Eddystone

GENERAL-PURPOSE HIGH STABILITY TELEPHONY RECEIVERS

MODEL 1838 SERIES

MODEL 1838/1

Manufactured in England by

EDDYSTONE RADIO LIMITED
MEMBER OF MARCONI COMMUNICATION SYSTEMS LIMITED
ALVECHURCH ROAD, BIRMINGHAM B31 3PP

Telephone: 021-475 2231

Telex: 337081

ISSUE NUMBER 1 JULY 1977

PRINTED IN ENGLAND

AMENDMENT RECORD

Amend No.	Pages subject to change	Amended by	Date
1			
2			
3			
4	·		
5			
6			
7			
8			
9			
10			
11			
12			
13			
14			
15			
16			
17			
18			
19			
20			
21			
22	·		
23			
24			
25			
26			
27			
28			
29			
30			

The Manufacturer reserves the right to modify the content of this publication as necessary to accommodate modifications, design improvements etc. Relevant Amendment Sheets will be incorporated at date of issue.

NOTE : : AC MAINS CONNECTOR

The following information is issued in compliance with British Standard BS415:-

If the colours of the wires in the mains lead of this apparatus do not correspond with the coloured markings identifying the terminals in your mains connector (or plug) proceed as follows:-

- 1. The GREEN/YELLOW wire must be connected to the plug terminal marked "E" or " __ " or coloured GREEN or GREEN/YELLOW.
- 2. The BLUE wire must be connected to the plug terminal marked "N" or coloured either BLUE or BLACK.
- 3. The BROWN wire must be connected to the plug terminal marked "L" or coloured either BROWN or RED.
- 4. If a 13 amp (BS1363) FUSED PLUG is used to facilitate connection to the supply outlet, the plug MUST be protected by a 3 AMP FUSE unless expressly declared otherwise (see para. 5 below). If another type of plug is used, a fuse of the appropriate rating must be fitted either in the plug, or the adaptor, OR AT THE DISTRIBUTION BOARD.

5. NOTE:

A 3 AMP fuse rating is sufficient for most equipments, but in some instances, to allow for switching surges, it may be necessary to use a 5 AMP FUSE RATING. In all instances where the higher rating is applicable, specific notice will be given in the INSTALLATION SECTION of the handbook at the POWER SUPPLIES subsection.

GENERAL SUPPLEMENT TO MODEL 1837 and 1838 SERIES

Page 4-3-9 of Handbook: : PCB 9571 P

The diode "+" symbols on the PCB legend (TUNABLE IF MODULE 3) are incorrectly shown at the earthy-ends of D1 to D5, D7 and D10; the "+" symbol should of course refer to the opposite ends of the above mentioned diodes.

Note also that the "+" symbol for diodes D6 and D9 are similarly shown at the incorrect ends.

The "+" symbol for diode D8 has been omitted and should appear at the junction to pin 14 (K2) end of the diode.

The polarity symbol for capacitor C2 has been omitted. The positive plate symbol of C2 should appear marked at earthy-end.

The relevant circuit diagram is correct and should be referred to for clarification of the foregoing.

^		_
		_
		_
		_
		_
		_
		_
		_
		-
		_
		~
		_
		_
		_
		_
	•	-

INTRODUCTION

This manual provides comprehensive instructions for the installation, operation and maintenance of all models in the 1838 Series of Receivers. Current versions are Model 1838/1, suitable for AM or USB reception over the frequency range 1.6MHz to 30MHz, Model 1838/2 for CW reception in addition and Model 1838/3 is suitable for CW, AM or USB reception over the frequency range 100kHz to 30MHz. The receivers can be operated conventionally with medium stability or locked to the internal reference oscillator for high stability. Power supply can be taken from any standard 40-60Hz AC supply, or from low voltage DC supplies via a separate invertor unit.

The receiver is available in either rack-mounting form, for installation in standard 483mm (19in) racking, or in a cabinet for bench mounting. When fitted with the appropriate shock absorbent mountings, the relevant MPT standards are met. Accessories available include a plinth loudspeaker, cabinet loudspeaker, matching panoramic display units, f.s.k. teleprinter drive units, headphones and aerial systems.

GUARANTEE

All 1838 Series receivers are suitable for use under arduous operating conditions and should require very little routine maintenance over long periods of operation. With the exception of the semi-conductors all components are guaranteed by the Manufacturer for a period of one year from the date of purchase; the semi-conductors are covered by a separate guarantee.

SERVICING

Spares for user servicing can be supplied and advice will be freely given when required. Any enquiries relating to service matters should be directed to the "Sales and Service Department" at our usual address, quoting the Model Number and Serial Number in all communications. Should major servicing become necessary the unit can, by prior arrangement, be returned to the Manufacturer for attention; care should be taken to ensure that the unit is well protected against possible damage during transit.

CONTENTS

Health & So	afety Notes, First Aid	inside fro	nt cov e r
Section 1	General Specification & Typical Performance	Page	1.1
Section 2	Installation Receiver Dimensions FUSES Connections	Page Page Page Page	2.1 2.2 2.4 2.5
Section 3	Operation	Page	3.1
Section 4	Circuit Data and Maintenance Basic Circuit Description Basic Fault Diagnosis 1. Chassis 2. Coilbox 3. Tunable 1st IF Module 4. Selectivity Unit 5. Second IF Amplifier and AGC 6. BFO and Product Detector 7. 600Ω Line Amp & Meter Amp 8. High Level Audio Module 9. FSK Module (Model 1837/2 only - this section does not appear in 1838 Series handbook) 10. Power Supply Unit 11. Frequency Display Module 12. Correction Module	Page Page Page Page Page Page Page Page	4.0.1 4.0.3 4.1.1 4.2.1 4.3.1 4.4.1 4.5.1 4.6.1 4.7.1 4.8.1 4.9.1 4.10.1 4.11.1 4.12.1
	13. Switchboard Individual Module Parts Lists) Printed Circuit Boards) Par Circuit Diagrams)	Page t of module	4.13.1 e section
Appendix A Appendix B Appendix C	Device Outlines Model Variants	Page A Page B Page C	. 1.
Main Circui	t Diagram	inside re	ar cover

GENERAL SPECIFICATION

Application

The 1838 Series of receivers are intended for Maritime and General Purpose use in the frequency band 100kHz to 30MHz.

Frequency Coverage

100kHz to 30MHz in 9 ranges with "Fine Tune" facility on ranges 1-5.

Range 1	18.0 MHz	-	30MHz
Range 2	10.0 MHz	-	19MHz
Range 3	5.5 MHz	-	10.0MHz
Range 4	2.9 MHz		5.5MHz
Range 5	1.6 MHz		2.9MHz
Range 6 *	840 kHz	-	1600 kHz
Range 7	400 kHz	_	850 kHz
Range 8	200 kHz	-	400 kHz
Range 9	100 kHz	-	210 kHz

^{*} Not high stability.

Models 1838/1 and 1838/2 cover ranges 1 to 5. Model 1838/3 covers ranges 1 to 9.

Scale Resolution

Display indicates to 100Hz over the whole band.

Intermediate Frequencies

1st 1.F: Tunable 1340 - 1360kHz nominal to provide fine-tune facility on Ranges 1-5. Fixed at 1350kHz on ranges 7-9. Not used on range 6.

2nd I.F: 100kHz. BFO/Carrier insertion. + 3kHz swing for CW, fixed 100kHz for USB. (CW facility on Models 1838/2 and 1838/3 only).

Aerial Impedance

 75Ω nominal (unbalanced) for frequencies 4MHz to 30MHz. 10Ω in series with 250pF for frequencies 1.6MHz to 4MHz. 10Ω in series with 220–560pF for frequencies below 1.6MHz.

Reception Modes

Al Telegraphy (Models 1838/2 and 1838/3 only) A2 Telegraphy; A3, A3A, A3H, A3J Telephony (all models).

Environmental

The receiver conforms to the climatic and shock/vibration requirements of British MPT 1204, 1216 and 1217 and CEPT draft recommendations, and generally to DEF 133, Clause L2.

Operating temperature rating

-15°C to +55°C

Humidity

95% relative humidity at 40°C.

Muting

Internal reed relay controlled from associated transmitter interrupts aerial feeder and earths input circuit during transmission.

Power Supply

100 - 130V or 200 - 260V, 40 - 60Hz single phase AC. Consumption approximately 50VA. 12/24V DC with separate invertor.

Dimensions & Weight

Rack Mounting

 Width
 :
 483mm (19in)

 Height
 :
 159mm (6.25in)

 Intrusion into rack
 :
 334mm (13.125in)

 Weight (271b)
 :
 16.9kg (271b)

Weight (approx) : 16.8kg (37lb)

Bench Mounting

 Width
 :
 502mm (19.75in)

 Height (with feet)
 :
 191mm (7.5in)

 Depth (Overall)
 :
 376mm (14.8in)

 Weight (approx)
 :
 21.8kg (48lb)

TYPICAL PERFORMANCE

(Not to be interpreted as a Test Specification)

Sensitivity

 $50/75\Omega$ input all ranges, 15dB S+N/N ratio, Intermediate Bandwidth. 10dB S+N/N ratio, AM Bandwidth as appropriate. AM 30% Mod.

AM $3\mu V$ emf (1.5 μV p.d. on Model 1837/2 only).

CW $1\mu V$ emf (0.5 μV p.d. on Model 1837/2) Not applicable to Model 1838/1.

IF Selectivity

Switch Position	-6dB	-60dB	(Notes)
V. Narrow	400Hz	2.4kHz	1837 Series only.
Narrow	1.3 kHz	4.5kHz	1837 Series only.
CW	1.3 kHz	4.5kHz	Models 1838/2 & 1838/3 only.
SSB	2.4 kHz	3.9kHz	Asymmetrical response to MPT 1201 & CEPT draft recommendations.
Intermediate	3 kHz	12kHz	1837 Series only.
AM DSB	5.4 kHz	10.5kHz	1838 Series only.
Wide	8 kHz	18kHz	1837 Series only.

Image Rejection

100 kHz	-	525 kHz	:	80dB	(1837 Series and Model 1838/3 only)
525 kHz	-	18MHz	:	70dB	·
18MHz	_	$30\mathrm{MHz}$:	50dB	

IF Rejection

100 kHz		1600 kHz :	60dB	(1837 Series and Model 1838/3 only)
1.6MHz	_	2.9MHz :	60dB	•
2.9MHz		30MHz :	85dB	

Frequency Stability

Figures quoted after 30 minute warm-up period.

'Tune' mode : 1 part in 10 000 per degree C (typically 5 parts in 100 000 per degree C).

'Lock' mode: Typically not worse than 5Hz per day at constant temperature, or 5Hz in

any period of 15 minutes for 7°C change in ambient temperature.

Cross Modulation

With a wanted signal of level $60dB\mu V$ producing standard output, unwanted output will be at least 30dB below this level with an interfering signal 20kHz off-tune and of level $90dB\mu V$.

Intermodulation

The level of third-order intermodulation products given by two signals of level $80dB\mu V$ lying at (carrier + 1kHz) and (carrier + 1.6kHz) will be at least 30dB below the level of either signal.

With a wanted signal of level 30dBµV producing standard output, two unwanted signals adjusted to produce a third-order intermodulation product at the wanted frequency must each be of a level greater than 80dBµV to produce standard output when neither signal is closer than 30kHz to the wanted frequency.

Blocking

With a wanted signal of level $60dB\mu V$, output will be affected by less than 3dB with an interfering carrier 20kHz off-tune of level $100dB\mu V$.

AGC Characteristic

Output is maintained within 3dB for 90dB increase in signal from threshold reference level (measured at 8MHz).

AGC Time Constant

1837 Series.

Charge 30mS (short) 200mS (long), Discharge 0.5 sec (short) 6.5 sec

(long).

1838 Series.

Charge 30mS, Discharge 0.5 sec.

Audio Output

External loudspeaker (3Ω)

500mW at 5% distortion. Max 1.5W.

Line (600Ω)

: 10mW (adjustable).

Headphones

Low/Medium impedance: 10mW max.

Audio Response

Within 3dBover the range 200Hz to 4.5kHz. Overall response is dependent on IF selectivity.

IF Output

 $3\mu V$ emf (1.5 μV pd on Model 1837/2) at aerial produces an IF output of at least 20 mV at 100 kHz across 75Ω .

Radiation

Less than 400pW (typically 20pW).

FSK Cat. No. 1534 (available for Model 1837/2 only)

Minimum shift of 85Hz enables a transmission rate of 100 bauds to be resolved. Maximum rate in excess of 300 for shifts greater than 150Hz.

INSTALLATION

2.1. ASSEMBLY INSTRUCTIONS

Accessories Kit

A kit of accessories is supplied with the receiver. The contents of the kit should be checked against Table 2.2.

Rack Mounting Receivers

The rack mounting versions can be installed directly in 483mm (19in) racks, using for suitable screws. Plain washers should be used beneath the screw heads to prevent damage to the panel finish. Fixing slots confirm to standard with centre spacing of 57mm ($2\frac{1}{4}$ in). Dimensions of the receiver are shown in Fig 2.1e and f.

Bench Mounting Receivers

Four mounting feet are included with the Accessories Kit. These should be fixed to the bottom corners of the cabinet using the four $M4 \times 10$ mm screws provided. Dimensions of the receiver are shown in Fig 2.1b.

Conversion of Mounting Style

Rack-Mounting receivers may easily be converted to bench mounting and vice-versa. The accessories required are listed in Table 2.3.

Anti-Vibration Mountings

These are available to order for bench mounting receivers to ensure compliance with the relevant British MPT standards. The dimensions of the receiver and cabinet fitted with anti-vibration mountings are shown in Fig 2.1a.

To fit anti-vibration mountings Cat. No. 1547 proceed as follows:-

- 1. Remove the cabinet feet (if fitted).
- If access to the underside of the mounting surface (ie the bench or shelf) is available, drill 16 clearance holes on the centres shown in Fig 2.2. to enable the anti-vibration mountings to be bolted to the surface. If access to the underside of the surface is not available, these holes must be drilled and tapped to take suitable hexagon-headed screws.

- 3. Fix the four anti-vibration mountings to the base of the cabinet using M6 \times 20mm screws, ensure the bases are correctly aligned.
- 4. Secure the bases of the mountings to the mounting surface.

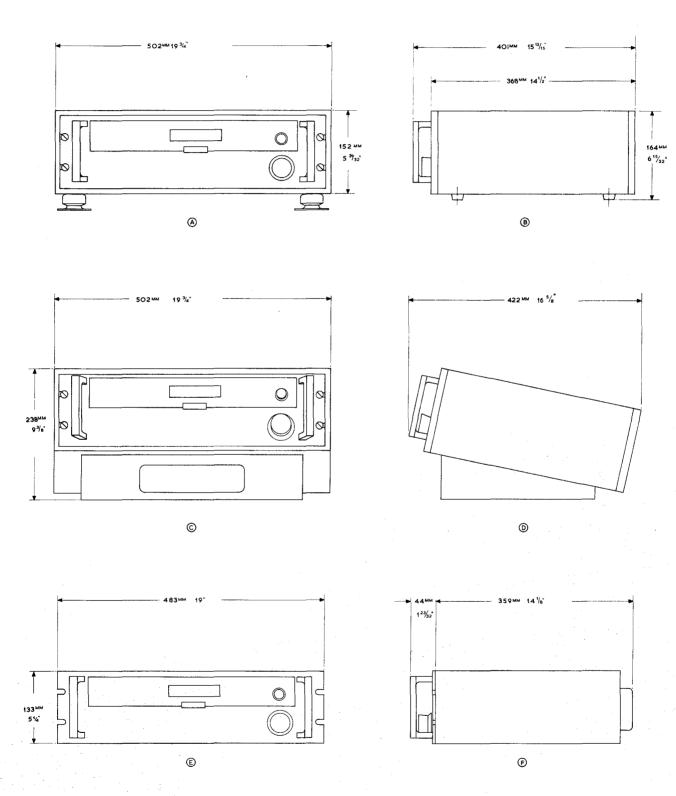


Fig 2.1. Dimensions of the Receiver in all mounting styles.

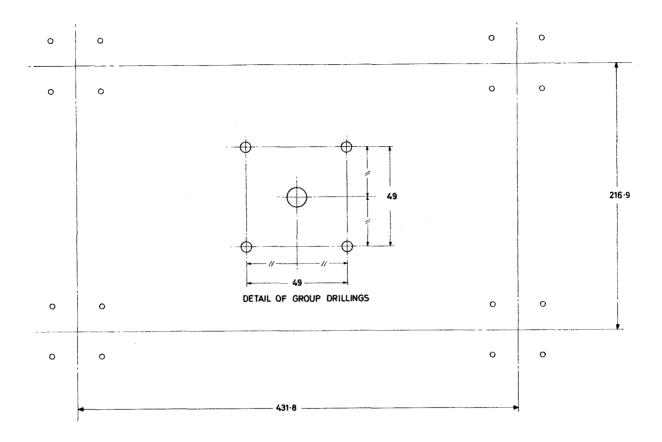


Fig 2.2. Drilling details for fixing Anti-Vibration Mountings Cat. No. 1547

Plinth Loudspeaker Unit

The unit should be secured to the underside of the cabinet with four $M4 \times 6$ mm screws, using the inner group of fixing holes. Dimensions of the receiver fitted with the Plinth Loudspeaker Unit are shown in Fig 2.1c and d.

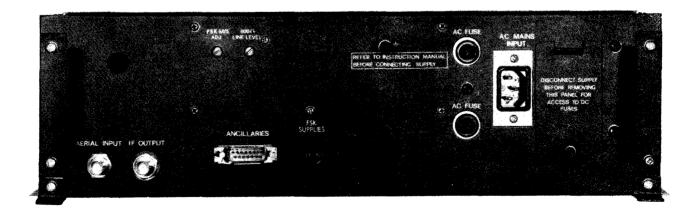


Fig. 2.3. Rear View of Model 1837/2 receiver. Only this model in the 1837 and 1838 series has the FSK Supplies connector and the FSK adjust control.

2.2 POWER SUPPLIES

THE RECEIVER MUST BE DISCONNECTED FROM THE SUPPLY BEFORE ATTEMPTING TO ADJUST THE TRANSFORMER TAPS. FAILURE TO DO SO WILL EXPOSE THE OPERATOR TO LETHAL VOLTAGES.

The unit may be powered from any standard 40 - 60Hz AC supply, before connecting the supply check that the mains transformer taps are set to suit the local supply. Standard receivers are despatched from the factory set for 240V operation, other voltages may be specified at the time of ordering in which case a label will be attached to the receiver indicating the voltage to be used. The voltage setting may be adjusted as follows:-

- 1. Disconnect the supply.
- 2. Remove the cabinet (if Table mounting version).
- 3. Locate the mains transformer primary connections. These are visible through a window in the left-hand side plate of the receiver. (Remove FSK connector on Model 1837/2 if necessary).
- 4. Remove the transparent safety cover, refer to Fig 2.4 and make the connections applicable.
- 5. Check the Fuse Ratings and replace the safety cover.

1 (10)	2 (0)	3 (110)
4 (10)	5 (0)	6 (110)

AC SUPPLY VOLTAGE	LINK		TAKE SUPPLY TO	
105 – 115	2&5	3&6	N 2	L 6
115 – 125	184	386	1	6
210 – 230	3&5		2	6
230 – 250	3&4		1	6

Fig 2.4. Transformer Taps and connections.

Fuse Ratings

AC Fuses.

The mains transformer primary circuit is double-pole fused. The fuse rating is

100 - 130V

:

1A Time-lag

200 - 260V :

0.5A Time-lag.

DC Fuses

These are located beneath a protective cover on the rear panel. To gain access to the fuses first disconnect the supply, then loosen the captive screw and remove the cover. The designation of each fuse and its rating is shown in Fig 2.5.

Spare Fuses are supplied in the Accessories Kit.

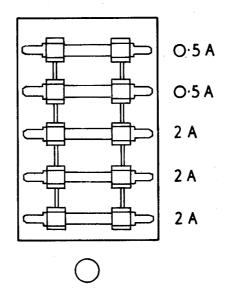


Fig 2.5. Fuse Locations and ratings.

2.3 EXTERNAL CONNECTIONS

With the exception of the headphone socket all external connections are made at the rear of the receiver. Appropriate connectors are included in the Accessories Kit. A rear view of the receiver is shown in Fig 2.3.

AC Mains Input. This socket accepts a 40-60Hz mains supply within the ranges 100-130V or 200 - 260V, using a standard IEC connector. If the plug and lead supplied in the Accessories Kit is used a connector to suit the local supply arrangements can be fitted to the free end, observing the colour-code which is as follows:-

LINE

BROWN

NEUTRAL

EARTH

BLUE

GREEN/YELLOW

Aerial Input. This socket accepts a BNC Bayonet-lock coaxial connector.

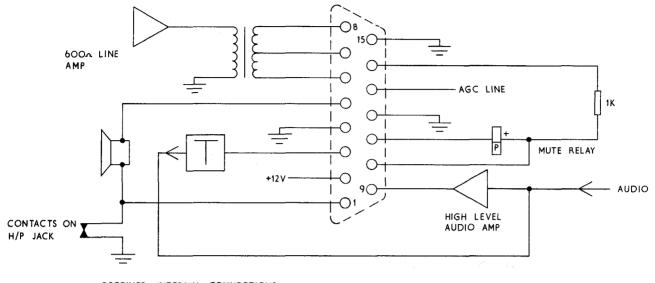
Models 1837/1, 1838

For frequencies below 1.605MHz 10Ω in series

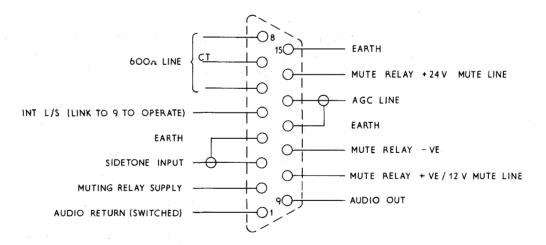
with 220-560pF.

For frequencies of 1.605-4MHz 10Ω in series

with 250pF.


For frequencies of 4-30MHz 75Ω nominal.

Model 1837/2 For all frequencies 75Ω nominal.


IF Output. This socket accepts a BNC Bayonet-lock coaxial connector. The signal is approx 20mV into 75Ω at 100kHz for a $3\mu\text{V}$ aerial input.

Ancillaries Connector

A 15 way connector is used, the connection details are shown in Fig 2.6.

RECEIVER INTERNAL CONNECTIONS
(VIEWED ON FIXED CONNECTOR PIN SIDE)

FREE CONNECTOR
(VIEWED FROM WIRING SIDE)

Fig 2.6. Ancillaries connector.

Loudspeakers. The loudspeakers can be arranged either to mute when the headphone plug is inserted or to remain operational as required. The options and connection arrangements are shown in Table 2.1.

 600Ω Line. Connect to pins 6 & 8. The transformer centre tap is pin 7 which may be earthed to pin 15 if required. The output is adjustable by means of a preset control accessible through the rear panel, the rated output is $\pm 10 \, \mathrm{dBm}$.

IF AGC. The IF AGC line is pin 13, the cable should be screened and the screen connected to pin 12.

Muting. The receiver can be muted by connecting an earth to pin 11 (in which case link pin 10 to pin 2) or by connecting an external positive supply (12V to pin 10 or 24V to pin 14) in which case link pin 11 to pin 15.

Side tone input. An audio signal from an associated transmitter may be connected to pin 3 (earth to pin 4). The signal required for full output (AF gain control at MAX) is approx 5V into $300k\Omega$.

Earths. All earths on the ancillaries connector are ultimately connected to the chassis and hence to the supply earth. No additional earthing is required.

FSK Supplies Socket (Model 1837/2 only). Keying of the teleprinter is by means of an electronic switch. External supplies of +80V, +6V, 100V or 12V can be switched. For bipolar working connect the supplies to "Ext Supply" (polarity reversed will effect a Mark/Space reversal) and for unipolar working to either "Ext Supply" contact (use of other contact will effect a Mark/Space reversal). Connect the printer to "pole" and the supply earth (or 0 volt line). See section 4.9 and check that the correct current limiting resistors are fitted.

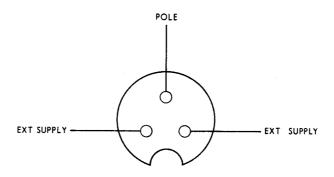


Fig 2.7. FSK Supplies connector - view on wiring side of plug.

Diversity Installation

Two receivers can be combined for dual diversity operation.

- 1. Link the IF OUTPUT sockets with a screened RF cable having a standard BNC connector at each end.
- 2. Link the AGC lines. These are pin 13 on each ancillaries connector. A screened cable should be used with the screen connected to pin 12. Ensure the receiver earths are returned to a common earth point on the rack, to avoid earth loops.
- 3. Take the audio output from either receiver as convenient.

Refer to Section 3 for operating instructions.

Table 2.1. Loudspeaker Muting.

Both speakers operate	Link 5-9, link 1-15	Ext LS to 9 & 15
Internal mutes, external operates	Link 5-9	Ext LS to 9 & 15
Internal operates, external mutes	Not available	
Both speakers mute	Link 5-9	Ext LS to 9 & 1
Ext speaker only, muting		Ext LS to 9 & 1
Ext speaker only, non-muting		Ext LS to 9 & 15
Int speaker only, muting	Link 5-9	
Int speaker only, non-muting	Link 5-9, link 1-15	

Table 2.2 List of Accessories supplied with the receiver.

Quantity		Description	Part	No.
4	*	Cabinet Mounting Feet (with screws)	9817	P
2		BNC Bayonet-lock plug	8012	Р
1		AC Supply Connector (complete with cable)	D481	5
1		Ancillaries Connector, 15 way locking	8631	Р
6	**	(Spare Fuses – 1A.T (Time-lag) (Spare Fuses – 0.5A (Time-lag)	9816 9714	
6		Spare Fuses - 0.5A	6710	P
9		Spare Fuses - 2A	6704	P
1		Trimming Tool TT1	8451	P
1		Trimming Tool HS3	8450	P
1		Trimming Tool (insulated)	83331	P
1		Box Spanner (for control knobs)	90571	P
ī	***	Teleprinter Supplies Connector	88551	P
Notes	*	Not supplied for rack-mounting receiver.		
	**	0.5A T supplied if Receiver adjusted for 200-260	OV operation.	
		1A T supplied if Receiver adjusted for 100-130	•	
	***	Supplied with Model 1837/2 only.	·	

Table 2.3. List of Accessories available to order.

