mfel Smali-Signal Common-Emitter	$V_{C E}=20 \mathrm{~V}, \quad I_{C}=20 \mathrm{~mA}$,	$f=100 \mathrm{MHz}$	2.5	2.5	
$\mathrm{f}_{\mathbf{T}} \quad$ Transition Frequency	$V_{C E}=20 \mathrm{~V}, \quad I_{C}=20 \mathrm{~mA}$,	See Note 5	250	250	MHz
Cobo Common-Base Open-Circuit Output Capacitance	$V_{C B}=10 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{E}}=0$,	$\mathrm{f}=1 \mathrm{MHz}$	8	8	pF
$h_{i e}$ (real) Real Part of Small-Signal Common-Emitter Input Impedance	$V_{C E}=20 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{C}}=20 \mathrm{~mA}$,	$\mathrm{f}=300 \mathrm{MHz}$	60	60	Ω

NOTES: 4. These parameters must be messured using pulse techniques. $t_{w}=\mathbf{3 0 0} \mu \mathrm{s}$, duty cycle $<\mathbf{2 \%}$.
5. To obtain t_{T}, the $\left|h_{\text {fe }}\right|$ response with frequency is extrapolated at the rate of -6 dB per octave from $\mathrm{f}=\mathbf{1 0 0} \mathbf{M H z}$ to the frequency at which $\left.\right|_{\mathrm{f}_{\mathrm{fe}}} \mid=1$.
switching characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER		TEST CONDITIONS ${ }^{\dagger}$		TYP	UNIT
t_{d}	Delay Time	$\begin{aligned} & V_{C C}=30 \mathrm{~V}, \quad I_{C}=150 \mathrm{~mA}, \\ & V_{B E}(\mathrm{off})=-0.5 \mathrm{~V}, \\ & \hline \end{aligned}$	$I_{B(1)}=15 \mathrm{~mA},$ See Figure 1	5	ns
t_{r}	Rise Time			15	ns
t_{5}	Storage Time	$V_{C C}=30 V, \quad I C=160 m A$, $I_{B(1)}=15 \mathrm{~mA}$, $I_{B}(2)=-15 \mathrm{~mA}$, See Figure 2		190	ns
t_{f}	Fall Time			23	ns

tVoltage and current values shown are nominal; exact values vary slightly with transistor parameters.

TYPES D2T2218, D2T2218A, D2T2219, D2T2219A DUAL N-P-N SILICON TRANSISTORS

D2T2218A, D2T2219A

electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

NOTES: 4. These parameters must be measured using pulse techniques. $t_{w}=300 \mu 5$, duty cycle $\leqslant 2 \%$.
5. To obtain f_{T}, the $\mathbf{M f e l}_{\text {fesponse }}$ with frequency is extrapolated at the rate of -6 dB per octave from $f=100 \mathrm{MHz}$ to the frequency at which $\left|h_{f e}\right|=1$.

TYPES D2T2218, D2T2218A, D2T2219, D2T2219A DUAL N-P-N SILICON TRANSISTORS

operating characteristics at $\mathbf{2 5}{ }^{\circ} \mathbf{C}$ free-air temperature

PARAMETER	TEST CONDITIONS	D2T2218A	D2T2219A	UNIT
		MAX	MAX	
F Spot Noise Figure	$V_{C E}=10 \mathrm{~V}, \mathrm{C}=100 \mu \mathrm{~A}, \mathrm{R}_{\mathrm{G}}=1 \mathrm{k} \Omega, f=1 \mathrm{kHz}$		4	dB

switching characteristics at $\mathbf{2 5}{ }^{\circ} \mathrm{C}$ free-air temperature

PARAMETER		TEST CONDITIONS \dagger		D2T2218A	D2T2218A	UNIT		
		MAX	MAX					
t_{d}	Delay Time			$\begin{aligned} & V_{C C}=30 \mathrm{~V}, \quad I C=150 \mathrm{~mA}, \\ & V_{B E(\text { off })}=-0.5 \mathrm{~V} . \end{aligned}$	$I_{B}(1)=15 \mathrm{~mA} \text {. }$ See Figure 1	10	10	ns
t_{r}	Plise Time	25	25			ns		
	Active Region Time Constant ${ }^{\ddagger}$	2.5	2.5			ns		
$\mathrm{t}_{\mathbf{s}}$	Storage Time	$\begin{array}{ll} \hline V_{C C}=30 \mathrm{~V}, \quad I_{C}=150 \mathrm{~mA}, & I_{B}(1)=15 \mathrm{~mA}, \\ I_{B(2)}=-15 \mathrm{~mA}, & \text { See Figure } 2 \end{array}$		225	225	ns		
t_{f}	Fall Time			60	60	ns		

\dagger Voltage and current values shown are nominal, exact values vary sightly with transistor parameters.
\ddagger Under the given conditions τ_{A} is equal to $\frac{t_{r}}{10}$.
PARAMETER MEASUREMENT INFORMATION

TEST CIRCUIT

VOLTAGE WAVEFORMS
FIGURE 1-DELAY AND RISE TIMES

NOTES: a. The input waveforms have the following characteristics: For Figure $1, \mathrm{t}_{\mathrm{r}} \mathbf{<} \mathbf{2} \mathbf{n s}, \mathrm{t}_{\mathbf{w}}<\mathbf{2 0 0} \mathrm{ns}$, duty cycle $\mathbf{6} \mathbf{2 \%}$; for Figure $\mathbf{2}$, $t_{f} \leqslant 5 \mathrm{~ns}, \mathrm{t}_{\mathrm{w}} \approx 100 \mu \mathrm{~s}$, duty cycle $\leqslant \mathbf{1 7 \%}$.
b. All waveforms are monitored on an oscilloscope with the following characteristics: $t_{r}<6 \mathrm{~ns}, R_{i n}>100 \mathrm{k} \boldsymbol{\Omega}, \mathrm{C}_{\mathrm{in}} \leqslant 12 \mathrm{p} F$.

SILECT ${ }^{\dagger}$ TRANSISTORS \ddagger

 DESIGNED FOR HIGH-SPEED, MEDIUM-POWER SWITCHING AND GENERAL PURPOSE AMPLIFIER APPLICATIONS featuring- High fT 350 MHz typ at $10 \mathrm{~V}, 20 \mathrm{~mA}$
- Low VCE(sat) 0.13 V typ at 150 mA
- High Maximum IC 800 mA
- A5T2222 Electrically Similar to 2N2222, 2N3116, and 2N4952
- TIS109 Processing Includes Operational Aging at $\mathbf{3 0 0} \mathbf{~ m W}$ for 24 Hours
- TIS110 Electrically Similar to 2N4400
- TIS111 Electrically Similar to 2N4401

mechanical data

These transistors are encapsulated in a plastic compound specifically designed for this purpose, using a highly mechanized process developed by Texas Instruments. The case will withstand soldering temperatures without deformation. These devices exhibit stable characteristics under high-humidity conditions and are capable of meeting MIL-STD-202C, Method 106B. The transistors are insensitive to light.

absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

[^44] from the case.

[^45]
TYPES A5T2222, TIS109 N-P-N SILICON TRAMSISTORS

electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

PARAMETER		TEST CONDITIONS		A5T2222	TIS 109	UNIT		
		MIN MAX	MIN MAX					
$V_{\text {(BR) }}$ CBO	Collector-Base Breakdown Voltage			$I^{\prime} C=10 \mu A, \quad I_{E}=0$		60	60	V
$V_{\text {(BR)CEO }}$	Collector-Emitter Breakdown Voltage	$I_{C}=10 \mathrm{~mA}, I_{B}=0$,	See Note 4	30	30	V		
V(BR)EBO	Emitter-Base Breakdown Voltage	$I_{E}=10 \mu A, \quad I_{C}=0$		5	5	V		
ICBO	Collector Cutoff Current	$V_{C B}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0$			100	nA		
		$\mathrm{V}_{C B}=50 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0$		10		nA		
		$V_{C B}=50 \mathrm{~V}, I_{E}=0$,	$T_{A}=100^{\circ} \mathrm{C}$	3	3	$\mu \mathrm{A}$		
IEBO	Emitter Cutoff Current	$V_{E B}=3 \mathrm{~V}, I^{\prime}=0$		10	10	nA		
hFE	Static Forward Current Transfer Ratio	$V_{C E}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=100 \mu \mathrm{~A}$		35	20			
		$\mathrm{V}_{\text {CE }}=10 \mathrm{~V}, \mathrm{IC}=1 \mathrm{~mA}$		50	30			
		$V_{C E}=10 \mathrm{~V}, I_{C}=10 \mathrm{~mA}$	See Note 4	75	40			
		$V_{C E}=10 \mathrm{~V}, \mathrm{I}^{\prime} \mathrm{C}=150 \mathrm{~mA}$		$100 \quad 300$	100400			
		$V_{C E}=10 \mathrm{~V}, \mathrm{I}^{\prime} \mathrm{C}=500 \mathrm{~mA}$		30	20			
		$V_{C E}=1 \mathrm{~V}, I_{C}=150 \mathrm{~mA}$		50	35			
$V_{B E}$	Base-Emitter Voltage	$I_{B}=15 \mathrm{~mA}, I^{\prime} C=150 \mathrm{~mA}$	See Note 4	1.3	1.3	V		
		$\mathrm{I}_{B}=50 \mathrm{~mA}, \quad 1 \mathrm{C}=500 \mathrm{~mA}$		2.6	2.6	V		
$\mathbf{V}_{\text {cE }}(\mathrm{sat})$	Collector-Emitter Saturation Voltage	$\mathrm{I}_{\mathrm{B}}=15 \mathrm{~mA}, \mathrm{I}_{\mathrm{C}}=150 \mathrm{~mA}$	See Note 4	0.4	0.4	V		
		$\mathrm{I}_{\mathrm{B}}=50 \mathrm{~mA}, \mathrm{I}^{2}=500 \mathrm{~mA}$		1.6	1.6	V		
\| $\mathrm{hfol}_{\text {l }}$	Small-Signal Common-Emitter Forward Current Transfer Ratio	$V_{C E}=10 \mathrm{~V}, \mathrm{IC}=20 \mathrm{~mA}$,	$f=100 \mathrm{MHz}$	2.5	2.5			
$f 1$	Transition Frequency	$V_{C E}=10 \mathrm{~V}, \mathrm{IC}=20 \mathrm{~mA}$,	See Note 5	250	250	MHz		
Cobo	Common-Base Open-Círcuit Output Capacitance	$V_{C B}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0$.	$f=1 \mathrm{MHz}$	8	10	pF		
$\mathrm{C}_{\text {ibo }}$	Common-Base Open-Circuit Input Capacitance	$V_{E B}=0.5 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=0$,	$\mathrm{f}=1 \mathrm{MHz}$	25	25	pF		
Re($\mathbf{h i e}_{\text {ie }}$)	Real Part of Small-Signal Common-Emitter Input Impedance	$V_{C E}=10 \mathrm{~V}, I_{C}=20 \mathrm{~mA}$,	$f=300 \mathrm{MHz}$	60	60	Ω		

NOTES: 4. These parameters must be measured using pulse techniques. $t_{w}=300 \mu s$, dutv cycle $\leqslant 2 \%$.
6. To obtain f, the h_{fe} l response with frequency is extrapolated at the rate of -6 ds per octave from $\mathrm{f}=10 \mathrm{MHz}$ to the frequancy at which $\left|h_{f e}\right|=1$.

switching characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER	TEST CONDITIONS ${ }^{\dagger}$		TYP	UNIT
$t_{\text {d }}$ Delay Time	$V_{C C}=30 \mathrm{~V}$, $I_{C}=150 \mathrm{~mA}$, $\mathrm{I}_{\mathrm{B}(1)}=15 \mathrm{~mA}$, $V_{B E(0 f f)}=-0.5 \mathrm{~V}$, See Figure 1		5	ns
t_{r} Rise Time			15	ns
$t_{\text {s }}$ Storage Time	$V_{C C}=30 \mathrm{~V}$, $I_{C}=150 \mathrm{~mA}$, $\mathrm{I}_{\mathrm{B}}(1)=15 \mathrm{~mA}$, $\mathrm{I}_{\mathrm{B}}(2)=-15 \mathrm{~mA}$, See Figure 2°		190	ns
t_{f} Fall Time			23	ns

[^46]
DESIGNED FOR MEDIUM-POWER SWITCHING AND GENERAL PURPOSE AMPLIFIER APPLICATIONS

- High Breakdown Voltage Combined with Very-Low Saturation Voltage
- hFE . . . Guaranteed from $100 \mu \mathrm{~A}$ to $\mathbf{5 0 0} \mathrm{mA}$
- High fT . . . 250 MHz Min at $\mathbf{2 0}$ V, 20 mA
mechanical data

NC-No Internel connection

absolute maximum ratings at $25^{\circ} \mathbf{C}$ free-air temperature (unless otherwise noted)

> EACH TOTAL TRIODE DEVICE 60 V
> 30 V
> 5 V
> 0.8 A
> $0.5 \mathrm{~W}^{\dagger} \quad 1.5 \mathrm{~W}^{\dagger}$
> $-55^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
> $-260^{\circ} \mathrm{C} \longrightarrow$

Collector-Base Voltage
Collector-Emitter Voltage (See Note 1)
Emitter-Base Voltage
Continuous Collector Current
Continuous Device Dissipation at (or below) $25^{\circ} \mathrm{C}$ Free-Air Temperature (See Note 2)
Storage Temperature Range
Lead Temperature 1/16 Inch from Case for 10 Seconds

NOTES: 1. This value applies between 0.01 mA and 500 mA collector current when the emitter-bace diode it open-circuited.
2. Derate linearly to $150^{\circ} \mathrm{C}$ free-air temperature at the rates of $4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for each triode and $12 \mathrm{~mW} / \mathrm{m}^{\circ} \mathrm{C}$ for the total device.

[^47]
TYPE 02T2222

QUAD N-P-N SILICON TRANSISTOR

electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

PARAMETER	TEST CONDITIONS		MIN MAX	UNIT
$\mathrm{V}_{(3 R)}$ CBO Collector-Base Breakdown Voltage	$I_{C}=10 \mu A, \quad I_{E}=0$		60	V
$V_{\text {(BR)CEO }}$ Collector-Emitter Breakdown Voltage	$I_{C}=10 \mathrm{~mA}, \quad I_{B}=0$,	See Note 3	30	V
V(BR)EBO Emittar-Base Breakdown Voltage	$I_{E}=10 \mu A, \quad I_{C}=0$		5	\checkmark
	$V_{C B}=50 \mathrm{~V}, \quad I_{E}=0$		10	nA
ICBO Collector Cutoff Current	$V_{C B}=50 \mathrm{~V}, \quad I_{E}=0$,	$T_{A}=100^{\circ} \mathrm{C}$	3	HA
Iebo Emitter Cutoff Current	$V_{E B}=3 \mathrm{~V}, \quad \mathrm{I}^{\prime}=0$		10	nA
EBO	$V_{C E}=10 \mathrm{~V}, \quad I_{C}=100 \mathrm{~mA}$		35	
	$V_{C E}=10 \mathrm{~V}, 1 \mathrm{l}=1 \mathrm{~mA}$		50	
	$V_{C E}=10 \mathrm{~V}, \quad I_{C}=10 \mathrm{~mA}$		75	
hfe Static Forward Current Transfer Ratio	$V_{C E}=10 \mathrm{~V}, \quad I_{C}=150 \mathrm{~mA}$	See Note 3	$100 \quad 300$	
	$V_{C E}=10 \mathrm{~V}$, $I_{C}=500 \mathrm{~mA}$		30	
	$V_{C E}=1 \mathrm{~V}, \quad I_{C}=150 \mathrm{~mA}$		50	
	$I_{B}=15 \mathrm{~mA}, \quad I_{C}=150 \mathrm{~mA}$	See Nate 3	1.3	V
VBE Base-Emitter Voltage	$I_{B}=50 \mathrm{~mA}, \quad 1 C=600 \mathrm{~mA}$	Soe Nota 3	2.6	\checkmark
	$I_{B}=15 \mathrm{~mA}, \quad I^{\prime}=150 \mathrm{~mA}$	See Note 3	0.4	V
VCE(sat) Collector-Emitter Seturation Voitage	$I_{B}=50 \mathrm{~mA}, \quad I_{C}=500 \mathrm{~mA}$		1.6	
hfol Smail-Signal Common-Emitter	$V_{C E}=10 \mathrm{~V}, \quad 1 \mathrm{C}=20 \mathrm{~mA}$,	$f=100 \mathrm{MHz}$	2.5	
${ }^{\mathbf{f}} \mathrm{T}$ T Transition Frequency	$V_{C E}=10 \mathrm{~V}, \quad I_{C}=20 \mathrm{~mA}$,	See Note 4	250	MHz
Cobo Common-Base Open-Circuit Output Capacitance	$V_{C B}=10 \mathrm{~V}, I_{E}=0$,	$\mathrm{f}=1 \mathrm{MHz}$	8	pF
$\mathrm{C}_{\text {ibo }}$ Common-Base Open-Circuit Input Capacitance	$V_{E B}=0.5 \mathrm{~V}, \mathrm{I}^{\prime} \mathrm{C}=0$,	$f=1 \mathrm{MHz}$	25	pF
Re($h_{i \theta}$) Real Part of Small-Signal Common-Emitter Input Impedance	$V_{C E}=10 \mathrm{~V}, \quad I_{C}=20 \mathrm{~mA}$,	$f=300 \mathrm{MHz}$	60	Ω

NOTES: 3. These parameters must be measured using pulse techniques. $t_{w}=\mathbf{3 0 0} \mu \mathrm{s}$, duty cycie $<\mathbf{2 \%}$.
4. To obtain f_{T}, the $h_{f e} \mid$ response with frequency is extrapolated at the rate of -6 dB per octave from $\mathrm{f}=100 \mathrm{MHz}$ to the frequency at which $\left.\right|_{h_{\mathrm{fe}}} \mid=1$.

switching characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

tVoltage and current values shown are nominal; exact values very slightly with transistor parameters.

PARAMETER MEASUREMENT INFORMATION

FIGURE 1-DELAY AND RISE TIMES
FIGURE 2-STORAGE AND FALL TIMES
NOTES: a. The input waveforms have the following characteristics: for figure $1, t_{f} \leqslant 2$ ns, $t w<200$ ns, duty cycle $<2 \%$ for figure 2 , $\mathrm{t}_{\mathrm{f}}<\mathrm{5ns}, \mathrm{t}_{\mathrm{w}} \approx 100 \mu \mathrm{~s}$, duty cycle $<17 \%$.
b. All waveforms are monitored on an oscilloscope with the following eharacteristics: $\mathrm{t}_{\mathrm{r}}<5 \mathrm{~ns}, \mathrm{~A}_{\mathrm{in}}>100 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{in}}<12 \mathrm{pF}$.

TWO TRANSISTORS IN ONE PACKAGE FOR DIFFERENTIAL AMPLIFIER APPLICATIONS

- Medium Power
- High Operating Voltage
*mechanical data

*absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

	2N2060		$\begin{aligned} & \text { 2N2223 } \\ & \text { 2N2223A } \end{aligned}$		
	$\begin{aligned} & \text { EACH } \\ & \text { TRIODE } \end{aligned}$	TOTAL DEVICE	$\begin{gathered} \text { EACH } \\ \text { TRIODE } \end{gathered}$	TOTAL DEVICE	UNIT
Collector-Base Voltage	100		100		V
Collector-Emitter Voltage (See Note 1)	80		80		V
Collector-Emitter Voltage (See Note 2)	60		60		V
Emitter-Base Voltage	7		7		V
Continuous Collector Current	500		500		mA
Continuous Device Dissipation at (or below) $25^{\circ} \mathrm{C}$ Free-Air Temperature (See Note 3)	. 0.5	0.6	0.5	0.6	W
Continuous Device Dissipation at (or below) $25^{\circ} \mathrm{C}$ Case Temperature (See Notes 4 and 5)	1.5	3	1.6	3	W
Continuous Devica Dissipstion at $100^{\circ} \mathrm{C}$ Cese Temperature	0.86	1.7	0.91	1.7	W
Operating Collector Junction Temperature	200		200		C
Storage Temperature Ranga	$-65^{\circ} \mathrm{C}$ to $200^{\circ} \mathrm{C}$				
Lead Temperature 1/16 Inch from Case for 10 Seconds	$300^{\circ} \mathrm{C}$				

NOTES: 1. Thase values apply when the base-mitter resistance ($\boldsymbol{R}_{\mathrm{BE}}$) is equal to or lese than 10 ohms.
2. These values apply when the beee-amitter diode is open-circulted.
3. Derate linearly to $200^{\circ} \mathrm{C}$ free-alr tempernture at the rate of $2.86 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for each triode and $3.43 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for total device.
4. Derate 2 N 2060 linearly to $200^{\circ} \mathrm{C}$ casa temperature at the rate of $8.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for sach triode and $17.2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for total device.
6. Derate $2 N 2223$ and 2N2223A lineariv to $200^{\circ} \mathrm{C}$ case temperature at the rate of $9.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for each triode and $17.2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for total device.
6. The terminals of the triode not under test are open-circuited for the motasurement of thase charecteristics.
7. This parameter must be measured using pulse techniques. $t_{w}=300 \mu$, duty cycle $<\mathbf{1 \%}$.
8. The lower of the two $h_{\text {FE }}$ reeding is taken as $h_{F E}$.
9. This parameter is measured in an amplifier with reaponse down 3 dB at 25 Hz and 10 kHz and a high-frequency rolloff of 6 dB/octave.
*JEDEC registered data. This data shaet contains all epplicable registered date in effect at the time of publication.

TYPES 2N2060, 2N2223, 2N2223A DUAL N-P-N SILICON TRANSISTORS

*electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)
individual triode characteristics (see note 6)

PARAMETER		TEST CONDITIONS	2N2060	$\begin{aligned} & \text { 2N2223 } \\ & \text { 2N2223A } \end{aligned}$	UNIT	
		MIN MAX	MIN MAX			
			$I_{C}=100 \mu A, I_{E}=0$	100	100	V
$V_{\text {(BR) }}{ }^{\text {(BRO }}$	Collector-Base Breakdown Voltage	$I_{C}=30 \mathrm{~mA}, \mathrm{I}_{B}=0, \quad$ See Note 7	60	60	V	
$V_{\text {(BR)CEO }}$	Collector-Emitter Breakdown Voltage	$I_{C}=30 \mathrm{~mA}, \mathrm{I}_{B}=0$, $I_{C}=100 \mathrm{~mA}, \mathrm{R}_{\mathrm{BE}}=10 \Omega$, See Note 7	80	80	V	
$V_{\text {(BR) }}$	Collector-Emitter Breakdown Voltage	$\mathrm{C}=100 \mathrm{~mA}, \mathrm{R}_{\mathrm{BE}}=10 \Omega$, Ser $I_{E}=100 \mu \mathrm{~A}, I_{C}=0$	7	7	V	
$V_{\text {(BR)EBO }}$	Emitter-Base Breakdown Voltage	$I_{E}=100 \mu \mathrm{~A}, \mathrm{C}=0$ $V_{C B}=80 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0$	2	10	nA	
${ }^{\prime} \mathrm{CBO}$	Collector Cutoff Current	$\begin{array}{ll}V_{C B}=80 \mathrm{~V}, ~ & \\ V_{C B}=80 \mathrm{~V}, T_{E}=0, & T_{A}=150^{\circ} \mathrm{C}\end{array}$	10	15	$\mu \mathrm{A}$	
IEbO	Emitter Cutoff Current	$V_{E B}=5 \mathrm{~V}, \mathrm{I}^{\prime}=0$	2	10	nA	
hFE	Static Forward Current Transfer Ratio	$V_{C E}=5 \mathrm{~V}, \quad \mathrm{I}^{\prime} \mathrm{C}=10 \mu \mathrm{~A}$	$25 \quad 75$	15		
		$V_{C E}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=100 \mu \mathrm{~A}$	$30 \quad 90$	25150		
		$V_{C E}=5 \mathrm{~V}, \quad \mathrm{IC}=1 \mathrm{~mA}$	$40 \quad 120$			
		$V_{C E}=5 \mathrm{~V}, 1 \mathrm{C}=10 \mathrm{~mA}$, See Note 7	$50 \quad 150$	50200		
$V_{B E}$	Base-Emitter Voltage	$I_{B}=5 \mathrm{~mA}, \quad I_{C}=50 \mathrm{~mA}$	0.9	0.9	V	
$\mathrm{V}_{\text {CE }}$ (sat)	Collector-Emitter Saturation Voltage	$I_{B}=5 \mathrm{~mA}, \quad I C=50 \mathrm{~mA}$	1.2	1.2	V	
$h_{\text {ib }}$	Small-Signal Common-Base	$V_{C B}=5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}, \quad f=1 \mathrm{kHz}$	$20 \quad 30$	$20 \quad 30$	Ω	
	Input Impedance					
$h_{\text {rb }}$	Small-Signal Common-Base			$10^{3 x}$		
	Small-Signal Common-Base			0.5	$\mu \mathrm{mho}$	
hob	Output Admittance					
$h_{\text {ie }}$	Small-Signal Common-Emitter	$V_{C E}=5 \mathrm{~V}, \quad \mathrm{I} C=1 \mathrm{~mA}, f=1 \mathrm{kHz}$	10004000		Ω	
	Input Impedance					
$h_{\text {fe }}$	Small-Signal Common-Emitter Forward Current Transfer Ratio		$50 \quad 150$	40200		
hoe	Small-Signal Common-Emitter		16		$\mu \mathrm{mho}$	
	Output Admittance					
$h_{\text {fe }} \mid$	Small-Signal Common-Emitter Forward Current Transfer Ratio	$V_{C E}=10 \mathrm{~V}, \mathrm{I}^{\prime} \mathrm{C}=50 \mathrm{~mA}, f=20 \mathrm{MHz}$	3	2.5		
	Common-Base Open-Circuit	$V_{C B}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0, \quad f=1 \mathrm{MHz}$	15	15	pF	
Cobo	Output Capacitance					
$\mathrm{C}_{\text {ibo }}$	Common-Base Open-Circuit Input Capacitance	$V_{E B}=0.5 \mathrm{~V}, \mathrm{I}^{\prime}=0, \quad f=1 \mathrm{MHz}$	85	85	pF	

triode matching charactoristics

	PARAMETER	TEST CONDITIONS	$\begin{array}{\|l\|} \hline \text { 2N2060 } \\ \hline \text { MIN MAX } \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { 2N2223 } \\ \hline \text { MIN MAX } \\ \hline \end{array}$	2NP223A MIN MAX	UNIT
$\frac{h_{F E 1}}{h_{F E}}$	Static Forward Current Gain Balance Ratio	$V_{C E}=5 \mathrm{~V}, \quad I^{\prime} \mathrm{C}=100 \mu \mathrm{~A}$, See Note 8	0.91	0.81	0.91	
		$V_{C E}=5 \mathrm{~V}, \mathrm{I}^{\prime}=1 \mathrm{~mA}$, See Note 8	0.91			
$\left\|\mathrm{V}_{\mathrm{BE} 1}-\mathrm{V}_{\mathrm{BE} 2}\right\|$	Base-Emitter-Voltage Differential	$V_{C E}=5 \mathrm{~V}, \mathrm{I}^{\prime} \mathrm{C}=100 \mu \mathrm{~A}$	5	15	5	mV
		$V_{C E}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}$	5			
$\left\|\frac{\Delta\left(\mathrm{V}_{\mathrm{BE} 1}-\mathrm{V}_{\mathrm{BE} 2}\right.}{\Delta T_{\mathrm{A}}}\right\|$	Base-Emitter-Voltage-Differential Temperature Gradient	$\begin{aligned} & \text { VCE }=5 \mathrm{~V}, \quad I_{C}=100 \mu A, \\ & \text { From } T_{A}=-55^{\circ} C \text { to } T_{A}=125^{\circ} \mathrm{C} \end{aligned}$	10	25	25	$\mu \vee /{ }^{\circ} \mathrm{C}$

"operating characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

individual triode characteristics (see note 6)

PARAMETER	TEST CONDITIONS	2N2060	UNIT	
F	Spot Noise Figure	$V_{C E}=10 \mathrm{~V}, I_{C}=300 \mu A, R_{G}=510 \Omega, f=1 \mathrm{kHz}$	8	$d B$
F	Averge Noise Figure	$V_{C E}=10 \mathrm{~V}, I_{C}=300 \mu A, R_{G}=1 \mathrm{k} \Omega$, Noise Bandwidth $=15.7 \mathrm{kHz}$, See Note 9	8	$d B$

[^48]
FOR MEDIUM-POWER SWITCHING AND AMPLIFIER APPLICATIONS

- High Breakdown Voltage Combined with Very Low Saturation Voltage

- hFE-Guaranteed from 100μ a to 1 amp
mechanical data

absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

	$\begin{array}{\|c\|} \hline \text { 2N2192 } \\ \text { 2N2192A } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { 2N2193 } \\ \text { 2N2193A } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { 2N2194 } \\ \text { 2N2194A } \\ \hline \end{array}$	$\begin{array}{r} \text { 2N2243 } \\ \text { 2N2243A } \\ \hline \end{array}$	UNIT
Collector-Base Voltage	60^{*}	80*	60*	120*	v
Collector-Emitter Voltage (See Note 1)	40*	50*	40*	80^{*}	v
Emitter-Base Voltage	5*	8*	5*	7*	v
Collector Current	1^{*}	1^{*}	1*	1*	a
Total Device Dissipation at (or below) $25^{\circ} \mathrm{C}$ Free-Air Temperature (See Note 2)	0.8*	0.8*	0.8*	0.8*	w
Total Device Dissipation at (or below) $25^{\circ} \mathrm{C}$ Case Temperature (See Note 3)	$\begin{array}{r} 10^{\dagger} \\ 2.8^{*} \\ \hline \end{array}$	$\begin{array}{r} 10^{\dagger} \\ 2.8^{*} \\ \hline \end{array}$	$\begin{array}{r} 10^{\dagger} \\ 2.8^{*} \\ \hline \end{array}$	$\begin{array}{r} 10^{\dagger} \\ 2.8^{*} \end{array}$	w
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $200^{\circ} \mathrm{C}{ }^{*}$				
Lead Temperature 1/16 Inch from Case for 10 Seconds	$300^{\circ} \mathrm{C}^{*}$				

NOTES: 1. This value applies when the base-emitter diode is open-circuited.
2. Derate linearly to $200^{\circ} \mathrm{C}$ free-air temperature at the rate of $4.57 \mathrm{mw} /{ }^{\circ} \mathrm{C}$
 rating linearly to $200^{\circ} \mathrm{C}$ case temperature at the rate of $\mathbf{1 6 ~ \mathrm { mw }} /^{\circ} \mathrm{C}$.

[^49]
TYPES 2N2243, 2N2243A
 W-P-N SILICON TRANSISTORS

*electrical characteristics at $25^{\circ} \mathrm{C}$ free-air semperature (unless oftherwise moted)

PARAMETER		TEST CONDITIONS	2N2243		2N2243A		UNIT	
		MIN	max	MIN	max			
$V_{\text {IRP) }}$ cso	Collector-Base Brockdown Voltage		$I_{c}=100 \mu a_{1}, I_{E}=0$	120		120		v
$V_{\text {IRP\|CEO }}$	Collactor-Emither Breokdown Voltoge	$I_{c}=25 \mathrm{ma}, \quad I_{s}=0, \quad$ See Mote 4	0		80		v	
$V_{\text {(ratelio }}$	Emitter-Bose Breakdown Valtage	$\mathrm{I}_{\mathrm{E}}=100 \mu \mathrm{a}, \mathrm{l}_{\mathrm{c}}=0$	7		7		\checkmark	
$\mathrm{I}_{\text {coo }}$	Collector Cutoff Current	$\mathrm{V}_{C B}=60 \mathrm{v}, \quad \mathrm{l}_{E}=0$		10		10	$n 0$	
		$V_{C B}=60 \mathrm{v}, \quad \mathrm{I}_{\mathrm{E}}=0, \quad \mathrm{~T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$		15		15	μ	
IENO	Emitter Cutoff Current	$\mathrm{V}_{\mathrm{Et}}=5 \mathrm{v}, \quad \mathrm{Ic}_{\mathrm{c}}=0$		50		50	no	
$h_{\text {fe }}$	Static Forward Current Tronsfer Ratio	$\mathrm{V}_{\mathrm{CE}}=10 \mathrm{v}, \quad \mathrm{I}_{\mathrm{C}}=100 \mu \mathrm{O}$	15		15			
		$V_{C E}=10 \mathrm{v}, \quad \mathrm{Ic}_{\mathrm{c}}=10 \mathrm{ma}$	30		30			
		$V_{C E}=10 \mathrm{v}, \quad I_{C}=10 \mathrm{ma}, \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$	20		20			
		$V_{\text {ce }}=10 \mathrm{v}, \quad I_{c}=150 \mathrm{ma}$, See Note 4	40	120	40	120		
		$V_{C E}=10 \mathrm{r}, \quad \mathrm{I}_{\mathrm{C}}=500 \mathrm{ma}$, See Note 4	15		15			
		$V_{C E}=1 \mathrm{iv}, \quad \mathrm{I}_{\mathrm{c}}=150 \mathrm{ma}$, See Note 4	30		30			
$V_{\text {re }}$	Bpse-Emitter Volitage	$\mathrm{I}_{\mathrm{B}}=15 \mathrm{ma}, \quad \mathrm{I}_{\mathrm{c}}=150 \mathrm{ma}$		1.3		1.3	v	
$V_{\text {cEfati }}$	Collector-Emitter Saturation Voltoge	$\mathrm{I}_{\mathrm{c}}=15 \mathrm{ma}, \quad \mathrm{lc}_{\mathrm{c}}=150 \mathrm{ma}$		0.35		0.25	v	
\| $\mathrm{h}_{\text {c }}$ \|	Small-Signal Common-Emitter Forward Curront Tronsfor Ratio	$V_{C E}=10 \mathrm{v}, \quad \mathrm{IC}_{\mathbf{C}}=50 \mathrm{ma}, \mathrm{t}=20 \mathrm{mc}$	2.5		2.5			
C_{∞}	Common-Base Open-Circuit Output Capocitance	$\mathrm{V}_{\mathrm{CL}}=10 \mathrm{r}, \quad \mathrm{l}_{\mathrm{E}}=0, \quad \mathrm{f}=1 \mathrm{mk}$		15		15	1	

*switching characteristics at $\mathbf{2 5}{ }^{\circ} \mathrm{C}$ free-air temperature

Parameter	TEST CONDITIONS	$\begin{aligned} & \text { 2N2243 } \\ & \text { 2N2243A } \end{aligned}$	UNIT
		MAX	
$\tau_{\mathrm{b}} \quad$ Stored-Charge Ilme Constiant	See Figure 1	2.1	$\mu \mathrm{sck}$

NOTE 4: These paremolors must De meesured using palso texiniques. PW $=300 \mu \mathrm{sec}$, Duty Cyelo $\leq 2 \%$.
*Indicefes JEDEC registored dala

PARAMETER MEASUREMENT INFORMATION

*FICuRE I - STORED-CHARSE TIME CONSTANT - T_{b}

[^50]
- Indicates JEDEC registered data.

SILECT ${ }^{\dagger}$ TRANSISTOR \ddagger FOR MEDIUM-POWER SWITCHING AND AMPLIFIER APPLICATIONS
 - High V(BR)CBO ... 120 V
 - hfe Guaranteed from $\mathbf{1 0 0} \mu \mathrm{A}$ to $\mathbf{5 0 0} \mathrm{mA}$
 - fT . . . 50 MHz Min
 - Electrically Similar to 2N2243A

mechanical data

This transistor is encapsulated in a plastic compound specifically designed for this purpose, using a highly mechanized process developed by Texas Instruments. The case will withstand soldering temperatures without deformation. This device exhibits stable characteristics under high-humidity conditions and is capable of meeting MIL-STD-202C, Method 106B. The transistor is insensitive to light.

NOTES: A. Lead diameter is not controlled in this area.
B. Leads having maximum diameter (0.019) shall be within 0.007 of their true positions measured In the gaging plane 0.054 below the seating plane of the device relative to a maximum. diameter pack age.
C. All dimensions are in inches.
absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)
Collector-Base Voltage 120 V
Collector-Emitter Voltage (See Note 1) 80 V
Emitter-Base Voltage 7 V
Continuous Collector Current 1 A
Continuous Device Dissipation at (or below) $25^{\circ} \mathrm{C}$ Free-Air Temperature (See Note 2) 625 mW
Continuous Device Dissipation at (or below) $\mathbf{2 5 ^ { \circ }} \mathrm{C}$ Lead Temperature (See Note 3) 1.25 W
Continuous Device Dissipation at (or below) $\mathbf{2 5}{ }^{\circ} \mathrm{C}$ Case-and-Lead Temperature (See Note 4) 1.6 W
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead Temperature 1/16 Inch from Case for 10 Seconds $260^{\circ} \mathrm{C}$

NOTES: 1. This value applies when the base-amitter diode is open-circuited.
2. Derate lineariy to $150^{\circ} \mathrm{C}$ free-air temperature at the rate of $5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
3. Darate linearly to $150^{\circ} \mathrm{C}$ lead temperature at the rate of $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$. Lead temperature is measured on the collector lead $1 / 16$ inch from the casa.
4. This rating applies with the entire case (including the leads) maintained at $25^{\circ} \mathrm{C}$. Derate linearly to $150^{\circ} \mathrm{C}$ case-and-lead temperature at the rate of $12.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.

[^51]
TYPE A5T2243
 N-P-N SILICON TRANSISTOR

electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN MAX	UNIT
$\mathrm{V}_{\text {(BR) }}$ CBO Collector-Base Breakdown Voltage	$I_{C}=100 \mu A, \quad I_{E}=0$	120	V
$\mathrm{V}_{(B R) C E O}$ Collector-Emitter Breakdown Voltage	$\mathrm{I}_{C}=25 \mathrm{~mA}, \mathrm{I}_{B}=0, \quad$ See Note 5	80	V
V(BR)EBO Emitter-Base Breakdown Voltage	$\mathrm{I}_{\mathrm{E}}=100 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{C}}=0$	7	\checkmark
Collector Cutoff Current	$\mathrm{V}_{C B}=60 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0$	10	nA
	$V_{C B}=60 \mathrm{~V}, \mathrm{I}^{2}=0, \quad \mathrm{TA}^{2}=100^{\circ} \mathrm{C}$	1	$\mu \mathrm{A}$
IEBO Emitter Cutoff Current	$\mathrm{V}_{\mathrm{EB}}=5 \mathrm{~V}, \quad \mathrm{I}^{\prime}=0$	50	nA
Static Forward Current Transfer Ratio	$V_{C E}=10 \mathrm{~V}, \mathrm{I}^{\prime}=100 \mu \mathrm{~A}$	15	
	$\mathrm{V}_{\text {CE }}=10 \mathrm{~V}, \mathrm{IC}=10 \mathrm{~mA}$	30	
	$\mathrm{V}_{\text {CE }}=10 \mathrm{~V}, \mathrm{I} \mathrm{C}=150 \mathrm{~mA}$	$40 \quad 120$	
	$V_{C E}=10 \mathrm{~V}, 1 \mathrm{C}=500 \mathrm{~mA}$ See Note 5	15	
	$V_{C E}=1 \mathrm{~V}, \quad I_{C}=150 \mathrm{~mA}$	30	
VBE Base-Emitter Voltage	$\mathrm{I}_{B}=15 \mathrm{~mA}, \quad I_{C}=150 \mathrm{~mA}$, See Note 5	1.3	V
VCE(sat) Collector-Emitter Saturation Voltage	$\mathrm{I}_{\mathrm{B}}=15 \mathrm{~mA}, \mathrm{I}_{C}=150 \mathrm{~mA}$, See Note 5	0.25	V
$\beta_{\text {fel }}$ Small-Signal Common-Emitter Forward Current Transfer Ratio	$V_{C E}=10 \mathrm{~V}, \mathrm{I}^{\prime}=50 \mathrm{~mA}, \quad f=20 \mathrm{MHz}$	2.5	
Cobo Common-Base Open-Circuit Output Capacitance	$V_{C B}=10 \mathrm{~V}, \mathrm{l} E=0, \quad \mathrm{f}=1 \mathrm{MHz}$	15	pF

switching characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

| PARAMETER | TEST CONDITIONS | MIN | MAX | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: |
| τ_{b} | Stored-Charge Time Constant | See Figure 1 | 2.1 | $\mu \mathrm{~s}$ |

PARAMETER MEASUREMENT INFORMATION

TEST CIRCUIT

VOLTAGE WAVEFORMS

NOTES: a. Waveforms are monitored on an oscilloscope with the following characteristics: $t_{r} \leqslant 14 \mathrm{~ns}, \mathrm{R}_{\mathrm{in}}=10 \mathrm{M} \Omega, \mathrm{C}_{\mathrm{in}}=11.5 \mathrm{pF}$. b. The relay is Clare HG 1005 (or equivelent).

FIGURE 1-STORED-CHARGE TIME CONSTANT- τ_{b}

FOR MEDIUM-POWER, GENERAL PURPOSE APPLICATIONS

*mechanical data
THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE CASE

absolute maximum ratings at $\mathbf{2 5}{ }^{\circ} \mathrm{C}$ case temperature (unless otherwise noted)

*electrical characteristics at $25^{\circ} \mathrm{C}$ case temperature (unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN MAX	UNIT
V(BR)CEO Collector-Emitter Breakdown Voltage	$\mathrm{I}_{\mathrm{C}}=100 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0, \quad$ See Note 5	45	V
$\mathrm{V}_{\text {(BR) }}$ CER Collector-Emitter Breakdown Voltage	$\mathrm{I}_{\mathrm{C}}=100 \mathrm{~mA}, \mathrm{R}_{\mathrm{BE}}=10 \Omega$, See Note 5	60	V
$V_{\text {(BR)EBO }}$ Emitter-Base Breakdown Voltage	$\mathrm{IE}_{\mathrm{E}}=0.1 \mathrm{~mA}, \mathrm{IC}^{\prime}=0$	7	V
	$V_{C B}=60 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0$	50	nA
Icbo Collector Cutoff Current	$V_{C B}=60 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0, \quad \mathrm{~T}_{\mathrm{C}}=150^{\circ} \mathrm{C}$	50	$\mu \mathrm{A}$
IEBO Emitter Cutoff Current	$V_{E B}=5 \mathrm{~V}, \quad I_{C}=0$	100	nA
	$V_{C E}=10 \mathrm{~V}, \mathrm{I}_{C}=1 \mathrm{~mA}$	30	
hFE \quad Static Forward Current Tra	$\mathrm{V}_{C E}=10 \mathrm{~V}, \mathrm{IC}=150 \mathrm{~mA}$, See Note 5	50200	
$V_{\text {BE }} \quad$ Base-Emitter Voltage	$\mathrm{I}_{B}=15 \mathrm{~mA}, \mathrm{I}_{\mathrm{C}}=150 \mathrm{~mA}$, See Note 5	1.2	V
$\mathrm{V}_{\text {CE }}(\mathrm{sat})$ Collector-Emitter Saturation Voltage	$I_{B}=15 \mathrm{~mA}, \quad I^{\prime}=150 \mathrm{~mA}$, See Note 5	0.9	V
h_{fe} Small-Signal Common-Emitter Forward Current Transfer Ratio	$V_{C E}=10 \mathrm{~V}, \mathrm{I}^{\prime}=5 \mathrm{~mA}, \quad f=1 \mathrm{kHz}$	50275	
\|hel \quad Small-Signal Common-Emitter	$V_{C E}=10 \mathrm{~V}, \mathrm{IC}=50 \mathrm{~mA}, \quad f=20 \mathrm{MHz}$	5	
$\mathrm{f}_{\mathrm{T}} \quad$ Transition Frequency	$V_{C E}=10 \mathrm{~V}, I_{C}=50 \mathrm{~mA}$, See Note 6	100	MHz
Cobo Common-Base Open-Circuit Output Capacitance	$V_{C B}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0, \quad f=1 \mathrm{MHz}$	15	pF
$\mathrm{C}_{\text {ibo }}$ Common-Base Open-Circuit Input Capacitance	$V_{E B}=0.5 \mathrm{~V}, \mathrm{I}^{\prime}=0, \quad f=1 \mathrm{MHz}$	80	pF

NOTES: 1. This value applies when the base-emitter diode is open-circuited.
2. This value applles when the base-mittor resistance $\mathrm{R}_{\mathrm{BE}}<10 \Omega$.
3. Derate innarly to $200^{\circ} \mathrm{C}$ free-air temperature st the rate of $5.71 \mathrm{mw} /{ }^{\circ} \mathrm{C}$.
4. Derate the 10 -watt rating linearly to $200^{\circ} \mathrm{C}$ case temperature at the rate of $57.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$. Derate the 5 -watt (JEDEC registered) rating linearly to $200^{\circ} \mathrm{C}$ case temparature at the rate of $28.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
6. These parameters must be measured using pulse techniques. $\tau_{w}=300 \mu \mathrm{~s}$, duty cycle $<2 \%$.
6. To obtain f_{T}, the $h_{f e} \mid$ rasponse with frequency is extrapolated at the rate of $\mathbf{- 6} \mathbf{d B}$ per octave from $f=20 \mathrm{MHz}$ to the frequency at which $\left|h_{f e}\right|=1$.
*thermal characteristics

Parameter		Max	UNIT
$\mathrm{P}_{\boldsymbol{\theta} \mathrm{JC}}$	Junction-to-Case Thermal Resistance	35	
$\mathrm{R}_{\boldsymbol{\theta} \mathrm{J} \text { A }}$	Junction-to.Free-Air Thermal Resititance	175	CN

*operating characteristics at $\mathbf{2 5}{ }^{\circ} \mathrm{C}$ case temperature

PARAMETER		TEST CONDITIONS	MIN MAX	UNIT
F	Spot Noise Figure	$\begin{aligned} & V_{C E}=10 \mathrm{~V}, \quad I_{C}=0.3 \mathrm{~mA}, \quad R_{G}=1 \mathrm{k} \Omega, \\ & f=1 \mathrm{kHz} \end{aligned}$	10	dB

*switching characteristics at $25^{\circ} \mathrm{C}$ case temperature

PARAMETER	TEST CONDITIONS	MIN	MAX	UNIT
TT	Sotal Switching Time	Sigure 1	30	ns

PARAMETER MEASUREMENT INFORMATION

FIGURE 1-SWITCHING TIME MEASUREMENT CIRCUIT

NOTES: 7. The input waveform is supplied by a mercury relay pulse generator with the following characteristics: $\mathbf{t}_{\boldsymbol{r}} \leqslant 1 \mathbf{n s}$, $\mathbf{t}_{\boldsymbol{f}} \leqslant \mathbf{1} \mathbf{n s}$ $t_{w}=15 \mathrm{~ns}, Z_{\text {out }}=50 \Omega$. Adjust $R 1$ and the input puise ampiltude to obtain the specified voltage levels at Point A.
8. Waveforms are monitored on a sampling oscilloscope ($\mathrm{t}_{\mathrm{r}} \leqslant 0.4 \mathrm{~ns}$) using a $2 \mathrm{k} \$ 2$ probe.

- JEDEC registered data

DESIGNED FOR AUDIO AND GENERAL PURPOSE AMPLIFIER APPLICATIONS

*mechanical data

*absolute maximum ratings of $25^{\circ} \mathrm{C}$ free-air temperature (uniess otherwise noted)

MOTES: 1. This value applies when the baso-minitter resistence $\mathrm{R}_{\text {we }} \leq 10 \Omega$.
2. This value applies when the baso-mmitter diedo is open-circuliod.
3. Derate linearly to $175^{\circ} \mathrm{C}$ free-air temperature at the rate of $4 \mathrm{~mW} / \mathrm{deg}$.
4. Derate lineorly to $175^{\circ} \mathrm{C}$ cess thmperefure at the rite of $13.3 \mathrm{~mW} / \mathrm{dog}$.
*Indicutes JEDEC mistorvad deta.

*electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

PARAMETER		TEST CONDITIONS		MIN	MAX	UNIT
$V_{\text {rapaceo }}$	Collector-Base Breakdown Voltage	$\mathrm{I}_{\mathrm{C}}=-100 \mu \mathrm{~h}, \mathrm{I}_{\mathrm{E}}=0$		-50		V
V ${ }_{\text {liericeo }}$	Collector-Emitter Braekdown Voltage	$\mathrm{I}_{\mathrm{c}}=-100 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0$	Seo Note 5	-35		V
$V_{\text {frajer }}$	Collector-Emitter Breakdown Voltage	$\mathrm{I}_{\mathrm{C}}=-100 \mathrm{~mA}, \mathrm{R}_{\text {RE }}=10 \Omega$,	See Note 5	-50		V
	Emitter-Base Breakdown Voltage	$\mathrm{I}_{\mathrm{E}}=-100 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{C}}=0$		-5		V
Icao	Collector Cutoff Current	$\mathrm{V}_{\mathrm{CB}}=-30 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{E}}=0$			-1	$\mu \mathrm{A}$
		$V_{C B}=-30 V_{1}, I_{E}=0$,	$\mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$		-100	$\mu \mathrm{A}$
IEso	Emitter Cutoff Current	$V_{E B}=-2 V_{1} \quad I_{C}=0$			-100	$\mu \mathrm{A}$
hre	Static Forward Curent Transfer Rotio	$V_{C E}=-10 \mathrm{~V}_{1} \quad \mathrm{I}_{\mathrm{C}}=-5 \mathrm{~mA}$,	Soe Note 5	75		
		$V_{\text {CE }}=-10 \mathrm{~V}, \quad i_{C}=-150 \mathrm{~mA}$,	See Note 5	75	200	
$V_{\text {EE }}$	Base-Emitter Voltage	$\mathrm{I}_{\mathrm{B}}=-15 \mathrm{~mA}, \quad \mathrm{I}_{\mathrm{C}}=-150 \mathrm{~mA}$,	See Mote 5		-1.3	v
$\mathrm{V}_{\text {CE }}$	Collector-Emitter Saturation Voltoge	$\mathrm{I}_{\mathrm{B}}=-15 \mathrm{~mA}, \quad \mathrm{I}_{\mathrm{c}}=-150 \mathrm{~mA}$,	See Note 5		-1.5	V
h_{ib}	Small-Signal Common-Base Input Impedance	$V_{C B}=-5 \mathrm{~V}_{\text {, }} \quad \mathrm{I}_{\mathrm{C}}=-1 \mathrm{~mA}$	$1=1 \mathrm{kHz}$	25	35	$\boldsymbol{\Omega}$
		$V_{C B}=-10 V^{\prime}, I_{C}=-5 \mathrm{~mA}$,	$\mathrm{t}=1 \mathrm{kHz}$		10	$\boldsymbol{\Omega}$
h_{6}	Small-Signal Common-Emitter Forward Current Transter Ratio	$V_{C E}=-5 \mathrm{~V}_{1} \quad \mathrm{I}_{\mathrm{C}}=-1 \mathrm{~mA}$,	$1=1 \mathrm{kHz}$	75	300	
		$V_{C E}=-10 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{C}}=-5 \mathrm{~mA}$,	$\mathrm{f}=1 \mathrm{kHz}$	75		
$h_{\text {rb }}$	Small-Signol Common-Bose Reverse Voltage Tronsfer Ratio	$V_{C E}=-5 \mathrm{~V}_{\text {, }} \quad \mathrm{I}_{\mathrm{C}}=-1 \mathrm{~mA}$,	$f=1 \mathrm{kHz}$		8×10^{-4}	
		$V_{\text {CB }}=-10 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{C}}=-5 \mathrm{~mA}$,	$i=1 \mathrm{kHz}$		8×10^{-4}	
$h_{\text {ob }}$	Small-Signal Common-Base Output Admiftence	$V_{C B}=-5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{C}}=-1 \mathrm{~mA}$,	$f=1 \mathrm{kHz}$		1	$\mu \mathrm{mho}$
		$V_{C B}=-10 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{C}}=-5 \mathrm{~mA}$,	$f=1 \mathrm{kHz}$		5	$\mu \mathrm{md}$
\|hiol	Small-Signol Common-Emitter Forward Current Tronsfer Rotio	$V_{C E}=-10 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{C}}=-50 \mathrm{~mA}$,	$f=20 \mathrm{MHz}$	3		
Cobo	Common-Base Open-Girvit Output Copacitance	$V_{C I}=-10 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{E}}=0$,	$f=140 \mathrm{kHz}$		45	pF
$C_{\text {ibo }}$	Common-Base Open-Circuit Input Capacitance	$V_{E \pm}=-0.5 \mathrm{~V}, \quad \mathrm{I}_{\mathbf{c}}=0$,	$f=140 \mathrm{kHz}$		80	pF

mote 5: These peramelers must be measured usiang pulse techniquos. $\mathrm{t}_{\mathrm{p}}=\mathbf{3 0 0} \mu \mathrm{s}$, duly cycle $\leq 1 \%$.
*indicates JEBEC regisfored dato

AUDIO- TO HIGH-FREQUENCY SMALL-SIGNAL AMPLIFIERS
 2N2386A offers the following improvements resulting from process innovation:
 - $\left|\mathrm{Y}_{\mathrm{is}}\right|$ Min Raised from 1 mmho to 2.2 mmho
 - Ciss Max Lowered from 50 pF to 10 pF

*mechanical data

*absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

*electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

PARAMETER		TEST CONDITIONS	2N2386	2N2386A	UNIT	
		MIN MAX	MIN MAX			
	Drain-Gate Breakdown Voltage (Soe Mote 3)		$l_{0}=-10 \mu A_{1} I_{s}=0$	-20	-20	V
Igss	Gate Reverse Current	$V_{G S}=10 \mathrm{~V}, V_{\text {DS }}=0$	10	10	nA	
		$V_{G S}=10 \mathrm{~V}, V_{\text {DS }}=0, T_{A}=100^{\circ} \mathrm{C}$	1	1	$\mu \mathrm{A}$	
IDIom	Drain Cutoff Current	$V_{\text {DS }}=-12 \mathrm{~V}, \mathrm{~V}_{\text {GS }}=8 \mathrm{~V}$	-10	-0.01	$\mu \mathrm{A}$	
loss	Zero-Gato-Voltage Drain Current	$V_{D S}=-10 V_{,} V_{S S}=0$		-1-15	mA	
\| $y_{i s}$ \|	Small-Signal Common-Source Input Admittance	$\mathrm{V}_{\mathrm{DS}}=-10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, \mathrm{f}=1 \mathrm{kHz}$	0.3	0.1	$\mu \mathrm{mh}$	
$\left\|\boldsymbol{y}_{\boldsymbol{t}}\right\|$	Small-Signal Common-Source Forward Transfer Admittance	$V_{\text {DS }}=-10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0,1=1 \mathrm{kHz}$	1	2.25	mmho	
$\mathrm{C}_{\text {is }}$	Common-Source Shor-Circuit Input Capocitance	$V_{D S}=-10 \mathrm{~V}, \mathrm{~V}_{S S}=0,1=0.1 \mathrm{MHz}$ to $1 \mathrm{MHz}_{2}$	50	10	pf	

NOTES: 1. Derate linearly to $175^{\circ} \mathrm{C}$ frea-air temperature of the rate of $3.3 \mathrm{~mW} /$ deg.
2. Derate linearly to $175^{\circ} \mathrm{C}$ case tomperature at the rate of $10 \mathrm{~mW} / \mathrm{deg}$.
 Vollage for other velues of $\left.\mathbf{V}_{\mathbf{G S}}\right)$ may be colculated from: $\left|\mathbf{V}_{\text {(Gi) }) \text { DSV }}\right| \cong\left|\mathbf{V}_{\text {(GR)DGO}}\right|-\left|\mathbf{V}_{\mathbf{G S}}\right|$.

[^52]> FOR EXTREMELY LOW-LEVEL, LOW-NOISE, HIGH-GAIN, AMPLIFER APPLICATIONS Formerly T1420 and TI 421
> - Guaranteed $h_{\text {fe }}$ at $10 \mu \mathrm{a}, \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ and $+25^{\circ} \mathrm{C}$
> - Guarantoed Low-Noise Characteristics at $10 \mu \mathrm{a}$
> - Usable at Colloctor Currents as Low as $1 \mu a$
> - Electrically Similar to 2N929 and 2N930
> - Compatible Package for Interfacing with Integratod Circuits and Thin-Film Modules

mechanical dofa

The transistors are in a hermetically sealed welded package meeting the JEDEC TO-50 outline.

*absolute maximum ratings at $\mathbf{2 5}{ }^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

MOTES: 1 . This valve applies whan the base-amittor diedo is apen-sirevited.
2. Dersite linearly to $175^{\circ} \mathrm{C}$ hree-air tempermura at the rete of $2 \mathrm{~mm} / \mathrm{C}^{\circ}$.
3. Derets ligently to $175^{\circ} \mathrm{C}$ cese tomperature at the mine of $6.66 \mathrm{~mm} / \mathrm{C}^{\circ}$.
*Indicetes JEDEC magisterod date.
*electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

PARAMETER		TEST CONDITIONS	2N2387		2N2388		UNIT	
		MIN	MAX	MIN	MAX			
$V_{\text {(}}^{\text {(ry]ce }}$ O	Coliector-Emitter Breakdown Voltage		$I_{c}=10 \mathrm{ma}, I_{B}=0, \quad$ See Note 4	45		45		v
$V_{\text {(Br) }}$	Emitter-Base Breakdown Vołtage	$l_{E}=10 \mathrm{na}, \mathrm{I}_{C}=0$	5		5		v	
Icmo	Collector Cutoff Current	$V_{C B}=45 \mathrm{v}, \mathrm{l}_{\mathrm{E}}=0$		10		10	no	
Ices	Collector Cutoff Current	$V_{\text {CE }}=45 \mathrm{v}, \mathrm{V}_{\text {®E }}=0$		10		10	na	
		$V_{C E}=45 \mathrm{v}, \mathrm{V}_{\text {侑 }}=0, \quad \mathrm{~T}_{\mathrm{A}}=170^{\circ} \mathrm{C}$		10		10	$\mu \mathrm{m}$	
$\mathrm{I}_{\text {ceo }}$	Collector Cutoff Curront	$V_{C E}=5 \mathrm{v}, \quad \mathrm{l}_{\mathrm{E}}=0$		2		2	na	
$\mathrm{I}_{\text {ESO }}$	Emitter Cutoff Current	$v_{E E}=5 \mathrm{v}, \quad \mathrm{I}_{\mathrm{C}}=0$		10		10	no	
$h_{\text {fe }}$	Static Forward Current Transter Ratio	$V_{C E}=5 v_{1}, \quad I_{C}=10 \mu \mathrm{a}$	40	120	100	300		
		$\mathrm{V}_{C E}=5 \mathrm{v}, \quad \mathrm{IC}_{C}=10 \mu \mathrm{a}, \quad \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$	10		20			
		$V_{C E}=5 \mathrm{v}, \quad \mathrm{I}_{\mathrm{C}}=500 \mu \mathrm{a}$	60		150			
		$V_{\text {CE }}=5 \mathrm{v}, \quad \mathrm{I}_{\mathrm{C}}=10 \mathrm{ma}$, See Mote 4		350		600		
$V_{\text {IE }}$	Base Emitter Voltage	$\mathrm{I}_{\mathrm{g}}=0.5 \mathrm{ma}, \mathrm{ic}_{\mathrm{c}}=10 \mathrm{ma}$, See Note 4	0.6	1.0	0.6	1.0	v	
$\mathrm{V}_{\text {CE }(2+1)}$	Colliector-Emitter Saturation Voltage	$\mathrm{I}_{\mathrm{B}}=0.5 \mathrm{ma}, \mathrm{I}_{\mathrm{C}}=10 \mathrm{ma}$, See Note 4		1.0		1.0	v	
$h_{\text {ib }}$	Smali-Signol Common-Base Input Impedance	$V_{c t}=5 \mathrm{v},$$l_{E}=-1 \mathrm{mo},$$f=\mathbf{I k c}$	25	32	25	32	Ω	
$\mathrm{hrb}^{\text {b }}$	Small-Signal Common-Base Reverse Voltage Iransier Ratio		0	6x10-4	0	6×10^{-4}		
$\mathrm{h}_{\text {ob }}$	Small-Signal Common-Base Output Admittance		0	1	0	1	$\mu \mathrm{mho}$	
h_{6}	Smail-Signal Common-Emitter Forward Current Transfer Ratio	$V_{\text {ce }}=5 \mathrm{v}, \quad \mathrm{I}_{\mathrm{C}}=1 \mathrm{ma}, \quad \mathrm{t}=1 \mathrm{lkc}$	60	350	150	600		
\| $\mathrm{h}_{\text {fol }}$ \|	Small-Signal Common-Emifter Forward Current Iranster Ratio	$V_{C E}=5 \mathrm{v}, \quad \mathrm{I}_{\mathrm{C}}=500 \mu \mathrm{a}, \mathrm{f}=30 \mathrm{Mc}$	1		1			
$C_{\text {bob }}$	Common-Base Open-Circuil Output Capacitance	$V_{C B}=5 \mathrm{r}, \quad \mathrm{I}_{\mathrm{E}}=0, \quad f=1 \mathrm{Mc}$		8		8	pf	

*operating characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER		TEST CONDITIONS	2N2387	2N2388	UNIT	
		MAX	MaX			
$\overline{\text { NF }}$	Average Noise Figure		$V_{C B}=5 \mathrm{v}, \quad I_{E}=-10 \mu a_{,}, R_{G}=10 \mathrm{k} \Omega$ Noise Bandwidth 10 cps to 15.7 kc	4	3	db

Note: 4. These parameters must be measurod using pulse techniquos. PW =300 μ soc, Duty cyclo $\leq 2 \%$.

* Indicatas Jedec registered data.

FOR GENERAL PURPOSE AMPLIFER AND SWITCHING APPLLCATIONS

FROM < 0.1 ma to $>150 \mathrm{ma}$, de to 30 Mc Formerly TI 424 and TI 425

- Electrically Similer to 2N1613 and 2N1711
- Compartible Package for Interfacing with Integrated Circuits and Thim-Film Modules
mechanical defe
The transistors are in a hermetically sealed welded package meeting the JEDEC TO-50 outline.

*absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air tomperature (unless otherwise noted)
Collector-Base Voltage . 75 r

Collector-Emitter Voltage (See Note 1) . 50 r
Emitter-Base Voltage . 7 v
Collector Current . 500 ma
Continuous Device Dissipation at (or below) $25^{\circ} \mathrm{C}$ Free-Air Temperature (See Note 2) 450 mw
Continuous Device Dissipation at (or below) $25^{\circ} \mathrm{C}$ Case Temperature (See Note 3) 1.5 w
Operating Collector Junction Temperature $200^{\circ} \mathrm{C}$
Storage Tomperature Range $-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
Lead Temperature K_{t} Inch from Case For 10 Seconds $230^{\circ} \mathrm{C}$
*electrical characteristics of $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

PARAMETER	TEST CONDITIONS	2N2389	2N2390	UNIT
		MIN MAX	MIN MAX	
Vieniceo Collecter-lase Irockdoum Yoltege	$\mathrm{I}_{\mathrm{c}}=100 \mu 0, \mathrm{I}_{5}=0$	75	75	V
	$\mathrm{I}_{\mathrm{C}}=100$ me, R $\mathrm{R}_{\text {ce }}=10 \mathrm{D}, \mathrm{Seo}$ Mete 4	50	50	v
	$\mathrm{I}_{\mathrm{E}}=100 \mu \mathrm{~m}, \mathrm{I}_{\mathbf{C}}=0$	7	7	v
ICoO Ciloctor Cuteff Corrent	$\mathbf{Y}_{\mathbf{C E}}=60 \mathrm{v}_{\mathrm{E}} \mathrm{I}_{\mathrm{E}}=0$	10	10	Hat
	$V_{C B}=60$ v, $I_{5}=0, \quad T_{A}=150^{\circ} \mathrm{C}$	10	10	$\boldsymbol{\mu}$
Ifto Emilfer Cerofi Cwrmal	$y_{\text {fe }}=5$ v, $\mathrm{I}_{\mathrm{C}}=0$	10	5	na
Stetic Fowwerd Curnat$\mathrm{H}_{\text {Re }} \quad$ Trensfor llathe	$V_{C E}=10 v_{0} I_{C}=10 \mu \mathrm{~m}$		21	
	$v_{C s}=10 v_{0} I_{C}=100 \mu$	24	35	
		35	75	
	$Y_{C E}=10 v_{1} \mathrm{I}_{\mathrm{C}}=10 \mathrm{me}, \mathrm{T}_{\mathbf{A}}=-55^{\circ} \mathrm{C}$,	20	35	
	$Y_{C E}=10 r_{\text {c }} \mathrm{I}_{\mathrm{C}}=150$ me, Sue Moto 4	40124	$100 \quad 300$	
		20	40	
$\Psi_{\text {ES }}$	$\mathrm{I}_{\mathrm{E}}=15 \mathrm{me}, \mathrm{l}_{\mathrm{c}}=150 \mathrm{~mm}, \mathrm{sen}$ Note 4	0.41 .3	0.61 .3	v
$V_{\text {Cespati }}$ Collocter-Emititer Seluration Velteg	$\mathrm{I}_{\mathrm{E}}=15 \mathrm{me}, \mathrm{I}_{\mathrm{C}}=150 \mathrm{ma}, \mathrm{Sen}$ loto 4	1.5	1.5	\checkmark

 *Imicetos JEDEC maistorad dato. Duty Cycis $\leq \mathbf{2 \%}$.

TYPES 2N2389, 2N2390

N-P-N SILICON TRANSISTORS

*electrical characteristies at $25^{\circ} \mathrm{C}$ free-alr tomperature

PARAMETER		TEST CONDITIONS	2N2389		2N2390		UNIT	
		MIN	MAX	MIN	MAX			
h_{16}	Small-Stignal Commen-losi Input Impolance		$v_{C 1}=5 \mathrm{v}, \mathrm{L}_{\text {c }}=-1 \mathrm{~mm}, \mathrm{f}=1 \mathrm{kc}$	24	34	4	24	\square
			1	1	4	1	8	
$h^{\text {rb }}$	Small-signal Commen-Stas Reverse Veltege Tremstor Relle	$v_{C B}=5 v_{1} l_{\text {a }}=-1 \mathrm{ma}_{1} /=1 \mathrm{kc}$		3×10^{-4}		5×10^{-4}		
		$\mathrm{v}_{\mathrm{c}_{3}}=10 \mathrm{v}, \mathrm{I}_{1}=-5 \mathrm{me}, f=1 \mathrm{kc}$		3×10^{-4}		5×10^{-4}		
$h_{\text {ab }}$	Small-Slenal Commen-Leso Output Rdmilitence		0.1	0.5	0.1	0.5	$\mu \mathrm{mms}$	
		$V_{c i}=10 \mathrm{v}, 1 \mathrm{~s}=-5 \mathrm{~mm}, \mathrm{t}=1 \mathrm{kc}$	0.1	1.0	0.1	1.0	μ mint	
46	Small-Signal Commen-Emiftar Forwerd Curmat Trenstor Ratio	$v_{c s}=5 \mathrm{v}, \mathrm{l}_{\mathrm{c}}=1 \mathrm{me}, f=1 \mathrm{kc}$	30	100	50	200		
		$\mathrm{V}_{\mathrm{c}}=10 \mathrm{v}, \mathrm{l}_{\mathrm{c}}=5 \mathrm{ma}, \quad \mathrm{i}=1 \mathrm{kc}$	35	150	70	300		
$\left\|h_{\text {gol }}\right\|$	Small-Signall Commen-Emither Fowwerd Curreant Irampor Ratio	$v_{C B}=10 \mathrm{v}, \mathrm{c}_{\mathrm{C}}=20 \mathrm{ma}, \quad \mathrm{f}=20 \mathrm{me}$	3.0		3.5			
$C_{\text {cobo }}$	Commen-loss Opna-Cirvult Output Copucitance	$v_{c i}=10 \mathrm{v}, \mathrm{l}_{\mathbf{E}}=0, \quad \mathrm{f}=1 \mathrm{mc}_{\mathbf{c}}$		25		25	P	
Clbo	Commen-Eese Open-Circulf Input Copecitence	$\boldsymbol{v}_{\mathbf{E} \text { : }}=0.5 \mathrm{v}, \mathrm{I}_{\mathbf{C}}=0, \quad 1=1 \mathrm{mc}$		00		60	pf	

*operating characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER		TEST CONDITIONS	2N2389		2N2890		UNIT	
		TYP	MAX	TYP	MAX			
WF	Spot Meist Pigure		$\begin{aligned} & y_{c t}=10 v_{r} l_{c}=300 \mu \mathrm{l} \\ & \mathbf{R}_{\mathrm{g}}=510 \mathrm{Q}, 1=1 \mathrm{kc} \end{aligned}$		12	5	*	d

"switching charactorisfics at $\mathbf{2 5}^{\mathbf{\circ}} \mathrm{C}$ free-air tomperature

PARAMETER		TEST CONDITIONS	2N2389		UNIT	
		TYP	MAX			
t_{T}	Tofal Swliching Time		Sen Figure 1	20	31	mas

*PARAMETER MEASUREMENT INFORMATION

flgure 1- mombaturateo switehimg time measurement circuit
 and the Input pulse amplitude to ottaln the apnetiled veltage lovels at filnt A.

-Indicates JEDEE registered dale (typleal' data axelvided).

FOR GENERAL PURPOSE AMPLIFIER AND SWITCHING APPLICATIONS Formerly T1428 and T1429

- Eloctrically Similer to 2 Ni 131 and 2 N 1132
- Compatible Package For Interfacing With Integrated Circuits and Thin-Film Modules

mechanical dafa

The transistors are in a hermetically sealed welded package meeting the JEDEC TO-50 outline.

*absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

[^53]
P-N-P SILICON TRANSISTORS

*eloctrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature (unloss otherwise noted)

Nete 4. These parameters must be measured wsiag pulse fechniques. $\mathrm{PW}=\mathbf{3 0 0} \mu \mathrm{sec}$, Duty Cycle $\leq \mathbf{2} \%$.

[^54]THERMAL CHARACTERISTICS

FOR GENERAL PURPOSE AMPLIFIER AND SWITCHING APPLICATIONS Formerly TI 432, TI 433
 - Electrically Similar To 2N696 and 2N697
 - Compatible Package For Inferfacing with Integrated Circuits and Thin-Film Modules

mechanical data
These transistors are in a hermetically sealed welded package meating the JEDEC TO-50 outline.

*absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)
Collector-Base Voltage . 60 r
Collector-Emitter Voltage (See Note 1) . 40 r
Emitter-Base Voltage . 5 v
Collector Current . 300 ma
Continuous Device Dissipation at (or below) $25^{\circ} \mathrm{C}$ Free-Air Temperature (See Note 2) 450 mw
Continuous Device Dissipation at (or below) $25^{\circ} \mathrm{C}$ Case Temperature (See Note 3) 1.5 w
Operating Collector Junction Temperature $200^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
Lead Temperature K_{1} Inch from Case for 10 Seconds $230^{\circ} \mathrm{C}$

WOTES: 1. This value appliss when baso-amition thode is open-ciccited.
2. Derete linearly to $200^{\circ} \mathrm{C}$ froo-air tomperature of the rate of $2.57 \mathrm{~mm} / \mathrm{C}^{\circ}$.
3. Darate linearly to $200^{\circ} \mathrm{C}$ case temparatere at the rate of $8.57 \mathrm{~mm} / \mathrm{C}^{\circ}$.

* Indicates JEDEC ragistered dato.

TYPES 2N2395, 2N2396

N-P-N SILICON TRANSISTORS
*electrical characteristics at $25^{\circ} \mathrm{C}$ free-air tomperature (unless otherwise noted)

mote 4. These paramelors must be mossured asing pulso tochniquos. PW $=300 \mu s \mathrm{sc}$, Daty Cycle $\leq \mathbf{2 \%}$.

THERMAL CHARACTERISTICS

[^55]
FOR LOW-LEVEL, HIGH-SPEED CHOPPER APPLCATIONS IN INVERTED CONNECTION

- Low Offsef Voltage ... $0.4 \mathrm{mV} \operatorname{Max}$ (2N2432A)
- Low Ita... 2 nA Max
- High Reted $\mathbf{V}_{\text {cco }}$ for Inverted Connection

also useful for low-livel amplifier applications
 - $h_{\text {fe }} \ldots 30 \mathrm{Min}$ at $10 \mu \mathrm{~A}$

*mechanical data

tII gwaranted minimum. The JEDEC registered miaisem leed demeter for the T0-46 is 0.012.
*absolute maximum ratings af $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

MOTES: I. This value appliss betwoen 0 and 10 mA collector curront when the omititer-bese diede is epon-circuited.
2. This value appiles between 0 end $100 \mu \mathrm{~h}$ mither curroat when the colloctor-base diede is epem-circulted.
3. Derate linearly to $175^{\circ} \mathrm{C}$ freo-air tamperature at bite rate of $2 \mathrm{~mW} / \mathrm{deg}$.
4. Derate linearly to $175^{\circ} \mathrm{C}$ case semperatere at the rete of $4 \mathrm{~mW} / \mathrm{deg}$.
*Iaticatos JEDEC ragistared deta.
USES CHIP N18
*electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

PARAMETER		TEST CONDITIONS		$\begin{array}{\|l\|} \hline \text { 2N2432 } \\ \text { 2N4138 } \\ \hline \text { MIN MAX } \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { 2N2432A } \\ \hline \text { MIN MAX } \\ \hline \end{array}$	UNIT
	Collector-Base Breakdown Voltage	$I_{C}=100 \mu A, I_{E}=0$		30	45	V
$\mathbf{V}_{\text {(tr) }}$ (CEO	Collector-Emitter Breakdown Voltage	$\mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0$,	See Note 5	30	45	V
$\bar{V}_{\text {(R) }}$ SCCO	Emitter-Collector Breakdown Voltage	$\mathrm{I}_{\mathrm{E}}=100 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=0$		15	18	V
ICmo	Collector Cutoff Current	$V_{C B}=25 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0$		10		nA
		$\mathrm{V}_{\mathrm{CB}}=40 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0$			10	nA
Ices	Collector Cutoff Current	$\mathrm{V}_{\text {CE }}=25 \mathrm{~V}, \mathrm{~V}_{\text {BE }}=0$		10		nA
		$\mathrm{V}_{\text {CE }}=25 \mathrm{~V}, \mathrm{~V}_{\text {BE }}=0$,	$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$	250		nA
		$Y_{C E}=40 \mathrm{~V}, V_{\text {BE }}=0$			10	nA
		$\mathrm{V}_{\text {CE }}=40 \mathrm{~V}, \mathrm{~V}_{\text {EE }}=0$,	$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$		250	nA
IEBO	Emitter Cutoff Current	$V_{E B}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=0$		2	2	nA
Jecs	Emitter Cutoff Current	$\mathrm{V}_{E C}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{BC}}=0$		2	2	nA
		$\mathrm{V}_{\mathrm{EC}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{BC}}=0$,	$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$	200	200	nA
$h_{\text {fe }}$	Static Forward Current Transier Ratio	$V_{C E}=5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}$		30	30	
		$\mathrm{V}_{\text {CE }}=5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}$		50	50	
$h_{\text {retimu }}$	Static Forward Current Transfer Ratio (Inverted Connection)	$\mathrm{V}_{\mathrm{EC}}=5 \mathrm{~V}, \quad \mathrm{f}_{\mathrm{E}}=0.2 \mathrm{~mA}$		2	3	
$\mathbf{V}_{\text {CEf } \text { sat) }}$	Collector-Emitter Saturation Vollage	$\mathrm{I}_{\mathrm{B}}=0.5 \mathrm{~mA}, \mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}$		0.15	0.15	V
$V_{E C \text { [}}^{\text {cos] }}$]	Offsel Voltage (Inverted Connection)	$\mathrm{I}_{\mathrm{B}}=200 \mu \mathrm{~A}, \mathrm{~T}_{\mathrm{E}}=0$,	See Figure 1	0.5	0.4	mV
		$\mathrm{I}_{\mathrm{I}}=1 \mathrm{~mA}, \mathrm{I}_{\mathrm{E}}=0$,	See Figure 1	1	0.7	$\mathrm{m} V$
Poclon)	Small-Signal Emilter-Colletfor On-State Resistance	$\begin{array}{ll} \mathrm{l}_{\mathrm{B}}=1 \mathrm{~mA}, & \mathrm{l}_{\mathrm{E}}=0, \\ & f=1 \mathrm{kHz}, \end{array}$	$\mathrm{I}_{0}=100 \mu \mathrm{~A}$ See Figure 2	20	15	Ω
\|hel	Small-Signal Common-Emitter Forward Current Transfer Ratio	$V_{C E}=5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}$,	$f=20 \mathrm{MHz}$	1	1	
Cobo	Common-Base Open-Circuit Output Capacitunce	$V_{C B}=0, \quad t_{E}=0$,	$\mathrm{f}=140 \mathrm{kHz}$	12	12	pF
C_{cb}	Collector-Base Capacitance	$\mathrm{V}_{\mathrm{CB}}=0, \quad \mathrm{I}_{\mathrm{E}}=0$,	$\begin{aligned} & \quad i=1 \text { MHz, } \\ & \text { See Note } 6 \\ & \hline \end{aligned}$	12	12	pF
$\mathrm{C}_{\text {ibo }}$	Common-Base Open-Cirtuit Input Capacitance	$V_{E B}=0, \quad I_{C}=0$,	$\mathrm{f}=140 \mathrm{kHz}$	12	12	pF
$C_{0 b}$	Emilter-Base Capacitance	$\mathrm{V}_{\mathrm{EB}}=0, \quad \mathrm{l}_{\mathrm{C}}=0$,	$\mathrm{f}=1 \mathrm{MHz},$ See Note 6	12	12	pF

HOTES: 5. This parameter must be measured using pulse techniques. $i_{p}=300 \mu$ s, duty cycle $\leq 2 \%$.
6. C_{cb} and C_{eb} ore measured using thre-terminal measurement techniques with the third electrode (emitter or collector respectively) guarded.

PARAMETER MEASUREMENT INFORMATION

FIGURE 1
measurement circuit for offset voltage

figure 2
MEASUREMENT CIRCUIT FOR EMITTER-
COLLECTOR ON-STATE RESISTANCE

MOTE a: The voltmater must have high anough impedance that halving the value of the voltmeler impedance does not change the measured voiue.
*Indicates JEDES registered datu.

TWO TRANSISTORS IN ONE PACKAGE RECOMMENDED FOR

- Differential Amplifiers
- Low-Level, Low-Noise Audio Amplifiers
- Low-Level Flip-Flops

*mechanical data

"absolute maximum ratings at $\mathbf{2 5 ^ { \circ }} \mathbf{C}$ free-air temperature (unless otherwise noted)
EACH
TOTAL

NOTES: 1. This value applies when the bese-emitter diode is open-circuited.
2. Derate linaarly to $200^{\circ} \mathrm{C}$ free-alr temperature at the rates 0 $1.14 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for each triode and $1.71 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for total device.
3. Derate Inearly to $200^{\circ} \mathrm{C}$ case temperature at the rates $0 \mathrm{of} 3.43 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for each triode and $6.86 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for total device.
*JEDEC reglatered deth. This date mheet contains all applicable registered data in affect at the time of publication.

TYPE 2N2453

DUAL N-P-N SILICON TRANSISTOR

"electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

 Individual triode characteristion (tee note 4)| PARAMETER | TEST CONDITIONS | MIN MAX | UNIT |
| :---: | :---: | :---: | :---: |
| V(BR)C8O Collector-Base Breakdown Voltage | $I_{C}=10 \mu A, \quad I_{E}=0$ | 60 | V |
| V(BR)CEO Collactor-Emitter Breakdown Voltage | $\mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0, \quad$ See Note 5 | 30 | V |
| V(BR)EBO Emitter-Base Breakdown Voltage | $I_{E}=0.1 \mu A_{1} I_{C}=0$ | 7 | V |
| ICBO Collector Cutoff Current | $V_{C B}=80 \mathrm{~V}, \mathrm{IE}^{\text {e }} 0$ | 5 | nA |
| | $V_{C B}=80 V_{\text {, }} I_{E}=0, \quad T_{A}=160{ }^{\circ} \mathrm{C}$ | 10 | $\mu \bar{A}$ |
| IE8O Emitter Cutoff Current | VEB $=5 \mathrm{~V}$, $\mathrm{IC}^{\text {c }}=0$ | 2 | nA |
| Static Forward Current Transfar Ratio | $\mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}, \mathrm{~V}_{\text {CE }}=6 \mathrm{~V}$ | 80 | |
| | $1_{C}=10 \mu A, V_{C E}=5 \mathrm{~V}, \mathrm{TA}^{\prime}=-65^{\circ} \mathrm{C}$ | 40 | |
| | $I_{C}=1 \mathrm{~mA}, \quad V_{C E}=5 \mathrm{~V}$ | $150 \quad 600$ | |
| | $I_{C}=1 \mathrm{~mA}, \mathrm{~V}_{\text {CE }}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ | 75 | |
| VBE Base-Emitter Voltage | $I_{C}=6 \mathrm{~mA}, \quad I_{B}=0.6 \mathrm{~mA}$ | 0.8 | V |
| VCE(sat) Collector-Emitter Saturation Voltaga | $I_{C}=5 \mathrm{~mA}, \quad I_{B}=0.6 \mathrm{~mA}$ | 1 | V |
| $\mathrm{h}_{\mathrm{ib}} \quad$ Small-Signal Common-Base Input Impedance | $V_{C B}=5 \mathrm{~V}, \quad \mathrm{l}=1 \mathrm{~mA}, \quad \mathrm{f}=1 \mathrm{kHz}$ | $20 \quad 30$ | Ω |
| $h_{r b}$ Smali-Signal Common-Bate
 Reverse Voltage Transfer Ratio | | $\begin{gathered} 5 x \\ 10^{-4} \end{gathered}$ | |
| hob Small-Signal Common-Base Output Admittance | | 0.2 | $\mu \mathrm{mho}$ |
| $\mathrm{h}_{\text {ie }} \quad$ Small-Signal Common-Emitter Input Impedance | $V_{C E}=5 \mathrm{~V}, \quad \mathrm{IC}=1 \mathrm{~mA}, \quad f=1 \mathrm{kHz}$ | 6 | kn |
| h_{f} Small-Signal Common-Emitter
 Forward Current Transfer Retio | | 160600 | |
| $h_{r e}$ Small-Signal Common-Emitter
 Reverse Voltage Transfer Ratio | | $\begin{gathered} 6 \times \\ 10^{-4} \end{gathered}$ | |
| hoe Small-Signal Common-Emitter Output Admittance | | $5 \quad 30$ | $\mu \mathrm{mho}$ |
| $h_{\text {fel }} \|$Small-Signal Common-Emitter
 Forward Current Transfer Ratio | $V_{C E}=10 \mathrm{~V}, \mathrm{IC}=5 \mathrm{~mA}, \quad f=30 \mathrm{MHz}$ | 2 | |
| Cobo Common-Base Open-Circuit Output Capacitance | $V_{C B}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0, \quad f=140 \mathrm{kHz}$ | 8 | pF |
| Cibo Common-Base Open-Circuit Input Capacitance | $\mathrm{VEB}^{\text {a }}=0.5 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=0, \quad f=140 \mathrm{kHz}$ | 10 | PF |

triode matching characteristics

	PARAMETER	TEST CONDITION8	MIN	MAX	UNIT
$\frac{h F E 1}{h F E 2}$	Static Forward-Current-Gain Balance Ratio	$V_{C E}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}, \mathrm{Sen}$ Note 6	0.8	1	
		$\begin{aligned} & V_{C E}=5 V, \quad I^{\prime}=1 \mathrm{~mA}, \quad \text { Sae Note } \mathrm{E}_{1} \\ & T_{A}=-58^{\circ} \mathrm{C} \text { to } 128^{\circ} \mathrm{C} \end{aligned}$	0.85	1	
	Base-Emitter-Voltage Differential	$V_{C E}=5 V_{1} \quad 1 C=10 \mu A$		3	mV
		$\mathrm{V}_{\text {CE }}=8 \mathrm{~V}, \mathrm{IC}_{\mathrm{C}}=1 \mathrm{~mA}$		5	mV
$\left\|\frac{\Delta \mid V_{B E 1}-V_{B E 2}}{\Delta T_{A}}\right\|$	Baso-Emitter-Voltago-Differential Temperature Gradient	$\begin{aligned} & V_{C E}=8 V, \quad \text { C } C=10 \mu A, \\ & \Delta T_{A}=\left[25^{\circ} \mathrm{C}-\left(-55^{\circ}\right)\right] \text { and }\left(125^{\circ} \mathrm{C}-25^{\circ} \mathrm{C}\right) \end{aligned}$		10	$\mu \vee /{ }^{\circ} \mathrm{C}$

"operating characteristics at $25^{\circ} \mathrm{C}$ free-air temperature
individual triode charraoteristices (ese notu 4)

	PARAMETER	TEET CONDITIONS	MIN	MAX	UNIT
F	Spot Nolsa Floure	$\begin{aligned} & V C E=5 \mathrm{~V}, \quad I C=10 \mu \mathrm{~A}, \quad R_{\mathrm{G}}=10 \mathrm{k} \Omega, \\ & f=1 \mathrm{kHz} \end{aligned}$		7	dB

NOTES: 4. The terminale of the trlode not under tast are open-clrculted for the measurament of thase characteriates.
5. This parcmeters must be moaured using pulat technequet, $t_{w}=300 \mu$, dutv cycle $\leq 2 \%$.
6. The lower of the two $h_{F E}$ readinge le taken asfel.
*JEDEC reglaterad dita

FOR LOW-LIVEL, LOW-NOISE, HIGH-GANN, AMPLIFIER APPLLCATIONS
- Gearemtoed Low-Noise Characteristics af $100 \mathrm{~Hz}, 1 \mathrm{kHz}$, and 10 kHz
- High Vimenco . . 60 V Min
- D.C Bota Guarantood at $\mathrm{I}_{\mathrm{C}}=1 \mu \mathrm{~A}$ (2N2484)

*mechemical deta

*absolute maximum retings ef $25^{\circ} \mathrm{C}$ free-air temperature (uniess otherwise noted)

2. Derate Invarly to $280^{\circ} \mathrm{C}$ how-ifr tomproture of the rete of $2,06 \mathrm{~mW} / \mathrm{dog}$.

-Iadleater JEasC mighered dela

TYPES 2N2483, 2N2484
 N-P-N SILICON TRANSISTORS

*electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[b]{2}{*}{PARAMETER}} \& \multirow[b]{2}{*}{TEST CONDITIONS} \& \multicolumn{2}{|c|}{2N2483} \& \multicolumn{2}{|c|}{2N2484} \& \multirow[t]{2}{*}{UNIT}

\hline \& \& \& MIN \& MaX \& MIN \& MAX \&

\hline \& Collector-Base Breakdown Voltage \& $I_{c}=10 \mu \mathrm{~A}, ~ I_{\mathrm{E}}=0$ \& 60 \& \& 60 \& \& V

\hline $V_{\text {(m) }{ }^{\text {cee }} \text { (}}$ \& Collector-Emitter Breakdown Volfage \& $\mathrm{I}_{\mathrm{c}}=10 \mathrm{~mA}, \mathrm{I}_{\mathrm{E}}=0, \quad$ See Note 4 \& 60 \& \& 60 \& \& V

\hline \& Emifter-Base Broakdown Voltoge \& $\mathrm{I}_{\mathrm{E}}=10 \mu \mathrm{~A}, \mathrm{ic}_{\mathrm{C}}=0$ \& 6 \& \& 6 \& \& V

\hline \multirow[b]{2}{*}{lcso} \& \multirow[b]{2}{*}{Collector Cutolf Current} \& $V_{C I}=45 \mathrm{~V}, I_{E}=0$ \& \& 10 \& \& 10 \& nA

\hline \& \& $V_{C B}=45 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0, \quad \mathrm{~T}_{A}=150^{\circ} \mathrm{C}$ \& \& 10 \& \& 10 \& $\mu \mathrm{A}$

\hline $\mathrm{I}_{\mathrm{EBO}}$ \& Emitter Cutoff Current \& $V_{E I}=5 \mathrm{~V}, \quad I_{C}=0$ \& \& 10 \& \& 10 \& ni

\hline \multirow{7}{*}{hre} \& \multirow{7}{*}{Slatic Forward Current Transfer Ratio} \& $V_{\text {CE }}=5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{C}}=1 \mu \mathrm{~A}$ \& \& \& 30 \& \&

\hline \& \& $V_{C E}=5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}$ \& 40 \& 120 \& 100 \& 500 \&

\hline \& \& $V_{C E}=5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}, \quad \mathrm{I}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ \& 10 \& \& 20 \& \&

\hline \& \& $V_{\text {CE }}=5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{C}}=100 \mu \mathrm{~A}$ \& 75 \& \& 175 \& \&

\hline \& \& $V_{\text {CE }}=5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{C}}=500 \mu \mathrm{~A}$ \& 100 \& \& 200 \& \&

\hline \& \& $V_{C E}=5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}$ \& 175 \& \& 250 \& \&

\hline \& \& $V_{C E}=5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}$, Soe Note 4 \& \& 500 \& \& 600 \&

\hline $V_{\text {IE }}$ \& Base-Emitter Voltage \& $V_{C E}=5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{C}}=100 \mu \mathrm{~A}$ \& 0.5 \& 0.7 \& 0.5 \& 0.7 \& v

\hline $V_{\text {celsat }}$ \& Collector-Emitter Saturation Volitage \& $\mathrm{I}_{\mathrm{L}}=100 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{c}}=1 \mathrm{~mA}$ \& \& 0.35 \& \& 0.35 \& v

\hline $\mathrm{h}_{\text {it }}$ \& Small-Signal Common-Emiltor Input Impodance \& \multirow{4}{*}{$V_{\text {CE }}=5 \mathrm{~V}$,

$\quad \mathrm{IC}_{\mathrm{c}}=1 \mathrm{~mA}$,} \& 1.5 \& 13 \& 3.5 \& 24 \& k Ω

\hline h_{6} \& Small-Signal Commen-Emiltor Forward Current Tronstor Ratio \& \& 80 \& 450 \& 150 \& 900 \&

\hline hre \& Small-Signal Common-Emittor Reverse Voliage Transfer Ratio \& \& \& 8×10^{-4} \& \& 8×10^{-4} \&

\hline h_{∞} \& Small-Signal Common-Emittor Output Admiltance \& \& \& 30 \& \& 40 \& $\mu \mathrm{mho}$

\hline \multirow[t]{2}{*}{| $\mathrm{h}_{\text {ol }} \mid$} \& \multirow[t]{2}{*}{Small-Signal Common-Emitter Forward Current Trunstior Ratio} \& $V_{\text {CE }}=5 \mathrm{~V}_{1} \quad \mathrm{I}_{\mathrm{C}}=50 \mu \mathrm{~h}, \quad 1=5 \mathrm{mHz}$ \& 2.4 \& \& 3 \& \&

\hline \& \& $V_{C E}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=500 \mu \mathrm{~A}_{1} \mathrm{f}=30 \mathrm{MHz}$ \& 2 \& \& 2 \& \&

\hline $C_{\text {cob }}$ \& Common-Base Open-Circult Output Capacitance \& $V_{C B}=5 \mathrm{~V}, \quad \mathrm{l}_{\mathrm{E}}=0, \quad \mathrm{f}=140 \mathrm{kHz}$ \& \& 6 \& \& 6 \& pf

\hline $C_{i b o}$ \& Common-Base Open-Circult Input Capactance \& $V_{E B}=0.5 \mathrm{~V}, \mathrm{l}_{\mathrm{C}}=0, \quad f=140 \mathrm{kHz}$ \& \& 6 \& \& 6 \& pF

\hline
\end{tabular}

*operating characteristics af $\mathbf{2 5}^{\circ} \mathrm{C}$ free-air temperature

PARAMETER		TEST CONDITIONS	2N2483	2N2484	UNIT	
		MaX	MAX			
$\overline{\text { MF }}$	Average Noise flgure		$\begin{array}{ll} V_{c E}=5 \mathrm{~V}, \quad I_{c}=10 \mu A_{1} & R_{G}=10 \mathrm{k} \mathrm{\Omega}, \\ \text { Nolse Bandwidh }=15.7 \mathrm{kHz}, & \text { See Mote } 5 \end{array}$	4	3	dB
NF	Spot Noise Figure	$\begin{array}{ll} V_{C E}=5 \mathrm{~V}, & I_{C}=10 \mu \mathrm{~A}, \quad R_{6}=10 \mathrm{k} \Omega, \\ I=100 \mathrm{~Hz}, & \text { Nolss Bandwiddh }=20 \mathrm{~Hz} \\ \hline \end{array}$	15	10	dB	
		$\begin{array}{ll} V_{C I}=5 \mathrm{~V}, & I_{c}=10 \mu \mathrm{~A}, \quad R_{e}=10 \mathrm{k} \Omega, \\ f=1 \mathrm{kHz}, & \text { Noiss Dondwidth }=200 \mathrm{~Hz} \end{array}$	4	3	$d 8$	
		$\begin{array}{ll} V_{C E}=5 \mathrm{~V}, & I_{c}=10 \mu \mathrm{~A}, \\ R_{e}=10 \mathrm{k} \Omega, \\ & =10 \mathrm{kHz}, \end{array}$	3	2	dB	

wotes: 4. These paramaters mest be massurad union pulse trehniques. $t_{p}=300 \mu s$, duty qeio $\leq 1 \%$.

*Indieates JEDEC ragistered data

TYPES 2N2497 THRU 2N2500 P-CHANNEL SILICON JUNCTION FIELD-EFFECT TRANSISTORS

BULLETIN NO. DL-S 683519, MAY 1963-REVISED MAY 1968

FOR SMALL-SIGNAL, LOW-NOISE APPLICATIONS

- Guaranteed 10 cps Noise Figure (2N2500)
- High Input Impedance (>5 megohms at 1 kc)
*mechanical data

*absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)
Continuous Forward Gate Current .
-10 ma
Total Device Dissipation at (or below) $25^{\circ} \mathrm{C}$ Free-Air Temperature (See Note 1) 0.5 w
Total Device Dissipation at (or below) $25^{\circ} \mathrm{C}$ Case Temperature (See Note 2) 1.5 w
Storage Temperature Range
*electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

Parameter	TEST CONDITIONS	2N2497	2N2498	2N2499	2N2500	UNIT
		MIN MAX	MIN MAX	MIN MAX	MIN MAX	
$\begin{array}{\|cc\|} \hline V_{\text {(DR)DGO }} & \begin{array}{c} \text { Drain-Gote Breakdown } \\ \text { Voltage } \end{array} \text { (See Note 3) } \end{array}$	$\mathrm{I}_{\mathrm{D}}=-10 \mu \mathrm{c}, \mathrm{I}_{\mathbf{s}}=0$	-20	- 20	- 20	- 20	v
IGSS Gote Cutoff Current	$\mathbf{v}_{\text {GS }}=10 v^{\prime}, \quad v_{\text {DS }}=0$	0.01	0.01	0.01	0.01	μ
IGSS Gate Cutoff Current	$\begin{array}{ll} V_{G S}=10 \mathrm{v}, & \begin{array}{l} Y_{D S}=0 \\ T_{A}=150^{\circ} \mathrm{C} \end{array} \end{array}$	10	10	10	10	μ
I DSS Lero-Gate-Voltoge Brain Current	$v_{\text {DS }}=-10 \mathrm{v}, \mathrm{V}_{G S}=0$	$-1 \quad-3$	-2 -6	-5 -15	$-1 \quad-6$	ma
${ }^{\text {Diofl }}$ Pinch-0Hf Drain Current	$\mathbf{V}_{\text {dS }}=-15 \mathrm{r}, \mathrm{V}_{\text {GS }}$: Soe Note 4	-10	-10	- 10	-10	μ
IDS Static Drain-Source Resistance	$\mathrm{I}_{\mathrm{D}}=-100 \mu \mathrm{a}, V_{G S}=0$	1000	800	600		ohm
$\left\|y_{i s}\right\| \quad$Smoll-Signal Common-Source Input Admittance	$V_{D S}=-10 v, \quad I_{D}:$ See Nofa 5$i=1 \mathrm{kc}$	0.2	0.2	0.2	0.2	$\mu \mathrm{mbo}$
$\left\|y_{f_{s}}\right\| \quad$Small-Signal Common-Souce Forward Transfer Admittence		10002000	15003000	2000 4000	10002200	$\mu \mathrm{mho}$
$\left\|\boldsymbol{y}_{\mathrm{rs}}\right\| \quad$Small-Signal Common-Source Reverse Transter Admittonce		0.1	0.1	0.1	0.1	$\mu \mathrm{mh}$
$\left\|y_{o s}\right\|$Small-Signal Common-Sourco Output Admiftance		20	40	100	20	$\mu \mathrm{mho}$
$\left\|\mathbf{y}_{\mathrm{fs}}\right\| \quad$Smali-Signal Common-Sourte Forward I Jonsfer Admittence	$y_{D S}=-10 r_{1} \quad I_{0}: \text { Soe Hole } 5$ $f=10 \mathrm{mc}$	900	1350	1800	900	$\mu \mathrm{mho}$
$\boldsymbol{c}_{\text {iss }} \quad$Common-Source Short-Circuit Input Capacitance	$\begin{array}{ll} v_{\mathrm{GS}}=0, & v_{\mathrm{DS}}=-10 \mathrm{v} \end{array}$	32	32	32	32	pf

*operating characteristics at $\mathbf{2 5}{ }^{\circ} \mathrm{C}$ free-air temperature
 (the Drain-Source Breakdown Voltage for $\left.V_{G S}=0\right)$. $V_{\text {(BR) }}$ DSV (the Drain-Source Breakdown Voltage for other values of $\mathrm{V}_{\mathbf{G S}}$) may be calculated from:
$\left|V_{(B R) D S V}\right| \approx\left|V_{(B R) D G O}\right|-\left|V_{G S}\right|$.
*Indicates JEDEC registeted dafa.

DESIGNED FOR MEDIUM-POWER SWITCHING AND GENERAL PURPOSE AMPLIFIER APPLICATIONS

- Total Switching Time . . . 80 nsec max at 150 ma
- High fT . . . $\mathbf{2 5 0} \mathbf{~ M c ~ m i n ~ a t ~} \mathbf{2 0} \mathbf{v , 2 0} \mathbf{~ m a}$
- hFE Guaranteed from 1 ma to 500 ma

*mechanical data

Device types 2N2537 and 2N2538 are in JEDEC TO-5 packages.
Device types 2N2539 and 2N2540 are in JEDEC TO-18 packages.

*ebsolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

WOTES: 1 . This volue applies when the bess-emittor resistance $\left(R_{\text {Be }}\right)$ is equal to of less then 10 ohms.
2. This value applies when the bese-mititor diede is apen-circuitod.
3. Derate 2W2537 and zN2538 linearly to $200^{\circ} \mathrm{C}$ free-air temperature al the rate of $4.57 \mathrm{~mm} / \mathrm{t}^{\circ}$.
4. Derate 2 2 2539 and 2 N 2540 lineorly to $200^{\circ} \mathrm{C}$ trov-air temperature at the rate of $2.86 \mathrm{~mm} / \mathrm{C}^{\circ}$.

6. Derute 2 N 2539 and 2 N 2540 linserly to $200^{\circ} \mathrm{C}$ cose temperature of the rote of $10.3 \mathrm{mw} / \mathrm{C}^{\circ}$.

[^56]*electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

NOTE 7: These paremotors mest be measured using palse tochniques. PW $\leq 300 \mu$ sec, Duty cycle $\leq \mathbf{7 \%}$.
*Indicates JEDEC registered data

TYPES 2N2537 THRU 2N2540
 N-P-N SILICON TRANSISTORS

*switching characteristics af $25^{\circ} \mathrm{C}$ free-air temperature

Parameter		TEST CONDITIONS	$\xrightarrow{\text { TO.5 } \rightarrow}$	$\begin{aligned} & \text { 2N2537 } \\ & \hline \text { 2N2539 } \end{aligned}$		$\begin{aligned} & \hline \text { 2N2538 } \\ & \hline \text { 2N2540 } \end{aligned}$		UNIT	
		MIN		MAX	MIN	MAX			
$\mathrm{t}_{\text {on }}$	Turn-on Time		$\begin{aligned} & I_{C}=150 \mathrm{ma}, I_{B(1]}=15 \mathrm{ma}, I_{Q(2)}=-15 \mathrm{ma} \\ & v_{\mathrm{BE}[0 \mathrm{ff}}=-1 \mathrm{v}, V_{C C}=7 \mathrm{v},(\text { See Figure } 1) \end{aligned}$			40		40	nser
toff	Tum-off Time				40		40	nser	
i_{1}	Storage Time	$I_{C}=I_{\text {E(1) }}=-I_{\text {P(2) }}=20 \mathrm{ma}$, (See Figure 2)			20		20	nsec	
Q_{T}	Totol Control Charge	$\mathrm{I}_{\mathrm{c}}=150 \mathrm{ma}, \mathrm{I}_{\text {(1) }}=15 \mathrm{ma}$, (See Figure 3)			750		750	pcb	
T_{A}	Active-hegion Time Constant	$V_{c c}=15.2 \mathrm{v}, \mathrm{I}_{\mathrm{c}}=150 \mathrm{ma}, \mathrm{I}_{8(1)}=15 \mathrm{ma}$, (See Figure 4)			2.0		2.0	nsec	

PARAMETER MEASUREMENT INFORMATION

*FIGURE 1 - TURN-ON AND TURN-OFF TIMES

*figure 2 - storage time

TYPES 2N2537 THRU 2N2540
 N-P-N SILICON TRANSISTORS

PARAMETER MEASUREMENT INFORMATION

(See Notes a and b) VOLTAGE WAVEFORMS

Note: $\quad Q_{Y} \leq 750^{\circ}$ peb when $V_{1} \leq 50 \mathrm{mv}$ and $\mathrm{t}_{\mathrm{f}} \leq 10$ nsec.

* FIGURE 3 - TOTAL COnTHOL CHAREE

TEST CIRCUIT

(See Notes a and b)
VOLTAGE WAVEFORMS

Note: In this circuit, $\tau_{A}=\frac{t_{r}}{10}$
-FIOURE 4 - ACTIVE-REOION TIME CONSTANT

FIGURE	$1{ }^{1}$	$1{ }^{*}$	M ${ }^{\text {P }}$	$\mathbf{I}_{\text {out }}{ }^{*}$
1	≤ 2 mact	$\leq 2 \mathrm{max}$	$1 \mu \mathrm{sec}$	508
2	≤ 2 пsя	≤ 2 mate		50Ω
3		≤ 2 nsoc		
4	≤ 2 mac	$\leq 2 \mathrm{moc}$		50Ω

NOTE it: Wevolerms are menitered on oscilloseopss with the heliewing charectorisiks:

FIGURE	$t_{\text {P* }}$	${ }_{1 / 4}{ }^{*}$	$c_{\text {in }}$
1	≤ 1 nsoe	10 Mn	$\leq 5 \mathrm{pt}$
2	≤ 5 nser	10 ma	$\leq 10 \mathrm{pf}$
3	≤ 1 nsor	10 Mn	$\leq 5 \mathrm{pt}$
4	≤ 5 nsoc	10 ma	$\leq 10 \mathrm{pf}$

[^57]
TYPE 2N2586
 N-P-N SILICON TRANSISTOR

FOR EXTREMELY LOW-LEVEL, LOW-NOISE, AMPLIFIER APPLICATIONS

- Guaranteed Very-Low-Current hfe . . . 80 min at $1 \mu \mathrm{~A}$
- Guaranteed Low-Temperature hFE . . . 40 min at $10 \mu \mathrm{~A},-65^{\circ} \mathrm{C}$
- Complete Noise Characterization at $1 \mu \mathrm{~A}$ and $10 \mu \mathrm{~A}$

*mechanical dafa

*absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless etherwise noted)

[^58]
TYPES 2N2588
 N-P-N SILICON TRANSISTOR

*eloctrical charectorisfles of $25^{\circ} \mathrm{C}$ tree-air temperature (unless otherwise noted)

PaRMMITHE	TIST CONDITIONS	MIN MAX	UNIT
$V_{\text {(m, cso }}$ Collector-dase Brackdown Volmaje	$l_{c}=10 \mu \mathrm{a}, \mathrm{l}_{\mathrm{E}}=0$	60	v
	$\mathrm{l}_{c}=10 \mathrm{ma}, l_{1}=0(500 \mathrm{Moto} 4)$	45	v
$V_{\text {(marico }}$ Emittor-Base Brandomo Voltoen	$l_{1}=10 \mu \mathrm{a}, l_{c}=0$	6	v
Iewo Collector Cutoff Current	$V_{\text {cta }}=45 \mathrm{v}, \mathrm{l}_{\mathrm{t}}=0$	2	no
Lero Collecter Cutoff Current	$V_{C t}=5 v_{1} \quad I_{B}=0$	2	no
Collecter Cutoff Curront	$V_{c t}=45 \mathrm{v}, V_{m i}=0$	2	na
	$V_{c t}=45 \mathrm{v}, V_{\mathrm{w}}=0, \quad \mathrm{~T}_{\mathrm{A}}=170^{\circ} \mathrm{C}$	10	μ
Ineo. Emitter Cutoff Curront	$v_{\text {et }}=5 v_{1} \quad l_{c}=0$	2	no
Static ferword Curmot Trunster Ratio	$v_{c t}=5 v_{\text {g }} \quad l_{c}=1 \mu \mathrm{~m}$	80	
	$V_{\text {ct }}=5 v_{1}, k_{c}=10 \mu \mathrm{a}$	$120 \quad 360$	
	$V_{\mathrm{Ct}}=5 \mathrm{v}, \quad \mathrm{lc}_{\mathrm{c}}=10 \mu \mathrm{a}, \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$	40	
	$V_{c t}=5 \mathrm{v}, \quad l_{c}=500 \mu \mathrm{a}$	150	
	$V_{c t}=5 \mathrm{v}, \mathrm{lc}_{\mathrm{c}}=10 \mathrm{mo}(500$ Note 4)	600	
Ver Baso-Emitter Voltues	$\mathrm{l}_{\mathrm{a}}=0.5 \mathrm{ma}, \mathrm{l}_{\mathrm{c}}=10 \mathrm{mo}$	0.70 .9	v
$V_{\text {cquat) }}$ Collioctor-Emitior Soturation Voltreye	$\mathrm{l}_{\mathrm{L}}=0.5 \mathrm{mo}, \mathrm{l}_{\mathrm{c}}=10 \mathrm{~mm}$	0.5	v
his $\begin{aligned} & \text { Small-Signal Commen-Emittor } \\ & \text { Input Impedance }\end{aligned}$ Input Impedance	$V_{C E}=5 \mathrm{v}, \quad \mathbf{l}_{\mathbf{c}}=1 \mathrm{mos}, \quad 1=1 \mathrm{kc}$	4.518	kohn
$h_{\infty} \quad \begin{aligned} & \text { Small-Signal Common-Emittor } \\ & \text { Output Admittance }\end{aligned}$	$V_{c t}=5 \mathrm{v}, \mathrm{l}_{\mathrm{c}}=1 \mathrm{ma}, \quad 1=1 \mathrm{kc}$	100	$\mu \mathrm{mho}$
$h_{\text {ho }} \quad \begin{aligned} & \text { Small-Slegnal Common-Emithor } \\ & \text { Forward Currant Tramsfor Ratio }\end{aligned}$	$V_{\text {ct }}=5 \mathrm{v}, \quad \mathrm{lc}_{\mathrm{c}}=1 \mathrm{ma}, \quad 1=1 \mathrm{kc}$	150600	
\|hol Small-Simnal Common-Emithor	$V_{\mathrm{ct}}=5 \mathrm{v}, \quad \mathrm{l}_{\mathrm{c}}=500 \mu \mathrm{l}, 1=30 \mathrm{~mm}$	1.5	
$\mathrm{C}_{\mathrm{ab}} \quad$ Common-dase Open-Uravit Output Capaditance	$V_{c t}=5 \mathrm{~V}, \quad \mathrm{~h}=0, \quad \mathrm{f}=1 \mathrm{mc}$	7.0	pf

*operating charactoristies at $25^{\circ} \mathrm{C}$ tree-ailr temperature

paramitith	Tlist CONDITIONS	MAX	UNIT
MF Spol Nolst Flgure	$V_{\text {est }}=5 \mathrm{v}, \mathrm{l}_{\mathrm{c}}=10 \mu_{0}, \mathrm{~m}_{0}=10 \mathrm{k} \Omega_{\text {, }} \mathrm{I}=10 \mathrm{kc}$	2.0	db
	$V_{\text {cit }}=5 \mathrm{v}, \mathrm{t}_{\mathrm{c}}=10 \mu \mathrm{a}, \mathrm{R}_{\mathrm{c}}=10 \mathrm{k} \Omega, 1=1 \mathrm{kc}$	3.0	dit
	$V_{c t}=5 \mathrm{v}, \mathrm{l}_{\mathrm{c}}=1 \mu \mathrm{l}, \mathrm{R}_{\mathrm{c}}=1 \mathrm{~m}$, $f=10 \mathrm{kc}$	2.0	dh
	$V_{\text {ct }}=5 \mathrm{y}, \mathrm{l}_{\mathrm{c}}=1 \mu \mathrm{c}, \mathrm{R}_{0}=1 \mathrm{~m} \Omega, \mathrm{l}=1 \mathrm{kc}$	3.5	did

- Jadiceten JEDEC registerval date

TYPES 2N2604, 2N2605
 P-N-P SILICON TRANSISTORS

BULLETIN NO. DL.S 7311966, MARCH 1973

FOR LOW-LEVEL, LOW-NOISE, HIGH-GAIN AMPLIFIER APPLICATIONS

- For Complementary Use with 2N929, 2N930, 2N2483, 2N2484, and 2N2586
- Guaranteed hFE at $10 \mu \mathrm{~A},-55^{\circ} \mathrm{C}$ and $25^{\circ} \mathrm{C}$
- Low Noise Charactaristics
- Usable at Collector Currents as Low as $1 \mu \mathrm{~A}$

*mechanical data

THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE CASE

ALL JEDEC TO-46 DIMENSIONS AND NOTES ARE APPLICABLE
${ }^{\boldsymbol{T}} \mathrm{T}$ I guaranteed minimum. The JEDEC ragisterad minimum lasd diameter for the TO-46 is 0.012 .
*absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

NOTES: 1. This value applien betwaen 0 and 10 mA collector eurrent when the base-emltter diode le open-circulted.
2. Derate IInearly to $200^{\circ} \mathrm{C}$ free-air temparature at the rate of $2.28 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.

TYPES 2N2604, 2N2605 P-N-P SILICON TRANSISTORS

*electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

PARAMETER		TEST CONDITIONS	2N2604	2N2605	UNIT	
		MIN MAX	MIN MAX			
$V_{\text {(BR) }}$ CBO	Collector-Base Breakdown Voltage		$\mathrm{I}^{\prime} \mathrm{C}=-10 \mu \mathrm{~A}, \quad \mathrm{I} E=0$	-60	-60	V
$V_{\text {(BR) }}$ CEO	Collector-Emitter Breakdown Voltage	$\mathrm{I}_{\mathrm{C}}=-10 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0, \quad$ See Note 3	-45	-45	V	
$V_{\text {(BR)EBO }}$	Emitter-Base Breakdown Voltage	$\mathrm{I}_{\mathrm{E}}=-10 \mu \mathrm{~A}, \quad \mathrm{I}^{2}=0$	-6	-6	V	
1 CBO	Collector Cutoff Current	$\mathrm{V}_{C B}=-45 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0$	-10	-10	nA	
ICES	Collector Cutoff Current	$V_{C E}=-45 \mathrm{~V}, \mathrm{~V}_{\mathrm{BE}}=0$	-10	-10	nA	
		$\mathrm{V}_{\text {CE }}=-45 \mathrm{~V}, \mathrm{~V}_{\mathrm{BE}}=0, \quad \mathrm{~T}_{\mathrm{A}}=170^{\circ} \mathrm{C}$	-10	-10	$\mu \mathrm{A}$	
IEBO	Emitter Cutoff Current	$V_{E B}=-5 V, I^{\prime}=0$	-2	-2	nA	
$h_{\text {FE }}$	Static Forward Current Transfer Ratio	$V_{C E}=-5 \mathrm{~V}, 1 \mathrm{C}=-10 \mu \mathrm{~A}$	$40 \quad 120$	$100 \quad 300$		
		$V_{C E}=-5 \mathrm{~V}, \mathrm{I}^{\prime}=-10 \mu \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$	10	20		
		$\mathrm{V}_{C E}=-5 \mathrm{~V}, \mathrm{I}^{\prime} \mathrm{C}=-500 \mu \mathrm{~A}$	60	150		
		$\mathrm{V}_{\mathrm{CE}}=-5 \mathrm{~V}, \mathrm{I}^{\prime}=-10 \mathrm{~mA}$, See Note 3	350	600		
$V_{\text {BE }}$	Base-Emitter Voltage	$\mathrm{I}_{\mathrm{B}}=-0.5 \mathrm{~mA}, \mathrm{I}^{\prime} \mathrm{C}=-10 \mathrm{~mA}$, See Note 3	-0.7 -0.9	-0.7 -0.9	V	
VCE(sat)	Collector-Emitter Saturation Voltage	$\mathrm{I}_{\mathrm{B}}=-0.5 \mathrm{~mA}, \mathrm{I}_{C}=-10 \mathrm{~mA}$, See Note 3	-0.5	-0.5	V	
$\mathbf{h i b}_{\text {b }}$	Small-Signal Common-Base Input Impedance	$V_{C B}=-5 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=1 \mathrm{~mA}, \quad \mathrm{f}=1 \mathrm{kHz}$	$25 \quad 35$	$25 \quad 35$	Ω	
$h_{\text {rb }}$	Small-Signal Common-Base Reverse Voltage Transfer Ratio		$\begin{array}{r} 10 x \\ 10^{-4} \end{array}$	$\begin{array}{r} 10 \times \\ 10^{-4} \end{array}$		
$h_{\text {ob }}$	Small-Signal Common-Base Output Admittance		1	1	$\mu \mathrm{mho}$	
h_{fe}	Small-Signal Common-Emitter Forward Current Transfer Ratio		$60 \quad 350$	150600		
Hfe!	Small-Signal Common-Emitter Forward Current Transfer Ratio	$V_{C E}=-5 \mathrm{~V}, \quad 1 \mathrm{C}=-500 \mu \mathrm{~A}, \mathrm{f}=30 \mathrm{MHz}$	1	1		
Cobo	Common-Base Open-Circuit Output Capacitance	$V_{C B}=-5 V, l_{E}=0 . \quad f=1 \mathrm{MHz}$	6	6	pF	
$h_{\text {ie }}($ real $)$	Real Part of Small-Signal Common-Emitter Input Impedance	$V_{C E}=-5 V, \quad I_{C}=-1 \mathrm{~mA}, \quad f=100 \mathrm{MHz}$	200	200	Ω	

*operating characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER		TEST CONDITIONS	2N2604	2N2605	UNIT	
		MIN MAX	MIN MAX			
F	Average Noise Figure		$V_{C E}=-5 \mathrm{~V}, \quad I_{C}=-10 \mu \mathrm{~A}, \quad \mathrm{R}_{\mathrm{G}}=10 \mathrm{k} \Omega$, Noise Bandwidth $=15.7 \mathrm{kHz}$, See Note 4	4	3	dB

NOTES: 3. These parameters must be measured using puise techniques. $t_{w}=\mathbf{3 0 0} \mu \mathrm{s}$, duty cycte $\leqslant \mathbf{2 \%}$.
4. Average Noise Figure is measured in en amplitier with response down 3 dB at 10 Hz and 10 kHz and a high-frequency roll-off of $6 \mathrm{~dB} /$ octave.

[^59]
SILECT ${ }^{\dagger}$ TRANSISTORS \ddagger
 FOR LOW-LEVEL, LOW-NOISE, HIGH-GAIN AMPLIFIER APPLICATIONS

- Minimum hfe at $10 \mu \mathrm{~A}$. . 100 (A5T2605)
- Low Average Noise Figure . . . 3 dB, Max (A5T2605)
- Usable at Collector Currents as Low as $1 \mu \mathrm{~A}$

mechanical data

These transistors are encapsulated in a plastic compound specifically designed for this purpose, using a highly mechanized process developed by Texas Instruments. The case will withstand soldering temperatures without deformation. These devices exhibit stable characteristics under high-humidity conditions and are capable of meeting MIL-STD-202C, Method 106B. The transistors are insensitive to light.

absolute maximum ratings at $\mathbf{2 5}{ }^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

NOTES: 1. This value applies betwesn O and 10 mA collector current when the base-emitter diode is open-circuited.
2. Derate linearly to $150^{\circ} \mathrm{C}$ free-air temperature at the rate of $5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
†Trademark of Texas Instruments
\ddagger U.S. Patent No. 3,439,238

TYPES A5T2604, A5T2605 P-N-P SILICON TRANSISTORS

electrical characteristics at $\mathbf{2 5}{ }^{\circ} \mathbf{C}$ free-air temperature (unless otherwise noted)

PARAMETER		TEST CONDITIONS	A5T2604	A5T2605	UNIT	
		MIN MAX	MIN MAX			
$V_{\text {(BR) }}$ CBO	Collector-Base Breakdown Voltage		$\mathrm{I}_{\mathrm{C}}=-10 \mu \mathrm{~A}, \quad \mathrm{I}_{\mathrm{E}}=0$	-60	-60	V
$V_{\text {(BR) }}$ CEO	Collector-Emitter Breakdown Voltage	$\mathrm{I}_{\mathrm{C}}=\mathbf{- 1 0 m A}, \mathrm{I}_{\mathrm{B}}=0, \quad$ See Note 3	-45	-45	V	
$V_{\text {(BR)EBO }}$	Emitter-Base Breakdown Voltage	$\mathrm{I}_{\mathrm{E}}=-10 \mu \mathrm{~A}, \mathrm{I}^{2}=0$	-6	-6	V	
ICBO	Collector Cutoff Current	$\mathrm{V}_{\mathrm{CB}}=-45 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0$	-10	-10	nA	
ICES	Collector Cutoff Current	$\mathrm{V}_{\text {CE }}=-45 \mathrm{~V}, \mathrm{~V}_{\text {BE }}=0$	-10	-10	nA	
		$V_{C E}=-45 \mathrm{~V}, \mathrm{~V}_{\mathrm{BE}}=0, \quad \mathrm{~T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$	-200	-200		
IEBO	Emitter Cutoff Current	$\mathrm{VEB}=-5 \mathrm{~V}, \mathrm{IC}=0$	-2	-2	nA	
hfe	Static Forward Current Transfer Ratio	$V_{C E}=-5 \mathrm{~V}, \mathrm{I}^{\prime}=-10 \mu \mathrm{~A}$	$40 \quad 120$	$100 \quad 300$		
		$V_{C E}=-5 \mathrm{~V}, \mathrm{I}^{\prime}=-500 \mu \mathrm{~A}$	60	150		
		$V_{C E}=-5 \mathrm{~V}, \mathrm{I}^{\prime}=-10 \mathrm{~mA}$, See Note 3	350	600		
VBE	Base-Emitter Voltage	$\mathrm{I}_{\mathrm{B}}=-0.5 \mathrm{~mA}, \mathrm{I}^{\prime} \mathrm{C}=-10 \mathrm{~mA}$, See Note 3	-0.7 -0.9	-0.7	V	
VCE(sat)	Collector-Emitter Saturation Voltage	$\mathrm{I}_{B}=-0.5 \mathrm{~mA}, \mathrm{I}^{\prime}=-10 \mathrm{~mA}$, See Note 3	-0.5	-0.5	V	
$h_{i b}$	Small-Signal Common-Base Input Impedance	$V_{C B}=-5 \mathrm{~V}, \quad \mathrm{l}_{\mathrm{E}}=1 \mathrm{~mA}, \quad f=1 \mathrm{kHz}$	2535	$25 \quad 35$	Ω	
$h_{r b}$	Small-Signal Common-Base Reverse Voltage Transfer Ratio		$\begin{array}{r} 10^{-x} \\ 10^{-4} \end{array}$	$\begin{array}{r} 10 \times \\ 10^{-4} \end{array}$		
hob	Small-Signal Common-Base Output Admittence		1	1	$\mu \mathrm{mho}$	
$h_{\text {fe }}$	Small-Signal Common-Emitter Forward Current Transfer Ratio		60350	150600		
\|hfel	Small-Signal Common-Emitter Forward Current Transfer Ratio	$V_{C E}=-5 \mathrm{~V}, \quad \mathrm{I}^{\prime}=-500 \mu \mathrm{~A}, \mathrm{f}=30 \mathrm{MHz}$	1	1		
Cobo	Common-Base Open-Circuit Output Capacitance	$V_{C B}=-5 V, \quad l_{E}=0, \quad f=1 \mathrm{MHz}$	6	6	pF	
$h_{\text {ie(real }}$)	Real Part of Small-Signal Common-Emitter Input Impedance	$V_{C E}=-5 \mathrm{~V}, \quad 1 \mathrm{C}=-1 \mathrm{~mA}, \quad f=100 \mathrm{MHz}$	200	200	Ω	

operating characteristics at $\mathbf{2 5}{ }^{\circ} \mathrm{C}$ free-air temperature

PARAMETER		TEST CONDITIONS	A5T2604	AST2605	UNIT	
		MIN MAX	MIN MAX			
$\overline{\mathrm{F}}$	Average Noise Figure		$\begin{array}{ll} V_{C E}=-5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{C}}=-10 \mu \mathrm{~A}, & \mathrm{R}_{\mathrm{G}}=10 \mathrm{k} \Omega, \\ \text { Noise Bandwidth }=15.7 \mathrm{kHz}, & \text { See Note } 4 \end{array}$	4	3	dB

NOTES: 3. These parameters must be measured using pulse techniques. $t_{w}=300 \mu s$, duty cycle $\leqslant 2 \%$.
4. Average Noise Figure is measured in an amplifier with response down 3 dB at 10 Hz and 10 kHz and a high-frequency roll-off of $6 \mathrm{~dB} /$ octave.

FOR SMALL-SIGNAL, LOW-NOISE APPLICATIONS

\author{

- High Input Impedance
}
*mechanical data

absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

$$
\begin{aligned}
& \text { Continuous Forward Gate Current } \\
& -10 \mathrm{~mA} \\
& \text { *Continuous Device Dissipation at (or below) } 25^{\circ} \mathrm{C} \text { Free-Air Temperature (See Note 1) } \\
& 300 \mathrm{~mW} \\
& \text { *Storage Temperature Range } \\
& \text { Lead Temperature } \mathbf{1 / 1 6} \text { inch from Case for } 10 \text { Seconds } \\
& 300^{\circ} \mathrm{C}
\end{aligned}
$$

electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

operating characteristics at $25^{\circ} \mathbf{C}$ free-air temperature

PARAMETER		TEST CONDITIONS			BOTH		UNIT			
		MIN	MAX							
*NF	Common-Source Spot Noise Figure				$V_{D S}=-5 \mathrm{~V}, \quad V_{G S}=0$,	$\mathrm{f}=1 \mathrm{kHz}$,	$\mathrm{R}_{\mathrm{G}}=1 \mathrm{M} \Omega$		3	dB

NOTE 1: Derate linearly to $175^{\circ} \mathrm{C}$ free-air temperature at the rate of $2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
*JEDEC registered data. This data sheet contains all applicable registered data in effect at the time of publication.

TWO TRANSISTORS IN ONE PACKAGE RECOMMENDED FOR

- Differential Amplifiers
- High-Gain, Low-Noise Audio Amplifiers
- Transducer Signal-Conditioner Amplifiers
- Low-Level Flip.Flops
"mechanical data

*absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

NOTES: 1. This volue applies when the emitter-base diode is open-circuited.
2. For each triode derate linearly to $175^{\circ} \mathrm{C}$ frea-air temperature at the rate of $2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
3. For each triode derate linearly to $175^{\circ} \mathrm{C}$ case temperature at the rate of $4 \mathrm{mw} /{ }^{\circ} \mathrm{C}$.
-JEDEC registered date. This data sheat contains all applicable registered data in effect et the time of publication.

TYPES 2N2639 THRU 2N2644 dUAL N-P-N SILICON TRANSISTORS

*electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)
individual triode characteristics (see note 4)

PARAMETER	TEST CONDITIONS			$\begin{aligned} & 2 \mathrm{~N}_{2} 659 \\ & 2 N 2640 \\ & 2 N 2641 \end{aligned}$	$\begin{aligned} & \text { 2N2645 } \\ & 2 N 2643 \\ & \text { 2NR264 } \end{aligned}$	UNIT
				MIN MAX	MIN MAX	
V(RR)CEO Collector-Emitter Breakdown Voltage	$I^{\prime} \mathrm{C}=10 \mathrm{~mA}$,	$I_{B}=0$,	Ser Note 5	45	45	V
ICBO Collector Cutoff Current	$V_{C B}=45 \mathrm{~V}$,	$\mathrm{J}_{5}=0$		10	10	nA
	$V_{C B}=45 \mathrm{~V}$,	$\mathrm{I}_{\mathrm{E}}=0$,	$\mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$	10	10	$\mu \mathrm{A}$
$I_{\text {CEO }}$ Collector Cutoff Current	$V_{C E}=5 \mathrm{~V}$,	$\mathrm{I}_{\mathrm{B}}=0$		10	10	nA
IEBO Emitter Cutoff Current	$V_{E B}=5 V_{\text {d }}$	$1^{1} C=0$		10	10	nA
hfe Static Forward Current Transfer Ratio	$V_{C E}=5 V_{\text {, }}$	$I_{C}=10 \mu A$		$50 \quad 300$	$100 \quad 300$	
	$V_{C E}=5 \mathrm{~V}$,	$I^{\prime} C=10 \mu A$,	$T_{A}=-55^{\circ} \mathrm{C}$	10	20	
	$V_{C E}=5 V_{1}$	$\mathrm{I}_{\mathrm{C}}=100 \mu \mathrm{~A}$		55	110	
	$V_{C E}=5 \mathrm{~V}_{1}$	$I_{C}=1 \mathrm{~mA}$		65	130	
VBE Base-Emitter Voltage	$\mathrm{I}_{\mathrm{B}}=0.5 \mathrm{~mA}$,	$I_{C}=10 \mathrm{~mA}$,		0.6	$0.6 \quad 1$	V
$\mathrm{V}_{\text {CE }}(\mathrm{sat}) \quad$ Collector-Emitter Saturation Voltage	${ }^{1} B=0.5 \mathrm{~mA}$,	$I_{C}=10 \mathrm{~mA}$		1	1	V
$\mathrm{h}_{\text {ib }} \quad$ Small-Signal Common-Base Input Impedance	$V_{C B}=5 \mathrm{~V}$,	${ }^{\prime} \mathrm{E}=-1 \mathrm{~mA}$,	$f=1 \mathrm{kHz}$	$25 \quad 32$	$25 \quad 32$	Ω
h_{rb} Small-Signal Common-Base Reverse Voltage Transfer Ratio				$\begin{gathered} 6 \times \\ 10^{-4} \\ \hline \end{gathered}$	$\begin{gathered} 6 \times \\ 10^{-4} \\ \hline \end{gathered}$	
$\mathrm{h}_{\text {ob }} \quad$ Small-Signal Common-Base Output Admittance				1	1	$\mu \mathrm{mho}$
$h_{f e}$ Small-Signal Common-Emitter Forward Current Transfer Ratio	$V_{C E}=5 \mathrm{~V}$,	$I_{C}=1 \mathrm{~mA}$,	$f=1 \mathrm{kHz}$	65600	130600	
$\left\|h_{\mathrm{fe}}\right\| \quad$Small-Signal Common-Emitter Forward Current Transfer Ratio	$V C E=5 V$,	$\mathrm{IC}=1 \mathrm{~mA}$,	$f=20 \mathrm{MHz}$	4	4	dB
Cobo Common-Base Open-Circuit Output Capscitance	$V_{C B}=5 V$,	$t E=0$,	$f=1 \mathrm{MHz}$	8	8	pF

triode matching characteristics

PARAMETER		TEST CONDITIONS			$\begin{aligned} & \text { 2N2639 } \\ & \text { 2N2642 } \\ & \hline \end{aligned}$		$\begin{aligned} & \text { 2N2640 } \\ & \text { 2N2643 } \\ & \hline \end{aligned}$		UNIT			
		MIN	MAX	MIN	MAX							
$\frac{h_{F E 1}}{h_{F E 2}}$	Static Forward-Current-Gain Balance Ratio				$V_{C E}=5 \mathrm{~V}$.	${ }^{1} \mathrm{C}=10 \mu \mathrm{~A}$,	See Note 6	0.9	1	0.8	1	
\| $\mathrm{V}_{\text {BE1 }}-\mathrm{V}_{\text {BE2 }} \mid$	Base-Emitter-Voltage Differential	$V_{C E}=5 \mathrm{~V}$,	$I^{\prime} C=10 \mu A$			5		10	mV			
$\left\|\frac{\Delta\left(V_{B E 1}-V_{B E 2}\right)}{\Delta T_{A}}\right\|$	Base-Emitter-Voltage-Differential Temperature Gradient	$\begin{aligned} & V_{C E}=5 \mathrm{~V}, \\ & \Delta T_{A}=125^{\circ} \end{aligned}$	$\begin{aligned} & I^{I}=10 \mu A \\ & \left.\left(-55^{\circ} \mathrm{C}\right)\right] \end{aligned}$	$\left.25^{\circ} \mathrm{C}-25^{\circ} \mathrm{C}\right]$		10		20	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$			

*operating characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

individual triode characteristice (see note 4)

NOTES: 4. The terminals of the triode not under test are open-circulted for the measurement of these charseteristes.
8. This paramoter must be measured using pulse technlques. $\imath_{w}=\mathbf{3 0 0} \mu_{\mathbf{s}}$, dutv cyele $\mathbf{6} \mathbf{2 \%}$.
6. The lower of the two $h_{F E}$ resdings is taken as $h_{F E 1}$,
7. Averape Noise Flgure is messured in an amplifier with response down 3 dB at 10 Hz and 10 kHz and a high-fraquancy rolloff of © dB/octave.

- JEDEC registered date

PLANAR UNIJUNCTION TRANSISTORS SPECIFICALLY CHARACTERIZED FOR A WIDE RANGE OF MILITARY AND INDUSTRIAL APPLICATIONS

- Planar Process Ensures Low Leakage, Low Drive-Current Requirement, and Improved Reliability

*mechanical data

Package outline is the same as JEDEC TO-18 except for lead position. All TO-18 registration notes also apply to this outline.

*absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (uniess otherwise noted)

TYPES 2N2646, 2 N2647
 P-N PLANAR SILICON UNLUUNCTION TRANSISTORS

*electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

PARAMETER		TEST CONDITIONS	2N2846		2 N 2647		UNIT	
		MIN	MAX	MIN	MAX			
'BB	Static Interbase Resistance		$V_{B 2 B 1}=3 V, \quad V_{E}=0$	4.7	9.1	4.7	9.1	$k \Omega$
$\alpha_{\mathrm{r} B \mathrm{~B}}$	Interbase Resistance Temperature Coofficient	$V_{B 2 B 1}=3 V$, $I_{E}=0$, $T_{A}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$, See Note 4	0.1	0.9	0.1	0.9	$\% /^{\circ} \mathrm{C}$	
η	Intrinsic Standoff Ratio	$\mathrm{V}_{\mathrm{B2B1}}=10 \mathrm{~V}$, See Figure 1	0.56	0.75	0.68	0.82		
IEB2O	Emitter Reverse Current	$\mathrm{V}_{\mathrm{EB2}}=-30 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{B} 1}=0$		-12		-0.2	$\mu \mathbf{A}$	
Ip	Peak-Point Emitter Current	$\mathrm{V}_{\mathrm{B2B1}}=25 \mathrm{~V}$		5		2	$\mu \mathrm{A}$	
IV	Valley-Point Emitter Current	$\mathrm{V}_{\mathrm{B2B1}}=20 \mathrm{~V}$	4		8	18	mA	
VOB1	Baso-Ona Peak Pulse Voltage	See Figure 2	3		6		V	

NOTE 4: Temperature coefficient α_{rBg} is determined by the following formula:

$$
\alpha_{\mathrm{rBB}}=\left[\frac{\left(\mathrm{r}_{\mathrm{BB}} 125^{\circ} \mathrm{C}\right)-\left(\mathrm{r}_{\mathrm{BB}}{ }^{\oplus}-55^{\circ} \mathrm{C}\right)}{\mathrm{r}_{\mathrm{BB}}{ }^{\circ} 5^{\circ} \mathrm{C}}\right] \frac{100 \%}{180 \%} .
$$

To obtain $r_{B B}$ for a given temperature $T_{A(2)}$, use the following formula:
$r_{B B(2)}=\quad\left[r_{B B}\left(25^{\circ} \mathrm{C}\right]\left[1+\left(\alpha_{\mathrm{rBg}} / 100 \%\right)\left(T_{A(2)}-25^{\circ} \mathrm{C}\right)\right]\right.$.

*PARAMETER MEASUREMENT INFORMATION

D1: Sllieon dlode with the following characteristics:
$V_{F}=0.672 \mathrm{Vat} \mathrm{I}_{\mathrm{F}}=0.5 \mathrm{~mA}$
$\mathrm{I}_{\mathrm{R}} \leqslant 2 \mathrm{nA}$ at $\mathrm{V}_{\mathrm{R}}=20 \mathrm{~V}$.
η-Intrinsic Standoff Ratio-This parameter is defined by the equation: $V_{P}=\eta V_{B B}+V_{F}$, where V_{F} is about 0.67 volts at $25^{\circ} \mathrm{C}$ and decreases with tempersture at about 2 millivolts ${ }^{\circ} \mathrm{C}$.

A circuit which may be used to measure η is shown in this figure. In this circult, R1, C1, and the unijunction transistor form a relaxation oscillator. The remainder of the circuit serves as a peak-voltage detector with the diode D1 sutomatically subtracting the voltage V_{F}. To use the circuit, the calibrated potentiometer R3 is adjusted to null the metor M. The potentiometer le then read directly for η. e.9., $6 \mathrm{k} \Omega$ represents $\eta=0.6$.

FIGURE 2-VOB1 TEST CIRCUIT

FIGURE 1- η TEST CIRCUIT

EMITTER-BASE-ONE VOLTAGE
vs EMITTER CURRENT

FIGURE 3-GENERAL STATIC EMITTER CHARACTERISTIC CURVE

[^60]
TWO P-N-P TRANSISTORS IN ONE PACKAGE RECOMMENDED FOR

- Differential Amplifiers

- Low-Noise, Low-Level Amplifiers
- Low-Level Flip-Fiops
- Complementary Use With 2N2639 Through 2N2644 Dual N-P-N Transistors
*meachanical data

*absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

1. This value applies when the base-amitter diode is open-circuited.
2. For sach triode derate linearly to $175^{\circ} \mathrm{C}$ free-air temperature at the rate of $1.67 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
3. For each triode derate linearly to $175^{\circ} \mathrm{C}$ case temperature at the rate of $3.33 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
-JEDEC registered data. This data sheat contains all applicable registered data in effect at the time of publication.

TYPES 2N2802 THRU 2N2807
 DUAL P-N-P PLANAR SILICON TRANSISTORS

*electrical characteristics at $\mathbf{2 5}{ }^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)
individual triode characteristics (see note 4)

PARAMETER	TEST CONDITIONS	$\begin{aligned} & \text { 2N2802 } \\ & \text { 2N2803 } \\ & \text { 2N2804 } \end{aligned}$		UNIT
		MIN . MAX	MIN MAX	
V(BR)CEO Collector-Emitter Breakdown Voltage	$\mathrm{I}_{\mathrm{C}}=-10 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0, \quad$ See Note 5	-20	-20	V
Collector Cutoff Current	$\mathrm{V}_{C B}=-25 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0$	-10	-10	nA
	$V_{C B}=-25 V, I_{E}=0, \quad T_{A}=150^{\circ} \mathrm{C}$	-10	-10	$\mu \mathrm{A}$
IEbo Emitter Cutoff Current	$V_{E B}=-5 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=0$	-10	-10	nA
Static Forward Current Transfer Ratio	$V_{C E}=-5 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=-10 \mu \mathrm{~A}$	15	30	
	$\mathrm{V}_{\text {CE }}=-5 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=-100 \mu \mathrm{~A}$	$20 \quad 120$	$40 \quad 120$	
	$\mathrm{V}_{\text {CE }}=-5 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=-100 \mu \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$	10	20	
	$\mathrm{V}_{\text {CE }}=-5 \mathrm{~V}$. $1_{C}=-1 \mathrm{~mA}$	20	40	
$\mathrm{V}_{\text {BE }}$ Base-Emitter Voltage	$\mathrm{I}_{\mathrm{B}}=-1 \mathrm{~mA}, \mathrm{I}_{\mathrm{C}}=-10 \mathrm{~mA}$	-0.7-0.9	-0.7-0.9	V
VCE(sat) Collector-Emitter Saturation Voltage	$\mathrm{I}_{\mathrm{B}}=-1 \mathrm{~mA}, \mathrm{I}_{\mathrm{C}}=-10 \mathrm{~mA}$	-0.5	-0.5	V
$\mathrm{h}_{\text {ib }}$ Small-Signal Common-Base Input Impedance	$V_{C B}=-5 \mathrm{~V}, \mathrm{l}_{E}=1 \mathrm{~mA}, \quad f=1 \mathrm{kHz}$	$25 \quad 32$	$25 \quad 32$	Ω
$h_{r b}$ Small-Signal Common-Base Reverse Voltage Transfer Ratio		$\begin{aligned} & 12 \times \\ & 10^{-4} \end{aligned}$	$\begin{aligned} & 12 x \\ & 10^{-4} \end{aligned}$	
hob Small-Signal Common-Base Output Admittance		1	1	$\mu \mathrm{mho}$
\mathbf{h}_{fe} Small-Signal Common-Emitter Forward Current Transfer Ratio	$\mathrm{V}_{C E}=-5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{C}}=-1 \mathrm{~mA}, \quad f=1 \mathrm{kHz}$	$20 \quad 200$	$40 \quad 200$	
Thel Small-Signal Common-Emitter	$V_{C E}=-5 \mathrm{~V}, \quad \mathrm{IC}=-1 \mathrm{~mA}, \quad f=20 \mathrm{MHz}$	3	3	
Cobo Common-Base Open-Circuit Output Capacitance	$\mathrm{V}_{\mathrm{CB}}=-5 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0, \quad \mathrm{f}=1 \mathrm{MHz}$	8	8	pF

triode matching characteristics

PARAMETER		TEST CONDITIONS	$\begin{aligned} & \text { 2N2802 } \\ & \text { 2N2905 } \\ & \hline \end{aligned}$		$\begin{aligned} & \text { 2N2803 } \\ & \text { 2N2806 } \\ & \hline \end{aligned}$		UNIT	
		MIN	MAX	MIN	MAX			
$\frac{\text { hFE1 }}{}$	Static Forward-Current-Gain Balance Ratio		$V_{C E}=-5 \mathrm{~V}, \mathrm{I} C=-100 \mu \mathrm{~A}$, See Note 6	0.9	1	0.8	1	
$\left\|\mathrm{V}_{\text {BE1 }}-\mathrm{V}_{\text {BE2 }}\right\|$	Base-Emitter-Voltage Differential	$\mathrm{V}_{\text {CE }}=-5 \mathrm{~V}, \mathrm{I}_{\text {C }}=-100 \mu \mathrm{~A}$		5		10	mV	
$\left\|\frac{\Delta\left(\mathrm{V}_{\mathrm{BE} 1}-\mathrm{V}_{\mathrm{BE} 2}\right)}{\Delta T_{A}}\right\|$	Base-Emitter-Voltage-Differential Temperature Gradient	$\begin{aligned} & V_{C E}=-5 V, I_{C}=-100 \mu \mathrm{~A}, \\ & \Delta T_{A}=\left[25^{\circ} \mathrm{C}-\left(-55^{\circ} \mathrm{C}\right)\right] \text { and }\left[125^{\circ} \mathrm{C}-25^{\circ} \mathrm{C}\right] \end{aligned}$	10		20		$\mu \vee /{ }^{\circ} \mathrm{C}$	

*operating characteristics at $25^{\circ} \mathrm{C}$ free-air temperature
individual triode characteristics (see note 4)

PARAMETER		TEST CONDITIONS	$\begin{aligned} & \text { ALL } \\ & \text { TYPES } \end{aligned}$	UNIT	
		MAX			
\bar{F}	Average Noise Figure		$\begin{array}{ll} V_{C B}=-5 V, \quad I_{E}=10 \mu A, & R_{G}=10 \mathrm{k} \Omega, \\ \text { Noise Bandwidth }=15.7 \mathrm{kHz}, & \text { See Note } 7 \end{array}$	4	dB

NOTES: 4. The terminals of the triode not under test are open-circuited for the measurament of these characteristics.
5. This parameter must be measured using pulse techniques. $\mathbf{t}_{\mathbf{w}}=\mathbf{3 0 0} \mu \mathrm{s}$, duty cycle $\leqslant \mathbf{2 \%}$.
6. The lower of the two hFE readings is taken as $h_{F E 1}$.
7. Average Noise Figure is measured in an amplifier with low-frequency response down 3 dB at 10 Hz and 10 kHz and a high-frequency rolloff of $\mathbf{6 ~ d B} /$ octave.

[^61]BULLETIN NO. DL-S 645051, AUGUST 1964

DESIGNED FOR HIGH-SPEED SWITCHING APPLICATIONS
 - Guaranteed $\mathrm{V}_{\mathrm{ctsant}} \ldots 0.5 \mathrm{v}$ Max at 100 ma
 - High f_{1}... 400 Mc Min

*mechanical data

*absolute maximum ratings at $25^{\circ} \mathbf{C}$ free-air temperature (unless otherwise noted)

*electrical characteristics at $\mathbf{2 5}{ }^{\circ} \mathbf{C}$ free-air temperature (unless otherwise noted)

PARAMETER		TEST CONDITIONS		2N2894	2N3012	UNIT		
		MIN MAX	MIN MAX					
$V_{\text {(m) }}$ cmo	Collactor-Ease Irrakdewn Yoliage			$\mathrm{I}_{\mathrm{C}}=-10 \mu \mathrm{n}, \quad \mathrm{I}_{\mathrm{E}}=0$		-12	-12	V
$V_{\text {(la)Ceo }}$	Collfecter-Emitter Breakdown Voitage	$\mathrm{I}_{\mathrm{C}}=-10 \mathrm{mc}, \quad \mathrm{t}_{\mathrm{B}}=0$,	Soe Mote 4	-12	-12	\checkmark		
$V_{\text {(}}^{\text {P }}$) CES	Colloerter-Emittor Broakdown Voltago	$\mathrm{I}_{\mathrm{C}}=-10 \mu \mathrm{a}, \quad \mathrm{V}_{\mathrm{ge}}=0$		-12	-12	\checkmark		
$Y_{\text {(en) }}^{\text {cee }}$	Emittor-Lase Breakdown Veltage	$\mathrm{I}_{\mathrm{E}}=-100 \mu \mathrm{a}, \mathrm{I}_{\mathrm{C}}=0$		-	-4	\checkmark		
$\mathrm{I}_{\mathrm{CnO}}$	Collector Cuteff Curme	$v_{C B}=-6 \mathrm{v}, \quad \mathrm{I}_{\mathrm{E}}=0$,	$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$	-10		μ		
'ces	Colloctior Cotoff Curront	$v_{\text {CE }}=-6 \mathrm{v}, \quad \mathrm{V}_{\text {BE }}=0$		-80	-80	na		
		$v_{C E}=-6 v_{1}, \quad v_{\text {EE }}=0$,	$\mathrm{T}_{\mathbf{A}}=\mathbf{8 5}{ }^{\circ} \mathrm{C}$		-5	$\mu \mathrm{o}$		
I_{1}	Base Curront	$\mathbf{v}_{\text {CE }}=-6 \mathrm{v} \quad \mathrm{v}_{\text {BE }}=0$		80	30	no		
$h_{\text {FE }}$	Static Forward Curment Trensfer Ratio	$\mathrm{V}_{C E}=-0.3 \mathrm{v}, \mathrm{l}_{\mathrm{C}}=-10 \mathrm{ma}$,	See Note 4	30	25			
		$\mathbf{v}_{C E}=-0.5 \mathrm{v}, \quad \mathrm{I}_{\mathrm{C}}=-30 \mathrm{mo}$,	Soe Mote 4	$40 \quad 150$	$30 \quad 120$			
		$\mathrm{v}_{\text {CE }}=-1 \mathrm{v}, \quad \mathrm{t}_{C}=-100 \mathrm{ma}$,	Soe Mets 4	25	20			
		$\begin{array}{ll} v_{C E}=-0.5 \mathrm{v}, & \mathrm{I}_{\mathrm{C}}=-30 \mathrm{me}, \\ T_{A}=-55^{\circ} \mathrm{C}, & \text { Ser Nete } 4 \end{array}$		17				
$v_{\text {CEIsat] }}$	Collester-Emitter Saturation Vollage	$\mathrm{I}_{1}=-1 \mathrm{ma}, \quad \mathrm{I}_{\mathrm{c}}=-10 \mathrm{ma}$,	Soe Note 4	-0.15	-0.15	v		
		$\mathrm{I}_{8}=-3 \mathrm{ma}, \quad \mathrm{I}_{C}=-30 \mathrm{ma}$,	See Mote 4	-0.20	-0.20	v		
		$\mathrm{I}_{\mathrm{B}}=-10 \mathrm{ma}, \quad \mathrm{I}_{C}=-100 \mathrm{ma}$,	See Mote 4	-0.50	-0.50	v		
		$\begin{array}{ll} \mathrm{I}_{\mathrm{B}}=-3 \mathrm{ma}, & \mathrm{I}_{\mathrm{C}}=-30 \mathrm{mo}, \\ T_{\mathrm{A}}=85^{\circ} \mathrm{C}, & \text { See Hoto } 4 \end{array}$			-0.40	v		
$\mathbf{V E F}_{\text {E }}$	Base-Emittar Voltage	$\mathrm{Im}^{\prime}=-1 \mathrm{ma}, \quad \mathrm{I}_{\mathrm{C}}=-10 \mathrm{ma}$,	See Mote 4	-0.78-0.98	-0.78 -0.98	v		
		$\mathrm{I}_{8}=-3 \mathrm{ma}, \quad \mathrm{I}_{C}=-30 \mathrm{ma}$,	Soe Mote 4	-0.85 -1.2	$\begin{array}{lll}-0.85 & -1.2\end{array}$	v		
		$\mathrm{I}_{\mathrm{a}}=-10 \mathrm{ma}, \mathrm{I}_{\mathrm{C}}=-100 \mathrm{ma}$,	See Mote 4	-1.7	-1.7	v		

NOTES: 1. This value applies between $10 \mu 0$ and 10 ma collector corrent whan the base-amitter diode is open-tircuited.
2. Derale lineariy to $200^{\circ} \mathrm{C}$ free-air temperature at the rate of $2.06 \mathrm{mw} / \mathrm{C}^{\circ}$.
3. Derate linearly to $200^{\circ} \mathrm{C}$ case temperoture of the rale of $6.85 \mathrm{~mm} / C^{\circ}$.
4. This parameter must be measured using pulse techniques. $\mathbf{P W}=300 \mu \mathrm{sec}$, Duty Cycle $=1 \%$.
*indicates JEDEC registered data.

TYPES 2N2894, 2N3012
 P-N-P SILICON TRANSISTORS

*electrical characteristics at $\mathbf{2 5}{ }^{\circ} \mathrm{C}$ free-air temperature

PARAMETER		TEST CONDITIONS		2N2894		2N3012		UNIT		
		MIN	MAX	MIN	MAX					
$\left\|\mathrm{hfa}_{\text {fa }}\right\|$	Small-Signal Common-Emitter Forward Current Iransfar Ratio			$\mathbf{v}_{\mathbf{C E}}=-10 \mathrm{v}, \mathrm{I}_{\mathbf{C}}=-3$	$f=100 \mathrm{Mc}$	4		4		
$C_{\text {abo }}$	Common-Bose Opan-Circuit Output Capacitance	$v_{C B}=-5 v_{,} I_{E}=0$,	$f=140 \mathrm{kc}$		6		6	pf		
$c_{\text {ibo }}$	Common-Easa Open-Circuit Input Capacitence	$v_{\text {E }}=-0.5 \mathrm{v}, \mathrm{I}_{\mathrm{c}}=0$,	$f=140 \mathrm{kt}$		6		6	pt		

*switching characteristics at $\mathbf{2 5}{ }^{\mathbf{}} \mathbf{C}$ free-air temperature

	PARAMETER	TEST CONDITIONS ${ }^{\dagger}$	$\begin{gathered} \hline \text { 2N2894 } \\ \hline \text { MAX } \end{gathered}$	$\frac{\text { 2N3012 }}{\text { MAX }}$	UNIT
${ }^{\text {on }}$	Turn-On Time	$\begin{aligned} & I_{C}=-30 \mathrm{ma}, \quad I_{\text {B }\{1]}=-1.5 \mathrm{ma}, \quad V_{\mathrm{BE}(\mathrm{off}}=3 \mathrm{v}, \\ & \mathbf{R}_{\mathrm{L}}=62 \Omega, \text { see Figure }, \end{aligned}$	60	60	nsec
${ }^{\dagger}$ off	Turn-Off Tima	$\begin{aligned} & I_{C}=-30 \mathrm{ma}, \mathrm{I}_{\mathrm{B}(1)}=-1.5 \mathrm{ma}, I_{B 21}=1.5 \mathrm{ma}, \\ & R_{\mathrm{L}}=62 \Omega, \text { See figure } \end{aligned}$	90	75	nsec

tvoltage and current values shown are neminal; exact values vory slighty with transistor parameters.
*PARAMETER MEASUREMENT INFORMATION

FIGURE 1 - TURN-ON AND TURN-OFF TIMES

NOTES: \mathbf{a}. The ingut woveforms are supplied by ogenerator with the following tharacteristics: $l_{\text {out }}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 1 \mathrm{nsec}, \mathrm{PW}>200$ nsec.
b. Woveforms are monitored on an oscilloscope with the fellowing characteristics: $\mathbf{I}_{\mathrm{f}} \leq 1 \mathrm{nsec}, \mathrm{R}_{\mathrm{in}} \geq 100 \mathrm{k} \Omega$.
*Indicatas JEDEC registered data.

DESIGNED FOR HIGH-SPEED, MEDIUM-POWER SWITCHING AND GENERAL PURPOSE AMPLIFIER APPLICATIONS

- High Breakdown Voltage Combined with Very Low Saturation Voltage
- hFE Guaranteed from $\mathbf{1 0 0} \mu \mathrm{A}$ to $\mathbf{5 0 0} \mathrm{mA}$
- 2N2904, 2N2906 for Complementary Use with 2N2218, 2N2221
- 2N2905, 2N2907 for Complementary Use with 2N2219, 2N2222

*mechanical data

Device types 2N2904, 2N2904A, 2N2905, and 2N2905A are in JEDEC TO-5 packages.
Device types 2N2906, 2N2906A, 2N2907, and 2N2907A are in JEDEC TO-18 packages.

*absolute maximum ratings at $\mathbf{2 5}{ }^{\circ} \mathbf{C}$ free-air tamperature (unless otherwise noted)

	$\begin{array}{\|l\|} \hline \text { 2N2904 } \\ \text { 2N2905 } \end{array}$	$\begin{array}{\|l\|} \hline \text { 2N2904A } \\ \text { 2N2905A } \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { 2N2906 } \\ \text { 2N2907 } \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { 2N2906A } \\ \text { 2N2907A } \\ \hline \end{array}$	UNIT
Collector-Base Voltage	-60	-60	-60	-60	V
Collector-Emitter Voltage (See Note 1)	-40	-60	-40	-60	V
Emitter-Base Voltage	-5	-5	-5	-5	V
Continuous Collector Current	-0.6	-0.6	-0.6	-0.6	A
Continuous Device Dissipation at (or below) $25^{\circ} \mathrm{C}$ Free-Air Temperature (See Notes 2 and 3)	0.6	0.6	0.4	0.4	W
Continuous Device Dissipation at (or below) $25^{\circ} \mathrm{C}$ Case Temperature (See Notes 4 and 5)	3	3	1.8	1.8	W
Storage Temperature Range	-65 to 200				${ }^{5} \mathrm{C}$
Lead Temperature 1/16 Inch from Case for 10 Seconds	230				C

NOTES: 1. These values apply between 0 and 100 mA collector current when the base-emitter diode is open-circuited.
2. Derate 2 N2904, 2N2904A, 2N2905, and $2 N 2905 A$ linearly to $200^{\circ} \mathrm{C}$ free-air temperature at the rate of $3.43 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
3. Derate 2N2906, 2N2906A, 2N2907, and 2N2907A linearly to $200^{\circ} \mathrm{C}$ free-air temperature at the rate of $2.28 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
4. Derate $2 N 2904,2 N 2904 A, 2 N 2905$, and $2 N 2905 A$ linearly to $200^{\circ} \mathrm{C}$ case temperature at the rate of $17.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
E. Derate $2 N 2908,2 N 2908 A, 2 N 2907$, and $2 N 2907 A$ linearly to $200^{\circ} \mathrm{C}$ case temperature at the rate of $10.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
-JEDEC registered data. This data sheet contains all applicable registered data in effect at the time of publication.

TYPES 2N2904 THRU 2N2907, 2N2904A THRU 2N2907A P-N-P SILICON TRANSISTORS

*electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

PARAMETER		TEST CONDITIONS TO-18 \rightarrow	$\frac{2 N 2904}{2 N 2906}$		$\frac{2 N 2904 A}{2 N 2906 A}$		$\begin{aligned} & \text { 2N2008 } \\ & \hline \text { 2N2907 } \end{aligned}$		$\begin{aligned} & \text { 2N200BA } \\ & \text { 2N2907A } \end{aligned}$		UNIT	
		MIN	MAX	MIN	MAX	MIN.	MAX	MIN	MAX			
$V_{\text {(BR) }}$ CBO	Collector-Base Breakdown Voltage		$I_{C}=-10 \mu A, \quad I E=0$	-60		-60		-60		-60		V
$V(B R) C E O$	Collector-Emitter Breakdown Voltage	$\begin{aligned} I_{C}=-10 \mathrm{~mA}, & I_{\mathrm{B}}=0, \\ & \text { Seo Note } 6 \end{aligned}$	-40		-60		-40		-60		V	
$V(B R) E B O$	Emitter-Base Breakdown Voltage	$I_{E}=-10 \mu A, \quad I^{\prime}=0$	-5		-5		-6		-5		V	
ICBO	Collector Cutoff Current	$V_{C B}=-50 \mathrm{~V}, \mathrm{TE}=0$		-20		-10		-20		-10	nA	
		$\begin{aligned} & V_{C B}=-50 \mathrm{~V}, \mathrm{I}_{E}=0, \\ & T_{A}=160^{\circ} \mathrm{C} \end{aligned}$	-20		-10		-20		-10		$\mu \mathrm{A}$	
ICEV	Collector Cutoff Current	$V_{C E}=-30 \mathrm{~V}, V_{B E}=0.5 \mathrm{~V}$		-50		-50		-60		-50	nA	
IBEV	Base Cutoff Current	$V_{C E}=-30 \mathrm{~V}, V_{B E}=0.5 \mathrm{~V}$		50		50		50		50	nA	
hFE	Static Forward Current Transfer Ratio	$V_{C E}=-10 \mathrm{~V}, \mathrm{I}^{\prime}=-100 \mu \mathrm{~A}$	20		40		35		75			
		$V_{C E}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=-1 \mathrm{~mA}$	25		40		50		100			
		$V_{C E}=-10 \mathrm{~V},{ }^{\prime} \mathrm{C}=-10 \mathrm{~mA}$	35		40		75		100			
		$\begin{aligned} & \hline V_{C E}=-10 \mathrm{~V}, \text { lC }=-150 \mathrm{~mA}, \\ & \text { See Note } 6 \\ & \hline \end{aligned}$	40	120	40	120	100	300	100	300		
		$\begin{gathered} V_{C E}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=-600 \mathrm{~mA}, \\ \text { See Note } 6 \end{gathered}$	20		40		30		50			
VBE	Base-Emitter Voltage	$\begin{aligned} I_{B}=-15 \mathrm{~mA}, & I_{C}=-150 \mathrm{~mA}, \\ & \text { See Note } 6 \end{aligned}$		-1.3		-1.3		-1.3		-1.3	V	
		$\begin{aligned} & I_{B}=-50 m A, I_{C}=-500 m A \\ & \text { See Note } 6 \end{aligned}$		-2.6		-2.6		-2.6		-2.6		
$V_{C E}$ (sat)	Collector-Emitter Saturation Voltage	$\begin{aligned} I_{B}=-15 \mathrm{~mA}, & I_{C}=-150 \mathrm{~mA}, \\ & \text { See Note } 6 \end{aligned}$		-0.4		-0.4		-0.4		-0.4	V	
		$\begin{aligned} & I_{B}=-50 m A, I_{C}=-500 \mathrm{~mA}, \\ & \\ & \text { See Note } 6 \end{aligned}$		-1.6		-1.6		-1.6		-1.6		
\|hfol	Small-Signal Common-Emitter Forward Current Transfer Ratio	$\begin{array}{r} V_{C E}=-20 \mathrm{~V}, \\ I_{C}=-50 \mathrm{~mA} \\ f=100 \mathrm{MHz} \end{array}$	2		2		2		2			
Cobo	Common-Base Open-Circuit Output Capacitence	$\begin{aligned} & V_{C B}=-10 \mathrm{~V}, I_{E}=0 \\ & f=100 \mathrm{kHz} \end{aligned}$	8		8		8		8		pF	
Cibo	Common-Base Open-Circuit Input Capacitance	$\begin{aligned} V_{E B}=-2 V, & I_{C}=0 \\ & f=100 \mathrm{kHz} \end{aligned}$	30		30		30		30		pF	

NOTE 6: These parameters must be measured using pulse techniques. $t_{w}=\mathbf{3 0 0} \mu \mathrm{s}$, dutv cycie $\leqslant \mathbf{2 \%}$.
*JEDEC ragistarad data

TYPES 2N2s04 THRU 2N2s07, 2N2904A THRU 2N2907A P-N-P SILICON TRANSISTORS

*switching charecteristics at $\mathbf{2 5}{ }^{\circ} \mathrm{C}$ free-air temperature

PARAMETER	TEST CONDITIONS ${ }^{+}$	max	UNIT
$t_{\text {d }}$ Delay Time	$\begin{cases}V_{C C}=-30 \mathrm{~V}, & I_{C}=-150 \mathrm{~mA}, \\ V_{B E}(\mathrm{I}(1)(1)=-15 \mathrm{~mA}, \\ =0, & \text { See Figure } 1\end{cases}$	10	ns
4_{4} R Rise Time		40	ns
ton Turn-On Time		45	ns
t_{8} Storage Time	$V_{C C}=-8 \mathrm{~V}, \quad I_{C}=-150 \mathrm{~mA}, I_{B(1)}=-13 \mathrm{~mA},$$I_{B(2)}=17 \mathrm{~mA}, \quad \text { See Figure } 2$	80	ns
tf Fall Time		30	ns
toff Turn-Off Time		100	n8

${ }^{\dagger}$ Voitage and currant values thown are nominal; exact values vary alightly with transistor parameters.

figure 2

NOTES: A. The input waveforms are supplied by generator with the following characteristies: $Z_{\text {out }}=80 \Omega, t_{r}<2 \mathrm{ne}, \mathrm{t}_{\mathrm{f}}<\mathbf{2 n s}$ $t_{w}=200 \mathrm{~ns}$, PRA $=160 \mathrm{~Hz}$.
B. Waveforms are monitored on an oscllloseope with the following charactoristict: $\mathrm{t}_{\mathrm{t}} \leqslant \mathrm{E} \mathrm{ns}, \mathrm{R}_{\text {in }}=10 \mathrm{M} \boldsymbol{\Omega}$.
-JEDEC regiatered data

TWO GENERAL PURPOSE TRANSISTORS IN ONE PACKAGE

- Each Triode Electrically Similar to 2N2904, 2N2904A, 2N2905, 2N2905A Transistors
- For Complementary Use with D2T2218, D2T2218A, D2T2219, D2T2219A Dual N-P-N Transistors
mechanical data

absolute maximum ratings at $\mathbf{2 5}{ }^{\circ} \mathbf{C}$ free-air temperature (unless otherwise noted)

		D2T2904	D2T2904A	UNIT
		D2T2905	D2T2905A	
Collector-Base Voltage		-60	-60	\bar{V}
Collector-Emitter Voltage (See Note 1)		-40	-60	V
Emitter-Base Voltage		-5	-5	V
Continuous Collector Current		-600		mA
Continuous Device Dissipation at (or below) $25^{\circ} \mathrm{C}$ Free-Air Temperature (See Note 2)	Each Triode	400		mW
	Total Device			
Continuous Device Dissipation at (or below) $25^{\circ} \mathrm{C}$ Case Temperature (See Note 3	Each Triode			W
	Total Device			
Storage Temperature Range		-65	200	C
Lead Temperature 1/16 Inch from Case for 10 Seconds		300		C

NOTES: 1. These values apply between 0 and 100 mA collector current when the base-emitter diode is open-circuited.
2. Derate linearly to $200^{\circ} \mathrm{C}$ free-air temperature at the rates of $2.28 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for each triode and $3.43 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for the total device.
3. Derate linearly to $200^{\circ} \mathrm{C}$ case temperature at the rates of $5.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for each triode and $\mathbf{1 1 . 4} \mathbf{~ m W} /{ }^{\circ} \mathrm{C}$ for the total device.

TYPES D2T2904, D2T2904A, D2T2905, D2T2905A DUAL P-N-P SILICON TRANSISTORS

electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

PARAMETER		TEST CONDITIONS	D2T2904		D2T2904A		D2T2905		D2T2905A		UNIT	
		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX			
$V_{\text {(BR) }}$ CbO	Collector-Base Breakdown Voltage		$I^{\prime} C=-10 \mu A, \quad I^{\prime}=0$	-60		-60		-60		-60		V
$V_{(B R) C E O}$	Collector-Emitter Breakdown Voltage	$\begin{aligned} \mathrm{I}^{\prime} \mathrm{C}=-10 \mathrm{~mA}, & \mathrm{I}_{\mathrm{B}}=0, \\ & \text { See Note } 4 \end{aligned}$	-40		-60		-40		-60		V	
$V_{\text {(BR)EBO }}$	Emitter-Base Breakdown Voltage	${ }^{\prime} \mathrm{E}=-10 \mu \mathrm{~A}, \quad I^{\prime} \mathrm{C}=0$	-5		-5		-5		-5		V	
ICBO	Collector Cutoff Current	$\mathrm{V}_{C B}=-50 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0$		-20		-10		-20		-10	nA	
		$\begin{aligned} & \mathrm{V}_{\mathrm{CB}}=-50 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0, \\ & \mathrm{~T}_{\mathrm{A}}=150^{\circ} \mathrm{C} \end{aligned}$		-20		-10		-20		-10	$\mu \mathrm{A}$	
ICEV	Collector Cutoff Current	$V_{C E}=-30 \mathrm{~V}, \mathrm{~V}_{\text {BE }}=0.5 \mathrm{~V}$		-50		-50		-50		-50	nA	
IBEV	Base Cutoff Current	$\mathrm{V}_{\text {CE }}=-30 \mathrm{~V}, \mathrm{~V}_{\text {BE }}=0.5 \mathrm{~V}$		50		50		50		50	nA	
hFE	Static Forward Current Transfer Ratio	$\mathrm{V}_{\text {CE }}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=-100 \mu \mathrm{~A}$	20		40		35		75			
		$\mathrm{V}_{\text {CE }}=-10 \mathrm{~V}, \mathrm{I}^{\prime}=-1 \mathrm{~mA}$	25		40		50		100			
		$\mathrm{V}_{\mathrm{CE}}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=-10 \mathrm{~mA}$	35		40		75		100			
		$\begin{aligned} & V_{C E}=-10 \mathrm{~V},{ }^{\mathrm{I}} \mathrm{C}=-150 \mathrm{~mA}, \\ & \text { See Note } 4 \end{aligned}$	40	120	40	120	100	300	100	300		
		$\begin{aligned} V_{C E}=-10 \mathrm{~V}, & \mathrm{I}_{\mathrm{C}}=-500 \mathrm{~mA}, \\ & \text { See Note } 4 \end{aligned}$	20		40		30		50			
$V_{B E}$	Base-Emitter Voltage	$\begin{aligned} \mathrm{I}_{\mathrm{B}}=-15 \mathrm{~mA}, & \mathrm{I}_{\mathrm{C}}=-150 \mathrm{~mA}, \\ & \text { See Note } 4 \end{aligned}$		-1.3		-1.3		-1.3		-1.3	V	
		$\begin{aligned} & I_{B}=-50 \mathrm{~mA}, I_{C}=-500 \mathrm{~mA}, \\ & \text { See Note } 4 \end{aligned}$		-2.6		-2.6		-2.6		-2.6		
VCE(sat)	Collector-Emitter Saturation Voltage	$\begin{aligned} &{ }^{\prime} B=-15 \mathrm{~mA}, \mathrm{I}_{\mathrm{C}}=-150 \mathrm{~mA}, \\ & \text { See Note } 4 \end{aligned}$		-0.4		-0.4		-0.4		-0.4	v	
		$\begin{aligned} & \mathrm{I}_{\mathrm{B}}=-50 \mathrm{~mA}, \mathrm{I}_{\mathrm{C}}=-500 \mathrm{~mA}, \\ & \text { See Note } 4 \end{aligned}$		-1.6		-1.6		-1.6		-1.6		
Hfel	Small-Signal Common-Emitter Forward Current Transfer Ratio	$\begin{aligned} V_{C E}=-10 \mathrm{~V}, & \mathrm{I}_{\mathrm{C}}=-30 \mathrm{~mA}, \\ & f=100 \mathrm{MHz} \end{aligned}$	2		2		2		2			
$C_{\text {obo }}$	Common-Base Open-Circuit Output Capacitance	$\begin{aligned} V_{C B}=-10 \mathrm{~V}, & l_{E}=0 \\ & f=1 \mathrm{MHz} \end{aligned}$		8		8		8		8	pF	
$C_{\text {ibo }}$	Common-Base Open-Circuit Input Capacitance	$\begin{aligned} V_{E B}=-2 V . & \mathrm{C}=0, \\ & f=9 \mathrm{MHZ} \end{aligned}$		30		30		30		30	pF	

NOTE 4: These parameters must be measured using pulse techniques. $t_{w}=\mathbf{3 0 0} \mu_{\mathrm{s}}$, duty cycle $\leqslant \mathbf{2 \%}$.

TYPES D2T2904, D2T2904A, D2T2905, D2T2905A
 DUAL P-N-P SILICON TRANSISTORS

switching characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER	TEST CONDITIONS ${ }^{\dagger}$	MAX	UNIT
td Delay Time	$\begin{array}{ll} V_{C C}=-30 \mathrm{~V}, & I_{C}=-150 \mathrm{~mA}, \\ \mathrm{I}_{\mathrm{B}}(1)=-15 \mathrm{~mA}, \\ V_{\mathrm{BE}(\mathrm{off})}=0, & \text { See Figure } 1 \end{array}$	10	ns
t_{r} R Rise Time		40	ns
$t_{\text {on }}$ Turn-On Time		45	ns
$t_{\text {s }} \quad$ Storage Time	$\begin{array}{ll} V_{C C}=-30 \mathrm{~V}, & I_{C}=-150 \mathrm{~mA}, \\ \mathrm{I}_{\mathrm{B}}(1)=-13 \mathrm{~mA}, \\ I_{B}(2)=17 \mathrm{~mA}, & \text { See Figure } 2 \end{array}$	80	ns
t_{f} Fall Time		30	ns
${ }^{\text {toff }}$ Turn-Off Time		100	ns

${ }^{\dagger}$ Voltage and current values shown are nominal; exact values vary slightly with transistor paramaters.

Figure 2

NOTES: A. The input waveforms are supplied by a generator with the following characteristics: $Z_{\text {out }}=50 \Omega, t_{r} \leqslant 2 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leqslant 2 \mathrm{~ns}$, $\mathrm{t}_{\mathrm{w}}=200 \mathrm{~ns}, \mathrm{PAR}=150 \mathrm{~Hz}$.
B. Waveforms are monitored on an oscilloscope with the following characteristics: $\tau_{r} \leqslant 5 \mathrm{~ns}, \mathrm{R}_{\mathrm{in}}=\mathbf{1 0} \mathrm{M} \Omega$.

TYPE 02T2905
 QUAD P-N-P SILICON TRANSISTOR

DESIGNED FOR MEDIUM-POWER SWITCHING AND GENERAL PURPOSE AMPLIFIER APPLICATIONS

- High Breakdown Voltage Combined with Very Low Saturation Voltage
- hFE . . . Guaranteed from $\mathbf{1 0 0} \mu \mathrm{A}$ to $\mathbf{5 0 0} \mathrm{mA}$
- High fT . . . 200 MHz Min at $\mathbf{2 0}$ V, $\mathbf{2 0} \mathbf{m A}$
mechanical data

NC-No Internal connection

absolute maximum ratings at $25^{\circ} \mathbf{C}$ free-air temperature (unless otherwise noted)

NOTES: 1. This value epplies between 0 and 100 mA collector current when the emitter-base diode is open-circuited.
2. Derate linearly to $150^{\circ} \mathrm{C}$ free-air temperature at the rates of $4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for each triode and $12 \mathrm{~mW} / \mathrm{C}$ for the total device.

[^62]electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

PARAMETER	TEST CONDITIONS		MIN MAX	UNIT
$V_{\text {(BR) }}$ CBO Collector-Base Breakdown Voltage	$I^{\prime} C=-10 \mu A, \quad I_{E}=0$		-60	V
$V_{\text {(BR) }}$ CEO Collector-Emitter Breakdown Voltage	$\mathrm{I}^{\prime} \mathrm{C}=-10 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0$,	See Note 3	-40	V
$V_{\text {(BR)EBO }}$ Emitter-Base Breakdown Voltage	$\mathrm{I}_{\mathrm{E}}=-10 \mu \mathrm{~A}, \quad \mathrm{I}^{\prime}=0$		-5	V
Icbo Collector Cutoff Current	$\mathrm{V}_{C B}=-50 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0$		-20	nA
	$V_{C B}=-50 V_{1} I_{E}=0$,	$T_{A}=125^{\circ} \mathrm{C}$	-10	$\mu \mathrm{A}$
ICEV Collector Cutoff Current	$\mathrm{V}_{\mathrm{CE}}=-30 \mathrm{~V}, \mathrm{~V}_{\mathrm{BE}}=0.5 \mathrm{~V}$		-50	nA
IBEV Base Cutoff Current	$\mathrm{V}_{\mathrm{CE}}=-30 \mathrm{~V}, \mathrm{~V}_{\mathrm{BE}}=0.5 \mathrm{~V}$		50	nA
Static Forward Current Transfer Ratio	$\mathrm{V}_{C E}=-10 \mathrm{~V}, \mathrm{I}^{2}=-100 \mu \mathrm{~A}$		35	
	$V_{C E}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=-1 \mathrm{~mA}$		50	
	$\mathrm{V}_{\text {CE }}=-10 \mathrm{~V}, \mathrm{I}^{\prime} \mathrm{C}=-10 \mathrm{~mA}$	See Note 3	75	
	$\mathrm{V}_{C E}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=-150 \mathrm{~mA}$		$100 \quad 300$	
	$V_{C E}=-10 \mathrm{~V}, \mathrm{I}^{\prime}=-500 \mathrm{~mA}$		30	
Base-Emitter Voltage	$\mathrm{I}_{\mathrm{B}}=-15 \mathrm{~mA}, \mathrm{I}^{\prime} \mathrm{C}=-150 \mathrm{~mA}$	See Note 3	-1.3	V
	$\mathrm{I}_{\mathrm{B}}=-50 \mathrm{~mA}, \mathrm{I}^{\prime} \mathrm{C}=-500 \mathrm{~mA}$		-2.6	
Collector-Emitter Saturation Voltage	$\mathrm{I}_{\mathrm{B}}=-15 \mathrm{~mA}, \quad \mathrm{I}^{\prime} \mathrm{C}=-150 \mathrm{~mA}$	See Note 3	-0.4	V
	$\mathrm{I}_{\mathrm{B}}=-50 \mathrm{~mA}, \mathrm{I}_{\mathrm{C}}=-500 \mathrm{~mA}$		-1.6	
Small-Signal Common-Emitter Forward Current Transfer Ratio	$V_{C E}=-10 \mathrm{~V}, 1 \mathrm{C}=-30 \mathrm{~mA}$,	$f=100 \mathrm{MHz}$	2	
Cobo Common-Base Open-Circuit Output Capacitance	$V_{C B}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0$,	$\mathrm{f}=1 \mathrm{MHz}$	8	pF
Cibo Common-Base Open-Circuit Input Capacitance	$V_{E B}=-2 \mathrm{~V}, \mathrm{I}^{\prime}=0$,	$f=1 \mathrm{MHz}$	30	pF

NOTE 3: These parameters must be measured using pulse techniques. $t_{w}=\mathbf{3 0 0} \boldsymbol{\mu s}$, duty cycle $\leqslant 2 \%$.
switching characteristics at $\mathbf{2 5}{ }^{\circ} \mathrm{C}$ free-air temperature

	PARAMETER	TEST CONDITIONS ${ }^{\text { }}$	MAX	UNIT
$t_{\text {d }}$	Delay Time	$\begin{cases}I_{C}=-150 \mathrm{~mA}, & I_{B(1)}=-15 \mathrm{~mA}, \\ R_{\mathrm{L}}=200 \Omega, & V_{B E}(\text { off })=0, \\ \text { See Figure } 1\end{cases}$	10	ns
t_{r}	Rise Time		40	ns
$t_{\text {on }}$	Turn-On Time		45	ns
$\mathrm{t}_{\text {s }}$	Storage Time	$\begin{array}{ll} I_{C}=-150 \mathrm{~mA}, & I_{\mathrm{B}}(1)=-13 \mathrm{~mA}, \\ I_{\mathrm{B}}(2)=17 \mathrm{~mA}, \\ R_{\mathrm{L}}=37, & \text { See Figure } 2 \end{array}$	80	ns
$t_{\text {f }}$	Fall Time		30	ns
$t_{\text {off }}$	Turn-Off Time		100	ns

tVoltage and current values shown are nominal; exact values vary slightly with transistor parameters.

PARAMETER MEASUREMENT INFORMATION

FIGURE 1-TURN-ON TIME

(See Notes A and B)
VOLTAGE WAVEFORMS

FIGURE 2-TURN-OFF TIME

NOTES: A. The input waveforms are suppled by genorator with the following characteristics: $Z_{o u t}=50 \Omega, t_{r}<2 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}}<\mathbf{2 n s}$, $t_{w}=\mathbf{2 0 0} \mathrm{ns}, \mathrm{PRR}=\mathbf{1 8 0} \mathrm{pps}$.
B. Weveforms are monitored on an oecilloscope with the following charecteristics: $\mathrm{t}_{\mathrm{r}} \leqslant 5 \mathrm{~ns}, \mathrm{R}_{\mathrm{in}}=\mathrm{M} \Omega, \mathrm{C}_{\mathrm{in}} \leqslant 12 \mathrm{pF}$.

SILECT ${ }^{\dagger}$ TRANSISTORS: DESIGNED FOR HIGH-SPEED, MEDIUM-POWER SWITCHING AND GENERAL PURPOSE AMPLIFIER APPLICATIONS

- A5T2907, A5T3644, and A5T3645 Electrically Similar to 2N2907, 2N3644, and 2N3645
- TIS112 Processing Includes Operational Aging at $\mathbf{3 0 0} \mathbf{~ m W}$ for $\mathbf{2 4}$ Hours
mechanical data
These transistors are encapsulated in a plastic compound specifically designed for this purpose, using a highly mechanized process developed by Texas Instruments. The case will withstand soldering temperatures without deformation. These devices exhibit stable characteristics under high-humidity conditions and are capable of meeting MIL-STD-202C, Method 106B. The transistors are insensitive to light.

absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

	$\begin{gathered} \text { A5T2907 } \\ \text { TIS112 } \end{gathered}$	A5T3644	A5T3645
Collector-Base Voltage	-60 V	-45V	$-60 \mathrm{~V}$
Collector-Emitter Voltage (See Note 1)	-40 V	-45V	-60 V
Emitter-Base Voltage	-5V	-5V	-5V
Continuous Collector Current		-600 mA	
Continuous Device Dissipation at (or below) $25^{\circ} \mathrm{C}$ Free-Air Temperature (See Note 2)		625 mW	
Continuous Device Dissipation at (or below) $25^{\circ} \mathrm{C}$ Case and Lead Temperature (See Note 3)		1.6 W	
Storage Temperature Range		${ }^{\circ} \mathrm{C}$ to 1	
Lead Temperature 1/16 Inch from Case for 10 Seconds	-	$260^{\circ} \mathrm{C}$	-

NOTES: 1. This value applites between 0 and 600 mA collector currant when the base-amitter diode in open-circulted.
2. Derate linearly to $150^{\circ} \mathrm{C}$ free-air tempersture at the rate of $\mathrm{EmW} /{ }^{\circ} \mathrm{C}$.
3. This rating appiles with the entire case (including the leads) maintained at $25^{\circ} \mathrm{C}$. Derste linearly to $150^{\circ} \mathrm{C}$ case-and-iesd temperature at the rate of $12.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
${ }^{\dagger}$ Trademark of Texas Instruments
\ddagger U. 3. Patent No. 3,439,238

TYPES A5T2807, TIS112 P-N-P SILICON TRANSISTORS

electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

PARAMETER		TEST CONDITIONS			$\begin{gathered} \text { ABT2907 } \\ \text { TIS112 } \\ \hline \end{gathered}$		UNIT			
		MIN	MAX							
$V_{\text {(BR) }}$ CBO	Collector-Base Breakdown Voltage				$1_{C}=-10 \mu A$,	$I_{E}=0$		-60		V
$V_{\text {(BR) }}$ CEO	Collector-Emitter Breakdown Voltage	${ }^{1} \mathrm{C}=-10 \mathrm{~mA}$,	$\mathrm{I}_{\mathrm{B}}=0$,	See Note 4	-40		V			
$V_{\text {(BR)EBO }}$	Emitter-Base Breakdown Voltage	${ }^{\prime} \mathrm{E}=-10 \mu \mathrm{~A}$,	$\mathrm{I}_{\mathrm{C}}=0$		-5		V			
${ }^{1} \mathrm{CBO}$	Collector Cutoff Current	$V_{C B}=-50 \mathrm{~V}$,	$\mathrm{IE}_{\mathrm{E}}=0$			-20	nA			
		$V_{C B}=-50 \mathrm{~V}$,	$\mathrm{IE}_{\mathrm{E}}=0$,	$T_{A}=125^{\circ} \mathrm{C}$		-10	$\mu \mathrm{A}$			
ICEV	Collector Cutoff Current	VCE ${ }^{\text {m }}-30 \mathrm{~V}$.	$\mathrm{V}_{\mathrm{BE}}=0.6 \mathrm{~V}$			-50	nA			
IBEV	Base Cutoff Current	$\mathrm{V}_{\text {CE }}=-30 \mathrm{~V}$.	$V_{B E}=0.5 \mathrm{~V}$			50	nA			
hfe	Static Forward Current Transfer Ratio	$\mathrm{V}_{\text {CE }}=-10 \mathrm{~V}$,	$\mathrm{IC}^{\prime}=-100 \mu \mathrm{~A}$		35					
		$V_{\text {CE }}=-10 \mathrm{~V}$,	$1 C=-1 \mathrm{~mA}$		50					
		$\mathrm{V}_{\text {CE }}=-10 \mathrm{~V}$,	$1 \mathrm{C}=-10 \mathrm{~mA}$	See Note 4	75					
		$V_{C E}=-10 \mathrm{~V}$,	$1 \mathrm{c}=-150 \mathrm{~mA}$		100	300				
		$V_{C E}=-10 \mathrm{~V}$,	$I_{C}=-500 \mathrm{~mA}$		30					
VBE	Base-Emitter Voltage	$\mathrm{I}_{B}=-15 \mathrm{~mA}$,	$1 \mathrm{C}=-150 \mathrm{~mA}$	See Note 4		-1.3	V			
		$\mathrm{I}_{B}=-50 \mathrm{~mA}$,	$1 \mathrm{C}=-600 \mathrm{~mA}$			-2.6				
VCE(sat)	Collector-Emitter Saturation Voltage	$\mathrm{I}_{B}=-15 \mathrm{~mA}$,	$I^{\prime} C=-150 \mathrm{~mA}$	See Note 4		-0.4	V			
		$A_{B}=-50 \mathrm{~mA}$,	$1 \mathrm{C}=-500 \mathrm{~mA}$			-1.6				
$\left\|h_{f e}\right\|$	Small-Signal Common-Emitter Forward Current Transfor Ratio	$V_{C E}=-10 \mathrm{~V}$.	$1 C=-30 \mathrm{~mA}$,	$f=100 \mathrm{MHz}$	2					
Cobo	Common-Base Open-Circuit Output Capacitance	$V_{C B}=-10 \mathrm{~V}$,	$\mathrm{I} E=0$,	$\mathrm{f}=1 \mathrm{MHz}$		8	pF			
Cibo	Common-Base Open-Circuit Input Capecitance	$V E B=-2 V$,	$1 \mathrm{C}=0$,	$f=1 \mathrm{MHz}$		30	pF			

NOTE 4: These parameters must be measured using pulse techniques. $t_{w}=\mathbf{3 0 0} \mu \mathrm{s}$, duty cycle $<\mathbf{2 \%}$.
switching characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER		TEST CONDITIONS ${ }^{\dagger}$		A5T2907	TIS112	UNIT		
		MaX	MAX					
t_{d}	Delay Time			$\begin{aligned} & l_{C}=-150 \mathrm{~mA}, \quad l_{B(1)}=-15 \mathrm{~mA} . \\ & R_{L}=200 \Omega . \end{aligned}$	$\begin{aligned} & V_{B E \text { (off) }}=0, \\ & \text { See Figure } 1 \end{aligned}$	10	10	ns
t_{r}	Rise Time	40	40			ns		
$\mathrm{t}_{\text {on }}$	Turn-On Time	45	45			ns		
t_{8}	Storage Time	$\left\{\begin{array}{l} I_{C}=-150 \mathrm{~mA}, \\ \mathrm{R}_{\mathrm{L}}=37 \Omega(\mathrm{I}(1)=-13 \mathrm{~mA} . \\ I_{B(2)}=17 \mathrm{~mA}, \\ S_{e e} \mathrm{Figure} 2 \end{array}\right.$		80	80	ns		
t_{4}	Fell Time			30	70	ns		
toff	Turn-Off Time			100	140	ns		

†Voltage and current values shown are nominal; exact values vary alightly with transistor paramaters.

TYPES A5T2907, TIS112

P-N-P SILICON TRANSISTORS

 PRR = 150 pps.
B. Wavaforms are monitored on an oscilloscope with the following characteristics: $\mathrm{t}_{\mathrm{r}}<\mathbf{5} \mathrm{ns}, \mathrm{R}_{\mathrm{in}}=10 \mathrm{M} \Omega, \mathrm{C}_{\mathrm{in}}<12 \mathrm{pF}$.

TIS112 OPERATIONAL AGING

All TIS112 transistors are aged for a minimum of 24 hours in the circuit shown below. Total device dissipation is approximately 300 mW . All static characteristics are tested prior to and after aging. Dynamic characteristics are tested as necessary to guarantee the specified limits after aging.

TYPES 2N2913 THRU 2N2920, 2N2915A, 2N2918A, 2N2919A, 2N2s20A, 2N2972 THRU 2N2979 DUAL N-P-N SILICON TRANSISTORS
 BULLETIN NO. DL-S 6911165, MARCH 1969

A BROAD FAMILY OF DUAL TRANSISTORS RECOMMENDED FOR

- Differential Amplifiers
- High-Gain, Low-Noise, Audio Amplifiers
- Transducer Signal-Conditioner Amplifiers
- Low-Level Flip-Flops
*mechanical data

quick-selection guide (for details see characteristics on the following pages)

TYPE		MIN V(8R)CEO		MIN-MAX $\mathrm{h}_{\mathrm{FE}}$$\left.\mathrm{H}_{\mathrm{C}}=10 \mu \mathrm{~A}\right)$		$\text { MIN } \frac{h_{F E 1}}{h_{F E 2}}$		$\left\|\mathrm{v}_{\mathrm{BE} 1}-\mathrm{v}_{\mathrm{BE} 2}\right\|$$\left.H_{C}=100 \mu \mathrm{~A}\right)$			$\begin{gathered} \left\|\Delta V_{B E 1}-V_{B E 2}\right\| \Delta T_{A} \mid \\ \left.T_{A(1)}=25^{\circ} \mathrm{C}, T_{A(2)}=125^{\circ} \mathrm{C}\right) \end{gathered}$		
OUTLINE A	OUTLINE ${ }^{\text {a }}$	60 V	45 V	60-240	150-600	0.9	0.8	1.5 mV	3 mV	5 mV	0.5 mV	1 mv	2 mV
2N2913	2N2972		-	\bullet									
2N2914	2N2973		-		\bullet								
2N2915	2N2974		-	-		-			\bullet			\bullet	
2N2915A			-	-		-		\bullet			-		
2N2916	2N2975		\bullet		-	-			*			-	
2N2916A			-		\bullet	\bullet		-			\bullet		
2N2917	2N2976		-	-			-			\bullet			\bullet
2N2918	2N2977		\bullet		\bullet		-			-			\bullet
2N2919	2N2978	\bullet		-		\bullet			\bullet			-	
2N2919A		-		\bigcirc		-		\bullet			\bullet		
2N2920	2N2979	-			\bullet	\bullet			\bullet			-	
2N2920A		-			\bullet	0		\bullet			\bullet		

[^63]
TYPES 2N2913 THRU 2N2920, 2N2915A, 2N2916A, 2N2919A, 2N2920A, 2N2972 THRU 2 N 2979
 DUAL N-P-N SILICON TRANSISTORS

*absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

*electrical characteristics at $\mathbf{2 5}{ }^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

PARAMETER		TEST CONDITIONS	2N2913 2N2915 2N2915A 2N2917 2N2972 2N2974 2N2976	2N2914 2N2916 2N2916A 2N2918 2N2973 2N2975 2N2977	$\begin{aligned} & \text { 2N2919 } \\ & \text { 2N2919A } \\ & \text { 2N2978 } \end{aligned}$	2N2920 2N2920A 2N2979	UNIT	
		MIN MAX	MIN MAX	MIN MAX	MIN MAX			
$V_{\text {(batcbo }}$	Collector-Basp Brakdown Volrepe		$I_{C}=10 \mu A, I_{E}=0$	45	45	60	60	v
$V_{\text {(br)CEO }}$	Collector-Emitter Breakdown Voltage	$I_{C}=10 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0, \quad$ Soe Note 5	45	45	60	60	v	
$V_{\text {(ar) }}$	Emitter-Base Breakdown Voltage	$\mathrm{I}_{\mathrm{E}}=10 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{C}}=0$	6	6	6	6	V	
${ }^{\text {c }}$ ¢	Colloctor Cutoff Currant	$V_{C B}=45 V_{1} \mathrm{I}^{\prime}=0$	10	10	2	2	nA	
		$\mathrm{V}_{C B}=45 \mathrm{~V}, \mathrm{t}_{\mathrm{E}}=0, \quad \mathrm{~T}_{A}=150^{\circ} \mathrm{C}$	10	10	10	10	$\mu \mathrm{A}$	
$I_{\text {ceo }}$	Collactor Cutoff Current	$V_{C E}=5 \mathrm{~V}, I_{B}=0$	2	2	2	2	nA	
IEBO	Emittor Cutoff Current	$V_{E B}=5 \mathrm{~V}, \mathrm{I}^{\prime}=0$	2	2	- 2	2	nA	
$h_{\text {fe }}$	Stetic Forward Current Transfer Ratio	$\mathrm{V}_{\text {CE }}=5 \mathrm{~V} . \mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}$	$60 \quad 240$	150 600	$60 \quad 240$	$150 \quad 600$		
		$\mathrm{V}_{\text {CE }}=5 \mathrm{~V}$, $\mathrm{IC}^{\prime}=100 \mu \mathrm{~A}$	100	225	100	225		
		$\mathrm{V}_{C E}=5 \mathrm{~V}$. $\mathrm{IC}^{\prime}=1 \mathrm{~mA}$	150	300	150	300		
		$\mathrm{V}_{\text {CE }}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=-65^{\circ} \mathrm{C}$	15	$\begin{gathered} 30 \\ 1401 \% \end{gathered}$	15	40		
$\mathrm{V}_{\text {BE }}$	Base-Emitter Voltage	$\mathrm{V}_{C E}=5 \mathrm{~V}, 1_{C}=100 \mu \mathrm{~A}$	0.7	0.7	0.7	0.7	V	
$\mathrm{V}_{\text {CE(} \text { (att) }}$	Collector-Emitter Seturation Voltege	$\mathrm{I}_{B}=100 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}$	0.35	0.35	0.35	0.35	V	

NOTES: 1. These values apply when the base-emitter diode is open-circuited.
2. Derate linearly to $200^{\circ} \mathrm{C}$ free-air temperature at the following rates: $1.72 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for each triode and $2.86 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for total device (2N2913 thru 2N2920, 2N2915A, 2N2916A, 2N2919A, 2N2920A); $1.43 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for each triode and $1.72 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for total device (2N2972 thru 2N2979).
3. Derate linearly to $200^{\circ} \mathrm{C}$ case temperature at the following rates: $4.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for ach triode and $8.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for total device (2N2913 thru 2N2920, 2N2915A, 2N2916A, 2N2919A, 2N2920A); $2.96 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for each triode and $4.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for total device (2N2972 thru 2N2979).
4. The terminals of the triode not under test are open-circuited for the measurement of these characteristics.
5. This parameter must be measured using pulse rechniques. $t_{w}=300 \mu$ s, duty cycle $<\mathbf{1 \%}$.

JEDEC registered data
${ }^{\dagger}$ These values apply to types 2 N2915A, 2 N2916A, 2N2919A, and 2 N2920A only.
\ddagger This value applies to type 2N2916A only.

TYPES 2N2913 THRU 2N2920, 2N2915A, 2N291BA, 2N2919A, 2N2920A, 2N2972 THRU 2N2979 DUAL N-P-N SILICON TRANSISTORS

"electrical characteristics at $\mathbf{2 5}{ }^{\circ} \mathrm{C}$ free-air temperature (continued)
individual triode characteristics (see note 4)

PARAMETER		TEST CONDITIONS		$\begin{aligned} & \text { 2N2913 } \\ & \text { thru } \\ & \text { 2N2920 } \\ & \text { 2N2972 } \\ & \text { thru } \\ & \text { 2N2979 } \end{aligned}$		$\begin{aligned} & \text { 2N2915A } \\ & \text { 2N2916A } \\ & \text { 2N2919A } \\ & \text { 2N2920A } \end{aligned}$		UNIT		
		MIN	MAX	MIN	MAX					
h_{ib}	Smali-Sigual Common-Baoe Input Impedence			$V_{C B}=5 \mathrm{~V} . \quad \mathrm{I}_{\mathrm{C}}=1$	$\mathrm{f}=1 \mathrm{kHz}$		32	25	32	Ω
$h_{\text {ob }}$	Small-Sipnal Common-Bee Output Admittance	$\mathrm{V}_{\mathrm{CB}}=5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{C}}=1$	f=1 kHz		1		1	umioo		
\|hial	Smell-Signel Common-Emitter Forward Currem Transfer Rinio	$V_{C E}=5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{C}}=0$	f $=20 \mathrm{MHz}$	3		3	8			
$\mathrm{C}_{\text {obo }}$	Common-Base Open-Circuit Output Cepacitence	$V_{C B}=5 \mathrm{~V} . \quad \mathrm{I}_{\mathrm{E}}=0$,	f=140 $\mathbf{k H z}$ to $1 \mathbf{M H z}$		6		6	pF		
$\mathrm{C}_{\text {ibo }}$	Common-8ese Open-Circuit Input Capacizance	$V_{E B}=0.5 \mathrm{~V},{ }^{\prime} \mathrm{C}=0$.	¢ = 140 kHz to $1 \mathbf{M H z}$				10	pF		

PARAMETER	TEST CONDITIONS	2N2915 2N2916 2N2919 2N2920 2N2974 2N2975 2N2978 2N2979		$\begin{aligned} & \text { 2N2915A } \\ & \text { 2N2916A } \\ & \text { 2N2919A } \\ & \text { 2N2920A } \end{aligned}$		2N2917 2N2918 2N2976 2N2977		UNIT
		MIN	MAX	MiN	MAX	MIN	MAX	
	$\begin{aligned} & V_{C E}=5 V, \quad I_{C}=100 \mu A, \\ & \text { Sen Note } 6 \end{aligned}$	0.9	1	0.9	1	0.8	1	
	$\begin{aligned} & V_{C E}=5 \mathrm{~V}, \quad I_{C}=100 \mu \mathrm{~A} \text { to } 1 \mathrm{~mA}, \\ & T_{A}=-55^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C} \text {, See Note } 6 \end{aligned}$			0.85	1			
Base-Emitter-Voltage Differential	$V_{C E}=5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{C}}=100 \mu \mathrm{~A}$		3		1.5		5	mV
	$\mathrm{V}_{\text {CE }}=5 \mathrm{~V}$, $\quad \mathrm{I}^{\mathrm{C}}=10 \mu \mathrm{~A} 101 \mathrm{~mA}$		5		2		10	
Bese-Emitter-Voltago- With Temperature	$\begin{aligned} & V_{C E}=5 \mathrm{~V}, \quad{ }^{I_{C}=100 \mu \mathrm{~A}}, \\ & V_{A(1)}=25^{\circ} \mathrm{C}, T_{A(2)}=-55^{\circ} \mathrm{C} \end{aligned}$		0.8		0.4		1.6	mV
	$\begin{aligned} & V_{C E}=5 V, \quad I_{C}=100 \mu A, \\ & T_{A(1)}=25^{\circ} C, \\ & T_{A(2)}=125^{\circ} \mathrm{C} \end{aligned}$		1		0.5		2	

*operating characteristics at $\mathbf{2 5}^{\circ} \mathrm{C}$ free-air temperature
individual triode characteristics (see note 4)

PARAMETER	TEST CONDITIONS	2N2913 2N2915 2N2915A 2N2917 2N2919	$\begin{aligned} & \hline \text { 2N2919A } \\ & \text { 2N2972 } \\ & \text { 2N2974 } \\ & \text { 2N2976 } \\ & \text { 2N2978 } \\ & \hline \end{aligned}$	2N2914 2N2916 2N2916A 2N2918 2N2920	$\begin{aligned} & \hline \text { 2N2920A } \\ & \text { 2N2973 } \\ & \text { 2N2975 } \\ & \text { 2N2977 } \\ & \text { 2N2979 } \\ & \hline \end{aligned}$	UNIT
		MAX		MAX		
$\overline{\mathrm{F}}$ Avercge Noiso Figure	$\begin{array}{ll} V_{\mathrm{CE}}=5 \mathrm{~V}, & \mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}, \\ \mathrm{f}=1 \mathrm{kHz}, & R_{\mathrm{G}}=10 \mathrm{k} \Omega, \\ \text { Noise bendwidth }=200 \mathrm{~Hz} \end{array}$					dB
	$\begin{aligned} & V_{C E}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}, \quad \mathrm{R}_{\mathrm{G}}=10 \mathrm{k} \Omega, \\ & \text { Noive bendwidth }=15.7 \mathrm{kHz} \text {, See Note } 7 \end{aligned}$	4		3		

NOTES: 4. The terminals of the triode not under test are open-circuited for the measurement of these characteristics.
6. The lower of the two hfE readings is taken as $h_{F E 1}$.
7. This parametar is measured in an amplifier with response down 3 dB at 10 Hz and 10 kHz and a high-frequency rolloff of $6 \mathrm{~dB} /$ octave.
-JEDEC registored deta

TYPES 2N2913 THRU 2N2920, 2N2915A, 2N2916A, 2N2919A, 2N2920A, 2N2972 THRU 2N2979 DUAL N-P-N SILICON TRANSISTORS

TYPICAL MATCHING CHARACTERISTICS \dagger

FOR TYPES 2N2915, 2N2915A, 2N2916, 2N2916A, 2N2919, 2N2919A, 2N2920, 2N2920A, 2N2974, 2N2975, 2N2978, 2N2979

BASE-EMITTER-VOLTAGE DIFFERENTIAL

BASE-EMIITER-VOLTAGE DIFFERENIIAL
vs

NOTE 6: The lower of the two $h_{F E}$ readings is taken as $h_{F E 1}$
tThese curves represent the average behavior of groups of dual transistors. Unlike normal single-triode characteristics, matching characteristics of dual transistors may differ considerably in behavior from the typical. For example, a minority of devices have been observed with smaller $V_{B E}$ mismatch at $150^{\circ} \mathrm{C}$ than at $-65^{\circ} \mathrm{C}$, as opposed to the average behavior as shown in figures 2 and 3 .

FOR LOW-LEVEL, HIGH-SPEED CHOPPER APPLICATIONS IN INVERTED CONNECTION
 - Low Guarentieed Offset Voltage
 - High Emitter-Base Breakdown Voltage
 - Greatly Improved $h_{\text {fe(inv) }} \ldots 50$ Min of $I_{B}=200 \mu A$ (2N2944A)
 - Extremely Low racton) ... 4Ω Max (2N2944A)
 - Recommended For Complementary Use with 2N2432A

*mechanical deta

$\dagger 71$ guoruntoed minimum. The JEDEC registered minimum loed diemater for the $\mathbf{T 0} 0.46$ is 0.012 .
*absolute maximum rafings of $25^{\circ} \mathrm{C}$ free-air fomperature (unless otherwise noted)

WOTES: 1. This velen epplies when the colloctor-hase diede is open-circuited.
2. Derate linearly to $\mathbf{2 0 0 ^ { \circ }} \mathrm{C}$ frev-air tamparatury of the rate of $\mathbf{2 . 3} \mathrm{m} \mathbf{W} / \mathrm{deg}$.
*Indicatos JEDEC rogistared dota

TYPES 2N2944, 2N2945, 2N2946, 2N2944A, 2N2945A, 2N2946A P-N-P SILICON TRANSISTORS

electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

PARAMETIER		TEST CONDITIONS		2N2944	2N294B	2N2946	UNIT		
		MIN MAX	MIN MAX	MIN MAX					
'coo	Colloctor Cutoff Currme			$V_{C B}=$ Ratad $V_{C B}$	It $=0$	-0.14	-0.24	-0.5*	nA
		$V_{C B}=$ Ratod $V_{C B}$	$\mathrm{I}_{1}=0, \quad \mathrm{~T}_{\mathrm{A}}=100^{\circ} \mathrm{C}$	-10	-20	-25	nA		
'raso	Emittor Cuteti Currmi	$\gamma_{\text {E }}=$ Rated $V_{\text {E }}$	$\mathrm{I}_{\mathrm{c}}=0$	$\rightarrow 0.1{ }^{\circ}$	$\underline{-0.2}$	$\rightarrow 0.5^{*}$	nA		
		$V_{E I}=$ Rated $\boldsymbol{V}_{\text {E }}$	$\mathrm{I}_{\mathrm{C}}=0, \quad \mathrm{~T}_{\mathrm{A}}=100^{\circ} \mathrm{C}$	-10	-13	-20	nA		
$h_{\text {Pe }}$	Statk Forward Current Trunstor Retlo	$\mathrm{v}_{\text {CE }}=-0.5 \mathrm{~V}_{\text {, }}$	$\mathrm{I}_{\mathrm{c}}=-1 \mathrm{~mA}$	104	40^{*}	30°			
$h_{\text {PEI } \mid \text { Inv }}$	Statk Forwand Corrmit Transtor hatio (Invertod Conauction)	$\mathrm{V}_{\mathrm{EC}}=-0.5 \mathrm{~V}$,	$1_{1}=-200 \mu \mathrm{~A}$	6	4	3			
$V_{\text {Eciofs) }}$	Emilter-Celloctor Offist Veltage	$\mathrm{I}_{1}=-200 \mu_{\text {R }}$,		-0.3	-0.5	-0.6	mV		
		$\mathrm{I}_{1}=-1 \mathrm{~mA}$,		$\underline{-0.6}$	-1*	-	m		
		$\mathrm{I}_{1}=-2 \mathrm{~mA}$,	$l_{12}=0 \quad 1$	-1	-1.6	-2.5	mv		
${ }^{\text {recoun) }}$	Smail-Signal Emittor-Colloctor On-State Zesisitance	$I_{1}=-1 \mathrm{~mA}$,	$\begin{array}{ll} I_{z}=0, & I_{6}=100 \mu \lambda_{1} \\ f=1 \mathrm{kHz}, & \text { see Figure } 2 \end{array}$	20^{*}	$35 *$	45*	Ω		
$\left\|\mathrm{hf}_{\mathrm{fo}}\right\|$	Small-Sijnol Conmmen-Emittor Fonward Current Trensier Ratio	$V_{\text {CE }}=-6 V_{\text {, }}$	$\mathrm{I}_{\mathrm{c}}=-1 \mathrm{md}, 1=1 \mathrm{MHz}$	10"	5	${ }^{3}$			
$C_{\text {abo }}$	Commen. liase Opan-Girevit Output Capacitenc:	$\mathrm{V}_{\mathrm{CB}}=-6 \mathrm{~V}$,	$\mathrm{I}_{\mathrm{L}}=0, \quad \mathrm{f}=580 \mathrm{kHz}$	10^{+}	10*	10*	PF		
Cibo	Common-Lase Open-Circuli Input Caperitence	$\mathbf{V}_{\mathbf{E}}=\mathbf{=} \mathbf{y}$,	$\mathrm{I}_{\mathrm{C}}=0, \quad i=500 \mathrm{kHz}$	6*	$6{ }^{\circ}$	6	pF		

electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

PARAMETER		THST CONDITIONS		2N2944A	2N2945A	2N2946A	UNIT		
		MIN MAX	MIN MAX	MIN MAX					
${ }^{\text {creo }}$	Coliector Cutoff corront			$V_{\text {CE }}=$ Rated $V_{\text {ct }}$	$\mathrm{I}_{1}=0$	-0.10	-0.2	-0.5*	$n \mathrm{~A}$
		$V_{\text {CI }}=$ Rated $V_{\text {Cl }}$	$\mathrm{IE}_{\mathrm{E}}=0, \quad \mathrm{~T}_{\mathrm{A}}=100^{\circ} \mathrm{C}$	-104	-20^{*}	-25*	${ }^{n}$ in		
120	Emither tutofl Currme	$V_{\text {EIL }}=$ Rotod $V_{\text {EV }}$	$\mathrm{I}_{\mathrm{c}}=0$	$\rightarrow 0.1{ }^{\text {- }}$	-0.2*	-0.5*	nh		
			$l_{C}=0, \quad T_{A}=100^{\circ} \mathrm{C}$	-10*	-15*	-20\%	ni		
$h_{\text {Fe }}$	Static Forward Current Iramior Ratio	$v_{c t}=-0.5 \mathrm{~V}$,	$1_{c}=-1 \mathrm{~mA}$	100°	70^{*}	50^{4}			
$\mathrm{H}_{\text {refinvi }}$	Static Forware Current Tronsfor Ratlo (Invortod Connection)	$V_{\text {EC }}=-0.5 \mathrm{~V}$,	$\mathrm{I}_{\mathrm{B}}=-200 \mu \mathrm{~A}$	50*	30*	20^{*}			
$V_{\text {ec (}}^{\text {(fis) }}$)	Emifter-Collector Offsal Voltega	$\mathrm{I}_{\mathrm{B}}=-200 \mu \mathrm{~A}$,	$\mathrm{I}_{\mathrm{E}}=0 \quad \mathrm{Sor}$	-0.3*	-0.5*	$\underline{0.8}$	mV		
		$\mathrm{I}_{\mathrm{B}}=-1 \mathrm{ma} \mathrm{A}_{1}$	$\mathrm{I}_{\mathrm{E}}=0 \quad$ Figuro	-0.6	-1*	-2*	my		
		$i_{1}=-2 \mathrm{~m} \mathrm{~A}_{1}$		$-{ }^{-1}$	-1.6*	-2.5*	mV		
'oce(on)	Small-Signal Emittar-Calloctor On-State Rerstianec	$\mathrm{I}_{\mathrm{B}}=-1 \mathrm{~mA}$,	$\begin{array}{ll} I_{E}=0, & I_{\bullet}=100 \mu A_{1} \\ f=1 \mathrm{kHz}, & \text { See } \end{array}$	4	${ }^{6}$	$8{ }^{*}$	\cap		
$\left\|h_{\text {fo }}\right\|$	Small-Signel Commen-Emiliter Forward Current Transfor Ratle	$V_{C E}=-6 V_{\text {, }}$	$\mathrm{I}_{\mathrm{c}}=-1 \mathrm{~mA}, \mathrm{t}=1 \mathrm{mHz}$	15*	10^{*}	5*			
$C_{\text {obe }}$	Common-loss Open-Clecult Output Copacitance	$V_{C E}=-6 V_{\text {, }}$	$\begin{aligned} & \mathrm{T}_{\mathrm{E}}=0, \\ & \mathrm{I}=0.1 \mathrm{MHz} \text { to } 1 \mathrm{MHz} \end{aligned}$	10^{4}	10^{4}	10^{*}	PF		
Cibe	Cammen-laste Open-Sireuit Input Capectiance	$V_{\text {EI }}=-6 \mathrm{~V}$,	$\begin{aligned} & I_{c}=0, \\ & I^{\prime}=0.1 \mathrm{MHz} \text { to } 1 \mathrm{MHz} \end{aligned}$	6	6^{*}	${ }^{*}$	pF		

PARAMETER MEASUREMENT INFORMATION

miasurement circuit for offset voltage

MEASUREMENT CIRCUIT FOR EMITTER-
COLLECTOR ON-STATE RESISTANCE

Note a: The voltemetor must have high enough impodance that halving the value th the voltmets impodanes dow not change the meosured volye.
-Indicates JEDEC raglatiored dala

TYPES 2N2913 THRU 2N2920, 2N2915A, 2N2916A, 2N2919A, 2N2920A, $2 N 2972$ THRU $2 N 207$ DUAL N-P-N SILICON TRANSISTORS
 BULLETIN NO. DL-B 6911168, MAMCH 1969

A broad family of dual transistors recommended for

- Differential Amplifiers
- High-Gain, Low-Noisa, Audio Amplifiers
- Transducer Signal-Conditioner Amplifiers
- Low-Leval Flip-Flops
*mechanical data

quick-selection guide (for details see characteristics on the following pages)

TYPE		MIN Viemiceso		$\operatorname{MiN}-\operatorname{MAXX} h_{F E}$$\mathrm{H}_{\mathrm{C}}=10 \mu \mathrm{Al}$		$\text { MIN } \frac{h_{F} E T}{h_{F} \in z}$		$\begin{aligned} & \left\|V_{B E},-V_{B E 2}\right\| \\ & \left\\|\\|_{C}=100 \mu A \mid\right. \end{aligned}$			$\begin{gathered} 1 \Delta V_{E E}-V_{B E 2}\left\|\Delta T_{A}\right\| \\ \left(T_{A(1)}=20^{\circ} C_{,} T_{A(2)}+420^{\circ} \mathrm{Cl}\right. \end{gathered}$		
dutilime a	OUTLINTE	Hev	48V	20-240	180-600	0.8	0.0	1.5 mV	3 mV	5 mv	0.8 mV	1 mV	2 mV
2N8013	2Nav72		-	-									
202314	2Nate73		-		\bigcirc								
2Nat1	2N8974		-	-		\bullet			-			\bullet	
2N2015A			-	-		-		-			\bullet		
2Na010	2N297		-		\bullet	-			\bullet			\bullet	
202nta			-		\bullet	\bullet		-			\bullet		
$2 \mathrm{Nz317}$	$2 \mathrm{Nas74}$		-	-			-			-			-
2N2014	2Na971		-		-		\bigcirc			-			\bullet
2N2010	2N297	\bullet		-		\bullet			\bullet			\bullet	
2N201M		\bullet		-		\bullet		\bullet			\bullet		
2Nata0	2N2070	-			-	6			\bullet			\bullet	
ENRE20A		0			\bullet	\bullet		\bullet			\bullet		

[^64]USE8 CHIP N11

TYPES 2N2913 THRU 2N2920, 2N2915A, 2N2916A, 2N2919A, 2N2920A, 2N2972 THRU 2N2979 DUAL N-P-N SILICON TRANSISTORS

*absolute maximum ratings at $\mathbf{2 5}{ }^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature (uniess otherwise noted)

- individual triode characteristics (20e note 4)

PARAMETER	TEST CONDITIONS	2N2913 2N2915 2N2915A 2N2917 2N2972 2N2974 2N2976	2N2914 2N2916 2N2916A 2N2918 2N2973 2N2975 2N2977	$\begin{aligned} & \text { 2N2919 } \\ & \text { 2N2919A } \\ & \text { 2N2978 } \end{aligned}$		$\begin{aligned} & \text { 2N2920 } \\ & \text { 2N2920A } \\ & \text { 2N2979 } \end{aligned}$	UNIT
		MIN MAX	MIN MAX	MIN	MAX	MIN MAX	
$\mathrm{V}_{\text {(BR) }}$ CBO Collector-Bave Bremkdown Valtage	$t_{C}=10 \mu \mathrm{~A}, t_{E}=0$	45	46	60		60	v
$V_{\text {(BRICEO }}$ O Collector-Emitter Brackdown Voltage	$I_{C}=10 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0, \quad$ Soe Note 5	45	45	60		60	V
$V_{\text {(BR)EBO }}$ Emittor-Bame Broakdown Voltage	$I_{E}=10 \mu \mathrm{~A}, I_{C}=0$	6	6	6		6	V
Icbo Collectar Cutoff Current	$\mathrm{V}_{C B}=45 \mathrm{~V}, 1_{\mathrm{E}}=0$	10	10		2	2	nA
	$V_{C B}=45 \mathrm{~V}, \mathrm{I}_{E}=0, \quad T_{A}=150^{\circ} \mathrm{C}$	10	10		10	10	$\mu \mathrm{A}$
TCEO Collector Cutoff Curront	$\mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}, 1_{\mathrm{B}}=0$	2	2		2	2	nA
leBo Emitter Cutofl Current	$\mathrm{V}_{\text {EB }}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=0$	2	2		2	2	nA
$\begin{array}{ll} \\ h_{\text {FE }} & \text { Static Forward Current } \\ & \text { Transfor Ratio }\end{array}$	$\mathrm{V}_{C E}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}$	$60 \quad 240$	$150 \quad 600$	60	240	150600	
	$\mathrm{V}_{\text {CE }}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=100 \mu \mathrm{~A}$	100	225	100		225	
	$\mathrm{V}_{C E}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}$	150	300	150		300	
	$\mathrm{V}_{C E}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$	15	$\begin{gathered} 30 \\ (40) \\ \hline \end{gathered}$	15		40	
$\mathrm{V}_{\mathrm{BE}} \quad$ Bexe-Emitrer Voltape	$\mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=100 \mu \mathrm{~A}$	0.7	0.7		0.7	0.7	V
$\mathrm{V}_{\text {CE(cat) }}$ Collector-Emitter Saturation Voltage	$\mathrm{I}_{\mathrm{B}}=100 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}$	0.35	0.35		0.35	0.35	V

NOTES: 1. These values apply when the base-emitter dlode is open-circuited.
2. Derate linearly to $200^{\circ} \mathrm{C}$ free-alr temperature at the following retes: $1.72 \mathrm{~mW} / \mathrm{deg}$ for each triode and $\mathbf{2 . 8 6 \mathrm { mW } / \mathrm { deg } \text { for total } \mathrm { f }}$ device (2N2913 thru 2N2920, 2N2915A, 2N2916A, 2N2919A, 2N2920A); $1.43 \mathrm{~mW} /$ deg for asch triode and $1.72 \mathrm{~mW} /$ deg for total device (2 N 2972 thru 2 N 2979).
3. Derate finearly to $200^{\circ} \mathrm{C}$ case temperature at the following rates: $4.3 \mathrm{~mW} /$ deg for each triode and $8.6 \mathrm{~mW} / \mathrm{deg}$ for total device (2N2913 thru 2N2920, 2N2915A, 2N2916A, 2N2919A, 2N2920A); $2.86 \mathrm{~mW} /$ deg for anch trlode and $4.3 \mathrm{~mW} /$ deg for total dovice (2N2972 thru 2N2979).
4. The terminals of the triode not under test are open-circuited for the measurement of these characteristics.
5. This parameter must be meazured using pulse technlques. $t_{p}=300 \mu \mathrm{~s}$, duty cycle $\leq 1 \%$.

[^65]*electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature (continued)
individual triode characteristics (see note 4)

PARAMETER		TEST CONDITIONS		$\begin{gathered} \text { 2N2913 } \\ \text { thru } \\ \text { 2N2920 } \\ \text { 2N2972 } \\ \text { thru } \\ \text { 2N2979 } \end{gathered}$		2N2915A 2N2916A 2N2919A 2N2920A		UNIT		
		MIN	MAX	MilN	MAX					
h_{ib}	Small-Signal Common-Base Input Impedance			$\mathrm{V}_{\mathrm{CB}}=5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{C}}=1$	$f=1 \mathrm{kHz}$	25	32	25	32	Ω
$h_{\text {ob }}$	Small-Signal Common-Base Output Admittance		$f=1 \mathrm{kHz}$		1		1	$\mu \mathrm{mho}$		
$\left\|h_{\text {fe }}\right\|$	Small-Signal Common-Emitter Forward Cursent Transfer Ratio	$V_{C E}=5 \mathrm{~V}, \quad I_{C}=0.5$	$f=20 \mathrm{MHz}$	3		3	8			
Cobo	Common-Base Open-Circuit Output Capacitance	$V_{C B}=5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{E}}=0$.	$\mathrm{f}=140 \mathrm{kHz}$ to $\mathbf{1} \mathbf{M H z}$		6		6	pF		
$\mathrm{C}_{\text {ibo }}$	Common-Base Open-Circuit Input Capacitance	$V_{E B}=0.5 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=0$.	$t=140 \mathrm{kHz}$ to 1 MHz				10	pF		

triode matching characteristics

PARAMETER	TEST CONDITIONS	2N2915 2N2916 2N2919 2N2920 2N2974 2N2975 2N2978 2N2979		$\begin{aligned} & \text { 2N2915A } \\ & \text { 2N2916A } \\ & \text { 2N2919A } \\ & \text { 2N2920A } \end{aligned}$		$\begin{aligned} & \text { 2N2917 } \\ & \text { 2N2918 } \\ & \text { 2N2976 } \\ & \text { 2N2977 } \end{aligned}$	UNIT
		MIN	MAX	MIN	MAX	MIN MAX	
Static Forward-CurrentGain Batance Ratio	$\begin{aligned} & V_{C E}=5 \mathrm{~V}, \quad I_{C}=100 \mu \bar{A}, \\ & \text { See Note } 6 \end{aligned}$	0.9	1	0.9	1	0.81	
	$\begin{aligned} & V_{C E}=5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{C}}=100 \mu \mathrm{~A} \text { to } 1 \mathrm{~mA}, \\ & T_{A}=-55^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C} \text {, See Note } 6 \end{aligned}$			0.85	1		
$\left\|\mathrm{V}_{\mathrm{BE},}-\mathrm{V}_{\mathrm{BE} 2}\right\|$	$V_{C E}=5 \mathrm{~V}, \quad I_{C}=100 \mu \mathrm{~A}$		3		1.5	5	mV
	$V_{\text {CEE }}=5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}$ to 1 mA		5		2	10	
Baso-Emitter-Voltage- $\left.\mid \Delta V_{B E 1}-V_{B E 2}\right)_{\Delta T_{A}} \mid$ Differential Change With Temperature	$\begin{aligned} & V_{C E}=5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{C}}=100 \mu \mathrm{~A}, \\ & \mathrm{~T}_{\mathrm{A}(1)}=25^{\circ} \mathrm{C}, \mathrm{~T}_{\mathrm{A}(2)}=-65^{\circ} \mathrm{C} \end{aligned}$		0.8		0.4	1.6	mV
	$\begin{array}{ll} V_{C E}=5 \mathrm{~V}, & I_{C}=100 \mu \mathrm{~A}, \\ T_{A(1)}=25^{\circ} \mathrm{C}, & T_{A(2)}=125^{\circ} \mathrm{C} \end{array}$	1		0.5		2	

*operating characteristics at $25^{\circ} \mathrm{C}$ free-air temperature
individual triode characteristics (see note 4)

PARAMETER	TEST CONDITIONS	$\begin{aligned} & \hline \text { 2N2913 } \\ & \text { 2N2915 } \\ & \text { 2N2915A } \\ & \text { 2N2917 } \\ & \text { 2N2919 } \\ & \hline \end{aligned}$	2N2919A 2N2972 2N2974 2N2976 2N2978	$\begin{aligned} & \text { 2N2914 } \\ & \text { 2N2916 } \\ & \text { 2N2916A } \\ & \text { 2N2918 } \\ & \text { 2N2920 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 2N2920A } \\ & \text { 2N2973 } \\ & \text { 2N2975 } \\ & \text { 2N2977 } \\ & \text { 2N2979 } \\ & \hline \end{aligned}$	UNIT
		MAX		MAX		
\bar{F} Averege Noise Figure	$\begin{array}{ll} V_{C E}=5 \mathrm{~V}, & I_{C}=10 \mu \mathrm{~A}, \quad R_{\mathrm{G}}=10 \mathrm{k} \Omega, \\ f=1 \mathrm{kHz}, & \text { Noise bandwidth }=200 \mathrm{~Hz} \end{array}$					dB
	$\begin{aligned} & V_{\text {CE }}=5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}, \quad \mathrm{R}_{\mathrm{G}}=10 \mathrm{k} \Omega, \\ & \text { Noise bandwidth }=15.7 \mathrm{kHz} \text {, See Note } 7 \end{aligned}$	4		3		

NOTES: 4. The terminals of the triode not under test are open-circuited for the measurement of these characteristics.
6. The lower of the two hFE readings is taken as hFE1.
7. This parameter is measured in an amplifier with response down 3 dB at $\mathbf{1 0 ~} \mathbf{H z}$ and 10 kHz and a high-frequency rolloff of $6 \mathrm{~dB} / \mathrm{octave}$.

- JEDEC registered data

TYPES 2N2913 THRU 2N2920, 2N2915A, 2N2916A, 2N2919A, 2N2920A. 2N2972 THRU 2N2979 DUAL N-P-N SILICON TRANSISTORS

TYPICAL MATCHING CHARACTERISTICS \dagger

FOR TYPES 2N2915, 2N2915A, 2N2916, 2N2916A, 2N2919, 2N2919A,
2N2920, 2N2920A, 2N2974, 2N2975, 2N2978, 2N2979

BASE-EMITTER-VOLTAGE DIFFERENTIAL

BASE-EMITTER-VOLTAGE DIFFERENTIAL
vs

NOTE 6: The lower of the two $h_{F E}$ readings is taken as $h_{F E 1}$.
tThese curves represent the average behavior of groups of duai transistors. Unike normal single-triode characteristics, matching characteristics of dual transistors may differ considerably in behavior from the typical. For example, a minority of devices have been observed with smaller $V_{B E}$ mismatch at $150^{\circ} \mathrm{C}$ than at $-65^{\circ} \mathrm{C}$, as opposed to the average behevior as shown in figures 2 and 3.

DESIGNED FOR HIGH-SPEED SWITCHING APPLICATIONS

- Guaranteed $\mathrm{V}_{\text {(E\{sat) }} \cdots \mathbf{0 . 5} \mathbf{v}$ Max at 100 ma
- High f_{t}... 400 Mc Min
*mechanical data

*absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

*electrical characteristics at $25^{\circ} \mathrm{C}$ free-air tomperature (unless otherwise noted)

PARAMETER	TEST CONDITIONS	2N2894	2N3012	UNIT
		MIN MAX	MIN MAX	
V(wicso Collector-Laso Iroekdown Veltage	$\mathrm{I}_{\mathrm{C}}=-10 \mu \mathrm{a}, \mathrm{I}_{\mathrm{E}}=0$	- 12	-12	v
$\mathrm{V}_{\text {(m) Ce }}$ Collector-Emittor Brookdown Voltage	$\mathrm{I}_{\mathrm{C}}=-10 \mathrm{mi}, \mathrm{I}_{\mathrm{B}}=0, \quad$ See Nate 4	-12	-12	v
V(ER)CEs Collector-Emitter Iromdown Voltage	$\mathrm{I}_{\mathrm{C}}=-10 \mu \mathrm{a}, \quad \mathrm{V}_{\mathrm{BE}}=0$	-12	-12	v
	$\mathrm{I}_{\mathrm{E}}=-100 \mu \mathrm{a}, \quad \mathrm{I}_{\mathrm{C}}=0$	-4	-4	\checkmark
$\mathrm{I}_{\text {CBO }}$ Colloctor Cutofi Currmal	$V_{C B}=-6 v_{1} \quad I_{E}=0, \quad T_{A}=125^{\circ} \mathrm{C}$	-10		$\mu \mathrm{a}$
${ }^{\text {ches }}$ Celloctor Cutaff Currmi	$\mathrm{V}_{\text {CE }}=-6 \mathrm{y}, \quad \mathrm{V}_{\mathrm{BE}}=0$	-80	$-\infty$	ne
			-5	$\mu \mathrm{s}$
$\mathrm{I}_{1} \quad$ Dase Curront	$\mathrm{v}_{\mathrm{CE}}=-6 \mathrm{v}, \quad \mathrm{v}_{\mathrm{BE}}=0$	80	30	ne
Static Ferward Current Transler Ratio	$\mathbf{v}_{C E}=-0.3 \mathrm{v}, \mathrm{I}_{\mathrm{C}}=-10 \mathrm{ma}, \quad$ See Mere 4	30	25	
		$40 \quad 150$	$30 \quad 120$	
	$Y_{C E}=-1 v_{1}, I_{C}=-100 \mathrm{ma}, \quad$ See Mete 4	25	20	
	$\begin{array}{ll} Y_{\mathrm{CE}}=-0.5 \mathrm{~V}, & \mathrm{I}_{\mathrm{C}}=-30 \mathrm{ma}, \\ \mathrm{I}_{\mathrm{A}}=-55^{\circ} \mathrm{C}, & \text { See Mote } 4 \end{array}$	17		
Colloctor-Emitior Saturatien Yeltage		-0.15	-0.15	V
		-0.20	-0.20	V
	$\mathrm{I}_{B}=-10 \mathrm{~mm}, \quad \mathrm{I}_{C}=-100 \mathrm{ma}$, See Nate 4	-0.50	-0.50	v
	$\begin{array}{ll} T_{B}=-3 \mathrm{mme}, & I_{C}=-30 \mathrm{ma}, \\ T_{A}=15^{\circ} \mathrm{C}, & \text { See Mote } 4 \end{array}$		-0.40	v
Saso-Emitter Voliage	$\mathrm{I}_{\mathrm{B}}=-1 \mathrm{ma}, \quad \mathrm{I}_{\mathrm{C}}=-10 \mathrm{mo}$, Seat Mote 4	-0.78-0.98	-0.74 -0.98	v
	$\mathrm{I}_{\mathrm{B}}=-3 \mathrm{~mm}, \quad \mathrm{I}_{\mathrm{C}}=-30 \mathrm{ma}$, Son Mote 4	$\begin{array}{ll}-0.85 & -1.2\end{array}$	-0.85 -1.2	v
	$\mathrm{I}_{1}=-10 \mathrm{ma}, \mathrm{I}_{\mathrm{C}}=-100 \mathrm{me}$, See Moto 4	-1.7	-1.7	\checkmark

NOTES: 1. This value applies botwaen $10 \mu 0$ and 10 ma cellecter current when the base-emitter diede is epen-circvited.
2. berate lineasly to $200^{\circ} \mathrm{C}$ free-air temperalure of the rale of $2.06 \mathrm{mw} / \mathrm{C}^{\circ}$.
3. Derate linearly to $200^{\circ} \mathrm{C}$ case temperatere af the rate of $6.85 \mathrm{~mm} / \mathrm{C}^{\circ}$.
4. This parameter must be measured using pelse techniques. $\mathrm{PW}=300 \mu \mathrm{sex}, \mathrm{Duly} \mathrm{Cych}=1 \%$.
*Indicetes IEPEC registered dals.
USES CHIP P11

TYPES 2N2894, 2N3012
 P-N-P SILICON TRANSISTORS

*electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER		TEST CONDITIONS	2N2894	2N3012	UNIT	
		MIN MAX	MIN MAX			
$\left\|h_{\text {fol }}\right\|$	Small-Signal Commen-Emittor Forward Current Transfer Rotio		$v_{C E}=-10 v_{,} I_{C}=-30 \mathrm{ma}, \quad f=100 \mathrm{Mc}$	4	4	
Cobo	Common-Base Open-Circult Output Capacitance	$V_{C B}=-5 \mathrm{v}, \mathrm{l}_{\mathrm{E}}=0, \quad f=140 \mathrm{kc}$	6	6	pf	
$c_{\text {ibo }}$	Common-Bass Open-Circuit Input Capacitance	$v_{E B}=-0.5 \mathrm{v}, \mathrm{I}_{\mathrm{C}}=0, \quad t=140 \mathrm{kc}$	6	6	pt	

*switching characteristics $\mathbf{a} \mathbf{\$} \mathbf{2 5}{ }^{\circ} \mathbf{C}$ free-air temperature

	PARAMETER	TEST CONDITIONS ${ }^{\dagger}$	$\frac{\text { 2N2894 }}{\text { MAX }}$	$\frac{2 N 3012}{\mathrm{MAX}}$	UNIT
t_{on}	Turn-On Time		60	60	nsec
${ }^{\text {off }}$	Turn-0ff Time	$\begin{aligned} & I_{\mathrm{C}}=-30 \mathrm{ma}, \mathrm{I}_{\mathrm{BA}(1)}=-1.5 \mathrm{ma}, \mathrm{I}_{\mathrm{B}(2)}=1.5 \mathrm{ma}, \\ & R_{L}=62 \Omega \text {, See figure } 1 \end{aligned}$	90	75	nsoc

*PARAMETER MEASUREMENT INFORMATION

FIGURE 1 - TURN-ON AND TURN-OFF TIMES

NOTES: a. The input woveforms are supplied by a generator with the fotlowing characteristics: $\boldsymbol{Z}_{\text {out }}=50 \Omega, \mathrm{I}_{\mathrm{r}} \leq 1$ nsec, $\mathrm{PW}>200$ nsec.
b. Waveforms are monitored on an oscilioscope with the following characteristics: $\boldsymbol{i}_{\mathrm{r}} \leq 1 \mathrm{nsec}, \mathrm{a}_{\mathrm{in}} \geq 100 \mathrm{k} \Omega$.
*Indicates JEDEC registered data.

DESIGNED FOR HIGH-SPEED, HIGH-CURRENT SWITCHING APPLICATIONS

*mechanical data

*absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise nofed)
Collector-Base Voltage .
Collector-Emitter Voltage (See Note 1). 30 r
Emitter-Base Voltage 5 r
Total Device Dissipation at (or below) $\mathbf{2 5}{ }^{\circ} \mathrm{C}$ Free-Air Temperature (See Note 2) 0.8 w
Total Device Dissipation af (or below) $25^{\circ} \mathrm{C}$ Case Temperature (See Note 3) 3.0 w
Oparating Collector Junction Temperature $200^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$

*electrical characteristies of $\mathbf{2 5}{ }^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

2. Barate lineorly te $200^{\circ} \mathrm{C}$ free-ali fomperatere at the rete of $4.6 \mathrm{~mm} / \mathrm{C}^{\circ}$.

*indicates JEDEC registered Inta

TYPE 2N3015

N-P-N SILICON TRANSISTOR

*gwitching characteristics at $\mathbf{2 5}{ }^{\circ} \mathrm{C}$ free-air femperafure

tVoltape end curroal valum chewn ere neminal; exect values vary silghily with mansister parmantors.
*PARAMETER MEASUREMENT INFORMATION

Nominal I_{c}	R_{L}	V_{in}
300 ma	80Ω	+7 v
500 ma	48Ω	+11 v

CIRCUIT CONDITIONS
test CIRCUIT

VOLTAGE WAVEFORMS

TEST CIRCUIT

CIRCUIT CONDITIONS

VOLTAGE WAVEFORMS

FIGURE 2 - TURN-OFF TIMES

FOR GENERAL PURPOSE, MEDIUM-POWER AMPLIFIER AND SWITCHING APPLICATIONS

- High Power Dissipation Capability: 10 w at $\mathrm{TC}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$
- High Breakdown Voltage Combined with Very Low Saturation Voltage
- DC Beta Guaranteed From $100 \mu \mathrm{a}$ to 1 amp
mechanical detes
THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE CASE
absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

*electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

PARAMETĖR	TEST CONDITIONS	MIN MAX	UNIT
$V_{(m \times\})}$ cio Collector-Base Breakdown Voltage	$\mathrm{I}_{\mathrm{c}}=100 \mu \mathrm{a}, \mathrm{I}_{\mathrm{E}}=0$	120	v
$V_{\text {(ox)ceo }}$ Collector-Emitter Breakdown Voltage	$\mathrm{I}_{\mathrm{C}}=30 \mathrm{ma}, \quad \mathrm{I}_{\mathrm{I}}=0, \quad$ (Seer Note 4)	80	v
$V_{\text {(0a)ELO }}$ Emitter-Base Breakdown Voltage	$\mathrm{I}_{\mathrm{E}}=100 \mu \mathrm{a}, \mathrm{I}_{\mathrm{c}}=0$	7	v
Collector Cutoff Current	$V_{\text {Cit }}=60 \mathrm{v}_{1} \quad \mathrm{I}_{\mathrm{E}}=0$	10	no
	$V_{C I}=60 \mathrm{v}_{1} \quad \mathrm{I}_{\mathrm{E}}=0, \quad \mathrm{~T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$	10	$\mu \mathrm{a}$
IEOO Emittor Cutoff Current	$v_{\text {Et }}=5 v_{\text {d }}, \quad \mathrm{l}_{\mathrm{c}}=0$	10	na
Static Forward Current Transfor Ratio	$V_{C E}=10 v_{1} \quad l_{C}=100 \mu \mathrm{a}$	20	
	$V_{C E}=10 \mathrm{v}, \quad I_{C}=10 \mathrm{ma}$	40	
	$V_{C E}=10 v_{1} \quad I_{C}=150 \mathrm{ma},($ See Note 4)	$50 \quad 150$	
	$V_{C E}=10 \mathrm{v}, \quad l_{C}=500 \mathrm{mc}$, (Soe Note 4)	25	
	$V_{C E}=10 v_{1}, l_{c}=1 \mathrm{a}, \quad$ (See Nolo 4)	15	
	$V_{C E}=1 v_{1}, \quad l_{c}=150 \mathrm{ma}$, (See Note 4)	30	
Base-Emitter Voltage	$\mathrm{I}_{\mathrm{B}}=15 \mathrm{mo}, \quad \mathrm{I}_{\mathrm{C}}=150 \mathrm{ma}$, (Sos Note 4)	$0.75 \quad 1.1$	v
	$\mathrm{I}_{\mathrm{B}}=50 \mathrm{ma}, \quad \mathrm{I}_{\mathrm{c}}=500 \mathrm{ma}$, (S00 Nota 4)	1.5	v
Collector-Emitter Saluration Voltage	$\mathrm{l}_{\mathrm{g}}=15 \mathrm{ma}, \quad \mathrm{l}_{\mathrm{c}}=150 \mathrm{ma}$, (So0 Nota 4)	0.25	v
	$\mathrm{I}_{\mathrm{t}}=50 \mathrm{ma}, \mathrm{Ic}_{\mathrm{c}}=500 \mathrm{mo}$, (See Note 4)	1.0	v

NOTES: 1. This value applies when the bese-emitter diode is open-circuited.
2. Derate linaurly to $200^{\circ} \mathrm{C}$ free-air tamparature at the rate of $4 . \overline{\mathrm{E}} \mathrm{mw} /{ }^{\circ} \mathrm{C}$.
3. Derate the 10 -watt rating linaarly to $200^{\circ} \mathrm{C}$ case temperature at the rate of $57.1 \mathrm{mw} /{ }^{\circ} \mathrm{C}$.

Derate the 5 -watt (JEDEC reglatered) rating linearly to $200^{\circ} \mathrm{C}$ case temperature at the rate of $28.6 \mathrm{mw} /{ }^{\circ} \mathrm{C}$.
4. Thase parameters must be masared using pulse techniques, $\mathrm{PW}=\mathbf{3 0 0} \mu \mathrm{s}$, Duty Cyele $<\mathbf{2 \%}$.
*The JEDEC registered outilne for these devices is TO-6. TO-39 falls within TO-5 with the exception of lead length.

- JEDEC raglatered data. This data sheet contalne all applicable registered dete in affect at the time of publication.

TThis value is gueranteed by Texas Instrumente in addition to tha JEDEC registared vaiue which is also shown. -
*electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER		TEST CONDITIONS			MIN	MAX	UNIT
$\mathrm{h}_{\text {i }}$	Small-Signal Common-Emilter Input Impodance	$V_{C E}=10$	$\mathrm{Ic}_{\mathrm{c}}=10 \mathrm{ma}$,	$f=1 \mathrm{kc}$	120	900	ohm
$h_{\text {fo }}$	Smail-Signal Common-Emitter Forward Current Ironsfer Ratio	$v_{\text {ce }}=10$	$l_{c}=10 \mathrm{ma}$,	$f=1 \mathrm{kc}$	40	180	
$\mathrm{h}_{\boldsymbol{6}}$	Small-Signal Common-Emitter Output Admittanco	$V_{C E}=10$	$\mathrm{Ic}_{\mathrm{c}}=10 \mathrm{ma}$	$f=1 \mathrm{kc}$		120	$\mu \mathrm{mho}$
\|heol	Small-Signal Common-Emitter Forward Current Transtor Ratio	$V_{\text {CE }}=10$	$l_{c}=10 \mathrm{ma}$,	$\mathrm{f}=20 \mathrm{mc}$	2.5		
$C_{\text {ab }}$	Common-Base Open-Circuit Output Capacitance	$V_{\text {cı }}=10$	$I_{E}=0$,	$\mathrm{f}=1 \mathrm{mc}$		15	pf
C_{ib}	Common-Base Open-Circuit Input Capadtance	$V_{\text {Et }}=0.5$	$\mathrm{l}_{\mathrm{c}}=0$,	$\mathrm{f}=1 \mathrm{mc}$		85	pf

*switching characteristics ef $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER	TEST CONDITIONS \dagger	MIN MAX	UNIT
$t_{\text {d }}$ Delay Time	$\begin{aligned} & I_{c}=150 \mathrm{ma}, \quad I_{\mathrm{M} 11}=15 \mathrm{ma}, \\ & I_{\mathrm{m}(1)}=-15 \mathrm{ma}, \\ & V_{\mathrm{BEl} \text { leff }}=-2.75 \mathrm{v}, \quad R_{L}=40 \Omega, \\ & \text { (See Figure 1) } \end{aligned}$	30	nsoc
$t_{t} \quad$ Rise lime		150	nsor
$t_{3} \quad$ Storage Time		1	$\mu \mathrm{soc}$
$t_{f} \quad$ Foll Time		200	nsoc

\dagger Valiage and current values shown are nominal; exact values vary silghtly with transister parametors.
*PARAMETER MEASUREMENT INFORMATION

*Iadicates JEDEC ragisterad dato

FOR GENERAL PURPOSE AMPLIFIER AND SWITCHING APPLICATIONS

- High Breakdown Voltage Combined With Very Low Saturation Voltage
- DC Beta - Guaranteed From 100μ a to $\mathbf{5 0 0}$ ma
- Electrically Similar to 2N2243
- Recommended for Complementary Use With 2N3039 and 2N3040
*mechanical dafa

*absolute maximum ratings af $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

*electrical characteristics af $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

PARAMETER	TEST CONDITIONS	2N3037		2N3038		UNIT
		MIN	MAX	MIN	MAX	
	$\mathrm{I}_{\mathrm{c}}=100 \mu \mathrm{a}, \mathrm{I}_{\mathrm{E}}=0$	120		100		V
$V_{\text {(BR)CEO }}$ Collector-Emitter Breakdown Voltage	$I_{C}=30 \mathrm{ma}_{2} I_{s}=0, \quad$ (See Mote 4)	70		60		V
$V_{(B R) E 80}$ Emitfer-Bose Breakdown Voltage	$I_{E}=100 \mu n, l_{C}=0$	7		7		v
Collector Cutoff Current	$V_{C B}=60 \mathrm{v}, \quad \mathrm{I}_{\mathrm{E}}=0$		10		10	no
	$V_{C B}=60 y_{1}, \quad I_{E}=0, \quad T_{A}=150^{\circ} \mathrm{C}$		10		10	$\mu \mathrm{a}$
$\mathrm{I}_{\text {EMO }}$ Emitter Cutoff Current	$v_{E B}=5 \mathrm{v}, \quad \mathrm{l}_{\mathrm{c}}=0$		10		10	na
Static Forward Current Transfer Ratio	$V_{C E}=10 \mathrm{v}, \quad \mathrm{I}_{\mathrm{C}}=100 \mu \mathrm{O}$	15		30		
	$V_{C E}=10 \mathrm{v}, \mathrm{I}_{C}=10 \mathrm{ma}$, (See Note 4)	30		60		
	$V_{C E}=10 \mathrm{v}, \mathrm{l}_{\mathrm{c}}=150 \mathrm{~ms}$, (See Note 4)	40	120	80	240	
	$V_{C E}=10 \mathrm{v}, \mathrm{I}_{\mathrm{c}}=500 \mathrm{mc}$, (See Note 4)	20		40		
	$V_{C E}=1 \mathrm{v}, \mathrm{l}_{\mathrm{C}}=150 \mathrm{ma},($ See Note 4)	25		50		
Base-Emitter Yoltage	$l_{1}=1 \mathrm{ma}, \quad l_{c}=10 \mathrm{mo}$	0.6	0.8	0.6	0.8	V
	$\mathrm{I}_{\mathrm{s}}=15 \mathrm{ma}, \mathrm{I}_{\mathrm{c}}=150 \mathrm{ma}$, (See Note 4)	0.75	1.1	0.75	1.1	V
$\mathbf{V}_{\text {cEinit }}$ Collector-Emitter Saturation Voltoge	$\mathrm{I}_{\mathrm{B}}=1 \mathrm{ma}, \quad \mathrm{I}_{\mathrm{c}}=10 \mathrm{ma}$		0.2		0.2	V
	$I_{1}=15 \mathrm{ma}, I_{c}=150 \mathrm{ma}$, (See Note 4)		0.35		0.35	V

NOTES: 1. This value applies whem the base-emitter diede is epen-circulted.
2. Derale lineariy to $185^{\circ} \mathrm{C}$ froe-air temperature at the rate of $2.4 \mathrm{~mm} / 6^{\circ}$.
3. Darate linearly to $175^{\circ} \mathrm{C}$ case temperature at the rete of $6.67 \mathrm{mw} / \mathrm{C}^{\circ}$.
4. These paramaters must be measured using pulse techniques. $\mathbf{F W}=300 \mu \mathrm{soc}$, Duty Cycle $\leq \mathbf{~} \%$.
*Indicates JEDEC registared date

TYPES 2N3037, 2N3038

N-P-N SILICON TRANSISTORS
*electrical characteristics at $\mathbf{2 5}{ }^{\circ} \mathrm{C}$ free-air temperature

PARAMETER		TEST CONDITIONS		2N3037		2N3038		UNIT		
		MIN	max	MIN	MaX					
$\mathrm{hio}^{\text {i }}$	Small-Signal Common-Emitter Input Impedance			$V_{\text {CE }}=10 \mathrm{y}, \mathrm{l}_{\mathrm{c}}=1$	$\mathrm{f}=1 \mathrm{kc}$	90	700	180	1500	ohm
hfo_{6}	Small-Signal Commen-Emitter Forward Current Transfer Ratio	$\mathbf{v}_{\mathbf{c E}}=10 \mathrm{v}_{\mathbf{c}} \mathrm{l}_{\mathbf{c}}=$	$\mathrm{f}=1 \mathrm{kc}$	30	140	60	300			
h_{0}	Small-Signal Common-Emittor Output Admittance	$\mathbf{V}_{\mathbf{C E}}=10 \mathrm{v}, \mathrm{I}_{\mathbf{C}}=$	= 1 kc		100		200	$\mu \mathrm{mho}$		
$\left\|h_{\text {fer }}\right\|$	Small-Signal Common-Emitter Forword Current Transfer Ratio	$v_{\text {ce }}=10 \mathrm{v}, \mathrm{l}_{\mathrm{c}}=$	$=20 \mathrm{mc}$	2.5		2.5				
C_{0}	Common-Base Open-Circuit Output Caporitance	$\mathbf{v}_{\mathrm{ct}}=10 \mathrm{v}, \mathrm{l}_{\mathrm{E}}=0$,	$\mathrm{f}=1 \mathrm{mc}$		15		15	pf		
C_{ib}	Common-Base Open-Circuit Input Capacitance		$\mathbf{f}=1 \mathrm{mc}$		85		85	pf		

*switching characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER		TEST CONDITIONS \dagger	2N3037	2N3038	UNIT	
		MIN MAX	MIN MaX			
$t_{\text {d }}$	Delay Time		$\begin{aligned} & I_{c}=150 \mathrm{ma}, I_{(I)}=15 \mathrm{mo} \\ & I_{\mathbb{L 2]}}=-15 \mathrm{ma} \\ & V_{\mathbb{I E \| O f f}}=-2.75 \mathrm{v}, \mathrm{R}_{\mathrm{L}}=40 \Omega \\ & \text { (See Figure } 1 \text {) } \end{aligned}$	30	30	nsot
t_{r}	Rise Time	150		150	nser	
t_{5}	Storoge Time	1		1	$\mu \mathrm{sec}$	
${ }_{\text {f }}$	Fall Time	200		200	nsoc	

\dagger Veltage and curroat velues shown are nominal; exact velves vary slightly with transistor parcometers.
*PARAMETER MEASUREMENT INFORMATION

FIGURE I - SWITCMINE TIMES

*Indicates JEDEC ragistored dets

TYPES 2N3039, 2N3040 P-N-P SILICON TRANSISTORS

FOR GENERAL PURPOSE AMPLIFIER AND SWITCHING APPLICATIONS

- High Breakdown Voltaga Combined With Very Low Saturation Voltage
- DC Beta - Guaranteed From $100 \mu a$ to $\mathbf{5 0 0}$ ma
- Recommended for Complementary Use With 2N3037 and 2N3038

*mechanical data

*absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)
2Ns009 2N3040

*electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

PARAMETER	TEST CONDITIONS	2N3039	2N3040	UNIT
		MIN MAX	MIN MAX	
V(as)cso Collextor-hase Ireakdown Voltaye	$\mathrm{I}_{\mathrm{c}}=-100 \mu \mathrm{a}, \mathrm{l}_{E}=0$	-50	-40	V
$V_{\text {(a) }}$ ceo Collector-Emitter Breakdown Yoltage	$\mathrm{I}_{\mathrm{C}}=-30 \mathrm{ma}, \mathrm{I}_{\mathrm{B}}=0, \quad$ (See Nole 4)	-35	-30	v
V(te)Eso Emitter-Lase Breakdown Yoltoge	$\mathrm{l}_{\mathrm{E}}=-100 \mu \mathrm{c}, \mathrm{l}_{\mathrm{c}}=0$	-5	-5	\checkmark
Collector Cutoff Current	$V_{C E}=-30 \mathrm{v}, \quad \mathrm{l}_{\mathrm{E}}=0$	-25	-25	no
	$V_{C B}=-30 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0, \quad \mathrm{~T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$	-25	-25	$\mu \mathrm{L}$
IEso Emitter Cutoff Current	$V_{E E}=-3 v_{i} \quad I_{C}=0$	-10	-10	na
Static Forword Current Trenster Ratio	$V_{C E}=-10 v_{\text {g }} \quad I_{C}=-100 \mu 0$	15	30	
	$V_{C E}=-10 v_{,} I_{c}=-10 \mathrm{~ms}$, (See Nofe 4)	20	40	
	$V_{C E}=-10 v_{0} I_{C}=-150 \mathrm{ma}$, (See Note 4)	$20-80$	$40 \quad 160$	
	$V_{C E}=-10 v_{\text {g }} \quad I_{C}=-500 \mathrm{~mm}$, (Soe Note 4)	15	25	
	$V_{C E}=-1 \mathrm{v}, \quad \mathrm{I}_{\mathrm{C}}=-150 \mathrm{ma}$, (Sae Nate 4)	15	20	
Baso-Emitter Vottoge	$\mathrm{l}_{\mathrm{B}}=-1 \mathrm{ma}, \quad \mathrm{l}_{\mathrm{c}}=-10 \mathrm{mo}$	-0.6-1.0	-0.6-1.0	v
	$\mathrm{Im}_{4}=-15 \mathrm{ma}, \mathrm{I}_{\mathrm{c}}=-150 \mathrm{mo}$, (See Note 4)	-0.8-1.3	-0.8 -1.3	V
$V_{\text {cefsan }}$ Collecter-Emitter Saturotion Voltage	$\mathrm{l}_{\mathrm{L}}=-1 \mathrm{ma}, \quad \mathrm{lc}_{\mathrm{c}}=-10 \mathrm{me}$	-0.2	-0.2	v
	$\mathrm{I}_{\mathrm{S}}=-15 \mathrm{mo}, \mathrm{Ic}=-150 \mathrm{ma}$, (See Mote 4)	-0.5	-0.5	v

WOTES: 1. This value applies when the baso-amither dibide is apen-ciresited.
2. Derole linerily to $175^{\circ} \mathrm{C}$ frow-air temperature of the rele of $2.4 \mathrm{~mm} / \mathrm{C}^{\circ}$.
3. Dorate limearly to $175^{\circ} \mathrm{C}$ esse thapprative at the ruse of $6.67 \mathrm{~mm} / \mathrm{C}^{\circ}$.

*indicatas seake moghtorad dato
*electrical characteristics af $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER		TEST CONDITIONS		2N3039		2N3040		UNIT		
		MIN	MAX	MIN	MAX					
$\mathrm{h}_{\text {i* }}$	Small-Signal Common-Emitter Input Impedance			$V_{C E}=-10 \mathrm{v}, \mathrm{l}_{\mathrm{c}}=-10 \mathrm{ma}, \mathrm{f}=1 \mathrm{kc}$		60	600	120	1200	ohm
$\mathrm{hfo}_{\text {for }}$	Small-Signal Common-Emititer Forward Current Transfer Ratio	$V_{C E}=-10 \mathrm{v}, \mathrm{I}_{\mathrm{C}}=-10 \mathrm{ma}, \mathrm{f}=1 \mathrm{kc}$		20	120	40	240			
$h_{\text {o }}$	Small-Signal Common-Emitter Output Admiltonce	$V_{C E}=-10 v_{,} l_{c}=-10 \mathrm{ma}, \mathrm{f}=1 \mathrm{kc}$			250		500	$\mu \mathrm{mmo}$		
$\left\|h_{\text {fol }}\right\|$	Small-Signal Commen-Emitter Forword Current Transfer Ratio	$V_{C E}=-10 \mathrm{v}, I_{C}=-10 \mathrm{ma}, f=20 \mathrm{mc}$		2.5		2.5				
Cob	Common-Base Open-Circuit Output Capacitance	$v_{C B}=-10 \mathrm{v}, \mathrm{t}_{\mathrm{E}}=0$,	$\mathrm{f}=1 \mathrm{mc}$		40		40	pf		
c_{ib}	Common-Base Open-Crevit Input Capaditance	$V_{E a}=-0.5 \mathrm{v}, \mathrm{l}_{\mathrm{C}}=0$,	$\mathrm{f}=1 \mathrm{mc}$		80		80	pf		

*switching characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER		TEST CONDITIONS \dagger	2N3039	2N3040	UNIT	
		MIN MAX	MIN MAX			
t_{d}	Delay Time		$\begin{aligned} & I_{C}=-150 \mathrm{ma}, I_{(1)}=-15 \mathrm{ma}, \\ & I_{\mathbb{Q}(2)}=15 \mathrm{ma}, \\ & V_{\text {BEOf }}=+2.75 \mathrm{v}, \mathrm{R}_{\mathrm{L}}=40 \Omega \\ & \text { (See Figure I) } \end{aligned}$	50	50	nser
t_{r}	Rise Time	100		100	nsec	
t_{5}	Storage Time	500		500	nsec	
t_{f}	Fall Time	150		150	nsec	

†Voltoge and corrant values shown are mominal; exact volees vary slighty with transister parametors.
*PARAMETER MEASUREMENT INFORMATION

figure i-switchine times

NOTES: . The input waveform has tha following cheracteristics: $t_{r} \leq 1$ nsac, $t_{i} \leq 1$ nsec, $\mathbf{P W} \geq 500$ nsec, Dusy Cycte $\leq 2 \%$.

*Inditates JEDEC ragistered data

TYPES 2N3043 THRU 2N3048 DUAL N-P-N SILICON TRANSISTORS

dESIGNED FOR DIFFERENTIAL AMPLIFIERS AND HIGH-GAIN LOW-NOISE AUDIO AMPLIFIERS

- Eloctrically Similar to 2N2639-2N2644 Series
- Individual Triodes are Electrically Similar to 2N929, 2N930
- Popular T0-89 Flatpack Facilitates High-Density Packaging
- Welded Metal Construction
mechanical defta

*absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

MOTES: 1. This value applies when the beso-mititer diede is apen-circtitod.

*Imdicates JEDEC migitorad deta

TYPES 2N3043 THRU 2N3048 DUAL N-P-N SILICON TRANSISTORS

-lectrical characterlstics at $\mathbf{2 5}{ }^{\circ} \mathrm{C}$ free-air tomperature (unless athorwise noted)

PARAMETER		TIST CONDITIONS	$\begin{aligned} & \text { 2N3O43 } \\ & 2 N 204 \\ & 2 N 3045 \end{aligned}$		$\begin{aligned} & \text { 2N3046 } \\ & \text { 2N3047 } \\ & 2 N T 048 \\ & \hline \end{aligned}$		UNIT	
		MIN	MAX	MIN	MAX			
$V_{\text {(ma)cso }}$	Colloctor-Emithtr Zrsakdown Voltage		$\mathrm{l}_{\mathrm{c}}=10 \mathrm{ma}, \mathrm{l}_{\mathrm{s}}=0, \quad$ Sese Mote 5	45		45		V
$V_{\text {(0a) }}^{100}$	Emiftor-Besa Braakdown Voltage.	$h_{4}=10 \mu \mathrm{a}, l_{c}=0$	5		5		v	
lemo	Collectior Cutoff Curront	$V_{C E}=4.5 v_{1} h_{1}=0$		10		10	ma	
		$V_{C I}=45 v_{1} I_{B}=0, \quad T_{A}=150^{\circ} \mathrm{C}$		10		10	$\mu \mathrm{O}$	
180	Emithor Cutoff Current	$v_{10}=4 v_{1} \quad l_{c}=0$		10		10	no	
hre	Stotic Forward Currenf Transfor Ratio	$V_{C E}=5 v_{1}, I_{c}=10 \mu \mathrm{c}$	100	300	50	200		
		$V_{\text {CE }}=5 v_{\text {, }}, l_{C}=1 \mathrm{ma}$	130		65			
$V_{\text {E }}$	Boso-Emittar Voltage	$\mathrm{V}_{\mathrm{CE}}=5 \mathrm{v}, \mathrm{I}_{\mathrm{c}}=10 \mathrm{ma}$	0.6	0.8	0.6	0.8	v	
$V_{\text {ctinat }}$	Colloctor-Emitter Saturation Voltroge	$\mathrm{I}_{\mathrm{s}}=0.5 \mathrm{ma}, \mathrm{I}_{\mathrm{c}}=10 \mathrm{mc}$		1		1	v	
$h_{\text {i }}$	Small-Signal Common-Emifter Input Impedance	$\mathbf{V}_{\text {CE }}=5 \mathrm{v}, \quad \mathrm{l}_{\mathrm{C}}=1 \mathrm{ma}, \quad f=1 \mathrm{kc}$	3.2	19	1.6	13	$\mathrm{k} \Omega$	
h_{6}	Small-Signal Common-Emitter Forword Current Transter Ratio	$V_{C E}=5 \mathrm{v}, \mathrm{l}_{\mathrm{c}}=1 \mathrm{ma}, \mathrm{f}=1 \mathrm{kc}$	130	600	65	400		
h_{06}	Small-Signal Common-Emifter Output Admittance	$\mathbf{V}_{\mathbf{C E}}=5 \mathrm{v}, \quad \mathbf{l}_{\mathbf{C}}=1 \mathrm{mag}, \quad 1=1 \mathrm{kc}$		100		70	$\mu \mathrm{mho}$	
$\left\|h_{60}\right\|$	Smail-Signal Common-Emitter Forword Current Transfer Ratio	$V_{\text {ce }}=5 \mathrm{v}, \quad \mathrm{l}_{\mathrm{c}}=1 \mathrm{ma}, \quad 1=20 \mathrm{Mc}$	1.5		1.5			
$\mathrm{C}_{\text {obo }}$	Common-Base Open-Circuit Output Capocitance	$V_{C I}=5 \mathrm{v}, \quad \mathrm{l}_{\mathrm{E}}=0, \quad \mathrm{i}=1 \mathrm{Mc}$		8		8	pf	

*triode matching characteristics

PARAMETER		TEST CONDITIONS	$\begin{aligned} & \text { 2N3043 } \\ & 2 \mathrm{~N} 3046 \\ & \hline \end{aligned}$		$\begin{aligned} & \text { 2N3O44 } \\ & 2 \mathrm{~N} 3047 \\ & \hline \end{aligned}$		UNIT	
		MIN	max	MIN	MAX			
$\frac{h_{\text {FE1 }}}{h_{\text {fe2 }}}$	Static Forward-Curront- Gain Bolance Ratio		$V_{\mathrm{CE}}=5 \mathrm{v}, \quad \mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{a},$ See Note 6	0.9	1	0.8	1	
	Baso-Emifter-VoltagoDifferential	$V_{\text {CE }}=5 \mathrm{v}, \quad \mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{a}$		5		10	mv	
	Base-Emitter-VoltagoDifferential Change Whth Temperature	$\begin{array}{ll} \hline V_{C E}=5 \mathrm{v}, & I_{\mathrm{C}}=10 \mu \mathrm{a}_{\prime}{ }^{\circ} \mathrm{C} \\ T_{A(1)}=25^{\circ} \mathrm{C}, & \mathrm{~T}_{A(2)}=-55^{\circ} \end{array}$		0.8		1.6	mv	
		$\begin{aligned} & V_{\mathrm{CE}}=5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{a}_{\mathrm{o}} \\ & \mathrm{I}_{\mathrm{A}(1)}=25^{\circ} \mathrm{C}, \mathrm{~T}_{A(2]}=125^{\circ} \mathrm{C} \end{aligned}$		1		2	mv	

operating characteristics at $\mathbf{2 5}{ }^{\circ} \mathbf{C}$ free-air temperature
*individual triode characteristics (see note 4)

PARAMETER	TEST CONDITIONS	ALL TYPES	UNIT
		MIN MAX	
$\overline{\text { NF }} \quad$ Average Noise Figure	$\begin{aligned} & V_{\mathrm{CE}}=5 \mathrm{v}, \mathrm{I}_{\mathrm{c}}=10 \mu \mathrm{a}, \mathrm{R}_{\mathrm{E}}=10 \mathrm{k} \Omega, \\ & \text { Hoise Bondwidth }=15.7 \mathrm{kc} \text {, See Note } 7 \end{aligned}$	5	dh

NOTES: 4. The torminals of the triode not under test are open-circultod fer the messurament of theso cherecteristics.
5. This parameter must be mossurod esing pulse techniques. PW $=\mathbf{3 0 0}{ }^{\circ} \mu \mathrm{soc}$, Duty Cycis $\leq \mathbf{2 \%}$.
6. The lower of the two $h_{\text {FE }}$ roodings is taken as h_{FE}.
7. Avorage Noisa Figure is mossurod in en emplifior with tow-froquency-roppense down 3 de at 10 cps.
*Imdicatos JEDEC registerad data

TYPES 2N3049, 2N3050, 2N3051 DUAL P-N-P SILICON TRANSISTORS

dESIGNED FOR DIFFERENTIAL AMPLIFIERS, LOW-NOIS: AMPLIFIERS, AND LOW.LEVEL SWITCHING

- Each Triodo Eloctrically Similar to 2 N 2411 and 2 N 2412 Transistors

Popular T0-89 Flatpack Facilitates HIgh-Donsity Packaging

- Welded Motal Construction
mochanical deta

*absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (uniess otherwise noted)

Collector-Emitter Voltage (See Note 1) $\mathbf{- 2 0 \mathrm { V }}$
Emitter-Base Voltage . -5 r

Continuous Collector Current - 100 ma
Continuous Dissipation at (or below) $25^{\circ} \mathrm{C}$ Free-Air Temperature (See Note 2) . . . 250 mw 350 mw
Continuous Dissipation at (or below) $25^{\circ} \mathrm{C}$ Case Temperature (See Note 3) 0.7 w 1.4 w
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
Lead Temperature $1 / 1$ Inch from Case for 10 Seconds.
$230^{\circ} \mathrm{C}$
electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)
*individual triode characteristics (see note 4)

PARAMETER		TEST CONDITIONS	MIN	MAX	UNIT
$V_{\text {(ta) }}$ CEO	Collector-Emitter Iraakdown Yoltage	$I_{c}=-10 \mathrm{ma}, \mathrm{I}_{\mathbf{0}}=0, \quad$ Seo Mote 5	-20		v
Icro	Coliector Cufoff Current	$V_{C I}=-25 v_{1} \mathrm{I}_{\mathrm{E}}=0$		-10	no
		$V_{C E}=-25 y_{1} \mathrm{I}_{\mathrm{E}}=0, \quad \mathrm{~V}_{\mathrm{A}}=150^{\circ} \mathrm{C}$		-10	$\mu 0$
$\mathrm{I}_{\text {ELO }}$	Emittar Cutoff Curreal	$v_{\text {Ef }}=-5 v_{\text {d }}, \quad I_{c}=0$		-10	na
hre	Static Forward Curreat Transter Ratio	$V_{C E}=-5 v_{1} \quad l_{c}=-10 \mu 0$	20	120	
		$v_{\text {cE }}=-5 v, \quad l_{c}=-100 \mu \mathrm{a}$	30	120	
		$V_{c k}=-5 v_{\text {c }}, l_{c}=-1 \mathrm{ma}$	30	120	
		$V_{C E}=-5 v_{0} \quad \mathrm{l}_{\mathrm{c}}=-10 \mathrm{ma}$, See Note 5	30	120	
		$V_{\mathrm{ce}}=-1 \mathrm{v}, \quad \mathrm{l}_{\mathrm{c}}=-10 \mathrm{mo}$	20		
$V_{\text {ge }}$	Base-Emifter Voltage	$\mathrm{l}_{1}=-1 \mathrm{mo}, \mathrm{l}_{C}=-10 \mathrm{~ms}$	-0.7	-0.9	v
$V_{\text {CEfati) }}$	Collector-Emitter Soturation Voltoge	$\mathrm{l}_{\mathrm{s}}=-1 \mathrm{ma}, \mathrm{l}_{\mathrm{c}}=-10 \mathrm{mo}$		-0.2	v
$h_{\text {ie }}$	Small-Signal Common-Emitter Input Impedonce	$V_{\mathrm{ct}}=-5 \mathrm{v}, \quad \mathrm{lc}_{\mathrm{c}}=-1 \mathrm{mo}, \quad f=1 \mathrm{kc}$	0.75	4.5	$k \Omega$
$h_{\text {\% }}$	Small-Signal Common-Emiltor Forword Current Pransfer latio	$\mathbf{V}_{\mathbf{C E}}=-5 \mathrm{v}, \quad \mathrm{l}_{\mathrm{c}}=-1 \mathrm{ma}, \quad i=1 \mathrm{kc}$	30	130	
$h_{\text {o6 }}$	Small-Signal Comwnon-Emitter Output Admittence	$V_{\text {ce }}=-5 \mathrm{v}, \quad \mathrm{l}_{\mathrm{c}}=-1 \mathrm{ma}, \quad f=1 \mathrm{kc}$		50	$\mu \mathrm{mho}$
\|hel	Small-Signal Common-Emitter Forward Currunt Ironster Ratio	$\mathrm{V}_{\text {cE }}=-5 \mathrm{v}, \quad \mathrm{l}_{\mathrm{c}}=-1 \mathrm{mo}, \quad t=20 \mathrm{Mc}$	3		
Cobo	Common-Bose Opan-Circuit Output Copocilance	$V_{\text {ct }}=-5 v, \quad l_{E}=0, \quad f=1 \mathrm{Mc}$		8	pf

NOTES: 1 . This value applies when the bese-smitter diede is apen-circuited.
2. Derate linearly te $175^{\circ} \mathrm{C}$ fros-air temperature at the rate of $1.67 \mathrm{mw} / \mathrm{C}^{\circ}$ for each triode and $2.33 \mathrm{~mm} / \mathrm{C}^{\circ}$ for totat device.
3. Derate limarly to $175^{\circ} \mathrm{C}$ case tumperature at the rate of $4.67 \mathrm{mw} / \mathrm{c}^{\circ}$ for sach triode and $9.33 \mathrm{~mm} / \mathrm{c}^{\circ}$ for total device.
4. The terminals of the triede not under test are open-circuited for tho meosurement of those cheractaristics.
5. Thase paremoters must be measured using pulse tochniques. $\mathrm{PW}=300 \mu$ sec, Duty Cycle $\leq 2 \%$.
*Indicates JEDEC registored dale

DUAL P-N-P SILICON TRANSISTORS

electrical characteristics af $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)
*triode matching characteristics

PARAMETER		TEST CONDITIONS	2N3049	2N3050	UNIT	
		MIN MAX	MIN MAX			
$\frac{h_{f \in 1}}{h_{F E 2}}$	Static-Forward-CurrentGain Balance Ratio		$\begin{aligned} & V_{C E}=-5 v, I_{C}=-100 \mu \mathrm{a}, \text {. } \\ & \text { Seo Note } 6 \end{aligned}$	0.91	0.81	
\| $\mathbf{V}_{\text {de1 }}-V_{\text {dez }} \mid$	Base-Emitter-Voltage Differential	$V_{C E}=-5 \mathrm{v}, \mathrm{I}_{\mathrm{c}}=-100 \mu \mathrm{a}$	5	10	mv	
$\left\|\Delta\left(V_{\text {ve }}-V_{\text {bez }}\right)_{\Delta T_{A}}\right\|$	\|Base-Emitter-Voltage Differential Change With Temperature	$\begin{aligned} & V_{\mathrm{CE}}=-5 \mathrm{v}_{,}, I_{\mathrm{C}}=-100 \mu \mathrm{a} \\ & \mathrm{I}_{\mathrm{A}(1)}=25^{\circ} \mathrm{C}, \mathrm{~T}_{A(2)}=-55^{\circ} \mathrm{C} \end{aligned}$	0.8	1.6	mv	
		$\begin{aligned} & V_{\mathrm{CE}}=-5 v_{,} I_{\mathrm{c}}=-100 \mu \mathrm{a}, \\ & \mathrm{I}_{\mathrm{A}(1)}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{A}(2)}=125^{\circ} \mathrm{C} \end{aligned}$	1	2	mv	

NOTE 6: The lower of the two h_{FE} madings is taken as $\mathrm{h}_{\text {fet }}$.
operating characteristics af $25^{\circ} \mathrm{C}$ free-air temperature
*individual triode characteristics (see note 4)

PARAMETER		TEST CONDITIONS	ALL TYPES		UNIT	
		MiN	MAX			
$\overline{\text { MF }}$	Average Noise Figure		$\begin{aligned} & V_{\mathrm{CE}}=-5 \mathrm{v}, \mathrm{I}_{\mathrm{C}}=-100 \mu \mathrm{a}, \mathrm{R}_{\mathrm{G}}=1 \mathrm{k} \Omega \text {, } \\ & \text { Nolse Bandwidth }=15.7 \mathrm{kc} \text {, Soe Nole } 7 \end{aligned}$		6	db

MOTE 7: Avoroge Moise Figure is measured in an amplifiar with low-froquency-response down 3 db at 10 cps.
switching characteristics at $25^{\circ} \mathbf{C}$ free-air temperature
*individual triode characteristics (see note 4)

PARAMETER	TEST CONDITIONSt	2N3051	UNIT
		MIN MAX	
$t_{d} \quad$ Delay Time	$\begin{aligned} & I_{C}=-10 \mathrm{ma}, I_{B(1)}=-2.5 \mathrm{mo}, I_{\{(2]}=2 \mathrm{mo}, \\ & V_{B \in[\text { oft }}=+1.2 \mathrm{v}, R_{\mathrm{L}}=300 \Omega . \end{aligned}$ See Figure 1	15	nsec
$\mathrm{f}_{\mathbf{r}} \quad$ Rise Time		20	Asec
$t_{s} \quad$ Storage Time		120	nsec
$\mathrm{t}_{\mathbf{f}} \quad$ Fall Time		30	nsac

†Valtage and current valuess shown are nominal; exact values vary silightly with transister paramaters.
"PARAMETER MEASUREMENT INFORMATION

TEST CIRCUIT

VOLTAGE WAVEFORMS

FIGURE 1 - SWITCHING TIMES

[^66]
DESIGNED FOR MINIATURIZED APPLICATIONS REQUIRING DEVICES SIMILAR TO 2N706, 2N708, 2N744, 2N753, 2N834, 2N914, ETC.

- Popular T0-89 Flatpack Facilitates High-Density Packaging
- Welded Metal Construction
mechanical data

*absolute maximum ratings af $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

[^67]electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)
*individual triode characteristics (see note 4)

PARAMETER	TEST CONDITIONS	MIN MAX	UNIT
$V_{\text {(ax) cto }}$ Collector-Buse Breakdown Voltage	$\mathrm{I}_{C}=10 \mu \mathrm{a}, \mathrm{I}_{\mathrm{E}}=0$	35	v
$V_{\text {(ma)ceo }}$ Collector-Emitter Breakdown Voltage	$\mathrm{I}_{\mathrm{C}}=10 \mathrm{ma}, \mathrm{I}_{\mathrm{B}}=0, \quad$ See Note 5	15	v
V(0x)Eso Emitter-Base Breakdown Voltage	$\mathrm{I}_{\mathrm{E}}=10 \mu \mathrm{a}, \mathrm{I}_{\mathrm{c}}=0$	5	v
Collector Cutoff Current	$\mathrm{V}_{\mathrm{CB}}=20 \mathrm{v}, \mathrm{I}_{\mathrm{E}}=0$	25	na
	$V_{C B}=20 \mathrm{v}, \mathrm{I}_{\mathrm{E}}=0, \quad \mathrm{~T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$	25	μ
Ices Collector Cutoff Current	$V_{C E}=20 \mathrm{v}, V_{\text {bE }}=0$	25	na
It Base Current	$\mathrm{V}_{\text {CE }}=20 \mathrm{~V}, \mathrm{~V}_{\text {BE }}=0$	-25	na
$\mathrm{I}_{\text {EsO }}$ Emitter Cutoff Current	$\mathrm{V}_{E E}=4 \mathrm{v}_{1} \quad \mathrm{I}_{\mathrm{c}}=0$	100	na
Slatik Forward Current Transler Ratio	$V_{C E}=1 v_{1} \quad I_{C}=10 \mathrm{ma}$	$25 \quad 130$	
	$V_{C E}=1 v_{1}, I_{C}=100 \mathrm{ma}$, See Note 5	20	
Base -Emilter Voltoge	$\mathrm{I}_{\mathrm{B}}=1 \mathrm{ma}, \quad \mathrm{I}_{\mathrm{c}}=10 \mathrm{ma}$	$0.65 \quad 0.8$	v
	$\mathrm{I}_{\mathrm{B}}=10 \mathrm{ma}, \mathrm{I}_{\mathrm{C}}=100 \mathrm{ma}$, See Note 5	0.81 .2	v
Collector-Emitter Saturation Voltage	$\mathrm{I}_{\mathrm{B}}=1 \mathrm{ma}, \quad \mathrm{I}_{\mathrm{c}}=10 \mathrm{ma}$	0.25	v
	$\mathrm{I}_{\mathrm{B}}=10 \mathrm{ma}, \mathrm{I}_{\mathrm{C}}=100 \mathrm{ma}$, See Note 5	0.6	v
$\left\|h_{\text {fo }}\right\| \quad \begin{aligned} & \text { Smell-Signal Common-Emitter } \\ & \text { Forword Current Iranster Ratio }\end{aligned}$	$V_{\text {CE }}=5 \mathrm{v}, \quad \mathrm{l}_{\mathrm{c}}=10 \mathrm{ma}, \quad 1=100 \mathrm{Mc}$	2	
Cobo $\begin{aligned} & \text { Common-Base Open-Ciravit } \\ & \text { Dutput Capatitance }\end{aligned}$	$V_{\text {Ca }}=5 \mathrm{v}, \quad \mathrm{I}_{\mathbf{E}}=0, \quad \mathrm{f}=1 \mathrm{Mc}$	8	pf
$C_{\text {ibo }} \begin{aligned} & \text { Common-Base Open-Ciruif } \\ & \text { Imput Capacitance }\end{aligned}$	$v_{E B}=0.5 \mathrm{v}, \mathrm{l}_{\mathrm{C}}=0, \quad \mathrm{l}=1 \mathrm{Mc}$	12	pf

switching characteristics af $25^{\circ} \mathrm{C}$ free-air temperature
*individual triode characteristics (see note 4)

	PARAMETER	TEST CONDITIONS \dagger	MIN MAX	UNIT
$\mathrm{t}_{\text {d }}$	Delay Time		12	nsec
t_{r}	Rise Time		50	nsec
t_{s}	Storage Time		35	nsec
${ }_{1}$	Fall Time		20	nsec

†Voltage and current vatues shown ore nominal; axect values very slightly with transisfor parameiers.
*PARAMETER MEASUREMENT INFORMATION

FIGURE 1 - SWITCHING TIMES

MOTES: a. The input waveform has the following charcctoristics: $t_{r} \leq 1$ nsec, $t_{f} \leq 1$ nsec, $P W \geq 300$ nsec, Duty cycle $\leq 2 \%$.
b. Wevelorms are monitored on an oscilloscope with tha following characteristics: $\mathbf{t}_{\mathrm{r}} \leq 1$ nsec, $\mathrm{k}_{\mathrm{in}} \geq 100 \mathrm{k} \Omega, \mathrm{c}_{\mathrm{in}} \leq 5 \mathrm{pf}$.
*Indicatas JEDEC ragistrored data

FOR HIGH-CURRENT, HIGH-DISSIPATION, GENERAL PURPOSE APPLICATIONS

- High Current Capability ... $\mathbf{7 0 0} \mathrm{mA}$
- High Dissipation Capability . . . 10 W
- fT . . . $\mathbf{1 0 0} \mathbf{~ M H z}$ Min
mechanical data

absolute maximum ratings at $25^{\circ} \mathrm{C}$ case temperature (unless otherwise noted)

*electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER	TEST CONDITIONS		MIN MAX	UNHT	
$\mathrm{V}_{\text {(BR) }}$ CBO Collector-Base Breakdown Voltage	$I_{C}=100 \mu A, I_{E}=0$		60	V	
$\mathrm{V}_{\text {(BR) }}$ CEO Collector-Emitter Breakdown Voltage	$I_{C}=100 \mu A, I_{B}=0$		40	V	
$V_{\text {(BR) }}$ CER Collector-Emitter Breakdown Voltage	$I_{C}=100 \mathrm{~mA}, \mathrm{R}_{\mathrm{BE}}=10 \Omega$, See Note 5		50	V	
V(BR)EBO Emitter-Base Breakdown Voltage	$\mathrm{I}_{\mathrm{E}}=100 \mu \mathrm{~A}, \mathrm{I}^{\prime} \mathrm{C}=0$		5	V	
ICEV Collector Cutoff Current	$\mathrm{V}_{\mathrm{CE}}=30 \mathrm{~V}, \mathrm{~V}_{\text {BE }}=-1.5 \mathrm{~V}$		250	nA	
IEBO Emirter Cutoff Current	$\mathrm{V}_{E B}=4 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{C}}=0$		250	nA	
Static Forward Current Transfer Ratio	$V_{C E}=2.5 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=150 \mathrm{~mA}$	See Note 5	25		
	$V_{C E}=10 \mathrm{~V}, \mathrm{I}^{\prime} \mathrm{C}=160 \mathrm{~mA}$		$50 \quad 250$		
Base-Emitter Voltage	$V_{C E}=2.5 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=150 \mathrm{~mA}$	See Note 5	1.7	V	
	$\mathrm{I}_{\mathrm{B}}=15 \mathrm{~mA}, \quad \mathrm{I}_{\mathrm{C}}=150 \mathrm{~mA}$		1.7		
$V_{\text {CE }}$ (sat) Collector-Emitter Saturation Voltege	$\mathrm{I}_{\mathrm{B}}=15 \mathrm{~mA}, \mathrm{I}_{C}=150 \mathrm{~mA}$,	See Note 5	1.4	V	
\|hfe	Small-Signal Common-Emitter	$V_{C E}=10 \mathrm{~V}, \mathrm{IC}=50 \mathrm{~mA}$,	$\mathrm{f}=\mathbf{2 0} \mathbf{M H z}$	5	
Cobo Common-Base Open-Circuit Output Capacitance	$V_{C B}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0$,	$\mathrm{f}=140 \mathrm{kHz}$	15	pF	
Cibo Common-Base Open-Circuit Input Capacitance	$\mathrm{V}_{\mathrm{EB}}=0.5 \mathrm{~V}, \mathrm{I}^{\prime}=0$,	$\mathrm{f}=140 \mathrm{kHz}$	80	pF	

NOTES: 1. This value applies batween 0 and 700 mA collector current when the base-emitter diode is open-clrcuited. The instantaneous product of collector-emitter voltage and collector curr ant must not exceed $\mathbf{6} \mathbf{W}$ for longer than $300 \mu s$ at a 2% duty cyele.
2. This value applies when the base-emitter resistance $\mathrm{R}_{\mathrm{BE}}<10 \Omega$.
3. Derate linearly to $200^{\circ} \mathrm{C}$ free-air temperature at the rate of $5.71 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
4. Derate the 10 -watt rating linearly to $200^{\circ} \mathrm{C}$ case temperature at the rate of $57.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$. Derate the 5 -watt (JEDEC registered) rating linearly to $200^{\circ} \mathrm{C}$ cese temperature at the rate of $28.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
5. These parameters must be measured using pulse techniques. $t_{w}=\mathbf{3 0 0} \mu \mathrm{s}$, duty cycle $<\mathbf{2 \%}$.
*The JEDEC registered outline for this devics is TO-5. TO-39 falls within TO-5 with the exception of lead tength.
*JEDEC registered data. This data sheat contains all applicable registered data in effect at the time of publication.
\dagger These values are guaranteed by Texas instruments in addition to the JEDEC registered values which are also shown.
USES CHIP N13

TYPE 2N3114
 N-P-N SILICON TRANSISTOR

BULLETIN NO. DL-S 737397, MARCH 1965-REVISED MARCH 1973

DESIGNED FOR USE AS HIGH VOLTAGE VHF AMPLIFIER
 - Featuring 150-Volt $\mathbf{V}_{\text {(axereo }}$

mechanical data
THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE CASE
absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)
Collector-Base Voltage . $150 \mathrm{v}^{*}$
Collector-Emitter Voltage (See Note 1) 150 v *
Emitter-Base Voltage . 5 v .
Collector Current . $200 \mathrm{ma}{ }^{*}$
Continuous Device Dissipation at (or below) $25^{\circ} \mathrm{C}$ Free-Air Temperature (See Note 2) $0.8 \mathrm{w}^{\text {* }}$
Continuous Device Dissipation at (or below) $25^{\circ} \mathrm{C}$ Case Temperature (See Note 3) $\left\{\begin{array}{l}10 w^{\dagger} \\ 5 w^{\dagger}\end{array}\right.$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
Lead Temperature $\%_{6}$ Inch from Case for 10 Seconds $300^{\circ} \mathrm{C}$
*electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

PARAMETER		TEST CONDITIONS			MIN	max	$\frac{\text { UNIT }}{v}$
$V_{\text {(0x) }}$ Cro	Collector-Bose Breakdown Voltage	$\mathrm{I}_{\mathrm{c}}=100 \mu \mathrm{a}$,	$\mathrm{I}_{\mathrm{E}}=0$		150		
	Collector-Emitter Breokdown Voltage	$\mathrm{Ic}_{\mathrm{c}}=30 \mathrm{mo}$,	$\mathrm{I}_{2}=0$,	See Note 4	150		v
$V_{\text {(m) }} \times \pm 0$	Emitter-Base Breakdown Voltage	$\mathrm{I}_{\mathrm{E}}=100 \mu \mathrm{~m}$,	$\mathrm{Ic}_{\mathrm{c}}=0$		5		V
Icto	Collector Cutoff Current	$v_{C E}=100 \mathrm{v}$,	$\mathrm{I}_{\mathrm{E}}=0$			10	no
		$\mathrm{V}_{\mathbf{c a}}=100 \mathrm{v}$,	$\mathrm{I}_{\mathrm{E}}=0$,	$\mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$		10	$\mu \mathrm{O}$
IE00	Emitter Cutoff Current	$v_{E E}=4 \mathrm{v}$,	$\mathrm{l}_{\mathrm{c}}=0$			100	na
$\mathrm{hfe}^{\text {fer }}$	Static Forward Current Transfer Ratio	$\mathrm{V}_{\text {CE }}=10 \mathrm{v}$,	$\mathrm{I}_{C}=100 \mu \mathrm{O}$,	See Note 4	15		
		$V_{C E}=10 \mathrm{r}$,	$\mathrm{I}_{\mathrm{c}}=30 \mathrm{mo}$,	See Mote 4		120	
		$\mathrm{V}_{\text {CE }}=10 \mathrm{r}$,	$I_{c}=30 \mathrm{mo},$	$T_{A}=-55^{\circ} \mathrm{C}$ See Note 4	12		
$V_{\text {re }}$	Base-Emitter Voltage	$\mathrm{I}_{\mathrm{s}}=5 \mathrm{ma}$,	$\mathrm{I}_{\mathrm{C}}=50 \mathrm{ma}$			0.9	v
$V_{\text {cEfat }}$	Collector-Emitter Saturation Voltage	$\mathrm{I}_{\mathrm{s}}=5 \mathrm{ma}$	$\mathrm{I}_{\mathrm{C}}=50 \mathrm{mo}$			1	v

NOTES: 1. This value applies between 1 ma and 30 ma collector current when the base-emitter diode is open-circulted.
2. Derate linearly to $200^{\circ} \mathrm{C}$ free-air temperature at the rate of $4.57 \mathrm{mw} f^{\circ} \mathrm{C}$.
3. Derate the 10 -watt rating linearly to $200^{\circ} \mathrm{C}$ case tamperature at the rate of $57.1 \mathrm{mw} /{ }^{\circ} \mathrm{C}$. Derate the 5 -watt (JEDEC registered) rating linearly to $200^{\circ} \mathrm{C}$ case temperature at the rate of $28.6 \mathrm{mw} /{ }^{\circ} \mathrm{C}$.
4. These parameters must be measured using pulse techniques. $\mathrm{PW}=300 \mu \mathrm{sec}$, Duty Cycle $\leqslant 1 \%$.
*The JEDEC registered outline for these devices is TO-5. TO-39 falls within TO-5 with the exception of lead length
-JEDEC registered data. This data sheet contains all applicable registered data in effect at the time of publication.
this value is guaranteed by Texas Instruments in addition to the JEDEC registered value which is also shown.
USES CHIP N15

*electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

	PARAMIER	TEST CONDITIONS			MIN	MaX	UNIT
h_{6}	Small-Sigual Commen-Emither Forward Cormat Truastar Ratio	$\mathbf{V}_{\text {CE }}=5 \mathrm{r}$,	$l_{c}=1 \mathrm{ma}$,	$\mathrm{f}=1 \mathrm{kc}$	25		
$\left\|m_{n}\right\|$	Smell-Sipall Commen-Emitter Fowwerd Currout Ireasior Retio	$V_{C E}=10 \mathrm{v}$,	$\mathrm{Ic}_{\mathrm{c}}=\mathbf{3 0} \mathrm{ma}$,	$\mathrm{f}=20 \mathrm{Mc}$	2		
C_{0}	Comman-lase Opem-Cirait Ovtpot Copadinace	$\mathrm{V}_{\mathrm{cs}}=20 \mathrm{v}$,	$\mathrm{I}_{\mathrm{E}}=0$,	$f=140 \mathrm{kc}$		9	pf
40	Commm-lasa Opm-Crowit Input Cepactrace	$V_{\text {Ei }}=0.5 \mathrm{y}$	$l_{c}=0$,	$\mathrm{f}=140 \mathrm{kc}$		80	pf
	Reol Port of Smell-Sipual Common-Emititor lupet Impedance	$\mathbf{V}_{\mathbf{C E}}=10 \mathrm{v}$	$\mathbf{l c}_{\mathbf{c}}=\mathbf{1 0} \mathrm{ma}$,	$f=100 \mathrm{mc}$		30	Ω

THERMAL INFORMATION

DESIGNED FOR USE
 IN LOW-LEVEL, LOW-NOISE AMPLIFIERS

- Guaranteed Low-Noise Characteristics at $10 \mathrm{~Hz}, 100 \mathrm{~Hz}, 1 \mathrm{kHz}$ and 10 kHz
- High Guaranteed $h_{\text {fe }}$ at
$I_{c}=10 \mu \mathrm{~A} \ldots 250$ Minimum

*mechaniceal data

*absolute maximum ratings at $\mathbf{2 3 ^ { \circ }} \mathbf{}$ C free-air temperature (unless otherwise noted)

MOTES: 1 . This value applies when the bose-wnition dilide is open-sirculted.
2. Derate limeariy to $200^{\circ} \mathrm{C}$ trea-air temperature at the rate of $\mathbf{2 . 0 6} \mathrm{mW} / \mathrm{deg}$.
3. Derate linserily to $200^{\circ} \mathrm{C}$ cesa temperature at the rate of $6.05 \mathrm{~mW} / \mathrm{dag}$.
*Indicetss JEDEC magistered dato
*electrical charecteristics af $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

*operafing characteristics af $25^{\circ} \mathrm{C}$ free-air temperature

	PARAMITER	TEST CONDITIONS		MIN MAX	UNIT
\bar{W}	Avercage Motse Figurs	$\begin{aligned} & V_{c:}=5 \mathrm{~V}, \\ & f=10 \mathrm{~Hz}, \end{aligned}$	$\begin{aligned} & \mathrm{I}_{c}=30 \mu \mathrm{~h}, R_{\epsilon}=10 \mathrm{k} \Omega, \\ & \text { Mokse Bandwidth }=2 \mathrm{~Hz} \end{aligned}$	15	${ }^{\text {d }}$
		$\begin{aligned} & V_{c:}=5 V_{1} \\ & i=100 \mathrm{~Hz}, \end{aligned}$	$\begin{aligned} & T_{c}=30 \mu h_{1} \mathrm{R}_{6}=10 \mathrm{k} \Omega, \\ & \text { Molst Bondwidh }=20 \mathrm{~Hz} \end{aligned}$	4	d
		$\begin{aligned} & V_{\mathrm{ct}}=5 \mathrm{~V}, \\ & 1=1 \mathrm{kHz}, \end{aligned}$	$\begin{aligned} & T_{c}=5 \mu \lambda_{1} \Omega_{e}=50 \mathrm{k} \Omega_{1} \\ & \text { Moss gandwidth }=200 \mathrm{~Hz} \end{aligned}$	1	dB
MF	Spot Molsa Fipurs	$\begin{aligned} & V_{\mathrm{ct}}=5 V_{1} \\ & 1=10 \mathrm{kHz} \end{aligned}$	$I_{c}=5 \mu h_{1} \quad R_{8}=50 \mathrm{k} \Omega_{1}$	1	d

TYPES 2N3244, 2N3245, 2N3467. 2N3468 P-N-P SILICON TRANSISTORS

DESIGNED FOR HIGH-SPEED CORE-DRIVER APPLICATIONS

- High Dissipation Capability ... 10 Watts at $25^{\circ} \mathrm{C}$ Case Temperature
- High V(BR)ceo ... 50 V Min (2N3245, 2N3468)
- High Speed... 60 ns Max is at $500 \mathrm{~mA}(2 N 3467,2 N 3468)$
- High Collector Current Rating... 1 A
mechanical derta

absolute maximum ratings af $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

	2N3244	2N3245	2N3467	2N3468	UNIT
Collector-Base Voltage	-40^{*}	-50^{*}	-40^{*}	-50*	V
Collector-Emitter Voltage (See Note 1)	-40^{*}	-50*	-40^{*}	-50*	V
Emitter-Base Voltage	-5*	-5*	-5*	-5*	V
Continuous Collector Current	-1*	-1*	- ${ }^{*}$	$-{ }^{*}$	1
Continuous Device Dissipation af (or below) $25^{\circ} \mathrm{C}$ Free-Air Tomperature (See Note 2)	1*	1*	1*	$1 *$	W
Continuous Device Dissipation af (or below) $25^{\circ} \mathrm{C}$ Case Temperature (See Note 3)	$\begin{gathered} 10^{\dagger} \\ 5^{*} \\ \hline \end{gathered}$	$\begin{gathered} 10^{\dagger} \\ 5^{\circ} \\ \hline \end{gathered}$	10	10	W
Storage Temperature Range	-65 to 200*				${ }^{\circ} \mathrm{C}$
Lead Temperature K_{6} Inch from Case for 10 Seconds					${ }^{\circ} \mathrm{C}$
Lead Temperoture K_{6} Inch from Case for 60 Seconds	300^{*}		300^{\dagger}		${ }^{\circ} \mathrm{C}$

NOTES: 1. These values apply between 0 and 1 A collector current when the base-emitter diode is open-circulted.
2. Derate linearly to $200^{\circ} \mathrm{C}$ free-air temperature the rate of $5.71 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
3. Derate the 10 -watt Ti value linearly to $200^{\circ} \mathrm{C}$ case temperature at the rate of $57.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$. Derate the 5 -watt JEDEC velue linearly to $200^{\circ} \mathrm{C}$ case temperature at the rate $0128.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.

The JEDEC reglstered outline for these devlces is TO-5. TO-39 falls within TO-5 with the exception of lead length.
*JEDEC ragistered data. This data shaet contains all applicable data in effact at the time of publication.
t These values are guaranteed by Texas instruments in addition to the JEDEC regigtered values which are also shown.

TYPES 2N3244, 2N3245, 2N3467, 2N3468 P-N-P SILICON TRANSISTORS

*electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS		2N3244	2N3245	2N3467	2N3468	UNIT
				MIN MAX	MJN MAX	MNN MAX	MIN MAX	
$V_{\text {(1ajcso }}$	Collactor-Base Breakdown Volfaga	$l_{C}=-10 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{E}}=0$		-40	-50	-40	-50	V
$\mathrm{V}_{\text {(m) } \mathrm{C}=0}$	Collector-Emitter Breakdown Voltage	$I_{c}=-10 \mathrm{~mA}, I_{z}=0$,	See Note 4	-40	-50	-40	-50	V
$\mathrm{V}_{\text {(10) }}$	Emitter-Bose Breakdown Valtage	$\mathrm{I}_{\mathrm{E}}=-10 \mu \mathrm{~h}, \mathrm{l}_{\mathrm{c}}=0$		-5	-5	-5	-5	V
${ }_{\text {cho }}$	Collector Cutoff Current	$V_{C t}=-30 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0$		-50		-100	-100	nA
		$V_{C I}=-30 \mathrm{~V}, \mathrm{~L}_{\mathrm{E}}=0, \quad \mathrm{~T}_{\mathrm{A}}=100^{\circ} \mathrm{C}$				-15	-15	$\mu \mathrm{A}$
		$V_{C B}=-50 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0$			-50			nA
$L_{\text {cev }}$	Collector Cutoff Current	$V_{C E}=-30 \mathrm{~V}, \mathrm{Y}_{\text {EE }}=3 \mathbf{V}$		-50	-50	-100	-100	nA
Imev	Base Cutoff Current	$V_{\text {CE }}=-30 \mathrm{~V}, \mathrm{~V}_{\text {EE }}=3 \mathbf{V}$		80	80	120	120	nA
E*o	Emitter Cutoff Current	$V_{E I}=-4 V_{\text {, }} \quad I_{C}=0$		-30	-30			nA
$\mathrm{href}^{\text {f }}$	Static forword Current Transier Ratio	$V_{\text {ce }}=-1 \mathrm{~V}, \quad \mathrm{Ic}_{\mathrm{c}}=-150 \mathrm{~mA}$	$\begin{gathered} \text { See } \\ \text { Note } \\ 4 \end{gathered}$	60	35	40	25	
		$V_{C E}=-1 \mathrm{~V}, \quad \mathrm{I}_{\mathbf{C}}=-500 \mathrm{~mA}$		$50 \quad 150$	$30 \quad 90$	$40 \quad 120$	$25 \quad 75$	
		$\mathrm{V}_{\text {cE }}=-5 \mathrm{~V}, \quad \mathrm{l}_{\mathrm{C}}=-750 \mathrm{~mA}$		25				
		$\mathrm{V}_{\mathrm{CE}}=-5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{C}}=-1 \mathrm{~A}$			20	40	20	
$\mathrm{v}_{\text {EE }}$	Base-Emittar Vohage	$\mathrm{I}_{\mathrm{B}}=-15 \mathrm{~mA}, \quad \mathrm{Ic}_{C}=-150 \mathrm{~mA}$	$\begin{gathered} \text { See } \\ \text { Note } \\ 4 \end{gathered}$	-1.1	-1.1	-1	-1	V
		$\mathrm{I}_{\mathrm{B}}=-50 \mathrm{~mA}, \quad \mathrm{I}_{\mathrm{C}}=-500 \mathrm{~mA}$		-0.75-1.5	-0.75-1.5	$-0.8-1.2$	-0.8-1.2	V
		$\mathrm{I}_{\mathrm{g}}=-75 \mathrm{~mA}, \mathrm{t}_{\mathrm{c}}=-750 \mathrm{~mA}$		-2				V
		$\mathrm{I}_{\mathrm{B}}=-100 \mathrm{~mA}, \mathrm{l}_{\mathrm{c}}=-1 \mathrm{~A}$			-2	-1.6	-1.6	V V
$V_{\text {CE[}(\text { at })}$	Collector-Emitter Saturation Voltage	$\mathrm{l}_{1}=-15 \mathrm{~mA}, \mathrm{l}_{\mathrm{c}}=-150 \mathrm{~mA}$	$\begin{gathered} \text { See } \\ \text { Mote } \\ 4 \end{gathered}$	-0.3	-0.35	-0.3	-0.35	V
		$\mathrm{I}_{\mathrm{B}}=-50 \mathrm{~mA}, \quad \mathrm{lc}_{\mathrm{c}}=-500 \mathrm{~mA}$		-0.5	-0.6	-0.5	-0.6	V
		$\mathrm{I}_{\mathrm{g}}=-100 \mathrm{~mA}, \mathrm{I}_{\mathrm{c}}=-1 \mathrm{~A}$		-1	-1.2	-1	-1.2	2
f_{T}	Transition Frequency	$V_{C E}=-10 \mathrm{~V}, \mathrm{l}_{\mathbf{c}}=-50 \mathrm{~mA}$, Soe Note 5		175	150	175	150	M ${ }^{\text {M }}$
$C_{\text {obo }}$	Common-Base Open-Gircuit Output Capacitance	$V_{C i}=-10 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{E}}=0$,	$f=100 \mathrm{kHz}$	25	25	25	25	pF
$C_{\text {ibo }}$	Common-Base Open-Circuit Input Capacitance	$\mathrm{V}_{\mathrm{Et}}=-0.5 \mathrm{~V}, \mathrm{~L}_{\mathrm{c}}=0$,	$f=100 \mathrm{kHz}$	100	100	100	100	0 pF

HOTES: 4. These parameters must be mossured using pulse techniques. $\mathrm{t}_{\mathrm{p}}=\mathbf{3 0 0} \mu \mathrm{s}$, dury cycle $\leq \mathbf{2 \%}$.
5. To obtain f_{T}, the $\left|h_{\text {fol }}\right|$ respense with froquency is extrapotatad at the rate of -6 d per ecteve from $f=100$ mHz to the froquency al which $\left|h_{f_{0}}\right|=1$.
*Indicates JEDEC registered data

TYPES 2N3244, 2N3245, 2N3467, 2N3468 P-N-P SILICON TRANSISTORS

*swifching characteristics at $25^{\circ} \mathrm{C}$ free-air temperafure

Parameter	TEST CONDITIONS \dagger	2N3244	$\begin{array}{\|c\|} \hline \text { 2N3245 } \\ \hline \text { MAX } \\ \hline \end{array}$	2N3467	$\frac{2 \text { N3468 }}{\text { MAX }}$	UNIT
$\mathrm{t}_{\mathrm{d}} \quad$ Delay Time	$\begin{aligned} & I_{C}=-500 \mathrm{~mA}, \quad I_{\text {R(1) }}=-50 \mathrm{~mA}, \quad V_{B E(\mathrm{of\mid} \mid}=2 \mathrm{~V}, \\ & R_{L}=59 \Omega, \quad \text { See Figure } 1 \end{aligned}$	15	15	10	10	ns
$\mathrm{tr}_{\mathbf{r}} \quad$ Rise Time		35	40	30	30	ns
$t_{5} \quad$ Storage Time	$\begin{aligned} & I_{\mathrm{C}}=-500 \mathrm{~mA}, I_{\&(1)}=-50 \mathrm{~mA}, I_{(\|2\|}=50 \mathrm{~mA}, \\ & R_{L}=59 \Omega, \quad \text { See Figure } 2 \end{aligned}$	140	120	60	60	us
i_{f} foll Time		45	45	30	30	ns
Q ${ }_{\text {T }}$ Total Control Charge	$\boldsymbol{v}_{\boldsymbol{c}}=-500 \mathrm{~mA}, \mathrm{I}_{\boldsymbol{s}}=-50 \mathrm{~mA}, \quad$ See Figure 3	14	12	6	6	n

†Valtages and current volues shown are nominal, exact volues vary slightly wilh transistor patameters. Mominal bose current for delay and rise times is calculated using the minimum values of $\boldsymbol{V}_{\text {BE }}$. Meminal base curronts tor storage and fall times are catculated esing the maximum value of $\boldsymbol{V}_{\mathbf{E E}}$

*PARAMETER MEASUREMENT INFORMATION

TEST CIRCUIT

figure I - delay and rise times

FIGURE 2-STORAGE AND FALL TIMES
C = 1400 pf for 243244
$c=1200$ of for $2 \mathrm{Na245}$

FIGURE 3 - TOTAL CONTROL ChARGE

OUTPUT
NOTE: Q_{T} is less than the specified
maximum value when the transistor
turns off monotonically as shown
by the solid line.
VOLTAGE WAVEFORMS

MOTES: ©. The input waveforms heve the following cherecteristics:
Fer maosuring delay and rise timas: $\mathrm{t}_{\mathrm{r}} \leq \mathbf{2 n s}, \mathrm{t}_{\mathrm{p}}=\mathbf{2 0 0} \mathrm{ns}$, duly cycle $=\mathbf{2 \%}$.
For measuring slorage and fall timess $t_{f} \leq 5 \mathrm{~ns}$, $\mathrm{t}_{\mathrm{p}}=2$ to $500 \mu \mathrm{~s}$, duty cycle $=\mathbf{2 \%}$.
For messuring $Q_{T}: t_{f} \leq 10 \mathrm{~ns}, \mathrm{t}_{\mathrm{p}}=10 \mu \mathrm{~s}$, duty cycle $=\mathbf{2} \%$
b. Waveforms are meniterad on on oselloscope with the follewing choracteristics: $\mathrm{t}_{\mathrm{r}} \leq \mathbf{1 m s}, \mathbb{R}_{\text {in }} \geq 100 \mathrm{kN}, \mathrm{c}_{\mathrm{in}} \leq \mathbf{7 p F}$.
*Indicates JEDEC registered deta

FAST, HIGH-CURRENT CORE DRIVER

- hFE . . . Guaranteed from 150 mA to 1 A
- V(BR)CEO ... 40 V
- VBE and VCE(sat) . . . Guaranteed from 150 mA to 1 A
- Guaranteed Switching Time at $\mathbf{5 0 0} \mathbf{~ m A}$
mechanical data

NC-No internal connection

absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

NOTES: 1. This value applies between 0 and 1 A colibetor current when the emitter-base diode is open-circulted.
2. Derate linearly to $150^{\circ} \mathrm{C}$ froe-air temperature at the rates of $4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for each triode and $\mathbf{1 2} \mathrm{mW} / \mathrm{C}$ for the total device.

[^68]
TYPE Q2T3244
 QUAD P-N-P EPITAXIAL PLANAR SILICON TRANSISTOR

electrical characteristics at $\mathbf{2 5} \mathbf{}{ }^{\circ} \mathrm{C}$ free-air temperature

PARAMETER	TEST CONDITIONS		MIN . MAX	$\begin{array}{\|c\|} \hline \text { UNITT } \\ \hline V \\ \hline \end{array}$
$V_{\text {(BRI) }}$ CBO Collector-Base Breakdown Voltage	$I^{\prime} C=-10 \mu A, \quad I^{\prime}=0$		-40	
$V_{\text {(BR)CEO }}$ Collector-Emitter Breakdown Voltage	$\mathrm{I}^{\prime}=-10 \mathrm{~mA}, \quad \mathrm{I}_{\mathrm{B}}=0$,	See Note 3	-40	V
$V_{\text {(BR)EBO }}$ Emitter-Base Breakdown Voltage	$\mathrm{I}_{\mathrm{E}}=-10 \mu \mathrm{~A}, \quad \mathrm{I}_{\mathrm{C}}=0$		-5	V
${ }^{\text {I CBO }}$ Collector Cutoff Current	$V_{C B}=-30 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0$		-50	nA
TCEV Collector Cutoff Current	$\mathrm{V}_{C E}=-30 \mathrm{~V}, \mathrm{~V}_{\mathrm{BE}}=3 \mathrm{~V}$		-50	nA
IBEV Base Cutoff Current	$V_{C E}=-30 \mathrm{~V}, V_{B E}=3 \mathrm{~V}$		80	nA
${ }^{\text {IEBO }}$ Emitter Cutoff Current	$\mathrm{V}_{\mathrm{EB}}=-4 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{C}}=0$		-30	$n A$
Static Forward Current Transfer Ratio	$V_{C E}=-1 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{C}}=-150 \mathrm{~mA}$	See Note 3	60	
	$V_{C E}=-1 \mathrm{~V}, \quad I_{C}=-500 \mathrm{~mA}$		$50 \quad 150$	
	$V_{C E}=-5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{C}}=-750 \mathrm{~mA}$		25	
Base-Emitter Voltage	$\mathrm{I}_{B}=-15 \mathrm{~mA}, \quad \mathrm{I}_{C}=-150 \mathrm{~mA}$	See Note 3	-1.1	V
	$\mathrm{I}_{\mathrm{B}}=-50 \mathrm{~mA}, \quad \mathrm{I}_{\mathrm{C}}=-500 \mathrm{~mA}$		-0.75-1.5	
	$\mathrm{I}_{\mathrm{B}}=-75 \mathrm{~mA}, \quad \mathrm{I}_{\mathrm{C}}=-750 \mathrm{~mA}$		-2	
Collector-Emitter Saturation Voltage	$\mathrm{I}_{\mathrm{B}}=-15 \mathrm{~mA}, \quad \mathrm{I}_{\mathrm{C}}=-150 \mathrm{~mA}$	See Note 3	-0.3	V
	$\mathrm{I}_{B}=-50 \mathrm{~mA}, \quad \mathrm{I}_{C}=-500 \mathrm{~mA}$		-0.5	
	$\mathrm{I}_{B}=-100 \mathrm{~mA}, \mathrm{I}_{C}=-1 \mathrm{~A}$		-1	
Hfe\|Small-Signal Common-Emitter Forward Current Transfer Ratio	$V_{C E}=-10 \mathrm{~V}, \mathrm{I}^{\prime}=-50 \mathrm{~mA}$,	$f=100 \mathrm{MHz}$	1.75	
Cobo Common-Base Open-Circuit Output Capacitance	$\mathrm{V}_{C B}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0$,	$\mathrm{f}=1 \mathrm{MHz}$	25	pF
Cibo Common-Base Open-Circuit Input Capacitance	$\mathrm{V}_{\mathrm{EB}}=-0.5 \mathrm{~V}, \mathrm{I}^{\prime} \mathrm{C}=0$.	$f=1 \mathrm{MHz}$	100	pF

NOTE 3: These parameters must be measured using puise techniques. $t_{w}=300 \mu \mathrm{~s}$, duty cycle $\leqslant 2 \%$.

switching characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER		TEST CONDITIONS ${ }^{\dagger}$		MAX	UNIT
td	Delay Time	$\mathrm{I}_{\mathrm{C}}=-500 \mathrm{~mA}, \mathrm{I}$	$\mathrm{I}_{\mathrm{B}(1)}=-50 \mathrm{~mA}, \mathrm{~V}_{\mathrm{BE}}(\mathrm{off})=2 \mathrm{~V}$.	15	ns
t_{r}	Rise Time	$\mathrm{R}_{\mathrm{L}}=59 \mathrm{\Omega}$, \quad S	See Figure 1	35	ns
t_{5}	Storage Time	${ }^{\prime} \mathrm{C}=-500 \mathrm{~mA}$, 1	$I_{B(1)}=-50 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}(2)}=50 \mathrm{~mA}$,	140	ns
$\mathrm{tif}_{\text {f }}$	Fall Time	$R_{L}=59 \Omega, \quad S$	See Figure 2	45	ns

tVoltages and current values shown are nominal; exact values vary slightly with transistor parameters. Nominal base current for delay and rise time is calculated using the minimum values of $V_{B E}$. Nominal base currents for storage and fall times are calculated using the maximum value of V_{BE}.

NOTES: a. The input waveforms have the following characteristics:
For measuring delay and rise times: $\mathrm{t}_{\mathbf{r}} \leqslant 2 \mathrm{~ns}, \mathrm{t}_{\mathbf{w}}=200 \mathrm{~ns}$, duty cycle $=\mathbf{2 \%}$.
For measuring storage and fall times: $\mathrm{t}_{\mathrm{f}} \leqslant 5 \mathrm{~ns}, \mathrm{t}_{\mathrm{w}}=\mathbf{1 0}$ to $\mathbf{5 0 0} \mu \mathrm{s}$, duty cycle $=\mathbf{2 \%}$.
b. Waveforms are monitored on an oscilloscope with the following characteristics: $t_{r} \leqslant 1 \mathrm{~ns}, \mathrm{R}_{\mathrm{in}} \geqslant 100 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{in}} \leqslant 7 \mathrm{pF}$.

DESIGNED FOR LOW-POWER SATURATED-SWITCHING AND AMPLIFIER APPLICATIONS - Low-Level $h_{\text {FE }}$: $\mathbf{8 0}$ Min of $100 \mu A$ (2N3251 and 2N3251A)

*mechanical dafa

*absolute maximum ratings of $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

*electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline PARAMETER \& TEST CONDITIONS \& \& \[
\begin{aligned}
\& 2 \mathrm{~N} 3250 \mathrm{~A} \\
\& \mathrm{MINMAX}
\end{aligned}
\] \& \[
\begin{aligned}
\& 2 \mathrm{~N} 325! \\
\& \hline \mathrm{MIN} M A X \\
\& \hline
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { 2N3251A } \\
\& \hline \text { MIN MAX } \\
\& \hline
\end{aligned}
\] \& UNIT \\
\hline \(V_{\text {Iax) }}\) cso Collector-Base Breakdown Voltage \& \(\mathrm{I}_{\mathrm{c}}=-10 \mu \Lambda, I_{E}=0\) \& -50 \& -60 \& -50 \& \(-60\) \& \(V\) \\
\hline \(V_{\text {(Ra|CEO }}\) Collector-Emittar Breokdown Voltage \& \(\mathrm{I}_{\mathrm{C}}=-10 \mathrm{~mA}, \mathrm{I}_{\mathrm{g}}=0, \quad\) See Mote 4 \& \(-40\) \& -60 \& -40 \& -60 \& \(V\) \\
\hline \(V_{\text {(m) }}\) EEO Emitter-Base Broakdown Voltage \& \(\mathrm{I}_{\mathrm{E}}=-10 \mu \mathrm{~A}, \mathrm{I}_{C}=0\) \& -5 \& -5 \& -5 \& -5 \& \(V\) \\
\hline ICev Collector Cutoff Current \& \(V_{C E}=-40 \mathrm{~V}, V_{\text {IE }}=3 \mathrm{~V}\) \& -20 \& -20 \& -20 \& -20 \& nA \\
\hline Inev Base Cutoff Current \& \(\mathrm{V}_{\text {CE }}=-40 \mathrm{~V}, \mathrm{~V}_{\text {KE }}=3 \mathrm{~V}\) \& 50 \& 50 \& 50 \& 50 \& nA \\
\hline \multirow{4}{*}{\(h_{\text {fe }} \quad\) Static For} \& \(V_{\text {CE }}=-1 \mathrm{~V}_{1} \quad \mathrm{I}_{\mathrm{C}}=-0.1 \mathrm{~mA}\) \& 40 \& 40 \& 80 \& 80 \& \\
\hline \& \(V_{C E}=-1 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=-1 \mathrm{~mA}\) Soe \& 45 \& 43 \& 90 \& 90 \& \\
\hline \& \(V_{C E}=-1 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=-10 \mathrm{~mA}\) \& \(50 \quad 150\) \& \(50 \quad 150\) \& 100300 \& \(100 \quad 300\) \& \\
\hline \& \(\mathrm{V}_{\text {CE }}=-1 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{C}}=-50 \mathrm{~mA}\) \& 15 \& 15 \& 30 \& 30 \& \\
\hline \multirow[t]{2}{*}{Base-Emitter Voltage} \& \(\mathrm{I}_{\mathrm{B}}=-1 \mathrm{~mA}, \quad \mathrm{I}_{C}=-10 \mathrm{~mA}\) See \& -0.6-0.9 \& -0.6-0.9 \& \(-0.6-0.9\) \& -0.6-0.9 \& \(V\) \\
\hline \& \(\mathrm{I}_{1}=-5 \mathrm{~mA}, \mathrm{I}_{c}=-50 \mathrm{~mA}\) See \& -1.2 \& -1.2 \& -1.2 \& -1.2 \& \(V\) \\
\hline \multirow[t]{2}{*}{Collector-Emiltar Saturation Voltage} \& \(\mathrm{I}_{\mathrm{E}}=-1 \mathrm{~mA}, \mathrm{I}_{C}=-10 \mathrm{~mA}\), \& -0.25 \& -0.25 \& -0.25 \& -0.25 \& \(V\) \\
\hline \& \(\mathrm{I}_{\mathrm{B}}=-5 \mathrm{~mA}, \quad \mathrm{I}_{\mathrm{C}}=-50 \mathrm{~mA}\) \& -0.5 \& -0.5 \& -0.5 \& -0.5 \& \(V\) \\
\hline \begin{tabular}{ll}
\hline hie \(\quad\)\begin{tabular}{l}
Small-Signal Common-Emittor \\
Input Impedance
\end{tabular} \\
\hline her
\end{tabular} \& \multirow[t]{4}{*}{\(V_{\text {CE }}=-10 \mathrm{~V}\),
\(\mathrm{I}_{\mathrm{C}}=-1 \mathrm{~mA}\),

$f=1 \mathrm{kHz}$} \& 16 \& 16 \& 212 \& 212 \& $\mathrm{k} \Omega$

\hline | $h_{\text {to }}$ | Small-Signal Common-Emitter
 Forward Current Tronsfor Ratio |
| :--- | :--- | \& \& $50 \quad 200$ \& $50 \quad 200$ \& 100400 \& 100400 \&

\hline | $h_{r s}$ | $\left.\begin{array}{l}\text { Small-Signal Common-Emitter } \\ \text { Roverse Voltage Transfor Ratio }\end{array}\right]$ |
| :--- | :--- | \& \& \[

$$
\begin{gathered}
10 x \\
10^{-1} \\
\hline
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& 10 x \\
& 10^{-4} \\
& \hline
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
20 x \\
10^{-4} \\
\hline
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& 20 \mathrm{x} \\
& 10^{-4} \\
& \hline
\end{aligned}
$$
\] \&

\hline $h_{\infty} \quad$ Small-signal Common-Emittor \& \& \& 440 \& $10 \quad 60$ \& $10 \quad 60$ \& $\mu \mathrm{mho}$

\hline
\end{tabular}

NOTES: 1. These veiues apply botween 0 and 200 mA celiector current when the bese-amilter diede is open-lircultod.
2. Derate linearly to $200^{\circ} \mathrm{C}$ frev-air temperalure at the rete of $2.06 \mathrm{mw} / \mathrm{deg}$.
3. Derate lineerly to $200^{\circ} \mathrm{C}$ case temperature at the rate of $6.9 \mathrm{~mW} / \mathrm{deg}$.
4. These parameters must be measured wing pulse techniqus. $\mathrm{I}_{\mathrm{p}}=\mathbf{3 0 0} \mu$ s, duty cycle $\leq \mathbf{2 \%}$.

TYPES 2N3250, 2N3250A, 2N3251, 2N3251A P-N-P SILICON TRANSISTORS

*electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperafure (continued)

PARAMETER		TEST CONDITIONS	$\begin{array}{r} 2 N 3250 \\ 2 \mathrm{~N} 3250 \mathrm{~A} \\ \hline \end{array}$	$\begin{array}{r} 2 N 3251 \\ \text { 2N3251A } \\ \hline \end{array}$	UNIT	
		MIN MAX	MIN MAX			
\|htol	Small-Signal Common-Emitter Forward Current Transfer Rafio		$V_{c E}=-20 \mathrm{~V}, \mathrm{I}_{\mathbf{c}}=-10 \mathrm{~mA}, \mathrm{I}=100 \mathrm{MHz}$	2.5	3	
fr_{1}	Transition Frequency	$\mathrm{V}_{C E}=-20 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=-10 \mathrm{~mA}$, See Hote 5	250	300	MHz	
$C_{\text {obo }}$	Common-Base Opan-Circuit Output Capacitance	$V_{C B}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0, \quad 1=100 \mathrm{kHz}$	6	6	pf	
$C_{i b o}$	Common-Base Open-Circuit Input Capacitance	$V_{E t}=-\mathrm{IV}, \quad \mathrm{I}_{\mathbf{c}}=0, \quad \mathrm{f}=100 \mathrm{kHz}$	8	8	pf	
$\mathrm{r}_{\mathrm{b}} \mathrm{C}_{\mathrm{c}}$	Collector-Base Time Constant	$V_{C E}=-20 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=-10 \mathrm{~mA}, f=31.8 \mathrm{mHz}$	250	250	ps	

NOTE 5: To obtain f_{T}, the $\left|h_{\text {fel }}\right|$ respanse with frequency is extrapolated at the rate of -6 die per octave from $f=100 \mathrm{MHz}_{2}$ to the frequancy at which $\left|\boldsymbol{h}_{\mathrm{fo}}\right|=\mathbf{1}$.
*operafing characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER	TEST CONDITIONS	$\begin{array}{r} 2 \mathrm{~N} 3250 \\ 2 \mathrm{~N} 3250 \mathrm{~A} \\ \hline \end{array}$	$\begin{array}{r} 2 \mathrm{~N} 3251 \\ 2 \mathrm{~N} 3251 \mathrm{~A} \\ \hline \end{array}$	UNiT
		MAX	MAX	
NF Spot Noise Figure	$V_{C E}=-5 \mathrm{~V}, \mathrm{I}_{C}=-100 \mu \mathrm{~A}, \mathrm{R}_{G}=1 \mathrm{k} \Omega, f=100 \mathrm{~Hz}$	6	6	dB

*switching characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER		TEST CONDITIONS \dagger	$\begin{gathered} 2 \mathrm{~N} 3250 \\ 2 \mathrm{~N} 3250 \mathrm{~A} \\ \hline \end{gathered}$	$\begin{aligned} & 2 N 3251 \\ & 2 N 3251 \mathrm{~A} \\ & \hline \end{aligned}$	UNIT	
		MAX	MAX			
t_{d}	Delay Time		$I_{C}=-10 \mathrm{~mA}, I_{B(1]}=-1 \mathrm{~mA}, V_{\text {EE (ff }}=0.5 \mathrm{~V},$$R_{L}=275 \Omega, \text { See figure } 1$	35	35	ns
t_{r}	Rise Time	35		35	ns	
t_{5}	Storage Time	$\begin{aligned} & I_{C}=-10 \mathrm{~mA}, I_{8(1)}=-1 \mathrm{~mA}, I_{[(2)}=1 \mathrm{~mA}, \\ & R_{L}=275 \Omega, \text { See figure } 2 \end{aligned}$	175	200	ns	
t_{f}	Foll Time		50	50	ns	

tYoltage and current valuas shown are naminal; exact values very slightly with transistor parameters. Nominal base surrent for delay and rise fimes is calculated using the minimum value of \mathbf{V}_{gE}. Nominal base currents for storage ond foll times are calculated using the maximum value of V_{BE}.
*PARAMETER MEASUREMENT INFORMATION

test cincuit

VOLTAGE WAVEFORMS

VOLIAGE WAVEFORMS
FIOURE 2-\$TORAGE AND FALL TIMES

MOTES; a. The input waveforms are supplied by a gonorator with the following charactatstics: $z_{\text {out }}=50 \Omega$, duty cycle $=\mathbf{2 \%}$.
b. Waviforms are monitorat on on oscillostope with the following characteristics: $\mathbf{t}_{\mathrm{r}} \leq 1 \mathrm{~ns}, \mathbf{R}_{\text {in }} \geq 100 \mathrm{kR}$.
*Indicalos JEDEC registorod defe

TYPES 2N3252, 2N3253 N-P-N SILICON TRANSISTORS

DESIGNED FOR HIGH-SPEED, HIGH-CURRENT SWITCHING APPLICATIONS

mechanical data

		$\sqrt{q \rightarrow p}$

absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

*electrical charactoristics at $\mathbf{2 5}{ }^{\circ} \mathrm{C}$ free-air temperature (unless otherwiso noted)

Paramitir	TEST CONDITIONS	2N3] 5	2N3239	UNIT
		MIN MAX	MIN MaX	
	$I_{c}=10 \mu \mathrm{a}, h_{1}=0$	60	75	v
$V_{\text {Imicto }}$ Collocior-Emittor Irueksown Vohape	$\mathrm{l}_{\mathrm{c}}=10 \mathrm{mo}, \mathrm{l}_{\mathrm{B}}=0, \quad$ S00 Note 4	30	40	\checkmark
Vimysio Emitter-bose Erackiown Yelioue	$l_{1}=10 \mu \mathrm{a}, l_{C}=0$	5	5	v
Coilector Culoff Current	$V_{C I}=40 y_{0} I_{1}=0$	0.5		μ
	$V_{\text {c! }}=60 \mathrm{v}, \mathrm{l}_{1}=0$		0.5	$\mu \mathrm{A}$
	$V_{C!}=40 v_{1} I_{E}=0, \quad T_{A}=+100^{\circ} \mathrm{C}$	75		只
	$V_{C!}=60 v_{1} l_{E}=0, \quad t_{A}=+100^{\prime} \mathrm{C}$		75	μ
Colicter Cuthef Currant	$V_{\text {Ci }}=40 v_{1} V_{v_{2}}=-4 v$	0.5		μ
			0.5	$\mu 0$
Hase Curoff Curnem	$V_{e l}=40 v_{1} V_{m}=-4 v$	-0.5		$\mu{ }^{\prime \prime}$
	$V_{C E}=60 v_{1}, V_{w}=-4 v$		-0.5	μ
IERO Emither Cutoff Curront	$V_{\text {EI }}=4 v_{0} \quad l_{c}=0$	50	50	n
Statit Ferward Curreal Trumster latio	$Y_{\text {ce }}=1 v_{1}, l_{c}=150 \mathrm{mg}$ Sem	30	25	
	$V_{c_{B}}=1 v_{1} \quad I_{c}=500 \mathrm{mad}$ Noth	30	$25 \quad 75$	
	$\begin{array}{ll}V_{\text {ce }}=5 v_{1} & l_{c}=10\end{array}$	25	20	
Tass-Emittor Yollope		1	1	V
	$\mathrm{I}_{\mathrm{E}}=50 \mathrm{mo}, \mathrm{I}_{\mathrm{c}}=500 \mathrm{man}$ (mot	$0.7-1.3$	$0.7-1.3$	\checkmark
	$l_{1}=100 \mathrm{ma}, l_{c}=10 \quad 4$	1.8	1.8	v
Collector-Enifiter Sonurrotion Voltage		0.3	0.35	v
	$I_{1}=50 \mathrm{ma}, I_{c}=500 \mathrm{ma}$ (Wote	0.5	0.6	v
	$\mathrm{I}_{\mathrm{s}}=100 \mathrm{mo}, l_{c}=1 \mathrm{a}$, 4	1	1.2	V
If Transition Pruquacy	$V_{c s}=10 r, l_{c}=50 \mathrm{me}$, sen Mofte 5	200	175	$\underline{\square}$
Commen-Eate Opan-Grait Outpul Copactionse	$Y_{C B}=10 y_{i} l_{1}=0, \quad i=100 \mathrm{ks}$	12		南
	$V_{C i}=20 \mathrm{v}, \mathrm{l}_{1}=0, \quad i=100 \mathrm{kt}$		12	1
$\text { Ciso } \begin{aligned} & \text { Commen-Daw Open-Oitrail } \\ & \text { Inpet Copactionce } \end{aligned}$	$v_{1 t}=0.5 \mathrm{v}, \mathrm{l}_{\mathrm{c}}=0, \quad f=100 \mathrm{ht}$	60	0	A

NOTES: 1. This value appliee between 0 and 1 a collector euprent when the bese-emitter diode is open-cirouited.
2. Derate IInearly to $200^{\circ} \mathrm{C}$ free-sir temperature at the rate of $\mathrm{B} .71 \mathrm{mw} /{ }^{\circ} \mathrm{C}$.
3. Derate the 10 -watt rating linearly to $200^{\circ} \mathrm{C}$ case temparature at the rate of $57.1 \mathrm{mw} /{ }^{\circ} \mathrm{C}$. Derate the B -watt (JEDEC regirtared) rating linearly to $200^{\circ} \mathrm{C}$ case temperature at the rate of $28.6 \mathrm{mw} /{ }^{\circ} \mathrm{C}$.
4. These parameters must be masured using pulse techniquen, PW $=\mathbf{3 0 0} \mu$ sec, Duty Cycle $<\mathbf{2 \%}$
6. To obtain ${ }^{\dagger}$ T, the M_{f} | reeponse with frequency t extrapolated at the rate of -6 db per octeve from $\mathrm{f}=100 \mathrm{Mc}$ to the frequency at which $\left.\right|_{\text {fal }} \mid=1$.
*The JEDEC registered outline for these devices ls TO-5. TO-39 falls within TO-5 with the exception of lead length.
-JEDEC registered data. This data sheet containe all applicable registered data in effect at the time of publication.
TThis velue is guaranteed by Texas instruments in addition to the JEDEC registered value which is also shown.

N-P-N SILICON TRANSISTORS

*switching characteristics $\mathbf{a t} 25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER	TEST CONDITIONS \dagger	2N3232	2N3253	UNIT
		MAX	MAX	
$\mathrm{t}_{\text {d }}$ Delay Time		15	15	nsee
$t_{r} \quad$ Rise Time		30	35	nser
$t_{3} \quad$ Storuge Time	$\begin{aligned} & I_{c}=500 \mathrm{ma}, \quad l_{\text {ma1 }}=--_{x_{(2)}}=50 \mathrm{ma}, \\ & R_{L}=59 \Omega, \quad \text { Soe Figure } 2 \end{aligned}$	40	40	nsoc
$\mathrm{t}_{1} \quad$ Fall Time		30	30	nser
Of $^{\text {T }}$ Total Control Charge	$\mathrm{I}_{\mathrm{c}}=500 \mathrm{ma}, \mathrm{I}_{\mathrm{s}}=50 \mathrm{ma}$, Soe Figure 3	5	5	ncb

*PARAMETER MEASUREMENT INFORMATION

TEST CIRCUIT
figure 1 - delay and rise times

TEST CIRCUIT
NOTE: $Q_{T}<5$ neb whan the transistor turns off monotonically as shown by the solid line.
FIGURE 3 - TOTAL CONTROL CHARGE
WOTES: a. The iaput wevoforms hews the fillowing chercateristics
For meosuring dolay ond rise times; $\mathrm{I} \leq \mathbf{2}$ noce, PW $\geq \mathbf{2 0 0}$ nucc, Duty cyclo $\leq \mathbf{2 \%}$.

 *Indicates JEDEC sagistored data

TYPES 2N3329 THRU 2N3332 P-CHANNEL SILICON JUNCTION FIELD-EFFECT TRANSISTORS

FOR SMALL-SIGNAL, LOW-NOISE APPLICATIONS

- Active Elements Insulated from Case

- High Input Impedance (>5 megohms af 1 kc)

*mochenical data

*absolute maximum rarings $\mathbf{a t} \mathbf{2 5}{ }^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

*electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

PARAMETER		TEST CONDITIONS \dagger		2N3329		2N3330		2N3331		2N3332		UNIT		
		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MaX					
$V_{\text {(ER) }}$ gss	Gato-Source Breakdown Voltage			$\mathrm{I}_{6}=10 \mu 0^{\prime}$	$V_{\text {DS }}=0$	20		20		20		20		V
Igss	Gate Cutoff Current	$\mathbf{v}_{6 S}=10 \mathrm{v}_{\text {g }}$	$v_{D S}=0$		0.01		0.01		0.01		0.01	μ		
'gess	Gate Cutoff Curient	$\mathbf{V}_{\text {GS }}=10 \mathrm{v}$,	$\begin{aligned} & V_{D S}=0, \\ & T_{A}=150^{\circ} \mathrm{C} \end{aligned}$		10		10		10		10	μ		
${ }^{\text {D Dionl }}$	Lero-Gate-Voltage Drain Current	$\mathrm{V}_{\mathrm{DS}}=-10 \mathrm{v}^{\text {, }}$	$\mathrm{v}_{6 S}=0$	-1	\rightarrow	-2	-6	-5	-15	-1	-6	me		
$V_{6 S}$	Goto-Source Cwiff Yoltoge	$y_{\text {DS }}=-15 y_{0}$	$\mathrm{i}_{\mathrm{D}}=-10 \mu \mathrm{a}$		5		6		8		6	V		
${ }^{\text {r }}$ S	Static Drain-Source Resistonce	$\mathrm{l}_{\mathrm{D}}=-100 \mu \mathrm{a}$,	$\mathrm{V}_{\mathrm{GS}}=0$		1000		300		600			dhm		
$\left\|y_{\text {is }}\right\|$	Small-Signal Common-Source Input Admittance	$\begin{aligned} & V_{D S}=-10 \mathrm{v}, \quad I_{D}-S_{\text {See Mote 2 }} \\ & f=1 \mathrm{kc} \end{aligned}$			0.2		0.2		0.2		0.2	$\mu \mathrm{m} k$ ¢		
$\left\|y_{t s}\right\|$	Small-Signal Common-Source Forward Transfer Admittanca			1000	2000	1500	3000	2000	4000	1000	2200	$\mu \mathrm{mme}$		
$\left\|y_{r s}\right\|$	Small-Signal Common-Source Reverse Ironsfor Admiltance				0.1		0.1		0.1		0.1	$\mu \mathrm{nmbo}$		
\|ros ${ }_{\text {os }}$ \|	Small-Signal Commen-Source Output Admittance				20		40		100		20	$\mu \mathrm{mmb}$		
$\left\|y_{\text {fs }}\right\|$	Small-Signal Common-Source Forward Iransfer Admithanca	$\begin{aligned} & V_{D S}=-10 \mathrm{r} \\ & \mathrm{f}=10 \mathrm{mc} \end{aligned}$	$I_{D}-S_{000} \text { Mose } 2_{0}$	900		1350		1800		900		$\mu \mathrm{mmb}$		
$\mathrm{c}_{\text {is }}$	Common-Source Short-Circuif Input Capacifance	$\begin{aligned} & v_{D S}=-10 v_{1} \\ & f=1 M c \end{aligned}$	$\mathbf{v}_{\mathbf{G S}}=\mathrm{I} \mathbf{v}$		20		20		20		20	- ${ }^{\text {d }}$		

*operating characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

Spot Moise Figure	$\begin{aligned} & \begin{array}{l} \mathrm{vSS}_{\mathrm{DS}}=-5 \mathrm{v}, \\ \mathrm{i}=1 \mathrm{kc}, \end{array} \end{aligned}$	$\begin{aligned} & 1_{p}=-1 \mathrm{mo} \\ & \mathrm{~s}_{6}=1 \mathrm{~m} \mathrm{\Omega} \\ & \hline \end{aligned}$	3	3	4	1	¢
	$\begin{aligned} & y_{\mathrm{os}}=-5 \mathrm{v}, \\ & =10 \mathrm{cps}, \end{aligned}$	$\begin{aligned} & T_{0}=-1 \mathrm{ma} \\ & \mathrm{R}_{6}=10 \mathrm{mn} \end{aligned}$				5	db

NOTE 1: Derate linearly to $175^{\circ} \mathrm{C}$ frea-air temperature at the rate of $2 \mathrm{mw} / \mathrm{C}^{\circ}$.

	2×3329	$2 N 3330$	$2 N 3331$	$2 N 3332$
NOTE 2: $\mathrm{I}_{\mathrm{D}}=$	-1 ma	-2 ma	-5 mu	-1 ma

\dagger The fourth lead (case) is connected to the source for all meosurements.
*indicates JEDEC registered data.

TYPES 2N3347 THRU $2 N 3352$ DUAL P-N-P SILICON TRANSISTORS

TWO P-N-P TRANSISTORS IN ONE PACKAGE

- Each Triode Electrically Similar to 2N2604 and 2N2605 Transistors
- Recommended for Low-Noise, High-Gain Differential Amplifiers
- Designed for Complementary Use with 2N2639 through 2N2644 Dual N.P-N Transistors

*absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)
EACH
TOTAL

NOTES: 1. This value applies when the base-emitter ciode is open-circuited.
2. Derate linearly to $175^{\circ} \mathrm{C}$ free-air temperature at the rates of $2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for each triode and $4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for total device.
3. Derate linearly to $175^{\circ} \mathrm{C}$ case temperature at the rates of $4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for each triode and $8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for total device.

JEDEC repistered data. This dste sheat contains all applicable registered data in affect at the time of publication.

TYPES 2N3347 THRU 2N3352 DUAL P-N-P SILICON TRANSISTORS

*electrical characteristics at $\mathbf{2 5 ^ { \circ }} \mathbf{C}$ free-air temperature (unless otherwise noted)

individual triode charactoristics (see note 4)

PARAMETER		TEST CONDITIONS	$\begin{aligned} & \text { 2N3347 } \\ & \text { 2N3348 } \\ & \text { 2N3349 } \end{aligned}$		UNIT	
		MIN MAX	MIN MAX			
$V_{\text {(BR) }}$ CBO	Collector-Base Breakdown Voltage		$I^{\prime}=-10 \mu A, \quad I_{E}=0$	-60	-60	V
$V_{\text {(BR)CEO }}$	Collector-Emitter Breakdown Voltage	$I_{C}=-10 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0, \quad$ See Note 5	-45	-45	V	
$V_{\text {(BR)EBO }}$	Emitter-Base Breakdown Voltage	$\mathrm{I}_{\mathrm{E}}=-10 \mu \mathrm{~A}, \mathrm{I}^{\prime}=0$	-6	-6	V	
IC8O	Collector Cutoff Current	$\mathrm{V}_{C B}=-45 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0$	-10	-10	nA	
		$V_{C B}=-45 \mathrm{~V}, \mathrm{IE}=0, \quad \mathrm{~T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$	-10	-10	$\mu \mathrm{A}$	
IEBO	Emitter Cutoff Current	$V_{E B}=-6 V_{\text {, }} \mathrm{I}_{\text {c }}=0$	-2	-2	nA	
hFE	Static Forward Current Transfer Ratio	$V_{C E}=-5 V, I_{C}=-10 \mu \mathrm{~A}$	$40 \quad 300$	$100 \quad 300$		
		$V_{C E}=-5 \mathrm{~V}, \quad \mathrm{IC}^{\prime}=-1 \mathrm{~mA}$	60	150		
$V_{B E}$	Base-Emitter Voltage	$V_{C E}=-5 V, I_{C}=-10 \mathrm{~mA}$	-0.9	-0.9	V	
$\mathrm{V}_{\text {CE }}$ (sat)	Collector-Emitter Saturation Voltage	$\mathrm{I}_{\mathrm{B}}=-0.5 \mathrm{~mA}, \mathrm{I}^{\prime}=-10 \mathrm{~mA}$	-0.5	-0.5	V	
$h_{\text {ie }}$	Small-Signal Common-Emitter Input Impedance	$V_{C E}=-5 V, \quad I^{\prime}=-1 \mathrm{~mA}, f=1 \mathrm{kHz}$	$1.5 \quad 20$	$3.7 \quad 20$	$k \Omega$	
$h_{\text {fe }}$	Small-Signal Common-Emitter Forward Current Transfer Ratio		60600	150600		
$h_{\text {oe }}$	Small-Signal Common-Emitter Output Admittance		100	100	Mrmo	
$h^{\text {fel }}$	Small-Signal Common-Emitter Forward Current Transfer Ratio	$V_{C E}=-5 \mathrm{~V}, \quad 1 \mathrm{C}=-1 \mathrm{~mA}, \quad \mathrm{f}=30 \mathrm{MHz}$	28	28		
Cobo	Common-Base Open-Circuit Output Capacitance	$V_{C B}=-5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{E}}=0, \quad f=1 \mathrm{MHz}$	6	6	pF	
$\mathrm{C}_{\text {ibo }}$	Common-Base Open-Circuit Input Capacitance	$V_{E B}=-0.5 \mathrm{~V}, \mathrm{I}^{\prime}=0 . \quad f=1 \mathrm{MHz}$	8	8	pF	

triode matching chavacteristics

PARAMETER	TEST CONDITIONS	$\begin{array}{\|l\|} \hline \text { 2N3347 } \\ \text { 2N3360 } \\ \hline \end{array}$	$\begin{aligned} & \text { 2N3348 } \\ & \text { 2N3351 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 2N3349 } \\ & \text { 2N33.62 } \\ & \hline \end{aligned}$	UNIT
		MIN MAX	MIN MAX	MIN MAX	
hFE1 Static Forward-Current- hFE2 Gain Balance Ratio	$V_{C E}=-5 V, I_{C}=-10 \mu \mathrm{~A},$ See Note 6	0.91	0.81	0.61	
$\left\|\mathrm{V}_{\text {BE1 }}-\mathrm{V}_{\text {BE } 21}\right\|$ Base-Emitter-Voltage Differential	$\mathrm{V}_{\text {CE }}=-5 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=-10 \mu \mathrm{~A}$	5	10	20	$m \mathrm{~V}$
$\left\|\triangle\left(V_{\mathrm{BE1}}-\mathrm{V}_{\mathrm{BE} 2}\right)^{\prime} T_{\mathrm{A}}\right\| \begin{aligned} & \text { Base-Emitter-Volta } \\ & \text { Differential Chang } \\ & \text { with Temperature }\end{aligned}$	$\begin{array}{ll} V_{C E}=-5 V, & T_{C}=-10 \mu \mathrm{~A}, \\ T_{A(1)}=25^{\circ} \mathrm{C}, & T_{A(2)}=-55^{\circ} \mathrm{C} \\ \hline \end{array}$	0.8	1.6	3.2	mV
	$\begin{array}{ll} V_{C E}=-5 V, & I_{C}=-10 \mu A \\ T_{A(1)}=25^{\circ} \mathrm{C}, & T_{A(2)}=125^{\circ} \mathrm{C} \end{array}$	1	2	4	

*operating characteristics at $\mathbf{2 5}{ }^{\circ} \mathrm{C}$ free-air temperature

individual triode characteristics (see note 4)

PARAMETER		TEST CONDITIONS	$\begin{aligned} & \text { ALL } \\ & \text { TYPES } \end{aligned}$	UNIT	
		MAX			
$\overline{\mathbf{F}}$	Average Noise Figure		$V_{C E}=-5 V, \quad I_{C}=-10 \mu A, R_{G}=10 k \Omega,$ Noise Bandwidth $=15.7 \mathbf{k H z}$, See Note 7	4	dB

NOTES: 4. The terminals of the triode not under test are open-circuited for the measurement of these characteristics.
5. This parameter must be measurad using putse techniques. $\mathrm{t}_{\mathrm{w}}=\mathbf{3 0 0} \mu \mathrm{s}$, duty cycle $\leqslant \mathbf{2 \%}$.
6. The lower of the two hFE resdings is taken hFEY.
7. Averege Noise Figure is measured in an amplifier with response down 3 dB at 10 Hz and 10 kHz and a high-frequency rolloff of 6 dB /octave.
*JEDEC registered data

SILECT ${ }^{\dagger}$ TRANSISTORS \ddagger

- For Small-Signal Amplifier Applications
- Rugged One-Piece Construction with In-Line Leads or Standard TO-18 100-mil Pin-Circle Configuration
- A7T3391, A7T3391A, and A7T3392 are Plug-In Replacements for 2N3391, 2N3391A, 2N3392 (TO-98 Package)

mechanical data

These transistors are encapsulated in a plastic compound specifically designed for this purpose, using a highly mechanized process developed by Texas Instruments. The case will withstand soldering temperatures without deformation. These devices exhibit stable characteristics under high-humidity conditions and are capable of meeting MIL-STD-202C, Method 106B. The transistors are insensitive to light.

electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

PARAMETER	TEST CONDITIONS		A5T3381 A7T3391 A8T3391 A5T3391A A7T3381A A8T3391A		A5T3392 A7T3392 A8T3392		UNIT
			MiN	MAX	MIN	Max	
$\mathbf{V}_{\text {(BR) }}$ CEO Collector-Emitter Breakdown Voltage	$\mathrm{I}^{\prime} \mathrm{C}=1 \mathrm{~mA}, \quad \mathrm{I}_{\mathrm{B}}=0$	See Note 3			25		V
	$I_{C}=10 \mathrm{~mA}, \quad I_{B}=0$		25				
Collector Cutoff Current	$V_{C B}=25 \mathrm{~V}, \quad I_{B}=0$			100		100	nA
	$V_{C B}=25 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=0$,	$T_{A}=100^{\circ} \mathrm{C}$		10		10	$\mu \mathrm{A}$
IEBO Emitter Cutoff Current	$V_{E B}=5 \mathrm{~V}, \quad \mathrm{I}^{\prime}=0$			100		100	nA
hFE Static Forward Current Transfer Ratio	$\mathrm{V}_{\text {CE }}=4.5 \mathrm{~V}, \mathrm{IC}=2 \mathrm{~mA}$		250	500	150	300	
h_{fe} Small-Signal Common-Emitter Forward Current Trensfer Ratio	$V_{C E}=4.5 \mathrm{~V}, \quad 1 \mathrm{C}=2 \mathrm{~mA}$,	$\mathrm{f}=1 \mathrm{kHz}$	250	800	150	500	
Cobo Common-Base Open-Circuit Output Capacitanca	$V_{C B}=10 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{E}}=0$.	$\mathrm{f}=1 \mathrm{MHz}$	2	10	2	10	pF

NOTE 3: This parameter must be mebeured using pulse techniques. $t_{w}=300 \mu s$, duty cycle $\leqslant 2 \%$.
operating characteristics at $\mathbf{2 5} \mathbf{}{ }^{\circ} \mathbf{C}$ free-air temperature

NOTE 4: Average Noise Figure is measured in an amplifier with response down 3 dB at 10 Hz and 10 kHz and a high-frequancy rollotf of $6 \mathrm{~dB} / \mathrm{octav}^{2}$.

THERMAL INFORMATION
DISSIPATION DERATING CURVE

TYPE 2N3444
 N-P-N SILICON TRANSISTOR

DESIONED FOR HIGH-SPEED, HICH-CURRENT SWITCHING APPLICATIONS

mechanical data

THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE CABE			$\sqrt{T 7}$

absolute maximum ratings at $23^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

*electrical charactoristics at $25^{\circ} \mathrm{C}$ free-air tomperature (unloss otherwise noted)

PARAMITER		TEST CONDITIONS		MIN MAX	UNIT
$V_{\text {(m) }}$ Cuo	Coliector-8ase Breakdown Voliage	$\mathrm{l}_{\mathrm{c}}=10 \mu 0_{,} \mathrm{I}_{\mathrm{E}}=0$		80	
$V_{\text {(ta) }}$ CEO	Collector-Emitter Breakdown Voltage	$\mathrm{l}_{\mathrm{c}}=10 \mathrm{ma} \mathrm{l}_{1}=0$,	See Note 4	50	v
$V_{\text {(ex) }}$	Emitter-Base Breakdown Voltage	$\mathrm{I}_{\mathrm{E}}=10 \mu \mathrm{a}, \mathrm{I}_{\mathrm{C}}=0$			v
Icuo	Collector Cutoff Current	$\mathrm{V}_{\mathrm{CB}}=60 \mathrm{v}, \mathrm{I}_{\mathrm{E}}=0$		0.5	$\mu \mathrm{O}$
		$V_{C B}=60 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0, \quad \mathrm{~T}_{\mathrm{A}}=100^{\circ} \mathrm{C}$		75	$\mu \mathrm{a}$
TCEv	Collector Cutoff Current			0.5	$\mu \mathrm{a}$
Ingv	Base Culoff Current	$V_{C E}=60 \mathrm{v}, \mathrm{V}_{\text {ME }}=-4 \mathrm{v}$		-0.5	$\mu \mathrm{O}$
IELO	Emitter Cutoff Current	$V_{E B}=4 \mathrm{v}, \quad \mathrm{l}_{C}=0$		50	no
$h_{\text {fe }}$	Static Forward Current Transfer Ratio	$V_{C E}=1 v_{1} \quad I_{C}=150 \mathrm{ma}$	$\begin{gathered} \hline \text { Sou } \\ \text { Note } \\ 4 \end{gathered}$	20	
		$\begin{array}{ll} V_{C E}=1 \mathrm{v}, & \mathrm{I}_{\mathrm{C}}=500 \mathrm{ma} \\ \hline \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{v}, & \mathrm{I}_{\mathrm{C}}=1 \mathrm{a} \\ \hline \end{array}$		$20 \quad 60$	
				15	
$V_{\text {be }}$	Base-Emitter Voltage	$I_{B}=15 \mathrm{ma}_{,} I_{C}=150 \mathrm{ma}$	$\underset{\text { Note }}{\substack{\text { Sen }}}$	1	v
		$\begin{aligned} & I_{\mathrm{B}}=50 \mathrm{ma}, I_{\mathrm{c}}=500 \mathrm{ma} \\ & \mathrm{I}_{\mathrm{A}}=100 \mathrm{ma}, \mathrm{I}_{\mathrm{c}}=1 \mathrm{a} \end{aligned}$		0.7 1.3	V
				1.8	V
$V_{\text {CE\{ } 2+1\}}$	Collector-Emitter Saturation Voltage	$I_{B}=15 \mathrm{ma}, I_{c}=150 \mathrm{mo}$	$\begin{gathered} \text { Soe } \\ \text { Note } \\ 4 \end{gathered}$	0.35	V
		$\begin{aligned} & i_{B}=50 \mathrm{ma}, i_{C}=500 \mathrm{ma} \\ & \mathrm{I}_{\mathrm{B}}=100 \mathrm{ma}, \mathrm{I}_{\mathrm{c}}=1 \mathrm{a} \end{aligned}$		0.6	V
				1.2	
$F_{\text {F }}$	Transition Frequency	$V_{C E}=10 \mathrm{v}, \mathrm{I}_{\mathrm{C}}=50 \mathrm{ma}$, See Hote 5		150	Mc
$C_{\text {abo }}$	Common-Base Open-Crailt Output Capacilonce	$v_{C t}=10 \mathrm{v}, \mathrm{l}_{\mathrm{E}}=0, \quad 1=100 \mathrm{kc}$		12	pf
$C_{i b o}$	Common-Base Open-Circuit Input Copacitance	$V_{E L}=0.5 \mathrm{v}, \mathrm{I}_{\mathrm{C}}=0$,	$\mathrm{f}=100 \mathrm{kc}$	80	pf

NOTES: 1. This value applies between 0 and 1 collector current when the base-emitter diode is open-circuited.
2. Derate linearly to $200^{\circ} \mathrm{C}$ free-air temperature at the rate of $5.71 \mathrm{mw} /{ }^{\circ} \mathrm{C}$.
3. Derate the 10 -watt rating inearly to $200^{\circ} \mathrm{C}$ case temperature at the rate of $57.1 \mathrm{mw} /{ }^{\circ} \mathrm{C}$. Derate the 5 -watt (JEDEC registered) rating linearly to $200^{\circ} \mathrm{C}$ case temperature at the rate of $28.6 \mathrm{mw} /^{\circ} \mathrm{C}$.
4. These parameters must be measured using pulse tech niques. $\mathrm{PW}=300 \mu \mathrm{~s}$, Duty Cycle $\leqslant 2 \%$.
5. To obtain f_{T}, the $\boldsymbol{H}_{\text {fel }}$ response with frequency is extrapolated at the rate of -6 db per octave from $f=100$ Mc to the frequency at which $\left|h_{f e}\right|=1$.
The JEDEC registered outline for these devices is TO-5. TO-39 falls within TO-5 with the exception of teed length.

- JEDEC registered data. This data sheet contains all applicable registered data in effect at the time of publication.
t These values are guaranteed by Texas Instruments in addition to the JEDEC registered values which are also shown.

TYPE 2N3444
 N-P-N SILICON TRANSISTOR

*swifehing characterlstics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMITIR	TIST CONDITIONS	MaX	UNIT
td Defloy Time	$\mathrm{l}_{\mathrm{c}}=500 \mathrm{ma}, \mathrm{l}_{\text {m11 }}=50 \mathrm{ma}, \mathrm{V}_{\text {wiot }}=-2 \mathrm{v}$,	15	nese
$t_{\text {tr }}$ R Rise Time	$\mathrm{h}_{\mathbf{L}}=59 \Omega$, See Figura 1	35	nsot
t_{1} Storage time	$\begin{aligned} & I_{c}=500 \mathrm{mo}, I_{m(1)}=-I_{(a)}=50 \mathrm{ma}, \\ & h_{2}=59 \Omega, \quad \text { Sen Figure } 2 \end{aligned}$	40	nsec
t_{1} Fall Time		30	nsor
OT Fotal Control Charge	$I_{C}=500 \mathrm{ma}, I_{1}=50 \mathrm{ma}$, Seo Fligure 3	5	ncb

†Voltege and current values thown are nominal; exact valuer very slightiy wifh Itemsister parameters.

*PARAMETER MEASUREMENT INFORMATION

test cincult

VOLTAGE WAVEFORMS

NOTE: $Q_{\uparrow}<5$ neb when the transistor turns off monotonically ex shown by the solid line.

FIGURE 3-TOTAL CONTROL CHARGE

HOTES: \quad. The input wavefonms heva the following charecteristics:
For measuring delay ond rise times; $\mathrm{I}_{\mathrm{r}} \leq \mathbf{2} \mathbf{m a c}, \mathrm{PW} \geq \mathbf{2 0 0}$ nsoc, Duty Cycle $\leq \mathbf{2 \%}$.
For measuring slorage and fall times; $\mathrm{t}_{\mathrm{f}} \leq \mathbf{5} \mathrm{nsoc}, \mathrm{PW}=10$ to $200 \mu \mathrm{sec}$, Duty Cycle $\leq \mathbf{2 \%}$.
For meessuing $a_{T} ; \mathrm{t}_{\mathrm{f}} \leq 10 \mathrm{nsac}, \mathrm{PW}=10 \mu \mathrm{sec}$, Duty Cycle $\leq \mathbf{1 \%} \%$.
b. Weveforms ore menitored on on escllloscepe with the following characteristics: $\mathrm{t}_{\mathrm{r}} \leq 1 \mathrm{nscx}, \mathrm{R}_{\mathrm{in}} \geq 100 \mathrm{k} \Omega, \mathrm{c}_{\mathrm{in}} \leq 7 \mathrm{pf}$.
-Indicatas JEDEC ragistered data

TYPES 2N3458, 2N3459, 2N3460 N-CHANNEL SILICON JUNCTION FIELD-EFFECT TRANSISTORS

FOR INDUSTRIAL AND CONSUMER
 SMALL-SIGNAL, LOW-NOISE
 APPLICATIONS

*mechanical data

*absolute maximum ratings at $\mathbf{2 5}^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)
Drain-Gate Voltage 50 V
Reverse Gate-Source Voltage $-50 \mathrm{~V}$
Continuous Gate Current 10 mA
Continuous Device Dissipation at (or below) $25^{\circ} \mathrm{C}$ Free-Air Temperature (See Note 1) 300 mW
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $200^{\circ} \mathrm{C}$
Lead Temperature 1/16 Inch from Case for 10 Seconds $300^{\circ} \mathrm{C}$

NOTE 1: Derate linearly to $200^{\circ} \mathrm{C}$ free-air temperature at the rate of $1.71 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
*JEDEC registered data. This data sheet contains all applicable registered data in effect at the time of publication.

