# T. HLTTL 

# Wherever there's HLTTL... there's Traingitron 



The Transitron philosophy in integrated circuits has resulted in the concentration of its production capability first on a family of digital monolithic circuits called High Level Transistor Transistor Logic (HLTTL). There is, of course, intention to manufacture linear integrated circuits and perhaps even other families of digital circuits in the near future. However, it is believed that the family of integrated circuits with the greatest appeal to circuit and system designers today and for the systems producer for the next several years is without question HLTTL. Therefore, the past year has been devoted almost entirely to the establishment of good manufacturing capability of such circuits. Transitron's concentration of effort on this family has resulted in an unprecedented number of different circuit functions and gates for the application of logic system designers; a strong improvement in the propagation delay, the radiation resistance and the output characteristic of the circuits; a new master slave flip-flop for single phase application; a willingness to do custom work within the basic HLTTL circuit concept for new functions; a similar willingness to alternate source other manufacturers' HLTTL functions and pin configurations; and finally a low cost set of HLTTL circuits for commercial application. All of this is detailed in the succeeding pages of this brochure. It has been our intent to make evident, by performance, the slogan, "Wherever There's HLTTL . . . There's Transitron." The industry response to this philosophy has been gratifying.
Transitron Integrated Circuit Operations ..... 3
HLTTL Integrated Circuits ..... 6
HLTTL Circuit Listings ..... 12
Manufacturer's Cross-Reference and Pin Configuration Guide . ..... 13
HLTTL Specifications ..... 14
Characteristics of Transitron HLTTL Integrated Circuits ..... 16
Commercial Series HLTTL ..... 17
Eommercial Circuit Specifications ..... 20
Quality Assurance and Reliability ..... 21

## Transitron

 Integrated Circuit OperationsCRYSTAL GROWING Single crystal Czochralski silicon crystals are grown in furnaces designed and built by Transitron.
Dopants used are
antimony, arsenic, phosphorous and boron The crystals are cut, lapped and polished prior to further processing.

EPITAXIAL - Boron, arsenic, and phosphorous doped epitaxial layers are grown in a clean room. Laminar flow clean benches further reduce the foreign particle size to less than 3 microns during slice preparation and furnace loading and unloading.

Layers are grown with resistivities ranging from
0.02 to 8 ohmcentimeters. Photomicrographic equipment and an Infrared Interferometer are utilized in addition to the standard electrical test equipment.

## MASK MAKING -

 Integrated circuit photomasks are made in Transitron's photographic laboratory. Both the standard emulsion-on-glass type mask and evaporated chromium-on-glass masks are produced. An intermediate master is made from the original art work on a precision reduction camera capable of resolving a 3 micron line width.The master mask is then made from the inter-
mediate mask on a Photorepeater, which has a positional error of less than .5 micron. A solid state counter and shaft encoder control stepping distance. Comparators, accurate
to .5 micron in two coordinates are used to inspect the masks. With this equipment, and the processing techniques developed by Transitron, line widths of one micron and registration errors of less than one micron are achieved.

MASK ALIGNMENT Mask alignment is performed on equipment designed and built at Transitron. This alignment equipment is a significant advancement over commercially available equipment and has a registration arror of less than 0.5 micron.



MULTIPLE PROBE TESTING - Automatic test equipment is used for testing the dice on the slice prior to scribing and mounting in the package.

DIE MOUNTING - The integrated circuits are packaged using semiautomatic die mounting equipment. One of the unique features is the automatic die edge pickup which eliminates any possible surface damage.

BONDING - Aluminum leads are ultrasonically bonded to the integrated circuit, also using Transitron designed and fabricated equipment.

TESTING - Each Transitron integrated circuit is tested on automatic, high-speed, multiparameter test systems. These test systems, which were designed and constructed at Transitron, also include a punched paper tape output of test results for data logging and computer analysis of test data.


## Transitron HLTTL <br> Integrated Circuits

## SINGLE 8－INPUT NAND／NOR GATE



| PIN CONNECTION |  |  |  |
| :---: | :---: | :---: | :---: |
| TO－5 |  | Flat Package |  |
| Circuit | Pin | Circuit | Pin |
| Letter | No． | Letter | No． |
| A | 1 | A | 13 |
| B | 2 | B | 1 |
| C | 3 | C | 2 |
| D | 4 | D | 3 |
| E | 8 | E | 5 |
| F | 9 | F | 6 |
| G | 10 | G | 7 |
| H | 11 | H | 9 |
| J | 12 | J | 4 |
| K | 7 | K | 12 |
| L | 6 | L | 10 |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |



TRIPLE 3-INPUT NAND/NOR GATE


| PIN CONNECTION <br> (Flat Package) |  |
| :---: | :---: |
| Circuit Letter | Pin Number |
| A | 1 |
| B | 2 |
| C | 3 |
| D | 6 |
| E | 7 |
| F | 8 |
| G | 11 |
| H | 12 |
| I | 13 |
| K | 14 |
| L | 10 |
| M | 5 |
| N | 9 |
|  |  |

QUAD 2-INPUT NAND/NOR GATE


| $C=$$C=G I C$    <br> $A \cdot B$  $F=\overline{O \cdot E}$ $K=\overline{G \cdot H}$$\quad N=\overline{M \cdot I}$ |  |  |  |
| :--- | :--- | :--- | :--- |
| $-L U G I C$ |  |  |  |
| $C=\overline{A \cdot B}$ | $F=\overline{O+E}$ | $K=\overline{G+M}$ | $N=\overline{M+I}$ |



DUAL 4-INPUT AND EXPANDER

TNG 3511F 3512 F


## GATED 2-PHASE FLIP-FLOP

| TFF 3011 | TFF 3011F |
| ---: | ---: |
| 3012 | $3012 F$ |
| 3013 | $3013 F$ |
| 3014 | $3014 F$ |



| PIN CONNECTION |  |  |  |
| :---: | :---: | :---: | :---: |
| TO-5 |  | Flat Package |  |
| Circuit | Pin |  |  |
| Letter | Circuit | Pin |  |
| A | 2 | Lefter | No. |
| B | 3 | A | 14 |
| C | 4 | B | 1 |
| D | 1 | C | 2 |
| E | 8 | E | 3 |
| F | 9 | F | 6 |
| G | 10 | G | 9 |
| H | 5 | H | 12 |
| J | 12 | J | 4 |
| K | 7 | K | 11 |
| L | 6 | L | 10 |
|  |  | M | 13 |
|  |  | N | 5 |
|  |  |  |  |

AC COUPLED
J.K FLIP-FLOP


- 001 C
$k=0_{N}+1=\sqrt{\sigma_{N}}+\overline{\mathrm{K}}_{n}$
-LOB1C
$\mathrm{N}=\mathrm{o}_{\mathrm{N}}+1=3 \mathrm{on}^{\mathrm{N}} \mathrm{KO}_{\mathrm{N}}$


GENERAL PURPOSE MASTER-SLAVE FLIP-FLOP WITH BUFFER

| TFF 3115 | TFF 3111F | TFF $3115 F$ |
| ---: | ---: | ---: |
| 3116 | $3112 F$ | $3116 F$ |
| 3117 | $3113 F$ | $3117 F$ |
| 3118 | $3114 F$ | $3118 F$ |



| PIN CONNECTION |  |  |  |
| :---: | :---: | :---: | ---: |
| TO-5 |  | Flat Package |  |
| Circuit | Pin | Circuit | Pin |
| Letter | No. | Letter | No. |
| A | 8 | A | 5 |
| C | 2 | B | 10 |
| D | 5 | C | 7 |
| F | 11 | D | 3 |
| G | 10 | E | 13 |
| H | 12 | F | 1 |
| l | 6 | G | 2 |
| L | 7 | H | 4 |
| M | 4 | I | 11 |
| N | 1 | L | 9 |
| R | 9 | M | 12 |
| S | 3 | N | 6 |
|  |  | R | 8 |
|  |  | S | 14 |

## Transitron HLTTL <br> Integrated Circuits <br> (continued)




## EXCLUSIVE OR GATE WITH COMPLEMENT



| PIN CONNECTION <br> (Flat Package) |  |
| :---: | :---: |
| Circuit Letter | Pin Number |
| A | 1 |
| B | 2 |
| C | 3 |
| D | 5 |
| E | 6 |
| F | 7 |
| I | 12 |
| J | 4 |
| K | 11 |
| L | 10 |
| M | 13 |
| N | 14 |
|  |  |

## DUAL 4-INPUT OR EXPANDER

TAG 4011 F 4012F


PIN CONNECTION (Flat Package)

Circuit Letter: Pin Number

| A | 1 |
| ---: | ---: |
| $B$ | 2 |
| $C$ | 3 |
| $D$ | 14 |
| $E$ | 5 |
| $F$ | 6 |
| $G$ | 7 |
| $H$ | 8 |
| I | 13 |
| $J$ | 4 |
| $K$ | 12 |
| $L$ | 10 |
| $M$ | 9 |
| $N$ | 11 |

## QUAD 2-INPUT OR EXPANDER

TAG 4511 F 4512F


PIN CONNECTION (Flat Package)

Circuit Letter Pin Number

| A | 13 |
| :---: | ---: |
| $B$ | 14 |
| $C$ | 1 |
| $D$ | 2 |
| $E$ | 3 |
| F | 5 |
| G | 6 |
| $H$ | 7 |
| I | 8 |
| $J$ | 4 |
| K | 11 |
| L | 10 |
| $M$ | 9 |
| $N$ | 12 |



## Transitron hittL Circuit Listing

NOTE: Package Key as follows:
(a) $\mathrm{T}=12$ lead, short cap, TO-5 package For units in this package use type number as listed.
(b) $F=14$ lead, $.195 \times$ .260 inch flat package For units in this package use type numbers with F suffix (e.g., TNG3011F).