Description	Part No.
Standard Cabinet (for converting rack-mounting to bench-mounting style)	LP3538
Anti-vibration Mounting Kit	Cat. No. 1547
Drip-proof Cowl	Cat. No. 1548
Cabinet Loudspeaker Unit	Cat. No. 935/3
Plinth Loudspeaker Unit	Cat. No. 989
Headphones	LP 3242
Headphones	LP 3301
FSK Teleprinter Drive Module (for Model 1837/2 only)	Cat. No. 1534
High-pass Aerial Filter	Cat. No. 1526
Low-pass Aerial Filter	Cat. No. 1527
Basic Spares Kit (1837 Series)	LP 3554
Basic Spares Kit (1838 Series)	LP3554/1

* * · · · .

OPERATION

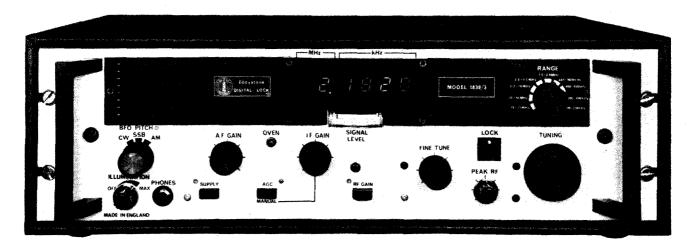


Fig 3.1. Front View of Model 1838/3 receiver, shown set for Emergency Watchkeeping.

3.1 Control Functions.

AF Gain Adjusts the level of the audio output of the internal loudspeaker, the external loudspeaker and headphones.

AGC When pushed in the button brings the automatic gain control circuit into operation.

BFO Pitch Adjusts the Beat Frequency in CW mode.

Fine Tune Operative at frequencies above 1.6MHz only, this control enables small changes to be made to the tuned frequency.

IF Gain Controls the gain of the Second Intermediate Frequency stage, provided AGC is not used.

Illumination A four-position switch which controls the brightness of the display LED indicators. Three levels of brightness and an 'off' position are provided.

Lock When operated changes receiver from medium stability mode to high stability mode, and vice-versa. Light indicates high stability mode.

Meter Indicates RF Carrier Signal.

Mode Selects the desired mode of operation: AM, SSB or CW.

Oven Indicates presence of the oven heater supply, the light is illuminated as soon

as the AC supply is connected to the receiver.

Peak RF The action of this control is to bring the RF stages into more exact alignment.

Adjust for maximum RF signal.

RF Gain) Push button(s) to insert attenuation into aerial feed. Used to prevent overload RF) with high level signals.

Sensitivity)

Range Selects the required Frequency Range.

Supply Pushbutton switch controls the low voltage supply to the receiver. Note that

the crystal oven is permanently powered, thus no prolonged 'warm-up' period

is needed provided to AC supply remains connected.

Tune In conjunction with the range switch this enables the tuned frequency to be

set.

3.2 Operating Procedure.

It is assumed that the supply is connected to the receiver and the internal crystal standard has attained normal operating temperature. Optimum stability is reached after about 30mins. from switch-on. If the display is not turned off with the ILLUMINATION control, the OVEN lamp will be on.

Depress the SUPPLY pushbutton, power is applied to the receiver and the display will light. Use the ILLUMINATION control to set the required display brightness.

Select the required RANGE, set FINE TUNE to mid-position, set PEAK RF to mid-position, ensure LOCK lamp is off.

Select FILTER and/or MODE as required. On 1838 series receivers the two functions are controlled by the same switch and are consistently set automatically. On model 1837/1 select AM (both buttons out), BFO or SSB as required. On model 1837/2 select AM (button out), or BFO (button in); SSB is selected automatically by the FILTER switch and the second pushbutton selects USB or LSB as required.

Set AGC/MANUAL as required. On 1837 series select SHORT time constant initially for tuning.

Set RF GAIN (SENSITIVITY) to maximum (button(s) out).

Set IF Gain to maximum.

Set AF Gain as required.

Set TUNING to give the required frequency on the display, adjust FINE TUNE as necessary (FINE TUNE is not operational below 1.6MHz).

If the wanted signal is present adjust for maximum RF on meter.

(on model 1837/2 set meter switch to RF)

Adjust PEAK RF for maximum, adjust RF GAIN (SENSITIVITY) and/or IF GAIN as necessary.

If a CW signal is being received, adjust BFO PITCH as required (not fitted on model 1838/1).

If an SSB signal is being received:

Model 1838/1: for USB with fixed carrier injection, use FINE TUNE as a clarifier control. Model 1837/2: for LSB with fixed carrier injection, use FINE TUNE as a clarifier control. Models 1837/1, 1838/2 and 1838/3: for LSB, select BFO, use FINE TUNE and BFO PITCH as clarifier controls.

There is no LSB facility on model 1838/1.

When the signal is satisfactorily tuned, depressing the LOCK pushbutton will change the operating mode to high-stability, and the LOCK lamp will light.

The display may be dimmed or turned off with the ILLUMINATION control.

HEADPHONES may be used if required. The internal and external loudspeakers may or may not be muted when the plug is inserted, according to the wiring of the ancillaries connector-see Installation section.

EMERGENCY WATCHKEEPING

The control settings on 1838 Series receivers are marked with a RED outline. Set TUNING so that the display shows 2.1820

Diversity Operation

Two receivers can be operated in dual-diversity by interconnecting the IF OUTPUT sockets and the IF AGC lines (pin 13 on the ancillaries connector). The audio output can be taken from either receiver without the need for a mixer or hybrid transformer.

When tuning it is necessary to disable one receiver in order to tune the other: this is easily done by setting the MANUAL/AGC pushbutton to MANUAL and the IF GAIN to minimum.

CIRCUIT DATA AND MAINTENANCE

4.0.1. Introduction

This section, which is applicable to both 1837 Series and 1838 Series receivers, contains full circuit descriptions complete with alignment and maintenance procedures, parts lists, printed circuit board layouts and circuit diagrams. It is divided into subsections, each containing all the information for a particular module or unit. Note that there are some modules which change according to the receiver variant, these are listed in Table 4.0.1.

4.0.2. Basic Circuit Description

The signal path follows a conventional "double superhet" configuration with a 1st IF of 1350kHz (nominal) and a fixed Second IF of 100kHz. The exact frequency of the 1st IF depends of the setting of the 'Fine Tune' control, and the amount of correction applied via the drift correcting system. Various 2nd IF bandwidths can be selected, the choice of bandwidths and the method of switching depends on the receiver variant, symmetrical and asymmetrical passbands are provided. The 2nd IF amplifier provides the major part of the receiver gain, it can be controlled by its own AGC loop or manually. Product and envelope detectors are provided which drive a high level audio amplifier and a 600Ω line amplifier.

- a. RF Circuits. The aerial input signal passes through the muting relay and "Tee" section attenuators to the 1st section of the RF Amplifier, two FET transistors in cascode configuration with permanently applied AGC. The coupling to the 1st Mixer, a dual gate MOSFET, follows various forms and is chosen to maintain sensibly constant gain over the whole tuning range. The second input to the mixer is from the 1st Oscillator, a single-gate MOSFET in the tuned gate configuration. The RF circuits are all ganged together and trimming for the signal frequency circuits is provided by the 'Peak RF' control. The mixer output is then fed to the Tunable 1st IF circuits, or, when Range 6 is selected, direct to the 100kHz Selectivity Unit.
- b. Tunable 1st IF Circuits. Two bandpass filters separated by a common-source FET amplifier stage with preset gain control are each tuned over the range 1340-1360kHz by varicap diodes controlled by the drift correcting system. The frequency of the 2nd Oscillator, a tuned-gate configuration, is variable over the range 1240-1260kHz and controlled the same way to track a constant 100kHz below the frequency of the signal circuits. The oscillator output is buffered before being fed to the 2nd mixer, a double-balanced mixer integrated circuit device. The output at 100kHz feeds into the Selectivity unit which houses the 100kHz filters.
- c. 100kHz 2nd IF. The 100kHz filters which precede the 2nd IF amplifier wholly determine the receiver bandwidth. A combination of L-C Filter sections and Crystal Filters is used, the choice depending on the receiver variant. The amplifier is a wideband unit with four cascaded common-source FET amplifier stages, AGC being applied to the first three. The IF AGC detector is driven from the fourth stage, whilst the RF AGC detector is fed in parallel with the first stage. The RF AGC signal is shaped by two operational amplifiers before being applied to the RF amplifier in the coilbox.
- d. Detectors. The 100kHz output is fed in parallel to the AM detector, the Product Detector and, where an FSK Module is fitted, to this also. The Product Detector can, on all variants except Model 1838/1, utilise either fixed 100kHz injection derived from the master oscillator or a variable BFO signal from the BFO unit (Model 1838/1 has fixed injection only). Analogue gates are used to select the required signal for the product detector integrated circuit, the output of which is fed via a low pass filter to the mode switching.

- e. Audio Stages and Metering. The audio signal from the appropriate detector (AM for single and double sideband working, product for CW) is routed via the mode switching (which in the case of Model 1837/2 is partially performed by analogue gates) to the audio output stages. The 600Ω Line amplifier is fed via the preset line level control and a source follower and is a single integrated circuit package, which drives a balanced line via the isolating transformer. The high level audio stage is fed via the AF Gain control and is a similar integrated circuit package. Provision is made for a sidetone input. The output of this feeds either the internal loudspeaker, an external loudspeaker or headphones, as required.
- f. FSK Demodulator (Model 1837/2 only). This optional unit takes the 100kHz IF signal and provides an electronically switched output to drive a teleprinter. IC1 is a combined limiter and quadrature discriminator which feeds the demodulated signal to a D.C. amplifier IC2 and then to a schmitt trigger IC3. The output switch circuit, which is isolated electrically from the rest of the receiver, consists of TR2 and TR3 in push-pull configuration driven by TR1. The diode network is arranged so that the correct polarity is always present on the transistors and that reversing the polarity effects a Mark-Space reversal.
- g. Drift Correction System and Frequency Display. This operates by measuring a change in the sum of the two oscillator frequencies (which is of course equal to the total drift in both oscillators) and correcting the 1st oscillator to reduct this change to zero. Outputs from the 1st and 2nd oscillators, f1 and f2, are fed to digital counters. These provide a binary number equivalent to the frequencies to which the oscillators have been set. This number is stored in the memory latch. 'Lock' mode is then selected and any change in the oscillators' frequencies is converted into an equivalent binary number which is transferred to the residual latch. This number is generated by comparing each successive new count with the required number stored in the memory latch. The 'error' count stored in the residual latch is converted into a proportional analogue voltage which is used to alter the 2nd oscillator only, to compensate for any changes in either oscillator. The voltage is applied via an integrator, to optimise the loop dynamic response, and a combining amplifier which adds in the 'Fine Tune' control voltage. The total range of correction is limited to about +10kHz. When the end of the range is approached a 'window' detector, which is driven from the output of the integrator, provides an output which causes the whole frequency display to flash about five times per second.

The true tuned frequency of the receiver is displayed on the six digit front panel display with a resolution of 100Hz. The display is driven by a digital counter. Outputs from the first and second oscillators are fed to this counter (after each has been divided by two) which is preloaded to allow for the offset between oscillator and tuned frequencies due to the IF. The gating period for the counters is derived from the master oscillator which ultimately determines the accuracy of the display.

4.0.3 General Maintenance.

All sub-assemblies and modules used in the 1837 and 1838 Series of receivers are arranged so that they can be removed for access to components which would otherwise be inaccessible. In most cases the procedure for removal is obvious from visual inspection. As a general rule, should it be necessary to unsolder any leads from modules or printed circuit boards, a careful note should be made of the wire colour or other coding and the point to which it is attached to facilitate correct reconnection.

WHEN WORKING ON THE RECEIVER IT MAY BE NECESSARY FOR POWER TO BE CONNECTED. IT IS RECOMMENDED THAT THE RECEIVER IS FED FROM AN ISOLATED POWER SUPPLY AND THAT NORMAL PRECAUTIONS FOR SAFETY UNDER THESE CONDITIONS ARE OBSERVED.

Attention is particularly drawn to the presence of mains voltages in the power supply unit, and in the case of Model 1837/2, of teleprinter drive voltage (upto 160V DC) in the FSK Module. Also beware high induced voltages on the aerial and input circuitry.

This receiver is constructed generally to METRIC dimensions. Any IMPERIAL screw used will be marked with a red dye.

4.0.4 Fault Diagnosis

The purpose of this section is to provide a convenient guide to the possible fault area without using any test equipment. When it is obvious that a fault lies in one particular module, refer to the section relating to that module.

Symptoms

- 1. Set completely dead.
- Set operates normally but some or all front panel indicators do not function.
- 3. Set completely dead, but front panel indicators operate normally.
- 4. Speaker does not mute correctly when headphone plug inserted.
- Speaker(s) and headphones do not work, line output normal.
- 6. Tuning meter does not function correct-ly.
- 7. Set does not function on some settings of Filter switch.
- 8. Set does not receive SSB correctly.

Check

AC supply is present.

Setting of illumination control and illumination control circuitry.

Ancillaries connector is connected, correct speaker links are wired on ancillaries connector, correct muting relay links are wired on ancillaries connector.

Ancillaries connector pin 1 for unwanted earth.

High Level audio module and wiring.

Line Amp. and Meter Amp. module.

Selectivity module.

1837 Series: Select INTERMEDIATE bandwidth and variable BFO. Tune signal using BFO PITCH and FINE TUNE controls. If satisfactory, 1MHz feed to BFO unit absent, otherwise faulty BFO unit.

1838 Series: Check 1MHz feed to BFO unit. If satisfactory, faulty BFO unit.

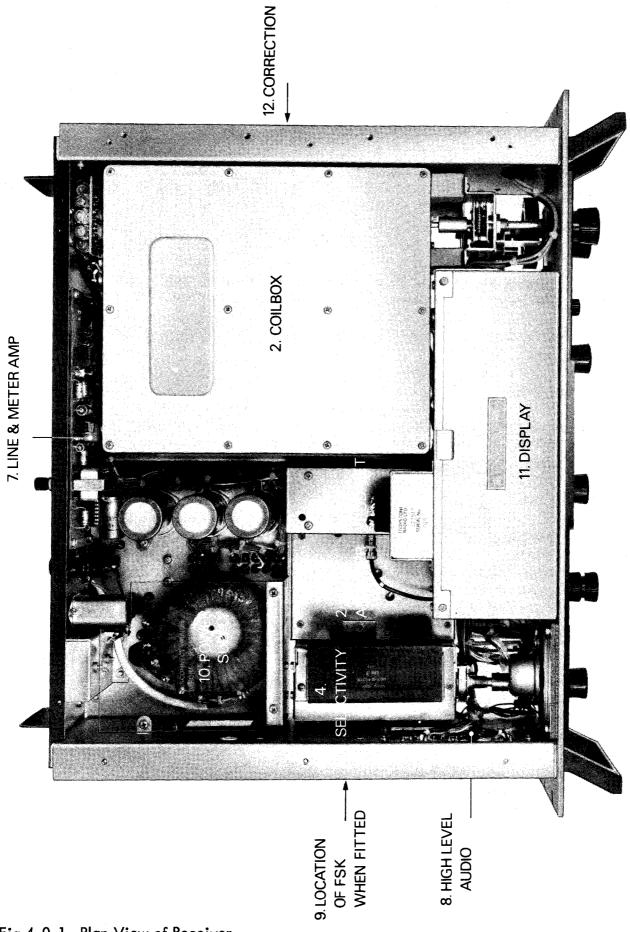


Fig 4.0.1. Plan View of Receiver

Page 4.0.4.

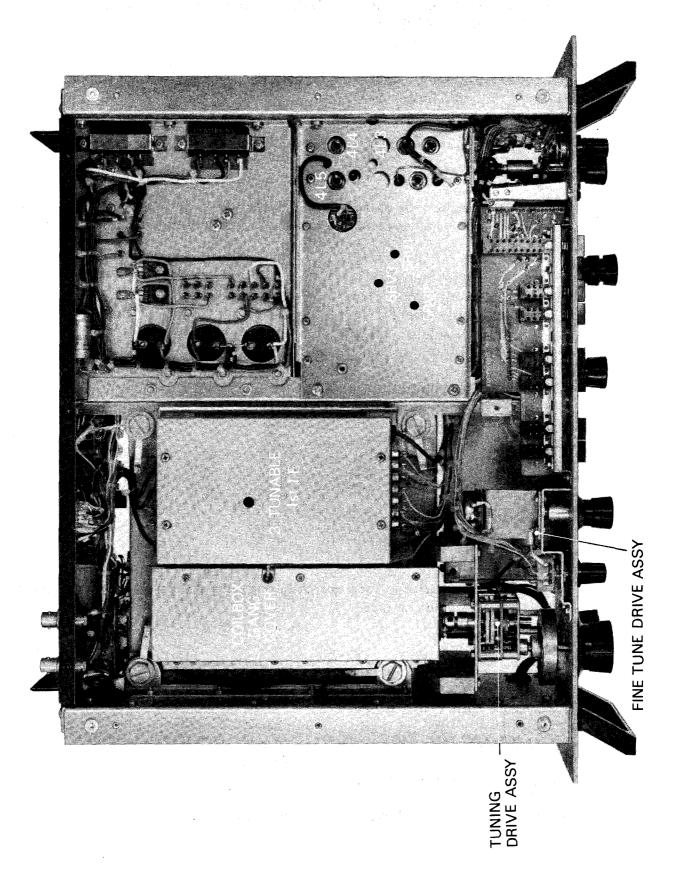


Fig 4.0.2. Underside View of Receiver

Symptoms

- 9. Set works on range 6 only.
- 10. Set will not enter High Stability mode.
- 11. Display shows approx "986500" on ranges 1-5, 7-9 and "999000" on range 6 with FINE TUNE at midrange.
- 12. Display shows approx 1.35MHz higher than correct 'end of range' frequency on ranges 1-5, 7-9 but is correct on range 6.

Check

Tunable IF and switching.

Correction and/or Tunable IF module(s).

Coilbox: 1st oscillator not working.

Tunable IF: 2nd oscillator not working.

4.0.5. Testing and Realignment.

Full details regarding the testing and realignment of each module are given in the section relating to that module. The modules should be tested and realigned in the order given below:-

- 1. Power Supply Unit (Ref 10).
- 2. High Level Audio Amplifier (Ref 8).
- 3. 600Ω Line Amp. and Meter Amp. (Ref 7).
- 4. 2nd IF Amplifier (Ref 5).
- 5. Selectivity (Ref 4).
- 6. BFO and Product Detector (Ref 6).
- 7. Display (Ref 11).
- 8. Tunable 1st. IF (Ref 3).
- 9. Coilbox (Ref 2).
- 10. Correction (Ref 12).
- 11. FSK (if fitted, Ref 9).

Test Instruments.

The use of the test equipment listed is recommended, but other equipment with equivalent specification and performance can be used.

RF Signal Generator 100kHz - 30MHz AM/FM/CW

Output 1V emf from 75Ω	Marconi TF 2002B
Audio Signal Generator 20Hz - 20kHz 600Ω	Marconi TF 2000
Output Power Meter ImW - 10W	Marconi TF 893A
High Impedance Voltmeter	Marconi TF 2603
Multimeter 20kΩ/V	AVO 8
HF Oscilloscope. Input impedance $1M\Omega$ in parallel with $20pF$.	
Frequency Counter Max frequency 50MHz.	Marconi TF 2416.

Initial Test Procedure.

The following procedure may be found helpful when testing the signal path of the receiver.

- a. Check the presence of all the power supply voltages on the power supply (Module no. 10).
- b. Inject a 1kHz audio signal at 15mV at Module 8 pin 1. Full output should be available (Set AF Gain control to 50%). Repeat at Module 7 pin 8, full output should be obtained for 5mV input with the line level control at maximum. Set Mode to AM and repeat at Module 5 pin 7.
- c. Select Range 5, Tune mode, Intermediate/AM bandwidth and inject via a 0.1µF 250V DC blocking capacitor a 100kHz signal modulated to 30% AM at Module 4 pin 1, disconnecting the existing lead for this test only. Signal input should be less than 50µV for 10dB S + N/N. Increase the input signal in steps to a maximum of 50mV and check AGC action. In the case of no signal progression from this test, check the output of the Selectivity Unit and the input of the Second IF Amplifier, however expect spurious results as the amplifier is wideband (Module 5 pin 1).
- d. Inject a signal across 2C70 (mixer section of tuning gang, for location see section 4.2) of level $10\mu V$ at 1350kHz for 10dB S + N/N ratio.
- e. Connect the signal generator to the Aerial input and check that the specified S + N/N ratio can be obtained at a convenient frequency near the centre of each range.

Voltage Measurements

All voltages given are typical only, variations of 10% may be expected as a result of component tolerances. The loading effect of a standard 20,000 Ω /V testmeter has been allowed for in the figures stated.

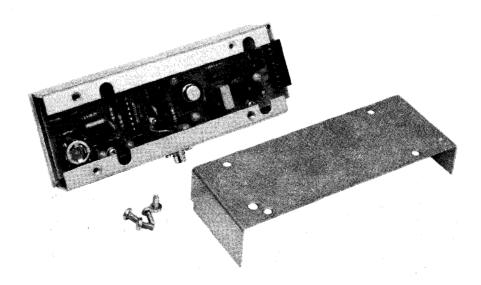


Fig 4.0.3. View of BFO Module showing its' reconstruction.

Table 4.0.1. List of Modules for each Receiver Variant.

			Variant	ant		
Ref	Module	1837/1	1837/2	1838/1	1838/2	1838/3
7	Coilbox	LP3528	LP3528/2	LP3528/1	LP3528/1	LP3528/3
ო	Tunable 1st IF	LP3533	LP3533	LP3533	LP3533	LP3533
4	Selectivity	LP3510	LP3546	LP3536	LP3535	LP3535
2	2nd IF Amplifier	LP3506/10	LP3506/10	LP3506/10	LP3506/10	LP3506/10
9	BFO and Product Detector	LP3530	LP3530	LP3531	LP3530	LP3530
7	600Ω Line Amp and Meter Amp	LP3506/12	LP3506/36	LP3506/12	LP3506/12	LP3506/12
∞	High Level Audio Amplifier	LP3506/11	LP3506/11	LP3506/11	LP3506/11	LP3506/11
6	FSK (optional)	ı	Cat. No. 1534		1	1
10	Power Supply Unit	LP3519	LP3519	LP3519	LP3519	LP3519
=	Display	LP3512	LP3512	LP3512	LP3512	LP3512
12	Correction	LP3506/1	LP3506/1	LP3506/1	LP3506/1	LP3506/1
13	Switchboard	LP3537/1	LP3537/2	LP3537/3	LP3537/3	LP3537/3

4.1.0 Introduction

This section encompasses the front and rear panels, controls (except the pushbutton switches) and external connectors, ie all the components which do not form part of a module or unit. The format of this subsection is of necessity different to that of the subsections which follow.

4.1.1 Front Panel

This carries a large number of the controls (but not the Tuning, Range, Selectivity controls nor the pushbuttons, all of which are part of their respective modules and simply protrude through apertures in the panel) the meter and loudspeaker.

Removal of knobs. All knobs are the collet-fixing type. Prise out the cap and using the box spanner supplied in the Accessories Kit turn the nut anticlockwise whilst holding the body of the knob stationary. The Peak RF and Illumination knobs have a screw instead of a nut but the method is identical.

Access to the components is improved by removing the Switchboard (set all buttons 'in', remove $2 \times M2.5$ screws and remove unit unplugging the connectors). To remove the loud-speaker first remove the escutcheon (remove range knob, $6 \times M3$ countersunk screws), the speaker securing screws ($4 \times M3$) are then revealed.

Removal of Meter. First remove the escutcheon (see above) when 2 x M3 screws securing the meter will be revealed.

Removal of Tune/Lock switchboard, Fine Tune control assembly and Peak R.F. control. Remove the knobs, remove $2 \times M3$ screws at the right-hand side of Peak RF control and $1 \times M3$ screw above and to the left of the Fine Tune control.

Removal of Meter Switch (Model 1837/2 only). First remove the Display Unit (section 4:11:3), then remove $2 \times M2.5$ screws at the ends of the slot. The knob pulls off.

4.1.2. Rear Panel

The rear panel must be removed for access to the 600Ω Line Amplifier and Meter Amplifier board, Power Unit and to remove the Coilbox. Remove the Fusebox cover, $8 \times M4$ screws (two securing panel to each side plate and four to the power unit) and $2 \times M3$ screws holding the panel to the centre rail. The panel may now be hinged down on the wiring and fastened in the horizontal position to the power unit using the $2 \times M3$ screws. The sockets and PCB are now readily accessible.