TYPES 2N3458, 2N3459, 2N3460 N-CHANNEL SILICON JUNCTION FIELD-EFFECT TRANSISTORS

*electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature (uniess otherwise noted)

PARAMETER		TEST CONDITIONS		2N3458		2N3459		2N3460		UNIT		
		MIN	MAX	MiN	MAX	MIN	MAX					
IGSS	Gate Reverse Current			$\mathrm{V}_{\mathrm{GS}}=-30 \mathrm{~V}$,	$V_{D S}=0$		-0.25		-0.25		-0.25	nA
		$\begin{aligned} & V_{G S}=-30 \mathrm{~V} \\ & T_{A}=150^{\circ} \mathrm{C} \end{aligned}$	$V_{D S}=0,$		-0.5		-0.5		-0.5	$\mu \mathrm{A}$		
IDGO	Drain Reverse Current	$\mathrm{V}_{\mathrm{DG}}=50 \mathrm{~V}$	$I_{S}=0$		1		1		1	$\mu \mathrm{A}$		
$V_{\text {GS }}$ (off)	Gate-Source Cutoff Voltage	$\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}$,	$\mathrm{I}_{\mathrm{D}}=1 \mathrm{nA}$		-8		-4		-2	V		
V_{GS}	Gate-Source Voltage	$V_{D S}=20 \mathrm{~V}$.	${ }^{\prime} \mathrm{D}=1 \mu \mathrm{~A}$		-7.8		-3.4		-1.8	V		
IDSS	Zero-Gate-Voltage Drain Current	$\begin{aligned} & V_{D S}=20 \mathrm{~V} \\ & \text { See Note } 2 \end{aligned}$	$V_{G S}=0,$	3	15	0.8	4	0.2	1	mA		
$\left\|\mathrm{Vfs}_{\mathrm{f}}\right\|$	Small-Signal Common-Source Forward Transfer Admittance	$\begin{aligned} & V_{D S}=20 \mathrm{~V}, \\ & f=1 \mathrm{kHz}, \end{aligned}$	$V_{G S}=0,$ See Note 3	2.5	10	1.5	6	0.8	4.5	mmho		
$\mathrm{C}_{\text {iss }}$	Common-Source Short-Circuit Input Capacitance	$\begin{aligned} & V_{D S}=10 \mathrm{~V} \\ & \mathrm{f}=1 \mathrm{MHz} \end{aligned}$	$v_{G S}=0 .$		18					pF		
		$\begin{aligned} & V_{D S}=6 \mathrm{~V} \\ & \mathrm{f}=1 \mathrm{MHz} \end{aligned}$	$V_{\mathbf{G S}}=0,$				18					
		$\begin{aligned} & V_{\mathrm{DS}}=4 \mathrm{~V}, \\ & \mathrm{f}=1 \mathrm{MHz} \end{aligned}$	$V_{G S}=0$,						18			
$\mathrm{C}_{\text {oss }}$	Common-Source Short-Circuit Output Capacitance	$\begin{aligned} & V_{D S}=30 \mathrm{~V} \\ & \mathrm{f}=1 \mathrm{MHz} \end{aligned}$	$V_{G S}=0,$ See Notes 3 and 4		5		5		5	pF		
gos	Small-Signal Common-Source Output Conductance	$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=30 \mathrm{~V} \\ & \mathrm{f}=1 \mathrm{MHz} \end{aligned}$	$v_{G S}=0$ See Note 3		35		20		5	$\mu \mathrm{mho}$		

*operating characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

	PARAMETER	TEST CONDITIONS	2N3458		2N3459		2N3460		UNIT
			MIN	MAX	MIN	MAX	MIN	MAX	
NF	Common-Source Spot Noise Figure	$\begin{array}{ll} V_{D S}=10 \mathrm{~V}, & V_{G S}=0 \\ R_{G}=1 \mathrm{M} \Omega, & f=20 \mathrm{~Hz} . \end{array}$ Noise Bandwidth $=6 \mathrm{~Hz}_{z}$		6		4		4	dB

NOTES: 2. This parameter must be measured using pulse techniques. $t_{w}=300 \mu$ s, duty cycle $\leqslant 2 \%$.
3. These parameters must be measured with bias conditions applied for less than 5 seconds to avoid overheating.
4. Coss is defined as the imaginary part of small-signal common-source output susceptance divided by $2 \pi f$.
*JEDEC registered data

DESIGNED FOR HIGH-SPEED CORE-DRIVER APPLICATIONS

- High Dissipation Capability ... 10 Watts af $25^{\circ} \mathrm{C}$ Case Temperature
- High V(sa)ceo ... 50 V Min (2N3245, 2N3468)
- High Speed... 60 ns Max is at $500 \mathrm{~mA}(2 N 3467,2 N 3468)$
- High Collector Current Rating... 1 A
mechanical data
THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE CASE
absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless othorwise noted)

	2N3244	2N3245	2N3467	2N3468	UNIT
Collector-Bose Voltage	-40^{*}	-50*	-40^{*}	-50^{*}	V
Collector-Emitter Volioge (See Note 1)	-40^{*}	-50^{*}	-40^{*}	-50°	V
Emitter-Sase Voltage	-5*	-5*	-5*	-5*	V
Continuous Collector Current	$-{ }^{*}$	-1*	$-{ }^{*}$	$-{ }^{*}$	1
Conlinuous Device Dissipation at (or balow) $25^{\circ} \mathrm{C}$ Free-Air Temperature (See Note 2)	1^{*}	$1 *$	$1 *$	$1 *$	W
Continuous Device Dissipation at (or below) $25^{\circ} \mathrm{C}$ Case Temperature (See Note 3)	$\begin{gathered} 10{ }^{4} \\ 5^{\circ} \end{gathered}$	$\begin{gathered} 101 \\ 5^{*} \\ \hline \end{gathered}$	10	10	W
Storage Temperature Range	-65 10200^{*}				${ }^{\circ} \mathrm{C}$
Lead Temperature Yo Inch from Cose for 10 Seconds			230*		${ }^{\circ} \mathrm{C}$
Lead Pemperature Ko Inch from Case for 60 Seconds	$300 *$		$300{ }^{+}$		${ }^{\circ} \mathrm{C}$

NOTES: 1. These values apply between 0 and 1 A collector current when the base-emittar diode is open-circuited.
2. Derate linearly to $200^{\circ} \mathrm{C}$ free-air temperature at the rate of $5.71 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
3. Derate the 10 -wate TI value linearly to $200^{\circ} \mathrm{C}$ case temperature at the rate of $57.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.

Derate the 5 -watt JEDEC value linearly to $200^{\circ} \mathrm{C}$ case temperature at the rate of $28.6 \mathrm{~mW} /^{\circ} \mathrm{C}$.
The JEDEC registered outline for these devices is TO-5. TO-39 falls within TO-5 with the exception of load length.
-JEDEC registered data. This data sheet contains all applicable dats in offect at the time of publication.
${ }^{1}$ These values are quaranteed by Texas instruments in addition to the JEDEC registered values which are also shown.

TYPES 2N3244, 2N3245, 2N3467, 2M3488 P-N-P SILICON TRANSISTORS

*eloctrical characteristies ef $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS		2N3244	2N3245	2N3467	2N3468	
				Minmax	Min max	MUN MAX	MIN MAX	
$v_{\text {(m, }, \text { cos }}$	Collector-iluse Ereckdown Volioge	$\mathrm{I}_{\mathrm{c}}=-10 \mu \mathrm{~h}, \mathrm{I}_{\mathrm{E}}=0$		-40	-50	-40	-50	v
$V_{\text {Imaceo }}$	Colinctor-Emitter Irockdown Vohoye	$\mathrm{I}_{\mathrm{c}}=-10 \mathrm{~mA}, \mathrm{I}_{\mathrm{s}}=0$,	See Mote 4	-40	-50	-40	-50	V
$V_{\text {(m) }}$	Emititer-lase Broakdown Voltaye	$\mathrm{I}_{\mathbf{E}}=-10 \mu \mathrm{~h}, \mathrm{I}_{\mathrm{c}}=0$		-5	-5	-5	-5	V
leso	Collector Cutoff Currmit	$V_{\text {ci }}=-30 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0$		-50		-100	-100	nA
		$V_{C a}=-30 V_{1} \quad I_{E}=0_{i} \quad T_{A}=100^{\circ} \mathrm{C}$				-15	-15	$\mu \mathrm{A}$
		$V_{C I}=-50 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0$			-50			nd
Icer	Collactor Cutoff Current	$V_{C E}=-30 \mathrm{~V}, \boldsymbol{V}_{\text {EE }}=3 \mathbf{V}$		-50	-50	-100	-100	nA
Inev	Base Cutoff Current	$V_{C E}=-30 \mathrm{~V}, \quad V_{\text {EE }}=3 \mathrm{~V}$		80	80	120	120	ni
E*0	Emitter Culofl Curnent	$V_{E D}=-4 V, \quad I_{C}=0$		-30	-30			nA
$h_{\text {He }}$	Static forword Current Trensser Ratio	$V_{C E}=-1 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{C}}=-150 \mathrm{~mA}$	$\begin{gathered} \text { Soe } \\ \text { Mote } \\ 4 \end{gathered}$	60	35	40	25	
		$V_{C E}=-1 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{C}}=-500 \mathrm{~mA}$		50150	$30 \quad 90$	$40 \quad 120$	$25 \quad 75$	
		$V_{C E}=-5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{C}}=-750 \mathrm{~mA}$		25				
		$\mathbf{V}_{\text {CE }}=-5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{C}}=-1 \mathrm{~A}$			20	40	20	
$V_{\text {fe }}$	Baso-Emitter Voltaye	$I_{1}=-15 \mathrm{~mA}, I_{c}=-150 \mathrm{~mA}$	$\begin{gathered} \text { Soe } \\ \text { Note } \\ 4 \end{gathered}$	-1.1	-1.1	-1	-1	V
		$\mathrm{I}_{\mathrm{s}}=-50 \mathrm{~mA}, \quad \mathrm{I}_{\mathrm{c}}=-500 \mathrm{~mA}$		-0.75-1.5	-0.75-1.5	-0.8-1.2	-0.8-1.2	V
		$\mathrm{I}_{\mathrm{E}}=-75 \mathrm{~mA}, \mathrm{l}_{\mathrm{c}}=-750 \mathrm{~mA}$		-2				V
		$\mathrm{I}_{1}=-100 \mathrm{~mA}, \mathrm{l}_{\mathrm{c}}=-1 \mathrm{~A}$			-2	-1.6	-1.6	v
$V_{\text {ckinal }}$	Collector-Emitter Saturation Voltoge	$\mathrm{I}_{\mathrm{s}}=-15 \mathrm{~mA}, \quad \mathrm{Ic}_{c}=-150 \mathrm{~mA}$	$\begin{gathered} \text { See } \\ \text { Mote } \\ 4 \end{gathered}$	-0.3	-0.35	-0.3	-0.35	V
		$I_{1}=-50 \mathrm{~mA}, \quad I_{c}=-500 \mathrm{~mA}$		-0.5	-0.6	-0.5	-0.6	V
		$\mathrm{I}_{\mathrm{c}}=-100 \mathrm{~mA}, \mathrm{I}_{\mathrm{c}}=-1 \mathrm{~A}$		-1	-1.2	-1	-1.2	V
f_{T}	Iransition Frequency	$\mathrm{V}_{\text {ce }}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=-50 \mathrm{mh}$, See Note 5		175	150	175	150	MHz
Cobo	Common-Lase Open-Crwit Output Capacitunce	$V_{C I}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0$,	$f=100 \mathrm{kHz}$	25	25	25	25	pf
$\mathrm{C}_{\text {ibo }}$	Common-Base Opem-Circuit Input Capocitonce	$V_{E E}=-0.5 \mathrm{~V}, \mathrm{l}_{\mathbf{c}}=0$,	$t=100 \mathrm{kHz}$	100	100	100	100	pf

MOTES: 4. These paramelers mest be moeswod resian puse techniques. $I_{p}=300 \mu$ s, duty cycle $\leq \mathbf{2 \%}$.

-Imdiceles JEDEC ragistomed dete
*switching characteristics at $25^{\circ} \mathrm{C}$ free-cir temperature

PARAMETER	TEST CONDITIONS \dagger	$\begin{array}{\|c\|} \hline \text { 2N3244 } \\ \hline \text { MAX } \\ \hline \end{array}$	$\frac{2 \text { N3245 }}{\text { MAX }}$	$\begin{array}{\|c\|} \hline \text { 2N3467 } \\ \hline \text { MAX } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { 2N3468 } \\ \hline \text { MAX } \\ \hline \end{array}$	UNIT
t_{d} Delay Time	$\begin{aligned} & I_{C}=-500 \mathrm{~mA}, I_{\text {s(I) }}=-50 \mathrm{~mA}, \quad V_{\mathrm{ME}(\mathrm{otin}}=2 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=59 \Omega, \quad \text { See Figure } 1 \end{aligned}$	15	15	10	10	ns
t_{r} Rise Time		35	40	30	30	ns
ts Storage Time	$\begin{aligned} & I_{C}=-500 \mathrm{~mA}, \\ & \mathbf{I}_{\mathrm{L} 11}=-50 \mathrm{~mA}, I_{\mathrm{B}(2]}=50 \mathrm{~mA}, \\ & \mathbf{R}_{\mathbf{L}}=59, \quad \text { See Figure } 2 \end{aligned}$	140	120	60	60	ns
$t_{\text {f }} \quad$ Foll Time		45	45	30	30	ns
$Q_{\text {t }} \quad$ Iotal Control Charge	$\mathrm{I}_{\mathrm{c}}=-500 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=-50 \mathrm{~mA}, \quad$ See figure 3	14	12	6	6	$n \mathrm{C}$

\dagger Voltages and current values shown are nominal, exact volves vary slightly with transistar paramelers. Maminal base currant for delay and rise limes is calculoted using the minimum values of $\boldsymbol{V}_{\mathrm{BEE}}$. Naminal bose curronls for storage and fall times are colculatod using the maximum volue of \mathbf{V}_{BE}.

*PARAMETER MEASUREMENT INFORMATION

TEST CIRCUIT

figure 1 - delay and rise times

figure 2 - Storage and fall times

NOTES: a. The inpul waveforms hove the following characteristics:
For measuring delay ond rise times: $\mathrm{t}_{\mathrm{r}} \leq \mathbf{2 n s} \mathrm{t}_{\mathrm{p}}=\mathbf{2 0 0} \mathrm{ns}$, duty cycle $=\mathbf{2 \%}$.
For meosuring slorage and fall times: $t_{f} \leq 5 \mathrm{~ns}, \mathrm{t}_{\mathrm{p}}=2$ to $500 \mu \mathrm{~s}$, duty cycle $=2 \%$.
For measuring $0_{\mathrm{T}}: \mathrm{I}_{\mathbf{i}} \leq 10 \mathrm{~ns}, \mathrm{I}_{\mathrm{p}}=10 \mu \mathrm{~s}$, duty cycle $=\mathbf{2 \%}$.
b. Waveiorms are monitored on an oscilloscope with the following characteristics: $\mathbf{t}_{\mathbf{r}} \leq \mathbf{1} \mathrm{ns}, \mathrm{k}_{\mathrm{in}} \geq 100 \mathrm{k} \Omega, \mathrm{c}_{\mathrm{in}} \leq \mathbf{1} \mathbf{p F}$.

[^69]
DESIGNED FOR HIGH-SPEED, MEDIUM-POWER SWITCHING AND GENERAL PURPOSE AMPLIFER APPLICATIONS

 - Electrically Identical to 2N2906, 2N2906A, 2N2907, and 2N2907A in

 - Electrically Identical to 2N2906, 2N2906A, 2N2907, and 2N2907A in Space-Saving T0-46 Package
 - High Broakdown Voltage Combined With Vory Low Saturation Voltage

*mechanicel deta

absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

2N3485 2N3483A 2N3486 2N3486A $-60 y-60 r$ $-40 \mathrm{r}-60 \mathrm{r}$ $-5 r \quad-5 v$
 $-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$ $\leftarrow 300^{\circ} \mathrm{C} \longrightarrow$
*electrical characteristies af $25^{\circ} \mathrm{C}$ free-air tomperature (unless otherwise noted)

PARAMETER		TEST CONDITIONS		2N3485	2N3456	2N3485A	2N34E6A	UNIT		
		MIN MAX	MIN MAX	MIN MAX	MJN MAX					
$v_{\text {(maces }}$	Colliector-Bose Breakdown Yohoge Colo			$l_{c}=-10 \mu \mathrm{a}, l_{1}=0$		-60	-60	-60	-60	\vee
$\boldsymbol{v}_{\text {(m) }{ }^{\text {ceo }} \text { (}}$	Collector-Emiltor Brakdown Voltaga	$I_{c}=-10 \mathrm{ma}, l_{s}=0$,	Soe More 4	-40	-40	-60	-60	v		
$V_{\text {(ma) } \mathrm{EOO}}$	Emitter-Bose Broakdown Voltage	$\mathrm{I}_{\mathrm{E}}=-10 \mu \mathrm{a}, \mathrm{I}_{\mathrm{c}}=0$		-5	-5	-5	-5	v		
$\mathrm{J}_{\text {coo }} \mathbf{C}$	Collector Cutoff Current	$V_{C I}=-50 v_{1} H_{E}=0$		-20	-20	-10	-10	na		
		$V_{C B}=-50 v_{\text {c }} L_{E}=0$,	$\mathrm{r}_{\mathrm{A}}=150^{\circ} \mathrm{C}$	-20	-20	-10	-10	$\mu \mathrm{a}$		
lay	Collector Cutoff Curremin	$V_{C E}=-30 \mathrm{v}, V_{\text {E }}=0.5 \mathrm{r}$		-50	-50	-50	-50	na		
Ingy	Base Cutoff Current	$V_{\text {cz }}=-30 \mathrm{v}, \mathrm{V}_{\text {ex }}=0.5 \mathrm{r}$		50	50	50	50	na		
hre	Static Forward Current Transfer Ratio	$V_{C E}=-10 v_{1} I_{C}=-100 \mu$		20	35	40	75			
		$V_{C E}=-10 \mathrm{v}, \mathrm{l}_{\mathrm{c}}=-1 \mathrm{mo}$		25	50	40	100			
		$\mathrm{V}_{\mathrm{CE}}=-10 \mathrm{v}, \mathrm{l}_{\mathrm{c}}=-10 \mathrm{ma}$		35	75	40	100			
		$V_{C E}=-10 \mathrm{v}, \mathrm{I}_{\mathrm{c}}=-150 \mathrm{ma}$	$\begin{gathered} \text { Soe } \\ \text { Note } \\ 4 \end{gathered}$	$40 \quad 120$	$100 \quad 300$	$40 \quad 120$	$100 \quad 300$			
		$V_{C E}=-10 r_{,} \mathrm{I}_{\mathrm{c}}=-500 \mathrm{ma}$		20	30	40	50			
		$V_{C E}=-1 v_{1} \quad I_{c}=-150 \mathrm{ma}$		20	50	20	50			
Ve	Rasa-Emither Voltage	$\mathrm{I}_{\mathrm{g}}=-15 \mathrm{ma}, \mathrm{l}_{\mathrm{c}}=-150 \mathrm{me}$		-1.3	-1.3	-1.3	-1.3	V		
		$\mathrm{I}_{8}=-50 \mathrm{mo}, \mathrm{Ic}_{c}=-500 \mathrm{me}$		-2.6	-2.6	-2.6	-2.6	V		
$V_{\text {Clantl }}$	Collector Emiftar Saturation Voltage	$\mathrm{I}_{8}=-15 \mathrm{ma}, \mathrm{I}_{\mathrm{c}}=-150 \mathrm{ma}$		-0.4	-0.4	-0.4	$\underline{0.4}$	v		
		$\mathrm{I}_{1}=-50 \mathrm{ma}, \mathrm{I}_{\mathrm{c}}=-500 \mathrm{mo}$		-1.6	-1.6	-1.6	-1.6	v		

HOTES: 1. Thls velue appites betwoen 0 cmd 100 me cellecter curtinat when the beso-amititer dado is apmerincuited
3. Derate limenty to $200^{\circ} \mathrm{C}$ case temperative at the rete of $11.43 \mathrm{~mm} /{ }^{\circ} \mathrm{C}$.
2. Derate linaerly to $200^{\circ} \mathrm{C}$ freo-air temperaturs of the rate of $2.28 \mathrm{mw} /{ }^{\circ} \mathrm{C}$.

- JEDEC ropisternad data

4. These permetors must be moeswed wilay paisa tochiques. FW $\leq 300 \mu s \mathrm{~s}$. Buly Cylo $\leq \mathbf{2 \%}$.

TYPES 2N3485, 2N3485A, 2N3486, 2N3486A P-N-P SILICON TRANSISTORS

*electrical characteristics of $25^{\circ} \mathrm{C}$ free-alr temperature

	Paramitir	TIST CONDITIONS			ALL PYPES MUN MAX	UNIT
\| $h_{\text {c }}$ \|	Small-Sional Common-Emittor Forward Curront Transfor Rotio	$V_{\mathrm{ct}}=-20 \mathrm{v}$	$i_{c}=-50 \mathrm{ma}$	$f=100 \mathrm{Mr}$	2	
Cobo	Common-base Open-Grtult Output Capadionce	$v_{\text {ci }}=-10 \mathrm{v}$	$H_{4}=0$,	$f=100 \mathrm{kc}$	8	pf
C_{60}	Commanobese Open-Grculf Input Capacitrance	$v_{\text {Ei }}=-2 \mathrm{v}$	$I_{c}=0$,	$f=100 \mathrm{kc}$	30	pt

*gwitching charecterisfies af $25^{\circ} \mathrm{C}$ free-air temperature

	PARAMIETER	TIST CONDITIONS \dagger		$\frac{\text { AIL TYPES }}{\text { MAX }}$	UNIT
$t_{\text {d }}$	Dolay Time	$\mathrm{I}_{\mathrm{c}}=-150 \mathrm{ma}$,	$T_{\text {(1) }}=-15 \mathrm{ma}, V_{\text {Emom }}=0$,	10	nsse
t_{r}	Rise Iime	$\mathrm{l}_{\mathrm{L}}=200 \mathrm{a}$,	See Figure !	40	nsec
t_{5}	Storage Time	$\mathrm{Ic}_{\mathrm{c}}=-150 \mathrm{ma}$,	$T_{411}=-13 \mathrm{mo}, I_{121}=17 \mathrm{mo}$	80	nsek
H	Foll Time	$R_{L}=37 \mathrm{n}$,	See Figure 2	30	nsec

\dagger Voltege and carreat values shown ere neminal; exect velues very sifighty with trensintor meremetors.
*PARAMETER MEASUREMENT INFORMATION

TEST CIRCUIT
FIGURE I-DELAY AND RISE TIMES

(See Notes a and b) VOLTAGE WAVEFORMS

FIOURE 2-sTORAGE AND FALL TIMIS

- JEBEC rogitiond drfo.

HIGH-VOLTAGE TRANSISTORS
FULLY CHARACTERIZED FOR HIGH-SPEED, LOW-NOISE, MEDIUM-POWER SWITCHING AND GENERAL PURPOSE AMPLIFIER APPLICATIONS

- hei Guaranteed from $100 \mu \mathrm{~A}$ to 100 mA
*mechanical dafa
Device types 2 N 3494 and 2 N 3495 are in JEDEC TO-5 packages. Device types 2N3496 and 2N3497 are in JEDEC TO-18 packoges.

*absolute maximum ratings af $25^{\circ} \mathrm{C}$ free-air temperature (unless ofherwise noted)

	2N3494	2N3495	2N3496	2N3497	UNIT
Collector-Base Voltage	-80	-120	-80	-120	V
Collector-Emitter Voltoge (See Note 1)	-80	-120	-80	-120	V
Emitter-Base Voltage	-4.5	-4.5	-4.5	-4.5	V
Continuous Collector Current	-100	-100	-100	-100	mA
Continuous Deviee Dissipation of (or bolow) $25^{\circ} \mathrm{C}$ Fres-Air Temperature (See Notes 2 and 3)	0.6	0.6	0.4	0.4	W
Storage Temperature Ronge	-65 to 200				${ }^{\circ} \mathrm{C}$
Lead Tempereture 1/16 Inch from Case for 10 Seconds	300				${ }^{\circ} \mathrm{C}$

NOTES; 1. These values apply batwan 0 and 100 mA collecter current when the baso-wilttor diode is epon-circulted.

* JEDEC reglstored data

TYPES 2N3494 THRU 2N3497 P-N-P SILICON TRANSISTORS

*electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER		TEST CONDITIONS	$\frac{70-5 \rightarrow}{10-18 \rightarrow}$	$\frac{2 N 3494}{2 N 3496}$	$\frac{2 N 3495}{2 N^{3} 497}$	UNIT
				MIN MAX	MIN MAX	
	Collectior-Base Braakdown Volitage	$\mathrm{I}_{\mathrm{C}}=-10 \mu \mathrm{~A}, \quad \mathrm{I}_{\mathrm{E}}=0$		-80	-120	V
$V_{\text {beplce }}$	Collector-Emitter Breakdown Voltage	$\mathrm{I}_{\mathrm{C}}=-10 \mathrm{~mA}, \quad \mathrm{I}_{\mathrm{B}}=0$,	See Hote 4	-80	-120	V
$V_{\text {Vak\|EBO }}$	Emitter-Base Breakdown Voltage	$\mathrm{I}_{\mathrm{E}}=-10 \mu \mathrm{~A}, \quad \mathrm{I}_{\mathrm{C}}=0$		-4.5	-4.5	V
$\mathrm{I}_{\text {coo }}$	Collactor Cutoff Current	$\mathrm{V}_{\mathrm{CB}}=-50 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0$		-0.1		$\mu \mathrm{A}$
		$V_{C B}=-90 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0$			-0.1	$\mu \mathrm{A}$
EEO	Emilter Cutoff Current	$V_{E i}=-3 V, \quad I_{C}=0$		-25	-25	nA
$h_{\text {fe }}$	Static Forward Current Iransfer Ratio	$V_{C E}=-10 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{C}}=-100 \mu \mathrm{~A}$	$\begin{gathered} \text { See } \\ \text { Note } \\ 4 \end{gathered}$	35	35	
		$\mathrm{V}_{\mathrm{CE}}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=-1 \mathrm{~mA}$		40	40	
		$V_{\text {CE }}=-10 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{C}}=-10 \mathrm{~mA}$		40	40	
		$\mathrm{V}_{\mathrm{CE}}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=-50 \mathrm{~mA}$		40	40	
		$V_{\text {CE }}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=-100 \mathrm{~mA}$		35		
$V_{\text {be }}$	Base-Emittar Voltage	$\mathrm{I}_{B}=-1 \mathrm{~mA}, \quad \mathrm{I}_{C}=-10 \mathrm{~mA}$,	See Note 4	-0.6 -0.9	-0.6-0.9	V
$V_{\text {ckisat }}$	Collector-Emitter Saturation Voltage	$\mathrm{I}_{\mathrm{B}}=-1 \mathrm{~mA}, \quad \mathrm{I}_{\mathrm{C}}=-10 \mathrm{~mA}$,	See Note 4	-0.3	-0.35	V
h_{19}	Small-Signal Common-Emitter Input Impadance	$V_{C E}=-10 \mathrm{~V}$,$I_{C}=-10 \mathrm{~mA},$	$f=1 \mathrm{kHz}$	0.11 .2	$0.1 \quad 1.2$	$\mathrm{k} \Omega$
h_{6}	Small-Signal Common-Emilttor Forward Currant Transfer Ratio			40300	$40 \quad 300$	
$\mathrm{hre}^{\text {rem}}$	Small-Signal Common-Emitter Reverse Vollage Transfer Ratio			2×10^{-4}	2×10^{-4}	
h_{∞}	Small-Signal Common-Emitter Output Admiltance			300	300	$\mu \mathrm{mho}$
$\left\|h_{\text {for }}\right\|$	Small-Signal Common-Emitter Forward Currant Transier Ratio	$V_{C E}=-10 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{C}}=-20 \mathrm{~mA}$,	$f=100 \mathrm{mHz}$	2	1.5	
Cobo	Common-Base Open-Circuit Output Capacitance	$V_{C B}=-10 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{E}}=0$,	$f=100 \mathrm{kHz}$	7	6	pF
$C_{\text {b }}$	Common-Base Open-Circuit Input Capacitante	$V_{E A}=-2 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{C}}=0$,	$f=100 \mathrm{kHz}$	30	30	pF
Re($\mathrm{h}_{\text {el }}$)	Small-Signal Common-Emitter Input Resistance	$V_{C E}=-10 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{C}}=-20 \mathrm{~mA}$,	$f=300 \mathrm{MHz}$	30	30	Ω

NOTE 4: Theso parametars must be measured using pulse fochniquas. $t_{p}=\mathbf{3 0 0} \mu \mathrm{s}$, duty cycle $\leq \mathbf{2 \%}$.
*switching characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

	PARAMETER	TEST CONDITIONS \dagger		MAX	UNIT
$t_{\text {on }}$	Tum-On Time	$\begin{aligned} & I_{C}=-10 \mathrm{~mA}_{1} \\ & R_{L}=3 \mathrm{k} \Omega, \end{aligned}$	$\mathrm{I}_{\mathrm{B}(1)}=-1 \mathrm{~mA}, V_{\mathrm{BE}[0 f \mathrm{f})}=0,$ See Figure 1	300	ms
$\mathrm{taHf}^{\text {Of }}$	Tum-Off Time	$\begin{aligned} & I_{C}=-10 \mathrm{~mA}, \\ & R_{L}=3 \mathrm{k} \Omega_{1} \end{aligned}$	$I_{[11}=-1 m A, I_{(2)}=1 m A,$ Soe Figure 2	1	μs

*JEDEC ragistered data
†Voltage ond current values shown ere neminal; axect values vary alightly with transistor parameters. Nominal base current for turn-an time is colculated vesing a minimum walue of Y_{se}. Meminal basi currents for turn-off times are calcutated using the maximum value of V_{BE}.

PARAMETER MEASUREMENT INFORMATION

test circuit

test circuit

voltage waveforms

FIGURE I - TURN-ON TIME

FIGURE 2 - TURN-OFF TIME

MOTES: o. The Input wavaforms are supplied by a generater with $\mathbf{z}_{\text {out }}=50 \Omega$.
b. Wevoferms are memilered on an escilloscope with the follewing characteristics: $\mathrm{I}_{\mathrm{r}} \leq 10 \mathrm{~ns}, \mathbf{R}_{\text {in }} \geq 100 \mathrm{kS}$.

* JEDEC registored data

THERMAL INFORMATION

TYPES A5T3496, A5T3497 P-N-P SILICON TRANSISTORS

SILECT ${ }^{\dagger}$ TRANSISTORS \ddagger

FOR HIGH-VOLTAGE, MEDIUM-SPEED, GENERAL PURPOSE APPLICATIONS

- High V(BR)CEO . . 80 V (A5T3496), 120 V (A5T3497)
- hfe Guaranteed from $\mathbf{1 0 0} \mu \mathrm{A}$ to $\mathbf{1 0 0} \mathbf{~ m A}$
mechanical data
These transistors are encapsulated in a plastic compound specifically designed for this purpose, using a highly mechanized process developed by Texas Instruments. The case will withstand soldering temperatures without deformation. These devices exhibit stable characteristics under high-humidity conditions and are capable of meeting MIL-STD-202C, Method 106B. The transistors are insensitive to light.

absolute maximum ratings at $\mathbf{2 5}{ }^{\circ} \mathbf{C}$ free-air temperature (unless otherwise noted)

[^70]
TYPES A5T3496, A5T3497 P-N-P SILICON TRANSISTORS

electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER		TEST CONDITIONS	A5T3496	A5T3497	UNIT	
		MIN MAX	MIN MAX			
$V_{\text {(BR) }}$ CBO	Collector-Base Breakdown Voltage		$I_{C}=-10 \mu A, \quad I_{E}=0$	-80	-120	V
$V_{(B R) C E O}$	Colfector-Emitter Breakdown Voltage	$I_{C}=-10 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0, \quad$ See Note 3	-80	-120	V	
$V_{\text {(BR)EBO }}$	Emitter-Base Breakdown Voltage	$\mathrm{I}_{\mathrm{E}}=-10 \mu A, \quad \mathrm{I}^{\prime}=0$	-4.5	-4.5	V	
I'cBo	Collector Cutoff Current	$\mathrm{V}_{C B}=-50 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0$	-0.1		$\mu \mathrm{A}$	
		$\mathrm{V}_{C B}=-90 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0$		-0.1		
IEBO	Emitter Cutoff Current	$V_{E B}=-3 V, I^{\prime}=0$	-25	-25	nA	
hFE	Static Forward Current Transfer Ratio	$V_{C E}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=-100 \mu \mathrm{~A}$	35	35		
		$V_{C E}=-10 \mathrm{~V}, I_{C}=-1 \mathrm{~mA}$	40	40		
		$V_{C E}=-10 \mathrm{~V}, \mathrm{I}^{\prime}=-10 \mathrm{~mA}$	40	40		
		$\bar{V}_{C E}=-10 \mathrm{~V}, \mathrm{I}^{\prime}=-50 \mathrm{~mA}$ See Note 3	40	40		
		$V_{C E}=-10 \mathrm{~V}, \mathrm{IC}^{\prime}=-100 \mathrm{~mA}$	35			
$V_{\text {BE }}$	Base-Emitter Voltage	$\mathrm{I}_{B}=-1 \mathrm{~mA}, \quad \mathrm{I}_{\mathrm{C}}=-10 \mathrm{~mA}$, See Note 3	-0.6 -0.9	-0.6 -0.9	V	
$V_{\text {CE }}$ (sat)	Collector-Emitter Saturation Voltage	$\mathrm{I}_{B}=-1 \mathrm{~mA}, \quad \mathrm{I}^{\prime}=-10 \mathrm{~mA}$, See Note 3	-0.3	-0.35	V	
$h_{i e}$	Small-Signal Common-Emitter Input Impedance	$V_{C E}=-10 \mathrm{~V}, \mathrm{IC}=-10 \mathrm{~mA}, f=1 \mathrm{kHz}$	0.151 .2	0.11 .2	k $\boldsymbol{\Omega}$	
$\mathrm{hfe}^{\text {f }}$	Small-Signal Common-Emitter Forward Current Transfer Ratio		$40 \quad 300$	$40 \quad 300$		
$h_{\text {re }}$	Small-Signal Common-Emitter Reverse Voltage Transfer Ratio		$2 \times$ 10^{-4}	$2 \times$ 10^{-4}		
$h_{\text {oe }}$	Small-Signal Common-Emitter Output Admittance		300	300	$\mu \mathrm{mho}$	
Prel	Small-Signal Common-Emitter Forward Current Transfer Ratio	$V_{C E}=-10 \mathrm{~V}, \mathrm{I}^{\text {c }}=-20 \mathrm{~mA}, f=100 \mathrm{MHz}$	2	1.5		
Cobo	Common-Base Open-Circuit Output Capacitance	$V_{C B}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0, \quad \mathrm{f}=1 \mathrm{MHz}$	7	6	pF	
$C_{\text {ibo }}$	Common-Base Open-Circuit Input Capacitance	$V_{E B}=-2 \mathrm{~V}, \quad \mathrm{l}=0, \quad \mathrm{f}=1 \mathrm{MHz}$	30	30	pF	
$\mathrm{Re}\left(\mathrm{h}_{\text {ie }}\right)$	Small-Signal Common-Emitter Input Resistance	$V_{C E}=-10 \mathrm{~V}, \mathrm{I} \mathrm{C}=-20 \mathrm{~mA}, \quad \mathrm{f}=300 \mathrm{MHz}$	30	30	Ω	

NOTE 3: These paramaters must be measured using pulse techniques. $t_{w}=\mathbf{3 0 0} \mu \mathrm{s}$, duty cycle $\leqslant 2 \%$.
switching characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER		TEST CONDITIONS ${ }^{\text {t }}$	max	UNIT
$\mathrm{t}_{\text {On }}$	Turn-On Time	$\begin{array}{ll} \begin{array}{ll} V_{C C}=-30 V, & I_{C}=-10 \mathrm{~mA}, \\ \left.V_{B E} \text { loff }\right) & =0, \\ & \text { See Figure } 1 \end{array} \\ \hline \end{array}$	300	ns
$\mathrm{t}_{\text {off }}$	Turn-Off Time	$\begin{array}{ll} V_{C C}=-30 V, & I_{C}=-10 \mathrm{~mA}, \quad I_{B(1)}=-1 \mathrm{~mA}, \\ I_{B(2)}=1 \mathrm{~mA}, & \text { See Figure } 2 \end{array}$	1	μs

[^71] calculated using the minimum value of $V_{B E}$. Nominal base currents for turn-off times are calculated using the maximum value of $V_{B E}$ -

P-N-P SILICON TRANSISTORS

PARAMETER MEASUREMENT INFORMATION

FIGURE 1-TURN-ON TIME

FIGURE 2-TURN-OFF TIME

NOTES: a. The input waveforms are supplied by a generator with $Z_{\text {out }}=50 \Omega$.
b. Wavaforms are monitored on an oscilloscope with the following characteristics: $t_{r} \leqslant 10 \mathrm{~ns}, \mathrm{R}_{\text {in }} \geqslant 100 \mathrm{k} \Omega$.

THERMAL INFORMATION

FULLY CHARACTERIZED FOR HICH-SPEED, LOW-NOISE, MEDIUM-POWER SWITCHING AND GENERAL-PURPOSE AMPLIFIER APPLICATIONS
 - hre Guerenteed from $10 \mu \mathrm{~A}$ to 500 mA

*mechanical data
Device types 2N3502 and 2N3503 are in JEDEC TO-5 packages.
Device types 2N3504 and 2N3505 are in JEDEC TO-18 packages.

absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

	2N3502	2N3503	2N3504	2N3505	UNIT
${ }^{\text {collictor-Basa Voltoge }}$	-45	-60	-45	-60	V
${ }^{*}$ Collector-Emither Voltage (Sme Mote 1)	-45	-60	45	-60	V
*Emittor-Ease Voltrage	-5	-5	-5	-5	V
${ }^{*}$ Continuous Collictor Currment	-600	-600	-600	-600	mA
${ }^{*}$ Continuous Device Dissipation of (or below) $25^{\circ} \mathrm{C}$ Freo-Air Tomperaturs (Sen liotes 2 and 3)	0.7	0.7	0.4	0.4	W
${ }^{*}$ Continuous Devica Dissipation of (or below) $25^{\circ} \mathrm{C}$ Case Temperaturi (5en Notes 4 and 5)	3	3	1.2	1.2	W
*Storcye Temperature Renge	-65 to 200				${ }^{\circ} \mathrm{C}$
Lood Temperature 1/16 Inch from Cose for 10 Seconds	300	300	300	300	${ }^{\circ} \mathrm{C}$

4. Derats 203502 and 203503 lineerly to $280^{\circ} \mathrm{C}$ case tmaperatwe of the rate of $17.2 \mathrm{~mW} / \mathrm{deg}$.

* JEAEC majisterna diata.

TYPES 2N3502 THRU 2N3505
 P-N-P SILICON TRANSISTORS

*electrical characteristles at $25^{\circ} \mathrm{C}$ freo-air tamparature (unless otherwise noted)

PARAMITER		TIST CONDITIONS	$\begin{aligned} & \frac{70.5 \rightarrow}{10.18 \rightarrow} \end{aligned}$	2N3S04	2N3505	UNIT	
			MIN MAX	MIN MAX			
$V_{\text {(m) }}$ cio	Colfector-Base Braakdown Voltage		$l_{c}=-10 \mu A_{1} l_{1}=0$		-45	-60	V
Vim)cro	Collector-Emiltar Broakdown Voltage	$\mathrm{I}_{6}=-10 \mathrm{~mA}, 1_{1}=0$,	See Note 6	-45	-60	V	
$V_{\text {(0) }}$	Emitter-Base Breakdown Valtage	$I_{1}=-10 \mu A_{1} I_{c}=0$		-5	-5	V	
Icro Collector Cutoff Current		$V_{C B}=-30 \mathrm{~V}, \mathrm{I}_{E}=0$,	$T_{A}=150^{\circ} \mathrm{C}$	-10		$\mu \mathrm{A}$	
		$V_{C B}=-50 V_{\text {c }} L_{E}=0$,	$\mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$		-10	$\mu \mathrm{A}$	
Ices Collector Cutoff Current		$V_{C E}=-30 \mathrm{~V}, \mathrm{~V}_{\text {E }}=0$		-10		nA	
					-10	nA	
It Base Currant		$V_{C E}=-30 \mathrm{~V}, V_{\text {E }}=0$		10		nA	
		$\mathrm{V}_{\text {CE }}=-50 \mathrm{~V}, \mathrm{~V}_{\text {E }}=0$			10	nA	
hef	Static Forward Current Trunsiar Ratio	$\mathrm{V}_{\mathrm{CE}}=-10 \mathrm{~V}_{1} \mathrm{l}_{\mathrm{c}}=-10 \mu \mathrm{~A}$		80	80		
		$\mathrm{V}_{\text {CE }}=-10 \mathrm{~V}_{1} \mathrm{I}_{\mathrm{C}}=-100 \mu \mathrm{~A}$		120	120		
		$\mathrm{V}_{\text {CE }}=-10 \mathrm{~V}, \mathrm{l}_{\mathrm{c}}=-1 \mathrm{~mA}$		135	135		
		$V_{C E}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=-10 \mathrm{~mA}$	$\begin{gathered} \text { See } \\ \text { Mote } \\ 6 \end{gathered}$	140	140		
		$\mathrm{V}_{\text {CE }}=-10 \mathrm{~V}, \mathrm{I}_{\mathbf{C}}=-150 \mathrm{~mA}$		$100 \quad 300$	$100 \quad 300$		
		$\mathrm{V}_{\mathrm{CE}}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=-500 \mathrm{~mA}$		50	50		
		$V_{\text {CE }}=-1 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=-50 \mathrm{~mA}$		115300	$115 \quad 300$		
		$\begin{aligned} & V_{C E}=-1 V, I_{C}=-50 \mathrm{~mA} \\ & T_{A}=-55^{\circ} \mathrm{C} \end{aligned}$		50	50		
Vme	Baso-Emitior Voltage	$\mathrm{I}_{1}=-2.5 \mathrm{~mA}, \mathrm{I}_{\mathrm{c}}=-50 \mathrm{~mA}$	$\begin{aligned} & \text { Soe } \\ & \text { Note } \\ & 6 \end{aligned}$	-1	-1	V	
		$\mathrm{I}_{\mathrm{B}}=-15 \mathrm{~mA}, \mathrm{I}_{C}=-150 \mathrm{~mA}$		-1.3	-1.3	V	
		$\mathrm{L}_{\mathrm{B}}=-30 \mathrm{~mA}, \mathrm{I}_{\mathrm{c}}=-300 \mathrm{~mA}$		-2	-2	V	
		$\mathrm{I}_{\mathrm{B}}=-50 \mathrm{~mA}, \mathrm{I}_{\mathrm{c}}=-500 \mathrm{~mA}$		-2	-2	V	
$V_{\text {CEIat }}$	Collector-Emittor Saturation Voltage	$\mathrm{I}_{\mathrm{s}}=-2.5 \mathrm{~mA}, \mathrm{i}_{\mathrm{c}}=-50 \mathrm{~mA}$	$\begin{aligned} & \text { See } \\ & \text { Note } \\ & 6 \end{aligned}$	-0.25	-0.25	V	
		$\mathrm{I}_{\mathrm{B}}=-15 \mathrm{~mA}, \mathrm{I}_{C}=-150 \mathrm{~mA}$		-0.4	-0.4	V	
		$\mathrm{I}_{\mathrm{s}}=-30 \mathrm{~mA}, \mathrm{I}_{\mathrm{c}}=-300 \mathrm{~mA}$		-1	-1	V	
		$\mathrm{I}_{\mathrm{B}}=-50 \mathrm{~mA}, \mathrm{I}_{\mathrm{c}}=-500 \mathrm{~mA}$		-1.6	-1.6	V	
hie	Small-Signal Common-Emitter Input Impedance	$\mathrm{V}_{\mathrm{CE}}=-10 \mathrm{~V}$,	$f=1 \mathrm{kc} / \mathrm{s}$	23	23	$\mathrm{k} \Omega$	
h_{6}	Small-SIgnal Common-Emitter Forword Current Trunsfer Ratio			135420	135420		
hro	Small-Signal Common-Emitter Reverse Voltoge Tronsfer Ratio			15×10^{-4}	15×10^{-4}		
h_{∞}	Small-Signal Common-Emitter Output Admittance			800	800	$\mu \mathrm{mho}$	
\| $h_{\text {re }}$ \|	Small-Signal Common-Emilter Forward Current Transfer Ratio	$V_{C E}=-20 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=-50 \mathrm{~mA},$	$\begin{aligned} & \hline f=100 \mathrm{Mc} / \mathrm{s}, \\ & \text { See Note } 7 \\ & \hline \end{aligned}$	2	2		
Cobe	Common-Base Open-Crruift Output Capacitance	$V_{C B}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0$,	$f=140 \mathrm{kc} / \mathrm{s}$	8	8	pF	
$C^{\text {b }}$	Common-Base Open-Crruit Input Capacitance	$\mathrm{V}_{\mathrm{EB}}=-0.5 \mathrm{~V}, \mathrm{l}_{\mathrm{c}}=0$,	$\mathrm{f}=140 \mathrm{kc} / \mathrm{s}$	25	25	pF	

MOTES: 6. These paramaters must be meesursd using pulse techniquee. $t_{p}=300 \mu s$, duty cycle $\leq 1 \%$.
7. Secause of the high leval of dissipatien invelvod, the time of appilication of collector current must be limited so that the tass temperalure does not exceod $142^{\circ} \mathrm{C}$ for the 2 M 3502 and $2 \times 3503,54^{\circ} \mathrm{C}$ for the 2 M 3504 and 2 N 3505.

- JeDEC magistorad dala.

TYPES 2N3502 THRU 2N3505
 P-N-P SILICON TRANSISTORS

*operating charateristics at $25^{\circ} \mathrm{C}$ freenair femperature

PARAMLTER	TEST CONDITIONS	MaX	UNIT
Mf Average Nolse figure	$\begin{aligned} & V_{\mathrm{ct}}=-5 \mathrm{~V}, \mathrm{c}_{\mathrm{c}}=-30 \mu \mathrm{~h}_{1} \mathrm{R}_{\mathrm{e}}=10 \mathrm{k} \Omega, f=1 \mathrm{kc} / \mathrm{s}, \\ & \text { Nolse bandwidth }=200 \mathrm{c} / \mathrm{s} \end{aligned}$	4	$d 8$

*awitching charactoristics at $25^{\circ} \mathrm{C}$ free-air temparature

	PARAMEI	TIST CONDITIONS ${ }^{\text {a }}$	MAX	UNIT
$\mathrm{t}_{\text {d }}$	Delay Iime	$\begin{array}{r} \mathrm{r}_{\mathrm{c}}=-300 \mathrm{~mA}, \mathrm{I}_{\text {avi }}=-30 \mathrm{~mA}, \mathrm{~V}_{\text {motorn }}=4 \mathrm{~V}, \\ \text { Seo fgure } 1 \end{array}$	25	ns
t_{r}	Rise Time		35	ns
$t_{\text {an }}$	Tum-On Time		40	ns
t_{1}	Storage Time	$I_{c}=-300 \mathrm{~mA}, I_{\text {m }}(1)=-30 \mathrm{~mA}$, See Figure 1	70	ns
${ }_{\text {f }}$	Fall Time		50	ns
$t_{\text {eff }}$	Turn-Off Timm		100	ns

*PARAMETER MEASUREMENT INFORMATION

FIGURE 1 - TURN-ON AND TURN-OFF TIMES

- JEDEC ragistorod dota.

BULLETIN NO. DL-S 7311968 , MARCH 1973

SILECT ${ }^{\dagger}$ TRANSISTORS \ddagger

FOR HIGH-SPEED SWITCHING OR LOW-NOISE GENERAL PURPOSE AMPLIFIER APPLICATIONS

- hFE Guaranteed from $\mathbf{1 0} \mu \mathrm{A}$ to $\mathbf{5 0 0} \mathrm{mA}$
- Noise Figure . . . 4 dB Max
- Switching Characteristics Guaranteed at $\mathbf{3 0 0} \mathbf{~ m A}$

mechanical data

These transistors are encapsulated in a plastic compound specifically designed for this purpose, using a highly mechanized process developed by Texas Instruments. The case will withstand soldering temperatures without deformation. These devices exhibit stable characteristics under high-humidity conditions and are capable of meeting MIL-STD-202C, Method 106B. The transistors are insensitive to light.

absolute maximum ratings at $\mathbf{2 5}{ }^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

NOTES: 1. These values apply between 0 and 600 mA collector current when the base-amitter diode is open-circuited.
2. Derate linearly to $150^{\circ} \mathrm{C}$ free-air temperature at the rate of $5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
3. Darate linearly to $150^{\circ} \mathrm{C}$ lead tempersture at the rate of $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$. Lead temperature is measured on the collector lead $1 / 16$ inch from the case.
\dagger Trademark of Texas Instruments
\ddagger U.S. Patent No. 3,439,238

TYPES A5T3504, A5T3505 P-N-P SILICON TRANSISTORS

electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

PARAMETER		TEST CONDITIONS	A573504	A513505	UNIT	
		MIN MAX	MIN MAX			
$V_{\text {ferlceo }}$	Collector-Base Breakdown Voltage		$t_{C}=-10 \mu \hat{l}_{1} I_{E}=0$	-45	-60	V
	Collector-Emitter Breokdown Voltage	$I_{C}=-10 \mathrm{~mA}, \mathrm{I}_{E}=0, \quad$ See Note 4	-45	-60	V	
$V_{\text {(ek)EsO }}$	Emitter-Bose Breakdown Voltuge	$\mathrm{I}_{\mathrm{E}}=-10 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{C}}=0$	-5	-5	V	
$\mathrm{I}_{\text {cso }}$	Collector Cutoff Current	$V_{C E}=-30 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0, \quad \mathrm{~T}_{\mathrm{A}}=100^{\circ} \mathrm{C}$	-1		$\mu \mathrm{h}$	
		$V_{\text {Ce }}=-50 V_{,} \mathrm{I}_{\mathrm{E}}=0, \quad \mathrm{~T}_{\mathrm{A}}=100^{\circ} \mathrm{C}$		-1		
$I_{\text {ces }}$	Collector Cutoff Current	$V_{C E}=-30 \mathrm{~V}, V_{B E}=0$	-10		ni	
		$V_{C E}=-50 \mathrm{~V}, V_{\text {EE }}=0$		-10		
I_{B}	Bose Current	$V_{\text {CE }}=-30 \mathrm{~V}, V_{\text {be }}=0$	10		nA	
		$V_{C E}=-50 \mathrm{~V}, V_{\text {BE }}=0$		10		
$h_{\text {fe }}$	Slatic Forward Current Transfer Ratio	$V_{C E}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=-10 \mu \mathrm{M}$	80	80		
		$V_{C E}=-10 V_{,} I_{C}=-100 \mu \mathrm{~A}$	120	120		
		$\mathrm{V}_{\mathbf{C E}}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=-1 \mathrm{~mA}$	135	135		
		$V_{C E}=-10 \mathrm{~V}, \mathrm{I}_{\mathbf{C}}=-10 \mathrm{~mA}$	140	140		
		$\mathrm{V}_{\text {CE }}=-10 \mathrm{~V}, \mathrm{I}_{\mathbf{C}}=-150 \mathrm{~mA}$	100300	$100-300$		
		$V_{C E}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=-500 \mathrm{~mA} \quad$ Note	50	50		
		$Y_{C E}=-1 \mathrm{~V}, \mathrm{l}_{\mathrm{C}}=-50 \mathrm{~mA}$	115 300	115 300		
$V_{\text {be }}$	Base-Emitter Voltage	$\mathrm{I}_{\mathrm{g}}=-2.5 \mathrm{~mA}, \mathrm{I}_{\mathrm{C}}=-50 \mathrm{~mA}$	-1	-1	V	
		$\mathrm{I}_{\mathrm{E}}=-15 \mathrm{~mA}, \mathrm{I}_{\mathrm{C}}=-150 \mathrm{~mA}$	-1.3	-1.3		
		$\mathrm{I}_{\mathrm{E}}=-30 \mathrm{~mA}, I_{C}=-300 \mathrm{~mA} \quad 4$	-2	-2		
		$\mathrm{I}_{\mathrm{s}}=-50 \mathrm{~mA}, \mathrm{I}_{\mathrm{C}}=-500 \mathrm{~mA}$	-2	-2		
$V_{\text {CE\{ } s+1]}$	Collector-Emitter Seturation Voltage	$\mathrm{I}_{\mathrm{B}}=-2.5 \mathrm{~mA}, \mathrm{I}_{\mathrm{C}}=-50 \mathrm{~mA}$	-0.25	-0.25	V	
		$I_{B}=-15 \mathrm{~mA}, I_{C}=-150 \mathrm{~mA}$	-0.4	-0.4		
		$\mathrm{I}_{\mathrm{C}}=-30 \mathrm{~mA}, \mathrm{I}_{\mathrm{C}}=-300 \mathrm{~mA}$ Hele	-1	-1		
		$\mathrm{I}_{8}=-50 \mathrm{~mA}, \mathrm{l}_{\mathrm{C}}=-500 \mathrm{~mA}$	-1.6	-1.6		
$h_{\text {ie }}$	Small-Signal Common-Emitter Input Impedance	$V_{C E}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=-10 \mathrm{~mA}, \mathrm{f}=1 \mathrm{kHz}$	23	23	$\mathbf{k} \boldsymbol{\Omega}$	
$\mathrm{h}_{\text {f }}$.	Small-Signal Common-Emitier Forward Current Transfer Ratio		135420	135420		
$h_{\text {re }}$	Small-Signal Common-Emitter Reverse Voltoge Trunsfor Rotio		15×10^{-4}	15×10^{-4}		
$\mathbf{h o e}_{\text {e }}$	Small-Signal Common-Emilter Output Admittance		800	800	$\mu \mathrm{mho}$	
$\left\|h_{\text {fal }}\right\|$	Small-Signal Common-Emitter Forward Current Tronster Ratio	$V_{C E}=-20 \mathrm{~V}, \mathrm{I}_{\mathrm{c}}=-50 \mathrm{~mA}, \mathrm{f}=100 \mathrm{mHz}$	2	2		
Cobo	Common-Base Open-Gircuit Output Capacitance	$V_{C:}=-10 \mathrm{~V}, \mathrm{l}_{\mathrm{E}}=0, \quad f=1 \mathrm{MHz}$	8	8	pF	
$C_{i b o}$	Common-Base Open-Circuit Input Capacitance	$V_{E E}=-0.5 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=0, \quad f=1 \mathrm{MHz}$	25	25	pf	

[^72]
TYPES A5T3504, A5T3505
 P-N-P SILICON TRANSISTORS

operating charactoristics of $25^{\circ} \mathrm{C}$ froe-air tomperature

PARAMETER	TEST CONDITIONS	MaX	UNIT
Spot Moise Figure	$\begin{aligned} & V_{\mathrm{ct}}=-5 \mathrm{~V}, \mathrm{~L}_{\mathrm{c}}=-30 \mu \mathrm{\mu}, \mathrm{R}_{\mathrm{G}}=10 \mathrm{k} \Omega, \mathrm{f}=1 \mathrm{kHz}, \\ & \text { Moist bromividh }=200 \mathrm{~Hz} \end{aligned}$	4	${ }_{0}$

swifching charactoristics af $25^{\circ} \mathrm{C}$ free-air tomperature

	PAItame	TEST CONDITIONSt	MAX	UNIT
t_{d}	Delay Time	$\begin{array}{r} I_{C}=-300 \mathrm{~mA}, I_{\text {min }}=-30 \mathrm{~mA}, V_{\text {Vecooff }}=4 V, \\ \text { See Rgure } 1 \end{array}$	25	ns
t_{r}	Rise Time		35	ns
$t_{\text {on }}$	Tum-On Time		40	ns
t_{1}	Storaye Time	$\mathrm{I}_{\mathbf{C}}=\mathbf{- 3 0 0} \mathrm{mA}, \mathrm{I}_{\mathbf{m} \mid \text { I }}=\mathbf{- 3 0} \mathrm{mA}$, See Figure 1	70	ns
f_{1}	Faill Time		50	ms
$t_{\text {oft }}$	Turn-Off Time		100	ms

PARAMETER MEASUREMENT INFORMATION

FIOURE I -TURN-ON AND TURN-OFF TIMES

DESICNED FOR HIGH-SPEED, HIGH-CURRENT SWITCHING APPLICATIONS

mechanical detra

absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

*electrical characteristics af $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN MAX	UNIT
$V_{\text {(ax) }} \times$	Collector-Lasa Preakdown Yoltage	$\mathrm{l}_{\mathrm{c}}=10 \mu \mathrm{a}, l_{\mathrm{E}}=0$	60	v
$V_{\text {(ex) }}$ ceo	Colloctor-Emilter Brookdown Vohnge	$\mathrm{Ic}_{\mathrm{c}}=30 \mathrm{ma}, \mathrm{In}=0, \quad$ See Note 4	30	v
V(ax)EO	Emitter-Base Ereokdomi Voltoge	$l_{E}=10 \mu a^{\prime} \quad l_{C}=0$	5	v
Ices	Coliector Cutoff Current	$\mathrm{V}_{\text {CE }}=40 \mathrm{~V}, \mathrm{~V}_{\text {IE }}=0$	0.5	$\mu \mathrm{O}$
		$V_{C E}=40 v_{1} \quad V_{E E}=0, \quad T_{A}=100^{\circ} \mathrm{C}$	700	μ
1.	Dase Current	$V_{\text {CE }}=40 v_{1}, V_{\text {EE }}=0$	-0.5	$\mu 0$
hre	Static Forwerd Current Iransfer Ratio	$V_{C E}=1 v_{\text {c }} \quad l_{c}=10 \mathrm{ma}$, See Mote 4	20	
		$V_{C E}=1 \mathrm{v}, \mathrm{I}_{\mathrm{c}}=100 \mathrm{mo}$, Sae Note 4	25	
		$V_{C E}=1 v_{1} \quad I_{C}=750$ ma, See Note 4	$25 \quad 100$	
		$V_{\text {cE }}=2 v_{1} \quad l_{c}=1 \mathrm{a}_{1}, \quad$ Seet Note 4	20	
$V_{\text {re }}$	Base-Emittor Voltage	$\mathrm{I}_{\mathrm{g}}=75 \mathrm{mo}, \mathrm{l}_{\mathrm{c}}=750 \mathrm{ma}$, See Note 4	$0.9 \quad 1.4$	v
		$\mathrm{l}_{\mathrm{s}}=100 \mathrm{mo}, \mathrm{l}_{\mathrm{c}}=1 \mathrm{a}$, See Note 4	$1.0 \quad 1.6$	v
$V_{\text {ctwot }}$	Coltector-Emitier Saturotion Voltage	$\mathrm{I}_{8}=75 \mathrm{mo}, \mathrm{I}_{\mathrm{c}}=750 \mathrm{ma}$, See Note 4	0.7	v
		$\mathrm{I}_{1}=100 \mathrm{mo}, l_{c}=1 \mathrm{c}_{\text {c }} \quad$ See Mote 4	1.0	v
\|htol	Small-Signal Common-Emittor Forword Curment Transtar Ratio	$V_{C E}=10 \mathrm{v}, \mathrm{I}_{\mathrm{C}}=50 \mathrm{ma}, f=100 \mathrm{mc}$	1.5	
Cobo	Common-Lase Open-Eircult Output Capacitonce	$\mathrm{V}_{\mathbf{C B}}=10 \mathrm{v}, \quad \mathrm{I}_{\mathrm{E}}=0, \quad 1=1 \mathrm{mc}$	25	pf

NOTES: 1. This value applies between 1 ma and 300 ma collector current when the base emitter diode is open-circuited. Above 300 ma
 current must not exceed 5 w for longer than $300 \mu \mathrm{sec}$.
2. Derate linearly to $200^{\circ} \mathrm{C}$ free-air temperature at the rate of $4.57 \mathrm{mw} / \mathrm{C}$.
3. Derate the 10 -watt rating linearly to $200^{\circ} \mathrm{C}$ case temperature at the rate of $57.1 \mathrm{mw} /{ }^{\circ} \mathrm{C}$. Derate the 5 -watt (JEDEC registered) rating linesty to $200^{\circ} \mathrm{C}$ case temperature at the rate of $28.6 \mathrm{mw} /{ }^{\circ} \mathrm{C}$.
4. These parameters must be measured using pulse techniques. PW $=\mathbf{3 0 0} \mu \mathrm{sec}$, Duty Cycle $<\mathbf{2 \%}$.
-The JE DEC registered outline for these devices is TO-5. TO-39 falls within TO-5 with the exception of lead length.
-JEDEC registered data. This data sheet contains all applicable registered dete in effect at the time of publication.
${ }^{T}$ This value is guaranteed by Texas Instrumants in addition to the JEDEC registered value which is also shown.
USES CHIP N13
*switching characteristics $\boldsymbol{a t} \mathbf{2 5}^{\circ} \mathrm{C}$ free-air temperature

	PARAMETER	TEST CONDITIONS \dagger	MAX	UNIT
t_{d}	Delay Time		15	nsec
P_{r}	Rise Time		35	nsec
t_{5}	Storage Time		65	nsac
${ }_{\text {f }}$	fall fime		40	nsec

tVoltape and curreant values shown are nominol; oxect values vary sightly with transistor parametars.

*PARAMETER MEASUREMENT INFORMATION

test circuit

VOLTAGE WAVEFORMS
figure
wotes: a. The input weveforms have the following cherecteristics:
For messuring doler and riso times $\mathrm{t}_{\mathrm{r}} \leq 2$ nsec, $\mathrm{PW}=450$ nser, Duty $\mathrm{C}_{\mathrm{y}} \mathrm{Cl}$ I $\leq \mathbf{2 \%}$.
Fer mosering storape and fall times $i_{i} \leq 5 \mathrm{msec}, \mathrm{PW}=1 \mu$ sec, Duty Cyele $\leq 2 \%$.

- JEDEC registerod data

SILECT ${ }^{\dagger}$ TRANSISTOR \ddagger
 FOR HI-FI AUDIO AND GENERAL PURPOSE LOW-FREQUENCY AMPLIFIER APPLICATIONS

- High hfe ... 150 to $\mathbf{6 0 0}$
- Plug-In Replacement for 2N3565 (TO-106)
- High Continuous Device Dissipation Rating . . . 625 mW

mechanical data

These transistors are encapsulated in a plastic compound specifically designed for this purpose, using a highly mechanized process developed by Texas instruments. The case will withstand soldering temperatures without deformation. These devices exhibit stable characteristics under high-humidity conditions and are capable of meeting MIL-STD-202C, Method 106B. The transistors are insensitive to light.

absolute maximum ratings at $\mathbf{2 5}{ }^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)
Collector-Base Voltage 30 V
Collector-Emitter Voltage (See Note 1) 25 V
Emitter-Base Voltage 6 V
Continuous Collector Current 50 mA
Continuous Device Dissipation at (or below) $25^{\circ} \mathrm{C}$ Free-Air Temperature (See Note 2) 625 mW
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead Temperature 1/16 Inch from Case for 10 Seconds $260^{\circ} \mathrm{C}$

NOTES: 1. This value applies whon the base-mitter diode is open-circuited.
2. Derate linearly to $150^{\circ} \mathrm{C}$ free-air temperature at the rate of $5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
${ }^{\dagger}$ Trademark of Texas inatruments
FU.S. Patent No. 3,439,238

TYPE A5T3565

N-P-N SILICON TRANSISTOR

electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER	TEST CONDITIONS		MIN	MAX	$\frac{\text { UNIT }}{V}$
V(BR)CBO Collector-Base Breakdown Voltage	$I_{C}=100 \mu A, \quad I_{E}=0$		30		
$V_{\text {(BR) }}$ CEO Collector-Emitter Breakdown Voltage	$I_{C}=2 m A, \quad I_{B}=0$,	See Note 3	26		V
IC8O Collector Cutoff Current	$V_{C B}=25 V_{1} I_{E}=0$			60	nA
IE8O Emitter Cutoff Current	$V_{E R}=6 \mathrm{~V}, \quad 1 \mathrm{l}=0$			10	$\mu \mathrm{A}$
Static Forward Current Transfer Ratio	$V_{C E}=10 \mathrm{~V}, \mathrm{I}^{\prime}=100 \mu \mathrm{~A}$		70		
	$V_{C E}=10 \mathrm{~V}, I_{C}=1 \mathrm{~mA}$		150	600	
$\mathrm{V}_{\text {CE }}$ (sat) Collector-Emitter Saturation Voltege	$\mathrm{I}_{B}=0.1 \mathrm{~mA}, \mathrm{I}^{\prime}=1 \mathrm{~mA}$			0.35	V
$h_{\text {ie }}$ Smali-Signal Common-Emitter Input impedance	$V_{C E}=5 \mathrm{~V}, \quad I_{C}=1 \mathrm{~mA}$,	$f=1 \mathrm{kHz}$	2	20	k Ω
$h_{f e}$ Small-Signal Common-Emitter Forward Current Transfer Ratio			120	750	
 hoe Small-Signal Common-Emitter Output Admittance			0.5	100	$\mu \mathrm{mho}$
$\left\|h_{f e}\right\|$ Small-Signal Common-Emitter Forward Current Transfer Ratio	$V_{C E}=5 \mathrm{~V}, \quad \mathrm{IC}=1 \mathrm{~mA}$,	$f=20 \mathrm{MHz}$	2	12	
Cobo Common-Base Open-Circuit Output Capacitance	$V_{C B}=5 V, \quad I_{E}=0$,	$f=1 \mathrm{MHz}$		4	pF

NOTE 3: This parameter must be measured using pulse techniquas. $t_{w}=\mathbf{3 0 0} \mu \mathrm{s}$, duty cycle $\leqslant \mathbf{2 \%}$.

THERMAL INFORMATION

FOR LOW-NOISE VHF/UHF AMPLIFIER, OSCILLATOR, AND MIXER APPLICATIONS 2N3570 Features:

- Low Noise Figure . . . 7 dB Max at $1 \mathbf{~ G H z}$
- High fT . . . 1.6 GHz Min
- Low $\mathrm{rb}^{\mathbf{\prime}} \mathrm{C}_{\boldsymbol{c}}$. . . 8 ps Max

description

These transistors are ideally suited for such applications as amplifiers, oscillators, and mixers. The guaranteed minimum gain-bandwidth products range from 1 to 1.5 GHz . Guaranteed minimum calculated $\mathrm{f}_{\text {max }}$ ranges from 1.7 to $2.7 \mathrm{GHz}^{\dagger}$. These features coupled with low noise figure ensure VHF through L-band amplifier and oscillator capability.

*mechanical data

*absolute maximum ratings at $\mathbf{2 5}{ }^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

NOTES: 1. Those values apply between 0 and 16 mA collector current when the bese-emitter diode is apen-circulted.
2. Derate linearly to $200^{\circ} \mathrm{C}$ fres-alr temperature at the rate of $1.14 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
3. Derate linearly to $200^{\circ} \mathrm{C}$ case temperature at the rate of 2 mW$)^{\circ} \mathrm{C}$.
$\dagger_{\text {Maximum }}$ Frequency of Osciltetion mav be calculated from the equation: $f_{\text {max }}(\mathrm{MHz})=200 \sqrt{\frac{\mathrm{~h}_{\mathrm{fe}} \mid \times f_{\text {maas }}(\mathrm{MHz})}{r_{b} \mathrm{C}_{\mathrm{c}}(\mathrm{Ds})}}$

TYPES 2N3570, 2N3571, 2N3572
 N-P-N SILICON TRANSISTORS

*electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

PARAMETER		TEST CONDITIONS ${ }^{\dagger}$	2N3570		2N3571		2N3572		UNIT	
		MIN	MAX	MIN	MAX	MIN	MAX			
$V_{\text {(BR) }}$ CBO	Collector-Base Breakdown Voltage		$I_{C}=1 \mu A, \quad I_{E}=0$	30		25		25		V
$V_{\text {(BR) }}$ CEO	Collector-Emitter Breakdown Voltage	$\begin{array}{ll} I_{C}=2 \mathrm{~mA}, & \mathrm{IB}_{\mathrm{B}}=0, \\ \text { See Note } 4 & \\ \hline \end{array}$	15		15		13		V	
$V_{\text {(BR)EBO }}$	Emitter-Base Breakdown Voltage	${ }^{\prime} E=10 \mu A, ~ I C=0$	3		3		3		\checkmark	
		$V_{C B}=6 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0$		10		10		10	nA	
${ }^{1} \mathrm{CBO}$	Collector Cutoff Current	$\begin{array}{ll} V_{C B}=6 \mathrm{~V}, & I_{E}=0, \\ T_{A}=150^{\circ} \mathrm{C} \end{array}$		1		1		1	$\mu \mathrm{A}$	
hFE	Static Forward Current Transfer Ratio	$V_{C E}=6 \mathrm{~V}, \mathrm{I}^{\prime}=5 \mathrm{~mA}$	20	150	20	200	20	300		
$h_{\text {fe }}$	Smafl-Signal Common-Emitter Forward Current Transfer Ratio	$\begin{aligned} & V_{C E}=6 \mathrm{~V}, \quad \mathrm{I}^{2}=5 \mathrm{~mA}, \\ & f=1 \mathrm{kHz} \end{aligned}$	20	200	20	250	20	350		
$h_{\text {fe }}$ \|	Small-Signal Common-Emitter Forward Current Transfer Ratio	$\begin{aligned} & V_{C E}=6 \mathrm{~V}, \quad I_{C}=5 \mathrm{~mA}, \\ & f=400 \mathrm{MHz} \end{aligned}$	3.75	6	3	6	2.5	6		
$\mathrm{C}_{\mathbf{c b}}$	Collector-Base Capacitance	$\begin{array}{ll} V_{C B}=6 \mathrm{~V}, & \mathrm{IE}_{\mathrm{E}}=0, \\ \mathrm{f}=1 \mathrm{MHz}, & \text { See Note } 5 \end{array}$		0.75		0.85		0.85	pF	
$r_{b}{ }^{\prime} C_{c}$	Collector-Base Time Constant	$\begin{aligned} & V_{C B}=6 \mathrm{~V}, \quad I_{E}=-5 \mathrm{~mA}, \\ & f=79.8 \mathrm{MHz} \end{aligned}$	1	8	1	10	1	13	ps	

*operating characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER	TEST CONDITIONS ${ }^{\dagger}$	2N3570		2N3571		2N3572		UNIT
		MIN	MAX	MIN	MAX	MIN	MAX	
Spot Noise Figure	$V_{C B}=6 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=-2 \mathrm{~mA}, \mathrm{R}_{\mathrm{G}}=50 \Omega, \quad f * 1 \mathrm{GHz}$		7					dB
	$V_{C B}=6 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=-2 \mathrm{~mA}, \mathrm{R}_{\mathrm{G}}=100 \Omega, f=450 \mathrm{MHz}$				4		6	dB

operating characteristics at $25^{\circ} \mathrm{C}$ case temperature

PARAMETER	TEST CONDITIONS		2N3670			UNIT
			MIN	TYP	MAX	
Po Oscillator Power Output	$V_{C C}=20 \mathrm{~V}, \mathrm{l} C=15 \mathrm{~mA}, \mathrm{f}=1 \mathrm{GHz}$,	See Figure 1		60		mW

NOTES: 4. This parameter must be measured using pulse techniques. $\mathrm{t}_{\mathrm{w}}=\mathbf{3 0 0} \mu \mathrm{s}$, duty cycle $<\mathbf{2 \%}$.
5. $C_{c b}$ measurement employs a three-terminal capacitance bridge incorporating a guard circuit. The emitter and case are connected to the guard terminal of the bridge.
${ }^{\dagger}$ The fourth lead (case) is grounded for all measurements except C_{cb} and Oscillator Power Output.
PARAMETER MEASUREMENT INFORMATION

- JEDEC registered data

FIOURE 1-1-GHz OSCILLATOR POWER OUTPUT TEST CIRCUIT

SILECT ${ }^{\dagger}$ TRANSISTORS \ddagger
 FOR LOW-NOISE VHF/UHF AMPLIFIER, OSCILLATOR, AND MIXER APPLICATIONS

\author{

- Minimum Calculated $\mathrm{f}_{\text {max }} \mathrm{E}^{\mathrm{I}}$. . 2.2 GHz (A5T3571)
 - Low Noise Figure . . . 4 dB Maximum (A5T3571)
}

mechanical data

These transistors are encapsulated in a plastic compound specifically designed for this purpose, using a highly mechanized process developed by Texas instruments. The case will withstand soldering temperatures without deformation. These devices exhibit stable characteristics under high-humidity conditions and are capable of meeting MIL-STD-202C, Method 106B. The transistors are insensitive to light.

absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

NOTES: 1. These values apply between 0 and 15 mA collector current when the bese-emitter diode is open-circuited.
2. Derate linearly to $150^{\circ} \mathrm{C}$ free-air temperature at the rate of $4 \mathrm{~mW} / \mathcal{C}$.
tTrademark of Texas instruments
\ddagger U.S. Patent No. 3,439,238

TYPES A5T3571, A5T3572

N-P-N SILICON TRANSISTORS
electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

PARAMETER	TEST CONDITIONS			A6T3571		A5T3572		UNIT
				MIN	MAX	MIN	MAX	
$\mathrm{V}_{(3 R)}$ CBO Collector-Base Breakdown Voltage	$l_{C}=1 \mu A$,	$\mathrm{IE}_{\mathrm{E}}=0$		25		25		V
$\mathrm{V}_{(B R) C E O}$ Collector-Emitter Breakdown Voltage	$\mathrm{I}_{\mathrm{C}}=2 \mathrm{~mA}$,	$\mathrm{I}_{\mathrm{B}}=0$,	See Note 3	15		13		V
$\mathrm{V}_{\text {(BR)EBO }}$ Emitter-Base Breakdown Voltage	$I_{E}=10 \mu \mathrm{~A}$,	$\mathrm{I}_{\mathrm{C}}=0$		3		3		V
ICBO Collector Cutoff Current	$\mathrm{V}_{\mathrm{CB}}=6 \mathrm{~V}$,	$\mathrm{I}_{\mathrm{E}}=0$			10		10	nA
	$V_{C B}=6 \mathrm{~V}$,	$\mathrm{I}^{\prime} \mathrm{E}=0$,	$T_{A}=100^{\circ} \mathrm{C}$		200		200	
hFE Static Forward Current Transfer Ratio	$V_{C E}=6 \mathrm{~V}$,	$\mathrm{IC}^{\prime}=5 \mathrm{~mA}$		20	200	20	300	
h $_{\text {fe }}$ Small-Signal Common-Emitter Forward Current Transfer Ratio	$V_{C E}=6 \mathrm{~V}$,	${ }^{\prime} \mathrm{C}=5 \mathrm{~mA}$,	$\mathrm{f}=1 \mathrm{kHz}$	20	250	20	350	
$\mathrm{H}_{\mathrm{fe}} \left\lvert\, \quad$Small-Signal Common-Emitter\right.	$V_{C E}=6 \mathrm{~V}$,	$I_{C}=5 \mathrm{~mA}$,	$\mathrm{f}=\mathbf{4 0 0 ~ M H z}$	3	6	2.5	6	
$\mathrm{C}_{\boldsymbol{c b}} \quad$ Collector-Base Capacitance	$V_{C B}=6 \bar{V},$ See Note 4	$I_{E}=0$	$\mathrm{f}=1 \mathrm{MHz},$		0.85		0.85	pF
$\mathrm{rb}^{\prime} \mathrm{C}_{\mathrm{c}} \quad$ Collector-Base Time Constant	$\mathrm{V}_{\mathrm{CB}}=6 \mathrm{~V}$,	$\mathrm{I}_{\mathrm{E}}=-5 \mathrm{~mA}$.	$f=79.8 \mathrm{MHz}$	1	10	1	13	ps

operating characteristics at $\mathbf{2 5} \mathbf{}{ }^{\circ} \mathbf{C}$ free-air temperature

PARAMETER		TEST CONDITIONS	A5T3571		A5T3572		UNIT	
		MIN	MAX	MIN	MAX			
F	Spot Noise Figure		$\begin{aligned} & V_{C B}=6 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{E}}=-2 \mathrm{~mA}, \quad \mathrm{R}_{\mathrm{G}}=100 \Omega, \\ & \mathrm{f}=450 \mathrm{MHz} \end{aligned}$		4		6	dB

NOTES: 3. This parameter must be measured using pulse techniques. $t_{w}=300 \mu \mathrm{~s}$, duty eycle $<\mathbf{2 \%}$.
4. C_{cb} measurement employs a three-terminal capacitance bridge incorporating aguard circuit. The emitter is connected to the guard terminal of the bridge.

THERMAL INFORMATION

FIGURE 1

DESIGNED FOR HIGH-SPEED SWITCHING APPLICATIONS

- Low Guaranteed $\mathrm{V}_{\text {CE(sat) }}$ - 0.5 v max at 100 ma
- High fit - $\mathbf{4 0 0} \mathrm{Mc}$ min at $10 \mathrm{v}, \mathbf{1 0} \mathrm{ma}$
- Low Tatal Switching Time - 80 msec max at 10 ma
*mechanical data

	TME COLLECTOR IS IM ELECTRICAL COMTACT WITH THE CASE ALL JEDEC TO-I8 DIMENSIOMS aND WOTES ARE APPLICABLE	

*absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperafure (unless otherwise specified)
Collector-Base Voltage -20 v
Collector-Emitter Voltage (See Note 1) . -15
Emitter-Base Voltage . -5v
Callector Current . - 200 ma
Continuous Device Dissipation at (or below) $25^{\circ} \mathrm{C}$ Free-Air Temperature
(See Note 2)
360 mw
Continuous Device Dissipation at (or below) $25^{\circ} \mathrm{C}$ Case Temperature
(See Note 3)
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
Lead Temperature K_{6} Inch from Case for 10 Second: $300^{\circ} \mathrm{C}$
*electrical characteristics at $25^{\circ} \mathrm{C}$ freo-air temperature (unless otherwise specified)

PARAMETER	TEST CONDITIONS	MIN MAX	UNIT
	$\mathrm{I}_{\mathrm{c}}=-10 \mu \mathrm{a}, \mathrm{I}_{\mathrm{E}}=0$	-20	\checkmark
	$\mathrm{I}_{\mathrm{c}}=-10 \mathrm{mo}, \mathrm{I}_{B}=0, \quad$ See Note 4	-15	v
	$\mathrm{I}_{\mathrm{E}}=-10 \mu \mathrm{a}, \mathrm{l}_{\mathrm{c}}=0$	-5	V
Collector Cutoff Current	$V_{C E}=-15 \mathrm{v}, V_{\text {E }}=0$	-10	ma
	$V_{C E}=-15 \mathrm{v}, \mathrm{V}_{\text {EE }}=0, \quad \mathrm{~T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$	-10	$\mu \mathrm{C}$
In Base Current	$V_{C E}=-15 \mathrm{v}, \mathrm{V}_{\text {GE }}=0$	10	na
Static Forward Current Trensfer Rotio	$V_{C E}=-0.5 v_{1} I_{c}=-10 \mathrm{ma}$	$40 \quad 120$	
	$V_{C E}=-0.5 \mathrm{v}_{1} \mathrm{I}_{\mathrm{C}}=-10 \mathrm{ma}, \mathrm{I}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$	20	
	$V_{C E}=-1 v_{1} \quad I_{c}=-100 \mathrm{ma}_{n}$ Seo Mote 4	10	
Baso-Emitter Yoltage	$\mathrm{I}_{1}=-1 \mathrm{ma}, \quad I_{c}=-10 \mathrm{ma}$, Seo Mote 4	-0.75 $-\mathbf{- 0 . 9 5}$	v
	$I_{s}=-10 \mathrm{ma}, I_{c}=-100 \mathrm{ma}$, See Mote 4	-1.1	v
Collector-Emither Soturation Voltray	$\mathrm{I}_{\mathrm{E}}=-1 \mathrm{ma}, \quad \mathrm{I}_{\mathrm{c}}=-10 \mathrm{ma}$, Sen Note 4	-0.15	v
	$I_{s}=-10 \mathrm{ma}, I_{c}=-100 \mathrm{ma}$, Seot Mote 4	-0.5	v
\|hrol Small-Simpal Comman-Emititer	$V_{C E}=-10 \mathrm{vg} \quad \mathrm{I}_{\mathbf{C}}=-10 \mathrm{ma}, \quad f=100 \mathrm{mc}$	4	
$\begin{array}{ll} \hline \text { Como } & \begin{array}{l} \text { Common-Basse Open-Crait } \\ \text { Dutput Copacitence } \end{array} \\ \hline \end{array}$	$V_{C B}=-5 \mathrm{v}, \quad \mathrm{I}_{\mathrm{E}}=0, \quad f=140 \mathrm{kc}$	4.5	pf
$\begin{aligned} & \text { Common-Base Open-Crai't } \\ & \text { Input Capocitance } \end{aligned}$	$V_{B s}=-0.5 \mathrm{v}, \mathrm{l}_{\mathrm{c}}=0, \quad f=140 \mathrm{kc}$	5	pf

 rots of $83.3 \mathrm{mv} / \mathrm{me}$.
2. Derate lineorly to $175^{\circ} \mathrm{C}$ fros-air immporatere at the rate of $2.4 \mathrm{~mm} / \mathrm{C}^{\circ}$.
3. Derale lineerly to $175^{\circ} \mathrm{C}$ cose tempereture at the nate of $8.0 \mathrm{~mm} / \mathrm{C}^{\circ}$.

-Indicater JEDEC mejistered delo
USES CHIP P11

TYPE 2N3576

P-N-P SILICON TRANSISTOR

*switching charactoristics af $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER	TEST CONDITIONS \dagger	MAX	UNIT
Id Delor 7ime		12	msec
$\mathrm{tr}_{\text {r }}$ Rise Time		18	nsec
t_{5} Storage Tlime		30	nsoc.
If Full Time		20	nser

*PARAMETER MEASUREMENT INFORMATION

TEST CTRCUIT

VOLTAGE WAVEFORMS

FIGURE 2

b. Output woveforms are manitored on escillecerpe with the following charectoristiks: $\mathrm{I}_{\mathrm{r}} \leq 1$ nsec, $\mathrm{R}_{\text {in }} \geq 100 \mathrm{k} \boldsymbol{\Omega}, \mathrm{C}_{\text {in }} \leq 10 \mathrm{pf}$.
-Iadicatos JEDEC registered data

HIGH-VOLTAGE TRANSISTORS FOR GENERAL PURPOSE AMPLIFIER AND SWITCHING APPLICATIONS

- High V(BR)CEO . . . 140 V (2N3634, 2N3635) or 175 V (2N3636, 2N3637)
- High Dissipation Capability . . . 10 W at $25^{\circ} \mathrm{C}$ Case Temperature
mechanical data
THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE CASE
absolute maximum ratings at $\mathbf{2 5}{ }^{\circ} \mathbf{C}$ free-air temperature (unless otherwise noted)

NOTES: 1. These values apply batween 0 and 10 mA collector current when the emitter-base diode is open-circuited.
2. Derate lincarly to $200^{\circ} \mathrm{C}$ free-air temperature at the rate $065.71 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
3. Derate the 10 -watt rating linearly to $200^{\circ} \mathrm{C}$ case temperature at the rate of $57.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$. Derate the 5 -watt (JEDEC registered) rating linearly to $200^{\circ} \mathrm{C}$ cese temperature at the rate of $28.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
The JEDEC registerid outiline for thene devices is TO-5. TO-39 falls within TO-5 with the exception of leed length.
-JEDEC registered data. This date theet contains all epplicable registered date in effect at the time of publication.
${ }^{\dagger}$ Thoee values are guarenteed by Texss instrumants in addition to the JEDEC registered velues which are siso shown.

TYPES 2N3634 THRU 2N3637
 P-N-P SILICON TRANSISTORS

"electrical characteristics at $\mathbf{2 5}{ }^{\circ} \mathrm{C}$ free-air temperature

PARAMETER		TEST CONDITION8		2N3834		2N3035		2N3030		2N3E37		UNIT		
		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX					
$V_{(B R) C B O}$	Collector-Bace Braakdown Voltage			IC $=-100 \mu \mathrm{~A}, \mathrm{IE}=0$		-140		-140		-175		-175		V
V(bR)CEO ${ }^{\text {B }}$	Collector-Emitter Breakdown Voltage	$\begin{aligned} & l_{C}=-10 m A, \quad I_{B}=0, \\ & \text { See Note } 4 \end{aligned}$		-140		-140		-176		-175		V		
V(BR)EBO ${ }^{\text {B }}$	Emitter-Bate Braakdown Voltage	${ }^{\prime} E=-10 \mu A, \quad I C=0$		-5		-5		-5		-5		V		
ICBO \quad C	Collector Cutoff Current	$V_{C B}=-100 \mathrm{~V}, \mathrm{IE}=0$		-100		-100		-100		-100		nA		
IEBO C	Emitter Cutoff Current	$V_{E B}=-3 \mathrm{~V}, \quad \mathrm{IC}=0$			-50		-50		-50		-50	nA		
hFE $\begin{array}{r}\text { S } \\ \\ \end{array}$	Static Forward Current Transfer Ratio	$V_{C E}=-10 \mathrm{~V}, 1 \mathrm{C}=-0.1 \mathrm{~mA}$		40		80		40		80				
		$V_{C E}=-10 \mathrm{~V}, 1 \mathrm{C}=-1 \mathrm{~mA}$		45		90		45		90				
		$V_{\text {CE }}=-10 \mathrm{~V}, 1 \mathrm{C}=-10 \mathrm{~mA}$	See Note 4	50		100		50		100				
		$\mathrm{V}_{\text {CE }}=-10 \mathrm{~V}$, IC $\mathrm{IC}^{=-50 \mathrm{~mA}}$		$50 \quad 150$		100	300	50	150	$100 \quad 300$				
		$\overline{V_{C E}=-10 V} \mathrm{I}^{\text {c }}=-150 \mathrm{~mA}$		25		50		25		50				
VBE	Base-Emitter Voltage	$\mathrm{I}^{\prime} \mathrm{C}=-10 \mathrm{~mA}, \quad \mathrm{I}_{\mathrm{B}}=-1 \mathrm{~mA}$	SeeNote4	-0.8		-0.8		-0.8		-0.8		V		
		$\mathrm{IC}_{\mathrm{C}}=-50 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=-5 \mathrm{~mA}$		-0.65	-0.9	-0.65	-0.9	$\left[\begin{array}{ll} -0.65 & -0.9 \\ \hline \end{array}\right.$		-0.65 -0.9				
$\mathbf{V}_{\mathbf{C E} \text { (sat) }} \mathbf{C}$	Collector-Emitter Saturation Voltage	$\mathrm{I}^{\prime} \mathrm{C}=-10 \mathrm{~mA}, \quad \mathrm{I}_{\mathrm{B}}=-1 \mathrm{~mA}$	See Note 4		-0.3		-0.3		-0.3		-0.3	v		
		$\mathrm{I}^{\prime} \mathrm{C}=-50 \mathrm{~mA}, \quad 18=-5 \mathrm{~mA}$			-0.5		-0.5		-0.5		-0.5			
hle ${ }^{\text {H }}$	Small-Signal Common-Emitter Input Impedance	$\begin{aligned} & V_{C E}=-10 \mathrm{~V}, \quad I^{\prime}=-10 \mathrm{~mA}, \\ & f=1 \mathrm{kHz} \end{aligned}$		0.1	0.6	0.2	1.2	0.1	0.6	0.2	1.2	$k \Omega$		
 $n_{f e}$ 	Small-Signal Common-Emitter Forwerd Current Transfer Ratio			$40 \quad 160$		$80 \quad 320$		$40 \quad 160$		$80 \quad 320$				
	Small-Signai Common-Emitter Reverse Voltage Transfer Ratio			$\begin{array}{r} 3 \times \\ 10^{-4} \end{array}$		$\begin{array}{r} 3 \times \\ 10^{-4} \end{array}$		$\begin{array}{r} 3 \times \\ 10^{-4} \end{array}$		$3 \times$$10^{-4}$				
 C 	Small-Signal Common-Emitter Output Admittance			200		200		200		200		$\mu \mathrm{mho}$		
 $h_{f e} l$ S F 	Small-Signal Common-Emitter Forward Current Transfer Ratio	$\begin{aligned} & V_{C E}=-30 \mathrm{~V}, \quad \mathrm{IC}=-30 \mathrm{~mA}, \\ & \mathrm{f}=100 \mathrm{MHz} \end{aligned}$		1.5		2		1.5		2				
Cobo $\begin{gathered}\text { Co } \\ \\ \\ \\ \end{gathered}$	Common-Base Open-Circuit Output Capacitance	$\begin{aligned} & V_{C B}=-20 \mathrm{~V}, \quad I E=0, \\ & f=100 \mathrm{kHz} \end{aligned}$		10		10		10		10		pF		
$c_{\text {ibo }} \quad \begin{aligned} & \text { C } \\ & \\ & \end{aligned}$	Common-Btate Open-Circuit Input Capacitance	$\begin{aligned} & V_{E B}=-1 V, \quad I C=O_{1} \\ & f=100 \mathrm{kHz} \end{aligned}$		75		75		75		75		pF		

NOTE 4: Thene paremetera must be measured using pulee techniques. $\mathrm{t}_{\mathrm{w}}=\mathbf{3 0 0} \boldsymbol{\mu \varepsilon}$, duty cycle $\leqslant \mathbf{2 \%}$.

TYPES 2N3634 THRU 2N3637
 P-N-P SILICON TRANSISTORS

"operating characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

		PARAMETEA	TEST CONDITIONS		MIN	MAX	UNIT
F	Spot Noive Figure		$\begin{aligned} & V_{C E}=-10 \mathrm{~V} \\ & R_{G}=1 \mathrm{k} \Omega, \end{aligned}$	$\begin{aligned} & \mathrm{IC}=-0.5 \mathrm{~mA}, \\ & f=1 \mathrm{kHz} \end{aligned}$		3	dB

*switching characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER	TEST CONDITIONS ${ }^{\text {t }}$	MIN MAX	UNIT
ton Turn-On Time	VCC $=-100 \mathrm{~V}$, ic $=-50 \mathrm{~mA}$, $\mathrm{I}_{\mathrm{B}(1)}=-5 \mathrm{~mA}, \mathrm{~V}_{\mathrm{BE}(\mathrm{off})}=4 \mathrm{~V}$, See Figure 1	400	ns
toff Turn-Off Time	$\begin{aligned} & V_{C C}=-100 \mathrm{~V}, I_{C}=-50 \mathrm{~mA}, \\ & I_{B(1)}=-5 \mathrm{~mA}, I_{B(2)}=5 \mathrm{~mA}, \\ & \text { See Figure } 1 \end{aligned}$	600	ns

\dagger Voltage and current values ahown are nominal; exact values vary sightly with transistor parameters.
*PARAMETER MEASUREMENT INFORMATION

VOLTAGE WAVEFORMS
FIGURE 1

NOTES: A. The input waveforms are supplled by aserator with the following eharacterletics: $Z_{\text {out }}=80 \Omega, t_{r} \leqslant 20 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}}<\mathbf{2 0} \mathrm{ns}$, $t_{w} \approx 20 \mu$ s, duty eycie < 2%.
B. Wavaforms are monitored on an oscillosope with the foliowing characterletles: $\mathrm{t}_{\mathrm{r}} \leqslant 10 \mathrm{~ns}, \mathrm{R}_{\text {in }}>100 \mathrm{k} \Omega, \mathrm{C}_{\text {in }} \leqslant \mathbf{5} \mathrm{pF}$.

- JEDEC ragietered date

TYPES A5T3638, A5T3638A P-N-P SILICON TRANSISTORS

SILECT ${ }^{\dagger}$ TRANSISTORS \ddagger

 FOR HIGH-CURRENT, MEDIUM-SPEED SWITCHING APPLICATIONS\author{

- High Collector Current . . . 500 mA
 - Electrically Identical to 2N3638, 2N3638A (TO-105)
 - High Dissipation Capability
}

mechanical data

These transistors are encapsulated in a plastic compound specifically designed for this purpose, using a highly mechanized process developed by Texas Instruments. The case will withstand soldering temperatures without deformation. These devices exhibit stable characteristics under high-humidity conditions and are capable of meeting MIL-STD-202C, Method 106B. The transistors are insensitive to light.

absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)
Collector-Base Voltage . -25 V

Collector-Emitter Voltage (See Note 1) . - $\mathbf{2 5} \mathrm{V}$
Emitter-Base Voltage . -4 V
Continuous Collector Current . -500 mA
Continuous Device Dissipation at (or below) $25^{\circ} \mathrm{C}$ Free-Air Temperature (See Note 2) 625 mW
Continuous Device Dissipation at (or below) $25^{\circ} \mathrm{C}$ Lead Temperature (See Note 3) 1.25 W
Storage Temperature Range . $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead Temperature $1 / 16$ Inch from Case for 10 Seconds . $260^{\circ} \mathrm{C}$

NOTES: 1. This value applies betwean 0.01 mA and 500 mA collector current when the base-emitter diode is open-circuited.
2. Derate lineariy to $150^{\circ} \mathrm{C}$ free-air temperature at the rate of $5 \mathrm{~mW} / \mathrm{C}$.
3. Derate linearly to $150^{\circ} \mathrm{C}$ lead temperature at the rate of $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$. Lead tempersture is measured on the callector lead $1 / 16$ inch from the case.
tTrademark of Texas instruments
\#U.S. Patent No. 3,439,238

TYPES A5T3638, A5T3638A P-N-P SILICON TRANSISTORS

electrical characteristics at $\mathbf{2 5}^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

PARAMETER		TEST CONDITIONS		A5T3938	A5T3638A	UNIT		
		MIN MAX	MIN MAX					
$V_{\text {(BR) }} \mathrm{V}^{\text {(BRO }}$	Collector-Base Breakdown Vottage			$I_{C}=-100 \mu A, I_{E}=0$		-25	-25	V
$V_{\text {(BR)CEO }}$	Collector-Emitter Breakdown Voltage	$\mathrm{I}_{\mathrm{C}}=-10 \mathrm{~mA}, ~ I_{B}=0$,	See Note 4	-25	-25	V		
$V_{\text {(BR)CES }}$	Collector-Emitter Braskdown Voltage	$\bar{T}_{C}=-100 \mu A, V_{B E}=0$		-25	-25	V		
V(BR)EBO	Emitter-Base Breakdown Voltage	$\mathrm{I}_{\mathrm{E}}=-100 \mu \mathrm{~A}, \mathrm{I} C=0$		-4	-4	V		
Ices	Collector Cutoff Current	$V_{\text {CE }}=-15 \mathrm{~V}, \mathrm{~V}_{\text {BE }}=0$		-35	-35	nA		
		$\mathrm{V}_{\text {CE }}=-15 \mathrm{~V}, \mathrm{~V}_{\text {BE }}=0$,	$\mathrm{T}_{\mathbf{A}}=65^{\circ} \mathrm{C}$	-2	-2	$\boldsymbol{\mu A}$		
I_{8}	Base Current	$V_{C E}=-15 \mathrm{~V}, \mathrm{~V}_{\text {BE }}=0$		35	35	nA		
hFE	Static Forward Current Transfer Ratio	$\mathrm{V}_{\text {CE }}=-10 \mathrm{~V}, \mathrm{~T}^{\prime}=-1 \mathrm{~mA}$	See Note 4		80			
		$\mathrm{V}_{\text {CE }}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=-10 \mathrm{~mA}$		20	100			
		$V_{C E}=-1 \mathrm{~V}, \mathrm{I}^{\prime}=-50 \mathrm{~mA}$		30	100			
		$V_{C E}=-2 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=-300 \mathrm{~mA}$		20	20			
VBE	Base-Emitter Voltage	$\mathrm{I}_{\mathrm{B}}=-2.5 \mathrm{~mA}, I_{C}=-50 \mathrm{~mA}$	See Note 4	-1.1	-1.1	V		
		$\mathrm{I}_{\mathrm{B}}=-30 \mathrm{~mA}, \mathrm{I}^{2}=-300 \mathrm{~mA}$		-0.8 -2	-0.8 -2			
VCE(sat)	Collector-Emitter Saturation Voltage	$\mathrm{I}_{\mathrm{B}}=-2.5 \mathrm{~mA}, \mathrm{I}^{\prime}=-50 \mathrm{~mA}$	See Note 4	-0.25	-0.25	V		
		$\mathrm{I}_{\mathrm{B}}=-30 \mathrm{~mA}, \mathrm{IC}^{\prime}=-300 \mathrm{~mA}$		-1	-1			
$h_{\text {ie }}$	Small-Signal Common-Emitter Input Impedance	$V_{C E}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=-10 \mathrm{~mA}, f=1 \mathrm{kHz}$		2	2	$k \Omega$		
$\mathrm{hffe}^{\text {fe }}$	Small-Signal Common-Emitter Forward Current Transfer Ratio			25	100			
$h_{\text {re }}$	Small-Signal Common-Emitter Reverse Vortage Transfer Ratio			$\begin{array}{r} 26 \times \\ 10^{-4} \end{array}$	$\begin{array}{r} 15 x \\ 10^{-4} \end{array}$			
$h_{\text {oe }}$	Small-Signal Common-Emitter Output Admittance			1.2	1.2	mmho		
$\mathrm{H}_{\text {fel }}$	Small-Signal Common-Emitter Forward Current Transfer Ratio	$\mathrm{V}_{\text {CE }}=-3 \mathrm{~V}, \quad \mathrm{I}^{\prime}=-50 \mathrm{~mA}$,	$f=100 \mathrm{MHz}$	1	1.5			
Cobo	Common-Base Open-Circuit Output Capacitance	$\mathrm{V}_{C 8}=-10 \mathrm{~V}, \mathrm{IE}=0$,	$\mathrm{f}=1 \mathrm{MHz}$	20	10	pF		
Cibo	Common-Base Open Circuit Input Capacitance	$V_{E B}=-0.5 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=0$,	$f=1 \mathrm{MHz}$	65	35	pF		

NOTE 4: These parameters must be measured using pulse techariques. $t_{w}=\mathbf{3 0 0} \mu \mathrm{s}$, duty cycle $\leq 2 \%$.

TYPES A5T3638, A5T3638A
 P-N-P SILICON TRANSISTORS

switching charactaristics at $\mathbf{2 5}{ }^{\circ} \mathbf{C}$ free-air temperature

PARAMETER		TEST CONDITIONS ${ }^{\dagger}$		MIN MAX	UNIT
d	Delay Time	$V_{C C}=-10 \mathrm{~V}$.	${ }^{1} \mathrm{C}=\mathbf{=} \mathbf{3 0 0} \mathrm{mA}$,	20	ns
t_{r}	Rise Time	$\mathrm{I}_{\mathrm{B}}(1)=-30 \mathrm{~mA}$,	$V_{\text {BE }}($ off $)=3.1 \mathrm{~V}$,	70	ns
ton	Turn-On Time	See Figure 1		75	ns
t_{s}	Storege Time	$\mathrm{V}_{\mathbf{C C}}=-10 \mathrm{~V}$,	IC $=-300 \mathrm{~mA}$,	140	ns
${ }_{4}$	Fall Time	$\mathrm{I}_{\mathrm{B}(1)}=-30 \mathrm{~mA}$,	$\mathrm{I}_{\mathrm{B}(2)}=30 \mathrm{~mA}$,	70	ns
toff	Turn-Off Time	See Figure 1		170	ns

[^73]
PARAMETER MEASUREMENT INFORMATION

TEST CIRCUIT

VOLTAGE WAVEFORMS

FIGURE 1
NOTES: a. The input wavaforms are supplied by a generator with the following characteristics: $Z_{\text {out }}=50 \Omega, t_{p} \leqslant 6 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}}<\mathbf{6 n s}$, $t_{w}=500 \mathrm{~ns}$, duty cycle $<\mathbf{2 \%}$.
b. Waveforms are monitored on an oscilloscope with the following characteristics: $\mathrm{t}_{\mathrm{r}} \leqslant 1 \mathrm{~ns}, \mathrm{R}_{\mathrm{in}} \geqslant 100 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{in}} \leqslant 10 \mathrm{pF}$.

SILECT ${ }^{\dagger}$ TRANSISTORS \ddagger DESIGNED FOR HIGH-SPEED, MEDIUM-POWER SWITCHING AND GENERAL PURPOSE AMPLIFIER APPLICATIONS

- A5T2907, A5T3644, and A5T3645 Electrically Similar to 2N2907, 2N3644, and 2N3645
- TIS112 Processing Includes Operational Aging at 300 mW for 24 Hours

mechanical data

These transistors are encapsulated in a plastic compound specifically designed for this purpose, using a highly mechanized process developed by Texas Instruments. The case will withstand soldering temperatures without deformation. These devices exhibit stable characteristics under high-humidity conditions and are capable of meeting MIL-STD-202C, Method 106B. The transistors are insensitive to light.

absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

	$\begin{gathered} \text { A5T2907 } \\ \text { TIS112 } \end{gathered}$	A5T3644	A5T3645
Collector-Base Voltage	-60 V	-45V	-60 V
Collector-Emitter Voltage (See Note 1)	-40 V	-45V	$-60 \mathrm{~V}$
Emitter-Base Voltage	$-5 \mathrm{~V}$	-5V	$-5 \mathrm{~V}$
Continuous Collector Current		600 m	
Continuous Device Dissipation at (or below) $25^{\circ} \mathrm{C}$ Free-Air Temperature (See Note 2)		625 mw	
Continuous Device Dissipation at (or below) $\mathbf{2 5}{ }^{\circ} \mathrm{C}$ Case and Lead Temperature (See Note 3)			
Storage Temperature Range	- -65	$5^{\circ} \mathrm{C}$ to	\longrightarrow
Lead Temperature 1/16 Inch from Case for 10 Seconds			

NOTES: 1. This value applies between 0 and 600 mA collector current when the base-amitter diode is open-circuited.
2. Derate linearly to $150^{\circ} \mathrm{C}$ free-air temperature at the rate of $5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
3. This rating applies with the entire case (including the leads) maintained at $25^{\circ} \mathrm{C}$. Derate linearly to $150^{\circ} \mathrm{C}$ case-and-lead temperature at the rate of $12.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
${ }^{\dagger}$ Trademark of Texas instruments
\ddagger U. S. Patent No. 3,439,238

TYPES A5T3644, A5T3645
 P-N-P SILICON TRANSISTORS

electrical characteristics at $\mathbf{2 5}{ }^{\circ} \mathbf{C}$ free-air temperature (unless otherwise noted)

PARAMETER	TEST CONDITIONS		A5T3644	A5T3645	UNIT
			MIN MAX	MIN MAX	
V(BR)CBO Collector-Base Breakdown Voltage	$I^{\prime}=-100 \mu A, \quad I_{E}=0$		-45	-60	V
V(BR)CEO Collector-Emitter Breakdown Voltage	$I_{C}=-10 \mathrm{~mA}, \quad I_{B}=0$,	See Note 4	-45	-60	V
$V_{\text {(BR)EBO }}$ Emitter-Base Breakdown Voltage	$I_{E}=-10 \mu A, \quad I_{C}=0$		-5	-5	V
Collector Cutoff Current	$V_{C E}=-30 \mathrm{~V}, V_{B E}=0$		-35		$n \mathrm{~A}$
	$V_{C E}=-50 \mathrm{~V}, V_{B E}=0$			-35	
	$\mathrm{V}_{\mathrm{CE}}=-30 \mathrm{~V}, \mathrm{~V}_{\mathrm{BE}}=0$,	$\mathrm{T}_{\mathrm{A}}=65^{\circ} \mathrm{C}$	-2		$\mu \mathrm{A}$
	$\mathrm{V}_{\text {CE }}=-50 \mathrm{~V}, \mathrm{~V}_{\mathrm{BE}}=0$,	$\mathrm{T}_{A}=65^{\circ} \mathrm{C}$		-2	
Static Forward Current Transfer Ratio	$\mathrm{V}_{C E}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=-100 \mu \mathrm{~A}$	See Note 4	40	40	
	$\mathrm{V}_{\text {CE }}=-10 \mathrm{~V}$, IC $=-1 \mathrm{~mA}$		80	80	
	$V_{C E}=-10 \mathrm{~V}, 1 \mathrm{C}=-10 \mathrm{~mA}$		100	100	
	$\mathrm{V}_{\text {CE }}=-10 \mathrm{~V}, \mathrm{I}^{\mathrm{C}}=-150 \mathrm{~mA}$		$100 \quad 300$	$100 \quad 300$	
	$V_{C E}=-1 \mathrm{~V}$, $\mathrm{I}^{\prime}=-50 \mathrm{~mA}$		$80 \quad 240$	$80 \quad 240$	
	$V_{C E}=-2 \mathrm{~V}, \quad \mathrm{I}^{\prime}=-300 \mathrm{~mA}$		20	20	
Base-Emitter Voltage	$\mathrm{I}_{B}=-2.5 \mathrm{~mA}, \mathrm{I}^{\prime}=-50 \mathrm{~mA}$	See Note 4	-1	-1	V
	$\mathrm{I}_{\mathrm{B}}=-15 \mathrm{~mA}, \quad \mathrm{I}_{\mathrm{C}}=-150 \mathrm{~mA}$		-1.3	-1.3	
	$\mathrm{I}_{B}=-30 \mathrm{~mA}, \quad I_{C}=-300 \mathrm{~mA}$		-0.8 -2	-0.8 -2	
Collector-Emitter Saturation Voltage	$\mathrm{I}_{B}=-2.5 \mathrm{~mA}, I^{\prime}=-50 \mathrm{~mA}$	See Note 4	-0.25	-0.25	V
	$\mathrm{I}_{\mathrm{B}}=-15 \mathrm{~mA}, \quad \mathrm{I}^{\prime}=-150 \mathrm{~mA}$		-0.4	-0.4	
	$\mathrm{I}_{\mathrm{B}}=-30 \mathrm{~mA}, \mathrm{I}^{\prime}=-300 \mathrm{~mA}$		-1	-1	
$h_{i e}$ Small-Signal Common-Emitter Input Impedance	$V_{C E}=-10 \mathrm{~V}, \mathrm{I}^{\prime} \mathrm{C}=-10 \mathrm{~mA}, f=1 \mathrm{kHz}$		1.8	1.8	k $\boldsymbol{\Omega}$
$\mathbf{h}_{\text {fe }}$ Small-Signal Common-Emitter Forward Current Transfer Ratio			100	100	
$h_{\text {re }}$ Small-Signal Common-Emitter Reverse Voltage Transfer Ratio			$\begin{array}{r} 3 x \\ 10^{-4} \\ \hline \end{array}$	$\begin{array}{r} 3 x \\ 10^{-4} \end{array}$	
$h_{\text {oe }}$ Small-Signal Common-Emitter Output Admittance			300	300	$\mu \mathrm{mho}$
$\left\|h_{\mathrm{fe}}\right\| \quad$Small-Signal Common-Emitter Forward Current Transfer Ratio	$V_{C E}=-15 \mathrm{~V}, \quad \mathrm{I}^{\prime}=-20 \mathrm{~mA}$,	$f=100 \mathrm{MHz}$	2	2	
Cobo Common-Base Open-Circuit Output Capacitance	$V_{C B}=-10 \vee, I_{E}=0$	$f=1 \mathrm{MHz}$	8	8	pF
Cibo Common-Base Open-Circuit Input Capacitance	$\mathrm{V}_{\mathrm{EB}}=-0.5 \mathrm{~V}, \mathrm{I}^{\prime} \mathrm{C}=0$,	$f=1 \mathrm{MHz}$	35	35	pF

NOTE 4: These parameters must be measured using pulse techniques. $t_{w}=\mathbf{3 0 0} \mu \mathrm{s}$, duty cycle $\leqslant 2 \%$.
switching characteristics at $\mathbf{2 5}{ }^{\circ} \mathbf{C}$ free-air temperature

PARAMETER		TEST CONDITIONS	A5T3644	A5T3645	UNIT	
		MAX	MAX			
t_{d}	Delay Time		${ }^{\prime} \mathrm{C}=2000 \mathrm{~mA}, \mathrm{R}_{\mathbf{L}}=98 \Omega$. See Figure 1	25	25	ns
t_{r}	Rise Time	35		35	ns	
$t_{\text {on }}$	Turn-On Time	40		40	ns	
t_{s}	Storage Time	70		70	ns	
t_{f}	Fall Time	50		50	ns	
toff	Turn-Off Time	100		100	ns	

TYPES A5T3644, A5T3645 P-N-P SILICON TRANSISTORS

PARAMETER MEASUREMENT INFORMATION

FIGURE i-A5T3e44 and A5T3845

NOTES: A. The input woveform te supplied by a enenarator with the following characteriatics: $Z_{\text {out }}=80 \Omega, t_{r}<6 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}}<\mathbf{6 n g}, \mathrm{t}_{\mathbf{w}}=500 \mathrm{~ns}$, duty cyele $\mathbf{\leq} \mathbf{2 \%}$.
B. The output weveform is monitored on an oscitloncope with the following characteristics: $\mathrm{t}_{\mathrm{r}}<1 \mathrm{~ns}, \mathrm{~A}_{\mathrm{in}}<0.1 \mathrm{M} \Omega$, $\mathrm{C}_{\text {in }} \leqslant 4 \mathrm{pF}$.

TYPE 2N3680 DUAL N-P-N SILICON TRANSISTOR

RECOMMENDED FOR DIFFERENTIAL AMPLIFIERS

- Featuring Matching and Tracking Improvements over 2N2463, 2N2642, and 2N2920
- Each Triode Electrically Similar to 2N2484 and 2N930
- hFE at $1 \mu \mathrm{~A}: \mathbf{8 0}$ Min
- Matched from $-65^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
- $\frac{\Delta\left(\mathrm{V}_{B E 1}-\mathrm{V}_{B E 2}\right)}{\Delta T A}: 5 \mu \mathrm{~V} / \mathrm{C}$ Max, Averaged over Temperature Range
- Also Recommended for Low-Level Flip-Flops, High-Gain Low-Noise Audio Amplifiers, and Transducer Signal-Conditioner Amplifiers
*mechanical data

*absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise notad)

NOTES: 1. This value applies when the base-emitter diode is open-circuited.
2. Derate linearly to $175^{\circ} \mathrm{C}$ free-alr temperature at the rates of $2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for each triode and $4 \mathrm{~mW} / \mathrm{m}^{\circ} \mathrm{C}$ for total device.
3. Derate linearly to $175^{\circ} \mathrm{C}$ case temperature at the rates of $4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for each triode and $8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for total device.
-JEDEC registered data. This data sheet containa all applicable registered data in offect at the time of publication.

TYPE 2N3680 DUAL N-P-N SILICON TRANSISTOR

*elactrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)
Individual triode characteristioe (mee note 4)

triode matching characteristica

PARAMETER	TEST CONDITIONS		MIN MAX	UNIT
	$V_{C E}=5 \mathrm{~V}, \quad \mathrm{I}^{\prime}=10 \mu \mathrm{~A}$,	See Note 6	0.91	
$\frac{\text { hFE1 }}{\text { hFE2 }}$ (Static Forward-Current Gain Balance Ratio	$\begin{aligned} & V_{C E}=5 \mathrm{~V}, \quad I_{C}=100 \mu \mathrm{~A}, \\ & T_{A}=-55^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C} \end{aligned}$	See Note 6,	0.851	
	$V_{C E}=5 \mathrm{~V}, \quad I_{C}=10 \mu \mathrm{~A}$		3	mV
Baso-Emitter-Voltage-Differential	$V C E=5 \mathrm{~V}, \mathrm{I}^{\prime} \mathrm{C}=10 \mu \mathrm{~A}$,	$\begin{aligned} & T_{A(1)}=25^{\circ} \mathrm{C}, \\ & T_{A(2)}=-55^{\circ} \mathrm{C} \end{aligned}$	400	$\mu \mathrm{V}$
$\left\|\Delta V_{B E 1}-V_{B E 2}{ }^{\prime} \Delta T_{A}\right\| \quad$ Change with Temperature	VCE $=5 \mathrm{~V}, \quad 1 \mathrm{C}=10 \mu \mathrm{~A}$,	$\begin{aligned} & T_{A(1)}=25^{\circ} \mathrm{C}, \\ & T_{A(2)}=125^{\circ} \mathrm{C} \end{aligned}$	500	

*operating characteristics at $25^{\circ} \mathrm{C}$ free-air temperature
individual triode characteristics (see note 4)

PARAMETER	TEST CONDITIONS	MIN MAX	UNIT
$\overline{\mathbf{F}} \quad$ Average Noise Figure	$\begin{array}{ll} V_{C B}=5 \mathrm{~V}, \quad I_{E}=-10 \mu \mathrm{~A}, & R_{G}=10 \mathrm{k} \Omega, \\ \text { Noise Bandwidth }=15.7 \mathrm{kHz}, & \text { See Note } 7 \end{array}$	3	dB

NOTES: 4. The terminals of the triode not under test are open-circuited for the measurement of these characteristics.
5. This parameter must be measured using pulse techniques. $\mathrm{t}_{\mathrm{w}}=\mathbf{3 0 0 \mu s}$, duty cycle $<\mathbf{2 \%}$.
6. The lower of the two $h_{F E}$ readings is taken as $h_{\text {FE1 }}$.
7. Average Noise figure is measured in an amplifier with response down 3 dB at 10 Hz and 10 kHz and a high-frequency rolloff of 6 dB/octave.
-JEDEC registered data

SILECT ${ }^{\dagger}$ TRANSISTORS \ddagger

- For Medium-Power Amplifiers, Class B Audio Outputs, Hi-Fi Drivers

- Also Available in Pin-Circle Versions . . . 2N5447, 2N5448
- For Complementary Use with 2N3704 thru 2N3706 or A8T3704 thru A8T3706
mechanical data
These transistors are encapsulated in a plastic compound specifically designed for this purpose, using a highly mechanized process developed by Texas Instruments. The case will withstand soldering temperatures without deformation. These devices exhibit stable characteristics under high-humidity conditions and are capable of meeting MIL-STD-202C, Method 106B. The transistors are insensitive to light.

absoluta maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

NOTES: 1. These values apply when the base-emitter diode is open-circuited.
2. Derate the $625-\mathrm{mW}$ rating lineariy to $150^{\circ} \mathrm{C}$ free-air temperature at the rate of $5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$. Derate the $360-\mathrm{mW}$ (JEDEC registered) rating linearly to $150^{\circ} \mathrm{C}$ free-air temperature at the rate of $2.88 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
3. Derate the $1.25-\mathrm{W}$ rating linearly to $150^{\circ} \mathrm{C}$ lead temperature at the rate of $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$. Derate the $500-\mathrm{mW}$ (JEDEC repistered) rating linearly to $150^{\circ} \mathrm{C}$ leed temperature at the rate of $4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$. Lead temperature is measured on the collector lead $\mathbf{1 / 1 6}$ inch from the case.

[^74]
TYPES 2N3702, 2N3703, A8T3702, A8T3703
 P-N-P SILICON TRANSISTORS

*electrical characteristics at $\mathbf{2 5}{ }^{\circ} \mathbf{C}$ free-air temperature

PARAMETER		TEST CONDITIONS	$\begin{gathered} \text { 2N3702 } \\ \text { A8T3702 } \\ \hline \end{gathered}$	$\begin{gathered} \text { 2N3703 } \\ \text { A8T3703 } \\ \hline \end{gathered}$	UNIT	
		MIN MAX	MIN MAX			
$V_{(B R) C B O}$	Collector-Base Breakdown Voltage		${ }^{\prime} C=-100 \mu A, I^{\prime} E=0$	-40	-50	V
$V_{(B R) C E O}$	Collector-Emitter Breakdown Voltage	$\mathrm{I}_{\mathrm{C}}=-10 \mathrm{~mA}, \quad \mathrm{I}_{\mathrm{B}}=0, \quad$ See Note 4	-25	-30	V	
$V_{\text {(BR) }}$ EbO	Emitter-Base Breakdown Voltage	$I_{E}=-100 \mu A, I_{C}=0$	-5	-5	V	
ICBO	Collector Cutoff Current	$\mathrm{V}_{C B}=-20 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0$	-100	-100	nA	
IEBO	Emitter Cutoff Current	$V_{E B}=-3 V, I_{C}=0$	-100	-100	nA	
$h_{\text {FE }}$	Static Forward Current Transfer Ratio	$\mathrm{V}_{\text {CE }}=-5 \mathrm{~V}, \mathrm{I}^{\text {C }}=-50 \mathrm{~mA}$, See Note 4	$60 \quad 300$	$30 \quad 150$		
$V_{B E}$	Base-Emitter Voltage	$V_{C E}=-5 \mathrm{~V}, \quad \mathrm{IC}=-50 \mathrm{~mA}$, See Note 4	-0.6 -1	-0.6 -1	V	
VCE(sat)	Collector-Emitter Saturation Voltage	$\mathrm{I}_{\mathrm{B}}=-5 \mathrm{~mA}, \quad \mathrm{l}^{\prime} \mathrm{C}=-50 \mathrm{~mA}$, See Note 4	-0.25	-0.25	V	
fT	Transition Frequency	$\mathrm{V}_{\text {CE }}=-5 \mathrm{~V}, \mathrm{I}^{\text {c }}=-50 \mathrm{~mA}$, See Note 5	100	100	MHz	
Cobo	Common-Base Open-Circuit Output Capacitance	$V_{C B}=-10 \mathrm{~V}, \mathrm{l}_{\mathrm{E}}=0, \quad f=1 \mathrm{MHz}$	12	12	pF	

NOTES: 4. These parameters must be measured using pulse techniques, $\mathbf{t}_{\mathbf{w}}=\mathbf{3 0 0} \mu \mathrm{s}$, duty cycle $\leqslant 2 \%$.
 at which $\left|h_{f e}\right|=1$.
*The asterisk identifies JEDEC registered data for the 2N3702 and 2N3703 only

THERMAL INFORMATION

FREE-AIR TEMPERATURE DISSIPATION DERATING CURVE

FIGURE 1

LEAD TEMPERATURE DISSIPATION DERATING CURVE

FIGURE 2

SILECT ${ }^{\dagger}$ TRANSISTORS ${ }^{\ddagger}$

- For Medium-Power Amplifiers, Class B Audio Outputs, Hi-Fi Drivers

- Also Available in Pin-Circle Versions . . . 2N5449, 2N5451

- For Complementary Use with 2N3702, 2N3703 or A8T3702, A8T3703

mechanical data

These transistors are encapsulated in a plastic compound specifically designed for this purpose, using a highly mechanized process developed by Texas Instruments. The case will withstand soldering temperatures without deformation. These devices exhibit stable characteristics under high-humidity conditions and are capable of meeting MIL-STD-202C, Method 1068. The transistors are insensitive to light.

absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

TYPES 2N3704 THRU 2N3706, A8T3704 THRU A8T3706 N-P-N SILICON TRANSISTORS

*electrical characteristics at $\mathbf{2 5}{ }^{\circ} \mathrm{C}$ free-air temperature

PARAMETER		TEST CONDITIONS	$\begin{gathered} \text { 2N3704 } \\ \text { A8T3704 } \end{gathered}$		$\begin{aligned} & \text { 2N3705 } \\ & \text { A8T3705 } \end{aligned}$		2N3706 A8T3706		UNIT	
		MIN	MAX	MIN	MAX	MIN	MAX			
V (BR)CBO	Collector-Base Breakdown Voltage		${ }^{\prime} C=100 \mu \mathrm{~A}, \quad \mathrm{I}_{\mathrm{E}}=0$	50		50		40		V
$V_{\text {(BR) }}$ CEO	Collector-Emitter Breakdown Voltage	$I_{C}=10 \mathrm{~mA}, \quad I_{B}=0$ See Note 4	30		30		20		V	
V (BR)EBO	Emitter-Base Breakdown Voltage	$I_{E}=100 \mu \mathrm{~A}, \quad I_{C}=0$	5		5		5		V	
${ }^{\prime} \mathrm{CBO}$	Collector Cutoff Current	$\mathrm{V}_{C B}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0$		100		100		100	nA	
IEBO	Emitter Cutoff Current	$V_{E B}=3 \mathrm{~V}, \mathrm{I}^{\prime} \mathrm{C}=0$		100		100		100	nA	
hfe	Static Forward Current Transfer Ratio	$V_{C E}=2 V, \quad I_{C}=50 \mathrm{~mA},$ See Note 4	100	300	50	150	30	600		
VBE	Base-Emitter Voltage	$V_{C E}=2 \mathrm{~V}, \quad I C=100 \mathrm{~mA},$ See Note 4	0.5	1	0.5	1	0.5	1	V	
$V_{C E}$ (sat)	Collector-Emitter Saturation Voltage	$\begin{aligned} & I_{B}=5 \mathrm{~mA}, \quad I_{C}=100 \mathrm{~mA}, \\ & \text { See Note } 4 \end{aligned}$		0.6		0.8		1	V	
${ }^{\mathbf{f}} \mathrm{T}$	Transition Frequency	$V_{C E}=2 V, \quad I_{C}=50 \mathrm{~mA},$ See Note 5	100		100		100		MHz	
Cobo	Common-Base Open-Circuit Output Capacitance	$\begin{aligned} & V_{C B}=10 \mathrm{~V}, \quad \mathrm{I}=0, \\ & f=1 \mathrm{MHz} \end{aligned}$		12		12		12	pF	

NOTES: 4. These parameters must be measured using pulse techniques. $\mathrm{t}_{\mathbf{w}}=\mathbf{3 0 0} \mu \mathrm{s}$, duty cycle $\leqslant \mathbf{2 \%}$.
5. To obtain ${ }^{\dagger} \mathrm{T}$, the $\mathrm{h}_{\text {fel }}$ response with frequency is extrapolated at the rate of -6 dB per octave from $f=20 \mathrm{MHz}$ to the frequency at which $\left|h_{f e}\right|=1$.
*The asterisk identifies JEDEC registered data for the 2N3704, 2N3705, and 2N3706 only.
TYPICAL CHARACTERISTICS

FIGURE 2

FIGURE 3

TYPES 2N3707 THRU 2N3711, A5T3707 THRU A5T3711, A8T3707 THRU A8T3711 N-P-N SILICON TRANSISTORS

BULLETIN NO. DL-S 7311965, MARCH 1973

SILECT ${ }^{\dagger}$ TRANSISTORS \ddagger

- Ideal for Low-Level Amplifier Applications
- Rugged One-Piece Construction with In-Line Leads or Standard TO-18 100-mil Pin-Circle Configuration
- Recommended for Complementary Use with 2N4058 thru 2N4062, A5T4058 thru A5T4062, or A8T4058 thru A8T4062

mechanical data

These transistors are encapsulated in a plastic compound specifically designed for this purpose, using a highly mechanized process developed by Texas Instruments. The case will withstand soldering temperatures without deformation. These devices exhibit stable characteristics under high-humidity conditions and are capable of meeting MIL-STD-202C, Method 106B. The transistors are insensitive to light.

absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

2N3707 THRU 2N37m, A5T3707 THRU A5T37m, A8T3707 THRU A8T37m N-P-N SILICON TRANSISTORS

*electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER		TEST CONDITIONS	2N3707 A5T3707 A8T3707	2N3708 A5T3708 A8T3708	2N3709 A5T3709 A8T3709	2N3710 A5T3710 A8T3710	2N3711 A5T3711 A8T3711	UNIT	
		MIN MAX							
$V_{\text {(BR)CEO }}$	Collector-Emitter Breakdown Voltage		$\mathrm{IC}=1 \mathrm{~mA}, \quad \mathrm{I}_{\mathrm{B}}=0$	30	30	30	30	30	\checkmark
Ісво	Collector Cutoff Current	$\mathrm{V}_{C B}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0$	100	100	100	100	100	nA	
Iebo	Emitter Cutoff Current	$\mathrm{V}_{\mathrm{EB}}=6 \mathrm{~V}, \quad \mathrm{IC}_{\mathrm{C}}=0$	100	100	100	100	100	nA	
hfe	Static Forward Current Transfer Ratio	$V_{C E}=5 \mathrm{~V}, \quad \mathrm{IC}^{\prime}=100 \mu \mathrm{~A}$	$100 \quad 400$						
		$\mathrm{V}_{\text {CE }}=5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}$		$45 \quad 660$	45165	$90 \quad 330$	180660		
$V_{\text {ge }}$	Baso-Emitter Voltage	$V_{C E}=5 \mathrm{~V}, \quad I^{\prime}=1 \mathrm{~mA}$	0.5	0.5	0.5	0.5	0.5	V	
V_{CE} (zat)	Collector-Emitter Saturation Voltage	$\mathrm{I}_{\mathrm{B}}=0.5 \mathrm{~mA}, \quad \mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}$	1	1	1	1	1	\checkmark	
$\mathrm{hfe}^{\text {fe }}$	Small-Signal Common-Emitter Forward Current Transfer Ratio	$\begin{aligned} & \begin{array}{l} V C E=5 \mathrm{~V}, \quad \mathrm{IC}=100 \mu \mathrm{~A}, \\ \mathrm{f}=1 \mathrm{kHz} \end{array} \\ & \hline \end{aligned}$	100550						
		$\begin{aligned} & \begin{array}{l} V_{C E}=5 \mathrm{~V}, \\ f=1 \mathrm{kHz} \end{array} \\ & \hline \end{aligned}$		45800	$45 \quad 250$	90450	180800		

*operating characteristics at $\mathbf{2 5}{ }^{\circ} \mathrm{C}$ free-air temperature

PARAMETER		TEST CONDITIONS		$\begin{gathered} \text { 2N3707, } \\ \text { A5T3707, A8T3707 } \\ \hline \end{gathered}$			UNIT		
		MIN	TYP	MAX					
\vec{F}	Average Noise Figure			$V_{C E}=5 \mathrm{~V}, \quad I_{C}=100 \mu \mathrm{~A}$ Noise Bandwidth $=15.7 \mathrm{kHz}$,	$\mathrm{R}_{\mathrm{G}}=5 \mathrm{k} \Omega$ See Note 3		1.9	5	dB

NOTE 3: Average Noise Figure is measured in an amplifier with response down 3 dB at 10 Hz and 10 kHz and a high-frequency rolloff of $6 \mathrm{~dB} / \mathrm{octave}$.
*The asterisk identifies JEDEC registered data for 2 N3707 through 2N3711 only.
THERMAL INFORMATION
dissipation derating curve

figure 1

FAST, HIGH-VOLTAGE, HIGH-CURRENT CORE DRIVERS

- hFE Guaranteed from 10 mA to 1.6 A
- Guaranteed Switching Times at One Ampere (2N3724A, 2N3725A)
*mechanical dafe

THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE CASE

ALL JEDEC TO-39 DIMENSIONS AND NOTES ARE APPLICABLE
ALL DIMENSIONS AAE IN INCHES UNLESS OTHERWISE SPECIFIED
absolute maximum ratings af $25^{\circ} \mathrm{C}$ free-air temperature (unloss othorwise noted)

	2N3724	2N3724A	2N3725	2N3725A	UNIT
Collector-Baso Voltage	$50 *$		80*		V
Collector-Emither Voltage (Soee Note 1)	30"		50^{*}		V
Emitter-Basa Voltage	6°		6 "		V
Continuous Collector Current	0.5*	1.2*	$0.5 *$	1.2^{*}	1
Pook Collector Current (See Note 2)		$1.75{ }^{*}$		1.75*	1
Continuous Device Dissipation af (or bolow) $25^{\circ} \mathrm{C}$ Free-Air Temperalure (See Note 3)	$0.8{ }^{*}$	1*	0.8*	1*	W
Condinuous Device Dissipation of (or below) $25^{\circ} \mathrm{C}$ Case Temperature (See Note 4)	$\begin{array}{r} 10 t \\ 3.5 * \end{array}$	$\begin{array}{r} 10 \dagger \\ 5 \\ \hline \end{array}$	$\begin{array}{r} 10 t \\ 3.5^{\circ} \\ \hline \end{array}$	$\begin{gathered} 10^{\dagger} \\ 5 * \\ \hline \end{gathered}$	W
Storage Temperature Range	-65 to $200{ }^{\circ}$		-65 $10200{ }^{\circ}$		${ }^{\circ} \mathrm{C}$
Lead Temperature Ko Inch from Case for 60 Seconds	$300^{\prime \prime}$		300^{*}		${ }^{\circ} \mathrm{C}$

NOTES: 1. Thase values apply batween 0.01 mA and 500 mA collector current when the base-emitter diode is opan-eircuited.
2. This value applies for squaro-wave pules. $t_{p}=\mathbf{3 0 0} \mu$, duty eyele $<\mathbf{2 \%}$.
3. For the 2 N 3724 and 2 N 372 E , derate ilneariv to $200^{\circ} \mathrm{C}$ tree-alr temparature at the rate of $4.57 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$. For the 2N3724A and 2N3728A, derate linearly to $200^{\circ} \mathrm{C}$ free-alr temperature at the rate of $\mathrm{B} .71 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
4. Darate the 10 -watt rating Ilneerly to $200^{\circ} \mathrm{C}$ case temperatura st the rate of $87.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$. Derate the JEDEC regirtered ratings linearly to $200^{\circ} \mathrm{C}$ case temparatura at the rates of $20 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for the 2 N 3724 and 2 N 3725 and $28.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for the 2 N 3724 A and 2N3725A.

TYPES 2N3724, 2N3724A, 2N3725, 2N3725A
 N-P-N SILICON TRANSISTORS

*electrical characterisfics af $25^{\circ} \mathrm{C}$ free-air tomperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	$\begin{array}{\|l\|} \hline 2 \text { N } 3724 \\ \hline \text { MIN MAX } \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { 2N3724A } \\ \hline \text { MIN MAX } \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { 2N3725 } \\ \hline \text { MIN MAX } \\ \hline \end{array}$	$\frac{2 \text { N372SA }}{\text { MIN MAX }}$	UNII
$V_{\text {(ma)cio }}$	Collector-Lesse Broakdown Vohtage	$l_{c}=10 \mu h_{1} t_{1}=0$	50	50	80	80	V
$V_{\text {(ma)cro }}$	Collector-Emiltor Breakdown Yoltage	$I_{c}=10 \mathrm{~mA}, I_{1}=0, \quad$ Sot Hoto 5	30	30	50	50	V
$V_{\text {(majers }}$	Collector-Emitter Brackdown Voltoge	$L_{c}=10 \mu \mathrm{~A}, V_{m}=0$	50	50	80	80	v
$V_{\text {(R)N\| }}$	Emilter-Base Broakdown Vohtage	$\mathrm{I}_{\mathrm{t}}=10 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{c}}=0$	6	6	6	6	V
Icro	Collector Cutoff Current	$V_{\text {ct }}=40 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0$	1.7	0.5			$\mu \mathrm{A}$
		$V_{C I}=40 V_{1} T_{E}=0, \quad T_{A}=100^{\circ} \mathrm{C}$	120	50			$\mu \mathrm{A}$
		$V_{C B}=60 V_{V} I_{E}=0$			1.7	0.5	μA
		$V_{C B}=60 V_{1} \mathrm{I}_{\mathrm{B}}=0, \quad \mathrm{~T}_{\mathrm{A}}=100^{\circ} \mathrm{C}$			120	50	μA
Icss	Collsctor Cutoff Current	$V_{C E}=50 V_{1} V_{\text {VE }}=0$	10	10			$\mu \mathrm{h}$
		$V_{C E}=80 V_{1}, V_{\text {ME }}=0$			10	10	$\mu \mathrm{A}$
Is	Base Current	$V_{\text {CE }}=50 V_{\text {, }} V_{\text {VE }}=0$	-10	-10			μA
		$V_{C E}=80 V_{1}, \quad V_{\text {EE }}=0$			-10	-10	$\mu \mathrm{A}$
her	Slatic Forward Current Tronsfor Ratio	$V_{C E}=1 V_{1} \quad l_{C}=10 \mathrm{~mA}$	30	30	30	30	
		$V_{\mathrm{CB}}=1 V_{1} \quad \mathrm{I}_{\mathrm{c}}=100 \mathrm{~mA}$	$60 \quad 150$	$60 \quad 150$	$60 \quad 150$	$60 \quad 150$	
		$\begin{array}{ll} \hline V_{C E}=1 \mathrm{~V}, & \begin{array}{l} I_{\mathrm{C}}=100 \mathrm{~mA}, \\ T_{A} \end{array}=-55^{\circ} \mathrm{C} \\ \hline \end{array}$	30	30	30	30	
		$V_{C E}=1 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=300 \mathrm{~mA}$ Se0	40	40	40	40	
		$V_{C E}=1 V_{1} \quad I_{C}=500 \mathrm{~mA}$, Nete	35	35	35	35	
		$\begin{aligned} & V_{C E}=1 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=500 \mathrm{~mA} \\ & T_{\mathrm{A}}=-55^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	20	20	20	20	
		$V_{C E}=2 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=800 \mathrm{~mA}$	25	30	20	25	
		$V_{C E}=5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{C}}=1 \mathrm{~A}$	30	30	25	25	
		$\mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}, \quad \mathrm{l}_{\mathrm{C}}=1.5 \mathrm{~A}$		25		20	
$\boldsymbol{V}_{\text {ma }}$	Basa-Emitter Voltage	$\mathrm{l}_{\mathrm{s}}=1 \mathrm{~mA}, \quad l_{c}=10 \mathrm{~mA}$	0.76	0.76	0.76	0.76	V
		$\mathrm{I}_{B}=10 \mathrm{~mA}, \mathrm{I}_{\mathrm{c}}=100 \mathrm{~mA}$ See	0.86	0.86	0.86	0.86	V
		$\mathrm{I}_{1}=30 \mathrm{~mA}, \mathrm{IC}_{C}=300 \mathrm{~mA}$	1.1	- 1	1.1	1	V
			0.8 1.1	$0.8 \quad 1.1$	0.8 1.1	$0.8 \quad 1.1$	V
		$\mathrm{I}_{\mathrm{B}}=80 \mathrm{~mA}, \mathrm{IC}_{C}=800 \mathrm{~mA}$	1.5	1.3	1.5	1.3	V
		$I_{1}=100 \mathrm{md}, \mathrm{I}_{\mathrm{c}}=11$	1.7	0.91 .4	1.7	$0.9 \quad 1.4$	V
$V_{\text {cetanat }}$	Collector-Emilter Saturation Voltage	$\mathrm{I}_{\mathrm{B}}=1 \mathrm{~mA} \quad \mathrm{I}_{\mathrm{c}}=10 \mathrm{~mA}$	0.25	0.25	0.25	0.25	V
		$\mathrm{I}_{\mathrm{B}}=10 \mathrm{~mA}, \mathrm{l}_{\mathrm{c}}=100 \mathrm{~mA}$ sem	0.2	0.2	0.26	0.26	V
		$\mathrm{I}_{1}=30 \mathrm{~mA}, \mathrm{I}_{C}=300 \mathrm{~mA}$	0.32	0.32	0.4	0.4	V
		$\mathrm{I}_{5}=50 \mathrm{~mA}, \mathrm{l}_{\mathrm{c}}=500 \mathrm{~mA}$	0.42	0.42	0.52	0.52	V
		$\mathrm{I}_{1}=80 \mathrm{~mA}, \mathrm{I}_{\mathrm{c}}=800 \mathrm{~mA}$	0.65	0.65	0.8	0.8	V
		$\mathrm{I}_{\mathrm{B}}=100 \mathrm{~mA}, \mathrm{I}_{\mathrm{c}}=1 \mathrm{~A}$	0.75	0.75	0.95	0.9	V
\|hol	Small-Signal Commen-Emiftor Forward Curront Tronstor Ratio	$V_{c t}=10 \mathrm{~V}, l_{c}=50 \mathrm{~mA}, 1=100 \mathrm{mmz}$	3	3	3	3	
Cobo	Common-Sase Open-Giculif Output Capadionas	$V_{\text {ci }}=10 \mathrm{~V}, \quad \mathrm{l}_{\mathrm{t}}=0, \quad f=1 \mathrm{MHz}$	12	12	10	10	pF
clbo	Common-lose Open-Crault Input Capadtanca	$V_{\text {E }}=0.5 \mathrm{~V}, \mathrm{l}_{\mathrm{c}}=0, \quad f=1 \mathrm{MHz}$	55	55	55	55	pf

NOTE 5: Those parcemitors must be meesured uriap pulse tacholques. $t_{p}=300 \mu$, duty cytio $\leq 1 \%$.

- JEDEC registerad data

TYPES 2N3724, 2N3724A, 2N3725, 2N3725A N-P-N SILICON TRANSISTORS

*switching characteristics $\boldsymbol{\omega} \mathbf{2 5}{ }^{\circ} \mathrm{C}$ free-air temperafure

PARAMETER	TEST CONDITIONS \dagger	2N3724	2N3724A	2 N 3725	2N3725A	UNIT
$t_{\text {d }}$ Delay Time	$\begin{array}{ll} I_{C}=500 \mathrm{~mA}, & \\ l_{\text {la1 }}=50 \mathrm{~mA}, & V_{\text {(10ty }}=-3.8 \mathrm{~V}, \\ R_{L}=58 \Omega, & \text { See Figure 1 } \end{array}$	10	10	10	10	ns
$\mathrm{t}_{\mathrm{r}} \quad$ Rise Time		30	30	30	30	ns
$t_{\text {on }}$ Turn-On Time		35	35	35	35	ns
$t_{1} \quad$ Storage Time	$\begin{array}{ll} I_{C}=500 \mathrm{~mA}, & \\ I_{(x 11}=50 \mathrm{~mA}, & I_{(2,2)}=-50 \mathrm{~mA}, \\ R_{L}=58 \Omega, & \text { See Figure } 1 \\ \hline \end{array}$	50	50	50	50	Hs
t_{1} Fall Time		25	25	30	30	m
toth Turn-Off Time		60	60	60	60	ns
ton Turn-On Time	$\begin{array}{ll} I_{C}=1 A_{1} \\ I_{(1)}=100 \mathrm{~mA}, & v_{\text {greotf }}=-2 V, \\ R_{L}=30 \Omega, & \text { See Eligure } 2 \end{array}$		30		30	ms
toff Tum-Off Sime	$\begin{aligned} & I_{c}=1 A_{1} \\ & I_{\varepsilon(1)}=100 \mathrm{~mA}, \\ & \mathrm{I}_{\mathrm{m}}=30 \Omega=-100 \mathrm{~mA}, \\ & \text { See Figure } 3 \end{aligned}$		50		50	ms

†Vellage and current ralees shewn ere nominal; exact velwes wery silighly with iransister parametars.
*PARAMETER MEASUREMENT INFORMATION

FIOURE I - 500-mA SWITCHING TMMES

b. The wavaforms are menifored on on oscillescope with the followiag charecteristics: $\mathrm{I}_{\mathrm{r}} \leq 1 \mathrm{~ms}, \mathrm{k}_{\mathrm{in}} \geq 100 \mathrm{kR}, \mathrm{c}_{\mathrm{in}} \leq \mathbf{7 p}$.

- JEDEC rogisterod data

FAST, HIGH-VOLTAGE, HIGH-CURRENT CORE DRIVERS

- hFE Guaranteed at $\mathbf{1 0 0} \mathbf{~ m A}$ and $\mathbf{5 0 0} \mathbf{~ m A}$
- $V_{\text {(BR)CEO }} . .40 \mathrm{~V}$ Min
- $V_{\text {(BR) }}$ CBO . . 60 V Min
- $V_{B E}$ and $V_{C E}$ (sat) Guaranteed at $\mathbf{1 0 0} \mathbf{~ m A}$ and $\mathbf{5 0 0} \mathbf{~ m A}$
- ton ... 35 ns Max at $\mathbf{5 0 0} \mathbf{~ m A}$
- toff . . 65 ns Max at $\mathbf{5 0 0} \mathrm{mA}$
- Monolithic Version Available . . . TIS127
mechanical data

NC-No internal connection

absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

NOTES: 1. This value applies between 0.01 mA and 500 mA collector current when the emitter-base diode is open-circuited.
2. Derate linearly to $150^{\circ} \mathrm{C}$ free-air temperature at the rates of $4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for each triode and $12 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for the total device.

[^75]
TYPE 02T3725
 OUAD N-P-N SILICON TRANSISTOR

electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER	TEST CONDITIONS		MIN MAX	UNIT
$\mathrm{V}_{\text {(BR) }}$ CBO Collector-Base Breakdown Voltage	$\mathrm{I}^{\prime}=10 \mu \mathrm{~A}, \quad \mathrm{I}_{\mathrm{E}}=0$		60	V
$\mathrm{V}_{\text {(BR) }}$ CEO Collector-Emitter Breakdown Voltage	$\mathrm{I}^{\prime}=10 \mathrm{~mA}, \quad \mathrm{I}_{\mathrm{B}}=0$,	See Note 3	40	V
$V_{\text {(BR) }}$ CES Collector-Emitter Braakdown Voltage	$\mathrm{I}^{\prime}=10 \mu \mathrm{~A}, \quad \mathrm{~V}_{\mathrm{BE}}=0$		60	V
$V_{\text {(BR)EBO }}$ Emitter-Base Breakdown Voltage	$I_{E}=10 \mu \mathrm{~A}, \quad \mathrm{I}^{2}=0$		6	V
ICBO Collector Cutoff Current	$V_{C B}=40 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0$		1	$\mu \mathrm{A}$
	$V_{C E}=1 \mathrm{~V}, \quad I^{\prime} \mathrm{C}=100 \mathrm{~mA}$		$60 \quad 200$	
	$V_{C E}=1 \mathrm{~V}, \quad I^{\prime}=500 \mathrm{~mA}$		30	
	$\mathrm{I}_{\mathrm{B}}=10 \mathrm{~mA}, \mathrm{IC}^{\prime}=100 \mathrm{~mA}$	See Note 3	0.86	v
	$\mathrm{I}_{B}=50 \mathrm{~mA}, \quad I_{C}=500 \mathrm{~mA}$		0.8 1-1	
	$\mathrm{I}_{\mathrm{B}}=10 \mathrm{~mA}, \quad \mathrm{I}_{\mathrm{C}}=100 \mathrm{~mA}$	See Note 3	0.26	V
	$\mathrm{I}_{\mathrm{B}}=50 \mathrm{~mA}, \quad \mathrm{I}_{\mathrm{C}}=500 \mathrm{~mA}$		0.52	\checkmark
HfelSmall-Signal Common-Emitter Forward Current Transfer Ratio	$V_{C E}=10 \mathrm{~V},{ }^{\prime} \mathrm{C}=50 \mathrm{~mA}$,	$f=100 \mathrm{MHz}$	2.5	
Cobo Common-B ase Open-Circuit Output Capacitance	$V_{C B}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0$,	$f=1 \mathrm{MHz}$	10	pF
Cibo Common-Base Open-Circuit Input Capacitance	$V_{E B}=0.5 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=0$,	$\mathrm{f}=1 \mathrm{MHz}$	70	pF

NOTE 3: These parameters must be measured using pulse techniques. $t_{w}=\mathbf{3 0 0} \mu \mathrm{m}$, duty cycie $\leqslant \mathbf{2 \%}$.

switching characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

	PARAMETER	TEST CONDITIONS ${ }^{\dagger}$	MAX	UNIT
$t o n$	Turn-On Time	$\begin{aligned} & I_{C}=500 \mathrm{~mA}, \\ & \mathrm{I}_{\mathrm{B}}=58 \Omega, 11=50 \mathrm{~mA}, \quad V_{B E}(o f f)=-3.8 \mathrm{~V}, \\ & \text { See Figure } 1 \end{aligned}$	35	ns
toff	Turn-Off Time	$\begin{aligned} & I_{C}=500 \mathrm{~mA}, \\ & I_{\mathrm{B}}(1)=50 \mathrm{~mA}, I_{\mathrm{B}}(2)=-50 \mathrm{~mA}, \\ & R_{\mathrm{L}}=58 \Omega, \\ & \hline \end{aligned}$	65	ns

${ }^{\dagger}$ Voltage and current values shown are nominal; exact values vary slightly with transistor parameters.

FIGURE 1-600-mA SWITCHING TIMES
NOTES: a. The input waveforms are supplied by a generator with the following characteristics: $Z_{o u t}=50 \Omega, t_{r} \leqslant 1 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leqslant 1 \mathrm{~ns}, \mathrm{t}_{\mathrm{W}} \approx 1 \mu \mathrm{~m}$, duty evele $<\mathbf{2 \%}$.
b. The waveforms are monitored on an oscilloscope with the following characteristics: $t_{r} \leqslant 1 \mathrm{~ns}, \mathrm{R}_{\mathrm{in}} \geqslant 100 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{in}} \leqslant 7 \mathrm{pF}$.

FOR HIGH-CURRENT, HIGH-SPEED SWITCHING AND DRIVER APPLICATIONS

- hFE Guaranteed from $\mathbf{1 0} \mathbf{~ m A}$ to 1.5 A
- Guaranteed Switching Times at One Amp
mechanical data

| THE COLLECTOR IS IN ELECTRICAL contact WITH THE CASE | |
| :---: | :---: | :---: |
| ALL DIMENSIONS ARE IN INCHES UNLESS OTHERWISE SPECIFIED | |
| ALL JEDEC TO-39 DIMENSIONS AND NOTES ARE APPLICABLE* | |

absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

[^76]${ }^{4}$ The JEDEC registered outline for these devices is TO-5. TO-39 falls within TO-5 with the exception of lead length.
-JEDEC registered data. This data sheet contains all applicable registered date in effect at the time of publication.
${ }^{1}$ These velues are guaranteed by Texas Instruments in addition to the JEDEC registered values which are also shown.

TYPES 2N3734, 2N3735 N-P-N SILICON TRANSISTORS

*electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

PARAMETER		TEST CONDITIONS			2N3734		2N3735		UNIT			
		MIN	MAX	MiN	MAX							
$V_{\text {(BR) }} \mathbf{C B O}$	Collector-Base Breakdown Voltage				$\mathrm{I}^{\prime} \mathrm{C}=10 \mu \mathrm{~A}$,	$I_{E}=0$		50		75		V
V(BA)CEO	Collector-Emitter Breakdown Voltage	${ }^{1} \mathrm{C}=10 \mathrm{~mA}$,	$I_{B}=0$	See Note 4	30		50		V			
$V_{\text {(BR) }}$ EBO	Emitter-Base Breakdown Voltage	$I_{E}=10 \mu \mathrm{~A}$,	$\mathrm{I}_{\mathrm{C}}=0$		5		5		V			
Icev Collector Cutoff Current		$V_{C E}=25 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{BE}}=-2 \mathrm{~V}$			0.2			$\mu \mathrm{A}$			
		$V_{C E}=25 \mathrm{~V}$,	$V_{B E}=-2 V$,	$T_{A}=100^{\circ} \mathrm{C}$		20						
		$V_{C E}=40 \mathrm{~V}$,	$V_{B E}=-2 V$					0.2				
		$V_{C E}=40 \mathrm{~V}$,	$V_{B E}=-2 V$,	$\mathrm{TA}=100^{\circ} \mathrm{C}$				20				
Ibev	Base Cutoff Current	$V_{C E}=25 \mathrm{~V}, \mathrm{~V}_{\text {BE }}=-2 \mathrm{~V}$			0.3		0.3		$\mu \mathrm{A}$			
		$V_{C E}=40 \mathrm{~V}, V_{B E}=-2 \mathrm{~V}$										
hFE	Static Forward Current Transfer Ratio	$V_{\text {CE }}=1 \mathrm{~V}$.	$\mathrm{IC}^{\prime}=10 \mathrm{~mA}$	See Note 4	35		35					
		$V_{C E}=1 \mathrm{~V}$,	$I_{C}=150 \mathrm{~mA}$		40		40					
		$V_{C E}=1 \mathrm{~V}$,	$I_{C}=500 \mathrm{~mA}$		35		35					
		$V_{C E}=1.5 \mathrm{~V}$	$I_{C}=1 \mathrm{~A}$		30	120	20	80				
		$V_{C E}=5 \mathrm{~V}$,	$\mathrm{I}_{\mathrm{C}}=1.5 \mathrm{~A}$		30		20					
VBE	Base-Emitter Voltege	$\mathrm{I}_{\mathrm{B}}=1 \mathrm{~mA}$,	$I^{\prime} \mathrm{C}=10 \mathrm{~mA}$	See Note 4		0.8		0.8	V			
		$\mathrm{I}_{B}=15 \mathrm{~mA}$,	$I_{C}=150 \mathrm{~mA}$		1		1					
		$\mathrm{I}_{\mathrm{B}}=50 \mathrm{~mA}$,	$i_{C}=500 \mathrm{~mA}$			1.2		1.2				
		$\mathrm{I}_{\mathrm{B}}=100 \mathrm{~mA}$,	$\mathrm{I}_{\mathrm{C}}=1 \mathrm{~A}$		0.9	1.4	0.9	1.4				
VCE(sat)	Collector-Emitter Saturation Voltage	$\mathrm{I}_{\mathrm{B}}=1 \mathrm{~mA}$,	$I^{\prime} C=10 \mathrm{~mA}$	See Note 4		0.2		0.2	v			
		$I_{B}=15 \mathrm{~mA},$	$I_{C}=150 \mathrm{~mA}$			0.3		0.3				
		$\mathrm{I}_{8}=50 \mathrm{~mA}$,	$\mathrm{I}^{\mathrm{C}}=500 \mathrm{~mA}$			0.5		0.5				
		$\mathrm{I}_{\mathrm{B}}=100 \mathrm{~mA}$,	$\mathrm{I}^{\prime}=1 \mathrm{~A}$			0.9		0.9				
Mfal	Small-Signal Common-Emitter Forward Current Trensfer Ratio	$v_{C E}=10 \mathrm{~V}$,	$I^{\prime} \mathrm{C}=50 \mathrm{~mA}$,	$f=100 \mathrm{MHz}$	3		2.5					
$\mathrm{C}_{\text {obo }}$	Common-Base Open-Circuit Output Capacitance	$\mathrm{V}_{\mathrm{CB}}=10 \mathrm{~V}$,	$I_{E}=0$,	$f=100 \mathrm{kHz}$		9		9	pF			
$c_{\text {ibo }}$	Common-Base Open-Circuit Input Capacitance	$\mathrm{V}_{\mathrm{EB}}=0.5 \mathrm{~V}$,	$\mathrm{I}^{\prime}=0$,	$\mathrm{f}=100 \mathrm{kHz}$		80		80	pF			

NOTE 4: Theew pararneters must be measured using pulse techniques. $t_{w}=\mathbf{3 0 0} \mu \mathrm{s}$, dutv cycle $\leqslant \mathbf{2 \%}$.
*switching characteristics at $\mathbf{2 5}{ }^{\circ} \mathrm{C}$ free-air temperature

PARAMETER		TEST CONDITIONS ${ }^{\dagger}$		MAX	UNIT
t_{0}	Delay Time	$\mathrm{V}_{\mathrm{CC}}=30 \mathrm{~V}, \quad \mathrm{IC}=1 \mathrm{~A}$,	$\mathrm{I}_{\mathrm{B}(1)}=100 \mathrm{~mA}$,	8	ns
t_{r}	Rise Time	$V_{B E}$ (off) $=-2 V_{\text {, }}$	See Figure 1	40	ns
$t_{\text {off }}$	Turn-Off Time	$\begin{aligned} & V_{C C}=30 \mathrm{~V}, \quad I_{C}=1 \mathrm{~A}, \\ & I_{B(2)}=-100 \mathrm{~mA} . \end{aligned}$	$A_{B}(1)=100 \mathrm{~mA},$ See Figure 2	60	ns
$\mathrm{O}_{\mathbf{T}}$	Total Control Charge	$\mathrm{I}_{\mathrm{C}}=1 \mathrm{~A}, \quad \mathrm{I}_{\mathrm{B}}=100 \mathrm{~mA}$,	See Figure 3	10	nc

${ }^{\dagger}$ Voltage and current values shown are nominal; exact values vary slightly with transistor parameters.

[^77]TYPES 2N3734, 2N3735
N-P-N SILICON TRANSISTORS

PARAMETER MEASUREMENT INFORMATION

TEST CIRCUIT

VOLTAGE WAVEFORMS
FIGURE 1 -DELAY AND RISE TIMES

FIGURE 2-STORAGE AND FALL TIMES

FIGURE 3-TOTAL CONTROL CHARGE

NOTES: a. The input woveforms are supplied by a generator with the following characterlatice: $\mathbf{Z}_{\text {out }}=\mathbf{8 0 \Omega} \mathbf{\Omega}$, duty eycle $\mathbf{< 2 \%}$.

FOR LOW-LEVEL, LOW-NOISE, HIGH-GAIN AMPLIFER APPLICATIONS
 - Recommended for Complomentary Use with 2N2484 and 2 N 3117
 - Guarentoed Low-Nolse Characteristics
 - Excollont hminearity from $10 \mu \mathrm{~A}$ to 10 mA Collector Current

*mechanical deta

*absolute maximum rafings af $25^{\circ} \mathrm{C}$ free-air temperafure (unless otherwise noted)
Collector-Base Voltage . -60 V
Collector-Emitter Voltage (See Note 1) -60 V
Emitter-Base Voltage . $\mathbf{5}$ V
Continuous Collector Current . - 50 mA
Continuous Device Dissipation at (or below) $25^{\circ} \mathrm{C}$ Free-Air Temperature (See Note 2) 360 mW
Continuous Device Dissipation at (or below) $25^{\circ} \mathrm{C}$ Case Temperature (See Note 3) 1.2 W
Storage Temperature Range . $-65^{\circ} \mathrm{C}$ to $200^{\circ} \mathrm{C}$
Lead Temperature K_{a} Inch from Case for 10 Seconds $230^{\circ} \mathrm{C}$

2. Derate Incerly $10200^{\circ} \mathrm{C}$ Irev-alr temperature of the teto of $2.00 \mathrm{mw} / \mathrm{dan}$.
3. Derote lincerly io $200^{\circ} \mathrm{C}$ ene temperature of the rele of $\mathbf{8 . 0 6} \mathrm{m} / \mathrm{m} / \mathrm{deg}$.
*Indleater JEDEC maltored dete

TYPES 2N3798, 2N3799

P-N-P SILICON TRANSISTORS

*electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

PARAMETER		TEST CONDITIONS	2N3798	2N3799	UNIT	
		MIN MAX	MIN MAX			
	Collector-Base Breakdown Yoltage		$\mathrm{I}_{\mathrm{c}}=-10 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{E}}=0$	-60	-60	V
	Collector-Emilter Breakdown Voltage	$I_{C}=-10 \mathrm{~mA}, I_{B}=0, \quad$ See Note 4	-60	-60	V	
	Emitter-Base Breakdown Voltage	$\mathrm{I}_{\mathrm{E}}=-10 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{C}}=0$	-5	-5	V	
$\mathrm{I}_{\text {cio }}$	Collector Culoff Current	$V_{C B}=-50 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0$	-10	-10	nA	
		$V_{C B}=-50 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0, \quad \mathrm{~T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$	-10	-10	$\mu \mathrm{A}$	
$\mathrm{I}_{\text {EBO }}$	Emitter Cutoft Current	$V_{E B}=-4 V_{,} \quad I_{C}=0$	-20	-20	nA	
$h_{\text {fe }}$	Static Forward Current Transer Ratio	$V_{C E}=-5 V, I_{C}=-1 \mu \mathrm{~A}$		75		
		$V_{\text {CE }}=-5 \mathrm{~V}_{1} \quad \mathrm{I}_{\mathrm{C}}=-10 \mu \mathrm{~A}$	100	225		
		$V_{C E}=-5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{C}}=-100 \mu \mathrm{~A}$	150	300		
		$V_{\text {CE }}=-5 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=-500 \mu \mathrm{~A}$	$150 \quad 450$	$300 \quad 900$		
		$V_{C E}=-5 V_{1} \mathrm{l}_{\mathrm{c}}=-1 \mathrm{~mA}$	150	300		
		$V_{\text {CE }}=-5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{C}}=-10 \mathrm{~mA}$	125	250		
		$\mathrm{V}_{C E}=-5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{C}}=-100 \mu \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$	75	150		
$V_{\text {EE }}$	Base-Emitter Voltage	$V_{C E}=-5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{C}}=-100 \mu \mathrm{~A}$	-0.7	-0.7	V	
		$\mathrm{I}_{\mathrm{B}}=-10 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{C}}=-100 \mu \mathrm{~A}$	-0.7	-0.7	V	
		$\mathrm{I}_{5}=-100 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{C}}=-1 \mathrm{~mA}$	-0.8	-0.8	V	
$V_{\text {cefut) }}$	Collector-Emitter Saturation Voltage	$\mathrm{I}_{\mathrm{B}}=-10 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{C}}=-100 \mu \mathrm{~A}$	-0.2	-0.2	V	
		$\mathrm{I}_{\mathrm{g}}=-100 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{C}}=-1 \mathrm{~mA}$	-0.25	-0.25	V	
$\mathrm{h}_{\text {ie }}$	Small-Signal Common-Emitter Input Impedance	$\mathrm{V}_{\text {CE }}=-10 \mathrm{~V}$,	$3 \quad 30$	$10 \quad 40$	$\mathrm{k} \Omega$	
$\mathrm{h}_{\text {to }}$	Small-Signal Common-Emitter Forward Current Transfer Ratio		150600	300900		
$h_{\text {re }}$	Small-Signal Common-Emitter Reverse Voltage Transfer Ratio		$\begin{array}{r\|} 25 \\ \times 10^{-4} \\ \hline \end{array}$	$\begin{array}{r\|} \hline 25 \\ \times 10^{-4} \\ \hline \end{array}$		
$\mathrm{h}_{\text {¢ }}$	Small-Signal Common-Emitter Output Admittance		560	560	$\mu \mathrm{mha}$	
\| $\mathrm{hfo}_{\text {fi }}$	Small-Signal Common-Emitter Forward Current Transfer Ratio	$V_{C E}=-5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{C}}=-500 \mu \mathrm{~A}, \mathrm{f}=30 \mathrm{MHz}$	1	1		
		$\mathrm{V}_{\text {CE }}=-5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{C}}=-1 \mathrm{~mA}, \quad \mathrm{f}=100 \mathrm{mHz}$	15	15		
Cobo	Common-Sase Open-Crtuif Output Capacitance	$\mathrm{V}_{\mathrm{CB}}=-5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{E}}=0, \quad f=100 \mathrm{kHz}$	4	4	pF	

*operating characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

	Parameter	TEST CONDITIONS	$\frac{2 \mathrm{~N} 3798}{\text { MAX }}$	$\frac{2 \mathrm{~N} 3799}{\text { MAX }}$	UNIT
NF	Spot Noise Figure	$\begin{aligned} & V_{C E}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{c}}=-100 \mu \mathrm{~A}, \mathrm{R}_{G}=3 \mathrm{k} \Omega, \\ & \mathrm{f}=100 \mathrm{~Hz}, \quad \text { Noise Bandwidth }=20 \mathrm{~Hz} \end{aligned}$	7	4	d8
		$\begin{aligned} & V_{C E}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{c}}=-100 \mu \mathrm{~h}, \mathrm{R}_{G}=3 \mathrm{k} \Omega, \\ & \mathrm{f}=1 \mathrm{kHz}, \quad \text { Noise Bandwidth }=200 \mathrm{~Hz} \end{aligned}$	3	1.5	dB
		$\begin{aligned} & V_{\mathrm{CE}}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{c}}=-100 \mu \mathrm{~A}, \mathrm{R}_{\mathrm{G}}=3 \mathrm{k} \Omega, \\ & \mathrm{f}=10 \mathrm{kHz}, \text { Noise Bandwidth }=2 \mathrm{kHz} \end{aligned}$	2.5	1.5	dB
$\overline{N F}$	Average Noise Figure	$\begin{aligned} & V_{C E}=-10 \mathrm{~V}, I_{C}=-100 \mu \mathrm{~A}, R_{G}=3 \mathrm{k} \Omega, \\ & \text { Noise Bondwidth }=15.7 \mathrm{kHz} \text {, See Note } 5 \end{aligned}$	3.5	2.5	dB

NOTES: 4. Thase paramaters must be measured using pulse fachniques. $t_{p}=300 \mu s$, duty cycle $\leq \mathbf{2 \%}$.
5. Average Noise Figurs is measured in en amplifier with low-frequency rosponse down $\mathbf{3}$ dil at 10 Hz .
*Indicatos JEDEC ragistorod data

TYPES 2N3806 THRU 2N3811 DUAL P-N-P SILICON TRANSISTORS

TWO TRANSISTORS IN ONE PACKAGE RECOMMENDED FOR

- Differential Amplifiers

- High-Gain, Low-Noise Amplifiers
- Low-Level Flip-Flops
- Complementary Use With 2N2913 Thru 2N2920 And 2N2639 Thru 2N2644 Dual N-P-N Transistors

*mechanical data

quick-selection guide (for details see characteristics on pages 2 and 3)

TYPE	MIN-MAX hFE$\left(I_{C}=-0.1 \text { to }-1 \mathrm{~mA}\right)$		$\begin{gathered} \operatorname{MAX}\left\|V_{B E 1}-V_{B E 2}\right\| \\ \left(I_{C}=-100 \mu A\right) \end{gathered}$		hfe MATCHING$\left(I_{C}=-100 \mu A\right)$	
	150-450	300-900	3 mV	5 mV	10\%	20\%
2N3806	-					
2N3807		-				
2N3808	\bullet			-		-
2N3809		-		-		-
2N3810	-		\bullet		\bullet	
2N3811		\bullet	*		-	

*absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)
EACH
TOTAL

NOTES: 1. This value applies when the base-emitter diode is open-circuited.
2. Derate linearly to $200^{\circ} \mathrm{C}$ free-air temperature at the rates of $2.9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for each triode and $3.4 \mathrm{~mW} / /^{\circ} \mathrm{C}$ for total device. See Dissipation Derating Curve, Figure 1.

[^78]
TYPES 2N3806 THRU 2N3811

DUAL P-N-P SILICON TRANSISTORS
*electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)
individual triode characteristics (see note 3)

PARAMETER		TEST CONDITIONS	$\begin{aligned} & \hline \text { 2N3806 } \\ & \text { 2N3808 } \\ & \text { 2N3810 } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { 2N3807 } \\ & \text { 2N3809 } \\ & \text { 2N3811 } \\ & \hline \end{aligned}$	UNIT	
		MIN MAX	MIN MAX			
V (BR)CBO	Collector-Base Breakdown Voltage		$I_{C}=-10 \mu A, \quad I_{E}=0$	-60	-60	V
$V_{\text {(BR) }} \mathrm{V}^{\text {(BRO }}$	Collector-Emitter Breakdown Voltage	$\mathrm{I}_{\mathrm{C}}=-10 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0, \quad$ See Note 4	-60	-60	V	
$V_{\text {(BR) }}$ EBO	Emitter-Base Breakdown Voltage	$I_{E}=-10 \mu A, I_{C}=0$	-5	-5	V	
I'CBO	Collector Cutoff Current	$V_{C B}=-50 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0$	-10	-10	nA	
		$V_{C B}=-50 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0, \quad T_{A}=150^{\circ} \mathrm{C}$	-10	-10	μA	
IEBO	Emitter Cutoff Current	$V_{E B}=-4 V, \quad V^{\prime}=0$	-20	-20	nA	
hFE	Static Forward Current Transfer Ratio	$V_{C E}=-5 \mathrm{~V}, \mathrm{I}^{\prime} \mathrm{C}=-10 \mu \mathrm{~A}$	100	225		
		$\mathrm{V}_{C E}=-5 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=-100 \mu \mathrm{~A}$	$150 \quad 450$	$300 \quad 900$		
		$\mathrm{V}_{\text {CE }}=-5 \mathrm{~V}, \mathrm{I}^{\prime} \mathrm{C}=-500 \mu \mathrm{~A}$	150450	$300 \quad 900$		
		$\mathrm{V}_{\text {CE }}=-5 \mathrm{~V}$, $\mathrm{I}_{\mathrm{C}}=-1 \mathrm{~mA}$	150450	$300 \quad 900$		
		$V_{C E}=-5 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=-10 \mathrm{~mA}$, See Note 4	125	250		
		$V_{C E}=-5 \mathrm{~V}, \mathrm{I}^{\prime}=-100 \mu \mathrm{~A}, \mathrm{~T}_{A}=-55^{\circ} \mathrm{C}$	75	150		
$\mathbf{V}_{\mathbf{B E}}$	Base-Emitter Voltage	$V_{C E}=-5 \mathrm{~V}, \mathrm{I}^{\prime}=-100 \mu \mathrm{~A}$	-0.7	-0.7	V	
		${ }^{1} \mathrm{~B}=-10 \mu \mathrm{~A}, \quad{ }^{\prime} \mathrm{C}=-100 \mu \mathrm{~A}$	-0.7	-0.7		
		$\mathrm{I}_{B}=-100 \mu \mathrm{~A}, \mathrm{I}_{C}=-1 \mathrm{~mA}$	-0.8	-0.8		
VCE(sat)	Collector-Emitter Saturation Voltage	$\mathrm{I}_{B}=-10 \mu \mathrm{~A}, \quad \mathrm{I}_{C}=-100 \mu \mathrm{~A}$	-0.2	-0.2	V	
		$\mathrm{I}_{B}=-100 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{C}}=-1 \mathrm{~mA}$	-0.25	-0.25		
$h_{\text {ie }}$	Small-Signal Common-Emitter Input Impedance		$3 \quad 30$	$10 \quad 40$	$\mathrm{k} \boldsymbol{\Omega}$	
$h_{\text {fe }}$	Small-Signal Common-Emitter Forward Current Transfer Ratio		150600	$300 \quad 900$		
$\mathrm{hre}_{\text {re }}$	Small-Signal Common-Emitter Reverse Voltage Transfer Ratio		$\begin{array}{r} 25 X \\ 10^{-4} \\ \hline \end{array}$	$\begin{gathered} 25 \times \\ 10^{-4} \end{gathered}$		
hoe	Small-Signal Common-Emitter Output Admittance		$5 \quad 60$	560	$\mu \mathrm{mho}$	
$\left\|h_{\text {fe }}\right\|$	Small-Signal Common-EmitterForward Current Transfer Ratio	$\mathrm{V}_{\text {CE }}=-5 \mathrm{~V}, \mathrm{IC}=-500 \mu \mathrm{~A}, \mathrm{f}=30 \mathrm{MHz}$	1	1		
		$V_{C E}=-5 \mathrm{~V}, \mathrm{l}_{\mathrm{C}}=-1 \mathrm{~mA}, \quad \mathrm{f}=100 \mathrm{MHz}$	15	15		
$\mathrm{C}_{\text {obo }}$	Common-Base Open-Circuit Output Capacitance	$V_{C B}=-5 \mathrm{~V}, \quad \mathrm{l}_{\mathrm{E}}=0, \quad f=100 \mathrm{kHz}$	4	4	pF	
$C_{\text {ibo }}$	Common-Base Open-Circuit Input Capacitance	$\mathrm{V}_{\mathrm{EB}}=-0.5 \mathrm{~V}, \mathrm{I} \mathrm{C}=0, \quad \mathrm{f}=100 \mathrm{kHz}$	8	8	pF	

NOTES: 3. The terminals of the triode not under test are open-circuited for the measurement of these characteristics.
4. Thase parameters are measured using pulse techniques. $t_{w}=300 \mu \mathrm{~s}$, duty cycle $<\mathbf{1 \%}$.
-JEDEC registered data

TYPES 2N3806 THRU 2N3811 DUAL P-N-P SILICON TRANSISTORS

"electrical characteristics at $\mathbf{2 5}{ }^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)
triode matching charactoristics

*operating characteristics at $25^{\circ} \mathrm{C}$ free-air temperature
individual triode characteristics (see note 3)

PARAMETER		TEST CONDITIONS	$\begin{aligned} & \hline \text { 2N3806 } \\ & \text { 2N3808 } \\ & \text { 2N3810 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 2N3807 } \\ & \text { 2N3809 } \\ & \text { 2N3811 } \\ & \hline \end{aligned}$	UNIT	
		MAX	MAX			
F	Spot Noise Figure		$\begin{aligned} & V_{C E}=-10 \mathrm{~V}, I_{C}=-100 \mu \mathrm{~A}, \mathrm{R}_{\mathrm{G}}=3 \mathrm{~kg}, \\ & \mathrm{f}=100 \mathrm{~Hz}, \\ & \text { Noise Bandwidth }=20 \mathrm{~Hz} \end{aligned}$	7	4	dB
		$\begin{aligned} & V_{C E}=-10 \mathrm{~V}, \\ & \mathrm{I}=1 \mathrm{kHz}=-100 \mu \mathrm{~A}, \mathrm{R}_{\mathrm{G}}=3 \mathrm{~kJ}, \\ & \text { Noise Bandwidth }=200 \mathrm{~Hz} \end{aligned}$	3	1.5	dB	
		$\begin{aligned} & V_{\mathrm{CE}}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=-100 \mu \mathrm{~A}, \mathrm{R}_{\mathrm{G}}=3 \mathrm{k} \Omega, \\ & \mathrm{f}=10 \mathrm{kHz}, \quad \text { Noise Bandwidth }=2 \mathrm{kHz} \end{aligned}$	2.5	1.5	dB	
\bar{F}	Average Noise Figure	$\begin{aligned} & V_{\mathrm{CE}}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=-100 \mu \mathrm{MA}, \mathrm{R}_{\mathrm{G}}=3 \mathrm{k} \Omega, \\ & \text { Noise Bandwidth }=15.7 \mathrm{kHz}, \text { See Nate } 6 \end{aligned}$	3.5	2.5	dB	

NOTES. 3. The terminals of the triode not under test are open-circuited for the measurement of these characteristics.
5. The lower of the two MFE reading is taken as hFE1.
6. Avarage Noise Figure is measured in an amplifier with response down 3 dB at 10 Hz and 10 kHz and a high-frequency rolloff of $6 \mathrm{~dB} /$ octave.

- JEDEC registered data

THERMAL INFORMATION

N-CHANNEL SILICON JUNCTION FIELD-EFFECT TRANSISTOR

SILECT ${ }^{\dagger}$ FIELD-EFFECT TRANSISTOR \ddagger

- For Industrial and Consumer Small-Signal Applications
- Low $\mathrm{C}_{\text {rss }} \leqslant 4 \mathrm{pf}$ - High $\mathrm{yfs} / \mathrm{C}_{\text {iss }}$ Ratio (High-Frequency Figure of Merit)
- Cross Modulation Minimized by Square-Law Transfer Characteristics
- For New Designs, 2N5949 thru 2N5953 and A5T3821 thru A5T3824

Are Recommended

mechanical data

This transistor is encapsulated in a plastic compound specifically designed for this purpose, using a highly mechanized process developed by Texas Instruments. The case will withstand soldering temperatures without deformation. The device exhibits stable characteristics under high-humidity conditions and is capable of meeting MIL-STD-202C, Method 1068. The transistor is insensitive to light.
*ALL JEDEC TO.92 DIMENSIONS AND NOTES ARE APPLICABLE
*absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

*electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN MAX	UNIT
$V_{\text {(tap) }}$	Gate-Source Breakdown Voltage	$\mathrm{I}_{\mathrm{G}}=-1 \mu \mathrm{a}, \mathrm{V}_{\mathrm{DS}}=0$	-25	V
$I_{\text {gSS }}$	Gate Cutoff Current	$V_{G S}=-15 v, V_{D S}=0$	-2	no
		$V_{G S}=-15 \mathrm{v}, V_{D S}=0, \mathrm{I}_{A}=100^{\circ} \mathrm{C}$	-2	$\mu \mathrm{a}$
loss	Zero-Gate-Voltage Drain Current	$V_{D S}=15 v_{1} \quad V_{G S}=0$, See Note 2	220	ma
$V_{\text {Gs }}$	Gate-Source Voltage	$V_{D S}=15 \mathrm{v}, \quad l_{D}=200 \mu \mathrm{a}$	-0.5 -7.5	V
$V_{\text {ES }}$ (off	Gate-Source Cutoff Voltage	$V_{\text {DS }}=15 \mathrm{v}, \quad \mathrm{I}_{\mathrm{D}}=2 \mathrm{na}$	-8	V
$\left\|y_{\text {fa }}\right\|$	Small-Signal Common-Source Forward Transfer Admittance	$\begin{aligned} & V_{D S}=15 v, \quad V_{G S}=0, \begin{array}{l} f=1 \mathrm{kc}, \\ \text { See Note } 2 \end{array} \end{aligned}$	20006500	$\mu \mathrm{mho}$
$\left\|y_{0 s}\right\|$	Small-Signal Common-Source Output Admittance	$V_{\mathrm{DS}}=15 \mathrm{v}, \quad V_{\mathrm{GS}}=0, \underset{\text { See Note } 2}{\mathrm{f}=1 \mathrm{kc},}$	50	$\mu \mathrm{mho}$
$C_{\text {iss }}$	Common-Source Short-Gircuit Input Capacitance	$V_{D S}=15 \mathrm{v},$	8	pf
$C_{\text {rss }}$	Common-Source Short-Circuit Reverse Pransfer Capaciitance	$f=1 M c$	4	pi
$\left\|y_{\text {fs }}\right\|$	Small-Signal Cormmon-Source Forward Transfer Admittance	$V_{D S}=15 \mathrm{v}, \quad V_{G S}=0, f=100 \mathrm{Mc}$	1600	$\mu \mathrm{mho}$

NOTES: 1. Derate linearly to $150^{\circ} \mathrm{C}$ free-air temperature at the rate of $2.88 \mathrm{mw} /{ }^{\circ} \mathrm{C}$.
2. These parameters must be measured pulse techniques. $t_{w} \approx 100 \mathrm{~ms}$, duty cycle $\leqslant 10 \%$.

- JEDEC registered data
${ }^{\dagger}$ Trademark of Texas Instruments
\ddagger U.S. Patent No. 3,439,238

SHECT ${ }^{\dagger}$ FIELD-EFFECT TRANSISTOR ${ }^{\ddagger}$
 For Industrial and Consumer Small-Signal Applications

mechanical data

This transistor is encapsulated in a plastic compound specifically designed for this purpose, using a highly mechanized process developed by Texas Instruments. The case will withstand soldering temperatures without deformation. The device exhibits stable characteristics under high-humidity conditions and is capable of meeting MIL-STD-202C, Method 106B. The transistor is insensitive to light.
*ALL JEDEC TO-92 DIMENSIONS AND NOTES ARE APPLICABLE

WOTE A: Lead diemoter is not controlled in shis orna.

[^79]*absolute maximum ratings at $\mathbf{2 5}^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

*electrical characteristics af $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

PARAMETER		TEST CONDITIONS	MIN MAX	UNIT	
$V_{\text {(m) }}$ ¢ss	Gate-Source Breakdown Voltage	$\mathrm{I}_{G}=10 \mu \mathrm{O}, \mathrm{V}_{\text {DS }}=0$	20	V	
Igss	Gate Cutoff Current	$V_{G S}=10 \mathrm{v}, V_{\text {DS }}=0$	20	na	
		$V_{\text {GS }}=10 \mathrm{~V}, \quad V_{\text {DS }}=0, \quad \mathrm{~T}_{\mathrm{A}}=100^{\circ} \mathrm{C}$	2	$\mu \mathrm{a}$	
loss	Zero-Gate-Voltage Drain Current	$V_{\text {OS }}=-10 \mathrm{v}, \mathrm{V}_{G S}=0, \quad$ Soe Mote 2	-0.3 -15	ma	
$V_{\text {Gs }}$	Gate-Source Voltige	$V_{D S}=-10 v_{1} I_{D}=-30 \mu \mathrm{D}$	$0.3-7.9$	V	
$V_{\text {GS } \text { (} \text { fif }}$	Gate-Source Cutoff Voltage	$V_{\text {DS }}=-10 \mathrm{v}, \mathrm{I}_{\mathrm{D}}=-10 \mu \mathrm{a}$	8	v	
$\left\|y_{t s}\right\|$	Small-Signol Common-Source Forward Transfer Admittance	$V_{D S}=-10 \mathrm{~V}, \mathrm{~V}_{G S}=0, \quad \begin{aligned} & \mathrm{f}=1 \mathrm{lkc}, \\ & \text { Seat Note } 2\end{aligned}$	8005000	$\mu \mathrm{mho}$	
\|Yos		Small-Signal Common-Sourte Output Admithance	$\begin{array}{lll}V_{D S}=-10 \\ V, V_{G S}=0, & f=1 \mathrm{kc}, \\ & \text { Soe Note } 2\end{array}$	200	$\mu \mathrm{mho}$
$\mathrm{C}_{\mathbf{i s}}$	Common-Source Shori-Ciruvit Input Capacitance	$V_{D S}=-10 v,$	32	pf	
$\mathrm{C}_{\text {rss }}$	Common-Source Shorl-Grcult Reverse Iransfer Capacitance	, $f=1 \mathrm{Mc}$	16	pf	
$\left\|y_{f s}\right\|$	Small-Signal Common-Source Forward Transfer Admittance	$V_{D S}=-10 \mathrm{v}, \mathrm{V}_{\mathrm{GS}}=0, \quad f=10 \mathrm{Mc}$	700	$\mu \mathrm{mho}$	

NOTES: 1. Derate linearly to $150^{\circ} \mathrm{C}$ free-air temperature at the rate of $2.88 \mathrm{mw} /{ }^{\circ} \mathrm{C}$.
2. Thase parameters must be measured using pulse techniques. $t_{w} \approx 100 \mathrm{~ms}$, dury cycle $\leqslant \mathbf{1 0 \%}$.

JEDEC registered data

trademark of Texas Instruments
\ddagger U.S. Patent No. 3,439,238

TYPES 2N3821 THRU 2N3824 N-CHANNEL SILICON JUNCTION FIELD-EFFECT TRANSISTORS
 BULLETIN NO, DL- $7311910, \mathrm{MARCH} 1973$

2N3821, 2N3822

FOR SMALL-SIGNAL APPLICATIONS

- Low loss: <100 pA
- Low Ciss: <8 pF
- High Yfs/Ciss Ratio (High-Frequency Figure-of-Merit)

2N3823
FOR VHF AMPLIFIER AND MIXER APPLICATIONS

- Low Noise Figure: $\boldsymbol{\leqslant 2 . 5} \mathbf{d B}$ at $\mathbf{1 0 0} \mathbf{~ M H z}$
- Low Crss: <2 pF
- High Yfs/Ciss Ratio (High-Frequency Figure-of-Merit)

2N3824
FOR HIGH-SPEED COMMUTATOR AND CHOPPER APPLICATIONS

- Low rds(on): <250 Ω
- Low ID(off): <100 pA
- Low Crss $^{\text {: }} \mathbf{~} \mathbf{3} \mathrm{pF}$
*mechanical data

-JEDEC regiatered dete. This dete sheet conteins all applicable registered data in affact at the time of publication.

TYPES 2N3821 THRU 2N3824 N-CHANNEL SILICON JUNCTION FIELD-EFFECT TRANSISTORS

*absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

2N3821, 2N3822
"electrical characteristics at $25^{\circ} \mathbf{C}$ free-air temperature (unless otherwise noted)

PARAMETER		TEST CONDITIONS ${ }^{\boldsymbol{t}}$			2N3821	2N3822	UNIT			
		MIN MAX	MIN MAX							
V (BR)Gss	Gate-Source Brackdown Voltepe				$1_{G}=-1 \mu A$,	$V_{D S}=0$		-50	-50	V
${ }^{1} \mathrm{GSS}$	Gate Cutoff Currant	$V_{\text {GS }}=-30 \mathrm{~V}$	$V_{D S}=0$		-0.1	-0.1	nA			
		$V_{\text {GS }}=-30 \mathrm{~V}$	VOS $=0$,	$T_{A}=150^{\circ} \mathrm{C}$	-0.1	-0.1	$\mu \mathrm{A}$			
$V_{\text {GS }}$ (off)	Gate-Sourca Cutoff Voltage	$V_{\text {DS }}=15 \mathrm{~V}$,	$\mathrm{I}_{\mathrm{D}}=0.5 \mathrm{n}$		-4	-6	V			
$V_{G S}$	Gate-Source Voltage	VDS $=16 \mathrm{~V}$,	${ }^{1} \mathrm{D}=50 \mu \mathrm{~A}$		-0.5 -2		V			
		VDS $=15 \mathrm{~V}$	$T_{D}=200 \mu$			-1 -4				
IDSS	Zero-Gate-Voltage Drain Current	$V_{D S}=15 \mathrm{~V}$.	$\mathrm{V}_{\text {GS }}=0$,	See Note 2	0.6-2.5	$2 \quad 10$	ma			
$\left\|V_{f s}\right\|$	Smell-Signal Common-Source Forward Transfer Admittance	$V_{D S}=16 \mathrm{~V}$ See Note 2	$\mathbf{V}_{\mathbf{G S}}=0,$	$\mathrm{f}=1 \mathrm{kHz}$	15004500	30006500	$\mu \mathrm{mho}$			
\|Vosl	Small-Signal Common-Source Output Admittance	$V_{D S}=15 \mathrm{~V}$ See Note 2	$V_{G S}=0$	$f=1 \mathrm{kHz} \text {, }$	10	20	$\mu \mathrm{mho}$			
$\mathrm{C}_{\text {iss }}$	Common-Source Short-Circuit Input Capecitance	$V_{\text {DS }}=15 \mathrm{~V}$,	$V_{\text {GS }}=0$,	$f=1 \mathrm{MHz}$	6	6	pF			
Cres	Common-Source Short-Circuit Reverse Transfer Capecitance				3	3	pF			
\|Vfs \mid	Small-Signal Common-Source Forward Transfor Admittance	$V_{D S}=15 \mathrm{~V}$	$V_{G S}=0$,	$f=100 \mathrm{MHz}$	1500	3000	$\mu \mathrm{mho}$			

*operating characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER		TEST CONDITIONSt	2N3821 2N3822	UNIT	
		MAX			
\bar{F}	Averege Noise Figure		$\begin{aligned} & V_{D S}=15 \mathrm{~V}, \quad \mathrm{~V}_{G S}=0, \quad \mathbf{R}_{G}=1 \mathrm{M} \Omega, \quad f=10 \mathrm{~Hz}, \\ & \text { Noise Bandwidth }=5 \mathrm{~Hz} \end{aligned}$	5	dB
V_{n}	Equivalent Input Noise Voltage	$V_{D S}=15 V, \quad V_{G S}=0, \quad f=10 \mathrm{~Hz},$ Noise B andwidth $=5 \mathrm{~Hz}$	200	$n \mathrm{~V} / \sqrt{\mathrm{Hz}}$	

NOTES: 1. Derate linearly to $175^{\circ} \mathrm{C}$ freo-air temperature at the rate of $2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
2. These parametars must be measured using pulse techniques. $\mathbf{t}_{w}=\mathbf{1 0 0} \mathbf{m s}$, duty cycie $<\mathbf{1 0 \%}$.

[^80]*electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

PARAMETER		TEST CONDITIONS ${ }^{\dagger}$			2N3823	UNIT			
		MIN MAX							
V(BR)GSS	Gate-Source Breakdown Voltage				${ }^{\prime} G=-1 \mu A$,	$V_{D S}=0$		-30	V
'GSS	Gate Cutoff Current	$\mathrm{V}_{\text {GS }}=-20 \mathrm{~V}$	$V_{D S}=0$		-0.5	nA			
		$\mathrm{V}_{\mathrm{GS}}=-20 \mathrm{~V}$,	$V_{D S}=0$,	$T_{A}=150^{\circ} \mathrm{C}$	-0.5	$\mu \mathrm{A}$			
$V_{\text {GS }}$ (off)	Gate-Source Cutoff Voltage	$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}$,	$\mathrm{I}_{\mathrm{D}}=0.5 \mathrm{nd}$		-8	V			
VGS	Gate-Source Voltage	$V_{\text {DS }}=15 \mathrm{~V}$,	${ }^{1} D^{\prime}=400$		-1 -7.5	V			
IDSS	Zero-Gate-Voltage Drain Current	$V_{\text {DS }}=15 \mathrm{~V}$,	$\mathrm{V}_{\mathbf{G S}}=0$,	See Note 2	4.20	mA			
$\left\|y_{\text {fs }}\right\|$	Small-Signal Common-Saurce Forward Transfer Admittance	$V_{D S}=15 \mathrm{~V}$ See Note 2	$V_{\mathbf{G S}}=0,$	$f=1 \mathrm{kHz}$,	35006500	$\mu \mathrm{mho}$			
\|Yos		Small-Signal Common-Source Output Admittance	$V_{D S}=15 \mathrm{~V} .$ See Note 2	$V_{G S}=0,$	$\mathrm{f}=1 \mathrm{kHz},$	35	$\mu \mathrm{mho}$		
$\mathrm{C}_{\text {iss }}$	Common-Source Short-Circuit Input Capacitance	$V_{D S}=15 \mathrm{~V}$,	$V_{G S}=0 . \quad f=1 M H z$		6	pF			
$\mathrm{Crss}^{\text {r }}$	Common-Source Short-Circuit Reverse Transfer Capacitance				2	pF			
$\left\|y_{\text {fs }}\right\|$	Small-Signal Common-Source Forward Transfer Admittance	$V_{D S}=15 \mathrm{~V}$	$V_{G S}=0$,	$f=200 \mathrm{MHz}$	3200	$\mu \mathrm{mho}$			
$\mathrm{g}_{\text {is }}$	Small-Signal Common-Source Input Conductance				800	$\mu \mathrm{mho}$			
gos	Small-Signal Common-Source Output Conductance				200	$\mu \mathrm{mho}$			

*operating characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER		TEST CONDITIONS ${ }^{\dagger}$	2N3823	UNIT	
		MAX			
F	Cammon-Source Spot Noise Figure		$V_{D S}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, \mathrm{R}_{\mathrm{G}}=1 \mathrm{k} \Omega, f=100 \mathrm{MHz}$	2.5	dB

2N3824
electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

PARAMETER		TEST CONDITIONS ${ }^{\dagger}$			2N3824	UNIT			
		MIN MAX							
${ }^{*} V_{\text {(BR)GSS }}$	Gate-Source Breakdown Voltage				${ }^{\prime} \mathrm{G}^{\prime}=-1 \mu \mathrm{~A}$,	$V_{D S}=0$		-50	V
${ }^{*}$ IGSS	Gate Cutoff Current	$\mathrm{V}_{\mathrm{GS}}=-30 \mathrm{~V}$,	$V_{D S}=0$		-0.1	nA			
		$\mathrm{V}_{\mathrm{GS}}=-30 \mathrm{~V}$,	$V_{D S}=0$,	$T_{A}=150^{\circ} \mathrm{C}$	-0.1	$\mu \mathbf{A}$			
*ID(off)	Drain Cutoff Current	$V_{D S}=15 \mathrm{~V}$,	$V_{G S}=-8 \mathrm{~V}$		0.1	nA			
		$V_{\text {DS }}=15 \mathrm{~V}$,	$\mathrm{V}_{\text {GS }}=-8 \mathrm{~V}$,	$\mathrm{TA}=150^{\circ} \mathrm{C}$	0.1	$\mu \mathrm{A}$			
IDSS	Zero-Gate-Voltage Drain Current	$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}$,	$V_{G S}=0$,	See Note 2	$12 \quad 24$	$m A$			
* rods(on)	Small-Signal Drain-Source On-State Resistance	$V_{G S}=0$,	$\mathrm{I}_{\mathrm{D}}=0$,	$f=1 \mathrm{MHz}$	250	Ω			
${ }^{*} \mathrm{C}_{\text {iss }}$	Common-Source Short-Circuit Input Capacitance	$V_{D S}=15 \mathrm{~V}$,	$V_{G S}=0$,	$\mathrm{f}=1 \mathrm{MHz}$	6	pF			
${ }^{*} \mathrm{C}_{\text {rss }}$	Common-Source Short-Circuit Reverse Transfer Capacitance	$V_{D S}=0$,	$V_{G S}=-8 V_{\text {, }}$	$\mathrm{f}=\mathrm{t} \mathbf{M H z}$	3	pF			

NOTE 2: These paramaters must be maasured using pulse techniques. $t_{w}=100 \mathrm{~ms}$, duty cycle $\leqslant 10 \%$.
JEDEC registered data
${ }^{\dagger}$ The fourth lead (case) is connected to the source for all measurements.

TYPES A5T3821 THRU A5T3824 N-CHANNEL SILICON JUNCTION FIELD-EFFECT TRANSISTORS

SILECT ${ }^{\dagger}$ FIELD-EFFECT TRANSISTORS \ddagger

- Rugged, One-Piece Construction with Standard TO-18 100-mil Pin-Circle

A5T3821, A5T3822
FOR SMALL-SIGNAL APPLICATIONS

- Low Igss: $\leqslant \mathbf{1 0 0} \mathrm{pA}$
- Low Ciss: $\leqslant 6 \mathbf{p F}$
- High Yfs $/ C_{i s s}$ Ratio (High-Frequency Figure-of-Merit)

A5T3823
 FOR VHF AMPLIFIER AND MIXER APPLICATIONS

- Low Noise Figure: $\leqslant \mathbf{2} .5 \mathbf{d B}$ at $100 \mathbf{~ M H z}$
- Low Crss: $\leqslant 2 \mathrm{pF}$
- High Yfs $/ \mathrm{C}_{\text {iss }}$ Ratio (High-Frequency Figure-of-Merit)

A5T3824 FOR HIGH-SPEED COMMUTATOR AND CHOPPER APPLICATIONS

- Low rds(on): $\leqslant 250 \Omega$
- Low ID(off): $\leqslant 100 \mathrm{pA}$
- Low Crss: $\leqslant 3$ pF
mechanical data
These transistors are built using the same chip type as for the metal-case types 2N3821 through 2N3824 and 2N5358 through 2N5364 and the Silect types 2N5949 through 2N5953.

Silect transistors are encapsulated in a plastic compound specifically designed for this purpose using a highly mechanized process developed by Texas Instruments. The case will withstand soldering temperatures without deformation. These devices exhibit stable characteristics under high-humidity conditions and are capable of meeting MIL-STD-202C, Method 106B. Silect transistors are insensitive to light.

[^81]
TYPES A5T3821 THRU A5T3824
 N-CHANNEL SILICON JUNCTION FIELD-EFFECT TRANSISTORS

absolute maximum ratings at $\mathbf{2 5}{ }^{\circ} \mathbf{C}$ free-air temperature (unless otherwise noted)
A5T3821
A5T3822
A5T3823

A5T3821, A5T3822
electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

PARAMETER		TEST CONDITIONS			A5T3821		A5T3822		UNIT			
		MIN	MAX	MIN	MAX							
$V_{\text {(BR)GSS }}$	Gate-Source Breakdown Voltage				$\mathrm{I}_{\mathbf{G}}=-1 \mu \mathrm{~A}$,	$V_{\text {DS }}=0$		-50		-50		V
		$\mathrm{V}_{\mathrm{GS}}=-30 \mathrm{~V}$	$V_{D S}=0$			-0.1		-0.1	nA			
		$V_{\text {GS }}=-30 \mathrm{~V}$	$V_{\text {DS }}=0$,	$\mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$		-0.1		-0.1	$\mu \mathrm{A}$			
$V_{\text {GS }}$ aff)	Gate-Source Cutoff Voltage	$\mathrm{V}_{\text {DS }}=15 \mathrm{~V}$,	$I_{D}=0.5 \mathrm{nA}$			-4		-6	V			
$V_{G S}$		$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}$,	$I_{D}=50 \mu \mathrm{~A}$		-0.5	-2						
GS		$V_{\text {DS }}=15 \mathrm{~V}$,	$I_{D}=200$				-1	-4				
Ioss	Zero-Gate-Voltage Drain Current	$\mathrm{V}_{\text {DS }}=15 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{GS}}=0$,	See Note 2	0.5	2.5	2	10	mA			
$\left\|y_{f s}\right\|$	Small-Signal Common-Source Forward Transfer Admittance	$V_{D S}=15 \mathrm{~V},$ See Note 2	$V_{G S}=0,$	$f=1 \mathrm{kHz},$	1500	4500	3000	6500	$\mu \mathrm{mho}$			
Vos	Small-Signal Common-Source Output Admittance	$V_{D S}=15 \mathrm{~V} .$ See Note 2	$V_{G S}=0$	$f=1 \mathrm{kHz},$		10		20	$\mu \mathrm{mho}$			
$\mathrm{C}_{\text {iss }}$	Common-Source Short-Circuit Input Capacitance	$V_{D S}=15 \mathrm{~V}$,	S $=0$			6		6	pF			
Crss	Common-Source Short-Circuit Reverse Transfer Capacitance			$\mathrm{f}=1 \mathrm{MHz}$		3		3	pF			
$\left\|y_{f s}\right\|$	Small-Signal Common-Source Forward Transfer Admittance	$V_{D S}=15 \mathrm{~V}$,	$V_{G S}=0$,	$f=100 \mathrm{MHz}$	1500		3000		$\mu \mathrm{mho}$			

operating characteristics at $\mathbf{2 5}{ }^{\circ} \mathrm{C}$ free-air temperature

PARAMETER		TEST CONDITIONS	$\begin{aligned} & \hline \text { A5T } 3821 \\ & \text { A5T3822 } \\ & \hline \end{aligned}$	UNIT	
		MAX			
\bar{F}	Average Noise Figure		$V_{D S}=15 \mathrm{~V}, \quad V_{G S}=0, \quad R_{G}=1 \mathrm{M} \Omega, \quad f=10 \mathrm{~Hz},$ Noise Bandwidth $=5 \mathrm{~Hz}$	5	dB
V_{n}	Equivalent Input Noise Voltage	$\begin{aligned} & V_{D S}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, \quad \mathrm{f}=10 \mathrm{~Hz}, \\ & \text { Noise Bandwidth }=5 \mathrm{~Hz} \end{aligned}$	200	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$	

NOTES: 1. Derate linearly to $150^{\circ} \mathrm{C}$ free-air temperature at the rate of $2.4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
2. These parameters must be measured using pulse techniques. $t_{w}=300 \mu \mathrm{~s}$, duty cycle $\leqslant \mathbf{2} \%$.

TYPES A5T3821 THRU A5T3824 N-CHANNEL SILICON JUNCTION FIELD-EFFECT TRANSISTORS

electrical characteristics at $\mathbf{2 5}{ }^{\circ}$ C free-air temperature (unless otherwise noted)

operating characteristics at $\mathbf{2 5}{ }^{\boldsymbol{\circ}} \mathbf{C}$ free-air temperature

PARAMETER		TEST CONDITIONS	A5T3823	UNIT	
		MAX			
F	Common-Source Spot Noise Figure		$V_{\text {DS }}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, \mathrm{R}_{\mathrm{G}}=1 \mathrm{k} \Omega, \mathrm{f}=100 \mathrm{MHz}$	2.5	dB

NOTE 2: These parameters must be measured using pulse techniques. $t_{w}=\mathbf{3 0 0} \mu \mathrm{s}$, duty cycle $\leqslant \mathbf{2 \%}$.

DESIGNED FOR HIGH-SPEED SWITCHING APPLICATIONS

- High f_{T} : $\mathbf{3 5 0} \mathbf{~ M e ~ m i n ~ a t ~} \mathbf{1 0} \mathrm{v}, \mathbf{3 0} \mathrm{ma}$
- Low Guaranteed $\mathrm{V}_{\text {CE(sat) }}$: 0.18 v at $\mathbf{3 0} \mathrm{ma}$
*mechanical data

*absolute maximum ratings at $\mathbf{2 5}{ }^{\circ} \mathbf{C}$ free-air temperature (unless otherwise noted)
Collector-Base Voltage . .
Collector-Emitter Voltage (See Note 1) .
$\mathbf{- 3 5} \mathbf{v}$
$\mathbf{- 3 5} \mathbf{v}$
Collector-Emitter Voltage (See Note 1) .
Collector-Emitter Voltage (See Note 2) .
Emitter-Base Voltage . -5 r
Continuous Collector Current . $\mathbf{- 2 0 0} \mathbf{~ m a}$
Peak Collector Current (See Note 3) . -500 ma
Continuous Device Dissipation at (or below) $25^{\circ} \mathrm{C}$ Free-Air Temperature (See Note 4) 360 mw
Continuous Device Dissipation at (or below) $25^{\circ} \mathrm{C}$ Case Temperature (See Note 5) 1.2 w
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
Lead Temperature $1 / 10$ Inch from Case for 10 Seconds $300^{\circ} \mathrm{C}$
*electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

PARAMETER		TEST CONDITIONS		MIN MAX	UNIT
$V_{\text {Eracrao }}$ Collector-Base Breakdown Voltage		$\mathrm{I}_{\mathrm{C}}=-100 \mu \mathrm{a}, \mathrm{I}_{\mathrm{E}}=0$		-35	v
$V_{\text {Pr\|ceo }}$	Collector-Emitter Breakdown Voltage	$T_{c}=-10 \mathrm{ma}, \mathrm{C}_{\mathrm{B}}=0$,	See Note 6	-20	v
Varajces	Collertor-Emitter Breakdown Voltage	$\mathrm{I}_{\mathrm{C}}=-100 \mu \mathrm{a}, \mathrm{V}_{\mathrm{BE}}=0$		-35	v
V ${ }_{\text {Lar) }}$	Emitter-Base Breakdown Voltage	$\mathrm{I}_{\mathrm{E}}=-100 \mu \mathrm{a}, \mathrm{I}_{\mathbf{c}}=0$		-5	v
Ices	Collector Cutoff Current	$\mathrm{V}_{\text {CE }}=-20 \mathrm{v}, \quad \mathrm{V}_{\text {BE }}=0$		-0.3	$\mu \mathrm{O}$
		$\mathrm{V}_{\text {CE }}=-20 \mathrm{v}, \mathrm{V}_{\mathrm{EE}}=0, \quad \mathrm{~T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$		-40	$\mu \mathrm{a}$
I_{B}	Base Current	$V_{\text {CE }}=-20 \mathrm{v}, \mathrm{V}_{\text {低 }}=0$		0.3	$\mu \mathrm{O}$
hre	Static Forward Current Transfer Ratio	$V_{\text {CE }}=-0.4 \mathrm{v}_{1} \mathrm{I}_{\mathrm{C}}=-10 \mathrm{ma}$	$\begin{gathered} \text { See } \\ \text { Note } \\ 6 \end{gathered}$	25	
		$V_{C E}=-0.4 v_{1}, I_{C}=-30 \mathrm{ma}$		$30 \quad 120$	
		$V_{C E}=-1 v_{1} \quad I_{C}=-100 \mathrm{ma}$		25	
		$\begin{aligned} & V_{\mathrm{CE}}=-0.4 \mathrm{v}, \mathrm{I}_{\mathrm{C}}=-30 \mathrm{ma}, \\ & \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \\ & \hline \end{aligned}$		12	
$V_{\text {fe }}$	Base-Emitter Voltage	$\mathrm{I}_{\mathrm{B}}=-1 \mathrm{mo}, \mathrm{I}_{\mathrm{C}}=-10 \mathrm{ma}$	$\begin{gathered} \hline \text { See } \\ \text { Note } \\ 6 \\ \hline \end{gathered}$	-0.75-0.85	v
		$\mathrm{I}_{\mathrm{B}}=-3 \mathrm{ma}, \quad \mathrm{I}_{\mathrm{C}}=-30 \mathrm{ma}$		-0.75-0.95	v
		$\mathrm{I}_{\mathrm{B}}=-10 \mathrm{ma}, \mathrm{I}_{\mathrm{c}}=-100 \mathrm{ma}$		- 1.20	v
$\mathbf{V}_{\text {CI\{at) }}$	Collector-Emitter Saturation Voltage	$\mathrm{I}_{\mathrm{B}}=-1 \mathrm{ma}, \quad \mathrm{I}_{\mathrm{c}}=-10 \mathrm{ma}$	See Note 6	-0.18	v
		$\mathrm{I}_{\mathrm{B}}=-3 \mathrm{ma}, \quad \mathrm{I}_{\mathrm{C}}=-30 \mathrm{ma}$		-0.18	v
		$\mathrm{l}_{\mathrm{B}}=-10 \mathrm{ma}, \mathrm{l}_{\mathrm{c}}=-100 \mathrm{mo}$		-0.35	v
		$\begin{aligned} & \mathrm{I}_{\mathrm{B}}=-3 \mathrm{ma}, \quad \mathrm{I}_{\mathrm{C}}=-30 \mathrm{ma}, \\ & \mathrm{I}_{\mathrm{A}}=125^{\circ} \mathrm{C} \end{aligned}$		-0.25	v

NOTES: 1. This value applias when the base-emitier diode is shan-circuited.
2. This value applies between 0 and 10 ma collestor current when the base-amitter diode is apen-circuited.
3. This value applies for $\mathrm{PW} \leq 10 \mu \mathrm{sec}$, Duly Cycle $\leq 40 \%$.
4. Derate linearly $10.175^{\circ} \mathrm{C}$ free-air femperature of the rais of $2.4 \mathrm{~mm} / \mathrm{C}^{\circ}$.
5. Derate linearly to $175^{\circ} \mathrm{C}$ case temperature at the rate of $8 \mathrm{mw} / \mathrm{C}^{\circ}$.
6. These parameters must be measured using pulse tectiniques. $\mathrm{PW}=300 \mu \mathrm{sec}$, Duty Cyde $\leq \mathbf{2 \%}$.
*indicates JEDEC registered data
*electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature (unless ofherwise nofed)

PARAMETER		TEST CONDITIONS		MIN max	UNIT
$\left\|h_{60}\right\|$	Small-Signal Commen-Emititor Forword Curront Tromsfer Ratio	$V_{\text {CE }}=-10 \mathrm{v}, \mathrm{I}_{\mathbf{c}}=-30$	$1=100 \mathrm{Mc}$	3.5	
C_{60}	Common-Base Open-Grait Output Copocitance	$V_{C t}=-5 \mathrm{v}, \quad \mathrm{l}_{\mathrm{E}}=0$,	$f=140 \mathrm{kc}$	6	pf
$4{ }_{6} 6$	Common-Baso Open-Gircuit Input Capocitance	$v_{\text {Et }}=-0.5 \mathrm{v}, \mathrm{t}_{\mathrm{c}}=0$,	$i=140 \mathrm{kc}$	10	pf

*operating charactoristics of $\mathbf{2 5}^{\circ} \mathrm{C}$ free-air temperafure

PARAMETER	TEST CONDITIONS \dagger	MIN MAX	UNIT
Id Delay Time	$\mathrm{Ic}_{\mathrm{c}}=-30 \mathrm{mo}, \quad I_{\text {mil }}=-3 \mathrm{ma}, V_{\text {melom }}=0$,	10	nsec
$\mathrm{I}_{\mathbf{r}}$ Rise Time	$\mathrm{R}_{\mathrm{L}}=94 \Omega, \quad$ See Figure 1	15	nsec
	$I_{c}=-30 \mathrm{mo}, \quad I_{\text {m }}(1)=-I_{\text {m } 21}=-3 \mathrm{mo}$,	50	nsec
\% Foll Time	$\mathrm{R}_{2}=94 \Omega, \quad$ Seef Figure 1	15	nsec
$\mathrm{V}_{\text {ctomul }} \ddagger$ Collector-Emitior Monlaching Voltage		-20	v

[^82] - $\mathbf{2 0 0} \mathrm{mm}$.

*PARAMETER MEASUREMENT INFORMATION

FIGURE 2 - COLLECTOR-EMITTER NONLATCHING VOLTAGE TEST CIRCUIT
 Owh Cyclo $\leq \mathbf{2 \%}$.

c. The inpul waviown in Figme 2 thes the following cherecteistics: PW $\leq 10 \mu$ sec, Dvity Cycle $\leq \mathbf{~} \%$.
d. Tond sellecter shume cepesilemses $\mathrm{C}_{\mathrm{T}} \leq 15 \mathrm{pf}$.
-Indicates JEDEC ragisterved deto

DESIGNED FOR COMPLEMENTARY MEDIUM-POWER, HIGH-SPEED SWITCHING AND GENERAL PURPOSE AMPLIFIER APPLICATIONS

- Electrically Similar to 2N2222/2N2907
- D.C Bota - Guarantood from $100 \mu \mathrm{a}$ to 150 ma
- Miniature Flatpack Facilitates High-Density Packaging
mechanleal data

*absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted) \dagger

NOTES: I. This valun applies between 0 and 10 ma when the beso-amilter diode is apen-eireuitod.
2. Derafe line arly to $115^{\circ} \mathrm{C}$ lroe-ale temparalure of the rate of $1.67 \mathrm{~mm} / \mathrm{C}^{\circ}$ for sach triode and $2.34 \mathrm{mw} / \mathrm{C}^{\circ}$ for lotal device.
3. Derate linsarily to $175^{\circ} \mathrm{C}$ case temperalure at the rate of $4.67 \mathrm{~mm} / \mathrm{C}^{\circ}$ for each triode and $9.34 \mathrm{~mm} / C^{\circ}$ for tetal devies.
-Indicates JEOEC roghtiored deta
tYellages and currents apply to the N.P-N trlode. For the P.M.P Itreds, the values ore the same, but the signs are revared.

electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature (unless othorwise noted) ${ }^{\dagger}$

*individual triode characteristics (see note 4)

PARAMETELR		TEST COMDITIONS			MIN	MAX	UNIT
$V_{\text {(m)cro }}$ Colloctor-Lase Breokdown Voltage		$\mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{a}$,	$\mathrm{I}_{\mathrm{E}}=0$		60		\checkmark
Vimjeso Collector-Emitter Breakdown Voltoge		$\mathrm{Ic}_{\mathrm{c}}=10 \mathrm{ma}$,	$10=0$,	Seo Note 5	40		v
$\mathrm{V}_{\text {(ma)ue }}$ Emitior-Bose Freakdown Voltrage		$\mathrm{I}_{\mathrm{E}}=10 \mu \mathrm{O}$,	$\mathrm{l}_{\mathrm{c}}=0$		5		v
Icev	Collector Cutoff Current	$V_{\text {Ci }}=50 \mathrm{v}$	$V_{\text {m }}=-0.5 \mathrm{~V}$			10	no
		$V_{\text {CE }}=50 \mathrm{v}_{1}$	$V_{\text {E }}=-0.5 v_{\text {, }}$	$\mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$		10	$\mu \mathrm{a}$
Imv	Base Cutoff Current	$V_{C E}=50 \mathrm{v}_{1}$	$V_{\text {m }}=-0.5 \mathrm{~V}$			-10	nu
\$100	Emifter Cutolf Currant	$V_{E 1}=3 v_{\text {, }}$	$\mathrm{I}_{\mathbf{c}}=0$			10	no
$h_{\text {re }}$	Static Forword Currant Transfar Ratio	$V_{C E}=1 v_{\text {, }}$	$\mathrm{lc}_{\mathrm{c}}=150 \mathrm{ma}$,	Seet Mote 5	50		
		$V_{C E}=10 r_{\text {r }}$	$I_{C}=100 \mu 0$		35		
		$V_{C E}=10 \mathrm{r}$,	$\mathrm{l}_{\mathrm{c}}=1 \mathrm{ma}$		50		
		$V_{\text {CE }}=10 v_{\text {r }}$	$\mathrm{l}_{\mathrm{c}}=10 \mathrm{ma}$,	See Mote 5	75		
		$V_{C t}=10 v_{1}$	$\mathrm{Ic}_{\mathrm{c}}=150 \mathrm{mo}, \mathrm{s}$	See Motu 5	100	300	
V1	Base-Emifter Voltage	$\mathrm{I}_{1}=15 \mathrm{ma}$,	$\mathrm{l}_{\mathrm{c}}=150 \mathrm{ma}$,	Seen Hote 5	0.85	1.3	v
$V_{\text {cantil }}$	Colloctor-Emitter Saluration Voltage	$\mathrm{I}_{1}=15 \mathrm{ma}$,	$\mathrm{I}_{\mathrm{c}}=150 \mathrm{ma}, \mathrm{s}$	See Moto 5		0.4	v
h_{10}	Small-Signal Commen-Emitter Input Impedanco	$v_{\text {CE }}=10 \mathrm{v}$,	$\mathrm{I}_{\mathrm{c}}=1 \mathrm{ma}$,	$f=1 \mathrm{kc}$	1.5	9	k Ω
h_{6}	Small-signal Forward Currant Trunster Rotio				60	300	
h_{0}	Small-Signol Comman-Emitter Output Admiftonce					50	$\mu \mathrm{mho}$
$\left\|h_{6}\right\|$	Small-Signal Common-Emittor Forword Curremt Trunsfer Ratio	$V_{\text {ct }}=10 \mathrm{v}$,	$\mathrm{I}_{\mathrm{c}}=20 \mathrm{ma}$,	$f=100 \mathrm{Mc}$	2		
$C_{\text {abo }}$	Common-Lase Open-Qrtelt Output Copoditance	$V_{\text {ct }}=10 \mathrm{v}$,	$\mathrm{l}_{\mathrm{E}}=0, \quad 1$	$1=140 \mathrm{kc}$		8	pf

operating characteristics of $25^{\circ} \mathrm{C}$ free-air temperature \dagger

*individual triode characteristics (see note 4)

PARAMITER	TEST CONDITIONS	MIN MAX	UNIT
td Dolay Time	$\begin{array}{ll} I_{C}=150 \mathrm{ma}, & I_{\text {Ril }}=15 \mathrm{ma}, \\ V_{\text {IEl\|off }}=0, \\ R_{L}=64 \Omega, & \text { Soe Figure } 1 \\ \hline \end{array}$	10	nsor
tr Rise Time		40	nsat
t_{2} Storage Time	$\begin{array}{ll} I_{C}=150 \mathrm{ma}, & I_{x_{1}(1)}=-I_{(\alpha) 1}=15 \mathrm{ma}, \\ R_{L}=64 \Omega, & \text { See Figure 2 } \end{array}$	250	nsot
th Foll Ilime		90	nsec
$V_{\text {ceoinle }}$ Collector-Emittor Nonlothing Voltages		40	v
MF Spot Nolse Flgure	$\begin{array}{ll} V_{C E}=10 \mathrm{v}, & \mathrm{I}_{\mathrm{C}}=100 \mu \mathrm{a}, \\ R_{G}=1 \mathrm{k} \mathrm{\Omega}, & f=1 \mathrm{kc} \end{array}$	8	db

MOTES: 4. The torminels of the triade not under test ere open-sircwitod for the muesurement of these characteristics.
5. These parameten must be mossured utiat pulse Iockniquos. PW $=\mathbf{3 0 0} \mu \mathrm{soc}$, Duly Cycto $\leq \mathbf{1 \%}$.
-Indicriter JEBEC regisiond dele
tyoliages end currents apply th the M-P-N tridel. For the P-N-P triode, the values are the seme, but the sigas are revernod.
\#Valtages and currunt velues shown are neminal; axect values vory with dovice perameters.

N-P-N, P-N-P DUAL SILICON TRANSISTOR

Floune :

figunt 2

 for Figure $2, \mathrm{z}_{\text {out }}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 10 \mathrm{nsec}, \mathrm{PW}=10 \mu \mathrm{sex}$, Duly Cyclo $\leq \mathbf{2 \%}$.
 $\mathrm{t}_{\mathrm{r}} \leq 5 \mathrm{nsec}, R_{\text {in }} \geq 100 \mathrm{k} \Omega, \mathrm{C}_{\text {in }} \leq 12 \mathrm{pf}$.
c. The input woveforn in Figure 3 has the follewing characteristics: PW $\leq 10 \mu \mathrm{sec}$, Duty Cycle $\leq 2 \%$.
d. The signs and polarity symbels shown are for the M.P-N triede; the sigms and polerity symbols are reversed ter the P-M.P triede.

- Indicales jedec rajistered dato

TYPES 2N3903, 2N3904, A5T3903, A5T3904 N-P-N SILICON TRANSISTORS

BULLETIN NO. DL-S 7311576, NOVEMBER 1971-REVISED MARCH 1973

SILECT ${ }^{\dagger}$ TRANSISTORS \ddagger

FOR GENERAL PURPOSE SATURATED-SWITCHING AND AMPLIFIER APPLICATIONS

- For Complementary Use with P-N-P Types 2N3905, 2N3906, A5T3905, and A5T3906
- Rugged One-Piece Construction with In-Line Leads or Standard TO-18 100-mil Pin-Circle Configuration

mechanical data

These transistors are encapsulated in a plastic compound specifically designed for this purpose, using a highly mechanized process developed by Texas Instruments. The case will withstand soldering temperatures without deformation. These devices exhibit stable characteristics under high-humidity conditions and are capable of meeting MIL-STD-202C, Method 106B. The transistors are insensitive to light.

absolute maximum ratings at $\mathbf{2 5}{ }^{\circ} \mathbf{C}$ free-air temperature (unless otherwise noted)

NOTES 1. This value applies between $10 \mu \mathrm{~A}$ and 200 mA collector current when the base-emitter diode is open-circuited.
2. Derate the $625-\mathrm{mW}$ rating linearly to $150^{\circ} \mathrm{C}$ free-air temperature at the rate of $5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$. Derate the $310-\mathrm{mW}$ (JEDEC registered) rating linearly to $135^{\circ} \mathrm{C}$ free-air temperature at the rate of $2.81 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
*The asterisk identifies JEDEC registered data for the 2 N3903 and 2 N3904 only. This data sheet contains all applicable registered data in effect at the time of publication.
${ }^{\dagger}$ Trademark of Texas Instruments
\ddagger U.S. Patent No. 3,439,238
USES CHIP N 14
§ Texas Instruments guarantees these values in addition to the JEDEC registered values which are also shown.

TYPES 2N3903, 2N3904, A5T3903, A5T3904 N-P-N SILICON TRANSISTORS

*electrical characteristics at $\mathbf{2 5}{ }^{\circ} \mathrm{C}$ free-air temperature

PARAMETER		TEST CONDITIONS		2N3903, A5T3903		2N3904, A5T3904		UNIT		
		MIN	MAX	MIN	MAX					
$V_{(B R)}$ CBO	Collector-Base Breakdown Voltage			${ }^{\prime} C=10 \mu A, \quad I_{E}=0$		60		60		V
$V_{\text {(BR) }}$ CEO	Collector-Emitter Breakdown Voltage	${ }^{\prime} \mathrm{C}=1 \mathrm{~mA}, \quad \mathrm{I}_{\mathrm{B}}=0$,	See Note 3	40		40		V		
$V_{\text {(BR)EBO }}$	Emitter-Base Breakdown Voltage	$I^{\prime}=10 \mu A, \quad I^{\prime} \times 0$		6		6		V		
ICEV	Collector Cutoff Current	$V_{C E}=30 \mathrm{~V}, V_{B E}=-3 \mathrm{~V}$			50		50	nA		
IBEV	Base Cutoff Current	$V_{C E}=30 \mathrm{~V}, V_{\text {BE }}=-3 \mathrm{~V}$			-50		-50	nA		
hFE	Static Forward Current Transfer Ratio	$\mathrm{V}_{\text {CE }}=1 \mathrm{~V}, \mathrm{I}^{\text {C }}=100 \mu \mathrm{~A}$		20		40				
		$\mathrm{V}_{\text {CE }}=1 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}$		35		70				
		$V_{C E}=1 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}$	See Note 3	50	150	100	300			
		$V_{C E}=1 \mathrm{~V}, \mathrm{I}^{\prime}=50 \mathrm{~mA}$		30		60				
		$V_{C E}=1 \mathrm{~V}, l_{\text {, }} \mathrm{C}=100 \mathrm{~mA}$		15		30				
$V_{B E}$	Base-Emitter Voltage	$\mathrm{I}_{\mathrm{B}}=1 \mathrm{~mA} . \quad \mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}$	See Note 3	0.65	0.85	0.65	0.85	V		
		$\mathrm{I}_{\mathrm{B}}=5 \mathrm{~mA}, \quad \mathrm{I}_{\mathrm{C}}=50 \mathrm{~mA}$			0.95		0.95			
$V_{C E}$ (sat)	Collector-Emitter	$I_{B}=1 \mathrm{~mA}, \quad I_{C}=10 \mathrm{~mA}$	See Note 3		0.2		0.2	V		
	Saturation Voltage	$\mathrm{I}_{\mathrm{B}}=5 \mathrm{~mA}, \quad \mathrm{I}^{\prime}=50 \mathrm{~mA}$			0.3		0.3			
$h_{\text {ie }}$	Small-Signal Common-Emitter Input Impedance			1	8	1	10	$\mathrm{k} \Omega$		
$h_{\text {fe }}$	Small-Signal Common-Emitter Forward Current Transfer Ratio			50	200	100	400			
$h_{\text {re }}$	Small-Signal Common-Emitter Reverse Voltage Transfer Ratio			$\begin{aligned} & 0.1 x \\ & 10^{-4} \end{aligned}$	$\begin{array}{r} 5 x \\ 10^{-4} \end{array}$	$\begin{gathered} 0.5 \times \\ 10^{-4} \end{gathered}$	$\begin{array}{r} 8 \times \\ 10^{-4} \end{array}$			
$h_{\text {oe }}$	Small-Signal Common-Emitter Output Admittance			1	40	1	40	$\mu \mathrm{mho}$		
$\left\|h_{\text {fe }}\right\|$	Small-Signal Common-Emitter Forward Current Transfer Ratio	$V_{C E}=20 \mathrm{~V}, \mathrm{I}^{\prime} \mathrm{C}=10 \mathrm{~mA}, \quad f=100 \mathrm{MHz}$		2.5		3				
${ }_{T}$	Transition Frequency	$\mathrm{V}_{\text {CE }}=20 \mathrm{~V}, \mathrm{I}^{\prime}=10 \mathrm{~mA}$, See Note 4		250		300		MHz		
Cobo	Common-Base Open-Circuit Output Capacitance	$\begin{aligned} & V_{C B}=5 \mathrm{~V}, \quad I_{E}=0, \\ & f=100 \mathrm{kHz} \text { to } 1 \mathrm{MHz} \end{aligned}$		4		4		pF		
$C_{\text {ibo }}$	Common-Base Open-Circuit Input Capecitance	$\begin{aligned} & V_{E B}=0.5 \mathrm{~V} . \mathrm{I}^{\mathrm{C}}=0, \\ & \mathrm{f}=100 \mathrm{kHz} \text { to } 1 \mathrm{MHz} \end{aligned}$		8		8		pF		

NOTES: 3. These parameters must be measured using puise techniques. $t_{w}=300 \mu \mathrm{~s}$, duty cycle $\leqslant 2 \%$
4. To obtain f_{T}, the $\left|h_{f}\right|$ response with frequency is extrapolated at the rate of -6 dB per octave from $f=100 \mathrm{MHz}$ to the frequency at which $\left|h_{f e}\right|=1$.
*operating characteristics at $\mathbf{2 5}{ }^{\circ} \mathrm{C}$ free-air temperature

PARAMETER		TEST CONDITIONS	$\begin{aligned} & \text { 2N3903 } \\ & \text { A5T3903 } \end{aligned}$		$\begin{aligned} & \text { 2N3904 } \\ & \text { A5T3904 } \end{aligned}$		UNIT	
		MIN	MAX	MIN	MAX			
$\overline{\mathbf{N F}}$	Average Noise Figure		$\begin{aligned} & V_{C E}=5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{C}}=100 \mu \mathrm{~A}, \quad \mathrm{R}_{\mathrm{G}}=1 \mathrm{k} \Omega, \\ & \text { Noise Bandwidth }=15.7 \mathrm{kHz}, \\ & \text { See Note } 5 \end{aligned}$		6		5	dB

NOTE 5: Average Noise Figure is measured in an amplifier with response down 3 dB at 10 Hz and 10 kHz and a high-frequency rolloff of 6 dB/octave.
*The asteriak identifies JEDEC registered data for the 2N3903 and 2N3904 only.
*switching characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER	TEST CONDITIONS ${ }^{\dagger}$			$\begin{aligned} & \text { 2N3903 } \\ & \text { A5T3903 } \end{aligned}$	$\begin{array}{r} 2 N 3904 \\ \text { A5T3904 } \end{array}$	UNIT
				MAX	MAX	
$t_{\text {d }}$ Delay Time	$\begin{aligned} & I_{C}=10 \mathrm{~mA} . \\ & R_{L}=275 \Omega . \end{aligned}$	$l_{B(1)}=1 \mathrm{~mA}$,	$V_{\mathrm{BE}(\mathrm{off})}=-0.5 \mathrm{~V}$ See Figure 1	35	35	ns
$t_{\text {r }}$ R ${ }^{\text {ase Time }}$				35	35	ns
$\mathrm{t}_{\text {s }}$ Storage Time	$\begin{aligned} & I C=10 \mathrm{~mA}, \\ & R_{L}=275 \Omega \end{aligned}$	$\mathrm{I}_{\mathrm{B}}(1)=1 \mathrm{~mA}$,	$\mathrm{I}_{\mathrm{B}(2)}=-1 \mathrm{~mA} \text {. }$ See Figure 2	175	200	ns
t_{f} Fall Time				50	50	ns

${ }^{\dagger}$ Voltage and current values shown are nominal; exact values vary slightly with transistor parameters. Nominal base current for delay and rise times is calculated using the minimum value of $V_{B E}$. Nominal base currents for storage and fall times are calculated using the maximum value of $V_{B E}$.
-The asterisk identifies JEDEC registered data for the 2N3903 and 2N3904 only.
PARAMETER MEASUREMENT INFORMATION

TEST CIRCUIT

VOLTAGE WAVEFORMS

FIGURE 1-DELAY AND RISE TIMES

FIGURE 2-STORAGE AND FALL TIMES

NOTES: a. The input waveforms are supplied by a generator with the following characteristics: $Z_{\text {out }}=50 \Omega$, duty cycle $=\mathbf{2 \%}$.
b. Waveforms are monitored on an oscilloscope with the following characteristics: $\mathrm{t}_{\mathrm{r}} \leqslant 1 \mathrm{~ns}, \mathrm{R}_{\text {in }}=10 \mathrm{M} \Omega, \mathrm{C}_{\mathrm{in}} \leqslant 4 \mathrm{pF}$.

TYPES 2N3905, 2N3906, A5T3905, A5T3906 P-N-P SILICON TRANSISTORS

BULLETIN NO. DL.S 7311577, NOVEMBER 1971-REVISED MARCH 1973

SILECT ${ }^{\dagger}$ TRANSISTORS ${ }^{\ddagger}$
 FOR GENERAL PURPOSE SATURATED-SWITCHING AND AMPLIFIER APPLICATIONS

- For Complementary Use with N-P-N Types 2N3903, 2N3904, A5T3903, and A5T3904
- Rugged One-Piece Construction with In-Line Leads or Standard TO-18 100-mil Pin-Circle Configuration
mechanical data
These transistors are encapsulated in a plastic compound specifically designed for this purpose, using a highly mechanized process developed by Texas Instruments. The case will withstand soldering temperatures without deformation. These devices exhibit stable characteristics under high-humidity conditions and are capable of meeting MIL-STD-202C, Method 106B. The transistors are insensitive to light.

2N3905, 2N3906 NOTES: A. Lead diameter is not controlled in this area. B. All dimensions are in inches. *ALL JEDEC TO-92 DIMENSIONS AND NOTES ARE APPLICABLE	
A5T3905, A5T3906 NOTES: A. Lead diameter is not controlled in this area. B. Leads having maximum diameter (0.019) shall be within 0.007 of their true positions measured in the gaging plane 0.054 below the seating plane of the device relative to a maximumdiameter package. C. All dimensions are in inches.	

absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

NOTES: 1. This value applies between $10 \mu \mathrm{~A}$ and 200 mA collector current when the base-emitter diode is open-circuited.
2. Derate the $625-\mathrm{mW}$ rating linearly to $150^{\circ} \mathrm{C}$ free-air temperature at the rate of $5 \mathrm{~mW} /^{\circ} \mathrm{C}$. Derate the $310-\mathrm{mW}$ (JEDEC registered) rating linearly to $135^{\circ} \mathrm{C}$ free-air temperature at the rate of $2.81 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
*The asterisk identifies JEDEC registered data for the 2 N3905 and 2 N 3906 only. This data sheet contains all applicable registered data in effect at the time of publication.
\dagger Trademark of Texas Instruments
キU.S. Patent No. 3,439.238
§ Texas Instruments guarantees these values in addition to the JEDEC registered values which are also shown.

TYPES 2N3905, 2N3906, A5T3905, A5T3906 P-N-P SILICON TRANSISTORS

*electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAME TER		TEST CONDITIONS		$\begin{gathered} 2 \mathrm{~N} 3905 \\ \text { A5T3906 } \\ \hline \end{gathered}$	$\begin{gathered} \text { 2N3906 } \\ \text { A5T } 3906 \end{gathered}$	UNIT		
		MIN MAX	MIN MAX					
V(BR)CBO	Collector-Base Breakdown Voltage			$I_{C}=-10 \mu A, \quad I_{E}=0$		-40	-40	V
$V_{\text {(BR) }}$ CEO	Collector-Emitter Breakdown Voltage	$\mathrm{I}^{\prime} \mathrm{C}=-1 \mathrm{~mA}, \quad \mathrm{I}^{\prime}=0$,	See Note 3	-40	-40	V		
$V_{\text {(BA) EBO }}$	Emitter-Base Breakdown Voltage	$I_{E}=-10 \mu A, \quad I C=0$		-5	-5	V		
ICEV	Collector Cutoff Current	$\mathrm{V}_{\text {CE }}=-30 \mathrm{~V}, \quad \mathrm{~V}_{\text {BE }}=3 \mathrm{~V}$		-50	-50	nA		
IBEV	Bese Cutoff Current	$V_{C E}=-30 \mathrm{~V}, V_{B E}=3 \mathrm{~V}$		50	50	nA		
$h_{\text {fe }}$	Static Forward Current Transfer Ratio	$V_{C E}=-1 \mathrm{~V}, \quad \mathrm{I}^{\prime}=-100 \mu \mathrm{~A}$		30	60			
		$\mathrm{V}_{\text {CE }}=-1 \mathrm{~V}, \quad 1 \mathrm{C}=-1 \mathrm{~mA}$		40	80			
		$\mathrm{V}_{\text {CE }}=-1 \mathrm{~V}, 1 \mathrm{C}=-10 \mathrm{~mA}$	See Note 3	$50 \quad 150$	$100 \quad 300$			
		$\mathrm{V}_{\text {CE }}=-1 \mathrm{~V}$, I $\mathrm{I}^{\text {C }}=-50 \mathrm{~mA}$		30	60			
		$V_{C E}=-1 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{C}}=-100 \mathrm{~mA}$		15	30			
VBe	Base-Emitter Voltage	$I_{B}=-1 \mathrm{~mA}, \quad I_{C}=-10 \mathrm{~mA}$	See Note 3	-0.65-0.85	-0.65-0.85	V		
		$\mathrm{I}^{1}=-5 \mathrm{~mA}, \quad{ }^{1} \mathrm{C}=-50 \mathrm{~mA}$		-0.95	-0.95			
VCE (sat)	Collector-Emitter Saturation Voltage	$\mathrm{I}_{B}=-1 \mathrm{~mA}, \quad \mathrm{I}^{\prime}=-10 \mathrm{~mA}$	See Note 3	-0.25	-0.25	V		
		$\mathrm{I}_{B}=-5 \mathrm{~mA}, \quad \mathrm{I}^{\prime} \mathrm{C}=-50 \mathrm{~mA}$		-0.4	-0.4			
$h_{\text {ie }}$	Small-Signal Common-Emitter Input Impedance	$V_{C E}=-10 \mathrm{~V}$,$1 \mathrm{C}=-1 \mathrm{~mA},$		0.58	212	$\mathrm{k} \Omega$		
$n_{\text {fe }}$	Small-Signal Common-Emitter Forward Current Transfer Ratio			$50 \quad 200$	100400			
$\mathrm{h}_{\text {re }}$	Small-Signal Cormmon-Emitter Reverse Voltage Transfer Ratio			$\begin{array}{\|lr} \hline 0.1 \times & 5 \times \\ 10^{-4} & 10^{-4} \\ \hline \end{array}$	$\begin{array}{lc} \hline 0.1 \times 10 \times \\ 10^{-4} & 10^{-4} \\ \hline \end{array}$			
$h_{\text {oe }}$	Small-Signal Common-Emitter Output Admittance			140	360	$\mu \mathrm{mho}$		
$\mid h_{\text {fe }} \mathbf{l}$	Smali-Signal Common-Emitter Forwerd Current Transfer Ratio	$V_{C E}=-20 \mathrm{~V}, I^{\prime}=-10 \mathrm{~mA}$,	$f=100 \mathrm{MHz}$	2	2.5			
${ }_{\text {f }}$	Transition Frequency	$V_{C E}=-20 \mathrm{~V}, \mathrm{I}^{\text {c }}=-10 \mathrm{~mA}$,	See Note 4	200	250	MHz		
$C_{\text {cbo }}$	Common-Base Open-Circuit Output Capacitance	$\begin{aligned} & V_{C B}=-5 \mathrm{~V}, \quad I_{E}=0, \\ & I=100 \mathrm{kHz} \text { to } 1 \mathrm{MHz} \end{aligned}$		4.5	4.5	pF		
Cibo	Common-Base Open-Circuit Input Capacitance	$\begin{aligned} & V_{E B}=-0.5 V, I^{\prime}=0, \\ & f=100 \mathrm{kHz} \text { to } 1 \mathrm{MHz} \end{aligned}$		10	10	pF		

NOTES: 3. These parameters must be measured using puise techniques. $\mathrm{t}_{\mathbf{w}}=\mathbf{3 0 0} \mu \mathrm{s}$, duty cycle $\leqslant \mathbf{2 \%}$.
4. To obtain f_{T}, the $\left.\right|_{h f e} \mid$ response is extrapolated at the rate of -6 dB per octave from $f=100 \mathrm{MHz}$ to the frequency at which $\left|h_{\text {fe }}\right|=1$.
*operating characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER		TEST CONDITIONS	$\begin{aligned} & \text { 2N3905 } \\ & \text { A5T3905 } \\ & \hline \end{aligned}$		$\begin{gathered} \text { 2N3906 } \\ \text { A5T } 3906 \\ \hline \end{gathered}$		UNIT	
		MIN	MAX	MIN	MAX			
$\overline{N F}$	Average Noise Figure		$\begin{array}{ll} V_{C E}=-5 \mathrm{~V}, & \mathrm{I}_{\mathrm{C}}=-100 \mu \mathrm{~A}, \\ R_{G}=1 \mathrm{k} \Omega, & \text { Noise Bandwidth }=15.7 \mathrm{kHz}, \\ \text { See Note } 5 & \\ \hline \end{array}$		5		4	dB

NOTE 5: Average Noise Figure is measured in an amplifier with responise down 3 dB at 10 Hz and 10 kHz and a high-frequency rolloff of 6 dB/octave.
-The asterigk identifies JEDEC regiatered data for the 2N3905 and 2N3906 only.

TYPES 2N3905, 2N3906, A5T3905, A5T3906 P-N-P SILICON TRANSISTORS

"switching characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER		TEST CONDITIONS ${ }^{\dagger}$	$\begin{gathered} \text { 2N3905 } \\ \text { A5T3905 } \end{gathered}$	$\begin{gathered} \text { 2N3806 } \\ \text { AST3906 } \end{gathered}$	UNIT	
		MAX	MAX			
t_{d}	Delay Time		$\begin{array}{ll} I_{C}=-10 \mathrm{~mA}, & \mathrm{I}_{\mathrm{B}}(1)=-1 \mathrm{~mA}, \\ \mathrm{R}_{\mathrm{L}}=275 \Omega, & \text { See Figure } 1 \\ \hline \end{array}$	35	35	ns
t_{r}	Rise Time	35		35	ns	
t_{s}	Storage Time	$\begin{array}{ll} I_{C}=-10 \mathrm{~mA}, & I_{B}(1)=-1 \mathrm{~mA}, \\ I_{\mathrm{B}}(2)=1 \mathrm{~mA}, \\ R_{L}=275 \Omega, & \text { See Figure } 2 \end{array}$	200	225	ns	
t_{f}	Fall Time		60	75	ns	

TVoltage and current values shown are nominal; exact values vary slightly with transistor parametars. Nominal base current for delav and rise times is calculated using the minimum value of V_{BE}. Nominal base currente for storage and fall times are calculated using the maximum value of V_{BE}.
*The asterisk ldentifies JEDEC registered date for the 2N3905 and 2N3906 only.

PARAMETER MEASUREMENT INFORMATION

FIGURE 2-STORAGE AND FALL TIMES
NOTES: a. The input waveforms are supplied by a genarator with the following characteristics: $Z_{\text {out }}=\mathbf{m 0} \Omega$, duty cycle $=\mathbf{2 \%}$,
b. Waveforms are monitored on an oscilloscope with the following characteriatics: $t_{r} \leq 1 \mathrm{~ns}, \mathrm{R}_{\mathrm{in}}=10 \mathrm{M} \Omega, \mathrm{C}_{\mathrm{in}} \leqslant 4 \mathrm{pF}$.

ELECTRICALLY SIMILAR TO 2N2386 AND 2N2386A
 FOR AUDIO- TO HIGH-FREQUENCY SMALL-SIGNAL AMPLIFIERS 2N3909A offiers groatly improved $\left|y_{m}\right| / \mathbf{C}_{\text {m }}$ ratio resulting from process innovation:
 - $\left|y_{f}\right|$ Min Raised from 1 mmho to 2.2 mmho
 - Cm Max Lowered from 16 pF to 3 pF

*mechanicel defen

*absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air tomperature (unless othorwise noted)

*electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temporature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS \ddagger	2N3909	2N3909A	UNIT
$V_{\text {cexpess }}$	Gato-Sourcu Breakdown Voltage	$1_{0}=10 \mu h, V_{D S}=0$	20	20	V
lass	Gate Revarse Curront	$V_{\text {es }}=10 V_{1}, V_{\text {DS }}=0$	10	10	nA
		$V_{\text {GS }}=10 \mathrm{~V}, \quad V_{\text {DS }}=0, \quad \mathrm{~T}_{A}=100^{\circ} \mathrm{C}$	1	1	$\mu \mathrm{N}$
Vestofn	Gato-Sourte Cutoff Voltape	$V_{D S}=-10 \mathrm{~V}, \mathrm{I}_{0}=-10 \mu \mathrm{~A}$	8	8	V
Yes	Gata-Source Voltage	$V_{D S}=-10 \mathrm{~V}, I_{0}=-30 \mu \mathrm{~A}$	$0.3 \quad 7.9$	$0.3 \quad 7.9$	V
loss	Zero-Gate-Voltage Drain Current	$V_{\text {DS }}=-10 \mathrm{~V}, \mathrm{~V}_{\text {SS }}=0$	$\begin{array}{ccc}-0.3 & -15\end{array}$	-1 -15	mA
$\left\|\boldsymbol{y}_{\boldsymbol{H}}\right\|$	Small-Signal Common-Sourca Formard Transfor Admittance		1	2.2	mmho
\|Yos]	Small-Signal Common-Source Output Admiltance		0.1	0.1	mmho
C_{30}	Common-Source Short-CIrtult Input Capadtances		32	9	pF
Crss	Commen-Source Shori-Cirult Reverse Transfer Capacitance		16	3	pF
$\left\|y_{t s}\right\|$	Small-Signal Common-Source Forward Transfor Admittance	$\mathrm{V}_{\mathrm{Os}}=-10 \mathrm{~V}, \mathrm{~V}_{\mathrm{ss}}=0, \quad 1=10 \mathrm{mHz}$	0.9	2	mmho

NOTE $1:$ Derate linearly to $175^{\circ} \mathrm{C}$ frec-ale temperature at the rate of $2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
\ddagger The fourth leed (cese) is connected to the neurce for all measuraments.
*Indicater JEDEC raglaterad date
USES CHIP JP7 1

FOR LOW-LEVEL, LOW-NOISE, HIGH-GAIN, SMALL-SIGNAL AMPLIFIER APPLICATIONS

- Guaranteed hfe at $10 \mu \mathrm{~A}, \mathrm{TA}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ and $25^{\circ} \mathrm{C}$
- Guaranteed Low-Noise Characteristics at $20 \mu \mathbf{A}$
*merhanical data

*absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

MOTES: 1. Theso valwes apply betwoen $10 \mu \mathrm{~A}$ and 5 mA cellector currant when the bese-tmititer diode is apen-circuited.
2. Derate Itinearly to $200^{\circ} \mathrm{C}$ fros-air temperature at the rate of $2.06 \mathrm{~mW} / \mathrm{dog}$. See Figure 1 .
3. Derate linenty to $200^{\circ} \mathrm{C}$ case temperature al the rate of $6.85 \mathrm{mw} / \mathrm{deg}$. Seet figure 2 .
*electrical characteristics at $25^{\circ} \mathbf{C}$ free-air temperature (unless otherwise noted)

MOTE 4: These parameters must be measured using pulse fechniques. $t_{p}=300 \mu s$, duty cycle $\leq 1 \%$.
*Indicates JEDEC registered data
*operating characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER		TEST CONDITIONS	$\begin{aligned} & 2 N 3962 \\ & 2 N 3963 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 2N3964 } \\ & \text { 2N3965 } \\ & \hline \end{aligned}$	UNIT	
		MAX	MAX			
MF	Spot Moiso Figure		$\begin{aligned} & Y_{C E}=-5 V, I_{C}=-20 \mu \mathrm{~A}, \mathrm{I}_{6}=10 \mathrm{kQ}, \\ & \mathrm{f}=10 \mathrm{~Hz}, \text { Moise Bondwidth }=2 \mathrm{~Hz} \end{aligned}$		1	d
		$\begin{aligned} & y_{C E}=-5 v, \mathrm{I}_{c}=-20 \mu A_{1} \mathrm{R}_{G}=10 \mathrm{kQ}, \\ & \mathrm{f}=100 \mathrm{~Hz} \text {, Molse Bandwidth }=15 \mathrm{~Hz} \end{aligned}$	10	4	d	
			3	2	${ }^{4}$	
		$\begin{aligned} & V_{C E}=-5 \mathrm{~V}, \mathrm{I}_{\mathrm{c}}=-20 \mu \mathrm{~A}_{\mathrm{c}} \mathbf{E}_{\mathrm{s}}=10 \mathrm{k} \mathrm{\Omega}, \\ & 1=10 \mathrm{kHz} \text {, Meiss landwidh }=1.5 \mathrm{kHz} \end{aligned}$	3	2	4	
WF	Average Moiss Figure	$\begin{aligned} & V_{\mathrm{CE}}=-5 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=-20 \mu \mathrm{~A}, \quad \mathrm{M}_{\mathrm{G}}=10 \mathrm{k} \mathrm{\Omega}, \\ & \text { Moiss, Bandwidh }=15.7 \mathrm{kHz}, \text { So0 Mols } 5 \end{aligned}$	3	2	d	

more s: Averaga Moise Figure is massured in an amplifier with response down 3 dt of 10 Hz and 10 kHz and a high-froquency rolloff of 6 de/octave.
*Indicotes JEDEC registerod data

THERMAL INFORMATION

FIGURE 1

CASE TEMPERATURE

figure 2

FOR HIGH-SPEED COMMUTATOR AND CHOPPER APPLICATIONS

- Low rds(on) . . . 220Ω Max
- Low ID(off) . . . 1 nA Max
- Low Crss . . . 1.5 pF Max

*mechanical data

*absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

*electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

PARAMETER		TEST CONDITIONSt			MIN MAX	UNIT
$V_{\text {(BR) }}$ GSS	Gate-Source Breakdown Voltage	$\mathrm{I}_{\mathrm{G}}=-1 \mu \mathrm{~A}$,	$V_{D S}=0$		-30	V
IGSS	Gate Reverse Current	$\mathrm{V}_{\mathrm{GS}}=-20 \mathrm{~V}$,	$V_{D S}=0$		-0.1	nA
IDGO	Drain Reverse Current	$V_{\text {DG }}=20 \mathrm{~V}$.	IS $=0$		0.1	nA
		$V_{\text {DG }}=20 \mathrm{~V}$.	$I_{S}=0$,	$\mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$	0.2	$\mu \mathrm{A}$
${ }^{\prime} \mathrm{D}$ (off)	Drain Cutoff Current	$V_{\text {DS }}=10 \mathrm{~V}$.	$\mathrm{V}_{\text {GS }}=-7 \mathrm{~V}$		1	nA
		$\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}$	$\mathrm{V}_{\text {GS }}=-7 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$	2	$\mu \mathrm{A}$
$V_{\text {GS }}$ (off)	Gate-Source Voltage	$V_{\text {DS }}=10 \mathrm{~V}$.	$I_{D}=10 \mathrm{nA}$		-4 -6	V
IDSS	Zero-Gate-Voltage Drain Current	$\mathrm{V}_{\text {DS }}=20 \mathrm{~V}$,	$V_{G S}=0$		2	mA
VDS(on)	Drain-Source On-State Voltage	$V_{G S}=0$,	$\mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA}$		0.25	V
rds(on)	Small-Signal Drain-Source On-State Resistance	$V_{G S}=0$,	$\mathrm{I}_{\mathrm{D}}=0$,	$\mathbf{t}=1 \mathrm{kHz}$	220	Ω
$C_{\text {iss }}$	Common-Source Short-Circuit Input Capacitance	$V_{D S}=20 \mathrm{~V}$	$V_{G S}=0$,	$\mathrm{f}=1 \mathrm{MHz}$	6	pF
$C_{\text {rss }}$	Common-Source Short-Circuit Reverse Transfer Capacitance	$V_{D S}=0$,	$V_{G S}=-7 \mathrm{~V}$,	$\mathrm{f}=1 \mathrm{MHz}$	1.5	pF

[^83]USES CHIP JN51

TYPE 2N3966
 N-CHANNEL SILICON JUNCTION FIELD-EFFECT TRANSISTOR

*switching characteristics at $\mathbf{2 5}{ }^{\circ} \mathrm{C}$ free-air temperature

PARAMETER		TEST CONDITIONS ${ }^{\dagger}$		MAX	UNIT
${ }^{\text {d }}$ d(on)	Turn-On Delay Time	$V_{D D}=1.5 \mathrm{~V}$, $I_{D(o n)} \simeq 1 \mathrm{~mA}$, $V_{G S(o n)}=0$, $V_{G S(o f f)}=-6 \mathrm{~V}$. See Figure 1 See Figure 1		20	ns
$\mathrm{t}_{\boldsymbol{r}}$	Rise Time			100	ns
${ }_{\text {toff }}$	Turn-Off Time			100	ns

${ }^{\dagger}$ The fourth lead (case) is connected to the source for all measurements.
*PARAMETER MEASUREMENT INFORMATION

NOTES: A. The input waveforms are supplied by a generator with the following characteristics: $Z_{\text {out }}=50 \Omega$, duty cycle $\leqslant 50 \%$.
B. Waveforms are monitored on an oscilloscope with the following characteristics: $\mathrm{t}_{\mathrm{r}} \leqslant 10 \mathrm{~ns}, \mathrm{R}_{\mathrm{in}} \geqslant 5 \mathrm{M} \Omega, \mathrm{C}_{\mathrm{in}} \leqslant 10 \mathrm{pF}$

- JEDEC registered data

TYPES 2N3970 THRU 2N3972 N-CHANNEL SILICON JUNCTION FIELD-EFFECT TRANSISTORS

SYMMETRICAL N-CHANNEL FIELD-EFFECT TRANSISTORS FOR HIGH-SPEED COMMUTATOR AND CHOPPER APPLICATIONS

\author{

- Low ID(off) . . . 0.25 nA Max
 - Low rds(on) Ciss Product
}

*mechanical data

*absolute maximum ratings at $\mathbf{2 5}{ }^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

NOTE 1: Darate linearly to $200^{\circ} \mathrm{C}$ case temperature at the rate of $10.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
-JEDEC registered data. This data sheet contains all applicable registered data in effect at the time of publication.

TYPES 2N3970 THRU 2N3972
 N-CHANNEL SILICON JUNCTION FIELD-EFFECT TRANSISTORS

*electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

PARAMETER		TEST CONDITIONS	2N3970	2N3971	2N3972	UNIT	
		MIN MAX	MIN MAX	MIN MAX			
$V_{\text {BRIGSS }}$	Gate-Source Breakdown Voltage		$\mathrm{I}_{6}=-1 \mu \mathrm{~A}, V_{\text {DS }}=0$	-40	-40	-40	V
logo	Drain Reverse Current	$V_{D G}=20 \mathrm{~V}, \mathrm{I}_{5}=0$	0.25	0.25	0.25	nA	
		$V_{D G}=20 \mathrm{~V}, \mathrm{I}_{S}=0, \quad \mathrm{~T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$	0.5	0.5	0.5	$\mu \mathrm{A}$	
IDOTH1	Droin Cutoff Current	$V_{D S}=20 \mathrm{~V}, \quad \mathrm{~V}_{G S}=-12 \mathrm{~V}$	0.25	0.25	0.25	nA	
		$V_{\text {DS }}=20 \mathrm{~V}, \quad V_{G S}=-12 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$	0.5	0.5	0.5	$\mu \mathrm{A}$	
$V_{6 S(0+f)}$	Gate-Source Cutoff Voltage	$V_{\text {DS }}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{nA}$	-4 -10	-2 -5	$\begin{array}{ll}-0.5 & -3\end{array}$	\checkmark	
loss	Zero-Gate-Voltage Droin Current	$V_{D S}=20 \mathrm{~V}, \quad V_{G S}=0, \quad$ See Note 2	$50 \quad 150$	$25 \quad 75$	$5 \quad 30$	mA	
$V_{\text {DSion) }}$	Drain-Sourte On-State Voltage	$V_{G S}=0, \quad I_{0}=20 \mathrm{~mA}$	1			V	
		$V_{G S}=0, \quad I_{D}=10 \mathrm{~mA}$		1.5			
		$V_{G S}=0, \quad I_{D}=5 \mathrm{~mA}$			2		
ros(on)	Static Drain-Source On-State Resistance	$V_{G S}=0, \quad I_{0}=1 \mathrm{~mA}$	30	60	100	Ω	
$\mathrm{P}_{\mathrm{ds}(\mathrm{om})}$	Small-Signal Droin-Source On-State Resistance	$V_{G S}=0, \quad I_{D}=0, \quad f=1 \mathrm{kHz}$	30	60	100	Ω	
C_{103}	Common-Sourte Short-Circuit Input Capacitance	$V_{D S}=20 \mathrm{~V}, \quad V_{G S}=0, \quad \begin{aligned} & f=1 \mathrm{MHz}, \\ & \text { See Note } 3\end{aligned}$	25	25	25	pF	
$\mathrm{C}_{\text {ss }}$	Common-Source Short-Circuif Reverse Transfer Capacitance	$V_{D S}=0, \quad V_{G S}=-12 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	6	6	6	pF	

*switching characferistics at $\mathbf{2 5}^{\mathbf{\circ}} \mathbf{C}$ free-air temperature

PARAMETER		TEST CONDITIONS		2N3970		2N3971		2N3972		UNIT		
		TYP	MAX	TYP	MAX	TYP	MAX					
${ }_{\text {dal(on) }}$	Turn-On Delay Time						10		15		40	ns
t_{r}	Rise Time		10				15		40	ns		
toth	Turn-Off Time		30				60		100	ns		
t_{r}	Rise Time	$V_{D D}=10 \mathrm{~V}, \quad I_{D(o n)} \dagger=\left\{\begin{array}{r}12 \mathrm{~mA}(2 \mathrm{~N} 3970) \\ 6 \mathrm{~mA}(2 \mathrm{N3971}) \\ 3 \mathrm{~mA}(2 \mathrm{~N} 3972) \\ -12 \mathrm{~V}(2 \mathrm{N3970}) \\ -7 \mathrm{~V}(2 \mathrm{~N} 3971) \\ -5 \mathrm{~V}(2 \mathrm{~N} 3972)\end{array}\right.$$V_{G S(\text { onl }}=0$,		2		3		4		ns		
$t_{\text {on }}$	Tum-On Time			5.5		6.5		8		ns		
${ }_{\text {f }}$	Fall Time			7		13		27		ns		
$\mathrm{t}_{\text {oth }}$	Turn-Off Time			10		18		31		ns		

NOTES: 2. This paramater must be masured using pulse tachniques, $\mathbf{t}_{w}=300 \mu \mathrm{~s}$, duty cycle $\leq 3 \%$.
3. This paramater must be mieasured with bias voltages applied for less than 5 seconds to avoid ovarheating.
†These are nominal values; exact volues vary slighily with transistor parameters.

* JEDEC registored dato (typleal data exeluded).

TYPES 2N3970 THRU 2N3972
 N-CHANNEL SILICON JUNCTION FIELD-EFFECT TRANSISTORS

PARAMETER MEASUREMENT INFORMATION

NOTES: a. The Input waveforms are mpplied by a genarator with the following characteristics: $\mathbf{Z}_{\text {out }}=\mathbf{8 0} \boldsymbol{\Omega}$, duty cycle $\approx 2 \%$.
b. Waveforms are monitored on an oscilloscope with the following eharacterietics: $\mathrm{t}_{\mathrm{r}}<0.4 \mathrm{~ns}, \mathrm{R}_{\mathrm{ln}}=10 \mathrm{M} \Omega, \mathrm{C}_{\mathrm{in}}=1.5 \mathrm{pF}$.

NOTE a: An equivalent generator and oscilloscope may be used. The oscilloscope must have a $50-\Omega$ input impedance.
FIOURE 2

PLANAR UNIJUNCTION TRANSISTORS SPECIFICALLY CHARACTERIZED FOR A WIDE RANGE OF MILITARY, SPACE, AND INDUSTRIAL APPLICATIONS:

2N3980 for General-Purpose UJT Applications
2N4947 for High-Frequency Relaxation-Oscillator Circuits
2N4948 for Thyristor (SCR) Trigger Circuits
2N4949 for Long-Time-Delay Circuits

- Planar Process Ensures Extremely Low Leakage, High Performance with Low Driving Currents, and Greatly Improved Reliability

*mechanical data

Package outline is same as JEDEC TO-18 except for lead position. All TO-18 registration notes also apply to this outline.

*absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

NOTES: 1. Interbase voltoge is limited solely by power dissipation, $\mathbf{V}_{B 2-B 1}=\sqrt{r_{B B}{ }^{*} P_{T}}$
2. This value applies for a capacitor discharge through the emitter-basa-one diode. Currant must fall to 0.31 a within $\mathbf{3} \mathbf{m s}$ and pulsa-roporition rafe must not exceed 10 pps.
3. Derate linearly to $175^{\circ} \mathrm{C}$ free-air temperature at the rate of $2.4 \mathrm{~mW} / \mathrm{deg}$.

[^84]
TYPES 2N3980, 2N4947 THRU 2N4949 P-N PLANAR SILICON UNLUNCTION TRANSISTORS

*electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

PARAMETER		TEST CONDITIONS	2N3980	$2 N 4947$	2N4948	2N4949	UNIT	
		MIN MAX	MIN MAX	MIN MAX	MIN MAX			
r_{88}	Static Interbase Resistence		$\mathbf{V}_{\mathbf{8 2}-\mathrm{B} 1}=3 \mathbf{V}, \quad \mathrm{t}_{\mathbf{E}}=0$	48	49.1	412	412	$\mathrm{k} \Omega$
$\alpha_{\text {r }}{ }_{\text {B }}$	Interbase Resistance Temperature Coefficient	$\begin{aligned} & V_{B 2-B 1}=3 V, \quad I_{E}=0, \\ & T_{A}=-65^{\circ} \mathrm{C} \text { to } 100^{\circ} \mathrm{C}, \quad \text { See Note } 4 \end{aligned}$	0.40 .9	0.10 .9	0.10 .9	0.10 .9	\%/deg	
η	Intrinsic Standoff Ratio	$V_{\text {e2-bl }}=10 \mathrm{~V}$, See Figure 1	0.680 .82	0.510 .69	0.550 .82	0.740 .86		
${ }^{13}$ [mod)	Modulated Interhase Current	$V_{\text {B2-81 }}=10 \mathrm{Y}, \quad \mathrm{I}_{\mathrm{E}}=50 \mathrm{~mA}$, See Mote 5	12	12	12	12	ma	
		$\mathrm{V}_{\mathrm{EB2} 2}=-30 \mathrm{~V}_{\text {\% }} \quad \mathrm{I}_{\mathrm{B1}}=0$	-10	-10	-10	-10	nA	
$\mathrm{IER2O}^{\circ}$	Emitter Reverse Current	$V_{\mathrm{EB2} 2}=-30 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{B} 1}=0, \quad \mathrm{~T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$	-	-1	-1	-1	$\mu \mathrm{A}$	
Ip	Peak-Point Emitter Cerrent	$\mathbf{v}_{\mathbf{B 2}-\mathrm{B1}}=25 \mathrm{v}$	2	2	2	1	$\mu \cdot /$	
$V_{\text {Ealisat] }}$	Emitter - Base-One Saturation Voltage	$\mathbf{v}_{\text {B2-B1 }}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=50 \mathrm{~mA}, \mathrm{~S}_{\text {se }}$ Note 5	3	3	3	3	V	
I_{v}	Valley-Point Emither Current	$\mathrm{V}_{\mathrm{B2}-\mathrm{B1}}=20 \mathrm{~V}$	110	4	2	2	min	
$V_{\text {ces }}$	Base-One Peak Puise Voltoge	See Figure 2	6	3	6	3	Y	

NOTES: 4. Femperature coefficient $a_{r B 8}$ is determined by the following formula: $a_{r B B}=\left[\frac{\left(r_{\mathrm{BB}} @ 100^{\circ} \mathrm{G}-\left(\mathrm{f}_{\mathrm{BB}} @-65^{\circ} \mathrm{C}\right)\right.}{\left(\mathrm{r}_{\mathrm{BE}} @ 25^{\circ} \mathrm{C}\right)}\right] \frac{100 \%}{165 \mathrm{deg}}$
To oblain ${ }_{B B}$ for a given tamperature $T_{A(2)}$, wse the following formule:

$$
\begin{aligned}
& \mathrm{a}: \\
& x_{\mathrm{rBB}} \\
& \text { ule: }
\end{aligned}=\left[\frac{\left(r_{\mathrm{BB}} @ 100^{\circ} \mathrm{G}-\mathrm{f}_{\mathrm{BB}} @-65^{\circ} \mathrm{C}\right)}{\left.\mathrm{r}_{\mathrm{BB}} @ 15^{\circ} \mathrm{C}\right)}\right] \frac{100 \%}{165 \mathrm{deg}}
$$

$$
r_{\mathrm{BB}(2]}=\left[\mathrm{r}_{\mathrm{BB}} @ 25^{\circ} \mathrm{C}\right]\left[1+\left(\alpha_{\mathrm{rBB}} / 100 \%\right)\left(\mathrm{T}_{\mathrm{A}(2)}-25^{\circ} \mathrm{C}\right)\right]
$$

5. These parometers are measured using pulse techniques. $t_{p}=300 \mu s$, duty cycle $\leq \mathbf{2 \%}$.

*PARAMETER MEASUREMENT INFORMATION

η-Intrinsic Standoff Ratio - This parameter is defined in terms
figure 1 - test circuit for intrinsic standoff raito (η)

$$
\begin{gathered}
\text { EMITTER-BASE-ONE VOLTAGE } \\
\text { VS } \\
\text { EMITTER CURRENT }
\end{gathered}
$$

figure 3-general static emitter characteristic culve

TYPES 2N3993, 2N3993A, 2N3994, 2N3994A P-CHANNEL SILICON JUNCTION FIELD-EFFECT TRANSISTORS

FOR HIGH-SPEED COMMUTATOR AND

CHOPPER APPLICATIONS

- Low $r_{d s(o n)} . . .150 \Omega \operatorname{Max}(2 N 3993,2 N 3993 A)$
- High $\mid \mathrm{y}_{\mathrm{fs}} / / \mathrm{C}_{\mathrm{iss}}$ Ratio (High-Frequency Figure-of-Merit)
- Low Leakage
- Low Crss . . . 3 pF Max (2N3993A)
*mechanical data

*absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

[^85]
TYPES 2N3993, 2N3993A, 2N3994, 2N3994A P-CHANNEL SILICON JUNCTION FIELD-EFFECT TRANSISTORS

*electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

PARAMETER		TEST CONDITIONS \dagger		$\begin{array}{\|l\|} \hline \text { 2N3993 } \\ \hline \text { MINMAX } \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { 2N3993A } \\ \text { MIN WAX } \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { 2N3994 } \\ \text { ININ MAX } \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { 2N3994A } \\ \hline \text { IIN MAX } \\ \hline \end{array}$	UNIT
V(BR)GSS	Gate-Source Breakdown Voltage	$\mathrm{I}_{G}=1 \mu \mathrm{~A}$,	$V_{D S}=0$	25	25	25	25	V
		$V_{D G}=-15 \mathrm{~V}$.	$\mathrm{I}_{5}=0$	-1.2	-1.2	-1.2	-1.2	nA
İgo	Drain Reverse Current	$V_{\text {DG }}=-15 \mathrm{~V}$,	$\begin{aligned} & T_{S}=0, \\ & T_{A}=150^{\circ} \mathrm{C} \end{aligned}$	-1.2	-1.2	-1.2	-1.2	$\mu \mathrm{A}$
$\mathrm{I}_{\text {DSS }}$	Zero-Gate-Voltage Drain Current	$V_{D S}=-10 \mathrm{~V}$	$\begin{aligned} & V_{\mathrm{GS}}=0, \\ & \text { See Note } 2 \end{aligned}$	-10	-10	-2	-2	mA
${ }^{\prime}$ D(off)	Drain Cutoff Current	$V_{\text {DS }}=-10 \mathrm{~V}$,	$V_{G S}=6 \mathrm{~V}$			-1.2	-1.2	nA
		$V_{0 S}=-10 V$	$\begin{aligned} & V_{G S}=6 \mathrm{~V} \\ & T_{A}=150^{\circ} \mathrm{C} \end{aligned}$			-1	-1	$\mu \mathrm{A}$
		$V_{D S}=-10 \mathrm{~V}$,	$V_{G S}=10 \mathrm{~V}$	-1.2	-1.2			nA
		$V_{D S}=-10 \mathrm{~V}$,	$\begin{aligned} & V_{G S}=10 \mathrm{~V}, \\ & T_{A}=150^{\circ} \mathrm{C} \end{aligned}$	-1	-1			$\mu \mathrm{A}$
$\mathbf{V}_{\mathbf{G S}}$	Gate-Source Voltaga	$\mathrm{V}_{\mathrm{DS}}=-10 \mathrm{~V}$.	$I_{D}=-1 \mu A$	49.5	49.5	15.5	1.5 .5	V
rosion)	Small-Signal Drain-Source On-State Resistance	$\begin{aligned} & V_{\mathrm{GS}}=0, \\ & \mathrm{f}=1 \mathrm{kHz} \end{aligned}$	${ }^{\prime} \mathrm{D}=0$,	150	150	300	300	$\boldsymbol{\Omega}$
$\left\|y_{\text {fs }}\right\|$	Small-Signal Common-Source Forward Transfer Admittance	$\begin{aligned} & V_{\mathrm{DS}}=-10 \mathrm{~V}, \\ & \mathrm{f}=1 \mathrm{kHz}, \end{aligned}$	$V_{\mathrm{GS}}=0$ See Note 2	$6 \quad 12$	$7 \quad 12$	$4 \quad 10$	510	mmho
$C_{\text {iss }}$	Common-Source Short-Circuit Input Capacitance	$\begin{aligned} & V_{D S}=-10 \mathrm{~V}, \\ & f=1 \mathrm{MHz} \end{aligned}$	$v_{G S}=0,$ See Note 3	18	12	16	12	pF
$\mathrm{C}_{\text {rss }}$	Common-Source Short-Circuit Reverse Transfer Capacitance	$\begin{aligned} & V_{D S}=0, \\ & f=1 \mathrm{MHz} \end{aligned}$	$V_{G S}=6 \mathrm{~V}$,			5	3.5	pF
		$\begin{aligned} & V_{D S}=0, \\ & f=1 \mathrm{MHz} \end{aligned}$	$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}$	4.5	3			pF

NOTES: 2. These parameters must be measured using puise techniques. $t_{p}=\mathbf{1 0 0} \mathbf{m s}$, duty cycle $\leq \mathbf{1 0 \%}$.
3. This parameter must be measured with bias voltages applied for tess than 5 seconds to avoid overheating.

- Indicates JEDEC registered data

FThe fourth lead (case) is connected to the source for all measurements.

THERMAL INFORMATION

FAST, HIGH-VOLTAGE, HIGH-CURRENT CORE DRIVERS

- hFE Guaranteed from $\mathbf{1 0} \mathbf{~ m A}$ to 1 A
- Guaranteed Switching Times at $\mathbf{5 0 0} \mathrm{mA}$
- Also Available in TO-39 as 2N3724, 2N3725

*mechanical data

*absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

	2N4013	2N4014	UNIT
Collector-Base Voltage	50	80	V
Collector-Emitter Voltage (See Note 1)	$\mathbf{3 0}$	50	V
Emitter-Base Voltage	6	6	V
Continuous Collector Current	0.5	0.5	A
Continuous Device Dissipation at (or below) 25 ${ }^{\circ} \mathrm{C}$ Free-Air Temperature (See Note 2)	360	360	mW
Continuous Device Dissipation at (or below) $25^{\circ} \mathrm{C}$ Case Temperature (See Note 3)	1.2	1.2	W
Storage Temperature Range	-65 to 200	-65 to 200	${ }^{\circ} \mathrm{C}$
Lead Temperature 1/16 Inch from Case for 60 Seconds	300	300	${ }^{\circ} \mathrm{C}$

NOTES: 1. These values apply between 0.01 mA and 500 mA collector current when the base-emitter diode is open-circuited.
2. Derate linearly to $200^{\circ} \mathrm{C}$ free-air temperature at the rate of $2.06 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
3. Derate linearly to $200^{\circ} \mathrm{C}$ case temperature at the rate of $6.85 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
*JEOEC registered data. This data sheet contains all applicable registered data in effect at the time of publication.

TYPES 2N4013, 2N4014 N-P-N SILICON TRANSISTORS

*electrical characteristics at $\mathbf{2 5}{ }^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

PARAMETER		TEST CONDITIONS		2N4013		2N4014		UNIT		
		MIN	MAX	MIN	MAX					
$V_{(B R) C B O}$	Collector-Base Breakdown Voltage			$I^{\prime} C=10 \mu A ; \quad I_{E}=0$		50		80		v
V(BR)CEO	Collactor-Emitter Breakdown Voltage	$I_{C}=10 \mathrm{~mA}, \quad I_{B}=0, \quad$ See Note 4		30		50		V		
$V_{\text {(BR) CES }}{ }_{\text {B }}$	Collector-Emitter Breakdown Voltage	$\mathrm{I}^{\prime} \mathrm{C}=10 \mu \mathrm{~A}, \quad \mathrm{~V}_{\mathrm{BE}}=0$		50		80		V		
$V_{\text {(BR) }}{ }^{\text {b }}$ (Emitter-Base Braakdown Voltage	$\mathrm{I}_{\mathrm{E}}=10 \mu \mathrm{~A}, \quad \mathrm{IC}=0$		6		6		V		
ICBO	Collector Cutoff Current	$\mathrm{V}_{C B}=40 \mathrm{~V}, \mathrm{IE}^{2}=0$			1.7			$\mu \mathrm{A}$		
		$\mathrm{V}_{C B}=40 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0$,	$T_{A}=100^{\circ} \mathrm{C}$		120					
		$V_{C B}=60 \mathrm{~V}, \mathrm{IE}=0$					1.7			
		$V_{C B}=60 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0$,	$\mathrm{T}_{\mathrm{A}}=100^{\circ} \mathrm{C}$				120			
ICES	Collector Cutoff Current	$\mathrm{V}_{\mathrm{CE}}=50 \mathrm{~V}, \mathrm{~V}_{\mathrm{BE}}=0$			10			$\mu \mathrm{A}$		
		$V_{C E}=80 \mathrm{~V}, V_{\text {BE }}=0$				10				
I_{B}	Base Current	$V_{C E}=50 \mathrm{~V}, V_{\text {BE }}=0$			-10	-10		$\mu \mathrm{A}$		
		$V_{C E}=80 \mathrm{~V}, \mathrm{~V}_{\text {BE }}=0$								
hFE	Static Forward Current Transfer Ratio	$V_{C E}=1 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}$	See Note 4	30		30				
		$V_{C E}=1 \mathrm{~V}, \quad I^{\prime}=100 \mathrm{~mA}$		60	150	60	150			
		$\begin{array}{ll} V_{C E}=1 \mathrm{~V}, & I_{C}=100 \mathrm{~mA} \\ & T_{A}=-55^{\circ} \mathrm{C} \end{array}$		30		30				
		$V_{C E}=1 \mathrm{~V}, \quad I_{C}=300 \mathrm{~mA}$		40		40				
		$V_{C E}=1 \mathrm{~V}, \quad I^{\prime}=500 \mathrm{~mA}$		35		35				
		$\begin{array}{ll}V_{C E}=1 \mathrm{~V}, & \mathrm{I}_{\mathbf{C}}=500 \mathrm{~mA}, \\ & T_{A}=-55^{\circ} \mathrm{C}\end{array}$		20		20				
		$V_{C E}=2 \mathrm{~V}, \quad I^{\prime}=800 \mathrm{~mA}$		25		20				
		$V_{C E}=5 \mathrm{~V}, I_{C}=1 \mathrm{~A}$		30		25				
VBE	Base-Emitter Voltage	$I_{B}=1 \mathrm{~mA}, \quad I_{C}=10 \mathrm{~mA}$	See Note 4		0.76		0.76	V		
		$I_{B}=10 \mathrm{~mA}, \quad I_{C}=100 \mathrm{~mA}$			0.86		0.86			
		$\mathrm{I}_{B}=30 \mathrm{~mA}, \quad I_{C}=300 \mathrm{~mA}$			1.1		1.1			
		$\mathrm{I}_{B}=50 \mathrm{~mA}, \quad I_{C}=500 \mathrm{~mA}$		0.8	1.1	0.8	1.1			
		$\mathrm{I}_{B}=80 \mathrm{~mA}, \mathrm{I}_{\mathrm{C}}=800 \mathrm{~mA}$			1.5		1.5			
		$\mathrm{I}_{B}=100 \mathrm{~mA}, \mathrm{I}^{\prime}=1 \mathrm{~A}$			1.7		1.7			
$V_{C E}(\mathrm{sat})$	Collector-Emitter Saturation Voltage	$I_{B}=1 \mathrm{~mA}, \quad I_{C}=10 \mathrm{~mA}$	See Note 4		0.25		0.25	v		
		$\mathrm{I}_{B}=10 \mathrm{~mA}, \quad I_{C}=100 \mathrm{~mA}$			0.2		0.26			
		$\mathrm{I}_{B}=30 \mathrm{~mA}, \mathrm{I}_{C}=300 \mathrm{~mA}$			0.32		0.4			
		$\mathrm{I}_{B}=50 \mathrm{~mA}, \quad \mathrm{I}^{\prime}=500 \mathrm{~mA}$			0.42		0.52			
		$\mathrm{I}_{B}=80 \mathrm{~mA}, \mathrm{I}^{\prime}=800 \mathrm{~mA}$			0.65		0.8			
		$\mathrm{I}_{\mathrm{B}}=100 \mathrm{~mA}, \mathrm{I}^{\prime}=1 \mathrm{~A}$			0.75		0.95			
hfel	Small-Signal Common-Emitter Forward Current Transfer Ratio	$V_{C E}=10 \mathrm{~V}, \mathrm{I}^{\prime}=50 \mathrm{~mA}, \mathrm{f}=100 \mathrm{MHz}$		3		3				
Cobo	Common-Base Open-Circuit Output Capacitance	$V_{C B}=10 \mathrm{~V}, \mathrm{IE}=0$.	$\mathrm{f}=1 \mathrm{MHz}$		12		10	pF		
$C_{\text {ibo }}$	Common-Base Open-Circuit Input Capacitance	$V_{E B}=0.5 \mathrm{~V}, \mathrm{I}^{\prime}=0$	$\mathrm{f}=1 \mathrm{MHz}$		55		55	pF		

TYPES 2N4013, 2N4014
 N-P-N SILICON TRANSISTORS

"switching characteristics at $\mathbf{2 5}{ }^{\circ} \mathrm{C}$ free-air temperature

PARAMETER	TEST CONDITIONS ${ }^{\dagger}$	2N4013	2N4014	UNIT
		MAX	MAX	
t_{d} Delay Time	$\begin{array}{ll} V_{C C}=30 \mathrm{~V}, & \mathrm{IC}_{\mathrm{C}}=500 \mathrm{~mA}, \\ \mathrm{I}_{\mathrm{B}(1)}=50 \mathrm{~mA}, & \mathrm{~V}_{\mathrm{BE}(\text { off })}=-3.8 \mathrm{~V}, \\ \text { See Figure } 1 & \\ \hline \end{array}$	10	10	ns
t_{r} R Rise Time		30	30	ns
ton Turn-On Time		35	36	ns
$\mathbf{t}_{\mathbf{3}} \quad$ Storage Time	$\begin{array}{ll} \hline V_{C C}=30 \mathrm{~V}, & I_{C}=500 \mathrm{~mA}, \\ I_{B(1)}=50 \mathrm{~mA}, & I_{B(2)}=-60 \mathrm{~mA}, \\ \text { See Figure } 1 \end{array}$	80	50	ns
ti Fall Time		25	30	ni
toff Turn-Off Time		60	60	$n 8$

[^86]
*PARAMETER MEASUREMENT INFORMATION

FIOURE 1-500-mA SWITCHINO TIMES

NOTES: . The input waveforme are supplied by a generator with the following characteristics: $z_{\text {out }}=50 \Omega, t_{r} \leqslant 1$ ns, $t_{f} \leqslant 1$ ns, $t_{w} \approx 1 \mu s$, duty evcle $\leqslant \mathbf{2 \%}$.
 -JE DEC reglstered diate

MEDIUM POWER P-N.P TRANSISTORS FOR COMPUTER MEMORY APPLICATIONS

- Increased Dissipation at $\mathbf{2 5}{ }^{\circ} \mathrm{C}$ Case Temperature . . . 10 W Max (2N4030 thru 2N4033)
- High V(BR)CEO . . . 80 V Min (2N4027, 2N4029, 2N4031, 2N4033)

mechanical data

absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

	$\begin{array}{\|ll\|} \hline \text { 2N4026 } & \text { 2N4027 } \\ \text { 2N4028 } & \text { 2N4029 } \\ \hline \end{array}$	2N4030 $2 N 4031$ 2N4032 2N4033	UNIT
Collector-Base Voltage	-60* -80**	-60* - $80{ }^{*}$	V
Collector-Emitter Voltage (Soe Note 1)	-60**-80*	$-60^{*} \quad-80^{*}$	V
Emitter-Base Voltage	-5*	-5*	V
Continuous Collector Current	-1^{*}	-1^{*}	A
Continuous Device Dissipation at (or below) $25^{\circ} \mathrm{C}$ Free-Air Temperature (See Note 2)	0.5*	0.8*	W
Continuous Device Dissipation at (or below) $25^{\circ} \mathrm{C}$ Case Temperature (See Note 3)	2*	$\begin{gathered} 10^{\dagger} \\ 4^{\prime \prime} \\ \hline \end{gathered}$	W
Storage Temperature Range	-65 to 200*	-65 to 200*	${ }^{\circ} \mathrm{C}$
Lead Temperature 1/16 Inch from Case for 60 Seconds	300*	$300 *$	${ }^{\circ} \mathrm{C}$

NOTES: 1. These values apply between 0 and 10 mA collector current when the base-emitter diode is open-circuited.
2. Derste linmariy to $200^{\circ} \mathrm{C}$ free-air temparature at the rates of $2.86 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for 2 N 4026 through 2 N 4029 and $4.56 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for 2N4030 through 2N4033.
3. Darate linearly to $200^{\circ} \mathrm{C}$ case temperature of the following rates: $11.4 \mathrm{~mW} / \mathrm{C}$ for the 2 -watt rat $/ \mathrm{ng}, \mathbf{5 7 , 1} \mathrm{mW} /{ }^{\circ} \mathrm{C}$ for the 10 -watt rating, and $22.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for the 4 -watt rating.
The JEDEC registered outline for these devices is TO-E. TO-39 falis within TO-5 with the exception of lead length.
-JEDEC regiatered data. This data shest contalns all applicable registered data in effect at the time of publication.
${ }^{\dagger}$ This value is guaranteed by Texse instruments in addition to the JEDEC registered value which is also shown.

TYPES 2N4026 THRU 2N4033
 P-N-P SILICON TRANSISTORS

*electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

PARAMETER		TEST CONDITIONS		$\begin{aligned} & \text { 2N4026 } \\ & \text { 2N4030 } \end{aligned}$		$\begin{aligned} & \text { 2N4027 } \\ & \text { 2N4031 } \end{aligned}$		$\begin{aligned} & \text { 2N4028 } \\ & \text { 2N4032 } \end{aligned}$		$\begin{aligned} & \text { 2N4029 } \\ & \text { 2N4033 } \end{aligned}$		UNIT		
		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX					
$V_{(B R) C B O}$	Collector-Base Breakdown Voltage			${ }^{\prime} \mathrm{C}=-10 \mu \mathrm{~A}$,	$\mathrm{I}_{\mathrm{E}}=0$	-60		-80		-60		-80		V
$V_{\text {(BR)CEO }}$	Collector-Emitter Breakdown Voltage	$I_{C}=-10 m A \text {, }$ See Note 4	$I_{B}=0,$	-60		-80		-60		-80		V		
V (BR)EBO	Emitter-Base Breakdown Voltage	$\mathrm{I}_{\mathrm{E}}=-10 \mu \mathrm{~A}$,	$\mathrm{I}_{\mathrm{C}}=0$	-5		-5		-5		-5		V		
ICBO	Collector Cutoff Current	$\mathrm{V}_{\mathrm{CB}}=-50 \mathrm{~V}$,	$t_{E}=0$		-50				-50			nA		
		$V_{C B}=-60 \mathrm{~V}$,	$\mathrm{I}^{2}=0$				-50				-50			
		$\begin{aligned} & V_{C B}=-50 \mathrm{~V}, \\ & T_{A}=150^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{I} E=0$		-50				-50			$\mu \mathrm{A}$		
		$\begin{aligned} & V_{C B}=-60 \mathrm{~V}, \\ & T_{A}=150^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{I}_{\mathrm{E}}=0,$				-50				-50			
IEBO	Emitter Cutoff Current	$V_{E B}=-5 \mathrm{~V}$,	$\mathrm{IC}^{\prime}=0$		-10		-10		-10		-10	$\mu \mathrm{A}$		
hfe	Static Forward Current Transfer Ratio	$\mathrm{V}_{\text {CE }}=-5 \mathrm{~V}$,	$1 \mathrm{C}=-100 \mu \mathrm{~A}$	30		30		75		75				
		$\begin{aligned} & V_{C E}=-5 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{C}}=-100 \mathrm{~mA} \end{aligned}$	See Note 4	40	120	40	120	100	300	100	300			
		$\begin{aligned} & V_{C E}=-5 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{C}}=-100 \mathrm{~mA} . \\ & T_{A}=-55^{\circ} \mathrm{C} \end{aligned}$		45		15		40		40				
		$\begin{aligned} & V_{C E}=-5 \mathrm{~V}, \\ & I_{C}=-500 \mathrm{~mA} \end{aligned}$		25		25		70		70				
		$\begin{aligned} & \mathrm{V}_{\mathrm{CE}}=-5 \mathrm{~V} . \\ & \mathrm{I}_{\mathrm{C}}=-1 \mathrm{~A} \end{aligned}$		15		10		40		25				
$V_{B E}$	Base-Emitter Voltage	$\begin{aligned} & I_{B}=-15 \mathrm{~mA}, \\ & I_{C}=-150 \mathrm{~mA} \end{aligned}$	See Note 4		-0.9		-0.9		-0.9		-0.9	V		
		$\begin{aligned} & V_{C E}=-0.5 \mathrm{~V}, \\ & I_{C}=-500 \mathrm{~mA} \end{aligned}$			-1.1		-1.1		-1.1		-1.1			
		$\begin{aligned} & V_{C E}=-1 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{C}}=-1 \mathrm{~A} \end{aligned}$			-1.2				-1.2					
VCE(sat)	Collector-Emitter Saturation Voltage	$\begin{aligned} & I_{B}=-15 \mathrm{~mA}, \\ & I_{C}=-150 \mathrm{~mA} \end{aligned}$	See Note 4		-0.15		-0.15		-0.15		-0.15	V		
		$\begin{aligned} & I_{B}=-50 \mathrm{~mA}, \\ & I_{C}=-500 \mathrm{~mA} \end{aligned}$			-0.5		-0.5		-0.5		-0.5			
		$\begin{aligned} & I_{B}=-100 \mathrm{~mA} \\ & I_{C}=-1 A \end{aligned}$			-1				-1					
$\boldsymbol{H f f e}$	Smail-Signal Common-Emitter Forward Current Transfer Ratio	$\begin{aligned} & V_{C E}=-10 \mathrm{~V}, \quad I_{C}=-50 \mathrm{~mA} \\ & f=100 \mathrm{MHz} \end{aligned}$		14		14		1.55		1.55		5		
C_{cb}	Collector-Base Capacitance	$\begin{aligned} & V_{C B}=-10 \mathrm{~V}, \\ & f=1 \mathrm{MHz}, \end{aligned}$	$I_{E}=0,$ See Note 5		20		20		20		20	pF		
$C_{\text {ibo }}$	Common-Base Open-Circuit Input Capacitance	$\begin{aligned} & V_{E B}=-0.5 \mathrm{~V} \\ & \mathrm{f}=1 \mathrm{MHz} \end{aligned}$	$I_{C}=0$		110		110		110		110	pF		

NOTES: 4. These parameters must be measured using pulse techniques. $t_{w}=300 \mu \mathrm{~s}$, duty cycle $\leqslant 1 \%$.
5. C_{cb} measurement employs a three-terminal capacitance bridge incorporating a guard circuit. The emittar is connected to the guard terminal of the bridge.

[^87]switching characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER		TEST CONDITIONS ${ }^{\dagger}$		MAX	UNIT
$t_{\text {on }}$	Turn-On Time	$\mathrm{V}_{\mathrm{CC}}=-30 \mathrm{~V}$,	${ }^{1} \mathrm{C}=-500 \mathrm{~mA}$,	100	ns
t_{5}	Storage Time	${ }^{\prime} \mathrm{V}_{(1)}=-50 \mathrm{~mA}$,	$\mathrm{l}_{\mathrm{B}(2)}=50 \mathrm{~mA}$,	350	ns
${ }_{\text {t }}$	Fall Time	$\mathrm{V}_{\mathrm{BE} \text { (off) }}=3.8 \mathrm{~V}$,	See Figure 1	50	ns

${ }^{\dagger}$ Voltage and current values shown are nominal; exact values vary slightly with transistor parameters.

- JEDEC registered data

PARAMETER MEASUREMENT INFORMATION

NOTES: a. The input waveform is supplied by a generator with the following characteristics: $Z_{\text {out }}=50 \Omega, t_{r} \leqslant 20 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leqslant 20 \mathrm{~ns}, \mathrm{t}_{\mathrm{w}} \approx 10 \mu \mathrm{~m}$, duty cycle $\leqslant 2 \%$.
b. Waveforms are monitored on an oscilloscope with the following characteristics: $t_{r} \approx 10 \mathrm{~ns}, \mathrm{R}_{\mathrm{in}} \geqslant 100 \mathrm{k} \Omega$.

FIGURE 1-500-mA SWITCHING TIMES
THERMAL INFORMATION

PRINTED IN U.S.A.
II connol assume any respansibility for ony circuils shown
or represent that they are free from polent infringement.
texas instruments reserves the right to make changes at any fime in order to improve design and to supply the best product possible.

TEXAS INSTRRUMENTS
POST OFFICE \#OX 5012 - OALLAS, TEXAS 75222

TYPES A5T4026 THRU A5T4029, A8T4026 THRU A8T4029 P-N-P SILICON TRANSISTORS

BULLETIN NO. DL-S 7312002, MARCH 1973

SILECT ${ }^{\dagger}$ TRANSISTORS \ddagger
 FOR GENERAL PURPOSE APPLICATIONS
 - High V(BR)CEO . . . 80 V Min (A5T4027, A5T4029, A8T4027, A8T4029)
 - High Current Capability . . . 1 A
 - Rugged One-Piece Construction with In-Line Leads or Standard TO-18 100-mil Pin-Circule Configuration

mechanical data

These transistors are encapsulated in a plastic compound specifically designed for this purpose, using a highly mechanized process developed by Texas Instruments. This case will withstand soldering temperatures without deformation. These devices exhibit stable characteristics under high-humidity conditions and are capable of meeting MIL-STD-202C, Method 106B. The transistors are insensitive to light.

A5T4026 THRU A5T4029	
NOTES: A. Lead diameter is not controlled in this area. B. Leads having maximum diameter (0.019) shall be within 0.007 of their true positions measured in the gaging plane 0.054 balow the seating plane of the device relative to a maximum-diameter package. C. All dimensions are in inches.	
ABT4026 THRU A8T4028 ALL JEDEC TO-92 DIMENSIONS AND NOTES ARE APPLICABLE NOTES: A. Lead diameter is not controlled in this area. B. All dimensions are in inches.	

absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)
$\left.\begin{array}{lllllllll}\text { A5T4026 } & \\ \text { A5T4027 } \\ \text { A5T4028 } \\ \text { A5T4029 }\end{array}\right]$

NOTES: 1. These values apply between 0 and 10 mA collector current when the base-emitter diode is open-circuited.
2. Derate lineariv to $150^{\circ} \mathrm{C}$ free-air temperature at the rate of $5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
3. Derate linearly to $150^{\circ} \mathrm{C}$ lead temperature at the rate of $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$. Lead temperature is measured on the collector lead $1 / 16$ inch from the case.
${ }^{\dagger}$ Trademark of Texas Instruments
\ddagger U.S. Patent No. $\mathbf{3 , 4 3 9 , 2 3 8}$

TYPES A5T4026 THRU A5T4029, A8T4026 THRU A8T4029 P-N-P SILICON TRANSISTORS

dectrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

NOTES: 4. These parameters must be measured using pulse techniques. $\mathrm{t}_{\mathrm{w}}=300 \mu \mathrm{~s}$, duty cycle $<2 \%$.
5. $\mathbf{C}_{\text {cb }}$ measurement employs a three-terminal capacitance bridge incorporating a guard circuit. The emitter is connected to the guard terminal of the bridge.

TYPES A5T4026 THRU A5T4029, A8T4026 THRU A8T4029 P-N-P SILICON TRANSISTORS

switching characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER		TEST CONDITIONS ${ }^{\dagger}$		MAX	UNIT
ton	Turn-On Time	$\mathrm{V}_{\mathrm{CC}}=-30 \mathrm{~V}$.	$\mathrm{I}_{\mathrm{C}}=-500 \mathrm{~mA}$,	100	ns
$\mathrm{t}_{\text {s }}$	Storage Time	$\mathrm{I}_{\mathrm{B}(1)}=-50 \mathrm{~mA}$,	$\mathrm{I}_{\mathrm{B}(2)}=50 \mathrm{~mA}$,	350	ns
${ }_{4}$	Fall Time	$\mathrm{V}_{\text {BE (off) }}=3.8 \mathrm{~V}$,	See Figure 1	50	ns

${ }^{\dagger}$ Voltage and current values shown are nominal; exact values vary slightly with transistor parameters.

NOTES: a. The input waveform is supplied by a generator with the following characteristics: $Z_{o u t}=50 \Omega, t_{r} \leqslant 20 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leqslant 20 \mathrm{~ns}, \mathrm{t}_{\mathbf{w}} \approx 10 \mu \mathrm{~m}$, duty cycle $\leqslant 2 \%$.
b. Waveforms are monitored on an oscilloscope with the following characteristics: $\mathrm{t}_{\mathrm{r}} \approx 10 \mathrm{~ns}, \mathrm{R}_{\mathrm{in}} \geqslant 100 \mathrm{k} \Omega$.

FIGURE 1-500-mA SWITCHING TIMES
THERMAL INFORMATION

FREE-AIR TEMPERATURE DISSIPATION DERATING CURVE

FIGURE 2

LEAD TEMPERATURE DISSIPATION DERATING CURVE

SILECT ${ }^{\dagger}$ TRANSISTORS \ddagger

- Ideal for Low-Level Amplifier Applications

- Rugged One-Piece Construction with In-Line Leads or Standard TO-18 100-mil Pin-Circle Configuration
- Recommended for Complementary Use with 2N3707 thru 2N3711, A5T3707 thru A5T3711, or A8T3707 thru A8T3711

mechanical data

These transistors are encapsulated in a plastic compound specifically designed for this purpose, using a highly mechanized process developed by Texas Instruments. The case will withstand soldering temperatures without deformation. These devices exhibit stable characteristics under high-humidity conditions and are capable of meeting MIL-STD-202C, Method 106B. The transistors are insensitive to light.

2N4058 THRU 2N4062, A8T4058 THRU A8T4062

NOTES: A. Lead diamater is not controlled in this area.
B. All dimensions are in inches.

2N4058 THRU 2N4062, A8T4058 THRU A8T4062 *ALL JEDEC TO-92 DIMENSIONS AND NOTES ARE APPLICABLE NOTES: A. Lead diamater is not controlled in this area. B. All dimansions are in inches.	2N4058 thru 2 N 4062 ECB	A8T4058 thru A8T4062 EBC
A5T4058 THRU A5T4062 NOTES: A. Lead diameter is not controlled in this area. true positions measured in the gaging plane 0.054 below the seating plane of the deviee relative to a maximum-diameter package. C. All dimensions are in inches.		

absolute maximum ratings at $\mathbf{2 5}{ }^{\circ} \mathbf{C}$ free-air temperature (unless otherwise noted)

NOTES: 1. This value applies when the base-emitter diode is open-circuited.
2. Derate the $625-\mathrm{mW}$ rating linearly to $150^{\circ} \mathrm{C}$ free-air temperature at the rate of $5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$. Derate the $360-\mathrm{mW}$ (JEDEC registered) rating Inderly to $150^{\circ} \mathrm{C}$ free-air temparature at the rate of $2.88 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.

- The asterisk identifies JEDEC registered data for the 2 N 4058 through 2 N 4062 only. This data sheet contains all applicable registerad data in effect at the time of publication.
${ }^{\dagger}$ Trademark of Texas instruments
\ddagger U.S. Patent No. 3,439,238
§ Texas Instruments guarantees this value in addition to the JEDEC registered value which is also shown.
USES CHIP P18

TYPES 2N4058 THRU 2N4062, A5T4058 THRU A5T4062, A8T4058 THRU A8T4062 P-N-P SILICON TRANSISTORS

*electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER		TEST CONDITIONS	2N4088 A5T4068 A8T4058	2N4059 AET4069 ABT4089	$\begin{aligned} & \text { 2N4080 } \\ & \text { A6T4080 } \\ & \text { A8T4060 } \end{aligned}$	2N40:1 A5T4081 A8T4061	2N4062 ABT4082 A8T4062	UNIT	
		MIN MAX	MIN MAX	MIN MAX	MIN MAX	MIN MAX			
V (BR)CEO	Collector-Emitter Breakdown Voltage		$\begin{aligned} & I_{i} C=-1 \mathrm{~mA}, \quad I_{B}=0, \\ & \text { See Note } 3 \end{aligned}$	-30	-30	-30	-30	-30	V
ICBO	Collector Cutoff Current	$V_{C B}=-20 \mathrm{~V}, \mathrm{IE}=0$	-100	-100	-100	-100	-100	nA	
IEBO	Emitter Cutoff Current	$V_{E B}=-6 \mathrm{~V}, \mathrm{IC}=0$	-100	-100	-100	-100	-100	nA	
hFE	Static Forward Current Transfer Ratio	$V_{C E}=-6 V_{0}, I_{C}=-100 \mu A$	100400						
		$\mathrm{V}_{C E}=-5 \mathrm{~V}, 1 \mathrm{l}=-1 \mathrm{~mA}$		$45 \quad 660$	$45 \quad 185$	$80 \quad 330$	$180 \quad 660$		
VeE	Base-Emitter Voltage	$\mathrm{V}_{\text {CE }}=-5 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=-1 \mathrm{~mA}$	-0.5 -1	-0.6 -1	-0.5 -1	-0.5 -1	$\begin{array}{\|cc\|}-0.5 & -1\end{array}$	V	
VCE(tat)	Collector-Emitter Saturation Voltage	$\mathrm{I}_{\mathrm{B}}=-0.5 \mathrm{~mA}, \mathrm{I}^{\prime}=-10 \mathrm{~mA}$	-0.7	-0.7	-0.7	-0.7	-0.7	V	
$\mathrm{hfo}^{\text {fe }}$	Small-Signal Common-Emitter Forward Current Transfer Ratio	$\begin{aligned} & V_{C E}=-5 V, \quad I_{C}=-100 \mu \mathrm{~A}, \\ & f=1 \mathrm{kHz} \end{aligned}$	100550						
		$\begin{aligned} & V_{C E}=-5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{C}}=-1 \mathrm{~mA}, \\ & f=1 \mathrm{kHz} \end{aligned}$		$45 \quad 800$	$45 \quad 250$	$90 \quad 450$	180800		

"operating characteristics at $\mathbf{2 5}{ }^{\circ} \mathrm{C}$ free-air temperature

PARAMETER		TEST CONDITIONS		2N4058,A5T4058, A8T4058			UNIT		
		MIN	TYP	MAX					
\bar{F}	Average Noise Figure			$\begin{aligned} & V_{C E}=-5 \mathrm{~V}, \\ & \text { Noise Bandwidth }=15.7 \mathrm{kHz}, \end{aligned}$	$\mathrm{R}_{\mathrm{G}}=5 \mathrm{k} \Omega$ See Note 4		1.7	5	dB

NOTES: 3. This parameter must be measured. using pulse techniques: $\mathbf{t}_{w}=\mathbf{3 0 0} \mu \mathrm{s}$, duty eyele $<\mathbf{2 \%}$.
4. Average Noise Figure is measured in an amplifier with response down 3 dB at 10 Hz and 10 kHz and a high.frequency rolloff of $6 \mathrm{~dB} /$ octave.

- The asterisk Identifies JEDEC registered data for 2N4058 through 2N4062 only.

THERMAL INFORMATION DISSIPATION DERATING CURVE

SYMMETRICAL N-CHANNEL FIELD-EFFECT TRANSISTORS FOR HIGH-SPEED COMMUTATOR AND CHOPPER APPLICATIONS

\author{

- Low ID(off) . . . 0.25 nA Max
 - Low rds(on) Ciss Product
}
"mechanical data

*absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)
Drain-Gate Voltage 40 V 40 V
Drain-Source Voltage
Drain-Source Voltage
Reverse Gate-Source Voltage $-40 \mathrm{~V}$ 10 mA
Continuous Forward Gate Current
Continuous Forward Gate Current
Continuous Device Dissipation at (or below) $\mathbf{2 5}{ }^{\circ} \mathrm{C}$ Case Temperature (See Note 1) 1.8 W
Storage Temperature Range $200^{\circ} \mathrm{C}$
Lead Temperature 1/16 Inch from Case for 10 Seconds $300^{\circ} \mathrm{C}$

NOTE 1: Derate linearly to $200^{\circ} \mathrm{C}$ case temperature at the rate of $10.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
*JEDEC registered data. This date sheet conteins all applicabie registered date in effect at the time of publication.
*electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

PARAMETER		TEST CONDITIONS	2N4091	2N4092	2N4093	UNIT
$\mathrm{V}_{\text {[BP] }}$ SSs			MIN MAX	MIN MAX	MIN MAX	
(BR)GSS	Gate-Source Breakdown Voltage	$\mathrm{I}_{\mathrm{G}}=-1 \mu \mathrm{~A}, \mathrm{~V}_{\text {DS }}=0$	-40	-40	-40	V
logo	Drain Reverse Current	$V_{D G}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=0$	0.2	0.2	0.2	nA
		$V_{D G}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=0, \quad \mathrm{I}_{\mathrm{A}}=150^{\circ} \mathrm{C}$	0.4	0.4	0.4	$\mu \mathrm{A}$
I_{560}	Source Reverse Current	$V_{S G}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0$	0.2	0.2	0.2	$\ldots \mathrm{A}$
$\mathrm{I}_{\text {Dofifl }}$	Drain Cutoff Current	$V_{D S}=20 \mathrm{~V}, \quad V_{G S}=-12 \mathrm{~V}$	0.2			nA
		$V_{D S}=20 \mathrm{~V}, \quad V_{G S}=-8 \mathrm{~V}$		0.2		
		$V_{D S}=20 \mathrm{~V}, V_{G S}=-6 \mathrm{~V}$			0.2	
		$V_{D S}=20 \mathrm{~V}, \quad V_{G S}=-12 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$	0.4			$\mu \mathrm{A}$
		$V_{D S}=20 \mathrm{~V}, \quad V_{G S}=-8 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$		0.4		
		$V_{D S}=20 \mathrm{~V}, \quad V_{G S}=-6 \mathrm{~V}, \mathrm{~T}_{A}=150^{\circ} \mathrm{C}$			0.4	
$\mathrm{V}_{\text {GS }} \mathrm{l}_{\text {(off }}$	Gate-Source Cutoff Voltage	$V_{\text {DS }}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{nA}$	-5 $\quad-10$	-2	-1 $\quad-5$	V
ldss	Zero-Gate-Voltage Drain Current	$V_{\text {DS }}=20 \mathrm{~V}, \quad V_{G S}=0, \quad$ See Note 2	30	15	8	mA
$V_{\text {DS }}^{\text {(on) }}$	Drain-Source On-State Voltage	$V_{G S}=0, \quad I_{D}=6.6 \mathrm{~mA}$	0.2			v
		$V_{\text {VS }}=0, \quad \mathrm{I}_{\mathrm{D}}=4 \mathrm{~mA}$		0.2		
		$V_{G S}=0, \quad I_{D}=2.5 \mathrm{~mA}$			0.2	
rosion)	On-State Resistance	$V_{G S}=0, \quad I_{0}=1 \mathrm{~mA}$	30	50	80	Ω
$\mathrm{r}_{\text {dision }}$	Small-Signal Drain-Source On-State Resistance	$V_{G S}=0, \quad \mathrm{I}_{0}=0, \quad f=1 \mathrm{kHz}$	30	50	80	Ω
$\mathrm{Ciss}^{\text {s }}$	Common-Source Short-Circuit Input Capacitance	$V_{D S}=20 \mathrm{~V}, \quad V_{G S}=0, \quad \begin{aligned} & f=1 \mathrm{MHz}, \\ & \text { See Note } 3\end{aligned}$	16	16	16	pF
$C_{\text {sss }}$	Common-Source Short-Cifcuif Reverse Transfer Capacitance	$V_{\text {DS }}=0, \quad V_{G S}=-20 \mathrm{~V}, f=1 \mathrm{MHz}$	5	5	5	pF

*switching characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER		TEST CONDITIONS		2N4091		2N4092		2N4093		UNIT
				TYP		TYP	MAX	TYP	MAX	
$t_{\text {d }}(\mathrm{m})$	Turn-On Delay Time			15		15		20		ns
t_{r}	Rise Time				10		20		40	ns
toff	Turn-Off Time				40		60		80	ns
t_{r}	Rise Time		$t=\int 12 \mathrm{~mA}(2 \mathrm{~N} 409 \mathrm{l})$	2		3		4		ns
$t_{\text {on }}$	Turn-On Time		$\mathrm{l}_{\mathrm{D} / \text { ont }} \mathrm{t}^{\mathrm{l}}=\left\{\begin{array}{l}12 \mathrm{~mA}(2 \mathrm{~N} 4092) \\ 3 \mathrm{~mA}(2 \mathrm{~N} 4093)\end{array}\right.$	5.5		6.5		8		ns
t_{f}	Fall Time		$v_{\text {coin }}=\left\{\begin{array}{l}-12 \mathrm{~V}(2 \mathrm{~N} 4099) \\ -7 \vee(2 N 4092)\end{array}\right.$	7		13		27		ns
$\mathrm{t}_{\text {off }}$	Turn-Off Time	See Figure 2,	$V_{G S \text { loff }}=\left\{\begin{array}{l}\text { - } \\ -7 V(2 N 4092) \\ -5 V(2 N 4093)\end{array}\right.$	10		18		31		ns

NOTES: 2. This parameter must be measured using pulse rechniques. $\mathrm{I}_{\mathrm{w}}=300 \mu \mathrm{~s}$, duty cycle $\leq \mathbf{3} \%$.
3. This parameter mus! be measured with bias voltages applied for less thon \mathbf{S} seconds to avoid overheating.
†These ore nominal values; exact values vary slightly with transistor parameters.
*JEDEC registered data (typical doto excluded).

TYPES 2N4091 THRU 2N4093 N-CHANNEL SILICON JUNCTION FIELD-EFFECT TRANSISTORS

PARAMETER MEASUREMENT INFORMATION
SKL MODEL
503A

TEST CIRCUIT

TYPE	R_{L}	$\mathbf{V}_{\mathbf{G S}}$ (off)
2 N 4091	422Ω	-12 V
2N4092	698Ω	-8 V
2 N 4093	$1.13 \mathrm{k} \Omega$	-6 V

(See Notes a and b)
(See Notes a and b)
VOLTAGE WAVEFORMS

NOTES: a. The input waveforms are supplied by a generator with the following characteristics: $Z_{\text {out }}=50 \Omega$, duty cycle $\approx 2 \%$.
b. Waveforms are monitored on an oscilloscope with the following characteristics: $t_{r} \leqslant 0.4 \mathrm{~ns}, \mathrm{R}_{\text {in }}=10 \mathrm{M} \Omega, \mathrm{C}_{\text {in }}=1.5 \mathrm{pF}$. FIGURE 1

NOTE a. An equivalent generator and oscilloscope may be used. The oscilloscope must have a $50-\Omega$ input impedance. FIGURE 2

TEXAS INSTRUMENTS
INCORPORATED
POST OFFICE BOX 5012 . DALLAS. TEXAS 75222

DESIGNED FOR USE IN LOW-LEVEL, LOW-NOISE AMPLIFERS

- Guaranteed Low-Noise Characteristics at $10 \mathrm{~Hz}, 100 \mathrm{~Hz}, 1 \mathrm{kHz}$ and 10 kHz
- Very High Guarantoed hfE at $I_{C}=10 \mu \mathrm{~A}: 400$ Minimum
- High Rated $\mathrm{V}_{\text {EBo }}$: 10 V
*mechanical data

*absolute maximum ratings af $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)
Collector-Base Voltage 60 V
Collector-Emitter Voltage (See Note 1) 60 V
Emitter-Base Voltage 10 V
Continuous Collector Current
50 mA
50 mA
Continuous Device Dissipation at (or below) $25^{\circ} \mathrm{C}$ Free-Air Temperature (See Note 2) 0.3 W
Continuous Device Dissipation at (or below) $25^{\circ} \mathrm{C}$ Case Temperature (See Note 3)
1.2 W
1.2 W
Storage Temperature Range $200^{\circ} \mathrm{C}$
Lead Temperature $1 / 6$ Inch from Case for 10 Seconds $300^{\circ} \mathrm{C}$
motes: 1. This value applies between 0 and 10 mA when the baso-emitter diede is apen-circuiled.

2. Derate lineorly to $175^{\circ} \mathrm{C}$ free-air temparature of the rate of $2 \mathrm{~mm} /{ }^{\circ} \mathrm{C}$.
3. Derate linearly to $175^{\circ} \mathrm{C}$ case iemperature at the rate of $8 \mathrm{~mm} /{ }^{\circ} \mathrm{C}$.
*JEDEC registerad dafa
*electrical characteristics et $25^{\circ} \mathrm{C}$ free-air temperafure (unless otherwise noted)

PARAMETER		TEST CONDITIONS		MIN	max	UNIT
$V_{\text {Impla }}$	Collector-Bose Breakdown Voltage	$\mathrm{l}_{c}=10 \mu \mathrm{l}, \mathrm{l}_{E}=0$		60		V
$V_{\text {Impeso }}$	Coliector-Embtter Breakdown Voltage	$\mathrm{I}_{\mathrm{c}}=10 \mathrm{~mA}, \mathrm{I}_{\mathrm{L}}=0$,	See Mote 4	60		V
	Emitter-Base Breakdown Voltage	$l_{E}=10 \mu \mathrm{~A}, \quad \mathrm{I}_{\mathrm{C}}=0$		10		V
laso	Collector Cutoff Curment	$V_{C E}=45 V_{1} I_{E}=0$			10	nA
		$V_{C B}=45 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0$,	$\mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$		10	$\mu \mathrm{h}$
lemo	Emither Cutofi Current	$V_{\text {Et }}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{c}}=0$			10	nis
$h_{r e}$	Static Forword Current Transior Ratio	$V_{C E}=5 V_{1}, I_{C}=1 \mu$		150		
		$V_{C E}=5 V_{1} \quad l_{C}=10 \mu \mathrm{~h}$		400	800	
		$V_{C E}=5 V_{1} \quad I_{C}=100 \mu \mathrm{~A}$		450		
		$\mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}, \quad \mathrm{IC}_{\mathrm{C}}=1 \mathrm{~mA}$		500		
$V_{\text {IE }}$	Base-Emitter Voltage	$V_{\text {CE }}=5 \mathrm{~V}, \quad \mathrm{l}_{C}=100 \mu \mathrm{~A}$			0.7	V
$\mathbf{V}_{\text {ctax }}$	Colledor-Emitter Soluration Voltage	$\mathrm{I}_{\mathrm{s}}=0.1 \mathrm{~mA}, \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}$			0.3	v
hie	Small-Signal Common-Enifter Input Impedance	$\begin{array}{ll}\mathbf{V}_{\mathbf{C E}}=5 \mathrm{~V}, \\ \\ & \mathbf{I C}_{\mathbf{C}=1 \mathrm{~mA},} \\ & f=1 \mathrm{kHz}\end{array}$		12	42	$k \Omega$
$h_{\text {to }}$	Small-Signal Commen-Emifter Forward Current Transfer Ratio			500	1400	
$h_{\text {re }}$	Small-Signal Common-Emittor Revarse Voltage Tronsfer Ratio				8×10^{-4}	
$h_{\text {co }}$	Small-Signal Common-Emittor Output Admittance			8	60	$\mu \mathrm{mmo}$
\| h_{0} \|	Small-Signal Common-Emittor Forward Current Irunster Ratio	$V_{\text {CE }}=5 \mathrm{~V}, \mathrm{IC}^{\prime}=0.5 \mathrm{~mA}, \mathrm{f}=30 \mathrm{mHz}$		3	18	
Cobe	Common-Base Open-Circuit Output Copocitance	$V_{C E}=5 V_{1} \quad l_{E}=0$,	$f=1$ MHz		4.5	pF
$\mathrm{Cb}_{\mathrm{bo}}$	Common-Base Open-Circuit Input Capocitance	$V_{\text {Ei }}=0.5 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=0$,	$f=1$ mitz		6	pF

*operating characteristics af $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER	TEST CONDITIONS	MIN	MAX	UNIT
NF Spot Noise Figure	$\begin{aligned} & V_{C E}=5 V, \quad I_{C}=30 \mu \mathrm{~A}, \quad R_{0}=10 \mathrm{k} \Omega, \\ & f=10 \mathrm{~Hz} \end{aligned}$		15	d
	$\begin{aligned} & \begin{array}{l} Y_{\mathrm{cE}}=5 \mathrm{Y}, \quad \mathrm{lc}_{\mathrm{c}}=30 \mu \mathrm{~A}, \\ \mathrm{f}=100 \mathrm{~Hz} \end{array} \\ & \hline \end{aligned}$		4	${ }_{8}$
	$\begin{aligned} & Y_{C E}=5 \mathrm{Y}, \quad \mathrm{l}_{\mathrm{C}}=5 \mu \mathrm{~A}, \quad \mathrm{R}_{6}=50 \mathrm{k} \Omega, \\ & f=1 \mathrm{kHz} \end{aligned}$		1	${ }^{3}$
	$\begin{aligned} & V_{C E}=5 \mathrm{~V}, \quad I_{C}=5 \mu \mathrm{~A}, \quad R_{\phi}=50 \mathrm{k} \Omega, \\ & f=10 \mathrm{kHz} \end{aligned}$		1	d

MOTE 4: Tils parenotor must be moesurad wing mise tociniques: $t_{p}=300 \mu s$, waty cycle $\leq \mathbf{2 \%}$.

* EEDEC ragisternd data

SILECT ${ }^{\dagger}$ TRANSISTORS ${ }^{\ddagger}$
 DESIGNED FOR GENERAL PURPOSE SATURATED SWITCHING AND AMPLIFIER APPLICATIONS

- For Complementary Use with P-N-P Types 2N4125, 2N4126, A5T4125, and A5T4126

- Rugged One-Piece Construction with In-Line Leads or Standard TO-18 100-mil Pin-Circle Configuration
mechanical data
These transistors are encapsulated in a plastic compound specifically designed for this purpose, using a highly mechanized process developed by Texas Instruments. This case will withstand soldering temperatures without deformation. These devices exhibit stable characteristics under high-humidity conditions and are capable of meeting MIL-STD-202C, Method 106B. The transistors are insensitive to light.

2N4123, 2N4124 *ALL JEDEC TO-92 DIMENSIONS AND NOTES ARE APPLICABLE NOTES: A. Lead diameter is not controlled in this area. B. All dimensions are in inches.	$\underset{\text { EBC }}{ }$
A5T4123, A5T4124 NOTES: A. Lead diameter is not controlled in this area. B. Leads having maximum diameter (0.019) shall be within 0.007 of their true positions measured in the gaging plane 0.054 below the seating plane of the device relative to a maximum-diameter package. C. All dimensions are in inches.	

absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

NOTES: 1. These values apply between $10 \mu \mathrm{~A}$ and 200 mA collector current when the base-emitter diode is open-circuited.
2. Derate the $625-\mathrm{mW}$ rating linearly to $150^{\circ} \mathrm{C}$ free-air temperature at the rate of $5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$. Derate the $310-\mathrm{mW}$ (JEDEC registered) rating linearly to $135^{\circ} \mathrm{C}$ free-air temperature at the rate of $2.81 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
*The asterisk identifies JEDEC registered data for the 2 N4123 and 2 N4124 only. This data sheet contains all applicable registered data in effect at the time of publication.
${ }^{\dagger}$ Trademark of Texas Instruments
\#U.S. Patent No. 3,439,238
§Texas Instruments guarantees these values in addition to the JEDEC registered values which are also shown.

TYPES 2N4123, 2N4124, A5T4123, A5T4124 N-P-N SILICON TRANSISTORS

*electrical characteristics at $\mathbf{2 5}{ }^{\circ} \mathbf{C}$ free-air temperature

PARAMETER		TEST CONDITIONS		$\begin{gathered} \text { 2N4123 } \\ \text { A5T4123 } \end{gathered}$		2N4124 A5T4124		UNIT		
		MIN	MAX	MIN	MAX					
$V_{\text {(BR) }}$ CBO	Collector-Base Breakdown Voltage			$I_{C}=10 \mu A, \quad I_{E}=0$		40		30		V
$V_{\text {(BR) }}$ CEO	Collector-Emitter Breakdown Voltage	$I_{C}=1 \mathrm{~mA}, \quad \mathrm{I}_{\mathrm{B}}=0$,	See Note 3	30		25		V		
$V_{\text {(BR) }}$ EBO	Emitter-Base Breakdown Voltage	$I_{E}=10 \mu A, \quad I C=0$		5		5		V		
${ }^{\text {I CBO }}$	Collactor Cutoff Current	$V_{C B}=20 \mathrm{~V}, \mathrm{IE}=0$			50		50	nA		
IEbo	Emitter Cutoff Current	$V_{E B}=3 \mathrm{~V}, \mathrm{I}^{\prime}=0$			50		50	nA		
hFE	Static Forward Current Transfer Ratio	$V_{C E}=1 \mathrm{~V}, \quad I^{\prime}=2 \mathrm{~mA}$	See Note 3	50	150	120	360			
		$V_{C E}=1 \mathrm{~V}, I^{\prime} \mathrm{C}=50 \mathrm{~mA}$		25		60				
$V_{\text {BE }}$	Base-Emitter Voltage	$\mathrm{I}_{\mathrm{B}}=5 \mathrm{~mA}, \quad 1 \mathrm{C}=50 \mathrm{~mA}$,	See Note 3		0.95		0.95	V		
$V_{C E}$ (sat)	Collector-Emitter Saturation Voltege	$I_{B}=5 \mathrm{~mA}, \quad I_{C}=50 \mathrm{~mA}$,	See Note 3		0.3		0.3	V		
$h_{\text {fe }}$	Small-Signal Common-Emitter Forward Current Transfer Ratio	$V_{C E}=10 \mathrm{~V}, \mathrm{I}^{\prime}=2 \mathrm{~mA}$,	$\mathrm{f}=1 \mathrm{kHz}$	50	200	120	480			
$\mathrm{l}_{\text {fe }} \mathrm{l}$	Small-Signal Common-Emitter Forward Current Transfer Ratio	$V_{C E}=20 \mathrm{~V}, I_{C}=10 \mathrm{~mA}$,	$f=100 \mathrm{MHz}$	2.5		3				
${ }^{\text {f }}$	Transition Frequency	$V_{\text {CE }}=20 \mathrm{~V}$, $\mathrm{IC}=10 \mathrm{~mA}$,	See Note 4	250		300		MHz		
Cobo	Common-B ase Open-Circuit Output Capacitance	$V_{C B}=5 \mathrm{~V}, \quad I_{E}=0$,	$f=100 \mathrm{kHz}$		4		4	pF		
Cibo	Common-B ase Open-Circuit Input Capacitance	$V_{E B}=0.5 \mathrm{~V}, \mathrm{I}^{\prime}=0$,	$f=100 \mathrm{kHz}$		8		8	pF		

NOTES: 3. These parameters must be measured using pulse techniques. $t_{w}=\mathbf{3 0 0} \mu \mathrm{s}$, duty cycle $<\mathbf{2 \%}$.
4. To obtain f_{T}, the $h_{f e}$ l response is extrapolated at the rate of -6 dB per octave from $\mathrm{f}=100 \mathrm{MHz}$ to the frequency at which $h_{f 9} \mid=$?
*operating characteristics at $\mathbf{2 5}{ }^{\circ} \mathrm{C}$ free-air temperature

PARAMETER		TEST CONDITIONS	$\begin{gathered} \text { 2N4123 } \\ \text { A5T4123 } \\ \hline \end{gathered}$		$\begin{gathered} \hline \text { 2N4124 } \\ \text { A5T4124 } \end{gathered}$		UNIT	
		MIN	MAX	MIN	MAX			
$\overline{\mathbf{N F}}$	Averege Noise Figure		$\begin{array}{ll} V_{C E}=5 \mathrm{~V}, & I_{C}=100 \mu \mathrm{~A}, \\ R_{G}=1 \mathrm{k} \Omega, & \text { Noise Bandwidth }=15.7 \mathrm{kHz}, \\ \text { See Note } 5 \end{array}$		6		5	dB

NOTE 5: Average noise figure is messured in on amplifier with response down 3 dB at 10 Hz and 10 kHz and a high-frequency rolloff of $6 \mathrm{~dB} / \mathrm{octave}$.
*The asterisk identifies JEDEC registered data for the 2N4123 and 2N4124 only.
switching characteristics at $\mathbf{2 5}{ }^{\mathbf{}} \mathbf{C}$ free-air temperature

	PARAMETER	TEST CONDITIONS ${ }^{\text { }}$	TYP	UNIT
t_{d}	Delay Time		14	ns
t_{r}	Rise Time	$R_{L}=275 \Omega$, See Figure 1	8	ns
t_{3}	Storage Time	$\mathrm{I}^{\prime}=10 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}(1)}=1 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}(2)}=-1 \mathrm{~mA}$,	22	ns
${ }_{4}$	Fall Time'	$R_{L}=275 \Omega$, See Figure 2	10	ns

\dagger Voltage and current values shown are nominal; exact values vary silghtly with transistor paremeters. Nominal base current for delay and rise times is calculated using the minimum value of $V_{\mathbf{g E}}$. Nominal base currents for storage and fall times are calculated using the maximum value of V_{BE}.

PARAMETER MEASUREMENT INFORMATION

figure 1-delay and rise times

TEST CARCUIT

VOLTAGE WAVEFORMS

FIGURE 2-STORAGE AND FALL TIMES

NOTES: 2. The input woveforme are supplled by a penerator with the following charactaristics: $\mathbf{z}_{\text {out }}=\mathbf{8 0} \Omega$, duty eycle $=\mathbf{2 \%}$.
b. Waveforms are monitored on an oncilioscope with the following characteristics: $\mathrm{t}_{\mathrm{r}}<1 \mathrm{~ms}, \mathrm{R}_{\mathrm{In}}=10 \mathrm{M} \Omega, \mathrm{C}_{\mathrm{in}}<4 \mathrm{pF}$.

SILECT TRANSISTORS \ddagger
 FOR GENERAL PURPOSE SATURATED-SWITCHING AND AMPLIFIER APPLICATIONS

- For Complementary Use with N.P.N Types 2N4123, 2N4124, A5T4123, and A5T4124
- Rugged One-Piece Construction with In-Line Leads or Standard TO-18 100-mil Pin-Circle Configuration

mechanical data

These transistors are encapsulated in a plastic compound specifically designed for this purpose, using a highly mechanized process developed by Texas Instruments. The case will withstand soldering temperatures without deformation. These devices exhibit stable characteristics under high-humidity conditions and are capable of meeting MIL-STD-202C, Method 106B. The transistors are insensitive to light.

absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temparature (unless otherwise noted)

Storage Temperature Range

Lead Temperature $\mathbf{1 / 1 6}$ Inch from Case for 60 Seconds

NOTES: 1. Thase values apply batween $10 \mu \mathrm{~A}$ and 200 mA collector currant when the base-emitter diode is open-clrcuited
2. Derste the $625-\mathrm{mW}$ rating Hnearly to $150^{\circ} \mathrm{C}$ free-air temperature at the rate of $\mathrm{EmW} /^{\circ} \mathrm{C}$. Derate the $310-\mathrm{mW}$ (JEDEC registered) rating linesply to $138^{\circ} \mathrm{C}$ free-air temperature at the rate of $2.81 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
*The asteriak identifies JEDEC registered data for the 2 N 4128 and 2 N 4126 only. This data aheat contalns all applleable registered data in offect at the time of publication.
\dagger Trademark of Texae Instrumenta.
\ddagger U.S. Patent No. 3,439,238.
USES CHIP P15
8 Toxas instrumenta guarantees these values in addition to the JEDEC regletered values which are also shown.

TYPES 2N4125, 2N4126, A5T4125, A5T4126 P-N-P SILICON TRANSISTORS

*electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

NOTES: 3. These parameters must be measured using pulse techniques. $t_{w}=300 \mu$, dury cycle $<\mathbf{2 \%}$.
4. To obtain f_{T}, the $h_{h_{f}} \mid$ response is extrpolated at the rate of -6 dB per octave from f $h_{f_{e}}=1$.
*operating characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER		TEST CONDITIONS	$\begin{gathered} \text { 2N4125 } \\ \text { A5T4125 } \end{gathered}$		2N4126 A5T4126		UNIT	
		MIN	MAX	Min	MAX			
$\overline{N F}$	Average Noise Figure		$\begin{array}{ll} V_{C E}=-5 \mathrm{~V}, & \mathrm{I}_{\mathrm{C}}=-100 \mu \mathrm{~A}, \\ R_{\mathrm{G}}=1 \mathrm{k} \Omega, & \text { Noise B andwidth }=15.7 \mathrm{kHz}, \end{array}$ See Note 5		5		4	dB

NOTE 5: Average Noise Figure is measured in an amplifier with response down 3 dB at 10 Hz and 10 kHz and a high-frequency rolloff of 6

- The asterisk identifies JEDEC registerad date for the 2N4125 and 2N4126 only.
switching characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER	TEST CONDITIONS ${ }^{\text {f }}$	TYP	UNIT
t_{d} Delay Time	$\begin{array}{ll} \mathrm{I}_{\mathrm{C}}=-10 \mathrm{~mA}, & \mathrm{I}_{\mathrm{B}(1)}=-1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{BE}}(\text { off })=0.5 \mathrm{~V}, \\ R_{\mathrm{L}}=275 \Omega, & \text { See Figure } 1 \end{array}$	13	ns
$\mathrm{t}_{\mathrm{r}} \quad$ Rise Time		13	ns
$t_{\text {s }} \quad$ Storage Time	$\begin{array}{ll} \mathrm{I}_{\mathrm{C}}=-10 \mathrm{~mA}, & \mathrm{I}_{\mathrm{B}(1)}=-1 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}(2)}=1 \mathrm{~mA}, \\ \mathrm{R}_{\mathrm{L}}=275 \Omega, & \text { See Figure } 2 \end{array}$	60	ns
$\mathrm{t}_{\mathrm{f}} \quad$ Fall Time		22	ns

[^88]
PARAMETER MEASUREMENT INFORMATION

TEST CIRCUIT

VOLTAGE WAVEFORMS

FIGURE 1-DELAY AND RISE TIMES

VOLTAGE WAVEFORMS

FIGURE 2-STORAGE AND FALL TIMES

NOTES: a. The input waveforms are supplied by a generator with the following characteristics: $\mathbf{Z}_{\text {out }}=\mathbf{5 0} \Omega 2$, duty cycle $=\mathbf{2 \%}$.
b. Waveforms are monitored on an oscilloscope with the following characteristics: $t_{r} \leqslant 1 \mathrm{~ns}, \mathrm{R}_{\mathrm{in}}=10 \mathrm{MS}, \mathrm{C}_{\mathrm{in}} \leqslant 4 \mathrm{pF}$.

FOR LOW-LEVEL, HIGH-SPEED CHOPPER APPLICATIONS IN INVERTED CONNECTION

- Low Offset Voltage... 0.4 mV Max (2N2432A)
- Low Ita... 2 nA Max
- High Reted Vico for Inverted Connection

ALSO USEFUL FOR LOW-LEVEL AMPLIFER APPLICATIONS
 - $h_{\text {fe }} \ldots 30$ Min at $10 \mu A$

*mechanical defa

tII guranoted minimum. The JEDEC registored minimum lead diameter for the T0-46 is 0.012 .
*absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

WOTES: 1. This value applles betwoen 0 and 10 mA collecter current when the amilier-bose diode is open-cirecuited.
2. This valve applias between 0 and $100 \mu \mathrm{~h}$ amitter current when the coilector-bese diode is epen-circuited.
3. Derate linsarly to $175^{\circ} \mathrm{C}$ free-air tamperature at the rate of $2 \mathrm{~mW} / \mathrm{dey}$.
4. Derate lineerly to $175^{\circ} \mathrm{C}$ case temperature al the rate of $4 \mathrm{~mW} / \mathrm{deg}$.
*Indicates JEDEC reglistored data.
*electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

PARAMETER		TEST CONDITIONS		$\begin{array}{\|l\|} \hline \text { 2N2432 } \\ \text { 2N4138 } \\ \hline \text { M1N MAX } \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { 2N2432A } \\ \hline \text { MINMAX } \\ \hline \end{array}$	UNIT
$V_{\text {(Br) }}$	Collector-Base Breakdown Voltage	$\mathrm{I}_{\mathrm{C}}=100 \mu{\mathrm{~A}, \mathrm{I}_{\mathrm{E}}=0}$		30	45	V
	Collector-Emitter Breakdown Voltage	$\mathrm{I}_{\mathrm{c}}=10 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0$,	See Note 5	30	45	V
$V_{\text {(R)RIECO }}$	Emitter-Collector Breakdown Yoltage	$\mathrm{I}_{\mathrm{E}}=100 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{E}}=0$		15	18	V
Icmo	Collector Cutoff Current	$\mathrm{V}_{\mathrm{CB}}=25 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0$		10		nA
		$V_{C E}=40 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0$			10	nA
Ices	Collector Cutoff Current	$V_{C E}=25 \mathrm{~V}, V_{\text {VE }}=0$		10		nA
		$V_{\text {CE }}=25 \mathrm{~V}, \mathrm{~V}_{\text {EE }}=0$,	$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$	250		nA
		$V_{\text {CE }}=40 \mathrm{~V}, \mathrm{~V}_{\text {BE }}=0$			10	nA
		$\mathrm{V}_{\mathrm{CE}}=40 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0$,	$\mathrm{T}_{\mathbf{A}}=125^{\circ} \mathrm{C}$		250	nA
$\mathrm{I}_{\text {EMO }}$	Emitter Cutoff Currenf	$V_{E B}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=0$		2	2	nA
IEcS	Emitter Cutoff Current	$V_{E C}=15 \mathrm{~V}, V_{B C}=0$		2	2	nA
		$V_{\text {EC }}=15 \mathrm{~V}, V_{\text {BC }}=0$,	$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$	200	200	nA
$h_{\text {fre }}$	Static Forward Current Iransfer Ratio	$\mathrm{V}_{\text {CE }}=5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}$		30	30	
		$\mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}$		50	50	
$h_{\text {felinim }}$	Static Forward Current Tromsfer Ratio (Inverted Connection)	$\mathrm{V}_{\mathrm{EC}}=5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{E}}=0.2 \mathrm{~mA}$		2	3	
$V_{\text {cetart }}$	Collector-Emitter Saturation Voltage	$\mathrm{I}_{\mathrm{B}}=0.5 \mathrm{~mA}, \mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}$		0.15	0.15	v
$V_{\text {ECloti) }}$	Oftset Voltage (Inverted Connection)	$\mathrm{I}_{\mathrm{B}}=200 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{E}}=0$,	See figure I	0.5	0.4	m V
		$\mathrm{I}_{\mathrm{E}}=1 \mathrm{~mA}, \quad \mathrm{l}_{\mathrm{E}}=0$,	See Figure 1	1	0.7	mV
${ }^{5} \mathrm{c}$ (en)	Small-Signal Emitter-Collector On-Stote Resistance	$\begin{array}{ll} \mathrm{I}_{\mathrm{B}}=1 \mathrm{~mA}, & \begin{array}{l} \mathrm{I}_{\mathrm{E}}=0 \\ \mathrm{f}=1 \mathrm{kHz}, \end{array} \end{array}$	$T_{0}=100 \mu \mathrm{~A},$ See figure 2	20	15	Ω
\| $h_{\text {fol }}$ \|	Small-Signal Common-Emitter Forward Current Trunsfer Ratio	$\mathrm{V}_{\text {CE }}=5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}$,	$f=20 \mathrm{mHz}$	1	1	
$\mathrm{Cbob}^{\text {c }}$	Common-Base Open-Circuit Output Capacitance	$V_{C E}=0, \quad l_{E}=0$,	$f=140 \mathrm{kHz}$	12	12	pF
$C_{c b}$	Collector-Base Caporitance	$V_{C E}=0, \quad i_{E}=0$,	$f=1 \mathrm{mHz}$ See Note 6	12	12	pF
$\mathrm{c}_{\mathrm{ibo}}$	Common-Bose Open-Circuit Input Capocitonce	$V_{E E}=0, \quad I_{C}=0$,	$\mathrm{f}=140 \mathrm{kHz}$	12	12	pF
Cbb	Emitter-Base Capacitance	$V_{E B}=0, \quad I_{C}=0$,	$f=1 \text { MHz, }$ See Note 6	12	12	pF

WOTES: 5. This paramoter must be measured using pulse techniques. ${ }^{t} p=300 \mu 5$, duty cycle $\leq 2 \%$.
6. $C_{c b}$ and $C_{a b}$ are measured using thres-terminal measurement techniques with the third electrode (emitter or collector respectively) guarded.

PARAMETER MEASUREMENT INFORMATION

FIGURE 1
measurement circuit for offset voltage

FIGURE 2
MEASUREMENT CIRCUIT FOR EMITTER-
COLLECTOR ON-STATE RESISTANCE

MOTE a: The volimeler must have high enough impedance that halving the value of the volimeler impedance does not change the measured value. -Indicates JEDEC registered defa.

N-CHANNEL FIELD-EFFECT TRANSISTORS

- Designed for General Purpose Amplifier and Switching Applications
- Low IGSS . . . 100 pA Max
- Low Input Capacitance . . . 6 pF Max
- High ${ }^{\text {ffs }}$ $/ / \mathbf{C}_{\text {iss }}$ Ratio
*mechanical data

*absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)
Drain-Gate Voltage 30 V
Drain-Source Voltage 30 V
Reverse Gate-Source Voltage $-30 \mathrm{~V}$
Continuous Forward Gate Current 10 mA
Continuous Drain Current 15 mA
Continuous Device Dissipation at (or below) $25^{\circ} \mathrm{C}$ Free-Air Temperature (See Note 1) 300 mW
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $200^{\circ} \mathrm{C}$
Lead Temperature $1 / 16$ Inch from Case for 10 Seconds $300^{\circ} \mathrm{C}$

NOTE 1: Derate linearly to $175^{\circ} \mathrm{C}$ free-air temperature at the rate of $2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
*JEDEC registered data. This data sheet contains all applicable registered data in effect at the time of publication.
electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

PARAMETER		TEST CONDITIONS ${ }^{\dagger}$	$\begin{aligned} & \text { 2N4220 } \\ & \text { 2N4220A } \end{aligned}$	$\begin{gathered} \text { 2N4221 } \\ \text { 2N4221A } \end{gathered}$	$\begin{gathered} \text { 2N4222 } \\ \text { 2N4222A } \end{gathered}$	UNIT	
		MIN MAX	MIN MAX	MIN MAX			
$V_{\text {(BR)GSS }}$	Gate-Source Breakdown Voltage		$\mathrm{I}_{\mathbf{G}}=10 \mu \mathrm{~A}, \quad V_{\text {DS }}=0$	-30^{*}	-30^{*}	$-3{ }^{*}$	V
IGSS	Gate Reverse Current	$V_{\text {GS }}=-15 \mathrm{~V}, \mathrm{~V}_{\text {DS }}=0$	-0.1*	-0.1*	-0.1*	nA	
		$\begin{aligned} & V_{G S}=-15 \mathrm{~V}, V_{D S}=0, \\ & T_{A}=150^{\circ} \mathrm{C} \end{aligned}$	-0.1*	-0.1*	-0.1*	$\mu \mathrm{A}$	
VGS(off)	Gate-Source Cutoff Voitage	$V_{\text {DS }}=15 \mathrm{~V}, \quad I_{D}=0.1 \mathrm{nA}$	-4*	-6^{*}	-8^{*}	V	
$V_{\text {GS }}$	Gate-Source Voltage	$V_{\text {DS }}=15 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{D}}=50 \mu \mathrm{~A}$	-0.5* -2.5^{*}			V	
		$V_{D S}=15 \mathrm{~V}, I_{D}=200 \mu \mathrm{~A}$		$-1^{* *}-5^{*}$			
		$V_{D S}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=500 \mu \mathrm{~A}$			-2* -6*		
IDSS	Zero-Gate-Voltage Drain Current	$\begin{array}{ll} V_{D S}=15 V, & V_{G S}=0, \\ \text { See Note } 2 & \\ \end{array}$	0.5* 3*	2* 6*	5* 15*	mA	
$\left\|y_{f s}\right\|$	Smail-Signal Common-Source Forward Transfer Admittance	$\begin{array}{ll} V_{D S}=15 \mathrm{~V}, & V_{G S}=0 \\ f=1 \mathrm{kHz}, & \text { See Note } 2 \end{array}$	1* 4*	2* 5*	2.5* 6*	mmho	
\|Yos \mid	Small-Signal Common-Source Output Admittance		10*	20*	40*	$\mu \mathrm{mho}$	
$C_{\text {iss }}$	Common-Source Short-Circuit Input Capacitance	$V_{\text {DS }}=15 \mathrm{~V}, \quad V_{G S}=0$,	6*	6*	6^{*}	pF	
$\mathrm{C}_{\text {rss }}$	Common-Source Short-Circuit Reverse Transfer Capacitance		2*	2*	2*	pF	
$\left\|y_{\text {fs }}\right\|$	SmallSignal Common-Source Forwerd Transfer Admittance	$\begin{array}{ll} V_{D S}=15 V, & V_{G S}=0, \\ f=100 \mathrm{MHz} \end{array}$	0.75*	$\begin{array}{r} 1.5 \S \\ 0.75^{*} \\ \hline \end{array}$	$\begin{array}{r} 28 \\ 0.75^{*} \end{array}$	mmho	

operating characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER		TEST CONDITIONs ${ }^{\dagger}$	$\begin{aligned} & \text { 2N4220A } \\ & \text { 2N4221A } \\ & \text { 2N4222A } \end{aligned}$		UNIT	
		MIN	MAX			
NF	Common-Source Spot Noise Figure		$V_{D S}=15 \mathrm{~V}, \mathrm{~V}_{G S}=0, f=100 \mathrm{~Hz}, \mathrm{R}_{\mathrm{G}}=1 \mathrm{M} \Omega$		2.5*	dB

NOTE 2: These parameters must be measured using pulse techniques. $t_{\mathbf{w}}=100 \mathrm{~ms}$, duty cycle $\leqslant 10 \%$.
${ }^{\dagger}$ The fourth lead (case) is connected to the source for all measurements.

- JEDEC registered data
§Texas instruments guarantees these values in addition to the JEDEC registered values which are also shown.

FOR VHF AMPLIFIER AND MIXER APPLICATIONS

- Low $\mathrm{C}_{\text {rss }}$. . . 2 pF Max
- High $\mid y_{f s} / C_{\text {iss }}$ Ratio (High-Frequency Figure-of-Merit)
- Cross Modulation Minimized by Square-Law Transfer Characteristic
- Low Noise Figure . . . 5 dB Max at 200 MHz
*mechanical data

*absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

NOTE 1: Derate linearly to $175^{\circ} \mathrm{C}$ free-alf temperazure at the rate of $2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
"JEDEC registered data. This data shear contains all applicable regletered data in effect at the time of publication.

TYPES 2N4223, 2 N4224 N-CHANNEL SILICON JUNCTION FIELD-EFFECT TRANSISTORS

*electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

PARAMETER		TEST CONDITIONE ${ }^{\dagger}$			2N4223		2 N 4224		UNIT			
		MIN	MAX	MIN	MAX							
$V_{\text {(BR) }}$ GSS	Gate-Source Breakdown Voltage				$1 G^{-10}-10$ A	$V_{0 S}=0$		-30		-30		V
IGSS	Gate Reverse Current	$V_{G S}=-20 \mathrm{~V}$	$V_{D S}=0$			-0.25		-0.5	nA			
		$V_{\text {GS }}=-20 \mathrm{~V}$	$V_{D S}=0$,	$T_{A}=100^{\circ} \mathrm{C}$		-0.25		-0.5	$\mu \mathrm{A}$			
VGS(off)	Gate-Source Cutoff Voltage	$V_{D S}=15 \mathrm{~V}$,	$10=0.25$		-1.2	-8			V			
		$V_{D S}=16 \mathrm{~V}$,	$1 \mathrm{D}=0.5 \mathrm{nA}$				-1.2	-8				
VGS	Gatt-Source Voltege	$V_{D S}=15 \mathrm{~V}$,	$1 \mathrm{D}=0.3 \mathrm{~m}$		-1	-7			V			
		$V_{D S}=15 \mathrm{~V}$	$I_{D}=0.2 \mathrm{~m}$				-1	-7.6				
IDSS	Zero-Gate-Voltage Drain Current	$V_{D S}=15 \mathrm{~V}$,	$V_{\text {GS }}=0$,	See Note 2	3	18	2	20	mA			
\|Vfs ${ }^{\text {c }}$	Small-Signal Common-Source Forward Transfer Admittance	$\begin{aligned} & V_{D S}=16 \mathrm{~V} \\ & \text { See Note } 2 \end{aligned}$	$V_{G S}=0,$	$f=1 \mathrm{kHz},$	3	7	2	7.6	mmho			
$C_{\text {iss }}$	Common-Source Short-Circuit Input Capacitance	$V_{D S}=15 \mathrm{~V}$,	$V_{G S}=0$,	$f=1 \mathrm{MHz}$	6		6		DF			
$C_{\text {rss }}$	Common-Source Short-Circuit Reverse Transfer Capacitance					2		2	pF			
Gis	Small-Signal Common-Source Input Conductance	$V_{D S}=15 \mathrm{~V},$ See Note 2	$V_{G S}=0$,	$f=200 \mathrm{MHz}$,		800		800	$\mu \mathrm{mho}$			
\|Vfs \mid	Small-Signal Common-Source Forwerd Transfer Admittance				2.7		1.7		mmho			
908	Small-Signal Common-Source Output Conductance					200		200	$\mu \mathrm{mho}$			

*operating characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER		TEST CONDITIONS ${ }^{\dagger}$			2N4223		UNIT			
		MIN	MAX							
F	Common-Source Spot Noise Figure				$\begin{aligned} & V_{D S}=15 \mathrm{~V}, \\ & R_{G^{\prime}}=1 \mathrm{k} \Omega \end{aligned}$	$V_{G S}=0,$ Ses Figure 1	$f=200 \mathrm{MHz}$		5	dB
G_{ps}	Small-Signal Common-Source Insertion Power Gain	$\begin{aligned} & \text { VDS }=15 \mathrm{~V}, \\ & \text { See Figure } 1 \end{aligned}$	$V_{G S}=0,$	$\mathrm{f}=200 \mathrm{MHz},$	10		d8			

NOTE 2: These parameters must be measured using pulse techniques. $t_{w} \leqslant \mathbf{6 3 0} \mathbf{~ m s}$, duty cycle $<\mathbf{1 0 \%}$.
${ }^{\dagger}$ The fourth leed (case) is connected to the source for all measurements.

- JEDEC reglatered data

FIGURE 1-NOISE FIGURE AND POWER GAIN TEST CIRCUIT
NOTE 3: Transformad equivalent source resistance (R_{G}^{\prime}) is $1 \mathrm{k} \Omega$ at $\mathbf{2 0 0} \mathbf{M H z}$.

SILECT ${ }^{\dagger}$ TRANSISTORS \ddagger FOR LOW-LEVEL, LOW-NOISE AMPLIFIER APPLICATIONS

- hfe Guaranteed at $\mathbf{1 0 0} \mu \mathrm{A}$
- Low Noise Figure . . . 2 dB Max (A5T4250)
- Plug-In Replacements for 2N4248, 2N4249, 2N4250 (TO-106)
mechanical data
These transistors are encapsulated in a plastic compound specifically designed for this purpose, using a highly mechanized process developed by Texas Instruments. The case will withstand soldering temperatures without deformation. These devices exhibit stable characteristics under high-humidity conditions and are capable of meeting MIL-STD-202C, Method 106B. The transistors are insensitive to light.

absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

NOTES: 1. These values apply when the base-emitter diode is open-clrcuited.
2. Derate Unearly to $150^{\circ} \mathrm{C}$ free-air temperature at the rate of $5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.

[^89]USES CHIP P18

TYPES A5T4248, A5T4249, A5T4250 P-N-P SILICON TRANSISTORS

electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER		TEST CONDITIONS	A5T4248		A5T4249		A5T4250		UNIT	
		MIN	MAX	MIN	MAX	MIN	MAX			
$V_{\text {(BR)CEO }}$	Collector-Emitter Breakdown Voltage		$I_{C}=-5 \mathrm{~mA}, \quad I_{B}=0,$ See Note 3	-40		-60		-40		V
$V_{\text {(BR) }}$ CES	Collector-Emitter Breakdown Voltage	${ }^{1} C=-10 \mu A, \quad V_{B E}=0$	-40		-60		-40		\checkmark	
$V_{\text {(BR)EBO }}$	Emitter-Base Breakdown Voltage	$\mathrm{I}_{\mathrm{E}}=-10 \mu \mathrm{~A}, \quad \mathrm{I}_{\mathrm{C}}=0$	-5		-5		-5		V	
${ }^{\prime} \mathrm{CBO}$	Collector Cutoff Current	$V_{C B}=-40 \mathrm{~V}, \mathrm{IE}^{\prime}=0$		-10		-10		-10	nA	
${ }_{\text {t EBO }}$	Emitter Cutoff Current	$\mathrm{VEB}=-3 \mathrm{~V}, \mathrm{I}^{\text {c }}=0$		-20		-20		-20	nA	
hFE	Static Forward Current Transfer Ratio	$V_{C E}=-5 \mathrm{~V}, \quad \mathrm{I}^{\text {C }}=-100 \mu \mathrm{~A}$	50		100	300	250	700		
		$V_{C E}=-5 \mathrm{~V}, \quad \mathrm{I}^{\prime}=-1 \mathrm{~mA}$	50		100		250			
		$V_{C E}=-5 V, \quad I_{C}=-10 \mathrm{~mA},$ See Note 3	50		100		250			
VBE	Base-Emitter Voltage	$I_{B}=-0.5 \mathrm{~mA}, \quad I_{C}=-10 \mathrm{~mA},$ See Note 3		-0.9		-0.9		-0.9	V	
VCE(sat)	Collector-Emitter Saturation Voltage	$I_{B}=-0.5 \mathrm{~mA}, \quad I_{C}=-10 \mathrm{~mA},$ See Note 3		-0.25		-0.25		-0.25	V	
$h_{\text {ie }}$	Small-Signal Common-Emitter Input Impedance	$\begin{aligned} & V_{C E}=-5 \mathrm{~V}, \quad \mathrm{I} \mathrm{C}=-1 \mathrm{~mA}, \\ & \mathrm{f}=1 \mathrm{kHz} \end{aligned}$			2.5	17	6	20	k Ω	
$h_{\text {fe }}$	Small-Signal Common-Emitter Forward Current Transfer Ratio		50	1000	100	550	250	800		
$\mathrm{hre}_{\text {re }}$	Small-Signal Common-Emitter Reverse Voltage Transfer Ratio					$\begin{array}{r} 10 x \\ 10^{-4} \end{array}$		$\begin{array}{r} 10 x \\ 10^{-4} \end{array}$		
$\mathrm{h}_{\mathbf{o e}}$	Small-Signal Common-Emitter Output Admittance				5	40	5	50	$\mu \mathrm{mho}$	
$\mathbf{l h}_{\text {fe }}{ }^{\text {l }}$	Small-Signal Common-Emitter Forward Current Transfer Ratio	$\begin{aligned} & V_{C E}=-5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{C}}=-0.5 \mathrm{~mA}, \\ & \mathrm{f}=20 \mathrm{MHz} \end{aligned}$	2		2		2.5			
Cobo	Common-Base Open-Circuit Output Capacitance	$\begin{aligned} & V_{C B}=-5 \mathrm{~V}, \\ & \mathrm{f}=1 \mathrm{MHz}=0, \end{aligned}$		6		6		6	pF	
$\mathrm{C}_{\text {ibo }}$	Common-Base Open-Circuit Input Capacitance	$\begin{aligned} & V_{E B}=-0.5 \mathrm{~V}, \mathrm{I} C=0, \\ & \mathrm{f}=1 \mathrm{MHz} \end{aligned}$		16		16		16	pF	

operating characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER		TEST CONDITIONS	A5T4248		A5T4249		A5T4250		UNIT	
		MIN	MAX	MIN	MAX	MIN	MAX			
F	Spat Noise Figure		$\begin{array}{ll} V_{C E}=-5 \mathrm{~V}, & I_{C}=-20 \mu \mathrm{~A} \\ \mathrm{R}_{\mathrm{G}}=10 \mathrm{k} \Omega, & f=1 \mathrm{kHz} \end{array}$				3		2	dB
	Spot Noise Figure	$\begin{array}{ll} V_{C E}=-5 \mathrm{~V}, & \mathrm{I} C=-250 \mu \mathrm{~A}, \\ \mathrm{R}_{\mathrm{G}}=1 \mathrm{k} \Omega, & f=1 \mathrm{kHz} \end{array}$				3		2		
F	Average Noise Figure	$\begin{aligned} & V_{C E}=-5 \mathrm{~V}, \quad I_{C}=-20 \mu \mathrm{~A}, \\ & R_{\mathrm{G}}=10 \mathrm{k} \Omega, \\ & \text { Noise Bandwidth }=15.7 \mathrm{kHz}, \\ & \text { See Note } 4 \end{aligned}$				3		2	dB	

NOTES: 3. These parameters must be measured using pulse techniques. $\mathrm{t}_{\mathrm{w}}=300 \mu \mathrm{~s}$, duty cycle $\leq 2 \%$.
4. Average Noise Figure is measured in an amplifier with response down 3 dB at 10 Hz and 10 kHz and a high-frequency roll-off of
NOTES: 3. These parameters must be measured using pulse techniques. $\mathrm{t}_{\mathrm{w}}=300 \mu \mathrm{~s}$, duty cycle $\leqslant \mathbf{2 \%}$. 10 kHz and a high-frequency roll-off of
4. Average Noise Figure is measured in an amplifier with response down 3 dB at 10 Hz and 10 kH , $6 \mathrm{~dB} /$ octave.

HIGH-FREQUENCY TRANSISTORS FOR TUNER AND IF-AMPLIFIER STAGES IN FM AND AM/FM STEREO-MULTIPLEX RECEIVERS

*mechanical data

*absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless atherwise noted)

$$
\text { Collector-Base Voltage . } 30 \text { V }
$$

Collector-Emitter Voltage (See Note 1) . 18 V
Emitter-Base Voltage . 4 V
Continuous Collector Current . 50 mA
Continuous Device Dissipation of (or below) $25^{\circ} \mathrm{C}$ Free-Air Temperature (See Note 2) 200 mW
Storage Temperature Range . $-65^{\circ} \mathrm{C}$ to $200^{\circ} \mathrm{C}$
Lead Temperature $1 / 10$ Inch from Case for 10 Seconds $300^{\circ} \mathrm{C}$
*electrical characteristics at $25^{\circ} \mathbf{C}$ free-air semperature (unless otherwise noted)

PARAMETER	TEST CONDITIONS	2N4252		2N4253		UNIT
		MIN	MaX	MIN	MAX	
$V_{\text {(Ra) Coo }}$ Collector-Base Breakdown Voltage	$\mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{E}}=0$	30		30		V
$V_{\text {(ax] ceo }}$ Collector-Emitter Breakdown Voltage	$\mathrm{IC}_{\mathrm{C}}=2 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0, \quad$ See Note 3	18		18		V
	$\mathrm{I}_{\mathrm{E}}=10 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{C}}=0$	4		4		V
Coliector Cutoff Current	$V_{C B}=15 V_{1} J_{E}=0$		50		50	ni
	$V_{C B}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0, \quad \mathrm{~T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$		5		5	$\mu \mathrm{A}$
here Static Forward Current Transter Ratio	$V_{C E}=10 \mathrm{~V}, I_{C}=2 \mathrm{~mA}$	50		30	150	
\| $h_{t h} \mid$ Small-Signal Common-Emitter Forward Current Transfer Ratio	$V_{\text {CE }}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=2 \mathrm{~mA}, \quad f=100 \mathrm{mHz}$	6	14	6	14	
Ccb Collector-Base Copacitance	$V_{C t}=10 \mathrm{~V}, \mathrm{l}_{\mathrm{E}}=0, \quad \begin{aligned} & i=1 \\ & \text { See Mole } 4\end{aligned}$	0.1	0.45	0.1	0.45	pf
$\mathrm{r}_{\text {cop }}$ Parallel-Equivalent Common-Emitter Short-Circuit Output Resistance	$V_{C E}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=2 \mathrm{~mA}, f=10 \mathrm{mHz}$			50		k $\boldsymbol{\Omega}$
$\mathrm{I}_{\mathrm{b}} \mathrm{C}_{\mathrm{c}}$ Collector-Base Time Constont	$V_{C I}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=-2 \mathrm{~mA}, f=79.8 \mathrm{MHz}$		12		12	ps

MOTES: 1. This value applies when bese-emitter diede is open-circuited.
2. Derale linaarly to $175^{\circ} \mathrm{C}$ free-air temperature at the rats of $1.33 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
3. Thase paramaters must be measured using pulse techiniquas. $t_{p}=\mathbf{3 0 0} \mu$, duty cycie $\leq \mathbf{2 \%}$.
4. Cellector-lase Capacitonce is measured using thre-torminal moasurement lechniques with the case and mifitor guarded.
*JEDEC ragisterod data
USES CHIP N16

DESIGNED FOR VHF AND UHF AMPLIFIER APPLICATIONS

- High fT . . . 2 GHz Min (2N4261)
- Low Capacitances . . 2.5 pF Max C_{cb} and C_{eb}
- Calculated $\mathrm{f}_{\text {max }}{ }^{\dagger} \ldots$. $1.27 \mathrm{GHz} \operatorname{Min}(\mathbf{2 N 4 2 6 1)}$

*mechanical data

*absolute maximum ratings at $\mathbf{2 5}{ }^{\circ} \mathbf{C}$ free-air temperature (unless otherwise noted)

NOTES: 1. This value applies between 0 and 30 mA collector current when the base-emitter diode is open-circuited.
2. Derate linearly to $200^{\circ} \mathrm{C}$ free-air temperature at the rate of $1.14 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.

* JEDEC registered data. This data sheet contains all applicable registered data in effect at the time of publication.
$t_{\text {Maximum }}$ Frequancy of Oscillation may be calculated from the equation: $f_{\text {max }}(\mathrm{MHz})=200 \sqrt{\frac{f_{T}(\mathrm{MHz})}{r_{b} \mathrm{C}_{\mathrm{c}}(\mathrm{ps})}}$

P-N-P SILICON TRANSISTORS

*electrical characteristics at $\mathbf{2 5} \mathbf{~} \mathbf{C}$ free-air temperature (unless otherwise noted)

PARAMETER	TEST CONDITIONS	2N4260	2N4261	UNIT
		MIN MAX	MIN MAX	
$\mathrm{V}_{(B R)}$ CBO Collector-Base Breakdown Voltage	${ }^{1} C=-10 \mu A, \quad I E=0$	-15	-15	V
$V_{\text {(BR)CEO }}$ Collector-Emitter Breakdown Voltage	$I^{\prime} C=-10 \mathrm{~mA}, \quad I_{B}=0, \quad$ See Note 3	-15	-15	V
$\mathrm{V}_{\text {(BR)EBO }}$ Emitter-Base Breakdown Voltage	$\mathrm{I}_{\mathrm{E}}=-10 \mu \mathrm{~A}, \quad \mathrm{I}^{\prime} \mathrm{C}=0$	-4.5	-4.5	V
Collector Cutoff Current	$\mathrm{V}_{\mathrm{CE}}=-10 \mathrm{~V}, \mathrm{~V}_{\text {BE }}=2 \mathrm{~V}$	-5	-5	nA
	$V_{C E}=-5 \mathrm{~V}, \quad \mathrm{~V}_{\text {BE }}=0.4 \mathrm{~V}$	-50	-50	nA
	$V_{C E}=-10 \mathrm{~V}, V_{B E}=2 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$	-5	-5	$\mu \mathrm{A}$
IBEV Base Cutoff Current	$\mathrm{V}_{\mathrm{CE}}=-10 \mathrm{~V}, \mathrm{~V}_{\text {BE }}=2 \mathrm{~V}$	5	5	nA
Static Forward Current Transfer Ratio	$\mathrm{V}_{C E}=-1 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{C}}=-1 \mathrm{~mA}$	25	25	
	$V_{C E}=-1 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{C}}=-10 \mathrm{~mA}$, See Note 3	$30 \quad 150$	$30 \quad 150$	
		20	20	
Baso-Emitter Voltage	$\mathrm{V}_{\text {CE }}=-1 \mathrm{~V}, \quad \mathrm{I}^{\prime}=-1 \mathrm{~mA}$	-0.8	-0.8	V
	$\mathrm{V}_{\text {CE }}=-1 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{C}}=-10 \mathrm{~mA}$, See Note 3	-1	-1	
Collector-Emitter Saturation Voltage	$\mathrm{I}_{\mathrm{B}}=-0.1 \mathrm{~mA}, \quad \mathrm{I}_{\mathrm{C}}=-1 \mathrm{~mA}$	-0.15	-0.15	V
	$\mathrm{I}^{1} \mathrm{~B}=-1 \mathrm{~mA}, \quad \mathrm{I}^{2}=-10 \mathrm{~mA}$, See Note 3	-0.35	-0.35	
Small-Signal Common-Emitter Forward Current Transfer Ratio	$V_{C E}=-4 \mathrm{~V}, \quad \mathrm{I}^{\text {C }}=-5 \mathrm{~mA}, \quad f=100 \mathrm{MHz}$	12	15	
	$V_{C E}=-10 \mathrm{~V}, \mathrm{I}^{\prime} \mathrm{C}=-10 \mathrm{~mA}, \quad f=100 \mathrm{MHz}$	16	20	
Transition Frequency	$V_{C E}=-4 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{C}}=-5 \mathrm{~mA}$	1.2	1.5	GHz
		1.6	2	
Ccbere ${ }_{\text {collector-Base }}$ Capacitance	$\begin{aligned} & V_{C B}=-4 \mathrm{~V}, \quad \mathrm{IE}=0, \\ & \mathrm{f}=100 \mathrm{kHz} \text { to } 1 \mathrm{MHz}, \end{aligned}$ See Note 5	2.5	2.5	pF
$\mathrm{C}_{\text {eb }} \quad$ Emitter-Base Capacitance	$\begin{aligned} & V_{E B}=-0.5 \mathrm{~V}, \quad \mathrm{I}=0, \\ & \mathrm{f}=100 \mathrm{kHz} \text { to } 1 \mathrm{MHz}, \end{aligned}$ See Note 5	2.5	2.5	pF
Collector-Base Time Constant	$\mathrm{V}_{\text {CE }}=-4 \mathrm{~V}, \quad \mathrm{IC}^{\text {c }}=-5 \mathrm{~mA}, \quad \mathrm{f}=31.8 \mathrm{MHz}$	35	60	ps
	$\mathrm{V}_{\text {CE }}=-10 \mathrm{~V}, \mathrm{I}^{\prime}=-10 \mathrm{~mA}, \quad \mathrm{f}=31.8 \mathrm{MHz}$	30	50	

NOTES: 3. These parameters must be measured using pulse techniques. $\mathbf{t}_{\mathbf{w}}=\mathbf{3 0 0} \mu \mathrm{s}$, duty cycle $\leq \mathbf{2 \%}$.
4. To obtain ${ }^{f} T$, the $h_{\text {fe }} \mid$ response is extrapolated at the rate of $\mathbf{- 6 ~ d B}$ per octave from $f=100 \mathrm{MHz}$ to the frequency at which $\left|h_{f e}\right|=1$.
5. C_{cb} and C_{eb} measurements employ a three-terminal capacitance bridge incorporating a guard circuit. The third electrode (emitter or collector, respectively) and the case are connected to the guard terminal of the bridge.