## Transitron HLTTL

Integrated
Circuit
Manufacturers' Type Cross-reference and Pin Configuration Guide

## NOTES:

(1) Under "Temperature Range'" column, $F$ equal $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ and R equal 0 to $+75^{\circ} \mathrm{C}$.
(2) In "Sylvania type" column the * means that Transitron devices have a higher guaranteed fanout than the Syivania type listed.
(3) In '"Pin Configuration' column where more than one configuration is listed, the standard Transitron configuration is denoted by a line under the letter (e.g., A)
(4)Key to the pin
configurations are as foliows:
$A=$ Transitron
B = Sylvania
$\mathrm{C}=$ Texas instruments
$\mathrm{D}=$ Phoenix Gate

|  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Circuit Description | F.O. | Temp. Range | $\begin{aligned} & \text { Transition } \\ & \text { Type } \\ & \text { No. } \end{aligned}$ | Sylvania Type No. | Texas Instr. Type No. | Pin Configurations Available from Transitron |
| Single 8 input Nand/Nor Gate | $\begin{array}{r} 15 \\ 15 \\ 7 \\ 7 \\ \hline \end{array}$ | $\begin{aligned} & \mathrm{F} \\ & \mathrm{R} \\ & \mathrm{~F} \\ & \mathrm{R} \end{aligned}$ | TNG3011F TNG3012F TNG3013F TNG3014F | SG60 - SG62 SG61 *SG63 | General type SN5430 | B, C, D |
| Single 8 input Nand/Nor Gate, Expandable | $\begin{array}{r} 15 \\ 15 \\ 7 \\ 7 \\ \hline \end{array}$ | $\begin{aligned} & \mathrm{F} \\ & \mathrm{R} \\ & \mathrm{~F} \\ & \mathrm{R} \end{aligned}$ | TNG3051F TNG3052F TNG3053F TNG3054F | SG120 "SG122 SG121 "SG123 |  | B |
| Duai 4 input Nand/Nor Gate | $\begin{array}{r} 15 \\ 15 \\ 7 \\ 7 \\ \hline \end{array}$ | $\begin{aligned} & \hline F \\ & R \\ & \mathrm{~F} \\ & \mathrm{R} \\ & \hline \end{aligned}$ | TNG3111F TNG3112F TNG3113F TNG3114F | $\begin{array}{r} \text { SG40 } \\ \text { •SG42 } \\ \text { SG41 } \\ \text {-SG43 } \\ \hline \end{array}$ | General type <br> SN5420 | B, C, D |
| Tripie 3 input Nand/Nor Gate | $\begin{array}{r} 15 \\ 15 \\ 7 \\ 7 \\ \hline \end{array}$ | $\begin{aligned} & F \\ & R \\ & \mathrm{~F} \\ & \mathrm{R} \end{aligned}$ | TNG3311F TNG3312F TNG3313F TNG3314 F | SG190 SG192 SG191 SG193 | General type SN5410 | A, B, C |
| Ouad 2 input Nand/Nor Gate | $\begin{array}{r} 15 \\ 15 \\ 7 \\ 7 \\ \hline \end{array}$ | $\begin{aligned} & \mathrm{F} \\ & \mathrm{R} \\ & \mathrm{~F} \\ & \mathrm{R} \\ & \hline \end{aligned}$ | TNG3411F <br> TNG3412F <br> TNG3413F <br> TNG3414F | SG140 - SG142 SG141 - SG143 | Generai type <br> SN5400 | B, C |
| Duai 4 And Expander Gate | - | $\begin{aligned} & \mathrm{F} \\ & \mathrm{R} \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { TNG3511F } \\ & \text { TNG3512F } \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { SG180-181 } \\ & \text { SG182-183 } \\ & \hline \end{aligned}$ |  | B |
| Dual 4 input OR Gate, Expandable | $\begin{array}{r} 15 \\ 15 \\ 7 \\ 7 \\ \hline \end{array}$ | $\begin{aligned} & \hline F \\ & R \\ & \mathrm{~F} \\ & \mathrm{R} \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline \text { TNG3251F } \\ & \text { TNG3252F } \\ & \text { TNG3253F } \\ & \text { TNG3254F } \\ & \hline \end{aligned}$ | SG110 "SG112 SG111 *SG113 |  | B |
| Exciusive OR Gate with Complement | $\begin{array}{r} 15 \\ 15 \\ 7 \\ 7 \\ \hline \end{array}$ | $\begin{aligned} & \mathrm{F} \\ & \mathrm{R} \\ & \mathrm{~F} \\ & \mathrm{R} \end{aligned}$ | TNG4611F <br> TNG4612F <br> TNG4613F <br> TNG4614F | SG90 *SG92 SG91 -SG93 |  | B |
| Dual Exciusive OR Gates | $\begin{array}{r} 15 \\ 15 \\ 7 \\ 7 \\ \hline \end{array}$ | $\begin{aligned} & \hline F \\ & R \\ & F \\ & R \end{aligned}$ | TNG4211F TNG4212F TNG4213F TNG4214F |  | General type SN5450 | A, C |
| Triple 3 input OR Gate, Expandable | $\begin{array}{r} 15 \\ 15 \\ 7 \\ 7 \\ \hline \end{array}$ | $\begin{aligned} & \mathrm{F} \\ & \mathrm{R} \\ & \mathrm{~F} \\ & \mathrm{R} \end{aligned}$ | TNG4315F TNG4316F TNG 4317F TNG4318F | SG100 *SG102 SG101 *SG103 |  | B |
| Ouad 2 input OR Gate, Expandable | 15 <br> 15 <br> 7 <br> 7 | $\begin{aligned} & \mathrm{F} \\ & \mathrm{R} \\ & \mathrm{~F} \\ & \mathrm{R} \end{aligned}$ | TNG4415F <br> TNG4416F <br> TNG4417F <br> TNG4418F | $\begin{aligned} & \text { SG50 } \\ & \text { "SG52 } \\ & \text { SG51 } \\ & \text { *SG53 } \\ & \hline \end{aligned}$ |  | B |
| Dual 4 OR Expander Gate | Z | $\begin{aligned} & \hline F \\ & R \end{aligned}$ | $\begin{aligned} & \text { TNG4011F } \\ & \text { TNG4012F } \end{aligned}$ | $\begin{aligned} & \text { SG170-171 } \\ & \text { SG172-173 } \end{aligned}$ | Generai type SN5460 | B, C |
| Quad 2 input OR Expander Gate | - | $\begin{aligned} & \hline \mathrm{F} \\ & \mathrm{R} \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { TNG 4511F } \\ & \text { TNG4512F } \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline \text { SG150-151 } \\ & \text { SG152-153 } \\ & \hline \end{aligned}$ |  | B |
| Single 2 input Line Driver | $\begin{aligned} & 40 \\ & 40 \\ & 24 \\ & 24 \\ & \hline \end{aligned}$ | $\begin{aligned} & \mathrm{F} \\ & \mathrm{R} \\ & \mathrm{~F} \\ & \mathrm{R} \end{aligned}$ | TNG5125F <br> TNG5126F <br> TNG5127F <br> TNG5128F | *SG130 *SG132 "SG131 "SG133 |  | B |
| Dual 4 input Line Driver | $\begin{aligned} & 40 \\ & 40 \\ & 24 \\ & 24 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline F \\ & R \\ & F \\ & R \end{aligned}$ | TNG5211F TNG5212F TNG5213F TNG5214F |  | General type <br> SN5440 | C |
| Dual 3 input Gated 2 phase flip-flop | $\begin{array}{r} 15 \\ 15 \\ 7 \\ 7 \\ \hline \end{array}$ | $\begin{aligned} & \mathrm{F} \\ & \mathrm{R} \\ & \mathrm{~F} \\ & \mathrm{R} \end{aligned}$ | TFF3011F TFF3012F TFF3013F TFF3014F | SF20 *SF22 SF21 -SF23 |  | B |
| 4 input Master Slave flip-flop with Buffer | $\begin{array}{r} 15 \\ 15 \\ 7 \\ 7 \\ \hline \end{array}$ | $\begin{aligned} & \hline F \\ & R \\ & F \\ & R \end{aligned}$ | TFF3111F <br> TFF3112F <br> TFF3113F <br> TFF3114F |  |  | A |
| 2 input Master Slave flip-flop with Buffer | $\begin{array}{r} 15 \\ 15 \\ 7 \\ 7 \\ \hline \end{array}$ | $\begin{aligned} & \hline F \\ & R \\ & F \\ & R \end{aligned}$ | TFF3115F TFF3116F TFF3117F TFF3118F |  |  | A |
| 4 input Master Slave flip-flop without Buffer | $\begin{array}{r} 15 \\ 15 \\ 7 \\ 7 \\ \hline \end{array}$ | $\begin{aligned} & \text { F } \\ & \text { R } \\ & \text { F } \end{aligned}$ | TFF3121F <br> TFF3122F <br> TFF3123F <br> TFF3124F |  |  | A |
| 2 input Master Slave flip-flop without Buffer | $\begin{array}{r} 15 \\ 15 \\ 7 \\ 7 \\ \hline \end{array}$ | $\begin{aligned} & \mathrm{F} \\ & \mathrm{R} \\ & \mathrm{~F} \\ & \mathrm{R} \end{aligned}$ | $\begin{aligned} & \text { TFF3125F } \\ & \text { TFF3126F } \\ & \text { TFF3127F } \\ & \text { TFF3128F } \end{aligned}$ |  |  | A |
| Charge Storage J-K flip-flop | $\begin{array}{r} 15 \\ 15 \\ 7 \\ 7 \\ \hline \end{array}$ | $\begin{aligned} & \mathrm{F} \\ & \mathrm{R} \\ & \mathrm{~F} \\ & \mathrm{~B} \end{aligned}$ | TFF3211F TFF3212F TFF3213F TFF3214F | $\begin{array}{r} \text { SF50 } \\ \text { "SF52 } \\ \text { SF51 } \\ \text { SFF53 } \end{array}$ |  | 8 |