4.1.3. Components List. Module Prefix 1.

Resistors

Ref	Value(Ω)
RI	560
R 2	4.7k
R 3	680
R 4	15k
R 5	120k
R 6	220
R 7	560
R 8	100k
R 9	47k
R10	1.8k
RII	56k
R12	100k
R13	10k
R14	68k
R15	not fitted
R16	1k

Potentiometers

Ref	Value	Description	Part No.
RV1	500k Lin	IF Gain	9775P
RV2	500k Lin	AF Gain	9775P
R√3	100k Lin	BFO Pitch	9763P
RV4	100k Lin	Fine Tune	9763P
R√5	20k Log	Peak R.F.	8727/1P

Diodes

Ref	Туре
DI	CQY 74L (Telefunken) Oven LED

Sockets

Ref	Description	Part No.
SK1	Aerial Input	7225P
SK2	Not fitted on 1838 Series	_
SK3	IF Output	7225P
SK4	Ancillaries	9857P
SK5	Headphones	8463P

Switches

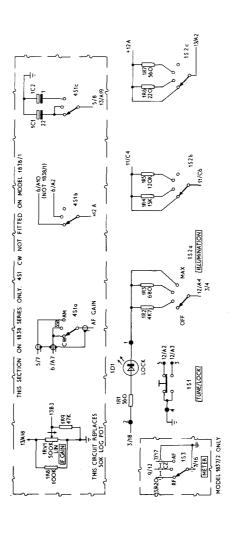
Ref	Description	Part No.
S1	Tune/Lock (Assembled onto PCB)	LP3506/4
S2	Illumination, comprising clicker wafer 3p4w	9766P 8950P

Miscellaneous

Description		Part No.
Front Panel	Model 1838/1	D5121
	Model 1838/2	D5088
	Model 1838/3	D5129
Escutcheon	Models 1838/1 & 1838/2	D 5079
	Model 1838/3	D5081
Loudspeaker		8567P
Loudspeaker baff	le	9773PA
Loudspeaker Gril	•	9772PA
Meter		8470P
Display Filter (C	Prange)	9765P
Rear Panel	3 ,	D5074
Knobs:	Peak RF	9858/1P
	Illumination	9858/1P
	Range	LP3560
	Tuning	LP3558
	Filter (Model 1838/1 only)	LP3559
	Filter/BFO - concentric	
	(Models 1838/2 & 1838/3)	LP3561
	IF Gain	LP3559
	AF Gain	LP3559
	Fine Tune	LP3562
	Skirt for above	D4933/1
Handles Fine Tune Drive	Assembly	8253/1P
comprising Peak	RF potentiometer, Fine Tune une/Lock switch board and	
slow motion drive		LP3545
Top cover		9640P
Bottom cover		9641P
Earth Terminal		6371 P
Fusebox cover		D 5075

Spares should be ordered by quoting the complete Circuit Reference including the module prefix (where applicable), the description and the part number given in the list. From time to time, components of the type listed may be unavailable and equivalent types may be fitted or supplied as spares. All orders and enquiries should be directed to the address below, quoting the Type and Serial Nos. of the receiver in all communications.

EDDYSTONE RADIO LTD., SALES AND SERVICE DEPT., ALVECHURCH ROAD, BIRMINGHAM B31 3PP ENGLAND. TELEPHONE:


021-475-2231

TELEX:

337081

CABLES: EDDYSTONE

BIRMINGHAM

4.2.1. Introduction.

The coilbox module comprises a large cast box which houses the tuned circuits; the main tuning capacitor, and a number of switch wafers mounted on the rear of the box provide various switching functions associated with range selection. Muting and aerial attenuation functions are also part of this module. Receivers covering 1.6MHz to 30MHz only have the same basic unit but the components for ranges 6-9 will be omitted and S1 will therefore have only 5 positions.

4.2.2. Circuit Description

The aerial input signal from the rear panel socket enters the unit on coaxial lead A, which is connected to the muting relay RLA. Protection diode array D1-8 is wired directly across the aerial input, its principal function is to protect the input transistors from high voltages which may be induced from a nearby transmitter. By interchanging the input lead connections the receiver may be either muted or operational when the relay is energised, in each case in the muted condition the aerial input is open-circuited and the input to the receiver is short-circuited. The coil circuit of the relay is brought out to contacts in the ancillaries connector, so that by fitting the appropriate links the relay can be operated either by a switched external supply of 12V or 24V or by the internal supply and a switched earth.

The signal then passes via one or two (according to the model) relay operated 'Tee' section 20dB attenuators to the 1st section of the RF Amplifier. This utilises a junction FET and a single-gate MOSFET in cascode configuration which is permanently connected to a delayed AGC line derived from the second IF amplifier via the AGC amplifier.

The aerial input uses bandpass tuning on Ranges 1-6 and changes to single tuned circuits on Ranges 7-9. All tuning circuits are ganged and provision is made for independent adjustment (Peak RF Control) when using the fine tune facility.

Various forms of coupling are employed between the cascode stage and the mixer, these being chosen to maintain sensibly constant gain over the whole tuning range. Signal input is applied to Gate 1 of the dual gate MOSFET used in the mixer.

Peak RF Board

The three separate pairs of "varicap" diodes located on this board are wired directly across the first three sections of the main tuning gang to permit independent adjustment of the signal frequency circuits when using the fine tune facility. Controlling voltage for the diodes is derived from the Peak RF control which is wired directly across the 12V supply. On ranges 6-9 (when fitted) resistors R20, R23, R25, R27 provide a D.C. return for the varicap diodes operating in the mixer section, note too that on these ranges this control functions primarily as an aerial trimmer and should be adjusted for maximum signal in the normal manner.

The First Oscillator.

This stage employs a single-gate MOSFET using the tuned-gate configuration with feedback winding in the drain circuit. The tuned circuits are temperature compensated and tracked to tune 1350kHz above the signal frequency (+20kHz to allow for fine tune and correction errors). Oscillator output is taken via a FET source follower to Gate 2 of the mixer dual-gate MOSFET and via an emitter follower to the display unit.

The mixer output is then fed to the Tunable IF Module or, when Range 6 is selected, direct to the selectivity module.

4.2.3. Removal of Coilbox and Access to Printed Boards.

Peak RF Board. This is located beneath the coilbox inside the tuning gang cover.

Remove the gang cover (6 x M2.5 screws). The peak RF board is retained by 3 special nuts. Remove the rear panel (section 4:1) to gain access to all wiring and components on the rear face of the coilbox.

RF board, Mixer Board and Oscillator board. Each of these boards may be removed complete with switch wafers, the procedure is as follows:

- 1. Remove coilbox cover plate (12 x M2.5 screws)
- 2. Remove gang cover (6 x M2.5 screws)
- 3. Slacken switch spindle coupler, remove plastic plug in rear panel and withdraw spindle through the hole.
- 4. Disconnect the leads to the appropriate section(s) of the tuning gang at the tuning gang. It is recommended that two lengths of differently coloured wire, minimum length 8" (200mm), be attached to the free ends of these leads to facilitate replacement.
- 5. Disconnect the leads to the board within the coilbox with the exception of the gang leads (RF Section 2 leads, Mixer section 5 leads, Oscillator section 4 leads), taking careful note of their position for replacement.
- 6. Remove 4 x M3 screws; two at left-hand end, one near the centre of each long edge of the board.
- 7. Carefully remove screws etc. which retain the top end of switch brackets and retrieve the spindle earthing wipers and spacers.
- 8. Lift the board clear of the box.

Replacement

- 1. Use the coloured wires attached in step 5 to thread the gang leads through the holes beneath the board.
- 2. Place the board in position and replace the switch spindle to locate the board before securing.
- 3. Proceed generally in the reverse order to the removal instructions above.

Muting and Attenuator Unit.

This is secured to the rear face of the coilbox by 4 x M3 screws.

4.2.4. Fault Diagnosis

Failure of the oscillator will result in the display showing approximately "986500" on ranges 1-5 and 7-9 and "999000" on range 6 with the Fine Tune control at mid-position.

In cases of complete failure of the "front end" circuits, first check that the mute relay is operating correctly (check links on ancillaries connector) and that the protection diodes D1-8 are not short-circuited. Check also that under no-signal conditions the correct RF AGC Voltage is present on FC6. (See section 4.5.6 for setting-up instructions). If only one range has failed, check particularly the coils and switch contacts for that range.

Inspect the unit carefully for signs of burnt components, broken wires etc., particularly if the receiver has been subjected to mechanical shock or vibration, then check that the correct voltages are present (see Voltage Analysis). Note that the supply to the mixer (TR3) is taken via the selectivity module (Ref 4). If any of the internal wiring has been disturbed realignment may be required.

4.2.5. Performance Check

A preliminary check of the performance is obtained by measuring the signal/noise ratio at a convenient frequency near the centre of each range. If this is outside the specification given in Section 1 then realignment is necessary.

4.2.6. Realignment

Before attempting realignment of the Coilbox circuitry it is essential that the alignment of the 100kHz 2nd IF Filter (Module No. 4), 100kHz 2nd IF Amplifier (Module No. 5) and the Tunable 1st IF Amplifier (Module No. 3) is checked and corrected if necessary. For models having 5 ranges only ignore all references to ranges 6, 7, 8 or 9. Realignment should only be undertaken by competent technicians with the appropriate test equipment.

1st. Oscillator Circuits

Since there is no fixed scale provided on the receiver, alignment of the 1st Oscillator consists of setting the limits of each range, i.e. the frequencies corresponding to maximum and minimum capacity of the tuning gang. These frequencies are given in Table 4.2.1. below. Note that the frequencies given are as read on the receiver display and are the receiver tune frequencies and not the actual oscillator frequencies. The FINE TUNE control must be set to mid-position.

Table 4.2.1. Oscillator Alignment

Range	Frequency	Adjust Core	Frequency	Adjust trimmer
7	17.6000 MH	z L 19	31.4000 MHz	z C86
2	9.8750 MH	z L20	19.3500 MH:	z C89
3	5.4600 MH	z L21	10.2000 MH	z C92
4	2.8750 MH	z L22	5.5500 MHz	z C95
5	1.4800 MH	z L23	2.9400 MHz	c C98
6	833.0 kH	z L24	1610.0 kHz	c C101
7	396.0 kH	z L25	855.0 kH:	c105
8	198.0 kH	z L26	406.0 kH:	z C109
9	99.0 kH	z L2 7	212.0 kHz	c C113

Note that C102 (range 7), C106 (range 8), and C111 (range 9) are tracking trimmers and should only be adjusted if poor tracking is evident on these ranges when the mixer and RF circuits are aligned.

R.F. and Mixer Circuits

Set PEAK RF control to mid-position. Connect signal generator via a matching network if necessary to simulate the impedances given in Table 4.2.3 below, to aerial socket, set level as required, 30% AM at 1kHz. Connect Audio Output meter to Ext LS output, set to

 4Ω impedance. Set Selectivity to INTERMEDIATE/AM and RF GAIN/SENSITIVITY to maximum, i.e. push button(s) out.

Adjust the trimmers and cores at the frequencies given in Table 4.2.2. below. The primary cores of the RF bandpass circuits should be adjusted by passing the long end of the hexagonal trimming tool (part no. 8450P packed in Accessories Kit) through the secondary cores. The TUNING control should be rocked slightly to combat any pulling of the 1st oscillator which may occur when adjusting the Mixer circuits on ranges 1 & 2.

Table 4.2.2. RF and Mixer Alignment

Range	Frequency	Ad	just Core	F	requency	Α	djust trimr	ner
		Bandpas	s Mi	xer		Bandpa	SS	Mixer
		Pri	Sec			Pri	Sec	
1	18.0 MHz	L1 Lwr	L1 Uppr L	.10	29.0 MHz	C 3	C6	C42
2	10.0 MHz	L2 Lwr	L2 Uppr L	.11	18.5 MHz	C7	C10	C45
3	5.65 MHz	L3 Lwr	L3 Uppr L	.12	9.5 MHz	Cli	C14	C48
4	3.0 MHz	L4 Lwr	L4 Uppr L	.13	5.2 MHz	C15	C18	C50
5	1605 kHz	L5 Lwr	L5 Uppr L	.14	2.8 MHz	C19	C22	C52
6	870 kHz	L6 Lwr	L6 Uppr L	.15	1550 kHz	C23	C26	C56
7	402 kHz	L7	L	.16	835 kHz	C28	-	C60
8	206 kHz	L8	L	.17	390 kHz	C30		C64
9	105 kHz	L9	L	.18	195 kHz	C32		C68

Table 4.2.3. Dummy Aerial

1837/1)	(100kHz - 1605kHz (1605kHz - 4MHz	10Ω in series with 220pF 10Ω in series with 250pF
1838/3	ý	(above 4MHz	50Ω
1837/2)	100kHz - 4MHz	50Ω
1838/1)	(1605kHz - 4MHz	10Ω in series with 250 pF
1838/1 1838/2)	(above 4MHz	50Ω

Having aligned the RF and Mixer circuits on ranges 7-9 as stated above, it is necessary to check the accuracy of the tracking over these ranges. This is done by tuning the receiver to approx. mid-range and then tuning the signal generator to the receiver. Note the position of the mixer core and trim slightly, checking the audio output level on the output meter. The audio output should be at a maximum if the range is tracked.

If the audio output increases as the core is screwed into the coil, the value of the oscillator tracking trimmer (range 7: C103, range 8; C107, range 9: C111) needs to be increased giving a reduction of the frequency indicated on the display. It is then necessary to repeat the Oscillator alignment for the range which has been adjusted, followed by realignment of the RF and Mixer circuits.

If the audio output increases as the core is screwed out of the coil, the value of the oscillator tracking trimmer needs to be reduced giving an increase in the frequency indicated on the display. Again it is necessary to repeat the Oscillator, RF and Mixer alignment.

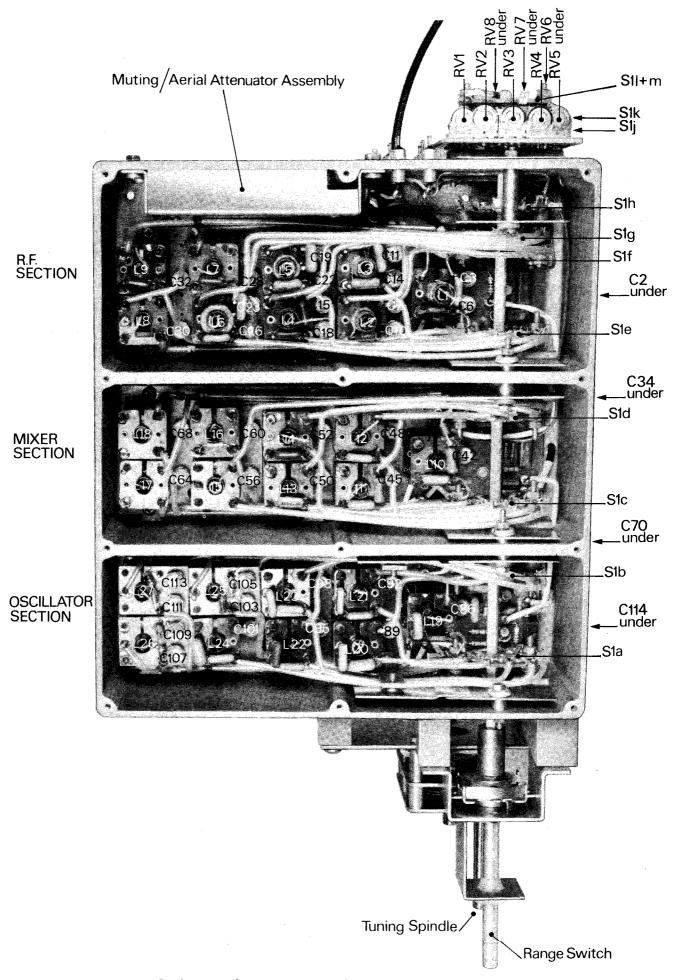


Fig 4.2.1. View of Coilbox with cover removed.

1st IF gain equalising potentiometers.

- 1. Set receiver to Range 3 and tune signal generator and receiver to approximately 7.5 MHz.
- 2. Set IF Gain to maximum.
- 3. Adjust generator output to $2\mu V$ emf (except Model 1837/2 : $1\mu V$ at aerial input) with 30% AM at 1kHz.
- 4. Set Filter to Intermediate/AM.
- 5. Set Mode to AM.
- 6. Set Manual/AGC switch to AGC, and adjust AF gain to give an output of approx 50mW.
- 7. Switch Manual/AGC switch between Manual and AGC, and adjust RV3 until the output level on AGC is 2dB less than on Manual.
- 8. Note output power reading on Manual.
- 9. Set receiver to Range 2 and tune signal generator to receiver.
- 10. Adjust RV2 to give the same reading on Manual as noted in step 8.
- 11. Repeat steps 9 & 10 with receiver set to ranges 1, 4, 5, 7, 8 and 9 adjusting RV1, 4, 5, 6, 7 and 8 respectively. Note there is no adjustment for range 6.

4.2.7 Voltage Analysis.

The voltages are measured under no-signal conditions with the controls set as follows (unless otherwise stated). AVO8 on lowest applicable range.

Range: 5 Tuning: 2.5 MHz
Fine Tune: mid-position Peak RF: mid-position

Tune/Lock : Tune

a. Feed-through capacitors on rear face of coilbox.

FC1	+1 2 V	on ranges 6–9
FC2	+12\	when mute relay energised
FC3	+12V	•
FC4	0∨	when mute relay energised
FC5	+12V	when sensitivity (gain) push-button pressed
FC6	+1.3\	(RF AGC)
FC7	+12V	when second sensitivity (agin) push-button pressed (if fitted).

b. Printed Circuit board pins.

RF Section

Pin 11 +1.3V (RF AGC)
Pin 12 +10.5V measured on 25V range of meter

Mixer Section

Pin 17 +12V Pin 20 +14.5V +9.2V on range 6

Peak RF Section

Pin 29 +2.5V measured on 10V range of meter

Oscillator Section

Pin 32 +12V

c. Semiconductors

	Emitter/Source	Base/Gate 1	Gate 2	Collector/Drai	in
TRI	0.8V	0V	-	1.75\	Note 1
TR2	1. <i>75</i> V	0.5V	_	10 <i>.5</i> ∨	Note 1
TR3	0 <i>.5</i> V	0V	0.4V	14.5V	
TR4	0.2V	0V	_	9.1V	
TR5	2.0V	0.3\	_	12V	
TR6	5.4V	7.3V		12V	

Note 1. Measure TR1 Drain/TR2 Source on case of TR2.

The current drawn by the module is: 12V A: 56mA

12V B : 3.4mA

4.2.8. Components List. Module Prefix 2.

Capacitors

Ref	Value	Туре	Voltage	Tolerance
CI	0.1μF	Polycarbonate	100∨	20%
C 2	9-344pF	Gang ½ of 9724P		
C 3	7-35pF	Trimmer 8468P		
C 4	150pF	Silvered Mica	350∨	5%
C 5	180pF	Silvered Mica	350V	5%
C 6	7-35pF	Trimmer 8468P		3,0
C 7	7-35pF	Trimmer 8468P		
C 8	82pF	Silvered Mica	350V	5%
C 9	82pF	Silvered Mica	350V	5%
C10	7-35pF	Trimmer 8468P	050 V	370
C11	7-35pF	Trimmer 8468P		
C12	7-33pi 70pF	Silvered Mica	350∨	5%
C12	•	Silvered Mica	350V 350V	5%
C14	56pF	Trimmer 8468P	3304	370
C15	7-35pF 7-35pF	Trimmer 8468P		
C16	•	Silvered Mica	350∨	5%
C17	50pF	Silvered Mica	350V	5%
C18	33pF	Trimmer 8468P	3504	370
C19	7-35pF	Trimmer 8468P		
C20	7-35pF	Silvered Mica	350∨	5%
C20	40pF	1	350V 350V	5%
1	22pF	Silvered Mica	3500	3%
C22	7-35pF	Trimmer 8468P		
C23 **	7-35pF	Trimmer 8468P	050)/	504
C24 **	50pF	Silvered Mica	350V	5%
C25 **	33pF	Silvered Mica	350V	5%
C26 **	7-35pF	Trimmer 8468P	050)/	5 0/
C27 **	15pF	Silvered Mica	350∨	5%
C28 **	7-35pF	Trimmer 8468P	050) (501
C29 **	22pF	Silvered Mica	350∨	5%
C30 **	7-35pF	Trimmer 8468P	0.501	
C31 **	15pF	Silvered Mica	350∨	5%
C32 **	7-35pF	Trimmer 8468P	7501	100
C33	15pF	Tube Ceramic	750V	10%
C34	9-344pF	Gang ½ of 9724P	7501	100/
C35	60pF	Tube Ceramic	750V	10%
C36	0.1μF	Polycarbonate	100V	20%
C37	0. 1μF	Polycarbonate	100V	20%
C38	0. 1μF	Polycarbonate	100V	20%
C39	0.1μF	Polycarbonate	100V	20%
C40	6pF	Tube Ceramic	750V	5%
C41	120pF	Silvered Mica	350∨	5%
C42	7-35pF	Trimmer 8468P	7501	
C43	6pF	Tube Ceramic	750V	5%
C44	56pF	Silvered Mica	350∨	5%
C45	7-35pF	Trimmer 8468P	7501/	F0.
C46	6pF	Tube Ceramic	750V	5%

Capacitors

Ref	Value	Туре	Voltage	Tolerance
C47	30pF	Silvered Mica	350V	5%
C48	7-35pF	Trimmer 8468P		
C49	30pF	Silvered Mica	350∨	5%
C50	7-35pF	Trimmer 8468P		
C51	15pF	Silvered Mica	350∨	5%
C52	7-35pF	Trimmer 8468P		
C53 **	50pF	Silvered Mica	350∨	5%
C54 **	10nF	Tubular Paper	200∨	20%
C55 **	not fitted	Tobota, Lapo.		1 70
C56 **	7-35pF	Trimmer 8468P		
C57 **	InF	Silvered Mica	350∨	5%
C58 **	10nF	Tubular Paper	200\	20%
C59 **	not fitted	Tobolal Tapel	2001	2070
C60 **	7-35pF	Trimmer 8468P		
C61 **	InF	Silvered Mica	350∨	5%
C62 **	10nF	Tubular Paper	200V	20%
C62 **	not fitted	Tubular raper	2000	20 /0
C64 **	1	Trimmer 8468P		
C65 **	7-35pF	Silvered Mica	350∨	5%
C66 **	InF		200V	20%
C67 **	10nF	Tubular Paper	2000	20%
C68 **	not fitted	Trimmer 8468P		
C69	7-35pF	Tube Ceramic	750V	5%
	12pF	ž	/500	3%
C70	9-344pF	Gang ½ of 9724P	750\/	F0/
C71	60pF	Tube Ceramic	750V	5%
C72	0.1μF	Polycarbonate	100V	20%
C73	150pF	Silvered Mica	350V	5%
C74	0.1μF	Polycarbonate	100V	20%
C75	0.1μF	Polycarbonate	100V	20%
C76	0.1μF	Polycarbonate	100V	20%
C77	0.1μF	Polycarbonate	100V	20%
C78	47nF	Polycarbonate	100V	20%
C79	0.1µF	Polycarbonate	100V	20%
C80	47nF	Polycarbonate	100∨	20%
C81	0.1µF	Polycarbonate	100V	20%
C82	68µF	Tantalum Electrolytic	20V	20%
C83	10nF	Disc ceramic	25V	+80%-20%
C84	1830 _P F	Silvered Mica	350V	1%
C85a	80 _P F	Tube ceramic	750V	10%
C85b	39pF	Silvered Mica	350∨	5%
C86	7-35pF	Trimmer 8468P		
C87	1560pF	Silvered Mica	350V	1%
C88a	50pF	Tube ceramic	750V	5%
C88b	20pF	Silvered Mica	350V	5%
C89	<i>7</i> −35pF	Trimmer 8468P		
C90	1290pF	Silvered Mica	350∨	1%

Capacitors

Ref	Value	Туре	Voltage	Tolerance
C91a	70pF	Tube ceramic	750V	5%
C91b	33pF	Silvered Mica	350∨	5%
C92	7-35pF	Trimmer 8468P		
C93	800pF	Silvered Mica	350∨	1%
C94a	50pF	Tube Ceramic	750V	5%
C94b	33pF	Silvered Mica	350∨	5%
C95	<i>7</i> −35pF	Trimmer 8468P		
C96	470pF	Silvered Mica	350∨	1%
C97a	50pF	Tube Ceramic	<i>7</i> 50∨	5%
C97b	27pF	Silvered Mica	350∨	5%
C98	7-35pF	Trimmer 8468P		
C99	1.8nF	Silvered Mica	350∨	1%
C100 **	68pF	Silvered Mica	350∨	5%
C101 **	7-35pF	Trimmer 8468P		
C102 **	200pF	Polystyrene	125∨	1%
C103 **	<i>7</i> −35pF	Trimmer 8468P		4
C104 **	120pF	Polystyrene	125∨	2%
C105 **	<i>7</i> −35pF	Trimmer 8468P		
C106 **	140pF	Polystyrene	125∨	5%
C107 **	7-35pF	Trimmer 8468P		
C108a **	180 _P F	Polystyrene	125∨	5%
C108b **	47pF	Silvered Mica	350∨	5%
C109 **	7-35pF	Trimmer 8468P		
C110 **	100pF	Polystyrene	125V	1%
C111 **	7-35pF	Trimmer 8468P		
C112a **	150pF	Silvered Mica	350∨	5%
C112b **	240pF	Polystyrene	125V	5%
C113 **	7-35 p F	Trimmer 8468P		
C114	9-344pF	Gang ½ of 9724P		
C115	100pF	Silvered Mica	350∨	5%
C116	100pF	Silvered Mica	350V	5%
C117	10nF	Disc Ceramic	25V	+80%-20%
C118	ľnF	Disc Ceramic	250V	+80%-20%
C119	0. IµF	Polycarbonate	100∨	20%
C120	68µF	Tantalum Electrolytic	20V	20%
C121	10nF	Disc Ceramic	25V	+80%-20%
C122	lμF	Tantalum Electrolytic	35∨	20%
C123	0.22μF	Polycarbonate	100∨	20%

Note C85a and C85b are wired in parallel, etc.