- JEDEC registered data

SILECT ${ }^{\dagger}$ TRANSISTORS \ddagger DESIGNED FOR VHF AND UHF AMPLIFIER APPLICATIONS

- High fT . . . 2 GHz Min (A5T4261)
- Low Capacitances . . . 2.5 pF Max C_{cb} and C_{eb}
- Calculated $\mathrm{f}_{\max } \mathrm{E}^{\text {. . . } 1.27 \mathrm{GHz} \text { Min (A5T4261) }}$
mechanical data
These transistors are encapsulated in a plastic compound specifically designed for this purpose, using a highly mechanized process developed by Texas Instruments. The case will withstand soldering temperatures without deformation. These devices exhibit stable characteristics under high-humidity conditions and are capable of meeting MIL-STD-202C, Method 106B. The transistors are insensitive to light.

absolute maximum ratings at $\mathbf{2 5}{ }^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

NOTES: 1. This value applies between 0 and 30 mA collector current when the base-emitter diode is open-circuited.
2. Derate linearly to $150^{\circ} \mathrm{C}$ free-air temperature at the rate of $4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
${ }^{\dagger}$ Trademark of Texas instruments
\ddagger U.S. Patent No. $3,439,238$
§Maximum Frequancy of Oselliation may be calculated from the equation: $f_{\text {max }}(\mathrm{MHz})=200 \sqrt{\frac{{ }^{f_{T}(\mathrm{MHz}}}{\mathrm{r}_{\mathrm{b}} \cdot \mathrm{C}_{\mathrm{c}}(\mathrm{ps})}}$.

TYPES A5T4260, A5T4261 P-N-P SILICON TRANSISTORS

electrical characteristics at $\mathbf{2 5}{ }^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

PARAMETER	TEST CONDITIONS			A5T4260		A6T4281		UNIT
				MIN	MAX	MIN	MAX	
V(BR)CBO Collector-Base Breakdown Vottage	$I_{C}=-10 \mu A$,	$1 E=0$		-16		-15		V
V(BR)CEO Collector-Emitter Breakdown Voltage	$1 c^{=}=-10 m A_{1}$	$\mathrm{I}_{\mathrm{B}}=0$,	See Note 3	-16		-16		V
$V_{\text {(BR)EBO }}$ Emitter-Base Breakdown Voltage	$\mathrm{I}_{\mathrm{E}}=-10 \mu \mathrm{~A}_{\text {, }}$	$I_{C}=0$		-4.5		-4.5		V
ICEV Collector Cutoff Current	$\mathrm{V}_{\text {ce }}=-10 \mathrm{~V}$	$V_{B E}=2 \mathrm{~V}$		-5		-5		nA
	$V_{C E}=-5 V_{1} \quad V_{B E}=0.4 \mathrm{~V}$			-80		-60		
	$V_{C E}=-10 \mathrm{~V}$	$V_{B E}-2 V^{\prime}$	$\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$	-200		-200		
IBEV ${ }^{\text {a }}$ Base Cutoff Current	$V_{C E}=-10 V_{8}$	$V_{B E}=2 \mathrm{~V}$			5		5	nA
Static Forward Current Trensfer Ratio	$V_{C E}=-1 \mathrm{~V}$,	$I_{C}=-1 \mathrm{~mA}$		28		25		
	$V_{C E}=-1 \mathrm{~V}$,	$1 \mathrm{C}=-10 \mathrm{~mA}$	See Note 3	30	150	30	150	
	$V_{C E}=-2 V^{\prime}$	$1 C=-30 \mathrm{~mA}$		20		20		
Base-Emitter Voltage	$V_{C E}=-1 V_{\text {, }}$	$1 \mathrm{c}=-1 \mathrm{~mA}$			-0.8		-0.8	V
	$V_{C E}=-1 \mathrm{~V}$,	$1 c^{=}=-10 \mathrm{~mA}$,	See Note 3		-1		-1	
Collector-Emitter Saturation Voltage	$I_{B}=-0.1 \mathrm{~mA}$	$I_{C}=-1 \mathrm{~mA}$			-0.15		-0.15	V
	$\mathrm{I}_{\mathrm{B}}=-1 \mathrm{~mA}$,	$\mathrm{IC}^{\text {c }}=-10 \mathrm{~mA}$,	See Note 3		-0.35		-0.35	
Small-Signal Common-Emitter Forward Current Transfer Ratio	$V_{C E}=-4 \mathrm{~V}$,	$I_{C}=-5 \mathrm{~mA}$,	$f=100 \mathrm{MHz}$	12		15		
	$V_{\text {CE }}=-10 \mathrm{~V}$	$I_{C}=-10 \mathrm{~mA}$,	$f=100 \mathrm{MHz}$	16		20		
Transition Frequency	$V_{C E}=-4 \mathrm{~V}$.	$I_{C}=-5 \mathrm{~mA}$	See Note 4	1.2		1.5		GHz
	$V_{C E}=-10 \mathrm{~V}$	$I_{C}=-10 \mathrm{~mA}$		1.6		2		
$\mathrm{C}_{\mathrm{cb}} \quad$ Collector-Base Capacitance	$\begin{aligned} & V_{C B}=-4 \mathrm{~V} \\ & \text { See Note } 5 . \end{aligned}$	$I E=0$	$\mathrm{f}=1 \mathrm{MHz},$		2.5	2.5		pF
$\mathrm{Ceb}_{\text {b }} \quad$ Emitter-Base Capacitance	$V_{E B}=-0.5 \mathrm{~V}$ See Note 5	$I_{C}=0$	$f=1 \mathrm{MHz},$		2.5		2.5	pF
${ }^{6}{ }^{\prime} \mathrm{C}_{\mathbf{c}} \quad$ Collector-Base Time Constant	$\mathrm{V}_{\text {CE }}=-4 \mathrm{~V}$.	$1 \mathrm{C}=-5 \mathrm{~mA}$,	$f=31.8 \mathrm{MHz}$		35		60	ps
	$V_{C E}=-10 \mathrm{~V}$	$1 \mathrm{C}=-10 \mathrm{~mA}$,	$f=31.8 \mathrm{MHz}$		30		50	

NOTES: 3. These parameters must be measured using pulse techniques. $t_{w}=300 \mu s$, duty cycle $\leqslant \mathbf{2 \%}$.
4. To obtain f_{T}, the $\boldsymbol{H}_{\mathrm{fe}} \mid$ response is extrapolated at the rate of -6 dB per octave from $\mathrm{f}=100 \mathrm{MHz}$ to the frequency at which $\left|h_{f e}\right|=1$.
5. C_{cb} and C_{eb} measurements employ three-terminal capacitance bridge incorporating aguard circuit. The third electrode (emitter or collector, reapectively) is connected to the guard terminal of the bridge.

- JE DEC registered data

TYPES 2N4391 THRU 2N4393 N-CHANNEL SILICON JUNCTION FIELD-EFFECT TRANSISTORS

SYMMETRICAL N-CHANNEL FIELD-EFFECT TRANSISTORS FOR HIGH-SPEED COMMUTATOR AND CHOPPER APPLICATIONS

- Low ID(off) . . . 0.25 nA Max
- Low rds(on) Ciss Product

*mechanical data

*absolute maximum ratings at $\mathbf{2 5}{ }^{\circ} \mathbf{C}$ free-air temperature (unless otherwise noted)
Drain-Gate Voltage 40 V
Drain-Source Voltage 40 V
Reverse Gate-Source Voltage $-40 \mathrm{~V}$
Continuous Forward Gate Current 50 mA
Continuous Device Dissipation at (or below) $25^{\circ} \mathrm{C}$ Case Temperature (See Note 1) 1.8 W
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $200^{\circ} \mathrm{C}$
Lead Temperature 1/16 Inch from Case for 60 Seconds $300^{\circ} \mathrm{C}$

NOTE 1: Derate lineerly to $200^{\circ} \mathrm{C}$ case temperrature at the rate of $10.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
-JEDEC registered data. This date sheet conteins all applicable registered data in effect at the time of publication.

TYPES 2N4391 THRU 2N4393

N-CHANNEL SILICON JUNCTION FIELD-EFFECT TRANSISTORS
*electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

PARAMETER		TEST CONDITIONS			2N4391		2N4392		2N4393		UNIT			
		MIN	MAX	MIN	MAX	MIN	MAX							
$V_{\text {(ma) }}$	Gate-Source Breakdown Voltage				$\mathrm{I}_{6}=-1 \mu \mathrm{~A}_{\text {c }}$	$V_{D S}=0$		-40		-40		-40		V
$V_{\text {GSF }}$	Gate-Source Forward Voltage	$\mathrm{I}_{6}=1 \mathrm{~mA}$,	$V_{\text {DS }}=0$			1		1		1	V			
Igss	Gate Reverse Current	$V_{6 S}=-20$	$V_{\text {DS }}=0$			-0.1		-0.1		-0.1	nA			
		$V_{G S}=-20 \mathrm{~V}$	$V_{\text {DS }}=0$,	$\mathrm{I}_{\mathrm{A}}=150^{\circ} \mathrm{C}$		-0.2		-0.2		-0.2	$\mu \mathrm{A}$			
IDlofin	Drain Cutoff Current	$V_{\text {OS }}=20 \mathrm{~V}$,	$\mathrm{V}_{\text {GS }}=-12$			0.1					nA			
		$V_{\text {DS }}=20 \mathrm{~V}$,	$V_{G S}=-7$					0.1						
		$V_{\text {DS }}=20 \mathrm{~V}$,	$V_{G S}=-5$							0.1				
		$V_{\text {DS }}=20 \mathrm{~V}$,	$V_{G S}=-12$	$\mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$	0.2						$\mu \mathrm{h}$			
		$V_{\text {DS }}=20 \mathrm{~V}$,	$V_{G S}=-7$	$\mathrm{T}_{A}=150^{\circ} \mathrm{C}$				0.2						
		$V_{D S}=20 \mathrm{~V}$,	$V_{\text {¢S }}=-5$	$\mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$						0.2				
$V_{\text {esiofn }}$	Gate-Source Cutoff Voltage	$V_{\text {DS }}=20 \mathrm{~V}$,	$\mathrm{l}_{\mathrm{D}}=1 \mathrm{nA}$		-4	-10	-2	-5	0.5	-3	V			
Ioss	Zero-Gate-Voltage Droin Current	$V_{\text {DS }}=20 \mathrm{~V}$,	$V_{G S}=0$,	See Note 2	50	150	25	75	5	30	mA			
$V_{\text {bS }}^{\text {(or) }}$)	Droin-Source On-Slate Voltage	$V_{G S}=0$,	$\mathrm{I}_{\mathrm{D}}=12 \mathrm{~m}$			0.4					v			
		$V_{G S}=0$,	$\mathrm{l}_{0}=6 \mathrm{~mA}$					0.4						
		$V_{G S}=0$,	$\mathrm{I}_{\mathrm{D}}=3 \mathrm{~mA}$							0.4				
Iostom)	Static Drain-Source On-State Resistance	$V_{\text {SS }}=0$,	$\mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA}$			30		60		100	Ω			
${ }^{\text {dationt }}$	Small-Signal Droin-Source On-State Resistance	$V_{G S}=0$,	$\mathrm{I}_{0}=0$,	$f=1 \mathrm{kHz}$		30		60		100	Ω			
$\mathrm{C}_{\text {is }}$	Common-Source Short-Circuit Input Capacitance	$V_{D S}=20 \mathrm{~V}$,	$V_{\text {GS }}=0$,	$f=1 \mathrm{MHz},$ See Note 3		14		14		14	pF			
$C_{r s}$	Common-Source Short-Circuit Reverse Iransfer Capacitance	$V_{\text {DS }}=0$,	$V_{G S}=-12$	$f=1 \mathrm{MHz}$		3.5					pF			
		$V_{D S}=0$,	$V_{G S}=-7$	$\mathrm{f}=1 \mathrm{MHz}$				3.5						
		$V_{\text {DS }}=0$,	$V_{G S}=-5$	$\mathrm{f}=1 \mathrm{MHz}$						3.5				

*switching characteristics at $\mathbf{2 5}{ }^{\circ} \mathrm{C}$ free-air temperature

PARAMETER		TEST CONDITIONS		2N4391		2N4392		2N4393		UNIT		
		TYP	MAX	TYP	MAX	TYP	MAX					
t_{r}	Rise Time			$\begin{aligned} & v_{D D}=10 \mathrm{~V}, \\ & V_{G S(o n)}=0, \end{aligned}$ See Figure I,		2	5	3	5	4	5	ns
$\mathrm{t}_{\text {m }}$	Turn-On Time	5.5	15			6.5	15	8	15	ns		
${ }_{4}$	Fall Time	7	15			13	20	27	30	ns		
$t_{\text {off }}$	Turn-Off Time	10	20			18	35	31	50	ns		

NOTES: 2. This parameter must be measured with bias voltages applied for less than 5 seconds to avoid overheating.
3. This parametor must be meosured using pulse techniques. $\mathrm{I}_{\mathrm{w}}=100 \mu \mathrm{~s}$, duty cycle $\leq 1 \%$.
†These are nominel volues; exact values very slightly with transistor parameters.

- JEDES ragistared deta.

TYPES 2N4391 THRU 2N4393 N-CHANNEL SILICON JUNCTION FIELD-EFFECT TRANSISTORS

PARAMETER MEASUREMENT INFORMATION

(See Note a)
VOLTAGE WAVEFORMS

TYPES	R_{L}	$V_{\text {GS(off) }}$
$2 N 4391$	750Ω	-12 V
2 N 4392	$1.54 \mathrm{k} \Omega$	-7 V
2 N 4393	$3.16 \mathrm{k} \Omega$	-5 V

NOTE a: An equivalent generator and oscilloscope may be used. The oscilloscope must have a $\mathbf{5 0} \mathbf{0} \boldsymbol{\Omega}$ input impedance.

FIGURE 1

SILECT ${ }^{\dagger}$ TRANSISTORS \ddagger

- For Low-Level, Small-Signal, General Purpose Amplifier and Switching Applications
- Rugged One-Piece Construction with In-Line Leads or Standard TO-18 100-mil Pin-Circle Configuration

mechanical data

These transistors are encapsulated in a plastic compound specifically designed for this purpose, using a highly mechanized process developed by Texas Instruments. The case will withstand soldering temperatures without deformation. These devices exhibit stable characteristics under high-humidity conditions and are capable of meeting MIL-STD-202C, Method 106B. The transistors are insensitive to light.

absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

NOTES: 1. This value applies between 0 and 50 mA when the base-emitter diode is open-circuited.
2. Derate the $625-\mathrm{mW}$ rating linearly to $150^{\circ} \mathrm{C}$ free-air temperature at the rate of $5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$. Derate the $310-\mathrm{mW}$ (JEDEC registered) rating linearly to $135^{\circ} \mathrm{C}$ free-air temperature at the rate of $2.82 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.

* The asterisk identifies JEDEC registered data for the 2 N 4402 and 2 N 4403 only. This data sheer contains all applicable registered data in effect at the time of publication.
${ }^{\dagger}$ Trademark of Texas Instruments
\ddagger U.S. Patent No. 3,439,238
§ Texas Instruments guarentees these values in addition to the JEDEC registered values which are also shown.
*electrical characteristics at $\mathbf{2 5}{ }^{\circ} \mathrm{C}$ free-air tamperature

PARAMETER		TEST CONDITIONS		$\begin{gathered} \text { 2N4402 } \\ \text { A5T4402 } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { 2N4403 } \\ \text { A5T4403 } \\ \hline \end{gathered}$	UNIT		
		MIN MAX	MiN MAX					
$V_{\text {(BR) }}$ CBO	Collector-Base Breakdown Voltage			${ }^{\prime} C=-100 \mu A, I_{E}=0$		-40	-40	V
V(BR)CEO	Collector-Emitter Breakdown Voltage	$\mathrm{I}^{\prime}=-1 \mathrm{~mA}, \quad \mathrm{I}_{\mathrm{B}}=0$,	See Note 3	-40	-40	V		
$V_{\text {(BR)EBO }}$	Emitter-Base Breakdown Voltage	$\mathrm{I}_{E}=-100 \mu \mathrm{~A}, \mathrm{I}^{\prime}=0$		-5	-5	V		
ICEV	Collactor Cutoff Current	$\mathrm{V}_{\mathrm{CE}}=-35 \mathrm{~V}, \mathrm{~V}_{\mathrm{BE}}=0.4 \mathrm{~V}$		-100	-100	nA		
IBEV	Base Cutoff Current	$V_{C E}=-35 \mathrm{~V}, \mathrm{~V}_{\mathrm{BE}}=0.4 \mathrm{~V}$		100	100	nA		
hfe	Static Forward Current Transfer Ratio	$V_{C E}=-1 \mathrm{~V}, 1 \mathrm{I}=-100 \mu \mathrm{~A}$			30			
		$\mathrm{V}_{\text {CE }}=-1 \mathrm{~V}, \quad{ }^{\mathrm{I}} \mathrm{C}=-1 \mathrm{~mA}$		30	60			
		$\mathrm{V}_{\text {CE }}=-1 \mathrm{~V}, \mathrm{I}^{\text {c }}=-10 \mathrm{~mA}$	See Note 3	50	100			
		$\mathrm{V}_{\text {CE }}=-2 \mathrm{~V}, \mathrm{I}^{\prime}=-150 \mathrm{~mA}$		$50 \quad 150$	$100 \quad 300$			
		$\mathrm{V}_{C E}=-2 \mathrm{~V}, \mathrm{I}^{\prime}=-500 \mathrm{~mA}$		20	20			
$V_{B E}$	Base-Emitter Voltage	$\mathrm{I}_{B}=-15 \mathrm{~mA}, \mathrm{I}_{\mathrm{C}}=-150 \mathrm{~mA}$	See Note 3	-0.75-0.95	-0.75-0.95	V		
		$\mathrm{I}_{\mathrm{B}}=-50 \mathrm{~mA}, \mathrm{I}_{\mathrm{C}}=-500 \mathrm{~mA}$		-1.3	-1.3			
$V_{C E}$ (sat)	Collector-Emitter Saturation Voltage	$\mathrm{I}_{\mathrm{B}}=-15 \mathrm{~mA}, \mathrm{I}_{\mathrm{C}}=-150 \mathrm{~mA}$	See Note 3	-0.4	-0.4	V		
		$\mathrm{I}_{B}=-50 \mathrm{~mA}, \mathrm{I}^{\prime}=-500 \mathrm{~mA}$		-0.75	-0.75			
$h_{\text {ie }}$	Small-Signal Common-Emitter Input Impedance	$V_{C E}=-10 \mathrm{~V}, \mathrm{l} C=-1 \mathrm{~mA}, \quad f=1 \mathrm{kHz}$		$0.75 \quad 7.5$	1.515	$k \Omega$		
$h_{\text {fe }}$	Small-Signal Common-Emitter Forward Current Transfer Ratio			$30 \quad 250$	$60 \quad 500$			
$h_{\text {re }}$	Small-Signal Common-Emitter Reverse Voltage Transfer Ratio			$0.1 \times$ $8 \times$ 10^{-4} 10^{-4}	$0.1 \times$ $8 \times$ 10^{-4} 10^{-4}			
$h_{\text {oe }}$	Small-Signal Common-Emitter Output Admittance			- 1100	1100	$\mu \mathrm{mho}$		
Prel	Small-Signal Common-Emitter Forward Current Transfer Ratio	$V_{C E}=-10 \mathrm{~V}, \mathrm{I}^{\mathrm{C}}=-20 \mathrm{~mA}$,	$\mathrm{f}=100 \mathrm{MHz}$	1.5	2			
$\mathrm{C}_{\mathbf{c b}}$	Collector-Base Capacitance	$V_{C B}=-10 \vee, I_{E}=0,$ See Note 4	$f=140 \mathrm{kHz},$	8.5	8.5	pF		
$\mathrm{C}_{\text {eb }}$	Emitter-Base Capacitance	$V_{E B}=-0.5 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=0$ See Note 4	$f=140 \mathrm{kHz},$	30	30	pF		

NOTES: 3. These parameters must be measured using puise techniques. $\mathbf{t}_{\mathbf{w}}=\mathbf{3 0 0} \mu_{5}$, duty eycle $<\mathbf{2 \%}$.
4. C_{cb} and C_{sb} measurements employ a three-terminal capacitance bridge incorporating a guard circuit. The third electrode (emitter or collector, respectivety) is connected to the guard terminal of the bridge.

- The asterisk identifies JEDEC registered data for the 2N4402 and 2N4403 only.

TYPES 2N4402, 2N4403, A5T4402, A5T4403 P-N-P SILICON TRANSISTORS

*switching characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

	PARAMETER	TEST CONDITIONS ${ }^{\text {t }}$	MAX	UNIT
t_{d}	Delay Time	$\mathrm{V}_{\mathrm{CC}}=-30 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=-150 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}(1)}=-15 \mathrm{~mA}$,	15	ns
${ }_{\text {t }}$	Rise Time	$\mathrm{V}_{\mathrm{BE}(\mathrm{off})}=2 \mathrm{~V}$, See Figure 1	20	ns
t_{s}	Storage Time	$\mathrm{V}_{\mathrm{CC}}=-30 \mathrm{~V}, \mathrm{I}^{\text {c }}=-150 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}(1)}=-15 \mathrm{~mA}$,	225	ns
t_{f}	Fall Time	$\mathrm{I}_{\mathrm{B}(2)}=15 \mathrm{~mA}$, See Figure 2	30	ns

\dagger Vottage and current values shown are nominal; exact values vary slightiy with transistor parameters.
*The asterisk identifies JEDEC registered date for the 2N4402 and 2N4403 only.

PARAMETER MEASUREMENT INFORMATION

TEST CIRCUIT

VOLTAGE WAVEFORMS

Figure t-delay and rise times

FIGURE 2-STORAGE AND FALL TIMES

NOTES: a. The input waveforms are supplied by a generator with the following characteristics: $Z_{\text {out }}=50 \Omega$, duty cycle $=2 \%$.
b. Waveforms are monitored on an oscilloscope with the following characteristics: $t_{r} \leqslant 4 \mathrm{~ns}, \mathrm{R}_{\mathrm{in}}=10 \mathrm{M} \Omega$.
c. C_{T} includes capacitance of test jig, connectors, and oscilloscope.

SILECT ${ }^{\dagger}$ TRANSISTORS \ddagger
 FOR MEDIUM-CURRENT AMPLIFIER APPLICATIONS

- High-Voltage Indicator and Display Control
- Rugged One-Piece Construction with In-Line Leads or Standard TO-18 100-mil Pin-Circle Configuration

mechanical data

These transistors are encapsulated in a plastic compound specifically designed for this purpose, using a highly mechanized process developed by Texas Instruments. The case will withstand soldering temperatures without deformation. These devices exhibit stable characteristics under high-humidity conditions and are capable of meeting MIL-STD-202C, Method 106B. The transistors are insensitive to light.

absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

NOTES: 1. These values apply between 0 and 50 mA when the base-emitter diode is open-circuited.
2. Derate the $625-\mathrm{mW}$ rating linearly to $150^{\circ} \mathrm{C}$ free-air temperature at the rate of $5 \mathrm{~mW} /^{\circ} \mathrm{C}$. Derate the $310-\mathrm{mW}$ (JEDEC registered) rating linearly to $135^{\circ} \mathrm{C}$ free-air temperature at the rate of $2.82 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.

* The asterisk identifies JEDEC registered data for the $2 N 4409$ and $2 N 4410$ only. This data sheet containg all applicable registered data in effect at the time of publication.
\dagger Trademark of Texas Instruments
\ddagger U.S. Patent No. 3,439,238
§ Texas instruments guarantees these values in addition to the JEDEC registered values which are also shown.

TYPES 2N4409, 2N4410, A5T4409, A5T4410 N-P-N SILICON TRANSISTORS

*electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

PARAMETER		TEST CONDITIONS			2N4409 A5T4409		2N4410 A5T4410		UNIT			
		MIN	MAX	MIN	MAX							
$V_{\text {(BR) }}$ CBO	Collector-Base Breakdown Voltage				$\mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}$,	$\mathrm{I}_{\mathrm{E}}=0$		80		120		V
$V_{\text {(BR) }}$ CEO	Collector-Emitter Breakdown Voltage	$\mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}$,	$\mathrm{I}_{\mathrm{B}}=0$,	See Note 3	50		80		V			
$V_{\text {(BR) }} \mathrm{V}^{\text {(BRX }}$	Collector-Emitter Breakdown Voltage	$I_{C}=500 \mu \mathrm{~A}$,	$\mathrm{R}_{\mathrm{B}}=8.2 \mathrm{k} \Omega$	$-5 \mathrm{~V}$	80		120		V			
V (BR)EBO	Emitter-Base Breakdown Voltage	$\mathrm{I}_{\mathrm{E}}=10 \mu \mathrm{~A}$,	$\mathrm{I}_{\mathrm{C}}=0$		5		5		V			
${ }^{\prime} \mathrm{CBO}$	Collector Cutoff Current	$\mathrm{V}_{\mathrm{CB}}=60 \mathrm{~V}$,	$\mathrm{I}_{\mathrm{E}}=0$			10			nA			
		$V_{C B}=100 \mathrm{~V}$,	$\mathrm{I}_{E}=0$					10				
		$\mathrm{V}_{\mathrm{CB}}=60 \mathrm{~V}$,	$\mathrm{I}_{\mathrm{E}}=0$,	$\mathrm{T}_{\mathrm{A}}=100^{\circ} \mathrm{C}$		1			$\mu \mathrm{A}$			
		$V_{C B}=100 \mathrm{~V}$,	$\mathrm{I}_{\mathrm{E}}=0$,	$T_{A}=100^{\circ} \mathrm{C}$				1				
IEBO	Emitter Cutoff Current	$\mathrm{V}_{\text {EB }}=4 \mathrm{~V}$,	$\mathrm{I}_{\mathrm{C}}=0$			100		100	nA			
hfe	Static Forward Current Transfer Ratio	$\mathrm{V}_{C E}=1 \mathrm{~V}$,	$1 \mathrm{C}=1 \mathrm{~mA}$		60		60					
		$\mathrm{V}_{C E}=1 \mathrm{~V}$,	$\mathrm{IC}_{\mathrm{C}}=10 \mathrm{~mA}$,	See Note 3	60	400	60	400				
VBE	Base-Emitter Voltage	$\mathrm{I}_{\mathrm{B}}=0.1 \mathrm{~mA}$,	$\mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}$			0.8		0.8	V			
		$V_{C E}=5 \mathrm{~V}$,	$\mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}$			0.8		0.8				
$\mathbf{V}_{\text {CE(sat) }}$	Collector-Emitter Saturation Voltage	$\mathrm{I}_{\mathrm{B}}=0.1 \mathrm{~mA}$,	$\mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}$			0.2		0.2	V			
Prel	Small-Signal Common-Emitter Forward Current Transfer Ratio	$V_{C E}=10 \mathrm{~V}$,	$\mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}$,	$\mathrm{f}=\mathbf{3 0} \mathbf{M H z}$	2	10	2	10				
C_{cb}	Collector-Base Capacitance	$v_{C B}=10 \mathrm{~V} .$ See Note 4	$\mathrm{I}_{\mathrm{E}}=0,$	$f=140 \mathrm{kHz}$		12		12	pF			

NOTES: 3. Thase parameters must be measured using pulse techniques. $t_{w}=300 \mu \mathrm{~s}$, duty cycle $\leqslant \mathbf{2 \%}$.
4. C_{cb} measurement employs a three-terminal capacitance bridge incorporating a guard circuit. The emitter is connected to the guard terminal of the bridge.
*The asterisk identifies JEDEC registered data for the 2 N 4409 and 2 N 4410 only.

THERMAL INFORMATION

FIGURE 1

FOR VHF AMPLIFIER AND MIXER APPLICATIONS

- High Power Gain... 10 dB Min at 400 MHz
- Low Noise Figure ... 4 dB Max at 400 MHz
- High Transconductance . . $4000 \mu \mathrm{mhe}$ Min at $\mathbf{4 0 0} \mathbf{~ M H z}$
- Low Cras ... 0.8 pF Max
- High $\left|\boldsymbol{y}_{\mathbf{h}}\right| / \mathrm{C}_{\text {iss }}$ Ratio (High-Frequency Figure-of-Merit)
- Cross-Modulation Minimized by Square-Law Transfer Characteristic
- Recommended for Use in VHF-UHF Bandpass Amplifiers
- Excellent for General Purpose Amplifier and Chopper Applications
*mechanical data

absolute maximum ratings af $\mathbf{2 5}^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

NOTES: 1 . Derale linearly to $200^{\circ} \mathrm{C}$ fres-air temperature at the rate of $1.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
2. Derote lineerly to $200^{\circ} \mathrm{C}$ case temperature of the rate of $6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
*Indicates JEDEC registered data

TYPES 2N4416, 2N4416A
 N-CHANNEL SILICON JUNCTION FIELD-EFFECT TRANSISTORS

electrical characteristics at $25^{\circ} \mathrm{C}$ freenair temperature (unless otherwise noted)

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[t]{2}{*}{PARAMETER}} \& \multicolumn{2}{|r|}{\multirow[t]{2}{*}{TEST CONDITIONS ${ }^{\ddagger}$}} \& 2N4416 \& 2N4416A \& \multirow[t]{2}{*}{Unit}

\hline \& \& \& \& MIN MAX \& MIN MAX \&

\hline $V_{\text {IBRIGSS }}$ \& Gate-Source Breakdown Voltage \& $\mathrm{I}_{6}=-1 \mu \mathrm{~A}$, \& $V_{\text {DS }}=0$ \& -30* \& -35* \& V

\hline $V_{\text {g Sf }}$ \& Gate-Source Forward Voltage \& $\mathrm{I}_{\mathrm{s}}=1 \mathrm{~mA}$, \& $V_{\text {DS }}=0$ \& ${ }^{*}$ \& $1{ }^{*}$ \& V

\hline \multirow[b]{2}{*}{Igss} \& \multirow[b]{2}{*}{Gate Reverse Current} \& $V_{\text {GS }}=-20 \mathrm{~V}$, \& $\mathrm{V}_{\mathrm{DS}}=0$ \& -0.1* \& -0.1* \& nA

\hline \& \& $\mathbf{V G S}^{\text {c }}=\mathbf{- 2 0 ~ V}$, \& $V_{D S}=0, T_{A}=150^{\circ} \mathrm{C}$ \& ${ }_{\text {- }}^{-0.12^{*}}$ \& $$
\begin{aligned}
& -0.2^{*} \\
& -0.1^{\dagger}
\end{aligned}
$$ \& $\mu \mathrm{h}$

\hline $V_{\text {GS }}$ (off \& Gate-Source Cutoff Voltage \& $V_{\text {DS }}=15 \mathrm{~V}$, \& $\mathrm{I}_{\mathrm{D}}=1 \mathrm{nA}$ \& -6* \& -2.5* ${ }^{\text {* }}$-6* ${ }^{\text {* }}$ \& V

\hline $V_{\text {GS }}$ \& Gate-Source Voltage \& $V_{D S}=15 \mathrm{~V}$, \& $\mathrm{l}_{\mathrm{D}}=0.5 \mathrm{~mA}$ \& - - $^{*}-5.5^{*}$ \& -1* $-5.5{ }^{*}$ \& V

\hline loss \& Zero-Gate-Voltage Drain Current \& $V_{\text {OS }}=15 V_{\text {, }}$ \& $V_{G S}=0$, See Note 3 \& $5^{*} 15^{*}$ \& 5* 15* \& mA

\hline $\left|y_{f s}\right|$ \& Small-Signal Common-Source Forward Transter Admittance \& \multirow[t]{2}{*}{$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}$} \& \multirow[b]{2}{*}{$V_{\text {GS }}=0$,} \& 4.5* 7.5* \& 4.5* 7.5* \& \multirow[b]{2}{*}{mmho}

\hline |Yos ${ }^{\text {c }}$ \& Small-Signal Common-Sourte Output Admittance \& \& \& 0.05* \& 0.05* \&

\hline $\mathrm{C}_{\text {iss }}$ \& Common-Source Short-Gircuit Input Capacitance \& \multirow[t]{3}{*}{$V_{\text {DS }}=15 \mathrm{~V}$,} \& \multirow[b]{3}{*}{$\begin{aligned} & V_{G S}=0, \\ & f \\ & \\ &=1 \mathrm{mHz}\end{aligned}$} \& 4* \& 4* \& \multirow{3}{*}{pF}

\hline $\mathrm{Crss}^{\text {c }}$ \& Common-Source Short-Cirtuif Reverse Transfer Capacitance \& \& \& 0.8* \& $0.8{ }^{*}$ \&

\hline Coss \& Common-Source Short-Circuit Output Capacitonce \& \& \& 2* \& 2* \&

\hline $\mathrm{Re}\left(y_{\text {is }}\right)$ \& Small-Signal Common-Source Input Conductance \& \multirow{4}{*}{$V_{\text {DS }}=15 \mathrm{~V}$,} \& \multirow{4}{*}{$V_{G S}=0$,

$\quad f=100 \mathrm{MHz}$} \& $0.1 *$ \& $0.1 *$ \& \multirow{4}{*}{mmho}

\hline $\operatorname{Im}\left(y_{i s}\right)$ \& Small-Signal Common-Sourte Input Susceptance \& \& \& 2.5* \& 2.5* \&

\hline $\mathrm{Re}\left(\mathrm{Y}_{\text {os }}\right)$ \& Small-Signal Common-Source Output Conductance \& \& \& 0.075* \& 0.075* \&

\hline Im($y_{\text {os }}$) \& Small-Signal Common-Source Output Susceptance \& \& \& $1 *$ \& 1* \&

\hline $\mathrm{Re}\left(y_{i s}\right)$ \& Smail-Signal Common-Source Input Conductance \& \multirow{5}{*}{$V_{D S}=15 \mathrm{~V}$,} \& \multirow{5}{*}{$V_{\text {GS }}=0$,

$\quad f=400 \mathrm{MHz}$} \& J* \& 1* \& \multirow{5}{*}{mmho}

\hline $\operatorname{Im}\left(y_{\text {is }}\right)$ \& Small-Signol Common-Source Input Susceptance \& \& \& 10* \& 10* \&

\hline Re($y_{\text {fs }}$) \& Small-Signal Common-Source Forward Transfer Conductance \& \& \& 4* \& 4* \&

\hline $\mathrm{Re}\left(y_{\text {os }}\right)$ \& Small-Signal Common-Source Output Conductance \& \& \& $0.1 *$ \& $0.1 *$ \&

\hline Im($y_{\text {os }}$) \& Small-Signol Common-Source Output Susceptance \& \& \& 4* \& 4* \&

\hline
\end{tabular}

NOTE 3: This parameter must be measured using pulse techniques. $t_{p}=300 \mu \mathrm{~s}$, duly cysle $\leq 1 \%$.
†Texas Instruments guaranteas this valve in addition to the JEDEC registered valus, which is also shown.
*operating characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

	PARAMETER	TEST CONDITIONS \ddagger	MUN	MAX	UNIT
$G_{p s}$	Small-Signal Common-Source Neutralized Insertion Power Gain	$\begin{array}{ll} V_{D S}=15 \mathrm{~V}, & I_{D}=5 \mathrm{~mA}, \\ R_{G}^{\prime}=1 \mathrm{k} \Omega, & \text { See Figure } 10 \mathrm{MHz}, \end{array}$	18		dB
		$\begin{aligned} & \begin{array}{l} V_{D S}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=5 \mathrm{~mA}, \\ \mathrm{R}_{G}^{\prime}=1 \mathrm{k} \Omega, \\ =100 \mathrm{mHz}, \\ \hline \end{array} \quad \text { See Figure } 1 \\ & \hline \end{aligned}$	10		
NF	Spot Noise Figure	$\begin{aligned} & V_{D S}=15 \mathrm{~V}, I_{D}=5 \mathrm{~mA}, \quad \begin{array}{l} =100 \mathrm{MHz}, \\ R_{G}^{\prime}=1 \mathrm{k} \Omega, \end{array} \quad \text { See figure } 1 \end{aligned}$		2	dB
				4	

[^90]
TYPES 2N4416, 2N4416A N-CHANNEL SILICON JUNCTION FIELD-EFFECT TRANSISTORS

PARAMETER MEASUREMENT INFORMATION

CIRCUIT COMPONENT INFORMATION (See Note 4)					
CAPACITORS			COILS		
	100 MHz	400 MHz		100 MHz	400 MHz
C_{1}	7 pF	1.8 pF	L,	$0.14 \mu \mathrm{H}, 3.5 \mathrm{~T}$, \#18 enameled	$0.022 \mu \mathrm{H}, 5 / \mathrm{B}^{\prime \prime}$ of \#16 copper
C_{2}	$0.0015 \mu \mathrm{~F}$	$0.001 \mu \mathrm{~F}$	4	copper wire, 3/8 I.D., $1 / 4$ long	wire formed to $0.5 \mathrm{~T}, 1 / 4$ I.D.
C_{3}	1-12 pF	0.8-8 pF		$3 \mu \mathrm{H}, 17 \mathrm{I}$, \#28 enameled	$0.2 \mu \mathrm{H}, 6 \mathrm{~T}$, \#24 enometed copper
C_{4}	1000 pF	27 pF	l_{2}	copper wire, close wound, 9/32	wire, close wound, $1 / 32$ I.D.,
C_{5}	1-12 pF	0.8-8 pF		1.D., powdered iron slug	aluminum slug
C_{6}	$0.0015 \mu \mathrm{~F}$	$0.001 \mu \mathrm{~F}$	13	$0.25 \mu \mathrm{H}, 4.5 \mathrm{~T}, \# 18$ enameled	$0.03 \mu \mathrm{H}, 11 / 2^{\prime \prime}$ of \#16 enameled copper wire formed to I T, 3/8" I.D.
C_{7}	3 pF	1 pF	3	copper wire, 3/8" I.D., /6" long	

FIGURE 1-NEUTRALIZED POWER GAIN AND SPOT NOISE FIGURE TEST CIRCUIT
NOTE 4: Fransformed equivalent source resistance $\left(R_{G}{ }^{\prime}\right)$ is 1000Ω at 100 MHz for $100-\mathrm{MHz}$ omplifier, and 1000Ω al 400 MHz for $400-\mathrm{MHz}$ amplifier
THERMAL INFORMATION

SILECT \dagger TRANSISTOR FOR HIGH-SPEED SWITCHING APPLICATIONS

- Electrically Similar to the 2N2894

- Rugged, One-Piece Construction with Standard T0-18 100-mil Pin Circle

mochanical data

This transistor is encapsulated in a plastic compound specifically designed for this purpose, using a highly mechanized process developed by Texas Instruments. The case will withstand soldering temperatures without deformation. This device exhibits stable characteristics under high-humidity conditions and is capable of meeting MIL-STD-202C, Method 106B. The transistor is insensitive to light.

*absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)
Collector-Base Voltage
Collector-Emitter Voltage (See Note 1). - 12 V
Collector-Emitter Voltage (See Note 2) . - 12 C
Emitter-Base Voltage . - - V
Continuous Collector Current Continuous Devict Dission $25^{\circ}{ }^{\circ}$. 200 mA
Continuous Device Dissipation at (or below) $25^{\circ} \mathrm{C}$ Free-Air Temperature (See Note 3) 360 mW
Continuous Device Dissipation at (or below) $25^{\circ} \mathrm{C}$ Lead Temperature (See Note 4) 500 mW
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead Temperature K_{6} Inch from Case for 10 Seconds $260^{\circ} \mathrm{C}$
*electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

PARAMETER		TEST CONDITIONS		MIN MAX	UNIT
$V_{\text {(m) }}$	Coliector-Base Breakdown Voltage	$\mathrm{I}_{\mathrm{C}}=-10 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{E}}=0$		-12	V
$V_{\text {(xix) }}$	Collector-Emitter Breakdown Valtoge	$\mathrm{I}_{\mathrm{c}}=-10 \mathrm{~mA}, \quad \mathrm{I}_{1}=0$,	Soe Nofe 5	-12	V
$V_{\text {Ifices }}$	Collector-Emilter Breakdown Voltage	$l_{c}=-10 \mu \mathrm{~A}, \quad V_{\text {EE }}=0$		-12	V
	Emitter-Sase Breekdown Voliage	$\mathrm{I}_{\mathrm{E}}=-100 \mu \mathrm{~A}_{1} \quad \mathrm{I}_{\mathrm{c}}=0$		-4	V
$\mathrm{l}_{\text {cmo }}$	Collector Cutolf Current	$V_{C E}=-6 V^{\prime}, \quad T_{E}=0$,	$\mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$	-1	$\mu \mathrm{h}$
ICEs	Collector Cutoff Current	$V_{C E}=-6 V_{1} \quad V_{E E}=0$		-80	na
$\mathrm{l}_{\text {ELO }}$	Emitter Cutoff Current	$V_{E E}=-3 V_{1}, \quad I_{C}=0$		-20	W
$h_{\text {re }}$	Staik Forword Current Transfer Ratio	$V_{\text {ce }}=-0.3 \mathrm{~V}, \quad \mathrm{I}_{\mathbf{C}}=-10 \mathrm{~mA}$	$\begin{gathered} \text { See } \\ \text { Mote } \\ 5 \end{gathered}$	30	
		$V_{C E}=-0.5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{C}}=-30 \mathrm{~mA}$		$40-150$	
		$\mathrm{V}_{\mathrm{CE}}=-1 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{C}}=-100 \mathrm{~mA}$		20	
$V_{\text {re }}$	Bose-Emitter Voltoge	$\mathrm{I}_{\mathrm{E}}=-1 \mathrm{~mA}, \quad \mathrm{I}_{\mathrm{c}}=-10 \mathrm{~mA}$	$\begin{gathered} \hline \text { See } \\ \text { Nofe } \\ 5 \end{gathered}$	-0.76 -0.98	v
		$\mathrm{I}_{\mathrm{E}}=-3 \mathrm{~mA}, \quad \mathrm{I}_{\mathrm{c}}=-30 \mathrm{~mA}$		$\begin{array}{ll}-0.82 & -1.2\end{array}$	
		$I_{s}=-10 \mathrm{~mA}, \quad \mathrm{I}_{C}=-100 \mathrm{~mA}$		-1.7	
$V_{\text {ckin+ }}$	Collector-Emitter Suturotion Yolinga	$\mathrm{I}_{1}=-1 \mathrm{~mA}, \quad \mathrm{I}_{\mathrm{C}}=-10 \mathrm{~mA}$	$\begin{gathered} \hline \text { See } \\ \text { Note } \\ 5 \end{gathered}$	-0.15	v
		$\mathrm{I}_{\mathrm{s}}=-3 \mathrm{~mA}, \quad \mathrm{l}_{\mathrm{C}}=-30 \mathrm{~mA}$		-0.2	
		$\mathrm{I}_{1}=-10 \mathrm{~mA}, \quad I_{C}=-100 \mathrm{~mA}$		-0.5	

MOTES: 1. This valve applies when the bast-emitter diad is shert-drcuitod.
 be simultamoously applied provided the time of application is 10μ sy less ead the dinty cycte is $\mathbf{2 \%}$ of less.
3. Derale finearty to $150^{\circ} \mathrm{C}$ free-air tomperature at the rate of $2.80 \mathrm{~mm} / \mathrm{deg}$.
-Imdientes JEDEC ragisterad deta
4. Derate linearly to $150^{\circ} \mathrm{C}$ lead tomporature at the rete of $4 \mathrm{~mW} / \mathrm{dag}$. Leod temperature is measured on ine collester lood $1 / 16$ inch from the cast.

*electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER	TEST CONDITIONS		MIN MAX	UNIT
$\left\|h_{\text {to }}\right\| \begin{aligned} & \text { Small-Signol Common-Emither } \\ & \text { Forward Current Transier Ratio }\end{aligned}$	$V_{C E}=-5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{C}}=-30 \mathrm{~mA}, \mathrm{i}=100 \mathrm{mHz}$		4	
$C_{c b}$ Coilector-Base Copactance	$\mathbf{V}_{C E}=-5 \mathbf{V}, l_{E}=0$,	$f=1 \mathrm{MHz},$ See Note 6	6	pf
C_{06} Emitter-Base Capocitonce	$\mathrm{V}_{\mathrm{EB}}=-0.5 \mathrm{~V}, \mathrm{l}_{\mathrm{C}}=0$,	$\mathrm{f}=1 \mathrm{MHz},$ See Note 6	6	pF

*switching characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER	TEST CONDITIONS \dagger		MAX	UNIT
$\mathrm{t}_{\text {d }}$ Delay Time	$\begin{aligned} & I_{C}=-30 \mathrm{~mA}, I_{m(1)}=-3 \mathrm{~mA}, \\ & R_{L}=93 \Omega, \end{aligned}$	See Figure 1	15	ns
t_{r} R Rise Iime			30	ns
$t_{\text {an }}$ Tum-On Time			40	ns
t_{1} Storage Tlme	$\begin{aligned} & I_{c}=-30 \mathrm{~mA}, I_{(x)}=-3 \mathrm{~mA}, \\ & R_{L}=93 \Omega, \end{aligned}$	$I_{\text {mil }}=3 \mathrm{~mA},$ See Figure 2	40	ns
t_{f} Foll Time			15	ms
$t_{\text {off }}$ Tum-Off Time			50	ns

†Voltoye end current values shown are neminal; exect veluos vary slightly with transistor paramaters.
*PARAMETER MEASUREMENT INFORMATION

TEST CIRCUIT

FIOURE 1

test circuit

FIGURE 2

b. Woveforman are moniterad on en ascilloscepe with the following characteristics: $t_{f} \leq 1 \mathrm{~ms}, \mathrm{a}_{\mathrm{in}} \geq 100 \mathrm{k} \Omega, \mathrm{c}_{\mathrm{m}} \leq 10 \mathrm{pF}$.
-indicatos JEEEC registerned data

TYPES 2N4851, 2N4852, 2N4853 P-N UNIJUNCTION SILICON TRANSISTORS

PLANAR UNIJUNCTION TRANSISTORS SPECIFICALLY CHARACTERIZED FOR A WIDE RANGE OF MILITARY, SPACE, AND INDUSTRIAL APPLICATIONS

- Planar Process Ensures Low Leakage, High-Performance With Low Driving Currents, and Greatly Improved Reliability

*mechanical data

Package outline is same as JEDEC TO-18 except for lead position. All TO-18 registration notes also apply to this outline.

*absolute maximum ratings at $\mathbf{2 5}{ }^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

*electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

PARAMETER		TEST CONDITIONS	2N4851		2N4852		2N4853		UNIT	
		MIN	MAX	MiN	MAX	MIN	MAX			
rBB	Static Interbase Resistance		$\mathrm{V}_{\mathrm{B} 2 \mathrm{~B} 1}=3 \mathrm{~V}$, IE0	4.7	9.1	4.7	9.1	4.7	9.1	$k \Omega$
α_{rBB}	Interbase Resistance Temperature Coefficient	$\begin{array}{ll} V_{B 2 B 1}=3 \mathrm{~V}, & I_{E}=0, \\ T_{A}=-65^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C}, & \text { See Note } 4 \\ \hline \end{array}$	0.2	0.8	0.2	0.8	0.2	0.8	$\%{ }^{\circ} \mathrm{C}$	
η	Intrinsic Standoff Ratio	$\mathrm{V}_{\mathrm{B2B1}}=10 \mathrm{~V}$, See Figure 3	0.56	0.75	0.7	0.85	0.7	0.85		
'EB2O	Emitter Reverse Current	$\mathrm{V}_{\mathrm{EB2}}=30 \mathrm{~V}$, $\mathrm{I}_{\mathrm{B} 1}=0$		100		100		50	nA	
Ip	Peak-Point Emitter Current	$\mathrm{V}_{\mathrm{B} 2 \mathrm{~B} 1}=25 \mathrm{~V}$		2		2		0.4	$\mu \mathrm{A}$	
IV	Valley-Point Emitter Current	$\mathrm{V}_{\mathrm{B2B} 1}=25 \mathrm{~V}$	2		4		6		mA	
$\bar{V}_{\text {OB1 }}$	Base-One Peak Pulse Voltage	See Figure 4	3		5		6		V	
$f_{\text {max }}$	Maximum Frequency of Oscillation	See Figure 5	1		1		1		MHz	

NOTES: 1. The interbase voltage rating is based upon allowable power dissipation: $V_{B 2 B 1}=\sqrt{r_{B B} * P_{T}}$.
2. The peak emitter current rating is based on the capability of the transistor to operate safely in the circuit of figure 4 .
3. Derate linearly to $125^{\circ} \mathrm{C}$ free-air temperature at the rate of $3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
4. Temperature coefficient $\alpha_{r B B}$ is determined by the following formula:

$$
\alpha_{\mathrm{rBB}}=\left[\frac{\left(\mathrm{r}_{\mathrm{BB}} @ 125^{\circ} \mathrm{C}\right)-\left(\mathrm{r}_{\mathrm{BB}} @-65^{\circ} \mathrm{C}\right)}{r_{\mathrm{BB}} @ 25^{\circ} \mathrm{C}}\right] \frac{100 \%}{190^{\circ} \mathrm{C}} .
$$

To obtain $r_{B E}$ for a given temperature $T_{A(2)}$, use the following formula:

$$
r_{\mathrm{BB}}(2)=\left[\mathrm{r}_{\mathrm{BB}} @ 25^{\circ} \mathrm{C}\right]\left[1+\left(\alpha_{\mathrm{rBB}} / 100 \%\right)\left(\mathrm{T}_{\mathrm{A}(2)}-25^{\circ} \mathrm{C}\right)\right]
$$

[^91]
TYPES 2N4851, 2N4852, 2N4853 P-N UNIJUNCTION SILICON TRANSISTORS

η-Intrinsic Standoff Ratio- This parameter is defined in terms of the peak-point voltage, V_{p}, by means of the equation: $V_{p}=\eta$, $V_{B 2 B 1}+V_{F}$, where V_{F} is about 0.49 volt at $25^{\circ} \mathrm{C}$ and decreases with temperature at about 2 millivolts ${ }^{\circ} \mathrm{C}$.

The circuit used to measure η is shown in the figure. In this circuit, R1, C1 and the unijunction transistor form a relaxation oscillator, and the remainder of the circuit serves as a peak-voltage detector with the diode D t automatically subtracting the voltage V_{p}. To use the circuit, the "cal" button is pushed, and R3 is adjusted to make the current meter M1 read full scale. The "cal" button then is released and the value of η is read directly from the meter, with $\mathbf{N}=1$ corresponding to full-scale deflection of $10 \mu \mathrm{~A}$.
D1: 1 N457, or equivalent, with the following characteristics:
$V_{F}=0.49 \mathrm{~V}$ at $I_{F}=10 \mu \mathrm{~A}$
$I_{R} \leqslant 2 \mu A$ at $V_{R}=20 \mathrm{~V}$

FIGURE 3-TEST CIRCUIT FOR INTRINSIC STANDOFF RATIO (η)

FIGURE 4-VOB1 TEST CIRCUIT
-JEDEC registered data

R1 and C1 are adiusted to maximize the frequency of oscillation. FIGURE 5-f $\mathrm{fmax}^{\text {TEST CIRCUIT }}$

PRINTED IN U.S.A.
II cannol ossume ony responsibility for ony circuits shown
of represent that they are fiee from patent infringement.
JEYAS IMSTRUMENTS RESERVES THE RIGHT 10 MAKE CHANGES AI ANY THE IN ORDER TO IMPROVE DESIGN AND TO SUPPLY IHE BEST PRODUCI POSSIRLE.

DESIGNED FOR COMPLEMENTARY MEDIUM-POWER HIGH-SPEED SWITCHING AND GENERAL PURPOSE AMPLIFIER APPLICATIONS

- 2N4854 Electrically Similar to 2N2222/2N2907
- 2N4855 Electrically Similar to 2N2221/2N2906
- hFE-Guaranteed from $\mathbf{1 0 0} \mu \mathrm{A}$ to $\mathbf{3 0 0} \mathbf{~ m A}$
- Low-Profile Case

*absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted) ${ }^{\dagger}$
EACH TOTAL
TRIODE DEVICE
Collector-Base Voltage
60 V
Collector-Emitter Voltage (See Note 1) . 40 V
Emitter-Base Voltage . 5 V
Collector-1-Collector-2 Voltage $\pm 120 \mathrm{~V}$
Lead-to-Case Voltage . ± 120 V
Continuous Collector Current
600 mA
Continuous Device Dissipation at (or below) $25^{\circ} \mathrm{C}$ Free-Air Temperature (See Note 2) 300 mW 600 mW
Continuous Device Dissipation at (or below) $\mathbf{2 5}{ }^{\circ} \mathrm{C}$ Case Temperature (See Note 3)
$1 \mathrm{~W} \quad 2 \mathrm{~W}$
Storage Temperature Range
$-65^{\circ} \mathrm{C}$ to $200^{\circ} \mathrm{C}$
Lead Temperature 1/16 Inch from Case for 10 Seconds
$\leftarrow 300^{\circ} \mathrm{C} \longrightarrow$

NOTES: 1. This value applies between 0 and 600 mA collector current when the base-emitter diode is open-circuited. 40 V and 600 mA collector current may be simultaneously applied provided the time of application is $\mathbf{1 0} \mu \mathrm{s}$ or less and the duty cycle is $\mathbf{2 \%}$ or less.
2. Derate linearly to $175^{\circ} \mathrm{C}$ free-air temperature at the rates of $2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for each triode and $a \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for total device.
3. Derate linearly to $175^{\circ} \mathrm{C}$ case temperature at the rates of $6.67 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for each triode and $13.33 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for total device.
*JEDEC registered data. This data sheet contains all applicable registared data in effect at the time of publication.
tVoltages and currents apply to the N-P-N triode. For the P-N-P triode the values are the same, but the signs are reversed.

TYPES 2N4854, 2N4855 N-P-N, P-N-P DUAL SILICON TRANSISTORS

*electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted) \dagger

individual triode characteristics (see note 4)

PARAMETER	TEST CONDITIONS		2N4854	2N4855	UNIT
			MIN MAX	MIN MAX	
$\mathrm{V}_{(B R)} \mathbf{C B O}$ Collector-Base Breakdown Voltage	$I_{C}=10 \mu A, \quad I_{E}=0$		60	60	V
$V_{\text {(BR)CEO }}$ Collector-Emitter Breakdown Voltage	$\mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0$,	See Note 5	40	40	V
V(BR)EBO Emitter-Base Breakdown Voltage	$I_{E}=10 \mu A, \quad I_{C}=0$		5	5	V
ICBO Collector Cutoff Current	$V_{C B}=50 \mathrm{~V}, \mathrm{~T}_{\mathrm{E}}=0$		10	10	nA
	$V_{C B}=50 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0$,	$T A=150^{\circ} \mathrm{C}$	10	10	$\mu \mathrm{A}$
IEBO Emitter Cutoff Current	$\mathrm{V}_{\mathrm{EB}}=3 \mathrm{~V}, \mathrm{I}^{\text {c }}=0$		10	10	nA
hfe Static Forward Current Transfer Ratio	$\mathrm{V}_{\mathrm{CE}}=1 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=150 \mathrm{~mA}$,	See Note 5	50	20	
	$V_{C E}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=100 \mu \mathrm{~A}$		35	20	
	$V_{C E}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}$		50	25	
	$\mathrm{V}_{\text {CE }}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}$,	See Note 5	75	35	
	$V_{C E}=10 \mathrm{~V}$. $\mathrm{I}_{\mathrm{C}}=150 \mathrm{~mA}$,	See Note 5	100300	$40 \quad 120$	
	$V_{C E}=10 \mathrm{~V}, 1 \mathrm{C}=300 \mathrm{~mA}$,	See Note 5	35	20	
$\mathrm{V}_{\text {BE }} \quad$ Base-Emitter Voltage	$\mathrm{I}_{\mathrm{B}}=15 \mathrm{~mA}, \mathrm{I}^{\prime} \mathrm{C}=150 \mathrm{~mA}$,	See Note 5	0.751 .2	0.751 .2	V
$\mathrm{V}_{\text {CE }}$ (sat) Collector-Emitter Saturation Valtage	$\mathrm{I}_{B}=15 \mathrm{~mA}, \mathrm{I}_{C}=150 \mathrm{~mA}$,	See Note 5	0.4	0.4	V
hie \quadSmall-Signal Common-Emitter Input Impedance	$V_{C E}=10 \mathrm{~V}, \mathrm{l}^{\prime}=1 \mathrm{~mA}, \quad \mathrm{f}=1 \mathrm{kHz}$		1.59	$0.75 \quad 4.5$	k Ω
Small-Signal Common-Emitter $\mathbf{h f e}_{\text {fe }}$ Forward Current Transfer Ratio			60300	30150	
hoe \quad Small-Signal Common-Emitter Output Admittance			50	25	$\mu \mathrm{mho}$
\|hfel Small-Signal Common-Emitter	$V_{C E}=10 \mathrm{~V}, \mathrm{I}^{\prime}=20 \mathrm{~mA}$,	$f=100 \mathrm{MHz}$	2	2	
$\mathrm{C}_{\mathrm{cb}} \quad$ Collector-Base Capacitance	$V_{C B}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0$.	$f=1 \mathrm{MHz},$ See Note 6	8	8	pF

*operating characteristics at $\mathbf{2 5}{ }^{\circ} \mathbf{C}$ free-air temperature ${ }^{\dagger}$

individual triode characteristics (see note 4)

PARAMETER	TEST CONDITIONS	MAX	UNIT
${ }^{\text {d }}$ d Delay Time	$\begin{aligned} & I_{C}=150 \mathrm{~mA}, I_{B(1)}=15 \mathrm{~mA}, V_{B E}(\text { off })=-0.5 \mathrm{~V}, \\ & R_{\mathrm{L}}=200 \Omega, \text { See Note } 7 \text { and Figure } 1 \end{aligned}$	20	ns
$\mathrm{t}_{\mathbf{r}} \quad$ Rise Time		40	ns
$\mathrm{t}_{\mathbf{s}} \quad$ Storage Time	$\begin{aligned} & I_{C}=150 \mathrm{~mA}, I_{B}(1)=15 \mathrm{~mA}, I_{B(2)}=-15 \mathrm{~mA}, \\ & R_{L}=200 \Omega, \text { See Note } 7 \text { and Figure } 2 \end{aligned}$	280	ns
tf Fall Time		70	ns
F Spot Noise Figure	$V_{C E}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=100 \mu \mathrm{~A}, \mathrm{R}_{\mathrm{G}}=1 \mathrm{k} \Omega, \quad \mathrm{f}=1 \mathrm{kHz}$	8	dB

NOTES: 4. The terminals of the triode not under test are open-circuited for the measurement of these characteristics.
5. These parameters must be measured using pulse techniques. $t_{w}=300 \mu \mathrm{~s}$, duty cycle $\leqslant \mathbf{2 \%}$.
6. C_{cb} measurement employs a three-terminal capacitance bridge incorporating a guard circuit. The emiter and case are connected to the guard terminal of the bridge.
7. Voltages and current values shown are nominal; exact values vary with device parameters.

*JEDEC registered data

tVoltages and currents apply to the N-P-N triode. For the P-N-P triode the values are the same, but the signs are reversed.

TYPES 2N4854, 2N4855
 N-P-N, P-N-P DUAL SILICON TRANSISTORS

*PARAMETER MEASUREMENT INFORMATION

FIGURE 1-DELAY AND RISE TIMES

TEST CIRCUIT

VOLTAGE WAVEFORMS

FIGURE 2-STORAGE AND FALL TIMES

NOTES: a. The input waveforms have the following characteristics: For figure 1, $\mathbf{t}_{\mathrm{r}} \leqslant \mathbf{2} \mathbf{n s}, \mathrm{t}_{\mathbf{w}}=\mathbf{2 0 0} \mathbf{n s}$, duty cycle $\leqslant \mathbf{2 \%}$; for figure $\mathbf{2}$, $\mathrm{t}_{\mathrm{f}} \leqslant 5 \mathrm{~ns}, \mathrm{t}_{\mathrm{w}}=10 \mu \mathrm{~s}$, duty cycle $\leqslant 2 \%$
b. All waveforms are monitored on an oscilloscope with the following characteristics; $\mathrm{t}_{\mathrm{r}} \leqslant 5 \mathrm{~ns}, \mathrm{R}_{\mathrm{in}} \geqslant 100 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{in}} \leqslant 12 \mathrm{pF}$

- JEDEC registered data

TYPES 2N4856 THRU 2N4861, 2N4856A THRU 2N4861A N-CHANNEL SILICON JUNCTION FIELD-EFFECT TRANSISTORS

BULLETIN NO. DL-S 7311911 , JUNE 1973

SYMMETRICAL N-CHANNEL FIELD-EFFECT TRANSISTORS FOR HIGH-SPEED COMMUTATOR AND CHOPPER APPLICATIONS

- Low $r_{\text {ds }}(o n)$. . 25Ω Max (2N4856, 2N4856A, 2N4859, 2N4859A)
- Low ID(off) . . . 0.25 nA Max
- Low rds(on) Ciss Product
*mechanical data

*absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)
2N4856
2N4859
2N4860

NOTES: 1. Derate linearly to $200^{\circ} \mathrm{C}$ free-air temperature at the rate of $2.06 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
2. Derate linearly to $200^{\circ} \mathrm{C}$ case temperature at the rate of $10.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.

TYPES 2N4856 THRU 2N4861, 2N4856A THRU 2N4861A N-CHANNEL SILICON JUNCTION FIELD-EFFECT TRANSISTORS

2N4856 THRU 2N4861
*electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

PARAMETER		TEST CONDITIONS	2N4856		2N4857		2N4858		2N4059		2N4860		2N4C61		UNIT	
		MIN	MAX	MIN	MAX	MIN	max	MIN	max	MIN	MAX	MIN	max			
$\mathbf{v}_{\text {craless }}$	Garte-Source Breakdown Voltage		$\mathrm{I}_{\mathrm{G}}=-1 \mu \mathrm{~A}, V_{\mathrm{DS}}=0$	-10		-40		-40		-30		-30		-30		v
Isss	Gate Reverse Curtont	$V_{G S}=-20 V_{V} V_{D S}=0$		-0.25		-0.25		-0.25							nA	
		$\begin{aligned} & V_{G S}=-20 V, V_{D S}=0, \\ & V_{A}=150^{\circ} \mathrm{C} \end{aligned}$		-0.5		-0.5		-0.5							μA	
		$V_{G S}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$								-0,25		-0.25		-0.25	nA	
		$\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=-15 \mathrm{~V}, \mathrm{v}_{\mathrm{DS}}=0, \\ & \mathrm{~T}_{\mathrm{A}}=150^{\circ} \mathrm{C} \end{aligned}$								-0.5		-0.5		-0.5	$\mu \mathrm{h}$	
${ }^{\text {DIoff }}$	Drain Cutoff Currant	$V_{D S}=15 \mathrm{~V}, \quad \mathrm{~V}_{6 S}=-10 \mathrm{~V}$		0.25		0.25		0.25		0.25		0.25		0.25	nA	
		$\begin{aligned} & V_{D S}=15 \mathrm{~V} \quad V_{G S}=-10 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=150^{\circ} \mathrm{C} \end{aligned}$		0.5		0.5		0.5		0.5		0.5		0.5	$\mu \lambda$	
$V_{\text {estoff }}$	Gate-Source Cutoff Yoltege	$v_{D S}=15 \mathrm{~V}, \quad \mathrm{~J}_{\mathrm{D}}=0.5 \mathrm{nA}$	-4	-10	-2	-6	-0.8	-4	-4	-10	-1	-6	-0.0	-4	V	
Ioss	Zero Galo- Voligge Droin Current	$v_{D S}=15 v, \quad v_{G S}=0,$ See Nete 3	50			100		80	50			100	8	80	mA	
$V_{\text {DSionl }}$	Drain-Souvce On-State Volitage	$\mathrm{I}_{\mathrm{D}}=20 \mathrm{~mA}, \quad V_{G S}=0$		0.75						0.75					v	
		$\mathrm{I}_{\mathrm{D}}=10 \mathrm{~mA}, \quad \mathrm{~V}_{\mathrm{GS}}=0$				0.5						0.5				
		$\mathrm{I}_{\mathrm{D}}=5 \mathrm{~mA}, \quad \mathrm{v}_{\mathrm{GS}}=0$						0.5						0.5		
${ }^{\text {d }}$ dston)	Small-Signal Drain-Saurte On-State Resistence	$\begin{aligned} & v_{G S}=0, \quad I_{D}=0, \\ & f=1 \mathrm{kHz} \end{aligned}$		25		40		60		25		40		0	0	
$c_{\text {iss }}$	Common-Source Short-Circuit Input Capacitance	$\begin{aligned} & V_{D S}=0, V_{G S}=-10 \mathrm{~V}, \\ & f=1 \mathrm{mHz} \end{aligned}$		18		18		18		18		18		14	pF	
$C_{\text {rss }}$	Common-Source Short-Circuilt Revorse Transior Capacitance	$\begin{aligned} & V_{D S}=0, v_{G S}=-10 v, \\ & f=1 \mathrm{mHz} \end{aligned}$		8		1		8		8		8		4	pF	

*switching characteristics af $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER		TEST CONDITIONS		$\begin{array}{r} \hline 2 N 4856 \\ 2 N 4859 \\ \hline \end{array}$	$\begin{aligned} & \text { 2N4857 } \\ & \text { 2N4860 } \\ & \hline \end{aligned}$	2N4858 2N4861	UNIT		
		MAX	MAX	MAX					
${ }^{\text {d dion) }}$	Turn-an Delay Iime					6	6	10	ms
${ }^{1}$	Rise Itime	3	4			10	ns		
'off	Turn-0ff Time	25	50			100	m		

MOTE 3: This paramater must be measurad using pulse tectniques. $\mathrm{t}_{\mathrm{w}} \approx 100 \mathrm{~ms}$, duty cycle $\leq 10 \%$.
†These are nominal valuos; exact values vary slightly with transistor parameters.
*JEDEC registorad date

TYPES 2N4856 THRU 2N4861, 2N4856A THRU 2N4861A N-CHANNEL SILICON JUNCTION FIELD-EFFECT TRANSISTORS

2N4856A THRU 2N4861A

*electrical characteristics of $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

PARAMETER		TEST CONDITIONS	2N4856A	2N4857A	2N4858A	2N4859A	2N4860A	2N4861A	UNIT	
		MIN MAX	MIN MAX	MIN MAX	MIN MAX	MIN MAX	MIN MAX			
Vimjass	Gate-Source Brakdown Voltage		$\mathrm{I}_{G}=-1 \mu \mathrm{~A}, \quad V_{\text {OS }}=0$	-40	-40	-40	-30	-30	-30	V
Igss	Gate Reverse Current	$V_{G S}=-20 . \quad V, V_{D S}=0$	-0.25	-0.25	-0.25				nî	
		$\begin{aligned} V_{G S}=-20 \mathrm{~V}, & V_{D S}=0 \\ T_{A} & =150^{\circ} \mathrm{C} \end{aligned}$	-0.5	-0.5	-0.5				$\mu \mathrm{A}$	
		$V_{G S}=-15 V, V_{D S}=0$				-0.25	-0.25	-0.25	nA	
		$\begin{array}{ll} V_{G S}=-15 \mathrm{~V}, & V_{D S}=0 \\ T_{A}=150^{\circ} \mathrm{C} \end{array}$				-0.5	-0.5	-0.5	$\mu \mathrm{A}$	
$l_{\text {DIofi }}$	Drain Cutoff Current	$V_{D S}=15 \mathrm{~V}, \quad V_{G 5}=-10 \mathrm{~V}$	0.25	0.25	0.25	0.25	0.25	0.25	nA	
		$\begin{array}{ll} V_{D S}=15 \mathrm{~V}, & V_{G S}=-10 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{A}}=150^{\circ} \mathrm{C} \end{array}$	0.5	0.5	0.5	0.5	0.5	0.5	$\mu \mathrm{A}$	
$V_{\text {SSOFIf }}$	Gote-Source Cutoff Voltage	$V_{\text {DS }}=15 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{D}}=0.5 \mathrm{nA}$	-4 -10	$-2 \quad-6$	-0.8 -4	-4 -10	-2 -6	-0.8 -4	V	
IDss	Zero-Gate- Voltage Drain Current	$\begin{array}{ll} V_{D S}=15 \mathrm{Y}, & \begin{array}{l} \mathbf{Y}_{G S}=0 \\ \text { See Note } 3 \end{array} \end{array}$	50	$20 \quad 100$	880	50	$20 \quad 100$	880	mA	
$V_{\text {DS }}(\mathrm{mm})$	Drain-Source On-State Voltage	$\mathrm{I}_{\mathrm{D}}=20 \mathrm{~mA}, \quad V_{\text {GS }}=0$	0.75			0.75			V	
		$\mathrm{I}_{\mathrm{D}}=10 \mathrm{~mA}, \quad V_{G S}=0$		0.5			0.5			
		$I_{D}=5 \mathrm{~mA}, \quad V_{G S}=0$			0.5			0.5		
Pdsions	Small-Signal Drain-Source On-State Resistance	$\begin{array}{ll} v_{G S}=0, & I_{D}=0_{1} \\ & f=1 \mathrm{kHz} \end{array}$	25	40	60	25	40	60	$\boldsymbol{\Omega}$	
$C_{\text {st }}$	Common-Source Short-Gircuit Input Capacitance	$\begin{array}{ll} V_{D S}=0, & V_{G S}=-10 V_{4} \\ I=1 \mathrm{MHz} \end{array}$	10	10	10	10	10	10	pF	
$C_{5 \times}$	Common-Sourte Short-Circuit Reverse Transler Copacitance	$\begin{array}{ll} V_{D S}=0, & V_{G S}=-10 V_{1} \\ & f=1 \mathrm{MHz} \end{array}$	4	3.5	3.5	4	3.5	3.5	, \mathbf{F}	

*switching characteristics at $\mathbf{2 5}{ }^{\circ} \mathrm{C}$ free-air temperature

PARAMETER	TEST CONDITIONS	$\begin{aligned} & \text { 2N4856A } \\ & 2 N 4859 A \end{aligned}$	$\begin{aligned} & \text { 2N4857A } \\ & \text { 2N4860A } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 2N4858A } \\ & \text { 2N4861A } \\ & \hline \end{aligned}$	UNIT
		TYP MAX	TYP MAX	TYP MAX	
Turn-On Delay Time		5	6	8	ns
1r Rise Time		3	4	8	ns
toft Turn-0ff Time		20	40	80	ns
tr Rise Time		2	3	4	ns
$t_{\text {en }} \quad$ Turn-On Time		5.5	6.5	8	ns
$t_{4} \quad$ Fall Time		7	13	27	m
toff Turn-0ff Time		10	18	31	ns

[^92]
TYPES 2N4856 THRU 2N4861, 2N4856A THRU 2N4861A N-CHANNEL SILICON JUNCTION FIELD-EFFECT TRANSISTORS

PARAMETER MEASUREMENT INFORMATION

TEST CIRCUIT

TYPES	\mathbf{R}_{L}	V $_{\text {GS(off) }}$
2N4856A, 2N4859A	464Ω	-10 V
2N4857A, 2N4860A	953Ω	-6 V
2N4858A, 2N4861A	1910Ω	-4 V

NOTES: a. The input waveforms are supplied by a generator with the following characteristics: $Z_{\text {out }}=50 \Omega$, duty cycle $\approx 2 \%$. b. Waveforms are monitored on an oscilloscope with the following characteristics: $t_{r} \leqslant 0.75 \mathrm{~ns}, \mathrm{R}_{\mathrm{in}} \geqslant 1 \mathrm{M} \Omega, \mathrm{C}_{\mathrm{in}} \leqslant 2.5 \mathrm{pF}$.

Figure 1

NOTE a: An equivalent generator and oscilloscope may be used. The oscilloscope must have a $50-\Omega$ input impedance.
FIGURE 2

PLANAR UNIJUNCTION SILECT ${ }^{\dagger}$ TRANSISTORS \ddagger FOR APPLICATION IN SCR DRIVERS, MOTOR-SPEED CONTROLS, TIMERS, WAVEFORM GENERATORS, MULTIVIBRATORS, RING COUNTERS, ELECTRONIC ORGANS, AND MILITARY FUZES

- Low Leakage Allows More Accurate Timing Circuit Design
- High Performance Capability at Low Drive Currents
- Provides Wider Range of Design Applications than Bar-Type Unijunction Transistors
- Rugged, One-Piece Construction Features Standard 100-mil TO-18 Pin-Circle

mechanical data

These transistors are encapsulated in a plastic compound specifically designed for this purpose, using a highly mechanized process developed by Texas Instruments. The case will withstand soldering temperatures without deformation. These devices exhibit stable characteristics under high-humidity conditions and are capable of meeting MIL-STD-202C, Method 106B. The transistors are insensitive to light.

*absolute maximum ratings af $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)
Emitter - Base-Two Reverse Voltage
Interbase Voltage
Continuous Emitter Current.

NOTES: 1. Intervase voltage is limited solely by power dissipation, $\mathrm{V}_{\mathrm{B} 2-\mathrm{B} 1}=\sqrt{\mathrm{r}_{\mathrm{BB}} \cdot \mathrm{P}_{\mathrm{T}}}$.
2. This value applies for a capacitor discharge through the emitter-baseone diode. Current must fall to 0.37 A within 3 ms and pulse-repetition rate must not exceed 10 pps.
3. Derate linearly to $150^{\circ} \mathrm{C}$ free-air temperature at the rate of $2.88 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.

[^93]
TYPES 2N4891 THRU 2N4894 P-N PLANAR SILICON UNIJUNCTION TRANSISTORS

*electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	$\begin{array}{\|c\|} \hline \text { 2N4891 } \\ \hline \text { MIN MAX } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { 2N4892 } \\ \hline \text { MIN MAX } \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { 2N4893 } \\ \hline \text { MINMAX } \\ \hline \end{array}$	N MAX	UNIT
r_{B}	Static Interbase Resistance	$V_{B 2-81}=3 V_{V} I_{E}=0$	49.1	49.1	$4 \quad 12$	$4 \quad 12$	$\mathrm{k} \Omega$
$\alpha_{\text {rab }}$	Interbase Resistance Temperature Coefficient	$\begin{aligned} & V_{E_{2}-81}=3 V_{1} \quad I_{\xi}=0, \\ & T_{A}=-55^{\circ} \mathrm{C} \text { to } 100^{\circ} \mathrm{C}, \quad \text { See Note } 4 \end{aligned}$	0.10 .9	0.10 .9	0.10 .9	0.10 .9	\%/deg
η	Intrinsic Stondoff Ratio	$V_{\text {B2-b1 }}=10 \mathrm{~V}$, See Figure 1	$0.55 \quad 0.82$	$0.51 \quad 0.69$	0.55 0.82	$0.74 \quad 0.86$	
182 mod)	Modulated Interbase Current	$V_{\text {B2-B1 }}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=50 \mathrm{~mA}$, See Note 5	10	10	10	10	mA
$\mathrm{l}_{\text {E } 210}$	Emitter Reverse Current	$\mathrm{V}_{\mathrm{EB2}}=-30 \mathrm{~V}, \mathrm{I}_{\mathrm{BI}^{\prime}}=0$	-10	-10	-10	-10	nA
Ip	Peak-Point Emitter Current	$V_{82-81}=25 \mathrm{~V}$	5	2	2	1	μA
$V_{\text {EB }}($ (at) $)$	Emitter - Bass-One Saturation Voltage		4	4	${ }^{4}$	4	V
IV	Valiey-Point Emitter Current	$\mathrm{V}_{\mathrm{ER}-81}=20 \mathrm{~V}$	2	4	2	2	mA
Vom	Base-One Peak Pulse Volfage	See figure 2	3	3	6	3	V

NOTES: 4. Temperature confficieni, $\alpha_{\text {reas }}$ is datermined by the folliowing formula:

$$
\begin{aligned}
\alpha_{\mathrm{rBB}}=\left[\frac{\left(\mathrm{r}_{\mathrm{BE}} @ 100^{\circ} \mathrm{C}\right)-\left(\mathrm{r}_{\mathrm{BE}} @-55^{\circ} \mathrm{C}\right)}{\left(\mathrm{r}_{\mathrm{BE}} @ 25^{\circ} \mathrm{C}\right.}\right] \frac{100 \%}{155 \mathrm{deg}} \\
\mathrm{r}_{\mathrm{BE}(2)}=\left[\mathrm{r}_{\mathrm{BE}} @ 25^{\circ} \mathrm{C}\right]\left[1+\left(\alpha_{\mathrm{rBB}} / 100\right)\left(\mathrm{T}_{\mathrm{A}|2|}-25^{\circ} \mathrm{C}\right)\right]
\end{aligned}
$$

To obtain rase for a given semperature $T_{A\{2]}$, use the following formula:
5. Thase parameters must be measured using pulse tochniques. $t_{p}=300 \mu s$, duty cycle $\leq 2 \%$.
*JEDEC registerad data
PARAMETER MEASUREMENT INFORMATION

$\boldsymbol{\eta}$-Intrinsic Standoff Ratio - This parameter is defined in torms of the peak-point voltage, V_{p} by means of the equation: $V_{p}=\eta$ $V_{82 m}+V_{F}$, where V_{F} is about 0.56 volt at $25^{\circ} \mathrm{C}$ and decreases with temperature at about 2 millivolts/deg.

The circuit used to measure η is shown in the figure. In this circuit, R_{1}, C_{1} and the unijunction transistor form a relaxation ascillator, and the remoinder of the circuit serves as a peak-voltage detector with the diode D_{1} automatically subtracting the voltaga V_{F}. To use the circuit, the "cal"' button is pushed, and R_{3} is adjusted to make the current meter M_{1} read full scale. The "cal" button then is released and the value of η is read directly from the mater, with $\eta=1$ corresponding to full.seale deflection of $100 \mu \mathrm{~A}$.
D_{1} : IN457, or equivalant, with the following characteristics:
$V_{\mathrm{F}}=0.565 \mathrm{~V}_{\text {at }} \mathrm{I}_{\mathrm{F}}=50 \mu \mathrm{~h}$,
$\mathrm{I}_{\mathrm{R}} \leq 2 \mu \mathrm{~A}$ at $\mathrm{V}_{\mathrm{R}}=20 \mathrm{~V}$
FIGURE 1 - TEST CIRCUIT FOR INTRINSIC STANDOFF RATIO (η)

EMITTER-BASE-ONE VOLTAGE
vs
EMITTER CURRENT

FIGURE 3 - GENERAL STAIIC EMITTER CHARACTERISTIC CURVE

PLANAR UNIJUNCTION TRANSISTORS SPECIFICALLY CHARACTERIZED FOR A WIDE RANGE OF MILITARY, SPACE, AND INDUSTRIAL APPLICATIONS:
 2N3980 for General-Purpose UJT Applications
 2N4947 for High-Frequency Relaxation-Oscillator Circuits
 2N4948 for Thyristor (SCR) Trigger Circuits
 2N4949 for Long-Time-Delay Circuits

- Planar Process Ensures Extremely Low Leakage, High Performance with Low Driving Currents, and Greatly Improved Reliability

*mechanical data

Package outline is same as JEDEC TO-18 except for lead position. All TO-18 registration notes also apply to this outline.

NOIES: 1. Interbase voltage is limited salely by power dissipation, $\boldsymbol{V}_{\mathbf{B 2}-\mathrm{Bl}}=\sqrt{\mathrm{r}_{\mathrm{BB}}{ }^{*} \mathrm{P}_{\mathrm{T}}}$
2. This value applies for a capaciter discharge through the emitter-base-one diode. Current must fall to 0.37 a within 3 ms and pulse-repesition rate must nof exceed 10 pps.
3. Derate linearly to $175^{\circ} \mathrm{C}$ free-air temperature at the rate of $2.4 \mathrm{~mW} / \mathrm{deg}$.
*Indicates JEDEC registered data

TYPES 2N3980, 2N4947 THRU 2N4949
 P-N PLANAR SILICON UNLJUNCTION TRANSISTORS

*electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temparature (unless otherwise noted)

PARAMETER		TEST CONDITIONS	2N3980	2N4947	2N4948	2N4949	UNIT	
		MIN MAX	MIN MAX	MIN MAX	MIN MAX			
${ }^{\text {fab }}$	Slatic Interbese Resistance		$\mathbf{V}_{\mathrm{E} 2-\mathrm{B} 1}=3 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{E}}=0$	48	49.1	112	412	$\mathrm{k} \Omega$
$\alpha_{\text {reb }}$	Interbase Resistance Temperature Coefficient	$\begin{aligned} & V_{B 2-B 1}=3 V, \quad I_{E}=0, \\ & T_{A}=-65^{\circ} \mathrm{C} \text { to } 100^{\circ} \mathrm{C}, \end{aligned}$ Sod Hote 4	0.40 .9	0.10 .9	0.10 .9	0.10 .9	\%/deg	
$\boldsymbol{\eta}$	Intrinsic Standoff Retio	$\mathbf{V}_{\text {B2-B1 }}=10 \mathrm{~V}^{\text {, }} \quad$ See Figure I	$0.68 \quad 0.82$	0.510 .69	0.550 .82	$0.74 \quad 0.86$		
$\mathrm{I}_{\mathrm{B} 2 \text { madj }}$	Modulated Interbase Current	$\mathbf{V}_{\mathrm{B2}-\mathrm{B1}}=10 \mathrm{~V}, \mathrm{I}_{\mathbf{E}}=50 \mathrm{~mA}$, See Mate 5	12	12	12	12	mA	
${ }^{\text {I E E2O }}$	Emitter Ravarse Curvent	$\mathrm{V}_{\mathrm{EB} 2}=-30 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{B} 1}=0$	-10	-10	-10	-10	nh	
		$\mathrm{V}_{\mathrm{EB2} 2}=-30 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{B} 1}=0, \quad \mathrm{~T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$	-1	-1	-1	-1	$\mu \mathrm{A}$	
${ }^{1} \mathrm{p}$	Peak-Point Emilter Current	$\mathrm{V}_{82 \cdot \mathrm{Bl}}=25 \mathrm{~V}$	2	2	2	1	$\mu \mathrm{A}$	
VE8)(sent	Emittry - Bess-One Saturation Yeltage	$\mathbf{V}_{\mathbf{B 2}-\mathrm{BI}}=10 \mathrm{~V}, \quad \mathrm{I}_{\mathbf{E}}=50 \mathrm{~mA}, \mathrm{Sec}$ Nole 5	3	3	3	3	V	
Iv	Valloy-Point Emitier Current	$\mathrm{V}_{\mathrm{B2}-\mathrm{B1}}=20 \mathrm{~V}$	110	4	2	2	mA	
$Y_{\text {osi }}$	Cose-One Peak Pulse Yoltage	See Figure 2	6	3	6	3	V	

NOTES: 4. Temperature confficient α_{r} be determined by the following formula:

To abtrin r $_{\text {Be }}$ for a given temperature $T_{A \mid 22}$, wse the following tormula:

$$
\left.{ }_{\mathrm{BB}(2]}=\left[\mathrm{r}_{\mathrm{BB}} @ 25^{\circ} \mathrm{C}\right]\left[1+\left(\alpha_{\mathrm{rB}} / 100 \%\right) \mathrm{Hf}_{\mathrm{A}(2)^{2}}-25^{\circ} \mathrm{C}\right]\right]
$$

5. Thase parameters are measured using pulse techniques. $t_{p}=300 \mu \mathrm{~s}$, duty cycle $\leq \mathbf{2 \%}$.
*PARAMETER MEASUREMENT INFORMATION

EMITTER-bASE-ONE VOLTAGE
vs
emitter Current

figure 3 - general static emitter charactenistic curve

HIGH-FREQUENCY SILECT ${ }^{\dagger}$ TRANSISTORS \ddagger FOR TUNER AND IF-AMPLIFIER STAGES IN FM AND AM/FM STEREO-MULTIPLEX RECEIVERS

\author{

- Rugged, One-Piece Construction with Standard TO-18 100-mil Pin-Circle
}

mechanical data

These transistors are encapsulated in a plastic compound specifically designed for this purpose, using a highly mechanized process developed by Texas Instruments. The case will withstand soldering temperatures without deformation. These devices exhibit stable characteristics under high-humidity conditions and are capable of meeting MIL-STD-202C, Method 106B. The transistors are insensitive to light.

* absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

NOTES: 1. This value applies when the base-emitter diode is open-circuited. 2. Derate linearly to $150^{\circ} \mathrm{C}$ free-air temperature at the rate of $2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
*JEDEC registered data
${ }^{1}$ Trademark of Texas Instruments
キU.S. Patent No. 3,439,238

TYPES 2N4996, 2N4997
 N-P-N SILICON TRANSISTORS

*electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

PARAMETER	TEST CONDITIONS	2N4996	2N4997	UNIT
		MIN TYP MAX	MIN TYP MAX	
$\mathbf{V}_{(0 \times) \text { cio }}$ Collector-Base Breakdown Voltage	$\mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{E}}=0$	30	30	v
	$\mathrm{I}_{\mathrm{C}}=2 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0, \quad$ See Note 3	18	18	V
	$\mathrm{I}_{\mathrm{E}}=10 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{C}}=0$	4	4	V
Collector Cutoff Current	$V_{C E}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0$	100	100	nA
	$V_{C B}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0, \quad \mathrm{~T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$	10	10	$\mu \mathrm{A}$
het Static Forward Current Iranseer Ratio	$V_{C E}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=2 \mathrm{~mA}$	50	$30 \quad 150$	
$\left\|h_{\text {to }}\right\| \quad$Small-Signal Common-Emitter Forward Current Tronsfer Ratio	$\mathrm{V}_{\text {CE }}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{c}}=2 \mathrm{~mA}, 1=100 \mathrm{mHz}$	614	$6 \quad 14$	
$\left\|\boldsymbol{Y}_{\mathrm{f}}\right\| \quad$Small-Signal Common-Emilter Forward Transfer Admittance	$\mathrm{V}_{\mathrm{CE}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=2 \mathrm{~mA}, f=10 \mathrm{mHz}$		70	mmho
$\mathrm{C}_{\mathrm{cb}} \quad$ Collector-Base Capacitance	$\begin{array}{lll}V_{C B}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0, & \begin{array}{l}f=1 \\ \text { See Note 4z, }\end{array}\end{array}$	0.10 .65	0.10 .65	pf
Toap Parallel-Equivalent Common-Emitter Short-Circuit Output Resistance	$V_{C E}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=2 \mathrm{~mA}, \mathrm{f}=10 \mathrm{MHz}$		50	k Ω
$\mathrm{r}_{\mathrm{b}}{ }^{\prime} \mathrm{C}_{\mathrm{c}}$ Colllector-Base Jime Constant	$\mathrm{V}_{C B}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=-2 \mathrm{~mA}, \mathrm{f}=79.8 \mathrm{mHz}$	$14 \quad 20$	1420	ps

operating characteristics af $25^{\circ} \mathrm{C}$ free-air temperafure

PARAMETER	TEST CONDITIONS	$\frac{\text { 2N4996 }}{\text { TYP }}$	UNIT
NF Spot Noise Figure	$V_{\text {CE }}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=2 \mathrm{~mA}, R_{G}=100 \Omega, f=100 \mathrm{mHz}$	2.5	dB

NOTES: 3. This parameter must be measured using pulse techniques. $t_{w}=300 \mu s$, duty cycle $\leqslant 2 \%$.
4. Ccb masurement employs a three-terminal capacitance bridge incorporating a guard cirucit. The emitter is connected to the guard terminal of the bridge.
*JEDEC registered data

MATCHED FIELD-EFFECT TRANSISTORS

- High |yfs $/ / C_{i s s}$ Ratio (High-Frequency Figure-of-Merit)
- Low Input Capacitance Ciss . . . 8 pF Max
- Low Gate Reverse Current Differential . . . 10 nA Max at $\mathrm{T}_{\mathrm{A}}=\mathbf{1 0 0}^{\circ} \mathrm{C}$
- Recommended for Low-Level D-C Amplifiers, Sample-Hold Circuits, and Series-Shunt Choppers

*mechanical data

*absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)
EACH
TOTAL

NOTE 1: Derate linearly to $175^{\circ} \mathrm{C}$ free-air temperature at the rates of $1.67 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for each triode and $2.67 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for the total device. *JEDEC registered data. This data sheet contains all appllcable registered deta in effect at the time of publication.

TYPES 2N5045, 2N5046, 2N5047
 DUAL N-CHANNEL SILICON JUNCTION FIELD-EFFECT TRANSISTORS

*electrical characteristics at $\mathbf{2 5} \mathbf{}{ }^{\mathbf{C}} \mathbf{C}$ free-air temperature (unless otherwise noted)
individual triode characteristics (see note 2)

PARAMETER	TEST CONDITIONS		MIN MAX	UNIT
'GSS Gate Reverse Current	$V_{\text {GS }}=-50 \mathrm{~V}, \mathrm{~V}_{\text {DS }}=0$		-1	$\mu \mathrm{A}$
	$\mathrm{V}_{\mathrm{GS}}=-30 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$		-0.25	nA
	$V_{G S}=-30 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$,	$\mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$	-250	nA
VGS(off) Gate-Source Cutoff Voltage	$V_{D S}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.5 \mathrm{nA}$		-0.5 -4.5	V
IDSS Zero-Gate-Voltage Drain Current	$\mathrm{V}_{\text {DS }}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$		0.58	mA
$\left\lvert\, \begin{array}{ll}\text { fi } \\ \text { Small-Signal Common-Source Forward Transfer Admittance }\end{array}\right.$	$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{GS}}=0$,	$\mathrm{f}=1 \mathrm{kHz}$	1.56	mmho
Vos Small-Signal Common-Source Output Admittance	$V_{\mathrm{DS}}=15 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{GS}}=0$,	$f=1 \mathrm{kHz}$	25	$\mu \mathrm{mho}$
$\mathrm{C}_{\text {iss }}$ Small-Signal Common-Source Input Capacitance	$V_{\text {DS }}=15 \mathrm{~V}, \mathrm{~V}_{\text {GS }}=0$,	$\mathrm{f}=1 \mathrm{MHz}$	8	pF
$\mathrm{Crgs}_{\text {rss }} \quad$ Small-Signal Common-Source Reverse Transfer Capacitance	$V_{D S}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$,	$\mathrm{f}=1 \mathrm{MHz}$	4	pF
	$V_{D S}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$,	$f=100 \mathrm{MHz}$	1.5	mmho

triode matching characteristics

PARAMETER		TEST CONDITIONS	2N5045		2N5046		2N5047		UNIT	
		MIN	MAX	MIN	MAX	MIN	MAX			
$\left\|\mathbf{I G S S 1}^{-1} \mathbf{G S S} 2\right\|$	Gate-Reverse-Current Differential		$\begin{array}{r} V_{G S}=-15 \mathrm{~V}, \\ V_{D S}=0, \\ T_{A}=100^{\circ} \mathrm{C} \end{array}$		10		10		10	nA
$N_{G S 1}-V_{G S 2} \mid$	Gate-Source-Voltage Differential	$V_{D S}=15 \mathrm{~V}, \quad 1 \mathrm{D}=50 \mu \mathrm{~A}$		5		10		15	mV	
		$V_{D S}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=200 \mu \mathrm{~A}$		5		10		15		
$\left\|\Delta\left(V_{G S 1}-V_{G S 2}\right)_{\Delta T_{A}}\right\|$	Gate-Source-Voltage-Differential Change with Temperature	$\begin{aligned} & V_{D S}=15 \mathrm{~V}, \quad I_{D}=200 \mu \mathrm{~A}, \\ & T_{A(1)}=25^{\circ} \mathrm{C}, T_{A(2)}=-25^{\circ} \mathrm{C} \end{aligned}$		5		10		15	mV	
		$\begin{aligned} & V_{D S}=15 \mathrm{~V}, \\ & I_{D}=200 \mu \mathrm{~A}, \\ & T_{A(1)}=25^{\circ} \mathrm{C}, \\ & T_{A(2)}=100^{\circ} \mathrm{C} \end{aligned}$		5		10		15		
$\frac{\operatorname{IDSS} 1}{\operatorname{IDSS} 2}$	Zero-Gate-Voltage Drain Current Ratio	$\begin{array}{ll} \mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, & \mathrm{~V}_{\mathrm{GS}}=0, \\ & \text { See Note } 3 \end{array}$	0.95	1	0.9	1	0.8	1		
$\frac{y_{f s} l_{1}}{V_{\text {fs }} l_{2}}$	Small-Signal Common-Source Forward Transfer Admittance Ratio	$\begin{array}{ll} V_{D S}=15 \mathrm{~V}, & I_{D}=200 \mu \mathrm{~A}, \\ f=1 \mathrm{kHz}, & \text { See Note } 3 \end{array}$	0.95	1	0.9	1	0.8	1		
$\left.v_{o s}\right\|_{1}-V_{o s} l_{2}$	Small-Signal CommonSource Output Admittance Differential	$\begin{array}{ll} V_{D S}=15 \mathrm{~V}, & I_{D}=200 \mu \mathrm{~A}, \\ f=1 \mathrm{kHz}, & \text { See Note } 3 \end{array}$		1		2		3	$\mu \mathrm{mho}$	

*operating characteristics at $25^{\circ} \mathrm{C}$ free-air temperature
individual triode characteristics (see note 2)

PARAMETER		TEST CONDITIONS	2N5045	2N5046	UNIT	
		MAX	MAX			
F	Spot Noise Figure		$\begin{array}{lll} \mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, & \mathrm{~V}_{\mathrm{GS}}=0, & \mathrm{f}=10 \mathrm{~Hz}, \\ \mathrm{R}_{\mathrm{G}}=1 \mathrm{M} \Omega, & \text { Noise Bandwidth }=5 \mathrm{~Hz} \\ \hline \end{array}$	5	5	dB
V_{n}	Equivalent Input Noise Voltage	$V_{D S}=15 \mathrm{~V}, \quad V_{G S}=0, \quad f=10 \mathrm{~Hz},$ Noise Bandwidth $=5 \mathrm{~Hz}$	200	200	$n \mathrm{~V} / \sqrt{\mathrm{Hz}}$	

NOTES: 2. The terminals of the triode not under test are open-circuited for the measurement of these characteristics.
3. The lower of the two characteristic readings is taken as the numerator or subtrahend.
*JEDEC registered data

HIGH-VOLTAGE 10-WATT TRANSISTORS FOR GENERAL PURPOSE AMPLIFIER APPLICATIONS IN LINE-OPERATED CIRCUITS

- Solid-State Relays
- High-Voltage Inverters
- Voltage Regulators
- TV Sweep Circuits
mechanical data

absolute maximum ratings at $\mathbf{2 5}{ }^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

[^94]
TYPES 2N5058, 2 N5059
 N-P-N SILICON TRANSISTORS

*electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

PARAMETER	TEST CONDITIONS	2N5058	2N5059	UNIT
		MIN MAX	MIN MAX	
V ariceo Collector-Base Breakdown Voltage	$\mathrm{I}_{C}=100 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{E}}=0$	300	250	V
V (br)ceo Collector-Emitter Breakdown Voltage	$\mathrm{I}_{\mathrm{C}}=30 \mathrm{~mA}, \mathrm{I}_{\mathrm{g}}=0, \quad$ See Note 4	300	250	V
V ERIEEO Emilter-Base Breakdown Voltage	$\mathrm{I}_{E}=100 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{c}}=0$	7	6	V
Collector Cutoff Currenf	$V_{C B}=100 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0$	50	50	nA
	$V_{C B}=100 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0, \quad \mathrm{I}_{\mathrm{A}}=125^{\circ} \mathrm{C}$	20	20	$\mu \mathrm{A}$,
Ieso Emitter Cutoff Current	$V_{E s}=5 \mathrm{~V}, \quad I_{C}=0$	10	10	$n A$
Static Forward Current Transfer Ratio	$V_{C E}=25 \mathrm{~V}, \mathrm{I}_{C}=5 \mathrm{~mA}$	10	10	
	$V_{C E}=25 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=30 \mathrm{~mA}$	$35 \quad 150$	$30 \quad 150$	
	$V_{C E}=25 \mathrm{~V}, \mathrm{l}_{\mathrm{C}}=100 \mathrm{~mA}$ Note	35	30	
	$\begin{aligned} V_{C E}=25 \mathrm{~V}, & \mathrm{I}_{\mathrm{C}}=30 \mathrm{~mA} \\ & \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \end{aligned}$	10		
Base-Emitter Voltage	$V_{C E}=25 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{C}}=30 \mathrm{~mA}$, See Note 4	0.82	0.82	V
	$\mathrm{I}_{\mathrm{B}}=3 \mathrm{~mA}, \quad \mathrm{I}_{\mathrm{C}}=30 \mathrm{~mA}$, See Note 4	0.85	0.85	V
$\mathrm{V}_{\text {CE(eat }}$ Collector-Emitter Suturation Voltage	$I_{B}=3 \mathrm{~mA}, \quad I_{c}=30 \mathrm{~mA}$, See Note 4	1	1	V
\|htolSmall-Signal Common-Emitter Forwasd Current Iransfor Ratio	$V_{C E}=25 \mathrm{~V}, \quad \mathrm{l}_{\mathrm{C}}=10 \mathrm{~mA}, \mathrm{f}=20 \mathrm{MHz}$	1.58	1.58	
$C_{\text {cb }} \quad$ Collector-Base Capacitance	$V_{C B}=10 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{E}}=0, \quad \begin{aligned} & f=1 \mathrm{MHz}, \\ & \text { See Note } 5\end{aligned}$	10	10	pF
Cobe Emitier-Base Capacitance	$\mathrm{V}_{\mathrm{EB}}=0.5 \mathrm{~V}, \mathrm{l}_{\mathrm{C}}=0, \quad \begin{aligned} & \mathrm{f}=1 \mathrm{MHz}, \\ & \text { jee Note } 5\end{aligned}$	75	75	pF

MOTES: 4. Thase paramotors must be measured using pulse techniques. $t_{p}=300 \mu$, duly cycle $\leq \mathbf{2 \%}$.
5. $C_{c b}$ and $\mathcal{C}_{\text {eb }}$ are massured using three-torminal measurament techniques with the third electrode (emifter or collector respectivaly) guarded.

[^95]
HIGH-VOLTAGE SILECT ${ }^{\dagger}$ TRANSISTORS \ddagger FOR GENERAL PURPOSE AMPLIFIER APPLICATIONS IN LINE-OPERATED CIRCUITS

- Solid-State Relays

- High-Voltage Inverters
- Voltage Regulators
- High-Voltage Indicator and Display Controls

mechanical data

These transistors are encapsulated in a plastic compound specifically designed for this purpose, using a highly mechanized process developed by Texas Instruments. The case will withstand soldering temperatures without deformation. These devices exhibit stable characteristics under high-humidity conditions and are capable of meeting MIL-STD-202C, Method 106B. The transistors are insensitive to light.

absolute maximum ratings at $25^{\circ} \mathbf{C}$ free-air temperature (unless otherwise noted)

NOTES: 1. These values apply between 0 and 30 mA collector current when the base-emitter diode is open-circuited.
2. Derate linearly to $150^{\circ} \mathrm{C}$ free-air temperature at the rate of $6.4 \mathrm{~mW} / /^{\circ} \mathrm{C}$.
3. Derate linearly to $150^{\circ} \mathrm{C}$ lead temperature at the rate of $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$. Lead temperature is measured on the collector lead $\mathbf{1 / 1 6}$ inch from the case.
4. This rating applies with the entire case (including the leads) maintained at $25^{\circ} \mathrm{C}$. Derate linearly to $150^{\circ} \mathrm{C}$ case-and-lead temperature at the rete of $12.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.

[^96]
TYPES A5T5058, A5T5059
 N-P-N SILICON TRANSISTORS

electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

PARAMETER	TEST CONDITIONS		A5T5058	A5T5059	UNIT
			MIN MAX	MIN MAX	
$V_{\text {(BR) }}$ CBO Collector-Base Breakdown Voltage	$I_{C}=100 \mu A, \quad I_{E}=0$		300	250	V
$\mathrm{V}_{(B R)}$ CEO Collector-Emitter Breakdown Voltage	$\mathrm{I}_{\mathrm{C}}=30 \mathrm{~mA}, \quad \mathrm{I}_{\mathrm{B}}=0$,	See Note 5	300	250	V
$\mathrm{V}_{\text {(BR)EBO }}$ Emitter-Base Breakdown Voltage	$\mathrm{I}_{\mathrm{E}}=100 \mu \mathrm{~A}, \quad \mathrm{I}^{\prime}=0$		7	6	V
ICbo Collector Cutoff Current	$V_{C B}=100 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0$		50	50	riA
	$\mathrm{V}_{C B}=100 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0$,	$\mathrm{T}_{A}=75^{\circ} \mathrm{C}$	2	2	$\mu \mathrm{A}$
IEBO Emitter Cutoff Current	$\mathrm{V}_{\mathrm{EB}}=5 \mathrm{~V}, \quad \mathrm{IC}=0$		10	10	nA
Static Forward Current Transfer Ratio	$V_{C E}=25 \mathrm{~V}$, $\mathrm{IC}^{\prime}=5 \mathrm{~mA}$	See Note 5	10	10	
	$\mathrm{V}_{\text {CE }}=25 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=30 \mathrm{~mA}$		$35 \quad 150$	$30 \quad 150$	
	$\mathrm{V}_{\text {CE }}=25 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=100 \mathrm{~mA}$		35	30	
	$\begin{array}{ll} V_{C E}=25 \mathrm{~V}, & I_{C}=30 \mathrm{~mA} \\ & T_{A}=-55^{\circ} \mathrm{C} \end{array}$		10		
Base-Emitter Voltage	$V_{C E}=25 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=30 \mathrm{~mA}$	See Note 5	0.82	0.82	V
	$\mathrm{I}_{\mathrm{B}}=3 \mathrm{~mA}, \quad \mathrm{I}_{\mathrm{C}}=30 \mathrm{~mA}$		0.85	0.85	
VCE(sat) Collector-Emitter Saturation Voltage	$\mathrm{I}_{\mathrm{B}}=3 \mathrm{~mA}, \quad I_{C}=30 \mathrm{~mA}$,	See Note 5	1	1	V
$\left\|h_{\text {fel }}\right\|$ Small-Signal Common-Emitter Forward Current Transfer Ratio	$V_{C E}=25 \mathrm{~V}, \mathrm{I}^{\prime}=10 \mathrm{~mA}$,	$f=\mathbf{2 0 M H z}$	1.58	1.58	
Cbb \quad Collector-Base Capacitance	$\mathrm{V}_{C B}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0$,	$f=1 \mathrm{MHz},$ See Note 6	10	10	pF
$C_{\text {eb }} \quad$ Emitter-Base Capacitance	$V_{E B}=0.5 \mathrm{~V}, \mathrm{I}^{\prime}=0$,	$f=1 \mathrm{MHz}$ See Note 6	75	75	pF

NOTES: 5. These parameters must be measured using pulse techniques. $t_{w}=300 \mu \mathrm{~s}$, duty cycle $\leqslant 2 \%$.
6. C_{cb} and C_{eb} measurements employ a three-terminal capacitance bridge incorporating a guard circuit. The third electrode (emitter or collector, respectively) is connected to the guard terminal of the bridge.

THERMAL INFORMATION

figure 1

SILECT ${ }^{\dagger}$ TRANSISTORS \ddagger

FOR LOW-LEVEL, LOW-NOISE AUDIO AMPLIFIER APPLICATIONS

- For Complementary Use with N-P-N Types 2N5209, 2N5210, A5T5209, A5T5210
- Rugged One-Piece Construction with In-Line Leads or Standard TO-18 100-mil Pin-Circle Configuration

mechanical data

These transistors are encapsulated in a plastic compound specifically designed for this purpose, using a highly mechanized process developed by Texas Instruments. The case will withstand soldering temperatures without deformation. These devices exhibit stable characteristics under high-humidity conditions and are capable of meeting MIL-STD-202C, Method 106B. The transistors are insensitive to light.

TYPES 2N5086, 2N5087, A5T5086, A5T5087
 P-N-P SILICON TRANSISTORS

*electrical characteristics at $\mathbf{2 5}{ }^{\circ} \mathrm{C}$ free-air temperature

PARAMETER		TEST CONDITIONS	2N500\% A5T5086	$\begin{gathered} \text { 2N6087 } \\ \text { A5T6087 } \end{gathered}$	UNIT	
		MIN MAX	MIN MAX			
$V_{\text {(BR) }}$ CBO	Collector-Base Breakdown Voltage		$I_{C} \quad 100 \mu A, l_{E}=0$	-50	-50	V
$V_{\text {(BR) }}$ CEO	Collector-Emitter Breakdown Voltage	$\mathrm{I}_{\mathrm{C}}=11 \mathrm{~mA}, \quad \mathrm{I}_{\mathrm{B}}=0, \quad$ See Note 3	-50	-50	V	
ICBO	Collector Cutoff Current	$V_{C B}=-35 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0$	-50	-50	nA	
IEBO	Emitter Cutoff Current	$V_{E B}=-3 \mathrm{~V}, \mathrm{IC}=0$	-50	-50	nA	
hFE	Static Forward Current Transfer Ratio	$V_{C E}=-5 \mathrm{~V}, \quad I_{C}=-100 \mu \mathrm{~A}$	$150 \quad 500$	$250 \quad 800$		
		$\mathrm{V}_{\text {CE }}=-5 \mathrm{~V}$, $\mathrm{I}_{\mathrm{C}}=-1 \mathrm{~mA}$	150	250		
		$\mathrm{V}_{\text {CE }}=-5 \mathrm{~V}, \mathrm{I}^{\prime} \mathrm{C}=-10 \mathrm{~mA}$, See Note 3	150	250		
VBE	Base-Emitter Voltage	$\mathrm{V}_{\text {CE }}=-5 \mathrm{~V}$, $\mathrm{I}_{\mathrm{C}}=-1 \mathrm{~mA}$	-0.85	-0.85	V	
$V_{\text {CE }}$ (sat)	Collector-Emitter Saturation Voltage	$\mathrm{I}_{\mathrm{B}}=-1 \mathrm{~mA}, \quad \mathrm{I}_{\mathrm{C}}=-10 \mathrm{~mA}$, See Note 3	-0.3	-0.3	V	
$h_{\text {fe }}$	Small-Signal Common-Emitter Forwerd Current Transfer Ratio	$V_{C E}=-5 \mathrm{~V}, \quad \mathrm{I}^{\prime}=-1 \mathrm{~mA}, \quad f=1 \mathrm{kHz}$	150600	$250 \quad 900$		
${ }_{\text {f }}$	Transition Frequency	$\mathrm{V}_{\text {CE }}{ }^{\text {F }}-5 \mathrm{~V}$, $\mathrm{I}^{\text {c }}=-500 \mu \mathrm{~A}$, See Note 4	40	40	MHz	
$\mathrm{C}_{\mathbf{c b}}$	Collector-Base Capacitance	$V_{C B}=-5 V, \quad I_{E}=0, \quad f=140 \mathrm{kHz},$ Ses Note 5	4	4	pF	

"operating characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER		TEST CONDITIONS	$\begin{gathered} \text { 2N5086 } \\ \text { A5T5086 } \end{gathered}$		2N5087 A5T6087		UNIT	
		MIN	MAX	MIN	MAX			
F	Spot Noise Figure		$\begin{aligned} & V_{C E}=-5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{C}}=-100 \mu \mathrm{~A}, \mathrm{R}_{\mathrm{G}}=3 \mathrm{k} \Omega \\ & \mathrm{f}=1 \mathrm{kHz} \end{aligned}$		3		2	dB
\bar{F}	Average Noise Figure	$V_{C E}=-5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{C}}=-20 \mu \mathrm{~A}$, $\mathrm{R}_{\mathrm{G}}=10 \mathrm{k} \Omega$, Noise Bandwidth $=15.7 \mathrm{kHz}$, See Note 6		3		2	d8	

NOTES: 3. These parameters must be measured using pulse techniques. $t_{w}=300 \mu s$, duty eycle $<\mathbf{2 \%}$.
4. To obtain f_{T}, the $\mathbb{T h}_{\text {fe }} \mid$ response with frequency is extrapolated at the rate of $\mathbf{- 6} \mathbf{d 8}$ per octave from $\mathbf{f = 2 0} \mathbf{~ M H z}$ to the frequency at which $\left|h_{f e}\right|=1$.
5. C_{cb} measurament employs a three-terminal capacitance bridge incorporating a guard circuit. The emitter is connected to the guard terminal of the bridge.
6. Average Noise Figure is measured in an amplifier with response down 3 dB at 10 Hz and 10 kHz and a high-frequency rolloff of $6 \mathrm{~dB} /$ octave.
*The asterisk identifies JEDEC registered data for the 2N5086 and 2N5087 only.

THERMAL INFORMATION

SILECT ${ }^{\dagger}$ TRANSISTORS \ddagger
 FOR LOW-COST, GENERAL PURPOSE AMPLIFIER APPLICATIONS
 - Rugged One-Piece Construction with In-Line Leads or Standard TO-18 100-mil Pin-Circle Configuration
 - A7T5172 is Plug-in Replacement for 2N5172 (TO-98 Package)

mechanical data

These transistors are encapsulated in a plastic compound specifically designed for this purpose, using a highly mechanized process developed by Texas Instruments. The case will withstand soldering temperatures without deformation. These devices exhibit stable characteristics under high-humidity conditions and are capable of meeting MIL-STD-202C, Method 106B. The transistors are insensitive to light.

absolute maximum ratings at $\mathbf{2 5}{ }^{\circ} \mathbf{C}$ free-air temperature (unless otherwise noted)

NOTES: 1. This value applites whon the base-emitter diode is open-circuited.
2. Derate linearly to $150^{\circ} \mathrm{C}$ free-air temperature at the rate of $5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.

[^97]USES CHIP N21

TYPES A5T5172, A7T5172, A8T5172

N-P-N SILICON TRANSISTORS
electrical characteristics at $\mathbf{2 5}{ }^{\circ} \mathrm{C}$ free-air temperature

PARAMETER	TEST CONDITIONS	MIN MAX	UNIT
V(BR)CEO Collector-Emitter Breakdown Voltage	$\mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0, \quad$ See Note 3	25	V
ICBO Collector Cutoff Current	$V_{C B}=25 V, I_{E}=0$	100	nA
JEBO Emitter Cutoff Current	$\mathrm{V}_{E B}=5 \mathrm{~V}, \mathrm{I}^{\prime}=0$	100	nA
hFE Static Forward Current Transfer Ratio	$\mathrm{V}_{\text {CE }}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}$, See Nate 3	100500	
$\mathrm{V}_{\text {BE }}$ Base-Emitter Voltage	$\mathrm{V}_{C E}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}$, See Note 3	0.51 .2	V
$V_{\text {CE }}$ (sat) Collector-Emitter Saturation Voltage	$\mathrm{I}_{\mathrm{B}}=1 \mathrm{~mA}, \mathrm{I}^{\prime} \mathbf{C}=10 \mathrm{~mA}$, See Note 3	0.25	V
$\mathbf{h}_{\text {fe }}$ Small-Signal Common-Emitter Forward-Current Transfer Ratio	$V_{C B}=10 \mathrm{~V}, \mathrm{I} C=10 \mathrm{~mA}, \mathrm{f}=1 \mathrm{kHz}$	100750	
$\mathrm{C}_{\mathrm{cb}} \quad$ Collector-Base Capacitance	$V_{C B}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0, \quad f=1 \mathrm{MHz},$ See Note 4	1.610	pF

NOTES: 3. These parameters must be measured using pulse techniques. $t_{w}=\mathbf{3 0 0} \mu$, duty cycle $\leq \mathbf{2 \%}$.
4. $\mathbf{C}_{\mathbf{c b}}$ measurement employs a three-terminal capacitance bridge incorporating a guard circuit. The emitter is connected to the guard terminal of the bridge.

THERMAL INFORMATION

FREE-AIR TEMPERATURE
DISSIPATION DERATING CURVE

FIGURE 1

TYPES 2N5209, 2N5210, A5T5209, A5T5210
 N-P-N SILICON TRANSISTORS

BULLETIN NO. DL-S 7311922 , JUNE 1973

SILECT ${ }^{\dagger}$ TRANSISTORS \ddagger
 FOR LOW-LEVEL, LOWW-NOISE AUDIO AMPLIFIER APPLICATIONS

- For Complementary Use with P-N-P Types 2N5086, 2N5087, A5T5086, A5T5087

- Rugged One-Piece Construction with In-Line Leads or Standard TO-18 100-mil Pin-Circle Configuration

mechanical data

These transistors are encapsulated in a plastic compound specifically designed for this purpose, using a highly mechanized process developed by Texas Instruments. The case will withstand soldering temperatures without deformation. These devices exhibit stable characteristics under high-humidity conditions and are capable of meeting MIL-STD-202C, Method 106B. The transistors are insensitive to light.

absolute maximum ratings at $\mathbf{2 5}{ }^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

TYPES 2N5209, 2N5210, A5T5209, A5T5210 N-P-N SILICON TRANSISTORS

"electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER	TEST CONDITIONS	$\begin{aligned} & \text { 2NB200 } \\ & \text { ASTE200 } \end{aligned}$	$\begin{gathered} \text { 2NB210 } \\ \text { ASTE210 } \end{gathered}$	UNIT
		MIN MAX	MIN MAX	
V(BR)CBO Collector-Base Breakdown Voltage	$I_{C}=100 \mu A, I_{E}=0$	50	50	V
V(BR)CEO Collector-Emitter Breakdown Voltage	$I_{C}=1 \mathrm{~mA}, \quad \mathrm{I}_{\mathrm{B}}=0, \quad$ See Note 3	50	60	V
CBO Collector Cutoff Current	$V_{C B}=36 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0$	50	50	nA
IEBO Emitter Cutoff Current	$V_{E B}=3 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{C}}=0$	50	50	nA
Static Forward Current Transfar Ratio	$V_{C E}=5 \mathrm{~V}, \quad \mathrm{I}_{C}=100 \mu \mathrm{~A}$	100300	200600	
	$\mathrm{V}_{\text {CE }}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}$	160	250	
	$V_{C E}=5 \mathrm{~V}, \mathrm{I}^{\prime}=10 \mathrm{~mA}$, See Note 3	160	250	
VBE Base-Emitter Voltage	$V_{C E}=5 \mathrm{~V}, \quad \mathrm{I}^{\prime}=1 \mathrm{~mA}$	0.85	0.85	V
VCE(sat) Collector-Emitter Saturation Voltage	$\mathrm{I}_{8}=1 \mathrm{~mA}, \quad \mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}$, See Note 3	0.7	0.7	V
$h_{f e}$ Small-Signal Common-Emitter Forward Current Transfer Ratio	$\mathrm{V}_{C E}=5 \mathrm{~V}, \quad \mathrm{I}^{\prime}=1 \mathrm{~mA}, \quad \mathrm{f}=1 \mathrm{kHz}$	150600	250900	
$\mathrm{f}_{\mathbf{T}} \quad$ Transition Frequency	$V_{C E}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=500 \mu \mathrm{~A}$, See Note 4	30	30	MHz
$\mathrm{C}_{\text {cb }} \quad$ Collector-Base Capacitance	$\begin{array}{lll} V_{C B}=5 V, & I_{E}=0, & f=100 \mathrm{kHz}, \\ \text { See Note } 5 \end{array}$	4	4	pF

*operating characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

NOTES: 3. These parameters must be measured using pulse techniques. $\mathrm{t}_{\mathrm{w}}=\mathbf{3 0 0} \mu \mathrm{s}$, duty cycle $<\mathbf{2 \%}$.
4. To obtain f_{T}, the $h_{f e} \mid$ response with frequency is extrapolated at the rate of -6 dB per octave from $\mathrm{f}=\mathbf{2 0} \mathbf{~ M H z}$ to the frequency at which $\left|h_{\text {fe }}\right|=1$.
5. C $C_{c b}$ measurement employs a three-terminal capacitance bridge incorporating a guard eircuit. The emitter is connected to the guard terminal of the bridge.
6. Average Noise figure is measured in an amplifier with response down 3 dB at 10 Hz and $\mathbf{1 0} \mathbf{k H z}$ and a high-frequency rolloff of $6 \mathrm{~dB} /$ octave.
*The eaterisk identifies JEDEC registered data for the 2N5209 and 2NE210 only.
THERMAL INFORMATION

BULLETIN NO. DL-8 7811929, MABCH 1979

SILECT ${ }^{\dagger}$ TRANSISTORS \ddagger

- For Low-Level, Small-Signal, General Purpose Amplifier and Oscillator Applications
 - Rugged One-Piece Construction with In-Line Leads or Standard TO-18 100-mil Pin-Circie Configuration

mechanical data

These transistors are encapsulated in a plastic compound specifically designed for this purpose, using a highly mechanized process developed by Texas Instruments. The case will withstand soldering temperatures without deformation. These devices exhibit stable characteristics under high-humidity conditions and are capable of meeting MIL-STD-202C, Method 106B. The transistors are insensitive to light.

absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

NOTES: 1. This value applles when the base-amitter diode is open-circuited.
2. Derate the $625-\mathrm{mW}$ rating linearly to $150^{\circ} \mathrm{C}$ free-alr temperatura at the rate of $6 \mathrm{~mW}{ }^{\circ} \mathrm{C}$. Derate the $310-\mathrm{mW}$ (JEDEC reglatered) rating linearly to $135^{\circ} \mathrm{C}$ free-air temperature at the rate of $2.82 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
*The asteriak ldentifiea JEDEC regietered date for the $\mathbf{2 N E} 219$ only. This data sheet contains all apolicable registered dsta in offect at the time of publication.
${ }^{\dagger}$ Trademark of Texas Instruments.
\ddagger U.S. Patent No. 3,439,238.
8 Texas Instruments guarantees these values in addition to the JEDEC registered values which are also shown.
USES CHIP N21
*electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER	TEST CONDITIONS			MIN	MAX	UNIT
$V_{\text {(BR) }}$ CBO Collector-Base Breakdown Voltege	$I^{\prime} \mathrm{C}=100 \mu \mathrm{~A}$,	$\mathrm{I}_{\mathrm{E}}=0$		20		V
$V_{\text {(BR)CEO }}$ Collector-Emitter Breakdown Voltage	$\mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}$,	$\mathrm{I}_{\mathrm{B}}=0$,	See Note 3	15		V
$\mathrm{V}_{\text {(BR) }}$ (BO Emitter-Base Breakdown Vol tage	$\mathrm{I}_{\mathrm{E}}=100 \mu \mathrm{~A}$,	${ }^{\prime} \mathrm{C}=0$		3		V
1 CBO Collector Cutoff Current	$V_{C B}=10 \mathrm{~V}$,	$\mathrm{I}_{\mathrm{E}}=0$			100	nA
IEBO Emitter Cutoff Current	$\mathrm{VEB}^{\text {e }}=2 \mathrm{~V}$,	$I_{C}=0$			600	nA
heE Static Forward Current Transfer Ratio	$V_{C E}=10 \mathrm{~V}$,	$I_{C}=2 \mathrm{~mA}$		35	600	
$\mathrm{V}_{\text {BE }}$ Base-Emitter Voltage	$\mathrm{I}_{\mathrm{B}}=1 \mathrm{~mA}$,	$I_{C}=10 \mathrm{~mA}$,	See Note 3		1	V
$\mathrm{V}_{\text {CE }}$ (gat) Collector-Emittar Saturation Voltage	$\mathrm{I}_{\mathrm{B}}=1 \mathrm{~mA}$,	$1 \mathrm{C}=10 \mathrm{~mA}$	See Note 3		0.4	V
$h_{f e}$ Small-Signal Common-Emitter Forward Current Transfer Ratio	$V_{C E}=10 \mathrm{~V}$,	$I_{C}=2 \mathrm{~mA}$,	$\mathrm{f}=1 \mathrm{kHz}$	35	1500	
$\mathrm{f}_{\boldsymbol{T}} \quad$ Transition Frequency	$V_{C E}=10 \mathrm{~V}$,	$I^{\prime}=10 \mathrm{~mA}$,	See Note 4	150		MHz
Cbb \quad Coltector-Base Capacitance	$V_{C B}=10 \mathrm{~V}$ See Note 5	$I_{E}=0,$	$f=1 \mathrm{MHz}$		4	pF

NOTES: 3. These parameters must be measured using pulse techniques. $t_{w}=\mathbf{3 0 0} \mu$, duty cycle $<\mathbf{2 \%}$.
4. To obteln f_{T}, the $M_{\text {fe }} \mid$ response with frequency is extrapolated at the rate of $-6 \mathbf{d B}$ per octave from $f=40 \mathrm{MHz}$ to the frequency at which $\left|h_{\mathrm{fe}}\right|=1$.
5. C_{cb} measurement emplovs a three-terminal capacitance bridge incorporating a guard circuit. The emitter is connected to the guard terminal of the bridge.
*The asterisk identifies JEDEC registered date for the 2 N5219 only.

THERMAL INFORMATION

BULLETIN NO. DL-S 7311920, MARCH 1973

SILECT ${ }^{\dagger}$ TRANSISTORS \ddagger

FOR GENERAL PURPOSE AMPLIFIER AND LOW-POWER AUDIO APPLICATIONS

- For Complementary Use with P-N-P Types 2N5221, A5T5221
- Rugged One-Piece Construction with In-Line Leads or Standard TO-18 100-mil Pin-Circle Configuration

mechanical data

These transistors are encapsulated in a plastic compound specifically designed for this purpose, using a highly mechanized process developed by Texas Instruments. The case will withstand soldering temperatures without deformation. These devices exhibit stable characteristics under high-humidity conditions and are capable of meeting MIL-STD-202C, Method 106B. The transistors are insensitive to light.

absolute maximum ratings at $25^{\circ} \mathbf{C}$ free-air temperature (unless otherwise noted)

TYPES 2N5220, A5T5220

N-P-N SILICON TRANSISTORS
*electrical characteristics at $\mathbf{2 5}^{\circ} \mathrm{C}$ free-air temperature

PARAMETER	TEST CONDITIONS			MIN	MAX	$\begin{array}{\|c} \hline \text { UNIT } \\ \hline V \end{array}$
$V_{(B R)}$ CBO Collector-Base Breakdown Voltage	$I_{C}=100 \mu A$,	$l_{E}=0$		15		
$\mathrm{V}_{(B R)}$ CEO Collector-Emitter Breakdown Voltage	$\mathrm{I}^{\prime} \mathrm{C}=10 \mathrm{~mA}$,	$\mathrm{I}_{\mathrm{B}}=0$,	See Note 3	15		V
$\mathrm{V}_{\text {(BR)EBO }}$ Emitter-Base Breakdown Voltage	$I_{E}=100 \mu A$,	$\mathrm{l}_{\mathrm{C}}=0$		3		V
1 CBO Collector Cutoff Current	$V_{C B}=10 \mathrm{~V}$,	$I_{E}=0$			100	nA
IEBO Emitter Cutoff Current	$V_{E B}=3 \mathrm{~V}$,	$1 \mathrm{C}=0$			100	nA
Static Forward Current Transfer Ratio	$\mathrm{V}_{\text {CE }}=10 \mathrm{~V}$,	$I^{\prime}=10 \mathrm{~mA}$	See Note 3	25		
	$V_{C E}=10 \mathrm{~V}$,	${ }^{1} \mathrm{C}=50 \mathrm{~mA}$		30	600	
VBE Base-Emitter Voltage	$\mathrm{I}_{\mathrm{B}}=15 \mathrm{~mA}$,	${ }^{1} \mathrm{C}=150 \mathrm{~mA}$,	See Note 3		1.1	V
$\mathrm{V}_{\text {CE }}$ (sat) Collector-Emitter Saturation Voltage	$I_{B}=15 \mathrm{~mA}$,	$\mathrm{I}_{\mathrm{C}}=150 \mathrm{~mA}$,	See Note 3		0.5	V
$\mathbf{h}_{\mathbf{f e}}$ Small-Signal Common-Emitter Forward Current Transfer Ratio	$V_{C E}=10 \mathrm{~V}$,	${ }^{1} \mathrm{C}=50 \mathrm{~mA}$,	$\mathrm{f}=1 \mathrm{kHz}$	30	1800	
$\mathrm{f}_{\mathbf{T}} \quad$ Transition Frequency	$V_{C E}=10 \mathrm{~V}$,	$\mathrm{I}_{\mathrm{C}}=20 \mathrm{~mA}$,	See Note 4	100		MHz
Cbb Collector-Basa Capacitance	$\begin{aligned} & V_{C B}=5 \mathrm{~V} \\ & \text { See Note } 5 \end{aligned}$	$I_{E}=0,$	$f=1 \mathrm{MHz},$		10	pF

NOTES: 3. These parameters must be measured using pulse techniques. $t_{w}=300 \mu \mathrm{~s}$, duty cycle $\leqslant 2 \%$.
4. To obtain f_{T}, the $h_{f e} \mid$ response with frequency is extrapolated at the rate of -6 dB per octave from $f=20 \mathrm{MHz}$ to the frequency at which $\left|h_{f e}\right|=1$.
5. $\mathrm{C}_{\boldsymbol{c b}}$ measurement employs a three-terminal capacitance bridge incorporating a guard circuit. The emitter is connected to the guard terminal of the bridge.

[^98]THERMAL INFORMATION

TYPES 2N5221, A5T5221 P-N-P SILICON TRANSISTORS

BULLETIN NO. DL-S 7311924, MARCH 1973

SILECT ${ }^{\dagger}$ TRANSISTORS \ddagger FOR GENERAL PURPOSE AMPLIFIER AND LOW-POWER AUDIO APPLICATIONS

- For Complementary Use with N-P-N Types 2N5220, A5T5220
- Rugged One-Piece Construction with In-Line Leads or Standard TO-18 100-mil Pin-Circle Configuration

mechanical data

These transistors are encapsulated in a plastic compound specifically designed for this purpose, using a highly mechanized process developed by Texas Instruments. The case will withstand soldering temperatures without deformation. These devices exhibit stable characteristics under high-humidity conditions and are capable of meeting MIL-STD-202C, Method 106B. The transistors are insensitive to light.

NOTES: 1. This value applies when the base-emitter diode is open-circuited.
2. Derate the $625-\mathrm{mW}$ rating linearly to $160^{\circ} \mathrm{C}$ free-air temperature at the rate of $5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$. Derate the $310-\mathrm{mW}$ (JEDEC registered) rating linearly to $135^{\circ} \mathrm{C}$ free-air temperature at the rate of $2.82 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
§Texas instruments guarantees these values in addition to the JEDEC registered values which are also shown.
*electrical characteristics at $\mathbf{2 5}{ }^{\circ} \mathrm{C}$ free-air temperature

NOTES: 3. These parameters must be measured using pulse techniques. $t_{w}=\mathbf{3 0 0} \mu \mathrm{s}$, duty cycle $\leqslant 2 \%$.
4. To obtain f_{T}, the $\left.\right|_{h_{f e}} \mid$ response with frequency is extrapolated at the rate of -6 dB per octave from $\mathrm{f}=\mathbf{2 0} \mathrm{MHz}$ to the frequency at which $\left|h_{f e}\right|=1$.
5. C_{cb} measurement employs a three-terminal capacitance bridge incorporating a guard circuit. The emitter is connected to the guard terminal of the bridge.
*The asterisk identifies JEDEC registered data for the 2N5221 only.

THERMAL INFORMATION

TYPES 2N5222, AGT5222 N-P-N SILICON TRANSISTORS

BULLETIN NO. DL-S 731 1929, MARCH 1973

SILEECT ${ }^{\dagger}$ TRANSISTORS \ddagger

- For RF Amplifier, Mixer, and Video IF Applications in Radio and Television Receivers
- Rugged One-Piece Construction with In-Line Leads or Standard TO-18 100-mil Pin-Circle Configuration

mechanical data

These transistors are encapsulated in a plastic compound specifically designed for this purpose, using a highly mechanized process developed by Texas Instruments. The case will withstand soldering temperatures without deformation. These devices exhibit stable characteristics under high-humidity conditions and are capable of meeting MIL-STD-202C, Method 106B. The transistors are insensitive to light.

NOTES: A. Lead diameter is not controlled in this area. B. All dimensions are in inches. - ALL JEDEC TO-92 DIMENSIONS AND NOTES ARE APPLICABLE	
A6T6222 NOTES: A. Lead diameter is not controlled in this area. 8. Leads having maximum diemeter (0.019) shall be within 0.007 of their true positions measured In the gaging plane 0.054 below the seating plane of the device relative to a maximumdiameter packega. C. All dimensions are in inches.	S

absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

TYPES 2N5222, A6T5222
 N-P-N SILICON TRANSISTORS

*electrical characteristics at $\mathbf{2 5}{ }^{\circ} \mathrm{C}$ free-air temperature

PARAMETER	TEST CONDITIONS			MIN	MAX	UNIT
V(BR)CBO Collector-Base Breakdown Voltage	$1 C=100 \mu A$,	IE -0		20		V
$V_{\text {(BR) }}$ CEO Collector-Emitter Breakdown Voitage	$1 \mathrm{C}=1 \mathrm{~mA}$.	$I_{B}=0$,	See Note 3	15		V
V(BR)EBO Emitter-Base Breakdown Voltage	$l_{E}=100 \mu A$,	IC $=0$		2		V
ICBO Collector Cutoff Current	$V_{C B}=10 \mathrm{~V}$,	1E=0			100	nA
IEBO Emitter Cutoff Current	$\mathrm{VEB}^{\text {a }}=2 \mathrm{~V}$,	$1 \mathrm{C}=0$			100	nA
hFE Static F orward Current Transfor Ratio	$V_{C E}=10 \mathrm{~V}$,	$1 \mathrm{c}=4 \mathrm{~mA}$,	See Note 3		1500	
VBE Base-Emitter Voitage	$\mathrm{I}_{\mathrm{B}}=0.4 \mathrm{~mA}$,	$\mathrm{I}_{\mathrm{C}}=4 \mathrm{~mA}$			1.2	V
$V_{C E}$ (sat) Collector-Emitter Saturation Voitage	$\mathrm{I}_{\mathrm{B}}=0.4 \mathrm{~mA}$,	$\mathrm{IC}_{\mathrm{C}}=4 \mathrm{~mA}$			1	V
h_{fe} Small-Signal Common-Emittar Forward Current Transfer Ratio	$V_{C E}=10 \mathrm{~V}$,	$\mathrm{IC}=4 \mathrm{~mA}$,	$\mathrm{f}=1 \mathrm{kHz}$		3000	
$\mathrm{f}_{\mathbf{T}} \quad$ Transition Frequency	$V_{C E}=10 \mathrm{~V}$,	$l^{\prime} \mathrm{C}=4 \mathrm{~mA}$,	See Note 4	460		MHz
$\mathrm{C}_{\mathrm{cb}} \quad$ Collector-Basa Capacitance	$\begin{aligned} & V_{C B}=10 \mathrm{~V}, \\ & \text { See Note } 5 \\ & \hline \end{aligned}$	$T_{E}=0$	$f=1 M H z$		1.3	pF

NOTES: 3. Thece parameters must be measured using pulee techniques. $t_{w}=\mathbf{3 0 0} \mu$, duty cycte $<\mathbf{2 \%}$.
4. To obtain $\mathrm{f}_{\mathrm{T}} \mathrm{t}$, the h fol response with frequency is extrapolated at the rete of -6 dB per octave from $\mathrm{f}=100 \mathrm{MHz}$ to the frequency at which $h_{\text {fol }}=1$.
5. C_{cb} measurement employs a three-terminal capacitence bridge incorporsting agard circult. The emitter is connected to the guard terminal of the bridge.

- The asterisk identifien JEDEC registered data for the 2 N5222 only.

THERMAL INFORMATION

DISSIPATION DERATING CURVE

SILECT ${ }^{\dagger}$ TRANSISTORS ${ }^{\ddagger}$

- For Low-Level, Small-Signal, General Purpose Amplifier and Oscillator Applications
- Rugged One-Piece Construction with In-Line Leads or Standard TO-18 100-mil Pin-Circle Configuration

mechanical data

These transistors are encapsulated in a plastic compound specifically designed for this purpose, using a highly mechanized process developed by Texas Instruments. The case will withstand soldering temperatures without deformation. These devices exhibit stable characteristics under high-humidity conditions and are capable of meeting MIL-STD-202C, Method 106B. The transistors are insensitive to light.

absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

TYPES 2N5223, A5T5223
 N-P-N SILICON TRANSISTORS

*electrical characteristics at $\mathbf{2 5}{ }^{\circ} \mathbf{C}$ free-air temperature

PARAMETER	TEST CONDITIONS			MIN	MAX	UNIT
V(BR)CBO Collector-Base Breakdown Voltage	$I_{C}=100 \mu A$,	$\mathrm{I}_{\mathrm{E}}=0$		25		V
$V_{\text {(BR) }}$ CEO Collector-Emitter Breakdown Voltage	$I^{\prime} \mathrm{C}=1 \mathrm{~mA}$,	$I_{B}=0$,	See Note 3	20		V
$V_{\text {(BR)EBO }}$ Emitter-Base Breakdown Voltage	$I_{E}=100 \mu A$,	$\mathrm{I}_{\mathrm{C}}=0$		3		V
ICBO Collector Cutoff Current	$V_{C B}=10 \mathrm{~V}$,	$I_{E}=0$			100	nA
EBO Emitter Cutoff Current	$V_{E B}=3 \mathrm{~V}$,	$\mathrm{l}_{\mathrm{C}}=0$			500	nA
hFE Static Forward Current Transfer Ratio	$V_{C E}=10 \mathrm{~V}$,	$\mathrm{I}_{\mathrm{c}}=2 \mathrm{~mA}$,	See Note 3	50	800	
$V_{\text {BE }}$ Base-Emitter Voltage	$\mathrm{I}_{\mathrm{B}}=1 \mathrm{~mA}$,	$\mathrm{I}_{\mathrm{c}} \mathrm{C}=10 \mathrm{~mA}$,	See Note 3		1.2	V
VCE(sat) Collector-Emitter Saturation Vol tage	$\mathrm{I}_{\mathrm{B}}=1 \mathrm{~mA}$,	$I_{C}=10 \mathrm{~mA}$,	See Note 3		0.7	V
$h_{f e}$ Small-Signal Common-Emitter Forward Current Transfer Ratio	$V_{C E}=10 \mathrm{~V}$,	$I^{\prime} \mathrm{C}=2 \mathrm{~mA}$,	$f=1 \mathrm{kHz}$	50	1600	
$\mathrm{fT}_{\mathbf{T}} \quad$ Transition Frequency	$V_{C E}=10 \mathrm{~V}$,	$I_{C}=10 \mathrm{~mA}$,	See Note 4	150		MHz
$\mathrm{C}_{\mathrm{cb}} \quad$ Collector-Base Capacitance	$V_{C B}=10 \mathrm{~V}$ See Note 5	$I_{E}=0,$	$\mathrm{f}=1 \mathrm{MHz}$		4	pF

NOTES: 3. These parameters must be measured using pulse techniques. $\mathbf{t}_{w}=\mathbf{3 0 0} \mu \mathrm{s}$, duty cycle $<\mathbf{2 \%}$.
4. To obtain f_{T}, the $M_{f} \mid$ response with frequency is extrapoleted at the rate of -6 dB per octave from $f=40 \mathrm{MHz}$ to the frequency at which $h_{\text {fol }}=1$.
5. $\mathrm{C}_{\text {eb }}$ massurement employs a three-terminal capacitance bridge incorporating aguard circuit. The emitter is connected to the guard terminal of the bridge.
*The asterisk identifies JE DEC registered date for the 2N6223 only.

THERMAL INFORMATION

DISSIPATION DEHATING CURVE

TYPES 2N5225, A5T5225 N-P-N SILICON TRANSISTORS

SILECT ${ }^{\dagger}$ TRANSISTORS \ddagger FOR MEDIUM-CURRENT AUDIO AMPLIFIER APPLICATIONS

- For Complementary Use with P-N-P Types 2N5226, A5T5226
- Rugged One-Piece Construction with In-Line Leads or Standard TO-18 100-mil Pin-Circle Configuration

mechanical data

These transistors are encapsulated in a plastic compound specifically designed for this purpose, using a highly mechanized process developed by Texas Instruments. The case will withstand soldering temperatures without deformation. These devices exhibit stable characteristics under high-humidity conditions and are capable of meeting MIL-STD-202C, Method 106B. The transistors are insensitive to light.

absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

NOTES: 1. This value applies when the base-emitter diode is open-circuited.
2. Derate the $625-\mathrm{mW}$ rating linearly to $150^{\circ} \mathrm{C}$ free-air temperature at the rate of $5 \mathrm{~mW} / \mathrm{C}$. Derate the $310-\mathrm{mW}$ (JEDEC registered) rating lineariy to $135^{\circ} \mathrm{C}$ free-air temperature at the rate of $2.82 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
*The asterisk identifies JEDEC registered data for the 2 N 5225 only. This data sheet contains all applicable registered data in effect at the time of publication.
Tradernark of Texas Instruments.
¥u.S. Patent No. 3,439,238.
\& Texas Instruments guarantees these values in addition to the JEDEC registered values which are also shown.
USES CHIP N24

N-P-N SILICON TRANSISTORS

*electrical characteristics at $\mathbf{2 5}{ }^{\circ} \mathrm{C}$ free-air temperature

PARAMETER	TEST CONDITIONS			MIN	MAX	$\begin{array}{\|c\|} \hline \text { UNIT } \\ \hline V \\ \hline \end{array}$
$V_{\text {(BR)CBO }}$ Collector-Base Breakdown Voltage	$I_{C}=100 \mu A$,	$\mathrm{I}_{\mathrm{E}}=0$		25		
$V_{\text {(BR) }}$ CEO Collector-Emitter Breakdown Voltage	$\mathrm{IC}^{*}=10 \mathrm{~mA}$,	$\mathrm{I}_{\mathrm{B}}=0$,	See Note 3	25		V
$V_{\text {(BR)EBO }}$ Emitter-Base Breakdown Voltage	$I_{E}=100 \mu A$,	$I_{C}=0$		4		V
ICBO Collector Cutoff Current	$V_{C B}=15 \mathrm{~V}$,	$I_{E}=0$			300	nA
IEBO Emitter Cutoff Current	$V_{E B}=4 \mathrm{~V}$,	$\mathrm{I}_{\mathrm{C}}=0$			500	nA
Static Forward Current Transfer Ratio	$V_{C E}=10 \mathrm{~V}$,	$I_{C}=10 \mathrm{~mA}$	See Note 3	25		
	$V_{C E}=10 \mathrm{~V}$,	$I_{C}=50 \mathrm{~mA}$		30	600	
VBE Base-Emitter Voltage	$\mathrm{I}_{B}=10 \mathrm{~mA}$,	$I C=100 \mathrm{~mA}$,	See Note 3		1	V
$\mathrm{V}_{\text {CE }}$ (sat) Collector-Emitter Saturation Voltage	$I_{B}=10 \mathrm{~mA}$,	$l_{C}=100 \mathrm{~mA}$,	See Note 3		0.8	V
$\mathbf{h}_{\text {fe }}$ Small-Signal Common-Emitter Forward Current Transfer Ratio	$V_{C E}=10 \mathrm{~V}$,	${ }^{\prime} \mathrm{C}=501.1 \mathrm{~A}$,	$\mathrm{f}=1 \mathrm{kHz}$	30	1800	
$\mathbf{f}_{\mathbf{T}} \quad$ Transition Frequency	$\mathrm{V}_{C E}=10 \mathrm{~V}$,	$I_{C}=20 \mathrm{~mA}$,	See Note 4	50		MHz
$\mathrm{C}_{\mathbf{c b}} \quad$ Collector-Base Capacitance	$V_{C B}=5 \mathrm{~V},$ See Note 5	$I_{E}=0,$	$f=1 \mathrm{MHz},$		20	pF

NOTES: 3. These parameters must be measured using pulse techniques. $t_{w}=300 \mu s$, duty cycle $\leqslant 2 \%$.
4. To obtain $f^{T} T$, the $\boldsymbol{h}_{\text {fe }} \mid$ response with frequency is extrapolated at the rate of -6 dB per octave from $f=20 \mathrm{MHz}$ to the frequency at which $h_{f a}=1$
5. $C_{c b}$ measurement employs a three-terminal capacitance bridge incorporating a guard circuit. The emitter is connected to the guard terminal of the bridge.
*The asterisk identifies JEDEC registered data for the 2N5225 only.

THERMAL INFORMATION

DISSIPATION DERATING CURVE

TYPES 2N5226, A5T5226
 P-N-P SILICON TRANSISTORS

BULLETIN NO. DL-S 7311923, MARCH 1973

SILECT \dagger TRANSISTORS \ddagger FOR MEDIUM-CURRENT, AUDIO AMPLIFIER APPLICATIONS

- For Complementary Use with N-P-N Types 2N5225, A5T5225

- Rugged One-Piece Construction with In-Line Leads or Standard TO-18 100-mil Pin-Circle Configuration

mechanical data

These transistors are encapsulated in a plastic compound specifically designed for this purpose, using a highly mechanized process developed by Texas Instruments. The case will withstand soldering temperatures without deformation. These devices exhibit stable characteristics under high humidity conditions and are capable of meeting MIL-STD-202C, Method 106B. The transistors are insensitive to light.

absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

Collector-Base Voltage				
Collector-Emitter Voltage (See Note 1). Emitter-Base Voltage				
Continuous Collector Current . $500 \mathrm{~mA}{ }^{*}$				
Continuous Device Dissipation at (or below) $\mathbf{2 5}^{\circ} \mathrm{C}$ Free-Air Temperature (See Note 2) $\left\{\begin{array}{l}625 \mathrm{~mW} \\ 310 \mathrm{~mW}\end{array}\right.$				
Storage Temperature Range . ${ }^{-1}-55^{\circ} \mathrm{C}$ to $135^{\circ} \mathrm{C}^{*}$				
Lead Temperature 1/16 Inch from Case for $\mathbf{6 0}$ Seconds $\left\{^{2600^{\circ} \mathrm{C}^{*}}\right.$				

NOTES: 1. This value applies when the baso-emitter diode is open-circuited.
2. Derate the $625-\mathrm{mW}$ rating linearly to $150^{\circ} \mathrm{C}$ free-air temperature at the rate of $5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$. Derate the $310-\mathrm{mW}$ (JEDEC registered) rating linearly to $135^{\circ} \mathrm{C}$ free-air temperature at the rate of $2.82 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
*The astarisk identifies JEDEC registered data for the 2 N5226 only. This data street contains all applicable registered date in effect at the time of publication.
${ }^{\dagger}$ Trademark of Texas Instruments.
\ddagger U.S. Patent No. 3,439,238.
§ Texas Instruments guarantees these values in addition to the JEDEC registered values which are also shown.
USES CHIP P20

TYPES 2N5226, A5T5226

P-N-P SILICON TRANSISTORS

*electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER	TEST CONDITIONS	MIN MAX	UNIT
V(BR)CBO Colfector-Base Breakdown Voltage	$\mathrm{I}^{\prime}=-100 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{E}}=0$	-25	V
$\mathrm{V}_{\text {(BR) }}$ CEO Collector-Emitter Breakdown Voitage	$I_{C}=-10 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0, \quad$ See Note 3	-25	V
$\mathbf{V}_{\text {(BR)EBO }}$ Emitter-Base Breakdown Voitage	$\mathrm{I}_{\mathrm{E}}=-100 \mu \mathrm{~A}, \quad \mathrm{I}_{\mathrm{C}}=0$	-4	V
ICBO Collector Cutoff Current	$V_{C B}=-15 V, I_{E}=0$	-300	nA
IE8O Emitter Cutoff Current	$V_{E B}=-4 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{C}}=0$	-500	nA
Static Forward Current Transfer Ratio	$\mathrm{V}_{\text {CE }}=-10 \mathrm{~V}, \mathrm{I}^{\prime}=-10 \mathrm{~mA}$,	25	
	$\mathrm{V}_{\mathbf{C E}}=-10 \mathrm{~V}, \mathrm{I}_{\mathbf{C}}=-50 \mathrm{~mA}$ See Note 3	$30 \quad 600$	
VBE Base-Emitter Voltage	$\mathrm{I}_{\mathrm{B}}=-10 \mathrm{~mA}, \quad \mathrm{I}_{\mathrm{C}}=-100 \mathrm{~mA}$, See Note 3	-1	V
VCE(sat) Collector-Emitter Saturation Voltage	$\mathrm{I}_{\mathrm{B}}=-10 \mathrm{~mA}, \mathrm{I}_{\mathrm{C}}=-100 \mathrm{~mA}$, See Note 3	-0.8	V
\mathbf{h}_{fe} Small-Signal Common-Emitter Forward Current Transfer Ratio	$V_{C E}=-10 \mathrm{~V}, \mathrm{I}^{\prime} \mathrm{C}=-50 \mathrm{~mA}, \quad f=1 \mathrm{kHz}$	301800	
$\mathrm{f}_{\mathbf{T}} \quad$ Transition Frequency	$V_{C E}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=-20 \mathrm{~mA}$, See Note 4	50	MHz
Cbb \quad Collector-Base Capacitance	$V_{C B}=-5 \bar{V}, \quad T_{E}=0, \quad f=1 \mathrm{kHz},$ See Note 5	20	pF

NOTES: 3. These parameters must be measured using pulse techniques. $t_{w}=\mathbf{3 0 0} \mu \mathrm{s}$, duty cycle $\leqslant \mathbf{2 \%}$.
4. To obtain ${ }^{f} T$, the $\boldsymbol{H}_{f} \mid$ response with frequency is extrapolated at the rate of -6 dB per octave from $\mathrm{f}=20 \mathrm{MHz}$ to the frequency at which $\left|h_{f e}\right|=1$.
5. C_{cb} measurement employs a three-terminal capacitance bridge incorporating a guard circuit. The emitter is connected to the guard terminal of the bridge.

- The asterisk identifies JEDEC registered data for the 2N5226 only.

THERMAL INFORMATION

DISSIPATION DERATING CURVE

SILECT ${ }^{\dagger}$ TRANSISTORS \ddagger

- For Low-Level, Small-Signal, General Purpose Amplifier and Oscillator Applications

- Rugged One-Piece Construction with In-Line Leads or Standard TO-18 100-mil Pin-Circle Configuration

mechanical data

These transistors are encapsulated in a plastic compound specifically designed for this purpose, using a highly mechanized process developed by Texas Instruments. The case will withstand soldering temperatures without deformation. These devices exhibit stable characteristics under high-humidity conditions and are capable of meeting MIL-STD-202C, Method 106B. The transistors are insensitive to light.

absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

NOTES: 1. This value applies when the base-mitter diode is open-circuited.
2. Derate the $625-\mathrm{mW}$ rating linearly to $150^{\circ} \mathrm{C}$ frac-alr temperature at the rete of $5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$. Derate the $310-\mathrm{mW}$ (JEDEC registered) rating Innearly to $135^{\circ} \mathrm{C}$ freo-air temperature at the rate of $2.82 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
-The asteriak identifies JEDEC registered dath for the $\mathbf{2 N B} 227$ only. This datt atheet contains all appliemble registered date in offect at the time of publication.
t Trademark of Texes Instruments.
\ddagger U.S. Patent No. 3,439,238.
8i Toxas inatruments quarantees these values in eddition to the JEDEC regiscersd values which are also thown.
USES CHIP P18
"electrical characteristics at $\mathbf{2 5}{ }^{\circ} \mathrm{C}$ free-air temperature

NOTES: 3. These parameters must be measured using pulse technlques. $t_{w}=\mathbf{3 0 0} \mu \mathrm{s}$, duty cycle $<\mathbf{2 \%}$.
4. To obtain f_{T}, the $h_{f+1} \mid$ response with frequency is extrapolated at the rate of -6 dB per octave from $\mathrm{f}=20 \mathrm{MHz}$ to the frequency at which $\left|h_{\text {fe }}\right|=1$.
6. C_{cb} measurement employs a three-terminal capaeitance bridge incorporating a guard circult. The emitter is connected to the guard terminal of the bridge.

- The asterisk identifies JEDEC reglatered data for the 2N5227 only.

THERMAL INFORMATION

N-CHANNEL SLLECT \dagger FIELD-EFFECT TRANSISTORS \ddagger FOR VHF AMPLIFIER AND MIXER APPLICATIONS

- High Power Gain . . 10 dB Min at 400 MHz
- High Transconductance . . . $4000 \mu \mathrm{mho}$ Min at 400 MHz (2N5245, 2N5247)
- Low Cro... 1 pF Max
- High $\left|\boldsymbol{y}_{\boldsymbol{s}}\right| / \mathrm{C}_{\mathrm{lat}}$ Ratio (High-Frequency Figure-of-Merit)
- Drgin and Gate Leads Separated for High Maximum Stable Gain
- Cross-Modulation Minimized by Square-Law Transiar Characteristic
- For Use in VHF Amplifiers in FM, TV, and Mobile Communications Equipment

mechanical data

These transistors are encapsulated in a plastic compound specifically designed for this purpose, using a highly mechanized process developed by Texas Instruments. The case will withstand soldering temperatures without deformation. These devices exhibit stable characteristics under high-humidity conditions and are capable of meeting MIL-STD-202C, Method 1068. The transistors are insensitive to light.

*absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-alr temperature (unless otherwise noted)

$$
\text { Drain-Gate Voltage . } 30 \text { V }
$$

Reverse Gate-Source Voltage $-30 \mathrm{~V}$
Continuous Forward Gate Current 50 mA
Continuous Device Dissipation at (or below) $25^{\circ} \mathrm{C}$ Free-Air Temperature (See Note 1). 360 mW
Continuous Device Dissipation at (or below) $25^{\circ} \mathrm{C}$ Lead Temperature (See Note 2) 500 mW
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead Temperature Kı Inch from Case for 10 Seconds $260^{\circ} \mathrm{C}$

- indicolin HeDec rogistored dala
\dagger Tredemerk af Texes instruments
\#U,8. Patent No, 3,439,238
UaEs CHIP JNEs

TYPES 2N5245 THRU 2N5247

N-CHANNEL SILICON JUNCTION FIELD-EFFECT TRANSISTORS

*electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

HOTE 3: This poremeter must be meosured exing pulso techniques. $\mathbf{I}_{\mathrm{p}}=100 \mathrm{~ms}$, duly cycle $\leq 10 \%$.
*operating characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER		TEST CONDITIONS		2N5245		UNIT
$\mathbf{G}_{\boldsymbol{p} \boldsymbol{r}}$	Small-Signal Common-Source Neutralized Insertion Power Gain	$\begin{aligned} & V_{D S}=15 \mathrm{~V}, \quad I_{0}=5 \mathrm{~mA}, \\ & R_{G}^{\prime}=1 \mathrm{k} \Omega_{,} \\ & \hline \end{aligned}$	$f=100 \mathrm{mHz},$ See Figure 1	MIN	MAX	$d B$
		$\begin{aligned} & V_{D S}=15 \mathrm{~V}, \quad I_{D}=5 \mathrm{~mA}, \\ & R_{G}^{\prime}=1 \mathrm{k}, \end{aligned}$	$I=400 \mathrm{mHz},$ Soe Figure 1	10		
WF	Spot Noise Figure	$\begin{array}{\|l} \hline \mathrm{VSS}_{\mathrm{DS}}=15 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{D}}=5 \mathrm{~mA}, \\ \mathrm{R}_{\mathrm{G}}^{\prime}=1 \mathrm{k} \mathrm{\Omega}, \\ \hline \end{array}$	$f=100 \mathrm{MHz},$ See Figure 1		2	dB
		$\begin{aligned} & V_{D S}=15 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{D}}=5 \mathrm{~mA}, \\ & \mathrm{R}_{\mathrm{G}}^{\prime}=1 \mathrm{k} \Omega_{,} \end{aligned}$	$t=400 \mathrm{MHz}_{1}$ See Figure 1		4	

[^99]
TYPES 2N5245 THRU 2N5247 N-CHANNEL SILICON JUNCTION FIELD-EFFECT TRANSISTORS

*PARAMETER MEASUREMENT INFORMATION

FIGURE 1 - SCHEMATIC AND COMPONENT INFORMATION FOR $100-\mathrm{MHz}$ AND $400-\mathrm{MHz}$ NEUTRALIZED INSERTION POWER GAIN AND SPOT NOISE FIGURE TEST CIRCUITS
*Indicates JEDEC registorad data

TYPICAL CHARACTERISTICS

2N5245

CORRELATION OF SMALL-SIGNAL COMMON-SOURCE FORWARD TRANSFER ADMITTANCE and GATE-SOURCE CUTOFF VOLTAGE
with
INDIVIDUAL DEVICE ZERO-GATE-VOLTAGE DRAIN CURRENT

SILECT ${ }^{\dagger}$ FIELD-EFFECT TRANSISTOR \ddagger FOR VHF AMPLIFIER AND MIXER APPLICATIONS

- Low Crss: $\leqslant 2$ pF
- High Yfs/Ciss Ratio (High-Frequency Figure-of-Merit)
- Formerly TIS34

mechanical deta

This transistor is encapsulated in a plastic compound specifically designed for this purpose, using a highly mechanized process developed by Texas Instruments. The case will withstand soldering temperatures without deformation. This device exhibits stable characteristics under high-humidity conditions and is capable of meeting MIL-STD-202C, Method 106B. The transistor is insensitive to light.

*absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)
Drain-Gate Voltage . 30 V
Reverse Gate-Source Voltage . -30 V
Continuous Forward Gate Current . 10 mA
Continuous Device Dissipation at (or below) $25^{\circ} \mathrm{C}$ Free-Air Temperature (See Note 1) . . . 360 mW
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead Temperature $1 / 10$ Inch from Case for 10 Seconds $260^{\circ} \mathrm{C}$
*electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

PARAMETER		TEST CONDITIONS			MIN MAX	UNIT	
$V_{\text {(ma) }}$ gss	Gate-Sourre Breakdown Voltage	$\mathrm{I}_{6}=-1 \mu \mathrm{~A}, \quad V_{D S}=0$			-30	V	
Isss	Gate Cutoff Current	$V_{G S}=-20 \mathrm{~V}, V_{\text {DS }}=0$			-5	nA	
		$V_{G S}=-20 \mathrm{~V}, V_{D S}=0, \quad T_{A}=100^{\circ} \mathrm{C}$			-1.5	$\mu \mathrm{A}$	
$V_{\text {csioff }}$	Gate-Sourca Cutoff Voltage	$V_{D S}=15 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{D}}=10 \mathrm{nA}$			-1 -8	v	
$V_{\text {GS }}$	Gate-Source Voltage	$V_{D S}=15 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{D}}=400 \mu \mathrm{~A}$			$\begin{array}{lll}-1 & -7.5\end{array}$	V	
loss	Zero-Gato-Voltage Drain Current	$V_{D S}=15 \mathrm{~V}, \quad V_{G S}=0, \quad$ See Mote 2			420	mA	
$\left\|\mathrm{r}_{\mathrm{ts}}\right\|$	Small-Signal Common-Source Forward Tronsfer Admittance	$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \quad \mathrm{~V}_{\text {GS }}=0, \quad f=1 \mathrm{kHz}$			3.56 .5	mmho	
\|Yos		small-Signol Common-Source Output Admittance	$V_{\text {OS }}=15 \mathrm{~V}, \quad \mathrm{~V}_{\text {es }}=0, \quad f=1 \mathrm{kHz}$			50	$\mu \mathrm{mho}$
Css	Common-Source Shorr-Gircuit Input Capacitance	$V_{\text {DS }}=15 \mathrm{~V}$,	$\mathbf{V}_{\mathbf{G S}}=\mathbf{0}$,	$f=1 \mathrm{MHz}$	6	pF	
$C_{r s}$	Common-Source Short-Giruit Reverse Iransfer Capacitance				2	pf	
Re($y_{i s}$)	small-Signal Common-Source Input Conductance	$v_{\text {DS }}=15 \mathrm{~V}$,	$V_{\text {cs }}=0$,	$t=200 \mathrm{MHz}$	0.8	mmho	
Re(y_{6})	small-Signal Common-Source Forward Iransfer Conductance				3	mmho	
Re(Yos)	Small-Signol Common-Source Output Conductance				0.2	mmho	

NOTES: 1. Derate linearly to $150^{\circ} \mathrm{C}$ free-air temperature at the rate of $2.88 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
2. These parameters must be measured using pulse techniques. $t_{w}=100 \mathrm{~ms}$, duty cycle $\leqslant 10 \%$.

- indicates JEDEC registered data
${ }^{\text {T}}$ Trademark of Texas Instruments
\ddagger U.S. Patent No. 3,439,238

RADIATION-TOLERANT TRANSISTOR FOR SWITCHING AND GENERAL PURPOSE VHF-UHF AMPLIFIER APPLICATIONS

- Guaranfeed $I_{\text {csor }} h_{\text {fE, }}$ and $V_{\text {CE(zat) }}$ after $\mathbf{I x 1 0}{ }^{15}$ Fast Neutrons $/ \mathrm{cm}^{2}$
- Complement to N-P-N type 2N5399

description

The 2N5332 transistor offers a significant advance in radiation-tolerant-device technology. Unique construction techniques produce transistors which maintain useful characteristics after fast-neutron radiation fluences through $10^{15} \mathrm{n} / \mathrm{cm}^{2}$.

*mochanical data

*absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)
Collector-Base Voltage $-20 \mathrm{~V}$
Collector-Emitter Voltage (See Note 1) $-12 \mathrm{~V}$
Emitter-Base Voltage $-2 \mathrm{~V}$
Continuous Collector Current $-100 \mathrm{~mA}$
Continuous Device Dissipation at (or below) $25^{\circ} \mathrm{C}$ Free-Air Temperature (See Note 2) 360 mW
Continuous Device Dissipation at (or below) $25^{\circ} \mathrm{C}$ Case Temperature (See Note 3) 1.2 W
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $200^{\circ} \mathrm{C}$
Lead Temperature K_{6} Inch from Case for 10 Seconds $300^{\circ} \mathrm{C}$

MOTES: 1 . This value applios between 0 and 100 mA cellecter currout when the beso-milter diode is open-circvited.
2. Derate linearly to $175^{\circ} \mathrm{C}$ froo-air temperature at the rate of $2.4 \mathrm{mw} / \mathrm{deg}$.
3. Derate linearly to $175^{\circ} \mathrm{C}$ cesse tamperature at the reta of $8 \mathrm{mw} / \mathrm{deg}$.

- Iadicutes JEDEC ragisterod data

TYPE 2N5332

P-N-P SILICON TRANSISTOR
*electrical characteristics at $25^{\circ} \mathbf{C}$ free-air temperature (unless otherwise noted)

PARAMETER		TEST CONDITIONS				MIN	MAX	UNIT
$V_{\text {(Ba) }}$ Cso Collector-Base Breakdown Voltage		$\mathrm{I}_{\mathrm{C}}=-10 \mu \mathrm{~A}, \quad \mathrm{I}_{\mathrm{E}}=0$				-20		V
$V_{\text {(Bap) }}$ CEE Collector-Emitter Breakdown Voltage		$\mathrm{I}_{\mathrm{C}}=-10 \mathrm{~mA}, \quad \mathrm{I}_{\mathrm{B}}=0$,			See Note 4	-12		V
	Emitter-Base Breakdown Voltage	$\mathrm{I}_{\mathrm{E}}=-10 \mu \mathrm{~A}, \quad \mathrm{I}_{\mathrm{C}}=0$,			See Note 5	-2		V
	Collector Cutoff Current	$V_{C B}=-15 \mathrm{~V}, \quad I_{E}=0$					-10	nA
		$\mathrm{V}_{\text {CB }}=-15 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{E}}=0, \quad \mathrm{~T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$					-10	$\mu \mathrm{A}$
$\mathrm{I}_{\text {EIO }}$	Emitter Cuteff Current	$V_{E B}=-1.5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{C}}=0$					-1	$\mu \mathrm{A}$
$h_{\text {fes }}$	Static Forword Current Transfer Ratio	$V_{C E}=-1 \mathrm{~V}$,	$\mathrm{I}_{\mathrm{C}}=-1$			20	80	
		$V_{C E}=-1 V_{1}, \quad I_{C}=-10 \mathrm{~mA}$			$\begin{gathered} \text { See } \\ \text { Note } \\ 4 \end{gathered}$	20	80	
		$V_{C E}=-1 V_{1} \quad \mathrm{I}_{\mathrm{C}}=-20 \mathrm{~mA}$				20	80	
		$\mathrm{V}_{\text {CE }}=-1 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{C}}=-20 \mathrm{~mA}, \quad \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$				10		
		$V_{C E}=-5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{C}}=-50 \mathrm{~mA}$				20	80	
$V_{\text {BE }}$	Base-Emittar Voltage	$\mathrm{I}_{\mathrm{B}}=-4 \mathrm{~mA}$,	$\mathrm{I}_{\mathrm{c}}=-2$		See Note 4	-0.7	-1	V
$\mathrm{V}_{\text {CEIatl }}$	Collector-Emitter Saturation Voltage	$\mathrm{I}_{\mathrm{B}}=-4 \mathrm{~mA}$,	$\mathrm{I}_{\mathrm{c}}=-2$		See Note 4		-0.2	V
$\left\|h_{\text {fol }}\right\|$	Small-Signal Common-Emitter Forward Current Transfer Ratio	$V_{\mathrm{CE}}=-5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{C}}=-10 \mathrm{~mA}, \quad f=100 \mathrm{MHz}$				6		
		$\mathrm{V}_{\text {CE }}=-5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{C}}=-50 \mathrm{~mA}, \quad f=100 \mathrm{mHz}$				8		
C_{cb}	Collector-Base Capacitance	$V_{C B}=-5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{E}}=0$,	$\mathrm{f}=1 \mathrm{MHz}$,	See Note 6		3.5	pF
C_{0}	Emitter-Base Capacitance	$\mathrm{V}_{\mathrm{EB}}=-0.5 \mathrm{~V}$,	$\mathrm{I}_{\mathrm{c}}=0$,	$f=1 \mathrm{MHz}$,	See Note 6		8	pF

*post-irradiation electrical characteristics at $\mathbf{2 5}{ }^{\circ} \mathbf{C}$ free-air temperature

PARAMETER	TEST CONDITIONS	RADIATION FLUENCE \dagger	MIN MAX	UNIT
ICBO Collector Cutoff Current	$\mathrm{V}_{\text {Ci }}=-15 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{E}}=0$	$1 \times 10^{15} \mathrm{n} / \mathrm{cm}^{2}$	-10	$\mu \mathrm{A}$
$\mathrm{h}_{\text {fe }} \quad$ Static Forward Current Transfer Ratio	$V_{C E}=-2 \mathrm{~V}, \quad \mathrm{l}_{\mathrm{c}}=-20 \mathrm{~mA}$, See Note 4		10	
$\mathrm{V}_{\text {CE(sat) }}$ Collector-Emittar Saturation Voltage	$\mathrm{T}_{\mathrm{B}}=-4 \mathrm{~mA}, \quad \mathrm{C}_{C}=-20 \mathrm{~mA}, \quad$ See Note 4		-0.6	V

MOTES: 4. Thess paramelerss must be measured using pulsa techniquos. $\mathrm{I}_{\mathrm{p}}=300 \mu \mathrm{~s}$, duty cycle $\leq 2 \%$.
5. The applicable test methods of mIL-STD-750A are recommended for lesting all poramefers; however, due to the unusual construction of this device, it is particulariy impertant to obsorve the test procedures detailed in Method 3026.1 for testing $\mathbf{V}_{(B R) \in E O}$. The voltage shall be grodually increased from zere until either the 2-V limit or the $10-\mu \mathrm{h}$ test current is reached. The device is acceptable if $\mathbf{2} \mathbf{Y}$ is reached before the fest curfent exceeds $10 \mu \mathrm{~A}$.
6. $C_{c b}$ and $C_{a b}$ measurements amplay a three-ierminal capacitance bridge incorporating a guard sircuif. The third electrode (emitter or coliactor, respectively) is connected to the guard tominal of the bridge.
\dagger Rediation is fast neutrons (n) of $\mathrm{E} \geq 10 \mathrm{keV}$ (reactor spectrum).
*switching characteristics at $\mathbf{2 5}{ }^{\boldsymbol{\circ}} \mathbf{C}$ free-air femperature

PARAMETER		TEST CONDITIONS \ddagger			MIN MAX	UNIT
$t_{\text {d }}$	Delay Time	$V_{\text {cc }}=-3 \mathbf{V}$,	$\mathrm{I}_{C}=-20 \mathrm{~mA}$,	$\mathrm{I}_{\mathrm{B}(1)}=-4 \mathrm{~mA}$,	12	ns
t_{r}	Rise Time	$V_{\text {BE }[\text { off }]}=0.7 \mathrm{~V}$,		See Figure 1	8	ns
t_{5}	Storage Time	$\mathrm{V}_{\mathrm{cc}}=-3 \mathrm{~V}$,	$I C S^{\prime}=-20 \mathrm{~mA}$,	$\mathrm{I}_{\mathrm{B}(1)}=-4 \mathrm{~mA}$,	70	ns
t_{f}	Fall Time	$\mathrm{I}_{\mathrm{t}(2)}=4 \mathrm{~mA}$,		See Figure 1	16	ns

[^100]
TYPE 2N5332
 P-N-P SILICON TRANSISTOR

*PARAMETER MEASUREMENT INFORMATION

b. Woviforms are monitored on an oxcillescepe with the fellewiag chorocieristles $\mathrm{t}_{\mathrm{r}} \leq 1 \mathrm{~ms}, \mathrm{~m}_{\mathrm{m}} \geq 100 \mathrm{kM}, \mathrm{G}_{\mathrm{in}} \leq 10 \mathrm{pF}$.
*Indicates JEDEC registorad data
TYPICAL CHARACTERISTICS, POST IRRADIATION

TYPES 2N5358 THRU 2N5364 N-CHANNEL SILICON JUNCTION FIELD-EFFECT TRANSISTORS

FOR SMALL-SIGNAL APPLICATIONS

- Narrow IDSS and VGS(off) Ranges
- For Low-Noise Audio-Frequency Amplifier Applications
- For RF Amplifier Applications Thru $100 \mathbf{M H z}$
- For Chopper and Switching Applications
*mechanical data

*absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)
Drain-Source Voltage . 40 V
Reverse Gate-Source Voltage .
Continuous Forward Gate Current

NOTE 1: Derate linearly to $178^{\circ} \mathrm{C}$ free-air temparature at the rate of $\mathbf{2 m W} /{ }^{\circ} \mathrm{C}$.
*JEDEC registered data. This data sheet contains all applicable registered data in effect at the time of publication.

TYPES 2N5358 THRU 2N5364 N-CHANNEL SILICON JUNCTION FIELD-EFFECT TRANSISTORS

*electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

*electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

NOTES: 2. This parameter must be measured using pulse techniques. $t_{w}=300 \mu$, duty cycle $<\mathbf{2 \%}$.
3. These parameters must be measured with bias conditions applied for less than $\overline{5}$ seconds to avold overheating.
*JE DE C reglstered date
The fourth lead (cese) is connected to the source for all measurements.

TYPES 2N5358 THRU 2N5364 N-CHANNEL SILICON JUNCTION FIELD-EFFECT TRANSISTORS

*electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

PARAMETER	TEST CONDITIONSt	2N5362	2N5363	2N6384	UNIT
		MIN MAX	MIN MAX	MIN MAX	
V(BR)GSS Gate-Source Breakdown Voltage	$I_{G}=-10 \mu A, V_{D S}=0$	-40	-40	-40	\checkmark
	$V_{G S}=-20 \mathrm{~V}, V_{\text {DS }}=0$	-0.1	-0.1	-0.1	nA
IGSS Gate Reverse Current	$\begin{aligned} & V_{G S}=-20 \mathrm{~V}, V_{D S}=0, \\ & T_{A}=150^{\circ} \mathrm{C} \end{aligned}$	-0.1	-0.1	-0.1	$\mu \mathrm{A}$
VGS(off) Gate-Source Cutoff Voltage	$V_{D S}=15 \mathrm{~V}, \quad 1 \mathrm{D}=100 \mathrm{nA}$	-2 -7	-2.5 -8	-2.5 -8	V
Gate-Source Voltage	$V_{D S}=15 \mathrm{~V}, 10=0.4 \mathrm{~mA}$	-1.3 $\quad-5$			V
	$V_{D S}=15 \mathrm{~V}, \quad 10=0.7 \mathrm{~mA}$		-2 -6		
	$V_{D S}=15 \mathrm{~V}, \mathrm{I}_{0}=0.9 \mathrm{~mA}$			-2 -6	
IDSS Zero-Gate-Voltage Drain Current	$V_{D S}=15 V, \quad V_{G S}=0,$ See Note 2	48	$7 \quad 14$	$9 \quad 18$	mA
$\|$Sis Forward Transfer Admittance	$\begin{array}{ll} V_{D S}=15 \mathrm{~V}, & V_{G S}=0, \\ f=1 \mathrm{kHz}, & \text { See Note } 3 \end{array}$	25.5	2.56	2.76 .5	mmho
$\|$Sos \mid Small-Signal Common-Source Output Admittance		40	40	60	$\mu \mathrm{mho}$
$C_{\text {iss }}$ Common-Source Short-Circuit Input Capacitance	$\begin{array}{ll} V_{\text {DS }}=15 \mathrm{~V}, & V_{G S}=0, \\ f=1 \mathrm{MHz}, & \text { See Note } 3 \end{array}$	6	6	6	pF
Crss Common-Source Short-Circuit Reverse Transfer Capacitance		2	2	2	pF
Gfs Small-Signal Common-Source Forward Transfer Conductance	$\begin{array}{ll} V_{D S}=15 \mathrm{~V}, & V_{G S}=0, \\ f=100 \mathrm{MHz}, & \text { See Note } 3 \end{array}$	1.9	2.1	2.2	mmho

*operating characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER	TEST CONDITIONS ${ }^{+}$	ALL TYPES	UNIT
		MIN MAX	UNIT
NF Common-Source Spot Noise Figure	$\begin{array}{lll} V_{D S}=15 \mathrm{~V}, & V_{G S}=0, & f=100 \mathrm{~Hz}, \\ R_{G}=1 \mathrm{M} \Omega, & \text { See Note } 3 & \end{array}$	2.5	dB

NOTES: 2. This parameter must be messured using pulse techniques. $\mathbf{t}_{w}=\mathbf{3 0 0} \mu \mathrm{s}$, duty cycle $<\mathbf{2 \%}$.
3. These parameters must be measured with bias conditions applied for less than $\mathbf{5}$ seconds to avoid overheating.
*JEDEC registered data
${ }^{t}$ The fourth lesd (cese) is connected to the source for all mesarements.

TYPICAL CHARACTERISTICS

TYPE 2N5397
 N-CHANNEL SILICON JUNCTION FIELD-EFFECT TRANSISTOR

FOR VHF AMPLIFIER AND MIXER APPLICATIONS

- High Power Gain . . . 15 dB Min at $\mathbf{4 5 0} \mathbf{~ M H z}$
- Low Noise Figure . . . 3.5 dB Max at 450 MHz
- High Transconductance . . . $\mathbf{5 5 0 0} \mu \mathrm{mho}$ Min at $\mathbf{4 5 0} \mathbf{~ M H z}$
- Low Crss ... 1.2 pF Max
*mechanical data

*absolute maximum ratings at $\mathbf{2 5}{ }^{\circ} \mathbf{C}$ free-air temperature (unless otherwise noted)
Drain-Gate Voltage 25 V
Drain-Source Voltage 25 V
Reverse Gate-Source Voltage -25 V
Continuous Forward Gate Current 10 mA
Continuous Device Dissipation at (or below) $25^{\circ} \mathrm{C}$ Free-Air Temperature (See Note 1) 300 mW
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $200^{\circ} \mathrm{C}$
Lead Temperature 1/16 Inch from Case for 10 Seconds $300^{\circ} \mathrm{C}$

NOTE 1: Derate linearly to $200^{\circ} \mathrm{C}$ free-air temperature at the rate of $1.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
-JEDEC registered diato. This data sheet contains all applicable registered data in effect at the time of publication.

TYPE 2N5397

N-CHANNEL SILICON JUNCTION FIELD-EFFECT TRANSISTOR
*electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

PARAMETER		TEST CONDITIONS ${ }^{\dagger}$			MIN	MAX	$\begin{gathered} \hline \text { UNIT } \\ \hline v \\ \hline \end{gathered}$
$V_{\text {(BR) GSS }}$	Gate-Source Breakdown Voltage	${ }^{\prime} \mathrm{G}^{\prime}=-1 \mu \mathrm{~A}$,	$V_{\text {DS }}=0$		-25		
$V_{\text {GSF }}$	Gate-Source Forward Voltage	$\mathrm{I}_{\mathrm{G}}=1 \mathrm{~mA}$,	$V_{\text {DS }}=0$			1	V
'GSS	Gate Revarse Current	$\mathrm{V}_{\text {GS }}=-15 \mathrm{~V}$	$V_{\text {DS }}=0$			-0.1	nA
		$\mathrm{V}_{\mathrm{GS}}=-15 \mathrm{~V}$	$V_{D S}=0$,	$\mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$		-0.1	$\mu \mathrm{A}$
$V_{\text {GS (otf) }}$	Gate-Source Cutoff Voltage	$\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}$,	$I_{D}=1 \mathrm{nA}$		-1	-6	V
IDSS	Zero-Gate-Voltage Drain Current	$\mathrm{V}_{\text {DS }}=10 \mathrm{~V}$,	$V_{\text {GS }}=0$,	See Note 3	10	30	mA
$\left\|\mathrm{ffs}_{\mathrm{f}}\right\|$	Small-Signal Common-Source Forward Transfer Admittance	$V_{D S}=10 \mathrm{~V}, I_{D}=10 \mathrm{~mA}, f=1 \mathrm{kHz}$			6	10	mmho
Hos\|	Small-Signal Common-Source Output Admittance					0.2	mmho
$\mathrm{C}_{\text {iss }}$	Common-Source Short-Circuit Input Capacitance	$V_{\text {DG }}=10 \mathrm{~V}, I_{\text {d }}=10 \mathrm{~mA}, f=1 \mathrm{MHz}$				5	pF
Crss	Common-Source Short-Circuit Reverse Transfer Capacitance					1.2	pF
9is	Small-Signal Common-Source Input Conductance	$V_{D G}=10 \mathrm{~V}, i^{\prime}=10 \mathrm{~mA}, f=450 \mathrm{MHz}$				2	mmho
9fs	Small-Signal Common-Source Forward Transfer Conductance				5.5	9	mmho
gos	Small-Signal Common-Source Output Conductance					0.4	mmho

NOTE 3: This parameter must be measured using pulse techniques. $t_{w}=300 \mu s$, duty cycle $\leqslant 1 \%$.
*operating characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

	PARAMETER	TEST CONDITIONS ${ }^{\dagger}$	MIN MAX	UNIT
G_{ps}	Small-Signal Common-Source Neutralized Insertion Power Gain	$\begin{array}{ll} V_{D G}=10 \mathrm{~V}, & \mathrm{I}_{\mathrm{D}}=10 \mathrm{~mA}, \quad \mathrm{f}=450 \mathrm{MHz}, \\ R_{G}=1 \mathrm{k} \Omega, & Y_{G}=1.1 \mathrm{mmho}-\mathrm{j} 4 \mathrm{mmho}, \end{array}$	15	dB
NF	Spot Noise Figure	See Figure 1	3.5	dB

*JEDEC registered data. ${ }^{\text {T The fourth lead (case) is connected to the source for all measurements. }}$

FOR VHF AMPLIFIER AND MIXER APPLICATIONS

- High Transconductance . . . $\mathbf{5 0 0 0} \mu \mathrm{mho}$ Min at $\mathbf{4 5 0} \mathbf{~ M H z}$
- Low Crss... 1.3 pF Max

*mechanical data

*absolute maximum ratings at $\mathbf{2 5}{ }^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

[^101]- JEDEC registered data. This data sheet contains all applicable registered data in effect at the time of publication.
*electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

PARAMETER		TEST CONDITIONS ${ }^{\text {t }}$			MIN	MAX	$\frac{\text { UNIT }}{V}$	
$V_{\text {(BR) }}$ GSS	Gate-Source Breakdown Voltage	$\mathrm{I}_{\mathrm{G}}=-1 \mu \mathrm{~A}$,	$V_{D S}=0$		-25.			
$V_{\text {GSF }}$	Gate-Source Forward Voltage	$\mathrm{I}_{G}=1 \mathrm{~mA}$,	$V_{\text {DS }}=0$			1	V	
'GSS	Gate Reverse Current	$\mathrm{V}_{\mathbf{G S}}=-15 \mathrm{~V}$.	$V_{D S}=0$			-0.1	nA	
		$\mathrm{V}_{\mathrm{GS}}=-15 \mathrm{~V}$.	$V_{\text {DS }}=0$.	$\mathrm{T}_{A}=150^{\circ} \mathrm{C}$		-0.1	$\mu \mathrm{A}$	
$V_{\text {GS }}$ (off)	Gate-Source Cutoff Voltage	$\mathrm{V}_{\text {DS }}=10 \mathrm{~V}$.	${ }^{1} \mathrm{D}=1 \mathrm{nA}$		-1	-6	V	
IDSS	Zero-Gate-Voltage Drain Current	$\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}$.	$\mathrm{V}_{\mathrm{GS}}=0$.	See Note 2	5	40	mA	
$\|\mathrm{Vfs}\|$	Small-Signal Common-Source Forward Transfer Admittance	$V_{D S}=10 \mathrm{~V}$,	$V_{\text {GS }}=0$,	$f=1 \mathrm{kHz}$	5.5	10	mmho	
\|ros		SmallSignal Common-Source Output Admittance					0.4	mmho
$\mathrm{C}_{\text {iss }}$	Common-Source Short-Circuit Input Capacitance	$\mathrm{VDS}=10 \mathrm{~V}$	$V_{G S}=0$,	$f=1 \mathrm{MHz}$		5.5	pF	
$\mathrm{C}_{\text {rss }}$	Common-Source Short-Circuit Reverse Transfer Capacitance					1.3	pF	
$\mathrm{gis}_{\text {is }}$	Small-Signal Common-Source Input Conductance	$V_{D S}=10 \mathrm{~V}$,	$V_{G S}=0$,	$f=450 \mathrm{MHz}$		3	mmho	
g_{fs}	Small-Signal Common-Source Forward Transfer Conductance				5	10	mmho	
gos	Small-Signal Common-Source Output Conductance					0.5	mmho	

NOTE 2: This parameter must be measured using pulse techniquas. $\mathrm{t}_{\mathbf{w}}=\mathbf{3 0 0} \mu \mathrm{s}$, duty cycle $\leqslant \mathbf{1 \%}$.

- JEDEC registered data
${ }^{t}$ The fourth lead (case) is connected to the source for all mesurements.

RADIATION-TOLERANT TRANSISTOR FOR LOW-POWER GENERAL PURPOSE VHF - UHF AMPLIFIER AND SATURATED-SWITCHING APPLICATIONS

\author{

- Guaranteed $I_{\text {cto, }} h_{\text {fe }}$ and $V_{\text {cE(sat) }}$ after 1×10^{15} Fast Neutrons $/ \mathrm{cm}^{2}$
 - Complement to P-N-P Type 2N5332
}

description

The 2N5399 transistor offers a significant advance in radiation-tolerant-device technology. Unique construction techniques produce transistors which maintain useful characteristics after fast-neutron radiation fluences through $10^{15} \mathrm{n} / \mathrm{cm}^{2}$.

*mechanical data

\dagger II guaranteed minimum. The JEOEC registered minimum lead diamater for the r0.46 is $\mathbf{0 . 0 1 2}$.

NOTES: 1 . This value applies between 0 and 100 mA colitecter current when the bose-emitter diode is open-circuited.
2. Derate linearly to $175^{\circ} \mathrm{C}$ fres-air temperature at the rate of $2.4 \mathrm{~mW} / \mathrm{dog}$.
3. Derate linearly to $175^{\circ} \mathrm{C}$ case temperature at the rate of $8 \mathrm{~mW} / \mathrm{deg}$.
*Indicates JEDEC registored data

N-P-N SILICON TRANSISTOR

*electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temporature (unless otherwise noted)

*post-Irradiation olectrical charactoristics at $\mathbf{2 5}{ }^{\circ} \mathrm{C}$ free-alr temperature

PARAMETER		test conditions			RADIATION FLUENCE \dagger	MIN		UNIT
Ieso	Collector Cutoff Current	$\mathrm{V}_{\mathrm{ct}}=15 \mathrm{~V}$,	$\mathrm{I}_{\mathrm{E}}=0$				10	$\mu \mathrm{A}$
$h_{\text {He }}$	Static Forward Current Tronster Ratio	$V_{C B}=2 V_{\text {, }}$	$\mathrm{I}_{\mathrm{c}}=20 \mathrm{~mA}$,	See Note 4	$1 \times 10^{15} \mathrm{n} / \mathrm{cm}^{2}$	12		
$\mathrm{V}_{\text {clint }}$	Collector-Emitter Saturallon Voltage	$\mathrm{I}_{\mathrm{B}}=4 \mathrm{~mA}$,	$\mathrm{I}_{\mathrm{c}}=20 \mathrm{~mA}$,	Soe Noto 4			0.5	V

NOTES: 4. Thuse paramators must be meosured using pula techniques. $t_{p}=300 \mu$, duly cyele $\leq \mathbf{2 \%}$.
5. The applicable test mathods of MIL-STD-750A are recommended for testing all paramaters; howovir, due to the unusual construction of this device, it is patitcularly
 of the $10-\mu \mathrm{A}$ test current is reached. Tha dovice is accaplable if 2 V is reached betore the test current exeseds $10 \mu \mathrm{~A}$.
6. Cob and C_{00} measurements amploy a thres-terminal capactiance bridge incorporating a guard circuit. The third aloctrede (emitter or collactor, respectivaly) is connected to the guard terminal of the bridge.
\dagger Rodiation is fast noutrons (n) at $\mathbf{E} \geq 10 \mathrm{koV}$ (reactor spectrum).
*switching characteristics at $\mathbf{2 5}{ }^{\circ} \mathrm{C}$ free-air temperature

PARAMETER		TEST CONDITIONS \ddagger		MIN MAX	UNIT
$\$_{d}$	Delay Time	$\begin{array}{ll} \hline V_{c C}=3 \mathrm{~V}, \quad I_{C}=20 \mathrm{~mA}, & I_{B(1)}=4 \mathrm{~mA}, \\ V_{B E[\text { off }]}=-0.7 \mathrm{~V}, & \text { SeB Figure } 1 \end{array}$		12	ns
t_{r}	Rise Time			8	ns
t_{8}	Storoge Time	$\begin{array}{ll} \begin{array}{ll} V_{c c}=3 \mathrm{~V}, \quad I_{\mathrm{C}}=20 \mathrm{~mA}, & I_{\mathrm{B}\|1\|}=4 \mathrm{~mA}, \\ I_{\mathrm{B}[2]}=-4 \mathrm{~mA}, & S_{\theta \theta} \text { Figure } 1 \end{array} \end{array}$		70	ns
t_{1}	Fall Time			16	ns

¥Voltage and current valuas shown ore nominal; exact values vary sightly with transistor and diode parameters.

* JEDEC registered data

TYPE 2N5399
 N-P-N SILICON TRANSISTOR

PARAMETER MEASUREMENT INFORMATION

FIOURE 1
NOTES: a. The input wevelorms are suppliad by a generator with the fellewing eharcctaristits: $z_{\text {out }}=50 \Omega, t_{p} \geq 300$ ns, duty eycle $\leq \mathbf{2 \%}$
b. Waveforms are menitored on an oscillostope with the following characteristics: $\mathrm{t}_{\mathrm{r}} \leq 1 \mathrm{~ns}, \mathrm{k}_{\mathrm{in}} \geq 100 \mathrm{k} \Omega, \mathrm{c}_{\mathrm{in}} \leq 10 \mathrm{pF}$.

- JEDEC registerred data

TYPICAL CHARACTERISTICS, POST IRRADIATION

ficunt 2

STATIC FORWARD CURRENT TRANSFER RATIO

FIGURE 3

NOTE 5: These poramelers must be measured using puise techniques. $\mathrm{t}_{\mathrm{p}}=\mathbf{3 0 0} \mu \mathrm{s}$, duty cycle $\leq \mathbf{2 \%}$.
\dagger This curve indicates typlial behavior of a dwice havias the limill value of $\mathrm{h}_{\mathrm{fE}}=30$ at $\mathrm{V}_{\mathrm{CE}}=1 \mathrm{~V}, \boldsymbol{\Phi}=0$.

TYPICAL CHARACTERISTICS, POST IRRADIATION

NOTE 4: Theso paramaters must be measured wsing puiss lochniques. $t_{p}=\mathbf{3 0 0} \mu$ s, duty cycie $\leq \mathbf{2 \%}$.

TYPE 2N5398 N-P-N SILICON TRANSISTOR

TYPICAL CHARACTERISTICS

WOTE 4: These paramelers must be measurad asing palse techniques. $t_{p}=300 \mu$, duly cycie $\leq \mathbf{2 \%}$.

TYPE 2N5399
 N-P-N SILICON TRANSISTOR

TYPICAL CHARACTERISTICS

TYPE 2N5399
 N-P-N SILICON TRANSISTOR

TYPICAL CHARACTERISTICS

NOTES: 7. To obtain f_{T}, the $\left|\mathrm{h}_{\mathrm{f}}\right|$ response with frequency is extropolated of the rate of -6 dB per octave from $\mathbf{i}=100$ MHz to the frequency at which $\left|\mathrm{h}_{\mathrm{fa}}\right|=1$.
8. $C_{c b}$ and $C_{s b}$ measurements employ a three-ferminal capacitance bridge incorporaling a guard circuit. The third electrode (emitior or collector, respectivaly) is cennected to the guard terminol of the bridge. $C_{\text {obo }}$ and $\boldsymbol{C}_{\text {ibo }}$ are measured with the third electrode floating.

SILECT ${ }^{\dagger}$ TRANSISTORS \ddagger

FOR GENERAL PURPOSE, HIGH-VOLTAGE AMPLIFIER APPLICATIONS

- 120 V or 150 V Min V(BR)CEO

- Rugged One-Piece Construction with In-Line Leads or Standard TO-18 100-mil Pin-Circle Configuration

mechanical data

These transistors are encapsulated in a plastic compound specifically designed for this purpose, using a highly mechanized process developed by Texas Instruments. The case will withstand soldering temperatures without deformation. These devices exhibit stable characteristics under high-humidity conditions and are capable of meeting MIL-STD-202C, Method 106B. The transistors are insensitive to light.

absolute maximum ratings at $\mathbf{2 5}{ }^{\circ} \mathbf{C}$ free-air temperature (unless otherwise noted)

NOTES: 1. These values apply when the base-emitter diode is open-circuited.
2. Derate the $625-\mathrm{mW}$ ratings lineariy to $150^{\circ} \mathrm{C}$ free-air temperature at the rate of $5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$. Derate the $310-\mathrm{mW}$ (JEDEC registered) rating linearly to $135^{\circ} \mathrm{C}$ free-air temperature at the rate of $2.81 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
*The asterisk identifies JEDEC registered deta for the $2 N 5400$ and $2 N 5401$ only. This date sheet contains all applicable registered data in effect at the time of publication.
${ }^{\dagger}$ Trademark of Texas instruments
\ddagger U.S. Patent No. 3,439,238
§ Texas Instruments guarsntees these values in addition to the JEDEC registered values which are also shown.
USES CHIP P22

TYPES 2N5400, 2N5401, A5T5400, A5T5401 P-N-P SILICON TRANSISTORS

*electrical characteristics at $\mathbf{2 5}{ }^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

PARAMETER	TEST CONDITIONS		$\begin{aligned} & \hline \text { 2N5400 } \\ & \text { A5T5400 } \\ & \hline \end{aligned}$	2N5401 A5T5401	UNIT
			MIN MAX	MIN MAX	
V(BR)CBO Collector-Base Breakdown Voltage	$I_{C}=-100 \mu A, I_{E}=0$		-130	-160	V
$V_{\text {(BR)CEO }}$ Collector-Emitter Breakdown Voltage	$\mathrm{I}_{C}=-1 \mathrm{~mA}, \quad \mathrm{I}_{B}=0$,	See Note 3	-120	-150	V
V(BR)E80 Emitter-Base Breakdown Voltage	$\mathrm{I}_{\mathrm{E}}=-10 \mu \mathrm{~A}, \quad \mathrm{I}^{\prime}=0$		-5	-5	V
ICBO Collector Cutoff Current	$V_{C B}=-100 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0$		-100		nA
	$V_{C B}=-100 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0, \quad \mathrm{~T}_{A}=100^{\circ} \mathrm{C}$		-100		$\mu \mathrm{A}$
	$V_{C B}=-120 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0$			-50	$n A$
	$V_{E B}=-3 V, \quad I_{C}=0$			-50	μA
IEBO Emitter Cutoff Current			-50	-50	nA
Static Forward Current Transfer Ratio	$V_{C E}=-5 \mathrm{~V}, \quad \mathrm{I}_{C}=-1 \mathrm{~mA}$	See Note 3	30	50	
	$V_{C E}=-5 \mathrm{~V}, 1 C^{=}=-10 \mathrm{~mA}$		$40 \quad 180$	$60 \quad 240$	
	$\mathrm{V}_{C E}=-5 \mathrm{~V}, \quad \mathrm{I}^{\prime}=-50 \mathrm{~mA}$		40	50	
Base-Emitter Voltage	$\mathrm{I}_{\mathrm{B}}=-1 \mathrm{~mA}, \quad \mathrm{I}_{C}=-10 \mathrm{~mA}$	See Note 3	-1	-1	V
	$I_{B}=-5 \mathrm{~mA}, \quad I_{C}=-60 \mathrm{~mA}$		-1	-1	
Collector-Emitter Saturation Voltage	$\mathrm{I}_{B}=-1 \mathrm{~mA}, \quad I_{C}=-10 \mathrm{~mA}$	See Note 3	-0.2	-0.2	V
	$\mathrm{I}_{\mathrm{B}}=-5 \mathrm{~mA}, \quad 1 \mathrm{C}=-50 \mathrm{~mA}$		-0.5	-0.5	
h_{fo} Small-Signal Common-Emitter Forward Current Transfer Ratio	$V_{C E}=-10 \mathrm{~V}, \mathrm{IC}=-1 \mathrm{~mA}$,	$f=1 \mathrm{kHz}$	$30 \quad 200$	$40 \quad 200$	
f_{T} Transition Frequency	$V_{C E}=-10 \mathrm{~V}, \mathrm{I}^{\prime} \mathrm{C}=-10 \mathrm{~mA}$,	See Note 4	100400	100300	MHz
Cobo Common-Base Open-Circuit Output Cepacitance	$V_{C B}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0$,	$f=1 \mathrm{MHz}$	6	6	pF

*operating characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER		TEST CONDITIONS	$\begin{aligned} & \hline \text { 2N5400 } \\ & \text { A5T5400 } \\ & \hline \end{aligned}$	2N5401 A5T5401	UNIT	
		MIN MAX	MIN MAX			
F	Averege Noise Figure		$\begin{aligned} & V_{C E}=-5 \mathrm{~V}, \quad I_{C}=-250 \mu A, \\ & R_{G}=1 \mathrm{k} \Omega, \\ & \text { Noise bandwidth }=15.7 \mathrm{kHz}, \end{aligned} \text { See Note } 5$	8	8	dB

NOTES: 3. These paramaters must be measured using pulse techniques, $t_{w}=300 \mu \mathrm{~s}$, duty cycle $<\mathbf{2 \%}$.
4. To obtain i_{T}, the h_{f} i response is extrapolated at the rate of $-\mathbf{6} \mathrm{dB}$ per oetave from $\mathrm{f}=100 \mathrm{MHz}$ to the frequency at which $h_{\text {fo }} \mid=1$.
5. Average Noise Figure is messured in an amplifier with response down 3 dB at 10 Hz and 10 kHz and a high-frequency rolloff of BdB/octave.
*The asterisk indientifies JEDEC registered data for the 2N5400 and 2N5401 only.

SLLECI ${ }^{\dagger}$ TRANSISTORS \ddagger

- For Medium-Power Amplifiers, Class B Audio Outputs, Hi-Fi Drivers
- Also Available in TO-92 Versions . . . 2N3702, 2N3703
- For Complementary Use with 2N5449, 2N5450, and 2N5461

mechanical data

These transistors are encapsulated in a plastic compound specifically designed for this purpose, using a highly mechanized process developed by Texas Instruments. The case will withstand soldering temperatures without deformation. These devices exhibit stable characteriatics under high-humidity conditions and are capable of meating MIL-STD-202C, Method 108B. The transistors are insensitive to light.

absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

TYPES 2N5447, 2N5448 P-N-P SILICON TRANSISTORS

"electrical characteristics at $\mathbf{2 5}{ }^{\circ} \mathrm{C}$ free-air temperature

Parameter		TEST CONDITIONS	2N6447		2N5448		UNIT	
		MIN	max	MIN	MAX			
$V_{\text {(bR) }}$ CBO	Collector-Bme Breakdown Voltage		${ }^{\prime} \mathrm{C}=-100 \mu \mathrm{~A}, \quad \mathrm{l} E=0$	-40		-50		v
$V_{\text {(bR)CEO }}$	Colloctor-Emitter Breakdown Voltage	$I_{C}=-10 \mathrm{~mA}, \quad \mathrm{I}_{\mathbf{B}}=0, \quad$ See Note 4	-25		-30		\checkmark	
$V_{\text {(br)ebo }}$	Emitter-Bate Breakdown Voltepe	$\mathrm{I}_{\mathrm{E}}=-100 \mu \mathrm{~A}, \mathrm{IC}=0$	-5		-5		\checkmark	
Iceo	Collector Cutoff Current	$\mathrm{V}_{\mathrm{CB}}=-20 \mathrm{~V}, \mathrm{IE}=0$	-100		-100		nA	
TEBO	Emifter Cutolf Current	$V_{E B}=-3 V_{1} I_{C}=0$	-100		-100		nA	
hFE	Static Forwerd Current Tranafer Ratlo	$\mathrm{V}_{\text {CE }}=-5 \mathrm{~V}, \mathrm{IC}^{\text {c }}=-50 \mathrm{~mA}$, See Note 4	$60 \quad 300$		$30 \quad 150$			
$V_{B E}$	Baco-Emitter Voltage	$V_{C E}=-5 \mathrm{~V}, 1 \mathrm{l}=-50 \mathrm{~mA}$, Soe Note 4	$-0.6-1$		-0.6 -1		V	
VcEsart)	Colloctor-Emitter Eeturation Voltere	$\mathrm{I}_{\mathrm{B}}=\mathbf{- 5} \mathrm{mA}, \quad \mathrm{IC}=-60 \mathrm{~mA}, \mathrm{See}$ Note 4	-0.25		-0.25		v	
T	Transition Frequency	$V_{C E}=-5 \mathrm{~V}, 1 \mathrm{IC}=-60 \mathrm{~mA}$, Soe Note 5	100		100		MHz	
C_{cb}	Collector-Base Capacitance	$\begin{aligned} & \text { VCB }=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0, \quad \mathrm{f}=1 \mathrm{MHz}, \\ & \text { See Note } 6 \end{aligned}$		12		12	pF	

E. To obtein if, the hfelreeponse with frequeney is extrapoleted at the rate of -6 de per octave from $f=20 \mathrm{MHz}$ to the frequency

THERMAL INFORMATION

FREE-AIR TEMPERATURE DISSIPATION DERATING CURVE

figure 1

LEAD TEMPERATURE DISSIPATION DERATING CURVE

figure 2

SILECT ${ }^{\dagger}$ TRANSISTORS \ddagger

- For Medium-Power Amplifiers, Class B Audio Outputs, Hi-Fi Drivers

- Also Available in TO-92 Versions . . . 2N3704 thru 2N3706
- For Complementary Use with 2N5447 and 2N5448
mechanical data
These transistors are encapsulated in a plastic compound specifically designed for this purpose, using a highly mechanized process developed by Texas instruments. The case will withstand soldering temperatures without deformation. These devices exhibit stable characteristics under high-humidity conditions and are capable of meeting MIL-STD-202C, Method 106B. The transistors are insensitive to light.

absolute maximum ratings at $25^{\circ} \mathbf{C}$ free-air temperature (unless otherwise noted)

NOTES: 1. These values apply when the base-emitter diode is open-circuited.
2. Darate the $625-\mathrm{mW}$ rating linearly to $150^{\circ} \mathrm{C}$ free-air temperature at the rate of $5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$. Derate the $360-\mathrm{mW}$ (JEDEC ragistered) rating linearly to $150^{\circ} \mathrm{C}$ free-air temperature at the rate of $2.88 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
3. Derate the $1.25-\mathrm{W}$ rating linearly to $150^{\circ} \mathrm{C}$ lead temperature at the rate of $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$. Derate the $500-\mathrm{mW}$ (JEDEC registered) rating linearly to $150^{\circ} \mathrm{C}$ lead temperature at the rate of $4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$. Lesd temperature is measured on the collector lead $1 / 16$ inch from the case.

- JEDEC registared data. This data sheet contains all applicable registered data in affect at the time of publication.
${ }^{\dagger}$ Trademark of Texas Instruments
\ddagger U.s. Patent No. 3,439,238
§ Texas Instruments guarantees these values in addition to the JEDEC registered values which are also shown.

TYPES 2N5449, 2N5450, 2N5451
 N-P-N SILICON TRANSISTORS

*electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER	TEST CONDITIONS	2N5449	2N5450	2N5451	UNIT
		MIN MAX	MiN MAX	MIN MAX	
$V_{\text {(BR)CBO }}$Collector-Base Breakdown Voltage	$I_{C}=100 \mu A, \quad I_{E}=0$	50	50	40	V
V(BR)CEOCollector-Emitter Breakdown Voltage	$\begin{array}{ll} \mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}, & \mathrm{I}_{\mathrm{B}}=0, \\ \text { See Note } 4 \end{array}$	30	30	20	V
$V_{\text {(BR)EBO }} \begin{aligned} & \text { Emitter-Base } \\ & \text { Breakdown Voltage } \end{aligned}$	$I_{E}=100 \mu A, \quad I^{\prime} C=0$	5	5	5	V
ICBO Collector Cutoff Current	$V_{C B}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0$	100	100	100	nA
IEBO Emitter Cutoff Current	$V_{E B}=3 \mathrm{~V}, \quad I_{C}=0$	100	100	100	nA
hFE Static Forward Current Transfer Ratio	$\begin{aligned} & V_{C E}=2 \mathrm{~V}, \quad I^{\prime} \mathrm{C}=50 \mathrm{~mA}, \\ & \text { See Note } 4 \end{aligned}$	100300	50150	30600	
VBE Base-Emitter Voltage	$\begin{aligned} & V_{C E}=2 \mathrm{~V}, \quad \mathrm{IC}=100 \mathrm{~mA}, \\ & \text { See Note } 4 \end{aligned}$	0.51	0.51	0.51	V
VCE(sat) $\begin{aligned} & \text { Collector-Emitter } \\ & \text { Saturation Voltage }\end{aligned}$	$\begin{aligned} & I_{B}=5 \mathrm{~mA}, \quad I_{C}=100 \mathrm{~mA}, \\ & \text { See Note } 4 \end{aligned}$	0.6	0.8	1	V
fT Transition Frequency	$\begin{aligned} & V_{C E}=2 \mathrm{~V}, \quad I^{\prime}=50 \mathrm{~mA}, \\ & \text { See Note } 5 \end{aligned}$	100	100	100	MHz
$\mathrm{C}_{c b} \quad$ Collector-Base Capacitance	$\begin{array}{ll} V_{C B}=10 \mathrm{~V}, & \mathrm{I}_{\mathrm{E}}=0, \\ \mathrm{f}=1 \mathrm{MHz}, & \text { See Note } 6 \end{array}$	12	12	12	pF

NOTES: 4. These parameters must be measured using pulse techniques. $t_{w}=300 \mu s$, duty eycle $\leqslant 2 \%$.
5. To obrain f^{T}, the $\left.\mathrm{h}_{\mathrm{fe}}\right|_{\text {response }}$ with frequency is extrapolated at the rate of -6 dB per octave from $\mathrm{f}=\mathbf{2 0 \mathrm { MHz } \text { to the frequency }}$ at which $\left|\mathrm{m}_{\mathrm{fe}}\right|=1$.
6. C_{cb} measurement employs athree-terminal capacitance bridge incorporating a guard circuit. The emitter is connacted to the guard terminal of the bridge.

- JEDEC registered data

TYPICAL CHARACTERISTICS

SILECT ${ }^{\dagger}$ FIELD-EFFECT TRANSISTORS \ddagger

 FOR INDUSTRIAL AND CONSUMER SMALL-SIGNAL APPLICATIONS- Rugged One-Piece Construction with In-Line Leads or Standard TO-18 100-mil Pin-Circle Configuration

mechanical data

These transistors are encapsulated in a plastic compound specifically designed for this purpose, using a highly mechanized process developed by Texas Instruments. The case will withstand soldering temperatures without deformation. These devices exhibit stable characteristics under high-humidity conditions and are capable of meeting MIL-STD-202C, Method 106B. The transistors are insensitive to light.

*absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

[^102]
TYPES 2N5460, 2N5461, 2N5462, A5T5460, A5T5461, A5T5462 P-CHANNEL SILICON JUNCTION FIELD-EFFECT TRANSISTORS

electrical characteristics at $\mathbf{2 5}{ }^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

*operating characteristics at $\mathbf{2 5}{ }^{\circ} \mathrm{C}$ free-air temperature

PARAMETER		TEST CONDITIONS		$\begin{array}{r} \text { 2N5460 } \\ \text { A5T5460 } \\ \hline \end{array}$		2N5461 A5T5461		$\begin{gathered} \hline \text { 2N5462 } \\ \text { A5T5462 } \\ \hline \end{gathered}$		UNIT		
		MIN	MAX	MIN	MAX	MIN	MAX					
F	Spot Noise Figure			$\begin{array}{ll} V_{D S}=-15 V, & V_{G S}=0, \\ f=100 \mathrm{~Hz}, & B W=1 \mathrm{~Hz} \end{array}$	$R_{G}=1 \mathrm{M} \Omega$		2.5		2.5		2.5	dB
V_{n}	Equivalent Input Noise Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, \\ & \mathrm{BW}=1 \mathrm{~Hz} \end{aligned}$	$f=100 \mathrm{~Hz}$		115		115		115	$\mathrm{nV} / \sqrt{1{ }^{\text {z }}}$		

[^103]
TYPES 2N5525, 2N5526 N-P-N DARLINGTON-CONNECTED SILICON TRANSISTORS

SILECT† TRANSISTORS \ddagger
 TWO N-P.N TRIODES INTERNALLY CONNECTED IN DARLINGTON CONFIGURATION mechanical data

These transistors are encapsulated in a plastic compound specifically designed for this purpose, using a highly mechanized process developed by Texas Instruments. The case will withstand soldering temperatures without deformation. These devices exhibit stable characteristics under high-humidity conditions and are capable of meeting MIL-STD-202C, Method 1068. The transistors are insensitive to light.

*absolute maximum ratings at $\mathbf{2 5}{ }^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)
Collector-Base Voltage 40 V
Collector-Emitter Voltage (See Note 1) 30 V
Emitter-Base Voltage 9 V
Continuous Collector Current 200 mA
Continuous Device Dissipation at (or below) $25^{\circ} \mathrm{C}$ Free-Air Temperature (See Note 2) 360 mW
Continuous Device Dissipation at (or below) $\mathbf{2 5}{ }^{\circ} \mathrm{C}$ Lead Temperature (See Note 3) 500 mW
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead Temperature 1/16 Inch from Case for 10 Seconds $260^{\circ} \mathrm{C}$
*electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER		TEST CONDITIONS		2N5525		2N5526		UNIT		
		MIN	MAX	MIN	MAX					
$V_{\text {(BR) }}$ CBO	Collector-Base Breakdown Voltage			$I_{C}=100 \mu A, I_{E}=0$		40		40		V
$V_{\text {(BR) }}{ }^{\text {(BEO }}$	Collector-Emitter Breakdown Voltage	$I_{C}=10 \mathrm{~mA}, \quad I_{B}=0$,	See Note 4	30		30		V		
$V_{\text {(BR)EBO }}$	Emitter-Base Breakdown Voltage	$\mathrm{I}_{\mathrm{E}}=100 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{C}}=0$		9		9		V		
${ }^{\text {I CBO }}$	Collector Cutoff Current	$V_{C B}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0$			100		100	nA		
IEBO	Emitter Cutoff Current	$V_{E B}=5 \mathrm{~V}, \quad \mathrm{I}^{\prime}=0$			100		100	nA		
hFE	Static Forward Current Transfer Ratio	$V_{C E}=10 \mathrm{~V}$, $\mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}$,	See Note 4	5000		1000				
$V_{\text {BE }}$	Base-Emitter Voltage	$V_{C E}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=100 \mathrm{~mA}$,	See Note 4	0.9	1.8	0.9	1.8	V		
$V_{\text {CE }}$ (sat)	Collector-Emitter Saturation Voltage	$\mathrm{I}_{\mathrm{B}}=0.5 \mathrm{~mA}, \mathrm{I}^{\prime}=50 \mathrm{~mA}$,	See Note 4		1		1	V		
$h_{f e}$	Small-Signal Common-Emitter Forward Current Transfer Ratio	$V_{C E}=10 \mathrm{~V}, I_{C}=10 \mathrm{~mA}$,	$f=1 \mathrm{kHz}$	5000		1000				
\|hel	Small-Signal Common-Emitter Forward Current Transfer Ratio	$V_{C E}=10 \mathrm{~V},{ }^{1} \mathrm{C}=20 \mathrm{~mA}$,	$f=100 \mathrm{MHz}$	2		2				
Cobo	Common-Base Open-Circuit Output Capacitance	$V_{C B}=10 \mathrm{~V}, \mathrm{I}^{\prime}=0$,	$f=1 \mathrm{MHz}$		10		10	pF		

NOTES: 1. This value applies when the base-amitter diode is open-circuited.
2. Derate linearly to $150^{\circ} \mathrm{C}$ free-air temperature at the rate of $2.88 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
3. Deraty linearly to $150^{\circ} \mathrm{C}$ lead temperature at the rate of $4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$. Lead temperature is measured on the collector lead $1 / 16$ inch from the case.
4. These parameters must be measured using pulse techniques. $\mathbf{t}_{\mathbf{w}}=\mathbf{3 0 0} \mu \mathrm{s}$, duty cycle $\leqslant 2 \%$.
*JEDEC registered data. This data sheet contains all applicable registered data in effect at the time of publication
${ }^{\dagger}$ Trademark of Texas Instruments.
+U.S. Patant No. 3,439,238.

MATCHED FIELD-EFFECT TRANSISTORS

- High lyfs $/ \mathrm{C}_{\text {iss }}$ Ratio (High-Frequency Figure-of-Merit)
- Low Input Capacitance Ciss . . . 6 pF Max
- Low Gate-Current Differential . . . 5 nA Max at $\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$
- Recommended for Low-Level D-C Amplifiers, Sample-Hold Circuits, and Series-Shunt Choppers
- Improved Matching and Tracking Characteristics
*mechanical data

*absolute maximum ratings at $\mathbf{2 5}{ }^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

NOTE 1: Derate linearly to $175^{\circ} \mathrm{C}$ free-air temperature at the rates of $1.67 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for each triode and $2.67 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for the total device.
*JEDEC registered data. This data sheat conrains all epplicable registered data in effect at the time of publication.

TYPES 2N5545, 2N5546, 2N5547
 DUAL N-CHANNEL SILICON JUNCTION FIELD-EFFECT TRANSISTORS

*electrical characteristics at $\mathbf{2 5}{ }^{\circ} \mathbf{C}$ free-air temperature (unless otherwise noted)
individual triode characteristics (see note 2)

PARAMETER	TEST CONDITIONS	MIN MAX	UNIT
Gate Reverse Current	$V_{G S}=-50 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$	-1	$\mu \mathrm{A}$
	$\mathrm{V}_{\mathrm{GS}}=-30 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$	-0.1	nA
	$V_{G S}=-30 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0, \quad \mathrm{TA}_{\text {A }}=150^{\circ} \mathrm{C}$	-150	nA
VGS(off) Gate-Source Cutoff Voltage	$V_{D S}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.6 \mathrm{nA}$	$\begin{array}{ll}-0.5 & -4.5\end{array}$	V
IG Gate Current	$V_{D G}=15 \mathrm{~V}, I_{D}=200 \mu \mathrm{~A}$	-50	pA
Ipss Zero-Gate-Voltege Drain Current	$V_{D S}=15 \mathrm{~V}, \mathrm{~V}_{G S}=0$	$0.5 \quad 8$	mA
Vfe Small-Signal Common-Source Forward Tranafer Admittance	$V_{D S}=15 \mathrm{~V}, V_{G S}=0, \quad f=1 \mathrm{kHz}$	1.56	mmho
Vos Small-Signal Common-Source Output Admittance	$V_{D S}=15 \mathrm{~V}, V_{G S}=0, \quad f=1 \mathrm{kHz}$	25	$\mu \mathrm{mho}$
$\mathrm{C}_{\text {ifs }}$ Small-Signal Common-Source Input Capacitance	$\mathrm{V}_{\text {DS }}=16 \mathrm{~V}_{1} \mathrm{~V}_{\text {GS }}=0, \quad \pm=1 \mathrm{MHz}$	6	pF
$\mathrm{Cran}_{\text {rater }}$ Small-Signal Common-Source Reverse Transfor Capacitance	$V_{\text {DS }}=16 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, \quad f=1 \mathrm{MHz}$	2	pF
Yte. Small-Signal Common-Source Forward Tranafer Admittance	$V_{D S}=15 \mathrm{~V}, \quad V_{G S}=0, \quad f=100 \mathrm{MHz}$	7.6	mmho

triode matching characteriatica

PARAMETER		TE8T CONDITIONS	2N6646		2N6E48		2NEE47		UNIT		
		MIN	MAX	MIN	MAX	MIN	MAX				
\|G1-IG2		Gate-Current Differential		$\begin{aligned} & \hline V_{D G}=16 \mathrm{~V}, I_{D}=200 \mu \mathrm{~A}, \\ & T_{A}=126^{\circ} \mathrm{C} \\ & \hline \end{aligned}$		5		6		5	nA
\| $\mathbf{G s 1}^{\text {-VGs2 }}$ \|	Gate-Source-Voltage Differential	$V_{D G}=15 \mathrm{~V}, 10=50 \mu \mathrm{~A}$		5		10		15	mV		
		$V_{\text {DG }}=15 V_{1} I_{D}=200 \mu A$		5		10		15			
$\left.\mid \operatorname{AIV}_{\mathbf{G S 1}}-V_{\mathbf{G S 2}}\right)_{\Delta T_{A}} \mid$	Gate-Source-Voltage-Differential Change with Temperature	$\begin{aligned} & V_{D G}=16 \mathrm{~V}, \quad I_{D}=200 \mu \mathrm{~A}, \\ & T_{A(1)}=25^{\circ} \mathrm{C}, T_{A(2)}=-65^{\circ} \mathrm{C} \end{aligned}$		0.8		1.6		3.2	mV		
		$\begin{aligned} & V_{D G}=15 V, I_{D}=200 \mu \mathrm{~A}, \\ & T_{A(1)}=25^{\circ} \mathrm{C}, T_{A(2)}=125^{\circ} \mathrm{C} \end{aligned}$		1		2	4				
$\frac{\text { IDss1 }}{\text { IDss2 }}$	Zero-Gate-Voltage Drain Currant Ratio	$\begin{array}{ll} V_{D S}=15 \mathrm{~V}, & V_{G S}=0 \\ & \text { See Note }^{2} \end{array}$	0.95	1	0.9	1	0.9	1			
$\frac{\mid V_{f f} l_{1}}{\mid V_{f s}{ }_{2}}$	Small-Signal Common-Source Forward Transfer Admittance Ratio	$\begin{array}{ll} V_{D G}=15 \mathrm{~V}, & I_{D}=200 \mu \mathrm{~A}, \\ f=1 \mathrm{kHz}, & \text { See Note } 3 \end{array}$	0.97	1	0.96	1	0.9	1			
$\mathrm{V}_{0} \mathrm{l}_{1}$ - $\left.\mathrm{V}_{\mathrm{os}}\right\|_{2}$	Small-Signal Common-Saurce Output Admittance Differential	$\begin{array}{ll} \hline V_{D G}=15 \mathrm{~V}, & \mathrm{I}_{\mathrm{D}}=200 \mu \mathrm{~A}, \\ \mathrm{f}=1 \mathrm{kHz}, & \text { See Nate } 3 \end{array}$		1		2		3	$\mu \mathrm{mho}$		

*operating characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

 individual triode characteristics (see note 2)| PARAMETER | | TEST CONDITIONS | 2N5645 | 2N5546 | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | | MAX | MAX | |
| F | Spot Noise Figure | | $\begin{array}{ll} V_{D G}=15 \mathrm{~V}, & I_{D}=200 \mu \mathrm{~A}, \quad f=10 \mathrm{~Hz}, \\ R_{G}=1 \mathrm{M} \Omega, & \text { Noise Bandwidth }=5 \mathrm{~Hz} \end{array}$ | 3.5 | 5 | dB |
| V_{n} | Equivalent Input Noise Voltage | $\begin{aligned} & V_{D G}=15 \mathrm{~V}, \quad I_{D}=200 \mu \mathrm{~A}, \quad f=10 \mathrm{~Hz}, \\ & \text { Noise Bandwidth }=5 \mathrm{~Hz} \end{aligned}$ | 180 | 200 | $\mathrm{nV} / \sqrt{\mathrm{Hz}}$ |

NOTES: 2. The terminals of the triode not under test are grounded for the measurement of these characteristics.
3. The lower of the two characteristic readings is taken is the numerator or subtrahend.
*JEDEC registerad data

FOR LOW-LEVEL CHOPPERS, LOGIC SWITCHES, MULTIPLEXERS, AND RF AND VHF AMPLIFIERS

- High $\mid \mathrm{yfs}_{s} / \mathrm{C}_{\mathrm{iss}}$ Ratio (High-Frequency Figure-of-Merit)
- Low Feedback Capacitance Crss . . . 2 pF Max
- Low On-State Resistance rds(on) ... 100Ω Max
"mechanical data

*absolute maximum ratings at $\mathbf{2 5}{ }^{\circ} \mathbf{C}$ free-air temparature (unless otherwise noted)

NOTE 9: Derate linearly to $175^{\circ} \mathrm{C}$ free-air temperature at the rate of $2.4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
-JEDEC registered data. This data sheet contains all applicable registered data in effect at the time of publication.

TYPE 2N5549
 N-CHANNEL SILICON JUNCTION FIELD-EFFECT TRANSISTOR

*electrical characteristics at $\mathbf{2 5}^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

NOTE 2: These parameters must be measured using pulse techniques, $t_{w} \approx 100 \mathrm{~ms}$, duty cycla $\leqslant 10 \%$. -JEDEC registered dets

THERMAL INFORMATION

DISSIPATION DERATING CURVE

SILECT ${ }^{\dagger}$ TRANSISTORS \ddagger
 FOR GENERAL PURPOSE, HIGH-VOLTAGE AMPLIFIER APPLICATIONS

- High V(BR)CEO . . 140 V (2N5550, A5T5550) or 160 V (2N5551, A5T5551)
- Suitable for Controlling Gas-Discharge Indicator Tubes and Other High-Voltage Applications
- Rugged One-Piece Construction with In-Line Leads or Standard TO-18 100-mil Pin-Circle Configuration

machanical data

These transistors are encapsulated in a plastic compound specifically designed for this purpose, using a highly mechanized process developed by Texas Instruments. The case will withstand soldering temperatures without deformation. These devices exhibit stable characteristics under high-humidity conditions and are capable of meeting MIL-STD-202C, Method 106B. The transistors are insensitive to light.

absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

NOTES: 1. These values apply when the base-emitter diode is open-circuited.
2. Derate the $625-\mathrm{mW}$ rating linearly to $150^{\circ} \mathrm{C}$ free-air temperature at the rate of $5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$. Derate the $310-\mathrm{mW}$ (JEDEC registared) rating linearly to $135^{\circ} \mathrm{C}$ free-air temperature at the rate of $2.82 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
*The asterisk identifies JEDEC registered data for the $2 N 5550$ and $2 N 5551$ only. This data sheet contains all applicable registered data in effect at the time of publication.
${ }^{\dagger}$ Trademark of Texas Instruments
\ddagger U.S. Patent No. 3,439,238
§ Texas Instruments guarantees these values in addition to the JEDEC registered values which are also shown.

TYPES 2N5550, 2N5551, A5T5550, A5T5551
 N-P-N SILICON TRANSISTORS

*electrical characteristics at $\mathbf{2 5}{ }^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

PARAMETER		TEST CONDITIONS		$\begin{gathered} \text { 2N6550 } \\ \text { A5T5550 } \end{gathered}$		2N6551A5T5551		UNIT		
		MIN	MAX	MIN	MAX					
$V_{\text {(BR) }}$ CBO	Collector-Base Breakdown Voltage			$I_{C}=100 \mu A, \quad l_{E}=0$		160		180		V
$V_{\text {(BR)CEO }}$	Collector-Emitter Breakdown Voltage	$\mathrm{I}_{C}=1 \mathrm{~mA}, \quad \mathrm{I}_{B}=0$,	See Note 3	140		160		V		
$V_{\text {(BR)EBO }}$	Emitter-Base Breakdown Voltage	$\mathrm{I}_{\mathrm{E}}=10 \mu A, \quad \mathrm{I}^{\prime}=0$		6		6		V		
${ }^{\text {C CBO }}$	Collector Cutoff Current	$\mathrm{V}_{C B}=100 \mathrm{~V}$, $\mathrm{IE}=0$			100			nA		
		$\mathrm{V}_{C B}=120 \mathrm{~V}, \mathrm{IE}=0$					50			
		$V_{C B}=100 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0$,	$T_{A}=100^{\circ} \mathrm{C}$		100			$\mu \mathrm{A}$		
		$V_{C B}=120 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0$,	$T_{A}=100^{\circ} \mathrm{C}$				50			
IEBO	Emitter Cutoff Current	$V_{E B}=4 \mathrm{~V}$, $\mathrm{I}_{\mathrm{C}}=0$			50		50	nA		
hFE	Static Forward Current Transfer Ratio	$\mathrm{V}_{\text {CE }}=5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}$		60		80				
		$\mathrm{V}_{C E}=5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}$	See Note 3	60	250	80	250			
		$V_{C E}=5 \mathrm{~V}, \quad I^{\prime} \mathrm{C}=50 \mathrm{~mA}$		20		30				
$V_{\text {be }}$	Base-Emitter Voltage	$\mathrm{I}_{\mathrm{B}}=1 \mathrm{~mA}, \quad \mathrm{I}^{\prime}=10 \mathrm{~mA}$	See Note 3		1		1	V		
		$I_{B}=5 \mathrm{~mA}, \quad 1 C=50 \mathrm{~mA}$			1.2		1			
$V_{\text {CE }}$ (sat)	Collector-Emitter Saturation Vol tage	$I_{B}=1 \mathrm{~mA}, \quad I_{C}=10 \mathrm{~mA}$	See Note 3		0.15		0.15	V		
		$\mathrm{I}_{\mathrm{B}}=5 \mathrm{~mA}, \quad \mathrm{I}^{\prime} \mathrm{C}=50 \mathrm{~mA}$			0.25		0.2			
$h_{\text {fe }}$	Small-Signal Common-Emitter Forward Current Transfer Ratio	$V_{C E}=10 \mathrm{~V}, \quad 1 \mathrm{C}=1 \mathrm{~mA}$,	$\mathrm{f}=1 \mathrm{kHz}$	50	200		200			
\|hfel	Small-Signal Common-Emitter Forward Current Transfer Ratio	$V_{C E}=10 \mathrm{~V}, \quad 1 \mathrm{C}=10 \mathrm{~mA}$,	$\mathrm{f}=100 \mathrm{MHz}$	1	3	1	3			
Cobo	Common-Base Open-Circuit Output Capacitance	$V_{C B}=10 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{E}}=0$,	$\mathrm{f}=1 \mathrm{MHz}$		6		6	pF		
$\mathrm{C}_{\text {ibo }}$	Common-Base Open-Circuit Input Capacitance	$V_{E B}=0.5 \mathrm{~V}, \quad \mathrm{l} C=0$,	$f=1 \mathrm{MHz}$		30		20	pF		

*operating characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER		TEST CONDITIONS	$\begin{gathered} \text { 2N5560 } \\ \text { A5T5560 } \end{gathered}$		$\begin{aligned} & \text { 2NE551 } \\ & \text { AST5561 } \end{aligned}$		UNIT	
		MIN	MaX	MIN	MAX			
$\overline{\mathbf{F}}$	Average Noise Figure		$V_{C E}=5 \mathrm{~V}, \quad I_{C}=250 \mu \mathrm{~A}, \mathrm{R}_{\mathrm{G}}=1 \mathrm{k} \Omega$ Noise Bandwidth $=15.7 \mathbf{k H z}$, See Note 4		10		8	dB

NOTES: 3. These parameters must be measured using pulse techniques. $t_{w}=300 \mu \mathrm{~s}$, duty cycle $\leq \mathbf{2 \%}$.
4. Average Noise Figure is messured in an amplifier with response down 3 dB at 10 Hz and 10 kHz and a high-frequency rolloff of $6 \mathrm{~dB} / \mathrm{octave}$.
-JEDEC registered data

SILECT ${ }^{\dagger}$ FIELD-EFFECT TRANSISTORS \ddagger

- Narrow IDSS and VGS(off) Ranges

- For Low-Noise Audio-Frequency Amplifier Applications
- For RF Amplifier Applications Thru $100 \mathbf{~ M H z}$
- Low rds(on) for Chopper and Switching Applications

mechanical data

These transistors are encapsulated in a plastic compound specifically designed for this purpose, using a highly mechanized process developed by Texas Instruments. The case will withstand soldering temperatures without deformation. These devices exhibit stable characteristics under high-humidity conditions and are capable of meeting MIL-STD-202C Method 1068. The transistors are insensitive to light.
*CASE OUTLINE

NOTES: A. Lead diameter is not controlied in this area.
 sured in the gaging plane 0.054 below the seating plane of the device relative to a maximum diameter package.
C. All dimensions are in inches.

*absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

Drain-Gate Voltage 30 V
Reverse Gate-Source Voltage $-30 \mathrm{~V}$
Continuous Forward Gate Current 10 mA
Continuous Device Dissipation at (or below) $25^{\circ} \mathrm{C}$ Free-Air Temperature (See Note 1) 360 mW
Continuous Device Dissipation at (or below) $25^{\circ} \mathrm{C}$ Lead Temperature (See Note 2) 500 mW
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead Temperature 1/16 Inch from Case for 10 Seconds $260^{\circ} \mathrm{C}$

NOTES: 1. Derate linearly to $150^{\circ} \mathrm{C}$ free-air temperature at the rate of $2.88 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
2. Derate linearly to $150^{\circ} \mathrm{C}$ lead tempersture at the rate of $4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$. Lead temperature is measured on the gate lead $1 / 16$ inch from the case.

[^104]
TYPES 2N5949 THRU 2N5953

N-CHANNEL SILICON JUNCTION FIELD-EFFECT TRANSISTORS

*operating characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER		TEST CONDITIONS				ALL TYPES		UNIT				
		MIN	MAX									
F	Common-Source Spot Noise Figure					$V_{D S}=15 \mathrm{~V}$ See Note 4	$V_{G S}=0,$	$f=100 \mathrm{Mr}$	$\mathbf{R}_{\mathbf{G}}=\mathbf{1} \mathrm{k} \Omega_{\text {d }}$		5	dB
		$V_{D S}=15 \mathrm{~V}$ See Note 4	$V_{G S}=0,$	$f=1 \mathrm{kHz},$	$\mathrm{R}_{\mathrm{G}}=1 \mathrm{M} \Omega$,		2					
V_{n}	Equivalent Input Noise Voltage	VDS $=15 \mathrm{~V}$.	$V_{G S}=0$,	$f=1 \mathrm{kHz}$,	See Note 4		100	$n \mathrm{~K} / \mathrm{Hz}$				

NOTES: 3. This parameter must be measured using pulse techniques. $\mathbf{t w}_{\mathbf{w}} \mathbf{= 3 0 0} \boldsymbol{\mu}$, dutv cycle $\leqslant \mathbf{2 \%}$.
4. These parameters must be measured with bias conditions applied for less than 5 seconds to avoid overheating.
*JEDEC registered data
P-

SILECT ${ }^{\dagger}$ TRANSISTORS \ddagger FOR USE IN PULSE, TIMING, SWEEP, TRIGGER, AND OSCILLATOR CIRCUITS

- Plug-in Replacements for 2N6027, 2N6028 (TO-98 Package)
- Low Peak-Point Current and Low Forward Voltage
- Programmable η, rBB, Ip, and IV
mechanical data
These transistors are encapsulated in a plastic compound specifically designed for this purpose, using a highly mechanized process developed by Texas Instruments. The case will withstand soldering temperatures without deformation. These devices exhibit stable characteristics under high-humidity conditions and are capable of meeting MIL-STD-202C, Method 106B. The transistors are insensitive to light.

THE GATE IS CONNECTED TO AN N REGION
ALL JEDEC TO-92 DIMENSIONS AND NOTES ARE APPLICABLE

NOTES: A. Lead diameter is not controlled In this area.
B. All dimensions are in inches.
absolute maximum ratings at $\mathbf{2 5}{ }^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)
Anode-Cathode Voltage . $\pm 40 \mathrm{~V}$
Gate-Anode Voltage . 40 V
Gate-Cathode Voltage: (Positive Limit) . 40 V
(Negative Limit) . -5 V
Continuous Anode Current . 150 mA
Repetitive Peak Anode Current: ($\mathbf{t}_{\mathbf{w}}=\mathbf{1 0 0} \mu \mathrm{s}$, Duty Cycle $\leqslant 1 \%$) 1 A
($t_{w}=20 \mu$, Duty Cycle $\leqslant \mathbf{1 \%}$) 2 A
Nonrepetitive Peak Anode Current: $\left(t_{w}=10 \mu \mathrm{~s}, \mathrm{Duty}\right.$ Cycle $\left.=0\right)$. 5 A
Continuous Gate Current . $\pm 50 \mathrm{~mA}$
Continuous Device Dissipation at (or below) $\mathbf{2 5}^{\circ} \mathrm{C}$ Free-Air Temperature (See Note 1) 300 mW
Storage Temperature Range . $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead Temperature 1/16 Inch from Case for 60 Seconds
$260^{\circ} \mathrm{C}$
electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER	TEST CONDITIONS	A7T6027	A7T6028	UNIT
		MIN MAX	MIN MAX	
IGAO Gate Reverse Current	$\mathrm{V}_{\mathrm{GA}}=40 \mathrm{~V}, \mathrm{I}_{\mathrm{K}}=0$	10	10	nA
	$V_{G A}=40 \mathrm{~V}, \mathrm{I}_{\mathrm{K}}=0, \quad \mathrm{~T}_{A}=75^{\circ} \mathrm{C}$	100	100	
IGKS Gate Reverse Current	$V_{\text {GK }}=40 \mathrm{~V}, \mathrm{~V}_{\text {AK }}=0$	100	100	nA
$\mathrm{V}_{\mathrm{P}}-\mathrm{V}_{\mathbf{S}}$ Offset Voltege	$\mathrm{V}_{\mathrm{S}}=10 \mathrm{~V}, \quad \mathrm{R}_{\mathrm{G}}=10 \mathrm{k} \Omega$	0.20 .6	0.20 .6	V
	$\mathrm{V}_{\mathrm{S}}=10 \mathrm{~V}, \quad \mathrm{R}_{\mathrm{G}}=1 \mathrm{M} \Omega$	0.21 .6	0.20 .6	
Peak-Point Current	$\mathrm{V}_{\mathrm{S}}=10 \mathrm{~V}, \quad \mathrm{R}_{\mathrm{G}}=10 \mathrm{k} \Omega$	5	1	$\mu \mathrm{A}$
	$\mathrm{V}_{S}=10 \mathrm{~V}, \quad \mathrm{R}_{\mathrm{G}}=1 \mathrm{M} \Omega$	2	0.15	
IV Valley-Point Current	$\mathrm{V}_{S}=10 \mathrm{~V}, \quad \mathrm{R}_{\mathrm{G}}=200 \Omega$	1500	1000	$\mu \mathrm{A}$
	$\mathrm{V}_{S}=10 \mathrm{~V}, \quad \mathrm{R}_{\mathrm{G}}=10 \mathrm{k} \Omega$	70	25	
	$\mathrm{V}_{S}=10 \mathrm{~V}, \quad \mathrm{R}_{\mathrm{G}}=1 \mathrm{M} \Omega$	50	25	
VF Anode-Cathode On-State Voltage	$V_{S}=10 \mathrm{~V}, \quad \mathrm{R}_{\mathrm{G}}=10 \mathrm{k} \Omega, I_{F}=50 \mathrm{~mA}$	1.5	1.5	V

[^105]\ddagger U.S. Patent No. 3,439,238

TYPES A7T6027, A7T6028

P-N-P-N SILICON PROGRAMMABLE UNIJUNCTION TRANSISTORS

operating characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER		TEST CONDITIONS	A7T6027			ATT8028			UNIT	
		MIN	TYP	MAX	MIN	TYP	MAX			
Vom	Pask Output Voltage		$V_{A A}=20 \mathrm{~V}, \quad C 1=0.2 \mu F$ See Figure 4	6			6			V
t_{r}	Output Pulso Rise Time			65	80		66	80	n	

PARAMETER MEASUREMENT INFORMATION

FIGURE 1-PROGRAMMABLE UNIJUNCTION CIRCUIT

$$
\begin{aligned}
& V_{\mathrm{S}}=\frac{\mathrm{R} 1 \cdot \mathrm{~V}_{\mathrm{B} 2 \mathrm{~B} 1}}{R_{1}+R_{2}} \\
& R_{\mathrm{G}}=\frac{R_{1} \cdot \mathrm{R}_{2}}{R_{1}+R_{2}}
\end{aligned}
$$

FIGURE 2-EQUIVALENT CIRCUIT USED FOR TESTING

FIOURE 3-QENERAL ANODE CHARACTERIBTICS

FIGURE 4-TESTING OPERATING CHARACTERISTICS

TYPES 2N6116, 2N6117, 2N6118 P-N-P-N SILICON PROGRAMMABLE UNIJUNCTION TRANSISTORS
 BULLETIN NO. DL-S 7211778, DECEMBER 1972

- For Use in Pulse, Timing, Sweep, Trigger, and Oscillator Circuits
- Features Low Peak-Point Current and L.ow Forward Voltage
- Programmable η, rBB, IP, and IV
mechanical data

"absolute maximum ratings at $\mathbf{2 5}^{\circ} \mathbf{C}$ free-air temperature (unless otherwise noted)

"electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

PARAMETER	TEST CONDITIONS	2N6116		2N8117		2N6118		UNIT
		MIN	MAX	MIN	MAX	MIN	MAX	
IGAO Gate Reverse Current	$V_{G A}=40 \mathrm{~V}, I_{K}=0$		5		5		5	$n \mathrm{~A}$
	$\begin{aligned} & V_{G A}=40 \mathrm{~V}, I_{K}=0, \\ & T_{A}=75^{\circ} \mathrm{C} \end{aligned}$		76		75		75	
IGKS Gate Reverse Current	$V_{G K}=40 \mathrm{~V}, V_{A K}=0$		50		60		60	nA
VP-VS Offset Voltage	$V_{S}=10 \mathrm{~V}, \mathrm{R}_{\mathrm{G}}=10 \mathrm{k} \Omega$	0.2	0.6	0.2	0.6	0.2	0.6	V
	$\mathrm{V}_{\mathbf{S}}=10 \mathrm{~V}, \mathrm{R}_{\mathrm{G}}=1 \mathrm{M} \Omega$	0.2	1.6	0.2	0.6	0.2	0.6	
Peak-Point Current	$V_{S}=10 \mathrm{~V}, \mathrm{R}_{\mathrm{G}}=10 \mathrm{k} \Omega$		5		2		1	$\mu \mathrm{A}$
	$\mathrm{V}_{\mathrm{S}}=10 \mathrm{~V}, \mathrm{R}_{\mathrm{G}}=1 \mathrm{M} \Omega$		2		0.3		0.15	
Valley-Point Current	$\mathrm{V}_{\mathrm{S}}=10 \mathrm{~V}, \mathrm{R}_{\mathrm{G}}=10 \mathrm{k} \Omega$	70		50		50		$\mu \mathrm{A}$
	$\mathrm{V}_{\mathrm{S}}=10 \mathrm{~V}, \mathrm{R}_{\mathrm{G}}=1 \mathrm{M} \Omega$		50		50		25	
VF Anode-Cathode On-State Voltage	$\begin{aligned} & V_{S}=10 \mathrm{~V}, \quad R_{G}=10 \mathrm{k} \Omega, \\ & I_{F}=50 \mathrm{~mA} \end{aligned}$		1.5		1.5		1.5	V

NOTES: 1. Derate Finearly to $125^{\circ} \mathrm{C}$ free-air temperature at the rate of $2 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$
2. Derate linearly to $125^{\circ} \mathrm{C}$ free-sir temperature at the rate of $2.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
*JEDEC registered data. This data sheet contains all applicable registered data in effect at the time of publication.

TYPES 2N6116, 2N6177, 2N6118
 P-N-P-N SILICON PROGRAMMABLE UNIJUNCTION TRANSISTORS

"operating characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER		TEST CONDITIONS	2N6116		2N6117		2N6118		UNIT	
		MIN	MAX	MIN	MAX	MIN	MAX			
Vom	Peak Output Voltage		$\mathrm{V}_{\mathrm{AA}}=20 \mathrm{~V}, \mathrm{C} 1=0.2 \mu \mathrm{~F},$ See Figure 4	6		6		6		v
${ }_{\text {t }}^{\text {r }}$	Output Puise Rise Time			80		80		80	ns	

*PARAMETER MEASUREMENT INFORMATION

FIGURE 1-PROGRAMMABLE UNIJUNCTION CIRCUIT

$V_{S}=\frac{A_{1} \cdot V_{B 2 B 1}}{R 1+R_{2}}$
$R_{G}=\frac{R_{1} \cdot R_{2}}{R_{1}+R_{2}}$
FIGURE 2-EQUIVALENT CIRCUIT USED FOR TESTING

FIGURE 3-GENERAL ANODE CHARACTERISTICS

[^106]
TYPES A5T6116, A5T6117, A5T6118 P-N-P-N SILICON PROGRAMMABLE UNLJUNCTION TRANSISTORS

BULLETIN NO DL-S 731 1984, MARCH 1973

SILECT † TRANSISTORS \ddagger FOR USE IN PULSE, TIMING, SWEEP, TRIGGER, AND OSCILLATOR CIRCUITS

- Rugged One-Piece Construction with Standard TO-18 100-mil Pin-Circle Configuration
- Low Peak-Point Current and Low Forward Voltage - Programmable η, rBB, IP, and IV mechanical data

These transistors are encapsulated in a plastic compound specifically designed for this purpose, using a highly mechanized process developed by Texas Instruments. The case will withstand soldering temperatures without deformation. These devices exhibit stable characteristics under high-humidity conditions and are capable of meeting MIL-STD-202C, Method 106B. The transistors are insensitive to light.
THE GATE IS CONNECTED TO AN N REGION
absolute maximum ratings at $\mathbf{2 5}{ }^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)
Anode-Cathode Voltage $\pm 40 \mathrm{~V}$
Gate-Anode Voltage 40 V
Gate-Cathode Voltage: (Positive Limit) 40 V
(Negative Limit) $-5 \mathrm{~V}$
Continuous Anode Current 200 mA
Repetitive Peak Anode Current: ($\mathbf{t}_{\mathbf{w}}=\mathbf{1 0 0} \boldsymbol{\mu}$ s, Duty Cycle $\leqslant 1 \%$) 1 A
 2 A
Nonrepetitive Peak Anode Current: ($\mathbf{t}_{\mathbf{w}}=\mathbf{1 0} \mu \mathrm{s}$, Duty Cycle $\left.=0\right)$ 5 A
Continuous Gate Current $\pm 20 \mathrm{~mA}$
Continuous Device Dissipation at (or below) $25^{\circ} \mathrm{C}$ Free-Air Temperature (See Note 1) 300 mW

Storage Temperature Range $260^{\circ} \mathrm{C}$
electrical characteristics at $\mathbf{2 5}{ }^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

PARAMETER	TEST CONDITIONS	A5T6116		A5T6117		A5T6118		UNIT
		MIN	MAX	MIN	MAX	MIN	MAX	
IGAO Gate Reverse Current	$V_{G A}=40 \mathrm{~V}, I_{K}=0$		5		5		5	nA
	$\begin{aligned} & V_{G A}=40 \mathrm{~V}, I_{\mathrm{K}}=0, \\ & T_{A}=75^{\circ} \mathrm{C} \end{aligned}$		75		75		75	
IGKS Gate Reverse Current	$\mathrm{V}_{\text {GK }}=40 \mathrm{~V}, \mathrm{~V}_{\text {AK }}=0$		50		50		50	nA
$V_{P}-V_{S}$ Offset Voltage	$\mathrm{V}_{\mathrm{S}}=10 \mathrm{~V}, \quad \mathrm{R}_{\mathrm{G}}=10 \mathrm{k} \Omega$	0.2	0.6	0.2	0.6	0.2	0.6	V
	$\mathrm{V}_{\mathrm{S}}=10 \mathrm{~V}, \quad \mathrm{R}_{\mathrm{G}}=1 \mathrm{M} \Omega$	0.2	1.6	0.2	0.6	0.2	0.6	
IP Peak-Point Current	$V_{S}=10 \mathrm{~V}, \quad R_{G}=10 \mathrm{k} \Omega$		5		2		1	$\mu \mathrm{A}$
	$\mathrm{V}_{\mathrm{S}}=10 \mathrm{~V}, \quad \mathrm{R}_{\mathrm{G}}=1 \mathrm{M} \Omega$		2		0.3		0.15	
IV Valley-Point Current	$\mathrm{V}_{S}=10 \mathrm{~V}, \quad \mathrm{R}_{\mathrm{G}}=10 \mathrm{k} \Omega$	70		50		50		$\mu \mathrm{A}$
	$\mathrm{V}_{\mathrm{S}}=10 \mathrm{~V}, \quad \mathrm{R}_{\mathrm{G}}=1 \mathrm{M} \Omega$		50		50		25	
VF Anode-Cathode On-State Voltage	$\begin{array}{ll} V_{S}=10 \mathrm{~V}, & R_{G}=10 \mathrm{k} \Omega, \\ I_{F}=50 \mathrm{~mA} \end{array}$		1.5		1.5		1.5	\checkmark

[^107]USES CHIP U41

TYPES A5T6116, A5T6117, A5T6118
P-N-P-N SILICON PROGRAMMABLE UNLUUNCTION TRANSISTORS
operating characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER		TEST CONDITIONS	A5T6116		A5T6117		A5T6118		UNIT	
		MIN	MAX	MIN	MAX	MIN	MAX			
$\mathrm{V}_{\text {OM }}$	Peak Output Voltage		$V_{A A}=20 \mathrm{~V}, \mathrm{C}_{1}=0.2 \mu \mathrm{~F}$ See Figure 4	6		6		6		V
t_{r}	Output Pulse Rise Time			80		80		80	ns	

PARAMETER MEASUREMENT INFORMATION

FIGURE 1-PROGRAMMABLE UNIJUNCTION CIRCUIT

FIGURE 2-EQUIVALENT CIRCUIT USED FOR TESTING

FIGURE 3-GENERAL ANODE CHARACTERISTICS

HIGH-VOLTAGE FIELD-EFFECT TRANSISTORS

- High V(BR)GSS . . . 300 V Min (2N6449)
- High Dissipation Capability . . 5 W

*mechanical data

*absolute maximum ratings at $\mathbf{2 5}{ }^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

NOTES: 1. Derate linearly to $175^{\circ} \mathrm{C}$ free-air temperature at the rate of $5.33 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
2. Derate linearly to $175^{\circ} \mathrm{C}$ case temperature at the rate of $33.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.

[^108]
TYPES 2N6449, 2N6450
 N-CHANNEL SILICON JUNCTION FIELD-EFFECT TRANSISTORS

*electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

PARAMETER		TEST CONDITIONS		2N6449		2N6450		UNIT		
		MIN	MAX	MIN	MAX					
$V_{\text {(BR) }}$ GSS	Gate-Source Breakdown Voltage			$\mathrm{I}_{\mathrm{G}}=-10 \mu \mathrm{~A}$,	$V_{D S}=0$	-300		-200		V
${ }^{\text {I GSS }}$	Gate Roverse Current	$\mathrm{V}_{\mathbf{G S}}=-150 \mathrm{~V}$	$V_{D S}=0$		-100			nA		
		$V_{G S}=-100 \mathrm{~V}$	$V_{D S}=0$				-100			
		$\mathrm{V}_{\mathbf{G S}}=-150 \mathrm{~V}$	$V_{D S}=0, T_{A}=150^{\circ} \mathrm{C}$		-100			$\mu \mathrm{A}$		
		$V_{G S}=-100 \mathrm{~V}$	$V_{D S}=0, T_{A}=150^{\circ} \mathrm{C}$				-100			
VGS (off)	Gate-Source Cutoff Voltage	$V_{\text {DS }}=30 \mathrm{~V}$,	$I_{D}=4 \mathrm{nA}$	-2	-15	-2	-15	V		
IDSS	Zero-Gate-Voltage Drain Current	$V_{D S}=30 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{GS}}=0$, See Note 3	2	10	2	10	mA		
\| $\mathrm{ff}_{\text {f }}$]	Small-Signal Common-Source Forward Transfer Admittance	$V_{D S}=30 \mathrm{~V}, \quad V_{G S}=0, f=1 \mathrm{kHz},$ See Note 4		0.5	3	0.5	3	mmho		
\|Vosi	Smali-Signal Common-Source Output Admittance				100		100	$\mu \mathrm{mho}$		
$C_{\text {iss }}$	Common-Source Short-Circuit Input Capacitance	$V_{D S}=30 \mathrm{~V} . \quad V_{G S}=0, f=1 \mathrm{MHz},$ See Note 4			20		20	pF		
$\mathrm{C}_{\text {rss }}$	Common-Source Short-Circuit Reverse Transfer Capacitance				2.5		2.5	pF		

NOTES: 3. This parameter must be messured using pulse techniques. $t_{w}=\mathbf{3 0 0} \mu \mathrm{s}$, dutv cycle $\leqslant \mathbf{2 \%}$.
4. To obtain repeatable results, these parameters must be messured with bias conditions applied for less than 5 seconds.
*JEDEC registered data

THERMAL INFORMATION

FREE-AIR TEMPERATURE DISSIPATION DERATING CURVE

FIGURE 1

CASE TEMPERATURE DISSIPATION DERATING CURVE

figure' 2

TYPES A5T6449, A5T6450, A8T6449, A8T6450 N-CHANNEL SILICON JUNCTION FIELD-EFFECT TRANSISTORS

SILECTI HIGH-VOLTAGE FIELD-EFFECT TRANSISTORS

- High V(BR) GSS . . . 300 V Min (A5T6449, A8T6449)
- High Dissipation Capability . . . $\mathbf{1 . 6} \mathbf{W}$ at $\mathbf{2 5}{ }^{\circ} \mathrm{C}$ Case Temperature

mechanical data

absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

	Reverse Gate-Source VoltageContinuous Forward Gate Cur				
	Continuous Device Dissipation				
	Continuous Device Dissipation				
	Continuous Device Dissipation Storage Temperature Range				
	Storage Temperature RangeLead Temperature $1 / 16$ Inch				

NOTES: 1. Derate linearly to $150^{\circ} \mathrm{C}$ free-air temperature at the rate of $5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
2. Derate linearly to $150^{\circ} \mathrm{C}$ lead temperature at the rate of $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$. Lead temperature is measured on the collector lead $\mathbf{1 / 1 6}$ inch from the case.
3. This rating applies with the entire case (including the leads) maintained at $25^{\circ} \mathrm{C}$. Derate linearly to $150^{\circ} \mathrm{C}$ case-and-lead tempersture at the rate of $12.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.

[^109]†U.S. Patent No. 3,439,238
electrical characteristics at $\mathbf{2 5}{ }^{\circ} \mathbf{C}$ free-air temperature (unless otherwise notad)

PARAMETER		TEET CONDITIONS		A5T6449 A8T6449		A5T6460 A8T6450		UNIT		
		MIN	MAX	MIN	MAX					
V (BR) ${ }^{\text {GSS }}$	Gate-Source Breakdown Voltage			$1 \mathrm{~g}=-10 \mu \mathrm{~A}$,	$V_{D S}=0$	-300		-200		V
IGSS	Gate Reverse Current	$V_{G S}=-160 \mathrm{~V}$	$V_{D S}=0$		-100			nA		
		$\mathrm{V}_{\mathrm{GS}}=-100 \mathrm{~V}$	$V_{0 S}=0$				-100			
		$V_{G S}=-150 \mathrm{~V}$	$V_{D S}=0, T_{A}=100^{\circ} \mathrm{C}$		-10			$\mu \mathrm{A}$		
		$V_{G S}=-100 \mathrm{~V}$	$V_{D S}=0, T_{A}=100^{\circ} \mathrm{C}$				-10			
VGS(off)	Gate-Source Cutoff Voltage	$\mathrm{V}_{\mathrm{DS}}=30 \mathrm{~V}$.	$I_{D}=4 \mathrm{nA}$	-2	-15	-2	-15	V		
IDSs	Zero-Gate-Voltage Drain Current	$\mathrm{V}_{\mathrm{DS}}=30 \mathrm{~V}$,	$V_{\text {GS }}=0$, See Note 4	2	10	2	10	mA		
\|Yfs ${ }^{\text {a }}$	Small-Signal Common-Source Forward Transfer Admittance	$\begin{aligned} & V_{D S}=30 \mathrm{~V}, \quad V_{G S}=0, f=1 \mathrm{kHz}, \\ & \text { See Note } 5 \end{aligned}$		0.5	3	0.5	3	mmho		
\|Yos		Small-Signal Common-Source Output Admittance				100		100	$\mu \mathrm{mho}$	
$\mathrm{C}_{\text {iss }}$	Common-Source Short-Circuit Input Capacitance	$V_{D S}=30 \mathrm{~V}, \quad V_{G S}=0, f=1 \mathrm{MHz}$ See Note 5			20		20	pF		
$\mathrm{C}_{\text {rss }}$	Common-Source Short-Circuit Reverse Transfer Capacitance				2.5		2.6	pF		

NOTES: 4. This parameter must be masured using pulse techniques, $t_{w}=300 \mu s$, duty cycle $\leqslant 2 \%$.
5. To obtain repeatable results, these parameters must be measured with bias conditions applled for less than \mathbf{E} eeconds.

THERMAL INFORMATION

FIGURE 1

TYPES 2N6451 THRU 2N6454 N-CHANNEL SILICON JUNCTION FIELD-EFFECT TRANSISTORS

DESIGNED FOR LOW-NOISE PREAMPLIFIER APPLICATIONS ESPECIALLY HYDROPHONES, IR SENSORS, AND PARTICLE DETECTORS

- Low $\mathrm{V}_{\mathrm{n}} \ldots \mathrm{I} . \mathrm{nV} / \sqrt{\mathrm{Hz}}$ Max at 10 Hz (2N6451, 2N6453)
- High |yfs| . . 20 mmho Min (2N6463, 2N6454)
- Low IGSS . . . 100 pA Max (2N6451, 2N6463)

*mechanical data

*absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

NOTE 1: Derste Inearly to $175^{\circ} \mathrm{C}$ free-alr temperature at the rate of $2.4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.

TYPES 2N6451 THRU 2N6454
 N-CHANNEL JUNCTION GATE FIELD-EFFECT TRANSISTORS

*electrical characteristics at $25^{\circ} \mathbf{C}$ free-air temperature (unless otherwise noted)

PARAMETER		TEST CONDITIONS ${ }^{\dagger}$	$2 \mathrm{Na451}$		2N8462		2N6453		2N8454		UNIT	
		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX			
$V_{\text {(BR) }}$ GSS	Gate-Source Breakdown Voltage		$I_{G}=-1 \mu A, \quad V_{D S}=0$	-20		-25		-20		-25		V
IGSS	Gate Reverse Current	$V_{G S}=-10 \mathrm{~V}, V_{D S}=0$		-0.1				-0.1			nA	
		$V_{G S}=-15 \mathrm{~V}, \mathrm{~V}_{\text {DS }}=0$				-0.5				-0.5		
		$\begin{aligned} & V_{G S}=-10 \mathrm{~V} . \\ & V_{D S}=0 \end{aligned} T_{A}=125^{\circ} \mathrm{C}$		-0.2			-0.2		-1		$\mu \mathrm{A}$	
		$\begin{aligned} & V_{G S}=-15 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DS}}=0 \end{aligned}$				-1						
VGS(off)	Gate-Source Cutoff Voltage	$V_{D S}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.5 \mathrm{nA}$	-0.5	-3.5	-0.5	-3.5	-0.75	-5	-0.75	-5	V	
IDSS	Zero-Gate-Voltage Drain Current	$V_{D S}=10 \mathrm{~V}, \quad V_{G S}=0,$ See Note 2	5	20	5	20	15	50	15	60	mA	
$\left\|\mathrm{Vfs}_{\text {f }}\right\|$	Small-Signal Common-Source Forward Transfer Admittance	$\begin{aligned} & V_{D S}=10 \mathrm{~V}, \quad I_{D}=5 \mathrm{~mA}, \\ & f=1 \mathrm{kHz} \end{aligned}$	15	30	15	30					mmho	
		$\begin{array}{ll} V_{D S}=10 \mathrm{~V}, & \mathrm{I}_{\mathrm{D}}=15 \mathrm{~mA}, \\ \mathrm{f}=1 \mathrm{kHz}, & \text { See Note } 3 \\ \hline \end{array}$					20	40	20	40		
\|Yos		Small-Signal Common-Source Output Admittance	$\begin{aligned} & V_{D S}=10 \mathrm{~V}, \quad I_{D}=5 \mathrm{~mA}, \\ & f=1 \mathrm{kHz} \end{aligned}$		50		50					$\mu \mathrm{mho}$
		$\begin{array}{ll} V_{D S}=10 \mathrm{~V}, & \mathrm{I}_{\mathrm{D}}=15 \mathrm{~mA}, \\ \mathrm{f}=1 \mathrm{kHz}, & \text { See Note } 3 \end{array}$						100		100		
$\mathrm{C}_{\text {iss }}$	Common-Source Short-Circuit Input Capacitance	$\begin{aligned} & V_{D S}=10 \mathrm{~V}, \quad I_{D}=5 \mathrm{~mA}, \\ & f=1 \mathrm{MHz} \end{aligned}$		25		25					pF	
		$\begin{array}{ll} V_{D S}=10 \mathrm{~V}, & I_{D}=15 \mathrm{~mA} \\ f=1 \mathrm{MHz}, & \text { See Note } 3 \end{array}$						25		25		
Crss	Common-Source Short-Circuit	$\begin{aligned} & V_{D S}=10 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{D}}=5 \mathrm{~mA}, \\ & f=1 \mathrm{MHz} \end{aligned}$		5		5					pF	
	Reverse Transfer Capacitance	$\begin{array}{ll} V_{D S}=10 \mathrm{~V}, & I_{D}=15 \mathrm{~mA}, \\ f=1 \mathrm{MHz}, & \text { See Note } 3 \\ \hline \end{array}$						5	5			

*operating characteristics at $\mathbf{2 5}{ }^{\circ} \mathrm{C}$ free-air temperature

PARAMETER		TEST CONDITIONS ${ }^{+}$	2NB451		2N6452		2N3463		2N6464		UNIT	
		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX			
F	Common-Source Spot Noise Figure		$\begin{array}{ll} V_{D S}=10 \mathrm{~V}, & I_{D}=5 \mathrm{~mA}, \\ R_{G}=10 \mathrm{k} \Omega, & f=10 \mathrm{~Hz} \end{array}$		1.5		2.5		1.5		2.5	dB
V_{n}	Equivalent Input Noise Voltage	$\begin{aligned} & V_{D S}=10 \mathrm{~V}, \quad D_{D}=5 \mathrm{~mA}, \\ & f=10 \mathrm{~Hz} \end{aligned}$		5		10		5		10	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$	
		$\begin{aligned} & V_{D S}=10 \mathrm{~V}, \quad I D=6 \mathrm{~mA}, \\ & f=.1 \mathrm{kHz} \end{aligned}$		3		8		3		8		

*JEDEC registerad date

${ }^{\dagger}$ The fourth lead (case) is connected to the source for all measurements.
NOTES: 2. Thls parameter must be measured using pulse techniques. $t_{w}=300 \mu_{s}$, duty cycle $<\mathbf{2 \%}$.
3. To obtain repeatable results, this parameter must be measured with bias conditions applied for less than five seconds.

HIGH-VOLTAGE 10-WATT TRANSISTORS
 FOR GENERAL PURPOSE AMPLIFIER APPLICATIONS IN LINE-OPERATED CIRCUITS

- Solid-State Relays
- High-Voltage Inverters
- Voltage Regulators
- Video Output
*mechanical data

*absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

NOTES: 1. This value applies between 0 and 10 mA collector currant when the base-emitter diode is open-eircuired.
2. Derate linearly to $175^{\circ} \mathrm{C}$ free-eir temperature at the rate of $6.67 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
3. Derate lineariy to $175^{\circ} \mathrm{C}$ cese temperature at the rate of $66.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
-JEDEC registered data. This data sheot contains all applicable registered data in effect at the time of publication.
*electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

PARAMETER		TEST CONDITIONS	2N6461		2N6462		2N6463		2N6464		UNIT	
		MIN	MAX	MIN	MAX	MIN	MAX	MiN	MAX			
V (BR)CBO	Collector-Base Breakdown Voltage		$I^{\prime} C=100 \mu A, \quad I_{E}=0$	300		300		250		250		V
$V_{\text {(BR)CEO }}$	Collector-Emitter Breakdown Voltage	$\begin{aligned} & I_{C}=10 \mathrm{~mA}, \quad I_{B}=0, \\ & \text { See Note } 4 \end{aligned}$	300		300		250		250		V	
$V_{\text {(BR) }}$ EBO	Emitter-Base Breakdown Voltage	$I_{E}=100 \mu A, \quad I_{C}=0$	7		7		6		6		V	
${ }^{\prime} \mathrm{CBO}$	Collector Cutoff Current	$\mathrm{V}_{C B}=200 \mathrm{~V}, \mathrm{I}^{\prime}=0$		50		50					nA	
		$V_{C B}=150 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0$						50		50		
		$\begin{aligned} & V_{C B}=200 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{E}}=0, \\ & \mathrm{~T}_{\mathrm{A}}=125^{\circ} \mathrm{C} \end{aligned}$		20		20					$\mu \mathrm{A}$	
		$\begin{aligned} & V_{C B}=150 \mathrm{~V}, \quad I_{E}=0, \\ & T_{A}=125^{\circ} \mathrm{C} \end{aligned}$						20		20		
IEBO	Emitter Cutoff Current	$\mathrm{V}_{\text {EB }}=5 \mathrm{~V}, \quad \mathrm{C}=0$		10		10		10		10	nA	
hfe	Static Forward Current Transfer Ratio	$V_{C E}=10 \mathrm{~V}, I^{\prime}=4 \mathrm{~mA}$	20		20		20		20			
		$V_{C E}=10 \mathrm{~V}, \quad I_{C}=20 \mathrm{~mA},$ See Note 4	30	120	100	300	30	120	100	300		
		$V_{C E}=10 \mathrm{~V}, \quad I_{C}=40 \mathrm{~mA},$ See Note 4					30		40			
$V_{\text {BE }}$	Base-Emitter Voltage	$V_{C E}=10 \mathrm{~V}, \quad I_{C}=20 \mathrm{~mA}$ See Note 4		1		1		1		1	V	
VCE(sat)	Collector-Emitter Saturation Voltage	$I_{B}=2 m A, \quad I_{C}=20 m A,$ See Note 4		1.1		1.1		1		1	V	
$h_{\text {fe }} \mathrm{l}$	Small-Signal Common-Emitter Forward Current Transfer Ratio	$\begin{aligned} & V_{C E}=20 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{C}}=20 \mathrm{~mA}, \\ & \mathrm{f}=20 \mathrm{MHz} \end{aligned}$	3.5	10	3.5	10	3.5	10	3.5	10	\cdots	
C_{cb}	Collector-Base Capacitance	$\begin{array}{ll} \mathrm{V}_{\mathrm{CB}}=20 \mathrm{~V}, & \mathrm{l}_{\mathrm{E}}=0, \\ \mathrm{f}=1 \mathrm{MHz}, & \text { See Note } 5 \end{array}$		3		3		3		3	pF	

NOTES: 4. These parameters must be measured using pulse techniques. $t_{w}=300 \mu s$, duty cycle $\leqslant 2 \%$.
5. $C_{c b}$ measurement employs a three-terminal capacitance bridge incorporating a guard circuit. The emitter is connected to the guard terminal of the bridge.

THERMAL INFORMATION

Typical 22db Power Gain at 30 MC
 Migh Celn at lixit Tomperature
 Designed for High Frequoncy - IF Aumpifiers
 RF Amplifiers - Vidoo Auplifiers - Oscillators

mechanical data
Welded case with glass-to-metal hermetic seal between case and leads. Unit weight is 1 gram. These units meet JEDEC outline TO-12 dimensions.

ALL CONNECTIONS INSULATED FROM CASE
ALL DINENSIONS R IMCHES
maximum ratings at $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$

junction temperature
Maximum Range

design	Maximum teristics	Rangeaf $\mathrm{T}_{J}=25^{\circ} \mathrm{C}$ds maesuremenis	as indicated)			min	-65	${ }^{\circ} \mathrm{C}$ to	$150^{\circ} \mathrm{C}$
				conditions			design centor	max	Malt
	IcBo BVcbo BVebo BV ceo Rcs $R_{B 1}-R_{B 2}$	Collector Cutoff Current at $150^{\circ} \mathrm{C}$ Breakdown Voltage Breakdown Voltage Breakdown Voltage Saturation Resistance Base-to-Base Resistance	$\begin{aligned} & V_{C B}=20 \mathrm{~V} \\ & V_{C B}=20 \mathrm{~V} \\ & I_{C}=50 \mu A \\ & I_{C}=50 \mu A \\ & I_{C}=1 \mathrm{~mA} \\ & I_{C}=5 m \mathrm{~mA} \\ & I_{B}=100 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & I_{\mathrm{E}}=0 \\ & I_{\mathrm{E}}=0 \\ & I_{B 2}=0 \\ & I_{B 2}=0 \\ & I_{B 2}=0 \\ & I_{B 2}=0 \end{aligned}$	$\begin{aligned} & l_{B 2}=0 \\ & 1 \mathrm{B2}=0 \\ & l_{E}=0 \\ & l_{E}=0 \\ & l_{B 1}=0 \\ & I_{B 1}=1.0 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 30 \\ & 1 \\ & 30 \end{aligned}$	0.005 60 45 150 10 K	$\begin{gathered} 0.4 \\ 400 \\ 300 \end{gathered}$	μA μA V V V $0 h m$ $0 h m$
	$\begin{aligned} & h_{f e} \\ & c_{o b} \\ & c_{H} \end{aligned}$	Iow frequency measur Current Transfer Ratio Output Capacity Header Capacity	$\begin{aligned} & V_{c}=20 \mathrm{~V} \\ & \mathrm{f}=1000 \mathrm{cps} \\ & V_{c}=20 \mathrm{~V} \\ & \mathrm{f}=1 \mathrm{Mc} \end{aligned}$	$\begin{aligned} & I_{E}=-1.3 \mathrm{~mA} \\ & \mathrm{I}_{E}=-1.3 \mathrm{~mA} \end{aligned}$	$\left\{\begin{array}{l} I_{82}=-100 \mu \mathrm{~A} \\ I_{\mathrm{B} 2}=-100 \mu \mathrm{~A} \end{array}\right.$	10	$\begin{aligned} & 25 \\ & 1.5 \\ & 0.4 \end{aligned}$		${ }_{\mu \mu \prime \prime}$
		hlgh frequency measu Current Transfer Ratio Series Input Resistance Parallel Output Resistance Paraliel Output Capacitance Alpha Cutoff Frequency Noise Figure Power Gain	$\text { monte }\}$	$\begin{aligned} & V_{\mathrm{C}}=20 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{E}}=-1.3 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{B} 2}=-100 \mu \mathrm{~A} \\ & \mathrm{f}=30 \mathrm{Mc} \end{aligned}$	A $\}$	$\begin{array}{r} 1.0 \\ 20 \\ 4 K \end{array}$	4 $100^{9 K}$ 1.5 100^{2} 15 22	$\left\lvert\, \begin{gathered} 300 \\ 15 K \\ 3 \\ 20 \end{gathered}\right.$	Ohm Ohm $\mu \mathrm{m}$ f Mc db db

Typical 20db Power Gein at 70 MC
 Hind Gan at Mah Tomperture
 Dosignod for Hiph Froquong - IF Amplifiers
 RF Amplifiors - Vidoo Amplifioes - Ondilletors

machanicel data

Welded case with glass-to-metal hermetic seal between case and leads. Unit weight is 1 gram. These units meet JEDEC outline TO-12 dimensions.

ALL CONRECTIONS INSULATED FRDM CASE
ALL DIMENSIONS W HNCNES
maximum retings af $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$
Emitter Current
Collector Current 20 mA
Base No 1 Co 20 mA

- • • • 5 mA
- • • • • 5 mA

Collector Dissipation (Derate $1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for Advanced Temperatures) 125 mW
Maximum Range
design characteristics at $\mathrm{TJ}_{\mathrm{J}}=25^{\circ} \mathrm{C}$. $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

	de measurements	condtrion:			m / m	dosign		
Icso	Collector Cutoff Current at $150^{\circ} \mathrm{C}$	$V_{C B}=20 \mathrm{~V}$			min	centor	$\frac{\max }{0.4}$	unit
$\mathrm{BV}_{8 \mathrm{cbo}}$	Breakdown Voltage	$V_{C B}=20 \mathrm{~V}$ $I_{C}=50 \mathrm{~A}$	$\mathrm{l}_{\mathrm{E}}=0$ $\mathrm{C}_{\mathrm{B} 2}=0$				40	${ }_{\underline{\mu}{ }^{\mu}{ }^{\text {A }} \text { (}}$
BVEBO	Breakdown Voltage	$1 \mathrm{c}=50 \mathrm{~mA}$	$\mathrm{l}_{\mathrm{B} 2}=0$		${ }_{1} 1$	60		v
${ }_{\text {Res }}{ }_{\text {B }}$	Breakdown Voltage Saturation Resistance	Ic $=1 \mathrm{~mA}$	$182=0$ 182	${ }_{1} \mathrm{E}_{\mathrm{B}_{1}=0}$	30	45		v
${ }_{\text {R }}^{\text {R }}$ - $-\mathrm{R}_{\mathrm{B} 2}$	Base-to-Base Resistance	$i_{c}=5 \mathrm{~mA}$ $i_{B}=100 \mu \mathrm{~A}$	$\mathrm{I}_{\mathrm{B} 2}=0$	$\mathrm{I}_{\mathrm{BI}}=1.0 \mathrm{~mA}$		150	300	Ohm
	Iow trequency meesurements Current Transfer Ratio $\mid V_{c}=20 \mathrm{~V}$							
$\mathrm{hf}_{\text {fe }}$			$\mathrm{I}_{\mathrm{E}}=-1.3 \mathrm{~mA}$		10			
		$f=1000 \mathrm{cps}$						
${ }_{\text {chab }}$	Header Capacity	$\begin{aligned} & V_{c}=20 \mathrm{~V} \\ & \mathrm{f}=1 \mathrm{Mc} \end{aligned}$	$\mathrm{I}_{\mathrm{E}}=-1.3 \mathrm{~mA}$	$\mathrm{I}_{\mathrm{B} 2}=-10 \mu_{\mu} \mathrm{A}$		1.5		$\mu \mu \mathrm{f}$
$\mathrm{hfo}_{\text {fo }}$								
Tios	Current Transfer RatioSeries Input Resistance		$V_{C}=20 \mathrm{~V}$					
${ }^{1} \mathrm{log}$	Parallel Output Resistance		$\mathrm{I}_{\mathrm{E}}=-1.3 \mathrm{~mA}$			${ }^{50}$	${ }_{150}$	
${ }_{\text {copp }}$	Parallei Output CapacitanceAlpha Cutoff Frequency					${ }_{2}$	${ }_{3}$	Onm
NF	Noise Figure					150		Mc
PG_{6}	Power Gain		$f=70 \mathrm{Mc}$			9	14	\%

TYPES 3N74 THRU 3N79 N-P-N SILICON TRANSISTORS

BULLETIN NO. DL-S 7211692 , MARCH 1972

DOUBLE-EMITTER TRANSISTORS DESIGNED FOR CHOPPER APPLICATIONS

- Low Offset Voltage

- Excellent Thermal Stability
- Very Low Leakage . . . 2 nA max at 15 V (3N74, 3N75, 3N76)
- High Breakdown Voltage . . . 18 V min (3N74, 3N75, 3N76)

"mechanical data

*absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

| | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 3N74 | 3N77 |
| 3N78 | |

NOTES: 1. These values apply when the base and other emitter are open-eircuited.
2. These values apply when the collector is short-circulted to the base but open-circuited with respect to the emitters.
3. Derste linearly to $175^{\circ} \mathrm{C}$ free-air temperature at the rate of $2 \mathrm{~mW} / /^{\circ} \mathrm{C}$.
4. Derate linearly to $175^{\circ} \mathrm{C}$ case temperature at the rate of $4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
-JE DEC registered data. This date sheet conteins all applleable registered data in effect at the time of publication.

TYPES 3N74 THRU 3N79
 N-P-N SILICON TRANSISTORS

"electrical characteristics at $25^{\circ} \mathbf{C}$ free-air temperature (unless otherwise noted)

Parameter		TEST CONDITIONS			3N74	3N76	3N78	UNIT
					MIN MAX	MIN MAX	min max	
$V_{\text {(ba)cbo }}$	Brankdown Voltage	$I_{C}=100 \mu$ A,	$\mathrm{IE}_{\mathbf{1}}=\mathrm{IE}_{\mathrm{E}}=0$		B0	60	SO	V
$V_{\text {(BR)EBO }}$	Emitter-Bate Eraakdown Voltape	$I_{E}=10 \mu \mathrm{~A}$,	IC $=0$,	See Note 5	18	18	18	v
$V_{\text {(BR)E1E2 }}$	Emitter-Emitter Breakdown Voltage	${ }^{\prime} \mathrm{E}_{1}= \pm 10 \mu \mathrm{~A}$,	$V_{C s}=0$,	See Note 6	± 18	± 18	± 18	v
IC8O	Collector Cutoff Current	$V_{C B}-30 V_{\text {c }}$	$\mathrm{IEP}_{1} \mathrm{IE}_{5}=0$		10	10	10	nA
IEBO	Emitter Cutoff Current	$V_{E B}=15 V_{1}$	$\mathrm{IC}_{\mathrm{C}}=0$,	See Note 5	2	2	2	nA
'E1E2(off)	Emitter Cutoff Current	$V_{\text {E1 }} \mathrm{V}_{2}= \pm 15 \mathrm{~V}_{1}$	$V_{C B}=0$,	See Note 6	± 2	± 2	± 2	nA
		$\mathrm{V}_{\mathrm{E} 1 \mathrm{E} 2}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\text {CB }}=0$,		$T_{A}=100^{\circ} \mathrm{C}$ Sue Note 6	± 100	± 100	± 100	
$\mid V_{\text {Eie2 }}$ (ot) \mid	Emitter-Emittor Offset Voltage	$\begin{aligned} & \mathrm{I}_{B}=1 \mathrm{~mA}, \\ & \mathrm{~T}_{\mathrm{A}}=-25^{\circ} \mathrm{C}, 25^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & I_{E_{1}}=I_{E 2}=0, \\ & { }^{C} \text {, and } 100^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	See Figure 1,	60	100	200	$\mu \mathrm{V}$
	Offret Voltage Change with Baes Current ${ }^{\dagger}$	$\mathrm{I}_{\mathrm{B}}(1)=9.5 \mathrm{~mA}$,	$1 \mathrm{~B}(2)=0.6 \mathrm{~mA}$,	IE1-IE2=0	25	25	60	$\mu \mathrm{V}$
$\left.\Delta V_{E 1 E 2 \text { (ofol }}\right\|_{\Delta T_{A}}$	Offeet Voltage Change with Temperature ${ }^{\dagger}$	$\mathrm{I}=1 \mathrm{~mA}$,	$\mathrm{IE}_{1}=\mathrm{IE}_{2}=0$,	$\begin{aligned} & T_{A(1)}=100^{\circ} \mathrm{C}, \\ & T_{A(2)}=-28^{\circ} \mathrm{C} \end{aligned}$	75	126	175	$\mu \mathrm{V}$
ra1e2(on)	Smali-signal Emitter-Emister On-State Resirtance	$\begin{aligned} & I_{\mathrm{g}}=1 \mathrm{~mA}, \\ & \mathrm{f}=1 \mathrm{kHz}, \end{aligned}$	$I_{E 1}=I_{E 2}=0$	$\begin{aligned} & t_{e}=100 \mu A_{1} \\ & \text { Soe Figure } 2 \end{aligned}$	$10 \quad 40$	$10 \quad 40$	i0 60	Ω
thel	Small-Signal Common-Emitter Forward Current Transfer Ratio	$\mathrm{V}_{\text {CE }}=5 \mathrm{~V}$,	$I^{\prime} \mathrm{C}=1 \mathrm{~mA}$,	$\mathrm{f}=\mathbf{2 0} \mathrm{MHz},$ See Note 8	1.5	1.5	1.6	
Cobo	Common-Base Open-Circuit Output Capacitance	$\mathrm{V}_{\mathbf{C B}}=5 \mathrm{~V}$,	$\mathrm{I}_{\mathrm{E}}=1 \mathrm{l} 2=0$,	$1=140 \mathrm{kHz}$	8	8	8	pF
Clibo	Common-Base Open-Circuit Input Capscitance	$\mathrm{VEB}^{\text {c }}=5 \mathrm{~V}$,	IC $=0, \quad$ f	$f=140 \mathrm{kHz},$ See Note 5	5	5	6	pF

NOTES: 5. These limits apply separately for each emitter with the other emitter open-eircuited.
6. These parameters must be messured with the collector short-circuited to the bee but open-circuited with respect to the amirters. The limits apply to both polarities of emitter-to-emitter voltage.
${ }^{\dagger}$ Offaet Voltage Change is defined as the magnitude of the algabraic diffaranee batween the offeet voltagen at two specified base eurrente or temparatures.
-JEDEC registered data

TYPES 3N74 THRU 3N79 N-P-N SILICON TRANSISTORS

*electrical characteristics at $\mathbf{2 5}{ }^{\circ} \mathbf{C}$ free-air temperature (unless otherwise noted)

Parameter		TEST CONDITIONS			3N77 MIN MAX	3N78 MIN MAX	$\frac{\text { 3N79 }}{\text { MIN MAX }}$	UNIT	
$V_{\text {(br) }}$ cbo	Collector-Base Bruakdown Voltage	$I^{\prime} C=100 \mu A$,	$\mathrm{IE}_{1}-\mathrm{IE}_{2}=0$		40	40	40	V	
V(bR)EBO	Emitter-Base Breakdown Voltage	$\mathrm{I}_{\mathrm{E}}=10 \mu \mathrm{~A}$,	Ic $=0$.	See Note 5	12	12	12	v	
V(BR)E1E2	Emitter-Emitter Breakdown Voltege	$\mathrm{IE}_{1}= \pm 10 \mu \mathrm{~A}$,	$V_{C s}=0$.	See Note 6	± 12	± 12	± 12	\checkmark	
Icror	Collector Cutoff Current	$V_{C B}=30 V_{\text {, }}$	$\mathrm{IE1}^{\text {- }} \mathrm{IE} 2=0$		10	10	20	nA	
IEbo	Emitter Cutoff Current	$\mathrm{V}_{\mathrm{EB}}=5 \mathrm{~V}$,	Ic $=0$,	See Note 5	8	5	10	nA	
		$\mathrm{V}_{\text {E1 }} \mathrm{E}^{2}= \pm 5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{CB}}=0$,	See Note 6	± 5	± 5	± 10		
IE1E2(off)	Emitter Cutoff Current	$\mathrm{V}_{\mathrm{E} 122}= \pm 5 \mathrm{~V}$,	$\mathrm{V}_{C B}=0$,	$\begin{aligned} & T_{A}=100^{\circ} \mathrm{C}, \\ & \text { Soen Note } 6 \end{aligned}$	± 100	± 100	± 200	nA	
$\left\|V_{\text {E1E2 }}(0 \rightarrow 3)\right\|$	Emitter-Emittor Offret Voltape	$\begin{aligned} & I_{B}=1 \mathrm{~mA}, \\ & T_{A}=-25^{\circ} \mathrm{C}, 25^{\circ} \end{aligned}$		See Figure 1 .	60	100	200	$\mu \mathrm{V}$	
	Offeet Voltage Change with Beese Current ${ }^{\dagger}$	$\mathrm{I}_{\mathrm{B}(1)}=1.5 \mathrm{~mA}$,	$\mathrm{I}_{\mathrm{B}}(2)=0.6 \mathrm{~mA}$,	le1 $=1 \mathrm{E} 2=0$	25	50	75	$\mu \mathrm{V}$	
$\mid \Delta V_{E 1 E 2}$ (ofa) $\\|^{\text {a }} T_{A}$	Otfret Voltage Change with Tamperature ${ }^{\dagger}$	$\mathrm{I}_{\mathrm{B}}=1 \mathrm{~mA}$,	$\mathrm{IE}_{\mathbf{1}}=\mathrm{I}_{\mathbf{E} 2}=0$,	$\begin{aligned} & T_{A(1)}=100^{\circ} \mathrm{C}, \\ & T_{A(2)}=-25^{\circ} \mathrm{C} \end{aligned}$	75	125	178	$\mu \mathrm{V}$	
re1e2(on)	Small-signal Emitter-Emittar On-State Resiatance	$\begin{aligned} & I_{B}=1 \mathrm{~mA}, \\ & \mathrm{f}=1 \mathrm{kHz}, \end{aligned}$	$I_{E_{1}}=I_{E_{2}}=0,$	$\begin{aligned} & I_{0}=100 \mu \mathrm{~A}, \\ & \text { See Figure } 2 \end{aligned}$	$10 \quad 80$	$10 \quad 60$	$10 \quad 60$	Ω	
hfol	Small-signal Common-Emitter Forward Current Transfor Patio	VCE - EV.	Ic = 1 mA,	$\begin{aligned} & f=20 \mathrm{MHz}, \\ & \text { See Note E } \end{aligned}$	1.6	1.6	1.5		
Cobo	Common-Biase Open-Circuit Output Capacitance	$V_{C B}=5 \mathrm{~V}$,		$f=140 \mathrm{kHz}$	8	8	10	pF	
$C_{i b o}$	Common-Base Open-Circuit Input Capacitance	$V_{E B}=5 \mathrm{~V}$,	Ic $=0$,	$f=140 \mathrm{kHz},$ See Note 5	5	5	6	pF	

NOTES: E. These limits apply saparataly for each emitter with the other emitter open-circuited.
6. These parameters must be measured with the collector short-circuited to the base but open-circuited with respect to the amitters. The limits apply to both polarities of emitter-to-mitter voltege.
toffent Voltage Change is defined es the magnitude of the algebrale difference between the offeet volteges at two specifled base eurrents or temperatures.

PARAMETER MEASUREMENT INFORMATION

FIGURE 2

NOTES: 7. Care must be taken to avoid error due to thermocouple action.
8. The voltmeter impedance must be high enough that halving it does not change the measured value.
*JEDEC reglstared data

TYPES 3N108 THRU 3N111 P-N-P SILICON TRANSISTORS

HIGH-VOLTAGE DOUBLE-EMITTER TRANSISTORS DESIGNED FOR LOW-LEVEL, HIGH-SPEED CHOPPER APPLICATIONS REQUIRING VERY LOW OFFSET VOLTAGE

- May be Used in Some Circuits Designed for N-P.N Types by Reversing Collector and Base Terminations
- High Breakdown Voltages . . . 50 V Min (3N108, 3N109)
- Low Offset-Voltage/Temperature Sensitivity
- Extremely Low Leakage . . . 0.1 nA Max at 25 V (3N108, 3N109)
*mechanical data

*absolute maximum ratings at $25^{\circ} \mathbf{C}$ free-air temperature (unless otherwise noted)

NOTES: 1. These values apply when the baee and other emitter are open-circulted,
2. These values apply when the collector ls short-elrcuited to the bese but open-circulted with reapect to the emittera.
3. Derste linearly to $200^{\circ} \mathrm{C}$ free-air temparature at the rate of $1.71 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
4. Derate linearly to $200^{\circ} \mathrm{C}$ case tamparature at the rate of $3.43 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.

TYPES 3N108 THRU 3N111 P-N-P SILICON TRANSISTORS

"electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

PARAMETER		TEST CONDITIONS		3N108		3N109		3N110		3N111		UNIT		
		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX					
$V_{\text {(ba)cbo }}$	Collector-Base Breakdown Voltage			${ }^{\prime} \mathrm{C}=-1 \mu \mathrm{~A}$,	$I_{E 1}=I_{E 2}=0$	-50		-50		-50		-50		v
V(BR)ECO E	Emitter-Collector Breakdown Voltage	${ }^{\prime} \mathrm{E}=-1 \mu \mathrm{~A}$,	$I_{B}=0,$ See Note 5	-50		-50		-30		-30		\checkmark		
V(bR)EBO	Emitter-Base Breakdown Voltage	${ }^{\prime} E=-1 \mu A$,	$I^{\prime} C=0$ See Note 5	-50		-50		-30		-30		v		
V(bR)E1E2	Emitter-Emitter Breakdown Voltage	${ }^{\prime} \mathrm{E}_{1}= \pm 1 \mu \mathrm{~A}$,	$V_{C B}=0,$ $\text { See Note } 6$	± 50		± 50		± 30		± 30		V		
${ }^{\text {c cbo }}$	Collector Cutoff Current	$V_{C B}=-30 \mathrm{~V}$,	$\mathrm{IEP}^{\prime}=1 \mathrm{IE}_{2}=0$		-0.25		-0.25		-0.5		-0.5	nA		
lebo	Emitter Cutoff Current	$V_{E B}=-25 \mathrm{~V},$	$\begin{aligned} & I_{C}=0, \\ & \text { See Note } 5 \\ & \hline \end{aligned}$		-0.1		-0.1		-0.5		-0.5	nA		
'E1E2loff)	Emitter Cutoff Current	$\mathrm{V}_{E 1 E 2}= \pm 25 \mathrm{~V},$	$v_{C B}=0,$ $\text { See Note } 6$		± 0.1		± 0.1		± 0.5		± 0.5	nA		
		$\begin{aligned} & V_{E 1 E 2}= \pm 25 \mathrm{~V}, \\ & T_{A}=100^{\circ} \mathrm{C}, \end{aligned}$	$\begin{aligned} & V_{C B B}=0, \\ & \text { See Note } 6 \end{aligned}$		± 10		± 10		150		± 50			
\| $\mathbf{E E 1 E 2}$ (ofs) \mid	Emitter-Emitter Offset Voltage	$\begin{aligned} & I_{B}=-1 \mathrm{~mA}, \\ & T_{A}=-25^{\circ} \mathrm{C}, 25^{\circ} \end{aligned}$	$I_{E 1}=I_{E 2}=0,$ C , and $100^{\circ} \mathrm{C}$, See Figure 1		30		150		30		150	$\mu \mathrm{V}$		
$\mid \Delta V_{\text {E1E2 }}$ (ofs) $\left.\right\|_{\Delta l_{B}}$	Offset Voltage Change with Base Current ${ }^{\dagger}$	$\begin{aligned} & I_{B(1)}=-1.5 \mathrm{~mA}, I_{B(2)}=-0.5 \mathrm{~mA}, \\ & I_{E 1}=I_{E 2}=0 \end{aligned}$			20	50		20		50		$\mu \mathrm{V}$		
$\left\|\Delta V_{E T E 2 \text { (ofs }}\right\| \Delta T_{A}$	Offset Voltage Change with Temperature ${ }^{\dagger}$	$\begin{aligned} & I_{B}=-1 \mathrm{~mA}, \\ & T_{A(1)}=100^{\circ} \mathrm{C}, \end{aligned}$	$\begin{aligned} & I_{E 1}=I_{E 2}=0, \\ & T_{A(2)}=-25^{\circ} \mathrm{C} \end{aligned}$		50	150		50		150		$\mu \mathrm{V}$		
$\mathrm{re}_{\text {ele2 }}$ (on)	Small-Signal Emitter-Emitter On-State Resistance	$\begin{aligned} & I_{B}=-1 \mathrm{~mA}, \\ & I_{e}=100 \mu \mathrm{~A}, \end{aligned}$	$\begin{aligned} & I_{E 1}=I_{E 2}=0, \\ & f=1 \mathrm{kHz}, \\ & \text { See Figure } 2 \end{aligned}$	10	50	10	50	10	50	10	50	Ω		
hfel	Small-Signal Common-Emitter Forward Current Transfer Ratio	$\begin{aligned} & V_{C E}=-6 \mathrm{~V}, \\ & f=4 \mathrm{MHz}, \end{aligned}$	$I_{C}=-1 \mathrm{~mA} .$ $\text { See Note } 5$	3		3		3		3				
$\mathrm{C}_{\text {obo }}$	Common-Base Open-Circuit Output Capacitance	$\begin{aligned} & V_{C B}=-6 V, \\ & f=1 \mathrm{MHz} \end{aligned}$	$\mathrm{I}_{\mathrm{E}_{1}}=\mathrm{I}_{E_{2}}=0$,		10		10		10		10	pF		
$C_{\text {ibo }}$	Common-Base Open-Circuit Input Capacitance	$\begin{aligned} & V_{E B}=-6 V, \\ & f=1 \mathrm{MHz}, \end{aligned}$	$I_{C}=0,$ See Note 5		3		3		3		3	pF		

NOTES: 5. These limits apply separately for each emitter with the other emitter open-circuited.
6. These parameters must be measured with the collector short-circuited to the base but open-circuited with respect to the emitters. The limits apply to both polarities of emitter-to-emitter voltage.
7. Care must be taken to avoid error due to thermocoupla action.
8. The voltmeter impedance must be high enough that halving it does not change the measured value.
\dagger Offset Voltage Change is defined as the magnitude of the algebraic difference between the offset voltages at two specified base currents or temperatures.
*JEDEC registered data
*PARAMETER MEASUREMENT INFORMATION

FIGURE 1

FIGURE 2

DEPLETION-TYPE MOS SILICON TRANSISTOR For Use in VHF Amplifier Applications to $\mathbf{3 0 0} \mathbf{~ M H z}$

- High |yfs| . . $\mathbf{5 0 0 0} \mu$ mho Min
- Low Feedback Capacitance, Crss . . 0.35 pF Max
*mechanical data

handling precautions
Curve-tracer testing and static-charge buildup are common causes of damage to insulated-gate devices. Permanent damage may result if either gate-voltage rating is exceeded even for extremely short time periods. Each transistor is protected during shipment by a gate-shorting device, which should be removed only during testing and after permanent mounting of the transistor. Personnel and equipment, including soldering irons, should be grounded.
*absolute maximum ratings at $25^{\circ} \mathbf{C}$ free-air temperature (unless otherwise noted)

NOTES: 1. This rating applies when the substrate is at the same potential as the source.
2. This value applies for $t_{w}<\mathbf{2 0} \mu \mathrm{s}$, duty cycle $<\mathbf{1 \%}$.
3. Derate linearly to $175^{\circ} \mathrm{C}$ free-air temperature at the rate of $2.2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.

*operating characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

	PARAMETER	TEST CONDITIONS ${ }^{\text {t }}$		MIN	MAX	UNIT
F	Common-Source Spot Noise Figure	$V_{D S}=15 \mathrm{~V}, I_{D}=5 \mathrm{~mA}$ See Figure 1	$f=200 \mathrm{MHz}$		5	dB
G_{ps}	Small-Signal Common-Source Insertion Power Gain	$V_{D D}=16 \mathrm{~V}, f=200 \mathrm{MHz}$,	See Figure 1	13.5	21	dB
B	Bandwidth (6 dB)			10	15	M Hz

${ }^{\dagger}$ All measurements are made with the substrate connected to the source.
NOTE 4: This parameter must be measured using pulse techniques. $\mathrm{t}_{\mathbf{w}} \leqslant \mathbf{2 0} \mathbf{m s}$, duty cycle $<\mathbf{1 5 \%}$.

PARAMETER MEASUREMENT INFORMATION*

CIRCUIT COMPONENT INFORMATION
L1: 4\% turns \# 20 AWG, 3/16" dia., approx. 1/2" long, tapped 1 turn from ground end
L2: $31 / 2$ turns \# 20 AWG, 3/8' dia., approx. $1 / 2^{\prime \prime}$ long
${ }^{\dagger}$ Leadless disc ceramic capacitor
\ddagger Noutralization fixed for a transistor having a typical value of Cras Equivalent paraliel input network:
$\mathbf{Y}_{G^{\prime}}=0.175 \mathrm{mmho}-$ (6.3 ± 2.5) mmha; input network loss $=0.8 \mathrm{~dB} ; 3 \mathrm{~dB}$ bandwidth $=20 \mathrm{MHz}$ Equivalent parallel output network:
$Y_{L^{\prime}}=0.5$ mmho $-\mathrm{j}(1.9 \pm 0.63)$ mmho; output network loss $=2 \mathrm{~dB} ; 3 \mathrm{~dB}$ bandwidth $=7.5 \mathrm{MHz}$
FIGURE 1

-JEDEC registered data

DEPLETION-TYPE MOS SILICON TRANSISTOR DESIGNED FOR CHOPPER AND SWITCHING APPLICATIONS

- Low rds(on) ... 300Ω Max
- Low Crss . . . 0.6 pF Max
- Low IGSS . . . 50 pA Max
*mechanical data
THE SUBSTRATE IS IN ELECTRICAL CONTACT WITH THE CASE

ALL JEDEC TO-72 DIMENSIONS AND NOTES ARE APPLICABLE

handling precautions

Curve-tracer testing and static-charge buildup are common causes of damage to insulated-gate devices. Permanent damage may result if either gate-voltage rating is exceeded even for extremely short time periods. Each transistor is protected during shipment by a gate-shorting device, which should be removed only during testing and after permanent mounting of the transistor. Personnel and equipment, including soldering irons, should be grounded.
*absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

NOTES: 1. This value applies for $\mathrm{t}_{w}<\mathbf{2 0} \mathrm{ms}$, duty cycle $\leqslant \mathbf{1 0 \%}$.
2. Derate linearly to $175^{\circ} \mathrm{C}$ free-air temperature at the rate of $2.67 \mathrm{mw} /{ }^{\circ} \mathrm{C}$.
*electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

PARAMETER		TEST CONDITIONS ${ }^{\text {t }}$			MIN MAX	$\begin{array}{\|c\|} \hline \text { UNIT } \\ \hline \text { pA } \\ \hline \end{array}$
IGSSF	Gate-Terminal Forward Current	$V_{G S}=6 \mathrm{~V}$,	VDS $=0$		50	
'Gsse	Gate-Terminal Reverse Current	$V_{G S}=-8 \mathrm{~V}$,	$V_{D S}=0$		-50	pA
		$V_{G S}=-8 V^{\prime}$	$V_{D S}=0$,	$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$	-5	nA
ID(off)	Drain Cutoff Current	$V_{D S}=1 \mathrm{~V}$,	$\mathrm{V}_{\text {GS }}=-8 \mathrm{~V}$		1	nA
		$V_{D S}=1 \mathrm{~V}$,	$V_{G S}=-8 \mathrm{~V}$,	$T_{A}=125^{\circ} \mathrm{C}$	1	$\mu \mathrm{A}$
ID(on)	On-State Drain Current	$V_{D S}=15 \mathrm{~V}$,	$\mathrm{V}_{\mathbf{G S}}=0$,	See Note 3	5	mA
$\mathrm{r}_{\text {ds }}(\mathrm{on})$	Small-Signal Drain-Source On-State Resistance	$V_{G S}=0$,	$I_{D}=0$,	$\mathrm{f}=1 \mathrm{kHz}$	300	Ω
$\mathrm{C}_{\text {iss }}$	Common-Source Short-Circuit Input Capacitance	$V_{D S}=0$,	$V_{G S}=-8 \mathrm{~V}$,	$\mathrm{f}=1 \mathrm{MHz}$	8	pF
$\mathrm{Crss}^{\text {r }}$	Common-Source Short-Circuit Reverse Transfer Capacitance	$V_{D S}=0$,	$V_{G S}=-8 \mathrm{~V}$,	$\mathrm{f}=1 \mathrm{MHz}$	0.6	pF
$C_{\text {cs }}$	Drain-Source Capacitance	$V_{D S}=0,$ See Note 4	$V_{G S}=-8 V,$	$\mathrm{f}=1 \mathrm{MHz},$	3	pF

NOTES: 3. This parameter must be measured using pulse techniques. $t_{w}=\mathbf{3 0 0} \mu \mathrm{s}$, duty eycle $<\mathbf{2 \%}$.
4. $C_{d s}$ measurement employs a three-terminal capacitance bridge incorporating a guard circuit. The gate and case are connected to the guard terminal of the bridge.

[^110]
ENHANCEMENT-TYPE \dagger MOS SILICON TRANSISTORS 3N155, 3N155A, 3N156, and 3N156A
 Are Characterized For Applications Requiring Very High Input Impedance, Such as Series and Shunt Choppers, Mutliplexers, and Commutators

3N157, 3N167A, 3N158, and 3N158A
 Are Characterized For Audio Amplifier Applications

- Channel Cut Off with Zero Gate Voltage
- Square-Law Transfer Characteristic Reduces Distortion
- Independent Substrate Connection Provides Flexibility in Biasing
"mechanical data

handling precautions
Curve-tracer testing and static-charge buildup are common causes of damage to insulatad-gate devices. Permanent damage may result if either gate-voltage rating is exceeded even for extremely short time periods. Each transistor is protected during shipment by a gate-shorting device which should be removed only during testing and after permanent mounting of the transistor. Personnel and equipment, including soldering irons, should be grounded.
absolute maximum ratings at $\mathbf{2 5}^{\circ} \mathbf{C}$ free-air temperature (unless otherwise noted)

NOTES: 1. Thase voltage ratings apply when the subatrate is at the same potential as the least-negative element.

- JEDE ${ }^{2}$. Derate linearly to $\mathbf{1 7 5} \mathrm{C}$ free-alr temparature at the rate of $\mathbf{2 ~ m W} /{ }^{\circ} \mathrm{C}$.
tedEC registersed data. This dats theet contains all applicable ragistared data in offect at time of publication.
${ }^{\dagger}$ Enhencement-mode operation entaifs the use of forward gate-source voltage to increase draln currant from loss, the drain current at onhancement-type trensistor is intion-mode operation wherein a reverse gate-source voltage is used to decrease drain eurrent. An onhancement-type trensistor is in the "off" state at $\mathrm{V}_{\mathbf{G S}} \mathbf{- 0} \mathbf{O}$ and hence will not operate normally in the depletion mode.

TYPES 3N155 THRU 3N158, 3N155A THRU 3N158A P-CHANNEL ENHANCEMENT-TYPE INSULATED-GATE FIELD-EFFECT TRANSISTORS

*3N155 and 3N156 electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

PARAMETER		TEST CONDITIONS \ddagger		3N1B5		3N158		UNIT		
		MIN	MAX	MIN	MAX					
'gssf	Forwerd Gate-Terminal Current			$\mathrm{V}_{\text {GS }}=-25 \mathrm{~V}, \mathrm{~V}_{\text {DS }}=0$			-10		-10	PA
		$V_{\text {OS }}=-50 \mathrm{~V}, \mathrm{~V}_{\text {DS }}=0$			-1		-1	nA		
IGSSR - Reverse Gate-Terminal Current		$\mathrm{V}_{\text {GS }}=25 \mathrm{~V}, \mathrm{~V}_{\text {OS }}=0$			10		10	PA		
		$V_{G S}=60 V_{1}, V_{\text {DS }}=0$			1		1	nA		
IDSS Zero-Gate-Voltage Drain Current		$V_{D S}=-10 \mathrm{~V}, \mathrm{~V}_{\text {GS }}=0$			-1		-1	nA		
		$\mathrm{V}_{\text {DS }}=-10 \mathrm{~V}, \mathrm{~V}_{\text {GS }}=0$,	$\mathrm{T}^{\prime}=125^{\circ} \mathrm{C}$		-1		-1	MA		
$\mathrm{V}_{\text {GS }}($ th)	Gate-Source Threchold Voltage	$V_{D S}=-10 \mathrm{~V}, \mathrm{~T}_{\mathrm{D}}=-10$		-1.5	-3.2	-3	-5	V		
Ioton)	On-State Drain Current	$V_{\text {OS }}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=-1$	See Note 3	-5		-		mA		
Vos(on)	Drain-Source On-State Voltege	$V_{G S}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-2 \mathrm{~m}$			-1		-1	V		
ros (on)	Static Small-Signal Drain-Source On-State Resiotance	$V_{G S}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0$			600		600	Ω		
rdalon)	Small-Signal Drain-Source On-State Resistance	$V_{\text {OS }}=-10 \mathrm{~V}, \mathrm{I}=0$,	$\mathrm{f}=1 \mathrm{kHz}$		600		600	Ω		
$C_{\text {Ist }}$	Common-Source Short-Circuit Input Capecitance	$V_{D S}=-18 \mathrm{~V}, \mathrm{~V}_{\text {GS }}=0$.	$f=140 \mathrm{kHz}$		б		5	pF		
$\mathrm{Crsa}^{\text {rem }}$	Common-Source Short-Circult Reverse Transfor Capacitance	$V_{\text {DS }}=0, \quad V_{\text {GS }}=0$,	$f=140 \mathrm{kHz}$		1.3		1.3	pF		

*3N165A and 3N156A electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

PARAMETER		TEST CONDITIONS*	3N1E8A	3N1EAA	UNIT	
		MIN MAX	MIN MAX			
IGssf	Forward Gate-Tarminal Current		$V_{G S}=-25 V, V_{D S}=0$	-10	-10	DA
		$V_{G S}=-60 V, V_{D S}=0$	-1	-1	nA	
IGSsR	Reverse Gate-Terminal Current	$V_{G S}=25 \mathrm{~V}, \quad V_{\text {DS }}=0$	10	10	PA	
		$V_{G S}=60 \mathrm{~V}, \mathrm{~V}_{\text {DS }}=0$	1	1	nA	
IDSs	Zero-Gate-Voltage Drain Current	$V_{D S}=-10 \mathrm{~V}, \mathrm{~V}_{\text {GS }}=0$	-0.25	-0.25	nA	
		$V_{D S}=-10 \mathrm{~V}, \mathrm{~V}_{G S}=0, \quad T_{A}=125^{\circ} \mathrm{C}$	-250	-250		
$V_{G S}(\mathrm{th})$	Gate-Source Threshold Voltage	$\mathrm{V}_{\mathrm{DS}}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-10 \mu \mathrm{~A}$	-1.5 $\quad-3.2$	-3 $\quad-5$	V	
ID(on)	On-State Drain Current	$V_{D S}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=-10 \mathrm{~V}$, See Note 3	-5	-5	mA	
VDsion)	Drain-Source On-State Voitage	$V_{G S}=-10 \mathrm{~V}, \mathrm{ID}=-2 \mathrm{~mA}$	-1	-1	V	
rosion)	Static Smali-Signal Drain-Source On-State Resistance	$V_{G S}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0$	300	300	Ω	
rds(on)	Small-Signal Drain-Source On-State Resistance	$V_{G S}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0, \quad f=1 \mathrm{kHz}$	300	300	Ω	
$C_{\text {ist }}$	Common-Source Short-Circult Input Capacitance	$V_{\text {DS }}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, \quad \uparrow=140 \mathrm{kHz}$	5	5	pF	
$\mathrm{Crss}^{\text {rem }}$	Common-Source Short-Circuit Reverse Transfer Capacitance	$V_{D S}=0, \quad V_{G S}=0 . \quad f=140 \mathrm{kHz}$	1.3	1.3	pF	

NOTE 3: This parameter must be measured using pulee technlques. $t_{w}=300 \mu s$, duty eycle $<\mathbf{2 \%}$.
*JEDEC registered data
\ddagger All mesaurements are made with the case and substrate connected to the source.

TYPES 3N155 THRU 3N158, 3N155A THRU 3N158A P-CHANNEL ENHANCEMENT-TYPE INSULATED-GATE FIELD-EFFECT TRANSISTORS

*3N155, 3N155A, 3N156, 3N156A switching characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

	PARAMETER	TEST CONDITIONS \ddagger	MAX	UNIT
$t_{\text {d }}($ on)	Turn-On Delay Time	$\begin{array}{ll} V_{D O}=-10 \mathrm{~V}, & I_{D(\text { on })}=-2 \mathrm{~mA}, \\ V_{G S(\text { on })}=-10 \mathrm{~V}, & V_{G S(\text { off })}=0, \\ \text { See Figure } 1 \end{array}$	45	ns
t_{r}	Rise Time		65	ns
$\mathrm{t}_{\mathrm{d} \text { (} \mathrm{fff})}$	Turn-Off Delay Time		60	ns
t_{f}	Fall Time		100	ns

$\ddagger_{\text {All measurements are made with the case and substrate connected to the source. }}$
PARAMETER MEASUREMENT INFORMATION

test circuit

VOLTAGE WAVEFORMS

NOTES: a. The input waveform is supplied by a generator with the following characteristics: $Z_{o u t}=50 \Omega, t_{r} \leq 2 n s, t_{f} \leqslant 2 n s, t_{w}>10 \mu s$, duty cycle $\approx 2 \%$
b. Waveforms are monitored on an oscilloscope with the following characteristics: $\mathrm{t}_{\mathrm{F}} \leqslant 10 \mathrm{~ns}, \mathrm{R}_{\mathrm{in}} \geq 1 \mathrm{M} \Omega, \mathrm{C}_{\mathrm{in}}<1 \mathrm{pF}$.
figure 1

TYPES 3N155 THRU 3N158, 3N155A THRU 3N158A P-CHANNEL ENHANCEMENT-TYPE INSULATED-GATE FIELD-EFFECT TRANSISTORS

*3N157 and 3N158 electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

*3N157A and 3N158A electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

PARAMETER		TEST CONDITIONS \ddagger	3N157A	3N158A	UNIT	
		MIN MAX	MIN MAX			
${ }^{\prime}$ GSSF	Forward Gate-Terminal Current		$\mathrm{V}_{\mathrm{GS}}=-25 \mathrm{~V}, \mathrm{~V}_{\text {DS }}=0$	-10	-10	pA
		$\mathrm{V}_{\text {GS }}=-50 \mathrm{~V}, \mathrm{~V}_{\text {DS }}=0$	-1	-1	nA	
		$\mathrm{V}_{\mathrm{GS}}=-25 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0, \quad \mathrm{~T}_{\mathrm{A}}=55^{\circ} \mathrm{C}$	-10	-10	nA	
		$V_{G S}=-50 \mathrm{~V}, \mathrm{~V}_{\text {DS }}=0, \quad \mathrm{~T}_{\mathrm{A}}=55^{\circ} \mathrm{C}$	-1	-1	$\mu \mathrm{A}$	
'GSSR	Reverse Gate-Terminal Current	$V_{\text {GS }}=25 \mathrm{~V}, \mathrm{~V}_{\text {DS }}=0$	10	10	pA	
		$\mathrm{V}_{\text {GS }}=50 \mathrm{~V}$, $\mathrm{V}_{\text {DS }}=0$	1	1	nA	
IDSs	Zero-Gate-Voltage Drain Current	$\mathrm{V}_{\text {DS }}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$	-0.25	-0.25	nA	
		$\mathrm{V}_{\mathrm{DS}}=-50 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$	-10	-10	$\mu \mathrm{A}$	
$V_{\text {GS(}}$ th)	Gate-Source Threshold Voltage	$V_{D S}=-15 \mathrm{~V}, I_{D}=-10 \mu \mathrm{~A}$	-1.5 -3.2	-3	V	
$\mathrm{V}_{\text {GS }}$	Gate-Source Voltage	$\mathrm{V}_{\text {DS }}=-15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-0.5 \mathrm{~mA}$	-1.5	-3	V	
ID(on)	On-State Drain Current	$\mathrm{V}_{\mathrm{DS}}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=-10 \mathrm{~V}$, See Note 3	-5	-5	mA	
$\left\|y_{f s}\right\|$	Small-Signal Common-Source Forward Transfer Admittance	$V_{D S}=-15 \mathrm{~V}, \mathrm{I}^{\prime}=-2 \mathrm{~mA}, \quad f=1 \mathrm{kHz}$	14	14	mmho	
\|Vos		Small-Signal Common-Source Output Admittance		60	60	$\mu \mathrm{mho}$
$C_{\text {iss }}$	Common-Source Short-Circuit Input Capacitance	$V_{\text {DS }}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, \quad f=140 \mathrm{kHz}$	5	5	pF	
$\mathrm{C}_{\text {rss }}$	Common-Source Short-Circuit Reverse Transfer Capacitance		1.3	1.3	pF	

[^111]*JEDEC registered data
末All measurements are made with the case and substrate connected to the source.

ENHANCEMENT-TYPE \dagger MOS SILICON TRANSISTOR

For Applications Requiring Very High Input Impedance, Such as Series and Shunt Choppers, Multiplexers, and Commutators

- Channel Cut Off with Zero Gate Voltage
- Square-Law Transfer Characteristic Reduces Distortion
- Independent Substrate Connection Provides Flexibility in Biasing
- Diode-Protected Version Available . . . 3N161
*mechanical data

handling precautions

Curve-tracer testing and static-charge buildup are common causes of damage to insulated-gate devices. Permanent damage may result if either gate-voltage rating is exceeded even for extremely short time periods. Each transistor is protected during shipment by a gate-shorting device, which should be removed only during testing and after permanent mounting of the transistor. Personnel and equipment, including soldering irons, should be grounded.
*absolute maximum ratings at $25^{\circ} \mathbf{C}$ free-air temperature (unless otherwise noted)
Drain-Gate Voltage . -25 V
Drain-Source Voltage . -25 V
Forward Gate-Source Voltage . - 25 V
Reverse Gate-Source Voltage . 25 V
Continuous Drain Current . - 125 mA
Continuous Device Dissipation at (or below) $25^{\circ} \mathrm{C}$ Free-Air Temperature (See Note 1) 360 mW
Continuous Device Dissipation at (or below) $25^{\circ} \mathrm{C}$ Case Temperature (See Note 2) 1.8 W
Storage Temperature Range . $-65^{\circ} \mathrm{C}$ to $\mathbf{2 0 0 ^ { \circ }} \mathrm{C}$
Lead Temperature $1 / 16$ Inch from Case for 10 Seconds . 300 C
NOTES: 1. Derate linearly to $175^{\circ} \mathrm{C}$ free-air temperature at the rate of $2.4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
2. Derate inearly to $175^{\circ} \mathrm{C}$ case temperature at the rate of $12 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
*JEDEC registered date. This data sheet contains all applicable registered data in effect at the time of publication.
${ }^{\dagger}$ Enhancement-mode oparation entails the use of a forward gate-source voltage to Increase drain current from IDSS, the drain current at
$V_{G S}=0$, as opposed to depletion-mode operation wherein a revarse gate-source voltage is used to decrease draln current. An enhancement-type transistor is in the "off" state at $\mathrm{V}_{\mathbf{G S}}=0$ and hence wlll not operate normally in the depletion mode.

TYPE 3N160
 P-CHANNEL ENHANCEMENT-TYPE INSULATED-GATE FIELD-EFFECT TRANSISTOR

*electrical characteristics at $25^{\circ} \mathbf{C}$ free-air temperature (unless otherwise noted)

NOTE 3: These parameters must ba measured using pulse techniques. $t_{p} \approx 100 \mathrm{~ms}$, duty cycle $\leqslant 10 \%$.

- JEDEC registered data
\dagger All measurements are made with the third lead (case and substrate) connected to the fourth lead (source).

THERMAL INFORMATION

FREE-AIR TEMPERATURE DISSIPATION DERATING CURVE

FIGURE 1

CASE TEMPERATURE DISSIPATION DERATING CURVE

FIGURE 2

DIODE-PROTECTED ENHANCEMENT-TYPE ${ }^{\text {M MOS SILICON TRANSISTOR }}$

For Applications Requiring Very High Input Impedance, Such as Series and Shunt Choppers, Multiplexers, and Commutators

- Channel Cut Off with Zero Gate Voltage
- Square-Law Transfer Characteristic Reduces Distortion
- Independent Substrate Connection Provides Flexibility in Biasing
- Internally Connected Diode Protects Gate from Damage due to Overvoltage
- Version Available without Diode Protection . . . 3N160

description

This device is designed for applications requiring very high input impedance, such as choppers, commutators, and logic switches. The device is protected from excessive input voltage by a shunting diode connected from the gate to the substrate. This eliminates the need for most precautionary handling procedures associated with unprotected MOS devices.
*mechanical data

*absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)
Drain-Gate Voltage . -25 V
Drain-Source Voltage . -25 V
Continuous Forward Gate-Terminal Current . - 0.1 mA
Continuous Reverse Gate-Terminal Current . 10 mA
Continuous Drain Current . - 125 mA
Continuous Device Dissipation at (or below) $25^{\circ} \mathrm{C}$ Free-Air Temperature (See Note 1) 360 mW
Continuous Device Dissipation at (or below) $25^{\circ} \mathrm{C}$ Case Temperature (See Note 2) 1.8 W
Storage Temperature Range . $-65^{\circ} \mathrm{C}$ to $\mathbf{2 0 0}{ }^{\circ} \mathrm{C}$
Lead Temperature $\mathbf{1 / 1 6}$ Inch from Case for 10 Seconds . $300^{\circ} \mathrm{C}$
NOTES: 1. Derate linearly to $175^{\circ} \mathrm{C}$ free-air temperature at the rate of $2.4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
2. Derate linearly to $175^{\circ} \mathrm{C}$ case temperature at the rate of $12 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.

- JEDEC registered data. This data sheet contains all applicable registered data in effect at the time of publication.
${ }^{\dagger}$ Enhancement-mode operation entalls the use of a forward gate-source voltage to increase drain current from loss, the drain current at $V_{G S}=0$, as opposed to depletion-mode operation wherein a reverse gate-source voltage is used to decrease drain current. An enhancement-type transistor is in the "off" state at $\mathrm{V}_{\mathrm{GS}}=0$ and hence will not operate normally in the depletion made. The protective shunting diode is reverse-biased by the application of forward gate-source voltage.
"electrical characteristics at $\mathbf{2 5}^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

PARAMETER	TEST CONDITIONS ${ }^{\dagger}$		MIN	MAX	UNIT	
V(BR)GSSF Forward Gate-Source Breakdown Voltage	$I_{G}=-0.1 \mathrm{~mA}, V_{D S}=0$,	See Note 3	-25		V	
IGSSE Forw	$V_{G S}=-25 \mathrm{~V}, \mathrm{~V}_{\text {DS }}=0$			-0.1	nA	
IGSSF Forward Gate-Terminal Current	$V_{G S}=-25 V, V_{D S}=0$,	$\mathrm{TA}=100^{\circ} \mathrm{C}$		-10	nA	
Inss Zero-Gate-Voltse Drain Current	$V_{D S}=-15 \mathrm{~V}, V_{G S}=0$			-10	nA	
DSSS Zero-GatoVoltoge Dram Current	$\mathrm{V}_{\text {DS }}=-26 \mathrm{~V}, \mathrm{~V}_{\text {GS }}=0$			-10	$\mu \mathrm{A}$	
$\nabla_{\text {GS(th }}$ Gate-Source Threshold Voltage	$V_{\text {DS }}=-15 \mathrm{~V}, \mathrm{I}^{\prime}=-10 \mu \mathrm{~A}$		-1.5	-5	V	
VGS Gate-Source Voltage	$V_{\text {DS }}=-16 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-8 \mathrm{~mA}$		-4.5	-8	V	
ID(on) On-State Drain Current	$V_{D S}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=-15 \mathrm{~V}$,	See Note 4	-40	-120	mA	
$\|$Small-Signal Common-Sourca			3.5	6.5	mmho	
\|Yos	Output Admittance	$V_{D S}=-15 \mathrm{~V}, \mathrm{ID}^{\prime}=-8 \mathrm{~mA}$			0.25	mmho
$C_{\text {iss }}$ Common-Source Short-Circuit Input Capacitance		$\mathrm{f}=1 \mathrm{MHz}$		10	pF	
Crss Common-Source Short-Circuit Reverse Transfer Capacitance				4	pF	

NOTES: 3. To ensure that the gate-shunting diode is functioning properly, this voltage is measured while the device is conducting rated forward gate-terminal current.
4. This parameter must be measured using pulse techniques. $t_{p} \approx 100 \mathrm{~ms}$, duty cycle $\leqslant 10 \%$.
*JEDEC reglstered data
tAll messurements are made with the third lead (case and substrate) connected to the fourth lead (source).

THERMAL INFORMATION

FREE-AIR TEMPERATURE DISSIPATION DERATING CURVE

FIGURE 1

CASE TEMPERATURE DISSIPATION DERATING CURVE

FIGURE 2

ENHANCEMENT-TYPE ${ }^{\dagger}$ MOS SILICON TRANSISTORS

For Applications Requiring Very High Input Impedance, Such as
Series and Shunt Choppers, Multiplexers, and Commutators

- Channel Cut Off with Zero Gate Voltage
- Square-Law Transfer Characteristic Reduces Distortion
- Independent Substrate Connection Provides Flexibility in Biasing
*mechanical data
THE SUBSTRATE IS IN ELECTRICAL CONTACT WITH THE CASE

handling precautions

Curve-tracer testing and static-charge buildup are common causes of damage to insulated-gate devices. Permanent damage may result if either peak gate-voltage rating is exceeded even for extremely short time periods. Each transistor is protected during shipment by a gate-shorting device which should be removed only during testing and after permanent mounting of the transistor. Personnel and equipment, including soldering irons, should be grounded.
absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

NOTES: 1. These voltage ratings appiy when the substrate is ot the same potentiol as the least-negative element.
2. The working voltege ratings are based on fong-term reliability considerations and may be exceeded for short intervals.
3. Derste linearly to $150^{\circ} \mathrm{C}$ free-air temperature at the rate of $\mathbf{3} \mathrm{mW} /{ }^{\circ} \mathrm{C}$.

- JEDEC registared data. This data sheet contains all applicable registered data in effect at time of publication.
t Enhancement-mode operation entails the use of a forward gate-source voltage to increase drain current from loss, the drain current at $V_{G S}=0$, as opposed to depletion-mode operation wherein a reverse gata-source voltage is usad to decrease drain eurrent. An enhancement-type trensistor is in the "off" state at $\mathrm{V}_{\mathbf{G S}}=\mathbf{0}$ and hence will not operate normally in the depletion mode.

TYPES 3N163, 3N164 P-CHANNEL ENHANCEMENT-TYPE INSULATED-GATE FIELD-EFFECT TRANSISTORS

*3N163 electrical charactaristics at $\mathbf{2 5}{ }^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

PARAMETER	TEST CONDITION\% \ddagger	MIN MAX	UNIT
Forward Gate-Terminal Current	$V_{G S}=-40 \mathrm{~V}, \mathrm{~V}_{\text {DS }}=0$	-10	pA
	$V_{G S}=-40 \mathrm{~V}, \mathrm{VDS}=0, \quad \mathrm{TA}=125^{\circ} \mathrm{C}$	-26	
IGSSR Reverse Gate-Torminal Current	$V_{G S}=40 \mathrm{~V}, V_{D S}=0$	10	pA
Zero-Gate-Voltege Drain Current	$V_{D S}=-15 \mathrm{~V}, \mathrm{~V}_{\text {GS }}=0$	-0.2	nA
	$V_{D S}=-40 \mathrm{~V}, \mathrm{~V}_{G S}=0$	-10	$\mu \mathrm{A}$
Zero-Gate-Voltege Source Current	$V_{S D}=-20 V_{1} V_{G D}=0, \quad$ See Note 4	-0.4	nA
	$V_{S D}=-40 \mathrm{~V}, \mathrm{~V}_{\mathrm{GD}}=0, \quad$ See Note 4	-10	$\mu \mathrm{A}$
VGS(th) Gate-Source Threshold Voltege	$V_{D S}=-15 V_{1} I_{D}=-10 \mu \mathrm{~A}$	-2 -6	V
	$V_{D S}=V_{G S} . \quad I_{D}=-10 \mu \mathrm{~A}$	-2 -5	
VGS Gate-Source Voltage	$V_{D S}=-15 \mathrm{~V}, I_{D}=-0.6 \mathrm{~mA}$	$\begin{array}{ll}-3 & -6.5\end{array}$	V
ID(on) On-State Drain Current	$\mathrm{V}_{\mathrm{DS}}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=-10 \mathrm{~V}$, See Note 5	$-5 \quad-30$	mA
rDS(on) Static Drain-Source On-State Resistance	$V_{G S}=-20 \mathrm{~V}, I_{D}=-100 \mu \mathrm{~A}$	250	Ω
W $\mathrm{Vfs}^{\text {a }}$ Small-Signal Common-Source Forward Transfer Admittance	$\begin{aligned} & V_{D S}=-15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-10 \mathrm{~mA}, f=1 \mathrm{kHz} \text {, } \\ & \text { See Note } 6 \end{aligned}$	$2 \quad 4$	mmho
Vos ${ }^{\text {S }}$ Smatl-Signal Common-Source Output Admittance		250	$\mu \mathrm{mho}$
$\mathrm{C}_{\text {iss }}$ Common-Source Short-Circuit Input Capacitance	$V_{D S}=-15 V, I_{D}=-10 \mathrm{~mA}, f=1 \mathrm{MHz},$ See Note 6	2.5	pF
$\mathrm{C}_{\text {rss }}$ Common-Source Short-Circuit Reverse Transfer Capacitance		0.7	pF
$\mathrm{C}_{\text {oss }}$ Common-Source Short-Circuit Output Capacitance		3	pF

*3N164 electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

PARAMETER		TEST CONDITIONS \ddagger	MIN MAX	$\begin{array}{\|c\|} \hline \text { UNIT } \\ \hline \text { PA } \\ \hline \end{array}$
IGSSF	Forward Gate-Terminal Current	$V_{G S}=-30 \mathrm{~V}, V_{D S}=0$	-10	
		$V_{G S}=-30 V, V_{D S}=0, \quad T_{A}=125^{\circ} \mathrm{C}$	-25	
IGSSR	Reverse Gate-Terminal Current	$V_{G S}=30 \mathrm{~V}, V_{D S}=0$	10	PA
IDSs	Zero-Gate-Voltage Drain Current	$V_{D S}=-15 V_{1} V_{G S}=0$	-0.4	nA
		$V_{D S}=-30 \mathrm{~V}, \mathrm{~V}_{\text {GS }}=0$	-10	$\mu \mathbf{A}$
ISDS	Zero-Gate-Voltage Source Current	$V_{S D}=-20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GD}}=0, \quad$ See Note 4	-0.8	nA
		$V_{S D}=-30 \mathrm{~V}, V_{G D}=0, \quad$ See Note 4	-10	$\mu \mathrm{A}$
$\mathbf{V G S}_{\text {GS }}$ (th)	Gate-Source Threshold Voltage	$V_{D S}=-15 \mathrm{~V}, I_{D}=-10 \mu \mathrm{~A}$	-2 -5	V
		$V_{D S}=V_{G S}, \quad I_{D}=-10 \mu A$	-2 -5	
$V_{\text {GS }}$	Gate-Source Voltage	$V_{D S}=-15 \mathrm{~V}, I_{D}=-0.5 \mathrm{~mA}$	-2.5 -6.5	V
ID(on)	On-State Drain Current	$\mathrm{V}_{\mathrm{DS}}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=-10 \mathrm{~V}$, See Note 5	-3 -30	mA
rDS(on)	Static Drain-Source On-State Resistance	$V_{G S}=-20 \mathrm{~V}, I_{D}=-100 \mu \mathrm{~A}$	300	Ω
Vfs	Small-Signal Common-Source Forward Transfer Admittance	$\begin{aligned} & V_{D S}=-15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-10 \mathrm{~mA}, f=1 \mathrm{kHz}, \\ & \text { See Note } 6 \end{aligned}$	14	mmho
Yos	Small-Signal Common-Source Output Admittance		250	$\mu \mathrm{mho}$
$\mathrm{C}_{\mathrm{igs}}$	Common-Source Short-Circuit Input Cepecitance	$V_{D S}=-15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-10 \mathrm{~mA}, f=1 \mathrm{MHz}$ See Note 6	2.5	pF
$\mathrm{Crgs}^{\text {reser }}$	Common-Source Short-Circuit Reverse Transfer Capacitance		0.7	pF
C_{085}	Common-Source Short-Circuit Output Cepacitance		3	pF

NOTES: 4. For the masurement of isOS, the substrate must be connected to the drain.
5. This parameter must be measured using pulee techniques. $\mathrm{t}_{\mathrm{w}}=300 \mu \mathrm{~s}$, dutv cycie $<\mathbf{2 \%}$.
6. These parameters must be measured with biss conditions applied for less than 5 seconds to avoid overhesting.
*JEDEC registerad data
\ddagger All masurements except ISDS are made with the case and substrate connected to the source.

TYPES 3N163, 3N164
 P-CHANNEL ENHANCEMENT-TYPE
 INSULATED-GATE FIELD-EFFECT TRANSISTORS

*switching characteristics at $\mathbf{2 5}{ }^{\mathbf{\circ}} \mathbf{C}$ free-air temperature

PARAMETER	TEST CONDITIONS \ddagger	MAX	UNIT
$t_{\text {difon) Turn-On Delay Time }}$	$\begin{array}{ll} V_{D D}=-15 \mathrm{~V}, & I_{D(o n)}=-10 \mathrm{~mA}, \\ V_{G S(o n)}=-10 \mathrm{~V}, & V_{G S(\text { off })}=0, \\ \text { See Figure } 1 & \end{array}$	12	ns
$\mathrm{tr}_{\mathbf{r}} \quad$ Rise Time		24	ns
$\mathrm{t}_{\text {off }}$ Turn-Off Time		50	ns

PARAMETER MEASUREMENT INFORMATION

FIGURE 1

NOTES: A. The input waveform is supplied by a generator with the following characteristics: $Z_{\text {out }}=50 \Omega$, duty cycle $\approx 2 \%, t_{r} \leqslant 2$ ns, $\mathrm{t}_{\mathrm{f}} \leqslant 2 \mathrm{~ns}, \mathrm{t}_{\mathrm{w}} \geqslant 200 \mathrm{~ns}$.
b. Waveforms are monitored on an oscilloscope with the following charecteristics: $t_{r}<0.2 \mathrm{~ns}, \mathrm{R}_{\text {in }} \geqslant 10 \mathrm{M} \Omega, \mathrm{C}_{\text {in }} \leqslant 2 \mathrm{pF}$.
*JEDEC registered data
\ddagger All measurements except ISDS are made with the case and substrate connected to the source.

ENHANCEMENT-TYPE ${ }^{\dagger}$ MOS SILICON TRANSISTORS

For Applications Requiring Very High Input Impedance, Such as Series and Shunt Choppers, Multiplexers, and Commutators

- Channel Cut Off with Zero Gate Voltaga
- Independent Substrate Connection Provides Flexibility in Biasing

*mechanical data

handling precautions

Curve-tracer testing and static-charge buildup are common cuases of damage to insulated-gate devices. Permanent damage may result if either gate-voltage rating is exceeded even for extremely short time periods. Each transistor is protected during shipment by a gate-shorting device which should be removed only during testing and after permanent mounting of the transistor. Personnel and equipment, including soldering irons, should be grounded.
absolute maximum ratings at $25^{\circ} \mathbf{C}$ free-air temperature (unless otherwise noted)
*Drain-Gate Voltage . $\quad \mathbf{\pm 3 5} \mathrm{V}$
"Drain-Source Voltage (See Note 1) . 25 V
*Forward Gate-Source Voltage . 35 V
*Reverse Gate-Source Voltage . -35 V
*Continuous Drain Current
Continuous Device Dissipation at (or below) $25^{\circ} \mathrm{C}$ Free-Air Temperature (See Note 2) 300 mW
*Continuous Device Dissipation at (or below) $\mathbf{2 5}^{\circ} \mathrm{C}$ Case Temperature (See Note 3) 800 mW
${ }^{*}$ Storage Temperature Range . $\mathbf{- 6 5}^{\mathbf{6}} \mathrm{C}$ to $\mathbf{2 0 0}{ }^{\circ} \mathrm{C}$
*Lead Temperature $\mathbf{1 / 1 6}$ Inch from Case for $\mathbf{6 0}$ Seconds . $240^{\circ} \mathrm{C}$

NOTES: 1. This voltage rating applies when the substrate is at the same potential as the least-negative element.
2. Derate linearly to $200^{\circ} \mathrm{C}$ free-air temperature at the rate of $1.71 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
3. Derate linearly to $200^{\circ} \mathrm{C}$ case temperature at the rate of $4.56 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
-JEDEC registered data. This data sheot contains all applicable registered data in affect at time of publication.
${ }^{\dagger}$ Enhencemant-mode operation entails the use of a forward gate-source voltage to incrase drain current from IDSS, the drain current at $V_{G S}=0$, as opposed to depletion-mode operation wherein a reverse gate-source voltage is used to dacrease drain current. An enhancement-type transistor is in the "off" state at $\mathrm{V}_{G S}=\mathbf{0}$ and hence will not operate normally in tha depletion mode.

TYPES 3N169, 3NT50, 3N771

 N-CHANNEL ENHANCEMENT-TYPE INSULATED-GATE FIELD-EFFECT TRANSISTORSelectrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

PARAMETER		TEST CONDITIONS ${ }^{\dagger}$		MIN	Max	UNIT	
$V_{\text {(BR) }}$ OSS	Drain-Source Breakdown Voltage	$\mathrm{I}_{\mathrm{D}}=10 \mu \mathrm{~A}, \quad \mathrm{~V}_{\mathrm{GS}}=0$		25			
${ }^{*}$ IGSSF	Forward Gate-Terminal Current	$V_{G S}=35 \mathrm{~V}, \mathrm{~V}_{\text {DS }}=0$			10	pA	
		$\mathrm{V}_{\mathrm{GS}}=35 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$,	$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$		100		
*GSSR	Reverse Gate-Terminal Current	$\mathrm{V}_{\mathrm{GS}}=-35 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$			-10	PA	
*IDSS	Zero-Gate-Voltage Drain Current	$\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$			10	nA	
		$\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$,	$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$		1	$\mu \mathrm{A}$	
${ }^{*} \mathrm{~V}_{\mathrm{GS}}(\mathrm{th})$	Gate Source Threshold Voltage	$\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{ID}^{\text {d }}=10 \mu \mathrm{~A}$	3N169	0.5	1.5	v	
			3N170	1	2		
			3N171	1.5	3		
*ID(on)	On-State Drain Current	$\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}$,	See Note 4	10		mA	
${ }^{-}$VDS(on)	Drain-Source On-State Voltage	$\mathrm{V}_{G S}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=10 \mathrm{~mA}$			2	V	
*ras(on)	Small-Signai Drain-Source On-State Resistance	$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}^{\text {d }}=0$.	$\mathrm{f}=1 \mathrm{kHz}$		200	Ω	
\| ffs		Small-Signal Common-Source Forward Transfer Admitrance	$\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{I}^{\prime}=2 \mathrm{~mA}$,	$\mathrm{f}=1 \mathrm{kHz}$	1		mmho
${ }^{*} \mathrm{C}_{\text {iss }}$	Common-Source Short-Circuit Input Capacitance	$V_{\text {DS }}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$,	$\mathrm{f}=\mathbf{1} \mathrm{MHz}$		5	pF	
${ }^{*} \mathrm{C}_{\text {rss }}$	Common-Source Short-Circuit Reverse Transfer Capacitance	$V_{\text {OS }}=0, \quad V_{\text {GS }}=0$,	$f=1 \mathrm{MHz}$		1.3	of	
${ }^{*} \mathrm{C}_{\text {ds }}$	Drain-Source Capacitance	$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V} . \quad \mathrm{V}_{\mathrm{GS}}=0, \\ & \text { See Note } 5 \end{aligned}$	$f=1 \mathrm{MHz},$		5	pF	

NOTES: 4. This parameter must be measured using pulse techniques. $t_{w}=300 \mu \mathrm{~s}$, duty cycle $\leqslant 2 \%$.
5. $\mathrm{C}_{\text {ds }}$ measurement employs a three-terminal capacitance bridge incorporating a guard circuit. The gate and the case are connected to the guard terminal of the bridge.
*switching characteristics at $\mathbf{2 5}^{\circ} \mathrm{C}$ free-air temperature

PARAMETER		TEST CONDITIONS ${ }^{\text { }}$		MAX	UNIT
tod(on)	Turn-On Delay Time	$\begin{array}{ll} V_{D D}=10 \mathrm{~V}, & I_{D(o n)}=10 \mathrm{~mA}, \\ V_{G S(\text { on })}=10 \mathrm{~V}, & V_{G S(\text { off })}=0, \end{array}$ See Figure 1		3	ns
${ }_{T}$	Rise Time			10	ns
t_{d} (off)	Turn-Off Delay Time			3	ns
t_{4}	Fall Time			15	ns

${ }^{\dagger}$ All measurements are made with the case and substrate connected to the source.

- JEDEC registored data

PARAMETER MEASUREMENT INFORMATION

TEST CIRCUAT

NOTES: a. The input waveform is supplied by a generator with the following characteristics: $Z_{\text {out }}=\mathbf{5 0} \Omega$, duty cycle $\leq 1 \%, t_{r} \leqslant 0.33 \mathrm{~ns}$, $\mathrm{t}_{\mathrm{f}} \leqslant 0.33 \mathrm{~ns}, \mathrm{t}_{\mathrm{w}} \approx 0.4 \mu \mathrm{~s}$.
b. Waveforms are monitored on an oscilloscope with the following characteristics: $\mathrm{t}_{\mathrm{r}} \leqslant 0.4 \mathrm{~ns}, \mathrm{R}_{\mathrm{in}}=50 \Omega, \mathrm{c}_{\mathrm{in}} \leqslant 2 \mathrm{pF}$.

FIGURE 1

ENHANCEMENT-TYPE ${ }^{\dagger}$ MOS SILICON TRANSISTOR

For Applications Requiring Very High Input Impedance, Such as
Series and Shunt Choppers, Multiplexers, and Commutators

- Channel Cut Off with Zero Gate Voltage
- Square-Law Transfer Characteristic Reduces Distortion
- Independent Substrate Connection Provides Flexibility in Biasing
- Similar to 2N4065
*mechanical data

handling precautions

Curve-tracer testing and static-charge buildup are common causes of damage to insulated-gate devices. Permanent damage may result if either gate-voltage rating is exceeded even for extremely short time periods. Each transistor is protected during shipment by a gate-shorting device which should be removed only during testing and after permanent mounting of the transistor. Personnel and equipment, including soldering irons, should be grounded.
absolute maximum ratings at $\mathbf{2 5}{ }^{\circ} \mathbf{C}$ free-air temperature (unless otherwise noted)

> *Drain-Gate Voltage
> *Drain-Source Voltage (See Note 1) -30 V
> Source-Drain Voltage (See Note 1) -30 V
> *Forward Gate-Source Voltage -30 V
> *Reverse Gate-Source Voltage . 30 V
> Gate-Substrate Voltage . -30 V
> *Continuous Drain Current . - 20 mA
> *Continuous Device Dissipation at (or below) $25^{\circ} \mathrm{C}$ Free-Air Temperature (See Note 2) 360 mW
> *Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $200^{\circ} \mathrm{C}$
> *Lead Temperature 1/16 Inch from Case for 10 Seconds $300^{\circ} \mathrm{C}$

NOTES: 1. These voltage ratings apply whon the substrate is at the same potential as the least-negative element.
2. Derate linearly to $175^{\circ} \mathrm{C}$ free-air temperature at the rate of $2.4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.

* JEDEC registered data
\dagger Enhancement-mode operation entails the use of a forward gate-source voltage to increase drain current from Ioss, the drain current at $V_{G S}=0$, as opposed to depletion-mode operation whergin a reverse gate-source voltage is used to decrease drain current. An enhancement-type transistor is in the "off" state at $V_{G S}=0$ end hence will not operate normally in the depletion mode.

USES CHIP MP93

TYPE 3N174 P-CHANNEL ENHANCEMENT-TYPE INSULATED-GATE FIELD-EFFECT TRANSISTOR

*electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS ${ }^{\text {t }}$		MIN	MAX	UNIT
${ }^{\text {' GSSF }}$	Forward Gate-Terminal Current	$\mathrm{V}_{\mathbf{G S}}=-30 \mathrm{~V}$.	$V_{D S}=0$		-2.5	pA
		$\begin{aligned} & V_{G S}=-30 \mathrm{~V}, \\ & T_{A}=150^{\circ} \mathrm{C} \end{aligned}$	$V_{\text {DS }}=0$,		-100	nA
IGSSR	Reverse Gate-Terminal Current	$V_{\text {GS }}=30 \mathrm{~V}$,	$V_{\text {DS }}=0$		2.5	pA
IDSS	Zero-Gate-Voltage Drain Current	$V_{\text {DS }}=-30 \mathrm{~V}$,	$V_{G S}=0$		-5	nA
		$\begin{aligned} & V_{D S}=-30 \mathrm{~V}, \\ & T_{A}=150^{\circ} \mathrm{C} \end{aligned}$	$V_{G S}=0$,		-5	$\mu \mathrm{A}$
IsDS	Zero-Gate-Voltage Source Current	$V_{S D}=-30 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{GD}}=0,$ See Note 3		-5	nA
VGS(th)	Gate Source Threshold Voltage	$\mathrm{V}_{\text {DS }}=-15 \mathrm{~V}$	$\mathrm{ID}^{\text {a }}$ - $10 \mu \mathrm{~A}$	-2	-6	V
${ }^{1}$ D(on)	On-State Drain Current	$\mathrm{V}_{\text {DS }}=-15 \mathrm{~V}$,	$V_{G S}=-15 V$ See Note 4	-3	-12	mA
VDS(on)	Drain-Source On-State Voltage	$V_{G S}=-15 \mathrm{~V}$.	$\mathrm{I}_{\mathrm{D}}=-1 \mathrm{~mA}$		-1	V
$r^{\text {ds }}$ (on)	Small-Signal Drain-Source On-State Resistance	$\begin{aligned} & V_{G S}=-15 \mathrm{~V} \\ & f=1 \mathrm{kHz} \end{aligned}$	$I_{D}=0$,		1	$k \Omega$
$\mid \mathrm{y} \mathrm{fs}^{\text {\| }}$	Small-Signal Common-Source Forward Transfer Admittance	$\begin{aligned} & V_{D S}=-15 \mathrm{~V} \\ & f=1 \mathrm{kHz} \end{aligned}$	$V_{G S}=-15 \mathrm{~V}$ See Note 5	400		$\mu \mathrm{mho}$
\|ros ${ }^{\text {\| }}$	Small-Signal Common-Source Output Admittance				200	$\mu \mathrm{mho}$
$\mathrm{C}_{\text {iss }}$	Common-Source Short-Circuit Input Capacitance	$\begin{aligned} & V_{D S}=-15 \mathrm{~V}, \\ & f=1 \mathrm{MHz}, \end{aligned}$	$V_{G S}=-15 \mathrm{~V} .$ See Note 5		4	pF
Crss	Common-Source Short-Circuit Reverse Transfer Capacitance	$\begin{aligned} & V_{D S}=0 . \\ & f=1 \mathrm{MHz} \end{aligned}$	$V_{G S}=0$,		0.7	pF
$\mathrm{C}_{\text {ds }}$	Drain-Source Capacitance	$\begin{aligned} & V_{D S}=-15 \mathrm{~V}, \\ & f=1 \mathrm{MHz}, \end{aligned}$	$V_{G S}=0$ See Note 6		3	pF

*switching characteristics at $\mathbf{2 5}{ }^{\circ} \mathrm{C}$ free-air temperature

PARAMETER		TEST CONDITIONS ${ }^{\text {+ }}$		MAX	UNIT
$t_{\text {d }}$ (on)	Turn-On Delay Time	$\begin{array}{ll} V_{D D}=-10 \mathrm{~V}, & I_{D(o n)}=-1 m A \\ V_{G S}(o n)=-15 \mathrm{~V}, & V_{G S(o f f)}=0, \\ R_{G}=50 \Omega, & \text { See Figure } 1 \end{array}$		30	ns
t_{r}	Rise Time			50	ns
$\mathrm{t}_{\text {d }}$ (off $\}$	Turn-Off Delay Time			15	ns
t_{f}	Fall Time			100	ns

NOTES: 3. For the measurement of ISDS, the substrate must be connected to the drain.
4. This parameter must be measurad using puise techniques. $t_{p} \approx 100 \mathrm{~ms}$, duty cycle $\leqslant 10 \%$.
6. These parameters must be measured with bias conditions applied for less than 5 seconds to avoid overheating.
6. Cds measurement employs a three-terminal capacitance bridge incorporating a guard circuit. The gate and case are connected to the guard terminal of the bridge.
${ }^{t}$ All measurements exchpt ISDS are made with the case and substrate connected to the source.

PARAMETER MEASUREMENT INFORMATION

TEST CIRCUIT

VOLTAGE WAVEFORMS

FIGURE 1
NOTES: a. The input waveform is supplied by a genergtor with the following characteristics: $\mathbf{Z}_{\text {out }}=\mathbf{5 0} \Omega$, duty cycle $\approx \mathbf{2 \%}, \mathrm{t}_{\mathrm{r}} \leqslant \mathbf{1} \mathbf{n s}$
$t_{f} \leqslant 1 \mathrm{~ns}, t_{p}=200 \mathrm{~ns}$.
b. Waveforms are monitored on an oscilloscope with the following characteristics: $t_{\mathrm{r}} \leq 0.75 \mathrm{~ns}, \mathrm{R}_{\mathrm{in}} \geq 1 \mathrm{M} \Omega, \mathrm{C}_{\mathrm{in}} \leqslant 2 \mathrm{pF}$.
*JEDEC registered data

DEPLETION-TYPE MOS SILICON TRANSISTORS

- Monolithic Gate-Protection Diodes
- Low Crss . . . 0.03 pF Max
- High lyfsl . . . 12, $000 \mu \mathrm{mhos}$ Typ

description

The 3N201, 3N202, and 3N203 are N-channel, depletion-type, dual-gate, metal-oxide-semiconductor transistors. They are protected from excessive input voltages by integrated back-to-back diodes between gates and source, thus eliminating precautionary handling procedures required by unprotected MOS transistors. These transistors are ideally suited for many applications which previously only vacuum tubes could fulfill.

The 3N201 is intended for use in VHF pre-amplifiers where linear, low-noise amplification is required. Its extremely low feedback capacitance permits high stable gain without the use of neutralization.

The 3N202 is intended for use as a VHF mixer and is well suited for TV tuners. Its use as a mixer minimizes cross-modulation distortion and provides low-noise operation.

The 3N203 is designed for application in tuned high-frequency amplifiers such as TV IF strips. Its extremely low feedback capacitance permits high stage gain and stability without the necessity for neutralization.
*mechanical data

*absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

Drain-Gate-One Voltage . 30 V
Drain-Gate-Two Yoltage . 30 V
Drain-Source Voltage . 10 ma
Reverse Gate-One-Terminal Current . - 10 mA
Reverse Gate-Two-Terminal Current . -10 mA
Continuous Drain Current . 50 mA
Continuous Device Dissipation at (or below) $\mathbf{2 5}^{\circ} \mathrm{C}$ Free-Air Temperature (See Note 2) 360 mW
Continuous Device Dissipation at (or below) $\mathbf{2 5}{ }^{\circ} \mathrm{C}$ Case Temperature (See Note 3) 1.2 W
Storage Temperature Range
$-65^{\circ} \mathrm{C}$ to $200^{\circ} \mathrm{C}$
Lead Temperature 1/16 Inch from Case for 10 Seconds $300^{\circ} \mathrm{C}$

NOTES: 1. Forward gate-terminal current is the current into a gate terminal with a forward gatesource voltage applied. This voltage is of such polarity that an increase in its magnitude causes the channel resletance to decrease.
2. Derate linearly to $175^{\circ} \mathrm{C}$ free-air temperature at the rate of $\mathbf{2 . 4} \mathrm{mW} / \mathrm{P} \mathrm{C}$.
3. Derate linearly to $175^{\circ} \mathrm{C}$ case temperature at the rate of $8 \mathrm{~mW} / \mathrm{C}$.
*JEDEC registered data. This data sheet contalns all applicable registered data in effect at the time of publication.
USES CHIP MN81

TYPES 3N201, 3N202, 3N203

N-CHANNEL DUAL-GATE DEPLETION-TYPE INSULATED-GATE FIELD-EFFECT TRANSISTORS
"electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

PARAMETER		TEST CONDITIONS			MIN	MAX	UNIT
$V_{\text {(BR) }}$	Drain-Source Breakdown Voltage	$1 D^{\prime}=10 \mu A$,	$\mathrm{V}_{\mathrm{G1S}}=\mathrm{V}_{\text {G2S }}=-5 \mathrm{~V}$		25		V
$V_{\text {(BR) }}$ (18SF	Gate-Ono-Source Forwerd Breakdown Voltage	l $\mathrm{G}_{1}=10 \mathrm{~mA}$,	$\mathrm{V}_{\mathrm{G} 2 \mathrm{~S}}=\mathrm{V}_{\mathrm{DS}}=0$.	See Note 4	6	30	V
V(BR)G1SSR	Gate-One-Source Roverse Breakdown Voltage	IG1 $=-10 \mathrm{~mA}$,	$V_{\text {G2S }}=V_{\text {DS }}=0$,	Soe Note 4	-6	-30	V
$V_{\text {(BR) }}$ (2ssf	Gate-Two-Source Forward Breakdown Voltage	IG2 $=10 \mathrm{~mA}$,	$V_{G 1 S}=V_{D S}=0$,	See Note 4	6	30	V
$V_{\text {(BR)G2SSR }}$	Gate-Two-Source Reverse Breakdown Voltage	$1 \mathrm{I}_{2}=\mathbf{- 1 0} \mathrm{mA}$,	$V_{G 1 S}=V_{D S}=0$,	See Note 4	-8	-30	v
lG1ssf	Gate-One-Terminal Forward Current	$\mathrm{V}_{\mathrm{G} 18}=6 \mathrm{~V}$,	$V_{G 2 S}=V_{D S}=0$			10	nA
IG158R	Gate-Ong-Terminal Reverse Current	$\mathrm{V}_{\mathrm{G} 1 \mathrm{~S}}=-5 \mathrm{~V}$,	$V_{G 2 S}=V_{\text {OS }}=0$			-10	nA
			$\mathrm{V}_{\mathrm{G} 2 \mathrm{~S}}=\mathrm{V}_{\mathrm{DS}}=0$,	$T^{\prime}=150^{\circ} \mathrm{C}$		-10	$\mu \mathrm{A}$
IG2SSF	Gat-Two-Terminal Forward Current	$V_{G 2 S}=5 \mathrm{~V}$,	$V_{G 1 S}=V_{D S}=0$			10	nA
IG2SSR	Gate-Two-Terminal Reverse Current	$\mathrm{V}_{\mathrm{G} 2 \mathrm{~S}}=-5 \mathrm{~V}$,	$V_{G 1 S}=V_{D S}=0$			-10	nA
		$\mathrm{V}_{\text {G2S }}=-5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{G1S}}=\mathrm{V}_{\text {DS }}=0$,	$\mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$		-10	$\mu \mathrm{A}$
IDS	Zero-Gate-One-Voltage Drain Current	$\begin{aligned} & V_{D S}=15 \mathrm{~V}, \\ & V_{G 2 S}=4 \mathrm{~V}, \end{aligned}$	$V_{G 1 s}=0$ See Note 5	$\begin{aligned} & 3 N 201 \\ & \text { 3N202 } \\ & \hline \end{aligned}$	6	30	mA
				3N203	3	15	
$V_{\text {G1S }}$ (off)	Gate-One-Source Curoff Voltage	$V_{D S}=15 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{G} 2 \mathrm{~S}}=4 \mathrm{~V}$,	${ }^{\prime} \mathrm{D}=20 \mu \mathrm{~A}$	-0.5	-5	V
$V_{\text {G2S }}$ (off)	Gate-Two-Source Cutoff Voltage	$V_{\text {DS }}=15 \mathrm{~V}$,	$\mathrm{VGiS}^{\text {a }}=0$,	$I_{\text {d }}=20 \mu \mathrm{~A}$	-0.2	-б	v
Nfs ${ }^{\text {l }}$	Small-Signal Common-Source Forward Transfer Admittance	$\begin{aligned} & V_{D S}=15 \mathrm{~V}, \\ & V_{G 2 S}=4 \mathrm{~V} \end{aligned}$	$\begin{aligned} & V_{G 1 S}=0, \\ & f=1 \mathrm{kHz}, \end{aligned}$	$\begin{aligned} & \text { 3N201 } \\ & \text { 3N202 } \end{aligned}$	8	20	mmho
		See Note 6		3N203	7	15	
Crss	Common-Source Short-Circuit Reverse Transfer Capacitance	$\begin{aligned} & V_{D S}=15 \mathrm{~V}, \\ & \mathrm{f}=1 \mathrm{MHz} \end{aligned}$	$V_{G 2 S}=4 V,$	$1 \mathrm{D}=10 \mathrm{~mA}$,	0.005	0.03	pF

NOTES: 4. All gate breakdown voltages are measured while the device is conducting rated gate current. This ensures that the gate-voltage-limiting network is functioning properly.
5. This parameter must be measured using pulse techniques. $\mathbf{t}_{\mathbf{w}}=\mathbf{3 0 0} \mu \mathrm{s}$, duty cycle $\leqslant \mathbf{2 \%}$.
6. This parameter must be measured with bias voltages applied for less than 5 seconds to avold overheating.
*3N201 operating characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER		TEST CONDITIONS		3N201		UNIT		
		MIN	MAX					
NF	Common-Source Spot Noise Figure			$\begin{aligned} & V_{D O}=18 \mathrm{~V}, \\ & f=200 \mathrm{MHz} \end{aligned}$	$\mathrm{V}_{\mathrm{GG}}=7 \mathrm{~V}$, See Figure 1		4.5	dB
G_{ps}	Small-Signal Common-Source Insertion Power Gain	15	25			dB		
BW	Bandwidth	5	9			MHz		
$V_{G G}(\mathrm{GC})$	Gain-Control Gate-Supply Voltage	$\begin{aligned} & V_{D D}=18 \mathrm{~V}, \\ & f=200 \mathrm{MHz}, \end{aligned}$	$\begin{aligned} & \Delta G_{\mathrm{ps}}=-30 \mathrm{~dB}^{\dagger}, \\ & \text { Se日 Figure } 1 \end{aligned}$	0	-3	v		

[^112]
TYPES 3N2O1, 3N202, 3N203
 N-CHANNEL DUAL-GATE DEPLETION-TYPE INSULATED-GATE FIELD-EFFECT TRANSISTORS

*3N202 operating characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER		TEST CONDITIONS		3N202		UNIT		
		MIN	MAX					
$Q_{\text {ppiconv) }}$	Smail-Signal Converaion Power Galn			$\begin{aligned} & V_{D D}=18 \mathrm{~V}, \\ & \text { f }_{2}=200 \mathrm{MHz}, \end{aligned}$	$\text { fLO }=24 \mathrm{BHz} \ddagger$ See Figure 2	15	25	dB
BW	Bandwidth	4.5	7.5			MHz		

\$Amplitude at input from locel ovelliator is 3 volte rme.
" 3 N203 operating characteristics at $\mathbf{2 5}{ }^{\circ} \mathrm{C}$ free-air temperature

PARAMETER		TEST CONDITIONS		3N203		UNIT		
		MIN	MAX					
NF	Common-Source Spot Nobe Figure			$\begin{aligned} & V_{D D}=18 \mathrm{~V}, \\ & f=45 \mathrm{MHz}, \end{aligned}$	$v_{G G}=6 v$ See Figure 3		6	dB
$G_{p t}$	Smail-shanal Common-Source Insertion Power Gain	20	30			dB		
BW	Bandwidth	3	6			MHz		
Vgalse)	Gain-Control Gete-Supply Voltage	$\begin{aligned} & V_{D D}=18 \mathrm{~V}, \\ & \mathrm{f}=45 \mathrm{MHz}, \end{aligned}$	$\Delta G_{p t}=-30 d B 8 \text {, }$ $\text { See Figure } 3$	0	-3	V		

$8 \Delta G_{p ;}$ is defined as the change $\ln G_{p s}$ from the value at $V_{G G}=\mathbf{6}$ volta.