## RATINGS

| Voltage: | Min. | Typ. | Max. | Temperature and Power | Min. | Typ. | Max. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Supply Voltage <br> Supply Surge 1 sec <br> Supply Operating Input Voltage Output Voltage | 4.5 | 5.0 | $\begin{array}{r} 8.0 \mathrm{~V} \\ 12.0 \mathrm{~V} \\ 6.0 \mathrm{~V} \\ 5.5 \mathrm{~V} \\ 5.5 \mathrm{~V} \end{array}$ | Operating <br> Storage <br> Thermal Gradient <br> Junction-Air <br> Thermal Gradient Junction-Case <br> Power Diss. per Gate $50 \%$ Duty Cycle, $\mathrm{V}_{\text {cru }}=5 \mathrm{~V}$ | $\begin{aligned} & -55 \\ & -65 \end{aligned}$ | 15 mW | $\begin{aligned} & +125^{\circ} \mathrm{C} \\ & +200^{\circ} \mathrm{C} \\ & .3^{\circ} \mathrm{C} / \mathrm{mW} \\ & .1^{\circ} \mathrm{C} / \mathrm{mW} \end{aligned}$ |

## Transitron HLTTL specifications

$T_{A}=-55$ to $125^{\circ} \mathrm{C}$ Gates and Flip Flops F.O. $=15$ and 7

Line Drivers F.O. $=40$ and 24

Lamp Driver $\mathrm{I}_{\mathrm{L}}=\mathbf{6 0} \mathrm{mA}$

## ELECTRICAL CHARACTERISTICS

| $\left(\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V}\right)$ | Values @ Temperature Ambient |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Symbol | $-55^{\circ} \mathrm{C}$ | $25^{\circ} \mathrm{C}$ | $+125^{\circ} \mathrm{C}$ | Units |
| $V_{\text {out }}$ " ${ }^{\prime \prime} I_{L}=I_{L}$ ", , <br> @ $V_{1 \mathrm{n}}=$ | Vo "1" | $\stackrel{2.8}{.45}$ | $\begin{aligned} & 3.2 \\ & .45 \end{aligned}$ | $\begin{array}{r} 3.35 \\ .45 \end{array}$ | $V_{V} \min .$ |
| $V_{\text {uut }}$ " 1 " Threshold $I_{L}=I_{1, ., 1 .}$. <br> @ $V_{\mathrm{in}}=$ | Voth "1" | $\begin{aligned} & 2.5 \\ & 1.0 \end{aligned}$ | $\begin{aligned} & 2.4 \\ & 1.2 \end{aligned}$ | $\begin{array}{r} 2.7 \\ .9 \end{array}$ | $\begin{aligned} & V \text { min. } . ~ \\ & V \end{aligned}$ |
| $\mathrm{V}_{\text {out }}$ " 0 " Threshold $\mathrm{I}_{\mathrm{L}}=\mathrm{I}_{\mathrm{L}}{ }^{[ }{ }^{0}$. <br> @ $\mathrm{V}_{\mathrm{in}}=$ | - $V_{\text {oth }}$ "0" | $\begin{gathered} .45 \\ 2.0 \end{gathered}$ | $\begin{aligned} & .45 \\ & 1.7 \end{aligned}$ | $\begin{aligned} & .45(1) \\ & 1.4 \end{aligned}$ | $\begin{aligned} & \mathrm{V} \text { max. } \\ & \mathrm{m} \end{aligned}$ |
|  <br> @ $V_{\text {tn }}=$ | Vo "0" | $\begin{gathered} .40 \\ 2.8 \end{gathered}$ | $\begin{gathered} .40 \\ 2.8 \end{gathered}$ | $\begin{aligned} & .45(1) \\ & 2.8 \end{aligned}$ | $\begin{aligned} & \mathrm{V} \text { max. } \\ & \mathrm{V} \end{aligned}$ |

## GATES AND FLIP FLOPS (at all operating temperatures)

$\mathrm{I}_{\mathrm{in} \text { "4, }}=1.33 \mathrm{~mA}$ max. @ $\mathrm{V}_{\mathrm{in}}=$ OV(2)(3)
$\mathrm{I}_{\mathrm{In}}{ }^{4} \mathrm{I}_{1}=100 \mu \mathrm{~A}$ max. @ $\mathrm{V}_{\mathrm{tn}}=4.5 \mathrm{~V}$ (2)(1)
$\mathrm{I}_{\mathrm{L}} \cdot \cdot_{\mathrm{H}^{\prime}} \prime=20 \mathrm{~mA}($ F.O. $=15)$

$\mathrm{I}_{\mathrm{L}} \cdot{ }^{\prime \prime}{ }^{\prime \prime}=10 \mathrm{~mA}(\mathrm{~F} . \mathrm{O} .=7)$
Power per Gate "ON" $I_{s}=6.0 \mathrm{~mA}$ max.(5)
Power per Gate "OFF"' $l_{s}=3.0 \mathrm{~mA}$ max.(©)
Circuit Bkdn. "OFF" $8 \mathrm{~V}_{\mathrm{min}} @ \mathrm{I}_{\mathrm{s}}=5.0 \mathrm{~mA}$ ©
Input Bkdn. 5.5 V min. @ $1_{\text {in }}=1.0 \mathrm{~mA}(4$
Output Leakage Current $=250 \mu \mathrm{~A}$ max. @ $\mathrm{V}_{\text {out }}=5.5 \mathrm{~V} ; V_{\text {in }}=0 \mathrm{~V}$
Output Short Circuit Current $=45 \mathrm{~mA}$ max., $10 \mathrm{~mA} \min . \quad$ @ $\mathrm{V}_{\text {uut }}=\mathrm{V}_{\mathrm{Ia}}=\mathrm{OV}$


## LINE DRIVERS (at all operating temperatures)

$\mathrm{I}_{\mathrm{in} \text { " } 4 \mathrm{n} \text { " }}=2.7 \mathrm{~mA}$ max. @ $\mathrm{V}_{\mathrm{in}}=0 \mathrm{~V}$ (3)
$\mathrm{I}_{\mathrm{L}, \cdot, \cdot} \cdot=54 \mathrm{~mA}($ F.O. $=40)$
$\mathrm{I}_{\mathrm{L}^{\prime} \mathrm{o}^{\prime}{ }^{\prime \prime}=}=32 \mathrm{~mA}$ (F.O. $=24$ )
Power per Gate "ON" $I_{s}=12.0 \mathrm{~mA}$ max. (3)
Power per Gate "OFF" $I_{s}=6.0 \mathrm{~mA}$ max. (3)
Circuit Bkdn. "OFF" 8 V min. @ $\mathrm{I}_{\mathrm{s}}=10.0 \mathrm{~mA}$ (5)
Input Bkdn. $5.5 \mathrm{~V}_{\mathrm{m} \text { In }} @ \mathrm{I}_{\mathrm{in}-}=1.5 \mathrm{~mA}(4)$
Output Leakage Current $=300 \mu \mathrm{~A}$ max. @ $\mathrm{V}_{\text {out }}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{tn}}=0$
Output Short Circuit Current $=90 \mathrm{~mA}$ max., 20 mA min. @ $\mathrm{V}_{\text {out }}=\mathrm{V}_{1 \mathrm{n}}=0 \mathrm{~V}$
Propagation Delay $t_{p d}=\frac{t_{\text {on }}+t_{\text {ors }}}{2}=18 \mathrm{nsec}$ max. @ F.O. $=1 ; C_{\mathrm{L}}=100 \mathrm{pf} ; \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (1)

## LAMP DRIVERS (at all operating temperatures)

$\mathrm{I}_{\mathrm{in} \text { " } \mathrm{c}_{\mathrm{o}} \text { " }}=2.7 \mathrm{~mA}$ max. @ $\mathrm{V}_{\mathrm{in}}=$ OV(3)
$\mathrm{L}_{\mathrm{L}} \cdot{ }^{\prime}{ }_{\mathrm{a}}{ }^{\prime}{ }^{\prime+}=60 \mathrm{~mA}$
Power per Gate "ON" $I_{s}=12.0 \mathrm{~mA}$ max.(5)
Power per Gate "OFF" $\left.\right|_{s}=6.0 \mathrm{~mA}$ max.(3)
Circuit Bkdn. "OFF" $8 \mathrm{~V}_{\min } @ \mathrm{I}_{\mathrm{s}}=10.0 \mathrm{~mA}(3)$

$$
\begin{aligned}
& I_{14} \cdot{ }^{\prime} \cdot \cdots=200 \mu \mathrm{~A} \text { max. } @ \mathrm{~V}_{\mathrm{tn}}=4.5 \mathrm{~V} \text { (1) } \\
& \mathrm{l}_{\mathrm{L} \cdot} \cdots=4.0 \mathrm{~mA}(\mathrm{~F} . \mathrm{O} .=40) \\
& \mathrm{I}_{\mathrm{L} \cdot{ }^{\prime}{ }^{\prime \cdots}}=2.4 \mathrm{~mA}(\text { F.O. }=24)
\end{aligned}
$$