Filtered Connectors

Ref	Value	Туре
FC1 FC2 FC3 FC4 FC5 FC6	1500pF 1500pF 1500pF 1500pF 1500pF	9871 P 9871 P 9871 P 9871 P 9871 P 9871 P
FC7	1500pF	9871P

Resistors

Ref	ValueΩ
R 1	2.2M
R 2	68
R 3	18
R 4	68
R 5	68
R 6	18
R 7	68
R 8	1.8M
R 9	22
RIO	270
R11	100k
R12	1M
R13	180
R14	not fitted
R15	not fitted
R16	not fitted
R17	2.7k
R18	820
R19 **	2.2k
R20 **	100k
R21 **	2.2k
R22 **	33k
R23 **	100k
R24 **	2.2k
R25 **	100k
R26 **	2.2k
R27 **	100k
R28	1M
R29	4.7k
R30	470k
R31	33k
R32	22
R33	270

Ref	ValueΩ				
R34	1.8M				
R35	47k				
R36	1.8M				
R37	47k				
R38	1.8M				
R39	47k				
R40	120				
R41	not fitted				
R42	not fitted				
R43	not fitted				
R44	not fitted				
R45	not fitted				
R46	not fitted				
R47	not fitted				
R48	not fitted				
R49	not fitted				
R50	100k				
R51	56				
R52	100k				
R53	270				
R54	560				
R55	2.7k				
R56	6.8k				
R57	180				
R58	150				
R59	not fitted				
R60 **	10k)TR4 1% high				
)stab				
R61 **	15k)low noise				
R62	15k				
R63	not fitted				
R64 *	47				
R65 *	47				
R66 *	47				

* fitted on Model 1837/2 only.

All resistors except R60, R61 are Mullard CR25, 0.3W, 5%.

Potentiometers

Ref	Value/Type	Part No.
R∨1	47k linear cermet preset	9489P
RV2	47k linear cermet preset	9489P
RV3	47k linear cermet preset	9489P
RV4	47k linear cermet preset	9489P
RV5	47k linear cermet preset	9489P
RV6 **	47k linear cermet preset	9489P
RV7 **	47k linear cermet preset	9489P
RV8 **	47k linear cermet preset	9489P

Coils

Ref	Value/Type/Part No.			
СНІ	100mH. Sigma SC60			
CH2	4.7mH. Sigma SC60			
L 1	D5033			
L 2	D5034			
L 3	D5035			
L 4	D5036			
L 5	D5037			
L 6 **	D5038			
L 7 **	D5039			
L 8 **	D5040			
L9**	D5041			
LIO	D5042			
L11	D5043			
L12	D5044			
L13	D5045			
L14	D5046			
ĺ				

Ref	Value/Type/ Part No.
L15 **	D5047
L16 **	D5048
L17 **	D5049
L18 **	D5050
L19	D5051
L20	D5052
L21	D5053
L22	D5054
L23	D5055
L24 **	D5056
L25 **	D5057
L26 **	D5058
L27 **	D5059

Diodes

Ref	Туре
D 1	IN4148
D 2	IN4148
D 3	IN4148
D 4	IN4148
D 5	IN4148
D 6	IN4148
D 7	IN4148
D 8	IN4148
D 9	BAIII

Page 4.2.12.

Ref	Туре	
D10 D11	BAIII BAIII	
D12	BAIII	
D13 D14	BAIII BAIII	
D15 D16	BZX79 C9V1 1S44	
D17	BZX79 C8V2	

Transistors

Ref	Туре
TRI	UC 734B
TR2	3N128
TR3	40673
TR4	3N128
TR5	UC734B
TR6	BFW30

Relays

Ref	Туре	Part No.		
RLA	RH12	8445P		
RLB	RH12	8445P		
RLC	RH12	8445P		
RLD	RH12	8445P		
RLE	RH12	8445P		

Switches

Ref	Description	Part No.
S1	Range switch comprising Clicker Coupler Spindle Switch Wafers a b-g h-k l+m	9726P 7136P 9727P D5114 8308P 7014P 9567P

^{**} not fitted on 5 range versions

Miscellaneous

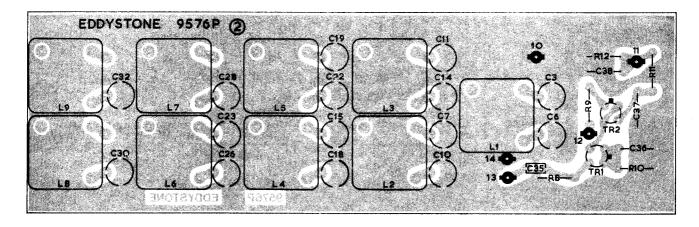
Description	Part No.
Printed Circuit Board: Muting & Aerial Attenuator Unit Printed Circuit Board: Muting & Aerial Attenuator Unit Assembled, 1837 Series	9574P LP3506/5
Printed Circuit Board: Muting Assembled, 1838 Series Printed Circuit Board: Mixer Section	LP3506/3 LP3506/22 9575P
Printed Circuit Board: Mixer Section, Assembled (9 ranges) Printed Circuit Board: Mixer Section, Assembled (5 ranges)	LP3506/6 LP3506/17

Miscellaneous

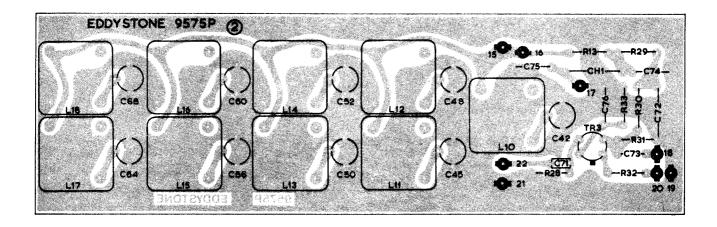
Description	Part No.
Printed Circuit Board: RF Section	9576P
Printed Circuit Board: RF Section, Assembled (9 ranges)	LP3506/7
Printed Circuit Board: RF Section, Assembled (5 ranges)	LP3506/18
Printed Circuit Board: Oscillator Section	9577P
Printed Circuit Board: Oscillator Section, Assembled (9 ranges)	LP3506/8
Printed Circuit Board: Oscillator Section, Assembled (5 ranges)	1
Printed Circuit Board: Peak R.F. Section	9578P
Printed Circuit Board: Peak R.F. Section, Assembled	LP3506/9
Printed Circuit Board: Switch Mounting	9573P
Printed Circuit Board: Switch Mounting, Assembled (9 ranges)	LP3506/4
Printed Circuit Board: Switch Mounting, Assembled (5 ranges)	LP3506/20
Tuning Drive Assembly	LP3539
Spindle coupler (2 off)	LP3463
Tuning Gang Assembly	
comprising Tuning Gangs, coupler and cradle	LP3563
Coilbox Assembly Complete: Model 1837/1	LP3528
Model 1837/2	LP3528/2
Models 1838/1 & 1838/2	LP3528/1
Model 1838/3	LP3528/3

Spares should be ordered by quoting the complete Circuit Reference including the module prefix (where applicable), the description and the part number given in the list. From time to time, components of the type listed may be unavailable and equivalent types may be fitted or supplied as spares. All orders and enquiries should be directed to the address below, quoting the Type and Serial Nos. of the receiver in all communications.

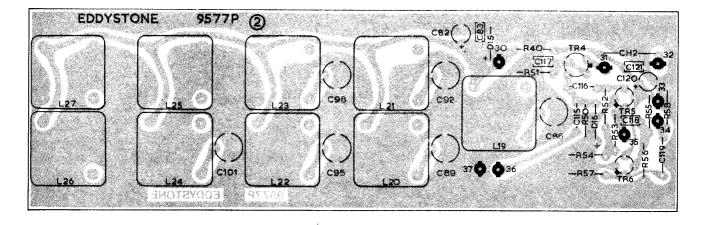
EDDYSTONE RADIO LTD., SALES AND SERVICE DEPT., ALVECHURCH ROAD, BIRMINGHAM B31 3PP. ENGLAND. TELEPHONE: 021-475-2231.

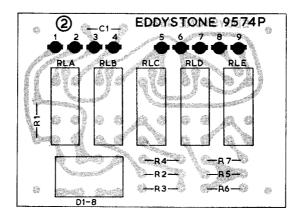

TELEX: 337081

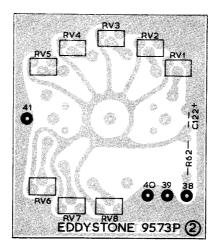
CABLES: EDDYSTONE

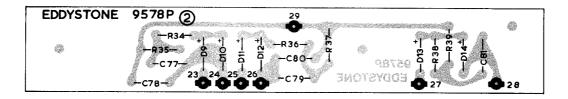

BIRMINGHAM

4.2.9. Printed Circuit Boards.


All printed circuit boards are shown viewed from the legend side, and are actual size. The small board mounted on top of the coil formers is not shown.


Aerial Section


Mixer Section


Oscillator Section

Muting & Aerial Attenuator Section

Switch Mounting Board

Peak RF Section

4.3.1. Introduction

This module contains the first I.F. variable tuned circuits, the second mixer, the second oscillator, and associated circuits. The analogue section of the drift correction system is also situated in this unit, as is the "End of Range" detector which causes the display to flash when the control range is exceeded.

The tunable IF amplifier is not used on Range 6.

4.3.2. Circuit Description

The signal from the first mixer (TR3 in coilbox, Ref. 4:2) is inductively coupled into the first coil L1. Note that the DC drain voltage for that mixer is supplied via the primary of L1 and the resistor R1. Coils L1 and L2 with their associated capacitors from the first bandpass filter, which is tuned over the range 1340 and 1360kHz by varicap diodes D1, D2. The diodes are controlled by a common line from IC2a. L2, the output coil of the first filter, drives a common source amplifier TR1. The gain of this is set independently on each range by a gate bias voltage derived from the preset potentiometer selected by wafer S1K of the 'Range' switch (RV1 - 8inc. in coilbox, Ref 4:2). This arrangement enables the absolute gains of the ranges to be equalized. The output of TR1 is inductively coupled into a similar second bandpass filter via L3. The output of this filter drives the bootstrapped buffer amplifier TR2 and thence the double balanced mixer IC1.

The second oscillator (TR3) is a tuned gate type covering the range 1240 to 1260kHz and controlled by the varicap diode D7. The output of IC2a drives this diode as well as those in the bandpass filters, the filter centre frequency and oscillator frequency are thus adjusted simultaneously with a constant 100kHz separation to give the required 100kHz second IF. The voltage supply to the oscillator is stabilized at 8V by IC3. The output from the oscillator is taken from its' gate to the bootstrapped buffer TR4, and an output from this is taken to the double balanced second mixer IC1, the oscillator level at pin 3 of this device is in the region of 150mV rms. Another output from the bootstrapped buffer is taken to an emitter follower TR5, which feeds (at about 400mV rms) the Correction module (Ref. 4:12).

As already noted the drive to all the varicap diodes is from IC2a. This output is also fed to an emitter follower TR6 and thence to the reference input of the D/A converter in the Correction module in order to "linearise" the varicap law. IC2a acts as a combining stage for the two sources of control voltage for the varicap diodes. The first source is the front panel 'Fine Tune' control (1RV4) which provides, via voltage follower IC2b, a +10kHz range.

The second control source is from the DCS, and gives an additional $\pm 10 \text{kHz}$ control range. The output from the D/A convertor is a series of discrete steps, which are integrated over a 1 second period in order to avoid a step change in frequency. The dynamic performance of the loop is controlled by the value of R39, which is adjusted for optimum on test, and the integrator is disabled by RLA/1 when the receiver is operated in the tune mode.

IC2c and IC2d are connected to form a 'window' detector. This is driven from the output of the integrator and detects when the extreme ends of the range are approached. The output of the detector is clamped at +5V (i.e. a logic "1" level determined by the potential divider R47/R48) when the input is in the middle of its' range, the Op-amps being isolated by diodes D8 and D9. When the input is within 2.5V of the positive supply rail, the output of IC2c goes to -15V causing the output of the detector to go to zero volts (i.e. a logic "0" level).

Similarly when the input is within 5V of the negative supply rail, the output of IC2d goes to -15V and again the detector output goes to zero volts. The logic "0" output thus produced at both ends of the correction range is fed to the Display module (Ref. 4:11) and causes the whole display to flash about five times a second so indicating 'end of (correction) range'.

The ± 15 V supplies are provided by voltage regulators IC5 and IC6. The positive regulator IC5 also supplies relay RLA, emitter follower TR6 and the first mixer (Coilbox, Ref. 4:2) via the primary of L1.

4.3.3. Removal/Replacement

Remove the cover (4 \times M3 Screws) to obtain access to the printed circuit board. This is retained by 5 \times M2.5 screws.

4.3.4. Fault Diagnosis

The oscillator may be checked on any range except 6 by disabling the 1st Oscillator in the coilbox (short-circuit the oscillator section of the tuning gang - 2C114) and observing the display, which should read 98650 with the fine tune control central. Check the fine tune control changes the display by +10kHz approx. If these checks are satisfactory, then the oscillator, varicap diodes and drivers are working correctly.

If sensitivity is low, then it is necessary to check D.C. voltages and signal progression through the unit.

4.3.5. Performance Check

Performance may be checked by measuring the signal/noise ratio at the output. This should be 10dB S+N/N with approx 3kHz bandwidth for an input injected across 2C70 of approx $10\mu\text{V}$ at 1350kHz. Also check that the gain of the unit does not vary by more than $\pm 2\text{dB}$ as the fine tune control is adjusted over its range.

4.3.6. Realignment

This module should only be adjusted when fitted in the receiver, and then only when skilled engineers and the special instruments required are available. In the absence of a Spectrum Analyser realignment should not be attempted unless absolutely essential.

Equipment required (in addition to that shown at the beginning of this section).

Marconi Instruments. Spectrum Analyser Type TF 2370

with High Impedance Probe Type TK 2374

The procedure is described for a receiver having 9 ranges, for receivers with 5 ranges the appropriate instructions are given in brackets. Note that access to components inside the Coilbox gang cover (Module No. 2), is also required. The receiver should be in the 'Tune' mode, ie the LOCK lamp should be off.

1. Select range 9 (range 5 and set FINE TUNE control to mid-position) and disable the 1st Oscillator by temporarily short-circuiting 2C114 - this is the oscillator section of the tuning gang.

- 2. Apply the output from the Spectrum Analyser, via a 30dB attenuator, across 2C70, the mixer section of the tuning gang.
- 3. Remove lid of Tunable IF module and using the high impedance probe at test point 1 adjust L1-4 to obtain the response shown in Fig 4.3.1.
- 4. Select range 5, adjust the FINE TUNE control over its full range and check that, although the frequencies change, the shape of the curve in Fig 4.3.1 remains substantially the same. If the shape alters it is probable that one of the varicap diode circuits D1-D4 is faulty. Remove the Spectrum Analyser.
- 5. Replace the lid of the Tunable IF module, select range 9 (range 5 with FINE TUNE control at mid-position) and adjust L5 on the inner core setting to give an oscillator frequency of 1.2500MHz. This may be measured using the internal reference standard, provided this is known to be correct, by disabling the 1st Oscillator by short-circuiting 2C114 when the display will read 98650.0.
- 6. Select range 5, and check that the FINE TUNE control varies the frequency by +10kHz (within 2kHz). Check that the oscillator output at pin 19 is approx. 400mV rms.
- 7. Check the gain as follows:-

Select Range 5 and set 2RV5 fully clockwise. Inject a 1mV signal across 2C70 at 1350kHz. Disable the 1st Oscillator by short-circuiting 2C114.

Check that the signal level at test point 1 is 20mV.

Check that the signal level at TR1 gate is 5mV.

Check that the oscillator level at IC1 pin 3 is approx 150mV.

- 8. Remove all temporary short-circuits and replace covers.
- 9. Note. The 1st IF gain equalising potentiometers (located in the coilbox module: 2RV1 8) are adjusted as part of the coilbox realignment.

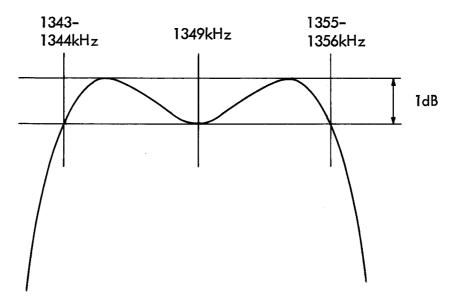


Fig. 4.3.1. Frequency response at Test Point 1.

Alternative procedure for realignment using Signal General and RF Millivoltmeter.

- 1. Select Range 9 (range 5 and set FINE TUNE control to mid-position) and disable the 1st Oscillator by temporarily short-circuiting 2C114- this is the oscillator section of the tuning gang.
- 2. Remove lid of Tunable IF module and connect a $10k\Omega$, 0.3W, 5% resistor in parallel with each of the coils L1-L4 using the terminal pins provided.
- 3. Connect an RF millivoltmeter with high impedance probe to test point 1.
- 4. Connect signal generator across 2C70, the mixer section of the tuning gang. Set frequency to 1349kHz and level to give approximately 30mV at TP1.
- 5. Tune coils L1-L4 for maximum at TP1.
- 6. Remove the $10k\Omega$ resistors connected at step 2, reduce the generator output to give 30mV at TP1 and check that the response is as shown in Fig 4.3.1. Remove Signal generator and RF millivoltmeter.
- 7. Replace the lid of the Tunable IF module, select range 9 (range 5 with FINE TUNE control at mid-position) and adjust L5 on the inner core setting to give an oscillator frequency of 1.2500MHz. This may be measured using the internal reference standard, provided this is known to be correct, by disabling the 1st Oscillator by short-circuiting 2C114 when the display will read 98650.0.
- 8. Select range 5, and check that the FINE TUNE control varies the frequency by ±10kHz (within 2kHz). Check that the oscillator output at pin 19 is approx. 400mV rms.
- 9. Check the gain as follows:
 - Select Range 5 and set 2RV5 fully clockwise. Inject a 1mV signal across 2C70 at 1350kHz. Disable the 1st Oscillator by short-circuiting 2C114.
 - Check that the signal level at test point 1 is 20mV.
 - Check that the signal level at TR1 gate is 5mV.
 - Check that the oscillator level at IC1 pin 3 is approx 150mV.
- 10. Remove all temporary short-circuits and replace covers.
- 11. Note. The 1st IF gain equalising potentiometers (located in the coilbox module: 2RV1 8) are adjusted as part of the coilbox realignment.

4.3.7. Voltage Analysis

All voltages measured with respect to 0V rail (pin 20), AVO8 on lowest applicable range. Normal tolerances apply.

a. Integrated Circuits

IC I	pin	1	0	pin	5	2.2V	
	•	2	2.5V	·	6	-	
		3	2.8V		7	2.6V	
		4	6.2V		8	0	
IC2	pin	1	+7.2V *	pin	8	+14.5V	
	•	2	+5.5V *	•	9	-10 <i>.5</i> ∨	
		3	+4.8V *		10	0	Tune/Lock
		4	+15.0V		11	-15∨	switch in tune
		5	+5.5V *		12	+12.5V	
		6	+6.9V *		13	0	
		7	+6.9V *		14	+14.5V	

IC4	pin	1 -13.0V 2 0 3 0 4 -15.0V		pin	5 6 7 8	-14.0V 0 +15.0V -0.5V	Tune/Lock switch in tune
		E	С		В		
IC3		+12.0V	0		+8.0\	/	
IC5		+20.0V	0	-	+15.0\	/	
IC6		-15.0V	-20.0V		0		

b. Transistors

	Emitter/Source	Base/Gate	Collector/Drain
TR1	+2.2V	0	+11.2V
TR2	+2.9V	0	+11.2V
TR3	+2.7V	0	+7.0V
TR4	+6.5V	+1∨	+11.5V
TR5	+3.8V	+4.3V	+11.5V
TR6	+6.7V *	+7.2V *	+15.0V Tune/Lock switch in Tune

N.B. * Voltages dependent on setting of fine tune control.

The currents drawn by the module are: $\begin{array}{cccc} +12 \text{V supply}: & 45 \text{mA} \\ +20 \text{V supply}: & 39 \text{mA} \\ -20 \text{V supply}: & 52 \text{mA} \end{array}$

4.3.8. Components List. Module Prefix 3.

Capacitors

Ref	Value	Туре	Voltage	Tolerance
C I	10µF	Tantalum Electrolytic	25∨	20%
C 2	0.68µF	Tantalum Electrolytic	35∨	20%
C 3	150pF	Tube Ceramic	750∨	20%
C 4	680pF	Polystyrene	125V	2%
C 5	10nF	Disc Ceramic	25∨	+80%-20%
C 6	8.2pF	Tube Ceramic	750∨	20%
C 7	10nF	Disc Ceramic	25V	+80%-20%
C 8	680pF	Polystyrene	125∨	2%
C 9	150pF	Tube Ceramic	750∨	20%
C10	10nF	Disc Ceramic	25V	+80%-20%
C11	0.68µF	Tantalum Electrolytic	35∨	20%
C12	10μF	Tantalum Electrolytic	25∨	20%
C13	10nF	Disc Ceramic	25∨	+80%-20%
C14	150pF	Tube Ceramic	750∨	5%
C15	680pF	Polystyrene	125∨	2%
C16	10nF	Disc Ceramic	25V	+80%-20%
C17	8.2pF	Tube Ceramic	<i>7</i> 50∨	20%
C18	10nF	Disc Ceramic	25V	+80%-20%
C19	680pF	Polystyrene	125∨	2%
C20	150pF	Tube Ceramic	<i>7</i> 50∨	5%
C21	10nF	Disc Ceramic	25V	+80%-20%
C22	10μF	Tantalum Electrolytic	25∨	20%
C23	10nF	Disc Ceramic	25∨	+80%-20%
C24	10nF	Disc Ceramic	25∨	+80%-20%
C25	10µF	Tantalum Electrolytic	25V	20%
C26	0.1μF	Polycarbonate	100∨	20%
C27	10μF	Tantalum Electrolytic	25∨	20%
C28	10nF	Disc Ceramic	25V	+80%-20%
C29	27pF	Silvered Mica	350∨	5%
C30	820pF	Silvered Mica	350∨	1%
C31	0.1μF	Polycarbonate	100∨	20%
C32	10μF	Tantalum Electrolytic	25V	20%
C33	10μF	Tantalum Electrolytic	25V	20%
C34	27pF	Silvered Mica	350∨	5%
C35	0.1µF	Polycarbonate	100∨	20%
C36	10nF	Disc Ceramic	25V	+80%-20%
C37	0.1μF	Polycarbonate	100∨	20%
C38	10nF	Disc Ceramic	25V	+80%-20%
C39	10nF	Disc Ceramic	25V	+80%-20%
C40	10μF	Plastic Film 9569P		
C41	330pF	Polystyrene	125V	2%
C42	10μF	Tantalum Electrolytic	25∨	20%
C43	10µF	Tantalum Electrolytic	25V	20%
C44	68µF	Tantalum Electrolytic	20V	20%
C45	68µF	Tantalum Electrolytic	20∨	20%
C46	4.7μF	Tantalum Electrolytic	35∨	20%
C47	4.7μF	Tantalum Electrolytic	35∨	20%
	1	1	4	1

Resistors

Ref	Value (Ω)
RI	220
R 2	1k
R 3	1M
R 4	1M
R 5	270k
R 6	330
R 7	1k
R 8	1M
R 9	1M
R10	270k
RII	100
R12	180
R13	1k
R14	270
R15	100k
R16	33k
R17	1M
R18	470k
R19	100
R20	180
R21	680
R22	270k
R23	68
R24	5.6k

Ref	Value (Ω)
R25	180
R26	1k
R27	22k
R28	22k
R29	68
R30	470
R31	560
R32	470
R33	330
R34	10k
R35	82k
R36	220k) TR4 1% high stab
R37	220k) low noise
R38	100
R39	AoT
R40	100k
R41	390k
R42	2.7k
R43	22k
R44	4.7k
R45	10k
R46	10k
R47	22k
R48	10k

All resistors except R36, R37 are Mullard CR25, 0.3W 5%.

Coils

Ref	Value/Type	
L1 L2 L3 L4 L5	D5093 D5085 D5093 D5085 D5076	

Diodes

Ref	Туре
D1	MV1656
D2	MV1656
D3	MV1656
D4	MV1656
D5	BZX79 C6V2

Ref	Туре
D 6 D 7 D 8	BAX13 MV1656 BAX13
D 9	BAX13
D10	BAX13

Transistors

Туре	
UC734B	
UC734B	
UC734B	
UC734B	
2N4254	
BC107B	
	UC734B UC734B UC734B UC734B 2N4254

Integrated Circuits

Ref	Туре	
К1	SL641C	Plessey
IC2	MC4741CP	Motorola
IC3	MC78L08ACP	Motorola
IC4	AD301ALN	Analog Devices
IC5	MC 7815 CT	Motorola
IC6	MC 7915 CT	Motorola

Miscellaneous

Description	Part No.
Printed Circuit Board Printed Circuit Board Assembled RLA Relay RH12 Tunable 1st IF. Complete Module	9571P LP3506/2 8445P LP3533

Filtered Connectors

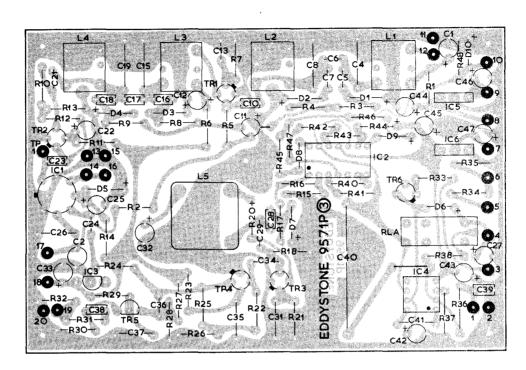
Ref	Value	Туре
FC1-10	1500pF	9871P

Spares should be ordered by quoting the complete Circuit Reference including the module prefix (where applicable), the description and the part number given in the list. From time to time, components of the type listed may be unavailable and equivalent types may be fitted or supplied as spares. All orders and enquiries should be directed to the address below, quoting the Type and Serial Nos. of the receiver in all communications.

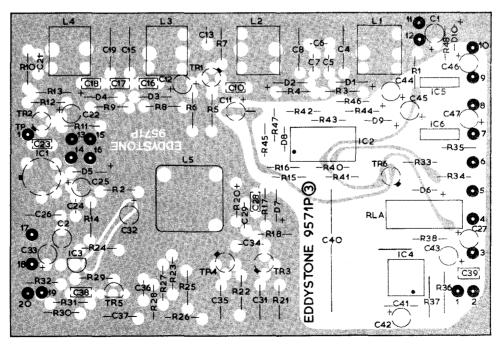
EDDYSTONE RADIO LTD., SALES AND SERVICE DEPT., ALVECHURCH ROAD, **BIRMINGHAM B31 3PP** ENGLAND.