*PARAMETER MEASUREMENT INFORMATION

FIGURE 1-200MHz POWER GAIN, GAIN-CONTROL VOLTAGE, AND NOISE FIGURE TEST CIRCUIT FOR 3N201

[^113]
TYPES 3N201, 3N202, 3N203
 N-CHANNEL DUAL INSULATED-GATE PLANAR SILICON FIELD-EFFECT TRANSISTORS

FIGURE 2-200-MHz-to-45-MHz CIRCUIT FOR CONVERSION POWER GAIN FOR 3N202

L1: $14 \mathrm{~T}, \# 30$ copper, close-wound on 7/32" OD form with Arnold Engineering type " J " tuning core
L2: $10 \mathrm{~T}, \# 30$ copper, close-wound on $7 / 32$ " OD form with Arnold Engineering type " J " tuning core
FIGURE 3-45-MHz POWER GAIN, GAIN-CONTROL VOLTAGE, AND NOISE FIGURE TEST CIRCUIT FOR 3N203

[^114]
TYPES 3N201, 3N202, 3N203 N-CHANNEL DUAL INSULATED-GATE PLANAR SILICON FIELD-EFFECT TRANSISTORS

TYPICAL CHARACTERISTICS AT TA $\mathbf{= 2 5} \mathbf{5}^{\circ} \mathrm{C}$

3N201
RELATIVE SMALLSIGNAL
POWER-GAIN
vs
GAIN-CONTROL GATE-SUPPLY VOLTAGE

FIGURE 4

3N201

SMALLSIGNAL COMMON-SOURCE INSERTION POWER GAIN
vs
DRAIN CURRENT

FIGURE 5

3N201
COMMON-SOURCE SPOT NOISE FIGURE vs GAIN-CONTROL GATE-SUPPLY VOLTAGE

FIGURE 6

3N202
SMALL.SIGNAL CONVERSION POWER GAIN vs INPUT FROM LOCAL OSCILLATOR

FIGURE 7

3N203
SMALL-SIGNAL COMMON-SOURCE INSERTION POWER GAIN vs GAIN-CONTROL SUPPLY VOLTAGE

FIGURE 8

TYPES 3N204, 3N205, 3N206
N-CHANNEL DUAL-GATE DEPLETION-TYPE INSULATED-GATE FIELD-EFFECT TRANSISTORS

DEPLETION-TYPE MOS SILICON TRANSISTORS

- Monolithic Gate-Protection Diodes
- Low Crss . . . 0.03 pF Max
- High lyfs! . . . 14,000 μ mhos Typ

The 3N204, 3N205, and 3N206 are N-channel, depletion-type, dual-gate, metal-oxide-semiconductor transistors. They are protected from excessive input voltages by integrated back-to-back diodes between gates and source, thus eliminating precautionary handling procedures required by unprotected MOS transistors. These transistors are ideally suited for many applications which previously only vacuum tubes could fulfill.

The 3N204 is intended for use in VHF pre-amplifiers where linear, low-noise amplification is required. Its extremely low feedback capacitance permits high stable gain without the use of neutralization.

The 3N205 is intended for use as a VHF mixer and is well suited for TV tuners. Its use as a mixer minimizes cross-modulation distortion and provides low-noise operation.

The 3N206 is designed for application in tuned high-frequency amplifiers such as TV IF strips. Its extremely low feedback capacitance permits high stage gain and stability without the necessity for neutralization.
*mechanical data

*absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

> such polarity that an increase in its magnitude causes the channel resistan
> 2. Derate linearly to $175^{\circ} \mathrm{C}$ free-air temperature at the rate of $2.4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
> 3. Derate linearly to $175^{\circ} \mathrm{C}$ case temperature at the rate of $8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.

TYPES 3N204, 3N205, 3N206 N-CHANNEL DUAL-GATE DEPLETION-TYPE INSULATED-GATE FIELD-EFFECT TRANSISTORS

*electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

PARAMETER		TEST CONDITIONS			MIN MAX		UNIT	
$V_{\text {(BR) }}$ DS	Drain-Source Breakdown Voltage	$I_{D}=10 \mu \mathrm{~A}$,	$\mathrm{V}_{\mathrm{G} 1 \mathrm{~S}}=\mathrm{V}_{\mathrm{G} 2 \mathrm{~S}}=-5 \mathrm{~V}$				V	
$V_{(B R) G 1 S S F}$	Gate-One-Source Forward Breakdown Voltage	$\mathbf{I}_{\mathbf{G 1}}=10 \mathrm{~mA}$,	$V_{G 2 S}=V_{\text {DS }}=0$,	See Note 4	6	30	v	
V(BR)G1SSR	Gate-One-Source Reverse Breakdown Voltage	$\mathbf{I}_{\mathbf{G} 1}=\mathbf{- 1 0} \mathbf{m A}$,	$\mathbf{V G R S}^{\text {(}}=\mathrm{V}_{\text {DS }}=0$,	See Note 4	-6	-30	V	
$V_{\text {(BR) }}$ G2SSF	Gate-Two-Source Forward Breakdown Voltage	$\mathrm{I}_{\mathrm{G} 2}=10 \mathrm{~mA}$.	$\mathbf{V G 1 S}^{\text {(}}=\mathbf{V}_{\mathbf{D S}}=0$,	See Note 4	6	30	V	
V(BR)G2SSR	Gate-Two-Source Reverse Breakdown Voltage	$\mathbf{I G 2}^{\text {a }}=-10 \mathrm{~mA}$,	$V_{G 1 S}=V_{D S}=0$,	See Note 4	-6	-30	V	
IG1SSF.	Gate-One-Terminal Forward Current	$\mathrm{V}_{\mathrm{G1}} \mathrm{~S}^{\prime}=5 \mathrm{~V}$,	$V_{G 2 S}=V_{D S}=0$			10	nA	
IGISSR	Gate-One-Terminal Reverse Current	$\mathrm{V}_{\mathrm{G1S}}=-5 \mathrm{~V}$,	$V_{\text {G2S }}=V_{\text {DS }}=0$			-10	nA	
		$\mathrm{V}_{\mathrm{G} 1 \mathrm{~S}}=-5 \mathrm{~V}$,	$V_{\text {G2S }}=V_{\text {DS }}=0$,	$\mathrm{T}_{A}=150^{\circ} \mathrm{C}$		-10	$\mu \mathrm{A}$	
'G2SSF	Gate-Two-Terminal Forward Cursent	$\mathrm{V}_{\mathbf{G 2 S}}=5 \mathrm{~V}$,	$V_{G 1 S}=V_{\text {DS }}=0$			10	nA	
IG2SSR	Gate-Two-Terminal Reverse Current	$\mathrm{V}_{\mathrm{G} 2 \mathrm{~S}}=-5 \mathrm{~V}$,	$V_{\text {G1S }}=V_{\text {DS }}=0$			-10	nA	
		$\mathrm{V}_{\text {G2S }}=-5 \mathrm{~V}$,	$V_{G 1 S}=V_{\text {DS }}=0$,	$\mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$		-10	$\mu \mathrm{A}$	
IDS	Zero-Gate-One-Voltage Drain Current	$\begin{aligned} & V_{D S}=15 \mathrm{~V}, \\ & V_{G 2 S}=4 \mathrm{~V} . \end{aligned}$	$V_{G 1 S}=0,$ See Note 5	$\begin{aligned} & \text { 3N204 } \\ & \text { 3N205 } \end{aligned}$	6	30	mA	
				3N206	3	15		
VG1S(off)	Gate-One-Source Cutoff Voltage	$V_{D S}=15 \mathrm{~V}$,	$V_{G 2 S}=4 \mathrm{~V}$.	$I_{D}=20 \mu \mathrm{~A}$	-0.5	-4	V	
$V_{G 2 S}$ (off)	Gate-Two-Source Cutoff Voltage	$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}$,	$V_{G 15}=0$,	$I_{D}=20 \mu A$	-0.2	-4	V	
\| Fs		Small-Signal Common-Source Forward Transfer Admittance	$\begin{aligned} & V_{D S}=15 \mathrm{~V}, \\ & V_{G 2 S}=4 \mathrm{~V} \end{aligned}$	$\begin{aligned} & V_{G 1 S}=0, \\ & f=1 \mathrm{kHz} . \end{aligned}$	$\begin{aligned} & \text { 3N2O4 } \\ & \text { 3N205 } \end{aligned}$	10	22	mmho
				3N206	7	17		
Crss	Common-Source Short-Circuit Reverse Transfer Capacitance	$\begin{aligned} & V_{D S}=15 \mathrm{~V}, \\ & f=1 \mathrm{MHz} \end{aligned}$	$V_{\text {G2S }}=4 \mathrm{~V}$,	$l \mathrm{D}=10 \mathrm{~mA}$,	0.005	0.03	pF	

NOTES: 4. All gate breakdown voltages are measured while the device is conducting rated gate current. This ensures that the gate-voltage-limiting network is functioning properly.
5. This parameter must be measured using pulse techniques. $t_{w}=300 \mu$, duty cycle $\leqslant 2 \%$.
6. This parameter must be measured with bias voltages applied for less than 5 seconds to avoid overheating
"3N204 operating characteristics at $\mathbf{2 5}^{\circ} \mathrm{C}$ free-air temperature

PARAMETER	TEST CONDITIONS		3N204		UNIT
			MIN	TYP MAX	
F Common-Source Spot Noise Figure	$\begin{aligned} & V_{D D}=18 \mathrm{~V} \\ & f=200 \mathrm{MHz} \end{aligned}$	$V_{G G}=7 \mathrm{~V} .$ See Figure 1		3.5	dB
$\mathrm{G}_{\mathrm{ps}} \quad$ Small-Signal Common-Source Insertion Power Gain			20	28	dB
B Bandwidth			7	12	MHz
VGG(GC) Gain-Control Gate-Supply Voltage	$\begin{array}{ll} V_{\mathrm{DD}}=18 \mathrm{~V}, & \Delta \mathrm{G}_{\mathrm{ps}}=-30 \mathrm{~dB}^{\dagger}, \\ \mathrm{f}=200 \mathrm{MHz}, & \text { See Figure } 1 \\ \hline \end{array}$		0	-2	V
F Common-Source Spot Noise Figure	$\begin{aligned} & V_{D S}=15 \mathrm{~V}, \quad V_{G 2 S}=4 \mathrm{~V}, \\ & I_{D}=10 \mathrm{~mA}, \quad f=450 \mathrm{MHz}, \\ & \text { See Figures } 2 \text { and } 4 \end{aligned}$			5	dB
$\mathbf{G}_{\mathbf{p s}} \quad$ Small-Signal Common-Source Insertion Power Gain			14		dB
F Common-Source Spot Naise Figure	$\begin{array}{ll} \hline V_{D S}=15 \mathrm{~V}, & V_{G 2 S} \approx 4 \mathrm{~V}, \\ I_{D}=10 \mathrm{~mA}, & f=900 \mathrm{MHz}, \\ \text { See Figures } 3 \text { and } 5 \\ \hline \end{array}$			7	d8
$\mathbf{G}_{\mathbf{p s}} \quad$ Small-Signal Common-Source Insertion Power Gain				12	dB

${ }^{\dagger} \Delta G_{p s}$ is defined as the change in $G_{p s}$ from the value at $V_{G G}=7$ volts.

- JEDEC registared data

TYPES 3N204, 3N205, 3N206 N-CHANNEL DUAL-GATE DEPLETION-TYPE INSULATED-GATE FIELD-EFFECT TRANSISTORS

*3N205 operating characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER	TEST CONDITIONS	3N206		UNIT
		MIN	MAX	
$\mathrm{G}_{\mathrm{ps}(\mathrm{conv})}$ Small-Signal Conversion Power Gain	$\begin{array}{ll} V_{D D}=18 \mathrm{~V}, & f \text { fo }=245 \mathrm{MHz} \ddagger, \\ f_{R F}=200 \mathrm{MHz}, & \text { See Figure } 6 \end{array}$	17	28	dB
B Bandwidth		4	7	MHz

母Amplitude at input from local oscillator is $\mathbf{3}$ volts rms.
*3N206 operating characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER		TEST CONDITIONS		3N206		UNIT		
		MIN	MAX					
F	Common-Source Spot Noise Figure			$\begin{aligned} & V D D=24 \mathrm{~V} \\ & \mathrm{f}=45 \mathrm{MHz} \end{aligned}$	$V_{G G}=6 \mathrm{~V},$ See Figure 7		4	dB
G_{ps}	Small-Signal Common-Source Insertion Power Gain	25	35			dB		
B	Bandwidth	3	6			MHz		
$V_{G G(G C)}$	Gain-Control Gate-Supply Voltage	$\begin{aligned} & V_{D D}=24 \mathrm{~V}, \\ & \mathrm{f}=45 \mathrm{MHz}, \end{aligned}$	$\Delta G_{p s}=-30 \mathrm{~dB} \S,$ See Figure 7		+0.6 -1.6	V		

$\delta_{\mathbf{G}_{\mathbf{p s}}}$ is defined as the ehange in $\mathbf{G}_{\mathbf{p s}}$ from the value at $V_{\mathbf{G G}}=\mathbf{6}$ volts.

PARAMETER MEASUREMENT INFORMATION

CIRCUIT COMPONENT INFORMATION
$\mathrm{C} 1, \mathrm{C} 2$, \& C3: Leadiess disc ceramic, $0.001 \mu \mathrm{~F}$
C4: ARCO 462, 5-80 pF, or equivaient
L1: 3T \#18, 3/16-inch-dia aluminum slug
L2: 9T \#20, 3/16-inch-dia aluminum slug

FIGURE 1-200-MHz POWER GAIN, GAIN CONTROL VOLTAGE, AND NOISE FIGURE TEST CIRCUIT FOR 3N204*

[^115]
TYPES 3N204, 3N205, 3N206 N-CHANNEL DUAL-GATE DEPLETION-TYPE INSULATED-GATE FIELD-EFFECT TRANSISTORS

PARAMETER MEASUREMENT INFORMATION

(ADJUST FOR $\mathrm{ID}=10 \mathrm{~mA}$)
CIRCUIT COMPONENT INFORMATION
C1 thru C4: See Figure 30, Note D
C5: $0.001 \mu \mathrm{~F}$ leadless disc capacitor
C6 thru C10: Allen-Bradiey F5AU $0.001 \mu \mathrm{~F}$ feed-through capacitors
Li \& L.2: See Figure 30
FIGURE 2-4E0-MHz PONER GAIN AND NOISE TEST CIRCUIT FOR 3N204*

C2, C4, a C6: $0.001 \mu \mathrm{~F}$ leadiess disc cmpacitor
C3 \& C7: Johenson 3901, 1-15 pF, or equlvalent
L. \& L. 2 are $1 / 4$ inch slotted cyclinders, $3 / 16$ Inch Inside diameter, with a shorting ring adjusted by a nyion screw. Minimum slot lengths are $3 / 4$ inch for L1 and 1 Inch for L2.
RFC: 10 T \#30, $3 / 16$ inch dia, 5/16 inch in length
NOTE A: This terminal is provided for gain control, if desired. If not used for this purpose, it should be left open.
*JEDEC registered deta
FIGURE 3-900-MHz POWER GAIN AND NOISE TEST CIRCUIT FOR 3N204

NOTES:
A. All dimansions are in inches.
B. The removable top of test fixture is not shown.
C. For clarity, the 02 kn releletor, the source and getto-2 socket pins, and Inculating stand-off terminali (ISOT) coldered into the fold of L1 mind L2 respeetively for mechanion support, sre not shown in visw A.
D. C1 and C2 (C3 and CA) conalat of thim brate and the "C" portion of L1 (L2) eoperated by air and the mylier tape covering the "C" portion of L1 (L2).

NOTE:
E. The four views surrounding the center view are as they would appear before the matal is bent up to form the sides.

[^116]FIGURE 4-4EO-MHz POWER GAIN AND NOISE TEST FIXTURE*

NOTES:
A. All dimensions are in inctree.
B. The ramovable top of test fixture is not shown.
C. L1 and L2 are attuotved to the beok of the trett fixture by ingulating ormad-off terminals (ISOT) locoted mann.
D. The four viows surrounding the conter viow we met thoy would appeer betore the metal is bent up to form the aldes.

FIGURE 5-900-MHZ POWER GAIN AND NOISE TEST FIXTURE

CIRCUIT COMPONENT INFORMATION
C1: Areo 404 (or equivaient), 8 to 60 pF
C2: Arco 400 (or equivatent), 0.9 to 7 pF
FIGURE 6-200-MHz-to-4E-MHz CIRCUIT FOR CONVERSION POWER GAIN FOR 3N206*

CIRCUIT COMPONENT INFORMATION
C1: Leadless disc ceramic, $0.001 \mu \mathrm{~F}$
C2: Leadless disc ceramic, $0.01 \mu \mathrm{~F}$
L1: 8 T \# 28, 5/32-inch-dia form, type "J" slug
L2: 9T \# 28, 5/32-inch-dia form, type "J" slug
FIGURE 7-45-MHz POWER GAIN AND NOISE FIGURE TEST CIRCUIT FOR 3N206*

TYPES 3N204, 3N205, 3N206 N-CHANNEL DUAL-GATE DEPLETION-TYPE INSULATED-GATE FIELD-EFFECT TRANSISTORS

NOTE 7: Test conditions at $45 \mathrm{MHz}, 200 \mathrm{MHz}, 450 \mathrm{MHz}$, and 900 MHz are the conditions given in the tables of operating characteristics for 3N204 and 3N206.

TWO ENHANCEMENT-TYPE ${ }^{\text {M }}$ MOS SILICON TRANSISTORS WITHIN A SINGLE MONOLITHIC CHIP

For Applications Requiring Very High Input Impedance, Such as Series and Shunt Choppers, Multiplexers, and Commutators

- Designed to be Interchangeable with General Instrument Type MEM551
- Channel Cut Off with Zero Gate Voltage
- Substrate Connection Provides Flexibility in Biasing
- Similar Diode-Protected Version Available . . . 3N208
- Matched on VGS
*mechanical data

handling precautions

Curve-tracer testing and static-charge buildup are common causes of damage to insulated-gate devices. Permanent damage may result if either gate-voltage rating is exceeded even for extremely short time periods. Each transistor is protected during shipment by a gate-shorting device, which should be removed only during testing and after permanent mounting of the transistor. Personnel and equipment, including soldering irons, should be grounded.
*absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)
TOTAL NOTE 1: Derate fineariy to $175^{\circ} \mathrm{C}$ free-air temperature at the rates of $2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for each transistor and $4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for the totel devices.
*JEDEC registered data. This data shet contains all applicable registered data in effact at the time of publlcation.
${ }^{\dagger}$ Enhancement-mode oparation entalis the use of forward gatesource voltage to incrase drain current from loss. the drain current at enhencement-type transistor is in the "off" stete to $V_{0 S}=0$ and hence will gate-source voitage is used to decrease drain current. An enhencement-type transistor is in the "off" stete at $V_{\mathbf{G S}}=0$ and hence will not operste normally in the depletion mode.
*electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)
individual transistor characteristics (see note 2)

PARAMETER	TEST CONDITIONS	MIN MAX	UNIT
Forward Gate-Terminal Current	$V_{G S}=-25 \mathrm{~V}, \mathrm{~V}_{\text {DS }}=0$	-4	PA
	$V_{G S}=-25 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0, \quad \mathrm{~T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$	-200	nA
IGSSR Reverse Gate-Terminal Current	$V_{G S}=25 V_{\text {, }} \quad V_{D S}=0$	4	pA
Zero-Gate-Voltage Drain Current	$V_{\text {DS }}=-20 \mathrm{~V}, V_{G S}=0$	-10	nA
	$V_{D S}=-20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, \quad \mathrm{~T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$	-10	$\mu \mathrm{A}$
ISDS Zero-Gate-Voltage Source Current	$V_{S D}=-20 \mathrm{~V}, V_{G D}=0$	-10	nA
$\mathrm{V}_{\text {GS }}(\mathrm{th})$ Gate-Source Threshold Voltage	$V_{D S}=-15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-10 \mu \mathrm{~A}$	-3	V
ID(on) On-State Drain Current	$V_{D S}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=-15 \mathrm{~V}$. See Note 3	-1.5	mA
rds(on) Small-Signal Drain-Source On-State Resistance	$\mathrm{V}_{\text {GS }}=-15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0, \quad \mathrm{f}=1 \mathrm{kHz}$	400	Ω
$\mathrm{C}_{\text {iss }}$ Common-Source Short-Circuit input Capacitance	$\mathrm{V}_{\mathrm{DS}}=-20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, \quad \mathrm{f}=1 \mathrm{MHz}$	4	pF
Crss ${ }_{\text {Common-Source Short-Circuit Reverse Transfer Capacitance }}$	$V_{D S}=0, \quad V_{G S}=0, \quad i=\left\{\begin{array}{l}\text { MHz }\end{array}\right.$	2.5	pF
$\mathrm{C}_{\mathrm{ds}} \quad$ Drain-Source Capacitance	$V_{D S}=-20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, \quad f=1 \mathrm{MHz},$ See Note 4	3	pF

transistor matching characteristics (see note 5)

PARAMETER	TEST CONDITIONS	MIN MAX	UNIT
$\left\|V_{G S 1}-V_{G S 2}\right\|$ Gate-Source Voltage Differential	$V_{D S}=-15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-250 \mu \mathrm{~m}$	$\mathbf{2 0 0}$	mV

NOTES: 2. For all individual-transistor measurements except $C_{d s \text {, }}$ the drain, source, and gate leads of the transistor not under test and the common substrate are grounded. For testing ISDS, ground is the drain of the transistor under test but for all other measuremente, it is the source.
3. This parameter must be measured using puise techniques. $t_{w}=\mathbf{3 0 0} \mu \mathrm{s}$, duty cycle $\leqslant \mathbf{2 \%}$.
4. Cds measurement employs a three-terminal capacitance bridge incorporating a guard circuit. The case and all terminals of both transistors except the drain and source of the transistor under test are connected to the guard terminal of the bridge.
5. Trangistor matching characteristics are measured with both sources connected to the substrate.
-JEDEC registered data

TWO DIODE-PROTECTED ENHANCEMENT-TYPE \dagger MOS SILICON TRANSISTORS WITHIN A SINGLE MONOLITHIC CHIP

For Applications Requiring Very High Input Impedance, Such as Series and Shunt Choppers, Multiplexers, and Commutators

- Designed to be Interchangeable with General Instrument Type MEM550
- Channel Cut Off with Zero Gate Voltage
- Substrate Connection Provides Flexibility in Biasing
- Internally Connected Diode Protects Gate from Damage due to Overvoltage
- Version Available without Diode Protection . . . 3N207

description

This device is designed for applications requiring very high input impedance, such as choppers, commutators, and logic switches. Each transistor is protected from excessive input voltage by a shunting diode connected from its gate to the substrate. This eliminates the need for most precautionary handling procedures associated with unprotected MOS devices.
*mechanical data

*absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

$$
\begin{gathered}
\text { EACH TOTAL } \\
\text { TRANSISTOR DEVICE } \\
-25 \mathrm{~V} \\
-25 \mathrm{~V} \\
-0.1 \mathrm{~mA} \\
10 \mathrm{~mA} \\
-100 \mathrm{~mA} \\
300 \mathrm{~mW} \quad 600 \mathrm{~mW} \\
-65^{\circ} \mathrm{C} \text { to } 200^{\circ} \mathrm{C} \\
\leftarrow-300^{\circ} \mathrm{C} \longrightarrow
\end{gathered}
$$

Drain-Gate Voltage
Drain-Source Voltage
Continuous Forward Gate-Terminal Current
Continuous Reverse Gate-Terminal Current
Continuous Drain Current
Continuous Device Dissipation at (or below) $25^{\circ} \mathrm{C}$ Free-Air Temperature (See Note 1) . . $300 \mathrm{~mW} \quad 600 \mathrm{~mW}$
Storage Temperature Range
Lead Temperature $\mathbf{1 / 1 6}$ Inch from Case for 10 Seconds
NOTE 1: Derate linearly to $175^{\circ} \mathrm{C}$ free-air temperature at the rates of $2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for each transistor and $4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for the total device.
JEDEC registered data. This data sheet contains all applicabie registered data in effect at the time of publication.
t Enhencement-mode operation ent
 onhancem opere operation wherein a reverse gate-source voltage is used to decrease drain current. An onancement-type transistor is in the "off" state at $V_{G S}=0$ and hence will not operate normally in the depletion mode. The protective shunting diode is reverse-biased by the application of forward gate-source voltage.
*electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

NOTES: 2. To ensure that the gate-shunting diode is functioning properily, this voltege is measured while the device is conducting rated forward gate-terminal current.
3. This parameter must be measured using pulse techniques. $t_{w}=300 \mu_{\mathrm{s}}$, duty cycle $<2 \%$.
4. Cds measurement employs a three-terminal capacitance bridge incorporating a guard circuit. The case and all terminals of both transistors except the drain and source of the transistor under test are connected to the guard terminal of the bridge.

[^117]
DEPLETION-TYPE MOS SILICON TRANSISTORS

- Monolithic Gate-Protection Diodes
- Low Crss . . . 0.05 pF Max
- High $|\mathrm{yfs}|$. . . $30,000 \mu \mathrm{mhos}$ Typ for 3 N 211 and 3 N 212

description

The 3N211, 3N212, and 3N213 are N-channel, depletion-type, dual-gate, metal-oxide-semiconductor transistors, They are protected from excessive input voltages by Integrated back-to-back diodes between gates and source, thus elliminating precautionary handling procedures required by unprotected MOS transistors.

The 3N211 is intended for use in VHF pre-amplifiers where linear, low-noise amplification is required. Its extremely low feedback capacitance permits high stable gain without the use of neutralization.

The 3N212 is intended for use as a VHF mixer and is well suited for TV tuners. Its use as a mixer minimizes cross-modulation distortion and provides low-noise operation.

The 3N213 is designed for application in tuned high-frequency amplifiers such as TV If strips. Its extremely low feedback capacitance permits high stage gain and stability without the necessity for neutralization.
"mechanical data
THE SUESTRATE AND SOURCE ARE IN ELECTRICAL CONTACT WITH THE CASE
*absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

TYPES 3N211, 3N212, 3N213
 N-CHANNEL DUAL-GATE DEPLETION-TYPE INSULATED-GATE FIELD-EFFECT TRANSISTORS

*electrical characteristics at $\mathbf{2 5}{ }^{\circ} \mathbf{C}$ free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS		$3{ }^{\text {N2 }} 11$		3N212		3N213		UNIT	
				MIN	MAX	MIN	MAX	MIN	MAX		
V (BR)Ds	Drain-Source Breakdown Voltage	$\begin{aligned} & l D=10 \mu A, \\ & t=6 ; \end{aligned}$	$V_{G 15}=V_{G 2 S}=-4 V_{1}$	27		27		35		V	
V(BA)DS	Instantaneous Draln-Source Breakdown Voltege	$I_{D}=10 \mu A$,	$V_{G 18}=V_{\text {G28 }}=-4 V$	25		25		30		V	
$V_{\text {(RR) }} 18 \mathrm{ESF}$	Gata-One-Source Forward Breakdown Voltage	$\begin{aligned} & \mathrm{IG}_{1}-10 \mathrm{~mA}, \\ & \text { See Note } 4 \end{aligned}$	$V_{G 2 S}-V_{D S}=0,$	6		6		6		V	
V(ER)O18SR	Gate-One-Eource Reverve Breakdown Voltege	$\mathrm{I}_{\mathrm{G} 1}=-10 \mathrm{~mA},$ See Nots 4	$V_{G 2 S}=V_{D S}=0$	-6		-6		-6		V	
V(BR)G2SSF	Gate-Two-Source Forward Breakdown Voltage	$\begin{aligned} & \text { TG2 }=10 \mathrm{~mA} \\ & \text { See Note } 4 \end{aligned}$	$V_{G 1 S}=V_{D S}=0,$	6		6		6		V	
V(BR)G2SSR	Gate-Two-Source Reverse Breakdown Voltage	$\mathrm{I}_{\mathrm{G} 2}=-10 \mathrm{~mA},$ See Note 4	$V_{\mathrm{G} 1 \mathrm{~S}}=\mathrm{V}_{\mathrm{DS}}=0,$	-6		-6		-6		V	
IG1ssF	Gate-One-Terminal Forward Current	$\mathbf{V}_{G 15}=5 \mathrm{~V}$.	$V_{G 2 S}=V_{\text {DS }}=0$		10		10		10	nA	
IG1SSR	Gate-One-Terminal Reverse Current	$V_{G 1 S}=-5 V_{1}$	$V_{G 2 S}=V_{0 S}=0$		-10		-10		-10	nA	
		$\begin{aligned} & V_{G 1 S}=-5 V, \\ & T_{A}=160^{\circ} \mathrm{C} \end{aligned}$	$V_{G 2 S}=V_{D S}=0,$		-10		-10		-10	MA	
IG2ssf	Gate-Two-Terminal Forward Current	$V_{G 2 S}=5 \mathrm{~V}$.	$V_{G 1 S}=V_{\text {DS }}=0$		10		10		10	nA	
IG2SSR	Gate-Two-Terminal Reverse Current	$V_{G 2 S}=-5 \mathrm{~V}$,	$V_{G 1 S}=V_{\text {DS }}=0$		-10		-10		-10	nA	
		$\begin{aligned} & V_{G 25}=-5 V \\ & T_{A}=160^{\circ} \mathrm{C} \end{aligned}$	$V_{G 1 S}=V_{D S}=0$		-10		-10		-10	$\mu \mathrm{A}$	
IDS	Zero-Gate-One-Voltage Drain Current	$\begin{aligned} & V_{\text {DS }}=16 \mathrm{~V}, \\ & V_{G 2 S}=4 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{G} 15}-\mathbf{0}, \\ & \text { See Note } 5 \end{aligned}$	6	40	6	40	6	40	mA	
$\mathbf{V}_{\mathrm{G} 13 \text { (off) }}$	Gate-One-Source Cutoff Voltage	$\begin{aligned} & V_{D S}=15 V, \\ & I_{D}=20 \mu A \end{aligned}$	$V_{G 2 S}=4 V,$	-0.5-5.5		$-0.5 \quad-4$		-0.6-5.5		V	
VG2s(oft)	Gate-Two-Source Cutoff Voltage	$\begin{aligned} & V_{D S}=15 V \\ & I_{D}=20 \mu \mathrm{~A} \end{aligned}$	$V_{G 1 S}=0,$	-0.2	-2.5	-0.2	-4	-0.2	-4	V	
\|Vfs		Small-Signal Common-Source Forward Transfer Admittance	$\begin{aligned} & V_{D S}=15 \mathrm{~V} \\ & V_{G 2 S}=4 \mathrm{~V} \\ & \text { See Note } 6 \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{G} 1 \mathrm{~S}}=0, \\ & \mathrm{f}=1 \mathrm{kHz}, \end{aligned}$	17	40	17	40	15	35	mmho
Crgs	Common-Source Short-Circuit Revarse Transfer Capacitance	$\begin{aligned} & V_{D S}=15 \mathrm{~V}, \\ & 1_{D}=1 \mathrm{~mA}, \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{G} 2 \mathrm{~S}}=4 \mathrm{~V}, \\ & \mathrm{f}=1 \mathrm{MHz} \end{aligned}$	0.006	0.05	0.005	0.06	0.005	0.05	pF	

NOTES: 4. All gate breakdown voltages are maasured while the device is conducting rated gate current. This ensures that the gate-voltage-limiting network is functioning properly.
5. This parameter must be measured uaing pulse techniques. $t_{w}=300 \mu s$, duty cycie $<\mathbf{2 \%}$.
6. This paramater must be measured with bias voltages applied for less than 5 seconds to avoid overheating. The slgnal is applied to gate 1 with gate 2 at a-c ground.

[^118]
TYPES 3N211, 3N212, 3N213

N-CHANNEL DUAL-GATE DEPLETION-TYPE
INSULATED-GATE FIELD-EFFECT TRANSISTORS
*3N211 operating characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER	TEST CONDITIONS		3N211		UNIT
			MIN	TYP MAX	
F Common-Source Spot Noise Figure	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=24 \mathrm{~V}, \\ & \mathrm{f}=45 \mathrm{MHz}, \end{aligned}$	$V_{G G}=6 \mathrm{~V} .$ See Figure 5		4	dB
$\mathrm{G}_{\mathrm{ps}} \quad$ Small-Signal Common-Source Insertion Power Gain			29	37	d8
B Bandwidth			3.5	6	MHz
$V_{G G(G C)}$ Gain-Control Gate-Supply voltage	$\begin{aligned} & V_{D D}=24 \mathrm{~V}, \\ & f=45 \mathrm{MHz}, \end{aligned}$	$\Delta G_{p s}=-30 d B^{\top}$ See Figure 5		+1 -1	V
F Common-Source Spot Noise Figure	$\begin{aligned} & V_{D D}=18 \mathrm{~V}, \\ & f=200 \mathrm{MHz} \end{aligned}$	$V_{G G}=7 \mathrm{~V},$ See Figure 6		3.5	dB
$\mathrm{G}_{\mathrm{ps}} \quad$ Small-Signal Common-Source Insertion Power Gain			24	35	dB
B \quad Bandwidth			5	12	MHz
$V_{\text {GG(GG) }}$ Gain-Control Gate-Supply Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=18 \mathrm{~V}, \\ & \mathrm{f}=200 \mathrm{MHz}, \end{aligned}$	$\Delta G_{p s}=-30 d B \neq$ See Figure 6	0	-2	V
F Common-Source Spot Noise Figure	$\begin{array}{ll} V_{D S}=15 \mathrm{~V}, & V_{G 2 S}=4 \mathrm{~V} \\ I_{D}=15 \mathrm{~mA}, & f=450 \mathrm{MHz} \end{array}$ See Figures 7 and 9		5		dB
$\mathrm{G}_{\mathrm{ps}} \quad$ Small-Signal Common-Source Insertion Power Gain			21		dB

[^119]*3N212 operating characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER	TEST CONDTIONS	3N212		UNIT
		MIN	MAX	
$\mathrm{G}_{\mathrm{ps}(\mathrm{conv})}$ Small-Signal Conversion Power Gain	$\begin{array}{ll} \hline V_{D D}=18 \mathrm{~V}, & f_{L O}=245 \mathrm{MHz} \delta, \\ f_{\text {RF }}=200 \mathrm{MHZ}, & \text { See Figure } 8 \\ \hline \end{array}$	21	28	dB
B Bandwidth		4	7	$\underline{M H z}$

§ Amplitude at input from local oscillator is adjusted for maximum \mathbf{G}_{p} (conv).
*3N213 operating characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER	TEST CONDITIONS		3N213		UNIT
			MIN	MAX	
F Common-Source Spot Noise Figure	$\begin{aligned} & V_{D D}=24 \mathrm{~V}, \\ & f=45 \mathrm{MHz} \end{aligned}$	$V_{G G}=6 \mathrm{~V},$ See Figure 5		4	dB
$\mathrm{G}_{\mathrm{ps}} \quad$ Small-Signal Common-Source Insertion Power Gain			27	35	dB
B Bandwidth			3.5	6	MHz
VGG(GC) Gain-Control Gate-Supply Voltage	$\begin{aligned} & V_{D D}=24 \mathrm{~V} . \\ & f=45 \mathrm{MHz}, \end{aligned}$	$\Delta G_{p s}=-30 d B^{t}$ See Figure 5		+1 -1	V

${ }^{t} \Delta G_{\mathrm{ps}}$ at 45 MHz is defined as the change in G_{ps} from the value at $\mathrm{V}_{\mathrm{GG}}=6$ vaits.

N-CHANNEL DUAL-GATE DEPLETION-TYPE INSULATED-GATE FIELD-EFFECT TRANSISTORS

TYPICAL CHARACTERISTICS AT $\mathrm{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$

3N211
SMALL-SIGNAL COMMON-SOURCE INSERTION POWER GAIN
vs

figure 1

3N211
COMMON-SOURCE SPOT NOISE FIGURE
vs
GAIN-CONTROL GATE-SUPPLY VOLTAGE

Figure 3

3N211
RELATIVE SMALL-SIGNAL POWER GAIN vs

VGG(GC)-Gain-Control Gate-Supply Voltage-V $^{\text {- }}$
figure 2

3N211
OPTIMUM SPOT NOISE FIGURE
FREQUENCY

NOTE 7: Test conditions at $45 \mathrm{MHz}, 200 \mathrm{MHz}$, and 450 MHz are the conditions given in the table of operating characteristics for 3 N 211 .

PARAMETER MEASUREMENT INFORMATION

CIRCUIT COMPONENT INFORMATION
C1: Leadiess disc ceramic, $0.001 \mu \mathrm{~F}$
C2: Leadless disc ceramic, $0.01 \mu \mathrm{~F}$
L1: 8T \# 28, 5/32-inch-dia form, type "J" alug
L2: 9T \# 28, 5/32-inch-dia form, type "J" stug
FIGURE 5-46-MHz POWER GAIN AND NOISE FIGURE TEST CIRCUIT FOR 3N211 AND 3N213*

FIGURE 6-200-MHz POWER GAIN, GAIN-CONTROL VOLTAGE, AND NOISE FIGURE TEST CIRCUIT FOR 3N211*

PARAMETER MEASUREMENT INFORMATION

FIGURE 7-450-MHZ POWER GAIN AND NOISE TEST CIRCUIT FOR 3N211

L1: 7 \# \#34, 1/4-inch dia., aluminum slug
L2: 3T \#20, 1/4-inch dia., aluminum slug
L3: 7T \#24, /4-inch dia.. air core

T1: Pri: 25T \#30, close wound on 1/4-inch-dia form, type "j" slug Sec: 4T \#30, centered over primary

FIGURE 8-200-MHz-to-45-MHz CIRCUIT FOR CONVERSION POWER GAIN FOR 3N212*

[^120]
NOTES:

A. All dimensions are in inches.
B. The removable top of test fixture is not shown.
C. For clarity, the $62 \mathrm{k} \Omega$ resistor, the source and gate-2 sacket pins, and insulating stand-off terminais (ISOT) soldered into the fold of L1 and $\mathrm{L2}$ respectively for mechanical support, are not shown in view \mathbf{A}.
D. C1 and C2 (C3 and C4) consist of shim brass and the "C" portion of L1 (L2) separated by air and the mylar tape covering the "C" portion of L.1
(L2).

FIGURE $9-450-\mathrm{MHz}$ POWER GAIN AND NOISE TEST FIXTURE

DIODEPROTECTED DEPLETION-TYPE MOS SILICON TRANSISTORS

For Low-Power Chopper or Switching Applications

- Low rds(on) ... $20 \Omega \operatorname{Max}(3 N 214)$
- Low Crss . . 2 pF Max
- Low Ciss . . 6 pF Max
- Internally Connected Diode Protects Gate from Damage due to Overvoltage

*mechanical data

*absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)
Drain-Gate Voltage 20 V
Drain-Source Voltage 20 V 20 V
Drain-Substrate Voltage
Drain-Substrate Voltage 20 V
Source-Substrate Voltage
Source-Substrate Voltage
Forward Gate-Terminal Current (See Note 1) 1 mA
Reverse Gate-Terminal Current $-1 \mathrm{~mA}$
Continuous Drain Current 50 mA
Continuous Device Dissipation at (or below) $25^{\circ} \mathrm{C}$ Free-Air Temperature (See Note 2) 360 mW
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $200^{\circ} \mathrm{C}$ $-65^{\circ} \mathrm{C}$ to $200^{\circ} \mathrm{C}$ $300^{\circ} \mathrm{C}$Lead Temperature 1/16 Inch from Case for 10 Seconds
NOTES: 1. Forward gate-terminal current is the current into a gate terminal with a forward gate-source voltage applied. This voltage is of such polarity that an increase in its magnitude causes the channel resistance to decrease.
2. Derme linearly to $175^{\circ} \mathrm{C}$ free-air tempersture at the rate of $2.4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
*electrical characteristice at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

PARAMETER		TEST CONDITIONS			MIN	Max	UNIT
$\mathrm{V}_{\text {(BR) }}$ Gssf	Gate-Souree Forward Breakdown Voltage	$\begin{aligned} & \mathrm{I}_{\mathrm{G}}=1 \mathrm{~mA}, \\ & \text { See Note } 3 \end{aligned}$	$V_{D s}=0,$	Vus $=0$.	7		v
$V_{\text {(BR) }}$ GSSR	Gate-Source Rewerse Braakdown Voitage	$\begin{aligned} & I_{G}=-1 m A_{1} \\ & \text { Seo }^{\prime} \text { Note } 3 \end{aligned}$	$V_{D S}=0$	Vus $=0$,	-7		v
IGSSF	Gato-Torminal Forward Currant	VGS $=7 \mathrm{~V}$,	$V_{\text {DS }}=0$,	$V_{\text {US }}=0$		10	nA
IGSSR	Gete-Terminal Reverse Current	$\mathrm{V}_{\text {Gs }}=-7 \mathrm{~V}_{\text {, }}$	$\mathrm{V}_{\text {DS }}=0$,	Vus $=0$		10	nA
		$\begin{aligned} & V_{G S}=-7 \mathrm{~V}, \\ & T_{A}=125^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	$v_{D S}=0,$	Vus $=0$,		600	
IS(off)	Source Cutoff Current	$\mathrm{V}_{\text {SD }}=12 \mathrm{~V}$,	$V_{G D}=-6 V$	$V_{U D}=0$		1	$\mu \mathrm{A}$
		$\begin{aligned} & V_{S D}=12 \mathrm{~V}, \\ & T_{A}=125^{\circ} \mathrm{C} \end{aligned}$	$V_{G D}=-6 V,$	$V_{U D}=0$		500	
		$\mathrm{V}_{\text {SD }}=12 \mathrm{~V}$	$V_{G D}=-8 V$	$V_{U D}=-6 \mathrm{~V}$		1	
		$\begin{aligned} & V_{S D}=12 \mathrm{~V}, \\ & T_{A}=125^{\circ} \mathrm{C} \end{aligned}$	$V_{G D}=-6 V,$	$V U D=-6 V$		500	
'Dloff)	Drain Cutoff Current	$\mathrm{V}_{\text {DS }}=12 \mathrm{~V}$.	$V_{\text {GS }}=-6 \mathrm{~V}$,	Vus-0		100	nA
		$\begin{aligned} & V_{D S}=12 V_{1} \\ & T_{A}=125^{\circ} \mathrm{C} \end{aligned}$	$V_{G S}=-6 \mathrm{~V},$	$\text { Vus }=0$		50	$\mu \mathrm{A}$
		$\mathrm{V}_{\text {DS }}=12 \mathrm{~V}$,	VGS $=-6 \mathrm{~V}$,	$V_{\text {US }}=-6 \mathrm{~V}$		100	nA
		$\begin{aligned} & V_{D S}=12 \mathrm{~V} \\ & T_{A}=125^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	$V_{G S}=-6 V .$	$\text { Vus }=-6 \mathrm{~V}$		50	$\mu \mathrm{A}$
IUss	Substrate Reverse Current	$\mathrm{V}_{\text {US }}=-20 \mathrm{~V}$,	$V_{\text {DS }}=0$.	$V_{G S}=0$		-10	$\mu \mathrm{A}$
' ${ }^{\text {(on) }}$	On-State Drain Current	VOS $=3 \mathrm{~V}$, See Note 4	$V_{G S}=6 \mathrm{~V},$	$\text { vus }=-6 \mathrm{~V} \text {. }$	50		mA
rdslon)	Small-Signal Drain-Source On-State Resistance	$\begin{aligned} & V_{G S}=6 \mathrm{~V}, \\ & V_{U S}=0 . \end{aligned}$	$\begin{aligned} & I_{D}=0, \\ & f=1 \mathrm{kHz} \end{aligned}$	3N214		20	Ω
				3N215		35	
				3N216		50	
				3N217		70	
$\mathrm{C}_{\text {iss }}$	Common-Source Short-Circuit Input Capacitance	$\begin{aligned} & V_{D S}=12 \mathrm{~V} \\ & f=1 \mathrm{MHz} \end{aligned}$	$V_{G S}=-6 \mathrm{~V},$	$V_{U S}=0$		6	pF
$\mathrm{C}_{\text {rss }}$	Common-Source Short-Circuit Reverse Transfer Capacitance	$\begin{aligned} & V_{D S}=0, \\ & f=1 \mathrm{MHz} \end{aligned}$	$V_{G S}=-6 \mathrm{~V},$	$V_{U S}=0$.		2	pF
C_{ds}	Drain-Source Capacitance	$\begin{aligned} & V_{D S}=12 \mathrm{~V}, \\ & f=1 \mathrm{MHz}, \\ & \hline \end{aligned}$	$V_{G S}=-6 V,$ $\text { See Note } 5$	$V_{U S}=0$		5	pF

NOTES: 3. Both gate braakdown voltages ore masured while the device is condueting rated gate current. This ensuras that the getevoltegelimiting network is functioning properly.
4. This parameter must be measured using pulse techniquet. $t_{w}=300 \mu s$ duty cycle $\leqslant 2 \%$.
. Cds measurement employs a threeterminal capacitance bridge incorporating a guard circuit. The gate and casa are connected to the guard terminal of the bridge.

TWO MATCHED FIELD-EFFECT TRANSISTORS

- High $\mid \mathrm{Yfs}_{s} / / \mathrm{C}_{\text {iss }}$ Ratio (High-Frequency Figure-of-Merit)
- Low Input Capacitance, Ciss: $\mathbf{8}$ pF Max
- Low Differential Gate Current: $\mathbf{1 0 n A}$ Max at $\mathrm{TA}_{\mathrm{A}}=10 \mathbf{0}^{\circ} \mathrm{C}$
- Low Noise Figure: 5 dB Max at 10 Hz
- Recommended for Low-Level D.C Amplifiers, Sample-Hold Circuits, and Serien-Shunt Choppors
mechanical data

absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

NOTE 1: Derate lineariv to $975^{\circ} \mathrm{C}$ free-air temperature at the rates of $\mathbf{2} \mathrm{mW} /{ }^{\circ} \mathrm{C}$ for each triode and $4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for total davice.

TYPES TIS25, TIS26, TIS27
 DUAL N-CHANNEL SILICON JUNCTION FIELD-EFFECT TRANSISTORS

electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

individual triode characteristics (see note 2)

PARAMETER		TEST CONDITIONS			MIN	MAX	$\frac{\text { UNIT }}{V}$
$V_{\text {(BR) }}$ GSS	Gate-Source Breakdown Voltage	$\mathrm{I}_{\mathrm{G}}=-1 \mu \mathrm{~A}$,	$V_{\text {DS }}=0$		-50		
'Gss	Gate Cutoff Current	$V_{\mathrm{GS}}=-30 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$			-0.25		nA
		$\mathrm{V}_{\mathrm{GS}}=-30 \mathrm{~V}$,	$V_{D S}=0$,	$T_{A}=150^{\circ} \mathrm{C}$		-250	
IDSS	Zero-Gate-Voltage Drain Current	$V_{\text {DS }}=15 \mathrm{~V}$.	$V_{G S}=0$		0.6	8	mA
$V_{\text {GS }}$	Gate-Source Voltage	$V_{\text {OS }}=15 \mathrm{~V}$,	$I_{D}=50 \mu \mathrm{~A}$		-0.5	-4	V
VGS(off)	Gate-Source Cutoff Voltage	$V_{D S}=15 \mathrm{~V}$,	$\mathrm{I}^{\prime}=0.5 \mathrm{nA}$			-6	V
rds ${ }^{\text {con) }}$	Small-Signal Drain-Source On-State Resistance	$L_{D}=0$,	$V_{G S}=0$,	$f=1 \mathrm{kHz}$		500	Ω
$\left\|y_{\text {fs }}\right\|$	Small-Signal Common-Source Forward Transfer Admittance	$V_{\text {DS }}=15 \mathrm{~V}$.	$V_{G S}=0$,	$f=1 \mathrm{kHz}$	1500	6000	$\mu \mathrm{mho}$
Mos	Small-Signal Common-Source Output Admittance	$V_{D S}=15 \mathrm{~V}$,	$V_{G S}=0$,	$\mathrm{f}=1 \mathrm{kHz}$		25	Mmho
Ciss	Small-Signal Common-Source Input Capacitance	$V_{\text {DS }}=15 \mathrm{~V}$,	$V_{G S}=0$,	$f=1 \mathrm{MHz}$		8	pF
$C_{\text {rss }}$	Small-Signal Common-Source Reverse Transfer Capacitance	$V_{D S}=15 \mathrm{~V}$,	$V_{G S}=0$,	$\mathrm{f}=1 \mathrm{MHz}$		4	pF
$\left\|y_{f s}\right\|$	Small-Signal Common-Source Forward Transfer Admittance	$V_{D S}=15 \mathrm{~V}$,	$V_{G S}=0$,	$f=100 \mathrm{MHz}$	1500		$\mu \mathrm{mho}$

triode matching characteristics

PARAMETER		TEST CONDITIONS	TIS25		TIS26		TIS27		UNIT	
		MIN	MAX	MIN	MAX	MIN	MAX			
$\left\|\mathbf{I G S S 1}^{-1} \mathbf{G S S 2}\right\|$	Differential Gate Cutoff Current		$\begin{aligned} & V_{G S}=-15 \mathrm{~V}, V_{D S}=0, \\ & T_{A}=100^{\circ} \mathrm{C} \end{aligned}$		10		10		10	nA
'DSS1	Zero-Gate-Voltage Drain Current Ratio	$\begin{array}{ll} V_{D S}=15 \mathrm{~V}, & V_{G S}=0 \\ \text { See Note } 3 \end{array}$	0.95	1	0.9	1	0.8	1		
$\left\|V_{\mathbf{G S 1}}-\mathrm{V}_{\mathbf{G S 2}}\right\|$	Gate-Source-Voltage Differential	$V_{D S}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=50 \mu \mathrm{~A}$		8		16		32	mV	
		$V_{D S}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=500 \mu \mathrm{~A}$		5		10		15		
$\left\|\Delta\left(V_{G S 1}-V_{G S 2}\right)_{\Delta T_{A}}\right\|$ Gate-Source-Voltage-Differential Change with Temperature		$\begin{aligned} & V_{D S}=15 \mathrm{~V}, \quad I_{D}=500 \mu \mathrm{~A}, \\ & T_{A(1)}=25^{\circ} \mathrm{C}, \quad T_{A(2)}=-40^{\circ} \mathrm{C} \end{aligned}$		5		10		15	mV	
		$\begin{aligned} & V_{D S}=15 \mathrm{~V}, \quad T_{D}=500 \mu \mathrm{~A}, \\ & T_{A(1)}=25^{\circ} \mathrm{C}, \quad T_{A(2)}=100^{\circ} \mathrm{C} \end{aligned}$		5		10		15		
$\frac{\mathrm{Vfs}_{\mathrm{fs}} 1}{\sqrt{\mathrm{fs} / 2}}$	Small-Signal Common-Source Forward Transfer Admittance Ratio	$\begin{array}{ll} V_{\text {DS }}=15 \mathrm{~V}, & V_{G S}=0, \\ \mathrm{f}=1 \mathrm{kHz}, & \text { See Note } 3 \end{array}$	0.95	1	0.9	1	0.8	1		

operating characteristics at $\mathbf{2 5}{ }^{\circ} \mathrm{C}$ free-air temperature
individual triode characteristics (see note 2)

PARAMETER		TEST CONDITIONS	TIS25	TIS26	UNIT	
		MAX	MAX			
F	Spot Noise Figure		$\begin{array}{ll} V_{D S}=15 \mathrm{~V}, & V_{G S}=0, \quad f=10 \mathrm{~Hz}, \\ R_{G}=1 \mathrm{M} \Omega, & \text { Noise Bandwidth }=5 \mathrm{~Hz} \end{array}$	5	5	dB
V_{n}	Equivalent Input Noise Voltage	$V_{D S}=15 \mathrm{~V}, \quad V_{G S}=0, \quad f=10 \mathrm{~Hz},$ Noise Bandwidth $=5 \mathrm{~Hz}$	200	200	$n \mathrm{~V} / \sqrt{\mathrm{Hz}}$	

NOTES: 2. The terminals of the triode not under test are apen-circuited for the measurement of these characteristics.
3. The lower of the two characteristic readings is taken as the numerator.

TYPES TIS37, TIS38, TIS137, TIS138
 P-N-P SILICON TRANSISTORS

BULLETIN NO. DL-S 7311580 , NOVEMBER 1971-REVISED MARCH 1973

SILECT ${ }^{\dagger}$ TRANSISTORS \ddagger RECOMMENDED AS LOW-NOISE DESIGN REPLACEMENTS FOR GERMANIUM DRIFT TRANSISTORS IN:

- AM Radio RF and IF Converter Applications
- TV Video and AGC Amplifiers, Sync Amplifiers and Separators, and Emitter Followers

mechanical data

These transistors are encapsulated in a plastic compound specifically designed for this purpose, using a highly mechanized process developed by Texas instruments. The case will withstand soldering temperatures without deformation. These devices exhibit stable characteristics under high-humidity conditions and are capable of meeting MIL-STD-202C, Method 106B. The transistors are insensitive to light.

absolute maximum ratings at $\mathbf{2 5}{ }^{\circ} \mathbf{C}$ free-air temperature (unless otherwise noted)

NOTES: 1. This value applies when the base-emitter diode is open-circuited.
2. Derate linearly to $150^{\circ} \mathrm{C}$ free-air tempersture at the rate of $5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
${ }^{\dagger}$ Tradernark of Texas Instruments
\ddagger U.S. Patent No. 3,439,238
USES CHIP P24

TYPES TIS37, TIS38, TIS137, TIS138 P-N-P SILICON TRANSISTORS

electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER	TEST CONDITIONS	$\begin{gathered} \text { TIS37 } \\ \text { TIS137 } \end{gathered}$		$\begin{gathered} \text { TIS38 } \\ \text { TIS138 } \end{gathered}$		UNIT
		MIN	TYP MAX	MIN	TYP MAX	
$\mathrm{V}_{\text {(BR) }}$ CBO Collector-Base Breakdown Voltage	$I_{C}=-100 \mu A, I_{E}=0$	-35		-35		V
$\mathrm{V}_{\text {(BR)CEO }}$ Collector-Emitter Breakdown Voltage	$\mathrm{I}_{\mathrm{C}}=-1 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0, \quad$ See Note 3	-32		-32		V
$V_{\text {(BR) }}$ EBO Emitter-Base Breakdown Voltage	$\mathrm{I}_{\mathrm{E}}=-100 \mu \mathrm{~A}, \mathrm{I}^{\prime} \mathrm{C}=0$	-6		-4		V
1 CBO Collector Cutoff Current	$\mathrm{V}_{C B}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0$		-100		-100	nA
hFE Static Forward Current Transfer Ratio	$V_{C E}=-9 \mathrm{~V}, \quad \mathrm{I}^{\text {c }}=-1 \mathrm{~mA}$	45		25		
Small-Signal Common-Emitter	$V_{C E}=-9 \mathrm{~V}, 1 \mathrm{C}=-1 \mathrm{~mA}, \mathrm{f}=455 \mathrm{kHz}$	35	45	30	40	dB
Mfel Forward Current Transfer Ratio	$\mathrm{V}_{\text {CE }}=-9 \mathrm{~V}, \mathrm{I}^{\text {c }}=-1 \mathrm{~mA}, f=10 \mathrm{MHz}$	18	30	14	26	dB
$\left\|y_{f e}\right\|$ Small-Signal Common-Emitter Forward Transfer Admittance	$V_{C E}=-9 \mathrm{~V}, \quad \mathrm{I}^{\prime}=-1 \mathrm{~mA}, \mathrm{f}=455 \mathrm{kHz}$	32	35	32	35	mmho
f_{T} Trensition Frequency	$V_{C E}=-9 \mathrm{~V}, \quad I_{C}=-1 \mathrm{~mA}$, See Note 4	80	320	50	200	MHz
$\mathrm{C}_{\mathrm{cb}} \quad$ Collector-Base Capacitance	$V_{C B}=-9 V, I_{E}=0$, $f=1 \mathrm{MHz}$, See Note 5	0.5	1.11 .7	0.5	1.11 .7	pF
$\mathrm{rb}^{\prime} \mathrm{C}_{\mathrm{c}} \quad$ Collector-Base Time Constant	$V_{C B}=-9 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=1 \mathrm{~mA}, \quad \mathrm{f}=79.8 \mathrm{MHz}$		$30 \quad 70$		$30 \quad 70$	ps

operating characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER		TEST CONDITIONS	Tis37 TIS137	UNIT	
		TYP			
NF	Spot Noise Figure		$\mathrm{V}_{\mathrm{CE}}=-9 \mathrm{~V}, \mathrm{I}^{\mathrm{C}}=-1 \mathrm{~mA}, \mathrm{R}_{\mathrm{G}}=75 \Omega, f=1 \mathrm{MHz}$	2.5	dB
		$\mathrm{V}_{\text {CE }}=-9 \mathrm{~V}, \mathrm{I}^{\text {C }}=-1 \mathrm{~mA}, \mathrm{R}_{\mathrm{G}}=1 \mathrm{k} \Omega, f=1 \mathrm{MHz}$	1	dB	

TYPICAL CHARACTERISTICS AT TA $=25^{\circ} \mathrm{C}$

NOTES: 3. This parameter must be measured using puise techniques, $\mathrm{t}_{\mathbf{w}}=300 \mu \mathrm{~s}$, duty cycle $\leqslant 2 \%$.
4. To obtain f_{T}, the $\mathrm{hfe}_{\mathrm{fe}}$ response with frequency is extrapolated at the rate of -6 dB per octave from $\mathrm{f}=10 \mathrm{MHz}$ to the frequency at which $\mathrm{h}_{\mathrm{fa}} \mid=1$.
5. C_{cb} measurement employs a three-terminal capacitance bridge incorporating a guard circuit. The emitter is connected to the guard terminal of the bridge.
texas instruments reserves the richt to mane changes at ahy time in order to lmprove design and to supply the best product possigle.

PLANAR UNIJUNCTION SILECT ${ }^{\dagger}$ TRANSISTOR \ddagger FOR APPLICATION IN SCR DRIVERS, MOTOR SPEED CONTROLS, TIMERS, WAVEFORM GENERATORS, MULTIVIBRATORS, RING COUNTERS, ELECTRONIC ORGANS, AND MILITARY FUZES

- Low Leakage Allows More Accurate Timing Circuit Design
- Provides Wider Range of Design Applications than Bar-Type Unijunction Transistors
- 2N4891 is Recommended for New Designs

mechanical data

This transistor is encapsulated in a plastic compound specifically designed for this purpose, using a highly mechanized process developed by Texas Instruments. The case will withstand soldering temperatures without deformation. This device exhibits stable characteristics under high-humidity conditions and is capable of meeting MIL-STD-202C, Method 106B. The transistor is insensitive to light.

absolute maximum ratings at $\mathbf{2 5}^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

,																		
Interbase Voltage																		
Continuous Emitter Current . 50 mA																		
Peak Emitter Current (See Note 2) . 1 A																		
Continuous Device Dissipation at (or below) $25^{\circ} \mathrm{C}$ Free-Air Temperature (See Note 3) 360 mW Continuous Device Dissipation at (or below) $25^{\circ} \mathrm{C}$ Lead Temperature (See Note 4) 500 mW																		
Storage Temperature Range . $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$																		

2. This value applies for a capaciser discharge through the emithor-bose-one diade. Current must fall to 0.37 a withia 3 ms and pulso-ropelition rate must mot axceed 10 pps.
3. Derate linearly to $150^{\circ} \mathrm{C}$ tree-air temperature of the rate of $2.8 \mathrm{Et} \mathrm{mW} / \mathrm{deg}$.
4. Derate linearly to $150^{\circ} \mathrm{C}$ lend temperature at the rate of $4 \mathrm{mw} / \mathrm{deg}$. Lead temperature is measured on the base- two lead $1 / 16$ inch from the case.
${ }^{\dagger}$ Trademark of Texas Instruments
\ddagger U. S. Patent No. 3,439,238

electrical characteristics of $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

PARAMETER		TEST CONDITIONS	MIN	MAX	UNIT
T_{BB}	Static Interbase Resistance	$V_{\text {B2-E1 }}=3 V_{1} I_{E}=0$	4	9.1	k Ω
$\alpha_{\text {reb }}$	Interbase Resistance Temperature Coefficient	$\begin{aligned} V_{\mathrm{B} 2-\mathrm{B1}}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0, \mathrm{I}_{\mathrm{A}}= & -65^{\circ} \mathrm{C} \text { to } 100^{\circ} \mathrm{C} \\ & \text { See Note } 5 \end{aligned}$	0.1	0.9	\%/deg
η	Intrinsic Standoff Ratio	$\bar{V}_{92-\mathrm{al}}=10 \mathrm{~V}$, See Figure 1	0.55	0.82	
$l_{\text {animod] }}$	Modulated Interbase Current	$V_{87-8_{1}}=10 \mathrm{~V}, I_{E}=50 \mathrm{~mA}$	10		mA
IEBE^{2}	Emitter Reverse Current	$V_{B 2-E}=30 \mathrm{~V}, 1_{B 1}=0$		-10	n A
If_{P}	Peak-Point Emitter Current	$\mathrm{V}_{82-81}=25 \mathrm{~V}$		5	$\mu \mathrm{A}$
$V_{\text {EBII (sat) }}$	Emitter - Base-One Saturation Voltage	$V_{\mathrm{az}-\mathrm{si}}=10 \mathrm{~V} \mathrm{I}_{\mathrm{s}}=50 \mathrm{~mA}$, See Note 6		4	\checkmark
Iv	Volley-Point Emitter Current	$V_{\text {E2- } \mathrm{B}_{1}}=20 \mathrm{~V}$	2		mA
Vom	Base-One Peak Pulse Voltage	See Figure 2	3		\checkmark

NOIES: 5. Temperature coefficient, α_{r}, is determined by the following formula:

$$
\begin{aligned}
& \alpha_{\mathrm{r}} \mathrm{BE}=\left[\frac{\left(r_{\mathrm{BB}} @ 100^{\circ} \mathrm{C}\right)-\left(r_{\mathrm{BB}} @-55^{\circ} \mathrm{C}\right)}{\left.f_{\mathrm{BB}} @ 25^{\circ} \mathrm{C}\right)}\right] \frac{100 \%}{155 \mathrm{deg}} \\
& \mathrm{r}_{\mathrm{BB}(2)}=\left[\mathrm{r}_{\mathrm{BB}} @ 25^{\circ} \mathrm{C}\right]\left[\mathrm{I}+\left(\alpha_{\mathrm{rBB}} / 100\right)_{\left(\mathrm{T}_{\mathrm{A}(2)}-25^{\circ} \mathrm{C}\right]}\right.
\end{aligned}
$$

To obtain $\mathrm{r}_{\mathrm{B} 日}$ for 0 given temperalure $\mathrm{T}_{\mathrm{A}(2)}$, use the following formula:
6. This paramater is measured using pulse techniques. $\mathrm{i}_{\mathrm{p}}=300 \mu \mathrm{~s}$, duty cycle $\leq 2 \%$.

PARAMETER MEASUREMENT INFORMATION

FIGURE 3 - GENERAL STATIC EMITTER CHARACTERISTIC CURVE

SILECT ${ }^{\text {FIELD-EFFECT TRANSISTORS } \ddagger+1}$
 For Industrial and Consumer Small.Signal Applications
 - Coded IDSS Ranges for Precise Circuit Design
 - Low Crss . . $\leqslant 3$ pF
 - High yfs/Ciss Ratio (High-Frequency Figure-of-Merit)
 - 2N5949 thru 2N5953 Are Recommended for New Designs

mechanical data

These transistors are encapsulated in a plastic compound specifically designed for this purpose, using a highly mechanized process developed by Texas instruments. The case will withstand soldering temperatures without deformation. These devices exhibit stable characteristics under high-humidity conditions and are capable of meeting MIL-STD-202C, Method 106B. The transistor is insensitive to light.

absolute maximum ratings af $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

NOTE 1: Derate linearly to $150^{\circ} \mathrm{C}$ free-air temperature at the rate of $2.88 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.

TYPES TIS58, TIS59
 N-CHANNEL SILICON JUNCTION FIELD-EFFECT TRANSISTORS

olectrleal characteristics at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

PARAMETER	TEST CONDITIONS				UNIT
V (0xjess Guto-Source Breakdown Voltage	$\mathrm{I}_{6}=-1 \mu \mathrm{~h}, V_{\text {DS }}=0$		-25	-25	Y
Gate Cutoff Current	$V_{\text {OS }}=-15 V_{,} Y_{\text {OS }}=0$		-4	4	$n /$
	$V_{G S}=-15 V_{,} V_{\text {DS }}=0$,	$T_{A}=100^{\circ} \mathrm{C}$	-2	-2	$\mu \mathrm{A}$
loss Zero-Gate-Voliage Drain Current	$V_{\text {OS }}=15 \mathrm{~V}, V_{\text {SS }}=0$,	See Nofs 2	2.5 8	25	mA
$V_{\text {Gs ofin }}$ Gate-Source Cutoff Voltage	$V_{\text {DS }}=15 \mathrm{~V}, \mathrm{l}_{\mathrm{D}}=20 \mathrm{n}$		-0.5 -5	$-1 \quad-9$	V
Small-Signal Common-Source Forward Iransfer Admittance	$V_{\text {DS }}=15 \mathrm{~V}, \quad V_{\text {ES }}=0$,	$f=1 \mathrm{kHz},$ See Note 2	4000	4800	$\mu \mathrm{mho}$
	$\begin{aligned} V_{D S} & =15 \mathrm{~V}, \\ \mathrm{I}_{\mathrm{D}} & =2 \mathrm{~mA}(71558) \\ \mathrm{I}_{\mathrm{D}} & =5 \mathrm{~mA}(\mathrm{~T} / 559) \end{aligned}$	$\mathrm{f}=1 \mathrm{kHz}$	130022004000	230035005000	$\mu \mathrm{mho}$
$\begin{aligned} & \text { Small-Signal Common-Source } \\ & \text { Output Admiltance } \end{aligned}$		$f=1 \mathrm{kHz}$	20	50	$\mu \mathrm{mhog}$
Ciss $^{\text {Common-Source Short- Circuit }}$ Input Capactonce		$t=1$ mhz	6	6	pF
$\mathrm{C}_{\text {rut }}$ Common-Source Short-Girait Reverse Transfer Capacitance		1 = 1 mhz	3	3	pf
$\text { Re }\left(Y_{h}\right) \begin{aligned} & \text { Small-Signal Common-Sourte } \\ & \text { Forward Iransfer Conductonce } \end{aligned}$		$t=100 \mathrm{mHz}$	1000	2000	$\mu \mathrm{mhn}$

PARAMETER COLOR-CODE INFORMATION

The TIS58 is furnished in color-coded loss brackets, each having a 2-to-1 spread as shown in Table 1.

$$
\begin{array}{lc}
\text { COLOR CODE } & \begin{array}{c}
\text { IDSs } B R A C K E T ~ \\
\\
\text { Yellow }
\end{array} \\
\text { Green } & 2.5 \mathrm{~mA}-5 \mathrm{~mA} \\
\text { G } & 4 \mathrm{~mA}-8 \mathrm{~mA}
\end{array}
$$

TABLE 1 - TISSB

The TIS59 is furnished in color-coded loss brackets, each having a 2.5 -to-1 spread as shown in Table 2.

COLOR CODE	Joss $B R A C K E T$
	$V_{D S}=15 \mathrm{~V}, V_{G S}=0$, See Note 2
Yellow	$6 \mathrm{~mA}-15 \mathrm{~mA}$
Green	$10 \mathrm{~mA}-25 \mathrm{~mA}$

[^121]NOTE 2: These paramators must be measured using pelse rechniques. $t_{p} \approx 100 \mathrm{~ms}$, duty cycle $\leq 10 \%$.

SILECT ${ }^{\dagger}$ TRANSISTORS \ddagger
 FOR APPLICATION IN AM-FM RECEIVERS AND GENERAL-PURPOSE HIGH-FREQUENCY AMPLIFIERS
 TIS62A Features:

- fT . . . 500 MHz Min
- Low rb'C ${ }^{\text {c }}$. . 20 ps Max
- F... 6 dB Max at 100 MHz

Rugged, One-Piece Construction with Standard TO-18 100-mil Pin Circle
mechanical data
These transistors are encapsulated in a plastic compound specifically designed for this purpose, using a highly mechanized process developed by Texas instruments. The case will withstand soldering temperatures without deformation. These devices exhibit stable characteristics under high-humidity conditions and are capable of meeting MIL-STD-202C, Method 106B. The transistors are insensitive to light.

absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)
Collector-Base Voltage . 30 V
Collector-Emitter Voltage (See Note 1) . 12 V

NOTES: 1. This value applles wher the base-emitter diode is open-circuited.
2. Derate inearly to $150^{\circ} \mathrm{C}$ free-air temperature at the rate of $\mathbf{4 \mathrm { mW }} \mathbf{/}^{\circ} \mathrm{C}$.

[^122]USES CHIP N22

TYPES TIS62A, TIS63A, TIS64A N-P-N SILICON TRANSISTORS

electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER		TEST CONDITIONS	TIS62A		TIS63A		TIS64A		UNIT	
		MJN	MAX	MIN	MAX	MIN	MAX			
$\mathrm{V}_{\text {(BR) }} \mathrm{CBO}$	Collector-Base Breakdown Voltage		$\mathrm{I}_{C}=100 \mu A, \quad I_{E}=0$	30		30		30		V
$V_{\text {(BR) CEO }}$	Collector-Emitter Breakdown Voltage	$I_{C}=4 \mathrm{~mA}, \quad I_{B}=0, \quad$ See Note 3	12		12		12		V	
$V_{\text {(BR)EBO }}$	Emitter-Base Breakdown Voltage	$\mathrm{I}_{\mathrm{E}}=100 \mu \mathrm{~A}, \quad \mathrm{I}_{\mathrm{C}}=0$	3		3		3		V	
${ }^{1} \mathrm{CBO}$	Collector Cutoff Current	$V_{C B}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0$		100		100		100	nA	
hfe	Static Forward Current Transfer Ratio	$\mathrm{V}_{C E}=10 \mathrm{~V}, \mathrm{I}^{\prime} \mathrm{C}=4 \mathrm{~mA}$	30	225	30	225	50	150		
Pfel	Small-Signal Common-Emitter Forward Current Transfer Ratio	$V_{C E}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=4 \mathrm{~mA}, \quad f=455 \mathrm{kHz}$			27				dB	
		$\mathrm{V}_{C E}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=4 \mathrm{~mA}, \quad \mathrm{f}=10 \mathrm{MHz}$			27					
		$\mathrm{V}_{\mathrm{CE}}=10 \mathrm{~V}, \mathrm{I} C=4 \mathrm{~mA}, \quad \mathrm{f}=100 \mathrm{MHz}$	5	18	5	18	5	18		
$C_{c b}$	Collector-Base Capacitance	$\begin{array}{ll} V_{C B}=10 \mathrm{~V}, & I_{E}=0, \end{array} \quad \begin{aligned} & \mathrm{f}=1 \mathrm{MHz}, \\ & \\ & \text { See Note } 4 \end{aligned}$	0.4	1.3	0.4	1.3	0.4	1.3	pF	
${ }^{6}{ }^{\prime} \mathrm{C}_{\mathrm{c}}$	Collector-Base Time Constant	$\mathrm{V}_{C B}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=-4 \mathrm{~mA}, f=79.8 \mathrm{MHz}$		20		20		20	ps	

NOTES: 3. This parameter must be measured using pulse techniques, $t_{w}=300 \mu s$, duty cycle $\leqslant 2 \%$.
4. $C_{c b}$ measurement employs a three-terminal capacitance bridge incorporating a guard circuit. The emitter is connected to the guard terminal of the bridge.
operating characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER	TEST CONDITIONS				TIS62A		UNIT
					TYP	MAX	
F Spot Noise Figure	$V_{C E}=10 \mathrm{~V}$,	$1 \mathrm{C}=2 \mathrm{~mA}$,	$\mathrm{R}_{\mathrm{G}}=300 \Omega$,	$f=100 \mathrm{MHz}$	4	6	dB

THERMAL INFORMATION

DISSIPATION DERATING CURVE

FIGURE 1

SILECT \dagger FIELD-EFFECT TRANSISTORS \ddagger
 SUPPLIED AS MATCHED PAIRS

- High $\mathbf{y}_{\mathrm{ts}} / \mathbf{C}_{\mathrm{iss}}$ Ratio (High-Frequency Figure-of-Merit)

- Low Input Capacitance, $\mathrm{C}_{\text {iss }} \ldots .8 \mathrm{pF}$ Max
- Low Gafe Reverse Current Differential ... 10 nA Max at $T_{A}=100^{\circ} \mathrm{C}$
- Recommended for Low-Cost, Low-Level D-C Amplifiers, Sample-Hold Circuits, and Series-Shunt Choppers

mechanical data

Each TIS69 or TIS70 comprises a matched pair of transistors. A clip is supplied with each transistor pair. These transistors are encapsulated in a plastic compound specifically designed for this purpose, using a highly mechanized process developed by Texas instruments. The case will withstand soldering temperatures without deformation. These devices exhibit stable characteristics under high-humidity conditions and are capable of meeting MIL-STD-202C, Method 106B. The transistors are insensitive to light.

absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

NOTE 1: Derate linearly to $150^{\circ} \mathrm{C}$ free-air temperature at the rate of $2.88 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
${ }^{\dagger}$ Trademark of Texas instruments
\ddagger U. S. Patent No. 3,439,238
electrical characteristics at $\mathbf{2 5}{ }^{\circ} \mathrm{C}$ froe-air temperature (unloss otherwise noted)
individual triode characteristics

	PARAMETER	TEST CONDITIONS			MIN	MaX	UNIT
less	Gate Reverse Current	$V_{G S}=-25 \mathrm{~V}$	$V_{\text {DS }}=0$			-1	$\mu \mathrm{A}$
		$V_{\text {GS }}=-15 V_{1}$	$V_{\text {DS }}=0$			-2	nA
		$V_{\text {GS }}=-15 \mathrm{~V}$,	$V_{0 S}=0$,	$\mathrm{I}_{\mathrm{A}}=100^{\circ} \mathrm{C}$		-2	μ
$V_{\text {csiofl }}$	Gate-Source Cutoff Voltage	$V_{\text {DS }}=15 \mathrm{~V}$,	$\mathrm{l}_{0}=2 \mathrm{nA}$		-0.5	-5	V
loss	Zero-Gote-Voltage Drain Current	$V_{\text {DS }}=15 \mathrm{~V}$,	$V_{G S}=0$,	See Note 2	0.5	8	mA
$\left\|y_{t s}\right\|$	Small-Slgnal Common-Source Forward Tronster Admittance	$V_{\text {OS }}=15 \mathrm{~V}$,	$V_{\text {Gs }}=0$,	$f=1 \mathrm{kHz}$	1	6	mmho
\|Yos ${ }^{\text {a }}$	Small-Signol Common-Source Output Admittance	$V_{D S}=15 \mathrm{~V}$,	$V_{\text {GS }}=0$,	$\mathrm{f}=1 \mathrm{kHz}$		35	$\mu \mathrm{mho}$
C_{6}	Small-Signal Common-Source Input Capocitance	$V_{D S}=15 \mathrm{~V}$,	$V_{G S}=0$,	$\mathrm{f}_{\text {¢ }}=1 \mathrm{mhz}$		8	pf
$\mathrm{Crss}^{\text {r }}$	Small-Signol Common-Source Reverse Transter Capocitonce	$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}$,	$\mathbf{V}_{\mathbf{G s}}=0$,	$\mathrm{f}=\mathrm{I}$ M Mz		4	pf
$\left\|y_{s t}\right\|$	Small-Signal Common-Source Forward Transfor Admittance	$V_{D S}=15 \mathrm{~V}$,	$V_{\text {SS }}=0$,	$f=100 \mathrm{mHz}$	0.8		mmhe

triode matching characteristics

PARAMETER		TEST CONDITIONS	$\begin{gathered} \text { TIS69 } \\ \hline \text { MIN MAX } \\ \hline \end{gathered}$	$\begin{array}{\|l\|} \hline 71570 \\ \hline \text { KIN MAX } \\ \hline \end{array}$	UNIT
	Gate-Reverse-Current Differentiol	$\begin{aligned} V_{G S}=-15 \mathrm{~V}, & V_{D S} \\ & =0 \\ T_{A} & =100^{\circ} \mathrm{C} \end{aligned}$	10	10	nA
$\left\|V_{G S 1}-V_{G S 2}\right\|$	Gate-Source-Voltage Differential	$V_{\text {DS }}=15 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{D}}=50 \mu \mathrm{~A}$	16	32	m ${ }^{\text {V }}$
		$V_{D S}=15 V_{1} \quad I_{D}=500 \mu \mathrm{~A}$	10	15	mV
$\left.\mid \Delta V_{\text {SSI }}-V_{\text {ES }}\right)_{\Delta T_{A}} \mid$	Gate-Source-Voltage Differential Change with Temperature	$\begin{array}{ll} \hline V_{D S}=15 \mathrm{~V}, & \mathrm{I}_{\mathrm{D}}=500 \mu \mathrm{~A}, \\ \mathrm{I}_{A(1)}=25^{\circ} \mathrm{C}, & \mathrm{I}_{A(2)}=-40^{\circ} \mathrm{C} \end{array}$	10	15	${ }^{m}$
		$\begin{array}{ll} V_{D S}=15 \mathrm{~V}, & I_{0}=500 \mu \mathrm{~A} \\ I_{A(1)}=25^{\circ} \mathrm{C}, & \mathrm{I}_{A(2)}=100^{\circ} \mathrm{C} \end{array}$	10	15	mV
$\begin{array}{\|l\|l\|} \frac{\text { loss1 }}{l_{\text {loss2 }}} \\ \hline \end{array}$	Zero-Gate-Voltage Droin Curront Ratio	$V_{D S}=15 \mathrm{~V}, \begin{aligned} & V_{G S}=0, \\ & \text { Soe Mote 3 } \end{aligned}$	0.9 J	0.81	
$\frac{\left\|y_{k}\right\|_{1}}{\left\|y_{t}\right\|_{2}}$	Small-Signol Common-Source Forward Trensier Admistance Ratio	$\begin{array}{ll} V_{D S}=15 V_{1} & V_{G S}=0 \\ 1=1 \mathrm{kHz}, & \text { See Note } 3 \end{array}$	0.91	0.81	

NOTES: 2. This parameter must be measured using pulse techniques. $t_{w} \approx 100 \mathrm{~ms}$, duty evcle $\leq 10 \%$.
3. The fower of the two characteristic readings is taken as the numerator.

SILECT \dagger FIELD-EFFECT TRANSISTORS \ddagger FOR HIGH-SPEED COMMUTATOR AND CHOPPER APPLICATIONS

- Low $\mathrm{r}_{\text {dr(an) }}: \mathbf{2 5 \Omega}$ Max (TIS73)
- Low $I_{\text {D(off }}: 2$ nA Max
- Low Drain-Gate Capacitance ($\mathrm{C}_{\text {res }}$): 8 pF Max
- Rugged, One-Piece Construction wifh Standard

T0-18 100-mil Pin-Circle

mechanical data

These transistors are encapsulated in a plastic compound specifically designed for this purpose, using a highly mechanized process developed by Texas Instruments. The case will withstand soldering temperatures without deformation. These devices exhibit stable characteristics under high-humidity conditions and are capable of meeting MIL-STD-202C, Method 106B. The transistors are insensitive to light.

absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless othorwise noted)

MOTES: 1 . Derate linderly te $150^{\circ} \mathrm{C}$ troe-air temperature at the rate of $2.2 \mathrm{et} \mathrm{mW} / \mathrm{deg}$.

${ }^{\dagger}$ Trademark of Texes Inetruments
¥U. S. Patent No. 3,439,238

TYPES TIS73, TIS74, TIS75
 N-CHANNEL SILICON JUNCTION FIELD-EFFECT TRANSISTORS

electrical characteristics of $25^{\circ} \mathrm{C}$ free-cir temperature (unless otherwise noted)

PARAMETER $V_{\text {(IE) }}$ \|sss Gate-Source Breakdown Voltage	TEST CONDITIONS	TiS73	TIS74	TiS75	UNIT
		MIN MAX	MIN MAX	MIN MAX	
	$\mathrm{I}_{G}=-1 \mu \mathrm{~A}, V_{\text {dS }}=0$	-30	-30	-30	1
Gate Reverse Curront	$V_{G S}=-15 \mathrm{~V}, V_{\text {DS }}=0$	-2	-2	-2	nA
	$V_{G S}=-15 V, V_{D S}=0, \quad T_{A}=100^{\circ} \mathrm{C}$	-5	-5	-5	$\mu \mathrm{A}$
Drain Cutoff Current	$V_{\text {DS }}=15 \mathrm{~V}, \quad V_{G S}=-10 \mathrm{~V}$	-2	-2	-2	nA
$\mathrm{V}_{\text {SSIoffl }}$ Gate-Source	$V_{D S}=15 \mathrm{~V}, \quad V_{G S}=-10 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=100^{\circ} \mathrm{C}$	-5	-5	-5	$\mu \mathrm{A}$
loss \quad Zero-Gate-Voltage Drain C	$V_{\text {DS }}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=4 \mathrm{nA}$	-4 $\quad-10$	-2 -6	$-0.8-4$	V
	$V_{D S}=15 V_{\text {d }} \quad V_{G S}=0, \quad$ See Note 3	50	$20 \quad 100$	880	mA
Drain-Sourte On-State Voltage	$\mathrm{I}_{\mathrm{D}}=20 \mathrm{~mA}, \quad V_{G S}=0$	0.75			V
	$\mathrm{T}^{\text {D }}=10 \mathrm{~mA}, \quad V_{G S}=0$		0.5		V
	$\mathrm{I}_{0}=5 \mathrm{~mA}, \quad V_{G S}=0$			0.5	V
Idsion) On-State Resistance	$V_{G S}=0, \quad l_{\text {d }}=0, \quad f=1 \mathrm{kHz}$	25	40	60	Ω
$\mathrm{C}_{\text {ise }} \quad \begin{aligned} & \text { Common-Source Shert-Circuif } \\ & \text { Input Capactance }\end{aligned}$	$V_{\text {DS }}=0, \quad V_{G S}=-10 \mathrm{~V}, \mathrm{f}=1 \mathrm{mHz}$	18	18	18	pF
$\mathbf{C}_{\text {ris }}$ Common-Source Short-Circuit Reverse Trunsfar Copocitance	$V_{D S}=0, \quad V_{G S}=-10 \mathrm{~V}, \mathrm{f}=1 \mathrm{mHz}$	8	8	8	pF

switching characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

HOTE 3: These perameters mest be meosured ssing pelse fochniques. $t_{p} \approx 100$ ms, duty cycle $\leq 10 \%$.
†These are nominal valoes, exact values vary slightly with transistor paremeters.

PARAMETER MEASUREMENT INFORMATION

NOTES
The input woveforms are suppliad by a genarator with the foliowing characteristics: $l_{\text {ouf }}=50 \Omega$, duty cycle $\approx 2 \%$.
b. Waveforms are monitored on on oscilloscopa with the following characteristics: $t_{r} \leq 0.75 \mathrm{~ms}, \mathrm{R}_{\mathrm{in}} \geq 1 \mathrm{M} \Omega, \mathrm{c}_{\mathrm{in}} \leq 2.5 \mathrm{pF}$.

HIGH-FREQUENCY SILECT \dagger TRANSISTORS \ddagger FOR TV TUNER AND IF APPLICATIONS

 Featuring Low-Feedhack Capacitance and Forward-AGC Characteristics

 Featuring Low-Feedhack Capacitance and Forward-AGC Characteristics
 - TIS84 for Tuner RF Amplifiers
 - TIS108 for IF Amplifiers (Replaces TIS85)

Rugged, One-Piece Construction with Standard T0-18 100-mil Pin Circle

mechanical data

These transistors are encapsulated in a plastic compound specifically designed for this purpose, using a highly mechanized process developed by Texas Instruments. The case will withstand soldering temperatures without deformation. These devices exhibit stable characteristics under high-humidity conditions and are capable of meeting MIL-STD-202C, Method 106B. The transistors are insensitive to light.
Feedback capacitance is minimized by placing the emitter terminal between the base and collector terminals, thus optimizing compatability with advanced high-frequency design.

absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temparature (unless otherwise noted)

$$
\text { Collector-Base Voltage . } 40 \text { V }
$$

Collector-Emitter Voltage (See Note 1) 30 V
Emitter-Base Voltage 4 V
Continuous Collector Current 50 mA
Continuous Device Dissipation at (or below) $25^{\circ} \mathrm{C}$ Free-Air Temperature (See Note 2) 500 mW
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead Temperature K_{6} Inch from Case for 10 Seconds $260^{\circ} \mathrm{C}$
electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

PARAMETER		TEST CONDITIONS		TIS84		TIS 108		UNIT		
		MIN	MAX	MIN	MAX					
$V_{\text {(RX) }}$	Collector-Base Breakdown Yolitige			$\mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{E}}=0$		40		40		V
	Collector-Emitter Breakdown Voltoge	$\mathrm{I}_{\mathrm{c}}=10 \mathrm{~mA}, \mathrm{I}_{\mathrm{I}}=0$,	See Note 3	30		30		V		
lcro	Collector Cutoff Current	$V_{C I}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0$			50		50	nA		
		$\mathrm{V}_{\mathrm{CI}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0$,	$\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$		5		5	$\mu \mathrm{A}$		
$\mathrm{I}_{\text {Evo }}$	Emitier Cutoff Current	$V_{E D}=4 \mathrm{~V}, \mathrm{l}_{\mathrm{c}}=0$			10		10	$\mu \mathrm{A}$		
hre	Static Forward Current Tronster Ratio	$V_{C E}=10 \mathrm{~V}, \mathrm{I}_{C}=4 \mathrm{~mA}$		30		25				
$V_{\text {EE }}$	Base-Emitter Voltage	$V_{C E}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=4 \mathrm{~mA}$			0.84		0.84	V		

NOTES: 1. This velue applies when the base-emitter diode is open-circuited.
2. Derate linearly to $150^{\circ} \mathrm{C}$ free-air temperature at the rate of $4 \mathrm{~mW} /^{\circ} \mathrm{C}$.
3. This parameter must be measured using pulse techniques. $t_{w}=300 \mu s$, duty cycle $\leqslant 2 \%$.

[^123]
TYPES TIS84, TIS108
 N-P-N SILICON TRANSISTORS

-lectrical characteristics at $\mathbf{2 5}^{\circ} \mathrm{C}$ free-air temperature

PARAMETER		TEST CONDITIONS	T1584	715108	UNIT
	Small-Signal Commen-Emiftier Forward Curment Transfer Rotio		MIN TYP MAX	MIN TYP MAX	
$\left\|h_{60}\right\|$		$V_{c t}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{c}}=4 \mathrm{~mA}, f=100 \mathrm{mHz}$	3.56 .5	$3.5 \quad 6.5$	
$\left\|y_{1}\right\|$	Small-Sjenal Common-Emittior Forward Transfer Admitiance	$V_{C!}=10 V_{,} I_{c}=4 \mathrm{~mA}, f=200 \mathrm{mhz}$	6080		mmho
		$V_{C!}=10 V_{,} I_{C}=4 \mathrm{~mA}, i=45 \mathrm{miz}$		$80 \quad 105$	
	Phase Angle of Small-Stgnol CommonEmilter Forword Prenstor Admittonce	$V_{C!}=10 \mathrm{~V}, I_{C}=4 \mathrm{~mA}, 1=200 \mathrm{MHz}$	$-50^{\circ}-60^{\circ}-60^{\circ}$		
		$V_{C!}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{c}}=4 \mathrm{~mA}, \mathrm{f}=45 \mathrm{mHz}$		$-10^{\circ}-18^{\circ}-25^{\circ}$	
Cios	Poralici-Equivalent Common-Emitter Short-Circuit Input Capacitrance \dagger	$V_{\mathrm{CI}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{c}}=4 \mathrm{~mA}, f=200 \mathrm{MHz}$	11		pF
		$V_{C E}=10 V_{1} I_{C}=4 \mathrm{~mA}, t=45 \mathrm{MHz}$		18	
Cras^{\prime}	Common-Emitter Shont-Circult Reverse Transfor Capocitanco \dagger	$\begin{array}{r} V_{c i}=10 \mathrm{~V}, \\ \mathrm{I}_{\mathrm{c}}=1 \mathrm{~mA} \\ \mathrm{f}=0.1 \mathrm{MHz} \text { to } 1 \mathrm{mHz} \end{array}$	0.220 .4	0.220 .4	pF
C_{001}	Parallad-Equivalent Common-Emithor Short-Clrevit Output Capocitance \dagger	$V_{C E}=10 \mathrm{~V}, I_{C}=4 \mathrm{~mA}, t=200 \mathrm{MHz}$	1.1		pF
		$V_{C I}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=4 \mathrm{~mA}, \hat{1}=45 \mathrm{mmz}$		1.1	
Re($\mathrm{h}_{\text {a }}$)	Real Port of Smali-Signel Common-Emitter Input Impedance	$V_{C E}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=4 \mathrm{~mA}, \mathrm{I}=200 \mathrm{mHz}$	$25 \quad 60$		Ω
		$V_{C E}=10 V_{1} I_{C}=4 \mathrm{~mA}, f=45 \mathrm{mhz}$		5080	
Re(yiol	Real Port of Small-Signal Common-Emither Input Admiltance	$V_{C E}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=4 \mathrm{~mA}, f=200 \mathrm{mHz}$	$14 \quad 40$		mmho
		$V_{C E}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=4 \mathrm{~mA}, f=45 \mathrm{mHz}$		36	
Re(yool	Real Purt of Small-Signal Common-Emifter Output Admittonce	$V_{C E}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=4 \mathrm{~mA}, f=200 \mathrm{mHz}$	0.20 .5		mmho
		$V_{C E}=10 \mathrm{~V}, \mathrm{I}_{C}=4 \mathrm{~mA}, i=45 \mathrm{mHz}$		0.050 .2	

operating characteristics at $\mathbf{2 5}^{\mathbf{\circ}} \mathbf{C}$ free-air temperature

Parameter		TEST CONDITIONS			T1584			TIS108			UNIT
WF	Spof Noise Figure				MIN	TYP	MAX	MIN	TYP	MAX	
		$\begin{aligned} & V_{\text {cE }}=10 \mathrm{~V} \\ & f=200 \mathrm{MHz} \end{aligned}$	$\mathrm{l}_{\mathrm{c}}=3 \mathrm{~mA}$,	$\mathrm{R}_{6}=50 \Omega$,		2.8					dB
		$\begin{aligned} & V_{\text {CE }}=10 \mathrm{~V}, \\ & f=45 \mathrm{mHz} \\ & \hline \end{aligned}$	$l_{c}=3 \mathrm{~mA}$,	$R_{G}=50 \Omega$,					3	6	$d B$
$\mathbf{G p o}$	Unneutrolized SmallSignal Common-Emittor Insertion Power Gain	$\begin{array}{\|l\|} \hline V_{c c}=12 \mathrm{~V} \\ R_{G^{\prime}}=150 \Omega \\ \text { See Figure } 1 \\ \hline \end{array}$	$\begin{aligned} & I_{c} \approx 2.5 \mathrm{~mA}, \\ & R_{L}^{\prime}=1 \mathrm{k} \Omega_{1}, \end{aligned}$	$\begin{aligned} & V_{B y}=2.1 v_{1} \\ & f=200 \mathrm{mHz}, \end{aligned}$	12	16	18				dB
		$\begin{array}{\|l} V_{c c}=12 \mathrm{~V} \\ R_{\mathrm{S}^{\prime}}=500 \Omega \\ \text { See Figure I } \\ \hline \end{array}$	$\begin{aligned} & \mathrm{l}_{\mathrm{c}} \approx 4.5 \mathrm{~mA}, \\ & \mathrm{R}_{\mathrm{L}^{\prime}=250 \Omega}, \end{aligned}$	$\begin{aligned} & V_{a b}=2.6 \mathrm{~V} \\ & \mathrm{f}=45 \mathrm{mHz}, \end{aligned}$				25	30	33	dB
$V_{\text {buec }}$	Gain-Control Baso-Supply Voliage	$\begin{aligned} & \mathrm{V}_{\mathrm{Cc}}=12 \mathrm{~V}, \\ & \Delta \mathrm{G}_{\mathrm{po}}=-30 \mathrm{~dB} \ddagger \end{aligned}$	$\begin{aligned} & R_{s}^{\prime}=150 \Omega, \\ & f=200 \mathrm{mHz}, \end{aligned}$	$R_{L}^{\prime}=1 \mathrm{k} \Omega,$ See Figure 1	3.7		4.6				V
		$\begin{aligned} & V_{c c}=12 \mathrm{~V}, \\ & \Delta G_{p p}=-30 \mathrm{~dB} \ddagger \end{aligned}$	$\begin{aligned} & R_{\boldsymbol{s}}^{\prime}=500 \Omega, \\ & \mathrm{f}=45 \mathrm{MHz}, \end{aligned}$	$R_{L}^{\prime}=250 \Omega$ See Figure 1				3.5		4.5	V

TYPES TISE4, TIS108
 N-P-N SILICON TRANSISTORS

PARAMETER MEASUREMENT INFORMATION

FIGURE 1 - POWER-GAIN AND GAIN-CONTROL-VOLTAGE TEST CIRCUIT

TYPICAL CHARACTERISTICS

TISe4
SPOT NOISE FIGURE COLLECTOR CURRENT

FIGURE 2

Tis84
RELATIVE SMALL-SIGNAL COMMON-EMITTER POWER GAIN vs

FIGURE 3

PRINTED IN U.S.A.
If caanot assume ony raspensibility for ony cirtuils shown
of represent that they ore free tram polent infringamant.
texas msthuments mesteves the night to maxe thanges at any time in order to Improve design and to supply the best phoduct possible.

TEXAS INSTRUMENTS

HIGH-FREQUENCY SILECT \dagger TRANSISTORS \ddagger DESIGNED FOR TV MIXER AND NON-AGC IF STAGES
 Featuring Low Feedback Capacitance and Full Characterization to Simplify Circuit Design
 - TIS86 for Mixer
 - TIS87 for Non-AGC IF Amplifier
 Rugged, One-Piece Construction with Standard T0-18 100-mil Pin Circle

mechanical data

These transistors are encapsulated in a plastic compound specifically designed for this purpose, using a highly mechanized process developed by Texas Instruments. The case will withstand soldering temperctures without deformation. These devices exhibit stable characteristics under high-humidity conditions and are capable of meeting MIL-STD-202C, Method 1068. The transistors are insensitive to light.
Feedback capacitance is minimized by placing the emitter terminal between the base and collector terminals, thus optimizing compatibility with advanced high-frequency design.

absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless othorwise noted)

MOTES: 1. This value applies when the bose-emilter diede is open-eircuited.
2. Derate lineariy to $150^{\circ} \mathrm{C}$ freo-air tumperature at the rate af $3.2 \mathrm{~mW} / \mathrm{deg}$.
3. Derate linearly to $150^{\circ} \mathrm{C}$ lead temperatere of the rate of $5.6 \mathrm{~mW} / \mathrm{deg}$. Lead temperature is measurod on the coliecter lead $1 / 16$ inch from the case.

TYPES TIS86, TIS87 N-P-N SILICON TRANSISTORS

eloctrical characteristics at $25^{\circ} \mathrm{C}$ freo-air temperature (unless otherwise noted)

PARAMETER		TEST CONDITIONS	7586	11587	UNIT	
		MIN TYP MAX	MIN TYP MAX			
$V_{\text {arajciol }}$	Collector-Base Breakdown Vohtrge		$\mathrm{Ic}_{\mathrm{c}}=10 \mu \mathrm{l}_{1} \mathrm{l}_{\mathrm{E}}=0$	30	45	v
$V_{\text {(lu) }}$	Collector-Emitter Breakdown Vothoge	$\mathrm{I}_{\mathrm{c}}=10 \mathrm{~mA}, \mathrm{I}_{\mathrm{E}}=0, \quad$ Soe Note 4	30	45	V	
leso	Collector Cutoff Current	$V_{C B}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0$	100	100	$\underline{\mathrm{n}}$	
		$V_{C B}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0, \quad \mathrm{~T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$	10	10	$\mu \mathrm{A}$	
I_{E}	Emitter Cutofi Current	$V_{\text {Eti }}=4 \mathrm{~V}, \mathrm{I}_{\mathrm{c}}=0$	10	10	μA	
$h_{\text {fe }}$	Static Forword Current Trunsfer Ratio	$\mathrm{V}_{\mathrm{CE}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=4 \mathrm{~mA}$	$40 \quad 200$			
		$V_{C E}=12 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=12 \mathrm{~mA}$, See Mole 4		$30 \quad 150$		
$V_{\text {ex }}$	Bose-Emitite Yoltuge	$V_{C E}=12 \mathrm{~V}, \mathrm{I}_{\mathrm{c}}=15 \mathrm{~mA}$, See Mote 4	0.87	0.87	V	
$\bar{V}_{\text {CEF }}$	Collector-Emitter Saturation Voltoje	$\mathrm{I}_{3}=1.5 \mathrm{~mA}, \mathrm{l}_{\mathrm{c}}=15 \mathrm{~mA}$		0.5	V	
\|hiol	Smoll-Signol Common-Emitter Fonward Current Tronsfor Ratio	$V_{C E}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=4 \mathrm{~mA}, t=100 \mathrm{mtz}$	5			
		$\mathrm{V}_{\text {CE }}=12 \mathrm{~V}, \mathrm{l}_{C}=12 \mathrm{~mA}, \mathrm{f}=100 \mathrm{mHz}$		5		
$\left\|y_{\text {fol }}\right\|$	Small-Signal Common-Emitter Forward Iransfor Admittonce	$Y_{C E}=10 \mathrm{~V}, \mathrm{l}_{\mathrm{C}}=4 \mathrm{~mA}, f=45 \mathrm{mmz}$	90115		nimho	
		$V_{\text {CE }}=12 \mathrm{~V}, \mathrm{l}_{\mathrm{C}}=12 \mathrm{~mA} f=45 \mathrm{mmz}$		$130 \quad 200$		
$\phi_{\text {y }}^{\text {re }}$	Phase Angle of Small-Signal Common-Emittor Forward Tronsfor Admiftrance	$V_{C E}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=4 \mathrm{~mA}, f=45 \mathrm{mmz}$	$-7^{\circ}-15^{\circ}-20^{\circ}$			
		$V_{\text {ce }}=12 \mathrm{~V}, \mathrm{t}_{\mathrm{c}}=12 \mathrm{~mA}, i=45 \mathrm{mHz}$		$-18^{\circ}-25^{\circ}-35^{\circ}$		
Cos	Paralle-Equivalent Common-Emitter Short-Circuit Input Capactionces \dagger	$V_{C E}=10 \mathrm{~V}, \mathrm{l}_{\mathrm{C}}=4 \mathrm{~mA}, f=200 \mathrm{mHz}$	9		pf	
		$V_{C E}=12 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=12 \mathrm{~mA}, f=45 \mathrm{mHz}$		25		
Cros	Common-Emitter Short-Circuit Reverse Transier Capacitance \dagger	$V_{C E}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{c}}=1 \mathrm{~mA},$	$0.33 \quad 0.45$	0.330 .45	pF	
Cor	Parallel-Equivalent Common-Emitter Short-Giruit Output Copaditoncet	$V_{C E}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=4 \mathrm{mR}, 1=45 \mathrm{mhz}$	1.1		pf	
		$V_{C E}=12 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=12 \mathrm{~mA}, i=45 \mathrm{mHz}$		1.1		
Re($\mathrm{h}_{\text {iof }}$)	Real Part of Small-Signal Common-Emitter Input Impedance	$V_{C E}=10 \mathrm{~V}, \mathrm{~L}_{\mathrm{c}}=4 \mathrm{~mA}, 1=200 \mathrm{mHz}$	$32 \quad 60$		Ω	
		$V_{C E}=12 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=12 \mathrm{~mA}, 1=45 \mathrm{mmz}$		$55 \quad 100$		
Re(yiol	Real Port of Smali-Signal Common-Emitter Input Adanittence	$V_{C E}=10 V_{,} I_{C}=4 \mathrm{~mA}, \quad f=200 \mathrm{MHz}$	$8.5 \quad 30$		mombo	
		$V_{C E}=12 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=12 \mathrm{mh}, 1=45 \mathrm{mHz}$		$5 \quad 12$		
Re(yoce	Real Port of Small-Signol Common-Emitter OUtput Admittance	$V_{C E}=10 \mathrm{~V}, I_{C}=4 \mathrm{~mA}, \quad i=45 \mathrm{mHz}$	$0.02 \quad 0.15$		mmbe	
		$V_{C E}=12 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=12 \mathrm{~mA}, f=45 \mathrm{mHz}$		$0.07 \quad 0.2$		

MOTE 4: These parameters must be maasured using pulse techniques. $\mathrm{I}_{\mathrm{p}}=300 \mu \mathrm{~s}$, dety cycle $\leq \mathbf{2 \%}$.
$\dagger C_{i e s}, C_{\text {ress }}$ ond $C_{\text {oes }}$ are defined as the imeginary perts of thes smell-sigmol, commen-emither, shect-circcif edmittences divided by $\mathbf{2 \pi f}$.
operating characteristics of $25^{\circ} \mathrm{C}$ free-air temperafure

PARAMETER	TEST CONDITIONS	TIS86		UNIT
		TYP	MAX	
MF Spot Noise Figure	$V_{C E}=10 \mathrm{~V}, \mathrm{~T}_{\mathrm{c}}=4 \mathrm{~mA}, \mathrm{R}_{6}=50 \Omega, \mathrm{f}=200 \mathrm{NHz}$	2.5	5	dB

SILECT \dagger COMPLEMENTARY TRANSISTORS ${ }^{\ddagger}$ Available in Matched Complementary Pairs (TIS90M thru TIS93M) for Complementary-Symmetry or Other Class-B Audio-Amplifier Applications
 - Supplied in Color-Coded $h_{\text {FE }}$ Brackets of 3-dB-Maximum Range
 - I.6-W Rating af $25^{\circ} \mathrm{C}$ Case Temperature

mechanical data

These transistors are encapsulated in a plastic compound specifically designed for this purpose, using a highly mechanized process developed by Texas Instruments. The case will withstand soldering temperatures without deformation. These devices exhibit stable characteristics under high-humidity conditions and are capable of meeting MIL-STD-202C, Method 106B. The transistors are insensitive to light.

absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted) 8
Coilector-Base Voltage . 40 V
Collector-Emitter Voltage (See Note 1) . 40 V
Emitter-Base Voltage . 5 V
Continuous Collector Current . 400 mA
Continuous Device Dissipation at (or below) $25^{\circ} \mathrm{C}$ Free-Air Temperature (See Note 2) 625 mW
Continuous Device Dissipation at (or below) $25^{\circ} \mathrm{C}$ Lead Temperature (See Note 3) 1.25 W
Continuous Device Dissipation at (or below) $25^{\circ} \mathrm{C}$ Case-and-Lead Temperature (See Note 4) . . 1.6 W
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Load Temperature Y_{6} Inch from Case for 10 Seconds $260^{\circ} \mathrm{C}$
NOTES: 1. This value appiles whan the base-emitter diode is open-circulted.
2. Derate linearly to $150^{\circ} \mathrm{C}$ free-air tempereture at the rate of $\mathrm{BmW} /^{\circ} \mathrm{C}$.
3. Derate linearly to $180^{\circ} \mathrm{C}$ lead tamperature at the rate of $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$

Leed temperature is measured on the callector leed 1/16 inch from the case.
4. This rating applies with the entira ease (Including the leads) maintained at $25^{\circ} \mathrm{C}$.
§ Voltages and currents apply to the n-p-n transletors. For the p-n-p transistors the values ine the same, but the polaritien are reversed.

N-P-N TYPES TIS90, TISS0M, TIS92, TIS92M P-N-P TYPES TIS91, TIS91M, TIS93, TIS93W COMPLEMENTARY SILICON TRANSISTORS

electrical characteristics af $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER		TEST CONDITIONS \dagger	N-P-N			P-N-P	Unit	
		TIS90, TIS90M TIS92, TIS92M	$\begin{aligned} & \text { TiS91, TiS91M } \\ & \text { TIS93, } 1593 \mathrm{M} \end{aligned}$					
		MIN	TYP	MAX	MIN TYP MAX			
$V_{\text {(ax) }}$	Collector-Base Breakdown Voltage		$\mathrm{I}_{\mathrm{c}}=100 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{E}}=0$	40			-40	V
$V_{\text {lerjceo }}$	Collector-Emitter Breakdown Yoltage		$L_{c}=10 \mathrm{~mA}, I_{B}=0, \quad$ See Note 5	40			-40	V
	Emitter-Base Breakdown Voltage	$\mathrm{I}_{\mathrm{E}}=100 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{C}}=0$	5			-5	V	
$\mathrm{I}_{\text {cmo }}$	Collector Cutoff Current	$V_{C B}=20 V_{1} l_{E}=0$			100	-100	nA	
$\mathrm{I}_{\text {EiOO }}$	Emitter Culoft Current	$\mathbf{V}_{E l}=\mathbf{3} \mathbf{V}, \quad \mathbf{k}_{\mathrm{C}}=\mathbf{0}$			100	-100	nA	
$h_{\text {fe }}$	Static Forword Current Transfer Ratio	$V_{C E}=2 V_{1} \quad I_{C}=50 \mathrm{~mA}$, See Note 5	100	160	300	$100 \quad 160 \quad 300$		
$V_{\text {VE }}$	Base-Emitter Voltage	$V_{C E}=2 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{C}}=50 \mathrm{~mA}$, See Note 5	0.6	0.77	1	-0.6-0.76 -1	v	
		$\mathrm{Im}_{\mathrm{m}}=5 \mathrm{~mA}, \quad \mathrm{I}_{\mathrm{C}}=50 \mathrm{~mA}$, See Note 5		0.04	0.25	$-0.06-0.25$	v	
$V_{\text {cElsat) }}$	Collector-Emitrer Saturation Voitrage	$\mathrm{I}_{\mathrm{B}}=20 \mathrm{~mA}, \quad \mathrm{I}_{\mathrm{c}}=200 \mathrm{~mA}$, See Note 5		0.17		-0.23	V	

MOTE 5: Thase parameters must be measurod using pulse tochniques. $\mathrm{I}_{\mathrm{p}}=300 \mu \mathrm{~s}$, duty cycle $\leq 2 \%$.
†Test condition voltages and currents apply to the $n-p-n$ transistors. For the $p-n-p$ transistors the values are the same, but the polarities are reversed.

PARAMETER COLOR-CODE INFORMATION

To facilitate matching and identification these transistors are color-coded in her brackets, each having a maximum spread of 3 dB as shown in the table below. No guaraniee is made as to distribution of $h_{\text {fe }}$ values, except that equal numbers of $n-p-n$ and $p-n-p$ devices will be shipped in any given brocket when motched tomplementory pairs are ordered.

COLOR CODE	YELIOW	CREEN	BLUE	VIOLET	GRAY	
$h_{\text {fe }}$ Range, $\left\|V_{C E}\right\|=2 V,\left\|\\|_{C}\right\|=50 \mathrm{~mA}$	100-125	115-150	140-190	170-235	215-300	

ORDERING INFORMATION - To order matched complementary pairs, order the same quantity each of TIS90M and TIS91M or TIS92M and TIS93M. Devices may be ordered separately by specitying TIS90, TIS91, TIS92, or TIS93.

THERMAL INFORMATION

FICURE 1

TYPES TIS94 THRU TIS99 N-P-N SILICON TRANSISTORS

A COMPLETE FAMILY OF LOW-NOISE, LOW- TO MEDIUM-CURRENT SILECT ${ }^{\dagger}$ TRANSISTORS \ddagger FOR USE IN HI-FI AUDIO AMPLIFIERS AND GENERAL PURPOSE LOW-FREQUENCY APPLICATIONS

- High V (BR)CEO . . . 65 V Min (TIS96 and TIS99)
- Excellent hfe Linearity to $\mathbf{1 0 0} \mathbf{~ m A}$

mechanical data

These transistors are encapsulated in a plastic compound specifically designed for this purpose, using a highly mechanized process developed by Texas Instruments. The case will withstand soldering temperatures without deformation. These devices exhibit stable characteristics under high-humidity conditions and are capable of meeting MIL-STD-202C, Method 106B. The transistors are insensitive to light.

absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

TYPES TIS94 THRU TIS99 N-P-N SILICON TRANSISTORS

electrical characteristics at $\mathbf{2 5}^{\circ} \mathrm{C}$ free-air temperature

operating characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

NOTES: 4. These parameters must be measured using pulse techniques. $\mathrm{t}_{\mathbf{w}}=\mathbf{3 0 0} \mu$ s, duty cycle $<2 \%$.
5. C_{cb} and C_{eb} are measured using three-terminal masurement techniques with the third electrode (emitter or collector respectively) guardea.
6. Average Noise Figure is measured in an amplifier with response down 3 dB at 10 Hz and 10 kHz and a high-frequency rolloft of 6 dB /octave.
§The TIS96 and TIS99 are color-coded on $h_{F E}$ measured at $V_{C E}=5 \mathrm{~V}, I_{C}=100 \mathrm{~mA}$. Each $h_{\text {FE }}$ brackethas a 2-to-1 spread as follows: red, 55-110; orange, 90-180; yellow, 150-300. No particular hFE distribution is implied by this coding system.

TYPES TIS100, TIS101 N-P-N SILICON TRANSISTORS

HIGH-VOLTAGE SILECT ${ }^{\dagger}$ TRANSISTORS \ddagger FOR VIDEO OUTPUT STAGES, AGC AMPLIFIERS, AND BURST AMPLIFIERS

- High V(BR)CEO . . . 180 V Min (TIS100)
- Low Ccb . . . 3 pF Max

mechaniceal data

These transistors are encapsulated in a plastic compound specifically designed for this purpose, using a highly mechanized process developed by Texas Instruments. The case will withstand soldering temperatures without daformation. These devices exhibit stable characteristics under high-humidity conditions and are capable of meeting MIL-STD-202C, Method 106B. The transistors are insensitive to light.
absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

Collector-Base Voltage . Collector-Emitter Voltage (See Note 1)		$\begin{aligned} & \text { TIS100 } \\ & 180 \mathrm{~V} \end{aligned}$	$\begin{aligned} & T 15101 \\ & 150 \mathrm{~V} \end{aligned}$
		180 V	150
Emitter-Base Voltage		5 V	5 V
Continuous Collector Current $\longleftarrow 100 \mathrm{~mA} \longrightarrow$			
Continuous Device Dissipation at (or below) $25^{\circ} \mathrm{C}$ Free-Air Temperature (See Note 2) $\longleftarrow<625 \mathrm{~mW}$			
Continuous Device Dissipation at (or below) $25^{\circ} \mathrm{C}$ Lead Temperature (See Note 3)			
Continuous Device Dissipation of (or below) $25^{\circ} \mathrm{C}$ Case-and-Lead			
Temperature (See Note 4)			
orage Temperature Range .	- -		
mperature Kı Inch from Case for	Seconds		

WOTES: I. Thase values epply betwem 0 and 10 mA coilecter cerront when the base-smilter diede is open-circuitod.

3. Derate lineserly $10150^{\circ} \mathrm{C}$ lead tampereture of the relo of $10 \mathrm{mw} / \mathrm{deg}$. Loed temporeture is meosured on the collector lead $1 / 16$ inch from the cass.

TYPES TIS100, TIS101 N-P-N SILICON TRANSISTORS

olectrical charactoristics at $\mathbf{2 5}{ }^{\circ} \mathrm{C}$ free-air temperature

PARAMETER		TEST CONDITIONS			TIS100		715101		UNIT			
		MII	TYP MAX	MIN	TYP MAX							
$V_{\text {(m) }}$ cio	Collector-Base Breakdown Voltage				$l_{c}=100 \mu A$,	$4=0$		18		150		V
$\mathbf{V}_{\text {(m) }}$ ciso	Collector-Emitter Braekdown Voltage	$\mathrm{I}_{c}=10 \mathrm{ma}$,	$\mathrm{I}_{1}=0$,	See Nots 5	180		150		V			
$\mathrm{I}_{\text {cio }}$	Collactor Cutoff Current	$V_{C B}=75 \mathrm{~V}$,	$i n_{1}=0$			50		50	ni			
T100	Emitter Cutofi Current	$V_{8 i}=5 \mathrm{~V}$,	$\mathrm{I}_{6}=0$			100		100	$\mu \mathrm{A}$			
$h_{\text {m }}$	Static forward Current Transier Ratio	$V_{C i}=10 V_{\text {, }}$	$\mathrm{I}_{C}=1 \mathrm{~mA}$,		2		20					
		$V_{C I}=10 \mathrm{~V}$,	$\mathrm{l}_{6}=\mathbf{2 5} \mathrm{mA}$,	See Note 5	3		30					
$V_{\text {clant }}$	Collector-Emither Saturation Voltage	$\mathrm{l}_{\mathrm{g}}=2.5 \mathrm{~mA}$	$\mathrm{l}_{\mathrm{c}}=25 \mathrm{~mA}$,	See Note 5		1		1	V			
$\left\|h_{\text {fol }}\right\|$	Small-Signal Common-Emilttor Forward Curtent Transter Ratio	$V_{C E}=50 \mathrm{~V}$,	$\mathrm{Ic}_{c}=2.5 \mathrm{~mA}$,	$f=20 \mathrm{MHz}$			3					
		$V_{C I}=15 V_{1}$	$\mathrm{I}_{6}=25 \mathrm{~mA}$,	f=20 M ${ }^{\text {miz }}$			4					
Cobo	Common-Base Open-Clrailt Output Capacitance	$V_{C I}=20 \mathrm{~V}$,	$\mathrm{I}_{1}=0$	$f=1 \mathrm{MHz},$ See Note 6		2.8		2.8	pf			
$C_{\text {cb }}$	Collector-Bose Capositance	$\mathrm{V}_{\mathrm{ct}}=20 \mathrm{~V}$,	$1=0$,	$\begin{aligned} & f=1 \mathrm{MHz}, \\ & \text { Soe Note } 6 \end{aligned}$		1.73		1.73	pF			
C_{b}	Emitter-Base Capacitance	$V_{\text {E }}=1 \mathrm{~V}$,	$\mathrm{I}_{\mathrm{c}}=\mathrm{v}$,	$f=1 \text { mhzz }$ Soe Note 6		13		13	pf			

MOTES: 5. Thase parametors must be meesured uing pulse tachniques. $\mathrm{t}_{\mathrm{p}}=300 \mu$, duly cyclo $\leq \mathbf{2 \%}$.
 nactod to the guard terminal of the bridge. $C_{\text {obe }}$ meesuraments are made with the third terminal Hoating.

THERMAL INFORMATION

NOTE 7: The collector lead is soldered to the middle of an edge of - square heat sink made of 2 -ounce copper bonded to 1/16-Inch-thick $\times \times \times P$ Bakalite ${ }^{\dagger}$
${ }^{\dagger}$ Trademark of Union Carbide Corporation

HIGH-FREQUENCY SILECT ${ }^{\dagger}$ TRANSISTOR \ddagger DESIGNED FOR TV MIXERS AND NON-AGC IF STAGES Full Characterization to Simplify Circuit Design

- Low Feedback Capacitance

- hFE Linearity over Wide Current Range Minimizes Intermodulation Distortion
- Rugged, One-Piece Construction with Standard TO-18 100-mil Pin Circle
- 1.25 W Rating at $25^{\circ} \mathrm{C}$ Lead Temperature

mechanical data

This transistor is encapsulated in a plastic compound specifically designed for this purpose, using a highly mechanized process developed by Texas Instruments. The case will withstand soldering temperatures without deformation. This device exhibits stable characteristics under high-humidity conditions and is capable of meeting MIL-STD-202C, Method 106B. The transistor is insensitive to light.

absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)
Collector-Base Voltage . 45 V

Collector-Emitter Voltage (See Note 1) . 45 V
Emitter-Base Voltage . $4 V$
Continuous Collector Current . 50 mA
Continuous Device Dissipation at (or below) $25^{\circ} \mathrm{C}$ Free-Air Temperature (See Note 2) 625 mW
Continuous Device Dissipation at (or below) $25^{\circ} \mathrm{C}$ Lead Temperature (See Note 3) 1.25 W
Storage Temperature Range . $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead Temperature $\mathbf{1 / 1 6}$ Inch from Case for 10 Seconds . $260^{\circ} \mathrm{C}$
NOTES: 1. This value applies when the base-emitter diode is open-circuited.
2. Derate linearly to $150^{\circ} \mathrm{C}$ free-air temperature at the rate of $5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
3. Derate Hnearly to $150^{\circ} \mathrm{C}$ lasd temperature at the rate of $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$. Lead ternperature is measured on the collector lead $1 / 16$ inch from the case.
\dagger Trademark of Texas Instruments
\ddagger U.S. Patent No. 3,439,238

TYPE TIS105
 N-P-N SILICON TRANSISTOR

electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

PARAMETER		TEST CONDITIONS		MIN	TYP	MAX	UNIT	
$V_{\text {(BR) }}$ CBO	Collector-Base Breakdown Voltage	$\mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}, \mathrm{I}^{2}=0$		45			V	
$V_{\text {(BR) }}$	Collector-Emitter Breakdown Voltage	$\mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0$,	See Note 4	45			V	
ICBO	Collector Cutoff Current	$\mathrm{V}_{C B}=30 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0$				50	nA	
		$V_{C B}=30 \mathrm{~V}, I_{E}=0$,	$\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$			10	$\mu \mathrm{A}$	
IEBO	Emitter Cutoff Current	$V_{E B}=4 \mathrm{~V}, 1 \mathrm{I}=0$				10	$\mu \mathrm{A}$	
hFE	Static Forward Current Transfer Ratio	$V_{C E}=15 \mathrm{~V}, \mathrm{I} \mathrm{C}=10 \mathrm{~mA}$	See Note 4	30		150		
		$V_{C E}=15 \mathrm{~V}, \mathrm{I} \mathrm{C}=30 \mathrm{~mA}$		30		150		
$V_{\text {BE }}$	Base-Emitter Voitage	$V_{C E}=15 \mathrm{~V}, 1 \mathrm{C}=10 \mathrm{~mA}$, See Note 4				0.8	V	
$V_{\text {CE }}$ sat)	Callector-Emitter Saturation Voltage	$\mathrm{J}_{\mathrm{B}}=1 \mathrm{~mA}, \quad \mathrm{I}_{\mathrm{C}}=20 \mathrm{~mA}$				0.5	V	
Thfel	Small-Signal Common-Emitter Forward Current Transfer Ratio	$V_{C E}=15 \mathrm{~V}, \mathrm{l}=10 \mathrm{~mA}, \quad \mathrm{f}=100 \mathrm{MHz}$		3	6.5			
$\frac{f_{T}(2)}{T T(1)}$	Ratio of Transition Frequencies	$\begin{aligned} & \mathrm{V}_{\mathrm{CE}}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}(1)=10 \mathrm{~mA}, \mathrm{I}_{\mathrm{C}}(2)=20 \mathrm{~mA}, \\ & \text { See Note } 5 \end{aligned}$		0.75				
\|Vfe		Small-Signal Common-Emitter Forward Transfer Admittance	$V_{C E}=15 \mathrm{~V}, I_{C}=10 \mathrm{~mA},$	$\mathrm{f}=45 \mathrm{MHz}$		240		mmho
9yfe	Phase Angle of Small-Signal Common-Emitter Forward Transfer Admittance	$V_{C E}=15 \mathrm{~V}, \mathrm{IC}=10 \mathrm{~mA}$,	$f=45 \mathrm{MHz}$	40°				
c_{cb}	Collector-Base Capacitance	$V_{C B}=10 \mathrm{~V}, I_{E}=0$.	$f=1 \mathrm{MHz},$ See Note 6		0.7	1	pF	
Cies	Parallel-Equivalent Common-Emitter Short-Circuit Input Capacitance ${ }^{\dagger}$	$V_{C E}=15 \mathrm{~V}, \mathrm{I}^{\prime}=10 \mathrm{~mA}$.	$\mathrm{f}=\mathbf{4 5} \mathbf{M H z}$		32		pF	
$\mathrm{C}_{\text {oes }}$	Parallel-Equivalent Common-Emitter Short-Circuit Output Capacitance ${ }^{\dagger}$	$V_{C E}=15 \mathrm{~V}, \mathrm{IC}=10 \mathrm{~mA}$,	$\mathrm{f}=45 \mathrm{MHz}$		2.4		pF	
Re(y_{ie})	Real Part of Small-Signal Common-Emitter Input Admittance	$V_{C E}=15 \mathrm{~V}, 1 \mathrm{C}=10 \mathrm{~mA}$,	$f=45 \mathrm{MHz}$		11		mmho	
		$V_{C E}=15 \mathrm{~V}, 1 \mathrm{C}=10 \mathrm{~mA}$,	$f=200 \mathrm{MHz}$		25			
Rely oe)	Real Part of Small-Signal Common-Emitter Output Admittance	$V_{C E}=15 \mathrm{~V}, \mathrm{IC}=10 \mathrm{~mA}$,	$\mathrm{f}=45 \mathrm{MHz}$		0.15		mmho	

NOTES: 4. These parameters must be measured using pulse techniques. $t_{w}=300 \mu \mathrm{~s}$, duty cycle $\leqslant 2 \%$.
5. To obtain f_{T}, the $h_{\text {fe }} \mid$ response is extrapolated at the rate of -6 dB per octave from $\mathrm{f}=100 \mathrm{MHz}$ to the frequency at which $h_{f e} \mid=1$.
6. $C_{c b}$ measurement employs a three-terminal capacitance bridge incorporating a guard circuit. The emitter is connected to the guard terminal of the bridge.
${ }^{\dagger} C_{\text {ies }}$ and $C_{\text {oes }}$ are defined as the imaginary parts of the small-signal, common-emitter, short-circuit admittances divided by $2 \pi{ }^{\boldsymbol{\pi}}$.

operating characteristics at $\mathbf{2 5}{ }^{\circ} \mathrm{C}$ free-air temperature

PARAMETER	TEST CONDITIONS		TYP	MAX	UNIT
Mixer Spot Noise Figure	$V_{C C}=18 \mathrm{~V}, \quad I^{\prime} \mathrm{C} \approx 6.5 \mathrm{~mA}$,	$f_{\text {RF }}=200 \mathrm{MHz}, \quad \mathrm{f}_{\text {LO }}=245 \mathrm{MHz}$,	5.5	7	dB
Conversion Gain	Bandwidth $=4.5 \mathrm{MHz}$,	See Figure 3	22		dB

TYPE TIS105

N-P-N SILICON TRANSISTOR

TYPICAL CHARACTERISTICS

TRANSITION FREQUENCY
COLLECTOR CURRENT

NOTE 5: To obtain f_{T}, the $h_{f e}$ |response is extrapolated at the rate -6 dB per octave from $f=100 \mathrm{MHz}$ to the frequency at which $\boldsymbol{h}_{\mathrm{fe}} /=1$.

PARAMETER MEASUREMENT INFORMATION

MIXER SPOT NOISE FIGURE AND CONVERSION GAIN TEST CIRCUIT
ficure 3

MEASUREMENT INFORMATION FOR FIGURE 2
FIGURE 4

HICH-FREQUENCY SILECT \dagger TRANSISTORS \dagger
 FOR TV TUNER AND IF APPLICATIONS

 Featuring Low-Feedback Capacitance and Forward-ACC Characteristics

 Featuring Low-Feedback Capacitance and Forward-ACC Characteristics

 - TISEA for Tuner RF Amplifiers

 - TISEA for Tuner RF Amplifiers

 - TISI08 for IF Amplifiers (Replaces TIS85)

 - TISI08 for IF Amplifiers (Replaces TIS85)

 Rugged, One-Piece Construction with Stendard T0-18 100-mil Pin Circle

 Rugged, One-Piece Construction with Stendard T0-18 100-mil Pin Circle} mechanical data

These transistors are encapsulated in a plastic compound specifically designed for this purpose, using a highly mechanized process developed by Texas Instruments. The case will withstand soldering temperatures without deformation. These devices exhibit stable characteristics under high-humidity conditions and are capable of meeting MIL-STD-202C, Method 106B. The transistors are insensitive to light.
Feedback capacitance is minimized by placing the emitter terminal between the base and collector terminals, thus optimizing compatability with advanced high-frequency design.

absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperafure (unless otherwise noted)
Collector-Base Vohage . 40 V
Collector-Emitter Voltage (See Note 1) . 30 V
Emitter-Base Voltage . 4 V
Continuous Collector Current . 50 mA
Continuous Device Dissipation at (or below) $25^{\circ} \mathrm{C}$ Free-Air Temperature (See Note 2) 500 mW
Storage Temperature Range . $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead Temperature K_{6} Inch from Case for 10 Seconds $260^{\circ} \mathrm{C}$
electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

PARAMETER		TEST CONDITIONS		TIS84		TIS108		UNIT		
		MIN	MAX	MIN	MAX					
$V_{\text {(0x) }}$	Collector-Base Ereakdown Voltage			$\mathrm{I}_{\mathrm{c}}=10 \mu \mathrm{~A}, \mathrm{l}_{\mathrm{E}}=0$		40		40		V
$V_{\text {(R) }}$ Ceo	Collector-Emitter Breakdown Voltage	$\mathrm{I}_{\mathrm{c}}=10 \mathrm{~mA}, \mathrm{I}_{\mathrm{s}}=0$,	See Note 3	30		30		V		
Icso	Collector Cutoff Current	$\mathrm{V}_{\mathrm{CB}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0$			50		50	nh		
		$V_{c s}=10 V_{\text {c }} \mathrm{l}_{\mathrm{E}}=0$,	$r_{A}=85^{\circ} \mathrm{C}$		5		5	$\mu \mathrm{A}$		
$\mathrm{J}_{\text {E10 }}$	Emitter Cutofl Current	$V_{6 s}=4 \mathrm{~V}, \mathrm{I}_{\mathrm{c}}=0$			10		10	μA		
$h_{\text {fe }}$	Static Forward Current Tronsfer Ratio	$V_{C E}=10 \mathrm{~V}, \mathrm{Ic}_{\mathrm{C}}=4 \mathrm{~mA}$		30		25				
$V_{\text {EE }}$	Bose-Emitter Volitage	$V_{C E}=10 V_{1} I_{C}=4 \mathrm{~mA}$			0.84		0.84	V		

NOTES: 1. This value applies when the base-emitter diode is open-circuited.
2. Derate linearly to $150^{\circ} \mathrm{C}$ free-air temperature at the rate of $4 \mathrm{~mW} / \mathrm{C}$.
3. This parameter must be measured using pulse techniques. $t_{w}=300 \mu \mathrm{~s}$, duty cycle $\leqslant 2 \%$.

[^124]ҰU. S. Patent No. 3,439,238

TYPES TIS84, TIST08 N-P-N SILICON TRANSISTORS

electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER		TEST CONDITIONS	71584	TIS108	UNIT	
		MIN TYP MAX	MIN TYP MAX			
$\left\|h_{\text {fol }}\right\|$	Small-Signal Common-Emitter Forword Current Ironsfer Ratio		$V_{C E}=10 \mathrm{~V}, I_{c}=4 \mathrm{~mA}, \mathrm{f}=100 \mathrm{mHz}$	3.56 .5	3.56 .5	
\| $\mathrm{rbo}_{\text {o }}$ \|	Small-Signal Common-Emitter Forward Transfer Admittance	$V_{C E}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=4 \mathrm{~mA}, \mathrm{f}=200 \mathrm{mHz}$	$60 \quad 80$		mmho	
		$\mathrm{V}_{C E}=10 \mathrm{~V}, \mathrm{I}_{C}=4 \mathrm{~mA}, \mathrm{f}=45 \mathrm{mHz}$		$80 \quad 105$		
$\phi_{\text {y }}{ }_{0}$	Phase Angle of Small-Signol CommonEmitter Forward Transior Admittance	$V_{\text {CE }}=10 \mathrm{~V}, i_{C}=4 \mathrm{~mA}, f=200 \mathrm{mHz}$	$-50^{\circ}-60^{\circ}-80^{\circ}$			
		$V_{C E}=10 \mathrm{~V}, \mathrm{I}_{C}=4 \mathrm{~mA}, \mathrm{f}=45 \mathrm{mHz}$		$-10^{\circ}-18^{\circ}-25^{\circ}$		
$C_{\text {ces }}$	Parollel-Equivalent Common-Emitter Short-Gircuit Input Copocitance \dagger	$V_{C E}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=4 \mathrm{~mA}, \mathrm{f}=200 \mathrm{MHz}$	11		pF	
		$V_{C E}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=4 \mathrm{~mA}, \mathrm{I}=45 \mathrm{mHz}$		18		
$C_{\text {res }}$	Common-Emither Short-Circuit Reverse Transfer Capacitance \dagger	$\begin{aligned} \mathrm{V}_{\mathrm{cE}}=10 \mathrm{~V}, & \mathrm{I}_{\mathrm{c}}=1 \mathrm{~mA} \\ \mathrm{f} & =0.1 \mathrm{MHz}_{10} 1 \mathrm{mHz} \end{aligned}$	0.220 .4	0.220 .4	pf	
C_{008}	Parallel-Equivalent Common-Emitter Short-Circuit Output Capacitance \dagger	$V_{C E}=10 \mathrm{~V}, I_{\mathrm{C}}=4 \mathrm{~mA}, f=200 \mathrm{mHz}$	1.1		pF	
		$V_{C E}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=4 \mathrm{~mA}, 1=45 \mathrm{mHz}$		1.1		
$\mathrm{Re}\left(\mathrm{h}_{\mathrm{i}}{ }^{\text {e }}\right.$)	Real Port of Small-Signol Common-Emitter Input Impedance	$V_{\text {CE }}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=4 \mathrm{~mA}, \mathrm{f}=200 \mathrm{mHz}$	$25 \quad 60$		Ω	
		$\mathrm{V}_{C E}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=4 \mathrm{~mA}, f=45 \mathrm{MHz}$		$50 \quad 80$		
Re(y col $^{\text {a }}$	Real Part of Small-Signal Common-Emitter Input Admittonce	$V_{C E}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=4 \mathrm{~mA}, \mathrm{f}=200 \mathrm{MHz}$	$14 \quad 40$		mmho	
		$V_{C E}=10 \mathrm{~V}, I_{C}=4 \mathrm{~mA}, f=45 \mathrm{MHz}$		3		
$\operatorname{Re}\left(Y_{08}\right)$	Real Part of Small-Signal Common-Emitter Output Admittance	$\mathrm{V}_{\text {CE }}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=4 \mathrm{~mA}, \mathrm{f}=200 \mathrm{MHz}$	0.20 .5		mmho	
		$\mathrm{V}_{\mathrm{CE}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{c}}=4 \mathrm{~mA}, \mathrm{I}=45 \mathrm{mHz}$		$0.05 \quad 0.2$		

$\dagger \mathrm{C}_{\mathrm{iss}}, \mathrm{C}_{\text {ress }}$, ond $\mathrm{C}_{\text {coss }}$ are defined as the imaginary patts of the small-signol, cormmon-amilter, short-circuit odmittances divided by $\mathbf{2 x t}$.
operating characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER		TEST CONDITIONS			T1584			TIS108			UNIT			
		MIN	TYP	MAX	MIN	TYP	MAX							
NF	Spot Moise Figure				$\begin{aligned} & V_{C E}=10 \mathrm{~V}, \\ & \mathrm{f}=200 \mathrm{MHz} \end{aligned}$	$\mathrm{l}_{\mathrm{c}}=3 \mathrm{~mA}$,	$\mathrm{R}_{\mathrm{G}}=50 \Omega$,		2.8	3.3				dB
		$\begin{aligned} & V_{\text {CE }}=10 \mathrm{~V}, \\ & i=45 \mathrm{MHz} \end{aligned}$	$\mathrm{Ic}_{\mathrm{c}}=3 \mathrm{~mA}$,	$\mathrm{R}_{6}=50 \Omega$,					3	6	dB			
$\mathbf{G}_{\boldsymbol{p}}$	Unneutrolized SmallSignal Common-Emitter Insertion Power Gain	$\begin{aligned} & V_{\mathrm{CC}}=12 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{G}}^{\prime}=150 \Omega, \\ & \text { See }^{\prime} \text { Figure } 1 \\ & \hline \end{aligned}$	$\begin{aligned} & I_{c} \approx 2.5 \mathrm{~mA} \\ & R_{L}^{\prime}=1 \mathrm{k} \Omega_{1} \end{aligned}$	$\begin{aligned} & V_{B B}=2.1 \mathrm{~V} \\ & \mathrm{f}=200 \mathrm{mHz}, \end{aligned}$	12	16	18				d8			
		$\begin{aligned} & V_{c c}=12 \mathrm{~V}, \\ & R_{c^{\prime}}=500 \Omega, \\ & \text { See Figure } 1 \\ & \hline \end{aligned}$	$\begin{aligned} & I_{C} \approx 4.5 \mathrm{~mA}, \\ & R_{L^{\prime}}=250 \Omega_{1} \end{aligned}$	$\begin{aligned} & V_{\mathrm{BB}}=2.6 \mathrm{~V} \\ & \mathrm{f}=45 \mathrm{mHz} \end{aligned}$				25	30	33	dB			
$V_{B r\|c c\|}$	Gain-Control Base-Supply Voltage	$\begin{aligned} & V_{c c}=12 \mathrm{~V}, \\ & \Delta G_{p o}=-30 \mathrm{~d} \ddagger \ddagger \end{aligned}$	$\begin{aligned} & R_{G}^{\prime}=150 \Omega, \\ & f=200 \mathrm{MHz}, \end{aligned}$	$R_{L^{\prime}}=1 \mathrm{k} \Omega,$ See Figure 1	3.7		4.6				v			
		$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=12 \mathrm{~V}, \\ & \Delta \mathrm{G}_{\mathrm{pt}}=-30 \mathrm{~dB} \ddagger \end{aligned}$	$\begin{aligned} & R_{G}^{\prime}=500 \Omega, \\ & I=45 \mathrm{MHz}, \end{aligned}$	$R_{L}^{\prime}=250 \Omega,$ See Figure 1				3.5		4.5	V			

$\ddagger \Delta 6_{p o}$ is detined as the change in $G_{p e}$ from the yolue of $V_{6 B}=2.1 \mathrm{~V}$ of 200 MHz or from the value at $\mathbf{Y}_{\mathrm{si}}=2.6 \mathrm{~V}$ at 45 MHz .

TYPES TIS84, TIS108 N-P-N SILICON TRANSISTORS

PARAMETER MEASUREMENT INFORMATION

FIGURE 1 - POWER-GAIN AND GAIN-CONTROL-VOLTAGE TEST CIRCUIT

TYPICAL CHARACTERISTICS

NOTE 3: This parameter must be measured using pulse techniques. $t_{w}=300 \mu s$, duty cycle $<\mathbf{2 \%}$
$\ddagger \Delta G_{p e}$ is defined ws the change in $G_{p e}$ from the value at $V_{B B}=2.1 \mathrm{~V}$ at 200 MHz or from the value at $\mathrm{V}_{\mathrm{BB}}=2.6 \mathrm{~V}$ at 45 MHz ,

SILECT ${ }^{\dagger}$ TRANSISTORS \ddagger
 DESIGNED FOR HIGH-SPEED, MEDIUM-POWER SWITCHING AND GENERAL PURPOSE AMPLIFIER APPLICATIONS featuring
 - High fT 350 MHz typ at $10 \mathrm{~V}, 20 \mathrm{~mA}$
 - Low VCE(sat) 0.13 V typ at 150 mA

- High Maximum IC 800 mA
- A5T2222 Electrically Similar to 2N2222, 2N3116, and 2N4952
- TIS109 Processing Includes Operational Aging at 300 mW for 24 Hours
- TIS110 Electrically Similar to 2N4400
- TIS111 Electrically Similar to 2N4401

mechanical data

These transistors are encapsulated in a plastic compound specifically designed for this purpose, using a highly mechanized process developed by Texas instruments. The case will withstand soldering temperatures without deformation. These devices exhibit stable characteristics under high-humidity conditions and are capable of meeting MIL-STD-202C, Method 106B. The transistors are insensitive to light.

absolute maximum ratings at $\mathbf{2 5}$ 鱼 free-air temperature (unless otherwise noted)

NOTES: 1. These values apply between 0 and 10 mA coliector current when the base-emitter diode is open-circulted.
2. Derate linearly to $150^{\circ} \mathrm{C}$ free-alir temperature at the rate of $5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
3. Derate Inearly to $150^{\circ} \mathrm{C}$ lead temperature at the rate of $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$. Lead temperature is measured on the collector lead $1 / 16$ inch from the case.
${ }^{\dagger}$ Trademerk of Texas Instruments
FU.S. Patent No. 3,439,238.

TYPES A5T2222, TIS109, TIS110, TISH1 N-P-N SILICON TRANSISTORS

A5T2222, TIS109

electrical characteristics at $\mathbf{2 5}{ }^{\circ} \mathbf{C}$ free-air temperature (unless otherwise noted)

PARAMETER		TEST CONDITIONS		A5T2222	T18100	UNIT		
		MIN MAX	MHN MAX					
$V_{\text {(BR) }}$ CBO	Collector-Base Breakdown Vol tage			$I_{C}=10 \mu A, \quad I E=0$		60	60	V
V(BR)CEO	Collector-Emitter Breakdown Voltage	$I_{C}=10 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0$,	See Note 4	30	30	V		
V(BR)EBO	Emitter-Base Breakdown Voltege	$\mathrm{IE}_{\mathrm{E}}=10 \mu \mathrm{~A}, \quad \mathrm{IC}=0$		5	5	V		
1 CBO	Collector Cutoff Current	$V_{C B}=20 \mathrm{~V}, I_{E}=0$			100	nA		
		$V_{C B}=50 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0$		10		nA		
		$V_{C B}=50 \mathrm{~V}, \mathrm{IE}_{\mathrm{E}}=0$,	$\mathrm{TA}=100^{\circ} \mathrm{C}$	3	3	$\mu \mathrm{A}$		
IEBO	Emitter Cutoff Current	$V_{E B}=3 \mathrm{~V}, \quad I_{C}=0$		10	10	nA		
hfe	Static Forward Current Transfer Ratio	$V_{C E}=10 \mathrm{~V}, I^{\prime}=100 \mu \mathrm{~A}$		35	20			
		$V_{C E}=10 \mathrm{~V}, \mathrm{I}^{\prime} \mathrm{C}=1 \mathrm{~mA}$		50	30			
		$\begin{aligned} & V_{C E}=10 \mathrm{~V}, I_{C}=10 \mathrm{~mA} \\ & V_{C E}=10 \mathrm{~V}, I_{C}=160 \mathrm{~mA} \\ & \hline \end{aligned}$	See Note 4	75	40			
				100300	$100 \quad 400$			
		$V_{C E}=10 \mathrm{~V}, I_{C}=500 \mathrm{~mA}$		30	20			
		$\mathrm{V}_{C E}=1 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=150 \mathrm{~mA}$		50	35			
VBE	Base-Emitter Voltage	$\mathrm{I}_{B}=16 \mathrm{~mA}, \mathrm{I}_{C}=150 \mathrm{~mA}$	See Note 4	1.3	1.3	V		
		$\mathrm{I}_{B}=50 \mathrm{~mA}, I_{C}=500 \mathrm{~mA}$		2.6	2.6	V		
$V_{C E}($ sat)	Collector-Emitter Saturation Voltage	$I_{B}=15 \mathrm{~mA}, \quad I_{C}=150 \mathrm{~mA}$	See Note 4	0.4	0.4	V		
		$\mathrm{I}_{\mathrm{B}}=50 \mathrm{~mA}, \mathrm{I}^{2}=500 \mathrm{~mA}$		1.6	1.6	V		
$\left\|h_{f e}\right\|$	Small-Signal Common-Emitter Forward Current Transfer Ratio	$V_{C E}=10 \mathrm{~V}, I^{\prime}=20 \mathrm{~mA}$,	$f=100 \mathrm{MHz}$	2.5	2.5			
fT	Transition Frequency	$V_{C E}=10 \mathrm{~V}, I_{C}=20 \mathrm{~mA}$,	See Note 5	250	250	MHz		
Cobo	Common-Base Open-Circuit Output Capacitance	$V_{C B}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0$,	$f=1 \mathrm{MHz}$	8	10	pf		
Cibo	Common-Base Open-Circuit Input Capecitance	$V_{E B}=0.5 \mathrm{~V}, \mathrm{IC}=0$.	$\mathrm{f}=1 \mathrm{MHz}$	26	25	pF		
Re($h_{\text {ie }}$)	Real Part of Small-Signal Common-Emitter Input Impedance	$V_{C E}=10 \mathrm{~V}, \mathrm{I}^{\prime}=20 \mathrm{~mA}$,	$f=300 \mathrm{MHz}$	60	60	Ω		

NOTES: 4. These parameters must be measured using puise techniques. $t_{w}=\mathbf{3 0 0} \mu$, duty eycle $<2 \%$.
 frequency at which $\left|h_{f o}\right|=1$.

switching characteristics at $\mathbf{2 5}{ }^{\circ} \mathrm{C}$ free-air temperature

PARAMETER	TEST CONDITIONSt		TVP	UNIT
t_{d} Delay Time	$V_{C C}=30 \mathrm{~V}$, $I_{C}=150 \mathrm{~mA}$, $\mathrm{I}_{\mathrm{B}(1)}=15 \mathrm{~mA}$, $V_{\text {BE (off) }}=-0.5 \mathrm{~V}$, See Figure 1		5	ns
tr Aise Time			15	ns
t_{5} Storage Time			190	ns
t_{+}Fall Time			23	ns

[^125]
TYPES A5T2222, TIS109, TIS110, TIST11
 N-P-N SILICON TRANSISTORS

PARAMETER MEASUREMENT INFORMATION

FIGURE 1-DELAY AND RISE TIMES

FIGURE 2--STORAGE AND FALL TIMES

NOTES: 8 . The input waveforms have the following characteristics: for figure 1 , $t_{r} \leqslant 2$ ns, $t_{w} \leqslant 200$ ns, duty cycle $\leqslant 2 \% ;$ for figure 2 , $t_{f} \leqslant 5 \mathrm{~ns}, t_{w} \approx 100 \mu \mathrm{~s}$, duty cycle $\leqslant 17 \%$.
b. All waveforms are monitored on an oscilloscope with the following characteristics: $t_{r} \leqslant 5 \mathrm{~ns}, \mathrm{R}_{\mathrm{in}}>100 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{in}} \leqslant 12 \mathrm{pF}$,

TIS109 OPERATIONAL AGING
All TIS109 transistors are aged for a minimum of 24 hours in the circuit shown at the right. Total device dissipation is approximately $\mathbf{3 0 0} \mathrm{mW}$. All static characteristics are tested prior to and after aging. Dynamic characteristics are tested as necessary to guarantee the specified limits after aging.

NOMINAL CONDITIONS

$$
\begin{aligned}
& V_{C E}=20 \mathrm{~V} \\
& \mathrm{I}_{E}=-15 \mathrm{~mA} \\
& T_{A}=25^{\circ} \mathrm{C}
\end{aligned}
$$

TIS110, TIS111

electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

NOTES: 4. These parameters must be measured using pulse techniques. $t_{w}=\mathbf{3 0 0} \mu \mathrm{s}$, duty cycle $<\mathbf{2 \%}$.
5. To obtain ${ }^{f} T$, the $\left.\right|_{h_{f e}} \mid$ response with frequency is extrapolated at the rate of -6 dB per octave from $\mathrm{f}=100 \mathrm{MHz}$ to $\mathbf{~ t h e ~}$ frequency at which $\left|h_{f e}\right|=1$.
6. C_{cb} and C_{eb} measurements employ a three-terminal capacitance bridge incorporating a guard circuit. The third electrode (emitter or collector, respectively) is connected to the guard terminal of the bridge.

TYPES A5T2222, TIS109, TIS110, TISm
 N-P-N SILICON TRANSISTORS

TIS110, TIS111

switching characteristics at $\mathbf{2 5}{ }^{\circ} \mathrm{C}$ free-air temperature

PARAMETER	TEST CONDITIONS ${ }^{\text { }}$		MAX	UNIT
$t_{\text {d }}$ Delay Time	$\mathrm{V}_{\mathrm{CC}}=\mathbf{3 0 V}$,	$\mathrm{I}_{\mathrm{C}}=150 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}(1)}=15 \mathrm{~mA}$,	15	ns
t_{r} Rise Time	$V_{\text {BE }}(\mathrm{fff})=-2 \mathrm{~V}$,	See Figure 3	20	ns
t_{5} Storage Time	$\mathrm{VCC}=30 \mathrm{~V}$.	$\mathrm{I}_{\mathrm{C}}=150 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}(1)}=15 \mathrm{~mA}$,	230	ns
t_{f} Fall Time	$I_{B(2)}=-15 \mathrm{~mA}$,	See Figure 4	60	ns

tVoltage and current values shown are nominal; exact values vary slightly with transistor parameters.
PARAMETER MEASUREMENT INFORMATION

TEST CIRCUIT

VOLTAGE WAVEFORMS

FIGURE 3-DELAY AND RISE TIMES

FIGURE 4-STORAGE AND FALL TIMES

NOTES: a. The input waveforms have the following characteristics: for figure 3, $t_{r} \leqslant 2 \mathrm{~ns}, \mathrm{t}_{\mathrm{w}} \leqslant 10 \mu \mathrm{~s}$, duty eycle $\leqslant 2 \%$; for figure 4 $t_{f} \leqslant 5 \mathrm{~ns}, \mathrm{t}_{\mathrm{w}} \approx 10 \mu \mathrm{~s}$, duty cycle $\leqslant 2 \%$.
b. All waveforms are monitored on an oscilloscope with the following characteristics: $t_{r} \leqslant 5 \mathrm{~ns}, R_{\text {in }} \geqslant 100 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{in}} \leqslant 12 \mathrm{pF}$.

SILECT ${ }^{\dagger}$ TRANSISTORS \ddagger
 DESIGNED FOR HIGH-SPEED, MEDIUM-POWER SWITCHING AND GENERAL PURPOSE AMPLIFIER APPLICATIONS

- A5T2907, A5T3644, and A5T3645 Electrically Similar to 2N2907, 2N3644, and 2N3645
- TIS112 Processing Includes Operational Aging at $\mathbf{3 0 0} \mathbf{~ m W}$ for $\mathbf{2 4}$ Hours

mechanical data

These transistors are encapsulated in a plastic compound specifically designed for this purpose, using a highly mechanized process developed by Texas Instruments. The case will withstand soldering temperatures without deformation. These devices exhibit stable characteristics under high-humidity conditions and are capable of meeting MIL-STD-202C, Method 106B. The transistors are insensitive to light.

absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

NOTES: 1. This value applies between 0 and 600 mA collector current when the base-emitter diode is open-circuited.
2. Derate linearly to $150^{\circ} \mathrm{C}$ free-air temperature at the rate of $5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
3. This rating applies with the entire case (including the leads) maintained ot $25^{\circ} \mathrm{C}$. Derate linearly to $150^{\circ} \mathrm{C}$ case-and-iead temperature at the rate of $12.8 \mathrm{~mW} / f^{\circ} \mathrm{C}$.
${ }^{\dagger}$ Trademark of Texas Instruments
\ddagger U. S. Patent No. 3,439,238

TVPES A5T2907, TIS112 P-N-P SILICON TRANSISTORS

electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

NOTE 4: These parameters must be measured using pulse techniques. $\boldsymbol{t}_{\mathbf{w}}=\mathbf{3 0 0} \mu \mathrm{s}$, dury eycle $\leq \mathbf{2 \%}$.
switching characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER	TEST CONDITIONS ${ }^{\text {t }}$	A5T2907	TIS112	UNIT
		MAX	MAX	
$t_{\text {d }}$ Delay Time	$\begin{array}{ll} I_{C}=-150 \mathrm{~mA}, & I_{B(1)}=-15 \mathrm{~mA}, \\ R_{L}=200 \Omega, & V_{B E(\text { off })}=0, \\ & \text { See Figure } 1 \end{array}$	10	10	ns
$\mathrm{tr}_{\mathbf{r}} \quad$ Rise Time		40	40	ns
$\mathrm{t}_{\text {on }}$ Turn-On Time		45	45	ns
$\mathrm{t}_{\mathbf{s}} \quad$ Storage Time	$\begin{array}{ll} I^{\prime} C=-150 m A, & I_{B}(1)=-13 \mathrm{~mA}, \\ \mathrm{R}_{\mathrm{L}}=37 \Omega, & \mathrm{I}_{\mathrm{B}(2)}=17 \mathrm{~mA}, \\ \text { See Figure } 2 \end{array}$	80	80	ns
		30	70	ns
toff Turn-Off Time		100	140	ns

'Voltage and current values shown are nominal; exact values vary slightly with transistor parameters.

TYPES A5T2907, TIS112 P-N-P SILICON TRANSISTORS

TIS112 OPERATIONAL AGING

All TIS112 transistors are aged for a minimum of 24 hours in the circuit shown below. Total device dissipation is approximately $\mathbf{3 0 0} \mathbf{m W}$. All static characteristics are tested prior to and after aging. Dynamic characteristics are tested as necessary to guarantee the specified limits after aging.

NOMINAL CONDITIONS

$$
\begin{aligned}
& V_{C E}=-30 \mathrm{~V} \\
& \mathrm{I}_{E}=10 \mathrm{~mA} \\
& T_{A}=25^{\circ} \mathrm{C}
\end{aligned}
$$

HIGH-FREQUENCY SILECT ${ }^{\dagger}$ TRANSISTORS \ddagger DESIGNED FOR COMMON-BASE VHF APPLICATIONS

- Low Feedback Capacitance, C_{ct}

- Specified Forward-AGC Characteristics

Rugged, One-Piece Construction with Standard TO-18 100-mil Pin Circle

mechanical data

This transistor is ancapsulated in a plastic compound specifically designed for this purpose, using a highly mechanized process developed by Texas Instruments. The case will withstand soldering temperatures without deformation. This device exhibits stable characteristics under high-humidity conditions and is capable of meeting MIL-STD-202C, Method 106B. The transistor is insensitive to light.

NOTES: A. Lead diameter is not controlled in this area.
B. Leads having maximum diameter (0.019) shall be within 0.007 of their true positions messured in the gaging piane 0.054 below the eeating piane of the device relative to a maximum-diameter package.
C. All dimenslons are in inches.

absolute maximum ratings at $\mathbf{2 5}{ }^{\circ} \mathbf{C}$ free-air temperature (unless otherwise noted)

Collector-Base Voltage . 40 V
Collector-Emitter Voltage (See Note 1) . 30 V
Emitter-Base Voltage . 4 V
Continuous Collector Current . 50 mA
Continuous Device Dissipation at (or below) $\mathbf{2 5}^{\circ} \mathrm{C}$ Free-Air Temperature (See Note 2) 250 mW
Storage Temperature Range . $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead Temperature $1 / 16$ Inch from Case for 10 Seconds . $260^{\circ} \mathrm{C}$
electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN MAX	UNIT
$\mathrm{V}_{\text {(BR)CBO }}$ Collector-Base Breakdown Voltage	$\mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}, \quad \mathrm{IE}_{\mathrm{E}}=0$	40	V
V(BR)CEO Collector-Emitter Breakdown Voltage	$I^{\prime} C=10 \mathrm{~mA}, I_{B}=0, \quad$ See Note 3	30	V
Collector Cutoff Current	$V_{C B}=10 \mathrm{~V}, \mathrm{IE}^{=}=0$	50	nA
	$V_{C B}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0, \quad \mathrm{TA}=85^{\circ} \mathrm{C}$	5	$\mu \mathrm{A}$
IE8O Emitter Cutoff Current	$V_{E B}=4 V, I_{C}=0$	10	$\mu \mathrm{A}$
hFE Static Forward Current Transfer Ratio	$V_{C E}=10 \mathrm{~V}, \mathrm{I} C=4 \mathrm{~mA}$	30	
VBE Base-Emitter Voltage	$V_{C E}=10 \mathrm{~V}, \mathrm{I}_{C}=4 \mathrm{~mA}$	0.8	V
hfel Small-Signal Common-Emitter Forward Current Transfer Ratio	$V_{C E}=10 \mathrm{~V}, I_{C}=4 \mathrm{~mA}, \quad f=100 \mathrm{MHz}$	4.5	
$\mathrm{C}_{\text {ce }} \quad$ Collector-Emitter Capacitance	$V_{C E}=10 \mathrm{~V}, I_{B}=0, \quad f=1 \mathrm{MHz},$ See Note 4	0.3	pF

NOTES: 1. This value applies when the bsse-amitter diode is open-circuited.
2. Derate linearly to $150^{\circ} \mathrm{C}$ free-air temporature at the rate of $2 \mathrm{mw} /{ }^{\circ} \mathrm{C}$.
3. This parameter must be measured using pulse techniques. $t_{w}=300 \mu s$, duty cyele $<\mathbf{2 \%}$.
4. C_{ca} measuremont employs a three-terminal capacitance bridge incorporating a guard eircuit. The base is connected to the guard terminal of the bridge.
${ }^{\dagger}$ Trademark of Texas Instruments
\ddagger U.S. Patent No. 3,439,238

TYPE TIS125
 N-P-N SILICON TRANSISTOR

operating characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMITEA	TEST CONDITIONS	MIN MAX	UNIT
F Spot Noise Figure	$\begin{aligned} & \hline \text { VCC }=10 \mathrm{~V}, \mathrm{IC}=3 \mathrm{~mA}, \quad \mathrm{RG}_{\mathrm{G}}=80 \Omega, \\ & f=200 \mathrm{MHz}, \text { See Fiqure } 1 \end{aligned}$	3.6	dB
$\boldsymbol{O}_{\text {pb }}$ Unnoutralized Small-8ignal Common-Bave Inwrtion Powor Guin	$\begin{aligned} & V_{C C}=10 \mathrm{~V}, \mathrm{IC}=3 \mathrm{~mA}, \quad f=200 \mathrm{MHz}, \\ & \text { Sce Eiqure } 1 \end{aligned}$	$17 \quad 23$	dB
Ic Collector Current for 30-dB Gain Reduction	$V_{C C}=10 \mathrm{~V}, f=200 \mathrm{MHz},$ $\Delta G_{p b}=-30 \mathrm{~dB} \dagger, \quad \text { Set Figure } 1$	87.6	mA

${ }^{\dagger} \Delta \omega_{p b}$ io defined as the change in $\Theta_{p b}$ from the value ot $\mathrm{Ic}=3 \mathrm{~mA}$.

PARAMETER MEASUREMENT INFORMATION

L1: 6 T \#16, $\%$ inch ID, tapped 3/4 turn from end nearer VCC.
FIGURE 1-200 MHz POWER GAIN, NOISE FIGURE, AND GAIN CONTROL TEST CIRCUIT

TYPICAL CHARACTERISTICS

SMALL-SIGNAL COMMON-BASE INSERTION POWER GAIN
 vs
 COLLECTOR CURRENT

Figure 2

TYPE TIS126

HIGH-FREQUENCY SILECT \dagger TRANSISTOR \ddagger FOR USE IN VHF MIXERS AND NON.AGC IF AMPLIFIERS

- High fT . . . 600 MHz Min
- Specified $\mathrm{f} T$ vs IC Characteristic
- Low Ccb . . . 0.36 pF Max
- Rugged, One-Piece Construction with Standard TO-18 100-Mil Pin Circle

mechanical data

This transistor is encapsulated in a plastic compound specifically designed for this purpose, using a highly mechanized process developed by Texas Instruments. The case will withstand soldering temperatures without deformation. This device exhibits stable characteristics under high-humidity conditions and is capable of meeting MIL-STD-202C, Method 106B. The transistor is insensitive to light.

Feedback capacitance is minimized by placing the emitter terminal between the base and collector terminals, thus optimizing compatibility with advanced high-frequency design.

absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

> Collector-Base Voltage
> 45 V
> Collector-Emitter Voltage (See Note 1)
> 40 V
> Emitter-Base Voltage
> Continuous Collector Current . 50 mA
> Continuous Device Dissipation at (or below) $25^{\circ} \mathrm{C}$ Free-Air Temperature (See Note 2) 400 mW
> Continuous Device Dissipation at (or below) $25^{\circ} \mathrm{C}$ Lead Temperature (See Note 3) 700 mW
> Storage Temperature Range . $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
> Lead Temperature $\mathbf{1 / 1 6}$ Inch from Case for 10 Seconds . $260^{\circ} \mathrm{C}$
> NOTES: 1. This value spplies when the base-emitter diode is open-circuited.
> 2. Derate Ilnearly to $150^{\circ} \mathrm{C}$ free-air temperature at the rate of $3.2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
> 3. Derate lineorly to $150^{\circ} \mathrm{C}$ lead temperature at the rate of $5.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$. Lead temparature is measured on the collector lead 1/16 inch from the case.
${ }^{\dagger}$ Trademark of Texas Instruments
\ddagger U.S. Patent No, 3,439,238
electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER	TEST CONDITIONS			MIN	MAX	UNIT
$V_{\text {(BR)CBO }}$ Collector-Base Breakdown Voltage	${ }^{\prime} \mathrm{C}=100 \mu \mathrm{~A}$,	$I_{E}=0$		45		V
$V_{\text {(BR)CEO }}$ Collector-Emitter Breakdown Voltage	${ }^{1} \mathrm{C}=1 \mathrm{~mA}$,	$\mathrm{I}_{\mathrm{B}}=0$,	See Note 4	40		V
V(BR)EBO Emitter-Base Breakdown Voltage	$\mathrm{I}_{\mathrm{E}}=100 \mu \mathrm{~A}$,	$\mathrm{I}_{\mathrm{C}}=0$		4		V
IC8O Collector Cutoff Current	$\mathrm{V}_{\mathrm{CB}}=30 \mathrm{~V}$.	$\mathrm{I}_{\mathrm{E}}=0$			50	nA
hFE Static Forward Current Transfer Ratio	$V_{C E}=15 \mathrm{~V}$,	$1 \mathrm{C}=10 \mathrm{~mA}$,	See Note 4	25		
$V_{\text {CE }}$ (sat) Collector-Emitter Soturation Voltage	$\mathrm{I}_{B}=3 \mathrm{~mA}$,	$I_{C}=30 \mathrm{~mA}$,	See Note 4		0.5	V
\|hfelSmall-Signal Common-Emitter Forward Current Transfer Ratio	$\mathrm{V}_{\text {CE }}=15 \mathrm{~V}$,	$I_{C}=10 \mathrm{~mA}$,	$f=100 \mathrm{MHz}$	6		
$\frac{\mathrm{f}}{\mathbf{T}(2)} \quad$ ($\mathbf{T}(1) \quad$ Ratio of Transition Frequencies	$V_{C E}=15 \mathrm{~V}$ See Note 5	$\mathrm{I}(1)=15 \mathrm{~m}$	$\mathrm{IC}(2)=20 \mathrm{~mA}$,	0.65		
$\mathrm{C}_{\text {cb }} \quad$ Collector-Base Capacitance	$V_{C B}=10 \mathrm{~V} .$ See Note 6	$I_{E}=0,$	$\mathrm{f}=\mathbf{1 M H z}$,		0.36	pF
$r_{b}{ }^{\prime} \mathrm{C}_{\mathrm{c}} \quad$ Collector-8ase Time Constant	$\mathrm{V}_{C B}=15 \mathrm{~V}$,	$\mathrm{I}_{\mathrm{E}}=-4 \mathrm{~mA}$,	$\mathrm{f}=79.8 \mathrm{MHz}$		10	ps

NOTES: 4. These parameters must be measured using pulse techniques. $\tau_{w}=\mathbf{3 0 0} \mu \mathrm{s}$, duty cycle $\leqslant 2 \%$.
5. To obtain f_{T}, the $\boldsymbol{h}_{\text {fe }} \mid$ response is extrapolated at the rate of -6 dB per octave from $\mathrm{f}=100 \mathrm{MHz}$ to the frequency at which $\left|h_{f e}\right|=1$.
6. $C_{C b}$ measurement emplays a three-terminal capacitance bridge incorporating a guard circuit. The emitter is connected to the guard terminal of the bridge.
operating characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER		TEST CONDITIONS			MIN	MAX	UNIT
F	Spot Noise Figure	$\begin{aligned} & V_{C E}=15 \mathrm{~V} \\ & f=200 \mathrm{MHz} \end{aligned}$	$I_{C}=4 \mathrm{~mA},$	$\mathrm{R}_{\mathrm{G}}=50 \Omega$,		5	dB
$G_{\text {pe(conv) }}$	Small-Signal Conversion Power Gain	$\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}$,	$\mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}$,	$\mathrm{fLO}^{\text {¢ }} \mathbf{2 4 5} \mathrm{MHz}$,	24		dB
B	Bandwidth	${ }^{\ddagger}{ }^{\text {RF }}$ = 200 MHz ,	See Figure 3		6		MHz
G_{pe}	Small-Signal Common-Emitter Insertion Power Gain	$v_{C C}=15 \mathrm{~V} .$ See Figure 4	$\mathrm{IC}=10 \mathrm{~mA}$.	$f=45 \mathrm{MHz}$,	30		dB
B	Bandwidth				6		MHz

TYPICAL CHARACTERISTICS

SMALL-SIGNAL COMMON-EMITTER

SMALL-SIGNAL CONVERSION POWER GAIN
vs
COLLECTOR CURRENT

INSERTION POWER GAIN
vs
COLLECTOR CURRENT

C1: Lesdiess disc ceramic, 0.001 pF
L1: 8T \#26 close wound, 3/32-inch ID, air core
L2: 7 T \#30 wound on coil form 7/32-inch 10, aluminum core 5/16-inch long
T1: Primary: 20T \#30 close wound
Secondary: 4T \#30 ctose wound and centered on primary
7/32-inch-1D paper form, ferrite core
FIGURE 3-200-MHz-to-45-MHz CIRCUIT FOR CONVERSION POWER GAIN

CIRCUIT COMPONENT INFORMATION
C1, C2: Leadiass disc ceramic, $0.001 \mu \mathrm{~F}$
C3: Arco 427 (or equivalent), 55-300 pF
T1: Primary: 8T \#26 double spaced
Secondary: 2T \#26 double spaced
Core: Ferrite torroid, 5/16-inch OD, 5/32-inch ID
FIGURE 4-45-MHZ POWER GAIN TEST CIRCUIT

BULLETIN NO. DL-S 7312005, MARCH 1973

SILECTT VHF/UHF TRANSISTOR \ddagger WITH FORWARD-AGC CHARACTERISTICS DESIGNED FOR COMMON-BASE AMPLIFIER APPLICATIONS

- Low C C_{ce}. . . 0.3 pF Max
- Low Noise at 850 MHz . . . 6.5 dB Max
- High Power Gain at $\mathbf{8 5 0} \mathbf{~ M H z ~ . ~ . ~} \mathbf{1 0}$ dB Min

mechanical data

This transistor is encapsulated in a plastic compound specifically designed for this purpose, using a highly mechanized process developed by Texas Instruments. The case will withstand soldering temperatures without deformation. This device exhibits stable characteristics under high-humidity conditions and is capable of meeting MIL-STD-202C, Method 106 B . The transistor is insensitive to light.

absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)
Collector-Base Voltage . - 60 V
Collector (See Note 1) . -45 V
Collector-Emitter Voltage (See Note 1) . $\mathbf{- 4} \mathbf{V}$
Emitter-Base Voltage . - 30 mA
Continuous Collector Current a (or below) $25^{\circ} \mathrm{C}$ Free-Air Temperature (See Note 2) $\because . . .2$.

Storage Temperature Range
Lead Temperature $1 / 16$ Inch from Case for 10 Seconds
electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

NOTES: 1. This value applies when the base-emitter diode is open-circuited.
2. Derate linearly to $160^{\circ} \mathrm{C}$ free-alr temperature at the rate of $\mathbf{2 ~ m W} /{ }^{\circ} \mathrm{C}$.
3. This parameter must be measured using pulse techniques. $\mathrm{t}_{\mathrm{w}}=300 \mu \mathrm{~s}$, duty cycle $\leq 2 \%$.
4. $\mathrm{C}_{\text {ce }}$ maasurement employs a three-terminal capacitance brldge incorporating a guard circult. The base he connected to the guard terminal of the bridge.
${ }^{\dagger}$ Tradomark of Texas Instruments
\ddagger U.S. Patent No. 3,439,238
operating characteristics at $\mathbf{2 5}{ }^{\circ} \mathrm{C}$ free-air temperature

${ }^{\dagger} \Delta G_{p b}$ is defined as the change in $G_{p b}$ from the value at $t_{C}=-2 \mathrm{~mA}$

PARAMETER MEASUREMENT INFORMATION

CIRCUIT COMPONENT INFORMATION
L1: Silver-plated brass $1 / 32^{\prime \prime}$ th ick, $1 / 2^{\prime \prime}$ wide, $1^{\prime \prime}$ lo ng
C1: 0.8-10 pF, Johansen \#4642, or equivalent
FIGURE 1-850-MHz POWER GAIN, NOISE FIGURE, AND GAIN-CONTROL TEST CIRCUIT

TYPICAL CHARACTERISTICS

SMALL-SIGNAL COMMON-EMITTER FORWARD CURRENT TRANSFER RATIO vs

SMALL-SIGNAL COMMON-BASE INSERTION POWER GAIN vs COLLECTOR CURRENT

figure 3

TYPE TIS129
 N-P-N SILICON TRANSISTOR

BULLETIN NO. DL-S 7312007, JUNE 1973

SILECT ${ }^{\dagger}$ VHF/UHF TRANSISTOR \ddagger
 DESIGNED FOR COMMON-BASE OSCILLATOR AND AMPLIFIER APPLICATIONS
 - Low Cce . . 0.3 pF Max
 - High fT . . . $\mathbf{8 0 0} \mathbf{~ M H z ~ M i n ~}$
 - Specified fT Ratio
 - Low rb ${ }^{\prime} \mathrm{C}_{\mathrm{c}} \ldots 9$ ps Max

mechanical data

This transistor is encapsulated in a plastic compound specifically designed for this purpose, using a highly mechanized process developed by Texas Instruments. The case will withstand soldering temperatures without deformation. This device exhibits stable characteristics under high-humidity conditions and is capable of meeting MIL-STD-202C, Method 106B. The transistor is insensitive to light.

absolute maximum ratings at $\mathbf{2 5} \mathbf{}{ }^{\mathbf{C}} \mathbf{C}$ free-air temperature (unless otherwise noted)

Collector-Base Voltage . 40 V

Collector-Emitter Voltage (See Note 1) . 25 V
Emitter-Base Voltage . 40
Continuous Collector Current a (or below) $25^{\circ} \mathrm{C}$ Free-Air Temperature (See Note 2)
Continuous Device Dissipation at
30 mA
Continuous Device Dissipation at (or below) $\mathbf{2 5}{ }^{\circ} \mathrm{C}$ Free-Air Temperature (See Note 2) 250 mW
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead Temperature $1 / 16$ Inch from Case for 10 Seconds
$260^{\circ} \mathrm{C}$
electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temparature

NOTES: 1. This value applies when the base-emitter diode is open-circuited.
2. Derate linearly to $150^{\circ} \mathrm{C}$ free-air temperature at the rate of $2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
3. This parameter must be measured using pulse techniques. $t_{w}=300 \mu \mathrm{~s}$, duty cycle < 2%,
. To ${ }^{2}$. ${ }^{2}$, $\left|h_{t+1}\right|=1$.
6. C_{cb} and C_{ce} measurements employ a throe-terminal capacitance bridge or base, respectivaly) is connected to the guard termi
\ddagger Trademark of Texas instruments
\ddagger U.S. Patent No. $3,439,238$

USES CHIP N30

TYPE TIS129

N-P-N SILICON TRANSISTOR
operating characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER MEASUREMENT INFORMATION

CIRCUIT COMPONENT INFORMATION
L1: Sliver-plated brass $1 / 32^{\prime \prime}$ thick, $1 / \mathbf{2}^{\prime \prime}$ wide, $1^{\prime \prime}$ long
C1: 0.8-10 PF, Johansen \#4642, or equivalent
FIBURE $1-850-\mathrm{MHz}$ POWER-GAIN TEST CIRCUIT

TYPICAL CHARACTERISTICS

FIOURE 2

TYPES TIS133 THRU TIS136 N-P-N SILICON TRANSISTORS

SILECT ${ }^{\dagger}$ TRANSISTORS \ddagger
 FAST, HIGH-VOLTAGE, HIGH-CURRENT CORE DRIVERS (Replacements for TIS113 thru TIS116)

- TIS133 Electrically Similar to 2N3724
- TIS135 Electrically Similar to 2N3725
- hFE Guaranteed from 10 mA to 1 A
- Guaranteed Switching Times at $\mathbf{5 0 0} \mathbf{~ m A}$

mechanical data

These transistors are encapsulated in a plastic compound specifically designed for this purpose, using a highly mechanized process developed by Texas Instruments. The case will withstand soldering temperatures without deformation. These devices exhibit stable characteristics under high-humidity conditions and are capable of meeting MIL-STD-202C, Method 106B. The transistors are insensitive to light.

absolute maximum ratings at $25^{\circ} \mathbf{C}$ free-air temperature (unless otherwise noted)

NOTES: 1. These values apply when the base-emitter alode is open-circulted
2. This value applies for equart-wave pulees. ${ }^{\prime} w<300 \mu$, duty cycle $\leqslant 2 \%$.

4. Derate linearly to $150^{\circ} \mathrm{C}$ laed temperature at the rate 0 石 $\mathrm{mW} /{ }^{\circ} \mathrm{C}$. Lead temperature it measured on the collector lead $1 / 18$ inch from the case. $20^{\circ} \mathrm{C}$. Derate linearly to $180^{\circ} \mathrm{C}$ amse-and-lead
8. This rating appllet with the $8 \mathrm{~mW} / \mathrm{C}_{\mathrm{C}}$
\dagger Trademark of Texas Instrument
\ddagger U.s. Patent Number 3,439,238
UsES CHIP N13

TYPES TIS133 THRU TIS136
 N-P-N SILICON TRANSISTORS

electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

NOTE 6: These perameters must be measured using pulse techniques. ${ }_{w}=300 \mu \mathrm{~s}$, dutv cycle $\leqslant 2 \%$.

TYPES TIS133 THRU TIS136 N-P-N SILICON TRANSISTORS

switching characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER	TEST CONDITIONS ${ }^{\text { }}$		TIS133	TIS134	TIS135	TIS136	UNIT
			MAX	MAX	MAX	MAX	
$t_{\text {d }}$ Delay Time	$\begin{aligned} & V_{\mathrm{CC}}=30 \mathrm{~V}, \\ & \mathrm{l}_{\mathrm{B}(1)}=50 \mathrm{~mA}, \\ & \text { See Figure } 1 \end{aligned}$	$\begin{aligned} & \mathrm{I} \mathrm{C}=500 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{BE}(\mathrm{off})}=-3.8 \mathrm{~V} \end{aligned}$	10	10	10	10	ns
t_{r} Rise Time			30	30	30	30	ns
$\mathrm{t}_{\text {on }}$ Turn-On Time			35	35	35	35	ns
τ_{s} Storage Time	$\begin{aligned} & V_{C C}=30 \mathrm{~V} \\ & I_{B(1)}=50 \mathrm{~mA} . \end{aligned}$ See Figure 1	$\begin{aligned} & I^{\prime}=500 \mathrm{~mA}, \\ & I_{B(2)}=-50 \mathrm{~mA}, \end{aligned}$	50	50	50	50	ns
t_{f} Fall Time			25	25	30	30	ns
toff Turn-Off Time			60	60	60	60	ns

${ }^{\dagger}$ Voltege and current values shown are nominal; exact values vary slightly with transistor parameters.

PARAMETER MEASUREMENT INFORMATION

FIGURE 1-SWITCHING TIMES

NOTES: a. The input waveforms are supplied by a genarator with the following characteristics: $Z_{\text {out }}=50 \Omega, t_{r} \leqslant 1 \mathrm{~ns}, t_{f} \leqslant 1 \mathrm{~ns}, \mathrm{t}_{\mathrm{w}} \approx 1 \mu \mathrm{~s}$, duty cycle $<\mathbf{2 \%}$.
b. The output waveforms are monitored on an oscilloscope with the following characteristics: $\mathrm{t}_{\mathrm{r}} \leqslant 1 \mathrm{~ns}, \mathrm{R}_{\mathrm{in}} \geqslant 100 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{in}} \leqslant 7 \mathrm{pF}$.

SILECT ${ }^{\dagger}$ TRANSISTORS \ddagger RECOMMENDED AS LOW-NOISE DESIGN REPLACEMENTS FOR GERMANIUM DRIFT TRANSISTORS IN:

- AM Radio RF and IF Converter Applications

- TV Video and AGC Amplifiers, Sync Amplifiers and Separators, and Emitter Followers

mechanical data

These transistors are encapsulated in a plastic compound specifically designed for this purpose, using a highly mechanized process developed by Texas Instruments. The case will withstand soldering temperatures without deformation. These devices exhibit stable characteristics under high-humidity conditions and are capable of meeting MIL-STD-202C, Method 106B. The transistors are insensitive to light.

absolute maximum ratings at $\mathbf{2 5}{ }^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

NOTES: 1. This value epplies when the base-emitter diode is open-circuited.
2. Derate linearly to $150^{\circ} \mathrm{C}$ free-air temperature at the rate of $5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.

Trademerk of Texas instruments
\ddagger U.S. Patent No. 3,438,238

TYPES TIS37, TIS38, TIS137, TIS138 P-N-P SILICON TRANSISTORS

electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

operating characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER	TEST COMDITIONS	$\begin{aligned} & \hline \text { TIS37 } \\ & \text { TIS137 } \end{aligned}$	UNIT
		TYP	
	$\mathrm{V}_{C E}=-9 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=-1 \mathrm{~mA}, \mathrm{R}_{\mathrm{G}}=75 \Omega, f=1 \mathrm{MHz}$	2.5	dB
NF Spot Noise Figure	$V_{C E}=-9 \mathrm{~V}, \mathrm{I}^{\prime}=-1 \mathrm{~mA}, \mathrm{R}_{\mathrm{G}}=1 \mathrm{k} \Omega, \mathrm{f}=1 \mathrm{MHz}$	1	dB

TYPICAL CHARACTERISTICS AT TA $\mathbf{= 2 5}{ }^{\circ} \mathrm{C}$

TIS37, TIS137
STATIC FORWARD CURRENT TRANSFER RATIO vs
COLLECTOR CURRENT

IC-Collector Current-mA
FIGURE 1

TIS37, TIS137
STATIC FORWARD CURRENT TRANSFER RATIO

NOTES: 3. This parameter must be measured uaing pulee techniques. $t_{w}=300 \mu$, duty cycle $<\mathbf{2 \%}$.
f T, the tha at which $\left|\mathrm{hfo}_{\mathrm{f}}\right|=1$.
5. C_{cb} messurement employs a three-terminal capacitance bridge incorporating a guard circuit. The amitter is connected to the guard terminal of the bridge.
$4-549$
texas masteuments erseryes the right to maxe changes at any time in oroer to mprove design and to supply the best product possible.

Complete data sheets - full specifications and technical design information on all products included... 816 pages in all.

Covers everything in TT's broad line - germanium and silicon power transistors, SCR's, triacs, and power function modules. In silicon power, TI's extensive line includes high-voltage and low-voltage, high-safe-operatingarea (SOA) designs, power Darlingtons, fast switching types, radiationtolerant designs, JAN and JANTX, metal can and plastic packages. Plus details on the high-performance custom designs available through TI's Technical Response Lab.

Fast, easy to use - margin tabs, alphanumeric index to all products, crossreference guides, product selection guides, glossary of terms and definitions, general applications information, and product reliability data.

For a current list of TI Data books and prices, write to:

> Texas Instruments Incorporated
> P. O. Box 225012, M. S. 84
> Dallas, Tēxas 75265

Transistor Chip Characterization

TRANSISTOR CHIP CHARACTERIZATION

This section contains chip-characterization data for over fifty transistor-chip families. These data are applicable to all transistors types which have a chip reference in the lower right-hand corner of the first page of the data sheet. (Example: "USES CHIP N19" means that the types listed on that data sheet are made with chips of the N19 family.) Some data sheets do not have a chip reference. In general, these are either bar-type transistors (example: grown-junction devices) or chip-type transistors where the observed values of the characteristics of the basic chips are not applicable because of highly selective screening or special diffusions.

The characterization data are separated from the data sheets for several reasons:

- Redundant curves which would otherwise have to be repeated for many different types were eliminated. In this way one reference may apply to many type numbers.
- The amount of pertinent data for many type numbers is increased. Otherwise, each would have less characterization information because of space limitations.
- The user has more guidance in estimating whather to screan from off-the-shelf TI transistors for certain low-volume applications.
- The user now has adequate information about the distribution of transistor characteristic values to consider having TI do his screening for him on special order when the standard types do not quite fulfil the application needs.

However, the following points should be kept in mind:

- The high and low observed values, shown do not modify guaranteed limits for specific devices and, in the case of breakdown voltages, do not justify operation in excess of absolute maximum ratings.
- Measurement of characteristics at high power levels is applicable only for devices rated for those power levels.
- Distribution of characteristic values for any particular lot of transistors is not guaranteed.
- The distributions and ranges of values are not fixed. (TI reserves the right to improve the products and modify the distributions without notice.)

Some notes on the data follow:

- "LOW TYP HIGH"-The "TYP" column heading should require no explanation other than saying that it is typical for the chip family. However, the "LOW" and "HIGH" deserve some definition. These values represent the approximate extremes (excluding distribution "freaks") observed in recent production history. These extremes may be purely distributional in nature (a tailing off of the "normal" curve) or wholaly intentional (limits imposed on the chip-selection or transistor-screening steps).
- Since most of the families are aggregations of several subfamilies (usually modifications of diffusion profiles) the range of extreme values shown might seem usually broad.
- References to the availability of the chips in certain packages apply only to types listed in this book; many other chip-package combinations are available on special order.

For referencing to standard types using each of these chips, see Transistor Selection Guides, Section 2.
Chip-family classes are as follows:

JN - Junction field-effect transistors, N-channel
JP - Junction field-effect transistors, P-channel
MN - Insulated-gate (MOS) field-effect transistors, N-channel
MP - Insulated-gate (MOS) field-effect transistors, P-channel
$\mathrm{N}-\mathrm{N} \cdot \mathrm{P} \cdot \mathrm{N}$ multijunction transistors
P - P-N-P multijunction transistors
U - Unijunction transistors (chip type only) and programmable unijunction transistors

- JN51 is a $17 \times$ 17-mil, epitaxial, planar, expanded-contact chip
- Available in TO-18, TO-71, TO-72, a short-can version of TO-78, and Silect ${ }^{\dagger}$ packages
- For use in low-noise amplifier, mixer, switching, and chopper circuits

electrical and operating characteristics at $\mathbf{2 5}{ }^{\circ} \mathbf{C}$ free-air temperature

PARAMETER		CONDITIONS			OBSERVED VALUES			UNIT			
		LOW	TYP	HIOH							
V(BA)Oss	Gete-Source Breakdown Voltage				$10=-1 \mu A$,	$V_{D S}=0$		-30^{*}	-75	-100	V
IGss	Gate Reverse Current	$V_{C S}=-15 V_{1}$	$V_{D S}=0$			-<0.1	-2	nA			
$V_{\text {GS(0ff) }}$	Gate-Source Cutoff Voltege	$V_{D S}=15 \mathrm{~V}$,	$I_{D}=0.5 n$		-0.35	-3.8	-9	V			
$V_{\text {GS }}$	Gate-Source Voltage	$V_{D S}=18 V_{\text {, }}$	$I_{D}=100$		-0.25	-3	-8	V			
IDSs	Zero-Gate-Voltage Drain Current	$V_{D S}=15$.	$V_{G S}=0$,	See Note 1	0.6	10	24	mA			
'dasion)	Small-Signel Drain-Source On-State Resistance	$V_{\text {DS }}=0$,	${ }^{\prime} \mathrm{D}=0$,	$\mathrm{f}=1 \mathrm{kHz}$	100	200	2000	Ω			
$\left\|\mathrm{Vf}_{\mathrm{s}}\right\|$	Small-Signal Common-Source Forward Transfer Admittance	$V_{\text {DS }}=0$,	$V_{G S}=0$.	$\mathbf{f = 1} \mathbf{k H z}$	2	4.8	7	mmho			
Hos1	Small-Signal Common-Source Output Admittance					25	70	$\mu \mathrm{mho}$			
$C_{\text {iss }}$	Common-Source Short-Circuit Input Capacitance	$\begin{aligned} & V_{D S}=15 \mathrm{~V} \\ & \text { See Note } 2 \end{aligned}$	$V_{G S}=0$,	$\mathrm{f}=1 \mathrm{MHz}$,	3.5	4.7	6	pF			
$C_{\text {rss }}$	Common-Source Short-Circuit Reverse Transfer Capecitance				0.9	1.4	2	pF			
gis	Small-Signal Common-Source Input Conductance	$\mathrm{V}_{\text {DS }}=15 \mathrm{~V}$,	$V_{G S}=0$,	$f=100 \mathrm{MHz}$		90	250	$\mu \mathrm{mho}$			
9fs	Small-Signal Common-Source Forward Transfer Conductance				1	4	7	mmho			
808	Small-Signal Common-Source Output Conductance					60	160	$\mu \mathrm{mho}$			
$\mid \mathrm{Yfz}$	Small-Signal Common-Source Forward Transfer Admittance	VDS $=15 \mathrm{~V}$,	$V_{G S}=0$,	$f=200 \mathrm{MHz}$	2	4		mmho			
9 is	Small-Signal CommonSource Input Conductance					0.5	1	mmho			
901	Small-Signal Common-Soure Output Conductance					0.15	0.3	mmho			
F	Spot Noise Figure	$\begin{aligned} & V_{D S}=16 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{G}}=1 \mathrm{mn} \end{aligned}$	$V_{G S}=0,$	$f=10 \mathrm{~Hz},$		4.5	5	$d 8$			
		$\begin{aligned} & V_{D S}=18 V \\ & R_{G}=1 \mathrm{Mn} \\ & \hline \end{aligned}$	Ves $=0$	$\mathrm{f}=1 \mathrm{kHz}$,		0.2	2				
		$\begin{aligned} & V_{D S}=15 \mathrm{~V}, \\ & R_{G}=1 \mathrm{k} \Omega \end{aligned}$	$\mathbf{V G S}=0$,	$\mathrm{f}=100 \mathrm{MHz}$		3	5				
V_{n}	Equivalent Input Noise Voltage	$V_{D S}=16 \mathrm{~V}$,	$V_{G S}=0$	$t=10 \mathrm{~Hz}$		170	300	$n \mathrm{~V} / \sqrt{\mathrm{Hz}_{2}}$			
				f=1 kHz		15	100				

[^126]

FIGURE 1

Correlation of
$\mathbf{Y f s}_{\mathrm{s}} \mid$ and IDSs with $\mathbf{V}_{\mathbf{G S}}(100 \mu \mathrm{~A})$

FIGURE 4

FIGURE 7

ID vs VGS

FIGURE 2

Normalized ID
vs

FIGURE 5

Correlation of
|Vos/with IDSS

FIGURE 8

FIGURE 3

FIGURE 6

\ddagger Data is for devices heving indicated value of $l_{D S S}$ at $V_{D S}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. NOTE 1: This parameter was measured using pulse techniques. $t_{w}-300 \mu s$, dury cycle $<2 \%$.

CHIP TYPE JN51 N-CHANNEL SILICON JUNCTION FIELD-EFFECT TRANSISTORS

TYPICAL CHARACTERISTICS

FIGURE 10

FIGURE 14

CHIP TYPE JN51
 N-CHANNEL SILICON JUNCTION FIELD-EFFECT TRANSISTORS

TYPICAL CHARACTERISTICS

FIGURE 15

FIGURE 17

F ws f

Figure 16

FIGURE 18

[^127]
CHIP TYPE JN51 N-CHANNEL SILICON JUNCTION FIELD-EFFECT TRANSISTORS

TYPICAL CHARACTERISTICS

\ddagger Data is for devices having the indicated value of $I_{D S S}$ at $V_{D S}=15 \mathrm{~V}, \mathrm{~V}_{G S}=0, T_{A}=25^{\circ} \mathrm{C}$.
$\delta_{V_{n t}}=\sqrt{V_{n} 2+4 k T_{0} B R_{G}}$ where k is Boltzmann's constant $=1.38 \times 10^{-23} \mathrm{~J} / K, B$ is bandwidth $=1 \mathrm{~Hz}$.

CHIP TYPE JN52
 N-CHANNEL SILICON JUNCTION FIELD-EFFECT TRANSISTORS

- JN52 is a $19 \times 19-m i l$, epitaxial, planar, expanded-contact chip
- Available in TO-18 and Silect ${ }^{\dagger}$ packages
- For use in chopper, commutator, and other switching circuits
- Lower-IDSS devices also recommended for low-noise amplifier circuits

electrical and operating characteristics at $\mathbf{2 5}{ }^{\circ} \mathbf{C}$ free-air temperature

PARAMETER		CONDITIONS			OBSERVED VALUES		UNIT			
		LOW TYP	HIGH							
$V_{\text {(BR) }}$ GSS	Gate-Source Breakdown Voltage				$\mathrm{I}_{\mathrm{G}}=-1 \mu \mathrm{~A}$,	$V_{\text {DS }}=0$		$-30^{*}-45$		V
IGSS .	Gate Reverse Current	$\mathrm{V}_{\mathrm{GS}}=-20 \mathrm{~V}$,	$V_{D S}=0$		$-<0.01$	-2	nA			
$V_{\text {GS(}}$ (off)	Gate-Source Cutoff Voltage	$V_{\text {DS }}=15 \mathrm{~V}$,	$\mathrm{I}_{\mathrm{D}}=1 \mathrm{nA}$		-0.5 -4.5	-12	V			
$\mathrm{V}_{\text {GS }}$	Gate-Source Voltage	$V_{D S}=15 \mathrm{~V}$,	$I_{D}=100 \mu \mathrm{~A}$		-0.5 -4.0	-10	V			
IDSS	Zero-Gate-Voltage Drain Current	$V_{\text {DS }}=15 \mathrm{~V}$,	$V_{G S}=0$,	See Note 1	880	200	mA			
$\left\|\mathrm{Vfs}_{\text {f }}\right\|$	Small-Signal Common-Source Forward Transfer Admittance	$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}$ See Note 2	$\mathrm{V}_{\mathrm{GS}}=0,$	$f=1 \mathrm{kHz}$	2030	40	mmho			
rds(on)	Small-Signal Drain-Source On-State Resistance	$\mathrm{V}_{\mathbf{G S}}=0$,	$I_{\text {D }}=0$,	$\mathrm{f}=1 \mathrm{kHz}$	1023	60	Ω			
$C_{\text {iss }}$	Common-Source Short-Circuit Input Capacitance	$V_{G S}=-10 \mathrm{~V},$ See Note 3	$\mathrm{V}_{\text {DS }}=0$,	$f=1 \mathrm{MHz}$,	8	15	pF			
$\mathrm{C}_{\text {rss }}$	Common-Source Short-Circuit Reverse Transfer Capacitance	$V_{\mathrm{GS}}=-10 \mathrm{~V}$ See Note 3	$V_{D S}=0,$	$f=1 \mathrm{MHz},$	3.2	6	pF			
$t_{d}(\mathrm{on})$	Turn-On Delay Time			2N4856	3					
${ }_{t}{ }_{r}$	Rise Time	$V_{D D}=10 \mathrm{~V}$,	$V_{G S(o n)}=0$,	Data	1					
${ }^{\text {t }}$ (loff)	Turn-Off Delay Time	$V_{G S(0 f f)}=-10 \mathrm{~V}$, R^{\prime}	$R_{L}=1 \mathrm{k} \Omega$	Sheet	10		ns			
t_{f}	Fall Time			Circuit	20					

additional characteristics at $\mathbf{2 5}{ }^{\circ} \mathbf{C}$ free-air temperature of devices having IDSS $<\mathbf{4 0} \mathbf{m A}$

PARAMETER		CONDITIONS			OBSERVED VALUES			UNIT			
		LOW	TYP	HIGH							
IDSS	Zero-Gate-Voltage Drain Current				$\mathrm{V}_{\text {DS }}=15 \mathrm{~V}$,	$V_{G S}=0$,	See Note 1	8	30	40	mA
Vosi	Small-Signal Common-Source Output Admittance	$V_{D S}=15 \mathrm{~V}$ See Note 2	$V_{G S}=0$,	$\mathrm{f}=1 \mathrm{kHz}$,		70	125	$\mu \mathrm{mho}$			
V_{n}	Equivalent Input Noise Voltage	$\mathrm{V}_{\text {DS }}=15 \mathrm{~V}$,	$\mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA}$,	$\mathrm{f}=1 \mathrm{kHz}$		1.5		$n \mathrm{~V} / \sqrt{\mathrm{Hz}}$			
		$V_{\text {DS }}=15 \mathrm{~V}$,	$1 \mathrm{D}=1 \mathrm{~mA}$,	$f=10 \mathrm{~Hz}$		5		$n \mathrm{~V} / \sqrt{\mathrm{Hz}}$			

[^128]
CHIP TYPE JN52 N-CHANNEL SILICON JUNCTION FIELD-EFFECT TRANSISTORS

TYPICAL CHARACTERISTICS

NOTES: 1. Thls parameter wes measured using pulse rechniques. $t_{w}=300 \mu s$, duty cycle $\leqslant 2 \%$.
2. To avoid overheating the transistor, these parameters were measured with bias conditions applled for less than five seconds. ${ }^{+}$Date is for devices having the indicated value of $I_{D S S}$ at $V_{D S}=15 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$.

CHIP TYPE JN52
 N-CHANNEL SILICON JUNCTION FIELD-EFFECT TRANSISTORS

TYPICAL CHARACTERISTICS

FIGURE 8
$C_{\text {ras }}$ v VDs

V_{n} vil

FIGURE 12
$V_{O}(\mathrm{av}) \neq \mathrm{vs} \mathrm{tr}_{\mathrm{r}}$ and t_{f}

FIGURE 13
$V_{O}(\mathrm{av}) \ddagger$ vs f

FIGURE 14

TEST CIRCUIT

INPUT VOLTAGE WAVEFORM

FIGURE 15-MEASUREMENT INFORMATION FOR FIGURES 13 and 14
NOTES: 2. To avold overheating the transistor, these parameters were measured with blas conditions applied for less then five seconds.
3. Capacitance measuremente were made uving chlpe mounted in TO-18 packages.
4. These measurements were made in the switehing circuit of Figure 1 of the 2 N 4858 dsta sheet verying R_{L} from 100Ω to $10 \mathrm{k} \Omega$. $t_{w w}=1 \mu_{s}$, duty cycle $<2 \%$.
Voltmeter input resistance $R_{\text {In }}>10 \mathrm{M} \Omega$.
Fin the circult of Figure 15, averege output voltage results from capacitive feed-through of the gate-drive algnal.

CHIP TYPE JN63 N-CHANNEL SILICON JUNCTION FIELD-EFFECT TRANSISTORS

- JN53 is a 15×16-mil, epitaxial, planar, expanded-contact chip
- Available in TO.72 and Silect ${ }^{\dagger}$ packages
- For use in VHF/UHF amplifier, oscillator, and mixer circuits requiring low noise characteristics

electrical and operating characteristics at $\mathbf{~} 5^{\circ} \mathrm{C}$ free-air temperature

PARAMETER		CONDITIONS			OB8ERVED VALUES			UNIT			
		LOW	TYP	HICH							
V (BR) CSS	Gate-Source Breakdown Voltage				$\mathrm{I}_{\mathrm{G}}=-1 \mu \mathrm{~A}$,	$V_{D S}=0$		-30^{*}	-45	-80	V
IGSS	Gate Reverse Current	$\mathrm{V}_{\mathbf{G S}}=-20 \mathrm{~V}$,	$V_{D S}=0$			<0.01	-1	nA			
VGS(off)	Gate-Source Cutoff Voltege	$V_{D S}=15 \mathrm{~V}$,	$I_{D}=1 \mathrm{nA}$		-0.5	-3	-8	V			
$V_{\text {GS }}$	Gate-Source Voltage	$V_{D S}=15 \mathrm{~V}$,	$l_{D}=100 \mu A$		-0.3	-2.5	-7	V			
IDSS	Zero-Gate-Voltage Drain Current	$V_{D S}=15 \mathrm{~V}$,	$V_{G S}=0$,	See Note 1	1	10	24	mA			
\|Vfs		Small-Signal Common-Source Forward Transfer Admittance	$V_{D S}=15 \mathrm{~V}$,	$V_{G S}=0$,	$\mathrm{f}=1 \mathrm{kHz}$	3	6	7	mmho		
\|Yos		Small-Signal Common-Source Output Admittance				1	35	85	$\mu \mathrm{mho}$		
$\mathrm{C}_{\text {iss }}$	Common-Source Short-Circuit Input Capacitance	$\begin{aligned} & V_{D S}=15 \mathrm{~V} \\ & \text { See Note } 2 \end{aligned}$	$V_{G S}=0$,	$\mathrm{f}=1 \mathrm{MHz}$,		4	5	pF			
$C_{\text {rss }}$	Common-Source Short-Circuit Reverse Transfer Capacitance					0.8	1	pF			
Coss	Common-Source Short-Circuit Output Capacitance					1	2	pF			
9 is	Small-Signal Common-Source Input Conductance	$V_{\text {DS }}=15 \mathrm{~V}$,	$V_{G S}=0$	$f=100 \mathrm{MHz}$		0.07	0.1	mmho			
$b_{\text {is }}$	Small-Signal Common-Source Input Susceptance					2.5	3	mmho			
gfs	Small-Signal Common-Source Forward Transfer Conductance				3	6	7	mmho			
908	Smatl-Signal Common-Source Output Conductance					0.01	0.1	mmho			
b_{08}	Small-Signal CommonSource Output Susceptance					0.7	1	mmho			
$\theta_{\text {is }}$	Small-Signal Common-Source Input Conductance	$V_{D S}=15 \mathrm{~V}$	$V_{\mathbf{G S}}=0$,	$f=400 \mathrm{MHz}$		0.25	1	mmho			
$\mathrm{b}_{\text {is }}$	Small-Signal Common-Source Input Susceptance					8	12	mmho			
Ofs	Small-Signal Common-Source Forward Transfer Conductance				2.5	5.5	7	mmho			
Sos	Small-Signal Common-Source Output Conductance					0.06	0.15	mmho			
$\mathrm{b}_{\mathbf{o s}}$	Small-Signal Common-Source Output Susceptance					3	4	mmho			
F	Spot Noise Figure	$\begin{aligned} & V_{D S}=15 \mathrm{~V}, \\ & R_{G}=1 \mathrm{k} \Omega \end{aligned}$	$I_{D}=5 \mathrm{~mA}$,	$f=100 \mathrm{MHz}$ $f=400 \mathrm{MHz}$		1	$\begin{array}{r} 2 \\ -\quad 4 \end{array}$	dB			

[^129]Correlation of

${ }^{+}$Dats is for devices having the indicated values of ${ }^{\text {DSS }}$ at $V_{D S}=15 \mathrm{~V}, \mathrm{~V}_{G S}=0, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
NOTE 1: This parameter was messured using puise techniquas. $\mathrm{t}_{\mathrm{w}}=\mathbf{3 0 0} \mu$ s, duty cycle ${ }^{*} 2 \%$.

CHIP TYPE JN53 N-CHANNEL SILICON JUNCTION FIELD-EFFECT TRANSISTORS

TYPICAL CHARACTERISTICS

${ }^{\dagger}$ Oata is for devices having the indicated values of $I_{D S S}$ at $V_{D S}=15 \mathrm{~V}, \mathrm{~V}_{G S}=0, T_{A}=25^{\circ} \mathrm{C}$.

TYPICAL CHARACTERISTICS

FIGURE 11
gres brs vs f

Figure 13

FigURE 12

FIGURE 14

TYPICAL CHARACTERISTICS

CHIP TYPE JN54

N-CHANNEL SILICON JUNCTION FIELD-EFFECT TRANSISTORS

- JN54 is a 26×26-mil, epitaxial, expanded-contact chip
- Available in TO-39 and Silect ${ }^{\dagger}$ packages
- For use in high-voltage amplifier circuits

electrical and operating characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER		CONDITIONS			OBSERVED VALUES			UNIT			
		LOW	TYP	HIGH							
$V_{\text {(BR) }}$ GSS	Gate-Source Breakdown Voltage				$\mathrm{I}_{\mathrm{G}}=-10 \mu \mathrm{~A}$,	$\mathrm{V}_{\text {DS }}=0$		$-250{ }^{*}$	-350		V
IGSO	Gate Reverse Current	$\mathrm{V}_{\mathrm{GS}}=-75 \mathrm{~V}$,	$I^{\prime}=0$			-<1	-3	nA			
IGSS	Gate Reverse Current	$\mathrm{V}_{\mathrm{GS}}=-40 \mathrm{~V}$.	$V_{D S}=0$			-<1	-2	nA			
IDGO	Drain Reverse Current	$V_{D G}=200 \mathrm{~V}$.	IS $=0$			<1	100	nA			
$V_{\text {GS }}$ (off)	Gate-Source Voltage	$\mathrm{V}_{\mathrm{DS}}=30 \mathrm{~V}$.	$\mathrm{I}_{\mathrm{D}}=4 \mathrm{nA}$		-2	-9	-20	V			
IDSS	Zero-Gate-Voltage Drain Current	$V_{D S}=30 \mathrm{~V}$,	$\mathrm{V}_{\mathbf{G S}}=0$,	See Note 1	1	5.5	15	mA			
rds(on)	Small-Signal Drain-Source On-State Resistance	$V_{G S}=0$,	$I_{D}=0$,	$\mathrm{f}=1 \mathrm{kHz}$		1.0	2	$\mathrm{k} \Omega$			
$\left\|\mathrm{Vfs}_{\text {f }}\right\|$	Small-Signal Common-Source Forward Transfer Admittance	$V_{D S}=30 \mathrm{~V}$,	$V_{G S}=0$.	$f=1 \mathrm{kHz}$	0.75	1.0	3	mmho			
Nos	Small-Signal Common-Source Output Admittance					27	100	$\mu \mathrm{mho}$			
$\mathrm{C}_{\text {iss }}$	Common-Source Short-Circuit Input Capacitance	$V_{D S}=30 \mathrm{~V}$ See Note 2	$V_{G S}=0$,	$f=1 \mathrm{MHz}$,		7.5	10	pF			
Crss	Common-Source Short-Circuit Reverse Transfer Capacitance					3.5	5	pF			
V_{n}	Equivalent Input Noise Voltage	$V_{D S}=30 \mathrm{~V}$	$\mathrm{V}_{\mathrm{GS}}=0$,	$f=1 \mathrm{kHz}$	0.25			$\frac{\mu V}{\sqrt{H z}}$			

[^130]
CHIP TYPE JN54 N-CHANNEL SILICON JUNCTION FIELD-EFFECT TRANSISTORS

TYPICAL CHARACTERISTICS

NOTE 1: This parameter was masurad using pulse techniques. $t_{w}=300 \mu s$, duty cycle $\leqslant 2 \%$.
$t_{\text {Data }}$ is for devices having the indicated value of loss at $V_{O S}=30 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$.

CHIP TYPE JN54
 N-CHANNEL SILICON JUNCTION FIELD-EFFECT TRANSISTORS

TYPICAL CHARACTERISTICS

[^131]$\dagger_{\text {Data }}$ is for devices having the indicated value of $I_{D S S}$ at $V_{D S}=30 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$.

- JN55 is a 19×19-mil, epitaxial, planar, expanded-contact chip
- Available in TO-72 packages
- For extremely low-noise preamplifier and amplifier circuits

electrical and operating characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER		CONDITIONS			OBSERVED VALUES			UNIT			
		LOW	TYP	HIGH							
$\mathrm{V}_{\text {(BR)GSS }}$	Gate-Source Breakdown Voltage				$\mathrm{I}_{\mathrm{G}}=-1 \mu \mathrm{~A}$,	$V_{\text {DS }}=0$		-20	-35		V
IGSS	Gate Reverse Current	$\mathrm{V}_{\mathrm{GS}}=-10 \mathrm{~V}$,	$V_{D S}=0$			$-<0.1$	-0.5	nA			
$V_{\text {GS }}$ (off)	Gate-Source Cutoff Voltage	$V_{D S}=10 \mathrm{~V}$,	$\mathrm{I}_{\mathrm{D}}=0.5 \mathrm{nA}$		-0.5		-5	V			
'DSS	Zero-Gate-Voltage Drain Current	$V_{D S}=10 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{GS}}=0$,	See Note 1	5		50	mA			
$\left\|V_{f s}\right\|$	Smail-Signal Common-Source Forward Transfer Admittance	$V_{D S}=10 \mathrm{~V}$,	${ }^{\prime} \mathrm{D}^{\prime}=5 \mathrm{~mA}$,	$\mathrm{f}=1 \mathrm{kHz}$	15	20	30	mmho			
VosI	Small-Signal Common-Source Output Admittance	$V_{D S}=10 \mathrm{~V}$,	${ }^{\prime} \mathrm{D}=5 \mathrm{~mA}$,	$\mathrm{f}=1 \mathrm{kHz}$			75	$\mu \mathrm{mho}$			
$C_{\text {iss }}$	Common-Source Short-Circuit Input Capacitance	$\begin{aligned} & V_{D S}=10 \mathrm{~V} \\ & \text { See Note } 2 \end{aligned}$	$I_{D}=5 \mathrm{~mA}$,	$f=1 \mathrm{MHz}$,		15	25	pF			
$\mathrm{C}_{\text {rss }}$	Common-Source Short-Circuit Reverse Transfer Capacitance	$\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}$ See Note 2	$l^{\prime}=5 \mathrm{~mA}$,	$f=1 \mathrm{MHz}$,		3.5	5	pF			
F	Spot Noise Figure	$\begin{aligned} & V_{D S}=10 \mathrm{~V}, \\ & f=10 \mathrm{~Hz} \end{aligned}$	$\mathrm{I}_{\mathrm{D}}=5 \mathrm{~mA}$,	$\mathrm{R}_{\mathrm{G}}=10 \mathrm{k} \Omega$,		0.25	2.5	dB			
				$f=10 \mathrm{~Hz}$		3	10	$n \mathrm{~V} / \sqrt{\mathrm{Hz}}$			
V_{n}	Equivalent Input Noise Voitage	$V_{D S}=10 \mathrm{~V}$,	$\mathrm{I}^{\prime}=5 \mathrm{~mA}$	$\mathrm{f}=1 \mathrm{kHz}$		1.5	8	nv/ ${ }^{\text {Hz }}$			

[^132]
CHIP TYPE JN55
 N-CHANNEL SILICON JUNCTION FIELD-EFFECT TRANSISTORS

TYPICAL CHARACTERISTICS

${ }^{\dagger}$ Data is for devices having the indicated value of $I_{D S S}$ at $V_{D S}=10 \mathrm{~V}, \mathrm{~V}_{G S}=0$, and $T_{A}=25^{\circ} \mathrm{C}$
NOTES: 1. This parameter was measured using pulse techniques. $\mathbf{t}_{w}=300 \mu$ s, duty cycle $\leqslant 2 \%$. 2. Capacitance measurements were made using chips mounted in TO-72 packages.

CHIP TYPE JP71 P-CHANNEL SILICON JUNCTION FIELD-EFFECT TRANSISTORS

- JP71 is a 17×17-mil, epitaxial, planar, expanded-contact chip
- Available in TO-5, TO-18, TO-72, and Silect ${ }^{\dagger}$ packages
- For use in low-noise amplifier circuits

electrical and operating characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER		CONDITIONS			OBSERVED VALUES			UNIT			
		LOW	TYP	HIGH							
V(BR)GSS	Gate-Source Breakdown Voltage				$\mathrm{I}_{\mathrm{G}}=10 \mu \mathrm{~A}$,	$V_{\text {DS }}=0$		30^{*}	50		V
IGSS	Gate Reverse Current	$\mathrm{V}_{\text {GS }}=15 \mathrm{~V}$,	$V_{D S}=0$			<0.1	2	nA			
$\mathbf{V}_{\mathbf{G S}}$	Gate-Source Voltage	$\mathrm{V}_{\text {DS }}=-15 \mathrm{~V}$,	$I_{D}=-100$		0.5	3	9	V			
IDSS	Zero-Gate-Voitage Drain Current	$\mathrm{V}_{\text {DS }}=-15 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{GS}}=0$,	See Note 1	-0.3	-6	-15	mA			
$\mathrm{ras}^{(0 n)}$	Small-Signal Drain-Source On-State Resistance	VDS $=0$,	$V_{G S}=0$,	$\mathrm{f}=1 \mathrm{kHz}$		300	2000	Ω			
\| ffs		Small-Signal Common-Source Forward Transfer Admittance	$\mathrm{V}_{\mathrm{DS}}=-15 \mathrm{~V}$	$V_{G S}=0$,	$\mathrm{f}=1 \mathrm{kHz}$	1	3	4	mmho		
\|Yos 1	Small-Signal Common-Source Output Admittance					7	75	$\mu \mathrm{mho}$			
$\mathrm{C}_{\text {iss }}$	Common-Source Short-Circuit Input Capacitance	$\int V_{D S}=-15 \mathrm{~V},$ See Note 2	$\mathbf{V G S}_{\mathbf{G S}}=0$,	$\mathrm{f}=\mathbf{1} \mathrm{MHz}$,	3.5	5.5	7	pF			
Crss	Common-Source Short-Circuit Reverse Transfer Capacitance					1.2	2	pF			
F	Spot Noise Figure	$\begin{aligned} & V_{D S}=-15 \mathrm{~V}, \\ & \mathrm{f}=1 \mathrm{kHz} \end{aligned}$	$V_{G S}=0$,	$\mathrm{R}_{\mathrm{G}}=1 \mathrm{M} \Omega$,		0.3	2	dB			
V_{n}	Equivalent Input Noise Voltage	$\mathrm{V}_{\text {DS }}=-15 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{GS}}=0$,	$\mathrm{f}=1 \mathrm{kHz}$		35	100	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$			

[^133]
CHIP TYPE JP7
 P-CHANNEL SILICON JUNCTION FIELD-EFFECT TRANSISTORS

figure 1

Correlation of
$\left|Y_{\text {fs }}\right|$ and $I_{\text {DSS }}$ with $\mathbf{V}_{\mathbf{G S}}(100 \mu \mathrm{~A})$

FIGURE 4

Correlation of

FIGURE 7

TYPICAL CHARACTERISTICS

FIGURE 2
Normalized ID
vs
Normalized VGS
(Devices Having loss Greater than 3 mA)

figure 5

FIGURE 8
$I_{D} \mathbf{w} V_{G S}$

FIGURE 3

Normalized $\left|\mathrm{F}_{\mathrm{f}}\right|$

Normalized VGS

figure 6

FIGURE 9

[^134]
CHIP TYPE JPT
 P-CHANNEL SILICON JUNCTION FIELD-EFFECT TRANSISTORS

TYPICAL CHARACTERISTICS

t Deta is for devices having the Indicated value of loss at $V_{D S}=-15 \mathrm{~V}, V_{G S}=0, T_{A}=25^{\circ} \mathrm{C}$.
NOTE 2: Capecitance masaurements were made using chips mounted in Silect packeges.

CHIP TYPE JP72

P-CHANNEL SILICON JUNCTION FIELD-EFFECT TRANSISTORS

- JP72 is a 19×19-mil, epitaxial, planar, expanded-contact chip
- Available in TO-72 packages
- For use in commutator and chopper circuits

electrical characteristics at $25^{\circ} \mathrm{C}$ free-air tamperature

[^135]
P-CHANNEL SILICON JUNCTION FIELD-EFFECT TRANSISTORS

TYPICAL CHARACTERISTICS

NOTES: 2. To obtain reproducible results, these parameters were measured with bias conditions applied for less than five seconds 3. Cspacitance messurements were mada using chips mounted in TO-72 packages.

- MN81 is a 19×19-mil, epitaxial, planar, expanded-contact chip which has integrated back-to-back diodes between the gates and the source and substrate

- Available in TO-72 packages

- For use in VHF amplifier and mixer circuits requiring low noise, low feedback capacitance, and very high gain

electrical characteristics at $\mathbf{2 5}{ }^{\circ} \mathbf{C}$ free-air temperature

PARAMETER		CONDITIONS			OBSERVED VALUES			UNIT			
		LOW	TYP	HIGH							
V(BR)DS	Drain-Source Breakdown Voltage				$l^{\prime}=10 \mu A$,	$\mathrm{V}_{\mathbf{G 1 S}}{ }^{\text {w }} \mathrm{V}_{\mathbf{G 2 S}}=-5 \mathrm{~V}$		25*	28		V
V(BR)G1SSF	Gate-One-Source Forward Breakdown Voltage	$\mathrm{IG}_{\mathrm{G}}=10 \mathrm{~mA}$.	$V_{G 2 S}=V_{\text {DS }}=0$,	See Note 1	6	12	30	V			
$V_{\text {(BR) }}$ G1SSR	Gate-One-Source Reverse Breakdown Voltage	$\mathrm{IG}_{\mathrm{I}}=\mathbf{- 1 0 m A}$	$V_{G 2 S}=V_{D S}=0$,	See Note 1	$-6{ }^{*}$	-12	-30	V			
$V_{\text {(BR) }}$ G2SSF	Gate-Two-Source Forward Breakdown Voltage	$\mathrm{I}_{\mathrm{G} 2}=10 \mathrm{~mA}$,	$\mathbf{V}_{\mathbf{G I S}}=\mathrm{V}_{\mathrm{DS}}=0$,	See Note 1	6	12	30	V			
$\mathbf{V}_{(B R)}$ G2SSR	Gate-Two-Source Reverse Breakdown Voltage	$\mathrm{I}_{\mathrm{G2}}=-10 \mathrm{~mA}$,	$V_{G 1 S}=V_{D S}=0$,	See Note 1	-6*	-12	-30	V			
'G1SSF	Gate-One-Terminal Forward Current	$\mathrm{V}_{\mathrm{G1S}}=5 \mathrm{~V}$,	$V_{G 2}=V_{D S}=0$			<0.01	10	nA			
'G1SSR	Gate-One-Terminal Reverse Current	$\mathrm{V}_{\mathrm{G1S}}=-5 \mathrm{~V}$,	$V_{G 2}=V_{\text {DS }}=0$			$-<0.01$	-10	nA			
IG2SsF	Gate-Two-Terminal Forward Current	$\mathrm{V}_{\mathbf{G 2 S}}=5 \mathrm{~V}$,	$V_{G 1 S}=V_{D S}=0$			<0.01	10	nA			
IG2SSR	Gate-Two-Terminal Reverse Current	$\mathrm{V}_{\mathrm{G} 2 \mathrm{~S}}=-5 \mathrm{~V}$,	$V_{G 1 S}=V_{\text {DS }}=0$			-<0.01	-10	nA			
IDS	Zero-Gate-One-Voltage Drain Current	$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V} .$ See Note 2	$V_{G 1 S}=0,$	$\mathrm{V}_{\mathrm{G} 25}=4 \mathrm{~V}$.	3	10	30	mA			
$\mathrm{V}_{\mathrm{G} 1 \mathrm{~S} \text { (off) }}$	Gate-One-Source Cutoff Voltage	$V_{D S}=15 \mathrm{~V}$,	$\mathbf{V G 2 S}^{\text {G }}=\mathbf{4} \mathbf{V}$.	$I_{D}=20 \mu \mathrm{~A}$	-0.5	-1.8	-4	V			
$V_{\text {G2S }}$ (off)	Gate-Two-Source Cutoff Voltage	$V_{D S}=15 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{G1S}}=0$.	$I_{D}=20 \mu \mathrm{~A}$	-0.2	-1.4	-4	V			
$\left\|y_{f s}\right\|$	Small-Signal Common-Source Forward Transfer Admittance	$\begin{aligned} & \mathrm{V}_{\text {DS }}=15 \mathrm{~V}, \\ & \mathrm{f}=1 \mathrm{kHz}, \end{aligned}$	$V_{\mathrm{G} 1 \mathrm{~S}}=0,$ See Note 3	$\mathrm{V}_{\mathrm{G2S}}=4 \mathrm{~V}$,	7	15	22	mmho			
$\mathrm{C}_{\text {iss }}$	Common-Source Short-Circuit Input Capacitance	$\begin{aligned} & V_{D S}=15 \mathrm{~V}, \\ & f=1 \mathrm{MHz} . \end{aligned}$	$\mathrm{V}_{\mathrm{G} 1 \mathrm{~S}}=0,$ See Notes 3 and 4	$\mathbf{V G 2 S}^{\text {a }} \mathbf{4} \mathbf{V}$,		5		pF			
$\mathrm{C}_{\text {oss }}$	Common-Source Short-Circuit Output Capacitance	$\begin{aligned} & V_{D S}=15 \mathrm{~V}, \\ & f=1 \mathrm{MHz}, \end{aligned}$	$V_{G 1 S}=0,$ See Notes 3 and 4	$\mathbf{V}_{\text {G2S }}=4 \mathrm{~V}$.		2		pF			
Crss	Common-Source Short-Circuit Reverse Transfer Capacitance	$\begin{aligned} & V_{D S}=15 \mathrm{~V}, \\ & f=1 \mathrm{MHz} \end{aligned}$	$V_{G 2 S}=4 V$ See Note 4	$I_{\text {d }}=10 \mathrm{~mA}$,	0.005	<0.1	0.03	pF			

These values do not modify guaranteed limits for specific devices and do not justify operation in excess of absolute maximum ratings.
NOTES: 1. To ensure thet the protective diodes are functionig properis,
NOTES: 1. To ensure that the protective diodes are functioning properly, this voltage is maasured while the device is conducting rated forvara gate current.
2. This parameter was measured using pulse tech niques. $t_{w}=300 \mu \mathrm{~s}$, duty cycle $\leqslant \mathbf{2 \%}$.
3. To avoid overhesting the transistor, these parameters must be measured with bias conditions applied for less than five seconds.
4. Capacitance measurements were made using chips mounted in TO-72 packages.

CHIP TYPE MN81
 N-CHANNEL DUAL-GATE DEPLETION-TYPE INSULATED-GATE FIELD-EFFECT TRANSISTORS

TYPICAL CHARACTERISTICS AT TA $\mathbf{= 2 5}{ }^{\circ} \mathrm{C}$

${ }^{\dagger}$ Date is for devices having the indicated value of $\mathrm{IDS}_{\mathrm{DS}}$ at $\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{G} 1 \mathrm{~S}}=0, \mathrm{~V}_{\mathrm{G2S}}=4 \mathrm{~V}$.
NOTE 2: This parameter was measured using pulse techniques. $t_{w}=300 \mu \mathrm{~s}$, duty cycle $\leqslant \mathbf{2 \%}$.

TYPICAL CHARACTERISTICS AT TA $\mathbf{=} \mathbf{2 5}^{\circ} \mathrm{C}$

FIGURE 7
$\boldsymbol{g}_{\mathrm{os}} \mathrm{vs} \mathrm{V}_{\mathbf{G} 2 \mathrm{~S}}$

FIGURE 9
$b_{f s} \mathbf{v s} V_{G 2 S}$

FIGURE 8
$g_{o s}$ vs VDS

$t^{\text {Data }}$ is for devices having the indicated value of ${ }^{\mathrm{DS}}$ at $\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{G} 1 \mathrm{~S}}=0, \mathrm{~V}_{\mathrm{G} 2 \mathrm{~S}}=4 \mathrm{~V}$.

TYPICAL CHARACTERISTICS AT TA $\mathbf{~ 2 5}^{\circ} \mathrm{C}$

[^136]
CHIP TYPE MN81
 N-CHANNEL DUAL-GATE DEPLETION-TYPE
 INSULATED-GATE FIELD-EFFECT TRANSISTORS

TYPICAL CHARACTERISTICS AT TA $=\mathbf{2 5}^{\circ} \mathbf{C}$

FIGURE 18

FIGURE 18

FIBURE 20

- MN82 is a 19×19-mil, epitaxial, planar, expanded-contact MOS silicon chip
- Available in TO-72 packages
- For use in VHF amplifier circuits

electrical and operating characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER		CONDITIONS			OBSERVED VALUES			UNIT			
		LOW	TYP	HFGH							
$V_{\text {(BR) }}$ DSV	Drain-Source Breakdown Voltage				$I_{D}=10 \mu A$,	$V_{G S}=-8 \mathrm{~V}$		20^{*}	28		V
IGSSF	Forward Gate-Terminal Current	$\mathrm{V}_{\mathrm{GS}}=8 \mathrm{~V}$,	$V_{\text {DS }}=0$			<1		pA			
IGSSR	Reverse Gate-Terminal Current	$\mathrm{V}_{\text {GS }}=-8 \mathrm{~V}$,	$V_{D S}=0$			-<1	-50	PA			
$V_{\text {GS }}$ (off)	Gate-Source Cutoff Voltage	$\mathrm{V}_{\text {DS }}=15 \mathrm{~V}$,	$\mathrm{I}^{1} \mathrm{D}=50 \mu \mathrm{~A}$		-0.8	-1.5	-8	V			
IDSS	Zero-Gate-Voltage Drain Current	$V_{D S}=15 \mathrm{~V}$,	$\mathrm{V}_{\mathbf{G S}}=0$,	See Note 1	5	10	30	mA			
\|Vfsi	Small-Signal Common-Source Forward Transfer Admittence	$V_{D S}=15 \mathrm{~V}$,	$I_{D}=5 \mathrm{~mA}$,	$\mathrm{f}=1 \mathrm{kHz}$	5	10	12	mmho			
\|Yos		Small-Signal Common-Source Output Admittance					0.25		mmho		
$C_{\text {iss }}$	Cormmon-Source Short-Circuit Input Capacitance	$V_{D S}=15 \mathrm{~V},$ See Note 2	${ }^{\prime} D^{\prime}=5 \mathrm{~mA}$,	$f=1 \mathrm{MHz}$,	4			pF			
$C_{\text {rss }}$	Common-Source Short-Circuit Reverse Transfer Capecitance					0.3	0.35	pF			
$C_{\text {css }}$	Common-Source Short-Circuit Output Capecitance					1.6		pF			
gis	Small-Signal Common-Source Input Conductance	$V_{D S}=15 \mathrm{~V}$,	$I_{D}=5 \mathrm{~mA}$,	$f=\mathbf{2 0 0 ~ M H z}$		0.2		mmho			
$b_{\text {is }}$	Small-Signal Common-Source Input Susceptance					4.5					
9f8	Small-Signal Common-Source Forward Transfer Conductance					10		mmho			
$b_{\text {fis }}$	Small-Signal Common-Source Forward Transfer Susceptance					-2					
9rs	Small-Signal Common-Source Reverse Transfer Conductance					0.05		mmho			
brs	Small-Signal Common-Source Reverse Transfer Susceptance				-0.4						
gos	Small-Signal Common-Source Output Conductance				0.25			mmho			
$b_{0: 3}$	Small-Signal Common-Source Output Susceptance				2						
F	Spot Noise Figure	$V_{\text {DS }}=15 \mathrm{~V}$,	$10=5 \mathrm{~mA}$,	$f=200 \mathrm{MHz}$			5	d8			

This velue does not modify guaranteed limite for specific devices and does not justify operation in excess of absolute maximum reings. CAUTION: The measurement of $V_{(B R) D S V}$ may be destructive.
NOTES: 1. This paramatar was measured using pulee techniques. $t_{w}=300 \mu s$, duty cycle $<2 \%$.
2. Capacitance measurements were made using chlps mounted In TO-72 packages.

TYPICAL CHARACTERISTICS

[^137]
CHIP TYPE MN82
 N-CHANNEL DEPLETION-TYPE INSULATED-GATE FIELD-EFFECT TRANSISTORS

TYPICAL CHARACTERISTICS

CHIP TYPE MN82

N-CHANNEL DEPLETION-TYPE

 INSULATED-GATE FIELD-EFFECT TRANSISTORSTYPICAL CHARACTERISTICS

NOTE 2: Capacitance measurements were made using chips mounted in TO-72 packages.

CHIP TYPE MN83
 N-CHANNEL ENHANCEMENT-TYPE INSULATED-GATE FIELD-EFFECT TRANSISTORS

- MN83 is a 21×21-mil, epitaxial, planar, expanded-contact MOS silicon chip
- Available in TO-72 packages
- For use in switching and chopper circuits

electrical and operating characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER		CONDITIONS			OBSERVED VALUES			UNIT			
		LOW	TYP	HIGH							
$V_{\text {(BR) }}$ DSS	Drain-Source Breakdown Voltage				${ }^{1} \mathrm{D}=10 \mu \mathrm{~A}$,	$V_{G S}=0$		25^{*}	40		V
IGSSF	Forward Gate-Terminal Current	$\mathrm{V}_{\text {GS }}=35 \mathrm{~V}$,	$V_{\text {DS }}=0$			<1	10	pA			
IGSSR	Reverse Gate-Terminal Current	$V_{\text {GS }}=-35 \mathrm{~V}$,	$V_{D S}=0$			-<1	-10	pA			
ldss	Zero-Gate-Voltage Drain Current	$V_{D S}=10 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{GS}}=0$			<1	10	nA			
$\mathrm{V}_{\mathrm{GS}}(\mathrm{th})$	Gate-Source Threshold Voltage	$V_{D S}=10 \mathrm{~V}$,	$\mathrm{I}_{\mathrm{D}}=10 \mu \mathrm{~A}$		0.5	1	3	V			
ID(on)	On-State Drain Current	$V_{D S}=10 \mathrm{~V}$,	$\mathrm{V}_{\text {GS }}=10 \mathrm{~V}$,	See Note 1	10	150	400	mA			
Tds(on)	Small-Signal Drain-Source On-State Resistance	$\mathrm{V}_{\mathbf{G S}}=10 \mathrm{~V}$,	$\mathrm{I}_{\mathrm{D}}=0$,	$f=1 \mathrm{kHz}$		15	200	Ω			
$C_{\text {iss }}$	Common-Source Short-Circuit Input Capacitance	$V_{D S}=10 \mathrm{~V}$ See Note 2	$V_{G S}=0$,	$\mathrm{f}=1 \mathrm{MHz}$,		4.5	6	pF			
$\mathrm{C}_{\text {rss }}$	Common-Source Short-Circuit Reverse Transfer Capaciatnce	$V_{D S}=0,$ See Note 2	$\mathbf{V G S}_{\mathbf{G S}}=0$,	$f=1 \mathrm{MHz}$,		1.1	1.5	pF			
$t_{\text {d }}$ (on)	Turn-On Delay Time	$\left\{\begin{array}{l} V_{D D}=10 \mathrm{~V} \\ V_{G S(\text { on })}=10 \mathrm{~V}, \end{array}\right.$	$\begin{aligned} & I_{D}(o n) \approx 10 \mathrm{~mA}, \\ & V_{G S(o f f)}=0, \end{aligned}$	$\mathrm{R}_{\mathrm{L}}=800 \Omega$ Figure 1 Circuit		1		ns			
$\mathrm{t}_{\mathbf{r}}$	Rise Time					2					
$t_{\text {d }}$ (off)	Turn-Off Delay Time					3					
t_{f}	Fall Time					12					

This value does not modify guaranteed limits for specific devices and does not justify operation in excess of absolute maximum ratings. CAUTION: The measurement of $V_{(B R) O S S}$ may be destructive.
NOTES: 1. This parameter was measured using pulse techniques. $t_{w}=300 \mu \mathrm{~s}$, dutv cycle $\leqslant 2 \%$.
2. Capacitance measurements were made using chips mounted in TO-72 packages.

PARAMETER MEASUREMENT INFORMATION

TEST CIRCUIT

VOLTAGE WAVEFORMS

NOTES: a. The input waveform is supplied by a generator with the following characteristics: $Z_{\text {out }}=50 \Omega$, duty $\mathbf{c y c}=\leqslant \mathbf{1 \%}, \mathrm{t}_{\mathrm{r}} \leqslant \mathbf{0 . 3 3} \mathbf{n s}$, $t_{f}<0.33 \mathrm{~ns}, t_{w} \approx 100 \mathrm{~ns}$.
b. Waveforms are monitored on an oscilloscope with the following characteristics: $\mathrm{t}_{\mathrm{r}} \leqslant \mathbf{0 . 4} \mathrm{ns}, \mathrm{R}_{\mathrm{in}}=50 \Omega, \mathrm{C}_{\mathrm{in}}<2 \mathrm{pF}$.
figure 1
TYPICAL CHARACTERISTICS

FIGURE 2

NOTE 1: This parameter was measured using pulse techniques. $\mathbf{t}_{\mathbf{w}}=300 \mu \mathrm{~s}$, duty cycle $<\mathbf{2 \%}$.

CHIP TYPE MN83
N-CHANNEL ENHANCEMENT-TYPE INSULATED-GATE FIELD-EFFECT TRANSISTORS

TYPICAL CHARACTERISTICS

[^138]2. Capacitance measurements were made using chips mounted in TO-72 packages.

CHIP TYPE MN84
 N-CHANNEL DEPLETION-TYPE
 INSULATED-GATE FIELD-EFFECT TRANSISTORS

- MN84 is a $21 \times 21-m i 1$, epitaxial, planar, expanded-contact MOS silicon chip which has integrated back-to-back diodes between the gate and the substrate
- Available in TO-72 packages
- For low-power switching and chopper circuits

electrical and operating characteristics at $25^{\circ} \mathbf{C}$ free-air temperature

PARAMETER		CONDITIONS			OBSERVED VALUES LOW TYP HIGH			UNIT
$V_{\text {(BR) }}$ GSSF	Forward Gate-Source Breakdown Voltage	$\mathrm{I}_{\mathrm{G}}=1 \mathrm{~mA},$ See Note 1	$\mathrm{V}_{\mathrm{DS}}=0 .$	VUS $=0$,	7*	10		V
$V_{(B R)}$ GSSR	Reverse Gate-Source Breakdown Voltage	$I_{G}=-1 \mathrm{~mA}$ See Note 1	$V_{D S}=0$	V US $=0$,	-7*	-35		V
IGSSF	Forward Gate-Terminal Current	$\mathrm{VGS}_{\mathbf{G S}}=7 \mathrm{~V}$,	$\mathrm{V}_{\text {DS }}=0$,	$V_{\text {US }}=0$		<0.1	10	nA
IGSSR	Reverse Gate-Terminal Current	$\mathrm{V}_{\text {GS }}=-7 \mathrm{~V}$,	$V_{\text {DS }}=0$,	$V_{\text {US }}=0$		-<0.1	-10	nA
'S(off)	Source Cutoff Current	$\mathrm{V}_{S D}=12 \mathrm{~V}$,	$V_{G D}=-6 \mathrm{~V}$,	$V_{U D}=0$		<0.1	1000	nA
		$V_{S D}=12 \mathrm{~V}$.	$V_{G D}=-6 \mathrm{~V}$,	$V_{U D}=-6 \mathrm{~V}$		<0.1	1000	
ID(off)	Drain Cutoff Current	$V_{D S}=12 \mathrm{~V}$,	$\mathrm{V}_{\text {GS }}=-6 \mathrm{~V}$,	$V_{\text {US }}=0$		<0.1	100	nA
		$V_{D S}=12 \mathrm{~V}$,	$\mathrm{V}_{\text {GS }}=-6 \mathrm{~V}$.	$V_{U S}=-6 \mathrm{~V}$		<0.1	100	
TUSS	Substrate Reverse Current	$\mathrm{V}_{\text {US }}=-20 \mathrm{~V}$.	$\mathrm{V}_{\text {DS }}=0$,	$\mathrm{V}_{\text {GS }}=0$		-<0.1	-10	nA
VGS(off)	Gate-Source Cutoff Voltage	$V_{\text {DS }}=12 \mathrm{~V}$.	$I_{D}=10 \mu A$,	VUS $=0$	-0.1	-0.75	-1.5	V
IDSS	Zero-Gate-Voitage Drain Current	$V_{\text {DS }}=12 \mathrm{~V}$,	$\mathbf{V}_{\mathbf{G S}}=0$,	$V_{\text {US }}=0$	1	5	12	mA
ID(on)	On-State Drain Current	$\begin{aligned} & V_{\mathrm{DS}}=3 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{GS}}=6 \mathrm{~V}, \\ & \text { See Note } 2 \end{aligned} \quad-\quad$		$V_{\text {US }}=-6 \mathrm{~V}$	50	100		mA
rdsion)	Small-Signal Drain-Source On-State Resistance	$\begin{aligned} & V_{G S}=6 V, \quad I_{D}=0, \\ & f=1 \mathrm{kHz} \end{aligned}$		Vus $=0$		18	70	Ω
$\mathrm{C}_{\text {iss }}$	Common-Source Short-Circuit Input Capacitance	$\begin{array}{ll} V_{D S}=12 \mathrm{~V}, & V_{G S}=-6 \mathrm{~V} \\ f=1 \mathrm{MHz}, & \text { See Note } 3 \end{array}$		$V_{\text {US }}=0$,		5.6	7	pF
$\mathrm{C}_{\text {rss }}$	Common-Source Short-Circuit Reverse Transfer Capacitance	$V_{D S}=0$, $V_{G S}=-6 V$, $f=1 \mathrm{MHz}$, See Note 3		$V_{\text {US }}=0$,		1.4	2	pF
$\mathrm{C}_{\text {ds }}$	Drain-Source Capacitance	$\begin{aligned} & V_{D S}=12 \mathrm{~V}, \\ & f=1 \mathrm{MHz}, \end{aligned}$	$V_{G S}=-6 V,$ See Notes 3 and	$V_{\text {US }}=0$,		3.5	5	pF
td (on)	Turn-On Delay Time	$\begin{aligned} & V_{D D}=12 \mathrm{~V}, \quad(\mathrm{D}(\text { on }) \approx 55 \mathrm{~mA} \\ & V_{G S(\text { on })} \approx 6 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}(\text { off })} \approx-2 \end{aligned}$$\text { Figure } 1 \text { Circuit }$		$\begin{aligned} & R_{L}=200 \Omega \\ & V_{U S}=-6 V . \end{aligned}$	1.4			ns
t_{r}	Rise Time				0.7			
$t_{\text {d }}$ (off)	Turn-Off Delay Time				2.5			
t_{f}	Fall Time				4			

*This value does not modify guarenteed limits for specific devices and does not justify operation in axcess of absolute maximum ratings.
NOTES: 1. Both gate breakdown voltages are measured while the device is conducting rated gate current. This ensures that the gate-voltage-limiting network is functioning proparly.
2. This parameter was measured using puise techniques. $t_{w}=300 \mu s$, duty eycle $<\mathbf{2 \%}$.
3. Capacitance measurements were made using chips mounted in TO. 72 packages.
4. C_{d} measurement amploys a three-terminal capacitance bridge incorporating a guard circuit. The gate and case are connected to the guard terminal of the bridge.

CHIP TYPE MN84
 N-CHANNEL DEPLETION-TYPE INSULATED-GATE FIELD-EFFECT TRANSISTORS

PARAMETER MEASUREMENT INFORMATION

TEST CIRCUIT

(See Notes a and b) VOLTAGE WAVEFORMS

NOTES: a. The input waveforms are supplied by a genarator with the following characteristics: $Z_{\text {out }}=50 \Omega ; \mathbf{t}_{\mathrm{w}} \approx 200$ ns, duty cycle $<\mathbf{2 \%}$ b. Waveforms are monitored on an oscilloscope with the following characteristics: $\mathrm{tr}_{\mathrm{r}} \leqslant 1 \mathrm{~ns}, \mathrm{R}_{\text {in }} \geqslant 100 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{in}} \leqslant 7 \mathrm{pF}$.

FIGURE 1-SWITCHING TIMES
TYPICAL CHARACTERISTICS

figure 2
luss vs TA

FIGURE 5

FIGURE 3
$\mathbf{V}_{\text {GS (off) }} \mathbf{v s} \mathrm{T}_{\mathbf{A}}$

FIGURE 6
$\mathbf{I D}_{\mathrm{D}}$ (off) ws $\mathbf{T}_{\mathbf{A}}$

FIGURE 4

IDSs vs TA

FIGURE 7

CHIP TYPE MN84
 N-CHANNEL DEPLETION-TYPE
 INSULATED-GATE FIELD-EFFECT TRANSISTORS

TYPICAL CHARACTERISTICS

$t_{d}(o n), t_{r}, t_{d}(o f f), t_{f}$ vs R_{L}

FIGURE 11

NOTE 2: This parameter was measured using pulse techniques. $\mathrm{t}_{\mathbf{w}}=\mathbf{3 0 0} \mu \mathrm{s}$, duty cycle $\leqslant \mathbf{2 \%}$.

CHIP TYPE MN85
 N-CHANNEL DUAL-GATE DEPLETION-TYPE INSULATED-GATE FIELD-EFFECT TRANSISTORS

- MN85 is a $26 \times 26-m i l$, epitaxial, planar, expanded-contact MOS silicon chip which has integrated back-to-back diodes between the gates and the source and substrate
- Available in TO-72 packages
- For use in VHF amplifier and mixer circuits requiring low noise, low
 feedback capacitance, and very high gain

electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER		CONDITIONS			OBSERVED VALUES			UNIT			
		LOW	TYP	HIGH							
$V_{\text {(BR) }}$ (DS	Drain-Sourca Breakdown Voltage				$1 D^{\prime}=10 \mu A$,	$\mathrm{V}_{\mathrm{G1S}}=\mathrm{V}_{\mathrm{G2S}}=-4 \mathrm{~V}, \mathrm{t}=5 \mathrm{~s}$		27°	40		V
V(BR)DS	Instantaneous Drain-Source Breakdown Voltage	$I_{D}=10 \mu A$,	$\mathrm{V}_{\mathrm{G1S}}=\mathrm{V}_{\mathbf{G 2 S}}=-4 \mathrm{~V}$		25*	32	40	V			
$V_{\text {(BA)G }}$ ISSF	Gate-One-Source Forward Breakdown Voltage	$\mathrm{I}_{\mathrm{G} 1}=10 \mathrm{~mA}$,	$V_{G 2 S}=V_{D S}=0$,	See Note 1	6*	12	30	V			
V(BR)GISSR	Gate-One-Source Reverse Breakdown Voltage	$\mathrm{I}_{\mathrm{G}} \mathbf{1}=-10 \mathrm{~mA}$,	$V_{G 2 S}=V_{D S}=0$	See Note 1	-6	-12	-30	V			
$V_{\text {(BA) }}$ G2SSF	Gate-Two-Source Forward Breakdown Voltage	$\mathrm{I}_{\mathrm{G} 2}=10 \mathrm{~mA}$,	$V_{G 1 S}=V_{D S}=0$.	See Note 1	$6 *$	12	30	V			
$V_{\text {(BR)G2SSR }}$	Gate-Two-Source Reverse Breakdown Voltage	$\mathbf{I G 2}^{\prime}=-10 \mathrm{~mA}$,	$V_{G 1 S}=V_{D S}=0$	See Note 1	$-6 *$	-12	-30	V			
${ }^{\prime} \mathrm{G}$ 1SSF	Gate-One-Terminal Forward Current	$V_{G 1 S}=5 \mathrm{~V}$,	$V_{G 2}=V_{\text {DS }}=0$,			<0.01	10	nA			
${ }^{\prime} \mathrm{G}$ 15SR	Gate-One-Terminal Reverse Current	$\mathrm{V}_{\mathbf{G 1 S}}=-5 \mathrm{~V}$,	$V_{G 2}=V_{D S}=0$			-<0.01	-10	nA			
IG2SSF	Gate-Two-Terminal Forward Current	$V_{G 2 S}=5 \mathrm{~V}$,	$V_{G 1 S}=V_{D S}=0$			<0.01	10	nA			
'G2SSR	Gate-Two-Terminal Reverse Current	$\mathbf{V}_{\mathbf{G 2 S}}=-5 \mathrm{~V}$,	$V_{G 1 S}=V_{\text {DS }}=0$		- $-<0.01-10$			nA			
'DS	Zero-Gate-One-Voltage Drain Currant	$V_{D S}=15 \mathrm{~V}$ See Note 2	$\mathrm{V}_{\mathrm{GtS}}=0$,	$\mathbf{V G 2 S}^{\text {a }} \mathbf{4} \mathrm{V}$,	6	1540		mA			
VG1S(off)	Gate-One-Source Cutoff Voltage	$V_{D S}=15 \mathrm{~V}$,	$V_{G 2 S}=4 \mathrm{~V}$,	$I^{\prime}=20 \mu \mathrm{~A}$	-0.5	-1.3	-5.5	V			
$V_{\text {G2S }}$ (off)	Gate-Two-Source Cutoff Voltage	$V_{D S}=15 \mathrm{~V}$,	$V_{G 1 S}=0$,	$I^{\prime}=20 \mu \mathrm{~A}$	-0.2	-1.0	-4	V			
Vfs \mid	Small-Signal Common-Source Forward Transfer Admittance	$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \\ & \mathrm{f}=1 \mathrm{kHz} . \end{aligned}$	$V_{G 1 S}=0,$ See Note 3	$\mathrm{V}_{\mathrm{G2S}}=4 \mathrm{~V}$,	15	27	40	mmho			
$\mathrm{C}_{\text {is }}$	Common-Source Short-Circuit Input Capacitance	$\begin{aligned} & V_{D S}=15 \mathrm{~V}, \\ & f=1 \mathrm{MHz}, \end{aligned}$	$V_{G 2 S}=4 V .$ See Note 4	${ }^{1} \mathrm{D}=10 \mathrm{~mA}$,	6			pF			
Coss	Common-Source Short-Circuit Output Capacitance	$\begin{aligned} & V_{D S}=15 \mathrm{~V}, \\ & f=1 \mathrm{MHz}, \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{G} 2 \mathrm{~S}}=4 \mathrm{~V} \\ & \text { See Note } 4 \end{aligned}$	$I_{D}=10 \mathrm{~mA}$,	2.5			pF			
$C_{\text {res }}$	Common-Source Short-Circuit Reverse Transfer Capacitance	$\begin{aligned} & V_{D S}=15 \mathrm{~V}, \\ & f=1 \mathrm{MHz}, \end{aligned}$	$V_{G 2 S}=4 V$ See Note 4	${ }^{\prime} \mathrm{D}^{\prime}=1 \mathrm{~mA}$,	0.005	<0.03	0.05	pF			

*Thesa values do not modify guaranteed limits for specific devices and do not justify operation in excess of absolute maximum ratings.
NOTES: 1. To ensure that the protective diodes are functioning properiy, this voltage is measured while the device is conducting rated forward gate current.
2. This parameter was measured using pulse techniques. $t_{w}=300 \mu$ s, duty cycle $\leqslant 2 \%$.
3. To avoid overheating the transistor, this parameter must be maasured with blas conditions applied for less than five seconds.
4. Capacitance measurements were made using chips mounted in TO-72 pack ages.

CHIP TYPE MN85

N-CHANNEL DUAL-GATE DEPLETION-TYPE INSULATED-GATE FIELD-EFFECT TRANSISTORS

TYPICAL CHARACTERISTICS AT $\mathrm{TA}_{\mathbf{A}} \mathbf{= 2 5 ^ { \circ }} \mathbf{C}$

NOTE 2: This parameter was measured using pulse techniques. $t_{w}=300 \mu s$, duty cycle $\leqslant 2 \%$.

FIGURE 11

FIGURE 13

VG2S-Gate Two-Source Voltage-V
FIGURE 15

FrGURE 14

FIGURE 16

FIGURE 18

- MP91 is a 20×20-mil, epitaxial, planar, expanded-contact MOS silicon chip
- Available in TO-72 packages
- For use in switching and chopper circuits

electrical and operating characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER		CONDITIONS ${ }^{\dagger}$			OBSERVED VALUES			UNIT			
		LOW	TYP	HIGH							
$V_{\text {(BR) }}$ DSS	Drain-Source Breakdown Voltage				$\mathrm{I}_{\mathrm{D}}=-10 \mu \mathrm{~A}$,	$V_{G S}=0$		-40	-60		V
IGSSF	Forward Gate-Terminal Current	$\mathrm{V}_{\mathbf{G S}}=-40 \mathrm{~V}$,	$V_{\text {DS }}=0$			-<1	-10	pA			
'GSSR	Reverse Gate-Terminal Current	$\mathrm{V}_{\mathrm{GS}}=40 \mathrm{~V}$,	$V_{D S}=0$			<1	10	pA			
IDSS	Zero-Gate-Voltage Drain Current	$\mathrm{V}_{\mathrm{DS}}=-15 \mathrm{~V}$,	$V_{\text {GS }}=0$			-0.1	-0.5	nA			
ISDS	Zero-Gate-Voltage Source Current	$\mathrm{V}_{\text {SD }}=-20 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{GD}}=0$,	$V_{U D}=0$		-0.1	-0.4	nA			
$\mathrm{V}_{\mathrm{GS}}(\mathrm{th})$	Gate-Source Threshold Voltage	$\mathrm{V}_{\mathrm{DS}}=-15 \mathrm{~V}$,	$\mathrm{I}_{\mathrm{D}}=-10 \mu \mathrm{~A}$		-1.5	-3.5	-5	V			
ID(on)	On-State Drain Cufrent	$\mathrm{V}_{\text {DS }}=-15 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{GS}}=-10 \mathrm{~V}$,	See Note 1	-5	-20	-30	mA			
$r_{\text {ds }}$ (on)	Small-Signal Drain-Source On-State Resistance	$\mathrm{V}_{\text {GS }}=-10 \mathrm{~V}$,	$\mathrm{I}_{\mathrm{D}}=0$,	$\mathrm{f}=1 \mathrm{kHz}$		275	450	Ω			
		$\mathrm{V}_{\mathbf{G S}}=-20 \mathrm{~V}$.	$\mathrm{I}_{\mathrm{D}}=0$,	$\mathrm{f}=1 \mathrm{kHz}$		150	250				
$\left\|\mathrm{Vfs}_{\mathrm{s}}\right\|$	Small-Signal Common-Source Fonward Transfer Admittance	$V_{D S}=-15 \mathrm{~V}$,	${ }^{\prime} \mathrm{D}=-10 \mathrm{~mA}$.	$\mathrm{f}=1 \mathrm{kHz}$	1	3.2	5	mmho			
\mid Yos \mid	Small-Signal Common-Source Output Admittance					150	300	$\mu \mathrm{mbo}$			
$\mathrm{C}_{\text {iss }}$	Common-Source Short-Circuit Input Capacitance	$\mathrm{V}_{\mathrm{DS}}=-15 \mathrm{~V},$ See Note 2	$V_{G S}=0$	$\mathrm{f}=1 \mathrm{MHz},$		2.5	5	pF			
$\mathrm{C}_{\text {rss }}$	Common-Source Short-Circuit Reverse Transfer Capacitance	$V_{D S}=0,$ See Note 2	$V_{G S}=0$	$\mathrm{f}=1 \mathrm{MHz}$,		0.3	0.5	pf			
$C_{\text {oss }}$	Common-Source Short-Circuit Output Capacitance	$V_{D S}=-15 \mathrm{~V},$ See Note 2	$V_{G S}=0$	$f=1 \mathrm{MHz},$		1.6	2.5	pF			
tdon)	Turn-On Delay Time	$\begin{aligned} & V_{D D}=-15 \mathrm{~V}, \\ & V_{G S(0 n)} \approx-10 \mathrm{~V}, \end{aligned}$ Figure 1 Circuit	$\begin{aligned} & \mathrm{ID}(\text { on }) \approx-10 \mathrm{~mA} \\ & V_{G S} \text { (off) }=0, \end{aligned}$	$\begin{aligned} & R_{\mathrm{L}}=1.4 \mathrm{k} \Omega, \\ & R_{\mathrm{G}}=1.4 \mathrm{k} \Omega, \end{aligned}$		8		ns			
tr_{r}	Rise Time					19					
tol(0ff)	Turn-Off Delay Time					6					
t_{f}	Fall Time					28					
${ }^{4} \mathrm{~d}$ (on)	Turn-On Delay Time	$\begin{aligned} & V_{D D}=-15 \mathrm{~V}, \\ & V_{G S}(\text { on) } \approx-10 \mathrm{~V}, \end{aligned}$ Figure 2 Circuit	$\begin{aligned} & I_{D}(o n) \approx-2 m A, \\ & V_{G S(o f f)}=0, \end{aligned}$	$\begin{aligned} & R_{\mathrm{L}}=8.2 \mathrm{k} \Omega, \\ & R_{\mathrm{G}}=4.5 \mathrm{k} \Omega, \end{aligned}$		12		ns			
t_{r}	Rise Time					12					
t_{d} (off)	Turn-Off Delay Time					10					
t_{f}	Fall Time					35					

[^139]
PARAMETER MEASUREMENT INFORMATION

NOTES: The input waveforms are supplied by a generator with the following characteristics: $Z_{\text {out }}=50 \Omega, t_{w} \approx 100$ ns, duty cycie $<\mathbf{2 \%}$. b. Waveforms are monitored on an oscilloscope with the following characteristics: $\mathrm{t}_{\mathrm{r}} \leqslant 1 \mathrm{~ns}, \mathrm{R}_{\text {in }} \geqslant 100 \mathrm{k} \Omega, \mathrm{C}_{\text {in }} \leqslant \mathbf{2} \mathbf{~ p F}$.

FIGURE 1-SWITCHING TIMES

NOTES: a. The input wavaforms are supplied by a generator with the following characteristics: $Z_{\text {out }}=50 \Omega, t_{w} \approx 100$ ns, duty eycle $\leqslant \mathbf{2 \%}$. b. Waveforms are monitored on an oscilloscope with the following characteristics: $t_{r}<1 \mathrm{~ns}, Z_{\text {in }} * 50 \Omega$.

FIGURE 2-SWITCHING TIMES

CHIP TYPE MP91 P-CHANNEL ENHANCEMENT-TYPE INSULATED-GATE FIELD-EFFECT TRANSISTORS

TYPICAL CHARACTERISTICS

figure 3
$C_{\text {iss }}$ vs $V_{G S}$

FIGURE 6
$t_{d}(o n), t_{r}, t_{d}(o f f), t_{f} v_{s} R_{G}$

FIGURE 9
$\mathbf{V G S}_{\mathbf{G}(\mathrm{th})} \mathrm{vs}_{\mathbf{T}}$

figURE 4
$C_{\text {rss ws }}$ Vgs

FIGURE 7
$t_{d}(o n), t_{r}, t_{d}(o f f), t_{f} v s R_{L}$

FIGURE 10
$r_{\text {ds }}(o n){ }^{\text {vs }} \mathrm{T}_{\mathrm{A}}$

FIGURE 5
$\mathrm{C}_{\text {oss }} \mathbf{v s} \mathrm{V}_{\mathrm{GS}}$

FIGURE 8
$t_{d}(o n), t_{r}, t_{d}(o f f), t_{f} w R_{L}$

FIGURE 11

NOTE 2: Capacitance measurements were made using chips mounted in TO-72 packages.

- MP92 is a $25 \times 25-m i l$, epitaxial, planar, expanded-contact MOS silicon chip available with or without gate-protection diodes
- Available in TO-72 packages
- For use in chopper, multiplexer, and commutator circuits

electrical and operating characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER	CONDITIONS ${ }^{\dagger}$			OBSERVED VALUES		UNIT	
				LOW TYP	HIGH		
$V_{\text {(BR)GSSF }}{ }^{\text {Gate-Source Forward }}$ Breakdown Voltage	$\mathrm{I}_{\mathrm{G}}=\mathbf{- 1 0 0} \mu \mathrm{A}$,	$V_{D S}=0$,	See Note 1	$-25^{*}-50$		\checkmark	
IGSSF $=$ Gate Terminal Forward Current	$\mathrm{V}_{G S}=-25 \mathrm{~V}$,	$V_{D S}=0$		-30	-100	pA	
IGSSF Gate Terminal Forward Current	$\mathrm{V}_{G S}=-25 \mathrm{~V}$	$V_{\text {DS }}=0$		-1	-10	pA	
IDSS Zero-Gate-Voltage Drain Current 	$V_{D S}=-15 \mathrm{~V}$,	$V_{G S}=0$		$-<0.1$	-10	nA	
ISDS $\begin{array}{l}\text { Zero-Gate-Voltage } \\ \text { Source Current }\end{array}$ VGSI	$\mathrm{V}_{\mathrm{SD}}=-15 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{GD}}=0$,	$V_{U D}=0$	-<0.1		nA	
VGS(th) Gate-Source Threshold Voltage	$\mathrm{V}_{\mathrm{DS}}=-15 \mathrm{~V}$,	$\mathrm{ID}_{\mathrm{D}}=-10 \mu \mathrm{~A}$		$-1.5-3$	-5	V	
VGS Gate-Source Voltage	$\mathrm{V}_{\text {DS }}=-15 \mathrm{~V}$,	$1 \mathrm{D}^{2}=-8 \mathrm{~mA}$		$-4.5-6$	-8	V	
ID(on) On-State Drain Current	$\mathrm{V}_{\text {DS }}=-15 \mathrm{~V}$.	$\mathrm{V}_{\mathrm{GS}}=-15 \mathrm{~V}$.	See Note 2	-40 -60	-120	mA	
Small-Signal Drain-Source On-State Resistance	$V_{G S}=-5 \mathrm{~V}$,	$\mathrm{I}_{\mathrm{D}}=0$,	$\mathrm{f}=1 \mathrm{kHz}$	250		Ω	
	$\mathrm{V}_{\mathrm{GS}}=-10 \mathrm{~V}$,	$I_{D}=0$,	$\mathrm{f}=1 \mathrm{kHz}$	100			
$\left\|\mathrm{Vfs}_{\mathrm{s}}\right\| \quad$Small-Signal Common-Source Forward Transfer Admittance	$V_{D S}=-15 \mathrm{~V}$,	$I_{D}=-8 \mathrm{~mA}$,	$\mathrm{f}=1 \mathrm{kHz}$	3.54 .2	6.5	mmho	
\|Yos	Small-Signal Common-Source Output Admittance	$V_{D S}=-15 \mathrm{~V}$,	$I^{\prime}=-8 \mathrm{~mA}$,	$\mathrm{f}=1 \mathrm{kHz}$	80	250	$\mu \mathrm{mho}$
$C_{i s s}$ Common-Source Short-Circuit Input Capacitance	$\mathrm{V}_{\mathrm{DS}}=-15 \mathrm{~V} .$ See Note 3	$\mathrm{I}_{\mathrm{D}}=-8 \mathrm{~mA}$,	$\mathrm{f}=\mathbf{1} \mathbf{M H z}$	8	10	pF	
Crss Common-Source Short-Circuit Reverse Transfer Capacitance	$V_{D S}=-15 \mathrm{~V} .$ See Note 3	$i_{D}=-8 \mathrm{~mA}$	$f=1 M H z$	2	4	pF	
tolon) Turn-On Delay Time	$\begin{aligned} & V_{D D}=-10 \mathrm{~V} \\ & V_{G S(o f f)}=0, \end{aligned}$	${ }^{\prime} D($ on $)=-10 m$ See Figure 1	$V_{G S(o n)}=-$	6		ns	
$\mathrm{tr}_{\mathbf{r}} \quad$ Rise Time				5			
$t_{\text {dloff }}$ Turn-Off Delay Time				8			
$\mathrm{tf}_{\text {f }}$ Fall Time				16			

[^140]
CHIP TYPE MP92 P-CHANNEL ENHANCEMENT-TYPE INSULATED-GATE FIELD-EFFECT TRANSISTORS

PARAMETER MEASUREMENT INFORMATION

TEST CIRCUIT

NOTES. A. The input waveforms are supplied by a generator with the following characteristics: $Z_{\text {out }}=50 \Omega, t_{w}=200 \mathrm{~ns}$, duty cycle $<2 \%$.
b. Waveforms are monitored on an oscilloscope with the following characteristics: $\mathrm{t}_{\mathrm{r}} \leqslant 1 \mathrm{~ns}, \mathrm{R}_{\text {in }} \geqslant 100 \mathrm{k} \Omega, \mathrm{C}_{\text {in }} \leqslant 7 \mathrm{pF}$.

FIGURE 1-SWITCHING TIMES

TYPICAL CHARACTERISTICS ${ }^{\dagger}$

CHIP TYPE MP92
 P-CHANNEL ENHANCEMENT-TYPE
 insulated-gate fleld-effect transistors

TYPICAL CHARACTERISTICS ${ }^{\dagger}$

FIGURE 6
$C_{\text {iss }}$ vs $V_{\mathbf{G S}}$

FIGURE 8
rds(on) ve T_{A}

FIGURE 10

FIGURE 7
$\mathbf{C r s s}^{\text {vs }} \mathbf{V}_{\mathbf{G S}}$

FIGURE 9

FIGURE 11
${ }^{\dagger}$ All masuremants axcept ISDS were made with the case and substrate connected to the source.
NOTES: 3. Capacitance measuremente ware made using chips mounted in TO-72 packages.
E. To avoid overheating the translstor, these parametere ware messured with blas conditions applied for less than five saconds.

CHIP TYPE MP93
 P-CHANNEL ENHANCEMENT-TYPE INSULATED-GATE FIELD-EFFECT TRANSISTORS

- MP93 is a 17×20-mil, epitaxial, planar, expanded-contact MOS silicon chip
- Available in TO-72 packages
- For use in series- and shunt-chopper, multiplexer, and commutator circuits

electrical and operating characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER	CONDITIONS			OBSERVED VALUES			UNIT
				LOW	TYP	HIGH	
IGSSF Forward Gate-Terminal Current	$V_{G S}=-30 V_{1}$	$V_{D S}=0$			-<1	-2.5	pA
IGSSR Reverse Gate-Terminal Current	$\mathrm{V}_{\mathbf{G S}}=30 \mathrm{~V}$,	$V_{D S}=0$			<1	2.5	pA
IDSS Zero-Gate-Voltage Drain Current	$V_{D S}=-30 \mathrm{~V}$	$V_{G S}=0$			-<1	-5	nA
ISDS Zero-Gate-Voltage Source Current	$V_{S D}=-30 \mathrm{~V}$,	$V_{G D}=V_{U D}=0$			-<1	-5	nA
VGS(th) Gate-Source Threshold Voltage	$\mathrm{V}_{\text {DS }}=-15 \mathrm{~V}$,	$I^{\prime}=-10 \mu \mathrm{~A}$		-2	-4.5	-6	\checkmark
ID(on) On-State Drain Current	$\mathrm{V}_{\text {DS }}=-15 \mathrm{~V}$,	$V_{G S}=-15 \mathrm{~V}$,	See Note 1	-3	-9.6	-12	mA
rds(on) Small-Signal Drain-Source On-State Resistance	$V_{\mathbf{G S}}=-15 \mathrm{~V}$,	$I_{D}=0$,	$\mathbf{f = 1} \mathbf{k H z}$		600	1000	Ω
\|Yfs \quadSmall-Signal Common-Source Forward Transfer Admittance	$\begin{aligned} & V_{D S}^{=}-15 \mathrm{~V}, \\ & \text { See Note } 2 \end{aligned}$	$V_{G S}=-15 \mathrm{~V}$.	$f=1 \mathrm{kHz}$,	400	1750		$\mu \mathrm{mho}$
Hos $1 ~$ Small-Signal Common-Source Output Admittance				200			$\mu \mathrm{mho}$
Ciss Common-Source Short-Circuit Input Capacitance	$V_{D S}=-15 \mathrm{~V},$ See Notes 2 and 3	$V_{G S}=-15 \mathrm{~V}$	$\mathrm{f}=1 \mathrm{MHz}$,		2.5	4	pF
Crss Common-Source Short-Circuit Reverse Transfer Capacitance	$V_{D S}=0,$ See Note 3	$\mathrm{V}_{\mathrm{GS}}=0,$	$\mathrm{f}=1 \mathrm{MHz}$ 。		0.4	0.7	pF
tdion) Turn-On Delay Time	$\begin{aligned} & V_{D D}=-10 \mathrm{~V} \\ & V_{G S}(o n)=-15 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \operatorname{ID}(o n)=-1 m A \\ & V_{G S(\text { off })}=0, \end{aligned}$	$R_{L}=9 \mathrm{k} \Omega,$ See Figure 1		10	30	ns
$\mathrm{Ir}_{\mathrm{r}} \quad$ Rise Time					13	50	
td(off) Turn-Off Delay Time					25	76	
$\mathbf{t}_{\mathbf{t}} \quad$ Fall Time					80	100	

NOTES: 1. This perameter was measured uting pulee techniques. $t_{w}=\mathbf{3 0 0} \mu s$, duty evcle $\leqslant \mathbf{2 \%}$.
2. To avoid overheating the transigtor, this parameter must be measured with bise condltons appled for less than five saconds.
3. Capacitance measuremente were mede using chips mounted in TO-72 packeges.

NOTES: a. The input weveforms are supplied by a generator with the following charactaristics: $\mathbf{Z}_{\text {out }}=\mathbf{5 0} \Omega ; \mathbf{t w}_{\mathbf{w}}=\mathbf{2 0 0} \mathbf{n s}, \mathrm{duty}$ cycle $<\mathbf{2 \%}$.
b. Waveforms are monitored on an oscilloscope with the following characteristics: $t_{r} \leqslant 1 \mathrm{~ns}, \mathrm{R}_{\mathrm{in}} \geqslant 100 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{in}} \leqslant 7 \mathrm{pF}$.

FIGURE 1-SWITCHING TIMES
TYPICAL CHARACTERISTICS

NOTES: 1. This parameter was measured using pulse techniques. $t_{w}=300 \mu_{s}$, duty cycle $\leqslant 2 \%$.
2. To avoid overhesting the transistor, this parameter must be masaured with blas conditions applied for less than flve seconds.
3. Capacitance measurements were made using chips mounted in TO-72 packages.

CHIP TYPE MP94
 DUAL P-CHANNEL ENHANCEMENT-TYPE INSULATED-GATE FIELD-EFFECT TRANSISTORS

- MP94 is a 26×38-mil, epitaxial, planar, expanded-contact, MOS silicon chip containing two transistors available with or without gate-protection diodes
- Available in TO-76 packages
- For use in switching and chopper circuits

electrical characteristics at $\mathbf{2 5}{ }^{\circ} \mathrm{C}$ free-air temperature

${ }^{\dagger}$ For all measurements except $C_{d g}$ the drain, source, and gate leads of the transistor not under test and the common substrate are grounded.
For testing ISDS, ground is the drain of the transistor under test, but for all other measurements, it is the source.
-These parameters apply only for chips having protective diodes.
-These parameters apply only for chips not having protective diodes.
gate current.

2. This parameter was measured using puls using chips mounted in TO-76 packages.
3. \mathbf{C}_{ds} measurement employs a three-terminal capacitance bridge incorporating a guard circuit. The case and all terminals of both trensistors expept the drain and source of the transistor under test are connected to the guard terminal of the bridge.

CHIP TYPE MP94

DUAL P-CHANNEL ENHANCEMENT-TYPE INSULATED-GATE FIELD-EFFECT TRANSISTORS

TYPICAL CHARACTERISTICS

IGSSF vs T_{A}

FIGURE 1
'DSS vs T_{A}

FIGURE 4
$r_{\text {dsion }}$ vs $\mathbf{T}_{\mathbf{A}}$

figure 7
igssf vs TA

Figure 2
$I_{\text {SDS }}$ vs $\mathbf{T}_{\mathbf{A}}$

figure 5
$C_{\text {iss }}$ vs $V_{G S}$

figure 8

IGSSR vs TA

FIGURE 3
$\mathbf{V}_{\mathbf{G S}(t h)}$ vs $\mathrm{T}_{\mathbf{A}}$

FIGURE 6
$C_{\text {rss }}$ vs VGS

figure 9

[^141]5. To avoid overheating the transistor, these parameters were measured with bias conditions applied for less than five seconds.

CHIP TYPE N11 N-P-N SILICON TRANSISTORS

- N11 is a 16×16-mil, melt-grown (non-epitaxial), planar, direct-contact chip
- Available in TO-18, TO-71, and a short-can version of TO-78 packages
- For use in low-level, low-noise, high-gain amplifier circuits

electrical and operating characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

Refer to notes on the following page.

CHIP TYPE N11

N-P-N SILICON TRANSISTORS

Notes values do not modify guaranteed limits for specific devices and do not justify operation in excess of absolute maximum ratings.
NOTES: 1. These parameters were measured using pulse techniques. $t_{w}=300 \mu \%$, duty cycle $\leqslant 2 \%$.
3. C_{cb} and $\mathrm{C}_{\text {eb }}$ measurements ware made using chips mounted in TO-18 packages.
or collector, respectively) is connected to the gual capacitance bridge incorporating a guard circuit. The third electrode (emitter terminal floating.
4. Average Noise 6 dB/octave.

CHIP TYPE N11 N-P-N SILICON TRANSISTORS

TYPICAL CHARACTERISTICS

NOTES: 2. Cepacitance measuremente wore made using chips mounted in TO-18 packeges.
 3. C_{cb} and C_{eb} messurements employ terminal floting
Avarage Nolse Figure was mestured in an amplifier with response down 3 dB at 10 Hz and 10 kHz and a high-freguency roll-off of $6 \mathrm{~dB} /$ octove.
mOST OFFICE EOX 5012 - DALLAS, TEXAB 75222

CHIP TYPE N12

N-P-N SILICON TRANSISTORS

- N12 is a 21×21-mil, epitaxial, planar, direct-contact, double-emitter chip
- Available in TO-72 packages
- For use in low-level, high-speed chopper circuits requiring the very low offset voltage of double-emitter transistors

electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER		CONDITIONS			OBSERVED VALUES			UNIT	
	Collector-Base				LOW	TYP	HIGH		
$V_{(B R) C B O}$	Breakdown Voltage	${ }^{1} \mathrm{C}=100 \mu \mathrm{~A}$,	$I_{E 1}=I_{E 2}$		40^{*}	100		V	
V(bR)EBO	Emitter-Base Breakdown Voltage	${ }^{\prime} E=10 \mu \mathrm{~A}$,	$I C=0$,	See Note 1	18*	24		V	
V(BR)E1E2	Emitter-Emitter Braakdown Voltage	$\mathrm{E}_{1}= \pm 1 \mu \mathrm{~A}$,	$V_{C B}=0$,	See Note 2	$\pm 12^{*}$	± 24		V	
ICBO	Collector Cutoff Current	$V_{C B}=30 \mathrm{~V}$	$\mathrm{IE1}=\mathrm{IE}^{2}$						
TEBO	Emitter Cutoff Current	$V_{E B}=5 \mathrm{~V}$,	$I_{C}=0$,	See Note 1		<0.01 <0.01	10	nA	
NE1E2(ofs)!	Emitter-Emitter Offset Voltaga	$\mathrm{VE1E2}^{=} \pm 15 \mathrm{~V}$,	$V_{C B}=0$,	See Note 2		$\pm<0.01$	± 10	nA	
	Offset Voltage Change	$I_{B}=1 \mathrm{~mA}$,	$\mathrm{IE}_{\mathrm{E} 1}=\mathrm{IE}_{2}$			7	25	$\mu \mathrm{V}$	
$\mid \Delta V_{E 1 E 2}$ (ofs) $\\|\left._{\Delta I}\right\|_{B}$	with Base Current ${ }^{\text {t }}$	$\mathrm{I}_{\mathrm{B}(1)}=1.5 \mathrm{~mA}$,	$I_{B(2)}=$	$I_{E 1}=I_{E 2}=0$		5	75	$\mu \mathrm{V}$	
$\mid \triangle V_{E 1 E 2}$ (ofs) $\\|_{\Delta T_{A}}$ $V_{B C}$	Offset Voltage Change with Temperaturet	$\mathrm{I}_{\mathrm{B}}=1 \mathrm{~mA}$,	$I_{E 1}=I_{E 2}$	$\begin{aligned} & T_{A(1)}=100^{\circ} \mathrm{C}, \\ & T_{A(2)}=-25^{\circ} \mathrm{C} \end{aligned}$		20	175	$\mu \mathrm{V}$	
BC	Base-Collector Voltage	$\mathrm{I}_{\mathrm{B}}=1 \mathrm{~mA}$	$\mathrm{IE1}=1 \mathrm{IE}$			0.7		V	
re1e2(on)	On-State Resistance	$\begin{aligned} & I_{B}=1 \mathrm{~mA}, \\ & f=1 \mathrm{kHz} \end{aligned}$	$I_{E 1}=I_{E 2}$	$\mathrm{I}_{\mathrm{e}}=100 \mu \mathrm{~A}$,		20	60	Ω	
$\mathrm{f}_{\mathbf{T}}$	Transition Frequency	$V_{C E}=5 V$ See Note 1	$I_{C}=1 \mathrm{~mA}$	$f=20 \mathrm{MHz}_{\mathrm{L}}$	30	60		MHz	
Cobo	Common-Base Open-Circuit Output Capacitance	$V_{C B}=5 V,$ See Note 3	$I_{E 1}=I_{E 2}$	$f=1 \mathrm{MHz}$		4	10	pF	
$\mathrm{C}_{\text {ibo }}$	Cormmon-Base Open-Circuit Input Capacitance	$v_{E B}=5 \mathrm{~V} .$ See Notes 1 and 3	$I_{C}=0$	$\mathrm{f}=1 \mathrm{MHz},$		3	6	pF	

[^142]
CHIP TYPE N12 N-P-N SILICON TRANSISTORS

TYPICAL CHARACTERISTICS

NOTES: 1. Thene values apply separstely for each emitter with the other emiterer open-alreulted,
2. Thene parameters ware maasured with the eoliocter ihort-olroulted to the base but open-alroulted with renpect to the amliters. The values apply for both polarities of emiteer-to-emitter voltage.
3. Capacitance measurements ware made uning chlps mounted in TO.72 packages.
${ }^{\dagger}$ The pelarity of the offert voltege at $T_{A}=28^{\circ} \mathrm{C}$ and $\mathrm{I}_{\mathrm{B}}=1 \mathrm{~mA}$ was apbltrarliy asiumed to be poaltive.

CHIP TYPE N13
 N-P-N SILICON TRANSISTORS

- N13 is a $26 \times 26-m i l$, epitaxial, planar, direct-contact chip
- Available in TO-18, TO-39, plastic dual-in-line quad, and Silect ${ }^{\dagger}$ packages
- For use as a high-speed, high-current, memory-core driver or in other medium-current (to 1.5 A) switching circuits

electrical and operating characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

[^143]
CHIP TYPE N13
 N-P-N SILICON TRANSISTORS

NOTES: a. The input waveforms are supplied by a generator with the following characteristics: $Z_{\text {out }}=\mathbf{5 0} \Omega, \mathrm{t}_{\mathbf{w}} \leqslant \mathbf{2 0 0} \mathbf{n s}$, duty $\mathbf{c y c l e} \leqslant \mathbf{2 \%}$.
b. Waveforms are monitored on an oscilloscope with the following characteristics: $t_{r} \leqslant 1 \mathrm{~ns}, \mathrm{R}_{\mathrm{in}} \geqslant 100 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{in}} \leqslant 7 \mathrm{pF}$.

Figure 1-SWITCHING times
TYPICAL CHARACTERISTICS

FIGURE 2
hfe vs IC

Figure 5
$V_{B E}$ vs I_{C}

FIGURE 6

FIGURE 7

NOTE 1: These parameters were measured using pulse techniques. $t_{w}=300 \mu$ s, duty cycle $\leqslant \mathbf{2} \%$.

CHIP TYPE N13

N-P-N SILICON TRANSISTORS

TYPICAL CHARACTERISTICS

FIGURE B
$\mathbf{C}_{\text {obo }}$ vs V_{CB}

Figure 9
$c_{\text {ibo vs }} V_{E B}$

FIGURE 10
$t_{d}, t_{r}, t_{s}, t_{f}$ vs IC

FIGURE 11
$t_{d}, t_{r}, t_{s}, t_{f}$ vs T_{A}

FIGURE 12

NOTE 2: Capacitance measurements were made using chips mounted in TO-39 packages.

CHIP TYPE N13 N-P-N SILICON TRANSISTORS

TYPICAL CHARACTERISTICS

FIGURE 13

Contoura of Constant t_{5}

FIGURE 15

Contours of Constant $\mathbf{t}_{\mathbf{r}}$

FIGURE 14

Contours of Constant \mathbf{t}_{f}

CHIP TYPE N14

N-P-N SILICON TRANSISTORS

- N14 is a 20×20-mil, epitaxial, planar, direct-contact chip

- Available in Silect ${ }^{\dagger}$ Packages

- For use in general purpose, saturated switching, and amplifier circuits

electrical and operating characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER		CONDITIONS			OBSERVED VALUES			UNIT			
		LOW	TYP	HIGH							
$\mathrm{V}_{\text {(BR) }{ }^{\text {c }} \text { (}}$	Collector-Base Breakdown Voltage				$\mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}$,	$I_{E}=0$		50^{*}	100		V
$V_{(B R) C E O}$	Collector-Emitter Breakdown Voltage	$\mathrm{I}^{\prime} \mathrm{C}=1 \mathrm{~mA}$,	${ }^{\prime} \mathrm{B}=0$,	See Note 1	30^{*}	50		V			
$V_{\text {(BR)EBO }}$	Emitter-Base Breakdown Voltage	$\mathrm{I}_{\mathrm{E}}=10 \mu \mathrm{~A}$,	$\mathrm{I}_{\mathrm{C}}=0$		5^{*}	7		V			
${ }^{\text {I CBO }}$	Collector Cutoff Current	$\mathrm{V}_{\mathrm{CB}}=30 \mathrm{~V}$,	$\mathrm{I}_{\mathrm{E}}=0$			4	50	nA			
		$V_{C E}=1 \mathrm{~V}$,	$\mathrm{I}^{\prime} \mathrm{C}=100 \mu \mathrm{~A}$		20	60					
		$\mathrm{V}_{\text {CE }}=1 \mathrm{~V}$,	${ }^{1} \mathrm{C}=1 \mathrm{~mA}$		35	110					
hFE	Transfer Ratio	$V_{C E}=1 \mathrm{~V}$.	$l^{\prime} \mathrm{C}=10 \mathrm{~mA}$		50	150	300				
		$V_{C E}=1 \mathrm{~V}$,	$\mathrm{I}_{\mathrm{C}} \mathrm{C}=50 \mathrm{~mA}$	See Note 1	30	110					
		$\mathrm{V}_{\text {CE }}=1 \mathrm{~V}$,	$\mathrm{I}^{\prime} \mathrm{C}=100 \mathrm{~mA}$		15	60					
		$\mathrm{I}_{\mathrm{B}}=1 \mathrm{~mA}$,	$\mathrm{I}^{\mathrm{C}} \mathrm{C}=10 \mathrm{~mA}$	See Note 1	0.6	0.75	0.9	V			
		$\mathrm{I}_{\mathrm{B}}=5 \mathrm{~mA}$,	${ }^{\prime} \mathrm{C}=50 \mathrm{~mA}$	See Note 1		0.85	0.95				
	Collector-Emitter	$\mathrm{I}_{\mathrm{B}}=1 \mathrm{~mA}$,	${ }^{1} \mathrm{C}=10 \mathrm{~mA}$			0.10	0.25	\checkmark			
	Saturation Voltage	$\mathrm{I}_{\mathrm{B}}=5 \mathrm{~mA}$,	${ }^{1} \mathrm{C}=50 \mathrm{~mA}$			0.15	0.4				
$h_{\text {ie }}$	Small-Signal Common-Emitter Input Impedance				1	3.7	10	$\mathrm{k} \Omega$			
$h_{\text {fe }}$	Small-Signal Common-Emitter Forward Current Transfer Ratio	$V_{C E}=10 \mathrm{~V}$	$I_{C}=1 \mathrm{~mA}$	$=1 \mathrm{kHz}$	50	140	400				
$h_{\text {re }}$	Small-Signal Common-Emitter Reverse Voltage Transfer Ratio	$V C E=10 \mathrm{~V}$,	$\mathrm{C}^{\prime}=1 \mathrm{~mA}$,	$=1 \mathrm{kHz}$	$\begin{aligned} & 0.1 \times \\ & 10^{-4} \end{aligned}$	$\begin{aligned} & 0.7 \times \\ & 10^{-4} \end{aligned}$	$\begin{array}{r} 8 \times \\ 10^{-4} \\ \hline \end{array}$				
$\mathrm{h}_{\text {Oe }}$	Small-Signal Common-Emitter Output Admittance				1	8	40	$\mu \mathrm{mho}$			
${ }_{\mathbf{T}}$	Transition Frequency	$\mathrm{V}_{\text {CE }}=20 \mathrm{~V}$.	${ }^{1} \mathrm{C}=10 \mathrm{~mA}$,	$f=100 \mathrm{MHz}$	250	800		MHz			
$\mathrm{C}_{\text {obo }}$	$\begin{aligned} & \text { Common-Base Open-Circuit } \\ & \text { Output Capacitance } \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CB}}=5 \mathrm{~V} \\ & \text { See Note } 2 \end{aligned}$	${ }^{\prime} E=0,$	$\mathrm{f}=1 \mathrm{MHz}$,		1.6	4	pF			
Cibo	Common-Base Open-Circuit Input Capacitance	$V_{E B}=0.5 \mathrm{~V},$ See Note 2	$\mathrm{I}_{\mathrm{C}}=0$	$f=1 \mathrm{MHz},$		6.5	8	pF			
$\overline{\mathbf{F}}$	Average Noise Figure	$\begin{aligned} & \hline V_{C E}=5 \mathrm{~V} \\ & \text { Noise Bandwidth } \end{aligned}$	$\begin{aligned} & { }^{\prime} \mathrm{C}=100 \mu \mathrm{~A}, \\ & 15.7 \mathrm{kHz}, \end{aligned}$	$\mathbf{R}_{\mathbf{G}}=1 \mathrm{k} \Omega,$ See Note 3			6	dB			
t_{d}	Delay Time	$\mathrm{V}_{\mathrm{cc}}=3 \mathrm{~V}$,	I^{C} ® 10 mA ,	2N3903		14					
t_{r}	Rise Time	$\mathrm{I}_{\mathrm{B}(1)} \approx 1 \mathrm{~mA}$,	$V_{B E \text { (off) }} \approx-0.5 \mathrm{~V}$	Data		8		ns			
$\mathrm{t}_{\text {s }}$	Storage Time	$V_{C C}=3 \mathrm{~V}$,	${ }^{\prime} \mathrm{C} \approx 10 \mathrm{~mA}$,	Sheet		22		,			
${ }_{\text {t }}$	Fall Time	$\mathrm{I}_{\mathrm{B}(1)} \approx 1 \mathrm{~mA}$,	$\mathrm{l}_{B(2)} \approx-1 \mathrm{~mA}$	Circuit		10					
$t_{\text {d }}$	Delay Time					40					
t_{r}	Rise Time	$V_{C C}=30 \mathrm{~V}$.	${ }^{\prime} \mathrm{C} \approx 10 \mathrm{~mA}$,	$\mathrm{I}_{\mathrm{B}(1)} \approx 1 \mathrm{~mA}$,		8		ns			
${ }_{\text {t }}$	Storage Time	$\mathrm{I}_{\mathrm{B}}(2) \approx-1 \mathrm{~mA}$,	$\mathrm{V}_{\mathrm{BE} \text { (off) }} \approx-4.1 \mathrm{~V}$, See Figure 1		22					
t_{f}	Fall Time					10					

${ }^{\dagger}$ Trademark of Texas Instruments
-These values do not modify guaranteed limits for specific devices and do not justify operation in excess of absolute maximum ratings.
NOTES: 1. These parameters were measured using pulse techniques. $t_{w}=300 \mu \mathrm{~s}$, duty cycle $\leqslant 2 \%$.
2. Capacitance measurements were made using chips mounted in Silect packages.
3. Averege Noise Figure is measured in an amplifier with response down 3 dB at 10 Hz and 10 kHz and a high-frequency roll-off of $6 \mathrm{~dB} /$ octave.

CHIP TYPE N14 N-P-N SILICON TRANSISTORS

PARAMETER MEASUREMENT INFORMATION

TEST CIRCUIT

(See Notes a and b) VOLTAGE WAVEFORMS
NOTES: a. The Input waveforms are supplied by a generetor with the following characteristics: $Z_{\text {out }}=50 \Omega$; for measuring t_{d} and t_{r}, $t_{w} \approx 200 \mathrm{~ns}$, duty cycte $\leqslant 2 \%$; for measuring t_{s} and $i_{f}, t_{w} \approx 10 \mu s$, duty cycle $\leqslant \mathbf{2 \%}$.
b. Waveforms are monitored on an oscilloscope with the following characteristics: $t_{r}<1 \mathrm{~ns}, R_{i n}>100 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{in}}<7 \mathrm{pF}$.

FIGURE 1-SWITCHING TIMES TYPICAL CHARACTERISTICS

NOTE 1: These parameters were measured using pulse techniques. $t_{w}=300 \mu \mathrm{~s}$, duty cycle $<\mathbf{2 \%}$.

N-P-N SILICON TRANSISTORS

TYPICAL CHARACTERISTICS

FIGURE 10

Fiquate 13

FIGURE 11

PIOURE 14

FIGURE 12

PIGURE 18

2. Capacitance moasuremante were made using ehips mounted in Sllecr packages.
4. Cob meacurement employe throe-terminal espacitanee bridge Incerperating a gurd oireuit. The emitter is eonneeted te the guard terminal of the bridge. Cobe meewrement is mede with tha third terminal fleating,

CHIP TYPE N15
 N-P-N SILICON TRANSISTORS

- N15 is a $35 \times 35-\mathrm{mil}$, epitaxial, planar, direct-contact chip
- Available in TO-39 and Silect ${ }^{\dagger}$ packages
- For use in high-voltage amplifier circuits, especially in certain critical TV applications

electrical characteristics at $\mathbf{2 5}{ }^{\circ} \mathrm{C}$ free-air temperature

PARAMETER		CONDITIONS			OBSERVED VALUES			UNIT			
		LOW	TYP	HIGH							
$V_{\text {(BR) }}$ CBO	Collector-Base Breakdown Voltage				$I_{C}=100 \mu A$,	$I_{E}=0$		$250{ }^{*}$	350		V
$V_{\text {(BR)CEO }}$	Collector-Emitter Breakdown Voltage	${ }^{\prime} \mathrm{C}=30 \mathrm{~mA}$,	$\mathrm{I}_{\mathrm{B}}=0$,	See Note 1	250*	350		V			
$V_{\text {(BR)EBO }}$	Emitter-Base Breakdown Voltage	$I_{E}=100 \mu \mathrm{~A}$,	$I_{C}=0$		7^{*}	10		V			
ICBO	Collector Cutoff Current	$V_{C B}=100 \mathrm{~V}$,	$I_{E}=0$			<1	60	nA			
IEBO	Emitter Cutoff Current	$\mathrm{VEB}=5 \mathrm{~V}$,	$I^{\prime} \mathrm{C}=0$			<0.1	10	nA			
hFE	Static Forward Current Transfer Ratio	$V_{C E}=25 \mathrm{~V}$,	$1 \mathrm{C}=5 \mathrm{~mA}$	See Note 1	10	70					
		$V_{C E}=25 \mathrm{~V}$,	$\mathrm{I}_{\mathrm{C}}=30 \mathrm{~mA}$		35	75	200				
		$\mathrm{V}_{\text {CE }}=25 \mathrm{~V}$,	$\mathrm{I}^{\prime} \mathrm{C}=100 \mathrm{~mA}$		20	75					
VBE	Base-Emitter Voltage	$V_{C E}=25 \mathrm{~V}$,	$I_{C}=30 \mathrm{~mA}$,	See Note 1		0.7	0.85	V			
VCE(sat)	Collector-Emitter Saturation Voltage	$\mathrm{I}_{\mathrm{B}}=3 \mathrm{~mA}$,	$1 \mathrm{C}=30 \mathrm{~mA}$,	See Note 1		0.12	1	V			
$\mathrm{hie}_{\text {ie }}$	Small-Signal Common-Emitter Input Impedance	$V_{C E}=25 \mathrm{~V}$,	$I_{C}=30 \mathrm{~mA}$,	$f=1 \mathrm{kHz}$		150		Ω			
$\mathrm{hfe}_{\text {fe }}$	Small-Signal Common-Emitter Forward Current Transfer Ratio					75					
$h_{\text {re }}$	Small-Signal Common-Emitter Reverse Voltage Transfer Ratio					$\begin{array}{r} 2 x \\ 10^{-4} \\ \hline \end{array}$					
$\mathrm{h}_{\text {Oe }}$	Small-Signal Common-Emitter Output Admittance					30		$\mu \mathrm{mho}$			
${ }^{\text {f }}$	Transition Frequency	$V_{C E}=25 \mathrm{~V}$,	$I_{C}=10 \mathrm{~mA}$,	$f=20 \mathrm{MHz}$	30	80		MHz			
$\mathrm{C}_{\text {obo }}$	Common-Base Open-Circuit Output Capacitance	$V_{C B}=10 \mathrm{~V}$,	${ }^{\prime} \mathrm{E}=0$	$f=1 \mathrm{MHz}$ See Notes 2 and 3		6		pF			
Cibo	Common-Base Open-Circuit Input Capacitance	$\mathrm{V}_{\mathrm{EB}}=0.5 \mathrm{~V}$,	$I^{\prime} \mathrm{C}=0$			60		pF			
C_{cb}	Collector-Base Capacitance	$\mathrm{V}_{C B}=10 \mathrm{~V}$.	$\mathrm{IE}_{\mathrm{E}}=0$			5	10	pF			
$\mathrm{C}_{\text {eb }}$	Emitter-Base Capacitance	$\mathrm{V}_{\mathrm{EB}}=0.5 \mathrm{~V}$,	$I_{C}=0$			60	75	PF			

[^144]CHIP TYPE N15
\section*{N-P-N SILICON TRANSISTORS}

TYPICAL CHARACTERISTICS

figure 1

NOTE 1: This parameter was measured using pulse techniquas. $t_{w}=\mathbf{3 0 0} \mu$ s, duty cycle $\leqslant \mathbf{2 \%}$.

CHIP TYPE N15
 N-P-N SILICON TRANSISTORS

TYPICAL CHARACTERISTICS

NOTE 4: To avoid overheating the transistor, this parameter was measured with bias conditions applied for less than five seconds.

TYPICAL CHARACTERISTICS

FIGURE 10

NOTES: 2. Capacitance measurements were made using chips mounted in TO-39 packages.
3. C_{cb} and $\mathrm{C}_{e b}$ measurements employ a three-terminal capacitance bridge incorporating agard circuit. The third electrode (emitter or collector, respectively) is connected to the guard terminal of the bridge. Cobo and $C_{i b o}$ measurements are made with the third terminal floating.

CHIP TYPE N16 N-P-N SILICON TRANSISTORS

- N16 is an 11×15-mil, epitaxial, planar, expanded-contact chip
- Available in TO-72 and Silect ${ }^{\dagger}$ packages
- For use in high-frequency (nearly to $1 \mathbf{G H z}$), low-noise amplifier circuits such as TV mixers and IF-amplifier stages

electrical and operating characteristics at $\mathbf{2 5} \mathbf{}{ }^{\circ} \mathbf{C}$ free-air temperature

PARAMETER		CONDITIONS			OBSERVED VALUES			UNIT			
		LOW	TYP	HIGH							
$\mathrm{V}_{\text {(BR) }} \mathbf{C B O}$	Collector-Base Breakdown Voltage				${ }^{1} C=10 \mu A$,	$\mathrm{IE}_{\mathrm{E}}=0$		30^{*}	60		V
$V_{\text {(BR) }}$ CEO	Collector-Emitter Breakdown Voltage	$\mathrm{I}^{\prime} \mathrm{C}=2 \mathrm{~mA}$,	$\mathrm{I}_{\mathrm{B}}=0$,	See Note 1	18*	50		V			
V (BR)EBO	Emitter-Base Breakdown Voltage	$I_{E}=10 \mu A$,	$\mathrm{IC}^{\prime}=0$		$4 *$	5		V			
ICBO	Collector Cutoff Current	$V_{C B}=15 \mathrm{~V}$,	$\mathrm{IE}_{\mathrm{E}}=0$			<0.1	100	nA			
hfe	Static Forward Current Transfer Ratio	$V_{C E}=10 \mathrm{~V}$,	$I_{C}=2 \mathrm{~mA}$		30	70	150				
VBE	Base-Emitter Voltage	$\mathrm{V}_{\text {CE }}=10 \mathrm{~V}$,	${ }^{1} \mathrm{C}=2 \mathrm{~mA}$			0.75		V			
/fel	Small-Signal Common-Emitter Forward Current Transfer Ratio	$V_{C E}=10 \mathrm{~V}$,	$I_{C}=2 \mathrm{~mA}$,	$f=100 \mathrm{MHz}$	5	9					
\|Viel	Smail-Signal Common-Emitter Input Admittence	$V_{C E}=12 \mathrm{~V}$,	$I^{\prime} \mathrm{C}=2 \mathrm{~mA}$,	$f=45 \mathrm{MHz}$	3			mmho			
\|rfel	Small-Signal Common-Emitter Forward Current Transfer Ratio				70			mmho			
Voel	Small-Signal Common-Emitter Output Admittance				0.3			mmho			
C_{cb}	Collector-Base Capacitance	$\begin{aligned} & V_{C B}=10 \mathrm{~V} \\ & \text { See Notes } 2 \text { and } 3 \end{aligned}$	$t_{E}=0,$	$\mathrm{f}=\mathbf{1} \mathbf{M H z}$,		0.45	0.65	pF			
$r_{\text {iep }}$	Parallel-Equivalent Common-Emitter Short-Circuit Input Resistance	$V_{C E}=10 \mathrm{~V}$.	$I^{\prime}=2 \mathrm{~mA}$,	$f=10 \mathrm{MHz}$	0.9			k Ω			
roep	Parallel-Equivalent Common-Emitter Short-Circuit Output Resistance				60			$\mathbf{k} \boldsymbol{\Omega}$			
$\mathrm{rb}^{\prime} \mathrm{C}_{\mathrm{c}}$	Collector-Base Time Constant	$V_{C B}=10 \mathrm{~V}$ See Note 2	$I_{E}=-2 m A \text {, }$	$f=79.8 \mathrm{MHz}$,		14	20	ps			
F	Spot Noise Figure	$\begin{aligned} & V_{C E}=10 \mathrm{~V} \\ & f=200 \mathrm{MHz} \end{aligned}$	$I_{C}=2 m A,$	$\mathrm{R}_{\mathrm{G}}=50 \Omega$,		3	5	dB			

[^145]
CHIP TYPE N16
 N-P-N SILICON TRANSISTORS

TYPICAL CHARACTERISTICS

hfe vs IC

FIGURE 3

NOTES: 1. This parameter was measured using pulse techniques. $\mathbf{t}_{w}=300 \mu \mathrm{~s}$, duty cycle $\leqslant 2 \%$.
2. Capacitance and $r_{b}{ }^{\prime} \mathrm{C}_{\mathrm{c}}$ measurements were made using chips mounted in Silect packages.
3. $\mathbf{C}_{\mathbf{c b}}$ measurement employs a three-terminal capacitance bridge incorporating a guard circuit. The emitter is connected to the guard terminal of the bridge.

CHIP TYPE N16
 N-P-N SILICON TRANSISTORS

TYPICAL CHARACTERISTICS AT $455 \mathrm{kHz}, \mathrm{TA}=\mathbf{2 5}^{\circ} \mathrm{C}$

figure 9

Figure 8
roep vs ic

figure 10

CHIP TYPE N16

N-P-N SILICON TRANSISTORS

TYPICAL CHARACTERISTICS AT $10 \mathrm{MHz}, \mathrm{TA}_{\mathrm{A}} \mathbf{= 2 5 ^ { \circ } \mathrm { C }}$

Figure 11

FIGURE 12

Vfalvs IC

figure 13

FIOURE 14

FIGURE 15

CHIP TYPE N16 N-P-N SILICON TRANSISTORS

TYPICAL CHARACTERISTICS AT $\mathbf{4 5} \mathbf{~ M H z}, \mathrm{TA}^{\mathbf{~}} \mathbf{2 5} \mathbf{5}^{\circ} \mathrm{C}$

Components of $\mathbf{Y f e} \mathbf{V E} \mathbf{I C}$

figure 18

Componente of Yio ve lc

Components of Yoe vs IC

FIGURE 19

CHIP TYPE N16

N-P-N SILICON TRANSISTORS

TYPICAL CHARACTERISTICS AT $100 \mathrm{MHz}, \mathrm{TA}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$

TYPICAL CHARACTERISTICS AT $200 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$

FIGURE 24

- $\mathbf{N} 17$ is a $16 \times 16-m i l$, epitaxial, planar, expanded-contact chip
- Available in Silect ${ }^{\dagger}$ packages with base-emitter-collector lead configuration
- For VHF/UHF RF/IF amplifiers requiring low feedback capacitance and forward-AGC characteristics

electrical and operating characteristics at $\mathbf{2 5}{ }^{\circ} \mathrm{C}$ free-air temperature

[^146]
CHIP TYPE N17

N-P-N SILICON TRANSISTORS

TYPICAL CHARACTERISTICS

hfe vs lc

FIGURE 2
$V_{C E(s a t)} \mathbf{v s} \mathbf{I C}_{\mathbf{C}}$

FIGURE 4
$\mathrm{C}_{\text {res vs ic }}$

FIGURE 7

FIGURE 5

FIGURE 6

NOTES: 1. These parameters were measured using pulse techniques. $t_{w}=300 \mu \mathrm{~s}$, duty cycle $\leqslant 2 \%$.
. Capacitance measurements were made using chips mounted in silect packages. a guard circuit. The emittar is connected to the
3. C cb measurement employs
guard terminal of the bridge.

CHIP TYPE NT N-P-N SILICON TRANSISTORS

TYPICAL CHARACTERISTICS

$Y_{i e}$ ws IC

FIGURE 8
$y_{f e}$ vs IC

FIGURE 10

Yfe vs IC

FIGURE 11

FIGURE 12

FIGURE 13

CHIP TYPE Ni8
 N-P-N SILICON TRANSISTORS

- N18 is a 19×19-mil, epitaxial, planar, direct-contact chip
- Available in TO-18 and TO-46 packages
- For use in low-level chopper circuits in inverted connection (collector and emitter terminals reversed). May also be used as a low-level amplifier

electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER		CONDITIONS			OBSERVED VALUES			UNIT			
		LOW	TYP	HIGH							
V (BR)CBO	Collector-Base Breakdown Voltage				${ }^{\prime} \mathrm{C}=100 \mu \mathrm{~A}$,	$I_{E}=0$		$120{ }^{*}$	180		V
$V_{\text {(BR) CEO }}$	Collector-Emitter Breakdown Voltage	${ }^{\prime} \mathrm{C}=10 \mathrm{~mA}$,	$\mathrm{I}_{\mathrm{B}}=0$,	See Note 1	60*	75		V			
$V_{\text {(BR)EBO }}$	Emitter-Base Breakdown Voltage	${ }^{1} E=100 \mu \mathrm{~A}$,	$\mathrm{I}_{\mathrm{C}}=0$		18 ${ }^{\text {¢ }}$	22		V			
${ }^{\text {l CeS }}$	Collector Cutoff Current	$V_{C E}=25 \mathrm{~V}$,	$\mathrm{V}_{\text {BE }}=0$			<0.1	10	nA			
lebo	Emitter Cutoff Current	$\mathrm{V}_{E B}=15 \mathrm{~V}$,	$\mathrm{I}^{\prime} \mathrm{C}=0$			<0.1	2	nA			
IECS	Emitter Cutoff Current	$\mathrm{V}_{\mathrm{EC}}=15 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{BC}}=0$			<0.1	2	nA			
hFE	Static Forward Current Transfer Ratio	$\mathrm{V}_{\text {CE }}=5 \mathrm{~V}$,	${ }^{1} \mathrm{C}=10 \mu \mathrm{~A}$		30	140					
		$\mathrm{V}_{\text {CE }}=5 \mathrm{~V}$.	$1 \mathrm{C}=1 \mathrm{~mA}$		50	210	500				
hFE(inv)	Static Forward Current Transfer Ratio (Invertad Connection)	$V_{E C}=5 \mathrm{~V}$,	$\mathrm{I}_{\mathrm{E}}=0.2 \mathrm{~mA}$		2	4					
$V_{B E}$	Base-Emitter Voltage	$V_{C E}=5 \mathrm{~V}$,	${ }^{\prime} \mathrm{C}=1 \mathrm{~mA}$			0.6	0.8	V			
$V_{C E}$ (sat)	Collector-Emitter Saturation Voltage	$\mathrm{I}_{\mathrm{B}}=0.5 \mathrm{~mA}$,	${ }^{1} \mathrm{C}=10 \mathrm{~mA}$			0.08	0.15	V			
$V_{\text {EC }}$ (ofs)	Emitter-Collector Offset Voltage (Inverted Connection)	$\mathrm{I}_{B}=200 \mu \mathrm{~A}$,	$\mathrm{I}_{\mathrm{E}}=0$			0.2	0.6	mV			
		$\mathrm{I}_{B}=1 \mathrm{~mA}$,	$I_{E}=0$			0.5	1.2				
rec(on)	Small-Signal Emitter-Collector On-State Resistance	$\begin{aligned} & \mathrm{I}_{\mathrm{B}}=1 \mathrm{~mA}, \\ & \mathrm{t}_{\mathrm{e}}=100 \mu \mathrm{~A} \end{aligned}$	$I_{E}=0,$	$\mathrm{f}=1 \mathrm{kHz}$,		8	20	Ω			
${ }^{+}{ }_{\text {T }}$	Transition Frequency	$V_{C E}=5 \mathrm{~V}$,	$\mathrm{I}^{\prime} \mathrm{C}=1 \mathrm{~mA}$,	$f=20 \mathrm{MHz}$	20	60		MHz			
$\mathrm{C}_{\mathbf{c b}}$	Collector-Base Capacitance	$V_{C B}=0,$ See Notes 2 and 3	$I_{E}=0$	$f=1 \mathrm{MHz},$		6	12	pF			
$\mathrm{C}_{\text {eb }}$	Emitter-Base Capacitance	$V_{E B}=0$ See Notes 2 and 3	$I_{C}=0,$	$f=1 M H z,$		7	12	pF			

- These values do not modify guaranteed limits for specific devices and do not justify operation in excess of absolute maximum ratings.

NOTES: 1. These parameters were measured using pulse techniques. $t_{w}=300 \mu \mathrm{~s}$, duty cycle $\leqslant 2 \%$.
2. Capacitance measurements were made using chips mounted in TO-18 packages.
3. $C_{c b}$ and $C_{e b}$ measurements employ a three-terminal capacitance bridge incorporating a guard circuit. The third electrode (emitter or collector, respectively) is connected to the guard terminal of the bridge.

CHIP TYPE N18 N-P-N SILICON TRANSISTORS

TYPICAL CHARACTERISTICS

NOTE 1: These parameters were measured using pulse techniques. $\mathrm{t}_{\mathrm{w}}=\mathbf{3 0 0} \boldsymbol{\mu s}$, dutv cycle $<\mathbf{2 \%}$.

N-P-N SILICON TRANSISTORS

TYPICAL CHARACTERISTICS

NOTE 1 These parameters were measured using pulse techniques. $t_{w}=300 \mu \mathrm{~s}$, duty cycle $<\mathbf{2 \%}$.

CHIP TYPE N18 N-P-N SILICON TRANSISTORS

TYPICAL CHARACTERISTICS

$V_{\text {ec }} \mathrm{vs} \mathrm{I}_{\mathrm{B}}$
 FIGURE 11

NOTE 1: These parameters were measured using pulse techniques. $\mathbf{t}_{\mathbf{w}}=\mathbf{3 0 0} \boldsymbol{\mu}$, dutv cycle $\boldsymbol{<} \mathbf{2 \%}$.

CHIP TYPE N18

N-P-N SILICON TRANSISTORS

TYPICAL CHARACTERISTICS

NOTES: 2. Capacitance measurements were made using chips mounted In TO. 18 packages.
3. C_{cb} and C_{eb} measurements employ a three-terminal capacitance bridge incorporating a guard circuit. The third electrode (emitter or collector, respectively) is connected to the guard terminal of the bridge.

CHIP TYPE N19
 N-P-N SILICON TRANSISTORS

- N19 is a 19×19-mil, epitaxial, planar, direct-contact chip
- Available in TO-5 and TO-18 packages
- For use in medium-power switching and general purpose amplifier circuits

electrical and operating characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

[^147]
CHIP TYPE N19

N-P-N SILICON TRANSISTORS

NOTES: a. The input waveforms are supplied by a generator with the following characteristics: $Z_{o u t}=50 \Omega, t_{w} \approx 200 \mathrm{~ns}, \mathrm{duty} \mathrm{cycle} \leqslant \mathbf{2} \%$, b. Wavaforms are manitored on an oscilloscope with the following characteristics: $\mathrm{tr}_{\mathrm{r}} \leqslant 1 \mathrm{~ns}, \mathrm{R}_{\mathrm{in}} \geqslant 100 \mathrm{k} \Omega, \mathrm{C}_{\text {in }} \leqslant 7 \mathrm{pF}$.

NOTE 1: These parameters were measured using pulse techniques. $\mathbf{t}_{\mathbf{w}}=\mathbf{3 0 0} \mu_{\mathbf{s}}$, duty cycle $\leqslant 2 \%$.

CHIP TYPE N19 N-P-N SILICON TRANSISTORS

TYPICAL CHARACTERISTICS

NOTE 2: Capacitance measurements were made using chips mounted in TO-5 packages.

CHIP TYPE N20

N-P-N SILICON TRANSISTORS

- N20 is a 16×16-mil, epitaxial, planar, expanded-contact chip
- Available in Silect ${ }^{\dagger}$ packages
- For use in TV mixer and Non-AGC IF circuits

electrical characteristics at $\mathbf{2 5}{ }^{\circ} \mathrm{C}$ free-air temperature

[^148]
CHIP TYPE N20 N-P-N SILICON TRANSISTORS

TYPICAL CHARACTERISTICS

NOTE 1: This paramater was measured using puise techniques. $\mathrm{t}_{\mathrm{w}}=\mathbf{3 0 0} \mu \mathrm{s}$, duty cycle $<\mathbf{2 \%}$.

NOTES: 2. Capacitance messurements were made using chips mounted in Silect packages.
3. $C_{c b}$ measurement employs a three-tarminal capacitance bridge Incorporating a guard circuit. The emitter is connected to the guard terminal of the bridge.

CHIP TYPE N21
 N-P-N SILICON TRANSISTORS

- N21 is an 18×18-mil, eptiaxial, planar, direct-contact chip
- Available in Silect ${ }^{\dagger}$ packages
- For low-noise, medium-current (to 100 mA) amplifier circuits

electrical and operating characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER		CONDITIONS		OBSERVED VALUES			UNIT
		$\frac{\text { LOW }}{80^{\circ}}$	TYP	HIGH			
$V_{\text {(BR) }}$ CBO	Collector-Base Breakdown Voltage		$I_{C}=10 \mu A, \quad I E=0$		100		V
$V_{\text {(BR)CEO }}$	Collector-Emitter Breakdown Voltage	$I_{C}=10 \mathrm{~mA}, \quad I_{B}=0$,	See Note 1	40^{+}	60		V
$V_{\text {(BR)EBO }}$	Emitter-Base Breakdown Voltage	$\mathrm{I}_{\mathrm{E}}=10 \mu \mathrm{~A}, \quad \mathrm{IC}=0$		$6{ }^{4}$	6.5		\checkmark
${ }^{\text {I CBO }}$	Collector Cutoff Current	$V_{C B}=30 \mathrm{~V}, \quad I_{E}=0$			<0.1	100	nA
IEBO	Emitter Cutoff Current	$\mathrm{VEB}=5 \mathrm{~V}, \quad \mathrm{IC}=0$			<0.1	100	nA
		$V_{C E}=5 \mathrm{~V}, \quad \mathrm{i} C=10 \mu \mathrm{~A}$		20	240		
	Static Forward Current	$V_{C E}=5 \mathrm{~V}, \quad I_{C}=100 \mu \mathrm{~A}$		40	340		
hFE	Transfer Ratio	$\mathrm{V}_{\text {CE }}=5 \mathrm{~V}, \quad \mathrm{l} C=1 \mathrm{~mA}$		50	475	1000	
		$\mathrm{V}_{C E}=5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}$,	See Note 1	60	600		
		$\mathrm{V}_{\text {CE }}=5 \mathrm{~V}, \quad 1 \mathrm{C}=100 \mathrm{~mA}$,	See Note 1	40			
		$\mathrm{V}_{\text {CE }}=5 \mathrm{~V}, \quad \mathrm{I}^{\text {C }} \mathrm{C}=100 \mu \mathrm{~A}$			0.55	0.65	
VBE	Base-Emitter Voltage	$V_{C E}=5 \mathrm{~V}, \quad \mathrm{I}^{\prime}=1 \mathrm{~mA}$			0.6	0.7	V
		$\mathrm{V}_{\text {CE }}=5 \mathrm{~V}$, IC $=10 \mathrm{~mA}$,	See Note 1		0.7	0.8	
VCE(sat)	Collector-Emitter Saturation Voltage	$\mathrm{I}_{\mathrm{B}}=1 \mathrm{~mA}, \quad \mathrm{I}^{\prime}=10 \mathrm{~mA}$			0.06		V
$\mathrm{h}_{\text {ie }}$	Small-Signal Common-Emitter Input Impedance				115		k Ω
$h_{\text {fi }}$	Small-Signal Common-Emitter Forward Current Transfer Ratio		$f=1 \mathrm{kHz}$		440		
$h_{\text {re }}$	Small-Signal Common-Emitter Reverse Voltage Transfer Ratio		$\mathrm{f}=1 \mathrm{kHz}$		$\begin{array}{r} 30 \times \\ 10^{-4} \\ \hline \end{array}$		
$\mathrm{h}_{\mathbf{o f}}$	Small-Signal Common-Emitter Output Admittance				11		$\mu \mathrm{mho}$
fT	Transition Frequency	$V_{C E}=5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}$,	$f=100 \mathrm{MHz}$	200	330		MHz
$C_{c b}$	Collector-Base Capacitance	$\begin{array}{ll} V_{C B}=5 \mathrm{~V}, & \mathrm{I}_{\mathrm{E}}=0, \\ \text { See Notes } 2 \text { and } 3 & \\ \hline \end{array}$	$\mathrm{f}=1 \mathrm{MHz},$		3.5	4.5	pF
$\mathrm{C}_{\text {eb }}$	Emitter-Base Capacitance	$V_{E B}=0.5 V, \quad I C=0,$ See Notes 2 and 3	$\mathrm{f}=\mathbf{4} \mathbf{M H z}$,		8	16	pF
F	Spot Noise Figure	$\begin{aligned} & V_{C E}=5 \mathrm{~V}, \\ & f=1 \mathrm{kHz} \end{aligned}$	$\mathrm{R}_{\mathrm{G}}=10 \mathrm{k} \Omega$,		0.5	2	dB
\bar{F}	Average Noise Figure	$\begin{aligned} & \hline V_{C E}=5 \mathrm{~V}, \quad \quad I_{C}=100 \mu \mathrm{~A}, \\ & \text { Noise Bandwidth }=15.7 \mathrm{kHz}, \\ & \hline \end{aligned}$	$\mathrm{R}_{\mathrm{G}}=10 \mathrm{k} \Omega,$ See Note 4		0.5	3	dB

[^149]
CHIP TYPE N21
 N-P-N SILICON TRANSISTORS

TYPICAL CHARACTERISTICS

VCE(sat) vs lc

NOTE 1: These parameters were measured using pulse techniques. $\mathbf{t}_{\mathbf{w}}=\mathbf{3 0 0} \mu \mathrm{s}$, duty cycle $\leqslant \mathbf{2 \%}$.

CHIP TYPE N21 N-P-N SILICON TRANSISTORS

TYPICAL CHARACTERISTICS

NOTES: 2. Capacitence measurements were mede using chips mounted in Silect ${ }^{\dagger}$ packages.
3. $C_{c b}$ and $C_{e b}$ measurements emplov a three-terminal capacitance bridge incorporating a guard circuit. The third alectrode (emitter or collector, respectively) it connected to the guard terminal of the bridge.
5. To obtain reproducible results, these parameters were measured with bias conditions applied for less than five seconds.

TYPICAL CHARACTERISTICS

FIGURE 16

F vs f

FIGURE 18

Contours of Constant Fvs IC

FIGURE 17

Figure 19

NOTES: 1. These parameters were measured using pulse techniques. $t_{w}=300 \mu s$, duty cycle $\leqslant 2 \%$,
4. Average Noise Figure was measured in an amplifier with response down 3 dB at 10 Hz and 10 kHz and a high-frequency roll-off of 6 dB/octave.

CHIP TYPE N22
 N-P-N SILICON TRANSISTORS

- \quad 22 is a $10 \times 15-m i l$, epitaxial, planar, expanded-contact chip ${ }^{*}$
- Available in TO-72, a short-can version of TO-78, and Silect ${ }^{\dagger}$ packages
- For use in high-frequency (to $\mathbf{1} \mathbf{G H z}$) amplifier and oscillator circuits

electrical and operating characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

[^150]

FIGURE 1
$\mathbf{V}_{\text {BE vs }} \mathbf{I}_{\mathbf{C}}$

FIGURE 3
hfe vs IC

FIGURE 2
$V_{C E}($ sat $)$ vs $\mathbf{I C}^{\prime}$

FIGURE 4

NOTE 1: These parameters were measured using pulse techniques. $t_{w}=300 \mu \mathrm{~s}$, duty cycle $\leqslant \mathbf{2 \%}$.

CHIP TYPE N22 N-P-N SILICON TRANSISTORS

COMMON-EMITTER EQUIVALENT CIRCUIT USING SHORT-CIRCUIT " y " PARAMETERS

$$
\begin{aligned}
& I_{b}=\left|y_{i e}\right| V_{b e}+\left|y_{r e}\right| V_{c e} \\
& I_{s}=\left|y_{f e}\right| V_{b e}+\left|y_{o e}\right| V_{c e} \\
& \left.\left|y_{i e}\right|=\left.\frac{I_{b}}{V_{b e}}\right|_{V_{c e}}=0=\frac{1}{r_{\text {iep }}}+j \omega C_{\text {iep }} \quad\left|y_{\mathrm{ce}}\right|=\frac{l_{c}}{V_{b e}} \right\rvert\, V_{c e}=0 \\
& \left.\left|y_{\mathrm{re}}\right|=\frac{I_{b}}{V_{c e}} \right\rvert\, V_{b e}=0 \\
& \left|y_{o e}\right|=\left.\frac{I_{c}}{V_{c t}}\right|_{V_{b e}}=0=\frac{1}{r_{\text {oep }}}+j \omega C_{\text {oep }}
\end{aligned}
$$

TYPICAL CHARACTERISTICS AT TA $=25^{\circ} \mathrm{C}$

FIGURE 5

Figure 8

FIGURE 6

FIGURE 9

FIGURE 7

figure 11

FIGURE 13

FIGURE 15
$C_{c b}$ vs $V_{C B}$

Figure 12

FIGURE 14

FIGURE 16

CHIP TYPE N22 N-P-N SILICON TRANSISTORS

TYPICAL CHARACTERISTICS
 COMMON-EMITTER INPUT REFLECTION COEFFICIENT, sie

NORMALIZED INPUT IMPEDANCE
$V_{C E}=10 \mathrm{~V}, \mathrm{z}_{\mathrm{G}}=\mathrm{Z}_{\mathrm{L}}=50 \Omega+\rho, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Frequency	$1 \mathrm{C}=0.4 \mathrm{~mA}$		$I_{C}=1 \mathrm{~mA}$		$I_{C}=4 \mathrm{~mA}$		${ }^{1} \mathrm{C}=10 \mathrm{~mA}$	
	\| ${ }_{\text {io }}$ \|	$\phi_{\text {gie }}$	Fiel	$\phi_{\text {sie }}$	Pial	$\phi_{\text {sia }}$	Piol	$\phi_{\text {gie }}$
100 MHz	0.94	-21°	0.80	$-26{ }^{\circ}$	0.58	-40°	0.43	$-57^{\text {b }}$
200 MHz	0.87	-27°	0.72	-33°	0.50	-51°	0.35	-79°
300 MHz	0.76	-36°	0.63	-43°	0.43	-63°	0.30	-104 ${ }^{\circ}$
400 MHz	0.69	-44°	0.57	-52°	0.36	-84°	0.28	-123°
500 MHz	0.63	-51°	0.51	-62°	0.32	-100°	0.27	-145°
600 MHz	0.59	-59°	0.47	-72°	0.29	-117°	0.28	-162°
700 MHz	0.53	-68°	0.43	-83°	0.28	-134°	0.30	-177°

[^151]FIGURE 17

CHIP TYPE N22

N-P-N SILICON TRANSISTORS

Frequency	$\mathrm{IC}_{\mathrm{C}}=0.4 \mathrm{~mA}$		$l_{C}=1 \mathrm{~mA}$		${ }^{\prime} \mathrm{C}=4 \mathrm{~mA}$		$I_{C}=10 \mathrm{~mA}$	
	P00\|	$\Phi_{\text {soe }}$	$\mathbf{k}_{\text {oe }} 1$	$\phi_{\text {soe }}$	$\left.\right\|_{\text {00e }} \mid$	ϕ_{509}	Foel	ϕ_{900}
200 MHz	0.99	-4°	0.97	-4°	0.89	-3°	0.87	-2°
300 MHz	0.98	$-8^{\text {b }}$	0.95	-7°	0.88	-6°	0.86	-5°
400 MHz	0.95	-11°	0.93	-10°	0.87	-9 ${ }^{\circ}$	0.85	-8 ${ }^{\circ}$
500 MHz	0.94	-14°	0.91	-13°	0.86	-12°	0.84	-11°
600 MHz	0.93	-17°	0.90	-16°	0.85	-15°	0.84	-14°
700 MHz	0.92	-21°	0.88	-20°	0.85	-20°	0.83	-19°

These measurements were made using chips mounted in Silect packages.

FIGURE 18

- N23 is a $26 \times 26-m i l$, epitaxial, planar, direct-contact chip
- Available in TO-18, TO-39, a short-can version of TO-78, and Silect ${ }^{\dagger}$ packages
- For use in general purpose amplifier and switching circuits

electrical and operating characteristics at $\mathbf{2 5}{ }^{\circ} \mathrm{C}$ free-air temperature

[^152]CHIP TYPE N23
N-P-N SILICON TRANSISTORS

FIGURE 1-SWITCHING TIMES
TYPICAL CHARACTERISTICS

NOTE 1: These parameters were measured using pulse techniques. $t_{w}=\mathbf{3 0 0} \mu_{\mathrm{s}}$, duty cycle $\leqslant \mathbf{2 \%}$.

CHIP TYPE N23
 N-P-N SILICON TRANSISTORS

TYPICAL CHARACTERISTICS

FIGURE 10

FIGURE 11

FIGURE 14

FIGURE 15

NOTE 2: Capacitance measurements were made using chips mounted in TO-39 packages.

- N24 is a 19×19-mil, epitaxial, planar, direct-contact chip
- Available in TO-5, TO-18, TO-39, a short-can version of TO-78, plastic dual-in-line quad, and Silect ${ }^{\dagger}$ packages
- For use in general purpose amplifier and medium-current switching circuits

electrical and operating characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

${ }^{\dagger}$ Trademark of Texas instruments
These values do not modify guaranteed limits for specific devices and do not justify operation in excess of absolute maximum ratings.
. These parameters were measured using pulse techniques. $t_{w}=300 \mu$ s, duty cycle $\leqslant 2 \%$.

3. C_{cb} measurement employs were made using chips mounted in TO-5 packages.
guard terminal of the bridge. Chree-terminal capacitance bridge incorporating a guard circuit. The emitter is connected to the
TEST CIRCUIT

(See Notes a and b) VOLTAGE WAVEFORMS

NOTES: a. The input waveforms are supplied by genarator with the following characteristics: $Z_{o u t}=50 \Omega$; for masuring t_{d} and t_{r}.

FIGURE 1-SWITCHING TIMES

TYPICAL CHARACTERISTICS

NOTE 1: These parameters were measured using pulse techniques. $t_{w}=300 \mu$, duty cycle $\leqslant 2 \%$.

FIGURE 11

Figure 13

FIGURE 12

FIGURE 14

NOTES: 2. Capacitance measurements were made using chips mounted in TO-5 peckages,
3. $C_{C b}$ measurament employs a threetermi
 terminal of the bridge. Cobo and Cibo measurements ere made with the third terminal floating.
4. To avoid overheating the transistor, thls parameter was measured with blas conditlons applied for less than 5 seconds.

CHIP TYPE N26
 N-P-N SILICON TRANSISTORS

- N26 is a 10×12-mil, epitaxial, planar, expanded-contact chip
- Available in Silect ${ }^{\dagger}$ packages
- For use in high-frequency (to $\mathbf{5 0 0} \mathbf{~ M H z}$), low-noise, common-base amplifier circuits requiring forward AGC characteristics

electrical and operating characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER		CONDITIONS			OBSERVED VALUES			UNIT			
		LOW	TYP	HIGH							
$V_{\text {(BR) }}$ CBO	Collector-Base Breakdown Voltage				$I_{C}=10 \mu \mathrm{~A}$,	$1 E=0$		40^{*}	55		V
$V_{(B R) C E O}$	Collector-Emitter Breakdown Voltage	$I_{C}=10 \mathrm{~mA}$,	$1_{B}=0$,	See Note 1	30^{*}	50		V			
$V_{\text {(BR) }}$ EBO	Emitter-Base Breakdown Voltage	$I_{E}=10 \mu A$,	$\mathrm{I}^{\prime}=0$		4*	5.5		V			
ICBO	Collector Cutoff Current	$\mathrm{V}_{C B}=10 \mathrm{~V}$,	$\mathrm{IE}_{\mathrm{E}}=0$			<1	50	nA			
	Static Forward Current	$\mathrm{V}_{C E}=10 \mathrm{~V}$,	${ }^{1} C=4 \mathrm{~mA}$		30	100					
hFE	Transfer Ratio	$V_{C E}=10 \mathrm{~V}$,	$I^{\prime} C=10 \mathrm{~mA}$,	See Note 1		80					
		$V_{C E}=10 \mathrm{~V}$,	$\mathrm{IC}_{\mathrm{C}}=4 \mathrm{~mA}$			0.75	0.8	V			
VBE	Base-Emitter Voltage	$\mathrm{V}_{\text {CE }}=10 \mathrm{~V}$.	$I_{C}=10 \mathrm{~mA}$,	See Note 1		0.8					
	Collector-Emitter	${ }^{1}{ }^{1}=0.4 \mathrm{~mA}$,	$\mathrm{I}^{\prime} \mathrm{C}=4 \mathrm{~mA}$			0.65		V			
VCE(sat)	Saturation Voltage	$\mathrm{I}_{B}=1 \mathrm{~mA}$,	${ }^{1} \mathrm{C}=10 \mathrm{~mA}$,	See Note 1		2.5					
		$V_{C E}=10 \mathrm{~V}$,	$I_{C}=4 \mathrm{~mA}$,	$f=100 \mathrm{MHz}$	450	550		MHz			
${ }^{\text {f }}$	Transition Frequency	$V_{C E}=10 \mathrm{~V}$,	${ }_{1} \mathrm{C}=10 \mathrm{~mA}$,	$f=100 \mathrm{MHz}$		70					
$c_{c b}$	Collector-Base Capacitance	$V_{C B}=10 \mathrm{~V}$ See Notes 2	$I_{E}=0$	$\mathrm{f}=1 \mathrm{MHz}$,		0.9		pF			
$\mathrm{C}_{\text {ce }}$	Collector-Emitter Capacitance	$\begin{aligned} & V_{C E}=10 \mathrm{~V} \\ & \text { See Notes } 2 \text { an } \end{aligned}$	$I_{B}=0$	$\mathrm{f}=1 \mathrm{MHz}$,		0.2	0.3	pF			
		$V_{C B}=10 \mathrm{~V}$.	$\mathrm{IE}=-4 \mathrm{~mA}$,	$f=200 \mathrm{MHz}$		4		dB			
$\mid \mathrm{ffb}^{2}$	Forward Transmission Coefficient \ddagger	$Z_{G}=Z_{L}=50$ See Note 2		$f=400 \mathrm{MHz}$		3					
F	Spot Noise Figure	$\begin{aligned} & V_{C E}=10 \mathrm{~V}, \\ & f=200 \mathrm{MHz} \end{aligned}$	$I_{C}=3 \mathrm{~mA},$	$\mathrm{R}_{\mathrm{G}}=50 \Omega$,		3	4	dB			

[^153]

NOTES 1. These parameters were measured using pulse techniques. $t_{w}=300 \mu s$, duty cycle $<2 \%$.
2. Capacitance and s-parameter measurements were made using chips mounted in TiS 125 packeges.
3. C_{cb} and C_{ce} measurements employ a three-terminal capacitance bridge incorporating a guard circuit. The third electrode (emitter or base, respectively) is connected to the guard terminal of the bridge.

CHIP TYPE N26
 N-P-N SILICON TRANSISTORS

These measurements wers made using chips mounted in TIS125 packages.

FIGURE 9

TYPICAL CHARACTERISTICS

COMMON-BASE OUTPUT REFLECTION COEFFICIENT, sob

and
NORMALIZED OUTPUT IMPEDANCE
$V_{C B}=10 \mathrm{~V}, Z_{G}=Z_{L}=50 \Omega+j 0, T_{A}=25^{\circ} \mathrm{C}$

Frequency	$I_{E}=-2 m A$		$I_{E}=-4 \mathrm{~mA}$		$\mathrm{IE}^{=}=-6 \mathrm{~mA}$		$I_{E}=-10 \mathrm{~mA}$	
	Fobl	$\phi_{\text {sob }}$	*sobl	$\phi_{\text {sob }}$	\|Sobl	$\phi_{\text {sob }}$	Fobl	$\phi_{\text {sob }}$
200 MHz	0.99	-1°	0.99	-1°	0.99	-1°	0.97	$\frac{11^{\circ}}{}$
300 MHz	0.99	-5°	0.99	-5°	0.99	-5°	0.96	-4°
400 MHz	0.99	-7°	0.99	-7°	0.99	-7°	0.94	-6°
500 MHz	0.98	-11°	0.98	-11°	0.98	-11°	0.93	-9°
600 MHz	0.96	-14°	0.96	-14°	0.96	-14°	0.91	-11°
700 MHz	0.93	-17°	0.93	-17°	0.93	-17°	0.88	-13°

These measurements were made using chips mounted in TIS125 packages

CHIP TYPE N27
 N-P-N SILICON TRANSISTORS

- \quad 27 is an 18×18-mil, epitaxial, planar, direct-contact chip
- Available in Silect ${ }^{\dagger}$ packages
- For use in high-voltage amplifier circuits

electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

${ }^{\dagger}$ Trademark of Texas Instruments

These values do not modify guaranteed limits for specific devices and do not justify operation in excess of absolute maximum ratings.
NOTES: 1. This parameter was measured using puise techniques. $t_{w}=300 \mu \mathrm{~s}$, duty cycle $\leqslant 2 \%$.
2. Capacitance measurements were made using chips mounted in $\mathbf{T O} 92$ packages. or collector, respectively) is connected to the guard terminsl of the bridge.

FIGURE 6

Figure 7

FIGURE 8

NOTES: 1. This parameter was measured using puise techniques. $t_{w}=300 \mu s$, duty cycle $\leqslant 2 \%$.
2. Capacitance measurements were made using chips mounted in TO-92 packages.
3. $C_{c b}$ and $C_{e b}$ measurements employ a three-terminal capacitance bridge incorporating a guard circuit. The third-electrode (emitter or collector, respectively) is connected to the guard terminal fo the bridge.

CHIP TYPE N28
 N-P-N SILICON TRANSISTORS

- N28 is an $11 \times$ 15-mil, epitaxial, planar, expanded-contact chip
- Available in TO-72 and Silect ${ }^{\dagger}$ packages
- For use in UHF amplifier, oscillator, and mixer circuits requiring low noise and high gain

electrical and operating characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER		CONDITIONS			OBSERVED VALUES			UNIT			
			TYP	HIGH							
V (BR)CBO	Collector-Base Breakdown Voltage				$l^{\prime}=10 \mu A$,	$\mathrm{I}_{\mathrm{E}}=0$		25*	35		V
V (BR)CEO	Collector-Emitter Breakdown Voltage	${ }^{\prime} \mathrm{C}=2 \mathrm{~mA}$,	$\mathrm{I}_{\mathrm{B}}=0$,	See Note 1	13*	20		V			
$V_{\text {(BR)EBO }}$	Emitter-Base Breakdown Voltage	$\mathrm{IE}^{\prime}=10 \mu \mathrm{~A}$,	$I_{C}=0$		$3{ }^{*}$	5.5		\checkmark			
ICBO	Collector Cutoff Current	$V_{C B}=6 \mathrm{~V}$,	$\mathrm{I}_{\mathrm{E}}=0$		<0.1			nA			
hfe	Static Forward Current Transfer Ratio	$V_{C E}=6 \mathrm{~V}$,	$\mathrm{l}_{\mathrm{c}}=1 \mathrm{~mA}$		85						
		$V_{C E}=6 \mathrm{~V}$,	$i_{C}=5 \mathrm{~mA}$		20	95	300				
		$V_{C E}=6 \mathrm{~V}$,	$\mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}$	See Note 1	95						
		$V_{C E}=6 \mathrm{~V}$,	$\mathrm{I}_{\mathrm{C}}=20 \mathrm{~mA}$		85						
$V_{B E}$	Base-Emitter Voltage	$V_{C E}=6 \mathrm{~V}$,	$\mathrm{I}_{\mathrm{C}}=5 \mathrm{~mA}$	See Note 1		0.75	0.95	V			
		$V_{C E}=6 \mathrm{~V}$,	$\mathrm{I}^{\prime} \mathrm{C}=20 \mathrm{~mA}$		0.8						
VCE(sat)	Collector-Emitter Saturation Voltage	$\mathrm{I}_{\mathrm{B}}=0.5 \mathrm{~mA}$,	$\mathrm{I}_{\mathrm{C}}=5 \mathrm{~mA}$	See Note 1	0.07			V			
		$\mathrm{I}_{B}=2 \mathrm{~mA}$,	${ }^{1} \mathrm{C}=20 \mathrm{~mA}$		0.12						
${ }^{+} \mathbf{T}$	Transition Frequency	$V_{C E}=6 \mathrm{~V}$.	$\mathrm{I}_{\mathrm{C}}=5 \mathrm{~mA}, \quad \mathrm{f}=400 \mathrm{MHz}$		$1.0 \quad 1.7$			GHz			
Ffel2	Square of Common-Emitter Forward Transmission Coefficient \ddagger	$\begin{aligned} & V_{C E}=6 \mathrm{~V}, \quad I C=10 \mathrm{~mA}, \\ & Z_{G}=Z_{L}=50 \Omega+j 0, \end{aligned}$ See Note 2		$f \pm 400 \mathrm{MHz}$	11			dB			
				$f=1 \mathrm{GHz}$	3.5						
$C_{c b}$	Collector-Base Capacitance	$V_{C B}=6 \mathrm{~V}$,	$I_{E}=0$	$f=1 M H z,$ See Notes 2 and 3		0.2	0.9	pF			
$\mathrm{C}_{\text {eb }}$	Emitter-Base Capacitance	$\mathrm{VEB}=0.5 \mathrm{~V}$,	$I_{C}=0$		2			pF			
$r_{b}{ }^{\prime} C_{c}$	Collector-Base Time Constant	$V_{C B}=6 \mathrm{~V},$ See Note 2	$I^{\prime}=-5 \mathrm{~mA}$,	$f=79.8 \mathrm{MHz}$,	$8 \quad 13$			ps			
F	Spot Noise Figure	$\begin{aligned} & V_{C B}=6 \mathrm{~V} \\ & I_{E}=-2 \mathrm{~mA} \end{aligned}$	$\mathrm{R}_{\mathrm{G}}=100 \Omega$,	$f=450 \mathrm{MHz}$		3.5	6	dB			
			$\mathrm{R}_{\mathrm{G}}=50 \Omega$,	$f=1 \mathrm{GHz}$	6.5						

[^154]
TYPICAL CHARACTERISTICS

figure 3

Figure 4

NOTE 1: This parameter was measured using pulse techniques. $t_{w}=300 \mu$, duty cycle $\leqslant 2 \%$.

CHIP TYPE N28
 N-P-N SILICON TRANSISTORS

TYPICAL CHARACTERISTICS

NOTES: 2. Capacitance, $r_{b}{ }^{\prime} C_{c}$, and s-parameter masaraments ware made using chips mounted in TO-72 packages.
3. C_{cb} and C_{eb} measurements employ a three-terminal capacitance bridga incorporating a guard circuit. The third electrode femitter or colfector, respectiveiv) is connected to the guard terminal of the bridge.

CHIP TYPE N28

N-P-N SILICON TRANSISTORS

TYPICAL CHARACTERISTICS
 COMMON-EMITTER INPUT REFLECTION COEFFICIENT, sie

NORMALIZED INPUT IMPEDANCE
$V_{C E}=6 \mathrm{~V}, \mathrm{Z}_{\mathrm{G}}=\mathrm{Z}_{\mathrm{L}}=\mathbf{5 0 \Omega} \mathbf{\Omega}+\mathrm{jo}, \mathrm{T}_{\mathrm{A}}=\mathbf{2 5 ^ { \circ }} \mathbf{C}$

Frequency	$\mathrm{IC}_{\mathrm{C}}=1 \mathrm{~mA}$		$I_{C}=4 \mathrm{~mA}$		${ }^{1} \mathrm{C}=7 \mathrm{~mA}$		$\mathrm{Ic}=10 \mathrm{~mA}$	
	Piel	$\phi_{\text {sie }}$	\| ${ }_{\text {ie }} \mid$	$\phi_{\text {sie }}$	${ }_{\text {Piol }} 1$	$\phi_{\text {sia }}$	Piel	$\phi_{\text {sip }}$
100 MHz	0.71	-53°	0.53	-46 ${ }^{\circ}$	0.46	-44°	0.39	-44°
300 MHz	0.55	-67°	0.33	-65°	0.27	-62 ${ }^{\circ}$	0.25	-62°
500 MHz	0.36	-90°	0.22	-81°	0.19	-79°	0.17	-80°
700 MHz	0.25	-114°	0.15	-102°	0.13	$-102{ }^{\circ}$	0.11	-105 ${ }^{\circ}$
900 MHz	0.18	-145 ${ }^{\circ}$	0.10	-137°	0.09	-140°	0.08	-149°
1100 MHz	0.16	176°	0.10	176°	0.09	166°	0.09	160°
1300 MHz	0.17	139°	0.13	132°	0.13	130°	0.12	129°
1500 MHz	0.21	113°	0.17	110°	0.17	107°	0.17	106°
1700 MHz	0.25	93°	0.21	91°	0.21	90°	0.20	90°
1900 MHz	0.29	77°	0.25	76°	0.24	76°	0.23	76°

These measurements were made using chips mounted in TO-72 packages.

FIGURE 11

CHIP TYPE N28 N-P-N SILICON TRANSISTORS

TYPICAL CHARACTERISTICS

COMMON-EMITTER OUTPUT REFLECTION COEFFICIENT, soe
 and

NORMALIZED OUTPUT IMPEDANCE
$V_{C E}=6 \mathrm{~V}, \mathrm{Z}_{\mathrm{G}}=\mathrm{Z}_{\mathrm{L}}=50 \Omega+\mathrm{j0}, \mathrm{~T}_{\mathrm{A}}=\mathbf{2 5 ^ { \circ }} \mathbf{C}$

Frequency	$\mathrm{IC}_{\mathrm{C}}=1 \mathrm{~mA}$		$l_{C}=4 \mathrm{~mA}$		$1 \mathrm{C}=7 \mathrm{~mA}$		IC $=10 \mathrm{~mA}$	
	Foel	$\phi_{\text {soe }}$	Soel	$\phi_{\text {soe }}$	β_{08}	$\phi_{\text {soe }}$	$\mathbf{F}_{\mathbf{0 e f}}$	$\phi_{\text {soe }}$
100 MHz	0.97	-5°	0.93	-6°	0.91	-6°	0.90	-6°
300 MHz	0.93	-13°	0.89	-13°	0.88	-13°	0.87	-13°
500 MHz	0.90	-20°	0.86	-19°	0.85	-19°	0.84	-19°
700 MHz	0.87	-27°	0.84	-26°	0.83	-26°	0.82	-26°
900 MHz	0.85	-35°	0.82	-33°	0.80	-33°	0.79	-33°
1100 MHz	0.83	-43°	0.79	-41°	0.78	-41°	0.77	-41°
1300 MHz	0.80	-52°	0.77	-49°	0.75	-48°	0.74	-48°
1500 MHz	0.76	-60°	0.74	-57°	0.73	-56°	0.72	-56°
1700 MHz	0.73	-69°	0.72	-65°	0.71	-65°	0.70	-65°
1900 MHz	0.71	-79°	0.71	-74°	0.70	-74°	0.69	-74°

These measurements were made using chips mounted in TO-72 packages.
FIGURE 12

- N29 is a $10 \times 12-m i l$, epitaxial, planar, expanded-contact chip
- Available in Silect ${ }^{\dagger}$ packages
- For VHF mixers and IF amplifiers not requiring AGC characteristics

electrical and operating characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

Trademark of Texas Instruments
-These values do not modify guaranteed limits for specific devices and do not justify operation in excess of absolute maximum ratings.
$\left.\$\right|_{s_{f}} P$ is equal to the insertion power gain of the transistor alone.
NOTES: 1. These parameters were measured using pulse techniques. $t_{w}=\mathbf{3 0 0} \mu \mathrm{s}$, duty cycle $\leqslant 2 \%$.
2. Capacitance, $r_{b} C_{c}$, and s-parameter measurements were made using chips mounted in TIS126 packages.
3. $\mathrm{C}_{c t}$ and $\mathrm{C}_{e b}$ measurements employ a three-terminal capacitance bridge incorporating a guard circuit. The third electrode (emitter or collector, respectively) is connected to the guard terminal of the bridge.

CHIP TYPE N29
 N-P-N SILICON TRANSISTORS

TYPICAL CHARACTERISTICS

NOTES: 1. These parsmaters ware masaured using pulse techniquee. $t_{w}=300 \mu 8$, duty cycle $<\mathbf{2 \%}$.
2. Capacitance, $\mathrm{r}_{\mathrm{b}} \mathrm{C}_{\mathrm{c}}$, and e-paremoter measuremants wore made using chips mounted in TIS128 packages.

CHIP TYPE N29

N-P-N SILICON TRANSISTORS

TYPICAL CHARACTERISTICS
COMMON-EMITTER INPUT REFLECTION COEFFICIENT, sie

and

NORMALIZED INPUT IMPEDANCE
$\mathrm{V}_{\mathrm{CE}}=10 \mathrm{~V}, \mathrm{z}_{\mathrm{G}}=\mathrm{z}_{\mathrm{L}}=50 \mathrm{~s} 2+\mathrm{jo}, \mathrm{T}_{\mathrm{A}}=\mathbf{2 5} 5^{\circ} \mathrm{C}$

Frequency	$1 \mathrm{C}=4 \mathrm{~mA}$		$\mathrm{IC}_{\mathrm{C}}=8 \mathrm{~mA}$		$\mathrm{I}_{\mathrm{C}}=15 \mathrm{~mA}$	
	\| ${ }_{\text {ie }} \mid$	$\phi_{\text {sie }}$	$\beta_{i j}$ I	$\phi_{\text {sie }}$	\| ${ }_{\text {ie }} \mid$	$\phi_{\text {sie }}$
100 MHz	0.50	-107°	0.37	-121°	0.41	-131 ${ }^{\circ}$
200 MHz	0.45	-129°	0.41	-145°	0.44	-155°
300 MHz	0.45	-153°	0.46	-169°	0.50	-176°
400 MHz	0.46	-165°	0.49	175°	0.54	171°
500 MHz	0.48	-178°	0.53	165°	0.58	158°
600 MHz	0.52	162°	0.56	155°	0.61	149°
700 MHz	0.56	150°	0.60	144°	0.64	140°
800 MHz	0.61	139°	0.65	134°	0.68	130°

These measurements were made using chips mounted in TIS126 packages.

FIGURE 10

CHIP TYPE N29 N-P-N SILICON TRANSISTORS

TYPICAL CHARACTERISTICS

COMMON-EMITTER OUTPUT REFLECTION COEFFICIENT, soe
and
NORMALIZED OUTPUT IMPEDANCE
$V_{C E}=10 \mathrm{~V}, \mathbf{Z}_{\mathbf{G}}=\mathbf{Z}_{\mathrm{L}}=50 \Omega 2+j 0, \mathrm{~T}_{\mathbf{A}}=\mathbf{2 5} \mathbf{C}$

Frequency	$I_{C}=4 \mathrm{~mA}$		$I C^{\prime}=8 \mathrm{~mA}$		$\mathrm{IC}^{\prime}=15 \mathrm{~mA}$	
	$\mathbf{k}_{\mathbf{0 e}} 1$	$\phi_{\text {Soe }}$	Poel	$\phi_{\text {soe }}$	Fool	$\phi_{\text {Soe }}$
100 MHz	0.96	-2^{6}	0.95	-2°	0.93	-2°
200 MHz	0.95	-6°	0.95	-6°	0.93	-5°
300 MHz	0.94	-9°	0.94	-9°	0.92	-9 ${ }^{\circ}$
400 MHz	0.93	-12°	0.93	-12°	0.92	-12°
500 MHz	0.92	-17	0.92	$-17{ }^{\circ}$	0.92	-17°
600 MHz	0.91	-21°	0.91	-21°	0.91	-21°
700 MHz	0.90	-27°	0.90	-27°	0.90	-27°
800 MHz	0.88	-32°	0.88	-32°	0.88	-32°

These measurements ware made using chips mounted in TIS126 packages.

CHIP TYPE N30
 N-P-N SILICON TRANSISTORS

- N30 is a 10×12-mil, epitaxial, planar, expanded-contact chip
- Available in Silect ${ }^{\dagger}$ packages
- For use in VHF/UHF common-base oscillator and amplifier circuits

electrical charactsristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER		CONDITIONS			OBSERVED VALUES			UNIT			
		LOW	TYP	HIGH							
V(BR)CBO Colfector-Base Breakdown Voltage					$I_{C}=100 \mu A$,	${ }^{\prime}=0$		40°	55		V
$\mathrm{V}_{\text {(BR)CEO }} \begin{aligned} & \text { Collector-Emitter } \\ & \text { Breakdown Voltage } \end{aligned}$		$I^{\prime} \mathrm{C}=1 \mathrm{~mA}$,	$\mathrm{I}_{\mathrm{B}}=0$.	See Note 1	25*	40		V			
$V_{\text {(RR)EBO }}$	Emitter-Base Breakdown Voltage	$\mathrm{I}_{\mathrm{E}}=10 \mu \mathrm{~A}$,	$\mathrm{I}^{1} \mathrm{C}=0$		4*	5.5		V			
ICBO	Collector Cutoff Current	$\mathrm{V}_{C B}=25 \mathrm{~V}$,	$\mathrm{IE}_{\mathrm{E}}=0$			<0.1	100	nA			
hFE	Static Forward Current Transfer Ratio	$V_{C E}=10 \mathrm{~V}$,	$l_{C}=4 \mathrm{~mA}$	See Note 1	60	150					
		$V_{C E}=10 \mathrm{~V}$,	$I_{C}=10 \mathrm{~mA}$			155					
$\mathrm{V}_{\text {BE }}$	Base-Emitter Voltage	$V_{C E}=10 \mathrm{~V}$,	$1 \mathrm{C}=4 \mathrm{~mA}$,	See Note 1		0.75	0.9	V			
$V_{\text {CE (sat) }}$	Collector-Emitter Saturation Voltage	$\mathrm{I}_{\mathrm{B}}=1 \mathrm{~mA}$,	$\mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}$,	See Note 1		0.1	0.5	V			
${ }^{4}$	Transition Frequency	$V_{C E}=10 \mathrm{~V}$	$\mathrm{IC}^{\prime}=4 \mathrm{~mA}$,	$f=100 \mathrm{MHz}$	0.8			GHz			
		$V_{C E}=10 \mathrm{~V}$,	$I_{C}=10 \mathrm{~mA}$,	$f=400 \mathrm{MHz}$	1.8						
$\beta_{f f}{ }^{2}$	Square of Common-Emitter Forward Transmission Coefficient \ddagger	$V_{C E}=10 \mathrm{~V}$ See Note 2	$I^{\prime} \mathrm{C}=4 \mathrm{~mA}$,	$f=400 \mathrm{MHz}$,		10		dB			
C_{cb}	Collector-Base Capacitance	$V_{C B}=10 \mathrm{~V}$.	$\mathrm{I}_{\mathrm{E}}=0$	$\mathrm{f}=1 \mathrm{MHz}$,		0.6	0.9	pF			
$\mathrm{C}_{\text {ce }}$	Collector-Emitter Capacitance	$V_{C E}=10 \mathrm{~V}$.	$\mathrm{I}_{\mathrm{B}}=0$	See Notes 2 and 3		0.3	0.4	pF			
$r_{b}{ }^{\prime} C_{c}$	Collector-Base Time Constant	$V_{C B}=10 \mathrm{~V},$ See Note 2	$I_{E}=-10 \mathrm{~mA}$,	$\mathrm{f}=79.8 \mathrm{MHz}$,		6	9	ps			

[^155]
CHIP TYPE N3O N-P-N SILICON TRANSISTORS

TYPICAL CHARACTERISTICS

NOTE 1: This parameter was measured using pulse techniques. $t_{w}=300 \mu s$, duty cycle $\leqslant \mathbf{2 \%}$.

N-P-N SILICON TRANSISTORS

TYPICAL CHARACTERISTICS

figure 7

Figure 6

NOTES: 2. Capacitance, $r_{b}{ }^{\prime} C_{c}$, and s-parameter measurements were made using chips mounted in Silect packages.
3. $\mathrm{C}_{\mathbf{c b}}$ and $\mathrm{C}_{\text {ce }}$ measurements employ a three-terminal capacitance bridge incorporating a guard circuit. The third electrode (emitter or base, respectively) is connected to the guard terminal of the bridge.

CHIP TYPE N30 N-P-N SILICON TRANSISTORS

TYPICAL CHARACTERISTICS

COMMON-EMITTER INPUT REFLECTION COEFFICIENT, $s_{i e}$
and
NORMALIZED INPUT IMPEDANCE

$$
V_{C E}=10 \mathrm{~V}, Z_{G}=Z_{L}=50 \Omega+j 0, T_{A}=25^{\circ} \mathrm{C}
$$

Frequency	$\mathrm{t}^{\prime}=1 \mathrm{~mA}$		$I_{C}=4 \mathrm{~mA}$		$\mathrm{IC}^{\prime}=8 \mathrm{~mA}$		$I_{C}=12 \mathrm{~mA}$		$I^{\prime}=20 \mathrm{~mA}$	
	$\left\|\beta_{i e}\right\|$	$\phi_{\text {sia }}$	\| ${ }_{\text {iel }}$ \|	$\phi_{\text {sie }}$	\| ${ }_{\text {ie }}$ \|	$\phi_{\text {sie }}$	Fiel	$\phi_{\text {sie }}$	Piol	$\phi_{\text {sie }}$
300 MHz	0.60	-46°	0.35	-55°	0.25	-64°	0.20	-73°	0.16	-139°
500 MHz	0.43	-60°	0.24	-66°	0.15	-82°	0.12	-107°	0.18	180°
700 MHz	0.33	-71°	0.15	-84°	0.09	-119 ${ }^{\circ}$	0.09	-166°	0.23	148°
900 MHz	0.23	-89°	0.08	-122°	0.08	171°	0.13	145°	0.30	127°
1100 MHz	0.15	-118°	0.09	$164{ }^{\circ}$	0.15	132°	0.20	122°	0.36	113°
1300 MHz	0.12	-168°	0.16	126°	0.23	115°	0.28	107°	0.44	100°
1500 MHz	0.17	144°	0.24	110°	0.31	103°	0.35	98°	0.49	92°
1700 MHz	0.25	122°	0.33	100°	0.38	96°	0.43	91°	0.56	85°
1900 MHz	0.35	$109{ }^{\circ}$	0.41	$93{ }^{\circ}$	0.46	89°	0.50	85°	0.61	79°

These measurements were made using chips mounted in Silect packages.
FIGURE 9

CHIP TYPE N30
 N-P-N SILICON TRANSISTORS

TYPICAL CHARACTERISTICS
COMMON-EMITTER OUTPUT REFLECTION COEFFICIENT, soe
and
NORMALIRED OUTPUT IMPEDANCE
$V_{C E}=10 \mathrm{~V}, \mathrm{Z}_{\mathrm{G}}=\mathrm{Z}_{\mathrm{L}}=50 \Omega 2+j 0, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Frequency	$\mathrm{I}^{\prime} \mathrm{C}=1 \mathrm{~mA}$		$1 \mathrm{C}=4 \mathrm{~mA}$		$1 \mathrm{C}=8 \mathrm{~mA}$		$\mathrm{IC}_{\mathrm{C}}=12 \mathrm{~mA}$		${ }^{1} \mathrm{C}=20 \mathrm{~mA}$	
	Fo8	ϕ_{80}	Poul	ϕ_{500}	W00 1	ϕ_{300}	Pod	$\phi_{\text {goe }}$	Fod	$\phi_{\text {cobe }}$
100 MHz	0.94	-7°	0.83	-6°	0.83	-5°	0.82	-5°	0.84	-7°
300 MHz	0.86	-12°	0.79	-10°	0.79	-9°	0.79	-9°	0.80	-10°
500 MHz	0.82	-16°	0.75	-13°	0.74	-13°	0.74	-13°	0.77	-13°
700 MHz	0.79	-20°	0.71	-18°	0.70	-17°	0.69	-17°	0.72	-18°
900 MHz	0.76	-24°	0.68	-22°	0.67	-21°	0.67	-21°	0.70	-22°
1100 MHz	0.73	-29 ${ }^{\circ}$	0.66	-26°	0.65	-25°	0.65	-25°	0.67	-27°
1300 MHz	0.71	-34°	0.64	-31°	0.63	-29°	0.63	-30°	0.65	-32°
1500 MHz	0.70	-39°	0.62	-36°	0.61	-35°	0.61	-35°	0.63	-39°
1700 MHz	0.68	-45°	0.61	-42°	0.59	-41°	0.59	-41°	0.62	-47°
1900 MHz	0.68	-52°	0.60	-49°	0.59	-48°	0.59	-48°	0.62	-55°

These measuramente were made uing chips mounted in Silect packegas.

CHIP TYPE N31
 N-P-N SILICON TRANSISTORS

- N31 is a $\mathbf{2 6} \times \mathbf{2 6 - m i l}$, epitaxial, planar, direct-contact chip
- Available in TO-39 and Silect ${ }^{\dagger}$ packages
- For use in high-voltage amplifier circuits

electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER	CONDITIONS			OBSERVED VALUES			UNIT
				$\frac{\text { LOW }}{250^{*}}$	TYP	HiGH	
$V_{\text {(BR) }}$ CBO Collector-Base Breakdown Voltage	$I_{C}=100 \mu A$,	$\mathrm{IE}_{\mathrm{E}}=0$			350		V
$V_{\text {(BR)CEO }}$Collector-Emitter Breakdown Voltage	$I^{\prime}=10 \mathrm{~mA}$,	$I_{B}=0$,	See Note 1	250*	350		V
V(BR)EBO Emitter-Base Breakdown Voltage	$I_{E}=100 \mu A$,	$1 \mathrm{C}=0$		$6{ }^{\circ}$	9.5		V
ICBO \quad Collector Cutoff Current	$V_{C B}=100 \mathrm{~V}$.	$I_{E}=0$			<0.1	50	nA
CBO	$V_{C E}=10 \mathrm{~V}$,	$\mathrm{I}_{\mathrm{C}} \mathrm{C}=4 \mathrm{~mA}$		20	165		
hFE Static Forward Current	$V_{C E}=10 \mathrm{~V}$,	$\mathrm{I}^{\prime} \mathrm{C}=20 \mathrm{~mA}$	See Note 1	30	185	300	
Fe Transfer Ratio	$V_{C E}=10 \mathrm{~V}$.	$I^{\prime} \mathrm{C}=40 \mathrm{~mA}$	See Note 1	30	150	200	
VBE Base-Emitter Voltage	$V_{C E}=10 \mathrm{~V}$,	$1 \mathrm{C}=20 \mathrm{~mA}$,	See Note 1		0.7	1	V
VCE(sat) Collector-Emitter Saturation Voltage	$\mathrm{I}_{\mathrm{B}}=2 \mathrm{~mA}$,	$I^{\prime}=20 \mathrm{~mA}$,	See Note 1		0.11	1	V
TT Transition Frequency	$V_{C E}=20 \mathrm{~V}$,	$1 \mathrm{C}=20 \mathrm{~mA}$,	$f=20 \mathrm{MHz}$	70	125		MHz
C_{cb} Collector-Base Capacitance	$V_{C B}=10 \mathrm{~V}$,	$\mathrm{IE}_{\mathrm{E}}=0$	$f=1 \mathrm{MHz}$,		2.5	3.5	pF
$\mathrm{C}_{\text {eb }}$ Emitter-Base Capacitance	$V_{\text {EB }}=0.5 \mathrm{~V}$,	$I_{C}=0$	See Notes 2 and 3		25		pF

[^156]
CHIP TYPE N31
 N-P-N SILICON TRANSISTORS

TYPICAL CHARACTERISTICS

FIGURE 1
hfe vs Ic

figure 2

Vbevs ic

FIGURE 3

FIGURE 4
$\mathbf{C b b}_{\text {cb }}$ vs $\mathbf{V B}$

FIGURE 6

FIGURE 5

FIGURE 7

NOTES: 1. This parameter was measured using pulse techniques. $t_{w}=300 \mu s$, duty cycle $\leqslant 2 \%$.
2. Cepacitance measurements were made using chips mounted in TO-39 packages.
3. $\mathbf{C}_{\mathbf{c b}}$ and $\mathrm{C}_{e b}$ measurements employ a three-terminal capacitance bridge incorporating a guard circuit. The third electrode (emitter or collector, respectively) is connected to the guard terminal of the bridge.

CHIP TYPE P11
 P-N-P SILICON TRANSISTORS

- P11 is a $13 \times 21-$ mil, epitaxial, planar, expanded-contact chip
- Available in TO-18 packages
- For use in high-speed, medium-current switching circuits

electrical and operating characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

[^157]PARAMETER MEASUREMENT INFORMATION

TEST CIRCUIT

(See Notes a and b) VOLTAGE WAVEFORNS

NOTES: a. The input waveforms are supplied by a generator with the following characteristics: $\mathbf{Z}_{\text {out }}=\mathbf{5 0} \Omega, \mathrm{t}_{\mathbf{w}} \approx \mathbf{2 0 0} \mathrm{ns}, \mathrm{duty} \mathbf{c y c l e} \leqslant \mathbf{2 \%}$.
b. Waveforms are monitored on an oscilloscope with the following characteristics: $\mathrm{t}_{\mathrm{r}} \approx 1 \mathrm{~ns}, \mathrm{R}_{\text {in }} \geqslant 100 \mathrm{k} \Omega, \mathrm{C}_{\text {in }} \leqslant 7 \mathrm{pF}$.

FIGURE 1-SWITCHING TIMES

TYPICAL CHARACTERISTICS

FIGURE 2

FIGURE 5

FIGURE 3

FIGURE 6

FIGURE 4

FIGURE 7

NOTE 1: These parameters were measured using pulse techniques. $t_{w}=\mathbf{3 0 0} \mu_{s}$, duty cycle $<\mathbf{2 \%}$.