[1.8 mA per input node, 10.2 mA per output stage] [ 3.6 mA per input node, 2.4 mA per output stage]
[ 6.0 mA per input node, 4.0 mA per output stage]
$\mathrm{I}_{\mathrm{in} \mathrm{n}^{\prime} \mathrm{I}^{\prime \prime}}=200 \mu \mathrm{~A} \max @ \mathrm{~V}_{\mathrm{in}}=4.5 \mathrm{~V}$ (1)
$\mathrm{I}_{\mathrm{L}}{ }^{\prime}{ }_{1} \cdot=.5 \mathrm{~mA}$ into output terminal
[ 1.8 mA per input node, 10.2 mA per output stage] [3.6 mA per input node, 2.4 mA per output stage] [6.0 mA per input node, 4.0 mA per output stage] Input Bkdn. $5.5 \mathrm{~V}_{\mathrm{min}} @ \mathrm{I}_{\mathrm{tr}-}=1.5 \mathrm{~mA}(4)$
Output Leakage Current $=300 \mu \mathrm{~A}$ max. @ $\mathrm{V}_{\mathrm{unt}}=8 \mathrm{~V} ; \mathrm{V}_{\mathrm{in}}=0 \mathrm{~V}$
NOTES:
(1) 6 V max. for lamp drivers
(4) Other inputs ground or open
(2) One unit load
(5) Dependent on ckt function
(3) Other inputs @ 4.5V
(1) Unused input @ logic " 1 " $=3.5 \mathrm{~V}$

## RATINGS

| Voltage | Min. | Typ. | Max. | Temperature and Power | Min. | Typ. | Max. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Supply Voltage |  |  | 7.0 V | Operating | 0 |  | $+75^{\circ} \mathrm{C}$ |
| Supply Surge 1 sec |  |  | 12.0 V | Storage | -65 |  | $+200^{\circ} \mathrm{C}$ |
| Supply Operating | 4.5 | 5.0 | 6.0 V | Thermal Gradient |  |  | $.3^{\circ} \mathrm{C} / \mathrm{mW}$ |
| Input Voltage . |  |  | 5.5 V | Junction-Air |  |  |  |
| Output Voltage |  |  | 5.5 V | Thermal Gradient Junction-Case |  |  | . $1^{\circ} \mathrm{C} / \mathrm{mW}$ |
|  |  |  |  | Junction-Case <br> Power Diss. per Gate |  | 15 mW |  |

## Transitron <br> HLTTL specifications

$T_{\mathrm{A}}=0$ to $75^{\circ} \mathrm{C}$ Gates and Flip-Flops F.O. $=15$ and 7

Line Drivers
F.O. $=40$ and 24

Lamp Drivers
$\mathrm{I}_{\mathrm{L}}=\mathbf{6 0 ~ m A}$

## ELECTRICAL CHARACTERISTICS

| ( $\left.\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}\right)$ | Values @ Temperature Ambient |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Symbol | $0^{\circ} \mathrm{C}$ | $25^{\circ} \mathrm{C}$ | $75^{\circ} \mathrm{C}$ | Units |
| $\begin{gathered} V_{\text {out " }} 1 \text { " } I_{L}=I_{L} \cdot 1_{1} \text { " } \\ @ V_{\text {in }} \end{gathered}$ | $V_{0}$ "1" | $\begin{gathered} 3.0 \\ .45 \end{gathered}$ | $\begin{gathered} 3.1 \\ .45 \end{gathered}$ | $\begin{array}{r} 3.15 \\ .45 \end{array}$ | $\begin{aligned} & \mathrm{V} \text { min. } \\ & \mathrm{V} \end{aligned}$ |
| Vout "1" Threshold $\mathrm{I}_{\mathrm{L}}=\mathrm{I}_{\mathrm{L},{ }^{\prime}{ }_{1} \text { ", }}$ <br> @ Vin | $V_{\text {oth }}$ "1" | $\begin{aligned} & 2.5 \\ & 1.1 \end{aligned}$ | $\begin{aligned} & 2.4 \\ & 1.2 \end{aligned}$ | $\begin{aligned} & 2.5 \\ & 1.1 \end{aligned}$ | $\begin{aligned} & \mathrm{V} \text { min. } \\ & \mathrm{V} \end{aligned}$ |
| $\mathrm{V}_{\text {uut }}$ "0" Threshold $\mathrm{I}_{\mathrm{L}}=\mathrm{I}_{\mathrm{L} \times \text { " }}$ " | $V_{\text {oth }}$ "0" | . 45 | . 45 | .45(1) | $\checkmark$ max. |
| @ V $\mathrm{In}^{\text {a }}$ |  | 1.9 | 1.8 | 1.7 |  |
| $\begin{gathered} V_{\text {out " " } 0 \text { " } \mathrm{L}_{\mathrm{L}}=\mathrm{I}_{\mathrm{L} \cdot \mathrm{o}_{0}} \text { " }}^{@ V_{\text {In }}} \end{gathered}$ | Vo'0" | $\begin{aligned} & .40 \\ & 2.8 \end{aligned}$ | $\begin{aligned} & .40 \\ & 2.8 \end{aligned}$ | $\begin{aligned} & .45(1) \\ & 2.8 \end{aligned}$ | $\begin{aligned} & V \text { max. } \\ & V \end{aligned}$ |

## GATES AND FLIP FLOPS (at all operating temperatures)

$\mathrm{I}_{\mathrm{tn}} \cdot \mathrm{o}_{\mathrm{o}}$ " $=1.33 \mathrm{~mA}$ max. @ $\mathrm{V}_{\mathrm{in}}=0 \mathrm{~V}$ (2) (3)
$\mathrm{I}_{\mathrm{L}}{ }^{\prime}{ }_{0}{ }^{\prime \prime}=20 \mathrm{~mA}($ F.O. $=15$ )
$\mathrm{I}_{\mathrm{L}}{ }^{4} \mathrm{a}^{\prime} "=10 \mathrm{~mA}($ F.O. $=7$ )
Power per Gate "ON" $I_{\mathrm{s}}=6.0 \mathrm{~mA}$ max.(5)
Power per Gate "OFF" $I_{s}=3.0 \mathrm{~mA}$ max.(5)
Circuit Bkdn. "OFF" 7 V min. @ $\mathrm{I}_{\mathrm{s}}=5.0 \mathrm{~mA}(5)$

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{tn}^{\prime \prime} \mathrm{r}^{\prime \prime}}=100 \mu \mathrm{~A} \text { max. @ } \mathrm{V}_{\mathrm{ta}}=4.5 \mathrm{~V}(2)(1) \\
& I_{L} \cdot \cdot \cdot 1=1.5 \mathrm{~mA}(\text { F.O. }=15) \\
& \mathrm{I}_{\mathrm{L}}{ }^{\prime \prime}{ }^{\prime \prime}=.7 \mathrm{~mA}(\mathrm{~F} . \mathrm{O} .=7)
\end{aligned}
$$

Input Bkdn. 5.5 V min. @ $\mathrm{I}_{\mathrm{in}}=1.0 \mathrm{~mA}(4)$
Output Leakage Current $=250 \mu \mathrm{~A}$ max. $@ \mathrm{~V}_{\text {out }}=5.5 \mathrm{~V} ; \mathrm{V}_{1 \mathrm{n}}=0 \mathrm{~V}$
Output Short Circuit Current $=45 \mathrm{~mA}$ max., 10 mA min. $@ \mathrm{~V}_{\text {out }}=\mathrm{V}_{\mathrm{tn}}=0 \mathrm{~V}$


## LINE DRIVERS (at all operating temperatures)


$\mathrm{I}_{\mathrm{L} \cdot}{ }^{\prime}{ }^{0}{ }^{\prime}{ }^{\prime}=54 \mathrm{~mA}($ F.O. $=40)$
$\mathrm{I}_{\mathrm{L}}{ }^{\prime} \mathrm{o}^{\prime \prime}=32 \mathrm{~mA}($ F.O. $=24$ )
Power per Gate "ON" $I_{8}=12.0 \mathrm{~mA}$ max.(5)
Power per Gate "OFF" $I_{s}=6.0 \mathrm{~mA}$ max.(5)
Circuit Bkdn. "OFF" 7V min. @ $\mathrm{I}_{\mathrm{s}}=10.0 \mathrm{~mA}$ (3)
Input Bkdn. $5.5 \mathrm{~V}_{\mathrm{min}} @ \mathrm{I}_{\mathrm{in}-}=1.5 \mathrm{~mA}(4)$
Output Leakage Current $=300 \mu \mathrm{~A}$ max. @ $\mathrm{V}_{\text {out }}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{tn}}=0$
Output Short Circuit Current $=90 \mathrm{~mA}$ max., 20 mA min. @ $\mathrm{V}_{\text {out }}=\mathrm{V}_{\mathrm{tn}}=0 \mathrm{~V}$
Propagation Delay $t_{p d}=\frac{t_{\text {on }}+t_{\text {orf }}}{2}=18 \mathrm{nsec}$ max. @ F.O. $=1 ; C_{L}=100 \mathrm{pf} ; T_{A}=25^{\circ} \mathrm{C}$ (1)
LAMP DRIVERS (at all operating temperatures)
$\mathrm{I}_{\mathrm{tn} \cdot \mathrm{co}_{\mathrm{o}} \text { " }}=2.7 \mathrm{~mA}$ max. @ $\mathrm{V}_{\mathrm{ta}}=$ OV(3)
$\mathrm{I}_{\mathrm{L}} \cdot{ }_{0} \cdot \cdot{ }^{\cdot++}=60 \mathrm{~mA}$
Power per Gate "ON" $1_{s}=12.0 \mathrm{~mA}$ max.(5)
Power per Gate "OFF" $I_{s}=6.0 \mathrm{~mA}$ max.(5)
Circuit Bkdn. "OFF" 7 V min. @ $\mathrm{I}_{\mathrm{s}}=10.0 \mathrm{~mA}$ (5)
Input Bkdn. $5.5 \mathrm{~V}_{\mathrm{m} / \mathrm{I}} @ \mathrm{I}_{\mathrm{m}-}=1.5 \mathrm{~mA}(4)$
Output Leakage Current $=300 \mu \mathrm{~A}$ max. $@ \mathrm{~V}_{\text {out }}=8 \mathrm{~V} ; \mathrm{V}_{\mathrm{in}}=0 \mathrm{~V}$

## NOTES:

(1) 6 V max. for lamp drivers
(4) Other inputs ground or open
(2) One unit load
(3) Other inputs @ 4.5V
(5) Dependent on ckt function
(6) Unused input @ logic " 1 " $=3.5 \mathrm{~V}$