TELEPHONE: 021-475-2231 TELEX:

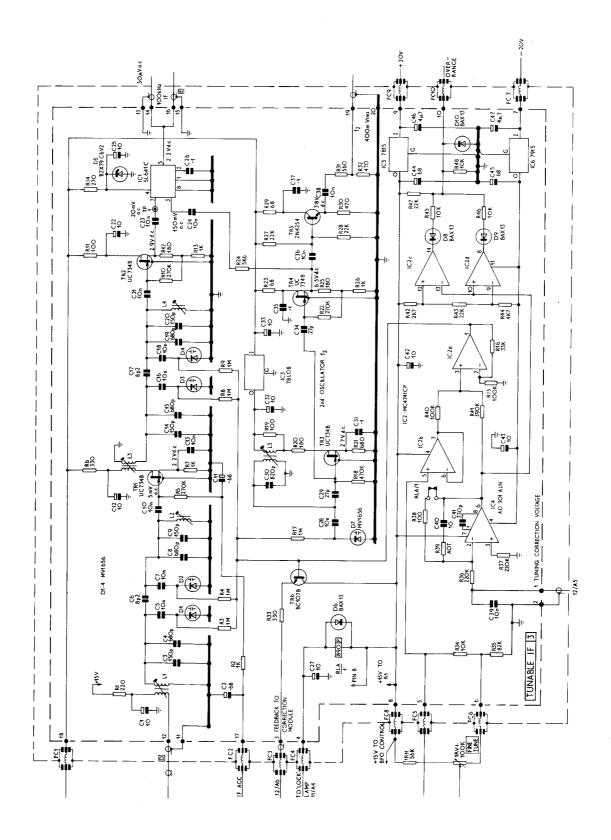
337081


CABLES:

EDDYSTONE


BIRMINGHAM

4.3.9. Printed Circuit Board


The printed circuit board is shown viewed from the legendside and is actual size.

Showing rear copper pattern

Showing front copper pattern

4.4.1. Introduction

This Unit provides the 100kHz selectivity options required for the 1838 Series receivers. Model 1838/1 has AM and SSB crystal filters whilst Models 1838/2 and 1838/3 have a five-section L-C filter for CW in addition.

4.4.2. Circuit Description

The input to the unit is directly from the 1st Mixer in the Coilbox when the Receiver is set to range 6 (1838/3 only), but via the Tunable IF on all other ranges. The first mixer, 2TR3 requires a d.c. feed and this is supplied by D1, via CH2 on Model 1838/1 or via either L1 and S1d or CH2 and S1e, depending on the selectivity switch position, on Models 1838/2 and 1838/3. The operation of the filter circuits is fundamental. Note that because of IF inversion, the SSB filter (which is for USB transmissions) has the response of an LSB filter. CH1 is fitted to eliminate a spurious response inherent in the SSB crystal filter.

4.4.3. Removal

Disconnect leads, including output coaxial lead at pins 1 and 2 on the 2nd IF Amplifier. Remove $2 \times M3$ screws adjacent to Headphones socket, $2 \times M3$ screws at rear filter bracket and $2 \times M3$ screws at the supporting bracket. Slacken switch coupler if fitted and lift unit out.

4.4.4. Fault Diagnosis

In case of total failure check the connectors and the +12V feed on pin 2. Also check the 8.2V supply to the mixer on the input lead, pin 1, for all positions of the mode switch. If either SSB or AM mode has failed the crystal filter is suspect. If CW mode has failed a systematic check of the unit is required.

4.4.5. Performance check and

4.4.6. Realignment

Realignment should only be attempted by competent technicians with the appropriate test equipment. Note that no realignment is possible on Model 1838/1, but the bandwidth may be checked as below, omitting steps 1-4.

Remove the gang cover (underside of coilbox). Disable the 1st Oscillator by short-circuiting the oscillator section of the tuning gang (Coilbox-2C114) to earth. Feed the Signal Generator and Counter at 1350 kHz across the mixer section of the tuning gang (Coilbox-2C70). Connect the AF Power meter to pins I (earth) and 9 of the ancillaries connector and set to 4Ω , and the RF Millivoltmeter to the IF Output socket. Set the receiver to Range 5.

- 1. Set Selectivity/Mode switch to CW, set Generator frequency to 1350.000kHz and level to give approx 100mV at the IF Output socket.
- 2. Adjust L1-5 for maximum output, adjusting generator output as necessary to maintain the output level. Repeat until no further improvement is possible.
- 3. Note the IF Output level and increase the Generator output by 6dB. Detune the Generator either side of 1350.000kHz to restore the IF Output level. Note the Generator frequency in each case, bandwidth should be as given in Table 4.4.1. below.
- 4. Repeat step 4 but with the Generator output increased by 60dB.
- 5. Repeat steps 3 and 4 but with the Selectivity/Mode switch set to AM. Note no adjustment to the filter is possible.

- 6. Set Selectivity/Mode to SSB, and tune Generator to give maximum IF Output, adjusting the level to give 100mV at the IF Output socket. Note no adjustment to the filter is possible.
- 7. Increase the Generator output by 6dB, 20dB, 40dB and 60dB in turn, detuning the Generator each time to restore the IF Output level and noting the frequencies which should be as given in Table 4.4.1. below.

Table 4.4.1.

Bandwidth	CW	SSB	AM
Minimum passband 6dB	<u>+</u> 500Hz	1350.350kHz 1352.700kHz	<u>+</u> 2.7kHz
Minimum attenuation 20dB	· •	1353.200kHz	-
Minimum attenuation 40dB	-	1349.750kHz 1353.500kHz	-
Minimum attenuation 60dB	<u>+</u> 3.5kHz	1349.500kHz 1353.800kHz	<u>+</u> 10kHz

4.4.7 Voltage Analysis

All voltages measured with respect to 0V rail, AVO8 on lowest applicable range. Normal tolerances apply.

Module connections

Pin 1 +8.2V 2 +12V

The current drawn by the module is 25mA.

4.4.8. Components List. Module Prefix 4.

Capacitors

Ref	Value	Туре	Voltage	Tolerance
C 1	47nF	Polycarbonate	100V	20%
C 2	820pF	Polystyrene	125V	5%
C 3	47nF	Polycarbonate	100∨	20%
C 4	22µF	Tantalum Electrolytic	16V	20%
C 5	0.1μF	Polycarbonate	100∨	20%
C 6 **	370pF	Silvered Mica	350∨	2%
C 7 **	4.4nF	Polystyrene	125V	2%
C 8 **	47pF	Silvered Mica	350∨	5%
C 9 **	350pF	Silvered Mica	350∨	5%
C10 **	4.4nF	Polystyrene	125V	2%
C11 **	47pF	Silvered Mica	350∨	5%
C12 **	390pF	Silvered Mica	350∨	5%
C13 **	4.4nF	Polystyrene	125V	2%
C14 **	39pF	Silvered Mica	350∨	5%
C15 **	370pF	Silvered Mica	350∨	2%
C16 **	4.4nF	Polystyrene	125V	2%
C17 **	47pF	Silvered Mica	350∨	5%
C18 **	350pF	Silvered Mica	350∨	5%
C19 **	4.4nF	Polystyrene	125∨	2%
C20 **	10pF	Tube Ceramic	<i>7</i> 50∨	10%

Resistors

Ref	Value (Ω)
RI	120
R2	1k
R3	1k

Ref	Value (Ω)	
R4 R5	560	
R5	560	

All resistors are Mullard CR25, 0.3 Watt 5%.

Coils

Ref	Value/Type	
CH1 CH2	470μΗ 4.7mH	
L1**	D5025	

Ref	Value/Type
L2 **	D5026
L3 **	D5026
L4 ** L5 **	D5026
L5 **	D5026

Diodes

Ref	Туре
DI	BZX79 C8V2

Filters

Ref	Description	Part No.
FL1 FL2	SSB Filter (LSB response for USB reception) AM Filter	9050P 9790P

^{**} Fitted on Models 1838/2 & /3 only.

Switches

Model 1838/1

Ref	Description	Part No.
SI	comprising Clicker and spindle wafer a-c wafer d wafer g	9797P 9802P 9802P 9802P

Models 1838/2 6/3

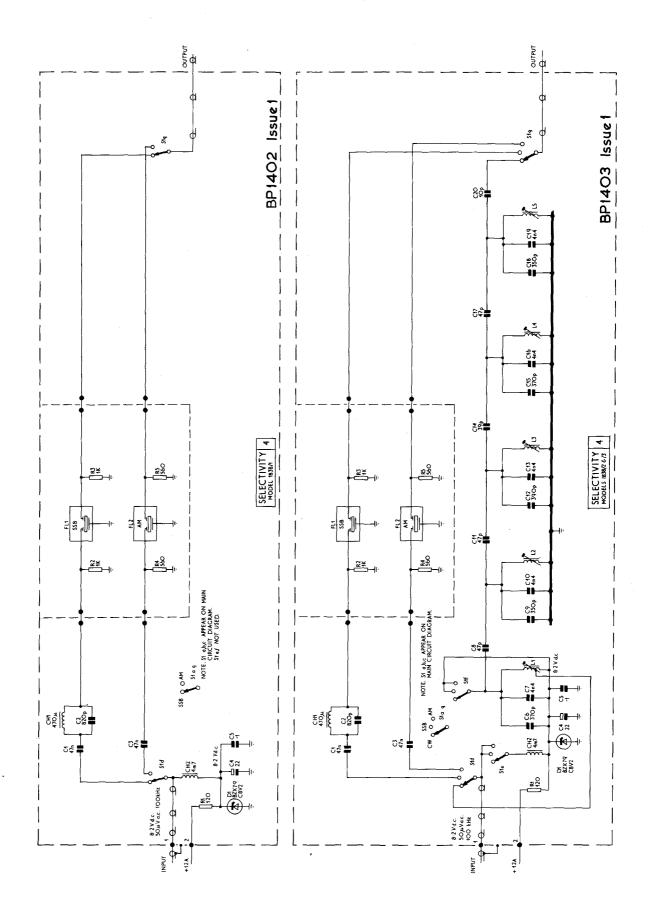
Ref	Description	Part No.
SI	comprising Clicker and spindle wafer a-c wafer d-f wafer g Coaxial BFO Control Shaft Coaxial BFO Control Coupler	9788P 9791P 9791P 9791P 9789P 9792P

Selectivity Module complete	(Model 1838/1)	LP3536
	(Models 1838/2 &	
	1838/3)	LP3535

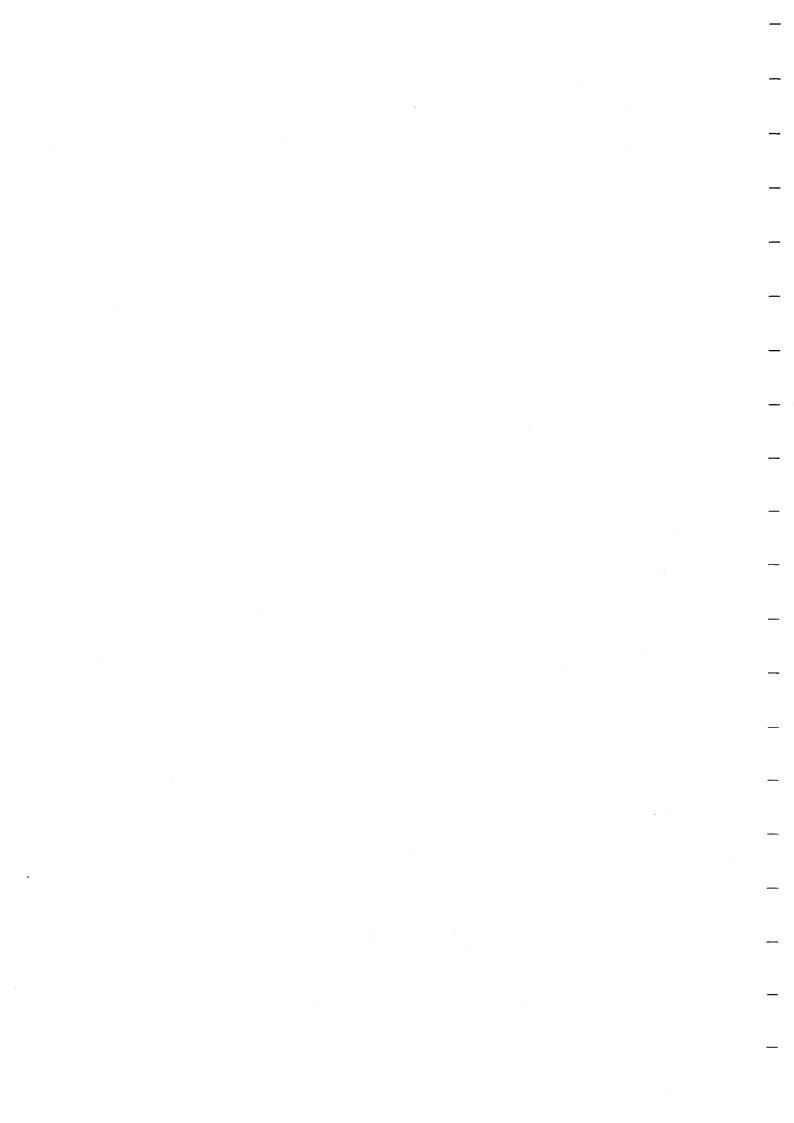
Spares should be ordered by quoting the complete Circuit Reference including the module prefix (where applicable), the description and the part number given in the list. From time to time, components of the type listed may be unavailable and equivalent types may be fitted or supplied as spares. All orders and enquiries should be directed to the address below, quoting the Type and Serial Nos. of the receiver in all communications.

EDDYSTONE RADIO LTD., SALES AND SERVICE DEPT., ALVECHURCH ROAD, BIRMINGHAM B31 3PP ENGLAND.

TELEPHONE: 021-475-2231


TELEX:

337081


CABLES:

EDDYSTONE

BIRMINGHAM

.

4.5.1. Introduction.

This module receives the 100kHz IF signal from the Selectivity Unit, ref 4. The bulk of the receiver gain is provided by this stage, which provides a 20mV output at 100kHz to the rear panel IF Output socket, a demodulated AM output to the audio stages and IF and RF AGC outputs to be used on the 100kHz amplifier itself and on the coilbox circuits respectively.

4.5.2. Circuit Description.

Four Junction FET stages in series provide the amplifier with IF AGC being applied to the first three. Signal from the fourth stage is passed firstly to a buffer stage which drives the 75Ω IF Output and the AM Detector and secondly to a further stage of amplification and then to the IF AGC Detector. From here the IF AGC output is fed out of the module to the Diversity AGC output, the time-constant determining network and the RF signal metering circuit. The AGC signal returns to the module via the Manual/AGC switch, where manual control from the IF Gain potentiometer can be selected, to operate on the first three stages of the 100kHz amplifier.

A parallel feed of the input signal is taken to the RF AGC section where it is subjected to one stage of amplification before the detector. Gain and threshold adjustment is provided at the two stages of d.c. coupled operational amplifiers, the output of which is fed back to the coilbox.

4.5.3. Removal of the Unit.

All Models except 1838/2 and 1838/3.

Stand receiver on its RH side, release coupler on Selectivity Unit input shaft. Remove $2 \times M3$ screws holding BFO Unit. Remove $4 \times M4$ screws holding IF chassis. IF chassis may now be removed on its leads and refitted at an angle of 90° to the centre rail, where it may be fastened in place by $2 \times M4$ screws.

1838/2 and 1838/3 (note - there is no coupler on Selectivity Unit input shaft).

Proceed as above except filter must be removed from IF chassis, $2 \times M3$ screws at front, $2 \times M3$ screws at rear, $2 \times M3$ screws securing supporting bracket. Disconnect leads from filter.

4.5.4. Fault Diagnosis.

As the major part of the receiver's overall gain is provided by this module, the module itself is best checked by measuring the sensitivity. The action of the AGC stages can also be checked, the performance should be as given in Section 1.

4.5.5. Performance Check.

Select Range 5 and Intermediate/AM bandwidth. Remove the lead from pin 1 of the Selectivity Unit (module no. 4) and connect a signal generator via a $0.1\mu F$ 250V DC blocking capacitor. Measure the performance as follows, noting that by using a 50Ω source the characteristics as measured will not necessarily be the same as when the unit is fed from the normal point. Apply a 100kHz signal modulated 30% AM at 1kHz and with AGC off, AF and RF gain controls set as necessary. AM mode selected, check that an input of less than $50\mu V$ enables a 10dB S+N/N ratio to be obtained at the ext. LS output. Check also that, for

150mV measured at the IF Output socket using a true RMS millivoltmeter, a CW input of less than 220µV is required.

Check AGC action as follows: Select CW mode and measure the level at the IF Output socket.

IF AGC Threshold less than 220µV IF Output - 0dB (reference)
Threshold + 20dB +5dB
Threshold + 40dB +7dB
Threshold + 60dB +8dB

RF AGC starts to operate at between (Threshold +35dB) and (Threshold +40dB) giving a -0.1V change (depending on the settings of RV1 and RV2) in the voltage at pin 10.

4.5.6. Realignment.

Realignment should be performed with the unit in the receiver.

- 1. 100kHz amplifier and IF AGC
- a. Adjust the receiver as follows:

Range : 5

Mode : AM

Manual/AGC : Manual

IF Gain : Max

AF Gain : Mid-range

b. Connect the signal generator across 2C70 and tune generator to 1350.00kHz. Disable 1st Oscillator by shorting 2C114. Connect an RF Millivoltmeter terminated in 75Ω to the IF Output socket.

c. Set selectivity switch to V. Narrow and tune generator accurately to the peak response (generator output: - CW).

Adjust L1 for maximum IF output.

d. Select 'AGC' and adjust L2 for a minimum in the IF Output.

2. RF AGC.

- a. Reselect 'Manual', transfer the millivoltmeter to pin 10 (RF AGC output). Set generator output past threshold level and adjust L2 for a maximum negative-going voltage.
- b. Set RV1 fully anti-clockwise. With no signal adjust RV3 to give +1.5V at output (pin 10).
- c. Increase the signal level to +60dB (ref 1µV) and adjust RV2 to give 1.3V at output (pin 10). These settings are chosen to give a good all-round performance. If it is required to adjust the RF AGC performance in order to optimise a particular parameter, then it is possible to adjust RV1, 2 & 3 as required, however care should be taken to ensure that other aspects of the performance are not degraded unacceptably. RV1 controls the RF AGC threshold, RV2 the RG gain at high signal level and RV3 the RF gain at low signal level.

3. First IF AGC

Instructions for setting up the 1st IF AGC Gain equalisation potentiometers are included as part of Section 4.2 (coilbox).

4.5.7. Voltage Analysis

All voltages measured with respect to 0V rail (pin 14), AVO8 on lowest applicable range unless stated. Normal tolerances apply.

a. Module pins

Pin	7	0V	Pin	9	0 V
	2	0V		10	AGC offset (1.3V typical)
	3	-3V			(10V range)
	4	0V		11	+22.5V
	5	0V		12	-22.5V
	6	0V		13	-15V
	7	0V		14	0V
	8	0V		15	+12V

b. Semiconductors

Transistors

Emitter/Source	Base/Gate	Collector/Drain
TR1 OV	-3V**	+12V
TR2 0∨	-3V**	+12V
TR3 O∨	-3 V**	+12V
TR4 +1.6V	0V	+10.7V
TR5 O∨	+0.7V*	+10V
TR6 +1.8V*	0V	+ 7 V
TR7 0V	+0 <i>.7</i> V*	+5.8V
TR8 +1 <i>.7</i> V*	+0.7V*	
TR9 0	+0.7*	+7.6V
TR5 0V TR6 +1.8V* TR7 0V TR8 +1.7V*	+0.7V* 0V +0.7V* +0.7V*	+10V +7V +5.8V +9.1V

^{*}measured on 10V range
**measured on 100V range

Integrated Circuits

```
10
                   AGC Offset (1.3V typical) 10V range
           11
           12
                   0V
                 +15V
           13
           14
IC 2
           0
                 +15V
               +22.5V
           G
                   0V
           0
                 -15V
IC3
           G
                   0V
           1
               -22.5V
```

The currents drawn by the module are:

+12V supply 54mA (AGC on)

+20V supply 13mA

-20V supply 7.3mA

4.5.8. Components List. Module Prefix 5.

Capacitors

Ref	Value	Туре	Voltage	Tolerance
C 1	1nF	Disc Ceramic	250V	+80%-20%
C 2	0.1μF	Polycarbonate	100∨	20%
C 3	0.1μF	Polycarbonate	100V	20%
C 4	47nF	Polycarbonate	100∨	20%
C 5	1nF	Disc Ceramic	250V	+80%-20%
C 6	0.1µF	Polycarbonate	100∨	20%
C 7	0.1µF	Polycarbonate	100∨	20%
C 8	47nF	Polycarbonate	100∨	20%
C 9	1nF	Disc Ceramic	250∨	+80%-20%
C10	0.1µF	Polycarbonate	100	20%
C10	•	Polycarbonate	100∨	20%
C12	0.1µF 47nF	Polycarbonate	100∨	20%
C12	47nr InF	Disc Ceramic	250	+80%-20%
1	540pF	Silvered Mica	350V	5%
C14	•	f	100	20%
C15	0.1μF	Polycarbonate	100∨	20%
C16	47nF 1nF	Polycarbonate	250V	+80%-20%
C17		Disc Ceramic	100V	20%
C18	0.1μF	Polycarbonate	350V	5%
C19	2nF	Silvered Mica	1	+80%-20%
C20	lnF	Disc Ceramic	250V	i i
C21	InF	Disc Ceramic	250V	+80%-20%
C22	InF	Disc Ceramic	250V	+80%-20%
C23	15pF	Tube Ceramic	750V	10%
C24	47nF	Polycarbonate	100V	20%
C25	InF	Disc Ceramic	250V	+80%-20%
C26	0.1μF	Polycarbonate	100V	20%
C27	2nF	Silvered Mica	350V	5%
C28	1nF	Disc Ceramic	250∨	+80%-20%
C29	10µF	Tantalum Electrolytic	25V	20%
C30	0.1μΕ	Polycarbonate	100V	20%
C31	0.1μF	Polycarbonate	100V	20%
C32	100pF	Silvered Mica	350V	5%
C33	15pF	Tube Ceramic	750V	10%
C34	0. 1μF	Polycarbonate	100V	20%
C35	InF	Disc Ceramic	250∨	+80%-20%
C36	0.1μF	Polycarbonate	100V	20%
C37	0.1µF	Polycarbonate	100∨	20%
C38	3.3nF	Silvered Mica	350∨	5%
C39	10nF	Disc Ceramic	25V	+80%-20%
C40	0.1μF	Polycarbonate	100V	20%
C41	10μF	Tantalum Electrolytic	25V	20%
C42	22µF	Tantalum Electrolytic	16V	20%
C43	0.1μF	Polycarbonate	100∨	20%
C44	10µF	Tantalum Electrolytic	25∨	20%
C45	4. <i>7</i> μF	Tantalum Electrolytic	35V	20%
C46	10µF	Tantalum Electrolytic	25V	20%
C47	0.1μF	Polycarbonate	100∨	20%
C48	4.7μF	Tantalum Electrolytic	35∨	20%

Page 4.5.5.

Resistors

Ref	Value (Ω)
R 1	270k
R 2	330
R 3	5.6k
R 4	1k
R 5	270k
R 6	330
R 7	1.2k
R 8	1k
R 9	270k
R10	330
R11	5.6k
R12	1k
R13	270
R14	100k
R15	330
R16	8.2k
R17	lk
R18	47k
R19	22k
R20	100
R21	47
R22	47k
R23	6.8k
R24	270k
R25	1.5k

Ref	Value (Ω)
R26	1k
R27	47k
R28	22k
R29	100
R30	10k
R31	3.3k
R32	270k
R33	22k
R34	330
R35	470k
R36	1k
R37	47k
R38	22k
R39	100
R40	150
R41	1k
R42	3.3k
R43	47k
R44	10k
R45	10k
R46	4.7k
R47	10k
R48	4.7k
R49	10k
R50	10k

All resistors are Mullard CR25, 0.3 Watt 5%.

Potentiometers

Ref	Description	Part No.
RV1 RV2	1k Cermet linear preset 470k Cermet linear preset	9859P 9483P
RV3	1k Cermet linear preset	9859P

Coils

Ref	Value/Type/Part No.
L1 L2	D5090 Eddystone D5092 Eddystone
L3	D5091 Eddystone
CH 1 CH 2 CH 3 CH 4 CH 5 CH 6 CH 7 CH 8 CH 9	68mH Sigma SC60 100mH Sigma SC60 68mH Sigma SC60 100mH Sigma SC60 68mH Sigma SC60 68mH Sigma SC60 1mH Sigma SC60 100mH Sigma SC60 4.7mH Sigma SC60
CH10 CH11	68mH Sigma SC60 68mH Sigma SC60

Diodes

Ref	Туре	
D1 D2	OA47 BAX13	Mullard Mullard
D3	BAX13	Mullard
D4	BAX13	Mullard

Transistors

Ref	Туре
TRI	UC734B
TR2	UC <i>7</i> 34B
TR3	UC734B
TR4	UC734B
TR5	2N4254
TR6	UC734B
TR7	2N4254
TR8	UC734B
TR9	2N4254
Į l	

Integrated Circuits

Ref	Туре	
IC1	MC 1747 CP	Motorola
IC2	MC 78L15 ACP	Motorola
IC3	MC 79L15 ACP	Motorola

Miscellaneous

Description	Part No.		
Printed Circuit Board	9579P		
Printed Circuit Board Assembled	LP3506/10 (complete module)		

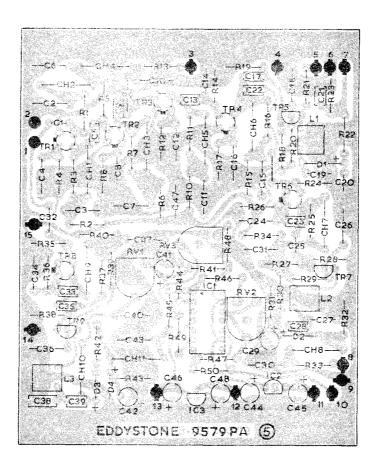
Spares should be ordered by quoting the complete Circuit Reference including the module prefix (where applicable), the description and the part number given in the list. From time to time, components of the type listed may be unavailable and equivalent types may be fitted or supplied as spares. All orders and enquiries should be directed to the address below, quoting the Type and Serial Nos. of the receiver in all communications.