CHIP TYPE P11 P-N-P SILICON TRANSISTORS

TYPICAL CHARACTERISTICS

FIGURE 8

FIGURE 11

FIGURE 14

FIGURE 10

FIGURE 13

FIGURE 16

NOTES: 2. Capacitance measurements were made using chipt mounted In TO-18 packages.
3. $C_{c b}$ measurement employs a three-terminal capacitance bridge incorporating a guard circuit. The emitter is connected to the guard terminal of the bridge. Cobo measurement is made with the third terminal floating.

P-N-P SILICON TRANSISTORS

- P12 is a 26×26-mil, epitaxial, planar, direct-contact chip
- Available in TO-39 or plastic dual-in-line quad packages
- For use as a high-speed, high-current memory-core driver or other medium-current (to 1.5 A) switching circuits

electrical and operating characteristics at $\mathbf{2 5}{ }^{\circ} \mathrm{C}$ free-air temperature

PARAMETER		CONDITIONS			OBSERVED VALUES		UNIT			
		LOW	TYP HIGH							
$V_{\text {(BR) }}$ CBO	Collector-Base Breakdown Voltage				$I^{\prime}=-10 \mu A$,	$\mathrm{I}_{\mathrm{E}}=0$		-40^{*}	-70	V
$V_{\text {(BR) }}$ CEO	Collector-Emitter Breakdown Voltage	$I_{C}=-10 \mathrm{~mA}$,	$\mathrm{I}_{8}=0$,	See Note 1	-40*	-50	V			
$V_{\text {(BR)EBO }}$	Emitter-Base Breakdown Voltage	$\mathrm{I}_{\mathrm{E}}=-10 \mu \mathrm{~A}$,	$\mathrm{I}^{\prime} \mathrm{C}=0$		-5*	8	V			
ICBO	Collector Cutoff Current	$V_{C B}=-20 \mathrm{~V}$,	$\mathrm{I}_{E}=0$			$\begin{array}{\|cc\|}-10 & -100\end{array}$	nA			
IEBO	Emitter Cutaff Current	$V_{E B}=-4 V_{1}$	$I_{C}=0$			-<10 -50	nA			
hFE	Static Forward Current Transfer Ratio	$\mathrm{V}_{C E}=-1 \mathrm{~V}_{\text {, }}$	$1 C^{=}-150 \mathrm{~mA}$	See Note 1	25	70				
		$V_{C E}=-1 \mathrm{~V}$,	$I_{C}=-500 \mathrm{~mA}$			$40 \quad 150$				
		$\mathrm{V}_{\text {CE }}=-5 \mathrm{~V}$,	$1_{C}=-750 \mathrm{~mA}$		20	50				
		$V_{C E}=-5 \mathrm{~V}$,	$1 \mathrm{C}=-1 \mathrm{~A}$		15	40				
$V_{B E}$	Base-Emitter Voltage	$\mathrm{I}_{\mathrm{B}}=-15 \mathrm{~mA}$,	$I_{C}=-150 \mathrm{~mA}$	See Note 1		-0.80 -1.1	V			
		$\mathrm{I}_{\mathrm{B}}=-50 \mathrm{~mA}$,	$I_{C}=-500 \mathrm{~mA}$			-0.88-1.5				
		$\mathrm{I}_{\mathrm{B}}=-100 \mathrm{~mA}$,	$\mathrm{I}_{\mathrm{C}}=-1 \mathrm{~A}$			-1.15 -2.0				
$V_{C E}($ sat)	Collector-Emitter Saturation Voltage	$\mathrm{I}_{\mathrm{B}}=-15 \mathrm{~mA}$,	${ }^{1} \mathrm{C}=-150 \mathrm{~mA}$	See Note 1		-0.18-0.35	v			
		$\mathrm{I}_{8}=-50 \mathrm{~mA}$,	$\mathrm{I}^{\prime}=-500 \mathrm{~mA}$			-0.35 -0.6				
		$\mathrm{I}_{\mathrm{B}}=-100 \mathrm{~mA}$,	$1 \mathrm{C}=-1 \mathrm{~A}$			-0.65 -1.2				
${ }^{\dagger} \mathbf{T}$	Transition Frequency	$\mathrm{V}_{C E}=-10 \mathrm{~V}$,	$1 \mathrm{C}=-50 \mathrm{~mA}$,	$\mathrm{f}=100 \mathrm{MHz}$	150	350	MHz			
$\mathrm{C}_{\text {obo }}$	Common-Base Open-Circuit Output Capacitance	$\mathrm{V}_{\mathrm{CB}}=-10 \mathrm{~V}$,	$I_{E}=0$	$f=1 M H z,$ See Notes 2 and 3		$12 \quad 25$	pF			
$\mathrm{C}_{\text {ibo }}$	Common-Base Open-Circuit Input Capacitance	$V_{E B}=-0.5 \mathrm{~V}$,	$1 \mathrm{C}=0$			$55 \quad 100$	pF			
C_{cb}	Collector-Base Capacitance	$\mathrm{V}_{\text {CB }}=-10 \mathrm{~V}$,	$\mathrm{IE}_{\mathrm{E}}=0$			11	pF			
C_{eb}	Emitter-Base Capacitance	$V_{E B}=-0.5 \mathrm{~V}$,	$\mathrm{I}_{\mathrm{C}}=0$			50	pF			
t_{d}	Delay Time	$V_{C C}=-30 \mathrm{~V}$, $I_{C} \approx-500 \mathrm{~mA}$, $\mathrm{I}_{\mathrm{B}(1)} \approx-50 \mathrm{~mA}$, $\mathrm{V}_{\mathrm{BE}(\mathrm{off})} \approx 2 \mathrm{~V}$		2N3244 Data Sheet Circuit		5	ns			
t_{r}	Rise Time				13					
$\mathrm{t}_{\text {s }}$	Storage Time	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=-30 \mathrm{~V}, \\ & \mathrm{t}_{\mathrm{B}(1)} \approx-50 \mathrm{~mA} . \end{aligned}$	$\begin{aligned} & I_{C} \approx-500 \mathrm{~mA}, \\ & I_{B}(2) \approx 50 \mathrm{~mA} \end{aligned}$			40				
t_{f}	Fall Time					13				
t_{d}	Delay Time	$\begin{aligned} & V_{C C}=-30 \mathrm{~V} \\ & '_{B(2)} \approx 50 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{C}} \approx-500 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{BE}}(\mathrm{off}) \approx 4.1 \mathrm{~V} \end{aligned}$		$\mathrm{I}_{\mathrm{B}}(1) \approx-50 \mathrm{~mA},$ See Figure 1		7	ns		
t_{r}	Rise Time					13				
$\mathrm{t}_{\text {s }}$	Storage Time					40				
t_{f}	Fall Time					13				

- These values do not modify guaranteed limits for specific devices and do not justify operation in excess af absolute maximum ratings.

NOTES: 1. These parameters were measured using pulse techniques. $\mathbf{t}_{\mathbf{w}}=\mathbf{3 0 0} \mu \mathrm{s}$, duty cycle $\leq \mathbf{2 \%}$.
2. Capacitance measurements were made using chips mounted in TO-39 packages.
3. C_{cb} and $\mathrm{C}_{e \mathrm{~b}}$ measurements employ a three-terminal capacitance bridge incorporating a guard circuit. The third electrode (emitter or collector, respectively) is connected to the guard terminal of the bridge. C_{ob} o and $\mathrm{C}_{\mathrm{ibo}}$ measurements are made with the third terminal floating.

CHIP TYPE P12 P-N-P SILICON TRANSISTORS

PARAMETER MEASUREMENT INFORMATION

TEST CIRCUIT

(See Notes a and b) VOLTAGE WAVEFORMS

NOTES: a. The input waveforms are supplied by a generator with the following characteristics: $Z_{\text {out }}=50 \Omega$; measuring t_{d} and t_{r}, $t_{w} \approx 200 \mathrm{~ns}$, duty cycle $\leqslant 2 \%$; for measuring t_{s} and $t_{f}, t_{w} \approx 10 \mu$ s, duty cycle $\leqslant 2 \%$.
b. Waveforms are monitored on an oscilloscope with the following characteristics: $\mathrm{t}_{\mathrm{r}} \leqslant 1 \mathrm{~ns}, \mathrm{R}_{\text {in }} \leqslant 100 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{in}} \leqslant 7 \mathrm{pF}$.

FIGURE 1-SWITCHING TIMES

TYPICAL CHARACTERISTICS

$V_{B E}$ vs I_{C}

FIGURE 5

VCE(sat) vs lC

FIGURE 6

NOTE 1: These parameters were measured using pulse techniques. $\mathbf{t}_{\mathbf{w}}=300 \mu \mathrm{~s}$, duty cycle $\leqslant 2 \%$.

TYPICAL CHARACTERISTICS

Figure 7
t_{d}, t_{r} vs $\mathbf{T}_{\mathbf{A}}$

figure 10

FIGURE 13
$C_{\text {oboo }}, C_{c b}$ vs $V_{C B}$

Figure 8

FIGURE 11

FIGURE 14
$c_{\text {ibor }} \mathrm{C}_{\text {eb }}$ vs V_{EB}

FIGURE 9

FIGURE 12

FIGURE 15

NOTES: 2. Capacitance measuraments were made uting chips mounted in TO-39 packages.
3. C_{cb} and $\mathrm{C}_{\text {eb }}$ measuremants emplov a three-terminal capacitance bridge Incorporating a guard circuit. The third electrode (emitter or collector, respectively) is connected to the guard terminal of the bridge. $\mathrm{C}_{\text {obo }}$ abd $\mathrm{C}_{\text {lbo }}$ measuremente are made with the third terminal floating.

CHIP TYPE P13
 P-N-P SILICON TRANSISTORS

- P13 is a 21×21-mil, epitaxial, planar, direct-contact, double-emitter chip
- Available in TO-72 packages
- For use in low-level, high-speed chopper circuits requiring the very low offset voltage of double-emitter transistors

electrical characteristics at $\mathbf{2 5}{ }^{\circ} \mathrm{C}$ free-air temperature

PARAMETER		CONDITIONS		OBSERVED VALUES			UNIT		
		LOW	TYP	HIGH					
$V_{\text {(BR) }}$ CBO	Collector-Base Breakdown Voltage			$I_{C}=-1 \mu A$,	$I_{E 1}=I_{E 2}=0$	-70^{*}	-90		V
$V_{\text {(BR) }}{ }^{\text {(BRCO }}$	Emitter-Collector Breakdown Voltage	$\mathrm{I}_{E}=-1 \mu A$,	$\mathrm{I}_{\mathrm{B}}=0, \quad$ See Note 1	-35°	-50		V		
$V_{\text {(BR)E1E2 }}$	Emitter-Emitter Breakdown Voltage	$\mathrm{I}_{\mathrm{E} 1}= \pm 1 \mu \mathrm{~A}$,	$V_{C B}=0, \quad$ See Note 2	$\pm 40^{\circ}$	± 60		V		
${ }^{\text {ICBO }}$	Collector Cutoff Current	$\mathrm{V}_{C B}=-30 \mathrm{~V}$,	$\mathrm{IE}_{1}=\mathrm{IE2}=0$		-10	-250	pA		
IE1E2(off)	Emitter Cutoff Current	$V_{E 1 E 2}= \pm 25 \mathrm{~V}$,	$V_{C B}=0, \quad$ See Note 2		± 4	± 100	pA		
hFE	Static Forward Current Transfer Ratio	$V_{C E}=-6 \mathrm{~V}$.	$\mathrm{l}^{\mathbf{C}} \mathbf{= 1 1 \mathrm { mA }}$, See Note 1	50	150				
NE1E2(ofs)!	Emitter-Emitter Offset Voltage	$\mathrm{I}_{\mathrm{B}}=-1 \mathrm{~mA}$,	$\mathrm{IE}_{1}=\mathrm{IE}_{2}=0$		7	10	$\mu \mathrm{V}$		
rele2(on)	Small-Signal Emitter-Emitter On-State Resistance	$\begin{aligned} & \mathrm{I}_{\mathrm{B}}=-1 \mathrm{~mA}, \\ & \mathrm{f}=1 \mathrm{kHz} \end{aligned}$	$I_{E 1}=i_{E 2}=0, I_{e}=100 \mu A$,	10	25	50	Ω		
${ }^{\mathbf{T}} \mathbf{T}$	Transition Frequency	VCE $=-6 \mathrm{~V}$. See Note 1	$I_{C}=-1 \mathrm{~mA}, \quad \mathrm{f}=4 \mathrm{MHz},$	12	24		MHz		
$\mathrm{C}_{\text {obo }}$	Common-Base Open-Circuit Output Capacitance	$\begin{aligned} & V_{C B}=-6 V \\ & \text { See Note } 3 \end{aligned}$	$I_{E 1}=I_{E 2}=0, f=1 \mathrm{MHz}$		8	10	pF		
$C_{\text {ibo }}$	Common-Base Open-Circuit Input Capacitance	$V_{E B}=-6 V .$ See Notes 1 and	$\mathrm{I} C=0, \quad f=1 \mathrm{MHz},$		2	3	pF		

- Thege valuet do not modify guaranteed limits for specific devices and do not justify operation in excess of absolute maximum ratings.

NOTES: 1. These values apply separ ately for each emitter with the other emitter open-circuited.
2. These parameters were measured with the collector short-circuited to the base but open-circuited with respect to the emitters.

The values apply for both polarities of arnitter-to-emitter voltage.
3. Capacitance measurements were made using chips mounted in TO-72 packages.

CHIP TYPE P13

P-N-P SILICON TRANSISTORS

TYPICAL CHARACTERISTICS

NOTES: 1. These values apply separately for each emitter with the other emitter open-circuited.
2. These parameters were measured with the collector short-circuited to the base but open-circuited with respect to the emitters. The values apply for both polarities of emitter-to-emitter voltage.
3. Capacitance measurements were made using chips mounted in TO-72 packages.
${ }^{\dagger}$ The polarity of the offset voltage at $\mathrm{T}_{A}=25^{\circ} \mathrm{C}$ and $\mathrm{I}_{B}=-1 \mathrm{~mA}$ is arbitrarily assumed to be positive.

CHIP TYPE P14
 P-N-P SILICON TRANSISTORS

- P14 is a 19×19 mil, epitaxial, planar, direct-contact chip

- Available in TO-46 and Silect ${ }^{\dagger}$ Packages

- For use in low-level, high-speed chopper circuits in inverted connection (collector and emitter terminals reversed), and may also be used as a low-level amplifier

electrical characteristics at $\mathbf{2 5}{ }^{\circ} \mathrm{C}$ free-air temperature

[^158]
CHIP TYPE P14
 P-N-P SILICON TRANSISTORS

NOTE 2: These parameters were measured using pulse techniques. $t_{w}=300 \mu \mathrm{~s}$, duty cycle $\leqslant \mathbf{2 \%}$.

CHIP TYPE P4 P-N-P SILICON TRANSISTORS

TYPICAL CHARACTERISTICS

NOTE 2: These parameters were measured using pulse techniques, $\mathbf{t}_{w}=\mathbf{3 0 0} \mu \mathrm{s}$, duty evcle $\leqslant 2 \%$.

TYPICAL CHARACTERISTICS
$V_{E C}$ vs I_{B}

FIGURE 9
$\mathbf{V B C}_{\mathrm{B}}$ viE

FIGURE 11

VEC(ofs) vs 1 B

I_{B} - Bose Current -mA
FIGURE 10
$r_{e c}$ (on) vs I_{B}

FIGURE 12

NOTE 2: These parameters were measured using pulse techniques. $f_{w}=300 \mu \mathrm{~s}$, duty cycle $\leqslant 2 \%$.

TYPICAL CHARACTERISTICS

FIGURE 13

NOTE 1: Capacitance measurements were made using ehips mounted in TO-46 packages.

CHIP TYPE P15

P-N-P SILICON TRANSISTORS

- P15 is a 19×19-mil, epitaxial, planar, direct-contact chip
- Available in Silect ${ }^{\boldsymbol{\dagger}}$ packages
- For use in general purpose, saturated switching, and amplifier circuits

electrical and operating characteristics at $\mathbf{2 5}{ }^{\circ} \mathrm{C}$ free-air temperature

[^159]
CHIP TYPE P15 P-N-P SILICON TRANSISTORS

PARAMETER MEASUREMENT INFORMATION

TEST CIRCUIT

(See Notes a and b) VOLTAGE WAVEFORMS

NOTES: a. The input waveforms are supplied by.a generator with the following characteristics: $\mathbf{Z}_{\text {out }}=50 \Omega$; for $\mathbf{m e a s i n g} \mathbf{t}_{\mathbf{d}}$ and t_{r} $t_{w} \approx 200 \mathrm{~ns}$, duty cycle $\leqslant 2 \%$; for measuring t_{s} and $t_{f}, t_{w} \approx 10 \mu \mathrm{~s}$, duty cycle $\leqslant 2 \%$
b. Weveforms are monitored on an oscilloscope with the following characteristics: $t_{r} \approx 1 \mathrm{~ns}, R_{\text {in }} \geqslant 100 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{in}} \leqslant 7 \mathrm{pF}$.

FIGURE 1-SWITCHING TIMES
TYPICAL CHARACTERISTICS

NOTE 1: These parameters were measured using pulse techniques, $\mathrm{t}_{\mathbf{w}}=300 \mu \mathrm{~s}$, duty cycle $\leqslant 2 \%$.

CHIP TYPE P15
 P-N-P SILICON TRANSISTORS

TYPICAL CHARACTERISTICS

FIGURE 8

FIGURE 9
$\mathrm{f}_{\mathbf{T}} \mathrm{vs} \mathrm{I}_{\mathrm{C}}$

FIGURE 10

FIGURE 11

FIGURE 13

Figure 12

Figure 14

NOTES: 2. Capacitance measurements were made using chips mounted in Silect packages.
3. C_{cb} measurement employs a three-terminal capacitance bridge incorporating a guard circuit. The emitter is connected to the guard terminal of the bridge. Cobo and $C_{i b o}$ measurements are made with the third terminal floating.
4. Average Noise Figure is measured in an amplifier with response down 3 dB at 10 Hz and 10 kHz and a high-frequency roll-off of $6 \mathrm{~dB} /$ octave.

CHIP TYPE PI6
 P-N-P SILICON TRANSISTORS

- P16 is a 28×28-mil, epitaxial, planar, direct-contact chip
- Available in TO-18, TO-39, and Silect ${ }^{\dagger}$ packages
- For use in general purpose amplifier and switching circuits

electrical and operating characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

[^160]
CHIP TYPE PI6 P-N-P SILICON TRANSISTORS

PARAMETER MEASUREMENT INFORMATION

 b. Waveforms are monitored on an oscllloscope with the following charscteristics: $t_{r} \leqslant 1 \mathrm{~ns}, \mathrm{R}_{\mathrm{in}}>100 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{in}} \leqslant 7 \mathrm{pF}$.

FIGURE 1-SWITCHING TIMES
TYPICAL CHARACTERISTICS

NOTE 1: These parameters were measured using pulse techniques. $\mathbf{t}_{\mathbf{w}}=\mathbf{3 0 0} \mu_{\mathrm{s}}$, duty cycle $<\mathbf{2 \%}$.

CHIP TYPE PI6
 P-N-P SILICON TRANSISTORS

TYPICAL CHARACTERISTICS

FIGURE 8

FIGURE 10
fT vis

FIGURE 9

FIGURE 11

[^161]

Figure 12

IC-Collector Current-mA

FIGURE 13

figure 15

- P17 is a $\mathbf{2 0} \times \mathbf{2 0}$-mil, epitaxial, planar, direct-contact chip
- Available in TO-5, TO-18, and Silect ${ }^{\dagger}$ packages
- For use in high-voltage amplifier and low-current switching circuits

electrical and operating characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER		CONDITIONS			OBSERVED VALUES			UNIT			
		LOW	TYP	HIGH							
$\mathrm{V}_{\text {(BR) }}$ CBO	Collector-Base Breakdown Voltage				${ }^{\prime} \mathrm{C}=-10 \mu \mathrm{~A}$,	${ }_{\text {E }}=0$		-180*	-220		v
$\mathrm{V}_{\text {(BR)CEO }}$	Collector-Emitter Breakdown Voltage	${ }^{1} \mathrm{C}=-10 \mathrm{~mA}$,	$\mathrm{I}_{\mathrm{B}}=0$,	See Note 1	-150*	-180		\checkmark			
$V_{\text {(BR) }}$ EBO	Emitter-Base Breakdown Voltage	$\mathrm{I}_{\mathrm{E}}=-10 \mu \mathrm{~A}$,	$\mathrm{I}^{\prime}=0$		-7*	-8		\checkmark			
ICBO	Collector Cutoff Current	$V_{C B}=-50 \mathrm{~V}$,	${ }^{1} \mathrm{E}=0$			-<0.1	-100	nA			
IEbo	Emitter Cutoff Current	$V_{E B}=-3 V_{\text {, }}$	${ }^{\prime} \mathrm{C}=0$			$-<0.1$	-25	nA			
$h_{\text {FE }}$	Static Forward Current Transfer Ratio	$\mathrm{V}_{\text {CE }}=-10 \mathrm{~V}$,	${ }^{1} \mathrm{C}=-100 \mu \mathrm{~A}$		35	70	280				
		$V_{C E}=-10 \mathrm{~V}$,	${ }^{1} \mathrm{C}=-1 \mathrm{~mA}$	See Note 1	40	80	300				
		$\mathrm{V}_{C E}=-10 \mathrm{~V}$,	$1 \mathrm{C}=-10 \mathrm{~mA}$		40	90	300				
		$\mathrm{V}_{\mathrm{CE}}=-10 \mathrm{~V}$.	$1 \mathrm{C}=-50 \mathrm{~mA}$		40	70	300				
V_{BE}	Base-Emitter Voltage	$\mathrm{I}_{\mathrm{B}}=-1 \mathrm{~mA}$,	$\mathrm{I}_{\mathrm{C}}=\mathbf{- 1 0} \mathrm{mA}$,	See Note 1	-0.6	-0.7	-1.0	V			
$V_{\text {CE }}($ sat $)$	Collector-Emitter Saturation Voltage	$\mathrm{I}_{\mathrm{B}}=-1 \mathrm{~mA}$,	$\mathrm{Ic}=\mathbf{- 1 0} \mathrm{mA}$,	See Note 1		-0.1	-0.5	v			
$\mathrm{hie}_{\text {ie }}$	Small-Signal Common-Emitter Input Impedance	$\mathrm{V}_{C E}=-10 \mathrm{~V}$,	$I^{\prime}=-10 \mathrm{~mA}$,	$f=1 \mathrm{kHz}$	0.1	0.34	1.2	$\mathrm{k} \Omega$			
h_{fe}	Small-Signal Common-Emitter Forward Current Transfer Ratio				40	90	300				
$\mathrm{h}_{\text {re }}$	Small-Signal Common-Emitter Reverse Voitage Transfer Ratio					$\begin{array}{r} 1 \times \\ 10^{-4} \end{array}$	$\begin{array}{r} 2 \times \\ 10^{-4} \end{array}$				
$\mathrm{h}_{\text {oe }}$	Small-Signal Common-Emitter Output Admittance					40	300	umho			
${ }_{\text {fT }}$	Transition Frequency	$\mathrm{V}_{C E}=-10 \mathrm{~V}$,	$\mathrm{I}^{\text {c }}=\mathbf{- 2 0} \mathrm{mA}$,	$\mathrm{f}=100 \mathrm{MHz}$	150	220		MHz			
Cobo	Common-Base Open-Circuit Output Capacitance	$V_{C B}=-10 \mathrm{~V},$ See Note 2	$\mathrm{I}_{\mathrm{E}}=0$,	$f=1 \mathrm{MHz}$,		4		pF			
Cibo	Common-Base Open-Circuit Input Capacitance	$V_{E B}=-0.5 \mathrm{~V} .$ See Note 2	IC $=0$,	$\mathrm{f}=1 \mathrm{MHz}$,		22		pF			
t_{d}	Delay Time	$\begin{aligned} & V_{C C}=-30 \mathrm{~V}, \\ & l_{\mathrm{B}(1)} \approx-1 \mathrm{~mA}, \\ & V_{C C}=-30 \mathrm{~V}, \\ & l_{B(1)} \approx-1 \mathrm{~mA}, \end{aligned}$	$\begin{aligned} & I_{C}=-10 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{BE}(\mathrm{off})} \approx 0 \\ & \hline I_{C} \approx-10 \mathrm{~mA} \\ & I_{B(2)} \approx 1 \mathrm{~mA} \\ & \hline \end{aligned}$	2N3494 Data Sheet Circuit		35		ns			
t_{r}	Rise Time					85					
t_{5}	Storage Time					820					
t_{f}	Fall Time					120					
$t_{\text {d }}$	Delay Time	$\left\{\begin{array}{l} \mathrm{V}_{\mathrm{CC}}=-30 \mathrm{~V}, \\ \mathrm{I}_{\mathrm{B}(2)} \approx 1 \mathrm{~mA}, \end{array}\right.$	$\begin{aligned} & I_{C} \approx-10 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{BE}(\mathrm{off})} \approx 4.1 \end{aligned}$	$I_{B}(1) \approx-1 \mathrm{~mA} \text {, }$ See Figure 1		120		ns			
t_{r}	Rise Time					90					
$\mathrm{t}_{\text {s }}$	Storage Time					820					
${ }_{4}$	Fall Time					120					

[^162]
CHIP TYPE PT7
 P-N-P SILICON TRANSISTORS

PARAMETER MEASUREMENT INFORMATION

TEST CIRCUIT
NOTES: a. The input waveforms are supplied by a generator with the following characteristics: $Z_{o u t}=50 \Omega$; for measuring t_{0} and t_{r}, $t_{w} \approx 100 \mathrm{~ns}$, duty cycle $\leqslant 2 \%$; for measuring t_{s} and $t_{f}, t_{w} \approx 10 \mu_{\mathrm{s}}$, duty cyele $\leqslant 2 \%$.
b. Waveforms are monitored on an oscilloscope with the following characteristics: $t_{r} \leqslant 1 \mathrm{~ns}, \mathrm{R}_{\mathrm{in}} \geqslant 100 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{in}} \leqslant 7 \mathrm{pF}$.

FIGURE 1-SWITCHING TIMES
TYPICAL CHARACTERISTICS

FIGURE 2

FIGURE 4
hFE vs IC

FIGURE 3

VCE(sat) vs ic

FIGURE 5

NOTE 1: These perameters ware measured using puhe techniques. $t_{w}=300 \mu s$, duty cycle $<2 \%$.

CHIP TYPE P17

P-N-P SILICON TRANSISTORS

TYPICAL CHARACTERISTICS

NOTE 2: Capacitance measurements were made using chips mounted in TO-18 packages.

CHIP TYPE P18
 P-N-P SILICON TRANSISTORS

- P18 is a 20×20-mil, epitaxial, planar, direct-contact chip
- Available in TO-18 or Silect ${ }^{\dagger}$ packages
- For use in low-current, low-noise amplifier circuits

electrical and operating characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER		CONDITIONS			OBSERVED VALUES			UNIT			
		LOW	TYP	HIGH							
$V_{\text {(BR) }}$ CBO	Collector-Base Breakdown Voltage				$1 C^{\prime}=-10 \mu A$,	$\mathrm{I}_{\mathrm{E}}=0$		$-50 *-70$			V
V (bR)CEO	Collactor-Emitter Breakdown Voltage	$1 \mathrm{C}=-10 \mathrm{~mA}$,	$I_{B}=0$,	See Note 1	-50*	-70		V			
$V_{\text {(BR)EBO }}$	Emittar-Base Breakdown Voltage	$E_{E}=-10 \mu \mathrm{~A}$,	$I_{C}=0$		-7*	-8		V			
l'CBO	Collector Cutoff Current	$\mathrm{V}_{\mathrm{CB}}=-30 \mathrm{~V}$,	$\mathrm{I}_{\mathrm{E}}=0$		-<0.1 -100			nA			
IEBO	Emitter Cutoff Current	$V_{E B}=-4 \mathrm{~V}$,	$\mathrm{I}^{\prime} \mathrm{C}=0$		-<0.1 -100			nA			
hfe	Static Forward Current Transfer Ratio	$V_{C E}=-5 \mathrm{~V}$,	$\mathrm{I}_{\mathrm{C}}=-1 \mu \mathrm{~A}$		$30 \quad 160$						
		$V_{C E}=-5 \mathrm{~V}$,	$\mathrm{I}^{\prime} \mathrm{C}=-10 \mu \mathrm{~A}$		40220						
		$V_{C E}=-5 V$,	$I^{\prime} \mathrm{C}=-100 \mu \mathrm{~A}$		45	260					
		$V_{C E}=-5 \mathrm{~V}$,	$1 \mathrm{C}=-1 \mathrm{~mA}$		50	280	600				
		$V_{C E}=-5 \mathrm{~V}$,	$I^{\prime}=-10 \mathrm{~mA}$,	See Note 1	50	260					
$V_{\text {ge }}$	Base-Emitter Voltage	$V_{C E}=-5 \mathrm{~V}$,	$1 \mathrm{C}=-1 \mathrm{~mA}$			-0.6	-1.0	V			
VCE(sat)	Collector-Emitter Saturation Voltage	${ }^{\prime} \mathrm{B}=-0.5 \mathrm{~mA}$,	$I^{\prime}=-10 \mathrm{~mA}$,	See Note 1		-0.08	-0.25	V			
$\mathrm{hfo}_{\text {le }}$	Small-Signal Common-Emitter Input Impedance	$V_{C E}=-5 \mathrm{~V}$,	$I^{\prime}=-1 \mathrm{~mA}$,	$f=1 \mathrm{kHz}$	7.5			k Ω			
$h_{\text {fe }}$	Small-Signal Common-Emitter Forward Current Transfer Ratio				280						
$n_{\text {re }}$	Small-Signal Common-Emitter Reverse Voltage Transfer Ratio				$\begin{gathered} 1.6 \times \\ 10^{-4} \end{gathered}$						
hoe	Smali-Signal Cormmon-Emitter Output Acrnittance				15			$\mu \mathrm{mho}$			
${ }^{\text {f }}$	Transition Frequency	$V_{C E}=-5 V_{\text {, }}$	$l_{C}=-1 \mathrm{~mA}$,	$f=20 \mathrm{MHz}$	200			MHz			
Cobo	Common-Base Open-Circuit Output Capacitance	$V_{C B}=-5 V,$ See Note 2	IE $=0$,	$\mathrm{f}=1 \mathrm{MHz}$,	36			pF			
$c_{i b 0}$	Common-Base Open-Circuit Input Capacitance	$V_{E B}=-0.5 V,$ See Note 2	Ic $=0$,	$f=1 \mathrm{MHz}$,		7	15	pF			
F	Spot Noise Figure	$\begin{aligned} & V_{C E}=-5 \mathrm{~V}, \\ & f=1 \mathrm{kHz} \end{aligned}$	$I_{C}=-100 \mu A$,	$R_{G}=10 \mathrm{k} \Omega$,		1	3	dB			

[^163]
P-N-P SILICON TRANSISTORS

TYPICAL CHARACTERISTICS

VEEMIC

figure 3

FIGURE 4
$V_{C E}($ mat $)$ ve I_{C}

FIGURE 5

NOTE 1: These parmetere were measured using pulse techniquen. $t_{w}=\mathbf{3 0 0} \mu \mathrm{m}$, duty cycle $\leqslant \mathbf{2 \%}$.

CHIP TYPE P18 P-N-P SILICON TRANSISTORS

TYPICAL CHARACTERISTICS

NOTE 2. Capacitance masturements were made using chips mounted In TO-92 packages.

P-N-P SILICON TRANSISTORS

- P19 is a $20 \times 20-\mathrm{mil}$, epitaxial, planar, direct-contact chip
- Available in TO-18, TO-46, and a short-can version of TO-78 packages
- For use in low-level, low-noise, high-gain amplifier circuits

electrical and operating characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

[^164]
CHIP TYPE P19 P-N-P SILICON TRANSISTORS

TYPICAL CHARACTERISTICS

[^165]

FIGURE 5
$h_{\text {re }}$ vs Ic
 Ic - Collector Current -mA

FIGURE 7

FIGURE 8

CHIP TYPE P19 P-N-P SILICON TRANSISTORS

TYPICAL CHARACTERISTICS

NOTES: 2. Capacitence massurements were made using chips mounted in TO-18 packages.
3. $C_{c b}$ and $C_{e b}$ mesurements employ a thresterminal cepacitance bridge incorporating aguard circuit. The third electrode (emitter or collector reepectively) is connected to the guard terminal of the bridge. Cobo and Cibo measurements are made with the third terminal floating.
4. Average Noise Figure is measured in an amplifier with response down 3 dB at 10 Hz and 10 kHz and a high-frequency roll-off of 6 de /octave.

- P20 is a $\mathbf{2 0} \times \mathbf{2 0}$-mil, epitaxial, planar, direct-contact chip
- Available in TO-5, TO-18, TO-39, TO-46, a short-can version of TO-78, plastic dual-in-line quad, and Silect ${ }^{\dagger}$ packages
- For use in general purpose amplifier and medium-current switching circuits

electrical and operating characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER		CONDITIONS			OBSERVED VALUES			UNIT			
		LOW	TYP	HIGH							
$V_{\text {(BR) }}$ CBO	Collector-Base Breakdown Voltage				$I^{\prime}=-10 \mu A, \quad I E=0$			$-80^{*}-100$			V
$V_{\text {(BR) }}$ CEO	Collector-Emitter Breakdown Voltage	$\mathrm{I}_{\mathrm{C}}=-10 \mathrm{~mA}$,	${ }^{\prime} \mathrm{B}=0$,	See Note 1	$-65^{*}-80$			V			
$\mathrm{V}_{\text {(BR)EBO }}$	Emitter-Base Breakdown Voltage	$\mathrm{I}_{\mathrm{E}}=-10 \mu \mathrm{~A}$,	$\mathrm{C}^{\prime}=0$		-6 ${ }^{4}-7.5$			V			
${ }^{\text {ICBO }}$	Collector Cutoff Current	$\mathrm{V}_{\mathrm{CB}}=-40 \mathrm{~V}$,	$\mathrm{I}_{\mathrm{E}}=0$		-<0.1-100			nA			
IEBO	Emitter Cutoff Current	$V_{E B}=-4 \mathrm{~V}$,	$\mathrm{i}^{\prime} \mathrm{C}=0$		-<0.1-100			nA			
hFE	Static Forward Current Transfer Ratio	$\mathrm{V}_{\text {CE }}=-10 \mathrm{~V}$,	${ }^{1} \mathrm{C}=-1 \mathrm{~mA}$		$25 \quad 180$						
		$\mathrm{V}_{\text {CE }}=-10 \mathrm{~V}$.	$1 \mathrm{C}=-10 \mathrm{~mA}$	See Note 1	$50 \quad 190$						
		$\mathrm{V}_{\text {CE }}=-10 \mathrm{~V}$,	$\mathrm{I}^{\prime} \mathrm{C}=-150 \mathrm{~mA}$		50	120	500				
		$\mathrm{V}_{\text {CE }}=-10 \mathrm{~V}$,	${ }^{1} \mathrm{C}=-500 \mathrm{~mA}$		20	55					
$V_{\text {BE }}$	Base-Emitter Voltage	$\mathrm{I}_{\mathrm{B}}=-15 \mathrm{~mA}$,	${ }^{\prime} \mathrm{C}=-150 \mathrm{~mA}$	See Note 1	$\begin{array}{ll}-0.9 & -1.0 \\ -1.0\end{array}$			V			
		$\mathrm{I}_{\mathrm{B}}=-50 \mathrm{~mA}$,	${ }^{\prime} \mathrm{C}=-500 \mathrm{~mA}$								
$\mathrm{V}_{\text {ce(sat }}$	Collector-Emitter Saturation Voltage	$\mathrm{I}_{\mathrm{B}}=-15 \mathrm{~mA}$,	$\mathrm{I}^{\prime} \mathrm{C}=-150 \mathrm{~mA}$	See Note 1		-0.25	-0.5	V			
		$\mathrm{I}_{\mathrm{B}}=-50 \mathrm{~mA}$,	${ }^{\prime} \mathrm{C}=-500 \mathrm{~mA}$		-0.65						
$\mathbf{h i e}_{\text {i }}$	Small-Signal Common-Emitter Input Impedance	$\mathrm{V}_{C E}=-10 \mathrm{~V}$,	$I_{C}=-10 \mathrm{~mA}$,	$\mathrm{f}=1 \mathrm{kHz}$	150600			Ω			
$h_{\text {fe }}$	Small-Signal Common-Emitter Forward Current Transfer Ratio				50	190	600				
$h_{\text {re }}$	Small-Signal Common-Emitter Reverse Voltage Transfer Ratio				$\begin{array}{rr} 1 \times & 15 \times \\ 10^{-4} & 10^{-4} \\ \hline \end{array}$						
$h_{\text {oe }}$	Small-Signal Common-Emitter Output Admittance				100800			$\mu \mathrm{mho}$			
${ }_{\text {f }}$	Transition Frequency	$\mathrm{V}_{\text {CE }}=-10 \mathrm{~V}$,	$\mathrm{I}^{\text {c }}=-50 \mathrm{~mA}$,	$\mathrm{f}=100 \mathrm{MHz}$	100360			MHz			
$\mathrm{C}_{\text {obo }}$	Common-Base Open-Circuit Output Capacitance	$V_{C B}=-10 \mathrm{~V}$ See Note 2	$\mathrm{l} E=0$,	$\mathrm{f}=1 \mathrm{MHz}$,	$5 \quad 12$			pF			
Cibo	Common-Base Open-Circuit Input Capacitance	$V_{E B}=-0.5 \mathrm{~V}$ See Note 2	$\mathrm{I}^{\prime}=0$,	$\mathrm{f}=1 \mathrm{MHz}$,	$16 \quad 30$			pF			
t_{d}	Delay Time	$\begin{aligned} & V_{C C}=-30 \mathrm{~V}, \\ & I_{\mathrm{B}(1)} \approx-15 \mathrm{~mA} . \end{aligned}$	$\begin{aligned} & l_{C} \approx-150 \mathrm{~mA}, \\ & V_{B E} \text { (off) } \approx 0 \end{aligned}$	2N2904 Data Sheet Circuit	4			ns			
t_{r}	Rise Time					13					
$\mathrm{t}_{\mathbf{S}}$	Storage Time	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=-30 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{B}(1)} \approx-15 \mathrm{~mA}, \end{aligned}$	$\begin{aligned} & I_{C} \approx-150 \mathrm{~mA}, \\ & \mathrm{~B}(2) \approx 15 \mathrm{~mA} \end{aligned}$		60						
t_{f}	Fall Time					20					
${ }_{\text {t }}$	Delay Time	$\begin{aligned} & \mathrm{v}_{\mathrm{CC}}=-30 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{B}(2)} \approx 15 \mathrm{~mA}, \end{aligned}$	$\begin{aligned} & t_{C} \approx-150 \mathrm{~mA}, \\ & V_{B E(o f f} \approx 4.1 \mathrm{~V}, \end{aligned}$	$\mathrm{I}_{\mathrm{B}(1)} \approx-15 \mathrm{~mA} \text {, }$ See Figure 1		6		ns			
t_{r}	Rise Time					13					
$\mathrm{t}_{\text {S }}$	Storage Time					60					
$t_{\text {f }}$	Fall Time				20						

[^166]
CHIP TYPE P20 P-N-P SILICON TRANSISTORS

PARAMETER MEASUREMENT INFORMATION

(See Notes a and b)
VOLTAGE WAVEFORMS

NOTES: a. The input wavaforms are supplied by aenerator with the following characteristics: $Z_{\text {out }}=50 \Omega, t_{w} \approx 200 \mathrm{~ns}$, duty cycle $\leqslant 2 \%$.
b. Waveforms are monitored on an oscilloscope with the following characteristics: $\mathrm{t}_{\mathrm{r}} \leqslant 1 \mathrm{~ns}, \mathrm{R}_{\text {in }} \geqslant 100 \mathrm{k} \Omega, \mathrm{C}_{\text {in }} \leqslant 7 \mathrm{pF}$.

FIGURE 1-SWITCHING TIMES
TYPICAL CHARACTERISTICS

NOTE 1: These parameters were measured using pulse techniques. $\mathrm{i}_{\mathbf{w}}=\mathbf{3 0 0} \mu_{\mathrm{s}}$, dutv cycle $<\mathbf{2 \%}$.

CHIP TYPE P2O
 P-N-P SILICON TRANSISTORS

TYPICAL CHARACTERISTICS

NOTES: 1. These parameters were measured using pulse techniques. $t_{w}=300 \mu s, d u t y ~ c y c l e<2 \%$.
2. Capacitance measurements were made using chlps mounted in TO-5 packages.

CHIP TYPE P2O P-N-P SILICON TRANSISTORS

TYPICAL CHARACTERISTICS

FIGURE 12

FIGURE 13

CHIP TYPE P22
 P-N-P SILICON TRANSISTORS

- P22 is a 20×20-mil, epitaxial, planar, direct-contact chip
- Available in Silect ${ }^{\dagger}$ packages
- For use in high-voltage amplifier circuits

electrical and operating characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER		CONDITIONS			OBSERVED VALUES		UNIT			
		LOW TYP HIGH								
$V_{\text {(BR) }}$ CBO	Collector-Base Breakdown Voltage				$I^{\prime} C=-100 \mu A$,	$E=0$		$-150^{*}-175$		V
$V_{\text {(BR)CEO }}$	Collector-Emitter Breakdown Voltage	${ }^{1} \mathrm{C}=-10 \mathrm{~mA}$,	$\mathrm{I}_{\mathrm{B}}=0$,	See Note 1	$-140{ }^{*}-165$		V			
$\mathrm{V}_{\text {(BR)EBO }}$	Emitter-Base Breakdown Voltage	$I_{E}=-10 \mu A$,	${ }^{\prime} \mathrm{C}=0$		$-5.5 *$-7		V			
${ }^{\text {I CBO }}$	Collector Cutoff Current	$\mathrm{V}_{\text {CB }}{ }^{\text {m }}-100 \mathrm{~V}$,	$l_{E}=0$		-<0.1 -50		nA			
IEBO	Emitter Cutoff Current	$V_{E B}{ }^{*}-3 \mathrm{~V}$,	$1 \mathrm{C}=0$		-<0.1 -50		nA			
hFE	Static Forward Voltage Transfer Ratio	$V_{C E}=-5 \mathrm{~V}$,	$\mathrm{C}^{*}-1 \mathrm{~mA}$		$30 \quad 140$					
		$\mathrm{V}_{\text {CE }}=-5 \mathrm{~V}$,	${ }^{1} \mathrm{C}=-10 \mathrm{~mA}$	See Note 1	$40 \quad 160$	240				
		$V_{C E}=-5 \mathrm{~V}$,	$1 \mathrm{C}=-50 \mathrm{~mA}$		$40 \quad 150$					
$V_{\text {be }}$	Baso-Emitter Voltage	$V_{C E}=-5 V$,	$I^{\prime} C^{=}=-10 m A$	See Note 1	-0.65	-1.0	V			
		$\mathrm{I}_{\mathrm{B}}=-1 \mathrm{~mA}$,	$1 C^{=}=-10 \mathrm{~mA}$		-0.7	-1.0				
		$\mathrm{I}_{\mathrm{B}}=-5 \mathrm{~mA}$,	$1 \mathrm{C}=-50 \mathrm{~mA}$		-0.8	-1.0				
$V_{\text {CE }}$ (sat)	Collector-Emitter Saturation Voltage	$\mathrm{I}_{\mathrm{B}}=-1 \mathrm{~mA}$,	$1 C^{=}=10 \mathrm{~mA}$	See Note 1	-0.06	-0.2	V			
		$\mathrm{I}_{\mathrm{B}}=-5 \mathrm{~mA}$,	$\mathrm{l}^{\prime}=-50 \mathrm{~mA}$		-0.1	-0.5				
$h_{\text {ie }}$	Small-Signal Common-Emitter Input Impedance	$V_{C E}=-10 \mathrm{~V}, \quad I^{\prime}=-1 \mathrm{~mA}$,		$f=1 \mathrm{kHz}$	4.6		k Ω			
h_{fe}	Small-Signal Common-Emitter Forward Current Transfer Ratio			$\begin{array}{lll}30 & 170 & 200\end{array}$						
$\mathrm{hr}_{\text {re }}$	Small-Signal Common-Emitter Reverse Voltage Transfer Ratio			$\begin{gathered} 2.7 \times \\ 10^{-4} \\ \hline \end{gathered}$						
$\mathrm{h}_{\mathbf{0 e}}$	Small-Signal Common-Emitter Output Admittance			13.4	$\mu \mathrm{mho}$					
${ }_{\text {f }}$ T	Transition Frequency	$V_{C E}=-10 \mathrm{~V}$,	$I^{\prime} C=-10 \mathrm{~mA}$,		$f=20 \mathrm{MHz}$	100190		MHz		
Cobo	Common-Base Open-Circuit Output Capacitance	$\begin{aligned} & V_{\mathrm{CB}}=-10 \mathrm{~V} \\ & \text { See Note } 2 \end{aligned}$	$I_{E}=0,$		$f=1 \mathrm{MHz}$	46		pF		
$C_{i b o}$	Common-Base Open-Circuit Input Capacitance	$\begin{aligned} & V_{E B}=-1 V \\ & \text { See Note } 2 \end{aligned}$	$I_{C}=0$		$f=1 \mathrm{MHz}$,	45	60	pF		
F	Spot Noise Figure	$\begin{aligned} & V_{C E}=-5 \mathrm{~V}, \\ & f=1 \mathrm{kHz} \end{aligned}$	$I_{C}=-1 m A$	$\mathrm{R}_{\mathrm{G}}=10 \mathrm{k} \Omega$,	3		dB			
\bar{F}	Average Noise Figure	$\begin{aligned} & \hline V_{C E}=-5 \mathrm{~V} \\ & \text { Noise Bandwidth } \end{aligned}$	$\begin{aligned} & I^{\prime}=-250 \mu \mathrm{~A}, \\ & 15.7 \mathrm{kHz}, \end{aligned}$	$R_{G}=1 \mathrm{k} \Omega,$ See Note 3	2	8	dB			

[^167]
CHIP TYPE P22 P-N-P SILICON TRANSISTORS

TYPICAL CHARACTERISTICS

FIGURE 1

VBe vs ic

IC-Collector Current-mA
figure 3

FIGURE 5

FIGURE 2

figure 4

NOTE 1: These parameters were measured using pulse techniques. $t_{w}=300 \mu s$, duty cycle $\leqslant 2 \%$

CHIP TYPE P22

P-N-P SILICON TRANSISTORS

TYPICAL CHARACTERISTICS

FIGURE 7

NOTES: 2. Capacitance measurements were made i'sing chips mounted in TO-92 packages.
3. Average Noise Figure was measured in an amplifier with response down 3 dB at 10 Hz and 10 kHz and a high-frequency roll-off of $6 \mathrm{~dB} / \mathrm{octave}$.

- P23 is a $20 \times \mathbf{2 0 - m i l}$, epitaxial, planar, expanded-contact chip
- Available in TO-18 packages
- For use in low-power, general purpose saturated switching and amplifier circuits

electrical and operating characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

These values do not modify guaranteed limits for specific devices and do not justify operation in excess of absolute maximum ratings.
NOTES: 1. These parameters were measured using pulse techniques. $t_{w}=300 \mu$, duty cycle $\leqslant 2 \%$.

1. Cheseacitance measurements were made using chips mounted in TO-18 packages.

PARAMETER MEASUREMENT INFORMATION

TEST CIRCUIT

(See Notes a and b)
VOLTAGE WAVEFORMS

NOTES: a. The input waveforms are supplied by a generator with the following characteristics: $Z_{o u t}=50 \Omega_{\text {; }}$ for measuring t_{d} and t_{r}, $t_{w} \approx 200 \mathrm{~ns}$, duty cycle $\leqslant 2 \%$; for measuring t_{s} and $\mathrm{t}_{\mathrm{f}}, \mathrm{t}_{\mathrm{w}} \approx 10 \mu \mathrm{~s}$, duty cycle $\leqslant 2 \%$.
b. Waveforms are monitored on an oscilloscope with the following characteristics: $\mathrm{t}_{\mathrm{r}} \leqslant 1 \mathrm{~ns}, \mathrm{R}_{\text {in }} \geqslant 100 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{in}} \leqslant 7 \mathrm{pF}$.

FIGURE 1-SWITCHING TIMES

TYPICAL CHARACTERISTICS

FIGURE 2

FIGURE 5

FIGURE 3

FIGURE 6
hfe vs lc

FIGURE 4

FIGURE 7

NOTE 1: These parameters were measured using pulse rechniques. $t_{w}=300 \mu_{s}$, duty cycle $\leqslant \mathbf{2 \%}$.

CHIP TYPE P23
 P-N-P SILICON TRANSISTORS

TYPICAL CHARACTERISTICS

NOTE 2: Capacitance measurements were made using chips mounted in TO-18 packages.

CHIP TYPE P23

P-N-P SILICON TRANSISTORS
TYPICAL CHARACTERISTICS

FIGURE 13

FIGURE 15

CHIP TYPE P24
 P-N-P SILICON TRANSISTORS

- P24 is a $\mathbf{2 0} \times \mathbf{2 0}$-mil, epitaxial, planar, direct-contact chip
- Available in Silect ${ }^{\dagger}$ packages
- For use in AM/FM/TV RF/IF converter and amplifier circuits to 300 MHz

electrical and operating characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

[^168]

NOTE 1: These parameters were measured using pulse techniques. $t_{w}=\mathbf{3 0 0} \mu \mathrm{s}$, duty cycle $\leqslant 2 \%$.

CHIP TYPE P24
 P-N-P SILICON TRANSISTORS

TYPICAL CHARACTERISTICS

NOTES 2. Capacitance measurements were made using chips mounted in TO-92 packages.
3. $C_{c b}$ and $C_{e b}$ measurements employ a three-terminal capacitance bridge incorporating a guard circuit. The third electrode (emitter or collector, respectively) is connected to the guard terminal of the bridge.

- P25 is a $10 \times 12-$ mil, epitaxial, planar, expanded-contact chip
- Available in Silect ${ }^{\dagger}$ packages
- For use in VHF/UHF common-base amplifier circuits requiring forward-AGC characteristics

electrical and operating characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER	CONDITIONS		OBSERVED VALUES	UNIT
			LOW TYP HIGH	
$V_{\text {(BR) }}$ CBO Collector-Base Braakdown Voltage	$\mathrm{I}^{1} \mathrm{C}=-100 \mu \mathrm{~A}, \quad \mathrm{IE}=0$		$-60^{\circ}-110$	V
$V_{\text {(BR)CEO }}$Collector-Emitter Breakdown Voltage	$I_{C}=-1 \mathrm{~mA}, \quad \mathrm{I}_{\mathrm{B}}=0$.	See Note 1	-45* -100	V
$V_{\text {(BR)EBO }}$ Emitter-Base Breakdown Voltage	$\mathrm{I}_{\mathrm{E}}=-100 \mu \mathrm{~A}, \quad \mathrm{I}^{\prime} \mathrm{C}=0$		$-4 *-6$	V
ICBO Collector Cutoff Current	$V_{C B}=-25 \mathrm{~V}, \quad \mathrm{I}_{E}=0$		-<0.1-100	nA
hFE Static Forward Current Transfer Ratio	$V_{C E}=-10 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{C}}=-2 \mathrm{~mA}$		3050	
VGE Base-Emitter Voltage	$\mathrm{V}_{C E}=-10 \mathrm{~V}, \quad \mathrm{I}^{\prime} \mathrm{C}=-2 \mathrm{~mA}$		-0.8 -1.1	V
V CE(sat) Collector-Emitter Saturation Voltage	$\mathrm{I}_{\mathrm{B}}=-0.25 \mathrm{~mA}, \quad \mathrm{I}_{\mathrm{C}}=-2.5 \mathrm{~mA}$		-0.3 -1.0	V
$\mathrm{f}_{\mathbf{T}} \quad$ Transition Frequency	$V_{C E}=-10 \mathrm{~V}, \quad i C=-2 \mathrm{~mA}$,	$f=100 \mathrm{MHz}$	650900	MHz
Bfb\|2 Square of Common-Base Forward Transmission Coefficient \ddagger	$\begin{aligned} & V_{C B}=-10 V, \quad I_{E}=2 m A \\ & Z_{G}=Z_{L}=50 \Omega+j 0, \end{aligned}$	$f=400 \mathrm{MHz}$ See Note 2	3	dB
$\mathrm{C}_{\mathbf{c b}} \quad$ Collector-Base Capacitance	$\mathrm{V}_{C B}=-10 \mathrm{~V}$. $\mathrm{I}^{\prime}=0$	$\mathrm{f}=1 \mathrm{MHz}$,	0.5	pF
$\frac{\mathrm{C}_{\text {ce }}}{}$ Collector-Emitter Capacitance	$V_{C E}=-10 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{B}}=0$	See Notes 2 and 3	$0.25 \quad 0.30$	pF
F \quad Spot Noise Figure	$\begin{aligned} & V_{C B}=-10 \mathrm{~V}, \quad \mathrm{I}=2 \mathrm{~mA}, \\ & f=850 \mathrm{MHz} \end{aligned}$	$\mathrm{R}_{\mathrm{G}}=\mathbf{5 0 \Omega}$,	56.5	dB

${ }^{\dagger}$ Trademark of Texas Instruments
-These values do not modify guaranteed limits for specific devices and do not justify operation in excess of absolute maximum ratings.
$\ddagger k_{\mathrm{fb}} \mid \mathbf{k}$ is equal to the insertion power gain of the transistor alone.
NOTES: 1. These parameters were measured using pulse techniques. $\mathbf{t}_{w}=\mathbf{3 0 0} \mu \mathrm{s}$, duty cycle $\leqslant \mathbf{2 \%}$.
2. Capacitance and s-parameter measurements were made using chips mounted in Silect packages.
3. C_{cb} and C_{ce} measurements employ a three-terminal capacitance bridge incorporating a guard circuit. The third electrode (emitter or base, respectively) is connected to the guard terminal of the bridge.

CHIP TYPE P25 P-N-P SILICON TRANSISTORS

TYPICAL CHARACTERISTICS

VBE vs IC

figure 3

figure 6
$\mathbf{V}_{\mathbf{C E} \text { (sat) }} \mathbf{v s}^{\mathrm{I}} \mathbf{C}$

FIGURE 4

figure 7
ft ws lc

figure 5

FIGURE 8

NOTES. 1. These parameters were measured using pulse techniques. $t_{w}=300 \mu s$, duty cycle $\leqslant 2 \%$.
2. Capacitance and s-parameter measurements were made using chips mounted in Silect packages.
3. C_{cb} and C_{ce} measurements employ a three-terminal capacitance bridge incorporating a guard circuit. The third electrode (emitter or base, respectively) is connected to the guard terminal of the bridge.

CHIP TYPE P25
 P-N-P SILICON TRANSISTORS

TYPICAL CHARACTERISTICS
COMMON-BASE INPUT REFLECTION COEFFICIENT, sib

and

NORMALIZED INPUT IMPEDANCE
$V_{C B}=-10 \mathrm{~V}, Z_{G}=Z_{L}=50 \Omega+j 0, T_{A}=25^{\circ} \mathrm{C}$

Frequency	$I_{E}=1 \mathrm{~mA}$		$I_{E}=2 \mathrm{~mA}$		$I_{E}=3 \mathrm{~mA}$		$\mathrm{I}_{\mathrm{E}}=5 \mathrm{~mA}$	
	\|ibl	$\phi_{\text {sib }}$	$\left\|{ }_{\text {Pib }}\right\|$	$\phi_{\text {sib }}$	\|ibl	$\phi_{\text {sib }}$	\| ${ }_{\text {ib }}$ \|	$\phi_{\text {sib }}$
100 MHz	0.33	167°	0.57	167°	0.65	166°	0.70	162°
200 MHz	0.35	157°	0.59	157°	0.67	157°	0.68	150°
300 MHz	0.38	145°	0.62	146°	0.70	145°	0.68	139°
400 MHz	0.41	$138{ }^{\circ}$	0.65	137°	0.73	$1.35{ }^{\circ}$	0.70	129°
500 MHz	0.45	129°	0.69	129°	0.76	125°	0.71	121°
600 MHz	0.49	119°	0.72	118°	0.79	115°	0.73	111°
700 MHz	0.53	111°	0.77	108°	0.84	105°	0.74	102°
800 MHz	0.59	$102{ }^{\circ}$	0.81	102°	0.88	99°	0.77	95°

These measurements were made using chips mounted in Silect packages.

FIGURE 9

CHIP TYPE P25 P-N-P SILICON TRANSISTORS

TYPICAL CHARACTERISTICS

COMMON-BASE OUTPUT REFLECTION COEFFICIENT, sob

and
NORMALIZED OUTPUT IMPEDANCE
$V_{C B}=-10 \mathrm{~V}, Z_{G}=Z_{L}=50 \Omega+j 0, T_{A}=25^{\circ} \mathrm{C}$

Frequency	IE $=1 \mathrm{~mA}$		$\mathrm{IE}_{\mathrm{E}}=2 \mathrm{~mA}$		$1 E=3 \mathrm{~mA}$		${ }^{1} \mathrm{E}=5 \mathrm{~mA}$	
	Pobl	$\phi_{\text {sol }}$	\%obl	\$20b	Fobl	$\phi_{\text {sob }}$	Fobl	$\phi_{\text {sob }}$
100 MHz	0.998	-20	0.998	-2°	0.998	-2 ${ }^{\circ}$	0.998	-2°
200 MHz	0.998	-5°	0.998	-5°	0.998	-5°	0.998	-5
300 MHz	0.998	-8°	0.998	-8°	0.998	-8°	0.998	-8°
400 MHz	0.998	-11°	0.998	-11°	0.998	-11°	0.998	-11°
500 MHz	0.998	-14°	0.998	-14°	0.998	-14°	0.998	-14°
600 MHz	0.998	-16°	0.998	-16°	0.998	-16°	0.998	-16°
700 MHz	0.998	-19°	0.998	-19°	0.998	-19°	0.998	-19°
800 MHz	0.998	-22°	0.998	-22°	0.998	-22°	0.998	-22°

These measurements ware made using chips mounted in Silect packages.

FIGURE 10

- P27 is a $15 \times$ 15-mil, epitaxial, planar, expanded-contact chip
- Available in TO-72 and Silect ${ }^{\dagger}$ packages
- For high-speed switching or high-frequency (to $2 \mathbf{~ G H z}$) amplifier circuits

electrical and operating characteristics at $\mathbf{2 5}{ }^{\circ} \mathrm{C}$ free-air temperature

${ }^{\dagger}$ Trademark of Texas Instruments
-These values do not modify guaranteed limits for specific devices and do not justify operation in excess of absolute maximum ratings. $\dagger_{\mathrm{f}_{\boldsymbol{f}}}{ }^{2}$ is equal to the insertion power gain of the transistor alone.
NOTES: 1. These parameters were measured using pulse techniques. $t_{w}=300 \mu$, duty cycle $\leqslant \mathbf{2 \%}$.

2. Capacitance, $\mathrm{r}_{\mathrm{b}}{ }^{\prime} \mathrm{C}_{\mathrm{c}}$, and s -parameter measurements were made using chips mounted in TO-72 packages.
3. C_{cb} and C_{eb} measurements employ a three-terminal capacitance bridge incorporating a guard circuit. The third electrode (emirter or collector, respectively) is connected to the guard terminal of the bridge.

CHIP TYPE P27
P-N-P SILICON TRANSISTORS

TYPICAL CHARACTERISTICS

figure 1

FIGURE 6

NOTES: 1. This parameter was measured using pulse techniques. $t_{w}=\mathbf{3 0 0} \mu \mathrm{s}$, duty cycle $<\mathbf{2 \%}$.
2. Capacitance, $r_{b}{ }^{\prime} C_{c}$, and s-parameter measurements ware made using chips mounted in TO-72 packeges.
3. $C_{c b}$ and $C_{e b}$ measurements employ a three-terminal capacitance bridge incorporating a guard circuit. The third electrode femitter or collector, respectively) is connected to the guard terminal of the bridge.

CHIP TYPE P27 P-N-P SILICON TRANSISTORS

Frequency	$I_{C}=-2 \mathrm{~mA}$		$I C=-5 m A$		$I_{C}=-10 \mathrm{~mA}$		IC $=-15 \mathrm{~mA}$	
	\$iel	$\phi_{\text {sie }}$	Piel.	$\phi_{\text {sie }}$	Fiel	$\phi_{\text {sie }}$	Piel	$\phi_{\text {sie }}$
100 MHz	0.82	-34°	0.51	-46°	0.37	-51°	0.29	-53°
300 MHz	0.43	-75°	0.25	-78°	0.17	-78°	0.13	-75°
500 MHz	0.28	-102°	0.14	$-102{ }^{\circ}$	0.09	-99°	0.07	-93°
700 MHz	0.18	$-131{ }^{\circ}$	0.09	$-131{ }^{\circ}$	0.05	-131°	0.04	-133°
900 MHz	0.14	-165°	0.08	-176°	0.05	170°	0.05	156°
1100 MHz	0.14	164°	0.09	143°	0.07	130°	0.07	130°
1300 MHz	0.16	133°	0.12	118°	0.11	112°	0.11	112°
1500 MHz	0.18	115°	0.15	107°	0.14	103°	0.14	103°
1700 MHz	0.20	103°	0.17	95°	0.18	93°	0.16	93°
1900 MHz	0.24	90°	0.20	85°	0.19	84°	0.19	84°

These measurements were made using chips mounted in TO-72 packages.
Figure 11

CHIP TYPE P27
 P-N-P SILICON TRANSISTORS

TYPICAL CHARACTERISTICS
COMMON-EMITTER OUTPUT REFLECTION COEFFICIENT, $s_{\text {oe }}$ and
NORMALIZED OUTPUT IMPEDANCE
$V_{C E}=-6 \mathrm{~V}, \mathrm{Z}_{\mathbf{G}}=\mathrm{Z}_{\mathrm{L}}=50 \Omega+\mathrm{i} 0, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Frequency	$C^{=}=-2 \mathrm{~mA}$		$\mathrm{I}^{\prime}=\mathbf{= - 5} \mathrm{mA}$		$I_{C}=-10 \mathrm{~mA}$		$\mathrm{I}_{\mathrm{C}}=-15 \mathrm{~mA}$	
	$\mathbf{F}_{\mathbf{o b}}$ \|	$\phi_{\text {soe }}$	Soal	$\phi_{\text {soe }}$.	$\mathbf{3}_{\text {oel }} 1$	$\phi_{\text {soe }}$	Foel	$\phi_{\text {SOP }}$
100 MHz	0.71	-17°	0.62	-18°	0.59	-18°	0.56	-18°
300 MHz	0.68	-24°	0.59	-24°	0.56	-23°	0.54	-22°
500 MHz	0.66	-28°	0.57	-27°	0.54	-27°	0.52	-26°
700 MHz	0.64	-33°	0.56	-32°	0.52	-31°	0.51	-30°
900 MHz	0.62	-38°	0.55	-36°	0.51	-35°	0.49	-34°
1100 MHz	0.60	-44°	0.54	-42°	0.50	-40°	0.48	-39°
1300 MHz	0.58	-50°	0.52	-47°	0.49	-45°	0.47	-45°
1500 MHz	0.56	-56°	0.51	-54°	0.48	-53°	0.46	-52°
1700 MHz	0.55	-62°	0.50	-60°	0.48	-58°	0.46	-57°
1900 MHz	0.53	-72°	0.50	-67°	0.47	-65°	0.45	-64°

These measurements were made using chips mounted in TO-72 packages.

- U41 is a $20 \times 20-m i l$, epitaxial, planar, direct-contact, p-n-p-n thyristor chip with an n-gate
- Available in TO-18 and Silect ${ }^{\dagger}$ packages
- For unijunction applications requiring programmable η, rBB, IV, and IP

electrical and operating characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER MEASUREMENT INFORMATION

FIGURE 1-PROGRAMMABLE UNIJUNCTION CIRCUIT
FIGURE 2-EQUIVALENT CIRCUIT USED FOR TESTING

[^169]CHIP TYPE U41
PROGRAMMABLE UNIJUNCTION TRANSISTORS

TYPICAL CHARACTERISTICS

CHIP TYPE U42 P-N PLANAR UNIJUNCTION TRANSISTORS

- U42 is a $15 \times 15-m i l$, P-N, direct-contact chip
- Available in modified TO-18 and Silect ${ }^{\dagger}$ packages
- For use in simple relaxation oscillator circuits as SCR drivers, timers, motor-speed controls, waveform generators, multivibrators, ring counters, electronic organs, and ordnance fuzes

electrical and operating characteristics at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

PARAMETER		CONDITIONS		OBSERVED VALUES			UNIT		
		LOW	TYP	HIGH					
				$V_{B 2 B 1}=3 V, \quad I_{E}=0$		4	6	12	k Ω
r8B	Interbase Resistance	$\begin{aligned} & V_{B 2 B 1}=3 \mathrm{~V}, \quad I_{E}=0, \\ & T_{A}=-65^{\circ} \mathrm{C} \text { to } 100^{\circ} \mathrm{C}, \end{aligned}$	See Note 1	0.1		0.9	\% $/{ }^{\circ} \mathrm{C}$		
$\alpha_{\text {rBB }}$	Temperature Coafficient								
\dagger	Intrinsic Standoff Ratio	$\mathrm{V}_{\mathrm{B2B1}}=10 \mathrm{~V}$		0.50		0.86			
$1 \mathrm{B2}$ (mod)	Modulated Interbase Current	$V_{B 2 B 1}=10 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{E}}=50 \mathrm{~mA}$,	See Note 2	12	28		mA		
IEB20	Emitter Reverse Current	$\mathrm{V}_{\mathrm{EB} 2}=-30 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{B} 1}=0$			-2.5	-10	nA		
Ip	Peak-Point Emitter Current				0.4	2	$\mu \mathrm{A}$		
VEB1(eat)	Emitter Saturation Voltage	$V_{B 2 B 1}=20 \mathrm{~V}, \quad \mathrm{I}^{2}=50 \mathrm{~mA}$,	See Note 2		1.8	3	V		
IV	Valley-Point Emitter Current	$\mathrm{V}_{\mathrm{B2B} 21}=20 \mathrm{~V}$		1	5	20	mA		
VOB1	Base-One Peak Pulse Voltage	See Figure 1			7.5		V		

tTrademerk of Texas Instruments
NOTES: 1. Temperature coefficient $\alpha_{r B}$ is determined by the following formula:

$$
\alpha_{\mathrm{rBB}}=\left[\frac{\left(r_{B B} 100^{\circ} \mathrm{C}\right)-\left(r_{B B}-65^{\circ} \mathrm{C}\right)}{\left(r_{B B}\left(25^{\circ} \mathrm{C}\right)\right.}\right] \frac{100 \%}{165^{\circ} \mathrm{C}}
$$

To obtain r_{BB} for a given temperature $\mathrm{T}_{\mathrm{A}(2)}$, use the following formula:

$$
r_{\mathrm{BB}(2)}=\left[\mathrm{r}_{\mathrm{BB}} \oplus 25^{\circ} \mathrm{C}\right]\left[1+\left(\alpha_{\mathrm{rBB}} / 100 \%\right)\left(\mathrm{T}_{\mathrm{A}(2)}-25^{\circ} \mathrm{C}\right)\right]
$$

2. These paramaters were measured using pulse techniques. $t_{w}=300 \mu s$, duty cycle $\leqslant \mathbf{2 \%}$.

CHIP TYPE U42
 P-N PLANAR UNIJUNCTION TRANSISTORS

PARAMETER MEASUREMENT INFORMATION

FIGURE $1-V_{\text {OB1 }}$ TEST CIRCUIT
TYPICAL CHARACTERISTICS

NOTE 2: These parameters were measured using pulse techniques. $\mathrm{t}_{\mathrm{w}}=\mathbf{3 0 0} \mu \mathrm{s}$, duty cycle $\leqslant \mathbf{2 \%}$.

Vebive le

$I_{E}-$ Emither Current - mA
FIGURE 7

FIGURE 9
$V_{E B 1(s a t)}$ vs T_{A}

FIGURE 8

NOTE 2: These parameters were massured using pulse techniques. $t_{w}=\mathbf{3 0 0} \mu \mathrm{s}$, duty cycle $\mathbf{< 2 \%}$.

Transistor Quality and Reliability Information

QUALITY AND RELIABILITY INFORMATION QUALITY INSPECTION LEVELS

All transistor types listed in this catalog are subject to electrical and mechanical sampling inspection performed by the Quality and Reliability Group to the following AQLs (Acceptance Quality Levels):

PARAMETER SUBGROUP	AQL, PARTIAL	AQL, CUMULATIVE
Static Parameters at $25^{\circ} \mathrm{C}$	-	0.65
Static Parameters at other than $25^{\circ} \mathrm{C}$	1.5	4.0
Dynamic Parameters ($\leqslant 1 \mathrm{kHz}$)	1.5	4.0
Dynamic Parameters $>1 \mathrm{kHz}$)	1.5	4.0
Capacitances	1.5	4.0
Operating Characteristics	1.5	4.0
Switching Characteristics	1.5	4.0
All Other Parameters	1.5	4.0
Inoperatives	-	0.25

RELIABILITY OF SILICON TRANSISTORS

The technology for epitaxial planar silicon transistor chips with aluminum metallization has been established for several years. This technology, for the most part, is well understood. Processes for fabricating epitaxial planar silicon transistors are mature, and failure modes for transistors fabricated in a controlled process are defined. The failure-mode distribution for this process is shown in Figure 1. The primary failure modes are related to wire-bond-to-chip (contact) integrity and certain surface phenomena.

Understanding of the epitaxial planar silicon chip technology, maturity of the process, and knowledge of the failure-mode distribution make possible the definition of the reliability of these transistors. The reliability to be expected for transistors manufactured by the standard process is shown in the plot of average failure rate as a function of junction temperature in Figure 1. Data for Figure 2 are derived from life-tests at maximum-rated conditions-some as long as 35,000 hours (4 years, continuous). Specifically, the reliability of transistors from the standard process is defined by the curve labeled "Hermetically Packaged, Commercial".

Improvement in the reliability of these transistors can be achieved only by additional process requirements such as special selection of chips, more stringent pre-encapsulation criteria, or special screens such as active burn-in or high-temperature reverse-bias screening of encapsulated transistors. These measures are effective in removing devices with manufacturing anomalies which might cause failure of the parts during use. Column B of Figure 2 shows the relative improvement in failure rate and occurrence of failures which result from imposing special process requirements and subsequent screens.

The degree of reliability improvement obtained by the imposition of special process requirements and screens depends upon their efficacy. For example, Texas Instruments, experience shows that 100% pre-encapsulation inspection to the requirements of MIL-STD-750, Method 2072, is effective in removing visual defects which may ultimately be related to device reliability. On the other hand, inspection to more stringent criteria may very well result in the costly rejection of devices for reasons which in all probability are not related to ultimate reliability of failure-rate improvement.

The types and levels of stress used in screening transistors to improve reliability vary by device series. Some devices, for example, general purpose N-P.N transistors, are more effectively screened by active burn-in; others, for example, general purpose P-N-P transistors, by high-temperature reverse bias. In some cases, such as in attaining stabilization for a very low-level hFE, a combination of both stresses is more desirable. If the types and levels of stress are properly specfied for the particular transistor series involved, no more than 168 hours of stress screening should be required. In some cases as little as $\mathbf{4 8}$ to $\mathbf{7 2}$ hours is sufficient. In general, stress screening longer than 168 hours does not significantly improve transistor reliability.

Figure 2 shows a plot of average failure rates as a function of virtual junction temperatures for different chip technologies, package configurations, and stress-screening requirements.

Figure 2 may also be interpreted as a rough thermal-derating guide for design purposes.

PLASTIC-ENCAPSULATED TRANSISTORS

Plastic-encapsulated transistors are fabricated with the same epitaxial planar silicon chips as used in hermetically packaged transistors. Processes for these plastic-encapsulated transistors are still changing because of improvements in the technology and packaging techniques of plastic compounds.

Packaging defects in conventional metal-case transistors are primarily related to hermeticity, whereas encapsulation with plastics introduces several additional variables including glass-transition temperature (a temperature at which certain plastic compounds suffer irreversible chemical changes), impurity levels, and coefficient of expansion of the plastic.

The failure-rate curve for plastic-encapsulated transistors in Figure 1 will be subject to significant improvements as plastic technology is further developed.

HERMETICALLY PACKAGED TRANSISTORS

The failure-rate curve in Figure 1 labeled "Hermetically Packaged, Commercial" reflects the expected average reliability of conventional transistors with standard process controls and with no special stress screening to remove potential failures. The curve in Figure 1 labeled "Hermetically Packaged, JAN" reflects an improvement in failure rate reliability through lot screening of devices for manufacturing anomalies and by lot-acceptance testing which includes both environmental and life-test requirements.

The failure-rate curve labeled "Hermetically Packaged, Special Screens" shows still further improvement in reliability as a result of additional process and stress-screening requirements. The absolute location of this curve is determined by the efficiency of special processing and screening, with a maximum improvement in failure rate of approximately one order of magnitude in comparison with transistors which do not receive this special processing. The failure rates shown on this particular curve correspond to the level of processing employed in the fabrication of transistors ranging from JANTX to high-reliability military and space applications.

SUMMARY

The process capability and reliability of epitaxial planar silicon transistors are well established. Several levels of reliability of these transistors can be attained by specific process and stress-screening requirements. Further improvements in reliability are attainable only by the introduction of different technologies. The reliability of plastic-encapsulated transistors is expected to improve significantly as plastic technology is further developed.

OUALITY AND RELIABILITY INFORMATION TRANSISTOR RELIABILITY

AVERAGE FAILURE RATES (AND ESTIMATED FIELD
 FAILURE RATES) OF SILICON TRANSISTORS

 vs TEMPERATURE

FAILURE-MODE DISTRIBUTION
OF SILICON TRANSISTORS
$\left.\begin{array}{|l|}\hline \text { OTHER } \\ \hline \text { METALLIZATION } \\ \hline \text { ELECTRICALLY } \\ \text { MARGINAL }\end{array}\right]$

FIGURE 2

QUALITY AND RELIABILITY INFORMATION FACILITIES AND EQUIPMENT

FACILITIES AND EQUIPMENT

A. LIFE-TEST AND BURN-IN FACILITIES

1. Texas Instruments incorporated is equipped with extensive facilities to provide life-test and burn-in capabilities for silicon transistors and diodes.
2. Facilities are available for a wide range of tests including:
a. Storage life testing up to $300^{\circ} \mathrm{C}$.
b. Voltage-temperature stress testing at both ambient and elevated temperature conditions.
c. Free-air operating for transistors and diodes.
d. Intermittent operating at various cycle times and power levels.
B. ENVIRONMENTAL FACILITIES
3. Test capabilities of the Environmental Laboratory are shown in two different ways. First, Military Standard Test Capability which lists capability per MIL-STD-202, MIL-STD-750, and MIL-STD-883 for each test category; and second, Overall Test Capability which lists capability limits and, where applicable, combined environment capability for each test category.
4. Laboratory capabilities required for performance of tests per MIL-STD-202, MIL-STD-750, and MIL-STD-883 are listed in Table I. Those tests which are noted as exceptions are beyond the capability of the Environmental Laboratory.
5. Laboratory capability limits, including limits of combined environments, are shown in Table II for each test category.

QUALITY AND RELIABILTY INFORMATION FACILITIES AND EQUIPNENT

TABLE I-MILITARY STANDARD TEST CAPABILITY

TEST CATEGORY	MIL-STD-202	MIL-STD-750	MIL-STD-883
Altitude	All Conditions	All Conditions	All Conditions
Dew Point		All Conditions	All Conditions
Flammability	All Conditions		
Moisture Resistance	All Conditions	All Conditions	All Conditions
Resistance to Solvents (Symbolization)	All Conditions		
Salt Atmosphere		All Conditions	All Conditions
Salt Spray	All Conditions	All Conditions	
Seal, Gross Leak	All Gross Leak Conditions (Method 112A, Conditions A, B, and Procedure IV of Condition C. Method 104A, Conditions A, B \& C) ${ }^{\dagger}$	All Gross Leak Conditions (Method 1071, Conditions C. D, E \& FI ${ }^{\dagger}$	All Gross Leak Conditions (Method 1014, Conditions C \& D) ${ }^{\dagger}$
Solderability	All Conditions	All Conditions	All Conditions
Soldering Heat		All Conditions	
Temperature Cycling	All Conditions EXCEPT: Method 107, Conditions D \& F	All Conditions EXCEPT: Method 1051, Con- ditions D \& E	All Conditions EXCEPT: Method 1010, Con- ditions E \& F
Terminal Strength (Lead Integrity)	All Conditions	All Conditions	All Conditions
Thermal Shock (Glass Strain)		All Conditions	All Conditions
Acceleration, Sustained (Centrifuge)	All Conditions	All Conditions	All Conditions EXCEPT: Method 2001, Condition J NOTE: \mathbb{I} Method 2001, Condition G and H, may require special fixturing. Limited capability for these condtions is available for special package types.
\ddagger Shock (Mechanical)	All Conditions EXCEPT: Method 213, Conditions B, C, G, J, and K	All Conditions	All Conditions NOTE: 【 Method 2002, Condition F and G, may require special fixturing. Capability for these conditions is available for special package types.
Vibration, Fatigue		All Conditions	All Conditions
Vibration, Noise		All Conditions	All Conditions
\triangle Vibration, Random	All Conditions		
AVibration, Variable-Frequency	All Conditions	All Conditions	All Conditions
Seal, Fine Leak (Radioactive Tracer Gas)	ONLY Method 112A, Condition C, Procedure III.B	ONLY Method 1071, Condition G	ONLY Method 1014, Condition B
-X-Ray, Film	All Conditions	All Conditions	All Conditions
-X-Ray, Real Time (TV X-Ray)	All Conditions	All Conditions	All Conditions

[^170]
QUALITY AND RELIABILTTY INFORMATION

 FACILITIES AND EQUIPMENT| TABLE II-OVERALL TEST CAPABILITY | |
| :---: | :---: |
| TEST | CAPABILITY |
| Acceleration, Sustained (Centrifuge) | $50-50,000 \mathrm{~g}$ (Standard) |
| | 50,000-100,000 g (Nonstandard) |
| Altitude (Barometric Pressure, Reduced) | $450,000 \mathrm{ft}$. Simulated Altitude with $-125^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ Capability |
| Cryogenic Exposure | $-75^{\circ} \mathrm{C}$ to $-196^{\circ} \mathrm{C}$ |
| Dew Point | $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ |
| Flammability | $900^{\circ} \mathrm{C}$ to $1100^{\circ} \mathrm{C}$ |
| Moisture Resistance | $2^{\circ} \mathrm{C}$ to $96^{\circ} \mathrm{C}, 40 \%$ to $100 \% \mathrm{RH}$ |
| Radiographic Inspection (X-Ray) | |
| Film | Resolution to 0.001 Inch, $150 \mathrm{kV}-5 \mathrm{~mA}$ |
| Real Time | 360° Rotation-Resolution to 0.001 Inch |
| Salt Atmosphere/Spray | $\mathbf{2 5}{ }^{\circ} \mathrm{C}$ to $71^{\circ} \mathrm{C}$, Up to $\mathbf{2 0 \%}$ Salt Solution by Weight |
| Seal | |
| Gross Leak | $>5 \times 10^{-6}, 150^{\circ} \mathrm{C}$, Fluorocarbons, Mineral Oils, Ethylene Glycol Hydrostatic Pressure-0-300 psig |
| Radioactive Tracer Gas | $\geq 1 \times 10^{-11}$ |
| Symbolization (Resistance to Solvents) | |
| Shock (Mechanical) | PULSE SHAPE-APPROXIMATELY |
| | HALF-SINE |
| | $1,500-30,000 \mathrm{~g} @ 0.2 \mathrm{~ms} \pm 0.1 \mathrm{~ms}$ |
| | $1,000-6,000 \mathrm{~g} @ 0.3 \mathrm{~ms} \pm 0.1 \mathrm{~ms}$ |
| | $500-10,000 \mathrm{~g} @ 0.5 \mathrm{~ms} \pm 0.15 \mathrm{~ms}$ |
| | $500-4,000 \mathrm{~g} @ 1 \mathrm{~ms} \pm 0.3 \mathrm{~ms}$ |
| | $500 \& 1,000 \mathrm{~g} @ 1.5 \mathrm{~ms} \pm 0.45 \mathrm{~ms}$ |
| | $1,800 \mathrm{~g} @ 3 \mathrm{~ms} \pm 0.6 \mathrm{~ms}$ |
| | |
| | $50-200 \mathrm{~g} @ 7 \mathrm{~ms} \pm 1.05 \mathrm{~ms}$ |
| | $15-150 \mathrm{~g} @ 11 \mathrm{~ms} \pm 1.65 \mathrm{~ms}$ |
| | PULSE SHAPE-SAWTOOTH |
| | $100 \mathrm{~g} @ 6 \mathrm{~ms}$ |
| Solderability/Soldering | Up to $280^{\circ} \mathrm{C}$ |
| Temperature Cycling | $-185^{\circ} \mathrm{C}$ to $300^{\circ} \mathrm{C}$ |
| Terminal Strength (Lead Integrity) | Lead Fatigue, Tension, Stud Torque, Terminal Torque |
| Thermal Shock | $-196^{\circ} \mathrm{C}$ to $200^{\circ} \mathrm{C}$ |
| Ultrasonics | $\mathbf{0 - 1 0 0} \mathrm{psi}$ at 25 kHz or 40 kHz |
| Ultraviolet Exposure | To $12.5 \mathrm{~mW} / \mathrm{cm}^{2}$ |
| Vibration, Fatigue | $10-100 \mathrm{~Hz}, 5-70 \mathrm{~g}$ |
| Vibration, Rendom | $\mathbf{2 0 - 2 0 0 ~ H z}$, Power Density $1.3 \mathrm{~g} / \mathrm{g}^{\mathbf{/ H z}}$ |
| Vibration, Variable | $5-2,000 \mathrm{~Hz}$ as Limited by 1 Inch DA and 60 Inches/Second Velocity. $\mathbf{0 - 7 0} \mathrm{g}$ (Standard), 70-100 g (Nonstandard) |

Diode
 Product
 Spectrum

DIODE PRODUCTS

TI manufactures one of the broadest lines of discrete axial-lead diodes and multiple-diode arrays available to the electronic industry. These product families are divided into the following categories:

Discrete Diodes

1. Switching diodes . . . logic, core driver and high-voltage
2. Pico-second diodes . . . fast switching
3. Radiation-tolerant diodes
4. Tuning diodes . . . AFC, UHF, VHF
5. General purpose diodes . . 20 V thru 720 V
6. Rectifiers . . . 50 V thru 1000 V
7. Voltage regulators . . . 3.3 V thru $33 \mathrm{~V}, 400 \mathrm{~mW}$ thru 1 W

Diode Arrays

1. Dual diodes (TO-18)
2. Diode arrays (plastic dual-in-line, metal and ceramic flat packages)
3. Programmable matrices (ceramic dual-in-line and metal flat packages)

DISCRETE DIODES

TI manufactures discrete diodes featuring double-plug construction, which results in a proven, highly reliable product. TI has recently completed a program to utilize this package concept on all axial-lead diodes. This double-plug package, proven by years of volume production, ensures the best in mechanical integrity and the lowest possible junction temperature when compared to the thermal characteristics of whisker packages. The individual piece parts used have closely matched coefficients of thermal expansion to ensure superior reliability over extended temperature excursions. This double-plug construction affords integral positive contact by means of a thermal-compression bond. Moisture-free stability is achieved through hermetic sealing. The chips used in these products feature diffused mesa and planar construction utilizing true glass passivation.

DIODE ARRAYS

In addition to discrete diodes, TI also manufactures a very broad spectrum of diode arrays and diode matrices in integrated-circuit packages. These arrays feature multiple diode junctions fabricated by a planar process and assembled by a hybrid technique. They are ideal for logic and core-driver applications in computer, consumer, and other switching applications. Diode arrays offer many of the same advantages as integrated circuits, such as high density packaging and improved reliability. The high degree of reliability results from fewer connections, more uniform device parameters, smaller size, less weight, fewer glass-to-metal seals, and elimination of pressure contacts and whiskers. Dual-in-line packages facilitate use of wire-wrap techniques in the assembly of electronic equipment. To meet this requirement TI offers a broad selection of planar silicon diode-array products, both in the popular 14-pin dual-in-line packages and in the 10 - or 14 -pin flat pack ages.

HIGH-REL SPECIAL CAPABILITY

In addition to the above standard product line, TI also has extensive capabilities to manufacture special discrete diodes such as high-reliability diodes. This high-rel capability is based on the philosophy that reliability must be built into a product and not tested into it. Consequently. TI established a high-rel manufacturing facility with a Class- 100 clean-room atmosphere that is virtually particle-free with a manufacturing flow designed to meet or exceed the most stringent specifications. Individual piece parts are cleaned and inspected prior to assembly which results in the ultra-high-rel features of these products.

DIODE PRODUCT SPECTRUM

In addition to assembly capability, TI has available extensive environmental and electrical-test facilities for performing environmental tests such as temperature cycling, mechanical shock, vibration, centrifuge, radiographic inspection, visual inspection, high-temperature reverse blocking, d-c operation, liquid bath for parameter matching, and other environmental tests.

Upon request, TI will supply customers with quotations for hi-rel diode products.

DISCRETE DIODE SHIPPING CONTAINERS

Texas Instruments ships axial-lead diode products using several methods including bulk, bag, and reel packaging.

1. Bulk Pack

Bulk pack is TI's standard method of shipment. Diodes are packed in plastic boxes measuring 3 by $21 / 8$ by 1 1/8 inches. (See illustration). The quantity of parts per box varies according to the package outline as shown below:

	DO-41	DO.7	PPt	DO-35	DO.34
Maximum Quantity	250	250	500	500	500

Up to 10 plastic boxes are packed in cardboard containers for ease of handling.

2. Bag Pack

Upon request, diodes can be placed in plastic bags. The average quantity is 5,000 per bag. This method is most commonly used for clipped-lead diodes and offers maximum economy to the customer.

[^171]
DIODE PRODUCT SPECTRUM

3. Reel Pack

Texas Instruments will supply, upon request, reel-packed diodes. These reel packages meet industry accepted standards for component spacing when used with automatic insertion equipment.

Reel-packed diodes are shipped on standard 14 -inch reels with the following quantity per reel:

	DO-41	DO-7	PP \dagger	DO-35	DO-34
Maximum Quantity \ddagger	5,000	5,000	8,000	10,000	10,000

BODY DIA	DIODE SPACING "A"	TAPE SPACING "B"	REEL WIDTH "C"
Up to 0.200	0.200 ± 0.015	2 to $2 \frac{3}{32}$	$3 \pm \frac{1}{32}$

NOTES: 1. Any kink or bend that projects outside of the lead position is less than $3 / 64$ inch radius.
Overall length-of devices is $1 / 8$ to $1 / 4$ inch shorter than the " C " dimension of the real.
All diodes are oriented in one direction. The cathode lead tape is red and the anode lead rape is white.
Lead tape is $\mathbf{1 / 4}$-inch Minnesota Mining and Manufacturing Company $\# 267$ tape or equivalent. Reals are disposeble metal, chipboard, piattic, or equivalent.
A minimum 36 -inch leader tape is provided before the first and after the last diode on the reel.
50 - or 60-lb. kraft paper is wound between layers of diodes. Width of this paper is $\mathbf{1 / 1 6}$ inch to $\mathbf{3 / 4}$ inch less then the "C" dimansion of the real.
8. Rows of dodes are cantered $\pm 3 / 64$ inch between tapes. Individual diodes may deviate $\pm 1 / 32$ inch from the center of the diode row.
9. No steples or other mechanical devices are used for splicing. Up to four layers of tape may be used in one splice area. No tape is offset from another by more than $1 / 32$ inch. Tape splices overlap at least six inches and are as strong as the unspliced tape.
10. A maximum of 10 diodes may be missing from any 10 -foot section. A maximum of three consecutive diodes may be missing provided this gep is followed by six consecutive diodes.
11. Reels and cartons are marked as follows:

Ti Part No.
Purchase Order No.
Quantity
Date Code or Codes
tsee packege drawing on pege 8-14.
FQuantities lese then 100 are shipped in bulk pack.

Diode
 Selection Guides

DIODE SELECTION GUIDES

These guides are arranged into application families. These families are:
Switching Diodes 8-1
Picosecond Diodes 8-2
Radiation-Tolerant Diodes 8-2
Tuning Diodes 8-3
General Purpose Diodes 8.3
Rectifiers 8-4
Voltage Regulators 8-5
Dual Diodes 8-12
Diode Arrays 8-12
Diode Matrices $8-13$

The tabular entries within these families are not made in the usual manner of increasing type number, which would have little inherent utility, but rather are ranked by the most-significant electrical characteristic of that family. Where there is more than one diode type having the identical primary characteristic, the types within that group are further ranked by a secondary characteristic, and so on.

This form of organization works most efficiently when the user's selection criteria coincides with the organizational layout but should not present undue difficulties if it does not.

PRODUCT SELECTION GUIDE DIODES AND RECTIFIERS

SWITCHING DIODES

device TYPE	FORWARD CURRENT		VBR (V)	MAXIMUM $\mathbf{I}_{\text {R }}$				$\begin{aligned} & C_{T} \\ & (\mathrm{pF}) \end{aligned}$	$\begin{aligned} & \mathbf{t}_{\mathbf{r r}} \\ & (\mathrm{ns}) \end{aligned}$	PACKAGE*	
			$25^{\circ} \mathrm{C}$	$150^{\circ} \mathrm{C}$							
	$I_{F}(\mathrm{~mA})$	$V_{F}(\mathrm{~V})$		(V)	$(\mu \mathrm{A})$	(V)	($\mu \mathrm{A}$)				
1N625	4.0	1.5		30	20	1.0				1000	PP
1 N626	4.0	1.5	50	35	1.0				1000	PP	
1N627	4.0	1.5	100	75	1.0				1000	PP	
1 N628	4.0	1.5	150	125	1.0				1000	PP	
1N629	4.0	1.5	200	175	1.0				1000	PP	
1N251	5.0	1.0	40	10	0.1				150	PP	
T171	6.0	1.0	40	20	1.0				10	PP	
1N659	6.0	1.0	60	50	5.0				300	PP	
1N660	6.0	1.0	120	100	5.0				300	PP	
1N661	6.0	1.0	240	200	5.0				300	PP	
1N4727	10	0.85	30	20	0.1			4.0		D0-35	
1N4305	10	0.85	75	50	0.1	50	100	2.0	4.0	DO-35	
1N917	10	1.0	40	10	0.05			2.5	6.0	PP	
TI72	10	1.0	40	20	1.0				20	PP	
1N4532	10	1.0	75	50	0.1	50	100	2.0	4.0	DO-34	
1N4454	10	1.0	75	50	0.1	50	100	2.0	4.0	DO-35	
1N3064	10	1.0	75	50	0.1	50	100	2.0	4.0	PP	
1 N662	10	1.0	100	10	1.0				500	PP	
1N916	10	1.0	100	20	0.025	20	50	2.0	8.0	PP	
1N914	10	1.0	100	20	0.025	20	50	4.0	8.0	PP	
1N4149	10	1.0	100	20	0.025	20	50	2.0	4.0	DO-35	
1N4531	10	1.0	100	20	0.025	20	50	4.0	8.0	D0-34	
1 N4148	10	1.0	100	20	0.025	20	50	4.0	4.0	DO. 35	
1N643	10	1.0	200	100	1.0	30	50		300	PP	
1N4533	20	0.88	40	30	0.05	30	50	2.0	4.0	D0-34	
1N4152	20	0.88	40	30	0.05	30	50	2.0	4.0	D0-35	
1N4534	20	0.88	75	50	0.05	50	50	2.0	4.0	DO-34	
1N4153	20	0.88	75	50	0.05	50	50	2.0	4.0	DO-35	
TI73	20	1.0	40	20	1.0				20	PP	
1N916A	20	1.0	100	20	0.025	20	50	2.0	8.0	PP	
1N4446	20	1.0	100	20	0.025	20	50	2.0	4.0	DO-35	
1N914A	20	1.0	100	20	0.025	20	50	4.0	8.0	PP	
1N4447	20	1.0	100	20	0.025	20	50	4.0	4.0	DO-35	
1N4536	30	1.0	35	20	0.1	20	100	4.0	4.0	DO-34	
1N4154	30	1.0	35	25	0.1	25	100	4.0	4.0	DO-35	
Ti74	30	1.0	40	15	1.0				30	PP	
1N4449	30	1.0	100	20	0.025	20	50	2.0	4.0	DO-35	
1N916B	30	1.0	100	20	0.025	20	50	2.0	8.0	PP	
1N915	50	1.0	65	10	0.025			4.0	10	PP	
1N4151	50	1.0	75	50	0.05	50	50	2.0	4.0	DO-35	
TID40	50	1.0	250	100	0.1	20	50	5.0	30	PP	
TID45	50	1.0	250	200	2.0			1.5	50	PP	
T175	75	1.0	40	35	5.0				50	PP	
1N4444	100	1.0	70	50	0.05	50	50	2.0	4.0	DO-35	
TID38	100	1.0	75	50	0.1			3.0	5.0	DO-35	
TID37	100	1.0	75	50	0.1	50	100	4.0	6.0	DO-35	

[^172]
SWITCHING DIODES (Continued)

DEVICE TYPE	FORWARD CURRENT		$V_{B R}$ (V)	MAXIMUM $\mathbf{I}_{\mathbf{R}}$				$\begin{gathered} C_{T} \\ (p F) \end{gathered}$	$\begin{aligned} & \mathbf{t}_{\mathbf{r r}} \\ & \text { (ns) } \end{aligned}$	PACKAGE*	
			$25^{\circ} \mathrm{C}$	$150^{\circ} \mathrm{C}$							
	$I_{F}(\mathrm{~mA})$	$V_{F}(\mathrm{~V})$		(V)	($\mu \mathrm{A}$)		$(\mu \mathrm{A})$				
TID39	100	1.0		75	50	0.1			5.0	20	DO.35
1N914B	100	1.0	100	20	0.025	20	50	4.0	8.0	PP	
1 N4448	100	1.0	100	20	0.025	20	50	4.0	4.0	DO-35	
TID36	100	1.0	100	50	0.1	50	100	4.0	10	DO-35	
1 N663	100	1.0	100	75	5.0				500	PP	
TID42	100	1.0	150	100	0.1	20	50	5.0	30	PP	
TID41	100	1.0	200	100	0.1	20	50	5.0	30	PP	
1N4938	100	1.0	250	175	0.1	175	100	5.0	50	DO-35	
1N3070	100	1.0	250	175	0.1	175	100	5.0	50	PP	
TID35	150	1.0	75	50	0.1	50	100	4.0	10	DO-35	
TID34	150	1.0	100	50	0.1	50	100	4.0	10	DO-35	
TID43	150	1.0	150	100	0.1	20	50	5.0	30	PP	
1N4150	200	1.0	50	50	0.1	50	100	2.5	4.0	D0-35	
TID31	200	1.0	75	50	0.1	50	100	2.5	6.0	DO.35	
TID33	200	1.0	75	50	0.1	50	100	4.0	10	DO-35	
TID32	200	1.0	100	50	0.1	50	100	4.0	10	DO-35	
TID44	200	1.0	100	100	0.1	20	50	5.0	30	PP	
1N4606	250	1.1	85	50	0.1			2.5	6.0	DO-35	
1N4607	400	1.1	85	50	0.1			4.0	10	DO-35	
1N4608	500	1.1	85	50	0.1			4.0	10	DO-35	

PICO-SECOND DIODES

DEVICE TYPE	FORWARD CURRENT		VBR (V)	MAXIMUM IR				$\begin{aligned} & C_{T} \\ & (\mathrm{pF}) \end{aligned}$	$\begin{aligned} & t_{\text {rr }} \\ & \text { (ps) } \end{aligned}$	PACKAGE*	
			$25^{\circ} \mathrm{C}$	$150^{\circ} \mathrm{C}$							
	$I_{F}(\mathrm{~mA})$	$V_{F}(\mathrm{~V})$		(V)	$(\mu \mathrm{A})$	(V)	($\mu \mathrm{A})$				
TID778	50	1.35		30	20	0.1	20	100	1.0	750	D0.35
TID777	50	1.35	20	20	0.1	20	100	1.3	750	DO-35	

RADIATION TOLERANT DIODES

DEVICE TYPE	FORWARD CURRENT		$V_{B R}(V)$		MAXIMUM IR				$\begin{aligned} & C_{T} \\ & (p F) \end{aligned}$	$\begin{aligned} & \mathbf{t}_{\mathbf{r r}} \\ & \text { (ns) } \end{aligned}$	PACKAGE*		
			$25^{\circ} \mathrm{C}$	$125^{\circ} \mathrm{C}$									
	$I_{F}(\mathrm{~mA})$	$V_{F}(V)$				MAX	(V)	$(\mu \mathrm{A})$				(V)	($\mu \mathrm{A}$)
T1550	100	1.0	200	300	175	0.1	175	10	20	0.7	PP		
TI551	100	1.0	290	400	225	0.1	225	10	20	0.7	PP		

[^173]
PRODUCT SELECTION GUIDE DIODES AND RECTIFIERS

TUNING DIODES

DEVICE TYPE	PF CAPACITANCE VR			CAP RATIO		FIGURE OF	VBR (V)	FUNCTION	PACKAGE*
	MIN	MAX	\mathbf{V}	MIN	MAX	MERIT \mathbf{Q}	(V)		
TIV306	5	9	4	1.5		200	20	AFC	DO-35
TIV307	7	11	4	1.5		200	20	AFC	DO-35
TIV22	9	14	3	4.0	5.0	150	30	UHF	DO-34
TIV23	9	14	3	4.0	6.0	100	30	UHF	DO-34
TIV21	9	14	3	4.5	6.0	150	30	UHF	DO-34
TIV308	9	14	4	1.5		200	20	AFC	DO-35
TIV24	22	34	3	3.5	6.0	80	30	VHF	DO-34
TIV25	23	34	3	4.5	6.0	80	30	VHF	DO-34

GENERAL PURPOSE DIODES

DEVICE TYPE	FORWARD CURRENT		$V_{B R}$ (V)	MAXIMUM $\mathbf{I}_{\mathbf{R}}$				PACKAGE*	
			$25^{\circ} \mathrm{C}$	$150^{\circ} \mathrm{C}$					
	$I_{F}(\mathrm{~mA})$	$\mathbf{V F}_{F}(\mathrm{~V})$		(V)	($\mu \mathrm{A})$	(V)	$(\mu \mathrm{A})$		
1N463	1.0	1.0		200	175	0.5	175	30	D0.7
1N464	3.0	1.0	150	125	0.5	125	30	DO-7	
1N459	3.0	1.0	200	175	0.025	175	5	DO-7	
1N462	5.0	1.0	70	60	0.5	60	30	DO-7	
1N458	7.0	1.0	150	125	0.025	125	5	DO-7	
1N461	15.0	1.0	30	25	0.5	25	30	DO-7	
1N457	20.0	1.0	70	60	0.025	60	5	D0.7	
1N456	40.0	1.0	30.	25	0.025	25	5	DO-7	
G129	100	1.0	6	2	0.1			DO-7	
G130	100	1.0	6	2	0.1			D0.7	
1N456A	100	1.0	30	25	0.025	25	5	D0.7	
1N461A	100	1.0	30	25.	0.5	25	30	DO-7	
1N482A	100	1.0	40	30	0.025	30	15	D0-7	
1N482B	100	1.0	40	30	0.025	30	5	DO-7	
1N457A	100	1.0	70	60	0.025	60	5	D0-7	
1N462A	100	1.0	70	60	0.5	60	30	DO. 7	
1N483A	100	1.0	80	60	0.025	60	15	DO-7	
1 N483B	100	1.0	80	60	0.025	60	5	DO-7	
1N458A	100	1.0	150	125	0.025	125	5	D0.7	
1N464A	100	1.0	150	125	0.5	125	30	DO-7	
1N484A	100	1.0	150	125	0.025	125	15	DO-7	
1N484B	100	1.0	150	125	0.025	125	5	DO-7	
1N459A	100	1.0	200	175	0.025	175	5	D0-7	
1N463A	100	1.0	200	175	0.5	175	30	D0-7	
1N485A	100	1.0	200	175	0.025	175	15	DO-7	
1N485B	100	1.0	200	175	0.025	175	5	DO-7	
1 N482	100	1.1	40	30	0.250	30	30	D0.7	
1N483	100	1.1	80	70	0.250	70	30	DO-7	
1N484	100	1.1	150	125	0.250	125	30	D0.7	
1N485	100	1.1	200	175	0.250	175	30	DO-7	
T151	200	1.0	20	10	1.0			DO-7	
TI52	200	1.0	30	20	1.0			D0-7	

[^174]
PRODUCT SELECTION GUIDE
 DIODES AND RECTIFIERS

GENERAL PURPOSE DIODES (Continued)

DEVICE TYPE	FORWARD CURRENT		$V_{B R}$ (V)	MAXIMUM $\mathbf{I}_{\mathbf{R}}$				PACKAGE*
	$I_{F}(\mathrm{~mA})$	$V_{F}(\mathrm{~V})$		$25^{\circ} \mathrm{C}$		$150^{\circ} \mathrm{C}$		
				(V)	$(\mu \mathrm{A})$	(V)	($\mu \mathrm{A}$)	
TI53	200	1.0	40	30	1.0			DO-7
T154	200	1.0	50	40	1.0			D0-7
TI55	200	1.0	80	60	1.0			DO-7
T156	400	1.0	120	100	1.0			D0.7
T157	400	1.0	200	150	1.0			DO-7
T158	400	1.0	270	175	1.0			DO-7
1N645	400	1.0	275	225	0.2			DO-7
1N645A	400	1.0	275	225	0.2			D0-7
T159	400	1.0	320	200	1.0			D0-7
1 N646	400	1.0	360	300	0.2			DO-7
T160	400	1.0	400	300	1.0			DO-7
1 N647	400	1.0	480	400	0.2			DO-7
1 N648	400	1.0	600	500	0.2			DO-7
1N649	400	1.0	720	600	0.2			DO-7

RECTIFIERS

Device TYPE	$\begin{aligned} & 10 \\ & \text { (A) } \end{aligned}$	SURGE (A)	FORWARD CURRENT		$V_{B R}$ (V)	MAXIMUM $\mathbf{I}_{\mathbf{R}}$				PACKAGE*
			$I_{F}(\mathrm{~A})$	$V_{F}(\mathrm{~V})$		$25^{\circ} \mathrm{C}$		$100^{\circ} \mathrm{C}$		
						V	$\mu \mathrm{A}$	V	$\mu \mathrm{A}$	
1N645	0.400	3	0.400	1.0	275	225	0.2	225	15	DO-7
1N645A	0.400	3	0.400	1.0	275	225	0.2	225	15	DO-7
1N646	0.400	3	0.400	1.0	360	300	0.2	300	15	DO-7
1 N647	0.400	3	0.400	1.0	480	400	0.2	400	20	DO-7
1N648	0.400	3	0.400	1.0	600	500	0.2	500	20	DO-7
1N649	0.400	3	0.400	1.0	720	600	0.2	600	25	DO-7
1N2069A	0.750	6	0.500	1.0	200	200	5			DO-41
1N2069	0.750	6	0.500	1.2	200	200	10			DO.41
1N2070A	0.750	6	0.500	1.0	400	400	5			00-41
1N2070	0.750	6	0.500	1.2	400	400	10			DO-41
1N2071A	0.750	6	0.500	1.0	600	600	5			D0.41
1N2071	0.750	6	0.500	1.2	600	600	10			DO-41
1N4001	1.0	30	1.0	1.1	50	50	10	50	50	DO-41
1N4002	1.0	30	1.0	1.1	100	100	10	100	50	DO-41
1N4003	1.0	30	1.0	1.1	200	200	10	200	50	DO-41
1N4004	1.0	30	1.0	1.1	400	400	10	400	50	D0-41
1N4005	1.0	30	1.0	1.1	600	600	10	600	50	D0.41
1N4006	1.0	30	1.0	1.1	800	800	10	800	50	DO-41
1 N4007	1.0	30	1.0	1.1	1000	1000	10	1000	50	DO-41
TID381	1.0	50	1.0	1.1	50	50	10	50	250	DO-41
TID382	1.0	50	1.0	1.1	100	100	10	100	250	D0-41
TID383	1.0	50	1.0	1.1	200	200	10	200	250	DO.41
TID384	1.0	50	1.0	1.1	400	400	10	400	250	DO-41
TID385	1.0	50	1.0	1.1	600	600	10	600	250	D0-41

[^175]
PRODUCT SELECTION GUIDE DIODES AND RECTIFIERS

VOLTAGE REGULATORS

DEVICE TYPE	$\begin{gathered} P_{D} \oplus 25^{\circ} \mathrm{C} \\ (\mathrm{~mW}) \end{gathered}$	$\mathrm{V}_{\mathbf{z}} \mathrm{I}_{\text {IT }}$		$\begin{gathered} \text { TOL } \\ \hline \end{gathered}$	$\mathbf{I R}_{\mathbf{R}} \mathrm{V}_{\mathrm{R}}$		$\frac{z_{\mathbf{Z}} @ \mathbf{I}_{\mathbf{Z T}}}{\operatorname{MAX} \Omega}$	PACKAGE*
		(V)	(mA)		(V)	(1 A)		
1N702	400	2.6	5	20	1	75	60	DO-7
1N702A	400	2.6	5	5	1	75	60	D0.7
1N746	400	3.3	20	10	1	10	28	DO-7
1N746A	400	3.3	20	5	1	10	28	DO-7
1N3506	400	3.3	20	5	1	4	24	D0.7
1N703	400	3.45	5	20	1	50	55	DO-7
1N703A	400	3.45	5	5	1	50	55	DO-7
1N747	400	3.6	20	10	1	10	24	DO-7
1N747A	400	3.6	20	5	1	10	24	D0.7
1N3507	400	3.6	20	5	1	2	22	DO-7
1N748	400	3.9	20	10	1	10	23	D0-7
1N748A	400	3.9	20	5	1	10	23	D0.7
1N3508	400	3.9	20	5	1	0.4	20	D0.7
1N704	400	4.1	5	20	1	5	45	DO-7
1N704A	400	4.1	5	5	1	5	45	DO-7
1N749	400	4.3	20	10	1	2	22	DO-7
1N749A	400	4.3	20	5	1	2	22	D0-7
1N3509	400	4.3	20	5	1	0.1	18	D0.7
1N750	400	4.7	20	10	1	2	19	DO-7
1N750A	400	4.7	20	5	1	2	19	D0-7
1N3510	400	4.7	20	5	2	5	16	DO-7
1N705	400	4.85	5	20	1.5	5	35	D0.7
1N705A	400	4.85	5	5	1.5	5	35	DO-7
1N761	400	4.85	10	10			40	D0-7
1N751	400	5.1	20	10	1	1	17	DO-7
1N751A	400	5.1	20	5	1	1	17	DO-7
1N3511	400	5.1	20	5	2	2	14	DO-7
1N752	400	5.6	20	10	1	1	11	DO-7
1N752A	400	5.6	20	5	1	1	11	D0.7
1N3512	400	5.6	20	5	3	5	8	D0.7
1N708	400	5.6	25	10			3.6	D0-7
1N708A	400	5.6	25	5			3.6	D0-7
1N706	400	5.8	5	20	1.5	5	20	D0.7
1N706A	400	5.8	5	5	1.5	5	20	DO-7
1N762	400	5.8	10	10			18	DO-7
1N753	400	6.2	20	10	1	0.1	7	DO-7
1N753A	400	6.2	20	5	1	0.1	7	DO-7
1 N3513	400	6.2	20	5	4	5	3	DO-7
1N709	400	6.2	25	10			4.1	D0-7
1N709A	400	6.2	25	5			4.1	DO-7
1 N957	400	6.8	18.5	20			4.5	D0-7
1N957A	400	6.8	18.5	10	5.2	150	4.5	DO-7
1N957B	400	6.8	18.5	5	5.2	150	4.5	DO. 7
1N754	400	6.8	20	10	1	0.1	5	DO-7
1N754A	400	6.8	20	5	1	0.1	5	D0.7
1N3514	400	6.8	20	5	5	1	3	D0.7

VOLTAGE REGULATORS (Continued)

DEVICE TYPE	$\begin{gathered} \text { PD @ } 25^{\circ} \mathrm{C} \\ (\mathrm{~mW}) \end{gathered}$	V_{z} @ IzT		$\begin{gathered} \text { TOL } \\ \% \end{gathered}$	$\mathbf{I}_{\mathbf{R}} @ \mathrm{~V}_{\mathbf{R}}$			PACKAGE*
		(V)	(mA)		(V)	(μ A)		
1N710	400	6.8	25	10			4.7	DO-7
1N710A	400	6.8	25	5			4.7	DO-7
1N707	400	7.1	5	20	3.5	5	10	DO-7
1N707A	400	7.1	5	5	3.5	5	10	DO-7
1N763	400	7.1	10	10			7	DO-7
1 N3515	400	7.5	10	5	6	0.5	4	DO-7
1N958	400	7.5	16.5	20			5.5	DO-7
1N958A	400	7.5	16.5	10	5.7	75	5.5	DO-7
1 N958B	400	7.5	16.5	5	5.7	75	5.5	DO-7
1N755	400	7.5	20	10	1	0.1	6	D0-7
1N755A	400	7.5	20	5	1	0.1	6	DO-7
1N711	400	7.5	25	10			5.3	DO. 7
1N711A	400	7.5	25	5			5.3	D0.7
1N3516	400	8.2	10	5	7	0.25	5	D0-7
1N959	400	8.2	15	20			6.5	D0-7
1N959A	400	8.2	15	10	6.2	50	6.5	D0-7
1N959B	400	8.2	15	5	6.2	50	6.5	D0.7
1N756	400	8.2	20	10	1	0.1	8	DO-7
1N756A	400	8.2	20	5	1	0.1	8	DO-7
1 N712	400	8.2	25	10			6	DO-7
1N712A	400	8.2	25	5			6	DO-7
1N764	400	8.75	10	10			12	DO-7
1N3517	400	9.1	10	5	7	0.025	6	DO-7
1N713	400	9.1	12	10			7	DO-7
1N713A	400	9.1	12	5			7	DO-7
1N960	400	9.1	14	20			7.5	DO-7
1N960A	400	9.1	14	10	6.9	25	7.5	DO-7
1 N960B	400	9.1	14	5	6.9	25	7.5	DO-7
1N757	400	9.1	20	10	1	0.1	10	DO.7
1N757A	400	9.1	20	5	1	0.1	10	D0.7
1 N3518	400	10	10	5	8	0.010	7	DO-7
1N714	400	10	12	10			8	DO-7
1N714A	400	10	12	5			8	DO-7
1N961	400	10	12.5	20			8.5	D0-7
1N961A	400	10	12.5	10	7.6	10	8.5	DO-7
1N961B	400	10	12.5	5	7.6	10	8.5	DO-7
1N758	400	10	20	10	1	0.1	17	DO-7
1N758A	400	10	20	5	1	0.1	17	D0.7
1N765	400	10.5	5	10			45	D0.7
1N3519	400	11	10	5	9	0.010	8	D0.7
1N962	400	11	11.5	20			9.5	D0-7
1N962A	400	11	11.5	10	8	5	9.5	D0.7
1 N962B	400	11	11.5	5	8.4	5	9.5	D0.7
1N715	400	11	12	10			9	D0-7
1N715A	400	11	12	5			9	DO-7
1N3520	400	12	10	5	10	0.010	10	DO-7
1N963	400	12	10.5	20			11.5	DO-7
1N963A	400	12	10.5	10	8.6	5	11.5	DO-7

[^176]
PRODUCT SELECTION GUIDE DIODES AND RECTIFIERS

Voltage regulators (Continued)

DEVICE TYPE	$\begin{gathered} \hline \mathrm{PD}_{\mathrm{D}} @ 25^{\circ} \mathrm{C} \\ (\mathrm{~mW}) \end{gathered}$	$\mathrm{V}_{\mathbf{Z}}$ © İİT		$\begin{gathered} \text { TOL } \\ \% \\ \hline \end{gathered}$	$\mathbf{I}_{\mathbf{R}} \oplus \mathrm{V}_{\mathbf{R}}$		$\frac{z_{Z} @ I \mathbf{Z T}}{\operatorname{MAX} \Omega}$	PACKAGE*
		(V)	(mA)		(V)	(μ A)		
1N963B	400	12	10.5	5	9.1	5	11.5	DO. 7
1N716	400	12	12	10			10	D0.7
1N716A	400	12	12	5			10	D0-7
1N759	400	12	20	10	1	0.1	30	D0.7
1N759A	400	12	20	5	1	0.1	30	DO-7
1N766	400	12.75	5	10			55	D0.7
1N3521	400	13	5	5	11	0.010	12	DO-7
1N964	400	13	9.5	20			13	DO-7
1N964A	400	13	9.5	10	9.4	5	13	D0-7
1N964B	400	13	9.5	5	9.9	5	13	DO-7
1N717	400	13	12	10			11	DO-7
1N717A	400	13	12	5			11	DO-7
1N3522	400	15	5	5	13	0.010	14	DO-7
1N965	400	15	8.5	20			16	DO-7
1N965A	400	15	8.5	10	10.8	5	16	DO-7
1N965B	400	15	8.5	5	11.4	5	16	DO-7
1N718	400	15	12	10			13	DO-7
1N718A	400	15	12	5			13	DO.7
1N767	400	15.75	5	10			70	D0-7
1N3523	400	16	5	5	14	0.010	16	DO-7
1N966	400	16	7.8	20			17	D0.7
1N966A	400	16	7.8	10	11.5	5	17	D0-7
1N966B	400	16	7.8	5	12	5	17	D0-7
1N719	400	16	12	10			15	DO-7
1N719A	400	16	12	5			15	DO-7
1 N3524	400	18	5	5	16	0.010	18	D0. 7
1N967	400	18	7	20			21	DO-7
1N967A	400	18	7	10	13	5	21	D0. 7
1N967B	400	18	7	5	14	5	21	D0.7
1N720	400	18	12	10			17	DO-7
1N720A	400	18	12	5			17	DO-7
1N768	400	19	5	10			100	D0.7
1N721	400	20	4	10			20	D0-7
1N721A	400	20	4	5			20	DO-7
1N3525	400	20	5	5	18	0.010	20	DO-7
1N968	400	20	6.2	20			25	D0.7
1N968A	400	20	6.2	10	14.4	5	25	DO-7
1N968B	400	20	6.2	5	15	5	25	DO-7
1N722	400	22	4	10			24	D0.7
1N722A	400	22	4	5			24	DO-7
1N3526	400	22	5	5	19	0.010	35	DO-7

PRODUCT SELECTION GUIDE
 DIODES AND RECTIFIERS

VOLTAGE REGULATORS (Continued)

DEVICE TYPE	$\begin{gathered} \mathrm{P}_{\mathrm{D}} @ \mathbf{2 5 ^ { \circ }} \mathrm{C} \\ (\mathrm{~mW}) \end{gathered}$	$\mathrm{V}_{\mathrm{z}} \mathrm{l}^{\prime} \mathrm{zT}$		$\begin{gathered} \hline \text { TOL } \\ \% \\ \hline \end{gathered}$	$\mathrm{I}_{\mathrm{R}} @ \mathrm{~V}_{\mathrm{R}}$		$\frac{\mathbf{z}_{\mathbf{Z}} \oplus \mathbf{I}_{\mathbf{Z}}}{\operatorname{MAX} \Omega}$	PACKAGE*
		(V)	(mA)		(V)	($\mu \mathrm{A}$)		
1N969	400	22	5.6	20			29	DO-7
1 N 969 A	400	22	5.6	10	15.8	5	29	DO-7
1N969B	400	22	5.6	5	17	5	29	D0-7
1N769	400	23.5	5	10			150	DO-7
1 N723	400	24	4	10			28	DO-7
1N723A	400	24	4	5			28	DO-7
1N3527	400	24	5	5	20	0.010	38	DO-7
1N970	400	24	5.2	20			33	DO-7
1N970A	400	24	5.2	10	17.3	5	33	DO-7
1N970B	400	24	5.2	5	18	5	33	DO-7
1N724	400	27	4	10			35	DO-7
1N724A	400	27	4	5			35	DO-7
1 N3528	400	27	4	5	22	0.010	40	DO-7
1N971	400	27	4.6	20			41	DO-7
1N971A	400	27	4.6	10	19.4	5	41	D0.7
1N971B	400	27	4.6	5	21	5	41	DO-7
1N725	400	30	4	10			42	DO-7
1N725A	400	30	4	5			42	D0.7
1N3529	400	30	4	5	24	0.010	48	DO. 7
1N972	400	30	4.2	20			49	DO-7
1N972A	400	30	4.2	10	21.6	5	49	DO-7
1N972B	400	30	4.2	5	23	5	49	DO-7
1N3530	400	33	3	5	26	0.010	50	D0.7
1N973	400	33	3.8	20			58	DO-7
1N973A	400	33	3.8	10	23.8	5	58	D0-7
1N973B	400	33	3.8	5	25	5	58	DO-7
1N726	400	33	4	10			50	D0.7
1N726A	400	33	4	5			50	DO-7
1 N5226	500	3.3	20	20			28	D0.7
1N5226A	500	3.3	20	10	0.95	25	28	D0.7
1N5226B	500	3.3	20	5	1	25	28	D0.7
1N5227	500	3.6	20	20			24	DO-7
1N5227A	500	3.6	20	10	0.95	15	24	D0-7
1N5227B	500	3.6	20	5	1	15	24	D0.7
1N5228	500	3.9	20	20			23	DO-7
1N5228A	500	3.9	20	10	0.95	10	23	D0-7
1N5228B	500	3.9	20	5	1	10	23	D0.7
1N5229	500	4.3	20	20			22	DO-7
1N5229A	500	4.3	20	10	0.95	5	22	DO-7
1N5229B	500	4.3	20	5	1	5	22	DO.7
1N5230	500	4.7	20	20			19	DO-7
1N5230A	500	4.7	20	10	1.9	5	19	D0.7
1N5230B	500	4.7	20	5	2	5	19	DO-7
1N5231	500	5.1	20	20			17	D0.7
1N5231A	500	5.1	20	10	1.9	5	17	DO-7
1N52318	500	5.1	20	5	2	5	17	D0.7
1 N5232	500	5.6	20	20			11	DO-7

*See package drawings on page 8-14.

PRODUCT SELECTION GUIDE DIODES AND RECTIFIERS

VOLTAGE REGULATORS (Continued)

DEVICE TYPE	$\begin{gathered} \mathrm{PD}_{\mathrm{D} @} \mathbf{2 5 ^ { \circ } \mathrm { C }} \\ (\mathrm{~mW}) \end{gathered}$	$\mathrm{V}_{\mathbf{Z}}$ @ $\mathrm{I}_{\mathbf{Z}}$		$\begin{gathered} \text { TOL } \\ \% \\ \hline \end{gathered}$	I_{R} @ V_{R}		$\frac{\mathrm{Z}_{\mathrm{Z}} \text { @ } \mathrm{I}_{\mathrm{ZT}}}{\operatorname{MAX} \Omega}$	PACKAGE*
		(V)	(mA)		(V)	($\mu \mathrm{A}$)		
1N5232A	500	5.6	20	10	2.9	5	11	DO. 7
1N5232B	500	5.6	20	5	3	5	11	DO-7
1N5233	500	6	20	20			7	DO-7
1N5233A	500	6	20	10	3.3	5	7	DO-7
1N5233B	500	6	20	5	3.5	5	7	D0-7
1N5234	500	6.2	20	20			7	D0.7
1N5234A	500	6.2	20	10	3.8	5	7	D0.7
1N5234B	500	6.2	20	5	4	5	7	D0. 7
1N5235	500	6.8	20	20			5	DO-7
1N5235A	500	6.8	20	10	4.8	3	5	D0-7
1N5235B	500	6.8	20	5	5	3	5	DO-7
1N5236	500	7.5	20	20			6	DO-7
1N5236A	500	7.5	20	10	5.7	3	6	DO. 7
1N5236B	500	7.5	20	5	6	3	6	D0-7
1N5237	500	8.2	20	20			8	D0.7
1N5237A	500	8.2	20	10	6.2	3	8	D0.7
1N5237B	500	8.2	20	5	6.5	3	8	D0-7
1N5238	500	8.7	20	20			8	DO-7
1N5238A	500	8.7	20	10	6.2	3	8	DO-7
1N5238B	500	8.7	20	5	6.5	3	8	D0.7
1N5239	500	9.1	20	20			10	D0. 7
1N5239A	500	9.1	20	10	6.7	3	10	DO-7
1N5239B	500	9.1	20	5	7	3	10	DO-7
1N5240	500	10	20	20			17	D0-7
1N5240A	500	10	20	10	7.6	3	17	DO.7
1N5240B	500	10	20	5	8	3	17	DO-7
1N5241	500	11	20	20			22	DO-7
1N5241A	500	11	20	10	8	2	22	D0.7
1N5241B	500	11	20	5	8.4	2	22	DO-7
1N5242	500	12	20	20		1	30	DO-7
1N5242A	500	12	20	10	8.7	1	30	DO-7
1N5242B	500	12	20	5	9.1	1	30	DO-7
1N5243	500	13	9.5	20			13	00-7
1N5243A	500	13	9.5	10	9.4	0.5	13	D0.7
1N5243B	500	13	9.5	5	9.9	0.5	13	D0-7
1 N5244	500	14	9	20			15	D0-7
1N5244A	500	14	9	10	9.5	0.1	15	DO-7
1N5244B	500	14	9	5	10	0.1	15	DO-7
1N5245	500	15	8.5	20			16	DO-7
1N5245A	500	15	8.5	10	10.5	0.1	16	D0.7
1N5245B	500	15	8.5	5	11	0.1	16	DO-7

[^177]
PRODUCT SELECTION GUIDE DIODES AND RECTIFIERS

VOLTAGE REGULATORS (Continued)

DEVICE TYPE	$\begin{gathered} \hline P_{D} @ 25^{\circ} \mathrm{C} \\ (\mathrm{~mW}) \end{gathered}$	$\mathbf{V}_{\mathbf{Z}}$ @ IZT		$\begin{gathered} \text { TOL } \\ \% \\ \hline \end{gathered}$	$\mathbf{I}_{\mathbf{R}}$ @ V_{R}		$\frac{z_{Z} @ I_{Z T}}{\operatorname{MAX} \Omega}$	PACKAGE*
		(V)	(mA)		(V)	($\mu \mathrm{A}$)		
1N5246	500	16	7.8	20			17	DO-7
1N5246A	500	16	7.8	10	11.4	0.1	17	DO-7
1N5246B	500	16	7.8	5	12	0.1	17	DO-7
1N5247	500	17	7.4	20			19	DO-7
1N5247A	500	17	7.4	10	12.4	0.1	19	DO-7
1N5247B	500	17	7.4	5	13	0.1	19	DO-7
1 N 5248	500	18	7	20			21	DO-7
1N5248A	500	18	7	10	13.3	0.1	21	DO-7
1N5248B	500	18	7	5	14	0.1	21	DO-7
1N5249	500	19	6.6	20			23	D0.7
1N5249A	500	19	6.6	10	13.3	0.1	23	DO-7
1N5249B	500	19	6.6	5	14	0.1	23	D0. 7
1N5250	500	20	6.2	20			25	DO-7
1N5250A	500	20	6.2	10	14.3	0.1	25	DO-7
1N5250B	500	20	6.2	5	15	0.1	25	DO-7
1N5251	500	22	5.6	20			29	DO-7
1N5251A	500	22	5.6	10	16.2	0.1	29	D0. 7
1N5251B	500	22	5.6	5	17	0.1	29	D0-7
1N5252	500	24	5.2	20			33	DO-7
1N5252A	500	24	5.2	10	17.1	0.1	33	DO-7
1N5252B	500	24	5.2	5	18	0.1	33	D0. 7
1N5253	500	25	5	20			35	DO-7
1N5253A	500	25	5	10	18.1	0.1	35	D0-7
1N5253B	500	25	5	5	19	0.1	35	DO-7
1N5254	500	27	4.6	20			41	DO-7
1N5254A	500	27	4.6	10	20	0.1	41	DO-7
1N5254B	500	27	4.6	5	21	0.1	41	00.7
1N5255	500	28	4.5	20			44	DO-7
1N5255A	500	28	4.5	10	20	0.1	44	D0.7
1N5255B	500	28	4.5	5	21	0.1	44	DO.7
1N5256	500	30	4.2	20			49	DO-7
1N5256A	500	30	4.2	10	22	0.1	49	DO-7
1N5256B	500	30	4.2	5	23	0.1	49	DO-7
1N5257	500	33	3.8	20			58	DO. 7
1N5257A	500	33	3.8	10	24	0.1	58	DO-7
1N5257B	500	33	3.8	5	25	0.1	58	DO-7
1N4728	1000	3.3	76	10	1	100	10	DO-41
1N4728A	1000	3.3	76	5	1	100	10	D0-41
1N4729	1000	3.6	69	10	1	100	10	D0-41
1N4729A	1000	3.6	69	5	1	100	10	D0-41
1N4730	1000	3.9	64	10	1	50	9	DO-41
1N4730A	1000	3.9	64	5	1	50	9	D0.41
1 N 4731	1000	4.3	58	10	1	10	9	D0-41
1N4731A	1000	4.3	58	5	1	10	9	D0-41
1 N4732	1000	4.7	53	10	1	10	8	DO-41
1N4732A	1000	4.7	53	5	1	10	8	D0-41
1N4733	1000	5.1	49	10	1	10	7	D0-41

*See package drawings on page 8-14.

PRODUCT SELECTION GUIDE DIODES AND RECTIFIERS

VOLTAGE REGULATORS (Continued)

DEVICE TYPE	$\begin{gathered} \mathrm{PD}_{\mathrm{D}} \mathrm{25}^{\circ} \mathrm{C} \\ (\mathrm{~mW}) \end{gathered}$			$\begin{gathered} \text { TOL } \\ \% \\ \hline \end{gathered}$	$\mathbf{I}_{\mathbf{R}} \mathrm{V}_{\mathbf{R}}$		$\mathrm{Zz}_{\mathbf{\prime}}$ © $\mathrm{I}_{\mathbf{z}}$	PACKAGE*
		(V)	(mA)		(V)	($\mu \mathrm{A}$)	$\operatorname{MAX} \Omega$	
1N4733A	1000	5.1	49	5	1	10	7	DO-41
1N4734	1000	5.6	45	10	2	10	5	DO-41
1N4734A	1000	5.6	45	5	2	10	5	D0-41
1N4735	1000	6.2	41	10	3	10	2	DO-41
1N4735A	1000	6.2	41	5	3	10	2	DO-41
1N4736	1000	6.8	37	10	4	10	3.5	D0-41
1N4736A	1000	6.8	37	5	4	10	3.5	D0-41
1N4737	1000	7.5	34	10	5	10	4	DO-41
1N4737A	1000	7.5	34	5	5	10	4	D0-41
1N4738	1000	8.2	31	10	6	10	4.5	D0.41
1N4738A	1000	8.2	31	5	6	10	4.5	DO. 41
1N4739	1000	9.1	28	10	7	10	5	DO-41
1N4739A	1000	9.1	28	5	7	10	5	DO-41
1N4740	1000	10	25	10	7.6	10	7	D0-41
1N4740A	1000	10	25	5	7.6	10	7	D0-41
1N4741	1000	11	23	10	8.4	5	8	D0.41
1N4741A	1000	11	23	5	8.4	5	8	DO-41
1 N4742	1000	12	21	10	9.1	5	9	D0.41
1N4742A	1000	12	21	5	9.1	5	9	DO-41
1N4743	1000	13	19	10	9.9	5	10	DO-41
1N4743A	1000	13	19	5	9.9	5	10	DO-41
1N4744	1000	15	17	10	11.4	5	14	D0-41
1N4744A	1000	15	17	5	11.4	5	14	DO-41
1N4745	1000	16	15.5	10	12.2	5	16	DO-41
1N4745A	1000	16	15.5	5	12.2	5	16	DO-41
1N4746	1000	18	14	10	13.7	5	20	DO-41
1N4746A	1000	18	14	5	13.7	5	20	DO-41
1N4747	1000	20	12.5	10	15.2	5	22	D0-41
1N4747A	1000	20	12.5	5	15.2	5	22	D0-41
1 N4748	1000	22	11.5	10	16.7	5	23	DO-41
1N4748A	1000	22	11.5	5	16.7	5	23	D0-41
1N4749	1000	24	10.5	10	18.2	5	25	D0-41
1N4749A	1000	24	10.5	5	18.2	5	25	DO-41
1 N 4750	1000	27	9.5	10	20.6	5	35	D0-41
1N4750A	1000	27	9.5	5	20.6	5	35	DO-41.
1N4751	1000	30	8.5	10	22.8	5	40	D0-41
1N4751A	1000	30	8.5	5	22.8	5	40	DO-41
1N4752	1000	33	7.5	10	25.1	5	45	D0-41
1N4752A	1000	33	7.5	5	25.1	5	45	D0.41

[^178]
PRODUCT SELECTION GUIDE
 DIODE ARRAYS

DUAL DIODES

DEVICE TYPE	CIRCUIT	FORWARD CURRENT		$V_{B R}$ (V)	$\mathbf{I R}^{\text {@ }} \mathrm{V}_{\mathrm{R}} @ 25^{\circ} \mathrm{C}$		PACKAGE*
		I_{F} (mA)	V_{F} (V)		V	$\mu \mathrm{A}$	
TID17	COMMON CATHODE	500	1.5	60	30	0.1	T0-18
TID18	COMMON CATHODE	500	1.7	40	15	0.1	TO-18
TID19	COMMON ANODE	500	1.5	60	30	0.1	T0.18
TID20	COMMON ANODE	500	1.7	40	15	0.1	TO-18

PLASTIC DUAL-IN-LINE PACKAGE

DEVICE TYPE	CIRCUIT	FORWARD CURRENT		$\mathbf{V}_{\text {BR }}$ (V)	$\mathbf{I}_{\mathbf{R}}$ @ $\mathrm{V}_{\mathbf{R}} @ 25^{\circ} \mathrm{C}$		PACKAGE*
		$I_{F}(\mathrm{~mA})$	$\mathrm{V}_{\mathrm{F}}(\mathrm{V})$		V	$\mu \mathrm{A}$	
TID139N	7 INDEPENDENT DIODES	500	1.3	60	40	0.1	14 Lead N
TID140N	7 INDEPENDENT DIODES	100	1.3	40	20	0.05	14 Lead N
TID141N	DUAL 4-DIODE COMMON CATHODE	500	1.3	60	40	0.1	14 Lead N
TID142N	DUAL 4-DIODE COMMON CATHODE	100	1.3	40	20	0.05	14 Lead N
TID143N	DUAL 4-DIODE COMMON ANODE	500	1.3	60	40	0.1	14 Lead N
TID144N	DUAL 4-DIODE COMMON ANODE	100	1.3	40	20	0.05	14 Lead N
TID121	8-DIODE COMMON CATHODE	500	1.3	60	40	0.1	14 Lead N
TID122	8-DIODE COMMON CATHODE	500	1.5	40	25	0.1	14 Lead N
TID123	8-DIODE COMMON ANODE	500	1.3	60	40	0.1	14 Lead N
TID124	8-DIODE COMMON ANODE	500	1.5	40	25	0.1	14 Lead N
TID133	DUAL 8-DIODE (C.C. and C.A.)	500	1.3	60	40	0.1	14 Lead N
TID134	DUAL 8-DIODE (C.C. and C.A.)	500	1.5	40	25	0.1	14 Lead N
TID125	16-DIODE (C.C. and C.A.)	500	1.3	60	40	0.1	14 Lead N
TID126	16-DIODE (C.C. and C.A.)	500	1.5	40	25	0.1	14 Lead N
TID135N	16-DIODE (C.C. and C.A.)	500	1.3	60	40	0.1	14 Lead N
TID136N	16-DIODE (C.C. and C.A.)	100	1.3	40	20	0.05	14 Lead N
TID129	DUAL 10-DIODE (C.C. and C.A.)	500	1.3	60	40	0.1	14 Lead N
TID130	DUAL 10-DIODE (C.C. and C.A.)	500	1.5	40	25	0.1	14 Lead N

METAL FLAT PACKAGE, $1 / \mathbf{4}^{\prime \prime} \times 1 / \mathbf{8}^{\prime \prime}$

DEVICE TYPE	CIRCUIT	FORWARD CURRENT		\mathbf{V}_{BR} (V)	I_{R} @ V_{R} @ $25^{\circ} \mathrm{C}$		PACKAGE*
		$I_{F}(\mathrm{~mA})$	$\mathrm{V}_{\mathrm{F}}(\mathrm{V})$		V	$\mu \mathrm{A}$	
TID139F	7 INDEPENDENT DIODES	500	1.3	60	40	0.1	14 Lead F
TID140F	7 INDEPENDENT DIODES	100	1.3	40	20	0.05	14 Lead F
TID141F	DUAL 4-DIODE COMMON CATHODE	500	1.3	60	40	0.1	10 Lead F
TID142F	DUAL 4-DIODE COMMON CATHODE	100	1.3	40	20	0.05	10 Lead F
TID143F	DUAL 4-DIODE COMMON ANODE	500	1.3	60	40	0.1	10 Lead F
TID144F	DUAL 4-DIODE COMMON ANODE	100	1.3	40	20	0.05	10 Lead F
TID21A	8-DIODE COMMON CATHODE	500	1.3	60	40	0.1	10 Lead F
TID22A	8-DIODE COMMON CATHODE	500	1.5	40	25	0.1	10 Lead F
TID23A	8-DIODE COMMON ANODE	500	1.3	60	40	0.1	10 Lead F
TID24A	8-DIODE COMMON ANODE	500	1.5	40	25	0.1	10 Lead F
TID131	DUAL 8-DIODE (C.C. and C.A.)	500	1.3	60	40	0.1	14 Lead F
TID132	DUAL 8-DIODE (C.C. and C.A.)	500	1.5	40	25	0.1	14 Lead F
TID25A	16-DIODE (C.C. and C.A.)	500	1.3	60	40	0.1	10 Lead F
TID26A	16-DIODE (C.C. and C.A.)	500	1.5	40	25	0.1	10 Lead F
TID29A	DUAL 10-DIODE (C.C. and C.A.)	500	1.3	60	40	0.1	14 Lead F
TID30A	DUAL 10-DIODE (C.C. and C.A.)	500	1.5	40	25	0.1	14 Lead F

[^179]
PRODUCT SELECTION GUIDE
 DIODE ARRAYS

CERAMIC FLAT PACKAGE, $1 / 4^{\prime \prime} \times 1 / 4^{\prime \prime}$

DEVICE TYPE	CIRCUIT	FORWARD CURRENT		$V_{B R}$ (V)	I_{R} @ V_{R} @ $25^{\circ} \mathrm{C}$		PACKAGE*
		$I_{F}(\mathrm{~mA})$	V_{F} (V)		V	$\mu \mathrm{A}$	
1N5768	8-DIODE COMMON CATHODE	500	1.3	60	40	0.1	10 Lead
1N5769	8-DIODE COMMON CATHODE	500	1.5	40	25	0.1	10 Lead
1N5770	8-DIODE COMMON ANODE	500	1.3	60	40	0.1	10 Lead
1N5771	8-DIODE COMMON ANODE	500	1.5	40	25	0.1	10 Lead
1N5774	DUAL 8-DIODE (C.C. and C.A.)	500	1.3	60	40	0.1	14 Lead
1N5775	DUAL 8-DIODE (C.C. and C.A.)	500	1.5	40	25	0.1	14 Lead
1 N5772	16-DIODE (C.C. and C.A.)	500	1.3	60	40	0.1	10 Lead
1N5773	16-DIODE (C.C. and C.A.)	500	1.5	40	25	0.1	10 Lead

MATRICES (PROGRAMMABLE), CERAMIC DUAL-IN-LINE (J) AND METAL FLAT PACKAGE (F)

DEVICE TYPE	$\begin{aligned} & \text { MATRIX } \\ & \text { SIZE } \end{aligned}$	$\begin{gathered} t_{r r}(n s) \\ 10-10-1 \mathrm{~mA} \end{gathered}$	FORWARD CURRENT		VBR (V)	I_{R} @ $\mathrm{V}_{\mathrm{R}} @ 25^{\circ} \mathrm{C}$		PACKAGE*
			$I_{F}(\mathrm{~mA})$	$V_{F}(\mathbf{V})$		V	$\mu \mathrm{A}$	
TIDM155J	5×5	10	20	1.5	45	25	0.02	14 Lead J
TIDM255J	5×5	25	20	1.7	35	25	0.05	14 Lead J
TIDM166J	6×6	10	20	1.5	45	25	0.02	14 Lead J
TIDM266J	6×6	25	20	1.7	35	25	0.05	14 Lead J
TIDM168J	6×8	10	20	1.5	45	25	0.02	14 Lead J
TIDM268J	6×8	25	20	1.7	35	25	0.05	14 Lead J
TIDM185J	8×5	10	20	1.5	45	25	0.02	14 Lead J
TIDM285J	8×5	25	20	1.7	35	25	0.05	14 Lead J
TIDM186J	8×6	10	20	1.5	45	25	0.02	14 Lead J
TIDM286J	8×6	25	20	1.7	35	25	0.05	14 Lead J
TIDM155F	5×5	10	20	1.5	45	25	0.02	14 Lead F
TIDM255F	5×5	25	20	1.7	35	25	0.05	14 Lead F
TIDM166F	6×6	10	20	1.5	45	25	0.02	14 Lead F
TIDM266F	6×6	25	20	1.7	35	25	0.05	14 Lead F
TIDM168F	6×8	10	20	1.5	45	25	0.02	14 Lead F
TIDM268F	6×8	25	20	1.7	35	25	0.05	14 Lead F
TIDM185F	8×5	10	20	1.5	45	25	0.02	14 Lead F
TIDM285F	8×5	25	20	1.7	35	25	0.05	14 Lead F
TIDM186F	8×6	10	20	1.5	45	25	0.02	14 Lead F
TIDM286F	8×6	25	20	1.7	35	25	0.05	14 Lead F

[^180]
PRODUCT SELECTION GUIDE DIODES AND RECTIFIERS

PACKAGE DRAWINGS

DO-34
DO-35

PP
D0-41

DO-7
DOUBLE-PLUG DIODES

10 LEAD F
14 LEAD F
1/4" X 1/8" METAL FLAT PACKAGES

TO-18

j CERAMIC
n Plastic
TO-116 DUAL-IN-LINE PACKAGES

Diode Interchangeability

DIODE INTERCHANGEABILITY

This list of low-power (generally two watts or less power dissipation in free-air) diodes is designed to assist the design engineer in determining the recommended TI replacement or equivalent for over 5700 diodes when only the device type number is known. Also included is a summary of the significant ratings and electrical characteristics of the referenced types. This interchangeability guide differs from the corresponding transistor lists in this volume in that only JEDEC registered (" 1 N ") types are covered.

In compiling this list, all registered diodes were considered regardless of the semiconductor material used, the diode function, package type, or rated power dissipation. The result was massive. In order to keep the list within manageable size, it was severely edited down by deleting most of the entries for high-power diodes and specialized diodes not having wide-spread application.

Germanium diodes were retained in the list but it should be remembered that all recommended replacements for referenced germanium diodes are silicon diodes and that the replacement suggestions are based on specifications only.

Every effort has been made to ensure the accuracy of each entry. However, TI makes no warranty as to the information furnished and the user assumes all risk in the use thereof.

KEY TO CLASSIFICATION CODES

```
RE - RECTIFIER
RD - REFERENCE DIODE
SD - SIGNAL DIODE
ZD - REGULATOR (ZENER) DIODE
```


DIODE INTERCHANGEABILITY

TYPE NUMBER	$\begin{aligned} & \frac{1}{3} \\ & \frac{7}{6} \\ & \frac{1}{4} \end{aligned}$		7 REPLACEMENT		Ratinges			CHARACTERISTICS				
					PD (mW)	V_{R} (V)	(A)	$\begin{array}{ll} \mathbf{I}_{\mathbf{R}} & \bullet \mathbf{V}_{\mathbf{R}} \\ \mu_{\mathbf{A}} & f(\mathbf{V}) \end{array}$	$\mathbf{V F}_{F}$ IF (V) $/$ (mA)	$\begin{aligned} & I_{T r} \\ & \text { (ms) } \end{aligned}$	$\mathbf{V}_{\mathbf{Z}}-\mathbf{I}_{\mathbf{z}}$ (V) $/$ (mA)	$\begin{gathered} \text { TOL } \\ \% \end{gathered}$
1N34 1N34A in34AS 1N35	$\begin{aligned} & \mathbf{G} \\ & \mathbf{G} \\ & \mathbf{G} \\ & \mathbf{G} \end{aligned}$	$\left\lvert\, \begin{aligned} & \text { SD } \\ & \text { SD } \\ & \text { SD } \\ & S D \end{aligned}\right.$		1N4454 1N4454 1N4148 1N4454		60 60 75 50		$\begin{aligned} & 30 / 10 \\ & 30 / 10 \\ & 30 / 10 \\ & 10 / 10 \end{aligned}$	$\begin{aligned} & 1 / 5 \\ & 1 / 5 \\ & 1 / 5 \\ & 1 / 7 \end{aligned}$			
IN36 1N38 1N38A IN38B	$\left\lvert\, \begin{aligned} & \mathbf{G} \\ & \mathbf{G} \\ & \mathbf{G} \\ & \mathbf{G} \end{aligned}\right.$	$\begin{aligned} & \text { SD } \\ & \text { SD } \\ & \text { SD } \\ & \text { SD } \end{aligned}$		1N4148 1N4148 1N4938 1N4938		36 100 115 125		$\begin{aligned} & 100 / 25 \\ & 500 / 100 \\ & 500 / 100 \\ & 500 / 100 \end{aligned}$	$\begin{aligned} & 1 / 4 \\ & 1 / 7 \\ & 1 / 4 \\ & 1 / 4 \end{aligned}$			
1N39 iN39A IN39B 1N40	$\begin{aligned} & \mathbf{G} \\ & \mathbf{G} \\ & \mathbf{G} \\ & \mathbf{G} \end{aligned}$	$\begin{aligned} & \text { SD } \\ & \text { SD } \\ & \text { SD } \\ & \text { SD } \end{aligned}$		$\left\{\begin{array}{l} \text { 1N4938 } \\ \text { IN4938 } \\ \text { IN4938 } \\ \text { iN4148 } \end{array}\right.$		$\begin{array}{r} 210 \\ 230 \\ 200 \\ 25 \end{array}$		$\begin{gathered} 100 / 100 \\ 65 / 100 \\ 100 / 100 \\ 35 / 10 \end{gathered}$	$\begin{gathered} 1 / 3 \\ 1 / 5 \\ 1 / 4 \\ 1.5 / 12 \end{gathered}$			
$\begin{aligned} & \text { IN41 } \\ & \text { 1N42 } \\ & \text { 1N43 } \\ & \text { 1N44 } \end{aligned}$	$\begin{aligned} & \mathbf{G} \\ & \mathbf{G} \\ & \mathbf{G} \\ & \mathbf{G} \end{aligned}$	$\begin{aligned} & \text { SD } \\ & \text { SD } \\ & \text { SD } \\ & \text { SD } \end{aligned}$		$\begin{aligned} & \text { IN4454 } \\ & \text { 1N4938 } \\ & \text { 1N4148 } \\ & \text { iN4938 } \end{aligned}$		$\begin{array}{r} 25 \\ 115 \\ 70 \\ 115 \end{array}$		$\begin{gathered} 35 / 10 \\ 200 / 5 \\ 1 K / 50 \end{gathered}$	$\begin{gathered} 1.5 / 12 \\ 1.5 / 12 \\ 1 / 5 \\ 1 / 3 \end{gathered}$			
$\begin{aligned} & \text { 1N45 } \\ & \text { 1N46 } \\ & \text { 1N47 } \\ & \text { 1N48 } \end{aligned}$	$\left\lvert\, \begin{aligned} & G \\ & G \\ & G \\ & G \end{aligned}\right.$	$\left\|\begin{array}{l} \text { SD } \\ \text { SD } \\ \text { SD } \\ \text { SD } \end{array}\right\|$		1N4454 1N4454 1N4938 1N4454		75 60 150 80		$\begin{aligned} & 410 / 50 \\ & 1 M / 50 \\ & 500 / 100 \\ & 833 / 50 \end{aligned}$	$\begin{aligned} & 1 / 3 \\ & 1 / 3 \\ & 1 / 4 \\ & 1 / 4 \end{aligned}$			
$\begin{aligned} & \text { 1N49 } \\ & \text { IN50 } \\ & \text { 1N51 } \\ & \text { 1N52 } \end{aligned}$	$\begin{aligned} & \mathbf{G} \\ & \mathbf{G} \\ & \mathbf{G} \\ & \mathbf{G} \end{aligned}$	$\left.\begin{aligned} & \text { SD } \\ & \text { SD } \\ & \text { SD } \\ & \text { SD } \end{aligned} \right\rvert\,$		1N4148 INA148 1N4454 iN4454		75 75 50 80		$\begin{array}{r} 200 / 20 \\ 80 / 20 \\ 1 M / 50 \\ 150 / 50 \end{array}$	$\begin{aligned} & 1 / 5 \\ & 1 / 5 \\ & 1 / 2.5 \\ & 1 / 4 \end{aligned}$			
1N52A 1N54 1N54A 1N55	$\begin{aligned} & \mathbf{G} \\ & \mathbf{G} \\ & \mathbf{G} \\ & \mathbf{G} \end{aligned}$	$\left\|\begin{array}{c} S D \\ S D \\ S D \\ S D \\ S D \end{array}\right\|$		1N4454 1N4148 IN4148 1N4938		50 50 50 150		$\begin{array}{r} 100 / 50 \\ 7 / 10 \\ 7 / 10 \\ 800 / 150 \end{array}$	$\begin{aligned} & 1 / 5 \\ & 1 / 5 \\ & 1 / 5 \\ & 1 / 5 \end{aligned}$			
1N55A 1N55B 1N56 1N56A	$\begin{aligned} & \mathbf{G} \\ & \mathbf{G} \\ & \mathbf{G} \\ & \mathbf{G} \end{aligned}$	$\left\|\begin{array}{l} \text { SD } \\ \text { SD } \\ \text { SD } \\ \text { SD } \end{array}\right\|$		1N4938 1N4938 1N4148 1N4148		$\begin{array}{r} 170 \\ 180 \\ 40 \\ 40 \end{array}$		$\begin{aligned} & 500 / 150 \\ & 500 / 150 \\ & 300 / 30 \\ & 300 / 30 \end{aligned}$	$\begin{aligned} & 1 / 4 \\ & 1 / 5 \\ & 1 / 15 \\ & 1 / 15 \end{aligned}$			
1N57 1N57A 1N58 1N58A	$\begin{aligned} & G \\ & G \\ & G \\ & G \end{aligned}$	$\begin{aligned} & \text { SD } \\ & \text { SD } \\ & \text { SD } \\ & \text { SD } \end{aligned}$		1N4454 1N4454 1N4938 1N4938		$\begin{array}{r} 80 \\ 80 \\ 115 \\ 100 \end{array}$		$\begin{aligned} & 500 / 75 \\ & 500 / 75 \\ & 600 / 100 \\ & 600 / 100 \end{aligned}$	$\begin{aligned} & 1 / 4 \\ & 1 / 4 \\ & 1 / 5 \\ & 1 / 4 \end{aligned}$			
1N59 1N60 IN60A 1N60C	$\begin{aligned} & \mathbf{G} \\ & \mathbf{G} \\ & \mathbf{G} \\ & \mathbf{G} \end{aligned}$	$\left\lvert\, \begin{aligned} & S D \\ & S D \\ & S D \\ & S D \\ & S D \end{aligned}\right.$		1N647 1N4148 1N4148 1N4148		$\begin{array}{r} 280 \\ 40 \\ 40 \\ 50 \end{array}$		$\begin{gathered} 800 / 250 \\ 200 / 10 \\ 60 / 10 \\ 67 / 10 \end{gathered}$	$\begin{aligned} & 1 / 3 \\ & 1 / 5 \\ & 1 / 5 \\ & 1 / 5 \end{aligned}$			

DIODE INTERCHANGEABILITY

TYPE NUMBER			$\underset{\text { REPLACEMENT }}{\text { In }}$	$\begin{gathered} \text { FOR } \\ \text { NEW } \\ \text { DESICN } \end{gathered}$	P_{D} (mW)	atings V_{R} (V)	(A)	$\begin{gathered} \mathbf{I}_{\mathbf{R}}: \mathbf{V}_{\mathbf{R}} \\ \mu_{\mathrm{A}} \\ \hline \end{gathered}$			$\begin{array}{ccc} \mathbf{v}_{\mathbf{z}} & \bullet & \mathbf{z} \\ (\mathrm{V}) & / & (\mathrm{ma}) \end{array}$	$\left\lvert\, \begin{gathered} \text { TOL } \\ x \end{gathered}\right.$
$\begin{array}{\|l} \hline \text { IN60S } \\ \text { IN61 } \\ \text { IN62 } \\ \text { IN63 } \end{array}$	$\begin{aligned} & \mathbf{G} \\ & \mathbf{G} \\ & \mathbf{G} \\ & \mathbf{G} \end{aligned}$	SD		1N4148 1N4938 1 N4938 1N4148		25 140 140 100		$\begin{gathered} 67 / 10 \\ 300 / 100 \\ 700 / 100 \\ 50 / 50 \end{gathered}$	$\begin{aligned} & 1 / 5 \\ & 1 / 5 \\ & 1 / 5 \\ & 1 / 4 \end{aligned}$			
$\begin{array}{\|l} \text { 1N63A } \\ \text { 1N64 } \\ \text { IN64A } \\ \text { IN65 } \end{array}$	$\begin{aligned} & \mathbf{G} \\ & \mathbf{G} \\ & \mathbf{G} \\ & \mathbf{G} \end{aligned}$	$\left\|\begin{array}{l} S D \\ S D \\ S D \\ S D \\ S D \end{array}\right\|$		$\begin{array}{\|l\|l\|} \hline \text { IN4148 } \\ \text { IN4148 } \\ \text { IN4148 } \\ \text { IN4454 } \end{array}$		100 20 20 80		$\begin{array}{r} 50 / 50 \\ 25 / 10 \\ 25 / 10 \\ 200 / 50 \end{array}$	$\begin{aligned} & 1 / 4 \\ & 1 / 3 \\ & 1 / 3 \\ & 1 / 2.5 \end{aligned}$			
1N66 IN6OA 1N67 1N67A	$\begin{aligned} & \mathbf{G} \\ & \mathbf{G} \\ & \mathbf{G} \\ & \mathbf{G} \end{aligned}$	$\left\|\begin{array}{l} \text { SD } \\ \text { SD } \\ \text { SD } \\ \text { SD } \end{array}\right\|$		in4454 1N4454 1N4148 1N4148		60 60 92 80		$\begin{aligned} & 50 / 10 \\ & 50 / 10 \\ & 50 / 50 \\ & 50 / 50 \end{aligned}$	$\begin{aligned} & 1 / 5 \\ & 1 / 5 \\ & 1 / 4 \\ & 1 / 4 \end{aligned}$			
1N68 1N68A 1N69 1N69A	$\begin{aligned} & \mathbf{G} \\ & \mathbf{G} \\ & \mathbf{G} \\ & \mathbf{G} \end{aligned}$	$\begin{aligned} & \mathrm{SD} \\ & \mathrm{SD} \\ & \mathrm{SD} \\ & \mathrm{SD} \\ & \mathrm{SD} \end{aligned}$		1N4938 1N4938 1N4454 1N4454		100 100 75 75		$\begin{gathered} 625 / 100 \\ 625 / 100 \\ 30 / 10 \\ 30 / 10 \end{gathered}$	$\begin{aligned} & 1 / 5 \\ & 1 / 5 \\ & 1 / 5 \\ & 1 / 5 \end{aligned}$			
	$\begin{aligned} & \mathbf{G} \\ & \mathbf{G} \\ & \mathbf{G} \\ & \mathbf{G} \end{aligned}$	$\left.\begin{array}{\|l\|} \hline \text { SD } \\ \text { SD } \\ \text { SD } \\ \text { SD } \end{array} \right\rvert\,$		1N4938 IN4148 1N4454		$\begin{array}{r} 120 \\ 100 \\ 40 \\ 70 \end{array}$		$\begin{array}{r} 25 / 10 \\ 25 / 10 \\ 300 / 30 \\ 50 / 10 \end{array}$	$\begin{gathered} 1 / 3 \\ 1 / 3 \\ 1 / 15 \\ 1.5 / 15 \end{gathered}$			
$\begin{array}{\|l\|} \text { 1N74 } \\ \text { 1N75 } \\ \text { 1N81 } \\ \text { 1N81A } \end{array}$	$\left\lvert\, \begin{aligned} & G \\ & G \\ & G \\ & G \end{aligned}\right.$	$\begin{array}{\|l\|} \hline \text { SD } \\ \text { SD } \\ \text { SD } \\ \text { SD } \end{array}$		1N4148 1N4938 1N4148 1N4148		75 125 50 40		50/10 50/50 10/10 10/10	$\begin{gathered} 1.5 / 15 \\ 1 / 2.5 \\ 1 / 3 \\ 1 / 3 \end{gathered}$			
$\begin{array}{\|l\|l\|} \text { 1N83 } \\ \text { 1N84 } \\ \text { 1N86 } \\ \text { 1N87 } \end{array}$	$\begin{aligned} & \mathbf{G} \\ & \mathbf{G} \\ & \mathbf{G} \\ & \mathbf{G} \end{aligned}$	$\left\|\begin{array}{l} \mathrm{SD} \\ \mathrm{SD} \\ \mathrm{SD} \\ \mathrm{SD} \end{array}\right\|$		1N647 1N4148 1N4148 1N4148		$\begin{array}{r} 375 \\ 25 \\ 70 \\ 23 \end{array}$		$\begin{array}{r} 30 / 60 \\ 750 / 15 \\ 50 / 10 \\ 30 / 1.5 \end{array}$	$\begin{gathered} 1 / 5 \\ 1 / 60 \\ 1 / 4 \\ .25 / .1 \end{gathered}$			
1N87A in87s in87t 1N88		$\begin{array}{\|l\|} \text { SD } \\ \text { SD } \\ \text { SD } \\ \text { SD } \end{array}$		IN4148 IN4148 1N4148 1N4938		23 25 25 85		$\begin{gathered} 10 / 1.5 \\ 220 / 2 \\ 30 / 10 \\ 75 / 100 \end{gathered}$	$\begin{gathered} .25 / .1 \\ 1 / 5 \\ 1 / 5 \\ 1 / 2.5 \end{gathered}$			
$\begin{aligned} & \text { INB9 } \\ & \text { IN90 } \\ & \text { IN91 } \\ & \text { IN92 } \end{aligned}$		$\begin{array}{\|l\|} \hline \mathrm{SD} \\ \mathrm{SD} \\ \mathrm{RE} \\ \hline \mathrm{RE} \\ \hline \end{array}$		1N4454 1N4454 1N4002 1N4003		$\begin{array}{r} 80 \\ 60 \\ 100 \\ 200 \end{array}$		$\begin{aligned} & 100 / 50 \\ & 500 / 50 \\ & 1 / 100 \\ & 2 / 200 \end{aligned}$	$\begin{aligned} & 1 / 3.5 \\ & 1 / 5 \\ & .5 / 150 \\ & .5 / 100 \end{aligned}$			
$\begin{aligned} & \text { IN93 } \\ & \text { 1N94 } \\ & \text { iN95 } \\ & \text { IN96 } \end{aligned}$	$\left\lvert\, \begin{aligned} & \mathbf{G} \\ & \mathbf{G} \\ & \mathbf{G} \\ & \mathbf{G} \end{aligned}\right.$	$\left\|\begin{array}{l} R E \\ R E \\ \mathrm{RD} \\ \mathrm{SD} \end{array}\right\|$		in4004 in 4004 1N4148 in447		$\begin{array}{r} 300 \\ 380 \\ 60 \\ 60 \end{array}$		$\begin{gathered} 1.3 / 300 \\ .8 / 380 \\ 500 / 50 \\ 500 / 50 \end{gathered}$	$\begin{aligned} & .5 / 80 \\ & .7 / 500 \\ & 1 / 10 \\ & 1 / 20 \end{aligned}$			

TYPE Mumest	$\frac{3}{3}$	$\left\|\begin{array}{l} \frac{7}{6} \\ \frac{3}{3} \\ \frac{2}{6} \\ \frac{3}{3} \\ 3 \end{array}\right\|$	TI	$\begin{aligned} & \text { FOR } \\ & \text { NEW } \\ & \text { DESYN } \end{aligned}$	ratines			CHARACTERISTICS				
					$\begin{gathered} P_{D} \\ (\mathrm{~mW}) \end{gathered}$	$\mathbf{V}_{\mathbf{R}}$ (V)	I (A)	$\begin{array}{ll} \mathbf{I}_{\mathbf{R}} & \mathbf{V}_{\mathbf{R}} \\ \mu \mathbf{A} & / \mathbf{V}) \end{array}$	$\begin{array}{ll} \mathbf{V F}_{\mathrm{F}} & \text { if } \\ \text { (V) } & / \mathrm{mA}) \end{array}$	$\begin{gathered} \mathrm{inr} \\ \mathrm{~ns}) \end{gathered}$	$\mathbf{V}_{\mathbf{z}}$ - $\mathbf{l z}_{\mathbf{z}}$ (V) $/$ (mA)	$\begin{aligned} & \text { TOL } \\ & \% \end{aligned}$
IN96A 1N97 1N97A 1N98	$\left\lvert\, \begin{aligned} & \mathbf{G} \\ & \mathbf{G} \\ & \mathbf{G} \\ & \mathbf{G} \end{aligned}\right.$	$\begin{aligned} & \text { SD } \\ & \text { SD } \\ & \text { SD } \\ & \text { SD } \end{aligned}$		1N4148 1N4148 1N4447 IN4454		60 80 92 80		$\begin{aligned} & 500 / 50 \\ & 100 / 50 \\ & 100 / 50 \\ & 100 / 50 \end{aligned}$	$\begin{aligned} & 1 / 40 \\ & 1 / 10 \\ & 1 / 20 \\ & 1 / 20 \end{aligned}$			
1N98A 1N99 1N99A 1N100	$\left\lvert\, \begin{aligned} & G \\ & G \\ & G \\ & G \end{aligned}\right.$	$\begin{aligned} & \text { SD } \\ & \text { SD } \\ & \text { SD } \\ & \text { SD } \end{aligned}$		1N4448 1N4148 iN4454 1N4447		80 80 92 100		$\begin{array}{r} 100 / 50 \\ 50 / 50 \\ 50 / 50 \\ 50 / 50 \end{array}$	$\begin{aligned} & 1 / 40 \\ & 1 / 10 \\ & 1 / 20 \\ & 1 / 20 \end{aligned}$			
INIOOA 1N1OI 1N102 1N103	\mathfrak{G}	$\begin{aligned} & \text { SD } \\ & \text { SD } \\ & \text { SD } \\ & \text { SD } \end{aligned}$		1N4448 IN4938 1N4938 IN4488		80 150 125 20		$\begin{gathered} 50 / 50 \\ 10 / \\ 3 / 25 \\ 750 / 15 \end{gathered}$	$\begin{aligned} & 1 / 40 \\ & 1 / 10 \\ & 1 / 15 \\ & 1 / 30 \end{aligned}$			
$\begin{aligned} & \text { IN104 } \\ & \text { IN106 } \\ & \text { IN107 } \\ & \text { IN108 } \end{aligned}$	$\begin{aligned} & G \\ & G \\ & G \\ & G \end{aligned}$	$\left\|\begin{array}{l} \text { SD } \\ \text { SD } \\ \text { SD } \\ \text { SD } \end{array}\right\|$		$\begin{aligned} & \text { IN4448 } \\ & \text { 1N647 } \\ & \text { T1D31 } \\ & \text { 1N4448 } \end{aligned}$		25 300 10 50		$\begin{gathered} 750 / 15 \\ 70 / 300 \\ 200 / 10 \\ 200 / 50 \end{gathered}$	$\begin{aligned} & 1 / 30 \\ & 1 / 20 \\ & 1 / 150 \\ & 1 / 50 \end{aligned}$			
1N111 1N112 1N113 1N114	$\begin{aligned} & \mathbf{G} \\ & \mathbf{G} \\ & \mathbf{G} \\ & \mathbf{G} \end{aligned}$	$\left.\begin{aligned} & \text { sD } \\ & \text { sD } \\ & \text { sD } \\ & \text { so } \end{aligned} \right\rvert\,$		1N4148 1N4148 1N4454 iN4454		70 70 70 70		$\begin{aligned} & 25 / 10 \\ & 50 / 10 \\ & 25 / 50 \\ & 50 / 50 \end{aligned}$	$\begin{aligned} & 1 / 5 \\ & 1 / 5 \\ & 1 / 2.5 \\ & 1 / 2.5 \end{aligned}$			
IN115 1N116 1N116A 1N117	$\begin{aligned} & \mathbf{G} \\ & \mathbf{G} \\ & \mathbf{G} \\ & \mathbf{G} \end{aligned}$	$\left\lvert\, \begin{aligned} & \text { SD } \\ & \text { SD } \\ & \text { SD } \\ & \text { SD } \end{aligned}\right.$		1N4454 incess iN4454 1N4454		$\begin{aligned} & 70 \\ & 60 \\ & 70 \\ & 60 \end{aligned}$		$\begin{aligned} & 100 / 50 \\ & 100 / 50 \\ & 100 / 50 \\ & 100 / 50 \end{aligned}$	$\begin{aligned} & 1 / 2.5 \\ & 1 / 5 \\ & 1 / 10 \\ & 1 / 10 \end{aligned}$			
1N117A 1N1 18 1N118A 1N119	$\begin{aligned} & \mathbf{G} \\ & \mathbf{G} \\ & \mathbf{G} \\ & \mathbf{G} \end{aligned}$	$\left\lvert\, \begin{aligned} & \text { SD } \\ & \text { SD } \\ & \text { SD } \\ & \text { SD } \end{aligned}\right.$		IN4454 1N454 IN4448 INA148		70 60 60 60		100/50 100/50 100/50	$\begin{aligned} & 1 / 20 \\ & 1 / 20 \\ & 1 / 40 \\ & 1 / 5 \end{aligned}$	500		
1N120 IN126 1N126A iNI 27	$\begin{aligned} & \mathbf{G} \\ & \mathbf{G} \\ & \mathbf{G} \\ & \mathbf{G} \end{aligned}$	$\left\|\begin{array}{l} \text { SD } \\ \text { SD } \\ \text { SD } \\ \text { SD } \end{array}\right\|$		1N4148 INAI48 1N4148 1N4938		$\begin{array}{r} 60 \\ 75 \\ 75 \\ 125 \end{array}$		$\begin{aligned} & 850 / 50 \\ & 850 / 50 \\ & 300 / 50 \end{aligned}$	$\begin{aligned} & 1 / 5 \\ & 1 / 5 \\ & 1 / 5 \\ & 1 / 3 \end{aligned}$	500		
$\begin{aligned} & \text { 1N127A } \\ & \text { 1N128 } \\ & \text { 1N128A } \\ & \text { 1N132 } \end{aligned}$	$\begin{aligned} & \mathbf{G} \\ & \mathbf{G} \\ & \mathbf{G} \\ & \mathbf{G} \end{aligned}$	$\left.\begin{array}{\|c\|} \text { SD } \\ \text { SD } \\ \text { SD } \\ \text { SD } \end{array} \right\rvert\,$		1N4938 1N4148 1N4148 1N4148		$\begin{array}{r} 125 \\ 50 \\ 40 \\ 25 \end{array}$		$\begin{array}{r} 300 / 50 \\ 10 / 10 \\ 10 / 10 \\ 500 / 50 \end{array}$	$\begin{aligned} & 1 / 3 \\ & 1 / 3 \\ & 1 / 3 \end{aligned}$			
1N133 1N135 IN137A IN1378	$\begin{aligned} & G \\ & G \\ & S \\ & S \end{aligned}$	$\left\|\begin{array}{l} \text { SD } \\ \text { SD } \\ \text { SD } \\ \text { SD } \end{array}\right\|$		INA148 INA148 IN483 IN483		$\begin{array}{r} 5 \\ 75 \\ 36 \\ 36 \end{array}$		$\begin{aligned} & 300 / 5 \\ & 850 / 50 \\ & .03 / 20 \\ & .03 / 20 \end{aligned}$	$\begin{aligned} & .5 / 3 \\ & 1 / 5 \\ & 1 / 3 \\ & 1 / 20 \end{aligned}$			

DIODE INTERCHANGEABILITY

TYPE NUMBER			Tin	$\begin{aligned} & \text { FOR } \\ & \text { NEW } \\ & \text { DESIGN } \end{aligned}$	ratines			CHARACTERISTICS				
					PD (mW)	$\begin{aligned} & \mathbf{V}_{\mathbf{R}} \\ & (\mathbf{V}) \end{aligned}$	I (A)	$\begin{array}{ll} \mathbf{I}_{\mathbf{R}} & \oplus \mathbf{V}_{\mathbf{R}} \\ \mu \mathbf{A} & /(\mathbf{V}) \end{array}$	V_{F} IF (V) $\quad /(\mathrm{mA})$	$\begin{aligned} & t_{\mathrm{Vr}} \\ & (\mathrm{~ns}) \end{aligned}$	$\mathbf{V Z}_{\mathbf{Z}}$. \mathbf{z} (V) / (mA)	$\left.\right\|^{\mathrm{TOL}}$
IN138A 1N1388 IN139 IN140	$\begin{aligned} & S \\ & S \\ & G \\ & G \end{aligned}$	$\begin{aligned} & \left\|\begin{array}{l} \text { SD } \\ \text { SD } \\ S D \\ S D \end{array}\right\| \end{aligned}$		1N483 1N483 1N4148 iN4448		18 18 40 70		$.01 / 10$ $.01 / 10$. $5 \mathrm{M} / 50$ 300/50	$\begin{aligned} & 1 / 5 \\ & 1 / 40 \\ & 1 / 20 \\ & 1 / 40 \end{aligned}$			
IN141 iN142 1N143 IN144	$\begin{aligned} & \mathbf{G} \\ & \mathbf{G} \\ & \mathbf{G} \\ & \mathbf{G} \end{aligned}$	$\left\lvert\, \begin{aligned} & \text { SD } \\ & \text { SD } \\ & \text { SD } \\ & \text { SD } \end{aligned}\right.$		1N4148 1N4938 1N4938 IN4454		70 100 100 30		$\begin{aligned} & 50 / 50 \\ & 100 / 100 \\ & 100 / 100 \\ & 200 / 20 \end{aligned}$	$\begin{aligned} & 1 / 20 \\ & 1 / 5 \\ & 1 / 40 \\ & 1 / 100 \end{aligned}$			
1N145 1N151 1N152 1N153	$\begin{aligned} & G \\ & G \\ & G \\ & G \end{aligned}$	$\begin{aligned} & S D \\ & R E \\ & R E \\ & R E \end{aligned}$		1N4449		30 100 200 300	.5 .5 .5	100/10	$\begin{aligned} & 1 / 40 \\ & .7 / \\ & .7 / \\ & .7 / \end{aligned}$			
$\begin{aligned} & 1 N 158 \\ & \text { 1N175 } \\ & \text { 1N190 } \\ & \text { IN191 } \end{aligned}$	$\begin{aligned} & \mathbf{G} \\ & \mathbf{G} \\ & \mathbf{G} \\ & \mathbf{G} \end{aligned}$	$\left\|\begin{array}{l} \mathrm{RE} \\ \mathrm{SD} \\ \mathrm{SD} \\ \mathrm{SD} \end{array}\right\|$		1N4938 1N4148		380 125 3 90	. 5	$\begin{aligned} & 800 / \\ & 50 / 50 \end{aligned}$ $800 /$	$\begin{aligned} & 1.4 / \\ & 5 / 1 \\ & .75 / 10 \\ & 1 / 5 \end{aligned}$	500		
1N192 iN193 1N194 1N194A	$\begin{aligned} & \mathbf{G} \\ & \mathbf{S} \\ & \mathbf{S} \\ & \mathbf{S} \end{aligned}$	$\begin{aligned} & \text { SD } \\ & \text { SD } \\ & \text { SD } \\ & \text { SD } \end{aligned}$		1N4148 IN4148 1N4148 1N4148		70 40 50 40		$\begin{aligned} & 40 / 40 \\ & 60 / 40 \\ & 10 / 40 \end{aligned}$	$\begin{aligned} & 1 / 5 \\ & 2 / 1 \\ & 2 / 1.5 \\ & 1 / 1 \end{aligned}$	$\begin{aligned} & 500 \\ & 500 \\ & 100 \\ & 200 \end{aligned}$		
IN195 1N196 1N198 IN198A	$\begin{aligned} & \mathbf{S} \\ & \mathrm{S} \\ & G \\ & G \end{aligned}$	$\begin{array}{\|l\|} \text { SD } \\ \text { SD } \\ \text { SD } \\ \text { SD } \end{array}$		1N4148 1N4148 1N4148 1N4148		50 50 80 80		$\begin{aligned} & 80 / 40 \\ & 40 / 50 \\ & 10 / 10 \\ & 50 / 50 \end{aligned}$	$\begin{aligned} & 2 / 2 \\ & 2 / 1 \\ & 1 / 4 \\ & 1 / 4 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$		
1N198B 1N198M 1N225 1N225A	$\begin{aligned} & \mathbf{G} \\ & \mathbf{G} \\ & \mathbf{S} \\ & \mathbf{S} \end{aligned}$	SD SD ZD ZD		1N4454 1N4148	$\begin{aligned} & 150 \\ & 150 \end{aligned}$	$\begin{array}{r} 100 \\ 80 \end{array}$		$\begin{aligned} & 50 / 50 \\ & 75 / 10 \end{aligned}$	$\begin{aligned} & 1 / 4 \\ & 1 / 4 \end{aligned}$	300	$\begin{aligned} & 8.75 / .2 \\ & 8.75 / .2 \end{aligned}$	$\begin{array}{r} 10 \\ 5 \end{array}$
1N226 1N226A 1N227 1N227A	$\begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}$	$\left\|\begin{array}{l} \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \end{array}\right\|$			$\begin{aligned} & 150 \\ & 150 \\ & 150 \\ & 150 \end{aligned}$						$\begin{aligned} & 10.5 / .2 \\ & 10.5 / .2 \\ & 12.8 / .2 \\ & 12.8 / .2 \end{aligned}$	$\begin{array}{r} 10 \\ 5 \\ 10 \\ 5 \end{array}$
1N228 IN228A 1N229 IN229A	$\left\lvert\, \begin{aligned} & \mathbf{S} \\ & \mathbf{S} \\ & \mathbf{S} \\ & \mathbf{s} \end{aligned}\right.$	$\left\|\begin{array}{l} \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \end{array}\right\|$			$\begin{aligned} & 150 \\ & 150 \\ & 150 \\ & 150 \end{aligned}$						$\begin{array}{r} 15.7 / .2 \\ 15.7 / .2 \\ 19 / .2 \\ 19 / .2 \end{array}$	10 5 10 5
$\begin{aligned} & \text { 1 N230 } \\ & \text { 1 N230A } \\ & \text { IN231 } \\ & \text { 1N231A } \end{aligned}$	$\left\lvert\, \begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}\right.$	$\begin{aligned} & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \end{aligned}$			$\begin{aligned} & 150 \\ & 150 \\ & 150 \\ & 150 \end{aligned}$						$\begin{aligned} & 23.5 / .2 \\ & 23.5 / .2 \\ & 28.5 / .2 \\ & 28.5 / .2 \end{aligned}$	$\begin{array}{r} 10 \\ 5 \\ 10 \\ 5 \end{array}$

TYPE MUMOER	$\begin{aligned} & \text { 震 } \\ & \frac{\mathbf{V}}{3} \end{aligned}$	$\begin{aligned} & z \\ & \frac{3}{2} \\ & \frac{3}{3} \\ & \frac{3}{3} \\ & \frac{3}{3} \end{aligned}$	$\frac{\text { II }}{\text { REMACEMENT }}$	$\begin{aligned} & \text { FOR } \\ & \text { NEW } \\ & \text { DESIGN } \end{aligned}$	RATINOS			CHARACTERISTICS				
						(V)	1 (A)	$\begin{array}{ll} \mathbf{L} & \mathbf{V}_{\mathrm{R}} \\ \mu \mathrm{~A} & /(\mathbf{V}) \end{array}$	$\mathbf{V F}_{F}$ - $\mathbf{I f}_{\mathbf{F}}$ (V) $/$ (mA)	$\begin{gathered} \mathbf{t}_{\boldsymbol{r}} \\ \mathrm{n} s) \end{gathered}$	$\mathbf{V}_{\mathbf{Z}}-\mathbf{Z}_{\mathbf{2}}$ (V) $/$ (mA)	TOL \%
$\begin{aligned} & \text { 1 N232 } \\ & \text { 1 N232A } \\ & \text { 1N233 } \\ & \text { iN233A } \end{aligned}$	$\begin{aligned} & 5 \\ & s \\ & s \\ & s \end{aligned}$	$\begin{aligned} & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \end{aligned}$			$\begin{aligned} & 150 \\ & 150 \\ & 150 \\ & 150 \end{aligned}$						$\begin{array}{r} 34.5 / .2 \\ 34.5 / .2 \\ 41 / .2 \\ 41 / .2 \end{array}$	$\begin{array}{r} 10 \\ 5 \\ 10 \\ 5 \end{array}$
$\begin{array}{\|l} \text { 1N234 } \\ \text { 1N234A } \\ \text { 1N235 } \\ \text { 1N235A } \end{array}$	$\begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}$	$\left\|\begin{array}{l} \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \end{array}\right\|$			$\begin{aligned} & 150 \\ & 150 \\ & 150 \\ & 150 \end{aligned}$						$\begin{aligned} & 48 / .2 \\ & 48 / .2 \\ & 58 / .2 \\ & 58 / .2 \end{aligned}$	$\begin{array}{r} 10 \\ 5 \\ 10 \\ 5 \end{array}$
$\begin{aligned} & \text { 1N236 } \\ & \text { 1N237 } \\ & \text { 1N238 } \\ & \text { 1N239 } \end{aligned}$	$\begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}$	$\left\lvert\, \begin{aligned} & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \end{aligned}\right.$			$\begin{aligned} & 150 \\ & 150 \\ & 150 \\ & 150 \end{aligned}$						$\begin{array}{r} 71 / .2 \\ 88 / .2 \\ 105 / .2 \\ 128 / .2 \end{array}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$
$\begin{aligned} & \text { 1N248 } \\ & \text { IN248A } \\ & \text { 1N2488 } \\ & \text { IN248C } \end{aligned}$	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\begin{aligned} & R E \\ & R E \\ & R E \\ & R E \\ & R E \end{aligned}$				$\begin{aligned} & 50 \\ & 50 \\ & 50 \\ & 39 \end{aligned}$	$\begin{aligned} & 10 \\ & 20 \\ & 20 \\ & 20 \end{aligned}$	5M/ 5M/ 5M/ 4M/	$\begin{aligned} & 1.5 / \\ & 1.5 / \\ & 1.5 / \\ & 1.2 / \end{aligned}$			
$\begin{aligned} & \text { 1N249 } \\ & \text { 1N249A } \\ & \text { 1N2498 } \\ & \text { 1N249C } \end{aligned}$	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\begin{array}{\|l\|} \mathbf{R E} \\ \mathrm{RE} \\ \mathrm{RE} \\ \mathrm{RE} \end{array}$				$\begin{aligned} & 100 \\ & 100 \\ & 100 \\ & 110 \end{aligned}$	$\begin{aligned} & 10 \\ & 20 \\ & 20 \\ & 20 \end{aligned}$	5M/ 5M/ 5M/ 4M/	$\begin{aligned} & 1.5 / \\ & 1.5 / \\ & 1.5 / \\ & 1.2 / \end{aligned}$			
$\begin{array}{\|l\|} \text { 1N250 } \\ \text { 1N250A } \\ \text { 1N250B } \\ \text { 1N250C } \end{array}$	$\left[\begin{array}{l} s \\ s \\ s \\ s \end{array}\right.$	$\begin{aligned} & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \end{aligned}$				$\begin{aligned} & 200 \\ & 200 \\ & 200 \\ & 210 \end{aligned}$	$\begin{aligned} & 10 \\ & 20 \\ & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 5 M / \\ & 5 M / \\ & 5 M / \\ & 3 M / \end{aligned}$	$\begin{aligned} & 1.5 / \\ & 1.5 / \\ & 1.5 / \\ & 1.2 / \end{aligned}$			
$\begin{aligned} & \text { 1N251 } \\ & \text { 1N251A } \\ & \text { 1N252 } \\ & \text { 1N252A } \end{aligned}$	$\begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}$	$\left\|\begin{array}{l} \text { SD } \\ \text { SD } \\ \text { SD } \\ \text { SD } \end{array}\right\|$	1N251	$\begin{aligned} & \text { 1N4938 } \\ & \text { 1N914 } \\ & \text { 1N4938 } \end{aligned}$		$\begin{array}{r} 30 \\ 125 \\ 20 \\ 125 \end{array}$		$\begin{gathered} 100 / 10 \\ 10 / 10 \\ .1 / 5 \\ 10 / 10 \end{gathered}$	$\begin{aligned} & 1 / 5 \\ & 1 / 5 \\ & 1 / 10 \\ & 1 / 5 \end{aligned}$	$\begin{aligned} & 150 \\ & 150 \\ & 150 \\ & 150 \end{aligned}$		
IN265 1N266 IN267 IN268	$\left\lvert\, \begin{aligned} & \mathbf{G} \\ & \mathbf{G} \\ & \mathbf{G} \\ & \mathbf{G} \end{aligned}\right.$	$\left\|\begin{array}{l} S D \\ S D \\ S D \\ S D \\ S D \end{array}\right\|$		1N4148 1N4148 1N4148 INA148		80 50 30 30		30M/60 30M/30 $50 \mathrm{~m} / 10$ 850/30	$\begin{aligned} & 1 / 4 \\ & 1 / 5 \\ & 1 / 5 \\ & 1 / 2.5 \end{aligned}$			
1N270 IN273 1N276 1N277	$\begin{aligned} & G \\ & G \\ & \mathbf{G} \\ & \mathbf{G} \end{aligned}$	$\left\|\begin{array}{l} \text { SD } \\ \text { SD } \\ \text { SD } \\ \text { SD } \end{array}\right\|$		TID31 INAMS 1N4454 1N4938		$\begin{array}{r} 80 \\ 30 \\ 50 \\ 150 \end{array}$		$\begin{array}{r} 100 / 50 \\ 20 / 20 \\ 100 / 50 \\ 75 / 10 \end{array}$	$\begin{aligned} & 1 / 200 \\ & 1 / 100 \\ & 1 / 40 \\ & 1 / 100 \end{aligned}$	$\begin{aligned} & 300 \\ & 300 \\ & 300 \end{aligned}$		
$\begin{aligned} & \text { 1N277M } \\ & \text { 1N278 } \\ & \text { 1N279 } \\ & \text { 1N281 } \end{aligned}$	$\begin{aligned} & \mathbf{G} \\ & \mathbf{G} \\ & \mathbf{G} \\ & \mathbf{G} \end{aligned}$	$\left\|\begin{array}{l} \text { SD } \\ \text { SD } \\ \text { SD } \\ \text { SD } \end{array}\right\|$		1 N448 1N4446 1 N4448 1N4488		$\begin{array}{r} 100 \\ 50 \\ 30 \\ 60 \end{array}$		$\begin{array}{r} 75 / 10 \\ 125 / 50 \\ 200 / 20 \\ 30 / 10 \end{array}$	$\begin{aligned} & 1 / 100 \\ & 1 / 20 \\ & 1 / 100 \\ & 1 / 100 \end{aligned}$	$\begin{aligned} & 300 \\ & 300 \end{aligned}$		

DIODE INTERCHANGEABILITY

TYPE NUMBER			π REPLACEMENT	$\begin{gathered} \text { FOR } \\ \text { NEW } \\ \text { DESIGN } \end{gathered}$	PD (mW)	atings V_{R} (V)	(A)	$\begin{array}{ll} I_{\mathbf{R}} & V_{\mathbf{R}} \\ \mu_{\mathrm{A}} & (\mathbf{V}) \end{array}$	$\mathbf{V}_{\mathrm{F}} \mathrm{I}_{\mathrm{F}}$ (V) $/$ (mA)	RISTIC ${ }^{\prime} \mathrm{rr}$ (ns)	$\begin{array}{ccc} v_{z} & \mathrm{lz} \\ (\mathrm{~V}) & /(\mathrm{mA}) \end{array}$	$\begin{gathered} \text { TOL } \\ \% \end{gathered}$
$\begin{array}{\|l} \hline \text { 1N282 } \\ \text { 1N283 } \\ \text { 1N287 } \\ \text { 1N288 } \end{array}$	$\begin{aligned} & \mathbf{G} \\ & \mathbf{G} \\ & \mathbf{G} \\ & \mathbf{G} \end{aligned}$	$\left\lvert\, \begin{aligned} & \text { SD } \\ & \text { SD } \\ & \text { SD } \\ & \text { SD } \end{aligned}\right.$		$\begin{aligned} & \text { IN4449 } \\ & \text { TID33 } \\ & \text { IN4148 } \\ & \text { IN4148 } \end{aligned}$		15 20 60 85		$\begin{array}{r} 20 / 10 \\ 20 / 10 \\ 1 \mathrm{M} / 50 \\ 350 / 50 \end{array}$	$\begin{aligned} & 1 / 40 \\ & 1 / 200 \\ & 1 / 20 \\ & 1 / 40 \end{aligned}$			
$\begin{aligned} & \text { in289 } \\ & \text { iN290 } \\ & \text { iN291 } \\ & \text { iN292 } \end{aligned}$	$\begin{aligned} & \mathbf{G} \\ & \mathbf{G} \\ & \mathbf{G} \\ & \mathbf{G} \end{aligned}$	$\left\|\begin{array}{l} \text { SD } \\ \text { SD } \\ \text { SD } \\ S D \end{array}\right\|$		$\begin{aligned} & \text { 1N4148 } \\ & \text { 1N4938 } \\ & \text { 1N4938 } \\ & \text { 1N4448 } \end{aligned}$		$\begin{array}{r} 85 \\ 120 \\ 120 \\ 75 \end{array}$		$50 / 50$ $100 / 100$ 100/100 200/50	$\begin{aligned} & 1 / 20 \\ & 1 / 5 \\ & 1 / 40 \\ & 1 / 100 \end{aligned}$			
$\begin{aligned} & \text { 1N294 } \\ & \text { 1N294A } \\ & \text { 1N295 } \\ & \text { 1N295A } \end{aligned}$	$\begin{aligned} & \mathbf{G} \\ & \mathbf{G} \\ & \mathbf{G} \\ & \mathbf{G} \end{aligned}$	$\left\|\begin{array}{l} \text { SD } \\ \text { SD } \\ \text { SD } \\ \text { SD } \end{array}\right\|$		1N4148 1N4148 1N4148 1N4148		60 60 40 40		$\begin{array}{r} 10 / 10 \\ 10 / 10 \\ 200 / 10 \\ 200 / 10 \end{array}$	$\begin{aligned} & 1 / 5 \\ & 1 / 5 \end{aligned}$			
1N295S 1N295X 1N296 iN297	$\left\lvert\, \begin{aligned} & G \\ & G \\ & G \\ & G \end{aligned}\right.$	$\left\|\begin{array}{l} S D \\ S D \\ S D \\ S D \end{array}\right\|$		1N4148 IN4148 1N4148 1N4148		30 30 40 80		$\begin{aligned} & 800 / 30 \\ & 385 / 24 \\ & 200 / \\ & 10 / 5 \end{aligned}$	$\begin{aligned} & 1 / 6.5 \\ & 1 / 4.5 \\ & 1 / 3.5 \end{aligned}$			
IN297A 1N298 IN298A IN299	$\begin{aligned} & \mathbf{G} \\ & \mathbf{G} \\ & \mathbf{G} \\ & \mathbf{G} \end{aligned}$	$\left\|\begin{array}{l} S D \\ S D \\ S D \\ S D \\ S D \end{array}\right\|$		1N4148 IN4148 IN4148 IN4305		$\begin{aligned} & 80 \\ & 70 \\ & 70 \end{aligned}$		$\begin{gathered} 10 / 5 \\ 250 / 40 \\ 10 / 5 \\ 200 / 6 \end{gathered}$	$\begin{aligned} & 1 / 3.5 \\ & 2 / 30 \\ & 2 / 30 \\ & .5 / 3 \end{aligned}$			
1N300 in300A IN300B 1N301	$\left\lvert\, \begin{aligned} & \mathrm{s} \\ & \mathrm{~s} \\ & \mathrm{~s} \\ & \mathrm{~s} \end{aligned}\right.$	$\left\|\begin{array}{l} S D \\ S D \\ S D \\ S D \\ S D \end{array}\right\|$		$\left\lvert\, \begin{aligned} & \text { 1N482 } \\ & \text { 1N482 } \\ & \text { 1N482 } \\ & \text { 1N457 } \end{aligned}\right.$		15 15 15 70		$\begin{aligned} & 1 N / 10 \\ & 1 N / 10 \\ & 1 N / 10 \\ & .01 / 10 \end{aligned}$	$\begin{aligned} & 1 / 15 \\ & 1 / 30 \\ & 1 / 50 \\ & 1 / 5 \end{aligned}$			
in301A 1N301B 1N302 iN302A	$\begin{aligned} & \mathrm{s} \\ & \mathrm{~s} \\ & \mathrm{~s} \\ & \mathrm{~s} \end{aligned}$	$\left.\begin{aligned} & \mathrm{SD} \\ & \mathrm{SD} \\ & \mathrm{SD} \\ & \mathrm{SD} \\ & \mathrm{SD} \end{aligned} \right\rvert\,$		1N457 1N457 1N645 1N645		$\begin{array}{r} 70 \\ 70 \\ 225 \\ 225 \end{array}$		$\begin{array}{r} .01 / 10 \\ .01 / 10 \\ .1 / 10 \\ .1 / 10 \end{array}$	$\begin{aligned} & 1 / 18 \\ & 1 / 50 \\ & 1 / 1 \\ & 1 / 5 \end{aligned}$			
1N3028 1N303 1N303A 1N303B	$\left\lvert\, \begin{aligned} & \mathrm{s} \\ & \mathrm{~s} \\ & \mathrm{~s} \\ & \mathrm{~s} \end{aligned}\right.$	$\left\|\begin{array}{l} \text { SD } \\ \text { SD } \\ \text { SD } \\ \text { SD } \end{array}\right\|$		1N645 1N458 1 N484 1N484		$\begin{aligned} & 225 \\ & 125 \\ & 125 \\ & 125 \end{aligned}$		$\begin{aligned} & .01 / 10 \\ & .01 / 10 \\ & .01 / 10 \\ & .01 / 10 \end{aligned}$	$\begin{aligned} & 1 / 20 \\ & 1 / 3 \\ & 1 / 12 \\ & 1 / 50 \end{aligned}$			
in304 1N305 1N306 IN307	$\begin{aligned} & s \\ & G \\ & G \\ & G \end{aligned}$	$\begin{aligned} & \text { SD } \\ & \text { SD } \\ & \text { SD } \\ & \text { SD } \end{aligned}$		1N4148 1N4607 IN4607 IN4938		$\begin{array}{r} 55 \\ 60 \\ 15 \\ 125 \end{array}$		$\begin{aligned} & 2 / 10 \\ & 2 / 10 \\ & 2 / 10 \\ & 5 / 10 \end{aligned}$	$\begin{aligned} & 1.5 / 2 \\ & .8 / 100 \\ & .8 / 100 \\ & 1 / 100 \end{aligned}$			
IN308 IN309 IN310 1N312	$\begin{aligned} & \mathbf{G} \\ & \mathbf{G} \\ & \mathbf{G} \\ & \mathbf{G} \end{aligned}$	$\begin{aligned} & \text { SD } \\ & \text { SD } \\ & \text { SD } \\ & \text { SD } \end{aligned}$		1N4607 1N4148 1N4148 1N4448		$\begin{array}{r} 8 \\ 40 \\ 100 \\ 50 \end{array}$		$\begin{aligned} & 500 / 8 \\ & 100 / 20 \\ & 20 / 20 \\ & 50 / 50 \end{aligned}$	$\begin{aligned} & 1 / 300 \\ & 1 / 100 \\ & 1 / 15 \\ & 1 / 30 \end{aligned}$			

DIODE INTERCHANGEABILITY

TVPE Number			TI REPLACEMENT	$\begin{aligned} & \text { FOR } \\ & \text { NEW } \\ & \text { DESVCN } \end{aligned}$	RATINGS			CHARACTERISTICS				
					$\begin{gathered} P_{D} \\ (\mathrm{~mW}) \end{gathered}$	$\begin{aligned} & \mathbf{V}_{\mathbf{R}} \\ & (\mathbf{V}) \end{aligned}$	I (A)	$\begin{array}{ll} \mathbf{I}_{\mathbf{R}} & \mathbf{V}_{\mathbf{R}} \\ \mu_{\mathrm{A}} & / \mathbf{V}) \end{array}$	$\begin{aligned} & \mathbf{V}_{F}: F_{F} \\ & (\mathrm{~V}) \\ & \hline(\mathrm{mA}) \end{aligned}$	$\begin{aligned} & i_{r r} \\ & \text { (ns) } \end{aligned}$	$\mathbf{V}_{\mathbf{z}}$ - \mathbf{z} (V) $/$ (mA)	$\begin{gathered} 10 x \\ x \end{gathered}$
$\begin{aligned} & \text { 1N313 } \\ & \text { 1N314 } \\ & \text { 1N315 } \\ & \text { 1N315A } \end{aligned}$	$\begin{aligned} & \mathbf{G} \\ & \mathbf{G} \\ & \mathbf{G} \\ & \mathbf{G} \end{aligned}$	SD SD RE RE		1N4148 1N4148 iNaOO4 1N4003		$\begin{array}{r} 100 \\ 75 \\ 300 \\ 200 \end{array}$	$\begin{array}{r} .075 \\ .1 \end{array}$	$\begin{gathered} 10 / 20 \\ 50 / 10 \\ 300 / 300 \\ 160 / 200 \end{gathered}$	$\begin{gathered} 1 / 20 \\ 1 / 15 \\ .48 / 100 \\ .48 / 100 \end{gathered}$			
$\begin{aligned} & \text { 1N316 } \\ & \text { iN316A } \\ & \text { 1N317 } \\ & \text { 1N317A } \end{aligned}$	$\left\lvert\, \begin{aligned} & \mathbf{s} \\ & \mathbf{S} \\ & \mathbf{S} \\ & \mathbf{s} \end{aligned}\right.$	$\begin{aligned} & R E \\ & R E \\ & R E \\ & R E \\ & R E \end{aligned}$		1N645 1N645 iN645 1N645		$\begin{array}{r} 50 \\ 50 \\ 100 \\ 100 \end{array}$	$\begin{array}{r} .25 \\ .2 \\ .2 \\ .2 \end{array}$	$\begin{array}{r} 300 / 50 \\ 1 / 50 \\ 300 / 100 \\ 1 / 100 \end{array}$	$\begin{array}{r} 2 / 400 \\ .60 / 400 \\ 2 / 400 \\ .6 / 400 \end{array}$			
1N318 IN318A 1N319 1N319A	$\left\lvert\, \begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}\right.$	$\begin{aligned} & R E \\ & R E \\ & R E \\ & R E \end{aligned}$		1 N645 1N645 1N646 1N646		$\begin{aligned} & 200 \\ & 200 \\ & 350 \\ & 350 \end{aligned}$	$\begin{aligned} & .2 \\ & .2 \\ & .2 \\ & .2 \end{aligned}$	$\begin{array}{r} 300 / 200 \\ 1 / 200 \\ 300 / 350 \\ 1 / 350 \end{array}$	$\begin{array}{r} 2 / 400 \\ .6 / 400 \\ 2 / 300 \\ .6 / 400 \end{array}$			
$\begin{aligned} & \text { IN320 } \\ & \text { 1N320A } \\ & \text { IN321 } \\ & \text { IN32IA } \end{aligned}$	$\left\lvert\, \begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}\right.$	$\begin{aligned} & R E \\ & R E \\ & R E \\ & R E \end{aligned}$		1N648 1N648 in4007 iN4007		$\begin{aligned} & 500 \\ & 500 \\ & 850 \\ & 850 \end{aligned}$	$\begin{array}{r} .2 \\ .2 \\ .25 \\ .25 \end{array}$	$\begin{array}{r} 300 / 500 \\ 2 / 500 \\ 300 / 850 \\ 2 / 850 \end{array}$	$\begin{aligned} & 2 / 400 \\ & .6 / 400 \\ & .6 / 400 \\ & .6 / 400 \end{aligned}$			
$\begin{aligned} & \text { IN322 } \\ & \text { IN322A } \\ & \text { IN323 } \\ & \text { IN323A } \end{aligned}$	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\begin{aligned} & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \end{aligned}$		IN4007 in4007 IN4001 1N4001		$\begin{aligned} & 1 K \\ & 1 K \\ & 50 \\ & 50 \end{aligned}$	$\begin{array}{r} .25 \\ .25 \\ .4 \\ .4 \end{array}$	$\begin{array}{r} 300 / 1 K \\ 2 / 1 K \\ 300 / 50 \\ 1 / 50 \end{array}$	$\begin{array}{r} .6 / 400 \\ .6 / 400 \\ 2 / 650 \\ .6 / 650 \end{array}$			
$\begin{aligned} & \text { 1N324 } \\ & \text { 1N324A } \\ & \text { 1N325 } \\ & \text { 1N325A } \end{aligned}$	$\begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{S} \\ & \mathbf{s} \end{aligned}$	$\begin{aligned} & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \end{aligned}$		$\begin{aligned} & \text { IN4002 } \\ & \text { 1N4002 } \\ & \text { 1N4003 } \\ & \text { iN4003 } \end{aligned}$		$\begin{aligned} & 100 \\ & 100 \\ & 200 \\ & 200 \end{aligned}$	$\begin{aligned} & .4 \\ & .4 \\ & .4 \\ & .4 \end{aligned}$	$\begin{array}{r} 300 / 100 \\ 1 / 100 \\ 300 / 200 \\ 1 / 200 \end{array}$	$\begin{aligned} & 2 / 650 \\ & .6 / 650 \\ & 2 / 650 \\ & .6 / 650 \end{aligned}$			
$\begin{aligned} & \text { 1N326 } \\ & \text { 1N326A } \\ & \text { 1N327 } \\ & \text { IN327A } \end{aligned}$	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\left.\begin{array}{\|} \mathrm{RE} \\ \mathrm{RE} \\ \mathrm{RE} \\ \mathrm{RE} \end{array} \right\rvert\,$		1N4004 1N4004 1N4005 iN4005		$\begin{aligned} & 350 \\ & 350 \\ & 500 \\ & 500 \end{aligned}$	$\begin{aligned} & .4 \\ & .4 \\ & .4 \\ & .4 \end{aligned}$	$\begin{array}{r} 300 / 350 \\ 1 / 350 \\ 300 / 500 \\ 1 / 500 \end{array}$	$\begin{array}{r} 2 / 650 \\ .6 / 650 \\ 2 / 650 \\ .6 / 650 \end{array}$			
$\begin{aligned} & \text { 1N328 } \\ & \text { 1N328A } \\ & \text { 1N329 } \\ & \text { 1N329A } \end{aligned}$	$\left\{\begin{array}{l} s \\ s \\ s \\ s \end{array}\right.$	$\left.\begin{array}{\|} \mathbf{R E} \\ \mathbf{R E} \\ \mathbf{R E} \\ \mathbf{R E} \end{array} \right\rvert\,$		$\begin{aligned} & \text { 1N4007 } \\ & \text { IN4007 } \\ & \text { 1N4007 } \\ & \text { 1N4007 } \end{aligned}$		$\begin{array}{r} 850 \\ 850 \\ 1 K \\ 1 K \end{array}$	$\begin{aligned} & .4 \\ & .4 \\ & .4 \\ & .4 \end{aligned}$	$\begin{gathered} 300 / 850 \\ 2 / 850 \\ 10 / 1 K \\ 2 M / 1 K \end{gathered}$	$\begin{array}{r} 1.2 / 650 \\ .6 / 650 \\ 1.2 / 650 \\ .6 / 650 \end{array}$			
$\begin{aligned} & \text { 1N330 } \\ & \text { 1N331 } \\ & \text { 1N332 } \\ & \text { 1N333 } \end{aligned}$	$\begin{aligned} & s \\ & s \\ & s \\ & s \\ & s \end{aligned}$	SD SD RE RE		1N456 1N458		$\begin{array}{r} 32 \\ 16 \\ 400 \\ 400 \end{array}$. 4	$\begin{aligned} & .03 / 20 \\ & .01 / 10 \end{aligned}$	$\begin{aligned} & 1 / 3 \\ & 1 / 5 \\ & 2 / 800 \\ & 2 / 400 \end{aligned}$			
1N334 IN335 iN336 1N337	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\begin{aligned} & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \end{aligned}$				$\begin{aligned} & 300 \\ & 300 \\ & 200 \\ & 200 \end{aligned}$.4 .2 .4 .2		$\begin{aligned} & 2 / 400 \\ & 2 / 400 \\ & 2 / 800 \\ & 2 / 400 \end{aligned}$			

TEXAS INSTRRUMENTS
INCORPORATED
POST OFFICE BOX 3012 - DALLAS. TEXAS 75222

TYPE NUMBER		\|	$\begin{gathered} \text { TI } \\ \text { REPLACEMENT } \end{gathered}$		$\begin{gathered} P_{D} \\ (\mathrm{~mW}) \end{gathered}$	tings $\mathbf{V}_{\mathbf{R}}$ (V)	I (A)	$\begin{array}{ll} \mathbf{I}_{\mathbf{R}} & \mathbf{V}_{\mathbf{R}} \\ \mu_{\mathrm{A}} & / \mathrm{V}) \end{array}$	$\mathbf{V}_{\mathbf{F}} \cdot \mathbf{I F}_{\mathbf{F}}$ (V) $/$ (mA)		$\mathbf{V z}_{\mathbf{z}}$ - $\mathbf{l z}_{\mathbf{z}}$ (V) $/$ (mA)	$\left.\right\|^{\text {rot }}$
$\begin{array}{\|l\|} \hline \text { IN338 } \\ \text { 1N339 } \\ \text { IN340 } \\ \text { IN341 } \end{array}$	$\begin{aligned} & \mathrm{S} \\ & \mathrm{~S} \\ & \mathrm{~S} \\ & \mathrm{~s} \end{aligned}$	$\begin{aligned} & \mathbf{R E} \\ & \mathbf{R E} \\ & \mathbf{R E} \\ & \mathbf{R E} \end{aligned}$				100 100 100 400	1 .4 .2 .4		$\begin{aligned} & 2 / 1 A \\ & 2 / 800 \\ & 2 / 400 \\ & 2 / 800 \end{aligned}$			
$\begin{aligned} & \text { 1N342 } \\ & \text { 1N343 } \\ & \text { 1N344 } \\ & \text { IN345 } \end{aligned}$	$\begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}$	$\begin{aligned} & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \end{aligned}$				400 300 300 200	.2 .4 .2 .4		$\begin{aligned} & 2 / 400 \\ & 2 / 800 \\ & 2 / 800 \\ & 2 / 800 \end{aligned}$			
$\begin{aligned} & \text { 1N346 } \\ & \text { 1N347 } \\ & \text { IN348 } \\ & \text { 1N349 } \end{aligned}$	$\left\lvert\, \begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}\right.$	$\begin{aligned} & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \end{aligned}$				200 100 100 100	.2 1 .4 .2		$\begin{aligned} & 2 / 400 \\ & 2 / 1 A \\ & 2 / 800 \\ & 2 / 400 \end{aligned}$			
$\begin{aligned} & \text { 1N350 } \\ & \text { 1N351 } \\ & \text { IN352 } \\ & \text { IN353 } \end{aligned}$	$\begin{aligned} & s \\ & s \\ & s \\ & s \\ & s \end{aligned}$	$\begin{aligned} & \text { SD } \\ & \text { SD } \\ & \text { SD } \\ & \text { SD } \end{aligned}$		1N457 1N484 1N485 1N646		$\begin{array}{r} 70 \\ 120 \\ 170 \\ 250 \end{array}$		$\begin{aligned} & .03 / 60 \\ & .03 / 100 \\ & .05 / 150 \\ & .1 / 200 \end{aligned}$	$\begin{aligned} & 1 / 20 \\ & 1 / 20 \\ & 1 / 20 \\ & 1 / 20 \end{aligned}$			
$\begin{aligned} & \text { IN354 } \\ & \text { IN355 } \\ & \text { IN359 } \\ & \text { IN359A } \end{aligned}$	$\begin{aligned} & \mathbf{S} \\ & \mathbf{G} \\ & \mathbf{S} \\ & \mathbf{S} \end{aligned}$	$\begin{aligned} & \mathrm{SD} \\ & \mathrm{SD} \\ & \mathrm{RE} \\ & \mathrm{RE} \end{aligned}$		1N647 1N4148 IN4001 1 N4001		$\begin{array}{r} 325 \\ 100 \\ 50 \\ 50 \end{array}$	$\begin{array}{r} .15 \\ .15 \end{array}$	$\begin{gathered} .1 / 300 \\ 5 / 5 \\ 250 / 50 \\ 1 / 50 \end{gathered}$	$\begin{aligned} & 1 / 20 \\ & 1 / 4 \\ & 2 / 200 \\ & .6 / 250 \end{aligned}$			
1N360 IN360A 1N361 1N361A	$\left\lvert\, \begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}\right.$	$\begin{aligned} & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \end{aligned}$		$\begin{aligned} & \text { IN4002 } \\ & \text { IN4002 } \\ & \text { IN4003 } \\ & \text { 1N4003 } \end{aligned}$		$\begin{aligned} & 100 \\ & 100 \\ & 200 \\ & 200 \end{aligned}$	$\begin{array}{r} .1 \\ .15 \\ .1 \\ .15 \end{array}$	$\begin{array}{r} 250 / 100 \\ 1 / 100 \\ 250 / 200 \\ 1 / 200 \end{array}$	$\begin{array}{r} 2 / 200 \\ .6 / 250 \\ 2 / 200 \\ .6 / 250 \end{array}$			
$\begin{aligned} & 1 \text { N362 } \\ & 1 N 362 A \\ & \text { 1N363 } \\ & \text { 1N363A } \end{aligned}$	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\begin{aligned} & R E \\ & R E \\ & \text { RE } \\ & \text { RE } \\ & \hline \end{aligned}$		1N4004 1N4004 IN4005 iN4005		$\begin{aligned} & 350 \\ & 350 \\ & 500 \\ & 500 \end{aligned}$	$\begin{array}{r} .1 \\ .15 \\ .1 \\ .15 \end{array}$	$\begin{array}{r} 250 / 300 \\ 1 / 350 \\ 250 / 500 \\ 2 / 500 \end{array}$	$\begin{aligned} & 2 / 200 \\ & .6 / 250 \\ & 2 / 200 \\ & .6 / 250 \end{aligned}$			
IN364 1N364A 1N365 1N365A	S	$\begin{aligned} & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \end{aligned}$		1N4007 1N4007 1N4007 1N4007		$\begin{array}{r} 850 \\ 850 \\ 1 K \\ 1 K \end{array}$	$\begin{array}{r} .1 \\ .15 \\ .15 \\ .15 \end{array}$	$\begin{gathered} 250 / 850 \\ 2 / 850 \\ 250 / 1 K \\ 2 / 1 K \end{gathered}$	$\begin{array}{r} 1.2 / 200 \\ .6 / 200 \\ 1.2 / 200 \\ .6 / 200 \end{array}$			
1N368 1N368A 1N370 1N371	$\left\lvert\, \begin{aligned} & G \\ & G \\ & S \\ & S \end{aligned}\right.$	$\left\|\begin{array}{l} \mathrm{RE} \\ \mathrm{RE} \\ \mathrm{ZD} \\ \mathrm{ZD} \end{array}\right\|$		1N4003 1N4003	$\begin{aligned} & 200 \\ & 200 \end{aligned}$	$\begin{aligned} & 200 \\ & 200 \end{aligned}$	$\begin{aligned} & .1 \\ & .1 \end{aligned}$		$\begin{array}{r} .48 / 100 \\ .48 / 100 \end{array}$		$\begin{aligned} & 1.8 / 20 \\ & 2.4 / 20 \end{aligned}$	$\begin{aligned} & 20 \\ & 15 \end{aligned}$
$\begin{aligned} & \text { 1N372 } \\ & \text { IN373 } \\ & \text { 1N374 } \\ & \text { 1N375 } \end{aligned}$	\mathbf{s}	$\left.\begin{aligned} & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \end{aligned} \right\rvert\,$			$\begin{aligned} & 200 \\ & 200 \\ & 200 \\ & 200 \end{aligned}$						$\begin{aligned} & 2.9 / 15 \\ & 3.5 / 10 \\ & 4.1 / 5 \\ & 4.1 / 5 \end{aligned}$	$\begin{array}{r} 15 \\ 10 \\ 10 \\ 5 \end{array}$

Texas Instruments
INCORPORATED
POST OFFICE BOX 5012 - DALLAS, TEXAS 75222

TYPE NUMBER			11 replacement		RATINGS			CHARACTERISTICS				
						\mathbf{V}_{R} (V)	1 (A)	$\begin{array}{ll} \mathbf{I}_{\mathbf{R}} & \mathbf{V}_{\mathbf{R}} \\ \mu \mathbf{A} & / \mathbf{V}) \end{array}$	\mathbf{V}_{F} - $\mathbf{I F}_{F}$ (V) $/$ (mA)	Int (ns)	$\mathbf{V}_{\mathbf{z}}$ - \mathbf{z} (V) $/$ (mA)	$\begin{aligned} & \text { TOL } \\ & \% \end{aligned}$
$\begin{aligned} & \text { 1N376 } \\ & \text { IN377 } \\ & \text { 1N378 } \\ & \text { 1N379 } \end{aligned}$	$\left\lvert\, \begin{aligned} & \mathbf{S} \\ & \mathbf{S} \\ & \mathbf{S} \\ & \mathbf{S} \end{aligned}\right.$	$\left\|\begin{array}{l} \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{sD} \end{array}\right\|$		IN705A IN706A 1N707A 1N4448	$\begin{aligned} & 200 \\ & 200 \\ & 200 \end{aligned}$	8.2		.5/8.2	1/35		$\begin{gathered} 4.95 / 5 \\ 5.9 / 5 \\ 7.15 / .2 \end{gathered}$	$\begin{aligned} & 5 \\ & 5 \\ & 5 \end{aligned}$
1N380 1N381 1N382 1N383	$\left\lvert\, \begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}\right.$	$\begin{aligned} & \text { SD } \\ & \text { SD } \\ & \text { SD } \\ & \text { SD } \end{aligned}$		1N4448 1N4488 IN4448 1N4448		10 12 15 18		$\begin{aligned} & .5 / 10 \\ & .5 / 12 \\ & .5 / 15 \\ & .1 / 18 \end{aligned}$	$\begin{aligned} & 1 / 30 \\ & 1 / 23 \\ & 1 / 17 \\ & 1 / 12 \end{aligned}$			
$\begin{aligned} & \text { IN384 } \\ & \text { 1N385 } \\ & \text { 1N386 } \\ & \text { IN387 } \end{aligned}$	$\begin{aligned} & s \\ & s \\ & s \\ & s \\ & s \end{aligned}$	$\left\|\begin{array}{l} S D \\ S D \\ S D \\ S D \end{array}\right\|$		1N4148 1N4148 1N4148 1 N4148		22 27 33 39		$\begin{aligned} & .1 / 22 \\ & .1 / 27 \\ & .1 / 33 \\ & .1 / 39 \end{aligned}$	$\begin{aligned} & 1 / 9 \\ & 1 / 7 \\ & 1 / 5.5 \\ & 1 / 4.5 \end{aligned}$			
$\begin{aligned} & \text { 1N388 } \\ & \text { 1N389 } \\ & \text { 1N390 } \\ & \text { 1N391 } \end{aligned}$	$\begin{aligned} & \mathbf{S} \\ & \mathbf{S} \\ & \mathbf{S} \\ & \mathbf{S} \end{aligned}$	$\begin{aligned} & \text { SD } \\ & \text { SD } \\ & \text { SD } \\ & \text { SD } \end{aligned}$		1N4148 iN4148 1N4148 1N4148		47 56 68 82		$\begin{aligned} & .1 / 47 \\ & .1 / 56 \\ & 1 / 68 \\ & 1 / 82 \end{aligned}$	$\begin{aligned} & 1 / 3.5 \\ & 1 / 2.7 \\ & 1 / 2 \\ & 1 / 1.5 \end{aligned}$			
1N392 iN393 1N394 1N417	$\begin{aligned} & \mathbf{S} \\ & \mathbf{S} \\ & \mathbf{S} \\ & \mathbf{G} \end{aligned}$	$\begin{aligned} & \text { SD } \\ & \text { SD } \\ & \text { SD } \\ & \text { SD } \end{aligned}$		1N4148 1N4938 1N4938 1N4448		$\begin{array}{r} 100 \\ 120 \\ 150 \\ 60 \end{array}$		$\begin{array}{r} 1 / 100 \\ 1 / 120 \\ 5 / 150 \\ 120 / 80 \end{array}$	$\begin{aligned} & 1 / 1.2 \\ & 1 / .9 \\ & 1 / .7 \\ & 1 / 50 \end{aligned}$	300		
1N418 1N419 IN429 IN430	$\begin{aligned} & \mathbf{G} \\ & \mathbf{G} \\ & \mathbf{S} \\ & \mathbf{S} \end{aligned}$	$\begin{aligned} & \text { SD } \\ & \text { SD } \\ & R D \\ & R D \\ & R D \end{aligned}$		$\begin{aligned} & \text { IN4148 } \\ & \text { TID32 } \end{aligned}$	$\begin{aligned} & 200 \\ & 250 \end{aligned}$	60 80		$\begin{aligned} & 120 / 60 \\ & 180 / 80 \end{aligned}$	$\begin{aligned} & 1 / 7 \\ & 1 / 125 \end{aligned}$	$\begin{aligned} & 300 \\ & 300 \end{aligned}$	$\begin{aligned} & 6.2 / 7.5 \\ & 8.4 / 10 \end{aligned}$	5
$\begin{aligned} & \text { IN430A } \\ & \text { IN4308 } \\ & \text { IN431 } \\ & \text { IN432 } \end{aligned}$	$\left\lvert\, \begin{aligned} & s \\ & S \\ & s \\ & s \end{aligned}\right.$	$\begin{array}{\|l\|} \text { RD } \\ \text { RD } \\ \text { SD } \\ \text { SD } \end{array}$		$\begin{aligned} & \text { 1N4938 } \\ & \text { 1N4148 } \end{aligned}$	$\begin{aligned} & 250 \\ & 250 \end{aligned}$	68 40		$\begin{array}{r} 1 / 68 \\ 3 M / 10 \end{array}$	$\begin{gathered} .55 / 15 \\ 1 / 1 \end{gathered}$	3	$\begin{aligned} & 8.4 / 10 \\ & 8.4 / 10 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$
$\begin{aligned} & \text { 1N432A } \\ & \text { 1N432B } \\ & \text { 1N433 } \\ & \text { 1N433A } \end{aligned}$	$\left\lvert\, \begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & \text { SD } \\ & \text { SD } \\ & \text { SD } \\ & \text { SD } \end{aligned}\right.$		IN4446 1N4448 IN4938 IN4938		$\begin{array}{r} 40 \\ 40 \\ 145 \\ 145 \end{array}$		$3 M / 10$ 3M/10 7M/100 7M/100	$\begin{aligned} & 1 / 20 \\ & 1 / 50 \\ & 1 / 3 \\ & 1 / 10 \end{aligned}$	3 3 3 3		
$\begin{aligned} & \text { 1N433B } \\ & \text { 1N434 } \\ & \text { 1N434A } \\ & \text { 1N434B } \end{aligned}$	$\left\lvert\, \begin{aligned} & 5 \\ & s \\ & 5 \\ & 5 \end{aligned}\right.$	$\begin{aligned} & \text { SD } \\ & \text { SD } \\ & \text { SD } \\ & \text { SD } \end{aligned}$		1N4938 IN4938 1 N4938 IN4938		$\begin{aligned} & 145 \\ & 180 \\ & 180 \\ & 180 \end{aligned}$		7M/100 2M/150 7M/150 2M/150	$\begin{aligned} & 1 / 50 \\ & 1 / 2 \\ & 1 / 7 \\ & 1 / 2 \end{aligned}$	3 3 3 3		
1N435 1N440 1N440B IN441	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\begin{aligned} & \mathrm{SD} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \end{aligned}$		$\begin{aligned} & \text { 1N4148 } \\ & \text { 1N4002 } \\ & \text { IN4002 } \\ & \text { 1N4003 } \end{aligned}$		$\begin{array}{r} 40 \\ 100 \\ 100 \\ 200 \end{array}$	$\begin{array}{r} .3 \\ .75 \\ .3 \end{array}$	$\begin{array}{r} 300 / 30 \\ .3 / 100 \\ .3 / 100 \\ .75 / 200 \end{array}$	$\begin{aligned} & 1.5 / 300 \\ & 1.5 / 750 \\ & 1.5 / 300 \end{aligned}$			

DIODE INTERCHANGEABILITY

TYPE NUMBER			II REPLACEMENT			tines $\mathbf{V}_{\mathbf{R}}$ (V)	I (A)	$\begin{array}{ll} \mathbf{I}_{\mathbf{R}} & \mathbf{V}_{\mathbf{R}} \\ \mu \mathbf{A} & /(\mathbf{V}) \end{array}$	$\mathbf{V F}_{F} \cdot \mathbf{I}_{F}$ (V) $/$ (mA)	Elistic t_{r} (ns)	$\mathbf{V}_{\mathbf{z}}$ - \mathbf{z} (V) $/$ (mA)	$\left\lvert\, \begin{gathered} \mathrm{rol} \\ \% \end{gathered}\right.$
1N4L1B 1N442 1N442B 1N443	$\begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$	RE RE RE RE		1N4003 iN4004 1N4004 IN4004		$\begin{aligned} & 200 \\ & 300 \\ & 300 \\ & 400 \end{aligned}$	$\begin{array}{r} .75 \\ .3 \\ .75 \\ .3 \end{array}$	$\begin{array}{r} .75 / 200 \\ 1 / 300 \\ 1 / 300 \\ 1.5 / 400 \end{array}$	$\begin{aligned} & 1.5 / 750 \\ & 1.5 / 300 \\ & 1.5 / 750 \\ & 1.5 / 300 \end{aligned}$			
1N4438 1N444 1N444B 1N445	$\begin{aligned} & \mathrm{s} \\ & \mathrm{~s} \\ & \mathrm{~s} \\ & \mathrm{~s} \end{aligned}$	$\begin{aligned} & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \end{aligned}$		IN4004 1N4005 1N4005 1N4005		$\begin{aligned} & 400 \\ & 500 \\ & 500 \\ & 600 \end{aligned}$	$\begin{array}{r} .75 \\ .3 \\ .75 \\ .3 \end{array}$	1.5/400 1.7/500 1.7/500 2.0/600	$\begin{aligned} & 1.5 / 750 \\ & 1.5 / 300 \\ & 1.5 / 750 \\ & 1.5 / 300 \end{aligned}$			
1N445B 1N447 1 N448 1N449	$\begin{aligned} & \mathrm{S} \\ & \mathrm{G} \\ & \mathrm{G} \\ & \mathrm{G} \end{aligned}$	$\begin{aligned} & \text { RE } \\ & \text { SD } \\ & \text { SD } \\ & \text { SD } \end{aligned}$		1N4005 IN4449 IN4449 1N4151		$\begin{array}{r} 600 \\ 40 \\ 100 \\ 40 \end{array}$. 75	$\begin{aligned} & 2.0 / 600 \\ & 20 / 10 \\ & 30 / 30 \\ & 30 / 30 \end{aligned}$	$\begin{gathered} 1.5 / 750 \\ 1 / 25 \\ 1 / 25 \\ 1 / 50 \end{gathered}$			
$\begin{aligned} & \text { IN450 } \\ & \text { IN451 } \\ & \text { IN452 } \\ & \text { IN453 } \end{aligned}$	$\begin{aligned} & G \\ & G \\ & G \\ & G \end{aligned}$	$\begin{array}{\|l\|} \hline S D \\ \text { SD } \\ \text { SD } \\ \text { SD } \end{array}$		1N4151 1N4938 1N4448 1N4938		$\begin{array}{r} 100 \\ 150 \\ 35 \\ 115 \end{array}$		$\begin{gathered} 50 / 50 \\ 150 / 150 \\ 30 / 30 \\ 30 / 30 \end{gathered}$	$\begin{aligned} & 1 / 50 \\ & 1 / 50 \\ & 1 / 100 \\ & 1 / 100 \end{aligned}$			
INA54 IN455 1N456 IN456A	$\begin{aligned} & \mathbf{G} \\ & \mathbf{G} \\ & \mathbf{S} \\ & \mathbf{S} \end{aligned}$	$\begin{aligned} & \text { SD } \\ & \text { SD } \\ & \text { SD } \\ & \text { SD } \end{aligned}$	IN456 IN456A	TID33 1N4607	-	58 35 30 30		$\begin{array}{r} 50 / 50 \\ 30 / 30 \\ 25 \mathrm{~N} / 25 \\ 25 \mathrm{~N} / 25 \end{array}$	$\begin{aligned} & 1 / 200 \\ & 1 / 300 \\ & 1 / 40 \\ & 1 / 100 \end{aligned}$			
1N457 1N457A IN457M 1N458	$\begin{aligned} & \mathrm{S} \\ & \mathrm{~S} \\ & \mathrm{~S} \\ & \mathrm{~s} \end{aligned}$	SD SD SD SD	1N457 1N457A 1N457 1N458			$\begin{array}{r} 70 \\ 70 \\ 80 \\ 150 \end{array}$		$\begin{aligned} & 25 N / 60 \\ & 25 N / 60 \\ & 25 N / 60 \\ & 25 N / 125 \end{aligned}$	$\begin{aligned} & 1 / 20 \\ & 1 / 100 \\ & 1 / 20 \\ & 1 / 2 \end{aligned}$			
1N458A IN458M 1N459 1N459A	$\begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}$	SD SD SD SD	INA58A 1 N458 1N459 1N459A			$\begin{aligned} & 150 \\ & 175 \\ & 200 \\ & 200 \end{aligned}$		$\begin{aligned} & 25 N / 125 \\ & 25 N / 125 \\ & 25 N / 175 \\ & 25 N / 175 \end{aligned}$	$\begin{aligned} & 1 / 100 \\ & 1 / 7 \\ & 1 / 3 \\ & 1 / 100 \end{aligned}$			
1N459M IN460 1N460A 1N4608	$\begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & \text { SD } \\ & \text { SD } \\ & \text { SD } \\ & \text { SD } \end{aligned}$	1N459	1N4148 1N4148 iN4448		230 90 90 90		$\begin{gathered} 25 N / 175 \\ 10 / 75 \\ 10 / 75 \\ 10 / 75 \end{gathered}$	$\begin{aligned} & 1 / 3 \\ & 1 / 5 \\ & 1 / 15 \\ & 1 / 50 \end{aligned}$	20 20 20		
1N461 1N461A 1N462 IN462A	$\begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & \text { SD } \\ & \text { SD } \\ & \text { SD } \\ & \text { SD } \end{aligned}$	IN461 IN461A 1 N462 1N462A			35 30 80 70		$\begin{aligned} & .5 / 25 \\ & .5 / 25 \\ & .5 / 60 \\ & .5 / 60 \end{aligned}$	$\begin{aligned} & 1 / 15 \\ & 1 / 100 \\ & 1 / 5 \\ & 1 / 100 \end{aligned}$			
1 N463 1N463A iN464 1N464A	$\begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}$	$\left\|\begin{array}{l} \mathrm{SD} \\ \mathrm{SD} \\ \mathrm{SD} \\ \mathrm{SD} \end{array}\right\|$	IN463 1N463A in464 1N464A			$\begin{aligned} & 230 \\ & 200 \\ & 175 \\ & 150 \end{aligned}$		$\begin{aligned} & .5 / 175 \\ & .5 / 175 \\ & .5 / 125 \\ & .5 / 125 \end{aligned}$	$\begin{aligned} & 1 / 1 \\ & 1 / 100 \\ & 1 / 3 \\ & 1 / 100 \end{aligned}$			

TYPE Mumber		$\begin{aligned} & \frac{3}{0} \\ & \frac{3}{3} \\ & \frac{3}{3} \end{aligned}$		$\begin{aligned} & \text { FOR } \\ & \text { Maw } \\ & \text { Desich } \end{aligned}$		TMNOS $\mathbf{V}_{\mathbf{R}}$ (V)	I (A)	$\begin{array}{ll} \mathbf{I}_{\mathbf{R}} & \mathbf{V}_{\mathrm{R}} \\ \mu \mathrm{~A} & /(\mathrm{V}) \end{array}$	$\mathbf{V F}_{F}$ - $\mathbf{F}_{\mathbf{F}}$ (V) $/$ (mA)		$\mathbf{V}_{\mathbf{Z}}$ - \mathbf{z} (V) / (ma)	$\begin{aligned} & \text { TOX } \\ & \times \end{aligned}$
1N465 1N465A iN4658 1N466	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\left.\begin{aligned} & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \end{aligned} \right\rvert\,$		1N746	$\begin{aligned} & 250 \\ & 250 \\ & 250 \\ & 250 \end{aligned}$						$\begin{aligned} & 2.6 / 5 \\ & 2.6 / 5 \\ & 2.6 / 5 \\ & 3.5 / 5 \end{aligned}$	10 5 1 10
IN466A 1N466B 1N467 1N467A	$\left\lvert\, \begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \end{aligned}\right.$		IN746A 1N748 IN748A	$\begin{aligned} & 250 \\ & 250 \\ & 250 \\ & 250 \end{aligned}$						$\begin{aligned} & 3.5 / 5 \\ & 3.5 / 5 \\ & 4.1 / 5 \\ & 4.1 / 5 \end{aligned}$	5 1 10 5
1NC678 1N468 1N468A 1N4688	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\begin{aligned} & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \end{aligned}$		$\left\lvert\, \begin{aligned} & \text { IN750 } \\ & \text { IN750A } \end{aligned}\right.$	$\begin{aligned} & 250 \\ & 250 \\ & 250 \\ & 250 \end{aligned}$						$\begin{aligned} & 4.1 / 5 \\ & 4.9 / 5 \\ & 4.9 / 5 \\ & 4.9 / 5 \end{aligned}$	1 10 5 1
$\begin{aligned} & \text { IN469 } \\ & \text { IN469A } \\ & \text { IN4698 } \\ & \text { IN470 } \end{aligned}$	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \end{aligned}\right.$		$\left\lvert\, \begin{aligned} & \text { 1N752 } \\ & \text { 1N752A } \\ & \text { iN754 } \end{aligned}\right.$	$\begin{aligned} & 250 \\ & 250 \\ & 250 \\ & 250 \end{aligned}$						$\begin{aligned} & 5.8 / 5 \\ & 5.8 / 5 \\ & 5.8 / 5 \\ & 7.1 / 5 \end{aligned}$	10 5 1 10
IN470A INATOB 1N471 IN471A		$\begin{aligned} & \mathrm{zo} \\ & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \end{aligned}$		1N751A	$\begin{aligned} & 250 \\ & 250 \\ & 200 \\ & 200 \end{aligned}$						$\begin{aligned} & 7.1 / 5 \\ & 7.1 / 5 \\ & 3.5 / 5 \\ & 3.5 / 5 \end{aligned}$	5 1 10 5
$\begin{aligned} & \text { INA718 } \\ & \text { 1NA72 } \\ & \text { 1NA72A } \\ & \text { 1NA728 } \end{aligned}$	$\left\lvert\, \begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}\right.$	$\begin{aligned} & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \end{aligned}$		*	$\begin{aligned} & 200 \\ & 200 \\ & 200 \\ & 200 \end{aligned}$						$\begin{aligned} & 3.5 / 5 \\ & 4.1 / 5 \\ & 4.1 / 5 \\ & 4.1 / 5 \end{aligned}$	1 10 5 1
$\begin{aligned} & \text { 1N473 } \\ & \text { 1N473A } \\ & \text { 1N473B } \\ & \text { 1N474 } \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$	$\left\|\begin{array}{l} \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \end{array}\right\|$			$\begin{aligned} & 200 \\ & 200 \\ & 200 \\ & 200 \end{aligned}$						$\begin{aligned} & 4.9 / 5 \\ & 4.9 / 5 \\ & 4.9 / 5 \\ & 5.8 / 5 \end{aligned}$	10 5 1 10
$\begin{aligned} & \text { 1N474A } \\ & \text { 1N474B } \\ & \text { 1N475 } \\ & \text { 1N475A } \end{aligned}$	$\left\lvert\, \begin{aligned} & 5 \\ & s \\ & s \\ & s \end{aligned}\right.$	$\left\|\begin{array}{l} \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \end{array}\right\|$			$\begin{aligned} & 200 \\ & 200 \\ & 200 \\ & 200 \end{aligned}$						5.8/5 5.8/5 7.1/5 7.1/5	5 1 10 5
$\begin{aligned} & \text { 1N4758 } \\ & \text { 1N476 } \\ & \text { 1N477 } \\ & \text { 1N478 } \end{aligned}$	$\begin{aligned} & \mathbf{S} \\ & \mathbf{G} \\ & \mathbf{G} \\ & \mathbf{G} \end{aligned}$	$\left\lvert\, \begin{aligned} & 2 D \\ & \text { SD } \\ & \text { SD } \\ & \text { SD } \end{aligned}\right.$		$\begin{aligned} & 1 N 4148 \\ & 1 N 4148 \\ & 1 N 4148 \end{aligned}$	200	$\begin{aligned} & 90 \\ & 90 \\ & 90 \end{aligned}$		$\begin{aligned} & 180 / 75 \\ & 180 / 75 \\ & 155 / 75 \end{aligned}$	$\begin{aligned} & 1 / 3 \\ & 1 / 3 \\ & 1 / 5 \end{aligned}$		7.1/5	1
$\begin{aligned} & \text { 1N479 } \\ & \text { IN480 } \\ & \text { IN482 } \\ & \text { 1N482A } \end{aligned}$	$\left\lvert\, \begin{aligned} & \mathbf{G} \\ & \mathbf{G} \\ & \mathbf{S} \\ & \mathbf{S} \end{aligned}\right.$	$\left\|\begin{array}{l} S D \\ S D \\ S D \\ S D \end{array}\right\|$	1N482 IN482A	1N4148 1N4148		$\begin{aligned} & 90 \\ & 60 \\ & 36 \\ & 36 \end{aligned}$		$\begin{array}{r} 155 / 75 \\ .25 / 30 \\ 25 N / 30 \end{array}$	$\begin{gathered} 1 / 5 \\ 1 / 5 \\ 1.1 / 100 \\ 1 / 100 \end{gathered}$	500		

DIODE INTERCHANGEABILITY

TYPENUMBER			π	$\begin{aligned} & \text { FOR } \\ & \text { NEW } \\ & \text { DESKON } \end{aligned}$	ratings			Characteristics				
					$\begin{gathered} \mathrm{PD}_{\mathrm{D}} \\ (\mathrm{~mW}) \end{gathered}$	$\mathbf{V}_{\mathbf{R}}$ (V)	(A)	$\begin{array}{ll} L_{R} & v_{R} \\ \mu_{\mathrm{A}} & /(\mathrm{V}) \end{array}$	$\begin{array}{cc} \mathbf{v}_{\mathbf{F}} & \mathbf{l}_{\mathbf{F}} \\ \text { (V) } & 1 \mathrm{~mA}) \end{array}$	${ }^{4}$ (ms)	$\mathbf{V z}_{z}$ - \mathbf{z} (V) $/$ (mA)	$\begin{gathered} \text { rol } \\ x \end{gathered}$
$\begin{aligned} & \text { INS12 } \\ & \text { iNS13 } \\ & \text { INS14 } \\ & \text { INS15 } \end{aligned}$	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \\ & s \end{aligned}\right.$	RE RE RE RE RE				$\begin{aligned} & 100 \\ & 200 \\ & 300 \\ & 400 \end{aligned}$	1 1 1 1	$\begin{aligned} & 500 / \\ & 500 / \\ & 500 / \\ & 250 / \end{aligned}$	$\begin{aligned} & 1.2 / \\ & 1.2 / \\ & 1.2 / \\ & 1.2 / \end{aligned}$			
1N516 iN517 iN518 1N519	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\begin{aligned} & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \end{aligned}$				$\begin{array}{r} 600 \\ 800 \\ 1 K \\ 50 \end{array}$	$\begin{array}{r} 1 \\ 1 \\ 1 \\ 1.25 \end{array}$	$\begin{aligned} & 250 / \\ & 250 / \\ & 250 / \\ & 500 / \end{aligned}$	$\begin{aligned} & 1.2 / \\ & 1.2 / \\ & 1.2 / \\ & 1.2 / \end{aligned}$			
$\begin{aligned} & \text { IN520 } \\ & \text { iN521 } \\ & \text { iN522 } \\ & \text { iN523 } \end{aligned}$	$\left\lvert\, \begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}\right.$	$\left.\begin{aligned} & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \end{aligned} \right\rvert\,$				$\begin{aligned} & 100 \\ & 200 \\ & 300 \\ & 400 \end{aligned}$	$\begin{aligned} & 1.25 \\ & 1.25 \\ & 1.25 \\ & 1.25 \end{aligned}$	$\begin{aligned} & 500 / \\ & 500 / \\ & 500 / \\ & 250 \prime \end{aligned}$	$\begin{aligned} & 1.2 / \\ & 1.2 / \\ & 1.2 / \\ & 1.2 / \end{aligned}$			
$\begin{aligned} & \text { 1N524 } \\ & \text { 1N55 } \\ & \text { 1N526 } \\ & \text { iN527 } \end{aligned}$	$\left\lvert\, \begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{G} \end{aligned}\right.$	$\begin{array}{\|l\|} \hline \mathbf{R E} \\ \mathbf{R E} \\ \mathbf{R E} \\ \mathbf{R E} \\ \mathbf{S D} \end{array}$		1N4305		$\begin{array}{r} 600 \\ 800 \\ 1 K \\ 10 \end{array}$	$\begin{aligned} & 1.25 \\ & 1.25 \\ & 1.25 \end{aligned}$	$\begin{aligned} & 250 / \\ & 250 / \\ & 250 / \\ & 50 / 10 \end{aligned}$	$\begin{gathered} 1.2 / \\ 1.2 / \\ 1.2 / \\ .3 / 1 \end{gathered}$			
in530 IN531 iN532 in533	$\begin{aligned} & \mathrm{s} \\ & \mathrm{~s} \\ & \mathrm{~s} \\ & \mathrm{~s} \end{aligned}$	$\begin{aligned} & \mathbf{R E} \\ & \mathbf{R E} \\ & \mathbf{R E} \\ & \mathbf{R E} \\ & \mathbf{R E} \end{aligned}$		1 N4002 1N4003 1N4004 iN4004		$\begin{aligned} & 100 \\ & 200 \\ & 300 \\ & 400 \end{aligned}$	$\begin{aligned} & .3 \\ & .3 \\ & .3 \\ & .3 \end{aligned}$	$\begin{array}{r} 3 / 100 \\ 7.5 / 200 \\ 10 / 300 \\ 15 / 400 \end{array}$	$\begin{aligned} & 2 / 300 \\ & 2 / 300 \\ & 2 / 300 \\ & 2 / 300 \end{aligned}$			
$\begin{array}{\|l\|l} \text { IN534 } \\ \text { iN535 } \\ \text { IN536 } \\ \text { IN537 } \end{array}$	$\begin{aligned} & \hline s \\ & s \\ & s \\ & s \\ & s \end{aligned}$	$\left.\begin{aligned} & \mathbf{R E} \\ & \mathbf{R E} \\ & \mathbf{R E} \\ & \mathbf{R E} \end{aligned} \right\rvert\,$		IN400S IN4005 IN4001 iN4002		$\begin{array}{r} 500 \\ 600 \\ 50 \\ 100 \end{array}$	$\begin{array}{r} .3 \\ .3 \\ .75 \\ .75 \end{array}$	$\begin{aligned} & 17 / 500 \\ & 20 / 600 \\ & 10 / 50 \\ & 10 / 100 \end{aligned}$	$\begin{aligned} & 2 / 300 \\ & 2 / 300 \\ & 1 / 500 \\ & 1 / 500 \end{aligned}$			
$\begin{array}{\|l\|l\|} \text { 1N538 } \\ \text { 1N539 } \\ \text { iN540 } \\ \text { iN541 } \end{array}$	$\left\lvert\, \begin{aligned} & \mathbf{S} \\ & \mathbf{S} \\ & \mathbf{S} \\ & \mathbf{G} \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & R E \\ & R E \\ & R E \\ & S D \end{aligned}\right.$		1N4003 1N4004 INHOO4 1N4305		$\begin{array}{r} 200 \\ 300 \\ 400 \\ 30 \end{array}$	$\begin{aligned} & .75 \\ & .75 \\ & .75 \end{aligned}$	$\begin{aligned} & 10 / 200 \\ & 10 / 300 \\ & 10 / 400 \\ & 18 / 10 \end{aligned}$	$\begin{aligned} & 1 / 500 \\ & 1 / 500 \\ & 1 / 500 \\ & .3 / .1 \end{aligned}$			
$\begin{aligned} & \text { 1N542 } \\ & \text { 1NSA3 } \\ & \text { 1N543A } \\ & \text { IN544 } \end{aligned}$	$\begin{aligned} & \mathbf{G} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{S} \end{aligned}$	$\begin{array}{\|c\|} \hline \mathrm{SD} \\ \mathrm{RE} \\ \mathrm{RE} \\ \mathrm{RE} \\ \mathrm{RE} \end{array}$		1N4305		$\begin{array}{r} 30 \\ 1.2 \mathrm{~K} \\ 1.2 \mathrm{~K} \\ 1 \mathrm{~K} \end{array}$	$\begin{aligned} & .005 \\ & .025 \\ & .015 \end{aligned}$	$\begin{aligned} & 18 / 10 \\ & 100 / \\ & 100 / \\ & 100 / \end{aligned}$	$\begin{gathered} .3 / 1 \\ 10 / \\ 8 / \\ 10 / \end{gathered}$			
$\left\lvert\, \begin{aligned} & \text { 1N544A } \\ & \text { 1N547 } \\ & \text { 1N548 } \\ & \text { 1N549 } \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}\right.$	$\left.\begin{aligned} & \mathbf{R E} \\ & \mathbf{R E} \\ & \mathbf{R E} \\ & \mathbf{R E} \end{aligned} \right\rvert\,$		$\left\lvert\, \begin{aligned} & \text { IN4005 } \\ & \text { IN4007 } \end{aligned}\right.$		$\begin{array}{r} 1 K \\ 600 \\ 900 \\ 1.2 \mathrm{~K} \end{array}$	$\begin{array}{r} .075 \\ .75 \\ .3 \\ .3 \end{array}$	100/ 500/600 500/900	$\begin{aligned} & 10 / \\ & 1.1 / 250 \\ & 1.1 / 300 \\ & 1.1 / 300 \end{aligned}$			
$\begin{array}{\|l\|l\|} \hline \text { IN550 } \\ \text { 1N551 } \\ \text { 1N552 } \\ \text { IN553 } \end{array}$	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\begin{aligned} & \mathbf{R E} \\ & \mathbf{R E} \\ & \mathbf{R E} \\ & \mathbf{R E} \\ & \mathbf{R E} \end{aligned}$				100 200 300 400	.5 .5 .5 .5		$\begin{aligned} & 1.5 / \\ & 1.5 / \\ & 1.5 / \\ & 1.5 / \end{aligned}$			

TYPE NUMBER	录 学 3		11 REPLACEMENT	$\begin{aligned} & \text { FOR } \\ & \text { NEW } \\ & \text { DESIGN } \end{aligned}$	$\begin{aligned} & P_{D} \\ & (\mathrm{~mW}) \end{aligned}$	ATINES $\mathbf{V}_{\mathbf{R}}$ (V)	I (A)	$\begin{array}{ll} \mathrm{I}_{\mathrm{R}} & \mathrm{~V}_{\mathrm{R}} \\ \mu \mathrm{~A} & /(\mathrm{V}) \end{array}$	$\mathbf{V F}_{F}$ IF (V) / (mA)	$t_{r r}$ (ns)	$\mathbf{V}_{\mathbf{Z}} \mathbf{I z}_{\mathbf{z}}$ (V) / (mA)	TOA \%
$\begin{aligned} & \text { 1N554 } \\ & \text { 1N555 } \\ & \text { 1N560 } \\ & \text { IN561 } \end{aligned}$	$\begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}$	$\begin{aligned} & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \end{aligned}$		1N4006 1N4007		$\begin{array}{r} 500 \\ 600 \\ 800 \\ 1 K \end{array}$	$\begin{array}{r} .5 \\ .5 \\ .75 \\ .75 \end{array}$	$\begin{aligned} & 5 / \\ & 15 / 800 \\ & 20 / 1 \mathrm{~K} \end{aligned}$	$\begin{aligned} & 1.5 / \\ & 1.5 / \\ & 1.1 / 500 \\ & 1.1 / 500 \end{aligned}$			
$\begin{aligned} & \text { IN562 } \\ & \text { 1N563 } \\ & \text { 1N568 } \\ & \text { 1N567 } \end{aligned}$	$\left\lvert\, \begin{aligned} & \mathbf{S} \\ & \mathbf{S} \\ & \mathbf{G} \\ & \mathbf{G} \end{aligned}\right.$	$\begin{aligned} & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{SD} \\ & \mathrm{SD} \end{aligned}$		$\begin{array}{\|l\|} \hline 1 \mathrm{~N} 4938 \\ \text { 1N4938 } \end{array}$		$\begin{array}{r} 800 \\ 1 K \\ 220 \\ 125 \end{array}$	$.4$	$\begin{gathered} 15 / 800 \\ 20 / 1 K \\ 200 / 200 \\ 150 / 100 \end{gathered}$	$\begin{gathered} 1.8 / 400 \\ 1.8 / 400 \\ 1 / 20 \\ 1 / 150 \end{gathered}$			
$\begin{aligned} & \text { 1N568 } \\ & \text { IN569 } \\ & \text { 1N570 } \\ & \text { 1N571 } \end{aligned}$	$\begin{aligned} & G \\ & G \\ & \mathbf{G} \\ & G \end{aligned}$	$\begin{aligned} & \mathrm{SD} \\ & \mathrm{SD} \\ & \mathrm{RE} \\ & \mathrm{RE} \end{aligned}$		1N4305 1N4305 TID33		$\begin{array}{r} 50 \\ 25 \\ 1.5 \mathrm{~K} \\ 15 \end{array}$	$\begin{array}{r} .75 \\ .2 \end{array}$	$\begin{aligned} & 100 / 5 \\ & 50 / 10 \\ & 50 / 1.5 \mathrm{~K} \\ & 100 / 15 \end{aligned}$	$\begin{aligned} & .32 / 5 \\ & .5 / 250 \\ & 10 / \\ & 1 / 200 \end{aligned}$			
$\begin{aligned} & \text { 1N584 } \\ & \text { 1N588 } \\ & \text { 1N589 } \\ & \text { iN590 } \end{aligned}$	$\begin{aligned} & G \\ & \mathbf{G} \\ & \mathbf{S} \\ & \mathbf{S} \end{aligned}$	$\begin{aligned} & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \end{aligned}$				$\begin{array}{r} 380 \\ 1.5 \mathrm{~K} \\ 1.5 \mathrm{~K} \\ 1.5 \mathrm{~K} \end{array}$		$\begin{aligned} & 100 / \\ & 100 / \\ & 100 / \end{aligned}$	$\begin{gathered} .15 / 400 \\ 1.7 / 100 \\ 1.7 / 250 \\ 8 / 75 \end{gathered}$			
1N591 IN596 IN597 1N598	$\begin{aligned} & \mathrm{s} \\ & \mathrm{~s} \\ & \mathrm{~s} \\ & \mathrm{~s} \end{aligned}$	$\begin{aligned} & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \end{aligned}$		1N4005 1N4006 1N4007		$\begin{array}{r} 1.5 K \\ 600 \\ 800 \\ 1 K \end{array}$	$\begin{aligned} & .15 \\ & .15 \\ & .15 \end{aligned}$	$\begin{aligned} & 100 / \\ & 25 / 600 \\ & 25 / 800 \\ & 25 / 1 K \end{aligned}$	$\begin{aligned} & 8 / 75 \\ & 3 / 170 \\ & 3 / 170 \\ & 3 / 170 \end{aligned}$			
1N599 IN599A 1 N600 IN600A	$\begin{aligned} & \mathbf{s} \\ & \mathbf{S} \\ & \mathbf{s} \\ & \mathbf{S} \end{aligned}$	$\begin{aligned} & R E \\ & R E \\ & R E \\ & R E \end{aligned}$		1N4001 1N4001 1N4002 1N4002		$\begin{array}{r} 50 \\ 50 \\ 100 \\ 100 \end{array}$	$\begin{aligned} & .3 \\ & .3 \\ & .3 \\ & .3 \end{aligned}$	$\begin{array}{r} 25 / 50 \\ 1 / 50 \\ 25 / 100 \\ 1 / 100 \end{array}$	$\begin{aligned} & 1.5 / 200 \\ & 1.5 / 400 \\ & 1.5 / 200 \\ & 1.5 / 400 \end{aligned}$			
1N601 1N601A IN602 1N602A	$\begin{aligned} & \mathrm{s} \\ & \mathrm{~s} \\ & \mathrm{~s} \\ & \mathrm{~s} \end{aligned}$	$\begin{aligned} & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \end{aligned}$		1N4003 1N4003 IN4003 in4003		$\begin{aligned} & 150 \\ & 150 \\ & 200 \\ & 200 \end{aligned}$	$\begin{aligned} & .3 \\ & .3 \\ & .3 \\ & .3 \end{aligned}$	$\begin{array}{r} 25 / 150 \\ 1 / 150 \\ 25 / 200 \\ 1 / 200 \end{array}$	$\begin{aligned} & 1.5 / 200 \\ & 1.5 / 400 \\ & 1.5 / 200 \\ & 1.5 / 400 \end{aligned}$			
1N603 1N603A IN604 1N604A	$\begin{aligned} & \mathbf{s} \\ & \mathbf{S} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}$	$\begin{aligned} & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \end{aligned}$		1N4004 1N4004 IN4004 1N4004		$\begin{aligned} & 300 \\ & 300 \\ & 400 \\ & 400 \end{aligned}$	$\begin{aligned} & .3 \\ & .3 \\ & .3 \\ & .3 \end{aligned}$	$\begin{array}{r} 25 / 300 \\ 1 / 300 \\ 25 / 400 \\ 1.5 / 400 \end{array}$	$\begin{aligned} & 1.5 / 200 \\ & 1.5 / 400 \\ & 1.5 / 200 \\ & 1.5 / 400 \end{aligned}$			
1N605 1N605A IN606 1N606A	$\begin{aligned} & \mathbf{s} \\ & s \\ & s \\ & s \end{aligned}$	$\begin{aligned} & R E \\ & R E \\ & R E \\ & R E \\ & R E \end{aligned}$		IN4005 IN4005 1N4005 1N4005		$\begin{aligned} & 500 \\ & 500 \\ & 600 \\ & 600 \end{aligned}$	$\begin{aligned} & .3 \\ & .3 \\ & .3 \\ & .3 \end{aligned}$	$\begin{array}{r} 25 / 500 \\ 2.0 / 500 \\ 25 / 600 \\ 2.5 / 600 \end{array}$	$\begin{aligned} & 1.5 / 200 \\ & 1.5 / 400 \\ & 1.5 / 200 \\ & 1.5 / 400 \end{aligned}$			
1N607 1N607A 1 N608 1N608A	$\left\lvert\, \begin{aligned} & 5 \\ & s \\ & s \\ & s \end{aligned}\right.$	$\left.\begin{array}{\|c\|} \hline R E \\ \mathbf{R E} \\ \mathrm{RE} \\ \mathrm{RE} \end{array} \right\rvert\,$				$\begin{array}{r} 50 \\ 50 \\ 100 \\ 100 \end{array}$	$\begin{aligned} & .8 \\ & .8 \\ & .8 \\ & .8 \end{aligned}$	$\begin{gathered} 25 / 50 \\ 1 / 50 \\ 25 / 100 \\ 1 / 100 \end{gathered}$	$\begin{aligned} & 1.5 / 200 \\ & 1.5 / 400 \\ & 1.5 / 200 \\ & 1.5 / 400 \end{aligned}$			

TYPE NUMEER			REPLACEMENT	$\begin{gathered} \text { FOR } \\ \text { NEW } \\ \text { DESIGN } \end{gathered}$	RATINGS			CHARACTERISTICS				
					PD (mW)	V_{R} (V)	I (A)	$\begin{array}{ll} \mathbf{I}_{\mathbf{R}} & \oplus \mathbf{V}_{\mathbf{R}} \\ \mu \mathbf{A} & /(\mathbf{V}) \end{array}$	$\mathbf{V F}_{F}$ - \mathbf{F} (V) $/$ (mA)	$\mathbf{t}_{\mathbf{r}}$ (ns)	$\mathbf{V}_{\mathbf{Z}} \oplus \mathbf{I z}_{\mathbf{z}}$ (V) $/$ (mA)	$\begin{gathered} \text { TOL } \\ \% \end{gathered}$
1N609 IN609A 1N610 IN610A	$\left\lvert\, \begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}\right.$	$\begin{aligned} & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \end{aligned}$				$\begin{aligned} & 150 \\ & 150 \\ & 200 \\ & 200 \end{aligned}$	$\begin{aligned} & .8 \\ & .8 \\ & .8 \\ & .8 \end{aligned}$	$\begin{array}{r} 25 / 150 \\ 1 / 150 \\ 25 / 200 \\ 1 / 200 \end{array}$	$\begin{aligned} & 1.5 / 200 \\ & 1.5 / 400 \\ & 1.5 / 200 \\ & 1.5 / 400 \end{aligned}$			
IN611 1N611A 1N612 IN612A	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\begin{aligned} & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \end{aligned}$				$\begin{aligned} & 300 \\ & 300 \\ & 400 \\ & 400 \end{aligned}$	$\begin{aligned} & .8 \\ & .8 \\ & .8 \\ & .8 \end{aligned}$	$\begin{array}{r} 25 / 300 \\ 1 / 300 \\ 25 / 400 \\ 1.5 / 400 \end{array}$	$\begin{aligned} & 1.5 / 200 \\ & 1.5 / 400 \\ & 1.5 / 200 \\ & 1.5 / 400 \end{aligned}$			
1N613 1N613A IN614 1N614A	$\begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}$	$\begin{aligned} & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \end{aligned}$				$\begin{aligned} & 500 \\ & 500 \\ & 600 \\ & 600 \end{aligned}$	$\begin{aligned} & .8 \\ & .8 \\ & .8 \\ & .8 \end{aligned}$	$\begin{array}{r} 25 / 500 \\ 2 / 500 \\ 25 / 600 \\ 2.5 / 600 \end{array}$	$\begin{aligned} & 1.5 / 200 \\ & 1.5 / 400 \\ & 1.5 / 200 \\ & 1.5 / 400 \end{aligned}$			
1N615 1N616 1N617 1No18	$\begin{aligned} & \mathbf{G} \\ & \mathbf{G} \\ & \mathbf{G} \\ & \mathbf{G} \end{aligned}$	$\begin{aligned} & \text { RE } \\ & \text { SD } \\ & \text { SD } \\ & \text { SD } \end{aligned}$		1N4004 1N4148 1N4148 1N4148		$\begin{array}{r} 300 \\ 30 \\ 90 \\ 90 \end{array}$		$\begin{gathered} 1 M / 300 \\ 18 / 1.5 \\ 11 / 10 \\ 7 / 10 \end{gathered}$	$\begin{aligned} & 175 \\ & 1 / 8 \\ & 1 / 3 \\ & 1 / 5 \end{aligned}$			
$\begin{array}{\|l\|} \hline \text { 1N619 } \\ \text { 1N622 } \\ \text { 1N625 } \\ \text { 1N625A } \end{array}$	$\left\lvert\, \begin{aligned} & \mathbf{S} \\ & \mathbf{S} \\ & \mathbf{S} \\ & \mathbf{S} \end{aligned}\right.$	$\begin{aligned} & \text { SD } \\ & \text { SD } \\ & \text { SD } \\ & \text { SD } \end{aligned}$	1N625	1N4148 1N4938 1N4148		30 150 30 20		$\begin{gathered} .08 / 10 \\ .16 / 150 \\ 1 / 20 \\ .1 / 20 \end{gathered}$	$\begin{gathered} 1 / 3 \\ 1 / 7 \\ 1.5 / 4 \\ 1.5 / 10 \end{gathered}$	$\begin{array}{r} 1 U \\ 500 \end{array}$		
$\begin{aligned} & \text { 1N625M } \\ & \text { 1N626 } \\ & \text { 1N626A } \\ & \text { 1N626M } \end{aligned}$	$\left[\begin{array}{l} s \\ s \\ s \\ s \end{array}\right.$	$\begin{aligned} & \text { SD } \\ & \text { SD } \\ & \text { SD } \\ & \text { SD } \end{aligned}$	$\begin{aligned} & \text { 1N625 } \\ & \text { IN626 } \\ & \text { iN626 } \end{aligned}$	1N4148		30 50 35 50		$\begin{array}{r} 1 / 20 \\ 1 / 20 \\ .1 / 35 \\ 1 / 35 \end{array}$	$\begin{aligned} & 1.5 / 4 \\ & 1.5 / 4 \\ & 1.5 / 1 \\ & 1.5 / 4 \end{aligned}$	$\begin{array}{r} 10 \\ 10 \\ 500 \\ 10 \end{array}$		
$\begin{aligned} & \text { IN627 } \\ & \text { IN627A } \\ & \text { IN628 } \\ & \text { iN628A } \end{aligned}$	$\left\lvert\, \begin{aligned} & \mathbf{s} \\ & \mathbf{S} \\ & \mathbf{S} \\ & \mathbf{s} \end{aligned}\right.$	$\begin{aligned} & \text { SD } \\ & \text { SD } \\ & \text { SD } \\ & \text { SD } \end{aligned}$	in627	$\begin{aligned} & \text { IN4938 } \\ & \text { 1N4938 } \end{aligned}$		$\begin{array}{r} 100 \\ 75 \\ 150 \\ 125 \end{array}$		$\begin{gathered} 1 / 20 \\ .1 / 75 \\ 1 / 20 \\ .1 / 125 \end{gathered}$	$\begin{aligned} & 1.5 / 4 \\ & 1.5 / 10 \\ & 1.5 / 4 \\ & 1.5 / 10 \end{aligned}$	$\begin{array}{r} 1 U \\ 500 \\ 1 U \\ 500 \end{array}$		
$\begin{aligned} & \text { IN629 } \\ & \text { IN629A } \\ & \text { IN631 } \\ & \text { IN632 } \end{aligned}$	$\left\lvert\, \begin{aligned} & S \\ & S \\ & G \\ & G \end{aligned}\right.$	$\left\|\begin{array}{l} S D \\ S D \\ S D \\ S D \\ S D \end{array}\right\|$	1N629	1N4938 1N4148 1N4148		200 175 60 60		$\begin{gathered} 1 / 20 \\ .1 / 175 \\ 120 / 80 \end{gathered}$	$\begin{aligned} & 1.5 / 4 \\ & 1.5 / 10 \\ & 3.5 / 50 \\ & 1.0 / 7 \end{aligned}$	$\begin{array}{r} 10 \\ 500 \\ 300 \\ 300 \end{array}$		
$\begin{aligned} & \text { 1N633 } \\ & \text { 1N634 } \\ & \text { IN635 } \\ & \text { 1N636 } \end{aligned}$	$\begin{aligned} & \mathbf{G} \\ & \mathbf{G} \\ & \mathbf{G} \\ & \mathbf{G} \end{aligned}$	$\left\|\begin{array}{l} S D \\ S D \\ S D \\ S D \\ S D \end{array}\right\|$		1N4938 1N4938 iN4938 1N4448		$\begin{array}{r} 90 \\ 125 \\ 175 \\ 50 \end{array}$		$\begin{gathered} 35 / 30 \\ 175 / 150 \\ 10 / 10 \end{gathered}$	$\begin{aligned} & 1 / 125 \\ & 1 / 50 \\ & 1 / 50 \\ & 1 / 2.5 \end{aligned}$	300		
1N643 1N643A 1N643M 1N645	$\begin{aligned} & \mathbf{S} \\ & \mathbf{s} \\ & \mathbf{S} \\ & \mathbf{S} \end{aligned}$	$\begin{aligned} & \text { SD } \\ & \text { SD } \\ & \text { SD } \\ & \text { SD } \end{aligned}$	$\begin{aligned} & \text { 1N643 } \\ & \text { 1N643 } \\ & \text { 1N643 } \\ & \text { 1N645 } \end{aligned}$			$\begin{aligned} & 200 \\ & 200 \\ & 200 \\ & 275 \end{aligned}$		$\begin{array}{r} 1 / 100 \\ 1 / 100 \\ 15 / 100 \\ .2 / 225 \end{array}$	$\begin{aligned} & 1 / 10 \\ & 1 / 100 \\ & 1 / 1 \\ & 1 / 400 \end{aligned}$	$\begin{aligned} & 300 \\ & 300 \\ & 300 \end{aligned}$		

DIODE INTERCHANGEABILITY

TYPE NUMBER	$\begin{aligned} & \frac{Z}{3} \\ & \frac{1}{6} \\ & \frac{3}{k} \end{aligned}$		II REPLACEMENT		ratines			CHARACTERISTICS				
						$\mathbf{V}_{\mathbf{R}}$ (V)	\mathbf{I} (A)	$\begin{array}{ll} \mathbf{I}_{\mathbf{R}} & \mathbf{V}_{\mathrm{R}} \\ \mu \mathbf{A} & / \mathbf{V}) \end{array}$	$\mathbf{V F}_{F}$ - \mathbf{F} (V) $/$ (mA)	$\begin{aligned} & \mathbf{t}_{\mathrm{rr}} \\ & (\mathrm{~ns}) \end{aligned}$	$\mathbf{V}_{\mathbf{Z}}$ - $\mathbf{I z}_{\mathbf{2}}$ (V) $/$ (mA)	
1N645A 1N645B iN645] 1N646	$\begin{aligned} & 5 \\ & s \\ & s \\ & s \end{aligned}$	$\begin{aligned} & \text { SD } \\ & S D \\ & S D \\ & S D \end{aligned}$	1N645A 1N646	$\begin{aligned} & \text { 1N645A } \\ & \text { IN645A } \end{aligned}$		275 225 250 360		$\begin{array}{r} 50 N / 225 \\ 25 N / 225 \\ 25 N / 250 \\ .2 / 300 \end{array}$	$\begin{aligned} & 1 / 400 \\ & 1 / 400 \\ & 1 / 400 \\ & 1 / 400 \end{aligned}$			
1N647 1N648 1N649 1N658	$\begin{aligned} & \mathrm{s} \\ & \mathrm{~s} \\ & \mathrm{~s} \\ & \mathrm{~s} \end{aligned}$	$\begin{aligned} & \text { SD } \\ & \text { SD } \\ & \text { SD } \\ & \text { SD } \end{aligned}$	1N647 1 N648 1N649 1 N658			$\begin{aligned} & 480 \\ & 600 \\ & 720 \\ & 120 \end{aligned}$		$\begin{array}{r} .2 / 400 \\ .2 / 500 \\ .2 / 600 \\ 50 \mathrm{~N} / 40 \end{array}$	$\begin{aligned} & 1 / 400 \\ & 1 / 400 \\ & 1 / 400 \\ & 1 / 100 \end{aligned}$	300		
$\begin{aligned} & \text { IN658A } \\ & \text { IN659 } \\ & \text { IN659A } \\ & \text { IN660 } \end{aligned}$	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\begin{aligned} & \text { SD } \\ & \text { SD } \\ & \text { SD } \\ & \text { SD } \end{aligned}$	1N659 1N660			$\begin{array}{r} 120 \\ 60 \\ 60 \\ 120 \end{array}$		$\begin{array}{r} 30 N / 50 \\ 5 / 50 \\ 30 N / 50 \\ 5 / 100 \end{array}$	$\begin{aligned} & 1 / 100 \\ & 1 / 6 \\ & 1 / 10 \\ & 1 / 6 \end{aligned}$	$\begin{aligned} & 300 \\ & 300 \\ & 300 \\ & 300 \end{aligned}$		
ING6OA I N661 IN661A 1N662	$\begin{aligned} & \mathrm{s} \\ & \mathrm{~S} \\ & \mathrm{~s} \\ & \mathrm{~s} \end{aligned}$	$\begin{aligned} & \text { SD } \\ & \text { SD } \\ & \text { SD } \\ & \text { SD } \end{aligned}$	1N661 1N662	$\begin{aligned} & 1 \text { N660 } \\ & 1 \text { N661 } \end{aligned}$		$\begin{array}{r} 120 \\ 240 \\ 240 \\ 80 \end{array}$		$\begin{array}{r} 30 N / 100 \\ 10 / 200 \\ 30 \mathrm{~N} / 200 \\ 1 / 50 \end{array}$	$\begin{aligned} & 1 / 10 \\ & 1 / 6 \\ & 1 / 10 \\ & 1 / 10 \end{aligned}$	$\begin{aligned} & 300 \\ & 300 \\ & 300 \\ & 500 \end{aligned}$		
1N662A 1 N663 IN663A IN663M	$\begin{aligned} & \mathrm{s} \\ & \mathrm{~S} \\ & \mathrm{~s} \\ & \mathrm{~s} \end{aligned}$	$\begin{array}{\|l\|} \hline S D \\ S D \\ S D \\ S D \end{array}$	1 N663	$\begin{aligned} & \text { IN662 } \\ & \text { 1N663 } \\ & \text { 1N663 } \end{aligned}$		80 80 80 100		$\begin{array}{r} 5 / 75 \\ .1 / 75 \\ .1 / 75 \end{array}$	$\begin{aligned} & 1 / 100 \\ & 1 / 100 \\ & 1 / 100 \\ & 1 / 100 \end{aligned}$	$\begin{aligned} & 500 \\ & 500 \\ & 300 \\ & 300 \end{aligned}$		
IN664 1N665 1N666 1N667	$\begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & s \\ & s \end{aligned}$	$\begin{aligned} & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \end{aligned}$		$\begin{aligned} & \text { 1N756A } \\ & \text { 1N759A } \\ & \text { 1N965B } \\ & \text { 1N967B } \end{aligned}$	$\begin{aligned} & 250 \\ & 250 \\ & 250 \\ & 250 \end{aligned}$						$\begin{aligned} & 8.2 / 10 \\ & 12 / 10 \\ & 15 / 5 \\ & 18 / 5 \end{aligned}$	5 5 5 5
1N668 1N669 1N670 1N671	$\begin{aligned} & \mathbf{s} \\ & \mathbf{S} \\ & \mathrm{s} \\ & \mathrm{~s} \end{aligned}$	$\begin{aligned} & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \end{aligned}$		1N969B 1N971B	$\begin{aligned} & 250 \\ & 250 \\ & 250 \\ & 250 \end{aligned}$						$\begin{gathered} 22 / 5 \\ 27 / 5 \\ 68 / 1 \\ 100 / 1 \end{gathered}$	5 5 1 1
1N672 1N673 iN674 1N675	$\begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}$	$\begin{aligned} & \mathrm{ZD} \\ & \mathrm{SD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \end{aligned}$		$\begin{aligned} & \text { IN647 } \\ & \text { IN750 } \\ & \text { IN753A } \end{aligned}$	$\begin{aligned} & 250 \\ & 250 \\ & 250 \end{aligned}$	400		1/300	1/250		$\begin{aligned} & 150 / 1 \\ & 4.7 / 20 \\ & 6.2 / 20 \end{aligned}$	$\begin{array}{r} 1 \\ 10 \\ 5 \end{array}$
1N676 1N677 1N678 1N679	$\begin{aligned} & \mathbf{s} \\ & s \\ & s \\ & s \end{aligned}$	$\begin{aligned} & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \end{aligned}$		1 N645 1N645 1N645 IN645		$\begin{aligned} & 100 \\ & 100 \\ & 200 \\ & 200 \end{aligned}$	$\begin{aligned} & .2 \\ & .4 \\ & .2 \\ & .4 \end{aligned}$	$\begin{aligned} & 1 / 100 \\ & 1 / 100 \\ & 1 / 200 \\ & 1 / 200 \end{aligned}$	$\begin{aligned} & 1 / 400 \\ & 1 / 400 \\ & 1 / 400 \\ & 1 / 400 \end{aligned}$			
1N681 1N682 1 N683 1N684	$\left\lvert\, \begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}\right.$	$\begin{aligned} & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \end{aligned}$		1N646 1N646 1N647 1N647		$\begin{aligned} & 300 \\ & 300 \\ & 400 \\ & 400 \end{aligned}$	$\begin{aligned} & .075 \\ & .150 \\ & .075 \\ & .150 \end{aligned}$	$\begin{aligned} & 200 / 300 \\ & 200 / 300 \\ & 200 / 400 \\ & 200 / 400 \end{aligned}$	$\begin{aligned} & 1 / 200 \\ & 1 / 400 \\ & 1 / 200 \\ & 1 / 400 \end{aligned}$			

DIODE INTERCHANGEABILITY

	z	$\begin{array}{\|c} 7 \\ \hline \end{array}$			Ratinges			CHARACTERISTICS				
$\begin{aligned} & \text { TYPE } \\ & \text { MUMBER } \end{aligned}$	$\frac{\text { 䨤 }}{2}$		TI	$\begin{aligned} & \text { FOR } \\ & \text { NEW } \\ & \text { DESTGN } \end{aligned}$	$\begin{gathered} P_{D} \\ (\mathrm{~mW}) \end{gathered}$	$\mathbf{V}_{\mathbf{R}}$ (V)	I (A)	$\begin{array}{ll} \mathbf{l}_{\mathrm{R}} & \mathbf{V}_{\mathrm{R}} \\ \mu \mathrm{~A} & /(\mathrm{V}) \end{array}$	$\mathbf{V F}_{F}$ - $\mathbf{F}_{\mathbf{F}}$ (V) $/$ (mA)	$\begin{gathered} I_{r r} \\ (n s) \end{gathered}$	$\begin{array}{lc} \mathbf{V}_{\mathbf{Z}} & \subset \mathbf{Z} \\ (\mathrm{V}) & / \mathrm{mA}) \end{array}$	TOL *
1N685 1N686 1N687 1N689	$\begin{aligned} & \mathbf{S} \\ & \mathbf{s} \\ & \mathbf{S} \\ & \mathbf{s} \end{aligned}$	$\left\lvert\, \begin{aligned} & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \end{aligned}\right.$		iN648 1N648 1N649 IN649		$\begin{aligned} & 500 \\ & 500 \\ & 600 \\ & 600 \end{aligned}$	$\begin{aligned} & .075 \\ & .150 \\ & .075 \\ & .150 \end{aligned}$	$\begin{aligned} & 200 / 500 \\ & 200 / 500 \\ & 200 / 500 \\ & 200 / 600 \end{aligned}$	$\begin{aligned} & 1 / 200 \\ & 1 / 400 \\ & 1 / 200 \\ & 1 / 400 \end{aligned}$			
1N690 IN691 1N692 1N693	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & \text { SD } \\ & \text { SD } \\ & \text { SD } \\ & \text { SD } \end{aligned}\right.$		1N4607 1N4607 1N4607 1N4607		36 80 100 130		$\begin{aligned} & .25 / 30 \\ & .25 / 60 \\ & .25 / 90 \\ & .25 / 120 \end{aligned}$	$\begin{aligned} & 1 / 400 \\ & 1 / 400 \\ & 1 / 400 \\ & 1 / 400 \end{aligned}$	$\begin{aligned} & 800 \\ & 800 \\ & 800 \\ & 800 \end{aligned}$		
1N695 1N695A IN696 1N697	$\begin{aligned} & G \\ & G \\ & S \\ & S \end{aligned}$	$\begin{aligned} & \text { SD } \\ & \text { SD } \\ & \text { SD } \\ & \text { SD } \end{aligned}$		1N4148 1N4148 iN4148 1N4607		20 25 30 120		$\begin{array}{r} 2 / 10 \\ 2 / 10 \\ 15 \mathrm{~N} / 20 \\ 2 / 50 \end{array}$	$\begin{gathered} 1 / 100 \\ .5 / 10 \\ 1 / 10 \\ 1.1 / 400 \end{gathered}$	$\begin{array}{r} 300 \\ 300 \\ 5 \\ 100 \end{array}$		
1N698 1 N699 iN701 1N702	$\begin{aligned} & \mathbf{G} \\ & \mathbf{G} \\ & \mathbf{S} \\ & \mathbf{S} \end{aligned}$	$\begin{aligned} & \text { SD } \\ & \text { SD } \\ & \text { ZD } \\ & \text { ZD } \end{aligned}$	1N702	$\begin{aligned} & \text { IN4305 } \\ & \text { 1N4448 } \\ & \text { IN758A } \end{aligned}$	$\begin{array}{r} 250 \\ 250 \end{array}$	15 105		$\begin{array}{r} 1 / 1.5 \\ 250 / 75 \end{array}$	$\begin{aligned} & .21 / 1 \\ & 1 / 100 \end{aligned}$	$\begin{aligned} & 500 \\ & 300 \end{aligned}$	$\begin{gathered} 10.5 / 10 \\ 2.6 / 5 \end{gathered}$	$\begin{array}{r} 5 \\ 20 \end{array}$
$\begin{array}{\|l} \text { 1 N702A } \\ \text { 1N703 } \\ \text { IN703A } \\ \text { 1N704 } \end{array}$	$\left\lvert\, \begin{aligned} & \mathbf{S} \\ & \mathbf{S} \\ & \mathbf{S} \\ & \mathbf{s} \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \end{aligned}\right.$	1N702A 1N703 IN703A 1N704		$\begin{aligned} & 250 \\ & 250 \\ & 250 \\ & 250 \end{aligned}$						$\begin{aligned} & 2.6 / 5 \\ & 3.5 / 5 \\ & 3.5 / 5 \\ & 4.1 / 5 \end{aligned}$	5 20 5 20
1N704A 1N705 1N705A 1N706	$\begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}$	$\left\|\begin{array}{l} \mathrm{ZD} \\ \mathrm{ZD} \\ \mathrm{ZD} \\ \mathrm{ZD} \end{array}\right\|$	1N704A iN705 IN705A 1N706		250 250 250 250						$\begin{aligned} & 4.4 / 5 \\ & 4.8 / 5 \\ & 4.8 / 5 \\ & 5.8 / 5 \end{aligned}$	5 20 5 20
$\begin{aligned} & \text { 1 N706A } \\ & \text { IN707 } \\ & \text { IN707A } \\ & \text { IN708 } \end{aligned}$	$\begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}$	$\left\|\begin{array}{l} \mathrm{ZD} \\ \mathrm{ZD} \\ \mathrm{ZD} \\ \mathrm{ZD} \end{array}\right\|$	$\begin{aligned} & \text { IN706A } \\ & \text { IN707 } \\ & \text { IN707A } \\ & \text { IN708 } \end{aligned}$		$\begin{aligned} & 250 \\ & 250 \\ & 250 \\ & 250 \end{aligned}$						$\begin{aligned} & 5.8 / 5 \\ & 7.1 / 5 \\ & 7.1 / 5 \\ & 5.6 / 25 \end{aligned}$	5 20 5 10
$\begin{aligned} & \text { 1N708A } \\ & \text { IN708B } \\ & \text { 1 N709 } \\ & \text { IN709A } \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$	$\left\|\begin{array}{l} \mathrm{zD} \\ \mathrm{ZD} \\ \mathrm{ZD} \\ \mathrm{zD} \end{array}\right\|$	$\begin{aligned} & \text { 1N708A } \\ & \text { IN708 } \\ & \text { IN709 } \\ & \text { IN709A } \end{aligned}$		$\begin{aligned} & 250 \\ & 250 \\ & 250 \\ & 250 \end{aligned}$						$\begin{aligned} & 5.6 / 25 \\ & 5.6 / 25 \\ & 6.2 / 25 \\ & 6.2 / 25 \end{aligned}$	5 20 10 5
$\begin{array}{\|l} 1 \mathrm{IN709B} \\ \text { IN710 } \\ \text { IN710A } \\ \text { 1N710B } \end{array}$	$\left\lvert\, \begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{S} \\ & \mathbf{s} \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \end{aligned}\right.$	$\left\{\begin{array}{l} \text { IN709 } \\ \text { IN710 } \\ \text { 1N710A } \\ \text { IN710 } \end{array}\right.$		250 250 250 250			-			$\begin{aligned} & 6.2 / 25 \\ & 6.8 / 25 \\ & 6.8 / 25 \\ & 6.8 / 25 \end{aligned}$	20 10 5 20
$\begin{aligned} & \text { 1N711 } \\ & \text { 1N711A } \\ & \text { 1N711B } \\ & \text { 1N712 } \end{aligned}$	$\left\lvert\, \begin{aligned} & \mathbf{S} \\ & \mathbf{S} \\ & \mathbf{S} \\ & \mathbf{S} \end{aligned}\right.$	$\begin{aligned} & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \end{aligned}$	$\left\{\begin{array}{l} \text { 1N711 } \\ \text { 1N71 1A } \\ \text { 1N711 } \\ \text { 1N712 } \end{array}\right.$		$\begin{aligned} & 250 \\ & 250 \\ & 250 \\ & 250 \end{aligned}$						$\begin{aligned} & 7.5 / 25 \\ & 7.5 / 25 \\ & 7.5 / 25 \\ & 8.2 / 25 \end{aligned}$	10 5 20 10

DIODE INTERCHANGEABILTTY

$\begin{gathered} \text { TYPE } \\ \text { numeer } \end{gathered}$		$\begin{gathered} \frac{3}{2} \\ \frac{5}{5} \\ \frac{5}{5} \\ 8 \end{gathered}$	II	FORNEWDESNON	Ratines			CHARACTERISTICS				
						\mathbf{V}_{R} (V)	1 (A)	$\begin{array}{cc} \mathbf{R}_{\mathbf{R}} & \bullet \mathbf{V}_{\mathrm{R}} \\ \mu \mathbf{N} & /(\mathrm{V}) \end{array}$	$\begin{array}{cc} V_{F} & \mathbf{I F}_{f} \\ \text { (V) } & /(\mathrm{mA}) \end{array}$	$\begin{aligned} & \mathrm{ir} \\ & \text { (ns) } \end{aligned}$	$\mathbf{V}_{\mathbf{z}}$ - \mathbf{z} (V) / (mA)	$\begin{gathered} \text { rot } \\ \% \end{gathered}$
1N725 1N726 1N726A 1N7268	$\begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}$	20 1 20 1 20 1 20 1	1N725 1N726 1N726A iN726		$\begin{aligned} & 250 \\ & 250 \\ & 250 \\ & 250 \end{aligned}$						$\begin{aligned} & 30 / 4 \\ & 33 / 4 \\ & 33 / 4 \\ & 33 / 4 \end{aligned}$	20 10 5 20
1N727 1N727A 1N7278 1N728	$\left\lvert\, \begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}\right.$	$\begin{aligned} & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \end{aligned}$			$\begin{aligned} & 250 \\ & 250 \\ & 250 \\ & 250 \end{aligned}$						$\begin{aligned} & 36 / 4 \\ & 36 / 4 \\ & 36 / 4 \\ & 39 / 4 \end{aligned}$	$\begin{array}{r} 10 \\ 5 \\ 20 \\ 10 \end{array}$
1N728A 1N7288 1N729 1N729A	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\begin{aligned} & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \end{aligned}$			$\begin{aligned} & 250 \\ & 250 \\ & 250 \\ & 250 \end{aligned}$						$\begin{aligned} & 39 / 4 \\ & 39 / 4 \\ & 43 / 4 \\ & 43 / 4 \end{aligned}$	$\begin{array}{r} 5 \\ 20 \\ 10 \\ 5 \end{array}$
$\begin{aligned} & \text { IN729B } \\ & \text { IN730 } \\ & \text { IN730A } \\ & \text { IN730: } \end{aligned}$	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\left.\begin{aligned} & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \end{aligned} \right\rvert\,$			$\begin{aligned} & 250 \\ & 250 \\ & 250 \\ & 250 \end{aligned}$						$\begin{aligned} & 43 / 4 \\ & 47 / 4 \\ & 47 / 4 \\ & 47 / 4 \end{aligned}$	$\begin{array}{r} 20 \\ 10 \\ 5 \\ 20 \end{array}$
$\begin{aligned} & \text { 1N731 } \\ & \text { iN731A } \\ & \text { 1N7318 } \\ & \text { 1N732 } \end{aligned}$	$\begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}$	$\left.\begin{aligned} & z 0 \\ & z 0 \\ & z 0 \\ & z D \end{aligned} \right\rvert\,$			$\begin{aligned} & 250 \\ & 250 \\ & 250 \\ & 250 \end{aligned}$	-					$51 / 4$ 51/4 51/4 56/4	$\begin{array}{r} 10 \\ 5 \\ 20 \\ 10 \end{array}$
$\begin{aligned} & \text { 1N732A } \\ & \text { iN732B } \\ & \text { 1N733 } \\ & \text { 1N733A } \end{aligned}$	$\begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}$	$\left.\begin{aligned} & z D \\ & z D \\ & z D \\ & z D \end{aligned} \right\rvert\,$			$\begin{aligned} & 250 \\ & 250 \\ & 250 \\ & 250 \end{aligned}$.		\cdots			$\begin{aligned} & 56 / 4 \\ & 56 / 4 \\ & 62 / 2 \\ & 62 / 2 \end{aligned}$	5 20 10 5
$\begin{aligned} & \text { 1N733B } \\ & \text { IN734 } \\ & \text { 1N734A } \\ & \text { 1N734B } \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zo} \end{aligned}$			$\begin{aligned} & 250 \\ & 250 \\ & 250 \\ & 250 \end{aligned}$						$\begin{aligned} & 62 / 2 \\ & 68 / 2 \\ & 68 / 2 \\ & 68 / 2 \end{aligned}$	20 10 5 20
IN735 1N735A iN7358 1N736	$\left\lvert\, \begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}\right.$	$\left\|\begin{array}{l} z 0 \\ z 0 \\ z 0 \\ z 0 \end{array}\right\|$			$\begin{aligned} & 250 \\ & 250 \\ & 250 \\ & 250 \end{aligned}$						$\begin{aligned} & 75 / 2 \\ & 75 / 2 \\ & 75 / 2 \\ & 82 / 2 \end{aligned}$	10 5 20 10
1N736A 1N7368 1N737 1N737A	$\begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}$	$\left\lvert\, \begin{aligned} & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \end{aligned}\right.$			$\begin{aligned} & 250 \\ & 250 \\ & 250 \\ & 250 \end{aligned}$						$\begin{aligned} & 82 / 2 \\ & 82 / 2 \\ & 91 / 1 \\ & 91 / 1 \end{aligned}$	5 20 10 5
1N7378 1N738 IN738A 1N7388	$\begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}$	$\begin{aligned} & \mathbf{z D} \\ & \mathbf{z D} \\ & \mathbf{z D} \\ & \mathbf{Z D} \end{aligned}$			$\begin{aligned} & 250 \\ & 250 \\ & 250 \\ & 250 \end{aligned}$						$\begin{array}{r} 91 / 1 \\ 100 / 1 \\ 100 / 1 \\ 100 / 1 \end{array}$	20 10 5 20

TYPE NUMBER	$\begin{aligned} & \frac{1}{k} \\ & \frac{1}{\mathbb{W}} \\ & \frac{2}{3} \end{aligned}$		7 REPLACEMENT	$\begin{aligned} & \text { FOR } \\ & \text { NEW } \\ & \text { DESIGN } \end{aligned}$	RAtings			CHARACTERISTICS				
					$\begin{aligned} & P_{D} \\ & (\mathrm{~mW}) \end{aligned}$	$\mathbf{V}_{\mathbf{R}}$ (V)	I (A)	$\begin{array}{ll} \mathbf{I}_{\mathbf{R}} & \mathbf{V}_{\mathbf{R}} \\ \mu \mathrm{A} & / \mathbf{V}) \end{array}$	$\begin{array}{ccc} \mathbf{V}_{\mathbf{F}} & \mathbf{I}_{\mathbf{F}} \\ (\mathbf{V}) & /(\mathrm{mA}) \end{array}$	$\begin{aligned} & t_{r r} \\ & \text { (ns) } \end{aligned}$	$\begin{array}{lc} \mathbf{V}_{\mathbf{z}} \oplus & \mathrm{z} \\ (\mathrm{~V}) & / \mathrm{mA}) \end{array}$	$\begin{gathered} \mathrm{TOL} \\ \% \end{gathered}$
$\begin{aligned} & \text { 1N739 } \\ & \text { lN739A } \\ & \text { 1N739B } \\ & \text { 1N740 } \end{aligned}$	$\begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}$	$\begin{aligned} & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \end{aligned}$			$\begin{aligned} & 250 \\ & 250 \\ & 250 \\ & 250 \end{aligned}$						$\begin{aligned} & 110 / 1 \\ & 110 / 1 \\ & 110 / 1 \\ & 120 / 1 \end{aligned}$	$\begin{array}{r} 10 \\ 5 \\ 20 \\ 10 \end{array}$
$\begin{aligned} & \text { IN740A } \\ & \text { 1N740B } \\ & \text { 1N741 } \\ & \text { IN741A } \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$	$\left\lvert\, \begin{aligned} & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \end{aligned}\right.$			$\begin{aligned} & 250 \\ & 250 \\ & 250 \\ & 250 \end{aligned}$						$\begin{aligned} & 120 / 1 \\ & 120 / 1 \\ & 130 / 1 \\ & 130 / 1 \end{aligned}$	5 20 10 5
$\begin{aligned} & \text { IN741B } \\ & \text { IN742 } \\ & \text { IN742A } \\ & \text { IN742B } \end{aligned}$	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\begin{aligned} & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \end{aligned}$			$\begin{aligned} & 250 \\ & 250 \\ & 250 \\ & 250 \end{aligned}$						$\begin{aligned} & 130 / 1 \\ & 150 / 1 \\ & 150 / 1 \\ & 150 / 1 \end{aligned}$	$\begin{array}{r} 20 \\ 10 \\ 5 \\ 20 \end{array}$
1N743 1N743A 1N743B IN744	$\begin{aligned} & \mathrm{s} \\ & \mathrm{~s} \\ & \mathrm{~S} \\ & \mathrm{~s} \end{aligned}$	$\left\|\begin{array}{l} \mathrm{ZD} \\ \mathrm{ZD} \\ \mathrm{ZD} \\ \mathrm{ZD} \end{array}\right\|$			$\begin{aligned} & 250 \\ & 250 \\ & 250 \\ & 250 \end{aligned}$						$\begin{aligned} & 160 / 1 \\ & 160 / 1 \\ & 160 / 1 \\ & 180 / 1 \end{aligned}$	$\begin{array}{r} 10 \\ 5 \\ 20 \\ 10 \end{array}$
$\begin{aligned} & \text { 1N744A } \\ & \text { 1N744B } \\ & \text { 1N745 } \\ & \text { IN745A } \end{aligned}$	$\begin{aligned} & \mathbf{S} \\ & \mathbf{S} \\ & \mathbf{S} \\ & \mathbf{S} \end{aligned}$	$\begin{aligned} & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \end{aligned}$			$\begin{aligned} & 250 \\ & 250 \\ & 250 \\ & 250 \end{aligned}$						$\begin{aligned} & 180 / 1 \\ & 180 / 1 \\ & 200 / 1 \\ & 200 / 1 \end{aligned}$	$\begin{array}{r} 5 \\ 20 \\ 10 \\ 5 \end{array}$
1N745B 1N746 1N746A 1N747	$\begin{aligned} & \mathbf{s} \\ & \mathbf{S} \\ & \mathbf{S} \\ & \mathbf{s} \end{aligned}$	$\begin{aligned} & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \end{aligned}$			$\begin{aligned} & 250 \\ & 400 \\ & 400 \\ & 400 \end{aligned}$						$\begin{aligned} & 200 / 1 \\ & 3.3 / 20 \\ & 3.3 / 20 \\ & 3.6 / 20 \end{aligned}$	20 10 5 10
1N747A 1N748 1N748A 1N749	$\begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}$	$\left.\begin{aligned} & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zo} \end{aligned} \right\rvert\,$	1N747A iN748 IN748A IN749		$\begin{array}{r} 400 \\ 400 \\ 400 \\ 400 \end{array}$						$\begin{aligned} & 3.6 / 20 \\ & 3.9 / 20 \\ & 3.9 / 20 \\ & 4.3 / 20 \end{aligned}$	5 10 5 10
1N749A IN750 1N750A iN751	$\begin{aligned} & 5 \\ & s \\ & s \\ & 5 \end{aligned}$	$\left(\begin{array}{l} \mathrm{ZD} \\ \mathrm{ZD} \\ \mathrm{ZD} \\ \mathrm{ZD} \end{array}\right.$	1N749A iN750 1N750A IN751		$\begin{aligned} & 400 \\ & 400 \\ & 400 \\ & 400 \end{aligned}$						$\begin{aligned} & 4.3 / 20 \\ & 4.7 / 20 \\ & 4.7 / 20 \\ & 5.1 / 20 \end{aligned}$	5 10 5 10
IN751A iN752 1N752A 1N753	$\begin{aligned} & s \\ & s \\ & s \\ & s \\ & s \end{aligned}$	ZD ZD ZD ZD	1N751A 1N752 1N752A 1N753		$\begin{aligned} & 400 \\ & 400 \\ & 400 \\ & 400 \end{aligned}$						$\begin{aligned} & 5.1 / 20 \\ & 5.6 / 20 \\ & 5.6 / 20 \\ & 6.2 / 20 \end{aligned}$	5 10 5 10
1N753A 1N754 1N754A 1N755	$\begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}$	$\begin{aligned} & \mathrm{zo} \\ & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \end{aligned}$	1N753A 1N754 1N754A 1N755		$\begin{aligned} & 400 \\ & 400 \\ & 400 \\ & 400 \end{aligned}$						$\begin{aligned} & 6.2 / 20 \\ & 6.8 / 20 \\ & 6.8 / 20 \\ & 7.5 / 20 \end{aligned}$	$\begin{array}{r} 5 \\ 10 \\ 5 \\ 10 \end{array}$

TYPE NuMEER			TI	$\begin{aligned} & \text { FOR } \\ & \text { NEW } \\ & \text { DESICN } \end{aligned}$	RATINOS			CHARACTERISTICS				
						$\mathbf{V}_{\mathbf{R}}$ (V)	(A)	$\begin{array}{ll} \mathbf{I}_{\mathbf{R}} & \bullet \mathbf{V}_{\mathbf{R}} \\ \mu \mathbf{A} & / \mathbf{V}) \end{array}$	$\begin{array}{ll} V_{F} & \mathbf{l}_{\mathbf{F}} \\ (\mathrm{V}) & /(\mathrm{mA}) \end{array}$	$\begin{aligned} & i n t \\ & (n *) \end{aligned}$	$\mathbf{v}_{\mathbf{z}}$ - $\mathbf{l z}_{\mathbf{z}}$ (V) $/$ (mA)	$\begin{gathered} \text { tot } \\ \% \end{gathered}$
1N755A iN756 1N756A 1N757	s	$\begin{array}{\|c\|c} \mathrm{ZO} \\ \mathrm{ZD} & 1 \\ \mathrm{ZD} & 1 \\ \mathrm{ZD} & 1 \end{array}$	$\begin{aligned} & \text { IN75SA } \\ & \text { 1N756 } \\ & \text { 1N75 A } \\ & \text { 1N757 } \end{aligned}$		$\begin{array}{r} 400 \\ 400 \\ 400 \\ 400 \end{array}$						$\begin{aligned} & 7.5 / 20 \\ & 8.2 / 20 \\ & 8.2 / 20 \\ & 9.1 / 20 \end{aligned}$	5 10 5 10
$\begin{aligned} & \text { 1N757A } \\ & \text { iN758 } \\ & \text { 1N758A } \\ & \text { 1N759 } \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$	$\left.\begin{aligned} & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \end{aligned} \right\rvert\,$	1N757A 1N758 IN758A iN759		$\begin{array}{r} 400 \\ 400 \\ 400 \\ 400 \end{array}$						$\begin{aligned} & 9.1 / 20 \\ & 10 / 20 \\ & 10 / 20 \\ & 12 / 20 \end{aligned}$	$\begin{array}{r} 5 \\ 10 \\ 5 \\ 10 \end{array}$
$\begin{aligned} & \text { 1N759A } \\ & \text { 1N761 } \\ & \text { 1N761-1 } \\ & \text { 1N761-2 } \end{aligned}$	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\begin{aligned} & 20 \\ & 20 \\ & z 0 \\ & z 0 \\ & z 0 \end{aligned}$	1N759A 1N761 1N761 iN761		$\begin{aligned} & 400 \\ & 250 \\ & 250 \\ & 250 \end{aligned}$						$\begin{array}{r} 12 / 20 \\ 4.85 / 10 \\ 4.5 / 10 \\ 5 / 10 \end{array}$	$\begin{array}{r} 5 \\ 10 \\ 5 \\ 5 \end{array}$
$\begin{aligned} & \text { IN761A } \\ & \text { IN762 } \\ & \text { IN762-1 } \\ & \text { IN762-2 } \end{aligned}$	$\left\lvert\, \begin{aligned} & \mathbf{s} \\ & \mathbf{S} \\ & \mathbf{S} \\ & \mathbf{s} \end{aligned}\right.$	$\begin{aligned} & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \end{aligned}$	$\left\{\begin{array}{l} \text { 1N761 } \\ \text { 1N762 } \\ \text { 1N762 } \\ \text { 1N762 } \end{array}\right.$		$\begin{aligned} & 250 \\ & 250 \\ & 250 \\ & 250 \end{aligned}$						$\begin{array}{r} 4.9 / 10 \\ 5.8 / 10 \\ 5.5 / 10 \\ 6 / 10 \end{array}$	5 10 5 5
$\begin{aligned} & \text { 1N762A } \\ & \text { 1N763 } \\ & \text { 1N763-1 } \\ & \text { iN763-2 } \end{aligned}$	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\left\|\begin{array}{l} \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \end{array}\right\|$	$\begin{aligned} & \text { IN762 } \\ & \text { IN763 } \\ & \text { IN763 } \\ & \text { IN763 } \end{aligned}$		$\begin{aligned} & 250 \\ & 250 \\ & 250 \\ & 250 \end{aligned}$						$\begin{array}{r} 5.8 / 10 \\ 7.1 / 10 \\ 6.5 / 10 \\ 7 / 10 \end{array}$	5 10 5 5
1N763-3 1N763A 1N764 1N764-1	$\begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}$	$\left.\begin{aligned} & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \end{aligned} \right\rvert\,$	$\left\{\begin{array}{l} \text { IN763 } \\ \text { IN763 } \\ \text { 1N764 } \\ \text { IN764 } \end{array}\right.$		$\begin{aligned} & 250 \\ & 250 \\ & 250 \\ & 250 \end{aligned}$						$\begin{array}{r} 7.5 / 10 \\ 7.1 / 10 \\ 8.75 / 10 \\ 8 / 10 \end{array}$	5 5 10 5
1N764-2 1N764-3 IN704-4 IN764A	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\begin{aligned} & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \end{aligned}$	$\left\{\begin{array}{l} \text { 1N764 } \\ \text { lN764 } \\ \text { 1N764 } \\ \text { 1N764 } \end{array}\right.$		$\begin{aligned} & 250 \\ & 250 \\ & 250 \\ & 250 \end{aligned}$						$\begin{array}{r} 8.5 / 10 \\ 9 / 10 \\ 9.5 / 10 \\ 8.8 / 10 \end{array}$	5 5 5 5
1N765 1N765-1 1N765-2 iN763A	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\begin{aligned} & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \end{aligned}$	$\left\{\begin{array}{l} \text { IN765 } \\ \text { IN765 } \\ \text { IN765 } \\ \text { IN765 } \end{array}\right.$		$\begin{aligned} & 250 \\ & 250 \\ & 250 \\ & 250 \end{aligned}$						$\begin{array}{r} 10.5 / 5 \\ 10 / 5 \\ 11 / 5 \\ 10 / 5 \end{array}$	10 5 5 5
1N766 1N766-1 in766-2 1N766-3	$\left\lvert\, \begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \end{aligned}\right.$	$\begin{aligned} & \text { 1N766 } \\ & \text { IN766 } \\ & \text { 1N766 } \\ & \text { IN766 } \end{aligned}$		$\begin{aligned} & 250 \\ & 250 \\ & 250 \\ & 250 \end{aligned}$						$\begin{array}{r} 12.7 / 5 \\ 12 / 5 \\ 13 / 5 \\ 14 / 5 \end{array}$	10 5 5 5
IN766A 1N767 1N767-1 IN767-2	$\begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}$	$\begin{aligned} & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \end{aligned}$	$\begin{aligned} & \text { 1N766 } \\ & \text { 1N767 } \\ & \text { 1N767 } \\ & \text { 1N767 } \end{aligned}$		$\begin{aligned} & 250 \\ & 250 \\ & 250 \\ & 250 \end{aligned}$						$\begin{array}{r} 12.8 / 5 \\ 15.7 / 5 \\ 15 / 5 \\ 16 / 5 \end{array}$	5 10 5 5

TYPF NUMBER		$\begin{aligned} & \frac{z}{2} \\ & \frac{2}{2} \\ & \frac{3}{4} \\ & 3 \end{aligned}$	II REPLACIMENT	$\begin{aligned} & \text { FOR } \\ & \text { NEW } \\ & \text { DESION } \end{aligned}$		tines V_{R} (V)	I (A)	$\begin{array}{ll} \mathbf{I}_{\mathbf{R}} & \Phi \mathbf{V}_{\mathbf{R}} \\ \mu_{\mathrm{A}} & /(\mathbf{V}) \end{array}$	VF - IF (V) $/$ (mA)	ERISTIC t_{r} (ms)	$\mathbf{V}_{\mathbf{z}}$ - $\mathbf{I z}$ (V) / (mA)	
$\begin{aligned} & \text { IN767-3 } \\ & \text { 1N767A } \\ & \text { 1N768 } \\ & \text { iN768-1 } \end{aligned}$	$\begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}$	$\begin{aligned} & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \end{aligned}$	$\begin{array}{\|l} \text { 1N767 } \\ \text { IN767 } \\ \text { IN768 } \\ \text { 1N768 } \end{array}$		$\begin{aligned} & 250 \\ & 250 \\ & 250 \\ & 250 \end{aligned}$						$\begin{array}{r} 17 / 5 \\ 15.8 / 5 \\ 19 / 5 \\ 18 / 5 \end{array}$	5 5 10 5
1N768-2 1N768-3 iN768A 1N769	$\begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}$	$\begin{aligned} & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \end{aligned}$	1N768 in768 iN768 1N769		$\begin{aligned} & 250 \\ & 250 \\ & 250 \\ & 250 \end{aligned}$						$\begin{array}{r} 19 / 5 \\ 20 / 5 \\ 19 / 5 \\ 23.5 / 5 \end{array}$	5 5 5 10
$\begin{aligned} & \text { 1N769-1 } \\ & \text { 1N769-2 } \\ & \text { iN769-3 } \\ & \text { 1N769-4 } \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$	$\left.\begin{aligned} & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \end{aligned} \right\rvert\,$	IN769 iN769 1N769 IN769		$\begin{aligned} & 250 \\ & 250 \\ & 250 \\ & 250 \end{aligned}$						$\begin{aligned} & 22 / 5 \\ & 24 / 5 \\ & 26 / 5 \\ & 28 / 5 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$
1N769A 1N770 1N771 IN771A	$\begin{aligned} & S \\ & G \\ & G \\ & G \end{aligned}$	$\begin{array}{\|l\|} \mathrm{ZD} \\ \mathrm{SD} \\ \mathrm{SD} \\ \mathrm{SD} \end{array}$	1N769		250	20 92 92		$\begin{aligned} & 40 / 10 \\ & 25 / 50 \\ & 25 / 50 \end{aligned}$	$\begin{aligned} & .5 / 15 \\ & 1 / 100 \\ & 1 / 200 \end{aligned}$	350	23.5/5	5
IN771B 1N772 1N772A iN773	$\begin{aligned} & \mathbf{G} \\ & \mathbf{G} \\ & \mathbf{G} \\ & \mathbf{G} \end{aligned}$	SD SD SD SD		1N645 1N4448 TID32 1N4448		92 80 80 75		$\begin{aligned} & 25 / 50 \\ & 50 / 50 \\ & 50 / 50 \\ & 10 / 10 \end{aligned}$	$\begin{aligned} & 1 / 400 \\ & 1 / 100 \\ & 1 / 200 \\ & 1 / 100 \end{aligned}$			
1N773A 1N774 1N774A 1N775	$\begin{aligned} & \mathbf{G} \\ & \mathbf{G} \\ & \mathbf{G} \\ & \mathbf{G} \end{aligned}$	$\left\lvert\, \begin{aligned} & \text { SD } \\ & \text { SD } \\ & \text { SD } \\ & \text { SO } \end{aligned}\right.$		$\begin{aligned} & \text { TID32 } \\ & \text { IN4448 } \\ & \text { TID32 } \\ & \text { IN4448 } \end{aligned}$		75 70 70 70		$\begin{aligned} & 10 / 10 \\ & 15 / 10 \\ & 15 / 10 \\ & 20 / 10 \end{aligned}$	$\begin{aligned} & 1 / 200 \\ & 1 / 100 \\ & 1 / 200 \\ & 1 / 100 \end{aligned}$			
$\begin{array}{\|l\|} \text { 1N776 } \\ \text { iN777 } \\ \text { iN778 } \\ \text { iN779 } \end{array}$	$\begin{aligned} & \mathbf{G} \\ & \mathbf{G} \\ & \mathbf{S} \\ & \mathbf{S} \end{aligned}$	$\begin{aligned} & \text { SD } \\ & S D \\ & S D \\ & S D \\ & S D \end{aligned}$		1N4448 1N4448 1N4148 1N4938		$\begin{array}{r} 20 \\ 75 \\ 100 \\ 175 \end{array}$		$\begin{gathered} 200 / 10 \\ 125 / 50 \\ .5 / 40 \\ .5 / 175 \end{gathered}$	$\begin{aligned} & 1 / 50 \\ & 1 / 100 \\ & 1 / 10 \\ & 1 / 10 \end{aligned}$	$\begin{aligned} & 500 \\ & 300 \\ & 300 \end{aligned}$		
1N781 1N781A 1N788 1N789	$\begin{aligned} & G \\ & \mathbf{G} \\ & \mathbf{G} \\ & \mathbf{S} \end{aligned}$	$\left\lvert\, \begin{aligned} & \text { SD } \\ & \text { SD } \\ & \text { SD } \\ & \text { SD } \end{aligned}\right.$		iN4305 1N4305 1N4448 1N4148		40 40 60 27		$\begin{array}{r} 5 / 10 \\ 5 / 10 \\ 200 / 10 \\ 1 / 20 \end{array}$	$\begin{gathered} .45 / 10 \\ .45 / 10 \\ 1 / 100 \\ 1 / 10 \end{gathered}$	$\begin{aligned} & 200 \\ & 500 \end{aligned}$		
$\begin{aligned} & \text { 1N789M } \\ & \text { 1N790 } \\ & \text { 1N790M } \\ & \text { 1N791 } \end{aligned}$	$\left\lvert\, \begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & S D \\ & S D \\ & S D \\ & S D \\ & S D \end{aligned}\right.$		1N4148 IN4148 IN4148 iN4448		$\begin{aligned} & 30 \\ & 30 \\ & 30 \\ & 27 \end{aligned}$		$\begin{aligned} & 1 / 20 \\ & 5 / 20 \\ & 5 / 20 \\ & 5 / 20 \end{aligned}$	$\begin{aligned} & 1 / 10 \\ & 1 / 10 \\ & 1 / 10 \\ & 1 / 50 \end{aligned}$	$\begin{aligned} & 500 \\ & 250 \\ & 250 \\ & 500 \end{aligned}$		
IN791M IN792 1N792M 1N793	$\begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}$	$\left\|\begin{array}{l} S D \\ S D \\ S D \\ S D \\ S D \end{array}\right\|$		IN4448 IN4448 iN4448 1N4148		$\begin{aligned} & 30 \\ & 27 \\ & 30 \\ & 60 \end{aligned}$		$\begin{aligned} & 5 / 20 \\ & 5 / 20 \\ & 5 / 20 \\ & 1 / 50 \end{aligned}$	$\begin{aligned} & 1 / 50 \\ & 1 / 100 \\ & 1 / 100 \\ & 1 / 10 \end{aligned}$	$\begin{aligned} & 500 \\ & 500 \\ & 500 \\ & 500 \end{aligned}$		

DIODE INTERCHANGEABILITY

TYPI MUMET䍝		$\begin{array}{\|c\|} \hline \frac{3}{3} \\ \frac{3}{3} \\ 3 \\ 3 \\ 3 \end{array}$	n	$\begin{aligned} & \text { FON } \\ & \text { NIW } \\ & \text { DESVON } \end{aligned}$	Ratines			characteristics				
						$\begin{aligned} & V_{R} \\ & (V) \end{aligned}$	I (A)	$\begin{array}{ll} \mathbf{L}_{\mathrm{R}} & \mathbf{V}_{\mathrm{R}} \\ \mu \mathrm{~A} & /(\mathbf{V}) \end{array}$	V_{f} - lf (V) 1 (mA)	$\begin{gathered} \mathrm{f} \\ \mathrm{~m} \\ \mathrm{~m}) \end{gathered}$	$\mathbf{V}_{\mathbf{Z}}$ - \mathbf{z} (V) $/$ (mA)	$\begin{aligned} & \text { rox } \\ & \% \end{aligned}$
$\begin{aligned} & \text { iN793M } \\ & \text { iN794 } \\ & \text { iN795 } \\ & \text { iN796 } \end{aligned}$	$\begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}$	$\left\lvert\, \begin{gathered} S D \\ s o \\ S D \\ S D \end{gathered}\right.$		1N4148 in4i48 1N4488 1N448		60 60 60 60		$\begin{aligned} & 1 / 50 \\ & 3 / 50 \\ & 5 / 50 \\ & 5 / 50 \end{aligned}$	$\begin{aligned} & 1 / 10 \\ & 1 / 10 \\ & 1 / 50 \\ & 1 / 100 \end{aligned}$	$\begin{aligned} & 500 \\ & 250 \\ & 500 \\ & 500 \end{aligned}$		
$\begin{aligned} & \text { IN798 } \\ & \text { IN797 } \\ & \text { IN799 } \\ & \text { IN800 } \end{aligned}$	$\left\lvert\, \begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}\right.$	$\begin{array}{\|l\|} \text { SD } \\ \text { SD } \\ \text { SD } \\ \text { SD } \end{array}$		$\left\{\begin{array}{l} 1 N 4938 \\ 1 N 4938 \\ 1 N 4938 \\ 1 N 4938 \end{array}\right.$		120 120 120 120		$\begin{aligned} & 5 / 100 \\ & 1 / 100 \\ & 5 / 100 \\ & 5 / 100 \end{aligned}$	$\begin{aligned} & 1 / 10 \\ & 1 / 10 \\ & 1 / 50 \\ & 1 / 100 \end{aligned}$	$\begin{aligned} & 250 \\ & 500 \\ & 500 \\ & 500 \end{aligned}$		
$\begin{aligned} & \text { IN801 } \\ & \text { IN802 } \\ & \text { INBO3 } \\ & \text { iN8O4 } \end{aligned}$	$\begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}$	$\begin{aligned} & \text { SD } \\ & \text { SD } \\ & S D \\ & S D \end{aligned}$		1N4938 1N4938 1N4938 1N4938		150 150 200 200		$\begin{array}{r} 1 / 125 \\ 5 / 125 \\ 5 / 175 \\ 10 / 175 \end{array}$	$\begin{aligned} & 1 / 10 \\ & 1 / 50 \\ & 1 / 10 \\ & 1 / 50 \end{aligned}$	$\begin{aligned} & 500 \\ & 500 \\ & 500 \\ & 500 \end{aligned}$		
$\begin{aligned} & \text { IN805 } \\ & \text { IN806 } \\ & \text { IN807 } \\ & \text { IN808 } \end{aligned}$	$\begin{aligned} & G \\ & S \\ & s \\ & s \end{aligned}$	$\left\|\begin{array}{l} \text { SD } \\ \text { SD } \\ S D \\ \text { SD } \end{array}\right\|$		IN4148 1N4148 IN4938 1N4448		40 100 200 100		$\begin{gathered} 100 / 10 \\ .5 / 40 \\ .5 / 125 \\ 1 / 35 \end{gathered}$	$\begin{aligned} & 1 / 3 \\ & 1 / 4 \\ & 1 / 4 \\ & 1 / 100 \end{aligned}$	300 300 300		
$\begin{aligned} & \text { IN809 } \\ & \text { IN810 } \\ & \text { IN811 } \\ & \text { IN811M } \end{aligned}$	$\begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}$	$\left.\begin{aligned} & \text { SD } \\ & \text { SD } \\ & \text { SD } \\ & \text { sD } \end{aligned} \right\rvert\,$		1N4938 1N4148 1N4148 1N4148		200 50 20 30		$\begin{gathered} 1 / 200 \\ 1 / 40 \\ 1 / 10 \\ 10 / 20 \end{gathered}$	$\begin{aligned} & 1 / 100 \\ & 1 / 10 \\ & 1 / 1 \\ & 1 / 1 \end{aligned}$	$\begin{array}{r} 300 \\ 50 \\ 250 \\ 250 \end{array}$		
IN812 1N812M 1N813 1N813M	$\begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}$	$\left.\begin{aligned} & \text { SO } \\ & \text { SD } \\ & \text { SO } \\ & \text { SD } \end{aligned} \right\rvert\,$		1N4149 iN4149 1N4148 IN4148		30 40 15 20		$\begin{gathered} .1 / 10 \\ 10 / 10 \\ .5 / 5 \\ 10 / 5 \end{gathered}$	$\begin{aligned} & 1 / 2 \\ & 1 / 2 \\ & 1 / 5 \\ & 1 / 5 \end{aligned}$	$\begin{aligned} & 250 \\ & 250 \\ & 250 \\ & 250 \end{aligned}$		
1N814 IN814M IN815 IN815M	$\begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}$	$\left\|\begin{array}{l} S D \\ S D \\ S D \\ S D \\ S D \end{array}\right\|$		1N4148 1N4148 1 N4448 1N4448		40 50 15 20		$\begin{gathered} .1 / 2 \\ 10 / 20 \\ .5 / 5 \\ .5 / 5 \end{gathered}$	$\begin{gathered} 1 / 2 \\ 1 / 2 \\ 1.5 / 100 \\ 1 / 100 \end{gathered}$	$\begin{aligned} & 250 \\ & 250 \\ & 250 \\ & 250 \end{aligned}$		
iN817 1N818 1N819 1N821	$\begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}$	$\left.\begin{aligned} & S D \\ & S D \\ & S D \\ & \text { SD } \\ & R D \end{aligned} \right\rvert\,$		1N4938 1N4148 iN645	250	200 70 80		$\begin{gathered} 20 / 175 \\ .25 / 60 \\ 25 N / 70 \end{gathered}$	1.5/6 $1.5 / 30$ $1 / 200$	$\begin{array}{r} 1 U \\ 500 \end{array}$	6.2/7.5	5
$\begin{aligned} & \text { 1N821A } \\ & \text { iN822 } \\ & \text { iN822A } \\ & \text { iN823 } \end{aligned}$	$\begin{aligned} & s \\ & s \\ & s \\ & s \\ & s \end{aligned}$	$\left.\begin{array}{\|l\|} R D \\ R D \\ R D \\ R D \\ R D \end{array} \right\rvert\,$			250 250 250 250						$\begin{aligned} & 6.2 / 7.5 \\ & 6.2 / 7.5 \\ & 6.2 / 7.5 \\ & 6.2 / 7.5 \end{aligned}$	5 5 5 5
$\begin{aligned} & \text { IN823A } \\ & \text { IN824 } \\ & \text { IN82AA } \\ & \text { in825 } \end{aligned}$	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\begin{aligned} & R D \\ & R D \\ & R D \\ & R D \\ & R D \end{aligned}$			250 250 250 250						$\begin{aligned} & 6.2 / 7.5 \\ & 6.2 / 7.5 \\ & 6.2 / 7.5 \\ & 6.2 / 7.5 \end{aligned}$	5 5 5 5

TYPE NUMEER			7 REPLACEMENT	$\begin{gathered} \text { FOR } \\ \text { NEW } \\ \text { DESIGN } \end{gathered}$	$\begin{gathered} \mathrm{PD} \\ (\mathrm{~mW}) \end{gathered}$	titings $\mathbf{V}_{\mathbf{R}}$ (V)	I (A)	$\begin{array}{ll} \mathbf{I}_{\mathrm{R}} & \mathbf{V}_{\mathrm{R}} \\ \mu_{\mathrm{A}} & /(\mathrm{V}) \end{array}$	$\mathbf{V F}_{F}$ IF (V) $/$ (mA)	${ }^{\prime} /{ }_{r}$ (na)	$\mathbf{V}_{\mathbf{z}} \quad \mathbf{l}_{\mathbf{z}}$ (V) $/$ (mA)	rol \%
$\begin{aligned} & \text { 1N825A } \\ & \text { 1N826 } \\ & \text { 1N826A } \\ & \text { 1N827 } \end{aligned}$	$\begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}$	$\begin{array}{\|l\|} \mathrm{RD} \\ \mathrm{RD} \\ \mathrm{RD} \\ \mathrm{RD} \end{array}$			$\begin{aligned} & 250 \\ & 250 \\ & 250 \\ & 250 \end{aligned}$						$\begin{array}{r} 6.2 / 7.5 \\ 6.55 / 7.5 \\ 6.55 / 7.5 \\ 6.2 / 7.5 \end{array}$	5 5 5 5
$\begin{aligned} & \text { 1N827A } \\ & \text { iN828 } \\ & \text { 1N828A } \\ & \text { 1N829 } \end{aligned}$	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & R D \\ & R D \\ & R D \\ & R D \end{aligned}\right.$			$\begin{aligned} & 250 \\ & 250 \\ & 250 \\ & 250 \end{aligned}$						$\begin{array}{r} 6.2 / 7.5 \\ 6.55 / 7.5 \\ 6.55 / 7.5 \\ 6.2 / 7.5 \end{array}$	5 5 5 5
$\begin{aligned} & \text { 1N829A } \\ & \text { IN835 } \\ & \text { 1N837 } \\ & \text { IN837A } \end{aligned}$	$\left\lvert\, \begin{aligned} & s \\ & G \\ & s \\ & s \end{aligned}\right.$	$\begin{aligned} & \text { RD } \\ & \text { SD } \\ & \text { SD } \\ & \text { SD } \end{aligned}$		$\begin{aligned} & \text { 1N4305 } \\ & \text { TID32 } \\ & \text { TID32 } \end{aligned}$	250	30 100 100		20/30 .1/80	$\begin{aligned} & .5 / 5 \\ & 1 / 150 \\ & 1 / 150 \end{aligned}$	$\begin{aligned} & 500 \\ & 500 \\ & 300 \end{aligned}$	6.2/7.5	5
IN83B 1N839 iN840 IN840M	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\begin{aligned} & \text { SD } \\ & \text { SD } \\ & \text { SD } \\ & \text { SD } \end{aligned}$		$\begin{aligned} & \text { 1N4938 } \\ & \text { 1N4938 } \\ & \text { TID32 } \\ & \text { 1N4938 } \end{aligned}$		150 200 40 50		$\begin{aligned} & .1 / 40 \\ & .1 / 40 \end{aligned}$	$\begin{aligned} & 1 / 150 \\ & 1 / 150 \\ & 1 / 150 \\ & 1 / 150 \end{aligned}$	$\begin{aligned} & 500 \\ & 500 \\ & 300 \\ & 300 \end{aligned}$	-	
$\begin{aligned} & \text { IN841 } \\ & \text { IN842 } \\ & \text { IN843 } \\ & \text { IN8844 } \end{aligned}$	$\begin{aligned} & \mathbf{s} \\ & s \\ & s \\ & s \\ & s \end{aligned}$	$\begin{aligned} & \text { SD } \\ & \text { SD } \\ & \text { SD } \\ & \text { SD } \end{aligned}$		1N4938 1N4938 1N4938 1N4938		$\begin{aligned} & 120 \\ & 160 \\ & 200 \\ & 100 \end{aligned}$		$\begin{aligned} & .1 / 120 \\ & .1 / 160 \\ & .1 / 200 \\ & .1 / 80 \end{aligned}$	$\begin{aligned} & 1 / 150 \\ & 1 / 150 \\ & 1 / 150 \\ & 1 / 200 \end{aligned}$	$\begin{aligned} & 300 \\ & 300 \\ & 300 \\ & 500 \end{aligned}$		
$\begin{aligned} & \text { 1N845 } \\ & \text { 1N846 } \\ & \text { IN847 } \\ & \text { 1N848 } \end{aligned}$	$\begin{aligned} & s \\ & S \\ & s \\ & s \end{aligned}$	$\begin{aligned} & \mathrm{SD} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \end{aligned}$		1N4938 1 N4001 1N4002 IN4003		$\begin{array}{r} 200 \\ 50 \\ 100 \\ 200 \end{array}$	$\begin{aligned} & .2 \\ & .2 \\ & .2 \end{aligned}$	$\begin{aligned} & .1 / 160 \\ & 20 / 50 \\ & 20 / 100 \\ & 20 / 200 \end{aligned}$	$\begin{aligned} & 1 / 200 \\ & .6 / 200 \\ & .6 / 200 \\ & .6 / 200 \end{aligned}$	500		
$\begin{array}{\|l} \text { 1N849 } \\ \text { IN850 } \\ \text { 1N851 } \\ \text { IN852 } \end{array}$	$\begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}$	$\left.\begin{aligned} & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \end{aligned} \right\rvert\,$		1N4004 1N4004 1N4005 1N4005		$\begin{aligned} & 300 \\ & 400 \\ & 500 \\ & 600 \end{aligned}$	$\begin{aligned} & .2 \\ & .2 \\ & .2 \\ & .2 \end{aligned}$	$\begin{aligned} & 20 / 300 \\ & 20 / 400 \\ & 20 / 500 \\ & 20 / 600 \end{aligned}$	$\begin{aligned} & .6 / 200 \\ & .6 / 200 \\ & .6 / 200 \\ & .6 / 200 \end{aligned}$			
IN853 IN854 IN855 IN856	$\begin{aligned} & \mathrm{s} \\ & \mathrm{~s} \\ & \mathrm{~s} \\ & \mathrm{~s} \end{aligned}$	$\begin{aligned} & R E \\ & R E \\ & R E \\ & R E \\ & R E \end{aligned}$		1N4006 1 N4006 1N4007 1 N4007		$\begin{array}{r} 700 \\ 800 \\ 900 \\ 1 K \end{array}$	$\begin{aligned} & .2 \\ & .2 \\ & .2 \\ & .2 \end{aligned}$	$\begin{aligned} & 20 / 700 \\ & 20 / 800 \\ & 20 / 900 \\ & 20 / 1 \mathrm{~K} \end{aligned}$	$\begin{aligned} & .6 / 200 \\ & .6 / 200 \\ & .6 / 200 \\ & .6 / 200 \end{aligned}$			
1N857 1N858 iN859 1N860	$\begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}$	$\begin{aligned} & \mathbf{R E} \\ & \mathbf{R E} \\ & \mathbf{R E} \\ & \mathrm{RE} \end{aligned}$		1N4001 1N4002 1N4003 in4004		$\begin{array}{r} 50 \\ 100 \\ 200 \\ 300 \end{array}$	$\begin{aligned} & .15 \\ & .15 \\ & .15 \\ & .15 \end{aligned}$	$\begin{aligned} & 20 / 50 \\ & 20 / 100 \\ & 20 / 200 \\ & 20 / 300 \end{aligned}$	$\begin{aligned} & .6 / 150 \\ & .6 / 150 \\ & .6 / 150 \\ & .6 / 150 \end{aligned}$			
1N861 1 N862 IN863 1N864	$\begin{aligned} & 5 \\ & 5 \\ & s \\ & 5 \end{aligned}$	$\begin{array}{\|c\|} \mathrm{RE} \\ \mathrm{RE} \\ \mathrm{RE} \\ \mathrm{RE} \end{array}$		1 N4004 iN4005 IN4005 1N4006		$\begin{aligned} & 400 \\ & 500 \\ & 600 \\ & 700 \end{aligned}$	$\begin{aligned} & .15 \\ & .15 \\ & .15 \\ & .15 \end{aligned}$	$\begin{aligned} & 20 / 400 \\ & 20 / 500 \\ & 20 / 600 \\ & 20 / 700 \end{aligned}$	$\begin{aligned} & .6 / 150 \\ & .6 / 150 \\ & .6 / 150 \\ & .6 / 150 \end{aligned}$			

DIODE INTERCHANGEABILITY

TYPE NUMBER	高$\frac{\text { m }}{3}$3		TinEPLACEMENT	$\begin{aligned} & \text { FOR } \\ & \text { NEW } \\ & \text { DESIGN } \end{aligned}$	RAtings			CHARACTERISTICS				
					$\begin{gathered} P D \\ (\mathrm{~mW}) \end{gathered}$	$\begin{aligned} & \mathbf{V}_{\mathbf{R}} \\ & (\mathbf{V}) \end{aligned}$	1 (A)	$\begin{array}{ll} r_{R} & V_{R} \\ \mu \mathbf{A} & /(\mathbf{V}) \end{array}$	$\mathbf{V F}_{F}$ - $\mathbf{I F}_{\mathbf{F}}$ (V) $/(\mathrm{mA})$	$\begin{gathered} t r r \\ (n s) \end{gathered}$	$\mathbf{v}_{\mathbf{Z}}$. \mathbf{z} (V) $/$ (mA)	$\left\lvert\, \begin{gathered} 102 \\ \% \end{gathered}\right.$
1N865 1N866 1N867 1N868	$\left\lvert\, \begin{aligned} & \mathbf{S} \\ & \mathbf{S} \\ & \mathbf{S} \\ & \mathbf{s} \end{aligned}\right.$	$\begin{aligned} & R E \\ & R E \\ & R E \\ & R E \end{aligned}$		1N4006 1N4007 1N4007 1N4001		800 900 $1 K$ 50	$\begin{array}{r} .15 \\ .15 \\ .15 \\ .1 \end{array}$	$\begin{aligned} & 20 / 800 \\ & 20 / 900 \\ & 20 / 1 K \\ & 20 / 50 \end{aligned}$	$\begin{aligned} & .6 / 150 \\ & .6 / 150 \\ & .6 / 150 \\ & .6 / 100 \end{aligned}$			
$\begin{aligned} & \text { 1N869 } \\ & \text { IN870 } \\ & \text { 1N871 } \\ & \text { IN872 } \end{aligned}$	$\left\lvert\, \begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}\right.$	$\begin{aligned} & R E \\ & R E \\ & R E \\ & R E \end{aligned}$		1N4002 1N4003 IN4004 IN4004		100 200 300 400	.1 .1 .1 .1	$\begin{aligned} & 20 / 100 \\ & 20 / 200 \\ & 20 / 300 \\ & 20 / 400 \end{aligned}$	$\begin{aligned} & .6 / 100 \\ & .6 / 100 \\ & .6 / 100 \\ & .6 / 100 \end{aligned}$			
$\begin{aligned} & \text { 1N873 } \\ & \text { IN874 } \\ & \text { 1N875 } \\ & \text { IN876 } \end{aligned}$	$\left[\begin{array}{l} s \\ s \\ s \\ s \end{array}\right.$	$\left.\begin{array}{\|} \mathbf{R E} \\ \mathrm{RE} \\ \mathrm{RE} \\ \mathrm{RE} \end{array} \right\rvert\,$		IN4005 1N4005 IN4006 1N4006		$\begin{aligned} & 500 \\ & 600 \\ & 700 \\ & 800 \end{aligned}$	$\begin{aligned} & .1 \\ & .1 \\ & .1 \\ & .1 \end{aligned}$	$\begin{aligned} & 20 / 500 \\ & 20 / 600 \\ & 20 / 700 \\ & 20 / 800 \end{aligned}$	$\begin{aligned} & .6 / 100 \\ & .6 / 100 \\ & .6 / 100 \\ & .6 / 100 \end{aligned}$			
$\begin{array}{\|l\|l} \text { 1N877 } \\ \text { 1N878 } \\ \text { 1N879 } \\ \text { 1N880 } \end{array}$	$\begin{aligned} & 5 \\ & s \\ & s \\ & s \end{aligned}$	$\left.\begin{array}{\|c\|} \mathrm{RE} \\ \mathrm{RE} \\ \mathrm{RE} \\ \mathrm{RE} \\ \mathbf{R E} \end{array} \right\rvert\,$		$\left\{\begin{array}{l} \text { IN4007 } \\ \text { iN4007 } \\ \text { IN4001 } \\ \text { in } 4002 \end{array}\right.$		$\begin{array}{r} 900 \\ 1 K \\ 50 \\ 100 \end{array}$	$\begin{array}{r} .1 \\ .1 \\ .05 \\ .05 \end{array}$	$\begin{aligned} & 20 / 900 \\ & 20 / 1 K \\ & 20 / 50 \\ & 20 / 100 \end{aligned}$	$\begin{aligned} & .6 / 100 \\ & .6 / 100 \\ & .6 / 50 \\ & .6 / 50 \end{aligned}$			
1N881 1N882 1 N883 in884	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\begin{aligned} & \mathbf{R E} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \end{aligned}$		$\begin{aligned} & \text { iN4003 } \\ & \text { iN4004 } \\ & \text { iN4004 } \\ & \text { iN4005 } \end{aligned}$		$\begin{aligned} & 200 \\ & 300 \\ & 400 \\ & 500 \end{aligned}$	$\begin{aligned} & .05 \\ & .05 \\ & .05 \\ & .05 \end{aligned}$	$\begin{aligned} & 20 / 200 \\ & 20 / 300 \\ & 20 / 400 \\ & 20 / 500 \end{aligned}$	$\begin{aligned} & .6 / 50 \\ & .6 / 50 \\ & .6 / 50 \\ & .6 / 50 \end{aligned}$	-		
1N885 1 N886 iN887 1N888	$\left\lvert\, \begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}\right.$	$\left.\begin{array}{\|l\|} \mathbf{R E} \\ \mathrm{RE} \\ \mathrm{RE} \\ \mathrm{RE} \end{array} \right\rvert\,$		1N4005 IN4006 1N4006 1N4007		$\begin{aligned} & 600 \\ & 700 \\ & 800 \\ & 900 \end{aligned}$	$\begin{aligned} & .05 \\ & .05 \\ & .05 \\ & .05 \end{aligned}$	$\begin{aligned} & 20 / 600 \\ & 20 / 700 \\ & 20 / 800 \\ & 20 / 900 \end{aligned}$	$\begin{aligned} & .6 / 50 \\ & .6 / 50 \\ & .6 / 50 \\ & .6 / 50 \end{aligned}$			
1N889 1N890 1N891 1N892	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\left\|\begin{array}{l} R E \\ S D \\ S D \\ S D \\ S D \end{array}\right\|$		1N4007 1N4447 1N4448 iN4448		$\begin{array}{r} 1 K \\ 60 \\ 60 \\ 100 \end{array}$. 05	$\begin{array}{r} 20 / 1 \mathrm{~K} \\ 25 \mathrm{~N} / 60 \\ .1 / 50 \\ .1 / 40 \end{array}$	$\begin{aligned} & .6 / 50 \\ & 1 / 20 \\ & 1 / 50 \\ & 1 / 50 \end{aligned}$	300 300		
1N893 1N897 1N898 1N899	$\begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}$	$\left.\begin{gathered} \mathrm{SO} \\ \mathrm{SD} \\ \mathrm{SD} \\ \mathrm{SD} \end{gathered} \right\rvert\,$		1N4938 1N4148 iN4448 1N4938		$\begin{array}{r} 240 \\ 50 \\ 50 \\ 100 \end{array}$		$\begin{aligned} & .1 / 200 \\ & .1 / 40 \\ & .5 / 40 \\ & .1 / 80 \end{aligned}$	$\begin{aligned} & 1 / 50 \\ & 1 / 5 \\ & 1 / 100 \\ & 1 / 5 \end{aligned}$	300		
1N900 1N901 1 N902 IN903	$\left\lvert\, \begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}\right.$	$\left\|\begin{array}{l} S D \\ S D \\ S D \\ S D \end{array}\right\|$		1N4938 IN4938 IN4938 IN4148		$\begin{array}{r} 100 \\ 100 \\ 200 \\ 20 \end{array}$		$\begin{aligned} & .1 / 80 \\ & .5 / 80 \\ & 1 / 100 \\ & .1 / 20 \end{aligned}$	$\begin{aligned} & 1 / 50 \\ & 1 / 100 \\ & 1 / 10 \\ & 1 / 10 \end{aligned}$	4		
1N903A IN903AM 1N903M 1N904	$\begin{aligned} & \mathbf{S} \\ & \mathbf{S} \\ & \mathbf{S} \\ & \mathbf{S} \end{aligned}$	$\left\|\begin{array}{l} \text { SD } \\ \text { SD } \\ \text { SD } \\ \text { SD } \end{array}\right\|$		1N4154 IN4154 1N4154 1N4154		50 50 50 30		$\begin{aligned} & .1 / 40 \\ & .1 / 40 \\ & .1 / 40 \\ & .1 / 30 \end{aligned}$	$\begin{aligned} & 1 / 20 \\ & 1 / 20 \\ & 1 / 10 \\ & 1 / 10 \end{aligned}$	4 4 4 4		

DIODE INTERCHANGEABILITY

TYPE NUMBER			π remacement		$\begin{gathered} P_{D} \\ (\mathrm{~mW}) \end{gathered}$	ATINES $\mathbf{V}_{\mathbf{R}}$ (V)	I (A)	$\begin{array}{ll} \mathrm{I}_{\mathrm{R}} & \mathrm{~V}_{\mathrm{R}} \\ \mu_{\mathrm{A}} & /(\mathrm{V}) \end{array}$	$\mathbf{V F}_{\mathbf{F}} \cdot \mathbf{I F}_{\mathbf{F}}$ (V) $/$ (ma)	Ristic t_{r} (ns)	$\mathbf{V}_{\mathbf{Z}} \text { - } \mathbf{z}$ (V) $/$ (ma)	$\left\lvert\, \begin{aligned} & 10 \mathrm{a} \\ & \% \end{aligned}\right.$
$\begin{aligned} & \text { IN904A } \\ & \text { IN904AM } \\ & \text { 1N904M } \\ & \text { IN905 } \end{aligned}$	$\begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}$	SD		IN4154 1N4154 INA154 1N4151		40 40 40 40		$\begin{aligned} & .1 / 30 \\ & .1 / 30 \\ & .1 / 30 \\ & .1 / 40 \end{aligned}$	$\begin{aligned} & 1 / 20 \\ & 1 / 20 \\ & 1 / 10 \\ & 1 / 10 \end{aligned}$	4 4 4 4		
1NP05A 1N905AM 1N905M 1N906	$\begin{aligned} & \mathbf{s} \\ & s \\ & s \\ & s \end{aligned}$	$\begin{aligned} & \text { SD } \\ & \text { SD } \\ & \text { SD } \\ & \text { SD } \end{aligned}$		IN4154 1N4154 1N4154 iN4149		30 30 30 20		$\begin{aligned} & .1 / 20 \\ & .1 / 20 \\ & .1 / 20 \\ & .1 / 20 \end{aligned}$	$\begin{aligned} & 1 / 20 \\ & 1 / 20 \\ & 1 / 10 \\ & 1 / 10 \end{aligned}$	4 4 4 4		
$\begin{aligned} & \text { 1 N906A } \\ & \text { 1 N906AM } \\ & \text { IN906M } \\ & \text { 1N907 } \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & \text { SD } \\ & \text { SD } \\ & \text { SD } \\ & S D \end{aligned}$		$\begin{aligned} & \text { 1N4447 } \\ & \text { 1N4447 } \\ & \text { IN4447 } \\ & \text { INA149 } \end{aligned}$		30 30 30 40		$\begin{aligned} & .1 / 20 \\ & .1 / 20 \\ & .1 / 20 \\ & .1 / 30 \end{aligned}$	$\begin{aligned} & 1 / 20 \\ & 1 / 20 \\ & 1 / 10 \\ & 1 / 10 \end{aligned}$	4 4 4 4		
1N907A IN907AM IN907M 1N908	$\begin{aligned} & s \\ & s \\ & s \\ & s \\ & s \end{aligned}$	SD SD SD SD		IN4448 IN4447 INA149 1N4149		40 40 40 50		$\begin{aligned} & .1 / 30 \\ & .1 / 30 \\ & .1 / 30 \\ & .1 / 40 \end{aligned}$	$\begin{aligned} & 1 / 20 \\ & 1 / 20 \\ & 1 / 10 \\ & 1 / 10 \end{aligned}$	4 4 4 4		
IN908A 1N908AM 1N908M 1 N909	$\begin{aligned} & \text { S } \\ & \mathbf{S} \\ & \mathbf{S} \\ & \mathbf{G} \end{aligned}$	$\begin{aligned} & \text { SD } \\ & \text { SD } \\ & \text { SD } \\ & \text { SD } \end{aligned}$		1N4447 1N4447 1N4149 1N4449		50 50 50 50		$\begin{aligned} & .1 / 40 \\ & .1 / 40 \\ & .1 / 40 \\ & 10 / 50 \end{aligned}$	$\begin{aligned} & 1 / 20 \\ & 1 / 20 \\ & 1 / 10 \\ & 1 / 100 \end{aligned}$	$\begin{aligned} & 4 \\ & 4 \\ & 4 \end{aligned}$		
$\begin{aligned} & \text { 1N910 } \\ & \text { 1N911 } \\ & \text { 1N912 } \\ & \text { 1N912A } \end{aligned}$	$\begin{aligned} & \mathbf{G} \\ & \mathbf{G} \\ & \mathbf{S} \\ & \mathbf{S} \end{aligned}$	$\left\|\begin{array}{l} \mathrm{sD} \\ \mathrm{sD} \\ \mathrm{zD} \\ \mathrm{ZD} \end{array}\right\|$		1N4449 1N4449	$\begin{aligned} & 500 \\ & 500 \end{aligned}$	30		$\begin{aligned} & 10 / 30 \\ & 10 / 20 \end{aligned}$	$\begin{aligned} & 1 / 100 \\ & 1 / 100 \end{aligned}$		$\begin{aligned} & .62 / 1 \\ & .62 / 1 \end{aligned}$	10
1N913 1N913A 1N914 1N914A	$\begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$	$\left\|\begin{array}{c\|} \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{SD} \\ \mathrm{SD} \end{array}\right\|$	$\begin{aligned} & \text { IN914 } \\ & \text { IN914A } \end{aligned}$		$\begin{aligned} & 600 \\ & 600 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$		$\begin{aligned} & 5 / 75 \\ & 5 / 75 \end{aligned}$	$\begin{aligned} & 1 / 10 \\ & 1 / 20 \end{aligned}$	4	$\begin{aligned} & .62 / 1 \\ & .62 / 1 \end{aligned}$	5 10
1N914B IN914M IN915 1N916	$\begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$		1N9148 1N914 IN915 iN916			$\begin{array}{r} 100 \\ 75 \\ 65 \\ 100 \end{array}$		$\begin{array}{r} 5 / 75 \\ 25 N / 20 \\ 5 / 50 \\ 5 / 75 \end{array}$	$\begin{aligned} & 1 / 100 \\ & 1 / 10 \\ & 1 / 50 \\ & 1 / 10 \end{aligned}$	4 4 10 4		
1N916A 1N916B 1N917 1N919	$\begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}$	$\begin{array}{\|l\|l\|l\|} \hline \text { SD } & 1 \\ \text { SD } & 1 \\ \text { SD } & 1 \\ \text { SD } & \end{array}$		1N4938		$\begin{array}{r} 100 \\ 100 \\ 40 \\ 150 \end{array}$		$\begin{gathered} 5 / 75 \\ 5 / 75 \\ .05 / 10 \\ .5 / 150 \end{gathered}$	$\begin{aligned} & 1 / 20 \\ & 1 / 30 \\ & 1 / 10 \\ & 1 / 100 \end{aligned}$	4 4 3 300		
1N920 1N921 1N922 1N923	$\begin{aligned} & 5 \\ & 5 \\ & s \\ & 5 \end{aligned}$	$\begin{aligned} & \text { SD } \\ & \text { SD } \\ & \text { SD } \\ & \text { SD } \end{aligned}$		1N4608 1N4608 1N4608 1N4608		$\begin{array}{r} 36 \\ 80 \\ 100 \\ 130 \end{array}$		$\begin{aligned} & .25 / 30 \\ & .25 / 60 \\ & .25 / 90 \\ & .25 / 120 \end{aligned}$	$\begin{aligned} & 1 / 500 \\ & 1 / 500 \\ & 1 / 500 \\ & 1 / 500 \end{aligned}$	$\begin{aligned} & 300 \\ & 300 \\ & 300 \\ & 300 \end{aligned}$		

DIODE INTERCHANGEABILITY

TYFE Rumeter			ninncement	$\begin{aligned} & \text { FOR } \\ & \text { NEW } \\ & \text { DESteN } \end{aligned}$	datmes			CHARACTEEISTICS				
					PD (mW)	$\begin{aligned} & \mathbf{V}_{\mathbf{R}} \\ & \mathbf{(V)} \end{aligned}$	I (A)	$\begin{array}{ll} \mathrm{n} & \bullet \mathbf{V}_{\mathrm{R}} \\ \mu \mathrm{~A} & /(\mathrm{V}) \end{array}$	$\begin{array}{ccc} \mathbf{V F}_{F} & \mathbf{4} \\ \text { (V) } & 1(\mathrm{~mA}) \end{array}$	$\begin{aligned} & \mathrm{i}_{\mathrm{IT}} \\ & \text { (men } \end{aligned}$	$\mathbf{V Z}_{\mathbf{z}}$ - \mathbf{z} (V) / (mA)	$\begin{gathered} \mathrm{TOL} \\ \% \end{gathered}$
1N924 IN925 1N926 1N927	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\begin{aligned} & \text { SD } \\ & \text { SD } \\ & \text { SD } \\ & \text { SD } \end{aligned}$		$\begin{aligned} & \text { IN483 } \\ & \text { 1N4148 } \\ & \text { 1NA148 } \\ & \text { IN4148 } \end{aligned}$		60 40 40 65		$\begin{array}{r} 25 N / 60 \\ 1 / 10 \\ .1 / 10 \\ .1 / 10 \end{array}$	$\begin{aligned} & 1 / 30 \\ & 1 / 5 \\ & 1 / 5 \\ & 1 / 10 \end{aligned}$	$\begin{array}{r} 2 U \\ 150 \\ 150 \\ 150 \end{array}$		
$\begin{array}{\|l\|l} \text { IN928 } \\ \text { 1 N929 } \\ \text { 1N930 } \\ \text { IN931 } \end{array}$	$\left\lvert\, \begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{S} \\ & \mathbf{s} \end{aligned}\right.$	$\begin{aligned} & \text { SD } \\ & \text { SD } \\ & \text { SD } \\ & \text { SD } \end{aligned}$		IN4938 1N446 1N4446 iN4938		$\begin{array}{r} 120 \\ 25 \\ 75 \\ 125 \end{array}$		$\begin{aligned} & .1 / 100 \\ & 100 / 25 \\ & 100 / 75 \\ & 100 / 125 \end{aligned}$	$\begin{aligned} & 1 / 10 \\ & 1 / 20 \\ & 1 / 20 \\ & 1 / 20 \end{aligned}$	150		
$\begin{aligned} & \text { 1N932 } \\ & \text { IN933 } \\ & \text { 1N934 } \\ & \text { IN935 } \end{aligned}$	$\begin{aligned} & s \\ & \mathbf{G} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}$	$\begin{aligned} & S D \\ & S D \\ & S D \\ & S D \\ & R D \end{aligned}$		$\begin{aligned} & \text { iN4938 } \\ & \text { 1N4148 } \\ & \text { 1N4938 } \end{aligned}$	500	250 100 70		$\begin{gathered} 100 / 250 \\ 10 / 10 \\ 25 N / 60 \end{gathered}$	$\begin{aligned} & 1 / 20 \\ & 1 / 4 \\ & 1 / 30 \end{aligned}$	400 14	9/7.5	5
$\begin{aligned} & \text { IN935A } \\ & \text { iN935B } \\ & \text { iN936 } \\ & \text { iN936A } \end{aligned}$	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\left.\begin{aligned} & R D \\ & R D \\ & R D \\ & R D \end{aligned} \right\rvert\,$			$\begin{aligned} & 500 \\ & 500 \\ & 500 \\ & 500 \end{aligned}$						$\begin{aligned} & 9 / 7.5 \\ & 9 / 7.5 \\ & 9 / 7.5 \\ & 9 / 7.5 \end{aligned}$	5 5 5 5
$\begin{aligned} & \text { 1N9368 } \\ & \text { iN937 } \\ & \text { 1N937A } \\ & \text { 1N9378 } \end{aligned}$	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\left.\begin{aligned} & R D \\ & R D \\ & R D \\ & R D \end{aligned} \right\rvert\,$			500 500 500 500						$\begin{aligned} & 9 / 7.5 \\ & 9 / 7.5 \\ & 9 / 7.5 \\ & 9 / 7.5 \end{aligned}$	5 5 5 5
1N938 1N938A 1N9388 1N939	$\begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}$	$\left.\begin{array}{\|l\|} R D \\ R D \\ R D \\ R D \end{array} \right\rvert\,$			$\begin{aligned} & 500 \\ & 500 \\ & 500 \\ & 500 \end{aligned}$						$\begin{aligned} & 9 / 7.5 \\ & 9 / 7.5 \\ & 9 / 7.5 \\ & 9 / 7.5 \end{aligned}$	5 5 5 5
IN93PA IN9398 IN940 IN940A	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\left\|\begin{array}{l} R D \\ R D \\ R D \\ R D \end{array}\right\|$			$\begin{aligned} & 500 \\ & 500 \\ & 500 \\ & 500 \end{aligned}$						$\begin{aligned} & 9 / 7.5 \\ & 9 / 7.5 \\ & 9 / 7.5 \\ & 9 / 7.5 \end{aligned}$	5 5 5 5
$\begin{aligned} & \text { 1N9403 } \\ & \text { 1N941 } \\ & \text { 1N941A } \\ & \text { 1N9418 } \end{aligned}$	$\left\lvert\, \begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}\right.$	$\left.\begin{aligned} & R D \\ & R D \\ & R D \\ & R D \end{aligned} \right\rvert\,$			$\begin{aligned} & 500 \\ & 500 \\ & 500 \\ & 500 \end{aligned}$						$\begin{array}{r} 9 / 7.5 \\ 11.7 / 7.5 \\ 11.7 / 7.5 \\ 11.7 / 7.5 \end{array}$	5 5 5 5
$\begin{aligned} & \text { IN942 } \\ & \text { iN942A } \\ & \text { iN942B } \\ & \text { iN943 } \end{aligned}$	S	$\begin{aligned} & R D \\ & R D \\ & R D \\ & R D \end{aligned}$			$\begin{aligned} & 500 \\ & 500 \\ & 500 \\ & 500 \end{aligned}$						$\begin{aligned} & 11.7 / 7.5 \\ & 11.7 / 7.5 \\ & 11.7 / 7.5 \\ & 11.7 / 7.5 \end{aligned}$	5 5 5 5
$\begin{aligned} & \text { IN943A } \\ & \text { IN9438 } \\ & \text { 1N944 } \\ & \text { 1N944A } \end{aligned}$	S	$\left.\begin{aligned} & R D \\ & R D \\ & R D \\ & R D \end{aligned} \right\rvert\,$			500 500 500 500						$\begin{aligned} & 11.7 / 7.5 \\ & 11.7 / 7.5 \\ & 11.7 / 7.5 \\ & 11.7 / 7.5 \end{aligned}$	5 5 5 5

DIODE INTERCHANGEABILITY

TYPE NUMBER				$\underset{\text { REPLACEMENT }}{\pi}$	$\begin{gathered} \text { FOR } \\ \text { NEW } \\ \text { DESIGN } \end{gathered}$	$\begin{gathered} P_{D} \\ (\mathrm{~mW}) \end{gathered}$	$\begin{aligned} & \mathbf{V}_{\mathbf{R}} \mathrm{NGS} \\ & (\mathrm{~V}) \end{aligned}$	I (A)	$\begin{array}{ll} I_{R} & V_{R} \\ \mu_{\mathbf{A}} & /(\mathbf{V}) \end{array}$	$\begin{array}{cc} V_{F} & \mathbf{V F}_{f} \\ (\mathrm{~V}) & I(\mathrm{~mA}) \end{array}$	RISTICS ${ }^{\prime} \mathrm{rr}$ (ns)	$\begin{array}{ccc} v_{z} & \bullet & l_{z} \\ \text { (v) } & /(\mathrm{mA}) \end{array}$	$\left\lvert\, \begin{gathered} \text { rou } \\ \% \end{gathered}\right.$
$\begin{aligned} & \text { 1N944B } \\ & \text { 1N945 } \\ & \text { 1N945A } \\ & \text { 1N945B } \end{aligned}$	s		$R D$ $R D$ $R D$ $R D$ RD			$\begin{aligned} & 500 \\ & 500 \\ & 500 \\ & 500 \end{aligned}$						$\begin{aligned} & 11.7 / 7.5 \\ & 11.7 / 7.5 \\ & 11.7 / 7.5 \\ & 11.7 / 7.5 \end{aligned}$	5 5 5 5
$\begin{aligned} & \text { iN946 } \\ & \text { iN946A } \\ & \text { iN946B } \\ & \text { iN947 } \end{aligned}$	s S s S		RD		1N647	$\begin{aligned} & 500 \\ & 500 \\ & 500 \end{aligned}$	600		2/480	1/400		$\begin{aligned} & 11.7 / 7.5 \\ & 11.7 / 7.5 \\ & 11.7 / 7.5 \end{aligned}$	5 5 5
$\begin{array}{\|l\|} \text { 1N948 } \\ \text { 1N949 } \\ \text { IN957 } \\ \text { 1N957A } \end{array}$	S		O	$\begin{array}{\|l\|l\|l\|l\|l\|l\|} \hline \text { IN957 } \\ \text { iN957A } \end{array}$	IN4448 1N4305	$\begin{aligned} & 400 \\ & 400 \end{aligned}$	$\begin{aligned} & 36 \\ & 50 \end{aligned}$		$\begin{aligned} & .25 / 30 \\ & 10 / 10 \end{aligned}$	$\begin{aligned} & 1.5 / 100 \\ & .39 / 10 \end{aligned}$		$\begin{aligned} & 6.8 / 18 \\ & 6.8 / 18 \end{aligned}$	20 10
$\begin{aligned} & \text { 1N957B } \\ & \text { 1N958 } \\ & \text { 1N958A } \\ & \text { 1N958B } \end{aligned}$	s s s s					$\begin{aligned} & 400 \\ & 400 \\ & 400 \\ & 400 \end{aligned}$						6.8/18 7.5/16 7.5/16 7.5/16	5 20 10 5
IN959 IN959A 1N959B 1N960	$\left[\begin{array}{l} \mathbf{s} \\ \mathbf{s} \\ \mathbf{s} \\ \mathbf{s} \end{array}\right.$			IN959 1N959A in959B 1N960		$\begin{aligned} & 400 \\ & 400 \\ & 400 \\ & 400 \end{aligned}$						$\begin{aligned} & 8.2 / 15 \\ & 8.2 / 15 \\ & 8.2 / 15 \\ & 9.1 / 14 \end{aligned}$	20 10 5 20
	$\begin{aligned} & s \\ & s \\ & s \\ & s \\ & s \end{aligned}$	ZD	1			$\begin{aligned} & 400 \\ & 400 \\ & 400 \\ & 400 \end{aligned}$						$9.1 / 14$ 9.1/14 10/12 10/12	10 5 20 10
1N9618 1N962 1N962A 1N962B	$\begin{aligned} & \mathbf{s} \\ & s \\ & s \\ & s \end{aligned}$	z0		IN961B 1N962 1N962A iN962B		$\begin{aligned} & 400 \\ & 400 \\ & 400 \\ & 400 \end{aligned}$						$\begin{aligned} & 10 / 12 \\ & 11 / 11 \\ & 11 / 11 \\ & 11 / 11 \end{aligned}$	5 20 10 5
1N963 1N963A 1N963B IN964	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\left\{\begin{array}{l} \mathrm{zn} \\ \mathrm{zv} \\ \mathrm{zd} \\ \mathrm{zD} \\ \mathrm{zD} \end{array}\right.$		1N963 IN963A 1N963B iN964		$\begin{aligned} & 400 \\ & 400 \\ & 400 \\ & 400 \end{aligned}$						$\begin{aligned} & 12 / 10 \\ & 12 / 10 \\ & 12 / 10 \\ & 13 / 9.5 \end{aligned}$	20 10 5 20
IN964A 1N964B 1N965 iN965A	[s	ZD		in964A iN964B iN965 IN965A		$\begin{aligned} & 400 \\ & 400 \\ & 400 \\ & 400 \end{aligned}$						13/9.5 13/9.5 15/8.5 15/8.5	10 5 20 10
1N965B 1N966 1N966A 1N966B	$\begin{aligned} & \mathrm{s} \\ & \mathrm{~s} \\ & \mathrm{~s} \\ & \mathrm{~s} \end{aligned}$	$\left\{\begin{array}{l} \mathrm{ZD} \\ \mathrm{ZD} \\ \mathrm{ZD} \\ \mathrm{ZD} \end{array}\right.$		N965B 1N966 IN966A N966B		$\begin{aligned} & 400 \\ & 400 \\ & 400 \\ & 400 \end{aligned}$						$\begin{aligned} & 15 / 8.5 \\ & 16 / 7.8 \\ & 16 / 7.8 \\ & 16 / 7.8 \end{aligned}$	$\begin{array}{r} 5 \\ 20 \\ 10 \\ 5 \end{array}$

$\begin{gathered} \text { TYre } \\ \text { number } \end{gathered}$			$\underset{\text { remacement }}{t}$	$\begin{aligned} & \text { FOR } \\ & \text { NEW } \\ & \text { DESICN } \end{aligned}$	Ratancs			CHARACTERISTICS				
					$\begin{gathered} P_{D} \\ (m W) \end{gathered}$	\mathbf{V}_{R} (V)	(A)	$\begin{array}{lll} \mathbf{L}_{\mathbf{R}} & \bullet \mathbf{V}_{\mathbf{R}} \\ \mu_{\mathbf{A}} & /\left(\mathbf{V}^{2}\right. \end{array}$	$\begin{array}{cc} \mathbf{V}_{\mathbf{F}} & \mathbf{l}_{\mathbf{F}} \\ \text { (v) } & /(\mathrm{mA}) \end{array}$	$\begin{aligned} & \text { ir } \\ & \text { (ns) } \end{aligned}$	$\mathbf{v}_{\mathbf{z}} \cdot \mathbf{z}_{\mathbf{z}}$ (V) $/$ (mA)	$\begin{aligned} & \text { ror } \\ & x \end{aligned}$
1N967 1N967A 1N9678 IN968	$\begin{array}{\|l} \mathbf{s} \\ \mathbf{s} \\ \mathbf{s} \\ \mathbf{s} \end{array}$	$\left\lvert\, \begin{array}{c\|c} \mathrm{ZD} & 11 \\ \mathrm{ZD} & 11 \\ \mathrm{ZD} & 11 \\ \mathrm{ZD} & 11 \end{array}\right.$	1N967 1N967A 1N967B 1N968		$\begin{aligned} & 400 \\ & 400 \\ & 400 \\ & 400 \end{aligned}$						$\begin{aligned} & 18 / 7.0 \\ & 18 / 7.0 \\ & 18 / 7.0 \\ & 20 / 6.2 \end{aligned}$	20 10 5 20
1N968A 1N9688 1N969 1N969A		ZD 1 ZD ZD 1 ZD 1	1N968A 1N9688 1N969 1N969A		$\begin{aligned} & 400 \\ & 400 \\ & 400 \\ & 400 \end{aligned}$						$\begin{aligned} & 20 / 6.6 \\ & 20 / 6.2 \\ & 22 / 5.6 \\ & 22 / 5.6 \end{aligned}$	10 5 20 10
	$\begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}$	$\left\|\begin{array}{l} \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \end{array}\right\|$	1N9698 1N970 1N9704 1N970		$\begin{aligned} & 400 \\ & 400 \\ & 400 \\ & 400 \end{aligned}$						$\begin{aligned} & 22 / 5.6 \\ & 24 / 5.2 \\ & 24 / 5.2 \\ & 24 / 5.2 \end{aligned}$	$\begin{array}{r} 5 \\ 20 \\ 10 \\ 5 \end{array}$
$\begin{aligned} & \text { 1N971 } \\ & \text { 1N971A } \\ & \text { 1N9718 } \\ & \text { 1N972 } \end{aligned}$	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\left\|\begin{array}{l} \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \end{array}\right\|$			$\begin{aligned} & 400 \\ & 400 \\ & 400 \\ & 400 \end{aligned}$						$\begin{aligned} & 27 / 4.6 \\ & 27 / 4.6 \\ & 27 / 4.6 \\ & 30 / 4.6 \end{aligned}$	20 10 5 20
1N972A iN972B 1N973 1N973A	$\left\lvert\, \begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}\right.$	$\left\|\begin{array}{l} \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \end{array}\right\|$	$\begin{aligned} & \text { 1N972A } \\ & \text { lN972B } \\ & \text { lN973 } \\ & \text { IN973A } \end{aligned}$		$\begin{aligned} & 400 \\ & 400 \\ & 400 \\ & 400 \end{aligned}$						$\begin{aligned} & 30 / 4.2 \\ & 30 / 4.2 \\ & 33 / 3.8 \\ & 33 / 3.8 \end{aligned}$	10 5 20 10
	s	$\left\|\begin{array}{l} \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \end{array}\right\|$	1N973E		$\begin{aligned} & 400 \\ & 400 \\ & 400 \\ & 400 \end{aligned}$						$\begin{aligned} & 33 / 3.8 \\ & 36 / 3.4 \\ & 36 / 3.4 \\ & 36 / 3.4 \end{aligned}$	5 20 10 5
1N975 1N975A 1N975 1N976	S	$\left\|\begin{array}{l} \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \end{array}\right\|$			$\begin{aligned} & 400 \\ & 400 \\ & 400 \\ & 400 \end{aligned}$						$\begin{aligned} & 39 / 3.2 \\ & 39 / 3.2 \\ & 39 / 3.2 \\ & 43 / 3.0 \end{aligned}$	20 10 5 20
	S	$\begin{aligned} & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \end{aligned}$			400 400 400 400						$\begin{aligned} & 43 / 3.0 \\ & 43 / 3.0 \\ & 47 / 2.7 \\ & 47 / 2.7 \end{aligned}$	10 5 20 10
	S	$\left\|\begin{array}{l} \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \end{array}\right\|$			400 400 400 400						$\begin{aligned} & 47 / 2.7 \\ & 51 / 2.5 \\ & 51 / 2.5 \\ & 51 / 2.5 \end{aligned}$	5 20 10 5
$\begin{aligned} & \text { 1N979 } \\ & \text { in979A } \\ & \text { iN9798 } \\ & \text { in990 } \end{aligned}$	$\left[\begin{array}{l} s \\ s \\ s \\ s \end{array}\right.$	$\left\lvert\, \begin{aligned} & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \end{aligned}\right.$			400 400 400 400						$\begin{aligned} & 56 / 2.2 \\ & 56 / 2.2 \\ & 56 / 2.2 \\ & 62 / 2 \end{aligned}$	20 10 5 20