## Transitron <br> HLTTL <br> Characteristics



High Level Transistor Transistor Logic has already become established as the state-of-the-art for saturated switching in military and industrial applications.
In developing a low-cost version of the premium military series, Transitron has placed HLTTL performance within practical reach for the designer of commercial equipment.
It should be emphasized that the cost reductions involved did not involve the chips themselves, which are actually identical to those used in the premium series. The savings lie primarily in the packaging and in the use of conservative specifications.
All units are packaged in an economical but extremely reliable hermetic, 8 -lead TO- 5 can, and are assembled by means of automated, high-volume production techniques previously perfected in transistor manufacturing operations.
The use of performance specifications which are well within the design limits of the circuit chips has resulted in high production yields and has reduced the requirement for extensive testing.
With their outstanding combination of good fanout, speed, noise protection and capacitive driving capability, these circuits constitute the most flexible and logically powerful line ever introduced for commcricial use.

| Type Nümber | Circuit Description |
| :--- | :--- |
| TNG3031 | Single 4 input Nand/Nor Gate |
| TNG4131 | Single 3 input Nand/Nor Gate, expandable |
| TNG4031 | Single 4 input AND Expander Gate |
| TNG5131 | Single 2 input Nand/Nor Gate Expandable for OR function |
| TNG5031 | Dual 2 OR Expander Gates |
| TNG3131 | Dual 2 input Nand/Nor Gate |
| TNG3231 | Dual 2 input Nand/OR Gate |
| TNG3331 | Single 4 input Line Driver |
| TNG3431 | Single 4 input Lamp Driver |
| TFF3031 | Gated 2 phase flip-flop |
| TFF3131 | Master Slave J-K flip-flop, 1 set |
| TFF3231 | Charge Storage J-K flip-flop |

## Trangitron <br> Commercial Circuits





## Transitron Commercial hltti Series

$T_{A}=15$ to $55^{\circ} \mathrm{C}$
Gates and Flip-Flops F.O. $=7$

Line Drivers F.O. $=20$

Lamp Driver $\mathrm{I}_{\mathrm{t}}=50 \mathrm{~mA}$

RATINGS

| Voltage | Min. | Typ. | Max. | Temperature and Power | Min. | Typ. | Max. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Supply voltage |  |  | 7.0 V | Operating | +15 |  | $+55^{\circ} \mathrm{C}$ |
| Supply operating voltage | 4.5 | 5.0 | 6.0 V | Storage | $-55$ |  | $+125^{\circ} \mathrm{C}$ |
| Input voltage |  |  | 5.0 V | Power per gate, |  |  |  |
| Output voltage |  |  | 5.5 V | $50 \%$ duty cycle, $V_{c \cdot}=5.0 \mathrm{~V}$ |  | 15 mW |  |

## ELECTRICAL CHARACTERISTICS

| ( $\left.\mathrm{V}_{\text {U }}=5.0 \mathrm{~V} . ; \mathrm{T}_{3}=25^{\circ} \mathrm{C}\right)$ | Symbol | Value | Units |
| :---: | :---: | :---: | :---: |
| $V_{\text {out }} " 1 " I_{L}=I_{L \cdot I_{1}}$ <br> @ Vin | $V_{0}$ "1" | $\begin{gathered} 2.6 \\ .45 \end{gathered}$ | $V^{\min } .$ |
| $V_{\text {out }}$ " 1 " threshold $I_{L}=I_{L} I_{1}$ " <br> @ $V_{\text {in }}$ | Voth "1" | $\begin{aligned} & 2.5 \\ & 1.0 \end{aligned}$ | $V \text { min. }$ |
| $V_{\text {uw }}$ " 0 " threshold $\mathrm{I}_{\mathrm{L}}=\mathrm{I}_{\mathrm{L}} \ldots$.". <br> @ $\mathrm{V}_{\mathrm{in}}$ | Vutli "0" | $\begin{aligned} & .50(1) \\ & 2.0 \end{aligned}$ | $V_{\text {max. }}$ |
| $V_{\text {out }}{ }^{\prime \prime} 0^{\prime \prime} I_{L}=I_{L}{ }_{n} \text { " }$ <br> @ V 1 In | Vo "0" | $\begin{aligned} & .50(1) \\ & 2.8 \end{aligned}$ | $V \max .$ |

## GATES AND FLIP FLOPS

$\mathrm{I}_{\mathrm{n} \cdot \boldsymbol{n}^{\prime} \cdot}=1.33 \mathrm{~mA}$ max. @ $\mathrm{V}_{\mathrm{in}}=0 \mathrm{~V}$ (2)(3)
$\mathrm{I}_{\mathrm{L}} \cdots{ }_{0}=10 \mathrm{~mA}$
Power per Gate "ON" $I_{s}=6.0 \mathrm{~mA}(3)$
Power per Gate "OFF" $I_{s}=3.0 \mathrm{~mA}(5)$
Circuit Bkdn. "OFF" 7 V min. @ $\mathrm{I}_{\mathrm{s}}=5.0 \mathrm{~mA}(5)$
Input Bkdn. 5.0 V min. @ $\mathrm{I}_{\text {in }}=1.0 \mathrm{~mA}(4)$
Output Leakage $250 \mu \mathrm{~A}$ max. @ $\mathrm{V}_{\text {out }}=5.5 \mathrm{~V} \quad \mathrm{~V}_{1 \mathrm{n}}=0 \mathrm{~V}$
Output Short Ckt. Current $=45 \mathrm{~mA}$ max., $10 \mathrm{~mA} \min$. @ $\mathrm{V}_{\text {out }}=\mathrm{V}_{\mathrm{in}}=0 \mathrm{~V}$
Propagation Delay $\mathrm{t}_{\mathrm{p} 4}=\frac{\mathrm{t}_{\mathrm{un}}+\mathrm{t}_{\mathrm{urf}}}{2}=25 \mathrm{nsec} \max$. F.O. $=1 \quad \mathrm{C}_{\mathrm{L}}=15 \mathrm{pf}(1 i)$

## LINE DRIVERS

$\mathrm{L}_{1 \mathrm{n}^{\cdot} \mathrm{r}_{0} \cdot}=2.7 \mathrm{~mA}$ max. @ $\mathrm{V}_{\mathrm{In}}=0 \mathrm{~V}$ (3)
$\left.\right|_{\mathrm{L}} \cdot \cdot_{0}$, , $=27 \mathrm{~mA}$
Power per Gate "ON" $I_{s}=12.0 \mathrm{~mA}(5)$
Power per Gate "OFF" $I_{s}=6.0 \mathrm{~mA}(5)$
Circuit Bkdn. "OFF" 7 V @ $\mathrm{I}_{\mathrm{k}}=10.0 \mathrm{~mA}$ (5)
Input Bkdn.5.0V @ $\mathrm{I}_{\mathrm{In}}=1.5 \mathrm{~mA}(4)$
Output Leakage $300 \mu \mathrm{~A}$ max. @ $\mathrm{V}_{\text {wu }}=5.5 \mathrm{~V}, \mathrm{~V}_{1 \mathrm{l}}=\mathrm{oV}$
Short Ckt. Current $=90 \mathrm{~mA}$ max., 20 mA min . @ $\mathrm{V}_{\text {out }}=\mathrm{V}_{\mathrm{iu}}=0 \mathrm{~V}$
Propagation Delay $t_{\mathrm{tu}}=\frac{t_{\mathrm{on}}+t_{0 t z}}{2}=25 \mathrm{nsec} \max$. F.O. $=1 \quad C_{L}=100 \mathrm{pf}(1)$

## LAMP DRIVERS


$\mathrm{L}_{\mathrm{L}}{ }^{\prime \prime}{ }^{\prime \prime}=50 \mathrm{~mA}$
Power per Gate "ON" $I_{s}=12.0 \mathrm{~mA}(5)$
Power per Gate "OFF" $I_{H}=6.0 \mathrm{~mA}(5)$
Ckt. Bkdn. "OFF" 7 V @ $\mathrm{I}_{\mathrm{s}}=10.0 \mathrm{~mA}$ (5)
Input Bkdn. 5.0V @ $l_{\text {in }}=1.5 \mathrm{~mA}(4)$
Output Leakage $300 \mu \mathrm{~A}$ max. @ $\mathrm{V}_{\mathrm{out}}=7.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{in}}=0 \mathrm{~V}$
NOTES:
(1) 6 V max. for lamp drivers
(4) Other inputs ground or open
(2) One unit load
(5) Dependent on circuit function
(3) Other inputs @ 3.0V
$\mathrm{l}_{\mathrm{L}^{\prime \prime}{ }^{\prime} "}=.5 \mathrm{~mA}$ into output terminal
[1.8 mA per input node, 10.2 mA per output stage] [3.6 mA per input node, 2.4 mA per output stage] [ 6.0 mA per input node, 4.0 mA per output stage]

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{In}^{\prime} \cdot 1^{\prime \prime}}=400 \mu \mathrm{~A} \text { max. @ } \mathrm{V}_{\mathrm{In}}=3.0 \mathrm{~V}(1) \\
& \mathrm{I}_{\mathrm{L}^{\prime} \cdot 1_{1}}=4.0 \mathrm{~mA}
\end{aligned}
$$

[1.8 mA per input node, 10.2 mA per output stage] [ 3.6 mA per input node, 2.4 mA per output stage] [ 6.0 mA per input node, 4.0 mA per output stage]

Transitron's Quality Assurance and Reliability Groups report to a Corporate Director who is responsible dircctly to the President for all aspects of quality assurance and reliability. Included in these groups are the key functions of incoming inspection, process control and outgoing inspection as welt as the support functions such as the standards laboratories, life and environmental test facilities, and equipment calibration and certification. All functions operate according to procedures defined in Transitron's Quality Assurance and Rcliability Manual.
Quality Assurance, being fully aware that quality and reliability must be inherent in a finished device, assists engineering in evaluation of new integrated circuit products and then works with and complements the manufacturing line in the production of integrated circuits. This effort begins with the quality assurance participation in generation and approval of both manufacturing procedures and engineering changes thereto, and is implemented by the more than forty control and inspection stations on the Transitron HLTTL production line. These stations include lot acceptance of incoming material, in-process control points, and $100 \%$ inspections (particularly visual inspections on metallizations and internal bonds). While all stations generate data for analysis and subsequent product improvement, unprecedented amounts of data are generated at several of the process control stations duc to the inherent complexity of the circuits. For example, at one control station a sample of 10 circuits is taken several times a day and over 60 parameters per circuit are recorded and control chart plotted.
Further data pertinent to Transitron's HLTTL integrated circuits is generated by the reliability monitoring of the production line. This program samples production over successive six week periods, subjecting parts of the sample to the following tests consisting of:

1. Operating life at $125^{\circ} \mathrm{C}$ for 1000 hours; consisting of 500 hours in a ring counter, 500 hours in steady state on-off operation.
2. High temperature storage life at $200^{\circ} \mathrm{C}$ for 1000 hours.
3. Environmental tests per MIL-STD-750.