EDDYSTONE RADIO LTD., SALES AND SERVICE DEPT., ALVECHURCH ROAD, BIRMINGHAM B31 3PP. ENGLAND. TELEPHONE:

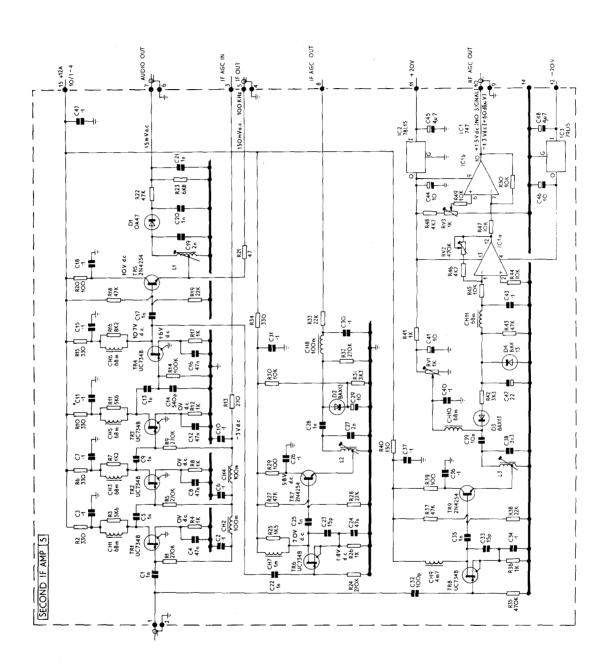
021-475-2231

TELEX:

337081


CABLES:

EDDYSTONE


BIRMINGHAM

4.5.9. Printed Circuit Board.

The printed circuit board is shown viewed from the legend side and is actual size.

	_
	_
	_
	_
	_
	~
	_
	_
	_
	_
	_
	_
	~~
	_
	_
	_
	_

4.6.1. Introduction

This module, which in the case of Model 1838/1 does not contain a BFO, accepts the IF signal from the 2nd IF amplifier and compares this with either a high stability 100kHz signal from the master oscillator or an internally generated BFO signal. The audio output from the module is routed via the mode switching to the audio output stages.

4.6.2. Circuit Description

a. Beat Frequency Oscillator and Gating.

The oscillator transistor is tuned by L1 and the parallel combination of C3, C4 and varicap diode D1, this enables the frequency to be controlled by a D.C. voltage derived from the BFO control. Thermal stability is ensured by the different temperature coefficients of C3 and C4. The output from the BFO is routed via two transmission gates in series (IC1 c, d) to the mixer (IC2). The high-stability 100kHz input from SKB is routed via the other pair of transmission gates (IC1 a, b) to the same input of the mixer.

BFO is selected by applying +12V to SKA pin 10, this also supplies TR1 and via D2, the mixer. SSB is similarly selected via SKA pin 2, in this case the mixer is powered via D4.

b. Mixer and Low Pass Filter.

The other input to the mixer is a direct feed of the 100kHz IF signal. The mixer output is taken via the Low Pass Filter CH2, CH3, C13, 15 and 16 to the audio output of SKA pin 7.

On model 1838/1 power for the mixer is taken directly from SKA pin 2, there being no intervening diode. The gating circuit is also omitted and the stable 100kHz input is fed directly to pin 3 of IC2.

4.6.3. Removal of Unit.

Unplug the miniature coaxial connector. Remove 2 x M3 screws from underside of IF chassis. Lift out unit complete with fixing bracket, unplugging 10-way connector at the front of the unit.

4.6.4. Fault Diagnosis

Check that +12V is present on either SKA/2 (SSB Selected) or SKA/10 (BFO Selected). Check the presence of 100kHz IF signal at rear panel socket and at IC2 pin 7, and an oscillator signal at IC2 pin 3. If both are present check IC2 and the low-pass filter network to SKA/7 (Audio output to mode switch).

(Model 1838/1: The 100kHz standard is fed directly to IC2 pin 3. If this is not present check the lead and the Correction Module (12)). Select BFO and check IC1 pin 4 for signal, if no signal is present the oscillator should be carefully checked. Select SSB, the 100kHz standard is present on SKB at all times and should be present on IC1 pin 4.

If there is a signal present at the inputs of the gates (pins 4 and 11) but no output the transmission gates are suspect. These are analogue devices which present a low impedance (low kilohm region) when the control terminals (pins 5, 6, 12 or 13) are at "high" (12V) voltage.

4.6.5. Performance Check

Set the receiver as follows: AGC to Manual. BFO on, IF Gain to minimum, Range 6. The BFO injection signal measured with a high impedance RF millivoltmeter at IC2 pin 3 should be within the range 50-150mV. The frequency should be 100kHz with the BFO control central. This control should have a range of +3.5kHz.

4.6.6. Realignment.

Set the receiver as for the performance check above. Centralise the BFO control and connect the high impedance RF millivoltmeter to IC1 pin 9. Adjust the core of L1 to give a frequency of 100.000kHz. Check that the BFO control has a range greater than ± 3.5kHz. Check the signal level at IC2 pin 3, this should be within the range 50-150mV.

Apply a CW signal of 1mV to the Aerial input (tune to the receiver frequency) and adjust the IF gain control so that 100mV is measured at the IF Output socket. Adjust the input frequency for a 1kHz audio output tone. Check that the audio signal at pin 7 is 15mV approx. The distortion should be less than 1%. Vary the frequency of the input signal and check the frequency response. The upper -3dB point should be within the range 3.5 - 3.7kHz.

Select SSB and introduce a 100kHz CW signal of level 400mV at SKB. Check that the signal at IC2 pin 3 is within the range 50-150mV.

Increase the signal to IV, select BFO and tune a second signal generator connected to the aerial input to give a IkHz tone as above. Check that this is unaffected by the generator connected to SKB.

4.6.7. Voltage Analysis

All voltages measured with respect to 0V rail (SKA pins 3,6,8), AVO8 on lowest applicable D.C. range. Normal tolerances apply.

a. Module Connections. SKA

Pin	1	+5.8V - 15V	(30V range) according to BFO control setting.
	2	+12V	SSB Mode only.
	3	0	·
	4	0	
	5	0	
	6	0	
	7	0	
	8	0	
	10	+1 2 V	BFO Mode only

b. Semiconductors

TRI	Source	0V	
	Gate	-2.2V	(30V range)
	Drain	12V	BFO Mode only

```
IC1 Pin 1
               +5.5V
                                         (30V range) SSB Mode
        2
                                         (30V range) SSB Mode
               +5.5V
                                         (30V range) SSB Mode
        3
               +5.5V
        4
               +5.5V
                                         (30V range) SSB Mode
        5
                +12V
                                         (30V range) SSB Mode
        6
                +12V
                                         (30V range) BFO Mode
        7
                  0
        8
               +5.5V
                                         (30V range) BFO Mode
        9
                                         (30V range) BFO Mode
               +5.5V
       10
               +5.5V
                                         (30V range) BFO Mode
       11
               +5.5V
                                         (30V range) BFO Mode
       12
                +12V
                                         (30V range) BFO Mode
       13
                +12V
                                         (30V range) SSB Mode
       14
                +11V
                                         (30V range)
IC2 Pin 1
                  0V
        2
               +2.9V
        3
               +2.9V
        4
               +6.2V
        5
               +5.4V
        6
               +2.9V
        7
        8
                  0V
```

Current drawn by the module (pin 10), quiescent conditions: 25-30mA. (BFO) 18mA. (SSB)

4.6.8. Components List. Module Prefix 6.

Capacitors

Ref	Value	Туре	Voltage	Tolerance
C 1 *	0.68µF	Tantalum Electrolytic	35∨	20%
C 2*	10nF	Disc Ceramic	25V	+80%-20%
C 3 *	180pF	Silvered Mica	350∨	1%
C 4 *	39pF	Polystyrene	125V	3pF
C 5 *	56pF	Silvered Mica	350∨	5%
C 6*	10µF	Tantalum Electrolytic	25V	20%
C 7*	10nF	Disc Ceramic	25∨	+80%-20%
C 8 *	10µF	Tantalum Electrolytic	25∨	20%
C 9 *	0.1µF	Polycarbonate	100∨	20%
C10	0.1µF	Polycarbonate	100∨	20%
C11	0. 1µF	Polycarbonate	100∨	20%
C12	10µF	Tantalum Electrolytic	25∨	20%
C13	47nF	Polycarbonate	100∨	20%
C14	10µF	Tantalum Electrolytic	25V	20%
C15	0.15μF	Polycarbonate	100∨	20%
C16	47nF	Polycarbonate	100∨	20%
C17	10µF	Tantalum Electrolytic	25V	20%
C18	10µF	Tantalum Electrolytic	25V	20%
C19	10nF	Disc Ceramic	25∨	+80%-20%
C20 *	0.1µF	Polycarbonate	100∨	20%

Resistors

Value (Ω)		
1M		
47k		
270k		
100k		
100k		
Īk		
1.5k AoT		

Ref	Value (Ω)
R 8	470
R 9	270
R10	470
R11 *	10k
R12 *	10k
R13 *	2.2k
R14 *	10k
KI4 "	TOK

All resistors are Mullard CR25, 0.3 Watt 5%.

Coils

Ref	Value/Type
L1 *	D5030
CH1 * CH2 CH3	1mH Sigma SC60 33mH Sigma SC60 33mH Sigma SC60

Page 4.6.4.

Diodes

Ref	Туре	
D1 *	MV1656	Motorola
D2 *	BAX13	Mullard
D3	BZX79 C6V2	Mullard
D4 *	BAX13	Mullard
D4	<i>5</i> -7(1)	MOHIGIA

Transistors

Ref	Туре
TRI *	UC734B

Integrated Circuits

Ref	Туре	
IC1 *	# MC14016CP	Motorola
IC2	SL641C	Plessey

⁴ MOS Device. See appendix for handling instructions.

Miscellaneous

Description	Part No.
Printed Circuit Board	9572P
Printed Circuit Board Assembled (all models except	
1838/1)	LP3506/3
Printed Circuit Board Assembled (Model 1838/1 only)	LP3506/37
SKA 10 way connector	9863P
PLA 10 way connector, free (mating for above)	9864P
SKB Miniature Coaxial socket	7292P
PLB Miniature Coaxial plug (mating for above)	7293P

Note Components marked * are not present on Model 1838/1, Assembly LP3506/31

BFO and Product Detector Module complete (All except Model 1838/1) (Model 1838/1)

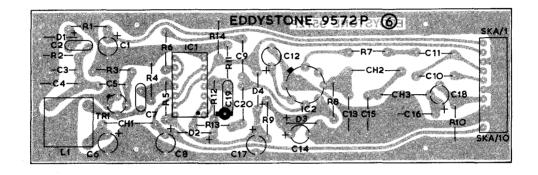
LP3530 LP3531 Spares should be ordered by quoting the complete Circuit Reference including the module prefix (where applicable), the description and the part number given in the list. From time to time, components of the type listed may be unavailable and equivalent types may be fitted or supplied as spares. All orders and enquiries should be directed to the address below, quoting the Type and Serial Nos. of the receiver in all communications.

EDDYSTONE RADIO LIMITED, SALES AND SERVICE DEPT., ALVECHURCH ROAD, BIRMINGHAM B31 3PP ENGLAND. TELEPHONE:

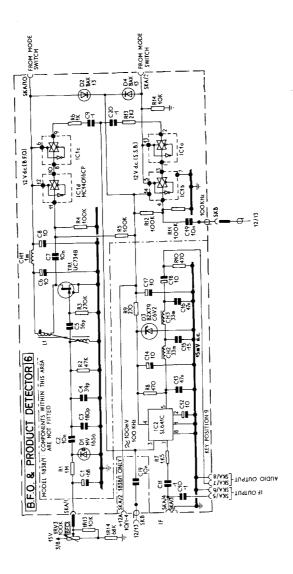
021-475-2231

TELEX:

337081


CABLES:

EDDYSTONE


BIRMINGHAM

4.6.9. Printed Circuit Board

The printed circuit board is shown viewed from the legend side and is actual size.

- -			
		•	
_			
_			
~			
•			
-			
 -			
_			
-			

.

4.7.1. Introduction

This module contains the 600Ω line amplifier, the audio peak detector, the meter amplifier and preset potentiometer for the FSK Mark/Space ratio adjustment. Except on model 1837/2 some components are omitted, see circuit diagram for details.

4.7.2. Circuit Description

The detector output appears at pin 8 and after passing through the line level control RV1 and buffer stage TR1 is amplified by IC1. The signal bandwidth is controlled by the combination of R3, C4 and C5 and C7-10, R5-7 from the usual stabilising network. The amplifier output is capactively coupled to the output transformer T1, which has a centre-tapped secondary suitable for feeding a 600Ω balanced line.

On model 1837/2 only the output signal is also fed to the audio peak detector IC2a. C12 is charged by current pulses passed by D1 and the discharge time is defined by R9. The output (across C12) passes to the meter amplifier via RV2 (AF calibration preset) and the meter switch to return to the module at pin 16.

On all models except 1837/2 the AGC line is connected directly to pin 16, the meter amplifier input, an model 1837/2 the meter selection switch is interposed to allow the meter to read also the line output (from the peak detector) or the FSK module 'tuning' voltage. The meter amplifier IC2b works in the standard inverting configuration, the gain being determined by external resistors. The meter, connected to pin 15, is damped by C17. Note that in the AF mode the meter is peak-reading.

The positive supply is taken from the 12V 'A' supply, the 15V negative supply for IC2 and the meter centre-zero preset is taken from the -20V rail and internally regulated by IC3.

4.7.3. Removal of the unit.

Remove the rear panel as described in section 4:1. The printed circuit board is mounted on this and is now accessible.

4.7.4. Fault Diagnosis.

Line Amplifier. Check that the audio signal is present at pin 8 and that the Line Level control is adequately advanced. Any failure in the integrated circuit amplifier will normally be total. If the signal is present at the transformer primary winding check the transformer and the wiring to the ancillaries connector.

Meter Amplifiers. Check the switching and meter continuity. Check the voltages given below.

4.7.5. Performance Checking

Check that $\pm 12V$ is present on pin 11, $\pm 20V$ on pin 5 and that pin 4 is earthed. Disconnect the lead to pin 8 and connect an audio signal generator set to give 5mV emf at 1kHz. Connect an output power meter to pins 12 and 13, ensuring the ancillaries plug is disconnected, and set to give a $\pm 500\Omega$ load. Check that with the line level control set at maximum an output of at least $\pm 10dBm$ is obtained, and that the bandwidth to the $\pm 2dB$ points is at least $\pm 260 \pm 7kHz$. If a distortion factor meter is available increase the input signal to give $\pm 20dBm$

output and check that the distortion is less than 1%. Restore the connection to pin 8.

Select Range 5, CW, AGC off, Meter RF (1837/2 only) connect a signal generator set to CW to the aerial input and tune to receiver. Adjust IF Gain and input signal to give full deflection on the meter. Measure the IF voltage at module no. 5, pin 8, which should be -5.2V.

Check that the deflection is linearly proportional to the voltage. Note that pin 16 is a virtual earth point.

4.7.6. Realignment.

Line Amplifier. There are no realignment adjustments to be made to the Line amplifier, excepting the line level control which should be set on installation.

Meter Amplifier.

a. All models except 1837/2

There are no realignment adjustments.

b. Model 1837/2 only.

Meter set to RF. There is no realignment adjustment for this function.

Meter set to CZ. Set receiver IF gain to minimum, AGC off. Adjust RV3 so that the meter indicates centre scale.

Meter set to AF. Disconnect the lead to pin 8 and inject at pin 8 a 15mV signal at 1kHz. Connect the output power meter to pins 12 and 13, set to 600Ω ensuring the ancillaries connector is disconnected and adjust RV1 to give 10mW output. Set RV2 so that the meter indicates full scale.

Note RV4 (if fitted) is adjusted with the FSK Module.

4.7.7. Voltage Analysis.

All voltages are measured with respect to the 0V rail (pins 4 & 10), AVO8 on lowest applicable D.C. range. Normal tolerances apply.

TRI.

Source Gate	1V 0V	(10V ra nge)	
Drain	9.5V	(30V range)	
IC1 pin	1	0V	
-	4	+ 4 V	
	6	+3.5V	
	7	+4.3V	
	8	+7.4V	
	9	+9.5V	(30V range)
	11	+9.7V	(30V range)
	13	+9.0V	
	16	0V	

IC2 pin	4	-1 <i>5</i> V
•	6	0
	7	0∨
	10	0 V
	13	+11 <i>.5</i> V
IC3	1	-22.5V
	G	0\
	0	-15.0V

The current drawn by the module (quiescent conditions) is +12V supply 13mA +20V supply 64mA

4.7.8. Components List. Module Prefix 7.

Capacitors

Ref	Value	Туре	Voltage	Tolerance
CI	47nF	Polycarbonate	100∨	20%
C 2	22µF	Tubular Electrolytic	25V	+50%-10%
C 3	220µF	Tubular Electrolytic	16V	+50%-10%
C 4	0.1µF	Polycarbonate	100∨	20%
C 5	4.7nF	Polystyrene	125∨	5%
C 6	100µF	Tubular Electrolytic	25V	+50%-10%
C 7	22µF	Tubular Electrolytic	25V	+50%-10%
C 8	22µF	Tubular Electrolytic	25V	+50%-10%
C 9	22µF	Tubular Electrolytic	25V	+50%-10%
C10	0.15μF	Polycarbonate	100∨	20%
C11	22µF	Tubular Electrolytic	25∨	+50%-10%
C12 *	100µF	Tubular Electrolytic	10V	+50%-10%
C13 *	10nF	Disc Ceramic	25V	+80%-20%
C14	22μF	Tubular Electrolytic	25∨	+50%-10%
C15	22µF	Tubular Electrolytic	25∨	+50%-10%
C16	15μF	Tubular Electrolytic	40V	+50%-10%
C17	100µF	Tubular Electrolytic	10V	+50%-10%
C18	22μF	Tubular Electrolytic	25V	+50%-10%

Resistors

Value (Ω)
47k
100
2.2k
470
47
100
1
4.7k

Ref	Value (Ω)
R 9 *	2.7k
R10 R11	120k 68k
R12 R13 *	27k 1.5k
R14 R15	220 220
KIJ	220
1	

All resistors are Mullard CR25, 0.3 Watt 5%.

Potentiometers

Ref	Description	Part No.
R ∨1	47k Carbon linear preset	9438P
RV2 *	47k Cermet linear preset	9489P
R∨3 *	470k Cermet linear preset	9860P
RV4 *	1k Carbon linear preset	9033P

Diodes

Ref	Туре
D1 *	OA47
Transistors	
Ref	Туре
TRI	UC734B

Integrated Circuits

Ref	Туре	
IC1	TCA760A	Mullard
IC2	MC1747CP	Motorola
IC3	MC79L15CP	Motorola

Miscellaneous

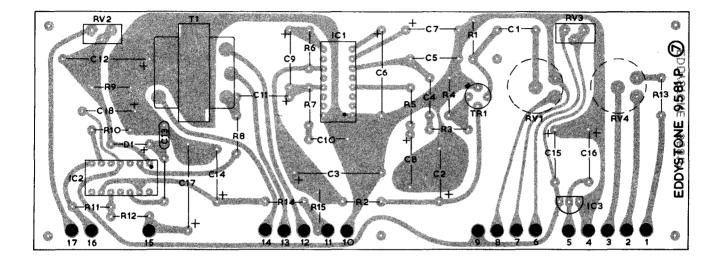
Description	Part No.
T1. Transformer Printed Circuit Board	8641P 9581P
Printed Circuit Board Assembled (All models	
except 1837/2) Printed Circuit Board Assembled (Model 1837/2 only)	LP3506/12 (complete module) LP3506/36 (complete module)

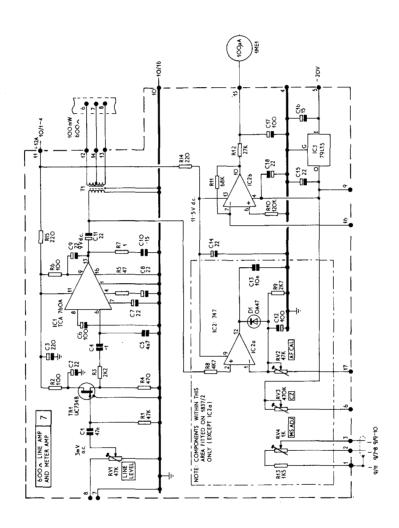
Components marked * used on Model 1837/2, Assembly LP3506/36 only.

Spares should be ordered by quoting the complete Circuit Reference including the module prefix (where applicable), the description and the part number given in the list. From time to time, components of the type listed may be unavailable and equivalent types may be fitted or supplied as spares. All orders and enquiries should be directed to the address below, quoting the Type and Serial Nos. of the receiver in all communications.

EDDYSTONE RADIO LTD., SALES AND SERVICE DEPT., ALVECHURCH ROAD, BIRMINGHAM B31 3PP ENGLAND. TELEPHONE: TELEX:

021*-*475*-*2231 337081


CABLES:


EDDYSTONE

BIRMINGHAM

4.7.9. Printed Circuit Board

The printed circuit board is shown viewed from the legend side and is actual size.

				_
				·
	r *			
		·		
				_
				_
				_
				- -
				 ,
				-
				_

4.8. HIGH LEVEL AUDIO MODULE

4.8.1. Introduction

This printed circuit board assembly carries the audio power amplifier which drives both internal and external loudspeakers and headphones. It has two signal inputs, the received signal via the volume control and a sidetone signal from an associated transmitter via a contact in the ancillaries connector.

4.8.2. Circuit Description.

The sidetone input from the ancillaries connector is fed in via pin 4 and the "Tee" attenuator R7-9, the main input from the AF Gain control enters the unit at pin 1 and both input signals are mixed together at the input of the amplifier IC1. Resistors R2-4 and capacitors C2-7 provide the usual stabilising and bandwidth limiting networks. The d.c. bias on the output is removed by C8 and the main output is taken from pin 12 to the external loudspeaker. Pin 9 provides the headphone output with R5 limiting the power available at this point. R6 is the power limiting resistor for the internal loudspeaker which is fed by a link between pins 5 and 9 in the ancillaries connector. Various muting options are available for both internal and external loudspeakers, these operate on the 'earthy' sides of the speakers and full details are given in the installation section.

Power is taken from the 12V 'A' supply.

4.8.3. Removal of the Unit.

The printed circuit board assembly is secured to the left-hand side plate of the receiver by four M3 screws.

4.8.4. Fault Diagnosis.

The integrated circuit amplifier is protected against overload and so failure as a result of this is unlikely. In cases of loss of output, check that the input is present at pin 1 and that the output is not short-circuited, also check that the power supply is present. Failure of passive components in the stabilising network may result in overload leading to the protection circuitry coming into operation.

4.8.5. Performance Check

Check that the +12V supply is present at pin 6 and that pin 5 is earthed. Disconnect the lead from pin 1 and connect an audio signal generator set to give 15mV at 1kHz. Connect an Output Power meter between pins 11 (earth) and 12, ensuring that the ancillaries connector is disconnected, and set to give a 4Ω load. Check that at least 2W output can be obtained. Transfer the signal generator to pin 4 and check that the sensitivity is approx. 5V for 2W output. Afterwards restore the connection to pin 1.

4.8.6. Realignment

There are no adjustments to be made on this module.

4.8.7. Voltage Analysis.

All voltages are measured with respect to 0V rail (pin 5), AVO8 on lowest applicable D.C. range. Normal tolerances apply.

IC1 pin	1	12V
•	4	12V
	5	0V
	6	1.2V
	7	6.2V
`.	8	0V
	9	0\
	10	0V
	12	6V
Tabs		0V

4.8.8. Components List. Module Prefix 8.

Capacitors

Ref	Value	Туре	Voltage	Tolerance
C I	0.1μF	Polycarbonate	250∨	20%
C 2	220µF	Tubular Electrolytic	4V	+50%-10%
C 3	100µF	Tubular Electrolytic	10V	+50%-10%
C 4	100µF	Tubular Electrolytic	10\	+50%-10%
C 5	1.8nF	Polystyrene	125V	20%
C 6	10nF	Polystyrene	250V	20%
C 7	0.1µF	Polycarbonate	250V	20%
C 8	220µF	Tubular Electrolytic	10∨	+50%-10%
C 9	0.1μF	Polycarbonate	250V	20%
C10	1000µF	Tubular Electrolytic	16V	+50%-10%
C11	10nF	Disc Ceramic	25V	+80%-20%

Resistors

Ref	Value (Ω)
RI	100k
R2	18
R3	100
R4	1
R4 R5	100

Ref	Value (Ω)	
R 6	22	
R 7	330k	
R 8	10k	
R 9	100k	
R10	5 Wirewound	
1		

All resistors except R10 are Mullard CR25, 0.3 Watt 5%

Integrated Circuits

Ref	Туре	
К1	TBA 810S	S.G.S. ATES

Miscellaneous

Description	Part No.
Printed Circuit Board Printed Circuit Board Assembled	9580P LP3506/11 (complete module)

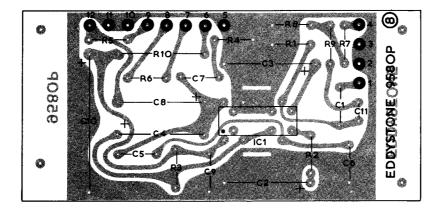
Spares should be ordered by quoting the complete Circuit Reference including the module prefix (where applicable), the description and the part number given in the list. From time to time, components of the type listed may be unavailable and equivalent types may be fitted or supplied as spares. All orders and enquiries should be directed to the address below, quoting the Type and Serial Nos. of the receiver in all communications.