TYPE MUMBER			$\begin{array}{\|c\|} \text { TI } \\ \text { REPLACEMENT } \end{array}$	$\begin{gathered} \text { FOR } \\ \text { NEW } \\ \text { DESION } \end{gathered}$	Po (mW)	atinges $\mathbf{V}_{\mathbf{R}}$ (V)	I (A)	$\begin{array}{ll} \mathbf{R}_{\mathbf{R}} & \mathbf{V}_{\mathbf{R}} \\ \mu_{\mathrm{A}} & /(\mathbf{V}) \end{array}$	$\mathbf{V F}_{\mathbf{F}}$ - $\mathbf{I F}_{\mathbf{F}}$ (V) $/$ (mA)	aristics ${ }^{1} \boldsymbol{r}$ (ns)	$\begin{array}{ccc} \mathbf{v}_{\mathbf{z}} & \mathbf{l z} \\ (\mathbf{v}) & 1 & (\mathrm{~mA}) \end{array}$	rou *
in980A 1 $\mathrm{N980B}$ 1N981 1N981A	[20			$\begin{aligned} & 400 \\ & 400 \\ & 400 \\ & 400 \end{aligned}$						62/2 62/2 $68 / 1.8$ 68/1.8	10 5 20 10
1N981B 1 N982 iN982A 1N982B		$\left\|\begin{array}{l} \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \end{array}\right\|$			$\begin{aligned} & 400 \\ & 400 \\ & 400 \\ & 400 \end{aligned}$						$\begin{aligned} & 68 / 1.8 \\ & 75 / 1.7 \\ & 7511.7 \\ & 75 / 1.7 \end{aligned}$	5 20 10 5
$\left[\begin{array}{l} \text { IN983 } \\ \text { iN983A } \\ \text { IN983B } \\ \text { IN984 } \\ \hline \end{array}\right.$	$\begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}$	$\begin{aligned} & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \end{aligned}$			$\begin{aligned} & 400 \\ & 100 \\ & 100 \\ & 100 \end{aligned}$						$\begin{aligned} & 82 / 1.5 \\ & 82 / 1.5 \\ & 82 / 1.5 \\ & 91 / 1.4 \end{aligned}$	20 10 5 20
$\begin{aligned} & \text { 1N984A } \\ & \text { 1N984B } \\ & \text { 1N985 } \\ & \text { 1N985A } \end{aligned}$	$\begin{aligned} & \mathrm{s} \\ & \mathrm{~s} \\ & \mathrm{~s} \\ & \mathrm{~s} \end{aligned}$	$\left\|\begin{array}{l} \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \end{array}\right\|$			$\begin{aligned} & 400 \\ & 400 \\ & 400 \\ & 400 \end{aligned}$						$91 / 1.4$ $91 / 1.4$ 100/1.3 100/1.3	10 5 20 10
$\begin{array}{\|l\|} \hline \text { 1N9858 } \\ \text { iN986 } \\ \text { 1N986A } \\ \text { iN986B } \\ \hline \end{array}$	$\begin{array}{\|l} \hline s \\ s \\ s \\ s \end{array}$	$\begin{aligned} & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \end{aligned}$			$\begin{aligned} & 400 \\ & 400 \\ & 400 \\ & 400 \end{aligned}$						$\begin{aligned} & 100 / 1.3 \\ & 110 / 1.1 \\ & 110 / 1.1 \\ & 110 / 1.1 \end{aligned}$	5 20 10 5
$\begin{aligned} & \text { 1N987 } \\ & \text { 1N987A } \\ & \text { 1N987B } \\ & \text { iN988 } \end{aligned}$	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\left\|\begin{array}{l} \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \end{array}\right\|$			$\begin{aligned} & 400 \\ & 400 \\ & 400 \\ & 400 \end{aligned}$						$\begin{aligned} & 120 / 1 \\ & 120 / 1 \\ & 120 / 1 \\ & 130 / .95 \end{aligned}$	20 10 5 20
IN988A 1N988B 1N989 1N989A	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\left\|\begin{array}{l} \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \end{array}\right\|$			$\begin{aligned} & 100 \\ & 400 \\ & 400 \\ & 400 \end{aligned}$						$\begin{aligned} & 130 / .95 \\ & 130 / .95 \\ & 150 / .85 \\ & 150 / .85 \end{aligned}$	10 5 20 10
1N989B 1N990 ing90A 1N990B	$\begin{aligned} & \mathrm{s} \\ & \mathrm{~s} \\ & \mathrm{~s} \\ & \mathrm{~s} \end{aligned}$	$\left\|\begin{array}{l} \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \end{array}\right\|$			$\begin{aligned} & 400 \\ & 400 \\ & 400 \\ & 400 \end{aligned}$						$\begin{aligned} & 150 / .85 \\ & 160 / .8 \\ & 160 / 8 \\ & 160 / .8 \end{aligned}$	5 20 10 5
1N991 in991A 1N9918 1N992	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\left\|\begin{array}{l} \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \end{array}\right\|$			$\begin{aligned} & 400 \\ & 400 \\ & 400 \\ & 400 \end{aligned}$						$\begin{aligned} & 180 / .68 \\ & 180 / .68 \\ & 180 / .68 \\ & 200 / .65 \end{aligned}$	20 10 5 20
in992A 1 1992 g 1N993 1N994	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & c \end{aligned}\right.$	$\left\|\begin{array}{l} \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{sD} \\ \mathrm{sD} \end{array}\right\|$		$\begin{aligned} & \text { IN447 } \\ & \text { IN4151 } \end{aligned}$	$\begin{aligned} & 400 \\ & 400 \end{aligned}$	$\begin{array}{r} 8 \\ 6.5 \end{array}$		$\begin{array}{r} 1 / 6 \\ 30 / 6 \end{array}$	$\begin{array}{r} 1.2 / 10 \\ 1 / 10 \end{array}$	4	$\begin{aligned} & 200 / .65 \\ & 200 / .65 \end{aligned}$	10 5

	7	6							CHARACTE	RISTICS		
TYPE MUMEE	$\frac{8}{6}$		TI	$\begin{aligned} & \text { FOR } \\ & \text { NEW } \\ & \text { DESicN } \end{aligned}$	P_{D} (mW)	$\begin{aligned} & \mathbf{V}_{\mathbf{R}} \\ & (\mathbf{V}) \end{aligned}$	I (A)	$\left.\begin{array}{lll} u_{R} & V_{R} \\ \mu & /(V) \end{array} \right\rvert\,$	VF - F (v) $/$ (mA)	$\begin{gathered} i_{r} \\ (n s) \end{gathered}$	$\begin{array}{ll} V_{Z} & \geq \mathbf{Z} \\ \left(V_{1}\right) & / \mathrm{mA}) \end{array}$	$\begin{gathered} \text { TOL } \\ \% \end{gathered}$
1N995 1N996 1N997 1N998	$\left\lvert\, \begin{aligned} & G \\ & G \\ & S \\ & S \end{aligned}\right.$	$\begin{aligned} & \text { SD } \\ & \text { SD } \\ & \text { SD } \\ & \text { SD } \end{aligned}$		1N4305 1N4607 1N4148 1N484		15 20 35 150		$\begin{gathered} 10 / 6 \\ 15 / 15 \\ 30 N / 12 \\ 1 N / 125 \end{gathered}$	$\begin{aligned} & .5 / 10 \\ & .8 / 40 \\ & 1 / 10 \\ & 1 / 200 \end{aligned}$	$\begin{array}{r} 6 \\ 300 \\ 150 \end{array}$		
IN999 1N1005 1N1007 IN1008	$\left\lvert\, \begin{aligned} & \mathbf{S} \\ & \mathbf{G} \\ & \mathbf{G} \\ & \mathbf{G} \end{aligned}\right.$	$\left.\begin{aligned} & \mathrm{SD} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \end{aligned} \right\rvert\,$		1N444		100 380 380 380	.25 .35 .4	1N/75	$\begin{aligned} & 1 / 50 \\ & .15 / \\ & .3 / \\ & .3 / \end{aligned}$	4		
IN1013 IN1016 iN1021 iN1022	$\left\lvert\, \begin{aligned} & \mathbf{G} \\ & \mathbf{G} \\ & \mathbf{G} \end{aligned}\right.$	$\left.\begin{aligned} & \mathbf{R E} \\ & \mathbf{R E} \\ & \mathrm{RE} \\ & \mathrm{RE} \end{aligned} \right\rvert\,$				380 380 380 380	$\begin{array}{r} .25 \\ .4 \\ .25 \\ .3 \end{array}$		$\begin{aligned} & .15 / \\ & .15 / \\ & .15 / \\ & .15 / \end{aligned}$			
$\begin{aligned} & \text { 1N1023 } \\ & \text { iN1024 } \\ & \text { iN1028 } \\ & \text { iN1029 } \end{aligned}$	$\begin{aligned} & \mathbf{G} \\ & \mathbf{G} \\ & \mathbf{s} \\ & \mathbf{S} \end{aligned}$	$\left.\begin{array}{\|l\|} \mathbf{R E} \\ \mathbf{R E} \\ \mathbf{R E} \\ \mathbf{R E} \end{array} \right\rvert\,$		$\begin{aligned} & \text { 1N4001 } \\ & \text { IN } 4002 \end{aligned}$		$\begin{array}{r} 380 \\ 380 \\ 50 \\ 100 \end{array}$	$\begin{array}{r} .35 \\ .4 \\ .5 \\ .5 \end{array}$	$\begin{aligned} & 200 / 50 \\ & 200 / 100 \end{aligned}$	$\begin{aligned} & .15 / \\ & .15 / \\ & 1.5 / 500 \\ & 1.5 / 500 \end{aligned}$			
$\begin{aligned} & \text { 1N1030 } \\ & \text { 1N1031 } \\ & \text { 1N1032 } \\ & \text { IN1033 } \end{aligned}$	$\begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}$	$\left.\begin{aligned} & R E \\ & R E \\ & R E \\ & R E \\ & R E \end{aligned} \right\rvert\,$		$\begin{aligned} & \text { IN4003 } \\ & \text { IN } 4003 \\ & \text { IN4004 } \\ & \text { IN } 4004 \end{aligned}$		$\begin{aligned} & 150 \\ & 200 \\ & 300 \\ & 400 \end{aligned}$	$\begin{aligned} & .5 \\ & .5 \\ & .5 \\ & .5 \end{aligned}$	$\begin{aligned} & 200 / 150 \\ & 200 / 200 \\ & 200 / 300 \\ & 200 / 400 \end{aligned}$	$\begin{aligned} & 1.5 / 500 \\ & 1.5 / 500 \\ & 1.5 / 500 \\ & 1.5 / 500 \end{aligned}$			
IN1034 1N1035 IN1036 IN1037	$\begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}$	$\begin{aligned} & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathbf{R E} \end{aligned}$				$\begin{array}{r} 50 \\ 100 \\ 150 \\ 200 \end{array}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 200 / 50 \\ & 200 / 100 \\ & 200 / 150 \\ & 200 / 200 \end{aligned}$	$\begin{aligned} & 1.5 / 1 \\ & 1.5 / 1 \\ & 1.5 / 1 \\ & 1.5 / 1 \end{aligned}$			
1N1038 1N1039 1N1040 1NIO41	$\left\lvert\, \begin{aligned} & 5 \\ & 5 \\ & s \\ & 5 \end{aligned}\right.$	$\begin{aligned} & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \end{aligned}$				$\begin{array}{r} 300 \\ 400 \\ 50 \\ 100 \end{array}$	1 1 1 1	$\begin{aligned} & 200 / 300 \\ & 200 / 400 \\ & 200 / 50 \\ & 200 / 100 \end{aligned}$	$\begin{aligned} & 1.5 / 1 \\ & 1.5 / 1 \\ & 1.5 / 1 \\ & 1.5 / 1 \end{aligned}$			
1N1042 iN1043 1N1044 IN1045	$\begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}$	$\begin{aligned} & \mathbf{R E} \\ & \mathbf{R E} \\ & R E \\ & R E \\ & R E \end{aligned}$				$\begin{aligned} & 150 \\ & 200 \\ & 300 \\ & 400 \end{aligned}$	1 1 1 1	$\begin{aligned} & 200 / 150 \\ & 200 / 200 \\ & 200 / 300 \\ & 200 / 400 \end{aligned}$	$\begin{aligned} & 1.5 / 1 \\ & 1.5 / 1 \\ & 1.5 / 1 \\ & 1.5 / 1 \end{aligned}$			
IN1046 1N1047 1N1048 IN1049	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\begin{aligned} & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \end{aligned}$				$\begin{array}{r} 50 \\ 100 \\ 150 \\ 200 \end{array}$	1 1 1 1	$\begin{aligned} & 200 / 50 \\ & 200 / 100 \\ & 200 / 150 \\ & 200 / 200 \end{aligned}$	$\begin{aligned} & 1.5 / 1 \\ & 1.5 / 1 \\ & 1.5 / 1 \\ & 1.5 / 1 \end{aligned}$			
IN1050 1N1051 IN1052 1N1053	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\begin{aligned} & R E \\ & R E \\ & R E \\ & R E \end{aligned}$				$\begin{array}{r} 300 \\ 400 \\ 50 \\ 100 \end{array}$	$\begin{array}{r} 1 \\ 1 \\ 1.5 \\ 1.5 \end{array}$	$\begin{aligned} & 200 / 300 \\ & 200 / 400 \\ & 1 \mathrm{M} / 50 \\ & 1 \mathrm{M} / 100 \end{aligned}$	$\begin{aligned} & 1.5 / 1 \\ & 1.5 / 1 \\ & 1.5 / 1.5 \\ & 1.5 / 1.5 \end{aligned}$			

DIODE INTERCHANGEABILITY

TYPENUMBER			$\begin{gathered} \mathrm{I} \\ \text { REPLACEMENT } \end{gathered}$	$\begin{gathered} \text { FOR } \\ \text { NRW } \\ \text { DESIGN } \end{gathered}$	RATINGS			CHARACTERISTICS				
					$\begin{gathered} P_{D} \\ (m w) \end{gathered}$	$\begin{aligned} & \mathbf{v}_{\mathbf{R}} \\ & (\mathbf{v}) \end{aligned}$	(A)	$\begin{array}{ll} I_{R} & V_{R} \\ \mu_{A} & /(V) \end{array}$	\mathbf{V}_{F} - IF (v) 1 (ma)	$\begin{gathered} \mathbf{t}^{\mathbf{n}} \\ \text { (ns) } \end{gathered}$	$\begin{array}{lcc} v_{z} & \mathbf{z} \\ \text { (V) } & / \mathrm{mA}) \end{array}$	$\begin{aligned} & \text { rot } \\ & \% \end{aligned}$
1N1088A 1N1089 1N1089A 1N1090	$\left\lvert\, \begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}\right.$	$\begin{array}{\|l\|} \hline \mathrm{RE} \\ \mathrm{RE} \\ \mathrm{RE} \\ \mathrm{RE} \end{array}$				$\begin{aligned} & 400 \\ & 100 \\ & 100 \\ & 200 \end{aligned}$	2 5 5 5	$\begin{array}{r} 25 N / 400 \\ 2 M / 100 \\ \\ 2 M / 200 \end{array}$	$\begin{aligned} & 1.5 / 5 A \\ & 1.5 / 5 A \\ & 1.5 / 5 A \end{aligned}$			
1N1090A 1N1091 1N1091A 1N1092	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\left.\begin{aligned} & \mathbf{R E} \\ & \mathbf{R E} \\ & \mathbf{R E} \\ & \mathbf{R E} \end{aligned} \right\rvert\,$				200 300 300 400	5 5 5 5		$\begin{aligned} & 1.5 / 5 \mathrm{~A} \\ & 1.5 / 5 \mathrm{~A} \\ & 1.5 / 5 \mathrm{~A} \\ & 1.5 / 5 \mathrm{~A} \end{aligned}$			
$\begin{aligned} & \text { 1N1092A } \\ & \text { 1N1093 } \\ & \text { 1N1095 } \\ & \text { IN1096 } \end{aligned}$	$\left\lvert\, \begin{aligned} & \mathbf{s} \\ & \mathbf{G} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}\right.$	$\left.\begin{aligned} & \mathrm{RE} \\ & \mathrm{SD} \\ & \mathrm{RE} \\ & \mathrm{RE} \end{aligned} \right\rvert\,$				$\begin{array}{r\|} 400 \\ 15 \\ 500 \\ 600 \end{array}$	$\begin{array}{r} 5 \\ .75 \\ .75 \end{array}$		$\begin{gathered} 1.5 / 5 \mathrm{~A} \\ .4 / 5 \\ .5 / 250 \\ .5 / 250 \end{gathered}$	500		
1N1100 1N1 101 INIIO2 1N1103	$\left[\begin{array}{l} s \\ s \\ s \\ s \end{array}\right.$	$\left.\begin{aligned} & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \end{aligned} \right\rvert\,$				100 200 300 400	$\begin{aligned} & .77 \\ & .77 \\ & .77 \\ & .77 \end{aligned}$		$\begin{aligned} & 1.5 / 12 \mathrm{~A} \\ & 1.5 / 12 \mathrm{~A} \\ & 1.5 / 12 \mathrm{~A} \\ & 1.5 / 12 \mathrm{~A} \end{aligned}$			
$\left\lvert\, \begin{aligned} & \text { IN1 104 } \\ & \text { INI } 105 \\ & \text { IN1 } 108 \\ & \text { INI } 109 \end{aligned}\right.$	$\begin{aligned} & s \\ & s \\ & s \\ & s \\ & s \end{aligned}$	$\begin{array}{\|c\|} \hline \mathbf{R E} \\ \mathrm{RE} \\ \mathrm{RE} \\ \mathrm{RE} \end{array}$				$\begin{array}{r} 500 \\ 600 \\ 800 \\ 1.2 K \end{array}$	$\begin{aligned} & .77 \\ & .75 \\ & .45 \\ & .43 \end{aligned}$	$\begin{aligned} & 2 M / 800 \\ & 2 M / 1.2 K \end{aligned}$	$\begin{aligned} & 1.5 / 12 \mathrm{~A} \\ & 1.5 / 12 \mathrm{~A} \end{aligned}$			
$\left\lvert\, \begin{aligned} & \text { IN } 11110 \\ & \text { IN } 11111 \\ & 1 N 1112 \\ & 1 N 1113 \end{aligned}\right.$	$\left[\begin{array}{l} \mathrm{s} \\ \mathrm{~s} \\ \mathrm{~s} \\ \mathrm{~s} \end{array}\right.$	$\left\|\begin{array}{l} R E \\ R E \\ R E \\ R E \\ R E \end{array}\right\|$				$\begin{gathered} 1.6 K \\ 20 K \\ 24 K \\ 28 K \end{gathered}$	$\begin{array}{r} .4 \\ .48 \\ .35 \\ .33 \end{array}$	2M/1.6K 2M/20K 2M/24K 2M/28K				
$\begin{aligned} & \text { IN1115 } \\ & \text { 1N1116 } \\ & \text { IN1117 } \\ & \text { IN1118 } \end{aligned}$	$\left\lvert\, \begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}\right.$	$\left.\begin{aligned} & \mathbf{R E} \\ & \mathbf{R E} \\ & \mathbf{R E} \\ & \mathbf{R E} \end{aligned} \right\rvert\,$				$\begin{aligned} & 100 \\ & 200 \\ & 300 \\ & 400 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \\ & 1.5 \\ & 1.5 \end{aligned}$.65/ .65/ .65/ .65/			
$\begin{aligned} & \text { IN1 } 119 \\ & \text { IN1 } 120 \\ & \text { 1N1124 } \\ & \text { IN1124A } \end{aligned}$	$\begin{aligned} & s \\ & s \\ & s \\ & s \\ & s \end{aligned}$	$\begin{aligned} & \mathbf{R E} \\ & \mathbf{R E} \\ & \mathbf{R E} \\ & \mathbf{R E} \\ & \mathbf{R E} \end{aligned}$				$\begin{aligned} & 500 \\ & 600 \\ & 200 \\ & 250 \end{aligned}$	1.5 1.5 3 3.3	10/250	.65/ .65/ 1.1/1A 1/1A			
$\begin{aligned} & \text { 1N1125 } \\ & \text { 1N1125A } \\ & \text { 1N1126 } \\ & 1 \text { N1126A } \end{aligned}$	$\begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}$	$\begin{aligned} & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \end{aligned}$				$\begin{aligned} & 300 \\ & 300 \\ & 400 \\ & 400 \end{aligned}$	3 3.3 1 3.3	$\begin{aligned} & 10 / 300 \\ & 10 / 400 \end{aligned}$	$\begin{aligned} & 1.1 / 1 A \\ & 1.1 / 1 A \\ & 1.1 / 1 A \\ & 1.1 / 1 A \end{aligned}$			
	$\left\lvert\, \begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}\right.$	$\begin{aligned} & \mathbf{R E} \\ & \mathbf{R E} \\ & \mathbf{R E} \\ & \mathbf{R E} \\ & \mathbf{R E} \end{aligned}$				$\begin{aligned} & 500 \\ & 500 \\ & 600 \\ & 600 \end{aligned}$	1 3.3 1 3.3	$\begin{aligned} & 10 / 500 \\ & 10 / 600 \end{aligned}$	1.1/1A 1.1/1A 1.1/1A $1.1 / 1 \mathrm{~A}$			

DIODE INTERCHANGEABILITY

TYPE NUMPER			TI	$\begin{aligned} & \text { FOR } \\ & \text { NEW } \\ & \text { DESICN } \end{aligned}$	PD (mW)	atines $\mathbf{V}_{\mathbf{R}}$ (V)	1 (A)	$\begin{array}{ll} \mathbf{I}_{\mathbf{R}} & \mathbf{V}_{\mathbf{R}} \\ \mu_{\mathrm{A}} & /(\mathbf{V}) \end{array}$	$\begin{array}{cc} & \text { CHARACT } \\ \mathbf{V}_{F} & \mathbf{q} \\ \text { (V) } & / \text { (mA) } \end{array}$	IISTIC I_{17} (ns)	$\mathbf{v}_{\mathbf{z}} \cdot \mathbf{l}_{\mathbf{z}}$ (V) $/$ (ma)	101 *
$\begin{aligned} & \text { 1N1130 } \\ & \text { 1N1131 } \\ & 1 N 1133 \\ & 1 N 1134 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$	$\left.\begin{aligned} & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \end{aligned} \right\rvert\,$				1.5 K 1.5 K 1.5 K 1.5 K	.3 .3 .075 .1	$\begin{aligned} & 50 / \\ & 50 / \end{aligned}$	$\begin{aligned} & 15 / \\ & 15 / \\ & 15 / 85 \\ & 7.5 / 115 \end{aligned}$			
1N1135 IN1136 1N1137 IN1 138	$\left\{\begin{array}{l} s \\ s \\ s \\ s \end{array}\right.$	$\left.\begin{aligned} & R E \\ & R E \\ & R E \\ & R E \end{aligned} \right\rvert\,$				1.8 K 1.8 K 2.4 K 2.4 K	.065 .065 .057 .06		$\begin{array}{r} 18 / 75 \\ 9 / 95 \\ 24 / 57 \\ 12 / 70 \end{array}$			
IN1139 1N1 140 IN1 141 1N1 142	$\left\lvert\, \begin{aligned} & \mathbf{s} \\ & \mathbf{S} \\ & \mathbf{S} \\ & \mathbf{s} \end{aligned}\right.$	$\begin{aligned} & R E \\ & R E \\ & R E \\ & R E \\ & R E \end{aligned}$				$\begin{aligned} & 3.6 \mathrm{~K} \\ & 3.6 \mathrm{~K} \\ & 4.8 \mathrm{~K} \\ & 4.8 \mathrm{~K} \end{aligned}$	$\begin{array}{r} .055 \\ .055 \\ .05 \\ .05 \end{array}$		$\begin{aligned} & 27 / 75 \\ & 18 / 75 \\ & 36 / 70 \\ & 24 / 57 \end{aligned}$			
1N1143 1NIIA3A 1NI144 1N1145	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\begin{aligned} & \text { RE } \\ & \text { RE } \\ & \text { RE } \\ & \text { RE } \end{aligned}$				$6 K$ $6 K$ 7.2 K 7.2 K	.05 .055 .05 .06		$\begin{aligned} & 45 / 57 \\ & 30 / 75 \\ & 54 / 57 \\ & 36 / 70 \end{aligned}$			
1N1146 1N1147 1N1148 IN1 149	$\begin{aligned} & 5 \\ & s \\ & s \\ & s \end{aligned}$	$\begin{aligned} & R E \\ & R E \\ & R E \\ & R E \end{aligned}$				$8 K$ $12 K$ $14 K$ $16 K$	$\begin{array}{r} .045 \\ .045 \\ .05 \\ .045 \end{array}$		$\begin{aligned} & 60 / 50 \\ & 60 / 50 \\ & 52 / 57 \\ & 60 / 50 \end{aligned}$			
1N1 150 INII50A 1N1169 IN1169A	$\begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}$	$\begin{aligned} & R E \\ & R E \\ & R E \\ & R E \\ & R E \end{aligned}$				$\begin{aligned} & 1.6 \mathrm{~K} \\ & 1.6 \mathrm{~K} \\ & 400 \\ & 400 \end{aligned}$	$\begin{array}{r} .75 \\ .75 \\ .79 \\ .5 \end{array}$	$\begin{gathered} 200 / 1.6 \mathrm{~K} \\ 2 \mathrm{M} / 1.6 \mathrm{~K} \\ \\ 100 / 400 \end{gathered}$	$\begin{array}{r} .9 / 500 \\ 1.2 / 800 \end{array}$			
1N1170 INII83 1N1183A 1N1184	$\begin{aligned} & \mathbf{G} \\ & \mathbf{S} \\ & \mathbf{S} \\ & \mathbf{S} \end{aligned}$	$\begin{aligned} & \mathrm{SD} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \end{aligned}$		1N4148		50 50 50 100	35 40 35	5/50	$\begin{aligned} & 1 / 4 \\ & 1.7 / 35 \mathrm{~A} \\ & 1.1 / \\ & 1.7 / 35 \mathrm{~A} \end{aligned}$			
1N1184A 1Ni185 1N1185A 1N1186	$\begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}$	$\begin{aligned} & R E \\ & R E \\ & R E \\ & R E \\ & R E \end{aligned}$				$\begin{aligned} & 100 \\ & 150 \\ & 150 \\ & 200 \end{aligned}$	$\begin{aligned} & 40 \\ & 35 \\ & 40 \\ & 35 \end{aligned}$		$\begin{aligned} & 1.1 / \\ & 1.7 / 35 \mathrm{~A} \\ & 1.1 / \\ & 1.7 / 35 \mathrm{~A} \end{aligned}$			
IN1186A 1N1187 1N1187A 1N1188	$\begin{aligned} & \mathbf{s} \\ & s \\ & s \\ & s \end{aligned}$	$\begin{aligned} & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \end{aligned}$				$\begin{aligned} & 200 \\ & 300 \\ & 300 \\ & 400 \end{aligned}$	$\begin{aligned} & 40 \\ & 35 \\ & 40 \\ & \mathbf{3 5} \end{aligned}$	15/300	$\begin{aligned} & 1.1 / \\ & 1.7 / 35 \mathrm{~A} \\ & 1.7 / 35 \mathrm{~A} \end{aligned}$			
1NT188A IN1189 IN1189A 1N1190	$\begin{aligned} & \mathbf{s} \\ & s \\ & s \\ & s \end{aligned}$	$\begin{aligned} & R E \\ & R E \\ & R E \\ & R E \\ & R E \end{aligned}$				$\begin{aligned} & 400 \\ & 500 \\ & 500 \\ & 600 \end{aligned}$	$\begin{aligned} & 40 \\ & 35 \\ & 40 \\ & 35 \end{aligned}$	$\begin{aligned} & 15 / 400 \\ & 15 / 500 \end{aligned}$	$\begin{aligned} & 1.7 / 35 A \\ & 1.7 / 35 A \end{aligned}$			

DIODE INTERCHANGEABILITY

MYME	$\begin{aligned} & \frac{1}{2} \\ & \frac{6}{2} \\ & \frac{5}{3} \end{aligned}$		$\frac{\text { In }}{\text { RERACEMT }}$	$\begin{gathered} \text { FOR } \\ \text { New } \\ \text { DESion } \end{gathered}$	Ratinges			CHARACTERISTICS				
					$\begin{gathered} P_{D} \\ (\mathrm{~mW}) \end{gathered}$	V_{R} (V)	(A)	$\begin{array}{ll} \mathbf{R}_{\mathbf{R}} & \bullet V_{\mathbf{R}} \\ \mu \boldsymbol{A} & /(\mathrm{V}) \end{array}$	$\begin{array}{cc} v_{F} & i_{F} \\ (\mathrm{~V}) & 1(\mathrm{ma}) \end{array}$	t_{17} (m)	$\begin{array}{ccc} \mathbf{v}_{\mathbf{z}} & \mathbf{z} \\ (\mathrm{v}) & /(\mathrm{mA}) \end{array}$	$\left.\right\|_{x} ^{\text {TOL }}$
	S	$\begin{aligned} & R E \\ & R E \\ & R E \\ & R E \\ & R E \end{aligned}$				$\begin{array}{r} 600 \\ 50 \\ 50 \\ 100 \end{array}$	$\begin{aligned} & 40 \\ & 18 \\ & 22 \\ & 25 \end{aligned}$	15/600 10/100	$\begin{aligned} & 1.4 / 30 \mathrm{~A} \\ & 1.2 / 60 \mathrm{~A} \\ & 1.4 / 30 \mathrm{~A} \end{aligned}$			
	$\left\lvert\, \begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}\right.$	$\left.\begin{aligned} & R E \\ & R E \\ & R E \\ & R E \end{aligned} \right\rvert\,$				$\begin{aligned} & 100 \\ & 150 \\ & 150 \\ & 100 \end{aligned}$	$\begin{aligned} & 22 \\ & 25 \\ & 22 \\ & 25 \end{aligned}$	$\begin{aligned} & 10 / 150 \\ & 10 / 200 \end{aligned}$	$\begin{aligned} & 1.2 / 60 \mathrm{~A} \\ & 1.4 / 30 \mathrm{~A} \\ & 1.2 / 60 \mathrm{~A} \\ & 1.4 / 30 \mathrm{~A} \end{aligned}$			
	$\begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}$	$\left.\begin{aligned} & \mathbf{R E} \\ & \mathbf{R E} \\ & \mathbf{R E} \\ & \mathbf{R E} \end{aligned} \right\rvert\,$				$\begin{aligned} & 200 \\ & 300 \\ & 300 \\ & 400 \end{aligned}$	$\begin{aligned} & \mathbf{2 2} \\ & \mathbf{2 5} \\ & \mathbf{2 0} \\ & \mathbf{2 5} \end{aligned}$	$\begin{aligned} & 10 / 300 \\ & 10 / 400 \end{aligned}$	$\begin{gathered} 1.2 / 60 \mathrm{~A} \\ 1.4 / 30 \mathrm{~A} \\ .6 / 20 \mathrm{~A} \\ 1.4 / 30 \mathrm{~A} \end{gathered}$			
$\begin{aligned} & \text { IN1196A } \\ & \text { iN1197 } \\ & \text { IN197A } \\ & \text { iN1198 } \\ & \hline \end{aligned}$	$\left\lvert\, \begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}\right.$	$\left.\begin{array}{\|l\|} \mathbf{R E} \\ \mathrm{RE} \\ \mathrm{RE} \\ \mathrm{RE} \\ \mathbf{R E} \end{array} \right\rvert\,$				$\begin{aligned} & 400 \\ & 500 \\ & 500 \\ & 600 \end{aligned}$	$\begin{aligned} & 20 \\ & 25 \\ & 20 \\ & 25 \end{aligned}$	$\begin{aligned} & 10 / 500 \\ & 10 / 600 \end{aligned}$	$\begin{gathered} .6 / 20 \mathrm{~A} \\ 1.4 / 30 \mathrm{~A} \\ .6 / 20 \mathrm{~A} \\ 1.4 / 30 \mathrm{~A} \end{gathered}$			
$\begin{aligned} & \text { IN1198A } \\ & \text { iN1199 } \\ & \text { iN1199A } \\ & \text { iN11998 } \end{aligned}$	$\begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}$	$\begin{array}{\|c\|} \hline \mathrm{RE} \\ \mathrm{RE} \\ \mathrm{RE} \\ \mathrm{RE} \\ \hline \end{array}$				$\begin{array}{r} 600 \\ 50 \\ 50 \\ 50 \end{array}$	$\begin{aligned} & 20 \\ & 12 \\ & 12 \\ & 12 \end{aligned}$	10/50	$\begin{aligned} & .6 / 20 A \\ & 1.4 / 20 A \\ & 1.3 / 12 A \\ & 1.1 / 12 A \end{aligned}$			
$\begin{aligned} & \text { 1N1200 } \\ & \text { 1N1200A } \\ & 1 \text { N1200 } \\ & 1 \text { N1 } 201 \end{aligned}$	$\begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}$	$\left\|\begin{array}{l} R E \\ R E \\ R E \\ R E \\ R E \end{array}\right\|$				$\begin{aligned} & 100 \\ & 100 \\ & 100 \\ & 150 \end{aligned}$	$\begin{aligned} & 12 \\ & 12 \\ & 12 \\ & 12 \end{aligned}$	$\begin{aligned} & 10 / 100 \\ & 10 / 150 \end{aligned}$	$\begin{aligned} & 1.4 / 20 A \\ & 1.3 / 12 A \\ & 1.1 / 12 A \\ & 1.4 / 20 A \end{aligned}$			
$\begin{aligned} & \text { IN1201A } \\ & \text { IN12018 } \\ & \text { IN1202 } \\ & \text { IN1202A } \end{aligned}$	S	$\left.\begin{array}{\|l\|} \mathbf{R E} \\ \mathbf{R E} \\ \mathbf{R E} \\ \mathbf{R E} \end{array} \right\rvert\,$				$\begin{aligned} & 150 \\ & 150 \\ & 200 \\ & 200 \end{aligned}$	$\begin{aligned} & 12 \\ & 12 \\ & 12 \\ & 12 \end{aligned}$	10/200	1.3/12A 1.1/12A 1.4/20A 1.3/12A			
$\begin{aligned} & \text { IN1202B } \\ & \text { IN1203 } \\ & \text { IN1203A } \\ & \text { IN1203B } \end{aligned}$	[$\left.\begin{aligned} & R E \\ & R E \\ & R E \\ & R E \\ & R E \\ & R E \end{aligned} \right\rvert\,$				$\begin{aligned} & 200 \\ & 300 \\ & 300 \\ & 300 \end{aligned}$	12 12 12 12	10/300	1.1/12A 1.4/20A 1.3/12A 1.1/12A			
iN1204 iN1204A IN1204B IN120S	($\begin{aligned} & \text { s } \\ & \text { s } \\ & \text { s } \\ & \text { s }\end{aligned}$	$\begin{array}{\|l\|l} \mathbf{R E} \\ \mathbf{R E} \\ \mathbf{R E} \\ \mathbf{R E} \\ \hline \end{array}$				$\begin{aligned} & 400 \\ & 400 \\ & 400 \\ & 500 \end{aligned}$	12 12 12 12	$\begin{aligned} & 10 / 400 \\ & 10 / 500 \end{aligned}$	$\begin{aligned} & 1.4 / 20 \mathrm{~A} \\ & 1.3 / 12 \mathrm{~A} \\ & 1.1 / 12 \mathrm{~A} \\ & 1.4 / 20 \mathrm{~A} \end{aligned}$			
	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\begin{aligned} & R E \\ & R E \\ & R E \\ & R E \\ & R E \end{aligned}$				$\begin{aligned} & 500 \\ & 500 \\ & 600 \\ & 600 \end{aligned}$	12 12 12 12	10/600	1.3/12A 1.1/12A 1.4/20A 1.3/12A			

DIODE INTERCHANGEABILITY

TYPE NUMBER	畐畐4		II REPLACEMENT		ratings			CHARACTERISTICS				
					$\begin{gathered} \mathrm{PD}_{\mathrm{D}} \\ (\mathrm{~mW}) \end{gathered}$	$\mathbf{V}_{\mathbf{R}}$ (V)	I (A)					
$\begin{aligned} & \text { IN1206B } \\ & \text { IN1217 } \\ & \text { IN1217A } \\ & \text { IN1217B } \end{aligned}$	$\begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}$	$\begin{aligned} & R E \\ & R E \\ & R E \\ & R E \end{aligned}$				600 50 50 50	12 1.6 1.6 1.6	$\begin{array}{r} 500 / 50 \\ 50 / 50 \\ 300 / 50 \end{array}$	$\begin{aligned} & 1.1 / 12 \mathrm{~A} \\ & 1.5 / \\ & 1.5 / \\ & 1.7 / \end{aligned}$			
$\begin{array}{\|l} \text { IN1218 } \\ 1 \mathrm{~N} 1218 \mathrm{~A} \\ 1 \mathrm{~N} 1218 \mathrm{~B} \\ 1 \mathrm{~N} 1219 \end{array}$	$\begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}$	$\begin{aligned} & R E \\ & R E \\ & R E \\ & R E \end{aligned}$				$\begin{aligned} & 100 \\ & 100 \\ & 100 \\ & 150 \end{aligned}$	$\begin{aligned} & 1.6 \\ & 1.6 \\ & 1.6 \\ & 1.6 \end{aligned}$	$\begin{array}{r} 500 / 100 \\ 50 / 100 \\ 300 / 100 \\ 500 / 150 \end{array}$	$\begin{aligned} & 1.5 / \\ & 1.5 / \\ & 1.7 / \\ & 1.5 / \end{aligned}$			
1N1219A 1N1219B 1N1220 1N1220A	$\begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & R E \\ & R E \\ & R E \\ & R E \end{aligned}$				$\begin{aligned} & 150 \\ & 150 \\ & 200 \\ & 200 \end{aligned}$	$\begin{aligned} & 1.6 \\ & 1.6 \\ & 1.6 \\ & 1.6 \end{aligned}$	$\begin{array}{r} 50 / 150 \\ 300 / 150 \\ 500 / 200 \\ 50 / 200 \end{array}$	$\begin{aligned} & 1.5 / \\ & 1.7 / \\ & 1.5 / \\ & 1.5 / \end{aligned}$			
$\begin{aligned} & \text { IN1220B } \\ & \text { IN1221 } \\ & \text { 1N122IA } \\ & \text { IN1221B } \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & R E \\ & R E \\ & R E \\ & R E \\ & R E \end{aligned}$				$\begin{aligned} & 200 \\ & 300 \\ & 300 \\ & 300 \end{aligned}$	$\begin{aligned} & 1.6 \\ & 1.6 \\ & 1.6 \\ & 1.6 \end{aligned}$	$\begin{array}{r} 300 / 200 \\ 500 / 300 \\ 50 / 300 \\ 300 / 300 \end{array}$	$\begin{aligned} & 1.7 / \\ & 1.5 / \\ & 1.5 / \\ & 1.7 / \end{aligned}$			
$\begin{aligned} & \text { 1N1222 } \\ & \text { 1N1222A } \\ & \text { IN1222B } \\ & \text { IN1223 } \end{aligned}$	$\begin{aligned} & 5 \\ & s \\ & s \\ & 5 \end{aligned}$	$\begin{aligned} & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \end{aligned}$				$\begin{array}{r} 400 \\ 400 \\ 400 \\ 500 \end{array}$	$\begin{aligned} & 1.6 \\ & 1.6 \\ & 1.6 \\ & 1.6 \end{aligned}$	$\begin{array}{r} 500 / 400 \\ 50 / 400 \\ 300 / 400 \\ 500 / 500 \end{array}$	$\begin{aligned} & 1.5 / \\ & 1.5 / \\ & 1.7 / \\ & 1.5 / \end{aligned}$			
IN1223A IN1223B INI 224 1N1224A	$\begin{aligned} & s \\ & s \\ & s \\ & s \\ & s \end{aligned}$	$\begin{aligned} & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \end{aligned}$				$\begin{aligned} & 500 \\ & 500 \\ & 600 \\ & 600 \end{aligned}$	$\begin{aligned} & 1.6 \\ & 1.6 \\ & 1.6 \\ & 1.6 \end{aligned}$	$\begin{array}{r} 50 / 500 \\ 300 / 500 \\ 500 / 600 \\ 50 / 600 \end{array}$	$\begin{aligned} & 1.5 / \\ & 1.7 / \\ & 1.5 / \\ & 1.5 / \end{aligned}$			
$\begin{aligned} & \text { IN1224B } \\ & \text { IN1225 } \\ & \text { 1N1225A } \\ & \text { 1N1225B } \end{aligned}$	$\begin{aligned} & \mathbf{S} \\ & \mathbf{S} \\ & \mathbf{S} \\ & \mathbf{S} \end{aligned}$	$\begin{aligned} & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \end{aligned}$				$\begin{aligned} & 600 \\ & 700 \\ & 700 \\ & 700 \end{aligned}$	$\begin{aligned} & 1.6 \\ & 1.6 \\ & 1.6 \\ & 1.6 \end{aligned}$	$\begin{array}{r} 300 / 600 \\ 500 / 700 \\ 50 / 700 \\ 300 / 700 \end{array}$	$\begin{aligned} & 1.7 / \\ & 1.5 / \\ & 1.5 / 1 \mathrm{~A} \\ & 1.6 / \end{aligned}$			
1N1226 1N1226A 1N1226B 1N1227	$\begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}$	$\begin{aligned} & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \end{aligned}$				$\begin{array}{r} 800 \\ 800 \\ 800 \\ 50 \end{array}$	$\begin{aligned} & 1.6 \\ & 1.6 \\ & 1.6 \\ & 1.6 \end{aligned}$	$\begin{gathered} 500 / 800 \\ 50 / 800 \\ 300 / 800 \\ 500 / 50 \end{gathered}$	$\begin{aligned} & 1.5 / \\ & 1.5 / 1 \mathrm{~A} \\ & 1.5 / \\ & 1.5 / \end{aligned}$			
$\begin{aligned} & \text { IN1227A } \\ & \text { IN12278 } \\ & \text { IN1228 } \\ & \text { IN1228A } \end{aligned}$	$\begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}$	$\begin{aligned} & R E \\ & R E \\ & R E \\ & R E \end{aligned}$				$\begin{array}{r} 50 \\ 50 \\ 100 \\ 100 \end{array}$	$\begin{aligned} & 1.6 \\ & 1.6 \\ & 1.6 \\ & 1.6 \end{aligned}$	$\begin{array}{r} 50 / 50 \\ 10 / 50 \\ 500 / 100 \\ 50 / 100 \end{array}$	$\begin{aligned} & 1.5 / \\ & 1.2 / 1 \mathrm{~A} \\ & 1.5 / \\ & 1.5 / \end{aligned}$			
1N1228B 1N1229 1N1229A IN1229B	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\begin{aligned} & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \end{aligned}$				$\begin{aligned} & 100 \\ & 150 \\ & 150 \\ & 150 \end{aligned}$	$\begin{aligned} & 1.6 \\ & 1.6 \\ & 1.6 \\ & 1.6 \end{aligned}$	$\begin{array}{r} 10 / 100 \\ 500 / 150 \\ 50 / 150 \\ 10 / 150 \end{array}$	$\begin{aligned} & 1.2 / 1 \mathrm{~A} \\ & 1.5 / \\ & 1.5 / \\ & 1.2 / 1 \mathrm{~A} \end{aligned}$			

DIODE INTERCHANGEABILITY

Trpe number		$\left\|\begin{array}{c} \frac{3}{0} \\ \frac{1}{6} \\ 0 \\ 0_{0}^{2} \\ 3 \end{array}\right\|$	$\begin{gathered} \pi \\ \text { RERLACEMENT } \end{gathered}$	$\begin{aligned} & \text { FOR } \\ & \text { NEW } \\ & \text { DESIGN } \end{aligned}$	$\begin{gathered} \mathrm{PD}_{\mathrm{D}} \\ (\mathrm{~mW}) \end{gathered}$	$\begin{aligned} & \text { nines } \\ & \mathbf{v}_{\mathbf{R}} \\ & \text { (V) } \end{aligned}$	(A)	$\begin{array}{ll} L_{R} & \bullet V_{R} \\ \mu A & /(V) \end{array}$	$$	RISTIC i_{r} (ns)	$\begin{array}{ccc} v_{z} & 0 & \mathbf{z} \\ (\mathrm{v}) & 1 & (\mathrm{~mA}) \end{array}$	${ }_{x}^{101}$
	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\begin{array}{\|c\|} \hline \mathbf{R E} \\ \mathrm{RE} \\ \mathrm{RE} \\ \mathbf{R E} \\ \hline \mathbf{R E} \end{array}$				$\begin{aligned} & 200 \\ & 200 \\ & 200 \\ & 300 \end{aligned}$	$\begin{aligned} & 1.6 \\ & 1.6 \\ & 1.6 \\ & 1.6 \end{aligned}$	$\begin{array}{r} 500 / 200 \\ 50 / 200 \\ 10 / 200 \\ 500 / 300 \end{array}$	$\begin{aligned} & 1.5 / \\ & 1.5 / \\ & 1.2 / 1 \mathrm{~A} \\ & 1.5 / \end{aligned}$			
$\left\lvert\, \begin{aligned} & \text { IN1231A } \\ & \text { 1N1231B } \\ & \text { 1N1232 } \\ & \text { IN1232A } \end{aligned}\right.$	$\begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}$	$\begin{aligned} & \mathbf{R E} \\ & \mathbf{R E} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathbf{R E} \end{aligned}$				$\begin{aligned} & 300 \\ & 300 \\ & 400 \\ & 400 \end{aligned}$	$\begin{aligned} & 1.6 \\ & 1.6 \\ & 1.6 \\ & 1.6 \end{aligned}$	$\begin{array}{r} 50 / 300 \\ 10 / 300 \\ 500 / 400 \\ 50 / 400 \end{array}$	$\begin{aligned} & 1.5 / \\ & 1.2 / 1 \mathrm{~A} \\ & 1.5 / \\ & 1.5 / \end{aligned}$			
1N1232B iN1233 1N1233A iN1233	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\left.\begin{aligned} & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \end{aligned} \right\rvert\,$				$\begin{aligned} & 400 \\ & 500 \\ & 500 \\ & 500 \end{aligned}$	$\begin{aligned} & 1.6 \\ & 1.6 \\ & 1.6 \\ & 1.6 \end{aligned}$	$\begin{array}{r} 10 / 400 \\ 500 / 500 \\ 50 / 500 \\ 10 / 500 \end{array}$	$\begin{aligned} & 1.2 / 1 \mathrm{~A} \\ & 1.5 / \\ & 1.5 / \\ & 1.2 / 1 \mathrm{~A} \end{aligned}$			
	$\left\lvert\, \begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}\right.$	RE RE RE RE RE				$\begin{aligned} & 600 \\ & 600 \\ & 600 \\ & 700 \end{aligned}$	$\begin{aligned} & 1.6 \\ & 1.6 \\ & 1.6 \\ & 1.6 \end{aligned}$	$\begin{array}{r} 500 / 600 \\ 50 / 600 \\ 10 / 600 \\ 500 / 700 \end{array}$	$\begin{aligned} & 1.5 / \\ & 1.5 / \\ & 1.2 / 1 \mathrm{~A} \\ & 1.5 / \end{aligned}$			
$\begin{aligned} & \text { 1N1235A } \\ & \text { IN1235B } \\ & \text { IN1236 } \\ & \text { IN1236A } \end{aligned}$	$\begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}$	$\left.\begin{aligned} & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \end{aligned} \right\rvert\,$				$\begin{aligned} & 700 \\ & 700 \\ & 800 \\ & 800 \end{aligned}$	$\begin{aligned} & 1.6 \\ & 1.6 \\ & 1.6 \\ & 1.6 \end{aligned}$	$\begin{array}{r} 50 / 700 \\ 10 / 700 \\ 500 / 800 \\ 50 / 800 \end{array}$	$\begin{aligned} & 1.2 / 1 \mathrm{~A} \\ & 1.2 / 1 \mathrm{~A} \\ & 1.5 / \\ & 1.2 / 1 \mathrm{~A} \end{aligned}$			
IN12368 IN1237 IN1238 IN1239	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\left\|\begin{array}{l} \mathrm{RE} \\ \mathrm{RE} \\ \mathrm{RE} \\ \mathrm{RE} \end{array}\right\|$				$\begin{aligned} & 800 \\ & 1.6 \mathrm{~K} \\ & 1.6 \mathrm{~K} \\ & 2.8 \mathrm{~K} \end{aligned}$	$\begin{gathered} 1.6 \\ .75 \\ .75 \\ .5 \end{gathered}$	$\begin{array}{r} 10 / 800 \\ 11.6 \mathrm{~K} \\ 11.6 \mathrm{~K} \\ 12.8 \mathrm{~K} \end{array}$	$\begin{array}{r} 1.2 / 1 \mathrm{~A} \\ 6 / 750 \\ 6 / 750 \\ 12 / 500 \end{array}$			
$\begin{aligned} & \hline 1 N 1240 \\ & 1 N 1241 \\ & 1 N 1242 \\ & 1 N 1243 \end{aligned}$	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\left.\begin{aligned} & \mathbf{R E} \\ & \mathbf{R E} \\ & \mathbf{R E} \\ & \mathrm{RE} \end{aligned} \right\rvert\,$		IN4001 1N4002 1N4003 1N4004		$\begin{array}{r} 50 \\ 100 \\ 200 \\ 300 \end{array}$	$\begin{array}{r} .25 \\ .25 \\ .25 \\ .2 \end{array}$	500/50 500/100 500/200 500/300	$\begin{aligned} & 1 / 250 \\ & 1 / 250 \\ & 1 / 250 \\ & 1 / 200 \end{aligned}$.		
1N124A iN124A iN1245 iN1246	$\left[\begin{array}{l} \mathbf{s} \\ \mathbf{s} \\ \mathbf{s} \\ \mathbf{s} \end{array}\right.$	$\begin{array}{\|l\|} \hline \mathbf{R E} \\ \mathbf{R E} \\ \mathbf{R E} \\ \mathrm{RE} \end{array}$		1N4004 1N4004 IN4005 iN4005		$\begin{aligned} & 400 \\ & 400 \\ & 500 \\ & 600 \end{aligned}$	$\begin{array}{r} .15 \\ .2 \\ .13 \\ .115 \end{array}$	$\begin{aligned} & 500 / 400 \\ & 500 / 400 \\ & 400 / 500 \\ & 300 / 800 \end{aligned}$	$\begin{aligned} & 1 / 150 \\ & 1 / 200 \\ & 1 / 130 \\ & 1 / 115 \end{aligned}$			
IN1247 1N1248 1N1249 IN1250	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\begin{aligned} & \mathbf{R E} \\ & \mathbf{R E} \\ & \mathbf{R E} \\ & \mathbf{R E} \\ & \mathbf{R E} \end{aligned}$		1 N4006 1N4007 IN4007		$\begin{array}{r} 700 \\ 800 \\ 900 \\ 1 K \end{array}$	$\begin{array}{r} .1 \\ .08 \\ .065 \\ .05 \end{array}$	$\begin{aligned} & 200 / 700 \\ & 100 / 800 \\ & 100 / 900 \\ & 100 / 1 \mathrm{~K} \end{aligned}$	$\begin{aligned} & 1 / 100 \\ & 1 / 80 \\ & 1 / 65 \\ & 1 / 50 \end{aligned}$			
1N1251 INi252 IN1253 iN1254	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\left\|\begin{array}{l} \mathbf{R E} \\ \mathbf{R E} \\ \mathbf{R E} \\ \mathbf{R E} \end{array}\right\|$		$\left\lvert\, \begin{aligned} & \text { IN4001 } \\ & \text { INL002 } \\ & \text { iN4003 } \\ & \text { INA004 } \end{aligned}\right.$		$\begin{array}{r} 50 \\ 100 \\ 200 \\ 300 \end{array}$.5 .5 .5 .5	500/50 500/100 500/200 500/300	$\begin{aligned} & 1 / 500 \\ & 1 / 500 \\ & 1 / 500 \\ & 1 / 500 \end{aligned}$			

DIODE INTERCHANGEABILITY

TYPE NUMBER			$\underset{\text { REPLACEMENT }}{\text { TI }}$	$\begin{aligned} & \text { FOR } \\ & \text { NEW } \\ & \text { DESIIGN } \end{aligned}$	PD (mW)	$\begin{gathered} \text { ATINGS } \\ \mathbf{V}_{\mathbf{R}} \\ \text { (V) } \end{gathered}$	(A)	$\begin{array}{ll} I_{R} & V_{R} \\ \mu_{A} & (V) \end{array}$	$\begin{array}{cc} v_{F} & l_{F} \\ (\mathrm{~V}) & 1(\mathrm{~mA}) \end{array}$	ERISTICS t_{r} (ns)	$\begin{array}{ccc} \mathbf{v}_{\mathbf{z}} & \mathrm{lz} \\ (\mathrm{v}) & /(\mathrm{mA}) \end{array}$	$\left.\right\|_{x} ^{\text {rot }}$
$\begin{array}{\|l} \hline \text { 1N1255 } \\ \text { 1N1255A } \\ \text { IN1256 } \\ \text { IN1257 } \end{array}$	$\begin{aligned} & \mathrm{s} \\ & \mathrm{~s} \\ & \mathrm{~s} \\ & \mathrm{~s} \\ & \mathrm{~s} \end{aligned}$	$\left.\begin{array}{\|l\|} \mathbf{R E} \\ \mathbf{R E} \\ \mathbf{R E} \\ \mathbf{R E} \end{array} \right\rvert\,$		1N4004 1N4004 1N4005 IN4005		$\begin{aligned} & 400 \\ & 400 \\ & 500 \\ & 600 \end{aligned}$	$\begin{array}{r} .5 \\ .5 \\ .32 \\ .3 \end{array}$	$\begin{aligned} & 500 / 400 \\ & 500 / 400 \\ & 400 / 500 \\ & 300 / 600 \end{aligned}$	$\begin{aligned} & 1 / 500 \\ & 1 / 500 \\ & 1 / 320 \\ & 1 / 300 \end{aligned}$			
$\left\{\begin{array}{l} \text { 1N1258 } \\ \text { 1N1259 } \\ \text { IN1260 } \\ \text { IN1261 } \end{array}\right.$	$\begin{aligned} & \mathrm{s} \\ & \mathrm{~s} \\ & \mathrm{~s} \\ & \mathrm{~s} \end{aligned}$	$\begin{aligned} & R E \\ & R E \\ & R E \\ & R E \\ & R E \end{aligned}$		$\begin{array}{\|l} \text { in } 4006 \\ \text { in } 4006 \\ \text { in } 4007 \\ \text { in } 4007 \end{array}$		$\begin{array}{r\|} 700 \\ 800 \\ 900 \\ 1 K \end{array}$	$\begin{aligned} & .28 \\ & .27 \\ & .25 \\ & .24 \end{aligned}$	$\begin{aligned} & 200 / 700 \\ & 100 / 800 \\ & 100 / 900 \\ & 100 / 1 \mathrm{~K} \end{aligned}$	$\begin{aligned} & 1 / 280 \\ & 1 / 270 \\ & 1 / 250 \\ & 1 / 240 \end{aligned}$			
1N1262 1N1313 1N1313A 1N1314	$\begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}$	(RE		$\begin{aligned} & \text { 1N959A } \\ & \text { 1N9598 } \\ & \text { 1N961A } \end{aligned}$	$\begin{aligned} & 150 \\ & 150 \\ & 150 \end{aligned}$	4.5K	. 25	2M/4.5K	12/250		$\begin{aligned} & 8.75 / .2 \\ & 8.75 / .2 \\ & 10.5 / .2 \end{aligned}$	10 5 10
1N1314A 1N1315 IN1315A 1N1316	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\left\|\begin{array}{l} \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \end{array}\right\|$		1N961B 1N963A 1N963B 1N965A	$\begin{aligned} & 150 \\ & 150 \\ & 150 \\ & 150 \end{aligned}$						$\begin{aligned} & 10.5 / .2 \\ & 12.8 / .2 \\ & 12.8 / .2 \\ & 15.7 / .2 \end{aligned}$	5 10 5 10
1NI316A 1N1317 1N1317A 1N1318	$\begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$	$\left\|\begin{array}{l} \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \end{array}\right\|$		1N9658 1N967A 1N967B 1N969A	$\begin{aligned} & 150 \\ & 150 \\ & 150 \\ & 150 \end{aligned}$						$\begin{array}{r} 15.7 / .2 \\ 19 / .2 \\ 19 / .2 \\ 23.5 / .2 \end{array}$	5 10 5 10
1N1318A IN1319 1N1319A iN1320	$\begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$	$\left\|\begin{array}{l} \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \end{array}\right\|$		1No698 1N971A 1N971B	$\begin{aligned} & 150 \\ & 150 \\ & 150 \\ & 150 \end{aligned}$						$\begin{aligned} & 23.5 / .2 \\ & 28.5 / .2 \\ & 28.5 / .2 \\ & 34.5 / .2 \end{aligned}$	5 10 5 10
1N1320A 1N1321 1N1321A 1N1322	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\left\|\begin{array}{l} \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \end{array}\right\|$			$\begin{aligned} & 150 \\ & 150 \\ & 150 \\ & 150 \end{aligned}$						34.5/. 2 41/.2 $41 / 2$ $48.5 / .2$ 48.5/.	5 10 5 10
1N1322A IN1323 1N1323A IN1324	$\left[\begin{array}{l} s \\ s \\ s \\ s \end{array}\right.$	$\left.\begin{array}{\|l\|} \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \end{array} \right\rvert\,$			$\begin{aligned} & 150 \\ & 150 \\ & 150 \\ & 150 \end{aligned}$						48.5/.2 58/.2 58/.2 71/. 2	5 10 5 10
1NI32AA 1N1325 1N1325A 1N1326	$\left[\begin{array}{l} s \\ s \\ s \\ s \end{array}\right.$	$\left.\begin{array}{\|l\|} \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \end{array} \right\rvert\,$			$\begin{aligned} & 150 \\ & 150 \\ & 150 \\ & 150 \end{aligned}$						$\begin{array}{r} 71 / .2 \\ 87 / .2 \\ 87 / .2 \\ 105 / .2 \end{array}$	5 10 5 10
1N1326A 1N1327 1NI327A 1N1329	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\left\|\begin{array}{l} \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{ZD} \\ \mathrm{RE} \end{array}\right\|$			$\begin{aligned} & 150 \\ & 150 \\ & 150 \end{aligned}$	1.5K	.1	201	1.3/100		$\begin{aligned} & 105 / .2 \\ & 128 / .2 \\ & 128 / .2 \end{aligned}$	5 10 5

DIODE INTERCHANGEABILITY

TYME NUMEER		$\begin{aligned} & \frac{8}{6} \\ & \frac{3}{3} \\ & \frac{3}{3} \\ & 3 \end{aligned}$	TI	$\begin{aligned} & \text { FOR } \\ & \text { NEW } \\ & \text { DESIMN } \end{aligned}$	RATINES			CHARACTERISTICS				
					$(m W)$	$\mathbf{V}_{\mathbf{R}}$ (V)	1 (A)	$\begin{array}{ll} \mathbf{L}_{\mathbf{R}} & \bullet \mathbf{V}_{\mathbf{R}} \\ \mu_{\mathbf{A}} & /(\mathbf{V}) \end{array}$	$\begin{array}{ll} V_{F} & \mathbf{l}_{F} \\ \text { (V) } & /(\mathrm{mA}) \end{array}$	$\begin{aligned} & t_{1 r} \\ & (n s) \end{aligned}$	$\begin{array}{ll} V_{Z} & \mathbf{I Z}_{\mathbf{z}} \\ (\mathrm{V}) & /(\mathrm{ma}) \end{array}$	$\begin{aligned} & \text { TOL } \\ & \% \end{aligned}$
1N1406 1N1407 1NI 408 IN1409	$\left\lvert\, \begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}\right.$	RE RE RE RE RE				$\begin{array}{r} 600 \\ 800 \\ 1 K \\ 1.2 K \end{array}$	$\begin{aligned} & .125 \\ & .125 \\ & .125 \\ & .125 \end{aligned}$	10/800 10/800 10/1K .10/1.2K	$\begin{aligned} & 5 / \\ & 5 / \\ & 5 / \\ & 5 / \end{aligned}$			
1N1410 1N1411 1N1412 1N1413	$\left\lvert\, \begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}\right.$	$\begin{aligned} & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \end{aligned}$				$\begin{array}{r} 1.5 K \\ 1.8 K \\ 2 K \\ 2.4 K \end{array}$	$\begin{aligned} & .125 \\ & .125 \\ & .125 \\ & .125 \end{aligned}$	10/1.5K 10/1.8K 10/2K 10/2.4K	6.21 7.5/ 6.21 7.5/			
1N1415 1N1425 IN1426 1N1427	$\left\lvert\, \begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & s \\ & s \end{aligned}\right.$	$\begin{aligned} & \mathrm{SD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \end{aligned}$		IN4004 1N4738A IN4742A IN4744A	$\begin{aligned} & \text { iw } \\ & \text { iw } \\ & \text { iw } \end{aligned}$	400	1	2/320	1.1/1A		8.2/20 12/20 15/10	5 5 5
1N1428 IN1429 1N1430 1N1431	$\begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}$	$\begin{aligned} & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \end{aligned}$		1N4746A 1N4748A IN4750A	1W IW 1W IW						$\begin{aligned} & 18 / 10 \\ & 22 / 10 \\ & 27 / 5 \\ & 68 / 2 \end{aligned}$	5 5 5 5
$\begin{aligned} & \text { 1N1432 } \\ & \text { 1N1433 } \\ & \text { IN1440 } \\ & \text { IN1441 } \end{aligned}$	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\begin{aligned} & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{RE} \\ & \mathrm{RE} \end{aligned}$		$\begin{aligned} & \text { IN4003 } \\ & \text { IN4004 } \end{aligned}$	$\begin{aligned} & \text { IW } \\ & \text { iw } \end{aligned}$	$\begin{aligned} & 200 \\ & 300 \end{aligned}$	$\begin{aligned} & .75 \\ & .75 \end{aligned}$	$\begin{aligned} & 500 / \\ & 500 / \end{aligned}$	$\begin{aligned} & 1.2 / 750 \\ & 1.2 / 750 \end{aligned}$		$\begin{aligned} & 100 / 2 \\ & 150 / 1 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$
$\begin{aligned} & \text { IN1442 } \\ & \text { IN1443 } \\ & \text { IN1443A } \\ & \text { IN14438 } \end{aligned}$	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\begin{aligned} & R E \\ & R E \\ & R E \\ & R E \end{aligned}$		IN4004		$\begin{aligned} & 400 \\ & 1 K \\ & 1 K \\ & 1 K \end{aligned}$	$\begin{aligned} & .75 \\ & 1.6 \\ & 1.1 \\ & 1.1 \end{aligned}$	$\begin{aligned} & 500 / \\ & 1 \mathrm{M} / \\ & 500 / \\ & 300 / \end{aligned}$	$\begin{aligned} & 1.2 / 750 \\ & 1 / \\ & 1.4 / \\ & 1.5 / \end{aligned}$			
IN1444 1N1444A 1N1443 INT445	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\begin{aligned} & R E \\ & R E \\ & R E \\ & R E \\ & R E \end{aligned}$				$\begin{array}{r} 1 K \\ 1 K \\ 1 K \\ 360 \end{array}$	$\begin{array}{r} 1.6 \\ 1.6 \\ 1.6 \\ .2 \end{array}$	1M/ $50 /$ 101 4M/	$\begin{array}{r} 1 / \\ 1.2 / \\ 1.2 / \\ 2 / \end{array}$			
1N1446 1N1447 1N1448 1N1449	$\left\lvert\, \begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}\right.$	$\begin{aligned} & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \end{aligned}$				$\begin{aligned} & 100 \\ & 200 \\ & 300 \\ & 400 \end{aligned}$	$\begin{aligned} & 1.8 \\ & 1.8 \\ & 1.8 \\ & 1.8 \end{aligned}$	$\begin{aligned} & 2 M / \\ & 2 M / \\ & 2 M / \\ & 2 M / \end{aligned}$	$\begin{array}{r} 2 / \\ 2 / \\ 1.4 / \\ 2 / \end{array}$			
1N1450 1N1451 1N1452 1N1453	$\begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & R E \\ & R E \\ & R E \\ & R E \\ & R E \end{aligned}$				$\begin{aligned} & 100 \\ & 200 \\ & 300 \\ & 400 \end{aligned}$	$\begin{aligned} & 1.8 \\ & 1.8 \\ & 1.8 \\ & 1.8 \end{aligned}$	5M/ 5M/ 5M/ 5M/	$\begin{aligned} & 1.4 / \\ & 1.4 / \\ & 1.4 / \\ & 1.4 / \end{aligned}$			
$\begin{aligned} & 1 N 1484 \\ & \text { 1N1485 } \\ & \text { 1N1486 } \\ & \text { 1N1487 } \end{aligned}$	$\begin{aligned} & \mathbf{s} \\ & \mathbf{S} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}$	$\begin{aligned} & Z D \\ & Z D \\ & R E \\ & R E \end{aligned}$		$\begin{aligned} & \text { 1N4732A } \\ & \text { 1N4735A } \\ & \text { 1N4006 } \\ & \text { 1N4002 } \end{aligned}$	$\begin{aligned} & \text { iw } \\ & \text { iw } \end{aligned}$	$\begin{aligned} & 500 \\ & 100 \end{aligned}$	$.5$	$\begin{array}{r} 400 / 500 \\ 300 / 100 \end{array}$	$\begin{aligned} & .55 / 250 \\ & .55 / 250 \end{aligned}$		$\begin{aligned} & 4.7 / 50 \\ & 6.2 / 50 \end{aligned}$	5

DIODE INTERCHANGEABILITY

TYPE NUMBER		$\begin{aligned} & 7 \\ & 0 \\ & \frac{3}{2} \\ & \frac{3}{4} \\ & \frac{5}{5} \\ & 3 \end{aligned}$	7 REPLACEMENT		PD (mW)	tines $\mathbf{V}_{\mathbf{R}}$ (V)	1 (A)	$\begin{array}{ll} \mathbf{L}_{\mathrm{R}} & \mathbf{V}_{\mathrm{R}} \\ \mu \mathrm{~A} & \boldsymbol{f}(\mathrm{~V}) \end{array}$	\mathbf{V}_{F} - $\mathbf{F}_{\mathbf{F}}$ (V) $/$ (mA)	ITr (ma)	$\mathbf{V}_{\mathbf{z}}$ - \mathbf{z} (V) $/$ (mA)	TOL
1N1488 1N1489 1N1490 IN1491	$\begin{aligned} & 5 \\ & s \\ & s \\ & s \end{aligned}$	$\begin{aligned} & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \end{aligned}$		1N4003 in4004 1N4004 1 N4005		$\begin{aligned} & 200 \\ & 300 \\ & 400 \\ & 500 \end{aligned}$	$\begin{aligned} & .75 \\ & .75 \\ & .75 \\ & .75 \end{aligned}$	$\begin{aligned} & 300 / 200 \\ & 300 / 300 \\ & 300 / 400 \\ & 300 / 500 \end{aligned}$	$\begin{aligned} & .55 / 250 \\ & .55 / 250 \\ & .55 / 250 \\ & .55 / 250 \end{aligned}$			
1N1492 IN1507 1N1507A 1N1508	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\begin{aligned} & \mathrm{RE} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \end{aligned}$		1N4005 1N4730 1N4730A 1N4732	$\begin{array}{r} 750 \\ 750 \\ 750 \\ \hline \end{array}$	600	. 75	300/600	.55/250		$\begin{aligned} & 3.9 / 35 \\ & 3.9 / 35 \\ & 4.7 / 30 \end{aligned}$	10 5 10
1NI508A 1N1509 INI509A 1N1510	$\begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}$	$\begin{aligned} & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \end{aligned}$		1N4732A 1N4734 1N4734A 1N4736	$\begin{aligned} & 750 \\ & 750 \\ & 750 \\ & 750 \end{aligned}$						$\begin{aligned} & 4.7 / 30 \\ & 5.6 / 25 \\ & 5.6 / 25 \\ & 6.8 / 22 \end{aligned}$	5 10 5 10
1NT510A 1N1511 1N1511A 1N1512	$\begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}$	$\begin{aligned} & \mathrm{zD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \end{aligned}$		1N4736A 1N4738 1N4738A 1N4740	$\begin{aligned} & 750 \\ & 750 \\ & 750 \\ & 750 \end{aligned}$						$\begin{aligned} & 8.8 / 22 \\ & 8.2 / 18 \\ & 8.2 / 18 \\ & 10 / 15 \end{aligned}$	$\begin{array}{r} 5 \\ 10 \\ 5 \\ 10 \end{array}$
1N1512A IN1513 IN1513A IN1514	$\begin{aligned} & \mathrm{s} \\ & \mathrm{~s} \\ & \mathrm{~s} \\ & \mathrm{~s} \end{aligned}$	ZD ZD ZD ZD		INA740A 1N4742 1N4742A 1N4744	$\begin{aligned} & 750 \\ & 750 \\ & 750 \\ & 750 \end{aligned}$						$\begin{aligned} & 10 / 15 \\ & 12 / 12 \\ & 12 / 12 \\ & 15 / 10 \end{aligned}$	5 10 5 10
IN151AA IN1515 IN1515A 1N1516	$\begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}$	$\begin{aligned} & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \end{aligned}$		1N4744A 1N4746 1N4746A 1N4748	$\begin{aligned} & 750 \\ & 750 \\ & 750 \\ & 750 \end{aligned}$						$\begin{aligned} & 15 / 10 \\ & 18 / 8 \\ & 18 / 8 \\ & 22 / 6 \end{aligned}$	5 10 5 10
IN1516A 1N1517 1N1517A 1N1518	$\begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}$	$\begin{aligned} & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \end{aligned}$		1N4748A 1N4750 1N4750A 1N4730	$\begin{aligned} & 750 \\ & 750 \\ & 750 \\ & 1 w \end{aligned}$						$\begin{aligned} & 22 / 6 \\ & 27 / 5 \\ & 27 / 5 \\ & 3.9 / 50 \end{aligned}$	5 10 5 10
1N1518A 1N1519 1N1519A 1N1520	$\begin{aligned} & \mathrm{s} \\ & \mathrm{~s} \\ & \mathrm{~s} \\ & \mathrm{~S} \end{aligned}$	$\begin{aligned} & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \end{aligned}$		1N4730A 1N4732 1N4732A iN4734	IW 1W IW 1w						$\begin{aligned} & 3.9 / 50 \\ & 4.7 / 40 \\ & 4.7 / 40 \\ & 5.6 / 35 \end{aligned}$	5 10 5 10
$\begin{aligned} & \text { IN1520A } \\ & \text { IN1521 } \\ & \text { 1N1521A } \\ & \text { IN1522 } \end{aligned}$	$\begin{aligned} & 5 \\ & s \\ & s \\ & s \end{aligned}$	$\begin{aligned} & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \end{aligned}$		1N4734A 1N4736 1N4736A 1N4738	IW 1w 1W 1W						$\begin{aligned} & 5.6 / 35 \\ & 6.8 / 30 \\ & 6.8 / 30 \\ & 8.2 / 25 \end{aligned}$	5 10 5 10
1N1522A 1NI523 1N1523A 1N1524	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\begin{aligned} & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \end{aligned}$		1N4738A 1N4740 IN4740A 1N4742	$\begin{aligned} & \text { iw } \\ & \text { iw } \\ & \text { iw } \\ & \text { iw } \end{aligned}$.		$\begin{aligned} & 8.2 / 25 \\ & 10 / 20 \\ & 10 / 20 \\ & 12 / 15 \end{aligned}$	$\begin{array}{r} 5 \\ 10 \\ 5 \\ 10 \end{array}$

		$\overline{7}$			RATINGS			CHARACTERISTICS				
TYFE MUMEER	$\frac{\text { 鬲 }}{3}$		REPLACEMENT	$\begin{aligned} & \text { FOR } \\ & \text { NEW } \\ & \text { DESYCN } \end{aligned}$	$\begin{gathered} \mathrm{PD}_{\mathrm{D}} \\ (\mathrm{~mW}) \end{gathered}$	$\mathbf{V}_{\mathbf{R}}$ (V)	I (A)	$\begin{array}{ll} \mathrm{I}_{\mathrm{R}} & \mathrm{~V}_{\mathrm{R}} \\ \mu \mathrm{M} & \mathrm{~V}) \end{array}$	$\begin{array}{cc} \mathbf{V}_{\mathrm{F}} & \mathbf{v F}_{\mathrm{F}} \\ \text { (v) } & 1 \text { (mA) } \end{array}$	In (ns)	$\begin{array}{lc} v_{z} & \mathbf{z}_{2} \\ \text { (V) } & / \mathrm{mA}) \end{array}$	$\begin{gathered} \text { TOL } \\ \times \end{gathered}$
1N1524A 1N1525 1N1525A IN1526	$\begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{S} \\ & \mathbf{S} \end{aligned}$	$\left\|\begin{array}{l} Z D \\ Z D \\ Z D \\ Z D \end{array}\right\|$		1N4742A 1N4744 1N4744A 1N4746	$\begin{aligned} & \text { iw } \\ & \text { iw } \\ & \text { iw } \\ & \text { iw } \end{aligned}$						$\begin{aligned} & 12 / 15 \\ & 15 / 13 \\ & 15 / 13 \\ & 18 / 10 \end{aligned}$	5 10 5 10
$\begin{aligned} & \text { IN1526A } \\ & \text { IN1527 } \\ & \text { IN1527A } \\ & \text { IN1528 } \end{aligned}$	$\begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}$	$\left\lvert\, \begin{aligned} & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \end{aligned}\right.$		1N4746A 1N4747 1N4747A 1N4748	$\begin{aligned} & 16 \\ & 16 \\ & 16 \\ & 1 W \end{aligned}$						$\begin{aligned} & 18 / 10 \\ & 22 / 9 \\ & 22 / 9 \\ & 27 / 7 \end{aligned}$	$\begin{array}{r} 5 \\ 10 \\ 5 \\ 10 \end{array}$
1N1528A 1N1537 1N1538 1N1539	$\begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & \mathrm{ZD} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \end{aligned}$		1N4748A	1W	$\begin{array}{r} 50 \\ 100 \\ 150 \end{array}$	$\begin{aligned} & 1.6 \\ & 1.6 \\ & 1.6 \end{aligned}$	$\begin{aligned} & 50 \% \\ & 50 \% \\ & 50 / \end{aligned}$	$\begin{aligned} & 1.5 / \\ & 1.5 / \\ & 1.5 / \end{aligned}$		$27 / 7$	5
1N1540 1N1541 IN1542 IN1543	$\left\lvert\, \begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}\right.$	$\begin{aligned} & R E \\ & R E \\ & R E \\ & R E \end{aligned}$				$\begin{aligned} & 200 \\ & 300 \\ & 400 \\ & 500 \end{aligned}$	$\begin{aligned} & 1.6 \\ & 1.6 \\ & 1.6 \\ & 1.6 \end{aligned}$	$\begin{aligned} & 50 / \\ & 50 / \\ & 50 / \\ & 50 / \end{aligned}$	$\begin{aligned} & 1.5 / \\ & 1.5 / \\ & 1.5 / \\ & 1.5 / \end{aligned}$			
1N1544 IN1551 1N1552 IN1553	S S S S	$\begin{array}{\|l\|} \mathbf{R E} \\ \mathrm{RE} \\ \mathrm{RE} \\ \mathrm{RE} \end{array}$				$\begin{aligned} & 600 \\ & 100 \\ & 200 \\ & 300 \end{aligned}$	$\begin{array}{r} 1.6 \\ 1 \\ 1 \\ 1 \end{array}$	$\begin{aligned} & 50 / \\ & 1 \mathrm{M} / \\ & 1 \mathrm{M} / \\ & 1 \mathrm{M} / \end{aligned}$	$\begin{aligned} & 1.5 / \\ & 1.4 / \\ & 1.4 / \\ & 1.4 / \end{aligned}$			
1N1554 IN1555 1N1556 IN1557	$\begin{aligned} & \mathbf{s} \\ & \mathbf{S} \\ & \mathbf{S} \\ & \mathbf{s} \end{aligned}$	$\begin{array}{\|l\|} \mathrm{RE} \\ \mathrm{RE} \\ \mathrm{RE} \\ \mathrm{RE} \end{array}$				$\begin{aligned} & 400 \\ & 500 \\ & 100 \\ & 200 \end{aligned}$	$\begin{array}{r} 1 \\ 1 \\ .75 \\ .75 \end{array}$	$\begin{aligned} & 1 \mathrm{M} / \\ & 1 \mathrm{M} / \\ & 1 \mathrm{M} / \\ & 1 \mathrm{M} \end{aligned}$	$\begin{aligned} & 1.4 / \\ & 1.4 / \\ & 1.4 / \\ & 1.4 / \end{aligned}$			
1N1558 1N1559 INIS60 1N1561	$\begin{aligned} & s \\ & s \\ & s \\ & G \end{aligned}$	$\left\|\begin{array}{c} R E \\ R E \\ R E \\ S D \end{array}\right\|$		1N4305		$\begin{array}{r} 300 \\ 400 \\ 500 \\ 25 \end{array}$	$\begin{aligned} & .75 \\ & .75 \\ & .75 \end{aligned}$	1M/ 1M/ 1M/ 25/20	1.4/ 1.4/ 1.4/ .4/12			
1N1562 1N1563 1N1563A 1N1564	G \mathbf{S} \mathbf{S} \mathbf{S}	SD RE RE RE		$\begin{aligned} & \text { IN4305 } \\ & \text { TID382 } \\ & \text { TID382 } \\ & \text { TID383 } \end{aligned}$		$\begin{array}{r} 25 \\ 100 \\ 100 \\ 200 \end{array}$	$\begin{array}{r} 1 \\ 1.5 \\ 1 \end{array}$	$\begin{aligned} & 25 / 20 \\ & 3 / 100 \\ & 3 / 100 \\ & 3 / 200 \end{aligned}$	$\begin{gathered} .4 / 8 \\ 1.5 / 500 \\ 1.5 / 500 \\ 1.5 / 500 \end{gathered}$			
1N1564A 1N1 565 1N1565A 1N1566	S	$\begin{array}{\|l\|} \mathbf{R E} \\ \mathrm{RE} \\ \mathrm{RE} \\ \mathrm{RE} \end{array}$		$\begin{aligned} & \text { TID383 } \\ & \text { TID384 } \\ & \text { TID384 } \\ & \text { TID384 } \end{aligned}$		$\begin{aligned} & 200 \\ & 300 \\ & 300 \\ & 400 \end{aligned}$	$\begin{array}{r} 1.5 \\ 1 \\ 1.5 \\ 1 \end{array}$	$\begin{aligned} & 3 / 200 \\ & 3 / 300 \\ & 3 / 300 \\ & 3 / 400 \end{aligned}$	$\begin{aligned} & 1.5 / 500 \\ & 1.5 / 500 \\ & 1.5 / 500 \\ & 1.5 / 500 \end{aligned}$			
1N1566A IN1567 1N1567A IN1568	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\left.\begin{array}{\|} \mathrm{RE} \\ \mathrm{RE} \\ \mathrm{RE} \\ \mathrm{RE} \end{array} \right\rvert\,$		$\begin{aligned} & \text { TID384 } \\ & \text { THD385 } \\ & \text { TID385 } \\ & \text { TID385 } \end{aligned}$		$\begin{aligned} & 400 \\ & 500 \\ & 500 \\ & 600 \end{aligned}$	$\begin{array}{r} 1.5 \\ 1 \\ 1.5 \\ 1 \end{array}$	$\begin{aligned} & 3 / 400 \\ & 5 / 500 \\ & 3 / 500 \\ & 5 / 600 \end{aligned}$	$\begin{aligned} & 1.5 / 500 \\ & 1.2 / 500 \\ & 1.5 / 500 \\ & 1.2 / 500 \end{aligned}$			

TYPE NUMOER	$\begin{aligned} & \text { 数 } \\ & \text { 䍏 } \\ & k \end{aligned}$	各	π REPLACEMENT	$\begin{aligned} & \text { FOR } \\ & \text { NEW } \\ & \text { DESKCN } \end{aligned}$	P_{D} （mW）	tincs $\mathbf{V}_{\mathbf{R}}$ （V）	1 （A）	$\begin{array}{ll} \mathbf{l}_{\mathbf{R}} & \mathbf{V}_{\mathbf{R}} \\ \mu_{\mathbf{A}} & /(\mathbf{V}) \end{array}$	V_{F}－lF （V）$/$（mA）	$\begin{gathered} t_{1 T} \\ (n s) \end{gathered}$	$\mathbf{V}_{\mathbf{Z}} \cdot \mathbf{l}_{\mathbf{z}}$ （V）$/(\mathrm{mA})$	$\begin{aligned} & \text { TOL } \\ & \% \end{aligned}$
IN1568A 1N1577 IN1578 1N1579	$\begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{S} \\ & \mathbf{s} \end{aligned}$	$\begin{aligned} & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \end{aligned}$		710385		$\begin{aligned} & 600 \\ & 300 \\ & 400 \\ & 500 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 3.5 \\ & 3.5 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 3 / 600 \\ & 5 / \\ & 5 / \\ & 5 / \end{aligned}$	$\begin{aligned} & 1.5 / 500 \\ & 1.5 / \\ & 1.5 / \\ & 1.5 / \end{aligned}$			
IN1580 1N1581 IN1582 IN1583	$\left\lvert\, \begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}\right.$	$\begin{aligned} & R E \\ & R E \\ & R E \\ & R E \\ & R E \end{aligned}$				$\begin{array}{r} 600 \\ 50 \\ 100 \\ 200 \end{array}$	$\begin{array}{r} 3.5 \\ 3 \\ 3 \\ 3 \end{array}$	$\begin{array}{r} 5 / \\ 5 M / \\ 5 M / \\ 5 M / \end{array}$	$\begin{aligned} & 1.5 / \\ & 1.5 / \\ & 1.5 / \\ & 1.5 / \end{aligned}$			
1N1584 IN1585 1N1586 1N1587	$\begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}$	$\begin{aligned} & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \end{aligned}$				$\begin{aligned} & 300 \\ & 400 \\ & 500 \\ & 600 \end{aligned}$	3 3 3 3	5M／ 5M／ 5M／ 5M／	$\begin{aligned} & 1.5 / \\ & 1.5 / \\ & 1.5 / \\ & 1.5 / \end{aligned}$			
1N1612 1N1612A 1N1612R 1N1613	$\begin{aligned} & \mathbf{S} \\ & \mathbf{S} \\ & \mathbf{S} \\ & \mathbf{S} \end{aligned}$	$\begin{aligned} & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \end{aligned}$				50 50 50 100	5 5 7 5		$\begin{aligned} & 1.5 / 10 \mathrm{~A} \\ & 1.1 / 6 \mathrm{~A} \\ & .7 / 1 \mathrm{~A} \\ & 1.5 / 10 \mathrm{~A} \end{aligned}$			
1N1613A IN1613R 1N1614 1N1614A	$\begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}$	$\begin{aligned} & R E \\ & R E \\ & R E \\ & R E \\ & R E \end{aligned}$				100 100 200 200	5 7 5 5		$\begin{gathered} 1.1 / 6 A \\ .7 / 1 A \\ 1.5 / 10 A \\ 1.1 / 6 A \end{gathered}$			
1N1614R 1N1615 1N1615A 1N1615R	$\begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}$	$\begin{aligned} & R E \\ & R E \\ & R E \\ & R E \\ & R E \end{aligned}$				200 400 400 400	7 5 5 7		$\begin{gathered} .7 / 1 \mathrm{~A} \\ 1.5 / 10 \mathrm{~A} \\ 1.1 / 6 \mathrm{~A} \\ .7 / 1 \mathrm{~A} \end{gathered}$			
1N1616 1N1616A 1N1616R IN1617	$\left\lvert\, \begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}\right.$	$\begin{aligned} & R E \\ & R E \\ & R E \\ & R E \\ & R E \end{aligned}$				$\begin{aligned} & 600 \\ & 600 \\ & 600 \\ & 100 \end{aligned}$	5 5 7 1.5		$\begin{gathered} 1.5 / 10 \mathrm{~A} \\ 1.1 / 6 \mathrm{~A} \\ .7 / 1 \mathrm{~A} \\ 1.21 \end{gathered}$			
IN1618 1N1619 IN1620 1N1644	$\begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & \mathbf{R E} \\ & \mathbf{R E} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathbf{R E} \end{aligned}$		1N4001		$\begin{array}{r} 200 \\ 300 \\ 400 \\ 50 \end{array}$	$\begin{aligned} & 1.5 \\ & 1.5 \\ & 1.5 \\ & .25 \end{aligned}$	400／50	1．2／ $1.2 /$ 1．2／ ．5／250			
1N1645 1N1646 IN1647 1N1648	$\begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}$	$\begin{aligned} & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathbf{R E} \end{aligned}$		1N4002 1N4003 1N4003 IN4004		$\begin{aligned} & 100 \\ & 150 \\ & 200 \\ & 250 \end{aligned}$	$\begin{aligned} & .25 \\ & .25 \\ & .25 \\ & .25 \end{aligned}$	$\begin{aligned} & 400 / 100 \\ & 300 / 150 \\ & 300 / 200 \\ & 300 / 250 \end{aligned}$	$\begin{aligned} & .5 / 250 \\ & .5 / 250 \\ & .5 / 250 \\ & .5 / 250 \end{aligned}$			
1N1649 1N1650 1N1651 1N1652	$\begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}$	$\begin{aligned} & R E \\ & R E \\ & R E \\ & R E \end{aligned}$		1N4004 1N4004 1N4004 1N4005		$\begin{aligned} & 300 \\ & 350 \\ & 400 \\ & 500 \end{aligned}$	$\begin{aligned} & .25 \\ & .25 \\ & .25 \\ & .25 \end{aligned}$	$\begin{aligned} & 300 / 300 \\ & 300 / 350 \\ & 300 / 400 \\ & 300 / 500 \end{aligned}$	$\begin{aligned} & .5 / 250 \\ & .5 / 250 \\ & .5 / 250 \\ & .5 / 250 \end{aligned}$			

DIODE INTERCHANGEABILTTY

TYF Mumber			$\begin{gathered} n \\ \text { REPLACEMENT } \end{gathered}$	$\begin{aligned} & \text { FOR } \\ & \text { NBW } \\ & \text { DESNeN } \end{aligned}$	RATINES			CHARACTERISTICS				
					$\begin{gathered} P D \\ (\mathrm{~mW}) \end{gathered}$	\mathbf{V}_{R} (V)	I (A)	$\begin{array}{ll} \mathbf{m}_{\mathbf{n}} & \mathbf{V}_{\mathrm{n}} \\ \mu \mathrm{~V} \end{array}$	$\begin{array}{cc} V_{F} & \mathbf{F}_{\mathrm{F}} \\ (\mathrm{~V}) & /(\mathrm{mA}) \end{array}$	$\begin{aligned} & i r r \\ & \text { (ns) } \end{aligned}$	$\begin{array}{lc} \mathbf{V}_{\mathbf{Z}} & \bullet \mathbf{Z} \\ (\mathrm{V}) & f(\mathrm{~m} \mathrm{~m}) \end{array}$	$\left\lvert\, \begin{gathered} \mathrm{rat} \\ \% \end{gathered}\right.$
1N1653 1N1692 1N1693 1N1694	S	$\left.\begin{array}{\|l\|} R E \\ R E \\ R E \\ R E \end{array} \right\rvert\,$		IN4005 IN4002 IN4003 IN4004		600 100 200 300	$\begin{aligned} & .25 \\ & .25 \\ & .25 \\ & .25 \end{aligned}$	$\begin{aligned} & 300 / 600 \\ & 500 / 100 \\ & 500 / 200 \\ & 500 / 300 \end{aligned}$	$\begin{aligned} & .5 / 250 \\ & .6 / 250 \\ & .6 / 250 \\ & .6 / 250 \end{aligned}$			
1N1695 1N1696 IN1697 IN1698	$\begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}$	$\begin{aligned} & R E \\ & R E \\ & R E \\ & R E \\ & R E \end{aligned}$				$\begin{aligned} & 400 \\ & 500 \\ & 600 \\ & 6.8 K \end{aligned}$	$\begin{array}{r} .25 \\ .6 \\ .6 \\ .062 \end{array}$	$\begin{aligned} & 500 / 400 \\ & 500 / 500 \\ & 500 / 600 \end{aligned}$	$\begin{aligned} & .6 / 250 \\ & .6 / 250 \\ & .6 / 250 \\ & 33 / 68 \end{aligned}$			
IN1699 IN1700 IN1701 1N1702	$\left\lvert\, \begin{aligned} & 5 \\ & 5 \\ & s \\ & s \end{aligned}\right.$	$\left.\begin{array}{\|l\|} \mathrm{RE} \\ \mathrm{RE} \\ \mathrm{RE} \\ \mathrm{RE} \end{array} \right\rvert\,$		$\begin{aligned} & \text { IN4001 } \\ & \text { IN4002 } \end{aligned}$		$\begin{array}{r} 10 K \\ 12 K \\ 50 \\ 100 \end{array}$	$\begin{array}{r} .058 \\ .05 \\ .3 \\ .3 \end{array}$	$\begin{aligned} & 200 / 50 \\ & 200 / 100 \end{aligned}$	$\begin{aligned} & 37 / 58 \\ & 45 / 50 \\ & 1.3 / 300 \\ & 1.3 / 300 \end{aligned}$			
1N1703 1N1704 1N1705 1N1706	$\left\lvert\, \begin{aligned} & 5 \\ & 5 \\ & 5 \\ & s \end{aligned}\right.$	RE RE RE RE		1N4003 1N4004 1N4004 1N4005		$\begin{aligned} & 200 \\ & 300 \\ & 400 \\ & 500 \end{aligned}$	$\begin{aligned} & .3 \\ & .3 \\ & .3 \\ & .3 \end{aligned}$	$\begin{aligned} & 200 / 200 \\ & 200 / 300 \\ & 200 / 400 \\ & 200 / 500 \end{aligned}$	$\begin{aligned} & 1.3 / 300 \\ & 1.3 / 300 \\ & 1.3 / 300 \\ & 1.3 / 300 \end{aligned}$			
1N1707 1N1708 iN1709 1N1710	$\left\lvert\, \begin{aligned} & 5 \\ & s \\ & s \\ & s \end{aligned}\right.$	$\begin{aligned} & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \end{aligned}$		1N4001 in4002 1N4003 IN4004		$\begin{array}{r} 50 \\ 100 \\ 200 \\ 300 \end{array}$.5 .5 .5 .5	$\begin{aligned} & 200 / 50 \\ & 200 / 100 \\ & 200 / 200 \\ & 200 / 300 \end{aligned}$	$\begin{aligned} & 1.1 / 500 \\ & 1.1 / 500 \\ & 1.1 / 500 \\ & 1.1 / 500 \end{aligned}$			
1N1711 1N1712 1N1730 IN1730A	$\left\lvert\, \begin{aligned} & 5 \\ & s \\ & s \\ & s \end{aligned}\right.$	$\left\|\begin{array}{l} R E \\ R E \\ R E \\ R E \end{array}\right\|$		IN4004 IN4005 iN4007 1 N4007		400 500 $1 K$ $1 K$.5 .5 .2 .35	$\begin{gathered} 200 / 400 \\ 200 / 500 \\ 10 / 1 K \\ I / 1 K \end{gathered}$	$\begin{array}{r} 1.1 / 500 \\ 1.1 / 500 \\ 5 / 100 \\ 3 / 400 \end{array}$			
$\begin{aligned} & \text { 1N1731 } \\ & \text { 1N1731A } \\ & \text { 1N1732 } \\ & \text { 1N1732A } \end{aligned}$	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\begin{aligned} & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \end{aligned}$				$\begin{array}{r} 1.5 K \\ 1.5 K \\ 2 K \\ 2 K \end{array}$.2 .35 .2 .5	$\begin{gathered} 10 / 1.5 \mathrm{~K} \\ 1 / 1.5 \mathrm{~K} \\ 10 / 2 \mathrm{~K} \\ 1 / 2 \mathrm{~K} \end{gathered}$	$\begin{aligned} & 5 / 100 \\ & 3 / 400 \\ & 9 / 100 \\ & 3 / 400 \end{aligned}$			
1N1733 1N1733A 1N1734 1N1734A	$\begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}$	$\begin{aligned} & \mathbf{R E} \\ & \mathbf{R E} \\ & \mathbf{R E} \\ & \mathbf{R E} \end{aligned}$				3K 3K 5K 5K	$\begin{array}{r} .15 \\ .5 \\ .1 \\ .5 \end{array}$	$\begin{array}{r} 10 / 3 K \\ 1 / 3 K \\ 10 / 5 K \\ 1 / 5 K \end{array}$	$\begin{array}{r} 12 / 100 \\ 6 / 400 \\ 18 / 100 \\ 8 / 400 \end{array}$			
$\begin{aligned} & \text { 1N1735 } \\ & \text { 1N1736 } \\ & \text { IN1736A } \\ & \text { 1N1737 } \end{aligned}$	S	$\begin{aligned} & R D \\ & R D \\ & R D \\ & R D \end{aligned}$			$\begin{aligned} & 200 \\ & 400 \\ & 400 \\ & 600 \end{aligned}$						$\begin{array}{r} 6.2 / 7.5 \\ 12.4 / 7.5 \\ 12.4 / 7.5 \\ 18.6 / 7.5 \end{array}$	5 5 5 5
$\begin{aligned} & \text { IN1737A } \\ & \text { IN1738 } \\ & \text { IN1738A } \\ & \text { IN1739 } \end{aligned}$	$\left\lvert\, \begin{aligned} & 5 \\ & s \\ & s \\ & s \end{aligned}\right.$	$\begin{aligned} & R D \\ & R D \\ & R D \\ & R D \end{aligned}$			$\begin{aligned} & 600 \\ & 800 \\ & 800 \\ & 1 W \end{aligned}$						$\begin{array}{r} 18.6 / 7.5 \\ 24.8 / 7.5 \\ 24.8 / 7.5 \\ 31 / 7.5 \end{array}$	5 5 5 5

DIODE INTERCHANGEABILITY

TYPE NJMBER		$\begin{aligned} & \text { z } \\ & \frac{0}{2} \\ & \frac{3}{0} \\ & 3 \\ & 3 \end{aligned}$	II REPLACEMENT		$\begin{gathered} \mathrm{PD} \\ (\mathrm{~mW}) \end{gathered}$	TINGS V_{R} (V)	I (A)	$\begin{gathered} \mathbf{I}_{\mathbf{R}}: \mathbf{V}_{\mathbf{R}} \\ \boldsymbol{\mu} \mathbf{A} \end{gathered}$	$\begin{array}{cc} & \text { CHARACT } \\ \mathbf{V F F}_{\mathbf{F}} & \mathbf{l}_{\mathbf{F}} \\ (\mathrm{V}) & /(\mathrm{mA}) \end{array}$	$\begin{gathered} \text { R1STIC } \\ \text { trv } \\ \text { (ns) } \end{gathered}$	$\mathbf{V}_{\mathbf{Z}}: \mathbf{z}$ (V) $/$ (mA)	rot
1N1739A IN1740 IN1740A 1N1741	$\begin{aligned} & s \\ & s \\ & s \\ & s \\ & s \end{aligned}$	$\begin{aligned} & R D \\ & R D \\ & R D \\ & R D \\ & R D \end{aligned}$			$\begin{aligned} & 1 \mathrm{~W} \\ & 1.2 \mathrm{~W} \\ & 1.2 \mathrm{~W} \\ & 1.4 \mathrm{~W} \end{aligned}$						$\begin{array}{r} 31 / 7.5 \\ 37.2 / 7.5 \\ 37.2 / 7.5 \\ 43.4 / 7.5 \end{array}$	5 5 5 5
INI741A 1N1742 1N1742A 1N1745	$\left[\begin{array}{l} s \\ s \\ s \\ s \end{array}\right.$	$\begin{aligned} & R D \\ & R D \\ & R D \\ & R E \end{aligned}$			$\begin{aligned} & 1.4 W \\ & 1.8 W \\ & 1.6 W \end{aligned}$	1.5K	. 38	25/1.5K	15/600		$\begin{aligned} & 43.4 / 7.5 \\ & 49.6 / 7.5 \\ & 49.6 / 7.5 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & 5 \end{aligned}$
1N1746 1N1747 1N1748 1N1749	$\begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}$	$\begin{aligned} & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \end{aligned}$				$\begin{aligned} & 1.5 K \\ & 1.8 K \\ & 1.8 K \\ & 2.4 K \end{aligned}$	$\begin{aligned} & .44 \\ & .36 \\ & .42 \\ & .32 \end{aligned}$	$\begin{aligned} & 25 / 1.5 K \\ & 25 / 1.8 K \\ & 25 / 1.8 K \\ & 25 / 2.4 K \end{aligned}$	$\begin{array}{r} 7.5 / 700 \\ 18 / 600 \\ 9 / 700 \\ 24 / 600 \end{array}$			
1N1750 1N1751 1N1752 1N1753	$\begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}$	$\begin{aligned} & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \end{aligned}$				$\begin{aligned} & 2.4 \mathrm{~K} \\ & 3.6 \mathrm{~K} \\ & 3.6 \mathrm{~K} \\ & 4.8 \mathrm{~K} \end{aligned}$	$\begin{aligned} & .38 \\ & .37 \\ & .36 \\ & .38 \end{aligned}$	$\begin{aligned} & 25 / 2.4 \mathrm{~K} \\ & 25 / 3.6 \mathrm{~K} \\ & 25 / 3.6 \mathrm{~K} \\ & 25 / 4.8 \mathrm{~K} \end{aligned}$	$\begin{aligned} & 12 / 600 \\ & 27 / 600 \\ & 18 / 600 \\ & 36 / 600 \end{aligned}$			
1N1754 1N1755 1N1756 1N1757	$\begin{aligned} & 5 \\ & S \\ & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \end{aligned}$				$\begin{array}{r} 4.8 \mathrm{~K} \\ 6 \mathrm{~K} \\ 6 \mathrm{~K} \\ 7.2 \mathrm{~K} \end{array}$	$\begin{aligned} & .37 \\ & .33 \\ & .41 \\ & .33 \end{aligned}$	$\begin{aligned} & 25 / 4.8 \mathrm{~K} \\ & 25 / 6 \mathrm{~K} \\ & 25 / 6 \mathrm{~K} \\ & 25 / 7.2 \mathrm{~K} \end{aligned}$	$\begin{aligned} & 24 / 600 \\ & 45 / 500 \\ & 30 / 600 \\ & 54 / 500 \end{aligned}$			
1N1758 1N1759 1N1760 1N1761	$\begin{aligned} & \mathrm{s} \\ & \mathrm{~S} \\ & \mathrm{~s} \\ & \mathrm{~s} \end{aligned}$	$\begin{aligned} & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \end{aligned}$				$\begin{array}{r} 7.2 K \\ 8 K \\ 12 K \\ 14 K \end{array}$	$\begin{aligned} & .38 \\ & .29 \\ & .29 \\ & .34 \end{aligned}$	$\begin{aligned} & 25 / 7.2 \mathrm{~K} \\ & 25 / 8 \mathrm{~K} \\ & 25 / 12 \mathrm{~K} \\ & 25 / 14 \mathrm{~K} \end{aligned}$	$\begin{aligned} & 36 / 600 \\ & 60 / 400 \\ & 60 / 400 \\ & 52 / 500 \end{aligned}$			
1N1762 1N1763 1N1763A iN1764	$\begin{aligned} & \mathbf{s} \\ & s \\ & s \\ & s \end{aligned}$	$\begin{aligned} & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \end{aligned}$		$\left\lvert\, \begin{aligned} & \text { TID384 } \\ & \text { TID384 } \\ & \text { TID385 } \end{aligned}\right.$		$\begin{aligned} & 16 K \\ & 400 \\ & 400 \\ & 500 \end{aligned}$	$\begin{array}{r} .29 \\ .5 \\ 1 \\ .5 \end{array}$	$\begin{aligned} & 25 / 16 \mathrm{~K} \\ & 100 / \\ & 500 / \\ & 100 / \end{aligned}$	$\begin{gathered} 60 / 400 \\ 3 / \\ 1.2 / \\ 3 / \end{gathered}$			
1N1764A IN1765 1N1765A 1N1766	$\begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}$	$\begin{aligned} & \mathrm{RE} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \end{aligned}$		T10385 1N4734 1N4734A 1N4735	$\begin{aligned} & \text { iw } \\ & \text { iw } \\ & \text { iw } \end{aligned}$	500	1	500/	1.21		5.6/100 5.6/100 6.2/100	10 5 10
1N1766A 1N1767 1N1767A 1N1768	$\left\lvert\, \begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}\right.$	$\begin{aligned} & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \end{aligned}$		1N4735A 1N4736 IN4736A 1N4737	$\begin{aligned} & \text { iw } \\ & \text { iw } \\ & \text { iw } \\ & \text { iw } \end{aligned}$						$\begin{aligned} & 6.2 / 100 \\ & 6.8 / 100 \\ & 6.8 / 100 \\ & 7.5 / 100 \end{aligned}$	5 10 5 10
1N1768A 1N1769 IN1769A 1N1770	$\begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \end{aligned}$		IN4737A IN4738 1N4738A 1N4739	$\begin{aligned} & \text { iw } \\ & \text { iw } \\ & \text { iw } \\ & \text { iw } \end{aligned}$						$\begin{aligned} & 7.5 / 100 \\ & 8.2 / 100 \\ & 8.2 / 100 \\ & 9.1 / 50 \end{aligned}$	$\begin{array}{r} 5 \\ 10 \\ 5 \\ 10 \end{array}$

TYFE MUMDER			REMACEMENT	$\begin{aligned} & \text { FOR } \\ & \text { NEW } \\ & \text { DESNGN } \end{aligned}$	Ratines			Chanacteristics				
					$\begin{gathered} P_{D} \\ (\mathrm{~mW}) \end{gathered}$	$\begin{aligned} & V_{R} \\ & (V) \end{aligned}$	(A)	$\begin{array}{ll} \mathbf{I}_{\mathrm{R}} & \mathbf{V}_{\mathrm{R}} \\ \mu_{\mathrm{A}} & / \mathbf{V}) \end{array}$	$\begin{array}{ll} \mathbf{V F}_{F} & \mathbf{I F}_{\mathbf{c}} \\ \text { (V) } & \text { (mA) } \end{array}$	$\begin{aligned} & \mathbf{t}_{\boldsymbol{r}} \\ & \text { (nsi) } \end{aligned}$	$\mathbf{V Z}_{\mathbf{Z}}$ - $\mathbf{I z}$ (V) $/$ (ma)	TOL \%
IN1770A 1N1771 IN1771A 1N1772	$\left\lvert\, \begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}\right.$	$\left\|\begin{array}{l} z 0 \\ z D \\ z D \\ z 0 \end{array}\right\|$		1N4739A 1N4740 IN4740A 1N4741	$\begin{aligned} & \text { iw } \\ & \text { iw } \\ & \text { iw } \\ & \text { iw } \end{aligned}$						$\begin{aligned} & 9.1 / 50 \\ & 10 / 50 \\ & 10 / 50 \\ & 11 / 50 \end{aligned}$	5 10 5 10
1N1772A 1N1773 1N1773A 1N1774	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\begin{aligned} & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \end{aligned}$		$\begin{aligned} & \text { IN4741A } \\ & \text { IN4742 } \\ & \text { 1N4742A } \\ & \text { IN4743 } \end{aligned}$	$\begin{aligned} & \text { iw } \\ & \text { iw } \\ & \text { iw } \\ & \text { iw } \end{aligned}$						$\begin{aligned} & 11 / 50 \\ & 12 / 50 \\ & 12 / 50 \\ & 13 / 50 \end{aligned}$	5 10 5 10
1N1774A 1N1775 1N1775A 1N1776	$\left[\begin{array}{l} s \\ s \\ s \\ s \end{array}\right.$	$\begin{aligned} & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \end{aligned}$		IN4743A 1N4744 IN4744A 1N4745	1w IW IW 1W						$\begin{aligned} & 13 / 50 \\ & 15 / 50 \\ & 15 / 50 \\ & 16 / 50 \end{aligned}$	5 10 5 10
1N1776A 1N1777 1N1777A 1N1778	$\begin{aligned} & 5 \\ & s \\ & s \\ & s \end{aligned}$	$\left\|\begin{array}{l} \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \end{array}\right\|$		$\begin{aligned} & \text { 1N4745A } \\ & \text { 1N4746 } \\ & \text { iN4746A } \\ & \text { 1N4747 } \end{aligned}$	$\begin{aligned} & \text { iw } \\ & \text { iw } \\ & \text { iw } \\ & \text { iw } \end{aligned}$						$\begin{aligned} & 16 / 50 \\ & 18 / 50 \\ & 18 / 50 \\ & 20 / 15 \end{aligned}$	5 10 5 10
1N1778A 1N1779 1N1779A 1N1780	$\left\lvert\, \begin{aligned} & \mathbf{s} \\ & \mathbf{S} \\ & \mathrm{S} \\ & \mathbf{s} \end{aligned}\right.$	$\begin{aligned} & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \end{aligned}$		IN4747A 1N4748 IN4748A 1N4749	$\begin{aligned} & \text { iw } \\ & \text { iw } \\ & \text { iw } \\ & \text { iw } \end{aligned}$						$\begin{aligned} & 20 / 15 \\ & 22 / 15 \\ & 22 / 15 \\ & 24 / 15 \end{aligned}$	5 10 5 10
1N1780A 1N1781 1N1781A INI782	$\left\lvert\, \begin{aligned} & \mathbf{s} \\ & S \\ & s \\ & s \end{aligned}\right.$	$\begin{aligned} & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \end{aligned}$		$\left\{\begin{array}{l} \text { 1N4749A } \\ \text { 1N4750 } \\ \text { 1N4750A } \\ \text { IN4751 } \end{array}\right.$	$\begin{aligned} & \text { iw } \\ & \text { iw } \\ & \text { iw } \\ & \text { iw } \end{aligned}$						$\begin{aligned} & 24 / 15 \\ & 27 / 15 \\ & 27 / 15 \\ & 30 / 15 \end{aligned}$	5 10 5 10
$\begin{aligned} & \text { 1N1782A } \\ & \text { 1N1783 } \\ & \text { 1N1783A } \\ & \text { 1N1784 } \end{aligned}$	$\left\lvert\, \begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \end{aligned}\right.$		IN4751A 1 N4752 iN4752A	IW IW IW IW						$\begin{aligned} & 30 / 15 \\ & 33 / 15 \\ & 33 / 15 \\ & 36 / 15 \end{aligned}$	5 10 5 10
1N1784A 1N1785 1N1785A 1N1786	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\begin{aligned} & \text { ZD } \\ & \text { ZD } \\ & \text { ZD } \\ & \text { ZD } \end{aligned}$			$\begin{aligned} & \text { iw } \\ & \text { iw } \\ & \text { iw } \\ & \text { iw } \end{aligned}$						$\begin{aligned} & 36 / 15 \\ & 39 / 15 \\ & 39 / 15 \\ & 43 / 15 \end{aligned}$	5 10 5 10
1N1786A 1N1787 1N1787A 1N1788	$\left\lvert\, \begin{aligned} & 5 \\ & s \\ & s \\ & s \end{aligned}\right.$	$\begin{aligned} & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \end{aligned}$			$\begin{aligned} & \text { IW } \\ & \text { 1W } \\ & \text { iW } \\ & \text { iw } \end{aligned}$						$\begin{aligned} & 43 / 15 \\ & 47 / 15 \\ & 47 / 15 \\ & 51 / 15 \end{aligned}$	5 10 5 10
1N1788A IN1789 IN1789A 1N1790	$\left\{\begin{array}{l} s \\ s \\ s \\ s \end{array}\right.$	$\begin{aligned} & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \end{aligned}$			$\begin{aligned} & \text { 1W } \\ & \text { 1w } \\ & \text { iw } \\ & \text { iw } \end{aligned}$						51/15 56/15 56/15 62/5	$\begin{array}{r} 5 \\ 10 \\ 5 \\ 10 \end{array}$

DIODE INTERCHANGEABILITY

TYP: NUMER		$\begin{aligned} & \frac{3}{6} \\ & \frac{3}{3} \\ & 0 \\ & 0 \\ & 8 \end{aligned}$	II	FORNEWDESION	RATINGS			CHARACTERISTICS				
					(mW)	$\mathbf{V}_{\mathbf{R}}$ (V)	1 (A)	$\begin{array}{ll} \mathbf{I}_{\mathbf{R}} & \mathbf{V}_{\mathbf{R}} \\ \mu_{\mathbf{A}} & / \mathbf{V}) \end{array}$	$\begin{array}{cc} V_{F} & F_{F} \\ (\mathrm{~V}) & /(\mathrm{mA}) \end{array}$	$\begin{aligned} & \text { ir } \\ & \text { (ns) } \end{aligned}$	$\begin{array}{ll} V_{z} & I_{z} \\ (V) & /(\mathrm{mA}) \end{array}$	70 *
1NI790A 1N1791 1NI791A iN1792	$\begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}$	$\begin{aligned} & \mathrm{ZD} \\ & \mathrm{zD} \\ & \mathrm{ZD} \\ & \mathrm{zD} \end{aligned}$			$\begin{aligned} & 1 w \\ & 1 w \\ & 1 w \\ & 1 w \end{aligned}$						$\begin{array}{r} 62 / 5 \\ 68 / 5 \\ 68 / 5 \\ 775 / 5 \end{array}$	5 10 5 10
1N1792A 1N1793 1N1793A IN1794	$\left\lvert\, \begin{aligned} & s \\ & 5 \\ & s \\ & s \end{aligned}\right.$	$\begin{aligned} & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{ZD} \end{aligned}$			$\begin{aligned} & \text { IW } \\ & \text { iW } \\ & \text { iw } \\ & \text { iw } \end{aligned}$						$\begin{aligned} & 75 / 5 \\ & 82 / 5 \\ & 82 / 5 \\ & 91 / 5 \end{aligned}$	5 10 5 10
1N1794A 1N1795 1N1795A 1N1796	$\begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 20 \\ & z 0 \\ & 20 \\ & 20 \end{aligned}$			$\begin{aligned} & \text { iw } \\ & \text { iw } \\ & \text { iw } \\ & \text { iw } \end{aligned}$						$\begin{array}{r} 91 / 5 \\ 100 / 5 \\ 100 / 5 \\ 110 / 5 \end{array}$	5 10 5 10
1N1796A 1N1797 1N1797A 1N1798	$\left\lvert\, \begin{aligned} & \mathbf{s} \\ & s \\ & s \\ & s \end{aligned}\right.$	$\begin{aligned} & \mathrm{zD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \end{aligned}$			$\begin{aligned} & \text { iw } \\ & \text { iw } \\ & \text { iw } \\ & \text { iw } \end{aligned}$						$\begin{aligned} & 110 / 5 \\ & 120 / 5 \\ & 120 / 5 \\ & 130 / 5 \end{aligned}$	5 10 5 10
1N1798A 1N1799 1N1799A 1N1800	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\begin{aligned} & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \end{aligned}$			$\begin{aligned} & 1 \mathrm{w} \\ & 1 \mathrm{w} \\ & \mathrm{iw} \\ & \mathrm{iw} \end{aligned}$						$\begin{aligned} & 130 / 5 \\ & 150 / 5 \\ & 150 / 5 \\ & 160 / 5 \end{aligned}$	5 10 5 10
INIB00A 1N1801 IN1801A 1N1802	$\begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}$	$\begin{aligned} & \mathrm{zO} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \end{aligned}$			$\begin{aligned} & \text { iw } \\ & \text { iw } \\ & \text { iw } \\ & \text { iw } \end{aligned}$						$\begin{aligned} & 160 / 5 \\ & 180 / 5 \\ & 180 / 5 \\ & 200 / 5 \end{aligned}$	5 10 5 10
1N1802A 1N1839 1N1840 1N1841	$\begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}$	$\begin{aligned} & \mathrm{ZD} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \end{aligned}$			1w	$\begin{aligned} & 6.8 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & .085 \\ & .077 \\ & .063 \end{aligned}$	$\begin{aligned} & .5 / 6.8 \\ & .5 / 10 \\ & .5 / 15 \end{aligned}$	$\begin{aligned} & 1 / 50 \\ & 1 / 35 \\ & 1 / 23 \end{aligned}$		200/5	5
1N1842 1N1843 IN1844 1N1845	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\begin{aligned} & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \end{aligned}$				22 33 47 68	$\begin{array}{r} .05 \\ .04 \\ .03 \\ .023 \end{array}$	$\begin{aligned} & .1 / 22 \\ & .1 / 33 \\ & .1 / 47 \\ & 1 / 68 \end{aligned}$	$\begin{aligned} & 1 / 12 \\ & 1 / 7 \\ & 1 / 4.5 \\ & 1 / 2.7 \end{aligned}$			
1N1846 1N1847 IN1848 IN1849	$\begin{aligned} & 5 \\ & 5 \\ & 5 \\ & s \end{aligned}$	$\begin{aligned} & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \end{aligned}$				$\begin{aligned} & 100 \\ & 150 \\ & 220 \\ & 330 \end{aligned}$.016 .011 .009 . 007	$\begin{aligned} & 1 / 100 \\ & 3 / 150 \\ & 5 / 220 \\ & 5 / 330 \end{aligned}$	$\begin{aligned} & 1 / 1.5 \\ & 1 / 1 \\ & 4 / 6.5 \\ & 4 / 3 \end{aligned}$			
IN1850 1N1851 IN1852 1N1853	$\begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}$	$\begin{aligned} & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \end{aligned}$				$\begin{array}{r} 470 \\ 6.8 \\ 10 \\ 15 \end{array}$	$\begin{aligned} & .006 \\ & .085 \\ & .077 \\ & .063 \end{aligned}$	$\begin{aligned} & 5 / 470 \\ & .5 / 6.8 \\ & .5 / 10 \\ & .5 / 15 \end{aligned}$	$\begin{aligned} & 4 / 2 \\ & 1 / 50 \\ & 1 / 35 \\ & 1 / 23 \end{aligned}$			

DIODE INTERCHANGEABILITY

TYP: MUMA			TI		ratinos			CHARACTERISTICS				
						$\mathbf{V}_{\mathbf{R}}$ (V)	I (A)	$\begin{array}{ll} L_{R} & \bullet V_{R} \\ \mu & /(V) \end{array}$	$\begin{array}{cc} V_{F} & I_{F} \\ (V) & /(\mathrm{ma}) \end{array}$	$\begin{aligned} & { }^{1 / r r} \\ & (n n) \end{aligned}$	$\mathbf{V}_{\mathbf{z}} \cdot \mathbf{l z}_{\mathbf{z}}$ (V) / (ma)	$\begin{gathered} \text { то } \\ \times \end{gathered}$
iN1854 1N1855 IN1856 1N1857		$\begin{aligned} & R E \\ & R E \\ & R E \\ & R E \\ & R E \end{aligned}$				$\begin{aligned} & 22 \\ & 33 \\ & 47 \\ & 68 \end{aligned}$	$\begin{gathered} .05 \\ .04 \\ .03 \\ .023 \end{gathered}$	$\begin{gathered} .1 / 22 \\ .1 / 33 \\ .1 / 47 \\ 1 / 68 \end{gathered}$	$\begin{aligned} & 1 / 12 \\ & 1 / 7 \\ & 1 / 4.5 \\ & 1 / 2.7 \end{aligned}$			
1N1858 1N1859 IN1860 IN1861	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\begin{aligned} & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \end{aligned}$				$\begin{aligned} & 100 \\ & 150 \\ & 220 \\ & 330 \end{aligned}$	$\begin{aligned} & .016 \\ & .011 \\ & .009 \\ & .007 \end{aligned}$	$\begin{aligned} & 1 / 100 \\ & 3 / 150 \\ & 5 / 220 \\ & 5 / 330 \end{aligned}$	$\begin{aligned} & 1 / 1.5 \\ & 1 / 1 \\ & 4 / 6.5 \\ & 4 / 3 \end{aligned}$			
1N1862 1N1863 1N1864 IN1865	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}\right.$	RE RE RE RE				$\begin{array}{r} 470 \\ 6.8 \\ 10 \\ 15 \end{array}$	$\begin{aligned} & .006 \\ & .085 \\ & .077 \\ & .063 \end{aligned}$	$\begin{aligned} & 5 / 470 \\ & .5 / 6.8 \\ & .5 / 10 \\ & .5 / 15 \end{aligned}$	$\begin{aligned} & 4 / 2 \\ & 1 / 50 \\ & 1 / 35 \\ & 1 / 23 \end{aligned}$			
1N1866 iN1867 1N1868 1N1869	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\begin{aligned} & R E \\ & R E \\ & R E \\ & R E \\ & R E \end{aligned}$				$\begin{aligned} & 22 \\ & 33 \\ & 47 \\ & 68 \end{aligned}$	$\begin{gathered} .05 \\ .04 \\ .03 \\ .023 \end{gathered}$	$\begin{aligned} & .1 / 22 \\ & .1 / 33 \\ & .1 / 47 \\ & 1 / 68 \end{aligned}$	$\begin{aligned} & 1 / 12 \\ & 1 / 7 \\ & 1 / 4.5 \\ & 1 / 2.7 \end{aligned}$			
1N1870 1N1871 1N1872 iN1873	$\left\lvert\, \begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{S} \\ & \mathbf{s} \end{aligned}\right.$	$\left.\begin{array}{\|c\|} \hline R E \\ R E \\ R E \\ \operatorname{RE} \\ \operatorname{RE} \end{array} \right\rvert\,$				$\begin{aligned} & 100 \\ & 150 \\ & 220 \\ & 330 \end{aligned}$.016 .011 .009 .007	$\begin{aligned} & 1 / 100 \\ & 3 / 150 \\ & 5 / 220 \\ & 5 / 330 \end{aligned}$	$\begin{aligned} & 1 / 1.5 \\ & 1 / 1 \\ & 4 / 6.5 \\ & 4 / 3 \end{aligned}$			
1N1874 1N1875 1N1875A 1N1875B	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\left.\begin{aligned} & R E \\ & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \end{aligned} \right\rvert\,$		1N4738 1N4738A	$\begin{aligned} & \text { iw } \\ & \text { iw } \\ & \text { iw } \end{aligned}$	470	. 006	5/470	4/2		$\begin{aligned} & 8.2 / 25 \\ & 8.2 / 25 \\ & 8.2 / 25 \end{aligned}$	10 5 1
1N1876 IN1876A JN18768 1N1877	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\begin{aligned} & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \end{aligned}$		1N4740 IN4740A 1N4742	$\begin{aligned} & 1 \mathbf{1 w} \\ & 1 \mathbf{w} \\ & 1 \mathbf{w} \\ & 1 \mathbf{W} \end{aligned}$						$\begin{aligned} & 10 / 25 \\ & 10 / 25 \\ & 10 / 25 \\ & 12 / 25 \end{aligned}$	10 5 1 10
$\begin{aligned} & \text { 1N1877A } \\ & \text { 1N1877B } \\ & \text { 1N1878 } \\ & \text { 1N1878A } \end{aligned}$	$\left\lvert\, \begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}\right.$	$\left\|\begin{array}{l} \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \end{array}\right\|$		IN4742A IN4744 IN4744A	$\begin{aligned} & \text { iw } \\ & \text { iw } \\ & \text { iw } \\ & \text { iw } \end{aligned}$						$\begin{aligned} & 12 / 25 \\ & 12 / 25 \\ & 15 / 25 \\ & 15 / 25 \end{aligned}$	5 1 10 5
1N1878B iN1879 INI879A 1N18798	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\left\|\begin{array}{l} \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \end{array}\right\|$		$\begin{aligned} & \text { IN4746 } \\ & \text { IN4746A } \end{aligned}$	$\begin{aligned} & \text { iw } \\ & \text { iw } \\ & \text { iw } \\ & \text { iw } \end{aligned}$						$\begin{aligned} & 15 / 25 \\ & 18 / 25 \\ & 18 / 25 \\ & 18 / 25 \end{aligned}$	1 10 5 1
1N1880 1N1880A 1N1880B 1N1881	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\left\|\begin{array}{l} z 0 \\ z 0 \\ z 0 \\ z D \end{array}\right\|$		$\left\{\begin{array}{l} \text { 1N4748 } \\ \text { 1N4748A } \\ \text { IN4750 } \end{array}\right.$	$\begin{aligned} & 16 \\ & 16 \\ & 1 w \\ & 10 \end{aligned}$						$\begin{aligned} & 22 / 8 \\ & 22 / 8 \\ & 22 / 8 \\ & 27 / 8 \end{aligned}$	10 5 1 10

TYPE NUMRER		$\begin{aligned} & \frac{z}{6} \\ & \frac{2}{3} \\ & \frac{3}{3} \\ & 3 \end{aligned}$	$\begin{gathered} \text { TI } \\ \text { REPLACEMENT } \end{gathered}$		datines			CHARACTERISTICS					
					PD (mW)	$\mathbf{V}_{\mathbf{R}}$ (V)	(A)	$\begin{array}{ll} \mathbf{I}_{\mathbf{R}} & \mathbf{V}_{\mathbf{R}} \\ \mu \mathbf{A} & / \mathbf{V}) \end{array}$	$\mathbf{V}_{\mathbf{F}}$ (V)	$\begin{gathered} \mathrm{I}_{\mathbf{F}} \\ /(\mathrm{mA}) \end{gathered}$	$\begin{aligned} & I_{V r} \\ & \text { (ns) } \end{aligned}$	$\begin{aligned} & V_{z} \subset I_{z} \\ & (V) /(\mathrm{mA}) \end{aligned}$	TOL *
1N1881A 1N18818 iN1882 1N1882A	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\begin{aligned} & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \end{aligned}$		1N4750A 1N4752 1N4752A	$\begin{aligned} & \text { iw } \\ & \text { iw } \\ & \text { iw } \\ & \text { iw } \end{aligned}$							$\begin{aligned} & 27 / 8 \\ & 27 / 8 \\ & 33 / 8 \\ & 33 / 8 \end{aligned}$	5 1 10 5
1N1882B 1N1883 1N1883A 1N18838	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\left(\left.\begin{array}{l} \mathrm{ZD} \\ \mathrm{ZD} \\ \mathrm{ZD} \\ \mathrm{ZD} \end{array} \right\rvert\,\right.$			IW IW IW IW							$\begin{aligned} & 33 / 8 \\ & 39 / 8 \\ & 39 / 8 \\ & 39 / 8 \end{aligned}$	1 10 5 1
1N1884 1N1884A IN1884B INI885	$\left\lvert\, \begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}\right.$	$\begin{aligned} & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \end{aligned}$			iw iw iw iw							$\begin{aligned} & 47 / 8 \\ & 47 / 8 \\ & 47 / 8 \\ & 56 / 8 \end{aligned}$	$\begin{array}{r} 10 \\ 5 \\ 1 \\ 10 \end{array}$
1N1885A 1N1885B 1N1886 1N1886A	$\left\lvert\, \begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}\right.$	$\begin{aligned} & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \end{aligned}$			IW IW IW IW							$56 / 8$ $56 / 8$ $68 / 3$ $68 / 3$	5 1 10 5
1N1886B 1N1887 IN1887A iN1887B	$\begin{aligned} & \mathrm{s} \\ & \mathrm{~S} \\ & \mathrm{~s} \\ & \mathrm{~s} \end{aligned}$	$\begin{aligned} & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \end{aligned}$			IW IW 1W IW							68/3 82/3 82/3 82/3	1 10 5 1
1N1888 IN1888A 1N1888B 1N1889	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\begin{aligned} & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \end{aligned}$			$\begin{aligned} & \text { iw } \\ & \text { iw } \\ & \text { iw } \\ & \text { iw } \end{aligned}$							$\begin{aligned} & 100 / 3 \\ & 100 / 3 \\ & 100 / 3 \\ & 120 / 3 \end{aligned}$	10 5 1 10
1N1889A 1N1889B IN1890 INI890A	$\begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}$	$\begin{aligned} & \mathrm{zo} \\ & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \end{aligned}$			$\begin{aligned} & 1 w \\ & 1 w \\ & 1 w \\ & 1 w \end{aligned}$							$\begin{aligned} & 120 / 3 \\ & 120 / 3 \\ & 150 / 3 \\ & 150 / 3 \end{aligned}$	$\begin{array}{r} 5 \\ 1 \\ 10 \\ 5 \end{array}$
1N1890* 1N1907 1N1908 IN1909	$\begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}$	$\left\|\begin{array}{l} Z D \\ R E \\ R E \\ R E \end{array}\right\|$		1N4001 1N4002 iN4003	IW	$\begin{array}{r} 50 \\ 100 \\ 200 \end{array}$	$\begin{aligned} & 1.5 \\ & 1.5 \\ & 1.5 \end{aligned}$	10/50 10/100 10/200		$\begin{aligned} & 1 / 1 \\ & 1 / 1 \\ & 1 / 1 \end{aligned}$		150/3	1
1N1910 1N1911 IN1912 1N1913	$\begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{S} \end{aligned}$	$\begin{aligned} & \mathbf{R E} \\ & \mathbf{R E} \\ & \mathbf{R E} \\ & \mathbf{R E} \end{aligned}$		1N4004 1N4004 1N4005 1N4005		$\begin{aligned} & 300 \\ & 400 \\ & 500 \\ & 600 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \\ & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 10 / 300 \\ & 10 / 400 \\ & 10 / 500 \\ & 10 / 600 \end{aligned}$		$\begin{aligned} & 1 / 1 \\ & 1 / 1 \\ & 1 / 1 \\ & 1 / 1 \end{aligned}$			
1N1914 IN1915 1N1916 1N1917	$\begin{aligned} & s \\ & 5 \\ & 5 \\ & 5 \end{aligned}$	$\begin{gathered} R E \\ R E \\ R E \\ R E \end{gathered}$		1N4006 1N4006 IN4007		$\begin{array}{r} 700 \\ 800 \\ 900 \\ 50 \end{array}$	$\begin{array}{r} 1.5 \\ 1.5 \\ 1.5 \\ 4 \end{array}$	$\begin{aligned} & 10 / 700 \\ & 10 / 800 \\ & 10 / 900 \\ & 10 / 50 \end{aligned}$		$\begin{aligned} & 1 / 1 \\ & 1 / 1 \\ & 1 / 1 \\ & 1 / 1 \end{aligned}$			

TYPE NUMEER			π REPLACEMENT		RATINGS			CHARACTERISTICS				
						$\mathbf{V}_{\mathbf{R}}$ (V)	1 (A)	$\begin{array}{ll} \mathbf{l}_{\mathbf{R}} & \mathbf{V}_{\mathbf{R}} \\ \mu_{\mathbf{A}} & /(\mathbf{V}) \end{array}$	$\mathbf{V}_{F} \cdot \mathbf{I}_{\mathbf{F}}$ (V) $/(\mathrm{mA})$	IT (ns)	$\mathbf{V}_{\mathbf{Z}}$ - \mathbf{z} (V) $/(\mathrm{mA})$	$\begin{gathered} \text { rot } \\ \% \end{gathered}$
1N1918 1N1919 1N1920 1N1921	$\begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}$	$\begin{aligned} & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \end{aligned}$				100 200 300 400	4 4 4 4	10/100 10/200 10/300 10/400	$\begin{aligned} & 1 / 1 \\ & 1 / 1 \\ & 1 / 1 \\ & 1 / 1 \end{aligned}$			
1N1922 IN1923 1NI924 IN1925	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\begin{aligned} & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \end{aligned}$				$\begin{aligned} & 500 \\ & 600 \\ & 700 \\ & 800 \end{aligned}$	$\begin{aligned} & 4 \\ & 4 \\ & 4 \\ & 4 \end{aligned}$	$\begin{aligned} & 10 / 500 \\ & 10 / 600 \\ & 10 / 700 \\ & 10 / 800 \end{aligned}$	$\begin{aligned} & 1 / 1 \\ & 1 / 1 \\ & 1 / 1 \\ & 1 / 1 \end{aligned}$			
IN1926 IN1927 1N1927A IN1927B	$\begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$	$\left\lvert\, \begin{aligned} & R E \\ & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \end{aligned}\right.$		$\begin{array}{\|l\|l\|} \text { IN5228A } \\ \text { IN5228B } \end{array}$	$\begin{aligned} & 200 \\ & 200 \\ & 200 \end{aligned}$	900	4	10/900	$1 / 1$		$\begin{aligned} & 3.9 / 5 \\ & 3.9 / 5 \\ & 3.9 / 5 \end{aligned}$	10 5 1
1N1928 1N1928A 1N1928B 1N1929	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\begin{aligned} & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{ZD} \end{aligned}$		$\begin{aligned} & \text { IN5230A } \\ & \text { IN5230B } \\ & \text { IN5232A } \end{aligned}$	$\begin{aligned} & 200 \\ & 200 \\ & 200 \\ & 200 \end{aligned}$						$\begin{aligned} & 4.7 / 5 \\ & 4.7 / 5 \\ & 4.7 / 5 \\ & 5.6 / 5 \end{aligned}$	10 5 1 10
$\begin{array}{\|l} \text { 1N1929A } \\ \text { 1N1929B } \\ \text { 1N1930 } \\ \text { 1N1930A } \end{array}$	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \end{aligned}\right.$		$\left\{\begin{array}{l} \text { IN5232B } \\ \text { IN5235A } \\ \text { IN5235B } \end{array}\right.$	$\begin{aligned} & 200 \\ & 200 \\ & 200 \\ & 200 \end{aligned}$						$\begin{aligned} & 5.6 / 5 \\ & 5.6 / 5 \\ & 6.8 / 5 \\ & 6.8 / 5 \end{aligned}$	5 1 10 5
1N1930B IN1931 1N1931A IN1931B	$\begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}$	$\begin{aligned} & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \end{aligned}$		$\left\lvert\, \begin{aligned} & \text { IN5237A } \\ & \text { IN5237B } \end{aligned}\right.$	$\begin{aligned} & 200 \\ & 200 \\ & 200 \\ & 200 \end{aligned}$						$\begin{aligned} & 6.8 / 5 \\ & 8.2 / 5 \\ & 8.2 / 5 \\ & 8.2 / 5 \end{aligned}$	1 10 5 1
1N1932 IN1932A 1N1932B 1N1933	$\begin{aligned} & \mathbf{s} \\ & s \\ & s \\ & s \end{aligned}$	$\left\|\begin{array}{l} \mathrm{ZD} \\ \mathrm{ZD} \\ \mathrm{ZD} \\ \mathrm{ZD} \end{array}\right\|$		$\left\{\begin{array}{l} \text { 1N5240A } \\ \text { iN5240B } \\ \text { 1N5242A } \end{array}\right.$	$\begin{aligned} & 200 \\ & 200 \\ & 200 \\ & 200 \end{aligned}$						$\begin{aligned} & 10 / 5 \\ & 10 / 5 \\ & 10 / 5 \\ & 12 / 1 \end{aligned}$	10 5 1 10
$\begin{aligned} & \text { IN1933A } \\ & \text { IN1933B } \\ & \text { IN1934 } \\ & \text { IN1934A } \end{aligned}$	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\left.\begin{aligned} & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \end{aligned} \right\rvert\,$		$\left\lvert\, \begin{aligned} & \text { 1N5242B } \\ & \text { 1N5245A } \\ & \text { 1N52458 } \end{aligned}\right.$	$\begin{aligned} & 200 \\ & 200 \\ & 200 \\ & 200 \end{aligned}$						$\begin{aligned} & 12 / 1 \\ & 12 / 1 \\ & 15 / 1 \\ & 15 / 1 \end{aligned}$	5 1 10 5
1N1934B IN1935 1N1935A 1N1935B	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\begin{aligned} & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \end{aligned}$		$\begin{aligned} & \text { 1N5248A } \\ & \text { iN5248B } \end{aligned}$	$\begin{aligned} & 200 \\ & 200 \\ & 200 \\ & 200 \end{aligned}$						$\begin{aligned} & 15 / 1 \\ & 18 / 1 \\ & 18 / 1 \\ & 18 / 1 \end{aligned}$	1 10 5 1
1N1936 1N1936A 1N1936B 1N1937	$\begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{S} \\ & \mathbf{s} \end{aligned}$	$\left.\begin{aligned} & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \end{aligned} \right\rvert\,$		$\begin{aligned} & \text { IN5251A } \\ & \text { IN5251B } \\ & \text { IN5254A } \end{aligned}$	$\begin{aligned} & 200 \\ & 200 \\ & 200 \\ & 200 \end{aligned}$						$\begin{aligned} & 22 / 1 \\ & 22 / 1 \\ & 22 / 1 \\ & 27 / 1 \end{aligned}$	$\begin{array}{r} 10 \\ 5 \\ 1 \\ 10 \end{array}$

DIODE INTERCHANGEABILITY

TYPE NUMBER		$\begin{aligned} & 3 \\ & \frac{2}{2} \\ & 5 \\ & 5 \\ & 5 \\ & 0 \end{aligned}$	II		Ratines			CNARACHERStics				
						$\mathbf{V}_{\mathbf{R}}$ (V)	1 (A)	$\begin{array}{ll} \mathbf{n} & \mathbf{V}_{\mathrm{R}} \\ \mu \mathrm{~A} & /(\mathrm{V}) \end{array}$	$\begin{array}{ccc} V_{F} & i_{7} \\ \text { (V) } & 1 \mathrm{ma}) \end{array}$	$\mathbf{t}_{\mathbf{T}}$ (n)	$\mathbf{v}_{\mathbf{z}}$ - $\mathbf{z}_{\mathbf{Z}}$ (V) $/$ (mA)	$\begin{gathered} \text { ror } \\ \% \end{gathered}$
1N1937A 1N1937B 1N1938 INI938A	$\begin{aligned} & \hline 5 \\ & s \\ & s \\ & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & \mathrm{zO} \\ & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \end{aligned}$		$\begin{aligned} & \text { 1N5254B } \\ & \text { 1N5257A } \\ & \text { 1N52578 } \end{aligned}$	$\begin{aligned} & 200 \\ & 200 \\ & 200 \\ & 200 \end{aligned}$						$\begin{aligned} & 27 / 1 \\ & 27 / 1 \\ & 33 / .2 \\ & 33 / .2 \end{aligned}$	5 1 10 5
1N1938B 1N1939 iN1939A 1N19398	$\begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}$	$\begin{aligned} & \mathrm{zo} \\ & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \end{aligned}$			$\begin{aligned} & 200 \\ & 200 \\ & 200 \\ & 200 \end{aligned}$						$\begin{aligned} & 33 / .2 \\ & 39 / .2 \\ & 39 / .2 \\ & 39 / .2 \end{aligned}$	1 10 5 1
IN1940 1N1940A 1N1940* 1N1941	$\begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}$	$\begin{aligned} & \mathrm{zo} \\ & \mathrm{zo} \\ & \mathrm{zD} \\ & \mathrm{zD} \end{aligned}$			$\begin{aligned} & 200 \\ & 200 \\ & 200 \\ & 200 \end{aligned}$						471.2 $47 / .2$ 47/.2 56/.2	10 5 1 10
INI941A 1N1941B 1N1942 1N1942A	$\left\lvert\, \begin{aligned} & s \\ & 5 \\ & s \\ & s \\ & s \end{aligned}\right.$	$\begin{aligned} & \mathrm{zD} \\ & \mathrm{zo} \\ & \mathrm{zD} \\ & \mathrm{zD} \end{aligned}$			$\begin{aligned} & 200 \\ & 200 \\ & 200 \\ & 200 \end{aligned}$						$\begin{aligned} & 56 / .2 \\ & 56 / .2 \\ & 68 / .2 \\ & 68 / .2 \end{aligned}$	5 1 10 5
1N1942B 1N1943 1N1943A 1N1943B	$\begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \end{aligned}$			$\begin{aligned} & 200 \\ & 200 \\ & 200 \\ & 200 \end{aligned}$				-		$\begin{aligned} & 68 / .2 \\ & 82 / .2 \\ & 82 / .2 \\ & 82 / .2 \end{aligned}$	1 10 5 1
IN1944 iN194dA 1N1944B IN1945	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\begin{aligned} & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \end{aligned}$			$\begin{aligned} & 200 \\ & 200 \\ & 200 \\ & 200 \end{aligned}$	-			.		$\begin{aligned} & 100 / .2 \\ & 100 / .2 \\ & 100 / .2 \\ & 120 / .2 \end{aligned}$	10 5 1 10
1N1945A 1N1945 IN1946 1N1946A	$\begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}$	$\begin{aligned} & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \end{aligned}$			$\begin{aligned} & 200 \\ & 200 \\ & 200 \\ & 200 \end{aligned}$						$\begin{aligned} & 120 / .2 \\ & 120 / .2 \\ & 150 / .1 \\ & 150 / .1 \end{aligned}$	5 1 10 5
1N1946B 1N1947 1N1947A 1N19478	$\begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}$	$\begin{aligned} & \mathrm{ZD} \\ & \mathrm{zD} \\ & \mathrm{ZD} \\ & \mathrm{zD} \end{aligned}$			$\begin{aligned} & 200 \\ & 200 \\ & 200 \\ & 200 \end{aligned}$						$\begin{aligned} & 150 / .1 \\ & 180 / .1 \\ & 180 / .1 \\ & 180 / .1 \end{aligned}$	1 10 5 1
1N1948 IN1948A 1N1948B 1N1949	$\begin{aligned} & 5 \\ & s \\ & s \\ & s \end{aligned}$	$\begin{aligned} & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \end{aligned}$			$\begin{aligned} & 200 \\ & 200 \\ & 200 \\ & 200 \end{aligned}$						$\begin{aligned} & 220 / .1 \\ & 220 / .1 \\ & 220 / .1 \\ & 270 / .1 \end{aligned}$	10 5 1 10
1N1949A 1N1949B 1N1950 1N1950A	$\begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}$	$\begin{aligned} & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \end{aligned}$			$\begin{aligned} & 200 \\ & 200 \\ & 200 \\ & 200 \end{aligned}$						$\begin{aligned} & 270 / .1 \\ & 270 / .1 \\ & 330 / .1 \\ & 330 / .1 \end{aligned}$	$\begin{array}{r} 5 \\ 1 \\ 10 \\ 5 \end{array}$

TYFE		$\begin{aligned} & \frac{5}{3} \\ & \frac{3}{3} \\ & \frac{8}{3} \end{aligned}$	$\begin{gathered} \text { II } \\ \text { exacement } \end{gathered}$		ratines			CHARACTERESICS				
						$\begin{aligned} & V_{\mathbf{R}} \\ & (\mathrm{V}) \end{aligned}$	I (A)	$\begin{array}{ll} \mathbf{L}_{\mathbf{R}} & \mathbf{V}_{\mathrm{R}} \\ \boldsymbol{\mu} \mathrm{~A} & (\mathrm{~V}) \end{array}$	$\begin{array}{ccc} \mathbf{V}_{F} & \text { F } \\ \text { (V) } & /(\mathrm{ma}) \end{array}$	${ }^{\boldsymbol{f}}$ (n s)	$\mathbf{V Z}_{\mathbf{2}}$ - \mathbf{z} (V) / (ma)	$\begin{gathered} \text { TOR } \\ \times \end{gathered}$
1N19503 1N1951 IN1951A 1N19518	$\begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}$	$\begin{aligned} & z 0 \\ & z 0 \\ & z 0 \\ & z 0 \end{aligned}$			$\begin{aligned} & 200 \\ & 200 \\ & 200 \\ & 200 \end{aligned}$						$\begin{aligned} & 330 / .1 \\ & 390 / .1 \\ & 390 / .1 \\ & 390 / .1 \end{aligned}$	1 10 5 1
1N1952 IN1952A 1N1952B 1N1953	$\left\lvert\, \begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}\right.$	$\begin{aligned} & \mathrm{zo} \\ & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zo} \end{aligned}$			$\begin{aligned} & 200 \\ & 200 \\ & 200 \\ & 200 \end{aligned}$						$\begin{aligned} & 470 / .1 \\ & 470 / .1 \\ & 470 / .1 \\ & 560 / .1 \end{aligned}$	10 5 1 10
IN1953A IN1953: IN1954 1N1954A	$\left\lvert\, \begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & z 0 \\ & z 0 \\ & z 0 \\ & z 0 \end{aligned}\right.$		$\left\lvert\, \begin{aligned} & \text { iN5228A } \\ & \text { iN52288 } \end{aligned}\right.$	$\begin{aligned} & 200 \\ & 200 \\ & 400 \\ & 400 \end{aligned}$						$\begin{gathered} 560 / .1 \\ 560 / .1 \\ 3.9 / 5 \\ 3.9 / 5 \end{gathered}$	5 1 10 5
1N19348 1N1955 1N1955A 1N19558	$\left\lvert\, \begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}\right.$	$\begin{aligned} & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \end{aligned}$		$\begin{array}{\|l} \text { IN5230A } \\ \text { IN5230 } \end{array}$	$\begin{aligned} & 400 \\ & 400 \\ & 400 \\ & 400 \end{aligned}$						$\begin{aligned} & 3.9 / 5 \\ & 4.7 / 5 \\ & 4.7 / 5 \\ & 4.7 / 5 \end{aligned}$	1 10 5 1
1N1956 1N1956A 1N19568 IN1957	$\left\lvert\, \begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}\right.$	$\begin{aligned} & z 0 \\ & z 0 \\ & z 0 \\ & z 0 \end{aligned}$.	$\left\lvert\, \begin{aligned} & \text { IN5232A } \\ & \text { IN52328 } \end{aligned}\right.$ 1N5235A	$\begin{array}{r} 400 \\ 400 \\ 400 \\ 400 \end{array}$						$\begin{aligned} & 5.6 / 5 \\ & 5.6 / 5 \\ & 5.6 / 5 \\ & 6.8 / 5 \end{aligned}$	10 5 1 10
1N1957A 1N1957 iN1958 1N1958A	$\left\lvert\, \begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}\right.$	$\begin{aligned} & \mathrm{zo} \\ & \mathrm{zb} \\ & \mathrm{zo} \\ & 20 \end{aligned}$		$\begin{aligned} & \text { 1N52355 } \\ & \text { 1N5237A } \\ & \text { 1N5237: } \end{aligned}$	$\begin{array}{r} 400 \\ 400 \\ 400 \\ 400 \end{array}$,				$\begin{aligned} & 6.8 / 5 \\ & 6.8 / 5 \\ & 8.2 / 5 \\ & 8.2 / 5 \end{aligned}$	5 1 10 5
1N19588 1N1959 1N1959A 1N1959	$\left\lvert\, \begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}\right.$	$\begin{aligned} & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zo} \end{aligned}$		$\begin{aligned} & \text { IN5240A } \\ & \text { IN52408 } \end{aligned}$	$\begin{array}{r} 400 \\ 400 \\ 400 \\ 400 \end{array}$						$\begin{aligned} & 8.2 / 5 \\ & 10 / 5 \\ & 10 / 5 \\ & 10 / 5 \end{aligned}$	1 10 5 1
IN1960 1N1960A IN19608 1N1961	$\begin{aligned} & 5 \\ & s \\ & s \\ & s \end{aligned}$	$\begin{aligned} & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \end{aligned}$		$\begin{aligned} & \text { IN5242A } \\ & \text { IN5242B } \\ & \text { IN5245A } \end{aligned}$	$\begin{array}{r} 400 \\ 400 \\ 400 \\ 400 \end{array}$						$\begin{aligned} & 12 / 1 \\ & 12 / 1 \\ & 12 / 1 \\ & 15 / 1 \end{aligned}$	10 5 1 10
1N1961A IN1961s 1N1962 IN1962A	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\left\|\begin{array}{l} \mathrm{ZD} \\ \mathrm{ZD} \\ \mathrm{ZD} \\ \mathrm{ZD} \end{array}\right\|$		$\left\lvert\, \begin{aligned} & \text { IN52A5B } \\ & \text { IN5248A } \\ & \text { IN5248B } \end{aligned}\right.$	$\begin{array}{r} 400 \\ 400 \\ 400 \\ 400 \end{array}$						$\begin{aligned} & 15 / 1 \\ & 15 / 1 \\ & 18 / 1 \\ & 18 / 1 \end{aligned}$	5 1 10 5
1N1962B IN1963 1N1963A IN1963	$\left\lvert\, \begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}\right.$	$\begin{aligned} & 20 \\ & 20 \\ & 20 \\ & 20 \end{aligned}$		$\begin{aligned} & \text { IN5251A } \\ & \text { IN52518 } \end{aligned}$	$\begin{array}{r} 400 \\ 400 \\ 400 \\ 400 \end{array}$						$\begin{aligned} & 18 / 1 \\ & 22 / 1 \\ & 22 / 1 \\ & 22 / 1 \end{aligned}$	1 10 5 1

DIODE INTERCHANGEABILITY

TYFE NuMBE	$\begin{aligned} & 3 \\ & \frac{3}{3} \\ & \frac{3}{3} \end{aligned}$		TITERACEMENT	$\begin{aligned} & \text { FON } \\ & \text { NEW } \\ & \text { DEsich } \end{aligned}$	datines			CHARACTEASTICS				
					$\begin{gathered} \mathbf{P D}_{\mathbf{D}} \\ (\mathbf{m W}) \end{gathered}$	V_{R} (V)	1 (A)	$\begin{array}{ll} \mathbf{m}_{\mathbf{R}} & \mathbf{V}_{\mathrm{R}} \\ \boldsymbol{\mu} & (\mathrm{~V}) \end{array}$	$\left.\begin{array}{lll} V_{F} & i \end{array} \right\rvert\,$	$\begin{aligned} & t_{r} \\ & \text { (ns) } \end{aligned}$	$\mathbf{v}_{\mathbf{z}} \bullet \mathbf{l}_{\mathbf{z}}$ (V) $/$ (mA)	$\begin{aligned} & \text { rot } \\ & \% \end{aligned}$
1N1977A 1N1977B 1N1978 IN1978A	$\left\lvert\, \begin{aligned} & s \\ & 5 \\ & 5 \\ & 5 \end{aligned}\right.$	$\begin{aligned} & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \end{aligned}$			$\begin{array}{r} 400 \\ 400 \\ 400 \\ 400 \end{array}$						$\begin{aligned} & 330 / .1 \\ & 330 / .1 \\ & 390 / .1 \\ & 390 / .1 \end{aligned}$	5 1 10 5
1N19788 1N1979 1N1979A 1N19798	$\left\lvert\, \begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}\right.$	$\left\|\begin{array}{l} \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \end{array}\right\|$			400 400 400 400						$390 / .1$ 470/.1 470/.1 470/.1	1 10 5 1
1N1980 1N1980A IN19808 IN1981	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\begin{aligned} & z 0 \\ & z D \\ & z D \\ & z 0 \end{aligned}$		in5228A	400 400 400 150			-			$\begin{gathered} 560 / .1 \\ 560 / .1 \\ 560 / .1 \\ 3.9 / 5 \end{gathered}$	10 5 1 10
IN1981A IN19818 IN1982 1N1982A	$\left\lvert\, \begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}\right.$	$\begin{aligned} & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \end{aligned}$		1N52288 IN5230A IN52308	$\begin{aligned} & 150 \\ & 150 \\ & 150 \\ & 150 \end{aligned}$			-			$\begin{aligned} & 3.9 / 5 \\ & 3.9 / 5 \\ & 4.7 / 5 \\ & 4.7 / 5 \end{aligned}$	5 1 10 5
1N1982B 1N1983 1N1983A 1N19838	$\left\lvert\, \begin{aligned} & 5 \\ & s \\ & 5 \\ & s \end{aligned}\right.$	$\begin{aligned} & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \end{aligned}$		$\left\lvert\, \begin{aligned} & \text { IN5232A } \\ & \text { IN5232B } \end{aligned}\right.$	$\begin{aligned} & 150 \\ & 150 \\ & 150 \\ & 150 \end{aligned}$						$4.7 / 5$ 5.6/5 5.6/5 5.6/5	1 10 5 1
1N1984 1N1984A 1N1984B 1N1985	$\begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}$	$\begin{aligned} & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \end{aligned}$		$\begin{aligned} & \text { IN5235A } \\ & \text { IN52358 } \\ & \text { IN5237A } \end{aligned}$	$\begin{aligned} & 150 \\ & 150 \\ & 150 \\ & 150 \end{aligned}$						6.8/5 6.8/5 6.8/5 8.2/5	10 5 1 10
1N1985A 1N1985B IN1986 1N1986A	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\begin{aligned} & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \end{aligned}$		$\begin{aligned} & \text { IN52378 } \\ & \text { IN5240A } \\ & \text { IN5240B } \end{aligned}$	$\begin{aligned} & 150 \\ & 150 \\ & 150 \\ & 150 \end{aligned}$						$\begin{gathered} 8.2 / 5 \\ 8.2 / 5 \\ 10 / 5 \\ 10 / 5 \end{gathered}$	5 1 10 5
IN19668 IN1987 IN1987A 1N1987B	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\begin{aligned} & \mathrm{zo} \\ & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \end{aligned}$		$\begin{aligned} & \text { 1N5242A } \\ & \text { IN5242B } \end{aligned}$	$\begin{aligned} & 150 \\ & 150 \\ & 150 \\ & 150 \end{aligned}$						$\begin{aligned} & 10 / 5 \\ & 12 / 1 \\ & 12 / 1 \\ & 12 / 1 \end{aligned}$	1 10 5 1
1N1988 IN1988A IN19888 IN1989	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\begin{aligned} & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \end{aligned}$		IN5245A 1N52458 IN5248A	$\begin{aligned} & 150 \\ & 150 \\ & 150 \\ & 150 \end{aligned}$						$\begin{aligned} & 15 / 1 \\ & 15 / 1 \\ & 15 / 1 \\ & 18 / 1 \end{aligned}$	10 5 1 10
$\begin{aligned} & \text { IN1989A } \\ & \text { IN1989B } \\ & \text { IN1990 } \\ & \text { IN1990A } \end{aligned}$	\$	$\left.\begin{aligned} & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \end{aligned} \right\rvert\,$		$\left\{\begin{array}{l} \text { IN52488 } \\ \text { IN5251A } \\ \text { IN52518 } \end{array}\right.$	$\begin{aligned} & 150 \\ & 150 \\ & 150 \\ & 150 \end{aligned}$						$\begin{aligned} & 18 / 1 \\ & 18 / 1 \\ & 22 / 1 \\ & 22 / 1 \end{aligned}$	5 1 10 5

DIODE INTERCHANGEABILITY

$\begin{gathered} \text { TYPE } \\ \text { NUMBER } \end{gathered}$			$\begin{array}{\|c\|} \text { TI } \\ \text { REPLACEMENT } \end{array}$	$\begin{gathered} \text { FOR } \\ \text { NEW } \\ \text { DESGGN } \end{gathered}$	${ }^{P}$ D (mW)	$\begin{gathered} \text { atinges } \\ \mathbf{V}_{\mathbf{R}} \\ \text { (V) } \end{gathered}$	1 (A)	$\begin{array}{ll} I_{R} & V_{R} \\ \mu_{A} & (V) \end{array}$	$\begin{array}{cc} \mathbf{v}_{\mathbf{F}} & \mathbf{l}_{\mathbf{F}} \\ (\mathbf{v}) & 1(\mathrm{~mA}) \end{array}$	ERISTICS ${ }^{1} \pi$ (ns)	$\begin{array}{ccc} v_{z} & \mathrm{z} \\ (\mathrm{v}) & /(\mathrm{mA}) \end{array}$	\%
1N19908 1N1991 1N1991A 1N1991B	$\left[\begin{array}{l} s \\ s \\ s \\ s \end{array}\right.$	$\left\|\begin{array}{l} \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \end{array}\right\|$		IN5254A IN5254B	$\begin{aligned} & 150 \\ & 150 \\ & 150 \\ & 150 \end{aligned}$						$\begin{aligned} & 22 / 1 \\ & 27 / 1 \\ & 27 / 1 \\ & 27 / 1 \end{aligned}$	1 10 5 1
1N1992 IN1992A 1N19928 1N1993	$\begin{aligned} & \mathrm{s} \\ & \mathrm{~s} \\ & \mathrm{~s} \\ & \mathrm{~s} \end{aligned}$	$\left\|\begin{array}{l} \mathrm{zD} \\ \mathrm{ZD} \\ \mathrm{zD} \\ \mathrm{ZD} \end{array}\right\|$		$\begin{array}{\|l\|l\|} \hline \text { IN5257A } \\ \text { 1N5257B } \end{array}$	$\begin{aligned} & 150 \\ & 150 \\ & 150 \\ & 150 \end{aligned}$						$\begin{aligned} & 33 / .2 \\ & 33 / .2 \\ & 33 / .2 \\ & 39 / .2 \end{aligned}$	10 5 1 10
iN1993A 1N1993B IN1994 IN1994A	$\begin{aligned} & \mathrm{s} \\ & \mathrm{~s} \\ & \mathrm{~s} \\ & \mathrm{~s} \end{aligned}$	$\begin{aligned} & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \end{aligned}$			$\begin{aligned} & 150 \\ & 150 \\ & 150 \\ & 150 \end{aligned}$						$\begin{aligned} & 39 / .2 \\ & 39 / .2 \\ & 47 / .2 \\ & 47 / .2 \end{aligned}$	5 1 10 5
1N1994B IN1995 1N1995A 1N1995B	$\begin{aligned} & \mathrm{s} \\ & \mathrm{~s} \\ & \mathrm{~s} \\ & \mathrm{~s} \end{aligned}$				$\begin{aligned} & 150 \\ & 150 \\ & 150 \\ & 150 \end{aligned}$						$\begin{aligned} & 47 / .2 \\ & 56 / .2 \\ & 56 / .2 \\ & 56 / .2 \end{aligned}$	1 10 5 1
iN1995B 1N2000 1N2000A in2000B	$\begin{aligned} & s \\ & s \\ & s \\ & s \\ & s \end{aligned}$	$\left\|\begin{array}{l} \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \end{array}\right\|$			$\begin{aligned} & 150 \\ & 150 \\ & 150 \\ & 150 \end{aligned}$						$\begin{array}{r} 56 / .2 \\ 150 / .1 \\ 150 / .1 \\ 150 / .1 \end{array}$	1 10 5 1
1N2001 in2001A 1N2001B 1N2002	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\left.\begin{aligned} & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \end{aligned} \right\rvert\,$			$\begin{aligned} & 150 \\ & 150 \\ & 150 \\ & 150 \end{aligned}$						180/.1 180/. 1 180/. 1 220/. 1	10 5 1 10
in2002A iN2002B IN2003 IN2003A	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\left\|\begin{array}{l} \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \end{array}\right\|$			$\begin{aligned} & 150 \\ & 150 \\ & 150 \\ & 150 \end{aligned}$						$\begin{aligned} & 220 / .1 \\ & 220 / .1 \\ & 270 / .1 \\ & 270 / .1 \end{aligned}$	5 1 10 5
1N2003B IN2004 in2004A 1N2004B	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\begin{aligned} & \mathrm{zo} \\ & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \end{aligned}$			$\begin{aligned} & 150 \\ & 150 \\ & 150 \\ & 150 \end{aligned}$						$\begin{aligned} & 270 \% .1 \\ & 330 / .1 \\ & 333 / .1 \\ & 330 / .1 \end{aligned}$	1 10 5 1
iN2005 1N2005A 1N2005E 1N2006	$\begin{aligned} & s \\ & s \\ & s \\ & s \\ & s \end{aligned}$	$\left\|\begin{array}{l} \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \end{array}\right\|$			$\begin{aligned} & 150 \\ & 150 \\ & 150 \\ & 150 \end{aligned}$						$\begin{aligned} & 390 \% .1 \\ & 390 / .1 \\ & 390 / .1 \\ & 470 / .1 \end{aligned}$	10 5 1 10
1N2006A 1N2006B 1N2007 1N2007A	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\left\|\begin{array}{l} \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \end{array}\right\|$			$\begin{aligned} & 150 \\ & 150 \\ & 150 \\ & 150 \end{aligned}$						470/.1 470/. 1 560/. 1 560\%. 1	5 1 10 5

TYPE NUMDER	33畐3	$\begin{aligned} & \frac{7}{6} \\ & \frac{3}{3} \\ & \frac{2}{4} \\ & \frac{3}{3} \end{aligned}$	TI	$\begin{aligned} & \text { FOR } \\ & \text { NEW } \\ & \text { DESSCN } \end{aligned}$	RATINES			CHARACTERISTICS				
						$\mathbf{V}_{\mathbf{R}}$ (V)	> I (A)	$\begin{array}{ll} \mathbf{L}_{\mathrm{R}} & \bullet \mathrm{~V}_{\mathrm{R}} \\ \boldsymbol{\mu} & /(\mathrm{V}) \end{array}$	$\begin{array}{ccc} V_{F} & \bullet & \mathbf{F} \\ (V) & /(\mathrm{m} A) \end{array}$	$\begin{aligned} & \mathrm{IN} \\ & \text { (ns) } \end{aligned}$	$\mathbf{V}_{\mathbf{z}}$ - \mathbf{z} (V) $/$ (mA)	TOL \%
$\begin{aligned} & \text { 1N2007B } \\ & \text { 1N2013 } \\ & \text { 1N2014 } \\ & \text { 1N2015 } \end{aligned}$	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & \mathrm{ZD} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \end{aligned}\right.$		1N4001 1N4002 1N4003	150	50 100 150	.2 .2 .2	$\begin{aligned} & 1 / 50 \\ & 1 / 100 \\ & 1 / 150 \end{aligned}$	$\begin{aligned} & 1.5 / 500 \\ & 1.5 / 500 \\ & 1.5 / 500 \end{aligned}$		560/.1	1
1N2016 1N2017 iN2018 1N2019	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\begin{aligned} & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \end{aligned}$		1N4003 in4004 intoon 1N4004		200 250 300 350	.2 .2 .2 .2	$\begin{aligned} & 1 / 200 \\ & 1 / 250 \\ & 1 / 300 \\ & 1 / 350 \end{aligned}$	$\begin{aligned} & 1.5 / 500 \\ & 1.5 / 500 \\ & 1.5 / 500 \\ & 1.5 / 500 \end{aligned}$			
$\begin{aligned} & \text { 1N2020 } \\ & \text { IN2021 } \\ & \text { IN2022 } \\ & \text { 1N2023 } \end{aligned}$	$\begin{aligned} & \mathbf{S} \\ & \mathbf{S} \\ & \mathbf{S} \\ & \mathbf{S} \end{aligned}$	$\begin{aligned} & \mathbf{R E} \\ & \mathbf{R E} \\ & \mathbf{R E} \\ & \mathbf{R E} \end{aligned}$		1N4004		$\begin{aligned} & 400 \\ & 150 \\ & 250 \\ & 300 \end{aligned}$	$\begin{array}{r} .2 \\ 10 \\ 10 \\ 10 \end{array}$	$\begin{aligned} & 1 / 400 \\ & 5 \mathrm{M} / \\ & 5 \mathrm{M} / \\ & 5 \mathrm{M} / \end{aligned}$	$\begin{aligned} & 1.5 / 500 \\ & 1.5 / \\ & 1.5 / \\ & 1.5 / \end{aligned}$			
$\begin{array}{\|l\|} \text { IN2024 } \\ \text { IN2025 } \\ \text { IN2026 } \\ \text { iN2027 } \end{array}$	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\left.\begin{array}{\|l\|} \mathbf{R E} \\ \mathrm{RE} \\ \mathrm{RE} \\ \mathrm{RE} \end{array} \right\rvert\,$				$\begin{array}{r} 350 \\ 400 \\ 50 \\ 200 \end{array}$	$\begin{array}{r} 10 \\ 10 \\ 1 \\ 1 \end{array}$	$\begin{aligned} & 5 \mathrm{M} / \\ & 5 \mathrm{M} / \\ & 500 / \\ & 500 / \end{aligned}$	$\begin{aligned} & 1.5 / \\ & 1.5 / \\ & 2.0 / \\ & 2.0 / \end{aligned}$			
$\begin{aligned} & \text { 1 N2028 } \\ & \text { 1N2029 } \\ & \text { 1N2030 } \\ & \text { 1 N2031 } \end{aligned}$	$\left\lvert\, \begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}\right.$	$\left.\begin{array}{\|l\|} \mathbf{R E} \\ \mathrm{RE} \\ \mathrm{RE} \\ \mathrm{RE} \end{array} \right\rvert\,$.			$\begin{aligned} & 300 \\ & 400 \\ & 500 \\ & 600 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 500 / \\ & 500 / \\ & 500 / \\ & 500 / \end{aligned}$	$\begin{aligned} & 2.0 \prime \\ & 2.0 / \\ & 2.0 \prime \\ & 2.0 \prime \end{aligned}$			
$\begin{aligned} & \text { 1 N2032 } \\ & \text { 1 N2032A } \\ & \text { 1 N2033 } \\ & \text { 1 N2033A } \end{aligned}$	$\begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}$	$\left\{\begin{array}{l} \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \end{array}\right.$		1N4732 1N4732 1N4734 1N4734	$\begin{aligned} & 750 \\ & 750 \\ & 750 \\ & 750 \end{aligned}$						$\begin{aligned} & 4.9 / 10 \\ & 4.5 / 10 \\ & 5.8 / 10 \\ & 5.5 / 10 \end{aligned}$	5 5 5 5
$\begin{aligned} & \text { 1N2034 } \\ & \text { IN2034A } \\ & \text { IN2035 } \\ & \text { IN2035A } \end{aligned}$	$\begin{aligned} & s \\ & s \\ & s \\ & s \\ & s \end{aligned}$	$\left.\begin{aligned} & z 0 \\ & z D \\ & z 0 \\ & z 0 \end{aligned} \right\rvert\,$		1N4736 IN4736 IN4739 IN4739	$\begin{aligned} & 750 \\ & 750 \\ & 750 \\ & 750 \end{aligned}$						$\begin{array}{r} 6.6 / 10 \\ 6.5 / 10 \\ 8.8 / 10 \\ 8 / 10 \end{array}$	5 5 5 5
$\begin{aligned} & \text { IN2036 } \\ & \text { IN2036A } \\ & \text { 1N2037 } \\ & \text { IN2037A } \end{aligned}$	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\left\|\begin{array}{l} \mathrm{ZD} \\ \mathrm{ZD} \\ \mathrm{ZD} \\ \mathrm{ZO} \end{array}\right\|$		IN4740 1N4740 1N4743 IN4743	$\begin{aligned} & 750 \\ & 750 \\ & 750 \\ & 750 \end{aligned}$						$\begin{gathered} 10.5 / 10 \\ 10 / 10 \\ 12.8 / 5 \\ 12 / 5 \end{gathered}$	5 5 5 5
$\begin{array}{\|l} \text { 1 N2038 } \\ \text { IN2038A } \\ \text { IN2039 } \\ \text { IN2039A } \end{array}$	5 5 5 5	$\left\|\begin{array}{l} z 0 \\ z 0 \\ z 0 \\ z 0 \end{array}\right\|$		1N4745 1N4745 1N4747 1N4747	$\begin{aligned} & 750 \\ & 750 \\ & 750 \\ & 750 \end{aligned}$						$\begin{array}{r} 15.8 / 5 \\ 15 / 5 \\ 19 / 5 \\ 18 / 5 \end{array}$	5 5 5 5
1N2040 IN2040A IN2054 1N2055	$\left\lvert\, \begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}\right.$	$\begin{aligned} & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{RE} \\ & \mathrm{RE} \end{aligned}$		1N4749 1N4749	$\begin{aligned} & 750 \\ & 750 \end{aligned}$		$\begin{aligned} & 250 \\ & 250 \end{aligned}$	$\begin{aligned} & 55 \mathrm{M} / \\ & 55 \mathrm{M} / \end{aligned}$	$\begin{aligned} & 1.6 / \\ & 1.6 / \end{aligned}$		$\begin{array}{r} 23.5 / 5 \\ 22 / 5 \end{array}$	5

DIODE INTERCHANGEABILITY

TYPE number	高	$\begin{array}{\|l\|} \hline \\ \hline 8 \\ \frac{2}{3} \\ \frac{3}{3} \\ 3 \end{array}$	$\frac{\text { n }}{\text { RERLCEMENT }}$	$\begin{aligned} & \text { FOR } \\ & \text { NEW } \\ & \text { DESICN } \end{aligned}$	$\begin{gathered} \mathrm{PD} \\ (\mathrm{~mW}) \end{gathered}$	atmas \mathbf{V}_{R} (V)	(A)	$\begin{array}{ll} L_{R} & \bullet V_{R} \\ \mu_{\mathrm{A}} & /(\mathrm{V}) \end{array}$	$\begin{array}{cc} & \text { charact } \\ \mathbf{v F}_{\mathbf{F}} & \bullet \mathbf{q} \\ \text { (V) } & /(\mathrm{mA}) \end{array}$	$\begin{gathered} \text { mestics } \\ \text { (nes) } \end{gathered}$	$\begin{array}{llc} v_{z} & \bullet & \mathbf{z} \\ (v) & 1 & (\mathrm{ma}) \end{array}$	$\left.\right\|_{x} ^{\text {rol }}$
$\begin{aligned} & \text { 1N2056 } \\ & \text { iN2057 } \\ & \text { 1N2058 } \\ & \text { IN2059 } \end{aligned}$	$\left[\begin{array}{l} s \\ s \\ s \\ s \\ s \end{array}\right.$	$\begin{array}{\|l\|l\|} \hline R E \\ R E \\ R E \\ R E \\ R E \end{array}$					$\begin{aligned} & 250 \\ & 250 \\ & 250 \\ & 250 \end{aligned}$	$\begin{aligned} & 55 \mathrm{M} / \\ & 55 \mathrm{M} / \\ & 55 \mathrm{M} / \\ & 55 \mathrm{M} / \end{aligned}$	$\begin{aligned} & 1.6 / \\ & 1.61 \\ & 1.61 \\ & 1.6 / \end{aligned}$			
$\begin{aligned} & \text { IN2060 } \\ & \text { 1N2061 } \\ & \text { 1N2062 } \\ & \text { 1N2063 } \end{aligned}$	$\begin{aligned} & \mathrm{s} \\ & \mathrm{~s} \\ & \mathrm{~s} \\ & \mathbf{s} \end{aligned}$	$\begin{aligned} & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \end{aligned}$					$\begin{aligned} & 250 \\ & 250 \\ & 250 \\ & 250 \end{aligned}$	$\begin{aligned} & \text { 55M/ } \\ & \text { 55M/ } \\ & \text { 55M/ } \\ & \text { 55M/ } \end{aligned}$	$\begin{aligned} & 1.6 / \\ & 1.6 / \\ & 1.6 / \\ & 1.6 / \end{aligned}$			
1N2064 1N2065 1N2066 iN2067		$\left.\begin{array}{\|l\|} \mathrm{RE} \\ \mathrm{RE} \\ \mathrm{RE} \\ \mathrm{RE} \\ \mathrm{RE} \end{array} \right\rvert\,$					$\begin{aligned} & 250 \\ & 250 \\ & 250 \\ & 250 \end{aligned}$	$\begin{aligned} & 55 \mathrm{M} / \\ & 55 \mathrm{M} / \\ & 55 \mathrm{M} / \\ & 55 \mathrm{M} / \end{aligned}$	$\begin{aligned} & 1.61 \\ & 1.61 \\ & 1.61 \\ & 1.6 \% \end{aligned}$			
1N2068 1N2069 1 N2069A 1N2070		$\left\|\begin{array}{l} \mathrm{RE} \\ \mathrm{RE} \\ \mathrm{RE} \\ \mathrm{RE} \end{array}\right\|$	1N2069 1N2069A 1N2070			$\begin{aligned} & 200 \\ & 200 \\ & 400 \end{aligned}$	$\begin{gathered} 250 \\ .75 \\ .75 \\ .75 \end{gathered}$	$\begin{aligned} & \text { 55M/ } \\ & 10 / 200 \\ & 5 / 200 \\ & 10 / 400 \end{aligned}$	$\begin{aligned} & 1.6 / \\ & 1.2 / 500 \\ & 1.0 / 500 \\ & 1.2 / 500 \end{aligned}$			
in2070A IN2071 in2071A 1N2072	$\begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}$	$\left.\begin{array}{\|c\|} \mathbf{R E} \\ \mathbf{R E} \\ \mathbf{R E} \\ \mathrm{RE} \\ \mathbf{R E} \end{array} \right\rvert\,$	in2070A in2071 in2071A	1N4001		$\begin{array}{r} 400 \\ 600 \\ 600 \\ 50 \end{array}$	$\begin{aligned} & .75 \\ & .75 \\ & .75 \\ & .75 \end{aligned}$	$5 / 400$ $10 / 600$ 5/600 250/50	$1.0 / 500$ $1.2 / 500$ $1.0 / 500$ 1.1/14			
1N2073 1N2074 1N2075 1N2076	$\left\lvert\, \begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}\right.$	$\left\|\begin{array}{c} \mathrm{RE} \\ \mathrm{RE} \\ \mathrm{RE} \\ \mathrm{RE} \end{array}\right\|$		IN4002 1 N4003 iN4003 1N4004		$\begin{aligned} & 100 \\ & 150 \\ & 200 \\ & 250 \end{aligned}$	$\begin{aligned} & .75 \\ & .75 \\ & .75 \\ & .75 \end{aligned}$	$\begin{aligned} & 250 / 100 \\ & 250 / 150 \\ & 250 / 200 \\ & 250 / 250 \end{aligned}$	$\begin{aligned} & 1.1 / 1 \mathrm{~A} \\ & 1.1 / 1 \mathrm{~A} \\ & 1.1 / 1 \mathrm{~A} \\ & 1.1 / 1 \mathrm{~A} \end{aligned}$			
1N2077 1N2078 1N2079 IN2080	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\left.\begin{array}{\|c\|} \mathrm{RE} \\ \mathrm{RE} \\ \mathrm{RE} \\ \mathrm{RE} \end{array} \right\rvert\,$		in4004 IN4004 1N4006 1N4001		$\begin{array}{r} 300 \\ 400 \\ 500 \\ 50 \end{array}$	$\begin{array}{r} .75 \\ .75 \\ .75 \\ .5 \end{array}$	$\begin{aligned} & 250 / 300 \\ & 250 / 400 \\ & 250 / 500 \\ & 350 / 50 \end{aligned}$	$\begin{aligned} & 1.1 / 1 A \\ & 1.1 / 1 A \\ & 1.1 / 1 A \\ & .75 / 500 \end{aligned}$			
in208 1 1N2082 1N2083 1N2084	$\left\lvert\, \begin{aligned} & \mathbf{s} \\ & s \\ & s \\ & s \end{aligned}\right.$	$\left.\begin{aligned} & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \end{aligned} \right\rvert\,$		1N4002 iN4003 1N4004 1 N4004		$\begin{aligned} & 100 \\ & 200 \\ & 300 \\ & 400 \end{aligned}$.5 .5 .5 .5	$\begin{aligned} & 350 / 100 \\ & 350 / 200 \\ & 350 / 300 \\ & 350 / 400 \end{aligned}$	$\begin{aligned} & .75 / 500 \\ & .75 / 500 \\ & .75 / 500 \\ & .75 / 500 \end{aligned}$			
1N2085 IN2086 IN2088 IN2089	$\begin{aligned} & 5 \\ & s \\ & s \\ & s \end{aligned}$	$\begin{array}{\|l\|} \mathbf{R E} \\ \mathrm{RE} \\ \mathrm{RE} \\ \mathrm{RE} \end{array}$		1N4005 1N4005 1N4001 IN4001		$\begin{aligned} & 500 \\ & 600 \\ & 500 \\ & 600 \end{aligned}$	$\begin{aligned} & .5 \\ & .5 \\ & .75 \\ & .75 \end{aligned}$	$\begin{aligned} & 350 / 500 \\ & 350 / 600 \\ & 500 / 500 \\ & 500 / 600 \end{aligned}$.75/500 .75/500 1/750 $1 / 750$			
iN2090 IN2091 1N2092 in2093	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\left.\begin{aligned} & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \end{aligned} \right\rvert\,$		IN4001 1N4002 iN4003 1N4004		50 100 200 300	$\begin{aligned} & .5 \\ & .5 \\ & .5 \\ & .5 \end{aligned}$	$250 / 50$ $250 / 100$ 250/200 250/300	$\begin{aligned} & .5 / 500 \\ & .5 / 500 \\ & .5 / 500 \\ & .5 / 500 \end{aligned}$			

DIODE INTERCHANGEABILITY

	-	$\begin{aligned} & 2 \\ & 0 \end{aligned}$			Ratines			Characteristics				
TYPE NUMEER	$\frac{2}{2}$		RI	$\begin{aligned} & \text { FOR } \\ & \text { NEW } \\ & \text { DESICN } \end{aligned}$	$\begin{gathered} \mathbf{P D} \\ (\mathrm{mW}) \end{gathered}$	(V)	I (A)	$\begin{array}{ll} \mathbf{I}_{\mathbf{R}} & \bullet \mathbf{V}_{\mathbf{R}} \\ \mu_{\mathrm{A}} & /(\mathbf{V}) \end{array}$	$\mathbf{V F}_{F}$ - \mathbf{F} (V) $/$ (mA)	$\begin{gathered} i n \\ (m) \end{gathered}$	$\mathbf{V}_{\mathbf{Z}}$ - $\mathbf{z}_{\mathbf{Z}}$ (V) / (mA)	$\left\|\begin{array}{c} 101 \\ \% \end{array}\right\|$
1N2094 1N2095 1N2096 IN2103	$\begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}$	$\begin{aligned} & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \end{aligned}$		1NA004 1N4005 in4005 IN4001		$\begin{array}{r} 400 \\ 500 \\ 600 \\ 50 \end{array}$	$\begin{array}{r} .5 \\ .5 \\ .5 \\ .75 \end{array}$	$\begin{aligned} & 250 / 400 \\ & 250 / 500 \\ & 250 / 600 \\ & 300 / 50 \end{aligned}$	$\begin{array}{r} .5 / 500 \\ .5 / 500 \\ .5 / 500 \\ 1.2 / 750 \end{array}$			
IN2104 1N2105 1N2106 1N2107	$\left\lvert\, \begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}\right.$	$\begin{aligned} & R E \\ & R E \\ & R E \\ & R E \\ & \text { RE } \end{aligned}$		IN4002 1N4003 IN4004 iN4004		$\begin{aligned} & 100 \\ & 200 \\ & 300 \\ & 400 \end{aligned}$	$\begin{aligned} & .75 \\ & .75 \\ & .75 \\ & .75 \end{aligned}$	$\begin{aligned} & 300 / 100 \\ & 300 / 200 \\ & 300 / 300 \\ & 300 / 400 \end{aligned}$	$\begin{aligned} & 1.2 / 750 \\ & 1.2 / 750 \\ & 1.2 / 750 \\ & 1.2 / 750 \end{aligned}$			
$\begin{aligned} & \text { 1N2108 } \\ & \text { 1N2109 } \\ & \text { 1N2110 } \\ & \text { 1N2111 } \end{aligned}$	$\left\lvert\, \begin{aligned} & \mathbf{s} \\ & \mathbf{S} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}\right.$	$\begin{array}{\|l\|} R E \\ R E \\ R E \\ R E \\ R E \end{array}$		$\begin{aligned} & \text { 1N4005 } \\ & \text { TID381 } \\ & \text { TD382 } \\ & \text { TID383 } \end{aligned}$		$\begin{array}{r} 500 \\ 50 \\ 100 \\ 200 \end{array}$	$\begin{array}{r} 75 \\ 2 \\ 2 \\ 2 \end{array}$	$\begin{aligned} & 300 / 500 \\ & 300 / 50 \\ & 300 / 100 \\ & 300 / 200 \end{aligned}$	$\begin{aligned} & 1.2 / 750 \\ & 1.2 / 750 \\ & 1.2 / 750 \\ & 1.2 / 750 \end{aligned}$			
$\begin{aligned} & \text { IN2112 } \\ & \text { 1N2113 } \\ & \text { 1N2114 } \\ & \text { 1N2115 } \end{aligned}$	$\begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}$	$\left\|\begin{array}{l} R E \\ R E \\ R E \\ R E \end{array}\right\|$		$\begin{aligned} & \text { TID384 } \\ & \text { TD385 } \\ & \text { TD385 } \\ & \text { IN4004 } \end{aligned}$		$\begin{aligned} & 300 \\ & 400 \\ & 500 \\ & 365 \end{aligned}$	$\begin{gathered} 2 \\ 2 \\ 2 \\ .3 \end{gathered}$	$\begin{aligned} & 300 / 300 \\ & 300 / 400 \\ & 300 / 500 \\ & 250 / \end{aligned}$	$\begin{array}{r} 1.2 / 750 \\ 1.2 / 750 \\ 1.2 / 750 \\ .8 / 200 \end{array}$			
$\begin{aligned} & \text { 1N2116 } \\ & \text { 1N2117 } \\ & \text { 1N2139 } \\ & \text { 1N2146 } \end{aligned}$	$\begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}$	$\left.\begin{array}{\|l\|} \hline R E \\ \text { RE } \\ \text { RE } \\ \text { SD } \end{array} \right\rvert\,$		IN4004 IN4006 1N4608		$\begin{aligned} & 400 \\ & 720 \\ & 20 K \\ & 120 \end{aligned}$	$\begin{array}{r} .75 \\ .75 \\ .052 \end{array}$	$\begin{aligned} & 400 / \\ & 10 / 720 \\ & 200 / \\ & 1 / 50 \end{aligned}$	$\begin{aligned} & 1.4 / 500 \\ & 1.3 / 750 \\ & 60 / \\ & 1.1 / 500 \end{aligned}$	100		
$\begin{aligned} & \text { IN2147 } \\ & \text { IN2147A } \\ & \text { IN2148 } \\ & \text { IN2148A } \end{aligned}$	$\begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}$	$\left.\begin{aligned} & R E \\ & R E \\ & R E \\ & R E \\ & R E \end{aligned} \right\rvert\,$				50 50 100 100	6 6 6 6	$\begin{aligned} & 500 / \\ & 100 / \\ & 500 / \\ & 100 \% \end{aligned}$	$\begin{array}{r} 1.2 / \\ 1 / \\ 1.2 / \\ 1 / \end{array}$			
$\begin{aligned} & \text { IN2149 } \\ & \text { 1N2149A } \\ & \text { IN2150 } \\ & \text { IN2150A } \end{aligned}$	$\left\lvert\, \begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}\right.$	$\left.\begin{array}{\|} R E \\ R E \\ R E \\ R E \end{array} \right\rvert\,$				$\begin{aligned} & 200 \\ & 200 \\ & 300 \\ & 300 \end{aligned}$	6 6 6 6	$\begin{aligned} & 500 / \\ & 100 / \\ & 500 / \\ & 100 / \end{aligned}$	$\begin{gathered} 1.2 / \\ 1 / \\ 1.2 / \\ 1 / \end{gathered}$			
1N2151 1N2151A 1N2152 IN2152A	$\begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}$	$\left.\begin{aligned} & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \end{aligned} \right\rvert\,$				$\begin{aligned} & 400 \\ & 400 \\ & 500 \\ & 500 \end{aligned}$	6 6 6 6	$\begin{aligned} & 500 / \\ & 100 / \\ & 500 / \\ & 100 / \end{aligned}$	$\begin{gathered} 1.2 / \\ 1 / \\ 1.2 / \\ 1 / \end{gathered}$			
$\begin{aligned} & \text { IN2153 } \\ & \text { 1N2153A } \\ & \text { IN2163 } \\ & \text { 1N2163A } \end{aligned}$	$\left\lvert\, \begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}\right.$	$\begin{aligned} & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \end{aligned}$			$\begin{aligned} & \text { iw } \\ & \text { iw } \end{aligned}$	$\begin{aligned} & 600 \\ & 600 \end{aligned}$	6	$\begin{aligned} & 500 / \\ & 100 / \end{aligned}$	$\begin{gathered} 1.2 / \\ 1 / \end{gathered}$		$\begin{aligned} & 9.4 / 10 \\ & 9.4 / 10 \end{aligned}$	4
$\begin{array}{\|l} \text { IN2164 } \\ \text { IN2164A } \\ \text { 1N2165 } \\ \text { 1N2165A } \end{array}$	$\begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}$	$\begin{aligned} & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \end{aligned}$			$\begin{aligned} & \text { iw } \\ & \text { iw } \\ & \text { iw } \\ & \text { iw } \end{aligned}$						$\begin{aligned} & 9.4 / 10 \\ & 9.4 / 10 \\ & 9.4 / 10 \\ & 9.4 / 10 \end{aligned}$	4 2 4 2

DIODE INTERCHANGEABILITY

TYPE NUMBER			π REPLACEMENT	$\begin{aligned} & \text { FOR } \\ & \text { NEW } \\ & \text { DESICN } \end{aligned}$	$\begin{aligned} & \mathbf{P D}_{\mathbf{D}} \\ & (\mathrm{mW}) \end{aligned}$	TINGES V_{R} (V)	I (A)	$\begin{array}{ll} \mathbf{I}_{\mathbf{R}} & \mathbf{V}_{\mathbf{R}} \\ \mu_{\mathbf{A}} & /(\mathbf{V}) \end{array}$	$\mathbf{V F}_{F}$ - \mathbf{F} (V) $/$ (ma)	$\begin{aligned} & \text { ERISTK } \\ & \text { Im } \\ & \text { (ms) } \end{aligned}$	$\mathbf{V}_{\mathbf{Z}}: \mathbf{l}_{\mathbf{z}}$ (V) $/$ (mA)	10. *
$\begin{aligned} & \text { IN2166 } \\ & \text { IN2166A } \\ & \text { IN2167 } \\ & \text { IN2167A } \end{aligned}$	$\begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & s \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}$	$\begin{aligned} & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \end{aligned}$			IW iw IW iw						$\begin{aligned} & 9.4 / 10 \\ & 9.4 / 10 \\ & 9.4 / 10 \\ & 9.4 / 10 \end{aligned}$	4 2 4 2
$\begin{aligned} & \text { 1N2168 } \\ & \text { 1N2168A } \\ & \text { 1N2169 } \\ & \text { 1N2169A } \end{aligned}$	$\begin{aligned} & \mathbf{s} \\ & s \\ & s \\ & s \\ & s \end{aligned}$	$\left\lvert\, \begin{aligned} & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \end{aligned}\right.$			$\begin{aligned} & 16 \\ & 1 w \\ & \text { iw } \\ & 1 w \end{aligned}$						$\begin{aligned} & 9.4 / 10 \\ & 9.4 / 10 \\ & 9.4 / 10 \\ & 9.4 / 10 \end{aligned}$	4 2 4 2
$\begin{aligned} & \text { IN2170 } \\ & \text { IN2170A } \\ & \text { IN2171 } \\ & \text { IN2171A } \end{aligned}$	$\begin{aligned} & s \\ & s \\ & s \\ & s \\ & s \end{aligned}$	$\begin{aligned} & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \end{aligned}$			$\begin{aligned} & 16 \\ & \text { iw } \\ & \text { iw } \\ & \text { iw } \end{aligned}$						$\begin{aligned} & 9.4 / 10 \\ & 9.4 / 10 \\ & 9.4 / 10 \\ & 9.4 / 10 \end{aligned}$	4 2 4 2
$\begin{aligned} & \text { 1N2172 } \\ & \text { 1N2173 } \\ & \text { 1N2174 } \\ & \text { 1N2176 } \end{aligned}$	$\begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}$	$\begin{aligned} & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \end{aligned}$				$\begin{array}{r} 50 \\ 100 \\ 200 \\ 50 \end{array}$	$\begin{array}{r} 50 \\ 50 \\ 50 \\ 3 \end{array}$	$\begin{aligned} & 250 / \\ & 250 / \\ & 250 / \\ & 300 / \end{aligned}$	$\begin{aligned} & 1.5 / \\ & 1.5 / \\ & 1.5 / \\ & 1.1 / \end{aligned}$			
$\begin{array}{\|l\|} \text { 1N2177 } \\ \text { 1N2178 } \\ \text { 1N2179 } \\ \text { 1N2180 } \end{array}$	$\begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \end{aligned}$				$\begin{aligned} & 100 \\ & 150 \\ & 200 \\ & 300 \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \\ & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & 300 / \\ & 300 / \\ & 300 / \\ & 300 / \end{aligned}$	$\begin{aligned} & 1.1 / \\ & 1.1 / \\ & 1.1 / \\ & 1.1 / \end{aligned}$			
1N2181 1N2182 1N2183 1N2184	s	$\begin{aligned} & R E \\ & R E \\ & R E \\ & R E \\ & R E \end{aligned}$				$\begin{array}{r} 400 \\ 500 \\ 600 \\ 50 \end{array}$	$\begin{aligned} & 3 \\ & 3 \\ & 3 \\ & 3 \end{aligned}$	$\begin{gathered} 300 / \\ 300 / \\ 300 / \\ 5 M / \end{gathered}$	$\begin{aligned} & 1.1 / \\ & 1.1 / \\ & 1.1 / \\ & 1.5 / \end{aligned}$			
1N2185 IN2186 1N2187 1N2188	$\begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}$	$\begin{aligned} & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \end{aligned}$				$\begin{aligned} & 100 \\ & 150 \\ & 200 \\ & 300 \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \\ & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & 5 M / \\ & 5 M / \\ & 5 M / \\ & 5 M / \end{aligned}$	$\begin{aligned} & 1.5 / \\ & 1.5 / \\ & 1.5 / \\ & 1.5 / \end{aligned}$			
IN2189 1N2190 1N2191 1N2192	$\begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}$	$\begin{aligned} & \mathbf{R E} \\ & \text { RE } \\ & \text { RE } \\ & \text { RE } \end{aligned}$				$\begin{aligned} & 400 \\ & 500 \\ & 600 \\ & 800 \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \\ & 3 \\ & 3 \end{aligned}$	5M/ 5M/ 5M/ 5M/	$\begin{aligned} & 1.5 / \\ & 1.5 / \\ & 1.5 / \\ & 1.5 / \end{aligned}$			
1N2193 IN2194 1N2195 1N2196	$\begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$	$\left.\begin{array}{l} R E \\ R E \\ R E \\ R E \end{array}\right\}$				$\begin{array}{r} 1 K \\ 50 \\ 100 \\ 150 \end{array}$	$\begin{aligned} & 3 \\ & 6 \\ & 6 \\ & 6 \end{aligned}$	$\begin{aligned} & 5 \mathrm{M} / \\ & 10 \mathrm{M} / \\ & 10 \mathrm{M} / \\ & 10 \mathrm{M} / \end{aligned}$	$\begin{aligned} & 1.5 / \\ & 1.2 / \\ & 1.2 / \\ & 1.2 / \end{aligned}$			
1N2197 1N2198 1N2199 IN2200	$\begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}$	$\left.\begin{aligned} & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \end{aligned} \right\rvert\,$				$\begin{aligned} & 200 \\ & 300 \\ & 400 \\ & 500 \end{aligned}$	$\begin{aligned} & 6 \\ & 6 \\ & 6 \\ & 6 \end{aligned}$	10M/ 10M/ 10M/ $10 \mathrm{M} /$	$\begin{aligned} & 1.2 / \\ & 1.2 / \\ & 1.2 / \\ & 1.2 / \end{aligned}$			

$\begin{gathered} \text { TYFE } \\ \text { MUMUER } \end{gathered}$			II	$\begin{aligned} & \text { FOR } \\ & \text { NEW } \\ & \text { DESMON } \end{aligned}$	Ramins			CHARACTERISTICS				
						$\mathbf{V}_{\mathbf{R}}$ (V)		$\begin{array}{ll} \mathbf{H}_{\mathbf{R}} & \mathbf{V}_{\mathrm{R}} \\ \mu \mathrm{~A} & / \mathbf{V}) \end{array}$	$\begin{array}{cc} \mathbf{V}_{\mathbf{F}} & \mathbf{l}_{\mathbf{F}} \\ (\mathrm{V}) & /(\mathrm{mA}) \end{array}$	t_{T} (m)	$\mathbf{V}_{\mathbf{z}} \quad$ - \mathbf{z} (V) $/(\mathrm{mA})$	$\begin{aligned} & \text { TOL } \\ & \text { \% } \end{aligned}$
1N2201 IN2202 iN2203 IN2204	$\begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}$	$\left.\begin{array}{\|l\|} \mathbf{R E} \\ \mathrm{RE} \\ \mathrm{RE} \\ \mathrm{RE} \end{array} \right\rvert\,$				600 800 $1 K$ 50	$\begin{array}{r} 6 \\ 6 \\ 6 \\ 12 \end{array}$	10M/ 10M/ 10M/ 10M/	$\begin{aligned} & 1.2 / \\ & 1.2 / \\ & 1.2 / \\ & 1.2 / \end{aligned}$			
1N2205 IN2206 IN2207 1N2208	$\left\lvert\, \begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}\right.$	$\begin{aligned} & R E \\ & R E \\ & R E \\ & R E \\ & R E \\ & R E \end{aligned}$				$\begin{aligned} & 100 \\ & 150 \\ & 200 \\ & 300 \end{aligned}$	$\begin{aligned} & 12 \\ & 12 \\ & 12 \\ & 12 \end{aligned}$	10M/ 10w/ 10M/ 10M/	$\begin{aligned} & 1.2 / \\ & 1.2 / \\ & 1.2 / \\ & 1.2 / \end{aligned}$			
$\left\lvert\, \begin{aligned} & \text { 1N2209 } \\ & \text { 1N2210 } \\ & \text { 1N2211 } \\ & \text { 1N2212 } \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}\right.$	$\begin{array}{\|l} \mathbf{R E} \\ \mathrm{RE} \\ \mathrm{RE} \\ \mathrm{RE} \end{array}$				$\begin{aligned} & 400 \\ & 500 \\ & 600 \\ & 800 \end{aligned}$	$\begin{aligned} & 12 \\ & 12 \\ & 12 \\ & 12 \end{aligned}$	10M/ 10M/ 10M/ 10M/	$\begin{aligned} & 1.2 / \\ & 1.2 / \\ & 1.2 \prime \\ & 1.2 / \end{aligned}$			
$\begin{aligned} & \text { 1N2213 } \\ & \text { 1N2214 } \\ & \text { 1N2217 } \\ & \text { 1N2218 } \end{aligned}$	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\begin{aligned} & R E \\ & \text { ZD } \\ & R E \\ & R E \\ & R E \end{aligned}$			iw	$\begin{array}{r} 1 K \\ 50 \\ 500 \end{array}$	$\begin{array}{r} 12 \\ 1.5 \\ .4 \end{array}$	10M/ 3/ $3 /$	$\begin{aligned} & 1.2 / \\ & 1.5 / \\ & 1.2 / \end{aligned}$		5.6/35	2
$\begin{aligned} & \text { 1N2219 } \\ & \text { 1N2220 } \\ & \text { 1N2221 } \\ & \text { IN2222 } \end{aligned}$	$\begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}$	$\begin{aligned} & R E \\ & R E \\ & R E \\ & R E \end{aligned}$				$\begin{aligned} & 500 \\ & 600 \\ & 600 \\ & 800 \end{aligned}$	$\begin{array}{r} 1.5 \\ .4 \\ 1.5 \\ .3 \end{array}$	$\begin{aligned} & 3 / \\ & 3 / \\ & 3 / \\ & 3 / \end{aligned}$	$\begin{aligned} & 1.2 / \\ & 1.2 / \end{aligned}$			
$\begin{array}{\|l} \text { IN2222A } \\ \text { IN2223 } \\ \text { IN2223A } \\ \text { IN222A } \end{array}$	$\left\lvert\, \begin{aligned} & 5 \\ & s \\ & s \\ & s \end{aligned}\right.$	$\begin{aligned} & R E \\ & R E \\ & R E \\ & R E \end{aligned}$				800 800 800 $1 K$.3 1 1 .3	$\begin{aligned} & 3 / \\ & 3 / \\ & 3 / \\ & 3 / \end{aligned}$	$\begin{aligned} & 1.2 / \\ & 1.2 \% \\ & \hline \end{aligned}$			
$\begin{aligned} & \text { IN222AA } \\ & \text { IN2225 } \\ & \text { 1N2225A } \\ & \text { 1N2226 } \end{aligned}$	$\left\lvert\, \begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}\right.$	$\begin{aligned} & R E \\ & R E \\ & R E \\ & R E \end{aligned}$				$1 K$ $1 K$ $1 K$ $1.2 K$.3 1 1 .3	$\begin{aligned} & 3 / \\ & 3 / \\ & 3 / \\ & 3 / \end{aligned}$	$\begin{aligned} & 1.2 / \\ & 1.2 / \end{aligned}$			
$\begin{aligned} & \text { IN2226A } \\ & \text { IN2227 } \\ & \text { IN2227A } \\ & \text { IN2228 } \end{aligned}$	$\begin{aligned} & s \\ & s \\ & s \\ & s \\ & s \end{aligned}$	$\begin{gathered} \mathrm{RE} \\ \mathrm{RE} \\ \mathrm{RE} \\ \mathrm{RE} \end{gathered}$				$\begin{array}{r} 1.2 \mathrm{~K} \\ 1.2 \mathrm{~K} \\ 1.2 \mathrm{~K} \\ 50 \end{array}$.3 1 1 1	$\begin{aligned} & 3 / \\ & 3 / \\ & 3 / \\ & 3 / \end{aligned}$	$\begin{aligned} & 1.2 / \\ & 1.2 / \end{aligned}$			
$\begin{aligned} & \text { IN2228A } \\ & \text { IN2229 } \\ & \text { IN2229A } \\ & \text { IN2230 } \end{aligned}$	S 5 5 5	$\left.\begin{array}{l} \mathbf{R E} \\ \mathbf{R E} \\ \mathbf{R E} \\ \mathrm{RE} \end{array}\right\}$				50 50 50 200	1.6 5 5 1	$\begin{aligned} & 3 / \\ & 3 / \\ & 3 / \\ & 3 / \end{aligned}$	$\begin{aligned} & 1.2 / \\ & 1.2 \% \end{aligned}$			
$\begin{aligned} & \text { 1N2230A } \\ & \text { 1N2231 } \\ & \text { 1N2231A } \\ & \text { 1N2232 } \end{aligned}$	$\left\lvert\, \begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}\right.$	$\begin{array}{\|l\|} \mathrm{RE} \\ \mathrm{RE} \\ \mathrm{RE} \\ \mathrm{RE} \\ \mathrm{RE} \end{array}$				$\begin{aligned} & 200 \\ & 200 \\ & 200 \\ & 300 \end{aligned}$	$\begin{array}{r} 1.6 \\ 5 \\ 5 \\ 1 \end{array}$	$\begin{aligned} & 3 / \\ & 3 / \\ & 3 / \\ & 3 / \end{aligned}$	$\begin{aligned} & 1.2 \% \\ & 1.2 \% \end{aligned}$			

DIODE INTERCHANGEABILITY

TYFE NUMBER				$\stackrel{\text { TI }}{\text { REPLACEMENT }}$	$\begin{gathered} \text { FOR } \\ \text { NEW } \\ \text { DESIGN } \end{gathered}$	P_{D} (mW)	atinges $\mathbf{V}_{\mathbf{R}}$ (V)	! (A)	$\begin{array}{cc} I_{R} & 0 V_{R} \\ \mu_{\mathrm{A}} & /(\mathrm{V}) \end{array}$	$\begin{array}{cc} & \text { Characti } \\ \mathbf{v}_{\mathrm{F}} & \mathbf{y}_{\mathrm{F}} \\ \text { (V) } & / \text { (mA) } \end{array}$	$\begin{aligned} & \text { IERISTICS } \\ & \left\|\begin{array}{c} t_{I T} \\ (n s) \end{array}\right\| \end{aligned}$	$\left\|\begin{array}{ccc} v_{z} & 1 & \mathbf{z} \\ (\mathrm{~V}) & 1 & (\mathrm{~mA}) \end{array}\right\|$	$\begin{gathered} \text { rou. } \\ \text { \% } \end{gathered}$
$\begin{aligned} & \text { 1N2232A } \\ & \text { 1N2233 } \\ & \text { IN2233A } \\ & \text { IN2234 } \end{aligned}$	(300 300 300 400	1.6 5 5 1	$\begin{aligned} & 3 / \\ & 3 / \\ & 3 / \\ & 3 / \end{aligned}$	1.2/ $1.2 /$			
$\begin{aligned} & \text { 1N2234A } \\ & \text { IN2235 } \\ & \text { IN2235A } \\ & \text { IN2236 } \end{aligned}$	$\left\lvert\, \begin{aligned} & \mathbf{s} \\ & \mathbf{s} \end{aligned}\right.$						400 400 400 500	1.6 5 5 1	$\begin{aligned} & 3 / \\ & 3 / \\ & 3 / \\ & 3 / \end{aligned}$	$\begin{aligned} & 1.21 \\ & 1.21 \end{aligned}$			
$\begin{aligned} & \text { 1N2236A } \\ & \text { 1N2237 } \\ & \text { 1N2237A } \\ & \text { IN2238 } \end{aligned}$	s						500 500 500 600	1.6 5 5 1	$\begin{aligned} & \mathbf{3 /} \\ & \mathbf{3 /} \\ & \mathbf{3 /} \\ & \mathbf{3 /} \end{aligned}$	$\begin{aligned} & 1.2 / \\ & 1.2 / \end{aligned}$			
$\begin{aligned} & \text { IN2238A } \\ & \text { 1N2239 } \\ & \text { IN2239A } \\ & \text { IN2240 } \end{aligned}$	[RE R RE RE R					600 600 600 800	$\begin{array}{r} 1.6 \\ 5 \\ 5 \\ 1.5 \end{array}$	$\begin{aligned} & \text { 3/ } \\ & \text { 3/ } \\ & \text { 3/ } \\ & 3 / \end{aligned}$	$\begin{aligned} & 1.21 \\ & 1.2 \% \end{aligned}$			
in2240A IN2241 1N2241A iN2242	S	RE					800 800 800 $1 K$	$\begin{array}{r} 1.5 \\ 5 \\ 5 \\ 1.5 \end{array}$	$\begin{aligned} & \text { 3/ } \\ & \text { 3/ } \\ & 3 / \\ & 3 / \end{aligned}$	$\begin{aligned} & 1.2 / \\ & 1.2 / \end{aligned}$			
	[s						1 K 1 k 1 K 1.2 K	$\begin{array}{r} 1.6 \\ 5 \\ 5 \\ 1.5 \end{array}$	$\begin{aligned} & 3 / \\ & 3 / \\ & 3 / \\ & 3 / \\ & \hline \end{aligned}$	$\begin{aligned} & 1.2 / \\ & 1.2 / \end{aligned}$			
in224AA 1N2245 1N2245A IN2246	s	$\begin{aligned} & \mathbf{R E E} \\ & \mathbf{R E} \\ & \mathbf{R E} \\ & \mathbf{R E} \end{aligned}$					1.2 K 1.2 K 1.2 K 50	$\begin{array}{r} 1.6 \\ 5 \\ 5 \\ 3 \end{array}$	$\begin{aligned} & 3 / \\ & 3 / \\ & 3 / \\ & 5 / \end{aligned}$	$\begin{aligned} & 1.2 / \\ & 1.2 / \end{aligned}$			
	s s s s s	RE RE RE RE					$\begin{array}{r} 50 \\ 50 \\ 50 \\ 100 \end{array}$	$\begin{array}{r} 3 \\ 10 \\ 10 \\ 3 \end{array}$	$\begin{aligned} & 3 / \\ & 5 / \\ & 3 / \\ & 5 / \end{aligned}$	$\begin{aligned} & 1.2 / \\ & 1.2 / \end{aligned}$			
1N2248A 1N2249 in2249A 1N2250	$\left\lvert\, \begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}\right.$	$\begin{aligned} & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \end{aligned}$					$\begin{aligned} & 100 \\ & 100 \\ & 100 \\ & 200 \end{aligned}$	$\begin{array}{r} 3 \\ 10 \\ 10 \\ 3 \end{array}$	$\begin{aligned} & 3 / \\ & 5 / \\ & 3 / \\ & 5 / \end{aligned}$	$\begin{aligned} & 1.2 / \\ & 1.2 \% \end{aligned}$			
$\begin{aligned} & \text { IN2250A } \\ & \text { IN2251 } \\ & \text { iN2251A } \\ & \text { IN2252 } \end{aligned}$	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\left\|\begin{array}{c} R E \\ R E \\ R E \\ R E \end{array}\right\|$					$\begin{aligned} & 200 \\ & 200 \\ & 200 \\ & 300 \end{aligned}$	$\begin{array}{r} 3 \\ 10 \\ 10 \\ 3 \end{array}$	$3 /$	$\begin{aligned} & 1.2 / \\ & 1.2 \% \end{aligned}$			

		\%			latines			CHARACTERUSTICS				
$\begin{gathered} \text { TYFE } \\ \text { Nemanim } \end{gathered}$	$\frac{B}{2}$	$\left\|\begin{array}{l} 0 \\ 6 \\ 0 \\ 0 \end{array}\right\|$	$\begin{gathered} n \\ n \\ \hline \end{gathered}$		$\begin{gathered} \mathrm{P}_{\mathrm{D}} \\ \mathrm{fm}) \end{gathered}$	$\mathbf{V}_{\mathbf{R}}$ (V)	1 (A)	$\begin{array}{ll} L_{R} & V_{R} \\ \mu_{\mathrm{A}} & /(\mathrm{V}) \end{array}$	$\left.\begin{array}{cc} v_{F} & \bullet \\ (\mathrm{v}) & 1(\mathrm{mal}) \end{array} \right\rvert\,$	\mathbf{i}_{π} (ms)	$\begin{array}{lll} \mathbf{v}_{\mathbf{z}} & \bullet \mathbf{z} \\ (\mathbf{v}) & /(\mathrm{mA}) \end{array}$	$\begin{gathered} \text { rot } \\ \times \end{gathered}$
1N2252A 1N2253 1N2253A iN225a	$\left[\begin{array}{l} s \\ s \\ s \\ s \\ s \end{array}\right.$	$\left.\begin{gathered} \mathrm{RE} \\ \mathrm{RE} \\ \mathrm{RE} \\ \mathrm{REF} \\ \mathrm{RE} \end{gathered} \right\rvert\,$				300 300 300 400	3 10 10 3		$\begin{aligned} & 1.2 / \\ & 1.21 \end{aligned}$			
	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\begin{aligned} & R E \\ & R E \\ & R E \\ & R E \\ & R E \end{aligned}$				400 400 400 500	3 10 10 3	$5 /$	1.21 1.21			
1N2256A 1N2257 in2257A IN2258	s	$\left.\begin{aligned} & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \end{aligned} \right\rvert\,$				$\begin{aligned} & 500 \\ & 500 \\ & 500 \\ & 600 \end{aligned}$	$\begin{array}{r} 3 \\ 10 \\ 10 \\ 3 \end{array}$	$\begin{aligned} & 3 / \\ & 5 / \\ & 3 / \\ & 3 / \end{aligned}$	$\begin{aligned} & 1.21 \\ & 1.2 \% \end{aligned}$			
	$\left\lvert\, \begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}\right.$	$\left\|\begin{array}{l} \mathrm{RE} \\ \mathrm{RE} \\ \mathrm{RE} \\ \mathrm{RE} \end{array}\right\|$				$\begin{aligned} & 600 \\ & 600 \\ & 600 \\ & 600 \end{aligned}$	3 10 10 3	$\begin{aligned} & 5 / \\ & 5 / \\ & 3 / \\ & 5 / \end{aligned}$	$\begin{aligned} & 1.2 / \\ & 1.2 / \end{aligned}$			
	$\left\lvert\, \begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}\right.$	$\left\|\begin{array}{c} R E \\ R E \\ R E \\ R E \\ R E \end{array}\right\|$				$\begin{aligned} & 800 \\ & 800 \\ & 800 \\ & 1 K \end{aligned}$	3 10 10 3	$\begin{array}{r} 3 / \\ 101 \\ 5 / \\ 101 \end{array}$	$\begin{aligned} & 1.2 / \\ & 1.2 / \end{aligned}$			
$\left\{\begin{array}{l} \text { in2262A } \\ \text { 1N2263 } \\ \text { 1N2263A } \\ \text { in2204 } \end{array}\right.$	$\begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}$	$\left\|\begin{array}{l} \mathrm{RE} \\ \mathrm{RE} \\ \mathrm{RE} \\ \mathrm{RE} \end{array}\right\|$				$1 K$ $1 K$ $1 K$ $1.2 K$	3 10 5 3	5/ 101	1.2/ 1.2/			
$\begin{aligned} & \text { 1N2264A } \\ & \text { IN2265 } \\ & \text { IN2265A } \\ & \text { IN2266 } \end{aligned}$	$\begin{aligned} & \mathrm{s} \\ & \mathrm{~s} \\ & \mathrm{~s} \\ & \mathrm{~s} \end{aligned}$	$\left\|\begin{array}{l} \mathrm{RE} \\ \mathrm{REE} \\ \mathrm{RE} \\ \mathrm{RE} \end{array}\right\|$				1.2 K 1.2 K 1.2 K 50	3 10 10 .3	$\begin{array}{r} 5 / \\ 10 / \\ 5 / \\ 3 / \end{array}$	1.2/ 1.2/			
1N2267 IN2268 IN2269 IN2270		$\left\lvert\, \begin{gathered} R E \\ R E \\ R E \\ R E \\ R E \end{gathered}\right.$				50 500 500 600	1 .3 1 .3	$\begin{aligned} & 3 / \\ & 3 / \\ & 3 / \\ & 3 / \end{aligned}$	$\begin{aligned} & 1.2 / \\ & 1.2 / \end{aligned}$			
$\begin{aligned} & 1 \mathrm{~N} 2271 \\ & \text { 1N2272 } \\ & 1 \mathrm{~N} 2273 \\ & 1 \mathrm{~N} 2274 \end{aligned}$	$\begin{aligned} & s \\ & s \\ & s \\ & s \\ & s \end{aligned}$	$\begin{aligned} & R E \\ & R E \\ & R E E \\ & R E E \\ & R E \end{aligned}$				$\begin{array}{r} 500 \\ 50 \\ 100 \\ 200 \end{array}$	1 6 6 6	$\begin{aligned} & 3 / \\ & 1 \mathrm{~m} / \\ & 1 \mathrm{~m} / \\ & 1 \mathrm{~m} / \end{aligned}$	$\begin{aligned} & 1.21 \\ & 1.21 \\ & 1.21 \end{aligned}$			
$\begin{aligned} & \text { IN227s } \\ & \text { iN2276 } \\ & \text { iN2277 } \\ & \text { iN2278 } \end{aligned}$	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\begin{aligned} & \text { RE } \\ & \text { RE } \\ & \text { RE } \\ & \text { RE } \end{aligned}$				$\begin{aligned} & 300 \\ & 400 \\ & 500 \\ & 600 \end{aligned}$	6 6 6 6	$\begin{aligned} & 1 \mathrm{~m} / \\ & 1 \mathrm{~m} / \\ & 1 \mathrm{~m} / \\ & 1 \mathrm{~m} / \end{aligned}$	$\begin{aligned} & 1.21 \\ & 1.2 \prime \\ & 1.2 \prime \\ & 1.2 \prime \end{aligned}$			

TYPE NHMMETR		$\%$		$\begin{aligned} & \text { FOR } \\ & \text { NEW } \\ & \text { DESICN } \end{aligned}$	$\begin{gathered} P_{D} \\ (\mathrm{~mW}) \end{gathered}$	atings $\mathbf{V}_{\mathbf{R}}$ (V)	I (A)	$\begin{array}{ll} \mathbf{I}_{\mathbf{R}} & \mathbf{V}_{\mathbf{R}} \\ \mu_{\mathbf{A}} & /(\mathbf{V}) \end{array}$	$\mathbf{V F}_{F}$ IF (V) $/$ (ma)	$\begin{aligned} & t_{\mathbf{r r}} \\ & (\mathrm{n}) \end{aligned}$	$\mathbf{v}_{\mathbf{z}} \cdot \mathbf{z}$ (V) $/$ (mA)	TOM.
$\left\{\begin{array}{l} \text { IN2279 } \\ \text { IN2280 } \\ \text { IN2281 } \\ \text { 1 N2282 } \end{array}\right.$	S	RE RE RE RE				800 1 K 1.2 K 300	6 6 6 20	1M/ $1 \mathrm{M} /$ 1M/ 5M/	$\begin{aligned} & 1.2 / \\ & 1.2 / \\ & 1.2 / \\ & 1.2 / \end{aligned}$			
$\begin{aligned} & \text { 1N2283 } \\ & \text { iN2284 } \\ & \text { iN2285 } \\ & \text { iN2286 } \end{aligned}$	$\begin{aligned} & s \\ & s \\ & s \\ & s \\ & s \end{aligned}$	RE RE RE RE				$\begin{aligned} & 400 \\ & 500 \\ & 600 \\ & 800 \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \\ & 20 \\ & 20 \end{aligned}$	5M/ 5M/ 5M/ 5M/	$\begin{aligned} & 1.2 / \\ & 1.2 \prime \\ & 1.2 / \\ & 1.2 \% \end{aligned}$			
$\begin{aligned} & \text { IN2287 } \\ & \text { IN2288 } \\ & \text { IN2289 } \\ & \text { IN2289A } \end{aligned}$	S	RE RE RE RE				$\begin{array}{r} 1 K \\ 1.2 K \\ 100 \\ 100 \end{array}$	$\begin{array}{r} 20 \\ 20 \\ 1.5 \\ 1.5 \end{array}$	$\begin{gathered} 5 M / \\ 5 M / \\ 3 / \\ 3 / \end{gathered}$	$\begin{array}{r} 1.5 / \\ 1.5 / \\ .6 / \\ .6 / \end{array}$			
$\begin{aligned} & 1 \mathrm{~N} 2290 \\ & \text { 1 N2290A } \\ & \text { 1 N2291 } \\ & \text { IN2291A } \end{aligned}$	S	RE RE RE RE				$\begin{aligned} & 100 \\ & 100 \\ & 200 \\ & 200 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.0 \\ & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 3 / \\ & 3 / \\ & 3 / \\ & 3 / \end{aligned}$.61 . $6 /$. 61 $.6 /$			
$\begin{aligned} & \text { 1N2292 } \\ & \text { 1N2292A } \\ & \text { 1N2293 } \\ & \text { 1N2293A } \end{aligned}$	S	$\left\lvert\, \begin{aligned} & R E \\ & R E \\ & R E \\ & R E \end{aligned}\right.$				$\begin{aligned} & 300 \\ & 300 \\ & 400 \\ & 400 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \\ & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 3 / \\ & 3 / \\ & 3 / \\ & 3 / \end{aligned}$. $6 /$.61 . $6 /$. $6 /$			
1N2294 1N2295 1N2296 1N2297	S	RE RE RE RE Re				$\begin{array}{r} 50 \\ 100 \\ 150 \\ 200 \end{array}$	$\begin{aligned} & 22 \\ & 22 \\ & 22 \\ & 22 \end{aligned}$	$\begin{aligned} & 1 \mathrm{M} / \\ & 1 \mathrm{M} / \\ & 1 \mathrm{M} / \\ & 1 \mathrm{M} / \end{aligned}$	$\begin{aligned} & 1.1 / \\ & 1.1 / \\ & 1.1 / \\ & 1.1 / \end{aligned}$			
1N2298 IN2299 IN2300 1N2301	$\begin{aligned} & \mathbf{S} \\ & \mathbf{S} \\ & \mathbf{S} \\ & \mathbf{S} \end{aligned}$	$\begin{aligned} & R E \\ & R E \\ & R E \\ & R E \end{aligned}$				$\begin{aligned} & 250 \\ & 300 \\ & 350 \\ & 400 \end{aligned}$	$\begin{aligned} & 22 \\ & 22 \\ & 22 \\ & 22 \end{aligned}$	$\begin{aligned} & 1 \mathrm{M} / \\ & 1 \mathrm{M} / \\ & 1 \mathrm{M} / \\ & 1 \mathrm{M} / \end{aligned}$	$\begin{aligned} & 1.1 / \\ & 1.1 / \\ & 1.1 / \\ & 1.1 / \end{aligned}$			
$\begin{aligned} & \text { 1N2302 } \\ & \text { iN2303 } \\ & \text { 1N2304 } \\ & \text { iN2305 } \end{aligned}$	$\begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}$	$\begin{aligned} & R E \\ & R E \\ & R E \\ & R E \end{aligned}$				$\begin{array}{r} 50 \\ 100 \\ 150 \\ 200 \end{array}$	$\begin{aligned} & 22 \\ & 22 \\ & 22 \\ & 22 \end{aligned}$	$\begin{aligned} & 1 \mathrm{M} / \\ & 1 \mathrm{M} / \\ & 1 \mathrm{M} / \\ & 1 \mathrm{M} / \end{aligned}$	$\begin{aligned} & 1.1 / \\ & 1.1 / \\ & 1.1 / \\ & 1.1 / \end{aligned}$			
in2306 1N2307 1N2308 1N2309	S	$\begin{aligned} & R E \\ & R E \\ & R E \\ & R E \end{aligned}$				$\begin{aligned} & 250 \\ & 300 \\ & 350 \\ & 400 \end{aligned}$	$\begin{aligned} & 22 \\ & 22 \\ & 22 \\ & 22 \end{aligned}$	1M/ 1M/ IM/ 1M/	$\begin{aligned} & 1.1 / \\ & 1.1 / \\ & 1.1 / \\ & 1.1 / \end{aligned}$,	
1N2310 1N2311 IN2312 IN2313	$\begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}$	$\begin{aligned} & R E \\ & R E \\ & R E \\ & R E \\ & R E \end{aligned}$				$\begin{array}{r} 50 \\ 100 \\ 150 \\ 200 \end{array}$	$\begin{aligned} & \mathbf{3 5} \\ & \mathbf{3 5} \\ & \mathbf{3 5} \\ & \mathbf{3 5} \end{aligned}$	$\begin{aligned} & 2 M / \\ & 2 M / \\ & 2 M / \\ & 2 M / \end{aligned}$	$\begin{aligned} & 1.1 / \\ & 1.1 / \\ & 1.1 / \\ & 1.1 / \end{aligned}$			

DIODE INTERCHANGEABILITY

TYME NUMEER			7 REPLACEMENT	FORNEWDESIGN	ratinges			CHARACTERISTICS				
					$\begin{gathered} \text { PD } \\ (\mathrm{mW}) \end{gathered}$		(A)	$\left.\begin{array}{lll} \mathbf{I}_{\mathbf{R}} & \mathbf{V}_{\mathbf{R}} \\ \mu_{\mathrm{A}} & /(\mathrm{V}) \end{array} \right\rvert\,$	$\mathbf{V}_{\mathbf{F}}$ - $\mathbf{I f}_{\mathbf{F}}$ (v) $/(\mathrm{mA})$	t_{Γ} (ns)	$\mathbf{V}_{\mathbf{Z}}$ - $\mathbf{I z}_{\mathbf{Z}}$ (V) / (mA)	$\begin{gathered} \text { rot } \\ \% \end{gathered}$
$\begin{aligned} & \text { IN2314 } \\ & \text { IN2315 } \\ & \text { 1N2316 } \\ & \text { IN2317 } \end{aligned}$	$\begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}$	$\begin{aligned} & \mathbf{R E} \\ & \mathbf{R E} \\ & \mathbf{R E} \\ & \mathbf{R E} \end{aligned}$				$\begin{aligned} & 250 \\ & 300 \\ & 350 \\ & 400 \end{aligned}$	$\begin{aligned} & 35 \\ & 35 \\ & 35 \\ & 35 \end{aligned}$	$\begin{aligned} & 2 M / \\ & 2 M / \\ & 2 M / \\ & 2 M / \end{aligned}$	$\begin{aligned} & 1.1 / \\ & 1.1 / \\ & 1.1 / \\ & 1.1 / \end{aligned}$			
1N2318 IN2319 IN2320 1N2321	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\left\|\begin{array}{l} R E \\ R E \\ R E \\ R E \end{array}\right\|$				$\begin{array}{r} 50 \\ 100 \\ 150 \\ 200 \end{array}$	$\begin{aligned} & 35 \\ & 35 \\ & 35 \\ & 35 \end{aligned}$	$\begin{aligned} & 2 M / \\ & 2 M / \\ & 2 M / \\ & 2 M / \end{aligned}$	$\begin{aligned} & 1.1 / / \\ & 1.1 / \\ & 1.1 / \\ & 1.1 / \end{aligned}$			
$\begin{array}{\|l\|} \text { 1N2322 } \\ \text { 1N2323 } \\ \text { 1N2324 } \\ \text { iN2325 } \end{array}$	$\left\lvert\, \begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}\right.$	$\begin{aligned} & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \hline \end{aligned}$				$\begin{aligned} & 250 \\ & 300 \\ & 350 \\ & 400 \end{aligned}$	$\begin{aligned} & 35 \\ & \mathbf{3 5} \\ & \mathbf{3 5} \\ & \mathbf{3 5} \end{aligned}$	$\begin{aligned} & 2 \mathrm{M} / \\ & 2 \mathrm{M} / \\ & 2 \mathrm{M} / \\ & 2 \mathrm{M} / \end{aligned}$	$\begin{aligned} & 1.1 / \\ & 1.1 / \\ & 1.1 / \\ & 1.1 / \end{aligned}$			
$\begin{aligned} & \text { 1N2327 } \\ & \text { iN2328 } \\ & \text { 1N2348 } \\ & \text { 1N2349 } \end{aligned}$	$\left\lvert\, \begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}\right.$	$\begin{aligned} & \mathrm{SD} \\ & \mathrm{SD} \\ & \mathrm{RE} \\ & \mathrm{RE} \end{aligned}$				$\begin{array}{r} 1.1 K \\ 2.2 K \\ 50 \\ 100 \end{array}$	$\begin{aligned} & 1 \\ & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & 1.5 / 750 \\ & 1.5 / 1.5 K \\ & 300 / \\ & 300 / \end{aligned}$	$\begin{aligned} & 3.3 / 400 \\ & 3.3 / 400 \\ & 1.1 / \\ & 1.1 / \end{aligned}$			
$\left\{\begin{array}{l} \text { 1N2350 } \\ \text { 1N2357 } \\ \text { IN2358 } \\ \text { IN2359 } \end{array}\right.$	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\begin{aligned} & R E \\ & R E \\ & R E \\ & R E \end{aligned}$				$\begin{aligned} & 150 \\ & 1.4 K \\ & 1.5 K \\ & 1.6 K \end{aligned}$	$\begin{gathered} 3 \\ .4 \\ .4 \\ .4 \end{gathered}$	$\begin{gathered} 300 / \\ 1 / \\ 1 / \\ 1 / \end{gathered}$	$\begin{array}{r} 1.1 / \\ 21 \\ 21 \\ 2 / \end{array}$			
$\begin{aligned} & \text { 1N2360 } \\ & \text { 1N2361 } \\ & \text { 1N2362 } \\ & \text { 1N2362A } \end{aligned}$	$\begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}$	$\left.\begin{array}{\|l\|} \mathrm{RE} \\ \mathrm{RE} \\ \mathrm{RE} \\ \mathrm{RE} \end{array} \right\rvert\,$				$\begin{aligned} & 1.8 \mathrm{~K} \\ & 2.0 \mathrm{~K} \\ & 1.4 \mathrm{~K} \\ & 1.4 \mathrm{~K} \end{aligned}$.4 .4 1 5	$\begin{aligned} & 1 / \\ & 1 / \\ & 1 / \\ & 1 / \end{aligned}$	$\begin{aligned} & 2 / \\ & 2 / \\ & 2 / \\ & 2 / \end{aligned}$			
$\begin{aligned} & \text { IN2362B } \\ & \text { IN2363 } \\ & \text { IN2363A } \\ & \text { IN23638 } \end{aligned}$	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\begin{array}{\|l\|} \hline R E \\ \hline \\ \hline \\ \hline \end{array}$				$\begin{aligned} & 1.4 K \\ & 1.4 K \\ & 1.4 K \\ & 1.4 K \end{aligned}$	$\begin{array}{r} 10 \\ 1 \\ 5 \\ 10 \end{array}$	$\begin{aligned} & 1 / \\ & 1 / \\ & 1 / \\ & 1 / \end{aligned}$	$\begin{aligned} & 2 / \\ & 2 / \\ & 2 \prime \\ & 2 \prime \end{aligned}$			
$\begin{array}{\|l} \text { 1 N2364 } \\ \text { iN2364A } \\ \text { 1N23648 } \\ \text { IN2365 } \end{array}$	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\begin{array}{\|} \mathbf{R E} \\ \mathbf{R E} \\ \mathbf{R E} \\ \mathbf{R E} \end{array}$				$\begin{aligned} & 1.5 K \\ & 1.5 K \\ & 1.5 K \\ & 1.5 K \end{aligned}$	1 5 10 1	$\begin{aligned} & 1 / \\ & 1 / \\ & 1 / \\ & 1 / \end{aligned}$	$\begin{aligned} & 2 \prime \\ & 2 \prime \\ & 2 \prime \\ & 2 \prime \end{aligned}$			
$\left\{\begin{array}{l} \text { IN2365A } \\ \text { IN23658 } \\ \text { IN2366 } \\ \text { IN2366A } \end{array}\right.$	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\left.\begin{aligned} & R E \\ & R E \\ & R E \\ & R E \end{aligned} \right\rvert\,$				$\begin{aligned} & 1.5 \mathrm{~K} \\ & 1.5 \mathrm{~K} \\ & 1.6 \mathrm{~K} \\ & 1.6 \mathrm{~K} \end{aligned}$	5 10 1 5	$\begin{aligned} & 1 / \\ & 1 / \\ & 1 / \\ & 1 / \end{aligned}$	$\begin{aligned} & 2 \prime \\ & 2 / \\ & 2 / \\ & 2 / \end{aligned}$			
$\begin{aligned} & \text { 1N2366B } \\ & \text { 1N2367 } \\ & \text { 1N2367A } \\ & \text { 1N23678 } \end{aligned}$	$\begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}$	$\begin{aligned} & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \hline \mathbf{R E} \end{aligned}$				$\begin{aligned} & 1.6 \mathrm{~K} \\ & 1.6 \mathrm{~K} \\ & 1.6 \mathrm{~K} \\ & 1.6 \mathrm{~K} \end{aligned}$	$\begin{array}{r} 10 \\ 1 \\ 5 \\ 10 \end{array}$	$\begin{aligned} & 1 / \\ & 1 / \\ & 1 / \\ & 1 / \end{aligned}$	$\begin{aligned} & 2 / \\ & 2 / \\ & 2 / \\ & 2 / \end{aligned}$			

TYPE MUMEER	E	$\begin{array}{r} z \\ \mathbf{y} \\ \mathbf{y} \\ \vdots \\ \vdots \\ 0 \end{array}$	$\stackrel{\pi}{\text { Ti }}$	$\begin{gathered} \text { KOR } \\ \text { NEW } \\ \text { DESICN } \end{gathered}$	PD (mW)	$\begin{gathered} \mathbf{V A T M O S}_{\mathbf{R}} \\ \text { (V) } \end{gathered}$	I (A)	$\begin{array}{ll} \mathbf{l}_{\mathbf{R}} & \bullet V_{R} \\ \mu_{\mathrm{A}} & /(\mathrm{V}) \end{array}$	$\left.\begin{array}{cc} c & \text { CHARACT } \\ \mathbf{v F}_{F} & 0 \\ \text { (v) } & 1 \text { (ma) } \end{array} \right\rvert\,$		$\begin{array}{lll} \mathbf{v}_{\mathbf{z}} & \cdot \mathbf{z} \\ (\mathrm{V}) & /(\mathrm{mA}) \end{array}$	$\left\|\begin{array}{c} \text { rot } \\ x \end{array}\right\|$
$\begin{aligned} & \text { 1N2368 } \\ & \text { 1N2368A } \\ & \text { iN2368B } \\ & \text { iN2369 } \end{aligned}$	S	RE $\mathbf{R E}$ $\mathbf{R E}$ $\mathbf{R E}$				1.8 K 1.8 K 1.8 K 1.8 K	1 5 10 1	$1 /$ $1 /$ $1 /$ $1 /$	$\begin{aligned} & 2 \prime \\ & 2 \prime \\ & 2 \prime \\ & 2 \prime \\ & \hline \end{aligned}$			
$\begin{aligned} & \text { 1N2369A } \\ & \text { 1N2369B } \\ & \text { 1N2370 } \\ & \text { 1N2370A } \end{aligned}$	s	$\begin{aligned} & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \end{aligned}$				$\begin{array}{r}1.8 \mathrm{~K} \\ 1.8 \mathrm{~K} \\ 2 \mathrm{~K} \\ \hline\end{array}$	5 10 1 5	$1 / 1$ $1 /$ $1 /$	$\begin{aligned} & 21 \\ & 21 \\ & 21 \\ & 21 \end{aligned}$			
$\begin{array}{\|l\|} \text { 1N2370B } \\ \text { IN2371 } \\ \text { 1N2371A } \\ \text { 1N23718 } \end{array}$	S	$\left\lvert\, \begin{aligned} & \mathbf{R E} \\ & \mathbf{R E} \\ & \mathbf{R E} \\ & \mathbf{R E} \end{aligned}\right.$				2K 2K 2K 2K	10 1 5 10	$1 /$ $1 /$ $1 /$ $1 /$	$\begin{aligned} & 21 \\ & 21 \\ & 21 \\ & 21 \end{aligned}$			
$\begin{aligned} & \text { 1N2372 } \\ & \text { 1N2373 } \\ & \text { 1N2374 } \\ & \text { 1N2375 } \end{aligned}$	$\begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}$	$\left\|\begin{array}{l} R E \\ R E \\ R E \\ R E \\ R E \end{array}\right\|$		1N4005 1N4007		$\begin{array}{r} 1 K \\ 600 \\ 1 K \\ 1.5 K \end{array}$.2 .1 .1 .1	$\begin{aligned} & 500 / \\ & 250 / \\ & 250 / \\ & 250 / \end{aligned}$	$\begin{array}{r} 21 \\ 3 / \\ 31 \\ 4.51 \end{array}$			
$\begin{aligned} & \text { 1N2376 } \\ & \text { 1N2377 } \\ & \text { 1N2378 } \\ & \text { 1N2379 } \end{aligned}$	$\left\lvert\, \begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}\right.$	$\left.\begin{aligned} & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \end{aligned} \right\rvert\,$				$\begin{array}{r} 2 K \\ 2.4 K \\ 3 K \\ 4 K \end{array}$	$\begin{array}{r} .1 \\ .075 \\ .075 \\ .05 \end{array}$	$\begin{aligned} & 250 / \\ & 250 / \\ & 250 / \\ & 250 / \end{aligned}$	$\begin{array}{r} 7.5 / \\ 9 / \\ 9 / \\ 15 \% \\ \hline \end{array}$			
1N2380 1N2381 1N2382 1N2382A	$\begin{aligned} & s \\ & s \\ & s \\ & s \\ & s \end{aligned}$	$\left.\begin{aligned} & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \end{aligned} \right\rvert\,$				$\begin{array}{r} 6 K \\ 10 K \\ 4 K \\ 4 K \end{array}$	$\begin{array}{r} .05 \\ .025 \\ .15 \\ .35 \end{array}$	$\begin{aligned} & 250 / \\ & 250 / \\ & 200 / \\ & 200 / \end{aligned}$	$\begin{gathered} 22 / \\ 371 \\ 18 / \\ 6 / \end{gathered}$			
1N2383 1N2383A 1N2384 IN2384A	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \\ & s \end{aligned}\right.$					OK bK 8K 8K	$\begin{array}{r} .1 \\ .35 \\ .07 \\ .275 \end{array}$	$\begin{aligned} & 200 / \\ & 200 / \\ & 200 / \\ & 200 / \end{aligned}$	$\begin{gathered} 271 \\ 9 / \\ 271 \\ 121 \end{gathered}$			
1N2385 IN2385A iN2387 1N2389	s	$\left\|\begin{array}{l} \mathrm{RE} \\ \mathrm{RE} \\ \mathrm{ZD} \\ \mathrm{RE} \end{array}\right\|$		1N4751	IW	$\begin{aligned} & 10 \mathrm{~K} \\ & 10 \mathrm{~K} \\ & 1.6 \mathrm{~K} \end{aligned}$	$\begin{array}{r} .07 \\ .2 \\ .6 \end{array}$	$\begin{aligned} & 200 / \\ & 200 / \\ & 500 \% \end{aligned}$	$\begin{array}{r} 391 \\ 151 \\ 4.81 \end{array}$		$30 / 8$	10
IN2390 1N2391 1N2392 1N2393	[$\left.\begin{aligned} & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \end{aligned} \right\rvert\,$				$\begin{array}{r} 50 \\ 100 \\ 200 \\ 300 \\ \hline \end{array}$	1.5 1.5 1.5 1.5	$\begin{aligned} & 300 \% \\ & 300 \% \\ & 300 \prime \\ & 300 \% \end{aligned}$	$\begin{aligned} & 1.21 \\ & 1.2 / \\ & 1.2 / \\ & 1.2 / \end{aligned}$			
1 N 2394 1N2395 iN2396 1N2397	$\left\{\begin{array}{l} s \\ s \\ s \\ s \end{array}\right.$	$\left\|\begin{array}{l} \mathrm{RE} \\ \mathrm{RE} \\ \mathrm{RE} \\ \mathrm{RE} \end{array}\right\|$				$\begin{aligned} & 400 \\ & 500 \\ & 600 \\ & 700 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \\ & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 300 / \\ & 300 / \\ & 300 / \\ & 300 / \end{aligned}$	$\begin{aligned} & 1.21 \\ & 1.21 \\ & 1.21 \\ & 1.21 \end{aligned}$			

TYPEnumarer			$\underset{\text { REPLACEMENT }}{\text { TI }}$	$\begin{aligned} & \text { FOR } \\ & \text { NEW } \\ & \text { DESSCN } \end{aligned}$	patings			CHARACTERISTICS				
					$\begin{aligned} & P_{D} \\ & (\mathrm{mw}) \end{aligned}$	$\begin{aligned} & \mathbf{V}_{\mathbf{R}} \\ & (\mathbf{V}) \end{aligned}$	(A)	$\begin{array}{ll} l_{R} & V_{R} \\ \mu_{\mathrm{A}} & /(\mathrm{V}) \end{array}$	$\begin{array}{ll} \mathbf{v}_{\mathbf{F}} & e_{\mathbf{F}} \\ (\mathbf{v}) & /(\mathrm{ma}) \end{array}$	$\begin{aligned} & t r \\ & (m s) \end{aligned}$	$\begin{array}{ccc} v_{z} & \mathbf{z} \\ (\mathrm{v}) & 1 \mathrm{~mA}) \end{array}$	$\frac{70 L}{x}$
1N2398 1N2399 1N2400 1N2401	$\begin{array}{\|l} \mathbf{s} \\ \mathbf{s} \\ \mathbf{s} \\ \mathbf{s} \end{array}$	$\left.\begin{array}{\|c\|} \hline \mathrm{RE} \\ \mathrm{RE} \\ \mathrm{RE} \\ \mathrm{RE} \end{array} \right\rvert\,$				$\begin{array}{r} 800 \\ 50 \\ 100 \\ 200 \end{array}$	$\begin{aligned} & 1.5 \\ & 1.5 \\ & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 300 / \\ & 300 / \\ & 300 / \\ & 300 / \end{aligned}$	$\begin{aligned} & 1.2 / \\ & 1.2 / \\ & 1.21 \\ & 1.2 / \end{aligned}$			
1N2402 1N2403 1N2404 1N2405	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\left.\begin{array}{\|l\|} \mathbf{R E} \\ \mathrm{RE} \\ \mathrm{RE} \\ \mathrm{RE} \end{array} \right\rvert\,$				$\begin{aligned} & 300 \\ & 400 \\ & 500 \\ & 600 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \\ & 1.5 \\ & 1.5 \end{aligned}$	$300 /$ $300 /$ $300 /$ 300/	$\begin{aligned} & 1.2 / \\ & 1.2 / \\ & 1.2 / \\ & 1.2 / \end{aligned}$			
IN2406 IN2407 IN2408 1N2409	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\left\|\begin{array}{l} \mathrm{RE} \\ \mathrm{RE} \\ \mathrm{RE} \\ \mathrm{RE} \end{array}\right\|$				$\begin{array}{r} 700 \\ 800 \\ 50 \\ 100 \end{array}$	$\begin{aligned} & 1.5 \\ & 1.5 \\ & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 300 / \\ & 300 / \\ & 300 / \\ & 300 / \end{aligned}$	$\begin{aligned} & 1.21 \\ & 1.21 \\ & 1.21 \\ & 1.21 \end{aligned}$			
1N2410 in2411 1N2412 in2413	$\begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$	$\left.\begin{array}{\|l\|} \hline \mathbf{R E} \\ \mathbf{R E} \\ \mathrm{RE} \\ \mathrm{RE} \end{array} \right\rvert\,$				$\begin{aligned} & 200 \\ & 300 \\ & 400 \\ & 500 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \\ & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 300 / \\ & 300 / \\ & 300 / \\ & 300 / \end{aligned}$	$\begin{aligned} & 1.2 / \\ & 1.2 / \\ & 1.2 / \\ & 1.2 / \end{aligned}$			
$\begin{aligned} & \text { IN2414 } \\ & \text { 1N2415 } \\ & \text { 1N2416 } \\ & \text { 1N2417 } \end{aligned}$	$\begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}$	$\left.\begin{array}{\|l\|} \mathbf{R E} \\ R E \\ R E \\ R E \\ R E \end{array} \right\rvert\,$				$\begin{array}{r} 600 \\ 700 \\ 800 \\ 50 \end{array}$	$\begin{aligned} & 1.5 \\ & 1.5 \\ & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 300 / \\ & 300 / \\ & 300 / \\ & 300 / \end{aligned}$	$\begin{aligned} & 1.2 / \\ & 1.2 / \\ & 1.2 / \\ & 1.2 / \end{aligned}$			
$\begin{aligned} & \text { 1N2418 } \\ & \text { 1N2419 } \\ & \text { 1N2420 } \\ & \text { IN2421 } \end{aligned}$	$\left[\begin{array}{l} s \\ s \\ s \\ s \end{array}\right.$	$\left.\begin{aligned} & \mathbf{R E} \\ & \mathbf{R E} \\ & \mathbf{R E} \\ & \mathbf{R E} \end{aligned} \right\rvert\,$				$\begin{aligned} & 100 \\ & 200 \\ & 300 \\ & 400 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \\ & 1.5 \\ & 1.5 \end{aligned}$	$300 /$ $300 /$ $300 /$ 300/	$\begin{aligned} & 1.21 \\ & 1.21 \\ & 1.21 \\ & 1.21 \end{aligned}$			
$\left\{\begin{array}{l} \text { IN2422 } \\ \text { IN2 } 2423 \\ \text { IN2424 } \\ \text { IN2425 } \end{array}\right.$	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\begin{aligned} & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \end{aligned}$				$\begin{aligned} & 500 \\ & 600 \\ & 700 \\ & 800 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \\ & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 300 / \\ & 300 / \\ & 300 / \\ & 300 / \end{aligned}$	$\begin{aligned} & 1.2 / \\ & 1.2 / \\ & 1.2 / \\ & 1.2 / \end{aligned}$			
$\begin{aligned} & \text { 1N2482 } \\ & \text { IN2483 } \\ & \text { iN2484 } \\ & \text { iN2485 } \end{aligned}$	$\left\lvert\, \begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}\right.$	$\begin{array}{\|l\|} \hline \mathbf{R E} \\ \mathrm{RE} \\ \mathrm{RE} \\ \mathrm{RE} \\ \mathrm{RE} \end{array}$		$\begin{aligned} & \mathrm{TD} 383 \\ & \mathrm{TD} 384 \\ & \mathrm{TND} 385 \\ & \mathrm{TND} 383 \end{aligned}$		$\begin{aligned} & 200 \\ & 400 \\ & 500 \\ & 200 \end{aligned}$	$\begin{aligned} & .75 \\ & .75 \\ & .75 \\ & .75 \end{aligned}$	$\begin{aligned} & 500 / 200 \\ & 500 / 400 \\ & 500 / 500 \\ & 500 / 200 \end{aligned}$	$\begin{aligned} & 1.2 / 750 \\ & 1.2 / 750 \\ & 1.2 / 750 \\ & 1.2 / 750 \end{aligned}$			
$\begin{aligned} & \text { 1N2486 } \\ & \text { 1N2487 } \\ & \text { 1N2488 } \\ & \text { 1N2489 } \end{aligned}$	$\begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}$	$\left.\begin{aligned} & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \end{aligned} \right\rvert\,$		$\begin{aligned} & \mathrm{mD} 384 \\ & \mathrm{nD} 384 \\ & \mathrm{nD} 385 \\ & \mathrm{mD} 385 \end{aligned}$		$\begin{aligned} & 300 \\ & 400 \\ & 500 \\ & 600 \end{aligned}$	$\begin{aligned} & .75 \\ & .75 \\ & .75 \\ & .75 \end{aligned}$	$\begin{aligned} & 500 / 300 \\ & 500 / 400 \\ & 500 / 500 \\ & 500 / 600 \end{aligned}$	$\begin{aligned} & 1.2 / 750 \\ & 1.21750 \\ & 1.2 / 750 \\ & 1.2 / 750 \end{aligned}$			
$\begin{aligned} & \text { IN2490 } \\ & \text { 1N2501 } \\ & \text { IN2502 } \\ & \text { IN2503 } \end{aligned}$	s	$\begin{aligned} & \mathbf{R E} \\ & \mathbf{R E} \\ & \mathbf{R E} \\ & \mathbf{R E} \end{aligned}$		$\left\lvert\, \begin{aligned} & \text { IN4006 } \\ & \text { IN4007 } \end{aligned}\right.$		$\begin{array}{r} 1.6 \mathrm{~K} \\ 800 \\ 1 \mathrm{~K} \\ 1.2 \mathrm{~K} \end{array}$.5 .15 .15 .15	$500 /$ 200/800 200/1K 200/	$\begin{aligned} & 4.8 / \\ & 1.7 / 100 \\ & 1.7 / 100 \\ & 1.71 \end{aligned}$			

DIODE INTERCHANGEABILITY

$\begin{gathered} \text { TYPE } \\ \text { number } \end{gathered}$	$\begin{aligned} & \text { 를 } \\ & \text { 恶 } \end{aligned}$		π	$\begin{aligned} & \text { FOR } \\ & \text { NEW } \\ & \text { DESICN } \end{aligned}$	PD (mW)	atinges V_{R} (V)	(A)	$\begin{array}{ll} \mathbf{l}_{\mathbf{R}} & \mathbf{v}_{\mathbf{R}} \\ \mu_{\mathbf{A}} & /(\mathbf{V}) \end{array}$	$\begin{array}{cc} v_{F} & 0 \\ \text { (v) } & 1 \text { (mA) } \end{array}$		$\begin{array}{lll} v_{z} & \bullet & \mathbf{z} \\ (v) & /(\mathrm{ma}) \end{array}$	$\left.\right\|^{\mathrm{TO}}$
$\begin{aligned} & \text { 1N2304 } \\ & \text { 1N2505 } \\ & \text { iN2506 } \\ & \text { 1N2507 } \end{aligned}$	S	RE RE RE RE		1N4006 1N4007		$\begin{array}{r} 1.5 K \\ 800 \\ 1 K \\ 1.2 K \end{array}$	$\begin{array}{r} \hline .15 \\ .3 \\ .3 \\ .3 \end{array}$	$\begin{aligned} & 200 / \\ & 200 / 800 \\ & 200 / 1 \mathrm{~K} \\ & 200 / \end{aligned}$	$\begin{aligned} & 1.71 \\ & 1.71200 \\ & 1.71200 \\ & 1.71 \end{aligned}$			
$\begin{aligned} & \text { 1N2508 } \\ & \text { IN2512 } \\ & \text { IN2513 } \\ & \text { IN2514 } \end{aligned}$	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\left.\begin{aligned} & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \end{aligned} \right\rvert\,$				$\begin{aligned} & 1.5 K \\ & 100 \\ & 200 \\ & 300 \end{aligned}$.3 4 4 4	$\begin{array}{r} 200 / \\ 2 \prime \\ 2 \prime \\ 21 \end{array}$	$\begin{aligned} & 1.71 \\ & 1.1 / \\ & 1.1 / \\ & 1.1 / \end{aligned}$			
1N2515 1N2516 1N2517 iN2518	$\left\lvert\, \begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}\right.$	$\left\|\begin{array}{l} \mathbf{R E} \\ \mathbf{R E} \\ \mathbf{R E} \\ \mathbf{R E} \end{array}\right\|$				$\begin{aligned} & 400 \\ & 500 \\ & 600 \\ & 100 \end{aligned}$	$\begin{aligned} & 4 \\ & 4 \\ & 4 \\ & 4 \end{aligned}$	$\begin{aligned} & 2 \prime \\ & 21 \\ & 21 \\ & 21 \end{aligned}$	$\begin{aligned} & 1.1 / \\ & 1.1 / \\ & 1.1 / \\ & 1.1 / \end{aligned}$			
1N2519 IN2520 1N2521 IN2522	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\left.\begin{aligned} & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \end{aligned} \right\rvert\,$				$\begin{aligned} & 200 \\ & 300 \\ & 400 \\ & 500 \end{aligned}$	4 4 4 4	$\begin{aligned} & 21 \\ & 21 \\ & 21 \\ & 21 \end{aligned}$	$\begin{aligned} & 1.1 / \\ & 1.1 / \\ & 1.1 / \\ & 1.1 / \end{aligned}$			
$\begin{aligned} & \text { 1N2523 } \\ & \text { 1N2524 } \\ & \text { 1N2525 } \\ & \text { 1N2526 } \end{aligned}$	$\begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}$	$\left\|\begin{array}{l} \mathbf{R E} \\ \mathbf{R E} \\ \mathbf{R E} \\ \mathbf{R E} \end{array}\right\|$				$\begin{array}{r} 600 \\ 50 \\ 100 \\ 200 \end{array}$	$\begin{aligned} & 4 \\ & 2.5 \\ & 2.5 \\ & 2.5 \end{aligned}$	$\begin{array}{r} 21 \\ 500 / \\ 500 / \\ 500 / \end{array}$	$\begin{aligned} & 1.1 / \\ & 1.21 \\ & 1.21 \\ & 1.21 \end{aligned}$			
$\begin{aligned} & \text { 1N2527 } \\ & \text { 1N2528 } \\ & \text { 1N2529 } \\ & \text { iN2530 } \end{aligned}$	$\begin{aligned} & \mathrm{s} \\ & s \\ & s \\ & s \\ & s \end{aligned}$	$\begin{aligned} & \mathbf{R E} \\ & \mathbf{R E} \\ & \mathbf{R E} \\ & \mathbf{R E} \\ & \mathbf{R E} \end{aligned}$				$\begin{aligned} & 300 \\ & 400 \\ & 500 \\ & 600 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \\ & 2.5 \\ & 2.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 500 / \\ & 500 / \\ & 500 / \\ & 500 / \end{aligned}$	$\begin{aligned} & 1.2 / \\ & 1.21 \\ & 1.21 \\ & 1.21 \end{aligned}$			
$\begin{array}{\|l\|} \text { IN2531 } \\ \text { 1N2532 } \\ \text { IN2533 } \\ \text { IN2534 } \end{array}$	s	$\left.\begin{array}{\|l\|} \mathbf{R E} \\ \mathbf{R E} \\ \mathrm{RE} \\ \mathrm{RE} \end{array} \right\rvert\,$				$\begin{array}{r} 700 \\ 800 \\ 900 \\ 1 \mathrm{~K} \end{array}$	$\begin{aligned} & 2.5 \\ & 2.5 \\ & 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 500 / \\ & 500 / \\ & 500 / \\ & 500 \% \end{aligned}$	$\begin{aligned} & 1.2 \prime \\ & 1.21 \\ & 1.2 \prime \\ & 1.2 \prime \end{aligned}$			
$\begin{aligned} & \text { 1N2535 } \\ & \text { 1N2536 } \\ & \text { 1N2537 } \\ & \text { 1N2538 } \end{aligned}$	[$\begin{aligned} & \text { s } \\ & \mathbf{s} \\ & \text { s } \\ & \mathbf{s}\end{aligned}$	$\left.\begin{array}{\|c\|} \hline \mathbf{R E} \\ \mathbf{R E} \\ \mathrm{RE} \\ \mathbf{R E} \end{array} \right\rvert\,$				$\begin{array}{r} 50 \\ 100 \\ 200 \\ 300 \end{array}$	$\begin{aligned} & 2.5 \\ & 2.5 \\ & 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 100 \prime \\ & 100 / \\ & 100 / \\ & 100 / \end{aligned}$	$\begin{aligned} & 1 / \\ & 1 / \\ & 1 / \\ & 1 / \end{aligned}$			
1N2539 1N2540 1N2541 1N2542	$\left\lvert\, \begin{aligned} & \mathbf{s} \\ & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\left.\begin{aligned} & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \end{aligned} \right\rvert\,$				$\begin{aligned} & 400 \\ & 500 \\ & 600 \\ & 700 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \\ & 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 100 / \\ & 100 / \\ & 100 / \\ & 100 / \end{aligned}$	$\begin{aligned} & 11 \\ & 1 / \\ & 1 / \\ & 11 \end{aligned}$			
1N2543 1N2544 1N2545 1N2546	$\left\lvert\, \begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}\right.$	$\left.\begin{aligned} & R E \\ & R E \\ & R E \\ & R E \end{aligned} \right\rvert\,$				800 900 $1 K$ 50	$\begin{aligned} & 2.5 \\ & 2.5 \\ & 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 100 / \\ & 100 / \\ & 100 / \\ & 1 \mathrm{M} / \end{aligned}$	$\begin{gathered} 1 / \\ 1 / \\ 1 / \\ 1.5 / \end{gathered}$			

$\begin{aligned} & \text { TYPE } \\ & \text { Mumer, } \end{aligned}$	$\frac{3}{2}$		II	$\begin{aligned} & \text { ROR } \\ & \text { Nen } \\ & \text { DESicN } \end{aligned}$	Ratunos			CHARACTERESTICS				
					$\begin{gathered} P_{0} \\ (\mathrm{~mW}) \end{gathered}$	$\mathbf{V}_{\mathbf{R}}$ (V)	I (A)	$\begin{array}{ll} \mathbf{L}_{\mathrm{R}} & \bullet \mathbf{V}_{\mathrm{R}} \\ \mu \mathrm{~A} & /(\mathbf{V}) \end{array}$	$\begin{array}{lll} \mathbf{V F}_{F} & \mathbf{F}_{\mathbf{n}} \\ \text { (V) } & f(\mathrm{~m}) \end{array}$	$\begin{aligned} & t_{\mathrm{m}} \\ & (\mathrm{~ns}) \end{aligned}$	$\begin{array}{ll} \mathbf{V}_{\mathbf{Z}} & \mathbf{I z} \\ \text { (V) } & / \mathrm{ma}) \end{array}$	$\begin{gathered} \text { TOL } \\ \% \end{gathered}$
$\begin{aligned} & \text { IN2547 } \\ & \text { IN2548 } \\ & \text { IN2549 } \\ & \text { 1N2550 } \end{aligned}$	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\begin{aligned} & R E \\ & R E \\ & R E \\ & R E \\ & R E \end{aligned}$				100 200 300 400	2.5 2.5 2.5 2.5	$\begin{aligned} & 1 \mathrm{M} / \\ & 1 \mathrm{M} / \\ & 1 \mathrm{M} / \\ & 1 \mathrm{M} / \end{aligned}$	$\begin{aligned} & 1.5 / \\ & 1.5 / \\ & 1.5 / \\ & 1.5 / \end{aligned}$			
1N2551 1N2552 1N2553 1N2554	$\left(\begin{array}{l} \mathbf{s} \\ \mathbf{s} \\ \mathbf{s} \\ \mathbf{s} \end{array}\right.$	$\begin{aligned} & R E \\ & R E \\ & R E \\ & R E \\ & R E \end{aligned}$				$\begin{aligned} & 500 \\ & 600 \\ & 700 \\ & 800 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \\ & 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 1 \mathrm{M} / \\ & \mathrm{lm} / \\ & 1 \mathrm{M} / \\ & 1 \mathrm{M} / \end{aligned}$	$\begin{aligned} & 1.5 / \\ & 1.5 / \\ & 1.5 / \\ & 1.5 / \end{aligned}$			
1N2555 1N2556 IN2557 iN2558	$\begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}$	$\left.\begin{array}{\|l\|} \mathbf{R E} \\ \mathrm{RE} \\ \mathrm{RE} \\ \mathrm{RE} \\ \mathrm{RE} \end{array} \right\rvert\,$				$\begin{array}{r} 900 \\ 1 K \\ 700 \\ 800 \end{array}$	$\begin{array}{r} 2.5 \\ 2.5 \\ 6 \\ 6 \end{array}$	$\begin{aligned} & 1 \mathrm{M} / \\ & 1 \mathrm{Mr} \\ & 500 / \\ & 500 / \end{aligned}$	$\begin{aligned} & 1.5 / \\ & 1.5 / \\ & 1.2 \prime \\ & 1.2 / \end{aligned}$			
1N2559 1N2560 1N2561 1N2562	$\left\lvert\, \begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{S} \end{aligned}\right.$	$\begin{aligned} & R E \\ & R E \\ & R E \\ & R E \\ & R E \end{aligned}$				$\begin{array}{r} 900 \\ 1 K \\ 700 \\ 800 \end{array}$	6 6 6 6	$\begin{aligned} & 500 / \\ & 500 / \\ & 100 / \\ & 100 / \end{aligned}$	$\begin{aligned} & 1.2 / \\ & 1.2 / \\ & 1 / \\ & 1 / \end{aligned}$			
1N2563 1N2564 IN2565 1N2566	$\begin{aligned} & 5 \\ & s \\ & s \\ & s \end{aligned}$	$\begin{aligned} & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \end{aligned}$				$\begin{array}{r} 900 \\ 1 K \\ 50 \\ 100 \end{array}$	$\begin{aligned} & 6 \\ & 6 \\ & 6 \\ & 6 \end{aligned}$	$\begin{aligned} & 100 / \\ & 100 / \\ & 1 \mathrm{M} / \\ & 1 \mathrm{M} / \end{aligned}$	$\begin{aligned} & 1.5 / \\ & 1.5 / \\ & 1.5 / \\ & 1.5 / \end{aligned}$			
1N2567 IN2568 IN2569 IN2570	$\left\lvert\, \begin{aligned} & \mathrm{s} \\ & \mathrm{~s} \\ & \mathrm{~s} \\ & \mathrm{~s} \end{aligned}\right.$	$\begin{aligned} & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \end{aligned}$				$\begin{array}{r} 200 \\ 300 \\ 400 \\ 500 \end{array}$	$\begin{aligned} & 6 \\ & 6 \\ & 6 \\ & 6 \end{aligned}$	$\begin{aligned} & 1 \mathrm{M} / \\ & 1 \mathrm{M} / \\ & 1 \mathrm{M} / \\ & 1 \mathrm{M} / \end{aligned}$	$\begin{aligned} & 1.5 / \\ & 1.5 / \\ & 1.5 / \\ & 1.5 / \end{aligned}$			
$\begin{aligned} & \text { 1N2571 } \\ & \text { 1N2572 } \\ & \text { 1N2573 } \\ & \text { 1N2574 } \end{aligned}$	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\begin{aligned} & \text { RE } \\ & R E \\ & R E \\ & R E \\ & R E \end{aligned}$				$\begin{aligned} & 600 \\ & 700 \\ & 800 \\ & 900 \end{aligned}$	$\begin{aligned} & 6 \\ & 6 \\ & 6 \\ & 6 \end{aligned}$	$\begin{aligned} & 1 \mathrm{M} / \\ & 1 \mathrm{M} / \\ & 1 \mathrm{M} / \\ & \mathrm{IM} / \end{aligned}$	$\begin{aligned} & 1.5 / \\ & 1.5 / \\ & 1.5 / \\ & 1.5 / \end{aligned}$			
$\begin{aligned} & \text { 1N2575 } \\ & \text { iN2576 } \\ & \text { iN2577 } \\ & \text { iN2578 } \end{aligned}$	$\left\lvert\, \begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}\right.$	$\begin{aligned} & R E \\ & R E \\ & R E \\ & R E \\ & R E \end{aligned}$				$\begin{array}{r} 1 K \\ 50 \\ 100 \\ 200 \end{array}$	$\begin{array}{r} 6 \\ 12 \\ 12 \\ 12 \end{array}$	$\begin{aligned} & 1 \mathrm{M} / \\ & 1 \mathrm{M} / \\ & 1 \mathrm{M} / \\ & 1 \mathrm{M} / \end{aligned}$	$\begin{aligned} & 1.5 / \\ & 1.2 / \\ & 1.2 / \\ & 1.2 / \end{aligned}$			
$\begin{aligned} & \text { iN2579 } \\ & \text { 1N2580 } \\ & \text { 1N2581 } \\ & \text { IN2582 } \end{aligned}$	$\begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}$	$\left\lvert\, \begin{aligned} & R E \\ & R E \\ & R E \\ & R E \\ & R E \end{aligned}\right.$				$\begin{aligned} & 300 \\ & 400 \\ & 500 \\ & 600 \end{aligned}$	$\begin{aligned} & 12 \\ & 12 \\ & 12 \\ & 12 \end{aligned}$	1M/ 1M/ 1M/ 1M/	$\begin{aligned} & 1.2 / \\ & 1.2 / \\ & 1.2 / \\ & 1.2 / \end{aligned}$			
$\begin{aligned} & 1 \mathrm{~N} 2583 \\ & 1 \mathrm{~N} 2584 \\ & 1 \mathrm{~N} 2585 \\ & 1 \mathrm{~N} 2586 \end{aligned}$	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \end{aligned}\right.$				$\begin{array}{r} 700 \\ 900 \\ 900 \\ 1 K \end{array}$	$\begin{aligned} & 12 \\ & 12 \\ & 12 \\ & 12 \end{aligned}$	$\begin{aligned} & 1 \mathrm{M} / \\ & 1 \mathrm{M} / \\ & \mathrm{lM} / \\ & 1 \mathrm{M} / \end{aligned}$	$\begin{aligned} & 1.2 / \\ & 1.2 / \\ & 1.2 / \\ & 1.2 / \end{aligned}$			

TYPE NUMBER		$\begin{aligned} & \left.\begin{array}{c} 3 \\ \frac{0}{5} \\ \frac{3}{3} \\ \frac{5}{5} \\ 3 \\ 3 \end{array} \right\rvert\, \end{aligned}$	71 REPLACEMENT	$\begin{gathered} \text { FOR } \\ \text { NEW } \\ \text { DESICN } \end{gathered}$	$\begin{gathered} \mathbf{P D}_{\mathbf{D}} \\ (\mathrm{mW}) \end{gathered}$	TINGS V_{R} (V)	I (A)	$\begin{array}{ll} \mathbf{I}_{\mathbf{R}} & \mathbf{V}_{\mathbf{R}} \\ \mu \mathbf{A} & /(\mathbf{V}) \end{array}$	$\mathbf{V}_{\mathbf{F}}$ © $\mathbf{I F}_{\mathbf{F}}$ (V) 1 (mA)	I_{r} (ns)	$V_{z} \div \mathbf{l}_{\mathbf{z}}$ (V) $/(\mathrm{mA})$	TOL *
1N2587 1N2588 iN2589 IN2590	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\begin{aligned} & R E \\ & R E \\ & R E \\ & R E \\ & R E \end{aligned}$				$\begin{array}{r} 50 \\ 100 \\ 200 \\ 300 \end{array}$	$\begin{aligned} & 12 \\ & 12 \\ & 12 \\ & 12 \end{aligned}$	$\begin{aligned} & 200 / \\ & 200 / \\ & 200 / \\ & 200 \prime \end{aligned}$	$\begin{aligned} & 1 / \\ & 1 / \\ & 1 / \\ & 1 / \end{aligned}$			
1N2591 1N2592 1N2593 1N2594	$\begin{aligned} & \mathrm{S} \\ & \mathrm{~S} \\ & \mathrm{~s} \\ & \mathrm{~S} \end{aligned}$	$\left.\begin{aligned} & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \end{aligned} \right\rvert\,$				$\begin{aligned} & 400 \\ & 500 \\ & 600 \\ & 700 \end{aligned}$	$\begin{aligned} & 12 \\ & 12 \\ & 12 \\ & 12 \end{aligned}$	$\begin{aligned} & 200 / \\ & 200 / \\ & 200 / \\ & 200 / \end{aligned}$	$\begin{aligned} & 1 / \\ & 1 / \\ & 1 / \\ & 1 / \end{aligned}$			
1N2595 1N2596 1N2597 1N2598	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\left.\begin{aligned} & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \end{aligned} \right\rvert\,$				$\begin{array}{r} 800 \\ 900 \\ 1 K \\ 50 \end{array}$	$\begin{aligned} & 12 \\ & 12 \\ & 12 \\ & 12 \end{aligned}$	$\begin{gathered} 200 / \\ 200 / \\ 200 / \\ 2 M / \end{gathered}$	$\begin{gathered} 1 / \\ 1 / \\ 1 / \\ 1.5 / \end{gathered}$			
$\begin{aligned} & \text { iN2599 } \\ & \text { IN2600 } \\ & \text { 1N2601 } \\ & \text { IN2602 } \end{aligned}$	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\begin{aligned} & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \end{aligned}$				$\begin{aligned} & 100 \\ & 200 \\ & 300 \\ & 400 \end{aligned}$	$\begin{aligned} & 12 \\ & 12 \\ & 12 \\ & 12 \end{aligned}$	$\begin{aligned} & 2 M / \\ & 2 M / \\ & 2 M / \\ & 2 M / \end{aligned}$	$\begin{aligned} & 1.5 / \\ & 1.5 / \\ & 1.5 / \\ & 1.5 / \end{aligned}$			
1N2603 1N2604 1 N2605 1N2606	$\begin{aligned} & s \\ & s \\ & s \\ & s \\ & s \end{aligned}$	$\begin{aligned} & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \end{aligned}$				$\begin{aligned} & 500 \\ & 600 \\ & 700 \\ & 800 \end{aligned}$	$\begin{aligned} & 12 \\ & 12 \\ & 12 \\ & 12 \end{aligned}$	$\begin{aligned} & 2 M / \\ & 2 M / \\ & 2 M / \\ & 2 M / \end{aligned}$	$\begin{aligned} & 1.5 / \\ & 1.5 / \\ & 1.5 / \\ & 1.5 / \end{aligned}$			
$\begin{aligned} & \text { 1N2607 } \\ & \text { 1N2608 } \\ & \text { 1N2609 } \\ & \text { IN2610 } \end{aligned}$	$\begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}$	$\begin{aligned} & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \end{aligned}$		$\left\{\begin{array}{l} \text { 1N4001 } \\ \text { 1N4002 } \end{array}\right.$		$\begin{array}{r} 900 \\ 1 K \\ 50 \\ 100 \end{array}$	$\begin{array}{r} 12 \\ 12 \\ .75 \\ .75 \end{array}$	$\begin{aligned} & 2 M / \\ & 2 M / \\ & 10 / 50 \\ & 10 / 100 \end{aligned}$	$\begin{aligned} & 1.5 / \\ & 1.5 / \\ & 1.1 / 500 \\ & 1.1 / 500 \end{aligned}$			
1N2611 1N2612 1N2613 in2614	$\begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}$	$\left\lvert\, \begin{aligned} & R E \\ & R E \\ & R E \\ & R E \\ & R E \end{aligned}\right.$		1N4003 1N4004 1N4004 1N4005		$\begin{aligned} & 200 \\ & 300 \\ & 400 \\ & 500 \end{aligned}$	$\begin{aligned} & .75 \\ & .75 \\ & .75 \\ & .75 \end{aligned}$	10/200 10/300 10/400 $10 / 500$	1.1/500 1.1/500 $1.1 / 500$ $1.1 / 500$			
IN2615 1N2616 IN2617 1N2618	$\left\{\begin{array}{l} 5 \\ 5 \\ s \\ 5 \end{array}\right.$	$\left\|\begin{array}{l} R E \\ R E \\ \operatorname{RE} \\ \mathrm{RE} \end{array}\right\|$				$\begin{array}{r} 600 \\ 800 \\ 1 K \\ 1.2 K \end{array}$	$\begin{aligned} & .75 \\ & .75 \\ & .75 \\ & .75 \end{aligned}$	$\begin{aligned} & 10 / 600 \\ & 10 / 800 \\ & 10 / 1 \mathrm{~K} \\ & 10 / \end{aligned}$	$1.1 / 500$ $1.1 / 500$ $1.1 / 500$ $1.1 /$			
$\begin{aligned} & \text { IN2619 } \\ & \text { IN2620 } \\ & \text { IN2620A } \\ & \text { IN26208 } \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & R E \\ & R D \\ & R D \\ & R D \end{aligned}$			$\begin{aligned} & 750 \\ & 750 \\ & 750 \end{aligned}$	1.5K	. 75	10/	$1.1 /$		9.7/10 9.7/10 $9.7 / 10$	
$\begin{aligned} & \text { IN262I } \\ & \text { 1 N2621A } \\ & \text { 1N2621B } \\ & \text { IN2622 } \end{aligned}$	$\begin{aligned} & 5 \\ & s \\ & s \\ & 5 \end{aligned}$	$\left\|\begin{array}{l} R D \\ R D \\ R D \\ R D \end{array}\right\|$			$\begin{aligned} & 750 \\ & 750 \\ & 750 \\ & 750 \end{aligned}$						$\begin{aligned} & 9.7 / 10 \\ & 9.7 / 10 \\ & 9.7 / 10 \\ & 9.7 / 10 \end{aligned}$	

TYPE NUMDER		$\left.\begin{aligned} & \frac{3}{2} \\ & \frac{2}{3} \\ & \frac{2}{2} \\ & 3 \\ & 3 \end{aligned} \right\rvert\,$	$\begin{gathered} \text { TI } \\ \text { REPLACEMENI } \end{gathered}$		ratinos			CHARACTERISTICS				
					$\begin{gathered} P_{D} \\ (\mathrm{~mW}) \end{gathered}$	$\begin{array}{l\|l} \mathbf{V}_{\mathbf{R}} \\ (\mathbf{V}) \end{array}$	I (A)	$\begin{array}{ll} \mathbf{R} & \bullet \mathbf{V}_{\mathrm{R}} \\ \mu \mathrm{~A} & /(\mathbf{V}) \end{array}$	$\begin{array}{cc} \mathbf{V F F}_{F} & \mathbf{F}_{\mathrm{F}} \\ \text { (V) } & / \mathrm{mA}) \end{array}$	$\begin{aligned} & \mathrm{Im} \\ & \text { (ns) } \end{aligned}$	$\begin{array}{lll} \mathbf{v}_{\mathbf{z}} & \bullet \mathbf{z} \\ \text { (V) } & / \mathrm{ma}) \end{array}$	$\begin{gathered} \text { rot } \\ \% \end{gathered}$
$\begin{aligned} & \text { IN2622A } \\ & \text { IN2622B } \\ & \text { IN2623 } \\ & \text { IN2623A } \end{aligned}$	$\begin{aligned} & \mathbf{s} \\ & \mathrm{s} \\ & \mathrm{~s} \\ & \mathrm{~s} \end{aligned}$	$\begin{aligned} & R D \\ & R D \\ & R D \\ & R D \end{aligned}$			$\begin{aligned} & 750 \\ & 750 \\ & 750 \\ & 750 \end{aligned}$						$\begin{aligned} & 9.7 / 10 \\ & 9.7 / 10 \\ & 9.7 / 10 \\ & 9.7 / 10 \end{aligned}$	
$\begin{aligned} & \text { IN2623B } \\ & \text { IN2624 } \\ & \text { 1N2624A } \\ & \text { 1N2624B } \end{aligned}$	$\left\lvert\, \begin{aligned} & \mathbf{S} \\ & \mathbf{S} \\ & \mathbf{S} \\ & \mathbf{S} \end{aligned}\right.$	$\begin{aligned} & R D \\ & R D \\ & R D \\ & R D \end{aligned}$			$\begin{aligned} & 750 \\ & 750 \\ & 750 \\ & 750 \end{aligned}$						$\begin{aligned} & 9.7 / 10 \\ & 9.7 / 10 \\ & 9.7 / 10 \\ & 9.7 / 10 \end{aligned}$	
$\begin{aligned} & \text { IN2625 } \\ & \text { iN2625A } \\ & \text { iN2625B } \\ & \text { iN2626 } \end{aligned}$	$\left\lvert\, \begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}\right.$	$\left\|\begin{array}{l} R D \\ R D \\ R D \\ R D \end{array}\right\|$			$\begin{aligned} & 750 \\ & 750 \\ & 750 \\ & 750 \end{aligned}$						$\begin{aligned} & 9.4 / 10 \\ & 9.4 / 10 \\ & 9.4 / 10 \\ & 9.4 / 10 \end{aligned}$	
$\begin{aligned} & \text { IN2626A } \\ & \text { IN26268 } \\ & \text { IN2629 } \\ & \text { IN2630 } \end{aligned}$	$\left\lvert\, \begin{aligned} & \mathbf{S} \\ & \mathbf{S} \\ & \mathbf{G} \\ & \mathbf{S} \end{aligned}\right.$	$\begin{aligned} & R D \\ & R D \\ & R D \\ & S D \\ & R E \end{aligned}$		1N4305	$\begin{aligned} & 750 \\ & 750 \end{aligned}$	$\begin{array}{r} 5 \\ 1.5 K \end{array}$. 085	500/	2.2/		$\begin{aligned} & 9.4 / 10 \\ & 9.4 / 10 \end{aligned}$	
$\begin{aligned} & \text { 1N2631 } \\ & \text { 1N2632 } \\ & \text { 1N2633 } \\ & \text { 1N2634 } \end{aligned}$	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\left.\begin{array}{\|l\|} \mathbf{R E} \\ \mathrm{RE} \\ \mathrm{RE} \\ \mathrm{RE} \end{array} \right\rvert\,$				$\begin{aligned} & 1.6 \mathrm{~K} \\ & 2.8 \mathrm{~K} \\ & 1.6 \mathrm{~K} \\ & 1.8 \mathrm{~K} \end{aligned}$	$\begin{aligned} & .6 \\ & .2 \\ & .6 \\ & .6 \end{aligned}$	$\begin{aligned} & 500 / \\ & 500 / \\ & 500 / \\ & 500 / \end{aligned}$	$\begin{aligned} & 3 / \\ & 6 / \\ & 3 / \\ & 3 / \end{aligned}$			
$\begin{aligned} & \text { 1N2635 } \\ & \text { IN2636 } \\ & \text { 1N2637 } \\ & \text { IN2638 } \end{aligned}$	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\left.\begin{array}{\|l\|} \mathbf{R E} \\ \mathrm{RE} \\ \mathrm{RE} \\ \mathrm{RE} \end{array} \right\rvert\,$				$\begin{gathered} 1.5 K \\ 1.5 K \\ 10 K \\ 100 \end{gathered}$	$\begin{array}{r} .085 \\ .085 \\ .25 \\ 1.5 \end{array}$	$\begin{aligned} & 500 / \\ & 500 / \\ & 500 / \\ & 300 / \end{aligned}$	$\begin{gathered} 2.2 / \\ 2.2 / \\ 28 / \\ 1.3 / \end{gathered}$			
$\begin{array}{\|l\|} \text { 1N2641 } \\ \text { 1N2644 } \\ \text { 1N2647 } \\ \text { 1N2650 } \end{array}$	$\begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}$	$\left.\begin{array}{\|l\|} \mathbf{R E} \\ \mathrm{RE} \\ \mathrm{RE} \\ \mathrm{RE} \end{array} \right\rvert\,$				$\begin{aligned} & 200 \\ & 300 \\ & 400 \\ & 600 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \\ & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 300 / \\ & 300 / \\ & 300 / \\ & 300 / \end{aligned}$	$\begin{aligned} & 1.3 / \\ & 1.3 / \\ & 1.3 / \\ & 2.6 / \end{aligned}$			
$\begin{aligned} & \text { 1N2653 } \\ & \text { iN2656 } \\ & \text { 1N2659 } \\ & \text { 1N2662 } \end{aligned}$	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\begin{aligned} & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \end{aligned}$				$\begin{array}{r} 800 \\ 1.2 \mathrm{~K} \\ 1.6 \mathrm{~K} \\ 2 \mathrm{~K} \end{array}$	$\begin{aligned} & 1.5 \\ & 1.5 \\ & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 300 / \\ & 800 / \\ & 800 / \\ & 800 / \end{aligned}$	$\begin{aligned} & 2.6 / \\ & 3.9 / \\ & 5.2 / \\ & 6.5 / \end{aligned}$			
$\begin{aligned} & \text { IN2664 } \\ & \text { 1N2666 } \\ & \text { 1N2667 } \\ & \text { 1N2668 } \end{aligned}$	S \mathbf{S} \mathbf{S} \mathbf{S}	$\begin{aligned} & R E \\ & R E \\ & R E \\ & R E \\ & R E \end{aligned}$				$\begin{array}{r} 2.4 K \\ 3.2 K \\ 4 K \\ 4.8 K \end{array}$	$\begin{aligned} & 1.5 \\ & 1.5 \\ & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 800 / \\ & 800 / \\ & 800 / \\ & 800 / \end{aligned}$	$\begin{aligned} & 7.8 / \\ & 10 / \\ & 13 / \\ & 15 / \end{aligned}$			
$\begin{aligned} & \text { IN2669 } \\ & \text { IN2673 } \\ & \text { IN2677 } \\ & \text { IN2S81 } \end{aligned}$	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\begin{aligned} & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \end{aligned}$				$\begin{aligned} & 100 \\ & 200 \\ & 300 \\ & 400 \end{aligned}$	$\begin{aligned} & 3.6 \\ & 3.6 \\ & 3.6 \\ & 3.6 \end{aligned}$	$\begin{aligned} & 300 / \\ & 300 / \\ & 300 / \\ & 300 / \end{aligned}$	$\begin{aligned} & 1.3 / \\ & 1.3 / \\ & 1.3 / \\ & 1.3 / \end{aligned}$			

DIODE INTERCHANGEABILITY

TVPE MUMBER			N	$\begin{aligned} & \text { FOR } \\ & \text { NEW } \\ & \text { DESNEN } \end{aligned}$	Ratinges			Characteristics				
					$\begin{gathered} \text { PD } \\ (\mathrm{mW}) \end{gathered}$	$\begin{aligned} & \mathbf{V}_{\mathbf{R}} \\ & (\mathrm{V}) \end{aligned}$	1 (A)	$\begin{array}{ccc} \mathbf{L} & \mathbf{V}_{\mathrm{R}} \\ \mu \mathbf{A} & /(\mathrm{V}) \end{array}$	$\begin{array}{ll} \mathbf{V}_{F} & =\mathbf{I F}_{\mathbf{F}} \\ (\mathrm{V}) & /(\mathrm{m}) \end{array}$	$\begin{gathered} t_{\mathrm{rr}} \\ (\mathrm{~ns}) \end{gathered}$	$\mathbf{v}_{\mathbf{z}}-\mathbf{z}_{\mathbf{z}}$ (V) $/$ (mA)	$\begin{gathered} \text { rot } \\ \times \end{gathered}$
$\begin{aligned} & \text { 1N2767A } \\ & \text { IN2768 } \\ & \text { IN2768A } \\ & \text { IN2769 } \end{aligned}$	$\begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}$	$\begin{aligned} & R D \\ & R D \\ & R D \\ & R D \end{aligned}$									$\begin{array}{r} 20.4 / 7.5 \\ 27.2 / 7.5 \\ 27.2 / 7.5 \\ 34 / 7.5 \end{array}$	5 5 5 5
$\begin{array}{\|l} \text { IN2769A } \\ \text { IN2770 } \\ \text { IN2770A } \\ \text { IN2772 } \end{array}$	$\begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}$	$\begin{aligned} & R D \\ & R D \\ & R D \\ & R D \\ & R E \end{aligned}$				700	. 5		1.8/		$\begin{array}{r} 34 / 7.5 \\ 40.8 / 7.5 \\ 40.8 / 7.5 \end{array}$	5 5 5
1N2773 1N2774 1N2775 1N2776	$\left\lvert\, \begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}\right.$	$\begin{aligned} & R E \\ & R E \\ & R E \\ & R E \\ & R E \end{aligned}$.			$\begin{array}{r} 800 \\ 900 \\ 1 K \\ 1.1 K \end{array}$.5 .5 .5 .5		$\begin{aligned} & 1.8 / \\ & 1.8 / \\ & 1.8 / \\ & 1.8 / \end{aligned}$			
$\begin{aligned} & \text { 1N2777 } \\ & \text { 1N2778 } \\ & \text { 1N2779 } \\ & \text { 1N2780 } \end{aligned}$	$\begin{aligned} & s \\ & s \\ & s \\ & s \\ & s \end{aligned}$	$\left.\begin{aligned} & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \end{aligned} \right\rvert\,$				$\begin{aligned} & 1.2 \mathrm{~K} \\ & 1.3 \mathrm{~K} \\ & 1.4 \mathrm{~K} \\ & 1.5 \mathrm{~K} \end{aligned}$.5 .5 .5 .5		$\begin{aligned} & 1.8 / \\ & 1.8 / \\ & 1.8 / \\ & 1.8 / \end{aligned}$			
$\begin{array}{\|l\|} \hline 1 \text { N2781 } \\ \text { 1N2790 } \\ \text { 1N2791 } \\ \text { 1N2793 } \end{array}$	$\begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}$	$\left.\begin{array}{\|l\|} \mathrm{RE} \\ \mathrm{RD} \\ \mathrm{SD} \\ \mathrm{RE} \end{array} \right\rvert\,$		1N647	IW	$\begin{array}{r} 1.6 \mathrm{~K} \\ 350 \\ 50 \end{array}$	$.5$ 5	$\begin{gathered} 50 \mathrm{~N} / \\ 5 \mathrm{M} / \end{gathered}$	$\begin{aligned} & 1.8 / \\ & \\ & 1.3 / 50 \\ & 1.2 / \end{aligned}$	44	8.5/2U	10
$\begin{aligned} & \text { 1N2794 } \\ & \text { 1N2795 } \\ & \text { 1N2796 } \\ & \text { 1N2797 } \end{aligned}$	$\begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}$	$\left.\begin{array}{\|l\|} \mathbf{R E} \\ \mathrm{RE} \\ \mathrm{RE} \\ \mathrm{RE} \end{array} \right\rvert\,$				$\begin{aligned} & 100 \\ & 150 \\ & 200 \\ & 250 \end{aligned}$	5 5 5 5	5M/ 5M/ 5M/ 5M/	$\begin{aligned} & 1.2 / \\ & 1.2 / \\ & 1.2 / \\ & 1.2 / \end{aligned}$			
1N2798 1N2799 1N2800 1N2801	$\begin{aligned} & \mathbf{s} \\ & \mathbf{S} \\ & \mathbf{S} \\ & \mathbf{G} \end{aligned}$	$\left.\begin{array}{\|l\|} \mathrm{RE} \\ \mathrm{RE} \\ \mathrm{RE} \\ \mathrm{SD} \end{array} \right\rvert\,$				$\begin{array}{r} 300 \\ 350 \\ 400 \\ 20 \end{array}$	5 5 5	5M/ 5M/ 5M/ 2/	1.2/ 1.2/ 1.2/ .36/5	50 U		
$\begin{aligned} & \text { 1N2803 } \\ & \text { 1N2847 } \\ & \text { 1N2848 } \\ & \text { 1N2849 } \end{aligned}$	$\begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}$	$\begin{aligned} & R E \\ & R E \\ & R E \\ & R E \\ & R E \end{aligned}$				$\begin{aligned} & 400 \\ & 100 \\ & 200 \\ & 300 \end{aligned}$	$\begin{array}{r} 250 \\ 1.5 \\ 1.5 \\ 1.5 \end{array}$	$\begin{aligned} & 36 \mathrm{M} / \\ & 300 / \\ & 200 / \\ & 200 / \end{aligned}$	$\begin{aligned} & 1.2 / \\ & 2 / \\ & 2 / \\ & 2 / \end{aligned}$			
$\begin{aligned} & \text { 1N2850 } \\ & \text { iN2851 } \\ & \text { 1N2852 } \\ & \text { iN2855 } \end{aligned}$	$\begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}$	$\begin{aligned} & \mathbf{R E} \\ & \mathbf{R E} \\ & \mathbf{R E} \\ & \mathbf{R E} \end{aligned}$				$\begin{aligned} & 400 \\ & 500 \\ & 600 \\ & 600 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \\ & 1.5 \\ & 250 \end{aligned}$	$\begin{aligned} & 200 / \\ & 200 / \\ & 200 / \\ & 25 M / \end{aligned}$	$\begin{array}{r} 21 \\ 21 \\ 21 \\ 1.21 \end{array}$			
$\left\lvert\, \begin{aligned} & \text { IN2856 } \\ & \text { IN2857 } \\ & \text { IN2858 } \\ & \text { IN2858A } \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}\right.$	$\begin{aligned} & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \end{aligned}$		IN4001 1N4001		$\begin{array}{r} 800 \\ 1 K \\ 50 \\ 50 \end{array}$	$\begin{array}{r} 250 \\ 250 \\ .75 \\ 1 \end{array}$	$\begin{aligned} & 10 \mathrm{M} / \\ & 15 \mathrm{M} / \\ & 300 / 50 \\ & 300 / 50 \end{aligned}$	$\begin{aligned} & 1.2 / \\ & 1.2 / \\ & 1.2 / 500 \\ & 1.2 / 1 \mathrm{~A} \end{aligned}$			

DIODE INTERCHANGEABILITY

TYPE NUMEER			II REPLACEMENT		PD (mW)	atings $\mathbf{V}_{\mathbf{R}}$ (V)	I (A)	$\begin{array}{ll} \mathbf{I}_{\mathrm{R}} & \bullet \mathbf{V}_{\mathrm{R}} \\ \mu_{\mathrm{A}} & /(\mathrm{V}) \end{array}$	CMARACTE $\mathbf{V F}_{\mathrm{F}}$ - $\mathbf{1 F}$ (V) 1 (ma)	RISHIC trr (n)	$\begin{array}{ll} \mathbf{V}_{\mathbf{Z}} & \mathbf{Z} \\ (\mathbf{V}) & / \mathrm{ma}) \end{array}$	$\left\{\begin{array}{c} \mathrm{TOL} \\ \% \end{array}\right.$
$\begin{array}{\|l\|} \hline \text { 1N2859 } \\ \text { 1N2859A } \\ \text { 1N2860 } \\ \text { 1N2860A } \end{array}$	S S S S	$\begin{array}{\|l\|l} \hline R E \\ \mathbf{R E} \\ \hline \mathbf{R E} \\ \hline \mathbf{R E} \end{array}$		1N4002 IN4002 1N4003 IN4003		$\begin{aligned} & 100 \\ & 100 \\ & 200 \\ & 200 \end{aligned}$	$\begin{array}{r} .75 \\ 1 \\ .75 \\ 1 \end{array}$	$\begin{aligned} & 300 / 100 \\ & 300 / 100 \\ & 300 / 200 \\ & 300 / 200 \end{aligned}$	$\begin{aligned} & 1.2 / 500 \\ & 1.2 / 1 \mathrm{~A} \\ & 1.2 / 500 \\ & 1.2 / 1 \mathrm{~A} \end{aligned}$			
$\begin{aligned} & \text { 1N2861 } \\ & \text { 1N2861A } \\ & \text { IN2862 } \\ & \text { IN2862A } \end{aligned}$	S $\begin{aligned} & \text { S } \\ & \mathbf{S} \\ & \mathbf{S} \\ & \mathbf{S}\end{aligned}$	$\begin{aligned} & R E \\ & R E \\ & R E \\ & \text { RE } \\ & R E \end{aligned}$		1N4004 iN4004 1N4004 1N4004		$\begin{aligned} & 300 \\ & 300 \\ & 400 \\ & 400 \end{aligned}$	$\begin{array}{r} .75 \\ 1 \\ .75 \\ 1 \end{array}$	$\begin{aligned} & 300 / 300 \\ & 300 / 300 \\ & 300 / 400 \\ & 300 / 400 \end{aligned}$	$\begin{aligned} & 1.2 / 500 \\ & 1.2 / 1 A \\ & 1.2 / 500 \\ & 1.2 / 1 A \end{aligned}$			
1N2863 IN2863A IN2864 IN2864A	S \mathbf{S} \mathbf{S} \mathbf{S}	RE RE RE RE		1N4005 iN4005 1N4005 1N4005		$\begin{aligned} & 500 \\ & 500 \\ & 600 \\ & 600 \end{aligned}$	$\begin{array}{r} .75 \\ 1 \\ .75 \\ 1 \end{array}$	$\begin{aligned} & 200 / 500 \\ & 300 / 500 \\ & 200 / 600 \\ & 300 / 800 \end{aligned}$	$\begin{aligned} & 1.2 / 500 \\ & 1.2 / 1 \mathrm{~A} \\ & 1.2 / 500 \\ & 1.2 / 1 \mathrm{~A} \end{aligned}$			
IN2865 1N2866 1N2867 1N2868	$\begin{aligned} & \mathrm{S} \\ & \mathrm{~S} \\ & \mathrm{~S} \\ & \mathrm{~s} \end{aligned}$	$\begin{aligned} & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \end{aligned}$				$\begin{array}{r} 1 K \\ 1.5 K \\ 1 K \\ 1.5 K \end{array}$	$\begin{aligned} & .7 \\ & .7 \\ & .7 \\ & .7 \end{aligned}$	$\begin{aligned} & 100 / \\ & 100 / \\ & 100 / \\ & 100 / \end{aligned}$	$\begin{aligned} & 2.5 / \\ & 2.5 / \\ & 2.5 / \\ & 2.5 / \end{aligned}$			
1N2878 1N2879 iN2880 1N2881	$\begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}$	$\begin{array}{\|l\|} \hline S D \\ S D \\ S D \\ S D \end{array}$	1N2878 1N2879 1N2880 IN2881			$\begin{array}{r} 700 \\ 700 \\ 1 K \\ 1 K \end{array}$. $5 /$. $5 /$.5/ . $5 /$	$\begin{aligned} & 2 / 250 \\ & 2 / 250 \\ & 2 / 250 \\ & 2 / 250 \end{aligned}$			
1N2882 1N2883 1N2884 1N2885	$\begin{aligned} & \mathrm{s} \\ & \mathrm{~s} \\ & \mathrm{~s} \\ & \mathrm{~s} \end{aligned}$	$\left\|\begin{array}{l} \text { SD } \\ \text { SD } \\ S D \\ S D \end{array}\right\|$	1N2882 1N2883 1N2884 1N2885			$\begin{aligned} & 500 \\ & 500 \\ & 400 \\ & 400 \end{aligned}$		$\begin{aligned} & .5 / \\ & .5 / \\ & .5 / \\ & .5 / \end{aligned}$	$\begin{aligned} & 3 / 250 \\ & 3 / 250 \\ & 4 / 250 \\ & 4 / 250 \end{aligned}$			
1N2886 1N2887 1N2888 1N2889	$\begin{aligned} & \mathbf{s} \\ & s \\ & s \\ & s \end{aligned}$	$\begin{array}{\|l\|} S D \\ S D \\ S D \\ S D \\ S D \end{array}$	$\begin{aligned} & \text { 1N2886 } \\ & \text { 1N2887 } \\ & \text { 1N2888 } \\ & \text { 1N2889 } \end{aligned}$			$\begin{aligned} & 500 \\ & 500 \\ & 750 \\ & 750 \end{aligned}$.5/ .5/ .5/ .5/	$\begin{aligned} & 3 / 250 \\ & 3 / 250 \\ & 5 / 250 \\ & 5 / 250 \end{aligned}$			
1N2890 1N2891 1N2892 1N2893	$\begin{aligned} & s \\ & S \\ & S \\ & S \end{aligned}$	$\left.\begin{aligned} & \mathrm{SD} \\ & \mathrm{SD} \\ & \mathrm{SD} \\ & \mathrm{SD} \end{aligned} \right\rvert\,$	$\begin{aligned} & \text { 1N2890 } \\ & \text { 1 N2891 } \\ & \text { 1N2892 } \\ & \text { 1N2893 } \end{aligned}$			$\begin{array}{r} 2 K \\ 2 K \\ 100 \\ 100 \end{array}$		$\begin{aligned} & .5 / \\ & .5 / \\ & .5 / \\ & .5 / \end{aligned}$	$\begin{aligned} & 4 / 250 \\ & 4 / 250 \\ & 6 / 250 \\ & 6 / 250 \end{aligned}$			
1N2894 1 N2895 iN2896 1N2897	$\begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & \mathrm{SD} \\ & \mathrm{SD} \\ & \mathrm{SD} \\ & \mathrm{SD} \end{aligned}$	$\begin{aligned} & \text { IN2894 } \\ & \text { 1 N2895 } \\ & \text { IN2896 } \\ & \text { IN2897 } \end{aligned}$			$\begin{aligned} & 450 \\ & 450 \\ & 500 \\ & 500 \end{aligned}$		$\begin{aligned} & .5 / \\ & .5 / \\ & .5 / \\ & .5 / \end{aligned}$	$\begin{aligned} & 7 / 250 \\ & 7 / 250 \\ & 5 / 250 \\ & 5 / 250 \end{aligned}$			
1N2898 1N2899 1N2900 IN2901	$\begin{aligned} & 5 \\ & s \\ & s \\ & s \end{aligned}$	$\begin{array}{\|l\|} \text { SD } \\ \text { SD } \\ \text { SD } \\ \text { SD } \end{array}$	$\begin{aligned} & \text { IN2898 } \\ & \text { IN2899 } \\ & \text { IN2900 } \\ & \text { 1 N2901 } \end{aligned}$			$\begin{array}{r} 800 \\ 800 \\ 3 K \\ 3 K \end{array}$		$\begin{aligned} & .5 / \\ & .5 / \\ & .5 / \\ & .5 / \end{aligned}$	$\begin{aligned} & 8 / 250 \\ & 8 / 250 \\ & 6 / 250 \\ & 6 / 250 \end{aligned}$			

DIODE INTERCHANGEABILITY

TYPE Numer	$\frac{3}{\frac{2}{2}}$		n		Ratines			CHARACTERISTHCS				
					$\begin{gathered} P D \\ (\mathrm{~mW}) \end{gathered}$	$\mathbf{v}_{\mathbf{R}}$ (V)	I (A)	$\begin{array}{ll} \mathbf{I}_{\mathbf{R}} & \oplus \mathbf{V}_{\mathrm{R}} \\ \mu_{\mathrm{A}} & /(\mathrm{V}) \end{array}$	$\begin{array}{cc} \mathbf{V}_{\mathrm{F}} & \mathrm{~F} \\ \text { (v) } & / \mathrm{mA}) \end{array}$	$\begin{aligned} & i n t \\ & (n s) \end{aligned}$	$\mathbf{V}_{\mathbf{Z}} \quad \mathbf{I z}_{\mathbf{2}}$ (V) $/$ (ma)	$\begin{aligned} & \text { rot } \\ & \times \end{aligned}$
1N2902 IN2903 in2904 IN2905	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\left\|\begin{array}{l} \text { SD } \\ s 0 \\ S D \\ s D \end{array}\right\|$	1N2902 1N2903 1N2904 1N2905			150 150 500 500		.5/ . $5 /$. $5 /$.5/	$\begin{aligned} & 9 / 250 \\ & 9 / 250 \\ & 7 / 250 \\ & 7 / 250 \end{aligned}$			
1N2906 IN2907 1N2908 1N2909	$\begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & \text { SD } \\ & S D \\ & S D \\ & S D \end{aligned}$	1N2906 IN2907 1 N2908 1 N2909			500 500 850 850		.5/ .5/ . $5 /$. $5 /$	$\begin{aligned} & 10 / 250 \\ & 10 / 250 \\ & 11 / 250 \\ & 11 / 250 \end{aligned}$			
1N2910 1N2911 iN2912 IN2913	$\begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}$	$\begin{aligned} & s o \\ & s 0 \\ & s 0 \\ & s 0 \\ & s D \end{aligned}$	1N2910 iN2911 1N2912 1N2913			$4 K$ $4 K$ 200 200		$\begin{aligned} & .5 / \\ & .5 / \\ & .5 / \\ & .5 / \end{aligned}$	$\begin{array}{r} 8 / 250 \\ 8 / 250 \\ 12 / 250 \\ 12 / 250 \end{array}$			
1N2914 IN2915 1N2916 IN2917	$\begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}$	$\begin{aligned} & \text { SD } \\ & \text { SD } \\ & \text { SD } \\ & \text { SD } \end{aligned}$	$\left\{\begin{array}{l} \text { 1N2914 } \\ \text { 1N2915 } \\ \text { 1N2916 } \\ \text { 1N2917 } \end{array}\right.$			$\begin{aligned} & 500 \\ & 500 \\ & 550 \\ & 550 \end{aligned}$.5/ .5/ .5/ .5/	$\begin{array}{r} 9 / 250 \\ 9 / 250 \\ 13 / 250 \\ 13 / 250 \end{array}$			
IN2918 1N2919 1N2920 1N2921	$\left\lvert\, \begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & \text { SD } \\ & \text { SD } \\ & S D \\ & S D \end{aligned}\right.$	1N2918 1N2919 IN2920 IN2921			$5 K$ $5 K$ 500 500		$\begin{aligned} & .5 / \\ & .5 / \\ & .5 / \\ & .5 / \end{aligned}$	$\begin{aligned} & 10 / 250 \\ & 10 / 250 \\ & 11 / 250 \\ & 11 / 250 \end{aligned}$			
1N2922 IN2923 IN2924 IN2925	$\left\lvert\, \begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}\right.$	$\begin{aligned} & \text { SD } \\ & \text { SD } \\ & \text { SD } \\ & \text { SD } \end{aligned}$	1N2922 1N2923 1 N2924 1N2925			$\begin{array}{r} 6 K \\ 6 K \\ 500 \\ 500 \end{array}$		$\begin{aligned} & .5 / \\ & .5 / \\ & .5 / \\ & .5 / \end{aligned}$	$\begin{aligned} & 12 / 250 \\ & 12 / 250 \\ & 13 / 250 \\ & 13 / 250 \end{aligned}$			
$\begin{aligned} & \text { 1N2938 } \\ & \text { IN3016 } \\ & \text { 1N3016A } \\ & \text { 1N3016B } \end{aligned}$	$\left\lvert\, \begin{aligned} & \mathbf{s} \\ & s \\ & s \\ & s \end{aligned}\right.$	$\begin{aligned} & 20 \\ & 20 \\ & 20 \\ & 20 \end{aligned}$		1N4736 1N4736 1N4736A	$\begin{aligned} & \text { 2W } \\ & \text { IW } \\ & \text { iW } \\ & \text { iW } \end{aligned}$						$\begin{aligned} & .9 / 100 \\ & 6.8 / 37 \\ & 6.8 / 37 \\ & 6.8 / 37 \end{aligned}$	15 20 10 5
$\begin{aligned} & 1 N 3017 \\ & \text { 1N3017A } \\ & \text { 1N3017B } \\ & 1 N 3018 \end{aligned}$	$\begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \\ & 20 \\ & 20 \end{aligned}$		1N4737 1N4737 1N4737A 1N4738	$\begin{aligned} & \text { iw } \\ & \text { iw } \\ & \text { iw } \\ & \text { iw } \end{aligned}$						$\begin{aligned} & 7.5 / 34 \\ & 7.5 / 34 \\ & 7.5 / 34 \\ & 8.2 / 31 \end{aligned}$	20 10 5 20
$\begin{aligned} & \text { 1N3018A } \\ & \text { IN30188 } \\ & \text { 1N3019 } \\ & \text { 1N3019A } \end{aligned}$	$\begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}$	$\left\|\begin{array}{l} \mathrm{ZD} \\ \mathrm{ZD} \\ \mathrm{ZD} \\ \mathrm{ZD} \end{array}\right\|$		IN4738 IN4738A IN4739 1N4739	$\begin{aligned} & 1 w \\ & 1 w \\ & 1 w \\ & 1 w \end{aligned}$.			$\begin{aligned} & 8.2 / 31 \\ & 8.2 / 31 \\ & 9.1 / 38 \\ & 9.1 / 38 \end{aligned}$	10 5 20 10
$\begin{aligned} & \text { 1N30198 } \\ & \text { iN3020 } \\ & \text { iN3020A } \\ & \text { IN30208 } \end{aligned}$	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\begin{aligned} & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \end{aligned}$		$\begin{aligned} & \text { 1NA739A } \\ & \text { 1N4740 } \\ & \text { IN4740 } \\ & \text { IN4740A } \end{aligned}$	$\begin{aligned} & \text { iw } \\ & \text { iw } \\ & \text { iw } \\ & \text { iw } \end{aligned}$						$\begin{array}{r} 9.1 / 38 \\ 10 / 25 \\ 10 / 25 \\ 10 / 25 \end{array}$	5 20 10 5

DIODE INTERCHANGEABILITY

TYFE mumber			TI	$\begin{aligned} & \text { FOR } \\ & \text { NEW } \\ & \text { DESMON } \end{aligned}$	RATINGS			CHARACTERISTICS				
					PD (mW)	$\mathbf{V}_{\mathbf{R}}$ (V)	(A)	$\begin{array}{ll} \mathbf{L}_{\mathbf{R}} & \mathbf{V}_{\mathbf{R}} \\ \boldsymbol{\mu} \mathbf{A} & /(\mathbf{V}) \end{array}$	$\begin{array}{ll} \mathbf{V}_{F} & \mathbf{I F}_{\mathbf{F}} \\ (\mathrm{V}) & /(\mathrm{mA}) \end{array}$	$\begin{aligned} & I_{r r} \\ & \text { (ns) } \end{aligned}$	$\begin{array}{ll} \mathbf{V}_{\mathbf{Z}} & \mathbf{Z} \\ \text { (V) } & (\mathrm{mA}) \end{array}$	$\begin{aligned} & 101 \\ & \times \end{aligned}$
IN3034A IN30348 iN3035 1N3035A	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\left\|\begin{array}{l} \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{ZD} \end{array}\right\|$			$\begin{aligned} & \text { 1w } \\ & \text { 1w } \\ & \text { iw } \\ & \text { iw } \end{aligned}$						39/6.5 39/6.5 43/6 43/6	$\begin{array}{r} 10 \\ 5 \\ 20 \\ 10 \end{array}$
1N30358 1N3036 1N3036A IN3036B	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\left.\begin{aligned} & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \end{aligned} \right\rvert\,$			$\begin{aligned} & \text { iw } \\ & \text { iw } \\ & \text { iw } \\ & \text { iw } \end{aligned}$						$\begin{aligned} & 43 / 6 \\ & 47 / 5.5 \\ & 47 / 5.5 \\ & 47 / 5.5 \end{aligned}$	5 20 10 5
$\begin{aligned} & \text { 1N3037 } \\ & \text { 1N3037A } \\ & \text { 1N30378 } \\ & \text { 1N3038 } \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$	$\left\|\begin{array}{l} \mathrm{zo} \\ \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \end{array}\right\|$			$\begin{aligned} & \text { iw } \\ & \text { iw } \\ & \text { iw } \\ & \text { iw } \end{aligned}$						51/5 51/5 51/5 56/4.5	$\begin{array}{r} 20 \\ 10 \\ 5 \\ 20 \end{array}$
$\begin{array}{\|l} \text { 1N3038A } \\ \text { IN30388 } \\ \text { 1N3039 } \\ \text { 1N3039A } \end{array}$	$\left\lvert\, \begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}\right.$	$\begin{aligned} & \mathrm{zD} \\ & \mathrm{zo} \\ & \mathrm{zD} \\ & \mathrm{zD} \end{aligned}$			$\begin{aligned} & \text { iw } \\ & \text { iw } \\ & \text { iw } \\ & \text { iw } \end{aligned}$						56/4.5 56/4.5 62/4 62/4	$\begin{array}{r} 10 \\ 5 \\ 20 \\ 10 \end{array}$
$\begin{array}{\|l} \text { IN30398 } \\ \text { IN3040 } \\ \text { IN3040A } \\ \text { IN3040B } \end{array}$	$\left\lvert\, \begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{ZD} \\ & \mathrm{zD} \end{aligned}\right.$			$\begin{aligned} & \text { iw } \\ & 1 \mathbf{1 w} \\ & \text { iw } \\ & \text { iw } \end{aligned}$						62/4 68/3.7 68/3.7 68/3.7	5 20 10 5
$\begin{aligned} & \text { IN3041 } \\ & \text { IN3041A } \\ & \text { IN3041B } \\ & \text { IN3O42 } \end{aligned}$	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\left\|\begin{array}{l} \mathrm{ZD} \\ \mathrm{ZD} \\ \mathrm{ZD} \\ \mathrm{ZD} \end{array}\right\|$			$\begin{aligned} & \text { iw } \\ & \text { iw } \\ & \text { iw } \\ & \text { iw } \end{aligned}$						$\begin{aligned} & 75 / 3.3 \\ & 75 / 3.3 \\ & 75 / 3.3 \\ & 82 / 3 \end{aligned}$	20 10 5 20
$\begin{aligned} & 1 N 3042 A \\ & \text { 1N3042B } \\ & \text { 1N3043 } \\ & \text { IN3043A } \end{aligned}$	$\left\lvert\, \begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}\right.$	$\left\|\begin{array}{l} \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \end{array}\right\|$			$\begin{aligned} & \text { iw } \\ & \text { iw } \\ & \text { iw } \\ & \text { iw } \end{aligned}$						$\begin{aligned} & 82 / 3 \\ & 82 / 3 \\ & 91 / 2.8 \\ & 91 / 2.8 \end{aligned}$	10 5 20 10
$\begin{aligned} & \text { IN3O438 } \\ & \text { IN3O44 } \\ & \text { IN3044A } \\ & \text { 1N3O4AB } \end{aligned}$	$\left\lvert\, \begin{aligned} & \mathbf{S} \\ & \mathbf{S} \\ & \mathbf{S} \\ & \mathbf{S} \end{aligned}\right.$	$\left.\begin{aligned} & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \end{aligned} \right\rvert\,$			$\begin{aligned} & \text { iw } \\ & \text { iw } \\ & \text { iw } \\ & \text { iw } \end{aligned}$						$\begin{aligned} & 91 / 2.8 \\ & 100 / 2 \\ & 100 / 2 \\ & 100 / 2 \end{aligned}$	5 20 10 5
$\begin{aligned} & \text { IN3O45 } \\ & \text { IN3045A } \\ & \text { IN3O45B } \\ & \text { IN3O46 } \end{aligned}$	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\begin{aligned} & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \end{aligned}$			$\begin{aligned} & \text { iw } \\ & \text { iw } \\ & \text { iw } \\ & \text { iw } \end{aligned}$						$\begin{aligned} & 110 / 2.3 \\ & 110 / 2.3 \\ & 110 / 2.3 \\ & 120 / 2 \end{aligned}$	20 10 5 20
$\begin{aligned} & \text { IN3046A } \\ & \text { IN30468 } \\ & \text { IN3047 } \\ & \text { IN3047A } \end{aligned}$	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\left\|\begin{array}{l} \mathrm{ZD} \\ \mathrm{ZD} \\ \mathrm{ZD} \\ \mathrm{ZD} \end{array}\right\|$			$\begin{aligned} & \text { iw } \\ & \text { iw } \\ & \text { iw } \\ & \text { iw } \end{aligned}$						$\begin{aligned} & 120 / 2 \\ & 120 / 2 \\ & 130 / 1.9 \\ & 130 / 1.9 \end{aligned}$	10 5 20 10

DIODE INTERCHANGEABILITY

$\begin{gathered} \text { TYPE } \\ \text { Numberin } \end{gathered}$			$\left\lvert\, \begin{array}{\|c\|} \text { TI } \\ \text { RERLACEMENT } \end{array}\right.$	$\begin{gathered} \text { FOR } \\ \text { NEW } \\ \text { DESCN } \end{gathered}$	$\begin{gathered} P_{D} \\ (m W) \end{gathered}$	nnes \mathbf{V}_{R} (V)	(A)	$\begin{array}{ll} I_{R} & \bullet V_{R} \\ \mu_{A} & /(V) \end{array}$	$\begin{array}{cc} & \text { characte } \\ \mathbf{v F}_{\mathbf{F}} & \bullet \\ \text { (V) } & / \text { (mA) } \end{array}$	RISTIC ${ }^{\dagger}$ (ns)	$\begin{array}{ccc} v_{z} & 1 & \mathbf{z} \\ (\mathrm{v}) & /(\mathrm{ma}) \end{array}$	$\begin{aligned} & \text { rot } \\ & \% \end{aligned}$
1N30478 IN3048 1N3048A 1N30488	$\text { } \begin{aligned} & s \\ & s \\ & s \\ & s \\ & s \end{aligned}$	$\left\|\begin{array}{l} \mathrm{zD} \\ \mathrm{ZD} \\ \mathrm{zD} \\ \mathrm{ZD} \end{array}\right\|$			$\begin{aligned} & \text { iw } \\ & \text { iw } \\ & \text { iw } \\ & \text { iw } \end{aligned}$						$\begin{aligned} & 130 / 1.9 \\ & 150 / 1.7 \\ & 150 / 1.7 \\ & 150 / 1.7 \end{aligned}$	5 20 10 5
1N304P 1N3049A in304P8 iN3050	$\begin{aligned} & \mathrm{s} \\ & \mathrm{~s} \\ & \mathrm{~s} \\ & \mathrm{~s} \end{aligned}$	$\left.\begin{aligned} & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zo} \\ & \mathrm{zD} \end{aligned} \right\rvert\,$			iw 10 $1 w$ $1 w$ $1 w$						$\begin{aligned} & 160 / 1.6 \\ & 160 / 1.6 \\ & 160 / 1.6 \\ & 180 / 1.4 \end{aligned}$	20 10 5 20
in3050A iN3050 1N3051 1N3051A	$\begin{aligned} & \mathrm{s} \\ & \mathrm{~s} \\ & \mathrm{~s} \\ & \mathrm{~s} \end{aligned}$	$\left\|\begin{array}{l} \mathrm{zo} \\ \mathrm{zo} \\ 20 \\ 20 \end{array}\right\|$			$\begin{aligned} & \text { iw } \\ & \text { iw } \\ & 1 w \\ & i w \end{aligned}$						$\begin{aligned} & 180 / 1.4 \\ & 180 / 1.4 \\ & 200 / 1.2 \\ & 200 / 1.2 \end{aligned}$	$\begin{array}{r} 10 \\ 5 \\ 20 \\ 10 \end{array}$
1N30518 1N3052 1N3053 1N3054	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\left.\begin{aligned} & \mathrm{ZO} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \end{aligned} \right\rvert\,$			iw	$\begin{aligned} & 12 K \\ & 14 K \\ & 16 K \end{aligned}$	$\begin{aligned} & .1 \\ & .1 \\ & . \end{aligned}$	$\begin{aligned} & 200 / \\ & 200 / \\ & 200 / \end{aligned}$	$\begin{aligned} & 701 \\ & 751 \\ & 85 \end{aligned}$		200/1.2	5
1N3055 IN3056 IN3057 IN3058	$\begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$	$\begin{array}{\|l\|} \mathrm{RE} \\ \mathrm{RE} \\ \mathrm{RE} \\ \mathrm{RE} \\ \mathrm{RE} \end{array}$				$\begin{aligned} & 18 K \\ & 20 K \\ & 22 K \\ & 24 K \end{aligned}$.1 .1 .1 .1	$\begin{aligned} & 200 / \\ & 200 / \\ & 200 \prime \\ & 200 / \end{aligned}$	$\begin{array}{r} 85 / \\ 90 / \\ 95 / \\ 100 / \end{array}$			
IN3059 1N3060 IN3061 1N3062	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\left\|\begin{array}{l} \mathrm{RE} \\ \mathrm{RE} \\ \mathrm{RE} \\ \mathrm{SD} \end{array}\right\|$		1N4305		26K 28k 30K 75	$\begin{aligned} & 1 \\ & \hline .1 \\ & \hline . \end{aligned}$	2001 200/ 200/ .1/50	$\begin{aligned} & 105 / \\ & 120 / \\ & 125 / \\ & 1 / 20 \end{aligned}$	2		
IN3063 IN3064 IN3065 1N3066	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\left\|\begin{array}{l} \text { SD } \\ \text { SD } \\ \text { SD } \\ \text { SD } \end{array}\right\|$		1N4305 1N4454 1N4305 1N4305		75 75 75 75		$\begin{aligned} & .1 / 50 \\ & .1 / 50 \\ & .1 / 50 \\ & .1 / 50 \end{aligned}$	$\begin{array}{r} .85 / 10 \\ 1 / 10 \\ 1 / 20 \\ 1 / 10 \end{array}$	2 4 2 2		
1N3067 IN3068 1N3069 iN3070	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\begin{array}{\|l\|} \hline \text { SD } \\ \text { SD } \\ \text { SD } \\ \text { SD } \end{array}$	1N3070	1 N4148 1N4148 1N4148		$\begin{array}{r} 30 \\ 30 \\ 65 \\ 200 \end{array}$		$\begin{aligned} & .1 / 20 \\ & .1 / 20 \\ & .1 / 50 \\ & .1 / 175 \end{aligned}$	$\begin{aligned} & 1 / 5 \\ & 1 / 5 \\ & 1 / 50 \\ & 1 / 100 \end{aligned}$	2 50 50 50		
1N3071 1N3072 1N3073 1N3074	$\left\lvert\, \begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}\right.$	$\left.\begin{aligned} & \mathrm{SD} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \end{aligned} \right\rvert\,$		1N3070 1N4001 1N4002 1N4003		$\begin{array}{r} 200 \\ 50 \\ 100 \\ 150 \end{array}$	$\begin{aligned} & .2 \\ & .2 \\ & .2 \end{aligned}$	$\begin{aligned} & 1 / 175 \\ & 1 / 50 \\ & 1 / 100 \\ & 1 / 150 \end{aligned}$	$\begin{array}{r} 1 / 100 \\ 1.5 / 500 \\ 1.5 / 500 \\ 1.5 / 500 \end{array}$	50		
1N3075 1N3076 1N3077 1N3078	$\left\lvert\, \begin{aligned} & \mathbf{s} \\ & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\begin{aligned} & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \end{aligned}$		1N4003 iN4004 1N4004 iN4004		$\begin{aligned} & 200 \\ & 250 \\ & 300 \\ & 350 \end{aligned}$	$\begin{aligned} & .2 \\ & .2 \\ & .2 \\ & .2 \end{aligned}$	$\begin{aligned} & 1 / 200 \\ & 1 / 250 \\ & 1 / 300 \\ & 1 / 350 \end{aligned}$	1.5/500 1.5/500 1.5/500 1.5/500			

TYF: Mumasit			$\begin{gathered} \text { II } \\ \text { REPLACEMBNT } \end{gathered}$	$\begin{aligned} & \text { FOR } \\ & \text { NEW } \\ & \text { DESICN } \end{aligned}$	rathess			CHARACTERISTICS				
						$\begin{aligned} & \mathbf{V}_{\mathbf{R}} \\ & (\mathbf{V}) \end{aligned}$	I (A)	$\begin{array}{ll} \mathbf{N}_{\mathrm{R}} & \bullet \mathrm{~V}_{\mathrm{R}} \\ \mu_{\mathrm{A}} & /(\mathrm{V}) \end{array}$	$\begin{array}{cc} V_{f} & V_{F} \\ \text { (V) } & /(\mathrm{mA}) \end{array}$	$\begin{aligned} & t_{r r} \\ & (n *) \end{aligned}$	$\mathbf{V}_{\mathbf{Z}} \quad \mathbf{l}_{\mathbf{Z}}$ (V) $/$ (mA)	$\begin{aligned} & \text { rot } \\ & \text { \% } \end{aligned}$
1N3079 iN3080 IN3081 IN3082	$\begin{aligned} & \hline s \\ & s \\ & s \\ & s \end{aligned}$	$\begin{aligned} & \hline R E \\ & R E \\ & R E \\ & R E \\ & R E \end{aligned}$		IN4004 1N4005 1N4005 1N4003		400 500 600 200	.2 .2 .2 .	$\begin{array}{r} 1 / 400 \\ 1 / 500 \\ 1 / 600 \\ 200 / 200 \end{array}$	$\begin{aligned} & 1.5 / 500 \\ & 1.5 / 500 \\ & 1.5 / 500 \\ & 1.2 / 200 \end{aligned}$			
1N3083 IN3084 IN3085 1N3086	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\begin{aligned} & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \end{aligned}$		$\begin{aligned} & \text { IN4004 } \\ & \text { iN4005 } \end{aligned}$		$\begin{aligned} & 400 \\ & 600 \\ & 100 \\ & 200 \end{aligned}$	$\begin{array}{r} .5 \\ .5 \\ 150 \\ 150 \end{array}$	$\begin{aligned} & 200 / 400 \\ & 200 / 600 \\ & 40 \mathrm{M} / \\ & 40 \mathrm{~m} / \end{aligned}$	$\begin{aligned} & 1.2 / 200 \\ & 1.2 / 200 \\ & 1.1 / \\ & 1.1 / \end{aligned}$			
1N3087 in3088 1N3089 1N3090	$\left\lvert\, \begin{aligned} & 5 \\ & s \\ & s \\ & s \end{aligned}\right.$	$\begin{aligned} & \text { RE } \\ & R E \\ & R E \\ & R E \\ & R E \end{aligned}$				$\begin{aligned} & 300 \\ & 400 \\ & 500 \\ & 600 \end{aligned}$	$\begin{aligned} & 150 \\ & 150 \\ & 150 \\ & 150 \end{aligned}$	$\begin{aligned} & 40 \mathrm{~m} / \\ & 40 \mathrm{~m} / \\ & 40 \mathrm{~m} / \\ & 40 \mathrm{~m} / \end{aligned}$	$\begin{aligned} & 1.1 / \\ & 1.1 / \\ & 1.1 / \\ & 1.1 / \end{aligned}$			
iN3091 1N3092 1N3097 1N3098	$\left\lvert\, \begin{aligned} & \mathbf{S} \\ & \mathbf{G} \\ & \mathbf{G} \\ & \mathbf{S} \end{aligned}\right.$	$\begin{aligned} & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{SD} \\ & \mathrm{ZD} \end{aligned}$	-	1N4305	1w	$\begin{array}{r} 800 \\ 1 K \\ 30 \end{array}$	$\begin{aligned} & 150 \\ & 150 \end{aligned}$	$\begin{aligned} & 40 \mathrm{w} / \\ & 40 \mathrm{~W} / \\ & 2 / 30 \end{aligned}$	$\begin{aligned} & 1.1 / \\ & 1.1 / \\ & .5 / 10 \end{aligned}$		120/3	20
$\begin{aligned} & \text { 1N3098A } \\ & \text { IN3099 } \\ & \text { 1N3099A } \\ & \text { IN3100 } \end{aligned}$	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\begin{aligned} & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \end{aligned}$			$\begin{aligned} & 1 w \\ & 16 \\ & 16 \\ & 1 w \end{aligned}$						$\begin{aligned} & 120 / 3 \\ & 150 / 3 \\ & 150 / 3 \\ & 180 / 3 \end{aligned}$	10 20 10 20
$\begin{aligned} & \text { IN3100A } \\ & \text { IN3101 } \\ & \text { IN3101A } \\ & \text { IN3106 } \end{aligned}$	$\left\lvert\, \begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}\right.$	$\begin{aligned} & \mathrm{ZD} \\ & \mathrm{zD} \\ & \mathrm{ZD} \\ & \mathrm{RE} \end{aligned}$		IN4006	$\begin{aligned} & \text { iw } \\ & \text { iw } \\ & \text { iw } \end{aligned}$	800	. 75	100/	1.6/750		$\begin{aligned} & 180 / 3 \\ & 220 / 3 \\ & 220 / 3 \end{aligned}$	$\begin{aligned} & 10 \\ & 20 \\ & 10 \end{aligned}$
$\begin{aligned} & \text { IN3107 } \\ & \text { IN3108 } \\ & \text { IN3109 } \\ & \text { IN31 } 10 \end{aligned}$	$\left\lvert\, \begin{aligned} & 5 \\ & s \\ & s \\ & G \end{aligned}\right.$	$\left\|\begin{array}{l} R E \\ R E \\ R E \\ S D \end{array}\right\|$		IN4305		$\begin{array}{r} 1.2 K \\ 800 \\ 1.2 K \\ 8 \end{array}$	$\begin{array}{r} .5 \\ 1.5 \\ .7 \end{array}$	100/ 100/ 100/ 20/8	$3.2 /$ 1.61 3.2/ .45/5			
$\begin{array}{\|l\|l\|} \text { 1N3112 } \\ \text { 1N3121 } \\ \text { IN3122 } \\ \text { 1N3123 } \end{array}$	$\begin{aligned} & \mathbf{S} \\ & \mathbf{G} \\ & \mathbf{G} \\ & \mathbf{s} \end{aligned}$	$\left.\begin{aligned} & 20 \\ & s D \\ & s 0 \\ & s D \\ & s D \end{aligned} \right\rvert\,$		IN4737A 1N4305 1N4305 IN4305	Iw	50 20 40		3.5/50 4.5/20 . $/ 40$	$\begin{gathered} .25 / .1 \\ .3 / 1 \\ 1.5 / 10 \end{gathered}$		7.4/120	5
1N3124 IN3125 1N3139 1N3140	$\begin{aligned} & \mathbf{S} \\ & G \\ & S \\ & S \end{aligned}$	$\begin{array}{\|l\|} \hline \text { SD } \\ \text { SD } \\ \text { RE } \\ \text { RE } \end{array}$		1N4151 1N4305		$\begin{array}{r} 40 \\ 40 \\ 50 \\ 100 \end{array}$	$\begin{aligned} & 70 \\ & 70 \end{aligned}$	$\begin{aligned} & .1 / 40 \\ & 100 / 40 \\ & 15 \mathrm{M} / \\ & 15 \mathrm{M} / \end{aligned}$	$\begin{aligned} & 1 / 20 \\ & .4 / 5 \\ & 1.5 / \\ & 1.5 / \end{aligned}$			
1N3141 IN3142 IN3144 1N3145	$\left\lvert\, \begin{aligned} & s \\ & \mathbf{S} \\ & \mathbf{G} \\ & \mathbf{G} \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & R E \\ & R E \\ & R E \\ & S D \\ & S D \end{aligned}\right.$		1Na305 1N4305		150 200 20 65	$\begin{aligned} & 70 \\ & 70 \end{aligned}$	$\begin{gathered} 15 \mathrm{M} / \\ 15 \mathrm{M} / \\ 20 / \\ 25 / \end{gathered}$	$\begin{aligned} & 1.5 / \\ & 1.5 / \\ & .3 / 1 \\ & .45 / 10 \end{aligned}$			

DIODE INTERCHANGEABILITY

TYFE Mumber			7 RELACEMENT	$\begin{aligned} & \text { FOR } \\ & \text { NEW } \\ & \text { DESIGN } \end{aligned}$	PD (mW)	Atings $\mathbf{V}_{\mathbf{R}}$ (V)		$\begin{array}{ll} \mathbf{I}_{\mathbf{R}} & \mathbf{V}_{\mathbf{R}} \\ \mu \mathrm{A} & /(\mathbf{V}) \end{array}$	$\mathbf{V F}_{F}$ 牛 (V) $/$ (mA)	RISTIC trr (n s)	$\mathbf{V}_{\mathbf{z}}$ (1) (V) / (mA)	$\left.\right\|^{\mathrm{TOL}}$
1N3146 1N3147 1N3148 1N3154	$\begin{aligned} & \mathbf{G} \\ & \mathbf{S} \\ & \mathbf{S} \\ & \mathbf{S} \end{aligned}$	$\begin{aligned} & \hline S D \\ & S D \\ & R D \\ & R D \end{aligned}$	Γ	1N4154 1N4448	400	20		100/	$\begin{aligned} & 1 / 50 \\ & 1 / 100 \end{aligned}$		$\begin{aligned} & 8.5 / 10 \\ & 8.8 / 10 \end{aligned}$	5
$\begin{aligned} & \text { 1N315AA } \\ & \text { 1N3155 } \\ & \text { 1N3155A } \\ & \text { 1N3156 } \end{aligned}$	$\begin{aligned} & \mathbf{s} \\ & s \\ & s \\ & 5 \end{aligned}$	$\begin{aligned} & R D \\ & R D \\ & R D \\ & R D \end{aligned}$			$\begin{aligned} & 400 \\ & 400 \\ & 400 \\ & 400 \end{aligned}$						8.8/10 8.8/10 8.8/10 8.8/10	5 5 5 5
$\begin{aligned} & \text { 1N3156A } \\ & \text { 1N3157 } \\ & \text { 1N3157A } \\ & \text { IN3159 } \end{aligned}$	$\begin{aligned} & s \\ & s \\ & s \\ & G \end{aligned}$	$\begin{aligned} & \mathrm{RD} \\ & \mathrm{RD} \\ & \mathrm{RD} \\ & \mathrm{SD} \end{aligned}$		1 N 4305	$\begin{array}{r} 400 \\ 400 \\ 400 \end{array}$	15		100/10	.45/10	300	8.8/10 8.8/10 8.8/10	5 5 5
1N3160 1N3161 1N3162 1N3163	$\begin{aligned} & \mathbf{G} \\ & \mathbf{S} \\ & \mathbf{S} \\ & \mathbf{S} \end{aligned}$	$\begin{aligned} & \mathrm{SD} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \hline \end{aligned}$		1N4305		$\begin{array}{r} 60 \\ 50 \\ 100 \\ 150 \end{array}$	$\begin{aligned} & 240 \\ & 240 \\ & 240 \end{aligned}$	$\begin{aligned} & 12 / \\ & 16 \mathrm{M} / \\ & 16 \mathrm{M} / \\ & 16 \mathrm{M} / \end{aligned}$	$\begin{aligned} & .45 / 10 \\ & 1.3 / \\ & 1.3 / \\ & 1.3 / \end{aligned}$			
1N3164 1N3165 1N3166 1N3167	S	$\begin{aligned} & R E \\ & R E \\ & R E \\ & R E \end{aligned}$				$\begin{aligned} & 200 \\ & 250 \\ & 300 \\ & 350 \end{aligned}$	$\begin{aligned} & 240 \\ & 240 \\ & 240 \\ & 240 \end{aligned}$	16M/ 16M/ $16 \mathrm{M} /$ 16M/	$\begin{aligned} & 1.3 / \\ & 1.3 / \\ & 1.3 / \\ & 1.3 / \end{aligned}$			
1N3168 1N3169 1N3170 1N3171	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}\right.$	RE RE RE RE				$\begin{aligned} & 400 \\ & 500 \\ & 600 \\ & 700 \end{aligned}$	$\begin{aligned} & 240 \\ & 240 \\ & 240 \\ & 240 \end{aligned}$	$16 \mathrm{M} /$ $16 \mathrm{M} /$ $16 \mathrm{M} /$ 16M/	$\begin{aligned} & 1.3 / \\ & 1.3 / \\ & 1.3 / \\ & 1.9 / \end{aligned}$			
1N3171A 1N3172 1N3172A 1N3173	$\begin{aligned} & \mathbf{s} \\ & \mathbf{S} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}$	$\begin{aligned} & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \end{aligned}$				700 800 800 900	$\begin{aligned} & 240 \\ & 240 \\ & 240 \\ & 240 \end{aligned}$	16M/ $16 \mathrm{M} /$ $16 \mathrm{M} /$ 16M/	$\begin{aligned} & 1.91 \\ & 1.91 \\ & 1.91 \\ & 1.91 \end{aligned}$			
IN3173A IN3174 1N3174A 1N3175	$\begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}$	$\begin{aligned} & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \end{aligned}$				$\begin{array}{r} 900 \\ 1 K \\ 1 K \\ 1.2 K \end{array}$	$\begin{aligned} & 240 \\ & 240 \\ & 240 \\ & 240 \end{aligned}$	$\begin{aligned} & 16 \mathrm{M} / \\ & 16 \mathrm{M} / \\ & 16 \mathrm{M} / \\ & 15 \mathrm{M} / \end{aligned}$	$\begin{aligned} & 1.91 \\ & 1.9 / \\ & 1.91 \\ & 1.41 \end{aligned}$			
IN3176 1N3177 1N3179 1N3180	$\begin{aligned} & \mathbf{s} \\ & \mathbf{S} \\ & \mathbf{S} \\ & \mathbf{s} \end{aligned}$	$\begin{array}{\|l\|} \mathbf{R E} \\ \mathrm{RE} \\ \mathrm{SD} \\ \mathrm{SD} \end{array}$		$\begin{aligned} & \text { 1N4938 } \\ & \text { 1N4938 } \end{aligned}$		$\begin{aligned} & 1.4 K \\ & 1.6 K \\ & 240 \\ & 130 \end{aligned}$	$\begin{aligned} & 240 \\ & 240 \end{aligned}$	$\begin{aligned} & 15 M / \\ & 15 M / \\ & 10 / 200 \\ & 5 / 100 \end{aligned}$	1.4/ 1.4/ $1 / 100$ 1.5/500			
1N3181 IN3190 1N3191 1N3192	$\begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}$	$\begin{aligned} & \mathrm{ZD} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \end{aligned}$		1N4737 1N4004 INeOO5 IN645	600	$\begin{aligned} & 400 \\ & 600 \\ & 200 \end{aligned}$	1	$\begin{array}{r} 5 / 400 \\ 5 / 600 \\ 10 / 200 \end{array}$	$\begin{gathered} 1.1 / 1 A \\ 1.1 / 1 A \\ 1 / 100 \end{gathered}$		7.7/14	10

DIODE INTERCHANGEABILITY

TYPEnumber			$\underset{\text { Remacement }}{\text { II }}$	$\begin{aligned} & \text { FOR } \\ & \text { NEW } \\ & \text { DESVCN } \end{aligned}$	RATMNSS			Characteristics				
					$\begin{gathered} P_{D} \\ (\mathrm{mw}) \end{gathered}$	\mathbf{V}_{R} (V)	(A)	$\begin{array}{ll} n & V_{R} \\ \mu & /(V) \end{array}$	$\mathbf{V F}_{\mathrm{F}}$ - IF_{F} (V) $/$ (ma)	t_{r} (ns)	$\begin{array}{ccc} \mathbf{v}_{\mathbf{z}} & \bullet \mathbf{z} \\ (\mathrm{V}) & /(\mathrm{mA}) \end{array}$	$\begin{aligned} & \text { ror } \\ & \% \end{aligned}$
$\left\lvert\, \begin{aligned} & \text { IN3193 } \\ & \text { IN3194 } \\ & \text { iN3195 } \\ & \text { IN3196 } \end{aligned}\right.$	$\begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}$	$\begin{array}{l\|} \mathbf{R E} \\ \mathbf{R E} \\ \mathbf{R E} \\ \mathbf{R E} \end{array}$		$\begin{aligned} & \text { IN4003 } \\ & \text { INA004 } \\ & \text { IN4005 } \\ & \text { INH006 } \end{aligned}$		$\begin{aligned} & 200 \\ & 400 \\ & 600 \\ & 800 \end{aligned}$	$\begin{aligned} & .75 \\ & .75 \\ & .75 \\ & .75 \end{aligned}$	$\begin{aligned} & 5 / 200 \\ & 5 / 200 \\ & 5 / 200 \\ & 5 / 200 \end{aligned}$	$\begin{aligned} & 1.2 / 750 \\ & 1.2 / 750 \\ & 1.2 / 750 \\ & 1.2 / 750 \end{aligned}$			
1N3197 1N3198 1N3199 1N3200	$\begin{aligned} & \mathbf{G} \\ & \mathbf{S} \\ & \mathbf{S} \\ & \mathbf{S} \end{aligned}$	$\left.\begin{aligned} & \mathrm{SD} \\ & \mathrm{ZD} \\ & \mathrm{RD} \\ & \mathrm{RD} \end{aligned} \right\rvert\,$		1N4148	$\begin{aligned} & 400 \\ & 270 \\ & 270 \end{aligned}$	30		50/10	.4/5	300	$\begin{array}{r} 2.25 / 10 \\ 8.8 / 10 \\ 8.8 / 10 \end{array}$	2 5 5
$\begin{aligned} & \text { 1N3201 } \\ & \text { 1N3202 } \\ & \text { 1N3203 } \\ & \text { 1N3204 } \end{aligned}$	$\left[\begin{array}{l} s \\ s \\ G \\ \mathbf{G} \end{array}\right.$	$\begin{aligned} & R D \\ & R D \\ & \text { RD } \\ & \text { SD } \\ & \text { SD } \end{aligned}$		1N4305 IN4305	$\begin{aligned} & 270 \\ & 270 \end{aligned}$	$\begin{aligned} & 25 \\ & 60 \end{aligned}$		$\begin{aligned} & 50 / 25 \\ & 50 / 25 \end{aligned}$	$\begin{aligned} & .5 / 35 \\ & .4 / 35 \end{aligned}$	$\begin{aligned} & 300 \\ & 300 \end{aligned}$	$\begin{aligned} & 8.8 / 10 \\ & 8.8 / 10 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$
1N3206 iN3207 1N3208 IN3209	$\begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}$	$\begin{array}{\|l\|} \hline \mathbf{S D} \\ \mathrm{SD} \\ \mathrm{RE} \\ \mathrm{RE} \end{array}$		IN4531 in4607		$\begin{array}{r} 80 \\ 50 \\ 50 \\ 100 \end{array}$	$\begin{aligned} & 15 \\ & 15 \end{aligned}$	$\begin{aligned} & 30 \mathrm{~N} / 20 \\ & 50 \mathrm{~N} / 20 \\ & 10 \mathrm{~m} / \\ & 10 \mathrm{~m} / \end{aligned}$	$\begin{aligned} & 1 / 10 \\ & 1 / 150 \\ & 1.5 / \\ & 1.5 / \end{aligned}$	4		
$\begin{aligned} & \text { 1N3210 } \\ & \text { 1N3211 } \\ & \text { 1N3212 } \\ & \text { 1N3213 } \end{aligned}$	$\begin{aligned} & \mathrm{s} \\ & \mathrm{~s} \\ & \mathrm{~s} \\ & \mathrm{~s} \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline \mathbf{R E} \\ \mathbf{R E} \\ \mathbf{R E} \\ \mathbf{R E} \\ \mathbf{R E} \end{array}$				$\begin{aligned} & 200 \\ & 300 \\ & 400 \\ & 500 \end{aligned}$	$\begin{aligned} & 15 \\ & 15 \\ & 15 \\ & 15 \end{aligned}$	$10 \mathrm{M} /$ 10M/ 10M/ 10M/	$\begin{aligned} & 1.5 / \\ & 1.5 / \\ & 1.5 / \\ & 1.5 / \end{aligned}$			
$\begin{aligned} & \text { IN3214 } \\ & \text { IN3215 } \\ & \text { 1N3223 } \\ & \text { IN3225 } \end{aligned}$	$\begin{array}{\|l} s \\ s \\ s \\ s \\ s \end{array}$	$\left\|\begin{array}{l} \text { RE } \\ \text { SD } \\ \text { SD } \\ \text { SD } \end{array}\right\|$		$\begin{aligned} & 1 \mathrm{~N} 4152 \\ & \text { 1N4938 } \\ & \text { 1NA148 } \end{aligned}$		$\begin{array}{r} 600 \\ 80 \\ 150 \\ 40 \end{array}$	15	$\begin{aligned} & 10 \mathrm{M} / 1 \\ & 10 / 50 \\ & 20 / 125 \\ & 33 / 10 \end{aligned}$	$\begin{gathered} 1.5 / \\ .7 / 1 \\ 1.5 / 4 \\ 1 / 5 \end{gathered}$	$\begin{aligned} & 800 \\ & 500 \end{aligned}$		
$\begin{aligned} & \text { 1N3227 } \\ & \text { 1N3228 } \\ & \text { 1N3229 } \\ & \text { 1N3230 } \end{aligned}$	$\begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}$	$\mathbf{R E}$ $\mathbf{R E}$ $\mathbf{R E}$ $\mathbf{R E}$ $\mathbf{R E}$		$\begin{aligned} & \text { IN4002 } \\ & \text { IN4003 } \\ & \text { iN4004 } \\ & \text { in } 4005 \end{aligned}$		$\begin{aligned} & 100 \\ & 200 \\ & 400 \\ & 600 \end{aligned}$.5 .5 .5 .5	$\begin{aligned} & 250 / 100 \\ & 250 / 200 \\ & 250 / 400 \\ & 250 / 600 \end{aligned}$	$\begin{aligned} & 3.3 / 500 \\ & 3.3 / 500 \\ & 3.3 / 500 \\ & 3.3 / 500 \end{aligned}$			
$\begin{array}{\|l\|} \hline \text { 1N3231 } \\ \text { 1N3232 } \\ \text { 1N3233 } \\ \text { 1N3234 } \end{array}$	$\begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}$	$\begin{array}{\|c\|} \hline \mathbf{R E} \\ \mathbf{R E} \\ \mathbf{R E} \\ \mathbf{R E} \\ \mathbf{R E} \\ \mathbf{R E} \end{array}$		$\begin{array}{\|l\|l\|l\|} \hline \text { IN4008 } \\ \text { in4007 } \end{array}$		$\begin{array}{r} 800 \\ 1 K \\ 1.2 K \\ 1.5 \mathrm{~K} \end{array}$.5 .5 .5 .5	$\begin{aligned} & 250 / 800 \\ & 250 / 1 \mathrm{~K} \\ & 250 / \\ & 250 / \end{aligned}$	$\begin{aligned} & 3.3 / 500 \\ & 3.3 / 500 \\ & 3.3 / \\ & 3.3 / \end{aligned}$			
$\begin{array}{\|l\|l\|} \text { IN3235 } \\ \text { IN3236 } \\ \text { 1N3237 } \\ \text { 1N3238 } \end{array}$	$\begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}$	$\begin{array}{\|c\|} \mathrm{RE} \\ \mathrm{RE} \\ \mathrm{RE} \\ \mathrm{RE} \end{array}$		$\left\lvert\, \begin{array}{\|l\|l\|l\|} \hline \text { IN4001 } \\ \text { IN4002 } \end{array}\right.$		$\begin{array}{r} 1.8 K \\ 2 K \\ 50 \\ 100 \end{array}$.5 .5 .75 .75	$\begin{aligned} & 250 / \\ & 250 / \\ & 250 / 50 \\ & 250 / 100 \end{aligned}$	$\begin{aligned} & 3.3 / \\ & 3.3 / \\ & 2.2 / 750 \\ & 2.2 / 750 \end{aligned}$			
1N3239 1N3240 1N3241 1N3242	$\left\lvert\, \begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}\right.$	$\left\|\begin{array}{l} \mathrm{RE} \\ \mathbf{R E} \\ \mathbf{R E} \\ \mathbf{R E} \end{array}\right\|$		$\begin{aligned} & \text { iN4003 } \\ & \text { iN4004 } \\ & \text { in } 4005 \\ & \text { iN4006 } \end{aligned}$		$\begin{aligned} & 200 \\ & 400 \\ & 600 \\ & 800 \end{aligned}$	$\begin{aligned} & .75 \\ & .75 \\ & .75 \\ & .75 \end{aligned}$	$\begin{aligned} & 250 / 200 \\ & 250 / 400 \\ & 250 / 600 \\ & 250 / 800 \end{aligned}$	$\begin{aligned} & 2.21750 \\ & 2.21750 \\ & 2.2 / 750 \\ & 2.2 / 750 \end{aligned}$			

DIODE INTERCHANGEABILITY

TYPE NUMEER		$\begin{aligned} & \frac{3}{6} \\ & \frac{2}{6} \\ & \frac{2}{2} \\ & \frac{2}{2} \\ & 3 \end{aligned}$	$\begin{gathered} \text { TI } \\ \text { RERLACEMBNT } \end{gathered}$	$\begin{aligned} & \text { FOR } \\ & \text { NEW } \\ & \text { DESIGN } \end{aligned}$	RATHNOS			CHARACTERISTICS				
						$\mathbf{V}_{\mathbf{R}}$ (V)	I (A)	$\begin{array}{ll} \mathbf{I}_{\mathbf{R}} & \mathbf{V}_{\mathbf{R}} \\ \mu \mathbf{A} & / \mathbf{V}) \end{array}$	$\mathbf{V F}_{F}$ - $\mathbf{I F}_{\mathbf{F}}$ (v) $/(\mathrm{mA})$	t_{π} $\text { (} \mathrm{n} \text {) }$	$\mathbf{V}_{\mathbf{Z}}$ e $\mathbf{I z}_{\mathbf{Z}}$ (V) $/$ (mA)	$\left\lvert\, \begin{gathered} 701 \\ \% \end{gathered}\right.$
$\begin{aligned} & \text { 1N3243 } \\ & \text { 1N3244 } \\ & \text { 1N3245 } \\ & \text { 1N3246 } \end{aligned}$	$\begin{array}{\|l} \hline s \\ s \\ s \\ s \end{array}$	$\begin{array}{\|l\|} \hline R E \\ R E \\ R E \\ R E \end{array}$		1N4007 1N4001		1 K 1.2 K 1.5 K 50	.75 .75 .75 1	$\begin{aligned} & 250 / 1 K \\ & 250 / 50 \end{aligned}$	$\begin{aligned} & 2.2 / 750 \\ & 2.2 / 750 \\ & 2.2 / 750 \\ & 1.1 / 1 \mathrm{~A} \end{aligned}$			
$\begin{aligned} & \text { 1N3247 } \\ & \text { IN3248 } \\ & \text { IN3249 } \\ & \text { IN3250 } \end{aligned}$	$\begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}$	$\begin{aligned} & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \end{aligned}$		1N4002 1N4003 1N4004 1N4005		100 200 400 600	1 1 1	$\begin{aligned} & 250 / 100 \\ & 250 / 200 \\ & 250 / 400 \\ & 250 / 600 \end{aligned}$	1.1/1A 1.1/1A 1.1/1A 1.1/1A			
1N3251 IN3252 1N3253 IN3254	$\begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}$	$\begin{aligned} & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \end{aligned}$		1N4006 1N4007 1N4003 IN4004		$\begin{array}{r} 800 \\ 1 K \\ 200 \\ 400 \end{array}$	$\begin{array}{r} 1 \\ 1 \\ .75 \\ .75 \end{array}$	$\begin{aligned} & 250 / 800 \\ & 250 / 1 K \\ & 200 / 200 \\ & 200 / 400 \end{aligned}$	$\begin{aligned} & 1.1 / 1 \mathrm{~A} \\ & 1.1 / 1 \mathrm{~A} \\ & 1.2 / 750 \\ & 1.2 / 750 \end{aligned}$			
$\begin{aligned} & \text { IN3255 } \\ & \text { 1N3256 } \\ & \text { IN3257 } \\ & \text { IN3258 } \end{aligned}$	$\begin{aligned} & s \\ & s \\ & s \\ & s \\ & s \end{aligned}$	RE RE SD SD	.	IN4005 iN4006 1N4449 1N4448		$\begin{array}{r} 600 \\ 800 \\ 80 \\ 80 \end{array}$	$.75$	$\begin{aligned} & 200 / 600 \\ & 200 / 800 \\ & 25 N / 50 \\ & 25 N / 50 \end{aligned}$	$\begin{gathered} 1.2 / 750 \\ 1.2 / 750 \\ 1 / 30 \\ 1 / 100 \end{gathered}$	3		
IN3260 IN3261 1N3262 1N3263	$\begin{aligned} & \mathrm{s} \\ & \mathrm{~s} \\ & \mathrm{~s} \\ & \mathrm{~s} \end{aligned}$	$\begin{aligned} & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \end{aligned}$				$\begin{array}{r} 50 \\ 100 \\ 150 \\ 200 \end{array}$	$\begin{aligned} & 160 \\ & 160 \\ & 160 \\ & 160 \end{aligned}$	$\begin{aligned} & 12 \mathrm{M} / \\ & 12 \mathrm{M} / \\ & 12 \mathrm{M} / \\ & 12 \mathrm{M} / \end{aligned}$	$\begin{aligned} & 1.6 / \\ & 1.6 / \\ & 1.6 / \\ & 1.6 / \end{aligned}$			
1N3264 1N3265 IN3266 IN3267	$\begin{aligned} & \mathrm{S} \\ & \mathrm{~s} \\ & \mathrm{~s} \\ & \mathrm{~s} \end{aligned}$	$\begin{aligned} & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \end{aligned}$				$\begin{aligned} & 250 \\ & 300 \\ & 350 \\ & 400 \end{aligned}$	$\begin{aligned} & 160 \\ & 160 \\ & 160 \\ & 160 \end{aligned}$	$\begin{aligned} & 12 \mathrm{M} / \\ & 12 \mathrm{M} / \\ & 12 \mathrm{M} / \\ & 12 \mathrm{M} / \end{aligned}$	$\begin{aligned} & 1.6 / \\ & 1.6 / \\ & 1.6 / \\ & 1.6 / \end{aligned}$			
1N3268 1N3269 1N3270 1N3271	$\begin{aligned} & \mathrm{S} \\ & \mathrm{~s} \\ & \mathrm{~s} \\ & \mathrm{~s} \end{aligned}$	$\begin{aligned} & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \end{aligned}$				$\begin{aligned} & 500 \\ & 600 \\ & 700 \\ & 800 \end{aligned}$	$\begin{aligned} & 160 \\ & 160 \\ & 160 \\ & 160 \end{aligned}$	$\begin{aligned} & 12 \mathrm{M} / \\ & 12 \mathrm{M} / \\ & 12 \mathrm{M} / \\ & 12 \mathrm{M} / \end{aligned}$	$\begin{aligned} & 1.6 / \\ & 1.6 / \\ & 1.6 / \\ & 1.6 / \end{aligned}$			
1N3272 1N3273 1N3274 iN3275	$\begin{aligned} & \mathrm{s} \\ & 5 \\ & 5 \\ & 5 \end{aligned}$	$\left.\begin{aligned} & R E \\ & R E \\ & R E \\ & R E \end{aligned} \right\rvert\,$				$\begin{array}{r} 900 \\ 1 \mathrm{~K} \\ 1.2 \mathrm{~K} \\ 1.4 \mathrm{~K} \end{array}$	$\begin{aligned} & 160 \\ & 160 \\ & 160 \\ & 160 \end{aligned}$	$\begin{aligned} & 12 \mathrm{M} / \\ & 12 \mathrm{M} / \\ & 12 \mathrm{M} / \\ & 12 \mathrm{M} / \end{aligned}$	$\begin{aligned} & 1.6 / \\ & 1.6 / \\ & 1.6 / \\ & 1.6 / \end{aligned}$			
1N3276 1N3277 1N3278 1N3279	$\begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}$	$\begin{aligned} & R E \\ & R E \\ & R E \\ & R E \\ & R E \end{aligned}$		$\begin{array}{\|l\|} \text { IN4003 } \\ \text { IN4OO4 } \\ \text { IN4005 } \end{array}$		$\begin{array}{r} 1.6 K \\ 200 \\ 400 \\ 600 \end{array}$	$\begin{array}{r} 160 \\ .75 \\ .75 \\ .75 \end{array}$	$\begin{aligned} & 12 \mathrm{M} / \\ & 5 / 200 \\ & 5 / 400 \\ & 5 / 600 \end{aligned}$	$\begin{aligned} & 1.6 / \\ & 1.3 / 750 \\ & 1.3 / 750 \\ & 1.3 / 750 \end{aligned}$			
IN3280 1N3281 1N3282 1N3283	$\begin{aligned} & 5 \\ & S \\ & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \end{aligned}$		IN4006 1N4007 IN4007		$\begin{array}{r} 800 \\ 1 K \\ 1 K \\ 1.5 K \end{array}$	$\begin{array}{r} .75 \\ .75 \\ .1 \\ .1 \end{array}$	$\begin{aligned} & 5 / 800 \\ & 5 / 1 K \\ & 1 / 1 K \\ & 1 / \end{aligned}$	$\begin{aligned} & 1.3 / 750 \\ & 1.3 / 750 \\ & 3.7 / 100 \\ & 3.7 / \end{aligned}$			

TYPE NUMEER			$\begin{gathered} \text { II } \\ \text { REPLACEMENT } \end{gathered}$		ratings			CHARACTERISTICS				
					P_{D} (mW)	$\mathbf{V}_{\mathbf{R}}$ (V)	(A)	$\begin{array}{lll} \mathbf{L}_{\mathbf{R}} & \bullet & \mathbf{V}_{\mathbf{R}} \\ \mu \mathbf{A} & /(\mathbf{V}) \end{array}$	$\begin{array}{ll} \mathbf{V F}_{F} & \mathrm{I}_{\mathbf{F}} \\ (\mathrm{V}) & /(\mathrm{mA}) \end{array}$	t_{π} (ns)	$\mathbf{V}_{\mathbf{Z}} \bullet \mathbf{I z}_{\mathbf{Z}}$ (V) $/$ (mA)	$\begin{gathered} \text { rot } \\ \times \end{gathered}$
1N3284 IN3285 1N3286 1N3287	$\begin{aligned} & \mathbf{S} \\ & \mathbf{S} \\ & \mathbf{S} \\ & \mathbf{G} \end{aligned}$	$\begin{array}{l\|} \hline R E \\ R E \\ R E \\ R E \end{array}$				2 K 2.5 K 3 K 6	.1 .1 .1	$\begin{gathered} 1 / \\ 1 / \\ 1 / \\ 15 / \end{gathered}$	$\begin{aligned} & 3.7 / \\ & 3.7 / \\ & 3.7 / \\ & .32 / 1 \end{aligned}$			
$\begin{array}{\|l} \text { 1N3287W W } \\ \text { 1N3288 } \\ \text { 1N3288A } \\ \text { 1N3289 } \end{array}$	[$\begin{aligned} & \mathbf{G} \\ & \mathbf{S} \\ & \mathbf{S} \\ & \mathbf{S}\end{aligned}$	$\begin{aligned} & \mathrm{SD} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \end{aligned}$				$\begin{array}{r} 6 \\ 100 \\ 100 \\ 200 \end{array}$	$\begin{aligned} & 100 \\ & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 15 / \\ & 24 \mathrm{M} / \\ & 24 \mathrm{M} / \\ & 24 \mathrm{M} / \end{aligned}$	$\begin{aligned} & .32 / 1 \\ & 1.5 / \\ & 1.2 / \\ & 1.5 / \end{aligned}$			
$\begin{array}{\|l} \text { IN3289A } \\ \text { 1N3290 } \\ \text { IN3290A } \\ \text { IN3291 } \end{array}$	S	$\begin{aligned} & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \end{aligned}$				$\begin{aligned} & 200 \\ & 300 \\ & 300 \\ & 400 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \\ & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 24 \mathrm{M} / \\ & 24 \mathrm{M} / \\ & 24 \mathrm{M} / \\ & 24 \mathrm{M} / \end{aligned}$	$\begin{aligned} & 1.2 / \\ & 1.5 / \\ & 1.2 / \\ & 1.5 / \end{aligned}$			
$\begin{aligned} & \text { 1N3291A } \\ & \text { 1N3292 } \\ & \text { 1N3292A } \\ & \text { 1N3292B } \end{aligned}$	S S S 5	$\begin{aligned} & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \end{aligned}$				$\begin{aligned} & 400 \\ & 500 \\ & 500 \\ & 500 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \\ & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 24 \mathrm{M} / \\ & 21 \mathrm{M} / \\ & 21 \mathrm{M} / \\ & 21 \mathrm{M} / \end{aligned}$	$\begin{aligned} & 1.2 / \\ & 1.5 / \\ & 1.2 / \\ & 1.5 / \end{aligned}$			
$\begin{array}{\|l} \text { 1N3293 } \\ \text { 1N3293A } \\ \text { 1N3294 } \\ \text { IN3294A } \end{array}$	S	$\begin{aligned} & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \end{aligned}$				$\begin{aligned} & 600 \\ & 600 \\ & 800 \\ & 800 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \\ & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 17 \mathrm{M} / \\ & 17 \mathrm{M} / \\ & 13 \mathrm{M} / \\ & 13 \mathrm{M} / \end{aligned}$	$\begin{aligned} & 1.5 / \\ & 1.2 / \\ & 1.5 / \\ & 1.2 / \end{aligned}$			
$\begin{aligned} & \text { 1N3295 } \\ & \text { IN3295A } \\ & \text { 1N3296 } \\ & \text { 1N3296A } \end{aligned}$	S	$\begin{aligned} & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \end{aligned}$				$\begin{array}{r} 1 K \\ 1 K \\ 1.2 K \\ 1.2 K \end{array}$	$\begin{aligned} & 100 \\ & 100 \\ & 100 \\ & 100 \end{aligned}$	$11 \mathrm{M} /$ $11 \mathrm{M} /$ 9M/ 9M/	$\begin{aligned} & 1.5 / \\ & 1.2 / \\ & 1.5 / \\ & 1.2 / \end{aligned}$			
$\begin{aligned} & \text { IN3297 } \\ & \text { 1N3297A } \\ & \text { 1N3298 } \\ & \text { 1N3298A } \end{aligned}$	S	$\begin{aligned} & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{SD} \\ & \mathrm{SD} \end{aligned}$		1N4608 1N4608		1.4 K 1.4 K 70 70	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 7 M / \\ & 7 M / \\ & .2 / 60 \\ & .2 / 60 \end{aligned}$	$\begin{aligned} & 1.5 / \\ & 1.2 / \\ & .9 / 500 \\ & .9 / 500 \end{aligned}$	$\begin{array}{r} 200 \\ 20 \end{array}$		
IN3354 iN3355 1N3356 1N3357	S	$\begin{aligned} & R E \\ & R E \\ & R E \\ & R E \\ & R E \end{aligned}$				10 15 25 50	3 3 3 3	$\begin{aligned} & 20 \% \\ & 20 \% \\ & 10 / \\ & 10 \% \end{aligned}$	$\begin{aligned} & 1.2 / \\ & 1.2 / \\ & 1.2 / \\ & 1.2 / \end{aligned}$			
1N3358 1N3359 1N3360 1N3361	$\begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}$	$\begin{aligned} & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \end{aligned}$				$\begin{array}{r} 75 \\ 100 \\ 150 \\ 200 \end{array}$	$\begin{aligned} & 3 \\ & 3 \\ & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & 10 \% \\ & 10 \% \\ & 10 \% \\ & 10 \% \end{aligned}$	$\begin{aligned} & 1.2 / \\ & 1.2 / \\ & 1.2 / \\ & 1.2 / \end{aligned}$			
1N3362 1N3363 1N3364 1N3365	$\begin{aligned} & \mathbf{s} \\ & \mathbf{S} \\ & \mathbf{S} \\ & \mathbf{S} \end{aligned}$	$\begin{aligned} & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \end{aligned}$				$\begin{aligned} & 300 \\ & 400 \\ & 500 \\ & 600 \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \\ & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & 10 / \\ & 10 / \\ & 10 / \\ & 10 / \end{aligned}$	$\begin{aligned} & 1.2 / \\ & 1.2 / \\ & 1.2 / \\ & 1.2 / \end{aligned}$			