## Subgroup I Solderability Temperature <br> Moisture resistance

## Subgroup II

Terminal Strength

## Subgroup III

Shock
Vibration fatigue
Vibration variable frequency
Constant acceleration

## Subgroup IV

Salt Atmosphere

To cope with the large volume of data anticipated from the integrated circuit operation, as well as the many other semiconductor operations within the Company, the Reliability Group has devcloped an extensive set of computer programs. The programs include failure rates and confidence limits, averages, standard deviations, frequency distributions and parameter delta shift analysis.
By using the computer programs to analyze both the process control data and the finished device reliability data, excellent information and direction can bc fed back to the engineering and manufacturing groups in a timely fashion. The classic failure analysis - corrective action feedback cycle is greatly enhanced by the sophisticated data analysis techniques of examining parameter change distributions, often more informative than an occasional "end-point" failure.
Thus, Transitron's Quality Assurance and Reliability effort begins at the engineering level, monitors the production line, tests the finished product, and analyzes the total data accumulation to provide direction for maintenance of desired quality and reliability levels as wcll as for future product improvements.


Future

New packaging concepts and larger circuit functions can be expected to play a major role in our digital integrated circuit business.

As indicated at the beginning of this brochure, HLTTL is only the beginning. Other advanced digital families, memory circuits and linear circuits are certainly in Transitron's future. The success of the present production concentration on HLTTL is expected to be duplicated again and again, in these other areas in coming years.

## SALES OFFICES

## BALTIMORE

Baltimore, Maryland 21218
2319 Maryland Ave
(301) CHesepeake 3-3220

BOSTON
Wakefield, Massachusetts 01881
168-182 Albion St
(617) 245-5640

CAMDEN

- Collingswood, New Jersey 08107

Terrace Office
Parkview Apartments
(609) ULysses 4-7082

CHICAGC
Oak Park, Illinois 60302
6641 West North Ave.
(312) Village 8-5556
daLLAS
Dallas, Texas 75235
Blanton Towers, Suite B-121
3300 West Mackingbird Lane
(214) Fleetwood 7-9448

DAYTON
Dayton, Ohio 45402
379 West First St
(513) 224-9651

DETROIT
Detroit. Michigan 48235 15800 West McNichols Rd. (313) 838-5884

KANSAS CITY
Prairie Village, Kansas 66208 2210 West 75th St. (913) ENdicott 2-6640

## LOS ANGELES

Los Angeles, California 90026
1227 Temple St.
(213) MAdison 9-2551

MINNEAPOLIS
Minneapolis, Minnesota 55424
Suite 101
7701 Normandale Rd.
(612) 927-7923

NEW YORK
Larchmont, New York 10538
22 Boston Post Rd.
(914) 834-8000

ORLANDO
Orlando, Florida 32801
22 W. Lake Beauty Drive
(305) CHerry 1-4526

PHOENIX
Phoenix, Arizona 85004
2727 North Central Ave.
Suite 820
(602) 277-3366

ROCHESTER
Rochester, New York 14618
Fowler Beach Corp.
3700 East Avenue
(716) LU 6-0468

SAN FRANCISCO
Palo Alto, California 94303 3921 East Bayshore (415) 961-1954

SYRACUSE
Syracuse, New York 13206
2360 James St.
(315) HOward 3-4502

CANADA
Toronto 18, Canada
1229 The Queensway
Suite 9
(416) CLifford 9-5461

## INDUSTRIAL DISTRIBUTORS

ALABAMA
HUNTSVILLE
M G Electronics \& Equipment Co., Inc. 4306 Governors Drive (205) 534-0608

## ARIZONA

PHOENIX 85016
Kimball Electronics, Inc 3614 North 16th Street (602) 264-4438

## CALIFORNIA

CULVER CITY 90230
Avnet Corooration
10916 Washington Blvd (213) 870-0111

GARDENA 90247
Bell Electronic Corp.
306 East Alondra BIvd
(213) FAculty 1-5802

MENLO PARK 94025
Bell Electronic Corp.
1070 O'Brien Drive
(415) DAvenport •3-9431

NORTH HOLLYWOOD 91601
Richey Electronics, Inc 5505 Riverton Avenue (312) 877-2651

SAN DIEGO 92111
Bell Electronic Corp.
8072 Engineer Road
(714) BR 8-4350

SAN FRANCISCO 94124
Fortune Electronics Corp
2280 Palou Ave.
(415) VAlencia 6-8811
D. C.

WASHINGTON 20010
Silberne Industrial Sales
Corp.
3400 Georgia Avenue N.W
(202) TUckerman 2-5000

## FLORIDA

PALM BEACH GARDENS 33403
Industrial Electronics
Associates, Inc.
P. O. Box 12444
(305) 848-8686

## GEORGIA

ATLANTA 30308
Specialty Distributing
Co., Inc.
763 Juniper Street
(404) TRinity 3-2521

## HAWAII

HONOLULU 96810 Industrial Electronics, Inc.
646 Queen Street
P. O. Box 135

506-095

ILLINOIS
CHICAGO 60655
Radio Distributing Co., Inc.
4636 West Washington Blvd.
(312) 379-2121

FRANKLIN PARK
Avnet Corporation
10130 West Pacific Avenue
(312) 678-8160

## INDIANA

SOUTH BEND 46624
Radio Distributing
Co., Inc.
1212 High Street
(219) 287-2911

## IOWA

CEDAR RAPIDS
Iowa Radio Supply Co 719 Center Point Rd., N.E. (319) EM 4-6154

## KANSAS

WICHITA 67201
Radio Supply Co., Inc.
115 Laura Street
P.O. Box 1220
(316) AMherst 7-5214

## LOUISIANA

NEW ORLEANS 70130
Radio Parts, Inc.
112 Magazine Street
(504) JAckson 2-0217

## MARYLAND

BALTIMORE 21211
Kann-Ellert
Electronics, Inc. 2050 Rockrose Avenue (301) TUxedo 9-4242

## MASSACHUSETTS

BOSTON 02215 DeMambro Electronics 1095 Commonwealth Ave (617) ALgonquin 4-9000

BURLINGTON
Avnet Corporation
207 Cambridge Street (617) 272-3060

CAMBRIDGE 02139
R \& D Electronic
Supply Co., Inc.
71 Pearl Street
(617) UN 4-0400

MICHIGAN
DETROIT 48227 Radio Specialties Co., Inc.
12775 Lyndon Street
(313) BRoadway 2-4212

MINNESOTA
ST. PAUL 55104
Radio Distributing Co., Inc.
Griggs-Midway BIdg., Suite 370
1821 University Avenue (612) 645-0631

## MISSOURI

KANSAS CITY 64106 Burstein-Applebee Co. 1012-1014 McGee Street (816) BAltimore 104266

ST. LOUIS 63130
Ensco Distributing Corp.
6717 Vernon Avenue
(314) PA 6-2233

## NEW JERSEY

CHERRY HILL
Valley Electronics, Inc. 1608 Marlton. Pike (609) NO 2-9337

## NEW YORK

BINGHAMTON 13902
Federal Electronics, Inc
Vestal Parkway, East 607) Ploneer 8-8211

BUFFALO 14203
Radio Equipment Corp.
147 East Genesee Street (716) 856-1415

LONG ISLAND CITY 11106
H. L. Dalis, Inc.

35-35 24th Street
(212) EMpire 1-1100

NEW YORK 10013
Milo Electronics Corp
530 Canal Street
(212) BEekman 3-2980

WESTBURY, L. I.
Avnet Corp
70 State Street
(516) 333-8650

## NORTH CAROLINA

WINSTON-SALEM 27108 Kirkman Electronics, Inc. 823 South Marshall St. (919) 724-0541

## OHIO

CLEVELAND 44115
Radio \& Electronic Parts Corp.
3235 Prospect Ave.
(216) UTah 1-6060

COLUMBUS 43211
Hughes-Peters, Inc. 481 East Eleventh Ave (614 )294-5351

DAYTON 45402
The Stotts-Friedman Co.
108-112 North Jefferson St.
(513) 224-1111

## OKLAHOMA

TULSA 74119
Radio, Inc.
1000 South Main St.
(918) LUther 7-9124

## PENNSYLVANIA

PHILADELPHIA 19106
Radio Electric Service
Co. of Pa., Inc.
7 th and Arch Sts.
(215) WAInut 5-5840

## TEXAS

DALLAS 75207
Contact Electronics, Inc.
2403 Farrington St.
P.O. Box 10393
(214) ME 1-9530

EL PASO
Mc Nicol, Inc.
3012 East Yandell Dr.
(915) 566-2936

HOUSTON 77019
Busacker Electronic
Equip. Co.
1216 West Clay
P.O. Box 13204
(713) JAckson 6-4661

## UTAH

SALT LAKE CITY 84104
Kimball Electronics, Inc.
350 Pierpont Ave.
(801) 328-2075

## WASHINGTON

SEATTLE 98121
Hyak Supply, Inc.
6133 Maynard Ave. South
(206) PA 5-1550

Transitron electronic corporation, Wakefield, Massachusetts

IN CANADA contact
MONTREAL 9
E T R Supply Company, Ltd.
5765 Pare St.
(514) 735-2471

## TORONTO

Alpha Aracon Radio
Electronics, Ltd.
555 Wilson Ave.
Downsview P.O.
(416) MElrose 5-6181

VANCOUVER 9
L. A. Varah Ltd.