EDDYSTONE RADIO LTD., SALES AND SERVICE DEPT., ALVECHURCH ROAD, BIRMINGHAM B31 3PP. ENGLAND. TELEPHONE:

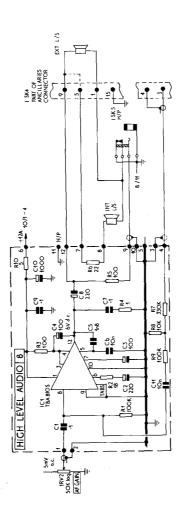
021-475-2231

TELEX:

337081


CABLES:

EDDYSTONE


BIRMINGHAM

4.8.9. Printed Circuit Board

The printed circuit board is shown viewed from the legend side, and is actual size.

			_
			_
			-

			<u></u>
			_
			_
			_
			_
			_
			_
			_
			_

4.10.1. Introduction.

This unit houses the mains input socket, transformer, rectifiers and fuses. Some of the supply regulators are mounted on this unit, the remainder being in the modules.

4.10.2. Circuit Description

Power is fed via the filtered mains input socket and the two AC Fuses to the primary of the mains transformer. This is split into two windings of 120V each, tapped at 10V which may be connected in series or parallel to suit the supply voltage. (See Installation, Section 1).

There are three isolated secondary windings. The first winding is centre-tapped and feeds the bridge rectifier D1, the direct voltage output being smoothed by C1 and C2. This gives the +20V and -20V supplies, which are regulated to +15V and -15V at their destination. The second winding feeds a similar circuit consisting of D2, C3 and C4 to give the +9V and -9V (digital) supplies, which are regulated to +5V and -5V on the digital boards. The third winding feeds the bridge rectifier D3. The output is smoothed by C5 and fed to the pair of regulator integrated circuits IC1 and IC2, their outputs being decoupled by C6 and C7. Fusing is provided by FS1-5, in the secondary circuits and FS6 and 7 in the primary. Note that the earths for the digital and analogue circuits are separate.

Supply switching.

The Supply On/Off switch on the front panel interrupts the +20V, -20V, +9V and -9V supplies and the +12V supply from IC1. When the supply switch is ON this feed is returned to the module for distribution as the 12V 'A' supply. The 12V 'B' supply from IC2 is permanently powered irrespective of the state of the Supply Switch.

4.10.3. Removal of the Unit.

Remove the rear panel as described in section 4.1, and disconnect the leads from pins 1-16. Remove $3 \times M4$ screws in the left-hand side plate and $2 \times M4$ screws from the centre rail. The unit can now be removed.

4.10.4. Fault Diagnosis.

The presence of a fault in the unit can only be confirmed by checking the performance of the unit with a dummy load.

4.10.5. Performance check.

As a preliminary check, the following voltages should be measured with the receiver operating.

Across C1 (pins 12 & 16 (earth))	+19.5V	-	+23V
Across C2 (pins 12 & 16 (earth))	-19 <i>.5</i> V	-	-23V
Across C3 (pins 9 & 14 (earth))	+9V	-	+12V
Across C4 (pins 11 & 14 (earth))	-9V	-	-12V
Across C6 (pins 5 & 16 (earth))	+12V +	0 <i>.5</i> V	
Across C7 (pins 7 & 16 (earth))	+12V ±	0. 5V	

The performance of the unit is ultimately best checked by disconnecting all the outputs and measuring voltages under conditions of open-circuit and full load. The expected voltages and load currents are shown in the voltage table.

Blown fuses are most likely a result of a fault elsewhere in the receiver. In this case the power consumed by each module should be checked.

4.10.6. Realignment.

There are no adjustments to be made to this unit, other than adjustment of transformer tappings. See section 2 for this.

4.10.7. Voltage Analysis.

All voltages measured on AVO8 MK \overline{V} , on lowest applicable range. Mains voltage 240V with primary taps set also to 240V.

"20V" winding	Open-circuit	Loaded
Across transformer winding	34V AC	32.4V. AC) 100mA load
Across C1 (pins 12 & 16)	26V DC	19.7V DC) across pins
Across C2 (pins 16 & 13)	26V DC	19.7V DC) 12 & 13.
"9V" winding		
Across transformer winding	18.3V AC	16.9V AC) 1.6A load
Across C3 (pins 9 & 14)	11.7V DC	9.1V DC) across pins
Across C4 (pins 14 & 11)	11.7V DC	9.1V DC) 9 & 11
"12V" winding		
Across transformer winding	16.4V AC	15.5V AC) 750mA load
Across C5	20.8V DC	16.9V DC) across pins
Across C6	12V $\pm \frac{1}{2}$ V	12V $\pm \frac{1}{2}$ V) 7 & 16 and
Across C7	12V $\pm \frac{1}{2}$ V	12V $\pm \frac{1}{2}$ V) pins 5 & 16

4.10.8. Components List. Module Prefix 11.

Capacitors

Ref	Value	Туре	Voltage	Tolerance
CI	680µF	Tube Electrolytic	40V	+50%-10%
C2	680µF	Tube Electrolytic	40V	+50%-10%
C3	10 000µF	Tube Electrolytic	16V	+50%-10%
C4	10 000µF	Tube Electrolytic	16V	+50%-10%
C5	6 800µF	Tube Electrolytic	25V	+50%-10%
C6	10µF	Tantalum Electrolytic	25∨	20%
C7	10µF	Tantalum Electrolytic	25V	20%
	1			

Diodes

Туре
SKB1, 2/01 SKB40C/3200/2200 SKB40C/3200/2200

Integrated Circuits

Ref	Туре	
IC1	MC7812 CT	Motorola
IC2	MC7812 CT	Motorola

Fuses

Ref	Value/Type	Part No.
FS1 FS2 FS3 FS4	20mm Time-lag 500mA 20mm Time-lag 500mA 20mm Time-lag 2A 20mm Time-lag 2A	9714P 9714P 9861P 9861P
FS5 FS6	20mm Time-lag 2A 20mm Time-lag (1A (110V) (500mA (230V)	9861P 9816P 9714P
FS7	20mm Time-lag (1A (110V) (500mA (230V)	9816P 9714P

Transformer

Ref	Description	Part No.
ті	Mains	9590P

Sockets

Ref	Description	Part No.
SKI	Mains Input	9872P

Fuse Holders

Description	Part No.
for FS1-5	D5060
for FS6	9458P
for FS7	9458P

Description	Part No.
Power Supply Unit complete	LP3519

Spares should be ordered by quoting the complete Circuit Reference including the module prefix (where applicable), the description and the part number given in the list. From time to time, components of the type listed may be unavailable and equivalent types may be fitted or supplied as spares. All orders and enquiries should be directed to the address below, quoting the Type and Serial Nos. of the receiver in all communications.

EDDYSTONE RADIO LIMITED., SALES AND SERVICE DEPT., ALVECHURCH ROAD, BIRMINGHAM B31 3PP, ENGLAND. TELEPHONE:

021-475-2231

TELEX:

337081

CABLES:

EDDYSTONE

BIRMINGHAM

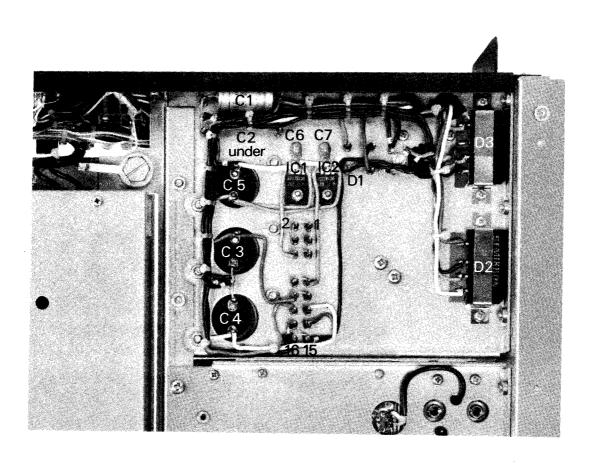
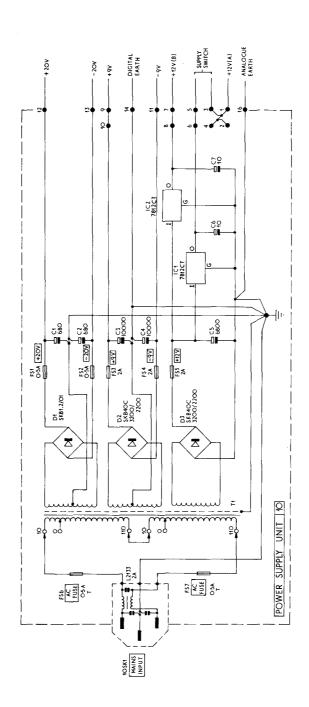



Fig. 4.10.1. Power Unit Component location.

			_
			_
			_
			~
			_
			-
			~-
			~
			_
			~~
			_
			_

-

4.11.1. Introduction.

This module contains all the digital circuitry used to measure and display the tuned frequency of the receiver. The 1MHz oscillator used as the receiver's standard is also fitted in this module. The frequencies of the oscillators are measured by a gated up-down counter, which is pre-loaded so that the resulting count is equal to the tune frequency. This is displayed on six L.E.D. seven segment displays giving a resolution of 100Hz. The display flashes (about five times a second) when extreme ends of the correction range are reached. Section 4:3 (tunable 1st IF) and 4:12 (correction module) should be consulted in connection with this unit.

4.11.2. Circuit Description.

The circuitry can be conveniently described in four parts. These are the control, the input and counter, the latch and lastly the display sections.

a) Control.

This section generates the series of control pulses required to operate the module, which are derived from the Master Oscillator. This consists of an inverting buffer IC 21f with crystal XL 1, and capacitors C4 and C2 in a pi feedback network. Since the accuracy and the stability of the oscillator determines the accuracy of the display, the crystal is contained within an oven, temperature stabilised at approximately 65°C. Capacitor C2 is a trimmer type used to set the frequency. The Oscillator output passes through inverting buffers IC 21 e/d/c and thence to the decade divider IC 14a. The output of IC 21c also goes to the correction module (Ref 4:12) via a further two inverting buffers IC 21 b/a. This final output is a 4.5 volt peak to peak, 1MHz pulse train. The 1MHz pulse train is divided down to 1kHz in the three decade dividers IC 14a/b and IC 15b. These 1kHz pulses clock the Johnson decade divider, IC 19 which has an internal decoder providing one high level pulse at a time from each of the ten outputs. The first six of these outputs are used to strobe the latches and displays via inverting buffers IC 20a to IC 20f (lines 0 to 5 inc). The output on these lines is a lms low level pulse every six or ten milliseconds depending on the state of the 'Stop' line. When either counter gate is open (IC 2a or IC 2b) the stop line is "1". After the six strobe pulses a "1" also appears on the counter output Q6. This is combined with the 'Stop' line level in NAND gate IC 18a to give a "O" output (the 20µS delay is required by the leading zero suppression circuit). This is inverted in IC 18b to give a "1" reset pulse for the counter which sets the output Q0 at "1". Thus the counter output cycle has been 'short-circuited' from ten to six outputs taking just six milliseconds (the output on Q_{δ} being instantaneously transferred to Q_{0} by the reset pulse generated). When the counting periods have ceased i.e. gates IC 2a/b disabled, the 'Stop' line goes to "O" and a reset pulse can no longer be generated by Q6. The "1" output is therefore transferred to Q7 by the next clock pulse. Q7 output is used to enable the dual latches IC 10, 11 and 12 and transfers data from the counters to the latches. The next clock pulse transfers the "1" output to Qg which is solely used as a 1ms delay period. The next clock pulse shifts the "1" output to Q₉ which preloads the counters IC 3-9 inc. via the inverting buffer IC 17b. It also provides a logical "1" pulse via IC 17b/a to reset the divider IC 15a and clear the dividers IC 16a/b. The next clock pulse restarts the cycle by transferring the "1" output back to Q_{Ω} .

The control pulses required to gate the counters are generated by the 4 bit decade counter IC 16b. The 1kHz pulse train from IC 15b is first divided by ten in the decade divider IC 15a. This drives the 4 bit decade counter IC 16a via two inverting buffers IC 17e/f. The output of IC 16a is 10Hz pulse train, i.e. one pulse every 100ms, which drives the counter

IC 16b. The final pulse in the sequency from IC 19, as already noted, clears these three decade dividers so that outputs Q_b and Q_c of IC 16b are set to "O". The 'Down' gate IC 2a is thus enabled (via inverters IC 17d/c for Q_b and Q_c respectively). Note that IC 17c output is the 'Stop' line. Q_b remains at "O" for two full 100ms clock periods thus providing the required 200ms gating period for the counter. For the next two clock periods Q_b goes to "1" thus enabling the 'Up' gate for the required 200ms and disabling the 'down' gate. Q_c remains at "O" so the 'Stop' line is still at "1". The next clock pulse to IC 16b causes Q_c to go to "1" thus disabling both count gates IC 2a/b and causing the 'Stop' line to go to "O". As already explained this allows IC 19 to generate extra pulses to enable the latches, load the counters and reset or clear the counters IC 16a/b and IC 15b. This last action restarts the counter gating sequence with Q_b and Q_c of IC 16b set back to zero. The complete counter gating sequence thus takes a few milliseconds over the 400ms required for gating.

The remaining gating in the control section, IC 22, 24, 25, controls the operation of the overrange indication, display dimming, the positioning of the decimal point in the display and the suppression of the leading zero. When extreme ends of the correction range are reached, the overrange output from the tunable first IF goes to "O" (Ref. 4:3). This enables NAND gate IC 18d to pass 5Hz pulses, derived from the counter IC 16b, to the blanking gate IC 22b. The pulses pass through IC 22b which is enabled by "O" on its' other inputs (see description of leading zero suppression) causing the display to flash at about 5 times per second.

The position of the decimal point is determined by the state of the opto-isolator IC 23. On the four lowest frequency ranges, 6 to 9, the isolator is switched on by a voltage derived from switch SIJ in the coilbox (Ref 4:2). Pin 5 of the isolator thus goes to "O" and via IC 24 switches the "kHz" decimal point diode in DS5 on. The other "MHz" diode in DS2 is held "off" as it is driven via a NAND gate IC 24d, from pin 5 of the isolator. On the frequency ranges 1 to 5, the position is reversed with the decimal point in DS5 held "off" by the "1" on pin 5 of the isolator, and the decimal point in DS2 switched "on" via IC 24 and TR3. The second input of IC 24c/d is a variable width pulse for controlling the display intensity generated in IC 25a. The time constant is determined by C8 and resistors selected by the intensity switch. The monostable is triggered every 1ms by clock pulses at the input of IC 19, and its output is used to enable IC 24 (for the decimal point) and IC 22b (for the figures). The display intensity is, of course, overridden by the leading zero suppression and overrange circuitry.

Leading Zero Suppression

Leading Zero Suppression is achieved by enabling the display with the first non-zero in the display scan.

The operation is as follows: Q₀ of IC 19 selects display DS1 and Tri-state latch IC 12b. Now gate IC 22a detects the presence of a non-zero on the B.C.D. data bus and, if present, resets the bistable IC 25b to "O" so enabling the display via the blanking gate IC 22b. The next display DS2 is selected with Tri-state latch IC 12a by Q₁ IC 19. If the previous digit was a non-zero i.e. bistable IC 25b is at "O" the digit now selected on the B.C.B. data bus will be displayed (even if it is zero). If the previous digit was a zero, bistable IC 25b would have been "1" and the display blanked and the present digit will only be displayed if it is a non-zero as identified by NOR gate IC 22a. Operation of Q₂ IC 19 to Q₅ IC 19 is similar once a non-zero is detected the rest of the scan is displayed including any zeros. Q₆ IC 19 sets bistable IC 25b for the next display scan. Tri-state latches IC 10, 11, 12 are all in their high impedance state so a 'phantom 0' is provided by R38-41, to allow bistable IC 25b to be set. Q₆ IC 19 is also used to reset Q₀ IC 19 to "O" - removing the zero on Q₆ - so

R50/C7 provide a delay of 20us to ensure adequate time to set bistable IC 25b.

b), Input and Counter

This section contains the pre-loadable counters, the countergating and the interface circuits between counters and the drives from the two oscillators. Note that these drives are routed via the correction module (Ref. 4:12) where they are divided by two giving $f_1/2$ and $f_2/2$. f_1 is from the first oscillator, TR4 in the coilbox (Ref 4:2), and f_2 is from the second oscillator, TR3 in the tunable 1st IF (Ref. 4:3).

The differential oscillator drives are terminated in load resistors R1 to R4 on the inputs of differential line receivers IC 1a/b. The outputs of these drive counter gates IC 1c/d which are enabled by a "1" on the 'Stop' line and 200ms gating pulses from the control section. 200ms gating periods are required to give 100Hz resolution in the display since f_1 and f_2 are prescaled by two in the correction module and by ten in IC 3 (a decade which is not displayed but is used to reduce count jitter in the readout).

The tuned point of the receiver is f_1 – f_2 – (2nd IF) which equals f_1 – f_2 – 100kHz. The counter measures this by preloading IC 4 to IC 9 with the tens complement of 100kHz then counting 'down' on pulses of $f_2/2$ for 200ms then 'up' on pulses of $f_1/2$ for 200ms. The resulting count in IC 4 to IC 9 is therefore numerically equal to the tuned frequency of the receiver. The prescaling divider IC 3 is preloaded with 5 (0101) to prevent miscounting being caused by an initial short pulse as the gate opens. The counters are preloaded by a 1ms logical "O" pulse from IC 17b in the control section.

c), Latch

This section consists of three dual 4 bit latches IC 10 to 12. When enabled by a "1" from IC 20 in the control section these store the count from IC 4-9 (which is numerically equal to the tuned frequency). Each 4 bit latch is strobed synchronously with the appropriate display, the number to be displayed being fed onto the data bus, in B.C.D. form, and to the decoder IC 13. The strobe pulses are generated by IC 19 via IC 20 and lines 0 to 5.

d), Display

This section contains the displays and the B.C.D. to seven segment decoder IC 13. The displays are seven segment yellow L.E.D.s with right hand decimal points on the 2nd and 5th most significant digits (for MHz and kHz indication respectively). Each display has a common cathode which is driven via a transistor from the strobe lines 0 to 5. The anodes of the displays (seven per display) are driven from IC 13 via a common bus line. The decimal point anodes are also driven via transistors from the opto-isolator IC 23 and gates in IC 24. Logical "O" inputs to the blanking terminal are also provided by the control section to blank leading zeros and flash the display when extreme ends of the correction range are reached (Tunable 1st IF Ref. 4:3).

4.11.3. Removal

Remove the escutcheon from the front panel (remove range knob and $6 \times M3$ countersunk screws) to gain access to $2 \times M3$ countersunk screws. Unplug 10-way connector from rear of unit and withdraw to the extent permitted by remaining leads. Remove $4 \times M2.5$ screws from top and bottom and pull the cover off forwards, giving access to printed circuit boards and leads. WARNING M.O.S. devices are used in this unit - see appendix for handling

instructions.

4.11.4. Realignment

The only realignment possible in this module is the master oscillator frequency adjustment. This should only be attempted by skilled technicians with the appropriate equipment.

Remove the counter from the receiver and remove the cover, reconnect the 10-way connector and place the counter upside down on a sheet of insulating material resting on the coilbox lid (for convenience). Switch the receiver on and allow at least 30 minutes warm-up time before continuing.

Connect a frequency counter capable of reading to $\pm 1 \text{Hz}$ to the output to the correction module (board pin 5 and adjust C2 to give a frequency of 1.0MHz $\pm 1 \text{Hz}$. Refit the cover and replace the module.

The current drawn by the module (display showing 999.000) is:

+9V supply: 400mA

-9V supply: 11mA

+12V supply: 400mA depending on ambient

temperature.

4.11.5. Components List. Module Prefix 11.

Capacitors

Ref	Value	Туре	Voltage	Tolerance
CI	10nF	Disc Ceramic	25V	+80%-20%
C 2	2.5-27pF	Trimmer 8735P		
C 3	220pF	Polystyrene	125V	2%
C 4	220pF	Polystyrene	125∨	2%
C 5	0.47μF	Polycarbonate	100∨	20%
C 6	10nF	Disc Ceramic	25V	+80%-20%
C 7	270pF	Polystyrene	125∨	2%
C 8	10nF	Disc Ceramic	25∨	+80%-20%
C 9	100µF	Tubular Electrolytic	25V	+50%-10%
C10	22μF	Tantalum Electrolytic	16V	+50%-10%
C11	10nF	Disc Ceramic	25V	+80%-20%
C12	100μF	Tubular Electrolytic	25V	+50%-10%
C13	10µF	Tantalum Electrolytic	16V	20%
C14	22µF	Tantalum Electrolytic	16V	20%
C15	10nF	Disc Ceramic	25V	+80%-20%
C16	10nF	Disc Ceramic	25V	+80%-20%
C17	10nF	Disc Ceramic	25V	+80%-20%
C18	10nF	Disc Ceramic	25V	+80%-20%
C19	10nF	Disc Ceramic	25V	+80%-20%
C20	10nF	Disc Ceramic	25V	+80%-20%
C21	10nF	Disc Ceramic	25V	+80%-20%
C22	10nF	Disc Ceramic	25∨	+80%-20%
C23	22µF	Tantalum Electrolytic	16V	20%
C24	10nF	Disc Ceramic	25V	+80%-20%
C25	220μF	Tubular Electrolytic	16V	+50%-10%

Resistors

Ref	Value (Ω)
R 1	47
R 2	47
R 3	47
R 4	47
R 5	lk l
R 6	1k
R 7	3.3k
R 8	3.3k
R 9	3.3k
R10	3.3k
R11	3.3k
R12	3.3k
R13	3.3k
R14	3.3k
R15	3.3k
R16	3.3k
R17	3.3k

Ref	Value (Ω)
Ref R18 R19 R20 R21 R22 R23 R24 R25 R26 R27	Value (Ω) 3.3k 3.3k 3.3k 3.3k 3.3k 3.3k 3.3k 3.
R28	3.3k
R29	3.3k
R30	3.3k
R31	3.3k
R32	100k
R33	100k
R34	100k

Resistors

Ref	Value (Ω)
R35	100k
R36	100k
R37	100k
R38	100k
R39	100k
R40	100k
R41	100k
R42	100k
R43	10M
R44	3.3k
R45	3.3k

Ref	Value (Ω)
R46	1k
R47	10k
R48	4.7k
R49	22k
R50	100k
R51	18
R52	12k
R53	18
R54	12k
R55	3.3k
R56	5 3 Watt W.W
1	

All resistors except R56 are Mullard CR25, 0.3Watt 5%.

Coils

Ref	Value/	Value/Type/Part No.	
CH1 CH2 CH3	D5116	Eddystone Eddystone Sigma SC60	
СНЗ	3.3mH	Sigma SC60	

Transistors

Ref	Туре
TRI	BC214KB
TR2	BC214KB
TR3	BC214KB
TR4	BC214KB
TR5	BC214KB
TR6	BC214KB
TR7	BC214KB
TR8	BC214KB

Displays

Ref	Туре	
DS1	5082-7663	Hewlett-Packard
DS2	5082-7663	Hewlett-Packard
DS3	5082-7663	Hewlett-Packard
DS4	5082-7663	Hewlett-Packard
DS5	5082-7663	Hewlett-Packard

Integrated Circuits

Ref	Туре	
IC 1	SN75107N-00	Texas
IC 2	SN74LS10N-00	Texas
IC 3	SN74LS192N-00	Texas
IC 4	SN74LS192N-00	Texas
IC 5	SN74LS192N-00	Texas
IC 6	SN74LS192N-00	Texas
IC 7	SN74LS192N-00	Texas
IC 8	SN74LS192N-00	Texas
IC 9	SN74LS192N-00	Texas
IC10	4 MC14508BCP	Motorola
KII	4 MC14508BCP	Motorola
IC12	1 MC14508BCP	Motorola
IC13	# MC14511BCP	Motorola
IC14	4 MC14518BCP	Motorola
1	1	

Ref	Туре	
4 IC15	MC14518BCP	Motorola
IC16	SN74490N-00	Texas
4 IC17	MC14049BCP	Motorola
4 IC18	MC14011BCP	Motorola
4 IC19	MC14017BCP	Motorola
4 IC20	MC14049BCP	Motorola
4 IC21	MC14049BCP	Motorola
4 IC22	MC14002BCP	Motorola
IC23	MCT2	Monsanto
4 IC24	MC14011BCP	Motorola
f IC25	MC14528B	Motorola
IC26	MC7805CT	Motorola
IC27	MC79L05CP	Motorola

⁴ MOS Device. See appendix for handling instructions.

Miscellaneous

Ref	Description	Part No.
XL1	1MHz Crystal	9605P
	Crystal Oven	8647P
SKA	10 way connector top entry	9863P
PLA	10 way connector top entry	9864P
SKB	10 way connector top entry	9863P
PLB	10 way connector top entry	9864P
SKC	10 way connector Side entry	9865P
PLC	10 way free connector (mating for above)	9866P
	Printed Circuit Board (Display)	9584P
	Printed Circuit Board Assembled (Display)	LP3506/27
İ	Printed Circuit Board (Input, Counter and latch)	9593P
	Printed Circuit Board Assembled (Input, counter	
	and latch)	LP3506/29
l	Printed Circuit Board (Control)	9764P

Miscellaneous continued...