$\begin{gathered} \text { TYPE } \\ \text { Numater } \end{gathered}$			$\underset{\text { REDLACEMENT }}{\pi}$	$\begin{gathered} \text { FOR } \\ \text { NEW } \\ \text { DESION } \end{gathered}$		tings $\mathbf{v}_{\mathbf{R}}$ (V)	(A)	$\begin{array}{ll} l_{R} & V_{R} \\ \mu_{\mathrm{A}} & /\left(V_{1}\right) \end{array}$	$\mathbf{V F}_{\mathbf{F}} \cdot \mathbf{F}_{\mathbf{F}}$ (V) $/$ (ma)	aristic ${ }^{1}$ (m)	$\begin{array}{lll} v_{z} & 0 & \mathbf{z} \\ (v) & f(\mathrm{mal}) \end{array}$	$\left.\right\|_{x} ^{102}$
1N3366 1N3367 1N3368 1N3369	$\begin{aligned} & \mathrm{s} \\ & \mathrm{~s} \\ & \mathrm{~s} \\ & \mathrm{~s} \end{aligned}$	$\left.\begin{array}{\|l\|} \mathbf{R E} \\ \mathbf{R E} \\ \mathbf{R E} \\ \mathbf{R E} \end{array} \right\rvert\,$				700 800 900 $1 K$	3 3 3 3	$\begin{aligned} & 10 / \\ & 10 / \\ & 10 / \\ & 25 / \end{aligned}$	$\begin{array}{r} 1.2 \prime \\ 2 / \\ 2 \prime \\ 2.5 / \end{array}$			
1N3370 1N3371 1N3372 1N3373	$\left\lvert\, \begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}\right.$	$\left\|\begin{array}{l} \mathrm{RE} \\ \mathrm{RE} \\ \mathrm{RE} \\ \mathrm{RE} \end{array}\right\|$				$\begin{array}{r} 1.2 \mathrm{~K} \\ 1.5 \mathrm{~K} \\ 10 \\ 25 \end{array}$	$\begin{array}{r} 3 \\ 3 \\ 20 \\ 20 \end{array}$	$\begin{array}{r} 25 / \\ 25 / \\ 315 / \\ 315 / \end{array}$	$\begin{gathered} 2.5 / \\ 2.5 / \\ 1 / \\ 1 / \end{gathered}$			
1N3374 1N3375 1N3376 1N3377	$\left\lvert\, \begin{aligned} & \mathrm{s} \\ & \mathrm{~s} \\ & \mathrm{~s} \\ & \mathrm{~s} \end{aligned}\right.$	$\begin{aligned} & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \end{aligned}$				$\begin{array}{r} 50 \\ 100 \\ 150 \\ 200 \end{array}$	$\begin{aligned} & 20 \\ & 20 \\ & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 315 / \\ & 315 / \\ & 315 / \\ & 315 / \end{aligned}$	$\begin{aligned} & 1 / \\ & 1 / \\ & 1 / \\ & 1 / \end{aligned}$			
$\begin{aligned} & \text { 1N3378 } \\ & \text { 1N3379 } \\ & \text { 1N3380 } \\ & \text { IN3381 } \end{aligned}$	$\left\lvert\, \begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}\right.$	$\begin{aligned} & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{SD} \end{aligned}$				$\begin{array}{r} 300 \\ 400 \\ 500 \\ 15 \end{array}$	$\begin{aligned} & 20 \\ & 20 \\ & 20 \end{aligned}$	$\begin{gathered} 315 / \\ 315 / \\ 315 / \\ 10 / \end{gathered}$	$\begin{aligned} & 1 / \\ & 1 / \\ & 1 / \\ & 1 / 500 \end{aligned}$			
$\left\lvert\, \begin{aligned} & \text { 1N3382 } \\ & \text { iN3383 } \\ & \text { iN3384 } \\ & \text { iN3385 } \end{aligned}\right.$	$\left[\begin{array}{l} s \\ s \\ s \\ s \\ s \end{array}\right.$	$\begin{aligned} & \text { SD } \\ & \text { SD } \\ & \text { SD } \\ & \text { SD } \end{aligned}$				$\begin{array}{r} 15 \\ 50 \\ 75 \\ 100 \end{array}$		$\begin{aligned} & 101 \\ & 101 \\ & 101 \\ & 201 \end{aligned}$	$\begin{aligned} & 1 / 500 \\ & 1 / 500 \\ & 1 / 500 \\ & 1 / 500 \end{aligned}$			
1N3386 1N3387 1N3388 1N3389	$\left[\begin{array}{l} s \\ s \\ s \\ s \end{array}\right.$	$\begin{array}{l\|} \hline \text { SD } \\ \text { SD } \\ \text { SD } \\ \text { SD } \end{array}$				$\begin{aligned} & 150 \\ & 200 \\ & 250 \\ & 300 \end{aligned}$		$\begin{aligned} & 20 / \\ & 20 / \\ & 25 / \\ & 25 / \end{aligned}$	$\begin{aligned} & 1 / 500 \\ & 1 / 500 \\ & 1 / 500 \\ & 1 / 500 \end{aligned}$			
1N3390 1N3391 1 13392 1 13393	$\left[\begin{array}{l} s \\ s \\ s \\ s \\ s \end{array}\right.$	$\left\|\begin{array}{l} \mathrm{SD} \\ \mathrm{SD} \\ \mathrm{zD} \\ \mathrm{zD} \end{array}\right\|$			$\begin{aligned} & 500 \\ & 500 \end{aligned}$	$\begin{aligned} & 400 \\ & 500 \end{aligned}$		$\begin{aligned} & 251 \\ & 25 / \end{aligned}$	$\begin{aligned} & 1 / 500 \\ & 1 / 500 \end{aligned}$		$\begin{aligned} & 1.5 / 50 \\ & 1.8 / 50 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \end{aligned}$
1N3394 1N3395 1N3396 1N3397	$\begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}$				$\begin{aligned} & 500 \\ & 500 \\ & 500 \\ & 500 \end{aligned}$						$\begin{aligned} & 2.2 / 50 \\ & 2.7 / 50 \\ & 3.3 / 30 \\ & 3.9 / 30 \end{aligned}$	10 10 10 10
1N3398 iN3399 1N3400 1N3401	$\begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}$	$\left\|\begin{array}{l} \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \end{array}\right\|$			$\begin{aligned} & 500 \\ & 500 \\ & 500 \\ & 500 \end{aligned}$						$\begin{aligned} & 4.7 / 30 \\ & 5.6 / 20 \\ & 6.8 / 20 \\ & 8.2 / 10 \end{aligned}$	10 10 10 10
1N3402 1N3403 1N3404 1N3405	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\left\|\begin{array}{l} \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \end{array}\right\|$			$\begin{aligned} & 500 \\ & 500 \\ & 500 \\ & 500 \end{aligned}$						$\begin{aligned} & 10 / 10 \\ & 12 / 10 \\ & 15 / 10 \\ & 18 / 10 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$

		$\begin{aligned} & \frac{7}{0} \\ & \frac{3}{6} \\ & \frac{3}{3} \\ & \frac{3}{3} \\ & 3 \end{aligned}$	7 remacement	$\begin{aligned} & \text { FOR } \\ & \text { NEW } \\ & \text { DESIGN } \end{aligned}$	$\begin{gathered} \mathbf{P} \\ (\mathrm{mW}) \end{gathered}$	V_{R} (V)	I (A)	$\begin{array}{ll} H_{R} & \bullet V_{n} \\ \mu & f(V) \end{array}$	$\begin{array}{ccc} V_{f} & \mid f \\ \text { (V) } & /(\mathrm{ma}) \end{array}$	RISTIC π (ms)	$\mathbf{V z}_{\mathbf{z}}$ - \mathbf{z} (V) $/$ (mA)	
1N3406 1N3407 1N3468 1N3409	$\begin{aligned} & \mathbf{s} \\ & \mathbf{S} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}$	$\begin{aligned} & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \end{aligned}$			500 500 500 500						$\begin{aligned} & 22 / 3 \\ & 27 / 3 \\ & 33 / 3 \\ & 39 / 1.5 \end{aligned}$	10 10 10 10
1N3410 1N3411 IN3412 1N3413	$\begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}$	$\left\|\begin{array}{l} \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \end{array}\right\|$			500 500 500 500						$\begin{aligned} & 47 / 1.5 \\ & 6.2 / 1 \\ & 6.8 / 1 \\ & 7.5 / 1 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$
1N3414 IN3415 iN3416 1N3417	$\begin{aligned} & s \\ & s \\ & s \\ & s \\ & s \end{aligned}$	$\begin{aligned} & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \end{aligned}$			$\begin{aligned} & 500 \\ & 500 \\ & 500 \\ & 500 \end{aligned}$						$\begin{aligned} & 8.2 / 1 \\ & 10 / 1 \\ & 12 / 1 \\ & 15 / 1 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$
1N3418 1N3419 1N3420 1N3421	$\begin{aligned} & \mathbf{s} \\ & s \\ & s \\ & s \end{aligned}$	$\begin{aligned} & \mathrm{zo} \\ & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \end{aligned}$			$\begin{aligned} & 500 \\ & \mathbf{5 0 0} \\ & \mathbf{5 0 0} \\ & \mathbf{5 0 0} \end{aligned}$						$\begin{aligned} & 18 / 1 \\ & 22 / 1 \\ & 27 / 1 \\ & 30 / 1 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$
IN3422 1N3423 IN3424 1N3425	$\begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}$	$\begin{aligned} & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \end{aligned}$			500 500 500 500						$\begin{aligned} & 33 / 1 \\ & 39 / 1 \\ & 47 / 1 \\ & 56 / 1 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$
1N3426 IN3427 1N3428 IN3429	$\begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}$	$\left\|\begin{array}{l} z 0 \\ z 0 \\ z 0 \\ z 0 \end{array}\right\|$			$\begin{aligned} & 500 \\ & 500 \\ & 500 \\ & 500 \end{aligned}$		-		.		$\begin{array}{r} 68 / 1 \\ 82 / 1 \\ 100 / 1 \\ 120 / 1 \end{array}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$
1N3430 1N3431 1N3432 1N3433	$\begin{aligned} & \mathbf{s} \\ & s \\ & s \\ & s \end{aligned}$	$\begin{aligned} & \mathrm{zD} \\ & \mathrm{zo} \\ & \mathrm{zD} \\ & \mathrm{zD} \end{aligned}$			500 500 500 500						$\begin{gathered} 150 / 1 \\ 180 / 1 \\ 220 / 1 \\ 82 / 25 \end{gathered}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$
1N3434 1N3435 1N3436 1N3437	($\left\|\begin{array}{l} \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \end{array}\right\|$			2W 2W 2W 2W						$\begin{aligned} & 10 / 25 \\ & 12 / 25 \\ & 15 / 25 \\ & 18 / 25 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$
1N3438 iN3439 IN3440 1N3441	S	$\left.\begin{aligned} & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \end{aligned} \right\rvert\,$			2W 2W 2W 2W						$\begin{aligned} & 22 / 7.5 \\ & 27 / 7.5 \\ & 33 / 7.5 \\ & 39 / 7.5 \end{aligned}$	10 10 10 10
1N3442 1N3433 1N3444 1N3445	$\begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}$	$\left.\begin{aligned} & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \end{aligned} \right\rvert\,$			$\begin{aligned} & \mathbf{2 W} \\ & \mathbf{2 W} \\ & \mathbf{2 W} \\ & \mathbf{2 W} \end{aligned}$						$\begin{aligned} & 47 / 7.5 \\ & 6.2 / 2 \\ & 6.8 / 2 \\ & 8.2 / 2 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$

DIODE INTERCHANGEABILITY

TYPE NUMBER	言		II replacement	$\begin{aligned} & \text { FOR } \\ & \text { NEW } \\ & \text { DESIGN } \end{aligned}$	$\begin{gathered} P_{D} \\ (m W) \end{gathered}$	atings $\mathbf{V}_{\mathbf{R}}$ (V)	I_{0} (A)	$\begin{array}{ll} I_{R} & V_{R} \\ \mu_{\mathrm{A}} & /(\mathrm{V}) \end{array}$	$\mathbf{V F}_{\mathbf{F}}$ - $\mathbf{I F}_{\mathbf{F}}$ (V) $/$ (mA)	sistic ${ }^{1}$ (n)	$\begin{aligned} & \mathbf{V}_{\mathbf{Z}} \mathbf{I z}^{Y} \\ & \text { (V) } /(\mathrm{mA}) \end{aligned}$	$\begin{array}{r} \text { rot } \\ \% \end{array}$
$\begin{array}{\|l\|} \hline \text { IN3446 } \\ \text { lN3447 } \\ \text { 1N3448 } \\ \text { 1N3449 } \end{array}$	$\left\lvert\, \begin{array}{\|l} \hline \mathbf{s} \\ s \\ s \\ s \\ s \end{array}\right.$	$\begin{aligned} & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \end{aligned}$			$\begin{aligned} & 2 w \\ & 2 w \\ & 2 w \\ & 2 w \end{aligned}$						$\begin{aligned} & 10 / 2 \\ & 12 / 2 \\ & 15 / 2 \\ & 18 / 2 \end{aligned}$	10 10 10 10
$\begin{aligned} & \text { 1N3450 } \\ & \text { 1N3451 } \\ & \text { 1N3452 } \\ & \text { 1N3453 } \end{aligned}$	$\left\lvert\, \begin{aligned} & \mathrm{s} \\ & \mathrm{~s} \\ & \mathrm{~s} \\ & \mathbf{s} \end{aligned}\right.$	$\left\|\begin{array}{l} \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \end{array}\right\|$			$\begin{aligned} & 2 w \\ & 2 w \\ & 2 w \\ & 2 w \end{aligned}$						$\begin{aligned} & 22 / 2 \\ & 27 / 2 \\ & 30 / 2 \\ & 33 / 2 \end{aligned}$	10 10 10 10
$\begin{aligned} & \text { IN3454 } \\ & \text { IN3455 } \\ & \text { IN3456 } \\ & \text { IN3457 } \end{aligned}$	$\left\lvert\, \begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}\right.$	$\left\|\begin{array}{l} \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \end{array}\right\|$			$2 w$ $2 w$ $2 w$ $2 w$						$\begin{aligned} & 39 / 2 \\ & 47 / 2 \\ & 56 / 2 \\ & 68 / 2 \end{aligned}$	10 10 10 10
1N3458 1N3459 IN3460 1N3461	$\begin{array}{\|l} \mathbf{s} \\ \mathbf{s} \\ \mathrm{s} \\ \mathrm{~s} \end{array}$	$\left\|\begin{array}{l} \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \end{array}\right\|$			$\begin{aligned} & 2 w \\ & 2 w \\ & 2 w \\ & 2 w \end{aligned}$						$\begin{array}{r} 82 / 2 \\ 100 / 2 \\ 120 / 2 \\ 150 / 2 \end{array}$	10 10 10 10
1N3462 IN3463 IN3464 1N3465	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \\ & \mathbf{s} \end{aligned}\right.$	$\left\|\begin{array}{l} \mathrm{ZD} \\ \mathrm{ZD} \\ \mathrm{RE} \\ \mathrm{SD} \end{array}\right\|$		TID33	$\begin{aligned} & 2 W \\ & 2 W \end{aligned}$	$\begin{array}{r} 12 \mathrm{~K} \\ 60 \end{array}$. 1	$\begin{aligned} & .2 / 12 K \\ & 20 / 45 \end{aligned}$	$\begin{gathered} 24 / 60 \\ 1 / 200 \end{gathered}$		180/2	10 10
1N3466 1N3467 1N3468 1N3469		$\begin{aligned} & \text { SD } \\ & \text { SD } \\ & \text { SD } \\ & \text { SD } \end{aligned}$		TID33 1N4446 1N4446 1N4608		40 18 18 35		$\begin{aligned} & 15 / 30 \\ & 15 / 15 \\ & 60 / 15 \\ & 15 / 35 \end{aligned}$	$\begin{aligned} & 1 / 200 \\ & .5 / 20 \\ & .5 / 20 \\ & 1 / 600 \end{aligned}$	2		
1N3470 1N3471 1N3473 1N3474	$\left\lvert\, \begin{aligned} & \mathbf{G} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}\right.$	$\left\|\begin{array}{l} \mathrm{SD} \\ \mathrm{SD} \\ \mathrm{RE} \\ \mathrm{RE} \end{array}\right\|$		IN4608 1N4148 1N4003 1N4004		$\begin{array}{r} 35 \\ 40 \\ 200 \\ 400 \end{array}$	$\begin{aligned} & .75 \\ & .75 \end{aligned}$	$\begin{gathered} 30 / 35 \\ 20 \mathrm{~N} / 40 \\ 500 / 200 \\ 500 / 400 \end{gathered}$	$\begin{gathered} 1 / 800 \\ 1 / 10 \\ 1.4 / 750 \\ 1.4 / 750 \end{gathered}$	2		
1N3475 1N3476 1N3477 1N3477A	$\left\lvert\, \begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}\right.$	$\left.\begin{aligned} & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \end{aligned} \right\rvert\,$		$\begin{aligned} & \text { 1N4005 } \\ & \text { iN4006 } \end{aligned}$	$\begin{aligned} & 250 \\ & 250 \end{aligned}$	$\begin{aligned} & 600 \\ & 800 \end{aligned}$.75 .5	$\begin{aligned} & 500 / 600 \\ & 500 / 800 \end{aligned}$	$\begin{aligned} & 1.4 / 750 \\ & 1.4 / 500 \end{aligned}$		$\begin{aligned} & 2.2 / 5 \\ & 2.2 / 5 \end{aligned}$	10 5
1N3478 1N3479 1N3480 1N3483	$\begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{c} \end{aligned}$	$\left\|\begin{array}{l} \text { sD } \\ \text { sD } \\ \text { SD } \\ \text { SD } \end{array}\right\|$		IN4003 iN4004 1N4005 iN4305		$\begin{array}{r} 200 \\ 400 \\ 600 \\ 8 \end{array}$		$\begin{aligned} & 10 / 200 \\ & 10 / 400 \\ & 10 / 800 \\ & 30 / 8 \end{aligned}$	$\begin{aligned} & 1 / 500 \\ & 1 / 500 \\ & 1 / 500 \\ & .6 / 10 \end{aligned}$			
1N3484 1N3485 1N3486 1N3487	$\begin{aligned} & \mathbf{o} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}$	$\left\|\begin{array}{l} \mathrm{SD} \\ \mathrm{SD} \\ \mathrm{RE} \\ \mathrm{RE} \end{array}\right\|$		1N4305 1N4938 1N4007		$\begin{array}{r} 75 \\ 175 \\ 1 \mathrm{~K} \\ 1.2 \mathrm{~K} \end{array}$. 4	$\begin{aligned} & 4 / 10 \\ & 25 \mathrm{~N} / 150 \\ & 50 / 1 \mathrm{~K} \\ & 50 / \end{aligned}$	$\begin{gathered} .45 / 10 \\ 1 / 10 \\ 2 / 400 \\ 2 / 400 \end{gathered}$	50		

TYPEnumber		\%	$\underset{\text { Rerlacemant }}{\boldsymbol{\pi}}$	$\begin{aligned} & \text { FOR } \\ & \text { NEW } \\ & \text { DESICN } \end{aligned}$	ratings			Chazactiskistics				
					$\begin{gathered} P_{D} \\ (\mathrm{~mW}) \end{gathered}$	\mathbf{V}_{R} (V)	(A)	$\begin{array}{ll} \mathbf{V}_{\mathrm{R}} & \bullet \mathrm{~V}_{\mathrm{R}} \\ \mu \mathrm{~A} & /(\mathrm{V}) \end{array}$	$\begin{array}{ccc} \mathbf{v}_{\mathbf{F}} & \mathbf{q} \\ \text { (V) } & 1(\mathrm{~mA}) \end{array}$	$\begin{gathered} t_{\pi} \\ (n s) \end{gathered}$	$\begin{array}{llc} \mathbf{v}_{\mathbf{z}} & \bullet & \mathbf{z} \\ \text { (v) } & / \text { (ma) } \end{array}$	$\begin{aligned} & \text { rot } \\ & \text { \% } \end{aligned}$
1N3491 1N3492 1N3493 1N3494	$\begin{aligned} & \mathbf{s} \\ & s \\ & s \\ & s \\ & s \end{aligned}$	$\left.\begin{aligned} & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \end{aligned} \right\rvert\,$				$\begin{array}{r} 50 \\ 100 \\ 200 \\ 300 \end{array}$	$\begin{aligned} & 18 \\ & 18 \\ & 18 \\ & 18 \end{aligned}$	$\begin{aligned} & 1 \mathrm{M} / \\ & 1 \mathrm{M} / \\ & 1 \mathrm{M} / \\ & 1 \mathrm{M} / \end{aligned}$	$\begin{aligned} & 1.71 \\ & 1.71 \\ & 1.71 \\ & 1.71 \end{aligned}$			
1N3495 1N3496 1N3497 1N3498	$\begin{aligned} & \mathrm{s} \\ & \mathbf{s} \\ & \mathrm{~s} \\ & \mathrm{~s} \end{aligned}$	$\begin{array}{l\|} \mathbf{R E} \\ R D \\ R D \\ R D \\ R D \end{array}$			$\begin{aligned} & 250 \\ & 250 \\ & 250 \end{aligned}$	400	18	1M/	1.71		$\begin{aligned} & 6.2 / 7.5 \\ & 6.2 / 7.5 \\ & 6.2 / 7.5 \end{aligned}$	
1N3499 1N3500 IN3501 1N3502	$\begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}$	$\left\|\begin{array}{l} R D \\ R D \\ R D \\ R D \end{array}\right\|$			$\begin{aligned} & 250 \\ & 250 \\ & 250 \\ & 250 \end{aligned}$						$\begin{array}{r} 6.2 / 7.5 \\ 6.2 / 7.5 \\ 6.35 / 7.5 \\ 6.35 / 7.5 \end{array}$	
IN3503 IN3504 IN3504A 1N3506	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\left\|\begin{array}{l} R D \\ R D \\ R D \\ \mathrm{RD} \end{array}\right\|$	1N3506		$\begin{aligned} & 250 \\ & 250 \\ & 250 \\ & 400 \end{aligned}$						$\begin{gathered} 6.35 / 7.5 \\ 6.35 / 7.5 \\ 6.35 / 7.5 \\ 3.3 / 20 \end{gathered}$	5
iN3507 1 N3508 iN3509 iN3510	$\begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}$	$\left\|\begin{array}{l} \mathrm{zD} \\ \mathrm{ZD} \\ \mathrm{zD} \\ \mathrm{zD} \end{array}\right\|$	iN3507 1N3508 iN3509 IN3510		$\begin{aligned} & 400 \\ & 400 \\ & 400 \\ & 400 \end{aligned}$						$\begin{aligned} & 3.6 / 20 \\ & 3.9 / 20 \\ & 4.3 / 20 \\ & 4.7 / 20 \end{aligned}$	5 5 5 5
1N3511 IN3512 IN3513 iN3514	$\begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}$	$\left\|\begin{array}{l} \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{ZD} \end{array}\right\|$	1N3511 1N3512 in3513 1N3514		$\begin{aligned} & 400 \\ & 400 \\ & 400 \\ & 400 \end{aligned}$						$\begin{aligned} & 5.1 / 20 \\ & 5.6 / 20 \\ & 6.2 / 20 \\ & 6.8 / 20 \end{aligned}$	5 5 5 5
1 N3515 IN3516 IN3517 IN3518	$\begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}$	$\left\|\begin{array}{l} \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \end{array}\right\|$	1N3515 1N3516 1N3517 1N3518		$\begin{aligned} & 400 \\ & 400 \\ & 400 \\ & 400 \end{aligned}$						$\begin{aligned} & 7.5 / 10 \\ & 8.2 / 10 \\ & 9.1 / 10 \\ & 10 / 10 \end{aligned}$	5 5 5 5
IN3519 IN3520 IN3521 IN3522	$\begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}$	$\left\|\begin{array}{l} \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \end{array}\right\|$	IN3519 IN3520 IN3521 iN3522		$\begin{aligned} & 400 \\ & 400 \\ & 400 \\ & 400 \end{aligned}$						$\begin{aligned} & 11 / 10 \\ & 12 / 10 \\ & 13 / 10 \\ & 15 / 5 \end{aligned}$	5 5 5 5
$\begin{aligned} & \text { IN3523 } \\ & \text { 1N3524 } \\ & \text { IN3525 } \\ & \text { IN3526 } \end{aligned}$	$\begin{array}{\|l} \hline s \\ s \\ s \\ s \end{array}$	$\left\|\begin{array}{l} \mathrm{ZD} \\ \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \end{array}\right\|$	$\begin{aligned} & \text { 1N3523 } \\ & \text { 1N3524 } \\ & \text { 1N3525 } \\ & \text { iN3526 } \end{aligned}$		$\begin{aligned} & 400 \\ & 400 \\ & 400 \\ & 400 \end{aligned}$						$\begin{aligned} & 16 / 5 \\ & 18 / 5 \\ & 20 / 5 \\ & 22 / 5 \end{aligned}$	5 5 5 5
IN3527 1N3528 iN3529 iN3530	$\begin{aligned} & \mathrm{s} \\ & \mathrm{~s} \\ & \mathrm{~s} \\ & \mathrm{~s} \end{aligned}$	$\left\|\begin{array}{l} \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \end{array}\right\|$	$\begin{aligned} & \text { 1N3527 } \\ & \text { 1N3528 } \\ & \text { IN3529 } \\ & \text { IN3530 } \end{aligned}$		$\begin{aligned} & 400 \\ & 400 \\ & 400 \\ & 400 \end{aligned}$						$\begin{aligned} & 24 / 5 \\ & 27 / 4 \\ & 30 / 4 \\ & 33 / 3 \end{aligned}$	5 5 5 5

DIODE INTERCHANGEABILITY

TYPE NUMBER			TI REPLACEMENT	$\begin{aligned} & \text { FOR } \\ & \text { NEW } \\ & \text { DESIGN } \end{aligned}$	$\begin{aligned} & P_{D} \\ & (\mathrm{~mW}) \end{aligned}$	TINGS $\mathbf{V}_{\mathbf{R}}$ (V)		$\begin{array}{ll} \mathbf{I}_{\mathbf{R}} & \mathbf{V}_{\mathbf{R}} \\ \mu \mathbf{A} & /(\mathrm{V}) \end{array}$	$\mathbf{V F}_{\mathrm{F}}$ - I_{F} (V) $/$ (mA)		$\mathbf{V Z}_{\mathbf{Z}} \quad \mathbf{z}$ (V) $/$ (mA)	$\begin{gathered} \text { TOL } \\ \% \end{gathered}$
1N3531 1N3532 1N3533 1N3534	$\begin{aligned} & \mathrm{s} \\ & \mathrm{~s} \\ & \mathrm{~s} \\ & \mathrm{~s} \end{aligned}$	$\begin{aligned} & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \end{aligned}$			$\begin{aligned} & 400 \\ & 400 \\ & 400 \\ & 400 \end{aligned}$						$\begin{aligned} & 36 / 3 \\ & 39 / 3 \\ & 43 / 2 \\ & 47 / 2 \end{aligned}$	5 5 5 5
$\begin{aligned} & \text { IN3535 } \\ & \text { IN3536 } \\ & \text { iN3537 } \\ & \text { iN3538 } \end{aligned}$	$\begin{aligned} & \mathbf{s} \\ & \mathbf{S} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}$	$\begin{aligned} & \mathrm{SD} \\ & \mathrm{SD} \\ & \mathrm{ZD} \\ & \mathrm{SD} \end{aligned}$			IW	$\begin{array}{r} 200 \\ 70 \\ 150 \end{array}$		$\begin{gathered} 1 / 150 \\ 25 \mathrm{~N} / 60 \\ 2 / 150 \end{gathered}$	$\begin{aligned} & .55 / 1 \\ & .62 / 1 \\ & 2.3 / 2.5 \end{aligned}$		12/25	10
IN3544 1N3545 1N3546 1N3547	$\begin{aligned} & \mathrm{s} \\ & \mathrm{~s} \\ & \mathrm{~s} \\ & \mathrm{~s} \end{aligned}$	RE RE RE RE		1N4002 1N4003 1 N4004 IN4004		$\begin{aligned} & 100 \\ & 200 \\ & 300 \\ & 400 \end{aligned}$	$\begin{aligned} & .6 \\ & .6 \\ & .6 \\ & .6 \end{aligned}$	$\begin{aligned} & .2 / 100 \\ & .2 / 200 \\ & .2 / 300 \\ & .2 / 400 \end{aligned}$	$\begin{aligned} & 1.5 / 500 \\ & 1.5 / 500 \\ & 1.5 / 500 \\ & 1.5 / 500 \end{aligned}$			
1N3548 1N3549 1N3550 1N3553	$\begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}$	$\begin{aligned} & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{SD} \\ & \mathrm{RD} \end{aligned}$			250	$\begin{aligned} & 500 \\ & 600 \\ & 180 \end{aligned}$	$.6$	$\begin{array}{r} .2 / 500 \\ .2 / 600 \\ 200 / 180 \end{array}$	1.5/500 1.5/500 1/50	10	6.3/7.5	3
1N3558 1N3559 1N3563 1N3564	$\begin{aligned} & \mathbf{S} \\ & \mathbf{G} \\ & \mathbf{S} \\ & \mathbf{G} \end{aligned}$	$\begin{aligned} & \mathrm{ZD} \\ & \mathrm{SD} \\ & \mathrm{RE} \\ & \mathrm{SD} \end{aligned}$		IN751A 1N4007 1N4448		24 1 K 15	. 4		$\begin{gathered} 1 / 200 \\ 1.2 / 400 \\ 1 / 40 \end{gathered}$		10.3/15	3
1N3565 1N3566 1N3567 1N3568	$\begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}$	$\begin{aligned} & \text { SD } \\ & R E \\ & S D \\ & S D \end{aligned}$		$\begin{aligned} & \text { 1N4448 } \\ & \text { 1N4449 } \end{aligned}$		6 800 75 80	1	$\begin{aligned} & 25 M / \\ & 500 / \\ & .05 / 50 \\ & 1 / 50 \end{aligned}$	$\begin{gathered} 2 / 2 A \\ 2.2 / 1 \\ 1 / 100 \\ 1 / 20 \end{gathered}$	2		
$\begin{aligned} & \text { 1N3569 } \\ & \text { 1N3570 } \\ & \text { 1N3571 } \\ & \text { 1N3572 } \end{aligned}$	$\begin{aligned} & \mathbf{S} \\ & \mathbf{S} \\ & \mathbf{S} \\ & \mathbf{S} \end{aligned}$	RE RE RE RE	.			$\begin{aligned} & 100 \\ & 200 \\ & 300 \\ & 400 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 3.5 \\ & 3.5 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 400 / \\ & 400 / \\ & 400 / \\ & 400 / \end{aligned}$	$\begin{aligned} & 1.3 / \\ & 1.3 / \\ & 1.3 / \\ & 1.3 / \end{aligned}$			
1N3573 1N3574 1N3575 1N3576	$\begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}$	$\begin{aligned} & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{SD} \\ & \mathrm{SD} \end{aligned}$		$\begin{array}{\|l\|l\|} \text { IN483 } \\ \text { IN484 } \end{array}$		$\begin{array}{r} 500 \\ 600 \\ 60 \\ 125 \end{array}$	$\begin{aligned} & 3.5 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 400 / \\ & 400 / \\ & .7 \mathrm{~N} / 50 \\ & .7 \mathrm{~N} / 125 \end{aligned}$	$\begin{aligned} & 1.3 / \\ & 1.3 / \\ & .74 / 1 \\ & .74 / 1 \end{aligned}$			
1N3575 1N3578 1N3579 1N3580	$\begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}$	$\begin{aligned} & \text { SD } \\ & \text { SD } \\ & \text { SD } \\ & \text { RD } \end{aligned}$			750	$\begin{aligned} & 175 \\ & 225 \\ & 275 \end{aligned}$		$\begin{aligned} & .7 N / 175 \\ & .7 N / 225 \\ & .7 N / 275 \end{aligned}$	$\begin{aligned} & .74 / 1 \\ & .74 / 1 \\ & .74 / 1 \end{aligned}$		11.7/7.5	
1N3580A 1N35808 1N3581 1N3581A	$\begin{aligned} & \mathbf{s} \\ & \mathbf{S} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}$	$\begin{aligned} & R D \\ & R D \\ & R D \\ & R D \\ & R D \end{aligned}$			$\begin{aligned} & 750 \\ & 750 \\ & 750 \\ & 750 \end{aligned}$						$\begin{aligned} & 11.7 / 7.5 \\ & 11.7 / 7.5 \\ & 11.7 / 7.5 \\ & 11.7 / 7.5 \end{aligned}$	

DIODE INTERCHANGEABILITY

TYPE NUMBER			Tinticement	$\begin{aligned} & \text { FOR } \\ & \text { NEW } \\ & \text { DESICN } \end{aligned}$	$\begin{gathered} P_{\mathrm{D}} \\ (\mathrm{mw}) \end{gathered}$	$\begin{aligned} & \text { nNGS } \\ & \mathbf{v}_{\mathbf{R}} \\ & \text { (v) } \end{aligned}$	(A)	$\begin{array}{ll} L_{R} & \bullet V_{\mathbf{R}} \\ \mu_{\mathrm{A}} & /(\mathrm{V}) \end{array}$	$\begin{array}{cc} & \text { CHARACTE } \\ \mathbf{v}_{\mathbf{F}} & \bullet \mathbf{l} \\ \text { (v) } & / \text { (mA) } \end{array}$	vistics ${ }^{1} \mathrm{~m}$ (ns)	$\begin{array}{lll} \mathbf{v}_{\mathbf{z}} & \bullet & \mathbf{z} \\ \text { (v) } & /(\mathrm{ma}) \end{array}$	$\begin{gathered} 701 \\ \% \end{gathered}$
1N35818 1N3582 1N3582A 1N3582B	s	$\left.\begin{array}{l\|} \mathbf{R D} \\ R D \\ R D \\ R D \end{array} \right\rvert\,$			$\begin{aligned} & 750 \\ & 750 \\ & 750 \\ & 750 \end{aligned}$						$\begin{aligned} & 11.7 / 7.5 \\ & 11.7 / 7.5 \\ & 11.7 / 7.5 \\ & 11.7 / 7.5 \end{aligned}$	
1N3583 1N3583A 1N35838 1N3584	$\begin{aligned} & \mathrm{s} \\ & \mathrm{~s} \\ & \mathrm{~s} \\ & \mathrm{~s} \end{aligned}$	$\left.\begin{array}{\|l\|} \mathrm{RD} \\ \mathrm{RD} \\ \mathrm{RD} \\ \mathrm{RD} \end{array} \right\rvert\,$			$\begin{aligned} & 750 \\ & 750 \\ & 750 \\ & 750 \end{aligned}$						$\begin{aligned} & 11.7 / 7.5 \\ & 11.7 / 7.5 \\ & 11.7 / 7.5 \\ & 11.7 / 7.5 \end{aligned}$	
1N3584A IN3584B 1N3585 1N3586	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\left\|\begin{array}{l} R D \\ R D \\ R E \\ R E \end{array}\right\|$			$\begin{aligned} & 750 \\ & 750 \end{aligned}$	$\begin{array}{r} 50 \\ 100 \end{array}$	$\begin{aligned} & 400 \\ & 400 \end{aligned}$	$\begin{aligned} & 25 \mathrm{M} / \\ & 25 \mathrm{M} / \end{aligned}$	$\begin{aligned} & 1.2 / \\ & 1.2 / \end{aligned}$		$\begin{aligned} & 11.7 / 7.5 \\ & 11.7 / 7.5 \end{aligned}$	
$\begin{array}{\|l} \text { 1N3587 } \\ \text { 1N3588 } \\ \text { 1N3589 } \\ \text { 1N3590 } \end{array}$	$\begin{aligned} & \mathrm{s} \\ & \mathrm{~s} \\ & \mathrm{~s} \\ & \mathrm{~s} \end{aligned}$	$\left\|\begin{array}{l} \mathrm{RE} \\ \mathrm{RE} \\ \mathrm{RE} \\ \mathrm{RE} \end{array}\right\|$				$\begin{aligned} & 200 \\ & 300 \\ & 400 \\ & 500 \end{aligned}$	$\begin{aligned} & 400 \\ & 400 \\ & 400 \\ & 400 \end{aligned}$	$\begin{aligned} & 25 \mathrm{M} / \\ & 25 \mathrm{M} / \\ & 25 \mathrm{M} / \\ & 25 \mathrm{M} / \end{aligned}$	$\begin{aligned} & 1.21 \\ & 1.2 / \\ & 1.21 \\ & 1.2 / \end{aligned}$			
1N3591 1N3592 1N3593 IN3594	$\begin{aligned} & \mathrm{s} \\ & \mathrm{G} \\ & \mathrm{~s} \\ & \mathrm{~s} \end{aligned}$	$\left\|\begin{array}{l} R E \\ \mathrm{SD} \\ \mathrm{SD} \\ \mathrm{SD} \end{array}\right\|$		1N4305 1N4531 iN4532		600 30 40 60	400	25M/ $\begin{array}{r} 4 / 20 \\ 25 N / 40 \\ .1 / 50 \end{array}$	$\begin{aligned} & 1.2 / \\ & .35 / 2 \\ & 1 / 10 \\ & 1 / 50 \end{aligned}$	$\begin{array}{r} 70 \\ 6 \end{array}$		
1N3595 1N3596 1N3597 1N3598	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\left\|\begin{array}{l} S D \\ S D \\ S D \\ S D \end{array}\right\|$		IN485 1N4449 1N4938 1N4152		$\begin{array}{r} 125 \\ 20 \\ 150 \\ 75 \end{array}$		$\begin{gathered} 1 N / 125 \\ .1 / 20 \\ .1 / 150 \\ .1 / 50 \end{gathered}$	$\begin{aligned} & 1 / 200 \\ & 1 / 30 \\ & 1.2 / 400 \\ & .85 / 10 \end{aligned}$	4 300 4		
1N3599 1N3600 1N3601 1N3602	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\begin{aligned} & \left\|\begin{array}{l} \text { SD } \\ \text { SD } \\ \text { SD } \\ \text { SD } \end{array}\right\| \end{aligned}$		1N4938 1N4150 1N4149 1N4151		200 50 100 75		$\begin{aligned} & .1 / 150 \\ & .1 / 50 \\ & .1 / 75 \\ & .1 / 50 \end{aligned}$	$1 / 100$ $1 / 200$ $1 / 10$ $1 / 20$	50 4 5 5		
1N3603 IN3604 in3605 1N3606	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\left\|\begin{array}{l} \text { SD } \\ \text { SD } \\ \text { SD } \\ \text { SD } \end{array}\right\|$		1N4151 1N4151 1N4152 1N4153		50 75 40 75		$\begin{array}{r} .1 / 30 \\ .05 / 50 \\ .05 / 30 \\ .05 / 50 \end{array}$	$1 / 30$ $1 / 50$ $.55 / .1$ $.55 / 1$	5 4 4 4		
1N3607 1N3608 IN3609 IN3611	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\left\|\begin{array}{l} \mathrm{SD} \\ \mathrm{SD} \\ \mathrm{SD} \\ \mathrm{SD} \end{array}\right\|$		1N4151 1N4152 1N4153		75 40 75 200	2	$\begin{aligned} & .05 / 50 \\ & .05 / 30 \\ & .05 / 50 \\ & 10 / \end{aligned}$	$\begin{gathered} 1 / 50 \\ .55 / .1 \\ .55 / .1 \\ 1 / 750 \end{gathered}$	4 4 4		
1N3612 1N3613 1N3614 IN3625	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\left.\begin{aligned} & \text { SD } \\ & \text { SD } \\ & \text { SD } \\ & \text { SD } \end{aligned} \right\rvert\,$		1N4938		$\begin{aligned} & 400 \\ & 600 \\ & 800 \\ & 225 \end{aligned}$	2 2 2	$\begin{aligned} & 10 / \\ & 10 / \\ & 10 / \\ & .5 / 200 \end{aligned}$	$\begin{aligned} & 1 / 750 \\ & 1 / 750 \\ & 1 / 750 \\ & 1 / 40 \end{aligned}$	500		

TYPE NUMBER	$\frac{\overrightarrow{3}}{\frac{1}{2}}$	$\begin{aligned} & \frac{8}{2} \\ & \frac{2}{8} \\ & 8 \\ & 8 \\ & 8 \\ & 8 \end{aligned}$	II	FOR NEW DESICN	Ratines			CHARACTERISTICS				
					$\begin{gathered} P_{D} \\ (\mathrm{~mW}) \end{gathered}$	$\mathbf{V}_{\mathbf{R}}$ (V)	I (A)	$\begin{array}{ll} \mathbf{L}_{\mathbf{R}} & \bullet \mathbf{V}_{\mathbf{R}} \\ \mu_{\mathbf{A}} & /(\mathbf{V}) \end{array}$	$V_{F} \cdot \boldsymbol{F}$ (V) $/(\mathrm{mA})$	$\begin{aligned} & \text { in } \\ & \text { (ns) } \end{aligned}$	$\begin{array}{llc} \mathbf{V}_{\mathbf{Z}} & 0 & \mathbf{l} \mathbf{l} \\ & & \vdots \\ (\mathbf{V}) & / & (\mathrm{mA}) \end{array}$	rol
1N3626 1N3629 IN3630 1N3631	$\begin{aligned} & G \\ & \mathbf{S} \\ & \mathbf{S} \\ & \mathbf{S} \end{aligned}$	SD RE RE RE		$\begin{aligned} & 1 \mathrm{~N} 4002 \\ & \text { 1N4003 } \\ & \text { 1N4004 } \end{aligned}$		50 100 200 300	$\begin{aligned} & .75 \\ & .75 \\ & .75 \end{aligned}$	$\begin{aligned} & \hline 1 M / \\ & 10 / 70 \\ & 10 / 140 \\ & 10 / 210 \end{aligned}$	$\begin{aligned} & .5 / 10 \\ & 1 / 750 \\ & 1 / 750 \\ & 1 / 750 \end{aligned}$			
IN3632 IN3633 1N3634 IN3635	$\begin{aligned} & \mathrm{s} \\ & \mathrm{~S} \\ & \mathrm{~s} \\ & \mathrm{~s} \end{aligned}$	$\begin{aligned} & R E \\ & R E \\ & R E \\ & R E \end{aligned}$		1N4004 IN4005 iN4005 IN4006		400 500 600 700	$\begin{aligned} & .75 \\ & .75 \\ & .75 \\ & .75 \end{aligned}$	$\begin{aligned} & 10 / 280 \\ & 10 / 350 \\ & 10 / 420 \\ & 10 / 490 \end{aligned}$	$\begin{aligned} & 1 / 750 \\ & 1 / 750 \\ & 1 / 750 \\ & 1 / 750 \end{aligned}$			
1N3636 1N3637 1N3638 1N3639	$\begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}$	$\begin{aligned} & R E \\ & R E \\ & R E \\ & R E \end{aligned}$		1N4006 1 N4007 1N4007 1N4003		800 900 1K 200	$\begin{aligned} & .75 \\ & .75 \\ & .75 \\ & .75 \end{aligned}$	$\begin{array}{r} 10 / 560 \\ 10 / 630 \\ 10 / 700 \\ 200 / 200 \end{array}$	$\begin{array}{r} 1 / 750 \\ 1 / 750 \\ 1 / 750 \\ 1.2 / 750 \end{array}$			
1N3640 1N3641 1N3642 iN3643	S	$\begin{aligned} & \mathrm{RE} \\ & \mathbf{R E} \\ & R E \\ & R \mathrm{SO} \\ & \hline \end{aligned}$				$\begin{array}{r} 400 \\ 600 \\ 800 \\ 1 K \end{array}$	$\begin{aligned} & .75 \\ & .75 \\ & .75 \end{aligned}$	$\begin{gathered} 200 / 400 \\ 200 / 600 \\ 200 / 800 \\ 5 / \end{gathered}$	$\begin{array}{r} 1.2 / 750 \\ 1.2 / 750 \\ 1.2 / 750 \\ 5 / 250 \end{array}$:	
1N3644 1N3645 1N3646 1N3647	$\begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}$	$\begin{array}{\|l\|} \hline \text { SD } \\ \text { SD } \\ \text { SD } \\ \text { SD } \end{array}$				$\begin{array}{r} 1.5 K \\ 1 K \\ 2.5 K \\ 3 K \end{array}$		$\begin{aligned} & 5 / \\ & 5 / \\ & 5 / \\ & 5 / \end{aligned}$	$\begin{aligned} & 5 / 250 \\ & 5 / 250 \\ & 5 / 250 \\ & 5 / 250 \end{aligned}$			
1N3648 1N3649 1N3650 1N3653	S	$\begin{aligned} & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{SD} \end{aligned}$				10 K 800 1 K 100	$\begin{array}{r} .35 \\ 1 \\ 1 \end{array}$	$\begin{gathered} 500 / \\ 5 / \\ 5 / \\ 25 N / 75 \end{gathered}$	$\begin{aligned} & 23 / \\ & 1.1 / 1 \\ & 1.1 / 1 \\ & 1 / 400 \end{aligned}$	4		
1N3654 1N3656 1N3657 1N3658	$\begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}$	$\begin{aligned} & \text { SD } \\ & \text { SD } \\ & S D \\ & S D \end{aligned}$		IN4003 IN4004 IN4005		100 200 400 600	1 .1 1	$\begin{aligned} & 25 N / 75 \\ & 10 / 200 \\ & 10 / 400 \\ & 10 / 600 \end{aligned}$	$\begin{gathered} 1 / 50 \\ 1.2 / 500 \\ 1.2 / 500 \\ 1.2 / 500 \end{gathered}$	4		
1N3666 1N3666M 1N3667 1N3668	$\begin{aligned} & G \\ & G \\ & S \\ & S \end{aligned}$	$\begin{aligned} & \text { SD } \\ & \text { SD } \\ & R E \\ & S D \end{aligned}$		1N4305 iN4607 IN4305		80 80 500 30	1.5	$\begin{gathered} 10 / 20 \\ 150 / 20 \\ 1 \mathrm{M} / \\ .1 / 15 \end{gathered}$	$\begin{aligned} & .4 / 5 \\ & 1 / 200 \\ & 1.2 / \\ & 1 / 5 \end{aligned}$	$\begin{aligned} & 300 \\ & 150 \end{aligned}$		
IN3669 IN3675 IN3675A IN3675B	$\begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & \mathrm{sD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \end{aligned}$		1N4607 1N4736 1N4736 1N4736A	$\begin{aligned} & 750 \\ & 750 \\ & 750 \end{aligned}$	70	.4	.25/	1.1/400	200	6.8/19 6.8/19 6.8/19	$\begin{array}{r} 20 \\ 10 \\ 5 \end{array}$
1N3676 1N3676A 1N36768 1N3677	$\begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}$	$\left\|\begin{array}{l} \mathrm{ZD} \\ \mathrm{ZD} \\ \mathrm{ZD} \\ \mathrm{ZD} \end{array}\right\|$		1N4737 1N4737 1N4737A 1N4738	$\begin{aligned} & 750 \\ & 750 \\ & 750 \\ & 750 \end{aligned}$						$\begin{aligned} & 7.5 / 17 \\ & 7.5 / 17 \\ & 7.5 / 17 \\ & 8.2 / 15 \end{aligned}$	$\begin{array}{r} 20 \\ 10 \\ 5 \\ 20 \end{array}$

TY险 NUMEER	$\begin{aligned} & \frac{3}{2} \\ & \frac{\text { N }}{2} \\ & 3 \end{aligned}$	$\begin{aligned} & \frac{8}{6} \\ & \frac{8}{2} \\ & \frac{3}{7} \\ & \frac{3}{3} \end{aligned}$	TI	$\begin{aligned} & \text { FOR } \\ & \text { NEW } \\ & \text { DESIGN } \end{aligned}$	Ratines			CHARACTERISTICS				
					$\begin{gathered} P_{\mathbf{D}} \\ (\mathrm{mW}) \end{gathered}$	$\mathbf{V}_{\mathbf{R}}$ (V)	I (A)	$\begin{array}{ll} \mathbf{I}_{\mathbf{R}} & \mathbf{V}_{\mathbf{R}} \\ \mu_{\mathrm{A}} & /(\mathbf{V}) \end{array}$	$\begin{array}{ll} V_{F} & I_{F} \\ (V) & /(\mathrm{mA}) \end{array}$	$t_{r r}$ (ns)	$\begin{array}{llc} V_{Z} & \mathrm{Z} \\ (\mathrm{~V}) & /(\mathrm{mA}) \end{array}$	$\begin{aligned} & \text { TOL } \\ & \% \end{aligned}$
$\begin{aligned} & \text { 1N3677A } \\ & \text { 1N3677B } \\ & \text { 1N3678 } \\ & \text { 1N3678A } \end{aligned}$	$\begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}$	$\begin{aligned} & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \end{aligned}$		IN4738 1N4738A 1N4739 1N4739	$\begin{aligned} & 750 \\ & 750 \\ & 750 \\ & 750 \end{aligned}$						$\begin{aligned} & 8.2 / 15 \\ & 8.2 / 15 \\ & 9.1 / 14 \\ & 9.1 / 14 \end{aligned}$	$\begin{array}{r} 10 \\ 5 \\ 20 \\ 10 \end{array}$
$\begin{aligned} & \text { 1N36788 } \\ & \text { 1N3679 } \\ & \text { 1N3679A } \\ & \text { iN3679B } \end{aligned}$	$\begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}$	$\left\|\begin{array}{l} \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \end{array}\right\|$		1N4739A 1N4740 1N4740 IN4740A	$\begin{aligned} & 750 \\ & 750 \\ & 750 \\ & 750 \end{aligned}$						$\begin{gathered} 9.1 / 14 \\ 10 / 13 \\ 10 / 13 \\ 10 / 13 \end{gathered}$	$\begin{array}{r} 5 \\ 20 \\ 10 \\ 5 \end{array}$
$\begin{aligned} & \text { 1N3680 } \\ & \text { 1 N3680A } \\ & \text { IN36808 } \\ & \text { 1N3681 } \end{aligned}$	$\left\lvert\, \begin{aligned} & \mathbf{s} \\ & \mathbf{S} \\ & \mathbf{S} \\ & \mathbf{s} \end{aligned}\right.$	$\left\|\begin{array}{l} \mathrm{ZD} \\ \mathrm{ZD} \\ \mathrm{ZD} \\ \mathrm{ZD} \end{array}\right\|$		IN4741 1N4741 1N4741A 1N4742	$\begin{aligned} & 750 \\ & 750 \\ & 750 \\ & 750 \end{aligned}$						$\begin{aligned} & 11 / 12 \\ & 11 / 12 \\ & 11 / 12 \\ & 12 / 11 \end{aligned}$	$\begin{array}{r} 20 \\ 10 \\ 5 \\ 20 \end{array}$
$\begin{aligned} & \text { 1N3681A } \\ & \text { 1N3681B } \\ & \text { 1N3682 } \\ & \text { 1N3682A } \end{aligned}$	$\begin{aligned} & \mathbf{S} \\ & \mathbf{S} \\ & \mathbf{S} \\ & \mathbf{s} \end{aligned}$	$\begin{aligned} & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \end{aligned}$		1N4742 1N4742A 1N4743 1N4743	$\begin{aligned} & 750 \\ & 750 \\ & 750 \\ & 750 \end{aligned}$						$\begin{aligned} & 12 / 11 \\ & 12 / 11 \\ & 13 / 9.5 \\ & 13 / 9.5 \end{aligned}$	$\begin{array}{r} 10 \\ 5 \\ 20 \\ 10 \end{array}$
$\begin{aligned} & \text { IN3682B } \\ & \text { IN3683 } \\ & \text { IN3683A } \\ & \text { 1N3683B } \end{aligned}$	$\left\lvert\, \begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}\right.$	$\left\|\begin{array}{l} \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \end{array}\right\|$		IN4743A 1N4744 1N4744 1N4744A	$\begin{aligned} & 750 \\ & 750 \\ & 750 \\ & 750 \end{aligned}$						$\begin{aligned} & 13 / 9.5 \\ & 15 / 8.5 \\ & 15 / 8.5 \\ & 15 / 8.5 \end{aligned}$	$\begin{array}{r} 5 \\ 20 \\ 10 \\ 5 \end{array}$
$\begin{aligned} & \text { 1N3684 } \\ & \text { 1N3684A } \\ & \text { 1N3684B } \\ & \text { 1N3685 } \end{aligned}$	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \end{aligned}\right.$		$\begin{aligned} & \text { 1N4745 } \\ & 1 N 4745 \\ & \text { 1N4745A } \\ & \text { 1N4746 } \end{aligned}$	$\begin{aligned} & 750 \\ & 750 \\ & 750 \\ & 750 \end{aligned}$						$\begin{aligned} & 16 / 7.8 \\ & 16 / 7.8 \\ & 16 / 7.8 \\ & 18 / 7 \end{aligned}$	$\begin{array}{r} 20 \\ 10 \\ 5 \\ 20 \end{array}$
$\begin{aligned} & \text { IN3685A } \\ & \text { IN3685B } \\ & \text { IN3686 } \\ & \text { IN3686A } \end{aligned}$	$\begin{aligned} & \mathbf{S} \\ & \mathbf{S} \\ & \mathbf{S} \\ & \mathbf{S} \end{aligned}$	$\begin{aligned} & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \end{aligned}$		$\begin{array}{\|l} \text { IN4746 } \\ \text { IN4746A } \\ \text { IN4747 } \\ \text { IN4747 } \end{array}$	$\begin{aligned} & 750 \\ & 750 \\ & 750 \\ & 750 \end{aligned}$						$\begin{aligned} & 18 / 7 \\ & 18 / 7 \\ & 20 / 6.2 \\ & 20 / 6.2 \end{aligned}$	$\begin{array}{r} 10 \\ 5 \\ 20 \\ 10 \end{array}$
$\begin{array}{\|l\|} \hline 1 N 3686 B \\ 1 N 3687 \\ 1 N 3687 A \\ 1 N 3687 B \end{array}$	$\left\lvert\, \begin{aligned} & \mathbf{S} \\ & \mathbf{S} \\ & \mathbf{S} \\ & \mathbf{S} \end{aligned}\right.$	$\begin{aligned} & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \end{aligned}$		$\begin{aligned} & \text { IN4747A } \\ & \text { IN4748 } \\ & \text { IN4748 } \\ & \text { IN4748A } \end{aligned}$	$\begin{aligned} & 750 \\ & 750 \\ & 750 \\ & 750 \end{aligned}$						$\begin{aligned} & 20 / 6.2 \\ & 22 / 5.6 \\ & 22 / 5.6 \\ & 22 / 5.6 \end{aligned}$	$\begin{array}{r} 5 \\ 20 \\ 10 \\ 5 \end{array}$
$\begin{aligned} & \text { 1N3688 } \\ & \text { 1N3688A } \\ & \text { 1N36888 } \\ & \text { 1N3689 } \end{aligned}$	$\begin{aligned} & \mathrm{s} \\ & \mathrm{~s} \\ & \mathrm{~s} \\ & \mathrm{~s} \end{aligned}$	$\begin{aligned} & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \end{aligned}$		1N4749 1N4749 JN4749A 1N4750	$\begin{aligned} & 750 \\ & 750 \\ & 750 \\ & 750 \end{aligned}$						$\begin{aligned} & 24 / 5.2 \\ & 24 / 5.2 \\ & 24 / 5.2 \\ & 27 / 4.6 \end{aligned}$	$\begin{array}{r} 20 \\ 10 \\ 5 \\ 20 \end{array}$
$\begin{aligned} & \text { 1N3689A } \\ & \text { 1N36898 } \\ & \text { 1N3690 } \\ & \text { IN3690A } \end{aligned}$	$\left\lvert\, \begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}\right.$	$\left.\begin{aligned} & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \end{aligned} \right\rvert\,$		$\begin{array}{\|l} \text { IN4750 } \\ \text { 1N4750A } \\ \text { 1N4751 } \\ \text { IN4751 } \end{array}$	$\begin{aligned} & 750 \\ & 750 \\ & 750 \\ & 750 \end{aligned}$						$\begin{aligned} & 27 / 4.6 \\ & 27 / 4.6 \\ & 30 / 4.2 \\ & 30 / 4.2 \end{aligned}$	$\begin{array}{r} 10 \\ 5 \\ 20 \\ 10 \end{array}$

DIODE INTERCHANGEABILITY

TYPE NUMBER		3833333	$\begin{gathered} \text { TI } \\ \text { REPLACEMENT } \end{gathered}$		Rathes			CHARACTERISTICS				
					$\begin{aligned} & P_{D} \\ & (\mathrm{~mW}) \end{aligned}$	$\mathbf{V}_{\mathbf{R}}$ (V)	1 (A)	$\begin{array}{ll} \mathbf{I}_{\mathbf{R}} & \mathbf{V}_{\mathbf{R}} \\ \mu_{\mathbf{A}} & /(\mathbf{V}) \end{array}$	$\begin{array}{ll} \mathbf{V}_{\mathbf{F}} & \mathbf{I F}_{\mathbf{F}} \\ (\mathbf{V}) & /(\mathrm{mA}) \end{array}$	$\begin{aligned} & t_{\mathrm{rr}} \\ & (\mathrm{~ns}) \end{aligned}$	$\begin{array}{ll} \mathbf{V}_{\mathbf{Z}} & \cdot \mathbf{I} \\ (\mathbf{V}) & /(\mathrm{mA}) \end{array}$	TOL *
$\begin{aligned} & \text { 1N36908 } \\ & \text { 1N3691 } \\ & \text { 1N3691A } \\ & \text { 1N3691B } \end{aligned}$	$\begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}$	$\begin{aligned} & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \end{aligned}$		IN4751A 1N4752 1N4752 1N4752A	$\begin{aligned} & 750 \\ & 750 \\ & 750 \\ & 750 \end{aligned}$						$\begin{aligned} & 30 / 4.2 \\ & 33 / 3.8 \\ & 33 / 3.8 \\ & 33 / 3.8 \end{aligned}$	5 20 10 5
$\begin{aligned} & \text { 1N3692 } \\ & \text { 1N3692A } \\ & \text { 1N3692B } \\ & \text { 1N3693 } \end{aligned}$	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \end{aligned}\right.$			$\begin{aligned} & 750 \\ & 750 \\ & 750 \\ & 750 \end{aligned}$						$\begin{aligned} & 36 / 3.4 \\ & 36 / 3.4 \\ & 36 / 3.4 \\ & 39 / 3.2 \end{aligned}$	20 10 5 20
$\begin{aligned} & \text { 1N3693A } \\ & \text { 1N36938 } \\ & \text { 1N3694 } \\ & \text { 1N3694A } \end{aligned}$	$\begin{aligned} & \mathbf{S} \\ & \mathbf{S} \\ & \mathbf{S} \\ & \mathbf{S} \end{aligned}$	$\begin{aligned} & \mathrm{zD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \end{aligned}$			$\begin{aligned} & 750 \\ & 750 \\ & 750 \\ & 750 \end{aligned}$						$\begin{aligned} & 39 / 3.2 \\ & 39 / 3.2 \\ & 43 / 3 \\ & 43 / 3 \end{aligned}$	10 5 20 10
$\begin{aligned} & \text { 1N3694B } \\ & \text { 1N3695 } \\ & \text { 1N3695A } \\ & \text { 1N3695B } \end{aligned}$	$\begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \end{aligned}$			$\begin{aligned} & 750 \\ & 750 \\ & 750 \\ & 750 \end{aligned}$						$\begin{aligned} & 43 / 3 \\ & 47 / 2.7 \\ & 47 / 2.7 \\ & 47 / 2.7 \end{aligned}$	5 20 10 5
$\begin{aligned} & \text { 1N3696 } \\ & \text { 1N3696A } \\ & \text { 1N3696B } \\ & \text { 1N3697 } \end{aligned}$	$\left\lvert\, \begin{aligned} & 5 \\ & s \\ & s \\ & s \end{aligned}\right.$	$\begin{aligned} & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \end{aligned}$			$\begin{aligned} & 750 \\ & 750 \\ & 750 \\ & 750 \end{aligned}$						$\begin{aligned} & 51 / 2.5 \\ & 51 / 2.5 \\ & 51 / 2.5 \\ & 56 / 2.2 \end{aligned}$	$\begin{array}{r} 20 \\ 10 \\ 5 \\ 20 \end{array}$
1N3697A 1N3697B 1N3698 IN3698A	$\left\lvert\, \begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}\right.$	$\left\|\begin{array}{l} \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \end{array}\right\|$			$\begin{aligned} & 750 \\ & 750 \\ & 750 \\ & 750 \end{aligned}$						$\begin{aligned} & 56 / 2.2 \\ & 56 / 2.2 \\ & 62 / 2 \\ & 62 / 2 \end{aligned}$	10 5 20 10
1N36988 1N3699 1N3699A 1N36998	$\begin{aligned} & \mathrm{s} \\ & \mathrm{~s} \\ & \mathrm{~s} \\ & \mathrm{~s} \end{aligned}$	$\left\|\begin{array}{l} \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{ZD} \end{array}\right\|$			$\begin{aligned} & 750 \\ & 750 \\ & 750 \\ & 750 \end{aligned}$						62/2 68/1.8 68/1.8 68/1.8	5 20 10 5
$\begin{aligned} & \text { IN3700 } \\ & \text { IN3700A } \\ & \text { 1N3700B } \\ & \text { IN3701 } \end{aligned}$	$\begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{S} \\ & \mathbf{s} \end{aligned}$	$\left\lvert\, \begin{aligned} & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \end{aligned}\right.$			$\begin{aligned} & 750 \\ & 750 \\ & 750 \\ & 750 \end{aligned}$						$\begin{aligned} & 75 / 1.7 \\ & 75 / 1.7 \\ & 75 / 1.7 \\ & 82 / 1.5 \end{aligned}$	20 10 5 20
$\begin{aligned} & \text { 1N3701A } \\ & \text { 1N3701B } \\ & \text { 1N3702 } \\ & \text { 1N3702A } \end{aligned}$	S	$\begin{aligned} & \mathrm{zD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \end{aligned}$			$\begin{aligned} & 750 \\ & 750 \\ & 750 \\ & 750 \end{aligned}$						$\begin{aligned} & 82 / 1.5 \\ & 82 / 1.5 \\ & 91 / 1.4 \\ & 91 / 1.4 \end{aligned}$	10 5 20 10
1N3702B 1N3703 1N3703A 1N3703B	$\begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \end{aligned}$			$\begin{aligned} & 750 \\ & 750 \\ & 750 \\ & 750 \end{aligned}$						$\begin{array}{r} 91 / 1.4 \\ 100 / 1.3 \\ 100 / 1.3 \\ 100 / 1.3 \end{array}$	$\begin{array}{r} 5 \\ 20 \\ 10 \\ 5 \end{array}$

TYPE MUMAER		$\begin{gathered} \frac{7}{6} \\ \frac{3}{3} \\ \frac{6}{6} \\ 3 \\ 3 \end{gathered}$			$\begin{gathered} \mathbf{P}_{\mathbf{D}} \\ (\mathrm{mW}) \end{gathered}$	mines $\mathbf{V}_{\mathbf{R}}$ (V)	1 (A)	$\begin{array}{ll} \mathbf{l}_{\mathrm{R}} & \bullet \mathbf{V}_{\mathrm{R}} \\ \mu_{\mathrm{A}} & /(\mathrm{V}) \end{array}$	V_{F} - If (V) $/$ (mA)	ISTICS $\begin{aligned} & t_{\pi} \\ & \text { (ns) } \end{aligned}$	$\mathbf{V}_{\mathbf{z}}-\mathbf{l}_{\mathbf{z}}$ (V) $/$ (mA)	TOL *
IN3704 IN3704A IN37048 IN3705	$\begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & z D \\ & z D \\ & z D \\ & z 0 \end{aligned}$			$\begin{aligned} & 750 \\ & 750 \\ & 750 \\ & 750 \end{aligned}$						110/1.1 110/1.1 110/1.1 120/1.0	$\begin{array}{r} 20 \\ 10 \\ 5 \\ 20 \end{array}$
1N3705A 1N37058 IN3706 IN3706A	$\left\lvert\, \begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}\right.$	$\left\|\begin{array}{l} \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \end{array}\right\|$			$\begin{aligned} & 750 \\ & 750 \\ & 750 \\ & 750 \end{aligned}$						$\begin{aligned} & 120 / 1.0 \\ & 120 / 1.0 \\ & 130 / .95 \\ & 130 / .95 \end{aligned}$	$\begin{array}{r} 10 \\ 5 \\ 20 \\ 10 \end{array}$
$\begin{aligned} & \text { 1N3706B } \\ & \text { 1N3707 } \\ & \text { 1N3707A } \\ & \text { 1N3707B } \end{aligned}$	$\begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \\ & 20 \\ & 20 \end{aligned}$			$\begin{aligned} & 750 \\ & 750 \\ & 750 \\ & 750 \end{aligned}$						$\begin{aligned} & 130 / .95 \\ & 150 / .85 \\ & 150 / .85 \\ & 150 / .85 \end{aligned}$	5 20 10 5
1N3708 1N3708A 1N37088 1N3709	$\left\lvert\, \begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}\right.$	$\left\|\begin{array}{l} \mathrm{ZD} \\ \mathrm{ZD} \\ \mathrm{ZD} \\ \mathrm{ZD} \end{array}\right\|$			$\begin{aligned} & 750 \\ & 750 \\ & 750 \\ & 750 \end{aligned}$						$\begin{aligned} & 160 / .8 \\ & 160 / .8 \\ & 160 / .8 \\ & 180 / .68 \end{aligned}$	$\begin{array}{r} 20 \\ 10 \\ 5 \\ 20 \end{array}$
$\begin{aligned} & \text { IN3709A } \\ & \text { IN37098 } \\ & \text { IN3710 } \\ & \text { 1N3710A } \end{aligned}$	$\left\lvert\, \begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \end{aligned}\right.$			$\begin{aligned} & 750 \\ & 750 \\ & 750 \\ & 750 \end{aligned}$						$\begin{aligned} & 180 / .68 \\ & 180 / .68 \\ & 200 / .65 \\ & 200 / .65 \end{aligned}$	$\begin{array}{r} 10 \\ 5 \\ 20 \\ 10 \end{array}$
$\begin{array}{\|l} \text { 1N37108 } \\ \text { 1N3711 } \\ \text { 1N3722 } \\ \text { 1N3723 } \end{array}$	$\left\lvert\, \begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}\right.$	$\begin{aligned} & \mathrm{ZD} \\ & \mathrm{RE} \\ & \mathrm{SD} \\ & \mathrm{RE} \end{aligned}$		$\left\{\begin{array}{l} \text { 1N4531 } \\ \text { 1N4007 } \end{array}\right.$	750	$\begin{aligned} & 6 K \\ & 50 \\ & 1 K \end{aligned}$	$\begin{aligned} & .15 \\ & .75 \end{aligned}$	25/ . $1 / 30$ 5/1K	$\begin{aligned} & 11 / \\ & 1 / 20 \\ & 2.2 / 750 \end{aligned}$	10	200/. 65	5
$\begin{aligned} & \text { IN3724 } \\ & \text { iN3725 } \\ & \text { iN3726 } \\ & \text { IN3727 } \end{aligned}$	$\left\lvert\, \begin{aligned} & 5 \\ & s \\ & 5 \\ & 5 \end{aligned}\right.$	$\begin{aligned} & R E \\ & R E \\ & R E \\ & R E \\ & R E \end{aligned}$				$\begin{aligned} & 1.2 K \\ & 1.4 K \\ & 1.8 K \\ & 1.8 K \end{aligned}$	$\begin{aligned} & .75 \\ & .75 \\ & .75 \\ & .75 \end{aligned}$	$\begin{aligned} & 5 / \\ & 5 / \\ & 5 / \\ & 5 / \end{aligned}$	$\begin{aligned} & 2.2 / \\ & 2.2 \prime \\ & 2.2 \prime \\ & 2.2 / \end{aligned}$			
$\begin{aligned} & \text { 1N3728 } \\ & \text { 1N3729 } \\ & \text { 1N3730 } \\ & \text { 1N3731 } \end{aligned}$	$\begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{S} \\ & \mathbf{s} \end{aligned}$	$\begin{aligned} & \text { SD } \\ & \text { SD } \\ & \text { SD } \\ & \text { SD } \end{aligned}$		1N648 IN648 1N4608 1N4153		550 600 80 80		$\begin{gathered} .1 / 400 \\ .1 / 500 \\ .1 / 60 \\ 5 / 80 \end{gathered}$	$\begin{aligned} & 1.2 / 400 \\ & 1 / 5 \\ & 1 / 750 \\ & 1 / 100 \end{aligned}$	500 30 3		
$\begin{aligned} & \text { 1N3732 } \\ & \text { 1N3748 } \\ & \text { 1N3749 } \\ & \text { 1N3750 } \end{aligned}$	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\begin{aligned} & \mathrm{ZD} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \end{aligned}$		1N4733A 1N4003 iN4004 1N4005	1W	$\begin{aligned} & 200 \\ & 400 \\ & 600 \end{aligned}$	$\begin{aligned} & .5 \\ & .5 \\ & .5 \end{aligned}$	5/200 5/400 5/600			$5.1 / 40$	5
$\begin{array}{\|l\|} \text { 1N3751 } \\ \text { 1N3752 } \\ \text { 1N3753 } \\ \text { 1N3754 } \end{array}$	$\begin{aligned} & \mathbf{S} \\ & \mathbf{S} \\ & \mathbf{G} \\ & \mathbf{S} \end{aligned}$	$\left\|\begin{array}{l} R E \\ R E \\ S D \\ R E \end{array}\right\|$		$\begin{aligned} & \text { IN4006 } \\ & \text { iN4007 } \\ & \text { iN4148 } \\ & \text { IN4002 } \end{aligned}$		$\begin{array}{r} 800 \\ 1 K \\ 55 \\ 100 \end{array}$	$\begin{array}{r} .5 \\ .5 \\ .15 \end{array}$	$\begin{gathered} 5 / 800 \\ 5 / 1 K \\ 5 / 55 \\ 300 / 100 \end{gathered}$	$\begin{array}{r} 1.5 / 500 \\ 1.5 / 500 \\ 1 / 150 \\ 1.2 / 150 \end{array}$			

DIODE INTERCHANGEABILITY

TYPE NUMBER		3 0 0 3 3 3 3	$\begin{gathered} \text { TI } \\ \text { REPLACEMENT } \end{gathered}$	FOR NEW DESIGN	$\begin{gathered} \mathbf{P D} \\ (\mathrm{mW}) \end{gathered}$	ATINGS $\mathbf{V}_{\mathbf{R}}$ (V)	I (A)	$\begin{array}{ll} \mathbf{I}_{\mathbf{R}} & \mathbf{V}_{\mathbf{R}} \\ \mu \mathbf{A} & / \mathbf{V}) \end{array}$	CHARACT \mathbf{V}_{F}. $\mathbf{I F}_{F}$ (V) $/$ (mA)	$\begin{aligned} & \text { ERISTIC } \\ & \text { trr } \\ & \text { (ns) } \end{aligned}$	$\mathbf{V}_{\mathbf{Z}}$ © $\mathbf{I z}$ (V) $/$ (mA)	$\begin{aligned} & \mathrm{TOL} \\ & \% \end{aligned}$
$\begin{aligned} & \text { 1N3755 } \\ & \text { 1N3756 } \\ & \text { 1N3757 } \\ & \text { 1N3758 } \end{aligned}$	$\begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}$	$\begin{aligned} & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \end{aligned}$		1N4003 1N4004 1 N4003 IN4004		200 400 200 400	.15 .15 1 1	$\begin{array}{r} 300 / 200 \\ 300 / 400 \\ 5 / 200 \\ 5 / 400 \end{array}$	$\begin{gathered} 1.2 / 150 \\ 1.2 / 150 \\ 1 / 1 \mathrm{~A} \\ 1 / 1 \mathrm{~A} \end{gathered}$.
$\begin{aligned} & \text { 1N3759 } \\ & \text { 1N3760 } \\ & \text { 1N3761 } \\ & \text { 1N3762 } \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \end{aligned}$				600 800 $1 K$ 5.3 K	1 1 1 .065	$\begin{aligned} & 5 / 600 \\ & 5 / 800 \\ & 5 / 1 K \\ & 5 / \end{aligned}$	$\begin{aligned} & 1 / 1 A \\ & 1 / 1 A \\ & 1 / 1 A \\ & 12 / \end{aligned}$			
$\begin{aligned} & \text { 1N3763 } \\ & \text { 1N3764 } \\ & \text { 1N3769 } \\ & \text { 1N3773 } \end{aligned}$	$\begin{aligned} & S \\ & S \\ & G \\ & G \end{aligned}$	$\left\|\begin{array}{l} R D \\ R E \\ \mathrm{SD} \\ \mathrm{SD} \end{array}\right\|$		1N4305 1N4305	1.5W	$3 K$ 90 25	. 2	$\begin{aligned} & 100 / \\ & 5 / 5 \\ & 4 / 3 \end{aligned}$	6.51 $\begin{aligned} & .5 / 25 \\ & .35 / 2 \end{aligned}$	40	20/10	5
1N3774 1N3775 1N3777 1N3779	$\left\lvert\, \begin{aligned} & S \\ & s \\ & s \\ & s \end{aligned}\right.$	$\begin{aligned} & \mathrm{ZD} \\ & R E \\ & S D \\ & R D \end{aligned}$		1N4148	$\begin{aligned} & 340 \\ & 400 \end{aligned}$	$1.5 K$ 40	3.3	$\begin{array}{r} 100 \% \\ .1 / \end{array}$	$\begin{aligned} & 2.2 / \\ & 1.1 / 10 \end{aligned}$	4	$\begin{aligned} & 1.15 / 10 \\ & 6.5 / 7.5 \end{aligned}$	2
1N3780 1N3781 1N3782 1N3783	$\begin{aligned} & \mathrm{s} \\ & \mathrm{~S} \\ & \mathrm{~S} \\ & \mathrm{~S} \end{aligned}$	$\begin{aligned} & R D \\ & R D \\ & R D \\ & R D \end{aligned}$			$\begin{aligned} & 400 \\ & 400 \\ & 400 \\ & 400 \end{aligned}$				-		$\begin{aligned} & 6.5 / 7.5 \\ & 6.5 / 7.5 \\ & 6.5 / 7.5 \\ & 6.5 / 7.5 \end{aligned}$	
$\begin{array}{\|l} \text { IN3784 } \\ \text { 1N3785 } \\ \text { 1N3785A } \\ \text { IN3785B } \end{array}$	$\begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}$	$\begin{aligned} & R D \\ & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \end{aligned}$		$\begin{aligned} & \text { IN4736 } \\ & \text { IN4736 } \\ & \text { 1N4736A } \end{aligned}$	$\begin{array}{r} 400 \\ 1.5 \mathrm{~W} \\ 1.5 \mathrm{~W} \\ 1.5 \mathrm{~W} \end{array}$						$\begin{aligned} & 6.5 / 7.5 \\ & 6.8 / 55 \\ & 6.8 / 55 \\ & 6.8 / 55 \end{aligned}$	20 10 5
$\begin{aligned} & \text { 1N3786 } \\ & \text { 1N3786A } \\ & \text { 1N3786B } \\ & \text { 1N3787 } \end{aligned}$	$\left\lvert\, \begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}\right.$	$\left\|\begin{array}{l} \mathrm{ZD} \\ \mathrm{ZD} \\ \mathrm{ZD} \\ \mathrm{ZD} \end{array}\right\|$		$\begin{array}{\|l} \text { 1N4737 } \\ \text { 1N4737 } \\ \text { 1N4737A } \\ \text { 1N4738 } \end{array}$	1.5W 1.5W 1.5W 1.5W						$\begin{aligned} & 7.5 / 50 \\ & 7.5 / 50 \\ & 7.5 / 50 \\ & 8.2 / 46 \end{aligned}$	$\begin{array}{r} 20 \\ 10 \\ 5 \\ 20 \end{array}$
1N3787A 1N3787B 1N3788 1N3788A	$\begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}$	$\begin{aligned} & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \end{aligned}$		IN4738 1N4738A 1N4739 1N4739	$\begin{aligned} & 1.5 \mathrm{~W} \\ & 1.5 \mathrm{~W} \\ & 1.5 \mathrm{~W} \\ & 1.5 \mathrm{~W} \end{aligned}$						8.2/46 8.2/46 $9.1 / 41$ $9.1 / 41$	$\begin{array}{r} 10 \\ 5 \\ 20 \\ 10 \end{array}$
1N3788B 1N3789 1N3789A 1N3789B	$\left\lvert\, \begin{aligned} & 5 \\ & 5 \\ & 5 \\ & s \end{aligned}\right.$	$\left\|\begin{array}{l} \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \end{array}\right\|$		1N4739A 1N4740 1N4740 1N4740A	$\begin{aligned} & 1.5 \mathrm{~W} \\ & 1.5 \mathrm{~W} \\ & 1.5 \mathrm{~W} \\ & 1.5 \mathrm{~W} \end{aligned}$						$\begin{aligned} & 9.1 / 41 \\ & 10 / 37 \\ & 10 / 37 \\ & 10 / 37 \end{aligned}$	5 20 10 5
1N3790 1N3790A iN37908 1N3791	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\begin{aligned} & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \end{aligned}$		IN4741 IN4741 1N4741A iN4742	$\begin{aligned} & 1.5 \mathrm{~W} \\ & 1.5 \mathrm{~W} \\ & 1.5 \mathrm{~W} \\ & 1.5 \mathrm{~W} \end{aligned}$						$\begin{aligned} & 11 / 34 \\ & 11 / 34 \\ & 11 / 34 \\ & 12 / 31 \end{aligned}$	$\begin{array}{r} 20 \\ 10 \\ 5 \\ 20 \end{array}$

TYFE NOMOR		$\begin{aligned} & 8 \\ & 0 \\ & 3 \\ & 3 \\ & 3 \\ & 8 \end{aligned}$	TI		Ratives			CHARACTERISTICS				
					$\begin{gathered} \mathbf{P} \\ (\mathrm{mW}) \end{gathered}$	$V_{\text {R }}$ (v)	(A)	$\begin{array}{ll} L_{R} & \bullet V_{R} \\ \mu \mathrm{~A} & /(\mathrm{V}) \end{array}$	$\begin{array}{ccc} \mathbf{V}_{F} & -F^{\prime} \\ (\mathrm{V}) & /(\mathrm{mal}) \end{array}$	$\begin{aligned} & \text { irr } \\ & \text { (ns) } \end{aligned}$	$\begin{array}{ll} \mathbf{V}_{\mathbf{z}} & \mathbf{L z} \\ (\mathrm{V}) & / \mathrm{mA}) \end{array}$	$\begin{gathered} \text { TOL } \\ \text { \% } \end{gathered}$
1N3791A 1N37918 1N3792 IN3792A	$\text { } \begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}$	$\left\|\begin{array}{l} z 0 \\ z 0 \\ z 0 \\ z 0 \end{array}\right\|$		1N4742 1N4742A 1N4743 1N4743	$\begin{aligned} & 1.5 \mathrm{~W} \\ & 1.5 \mathrm{~W} \\ & 1.5 \mathrm{~W} \\ & 1.5 \mathrm{~W} \end{aligned}$						$\begin{aligned} & 12 / 31 \\ & 12 / 31 \\ & 13 / 29 \\ & 13 / 29 \end{aligned}$	$\begin{array}{r} 10 \\ 5 \\ 20 \\ 10 \end{array}$
$\begin{aligned} & \text { IN3792B } \\ & \text { IN3793 } \\ & \text { IN3793A } \\ & \text { IN3793A } \end{aligned}$	$\begin{aligned} & \mathbf{s} \\ & \mathbf{5} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}$	$\begin{aligned} & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \end{aligned}$		$\begin{aligned} & \text { 1N4743A } \\ & \text { 1N4744 } \\ & \text { 1NA74A } \\ & \text { 1N474AA } \end{aligned}$	$\begin{aligned} & 1.5 \mathrm{~W} \\ & 1.5 \mathrm{~W} \\ & 1.5 \mathrm{~W} \\ & 1.5 \mathrm{~W} \end{aligned}$						$\begin{aligned} & 13 / 29 \\ & 15 / 25 \\ & 15 / 25 \\ & 15 / 25 \end{aligned}$	$\begin{array}{r} 5 \\ 20 \\ 10 \\ 5 \end{array}$
$\begin{aligned} & \text { 1N3794 } \\ & \text { 1N3794A } \\ & \text { 1N37948 } \\ & \text { 1N3795 } \end{aligned}$	$\begin{aligned} & \mathrm{s} \\ & \mathrm{~s} \\ & \mathrm{~s} \\ & \mathrm{~s} \end{aligned}$	$\begin{aligned} & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \end{aligned}$		$\begin{aligned} & \text { IN4745 } \\ & \text { INA745 } \\ & \text { IN4745A } \\ & \text { INA7AS } \end{aligned}$	$\begin{aligned} & 1.5 \mathrm{~W} \\ & 1.5 \mathrm{~W} \\ & 1.5 \mathrm{~W} \\ & 1.5 \mathrm{~W} \end{aligned}$						$\begin{aligned} & 16 / 23 \\ & 16 / 23 \\ & 16 / 23 \\ & 18 / 21 \end{aligned}$	$\begin{array}{r} 20 \\ 10 \\ 5 \\ 20 \end{array}$
1N3795A iN37958 1N3796 1N37964	$\begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}$	$\left.\begin{aligned} & \mathbf{z 0} \\ & \mathbf{z 0} \\ & \mathbf{z 0} \\ & \mathbf{z 0} \end{aligned} \right\rvert\,$		1N4746 IN4746A 1N4747 1N4747	$\begin{aligned} & 1.5 \mathrm{~W} \\ & 1.5 \mathrm{~W} \\ & 1.5 \mathrm{~W} \\ & 1.5 \mathrm{~W} \end{aligned}$						$\begin{aligned} & 18 / 21 \\ & 18 / 21 \\ & 20 / 19 \\ & 20 / 19 \end{aligned}$	$\begin{array}{r} 10 \\ 5 \\ 20 \\ 10 \end{array}$
$\begin{aligned} & \text { IN37968 } \\ & \text { IN3797 } \\ & \text { 1N3797A } \\ & \text { IN3797 } \end{aligned}$	$\left\lvert\, \begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}\right.$	$\begin{aligned} & 20 \\ & 20 \\ & 20 \\ & 20 \end{aligned}$		1N4747A iN4748 INM748 INAT48A	$\begin{aligned} & 1.5 \mathrm{~W} \\ & 1.5 \mathrm{w} \\ & 1.5 \mathrm{~W} \\ & 1.5 \mathrm{w} \end{aligned}$						$\begin{aligned} & 20 / 19 \\ & 22 / 17 \\ & 22 / 17 \\ & 22 / 17 \end{aligned}$	$\begin{array}{r} 5 \\ 20 \\ 10 \\ 5 \end{array}$
$\begin{aligned} & \text { 1N3798 } \\ & \text { 1N3798A } \\ & \text { 1N37988 } \\ & \text { 1N3799 } \end{aligned}$	$\left\lvert\, \begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}\right.$	$\begin{aligned} & z 0 \\ & z 0 \\ & z 0 \\ & z 0 \end{aligned}$		1N4749 IN4749 INA749A 1N4750	$\begin{aligned} & 1.5 \mathrm{~W} \\ & 1.5 \mathrm{w} \\ & 1.5 \mathrm{w} \\ & 1.5 \mathrm{w} \end{aligned}$						$\begin{aligned} & 24 / 16 \\ & 24 / 16 \\ & 24 / 16 \\ & 27 / 14 \end{aligned}$	20 10 5 20
1N3799A 1N37998 1N3800 iN3se0n		$\left\lvert\, \begin{aligned} & z 0 \\ & z 0 \\ & z 0 \\ & z 0 \end{aligned}\right.$		1N4750 1N4750A 1N4751 1N4751	$\begin{aligned} & 1.5 \mathrm{~W} \\ & 1.5 \mathrm{~W} \\ & 1.5 \mathrm{~W} \\ & 1.5 \mathrm{~W} \end{aligned}$						$\begin{aligned} & 27 / 14 \\ & 27 / 14 \\ & 30 / 12 \\ & 30 / 12 \end{aligned}$	10 5 20 10
$\begin{aligned} & \text { IN38000 } \\ & \text { IN3s01 } \\ & \text { IN3801A } \\ & \text { IN38018 } \end{aligned}$	$\left\lvert\, \begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}\right.$	$\left\|\begin{array}{l} z 0 \\ z 0 \\ z 0 \\ z 0 \end{array}\right\|$		1N4751A 1N4752 1N4752 IN4752A	$\begin{aligned} & 1.5 \mathrm{~W} \\ & 1.5 \mathrm{~W} \\ & 1.5 \mathrm{~W} \\ & 1.5 \mathrm{~W} \end{aligned}$						$\begin{aligned} & 30 / 12 \\ & 33 / 11 \\ & 33 / 11 \\ & 33 / 11 \end{aligned}$	5 20 10 5
1N3t02 1N3802A 1N3602: 1N3603	S S S S	$\begin{aligned} & z 0 \\ & z 0 \\ & z 0 \\ & z 0 \end{aligned}$.	$\begin{aligned} & 1.5 \mathrm{~W} \\ & 1.5 \mathrm{~W} \\ & 1.5 \mathrm{~W} \\ & 1.5 \mathrm{~W} \end{aligned}$						$\begin{aligned} & 36 / 10 \\ & 36 / 10 \\ & 36 / 10 \\ & 39 / 10 \end{aligned}$	20 10 5 20
$\begin{aligned} & \text { 1N3803A } \\ & \text { 1N38038 } \\ & \text { 1N3804 } \\ & \text { IN3804A } \end{aligned}$	$\begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \\ & 20 \\ & 20 \end{aligned}$			$\begin{aligned} & 1.5 \mathrm{~W} \\ & 1.5 \mathrm{~W} \\ & 1.5 \mathrm{w} \\ & 1.5 \mathrm{~W} \end{aligned}$						$\begin{aligned} & 39 / 10 \\ & 39 / 10 \\ & 43 / 9 \\ & 43 / 9 \end{aligned}$	$\begin{array}{r} 10 \\ 5 \\ 20 \\ 10 \end{array}$

DIODE INTERCHANGEABILITY

$\begin{gathered} \text { TYPE } \\ \text { number } \end{gathered}$		$\begin{array}{\|c} \hline \frac{7}{5} \\ \frac{5}{4} \\ \frac{2}{4} \\ 0 \\ 0 \end{array}$	$\left\|\begin{array}{c} \text { n } \\ \text { REPLACEMENT } \end{array}\right\|$	$\begin{gathered} \text { FOR } \\ \text { NEWW } \\ \text { DESHCN } \end{gathered}$	$\begin{gathered} \text { PD } \\ (\mathrm{mw}) \end{gathered}$	$\begin{gathered} \mathbf{V}_{\mathbf{R}} \\ \text { (V) } \end{gathered}$	(A)	$\begin{array}{ll} I_{R} & V_{R} \\ \mu A & (V) \end{array}$	$\begin{array}{cc} \mathbf{v}_{\mathbf{F}} & \mathbf{l}_{\mathbf{F}} \\ \text { (V) } & 1 \text { (mA) } \end{array}$	ERISTIC In (ms)	$\begin{array}{ccc} \mathbf{v}_{\mathbf{z}} & \cdot & \mathbf{z} \\ (\mathrm{V}) & /(\mathrm{mA}) \end{array}$	$\begin{gathered} \mathrm{TOL} \\ \% \end{gathered}$
$\begin{aligned} & \text { IN380AB } \\ & \text { 1N3805 } \\ & \text { 1N3805A } \\ & \text { 1N3805B } \end{aligned}$	$\left\lvert\, \begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}\right.$	$\left\|\begin{array}{l} \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \end{array}\right\|$			$\begin{aligned} & 1.5 \mathrm{~W} \\ & 1.5 \mathrm{~W} \\ & 1.5 \mathrm{~W} \\ & 1.5 \mathrm{~W} \end{aligned}$						$\begin{aligned} & 43 / 9 \\ & 47 / 8 \\ & 47 / 8 \\ & 47 / 8 \end{aligned}$	5 20 10 5
1N3806 1N3806A iN38068 1N3807	$\begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}$	$\left\|\begin{array}{l} \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \end{array}\right\|$			$\begin{aligned} & 1.5 \mathrm{~W} \\ & 1.5 \mathrm{~W} \\ & 1.5 \mathrm{~W} \\ & 1.5 \mathrm{~W} \end{aligned}$						$\begin{aligned} & 51 / 7.4 \\ & 51 / 7.4 \\ & 51 / 7.4 \\ & 56 / 6.7 \end{aligned}$	20 10 5 20
in3807A iN3807B IN3808 iN3808A	$\begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}$	$\left\|\begin{array}{l} \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \end{array}\right\|$			$\begin{aligned} & 1.5 \mathrm{~W} \\ & 1.5 \mathrm{~W} \\ & 1.5 \mathrm{~W} \\ & 1.5 \mathrm{~W} \end{aligned}$						$\begin{aligned} & 56 / 6.7 \\ & 56 / 6.7 \\ & 6226 \\ & 62 / 6 \end{aligned}$	10 5 20 10
1N3808B 1N3809 IN3809A 1N38098	$\begin{array}{\|l} \mathrm{s} \\ \mathrm{~s} \\ \mathrm{~s} \\ \mathrm{~s} \end{array}$	$\left\|\begin{array}{l} \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \end{array}\right\|$			$\begin{aligned} & 1.5 \mathrm{~W} \\ & 1.5 \mathrm{~W} \\ & 1.5 \mathrm{~W} \\ & 1.5 \mathrm{~W} \end{aligned}$						62/6 68/5.5 68/5.5 68/5.5	5 20 10 5
1N3810 1N3810A in38108 1N3811	$\begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}$	$\left\|\begin{array}{l} \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \end{array}\right\|$			$\begin{aligned} & 1.5 \mathrm{~W} \\ & 1.5 \mathrm{~W} \\ & 1.5 \mathrm{~W} \\ & 1.5 \mathrm{~W} \end{aligned}$						75/5 75/5 75/5 82/4.5	20 10 5 20
1N3811A 1N38118 iN3812 1N3812A		$\left\|\begin{array}{l} \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \end{array}\right\|$			$\begin{aligned} & 1.5 \mathrm{~W} \\ & 1.5 \mathrm{~W} \\ & 1.5 \mathrm{~W} \\ & 1.5 \mathrm{~W} \end{aligned}$						82/4.5 82/4.5 91/4.1 91/4.1	10 5 20 10
1N38128 1N3813 1N3813A 1N38138	$\begin{aligned} & \mathrm{s} \\ & \mathrm{~s} \\ & \mathrm{~s} \\ & \mathrm{~s} \end{aligned}$	$\left\|\begin{array}{l} \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \end{array}\right\|$			$\begin{aligned} & 1.5 \mathrm{~W} \\ & 1.5 \mathrm{~W} \\ & 1.5 \mathrm{~W} \\ & 1.5 \mathrm{~W} \end{aligned}$						$\begin{array}{r} 91 / 4.1 \\ 100 / 3.7 \\ 100 / 3.7 \\ 100 / 3.7 \end{array}$	5 20 10 5
1N3814 1N3814A 1N3814B 1N3815	s	$\left\|\begin{array}{l} \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \end{array}\right\|$			$\begin{aligned} & 1.5 \mathrm{~W} \\ & 1.5 \mathrm{~W} \\ & 1.5 \mathrm{~W} \\ & 1.5 \mathrm{~W} \end{aligned}$						$\begin{aligned} & 110 / 3.4 \\ & 110 / 3.4 \\ & 110 / 3.4 \\ & 120 / 3.1 \end{aligned}$	20 10 5 20
	$\begin{aligned} & s \\ & s \\ & s \\ & s \\ & s \end{aligned}$	$\left.\begin{aligned} & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \end{aligned} \right\rvert\,$			$\begin{aligned} & 1.5 \mathrm{w} \\ & 1.5 \mathrm{w} \\ & 1.5 \mathrm{w} \\ & 1.5 \mathrm{w} \end{aligned}$						$\begin{aligned} & 120 / 3.1 \\ & 120 / 3.1 \\ & 130 / 2.9 \\ & 130 / 2.9 \end{aligned}$	10 5 20 10
1N3816B 1N3817 1N3817A IN3817:	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\left\|\begin{array}{l} \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \end{array}\right\|$			$\begin{aligned} & 1.5 \mathrm{~W} \\ & 1.5 \mathrm{~W} \\ & 1.5 \mathrm{~W} \\ & 1.5 \mathrm{~W} \end{aligned}$						$\begin{aligned} & 130 / 2.9 \\ & 150 / 2.5 \\ & 150 / 2.5 \\ & 150 / 2.5 \end{aligned}$	$\begin{array}{r} 5 \\ 20 \\ 10 \\ 5 \end{array}$

DIODE INTERCHANGEABILITY

TYPEnumaen		$\underline{8}$	$\underset{\text { RELACEMENT }}{\text { II }}$	$\begin{gathered} \text { FOR } \\ \text { NEW } \\ \text { DESICN } \end{gathered}$	Ratings			Characteristics				
					$\begin{gathered} P_{D} \\ (m W) \end{gathered}$	$\begin{aligned} & \mathbf{v}_{\mathbf{R}} \\ & (\mathbf{v}) \end{aligned}$	(A)	$\begin{array}{ll} l_{R} & V_{R} \\ \mu_{\mathrm{A}} & /(\mathrm{V}) \end{array}$	$\begin{array}{cc} \mathbf{v}_{F} & e \mathrm{q} \\ (\mathrm{v}) & /(\mathrm{mA}) \end{array}$	${ }^{\prime}$ (ms)	$\mathbf{v}_{\mathbf{z}}$ - \mathbf{z} (V) $/$ (mA)	$\begin{gathered} \text { rou } \\ \% \end{gathered}$
1N3818 IN3818A 1N3818B 1N3819	$\left\lvert\, \begin{aligned} & \mathrm{s} \\ & \mathrm{~s} \\ & \mathrm{~s} \\ & \mathrm{~s} \end{aligned}\right.$	zD zD zD zD			$\begin{aligned} & 1.5 \mathrm{~W} \\ & 1.5 \mathrm{~W} \\ & 1.5 \mathrm{~W} \\ & 1.5 \mathrm{~W} \end{aligned}$						$\begin{aligned} & 160 / 2.3 \\ & 160 / 2.3 \\ & 160 / 2.3 \\ & 180 / 2.1 \end{aligned}$	20 10 5 20
iN3819A in3819B 1N3820 in3820A	$\left\lvert\, \begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}\right.$	$\left\|\begin{array}{l} \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \end{array}\right\|$			1.5W 1.5W 1.5W 1.5 W						$\begin{aligned} & 180 / 2.1 \\ & 180 / 2.1 \\ & 200 / 1.9 \\ & 200 / 1.9 \end{aligned}$	10 5 20 10
1N3820e 1N3821 in3821A 1N3822	$\begin{aligned} & \mathrm{s} \\ & \mathrm{~s} \\ & \mathrm{~s} \\ & \mathrm{~s} \end{aligned}$	$\left\|\begin{array}{l} \mathrm{ZD} \\ \mathrm{ZD} \\ \mathrm{ZD} \\ \mathrm{ZD} \end{array}\right\|$		1N4728 1N4728A 1N4729	$\begin{aligned} & 1.5 \mathrm{w} \\ & 1 \mathrm{w} \\ & 1 \mathrm{w} \\ & 1 \mathrm{w} \end{aligned}$						$\begin{array}{r} 200 / 1.9 \\ 3.3 / 76 \\ 3.3 / 76 \\ 3.6 / 69 \end{array}$	5 10 5 10
1N3822A 1N3823 1N3823A iN3824	$\begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}$	$\left\|\begin{array}{l} \mathrm{ZD} \\ \mathrm{ZD} \\ \mathrm{ZD} \\ \mathrm{ZD} \end{array}\right\|$		1N4729A 1 N4730 1N4730A iN4731	iw iw 1w iw						$\begin{aligned} & 3.6 / 69 \\ & 3.9 / 64 \\ & 3.9 / 64 \\ & 4.3 / 58 \end{aligned}$	5 10 5 10
	$\left\lvert\, \begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}\right.$	$\left\|\begin{array}{l} \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \end{array}\right\|$			$\begin{aligned} & 1 W \\ & 1 w \\ & 1 w \\ & 1 w \end{aligned}$						$\begin{aligned} & 4.3 / 58 \\ & 4.7 / 53 \\ & 4.7 / 53 \\ & 5.1 / 49 \end{aligned}$	5 10 5 10
	$\begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}$	$\left\|\begin{array}{l} \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \end{array}\right\|$		INA733A iN4734 iNAT34A IN4735	iw 1w 1w IW						$\begin{aligned} & 5.1 / 49 \\ & 5.6 / 45 \\ & 5.6 / 45 \\ & 6.2 / 41 \end{aligned}$	5 10 5 10
	$\begin{aligned} & \mathrm{s} \\ & \mathrm{~s} \\ & \mathrm{~s} \\ & \mathrm{~s} \end{aligned}$	$\left\|\begin{array}{l} \mathrm{ZD} \\ \mathrm{ZD} \\ \mathrm{ZD} \\ \mathrm{ZD} \end{array}\right\|$			$\begin{aligned} & \text { iw } \\ & \text { iw } \\ & \text { iw } \end{aligned}$						$\begin{aligned} & 6.2 / 41 \\ & 6.8 / 37 \\ & 6.8 / 37 \\ & 7.5 / 34 \end{aligned}$	5 10 5 10
IN3830A IN3864 iN3865 iN3866	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\left\|\begin{array}{l} \mathrm{ZD} \\ \mathrm{SD} \\ \mathrm{SD} \\ \mathrm{RE} \end{array}\right\|$		$\begin{aligned} & \text { 1N4737A } \\ & \text { 1N458 } \\ & \text { iN4148 } \\ & \text { IN4003 } \end{aligned}$	Iw	$\begin{array}{r} 125 \\ 80 \\ 200 \end{array}$	1	$\begin{aligned} & 1 N / 125 \\ & 15 / 50 \\ & .01 / 200 \end{aligned}$	$\begin{aligned} & 1.5 / 200 \\ & 1 / 100 \\ & 1.1 / 1 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 900 \\ & 500 \end{aligned}$	7.5/34	5
$\begin{array}{\|l\|l\|} \text { IN } 3867 \\ \text { 1N3868 } \\ \text { 1N3869 } \\ \text { IN3870 } \end{array}$	$\left\lvert\, \begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}\right.$	$\begin{aligned} & \mathrm{RE} \\ & \mathbf{R E} \\ & \mathbf{R E} \\ & \mathbf{R E} \\ & \mathbf{R E} \end{aligned}$		$\begin{aligned} & \text { 1N4004 } \\ & \text { iN4005 } \\ & \text { IN4007 } \end{aligned}$		$\begin{array}{r} 400 \\ 600 \\ 1 K \\ 1.5 K \end{array}$	$\begin{aligned} & 1 \\ & 1 \\ & .5 \\ & .5 \end{aligned}$.01/400 .01/600 10/1K 10/1.5K	1.1/1A 1.1/1A 3/500 3/500			
$\begin{aligned} & \text { 1N3871 } \\ & \text { 1N3887 } \\ & \text { 1N3873 } \\ & \text { 1N3894 } \end{aligned}$	$\left\lvert\, \begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}\right.$	$\begin{aligned} & \text { RE } \\ & \text { SD } \\ & \text { SD } \\ & \text { SD } \end{aligned}$		$\left\lvert\, \begin{aligned} & \text { TID33 } \\ & \text { TiD33 } \\ & \text { in647 } \end{aligned}\right.$		$\begin{array}{r} 2.5 \mathrm{~K} \\ 90 \\ 50 \\ 400 \end{array}$. 25	$\begin{aligned} & 10 / 2.5 K \\ & .1 / 75 \\ & .1 / 50 \\ & .2 / 400 \end{aligned}$	$\begin{array}{r} 6 / 250 \\ 1 / 150 \\ .95 / 150 \\ 1 / 400 \end{array}$	15 4		

DIODE INTERCHANGEABILITY

TYPE number	E		$\begin{gathered} \text { n } \\ \text { RERLACEMENT } \end{gathered}$	$\begin{gathered} \text { FOR } \\ \text { NEW } \\ \text { DESICN } \end{gathered}$	PD (mW)	atincs $\mathbf{V}_{\mathbf{R}}$ (V)	(A)	$\begin{array}{cc} \mathbf{L}_{\mathbf{R}} & \mathbf{V}_{\mathbf{R}} \\ \mu_{\mathrm{A}} & /(\mathbf{V}) \end{array}$	$\begin{array}{cc} \mathbf{v}_{\mathbf{F}} & \mathbf{l}_{\mathbf{F}} \\ \text { (V) } & 1 \text { (ma) } \end{array}$		$\begin{array}{ccc} \mathbf{v}_{\mathbf{z}} & \mathbf{z} \\ (\mathrm{V}) & /(\mathrm{mA}) \end{array}$	TOA *
$\begin{array}{\|l\|} \hline \text { 1N3895 } \\ \text { 1N3896 } \\ \text { 1N3697 } \\ \text { 1N3898 } \end{array}$	$\begin{array}{\|l} \mathbf{s} \\ \mathbf{s} \\ \mathbf{s} \\ \mathbf{s} \end{array}$	$\left.\begin{aligned} & \mathrm{sD} \\ & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \end{aligned} \right\rvert\,$		1N647	$\begin{aligned} & 250 \\ & 250 \\ & 250 \end{aligned}$	350		.5/350	1/200		$\begin{array}{r} .77 / 50 \\ 1.5 / 30 \\ 2 / 20 \end{array}$	5 5 5
$\begin{array}{\|l\|} \text { 1N3929 } \\ \text { 1N3930 } \\ \text { 1N3931 } \\ \text { 1N3932 } \\ \hline \end{array}$	$\begin{aligned} & \mathrm{s} \\ & \mathrm{~s} \\ & \mathrm{~s} \\ & \mathrm{~s} \end{aligned}$	$\left.\begin{array}{\|l\|l\|} \text { SD } \\ \text { SD } \\ \text { SD } \\ \text { SD } \end{array} \right\rvert\,$				1 K 1.5 K 2K 1.5 K		$\begin{aligned} & 10 / \\ & 10 / \\ & 101 \\ & 10 \prime \end{aligned}$	$\begin{aligned} & 2 / 1 A \\ & 2 / 1 A \\ & 2 / 1 A \\ & 2 / 1 A \end{aligned}$			
$\begin{aligned} & \text { 1N3933 } \\ & \text { 1N3934 } \\ & \text { 1N3938 } \\ & \text { 1N3939 } \end{aligned}$	$\begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}$	$\begin{array}{\|l\|} \mathbf{S D} \\ \mathbf{R E} \\ \mathbf{R E} \\ \mathbf{R E} \\ \mathbf{R E} \end{array}$				$3 K$ $1.2 K$ 200 400	1 2 2	$\begin{array}{r} 10 / \\ 400 / \\ 400 / \\ 200 / \end{array}$	$\begin{aligned} & 2 / 11 \mathrm{~A} \\ & 2.5 / \\ & 1.1 / \\ & 1.1 / \end{aligned}$			
$\begin{aligned} & \text { 1N3940 } \\ & \text { 1N3941 } \\ & \text { 1N3942 } \\ & \text { 1N3943 } \end{aligned}$	$\begin{aligned} & \mathrm{s} \\ & \mathrm{~s} \\ & \mathrm{~s} \\ & \mathrm{~s} \end{aligned}$	$\begin{array}{\|l\|} \mathbf{R E} \\ \mathbf{R E} \\ \mathbf{R E} \\ \mathrm{SD} \end{array}$		IN4001		$\begin{array}{r} 600 \\ 800 \\ 1 K \\ 3 \end{array}$	$\begin{array}{r} 2 \\ 2 \\ 2 \\ .75 \end{array}$	$\begin{aligned} & 200 / \\ & 200 / \\ & 200 / \\ & 10 / 1 \end{aligned}$	$\begin{aligned} & 1.1 / \\ & 1.5 / \\ & 1.5 / \\ & 3.5 / 300 \end{aligned}$			
$\begin{aligned} & \text { 1N3944 } \\ & \text { 1N3950 } \\ & \text { 1N3951 } \\ & \text { 1N3952 } \end{aligned}$	$\begin{aligned} & \mathbf{G} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}$	$\left\|\begin{array}{l} \mathrm{SD} \\ \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{sD} \end{array}\right\|$		IN4305 iN4938	$\begin{aligned} & 1.5 \mathrm{~W} \\ & 1.5 \mathrm{~W} \end{aligned}$	15 150		2.5/1.5 25N/130	.75/10 .74/10	12	$\begin{aligned} & 20 / 19 \\ & 25 / 15 \end{aligned}$	5
$\begin{aligned} & \text { 1N3953 } \\ & \text { 1N3954 } \\ & \text { 1N3956 } \\ & \text { 1N3957 } \end{aligned}$	$\begin{aligned} & \mathbf{G} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}$	$\begin{array}{\|l\|} \hline \text { SD } \\ \text { SD } \\ \text { SD } \\ \text { SD } \end{array}$		1N4148 1N4150 1N4305		40 50 40 1 K	4	$\begin{aligned} & 50 / 40 \\ & .1 / 50 \\ & .05 / 40 \\ & 10 / \end{aligned}$	$\begin{gathered} .5 / 35 \\ 1 / 200 \\ .55 .1 \\ 1 / \end{gathered}$	300 4 2		
IN3958 IN3958C IN3959 1N3959C	$\begin{aligned} & \mathrm{s} \\ & \mathrm{~s} \\ & \mathrm{~s} \\ & \mathrm{~s} \end{aligned}$	$\begin{aligned} & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathbf{R E} \end{aligned}$				$\begin{aligned} & 100 \\ & 100 \\ & 200 \\ & 200 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 3.5 \\ & 3.5 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 400 / \\ & 400 / \\ & 400 / \\ & 400 / \end{aligned}$	$\begin{aligned} & 1.3 / \\ & 1.3 / \\ & 1.3 / \\ & 1.3 / \end{aligned}$	30 10 30 10		
1N3960 1N3960C 1N3961 IN3961C	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\begin{aligned} & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \end{aligned}$				$\begin{aligned} & 300 \\ & 300 \\ & 400 \\ & 400 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 3.5 \\ & 3.5 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 400 / \\ & 400 / \\ & 400 / \\ & 400 \% \end{aligned}$	$\begin{aligned} & 1.3 / \\ & 1.3 / \\ & 1.3 \prime \\ & 1.3 / \end{aligned}$	30 10 30 10		
1N3962 1N3962C 1N3963 IN3963C	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\begin{aligned} & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \end{aligned}$				$\begin{aligned} & 500 \\ & 500 \\ & 600 \\ & 600 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 3.5 \\ & 3.5 \\ & 3.5 \end{aligned}$	4001 400/ 400/ 400/	$\begin{aligned} & 1.3 / \\ & 1.3 / \\ & 1.3 / \\ & 1.3 / \end{aligned}$	30 10 30 10		
IN3981 IN3982 1N3983 1N3987	$\begin{aligned} & s \\ & s \\ & s \\ & s \\ & s \end{aligned}$	$\begin{aligned} & S D \\ & S D \\ & S D \\ & S D \\ & R E \end{aligned}$				$\begin{aligned} & 200 \\ & 400 \\ & 000 \\ & 700 \end{aligned}$	$\begin{aligned} & 4 \\ & 4 \\ & 4 \\ & 6 \end{aligned}$	$\begin{aligned} & 10 / 200 \\ & 10 / 400 \\ & 10 / 800 \\ & 900 / \end{aligned}$	$\begin{aligned} & 1 / 900 \\ & 1 / 900 \\ & 1 / 900 \\ & 1.41 \end{aligned}$			

DIODE INTERCHANGEABILITY

TYPE MUMBER			II	$\begin{aligned} & \text { FOR } \\ & \text { NEW } \\ & \text { DESTON } \end{aligned}$	RATINOS			CHARACTERISTICS				
					$\begin{gathered} \mathrm{PD}_{\mathrm{D}} \\ (\mathrm{~mW}) \end{gathered}$	$\mathbf{V}_{\mathbf{R}}$ (V)	I (A)	$\begin{array}{ll} \mathbf{L}_{\mathbf{R}} & \mathbf{V}_{\mathbf{R}} \\ \mu_{\mathbf{A}} & / \mathbf{V}) \end{array}$	$\begin{aligned} & \mathbf{V}_{F} \quad \mathbf{I}_{\mathbf{F}} \\ & \text { (V) } \quad /(\mathrm{mA}) \end{aligned}$	$\begin{aligned} & i \pi \\ & (n s) \end{aligned}$	$\begin{array}{lll} V_{z} & 1 z \\ (V) & /(\mathrm{mA}) \end{array}$	TOL \%
1N3988 1N3989 1N3990 IN3991	$\begin{aligned} & \text { S } \\ & 5 \\ & s \\ & G \end{aligned}$	$\begin{aligned} & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{SD} \end{aligned}$		1N4305		800 900 $1 K$ 35	6 6 6	$\begin{aligned} & 800 / \\ & 700 \% \\ & 600 / \\ & 1 \mathrm{M} / 10 \end{aligned}$	1.4/ $1.4 /$ $1.4 /$.55/30			
IN3992 1N4001 1N4002 IN4003	$\begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & \mathrm{SD} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \end{aligned}$				$4 K$ 50 100 200	1 1 1	$\begin{aligned} & 5 / 4 K \\ & 10 / 50 \\ & 10 / 100 \\ & 10 / 200 \end{aligned}$	$\begin{aligned} & 5 / 250 \\ & 1.1 / 1 \\ & 1.1 / 1 \\ & 1.1 / 1 \end{aligned}$			
IN4004 IN4005 IN4006 1N4007	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\begin{array}{\|c\|c\|c} \hline \mathbf{R E} \\ \hline \mathbf{R E} \\ \mathbf{R E} \\ \mathbf{R E} \\ \mathbf{R E} \end{array}$	IN4004 1N4005 1N4006 IN4007			400 600 800 $1 K$	1 1 1	$\begin{aligned} & 10 / 400 \\ & 10 / 600 \\ & 10 / 800 \\ & 10 / 1 K \end{aligned}$	$\begin{aligned} & 1.1 / 1 \\ & 1.1 / 1 \\ & 1.1 / 1 \\ & 1.1 / 1 \end{aligned}$			
IN4008 iN4009 1 N4010 IN4011	$\begin{aligned} & G \\ & S \\ & S \\ & S \end{aligned}$	$\begin{aligned} & \text { SD } \\ & \text { SD } \\ & R D \\ & R E \end{aligned}$		1N4305 1N4154 1N4007	400	$\begin{aligned} & 12 \\ & 25 \\ & \text { 1K } \end{aligned}$. 5	$\begin{aligned} & 100 / 10 \\ & 100 / 25 \\ & \\ & 200 / 1 K \end{aligned}$	$\begin{gathered} .5 / 10 \\ 1 / 30 \\ \\ 1.1 / 500 \end{gathered}$	70	6.2/7.5	5
1N4043 1N4057 1N4057A 1N4058	$\left\lvert\, \begin{aligned} & \mathbf{S} \\ & \mathrm{S} \\ & \mathrm{~S} \\ & \mathrm{~S} \end{aligned}\right.$	$\begin{aligned} & R D \\ & R D \\ & R D \\ & R D \end{aligned}$		1N4154	1.5W 1.5W 1.5 W	25		.1/25	1/30	2	12.4/10 12.4/10 $14.6 / 10$	
1N4058A 1N4059 1N4059A 1N4060	$\begin{aligned} & \mathbf{s} \\ & 5 \\ & 5 \\ & \mathbf{S} \end{aligned}$	$\begin{aligned} & R D \\ & R D \\ & R D \\ & R D \end{aligned}$			$\begin{aligned} & 1.5 \mathrm{~W} \\ & 1.5 \mathrm{~W} \\ & 1.5 \mathrm{~W} \\ & 1.5 \mathrm{~W} \end{aligned}$						$\begin{aligned} & 14.6 / 10 \\ & 16.8 / 10 \\ & 16.8 / 10 \\ & 18.5 / 10 \end{aligned}$	
1N4060A 1N4061 IN4061A 1N4062	$\begin{aligned} & \mathbf{s} \\ & s \\ & s \\ & s \end{aligned}$	$\begin{aligned} & R D \\ & R D \\ & R D \\ & R D \end{aligned}$			$\begin{aligned} & 1.5 \mathrm{~W} \\ & 1.5 \mathrm{~W} \\ & 1.5 \mathrm{~W} \\ & 1.5 \mathrm{~W} \end{aligned}$						$\begin{array}{r} 18.5 / 10 \\ 21 / 10 \\ 21 / 10 \\ 23 / 10 \end{array}$	
1N4062A 1N4063 1N4063A 1N4064	$\left\lvert\, \begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}\right.$	$\begin{aligned} & \mathrm{RD} \\ & R D \\ & R D \\ & R D \end{aligned}$			$\begin{aligned} & 1.5 \mathrm{~W} \\ & 1.5 \mathrm{~W} \\ & 1.5 \mathrm{~W} \\ & 1.5 \mathrm{~W} \end{aligned}$						$\begin{aligned} & 23 / 10 \\ & 27 / 10 \\ & 27 / 10 \\ & 30 / 10 \end{aligned}$	
1N4064A 1N4065 1N4065A IN4066	$\begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}$	$\begin{aligned} & R D \\ & R D \\ & R D \\ & R D \end{aligned}$			$\begin{aligned} & 1.5 \mathrm{~W} \\ & 1.5 \mathrm{~W} \\ & 1.5 \mathrm{~W} \\ & 1.5 \mathrm{~W} \end{aligned}$						$\begin{aligned} & 30 / 10 \\ & 33 / 10 \\ & 33 / 10 \\ & 37 / 7.5 \end{aligned}$	
IN4066A IN4067 1N4067A 1N4068	$\begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}$	$\begin{aligned} & R D \\ & R D \\ & R D \\ & R D \\ & R D \end{aligned}$			$\begin{aligned} & 1.5 \mathrm{~W} \\ & 1.5 \mathrm{~W} \\ & 1.5 \mathrm{~W} \\ & 1.5 \mathrm{~W} \end{aligned}$						$\begin{aligned} & 37 / 7.5 \\ & 43 / 7.5 \\ & 43 / 7.5 \\ & 47 / 7.5 \end{aligned}$	

DIODE INTERCHANGEABILITY

TYPE NUMBER			TI		Ratines			Charactertstics				
					P_{D} (mW)	$\mathbf{V}_{\mathbf{R}}$ (V)	1 (A)	$\begin{array}{ll} \mathbf{I}_{\mathbf{R}} & \bullet \mathbf{V}_{\mathbf{R}} \\ \mu_{\mathbf{A}} & /(\mathbf{V}) \end{array}$	$\begin{array}{ccc} V_{F} & \mathbf{I F}_{f} \\ \text { (V) } & 1 \text { (ma) } \end{array}$	$\begin{aligned} & i_{r r} \\ & (\mathrm{n}) \end{aligned}$	$\begin{array}{ll} \mathbf{V}_{\mathbf{Z}} & \mathbf{Z} \\ (\mathbf{V}) & / \mathrm{mA}) \end{array}$	$\begin{gathered} \text { TOL } \\ \% \end{gathered}$
1N4068A 1N4069 1N4069A 1N4070	$\begin{aligned} & \hline \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}$	$\begin{array}{\|l\|} \mathrm{RD} \\ \mathrm{RD} \\ \mathrm{RD} \\ \mathrm{RD} \\ \hline \end{array}$			$\begin{array}{r} 1.5 W \\ 2 W \\ 2 W \\ 2 W \end{array}$						$\begin{aligned} & 47 / 7.5 \\ & 51 / 7.5 \\ & 51 / 7.5 \\ & 56 / 7.5 \end{aligned}$	
1N4070A iN4071 IN4071A 1N4072	$\begin{aligned} & \mathrm{s} \\ & \mathrm{~s} \\ & \mathrm{~s} \\ & \mathbf{s} \end{aligned}$	$\begin{aligned} & R D \\ & R D \\ & R D \\ & R D \\ & R D \end{aligned}$			2W 2W 2W 2W						$\begin{aligned} & 56 / 7.5 \\ & 62 / 7.5 \\ & 62 / 7.5 \\ & 68 / 5 \end{aligned}$	
$\begin{aligned} & \text { 1N4072A } \\ & \text { IN4073 } \\ & \text { IN4073A } \\ & \text { IN4074 } \end{aligned}$	$\left\lvert\, \begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}\right.$	$\begin{aligned} & R D \\ & R D \\ & R D \\ & R D \end{aligned}$			$\begin{aligned} & 2 W \\ & 2 W \\ & 2 W \\ & 2 W \end{aligned}$.		$\begin{aligned} & 68 / 5 \\ & 75 / 5 \\ & 75 / 5 \\ & 82 / 5 \end{aligned}$	
IN4074A 1N4075 iN4075A 1N4076	s	$\begin{aligned} & R D \\ & R D \\ & R D \\ & R D \end{aligned}$			$\begin{aligned} & 2 W \\ & 2 W \\ & 2 W \\ & 2 W \end{aligned}$						$\begin{aligned} & 82 / 5 \\ & 87 / 5 \\ & 87 / 5 \\ & 91 / 5 \end{aligned}$	
1N4076A 1N4077 1N4077A 1N4078	$\begin{aligned} & \mathbf{s} \\ & s \\ & s \\ & s \end{aligned}$	$\begin{aligned} & R D \\ & R D \\ & R D \\ & R D \\ & R D \end{aligned}$			$\begin{aligned} & 2 W \\ & 2 W \\ & 2 W \\ & 2 W \end{aligned}$						$\begin{aligned} & 91 / 5 \\ & 100 / 5 \\ & 100 / 5 \\ & 105 / 2.5 \end{aligned}$	
1N4078A 1N4079 1N4079A IN4080	$\begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}$	$\begin{aligned} & R D \\ & R D \\ & R D \\ & R D \\ & R D \end{aligned}$			$\begin{aligned} & 2 w \\ & 2 w \\ & 2 w \\ & 2 w \end{aligned}$						$\begin{aligned} & 105 / 2.5 \\ & 110 / 2.5 \\ & 110 / 2.5 \\ & 120 / 2.5 \end{aligned}$	
1N4080A IN4086 1N4087 iN4088	$\begin{aligned} & s \\ & s \\ & s \\ & G \end{aligned}$	$\begin{aligned} & \text { RD } \\ & \text { SD } \\ & \text { SD } \\ & \text { SD } \end{aligned}$		$\begin{array}{\|l} \text { TID33 } \\ \text { TID33 } \\ \text { IN4148 } \end{array}$	2W	70 50 30		$\begin{array}{r} .25 / 70 \\ .09 / 50 \\ 200 / 20 \end{array}$	$\begin{gathered} 1 / 200 \\ .98 / 30 \\ 1 / 100 \end{gathered}$	200	120/2.5	
1N4089 1N4092 IN4093 IN4094	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}\right.$	RE SD SD RD		-	1W	$\begin{array}{r} 400 \\ 50 \end{array}$	1.1	$\begin{gathered} 200 / \\ 1 / \\ 1 \mathrm{M} / \end{gathered}$	$\begin{aligned} & 1.2 / \\ & 1 / 5 \\ & 1 / 5 \end{aligned}$		9.6/10	
IN4095 1N4099 1N4100 IN4101	$\begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}$	$\left\|\begin{array}{l} \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \end{array}\right\|$	1N4099 INA100 1N4101	1N751	$\begin{aligned} & 275 \\ & 250 \\ & 250 \\ & 250 \end{aligned}$						$\begin{gathered} 5 / 5 \\ 6.8 / .25 \\ 7.5 / .25 \\ 8.2 / .25 \end{gathered}$	10 5 5 5
1N4102 1N4103 1N4104 1N4105	$\begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}$	$\begin{array}{\|c\|c} \mathrm{ZD} & 1 \\ \mathrm{ZD} & 1 \\ \mathrm{ZD} & 1 \\ \mathrm{ZD} & 1 \end{array}$	IN4102 IN4103 IN4104 1NA105		$\begin{aligned} & 250 \\ & 250 \\ & 250 \\ & 250 \end{aligned}$						$\begin{array}{r} 8.7 / .25 \\ 9.1 / .25 \\ 10 / .25 \\ 11 / .25 \end{array}$	5 5 5 5

TYP NDMETE		$\begin{aligned} & \frac{3}{6} \\ & \frac{3}{3} \\ & 3 \\ & 3 \\ & 8 \end{aligned}$	$\frac{\text { TI }}{\text { REPLACEMENT }}$	FORNEWDESNO	ratinos			CMARACTERISTICS					
						$\begin{aligned} & V_{R} \\ & (V) \end{aligned}$	I (A)	$\begin{array}{ll} \mathbf{V}_{\mathbf{R}} & \mathbf{V}_{\mathbf{R}} \\ \mu \mathrm{A} & / \mathbf{V}) \end{array}$	\mathbf{V}_{F} (V)		(ms)	$\mathbf{v}_{\mathbf{z}}$ • \mathbf{z} (V) $/$ (ma)	$\begin{gathered} \text { rot } \\ \times \end{gathered}$
IN4106 1N4107 INA108 1N4100	$\begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}$	$\left\|\begin{array}{\|c\|} z D \\ z D \\ z D \\ z D \end{array}\right\|$	1N4106		$\begin{aligned} & 250 \\ & 250 \\ & 250 \\ & 250 \end{aligned}$							$\begin{aligned} & 12 / .25 \\ & 13 / .25 \\ & 14 / .25 \\ & 15 / .25 \end{aligned}$	5 5 5 5
1NA110 1N4111 1N4112 INA113	$\left\lvert\, \begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}\right.$	$\begin{aligned} & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \end{aligned}$			$\begin{aligned} & 250 \\ & 250 \\ & 250 \\ & 250 \end{aligned}$							$\begin{aligned} & 16 / .25 \\ & 17 / .25 \\ & 18 / .25 \\ & 19 / .25 \end{aligned}$	5 5 5 5
INA114 INAIIS 1N4116 iN4117	$\begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}$	$\left\lvert\, \begin{aligned} & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \end{aligned}\right.$			$\begin{aligned} & 250 \\ & 250 \\ & 250 \\ & 250 \end{aligned}$							$\begin{aligned} & 20 / .25 \\ & 22 / .25 \\ & 24 / .25 \\ & 25 / .25 \end{aligned}$	5 5 5 5
1NA118 1N4119 IN4120 INAI21	$\left\lvert\, \begin{aligned} & 5 \\ & s \\ & s \\ & 5 \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & \mathrm{zD} \\ & \mathrm{zo} \\ & \mathrm{zD} \\ & \mathrm{zo} \end{aligned}\right.$			$\begin{aligned} & 250 \\ & 250 \\ & 250 \\ & 250 \end{aligned}$							$\begin{aligned} & 27 / .25 \\ & 28 / .25 \\ & 30 / .25 \\ & 33 / .25 \end{aligned}$	5 5 5 5
$\begin{aligned} & \text { INA122 } \\ & \text { 1NA123 } \\ & \text { INA124 } \\ & \text { INA125 } \end{aligned}$	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\begin{aligned} & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \end{aligned}$.		$\begin{aligned} & 250 \\ & 250 \\ & 250 \\ & 250 \end{aligned}$	-						$\begin{aligned} & 36 / .25 \\ & 39 / .25 \\ & 43 / .25 \\ & 47 / .25 \end{aligned}$	5 5 5 5
1N4126 1N4127 1N4128 1N4129	$\begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}$	$\left\|\begin{array}{l} \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \end{array}\right\|$			$\begin{aligned} & 250 \\ & 250 \\ & 250 \\ & 250 \end{aligned}$							$\begin{aligned} & 51 / .25 \\ & 56 / .25 \\ & 60 / .25 \\ & 62 / .25 \end{aligned}$	5 5 5 5
1N4130 1N4131 1N4132 IN4133	$\begin{aligned} & 5 \\ & s \\ & s \\ & s \end{aligned}$	$\left.\begin{aligned} & z 0 \\ & z 0 \\ & z 0 \\ & z 0 \end{aligned} \right\rvert\,$			$\begin{aligned} & 250 \\ & 250 \\ & 250 \\ & 250 \end{aligned}$							$\begin{aligned} & 68 / .25 \\ & 75 / .25 \\ & 82 / .25 \\ & 87 / .25 \end{aligned}$	5 5 5 5
1N4134 1N4135 iN4139 IN4140	$\left\lvert\, \begin{aligned} & 5 \\ & s \\ & s \\ & s \end{aligned}\right.$	$\begin{aligned} & Z D \\ & Z D \\ & R E \\ & R E \end{aligned}$			$\begin{aligned} & 250 \\ & 250 \end{aligned}$	$\begin{array}{r} 50 \\ 100 \end{array}$	$\begin{aligned} & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & 100 / \\ & 100 / \end{aligned}$		$\begin{aligned} & 1 / \\ & 1 / \end{aligned}$		$\begin{array}{r} 91 / .25 \\ 100 / .25 \end{array}$	5 5
1N4141 1N4142 1N4143 1N4144	$\left\lvert\, \begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}\right.$	$\left.\begin{aligned} & R E \\ & R E \\ & R E \\ & R E \\ & R E \end{aligned} \right\rvert\,$				$\begin{aligned} & 200 \\ & 400 \\ & 600 \\ & 800 \end{aligned}$	3 3 3 3	$\begin{aligned} & 100 / \\ & 100 / \\ & 100 / \\ & 100 / \end{aligned}$		$\begin{aligned} & 1 / \\ & 1 / \\ & 1 / \\ & 1 / \end{aligned}$			
1N4145 1N4146 INA147 IN4148	$\left\lvert\, \begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}\right.$	$\begin{aligned} & R E \\ & R E \\ & S D \\ & S D \\ & S D \end{aligned}$	IN4147 IN4148			$\begin{aligned} & 1 K \\ & 2 K \\ & 30 \\ & 75 \end{aligned}$	3	$\begin{aligned} & 100 / \\ & 100 / \\ & .1 / 30 \\ & 25 N / 20 \end{aligned}$		$\begin{aligned} & 1 / \\ & 1 / \\ & 1 / 30 \\ & 1 / 10 \end{aligned}$	10		

TYPE NUMBER			II	$\begin{aligned} & \text { FOR } \\ & \text { NEW } \\ & \text { DESIGN } \end{aligned}$	$\begin{gathered} P_{D} \\ (\mathrm{~mW}) \end{gathered}$	tinges \mathbf{V}_{R} (V)	I (A)	$\begin{array}{ll} \mathbf{I}_{\mathbf{R}} & \mathbf{V}_{\mathbf{R}} \\ \mu \mathbf{A} & / \mathbf{V}) \end{array}$	$\mathbf{V}_{\mathbf{F}} \oplus \mathbf{I}_{\mathbf{F}}$ (V) $/(\mathrm{mA})$		$\mathbf{v}_{\mathbf{z}} \cdot \mathbf{I z}_{\mathbf{z}}$ (V) / (mA)	$\left\lvert\, \begin{gathered} \mathrm{TOL} \\ \% \end{gathered}\right.$
1N4149 1N4150 1N4151 1N4152	$\begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$	$\left\lvert\, \begin{aligned} & S D \\ & S D \\ & S D \\ & S D \end{aligned}\right.$	IN4149 1N4150 IN4151 IN4152			75 50 75 40		$\begin{array}{r} 25 N / 20 \\ .1 / 50 \\ 50 N / 50 \\ 50 N / 30 \end{array}$	$\begin{gathered} 1 / 10 \\ 1 / 200 \\ 1 / 50 \\ .88 / 20 \end{gathered}$	4 6 2 2		
IN4153 1N4154 1N4155 1N4158	$\begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}$	$\begin{aligned} & \text { SD } \\ & \text { SD } \\ & \text { SD } \\ & \text { ZD } \end{aligned}$	IN4153 IN4154	$\begin{aligned} & \text { 1N647 } \\ & \text { 1N4736 } \end{aligned}$	1W	75 35 400		$\begin{gathered} 50 N / 50 \\ .1 / 25 \\ .1 / 400 \end{gathered}$	$\begin{aligned} & .88 / 20 \\ & 1 / 300 \\ & 1 / 100 \end{aligned}$	$\begin{array}{r} 2 \\ 4 \\ 104 \end{array}$	6.8/37	20
1N4158A 1N4158B 1N4159 1N4159A	$\begin{aligned} & \mathrm{s} \\ & \mathrm{~S} \\ & \mathrm{~s} \\ & \mathrm{~s} \end{aligned}$	$\begin{aligned} & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \end{aligned}$		1N4736 1N4736A 1 N4737 1N4737	$\begin{aligned} & 1 \mathrm{w} \\ & \text { iw } \\ & \text { iw } \\ & \text { iw } \end{aligned}$						$\begin{aligned} & 6.8 / 37 \\ & 6.8 / 37 \\ & 7.5 / 34 \\ & 7.5 / 34 \end{aligned}$	$\begin{array}{r} 10 \\ 5 \\ 20 \\ 10 \end{array}$
1N41598 1N4160 INA160A 1N41608	$\begin{aligned} & \mathbf{s} \\ & \mathbf{S} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}$	$\begin{aligned} & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \end{aligned}$		1N4737A 1N4738 1N4738 1N4738A	$\begin{aligned} & 1 w \\ & 1 w \\ & 1 w \\ & 1 w \end{aligned}$						$\begin{aligned} & 7.5 / 34 \\ & 8.2 / 31 \\ & 8.2 / 31 \\ & 8.2 / 31 \end{aligned}$	$\begin{array}{r} 5 \\ 20 \\ 10 \\ 5 \end{array}$
1N4161 1N4161A 1N4161B 1N4162	$\begin{aligned} & \mathbf{s} \\ & \mathbf{S} \\ & \mathbf{S} \\ & \mathbf{s} \end{aligned}$	$\begin{aligned} & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \end{aligned}$		$\begin{aligned} & \text { 1N4739 } \\ & \text { 1N4739 } \\ & \text { 1N4739A } \\ & \text { 1N4740 } \end{aligned}$	$\begin{aligned} & 1 w \\ & 1 w \\ & 1 w \\ & \text { iw } \end{aligned}$						$\begin{aligned} & 9.1 / 28 \\ & 9.1 / 28 \\ & 9.1 / 28 \\ & 10 / 25 \end{aligned}$	$\begin{array}{r} 20 \\ 10 \\ 5 \\ 20 \end{array}$
1N4162A 1N4162B IN4163 IN4163A	$\begin{aligned} & \mathbf{s} \\ & \mathbf{S} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}$	$\begin{aligned} & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \end{aligned}$		$\begin{aligned} & \text { 1N4740 } \\ & \text { 1N4740A } \\ & \text { 1N4741 } \\ & \text { 1N4741 } \end{aligned}$	$\begin{aligned} & \text { iw } \\ & \text { iw } \\ & \text { iw } \\ & \text { iw } \end{aligned}$						$\begin{aligned} & 10 / 25 \\ & 10 / 25 \\ & 11 / 23 \\ & 11 / 23 \end{aligned}$	$\begin{array}{r} 10 \\ 5 \\ 20 \\ 10 \end{array}$
1N41638 1N4164 1N4164A IN416AB	$\begin{aligned} & \mathbf{s} \\ & \mathbf{S} \\ & \mathbf{S} \\ & \mathbf{s} \end{aligned}$	$\begin{aligned} & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \end{aligned}$		$\begin{aligned} & \text { IN4741A } \\ & \text { IN4742 } \\ & \text { IN4742 } \\ & \text { IN4742A } \end{aligned}$	1W 1W 1W IW						$\begin{aligned} & 11 / 23 \\ & 12 / 21 \\ & 12 / 21 \\ & 12 / 21 \end{aligned}$	$\begin{array}{r} 5 \\ 20 \\ 10 \\ 5 \end{array}$
1N4165 IN4165A 1NA165B 1N4166	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \end{aligned}\right.$.	1N4743 1N4743 1N4743A 1N4744	$\begin{aligned} & \text { iw } \\ & 1 W \\ & 1 W \\ & 1 W \end{aligned}$						$\begin{aligned} & 13 / 19 \\ & 13 / 19 \\ & 13 / 19 \\ & 15 / 17 \end{aligned}$	$\begin{array}{r} 20 \\ 10 \\ 5 \\ 20 \end{array}$
1N4166A 1N4166B IN4167 1NA167A	$\begin{aligned} & \mathbf{s} \\ & \mathbf{S} \\ & \mathbf{S} \\ & \mathbf{s} \end{aligned}$	$\left\|\begin{array}{l} \mathrm{ZD} \\ \mathrm{ZD} \\ \mathrm{ZD} \\ \mathrm{ZD} \end{array}\right\|$		1N4744 1N4744A 1N4745 1N4745	$\begin{aligned} & 1 \mathrm{w} \\ & \mathrm{iW} \\ & \mathrm{iw} \\ & \mathrm{iw} \end{aligned}$						$\begin{aligned} & 15 / 17 \\ & 15 / 17 \\ & 16 / 16 \\ & 16 / 16 \end{aligned}$	$\begin{array}{r} 10 \\ 5 \\ 20 \\ 10 \end{array}$
1N4167B 1N4168 1N4168A 1N41688	$\begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}$	$\left\lvert\, \begin{aligned} & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \end{aligned}\right.$		IN4745A iN4746 1N4746 1N4746A	$\begin{aligned} & \text { iw } \\ & \text { iw } \\ & \text { iw } \\ & \text { iw } \end{aligned}$						$\begin{aligned} & 16 / 16 \\ & 18 / 14 \\ & 18 / 14 \\ & 18 / 14 \end{aligned}$	$\begin{array}{r} 5 \\ 20 \\ 10 \\ 5 \end{array}$

TYPE Mumber	3333		REHACEMENT		ratines			CHARACTERISTICS				
					$\left\|\begin{array}{c} \mathbf{P}_{\mathrm{D}} \\ (\mathrm{~mW}) \end{array}\right\|$	$\mathbf{V}_{\mathbf{R}}$ (V)	I (A)	$\begin{array}{lll} \mathbf{L}_{\mathrm{R}} & \mathbf{V}_{\mathrm{R}} \\ \mu \mathrm{~A} & / \mathbf{V}) \end{array}$	$\begin{array}{cc} \mathbf{V}_{\mathrm{F}} & \mathrm{l}_{\mathrm{F}} \\ \text { (V) } & / \mathrm{mA}) \end{array}$	$\begin{aligned} & \text { trr } \\ & \text { (ns) } \end{aligned}$	$\begin{array}{llc} \mathbf{V}_{\mathbf{z}} & \mathbf{l} \mathbf{z} \\ (\mathrm{V}) & 1 & (\mathrm{ma}) \end{array}$	TOL \%
1N4169 1N4169A 1N41698 iN4170	$\left\lvert\, \begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{S} \\ & \mathbf{s} \end{aligned}\right.$	$\left\|\begin{array}{l} \mathrm{ZD} \\ \mathrm{ZD} \\ \mathrm{ZD} \\ \mathrm{ZD} \end{array}\right\|$		$\begin{aligned} & \text { IN4747 } \\ & \text { 1N4747 } \\ & \text { IN4747A } \\ & \text { 1N4748 } \end{aligned}$	$\begin{aligned} & 1 w \\ & \text { iw } \\ & \text { iw } \\ & \text { iw } \end{aligned}$						$\begin{aligned} & 20 / 13 \\ & 20 / 13 \\ & 20 / 13 \\ & 22 / 12 \end{aligned}$	$\begin{array}{r} 20 \\ 10 \\ 5 \\ 20 \end{array}$
1N4170A 1N4170B 1N4171 IN4171A	$\begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}$	$\begin{aligned} & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \end{aligned}$		1N4748 1N4748A 1N4749 1N4749	$\begin{aligned} & \text { iw } \\ & \text { iw } \\ & \text { iw } \\ & \text { iw } \end{aligned}$						$\begin{aligned} & 22 / 12 \\ & 22 / 12 \\ & 24 / 11 \\ & 24 / 11 \end{aligned}$	$\begin{array}{r} 10 \\ 5 \\ 20 \\ 10 \end{array}$
$\begin{aligned} & \text { 1N4171B } \\ & \text { 1N4172 } \\ & \text { 1N4172A } \\ & \text { 1N4172B } \end{aligned}$	$\begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}$	$\left\|\begin{array}{l} \mathrm{ZD} \\ \mathrm{ZD} \\ \mathrm{ZD} \\ \mathrm{ZD} \end{array}\right\|$		1N4749A 1N4750 1N4750 INA750A	$\begin{aligned} & \text { iw } \\ & \text { iw } \\ & \text { iw } \\ & \text { iw } \end{aligned}$						$\begin{aligned} & 24 / 11 \\ & 27 / 9.5 \\ & 27 / 9.5 \\ & 27 / 9.5 \end{aligned}$	$\begin{array}{r} 5 \\ 20 \\ 10 \\ 5 \end{array}$
1N4173 1N4173A 1N41738 1N4174	$\begin{aligned} & \mathbf{s} \\ & \mathbf{S} \\ & \mathbf{S} \\ & \mathbf{S} \end{aligned}$	$\begin{aligned} & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \end{aligned}$		1N4751 1N4751 1N4751A 1N4752	$\begin{aligned} & \text { iw } \\ & \text { iw } \\ & \text { iw } \\ & \text { iw } \end{aligned}$						$\begin{aligned} & 30 / 8.5 \\ & 30 / 8.5 \\ & 30 / 8.5 \\ & 33 / 7.5 \end{aligned}$	$\begin{array}{r} 20 \\ 10 \\ 5 \\ 20 \end{array}$
INA174A 1N4174B iN4175 1N4175A	$\begin{aligned} & \mathbf{S} \\ & \mathbf{S} \\ & \mathbf{S} \\ & \mathbf{s} \end{aligned}$	$\left\|\begin{array}{l} \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \end{array}\right\|$		1N4752 IN4752A	$\begin{aligned} & \text { iw } \\ & \text { iw } \\ & \text { iw } \\ & \text { iw } \end{aligned}$						$\begin{aligned} & 33 / 7.5 \\ & 33 / 7.5 \\ & 36 / 7 \\ & 36 / 7 \end{aligned}$	$\begin{array}{r} 10 \\ 5 \\ 20 \\ 10 \end{array}$
1N41758 IN4176 1N4176A IN4176B	$\begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}$	$\begin{aligned} & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{ZD} \\ & \mathrm{zD} \end{aligned}$			$\begin{aligned} & \text { iw } \\ & \text { iw } \\ & \text { iw } \\ & \text { iw } \end{aligned}$	-					$\begin{aligned} & 36 / 7 \\ & 39 / 6.5 \\ & 39 / 6.5 \\ & 39 / 6.5 \end{aligned}$	5 20 10 5
1N4177 1NA177A 1N41778 1NA178	$\left\lvert\, \begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}\right.$	$\begin{aligned} & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \end{aligned}$			$\begin{aligned} & \text { iw } \\ & \text { iw } \\ & \text { iw } \\ & \text { iw } \end{aligned}$						$\begin{aligned} & 43 / 6 \\ & 43 / 6 \\ & 43 / 6 \\ & 47 / 5.5 \end{aligned}$	20 10 5 20
1N4178A 1N41788 IN4179 1N4179A	$\begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \end{aligned}$			$\begin{aligned} & \text { iw } \\ & \text { iw } \\ & \text { iw } \\ & \text { iw } \end{aligned}$						$\begin{aligned} & 47 / 5.5 \\ & 47 / 5.5 \\ & 51 / 5 \\ & 51 / 5 \end{aligned}$	10 5 20 10
1N4179B IN4180 1N4180A 1N41808	S	$\begin{aligned} & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \end{aligned}$			$\begin{aligned} & \text { iw } \\ & 1 \mathbf{w} \\ & \text { iw } \\ & \text { iw } \end{aligned}$.		51/5 56/4.5 56/4.5 56/4.5	5 20 10 5
1N4181 IN4181A INA181B 1N4182	S	$\begin{aligned} & \mathrm{zD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \end{aligned}$			$\begin{aligned} & \text { iw } \\ & \text { iw } \\ & \text { iw } \\ & \text { iw } \end{aligned}$						$\begin{aligned} & 62 / 4 \\ & 62 / 4 \\ & 62 / 4 \\ & 68 / 3.7 \end{aligned}$	20 10 5 20

TYPE number		完		$\underset{\text { RERLACEMENT }}{\text { II }}$	$\begin{gathered} \text { FOR } \\ \text { NEW } \\ \text { DESHON } \end{gathered}$	$\begin{gathered} \mathrm{PD}_{\mathrm{D}} \\ (\mathrm{~mW}) \end{gathered}$	$\begin{aligned} & \text { ratinos } \\ & \mathbf{V}_{\mathbf{R}} \\ & (\mathbf{V}) \end{aligned}$	I (A)	$\begin{array}{ll} r_{R} & V_{R} \\ \mu_{\mathrm{A}} & /(\mathrm{V}) \end{array}$	$\begin{array}{ll} \mathbf{v}_{F} & \mathbf{l}_{F} \\ \text { (v) } & 1 \text { (mA) } \end{array}$	IERISTIC ${ }_{(n s)}^{i_{r}}$	$\begin{array}{lll} v_{z} & 0 & \mathbf{z} \\ (\mathrm{~V}) & 1 & (\mathrm{~mA}) \end{array}$	$\left.\right\|_{\%} ^{10 x}$
	s		z0 zD zD zD			iw 1w 1W IW						$\begin{aligned} & 68 / 3.7 \\ & 68 / 3.7 \\ & 75 / 3.3 \\ & 75 / 3.3 \end{aligned}$	10 5 20 10
1N4183B 1N4184 in4i84A 1N4184B	($\begin{aligned} & \text { s } \\ & \text { s } \\ & \text { s } \\ & \text { s }\end{aligned}$		$\left\|\begin{array}{l\|} \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \end{array}\right\|$			iw iw iw iw						$\begin{aligned} & 75 / 3.3 \\ & 82 / 3 \\ & 82 / 3 \\ & 82 / 3 \end{aligned}$	5 20 10 5
1N4185 1N4185A IN4185B 1N4186	$\left.\right\|_{s} ^{s}$		$\begin{aligned} & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \end{aligned}$			1w iw iw iw						$\begin{array}{r} 91 / 2.8 \\ 91 / 2.8 \\ 91 / 2.8 \\ 100 / 2.5 \end{array}$	20 10 5 20
1N4186A 1N41868 1N4187 IN4187A	S					1w IW IW 1W						$\begin{aligned} & 100 / 2.5 \\ & 100 / 2.5 \\ & 110 / 2.3 \\ & 110 / 2.3 \end{aligned}$	10 5 20 10
1N41878 1N4188 in4188A IN4188B	(iw iw iw iw						$\begin{aligned} & 110 / 2.3 \\ & 120 / 2 \\ & 120 / 2 \\ & 120 / 2 \end{aligned}$	5 20 10 5
INA189 1N4189A 1N4189B 1N4190	S					IW IW iw 1W						$\begin{aligned} & 130 / 1.9 \\ & 130 / 1.9 \\ & 130 / 1.9 \\ & 150 / 1.7 \end{aligned}$	20 10 5 20
	S					$\begin{aligned} & 1 w \\ & 1 w \\ & 1 w \\ & 1 w \end{aligned}$						150/1.7 150/1.7 180/1.6 160/1.6	10 5 20 10
INA191B N4192 indig2A N4192B	$\begin{aligned} & \mathbf{s} \\ & s \\ & s \\ & s \\ & s \end{aligned}$	2D				IW 1w 1W iw						$\begin{aligned} & 160 / 1.6 \\ & 180 / 1.4 \\ & 180 / 1.4 \\ & 180 / 1.4 \end{aligned}$	5 20 10 5
iN4193 1N4193A IN41938 in4242	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \\ & s \end{aligned}\right.$	SD				$\begin{aligned} & \text { iw } \\ & i w \\ & \text { iw } \end{aligned}$	40		.1N/	1/20	2	$\begin{aligned} & 200 / 1.2 \\ & 200 / 1.2 \\ & 200 / 1.2 \end{aligned}$	$\begin{array}{r} 20 \\ 10 \\ 5 \end{array}$
1N4243 1N4244 1N4245 1N4246		SD SD RE RE			$\begin{aligned} & N 4003 \\ & N 4004 \end{aligned}$		$\begin{array}{r} 40 \\ 10 \\ 200 \\ 400 \end{array}$	1	$\begin{aligned} & .1 \mathrm{~N} / \\ & .1 / \\ & 1 / 200 \\ & 1 / 400 \end{aligned}$	$\begin{array}{r} 1 / 10 \\ 1 / 20 \\ 1.2 / 1 \\ 1.2 / 1 \end{array}$	$\begin{array}{r} 2 \\ .75 \end{array}$		

TYPENUMBER		$\begin{aligned} & \mathbf{z} \\ & \mathbf{0} \\ & \mathbf{5} \\ & \frac{5}{4} \\ & \frac{4}{4} \\ & \mathbf{3} \end{aligned}$	$\begin{gathered} \text { TI } \\ \text { REPLACEMENT } \end{gathered}$		RATINCS			CHARACTERISTICS				
					$\begin{gathered} P_{D} \\ (m w) \end{gathered}$	V_{R} (V)	(A)	$\begin{array}{ll} \mathbf{m}_{\mathbf{R}} & \bullet \mathbf{v}_{\mathbf{R}} \\ \mu_{\mathbf{A}} & ,\left(v_{1}\right) \end{array}$	$\mathbf{V F}_{\mathrm{F}}$ - \mathbf{F} (v) $/$ (mA)	$\begin{gathered} i_{n} \\ (n s) \end{gathered}$	$\begin{array}{llc} \mathbf{v}_{\mathbf{z}} & \cdot \mathbf{z} \\ (\mathrm{V}) & /(\mathrm{mA}) \end{array}$	tol *
1N4247 1N4248 IN4249 1N4250	$\begin{aligned} & \mathrm{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}$	$\left\|\begin{array}{l} \mathrm{RE} \\ \mathrm{RE} \\ \mathrm{RE} \\ \mathrm{RE} \end{array}\right\|$		IN4005 IN4006 IN4007 IN4006		$\begin{gathered} 600 \\ 800 \\ 1 K \\ 800 \end{gathered}$	1 1 1 .	$\begin{aligned} & 1 / 600 \\ & 1 / 800 \\ & 1 / 1 K \\ & 1 / 800 \end{aligned}$	$\begin{aligned} & 1.2 / 1 \\ & 1.2 / 1 \\ & 1.2 / 1 \\ & 1.2 / 1 \end{aligned}$			
1N4251 1N4252 1N4253 1N4254	$\begin{aligned} & \hline \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}$	$\left.\begin{array}{\|l\|} \hline \mathbf{R E} \\ \mathrm{RE} \\ \mathrm{RE} \\ \mathrm{RE} \end{array} \right\rvert\,$		1N4007		$\begin{array}{r} 1 K \\ 1.2 \mathrm{~K} \\ 1.5 \mathrm{~K} \\ 1.5 \mathrm{~K} \end{array}$	$\begin{array}{r} .5 \\ .5 \\ .5 \\ .25 \end{array}$	$\begin{aligned} & 1 / 1 \mathrm{~K} \\ & 50 \% \\ & 50 \% \\ & 50 \% \end{aligned}$	$1.2 / 1$ 4.8/			
1N4255 iN4256 1N4295	$\left\lvert\, \begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}\right.$	$\begin{aligned} & R E \\ & R E \\ & R E \\ & R E \\ & R E \\ & R E \end{aligned}$			400	$\begin{array}{r} 2 \mathrm{~K} \\ 2.5 \mathrm{~K} \\ 3 \mathrm{~K} \end{array}$	$\begin{aligned} & .25 \\ & .25 \\ & .25 \end{aligned}$	$\begin{aligned} & \mathbf{5 0 /} \\ & \mathbf{5 0 /} \\ & \mathbf{5 0 /} \end{aligned}$	$\begin{aligned} & 4.8 / \\ & 4.81 \\ & 4.8 / \end{aligned}$		10/10	
1N4295A 1N4296 iN4296A iN4305	$\begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}$	$\left\|\begin{array}{l} \mathrm{RD} \\ \mathrm{RD} \\ \mathrm{RD} \\ \mathrm{SD} \end{array}\right\|$	1N4305		$\begin{aligned} & 400 \\ & 1 w \\ & 1 w \end{aligned}$	75		.1/50	.57/.25	2	$\begin{aligned} & 10 / 10 \\ & 10 / 20 \\ & 10 / 20 \end{aligned}$	
$\begin{aligned} & \text { 1N4306 } \\ & \text { 1N4307 } \\ & \text { 1N4308 } \\ & \text { 1N4309 } \end{aligned}$	$\begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}$	SD SD SD SD		1N4151 1N4151 1N4150 IN4608		75 75 100 50		$\begin{array}{r} 50 \mathrm{~N} / 50 \\ 50 \mathrm{~N} / 50 \\ .1 / 75 \\ .1 / 30 \end{array}$	$\begin{aligned} & 1 / 50 \\ & 1 / 50 \\ & 1 / 200 \\ & 1 / 400 \end{aligned}$	2 2 2 2		
$\begin{aligned} & \text { IN4310 } \\ & \text { IN4311 } \\ & \text { IN4312 } \\ & \text { IN4313 } \end{aligned}$	$\begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}$	$\begin{aligned} & \text { SD } \\ & \text { SD } \\ & \text { SD } \\ & \text { SD } \end{aligned}$		$\begin{array}{\|l} \text { 1N4608 } \\ \text { 1N4607 } \\ \text { TID32 } \\ \text { INA151 } \end{array}$		$\begin{array}{r} 75 \\ 100 \\ 150 \\ 100 \end{array}$		$\begin{aligned} & .1 / 50 \\ & .1 / 75 \\ & .1 / 100 \\ & .1 / 75 \end{aligned}$	$\begin{aligned} & 1 / 400 \\ & 1 / 300 \\ & 1 / 200 \\ & 1 / 100 \end{aligned}$	$\left\|\begin{array}{l} 2 \\ 2 \\ 2 \\ 4 \end{array}\right\|$		
$\left\{\begin{array}{l} \text { IN4314 } \\ \text { 1N4315 } \\ \text { IN4316 } \\ \text { IN4317 } \end{array}\right.$	$\begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}$	$\begin{aligned} & \text { SD } \\ & \text { SD } \\ & \text { SD } \\ & \text { SD } \end{aligned}$		1N4150 1N4608 1N4608 1N4607		$\begin{array}{r} 100 \\ 50 \\ 75 \\ 100 \end{array}$		$\begin{aligned} & .1 / 75 \\ & .1 / 30 \\ & .1 / 50 \\ & .1 / 75 \end{aligned}$	$\begin{aligned} & 1 / 200 \\ & 1 / 400 \\ & 1 / 400 \\ & 1 / 300 \end{aligned}$	2 2 2 2		
iN4318 iN4319 IN4322 IN4323	$\begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}$	$\begin{aligned} & \mathrm{SD} \\ & \mathrm{SD} \\ & \mathrm{SD} \\ & \mathrm{ZD} \end{aligned}$		TID32 1N4151 1N4150 1N4736	IW	$\begin{array}{r} 150 \\ 75 \\ 50 \end{array}$		$\begin{aligned} & .1 / 100 \\ & .1 / 50 \\ & .1 / 50 \end{aligned}$	$\begin{aligned} & 1 / 200 \\ & 1 / 100 \\ & 1 / 200 \end{aligned}$	$\left.\begin{aligned} & 2 \\ & 4 \\ & 6 \end{aligned} \right\rvert\,$	6.8/37	20
1N4323A 1N4323B 1N4324 1NA32AA	S	$\begin{aligned} & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \end{aligned}$		1N4736 IN4738A 1N4737 1N4737	$\begin{aligned} & 1 w \\ & 1 w \\ & 1 w \\ & 1 w \end{aligned}$						$\begin{aligned} & 6.8 / 37 \\ & 6.8 / 37 \\ & 7.5 / 34 \\ & 7.5 / 34 \end{aligned}$	10 5 20 10
IN4324B IN4325 IN4325A IN4325B	$\left\lvert\, \begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \end{aligned}\right.$		1N4737A 1N4738 1N4738 1N4738A	$\begin{aligned} & \text { iw } \\ & \text { iw } \\ & \text { iw } \\ & \text { iw } \end{aligned}$						$\begin{aligned} & 7.5 / 34 \\ & 8.2 / 31 \\ & 8.2 / 31 \\ & 8.2 / 31 \end{aligned}$	5 20 10 5

DIODE INTERCHANGEABILITY

TYPE MUMEER			7 REPLACEMENT		$\begin{aligned} & P_{D} \\ & (\mathrm{~mW}) \end{aligned}$	$\mathbf{V}_{\mathbf{R}}$ (V)	I (A)	$\begin{array}{ll} \mathbf{I}_{\mathbf{R}} & \bullet \mathbf{V}_{\mathbf{R}} \\ \mu_{\mathbf{A}} & !(\mathbf{V}) \end{array}$	$\begin{aligned} & V_{F} \\ & (V) \end{aligned}$	$\begin{gathered} \text { CHARACTI } \\ \text { e } \begin{array}{c} \text { IF } \\ \hline(\mathrm{mA}) \end{array} \end{gathered}$	\% (na)	$\mathbf{V}_{\mathbf{z}}$ - \mathbf{z} (V) $/$ (mA)	
$\begin{array}{\|l\|} \hline \text { IN4326 } \\ \text { IN4326A } \\ \text { IN4326B } \\ \text { IN4327 } \end{array}$	$\begin{aligned} & \mathrm{s} \\ & \mathrm{~s} \\ & \mathrm{~s} \\ & \mathrm{~s} \end{aligned}$	ZD		$\begin{aligned} & \text { 1N4739 } \\ & \text { 1N4739 } \\ & \text { 1N4739A } \\ & \text { IN4740 } \end{aligned}$	$\begin{aligned} & 16 \\ & 1 w \\ & 1 w \\ & i w \end{aligned}$							$\begin{gathered} 9.1 / 28 \\ 9.1 / 28 \\ 9.1 / 28 \\ 10 / 25 \end{gathered}$	20 10 5 20
$\begin{aligned} & \text { 1N4327A } \\ & \text { 1N4327B } \\ & \text { 1N4328 } \\ & \text { 1N4328A } \end{aligned}$	$\left\lvert\, \begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{S} \\ & \mathbf{s} \end{aligned}\right.$	$\left\|\begin{array}{l} \mathrm{zD} \\ \mathrm{ZD} \\ \mathrm{ZD} \\ \mathrm{zD} \end{array}\right\|$		1N4740 1N4740A 1N4741 1N4741	$\begin{aligned} & 16 \\ & 1 w \\ & 1 w \\ & 1 w \end{aligned}$							$\begin{aligned} & 10 / 25 \\ & 10 / 25 \\ & 11 / 23 \\ & 11 / 23 \end{aligned}$	$\begin{array}{r} 10 \\ 5 \\ 20 \\ 10 \end{array}$
$\begin{aligned} & \text { 1N4328B } \\ & \text { 1N4329 } \\ & \text { 1N4329A } \\ & \text { 1N4329B } \end{aligned}$	$\begin{aligned} & \mathrm{s} \\ & \mathbf{s} \\ & \mathrm{~s} \\ & \mathbf{s} \end{aligned}$	$\begin{aligned} & \mathbf{Z D} \\ & \mathbf{Z D} \\ & \mathbf{Z D} \\ & \mathbf{Z D} \end{aligned}$		$\begin{aligned} & \text { IN4741A } \\ & \text { IN4742 } \\ & \text { IN4742 } \\ & \text { 1N4742A } \end{aligned}$	$\begin{aligned} & i w \\ & i w \\ & i w \\ & i w \end{aligned}$							$\begin{aligned} & 11 / 23 \\ & 12 / 21 \\ & 12 / 21 \\ & 12 / 21 \end{aligned}$	$\begin{array}{r} 5 \\ 20 \\ 10 \\ 5 \end{array}$
$\begin{aligned} & \text { IN4330 } \\ & \text { IN4330A } \\ & \text { IN4330B } \\ & \text { IN4331 } \end{aligned}$	$\begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}$	$\begin{aligned} & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \end{aligned}$		$\begin{aligned} & \text { 1N4743 } \\ & \text { 1N4743 } \\ & \text { IN4743A } \\ & \text { 1N47A4 } \end{aligned}$	$\begin{aligned} & 1 w \\ & 1 w \\ & 1 w \\ & i w \end{aligned}$							$\begin{aligned} & 13 / 19 \\ & 13 / 19 \\ & 13 / 19 \\ & 15 / 17 \end{aligned}$	$\begin{array}{r} 20 \\ 10 \\ 5 \\ 20 \end{array}$
IN4331A 1N43318 IN4332 1N4332A	$\left\lvert\, \begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{S} \end{aligned}\right.$	$\begin{aligned} & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{ZD} \\ & \mathrm{zD} \end{aligned}$		1N4744 1N4744A 1N4745 1N4745	$\begin{aligned} & \text { iw } \\ & \text { iw } \\ & \text { iw } \\ & \text { iw } \end{aligned}$							$\begin{aligned} & 15 / 17 \\ & 15 / 17 \\ & 16 / 16 \\ & 16 / 16 \end{aligned}$	$\begin{array}{r} 10 \\ 5 \\ 20 \\ 10 \end{array}$
IN4332B IN4333 IN4333A 1N4333B	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\begin{aligned} & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \end{aligned}$		$\begin{aligned} & \text { 1N4745A } \\ & \text { 1N4746 } \\ & \text { 1N4746 } \\ & \text { 1N4746A } \end{aligned}$	$\begin{aligned} & \text { iw } \\ & \text { iw } \\ & \text { iw } \\ & \text { iw } \end{aligned}$							$\begin{aligned} & 16 / 16 \\ & 18 / 14 \\ & 18 / 14 \\ & 18 / 14 \end{aligned}$	5 20 10 5
1N4334 IN4334A 1N4334B 1N4335	$\begin{aligned} & s \\ & s \\ & s \\ & s \\ & s \end{aligned}$	$\left\lvert\, \begin{aligned} & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \end{aligned}\right.$		1N4747 1N4747 IN4747A 1N4748	$\begin{aligned} & \text { iw } \\ & \text { iw } \\ & \text { iw } \\ & \text { iw } \end{aligned}$							$\begin{aligned} & 20 / 13 \\ & 20 / 13 \\ & 20 / 13 \\ & 22 / 12 \end{aligned}$	20 10 5 20
1N4335A 1N43358 1N4336 1N4336A	$\begin{aligned} & \mathbf{s} \\ & \mathbf{S} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}$	$\begin{aligned} & \mathrm{zD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \end{aligned}$		1N4748 1N4748A 1N4749 1N4749	$\begin{aligned} & \text { iw } \\ & \text { iw } \\ & \text { iw } \\ & \text { iw } \end{aligned}$							$\begin{aligned} & 22 / 12 \\ & 22 / 12 \\ & 24 / 11 \\ & 24 / 11 \end{aligned}$	10 5 20 10
1N43368 1N4337 1N4337A 1N4337B	$\begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}$	$\begin{aligned} & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \end{aligned}$		1N4749A 1N4750 IN4750 1N4750A	$\begin{aligned} & 1 w \\ & 1 w \\ & 1 w \\ & i w \end{aligned}$							$\begin{aligned} & 24 / 11 \\ & 27 / 9.5 \\ & 27 / 9.5 \\ & 27 / 9.5 \end{aligned}$	5 20 10 5
1N4338 1N4338A 1N4338B IN4339	$\begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \end{aligned}$		1N4751 1N4751 1N4751A 1N4752	$\begin{aligned} & 1 W \\ & 1 w \\ & 1 W \\ & 1 W \end{aligned}$							$\begin{aligned} & 30 / 8.5 \\ & 30 / 8.5 \\ & 30 / 8.5 \\ & 33 / 7.5 \end{aligned}$	$\begin{array}{r} 20 \\ 10 \\ 5 \\ 20 \end{array}$

TYPE Number		$\begin{aligned} & \frac{3}{6} \\ & \frac{3}{3} \\ & \frac{3}{2} \\ & \frac{1}{5} \\ & 3 \\ & 3 \end{aligned}$	REPLACEMENT	$\begin{aligned} & \text { FOR } \\ & \text { NEW } \\ & \text { DESMCN } \end{aligned}$	ratinos			Characteristics				
					$\left\lvert\, \begin{gathered} \mathbf{P D}_{\mathrm{D}} \\ (\mathrm{~mW}) \end{gathered}\right.$	$\mathbf{V}_{\mathbf{R}}$ (V)	I (A)	$\begin{array}{ll} \mathbf{R} & \mathbf{V}_{\mathbf{R}} \\ \mu \mathrm{A} & / \mathbf{V}) \end{array}$	$\begin{array}{cc} \mathbf{V}_{\mathrm{F}} & \mathbf{l}_{\mathrm{F}} \\ (\mathrm{~V}) & /(\mathrm{mA}) \end{array}$	${ }^{1} \pi$ (ns)	$\mathbf{V}_{\mathbf{z}}$ - $\mathbf{I z}_{\mathbf{z}}$ (V) $/$ (mA)	$\begin{gathered} \text { TOX } \\ \% \end{gathered}$
1N4339A 1N43398 IN4340 1N4340A	$\begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{S} \\ & \mathbf{S} \end{aligned}$	$\begin{aligned} & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \end{aligned}$		$\begin{aligned} & \text { IN4752 } \\ & \text { INA752A } \end{aligned}$	$\begin{aligned} & \text { iw } \\ & \text { iw } \\ & \text { iw } \\ & \text { iw } \end{aligned}$						$\begin{aligned} & 33 / 7.5 \\ & 33 / 7.5 \\ & 36 / 7 \\ & 36 / 7 \end{aligned}$	$\begin{array}{r} 10 \\ 5 \\ 20 \\ 10 \end{array}$
1N43408 1N4341 IN4341A 1N4341B	$\begin{aligned} & \mathbf{S} \\ & \mathbf{S} \\ & \mathbf{S} \\ & \mathbf{s} \end{aligned}$	$\begin{aligned} & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \end{aligned}$			$\begin{aligned} & \text { iw } \\ & \text { iw } \\ & \text { iw } \\ & \text { iw } \end{aligned}$						$\begin{aligned} & 36 / 7 \\ & 39 / 6.5 \\ & 39 / 6.5 \\ & 39 / 6.5 \end{aligned}$	$\begin{array}{r} 5 \\ 20 \\ 10 \\ 5 \end{array}$
1N4342 IN4342A 1N4342B 1N4343	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \end{aligned}\right.$			$\begin{aligned} & \text { iw } \\ & \text { iw } \\ & \text { iw } \\ & \text { iw } \end{aligned}$						$\begin{aligned} & 43 / 6 \\ & 43 / 6 \\ & 43 / 6 \\ & 47 / 5.5 \end{aligned}$	$\begin{array}{r} 20 \\ 10 \\ 5 \\ 20 \end{array}$
1N4343A 1N4343B 1N4344 IN43A4A	$\left\lvert\, \begin{aligned} & \mathbf{S} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}\right.$	$\begin{aligned} & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \end{aligned}$			$\begin{aligned} & 1 w \\ & 1 w \\ & 1 w \\ & i w \end{aligned}$						$\begin{aligned} & 47 / 5.5 \\ & 47 / 5.5 \\ & 51 / 5 \\ & 51 / 5 \end{aligned}$	$\begin{array}{r} 10 \\ 5 \\ 20 \\ 10 \end{array}$
$\begin{aligned} & \text { IN4344B } \\ & \text { IN4345 } \\ & \text { IN4345A } \\ & \text { IN4345B } \end{aligned}$	$\begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}$	$\left.\begin{aligned} & z 0 \\ & z 0 \\ & z D \\ & z D \end{aligned} \right\rvert\,$			$\begin{aligned} & \text { iw } \\ & \text { 1w } \\ & \text { iw } \\ & \text { iw } \end{aligned}$						$51 / 5$ 56/4.5 56/4.5 56/4.5	$\begin{array}{r} 5 \\ 20 \\ 10 \\ 5 \end{array}$
1N4346 INA346A IN4346B 1N4347	$\begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$	$\left\|\begin{array}{l} \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \end{array}\right\|$			$\begin{aligned} & \text { iw } \\ & \text { iw } \\ & \text { iw } \\ & \text { iw } \end{aligned}$						$\begin{aligned} & 62 / 4 \\ & 62 / 4 \\ & 62 / 4 \\ & 68 / 3.7 \end{aligned}$	$\begin{array}{r} 20 \\ 10 \\ 5 \\ 20 \end{array}$
$\begin{aligned} & \text { IN4347A } \\ & \text { IN4347B } \\ & \text { 1N4348 } \\ & \text { IN4348A } \end{aligned}$	$\begin{aligned} & s \\ & s \\ & s \\ & s \\ & s \end{aligned}$	$\left.\begin{aligned} & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \end{aligned} \right\rvert\,$			$\begin{aligned} & \text { IW } \\ & \text { iw } \\ & \text { iw } \\ & \text { iw } \end{aligned}$.			$\begin{aligned} & 68 / 3.7 \\ & 68 / 3.7 \\ & 75 / 3.3 \\ & 75 / 3.3 \end{aligned}$	10 5 20 10
1N43488 1N4349 1N4349A 1N4349B	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\left.\begin{aligned} & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \end{aligned} \right\rvert\,$			$\begin{aligned} & \text { iw } \\ & \text { iw } \\ & \text { iw } \\ & \text { iw } \end{aligned}$						$\begin{aligned} & 75 / 3.3 \\ & 82 / 3 \\ & 82 / 3 \\ & 82 / 3 \end{aligned}$	5 20 10 5
1N4350 IN4350A 1N43508 1N4351	$1 \begin{aligned} & 5 \\ & 5 \\ & s \\ & 5 \end{aligned}$	$\left\|\begin{array}{l} \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \end{array}\right\|$			$\begin{aligned} & \text { 1w } \\ & \text { 1w } \\ & \text { iw } \\ & \text { iw } \end{aligned}$						$\begin{array}{r} 91 / 2.8 \\ 91 / 2.8 \\ 91 / 2.8 \\ 100 / 2.5 \end{array}$	20 10 5 20
IN4351A 1N4351B 1N4352 1N4352A	$\begin{aligned} & \mathbf{S} \\ & \mathbf{s} \\ & \mathbf{S} \\ & \mathbf{s} \end{aligned}$	$\begin{aligned} & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \end{aligned}$			$\begin{aligned} & \text { iw } \\ & \text { iw } \\ & \text { iw } \\ & \text { iw } \end{aligned}$						$\begin{aligned} & 100 / 2.5 \\ & 100 / 2.5 \\ & 110 / 2.3 \\ & 110 / 2.3 \end{aligned}$	10 5 20 10

DIODE INTERCHANGEABILITY

TYPE NUMEER			7 REPACEMENT	$\begin{aligned} & \text { FOR } \\ & \text { NEW } \\ & \text { DESIGN } \end{aligned}$	$\begin{gathered} P_{D} \\ (\mathrm{~mW}) \end{gathered}$	atines $\mathbf{V}_{\mathbf{R}}$ (V)	1 (A)	$\begin{array}{lll} \mathbf{I}_{\mathbf{R}} & \mathbf{V}_{\mathbf{R}} \\ \mu \mathbf{A} & (\mathbf{V}) \end{array}$	$\mathbf{V F}_{\mathbf{F}}$ - $\mathbf{l}_{\mathbf{F}}$ (V) $/$ (mA)	IT (ns)	$\mathbf{v}_{\mathbf{Z}} \in \mathbf{z}$ (V) / (mA)	
$\begin{aligned} & \text { 1N4352B } \\ & \text { 1N4353 } \\ & \text { IN4353A } \\ & \text { 1N4353B } \end{aligned}$	S	$\begin{aligned} & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \end{aligned}$			$\begin{aligned} & \text { iw } \\ & \text { iw } \\ & \text { iw } \\ & \text { iw } \end{aligned}$						$\begin{aligned} & 110 / 2.3 \\ & 120 / 2 \\ & 120 / 2 \\ & 120 / 2 \end{aligned}$	5 20 10 5
$\begin{aligned} & \text { IN4354 } \\ & \text { 1N4354A } \\ & \text { 1N435AB } \\ & \text { 1N4355 } \end{aligned}$	$\begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}$	$\left\|\begin{array}{l} \mathrm{ZD} \\ \mathrm{ZD} \\ \mathrm{ZD} \\ \mathrm{ZD} \end{array}\right\|$			$\begin{aligned} & 1 \mathrm{w} \\ & 1 \mathrm{w} \\ & \mathrm{iw} \\ & \mathrm{iw} \end{aligned}$						$\begin{aligned} & 130 / 1.9 \\ & 130 / 1.9 \\ & 130 / 1.9 \\ & 150 / 1.7 \end{aligned}$	$\begin{array}{r} 20 \\ 10 \\ 5 \\ 20 \end{array}$
$\begin{array}{\|l} \text { 1N4355A } \\ \text { 1N43558 } \\ \text { 1N4356 } \\ \text { 1N4356A } \end{array}$	$\left\lvert\, \begin{aligned} & \mathbf{S} \\ & \mathbf{S} \\ & \mathbf{s} \\ & \mathbf{S} \end{aligned}\right.$	$\begin{aligned} & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \end{aligned}$			$\begin{aligned} & 1 w \\ & 1 w \\ & 1 w \\ & 1 \mathbf{w} \end{aligned}$						$\begin{aligned} & 150 / 1.7 \\ & 150 / 7.7 \\ & 160 / 1.6 \\ & 160 / 1.6 \end{aligned}$	10 5 20 10
1N43568 1N4357 IN4357A 1N4357B	$\begin{aligned} & 5 \\ & s \\ & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \end{aligned}$			$\begin{aligned} & \text { iw } \\ & \text { iw } \\ & \text { iw } \\ & \text { iw } \end{aligned}$						$\begin{aligned} & 160 / 1.6 \\ & 180 / 1.4 \\ & 180 / 1.4 \\ & 180 / 1.4 \end{aligned}$	5 20 10 5
1N4358 IN4358A 1N43588 IN4360	S	$\left.\begin{aligned} & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \end{aligned} \right\rvert\,$			$\begin{aligned} & 1 W \\ & 1 W \\ & 1 W \\ & 250 \end{aligned}$						$\begin{gathered} 200 / 1.2 \\ 200 / 1.2 \\ 200 / 1.2 \\ 2.4 / 10 \end{gathered}$	20 10 5 5
1N4361 1N4362 IN4363 iN4364	$\begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & R E \\ & S D \\ & S D \\ & R E \\ & R E \end{aligned}$		1N4007 1N484 IN4938 TID382		$\begin{aligned} & 900 \\ & 100 \\ & 150 \\ & 100 \end{aligned}$	$\begin{gathered} .5 \\ .75 \end{gathered}$	$\begin{gathered} 500 / 900 \\ 10 N / 50 \\ .1 / 120 \\ 100 / 100 \end{gathered}$	$\begin{array}{r} 1.3 / 500 \\ .9 / 100 \\ 1 / 200 \\ 1.5 / 750 \end{array}$	40		
IN4365 1N4366 1N4367 1N4368	$\begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & R E \\ & R E \\ & R E \\ & R E \\ & R E \end{aligned}$		$\begin{aligned} & \text { TID383 } \\ & \text { TID384 } \\ & \text { TID384 } \\ & \text { TID385 } \end{aligned}$		$\begin{array}{r} 200 \\ 300 \\ 400 \\ 500 \end{array}$	$\begin{aligned} & .75 \\ & .75 \\ & .75 \\ & .75 \end{aligned}$	$\begin{aligned} & 100 / 200 \\ & 100 / 300 \\ & 100 / 400 \\ & 100 / 500 \end{aligned}$	$\begin{aligned} & 1.5 / 750 \\ & 1.5 / 750 \\ & 1.5 / 750 \\ & 1.5 / 750 \end{aligned}$			
1N4369 1N4370 1N4370A IN4371	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\begin{aligned} & R E \\ & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \end{aligned}$		TID385	$\begin{array}{r} 400 \\ 400 \\ 400 \end{array}$	600	.75	100/600	1.5/750		$\begin{aligned} & 2.4 / 20 \\ & 2.4 / 20 \\ & 2.7 / 20 \end{aligned}$	10 5 10
1N4371A IN4372 1N4372A 1N4373	$\left\lvert\, \begin{aligned} & s \\ & 5 \\ & 5 \\ & s \end{aligned}\right.$	$\begin{aligned} & \mathrm{zo} \\ & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{sD} \end{aligned}$		1N4531	$\begin{array}{r} 400 \\ 400 \\ 400 \end{array}$	100		25N/20	1/10	4	$\begin{aligned} & 2.7 / 20 \\ & 3.0 / 20 \\ & 3.0 / 20 \end{aligned}$	5 10 5
1N4374 1N4375 iNa376 1N4377	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\begin{aligned} & R E \\ & S D \\ & S D \\ & R E \end{aligned}$		$\begin{aligned} & \text { 1N4 } 153 \\ & \text { TID701 } \end{aligned}$		$\begin{array}{r} 1.5 K \\ 60 \\ 20 \\ 25 K \end{array}$	$\begin{aligned} & .75 \\ & .75 \end{aligned}$	$\begin{aligned} & 100 / \\ & 10 N / 10 \\ & .1 / 10 \\ & 100 / \end{aligned}$	$\begin{aligned} & 1.7 / \\ & 1 / 20 \\ & 1.1 / 50 \\ & 30 / \end{aligned}$	$\begin{array}{r} 6 \\ .75 \end{array}$		

		\%			RATINOS			CHARACTERISTICS				
TYFE Rumber	$\frac{8}{3}$		$\begin{gathered} \text { n } \\ \text { REPLACEMENT } \end{gathered}$	$\begin{aligned} & \text { FON } \\ & \text { NBW } \\ & \text { DESVAN } \end{aligned}$		$\mathbf{V}_{\mathbf{R}}$ (V)	I (A)	$\begin{array}{cc} \mathbf{k}_{\mathbf{R}} & \mathbf{V}_{\mathrm{R}} \\ \mu \mathrm{~N} & /(\mathrm{V}\rangle \end{array}$	$\begin{array}{cc} \mathbf{V}_{\mathbf{F}} & \mathbf{i f} \\ \text { (V) } & /(\mathrm{mA}) \end{array}$	$\begin{aligned} & t r r \\ & (n s) \end{aligned}$	$\mathbf{v}_{\mathbf{Z}} \quad \mathbf{t z}_{\mathbf{z}}$ (V) $/(\mathrm{mA})$	$\begin{gathered} \text { rox } \\ \text { \% } \end{gathered}$
1N4380 1N4381 1N4382 1N4383	$\begin{aligned} & \mathbf{S} \\ & \mathbf{G} \\ & \mathbf{S} \\ & \mathbf{S} \end{aligned}$	$\begin{aligned} & \text { SO } \\ & \text { SD } \\ & \text { SD } \\ & \text { RE } \end{aligned}$		T1D383		50 25 55 200	1	$\begin{aligned} & 50 / 50 \\ & .1 M / \\ & .1 / \\ & 275 / 200 \end{aligned}$	$\begin{aligned} & 1.4 / 570 \\ & .35 / 2 \\ & 1 / 300 \\ & 1.3 / 1 \mathrm{~A} \end{aligned}$	$\begin{array}{r} 1.8 \\ 100 \\ 6.5 \end{array}$		
IN4384 1N4385 1N4389 1N4390	$\left\lvert\, \begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}\right.$	$\left\|\begin{array}{l} R E \\ R E \\ S D \\ S D \end{array}\right\|$		$\begin{aligned} & \text { TID384 } \\ & \text { TID385 } \\ & \text { IN4148 } \\ & \text { TID701 } \end{aligned}$		$\begin{array}{r} 400 \\ 600 \\ 5 \\ 20 \end{array}$	1	$\begin{gathered} 250 / 400 \\ 225 / 600 \\ 100 / 5 \\ .2 / 5 \end{gathered}$	$\begin{gathered} 1.3 / 1 \mathrm{~A} \\ 1.3 / 1 \mathrm{~A} \\ 1 / 2 \\ 1 / 5 \end{gathered}$. 5		
1N4391 1N4392 1N4400 INH400A	$\left\lvert\, \begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}\right.$	$\left.\begin{aligned} & S D \\ & \text { SD } \\ & \mathrm{ZD} \\ & \mathrm{ZD} \end{aligned} \right\rvert\,$		$\begin{aligned} & \text { TID701 } \\ & \text { TID701 } \\ & \text { 1N4736 } \\ & \text { 1N4736 } \end{aligned}$	$\begin{aligned} & \text { iw } \\ & \text { iw } \end{aligned}$	20 15		$\begin{aligned} & .2 / 5 \\ & 1 / 5 \end{aligned}$	$\begin{aligned} & 1 / 2 \\ & 1 / 2 \end{aligned}$. 5	$\begin{aligned} & 6.8 / 37 \\ & 6.8 / 37 \end{aligned}$	$\begin{aligned} & 20 \\ & 10 \end{aligned}$
1N44008 1N4401 IN4401A IN4401B	$\begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}$	$\left.\begin{aligned} & z 0 \\ & z D \\ & z D \\ & z D \end{aligned} \right\rvert\,$		1N4736A 1N4737 iN4737 1N4737A	$\begin{aligned} & \text { iw } \\ & \text { iw } \\ & \text { iw } \\ & \text { iw } \end{aligned}$						$\begin{aligned} & 6.8 / 37 \\ & 7.5 / 34 \\ & 7.5 / 34 \\ & 7.5 / 34 \end{aligned}$	$\begin{array}{r} 5 \\ 20 \\ 10 \\ 5 \end{array}$
$\begin{aligned} & \text { IN4402 } \\ & \text { INA } 102 \mathrm{~A} \\ & \text { INA402S } \\ & \text { IN4 } 03 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$	$\left.\begin{aligned} & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \end{aligned} \right\rvert\,$		1N4738 1N4738 1N4738A 1N4739	$\begin{aligned} & \text { iw } \\ & \text { iw } \\ & \text { iw } \\ & \text { iw } \end{aligned}$						$\begin{aligned} & 8.2 / 31 \\ & 8.2 / 31 \\ & 8.2 / 31 \\ & 9.1 / 28 \end{aligned}$	$\begin{array}{r} 20 \\ 10 \\ 5 \\ 20 \end{array}$
$\begin{aligned} & \text { IN4403A } \\ & \text { IN4403B } \\ & \text { IN4404 } \\ & \text { INA4O4A } \end{aligned}$	$\begin{aligned} & s \\ & s \\ & s \\ & s \\ & s \end{aligned}$	$\begin{aligned} & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \end{aligned}$		IN4739 IN4739A IN4740 IN4740	$\begin{aligned} & \text { iw } \\ & \text { iw } \\ & \text { iw } \\ & \text { iw } \end{aligned}$						$\begin{aligned} & 9.1 / 28 \\ & 9.1 / 28 \\ & 10 / 25 \\ & 10 / 25 \end{aligned}$	$\begin{array}{r} 10 \\ 5 \\ 20 \\ 10 \end{array}$
1N44048 in4405 IN4405A iN4405B	$\begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}$	$\left.\begin{aligned} & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \end{aligned} \right\rvert\,$		IMA740A 1N4741 1N4741 INA741A	1W 16 16 16						$\begin{aligned} & 10 / 25 \\ & 11 / 23 \\ & 11 / 23 \\ & 11 / 23 \end{aligned}$	5 20 10 5
1N4406 1N4406A 1N4068 in4407	$\begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{S} \\ & \mathbf{s} \end{aligned}$	$\begin{aligned} & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \end{aligned}$		1N4742 1N4742 IN4742A 1N4743	$\begin{aligned} & \text { iw } \\ & \text { iw } \\ & \text { iw } \\ & \text { iw } \end{aligned}$						$\begin{aligned} & 12 / 21 \\ & 12 / 21 \\ & 12 / 21 \\ & 13 / 19 \end{aligned}$	20 10 5 20
IN4407A IN4407B IN4408 INA408A	$\left\lvert\, \begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \end{aligned}\right.$		IN4743 IN4743A 1N4744 IN4744	$\begin{aligned} & 1 w \\ & 1 w \\ & 1 w \\ & 1 w \end{aligned}$						$\begin{aligned} & 13 / 19 \\ & 13 / 19 \\ & 15 / 17 \\ & 15 / 17 \end{aligned}$	10 5 20 10
IN4408B 1N4409 IN4410 1N4410A	$\left\lvert\, \begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}\right.$	$\begin{aligned} & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \end{aligned}$		INA74AA 1N4745 1N4746 1N4746	$\begin{aligned} & \text { iw } \\ & \text { iw } \\ & \text { iw } \\ & \text { iw } \end{aligned}$						$\begin{aligned} & 15 / 17 \\ & 16 / 19 \\ & 18 / 14 \\ & 18 / 14 \end{aligned}$	$\begin{array}{r} 5 \\ 20 \\ 20 \\ 10 \end{array}$

DIODE INTERCHANGEABILITY

TYPE NUMBER			11 REPLACEMENT	$\begin{aligned} & \text { FOR } \\ & \text { NEW } \\ & \text { DESICN } \end{aligned}$	P_{D} (mW)	tinges V_{R} (V)	I (A)	$\begin{array}{ll} \mathbf{l}_{\mathbf{R}} & \mathbf{V}_{\mathbf{R}} \\ \mu \mathrm{A} & / \mathbf{V}) \end{array}$	$\begin{aligned} & \mathbf{V}_{\mathbf{F}} \\ & (\mathbf{V}) \end{aligned}$	$\begin{gathered} \text { CHARACTE } \\ \text { © } \begin{array}{c} \text { IF } \\ /(\mathrm{mA}) \end{array} \end{gathered}$	t_{r} (m)	$\mathbf{v}_{\mathbf{z}} \cdot \mathbf{l}_{\mathbf{z}}$ (V) $/$ (mA)	
1N4410B 1N4411 1N4411A 1N441B	$\begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}$	$\begin{aligned} & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \end{aligned}$		1N4746A 1N4747 IN4747 1N4747A	$\begin{aligned} & \text { iw } \\ & \text { iw } \\ & \text { iw } \\ & \text { iw } \end{aligned}$							$\begin{aligned} & 18 / 14 \\ & 20 / 13 \\ & 20 / 13 \\ & 20 / 13 \end{aligned}$	5 20 10 5
1N4412 1N4412A 1N4412B IN4413	$\begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}$	$\left\|\begin{array}{l} \mathrm{ZD} \\ \mathrm{zD} \\ \mathrm{ZD} \\ \mathrm{ZD} \end{array}\right\|$		$\begin{array}{\|l} \text { 1N4748 } \\ \text { 1N4748 } \\ \text { IN4748A } \\ \text { IN4749 } \end{array}$	$\begin{aligned} & 16 \\ & 1 w \\ & 1 w \\ & 1 \mathbf{w} \end{aligned}$							$\begin{aligned} & 22 / 12 \\ & 22 / 12 \\ & 22 / 12 \\ & 24 / 11 \end{aligned}$	$\begin{array}{r} 20 \\ 10 \\ 5 \\ 20 \end{array}$
IN4413A IN4413B 1N4414 INA414A	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\left\|\begin{array}{l} \mathrm{ZD} \\ \mathrm{ZD} \\ \mathrm{ZD} \\ \mathrm{ZD} \end{array}\right\|$		1N4749 1N4749A 1N4750 1N4750	$\begin{aligned} & 1 \mathrm{w} \\ & 1 \mathrm{~W} \\ & 1 \mathrm{w} \\ & 1 \mathrm{w} \end{aligned}$							$\begin{aligned} & 24 / 11 \\ & 24 / 11 \\ & 27 / 9.5 \\ & 27 / 9.5 \end{aligned}$	$\begin{array}{r} 10 \\ 5 \\ 20 \\ 10 \end{array}$
1N4414B IN4415 1N4416 1N4416A	$\begin{aligned} & 5 \\ & 5 \\ & 5 \\ & \mathrm{~s} \end{aligned}$	$\begin{aligned} & \mathrm{zD} \\ & \mathrm{ZD} \\ & \mathrm{zD} \\ & \mathrm{ZD} \end{aligned}$		1N4750A 1N4751 1N4752 iN4752	$\begin{aligned} & \text { iw } \\ & \text { iw } \\ & \text { iw } \\ & \text { iw } \end{aligned}$							$\begin{aligned} & 27 / 9.5 \\ & 30 / 8.5 \\ & 33 / 7.5 \\ & 33 / 7.5 \end{aligned}$	$\begin{array}{r} 5 \\ 20 \\ 20 \\ 10 \end{array}$
1N4416B 1N4417 1N4417A 1N44178	$\begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}$	$\left\|\begin{array}{l} \mathrm{ZD} \\ \mathrm{ZD} \\ \mathrm{ZD} \\ \mathrm{ZD} \end{array}\right\|$		1N4752A	$\begin{aligned} & \text { iw } \\ & \text { iw } \\ & \text { iw } \\ & \text { iw } \end{aligned}$							$\begin{aligned} & 33 / 7.5 \\ & 36 / 7 \\ & 36 / 7 \\ & 36 / 7 \end{aligned}$	5 20 10 5
1N4418 IN4418A 1N4418B 1N4419	$\begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}$	$\left\|\begin{array}{l} \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \end{array}\right\|$			$\begin{aligned} & \text { iw } \\ & \text { iw } \\ & \text { iw } \\ & \text { iw } \end{aligned}$							$\begin{aligned} & 39 / 6.5 \\ & 39 / 6.5 \\ & 39 / 6.5 \\ & 43 / 6 \end{aligned}$	$\begin{array}{r} 20 \\ 10 \\ 5 \\ 20 \end{array}$
IN4419A 1N4419B 1N4420 IN4420A	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\begin{aligned} & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \end{aligned}$			$\begin{aligned} & \text { iw } \\ & \text { iw } \\ & \text { iw } \\ & \text { iw } \end{aligned}$							$\begin{aligned} & 43 / 6 \\ & 43 / 6 \\ & 47 / 5.5 \\ & 47 / 5.5 \end{aligned}$	$\begin{array}{r} 10 \\ 5 \\ 20 \\ 10 \end{array}$
$\begin{aligned} & \text { 1N4420B } \\ & \text { 1N4421 } \\ & \text { 1N4422 } \\ & \text { 1N4422A } \end{aligned}$	$\left\lvert\, \begin{aligned} & 5 \\ & 5 \\ & 5 \\ & s \end{aligned}\right.$	$\left\|\begin{array}{l} \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \end{array}\right\|$			$\begin{aligned} & \text { iw } \\ & \text { iw } \\ & \text { iw } \\ & \text { iw } \end{aligned}$							$\begin{aligned} & 47 / 5.5 \\ & 51 / 5 \\ & 56 / 4.5 \\ & 56 / 4.5 \end{aligned}$	$\begin{array}{r} 5 \\ 20 \\ 20 \\ 10 \end{array}$
1N4422B IN4423 1N4423A 1N4423B	$\begin{aligned} & \mathbf{s} \\ & s \\ & s \\ & s \end{aligned}$	$\begin{aligned} & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \end{aligned}$			$\begin{aligned} & 1 W \\ & 1 W \\ & 1 W \\ & 1 W \end{aligned}$							$\begin{aligned} & 56 / 4.5 \\ & 62 / 4 \\ & 62 / 4 \\ & 62 / 4 \end{aligned}$	5 20 10 5
1N4424 1N4424A 1N4424B 1N4425	$\begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}$	$\begin{aligned} & \mathrm{zo} \\ & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \end{aligned}$			$\begin{aligned} & \text { iw } \\ & \text { iw } \\ & \text { iw } \\ & \text { iw } \end{aligned}$							$\begin{aligned} & 68 / 3.7 \\ & 68 / 3.7 \\ & 68 / 3.7 \\ & 75 / 3.3 \end{aligned}$	$\begin{array}{r} 20 \\ 10 \\ 5 \\ 20 \end{array}$

TYFE Mumest		$\begin{gathered} \frac{3}{6} \\ \frac{2}{3} \\ \frac{3}{3} \\ \frac{3}{3} \end{gathered}$	II		ratines			CHARACTERISTICS				
					$\left\lvert\, \begin{gathered} \mathbf{P D}_{\mathrm{D}} \\ (\mathrm{~m} W) \end{gathered}\right.$	\mathbf{V}_{R} (V)	1 (A)	$\begin{array}{lll} \mathbf{V}_{\mathbf{R}} & \bullet \mathbf{V}_{\mathrm{R}} \\ \mu \mathrm{~A} & ,(\mathrm{~V}) \end{array}$	$\begin{array}{cc} V_{F} & \mathbf{V}_{F} \\ (\mathrm{~V}) & /(\mathrm{mA}) \end{array}$	$\begin{gathered} t r r \\ (n s) \end{gathered}$	$\begin{aligned} & \mathbf{V}_{\mathbf{z}} \quad \mathbf{z} \\ & (\mathrm{V}) \quad /(\mathrm{mA}) \end{aligned}$	$\begin{aligned} & \text { for } \\ & \times \end{aligned}$
1N4423A IN4425B INH26 IN4426A	$\left\lvert\, \begin{aligned} & 5 \\ & 5 \\ & s \\ & 5 \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \end{aligned}\right.$			1w						$\begin{aligned} & 75 / 3.3 \\ & 75 / 3.3 \\ & 82 / 3 \\ & 82 / 3 \end{aligned}$	$\begin{array}{r} 10 \\ 5 \\ 20 \\ 10 \end{array}$
$\begin{aligned} & \text { INA4268 } \\ & \text { INA427 } \\ & \text { INA428 } \\ & \text { IN4428A } \end{aligned}$	$\begin{aligned} & 5 \\ & s \\ & s \\ & s \end{aligned}$	$\begin{aligned} & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \end{aligned}$			$\begin{aligned} & \text { iw } \\ & \text { iw } \\ & \text { iw } \\ & \text { iw } \end{aligned}$						$\begin{gathered} 82 / 3 \\ 91 / 2.8 \\ 100 / 2.5 \\ 100 / 2.5 \end{gathered}$	$\begin{array}{r} 5 \\ 20 \\ 20 \\ 10 \end{array}$
1N42888 1N4429 IN4429A 1N4298	$\begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{S} \\ & \mathbf{s} \end{aligned}$	$\left.\begin{aligned} & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \end{aligned} \right\rvert\,$			$\begin{aligned} & \text { iw } \\ & \text { iw } \\ & \text { iw } \\ & \text { iw } \end{aligned}$						$\begin{aligned} & 100 / 2.5 \\ & 110 / 2.3 \\ & 110 / 2.3 \\ & 110 / 2.3 \end{aligned}$	5 20 10 5
IN4430 IN4430A IN44303 IN4431	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\begin{aligned} & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \end{aligned}$	-		$\begin{aligned} & \text { iw } \\ & \text { iw } \\ & \text { iw } \\ & \text { iw } \end{aligned}$						$\begin{aligned} & 120 / 2 \\ & 120 / 2 \\ & 120 / 2 \\ & 130 / 1.9 \end{aligned}$	20 10 5 20
$\begin{aligned} & \text { 1N4431A } \\ & \text { iN44318 } \\ & \text { 1N4432 } \\ & \text { INA432A } \end{aligned}$	$\begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}$	$\begin{aligned} & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \end{aligned}$			$\begin{aligned} & 1 \mathbf{w} \\ & 1 \mathbf{w} \\ & 1 \mathbf{w} \\ & 1 \mathbf{w} \end{aligned}$						$\begin{aligned} & 130 / 1.9 \\ & 130 / 1.9 \\ & 150 / 1.7 \\ & 150 / 1.7 \end{aligned}$	10 5 20 10
1N44328 IN4433 1N4334 INA434A	$\left\lvert\, \begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}\right.$	$\left\|\begin{array}{l} \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \end{array}\right\|$			$\begin{aligned} & \text { iw } \\ & \text { iw } \\ & \text { iw } \\ & \text { iw } \end{aligned}$						$\begin{aligned} & 150 / 1.7 \\ & 160 / 1.6 \\ & 180 / 1.4 \\ & 180 / 1.4 \end{aligned}$	5 20 20 10
1N44348 1N4435 IN4435A 1NC435B	$\begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}$	$\left\|\begin{array}{l} \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \end{array}\right\|$			$\begin{aligned} & \text { iw } \\ & \text { iw } \\ & \text { iw } \\ & \text { iw } \end{aligned}$						$\begin{aligned} & 180 / 1.4 \\ & 200 / 1.2 \\ & 200 / 1.2 \\ & 200 / 1.2 \end{aligned}$	5 20 10 5
1N4336 1N4437 1N4338 IN4439	5 5 5 5	$\begin{aligned} & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \end{aligned}$				$\begin{aligned} & 200 \\ & 400 \\ & 600 \\ & 800 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$	$1 \mathrm{M} /$ 1M/ 1M/ 1M/	$\begin{aligned} & 1.2 / \\ & 1.2 / \\ & 1 / \\ & 1.2 / \end{aligned}$			
1N4440 1Na4 1 1N4442 iN443	S S S S	$\begin{array}{\|l\|} \hline R E \\ R E \\ \text { SD } \\ \text { SD } \end{array}$				$1 K$ $1.5 K$ 30 50	$\begin{array}{r} 10 \\ .025 \end{array}$	$\begin{gathered} 1 M / \\ 1 / \\ 1 N / \\ 2 N / \end{gathered}$	$\begin{aligned} & 1.2 / \\ & 4 / \\ & 1 / 100 \\ & 1 / 100 \end{aligned}$	1 .6		
IN444 1N445 1N4446 1N4447	$\begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}$	$\begin{aligned} & \text { SO } \\ & \text { SD } \\ & \text { SD } \\ & \text { SD } \end{aligned}$	inceld IN446 1N4447	1N4151		$\begin{array}{r} 70 \\ 100 \\ 75 \\ 75 \end{array}$		$50 \mathrm{~N} / 50$ 50N/75 $25 \mathrm{~N} / 20$ 25N/20	$\begin{aligned} & 1 / 100 \\ & 1 / 100 \\ & 1 / 20 \\ & 1 / 20 \end{aligned}$	$\begin{aligned} & 7 \\ & 4 \\ & 4 \\ & 4 \end{aligned}$		

DIODE INTERCHANGEABILITY

TYFE NUMEER			7 REPLACEMENT	$\begin{aligned} & \text { FOR } \\ & \text { NEW } \\ & \text { DESICN } \end{aligned}$	P_{D} (mW)	tines $\mathbf{V}_{\mathbf{R}}$ (V)	I (A)	$\begin{array}{ll} \mathbf{I}_{\mathbf{R}} & \mathbf{V}_{\mathbf{R}} \\ \mu \mathbf{A} & /(\mathbf{V}) \end{array}$	CHARACT $\mathbf{V}_{\mathbf{F}}$ • $\mathbf{I F}$ (V) $/$ (mA)	RISTIC $\begin{aligned} & \text { Itr } \\ & \hline \end{aligned}$	$\mathbf{v}_{\mathbf{z}} \cdot \mathbf{l}_{\mathbf{z}}$ (V) / (mA)	TOL \%
IN4488 1N4449 IN4451 1N4450	$\left[\begin{array}{l} s \\ s \\ s \\ s \end{array}\right.$	$\begin{aligned} & \text { SD } \\ & \text { SD } \\ & \text { SD } \\ & \text { SD } \end{aligned}$	1N4448 1N449	IN4151 IN4150		75 75 40 40		25N/20 25N/20 50N/30 50N/30	$\begin{aligned} & .72 / 5 \\ & .73 / 5 \\ & .87 / 100 \\ & .92 / 100 \end{aligned}$	4 4 10 4		
1N4452 IN4453 iN4454 IN4455	$\begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}$	$\begin{aligned} & \text { SD } \\ & \text { SD } \\ & \text { SD } \\ & \text { SD } \end{aligned}$	1N4454	$\begin{aligned} & \text { 1N4608 } \\ & \text { IN4448 } \\ & \text { 1N4305 } \end{aligned}$		30 20 75 50		$\begin{array}{r} 50 \mathrm{~N} / 30 \\ 50 \mathrm{~N} / 20 \\ .1 / 50 \\ .1 / 20 \end{array}$	$\begin{gathered} 1 / 600 \\ .92 / 100 \\ 1 / 10 \\ .7 / 5 \end{gathered}$	$\begin{array}{r} 20 \\ 2 \end{array}$		
1N4456 IN4457 IN4458 1N4459	$\begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$	$\left\lvert\, \begin{aligned} & S D \\ & S D \\ & R E \\ & R E \end{aligned}\right.$,	$\begin{aligned} & \text { 1N4150 } \\ & \text { 1N4150 } \end{aligned}$		$\begin{array}{r} 35 \\ 50 \\ 800 \\ 1 \mathrm{~K} \end{array}$	5 5	$\begin{aligned} & .2 / 30 \\ & .2 / 40 \\ & 500 / \\ & 500 / \end{aligned}$	$\begin{aligned} & 1 / 150 \\ & 1 / 200 \\ & 1.5 / \\ & 1.5 / \end{aligned}$	1.5		
1N4460 IN4461 1N4462 1N4463	$\left\lvert\, \begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & \mathrm{zD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \end{aligned}\right.$		1N4735A 1N4736A IN4737A 1N4738A	$\begin{aligned} & 1.5 \mathrm{~W} \\ & 1.5 \mathrm{~W} \\ & 1.5 \mathrm{~W} \\ & 1.5 \mathrm{~W} \end{aligned}$						$\begin{aligned} & 6.2 / 40 \\ & 6.8 / 37 \\ & 7.5 / 34 \\ & 8.2 / 31 \end{aligned}$	5 5 5 5
7N4464 1 N4465 1N4466 1NA467	$\begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}$	$\begin{aligned} & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \end{aligned}$		1N4739A 1N4740A IN4741A 1N4742A	$\begin{aligned} & 1.5 \mathrm{~W} \\ & 1.5 \mathrm{~W} \\ & 1.5 \mathrm{~W} \\ & 1.5 \mathrm{~W} \end{aligned}$						$\begin{gathered} 9.1 / 28 \\ 10 / 25 \\ 11 / 23 \\ 12 / 21 \end{gathered}$	5 5 5 5
1N4468 1N4469 1N4470 1 N4471	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\begin{aligned} & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \end{aligned}$		1N4743A 1N4744A 1N4745A 1N4746A	$\begin{aligned} & 1.5 \mathrm{~W} \\ & 1.5 \mathrm{~W} \\ & 1.5 \mathrm{~W} \\ & 1.5 \mathrm{~W} \end{aligned}$						$\begin{aligned} & 13 / 19 \\ & 15 / 17 \\ & 16 / 16 \\ & 18 / 14 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$
IN4472 IN4473 IN4474 1N4475	$\left\lvert\, \begin{aligned} & 5 \\ & s \\ & s \\ & s \end{aligned}\right.$	$\left\|\begin{array}{l} \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \end{array}\right\|$		1N4747A 1N4748A 1N4749A IN4750A	$\begin{aligned} & 1.5 \mathrm{~W} \\ & 1.5 \mathrm{~W} \\ & 1.5 \mathrm{~W} \\ & 1.5 \mathrm{~W} \end{aligned}$						$\begin{aligned} & 20 / 13 \\ & 22 / 12 \\ & 24 / 11 \\ & 27 / 9.5 \end{aligned}$	5 5 5 5
1N476 1N4477 1N4478 1N4479	$\begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{S} \\ & \mathbf{s} \end{aligned}$	$\left\|\begin{array}{l} z 0 \\ z 0 \\ z 0 \\ z D \end{array}\right\|$		1N4751A 1N4752A	$\begin{aligned} & 1.5 \mathrm{~W} \\ & 1.5 \mathrm{~W} \\ & 1.5 \mathrm{~W} \\ & 1.5 \mathrm{~W} \end{aligned}$						$\begin{aligned} & 30 / 8.5 \\ & 33 / 7.5 \\ & 36 / 7 \\ & 39 / 6.5 \end{aligned}$	5 5 5 5
1N4480 1N4481 1N4482 IN4483	$\left\lvert\, \begin{aligned} & \mathbf{s} \\ & \mathbf{S} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}\right.$	$\left\|\begin{array}{l} z D \\ z D \\ z D \\ 20 \end{array}\right\|$			$\begin{aligned} & 1.5 \mathrm{~W} \\ & 1.5 \mathrm{~W} \\ & 1.5 \mathrm{~W} \\ & 1.5 \mathrm{~W} \end{aligned}$						$\begin{aligned} & 43 / 6 \\ & 47 / 5.5 \\ & 51 / 5 \\ & 56 / 4.5 \end{aligned}$	5 5 5 5
IN4484 IN4885 IN4486 1N4487	$\begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \\ & 20 \\ & 20 \end{aligned}$			$\begin{aligned} & 1.5 \mathrm{~W} \\ & 1.5 \mathrm{~W} \\ & 1.5 \mathrm{~W} \\ & 1.5 \mathrm{~W} \end{aligned}$						$\begin{aligned} & 62 / 4 \\ & 68 / 3.7 \\ & 75 / 3.3 \\ & 82 / 3 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$

TYP: NUMEER			$\begin{gathered} \text { T } \\ \text { REPLACEMENT } \end{gathered}$	$\begin{aligned} & \text { FOR } \\ & \text { NRW } \\ & \text { DESHCN } \end{aligned}$	ratines			CHARACTERISTICS				
						$\mathbf{V}_{\mathbf{R}}$ (V)	I (A)	$\begin{array}{ll} \mathbf{R} & \mathbf{V}_{\mathbf{R}} \\ \boldsymbol{\mu} & /(\mathbf{V}) \end{array}$	$\begin{array}{ccc} \mathbf{V F}_{F} & \mathbf{F} \\ \text { (V) } & /(\mathrm{mA}) \end{array}$	$\begin{gathered} \mathbf{I}_{\mathbf{r}} \\ \text { (ns) } \end{gathered}$	$\begin{array}{ll} \mathbf{V}_{\mathbf{Z}} & \mathbf{l} \mathbf{Z} \\ (\mathbf{V}) & /(\mathrm{mA}) \end{array}$	$\begin{gathered} \text { rol } \\ \times \end{gathered}$
1N4488 1N4489 iN4490 1N4491	$\begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}$	$\begin{aligned} & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \end{aligned}$			$\begin{aligned} & 1.5 \mathrm{~W} \\ & 1.5 \mathrm{~W} \\ & 1.5 \mathrm{~W} \\ & 1.5 \mathrm{~W} \end{aligned}$						$\begin{aligned} & 91 / 2.8 \\ & 100 / 2.5 \\ & 110 / 2.3 \\ & 120 / 2 \end{aligned}$	5 5 5 5
1N4492 1N4493 IN4494 1N4495	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\begin{aligned} & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \end{aligned}$			$\begin{aligned} & 1.5 \mathrm{~W} \\ & 1.5 \mathrm{~W} \\ & 1.5 \mathrm{~W} \\ & 1.5 \mathrm{~W} \end{aligned}$						$\begin{aligned} & 130 / 1.9 \\ & 150 / 1.7 \\ & 160 / 1.6 \\ & 180 / 1.4 \end{aligned}$	5 5 5 5
1N4496 1N4497 IN4498 1N4499	$\begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}$	$\left\|\begin{array}{l} \mathrm{ZD} \\ \mathrm{RE} \\ \mathrm{RE} \\ \mathrm{ZD} \end{array}\right\|$		1N4735A	$1.5 \mathrm{~W}$ IW	$\begin{array}{r} 1.6 K \\ 3 K \end{array}$	$\begin{aligned} & .75 \\ & .75 \end{aligned}$	$\begin{aligned} & 100 / \\ & 100 \% \end{aligned}$	$\begin{aligned} & 3 / \\ & 5 / \end{aligned}$		$\begin{aligned} & 200 / 1.2 \\ & 6.2 / 7.5 \end{aligned}$	5 5
$\begin{aligned} & \text { IN4500 } \\ & \text { IN4502 } \\ & \text { IN4505 } \\ & \text { IN4506 } \end{aligned}$	$\left\lvert\, \begin{aligned} & 5 \\ & G \\ & S \\ & S \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & S D \\ & S D \\ & R E \\ & R E \\ & R E \end{aligned}\right.$		$\begin{aligned} & \text { 1NA607 } \\ & \text { 1N4305 } \end{aligned}$		$\begin{array}{r} 100 \\ 20 \\ 6 K \\ 200 \end{array}$. 12	$\begin{aligned} & .1 / 75 \\ & 10 / 6 \\ & 100 / \end{aligned}$	$\begin{aligned} & 1 / 300 \\ & .3 / 3 \\ & 8.5 / \\ & 1.4 / \end{aligned}$	4		
$\begin{aligned} & \text { 1N4507 } \\ & \text { 1N4508 } \\ & \text { 1N4509 } \\ & \text { 1N4510 } \end{aligned}$	$\begin{aligned} & s \\ & s \\ & s \\ & s \\ & s \end{aligned}$	$\begin{array}{\|l\|} \mathbf{R E} \\ \mathrm{RE} \\ \mathrm{RE} \\ \mathrm{RE} \end{array}$				400 600 800 $1 K$	$\begin{aligned} & 12 \\ & 12 \\ & 12 \\ & 12 \end{aligned}$	2M/	$\begin{aligned} & 1.4 / \\ & 1.4 / \\ & 1.4 / \\ & 1.4 / \end{aligned}$			
IN4511 1N4512 IN4513 1N4514	$\begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}$	$\begin{aligned} & \text { RE } \\ & \text { SD } \\ & \text { RE } \\ & \text { RE } \end{aligned}$				$\begin{array}{r} 1.2 K \\ 10 \\ 2 K \\ 800 \end{array}$	$\begin{aligned} & 12 \\ & .25 \\ & 1.1 \end{aligned}$	$\begin{aligned} & 10 \mathrm{~N} / \\ & 100 / \\ & 100 / \end{aligned}$	$\begin{aligned} & 1.4 / \\ & .77 / 5 \\ & 4.5 / \\ & 1 / \end{aligned}$			
1N4517 iN4523 iN4524 1N4531	$\left\lvert\, \begin{aligned} & s \\ & G \\ & G \\ & S \end{aligned}\right.$	$\begin{array}{\|c\|} \text { RE } \\ \text { SD } \\ \text { SD } \\ \text { SD } \end{array}$	1N4531	$\begin{aligned} & \text { 1N4305 } \\ & \text { IN4305 } \end{aligned}$		200 15 10 75	2	$\begin{aligned} & 100 / \\ & 30 / 10 \\ & 12 / 6 \\ & 25 N / 20 \end{aligned}$	$\begin{aligned} & 1.2 / \\ & .5 / 10 \\ & .65 / 10 \\ & 1 / 10 \end{aligned}$	8 3 4		
1N4532 1N4533 1N4534 1N4535	$\begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}$	$\begin{aligned} & \text { SD } \\ & \text { SD } \\ & \text { SD } \\ & \mathrm{ZD} \end{aligned}$	1N4532 1N4533 1N4534		500	75 40 75		$\begin{array}{r} .1 / 50 \\ 50 \mathrm{~N} / 30 \\ 50 \mathrm{~N} / 50 \end{array}$	$\begin{array}{r} 1 / 10 \\ .88 / 20 \\ .88 / 20 \end{array}$	2	3.45/5	5
1N4536 1N4537 1N4538 iN4539	$\left\lvert\, \begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}\right.$	$\begin{aligned} & \mathrm{SD} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \end{aligned}$	1N4536			35 $1.5 K$ $2 K$ $2.5 K$	3 3 3	.1/25	$\begin{array}{r} 1 / 30 \\ 1.8 / .3 \\ 1.8 / .3 \\ 1.8 / .3 \end{array}$	2		
iN4540 1N4541 1N4542 1N4543	S S S S	$\begin{aligned} & \text { RE } \\ & \text { SD } \\ & \text { SD } \\ & \text { SD } \end{aligned}$				$\begin{array}{r} 3 K \\ 225 \\ 400 \\ 600 \end{array}$	3	$\begin{aligned} & 20 N / 225 \\ & 20 N / 400 \\ & 20 N / 600 \end{aligned}$	$\begin{aligned} & 1.8 / .3 \\ & 1 / 400 \\ & 1 / 400 \\ & 1 / 400 \end{aligned}$			

TYPE number	$\begin{aligned} & \overrightarrow{2} \\ & \frac{2}{2} \\ & \frac{1}{E} \end{aligned}$		$\underset{\text { REPLACEMENT }}{\text { II }}$	$\begin{gathered} \text { FOR } \\ \text { NEW } \\ \text { DESIGN } \end{gathered}$	$\begin{gathered} P_{D} \\ (m W) \end{gathered}$	inges $\mathbf{V}_{\mathbf{R}}$ (V)	(A)	$\begin{array}{ll} \mathbf{l}_{\mathbf{R}} & \mathbf{V}_{\mathbf{R}} \\ \mu_{\mathrm{A}} & /(\mathbf{V}) \end{array}$	$\mathbf{V F}_{\mathrm{F}}$ - I_{F} (V) $/$ (mA)	ristic trr (ms)	$\begin{array}{ccc} v_{z} & c & l z \\ (v) & /(\mathrm{ma}) \end{array}$	$\begin{gathered} \text { rol } \\ \text { \% } \end{gathered}$
1 N 4544 1N4545 iN4546 1N4547	$\begin{array}{\|l} \hline \mathbf{s} \\ \mathbf{s} \\ \mathbf{s} \\ \mathbf{s} \end{array}$	S		1N649 1N4151		800 $1 K$ $25 K$ 25	1	$\begin{aligned} & 20 \mathrm{~N} / 800 \\ & 20 \mathrm{~N} / 1 \mathrm{~K} \\ & 100 / \\ & 10 \mathrm{~N} / 25 \end{aligned}$	$\begin{gathered} 1 / 400 \\ 1 / 400 \\ 30 / \\ 1 / 25 \end{gathered}$			
1N4548 1N4565 1N4565A 1N4566	$\begin{aligned} & \mathbf{s} \\ & s \\ & s \\ & s \end{aligned}$	SD RD RD RD	-	IN4536	$\begin{array}{r} 400 \\ 400 \\ 400 \end{array}$	35		.1/25	1/30	4	6.4/. 5 6.4/.5 6.4/.5	5 5 5
1N4566A 1N4567 1N4567A 1N4568	$\begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}$				$\begin{aligned} & 400 \\ & 400 \\ & 400 \\ & 400 \end{aligned}$						$\begin{aligned} & 6.4 / .5 \\ & 6.4 / .5 \\ & 6.4 / .5 \\ & 6.4 / .5 \end{aligned}$	5 5 5 5
1N4568A 1N4569 1N4569A IN4570	$\begin{array}{\|l} \hline \mathbf{s} \\ \mathrm{s} \\ \mathrm{~s} \\ \mathrm{~s} \end{array}$	$\left.\begin{aligned} & \mathbf{R D} \\ & \mathbf{R D} \\ & \mathbf{R D} \\ & \mathbf{R D} \end{aligned} \right\rvert\,$			$\begin{aligned} & 400 \\ & 400 \\ & 400 \\ & 400 \end{aligned}$						$\begin{aligned} & 6.4 / .5 \\ & 6.4 / .5 \\ & 6.4 / .5 \\ & 6.4 / 1 \end{aligned}$	5 5 5 5
ina570A 1N4571 IN4571A 1N4572	$\begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \hline \end{aligned}$	$\left.\begin{array}{\|l\|} \mathrm{RD} \\ \mathrm{RD} \\ \mathrm{RD} \\ \mathrm{RD} \end{array} \right\rvert\,$			$\begin{aligned} & 400 \\ & 400 \\ & 400 \\ & 400 \end{aligned}$						$\begin{aligned} & 6.4 / 1 \\ & 6.4 / 1 \\ & 6.4 / 1 \\ & 6.4 / 1 \end{aligned}$	5 5 5 5
1N4572A 1N4573 iN4573A in4574	$\begin{aligned} & \hline s \\ & 5 \\ & s \\ & s \end{aligned}$	$\left.\begin{array}{\|l\|} \hline R D \\ R D \\ R D \\ R D \\ R D \end{array} \right\rvert\,$			$\begin{aligned} & 400 \\ & 400 \\ & 400 \\ & 400 \end{aligned}$						$\begin{aligned} & 6.4 / 1 \\ & 6.4 / 1 \\ & 6.4 / 1 \\ & 6.4 / 1 \end{aligned}$	5 5 5 5
1N4574A 1N4575 1N4575A IN4576	$\begin{aligned} & \mathbf{s} \\ & s \\ & s \\ & s \end{aligned}$	$\begin{array}{l\|} \mathrm{RD} \\ \mathrm{RD} \\ \mathrm{RD} \\ \mathrm{RD} \end{array}$			$\begin{aligned} & 400 \\ & 400 \\ & 400 \\ & 400 \end{aligned}$						$\begin{aligned} & 6.4 / 1 \\ & 6.4 / 2 \\ & 8.4 / 2 \\ & 6.4 / 2 \end{aligned}$	5 5 5 5
1N4576A 1N4577 1N4577A 1N4578	$\begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}$	$\left\|\begin{array}{l} R D \\ R D \\ R D \\ R D \end{array}\right\|$			$\begin{aligned} & 400 \\ & 400 \\ & 400 \\ & 400 \end{aligned}$						$\begin{aligned} & 6.4 / 2 \\ & 6.4 / 2 \\ & 6.4 / 2 \\ & 6.4 / 2 \end{aligned}$	5 5 5 5
iN4578A iN4579 IN4579A IN4580	$\left\lvert\, \begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}\right.$	$\left\|\begin{array}{l\|} \mathrm{RD} \\ \mathrm{RD} \\ \mathrm{RD} \\ \mathrm{RD} \end{array}\right\|$			$\begin{aligned} & 400 \\ & 400 \\ & 400 \\ & 400 \end{aligned}$						$\begin{aligned} & 6.4 / 2 \\ & 6.4 / 2 \\ & 6.4 / 2 \\ & 6.4 / 4 \end{aligned}$	5 5 5 5
IN4580A IN4581 IN4581A 1N4582	$\begin{aligned} & \mathbf{s} \\ & s \\ & s \\ & s \\ & s \end{aligned}$	$\left\|\begin{array}{l} R D \\ R D \\ R D \\ R D \end{array}\right\|$			$\begin{aligned} & 400 \\ & 400 \\ & 400 \\ & 400 \end{aligned}$						$\begin{aligned} & 6.4 / 4 \\ & 6.4 / 4 \\ & 6.4 / 4 \\ & 6.4 / 4 \end{aligned}$	5 5 5 5

TYPE NUMEER			π replacement		RAtings			CHARACTERISTICS				
					PD (mW)	$\begin{aligned} & V_{R} \\ & (V) \end{aligned}$	I (A)	$\begin{array}{ll} \mathbf{V}_{\mathbf{R}} & \mathbf{V}_{\mathbf{R}} \\ \mu_{\mathrm{A}} & /(\mathbf{V}) \end{array}$	$\mathbf{V F}_{\mathrm{F}}$ - $\mathbf{I F}_{\mathbf{F}}$ (V) $/$ (mA)	$\begin{aligned} & 1 \pi \\ & (n s) \end{aligned}$	$\mathbf{v}_{\mathbf{z}}$ - \mathbf{z} (V) $/$ (mA)	$\begin{aligned} & \text { TOL } \\ & \% \end{aligned}$
IN4582A IN4583 1N4583A 1N4584	$\left\lvert\, \begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & \mathrm{RD} \\ & \mathrm{RD} \\ & \mathrm{RD} \\ & \mathrm{RD} \end{aligned}\right.$			$\begin{array}{r} 400 \\ 400 \\ 400 \\ 400 \end{array}$.			6.4/4 6.4/4 6.4/4 6.4/4	5 5 5 5
1N4584A 1N4585 1N4586 1N4596	$\left\lvert\, \begin{aligned} & \mathbf{S} \\ & \mathbf{S} \\ & \mathbf{S} \\ & \mathbf{s} \end{aligned}\right.$	$\begin{aligned} & \mathrm{RD} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \end{aligned}$		$\begin{aligned} & \text { TID387 } \\ & \text { TID387 } \end{aligned}$	400	$\begin{array}{r} 800 \\ 1 \mathrm{~K} \\ 1.4 \mathrm{~K} \end{array}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 2 / 800 \\ & 2 / 1 K \end{aligned}$	$\begin{aligned} & 1.3 / 1 \mathrm{~A} \\ & 1.3 / 1 \mathrm{~A} \\ & 1.3 / 3.5 \end{aligned}$		6.4/4	5
1N4597 1N4606 1N4607 IN4608	$\begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}$	$\begin{array}{c\|c} \text { RE } & \\ \text { SD } & 1 \\ \text { SD } & 1 \\ \text { SD } & 1 \end{array}$				$\begin{aligned} & 5 K \\ & 85 \\ & 85 \\ & 85 \end{aligned}$. 025	$\begin{aligned} & .25 / 70 \\ & .25 / 70 \\ & .25 / 70 \end{aligned}$	$\begin{aligned} & 5 / \\ & 1 / 200 \\ & .95 / 250 \\ & .96 / 350 \end{aligned}$	6 10 10		
1N4610 1N4611 1N4611A 1N4611B	$\begin{aligned} & \mathbf{s} \\ & \mathbf{S} \\ & \mathbf{S} \\ & \mathbf{s} \end{aligned}$	$\left.\begin{aligned} & \mathrm{SD} \\ & \mathrm{RD} \\ & \mathrm{RD} \\ & \mathrm{RD} \end{aligned} \right\rvert\,$		IN4150	$\begin{aligned} & 250 \\ & 250 \\ & 250 \end{aligned}$	80		.1/55	1.1/300	2	$\begin{aligned} & 6.6 / 2 \\ & 6.6 / 2 \\ & 6.6 / 2 \end{aligned}$	
1N4611C 1N4612 1N4612A 1N4612B	$\left\lvert\, \begin{aligned} & 5 \\ & s \\ & s \\ & 5 \end{aligned}\right.$	$\left.\begin{array}{\|l\|} \mathrm{RD} \\ \mathrm{RD} \\ \mathrm{RD} \\ \mathrm{RD} \\ \mathrm{RD} \end{array} \right\rvert\,$			$\begin{aligned} & 250 \\ & 250 \\ & 250 \\ & 250 \end{aligned}$		-				$\begin{aligned} & 6.6 / 2 \\ & 6.6 / 5 \\ & 6.6 / 5 \\ & 6.6 / 5 \end{aligned}$	
IN4612C 1N4613 IN4613A 1N4613B	$\begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}$	$\left.\begin{array}{\|l\|} \mathrm{RD} \\ \mathrm{RD} \\ \mathrm{RD} \\ \mathrm{RD} \end{array} \right\rvert\,$			250 250 250 250						$\begin{aligned} & 6.6 / 5 \\ & 6.6 / 10 \\ & 6.6 / 10 \\ & 6.6 / 10 \end{aligned}$	
1N4613C 1N4614 1Na615 1N4616	$\begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}$	$\left\|\begin{array}{l} \mathrm{RD} \\ \mathrm{ZD} \\ \mathrm{ZD} \\ \mathrm{ZD} \end{array}\right\|$			250 250 250 250						$\begin{array}{r} 6.6 / 10 \\ 1.8 / .25 \\ 2 / .25 \\ 2.2 / .25 \end{array}$	5 5 5
1 N4617 1N4618 IN4619 1N4620	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\left\|\begin{array}{l} \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{ZD} \end{array}\right\|$			250 250 250 250			.			$\begin{array}{r} 2.4 / .25 \\ 2.7 / .25 \\ 3 / .25 \\ 3.3 / .25 \end{array}$	5 5 5 5
IN4621 IN4622 1N4623 iN4624	$\begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}$	$\left\lvert\, \begin{aligned} & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \end{aligned}\right.$			250 250 250 250						$\begin{aligned} & 3.6 / .25 \\ & 3.9 / .25 \\ & 4.3 / .25 \\ & 4.7 / .25 \end{aligned}$	5 5 5 5
1N4625 1N4626 1N4627 1N4628	S	$\begin{aligned} & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \end{aligned}$		1N4736A	$\begin{aligned} & 250 \\ & 250 \\ & 250 \\ & 600 \end{aligned}$						$\begin{aligned} & 5.1 / .25 \\ & 5.6 / .25 \\ & 6.2 / .25 \\ & 6.8 / 19 \end{aligned}$	5 5 5 5

DIODE INTERCHANGEABILITY

	2	$\left\|\begin{array}{l} \mathbf{z} \\ \mathbf{8} \end{array}\right\|$			RAtines			CHARACTERHSTICS				
TYPE MUMEER	$\frac{\text { 萨 }}{\frac{2}{2}}$		π replacement	FOR NEW DESTEN	$\begin{gathered} P D \\ (\mathrm{~mW}) \end{gathered}$	$\begin{aligned} & V_{R} \\ & (V) \end{aligned}$	1 (A)	$\begin{array}{ll} \mathbf{I}_{\mathbf{R}} & \oplus \mathbf{V}_{\mathbf{R}} \\ \mu_{\mathbf{N}} & /(\mathbf{V}) \end{array}$	$\begin{array}{ll} \mathbf{V}_{F} & \mathbf{F}_{\mathbf{F}} \\ \text { (V) } & / \mathrm{ma}) \end{array}$	(ns)	$\begin{array}{llc} \mathbf{v}_{\mathbf{z}} & \mathrm{Z} \\ (\mathrm{~V}) & / \mathrm{mA}) \end{array}$	$\begin{aligned} & \text { 10 } \\ & \text { \% } \end{aligned}$
IN4669 IN4670 IN4671 1N4672	s	$\left\|\begin{array}{c} \mathrm{zD} \\ \mathbf{z D} \\ \mathbf{z D} \\ \mathbf{z D} \end{array}\right\|$		IN4748A IN4749A IN4750A IN4751A	$\begin{aligned} & \text { iw } \\ & \text { iw } \\ & \text { iw } \\ & \text { iw } \end{aligned}$						$\begin{aligned} & 22 / 12 \\ & 24 / 11 \\ & 27 / 9.5 \\ & 30 / 8.5 \end{aligned}$	5 5 5 5
1N4673 iN4674 1N4675 IN4676	$\left\lvert\, \begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}\right.$	$\left\|\begin{array}{c} \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \end{array}\right\|$		1N4752A	$\begin{aligned} & 1 w \\ & 1 w \\ & 1 \mathbf{1 w} \\ & 1 w \end{aligned}$						$\begin{aligned} & 33 / 7.5 \\ & 36 / 7 \\ & 39 / 6.5 \\ & 43 / 6 \end{aligned}$	5 5 5 5
1N4677 1N4678 1N4679 IN4680	$\left\lvert\, \begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}\right.$	$\left\|\begin{array}{l} \mathrm{zD} \\ \mathrm{ZD} \\ \mathrm{ZD} \\ \mathrm{ZD} \end{array}\right\|$			$\begin{aligned} & 1 w \\ & 250 \\ & 250 \\ & 250 \end{aligned}$						$\begin{array}{r} 47 / 5.5 \\ 1.8 / .05 \\ 2 / .05 \\ 2.2 / .05 \end{array}$	5 5 5 5
1N4681 1N4682 1N4683 1N4684	$\begin{aligned} & \mathbf{S} \\ & \mathbf{S} \\ & \mathbf{S} \\ & \mathbf{S} \end{aligned}$	$\left\|\begin{array}{l} \mathrm{ZD} \\ \mathrm{ZD} \\ \mathrm{ZD} \\ \mathrm{zD} \end{array}\right\|$			$\begin{aligned} & 250 \\ & 250 \\ & 250 \\ & 250 \end{aligned}$						$\begin{array}{r} 2.4 / .05 \\ 2.7 / .05 \\ 3 / .05 \\ 3.3 / .05 \end{array}$	5 5 5 5
1N4685 1N4686 IN4687 1N4688	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\begin{aligned} & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \end{aligned}$			$\begin{aligned} & 250 \\ & 250 \\ & 250 \\ & 250 \end{aligned}$						$\begin{aligned} & 3.6 / .05 \\ & 3.9 / .05 \\ & 4.3 / .05 \\ & 4.7 / .05 \end{aligned}$	5 5 5 5
1N4689 IN4690 IN4691 1N4692	$\left\lvert\, \begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{S} \\ & \mathbf{s} \end{aligned}\right.$	$\left\|\begin{array}{l} \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \end{array}\right\|$			$\begin{aligned} & 250 \\ & 250 \\ & 250 \\ & 250 \end{aligned}$						$\begin{aligned} & 5.1 / .05 \\ & 5.6 / .05 \\ & 6.2 / .05 \\ & 6.8 / .05 \end{aligned}$	5 5 5 5
1N4693 IN4694 1N4695 IN4696	$\left\lvert\, \begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}\right.$	$\left\|\begin{array}{l} \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \end{array}\right\|$			$\begin{aligned} & 250 \\ & 250 \\ & 250 \\ & 250 \end{aligned}$						$\begin{aligned} & 7.5 / .05 \\ & 8.2 / .05 \\ & 8.7 / .05 \\ & 9.1 / .05 \end{aligned}$	5 5 5 5
$\begin{aligned} & \text { IN4697 } \\ & \text { iN4698 } \\ & \text { iN4699 } \\ & \text { iN4700 } \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \end{aligned}$			$\begin{aligned} & 250 \\ & 250 \\ & 250 \\ & 250 \end{aligned}$						$\begin{aligned} & 10 / .05 \\ & 11 / .05 \\ & 12 / .05 \\ & 13 / .05 \end{aligned}$	5 5 5 5
$\begin{aligned} & \text { 1N4701 } \\ & \text { 1N4702 } \\ & \text { 1N4703 } \\ & \text { IN4704 } \end{aligned}$	$\begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}$	$\begin{aligned} & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \end{aligned}$			$\begin{aligned} & 250 \\ & 250 \\ & 250 \\ & 250 \end{aligned}$						$\begin{aligned} & 14 / .05 \\ & 15 / .05 \\ & 16 / .05 \\ & 17 / .05 \end{aligned}$	5 5 5 5
$\begin{aligned} & \text { 1N4705 } \\ & \text { IN4706 } \\ & \text { IN4707 } \\ & \text { 1N4708 } \end{aligned}$	$\begin{aligned} & \mathbf{s} \\ & s \\ & s \\ & s \end{aligned}$	$\begin{aligned} & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{ZD} \end{aligned}$			$\begin{aligned} & 250 \\ & 250 \\ & 250 \\ & 250 \end{aligned}$						$\begin{aligned} & 18 / .05 \\ & 19 / .05 \\ & 20 / .05 \\ & 22 / .05 \end{aligned}$	5 5 5 5

DIODE INTERCHANGEABILITY

TYPE NUMBER	$\frac{\text { 畐 }}{\frac{1}{2}}$	$\begin{aligned} & \mathbf{z} \\ & \mathbf{y} \\ & \mathbf{y} \\ & \frac{1}{2} \\ & \frac{3}{3} \end{aligned}$	II		RAtines			CHARAACTERISTICS				
					$\begin{gathered} \text { PD } \\ (\mathrm{mW}) \end{gathered}$	$\mathbf{V}_{\mathbf{R}}$ (V)	(A)	$\begin{array}{ll} \mathbf{I}_{\mathbf{R}} & \mathbf{V}_{\mathbf{R}} \\ \mu_{\mathbf{A}} & /(\mathbf{V}) \end{array}$	$\begin{gathered} V_{F} \quad l_{F} \\ \text { (V) } /(\mathrm{mA}) \end{gathered}$	$\begin{aligned} & \mathbf{t}_{\mathbf{r r}} \\ & \text { (ns) } \end{aligned}$	$\mathbf{V}_{\mathbf{Z}} \cdot \mathbf{I} \mathbf{Z}$ (V) $/$ (mA)	$\begin{aligned} & \mathrm{rOf} \\ & \text { \% } \end{aligned}$
1N4709 1N4710 1N4711 1N4712	$\begin{aligned} & \mathrm{s} \\ & \mathrm{~s} \\ & \mathrm{~s} \\ & \mathrm{~s} \end{aligned}$	$\begin{aligned} & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \end{aligned}$			$\begin{aligned} & 250 \\ & 250 \\ & 250 \\ & 250 \end{aligned}$						$\begin{aligned} & 24 / .05 \\ & 25 / .05 \\ & 27 / .05 \\ & 28 / .05 \end{aligned}$	5 5 5 5
1N4713 IN4714 iN4715 1N4716	$\begin{aligned} & \mathrm{s} \\ & \mathrm{~s} \\ & \mathrm{~s} \\ & \mathrm{~s} \end{aligned}$	$\begin{aligned} & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \end{aligned}$			$\begin{aligned} & 250 \\ & 250 \\ & 250 \\ & 250 \end{aligned}$						$\begin{aligned} & 30 / .05 \\ & 33 / .05 \\ & 36 / .05 \\ & 39 / .05 \end{aligned}$	5 5 5 5
1N4717 1N4718 1N4719 1N4720	$\begin{aligned} & \mathbf{S} \\ & \mathbf{S} \\ & \mathbf{S} \\ & \mathbf{s} \end{aligned}$	$\begin{aligned} & \mathrm{ZD} \\ & \mathrm{SD} \\ & \mathrm{RE} \\ & \mathrm{RE} \end{aligned}$		1N4608	250	50 50 100	3 3	$\begin{aligned} & 50 / 50 \\ & 1 \mathrm{M} / \\ & 1 \mathrm{M} / \end{aligned}$	$\begin{aligned} & 1.2 / 750 \\ & 1 / \\ & 1 / \end{aligned}$	180	40/.05	5
1N4721 1N4722 1N4723 1N4724	$\begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}$	$\begin{array}{\|l\|} \mathbf{R E} \\ \mathrm{RE} \\ \mathrm{RE} \\ \mathrm{RE} \end{array}$				$\begin{aligned} & 200 \\ & 400 \\ & 600 \\ & 800 \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \\ & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & 1 \mathrm{M} / \\ & 1 \mathrm{M} / \\ & 1 \mathrm{M} / \\ & 1 \mathrm{M} / \end{aligned}$	$\begin{aligned} & 1 / \\ & 1 / \\ & 1 / \\ & 1 / \end{aligned}$			
iN4725 iN4726 1N4727 1NA728	$\begin{aligned} & \mathbf{S} \\ & \mathbf{S} \\ & \mathbf{S} \\ & \mathbf{s} \end{aligned}$	$\begin{aligned} & \mathrm{RE} \\ & \mathrm{SD} \\ & \mathrm{SD} \\ & \mathrm{ZD} \end{aligned}$	$\begin{aligned} & \text { 1N4727 } \\ & \text { iN4728 } \end{aligned}$	1N4727	1W	$1 K$ 30 30	3	1M/ .1/20 $.1 / 20$			3.3/76	10
1N4728A 1N4729 1N4729A iN4730	$\left\lvert\, \begin{aligned} & \mathbf{s} \\ & \mathbf{S} \\ & \mathbf{S} \\ & \mathbf{S} \end{aligned}\right.$	$\left\|\begin{array}{l} \mathrm{ZD} \\ \mathrm{ZD} \\ \mathrm{ZD} \\ \mathrm{ZD} \end{array}\right\|$	1N4728A 1N4729 IN4729A 1N4730		$\begin{aligned} & \text { iw } \\ & \text { iw } \\ & \text { iw } \\ & \text { iw } \end{aligned}$						3.3/76 3.6/69 3.6/69 3.9/64	5 10 5 10
1N4730A 1N4731 1N4731A 1N4732	$\begin{aligned} & \mathrm{S} \\ & \mathrm{~s} \\ & \mathrm{~s} \\ & \mathrm{~s} \end{aligned}$	$\left\|\begin{array}{l} \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{ZD} \\ \mathrm{ZD} \end{array}\right\|$	IN4730A 1N4731 IN4731A 1N4732		IW IW IW IW						$\begin{aligned} & 3.9 / 64 \\ & 4.3 / 58 \\ & 4.3 / 58 \\ & 4.7 / 53 \end{aligned}$	5 10 5 10
1N4732A 1N4733 1N4733A 1N4734	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\begin{aligned} & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \end{aligned}$	1N4732A 1N4733 1N4733A 1N4734		$\begin{aligned} & \text { iw } \\ & \text { iw } \\ & \text { iw } \\ & \text { iw } \end{aligned}$						$\begin{aligned} & 4.7 / 53 \\ & 5.1 / 49 \\ & 5.1 / 49 \\ & 5.6 / 45 \end{aligned}$	5 10 5 10
1N4734A 1N4735 1N4735A 1N4736	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \end{aligned}\right.$	1N4734A 1N4735 1N4735A 1 N4736		$\begin{aligned} & 16 \\ & 1 w \\ & 1 w \\ & 1 w \end{aligned}$						$\begin{aligned} & 5.6 / 45 \\ & 6.2 / 41 \\ & 6.2 / 41 \\ & 6.8 / 37 \end{aligned}$	5 10 5 10
1N4736A 1N4737 IN4737A 1N4738	$\begin{aligned} & \mathrm{s} \\ & \mathrm{~S} \\ & \mathrm{~s} \\ & \mathrm{~s} \end{aligned}$	$\begin{aligned} & \mathrm{zD} \\ & \mathrm{zo} \\ & \mathrm{zD} \\ & \mathrm{zD} \end{aligned}$	1N4736A 1N4737 1N4737A 1N4738		$\begin{aligned} & 1 w \\ & 1 w \\ & 1 w \\ & 1 w \end{aligned}$						$\begin{aligned} & 6.8 / 37 \\ & 7.5 / 34 \\ & 7.5 / 3 A \\ & 8.2 / 31 \end{aligned}$	$\begin{array}{r} 5 \\ 10 \\ 5 \\ 10 \end{array}$

$\begin{gathered} \text { type } \\ \text { numaek } \end{gathered}$	売		$\begin{array}{\|c\|} \text { TI } \\ \text { Remacement } \end{array}$	$\begin{aligned} & \text { Hon } \\ & \text { NEW } \\ & \text { DESNCN } \end{aligned}$	ratings			CHARACTERISTICS					
					$\begin{gathered} P_{D} \\ (\mathrm{~mW}) \end{gathered}$	$\mathbf{V}_{\mathbf{R}}$ (V)	(A)	$\begin{array}{cc} \mathbf{l}_{\mathbf{R}} & \bullet \mathbf{V}_{\mathbf{R}} \\ \mu_{\mathrm{A}} & /(\mathrm{V}) \end{array}$	$\begin{array}{ccc} \mathbf{v}_{\mathbf{F}} & \bullet & \mathbf{F}_{\mathbf{F}} \\ \text { (V) } & /(\mathrm{mA}) \end{array}$	π (ns)	$\begin{array}{lll} v_{z} & \bullet \\ (v) & /(\mathrm{mA}) \end{array}$	$\begin{aligned} & \text { rot } \\ & \text { \% } \end{aligned}$	
1N4738A IN4739 IN4739A 1N4740	$\begin{array}{\|l} \hline \begin{array}{l} 5 \\ s \\ s \\ s \end{array} \\ \hline \end{array}$	$\left.\begin{array}{\|l\|} \hline \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \end{array} \right\rvert\,$	1N4738A IN4739 1N4739A 1N4740		$\begin{aligned} & \text { iw } \\ & \text { iw } \\ & \text { iw } \\ & \text { iw } \end{aligned}$						$\begin{aligned} & 8.2 / 31 \\ & 9.1 / 28 \\ & 9.1 / 28 \\ & 10 / 25 \end{aligned}$	5 10 5 10	
1N4740A 1N4741 ina741a iN4742	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\left\|\begin{array}{l} \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \end{array}\right\|$	1M4740A IN4741 1N4741A 1N4742		$\begin{aligned} & \text { iw } \\ & \text { iw } \\ & \text { iw } \\ & \text { iw } \end{aligned}$						$\begin{aligned} & 10 / 25 \\ & 11 / 23 \\ & 11 / 23 \\ & 12 / 21 \end{aligned}$	5 10 5 10	
1N4742A 1N4743 1N4743A 1N4744	$\begin{aligned} & \mathrm{s} \\ & \mathrm{~s} \\ & \mathrm{~s} \\ & \mathrm{~s} \end{aligned}$	$\left.\begin{aligned} & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \end{aligned} \right\rvert\,$	1N4742A 1N4743 1N4743A IN474		$\begin{aligned} & \text { iw } \\ & \text { iw } \\ & \text { iw } \\ & \text { iw } \end{aligned}$						$\begin{aligned} & 12 / 21 \\ & 13 / 19 \\ & 13 / 19 \\ & 15 / 17 \end{aligned}$	5 10 5 10	
1N4744A 1N4745 1N4745A 1N4746	$\left\lvert\, \begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}\right.$	$\left\|\begin{array}{l} \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \end{array}\right\|$	1N4744A IN474S iN4745A IN4746		$\begin{aligned} & i w \\ & i w \\ & i w \\ & i w \end{aligned}$						15/17 16/15 16/15 18/14	5 10 5 10	
1N4746A iN4747 IN4747A 1N4748	$\begin{aligned} & \mathrm{s} \\ & \mathrm{~s} \\ & \mathrm{~s} \\ & \mathrm{~s} \end{aligned}$	$\left.\begin{aligned} & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \end{aligned} \right\rvert\,$	1N4746A iN4747 1N4747A 1N4748		$\begin{aligned} & \text { iw } \\ & \text { iw } \\ & \text { iw } \\ & \text { iw } \end{aligned}$						18/14 20/12 20/12 22/11	5 10 5 10	
1N4748A 1N4749 iN4749A 1N4750	s	$\left\|\begin{array}{l} \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \end{array}\right\|$			$\begin{aligned} & \text { iw } \\ & \text { iw } \\ & \text { iw } \\ & \text { iw } \end{aligned}$						$\begin{aligned} & 22 / 11 \\ & 24 / 10 \\ & 24 / 10 \\ & 27 / 9.5 \end{aligned}$	5 10 5 10	
1N4750A 1N4751 INA751A 1N4752	$\left\lvert\, \begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}\right.$	$\left\|\begin{array}{l} \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \end{array}\right\|$	1N4750A IN4751A 1N4752		iw iw iw iw						27/9.5 30/8.5 30/8.5 33/7.5	5 10 5 10	
1N4752A IN4753 iN4753A ina754	$\begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}$	$\left\|\begin{array}{l} \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \end{array}\right\|$	1N4752A		$\begin{aligned} & 1 \mathbf{w} \\ & 1 \mathbf{w} \\ & 1 W \\ & 1 W \end{aligned}$						$\begin{aligned} & 33 / 7.5 \\ & 36 / 7 \\ & 36 / 7 \\ & 39 / 6.5 \end{aligned}$	5 10 5 10	
1N4754A IN4755 IN4755A IN4756	$\begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}$	\|l				1w 10 10 $1 w$						$\begin{aligned} & 39 / 6.5 \\ & 43 / 6 \\ & 43 / 6 \\ & 47 / 5.5 \end{aligned}$	5 10 5 10
in4756A in4737 in4757A IN4758	$\left\lvert\, \begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}\right.$	$\left\|\begin{array}{l} \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \end{array}\right\|$			$\begin{aligned} & 1 W \\ & 1 w \\ & 1 w \\ & 1 w \end{aligned}$						$\begin{aligned} & 47 / 5.5 \\ & 51 / 5 \\ & 51 / 5 \\ & 56 / 4.5 \end{aligned}$	5 10 5 10	

DIODE INTERCHANGEABILITY

TYPE MUMEER			TI	$\begin{aligned} & \text { FOR } \\ & \text { NEW } \\ & \text { DESICN } \end{aligned}$	RATINOS			CHARACTERISTICS					
					$\begin{gathered} P_{D} \\ (\mathrm{~mW}) \end{gathered}$	$\mathbf{V}_{\mathbf{R}}$ (V)	I (A)	$\begin{array}{ll} \mathbf{I}_{\mathbf{R}} & \mathbf{V}_{\mathbf{R}} \\ \mu \mathrm{A} & /(\mathbf{V}) \end{array}$	$\mathbf{V}_{\mathbf{F}}$ (V)	$\begin{gathered} c \\ \hline \text { f } \\ \hline(\mathrm{mA}) \end{gathered}$	$\begin{aligned} & t_{r r} \\ & (n s) \end{aligned}$	$\mathbf{v}_{\mathbf{Z}} \cdot \mathbf{I}_{\mathbf{z}}$ (V) / (mA)	TOL *
1N4758A 1N4759 1N4759A 1N4780	$\begin{aligned} & \hline \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}$	$\begin{aligned} & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \end{aligned}$			$\begin{aligned} & 1 w \\ & 1 w \\ & 1 w \\ & 1 w \end{aligned}$							$\begin{aligned} & 56 / 4.5 \\ & 62 / 4 \\ & 62 / 4 \\ & 68 / 3.7 \end{aligned}$	$\begin{array}{\|r\|} \hline 5 \\ 10 \\ 5 \\ 10 \end{array}$
1N4760A 1N4761 1N4761A 1N4762	$\begin{aligned} & \mathbf{s} \\ & s \\ & s \\ & s \end{aligned}$	$\begin{array}{\|l\|} \hline \mathbf{Z D} \\ \mathrm{ZD} \\ \mathrm{ZD} \\ \mathrm{ZD} \\ \hline \end{array}$			$\begin{aligned} & \text { iw } \\ & \text { iw } \\ & \text { iw } \\ & \text { iw } \end{aligned}$							$\begin{aligned} & 68 / 3.7 \\ & 75 / 3.3 \\ & 75 / 3.3 \\ & 82 / 3 \end{aligned}$	5 10 5 10
1N4762A IN4763 1N4763A 1N4764	$\begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}$	$\begin{aligned} & \mathrm{zo} \\ & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \end{aligned}$			IW IW IW IW							$\begin{gathered} 82 / 3 \\ 91 / 2.8 \\ 91 / 2.8 \\ 100 / 2.5 \end{gathered}$	5 10 5 10
1N4764A 1N4765 1N4765A 1N4765B	$\begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}$	$\begin{array}{\|l\|} \mathrm{ZD} \\ \mathrm{RD} \\ \mathrm{RD} \\ \mathrm{RD} \end{array}$			1w							$\begin{gathered} 100 / 2.5 \\ 9.1 / .5 \\ 9.1 / .5 \\ 9.1 / .5 \end{gathered}$	5
1N4766 1N4766A 1N47668 1N4767	$\begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & R D \\ & R D \\ & R D \\ & R D \end{aligned}$										$\begin{aligned} & 9.1 / .5 \\ & 9.1 / 5 \\ & 9.1 / 5 \\ & 9.1 / .5 \end{aligned}$	
1N4767A 1N47678 1N4768 1N4768A	$\begin{aligned} & 5 \\ & s \\ & s \\ & s \end{aligned}$	$\begin{aligned} & \mathrm{RD} \\ & \mathrm{RD} \\ & \mathrm{RD} \\ & \mathrm{RD} \end{aligned}$										$\begin{aligned} & 9.1 / .5 \\ & 9.1 / 5 \\ & 9.1 / 5 \\ & 9.1 / .5 \end{aligned}$	
1N4768B 1N4769 IN4769A 1N4769B	$\begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}$	$\begin{aligned} & R D \\ & R D \\ & R D \\ & R D \\ & R D \end{aligned}$										$\begin{aligned} & 9.1 / 5 \\ & 9.1 / 5 \\ & 9.1 / .5 \\ & 9.1 / .5 \end{aligned}$	
1N4770 IN4770A 1N47708 1N4771	$\left\lvert\, \begin{aligned} & 5 \\ & s \\ & s \\ & s \end{aligned}\right.$	$\begin{array}{\|l\|} \hline R D \\ R D \\ R D \\ R D \end{array}$										$\begin{aligned} & 9.1 / 1 \\ & 9.1 / 1 \\ & 9.1 / 1 \\ & 9.1 / 1 \end{aligned}$	
1N4771A 1N4771B 1N4772 1N4772A	$\begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}$	$\begin{array}{\|l\|} \hline R D \\ R D \\ R D \\ R D \end{array}$										$\begin{aligned} & 9.1 / 1 \\ & 9.1 / 1 \\ & 9.1 / 1 \\ & 9.1 / 1 \end{aligned}$	
IN4772B 1N4773 IN4773A iN47738	$\begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}$	$\begin{aligned} & R D \\ & R D \\ & R D \\ & R D \end{aligned}$										$\begin{aligned} & 9.1 / 1 \\ & 9.1 / 1 \\ & 9.1 / 1 \\ & 9.1 / 1 \end{aligned}$	

TYPE MUMEER			$\frac{11}{\text { REPLACEMANT }}$	$\begin{aligned} & \text { Fon } \\ & \text { New } \\ & \text { Desion } \end{aligned}$	matmes			Cranacteramics				
					PD (mW)	$\begin{aligned} & \mathbf{V}_{\mathbf{R}} \\ & (\mathbf{V}) \end{aligned}$	1 (A)	$\left.\begin{array}{lll} \mathbf{n} & \mathbf{V}_{\mathrm{R}} \\ \boldsymbol{\mu} & /(\mathrm{V}) \end{array} \right\rvert\,$	$\begin{array}{cc} \mathbf{V}_{\mathrm{F}} & \mathrm{l}= \\ \text { (V) } & / \mathrm{m} A) \end{array}$	$\begin{aligned} & i r \\ & \text { (na) } \end{aligned}$	$\mathbf{V z}_{\mathbf{z}}$ - \mathbf{z} (V) $/$ (mA)	$\begin{aligned} & \text { rol } \\ & \% \end{aligned}$
1N4774 1N4774A 1N47748 1N4775	$\begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}$	$\begin{aligned} & R D \\ & R D \\ & R D \\ & R D \end{aligned}$									$\begin{aligned} & 9.1 / 1 \\ & 9.1 / 1 \\ & 9.1 / 1 \\ & 8.5 / .5 \end{aligned}$	
1N4775A 1N4775B 1NA776 1Na776A	$\left\lvert\, \begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & R D \\ & R D \\ & R D \\ & R D \end{aligned}\right.$									$\begin{aligned} & 8.5 / .5 \\ & 8.5 / .5 \\ & 8.5 / .5 \\ & 8.5 / .5 \end{aligned}$	
$\begin{aligned} & \text { 1N4776B } \\ & \text { IN4777 } \\ & \text { 1N4777A } \\ & \text { 1N47778 } \end{aligned}$	$\left\lvert\, \begin{aligned} & 5 \\ & 5 \\ & 5 \\ & s \end{aligned}\right.$	$\begin{aligned} & R D \\ & R D \\ & R D \\ & R D \end{aligned}$									$\begin{aligned} & 8.5 / .5 \\ & 8.5 / .5 \\ & 8.5 / .5 \\ & 8.5 / .5 \end{aligned}$	
1N4778 1N4778A 1N47788 1N4779	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\left\|\begin{array}{l} R D \\ R D \\ R D \\ R D \end{array}\right\|$									$\begin{aligned} & 8.5 / .5 \\ & 8.5 / .5 \\ & 8.5 / .5 \\ & 8.5 / .5 \end{aligned}$	
$\begin{aligned} & \text { 1NA779A } \\ & \text { INA779B } \\ & \text { IN4780 } \\ & \text { INA780A } \end{aligned}$	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\left\|\begin{array}{l} R D \\ R D \\ R D \\ R D \end{array}\right\|$									$\begin{aligned} & 8.5 / .5 \\ & 8.5 / .5 \\ & 8.5 / 1 \\ & 8.5 / 1 \end{aligned}$	
IN47808 1N4781 IN4781A 1N4781B	$\begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}$	$\left.\begin{array}{\|l\|} \mathrm{RD} \\ \mathrm{RD} \\ \mathrm{RD} \\ \mathrm{RD} \end{array} \right\rvert\,$									$\begin{aligned} & 8.5 / 1 \\ & 8.5 / 1 \\ & 8.5 / 1 \\ & 8.5 / 1 \end{aligned}$	
1N4782 IN4782A 1N4782B 1N4783	$\begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}$	$\left\|\begin{array}{l} R D \\ R D \\ R D \\ R D \end{array}\right\|$									$\begin{aligned} & 8.5 / 1 \\ & 8.5 / 1 \\ & 8.5 / 1 \\ & 8.5 / 1 \end{aligned}$	
1NA783A 1N4783B 1N4784 1N4784A	$\begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}$	$\left.\begin{aligned} & R D \\ & R D \\ & R D \\ & R D \end{aligned} \right\rvert\,$									$\begin{aligned} & 8.5 / 1 \\ & 8.5 / 1 \\ & 8.5 / 1 \\ & 8.5 / 1 \end{aligned}$	
1N4784B 1N4816 1N4817 1N4818	$\left\lvert\, \begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}\right.$	$\left\|\begin{array}{l} R D \\ R E \\ R E \\ R E \\ R E \end{array}\right\|$				$\begin{array}{r} 50 \\ 100 \\ 200 \end{array}$	$\begin{aligned} & 1.5 \\ & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 250 / \\ & 250 / \\ & 250 / \end{aligned}$	$\begin{aligned} & 1.3 / \\ & 1.3 / \\ & 1.3 / \end{aligned}$		8.5/1	
$\left\lvert\, \begin{aligned} & \text { IN4819 } \\ & \text { IN4820 } \\ & \text { IN4821 } \\ & \text { IN4822 } \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & 5 \\ & s \\ & s \\ & s \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & \text { RE } \\ & \mathbf{R E} \\ & \mathbf{R E} \\ & \mathbf{R E} \end{aligned}\right.$				$\begin{aligned} & 300 \\ & 400 \\ & 500 \\ & 600 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \\ & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 250 / \\ & 250 / \\ & 250 / \\ & 250 / \end{aligned}$	$\begin{aligned} & 1.3 / \\ & 1.3 / \\ & 1.3 / \\ & 1.3 / \end{aligned}$			

DIODE INTERCHANGEABILITY

TYFE NUMEER		$\begin{aligned} & 3 \\ & 8 \\ & 0 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \end{aligned}$	$\begin{gathered} \text { TI } \\ \text { REPLACEMENT } \end{gathered}$		Ratines			Charactarimes				
					$\begin{gathered} \text { PD } \\ (\mathrm{mW}) \end{gathered}$	$\mathbf{V}_{\mathbf{R}}$ (V)	1 (A)	$\begin{array}{ll} \mathbf{I}_{\mathrm{R}} & \bullet \mathbf{V}_{\mathrm{R}} \\ \mu_{\mathrm{A}} & /(\mathrm{V}) \end{array}$	$\begin{array}{ccc} V_{F} & \text { 体 } \\ \text { (V) } & / \text { (ma) } \end{array}$	$\left.\begin{gathered} i_{r} \\ (n s) \end{gathered} \right\rvert\,$	$\begin{array}{lc} \mathbf{V}_{\mathbf{Z}} & \mathbf{Z} \\ (\mathrm{V}) & / \mathrm{mA}) \end{array}$	TOL
1N4823 IN4824 1N4825 IN4826	$\begin{aligned} & s \\ & s \\ & S \\ & 5 \end{aligned}$	$\begin{array}{\|l\|} \hline R E \\ \mathrm{RE} \\ \mathrm{RE} \\ \mathrm{RE} \end{array}$				100 200 400 600	1 1 1	$\begin{aligned} & 1 \mathrm{M} / \\ & 1 \mathrm{M} / \\ & 1 \mathrm{M} / \\ & 1 \mathrm{M} / \end{aligned}$	$\begin{aligned} & 1.2 / \\ & 1.2 / \\ & 1.2 / \\ & 1.2 / \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \\ & 100 \\ & 100 \end{aligned}$		
IN4827 1N4828 IN4829 IN4830	$\begin{aligned} & G \\ & s \\ & s \\ & s \end{aligned}$	$\begin{aligned} & \text { SD } \\ & \text { SD } \\ & \text { SD } \\ & \text { SD } \end{aligned}$		1 N 4448		30 20 20 20		$\begin{aligned} & 15 / 10 \\ & .1 / \\ & .1 / \\ & .1 / \end{aligned}$	$\begin{gathered} 1 / 40 \\ 1.1 / 100 \\ 1.8 / 100 \\ 2.6 / 100 \end{gathered}$	200		
1N4831 1N4831A 1N4831B 1N4832	$\begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}$	$\left.\begin{aligned} & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \end{aligned} \right\rvert\,$		$\begin{aligned} & \text { 1N4739 } \\ & \text { 1N4739 } \\ & \text { 1N4739A } \\ & \text { 1N4740 } \end{aligned}$	$\begin{aligned} & 1.2 \mathrm{~W} \\ & 1.2 \mathrm{~W} \\ & 1.2 \mathrm{~W} \\ & 1.2 \mathrm{~W} \end{aligned}$						$\begin{gathered} 9.1 / 28 \\ 9.1 / 28 \\ 9.1 / 28 \\ 10 / 25 \end{gathered}$	$\begin{array}{r} 20 \\ 10 \\ 5 \\ 20 \end{array}$
1N4832A 1N4832B iN4833 iN4833A	S	$\left\|\begin{array}{l} \mathrm{ZD} \\ \mathrm{ZD} \\ \mathrm{ZD} \\ \mathrm{ZD} \end{array}\right\|$		iN4740 IN4740A 1N4741 1N4741	1.2W 1.2W 1.2W 1.2W						$\begin{aligned} & 10 / 25 \\ & 10 / 25 \\ & 11 / 23 \\ & 11 / 23 \end{aligned}$	$\begin{array}{r} 10 \\ 5 \\ 20 \\ 10 \end{array}$
1N48338 1N4834 IN4834A 1N4834B	$\begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}$	$\left\|\begin{array}{l} \mathrm{ZD} \\ \mathrm{ZD} \\ \mathrm{ZD} \\ \mathrm{ZD} \end{array}\right\|$		INA741A 1N4742 1N4742 1N4742A	$\begin{aligned} & 1.2 W \\ & 1.2 W \\ & 1.2 W \\ & 1.2 W \end{aligned}$						$\begin{aligned} & 11 / 23 \\ & 12 / 21 \\ & 12 / 21 \\ & 12 / 21 \end{aligned}$	5 20 10 5
1N4835 IN4835A 1N4835B 1N4836	$\begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}$	$\begin{aligned} & \mathrm{zo} \\ & \mathrm{zo} \\ & \mathrm{zD} \\ & \mathrm{zD} \end{aligned}$		IN4743 INA743 1N4743A IN4744	1.2W 1.2W 1.2W 1.2W						$\begin{aligned} & 13 / 19 \\ & 13 / 19 \\ & 13 / 19 \\ & 15 / 17 \end{aligned}$	20 10 5 20
1N4836A 1N48368 1N4837 IN4837A	$\begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \end{aligned}$		1N4744 1N4744A 1N4745 1N4745	$\begin{aligned} & 1.2 \mathrm{~W} \\ & 1.2 \mathrm{~W} \\ & 1.2 \mathrm{~W} \\ & 1.2 \mathrm{~W} \end{aligned}$						$\begin{aligned} & 15 / 17 \\ & 15 / 17 \\ & 16 / 16 \\ & 16 / 16 \end{aligned}$	$\begin{array}{r} 10 \\ 5 \\ 20 \\ 10 \end{array}$
$\begin{aligned} & \text { IN4837B } \\ & \text { IN4838 } \\ & \text { 1N4838A } \\ & \text { IN4838B } \end{aligned}$	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\begin{aligned} & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \end{aligned}$		1N4745A 1N4746 1N4746 IN4746A	$\begin{aligned} & 1.2 \mathrm{~W} \\ & 1.2 \mathrm{~W} \\ & 1.2 \mathrm{w} \\ & 1.2 \mathrm{~W} \end{aligned}$						$\begin{aligned} & 16 / 16 \\ & 18 / 14 \\ & 18 / 14 \\ & 18 / 14 \end{aligned}$	$\begin{array}{r} 5 \\ 20 \\ 10 \\ 5 \end{array}$
1N4839 IN4839A 1N4839B 1N4840	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\begin{aligned} & \mathrm{zo} \\ & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \end{aligned}$		1N4747 1N4747 1N4747A 1N4748	1.2 W 1.2 W 1.2w 1.2 w						$\begin{aligned} & 20 / 19 \\ & 20 / 19 \\ & 20 / 19 \\ & 22 / 11 \end{aligned}$	$\begin{array}{r} 20 \\ 10 \\ 5 \\ 20 \end{array}$
IN4840A 1N4840B 1N4841 1N4841A	$\begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}$	$\begin{aligned} & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \end{aligned}$		1N4748 IN4748A 1N4749 1N4749	$\begin{aligned} & 1.2 \mathrm{~W} \\ & 1.2 \mathrm{~W} \\ & 1.2 \mathrm{~W} \\ & 1.2 \mathrm{~W} \end{aligned}$						$\begin{aligned} & 22 / 11 \\ & 22 / 11 \\ & 24 / 11 \\ & 24 / 11 \end{aligned}$	$\begin{array}{r} 10 \\ 5 \\ 20 \\ 10 \end{array}$

		\mathbf{O}			RAFINGS			CHARACTERISTICS				
TYPE NUMBER		$\left\lvert\, \begin{aligned} & \mathbf{U} \\ & \frac{巳}{2} \\ & \mathbf{y} \\ & \mathbf{U} \end{aligned}\right.$	$\begin{gathered} \text { TI } \\ \text { REPLACEMENT } \end{gathered}$			\mathbf{V}_{R} (V)	I (A)	$\begin{array}{ll} \mathbf{I}_{\mathbf{R}} & \bullet \mathbf{V}_{\mathbf{R}} \\ \mu_{\mathbf{A}} & /(\mathbf{V}) \end{array}$	$\begin{array}{ll} \mathbf{V F}_{F} & \mathbf{l}_{\mathbf{F}} \\ \text { (V) } & I \mathrm{~mA}) \end{array}$	t_{7} (ns)	$\begin{array}{lc} V_{Z} & \mathbf{I}_{\mathbf{z}} \\ (\mathrm{V}) & /(\mathrm{mA}) \end{array}$	$\begin{gathered} \text { rot } \\ \% \end{gathered}$
1N4841B iN4842 IN4842A IN4842B	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \end{aligned}\right.$		1N4749A 1N4750 IN4750 1N4750A	$\begin{aligned} & 1.2 \mathrm{~W} \\ & 1.2 \mathrm{~W} \\ & 1.2 \mathrm{~W} \\ & 1.2 \mathrm{~W} \end{aligned}$						$\begin{aligned} & 24 / 11 \\ & 27 / 9.3 \\ & 27 / 9.3 \\ & 27 / 9.3 \end{aligned}$	5 20 10 5
1N4843 1N4843A iN4843B 1N4844	$\begin{aligned} & 5 \\ & 5 \\ & s \\ & 5 \end{aligned}$	$\left\lvert\, \begin{aligned} & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \end{aligned}\right.$		1N4751 1N4751 IN4751A 1N4752	$\begin{aligned} & 1.2 \mathrm{~W} \\ & 1.2 \mathrm{~W} \\ & 1.2 \mathrm{~W} \\ & 1.2 \mathrm{~W} \end{aligned}$						$\begin{aligned} & 30 / 8.3 \\ & 30 / 8.3 \\ & 30 / 8.3 \\ & 33 / 7.5 \end{aligned}$	$\begin{array}{r} 20 \\ 10 \\ 5 \\ 20 \end{array}$
1N4844A 1N48448 1N4845 1N4845A	$\begin{aligned} & \mathbf{S} \\ & \mathbf{S} \\ & \mathbf{S} \\ & \mathbf{S} \end{aligned}$	$\begin{aligned} & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \end{aligned}$		$\begin{aligned} & \text { IN4752 } \\ & \text { IN4752A } \end{aligned}$	$\begin{aligned} & 1.2 \mathrm{~W} \\ & 1.2 \mathrm{~W} \\ & 1.2 \mathrm{~W} \\ & 1.2 \mathrm{~W} \end{aligned}$						$\begin{aligned} & 33 / 7.5 \\ & 33 / 7.5 \\ & 36 / 7 \\ & 36 / 7 \end{aligned}$	$\begin{array}{r} 10 \\ 5 \\ 20 \\ 10 \end{array}$
1N48458 1N4846 1N4846A 1N4846B	$\begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \\ & z D \\ & 20 \end{aligned}$			$\begin{aligned} & 1.2 W \\ & 1.2 W \\ & 1.2 W \\ & 1.2 W \end{aligned}$						$\begin{aligned} & 36 / 7 \\ & 39 / 6.5 \\ & 39 / 6.5 \\ & 39 / 6.5 \end{aligned}$	5 20 10 5
1N4847 1N4847A 1N48478 1N4848	$\begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}$	$\left\lvert\, \begin{aligned} & \mathrm{zo} \\ & \mathrm{zD} \\ & \mathrm{zo} \\ & \mathrm{zO} \end{aligned}\right.$			$\begin{aligned} & 1.2 \mathrm{~W} \\ & 1.2 \mathrm{~W} \\ & 1.2 \mathrm{~W} \\ & 1.2 \mathrm{~W} \end{aligned}$						$\begin{aligned} & 43 / 5.8 \\ & 43 / 5.8 \\ & 43 / 5.8 \\ & 47 / 5.3 \end{aligned}$	$\begin{array}{r} 20 \\ 10 \\ 5 \\ 20 \end{array}$
IN48A8A 1N4848B IN4849 IN4849A	$\left\lvert\, \begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}\right.$	$\left.\begin{aligned} & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \end{aligned} \right\rvert\,$			$\begin{aligned} & 1.2 \mathrm{~W} \\ & 1.2 \mathrm{~W} \\ & 1.2 \mathrm{~W} \\ & 1.2 \mathrm{~W} \end{aligned}$						$\begin{aligned} & 47 / 5.3 \\ & 47 / 5.3 \\ & 51 / 5 \\ & 51 / 5 \end{aligned}$	10 5 20 10
$\begin{aligned} & \text { IN4849B } \\ & \text { 1N4850 } \\ & \text { IN4850A } \\ & \text { IN4850B } \end{aligned}$	$\begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}$	$\left.\begin{aligned} & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \end{aligned} \right\rvert\,$			$\begin{aligned} & 1.2 \mathrm{~W} \\ & 1.2 \mathrm{~W} \\ & 1.2 \mathrm{~W} \\ & 1.2 \mathrm{~W} \end{aligned}$						51/5 56/4.5 56/4.5 56/4.5	5 20 10 5
1N4851 1N4851A iN4851B IN4852	$\begin{aligned} & s \\ & s \\ & s \\ & s \\ & s \end{aligned}$	$\left\lvert\, \begin{aligned} & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \end{aligned}\right.$			$\begin{aligned} & 1.2 W \\ & 1.2 W \\ & 1.2 W \\ & 1.2 W \end{aligned}$						$\begin{aligned} & 62 / 4 \\ & 62 / 4 \\ & 62 / 4 \\ & 68 / 3.7 \end{aligned}$	20 10 5 20
$\begin{aligned} & \text { 1N4852A } \\ & \text { 1N4852B } \\ & \text { 1N4853 } \\ & \text { 1N4853A } \end{aligned}$	$\begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}$	$\begin{aligned} & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \end{aligned}$			$\begin{aligned} & 1.2 W \\ & 1.2 W \\ & 1.2 W \\ & 1.2 W \end{aligned}$						$\begin{aligned} & 68 / 3.7 \\ & 68 / 3.7 \\ & 75 / 3.3 \\ & 75 / 3.3 \end{aligned}$	10 5 20 10
1N48538 IN4854 IN4854A IN4854B	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\begin{aligned} & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \end{aligned}$			$\begin{aligned} & 1.2 W \\ & 1.2 W \\ & 1.2 W \\ & 1.2 W \end{aligned}$						$\begin{aligned} & 75 / 3.3 \\ & 82 / 3 \\ & 82 / 3 \\ & 82 / 3 \end{aligned}$	$\begin{array}{r} 5 \\ 20 \\ 10 \\ 5 \end{array}$

DIODE INTERCHANGEABILITY

TYPE MuMEER		$\begin{aligned} & \frac{3}{2} \\ & \frac{3}{3} \\ & \frac{1}{2} \\ & 3 \end{aligned}$	$\begin{gathered} \text { TI } \\ \text { REMACEMENT } \end{gathered}$	$\begin{aligned} & \text { FOR } \\ & \text { NEW } \\ & \text { DESHON } \end{aligned}$	Ratines			Chatacteristics				
					$\begin{gathered} \mathrm{PD} \\ (\mathrm{~mW}) \end{gathered}$	$\mathbf{V}_{\mathbf{R}}$ (V)	I (A)	$\begin{array}{ll} \mathbf{I}_{\mathbf{n}} & \bullet \mathbf{V}_{\mathbf{R}} \\ \mu \mathrm{A} & /(\mathbf{V}) \end{array}$	$\begin{array}{lll} \mathbf{V F}_{F} & \mathbf{L} \\ \text { (V) } & /(\mathrm{mA}) \end{array}$	$\begin{aligned} & t_{r r} \\ & (n s) \end{aligned}$	$\mathbf{v}_{\mathbf{Z}}$ - \mathbf{z} (V) $/$ (mA)	$\begin{aligned} & \text { tor } \\ & \text { \% } \end{aligned}$
1N4890 IN4690A IN4891 1N4891A	$\begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}$	$\begin{array}{\|l\|} \mathbf{R D} \\ R D \\ R D \\ R D \end{array}$			$\begin{array}{r} 400 \\ 400 \\ 400 \\ 400 \end{array}$						$\begin{aligned} & 6.35 / 7.5 \\ & 6.35 / 7.5 \\ & 6.35 / 7.5 \\ & 6.35 / 7.5 \end{aligned}$	5 5 5 5
1 N4892 IN4892A 1N4893 IN4893A	$\left\lvert\, \begin{aligned} & 5 \\ & s \\ & s \\ & 5 \end{aligned}\right.$	$\begin{aligned} & R D \\ & R D \\ & R D \\ & R D \end{aligned}$			$\begin{array}{r} 400 \\ 400 \\ 400 \\ 400 \end{array}$						$\begin{aligned} & 6.35 / 7.5 \\ & 6.35 / 7.5 \\ & 6.35 / 7.5 \\ & 6.35 / 7.5 \end{aligned}$	5 5 5 5
1N4894 1N4891A 1N4895 iN4895A	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\left.\begin{array}{\|l\|} R D \\ R D \\ R D \\ R D \\ R D \end{array} \right\rvert\,$			$\begin{array}{r} 400 \\ 400 \\ 400 \\ 400 \end{array}$						$\begin{aligned} & 6.35 / 7.5 \\ & 6.35 / 7.5 \\ & 6.35 / 7.5 \\ & 6.35 / 7.5 \end{aligned}$	5 5 5 5
1N4896 in4896A 1N4897 1N4897A	$\left\lvert\, \begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}\right.$	$\left.\begin{aligned} & R D \\ & R D \\ & R D \\ & R D \end{aligned} \right\rvert\,$			$\begin{aligned} & 400 \\ & 400 \\ & 400 \\ & 400 \end{aligned}$						$\begin{aligned} & 12.8 / .5 \\ & 12.8 / .5 \\ & 12.8 / .5 \\ & 12.8 / .5 \end{aligned}$	5 5 5 5
IN4898 1N4898A 1N4899 IN4899A	$\begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}$	$\left.\begin{aligned} & R D \\ & R D \\ & R D \\ & R D \\ & R D \end{aligned} \right\rvert\,$			$\begin{array}{r} 400 \\ 400 \\ 400 \\ 400 \end{array}$						$\begin{aligned} & 12.8 / .5 \\ & 12.8 / .5 \\ & 12.8 / .5 \\ & 12.8 / .5 \end{aligned}$	5 5 5 5
IN4900 IN4900A 1N4901 IN4901A	$\begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}$	$\left\|\begin{array}{l} R D \\ R D \\ R D \\ R D \end{array}\right\|$			$\begin{array}{r} 400 \\ 400 \\ 400 \\ 400 \end{array}$						$\begin{aligned} & 12.8 / 1 \\ & 12.8 / 1 \\ & 12.8 / 1 \\ & 12.8 / 1 \end{aligned}$	5 5 5 5
1N4902 1N4902A 1N4903 1N4903A	$\begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{S} \\ & \mathbf{s} \end{aligned}$				$\begin{array}{r} 400 \\ 400 \\ 400 \\ 400 \end{array}$						$\begin{aligned} & 12.8 / 1 \\ & 12.8 / 1 \\ & 12.8 / 1 \\ & 12.8 / 1 \end{aligned}$	5 5 5 5
INA9OA 1N4904A 1N4905 IN4P05A	$\left\lvert\, \begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}\right.$	$\left.\begin{array}{\|l\|} \mathrm{RD} \\ \mathrm{RD} \\ \mathrm{RD} \\ \mathrm{RD} \end{array} \right\rvert\,$			$\begin{aligned} & 400 \\ & 400 \\ & 400 \\ & 400 \end{aligned}$						$\begin{aligned} & 12.8 / 2 \\ & 12.8 / 2 \\ & 12.8 / 2 \\ & 12.8 / 2 \end{aligned}$	5 5 5 5
1N4906 1N4906A 1N4907 iN4907A	$\begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}$	$\left.\begin{array}{\|l\|} \mathbf{R D} \\ \mathrm{RD} \\ \mathrm{RD} \\ \mathrm{RD} \end{array} \right\rvert\,$			$\begin{aligned} & 400 \\ & 400 \\ & 400 \\ & 400 \end{aligned}$						$\begin{aligned} & 12.8 / 2 \\ & 12.8 / 2 \\ & 12.8 / 2 \\ & 12.8 / 2 \end{aligned}$	5 5 5 5
1N4908 1N4908A 1N4909 IN4909A	$\left\lvert\, \begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}\right.$	$\begin{aligned} & R D \\ & R D \\ & R D \\ & R D \\ & R D \end{aligned}$			$\begin{array}{r} 400 \\ 400 \\ 400 \\ 400 \end{array}$						$\begin{aligned} & 12.8 / 4 \\ & 12.8 / 4 \\ & 12.8 / 4 \\ & 12.8 / 4 \end{aligned}$	5 5 5 5

TYPE NUMBER			$\begin{gathered} \text { TI } \\ \text { REPLACEMENT } \end{gathered}$	$\begin{aligned} & \text { FOR } \\ & \text { NEW } \\ & \text { DESICN } \end{aligned}$	$\begin{gathered} P_{D} \\ (\mathrm{~mW}) \end{gathered}$	rings \mathbf{V}_{R} (V)	I (A)	$\begin{array}{ll} \mathrm{I}_{\mathrm{R}} & \mathrm{~V}_{\mathrm{R}} \\ \mu_{\mathrm{A}} & /(\mathrm{V}) \end{array}$	$\mathbf{V F}_{\mathrm{F}}$ - IF (V) $/$ (mA)	$\begin{aligned} & \text { ERISTICS } \\ & \left\|\begin{array}{c} I_{I I} \\ \text { (ns) } \end{array}\right\| \end{aligned}$	$\begin{array}{cc} \mathbf{v}_{\mathbf{z}} & \cdot \\ (\mathrm{V}) & / \mathrm{mA}) \end{array}$	TOL \%
IN4910 1N4910A 1N4911 1N4911A	s	$\begin{array}{\|l\|} \hline R D \\ \mathbf{R D} \\ \mathbf{R D} \\ \hline \mathbf{R D} \end{array}$			$\begin{aligned} & 400 \\ & 400 \\ & 400 \\ & 400 \end{aligned}$						$\begin{aligned} & 12.8 / 4 \\ & 12.8 / 4 \\ & 12.8 / 4 \\ & 12.8 / 4 \end{aligned}$	5 5 5 5
1N4912 1N4912A 1N4913 1N4913A	S	$\left\|\begin{array}{l} R D \\ R D \\ R D \\ R D \end{array}\right\|$			400 400 400 400						$12.8 / 7.5$ $12.8 / 7.5$ 12.8/7.5 12.8/7.5	5 5 5 5
1N4914 1N4914A 1N4915 1N4915A	[$\begin{array}{\|l\|} \hline R D \\ R D \\ R D \\ R D \\ \hline R D \end{array}$			$\begin{aligned} & 400 \\ & 400 \\ & 400 \\ & 400 \end{aligned}$						$\begin{aligned} & 12.8 / 7.5 \\ & 12.8 / 7.5 \\ & 12.8 / 7.5 \\ & 12.8 / 7.5 \end{aligned}$	5 5 5 5
1N4916 IN4916A 1N4917 IN4917A	$\begin{array}{\|l} \hline s \\ s \\ s \\ s \\ s \end{array}$	$\left\|\begin{array}{l\|} \mathrm{RD} \\ \mathrm{RD} \\ \mathrm{RD} \\ \mathrm{RD} \end{array}\right\|$			$\begin{aligned} & 400 \\ & 400 \\ & 400 \\ & 400 \end{aligned}$						$\begin{aligned} & 19.2 / .5 \\ & 19.2 / .5 \\ & 19.2 / .5 \\ & 19.2 / .5 \end{aligned}$	5 5 5 5
1N4918 1N4918A 1 N 4919 1N4919A	$\begin{aligned} & \mathrm{s} \\ & \mathrm{~s} \\ & \mathrm{~s} \\ & \mathrm{~s} \end{aligned}$	$\begin{aligned} & R D \\ & R D \\ & R D \\ & R D \\ & R D \end{aligned}$			$\begin{aligned} & 400 \\ & 400 \\ & 400 \\ & 400 \end{aligned}$						19.2/.5 19.2/. 5 19.2/1 19.2/1	5 5 5 5
IN4920 IN4920A 1N4921 1N4921A	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\begin{aligned} & \mathbf{R D} \\ & \mathbf{R D} \\ & \mathbf{R D} \\ & \mathbf{R D} \\ & \hline \end{aligned}$			400 400 400 400						$\begin{aligned} & 19.2 / 1 \\ & 19.2 / 1 \\ & 19.2 / 1 \\ & 19.2 / 1 \end{aligned}$	5 5 5 5
IN4922 IN4922A IN4923 1N4923A	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\left.\begin{aligned} & \mathrm{RD} \\ & \mathrm{RD} \\ & \mathrm{RD} \\ & \mathrm{RD} \end{aligned} \right\rvert\,$			$\begin{aligned} & 400 \\ & 400 \\ & 400 \\ & 400 \end{aligned}$						$\begin{aligned} & 19.2 / 2 \\ & 19.2 / 2 \\ & 19.2 / 2 \\ & 19.2 / 2 \end{aligned}$	5 5 5 5
1N4924 1N4924A 1N4925 1N4925A	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\left.\begin{array}{l\|} \mathbf{R D} \\ \mathbf{R D} \\ R D \\ R D \end{array} \right\rvert\,$			$\begin{aligned} & 400 \\ & 400 \\ & 400 \\ & 400 \end{aligned}$						$\begin{aligned} & 19.2 / 2 \\ & 19.2 / 2 \\ & 19.2 / 4 \\ & 19.2 / 4 \end{aligned}$	5 5 5 5
1N4926 iN4926A 1N4927 1N4927A	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\left\|\begin{array}{l} R D \\ R D \\ R D \\ R D \end{array}\right\|$			$\begin{aligned} & 400 \\ & 400 \\ & 400 \\ & 400 \end{aligned}$						$\begin{aligned} & 19.2 / 4 \\ & 19.2 / 4 \\ & 19.2 / 4 \\ & 19.2 / 4 \end{aligned}$	5 5 5 5
	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\left\|\begin{array}{l} \mathrm{RD} \\ \mathrm{RD} \\ \mathrm{RD} \\ \mathrm{RD} \end{array}\right\|$			$\begin{aligned} & 400 \\ & 400 \\ & 400 \\ & 400 \end{aligned}$						19.2/4 19.2/4 19.2/7.5 19.2/7.5	5 5 5 5

$\begin{gathered} \text { TYE } \\ \text { Mumer } \end{gathered}$		$\begin{aligned} & \frac{8}{6} \\ & \frac{8}{2} \\ & \frac{3}{8} \\ & 3 \end{aligned}$	II		Ratines			CHARACTERISTCS				
						$\mathbf{V}_{\mathbf{R}}$ (V)	(A)	$\begin{array}{ll} \mathbf{U}_{\mathbf{R}} & \bullet \mathbf{V}_{\mathbf{R}} \\ \mu_{\mathrm{A}} & /(\mathbf{V}) \end{array}$	$V_{F} \quad \mathbf{l}_{F}$ (V) 1 (mA)	$\begin{gathered} I_{r r} \\ \text { (ns) } \end{gathered}$	$\begin{aligned} & \mathbf{V Z}_{\mathbf{Z}}<\mathbf{Z} \\ & (\mathbf{V}) /(\mathrm{mA}) \end{aligned}$	rot
1N4930 1N4930A 1N4931 1N4931A		$\left\|\begin{array}{l} R D \\ R D \\ R D \\ R D \end{array}\right\|$			$\begin{array}{r} 400 \\ 400 \\ 400 \\ 400 \end{array}$						$\begin{aligned} & 19.2 / 7.5 \\ & 19.2 / 7.5 \\ & 19.2 / 7.5 \\ & 19.2 / 7.5 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$
1N4932 1N4932A 1N4933 1N4934	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\begin{array}{\|l\|} \mathbf{R D} \\ R D \\ R E \\ R E \\ R E \end{array}$			$\begin{aligned} & 400 \\ & 400 \end{aligned}$	50 100	1	$\begin{aligned} & 300 / \\ & 300 / \end{aligned}$	$\begin{aligned} & 1.2 / \\ & 1.2 / \end{aligned}$	$\begin{aligned} & 200 \\ & 200 \end{aligned}$	$\begin{aligned} & 19.2 / 7.5 \\ & 19.2 / 7.5 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$
IN4935 IN4936 IN4937 1N4938	$\begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{S} \\ & \mathbf{s} \end{aligned}$	$\begin{aligned} & R E \\ & R E \\ & R E \\ & R E \\ & \text { SD } \end{aligned}$	1N4938		-	200 400 600 200	1 1 1	$\begin{aligned} & 300 / \\ & 300 / \\ & 300 / \\ & .1 / 175 \end{aligned}$	$\begin{aligned} & 1.2 / \\ & 1.2 / \\ & 1.2 / \\ & 1 / 100 \end{aligned}$	$\begin{array}{r} 200 \\ 200 \\ 200 \\ 50 \end{array}$		
1N4942 iN4943 1N4944 1N4945	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\begin{aligned} & \text { SD } \\ & \text { SD } \\ & \text { SD } \\ & \text { SD } \end{aligned}$				$\begin{aligned} & 200 \\ & 300 \\ & 400 \\ & 500 \end{aligned}$	1 1 1 1	$\begin{aligned} & 500 / \\ & 500 / \\ & 500 / \\ & 500 / \end{aligned}$	$\begin{aligned} & 1.5 / 3 \\ & 1.5 / 3 \\ & 1.5 / 3 \\ & 1.5 / 3 \end{aligned}$	$\begin{aligned} & 150 \\ & 150 \\ & 150 \\ & 150 \end{aligned}$		
1N4946 1N4947 IN4948 1N4949	$\begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{S} \\ & \mathbf{s} \end{aligned}$	$\left\lvert\, \begin{aligned} & S D \\ & S D \\ & S D \\ & S D \end{aligned}\right.$		T10701		$\begin{array}{r} 600 \\ 800 \\ 1 K \\ 35 \end{array}$	1 1 1	$\begin{aligned} & 500 / \\ & 500 / \\ & 500 / \\ & 50 N / 30 \end{aligned}$	$\begin{aligned} & 1.5 / 3 \\ & 1.5 / 3 \\ & 1.5 / 3 \\ & 1 / 150 \end{aligned}$	$\begin{array}{r} 250 \\ 300 \\ 500 \\ .3 \end{array}$		
1N4950 1N4951 IN4952 1 N4953	$\left\lvert\, \begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}\right.$	$\begin{aligned} & \text { SD } \\ & \text { SD } \\ & S D \\ & S D \end{aligned}$		1N4150 IN4607 1N4607 TID701		25 20 50 30		$\begin{array}{r} 100 / 25 \\ .1 / 20 \\ .1 / 20 \\ .5 / 30 \end{array}$	$\begin{gathered} 1 / 300 \\ .85 / 1 \\ .85 / 1 \\ 1 / 100 \end{gathered}$	$\begin{aligned} & 4 \\ & 1 \end{aligned}$		
$\begin{aligned} & \text { IN4997 } \\ & \text { iN4998 } \\ & \text { IN4999 } \\ & \text { IN5000 } \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & R E \\ & R E \\ & R E \\ & R E \\ & R E \end{aligned}$				50 100 200 400	3 3 3 3	2M/	$\begin{aligned} & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \\ & 1 / \end{aligned}$			
$\begin{aligned} & \text { IN5001 } \\ & \text { IN5002 } \\ & \text { 1N5003 } \\ & \text { iN5004 } \end{aligned}$	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\begin{aligned} & \text { RE } \\ & \text { RE } \\ & \text { RE } \\ & \text { RE } \end{aligned}$				$\begin{array}{r} 600 \\ 800 \\ 1 \mathrm{~K} \\ 100 \end{array}$	3 3 3 1	IM/ 1M/ 1M/ $1 \mathrm{M} /$	$\begin{gathered} 1 / \\ 1 / \\ 1 / \\ 1.3 / \end{gathered}$	120		
$\begin{aligned} & \text { IN5005 } \\ & \text { iN5006 } \\ & \text { 1N5007 } \\ & \text { iN5053 } \end{aligned}$	$\begin{aligned} & s \\ & s \\ & s \\ & s \\ & s \end{aligned}$	$\begin{aligned} & R E \\ & R E \\ & R E \\ & R E \\ & R E \end{aligned}$				200 400 600 800	1 1 1 1.5	$\begin{aligned} & 1 \mathrm{M} / \\ & 1 \mathrm{M} / \\ & 1 \mathrm{M} / \\ & 500 / \end{aligned}$	$\begin{aligned} & 1.3 / \\ & 1.3 / \\ & 1.3 / \\ & 1.3 / \end{aligned}$	120 120 120		
$\begin{aligned} & \text { IN5054 } \\ & \text { IN5055 } \\ & \text { IN5056 } \\ & \text { IN5057 } \end{aligned}$	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\begin{array}{\|l\|} \hline R E \\ \text { RE } \\ \text { RE } \\ \text { RE } \end{array}$				$\begin{array}{r} 1 K \\ 100 \\ 200 \\ 300 \end{array}$	$\begin{array}{r} 1.5 \\ 1 \\ 1 \\ .8 \end{array}$	$\begin{aligned} & 500 / \\ & 250 / \\ & 250 / \\ & 250 / \end{aligned}$	$\begin{aligned} & 1.3 / \\ & 1.4 / \\ & 1.4 \prime \\ & 1.4 / \end{aligned}$	$\begin{aligned} & 200 \\ & 200 \\ & 400 \end{aligned}$		

DIODE INTERCHANGEABILITY

TYPE Number	言		$\underset{\text { RERLACEMENT }}{\text { Ti }}$	$\begin{gathered} \text { FOR } \\ \text { NEW } \\ \text { DESICN } \end{gathered}$	${ }^{\circ}$ (mW)	tincs $\mathbf{V}_{\mathbf{R}}$ (V)	1 (A)	$\begin{array}{ll} \mathbf{L}_{\mathrm{R}} & \bullet V_{\mathrm{R}} \\ \mu \mathrm{~A} & /(\mathrm{V}) \end{array}$	$\begin{array}{cc} & \text { charact } \\ \mathbf{v}_{\mathrm{F}} & 0 \\ \text { (v) } & / \text { (ma) } \end{array}$	aisncs trr (ms)	$\begin{array}{ccc} v_{\mathbf{z}} & 0 & \mathbf{z} \\ (\mathrm{~V}) & 1 & (\mathrm{~mA}) \end{array}$	${ }_{x}^{\mathrm{TOL}}$
$\begin{array}{\|l} \hline \text { 1N5058 } \\ \text { 1N5059 } \\ \text { 1 } 15060 \\ \text { 1N5061 } \\ \hline \end{array}$	$\begin{aligned} & \mathrm{s} \\ & \mathrm{~s} \\ & \mathrm{~s} \\ & \mathrm{~s} \end{aligned}$			$\begin{aligned} & \text { TiD383 } \\ & \text { TiD384 } \\ & \text { TiD385 } \end{aligned}$		400 200 400 600	.8 1 1 1	$250 /$ 300/200 300/400 200/600	$\begin{aligned} & 1.4 / \\ & 1.2 / 1 \mathrm{~A} \\ & 1.2 / 1 \mathrm{~A} \\ & 1.2 / 1 \mathrm{~A} \end{aligned}$	800		
$\begin{aligned} & \text { 1N5062 } \\ & \text { 1N5170 } \\ & \text { 1NS171 } \\ & \text { IN5172 } \end{aligned}$	$\begin{aligned} & s \\ & 5 \\ & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & \mathbf{R E} \\ & \mathbf{R E} \\ & \mathbf{R E} \\ & \mathbf{R E} \end{aligned}$		7D386		800 15 50 100	1 2 2 2 2	$\begin{aligned} & 200 / 800 \\ & 25 / \\ & 25 / \\ & 25 / \end{aligned}$	$\begin{aligned} & 1.2 / 1 A \\ & 1.21 \\ & 1.21 \\ & 1.21 \\ & \hline \end{aligned}$			
$\begin{aligned} & \text { INS173 } \\ & \text { INS174 } \\ & \text { INS175 } \\ & \text { INS176 } \end{aligned}$	$\begin{array}{\|l} \mathbf{s} \\ \mathbf{s} \\ \mathbf{s} \\ \mathbf{s} \end{array}$	$\left.\begin{array}{\|c\|} \mathrm{RE} \\ \mathrm{RE} \\ \mathrm{RE} \\ \mathrm{RE} \end{array} \right\rvert\,$				$\begin{aligned} & 300 \\ & 400 \\ & 500 \\ & 600 \end{aligned}$	2 2 2 2	$\begin{aligned} & 25 / \\ & 251 \\ & 251 \\ & 25 / \end{aligned}$	$\begin{aligned} & 1.21 \\ & 1.21 \\ & 1.21 \\ & 1.21 \end{aligned}$			
$\begin{aligned} & \text { INS177 } \\ & \text { iN5178 } \\ & \text { iN5179 } \\ & \text { iNS180 } \end{aligned}$	$\left\lvert\, \begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}\right.$	$\left.\begin{aligned} & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{SD} \\ & \mathrm{RE} \end{aligned} \right\rvert\,$				$\begin{array}{r} 800 \\ 1 K \\ 30 \\ 100 \end{array}$	$\begin{aligned} & 2 \\ & 2 \\ & 4 \end{aligned}$	$\begin{array}{r} 25 / \\ 25 / \\ 50 \mathrm{~N} / \\ 5 / \end{array}$	$\begin{aligned} & 1.21 \\ & 1.2 \prime \\ & 3.7 / 100 \end{aligned}$			
$\begin{aligned} & \text { 1N5181 } \\ & \text { 1N5182 } \\ & \text { 1N5183 } \\ & \text { 1N5184 } \end{aligned}$	$\begin{aligned} & \mathrm{s} \\ & \mathrm{~s} \\ & \mathrm{~s} \\ & \mathrm{~s} \end{aligned}$	$\begin{aligned} & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \end{aligned}$				$\begin{array}{r} 4 K \\ 5 K \\ 7.5 \mathrm{~K} \\ 10 \mathrm{~K} \end{array}$	$\begin{aligned} & .6 \\ & .6 \\ & .6 \\ & .6 \end{aligned}$	$\begin{aligned} & 201 \\ & 20 \prime \\ & 20 \prime \\ & 20 \prime \end{aligned}$				
1N5185 IN5185A 1N5186 IN5186A	$\left[\begin{array}{l} s \\ s \\ s \\ s \end{array}\right.$	$\begin{aligned} & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \end{aligned}$				$\begin{array}{r} 50 \\ 50 \\ 100 \\ 100 \end{array}$	$\left.\begin{aligned} & 3 \\ & 4 \\ & 3 \\ & 4 \end{aligned} \right\rvert\,$	$\begin{array}{r} 100 \prime \\ 22 \prime \\ 100 / \\ 22 \prime \end{array}$	$\begin{aligned} & 1.1 / \\ & 1.1 / \\ & 1.1 / \\ & 1.1 / \end{aligned}$			
IN5187 INS187A INSI88 INSI88A	$\left\lvert\, \begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}\right.$	$\left.\begin{aligned} & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \end{aligned} \right\rvert\,$				$\begin{aligned} & 200 \\ & 200 \\ & 400 \\ & 400 \end{aligned}$	3 4 3 4	$\begin{array}{r} 100 / \\ 22 \prime \\ 100 \prime \\ 22 \prime \end{array}$	$\begin{aligned} & 1.1 / \\ & 1.1 / \\ & 1.1 / \\ & 1.1 / \end{aligned}$			
IN5189 1N5189A 1N5190 IN5190A	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\begin{aligned} & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \end{aligned}$				$\begin{aligned} & 500 \\ & 500 \\ & 600 \\ & 600 \end{aligned}$	$\begin{aligned} & 3 \\ & 4 \\ & 3 \\ & 4 \end{aligned}$	$\begin{gathered} 100 / \\ 22 / \\ 100 / \\ 22 / \end{gathered}$	$\begin{aligned} & 1.1 / \\ & 1.1 / \\ & 1.1 / \\ & 1.1 / \end{aligned}$			
1N5194 1N5195 1N5196 1N5197	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\left.\begin{array}{\|l\|} \hline \mathrm{SD} \\ \mathrm{SD} \\ \mathrm{SD} \\ \mathrm{RE} \end{array} \right\rvert\,$		1N483 IN485 1N486		$\begin{array}{r} 80 \\ 200 \\ 250 \\ 50 \end{array}$	2	25N/70 25N/180 25N/225 100/	$\begin{aligned} & 1 / 100 \\ & 1 / 100 \\ & 1 / 100 \\ & 1.21 \end{aligned}$			
INS198 1N5199 1N5200 IN52O1	s	$\left\|\begin{array}{l} R E \\ R E \\ R E \\ R E \end{array}\right\|$				$\begin{aligned} & 100 \\ & 200 \\ & 400 \\ & 600 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$	100/ 1001 100/ 100/	$\begin{aligned} & 1.2 / \\ & 1.2 / \\ & 1.21 \\ & 1.21 \end{aligned}$			

TYPE mumeer	$\begin{aligned} & \frac{3}{3} \\ & \frac{1}{3} \\ & \frac{3}{3} \end{aligned}$	$\begin{aligned} & \frac{3}{6} \\ & \frac{0}{3} \\ & \frac{3}{3} \\ & \frac{3}{3} \end{aligned}$	TI		Ratines			CHARACTERISTICS				
						$\mathbf{V}_{\mathbf{R}}$ (V)	I (A)	$\begin{array}{ll} \mathbf{I}_{\mathbf{R}} & \mathbf{V}_{\mathrm{R}} \\ \mu_{\mathrm{A}} & /(\mathrm{V}) \end{array}$	$\mathbf{V F}_{F}$ - \mathbf{F}_{F} (V) $/$ (mA)	$\begin{aligned} & t_{r r} \\ & (n s) \end{aligned}$	$\begin{array}{llc} \mathbf{V}_{\mathbf{Z}} & \mathbf{Z} \\ (\mathrm{V}) & / \mathrm{ma}) \end{array}$	$\begin{aligned} & \text { TOL } \\ & \text { \% } \end{aligned}$
1N5206 IN5207 1N5208 IN5209	$\begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}$	$\left\|\begin{array}{l} R E \\ R E \\ S D \\ S D \end{array}\right\|$		$\left\lvert\, \begin{aligned} & \text { IN457 } \\ & \text { 1N458 } \end{aligned}\right.$		400 400 70 150	2	$\begin{gathered} 3 / \\ 5 / \\ 25 \mathrm{~N} / 175 \\ 25 \mathrm{~N} / 125 \end{gathered}$	$\begin{aligned} & 1.2 / \\ & 1.2 / \\ & 1 / 20 \\ & 1 / 7 \end{aligned}$			
1N5210 1N5211 IN5212 IN5213	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\begin{aligned} & S D \\ & R E \\ & R E \\ & R E \\ & R E \end{aligned}$		$\begin{array}{\|l} \left\lvert\, \begin{array}{l} \text { IN459 } \end{array}\right. \\ \text { TID383 } \\ \text { TID384 } \\ \text { TID385 } \end{array}$		$\begin{aligned} & 200 \\ & 200 \\ & 400 \\ & 600 \end{aligned}$	1 1 1	$\begin{aligned} & 25 N / 175 \\ & 200 / 200 \\ & 200 / 400 \\ & 200 / 600 \end{aligned}$	1.2/3 $1.2 / 1 \mathrm{~A}$ $1.2 / 1 \mathrm{~A}$ 1.2/1A			
1N5214 iN5215 1N5216 1N5217	$\left\lvert\, \begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}\right.$	$\begin{aligned} & R E \\ & R E \\ & R E \\ & R E \end{aligned}$		$\begin{aligned} & \text { TID386 } \\ & \text { TID383 } \\ & \text { TID384 } \\ & \text { TID385 } \end{aligned}$		$\begin{aligned} & 800 \\ & 200 \\ & 400 \\ & 600 \end{aligned}$	$\begin{array}{r} 75 \\ 1 \\ 1 \\ 1 \end{array}$	$\begin{aligned} & 200 / 800 \\ & 200 / 200 \\ & 200 / 400 \\ & 200 / 600 \end{aligned}$	$\begin{aligned} & 1.2 / 1 \mathrm{~A} \\ & 1.2 / 1 \mathrm{~A} \\ & 1.2 / 1 \mathrm{~A} \\ & 1.2 / 1 \mathrm{~A} \end{aligned}$			
$\begin{array}{\|l} \text { IN5218 } \\ \text { 1N5219 } \\ \text { 1N5220 } \\ \text { IN5221 } \end{array}$	$\begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}$	$\left.\begin{aligned} & \mathrm{RE} \\ & \mathrm{SD} \\ & \mathrm{SD} \\ & \mathrm{ZD} \end{aligned} \right\rvert\,$		$\begin{aligned} & \text { TID386 } \\ & \text { TID } 701 \\ & \text { TID701 } \end{aligned}$	500	$\begin{array}{r} 800 \\ 30 \\ 30 \end{array}$. 75	$\begin{aligned} & 200 / 800 \\ & 50 N / 20 \\ & 50 N / 20 \end{aligned}$	$\begin{array}{r} 1.2 / 1 A \\ 1 / 50 \\ 1.2 / 50 \end{array}$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	2.4/20	20
$\begin{aligned} & \text { 1N5221A } \\ & \text { iN5221B } \\ & \text { IN5222 } \\ & \text { IN5222A } \end{aligned}$	$\begin{aligned} & s \\ & s \\ & s \\ & s \\ & s \end{aligned}$	$\left.\begin{aligned} & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \end{aligned} \right\rvert\,$			$\begin{aligned} & 500 \\ & 500 \\ & 500 \\ & 500 \end{aligned}$						$\begin{aligned} & 2.4 / 20 \\ & 2.4 / 20 \\ & 2.5 / 20 \\ & 2.5 / 20 \end{aligned}$	10 5 20 10
$\begin{aligned} & \text { IN5222B } \\ & \text { 1N5223 } \\ & \text { IN5223A } \\ & \text { IN5223B } \end{aligned}$	$\left\lvert\, \begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}\right.$	$\left.\begin{aligned} & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \end{aligned} \right\rvert\,$			$\begin{aligned} & 500 \\ & 500 \\ & 500 \\ & 500 \end{aligned}$						$\begin{aligned} & 2.5 / 20 \\ & 2.7 / 20 \\ & 2.7 / 20 \\ & 2.7 / 20 \end{aligned}$	5 20 10 5
1N5224 1N5224A 1N52248 1N5225	$\left\lvert\, \begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}\right.$	$\left.\begin{aligned} & z 0 \\ & z 0 \\ & z 0 \\ & z D \end{aligned} \right\rvert\,$			$\begin{aligned} & 500 \\ & 500 \\ & 500 \\ & 500 \end{aligned}$						$\begin{array}{r} 2.8 / 20 \\ 2.8 / 20 \\ 2.8 / 20 \\ 3 / 20 \end{array}$	20 10 5 20
$\begin{aligned} & \text { 1N5225A } \\ & \text { IN5225B } \\ & \text { 1N5226 } \\ & \text { 1N5226A } \end{aligned}$	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\left.\begin{aligned} & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \end{aligned} \right\rvert\,$	IN5226 1N5226A		500 500 500 500						$\begin{array}{r} 3 / 20 \\ 3 / 20 \\ 3.3 / 20 \\ 3.3 / 20 \end{array}$	10 5 20 10
$\begin{array}{\|l} \text { IN522SB } \\ \text { IN5227 } \\ \text { IN5227A } \\ \text { IN5227B } \end{array}$	$\begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}$	$\begin{aligned} & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \end{aligned}$	$\begin{aligned} & \text { IN5226B } \\ & \text { IN5227 } \\ & \text { 1N5227A } \\ & \text { IN5227B } \end{aligned}$		$\begin{aligned} & 500 \\ & 500 \\ & 500 \\ & 500 \end{aligned}$						$\begin{aligned} & 3.3 / 20 \\ & 3.6 / 20 \\ & 3.6 / 20 \\ & 3.6 / 20 \end{aligned}$	5 20 10 5
$\begin{aligned} & \text { IN5228 } \\ & \text { 1N5228A } \\ & \text { 1N52288 } \\ & \text { IN5229 } \end{aligned}$	$\begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}$	$\begin{aligned} & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{ZD} \\ & \mathrm{zD} \end{aligned}$	$\begin{aligned} & \text { IN5228 } \\ & \text { IN5228A } \\ & \text { IN52288 } \\ & \text { IN5229 } \end{aligned}$		500 500 500 500						$\begin{aligned} & 3.9 / 20 \\ & 3.9 / 20 \\ & 3.9 / 20 \\ & 4.3 / 20 \end{aligned}$	20 10 5 20

DIODE INTERCHANGEABILITY

TYPE NUMSER				$\begin{array}{\|c\|} \hline \text { REPLACEMENT } \\ \hline \end{array}$	$\begin{gathered} \text { FOR } \\ \text { NRW } \\ \text { DESIGN } \end{gathered}$	PD (mW)	$\begin{gathered} \text { VTMOS } \\ \mathbf{V}_{\mathbf{R}} \\ \text { (v) } \end{gathered}$	I (A)	$\begin{array}{ll} I_{\mathbf{R}} & V_{\mathbf{R}} \\ \mu_{\mathbf{A}} & /(\mathbf{V}) \end{array}$	$\begin{array}{cc} & \text { characte } \\ \mathbf{v F}_{\mathbf{F}} & \bullet \\ (\mathbf{v}) & / \text { (ma) } \end{array}$	$\begin{gathered} i_{1 \pi} \\ (n=151 C \end{gathered}$	$\begin{array}{llc} \mathrm{v}_{\mathrm{z}} & \bullet & \mathrm{lz} \\ (\mathrm{~V}) & /(\mathrm{mA}) \end{array}$	\%
$\begin{aligned} & \text { 1N5229A } \\ & \text { 1N52298 } \\ & \text { 1N5230 } \\ & \text { 1N5230A } \end{aligned}$	S			$\begin{array}{\|l\|} \hline \text { 1N5229A } \\ \text { IN52298 } \\ \text { 1N5230 } \\ \text { 1N5230A } \end{array}$		$\begin{aligned} & 500 \\ & 500 \\ & 500 \\ & 500 \end{aligned}$						$\begin{aligned} & 4.3 / 20 \\ & 4.3 / 20 \\ & 4.7 / 20 \\ & 4.7 / 20 \end{aligned}$	10 5 20 10
$\begin{aligned} & \text { IN5230B } \\ & \text { IN5231 } \\ & \text { IN5231A } \\ & \text { IN5231B } \end{aligned}$	$\begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}$	2 zi		IN5230B IN5231 in5231A IN5231B		$\begin{aligned} & 500 \\ & 500 \\ & 500 \\ & 500 \end{aligned}$						$\begin{aligned} & 4.7 / 20 \\ & 5.1 / 20 \\ & 5.1 / 20 \\ & 5.1 / 20 \end{aligned}$	5 20 10 5
$\begin{aligned} & \text { 1N5232 } \\ & \text { 1N5232A } \\ & \text { 1N5232B } \\ & \text { 1N5233 } \end{aligned}$	(ZD		1N5232 1N5232A IN5232B 1N5233		$\begin{aligned} & 500 \\ & 500 \\ & 500 \\ & 500 \end{aligned}$						$\begin{array}{r} 5.6 / 20 \\ 5.6 / 20 \\ 5.6 / 20 \\ 6 / 20 \end{array}$	20 10 5 20
	$\begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}$			iN5233A 1N5233B 1N5234 IN5234A		$\begin{aligned} & 500 \\ & 500 \\ & 500 \\ & 500 \end{aligned}$						$\begin{array}{r} 6 / 20 \\ 6 / 20 \\ 6.2 / 20 \\ 6.2 / 20 \end{array}$	10 5 20 10
JN5234B 1N5235 1N5235A 1N5235B	$\left\lvert\, \begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}\right.$	zD		1N5234: 1N5235 1N5235A 1N5235B		$\begin{aligned} & 500 \\ & 500 \\ & 500 \\ & 500 \end{aligned}$						6.2/20 6.8/20 6.8/20 6.8/20	5 20 10 5
	s s s s	zD		1N5236 IN5238A 1N5236B IN5237		$\begin{aligned} & 500 \\ & 500 \\ & 500 \\ & 500 \end{aligned}$						$\begin{aligned} & 7.5 / 20 \\ & 7.5 / 20 \\ & 7.5 / 20 \\ & 8.2 / 20 \end{aligned}$	20 10 5 20
	s	ZD		IN5237A iN5237B in5238 in5238A		$\begin{aligned} & 500 \\ & 500 \\ & 500 \\ & 500 \end{aligned}$						$\begin{aligned} & 8.2 / 20 \\ & 8.2 / 20 \\ & 8.7 / 20 \\ & 8.7 / 20 \end{aligned}$	10 5 20 10
IN52388 1N5239 1N5239A 1N5239B	S	$\left\lvert\, \begin{aligned} & \mathrm{zD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \end{aligned}\right.$		$\begin{aligned} & \text { IN5238B } \\ & \text { IN5239 } \\ & \text { IN5239A } \\ & \text { IN5239B } \end{aligned}$		$\begin{aligned} & 500 \\ & 500 \\ & 500 \\ & 500 \end{aligned}$						$\begin{aligned} & 8.7 / 20 \\ & 9.1 / 20 \\ & 9.1 / 20 \\ & 9.1 / 20 \end{aligned}$	5 20 10 5
	$\begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}$	$\begin{aligned} & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \end{aligned}$		N5240 N5240A N5240B N5241		$\begin{aligned} & 500 \\ & 500 \\ & 500 \\ & 500 \end{aligned}$						$\begin{aligned} & 10 / 20 \\ & 10 / 20 \\ & 1020 \\ & 11 / 20 \end{aligned}$	20 10 5 20
1N5241A 1N5241B 1N5242 iN5242A	$\begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}$	$\begin{aligned} & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \end{aligned}$		N5241A N5241B N5242 N5242A		$\begin{aligned} & 500 \\ & 500 \\ & 500 \\ & 500 \end{aligned}$						$\begin{aligned} & 11 / 20 \\ & 11 / 20 \\ & 12 / 20 \\ & 12 / 20 \end{aligned}$	10 5 20 10

DIODE INTERCHANGEABILTTY

TYPE NUMPER		$\begin{aligned} & \frac{3}{3} \\ & \frac{5}{5} \\ & \frac{2}{2} \\ & \frac{3}{3} \end{aligned}$	II REPLACEMENT		$\begin{aligned} & \mathrm{PD} \\ & (\mathrm{~mW}) \end{aligned}$	RATINGS $\begin{aligned} & \mathbf{V}_{\mathbf{R}} \\ & (\mathbf{V}) \end{aligned}$	I (A)	$\begin{array}{ll} \mathrm{I}_{\mathrm{R}} & \mathrm{~V}_{\mathrm{R}} \\ \mu_{\mathrm{A}} & /(\mathrm{V}) \end{array}$	$\begin{array}{cc} \mathbf{V}_{F} & \mathbf{I F}_{\mathbf{F}} \\ (\mathrm{V}) & /(\mathrm{mA}) \end{array}$	RISTIC t_{0} (ns)	$\begin{array}{ll} \mathbf{v z}_{z} & \mathrm{lz} \\ (\mathrm{~V}) & / \mathrm{ma}) \end{array}$	TOL \%
$\begin{aligned} & \text { IN5284 } \\ & \text { IN5285 } \\ & \text { IN5286 } \\ & \text { IN5287 } \end{aligned}$	s s s S	$\begin{aligned} & \mathrm{RD} \\ & \mathrm{RD} \\ & \mathrm{RD} \\ & \mathrm{RD} \end{aligned}$			$\begin{aligned} & 600 \\ & 600 \\ & 600 \\ & 600 \end{aligned}$							
1N5288 1N5289 1N5290 IN5291	$\begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}$	$\begin{aligned} & R D \\ & R D \\ & R D \\ & R D \end{aligned}$			$\begin{aligned} & 600 \\ & 600 \\ & 600 \\ & 600 \end{aligned}$,				
$\begin{aligned} & \text { IN5292 } \\ & \text { iN5293 } \\ & \text { IN5294 } \\ & \text { IN5295 } \end{aligned}$	$\left\lvert\, \begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}\right.$	$\begin{aligned} & R D \\ & R D \\ & R D \\ & R D \end{aligned}$			$\begin{aligned} & 600 \\ & 600 \\ & 600 \\ & 600 \end{aligned}$							
$\begin{aligned} & \text { IN5296 } \\ & \text { IN5297 } \\ & \text { IN5298 } \\ & \text { IN5300 } \end{aligned}$	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\begin{aligned} & R D \\ & R D \\ & R D \\ & R D \end{aligned}$			$\begin{aligned} & 600 \\ & 600 \\ & 600 \\ & 600 \end{aligned}$							
$\left(\begin{array}{l} \text { 1N5301 } \\ \text { 1N5302 } \\ \text { 1N5303 } \\ \text { IN5304 } \end{array}\right.$	$\left[\begin{array}{l} s \\ s \\ s \\ s \end{array}\right.$	$\begin{aligned} & R D \\ & R D \\ & R D \\ & R D \end{aligned}$			$\begin{aligned} & 600 \\ & 600 \\ & 600 \\ & 600 \end{aligned}$							
$\begin{aligned} & \text { 1N5305 } \\ & \text { IN5306 } \\ & \text { 1N5307 } \\ & \text { 1N5308 } \end{aligned}$	$\left\lvert\, \begin{aligned} & S \\ & s \\ & S \\ & s \end{aligned}\right.$	$\left\|\begin{array}{l} R D \\ R D \\ R D \\ R D \end{array}\right\|$			$\begin{aligned} & 600 \\ & 600 \\ & 600 \\ & 600 \end{aligned}$							
1N5309 IN5310 1N5311 1N5312	S	RD RD RD $R D$			$\begin{aligned} & 600 \\ & 600 \\ & 600 \\ & 600 \end{aligned}$							
1N5313 1N5315 1N5316 1N5317	$\left\lvert\, \begin{aligned} & \mathbf{S} \\ & \mathbf{s} \\ & \mathbf{S} \\ & \mathbf{s} \end{aligned}\right.$	$\left.\begin{aligned} & R D \\ & S D \\ & S D \\ & S D \end{aligned} \right\rvert\,$		1N4153 1N4153 1N4150	600	$\begin{array}{r} 100 \\ 100 \\ 80 \end{array}$		$\begin{array}{r} 50 \mathrm{~N} / 50 \\ 50 \mathrm{~N} / 50 \\ .1 / 55 \end{array}$	$\begin{array}{r} 1 / 200 \\ 1 / 100 \\ 1.3 / 500 \end{array}$	4 4 4		
1N5318 1N5319 1N5314 1N5320	$\begin{aligned} & 5 \\ & s \\ & s \\ & s \end{aligned}$	$\left\lvert\, \begin{aligned} & S D \\ & S D \\ & R D \\ & R E \\ & R E \end{aligned}\right.$		1N4150 1N4305	600	$\begin{array}{r} 75 \\ 40 \\ 100 \end{array}$	1	$\begin{array}{r} .1 / 50 \\ 100 / 25 \\ 100 / 100 \end{array}$	$\begin{aligned} & 1 / 200 \\ & 1 / 100 \\ & 1.1 / 1 \mathrm{~A} \end{aligned}$	$\begin{array}{r} 4 \\ 4 \\ 250 \end{array}$		
IN5324 IN5326 IN5329 IN5330	S S S S	$\begin{aligned} & R E \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \end{aligned}$				$\begin{aligned} & 15 K \\ & 100 \\ & 1.8 K \\ & 1.6 K \end{aligned}$	$\begin{array}{r} .01 \\ 12 \\ .135 \\ .54 \end{array}$	$\begin{gathered} 25 / \\ 150 / \\ 150 / \end{gathered}$	24/			

TYPE NUMBER		2003$\frac{3}{3}$3	Ti	$\begin{aligned} & \text { FOR } \\ & \text { NEW } \\ & \text { DESICN } \end{aligned}$	ratings			CHARACTERISTICS				
					$\begin{gathered} \text { PD } \\ (\mathrm{mW}) \end{gathered}$	V_{R} (V)	I (A)	$\begin{array}{ll} \mathbf{l}_{\mathbf{R}} & \bullet \mathbf{V}_{\mathbf{R}} \\ \mu_{\mathbf{A}} & /(\mathbf{V}) \end{array}$	$\begin{array}{cc} \mathbf{V}_{\mathrm{F}} & \mathbf{I F}_{\mathrm{F}} \\ (\mathrm{~V}) & /(\mathrm{mA}) \end{array}$	$t_{\pi r}$ (ns)	$\begin{array}{lc} \mathbf{V Z}_{\mathbf{z}} & \mathrm{lz} \\ (\mathrm{~V}) & / \mathrm{mA}) \end{array}$	$\begin{aligned} & \text { ror } \\ & \% \end{aligned}$
$\begin{aligned} & \text { 1N5242B } \\ & \text { 1N5243 } \\ & \text { 1N5243A } \\ & \text { IN5243B } \end{aligned}$	$\begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}$	$\left\|\begin{array}{l} \mathrm{ZD} \\ \mathrm{ZD} \\ \mathrm{ZD} \\ \mathrm{ZD} \end{array}\right\|$	$\begin{aligned} & \text { 1N5242B } \\ & \text { 1N5243 } \\ & \text { 1N5243A } \\ & \text { 1N5243B } \end{aligned}$		$\begin{aligned} & 500 \\ & 500 \\ & 500 \\ & 500 \end{aligned}$						$\begin{aligned} & 12 / 20 \\ & 13 / 9.5 \\ & 13 / 9.5 \\ & 13 / 9.5 \end{aligned}$	$\begin{array}{r} 5 \\ 20 \\ 10 \\ 5 \end{array}$
$\begin{aligned} & \text { IN5244 } \\ & \text { IN5244A } \\ & \text { 1N524AB } \\ & \text { IN5245 } \end{aligned}$	$\begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}$	$\begin{aligned} & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{ZD} \\ & \mathrm{zD} \end{aligned}$	$\begin{aligned} & \text { 1N5244 } \\ & \text { iN5244A } \\ & \text { 1N5244B } \\ & \text { 1N5245 } \end{aligned}$		$\begin{aligned} & 500 \\ & 500 \\ & 500 \\ & 500 \end{aligned}$						$\begin{aligned} & 14 / 9 \\ & 14 / 9 \\ & 14 / 9 \\ & 15 / 8.5 \end{aligned}$	$\begin{array}{r} 20 \\ 10 \\ 5 \\ 20 \end{array}$
$\begin{aligned} & \text { IN5245A } \\ & \text { IN5245B } \\ & \text { IN5246 } \\ & \text { IN5246A } \end{aligned}$	$\left\lvert\, \begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}\right.$	$\begin{aligned} & \mathrm{ZD} \\ & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \end{aligned}$	$\begin{aligned} & \text { 1N5245A } \\ & \text { IN5245B } \\ & \text { IN5246 } \\ & \text { IN5246A } \end{aligned}$		$\begin{aligned} & 500 \\ & 500 \\ & 500 \\ & 500 \end{aligned}$						$\begin{aligned} & 15 / 8.5 \\ & 15 / 8.5 \\ & 16 / 7.8 \\ & 16 / 7.8 \end{aligned}$	$\begin{array}{r} 10 \\ 5 \\ 20 \\ 10 \end{array}$
$\begin{array}{\|l} \text { 1N5246B } \\ \text { 1N5247 } \\ \text { 1N5247A } \\ \text { 1N5247B } \end{array}$	$\left[\begin{array}{l} 5 \\ 5 \\ 5 \\ 5 \end{array}\right.$	$\begin{aligned} & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \end{aligned}$	$\begin{aligned} & \text { IN5246B } \\ & \text { IN5247 } \\ & \text { IN5247A } \\ & \text { IN5247B } \end{aligned}$		$\begin{aligned} & 500 \\ & 500 \\ & 500 \\ & 500 \end{aligned}$						$\begin{aligned} & 16 / 7.8 \\ & 17 / 7.4 \\ & 17 / 7.4 \\ & 17 / 7.4 \end{aligned}$	$\begin{array}{r} 5 \\ 20 \\ 10 \\ 5 \end{array}$
$\begin{aligned} & \text { 1N5248 } \\ & \text { 1N5248A } \\ & \text { 1N5248B } \\ & \text { iN5249 } \end{aligned}$	$\left\lvert\, \begin{aligned} & \mathbf{S} \\ & \mathbf{S} \\ & \mathbf{S} \\ & \mathbf{s} \end{aligned}\right.$	$\left\|\begin{array}{l} \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \end{array}\right\|$	$\begin{aligned} & \text { IN5248 } \\ & \text { 1N5248A } \\ & \text { 1N5248B } \\ & \text { IN5249 } \end{aligned}$		$\begin{aligned} & 500 \\ & 500 \\ & 500 \\ & 500 \end{aligned}$						$\begin{aligned} & 18 / 7 \\ & 18 / 7 \\ & 18 / 7 \\ & 19 / 6.6 \end{aligned}$	$\begin{array}{r} 20 \\ 10 \\ 5 \\ 20 \end{array}$
$\begin{array}{\|l} \text { 1N5249A } \\ \text { 1N52498 } \\ \text { 1N5250 } \\ \text { IN5250A } \end{array}$	$\begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}$	$\left\|\begin{array}{l} \mathrm{ZD} \\ \mathrm{zD} \\ \mathrm{ZD} \\ \mathrm{ZD} \end{array}\right\|$	$\begin{aligned} & \text { IN5249A } \\ & \text { lN5249B } \\ & \text { 1N5250 } \\ & \text { 1N5250A } \end{aligned}$		$\begin{aligned} & 500 \\ & 500 \\ & 500 \\ & 500 \end{aligned}$						19/6.6 19/6.6 20/6.2 20/6.2	10 5 20 10
$\begin{aligned} & \text { IN5250B } \\ & \text { IN5251 } \\ & \text { IN5251A } \\ & \text { IN5251B } \end{aligned}$	$\begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}$	$\left\|\begin{array}{l} z 0 \\ z D \\ z D \\ z D \end{array}\right\|$	$\begin{aligned} & \text { 1N5250B } \\ & \text { 1N5251 } \\ & \text { IN5251A } \\ & \text { IN5251B } \end{aligned}$		$\begin{aligned} & 500 \\ & 500 \\ & 500 \\ & 500 \end{aligned}$						$\begin{aligned} & 20 / 6.2 \\ & 22 / 5.6 \\ & 22 / 5.6 \\ & 22 / 5.6 \end{aligned}$	5 20 10 5
$\begin{aligned} & \text { IN5252 } \\ & \text { 1N5252A } \\ & \text { IN5252B } \\ & \text { IN5253 } \end{aligned}$	$\begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}$	$\left.\begin{aligned} & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \end{aligned} \right\rvert\,$	$\begin{aligned} & \text { IN5252 } \\ & \text { IN5252A } \\ & \text { IN5252B } \\ & \text { IN5253 } \end{aligned}$		$\begin{aligned} & 500 \\ & 500 \\ & 500 \\ & 500 \end{aligned}$						$\begin{aligned} & 24 / 5.2 \\ & 24 / 5.2 \\ & 24 / 5.2 \\ & 25 / 5 \end{aligned}$	20 10 5 20
$\begin{aligned} & \text { 1N5253A } \\ & \text { 1N5253B } \\ & \text { 1N5254 } \\ & \text { 1N5254A } \end{aligned}$	$\begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{S} \\ & \mathbf{s} \end{aligned}$	$\begin{aligned} & \mathrm{zD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{zD} \end{aligned}$	$\begin{aligned} & \text { 1N5253A } \\ & \text { IN5253B } \\ & \text { IN5254 } \\ & \text { IN5254A } \end{aligned}$		$\begin{aligned} & 500 \\ & 500 \\ & 500 \\ & 500 \end{aligned}$.			$\begin{aligned} & 25 / 5 \\ & 25 / 5 \\ & 27 / 4.6 \\ & 27 / 4.6 \end{aligned}$	10 5 20 10
$\begin{aligned} & \text { 1N5254B } \\ & \text { 1 N5255 } \\ & \text { iN5255A } \\ & \text { iN5255B } \end{aligned}$	$\left\lvert\, \begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}\right.$	$\begin{aligned} & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \end{aligned}$	$\begin{aligned} & \text { 1N52548 } \\ & \text { 1N5255 } \\ & \text { 1N5255A } \\ & \text { 1N5255B } \end{aligned}$		$\begin{aligned} & 500 \\ & 500 \\ & 500 \\ & 500 \end{aligned}$						$\begin{aligned} & 27 / 4.6 \\ & 28 / 4.5 \\ & 28 / 4.5 \\ & 28 / 4.5 \end{aligned}$	5 20 10 5

DIODE INTERCHANGEABILITY

TYPE MUMEER			$\text { n } 1$	$\begin{aligned} & \text { FOR } \\ & \text { NEW } \\ & \text { DESICN } \end{aligned}$	Ratanos			CHARACTERISTICS				
					$\begin{gathered} \mathrm{m} \\ (\mathrm{mw}) \end{gathered}$	$\begin{aligned} & \mathbf{V}_{\mathbf{R}} \\ & (\mathbf{V}) \end{aligned}$	1 (A)	$\begin{array}{lll} \mathbf{I}_{\mathbf{R}} & \mathbf{V}_{\mathrm{R}} \\ \mu \mathrm{~A} & / \mathrm{V}) \end{array}$	$\begin{array}{ccc} V_{F} & I_{F} \\ (V) & /(\mathrm{mA}) \end{array}$	$\begin{gathered} t_{\pi} \\ (\mathrm{ms}) \end{gathered}$	$\mathbf{V Z}_{\mathbf{Z}}$ - \mathbf{z} (V) / (mA)	$\begin{aligned} & \text { TOX } \\ & \text { \% } \end{aligned}$
$\begin{array}{\|l} \text { IN5269A } \\ \text { IN52698 } \\ \text { IN5270 } \\ \text { IN5270A } \end{array}$	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\left.\begin{aligned} & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \end{aligned} \right\rvert\,$			500 500 500 500						87/1.4 87/1.4 $91 / 1.4$ 91/1.4	10 5 20 10
$\begin{aligned} & \text { IN52708 } \\ & \text { IN5271 } \\ & \text { IN5271A } \\ & \text { IN5271B } \end{aligned}$	$\left\lvert\, \begin{aligned} & 5 \\ & s \\ & s \\ & s \end{aligned}\right.$	$\left\|\begin{array}{c} \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \end{array}\right\|$			$\begin{aligned} & 500 \\ & 500 \\ & 500 \\ & 500 \end{aligned}$						$\begin{array}{r} 91 / 1.4 \\ 100 / 1.3 \\ 100 / 1.3 \\ 100 / 1.3 \end{array}$	$\begin{array}{r} 5 \\ 20 \\ 10 \\ 5 \end{array}$
$\begin{aligned} & \text { IN5272 } \\ & \text { 1N5272A } \\ & \text { 1N5272B } \\ & \text { iN5273 } \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & s \\ & s \end{aligned}$	$\begin{aligned} & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \end{aligned}$			500 500 500 500						110/1.1 110/1.1 110/1.1 120/1	$\begin{array}{r} 20 \\ 10 \\ 5 \\ 20 \end{array}$
$\begin{aligned} & \text { IN5273A } \\ & \text { IN52738 } \\ & \text { IN5274 } \\ & \text { IN527AA } \end{aligned}$	$\begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{S} \\ & \mathbf{s} \end{aligned}$	$\left\|\begin{array}{l} \mathrm{ZD} \\ \mathrm{ZD} \\ \mathrm{ZD} \\ \mathrm{ZD} \end{array}\right\|$			500 500 500 500						$\begin{aligned} & 120 / 1 \\ & 120 / 1 \\ & 130 / .95 \\ & 130 / .95 \end{aligned}$	$\begin{array}{r} 10 \\ 5 \\ 20 \\ 10 \end{array}$
$\begin{aligned} & \text { IN5274B } \\ & \text { IN5275 } \\ & \text { IN5275A } \\ & \text { IN5275B } \end{aligned}$	$\left\lvert\, \begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}\right.$	$\begin{aligned} & z 0 \\ & z 0 \\ & z 0 \\ & z 0 \end{aligned}$			500 500 500 500						$\begin{aligned} & 130 / .95 \\ & 140 / .9 \\ & 140 / .9 \\ & 140 / .9 \end{aligned}$	5 20 10 5
$\begin{aligned} & \text { IN5276 } \\ & \text { IN5276A } \\ & \text { IN5276B } \\ & \text { IN5277 } \end{aligned}$	$\begin{aligned} & s \\ & s \\ & s \\ & s \\ & s \end{aligned}$	$\begin{aligned} & \mathrm{zo} \\ & \mathrm{zO} \\ & \mathrm{zo} \\ & \mathrm{zo} \end{aligned}$			500 500 500 500						$\begin{aligned} & 150 / .85 \\ & 150 / .85 \\ & 150 / .85 \\ & 160 / .80 \end{aligned}$	20 10 5 20
$\begin{aligned} & \text { 1N5277A } \\ & \text { 1N5277B } \\ & \text { 1N5278 } \\ & \text { 1N5278A } \end{aligned}$	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\begin{aligned} & z 0 \\ & z 0 \\ & z 0 \\ & z D \end{aligned}$			500 500 500 500						$\begin{aligned} & 160 / .80 \\ & 160 / .80 \\ & 170 / .74 \\ & 170 / .74 \end{aligned}$	10 5 20 10
$\begin{aligned} & \text { 1N52788 } \\ & \text { 1N5279 } \\ & \text { IN5279A } \\ & \text { IN52798 } \end{aligned}$	S 5 5 5	$\left\|\begin{array}{l} 20 \\ 20 \\ 20 \\ 20 \end{array}\right\|$			500 500 500 500						$\begin{aligned} & 170 / .74 \\ & 180 / .68 \\ & 180 / .68 \\ & 180 / .68 \end{aligned}$	5 20 10 5
IN5280 IN5280A 1N52806 1N5281	S	$\begin{aligned} & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{ZD} \\ & \mathrm{zD} \end{aligned}$			500 500 500 500						$\begin{aligned} & 190 / .66 \\ & 190 / .66 \\ & 190 / .66 \\ & 200 / .65 \end{aligned}$	20 10 5 20
$\begin{aligned} & \text { IN5281A } \\ & \text { IN5281B } \\ & \text { IN5282 } \\ & \text { IN5283 } \end{aligned}$	S			1N4150	$\begin{aligned} & 500 \\ & 500 \\ & \\ & 800 \end{aligned}$	80		. $1 / 55$	1.3/500	4	$\begin{array}{l\|l} 200 / .65 \\ 200 / .65 \end{array}$	10 5

DIODE INTERCHANGEABILITY

$\begin{aligned} & \text { TYPE } \\ & \text { NUMBER } \end{aligned}$				π replacement	$\begin{array}{\|c\|c\|c\|} \text { FOR } \\ \text { NEW } \\ \text { DESIGN } \end{array}$	PD (mW)	$\begin{aligned} & \text { RAting! } \\ & \boldsymbol{V}_{\mathrm{R}} \\ & (\mathrm{~V}) \end{aligned}$	I (A)	$\begin{array}{ll} I_{R} & V_{R} \\ \mu_{A} & /(V) \end{array}$	$\mathbf{V F}_{\mathrm{F}}$. $\mathbf{I F}_{\mathbf{F}}$ (V) $/$ (ma)	$\begin{aligned} & \text { ERISTIC } \\ & \begin{array}{c} \text { nrr } \\ \text { (ns) } \end{array} \end{aligned}$	$\begin{array}{cc} v_{z} & \mathbf{I z}_{z} \\ (\mathrm{~V}) & /(\mathrm{mA}) \end{array}$	$\begin{gathered} \text { rol } \\ \% \end{gathered}$
$\begin{aligned} & \text { 1N5284 } \\ & \text { iN5285 } \\ & \text { IN5286 } \\ & \text { iN5287 } \end{aligned}$	s		RD			$\begin{aligned} & 600 \\ & 600 \\ & 600 \\ & 600 \end{aligned}$							
$\begin{aligned} & \text { IN5288 } \\ & \text { IN5289 } \\ & \text { IN5290 } \\ & \text { IN5291 } \end{aligned}$	s					$\begin{aligned} & 600 \\ & 600 \\ & 600 \\ & 600 \end{aligned}$							
$\begin{aligned} & \text { IN5292 } \\ & \text { 1N5293 } \\ & \text { IN5294 } \\ & \text { iN5295 } \end{aligned}$	s \mathbf{s} \mathbf{s} s	R				$\begin{aligned} & 600 \\ & 600 \\ & 600 \\ & 600 \end{aligned}$							
$\begin{aligned} & \text { 1N5296 } \\ & \text { IN5297 } \\ & \text { iN5298 } \\ & \text { IN5300 } \end{aligned}$	s s s s	RD				$\begin{aligned} & 600 \\ & 600 \\ & 600 \\ & 600 \end{aligned}$							
iN5301 iN5302 1N5303 iN5304	s	RD	-			$\begin{aligned} & 600 \\ & 600 \\ & 600 \\ & 600 \end{aligned}$							
IN5305 IN5306 IN5307 1N5308	s s s s	RD				$\begin{aligned} & 600 \\ & 600 \\ & 600 \\ & 600 \end{aligned}$							
iN5309 1N5310 1N5311 1N5312	s s s s	RD											
IN5313 1N5315 1N5316 in5317	s s s s	$\begin{array}{\|l\|} \hline R D \\ \text { SD } \\ \text { SD } \\ \text { SD } \end{array}$			1NA153 1N4153 1N4150	600	$\begin{array}{r} 100 \\ 100 \\ 80 \end{array}$		$50 N / 50$ $50 N / 50$ $.1 / 55$	$\begin{array}{r} 1 / 200 \\ 1 / 100 \\ 1.3 / 500 \end{array}$	4 4 4		
	s	SD SD RD RE			1N4150 1N4305	600	$\begin{array}{r} 75 \\ 40 \\ 100 \end{array}$	1	$\begin{gathered} .1 / 50 \\ 100 / 25 \\ 100 / 100 \end{gathered}$	$\begin{aligned} & 1 / 200 \\ & 1 / 100 \end{aligned}$ $1.1 / 1 \mathrm{~A}$	$\begin{array}{r} 4 \\ 4 \\ 250 \end{array}$		
1N5324 1N5326 IN5329 IN5330	s s s s	$\begin{aligned} & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \end{aligned}$					$\begin{aligned} & 15 \mathrm{~K} \\ & 100 \\ & 1.6 \mathrm{~K} \\ & 1.6 \mathrm{~K} \end{aligned}$	$\begin{array}{r} .01 \\ 12 \\ .135 \\ .54 \end{array}$	$\begin{aligned} & 25 / \\ & 150 / \\ & 150 / \end{aligned}$	$24 /$			

DIODE INTERCHANGEABILITY

TYPE MUMEER		$\left.\begin{gathered} z \\ \frac{z}{3} \\ \frac{3}{3} \\ \frac{3}{3} \\ 3 \\ 3 \end{gathered} \right\rvert\,$	$\begin{gathered} 11 \\ \text { REPLACEMENT } \end{gathered}$	$\begin{aligned} & \text { FOR } \\ & \text { NEW } \\ & \text { DESION } \end{aligned}$	ratines			CHARACTERISTICS				
					P (mW W)		(A)	$\begin{array}{ll} \mathbf{V}_{\mathbf{R}} & \bullet \mathbf{V}_{\mathbf{R}} \\ \mu \mathrm{A} & / \mathbf{V}) \end{array}$	$\begin{array}{ll} \mathbf{V}_{F} & \mathbf{F}_{\mathbf{F}} \\ \text { (V) } & / \mathrm{mA}) \end{array}$	$\begin{gathered} \mathbf{t}_{\boldsymbol{r}} \\ \mathrm{ns}) \end{gathered}$	$\begin{array}{ll} \mathbf{V Z}_{\mathbf{Z}} & \mathrm{z} \\ (\mathrm{~V}) & / \mathrm{mA}) \end{array}$	$\begin{gathered} \mathrm{tal} \\ \times \end{gathered}$
$\begin{array}{\|l\|} \text { IN5331 } \\ \text { IN5332 } \\ \text { IN5389 } \\ \text { IN5391 } \end{array}$	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}\right.$					$\begin{array}{r} 1.2 \mathrm{~K} \\ 1.2 \mathrm{~K} \\ 40 \mathrm{~K} \\ 50 \end{array}$	$\begin{array}{r} 12 \\ 35 \\ .1 \\ 1.5 \end{array}$	$\begin{aligned} & 100 / \\ & 300 / \end{aligned}$	$\begin{aligned} & 80 / \\ & 1.4 / \end{aligned}$			
1N5392 JN5393 1N5394 1N5395	$\left\lvert\, \begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}\right.$	$\begin{aligned} & R E \\ & R E \\ & R E \\ & R E \\ & R E \end{aligned}$				$\begin{aligned} & 100 \\ & 200 \\ & 300 \\ & 400 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \\ & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 300 / \\ & 300 / \\ & 300 / \\ & 300 / \end{aligned}$	1.4/ 1.41 1.4/ 1.4/			
$\begin{aligned} & \text { IN5396 } \\ & \text { IN5397 } \\ & \text { 1N5398 } \\ & \text { IN5399 } \end{aligned}$	$\left\lvert\, \begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}\right.$	$\begin{aligned} & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \end{aligned}$				$\begin{array}{r} 500 \\ 600 \\ 800 \\ 1 K \end{array}$	$\begin{aligned} & 1.5 \\ & 1.5 \\ & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 300 / \\ & 300 / \\ & 300 / \\ & 300 / \end{aligned}$	1.41 1.4/ $1.4 /$ 1.4/			
$\begin{aligned} & \text { IN5400 } \\ & \text { IN5401 } \\ & \text { IN5402 } \\ & \text { IN5403 } \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & R E \\ & R E \\ & R E \\ & R E \end{aligned}$				$\begin{array}{r} 50 \\ 100 \\ 200 \\ 300 \end{array}$	$\begin{aligned} & 3 \\ & 3 \\ & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & 500 / \\ & 500 / \\ & 500 / \\ & 500 / \end{aligned}$	$\begin{aligned} & 1.2 / \\ & 1.2 / \\ & 1.2 / \\ & 1.2 / \end{aligned}$			
$\begin{aligned} & \text { 1N5404 } \\ & \text { 1N5405 } \\ & \text { 1N5406 } \\ & \text { 1N5407 } \end{aligned}$	$\begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}$	$\begin{aligned} & R E \\ & R E \\ & R E \\ & R E \\ & R E \end{aligned}$				$\begin{aligned} & 400 \\ & 500 \\ & 600 \\ & 800 \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \\ & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & 500 / \\ & 500 / \\ & 500 / \\ & 500 / \end{aligned}$	$\begin{aligned} & 1.2 / \\ & 1.2 / \\ & 1.2 / \\ & 1.2 / \end{aligned}$			
$\begin{aligned} & \text { 1N5408 } \\ & \text { 1N5 } 12 \\ & \text { 1N5413 } \\ & \text { 1N5414 } \end{aligned}$	$\begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & s \\ & s \end{aligned}$	$\left.\begin{aligned} & R E \\ & S D \\ & S D \\ & S D \end{aligned} \right\rvert\,$		IN4305 IN4305 IN4305		$1 K$ 30 80 75	3	$\begin{aligned} & 500 / \\ & .1 / 30 \\ & .1 / 80 \\ & .1 / 75 \end{aligned}$	$\begin{aligned} & 1.2 / \\ & .5 / .1 \\ & .5 / .1 \\ & .5 / .1 \end{aligned}$	2 2 2		
1N5415 1N5416 IN5417 IN5418	$\begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}$	$\left.\begin{aligned} & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \end{aligned} \right\rvert\,$				$\begin{array}{r} 50 \\ 100 \\ 200 \\ 400 \end{array}$		$\begin{aligned} & 1 / \\ & 1 / \\ & 1 / \\ & 1 / \end{aligned}$	$\begin{aligned} & 1.1 / 3 A \\ & 1.1 / 3 A \\ & 1.1 / 3 A \\ & 1.1 / 3 A \end{aligned}$	$\begin{aligned} & 150 \\ & 150 \\ & 150 \\ & 150 \end{aligned}$		
IN5419 1N5420 IN5426 1N5427	$\begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$	$\left.\begin{aligned} & R E \\ & R E \\ & \mathrm{RD} \\ & \mathrm{SD} \end{aligned} \right\rvert\,$		1 N 148		$\begin{array}{r} 500 \\ 600 \\ 25 \\ 75 \end{array}$		$\begin{aligned} & 1 / \\ & 1 / \\ & 1 / 6 \\ & .1 / 50 \end{aligned}$	$\begin{gathered} 1.1 / 3 A \\ 1.1 / 3 A \\ 1 / 40 \\ 1 / 10 \end{gathered}$	$\begin{array}{r} 250 \\ 400 \\ .1 \\ 4 \end{array}$		
IN5428 1N5429 iN5430 IN5431	$\begin{aligned} & \mathbf{S} \\ & \mathbf{S} \\ & \mathbf{S} \\ & \mathbf{S} \end{aligned}$	$\begin{aligned} & \text { SD } \\ & \text { SD } \\ & \text { SD } \\ & \text { SD } \end{aligned}$		1N4938 1N485 IN4150 1N4608		200 200 75 80		$\begin{aligned} & .1 / 175 \\ & 5 N / 125 \\ & .1 / 50 \\ & .1 / 55 \end{aligned}$	$\begin{aligned} & 1 / 100 \\ & 1 / 200 \\ & 1 / 200 \\ & 1 / 500 \end{aligned}$	5 4 4		
1N5432 1N5477 1N5478 1N5479	$\begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}$	$\begin{aligned} & \mathrm{SD} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \end{aligned}$		TID777		$\begin{array}{r} 20 \\ 6 K \\ 7.2 K \\ 8.4 K \end{array}$	1 1 1	$\begin{aligned} & 50 N / 10 \\ & 350 / \\ & 350 / \\ & 350 / \end{aligned}$	$\begin{aligned} & 1 / 50 \\ & .6 / \\ & .6 / \\ & .6 / \end{aligned}$. 75		

DIODE INTERCHANGEABILITY

TYPENumber			$\stackrel{\text { II }}{\text { REELACEMENT }}$	$\begin{gathered} \text { FOR } \\ \text { NEW } \\ \text { DESNON } \end{gathered}$	Ratings			CHARACTERISTICS				
					$\begin{gathered} P_{D} \\ (m w) \end{gathered}$	$\mathbf{V}_{\mathbf{R}}$ (V)	(A)	$\begin{array}{ll} l_{R} & \bullet V_{R} \\ \mu_{\mathrm{A}} & /(\mathrm{V}) \end{array}$	$\begin{array}{cc} \mathbf{V}_{\mathbf{F}} & \bullet \mathbf{l} \\ \text { (V) } & /(\mathrm{ma}) \end{array}$	${ }_{(m)}^{t_{\pi}}$	$\begin{array}{lll} v_{z} & 0 & z \\ \text { (v) } & /(\mathrm{ma}) \end{array}$	$\left.\right\|_{x} ^{\text {rot }}$
$\begin{array}{\|l} \hline \text { 1N55240 } \\ \text { 1N5525 } \\ \text { 1N5525A } \\ \text { 1N5525B } \end{array}$	$\begin{aligned} & \hline \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}$				$\begin{aligned} & 400 \\ & 400 \\ & 400 \\ & 400 \end{aligned}$						$\begin{aligned} & 5.6 / 3 \\ & 6.2 / 1 \\ & 6.2 / 1 \\ & 6.2 / 1 \end{aligned}$	1 20 10 5
$\begin{aligned} & \text { IN5525C } \\ & \text { IN5525D } \\ & \text { IN5526 } \\ & \text { IN5526A } \end{aligned}$	$\left\lvert\, \begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}\right.$	($\begin{aligned} & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD}\end{aligned}$			$\begin{aligned} & 400 \\ & 400 \\ & 400 \\ & 400 \end{aligned}$						$\begin{aligned} & 6.2 / 1 \\ & 6.2 / 1 \\ & 6.8 / 1 \\ & 6.8 / 1 \end{aligned}$	2 1 20 10
$\begin{aligned} & \text { IN5526B } \\ & \text { IN5526C } \\ & \text { IN55260 } \\ & \text { IN5527 } \end{aligned}$	$\begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}$	$\left\|\begin{array}{l} \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \end{array}\right\|$			$\begin{aligned} & 400 \\ & 400 \\ & 400 \\ & 400 \end{aligned}$						6.8/1 6.8/1 6.8/1 7.5/1	5 2 1 20
1N5527A 1N5527B IN5527C 1N5527D	$\begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}$	$\begin{aligned} & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \end{aligned}$			$\begin{aligned} & 400 \\ & 400 \\ & 400 \\ & 400 \end{aligned}$						$\begin{aligned} & 7.5 / 1 \\ & 7.5 / 1 \\ & 7.5 / 1 \\ & 7.5 / 1 \end{aligned}$	10 5 2 1
1N5528 IN5528A 1N5528B iN5528C	$\begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}$	$\left\|\begin{array}{l} \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \end{array}\right\|$			$\begin{aligned} & 400 \\ & 400 \\ & 400 \\ & 400 \end{aligned}$						$\begin{aligned} & 8.2 / 1 \\ & 8.2 / 1 \\ & 8.2 / 1 \\ & 8.2 / 1 \end{aligned}$	20 10 5 2
1N5528D 1N5529 1N5529A 1N5529B	s	$\left\|\begin{array}{l\|} \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \end{array}\right\|$			$\begin{aligned} & 400 \\ & 400 \\ & 400 \\ & 400 \end{aligned}$						$\begin{aligned} & 8.2 / 1 \\ & 9.1 / 1 \\ & 9.1 / 1 \\ & 9.1 / 1 \end{aligned}$	1 20 10 5
1N5529C 1N5529D 1N5530 1N5530A	$\left\lvert\, \begin{aligned} & \mathrm{s} \\ & \mathrm{~s} \\ & \mathrm{~s} \\ & \mathrm{~s} \end{aligned}\right.$	$\left\|\begin{array}{l} \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \end{array}\right\|$			$\begin{aligned} & 400 \\ & 400 \\ & 400 \\ & 400 \end{aligned}$						$\begin{aligned} & 9.1 / 1 \\ & 9.1 / 1 \\ & 10 / 1 \\ & 10 / 1 \end{aligned}$	2 1 20 10
IN5530B IN5530C IN5530D 1N5531	$\left\lvert\, \begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}\right.$	$\left\|\begin{array}{l\|} \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \end{array}\right\|$			$\begin{aligned} & 400 \\ & 400 \\ & 400 \\ & 400 \end{aligned}$						$10 / 1$ 10/1 10/1 $11 / 1$	5 2 1 20
1N5531A 1N5531B IN5331C iN55310	s	$\left\|\begin{array}{l} \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \end{array}\right\|$			$\begin{aligned} & 400 \\ & 400 \\ & 400 \\ & 400 \end{aligned}$						$\begin{aligned} & 11 / 1 \\ & 11 / 1 \\ & 11 / 1 \\ & 11 / 1 \end{aligned}$	10 5 2 1
1N5532 1N5532A 1N5532B 1N5532C	$\left\lvert\, \begin{aligned} & \mathrm{s} \\ & \mathrm{~s} \\ & \mathrm{~s} \\ & \mathrm{~s} \end{aligned}\right.$	$\left.\begin{aligned} & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \end{aligned} \right\rvert\,$			$\begin{aligned} & 400 \\ & 400 \\ & 400 \\ & 400 \end{aligned}$						$\begin{aligned} & 12 / 1 \\ & 12 / 1 \\ & 12 / 1 \\ & 12 / 1 \end{aligned}$	20 10 5 2

DIODE INTERCHANGEABILITY

$\begin{aligned} & \text { TYPE } \\ & \text { MUMBER } \end{aligned}$				$\underset{\text { REPLACEMENT }}{\mathbf{n}}$	$\begin{gathered} \text { FOR } \\ \text { NEW } \\ \text { DESIGN } \end{gathered}$	PD (mW)	atines $V_{\mathbf{R}}$ (V)	(A)	$\begin{array}{ll} I_{R} & V_{R} \\ \mu_{A} & /(V) \end{array}$	$\begin{aligned} & \mathbf{V}_{\mathbf{F}} \\ & (\mathbf{V}) \end{aligned}$	Charact $\begin{aligned} & I_{F} \\ & /(\mathrm{mA}) \end{aligned}$	ristic ${ }^{\dagger} \pi$ (ns)	$\begin{array}{ccc} v_{z} & 1 \\ (\mathrm{~V}) & /(\mathrm{mA}) \end{array}$	$\left.\right\|_{x} ^{\mathrm{tot}}$
$\begin{aligned} & \text { IN5532D } \\ & \text { 1N5533 } \\ & \text { 1N5533A } \\ & \text { 1N5533B } \end{aligned}$	S		$\left.\begin{aligned} & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \end{aligned} \right\rvert\,$			400 400 400 400							$\begin{aligned} & 12 / 1 \\ & 13 / 1 \\ & 13 / 1 \\ & 13 / 1 \end{aligned}$	1 20 10 5
$\begin{aligned} & \text { 1N5533C } \\ & \text { 1N5533D } \\ & \text { 1N5534 } \\ & \text { 1N5534A } \end{aligned}$			$\left\|\begin{array}{l} \mathrm{zD} \\ \mathrm{zo} \\ \mathrm{zo} \\ \mathrm{zD} \end{array}\right\|$			$\begin{aligned} & 400 \\ & 400 \\ & 400 \\ & 400 \end{aligned}$							$\begin{aligned} & 13 / 1 \\ & 13 / 1 \\ & 14 / 1 \\ & 14 / 1 \end{aligned}$	2 1 20 10
iN5534B IN553AC 1N5534D 1N5535	($\begin{aligned} & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \end{aligned}$			$\begin{aligned} & 400 \\ & 400 \\ & 400 \\ & 400 \end{aligned}$							14/1 14/1 14/1 15/1	5 2 1 20
1N5535A 1N5535B 1N5535C 1N5535D	s					400 400 400 400							$\begin{aligned} & 15 / 1 \\ & 15 / 1 \\ & 15 / 1 \\ & 15 / 1 \end{aligned}$	10 5 2 1
1N5536 IN5536A IN5536B 1N5536C	$\begin{aligned} & s \\ & s \\ & s \\ & s \\ & s \end{aligned}$					$\begin{aligned} & 400 \\ & 400 \\ & 400 \\ & 400 \end{aligned}$							16/1 16/1 16/1 16/1	20 10 5 2
1N5536D 1N5537 1N5537A 1N5537B	S		$\begin{gathered} \mathrm{zD} \\ \mathrm{CD} \\ \mathrm{zD} \\ \mathrm{zD} \end{gathered}$			$\begin{aligned} & 400 \\ & 400 \\ & 400 \\ & 400 \end{aligned}$							$\begin{aligned} & 16 / 1 \\ & 17 / 1 \\ & 17 / 1 \\ & 17 / 1 \end{aligned}$	1 20 10 5
iN5537C IN5537D IN5538 IN5538A	S	ZD zD zD ZD	(10			$\begin{aligned} & 400 \\ & 400 \\ & 400 \\ & 400 \end{aligned}$							$\begin{aligned} & 17 / 1 \\ & 17 / 1 \\ & 18 / 1 \\ & 18 / 1 \end{aligned}$	2 1 20 10
1N5538B IN5538C 1N5538D 1N5539	$\begin{aligned} & s \\ & s \\ & s \\ & s \\ & s \end{aligned}$	ZD ZD ZD	O			400 400 400 400							$\begin{aligned} & 18 / 1 \\ & 18 / 1 \\ & 18 / 1 \\ & 19 / 1 \end{aligned}$	5 2 1 20
1N5539A 1N5539B IN5539C IN5539D	$\begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}$	$\left\lvert\, \begin{aligned} & 2 D \\ & Z D \\ & Z D \end{aligned}\right.$				$\begin{array}{r} 400 \\ 400 \\ 400 \\ 400 \end{array}$							$\begin{aligned} & 19 / 1 \\ & 19 / 1 \\ & 19 / 1 \\ & 19 / 1 \end{aligned}$	10 5 2 1
in5540 1N5540A 1N5540B iN5540C	$\left\lvert\, \begin{aligned} & \mathrm{s} \\ & \mathrm{~s} \\ & \mathrm{~s} \\ & \mathrm{~s} \end{aligned}\right.$	$\left\|\begin{array}{l} \mathrm{ZD} \\ \mathrm{ZD} \\ \mathrm{ZD} \\ \mathrm{ZD} \end{array}\right\|$				$\begin{aligned} & 400 \\ & 400 \\ & 400 \\ & 400 \end{aligned}$							$\begin{aligned} & 20 / 1 \\ & 20 / 1 \\ & 20 / 1 \\ & 20 / 1 \end{aligned}$	20 10 5 2

DIODE INTERCHANGEABILITY

TYPE NUMEE			TI		Ratines			CHARACTERISTICS					
					$\begin{aligned} & \text { PD } \\ & (\mathrm{mW}) \end{aligned}$	$\begin{aligned} & \mathbf{V}_{\mathbf{R}} \\ & (\mathbf{V}) \end{aligned}$	I (A)	$\begin{array}{ll} \mathbf{I}_{\mathbf{R}} & \mathbf{V}_{\mathbf{R}} \\ \mu_{\mathrm{A}} & f(\mathbf{V}) \end{array}$	$\mathbf{V}_{\mathbf{F}}$ (V)	$\begin{gathered} \text { if } \\ /(\mathrm{mA}) \end{gathered}$	$\begin{aligned} & \mathbf{t}_{\mathrm{rr}} \\ & \text { (ns) } \end{aligned}$	$\begin{array}{llc} V_{z} & \mathbf{l}_{2} \\ \text { (V) } & / \mathrm{mA}) \end{array}$	${ }^{70 t}$
1N5559 IN5559A IN55598 IN5560	$\begin{aligned} & \mathrm{s} \\ & \mathrm{~S} \\ & \mathrm{~s} \\ & \mathrm{~s} \end{aligned}$	$\begin{aligned} & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \end{aligned}$		1N4736 1N4736 1N4736A 1N4737	$\begin{aligned} & \text { iw } \\ & \text { iw } \\ & \text { iw } \\ & \text { iw } \end{aligned}$							$\begin{aligned} & 6.8 / 37 \\ & 6.8 / 37 \\ & 6.8 / 37 \\ & 7.5 / 34 \end{aligned}$	$\begin{array}{r} 20 \\ 10 \\ 5 \\ 20 \end{array}$
1N5560A 1N5560B IN5561 1N5561A	$\begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}$	$\begin{aligned} & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \end{aligned}$		1N4737 1N4737A 1N4738 1N4738	$\begin{aligned} & \text { iw } \\ & \text { iw } \\ & \text { iw } \\ & \text { iw } \end{aligned}$							$\begin{aligned} & 7.5 / 34 \\ & 7.5 / 34 \\ & 8.2 / 31 \\ & 8.2 / 31 \end{aligned}$	$\begin{array}{r} 10 \\ 5 \\ 20 \\ 10 \end{array}$
$\begin{aligned} & \text { IN5561B } \\ & \text { 1N5562 } \\ & \text { 1N5562A } \\ & \text { 1N5562B } \end{aligned}$	$\begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}$	$\left\|\begin{array}{l} \mathrm{zo} \\ \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \end{array}\right\|$		1N4738A 1N4739 1N4739 iN4739A	$\begin{aligned} & \text { iw } \\ & \text { iw } \\ & \text { iw } \\ & \text { iw } \end{aligned}$							$\begin{aligned} & 8.2 / 31 \\ & 9.1 / 28 \\ & 9.1 / 28 \\ & 9.1 / 28 \end{aligned}$	$\begin{array}{r} 5 \\ 20 \\ 10 \\ 5 \end{array}$
1N5563 1N5563A 1N5563B 1N5564	$\begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}$	$\begin{aligned} & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \end{aligned}$		1N4740 1N4740 IN4740A 1N4741	$\begin{aligned} & \text { iw } \\ & \text { iw } \\ & \text { iw } \\ & \text { iw } \end{aligned}$							$\begin{aligned} & 10 / 25 \\ & 10 / 25 \\ & 10 / 25 \\ & 11 / 23 \end{aligned}$	$\begin{array}{r} 20 \\ 10 \\ 5 \\ 20 \end{array}$
1N5564A 1N556dB 1N5565 1N5565A	$\begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}$	$\begin{aligned} & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zO} \end{aligned}$		1N4741 IN4741A 1N4742 1N4742	$\begin{aligned} & 16 \\ & 1 w \\ & 1 w \\ & 1 w \end{aligned}$							$\begin{aligned} & 11 / 23 \\ & 11 / 23 \\ & 12 / 21 \\ & 12 / 21 \end{aligned}$	10 5 20 10
1N5565B 1N5566 1N5566A 1N5566B	$\begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}$	$\begin{aligned} & \mathrm{zD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \end{aligned}$		IN4742A IN4743 1N4743 IN4743A	$\begin{aligned} & 1 w \\ & i w \\ & 1 w \\ & i w \end{aligned}$							$\begin{aligned} & 12 / 21 \\ & 13 / 19 \\ & 13 / 19 \\ & 13 / 19 \end{aligned}$	5 20 10 5
1N5567 1N5567A 1N5567B 1N5568	$\begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}$	$\begin{aligned} & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \end{aligned}$		IN4744 IN4744 1 NATHAA INA745	$\begin{aligned} & 1 w \\ & \mathrm{iw} \\ & 1 \mathbf{w} \\ & 1 \mathbf{w} \end{aligned}$							$\begin{aligned} & 15 / 17 \\ & 15 / 17 \\ & 15 / 17 \\ & 16 / 15 \end{aligned}$	20 10 5 20
1N5568A 1N5568B 1N5569 1N5569A	$\begin{aligned} & \mathbf{s} \\ & \mathbf{S} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}$	$\begin{aligned} & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \end{aligned}$		IN4745 1N4745A IN4746 1N4746	$\begin{aligned} & 1 \mathrm{w} \\ & 1 \mathrm{w} \\ & 1 \mathrm{w} \\ & 1 \mathrm{w} \end{aligned}$							$\begin{aligned} & 16 / 15 \\ & 16 / 15 \\ & 18 / 14 \\ & 18 / 14 \end{aligned}$	$\begin{array}{r} 10 \\ 5 \\ 20 \\ 10 \end{array}$
1N5569B IN5570 IN5570A IN55708	$\begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \end{aligned}$		1NA746A 1N4747 1N4747 1N4747A	$\begin{aligned} & 1 w \\ & 1 w \\ & 1 \mathbf{1 w} \\ & 1 \mathbf{w} \end{aligned}$							$\begin{aligned} & 18 / 14 \\ & 20 / 12 \\ & 20 / 12 \\ & 20 / 12 \end{aligned}$	5 20 10 5
1N5571 IN5571A 1N5571B 1N5572	$\begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}$	$\begin{aligned} & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \end{aligned}$		1N4748 1N4748 1N4748A 1N4749	$\begin{aligned} & 1 W \\ & 1 W \\ & 1 W \\ & 1 w \end{aligned}$				-			$\begin{aligned} & 22 / 11 \\ & 22 / 11 \\ & 22 / 11 \\ & 24 / 10 \end{aligned}$	$\begin{array}{r} 20 \\ 10 \\ 5 \\ 20 \end{array}$

TYPEnumbek					ratines			CHARACTERISTICS							
					$\begin{gathered} \mathrm{PD}_{\mathrm{D}} \\ (\mathrm{~mW}) \end{gathered}$	V_{R} (V)	(A)	$\begin{array}{ll} \mathbf{l}_{\mathbf{R}} & \mathbf{v}_{\mathbf{R}} \\ \mu_{\mathbf{R}} & /(\mathbf{V}) \end{array}$	$\begin{array}{cc} \mathbf{v}_{\mathbf{F}} & \mathbf{l}_{\mathbf{F}} \\ \text { (v) } & / \text { (mA) } \end{array}$	${ }^{1} \mathrm{r}$ (ns)	$\begin{array}{lll} v_{z} & \bullet & \mathbf{z} \\ (\mathrm{~V}) & 1 \mathrm{ma}) \end{array}$	${ }_{x}^{\text {tot }}$			
$\begin{aligned} & \text { IN5572A } \\ & \text { IN5572B } \\ & \text { IN5573 } \\ & \text { IN5573A } \end{aligned}$	S	\|l	l	l			1N4749 1N4749A 1N4750 1N4750	$\begin{aligned} & \text { iw } \\ & 1 \mathrm{w} \\ & 1 \mathrm{w} \\ & 1 \mathrm{w} \end{aligned}$						$\begin{aligned} & 24 / 10 \\ & 24 / 10 \\ & 27 / 9.5 \\ & 27 / 9.5 \end{aligned}$	10 5 20 10
IN5573B 1N5574 1N5574A 1N5574B	$\begin{aligned} & \mathbf{s} \\ & s \\ & s \\ & s \end{aligned}$	$\left\|\begin{array}{l} \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \end{array}\right\|$		1N4750A 1N4751 1N4751 1N4751A	$\begin{aligned} & \text { iw } \\ & \text { iw } \\ & \text { iw } \\ & \text { iw } \end{aligned}$						27/9.5 30/8.5 30/8.5 30/8.5	5 20 10 5			
1N5575 IN5575A IN5575B 1N5576	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\left\|\begin{array}{l} \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \end{array}\right\|$		1N4752 1N4752 1N4752A	$\begin{aligned} & \text { iw } \\ & \text { iw } \\ & \text { iw } \\ & \text { iw } \end{aligned}$						$\begin{aligned} & 33 / 7.5 \\ & 33 / 7.5 \\ & 33 / 7.5 \\ & 36 / 7 \end{aligned}$	20 10 5 20			
IN5576A 1N55768 1N5577 1N5577A	$\begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}$	$\left\|\begin{array}{l} \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \end{array}\right\|$			$\begin{aligned} & \text { iw } \\ & \text { iw } \\ & \text { iw } \\ & \text { iw } \end{aligned}$						$\begin{aligned} & 36 / 7 \\ & 36 / 7 \\ & 39 / 6.5 \\ & 39 / 6.5 \end{aligned}$	10 5 20 10			
$\begin{aligned} & \text { IN5577B } \\ & \text { IN5578 } \\ & \text { INS578A } \\ & \text { IN5578B } \end{aligned}$	S	$\left\|\begin{array}{l} \mathrm{zD} \\ \mathrm{zo} \\ \mathrm{zD} \\ \mathrm{zo} \end{array}\right\|$			iw iw iw iw						$\begin{aligned} & 39 / 6.5 \\ & 43 / 6 \\ & 43 / 6 \\ & 43 / 6 \end{aligned}$	5 20 10 5			
1N5579 1N5579A 1N55798 1N5580	$\begin{array}{\|l} s \\ s \\ s \\ s \\ s \end{array}$	$\left\|\begin{array}{l} \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \end{array}\right\|$			iw iw iw iw						$\begin{aligned} & 47 / 5.5 \\ & 47 / 5.5 \\ & 47 / 5.5 \\ & 51 / 5 \end{aligned}$	20 10 5 20			
in55s0A INS5808 IN5581 in5S81A	$\left\lvert\, \begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}\right.$	$\left\|\begin{array}{l} \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \end{array}\right\|$			$\begin{aligned} & \text { iw } \\ & \text { iw } \\ & \text { iW } \\ & \text { iw } \end{aligned}$						51/5 51/5 56/4.5 56/4.5	10 5 20 10			
1N55818 1N5582 1N5582A 1N5582B	S				iw iw iw iw						$\begin{aligned} & 56 / 4.5 \\ & 62 / 4 \\ & 62 / 4 \\ & 62 / 4 \end{aligned}$	5 20 10 5			
1 N5583 1N5583A 1N5583B IN5584	s	\|l				iw iw iw iw						68/3.7 68/3.7 68/3.7 75/3.3	20 10 5 20		
IN5584A iN5584B 1N5585 1N5585A	$\left\lvert\, \begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}\right.$	$\left\|\begin{array}{l} \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \end{array}\right\|$			iw $1 \mathbf{1 w}$ iw iw						$\begin{aligned} & 75 / 3.3 \\ & 75 / 3.3 \\ & 82 / 3 \\ & 82 / 3 \end{aligned}$	10 5 20 10			

DIODE INTERCHANGEABILITY

$\begin{gathered} \text { TYPE } \\ \text { NUMBER } \end{gathered}$			$\underset{\text { REPLACEMENT }}{\text { n }}$	$\begin{aligned} & \text { FOR } \\ & \text { NEW } \\ & \text { DESIGN } \end{aligned}$	P_{D} (mW)	ating V_{R} (V)	I (A)	$\begin{array}{ll} I_{R} & V_{R} \\ \mu_{A} & /(V) \end{array}$	$\begin{array}{cc} & \text { Characte } \\ \mathbf{v}_{\mathbf{F}} & \cdot \mathbf{I F}_{\mathbf{F}} \\ \text { (v) } & / \text { (mA) } \end{array}$	ERISTIC ${ }^{\boldsymbol{t r}}$ (ns)	$\begin{array}{ccc} \mathbf{v}_{\mathbf{z}} & \cdot & \mathbf{z} \\ (\mathrm{v}) & /(\mathrm{mA}) \end{array}$	TOL
$\begin{aligned} & \text { IN5585B } \\ & \text { IN5586 } \\ & \text { IN5586A } \\ & \text { IN5586B } \end{aligned}$	$\begin{aligned} & \mathrm{s} \\ & \mathrm{~s} \\ & \mathrm{~s} \\ & \mathrm{~s} \end{aligned}$	$\begin{aligned} & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \end{aligned}$			$\begin{aligned} & 1 \mathrm{w} \\ & 1 \mathrm{w} \\ & 1 \mathrm{w} \\ & 1 \mathrm{w} \end{aligned}$						82/3 91/2.8 91/2.8 91/2.8	5 20 10 5
$\begin{aligned} & \text { 1 N5587 } \\ & \text { 1N5587A } \\ & \text { 1N5587B } \\ & \text { 1N5588 } \end{aligned}$	$\begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}$	$\left\lvert\, \begin{aligned} & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \end{aligned}\right.$			$\begin{aligned} & 1 w \\ & 1 w \\ & 1 w \\ & 1 w \end{aligned}$						$\begin{aligned} & 100 / 2.5 \\ & 100 / 2.5 \\ & 100 / 2.5 \\ & 110 / 2.3 \end{aligned}$	20 10 5 20
IN5588A 1N5588B 1N5589 1N5589A	$\left[\begin{array}{l} \mathbf{s} \\ \mathbf{s} \\ \mathbf{s} \\ \mathbf{s} \end{array}\right.$	$\left\|\begin{array}{l} \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{ZD} \end{array}\right\|$			$\begin{aligned} & 1 \mathrm{w} \\ & 1 \mathrm{w} \\ & 1 \mathrm{w} \\ & 1 \mathrm{w} \end{aligned}$						$\begin{aligned} & 110 / 2.3 \\ & 110 / 2.3 \\ & 120 / 2 \\ & 120 / 2 \end{aligned}$	10 5 20 10
1N5589B 1N5590 1N5590A 1N5590B	s	$\left\|\begin{array}{l} \mathrm{ZD} \\ \mathrm{ZD} \\ \mathrm{ZD} \\ \mathrm{ZD} \end{array}\right\|$			10 10 10 16						$\begin{aligned} & 120 / 2 \\ & 130 / 1.9 \\ & 130 / 1.9 \\ & 130 / 1.9 \end{aligned}$	5 20 10 5
	s s s s	$\left\|\begin{array}{l} \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \end{array}\right\|$			$\begin{aligned} & \text { iw } \\ & \text { iw } \\ & i w \\ & i w \end{aligned}$						$\begin{aligned} & 150 / 1.7 \\ & 150 / 1.7 \\ & 150 / 1.7 \\ & 160 / 1.6 \end{aligned}$	20 10 5 20
	s	$\left\|\begin{array}{l} \mathrm{zD} \\ \mathrm{ZD} \\ \mathrm{ZD} \\ \mathrm{ZD} \end{array}\right\|$			$\begin{aligned} & 1 \mathrm{w} \\ & 1 \mathrm{w} \\ & 1 \mathrm{w} \\ & 1 \mathrm{w} \end{aligned}$						$\begin{aligned} & 160 / 1.6 \\ & 160 / 1.6 \\ & 180 / 1.4 \\ & 180 / 1.4 \end{aligned}$	10 5 20 10
	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\left\|\begin{array}{l} \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \end{array}\right\|$			$\begin{aligned} & \text { iw } \\ & \text { iw } \\ & \text { iw } \\ & \text { iw } \end{aligned}$						$\begin{aligned} & 180 / 1.4 \\ & 200 / 1.2 \\ & 200 / 1.2 \\ & 200 / 1.2 \end{aligned}$	5 20 10 5
1N5595 1N5596 1N5597 1N5598	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\begin{aligned} & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \end{aligned}$				$\begin{array}{r} 5 K \\ 7.5 K \\ 10 K \\ 15 K \end{array}$	$\begin{array}{r} 1.15 \\ .87 \\ .77 \\ .47 \end{array}$	$\begin{aligned} & 300 / \\ & 300 / \\ & 300 / \\ & 300 / \end{aligned}$	$\begin{aligned} & 7.41 \\ & 11 / \\ & 141 \\ & 23 / \end{aligned}$			
1N5599 1N5600 INS601 IN5602	$\left\lvert\, \begin{aligned} & \mathbf{s} \\ & s \\ & s \\ & s \end{aligned}\right.$	$\begin{array}{\|l\|} \hline \mathbf{R E} \\ \mathbf{R E} \\ \mathbf{R E} \\ \mathbf{R E} \\ \hline \end{array}$				$\begin{gathered} 2.5 K \\ 5 K \\ 7.5 K \\ 2.5 K \end{gathered}$	$\begin{aligned} & 2.1 \\ & 1.4 \\ & .92 \\ & 4.6 \end{aligned}$	$\begin{gathered} 750 / \\ 750 / \\ 750 / \\ 1 \mathrm{M} / \end{gathered}$	$\begin{gathered} 3.71 \\ 7.4 / \\ 11 / \\ 5 / \end{gathered}$			
IN5603 IN5604 1N5605 1N5606	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\left\|\begin{array}{l} \mathrm{RE} \\ \mathrm{RE} \\ \mathrm{SD} \\ \mathrm{SD} \end{array}\right\|$		$\begin{aligned} & \text { IN457 } \\ & \text { ind } 58 \end{aligned}$		$\begin{array}{r} 5 K \\ 7.5 K \\ 70 \\ 150 \end{array}$	$\begin{aligned} & 3.3 \\ & 2.3 \end{aligned}$	$\begin{aligned} & 1 \mathrm{M} / 2 \\ & 1 \mathrm{M} / \\ & 25 \mathrm{~N} / \theta 0 \\ & 25 \mathrm{~N} / 125 \end{aligned}$	$\begin{gathered} 91 \\ 121 \\ 1 / 20 \\ 1 / 7 \end{gathered}$			

DIODE INTERCHANGEABILITY

TYPE NUMEER			π REPLACEMENT	$\begin{aligned} & \text { FOR } \\ & \text { NiEW } \\ & \text { DESICN } \end{aligned}$	Ratines			CHARACTERISTICS				
						$\mathbf{V}_{\mathbf{R}}$ (V)	I (A)	$\begin{array}{ll} \mathbf{V R}_{\mathbf{R}} & \mathbf{V}_{\mathrm{R}} \\ \boldsymbol{\mu} \mathbf{A} & /(\mathbf{V}) \end{array}$	$\mathbf{V F}_{F} \cdot \mathbf{I F}_{\mathbf{F}}$ (V) $/$ (mA)	$\begin{aligned} & I_{T r} \\ & (n s) \end{aligned}$	$\mathbf{V}_{\mathbf{z}} \cdot \mathbf{I z}_{\mathbf{z}}$ (V) $/$ (ma)	$\begin{array}{r} \text { TOL } \\ \% \end{array}$
1N5607 1N5608 1N5609 1N5614	$\begin{aligned} & \mathbf{s} \\ & \mathbf{S} \\ & \mathbf{S} \\ & \mathbf{S} \end{aligned}$	$\begin{array}{\|l\|} \hline S D \\ S D \\ \text { SD } \\ \hline R E \end{array}$		iN4938 1N4938 1 M4938 TID383		200 120 120 200	1	$\begin{gathered} 25 N / 175 \\ 50 N / 50 \\ 5 / 100 \\ 2.5 / 200 \end{gathered}$	$\begin{aligned} & 1 / 3 \\ & 1 / 100 \\ & 1 / 6 \\ & 1.2 / 1 \mathrm{~A} \end{aligned}$	$\begin{array}{r} \hline 300 \\ 300 \\ 300 \\ 2 \mathrm{U} \end{array}$		
1N5615 1N5616 1N5617 1N5618	$\begin{aligned} & \mathbf{s} \\ & \mathbf{S} \\ & \mathbf{s} \\ & \mathbf{S} \end{aligned}$	$\begin{aligned} & R E \\ & R E \\ & R E \\ & R E \end{aligned}$		TID384 TID385		200 400 400 600	1 1 1 1	$\begin{aligned} & 2.5 / \\ & 2.5 / 400 \\ & 2.5 / \\ & 2.5 / 600 \end{aligned}$	$\begin{aligned} & 1.2 / \\ & 1.2 / 1 \mathrm{~A} \\ & 1.2 / \\ & 1.2 / 1 \mathrm{~A} \end{aligned}$	$\begin{array}{r} 150 \\ 2 \mathrm{U} \\ 150 \\ 2 \mathrm{U} \end{array}$		
1N5619 1N5620 1N5621 1NS622	$\begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}$	$\begin{aligned} & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{RE} \end{aligned}$		70386 710387		600 800 800 $1 K$	1 1 1 1	$\begin{aligned} & 2.5 / \\ & 2.5 / 800 \\ & 2.5 / \\ & 2.5 / 1 \mathrm{~K} \end{aligned}$	$\begin{aligned} & 1.2 / \\ & 1.2 / 1 \mathrm{~A} \\ & 1.2 / \\ & 1.2 / 1 \mathrm{~A} \end{aligned}$	$\begin{array}{r} 250 \\ 20 \\ 350 \\ 20 \end{array}$		
1N5623 1N5624 1N5625 1N5626	S	RE RE RE RE				$\begin{array}{r} 1 K \\ 200 \\ 400 \\ 600 \end{array}$	$\begin{aligned} & 1 \\ & 3 \\ & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & 2.5 / \\ & 300 / \\ & 300 / \\ & 300 / \end{aligned}$	$\begin{aligned} & 1.2 / \\ & .95 / \\ & .95 / \\ & .95 / \end{aligned}$	500		
1N5627 1N5667A 1N5668A 1N5669A	S	$\begin{aligned} & \mathrm{RE} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \end{aligned}$			$\begin{aligned} & 250 \\ & 250 \\ & 250 \end{aligned}$	800	3	300/	.951		$\begin{array}{r} 2 / 1 \\ 2.2 / 1 \\ 2.4 / 1 \end{array}$	10 10 10
1N5670A IN5671A 1N5672A 1N5673A	$\begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}$	$\begin{aligned} & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \end{aligned}$			$\begin{aligned} & 250 \\ & 250 \\ & 250 \\ & 250 \end{aligned}$						$\begin{array}{r} 2.7 / 1 \\ 3 / 1 \\ 3.3 / 1 \\ 3.6 / 1 \end{array}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$
1N5674A 1N5675A 1N5676A 1N5677A	$\begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}$	$\begin{aligned} & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \end{aligned}$			$\begin{aligned} & 250 \\ & 250 \\ & 250 \\ & 250 \end{aligned}$						$\begin{aligned} & 3.9 / 1 \\ & 4.3 / 1 \\ & 4.7 / 1 \\ & 5.1 / 1 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$
1N5678A 1N5679 1N5680 1N5711	S	$\begin{aligned} & \mathrm{ZD} \\ & \mathrm{RE} \\ & \mathrm{RE} \\ & \mathrm{SD} \end{aligned}$		$\begin{aligned} & \text { TID381 } \\ & \text { TID382 } \\ & \text { IN4446 } \end{aligned}$	250	$\begin{array}{r} 50 \\ 100 \\ 55 \\ \hline \end{array}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	10/50 10/100 .2/50	$\begin{gathered} 1.1 / 1 A \\ 1.1 / 1 A \\ 1 / 15 \end{gathered}$		5.6/1	10
1N5712 iN5713 1N5719 IN5720	S	$\begin{aligned} & \text { SD } \\ & \text { SD } \\ & \text { SD } \\ & S D \end{aligned}$		IN4446 1N4446 IN484 1N4448		16 12 150 30		$\begin{aligned} & .1 / 15 \\ & .1 / 8 \\ & 1 / 100 \\ & .5 / 20 \end{aligned}$	$\begin{aligned} & 1 / 35 \\ & 1 / 20 \\ & 1 / 100 \\ & 1 / 50 \end{aligned}$	10		
1N5721 1N5726 1N5727 1N5728B	S	SD SD SD ZD		IN4448 IN4608 IN4608	400	15 60 50		$\begin{array}{r} .5 / 10 \\ .2 / 50 \\ 1 / 30 \end{array}$	$1 / 50$ $1.1 / 500$ $1.1 / 500$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \end{aligned}$	4.7/10	5

TEXAS INSTRUMENTS

DIODE INTERCHANGEABILITY

TYPE NUMEEA			π	FOR NEW DESTON	(mW)	$\mathbf{V}_{\mathbf{R}}$ (V)	I (A)	$\begin{array}{ll} L_{R} & \mathbf{V}_{\mathrm{R}} \\ \mu \mathrm{~A} & /(\mathbf{V}) \end{array}$	$\mathbf{V F}_{F} \cdot \mathbf{I F}_{\mathbf{F}}$ (V) $/(\mathrm{mA})$	ERISTIC Int (n)	$\mathbf{V}_{\mathbf{z}}$ - $\mathbf{I z}_{\mathbf{z}}$ (V) $/$ (mA)	TOL \%
1N5728C 1N5728D 1N57290 1N5729C	$\left[\begin{array}{l} s \\ s \\ s \\ s \end{array}\right.$	$\begin{aligned} & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \end{aligned}$			$\begin{array}{r} 400 \\ 400 \\ 400 \\ 400 \end{array}$						$\begin{aligned} & 4.7 / 10 \\ & 4.7 / 10 \\ & 5.1 / 10 \\ & 5.1 / 10 \end{aligned}$	2 1 5 2
1N5729D IN57308 1N5730C IN5730D	$\begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{S} \\ & \mathbf{s} \end{aligned}$	$\begin{aligned} & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{ZD} \end{aligned}$			$\begin{aligned} & 400 \\ & 400 \\ & 400 \\ & 400 \end{aligned}$						$\begin{aligned} & 5.1 / 10 \\ & 5.6 / 10 \\ & 5.6 / 10 \\ & 5.6 / 10 \end{aligned}$	$\begin{aligned} & 1 \\ & 5 \\ & 2 \\ & 1 \end{aligned}$
$\begin{array}{\|l} \text { 1N5731B } \\ \text { 1N5731C } \\ \text { 1N5731D } \\ \text { IN5732B } \end{array}$	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\begin{aligned} & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{ZD} \end{aligned}$			$\begin{aligned} & 400 \\ & 400 \\ & 400 \\ & 400 \end{aligned}$						$\begin{aligned} & 6.2 / 10 \\ & 6.2 / 10 \\ & 6.2 / 10 \\ & 6.8 / 10 \end{aligned}$	5 2 1 5
$\begin{aligned} & \text { 1N5732C } \\ & \text { 1N5732D } \\ & \text { 1N5733B } \\ & \text { 1N5733C } \end{aligned}$	$\begin{aligned} & \mathrm{s} \\ & \mathrm{~s} \\ & \mathrm{~s} \\ & \mathrm{~s} \end{aligned}$	$\left\|\begin{array}{l} \mathrm{ZD} \\ \mathrm{ZD} \\ \mathrm{ZD} \\ \mathrm{ZD} \end{array}\right\|$			$\begin{array}{r} 400 \\ 400 \\ 400 \\ 400 \end{array}$						$\begin{aligned} & 6.8 / 10 \\ & 6.8 / 10 \\ & 7.5 / 10 \\ & 7.5 / 10 \end{aligned}$	2 1 5 2
$\begin{aligned} & \text { 1N5733D } \\ & \text { 1N5734B } \\ & \text { 1N5734C } \\ & \text { 1N5734D } \end{aligned}$	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\begin{aligned} & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \\ & \mathrm{ZD} \end{aligned}$			$\begin{aligned} & 400 \\ & 400 \\ & 400 \\ & 400 \end{aligned}$						$\begin{aligned} & 7.5 / 10 \\ & 8.2 / 10 \\ & 8.2 / 10 \\ & 8.2 / 10 \end{aligned}$	1 5 2 1
$\begin{aligned} & \text { 1N5735B } \\ & \text { 1N5735C } \\ & \text { 1N5735D } \\ & \text { IN5736B } \end{aligned}$	$\left\lvert\, \begin{aligned} & \mathbf{s} \\ & \mathbf{S} \\ & \mathbf{S} \\ & \mathbf{s} \end{aligned}\right.$	$\begin{aligned} & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \end{aligned}$			$\begin{array}{r} 400 \\ 400 \\ 400 \\ 400 \end{array}$						$\begin{array}{r} 9.1 / 10 \\ 9.1 / 10 \\ 9.1 / 10 \\ 10 / 10 \end{array}$	5 2 1 5
IN5736C IN5736D IN57378 1N5737C	$\begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}$	$\left\|\begin{array}{l} z 0 \\ z D \\ z 0 \\ z 0 \end{array}\right\|$			400 400 400 400						$\begin{aligned} & 10 / 10 \\ & 10 / 10 \\ & 11 / 5 \\ & 11 / 5 \end{aligned}$	2 1 5 2
1N57370 1N57388 1N5738C IN57380	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\begin{aligned} & \mathrm{zD} \\ & \mathrm{zo} \\ & \mathrm{zD} \\ & \mathrm{zo} \end{aligned}$			$\begin{aligned} & 400 \\ & 400 \\ & 400 \\ & 400 \end{aligned}$						$\begin{aligned} & 11 / 5 \\ & 12 / 5 \\ & 12 / 5 \\ & 12 / 5 \end{aligned}$	1 5 2 1
1N57398 1N5739C 1N5739D 1N5740B	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\left.\begin{aligned} & z D \\ & Z D \\ & Z D \\ & Z D \end{aligned} \right\rvert\,$			$\begin{array}{r} 400 \\ 400 \\ 400 \\ 400 \end{array}$						$\begin{aligned} & 13 / 5 \\ & 13 / 5 \\ & 13 / 5 \\ & 15 / 5 \end{aligned}$	5 2 1 5
1N5740C 1N5740D 1N57418 1N5741C	$\begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$	$\left\|\begin{array}{l} \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \end{array}\right\|$			$\begin{aligned} & 400 \\ & 400 \\ & 400 \\ & 400 \end{aligned}$						$\begin{aligned} & 15 / 5 \\ & 15 / 5 \\ & 16 / 5 \\ & 16 / 5 \end{aligned}$	$\begin{aligned} & 2 \\ & 1 \\ & 5 \\ & 2 \end{aligned}$

$\begin{gathered} \text { TYPE } \\ \text { Number } \end{gathered}$			π replacemint	$\begin{gathered} \text { FOR } \\ \text { NEW } \\ \text { DESHON } \end{gathered}$	ratines			CHARACTERISTICS				
					$\begin{gathered} P_{D} \\ (m w) \end{gathered}$	\mathbf{V}_{R} (V)	(A)	$\begin{array}{ll} V_{R} & \bullet V_{R} \\ \mu_{\mathrm{A}} & /(\mathrm{V}) \end{array}$	$\begin{array}{cc} \mathbf{v}_{\mathbf{F}} & \mathbf{i}_{\mathbf{F}} \\ \text { (V) } & 1 \text { (ma) } \end{array}$	${ }^{1 \pi}$ (ns)	$\begin{array}{ccc} \mathbf{v}_{\mathbf{z}} & 0 & \mathbf{l z} \\ (\mathrm{v}) & 1 & (\mathrm{ma}) \end{array}$	TOL \%
1N5741D 1N5742B iN5742C 1N5742D	$\begin{aligned} & \mathbf{s} \\ & s \\ & s \\ & s \\ & s \end{aligned}$	$\left\|\begin{array}{l\|} \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \end{array}\right\|$			$\begin{aligned} & 400 \\ & 400 \\ & 400 \\ & 400 \end{aligned}$						$\begin{aligned} & 16 / 5 \\ & 18 / 5 \\ & 18 / 5 \\ & 18 / 5 \end{aligned}$	1 5 2 1
1N57438 1N5743C 1N5743D 1N57448	$\begin{array}{\|l} \hline s \\ s \\ s \\ s \end{array}$	$\begin{aligned} & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \\ & \mathrm{zD} \end{aligned}$			$\begin{aligned} & 400 \\ & 400 \\ & 400 \\ & 400 \end{aligned}$						$\begin{aligned} & 20 / 5 \\ & 20 / 5 \\ & 20 / 5 \\ & 22 / 5 \end{aligned}$	5 2 1 5
IN5744C 1N5744D 1N57458 IN5745C	$\left\lvert\, \begin{aligned} & \mathbf{s} \\ & s \\ & s \\ & s \end{aligned}\right.$	$\left\|\begin{array}{l} \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \end{array}\right\|$			$\begin{aligned} & 400 \\ & 400 \\ & 400 \\ & 400 \end{aligned}$						$\begin{aligned} & 22 / 5 \\ & 22 / 5 \\ & 24 / 5 \\ & 24 / 5 \end{aligned}$	2 1 5 2
1N5745D 1N5746B 1N57LCC 1N57460	$\left\lvert\, \begin{aligned} & \mathrm{s} \\ & \mathrm{~s} \\ & \mathrm{~s} \\ & \mathrm{~s} \end{aligned}\right.$	$\left\|\begin{array}{l} \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \end{array}\right\|$			$\begin{aligned} & 400 \\ & 400 \\ & 400 \\ & 400 \end{aligned}$						$\begin{aligned} & 24 / 5 \\ & 27 / 2 \\ & 27 / 2 \\ & 27 / 2 \end{aligned}$	1 5 2 1
1N57478 1N5747C 1N57470 1N5748B	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\left\|\begin{array}{l} \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \end{array}\right\|$			$\begin{aligned} & 400 \\ & 400 \\ & 400 \\ & 400 \end{aligned}$						$\begin{aligned} & 30 / 2 \\ & 30 / 2 \\ & 30 / 2 \\ & 33 / 2 \end{aligned}$	5 2 1 5
1N5748C 1N5748D 1N5749B 1N5749C	$\begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}$				$\begin{aligned} & 400 \\ & 400 \\ & 400 \\ & 400 \end{aligned}$						$\begin{aligned} & 33 / 2 \\ & 33 / 2 \\ & 36 / 2 \\ & 36 / 2 \end{aligned}$	2 1 5 2
1N57490 iN5750B IN5750C 1N5750D	$\begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathrm{s} \\ & \mathrm{~s} \end{aligned}$	$\left\|\begin{array}{l} \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \end{array}\right\|$			$\begin{aligned} & 400 \\ & 400 \\ & 400 \\ & 400 \end{aligned}$						$\begin{aligned} & 36 / 2 \\ & 39 / 2 \\ & 39 / 2 \\ & 39 / 2 \end{aligned}$	1 5 2 1
iN5751B IN5751C 1N5751D 1N5752B	$\left\lvert\, \begin{aligned} & s \\ & s \\ & s \\ & s \end{aligned}\right.$	$\left\|\begin{array}{l} \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \end{array}\right\|$			$\begin{aligned} & 400 \\ & 400 \\ & 400 \\ & 400 \end{aligned}$						$\begin{aligned} & 43 / 2 \\ & 43 / 2 \\ & 43 / 2 \\ & 47 / 2 \end{aligned}$	5 2 1 5
1N5752C 1N5752D 1N5753B 1N5753C	$\left\lvert\, \begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}\right.$	[400 400 400 400						$\begin{aligned} & 47 / 2 \\ & 47 / 2 \\ & 51 / 2 \\ & 51 / 2 \end{aligned}$	2 1 5 2
1N5753D 1N575AB IN5754C 1N5754D	$\left\lvert\, \begin{aligned} & \mathrm{s} \\ & \mathrm{~s} \\ & \mathrm{~s} \\ & \mathrm{~s} \end{aligned}\right.$	$\left\|\begin{array}{l} \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \end{array}\right\|$			400 400 400 400						$\begin{aligned} & 51 / 2 \\ & 56 / 2 \\ & 56 / 2 \\ & 56 / 2 \end{aligned}$	1 5 2 1

DIODE INTERCHANGEABILITY

$\begin{aligned} & \text { TYPE } \\ & \text { NUMBER } \end{aligned}$			$\prod_{\text {REPLACEMENT }}$	$\begin{aligned} & \text { FOR } \\ & \text { NEW } \\ & \text { DESIGN } \end{aligned}$	PD (mW)	$\begin{aligned} & \text { TINES } \\ & \mathbf{V}_{\mathbf{R}} \\ & \text { (v) } \end{aligned}$	(A)	$\begin{array}{cc} \mathbf{I}_{\mathbf{R}} & \mathbf{V}_{\mathbf{R}} \\ \mu \mathbf{A} & /(\mathbf{V}) \end{array}$	$\left.\begin{array}{cc} & \text { CHARACT } \\ \mathbf{v}_{\mathbf{F}} & \bullet \\ \mathbf{l}_{\mathbf{F}} \\ (\mathrm{v}) & /(\mathrm{ma}) \end{array} \right\rvert\,$	$\begin{aligned} & \text { ERISTICS } \\ & \left\|\begin{array}{c} t_{\pi} \\ \text { (ns) } \end{array}\right\| \end{aligned}$	$\begin{array}{ccc} \mathbf{v}_{\mathbf{z}} & \bullet & \mathbf{z} \\ (\mathrm{v}) & /(\mathrm{ma}) \end{array}$	ral
1N5755B 1N5755C 1N5755D 1N5756B	$\begin{aligned} & \mathrm{s} \\ & \mathrm{~s} \\ & \mathrm{~s} \\ & \mathrm{~s} \end{aligned}$	$\left\|\begin{array}{l} \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \end{array}\right\|$			$\begin{aligned} & 400 \\ & 400 \\ & 400 \\ & 400 \end{aligned}$						$\begin{aligned} & 62 / 2 \\ & 62 / 2 \\ & 62 / 2 \\ & 68 / 2 \end{aligned}$	5 2 1 5
1N5756C 1N5756D 1N5757B 1N5757C	$\begin{aligned} & \mathrm{s} \\ & \mathrm{~s} \\ & \mathrm{~s} \\ & \mathrm{~s} \end{aligned}$	$\left\|\begin{array}{l} \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \\ \mathrm{zD} \end{array}\right\|$			$\begin{aligned} & 400 \\ & 400 \\ & 400 \\ & 400 \end{aligned}$						68/2 68/2 75/2 75/2	2 1 5 2
1N5757D 1N5766 IN5767	$\begin{aligned} & \mathbf{s} \\ & \mathbf{s} \\ & \mathbf{s} \end{aligned}$	$\left\|\begin{array}{c} \mathrm{zD} \\ \mathrm{sD} \\ \mathrm{sD} \end{array}\right\|$			400	110 100		$\begin{gathered} 20 / 100 \\ 1 / 50 \end{gathered}$	$\begin{gathered} 1.7 / 30 \mathrm{~A} \\ 1 / 100 \end{gathered}$	400	75/2	1

Diode
 Data Sheets

TYPE 1N251
 SILICON SWITCHING DIODE

MEDIUM-SPEED SWITCHING DIODE

- Rugged Double-Plug Construction

mechanical data
Double-plug construction affords integral positive contact by means of a thermal compression bond. Moisture-free stability is ensured through hermetic sealing. The coefficients of thermal expansion of the glass case and the dumet plugs are closely matched to allow extreme temperature excursions. Hot-solder-dipped leads are standard.