1250 West 6th Ave.
(614) 736-6411
$\square$

Wherever there's electronics ... there's Transitron $\mathbf{T B}_{0}$

## Transitron <br> electronic corporation, 168 Albion Street, Wakefield, Massachusetts 01881

## HLTTL NON-INVERTING GATES

This series af HLTTL Nan-lnverting 'AND' and "OR' gates have been added as basic elements af Transitran's planar epitaxial high speed HLTTL family af integrated circuits characterized by very law prapagatian delay and high capacitive driving capability. The circuits were designed primarily far applicatian in systems where simplificatian and higher aperating speeds are af prime impartance since twa levels aflagic are replaced by ane.

The unique design af this circuit series pravides far (1) extremely sharp voltage transfer characteristics which result in naise margins in excess af 1.3 valts typically, (2) reductian af supply current during switching and (3) typical prapagatian delay times af 12 nanasecands with 15 pf laad and fanaut af 1. Nan-inverting high level driving capability is provided by the TNG6522 and TNG6524. Same af the circuits affer the passibility af cantralling the autput transients thraugh the use af an external capacitar between the autput and base of the autput transistor. This is particularly useful in applicatians where length of intercannections wauld result in excessive naise caupling.

Expansian of lagic capability is pravided thraugh the use af any af 3 expander gates. Use af these expanders requires intercannection of anly ane circuit terminal which pravides far aptimized pin utilizatian an bath the gate and expander.


TYPICAL VOLTAGE TRANSFER CHARACTERISTICS


ELEMENTS
(1) TNG 6222 and 6224 Dual 4 input AND Gate with Transient contral
(2) TNG 6252 and 6254 Expandable Dual 4 input AND Gate
(3) TNG 6262 and 6264

Expandable Dual 3 input AND Gate with Transient Cantral
(4) TNG 6522 and 6524
(5) TNG 7252 and 7254
(6) TNG 7712

Expandable 4 input Driver Gate with Transient Cantral

Expandable Dual $2+2$ input OR Gate

8 + 3 input Expander Gates
(7) TNG 7812
$4+4+3$ input Expander Gate
(8) TNG 7912

Dual $2+3$ input Expander Gates

TNG 6222 / 6224


TNG $6262 / 6264$


TNG $6522 / 6524$



TNG 7712


TNG7812


TNG 7912


RATINGS

| VOLTAGE | Min | Typ | Max | Temperature and Power | Min | Typ | Max |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Supply Valtage <br> Supply Operating <br> Input Voltage <br> Output Valtage | 4.5 | 5.0 | $\begin{aligned} & 7.0 \mathrm{~V} \\ & 6.0 \mathrm{~V} \\ & 5.5 \mathrm{~V} \\ & 5.0 \mathrm{~V} \end{aligned}$ | Operating Temperature | 0 |  | $+75^{\circ} \mathrm{C}$ |
|  |  |  |  | 5torage Temperature | -65 |  | $+200^{\circ} \mathrm{C}$ |
|  |  |  |  | Thermal Gradient Junctian - Air |  |  | $0.3{ }^{\circ} \mathrm{C} / \mathrm{mW}$ |
|  |  |  |  | Thermal Grodient Junction - Cose |  |  | $0.1{ }^{\circ} \mathrm{C} / \mathrm{mW}$ |
|  |  |  |  | Power Dissipation per Gote 50\% Duty Cyclo $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ |  | 40 mW |  |

## ELECTRICAL CHARACTERISTICS

| CIRCUIT PARAMETER ( $\mathrm{ccC}=5.0 \mathrm{~V}$ ) | Values © Ambient Temperature |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Symbol | $0^{\circ} \mathrm{C}$ | $+25^{\circ} \mathrm{C}$ | $+75^{\circ} \mathrm{C}$ | Units |
| $\begin{aligned} & V_{\text {OUT }} \text { "I'" Threshold, } I_{L}=I_{L} \text { "I'" } \\ & \\ & @ V_{I N}= \end{aligned}$ | $\mathrm{VOTH}^{\text {"I" }}$ | $\begin{aligned} & 3.1 \\ & 1.90 \end{aligned}$ | $\begin{aligned} & 3.1 \\ & 1.80 \end{aligned}$ | $\begin{aligned} & 3.1 \\ & 1.70 \end{aligned}$ | $\begin{aligned} & V_{\text {min }} \\ & V^{2} \end{aligned}$ |
| $\begin{aligned} & V_{\text {OUT }} " O \text { " Throshold, } I_{L}=I_{L} " O \text { " } \\ & V_{I N}= \end{aligned}$ | $\mathrm{V}_{\mathrm{OTH}}{ }^{\text {"On }}$ | $\begin{aligned} & 0.40 \\ & 1.30 \end{aligned}$ | $\begin{aligned} & 0.40 \\ & 1.20 \end{aligned}$ | $\begin{aligned} & 0.40 \\ & 1.10 \end{aligned}$ | $V_{\text {max }}$ <br> v |

## GATES (At All Operating Temperatures)

$I_{I N} " O^{\prime \prime}=1.33 \mathrm{~mA} \max \leftrightarrow \mathrm{~V}_{I N}=0 \mathrm{~V}$ (1) (2)

$$
I_{L}{ }^{\prime} O^{\prime \prime}=20 \mathrm{~mA}(\text { F.O. }=15)
$$

$$
\begin{aligned}
& I_{N} \cdot I^{\prime \prime}=100 \mu A \operatorname{mox} @ V_{i N}=4.5 \mathrm{~V}(1)(3) \\
& I_{L} \prime I^{\prime \prime}=1.5 \mathrm{~mA}(\text { F.O. }=15) \\
& L_{L} " O^{\prime \prime}=0.7 \mathrm{~mA}(\text { F.O. }=7)
\end{aligned}
$$

Power Per Gate "ON", $\mathrm{I}_{\mathrm{S}}=10.9 \mathrm{~mA}$ mox (4) [1.4 mA Per Input Node, 9.5 mA Per Output Stoge ]
Power Per Gote "OFF", $\mathrm{I}_{\mathrm{S}}=9.4 \mathrm{~mA}$ mox (4) [0.9 mA Per Input Node, 8.5 mA Per Output Stoge ]
Circuit Breokdown " ON ", $7.0 \mathrm{~V} \min @ \mathrm{I}_{\mathrm{S}}=15.5 \mathrm{~mA}$ mox (4) $\lceil 2.0 \mathrm{~mA}$ Per Input Node, 13.5 mA Per Output Stoge]
Circuit Breokdown "OFF', 7.0 V min @ $\mathrm{I}_{\mathrm{S}}=13.6 \mathrm{~mA}$ mox ${ }^{4}$ [ 1.6 mA Per Input Node, 12.0 mA Per Output Stage] Input Breokdown, 5.5 V min @ $1 / \mathrm{N}=1.0 \mathrm{~mA}$ (3)
Output Short Circuit Current $=50.0 \mathrm{~mA}$ mox, 20 mA min $@ \mathrm{~V}_{\text {OUT }}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=4.5 \mathrm{~V}$
Propogation Delay $\dagger_{\text {pd }}=\frac{t_{\text {on }}+t_{\text {off }}}{2}=18$ nsec mox $\quad \begin{aligned} & \text { F.O. }=1, C_{L}=15 \mathrm{pf} \\ & T_{A}=25^{\circ} \mathrm{C}\end{aligned}$

## LINE DRIVERS (At All Operating Temperatures)

$$
\begin{aligned}
& I_{\mathbb{N}} \prime O^{\prime \prime}=1.33 \mathrm{~mA} @ V_{I N}=0 V(1) \\
& I_{L} \prime \prime O^{\prime \prime}=54.0 \mathrm{~mA}(\text { F.O. }=40.0) \\
& I_{L} \cdot O^{\prime \prime}=32.0 \mathrm{~mA}(\text { F.O. }=24.0)
\end{aligned}
$$

$$
I_{\mathbb{N}} \prime I^{\prime \prime}=100 \mu A_{\text {mox }} @ V_{\mathbb{N}}=4.5 \mathrm{~V} \text { (1) (3) }
$$

$$
I_{L} " I \prime=4.0 \mathrm{~mA}(\text { F.O. }=40.0)
$$

$$
I_{L} " I \prime=2.4 \mathrm{~mA}(\text { F.O. }=24.0)
$$

Power Per Gote " ON ", $\mathrm{I}_{\mathrm{S}}=23.1 \mathrm{~mA}$ (4) [1.4 mA Per Input Node, 21.7 mA Per Output Stoge] Power Per Gote "OFF', $\mathrm{I}_{\mathrm{S}}=21.4 \mathrm{~mA}$ (4) [0.9 mA Per Input Node, 20.5 mA Per Output Stoge]
Circuit Breokdown, "ON", $7.0 \mathrm{~V} \mathrm{~min} @ \mathrm{I}_{\mathrm{S}}=35.2 \mathrm{~mA}$ (4) [2.0 mA Per Input Node, 33.2 mA Per Output Stoge]
Circuit Breokdown "OFF", 7.0 Vmin © $\mathrm{I}_{\mathrm{S}}=32.6 \mathrm{~mA}{ }^{\text {(4) }}$ [1.6 mA Per Input Node, 31 mA Per Output Stoge]
Input Breokdown 5.5 V min @ $I{ }_{\mathrm{N}}=1.0 \mathrm{~mA}$ (3)
Output Short Circuit Current $=100 \mathrm{~mA}$ mox, 40.0 mA min $@ \mathrm{~V}_{\text {OUT }}=O \mathrm{~V}, \mathrm{~V}_{\text {IN }}=4.5 \mathrm{~V}$
Propagotion Deloy $t_{p d}=\frac{{ }^{\dagger}{ }^{\text {on }}+{ }^{\dagger} \text { off }}{2}=18.0$ nsec mox @ F.O. $=1.0, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pf}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (5)

NOTE5:
(1) One Unit Load
(4) Dependent on CKT Functian
(2) Other Inputs @ 4.5V
(5) Unused Inputs @ Lagic " 1 "' $=3.5 \mathrm{~V}$
(3) Other Inputs Ground Or Open


RANDOM SAMPLING TNG 6262



RANDOM SAMPLING TNG 6252



## APPLICATION

## DECODING



8 TNG 6252
8 Unit Laads per Register Side
1 Propagation Delay

## alternatives using only inverting gates

16 TNG 4418
8 TNG 3114 + 4 TNG 3414
2 TNG $3414+8$ TNG 4214

8 Unit Laads per Register Side, 1 Propagation Delay 8 Unit Laads per Register Side, 2 Prapagation Delays 8 Unit Laads per Register Side, 2 Prapagation Delays

## HLTTL HIGH SPEED D TYPE FLIP.FLOP

The TFF3512 and TFF 3514 ore HLTTL roceless dual ronk, high speed "D' type Flip-Flops. The flip-flops complement typically on o 50 megacycle input signol. The high operoting speeds which are particulorly insensitive to heovy looding hove been ochieved by dual steering of the secand rank flip-flapu

The flip-flop design which utilizes HLTTL technalogy provides the additionol advontages of (1) moximum input gating ta simplify the required external goting, (2) elimination of redundant inputs ond the necessity to supply the doto complement to form the "'set" function, (3) connections for holding o lagic" 1 "'are incorporated into the flip-flop, (4) a built in clock buffer reduces the clock line driving requirements, (5) typicol noise immunity in excess of 1.0 volt ond (6) fonouts in excess of 15 with ather chorocteristics ond logic levels typical of HLTTL circuitry.

The high speed ond extended goting copobility of these units make them extremely desirable for orithmetic ond generol register opplicotions.


PIN CONFIGURATION


TRUTH TABLE:

| $D$ | $H$ | $Q_{n}$ | $Q_{n}+1$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | $\phi$ | 0 | Where: |  |
| 1 | 0 | $\phi$ | 1 |  |  |
| 0 | 1 | 0 | 0 | $n=$ Bit Time |  |
| 1 | 1 | 0 | 1 |  |  |
| $\phi$ | 1 | 1 | 1 |  |  |

Data; $D=D_{1} \cdot D_{2} \cdot D_{3}+D_{5} \cdot D_{6} \cdot D_{7}+D_{13} \cdot D_{14}$
Hald; $\mathrm{H}=\mathrm{H}_{12}$
(Subscripts = Package Pin Numbers)

RATINGS

| Voltage | Min | Typ | Max | Temperature and Power | Min | Typ | Max |
| :--- | :--- | :--- | :--- | :--- | :--- | :---: | :---: |
| Supply Voltoge |  |  | 7.0 V | Operoting Temperoture | 0 |  | $+75^{\circ} \mathrm{C}$ |
| Supply Operating | 4.5 | 5.0 | 6.0 V | Storoge Temperature <br> Input Voltoge |  |  | 5.5 V |
| Output Valtoge |  |  |  |  |  |  |  |

ELECTRICAL CHARACTERISTICS $V_{C C}=5.0 \mathrm{~V}$

|  | Symbol | Temperature |  |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $0^{\circ} \mathrm{C}$ | $+25^{\circ} \mathrm{C}$ | $+75^{\circ} \mathrm{C}$ |  |
| INPUT: <br> Input Laad Current (Data Inputs) <br> (3) $V_{I N}$ and Clock <br> Other Inputs (Q High) <br> Input Laad Current (Clock Input) <br> (4) $V^{1 N}=$ <br> Other Inputs <br> Input Leakoge Current (Doto Inputs) <br> (0.) $V_{I N}=$ <br> Other Inputs: (1) <br> (2) (Q High, Clock Low) <br> Input Leokoge Current (Clock Input) <br> (e) $V_{1 N}=$ <br> Other Inputs <br> Input Breokdown Valtage (Doto Inputs) <br> (n) $1_{I N}=$ <br> Other Inputs: (1) <br> (2) (Q High, Clock Low) |  | $\begin{gathered} 1.33 \\ 0 \\ +4.5 \\ 1.0 \\ +3.5 \\ \text { Open } \\ 0.1 \\ +4.5 \\ 0 \\ +4.5 \\ 0.25 \\ 0 \\ \text { Open } \\ 5.5 \\ 1.0 \\ 0 \\ \text { Open } \end{gathered}$ | $\begin{gathered} 1.33 \\ 0 \\ +4.5 \\ 1.0 \\ +3.5 \\ \text { Open } \\ 0.1 \\ +4.5 \\ 0 \\ +4.5 \\ 0.25 \\ 0 \\ \text { Open } \\ 5.5 \\ 1.0 \\ 0 \\ \text { Open } \end{gathered}$ | $\begin{gathered} 1.33 \\ 0 \\ +4.5 \\ 1.0 \\ +3.5 \\ \text { Open } \\ 0.1 \\ +4.5 \\ 0 \\ +4.5 \\ 0.25 \\ 0 \\ \text { Open } \\ 5.5 \\ 1.0 \\ 0 \\ \text { Open } \end{gathered}$ | mAmox <br> V <br> $\checkmark$ <br> mA mox <br> V <br> mA max <br> V <br> V <br> $V$ <br> mA mox <br> v <br> $V_{\text {min }}$ <br> mA mox <br> V |
| OUTPUT: <br> Output Short Circuit Current <br> (1) VOUT $=$ <br> Other Output and Clock Input <br> Logie " ${ }^{0}$ " Output Voltage $\begin{aligned} & \text { (1) } V_{I N}= \\ & I_{L}{ }^{\prime \prime} O^{\prime \prime}(F .0 .=15)= \\ & \\ & \\ & (F .0 .=7) \end{aligned}$ <br> Logic "I'" Output Voltoge $\begin{aligned} & \text { (e } V_{I N}= \\ & \text { IL }^{\prime} \cdot{ }^{\prime \prime \prime} \quad(\text { F.O. 15) }= \\ & \\ & \\ & (\text { F.O. } 7)= \end{aligned}$ | $I_{\text {SC }}$ $v_{0}{ }^{\prime \prime} 0^{\prime \prime}$ $v_{0}{ }^{\prime \prime \prime \prime \prime}$ | $\begin{aligned} & 80 \\ & 20 \\ & 0 \\ & 0 \\ & 0.40 \\ & 1.30 \\ & 20 \\ & 10 \\ & 3.0 \\ & 1.90 \\ & 20 \\ & 10 \end{aligned}$ | 80 20 0 0 0.40 1.20 20 10 3.0 1.80 20 10 | $\begin{gathered} 80 \\ 20 \\ 0 \\ 0 \\ 0.40 \\ 1.10 \\ 20 \\ 10 \\ 3.0 \\ 1.70 \\ 20 \\ 10 \\ \hline \end{gathered}$ | mA mox <br> mAmin <br> V <br> $v$ <br> $V$ mox <br> V <br> $m A$ <br> mA <br> $V_{\text {min }}$ <br> $\checkmark$ <br> $m A$ <br> $m A$ |
| CIRCUIT: <br> ' 0 ' Power Supply Current <br> (C) Inputs and Clack Outputs <br> ' 1 1' Power Supply Current <br> (e) Inputs ond Clock Outputs <br> Breokdawn Voltage Is = <br> (@) $V$ (Inputs and Clock) $=$ Outputs | $\begin{aligned} & \mathrm{I}_{\mathrm{s}} \cdot \mathrm{O} " \\ & \mathrm{I}_{\mathrm{s}} \cdot \mathrm{I} \cdot \mathrm{\prime} \\ & \mathrm{~B} \mathrm{~V}_{\mathrm{S}} \end{aligned}$ | $\begin{gathered} 38 \\ 0 \\ \text { Open } \\ 37 \\ \text { Open } \\ \text { Open } \\ 7.0 \\ 60 \\ 0 \\ \text { Open } \end{gathered}$ | $\begin{aligned} & 38 \\ & 0 \\ & \text { Open } \\ & 37 \\ & \text { Open } \\ & \text { Open } \\ & 7.0 \\ & 60 \\ & 0 \\ & \text { Open } \end{aligned}$ | 38 <br> 0 <br> Open <br> 37 <br> Open <br> Open <br> 7.0 <br> 60 <br> 0 <br> Open | mA mox <br> V <br> mAmox <br> $V_{\text {min }}$ <br> $m A$ <br> V |



SWITCHING CHARACTERISTICS
$\left(A+V_{C C}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{F} .0 . \mathrm{Laad}=7, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pf}.\right)$
Turn-an Delay, ${ }^{\dagger}{ }^{\text {an }}$
Turn-aff Delay, ${ }_{d}$ aff
Preset "0", Time, tp0
Preset "]" Time, tpl

15 nsec. max
25 nsec. max
8 nsec. $\max$
6nsec. max

## APPLICATION -

Register Illustrating the Logic Power of the TFF 3512 and TFF 3514


REGISTER, SHIFT LEFT, RIGHT, PARALLEL ENTRY, HOLD

TYPICAL CHARACTERISTICS