*absolute maximum ratings

electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN MAX	UNIT
$V_{\text {(10) }}$	Reverse Breakdown Volitage	$i_{\mathrm{R}}=100 \mu \mathrm{~A}$	40	V
${ }^{*} I_{R}$	Static Reverse Current	$V_{\mathrm{R}}=20 \mathrm{~V}$	20	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{R}}=10 \mathrm{~V}$	0.1	$\mu \mathrm{A}$
		$V_{R}=10 \mathrm{~V}, \mathrm{~T}_{A}=125^{\circ} \mathrm{C}$	10	$\mu \mathrm{A}$
${ }^{*} V_{F}$	Static Forward Voltage	$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}$	1	V

*switching characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER	TEST CONDITIONS	MIN	MAX	UNIT
Peverse Recovary Time	$256-\mathrm{JAN}, \mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}, \mathrm{~V}_{\mathrm{R}}=10 \mathrm{~V}$ $\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{C}=10 \mathrm{pF}$, $\mathrm{i}_{\mathrm{rr}}=0.5 \mathrm{~mA}$	ms		

WOTES: 1. Thase values may be applited continuously under singla-phase $60-\mathrm{Hz}$ half-sine-wave operation with resistive lead.
2. Derate linearly to $\mathbf{3 0} \mathrm{mA}$ at $125^{\circ} \mathrm{C}$ free-air temperature.
3. Derate Incarly to 0 at $150^{\circ} \mathrm{C}$ free-air temperature.
4. These values apply for a one-second square-wave pelse with the device at nenapersting thermal equilibrium lamediately prion fo the swrge.
5. Derate linearly to $150^{\circ} \mathrm{C}$ free-alf temperalure of the rate of $1.2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.

- Indicates JEDEC ragisfored dato

VRM(wkg) . . 25 to 185 Volts
- Rugged Double-Plug Construction
- Low Reverse Current

description and mechanical data

The glass-passivated silicon chip combines extremely low reverse current with a high degree of stability. True glass passivation and the absence of an organic coating ensure protection of the junction from contaminants and moisture.

Double-plug construction affords integral positive contacts by means of a thermal compression bond. Moisture-free stability is ensured through hermetic sealing. The coefficients of thermal expansion of the glass case and the dumet plugs are closely matched to allow extreme temperature excursions. Hot-solder-dipped leads are standard. Gold-plated leads are available on request.

[^181]
TYPES 1N456 THRU 1N459, 1 N461 THRU 1N464, 1N482 THRU 1N485, AND SUFFIX VERSIONS SILICON GENERAL PURPOSE DIODES

*absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

TYPE	$\mathbf{V}_{\mathbf{R M}}$ Peak Reverse Voltage	$V_{\text {RM }}$ (wkg) Working Peak Reverse Vottage	${ }^{1} 0$ Average Rectified Forward Current $e T_{A} \leqslant 25^{\circ} C$ (See Notes 1 and 2)	I_{F} Steady State Forward Current $\text { e } T_{A} \leqslant 25^{\circ} C$ (Sea Note 2)	IFM(surge) Peak Surge Current		P Continuous Power Dissipation $T_{A} \leqslant 25^{\circ} \mathrm{C}$ (See Note 5)	$T_{\text {stg }}$ Storage Temperature Range
					1 s (See Note 3)	$\begin{gathered} 2 \mu \mathrm{~s} \\ \text { (See Note 4) } \end{gathered}$		
$\begin{aligned} & \text { 1N456 } \\ & \text { 1N456A } \end{aligned}$	30 V	25 V	$\begin{array}{r} 90 \mathrm{~mA} \\ 200 \mathrm{~mA} \end{array}$	135 mA	$\begin{aligned} & 0.7 \mathrm{~A} \\ & 1.5 \mathrm{~A} \end{aligned}$	1.2 A	200 mW 500 mW	9
$\begin{aligned} & \text { 1N457 } \\ & \text { 1N457A } \\ & \hline \end{aligned}$	70 V	60 V	$\begin{array}{r} 75 \mathrm{~mA} \\ 200 \mathrm{~mA} \end{array}$	$110 \mathrm{~mA}$ \qquad	$\begin{aligned} & \hline 0.6 \mathrm{~A} \\ & 1.5 \mathrm{~A} \end{aligned}$	1.0 A	$\begin{aligned} & 200 \mathrm{~mW} \\ & 500 \mathrm{~mW} \end{aligned}$	
$\begin{aligned} & \text { 1N458 } \\ & \text { 1N458A } \end{aligned}$	150 V	125 V	$\begin{array}{r} 55 \mathrm{~mA} \\ 200 \mathrm{~mA} \\ \hline \end{array}$	$80 \mathrm{~mA}$	$\begin{aligned} & 0.5 \mathrm{~A} \\ & 1.5 \mathrm{~A} \end{aligned}$	0.8 A	$\begin{aligned} & 200 \mathrm{~mW} \\ & 500 \mathrm{~mW} \end{aligned}$	
$\begin{aligned} & \text { 1N459 } \\ & \text { 1N459A } \end{aligned}$	200 V	175 V	$\begin{array}{r} 40 \mathrm{~mA} \\ 200 \mathrm{~mA} \\ \hline \end{array}$	60 mA	$\begin{aligned} & 0.4 \mathrm{~A} \\ & 1.5 \mathrm{~A} \end{aligned}$	$\underline{0.7 ~ A}$	$\begin{aligned} & 200 \mathrm{~mW} \\ & 500 \mathrm{~mW} \end{aligned}$	$-80^{\circ} \mathrm{C}$
$\begin{aligned} & \text { 1N461 } \\ & \text { 1N461A } \\ & \hline \end{aligned}$	30 V	25 V	$\begin{array}{r} 60 \mathrm{~mA} \\ 200 \mathrm{~mA} \\ \hline \end{array}$	90 mA	$\begin{array}{r} \hline 0.55 \mathrm{~A} \\ 1.5 \mathrm{~A} \\ \hline \end{array}$	0.9 A -	$\begin{aligned} & 200 \mathrm{~mW} \\ & 500 \mathrm{~mW} \\ & \hline \end{aligned}$	$200^{\circ} \mathrm{C}$
$\begin{aligned} & \text { 1N462 } \\ & \text { 1N462A } \end{aligned}$	70 V	60 V	$\begin{array}{r} 50 \mathrm{~mA} \\ 200 \mathrm{~mA} \\ \hline \end{array}$	75 mA -	$\begin{aligned} & 0.5 \mathrm{~A} \\ & 1.5 \mathrm{~A} \end{aligned}$	0.8 A	200 mW 500 mW	
$\begin{aligned} & \text { 1N463 } \\ & \text { 1N463A } \end{aligned}$	200 V	175 V	30 mA 200 mA	50 mA \qquad	$\begin{aligned} & 0.4 \mathrm{~A} \\ & 1.5 \mathrm{~A} \end{aligned}$	0.7 A	200 mW 500 mW	
$\begin{aligned} & \text { 1N464 } \\ & \text { 1N464A } \end{aligned}$	150 V	125 V	$\begin{array}{r} 40 \mathrm{~mA} \\ 200 \mathrm{~mA} \end{array}$	$60 \mathrm{~mA}$ ـ	$\begin{aligned} & 0.4 \mathrm{~A} \\ & 1.5 \mathrm{~A} \end{aligned}$	0.7 A	200 mW 500 mW	d

*absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

TYPE	VRM Peak Reverse Voltage	$V_{\text {RM }}$ (wkg) Working Peak Reverse Voltage	10 Average Rectified Forward Current e $T_{A}<25^{\circ} \mathrm{C}$ (See Notes 1 and 2)	IFM(rep) Repetitive Peak Forward Current (See Note 6)	IFM(surge) Peak Surge Current (See Note 7)	\bar{P} Continuous Power Dissipation (See Note 5)	$\mathrm{T}_{\mathrm{stg}}$ Storage Temperature Range
$\begin{aligned} & \text { 1N482 } \\ & \text { 1N482A } \\ & \text { 1N482B } \end{aligned}$	40 V	36 V	$\begin{aligned} & 100 \mathrm{~mA} \\ & 200 \mathrm{~mA} \\ & 200 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 400 \mathrm{~mA} \\ & 650 \mathrm{~mA} \\ & 650 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 1 \mathrm{~A} \\ & 2 \mathrm{~A} \\ & 2 \mathrm{~A} \end{aligned}$		
$\begin{array}{l\|} \hline \text { 1N483 } \\ \text { 1N483A } \\ \text { 1N48,3B } \\ \hline \end{array}$	80 V	70 V	$\begin{aligned} & 100 \mathrm{~mA} \\ & 200 \mathrm{~mA} \\ & 200 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 400 \mathrm{~mA} \\ & 650 \mathrm{~mA} \\ & 650 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 1 A \\ & 2 A \\ & 2 A \end{aligned}$	1	$-65^{\circ} \mathrm{C}$
$\begin{aligned} & \text { 1N484 } \\ & \text { 1N484A } \\ & \text { 1N484B } \end{aligned}$	150 V	130 V	$\begin{aligned} & 100 \mathrm{~mA} \\ & 200 \mathrm{~mA} \\ & 200 \mathrm{~mA} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 400 \mathrm{~mA} \\ & 650 \mathrm{~mA} \\ & 650 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 1 \mathrm{~A} \\ & 2 \mathrm{~A} \\ & 2 \mathrm{~A} \end{aligned}$		$200^{\circ} \mathrm{C}$
$\begin{aligned} & \text { 1N485 } \\ & \text { 1N485A } \\ & \text { 1N485B } \end{aligned}$	200 V	180 V	$\begin{aligned} & 100 \mathrm{~mA} \\ & 200 \mathrm{~mA} \\ & 200 \mathrm{~mA} \\ & \hline \end{aligned}$	$\begin{aligned} & 400 \mathrm{~mA} \\ & 650 \mathrm{~mA} \\ & 650 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 1 \mathrm{~A} \\ & 2 \mathrm{~A} \\ & 2 \mathrm{~A} \end{aligned}$		

NOTES: 1. These values may be applied continuously under single-phase $\mathbf{6 0 - H z}$ half-sine-wave operation with resistive load.
2. For operation above $25^{\circ} \mathrm{C}$ free-air temperature refer to Forward Current Derating Curve Figure 1.
3. These values apply for a one-second square-wave pulse with the device at nonoperating thermal equilibrium immediately prior to
the surge.
4. These values apply for $2-\mu$ s pulses, duty cycle $\leqslant 1 \%$, with the device at nonoperating thermal equilibrium immediately prior to the surge.
5. For operation above $25^{\circ} \mathrm{C}$ free-air temperature refer to Dissipation Derating Curve Figure 2.
6. These valuas apply for a 4 -ms square-wave pulse, duty cycle $\leqslant \mathbf{2 5 \%}$.
7. These values apply for a $1 / 10$-second square-wave pulse with the device at nonoperating thermal equilibrium immediately prior to the surge.

- JEDEC registered data

TYPES 1 N456 THRU 1N459, $1 N 461$ THRU $1 N 464$, 1N482 THRU IN485, AND SUFFIX VERSIONS SILICON GENERAL PURPOSE DIODES

"electrical characteristics at $\mathbf{2 5}^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

CHARACTERISTICS					TEST VOLTAGE AND CURRENT	
PARAMETER	$V_{\text {(BR) }}$ Reverse Breakdown Voltage	I_{R} Static Reverse Current		V_{F} Static Forward Voltage		
TEST CONDITIONS	$I_{R}=100 \mu A$	$\mathrm{T}_{A}=25^{\circ} \mathrm{C}$	$T_{A}=150^{\circ} \mathrm{C}$		$\begin{gathered} \mathbf{V}_{\mathbf{R}} \\ \text { FOR TESTING } \end{gathered}$	$\begin{gathered} \text { IF } \\ \text { FOR TESTING } \end{gathered}$
LiMITS	MIN	MAX	MAX	MAX	I_{R}	$\mathbf{V F}_{F}$
1N456 1N456A	30 V				25 V	$\begin{array}{r} 40 \mathrm{~mA} \\ 100 \mathrm{~mA} \\ \hline \end{array}$
1N457 1N457A	70 V				60 V	$\begin{array}{r} 20 \mathrm{~mA} \\ 100 \mathrm{~mA} \end{array}$
$\begin{aligned} & \text { 1N458 } \\ & \text { 1N458A } \end{aligned}$	150 V				125 V	$\begin{array}{r} 7 \mathrm{~mA} \\ 100 \mathrm{~mA} \end{array}$
1N459 1N459A	200 V				175 V	$\begin{array}{r} 3 \mathrm{~mA} \\ 100 \mathrm{~mA} \\ \hline \end{array}$
iN461 1N461A	30 V				25 V	$\begin{array}{r} 15 \mathrm{~mA} \\ 100 \mathrm{~mA} \end{array}$
$\begin{aligned} & \text { 1N462 } \\ & \text { IN462A } \end{aligned}$	70 V				60 V	$\begin{array}{r} 5 \mathrm{~mA} \\ 100 \mathrm{~mA} \end{array}$
$\begin{aligned} & \text { 1N463 } \\ & \text { 1N463A } \end{aligned}$	200 V				175 V	$\begin{array}{r} 1 \mathrm{~mA} \\ 100 \mathrm{~mA} \end{array}$
$\begin{aligned} & \text { iN464 } \\ & \text { 1N464A } \end{aligned}$	150 V			\sqrt{d}	125 V	$\begin{array}{r} 3 \mathrm{~mA} \\ 100 \mathrm{~mA} \\ \hline \end{array}$
$\begin{aligned} & \text { 1N482 } \\ & \text { 1N482A } \\ & \text { 1N482B } \end{aligned}$	40 V	$\begin{array}{r} 250 \mathrm{nA} \\ 25 \mathrm{nA} \\ 25 \mathrm{nA} \end{array}$	$\begin{array}{r} 30 \mu \mathrm{~A} \\ 15 \mu \mathrm{~A} \\ 5 \mu \mathrm{~A} \\ \hline \end{array}$	$\begin{aligned} & 1.1 \mathrm{~V} \\ & 1.0 \mathrm{~V} \\ & 1.0 \mathrm{~V} \\ & \hline \end{aligned}$	30 V	100 mA
$\begin{aligned} & \text { 1N483 } \\ & \text { 1N483A } \\ & \text { 1N483B } \\ & \hline \end{aligned}$	80 V	$\begin{array}{r} 250 \mathrm{nA} \\ 25 \mathrm{nA} \\ 25 \mathrm{nA} \\ \hline \end{array}$	$\begin{array}{r} 30 \mu A \\ 15 \mu A \\ 5 \mu A \end{array}$	$\begin{aligned} & \hline 1.1 \mathrm{~V} \\ & 1.0 \mathrm{~V} \\ & 1.0 \mathrm{~V} \\ & \hline \end{aligned}$	60 V	100 mA
$\begin{aligned} & \text { iN484 } \\ & \text { iN484A } \\ & \text { iN484B } \end{aligned}$	150 V	$\begin{array}{r} 250 \mathrm{nA} \\ 25 \mathrm{nA} \\ 25 \mathrm{nA} \\ \hline \end{array}$	$\begin{array}{r} 30 \mu \mathrm{~A} \\ 15 \mu \mathrm{~A} \\ 5 \mu \mathrm{~A} \\ \hline \end{array}$	$\begin{aligned} & 1.1 \mathrm{~V} \\ & 1.0 \mathrm{~V} \\ & 1.0 \mathrm{~V} \\ & \hline \end{aligned}$	125 V	100 mA
1N485 1N485A 1N485B	200 V	$\begin{array}{r} 250 \mathrm{nA} \\ 25 \mathrm{nA} \\ 25 \mathrm{nA} \end{array}$	$\begin{array}{r} \hline 30 \mu \mathrm{~A} \\ 15 \mu \mathrm{~A} \\ 5 \mu \mathrm{~A} \end{array}$	$\begin{aligned} & \hline 1.1 \mathrm{~V} \\ & 1.0 \mathrm{~V} \\ & 1.0 \mathrm{~V} \end{aligned}$	175 V	100 mA

THERMAL INFORMATION

DISSIPATION DERATING CURVE

TYPES 1N625 THRU iN629
 SILICON SWITCHING DIODES

MEDIUM-SPEED SWITCHING DIODES

- Rugged Double-Plug Construction

mechanical dafa

Double-plug construction affords integral positive contact by means of a thermal compression bond. Moisture-free stability is ensured through hermetic sealing. The coefficients of thermal expansion of the glass case and the dumet plugs are closely matched to allow extreme temperature excursions. Hot-solder-dipped leads are standard.

absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

		1N625	1N626	1N627	IN628	IN629	UNIT
${ }^{*} V_{\text {RM } M \text { [wkg] }}$	Working Peak Reverse Voltage	20	35	75	125	175	V
${ }^{*}{ }_{0}$	Average Rectified Forward Current at (or below) $25^{\circ} \mathrm{C}$ Free-Air Temperature (See Notes 1 and 2)	20					mA
${ }^{1} 10$	Average Rectified Forward Current of $100^{\circ} \mathrm{C}$ Free-Air Temperature (See Notes 1 and 3)	5					mA
$\mathrm{I}_{\text {PM(surgel }}$	Peak Surge Current, One Second (See Note 4)	300					mA
* ${ }^{\text {P }}$	Continuous Power Dissipation at (or below) $25^{\circ} \mathrm{C}$ Free-Air Temperature (See Note 5)	200					mW
${ }^{*} \mathrm{~T}_{\text {Alopr }}$	Operating Free-Air Temperalure Range	-80 to 150					${ }^{\circ} \mathrm{C}$
$\mathrm{I}_{\text {stg }}$	Storage Temperature Range	-80 to 200					${ }^{\circ} \mathrm{C}$

*electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

PARAMETER		TEST CONDITIONS	1N625	1N626	1N627	1N628	1N629	UNIT	
		MIN MAX	MIN MAX	MIN MAX	MIN MAX				
$V_{\text {(Ra) }}$	Reverse Breakdown Voltage		$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$	30	50	100	150	200	V
		$\mathrm{V}_{\mathrm{R}}=$ Rated $\mathrm{V}_{\mathrm{Rm}(\mathrm{wkg})}$	1	1	1	1	1	$\mu \mathrm{A}$	
I_{R}	Static Reverse Current	$\begin{aligned} & V_{R}=\operatorname{Rated} V_{R M M}{ }^{\text {KmqgI }}, \\ & T_{A}=100^{\circ} \mathrm{C} \end{aligned}$	30	30	30	30	30	$\mu \mathrm{A}$	
	Static Forward Vollage	$\mathrm{I}_{\mathrm{F}}=4 \mathrm{~mA}$	1.5	1.5	1.5	1.5	1.5	V	

*switching characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER	TEST CONDITIONS	1N625	1N626	1N627	1N628	1N629	UNIT	LIMIT
trr Reverse Recovery Time	$\begin{array}{ll} 256-\mathrm{JAN}, & l_{F}=30 \mathrm{~mA}, \\ V_{R}=35 \\ \text { Recovery to } & R_{L}=25 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=20 \mathrm{pF}, \\ \end{array}$	1	1	1	1	1	μs	MAX

WOTES: 1. These values may be applied cantinuously under single-phase $60-\mathrm{Hz}$ hali-sine-wove oparation with resistive load.
2. Berate lisearly to 5 mA at $100^{\circ} \mathrm{C}$ free-air temperaturs.
3. Derate Inearly to 0 at $150^{\circ} \mathrm{C}$ froe-air temperature.
4. This value applies for a ono-sceond squore-wove puise with the device at noneperating thermal equitibrium immediataly priot to the surge.
5. Derate linearly to $150^{\circ} \mathrm{C}$ frew-air temperature at the rate of $1.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
*indicates JEDEC registersad dala

MEDIUM-SPEED SWITCHING DIODE

- Rugged Double-Plug Construction

mechanical data

Double-plug construction affords integral positive contact by means of a thermal compression bond. Moisture-free stability is ensured through hermetic sealing. The coefficients of thermal expansion of the glass case and the dumet plugs are closely matched to allow extreme temperature excursions. Hot-solder-dipped leads are standard.

absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

${ }^{*} V_{\text {RMM }}$ wigl	Working Peak Reverse Voltage 175 V	
*。	Average Rectified Forward Current at (or below) $25^{\circ} \mathrm{C}$ Free-Air Temperature (See Note I) 40 mA	
$\boldsymbol{1}_{\text {FM(surge) }}$	Peak Surge Current, One Second (See Note 2) 0.5 A	
$\\|_{\text {fm(surge }}$	Peak Surge Current, 0.3 Second (See Note 2) 1 A	
$*_{\text {fm(pulse) }}$	Peak Pulse Current (See Note 3) 2 A	
P	Continuous Power Dissipation at (or below) $25^{\circ} \mathrm{C}$ Free-Air Temperature (See Note 4) . 250 mW	
${ }^{*} \mathrm{~T}_{\text {Alopr }\}}$	Operating Free-Air Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$	
${ }^{*} \mathrm{~T}_{\text {stg }}$	Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$	

electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

PARAMETER		TEST CONDITIONS	MIN	MAX	UNIT
$V_{\text {(BRX }}$	Reverse Breakdown Voltage	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$	200		V
* $I_{\text {R }}$	Static Reverse Current	$V_{R}=10 \mathrm{~V}$		0.025	$\mu \mathrm{A}$
		$V_{R}=100 \mathrm{~V}$		1	$\mu \mathrm{A}$
		$V_{\mathrm{R}}=10 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=100^{\circ} \mathrm{C}$		5	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{R}}=100 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{A}}=100^{\circ} \mathrm{C}$		15	$\mu \mathrm{A}$
* $V_{\text {F }}$	Static Forword Voltage	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$		1	V

*switching characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER	TEST CONDITIONS	MIN	MAX	UNIT
$t_{\text {rr }} \quad$ Reverse Recovery Time	$256 \mathrm{JAN}, \mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}, \mathrm{~V}_{\mathrm{R}}=40 \mathrm{~V}$, $R_{L}=2.3 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=40 \mathrm{pF}$, Recovery to $200 \mathrm{k} \Omega$, See Note 5		0.3	μs

NOTES: 1. These values may be applied continuously under single-phase $60-\mathrm{Hz}$ half-sine-wave operation with resistive load. Derate linearly to 0 at $150^{\circ} \mathrm{C}$ free-air temperature.
2. These volues apply for the specifiad square-wave pulse with the device at nonoperating thanmal equilibrium immediataly prior to the surge.
3. This volue applies for $t_{p} \leq 1 \mu s$, duty cycle $\leq 1 \%$.
4. Derate linearly to $150^{\circ} \mathrm{C}$ iree-air temperature at the rate af $2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$,
5. Reverse recovery lime is measured using a forward current puise of $1-\mu \mathrm{s}$ duration, PRR $\leq 100 \mathrm{kHz}$. The waveform is monitored on an ascilloscope with a bandwidth of 30 MHz minimum.
*Indicates JEDEC registered data

225 V to 600 V - 400 mA AVERAGE

- Rugged Double-Plug Construction

mechanical data

Double-plug construction affords integral positive contact by means of a thermal compression bond. Moisture-free stability is ensured through hermetic sealing. The coefficients of thermal expansion of the glass case and the dumet plugs are closely matched to allow extreme temperature excursions. Hot-solder-dipped leads are standard.

*absolute maximum ratings at $\mathbf{2 5}^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

		1N645	1N645A	IN646	IN647	1N648	1N649	UNIT
$V_{\text {RM }}$ w(g)	Working Peak Reverse Voltage over Operating Free-Air Temperature Range	225	225	300	400	500	600	V
I_{0}	Average Reclified Forward Current at (or below) $25^{\circ} \mathrm{C}$ Free-Air Temperature (See Note 1)	400						mA
I_{0}	Average Rectified Forward Current of $150^{\circ} \mathrm{C}$ Free-Air Temperature	150						mA
$\mathrm{I}_{\text {FM(urgol }}$	Peak Surge Current, One Second, at $25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ Free-Air Temperature (See Note 2)	3						A
P	Continuous Power Dissipation at (or below) $25{ }^{\circ} \mathrm{C}$ Free-Air Temperature (See Note 3)	600						mW
$\mathrm{T}_{\text {Alopr) }}$	Operating Free-Air Temperature Range	-65 to 150						${ }^{\circ} \mathrm{C}$
	Alfitude at Rated Working Peak Reverse Voltage	100000						f

*electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

PARAMETER		TEST CONDITIONS	$\begin{gathered} \text { IN645 } \\ \hline \text { MIN MAX } \end{gathered}$	IN645A	1N646	$\begin{array}{\|c\|} \hline \text { IN647 } \\ \hline \text { MIN MAX } \\ \hline \end{array}$	IN648 MIN MAX	$\begin{array}{\|c\|} \hline \text { IN649 } \\ \hline \text { MIN MAX } \end{array}$	UNIT	
		MIN MAX		MIN MAX						
$V_{\text {(BR) }}$	Reverse Breakdown Voltage		$\begin{aligned} & I_{R}=100 \mu \mathrm{~A}, \\ & \mathrm{~T}_{\mathrm{A}}=100^{\circ} \mathrm{C} \end{aligned}$	275	275	360	480	600	720	v
$I_{\text {R }}$	Stutic Reverse Current	$V_{R}=$ Rated $V_{\text {RM }}(\mathrm{mkg}]$	0.2	0.2	0.2	0.2	0.2	0.2	$\mu \mathrm{A}$	
		$\begin{aligned} & V_{R}=\text { Rated } V_{R M}(\omega \mathrm{wgl\mid} . \\ & \mathrm{T}_{\mathrm{A}}=100^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	15	15	15	20	20	25	$\mu \mathrm{A}$	
		$\mathrm{V}_{\mathrm{R}}=60 \mathrm{~V}$		0.05					$\mu \mathrm{A}$	
		$\begin{aligned} & V_{\mathrm{R}}=60 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=125^{\circ} \mathrm{C} \end{aligned}$		10					$\mu \mathrm{A}$	
V_{F}	Static Forward Voltage	$\mathrm{I}_{\mathrm{F}}=400 \mathrm{~mA}$	1	1	1	1	1	1	V	
C_{1}	Total Capacitante	$\begin{aligned} & V_{R}=12 \mathrm{~V}, \\ & f=1 \mathrm{mHz} \end{aligned}$	6 typ	6 typ	6 typ	6 typ	6 typ	6 typ	pF	

NOTES: 1. These values may be applied continuously under single-phase $60-\mathrm{Hz}$ half-sine-wave operation with resistive load. Derate linearly to 150 mA at $150^{\circ} \mathrm{C}$ free-air temperature at the rate of $2 \mathrm{~mA} /^{\circ} \mathrm{C}$.
2. These values apply for a one-second square-wave pulse with the device at nonoperating thermal equilibrium immediately prior to the surge.
3. Derate linearly to 200 mW at $150^{\circ} \mathrm{C}$ free-air temperature at the rate of $3.2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.

- JEDEC registered data.

MEDIUM-SPEED SWITCHING DIODES

- Rugged Double-Plug Construction

mechanical data
Double-plug construction affords integral positive contact by means of a thermal compression bond. Moisture-free stability is ensured through hermetic sealing. The coefficients of thermal expansion of the glass case and the dumet plugs are closely matched to allow extreme temperature excursions. Hot-solder-dipped leads are standard.

absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

		1N659	1N660	1N661	UNIT
${ }^{*} \mathrm{~V}_{\text {RM }}$ (wisg)	Working Peak Reverse Voltage over Operating Free-Air Temperature Range	50	100	200	V
* 0	Average Rectified Forward Current at (or below) $25^{\circ} \mathrm{C}$ Free-Air Temperature (See Note 1)	100			mA
* ${ }^{\text {o }}$	Average Rectified Forward Current at $100^{\circ} \mathrm{C}$ Free-Air Temperature (See Note 1)	40			mA
$\mathrm{I}_{\text {FM(surgal }}$	Peak Surge Current at $25^{\circ} \mathrm{C}$ Free-Air Temperature (See Note 2)	500			mA
P	Continuous Power Dissipation of (or below) $25^{\circ} \mathrm{C}$ Free-Air Temperature (See Note 3)	250			mW
${ }^{*} \mathrm{~T}_{\text {A }}$ (opr)	Operating Free-Air Temperature Range	-65 to 150			${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage Temperature Range	-65 to 150			${ }^{\circ} \mathrm{C}$
	Altitude at Rated Working Peak Reverse Voltage	100000			f

*electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

PARAMETER	TEST CONDITIONS	1N659	IN660	1N661	UNIT
		MIN MAX	MIN MAX	MIN MAX	
$V_{\text {(图) }}$ Reverse Braakdown Voltage	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{A}}=100^{\circ} \mathrm{C}$	60	120	240	V
		5	5	10	μA
IR Static Reverse Current	$\begin{aligned} & V_{R}=\text { Roted } V_{R M(w k g)} \\ & T_{A}=100^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	25	50	100	$\mu \mathrm{A}$
$\overline{V_{F}}$ Static Forward Voltage	$\mathrm{I}_{\mathrm{F}}=6 \mathrm{~mA}$	1	1	1	V

*switching characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

		1N659	1×660	1N661	
PARAMETER	TEST CONDITIONS	MIN MAX	MIN MAX	MIN MAX	UNIT
$t_{\text {rr }}$ Reverse Recovery Time	$\begin{array}{ll} \hline 256-\mathrm{JA} N_{,}, & l_{F}=30 \mathrm{~mA}, \\ V_{R}=35 \mathrm{~V}, & R_{L}=2 \mathrm{k} \Omega, \\ \mathrm{C}_{\mathrm{L}}=20 \mathrm{pF}, & \text { Recovery }^{2} \text { to } 400 \mathrm{k} \Omega \\ \hline \end{array}$	0.3	0.3	0.3	μs

MOTES: 1. These valuss may be appliad continuously under single-phase $60-\mathrm{Hz}$ half-sine-wave operation with resistive load. Derate linearly to 0 at $150^{\circ} \mathrm{C}$ troc-alr temperaturn.
2. This value appliss for a one-secend square-wave pulse with the device at nonoparating thermal equilibrium immediately prior to the surge.
3. Derate Ilinuasty to $150^{\circ} \mathrm{C}$ froo-alr temperature at the rate of $2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
*JEDEC ingistrod data.

TYPES 1N662, 1N663
 SILICON SWITCHING DIODES

BULLETIN NO. DL-S 739122, SEPTEMBER 1966-REVISED MARCH 1973

MEDIUM-SPEED SWITCHING DIODE

- Rugged Double-Plug Construction

*mechanical data

Double-plug construction affords integral positive contact by means of a thermal compression bond. Moisture-free stability is ensured through hermetic sealing. The coefficients of thermal expansion of the glass case and the dumet plugs are closely matched to allow extreme temperature excursions. Hot-solder-dipped leads are standard. 1

absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

		1 N662	IN663	UNIT
${ }^{*} \mathrm{~V}_{\text {RMM }}$ (mkg	Working Peak Reverse Voltage	80	80	V
**	Average Rectified Forward Current at (or below) $25^{\circ} \mathrm{C}$ Free-Air Temperature (See Note 1)	40	60	mA
* $I_{\text {FM M }}$ (surgel	Peak Surge Current, One Second (See Note 2)	0.5		A
${ }^{*} I_{\text {EMM }}$ (urgel	Peak Surge Current, 0.3 Second (See Note 2)	1		A
${ }^{*} I_{\text {FMMIpulsol }}$	Peak Pulse Current (See Note 3)	2		A
P	Continuous Power Dissipation at (or below) $25^{\circ} \mathrm{C}$ Free-Air Temperature (See Note 4)	250		mW
${ }^{*} \mathrm{~T}_{\text {A (00p) }}$	Operating Free-Air Temperature Range	-65 to 150		${ }^{\circ} \mathrm{C}$
${ }^{*} \mathrm{~T}_{\text {stg }}$	Storage Temperature Range	-65 to 150		${ }^{\circ} \mathrm{C}$

*electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

PARAMETER	TEST CONDITIONS	1 N662	IN663	UNIT
		MIN MAX	MIN MAX	
$V_{\text {(ER) }}$ Reverse Breakdown Voltage	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$	100	100	V
$\mathrm{I}_{\mathrm{R}} \quad$ Static Reverse Current	$V_{\mathrm{R}}=10 \mathrm{~V}$	1		$\mu \mathrm{A}$
	$V_{R}=50 \mathrm{~V}$	20		$\mu \mathrm{A}$
	$V_{R}=75 \mathrm{~V}$		5	$\mu \mathrm{A}$
	$\mathrm{V}_{\mathrm{R}}=10 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=100^{\circ} \mathrm{C}$	20		$\mu \mathrm{A}$
	$\mathrm{V}_{\mathrm{R}}=50 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=100^{\circ} \mathrm{C}$	100		$\mu \mathrm{A}$
	$\mathrm{V}_{\mathrm{R}}=75 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=100^{\circ} \mathrm{C}$		50	$\mu \mathrm{A}$
$\mathrm{V}_{\mathrm{F}} \quad$ Static Forward Voitage	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$	1		V
	$\mathrm{I}_{\mathrm{F}}=100 \mathrm{~mA}$		1	V

*switching characteristics ot $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER		TEST CONDITIONS	1 N662		1N663		UNIT	
		MIN	MAX	MIN	MAX			
$\mathrm{t}_{\text {tr }}$	Reverse Recovery Time		$\begin{aligned} & 256-\mathrm{JAN}, \mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}, \mathrm{~V}_{\mathrm{R}}=40 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=2.3 \mathrm{k}, \mathrm{C}_{\mathrm{L}}=40 \mathrm{pF}, \\ & \text { Recovery to } 100 \mathrm{k} \Omega \end{aligned}$		0.5			μs
		$\begin{aligned} & 256-\mathrm{JAN}, \mathrm{I}_{F}=5 \mathrm{~mA}, \mathrm{~V}_{\mathrm{R}}=40 \mathrm{~V}, \\ & R_{\mathrm{L}}=2.3 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=40 \mathrm{pF}, \\ & \text { Recovery to } 200 \mathrm{k} \Omega \end{aligned}$				0.5	μs	

NOTES: 1. These values may be applied continuously under single-phase $60-\mathrm{Hz}$ hall-sine-wave operation with resistive load. Derate linearly to 0 at $150^{\circ} \mathrm{C}$ free-air temperature.
2. Thase values apply for the specified square-wave pulse with the device at nonoperating thermal equilibrium immediately prior to the surge.
3. This value applies for $t_{p} \leq 1 \mu s$, duly cycle $\leq 1 \%$.
4. Derate linearly to $150^{\circ} \mathrm{C}$ free-air temperature af the rate of $2 \mathrm{~mW} / \mathrm{C}^{\circ}$.

* JEDEC registered dala

$$
\begin{aligned}
& \text { VZ } \ldots 2.6 \mathrm{~V} \text { to } 7.1 \mathrm{~V} \\
& \text { PD } \ldots 400 \mathrm{~mW}
\end{aligned}
$$

- Available in 5\% and 10\% Tolerances
- Rugged Double-Plug Construction

mechanical data

Double-plug construction affords integral positive contact by means of a thermal compression bond. Moisture-free stability is ensured through hermetic sealing. The coefficients of thermal expansion of the glass case and the dumet plugs are closely matched to allow extreme temperature excursions. Hot-solder-dipped leads are standard.

absolute maximum ratings

TYPE	$l_{\text {IM }}$ Steady-State Regulator Current, $\mathrm{T}_{\mathrm{A}} \leq 25^{\circ} \mathrm{C}$		P Dissipation, $\mathrm{T}_{\mathrm{A}} \leq 25^{\circ} \mathrm{C}$	$\mathrm{T}_{\text {stg }}$ Storage Ternperature Ronge	I_{L} Lead Temperaturo
	$\overbrace{\text { Nominalt }}^{\text {II }}$	$\begin{aligned} & \text { JEDEC } \\ & \text { Value** } \end{aligned}$	(See Note 1)		(See Note 2)
1 1702	125 mA		$\begin{aligned} & 400 \mathrm{~mW} \dagger \\ & 250 \mathrm{~m} \mathrm{~W}^{*} \end{aligned}$	$-65^{\circ} \mathrm{C}$	$230^{\circ} \mathrm{C}$
11702a	138 mA	87 mA			
11703	103 mA				
117703A	109 mA	66 mA			
11704	89 mA				
11704A	93 mA	58 mA		to	
11705	74 mA			$200^{\circ} \mathrm{C}$ *	
14705A	78 mA	48 mA			
11706	62 mA				
13706A	65 mA	41 mA			
114707	50 mA				
1W707A	53 mA	33 mA			

mOTES: 1. For operatien above $25^{\circ} \mathrm{C}$ free-air temperatura, refor to Dissipation Derating Curve, figure 1.
2. This value applies $1 / 6$ inch from the case for 10 secends.
*Imelicates JEDEC remistered dete
The neminal I_{ZM} ewrents shown are applicable to devices having neyplator voltages at the upper limit of the renge specifiod for eech type. Thase velues do net ropresent absolute limits. The ectual steedy-state current-voltage product must not exceed $\mathbf{4 0 0} \mathrm{mW}$.
*This value is gearantoed by Texas Instroments in addition to the JEDEC registered value which is alse shewn.

TYPES 1N702 THRU 1N707, 1N702A THRU 1N707A
 SILICON VOLTAGE-REGULATOR DIODES

*electrical characteristics ar $25^{\circ} \mathrm{C}$ free-cir temperature (unless otherwise noted)

	CHARACTERISTICS							$\begin{gathered} \text { TEST } \\ \text { VOITAGE } \end{gathered}$
PARAMETER	V_{z} Zener Breakdown Voltage			\mathbf{I}_{2} Small-Signal Breakdown Impedance	I_{R} Slatic Roverse Current		V_{F} Static Forward Voltage	
$\begin{array}{\|c\|} \text { TEST } \\ \text { CONDITIONS } \end{array}$	$\mathrm{I}_{\mathbf{z t}}=\mathbf{5 m A}$			$\begin{aligned} & \mathrm{I}_{\mathrm{zT}}=10 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{xt}}=1 \mathrm{~mA} \\ & \mathrm{f}=60 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & V_{R}=V_{R(1)} \\ & r_{A}=25^{\circ} C \end{aligned}$	$\begin{aligned} & V_{R}=V_{R(1)} \\ & T_{A}=100^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{I}_{\mathrm{F}}=200 \mathrm{~mA}$	$V_{\text {R(1) }}$
Llwils	MIM	NOM	max	max	max	max	max	
UNIT	V			$\boldsymbol{\Omega}$	$\mu \mathrm{A}$	$\mu \mathrm{h}$	V	V
11702	2.00	2.60	3.20	60	75	100		1
1N702A	2.30	2.60	2.90	60	75	100	1	1
1 17703	3.00	3.45	3.90	55	50	100		1
1W703A	3.23	3.45	3.67	55	50	100	1	1
119704	3.70	4.10	4.50	45	5	100		1
197041	3.90	4.10	4.30	45	5	100	1	1
117705	4.30	4.85	5.40	35	5	100		1.5
1W705A	4.58	4.85	5.12	35	5	100	1	1.5
111706	5.20	5.80	6.40	20	5	100		1.5
11706A	5.50	5.80	6.10	20	5	100	1	1.5
IH707	6.20	7.10	8.00	10	5	50		3.5
117007A	6.65	7.10	7.55	10	5	50	1	3.5

${ }^{-1}$ Jadicafes JEDEC ragitoned data

THERMAL INFORMATION

DISSIPATION DERATING CURVE

TYPES $1 N 708$ THRU 1N726, 1N708A THRU 1 N 72 SA SILICON VOLTAGE-REGULATOR DIODES

Vz... 5.6 V to 33 V
 PD ... 400 mW

- Available in 5\% and 10\% Tolerances
- Rugged Double-Plug Construction

mechanical data

Double-plug construction affords integral positive contacts by means of a thermal compression bond. Moisture-free stability is ensured through hermetic sealing. The coefficients of thermal expansion of the glass case and the dumet plugs are closely matched to allow extreme temperature excursions. Hot-solder-dipped leads are standard.

absolute maximum ratings

NOTE 1: For operation above $50^{\circ} \mathrm{C}$ free-air temperature refer to Dissipation Derating Curve, Figure 1.
${ }^{\dagger}$ This value is guaranteed by Texas Instruments in addition to the JEDEC registered value which is also shown.
*JEDEC registered date. This date sheet contains all applicable registered data in effect at the time of publication.

TYPES 1 N708 THRU 1N726, 1W708A THRU 1N726A SILICON VOLTAGE-REGULATOR DIODES

*electrical characteristics at $\mathbf{2 5}{ }^{\circ} \mathrm{C}$ free-air temperature

CHARACTERISTICS							TEST CURRENT
PARAMETER	v_{z} Regulator Voltage					z_{2} Small-Signal Regulator Impedance	
TEST CONDITIONS	$I_{R}=I_{Z}(T)$					$\begin{gathered} I_{R}=I_{Z}(T), \\ I_{r}=10 \% I_{Z}(T) . \\ f=60 \mathrm{~Hz} \end{gathered}$	Iz(T)
LIMIT	NOMINAL \ddagger	1N708-1N726		1N708A-1N726A		MAX	
UNIT	V	V	V	V	V	Ω	mA
1N708, A	5.6	5.04	6.16	5.32	5.88	3.6	25
1N709, A	6.2	5.58	6.82	5.89	6.51	4.1	25
1N710, A	6.8	6.12	7.48	6.46	7.14	4.7	25
1N711, A	7.5	6.75	8.25	7.13	7.87	5.3	25
1N712, A	8.2	7.38	9.02	7.79	8.61	6	25
1N713, A	9.1	8.19	10.01	8.65	9.55	7	12
1N714, A	10	9.00	11.00	9.50	10.50	8	12
1N715, A	11	9.90	12.10	10.45	11.55	9	12
1N716, A	12	10.80	13.20	11.40	12.60	10	12
1N717, A	13	11.70	14.30	12.35	13.65	11	12
1N718, A	15	13.50	16.50	14.25	15.75	13	12
1N719, A	16	14.40	17.60	15.20	16.80	15	12
1N720, A	18	16.20	19.80	17.10	18.90	17	12
1N721, A	20	18.00	22.00	19.00	21.00	20	4
1N722, A	22	19.80	24.20	20.90	23.10	24	4
1N723, A	24	21.60	26.40	22.80	25.20	28	4
1N724, A	27	24.30	29.70	25.65	28.35	35	4
1N725, A	30	27.00	33.00	28.50	31.50	42	4
1N726, A	33	29.70	36.30	31.35	34.65	50	4

*JEDEC registered data
Tolerance is $\pm 10 \%$ for the 1 N708 through 1 N726 series, $\pm 5 \%$ for the $1 N 708 A$ through $1 N 726 A$ series.
THERMAL INFORMATION
dissipation derating curve

FIGURE 1

$V_{Z} \ldots 3.3 \mathrm{~V}$ to $12 \mathrm{~V}, \mathrm{PD} \ldots 400 \mathrm{~mW}$

- Available in 5\% and 10\% Tolerances
- Rugged Double-Plug Construction

description and mechanical data

These voltage regulator diodes have been designed using the best of both silicon material processing and packaging technologies. The silicon die is a planar oxide-passivated structure which has additional true-glass passivation over the junction. The double-plug package, proven by vears of volume production, ensures the best in mechanical integrity and the lowest possible junction temperature when compared to the thermal characteristics of whisker packages. Because of this rugged double-plug (heat-sink) package, these devices offer very conservatively rated power dissipation capabilities.

*absolute maximum ratings
Average Rectified Forward Current at (or below) $\mathbf{2 5}{ }^{\circ} \mathrm{C}$ Free-Air Temperature 230 mA
Average Rectified Forward Current at $150^{\circ} \mathrm{C}$ Free-Air Temperature 85 mA
Peak Reverse Surge Current . See Table 1
Peak Forward Surge Current . See Figure 1
Continuous Power Dissipation at (or below) $75^{\circ} \mathrm{C}$ Free-Air Temperature (See Figure 2) 400 mW
Continuous Power Dissipation at $150^{\circ} \mathrm{C}$ Free-Air Temperature 100 mW
Operating Free-Air Temperature Range . $-65^{\circ} \mathrm{C}$ to $175^{\circ} \mathrm{C}$
Storage Temperature Range . $-65^{\circ} \mathrm{C}$ to $175^{\circ} \mathrm{C}$
TABLE 1-PEAK REVERSE SURGE CURRENT

TYPE	IRSM Nonrepetitive Reverse Surge Current				'RRM Repetitive Peak Reverse Current (Max Rep Rate $=1 \mathrm{kHz})$	
	$\begin{aligned} t & =1 \mathrm{~s}, \\ \mathrm{~T}_{\mathrm{A}} & =25^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & t=0.001 \mathrm{~s}, \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} t & =1 \mathrm{~s} \\ T_{A} & =150^{\circ} \mathrm{C} \end{aligned}$	$\begin{gathered} t=0.001 \mathrm{~s} \\ T_{A}=150^{\circ} \mathrm{C} \end{gathered}$		
					$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$T_{A}=150^{\circ} \mathrm{C}$
	mA	A	mA	mA	mA	mA
1N746, A	400	4.0	24	70	1000	250
1N747, A	390	4.0	23	69	1000	250
1N748, A	370	4.0	22	67	1000	250
1N749, A	350	4.0	21	63	1000	250
1N750, A	330	3.9	20	58	980	250
1N751, A	310	3.7	19	53	960	250
1N752, A	280	3.5	18	48	940	240
1N753, A	250	3.2	17	45	910	230
1N754, A	220	2.8	16	42	860	220
1N755, A	190	2.5	15	39	800	200
1N756, A	170	2.1	14	36	730	180
1N757, A	150	1.8	13	33	650	150
1N758, A	130	1.5	13	30	530	130
1N759, A	120	1.3	12	28	400	100

[^182]
TYPES 1N746 THRU 1N759, 1N746A THRU 1N759A SILICON VOLTAGE-REGULATOR DIODES

*electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

PARAMETER	$\mathbf{V}_{\mathbf{Z}}$Requalator Voltage					$a \mathrm{VZ}$ Temperature Coefficient of Regulator Voltage $\mathrm{I}_{\mathbf{Z T}}=\mathbf{2 0} \mathrm{mA}$	$\mathbf{z}_{\mathbf{z}}$ Small-Signal Regulator Impedance $\mathbf{I Z T}_{\mathbf{Z T}}=\mathbf{2 0} \mathbf{~ m A}$, $\mathbf{I}_{\mathbf{z t}}=1 \mathbf{~ m A}$	$\mathbf{I}_{\mathbf{R}}$ Static Reverse Current	
TEST CONDITIONS	$\mathrm{I}_{\mathrm{ZT}}=20 \mathrm{~mA}$							$V_{R}=1 \mathrm{~V}$	$\begin{gathered} V_{R}=1 \mathrm{~V}, \\ T_{A}=150^{\circ} \mathrm{C} \end{gathered}$
LIMIT	NOM	$\begin{aligned} & \text { 1N74 } \\ & \text { MIN } \end{aligned}$	N759 MAX	1N746A MIN	N759A MAX	TYP	MAX	MAX	MAX
UNHT	V	V	V	V	V	\%/ ${ }^{\circ} \mathrm{C}$	Ω	$\mu \mathrm{A}$	$\mu \mathrm{A}$
1N746, A	3.3	2.97	3.63	3.135	3.465	-0.062	28	10	30
1N747, A	3.6	3.24	3.96	3.420	3.780	-0.055	24	10	30
IN748, A	3.9	3.51	4.29	3.705	4.095	-0.049	23	10	30
1N749, A	4.3	3.87	4.73	4.085	4.515	-0.036	22	2	30
1N750, A	4.7	4.23	5.17	4.465	4.935	-0.018	19	2	30
1N751, A	5.1	4.59	5.61	4.845	5.355	-0.008	17	1	20
1N752, A	5.6	5.04	6.16	5.320	5.880	+0.006	11	1	20
1N753, A	6.2	5.58	6.82	5.890	6.510	+0.022	7	0.1	20
1N754, A	6.8	6.12	7.48	6.460	7.140	+0.035	5	0.1	20
1N755, A	7.5	6.75	8.25	7.125	7.875	+0.045	6	0.1	20
1N756, A	8.2	7.38	9.02	7.790	8.610	+0.052	8	0.1	20
1N757, A	9.1	8.19	10.01	8.645	9.555	+0.056	10	0.1	20
1N758, A	10.0	9.00	11.00	9.500	10.500	+0.060	17	0.1	20
1N759, A	12.0	10.80	13.20	11.400	12.600	+0.060	30	0.1	20

-JEDEC registered data
THERMAL INFORMATION

MAXIMUM PEAK FORWARD NONREPETITIVE SURGE CURRENT
 vs

PULSE WIDTH

FIGURE 1

DISSIPATION DERATING CURVE

TYPES 1 N761 THRU $1 N 769$
 SILICON VOLTAGE-REGULATOR DIODES

VZ... 4.85 V to 23.5 V

$$
\text { PD . . . } 400 \mathrm{~mW}
$$

- Tolerances Range from 9\% to 15\%
- Rugged Double-Plug Construction

mechanical data

Double-plug construction affords integral positive contacts by means of a thermal compression bond. Moisture-free stability is ensured through hermetic sealing. The coefficients of thermal expansion of the glass case and the dumet plugs are closely matched to allow extreme temperature excursions. Hot-solder-dipped leads are standard.

absolute maximum ratings

TYPE	IZM Steady-State Regulator Current $T_{A} \leqslant 25^{\circ} C$		I_{ZM} Steady-State Regulator Current $T_{A}=125^{\circ} \mathrm{C}$		P Dissipation $T_{A} \leqslant 25^{\circ} C$ (See Note 1)	$\mathrm{T}_{\text {stg }}$ Storage Temperature Range		
	II Nominal ${ }^{\dagger}$	JEDEC Value*	TI Nominal ${ }^{\dagger}$	JEDEC Value*		TI Value \ddagger	JEDEC Value*	
1N761	74 mA	50 mA	24 mA	10 mA	$\begin{aligned} & 400 \mathrm{~mW} \ddagger \\ & 250 \mathrm{~mW} * \end{aligned}$	$\begin{gathered} -65^{\circ} \mathrm{C} \\ \text { to } \\ 175^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} -65^{\circ} \mathrm{C} \\ \text { to } \\ 150^{\circ} \mathrm{C} \end{gathered}$	$230^{\circ} \mathrm{C}$
1N762	62 mA	40 mA	20 mA	8 mA				
1N763	50 mA	30 mA	16 mA	6 mA				
1N764	40 mA	25 mA	13 mA	5 mA				
1N765	33 mA	20 mA	11 mA	4 mA				
1N766	27 mA	17 mA	9 mA	3.5 mA				
1N767	22 mA	14 mA	7 mA	3 mA				
1N768	19 mA	12 mA	6 mA	2.5 mA				
1N769	15 mA	10 mA	5 mA	2 mA				

NOTES: 1. For operation above $25^{\circ} \mathrm{C}$ free-air temperature, refer to Dissipation Derating Curve, Figure 1.
2. This value applies $1 / 8$ inch from the cose for 8 seconds.

- JEDEC registered data. This dsta sheet contains all applicable reglstered data in effect at the time of publication.

The nominal $I_{Z M}$ currents shown are applicable to devicas having regulator voltages at the upper limit of the range specified for each type.
These values do not represant absalute limits. The actual steady-state current-voltage product must not exceed the power rating shown in
Flgure 1.
¥This value is gutaranteed by Texas Instruments In addition to the JEDEC registered value which is also shown.
*electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

CHARACTERISTICS					TEST CURRENT
PARAMETER	$V_{\mathbf{Z}}$ Regulator Voltage			Z_{z} Small-Signal Regulator Impedance	
TEST CONDITIONS		R $=1 \mathrm{I}_{\mathbf{L}}$		$\begin{gathered} I_{R}=I_{Z(T)}, \\ I_{r}=10 \% I_{Z(T)}, \\ f=60 \mathrm{~Hz} \end{gathered}$	' $\mathrm{Z}(\mathrm{T}$)
LIMIT	MIN	NOM	MAX	MAX	
UNIT	V	V	V	Ω	mA
1N761	4.3	4.85	5.4	40	10
1N762	5.2	5.80	6.4	18	10
1N763	6.2	7.10	8.0	7	10
1N764	7.5	8.75	10.0	12	10
1N765	9.0	10.50	12.0	45	5
1N766	11.0	12.75	14.5	55	5
1N767	13.5	15.75	18.0	70	5
1N768	17.0	19.00	21.0	100	5
1N769	20.0	23.50	27.0	150	5

[^183]THERMAL CHARACTERISTICS

TYPES 1N914, 1N914A, iN914B, iN915, 1N916, 1 N916A, $1 N 916 B, 1 N 917$ SILICON SWITCHING DIODES

BULLETIN NO. DL-S 7311954, MARCH 1973

FAST SWITCHING DIODES

- Rugged Double-Plug Construction
 Electrical Equivalents
 1N914 . . . 1N4148 . . . 1N4531
 1N914A... 1N4446
 1N914B . . . 1 N4448
 1N916 . . . 1N4149
 1N916A . . . $1 N 4447$
 1N916B . . . 1N4449

mechanical data
Double-plug construction affords integral positive contacts by means of a thermal compression bond. Moisture-free stability is ensured through hermetic sealing. The coefficients of thermal expansion of the glass case and the dumet plugs are closely matched to allow extreme temperature excursions. Hot-solder-dipped leads are standard.

absolute maximum ratings at specified free-air temperature

	1N914 1N914A 1N914B	1N915	1N916 1N916A 1N916B	1N917	UNIT
Working Peak Reverse Voltage from $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$	75*	50*	75*	30*	V
	75*	75*	75*	50*	mA
Average Rectified Forward Current (See Note 1) at $150^{\circ} \mathrm{C}$	10*	10*	10*	10*	
Peak Surge Current, 1 Second at $25^{\circ} \mathrm{C}$ (See Note 2)	500*	500	500*	300	mA
Continuous Power Dissipation at (or below) $25^{\circ} \mathrm{C}$ (See Note 3)	250*	250	250*	250	mW
Operating Free-Air Temperature Range	-65 to 175				C
Storage Temperature Range	-65 to 200*				C
Lead Temperature 1/16 Inch from Case for 10 Seconds	300				C

NOTES: 1. Thase values may be applied continuously under a single-phase $60-\mathrm{Hz}$ half-sine-wave operation with resistive load.
2. These values apply for a one-second square-wave pulse with the devices at nonoperating thermal equilibrium immediatelv prior to the surge.
3. Derete linearly to $175^{\circ} \mathrm{C}$ free-air temperature at the rate of $1.67 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.

[^184] SILICON SWITCHING DIODES

1N914 SERIES AND 1N915

*electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

1N916 SERIES AND 1N917

"electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

NOTE 4: These parameters must be measured using pulse techniques. $\mathbf{t}_{\mathbf{w}}=\mathbf{3 0 0} \mu \mathrm{s}$, duty cycle $<\mathbf{2 \%}$.

operating characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER		TEST CONDITIONS			1N914 1N914A 1N914B tN916 1N916A 1N916B		1N915		1N917		UNIT			
		MIN	MAX	MIN	MAX	MIN	MAX							
$t_{\text {rr }}$	Reverse Recovery Time				$\begin{aligned} & I_{F}=10 \mathrm{~mA}, \\ & R_{L}=100 \Omega, \end{aligned}$	$I_{R M}=10 \mathrm{~mA}$ See Figure 1	$i_{r r}=1 \mathrm{~mA},$ ondition 11		8		10*		3*	ns
		$\begin{aligned} & I_{F}=10 \mathrm{~mA}, \\ & R_{L}=100 \Omega, \end{aligned}$	$V_{R}=6 \mathrm{~V},$ See Figure 1	$i_{r r}=1 \mathrm{~mA},$ ondition 2)		4*					ns			
$V_{\text {FM }}$ (rec)	Forward Recovery Voltage	$\mathrm{I}_{\mathrm{F}}=50 \mathrm{~mA}$,	$\mathrm{R}_{\mathrm{L}}=50 \Omega$,	See Figure 2	2.5*						V			
η_{r}	Rectification Efficiency	$\begin{aligned} & V_{r}=2 V, \\ & Z_{\text {source }}=50 \end{aligned}$	$\begin{aligned} & R_{L}=5 \mathrm{k} \Omega, \\ & f=100 \mathrm{MHz} \end{aligned}$	$\mathrm{C}_{\mathrm{L}}=20 \mathrm{pF}$	45*						\%			

PARAMETER MEASUREMENT INFORMATION

figure 1 - reverse recovery time

b. Oulput woveforms ore menitered on on oscillescope with the following charecteristics: $\mathrm{I}_{\mathrm{r}} \leq 0.6 \mathrm{~ms}, \mathrm{I}_{\mathrm{in}}=50 \Omega$.

FIGURE 2 - FORWARD RECOVERY VOLTAGE
MOTES: c . The input pulse is supplied by a generator with the following characteristics: $z_{\text {out }}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 30 \mathrm{~ns}, \mathrm{t}_{\mathrm{w}}=100 \mathrm{~ms}$, PRR $=5$ to 100 kHz .
d. The output waveform is monilered on on oscilloscope with the following characteristics: $\mathrm{t}_{\mathrm{r}} \leq 15 \mathrm{~ns}, \mathrm{R}_{\mathrm{in}} \geq 1 \mathrm{~m} \mathrm{\Omega}, \mathrm{c}_{\mathrm{in}} \leq \mathbf{s} \mathbf{p f}$.

* JEDES ragistored data

TYPES 1N957 THRU 1N973, 1N957A THRU 1N973A, 1N957B THRU 1N973B SILICON VOLTAGE-REGULATOR DIODES

$V_{Z} \ldots 6.8 \mathrm{~V}$ to 33 V
$\mathrm{PD}_{\mathrm{D}} \ldots 400 \mathrm{~mW}$

- Available in 5\%, 10\% and 20\% Tolerances
- Rugged Double-Plug Construction

description and mechanical data

These voltage regulator diodes have been designed using the best of both silicon material processing and packaging technologies. The silicon die is a planar oxide-passivated structure which has additional true-glass passivation over the junction. The double-plug package, proven by years of volume production, ensures the best in mechanical integrity and the lowest possible junction temperature when compared to the thermal characteristics of whisker packages. Because of this rugged double-plug (heat-sink) package, these devices offer very conservatively rated power dissipation capabilities.

absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

TYPE	${ }^{*}$ IZM Steady-State Regulator Current (See Note 1)	${ }^{*}$ IRSM Nonrepetitive Reverse Surge Current (See Note 2)	*PD Continuous Power Dissipation $\left(\mathrm{T}_{\mathrm{A}} \leqslant \mathbf{2 5}{ }^{\circ} \mathrm{C}\right.$, See Note 3)	$\mathrm{T}_{\text {stg }}$ Storage Temperature Range
	mA	mA	mW	${ }^{\circ} \mathrm{C}$
1N957, A, B	55	300	4	4
1N958, A, B	50	275		
1N959, A, B	45	250		
1N960, A, B	41	225		
1N961, A, B	38	200		
1N962, A, B	32	175		
1N963, A, B	31	160		
1 N964, A, B	28	150	1	
1N965, A, B	25	130	400	-65 to 175
1N966, A, B	24	120		
1N967, A, B	20	110		
1N968, A, B	18	100		
1N969, A, B	16	90		
1N970, A, B	15	80		
1N971, A, B	13	70		
1N972, A, B	12	65	,	
1N973, A, 8	11	60	\downarrow	\dagger

NOTES: 1. The nominal $I_{Z M}$ currents shown are applicable for devices having regulator voltages approximately 10% above the nominal V_{Z} values shown under electrical characteristics. These values do not represent absolute limits. The actual steady-state current-voltage product must not exceed the power rating in Figure 1.
2. These values apply for an $8.3-\mathrm{ms}$ square-wave pulse with the device at nonoperating thermal equilibrium immediately prior to the surge.
3. Derate linearly to $175^{\circ} \mathrm{C}$ free-air temperature at the rate of $2.67 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$. See Dissipation Derating Curve, Figure 1 .

TYPES 1N957 THRU 1N973. 1N957A THRU 1N973A, 1N957B THRU 1N973B SILICON VOLTAGE-REGULATOR DIODES
electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

CHARACTERISTICS								TEST CURRENT and voltage		
PARAMETER	${ }^{*} V_{z}$ Regulator Voltage	${ }^{*} \Delta \mathbf{V}_{\mathbf{Z}}\left(\Delta \mathbf{I}_{\mathbf{R}}\right)$ Voltaga Regulation	${ }^{*} z_{z}$ Small-Signal Regulator Impedance	${ }^{*} \mathbf{z}_{\text {zk }}$ Small-Signal Regulator Knee Impedance	$\mathbf{I R}_{\mathbf{R}^{\ddagger}}$ Static Reverse Current	${ }^{*} V_{F}$ Static Forward Voltage				
		$\begin{gathered} I_{R(1)}=10 \% \\ \text { rated } I_{R} . \end{gathered}$	$I_{R}=I_{Z}(T)$.	$I_{R}=1 \mathbf{z K}$,					$\mathbf{V}_{\mathbf{R}(1)}$	
CONDITIONS		rated I_{R}. $t=90 \mathrm{~s}$	$f=60 \mathrm{~Hz}$	$f=60 \mathrm{~Hz}$	V	I_{F}	IZ(T)	IzK	1N957A thru	1N957B thru
LIMIT	NOM ${ }^{+}$	MAX	MAX	MAX	MAX	MAX			1N973A	1N973B
UNIT	V	V	Ω	Ω	$\mu \mathbf{A}$	V	mA	mA	V	V
1N957, A, B	6.8	0.25	4.5	700	150	1.5	18.5	1.0	4.9	5.2
1N958, A, B	7.5	0.30	5.5	700	75	1.5	16.5	0.5	5.4	5.7
1 N959, A, B	8.2	0.35	6.5	700	50	1.5	15.0	0.5	5.9	6.2
1N960, A, B	9.1	0.40	7.5	700	25	1.5	14.0	0.5	6.6	6.9
1N961, A, B	10	0.45	8.5	700	10	1.5	12.5	0.25	7.2	7.6
1N962, A, B	11	0.50	9.5	700	5	1.5	11.5	0.25	8.0	8.4
1N963, A, B	12	0.55	11.5	700	5	1.5	10.5	0.25	8.6	9.1
1 N964, A, B	13	0.60	13	700	5	1.5	9.5	0.25	9.4	9.9
1N965, A, B	15	0.70	16	700	5	1.5	8.5	0.25	10.8	11.4
1 N966, A, B	16	0.75	17	700	5	1.5	7.8	0.25	11.5	12.2
1N967, A, B	18	0.85	21	750	5	1.5	7.0	0.25	13.0	13.7
1 N968, A, B	20	0.95	25	750	5	1.5	6.2	0.25	14.4	15.2
1N969, A, B	22	1.05	29	750	5	1.5	5.6	0.25	15.8	16.7
1N970, A, 8	24	1.15	33	750	5	1.5	5.2	0.25	17.3	18.2
1N971, A, B	27	1.30	41	750	5	1.5	4.6	0.25	19.4	20.6
1N972, A, B	30	1.45	49	1000	5	1.5	4.2	0.25	21.6	22.8
1N973, A, B	33	1.60	58	1000	5	1.5	3.8	0.25	23.8	25.1

${ }^{\dagger} V_{Z}$ tolerance is $\pm \mathbf{2 0 \%}$ for 1 N957 thru 1 N973, $\pm 10 \%$ for 1 N957A thru 1 N973A, and $\pm 5 \%$ for 1 N957B thru 1 N973B.
\ddagger These limits apply for A and B suffix types only. There is no reverse current specification for 1N957 through 1 N973.
*JEDEC registered data

TYPES IN2069, 1N2070, 1N2071, 1N2069A, 1N2070A, 1N2071A
 SILICON RECTIFIERS

BULLETIN NO. DL-S 7211697 , NOVEMBER 1972

200-600 VOLTS • 750 mA AVERAGE

- Rugged Double-Plug Construction
- Hermetic Case
- Small Size
description and mechanical data
These rectifier diodes are the product of combining the best of both silicon material processing and packaging technologies. The silicon die is a mesa oxide-passivated structure which has additional nitride passivation and glass passivation over the junction. Years of volume production have shown the double-plug package to have the highest inherent mechanical integrity of all hermetic-case diodes.

*absolute maximum ratings at specified ambient ${ }^{\dagger}$ temperature (unless otherwise noted)

	1N2069	1N2070	1N2071	1N2069A	IN2070A	1N2071A	UNIT
 $V_{\text {RM }}$ Peak Reverse Voitage at (or below) $100^{\circ} \mathrm{C}$ (See Note 1)	200	400	600	200	400	600	V
$V_{R} \quad$ Steady State Reverse Voltage at (or below) $100^{\circ} \mathrm{C}$	200	400	600	200	400	600	V
$10 \quad$Average Rectified Forward Current at (or below) $25^{\circ} \mathrm{C}$ (See Notes 1 and 2)	750						mA
IOAverage Rectified Forward Current at $100^{\circ} \mathrm{C}$ (See Notes 1 and 2)	500						mA
IFRM Repetitive Peak Forward Current, 10 Cycles, at (or below) $25^{\circ} \mathrm{C}$ (See Notes 3 and 4)	6						A
IFSM Peak Surge Current, One Cycle, at (or below) $100^{\circ} \mathrm{C}$ (See Note 3)	22						A
TA(opr) Operating Ambient Temperature Range	-30 to 100			-35 to 100			${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$ Storage Temperature Range	-30 to 100				-35 to 100		${ }^{\circ}$
Lead Temperature 1/2 Inch from Case for 5 Seconds	240						C

NOTES: 1. These values may be applied continuously under single-phase, 60-Hz, hatt-sine-wave oparation with resistive load. Above $25^{\circ} \mathrm{C}$ derate l_{0} according to Figure 1.
2. This rectifier is a lead-conduction-cooled device. At (or above) ambient temparatures of $25^{\circ} \mathrm{C}$, the lead tempereture $\mathbf{3 / 8}$ inch from case must be no higher than $5^{\circ} \mathrm{C}$ above the ambient temparsture for these ratinge to apply.
3. These values apply for $60-\mathrm{Hz}$ half sine waves when the device is operating at (or below) rated values of peak reverse voitage and everage rectified forward current. Surge may be repested after the device has returned to ortginal thermal equilibrium.
4. Derate linearly to 4 A at $100^{\circ} \mathrm{C}$.

- JEDEC repistered dats. This dats shest contains sll spplicsble registered dete in effect et the time of publication.
t The ambiant temperature is measured the point 2 inches below the device. Natural air cooling is uted.

TYPES 1N2069, 1N2070, 1N2071, 1N2069A, 1N2070A, 1N2071A SILICON RECTIFIERS

${ }^{*}$ electrical characteristics at specified ambient ${ }^{\dagger}$ temperature

PARAMETER		TEST CONDITIONS	$\begin{aligned} & \text { 1N2069 } \\ & \text { 1N2070 } \\ & \text { 1N2071 } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { 1N2069A } \\ \text { 1N2070A } \\ \text { 1N2071A } \\ \hline \end{array}$	UNIT	
		MAX	MAX			
${ }_{1}{ }^{1}$	Static Reverse Current		$\mathrm{V}_{\mathrm{R}}=$ Rated $\mathrm{V}_{\mathrm{R}}, \quad \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	10	5	$\mu \mathrm{A}$
$I_{\text {R (av) }}$	Average Reverse Current	$\begin{array}{ll} \hline V_{R M}=\text { Rated } V_{R M}, & T_{O}=500 \mathrm{~mA}, \\ f=60 \mathrm{~Hz}, & T_{A}=100^{\circ} \mathrm{C} \\ \hline \end{array}$	200	50	$\mu \mathrm{A}$	
V_{F}	Static Forward Voltage	$\mathrm{I}_{\mathrm{F}}=500 \mathrm{~mA}, \quad \mathrm{~T}_{\text {A }}=25^{\circ} \mathrm{C}$	1.2	1	V	
$V_{\text {F (av) }}$	Average Forward Voltage	$\begin{array}{ll} \hline V_{R M}=\text { Rated } V_{R M}, & I_{O}=500 \mathrm{~mA}, \\ f=60 \mathrm{~Hz} . & T_{A}=100^{\circ} \mathrm{C} \\ \hline \end{array}$	0.6	0.5	V	

*JEDEC registered data

THERMAL INFORMATION

FIGURE 1

NOTE 2: This rectifitr is a lead-conduction-cooled device. At (or above) armbient temperatures of $25^{\circ} \mathrm{C}$, the lead temperature $3 / 8$ inch from case must be no higher than $5^{\circ} \mathrm{C}$ above the ambient temperature for these ratings to apply.
The ambient temperature is measured at a point 2 inchea below the device. Natural air cooling is used.

TYPE 1N3064
 SILICON SWITCHING DIODE

BULLETIN NO. DL-S 739114, SEPTEMBER 1966-REVISED MARCH 1973

FAST SWITCHING DIODE

- Rugged Double-Plug Construction
- Electrically Equivalent to 1N4454 (DO-35) and 1N4532 (DO-34)
mechanical data
Double-plug construction affords integral positive contact by means of a thermal compression bond. Moisture-free stability is ensured through hermetic sealing. The coefficients of thermal expansion of the glass case and the dumet plugs are closely matched to allow extreme temperature excursions. Hot-solder-dipped leads are standard.

absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

M	Peak Reverse Voltage . . $\cdot \dot{0}$ (or below) $25^{\circ}{ }^{\circ} \mathrm{C}$ Free-Air Temperature (See Note 1). . 115 mA
	Peak Surge Current, One Second (See Note 2) 500 mA
	Peak Surge Current, One Microsecond (See Note 2) 2 A
	Continuous Power Dissipation at (or below) $25^{\circ} \mathrm{C}$ Free-Air Temperature (See Note 3). 250 mW
* ${ }^{\text {r }}$	Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $200^{\circ} \mathrm{C}$
	Lead Temperature K_{6} Inch from Case for 2 Seconds $250^{\circ} \mathrm{C}$

*electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN MAX	UNIT
$V_{\text {(30) }}$	Reverse Breakdown Voltage	$\mathrm{I}_{\mathrm{R}}=5 \mu \mathrm{~A}$	75	V
I_{R}	Static Reverse Current	$\mathrm{V}_{\mathrm{R}}=50 \mathrm{~V}$	0.1	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{R}}=50 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$	100	$\mu \mathrm{A}$
	Static Forward Voltage	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$	1	V
$\alpha_{\text {VF }}$	Temperature Coefficient of Static Forward Voltage	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$, See Note 4	3	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
C_{T}	Total Capacitance	$\mathrm{V}_{\mathrm{R}}=0, \quad \mathrm{f}=1 \mathrm{MHz}$	2	pF

*operating characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER	TEST CONDITIONS	MIN MAX	UNIT
$\dagger_{\text {rr }} \quad$ Reverse Recovery Time	$\begin{array}{ll} l_{F}=10 \mathrm{~mA}, & I_{R M}=10 \mathrm{~mA}, R_{L}=100 \Omega, \\ C_{G}=10 \mathrm{pF}, & i_{r r}=1 \mathrm{~mA}, \quad \text { See Figure } 1 \end{array}$	4	ns
$\mathrm{V}_{\text {FMYract }}$ Forward Recovery Voltage	$\mathrm{I}_{\mathrm{F}}=100 \mathrm{~mA}, \quad \mathrm{R}_{\mathrm{L}}=50 \Omega, \quad$ See Figure 2	3	V
$\eta_{\mathrm{r}} \quad$ Rectification Efficiency	$\begin{aligned} & V_{r}=2 \mathrm{~V}, \quad R_{1}=5 \mathrm{k} \Omega_{r} C_{L}=20 \mathrm{pF}, \\ & Z_{\text {source }}=50 \Omega, f=100 \mathrm{MHz} \end{aligned}$	45%	

MOTES: 1. These values may be applied continuously under single-phose $60-\mathrm{Hz}$ halt-sine-wave operation with resistive load. Derate linearly to 0 at $150^{\circ} \mathrm{C}$ free-air temperature.
2. These volues apply for the specifiad square-wave pulse with the device at nonoparating themual equilibrium immediately prior to the surge.
3. Derate linearly at the rale of $1.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
4. Temperature coefficient, $\alpha_{\text {VF }}$, is detarminad by the following formula:

$$
\alpha \mathrm{VF}=\frac{v_{F} @ 150^{\circ} \mathrm{C}-\mathbf{v}_{\mathrm{F}} @-55^{\circ} \mathrm{C}}{150^{\circ} \mathrm{C}-\left(-55^{\circ} \mathrm{C}\right)}
$$

[^185]
TYPE 1N3064 SILICON SWITCHING DIODE

PARAMETER MEASUREMENT INFORMATION

FIGURE I - REVERSE RECOVERY TIME
MOTES: a. The input pulse is supplied by a generater with the following characteristics: $z_{\text {out }}=50 \Omega, \mathrm{i}_{\mathrm{r}} \leq 0.25 \mathrm{~ns}, \mathrm{t}_{\mathrm{p}}=100 \mathrm{~ns}$.
b. Output woveterm is menitored on an ascilloscope with the following cheracteristics: $\boldsymbol{t}_{\mathrm{r}} \leq \mathbf{0 . 3 5} \mathrm{ms}, \mathbf{z}_{\mathrm{in}}=50 \Omega$.

FIGURE 2 - FORWARD RECOVERY VOLTAGE
NOTES: c. The input pulse is supplied by a generator with the following characteristics: $z_{\text {out }}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 20 \mathrm{~ns}, \mathrm{t}_{\mathrm{p}}=100 \mathrm{~ns}, \mathrm{PRR} \leq 100 \mathrm{kHz}$.
d. Output woveform is monitored on an ossilloseope with the following charocteristics: $\mathrm{t}_{\mathrm{r}} \leq 0.4 \mathrm{~ns}, \mathbf{R}_{\mathrm{in}} \geq 1 \mathrm{M} \Omega, \mathrm{C}_{\mathrm{in}} \leq \mathbf{5 p}$.

TYPE 1 N3070
 SILICON SWITCHING DIODE

BULLETIN NO. DL-S 739370, NOVEMBER 1966-REVISED MARCH 1973

HIGH-VOLTAGE SWITCHING DIODE

- Rugged Double-Plug Construction
- Electrically Equivalent to 1N4938 (DO-35)

*mechanical data

Double-plug construction affords integral positive contact by means of a thermal compression bond. Moisture-free stability is ensured through hermetic sealing. The coefficients of thermal expansion of the glass case and the dumet plugs are closely matched to allow extreme temperature excursions. Hot-solder-dipped leads are standard.

absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

*electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

PARAMETER		TEST CONDITIONS	MIN MAX	UNIT
$V_{\text {(ax) }}$	Reverse Breakdown Voltage	$\mathrm{I}_{\mathrm{R}}=0.1 \mathrm{~mA}$	200	V
I_{R}	Static Reverse Current	$\mathrm{V}_{\mathrm{R}}=175 \mathrm{~V}$	0.1	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{R}}=175 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$	100	$\mu \mathrm{A}$
V_{F}	Static Forward Voltage	$\mathrm{I}_{F}=100 \mathrm{~mA}$	1	V
$\alpha_{\text {VF }}$	Temperature Coefficient of Static Forward Voltage	$\mathrm{I}_{\mathrm{F}}=100 \mathrm{~mA}$, See Note 4	3	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
C_{F}	Total Capacitance	$\mathrm{V}_{\mathrm{R}}=0, \quad \mathrm{f}=1 \mathrm{mHz}$	5	pF

*operating characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER		TEST CONDITIONS			MIN	MAX	UNIT
$t_{\text {rr }}$	Reverse Recovery Time	$\begin{aligned} & I_{\mathrm{F}}=30 \mathrm{~mA}, \\ & \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}, \end{aligned}$	$\begin{aligned} & I_{\mathrm{RM}}=30 \mathrm{~mA}, \\ & \mathrm{i}_{\mathrm{rr}}=1 \mathrm{~mA}, \end{aligned}$	$R_{L}=100 \Omega,$ See Figure 2		50	ns
η_{r}	Rectification Efficiency	$\begin{aligned} & V_{r}=2 V \\ & z_{\text {source }}=50 \end{aligned}$	$\begin{aligned} & R_{L}=5 \mathrm{k} \Omega, \\ & \mathrm{i}=100 \mathrm{MHz} \end{aligned}$	$\mathrm{C}_{\mathrm{L}}=20 \mathrm{pF},$	35 \%		

HOTES: 1. Thase values may be applied cantinuously under single-phasa $60-\mathrm{Hz}$ holf-siae-wave operation with resistive load. Derate linearly to 0 at $200^{\circ} \mathrm{C}$ free-air temperature. 2. Thase valuas apply for the specified square-wave pulse with the device at nonoperating thermal equilibrium immeoiately prior to the surge.
3. For operation obove $25^{\circ} \mathrm{C}$ frat-air temperaturs, refer to Dissipation Derating Curve, figure 1.
4. Temperature coefficient, $\alpha_{\mathbf{Y F}_{F}}$ is determined by the following formula:

$$
\alpha_{\mathrm{VF}}=\frac{v_{F} @ 150^{\circ} \mathrm{C}-v_{F} @-55^{\circ} \mathrm{C}}{150^{\circ} \mathrm{C}-\left(-55^{\circ} \mathrm{C}\right)}
$$

* JEDEC ragistared data

THERMAL CHARACTERISTICS

figure 1

PARAMETER MEASUREMENT INFORMATION

figure 2 - reverse recovery time
MOTES: a. The input pulse is suppliod by a generater with the following charexieristics: $\mathbf{l}_{\text {out }}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq \mathbf{0 . 2 5} \mathrm{ns}, \mathrm{t}_{\mathrm{p}}=100 \mathrm{~ns}$.
b. The output wovaform is monitored on an oscilloscope with the following charecteristics: $\mathrm{t}_{\mathrm{r}} \leq 0.35 \mathrm{~ns}, \mathrm{l}_{\mathrm{in}}=50 \Omega$.

TYPES 1N3506 THRU 1N3530 SILICON VOLTAGE-REGULATOR DIODES

VZ...3.3V to 33 V , PD... 400 mW

- 5\% Tolerance
- Rugged Double-Plug Construction
mechanical data
These voltage regulator diodes have been designed using the best of both silicon material processing and packaging technologies. The silicon die is a planar oxide-passivated structure which has additional true-glass passivation over the junction. The double-plug package, proven by years of volume production, ensures the best in mechanical integrity and the lowest possible junction temperature when compared to the thermal characteristics of whisker packages. Because of this rugged double-plug (heat-sink) package, these devices offer very conservatively rated power dissipation capabilities.

*absolute maximum ratings

TYPE	IZM Steady-State Regulator Current $\left(\mathrm{T}_{\mathrm{A}} \leqslant 50^{\circ} \mathrm{C}\right.$, See Note 1)	IRSM Nonrepetitive Reverse Surge Current ($\mathbf{T}_{\mathbf{A}} \leqslant \mathbf{2 5}^{\circ} \mathbf{C}$, See Note 2)	PD Continuous Power Dissipation $\left(\mathrm{T}_{\mathrm{A}} \leqslant 50^{\circ} \mathrm{C}\right. \text {, See Note 3) }$	$\mathbf{T}_{\text {stg }}$ Storage Temparature Range
	mA	mA	mW	C
1N3506	120	1000	4	4
1N3507	110	1000		
1 N3508	100	1000		
1N3509	90	990		
1 N3510	85	980		
1 N3511	75	960		
1 N3512	70	950		
1N3513	65	910		
1N3514	60	870		
1N3515	50	810		
1N3516	45	740		
1 N3517	40	650		
1N3518	38	540	400	-65 to 200
1N3519	35	450		
1 N3520	32	400		
1N3521	30	350		
1N3522	26	250		
1N3523	24	200		
1N3524	21	175		
1 N3525	19	150		
1N3526	17	130		
1 N3527	16	115		
1 N3528	14	110		
1N3529	13	100		
1N3530	12	95	-	\checkmark

NOTES: 1. The $I_{Z M}$ currents shown are nominal and do not represent absolute limits. The actual steady-state current-voltage product must not exceed the power rating in Figure 1.
2. These values apply for 10 square-wave surges of 8.3 ms duration at one-minute intervals.
3. Derate linearly to $200^{\circ} \mathrm{C}$ free-air temperature at the rate of $2.67 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$. See Dissipation Derating Curve, Figure 1 .
*JEDEC registered data. This data sheet contains all applicable registered date in effact at the time of publication.

TYPES 1N3506 THRU 1N3530 SILICON VOLTAGE-REGULATOR DIODES

*electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

CHARACTERISTICS						TEST CURRENT and Vol.tage	
PARAMETER	$V_{\mathbf{Z}}$ Regulator Voltage			z_{z} Small-Signal Regulator Impedance			
TEST CONDITIONS	$I_{R}=I_{Z}(T)$			$\begin{gathered} I_{R}=I_{Z}(T) \\ I_{r}=10 \% I_{Z}(T) \end{gathered}$	$\mathbf{V}_{\mathbf{R}}=\mathbf{V}_{\mathbf{R}(\mathrm{T})}$	$\mathrm{I} \mathbf{Z}(\mathrm{T})$	$\mathbf{V}_{\mathbf{R}}(\mathrm{T})$
LIMIT	NOM ${ }^{\text { }}$	MIN	MAX	MAX	MAX		
UNIT	V	V	V	Ω	$\mu \mathrm{A}$	mA	V
1N3506	3.3	3.14	3.46	24	4	20	1
1 N3507	3.6	3.42	3.78	22	2	20	1
1 N3508	3.9	3.71	4.09	20	0.4	20	1
1N3509	4.3	4.09	4.51	18	0.1	20	1
1 N3510	4.7	4.47	4.93	16	5	20	2
1N3511	5.1	4.85	5.35	14	2	20	2
1 N3512	5.6	5.32	5.88	8	5	20	3
1 N3513	6.2	5.89	6.51	3	5	20	4
1N3514	6.8	6.46	7.14	3	1	20	5
1 N3515	7.5	7.13	7.87	4	0.5	10	6
1N3516	8.2	7.79	8.61	5	0.25	10	7
1N3517	9.1	8.65	9.55	6	0.025	10	7
1 N3518	10	9.50	10.50	7	0.01	10	8
1 N3519	11	10.45	11.55	8	0.01	10	9
1 N3520	12	11.40	12.60	10	0.01	10	10
1N3521	13	12.35	13.65	12	0.01	5	11
1N3522	15	14.25	15.75	14	0.01	5	13
1 N3523	16	15.20	16.80	16	0.01	5	14
1N3524	18	17.10	18.90	18	0.01	5	16
1 N3525	20	19.00	21.00	20	0.01	5	18
1N3526	22	20.90	23.10	35	0.01	5	19
1 N3527	24	22.80	25.20	38	0.01	5	20
1N3528	27	25.65	28.35	40	0.01	4	22
1N3529	30	28.50	31.50	48	0.01	4	24
1N3530	33	31.35	34.65	50	0.01	3	26

${ }^{\dagger} V_{\boldsymbol{Z}}$ tolerance is $\pm 5 \%$.
THERMAL INFORMATION

FIGURE 1

- JEDEC registered data

50-1000 VOLTS • 1 AMP AVERAGE

- Rugged Double-plug Construction
- Hermetic Case
- 30-Amp Surge Rating

description and mechanical data

These one-amp rectifier diodes are the product of combining the best of both silicon material processing and packaging technologies. The silicon die is a mesa oxide-passivated structure which has additional nitride passivation and glass passivation over the junction. Years of volume production have shown the double-plug package to have the highest inherent mechanical integrity of all hermetic-case diodes.

*absolute maximum ratings at specified ambient ${ }^{\dagger}$ temperature (unless otherwise noted)

		1N4001	1N4002	1N4003	1N4004	1N4005	1N4006	1N4007	UNIT
$V_{\text {RM }}$	Peak Reverse Voltage from $-65^{\circ} \mathrm{C}$ to $175^{\circ} \mathrm{C}$ (See Note 1)	50	100	200	400	600	800	1000	V
$\mathbf{V}_{\mathbf{R}}$	Steady State Reverse Voltage from $25^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$	50	100	200	400	600	800	1000	V
10	Average Rectified Forward Current from $25^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$ (See Notes 1 and 2)	1							A
IFRM	Repetitive Peak Forward Current, 10 Cycles, at (or below) $75^{\circ} \mathrm{C}$ (See Note 3)	10							A
IFSM	Peak Surge Current, One Cycle, at (or below) $75^{\circ} \mathrm{C}$ (See Note 3)	30							A
TA(opr)	Operating Ambient Temperature Range	-65 to 175							${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage Temperature Range	-65 to 200							C
	Lead Temperature 3/8 Inch from Case for 10 Seconds	350							C

NOTES: 1. These valuas mav be applied continuously under single-phase, $60-\mathrm{Hz}$, half-sine-wave operation with resistive load. Above $75^{\circ} \mathrm{C}$ derate 10 according to Figure 1.
2. This rectifier is a lead-conduction-cooled device. At (or above) ambient temperatures of $75^{\circ} \mathrm{C}$, the lead temperature $3 / 8$ inch from case must be no higher than $5^{\circ} \mathrm{C}$ above the ambient temperature for these ratings to apply.
3. These values apply for $60-\mathrm{Hz}$ half sine waves when the device is operating at (or below) rated values of peak reverse voltage and average rectified forward current. Surge may be repeated after the ctevice has retumed to original thermal equilibrium.
*JEDEC registered data. This data sheet contains all applicable registered date in effect at the time of publication.
${ }^{+}$The ambient temperature is measured at a point 2 inches below the device. Natural air cooling is used.
*electrical characteristics at specified ambient ${ }^{\dagger}$ temperature

- JEDEC registered data

THERMAL INFORMATION

FIGURE 1

NOTE 2: This rectifier is a lead-conduetion-cooled device. At (or above) ambient temperatures of $75^{\circ} \mathrm{C}$, the lead temperature $3 / 8$ inch from case must be no higher than $5^{\circ} \mathrm{C}$ above the ambient temperature for these ratings to apply.
$\dagger_{\text {The ambient }}$ temperature is messured at a point 2 inches below the device. Natural air cooling is used

FAST SWITCHING DIODES

- Rugged Double-Plug Construction

Electrical Equivalents:

1N4148	1N914	1N4447 . . . 1N916A
1N4149	1N916	1N4448... 1N914B
1N4446	. 1N914A	1N4449 . . . 1N916B

mechanical data

Double-plug construction affords integral positive contact by means of a thermal compression bond. Moisture-free stability is ensured through hermetic sealing. The coefficients of thermal expansion of the glass case and the dumet plugs are closely matched to allow extreme temperature excursions. Hot-solder-dipped leads are standard

*absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

*electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

PARAMETER	TEST CONDITIONS	1N4148	1N4149	7N4446	1N4447	IN4448	1N4449	
		MIN MAX	MIN MAX	MIN MAX	MIN MAX	MIN MAX	MIN MAX	UNIT
$V_{\text {(60) }}$ Reverse Breakdown Voltage	$\mathrm{I}_{\mathrm{R}}=5 \mu \mathrm{~A}$	75	75	75	75	75	75	V
	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$	100	100	100	100	100	100	V
IR Static Reverse Current	$V_{R}=20 \mathrm{~V}$	25	25	25	25	25	25	ni
	$V_{R}=20 \mathrm{~V}, \mathrm{~T}_{A}=100^{\circ} \mathrm{C}$					3	3	$\mu \boldsymbol{A}$
	$V_{R}=20 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$	50	50	50	50	50	50	μA
$V_{\text {F }}$ Static Forward Yoltage	$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}$					0.620 .72	$0.63 \quad 0.73$	V
	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$	1	1					V
	$I_{f}=20 \mathrm{~mA}$			1	1			V
	$\mathrm{I}_{\mathrm{F}}=30 \mathrm{~mA}$						1	V
	$\mathrm{I}_{\mathrm{F}}=100 \mathrm{~mA}$					1		V
CT Total Capacitance	$\mathrm{V}_{\mathrm{R}}=0, \quad \mathrm{i}=1 \mathrm{mHz}$	4	2	4	2	4		pF

NOTE 1: Derate linearly to $200^{\circ} \mathrm{C}$ at the rale of $2.85 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.

- JEDEC registared dato

TYPES 1N4148, 1 N4149, $\mathbf{1 N 4 4 4 6}$ THRU $1 N 4449$ SILICON SWITCHING DIODES

*switching characteristics at $\mathbf{2 5}^{\circ} \mathrm{C}$ free-air temperature

PARAMETER	TEST CONDITIONS	1N4148	IN4149	1N4446	1N4447	IN4448	1N4449	UNIT
Pre Reverse Recovery Time		MIN MAX	min max	4	min max	4	min ma	ns
$V_{\text {FM(mac) }}$ Forward Recovary Voltage	$I_{F}=50 \mathrm{~mA}, R_{L}=50 \Omega,$ See Figure 2					2.5	2.5	V

*PARAMETER MEASUREMENT INFORMATION

TEST CIRCUIT

OUTPUT CURRENT WAVEFORM

FIGURE 1 - REVERSE RECOVERY TIME
MOTES: a. The input polse is suppliod by genereter with the following characteristics: $z_{\text {out }}=50 \Omega, t_{r} \leq 0.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{p}}=100 \mathrm{~ns}$. b. The output wevatorm is mmitorad on en escilloseppe with the fotiowing characteristics: $\mathrm{t}_{\mathrm{r}} \leq 0.6 \mathrm{~ns}, \mathbf{Z}_{\text {in }}=50 \mathbf{\Omega}$.

VOLTAGE WAVEFORMS

FIGURE 2 - FORWARD RECOVERY VOLTAGE
MOTES: C. The input pulse is supplied by egomerater with the follewing characteristics: $\boldsymbol{z}_{\text {out }}=50 \Omega, \mathrm{I}_{\mathrm{r}} \leq 30 \mathrm{~ns}, \mathrm{t}_{\mathrm{p}}=100 \mathrm{~ns}, \mathrm{PRR}=5 \mathrm{to} \mathbf{1 0 0} \mathbf{k H z}$.
d. The eutput wavetorm is menitered en en escilisccope with the following characteristiks: $\mathrm{I}_{\mathrm{r}} \leq \mathbf{1 5} \mathrm{ns}, \mathrm{g}_{\mathrm{in}} \geq 1 \mathrm{~m} \Omega, \mathrm{c}_{\mathrm{in}} \leq \mathbf{5 p F}$.
*.JEDEC ragistered dints

HIGH-CURRENT, CORE-DRIVER SWITCHING DIODE

- Rugged Double-Plug Construction
- Electrically Equivalent to 1N3600 (DO-7)

mechanical data

Double-plug construction affords integral positive contact by means of a thermal compression bond. Moisture-free stability is ensured through hermetic sealing. The coefficients of thermal expansion of the glass case and the dumet plugs are closely matched to allow extreme temperature excursions. Hot-solder-dipped leads are standard.

*absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

*electrical characteristics at $\mathbf{2 5}{ }^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

PARAMETER		TEST CONDITIONS		MIN	MAX	UNIT
I^{\prime}	Static Reverse Current	$V_{R}=50 \mathrm{~V}$		0.1		$\mu \mathrm{A}$
		$V_{R}=50 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$		100	$\mu \mathrm{A}$
	Static Forward Voltage	$1{ }_{1}=1 \mathrm{~mA}$		0.54	0.62 .	V
		$I_{F}=10 \mathrm{~mA}$		0.66	0.74	V
V_{F}		$\mathrm{I}_{\mathrm{F}}=50 \mathrm{~mA}$		0.76	0.86	V
		$i^{\prime} F=100 \mathrm{~mA}$		0.82	0.92	V
		$I_{F}=200 \mathrm{~mA}$		0.87	1	V
$\mathrm{C}_{\text {T }}$	Total Capacitance	$V_{R}=0$,	$\mathrm{f}=1 \mathrm{MHz}$	2.5		pF

*switching characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER	TEST CONDITIONS	MIN	MAX	UNIT
$t_{f r}$	Forward Recovery Time	$I_{F}=200 \mathrm{~mA}, \quad \mathrm{v}_{\mathrm{fr}}=1 \mathrm{~V}, \quad$ See Figure 1		

NOTES: 1. These values apply for the specified square-wave pulse with the device at nonoperating thermal equilibrium immediately prior to the surge.
2. Derate linearly to $200^{\circ} \mathrm{C}$ free-air temperature at the rate of $2.85 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.

- JEDEC registered data. This data sheet contains all applicable registered data in effect at the time of publication.

TYPE 104150
 SILICON SWITCHING DIODE

PARAMETER MEASUREMENT INFORMATION

FIGURE 1-FORWARD RECOVERY TIME

NOTES: a. The input pulse is supplied by a generator with the following cheracteristics: $Z_{\text {out }}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leqslant \mathbf{0}, 4 \mathrm{~ns}, \mathrm{t}_{\mathbf{w}}=100 \mathrm{~ns}$, duty cycle $<1 \%$.
b. The output waveform is monitored on an oscilloscope with the following characteristics: $t_{r}<0.5 \mathrm{~ns}, \mathrm{R}_{\text {in }}>1 \mathrm{M} \Omega$, $C_{\text {in }}<5 \mathrm{pF}$.

NOTES: c. The input pulse is supplied by a generator with the following characteristics: $\mathrm{t}_{\mathrm{f}} \leqslant \mathbf{1} \mathrm{ns}, \mathrm{Z}_{\mathrm{out}}=\mathbf{5 0} \Omega, \mathrm{t}_{\mathrm{w}}=100 \mathrm{~ns}$, duty cycle $\leqslant 1 \%$.
d. The output waveform is monitored on an oscilloscope with the following characteristics: $t_{\mathbf{r}} \leq 0.4 \mathrm{~ns}, \mathrm{R}_{\text {in }}=50 \Omega$.

TYPES 1N4151 THRU 1N4154
 SILICON SWITCHING DIODES

FAST SWITCHING DIODES

- Rugged Double-Plug Construction

Electrical Equivalents

1N4151 . . . 1N3604
1N4152 . . . 1N3605 . . . 1N4533
1N4153 . . . 1N3606 . . . 1N4534
1N4154 . . . 1N4009 . . . 1N4536
mechanical data
Double-plug construction affords integral positive contact by means of a thermal compression bond. Moisture-free stability is ensured through hermetic sealing. The coefficients of thermal expansion of the glass case and the dumet plugs are closely matched to allow extreme temperature excursions. Hot-solder-dipped leads are standard.

*absolute maximum ratings at $\mathbf{2 5}{ }^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

		1N4151	1N4152	1N4153	1N4154	UNIT
$V_{\text {RM }}$	Peak Reverse Voltage	75	40	75		V
	Working Peak Reverse Voltage	50	30	50	25	V
P	Continuous Power Dissipation at (or below) $25^{\circ} \mathrm{C}$ Free-Air Temperature (See Note 1)	500				mW
$\mathrm{T}_{\text {stq }}$	Storage Temperature Range	-65 to 200				${ }^{\circ} \mathrm{C}$
T_{L}	Lead Temperature 1/16 inch from Case for 10 Seconds	300				${ }^{\circ} \mathrm{C}$

*electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

PARAMETER	TEST CONDITIONS	IN4151	1N4152	IN4153	IN4154	UNIT
		MIN MAX	MIN MAX	MIN MAX	MIN MAX	
$\mathrm{V}_{\text {(1x) }}$ Reverse Breakdown Voltage	$\mathrm{I}_{\mathrm{R}}=5 \mu \mathrm{~A}$	75	40	75	35	V
Static Reverse Current	$V_{R}=\operatorname{ratad} V_{\text {RM }}(\mathrm{mkg})^{\text {a }}$	0.05	0.05	0.05	0.1	$\mu \mathrm{A}$
		50	50	50	100	μ
Stotic Forward Voltage	$\mathrm{l}_{F}=0.1 \mathrm{~mA}$		0.490 .55	0.49		V
	$t_{F}=0.25 \mathrm{~mA}$		0.53	$0.53 \quad 0.59$		V
	$\mathrm{f}_{\mathrm{F}}=1 \mathrm{~mA}$		$0.59 \quad 0.67$	0.590 .67		V
	$I_{F}=2 \mathrm{~mA}$		$0.62 \quad 0.70$	$0.62 \quad 0.70$		V
	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$		$0.70 \quad 0.81$	$0.70 \quad 0.81$		V
	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$		0.74	0.740 .88		V
	$\mathrm{I}_{\mathrm{F}}=30 \mathrm{~mA}$				1	v
	$\mathrm{I}_{\mathrm{F}}=50 \mathrm{~mA}$	1				V
$\mathrm{C}_{\mathrm{T}} \quad$ Total Capacitance	$\mathrm{V}_{\mathrm{R}}=0, \quad i=1 \mathrm{mHz}$	2	2	2	4	pF

WOTE 1: Derate linearly to $200^{\circ} \mathrm{C}$ at the rate of $2.85 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.

* JEDEC mgisfared data

TYPES IN4151 THRU $1 N 4154$ SILICON SWITCHING DIODES

*switching characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

		1N4151	1N4152	IN4153	1N4154	UNIT
PARAMETER	TEST CONDITIONS	MIN MAX	MIN MAX	MIN MAX	MIN MAX	
$t_{\text {rr }}$ Revorse Recovery Time	$\begin{aligned} & I_{F}=10 \mathrm{~mA}, I_{R M}=10 \mathrm{~mA}, i_{r r}=1 \mathrm{~mA}, \\ & R_{L}=100 \Omega, \text { See Figure } 1 \text { (Condition I) } \end{aligned}$	4	4	4	4	ns
	$\begin{aligned} & \mathbf{l}_{\mathbf{F}}=10 \mathrm{~mA}, V_{R}=6 \mathrm{~V}, i_{\mathrm{rr}}=1 \mathrm{~mA} A_{1} \\ & R_{L}=100 \Omega, \text { See Figure } 1 \text { (Condition 2) } \end{aligned}$	2	2	2	2	ns

*PARAMETER MEASUREMENT INFORMATION

TEST CIRCUIT

CONDITION 1: Adjust $V_{\text {in }}$ for
CONDITION 2: Adjust $V_{\text {in }}$ for $V_{R}=6 \mathrm{~V}$

INPUT VOLTAGE WAVEFORM

OUTPUT CURRENT WAVEFORMS

FIGURE 1 - REVERSE RECOVERY TIME

MOTES: a. The input pulse is supplied by a generatar with the follawing choracteristics: $Z_{\text {out }}=50 \Omega_{r} f_{r} \leq 0.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{p}}=100 \mathrm{~ns}$.
4. The output wavelorm is meatiored on an oscillescope with the foliaming characteristics: $\mathrm{I}_{\mathrm{t}} \leq \mathbf{0 . 6} \mathrm{ms}, \mathrm{I}_{\mathrm{in}}=50 \Omega$.

- Jeber rogistored data.

FAST SWITCHING DIODES

- Rugged Double-Plug Construction

Electrical Equivalents
1N4305 . . . 1N3063 . . . 1N4532
1N4454 ... 1 N3064

mochanical data

Double-plug construction affords integral positive contact by means of a thermal compression bond. Moisture-free stability is ensured through hermetic sealing. The coefficients of thermal expansion of the glass case and the dumet plugs are closely matched to allow extreme temperature excursions. Hot-solder-dipped leads are standard.

*absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

		1N4305	IN4444	1N4454	UNIT
$V_{\text {RM }}$	Peak Reverse Voltage	75		75	V
$V_{\text {RMM }}$	Working Peak Reverse Voltage		50		V
P	Continuous Power Dissipation at (or below) $25^{\circ} \mathrm{C}$ Free-Air Temperature (See Note 1)	500			mW
$\mathrm{T}_{\text {stg }}$	Storage Temperature Range	-65 to 200			${ }^{\circ} \mathrm{C}$
T_{1}	Lead Temperoture 1/16 Inch from Case for 10 Seconds	300			${ }^{\circ} \mathrm{C}$

*electrical characteristics af $25^{\circ} \mathrm{C}$ frec-air temperature (unless otherwise noted)

PARAMETER	TEST CONDITIONS	IN4305	IN4444	1N4454	UNIT
		MIN MAX	MIN Max	MIN MAX	
V ${ }_{\text {ERL }}$ Reverse Broakdown Voltage	$\mathrm{I}_{\mathrm{R}}=5 \mu \mathrm{~A}$	75	70	75	V
Static Reverse Current	$\mathrm{V}_{\mathrm{R}}=50 \mathrm{y}$	0.1	0.05	0.1	$\mu \mathrm{A}$
	$\mathrm{V}_{\mathrm{R}}=50 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$	100	50	100	$\mu \mathrm{n}$
Static Fonward Yoltage	$\mathrm{I}_{5}=0.1 \mathrm{~mA}$		$0.44 \quad 0.55$		Y
	$\mathrm{I}_{F}=0.25 \mathrm{~mA}$	0.5050 .575			V
	$\mathrm{I}_{\mathrm{F}}=1 \mathrm{~mA}$	$0.55 \quad 0.65$	$0.56 \quad 0.68$		V
	$\mathrm{I}_{\mathrm{F}}=2 \mathrm{~mA}$	0.610 .71			V
	$I_{F}=10 \mathrm{~mA}$	$0.70 \quad 0.85$	0.69 0.82	1	V
	$i_{F}=100 \mathrm{~mA}$		0.85 -		
$\alpha_{\mathrm{VF}} \begin{gathered}\text { Forwand Voltage Temperature } \\ \text { Coefficient }\end{gathered}$	$I_{F}=10 \mu \mathrm{to} 10 \mathrm{~mA}$, See Note 2	3			$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
$\mathrm{C}_{\text {T }}$ Total Copacitance	$\mathrm{V}_{\mathrm{R}}=0, \quad \mathrm{f}=1 \mathrm{mHz}$	2	2	2	pf

MOTES: 1. Derrite finearly to $200^{\circ} \mathrm{C}$ at the rute of $2.85 \mathrm{mw} /{ }^{\circ} \mathrm{C}$.
2. Temperature coefficient, α_{VF}, is determined by the following formula:

- JEDEC rogisioral deta

$$
\alpha_{V F}=\frac{v_{F} @ 150^{\circ} \mathrm{C}-v_{F} @-55^{\circ} \mathrm{C}}{150^{\circ} \mathrm{C}-1-55^{\circ} \mathrm{C}}
$$

*operating charmeteristics of $25^{\circ} \mathrm{C}$ free-dir tempersuture

		1N4305	IN4444	1N4454	UNIT
PARAMETER	TEST CONDITIONS	MIN MAX	MIN MAX	MIN MAX	
Itr Reverse Recovery True	$\begin{aligned} & I_{\mathbf{F}}=10 \mathrm{~mA}, i_{\mathrm{Rm}}=10 \mathrm{~mA}, i_{r r}=1 \mathrm{~mA}, \\ & \mathrm{R}_{\mathrm{L}}=100 \Omega, \text { seo Figure } 1, \text { Condition } 1 \end{aligned}$	4	7	4	ns
	$\begin{aligned} & I_{\mathrm{F}}=10 \mathrm{~mA}, V_{\mathrm{R}}=6 \mathrm{~V}, \mathrm{I}_{\mathrm{rr}}=1 \mathrm{~mA} \\ & \mathrm{~m}_{\mathrm{l}}=100 \Omega, \text { See Figure 1, Condition 2 } \end{aligned}$	2		2	ns
Vfinrocl Forward lecovery	$I_{F}=100 \mathrm{~mA}, \mathrm{R}_{\mathbf{L}}=50 \Omega$, See Figure 2			3	V
η_{r} Rectification Efficiency	$\begin{aligned} & V_{r}=2 V, R_{L}=5 \mathrm{k} \Omega, C_{L}=20 \mathrm{pF}, \\ & Z_{\text {cource }}=50 \Omega, f=100 \mathrm{mHz} \end{aligned}$	45%			

*PARAMETER MEASUREMENT INFORMATION

figure 1 - reverse recovery time

FIBURI 2 - PORWARD RECOVEIV VOLTAGE

- JEDEC megistorad deta

FAST SWITCHING DIODES

- Rugged Double-Plug Construction

Electrical Equivalents:

1N4148	1N914 . . . 1N4531	1N4447... 1N916A
1N4149	1N916	1N4448... 1N914B
1N4446	1N914A	1N4449 . . . 1N916B

mechanical data

Double-plug construction affords integral positive contact by means of a thermal compression bond. Moisture-free stability is ensured through hermetic sealing. The coefficients of thermal expansion of the glass case and the dumet plugs are closely matched to allow extreme temperature excursions. Hot-solder-dipped leads are standard.

*absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

*electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

PARAMETER	TEST CONDITIONS	1N4148	IN4149	1 N4446	1N4447	1N4448	IN4449	
	TEST CONDITIONS	MIN MAX	MIN MAX	MIN MAX	MIN MAX	MIN MAX	MIN MAX	
$\mathbf{V}_{(\text {ER, }}$ Reverse Brackdown Voltoga	$\mathrm{I}_{\mathrm{R}}=5 \mu \mathrm{~A}$	75	75	75	75	75	75	V
	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$	100	100	100	100	100	100	V
Static Reverse Current	$\mathrm{V}_{\mathrm{R}}=20 \mathrm{~V}$	25	25	25	25	25	25	ni
	$\mathrm{V}_{\mathrm{R}}=20 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=100^{\circ} \mathrm{O}$					3	3	$\mu \mathrm{A}$
	$\mathrm{V}_{\mathrm{R}}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{A}}=150^{\circ} \mathrm{O}$	50	50	50	50	50	50	$\mu \mathrm{A}$
VF Static Forward Voltage	$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}$					$0.62 \quad 0.72$	0.63	V
	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$	1	1					V
	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$			1	1			V
	$\mathrm{I}_{\mathrm{F}}=30 \mathrm{~mA}$						1	V
	$\mathrm{I}_{\mathrm{F}}=100 \mathrm{~mA}$					1		V
$\mathrm{C}_{\mathbf{T}}$ Tofal Capacitance	$V_{\mathrm{R}}=0, \quad \mathrm{f}=1 \mathrm{MHz}$	4	2	4	2	4		pF

WOTE 1: Berate lineorly to $200^{\circ} \mathrm{C}$ at the rate of $2.85 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.

- JEDEC registered dota

TYPES $1 N 4148,1 \times 4149,1 N 4446$ THRU $1 N 4449$ SILICON SWITCHING DIODES

*switching characteristics at $\mathbf{2 5}{ }^{\circ} \mathbf{C}$ free-air temperature

PARAMETER	TEST CONDITIONS	1N4148	1N4149	IN4446	IN4447	1N4448	1N4449	UNIT
Pre Reverse Recovery Time	$\begin{aligned} & I_{\mathbf{F}}=10 \mathrm{~mA}, V_{R}=6 \mathrm{~V}, i_{\text {rr }}=1 \mathrm{~mA}, \\ & \mathbf{R}_{\mathbf{L}}=100 \Omega, \text { Soeo Figura } \end{aligned}$	MIN MAX	MIN max	4		min max	4	ns
$V_{\text {FMumec }}$ Forward Recovery Voitage	$I_{F}=50 \mathrm{~mA}, R_{L}=50 \Omega,$ 5ee Flgure 2					2.5	2.5	v

*PARAMETER MEASUREMENT INFORMATION

INPUT VOLTAGE WAVEFORM
OUTPUT CURRENT WAVEFORM

FIGURE 1-REVERSE RECOVERY TIME
MoTES: a. The input pulse is supplied by a gmerrater with the followieg cheracieristics: $z_{\text {out }}=50 \Omega, \mathrm{ir} \leq 0.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{p}}=100 \mathrm{~ms}$.

FIGURE 2-FORWARD RECOVERY VOLTAGE

* JJEDEC realstwoll mate

FAST SWITCHING DIODES

- Rugged Double-Plug Construction
 Electrical Equivalents
 1N4305 . . . 1N3063 . . . 1N4532
 1N4454 . . . $1 N 3064$

mechanicell dete

Double-plug construction affords integral positive contact by means of a thermal compression bond. Moisture-free stability is ensured through hermetic sealing. The coefficients of thermal expansion of the glass case and the dumet plugs are closely matched to allow extreme temperature excursions. Hot-solder-dipped leads are standard.

*absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air tomperature (unless otherwise noted)

Vay		1N4305	1N4444	1N4454	UNIT
$\mathrm{V}_{\text {RM }}$	Peak Reverse Voltage	75		75	V
$\mathrm{V}_{\text {RMM }}$	Working Peak Reverse Voliage		50		V
P	$25^{\circ} \mathrm{C}$ Free-Air Temperature (See Note 1)	500			mW
$\mathrm{T}_{\text {tig }}$	Storage Temperature Range	-65 to 200			${ }^{\circ} \mathrm{C}$
T_{2}	Lead Temperature $1 / 16$ Inch from Case for 10 Seconds	300			${ }^{\circ} \mathrm{C}$

*electrical characteristics of $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

Parameter	TEST CONDITIONS	IN4305	IN4444	1N4454	UNIT
		MIN MAX	MIN MAX	MIN MAX	
(1m) Reverse Breokdown Voltage	$\mathrm{I}_{\mathrm{R}}=5 \mu \mathrm{~A}$	75	70	75	V
In Stotic Reverse Current	$V_{R}=50 y$	0.1	0.05	0.1	$\mu \mathrm{A}$
	$V_{R}=50 \mathrm{~V}, \quad T_{A}=150^{\circ} \mathrm{C}$	100	50	100	$\mu \mathrm{A}$
VF Static Forward Voltage	$\mathrm{I}_{\mathrm{F}}=0.1 \mathrm{~mA}$		$0.44 \quad 0.55$		V
	$\mathrm{I}_{\mathrm{F}}=0.25 \mathrm{~mA}$	0.5050 .575			V
	$\mathrm{I}_{\mathrm{F}}=1 \mathrm{~mA}$	0.55 0.65	$0.56 \quad 0.68$		V
	$\mathrm{I}_{\mathrm{F}}=2 \mathrm{~mA}$	0.610 .71			\checkmark
	$t_{F}=10 \mathrm{~mA}$	$0.70 \quad 0.85$	$0.69 \quad 0.82$	1	V
	$I_{F}=100 \mathrm{~mA}$		$0.85-1$		V
$\begin{aligned} & \alpha_{\text {VF }} \begin{array}{l} \text { Forword Voltege Temperature } \\ \text { Coefficient } \end{array} \\ & \hline \end{aligned}$	$J_{f}=10 \mu A$ to 10 mA , See Note 2	3			$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
Cr_{5} Total Capacitance	$V_{R}=0, \quad i=1 \mathrm{mHz}$	2	2	2	pF

WOTES: 1. Derate linearly to $200{ }^{\circ} \mathrm{C}$ at the rele of $2.85 \mathrm{~min} /{ }^{\circ} \mathrm{C}$.
2. Tomperatury confficient, $\alpha_{\text {vf, }}$ is deterneined by the following fermula:

- JEPEC registored date

$$
\alpha_{V F}=\frac{v_{F} @ 150^{\circ} \mathrm{C}-v_{F} @-55^{\circ} \mathrm{C}}{150^{\circ} \mathrm{C}-\left(-55^{\circ} \mathrm{C}\right)}
$$

* operating characteristics at $\mathbf{2 5}{ }^{\circ} \mathrm{C}$ free-air temperature

		1N4305	IN4444	1N4454	UNIT
PARAMETER	TEST CONDITIONS	MIN MAX	MIN MAX	MIN MAX	
$\dagger_{\text {rr }}$ Reverse Rocovery Time	$\begin{aligned} & I_{F}=10 \mathrm{~mA}, i_{x m}=10 \mathrm{~mA}, i_{r r}=1 \mathrm{~mA}, \\ & R_{L}=100 \Omega, \text { see Figure } 1, \text { Condition } 1 \end{aligned}$	4	7	4	ns
	$\begin{aligned} & I_{F}=10 \mathrm{~mA}, V_{R}=6 \mathrm{~V}, \mathrm{I}_{\mathrm{rr}}=1 \mathrm{~mA} \\ & \mathrm{R}_{\mathrm{L}}=100 \Omega, \text { see Figure } 1, \text { Condition } 2 \end{aligned}$	2		2	ns
($\mathrm{V}_{\text {FM(rocc }} \begin{aligned} & \text { Forward Recovery } \\ & \text { Voltoge }\end{aligned}$	$I_{F}=100 \mathrm{~mA}, R_{L}=50 \Omega$, See Figure 2			3	V
η_{r} Rectification Efficiency	$\begin{aligned} & V_{1}=2 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \Omega, \mathrm{C}_{L}=20 \mathrm{pF}, \\ & Z_{\text {sourco }}=50 \Omega, i=100 \mathrm{mHz} \end{aligned}$	45%			

*PARAMETER MEASUREMENT INFORMATION

FIGURE 1 - REVERSE RECOVERY TIME
NOTES: a. The input palse is supplied by a geanater with the following charecteristics: $I_{\text {out }}=50 n, t_{r} \leq 0.5 \mathrm{~mm}, t_{p}=100 \mathrm{~ns}$.
b. Output waveforms are menitorod on an oscilloscopo with the following charecteristics: $\mathrm{t}_{\mathrm{r}} \leq 0.6 \mathrm{~ns}, \mathbf{z}_{\mathrm{in}}=50 \Omega$.

TEST CIRCUIT

VOLTAGE WAVEFORMS

FIGURE 2 - FORWARD RECOVERY VOLTAGE
notes: c. The input pulse is supplied by a gemerater with the foltowing characteristics: $z_{\text {out }}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 30 \mathrm{~ms}, \mathrm{t}_{\mathrm{p}}=100 \mathrm{~ns}, \mathrm{PRR}=5$ io 100 kHz .
d. The outpur wavetorm is meniterod on an escilloscope with the following charocteristics: $\mathrm{i}_{\mathrm{r}} \leq 15 \mathrm{~ns}, \mathrm{n}_{\mathrm{in}} \geq 1 \mathrm{Mn}, \mathrm{C}_{\mathrm{in}} \leq 5 \mathrm{pF}$.

- JEDEC regisfored data

TYPES 1N4531 THRU 1N4534, 1 N4536
 SILICON SWITCHING DIODES

BULLETIN NO. DL-S 739774, MARCH 1967-REVISED MARCH 1973

FAST SWITCHING DIODES

- Rugged Double-Plug Construction

Electrical Equivalents
1N4531 . . . 1N4148 . . . 1N914 1N4533 . . 1N4152 . . . 1N3605
1N4532 ... 1N4454 ... 1N3064 1N4534... 1N4153... 1N3606
1N4536 ... 1N4154 ... iN4009

mechanical data

Double-plug construction affords integral positive contact by means of a thermal compression bond. Moisture-free stability is ensured through hermetic sealing. The coefficients of thermal expansion of the glass case and the dumet plugs are closely matched to allow extreme temperature excursions. Hot-solder-dipped leads are standard.

absolute maximum ratings af $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

		1 N 4531	1N4532	IN4533	1N4534	1N4536	UNIT
$V_{\text {RM }}$	Peak Reverse Voltage	100			N4534	35	N
	Working Peak Reverse Voltage	75	75	40	50	25	\checkmark
*P	Continuous Powar Dissipation of (or below) $25^{\circ} \mathrm{C}$ Free-Air Temperature (See Note 1)	500					mW
${ }^{*} \mathrm{~T}_{\text {stg }}$	Storage Temperature Rangs	-65 to 200					${ }^{\circ} \mathrm{C}$
${ }^{*} \mathrm{~T}_{\mathrm{L}}$	Lead Temperature $1 / 18$ Inch from Cose for 10 Seconds	300					${ }^{\circ} \mathrm{C}$

*electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

PARAMETER	TEST CONDITIONS	1N4531	IN4532	IN4533	IN4534	IN4536	
$\mathbf{V}_{\text {(18) }}$ Reverse Breakdown Voltage		MIN MAX	MIN MAX	MIN MAX	MIN MAX	MIN MAX	UNIT
	$\mathrm{I}_{\mathrm{R}}=5 \mu \mathrm{~A}$	75	75	40	75	35	V
	$I_{R}=100 \mu \mathrm{~A}$	100					V
$\mathrm{I}_{\mathrm{R}} \quad$ Static Reverse Current	$V_{R}=20 \mathrm{~V}$	0.025					$\mu \mathrm{A}$
	$\mathrm{V}_{\mathrm{R}}=20 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$	50					$\mu \mathrm{A}$
	$\mathrm{V}_{\mathrm{R}}=25 \mathrm{y}$					0.1	$\mu \mathrm{A}$
	$\mathrm{V}_{\mathrm{R}}=25 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$					100	μA
				0.05			$\mu \mathrm{A}$
	$\mathrm{V}_{\mathrm{R}}=30 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$			50			$\mu \mathrm{A}$
	$V_{R}=50 \mathrm{~V}$		0.1		0.05		$\mu \mathrm{A}$
	$V_{\mathrm{R}}=50 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$		100		50		$\mu \mathrm{A}$
$V_{F} \quad$ Static Forward Voltage	$\mathrm{L}_{\mathrm{F}}=0.1 \mathrm{~mA}$			0.490 .55	0.490 .55		V
	$\mathrm{I}_{\mathrm{F}}=0.25 \mathrm{~mA}$			0.530 .59	0.530 .59		V
	$\mathrm{I}_{\mathrm{F}}=1 \mathrm{~mA}$			0.590 .67	0.59		V
	$\mathrm{I}_{\mathrm{F}}=2 \mathrm{~mA}$			$0.62 \quad 0.70$	$0.62 \quad 0.70$		V
	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$	1	1	$0.70 \quad 0.81$	$0.70 \quad 0.81$		V
	$l_{\text {F }}=20 \mathrm{~mA}$			0.74	0.74		V
C_{T} Total Capocitance	$\mathrm{I}_{\mathrm{F}}=30 \mathrm{~mA}$ $\mathrm{~V}_{\mathrm{R}}=0, \quad \mathrm{f}=1 \mathrm{MHz}$					1	V
C_{7} Total Capokitance	$V_{\mathrm{R}}=0, \quad \mathrm{f}=1 \mathrm{MHz}$	4.	2	2	2	4	PF

NOTE I: Derafe finearly to $200^{\circ} \mathrm{C}$ free-air femparature at the rate of $2.85 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
*JEDEC registored data
*operating characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER	TEST CONDITIONS	IN4531	1N4532	1N4533	1N4534	1N4536	UNIT
	$\begin{aligned} & I_{\mathbf{F}}=10 \mathrm{~mA}, I_{R M}=10 \mathrm{~mA}, i_{r r}=1 \mathrm{~mA}, \\ & R_{L}=100 \Omega, \text { See Figure } 1, \quad \text { Condition } 1 \end{aligned}$		4	4	4	4	ns
$\mathrm{trr}^{\text {rr }}$ Reverse Recovery	$\begin{array}{ll} \begin{array}{l} i_{\mathrm{F}}=10 \mathrm{~mA}, \\ X_{\mathrm{R}}=6 \mathrm{~V}, \end{array} & i_{\mathrm{rr}}=1 \mathrm{~mA}, \\ n_{L}=100 \Omega, & \text { see Figure 1, } \\ \text { Condition 2 } \end{array}$	4	2	2	2	2	ns
$\begin{array}{\|l\|} \hline V_{\text {FMM rece) }} \text { Forward Roctage } \\ \text { Vocovery } \end{array}$	$\mathrm{I}_{\mathrm{F}}=100 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \quad$ See Figure 2		3				V

*PARAMETER MEASUREMENT INFORMATION

FIGURE 1 - REVERSE RECOVERY TIME
WOTES: a. The input pulse is suppliad by a gemerator with-the following char acteristics: $z_{\text {out }}=50 \Omega, \mathrm{I}_{\mathrm{r}} \leq 0.5 \mathrm{~ms}, \mathrm{t}_{\mathrm{p}}=100 \mathrm{~ns}$.
b. Oviput waveforms are meniterad en encilloscepe with the following characieristics: $\mathrm{t}_{\mathrm{r}} \leq 0.6 \mathrm{~ns}, \mathrm{t}_{\mathrm{in}}=50 \Omega$.

Figure 2 - forward recovery voltage
MOTES: c. The input pulse is suppliad by a generator with the following characteristics: $\boldsymbol{z}_{\text {out }}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 30 \mathrm{~ms}, \mathrm{i}_{\mathrm{p}}=100 \mathrm{~ns}, \mathrm{PRR}=5$ to 100 kHz .
d. The output woveform is moniterad of an ascilloscope with the following characteristics: $\mathrm{I}_{\mathrm{r}} \leq \mathbf{1 5} \mathrm{ns}, \mathrm{n}_{\mathrm{in}} \geq \mathbf{1} \mathbf{m n}, \mathrm{c}_{\mathrm{in}} \leq \mathbf{5 p}$.

- JEDEC rugisterod data

FAST HIGH-CURRENT CORE-DRIVER SWITCHING DIODES

mechanical data

- Rugged Double-Plug Construction

Double-plug construction affords integral positive contact by means of a thermal compression bond. Moisture-free stability is ensured through hermetic sealing. The coefficients of thermal expansion of the glass case and the dumet plugs are closely matched to allow extreme temperature excursions. Hot-solder-dipped leads are standard.

*absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

*electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

Parameter	TEST CONDITIONS	IN4606	IN4607	IN4608	UNIT
	, 1000 CONDITONS	MIN MAX	MIN MAX	MIN MAX	
V(0x) Reverse Breakdown Voltage	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$	85	85	85	V
Static Reverse Current	$V_{\mathrm{R}}=50 \mathrm{~V}$	0.1	0.1	0.1	$\mu \mathrm{A}$
	$\mathrm{V}_{\mathrm{R}}=70 \mathrm{~V}$	0.25	0.25	0.25	$\mu \mathrm{A}$
	$\mathrm{V}_{\mathrm{R}}=50 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=100^{\circ} \mathrm{C}$	25	25	25	$\mu \mathrm{A}$
V_{F} Static Forward Volitage	$\mathrm{I}_{\mathrm{F}}=0.1 \mathrm{~mA}$	0.430 .55	0.390 .50	$\begin{array}{lll}0.39 & 0.49\end{array}$	V
	$\mathrm{l}_{\mathrm{F}}=1 \mathrm{~mA}$	0.540 .66	0.50	$0.50 \quad 0.60$	V
	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$	$0.65 \quad 0.77$	$0.61 \quad 0.72$	0.610 .71	V
	$\mathrm{I}_{\mathrm{F}}=50 \mathrm{~mA}$, See Note 2	0.740 .86			V
	$\mathrm{I}_{\mathrm{F}}=100 \mathrm{~mA}$, See Note 2	0.79	$0.74 \quad 0.87$	$0.74 \quad 0.85$	V
	$\mathrm{I}_{\mathrm{F}}=200 \mathrm{~mA}$, See Note 2	0.86			V
	$I_{F}=250 \mathrm{~mA}$, See Note 2	1.1	0.810 .95	0.810 .93	V
	$I_{F}=350 \mathrm{~mA}$, See Note 2		1.0	0.840 .96	V
	$\mathrm{I}_{\mathrm{F}}=400 \mathrm{~mA}$, See Note 2		1.1		V
	$I_{F}=450 \mathrm{~mA}$, Soe Note 2			1.0	V
	$\mathrm{I}_{\mathrm{F}}=500 \mathrm{~mA}$, Soe Note 2			1.1	V
CT Total Capacitonce	$V_{R}=0, \quad f=1 \mathrm{mHz}$	2.5	4	4	pF

MOTES: 1 . Derale linearly to $200^{\circ} \mathrm{C}$ of the rete of $2.85 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
2. Thess paremolers must be measured wising pulso lochniques. $\mathrm{I}_{\mathrm{w}} \leq 300 \mu$ s, dury crele $\leq \mathbf{2 \%}$.

[^186]*switching characteristics at $\mathbf{2 5}{ }^{\circ} \mathrm{C}$ free-air temperature

		1N4606	IN4607	1N4608	UNIT
PARAMETER	TEST CONDITIONS	MIN MAX	MIN MAX	MIN MAX	UNIT
trr Reverse Recovery lime	$\begin{aligned} & i_{f}=10 \mathrm{~mA}, \mathrm{I}_{\mathrm{RM}}=1 \mathrm{~mA}, \\ & i_{r r}=0.1 \mathrm{~m}, \mathrm{~A}_{\mathrm{L}}=100 \Omega \text {, see figure } 1 \end{aligned}$	6			ms
	$\begin{aligned} & I_{\mathrm{F}}=\mathrm{ImM}_{\mathrm{kM}}=10 \mathrm{~mA} \text { to } 200 \mathrm{~mA} \\ & i_{\mathrm{ir}}=0.1 \mathrm{I}_{\mathrm{F}}, R_{L}=100 \Omega \text {, See Figure 2 } \\ & \hline \end{aligned}$	4			ns
	$\begin{aligned} & I_{\mathrm{F}}=I_{\mathrm{RM}}=200 \mathrm{~mA} \text { to } 400 \mathrm{~mA}, \\ & i_{\mathrm{rr}}=0.1 \mathrm{I}_{\mathrm{F},} \mathrm{R}_{\mathrm{L}}=100 \Omega, \text { Soe Figure 2 } \end{aligned}$	6			ns
	$\begin{aligned} & I_{F}=10 \mathrm{~mA} A_{R M}=10 \mathrm{~mA}, \\ & i_{r r}=1 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=100 \Omega, \text { seo Figure } 1 \end{aligned}$		10	10	ns
	$\begin{aligned} & I_{f}=500 \mathrm{~mA}, I_{\text {RM }}=500 \mathrm{~mA}, \\ & i_{\text {rr }}=50 \mathrm{~mA}, \mathrm{~h}_{\mathrm{L}}=100 \Omega \text {, See Figure } 2 \end{aligned}$		15	15	ns

PARAMETER MEASUREMENT INFORMATION

FIGURE I-LOW-CURRENT $t_{\text {Ir }}$ TEST CIRCUIT

FIGURE 2 - HIGH-CURRENT If TEST CIRCUIT

Adjust amplitude for specified'I RM

INPUT VOLTAGE WAVEFORM FOR LOW-CURRENT TEST CIRCUIT

INPUT VOLTAGE WAVEFORM FOR HIGH-CURRENT TEST CIRCUIT

OUTPUT CURRENT WAVEFORM

$$
\text { FIGURE } 3 \text { - WAVEFORMS }
$$

MOTES: I. Input pulses are supplited by generatoss with the fellowing charecteristics.

$$
\begin{aligned}
& \text { FIGURE 1: } z_{\text {out }}=50 \Omega, i_{r} \leq 0.5 \mathrm{~ns}, i_{p}=100 \mathrm{~ns} \\
& \text { FIGURE 2: } z_{\text {out }}=50 \Omega, i_{r} \leq 0.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{p}}=9 \mathrm{~ms}
\end{aligned}
$$

2. Output wevaterms are viowed on en estillescope with the following charecterlstics: $i_{r} \leq 0.6 \mathrm{~ns}, 1_{\mathrm{in}}=50 \Omega$.

* JEDEC mogistored date

FAST SWITCHING DIODE

- Rugged Double-Plug Construction

- Electrically Equivalent to 1N4726
mechanical data
Double-plug construction affords integral positive contact by means of a thermal compression bond. Moisture-free stability is ensured through hermetic sealing. The coefficients of thermal expansion of the glass case and the dumet plugs are closely matched to allow extreme temperature excursions. Hot-solder-dipped leads are standard.

*absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

*electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN MAX	UNIT
$V_{\text {(0) }}$	Reverse Breakdown Voltage	$\mathrm{I}_{\mathrm{R}}=5 \mu \mathrm{~A}$	30	V
I_{R}	Static Reverse Current	$V_{\mathrm{R}}=20 \mathrm{~V}$	0.1	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{R}}=20 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=100^{\circ} \mathrm{C}$	10	$\mu \mathrm{A}$
V_{F}	Static Forward Voltage	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$	0.85	V
C_{T}	Total Capacitance	$V_{R}=0, \quad f=1 \mathrm{MHz}$	4	pf

*operating characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

| PARAMETER | TEST CONDITIONS | MIN MAX | UNIT |
| :---: | :---: | :---: | :---: | :---: |
| $\mathbf{Q}_{\mathbf{S}} \quad$ Stored Charge | $I_{F}=10 \mathrm{~mA}$, See Note 2 | 40 | PC |

MOTES: 1. For operation above $25^{\circ} \mathrm{C}$ free-air femperature, refer to Dissipation Derating Curve figure i.
2. Stored charge is measured in accordance with JEDEC Suggested Standard Mo. 1 (June, 1966), wsing the rest circuit of figure 2.

[^187]
*THERMAL CHARACTERISTICS

PARAMETER MEASUREMENT INFORMATION

FIGUAE 2-STORED CHARGE TEST CIRCUIT

NOTES: a. The input pulse is supplied by a generator with the following characteristics: $Z_{o u t}=10 \Omega, t_{r}(1 \%$ to $50 \%) \leqslant 5 \mathrm{~ns}, \mathrm{t}_{\mathrm{w}}=50 \mathrm{~ns}$.
b. If is the reading of the meter with zero voltage across the diode under test (hence zero current through the diode under test); I_{2} is the reading of the meter when the specified forward current (10 mA) flows; f is the pulse-generator frequency.
c. V_{1} is adjusted for $I_{F}=10 \mathrm{~mA}$.
d. V_{2} is adjusted so that the voltage between point A and ground is $\mathbf{- 0 . 6} \mathbf{V}$ when the diode under test is conducting forward current.
e. The stored charge of diode D_{1} is small compared to the stored charge of the diode under test.
4. The reverse recovery time of diode D_{2} is short relative to the 50 -ns input pulse.
g. The resistance of the current meter is sufficiently low that doubling it does not affect the reading by more than the required accuracy.

TYPES 1N4728 THRU 1N4752, 1N4728A THRU 1N4752A SILICON VOLTAGE-REGULATOR DIODES

BULLETIN NO. DL-S 7311949, MARCH 1973

$\mathrm{V} \underset{\mathrm{Z}}{ } \ldots 3.3 \mathrm{~V}$ to 33 V
$\mathrm{PD} \ldots 1 \mathrm{~W}$

- Available in 5\% and 10\% Tolerances
- Rugged Double-Plug Construction

mechanical data

These voitage regulator diodes have been designed using the best of both silicon material processing and packaging technologies. The silicon die is a planar oxide-passivated structure which has additional true-glass passivation over the junction. The double-plug package, proven by years of volume production, ensures the best in mechanical integrity and the lowest possible junction temperature when compared to the thermal characteristics of whisker packages.

absolute maximum ratings at specified free-air temperature (unless otherwise noted)
${ }^{*}$ Steady-State Regulator Current, IZM, at (or below) $50^{\circ} \mathrm{C}$ (See Note 1) See Table 1
${ }^{*}$ Nonrepetitive Reverse Surge Current, IRSM, at (or below) $25^{\circ} \mathrm{C}$ (See Note 2) See Table 1
${ }^{*}$ Continuous Power Dissipation at (or below) $50^{\circ} \mathrm{C}$ (See Note 3) 1 W
*Operating Free-Air Temperature Range . $-65^{\circ} \mathrm{C}$ to $\mathbf{2 0 0}{ }^{\circ} \mathrm{C}$
Storage Temperature Range . $-65^{\circ} \mathrm{C}$ to $\mathbf{2 0 0 ^ { \circ } \mathrm { C }}$
${ }^{*}$ Lead Temperature $1 / 16$ Inch from Case for 10 Seconds . $230^{\circ} \mathrm{C}$
TABLE 1-CURRENT RATINGS

TYPE	$\begin{aligned} & \mathrm{I} \mathrm{ZM} \\ & (\mathrm{~mA}) \end{aligned}$	$\begin{aligned} & \hline \text { IRSM } \\ & \text { (mA) } \\ & \hline \end{aligned}$	TYPE	$\begin{aligned} & \mathrm{I}_{\mathrm{ZM}} \\ & (\mathrm{~mA}) \end{aligned}$	$\begin{aligned} & \hline \mathrm{I}_{\text {RSM }} \\ & (\mathrm{mA}) \end{aligned}$	TYPE	$\begin{aligned} & \mathrm{I} \mathrm{ZM} \\ & (\mathrm{~mA}) \end{aligned}$	$\begin{aligned} & \hline \text { IRSM } \\ & \text { (mA) } \end{aligned}$
1N4728, A	276	1380	1N4738, A	110	550	1N4748, A	41	205
1N4729, A	252	1260	1N4739, A	100	500	1N4749, A	38	190
1N4730, A	234	1190	1N4740, A	91	454	1N4750, A	34	170
1N4731, A	217	1070	1N4741, A	83	414	1N4751, A	30	150
1N4732, A	193	970	1N4742, A	76	380	1N4752, A	27	135
1N4733, A	178	890	1N4743, A	69	344			
1N4734, A	162	810	1N4744, A	61	304			
1N4735, A	146	730	1N4745, A	57	285			
1N4736, A	133	660	1N4746. A	50	250			
1N4737, A	121	605	1N4747. A	45	225			

NOTES: 1. The nominal IZM currents shown are applicable for devices having regulator voltages approximately 10% above the nominal V_{Z} values shown under electrical characteristics. These values do not represent absolute limits. The actual steady-state current-voltage product must not exceed the power rating.
2. These values apply for an $8.3-\mathrm{ms}$ square-wave pulse superposed on a steady-state reverse current equal to $\mathbf{l}_{\mathbf{Z}}(\mathrm{T})$ as shown under electrical characteristics.
3. Derate linearly to $200^{\circ} \mathrm{C}$ at the rate of $6.67 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$. See Figure 1.
*JEDEC registered data. This data sheet contains all applicable registered data in effect at the time of publication.

TYPES 1N4728 THRU 1N4752, 1N4728A THRU 1N4752A SILICON VOLTAGE-REGULATOR DIODES

*electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

CHARACTERISTICS						TEST CURRENT AND VOLTAGE		
PARAMETER	v_{z} Regulator Voltage	z_{z} Small-Signal Regulator Impedance	$\mathbf{z z k}_{\mathbf{z}}$ Small-Signal Regulator Knee Impedance		V_{F} Static Fonward Voltage			
TEST CONDITIONS	$I_{R}=1 z(T)$	$\begin{gathered} I_{R}=I_{Z}(T), \\ I_{r}=10 \% I_{Z(T)} . \\ f=60 \mathrm{~Hz} \end{gathered}$	$\begin{gathered} I_{R}=I_{Z K}, \\ I_{r}=10 \% I_{Z K}, \\ f=60 \mathrm{~Hz} \end{gathered}$	$\mathbf{V}_{\mathbf{R}}=\mathbf{V}_{\mathbf{R}}(\mathrm{T})$	$I_{F}=\mathbf{2 0 0} \mathrm{mA}$	l (T)	'2K	$V_{R(T)}$
LIMIT	NOM ${ }^{+}$	MAX	MAX	MAX	MAX			
UNIT	V	Ω	Ω	$\mu \mathbf{A}$	V	mA	mA	V
1N4728, A	3.3	10	400	100	1.2	76	1	1
1N4729, A	3.6	10	400	100	1.2	69	1	1
1N4730, A	3.9	9	400	50	1.2	64	1	1
1N4731, A	4.3	9	400	10	1.2	58	1	1
1N4732, A	4.7	8	500	10	1.2	53	1	1.
1N4733, A	5.1	7	550	10	1.2	49	1	1
1N4734, A	5.6	5	600	10	1.2	45	1	2
1N4735, A	6.2	2	700	10	1.2	41	1	3
1N4736, A	6.8	3.5	700	10	1.2	37	1	4
IN4737, A	7.5	4.0	700	10	1.2	34	0.5	5
1N4738, A	8.2	4.5	700	10	1.2	31	0.5	6
1N4739, A	9.1	5	700	10	1.2	28	0.5	7
1N4740, A	10	7	700	10	1.2	25	0.25	7.6
1N4741, A	11	8	700	5	1.2	23	0.25	8.4
1N4742, A	12	9	700	5	1.2	21	0.25	9.1
1N4743, A	13	10	700	5	1.2	19	0.25	9.9
1N4744, A	15	14	700	5	1.2	17	0.25	11.4
1N4745, A	16	16	700	5	1.2	15.5	0.25	12.2
1N4746, A	18	20	750	5	1.2	14.0	0.25	13.7
1N4747, A	20	22	750	5	1.2	12.5	0.25	15.2
1N4748, A	22	23	750	5	1.2	11.5	0.25	16.7
1N4749, A	24	25	750	5	1.2	10.5	0.25	18.2
1N4750, A	27	35	750	5	1.2	9.5	0.25	20.6
1N4751, A	30	40	1000	5	1.2	8.5	0.25	22.8
1N4752, A	33	45	1000	5	1.2	7.5	0.25	25.1

${ }^{\dagger} V_{Z}$ tolerance is $\pm 10 \%$ for 1 N4728 through 1 N4752; $\pm 5 \%$ for 1 N4728A through 1 N4752A.
THERMAL INFORMATION

FIGURE 1

- JEDEC registered data
texas instruments reserves the right to make changes at any tme in order to improve design and to suppiy the best product possible.

TYPE IN4938 SILICON SWITCHING DIODE

HIGH-VOLTAGE SWITCHING DIODE

- Rugged Double-Plug Construction

mechanical data

- Electrically Equivalent to 1N3070

Double-plug construction affords integral positive contacts by means of a thermal compression bond. Moisture-free stability is ensured through hermetic sealing. The coefficients of thermal expansion of the glass case and the dumet plugs are closely matched to allow extreme temperature excursions. Hot-solder-dipped leads are standard.

absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

*electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

PARAMETER		TEST CONDITIONS		MIN MAX		UNIT
$V_{\text {(BR) }}$	Reverse Breakdown Voltage	$\mathrm{I}_{\mathrm{R}}=0.1 \mathrm{~mA}$		200		V
${ }^{\prime} \mathrm{R}$	Static Reverse Current	$V_{R}=175 \mathrm{~V}$			0.1	$\mu \mathrm{A}$
		$V_{R}=175 \mathrm{~V}$,	$T_{A}=150^{\circ} \mathrm{C}$		100	
V_{F}	Static Forward Voltage	$I_{F}=100 \mathrm{~mA}$			1	V
$\mathrm{C}_{\text {T }}$	Total Capacitance	$\mathrm{V}_{\mathrm{R}}=0$,	$\mathrm{f}=1 \mathrm{MHz}$		5	pF

*operating characteristics at $\mathbf{2 5}{ }^{\circ} \mathrm{C}$ free-air temperature

PARAMETER	TEST CONDITIONS	MIN MAX	UNIT
$\mathbf{t r r}_{\text {rr }}$ Reverse Recovery Time	$\begin{array}{lll} I_{F}=30 \mathrm{~mA}, & I_{\mathrm{RM}}=30 \mathrm{~mA}, & R_{\mathrm{L}}=100 \Omega, \\ C_{\mathrm{L}}=\leqslant 3 \mathrm{pF}, & i_{\mathrm{rr}}=1 \mathrm{~mA}, & \text { See Figure } 2 \\ \hline \end{array}$	50	ns

NOTES: 1. This value may be applied continuously under single-phase $60-\mathrm{Hz}$ half-sine-wave operation with resistive load. Derate linearly to 0 at $200^{\circ} \mathrm{C}$ free-air temperature.
2. These values apply for the specified square-wave pulse with the device at nonoperating thermal equilibrium immediately prior to the surge.
3. For operation above $25^{\circ} \mathrm{C}$ free-air temperature, refer to Dissipation Derating Curve, Figure 1 .

[^188]THERMAL CHARACTERISTICS
DISSIPATION DERATING CURVE

figure 1
PARAMETER MEASUREMENT INFORMATION

NOTES: a. The input pulse is supplied by a generator with the following characteristics: $Z_{\text {out }}=50 \Omega, \mathbf{t}_{\mathbf{r}} \leqslant 0.5 \mathrm{~ns}, \mathrm{t}_{\mathbf{w}}=100 \mathrm{~ns}$. b. The output waveform is monitored on an oscilloscope with the following characteristics: $\mathbf{t}_{\mathbf{r}}<0.5 \mathrm{~ns}, \mathbf{Z}_{\mathrm{in}}=50 \Omega$.
$\mathrm{V}_{\mathrm{Z}} \ldots 3.3 \mathrm{~V}$ to 33 V
PD... 500 mW

- Available with 5\%, 10\% and 20\% Tolerances
- Rugged Double-Plug Construction
description and mechanical data
These voltage regulator diodes have been designed using the best of both silicon material processing and packaging technologies. The silicon die is a planar oxide-passivated structure which has additional true-glass passivation over the junction. The double-plug package, proven by years of volume production, ensures the best in mechanical integrity and the lowest possible junction temperature when compared to the thermal characteristics of whisker packages. Because of this rugged double-plug (heat-sink) package, these devices offer very conservatively rated power dissipation capabilities.

*absolute maximum ratings at specified lead temperature

TABLE 1-STEADY-STATE REGULATOR CURRENT

TYPE	$\begin{aligned} & \mathrm{I}_{\mathrm{ZM}}{ }^{\dagger} \\ & (\mathrm{mA}) \end{aligned}$	TYPE	$\begin{aligned} & \operatorname{lZM}^{4} \\ & (\mathrm{~mA}) \end{aligned}$	TYPE	$\begin{aligned} & \left(2 M^{\dagger}\right. \\ & (\mathrm{mA}) \end{aligned}$	TYPE	$\begin{aligned} & \mathrm{IZM}^{\dagger} \\ & (\mathrm{mA}) \end{aligned}$
1N5226, A, B	138	1N5234, A, B	73	1N5242, A, B	38	1N5250, A, B	23
1N5227, A, B	126	1N5235, A, B	67	1N5243, A, B	35	1N5251, A, B	21
1N5228, A, B	116	1N5236, A, B	61	1N5244, A, B	32	1N5252, A, B	18.1
1N5229, A, B	106	1N5237, A, B	55	1N5245, A, B	30	1N5253, A, B	18.2
1N5230, A, B	97	1N5238, A, B	52	1N5246, A, B	28	1N5254, A, B,	16.8
1N5231, A, B	89	IN5239, A, B	50	1N5247, A, B	27	1N5256, A, B	16.2
1N5232, A, B	81	1N5240, A, B	45	1N5248, A, B	25	1N5256, A, B	15.1
1N5233, A, B	76	1N5241, A, B	41	1N5249, A, B	24	1N5257, A, B	13.8

\dagger^{\dagger} The nominal $\mathrm{I}_{2} \mathrm{M}$ currents shown are applicable for devices having regulator volteges approximately $\mathbf{1 0 \%}$ above the nominal $\mathbf{V}_{\mathbf{Z}}$ values shown under electrical charecteristics. These values do not represent absolute limits. The actual steady-state current-voltage product must not exceed the power reting.
NOTES: 1. Derate linearly to $200^{\circ} \mathrm{C}$ lead temperature at the rate of $4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
2. This value applies for an $8.3-\mathrm{ms}$ square-wave pulse with the device at nonoperating thermal equilibrium immediately prior to the surge.

1N5226 THRU 1N5257

*electrical characteristics at $25^{\circ} \mathrm{C}$ lead temperature

CHARACTERISTICS				TEST CURRENT and voltage	
Parameter	$\mathbf{V}_{\mathbf{z}}$ Requllutior Voltage	I_{R} Static Roverse Current	\mathbf{V}_{F} Static Forwerd Voltage		
$\begin{aligned} & \text { TEST } \\ & \text { CONDITIONS } \\ & \hline \end{aligned}$	$I_{R}=I_{Z}(T) .$ $\text { Sen Note } 3$	$V_{R}=V_{R}(T)$	$I_{F}=200 \mathrm{~mA}$	Iz(T)	$V_{R}(T)$
LIMIT	NOM\#	MAX	max		
UNIT	V	$\mu \mathrm{A}$	V	mA	V
1N5226	3.3	100	1.1	20	0.95
1N5227	3.6	100	1.1	20	0.95
1N5228	3.9	75	1.1	20	0.95
1N5229	4.3	50	1.1	20	0.95
1N5230	4.7	50	1.1	20	1.9
1N5231	5.1	50	1.1	20	1.9
1N5232	5.6	50	1.1	20	2.9
1N5233	6.0	50	1.1	20	3.3
1N5234	6.2	50	1.1	20	3.8
1N5235	6.8	30	1.1	20	4.8
1N5236	7.5	30	1.1	20	5.7
1N5237	8.2	30	1.1	20	6.2
1N5238	8.7	30	1.1	20	6.2
1N5239	9.1	30	1.1	20	6.7
1N5240	10	30	1.1	20	7.6
1N5241	11	30	1.1	20	8.0
1N5242	12	10	1.1	20	8.7
1N5243	13	10	1.1	9.5	9.4
1N5244	14	10	1.1	9.0	9.5
1N5245	15	10	1.1	8.5	10.5
1N5246	16	10	1.1	7.8	11.4
1N5247	17	10	1.1	7.4	12.4
1N524B	18	10	1.1	7.0	13.3
1N5249	19	10	1.1	6.6	13.3
1N5250	20	10	1.1	6.2	14.3
1N5251	22	10	1.1	5.6	16.2
1N5252	24	10	1.1	5.2	17.1
1N5253	25	10	1.1	5.0	18.1
1N5254	27	10	1.1	4.6	20
1N5255	28	10	1.1	4.5	20
1N5256	30	10	1.1	4.2	22
1N5257	33	10	1.1	3.8	24

$\ddagger V_{Z}$ tolerance is $\pm 20 \%$ for 1 N5226 thru 1 N5257. See next page for 5%-tolerance and 10%-tolerance devices.
NOTE 3: V_{Z} is measured with the device at thermal equilibrium while held in clips at loast $3 / 8$ inch from the case in still air at $25^{\circ} \mathrm{C}$.
*JEDEC ragistered data

TYPES 1N5226 THRU 1N5257.
 1N5226A THRU 1N5257A, 1N5226B THRU 1N5257B SILICON VOLTAGE-REGULATOR DIODES

1N5226A THRU 1N5257A AND 1N5226B THRU 1N5257B
"electrical characteristics at $\mathbf{2 5}{ }^{\circ} \mathrm{C}$ lead temperature (unless otherwise noted)

CHARACTERISTICS								TEST CURRENT and voltage	
PARAMETER	$\overline{\mathbf{v}_{\mathbf{z}}}$ Regulator Voltage	$\alpha \mathbf{V z}$ Temperature Confficient of Requiator Voltage	2z Small-Signal Regulator Impedance	$\mathbf{z a k}_{\text {2 }}$ Small-Signal Regulator Knee Imperdance	I_{R} Static Reverse Current	\mathbf{V}_{F} Static Forward Voltage	Iz(t)		
								$V_{\text {R }}(\mathrm{T})$	
TEST CONDITIONS	$\begin{aligned} & I_{R}=I_{Z(T)}, \\ & \text { See Note } 3 \end{aligned}$	See Note 4	$\begin{gathered} I_{R}=I_{Z}(T) . \\ L_{=10 \%}=10(T) \\ f=60 \mathrm{~Hz} \end{gathered}$	$\begin{aligned} I_{\text {ZK }} & =250 \mu \mathrm{~A}, \\ \mathrm{I}_{\text {kk }} & =25 \mu \mathrm{~A}, \\ f & =60 \mathrm{~Hz} \end{aligned}$	$V_{R}=V_{R(T)}$	$I_{F}=200 \mathrm{~mA}$		1N5226A thru 1N5257A	1N5226B thru 1N5257B
LIMIT	NOM ${ }^{8}$	MAX	MaX	MAX	MAX	MAX			
UNIT	V	\%PC	Ω	Ω	$\mu \mathrm{A}$	V	mA	V	V
1N5226A, B	3.3	-0.070	28	1600	25	1.1	20	0.95	1.0
1N5227A, B	3.6	-0.065	24	1700	15	1.1	20	0.95	1.0
1N5228A, B	3.9	-0.060	23	1900	10	1.1	20	0.95	1.0
1N5229A, B	4.3	± 0.055	22	2000	5	1.1	20	0.95	1.0
1N5230A, B	4.7	± 0.030	19	1900	5	1.1	20	1.9	2.0
IN5231A, B	5.1	± 0.030	17	1600	5	1.1	20	1.9	2.0
1N5232A, B	5.6	+0.038	11	1600	5	1.1	20	2.9	3.0
1N5233A, B	6.0	+0.038	7	1600	5	1.1	20	3.3	3.5
1N5234A, B	6.2	+0.045	7	1000	5	1.1	20	3.8	4.0
1N5235A, B	6.8	+0.050	5	750	3	1.1	20	4.8	5.0
1N5236A, B	7.5	+0.058	6	500	3	1.1	20	5.7	6.0
1N5237A, B	8.2	+0.062	8	500	3	1.1	20	6.2	6.5
1N5238A, B	8.7	+0.065	8	600	3	1.1	20	6.2	6.5
1N5239A, B	9.1	+0.068	10	600	3	1.1	20	6.7	7.0
1N5240A, B	10	+0.075	17	600	3	1.1	20	7.6	8.0
1N5241A, B	11	+0.076	22	600	2	1.1	20	8.0	8.4
1N5242A, B	12	+0.077	30	600	1	1.1	20	8.7	9.1
1N5243A, B	13	+0.079	13	600	0.5	1.1	9.5	9.4	9.9
1N5244A, B	14	+0.082	15	600	0.1	1.1	9.0	9.5	10
1N5245A, B	15	+0.082	16	600	0.1	1.1	8.5	10.5	11
1N5246A, B	16	+0.083	17	600	0.1	1.1	7.8	11.4	12
1N5247A, B	17	+0.084	19	600	0.1	1.1	7.4	12.4	13
1N5248A, B	18	+0.085	21	600	0.1	1.1	7.0	13.3	14
1N5249A, B	19	+0.086	23	600	0.1	1.1	6.6	13.3	14
1N5250A, B	20	+0.086	25	600	0.1	1.1	6.2	14.3	15
1 N5251A, B	22	+0.087	29	600	0.1	1.1	5.6	16.2	17
1N5252A, B	24	+0.088	33	600	0.1	1.1	5.2	17.1	18
1N5253A, B	25	+0.089	35	600	0.1	1.1	5.0	18.1	19
1N5254A, B	27	+0.090	41	600	0.1	1.1	4.6	20	21
1N5225A, B	28	+0.091	44	600	0.1	1.1	4.5	20	21
1N5226A, B	30	+0.091	49	600	0.1	1.1	4.2	22	23
1N5257A, B	33	+0.092	58	700	0.1	1.1	3.8	24	25

$\S \mathrm{V}_{\mathbf{Z}}$ tolerance is $\pm \mathbf{1 0 \%}$ for 1 N5226A thru $\mathbf{1 N 5 2 5 7 A}$ series; $\pm 5 \%$ for $\mathbf{1 N 5 2 2 6 B}$ thru $\mathbf{1 N 5 2 5 7 B}$ series. See preceding page for 20%-tolerance devices.
NOTES: 3. V_{Z} is measured with the device at thermal equilbrium while held in clips at least $\mathbf{3 / 8}$ inch from the case in still air at $\mathbf{2 5}{ }^{\circ} \mathrm{C}$
4. Temperature Coefficient $\alpha_{V Z}=\left[\frac{\left(v_{Z} @ 125^{\circ} \mathrm{C}\right)-\left(V_{Z} @ 25^{\circ} \mathrm{C}\right)}{\mathrm{V}_{Z} @ 25^{\circ} \mathrm{C}}\right] \times \frac{100 \% \text {. }}{125^{\circ} \mathrm{C}-25^{\circ} \mathrm{C}}$

For determining $\alpha_{V Z}, V_{Z}$ is measured at 7.5 mA for $1 \mathrm{~N} 5226 \mathrm{~A} / 1 \mathrm{~N} 52268$ thru $1 \mathrm{~N} 5242 \mathrm{~A} / 1 \mathrm{~N} 5242 \mathrm{~B}$ and at I ZT for 1 N5243A/1N5243B thru 1N5257A/1N5257B.

[^189]
CORE-DRIVER DIODE ARRAYS

For Application With

\author{

- Magnetic Cores
 - Thin-Film Memories
 For Use In
 - Airborne Computers
 - Industrial Computers
 - Plated-Wire Memories
 - Decoding or Encoding Applications
 - Military Computers
 - Peripheral Equipment
}

Electrically Equivalent to TID21A thru TID26A, TID131, TID132

description

These diode arrays are multiple diode junctions fabricated by a planar process and mounted in integrated circuit packages for use in high-current, fast-switching core-driver applications. These arrays offer many of the advantages of integrated circuits such as high-density packaging and improved reliability. These advantages result from such factors as fewer connections, more uniform device parameters, smaller size, less weight, fewer glass-to-metal seals, and the elimination of pressure contacts and whiskers.

"terminal assignments and schematics

(1)

No internal connoection

1N5770, 1N5771
8-DIODE ARRAY (COMMON ANODE)
10-PIN PACKAGE

(1) No internal connection

1N5774, 1N5775
DUAL 8-DIODE ARRAY
14-PIN PACKAGE

No internal connection

[^190]
TYPES 1 N5768 THRU $1 N 5775$ SILICON DIODE ARRAYS

mechanical data
These hermeticaliy-sealed packages consist of a ceramic base ${ }^{\star}$, metal cap ${ }^{*}$, and a 10- or 14 -lead frame. Gold-plated leads require no additional cleaning or processing when used in welded or soldered assembly.

The JEDEC registration allows these devices to be built with top and bottom surfaces either metallic or nonmetallic at the option of the manufacturer.
*absolute maximum ratings at $\mathbf{2 5} \mathbf{}{ }^{\circ} \mathbf{C}$ free-air temperature (unless otherwise noted)

8-DIODE ARRAYS (COMMON CATHODE) 8-DIODE ARRAYS (COMMON ANODE) 16-DIODE ARRAYS DUAL 8-DIODE ARRAYS	EACH DIODE		TOTAL DEVICE	UNIT
	1N5768 1N5770 1N5772 1N5774	1N5769 1N5771 1N5773 1N5775	ALL TYPES	
Peak Reverse Voltage (See Note 1)	60	40		V
Steady-State Reverse Voltage, $\mathbf{V}_{\mathbf{q}}$	40	25		V
Peak Forward Current at (or below) $25^{\circ} \mathrm{C}$ Free-Air Temperature (See Notes 1 and 2)				mA
Continuous Forward Current at (or below) $25^{\circ} \mathrm{C}$ Free-Air Temperature (See Note 3)				mA
Continuous Power Dissipation at (or below) $25^{\circ} \mathrm{C}$ Free-Air Temperature (See Note 4)			500	mW
Operating Free-Air Temperature Range		-65 to 15		${ }^{\circ} \mathrm{C}$
Storage Temperature Range		-65 to 20		${ }^{\circ} \mathrm{C}$
Lead Temperature 1/16 Inch from Case for 10 Seconds		300		${ }^{\circ} \mathrm{C}$

NOTES: 1. These values apply for $\mathrm{t}_{\mathrm{w}} \leqslant \mathbf{1 0 0} \mu \mathrm{s}$, duty cycle $\leqslant \mathbf{2 0 \%}$.
2. Derate linearly to $150^{\circ} \mathrm{C}$ free-air temperature at the rate of $4 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
3. Derate linearly to $150^{\circ} \mathrm{C}$ free-air temperature at the rate of $2.4 \mathrm{~mA}{ }^{\circ} \mathrm{C}$.
4. Derate linearly to $150^{\circ} \mathrm{C}$ free-air temperature at the rate of $4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.

[^191]*electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature
single-diode operation (sea note 6)

PARAMETER		TEST CONDITIONS	1N5768		1N5769		$\begin{aligned} & \hline \text { 1N5770 } \\ & \text { 1N5772 } \\ & \text { 1N5774 } \\ & \hline \end{aligned}$		$\begin{aligned} & \hline \text { 1N5771 } \\ & \text { 1N5773 } \\ & \text { 1N5775 } \\ & \hline \end{aligned}$		UNIT	
		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX			
$V_{(B R)}$	Reverse Braakdown Voltage		$I_{R}=10 \mu A, \quad$ See Note 5	60		40		60		40		V
$\mathbf{I}_{\mathbf{R}}$	Static Reverse Current	$\mathrm{V}_{\mathrm{R}}=40 \mathrm{~V}$, See Note 7		0.1				0.1			$\mu \mathrm{A}$	
		$V_{R}=25 \mathrm{~V}$, See Note 7				0.1				0.1		
V_{F}	Static Forward Voitaga	$I_{F}=100 \mathrm{~mA}$		1		1.1		1		1.1	V	
V_{F}	Instantaneous Forward Voltage	$I_{F}=500 \mathrm{~mA}$, See Note 8		1.3		1.5		1.3		1.5	V	
$V_{\text {FM }}$	Peak Forward Voltage	$I_{F}=500 \mathrm{~mA}$, See Note 9		5		5		5		5	V	
$\mathrm{C}_{\boldsymbol{T}}$	Total Capacitance ${ }^{\text {t }}$	$V_{R}=0, \quad f=1 \mathrm{MHz}$		4		4		8		8	pF	

multiple-diode operation

PARAMETER		TEST CONDITIONS		ALL TYPES	UNIT		
		MIN MAX					
I_{R}	Static Reverse Current			$V_{R}=$ rated $V_{\text {R }}$,	See Note 10	10	$\mu \mathrm{A}$
V_{F}	Static Forward Voltage	$I_{F}=25 \mathrm{~mA}$,	See Note 10	1	V		

*switching characteristics at $\mathbf{2 5}{ }^{\circ} \mathrm{C}$ free-air temperature
single-diode operation (see note 6)

PARAMETER		TEST CONDITIONS		ALL TYPES		UNIT		
		MIN	MAX					
${ }_{\text {f }}$	Forwerd Recovery Time			$I_{F}=500 \mathrm{~mA}$,	See Figure 3		40	ns
t_{rr}	Reverse Recovery Time	$\begin{aligned} & T_{F}=200 \mathrm{~mA}, \\ & R_{L}=100 \Omega \end{aligned}$ See Figure 4	$\begin{aligned} & I_{R M}=200 \mathrm{~mA}, \\ & i_{r r}=20 \mathrm{~mA}, \end{aligned}$		20	ns		

NOTES: 6. This parameter must be measured using pulse techniques. $t_{w}=100 \mu s$, duty cycle $\leqslant 20 \%$.
6. Test conditions and limits apply separately to each of the diodes. The diodes not under test are open-circuited during the measurement of these characteristics except for the measurement of I_{R} on arravs having both common-cathode and common-anode diodes (see Figures 1 and 2).
7. For arrays having both common-anode'and common-cathode diodes see Figures 1 and 2, Parameter Measirrement Information section.
 puise.
9. The initial instantancous value is measured using puise. techniques. $t_{w}=150 \mathrm{~ns}$, duty cycle $\leqslant \mathbf{2 \%}$, pulse rise time $\leqslant 10 \mathrm{~ns}$. The total capacitance shunting the diode is 19 pF maximum and the equipment bandwidth is 80 MHz .
10. These parameters are messured with each of the other diodes in the section' conducting 25 mA forward current, Each diode is individually tested after the device reaches operating thermal equilibrium. Test conditions apply separately to common-anode and common-cathode sections.
${ }^{\dagger} \mathbf{C}_{\boldsymbol{T}}$ is the total pin-to-pin capacitance measured across any of the diodes. For arrays having both common-anode and common-cathode sections, the interection of the other diodes cannot easily be separated out unless three-terminal guarded measurement techniques are used. The actual capacitance of a single isolated diode will typically be 30% of the measured pin-to-pin value for the common-cathode diodes, and 75\% of the measured value for the common-anode diodes.

TYPES 1 N5768 THRU $1 N 5775$ SILICON DIODE ARRAYS

PARAMETER MEASUREMENT INFORMATION

When measuring the reverse current of an individual diode of a device having both common-anode and common-cathode sections, the current meter must be placed so that the shunt current through the other diodes is bypassed around the meter. To obtain accurate readings, the voltage drop across the current meter must be less than 10 mV .

FIGURE 2-TEST CIRCUIT
FIGURE 1-TEST CIRCUIT FOR FOR COMMON-ANODE DIODES

TEST CIRCUIT

FIGURE 3-FORWARD RECOVERY TIME

NOTES: d. The input pulise is supplied by a generator with the following characteristics: $t_{r} \leqslant 15 \mathrm{~ns}, \mathbf{Z}_{\text {out }}=50 \Omega, \mathrm{t}_{\mathrm{w}}=150 \mathrm{~ns}, \mathrm{duty}$ cycle \leqslant 2%.
b. The output waveform is monitored on an oscilloscope with the following characteristics: $t_{r} \leqslant 4.5 \mathrm{~ns}, \mathrm{R}_{\mathrm{in}} \geqslant 1 \mathrm{M} \Omega, \mathrm{C}_{\mathrm{in}} \leqslant 5 \mathrm{pF}$.

PARAMETER MEASUREMENT INFORMATION

OUTPUT CURRENT WAVEFORM

FIGURE 4-REVERSE RECOVERY TIME

NOTES: c. The input pulse is supplied by a generator with the following characteristics: $\mathbf{t}_{\mathrm{f}} \leqslant \mathbf{1} \mathbf{n s}, \mathrm{Z}_{\text {out }}=50 \Omega, \mathrm{t}_{\mathbf{w}}=200 \mathrm{~ns}, \mathrm{duty}$ cycle $\leqslant 1 \%$.
d. The output waveform is monitored on an oscilloscope with the following characteristics: $\mathrm{t}_{\mathrm{r}} \leqslant 0.4 \mathrm{~ns}, \mathrm{R}_{\text {in }}=50 \Omega$.

TYPICAL CHARACTERISTICS
FORWARD CONDUCTION CHARACTERISTICS

Figure 5
NOTE 8: This parameter is measured using pulse techniques. $t_{w}=300 \mu \mathrm{~s}$, duty cycle $=2 \%$. Read time is $90 \mu \mathrm{~s}$ from the ieading edge of the pulse.

BULLETIN NO. DL-S 7311936, MARCH 1973

FOR STABISTOR APPLICATIONS

- Meter Protectors
- Temperature Sensors
- Transistor Biasing
- Signal Limiters
- Voltage Stabilizers
- Logarithmic Attenuators

mechanical data

Double-plug construction affords integral positive contact by means of a thermal compression bond. Moisture-free stability is ensured through hermetic sealing. The coefficients of thermal expansion of the glass case and the dumet plugs are closely matched to allow extreme temperature excursions. Hot-solder-dipped leads are standard.

absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER		TEST CONDITIONS	MIN MAX	UNIT
	Static Reverse Current	$V_{R}=2 \mathrm{~V}$	0.1	$\mu \mathrm{A}$
V_{F}	Static Forward Voltage	$\mathrm{I}_{\mathrm{F}}=1 \mathrm{~mA}$	500610	mV
		$I_{F}=100 \mathrm{~mA}$	1	V
$\mathbf{r f}_{f}$	Small-Signal Forward Resistance	$I_{F}=1 \mathrm{~mA}, \quad f=1 \mathrm{kHz}$	60	Ω

NOTES: 1. Derate linearly to $150^{\circ} \mathrm{C}$ free-air temperature at the rate of $2 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
2. This value applies for a $60-\mathrm{Hz}$ sine wave.
3. This value applies for one-second square-wave pulse with the device at nonoperating thermal equilibrium immediately prior to the surge.

TYPE 6129
 SILICON STABISTOR DIODE

TYPICAL APPLICATIONS

TEMPERATURE-SENSING ERIDGE

The temperature caefficient of the REF UNIT stabistor makes it well-suited to bridee circuit sensing upplications.

METER PROTECTION
The low thresheld veltoge of the stabistor will profect a sensitive microammeter from over veltoge while allowing nermal eperation.

BASE-CLAMPINE DIODE

The stabistor in this circuit provides protection for transisters having low $V_{\text {(n) }}$ evo by elamping the revarse base voltage. This type of protection allows high collector currents and does not require additional base bies.

STABILIZED TRANSISTOR BIAS

The stabistor provides temperature compensatien propertional to the tempercture coefficient of the bese emitter diode of the transistor.

LOGARITHMIC ATTENUATORS

The characteristic of the stabistor approximates a log function accord. ing to the equation:

$$
v_{f} \simeq \frac{\eta K T}{q} \ln \left(\frac{i_{1}+i_{\operatorname{sen}}}{i_{\text {wat }}}\right)
$$

$K=$ Boltzmann's Constant
$\mathrm{T}=$ Free-Air Temperature in ${ }^{\circ}$ Kelvin
$q=$ Charge on an Electron
$i_{p}=$ Forward Diode Current

$I_{\text {rat }}=$ Diode Saturation
Current ($\approx 10^{-9} \mathrm{amp}$)
for $v_{i}>\frac{K T}{q}$ and $\frac{K T}{q} \approx 25.5 \mathrm{mV}$ at $T_{A}=25^{\circ} \mathrm{C}$
η may be considered an officlancy factor, which, for an efficient stabistor, is a number close to one.

TRANSISTOR EMITTER VARISTOR

The stabistor, acting as a variable emifter resistor for switching applications, presents a high small-signal impedance for a low de emittor current and a low small-signal impedance for a high dee emitter current. The temperature dependence of the dec voltage across the stabistor must be allowed for in setting the quiescent biasing of the transiator.

FOR STABISTOR APPLICATIONS

- Meter Protectors
- Temperature Sensors
- Transistor Biasing
- Signal Limiters
- Voltage Stabilizers
- Logarithmic Attenuators

mechanical data

Double-plug construction affords integral positive contact by means of a thermal compression bond. Moisture-free stability is ensured through hermetic sealing. The coefficients of thermal expansion of the glass case and the dumet plugs are closely matched to allow extreme temperature excursions. Hot-solder-dipped leads are standard.

absolute maximum ratings at $25^{\circ} \mathbf{C}$ free-air temperature (unless otherwise noted)

$$
\begin{aligned}
& \text { Peak Reverse Voltage . } 6 \text { V } \\
& \text { Continuous Forward Current at (or below) } \mathbf{2 5 ^ { \circ }}{ }^{\circ} \text { Free-Air Temperature (See Note 1) } \\
& \text { Repetitive Peak Forward Current at (or below) } \mathbf{2 5 ^ { \circ }}{ }^{\circ} \text { C Free-Air Temperature (See Note 2) }
\end{aligned} \text {. } 150 \mathrm{~mA}
$$

electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER		TEST CONDITIONS	MIN	MAX	UNIT
	Static Reverse Current	$\mathrm{V}_{\mathrm{R}}=2 \mathrm{~V}$		0.1	$\mu \mathrm{A}$
V_{F} Static Forward Voltage		$\mathrm{I}_{\mathrm{F}}=1 \mathrm{~mA}$	570	700	mV
		$I_{F}=100 \mathrm{~mA}$		1	V
	Small-Signal Forward Resistance	$\mathrm{I}_{\mathrm{F}}=1 \mathrm{~mA}, \quad f=1 \mathrm{kHz}$		60	Ω

NOTES: 1. Derate linearly to $150^{\circ} \mathrm{C}$ free-air temperature at the rate of $2 \mathrm{~mA}{ }^{\circ} \mathrm{C}$.
2. This value applies for $a \mathbf{6 0 - H z}$ sine wave.
3. This value applies for a one-second square-wave pulse with the device at nonoperating thermal equilibrium immediately prior to the surge.

- $V_{R M(w k g) ~ . ~ . ~} 10$ to $\mathbf{3 0 0}$ Volts
- Rugged Double-Plug Construction

mechanical data

Double-plug construction affords integral positive contact by means of a thermal compression bond. Moisture-free stability is ensured through hermetic sealing. The coefficients of thermal expansion of the glass case and the dumet plugs are closely matched to allow extreme temperature excursions. Hot-solder-dipped leads are standard.

absolute maximum ratings

		T151	TI52	TI53	TI54	T155	T156	T157	1158	T159	1160	UNIT
$V_{\text {RMIM }}$ (s)	Working Peak Reverse Volitage ot $25^{\circ} \mathrm{C}$ Free-Air Temperature	10	20	30	40	60	100	150	175	200	300	V
P	Continuous Power Dissipation at (or below) $25^{\circ} \mathrm{C}$ Free-Air Temperature (See Note)	400										mW
$T_{\text {Alopr) }}$	Operating Free-Air Temperature Range	-65 to 100										${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage Temperature Range	-65 to 125										${ }^{\circ} \mathrm{C}$

electrical characteristics of $25^{\circ} \mathrm{C}$ free-air temperature

PARA	AMETER	TEST CONDITIONS	TI51	1152	T153	TI54	1155	T156	1157	T158	T159	T160	UNIT	LIMIT
$V_{\text {(Ra) }}$	Reverse Breakdown Voltage	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$	20	30	40	50	80	120	200	270	320	400	y	M M
I_{R}	Static Reverse Current	$\mathrm{V}_{\mathrm{R}}=$ Roted $\mathrm{V}_{\mathrm{RM}}(\mathrm{wgg})$	1	1	1	1	1	1	1	1	1	1	$\mu \mathrm{A}$	MAX
$\mathbf{V F}_{\mathbf{F}}$	Static Forward Voltage	$\mathrm{I}_{\mathrm{F}}=200 \mathrm{~mA}$	1	1	1	1	1						V	MAX
		$I_{F}=400 \mathrm{~mA}$						1	1	1	1	1	v	max

NOTE: Derate linearly to $100^{\circ} \mathrm{C}$ free-air temperature at the rate of $5.33 \mathrm{~mW} \rho^{\circ} \mathrm{C}$.

TYPES TI 71 THRU TI75 SILICON SWITCHING DIODES

MEDIUM-SPEED SWITCHING DIODES

- For Industrial Switching Applications
- Rugged Double-Plug Construction
mechanical data
Double-plug construction affords integral positive contacts by means of a thermal compression bond. Moisture-free stability is ensured through hermeti sealing. The coefficients of thermal expansion of the glass case and the dumet plugs are closely matched to allow extreme temperature excursions. Hot-solder-dipped leads are standard.

absolute maximum ratings at $\mathbf{2 5} \mathbf{}{ }^{\circ} \mathbf{C}$ free-air temperature (unless otherwise noted)

electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER		TEST CONDITIONS	TI71		TI72		T173		T174		T175		UNIT	
		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX			
$V_{\text {(BR) }}$	Reverse Breakdown Voltage		$I_{R}=100 \mu \mathrm{~A}$	40		40		40		40		40		V
I_{R}	Static Reverse Current	$V_{R}=15 \mathrm{~V}$								1			$\mu \mathrm{A}$	
		$\mathrm{V}_{\mathrm{R}}=20 \mathrm{~V}$		1		1		1						
		$V_{R}=35 \mathrm{~V}$										5		
$\mathbf{V}_{\mathbf{F}}$	Static Forward Voltage	$I_{F}=6 \mathrm{~mA}$		1									V	
		$\mathrm{I}_{F}=10 \mathrm{~mA}$				1								
		$\mathrm{I}_{F}=20 \mathrm{~mA}$						1						
		$\mathrm{I}_{\mathrm{F}}=30 \mathrm{~mA}$								1				
		$\mathrm{I}_{\mathrm{F}}=75 \mathrm{~mA}$										1		

switching characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER		TEST CONDITIONS	T171		7172		T173		T174		TI75		UNIT	
		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX			
$\mathrm{trr}^{\text {r }}$	Reverse Renovery Time		$\begin{array}{ll} I_{F}=10 \mathrm{~mA}, & I_{R M}=10 \mathrm{~mA}, \\ R_{L}=100 \Omega, & C_{L}=10 \mathrm{pF}, \\ i_{r r}=1 \mathrm{~mA}, & \text { See Figure } 1 \end{array}$		10		20		20		30		50	ns

[^192]
figure I - reverse recovery time
NOTES: a. The input pulse is supplied by a generator with the following characteristics: $Z_{\text {out }}=50 \Omega, t_{r} \leqslant 0.25 \mathrm{~ns}, \mathrm{t}_{\mathrm{w}}=100 \mathrm{~ns}$. b. Output waveform is monitored on en oscilloscope with the following characteristic: $\mathrm{t}_{\mathbf{r}}<\mathbf{0 . 3 5} \mathrm{ns}, \mathbf{Z}_{\text {in }}=60 \Omega$.

THERMAL CHARACTERISTICS
DISSIPATION DERATING CURVE

HIGH-VOLTAGE RADIATION-TOLERANT DIODES

- Extremely Resistant to Radiation Environments
- Rugged Double-Plug Construction
mechanical data
Double-plug construction affords integral positive contact by means of a thermal compression bond. Moisture-free stability is ensured through hermetic sealing. The coefficients of thermal expansion of the glass case and the dumet plugs are closely matched to allow extreme temperature excursions. Hot-solder-dipped leads are standard.

absolute maximum ratings af $\mathbf{2 5}^{\circ} \mathrm{C}$ free-air temporature (unless otherwise noted)

		71550	71551	UNIT
V_{R}	Steady State Reverse Voltage	175	225	v
${ }_{1}$	Average Rectified Forward Current from $-55^{\circ} \mathrm{C}$ to $+75^{\circ}$ Free-Air Temperature (See Note 1)	150	150	ma
$\mathrm{I}_{\text {FM }}$	Peak Forward Current from $-55^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ Free-Air Temperature (See Note 1)	500	500	ma
$\mathrm{I}_{\text {FM (surge) }}$	Surge Current, One Cycle (See Note 2)	4	4	-
$\mathrm{T}_{\text {Alopr) }}$	Operating Free-Air Temperature Range	$-55 \text { to }+125$		${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage Temperature Range	-55 to +200		${ }^{\circ} \mathrm{C}$

electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

PARAMETER		TEST CONDITIONS	71550		71551		UNIT	
		MIN	MAX	MIN	MAX			
$V_{\text {(ak) }}$	Roverse Breakdown Voltage		$\mathrm{I}_{\mathrm{R}}=100 \mathrm{va}$	200	300	290	400	\vee
$\Delta Y_{\text {(LR) }}$	Breakdown Voltage Change With Reverse Current	$\mathrm{I}_{\mathrm{R}}=1 \mu \mathrm{a}$ to $\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{a}$		20		20	\checkmark	
I_{R}	Static Reverse Current	$\mathbf{V}_{\mathbf{R}}=$ Rated $\mathrm{V}_{\mathbf{R}}$		0.1		0.1	$\mu \mathrm{a}$	
$\mathrm{I}_{\mathbf{R}}$	Static Reverse Current	$\mathrm{V}_{\mathrm{R}}=$ Rated $\mathrm{V}_{\mathrm{R}}, \mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$		10		10	$\mu \mathrm{a}$	
$\mathbf{V}_{\text {F }}$	Static Forward Voltage	$\mathrm{J}_{\mathrm{F}}=100 \mathrm{ma}$		1		1	\checkmark	
$\mathrm{C}_{\text {T }}$	Total Capacitance	$\mathrm{V}_{\mathrm{R}}=0, f=1 \mathrm{Mc}$		20		20	pf	

switching characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

$t_{\text {trr }}$	Reverse Recovery Timo	Soe Note 3	0.7	0.7	$\mu \mathrm{mec}$

radiation-resistance characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER		TEST	RADIATION DOSE \dagger		T1550		T1551		UNIT	
		T1550	T1551	MIN	MAX	MIN	MAX			
V (ex)	Reverse Breakdown Voltage		$1_{\mathrm{R}}=100 \mu \mathrm{a}$	5×10^{16} e/cm ${ }^{2}$	$1 \times 10^{16} \cdot / \mathrm{cm}^{2}$	200		290		V
I_{R}	Static Reverse Current	$\mathrm{V}_{\mathrm{R}}=$ Ratod V_{R}	$5 \times 10^{16} \mathrm{e} / \mathrm{cm}^{2}$	$1 \times 10^{16} / \mathrm{cm}^{2}$		0.1		0.1	μ	
V_{F}	Static Forward Voltage	$\mathrm{I}_{\mathrm{F}}=100 \mathrm{ma}$	$5 \times 10^{16} / \mathrm{cm}^{2}$	$1 \times 10^{16} \cdot / \mathrm{cm}^{2}$		1		1	\checkmark	
$V_{\text {(}{ }_{\text {a }} \text {) }}$	Reverse Breakdown Voltage	$I_{R}=100 \mu \mathrm{a}$	$2 \times 10^{15} \mathrm{~N} / \mathrm{cm}^{2}$	$1 \times 10^{15} \mathrm{~N} / \mathrm{cm}^{2}$	200		290		\checkmark	
I_{R}	Static Reverse Current	$\mathrm{V}_{\mathrm{R}}=$ Rated V_{R}	$2 \times 10^{15} \mathrm{~N} / \mathrm{cm}^{2}$	$1 \times 10^{15} \mathrm{~N} / \mathrm{cm}^{2}$		0.1		0.1	μ	
V_{F}	Static Forward Voltage	$\mathrm{If}_{\mathrm{F}}=100 \mathrm{ma}$	$2 \times 10^{15} \mathrm{~N} / \mathrm{cm}^{2}$	$1 \times 10^{15} \mathrm{~N} / \mathrm{cm}^{2}$		1.1		1.2	v	

thodiation levals are dectrons (o) at $E=2$ Mev or noutrons (M) at $E \geq 10 \mathrm{kov}$.
MOTES: 1. These velves may be applied continueusily under single-phose, $60-\mathrm{eps}$, half-sine-wave operation with resistive load. Above $75^{\circ} \mathrm{C}$, derate I_{O} and I_{fm} linearly to $125^{\circ} \mathrm{C}$ fret-air temperature.
2. This value applies for one $\mathbf{s 0 - c p s}$ hali-sino-wava when the device is aperating at or below ruted values of peak reverse voitage and average rectified forward curnsat. Surge may be mepeated ofter the device has roturaed to original thermal equilibrium conditions.
3. Reverse recovery time is measured in the tost circeit of Drawing $256-\mathrm{Jan}$ with $\mathrm{I}_{\mathrm{F}}=5 \mathrm{ma}, \mathbf{Y}_{\mathrm{R}}=40 \mathrm{v}, \mathrm{i}_{\mathrm{rr}}=500 \mu \mathrm{a}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$, and $\mathrm{C}_{\mathrm{L}}=10 \mathrm{pf}$.
texas instruments reserves the right to make changes at any time in order to improve design and to supply the best product possible.

DUAL-DIODE CORE DRIVERS

For Application with

Magnetic Cores - Memory Drums - Memory Tapes Magnetic Discs - Diode-Capacitor Storage
mechanical data

schematic diagrams

absolute maximum ratings at $\mathbf{2 5}{ }^{\circ} \mathbf{C}$ free-air temperature (unless otherwise noted)

	EACH DIODE		TOTAL DEVICE	UNIT
	$\begin{array}{\|l\|} \hline \text { TID17 } \\ \text { TID19 } \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { TID18 } \\ \text { TID20 } \\ \hline \end{array}$	ALL TYPES	
Peak Reverse Voltage (See Note 1)	60	40		V
Steady State Reverse Voltage, $\mathbf{V}_{\mathbf{R}}$	30	15		V
Peak Forward Current at (or below) $25^{\circ} \mathrm{C}$ Free-Air Temperature (See Notes 1 and 2)		00	500	mA
Continuous Forward Current at (or below) $25^{\circ} \mathrm{C}$ Free-Air Temperature (See Note 3)	10	00	200	mA
Storage Temperature Range	-65 to 200			C
Lead Temperature 1/16 Inch from Case for 10 Seconds	300			${ }^{\circ} \mathrm{C}$

NOTES: 1. These values apply for $\mathbf{t}_{\mathbf{w}}<\mathbf{1 0 0} \mu \mathrm{s}$, duty cycle $\leqslant \mathbf{2 0 \%}$.
2. Derate linearly to $150^{\circ} \mathrm{C}$ free-air tempersture at the rate of $4 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
3. Derate linearly to $150^{\circ} \mathrm{C}$ free-air temperature at the rate of $0.8 \mathrm{~mA} /^{\circ} \mathrm{C}$ for each diode and $1.6 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$ for the total device.
electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature
single-diode operation (see note 4)

PARAMETER		TEST CONDITIONS	TID17	TID18	TID19	TID20	UNIT	
		MIN MAX	MIN MAX	MIN MAX	MIN MAX			
$V_{\text {(BR) }}$	Reverse Breakdown Voltage		$I_{R}=10 \mu \mathrm{~A}, \quad$ See Note 5	60	40	60	40	V
I_{R}	Static Reverse Current	$V_{\text {R }}=30 \mathrm{~V}$	0.1		0.1		$\mu \mathrm{A}$	
		$V_{R}=15 \mathrm{~V}$		0.1		0.1		
V_{F}	Static Forward Voltage	$I_{F}=100 \mathrm{~mA}$	1	1.1	1	1.1	V	
V_{F}	Instantaneous Forward Voltage	$I_{F}=500 \mathrm{~mA}$, See Note 6	1.5	1.7	1.5	1.7	V	
$V_{\text {FM }}$	Peak Forward Voltege	$I_{F M}=500 \mathrm{~mA}$, See Note 7	5	5	5	5	V	
$\mathrm{C}_{\boldsymbol{T}}$	Total Capacitance	$V_{R}=0, \quad t=1 \mathrm{MHz}$	4	4	7	7	pF	

dual-diode operation (see note 8)

PARAMETER	TEST CONDITIONS	TID17	TID18	TID19	TID20	UNIT
		MIN MAX	MIN MAX	MIN MAX	MIN MAX	
$\mathbf{I}_{\mathbf{R 1}}$ (or $\mathbf{I R 2}^{\prime}$) Static Reverse Current	$\begin{aligned} & V_{R 1}\left(\text { or } V_{R 2}\right)=\text { rated } V_{R}, \\ & I_{F 2}\left(\text { or } I_{F_{1}}\right)=100 \mathrm{~mA} \end{aligned}$	1	1	1	1	$\mu \mathrm{A}$
$\mathrm{V}_{\mathrm{F} 1}$ (or $\mathrm{V}_{\mathrm{F} 2}$) Static Forward Voltage	$I_{F}=I_{F 2}=100 \mathrm{~mA}$	1	1.1	1	1.1	V

switching characteristics at $\mathbf{2 5}{ }^{\circ} \mathrm{C}$ free-air temperature
single-diode operation (see note 4)

PARAMETER		TEST CONDITIONS		$\frac{\text { ALL TYPES }}{\text { MAX }}$	UNIT
tfr	Forward Recovery Time	$I_{F}=500 \mathrm{~mA}$,	See Figure 2	40	ns
$\mathrm{trr}_{\mathrm{rr}}$	Reverse Recovery Time	$\begin{aligned} & I_{F}=200 \mathrm{~mA}, \\ & R_{L}=100 \Omega, \\ & i_{r r}=20 \mathrm{~mA}, \end{aligned}$	$I_{R M}=200 \mathrm{~mA}$ See Figure 3	25	ns

NOTES: 4. Test conditions and limits apply separately to each of the two diodes. The diode not under test is open-circuited during the measurement of these characteristics.
5. This parameter must be measured using pulse techniques. $\mathbf{t}_{\mathbf{w}}=\mathbf{1 0 0} \mu \mathrm{s}$, duty cycle $\leqslant \mathbf{2 0 \%}$.
6. This parameter is measured using pulse techniques. $t_{w}=100 \mu \mathrm{~s}$, duty cycle $<2 \%$. Read time is $\mathbf{9 0} \mu \mathrm{s}$ from leading edge of the pulse.
7. The initial instentaneous value is measured using pulse techniques. $\mathbf{t w w}_{\mathbf{w}}=\mathbf{1 5 0} \mu \mathrm{s}$, duty cycle $<\mathbf{2 \%}$, pulse rise time $<\mathbf{1 0} \mathrm{ns}$. The total capacitance shunting the diode is 19 pF maximum and the equipment bandwidth is 80 MHz .
8. Each diode is individualiy tested after the device reaches operating thermal equilibrium.

TYPES TIDTT THRU TID2O
 SILICON DUAL DIODES

NOTE 6: This parameter is measured using pulse techniques. $t_{w}=100 \mu s$, duty cycle $\leqslant 2 \%$. Read time is $90 \mu \mathrm{~s}$ from leading edge of the pulse.
PARAMETER MEASUREMENT INFORMATION

TEST CIRCUIT
VOLTAGE WAVEFORMS
FIGURE 2-FORWARD RECOVERY TIME
 cycle $\leqslant 2 \%$.
b. Output waveform is monitored on an oscilloscope with the following characteristics: $\tau_{r} \leqslant 4.5 \mathrm{~ns}, \mathrm{R}_{\text {in }} \geqslant 1 \mathrm{M} \Omega, \mathrm{C}_{\text {in }} \leqslant 5 \mathrm{pF}$.

PARAMETER MEASUREMENT INFORMATION

OUTPUT CURRENT WAVEFORM

[^193]
CORE-DRIVER DIODE ARRAYS

For Application With

- Magnetic Cores
- Thin-Film Memories
- Plated-Wire Memories
- Decoding or Encoding Applications

For Use In

- Airborne Computers
- Industrial Computers
- Military Computers
- Peripheral Equipment

description

These diode arrays are multiple diode junctions fabricated by a planar process and mounted in integrated circuit packages for use in high-current, fast-switching core-driver applications. These arrays offer many of the advantages of integrated circuits such as high-density packaging and improved reliability. These advantages result from such factors as fewer connections, more uniform device parameters, smaller size, less weight, fewer glass-to-metal seals, and the elimination of pressure contacts and whiskers.

The arrays are available in hermetically sealed, welded flat packages (F) or in dual-in-line plastic packages (N).
absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

8-DIODE ARRAYS (COMMON CATHODE) 8-DIODE ARRAYS (COMMON ANODE) 16-DIODE ARRAYS DUAL 10-DIODE ARRAYS DUAL 8-DIODE ARRAYS	FLAT PACKAGE			DUAL-IN-LINE PACKAGE			UNIT
	EACH DIODE		TOTAL DEVICE	EACH DIODE		TOTAL DEVICE	
	$\begin{array}{\|l\|} \hline \text { TID21A } \\ \text { TID23A } \\ \text { TID25A } \\ \text { TID29A } \\ \text { TID131 } \\ \hline \end{array}$	$\begin{aligned} & \text { TID22A } \\ & \text { TID24A } \\ & \text { TID26A } \\ & \text { TID30A } \\ & \text { TID132 } \end{aligned}$	ALL TYPES	$\begin{aligned} & \text { TID121 } \\ & \text { TID123 } \\ & \text { TID125 } \\ & \text { TID129 } \\ & \text { TID133 } \end{aligned}$	$\begin{aligned} & \text { TID122 } \\ & \text { TID124 } \\ & \text { TID126 } \\ & \text { TID130 } \\ & \text { TID134 } \end{aligned}$	ALL TYPES	
Peak Reverse Voltage (See Note 1)	60	40		60	40		V
Steady-State Reverse Voltage, V_{R}	40	25		40	25		V
Peak Forward Current at (or below) $25^{\circ} \mathrm{C}$ Free-Air Temperature (See Note 1)							mA
Continuous Forward Current at (or below) $25^{\circ} \mathrm{C}$ Free-Air Temperature							mA
Continuous Power Dissipation at (or below) $25^{\circ} \mathrm{C}$ Free-Air Temperature			5003			600°	mW
Operating Free-Air Temperature Range		-65 to 150			65 to 125		${ }^{\circ}$
Storage Temperature Range		-65 to 200			65 to 150		C
Lead Temperature 1/16 Inch from Case for 10 Seconds		300			260		${ }^{\circ} \mathrm{C}$

NOTE 1: These values apply for $\tau_{w} \leqslant 100 \mu$ s, duty cycle $\leqslant 20 \%$.
${ }^{t}$ Derate linearly to $150^{\circ} \mathrm{C}$ free-air temperature at the rate of $4 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
¥ Derate linearly to $125^{\circ} \mathrm{C}$ free-air temperature at the rate of $5 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
§Derate linearly to $150^{\circ} \mathrm{C}$ free-air temperature at the rate of $2.4 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
D Derate linearly to $125^{\circ} \mathrm{C}$ free-air temperature at the rate of $4 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
${ }^{\circ}$ Derate linearly to $150^{\circ} \mathrm{C}$ free-air temperature at the rate of $4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
${ }^{\circ}$ Derate linearly to $125^{\circ} \mathrm{C}$ free-air temperature at the rate of $6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.

TYPES TID21A THRU TID26A, TID29A, TID30A, TID121 THRU TID126, TID129 THRU TID134 SILICON DIODE ARRAYS

F FLAT PACKAGES	14-PIN N PLASTIC DUAL-IN-LINE PACKAGES
T1021A $11222 A$ TRAY (COMMON CATHODE) 10-PIN PACKAGE No internal connection	TID121, TID122 8-DIODE ARRAY (COMMON CATHODE) 14-PIN PACKAGE (1) (4) (6) (13) No internal connection
(1) No internal connection	

TYPES TID21A THRU TID26A, TID29A, TID30A, TID121 THRU TID126, TID129 THRU TID134 SILICON DIODE ARRAYS

electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

multiple-diode operation

PARAMETER		TEST CONDITIONS		ALL TYPES	UNIT		
		MIN MAX					
I_{R}	Static Reverse Current			$\mathrm{V}_{\mathbf{R}}=\operatorname{rated} \mathrm{V}_{\mathrm{R}}$,	See Note 7	10	$\mu \mathrm{A}$
V_{F}	Static Forward Voltage	$I_{F}=25 \mathrm{~mA}$,	See Note 7	1	V		

switching characteristics at $25^{\circ} \mathrm{C}$ free-air temperature
single-diode operation (see note 3)

PARAMETER		TEST CONDITIONS		ALL TYPES		UNIT		
		MIN	MAX					
${ }_{\text {t }}^{\text {fr }}$	Forward Recovery Time			$I_{F}=500 \mathrm{~mA}$,	See Figure 3		40	ns
$t_{\text {rr }}$	Reverse Recovery Time	$\begin{aligned} & I_{F}=200 \mathrm{~mA}, \\ & R_{L}=100 \Omega, \\ & \text { See Figure } 4 \end{aligned}$	$\begin{aligned} & I_{R M}=200 \mathrm{~mA}, \\ & i_{r r}=20 \mathrm{~mA}, \end{aligned}$		20	ns		

NOTES: 2. This parameter must be measured using pulse techniques, $\mathrm{t}_{\mathrm{w}}=\mathbf{1 0 0} \mu \mathrm{s}$, duty cycle $\leqslant \mathbf{2 0 \%}$.
3. Test conditions and limits apply separately to each of the diodes. The diodes not under test are open-circuited during the measurement of these characteristics except for the measurement of $\mathrm{I}_{\mathbf{R}}$ on arrays having both common-cathode and commonanode diodes (see Figures 1 and 2).
4. For arrays having both common-anode and common-cathode diodes see Figures 1 and 2, Parameter Measurement Information section.
5. This parameter is measured using pulse techniques. $t_{w}=300 \mu_{s}$, duty cycle $\leqslant 2 \%$. Read time is $90 \mu_{s}$ from the leading edge of the pulse.
6. The initial instantaneous value is measured using pulse techniques. $\mathbf{t}_{\mathbf{w}}=\mathbf{1 5 0} \mathbf{n s}$, duty cycle $\leqslant \mathbf{2 \%}$, pulse rise time $\leqslant 10 \mathrm{~ns}$. The total capacitance shunting the diode is 19 pF maximum and the equipment bandwidth is 80 MHz .
7. These parmeters are measured with each of the other diodes in the section conducting 25 mA forward current. Each diode is individually tested after the device reaches oparating thermal equilibrium. Test conditions apply separately to common-anode and common-cathode sections.

[^194]
TYPES TID21A THRU TID26A, TID29A, TID30A, TID121 THRU TID126, TID129 THRU TID134 SILICON DIODE ARRAYS

PARAMETER MEASUREMENT INFORMATION

When measuring the reverse current of an individual diode of a device having both common-anode and common-cathode sections, the current meter must be placed so that the shunt current through the other diodes is bypassed around the meter. To obtain accurate readings, the voltage drop across the current meter must be less than 10 mV .

FIGURE 2-TEST CIRCUIT
FIGURE 1-TEST CIRCUIT FOR
FOR COMMON-ANODE DIODES COMMON-CATHODE DIODES

VOLTAGE WAVEFORMS
FIGURE 3-FORWARD RECOVERY TIME
 2%
b. The output waveform is monitored on an oscilloscope with the following characteristics: $t_{r} \leqslant 4.5 \mathrm{~ns}, \mathrm{R}_{\mathrm{in}} \geqslant \uparrow \mathrm{M} \Omega, \mathrm{C}_{\mathrm{in}} \leqslant 5 \mathrm{pF}$.

FIGURE 4-REVERSE RECOVERY TIME
NOTES: c. The input pulse is supplied by a generator with the following characteristics: $\tau_{f} \leqslant 1 \mathrm{~ns}, \mathrm{Z}_{\text {out }}=50 \Omega$, $\mathrm{t}_{\mathbf{w}}=200 \mathrm{~ns}, \mathrm{duty}$ cycle $\leqslant 1 \%$.
d. The output waveform is monitored on an oscilloscope with the following characteristics: $\mathrm{t}_{\mathrm{r}}<0.4 \mathrm{~ns}, \mathrm{R}_{\text {in }}=50 \Omega$.

TYPICAL CHARACTERISTICS
FORWARD CONDUCTION CHARACTERISTICS

FIGURE 5
NOTE 8: This parameter is mesaured using puise techniques. $t_{w}=300 \mu \mathrm{~s}$, duty cycle $=\mathbf{2 \%}$. Read time is $90 \mu \mathrm{~s}$ from the leading edge of the pulso.

MECHANICAL DATA

F flat packages

These hermetic packages feature glass-to-metal seals and welded construction in 10 -pin and 14 -pin configurations. Package body and leads are gold-plated F-15 \ddagger glass-sealing alloy. Approximate weight is 0.1 gram. All external surfaces are metallic. Devices are shipped mounted in a Mech-Pak carrier.

TID21A, TID22A, TID23A, TID24A, TID25A, TID26A

TID29A, TID30A, TID131, TID132

N plastic dual-in-line package

The compound used to mold the dual-in-line package will withstand soldering temperature with no deformation and circuit performance characteristics remain stable when operated in high-humidity conditions. These packages are intended for insertion in mounting-hole rows on $\mathbf{0 . 3 0 0}$-inch centers. Once the leads are compressed to 0.300 -inch separation and inserted, sufficient tension is provided to secure the package in the board during soldering. The silver-plated leads require no additional cleaning or processing when used in soldered assembly.

TID121, TID122, TID123, TID124, TID125, TID126, TID129, TID130, TID133, TID134

\ddagger F-16 is the ASTM designation for an iron-nickal-cobalt alloy containing nominally B3\% Iron, $\mathbf{2 9 \%}$ nickel, and $\mathbf{1 7 \%}$ cobalt.

FAST SWITCHING DIODES

- Rugged Double-Plug Construction

mechanical data

Double-plug construction affords integral positive contact by means of a thermal compression bond. Moisture-free stability is ensured through hermetic sealing. The coefficients of thermal expansion of the glass case and the dumet plugs are closely matched to allow extreme temperature excursions. Hot-solder-dipped leads are standard.

absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

		TiD31	TID32	TID33	TID34	TID35	TID36	TID37	UNIT
$V_{\text {RM }} /$ whgl	Working Peak Reverse Voltage from $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ Free-Air Temperature (See Note 1)	50	75	50	75	50	75	50	UNT
${ }_{1}$	Average Rectified Forward Current (See Note 1)	150	150	150	150	150	150	150	me
${ }^{\text {' }}$ F	Continuous Forward Current	225	225	225	225	225	225	225	ma
${ }^{\text {I }}$ FM/surgal	Surge Current, One Second (See Note 2)	500	500	500	500	500	500	500	ma
$\mathrm{T}_{\text {Alopr })}$	Operating Free-Air Temperature Range	$\begin{array}{llll}-65 & 10 \quad 15\end{array}$							${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage Temperature Range	-65 to 200							${ }^{\circ} \mathrm{C}$

electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

PARAMETER	TEST CONDITIONS	TID31	71032	TID33	TiD34	TID35	TID36	TID37	UNIT	LIMIT
$\mathbf{V}_{\text {(GR) }}$ Reverse Breakdown Voltage	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{a}$	75	100	75	100	75	100	75	UNI	MIN
Static Reverse Current	$\mathrm{V}_{\mathrm{R}}=75 \mathrm{v}$		5		5		5		$\mu \mathrm{a}$	max
	$\mathrm{V}_{\mathrm{R}}=50 \mathrm{v}$	0.1	0.1	0.1	0.1	0.1	0.1	0.1	$\mu \mathrm{a}$	max
	$\mathrm{V}_{\mathrm{R}}=50 \mathrm{v}, \quad \mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$	100	100	100	100	100	100	100	$\mu{ }^{\prime \prime}$	max
Static Forward Voltage	$\mathrm{I}_{\mathrm{F}}=100 \mathrm{ma}$						1	1	v	max
	$\mathrm{I}_{\mathrm{F}}=150 \mathrm{ma}$				1	1			v	max
	$\mathrm{I}_{\mathrm{F}}=200 \mathrm{ma}$	1	1	1					\checkmark	max
C_{T} Total Capacitance	$\mathrm{V}_{\mathrm{R}}=0, \quad \mathrm{t}=1 \mathrm{mc}$	2.5	4	4	4	4	4	4	pf	max

switching characteristics at $\mathbf{2 5}{ }^{\circ} \mathbf{C}$ free-air temperature

PARAMETER	TEST CONDITIONS	TID31	TID32	TID33	TID34	71035	71036	TID37	UNIT	Limit
trr Reverse Recovery Time	$\begin{array}{ll} I_{\mathbf{F}}=200 \mathrm{ma}, & I_{\mathrm{R}}=200 \mathrm{ma} \\ \mathrm{i}_{\mathrm{rr}}=20 \mathrm{ma}, & R_{\mathrm{L}}=100 \Omega \end{array}$	6	10	10	10	10	10	6	nsec	max

NOTES: 1. These values may be applied continuously under single-phase, 60 -eps, half-sine-wave operation with resistive load, Above $25^{\circ} \mathrm{C}$, derate I_{0} and
I_{F} linearly to 0 at $150^{\circ} \mathrm{C}$ free-air temperafure.
2. These valuas apply for a one-second square-wave pulse with the device af nonoperating thermal equilibrium immediately prior to the surge.

DESIGNED FOR TV APPLICATIONS WHERE HIGH SPEED AND MEDIUM CURRENT and voltage are required

- Horizontal Phase Comparator
- Convergence Circuitry
- AGC Diode
- Video Blocking
- Horizontal Limiting
- Video Clamp
mechanical data
Double-plug construction affords integral positive contact by means of a thermal compression bond. Moisture-free stability is ensured through hermetic sealing. The coefficients of thermal expansion of the glass case and the dumet plugs are closely matched to allow extreme temperature excursions. Hot-solder-dipped leads are standard.

absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

Continuous Power Dissipation at (or below) $\mathbf{2 5}{ }^{\circ} \mathrm{C}$ Free-Air Temperature (See Note 1) 500 mWStorage Temperature Range . $-65^{\circ} \mathrm{C}$ to $\mathbf{2 0 0 ^ { \circ } \mathrm { C }}$Lead Temperature $1 / 16$ Inch from Case for 10 Seconds . $250^{\circ} \mathrm{C}$	

electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER		TEST CONDITIONS	TID38		TID39		UNIT	
		MIN	MAX	MIN	MAX			
$V_{\text {(BR) }}$	Reverse Breakdown Voltage		$I_{R}=100 \mu \mathrm{~A}$	75		75		V
I_{R}	Static Reverse Current	$\mathrm{V}_{\mathrm{R}}=50 \mathrm{~V}$		100		100	nA	
V_{F}	Static Forward Voltage	$\mathrm{I}_{\mathrm{F}}=1 \mathrm{~mA}$	0.5	0.75	0.5	0.75	V	
		$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$	0.6	0.9	0.6	0.9		
		$I_{F}=100 \mathrm{~mA}$	0.9	1.2	0.9	1.2		
C_{T}	Total Capacitance	$V_{R}=0, \quad f=1 \mathrm{MHz}$		3		5	pF	
rf	Small-Signal Forward Resistance	$\begin{aligned} & I_{F}=1 \mathrm{~mA}, \quad I_{f}=0.1 \mathrm{~mA}, \\ & f=1 \mathrm{kHz} \end{aligned}$		100		100	Ω	

switching characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER	TEST CONDITIONS	TID38		TID39		UNIT
		MIN	MAX	MIN	MAX	
trr Reverse Recovery Time	$\begin{array}{ll} I_{F}=10 \mathrm{~mA}, & I_{R M}=10 \mathrm{~mA}, \\ i_{r r}=1 \mathrm{~mA}, & R_{L}=100 \Omega, \\ \text { See Figure } 1 & \end{array}$		5		20	ns

NOTE: 1. Derate linearly to $200^{\circ} \mathrm{C}$ at the rate of $2.87 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$

TYPES TID38, TID39
 SILICON SWITCHING DIODES

FIGURE 1 - REVERSE RECOVERY TIME

NOTES: s. The input pulse is supplied by a generator with the following characteristics: $\mathbf{z}_{\text {out }}=50 \Omega, t_{r} \leqslant 0.25 \mathrm{~ns}, \mathrm{t}_{\mathrm{p}} \geqslant 200 \mathrm{~ns}$. b. The output waveform is monitored on an oscilloscope with the following characteristics: $t_{r} \leqslant 0.35 \mathrm{~ns}, Z_{\text {in }}=50 \Omega$.

TYPICAL CHARACTERISTICS

NOTE 2: Temperature coefficient, $\alpha_{V F}$, is determined by the following formula:

$$
\alpha V F=\frac{\left(V_{F} @ 150^{\circ} \mathrm{C}\right)-\left(V_{F} @-55^{\circ} \mathrm{C}\right)}{150^{\circ} \mathrm{C}-\left(-55^{\circ} \mathrm{C}\right)}
$$

TYPES TID40 THRU TID44
 SILICON SWITCHING DIODES

BULLETIN NO. DL-S 738605, MARCH 1966-REVISED MARCH 1973

HIGH-VOLTAGE SWITCHING DIODES

- Rugged Double-Plug Construction

mechanical data

Double-plug construction affords integral positive contacts by means of a thermal compression bond. Moisture-free stability is ensured through hermetic sealing. The coefficients of thermal expansion of the glass case and the dumet plugs are closely matched to allow extreme temperature excursions. Hot-solder-dipped leads are standard.

absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

	TID40	TID41	T1D42	TID43	TID44	UNIT
V RM Peak Reverse Voltoge	250	200	150	150	100	V
$\mathrm{V}_{\text {RM }}$ (wig) Working Peak Reverse Voltage	100					V
Peak Forward Current of (or below) $I_{F M}$ 25° (Free-Air Temperature (See Note 1)	225					mA
$\mathrm{l}_{\text {FM(surgo) }}$ Surge Current, One Second (See Note 2)	500					mA
\mathbf{P} Continuous Power Dissipation at (or below) $25^{\circ} \mathrm{C}$ Free-Air Temperature (See Note 3)	250					mW
$\mathrm{T}_{\text {Aloprl }} \ldots$ Operating Free-Air Temperature Range	-65 to 150					${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$ Storage Temperature Range	-65 to 200					${ }^{\circ} \mathrm{C}$
Leod Temperature K_{6} Inch from Case for 10 Seconds	250					${ }^{\circ} \mathrm{C}$

electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

PARAMETER	TEST CONDITIONS	TID40	TID41	TID42	TID43	TID44	UNIT	LIMIT
$V_{\text {(Br) }}$ Reverse Breakdown Voltage	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$	250	200	150	150	100	V	MIIN
Stotic Reverse Current	$V_{R}=$ Rated $V_{\text {RM }}$ w M gl	0.1	0.1	0.1	0.1	0.1	$\mu \mathrm{A}$	max
	$\mathrm{V}_{\mathrm{R}}=20 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$	50	50	50	50	50	$\mu \mathrm{A}$	mix
$\boldsymbol{V}_{\mathrm{F}}$ Static Forward Voltage	$\mathrm{I}_{\mathrm{F}}=50 \mathrm{~mA}$	1					V	max
	$\mathrm{I}_{\mathrm{F}}=100 \mathrm{~mA}$		1	1			V	max
	$\mathrm{I}_{\mathrm{F}}=150 \mathrm{~mA}$				1		V	Max
	$\mathrm{I}_{\mathrm{F}}=200 \mathrm{~mA}$					1	V	MAX
C_{T} Total Capacitance	$V_{R}=0, \quad t=1 \mathrm{mHz}$	5	5	5	5	5	pF	MAX

switching characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER	TEST CONDITIONS	TID40	TID41	TID42	TID43	TID44	UNIT	LIMIT
$i_{\text {rr }}$ Reverse Recovery Time	$\begin{aligned} & i_{F}=10 \mathrm{~mA}, l_{R M}=10 \mathrm{~mA}, \\ & i_{\mathrm{rr}}=1 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=100 \Omega \end{aligned}$	30	30	30	30	30	ns	max

NOTES: 1 . This value applies for $\mathrm{t}_{\mathrm{p}} \leq 8.3 \mathrm{~ms}$, duty cycle $\leq 50 \%$. Abave $25^{\circ} \mathrm{C}$, derate linearly to $150^{\circ} \mathrm{C}$ freo-air temperafure at the rote of $1.8 \mathrm{~mA} /$ deg.
2. This value applies fer a one-second square-wave pulse with the device at nonoperating thermal equilibrium immediately prior to the serge.
3. Derate linearly to $150^{\circ} \mathrm{C}$ free-oir temperature at the rate of $2 \mathrm{~mW} / \mathrm{deg}$.

DESIGNED FOR USE IN VIDEO AND COLOR PROCESSING CIRCUTRY OF TV RECEIVERS WHERE LOW CAPACITANCE AND HIGH BREAKDOWN VOLTAGE ARE REQUIRED

\author{

- Color Killer
 - Color-Phase Comparator
 - AFC
}
- Gated AGC Amplifier
- Blanking Restorer
- Video Clamp

mechanical data

Double-plug construction affords integral positive contacts by means of a thermal compression bond. Moisture-free stability is ensured through hermetic sealing. The coefficients of thermal expansion of the glass case and the dumet plugs are closely matched to allow extreme temperature excursions. Hot-solder-dipped leads are standard.

absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

Peak Reverse Voltage . 250 V
Peak Surge Current, One Second (See Note 1)
Continuous Power Dissipation at (or below) $25^{\circ} \mathrm{C}$ Free-Air Temperature (See Note 2) 250 mW
Storage Temperature Range . $-65^{\circ} \mathrm{C}$ to $\mathbf{2 0 0 ^ { \circ }} \mathrm{C}$
Lead Temperature $1 / 16$ Inch from Case for 2 Seconds . $250^{\circ} \mathrm{C}$

NOTES: 1. These values apply for the specified square-wave pulse with the device at nonoperating thermal equilibrium immediately prior to the surge.
2. For operation above $25^{\circ} \mathrm{C}$ free-air temperature, refer to Dissipation Derating Curve, Figure 5.
electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

	Parameter	TEST CONDITIONS	MIN	MAX	UNIT
$V_{\text {(BR) }}$	Reverse Breakdown Voltage	${ }^{1}{ }_{R}=0.1 \mathrm{~mA}$	250		v
I_{R}	Static Reverse Current	$\mathrm{V}_{\mathrm{R}}=200 \mathrm{~V}$		2	$\mu \mathrm{A}$
v_{F}	Static Forwerd Voltage	$\mathrm{I}_{F}=1 \mathrm{~mA}$	0.55	0.8	v
		$\mathrm{I}_{\mathrm{F}}=50 \mathrm{~mA}$	0.75	1	
rf	Small-Signal Forward Resistance	$\begin{aligned} & I_{F}=10 \mathrm{~mA}, \quad I_{f}=1 \mathrm{~mA}, \\ & f=1 \mathrm{kHz} \end{aligned}$		10	Ω
$c_{\text {T }}$	Total Capacitance	$\mathrm{V}_{\mathrm{R}}=0, \quad \mathrm{f}=1 \mathrm{MHz}$	0.5	1.5	pF

operating characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER	TEST CONDITIONS	MIN MAX	UNIT
$t_{\text {rr }} \quad$ Reverse Recovery Time	$\begin{array}{ll} I_{F}=10 \mathrm{~mA}, & I_{R M}=10 \mathrm{~mA} \\ I_{r r}=1 \mathrm{~mA}, & R_{L}=100 \Omega \end{array}$ See Figure 1	50	ns
$\mathbf{O}_{\mathbf{5}} \quad$ Stored Charge	$I_{F}=10 \mathrm{~mA}$ See Figure 2 and Note 3	300	pC

NOTE: 3. Stored charge is measured in accordance with JEDEC Suggested Standard No. 1 (June, 1966), using the test circuit of Figure 2.

PARAMETER MEASUREMENT INFORMATION

test circuit

Adjust amplitude for $I_{R M}=10 \mathrm{~mA}$

INPUT VOLTAGE WAVEFORM

OUTPUT CURRENT WAVEFORM

NOTES: a. The input puise is supplied by a generator with the following characteristics: $Z_{\text {out }}=50 \Omega, t_{r} \leqslant 0.25 \mathrm{~ns}, \mathrm{t}_{\mathrm{p}} \geqslant 500 \mathrm{~ns}$. b. The output wevoform is monitored on an oxcilloscope with the following characteristics: $t_{r} \leqslant 0.35 \mathrm{~ns}, \mathrm{Z}_{\mathrm{in}}=50 \Omega$.

FIGURE 1 - REVERSE RECOVERY TIME

NOTES: a. The input puise is supplied by a generator with the following characteristics: $Z_{\text {out }}=\mathbf{1 0} \Omega, \mathrm{t}_{\mathrm{r}}(1 \%$ to $50 \%) \leqslant 5 \mathrm{n}$, $t_{p}=50 \mathrm{~ns}$.
b. If is the reading of the meter with zero voltage across the diode under test (hence zero current through the diode under test). I_{2} is the reading of the meter when the specified forward current (10 mA) flows.
c. V_{1} is adjusted for $I_{F}=10 \mathrm{~mA}$.
d. V_{2} is adjusted so that the voltege between point A and ground is -0.6 V when the diode under test is conducting forward curront.

- The stored charge of diode O_{1} is amall compared to the stored charge of the diode under test.
f. The reverse recovery time of diode D_{2} is short rolative to the 50 -ns input pulse.
g. The resistance of the current meter is sufficiently low that doubling le doen not affect the reading by more than the required accuracy.

FIGURE 2 - STORED CHARGE TEST CIRCUIT

TYPE TID45 SILICON SWITCHING DIODE

TYPICAL CHARACTERISTICS

THERMAL CHARACTERISTICS
DISSIPATION DERATING CURVE

FIGURE 5

NOTE 4: Temperature coefficient, $\alpha_{V F}$, is determined by the following formula: $\alpha_{V F}=\frac{\left(V_{F} @ 150^{\circ} \mathrm{C}\right)-\left(V_{F} @-55^{\circ} \mathrm{C}\right)}{150^{\circ} \mathrm{C}-\left(-55^{\circ} \mathrm{C}\right)}$.

LOGIC AND CORE-DRIVER DIODE ARRAYS

For Application With

- Magnetic Cores
- Thin-Film Memories
- Airborne Computers
- Industrial Computers
- Plated-Wire Memories
- Decoding or Encoding Applications

For Use In

- Military Computers
- Peripheral Equipment

description

These diode arrays are multiple diode junctions fabricated by a planar process and mounted in integrated circuit packages for use in logic and core-driver applications. These arrays offer many of the advantages of integrated circuits such as high-density packaging and improved reliability. These advantages result from such factors as fewer connections, more uniform device parameters, smaller size, less weight, fewer glass-to-metal seals, and the elimination of pressure contacts and whiskers.

These arrays are available in heremtically sealed welded flat packages (F) or in dual-in-line plastic packages (N). absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

16-DIODE ARRAY 7 INDEPENDENT DIODES OUAL 4-DIODE ARRAY (COMMON CATHODE) DUAL 4-DIODE ARRAY (COMMON ANODE)	FLAT PACKAGE			DUAL-IN-LINE PACKAGE			UNIT
	EACH DIODE		TOTAL DEVICE	EACH DIODE		TOTAL DEVICE	
	TID139F TID141F TID143F	$\begin{aligned} & \text { TID140F } \\ & \text { TID142F } \\ & \text { TID144F } \end{aligned}$	ALL TYPES	$\begin{aligned} & \text { TID135N } \\ & \text { TID139N } \\ & \text { TID141N } \\ & \text { TID143N } \end{aligned}$	TID136N TID140N TID142N TID144N	ALL TYPES	
Peak Reverse Voltage (See Note 1)	60	40		60	40		V
Steady-State Reverse Voltage, $\mathrm{V}_{\mathbf{R}}$	40	20		40	20		V
Continuous Forward Current at (or below) $25^{\circ} \mathrm{C}$ Free-Air Temperature (See Note 2)	$300{ }^{\text {t }}$			400才			mA
Peak Forward Current at (or below) $25^{\circ} \mathrm{C}$ Free-Air Temperature (See Notes 1 and 2)	$500 \S$			500!			mA
Peak Surge Current (See Note 2)	1			1			A
	2	2		2			
Continuous Power Dissipation at (or below) $25^{\circ} \mathrm{C}$ Free-Air Temperature			$500{ }^{\circ}$			600°	mW
Operating Free-Air Temperature Range	-65 to 150			-65 to 125			C
Storage Temperature Range	-65 to 200			-65 to 150			${ }^{\circ} \mathrm{C}$
Lead Temperature 1/16 Inch from Case for 10 Seconds	300			260			${ }^{\circ} \mathrm{C}$

NOTES: 1. These values apply for $\mathrm{t}_{\mathbf{w}} \leqslant \mathbf{1 0 0} \mu$ s, duty cycle $<\mathbf{2 0 \%}$.
2. These values apply for the specified square-wave pulse with the device at nonoperating thermal equilibrium immediately prior to the surge.

+ Derate linearly to $150^{\circ} \mathrm{C}$ free-air temperature at the rate of $2.4 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
\ddagger Derate linearly to $125^{\circ} \mathrm{C}$ free-air temperature at the rate of $4 \mathrm{~mA} /^{\circ} \mathrm{C}$.
§ Derate lineariv to $150^{\circ} \mathrm{C}$ free-air temperature at the rate of $4 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
TDerate linearly to $125^{\circ} \mathrm{C}$ free-air temperature at the rate of $5 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
Derate linearly to $150^{\circ} \mathrm{C}$ free-air temperature at the rate of $4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
Derate linearly to $125^{\circ} \mathrm{C}$ free-air temperature at the rate of $6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.

TYPES TID135, TID136, TID139 THRU TID144
 SILICON DIODE ARRAYS

ORDERING INSTRUCTIONS

PLASTIC DUAL-IN-LINE PACKAGES

TID135 and TID136 diode arrays are available in the plastic dual-in-line package (outline N) and TID139 through TID 144 diode arrays are available in both the N package and the hermetically sealed metal flat package (outline F). Orders for these arrays should include the package outline letter (F or N) at the end of the type number.

METAL FLAT PACKAGES

TID139F, TID140F 7 INDEPENDENT DIODES

14-PIN PACKAGE
TID139N, TID140N 7 INDEPENDENT DIODES 14-PIN PACKAGE

TID141F, TID142F DUAL 4-DIODE ARRAY (COMMON CATHODE) 10-PiN PACKAGE

TID143F, TID144F
DUAL 4-DIODE ARRAY (COMMON ANODE) 10-PIN PACKAGE

TID141N, TIO142N
DUAL 4-DIODE ARRAY (COMMON CATHODE) 14-PIN PACKAGE

(4) (6) (10) (13) No internal connection

TYPES TID135, TID136, TID139 THRU TID144 SILICON DIODE ARRAYS

electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature
single-diode operation (see note 3)

PARAMETER		TEST CONDITIONS		TID139 TID141	TID140 TID142	TID135 TID143	TID136 TID144	UNIT		
		MIN MAX	MIN MAX	MIN MAX	MIN MAX					
$V_{(B R)}$	Reverse Breakdown Voltage			$I_{R}=10 \mu \mathrm{~A}$		60	40	60	40	V
I^{\prime}	Static Reverse Current	$\mathrm{V}_{\mathrm{R}}=40 \mathrm{~V}$	See Note 4	100		100		nA		
		$V_{R}=40 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$		100		100		$\mu \mathrm{A}$		
		$V_{R}=20 \mathrm{~V}$			50		50	nA		
		$\mathrm{V}_{\mathrm{R}}=20 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$			50		50	$\mu \mathrm{A}$		
V_{F}	Static Forward Voltage	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$			1		1	V		
		$I_{F}=100 \mathrm{~mA}$		1	1.3	1	1.3			
V_{F}	Instantaneous Forward Voltage	$I_{F}=500 \mathrm{~mA}$,	See Note 5	1.3		1.3		V		
$V_{\text {FM }}$	Peak Forward Voltage	$\mathrm{I}_{\mathrm{F}}=500 \mathrm{~mA}$,	See Note 6	5		5		V		
$\mathrm{C}_{\mathbf{T}}$	Total Capacitance ${ }^{\dagger}$	$V_{R}=0, \quad f=1 \mathrm{MHz}$		4	4	8	8	pF		

multiple-diode operation

PARAMETER		TEST CONDITIONS	ALL TYPES	UNIT	
		MIN MAX			
${ }^{\prime} \mathrm{B}$	Static Reverse Current		$V_{R}=$ rated V_{R}, See Note 7	10	$\mu \mathrm{A}$
V_{F}	Static Forward Voltage	$I_{F}=25 \mathrm{~mA}$, See Note 7	1	V	

switching characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

single-diode operation (see note 3)

PARAMETER		TEST CONDITIONS	TID 139 TID 141	TID140 TID142	TID135 TID143	TID136 TID144	UNIT	
		MIN MAX	MIN MAX	MIN MAX	MIN MAX			
t_{fr}	Forward Recovery Time		$I_{F}=50 \mathrm{~mA}$, See Figure 3		20		20	ns
		$I_{F}=500 \mathrm{~mA}$, See Figure 3	40		40			
${ }_{\text {trr }}$	Reverse Recovery Time	$\begin{array}{lll} I_{F}=10 \mathrm{~mA}, & I_{R M}=10 \mathrm{~mA}, & R_{L}=100 \Omega, \\ i_{r r}=1 \mathrm{~mA}, & \text { See Figure } 4 & \\ \hline \end{array}$		6		6	ns	
		$\begin{aligned} & I_{F}=200 \mathrm{~mA}, \quad I_{R M}=200 \mathrm{~mA}, R_{\mathrm{L}}=100 \Omega, \\ & i_{r r}=20 \mathrm{~mA}, \quad \text { See Figure } 4 \end{aligned}$	20		20			

NOTES: 3. Test conditions and limits apply separately to each of the diodes. The diodes not under test are open-circuited during the measurement of these characteristics except for the measurement of ${ }^{\prime} R$ on arrays having both common-cathode and common-anode diodes (see Figures 1 and 2).
4. For arrays having both common-anode and common-cathode diodes see Figures 1 and 2 , Parameter Measurement Information section.
5. This parameter is measured using pulse techniques. $t_{w}=300 \mu \mathrm{~s}$, dutv cvcle $=2 \%$. Read time is $90 \mu s$ from the leading edge of the pulse.
6. The initial instantaneous value is measured using pulse techniques. $t_{w}=150 \mathrm{~ns}$, duty cycle $\leqslant 2 \%$, puise rise time $\leqslant 10 \mathrm{~ns}$. The total capacitance shunting the diode is 19 pF maximum and the equipment bandwidth is 80 MHz .
7. These parameters are measured with each of the other diodes in the section simultaneously conducting 25 mA forward current. Each diode is individually tested after the device reaches operating thermal equilibrium, Test conditions apply separately to common-anode and common-cathode sections.
${ }^{\dagger} C_{T}$ is the total pin-to-pin capacitance measured ecross any of the diodes. For arravs having both common-anode and common-cathocle eections, the interaction of the other diodes cannot easily be separated out unless three-terminal guarded measurement techniques are used. The actual capacitance of a single isolated diode will typically be $\mathbf{3 0 \%}$ of the measured pin-to-pin value for the common-cathode diodes, and 75% of the measured value for the common-an ode diodes.

PARAMETER MEASUREMENT INFORMATION

When measuring the reverse current of an individual diode of a device having both common-anode and common-cathode sections, the current meter must be placed so that the shunt current through the other diodes is bypassed around the meter. To obtain accurate readings, the voltage drop across the current meter must be less than 10 mV .

FIGURE 2-TEST CIRCUIT FOR COMMON-ANODE DIODES
FIGURE 1-TEST CIRCUIT FOR COMMON-CATHODE DIODES

VOLTAGE WAVEFORMS
FIGURE 3-FORWARD RECOVERY TIME

NOTES: a. The input pulse is supplied by a generator with the following characteristics: $t_{\mathrm{r}} \leqslant 15 \mathrm{~ns}, \mathrm{Z}_{\mathrm{out}}=50 \Omega, \mathrm{t}_{\mathbf{w}}=150 \mathrm{~ns}, \mathrm{duty}$ cycle $\leqslant 2 \%$.
b. The output waveform is monitored on an oscilloscope with the following characteristics: $t_{r} \leqslant 4.5 \mathrm{~ns}, \mathrm{R}_{\mathrm{in}} \geqslant 1 \mathrm{M} \Omega, \mathrm{C}_{\mathrm{in}} \leqslant 5 \mathrm{pF}$.

TYPICAL CHARACTERISTICS

TID135, TID139, TID141, TID143
FORWARD CONDUCTION CHARACTERISTICS

TID136, TID140, TID142, TID144
FORWARD CONDUCTION CHARACTERISTICS

NOTE 5: This parameter is measured using pulse techniques. $t_{w}=300 \mu \mathrm{~s}$, duty cycte $=2 \%$. Read time is $90 \mu \mathrm{~s}$ from the leading edge of the pulse.

MECHANICAL DATA

F flat packages

These hermetic packages feature glass-to-metal seals and welded construction in 10 -pin and 14 -pin configurations. Package body and leads are gold-plated $\mathcal{F}-15 \ddagger$ glass-sealing alloy. Approximate weight is 0.1 gram . All external surfaces are metallic. Devices are shipped mounted in a Mech-Pak carrier.

N plastic dual-in-line packages

The compound used to mold the dual-in-line packages will withstand soldering temperature with no deformation and circuit performance characteristics remain stable when operated in high-humidity conditions. These packages are intended for insertion in mounting-hole rows on 0.300 -inch centers. Once the leads are compressed to 0.300 -inch separation and inserted, sufficient tension is provided to secure the package in the board during soldering. The silver-plated leads require no additional cleaning or processing when used in soldered assembly.

$\boldsymbol{\$}$ F-15 is the ASTM designation for an iron-nickel-cobalt alloy containing nominally $\mathbf{5 3 \%}$ iron, 29\% nickel, and $\mathbf{1 7 \%}$ cobalt.

50-600 VOLTS • 1 AMP AVERAGE

- Rugged Double-plug Construction
- Hermetic Case
- 50-Amp Surge Rating
- TID383 thru TID385 Electrically Similar to 1N4383 thru 1N4385 (DO-29)

description and mechanical data

These one-amp rectifier diodes are the product of combining the best of both silicon material processing and packaging technologies. The silicon die is a mesa oxide-passivated structure which has additional nitride passivation and glass passivation over the junction. Years of volume production have shown the double-plug package to have the highest inherent mechanical integrity of all hermetic-case diodes. Hot-solder-dipped leads are standard.

*absolute maximum ratings at specified ambient ${ }^{\dagger}$ temperature (unless otherwise noted)

		TID381	TID382	TID383	TID384	THD385	UNIT
VRM	Peak Reverse Voltage from $-65^{\circ} \mathrm{C}$ to $175^{\circ} \mathrm{C}$ (See Note 1)	50	100	200	400	600	V
V_{R}	Steady State Reverse Voltage from $25^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$	50	100	200	400	600	V
10	Average Rectified Forward Current from $25^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$ (See Note 1 and 2)	1					A
IFSM	Peak Surge Current, One Cycle, at (or below) $100^{\circ} \mathrm{C}$ (See Note 3)	50					A
${ }^{\text {T }}$ A(opr)	Operating Ambient Temperature Range	-65 to 175					${ }^{\circ} \mathrm{C}$
Tstg	Storage Temperature Range	-65 to 200					${ }^{\circ} \mathrm{C}$
	Lead Temperature 3/8 Inch from Case for 10 Seconds	300					C

These values may be applied continuously under singlephase, $60-\mathrm{Hz}$, half-sine-wave operation with resistive load. Above $100^{\circ} \mathrm{C}$
derate $\mathrm{I}_{\mathrm{O}} \mathrm{a}$ according to Figure 1 .
2. This rectifier is a lead-conduction-cooled device. At (or above) ambient tamperatures of $100^{\circ} \mathrm{C}$, the lead temperature $3 / 8$ inch from case must be no higher than $5^{\circ} \mathrm{C}$ above the ambient temperature for these ratings to apply.
3. These values apply for $60-\mathrm{Hz}$ half sine waves when the device is operating at (or below) rated values of peak reverse voltage and average rectified forward current. Surge may be repeated after the device has returned to original thermal equilibrium.

[^195]
TYPES TID381 THRU TID385
 SILICON RECTIFIERS

electrical characteristics at specified ambient ${ }^{\dagger}$ temperature

PARAMETER		TEST CONDITIONS		MAX	UNIT
I_{R}	Static Reverse Current	$\mathbf{V}_{\mathbf{R}}=$ Rated $\mathrm{V}_{\mathbf{R}}$.	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	10	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{R}}=$ Rated $\mathrm{V}_{\mathrm{R}_{\text {}}}$	$\mathrm{T}_{A}=150^{\circ} \mathrm{C}$	250	
IR(av)	Average Reverse Current	$\begin{aligned} & \mathrm{V}_{\text {RM }}=\text { Rated } \mathrm{V}_{\text {RM }} \\ & \mathrm{f}=60 \mathrm{~Hz}, \end{aligned}$	$\begin{aligned} & 10=1 A, \\ & T_{A}=100^{\circ} \mathrm{C} \end{aligned}$	225	$\mu \mathrm{A}$
V_{F}	Static Forward Voltage	$I_{F}=1 A_{\text {, }}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$	1.1	V
$V_{\text {FM }}$	Peak Forward Voltage	$\begin{aligned} & V_{\text {RM }}=\text { Rated } V_{R M} \\ & f=60 \mathrm{~Hz}, \end{aligned}$	$\begin{aligned} & I_{0}=1 \mathrm{~A}, \\ & T_{A}=100^{\circ} \mathrm{C} \end{aligned}$	1.3	V

THERMAL INFORMATION

FIGURE 1

NOTE 2: This rectifier is a lead-conduction-cooled device. At (or above) ambient temperatures of $100^{\circ} \mathrm{C}$, the lead temperature $\mathbf{3 / 8} \mathbf{~ i n c h ~ f r o m ~}$ case must be no higher than $5^{\circ} \mathrm{C}$ above the ambient temperature for these ratings to apply.
${ }^{\dagger}$ The ambient temperature is measured at a point 2 inches below the device. Natural air cooling is used.

BULLETIN NO. DL-S 7311745, JANUARY 1973

VERY-HIGH-SPEED SWITCHING DIODES

- Pico-Second Switching Times
- Small-Size, Double-Plug Construction
- Very Low Junction Capacitance

mechanical data

Double-plug construction affords integral positive contact by means of a thermal compression bond. Moisture-free stability is ensured through hermetic sealing. The coefficients of thermal expansion of the glass case and the dumet plugs are closely matched to allow extreme temperature excursions. Hot-solder-dipped leads are standard.

absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

	TID777	TID778
Working Peak Reverse Voltage	10	20
Average Rectified Current (See Note 1)	V	
Peak Surge Current, One Second (See Note 2)	50	mA
Continuous Power Dissipation at (or below) $25^{\circ} \mathrm{C}$ Free-Air Temperature (See Note 3)	$\mathbf{2 5 0}$	
Storage Temperature Range	$\mathbf{2 5 0}$	
Lead Temperature 1/16 Inch from Case for 10 Seconds	$\mathbf{m W}$	

NOTES: 1. This value may be applied continuously under single-phase $\mathbf{6 0 - H z}$ half-sine-wave operation with resistive load.
2. This value applies for the specified square-wave pulse with the device at nonoperating thermal equifibrium immediately priar to the surge.
3. Derate linearly to $150^{\circ} \mathrm{C}$ free-air temperature at the rate of $2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.

TYPES TIDT7, TIDT78 SILICON SWITCHING DIODES

electrical characteristics at $\mathbf{2 5 ^ { \circ }} \mathbf{C}$ free-air temperature (unless otherwise noted)

PARAMETER	TEST CONDITIONS	TID777		TID778		UNIT
		MIN	MAX	MIN	MAX	
$V_{\text {(BR) }}$ Breakdown Voltage	$I_{R}=5 \mu \mathrm{~A}$	20		30		V
Static Reverse Current	$V_{R}=20 \mathrm{~V}$				0.1	$\mu \mathrm{A}$
	$\mathrm{V}_{\mathrm{R}}=20 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$				100	
	$V_{R}=10 \mathrm{~V}$		0.1			
	$V_{R}=10 \mathrm{~V}, \quad T_{A}=150^{\circ} \mathrm{C}$		50			
VF Static Forward Voltage	$\mathrm{I}_{F}=10 \mu \mathrm{~A}$	0.42	0.53	0.42	0.53	v
	$\mathrm{I}_{\mathrm{F}}=0.1 \mathrm{~mA}$	0.52	0.64	0.52	0.64	
	$I_{F}=1 \mathrm{~mA}$	0.64	0.79	0.64	0.79	
	$I_{F}=10 \mathrm{~mA}$	0.76	0.94	0.76	0.94	
	$I_{F}=20 \mathrm{~mA}$	0.81	1	0.81	1	
	$I^{\prime} F=50 \mathrm{~mA}$	0.89	1.35	0.89	1.35	
$\mathrm{C}_{\text {T }}$ Total Capacitance	$\mathrm{V}_{\mathrm{R}}=0, \quad \mathrm{f}=1 \mathrm{MHz}$		1.3		1	pF

switching characteristics at $\mathbf{2 5}{ }^{\circ} \mathrm{C}$ free-air temperature

PARAMETER	TEST CONDITIONS	8OTH TYPES	UNIT
${ }_{\text {trr }}$ Maximum Reverse Recovery Time	$\begin{array}{ll} I_{F}=10 \mathrm{~mA}, & I_{R M}=10 \mathrm{~mA}, \\ i_{\mathrm{rr}}=1 \mathrm{~mA}, & R_{\mathrm{L}}=100 \Omega, \\ \text { See Figure } 1 \end{array}$	750	ps

PARAMETER MEASUREMENT INFORMATION

FIGURE 1-REVERSE RECOVERY TIME

NOTES: a. The input pulse is supplied by a generator with the following characteristics: $\mathrm{t}_{\mathrm{r}} \leqslant \mathbf{0 . 2 5} \mathbf{n s}, \mathrm{Z}_{\text {out }}=50 \Omega, \mathrm{t}_{\mathrm{w}}=100 \mathrm{~ns}$, duty cycle $\leqslant \mathbf{1 \%}$.
b. The output waveform is monitored on an oscilloscope with the following characteristics: $\mathrm{t}_{\mathrm{r}} \leq 0.4 \mathrm{~ns}, \mathrm{R}_{\mathrm{in}}=50 \Omega$.

MONOLITHIC DIODE MATRICES

For Application As

- Programmable Read-Only Memories
- Alphanumeric Character Generators
- Frequency Generators
- Logic Interface Circuits

For Use In

- CRT Displays
- Minicomputers
- Peripheral Equipment
- Solid-State Memories

description

Abstract

These monolithic dielectrically isolated diode matrices are fabricated using epitaxial techniques. The desired matrix patterns are programmed by selectively opening the fusible link in series with each diode. This may be done by the user by following the fusing procedure described herein, or custom-programmed matrices may be ordered by sending in a schematic diagram with circles around the diodes to be deleted. Automatic equipment at Texas Instruments can provide instantaneous code-pattern customizing of devices. Only unprogrammed matrices will be symbolized with the type numbers shown in the table below. Circuits custom-programmed to a particular pattern will be assigned a special device number by Texas Instruments, and this number will appear on the device.

Both the high-speed Series TIDM100 and medium-speed Series TIDM200 matrices are available in hermetically sealed metal flat packages (F) or ceramic dual-in-line packages (J).
absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

5×5 MATRICES 6×6 MATRICES 6×8 MATRICES 8×5 MATRICES 8×6 MATRICES	TIDM155 TIDM166 TIDM168 TIDM185 TIDM186	TIDM255 TIDM266 TIDM268 TIDM285 TIDM236	UNIT
Peak Reverse Voltage (See Note 1)	45	35	V
Steady-State Reverse Voltage, $\mathrm{V}_{\mathbf{R}}$	25		V
Peak Forward Current per Diode at (or below) $25^{\circ} \mathrm{C}$ Free-Air Temperature (See Note ${ }^{\circ}$)	100		mA
Continuous Power Dissipation at (or below) $25^{\circ} \mathrm{C}$ Free-Air Temperature (See Notes 2 and 3)	400		mW
Operating Free-Air Temperature Range	-65 to 150		${ }^{\circ}$
Storage Temperature Range	-65 to 200		C
Lead Temperature 1/16 Inch from Case for 10 Seconds	300		C

NOTES: 1. These values apply for $\mathbf{1 0 0}-\mu$ s pulses, duty cycle $\leqslant \mathbf{2 0 \%}$.
2. The values shown for total device apply for any combination provided the ratings of individual diodes are not exceeded.
3. Derate linearly to $15 \mathbf{0}^{\circ} \mathrm{C}$ free-air temperature at the rate of $\mathbf{3 . 2} \mathbf{~ m W} /{ }^{\circ} \mathrm{C}$.

SERIES TIDM100, TIDM200 SILICON DIODE MATRICES

CUSTOMIZED CIRCUITS

To order custom programmed circuits, circle the diodes to be elimated in the appropriate schematic as shown in the example below.

TIDM 155, TIDM255 5×5 MATRICES

(9)
(10)

TIDM168, TIDM268 6×8 MATRICES
TIDM 166, TIDM266 6×6 MATRICES

SERIES TIDM10O, TIDM200
 SILICON DIODE MATRICES

electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER		TEST CONDITIONS	SERIES TIDM100			SERIES TIDM200			UNIT	
		MIN	TYP	MAX	MIN	TYP	MAX			
$V_{(B R)}$	Reverse Breakdown Voltege		$I_{R}=100 \mu \mathrm{~A}$	45			35			V
$I_{\text {R }}$	Static Reverse Current	$V_{R}=25 \mathrm{~V}$			20			50	nA	
I_{R}	Static Reverse Current (with Adjacent Diode Conducting)	See Figure 1		20			50		nA	
V_{F}	Static Forward Voltage	$I_{F}=1 \mathrm{~mA}$			0.8			0.9	V	
		$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$			1.5			1.7		
$\mathrm{C}_{\mathbf{T}}$	Total Capacitance between Any Anode Terminal and Any Cathode Terminal	$\mathrm{V}_{\mathrm{R}}=5 \mathrm{~V}, \quad \mathrm{f}=1 \mathrm{MHz}$			4			4	pF	

switching characteristics at $\mathbf{2 5}{ }^{\circ} \mathrm{C}$ free-air temperature

PARAMETER		TEST CONDITIONS	SERIES TIDM 100			SERIES TIDM200			UNIT	
		MIN	TYP	MAX	MIN	TYP	MAX			
${ }^{1} \mathrm{rr}$	Reverse Recovery Time		$\begin{aligned} & I_{F}=10 \mathrm{~mA}, \quad I_{R M}=10 \mathrm{~mA}, \\ & R_{L}=100 \Omega, \quad i_{r r}=1 \mathrm{~mA}, \end{aligned}$ See Figure 2			10			25	ns

PARAMETER MEASUREMENTINFORMATION

NOTE: D1 and D2 are any two adjacent diodes with a common cathode connection.

FIGURE 1

INPUT VOLTAGE WAVEFORM

OUTPUT CURRENT WAVEFORM

FIGURE 2-REVERSE RECOVERY TIME
NOTES: a. The input pulse is supplied by a generator with the following characteristics: $t_{f} \leqslant 1 \mathbf{n s}, Z_{o u t}=50 \Omega$, $\mathbf{t}_{\mathbf{w}}=200 \mathrm{~ns}, \mathrm{duty}$ cycle $\leqslant 1 \%$.
b. The output waveform is monitored on an oscilloscope with the following characteristics: $\mathrm{t}_{\mathrm{r}}<0.4 \mathrm{~ns}, \mathrm{R}_{\text {in }}=50 \Omega$.

FUSING PROCEDURE

Figure 3
A ramp current generator provides the fusing current. The diode to be eliminated is selected by setting switches S 2 and S 3 . When S 1 is activated to position 2, current through the fusible link opens the link in series with the selected diode. The peak fusing current required to open a fusible link is approximately $\mathbf{7 5 0}$ milliamperes. Switch S 1 in position 1 gives a visual indication of the condition of the selected diode before and after fusing.

TYPICAL CHARACTERISTICS

SERIES TIDM100, TIDM200
 SILICON DIODE MATRICES

ORDERING INSTRUCTIONS AND MECHANICAL DATA

general

Series TIDM100 and Series TIDM200 diode matrices are available in the hermetically sealed metal flat package (outline F) or the ceramic dual-in-line package (outline J). Orders for these circuits should include the package outline letter (F or J) at the end of the circuit type number.

Examples: TIDM155F, TIDM268J

F package

This hermetic package features glass-to-metal seals and welded construction. Package body and leads are gold-nlated F-15 \ddagger glass-sealing alloy. Approximate weight is 0.1 gram. All external surfaces are metallic. Devices are shipped mounted in a Mech-Pak carrier.

J package

This hermetically sealed, dual-in-line package consists of a ceramic base, ceramic cap, and 14 -lead frame. The circuit bar is alloy-mounted to the base and hermetic sealing is accomplished with glass. This package is intended for insertion in mounting-hole rows on 0.300 -inch centers. Once the leads are compressed to 0.300 -inch separation and inserted, sufficient tension is provided to secure the package in the board during soldering. Tin-plated ("bright-dipped") leads require no additional cleaning or processing when used in soldered assembly.

\ddagger F. 15 is the ASTM designation for an iron-nickel-cobalt alloy containing nominally 53% iron, 29% nickel, and 17% cobalt.

TYPES TIV21, TIV22, TIV23 SILICON VOLTAGE-VARIABLE-CAPACITANCE DIODES

bULLETIN NO. DL-S 7211742 , JUNE 1972

UHF TUNING DIODES

- Small Size, Double-Plug Construction
- Extremely Stable and Reliable
- Available in Matched Sets ${ }^{\dagger}$

mechanical data

Double-plug construction affords integral positive contact by means of a thermal compression bond. Moisture-free stability is ensured through hermetic sealing. The coefficients of thermal expansion of the glass case and the dumet plugs are closely matched to allow extreme temperature excursions. Hot-solder-dipped leads are standard.

absolute maximum ratings at $\mathbf{2 5}{ }^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

Peak Reverse Voltage

Continuous Power Dissipation at (or below) $25^{\circ} \mathrm{C}$ Free-Air Temperature (see Note 1) 250 mW
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead Temperature $\mathbf{1 / 1 6}$ Inch from Case for 10 Seconds
$260^{\circ} \mathrm{C}$
electrical characteristics at $\mathbf{2 5}{ }^{\circ} \mathbf{C}$ free-air temperature

PARAMETER		TEST CONDITIONS		TIV21		TIV22		TIV23		UNIT		
		MIN	MAX	MIN	MAX	MIN	MAX					
$V_{(B R)}$	Breakdown Voitage			$I_{R}=10 \mu \mathrm{~A}$		30		30		30		V
$\mathrm{I}_{\mathbf{R}}$	Reverse Current	$\mathrm{V}_{\mathrm{R}}=25 \mathrm{~V}$			100		100		100	nA		
C_{t}	Total Capacitance	$V_{R}=3 \mathrm{~V}$,	$\mathrm{f}=1 \mathrm{MHz}$	9	14	9	14	9	14	pF		
		$V_{R}=25 \mathrm{~V}$,	$\mathrm{f}=1 \mathrm{MHz}$	2	2.5	2.3	2.8	1.8	2.8			
0	Figure of Merit (See Note 2)	$\mathrm{V}_{\mathrm{R}}=3 \mathrm{~V}$,	$f=100 \mathrm{MHz}$	150		150		100				
$\frac{C_{t 1}}{C_{t 2}}$	Capacitance Ratio	$V_{1}=3 V_{1}$	$V_{2}=25 \mathrm{~V}, \quad f=1 \mathrm{MHz}$	4.5	6	4	5	4	6			

[^196]TYPES TIV21, TIV22, TIV23
SILICON VOLTAGE-VARIABLE-CAPACITANCE DIODES

TYPES TIV24, TIV25
 SILICON VOLTAGE-VARIABLE-CAPACITANCE DIODES

VHF TUNING DIODES

- Small Size, Double-Plug Construction
- Extremely Stable and Reliable
- Available in Matched Sets ${ }^{t}$

mechanical data

Double-plug construction affords integral positive contact by means of a thermal compression bond. Moisture-free stability is ensured through hermetic sealing. The coefficients of thermal expansion of the glass case and the dumet plugs are closely matched to allow extreme temperature excursions. Hot-solder-dipped leads are standard.

absolute maximum ratings at $\mathbf{2 5}{ }^{\circ} \mathbf{C}$ free-air temperature (unless otherwise noted)
Peak Reverse Voltage
30 V
Continuous Power Dissipation at (or below) $25^{\circ} \mathrm{C}$ Free-Air Temperature (see Note 1) 250 mW
Storage Temperature Range . $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead Temperature $\mathbf{1 / 1 6}$ Inch from Case for 10 Seconds
$260^{\circ} \mathrm{C}$
electrical characteristics at $\mathbf{2 5}{ }^{\circ} \mathrm{C}$ free-air temperature

PARAMETER		TEST CONDITIONS		TIV24		TIV25		UNIT		
		MIN	MAX	MIN	MAX					
$V_{\text {(BR) }}$	Breakdown Voltage			$I_{R}=10 \mu \mathrm{~A}$		30		30		V
IR	Reverse Current	$\mathrm{V}_{\mathrm{R}}=25 \mathrm{~V}$			100		100	nA		
C_{t}	Total Capacitance	$V_{R}=3 \mathrm{~V}$,	$\mathrm{f}=1 \mathrm{MHz}$	22	34	23	34	pF		
		$\mathrm{V}_{\mathrm{R}}=25 \mathrm{~V}$,	$\mathrm{f}=1 \mathrm{MHz}$	5.2	7.5	4.2	6.5			
0	Figure of Merit (See Note 2)	$V_{R}=3 \mathrm{~V}$,	$\mathrm{f}=100 \mathrm{MHz}$	80		80				
$\frac{\mathrm{C}_{\text {t1 }}}{\mathrm{C}_{\mathrm{t} 2}}$	Capacitance Ratio	$\mathrm{V}_{1}=3 \mathrm{~V}$	$V_{2}=25 \mathrm{~V}, \quad f=1 \mathrm{MHz}$	3.5	6	4.5	6			

[^197]SILICON VOLTAGE-VARIABLE-CAPACITANCE DIODES

NOTES: 2. Figure of Merit, Q, is defined by the equation $Q=\frac{1}{2 \pi f C_{t} r_{s}}$ where r_{s} is the equivalent series resistance.
3. Average temperature coefficient, α^{C}, is determined by the formula: $\alpha_{C}=\left[\frac{\left(C_{t} @ 125^{\circ} \mathrm{C}\right)-\left(C_{t} @-50^{\circ} \mathrm{C}\right)}{\mathrm{C}_{\mathrm{t}} @ 25^{\circ} \mathrm{C}}\right] \frac{100 \%}{175^{\circ} \mathrm{C}}$

TYPES TIV306, TIV307, TN308 SILICON VOLTAGE-VARIABLE-CAPACITANCE DIODES

AFC TUNING DIODES

(Replaces TIV300 and TIV301)

- Small Size, Double-Plug Construction
- Extremely Stable and Reliable

mechanical data

Double-plug construction affords integral positive contact by means of a thermal compression bond. Moisture-free stability is ensured through hermetic sealing. The coefficients of thermal expansion of the glass case and the dumet plugs are closely matched to allow extreme temperature excursions. Hot-solder-dipped leads are standard.

absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)
Peak Reverse Voltage
Continuous Device Dissipation at (or below) $25^{\circ} \mathrm{C}$ Free-Air Temperature
(See Note 1)
250 mW
Operating Free-Air Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Storage Temperature Range . $-65^{\circ} \mathrm{C}$ to $200^{\circ} \mathrm{C}$
electrical characteristics at $\mathbf{2 5}^{\circ} \mathrm{C}$ free-air temperature

PARAMETER		TEST CONDITIONS	TIV306		TIV307		TIV308		UNIT	
		MIN	MAX	MIN	MAX	MIN	MAX			
$V_{\text {(0x) }}$	Breakdown Voltage		$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$	20		20		20		V
I_{R}	Reverse Current	$\mathrm{V}_{\mathrm{R}}=15 \mathrm{~V}$		50		50		50	nA	
C_{+}	Total Capacitance	$\mathrm{V}_{\mathrm{R}}=4 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	5	9	7	11	9	14	pf	
Q	Figure of Merit (Mote 2)	$\mathrm{V}_{\mathrm{R}}=4 \mathrm{Y}, \quad \mathrm{l}=50 \mathrm{MHz}$	200		200		200			
$\frac{C_{1}}{C_{12}}$	Capatitance Ratio	$V_{1}=1 \mathrm{~V}, \mathrm{~V}_{2}=12 \mathrm{~V}, f=1 \mathrm{mHz}$	2.2		2.3		2.4			

Sensistors ${ }^{\circ}$

 TYPES TG 1/8, TM 1/8 POSITIVE-TEMPERATURE-COEFFICIENT SILICON THERMISTORSBULLETIN NO. DL-S 7312014, MARCH 1973

TEMPERATURE-SENSING, TEMPERATURE-COMPENSATING

- Designed to Meet or Exceed all Electrical Requirements of MIL-T-23648A for Positive-TC Thermistors
- TG1/8 . . . Similar to RTH42 (MIL-T-23648A/19)
- TM1/8 . . . Similar to RTH22 (MIL-T-23648A/9)
- Large Positive Temperature Coefficient of Resistance (Approx 0.7\% ${ }^{\circ} \mathrm{C}$)
- Wide Resistance Value Ranges Available in $\pm \mathbf{5 \%}$ or $\pm \mathbf{1 0 \%}$ Tolerances
mechanical data
The TG1/8 thermistor is encapsulated in a glass, hermetically sealed package with hot-solder-dipped leads.
The TM1/8 thermistor is encapsulated in a molded package with hot-solder-dipped leads

TG 1/8	WITHIN THIS O.OSO INCH ZONE. DIMENSIONS ARE IN INCHES	1
TM 1/8		1

maximum ratings
TG 1/8 TM 1/8
Power Dissipation at (or below) $25^{\circ} \mathrm{C}$ Free-Air Temperature (See Figures 1 and 2) 300 mW 500 mW
Power Dissipation at (or below) $100^{\circ} \mathrm{C}$ Free-Air Temperature (See Figures 1 and 2) 125 mW 125 mW
Operating Free-Air Temperature Range
Storage Temperature Range $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
electrical and thermal characteristics

	PARAMETER	TG 1/8	TM 1/8	UNIT
$\mathrm{R}_{25^{\circ} \mathrm{C}} / \mathrm{R}_{125^{\circ} \mathrm{C}} \mathrm{Zero-Powar}$ Resistance Ratio	$0.55 \pm 15 \%$	$0.55 \pm 15 \%$		
τ	Thermai Time Constant	35 typ	35 typ	s

Raplaces TG 1/8, TM 1/8, TM 1/4 data sheet, Bulletin No. DL-S 6910909, revised August 1969

dissipation derating curves

TG 1/8

TM 1/8

FIGURE 2
factors for determining nominal resistance at various temperatures

TABLE I-TG 1/8

Temperature (${ }^{\circ}$)	$10 \Omega-68 \Omega$	$82 \Omega-150 \Omega$	$180 \Omega-470 \Omega$	$560 \Omega-1.2 \mathrm{k} \Omega$	$1.5 \mathrm{k} \Omega-5.6 \mathrm{k} \Omega$	$6.8 \mathrm{k} \Omega-10 \mathrm{k} \Omega$
-55	0.615	0.582	0.560	0.550	0.515	0.510
-15	0.790	0.770	0.755	0.740	0.730	0.730
0	0.863	0.847	0.838	0.835	0.825	0.825
25	1.000	1.000	1.000	1.000	1.000	1.000
50	1.160	1.170	1.180	1.200	1.230	1.190
75	1.350	1.370	1.400	1.420	1.450	1.400
100	1.545	1.584	1.623	1.656	1.670	1.610
125	1.750	1.800	1.860	1.920	1.960	1.830

TABLE II - TM 1/8

Tempeatture $\left({ }^{\circ} \mathrm{C}\right)$	$10 \Omega-68 \Omega$	$82 \Omega-150 \Omega$	$180 \Omega \iota-560 \Omega$	$680 \Omega-1.5 \mathrm{k} \Omega$	$1.8 \mathrm{k} \Omega-12 \mathrm{k} \Omega$	$15 \mathrm{k} \Omega-39 \mathrm{k} \Omega$
-55	0.615	0.582	0.560	0.550	0.515	0.481
-15	0.790	0.770	0.755	0.740	0.730	0.712
0	0.863	0.847	0.838	0.835	0.825	0.814
25	1.000	1.000	1.000	1.000	1.000	1.000
50	1.160	1.170	1.180	1.200	1.230	1.210
75	1.350	1.370	1.400	1.420	1.450	1.430
100	1.545	1.584	1.623	1.656	1.670	1.670
125	1.750	1.800	1.860	1.920	1.960	1.900

TYPES TG 1/8, TM 1/8 POSITIVE-TEMPERATURE-COEFFICIENT SILICON THERMISTORS

using tables I and II

Factors for determining the resistance of Sensistor thermistors at temperatures other than $25^{\circ} \mathrm{C}$ are tabulated in Table I and II. To determine the resistance of a thermistor at a temperature other than $25^{\circ} \mathrm{C}$, first select the appropriate table (Table I for TG $1 / 8$, Table II for TM 1/8), then select the column that is headed by the resistance range that includes the nominal resistance at $25^{\circ} \mathrm{C}$ of the thermistor in question. The resistance at $25^{\circ} \mathrm{C}$ of the thermistor is then multiplied by the factor in that column that corresponds with the temperature in question to determine the new resistance.

EXAMPLES: Given a TG1/8221J* Sensistor thermistor whose zero-power resistance value at $25^{\circ} \mathrm{C}$ is 228Ω, find the resistance value for $75^{\circ} \mathrm{C}$. The proper table is Table I and the proper column is the one headed " $180 \Omega-470 \Omega$ ". The factor in the $75^{\circ} \mathrm{C}$ row of this column is 1.400 , which when multiplied by the zero-power resistance value at $25^{\circ} \mathrm{C}$ gives $1.400 \times 228 \Omega=319 \Omega$ (at $75^{\circ} \mathrm{C}$).

effects of tolerances

In the previous example a 228 -ohm Sensistor thermistor is computed to have a nominal resistance of 319 ohms at $75^{\circ} \mathrm{C}$. The actual resistance of the thermistor at $75^{\circ} \mathrm{C}$ may vary from the calculated value by an amount not exceeding the tolerances tabulated in Table III.

TABLE III
RESISTANCE TOLERANCE w TEMPERATURE

TEMPERATURE $\left({ }^{\circ} \mathrm{C}\right)$	$\pm 5 \%$	$\pm 10 \%$
$(\mathrm{~J})$	(K)	
-55	$\pm 15 \%$	$\pm 20 \%$
-15	$\pm 9 \%$	$\pm 14 \%$
0	$\pm 7 \%$	$\pm 12 \%$
25	$\pm 5 \%$	$\pm 10 \%$
50	$\pm 7 \%$	$\pm 12 \%$
75	$\pm 9 \%$	$\pm 14 \%$
100	$\pm 12 \%$	$\pm 17 \%$
125	$\pm 15 \%$	$\pm 20 \%$

[^198]
TYPES TG 1/8, TM 1/8

POSITIVE-TEMPERATURE-COEFFICIENT SILICON THERMISTORS

typical characteristics with power applied

To determine resistance value with power applied, obtain a multiplying factor from the applicable curve below. The free-air curve is for the condition of heat removal by free-air convection only. The heat-sink curve is for the maximum-cooling-rate condition of a heat-sink strap, with leads attached to an infinite heat sink. Actual conditions encountered will be between these two extremes. After selecting an applicable multiplying factor from Figure 3 or 4, multiply this by the $25^{\circ} \mathrm{C}$ zero-power resistance. This product is then corrected for the actual ambient temperature by use of the appropriate factor from Table I or II.

TG $1 / 8$
PERCENT RESISTANCE CHANGE
vs

Figure 3

TM 1/8
PERCENT RESISTANCE CHANGE

FIGURE 4
${ }^{\dagger} \boldsymbol{T}_{\mathrm{L}}$ is lead temperature measured $\mathbf{1 / 1 6}$ inch from the body.
standard zero-power resistance values (ohms) at $25^{\circ} \mathrm{C}$ free-air temperature

10	12	15	18	22	27	33	39	47	50	56	68	82
100	120	150	180	220	270	330	390	470	500	560	680	820
1000	1200	1500	1800	2200	2700	3300	3900	4700	5000	5600	6800	8200
10000	12000^{*}	15000^{*}	18000^{*}	22000^{*}	27000^{*}	33000^{*}	39000^{*}					

These values apply to types TM $1 / 8$ only.
part-number designation

TM1/8272K

Understanding Solid-State Electronics

250 pages • 168 illustrations • Shipping weight 14-oz - \$2.95

This book was created for anyone who wants to understand solid-state electronics, but can't devote years to the study. It has been prepared for non-technical individuals, and tens of thousands of copies now in use prove its effectiveness. Engineering concepts and theory are explained without using mathematics - just some simple arithmetic. Technical terms are used, but each one is explained in layman's language. The book is a 12-lesson, self-teaching course complete with quizzes and glossaries. Whether you're an engineer, technician, hobbyist . . . or just curious about what goes on inside computers, radios, calculators or appliances . . . this book will interest you. Chapter titles: What Electricity Does in Every Electrical System, Basic Circuit Functions in the System, How Circuits Make Decisions, Relating Semiconductors to Systems, Diodes: What They Do and How They are Made, The PNP Transistor and Transistor Specifications, Thyristors and Optoelectronics, Introduction to Integrated Circuits, Digital Integrated Circuits, and MOS and Linear Integrated Circuits.

Solid-State Electronics: A Basic Course

170 pages • 90 illustrations \bullet Shyping weight 1-lb 12-oz • $\$ 9.50$

Presents the principles of semiconductors in a programmed-learning manner. Explains semiconductor behavior; describes operation and electrical characteristics of diodes and transistors; considers concept, processes and fabrication of integrated circuits; surveys the advantages and application of integrated circuits, and their future Down to earth in its approach, this book can be used by engineers and technicians in other disciplines to obtain a working familiarity with the subject. Each chapter features a glossary and includes questions to answer and problems to solve. Chapter titles. Introduction to Semiconductors, Properties of Semiconductors, Preparation of Semiconductor Materials, The p-n Junction, The Junction Transistor, Characteristics and Ratings, Basic Transistor Amplifier Circuits, Manufacture and Testing of Transistors, Compound Semiconductor Materials, Other Semiconductor Devices, An Introduction to Integrated Circuits, and Trends in Integrated Circuits.

Integrated Circuits: A Basic Course

177 pages - 133 illustrations - Shipping weight 1-lb 10-oz • \$9.95

It is becoming more and more essential for engineers and technicians to have a basic understanding of solid-state electronics and integrated circuits. They need to be generally informed on I/C technology so that they can "talk the same language" as the integrated-circuits expert, and convert the full potential of integrated circuitry into efficient and profitable end equipments. This book meets this requirement - a ten-lesson course forming a sequel to Solid-State Electronics: A Basic Course. With this text, engineers and technicians in any industry can master the structures of various integrated circuits digital, linear, bipolar, MOS, LSI, MSI - and see how they are used. Chapter Titles: The Impact of Integrated Circuits, Solid-State Technology, Integrated-Circuit Technology, Digital Logic Circuits, Digital Integrated Circuits, Basic Aspects of Linear Integrated Circuits, Standard Catalog Integrated Circuits, Integrated Electronic Components, The Application of Integrated Circuits, and The Use of Integrated Circuits in Electronic Control.

MOS/LSI Design and Application

331 pages • 270 illustrations • Shipping weight 2-lb 7-oz • \$18.50

Specifically written for electronic system engineers and technicians, this practical volume provides instantly usable state-of-the-art information on one of the latest developments in solid-state electronics MOS/LSI. All aspects of this technology, from principles to applications, are covered. Advances discussed include: N-channel device technology, nitrite-oxide sandwich structures, one-chip calculator, two- three- and four-phase shift registers, semiconductor memories, and much more. Major applications examined include inverters, static logic, flip-flops, shift registers, memories, and programmable logic arrays. This book will help (1) evaluate the usefulness of MOS/LSI in specific applications, (2) weigh the advantages of its many options, and (3) plan cost-effective system designs. Chapter titles: MOS Device Physics, The MOS Technology Arsenal, Reliability Aspects of MOS Integrated Circuits, Inverters, Static Logic, and Flip-Flops, Shift Registers for Data Delay, Logic, and Memory, The MOS/Bipolar Interface, Memory Applications, Programmable Logic Arrays, MOS Analog Circuitry, The Economics of MOS/LSI.

Designing with TTL Integrated Circuits

322 pages • 399 illustrations • Shipping weight 2-1b 9-oz • \$18.50

A thoroughly comprehensive and practical volume, the first to explore the entire family of TTL integrated circuits. Written for electronics engineers, computer designers, systems analysts and managers who want information on the best uses of this family of circuits. Covers not only design philosophy, economics, basic descriptions, and electrical performance of TTL, but also the full range of application of these circuits in digital systems. Chapter titles: Introduction to Digital Logics, Series 54/74 Overview, Circuit Analysis and Characteristics of Series 54/74, Extended-Range Operation, Noise Considerations, Combinational Logic Design, Flip-Flops, Decoders, Arithmetic Elements, Counters, Shift Registers, and Other Applications.

Solid-State Communications

366 pages • 417 illustrations • Shipping weight 2-lb 9-oz • \$13.75

If you're engaged in any phase of communications from RF to UHF and from CQ to QC, you'll be interested in this book. It's the ideal complement to the high-frequency design section of the very popular Transistor Circuit Design. Directed chiefly to circuit designers, it provides a detailed discussion of communication components for a large variety of applications - in industry, in the military and in consumer products. Devices covered include field-effect transistors, dual transistors, high-frequency silicon planar epitaxial transistors, and germanium planar transistors. Chapter titles: New Communications Devices, Dependence of Transistor y Parameters on Bias, Frequency and Temperature, Typical y Parameter Data, Power Gain and Stability in Linear Active Two-Ports, High-Frequency Amplifier Design Using Admittance Parameters Low-Level Operation of the 2N929 and 2N930, High Input Impedance Techniques, Noise Characterization, Transistor Gain Control, RF Harmonic Oscillators, Transistors in Wide-Band Low-Distortion Amplifiers, VHF and UHF Amplifiers and Oscillators Using Silicon Transistors, Causes of Noise, Transistor Noise Figure, Communications Circuit Applications, Device Nomenclature and Standard Test Circuits, Noise Figure Measurement, and Power Oscillator Test Procedure.

MOSFET in Circuit Design

136 pages - 100 illustrations - Shipping weight 1-lb 10-oz • \$11.75

This book is a single source of information that is geared to the needs of the practicing engineer and circuit designer and is an authoritative volume that provides the basic principles and background required in MOSFET device and circuit engineering. The result of actual work with MOSFET devices and complex integrated circuits, the book has discussions covering basic theory and operation of MOS field effects, descriptive equations for device behavior, MOSFET usage in analog circuits and MOSFET-bipolar combinations, and a highly detailed description of an actual MOSFET complex integrated circuit. Chapter titles: An Introduction to the World of the MOSFET, Theory of Operation, MOS Characteristics and Equation Interrelationships, Transient Response, Basic MOS Integrated-Circuit Concepts, and Analog Circuits.

Design and Application of Transistor Switching Circuits

278 pages • 315 illustrations • Shipping weight 2-lb 2-lb $-\$ 17.50$

Engineers and technicians involved with circuit design and construction will find this discussion of transistor circuits invaluable. It details the basic mechanism of transistor action and shows how the elements of an a-c model transistor are related to the basic mechanism. It discusses how to select a transistor which has the desired electrical characteristics. Circuit performance of linear and non-linear circuit elements, the binary number system and Boolean algebra, and diode gates are also discussed. Technology aspects covered include the method of statistical design, principles of transistor-coupled logic stages, design of the emitter-coupled logic stage, and certain forms of flip-flop counters. Chapter titles: Transistor Physical Characteristics, Small-Signal Equivalent Circuit of Junction Transistor, Fabrication and Characteristics of Various Transistor Types, The Transistor as a Switch, The Transistor Data Sheet, Saturated-Inverter Design, Graphical Circuit Analysis, Emitter-Follower Operation and Design, Symbolic Logic, Transistors and Diodes as Logic Elements, Current-Mode Switching Circuits, Flip-Flop Circuits, Registers, Counters, and Diode Decoders, and Pulse-Generating and Pulse-Shaping Networks.

Transistor Circuit Design

532 pages • 526 illustrations • Shipping weight 3-lb 4-oz • $\$ 16.50$

The most popular book ever written on semiconductors, discusses common problems that confront circuit designers, from interpretation of data-sheet information to design procedures for VHF power stages. A practical work-a-day book, it presents detailed design procedures for a great variety of circuits. Nearly 100,000 copies of this book have been purchased. Chapter titles: Classification of Junction Transistors, Device and Circuit Symbology, Transistor Specifications, Nature of Transistor Quantities, Measurement of Electrical Quantities and Parameters, Equivalent Circuits and Parameter Interrelationships, Logic Circuits, Transistorized Timers, High-Level Switching, Light Flashers, Blocking Oscillators, D-C Converters, Inverters, Switching-Mode Voltage Regulators, Switching-Mode Motor Control, Switching-Mode Servo Amplifier, and Digital Servo System.

Field-Effect Transistors

138 pages • 137 illustrations • Shipping weight 1-lb 10-oz • \$10.00

The first text devoted exclusively to field-effect transistors. It contains a comprehensive coverage of theory, design philosophy, and practical applications of FETs. Beginning with a presentation of physical theory based on Max well's Equations, the book uses a lumped linear model to describe the circuit behavior of the FET. Much attention is devoted to detailed explanations of the electrical characteristics. Most of the typical applications for FET's are described and illustrated by circuit diagrams. Although the field-effect transistor was invented before the point-contact transistor, it was not a commercial reality until many years after, and its peculiar characteristics - more similar to the characteristics of a vacuum tube than to those of a bipolar transistor are still widely employed. Chapter titles: Theory of the Unipolar Field-Effect Transistor, FET Characteristics, FETs in Low-Level Linear Circuits, FETs in Non-Linear Circuits, Blue Skies Dept.: The Power FET, Further Applications, and FETs in Integrated Circuits.

Characterization of Semiconductor Materials

351 pages 0221 illustrations - Shipping weight 2-lb 9-oz • \$18.50

Here in one volume are collected all the compositional and structural techniques presently applied in assessing quality throughout the many stages of producing semiconductor devices, from raw material to finished devices. Descriptions and evaluations of the techniques cover not only germanium, silicon, and the III-V compounds, but their surfaces, oxides, and films as well. This book is especially valuable to production engineers, quality control engineers, analytical chemists, and materials scientists. Chapter titles: Introduction, Semiconductor Principles, Bulk-Material Characterization, Materials Characterization in Single-Crystal Growth, Analysis of Single Crystals for Chemical Imperfections, Characterization of Semiconductor Surfaces, Characterization of Epitaxial Films, Diffusion, and Characterization of Thin Films.

Gircuit Design for Audio, AM/FM and TV

352 pages • 145 illustrations • Shipping weight 2-1b 8-oz • \$14.50

Design examples in this intensely practical guide have been chosen to suggest the broad application of the procedures. In the TV section, specific design examples are given for each major system comprising a TV receiver. In the AM/FM section, the stress is on the practical design of IF strips. Examples of both neutralized and unneutralized amplifiers are given. In the audio section, the more common coupling schemes for both Class A and Class B operation are discussed in detail along with audio design procedures, design examples, and derivations of the key equations used in audio design. Chapter titles: Audio Design Considerations, Class A Output and Driver Design Procedures, Class B Output and Driver Design Procedures, Class A Design Examples, Class B Design Examples, Audio Design Equation Derivations, AM IF Amplifier Design, FM Tuner Design, FM IF Amplifier Design, AM/FM Amplifier Circuit Applications, FM IF Amplifier Circuit Applications, UHF TV Tuners, VHF TV Tuners, Video IF Amplifiers, TV Automatic Gain Control, Video A mplifier System, Sound IF Amplifier System, Sync Separator, Vertical Oscillator and Sweep Output, Horizontal AFC and Oscillator, and Horizontal Driver and Sweep Circuit.

Silicon Semiconductor Technology

256 pages • 301 illustrations - Shipping wright

 2-lb 9-oz • \$17.50If you're a creative designer, you're probably not content to just string black boxes together. You want the "inside story" so you can exploit the potential of every component. This book gives you that inside story - it's the first book in the field to present comprehensive and authoritative discussions on every aspect of silicon as a semiconductor. This book is a valuable asset to the semiconductor device engineer and to the designer of circuits and systems as well. Chapter titles: An Historical Note, Silicon Manufacturing Processes, Silicon Casting Processes, Crystal Growth, Crystal Habit and Orientation, Doping Processes, Diffusion, Electrical Properties, Optical Properties, Miscellaneous Physical Properties and Processes, and Metallurgy.

Complete data sheets - full specifications and technical design information on all products included ... 816 pages in all.
Covers everything in TI's broad line - germanium and silicon power transistors, SCR's, triacs, and power function modules. In silicon power, TI's extensive line includes high-voltage and low-voltage, high-safe-operatingarea (SOA) designs, power Darlingtons, fast switching types, radiationtolerant designs, JAN and JANTX, metal can and plastic packages. Plus details on the high-performance custom designs available through TI's Technical Response Lab.

Fast, easy to use - margin tabs, alphanumeric index to all products, crossreference guides, product selection guides, glossary of terms and definitions, general applications information, and product reliability data.

For a current list of TI Data books and prices, write to:

Texas Instruments Incorporated
P. O. Box 225012, M. S. 84

Dallas, Texas 75265

MICRODIGITAL

The
Transistor and Diode Data Book for

Design
Engineers

[^0]: OPTO-Refer to The Optoelectronics Data Book for Design Engineers, First Edition (CC-405)

[^1]: *Not shown in this data book but still available from Texas instruments.
 POWER-Refer to The Power Semiconductor Data Book for Design Engineers, First Edition (CC-404).

[^2]: *Not shown in this data book but still available from Texas Instruments.
 OPTO-Rafer to The Optoelectronics Data Book for Design Engineers, First Edition (CC-405).
 POWER-Refer to The Power Semiconductor Date Book for Design Engineers, First Edition (CC-404).

[^3]: Definition
 The respective input or output reflection coefficient with the transistor in the indicated configuration. See page 1-4.

 See page 1-4.
 See pages 1-5 and 1-6.
 See pages 1-5 and 1-6.
 The sum of $\mathrm{t}_{\mathrm{s}}+\mathrm{t}_{\mathrm{f}}$. See pages 1-5 and 1-6.
 The sum of $t_{d}+t_{r}$. See pages 1-5 and 1-6.
 See pages 1-5 and 1-6.
 See pages 1-5 and 1-6.
 See pages 1-5 and 1-6.
 See page 1-6.

 The dc supply voltage applied to a circuit connected to the reference terminal.

 The dc voltage between the terminal indicated by the first subscript and the reference terminal (stated in terms of the polarity at the terminal indicated by the first subscript).

 The instantaneous value of ac voltage between the terminal indicated by the first subscript and the reference terminal.

[^4]: *See package drawings on page 2-20.

[^5]: -See package drawings on page 2-20.

[^6]: *See package drewings on page 2-20. $\quad{ }^{\dagger} V_{(B R) C E O}$ approximated from $V_{(B R) C E R} \quad \ddagger V_{(B R) C E R}$

[^7]: "See package drawings on page 2-20.

[^8]: *See package drawings on page 2-20

[^9]: *See package drawings on page 2-20.

[^10]: - See package drawings on page 2-20.

[^11]: *See package drawings on page 2-20.

[^12]: *See package drawings on page 2-20.

[^13]: - See package drawings on paga 2-20.

[^14]: *See package drawings on page 2-20.

[^15]: *Sae package drawings on page 2-20.

[^16]: -See pack sge drawings on pege 2-20.

[^17]: *See package drawings on page 2-20.

[^18]:

[^19]: *Common Emitter
 $\mathrm{t}_{\mathrm{g}}=\mathbf{1 k} ; \mathrm{R}_{\mathrm{L}}=\mathbf{2 0 k}$
 IConventional Moise-Compared to 1000 ohm resistor, 1000 cpe and 1 cycle band width

[^20]: *absolute maximum ratings at $25^{\circ} \mathrm{C}$ case temperature (unless otherwise noted)
 Collector-Base Voltage . 60 v
 Collector Current . 60 ma
 Total Device Dissipation (see note 1) 750 mw
 Collector Junction Operating Temperature $+150^{\circ} \mathrm{C}$
 Storage Temperature Range . $-55^{\circ} 10+150^{\circ} \mathrm{C}$

[^21]: - JEDEC malistord dala

[^22]: ${ }^{\bullet}$ Common Emittor tialke tConventional Nolso-Compered to 1000 ohm resistor, 1000 cps and \mid eyele band width

[^23]: -Common Emifter $\dagger \ddagger=1$ ke. \ddagger Conventional Nolto-Compared to 1000 ohm retintor, 1000 cps and i eycle band width

[^24]: * Common Emitter $\quad f=1 k c \quad \ddagger$ Conventional Noise-Compared to 1000 ohm resistor, 1000 eps and 1 cycle band width

[^25]: - Indicates JEDEC ragistered data.

[^26]: a chonge groater than thy required acewrecy of the measurament.

[^27]: *Indicales JEDEC raghtrored data.

[^28]: *Indicates JEDEC registered data

[^29]: a chege grouter then the rayurad ectorecy of the mosswament.

[^30]: *Iallicates JEOEC mpistorad defa

[^31]: JEDEC registered data. This deta sheet contains all applicable registered data in effect at the time of publication.

[^32]: * Indicolos JEDEX rmisterad dala

[^33]: -Indicates JEDEC registered tata.

[^34]: *JE DEC registered data. This data sheet contains all applicable registered data in effect at the time of publication

[^35]: *Indicater JEDEC rogistored data

[^36]: -The JEDEC registared outline for this device is TO-5. TO-39 falls within TO-5 with the exception of lead length.

[^37]: -Indicates JEDEC rapisitered dito.

[^38]: -Indicates JEDEC registered daia.

[^39]: *The JEDEC registered outline for these devices is TO-5. TO-39 falls within TO-5 with the exception of lead fength.
 *JEDEC registered data. This data sheet contains all applicable registered data in effect at the time of publication.
 ${ }^{\dagger}$ This value is guaranteed by Texas Instruments in addition to the JEDEC registered value which is also shown.

[^40]: - JEDEC registared data.

[^41]: *The JEDEC registered outline for these devices is TO-5. TO-39 falis within TO. 5 with the exception of lead length
 *JEDEC registered data. This data sheet containa all applicable registered data in effect at the time of publication.
 \dagger This value is guaranteed by Texes instruments in addition to the JEDEC registered value which is also shown.

[^42]: *ladicetus JEDEC reglatered data

[^43]: \dagger Voltage and current values shown are nominal; exact values vary slightly with transistor parameters.
 *JEDEC registered data

[^44]: NOTES: 1. These values apply between 0 and 10 mA collector current when the base-emitter diode is open-circuited.
 2. Derate linearly to $180^{\circ} \mathrm{C}$ free-air temperature at the rate of $5 \mathrm{~mW} /^{\circ} \mathrm{C}$
 3. Derate linearly to $180^{\circ} \mathrm{C}$ iead temperature at the rata of $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$. Lead temperature is measured on the collector lead $1 / 16$ inch

[^45]: Trademark of Texes Instruments
 \ddagger U.S. Patent No. 3,439,238

[^46]: tVoltege and current values shown are nominal; exact values vary slightiy with transistor parameters.

 - The referenced figures are shown under Parameter Measurement Information for types 2 N2217 through 2 N2222 or TiS109, page 4-96.

[^47]: tPrevious editions of this date sheet showed higher power disslpation ratinge which have been found to be in error. The new ratinge correct these errors and do not represent product changes.

[^48]: - JEDEC registared data

[^49]: -The JEDEC registered outline for these devices is TO-5. TO-39 falls within TO-5 with the exception of lead length.
 -JEDEC registered data. This data sheet contains all applicable registered data in effect at the time of publication.
 ${ }^{\text {t This value is guaranteed by Texes instrumente in addition to the JEDEC registered value which is also shown. }}$

[^50]: NOTES: a. Waveforms are monitored on ancilloscope with the following characteristics: $t_{r} \leqslant 14 \mathrm{nsec}, \mathrm{R}_{\mathrm{in}}=10 \mathrm{M} \Omega, \mathrm{C}_{\mathrm{in}}=11.5 \mathrm{pF}$. b. The relay is Clare HG 1005 (or equivaient).

[^51]: ${ }^{\dagger}$ Tradernark of Texas Instruments
 +U.S. Patent No. 3,439,238
 USES CHIP N23

[^52]: *Indicates Jepec ragisterad data

[^53]: MOTES, I. This value appites whon bese-omititer diode it apen-elinultod.
 2. Dorain linvarly to $175^{\circ} \mathrm{C}$ free-alr temperature at the rate of $\mathrm{a} m \mathrm{mw} / \mathrm{C}^{\circ}$.
 3. Derate Hinearly to $175^{\circ} \mathrm{C}$ case tomptrature of the rate of $10 \mathrm{~mm} / \mathrm{C}^{\circ}$.

 - Indienoles SEDEC ragistored date.

[^54]: -Indiceles JEDEC magistorod data.

[^55]: -Indicates JEBEC regisfored deta.

[^56]: *Iadicales JEDEC registerad date

[^57]: *Indicater JEDEC magistrone data.

[^58]: -Indieata JEBEC mphomad data

[^59]: *JEDEC registered data

[^60]: -JEDEC registered date

[^61]: *JEDEC registered data

[^62]: ${ }^{\dagger}$ Previous editions of this data sheet showed higher power distipation ratings which have been found to be in error. The new ratings correct these errors and do not represent product changes.

 USES CHIP P20

[^63]: *JEDEC registered data. This data sheet contains all applicable registered data in effect at the time of publication.

[^64]: -JEDEC registored data. Thls data sheet contalns all applicable reglaterad data in effect at the time of publication.

[^65]: - JEDEC registersed date
 tThase values apply to types 2N2915A, 2N2916A, 2N2919A. and 2N2920A only.
 \ddagger This value applies to type 2N2916A only.

[^66]: -Indicates JEDEC registered data

[^67]: OTES: 1. This value appliss between 0 and 100 ma collector current when the base-omition diede is open-circuited.
 . Derato lincorly to $175^{\circ} \mathrm{C}$ treo-air temparature of the rote of $1.67 \mathrm{~mm} / \mathrm{C}^{\circ}$ for ach triode and $2.33 \mathrm{mw} / \mathrm{C}^{\circ}$ for fotal device.
 . Berate linearly to $175^{\circ} \mathrm{C}$ cese temperature at the rate of $4.67 \mathrm{mw} / \mathrm{C}^{\circ}$ for eoch triede and $9.33 \mathrm{~mm} / \mathrm{C}^{\circ}$ for folal device.
 4. The fermiaals of the tricde nof under test ory epen-circuited for the measurement of these characteristics.
 5. These marameters must be meeserve wing pulse fechniaues. $\mathrm{PW}=\mathbf{3 0 0} \mu \mathrm{sec}$, Duty Cycle $\leq \mathbf{2 \%}$.
 *Indicatos JEDEC registared data.

[^68]: T Previous editions of this date sheat showed highar power dissipation ratings which hava been found to be in error. The new ratings correct theee arrors and do not represent product changes.

 USES CHP P12

[^69]: *Indicates Jebec registered data

[^70]: NOTES: 1. These values apply between 0 and 100 mA collector current when the base-amitter diode is open-circuited.
 2. Derate linearly to $150^{\circ} \mathrm{C}$ free-air temperature at the rate of $5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$. Ste Figure 3 .
 ${ }^{\dagger}$ Tradiemark of Texas instruments
 $\boldsymbol{\Psi}$ U.S. Patent Number $3,439,238$

[^71]: tVoltwge and current values shown are nominal; exact values vary slightly with transistor parameters. Nominal base current for turn-on time is

[^72]: NOTE 4: These paramelers must be measured using pulse techniques. $t_{w}=300 \mu \mathrm{~s}$, duty cycle $\leq \mathbf{2 \%}$.

[^73]: ${ }^{\text {t }}$ Voitage and current values shown are nominal; exact values vary slightly with transistor parameters.

[^74]: The asterlsk identifies JEDEC registered data for the 2 N3702 and 2 N3703 only. This data sheet containa all applicable registered data in effect at the time of publication.
 Trademark of Texas instruments
 \ddagger U.S. Patent No. 3,439,238
 \& Texas Instruments guarantees these values in addition to the JEDEC reglstered values which are also shown.
 USES CHIP P20

[^75]: ${ }^{\dagger}$ Previlous editions of this data sheet showed higher power dissipation ratings which have been found to be in error. The new ratings correct these errors and do not represant product changes.

[^76]: NOTES: 1. These values apply between 0 and 100 mA collector current for 2 N 3734 or 0 and 40 mA for 2 N 3735 when the base-emitter diode is open-circuited.
 2. Derate linearly to $200^{\circ} \mathrm{C}$ free-air temperature at the rate of $5.71 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
 3. Derate the 10 -watt rating linearly to $200^{\circ} \mathrm{C}$ case temperature at the rate of $57.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$. Derate the 4 -watt (JEDEC registered) rating linearly to $200^{\circ} \mathrm{C}$ case temperature at the rate of $22.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.

[^77]: - JEDEC registered data

[^78]: *JEDEC registered data. This data sheat contains all applicable registered data in effect at the time of publication.

[^79]: SGD

[^80]: *JEDEC registered date
 ${ }^{\dagger}$ The fourth lead (case) is connected to the source for all measurements.

[^81]: \dagger Trademark of Texas Instruments
 \ddagger U.S. Patent No. 3,439,238

[^82]:

[^83]: NOTE 1: Derate linearly to $200^{\circ} \mathrm{C}$ free-air temperature at the rate of $1.71 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
 -JEDEC registered data. This data sheet contains all applicable registered data in effect at the time of publication.
 ${ }^{\dagger}$ The fourth lead (case) is connected to the source for all measurements.

[^84]: -Indicates JEDEC registorad date

[^85]: NOTE: 1. Derate linearly to $175^{\circ} \mathrm{C}$ free-air temperature at the rate of $\mathbf{2 m W} /{ }^{\circ} \mathrm{C}$.

 - Indicates JEDEC registered data

[^86]: †Votrage and current values shown are nominal; exact values vary allghtiv wieth tranaiteor perameters.

[^87]: *JEDEC registered date

[^88]: t Voltage and current values shown are nominal; exact values vary slightly with transistor parameters. Nominal base current for deley and rise times is calculated using the minlmum value of $V_{B E}$. Nominal base currents for storage and fall times are calculated using the maximum value
 of $V_{B E}$.

[^89]: ${ }^{\dagger}$ Trademark of Texas Instruments
 ¥u.S. Patent No. 3,439,238

[^90]: FThe fourth lead (cose) is connected to the source for all measurements
 *indicales JEDEC regisfered daida

[^91]: *JEDEC registered data. This data sheet contains all applicable data in effect at the time of publication.

[^92]: mote 3: This parameter musi be measured esing pulse tockniquos. $\boldsymbol{t}_{\mathrm{w}} \approx 100 \mathrm{~ms}$, duty cycle $\leq 10 \%$.

 - JEDEC registored data (typical data axeluded).
 \dagger These are nominal velues; oxect valuss vary silghtily with transister paremeters.

[^93]: - JEDEC registered data
 ${ }^{\dagger}$ Trademark of Texas Instruments
 \ddagger U.S. Patent No. $\mathbf{3 , 4 3 9 , 2 3 8}$

[^94]: NOTES: 1. This value applies between 0 and 30 mA collector current when the base-emitter diode is open-circuited.
 2. Derate innearly to $175^{\circ} \mathrm{C}$ free-air temperature at the rate of $6.67 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
 3. Derate the 10 -watt rating linearly to $175^{\circ} \mathrm{C}$ case temperature at the rate of $66.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$. Derate the 5 -watt (JEDEC registered) rating linearly to $175^{\circ} \mathrm{C}$ case temperature at the rate of $33.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
 The JEDEC registered outline for these devices is TO-5. TO-39 falls within TO-5 with the exception of lead length.
 *JEDEC registered data. This data sheet contains all applicable registered data in effact at the time of publication.
 ${ }^{\dagger}$ This value is guaranteed by Texas Instruments in addition to the JEDEC registered value which is also shown.

[^95]: * Indicates JEDEC registorol dała

[^96]: ${ }^{\dagger}$ Trademark of Texas Instruments
 \ddagger U.S. Patent No. 3,439,238

[^97]: ${ }^{\dagger}$ Trademark of Texas Instruments

[^98]: - The asterisk identifies JEDEC registered date for the 2N5220 only.

[^99]: -Indicates JEDEC rogistered data'

[^100]: \ddagger Voltage and current values shown are nominal; exact values vary slightly with transistor and diode parameters.

 * Indicatos JEDEC registered data

[^101]: NOTE 1: Derate linearly to $200^{\circ} \mathrm{C}$ free-air temperature at the rate of $1.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.

[^102]: NOTE 1: Derate linearly to $135^{\circ} \mathrm{C}$ free-alr temperature at the rate of $2.82 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
 *The asterisk identifies JEDEC registered data for the 2 N5460, 2 N5461, and 2 N5462 only. This data sheet contains all applicable registered data in effect at the time of publication.
 ${ }^{\top}$ Trademark of Texas Instruments
 \ddagger U. S. Patent No. 3,439,238

[^103]: NOTE 2: This parameter must be masured using pulse techniques. $\mathbf{t}_{\mathbf{w}}=\mathbf{3 0 0} \mu$ s, duty cycle $\leqslant \mathbf{2 \%}$.
 "The asterisk indicates JEDEC registered data for the 2N5460, 2N5461, and 2N5462 only.

[^104]: *JEDEC registered data. This date sheet contains all applicabie registered data in effect at the time of publication.
 ${ }^{\dagger}$ Tradernark of Texes Instruments.
 $\ddagger \mathbf{U}$. S. Patent No. 3,439,238

[^105]: NOTE 1: Derate linearly to $125^{\circ} \mathrm{C}$ froe-sir temperature at the rate of $3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
 tTrademark of Texas Instruments

[^106]: -JEDEC registered data

[^107]: NOTE 1: Derate linearly to $125^{\circ} \mathrm{C}$ free-air temperature at the rate of $3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
 t Trademark of Texas instruments
 FU.S. Patent No. 3,439,238

[^108]: - JEDEC registered data. This deta sheet contains all applicable registered data in effect at the time of publication.

[^109]: TTrademark of Texas Instruments

[^110]: ${ }^{\dagger}$ All masauramente are made with the case and eubstrate connected to the source.
 *JEDEC ragistered data

[^111]: NOTE 3: This parameter must be measured using pulse techniques. $\mathrm{t}_{\mathbf{w}}=\mathbf{3 0 0} \mu \mathrm{s}$, dutv cycle $\leqslant \mathbf{2 \%}$.

[^112]: ${ }^{\dagger} \Delta G_{p s}$ is defined as the change in $G_{p s}$ from the value at $V_{G G}=7$ volts.
 -JEDEC registered data

[^113]: - JEDEC reglatered data

[^114]: JEDEC registered data

[^115]: -JEDEC registered data

[^116]: - JEDEC raglatered data

[^117]: - JEDEC registered deta
 \ddagger For ald measurements except $C_{d s}$, the drain, source, and gate leads of the transistor not under test and the common substrate are grounded. For testing ISDS, ground is the drain of the transistor under test but for all other measurements, it is the source.

[^118]: -JEDEC raglatered data

[^119]: ${ }^{+} \Delta G_{p s}$ at 45 MHz is defined as the change in $G_{p s}$ from the value at $V_{G G}=6$ volts.
 $\ddagger \Delta G_{p g}$ at 200 MHz is dofined as the change in $G_{p s}$ from the value at $V_{G G}=7$ volts.

[^120]: JEDEC registered data

[^121]: TABLE 2-TIS59

[^122]: TTrademark of Texas instruments
 \ddagger U.S. Patent No. 3,439,238

[^123]: tTrademark of Texas Instruments
 \ddagger U. S. Patent No. 3,439,238

[^124]: ${ }^{\dagger}$ Trademark of Texas Instruments

[^125]: tVoltage and current values shown are nominal; exact values vary slightly with transistor parameters.

[^126]: ${ }^{\dagger}$ Tradamark of Texae Instruments
 ${ }^{-}$This value does not modify guaranteed Ilmite for apecific dowices and does not justify operation in oxcese of absolute maximum ratinge.
 NOTES: 1. Thia parameter was meseured uaing pute techniquas. $t_{w}=300 \mu s$, dutv ovele $<\mathbf{2 \%}$.
 2. Capacitance measurements were made using enlpi mounted in Silect packages.

[^127]: +Data is for devices having indicated value of loss at $V_{D S}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
 NOTE 2: Capacitance measurements were made using chips mounted In Silect packages.

[^128]: This value does not modify guaranteed limits for specific devices and does not justify operation in excess of absolute maximum ratings. NOTES: 1. These parameters were measured using pulse techniques. $t_{w}=300 \mu \mathrm{~s}$, duty cycle $\leqslant 2 \%$.
 2. To avoid overhesting the transistor, these parameters were measured with bias conditions applied for less than five seconds.
 3. Capacitance measurements were made using chips mounted in TO-18 packages.

[^129]: ${ }^{\dagger}$ Trademark of Texas instruments
 ${ }^{*}$ This value does not modify guaranteed limits for specific devices and does not justify operation in excess of absolute maximum ratings. NOTES: 1. This parameter was measured using pulse techniques. $t_{w}=300 \mu s$, duty cycle $<\mathbf{2 \%}$.
 2. Capacitance measuraments were made using chlps mounted in Silect packages.

[^130]: ${ }^{\dagger}$ Trademark of Texas Instruments
 This value does not modify guaranteed limits for specific devices and does not justify operation in excess of absolute maximum ratings. NOTES: 1. This parameter was measured using pulse techniques. $t_{w}=300 \mu \mathrm{~s}$, duty cycle $\leqslant 2 \%$.
 2. Capacitance measurements were made using chips mounted in Silect packages.

[^131]: NOTES: 1. This parameter was measured using pulse techniques. $t_{w}=\mathbf{3 0 0} \mu$, duty cycle $\leqslant 2 \%$.
 2. Capacitance measurements were made using chips mounted in Silect packages.

[^132]: These values do not modify guaranteed limits for epecific devices and do not justify operation in excess of absolute maximum ratings.
 NOTES: 1. These parameters were measured using pulse techniques. $t_{w}=300 \mu s$, duty cycle $<2 \%$.
 2. Capacitance measurements were made using chips mounted in TO-72 packages.

[^133]: ${ }^{t}$ Trademark of Texas Instruments
 -This value does not modify guaranteed limits for specific devices and does not justify operation in excess of absolute maximum ratings.
 NOTES: 1. This parameter was measured using pulse techniques. $t_{w}=\mathbf{3 0 0} \mu \mathrm{s}$, duty cycle $\leq 2 \%$.
 2. Capacitance measurements were made using chips mounted in Silect packages.

[^134]: ${ }^{\dagger}$ Data is for devices having the indicated value of ${ }^{\prime}$ DSS at $V_{D S}=-15 V_{0} V_{G S}=0, T_{A}=25^{\circ} \mathrm{C}$.
 NOTE 1: This parameter was measured using pulse techniques. $\tau_{w}=300 \mu_{s}$, duty cycle $\leq 2 \%$.

[^135]: This value does not modify guaranteed limits for specific devices and does not justify operation in excess of absolute maximum ratings. NOTES: 1. This parameter was measured using pulse techniques. $t_{w}=300 \mu s$, duty cycle $\leqslant 2 \%$
 2. To obtain reproducible results, this parameter was measured with bias conditions applied for less than five seconds.
 3. Capacitance measurements ware made using chips mounted in TO-72 packages.

[^136]: $\dagger_{\text {Data }}$ is for devices having the indicated value of ${ }_{\mathrm{DS}}$ at $\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{G} 1 \mathrm{~S}}=0, \mathrm{~V}_{\mathrm{G} 2 \mathrm{~S}}=4 \mathrm{~V}$.

[^137]: ${ }^{\dagger}$ Data is for devices having the indicated value of $I_{D S S}$ at $V_{D S}=15 \mathrm{~V}, V_{G S}=0$, and $T_{A}=25^{\circ} \mathrm{C}$.

[^138]: NOTES: 1. This parameter was measured using pulse techniques. $t_{w}=300 \mu \mathrm{~s}$, dutv cvcle $\leqslant 2 \%$.

[^139]: ${ }^{\dagger}$ All measurements, except ISDS, are made with the case and substrate connected to the source.
 -This value does not modify guaranteed limits for specific devices and does not justify operation in excess of absolute maximum ratings. CAUTION: The measurement of $V_{\text {(BR) }}$ DSS may be destructive.
 NOTES: 1. This parameter was measured using pulse techniques. $\mathbf{t}_{\mathbf{w}}=300 \mu \mathrm{~s}$, duty cycle $\leqslant \mathbf{2 \%}$.
 2. Capacitance measurements were made using chips mounted in TO-72 packages.

[^140]: ${ }^{\dagger}$ All measurements except ISDS are made with the case and substrate connected to the source.
 This value does not modify guaranteed limits for specific devices and does not justify operation in excess of absolute maximum ratings.
 These parameters apply only for chips having protective diodes.

 - This parameter applies only for chips not having protective diodes.

 NOTES: 1. To ensure that the protective diode is functioning properly, this voltage is measured while the device is conducting rated forward gate current
 2. This parameter was measured using pulse techniques. $t_{w}=300 \mu s$, duty cycle $\leqslant 2 \%$.
 3. Capacitance measurements were made using chips mounted in TO-72 packages,

[^141]: NOTES: 3. Capacitance measurements were made using chips mounted in TO-76 packages

[^142]: Thase values do not modify guarsnteed limits for apecific devices and do not justify operation in excess of absolute maximum ratings.
 ${ }^{\top}$ Offeat Voltage Change is defined es the magnitude of the algebraic difference between the offeet voltages at two specified batings.
 NOTES: 1. Thase values apply seperately for each emitter with the other emitter open-circuited.
 2. These paramaters were measured with the collector short-elreulted to the base but

 The values epply for both polerities of emitter-to-emlter volrace
 3. Capacitence menauromente wers made using ohipe mounted in TO-72 packages.

[^143]: Trademark of Texas Instrument
 These values do not modify guaranteed limits for specific devices and do not Justify operation in excess of absolute maximum ratings.
 NOTES: 1. These parameters were mearured using pulse techniques. $t_{w}=300 \mu s$, duty cycle $\leqslant 2 \%$.
 2. Capacitance measurements were made using chips mounted in TO-39 packeges.

[^144]: TTrademark of Texes Instruments
 -These values do not modify guaranteed limite for apecific devices and do not Juatify operation In axcesi of absolute maximum ratinge.
 NOTES: 1. This parameter was measured using pulce techniquan. tw = $\mathbf{3 0 0} \mu$, duty evcle $\leqslant \mathbf{2 \%}$.
 2. Capacitance measurementa were made uaing chips mounted in TO-39 packages.
 3. C_{cb} and C_{ab} measuremente amploy a three-tarminal apacitance bridge incopporating a guard eircult. The third electrode femitter or collector, reepectlvely) is connected to the guard tarminal of the bridge. Cabo and $C_{\text {ibe }}$ measurementi are made with the third terminal floating.

[^145]: ${ }^{+}$Trademark of Texas instruments
 These values do not modify guaranteed limits for specific devices and do not justify operation in excess of absolute maximum ratings. NOTES: 1. These parameters were measured using pulse techniques. $\mathbf{t}_{\mathbf{w}}=\mathbf{3 0 0} \boldsymbol{\mu s}$, duty cycle $\leqslant \mathbf{2 \%}$.
 2. Cepacitance and $r_{b}{ }^{\prime} C_{c}$ masarurements were made using chips mounted in Silect packages.
 3. C_{cb} measurement employs a three-terminal cepacitence bridge incorporating a guard circuit. The emitter is connected to the guard terminal of the bridge.

[^146]: \dagger Trademark of Texas Instruments
 -These values do not modify guaranteed limits for specific devices and do not justify operation in excess of absolute maximum ratings.
 NOTES: 1. These parameters were measured using pulse techniques. $t_{w}=300 \mu s$, duty cycle $\leqslant 2 \%$.
 2. Capacitance measurements were made using chips mounted in Silect packages.
 3. C_{cb} measurement employs a three-terminal capacitance bridge incorporating a guard circuit. The emitter is connected to the guard terminal of the bridge.

[^147]: These values do not modify guaranteed limits for specific devices and do not justify operation in excess of absolute maximum ratings.
 NOTES: 1. These parameters were measured using pulse techniques. $t_{w}=300 \mu s, d u t y ~ c y c l e ~ \leqslant ~ 2 \% . ~$
 2. Capacitance measurements were made using chips mounted in TO-5 packages.

[^148]: ${ }^{\dagger}$ Trademark of Texas Instruments
 This value does not modify guaranteed limits for specific devices and does not justify operation in excess of absolute maximum ratings.
 $\ddagger \mathrm{C}_{\text {ies }}$ and $\mathrm{C}_{\text {oes }}$ are defined as the imaginary parts of the small-signal, common-emitter, short-circuit admittances divided by $2 \pi \mathrm{\pi f}$.
 NOTES: 1. This parameter was measured using pulse techniques. $t_{w}=300 \mu \mathrm{~s}$, duty cycle $\leqslant 2 \%$.
 2. Capacitance measurements were made using chips mounted in Silect packages.
 3. C_{cb} maasurement employs a three-terminal capacitance bridge incorporating a guard circuit. The emitter is connected to the guard terminal of the bridge.

[^149]: Trademark of Texas Instruments
 *These values do not modify guaranteed limits for specific devices and do not justify oper ation in excess of absolute maximum ratings.
 NOTES: 1. These parameters ware measured using pulse techniques. $t_{w}=\mathbf{3 0 0} \mu \mathrm{s}$, duty cycle $\leqslant \mathbf{2 \%}$.
 2. Capacitance maasurements were made using chips mounted in Silect packages.
 3. C_{cb} and $\mathrm{C}_{\text {eb }}$ measurements amploy a three-terminal capacitance bridge incorporating a guard circuit. The third electrode (emitter or collector, respectively) is connected to the guard terminal of the bridge.
 4. Average Noise Figure was measured in an amplifier with response down 3 dB at 10 Hz and 10 kHz and a high-frequency roll-off of 6 de/octeve.

[^150]: ${ }^{\dagger}$ Trademerk of Texas Instruments
 \ddagger All dynamic characteristics were measured using chips mounted in Silect packagas.
 -These values do not modify guaranteed limits for specific devices and do not justify operation in excess of absolute maximum ratings.
 $\S_{p_{f}}{ }^{2}$ is equal to the insertion power gain of the transistor alone.
 NOTES: 1. These parameters were measured using pulse tech niques. $\mathrm{t}_{\mathrm{w}}=\mathbf{3 0 0} \mu \mathrm{s}$, duty cycle $\leqslant 2 \%$.
 2. C_{cb} measurement employs a three-terminal capacitance bridge incorporating a guard circuit. The emitter is connected to the guard terminal of the bridge.

[^151]: Thase messurements were mede using chips mounted in Silect packages.

[^152]: †Trademark of Texas Instruments
 These values do not modify guaranteed limits for specific devices and do not justify operation in excess of absolute maximum ratings.
 NOTES: 1. These parameters were measured using pulse techniques. $t_{w}=300 \mu \mathrm{~s}$, duty cycle $\leqslant \mathbf{2 \%}$.
 2. Capacitance measurements were made using chips mounted in TO-39 packages.

[^153]: ${ }^{\dagger}$ Trademark of Texes Instruments
 -These values do not modify guaranteed limits for specific devices and do not justify operation in excess of absolute maximum ratings.
 $\left.\ddagger p_{\text {fb }}\right|^{2}$ is equal to the insertion power gain of the transistor alone.
 NOTES: 1. These parameters were measured using puise techniques. $t_{w}=300 \mu$ s, duty eycle $<\mathbf{2 \%}$.
 2. Capacitance and s-parmeter measurements were made using chlps mounted in TIS 125 packages.
 3. C_{cb} and C_{ce} measurements employ a three-terminal capacitance bridge incorporating aguard circuit. The third electrode (emitter or base, respectively) is connected to the guard terminal of the bridge.

[^154]: ${ }^{\dagger}$ Trademark of Texas Instruments
 These values do not modify guaranteed limits for specific devices and do not justify operation in excess of absolute maximum ratings.
 $\mp{ }^{\operatorname{sff}} \mathrm{F}^{2}$ is equal to the insertion power gain of the transistor alone.
 NOTES: 1. These parameters were measured using pulse techniques. $\mathrm{t}_{w}=\mathbf{3 0 0} \mu \mathrm{s}$, duty cycle $<\mathbf{2 \%}$.
 2. Capacitance, $r_{b} \cdot C_{c}$, and s-parameter measurements were made using chips mounted in TO-72 packages.
 3. $\mathrm{C}_{c b}$ and $\mathrm{C}_{e b}$ measurements employ a three-terminal capacitance bridge incorporating a guard circuit. The third electrode femitter or collector, respectively) is connected to the guard terminal of the bridge.

[^155]: tTradernark of Texas Instruments
 \ddagger These values do not modify guaranteed limits for specific clevices and do not justify operation in excess of absolute maximum ratings. \ddagger He \boldsymbol{F} is equal to the insertion power gain of the transistor atone.
 NOTES: 1. These paremeters were measured using pulse techniques. $t_{w}=300 \mu s$, duty cycle $<2 \%$.
 2. Capacitance, $r_{b}{ }^{\prime} C_{c}$, and s-parameter measurements were made using chips mounted in Silect packages.
 3. $C_{c b}$ and $C_{c e}$ measurements employ a three-terminal capacitance bridge incorporating a guard circuit, The third elactrode (emitter or base, respectively) is connected to the quard terminal of the bridge.

[^156]: ${ }^{\dagger}$ Trademark of Texas Instruments
 -These values do not modify guaranteed limits for specific devices and do not justify operation in excess of absolute maximum ratings.
 NOTES: 1. This parameter was measured using pulse techniques. $\mathrm{t}_{\mathrm{w}}=\mathbf{3 0 0} \mu \mathrm{s}$, duty cycle $\leq 2 \%$.
 2. Cepacitance measuraments were made using chips mounted in TO-39 packages.
 3. C_{cb} and $\mathrm{C}_{\text {eb }}$ messurements employ a three-terminal capacitance bridge incorporating a guard circuit. The third electrode femitter or collector, respectivaly) is connected to the guard terminal of the bridge.

[^157]: - These values do not modify guaranteed limits for specific devices and do not justify operation in excess of absolute maximum ratings.

 NOTES: 1. These parameters were measured using pulse techniques. $t_{w}=300 \mu s$, duty cycle $\leqslant 2 \%$.
 2. Capacitance measurements were made using chips mounted in TO-18 packages.

[^158]: ${ }^{\dagger}$ Trademark of Texas Instruments
 These values do not modify guaranteed limits for specific devices and do not justify operation in excess of absolute maximum ratings.
 NOTE 1: Capacitance measurements ware made using chips mounted in TO-46 packages.

[^159]: ${ }^{\dagger}$ Trademark of Texas Instruments
 These values do not modify guaranteed limits for specific devices and do not justify operstion in excess of absolute maximum ratings.
 NOTES: 1. These parameters were measured using pulse techniques. $t_{w}=300 \mu s$, duty cycle $\leqslant 2 \%$.
 2. Capacitance measurements were made using chips mounted in Silect packages.
 3. C_{cb} messurement employs a three-terminal capacitance bridge incorporating a guard circuit. The emitter is connected to the guard terminal of the bridge. Cobo and C_{ib} measurements are made with the third terminal floating.
 4. Average Noise Figure is measured in an amplifier with response down 3 dB at 10 Hz and 10 kHz and a high-frequaney roll-off of $6 \mathrm{~dB} /$ octave.

[^160]: ${ }^{\dagger}$ Trademark of Texas Instruments
 -These values do not modify guaranteed limits for specific devices and do not justify operation in excess of absolute maximum ratings.
 NOTES: 1. These parameters were measured using pulse techniques. $t_{w}=300 \mu s$, duty cycle $\leqslant 2 \%$.
 2. Capacitance measurements were made using chips mounted in Silect packages.

[^161]: NOTE 2: Capacitance measurements were made using chips mounted in Silect packagas.

[^162]: ${ }^{\dagger}$ Trademark of Texas Instruments
 These values do not modify guaranteed limits for specific devices and do not justify operation in excess of absolute maximum ratings.
 NOTES: 1. These parameters were measured using pulse tehniques. $\mathbf{t}_{\mathbf{w}}=300 \mu \mathrm{~s}$, duty cycle $\leqslant 2 \%$.
 2. Capacitance measurements were made using chips mounted in TO-18 packages.

[^163]: tTrademark of Texes Instruments
 Thees values do not modify guaranteed Imits for epecific deviess and do not justify operation in excess of absolute maximum ratings.
 NOTES: 1. These parameters were measured using pulse techniques. $t_{w}=300 \mu s$, duty cycle $<2 \%$.
 2. Cepacitance medurements were made using chips mounted in TO-92 packages.

[^164]: -These values do not modify guaranteed limits for specific devices and do not justify oparation in excess of absolute maximum ratings.
 NOTES: 1. These parameters were meesured using pulse techniques. $t_{w}=\mathbf{3 0 0} \mu \mathrm{s}$, duty cycle $\leqslant 2 \%$.
 2. Capacitance measurements were made using chips mounted in TO-18 packages.
 3. $C_{c b}$ and $C_{e b}$ measuremants employ a three-terminal capacitance bridge incorporating a guard circuit. The third electrode (emitter or collector, respectivelv) is connected to the guard terminal of the bridge. Cobo and $C_{i b o}$ measurements are made with the third terminal floating.
 4. Average Noise Figure is measured in an amplifier with response down 3 dB at 10 Hz and 10 kHz and a high-frequency roll-off of 6 dB/octave.

[^165]: NOTE 1: These parameters were measured using pulse techniques. $\mathbf{t}_{w}=\mathbf{3 0 0} \mu \mathrm{s}$, duty cycle $\leqslant 2 \%$.

[^166]: ${ }^{T}$ Trademark of Texas Instruments
 *These values do not modify guaranteed limits for specific devices and do not justify operation in excess of absolute maximum ratings.
 NOTES: 1. These parameters were measured using pulse techniques. $\mathrm{t}_{\mathrm{w}}=300 \mu \mathrm{~s}$, duty cycle $\leqslant 2 \%$.
 2. Capacitance measurements were made using chips mounted in TO-5 packages.

[^167]: tTrademark of Texas Instruments
 These values do not modify guaranteed limits for specific devices and do not justify operation in axcess of absolute maximum ratings.
 NOTES: 1. These parameters were measured using pulse techniques. $t_{w}=300 \mu s$, duty cycle $\leqslant \mathbf{2 \%}$.
 2. Capacitance measurements were made using chips mounted in TO-92 packages.
 3. Average Noise Figure was measured in an amplifler with response down 3 dB at 10 Hz and 10 kHz and a high-frequency roll-otf of 6 dB/octave.

[^168]: TTrademark of Texas Instrumenta
 Thase values do not modify guaranteed limits for specific devices and do not justify operation in excess of absolute maximum ratings.
 NOTES: 1. These parameters were measured using pulse techniques. $\mathrm{t}_{\mathrm{w}}=300 \mu \mathrm{~s}$, duty cycle $\leqslant 2 \%$.
 2. Capscitance measurements were made using chips mounted in TO.92 packages.
 3. C_{cb} and $\mathrm{C}_{\text {eb }}$ measurements amploy a three-terminal capacitance bridge incorporating a guard circuit. The third electrode (emitter or collector, respectively) is connected to the guard terminal of the bridge.

[^169]: ${ }^{\dagger}$ Trademark of Texas Instruments

[^170]: \dagger Items in parentheses are the gross-leak test conditions performed by Environmental Laboratory.
 \ddagger Also can perform mechanical shock per MIL-STD-810B, Method 516, Procedures I, III and IV.
 ${ }^{4}$ Also can perform random vibration and vibration variable frequency per MIL-STD-8108, Method 514.1, Procedures I, II, III, IV, and VII. Omit paragraph 4.5.1.1, Resonant Search, and paragraph 4.5.1.2, Resonant Dwell for Electronic Components.
 ICapability for testing approximately 15 major microelectric package types per MIL-STD-883, Method 2001, Conditions G and H (sustained accelaration) and for testing approximately 30 major microelectronic packsges per MIL-STD-883, Mathod 2002, Conditions F and G (mechanical shock) are presently available. These high " G " level conditions are used primarlly for evaluation tests on small packages such as C-DIP, P-DIP, TO-5, TO-18, etc.
 *Radiographic inspection is performed in accordance with many other goverment and customer apecifications. Before any new radiographic specification is acceptance for use as a test stendard with Components Group, it must be approved by Environmental Laboratory.

[^171]: ${ }^{\dagger}$ See package drawing on page 8-14.

[^172]: - See package drawings on page 8-14.

[^173]: *See package drawings on page 8-14.

[^174]: -See package drawings on page 8-14.

[^175]: *See package drawings on page 8-14.

[^176]: *See package drawings on page 8-14.

[^177]: -See package drawings on page 8-14.

[^178]: *See package drawings on page 8-14.

[^179]: *See package drawings on page 8-14.

[^180]: *See package drawings on page 8-14

[^181]: *JE DEC registered data. This data sheet contains all applicable registered data in effect at the time of publication.

[^182]: *JEDEC registered data. This data sheet contains all applicable registered data in effect at the time of publication.

[^183]: *JEDEC registered data (nominal values excluded).

[^184]: *JEDEC registered data

[^185]: * JEDEC regisliored data

[^186]: *JEDEC malisterad date

[^187]: * JEDEC registered data

[^188]: -JEDEC registered data. This data sheet contains all applicable registered data in effect at the time of publication.

[^189]: - JE DEC registered data

[^190]: *JEDEC registered data. This data sheet contains all applicable registered data in effect at the time of publication.

[^191]: - JEDEC registered data

[^192]: NOTE 1: Derate linearly to $200^{\circ} \mathrm{C}$ free-air temperature at the rate of $1.43 \mathrm{mw} /{ }^{\circ} \mathrm{C}$. See F igure 2.

[^193]: NOTES: c. The input pulse is supplied by generator with the following characteristics: $\mathrm{t}_{\mathrm{f}} \leqslant \mathbf{1} \mathrm{ns}, \mathrm{Z}_{\text {out }}=50 \Omega$, $\mathrm{t}_{\mathbf{w}}=200 \mathrm{~ns}$, duty cycle $<1 \%$.
 d. Output waveform is monitored on an ascilloscope with the following characteristics: $t_{r} \leq 0.4 \mathrm{~ns}, \mathrm{R}_{\mathrm{in}} \geqslant 50 \Omega$.

[^194]: ${ }^{\dagger} C_{T}$ is the total pin-to-pin cepacitance measured across any of the diodes. For arrays having both common-anode and common-cathode sections, the interaction of the other diodes cannot easily be separated out unless three-terminal guarded measurement techniques are used. The actual capacitance of a single isolated diode will typically be 30% of the measured pin-to-pin value for the common-cathode diodes, and 75% of the measured value for the common-anode diodes.

[^195]: the ambient temperature is measured at a point 2 inches below the device. Natural air cooling is used.

[^196]: †The capacitance of diodes in matched sets is matched at all voltages between 3 and 25 volts to within $\mathbf{1 . 5 \%}$ or 0.1 pF, whichever is oreater. For ordering matched sets, add dash number to basic part number to indicate the quantity of diodes in the set. For example, TIV21-4 indicates a matched set of 4 diodes.
 NOTES: 1. Derate linearly to $150^{\circ} \mathrm{C}$ at the rate of $2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
 2. Figure of Merit, Q, is defined by the equation $Q=\frac{1}{2 \pi f C_{\tau} r_{s}}$ where r_{s} is the equivalent saries resistance.

[^197]: t The capacitance of diodes in matched sets is matched at all voltages between 3 and 25 volts to within 1.5% or 0.1 pF, whichever is greater. For ordering matched sats, add dash number to basic part number to indicate the quantity of diodes in the set. For axample, TIV24-4 indicates a matched set of 4 diodes.
 NOTES: 1. Derate linearly to $150^{\circ} \mathrm{C}$ at the rate of $2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
 2. Figure of Merit, Q, is defined by the equation $O=\frac{1}{2 \pi f} C_{t} r_{s}$ where r_{s} is the equivalant series resistance.

[^198]: *See "Part Number Designation" on last page.