Description	Part No.
Printed Circuit Board Assembled. (Control) Display Module Complete	LP3506/28 LP3512

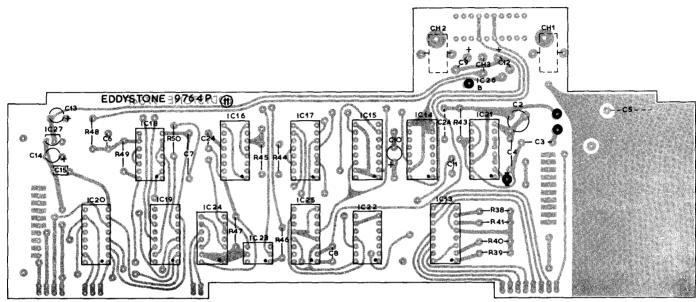
Spares should be ordered by quoting the complete Circuit Reference including the module prefix (where applicable), the description and the part number given in the list. From time to time, components of the type listed may be unavailable and equivalent types may be fitted or supplied as spares. All orders and enquiries should be directed to the address below, quoting the Type and Serial Nos. of the receiver in all communications.

EDDYSTONE RADIO LTD., SALES AND SERVICE DEPT., ALVECHURCH ROAD, BIRMINGHAM B31 3PP. ENGLAND TELEPHONE:

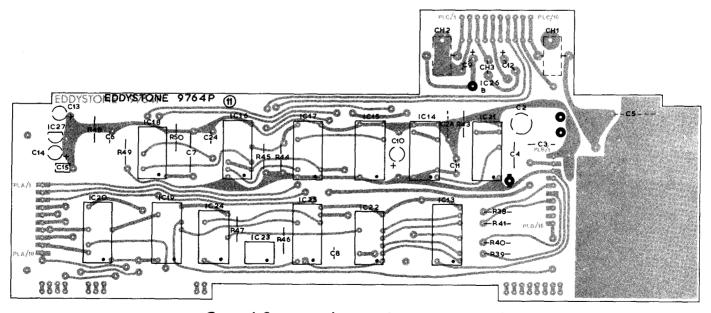
021-475-2231

TELEX:

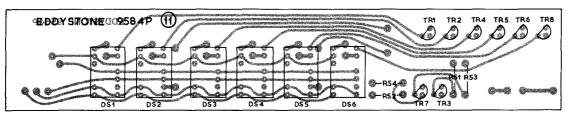
337081

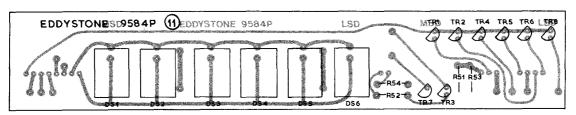

CABLES:

EDDYSTONE

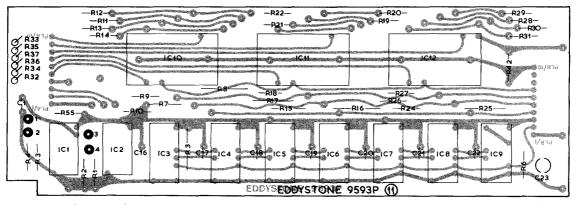

BIRMINGHAM

4.11.9. Printed Circuit Boards.


The printed circuit boards are shown viewed from the legend side, and are slightly less than actual size. Each board is shown firstly with legend and rear copper track superimposed and secondly with legend and front copper track superimposed.


Control Section, showing rear copper track


Control Section, showing front copper track


Display Section, showing rear copper track

Display Section, showing front copper track

Input, Counter and Latch Section, showing rear copper track

Input, Counter and Latch Section, showing front copper track

4.12.1. Introduction

This module contains the digital section of the drift correcting system, the interface circuitry between the oscillators and the digital circuitry (including that for the display module, no. 11) and lastly two prescalers to drive the display module. The operation of the drift correcting system (DCS) uses the following sequence of events. The manual tuning controls set the required oscillator frequencies which are then digitally counted, summed and stored. This stored value is compared with successive counts of the oscillator frequencies, any drift in these producing a difference or error count. The error is converted into a proportional analogue voltage which is used to correct the frequency of the oscillator(s) to the original memorised point. The DCS can therefore be considered as a sampling negative feedback loop.

4.12.2. Circuit Description.

The frequency of the signal as it appears in the 2nd IF module equals $f_1 - f_2 - f_1$, where f_1 is the frequency of the first oscillator (2TR4 in the coilbox), f_2 is the frequency of the second oscillator (3TR3, in the tunable 1st IF) and f_1 is the tuned frequency. Stability of the IF is maintained by measuring the initial value of $f_1 - f_2$, then reducing any error in succeeding counts by changing f_2 only. A total correction range of approximately ± 10 kHz is possible, the maximum drift measurable between any two successive counts is however limited to ± 128 Hz. The correction voltage, which is applied to the 1st IF tuned signal circuits as well as the 2nd oscillator to maintain tracking, is supplied via an integrator in the Tunable 1st IF (module no. 3).

The circuitry details can be conveniently described in three parts. These are the interface, the control and the counter/memory circuits.

(a) Interface

The 1st oscillator signal f_1 from the coilbox is fed into an ECL line receiver connected as a Schmitt trigger with 200mV hysteresis (IC 3b). Another line receiver (IC 3a) is used to invert this signal which is then fed to an ECL to TTL level translator (IC 4a). The TTL level output of this drives a Shottky divide by two (IC 2a) which provides an output at half f_1 to drive the display module (Ref. 4:11).

The 2nd oscillator signal f_2 from the tunable 1st IF module is fed into a line receiver (IC 1). The output at TTL level is fed into the gating circuit for the counter/memory section, also it is used to drive a Shottky divide by two (IC 2b) acting as a prescaler for the display unit.

The outputs of IC 2a and IC 2b to the display module are tapped down to give balanced 50Ω outputs carrying a square wave of 100mV peak to peak.

(b) Control

The control section generates the sequence of pulses required to initiate each event occuring during the oscillator stabilization cycle.

The sequence of pulses is synchronised with a 1MHz signal from the oscillator in the display module (Section 4:11). This is first divided by ten in IC 15a. The 100kHz output of this is fed to gating in the counter/memory section of the module (IC 5) and also to a low-pass filter (CH 1, C8, C9, C10) where a 100kHz sinewave is reconstituted to drive the product detector (Module no. 6). The level of the 100kHz sinewave is about 400mV RMS. The

100kHz pulse output of IC 15a is then divided by ten a further three times (IC 15b, IC 16a, IC 16b) to give a 100Hz pulse train from which the control pulses are derived. A gating pulse for the counter section of the module, of length equal to 99 pulses i.e. 0.99 sec, is also generated from this pulse train.

Two basic modes of operation are possible, 'TUNE' or 'LOCK'. In 'TUNE' the receiver's oscillators are set manually as required and no correction for any subsequent drift takes place. In 'LOCK' the correction loop is activated and initially counts the set frequency of the oscillators and then continues by measuring any drift from this point and providing a suitable correction voltage. The 'LOCK' switch controls the correction circuitry via a R-S bistable (two cross coupled NAND gates IC 22a and IC 22b) and a divide by two (IC 23). A pulse is provided from IC 22a/b each time the mode is changed from 'TUNE' to 'LOCK' or vice-versa by depression of the push-button. The divide by two output, line 'F', is thus "O" in the 'TUNE' mode and '1' in the 'LOCK' mode. In the 'LOCK' mode the associated LED indicator is switched on by TR1 which is controlled from line 'F'. Relay 'A' in the tunable 1st IF (Module no. 3) is also activated by TR1 and open circuits the integrator capacitor. In the 'TUNE' mode the "O" on 'F' holds various counters and latches at clear. The residual latch IC 13 is held at clear via an R-S bistable (two cross coupled NAND gates IC 22c/d) which ensures that the output of the D/A converter (IC 14) is zero. The J-K bistable IC 18 is held clear by 'F' and the \overline{Q} output of this holds the dual decade divider IC 17 clear. The "O" on 'F' also holds clear the main counters in the module (IC 11 and IC 12). Shift register IC 20 provides the sequence of pulses required for 'LOCK' mode operation. The 0.99 sec pulse used to gate the main counters in the module is generated by counting 99 of the basic 100Hz pulses in the dual decade divider IC 17. Gates IC 19a and IC 19c with the J-K bistable IC 18 act as control elements for this part of the circuit. When switched on in the 'TUNE' mode, the shift register may contain a spurious pattern of ones and zeros. Since the output of the NAND gate IC 21 is at "1" (input from 'F' is at "O"), the data input to the register is fixed at "1". Therefore after at most six clock pulses, all the register outputs will also be "1".

'LOCK' mode can now be selected and again two modes of operation must be considered. During the first cycle of operations the set frequencies are counted in IC11, 12, 6a/b and the results stored in the memory latches IC 9 and IC 10. In each following (correction) cycle the complement of the stored frequency is loaded back into IC 11 and 12 which are again used to count the frequencies (with IC 6a/b). As explained in the next section the remainder in IC 11 and 12 is the error which is equivalent to any drift in the frequencies. This is now transferred to the residual latch IC 13. The basic difference therefore between the initial memorising mode and the following correction modes is that in the former the data from the counter is transferred to the memory latch and in the latter it is transferred to the residual latch. The latch enabled is determined by the state of the output of the R-S bistable IC 22c/d. When 'LOCK' is selected, 'F' goes to '1' and therefore the output of NAND gate IC 21 goes to "O". The next clock pulse to IC 20 therefore shifts a "O" into the first stage of the register, output line 'A'. Line A is used to clear the J-K bistable IC 8 and via an inverter (IC 7a) to clear the dual binary counter IC 6. The period Line A is "O" provides a 10mS delay to prevent a race hazard between the removal of the clear from IC 18 (as the switch is operated) and the pulse at its' J input provided by the second output from the register. After this delay the Jinput to IC 18 thus becomes "O" (J is "1") and since the K input is also "O" the next clock pulse makes Q got to "O". This inhibits, via gate IC 19a, any further clock pulses to the register and instead directs them, via gate IC 19c, to the dual decade counter IC 17. After 99 pulses are counted in IC 17, the two outputs of IC 17 are simultaneously "1". Now, both J and K inputs to IC 18 are "1" and the next clock pulse causes it to change state, thus Q goes back to "1". Clock pulses are now fed to the register

via IC 19a and isolated from IC 17 by IC 19c. The Q output of IC 18 has thus been "1" for 0.99 sec and this is used (line 'B') to gate the oscillator input to the counter IC 17. The next clock pulse shifts the "O" in the register to the third position, line 'C'. This enables 100kHz pulses from IC 15a to be fed into the dual binary counter IC 6 and the counters IC 11/12 via gates IC 5. IC 7b inverts the "O" on line 'C' for this purpose. The reason for this particular part of the sequence is explained in detail in the next section. The fourth register output, line 'D', goes to "O" on the next clock pulse. This, via IC 7c, enables the memory latch IC 9/10 to be loaded with the count in IC 11/12. Note that the residual latch IC 13 is not completely enabled as it is still being held at clear by the output of IC 22c which is still at "O". The following clock pulse shifts the "O" to the fifth stage of the register which is solely used as a 10mS delay before the final output on line 'E'. This reloads the counter IC 11/12 with the complement of the data transferred to it, from the latch, by pulse 'D' (hence the need for a delay between the two pulses). The R-S bistable (IC 22c/d) output is also changed to "1" by this pulse, so that on following cycles the residual latch rather than the memory latch is enabled by pulse 'D'. The next clock pulse clears the "O" from the register and thus all the inputs to the NAND gate IC 21 become "1" and its' output "O". Hence the data input of the register also becomes "O" which is propagated through the register, as before, by the next six clock pulses. Note that a single "O" is propagated because as soon as the first stage becomes "O", the output of IC 21, and thus the data input of the register, goes to "I" where it remains until the "O" is completely cleared from the register.

In the correction cycles which follow the initial memorising cycle, the sequence of operations is the same except for the pulses on lines 'D' and 'E'. Line 'D', as already noted, transfers the data from the counter into the residual latch instead of the memory latch as in the memorising cycle. It does this because the first 'E' pulse in that cycle forces the output of IC 22c to "1" (line 'G'). This puts a "O" via IC 7c, on the enable lines of the memory latch (IC 9/10), which disables it. It also removes the clear input, a "O", to the residual latch so that it can be enabled by pulses on line 'D'. Pulses on line 'E', in the correction mode, are only used to load the counter with the complement of the data in the memory latch. The output of the R-S bistable, IC 22c/d, will remain "I" until 'TUNE' mode is again selected.

(c) Counter/memory

This section is used to measure $f_1 - f_2$, store its' initial required value, and provide an analogue output proportional to subsequent changes in its' value. $f_1 - f_2$ is measured as follows. f_1 and f_2 are counted for 0.99 sec in counters IC 11/12 and IC 6 respectively. A series of 100kHz pulses are then fed into both counters until IC 6 is detected full by the J-K bistable IC 8. The number of pulses required is $256 - f_2$ ', $(f_2$ ' is the difference between f_2 and the nearest lower multiple of 256, i.e. counters have counted through several times, similarly for f_1 '). The total count in IC 11/12 is therefore f_1 ' + $(256 - f_2)$ ', so $f_1 - f_2$ measurements are relative rather than absolute and the maximum error that can be accommodated in any one count period is limited by the counter capacity i.e. drifts equivalent to multiples of 256 per period produce the same error count and therefore for an unambiguous output from the counters, drift rate must be limited to 256Hz per period. However, because the most significant bit of the counter is used to indicate to the D/A converter whether the drift is positive or negative, the maximum drift rate that the system can cope with is limited to 128Hz per period. The count in IC 11/12 is f_1 ' - f_2 ' + 256 which equals f_1 ' - f_2 '. The initial value of f_1 ' - f_2 ' is stored in the memory latch. The complement of this is loaded

back into IC 11/12 prior to each following correction cycle. This means that any residual count in IC 11/12 after further $f_1' - f_2'$ measurements is equivalent to any change in the value of $f_1 - f_2$. The residue is transferred to the residual latch and converted into an equivalent correction voltage for the second oscillator f_2 (TR 3 in tunable 1st IF, module no. 3). The D/A converter, IC 14, is set to give mid-range output for zero residual error so that positive and negative corrections are possible. Quiescent 'output' current produced by bias current in the integrator etc. is balanced out using a preset control. The D/A converter is a multiplying type, and so to offset loop gain variations caused by changes in oscillator gain at different varicap voltage, the reference voltage for the D/A converter is taken from the varicap drive line in the tunable 1st IF via 3TR6.

Inputs to the counters are controlled by the dual AND-OR-INVERT gate IC 5. f₁ and f₂ are gated into the counters from the interface circuitry whilst control line 'B' is "1" (0.99s). 100kHz pulses are gated into the counter when the output of IC 7b goes to "1". This occurs when a "O" appears on control line 'C'. The Q output of IC 8 is "O" since this device has been cleared. Since both inputs to IC 7b are now "O" its' output goes to "1" and gates 100kHz pulses into the counters, via IC 5, until counter IC 6 is full. IC 6 then produces an output which clocks IC 8 causing the Q output of IC 8 to go to "1" which returns the output of IC 7b to "O" thus isolating the 100kHz pulses from the counters.

This period has a maximum length equal to 256 ten microsecond pulses i.e. 2.56 milliseconds, which is much less than ten milliseconds before the pulse on line 'C' returns to "1".

The error count is converted into a proportional analogue voltage by the D/A converter IC 14. The most significant bit is inverted in IC 7 so that a zero error count of 00000000 is converted to 10000000. This is equal to the mid-range input of the converter and thus enables positive or negative errors to be identified and corrected. To offset the output current generated by this particular input (and bias currents generated by the integrator etc), a current of the opposite polarity and of level determined by RV1, is also fed to the integrator. The gain of the loop, which determines dynamic performance, is set by RV2.

4.12.3. Removal

Remove the cover from the right-hand side plate $(12 \times M2.5 \text{ screws})$ to gain access to the printed board.

4.12.4. Realignment

Realignment should only be attempted by skilled technicians with the appropriate test equipment. A counter capable of reading to 1Hz is required. With the receiver set to Range 5 and in the Tune Mode, short-circuit SKA pin 4 to earth. Connect the counter to board pin 2 (f₂ input) and adjust RV1 for the lowest possible frequency drift. Remove the short-circuit, put the receiver into the Lock Mode and allow locking to take place. Adjust the Fine Tune control quickly to give a change of approx 30Hz and adjust RV2 so that the overshoot of the correction circuit is approximately 10Hz, ie 30%.

The current drawn by the module is:

+9V supply: 530mA

-20V supply: 27mA

-9V supply: 68mA

4.12.5. Components List. Module Prefix 12.

Capacitors

Ref	Value	Туре	Voltage	Tolerance
C 1	10nF	Disc Ceramic	25∨	+80%-20%
C 2	10nF	Disc Ceramic	25 V	+80%-20%
C 3	10µF	Tantalum Electrolytic	25V	20%
C 4	InF	Disc Ceramic	250∨	20%
C 5	100pF	Tube Ceramic	<i>7</i> 50∨	20%
C 6	0.1μF	Polycarbonate	100∨	20%
C 7	150µF	Tube Electrolytic	15V	+50%-10%
C 8	820pF	Silvered Mica	350∨	10%
C 9	100pF	Silvered Mica	350∨	10%
C10	820pF	Silvered Mica	350∨	10%
CII	10μF	Tantalum Electrolytic	25V	20%
C12	150µF	Tubular Electrolytic	16V	+50%-10%
C13	150µF	Tubular Electrolytic	16V	+50%-10%
C14	220µF	Tubular Electrolytic	10∨	+50%-10%
C15	4.7μF	Tantalum Electrolytic	35∨	20%
C16	4.7μF	Tantalum Electrolytic	35∨	20%
C17	10µF	Tantalum Electrolytic	25V	20%
C18	10µF	Tantalum Electrolytic	25V	20%
C19	10µF	Tantalum Electrolytic	25V	20%
C20	10µF	Tantalum Electrolytic	25V	20%
C21	10nF	Disc Ceramic	25V	+80%-20%
C22	10nF	Disc Ceramic	25V	+80%-20%
C23	10nF	Disc Ceramic	25V	+80%-20%
C24	10nF	Disc Ceramic	25V	+80%-20%
C25	10nF	Disc Ceramic	25V	+80%-20%
C26	10nF	Disc Ceramic	25V	+80%-20%
C27	10nF	Disc Ceramic	25V	+80%-20%
C28	10nF	Disc Ceramic	25V	+80%-20%
C29	10nF	Disc Ceramic	25V	+80%-20%
C30	10nF	Disc Ceramic	25V	+80%-20%
C31	10nF	Disc Ceramic	25V	+80%-20%
C32	10nF	Disc Ceramic	25V	+80%-20%
C33	10nF	Disc Ceramic	25V	+80%-20%
C34	10nF	Disc Ceramic	25V	+80%-20%
C35	10nF	Disc Ceramic	25∨	+80%-20%
C36	10nF	Disc Ceramic	25V	+80%-20%
C37	10nF	Disc Ceramic	25V	+80%-20%

Resistors

Ref	Value (Ω)
R 1	1k
R 2	10k
R 3	330
R 4	1.5k
R 5	1.5k

Ref	Value (Ω)
R 6 R 7 R 8 R 9 R10	1.5k 1.5k 47 47 47

Resistors continued...

Ref	Value (Ω)
RII	47
R12	1.5k
R13	1.5k
R14	220
R15	220
R16	2.2k
R17	2.7k
R18	3.9k
R19	100
R20	1.2k
I	

Ref	Value (Ω)
R21 R22 R23 R24 R25 R26 R27 R28	560 3.3k 4.7k 4.7k 10k 1k 1k
R29 R30	lk lk

All resistors are Mullard CR25, 0.3 Watt 5%.

Potentiometers

Ref	Description	Part No.
RV1	4.7k Carbon linear preset	9031P
RV2	560 Carbon linear preset	9034P

Chokes

Ref	Value/T _y	Value/Type/Part No.		
CH1	4.7mH	Sigma SC60		
CH2	D5116	Eddystone		
CH3	1mH	Sigma SC60		
CH4	1mH	Sigma SC60		

Diodes

Ref	Туре
DI	BZX79 C4V7

Transistors

Ref	Туре
TRI	BC 107B

Integrated Circuits

Ref	Туре	
IC I	MC75107AN-00	Texas
IC 2	SN74S113N- 00	Texas
IC 3	MC1035P	Motorola
IC 4	MC1068P	Motorola
IC 5	SN74S51N-00	Texas
IC 6	SN74393N-00	Texas
IC 7	SN7402N- 00	Texas
IC 8	SN7470N- 00	Texas
IC 9	SN74L75N-00	Texas
IC10	SN74L75N-00	Texas
IC11	SN74197N-00	Texas
IC12	SN74197N-00	Texas
IC13	SN74116N-00	Texas
IC14	MC1408L-8	Motorola
IC15	SN74490N-00	Texas
IC16	SN74490N-00	Texas
IC17	SN74490N-00	Texas
IC18	SN7470N - 00	Texas
IC19	SN7400N - 00	Texas
IC20	SN74164N-00	Texas
K21	SN7430N - 00	Texas
IC22	SN7400N - 00	Texas
IC23	SN7472N - 00	Texas
IC24	MC7805CT	Motorola
IC 25	MC79L15CP	Motorola
IC26	MC79L05CP	Motorola

Miscellaneous

Description	Part No.
Printed Circuit Board	9570P
Printed Circuit Board Assembled	LP3506/1
SKA. Connector 10 way	9865P
PLA Connector 10 way. Free (Mating for	
above)	9866P
Correction Module complete	LP3506/1
·	, , , , , , , , , , , , , , , , , , ,

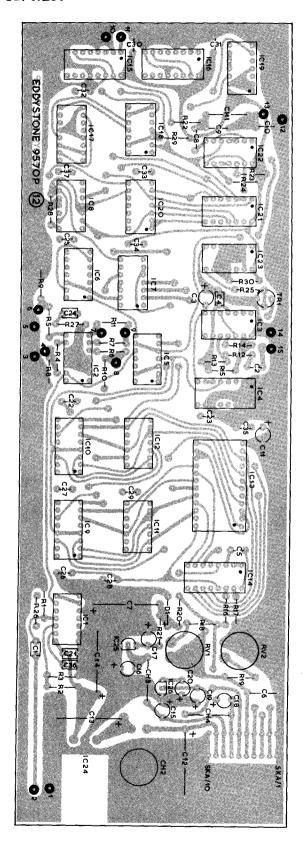
Spares should be ordered by quoting the complete Circuit Reference including the module prefix (where applicable), the description and the part number given in the list. From time to time, components of the type listed may be unavailable and equivalent types may be fitted or supplied as spares. All orders and enquiries should be directed to the address below, quoting the Type and Serial Nos. of the receiver in all communications.

EDDYSTONE RADIO LTD., SALES AND SERVICE DEPT., ALVECHURCH ROAD, **BIRMINGHAM B31 3PP ENGLAND**

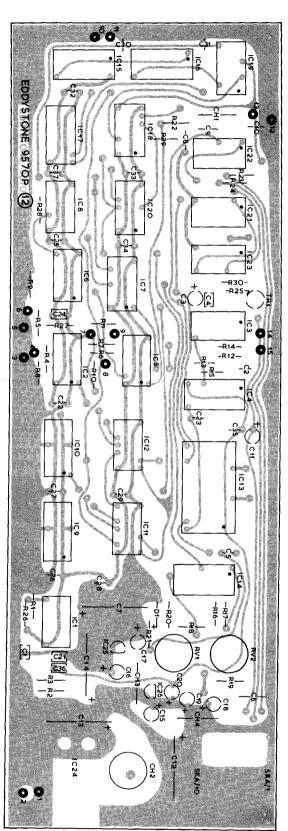
TELEPHONE: 021-475-2231

TELEX:

337081


CABLES:

EDDYSTONE


BIRMINGHAM

4.12.6. Printed Circuit Board.

The printed circuit board is shown viewed from the legend side, and is slightly less than actual size.

Showing rear copper pattern

Showing front copper pattern

		_
		_
		_
		-
		-
		-
		_
		_
		_
		-
		_
		_

4.13.1. Introduction

This printed circuit board carries the push button switches which protrude through the front panel, and the interconnections between the switches. On Model 1837/2 some switching functions are achieved by the use of analogue transmission gates which are activated by the push button switches. On 1838 Series receivers some switches are omitted and some of the functions transferred to the Selectivity switch.

4.13.2. Circuit Description.

- a. Supply Switch. This interrupts the supply to all sections of the receiver except the Master Oscillator crystal oven and the 1st Oscillator section in the coilbox, the supplies to which are maintained whilst the AC supply remains connected.
- b. AGC Switching. Power from the -9V supply is regulated by IC 1 which provides the negative bias for the IF AGC line when manual IF gain control is selected.

1837 Series: When AGC is selected, the AGC time constant is selectable by switching either C1 or C2 to the AGC line; when manual is selected the AGC line is controlled from IRV1.

1838 Series: S2 is omitted and the appropriate time constant is selected automatically by the Selectivity switch.

c. Mode Switching.

Model 1837/1 only. Two interconnected push buttons provide selection of CW, SSB or AM reception, the audio signals being routed directly via the switch contacts.

Model 1837/2 only. S4b routes the signal from either the Product Detector (for CW) or the AM Detector (for SSB and AM) to transmission gate IC2b, whilst transmission gate IC2c always receives the Product Detector output.

In the absence of a 12V supply on SKB pin 2, TR2 will be conducting and IC2c will be in its high impedance state, IC2b will be low impedance and so S4b selects either AM or CW. SKB pin 2 carries +12V only when the SSB filter on the Selectivity Unit is selected, in this case the IC2b is high impedance, IC2c low impedance and the Product detector output is selected. S5a now has +12V applied to it, derived via IC2d and TR3 and when USB is selected this energises via SKB pin 5, the relays in the selectivity unit which select the required filter (because of IF inversion this will be a filter having an LSB response). The LED switching is arranged in a similar manner so that in all cases the correct indicator lamp is illuminated.

1838 Series only. These switches are omitted and the functions transferred to the Selectivity Switch.

d. Aerial Attenuator Switching.

These switches (only one is fitted on 1838 Series receivers) control relays in the coilbox which insert attenuation into the aerial feed.

e. Display Intensity Control.

The LED Anodes are connected via current limiting resistors and the appropriate switch to the +12V supply. The cathodes are connected to a common line, driven by emitter follower TR1, the cathode voltage being determined by the display intensity control.

4.13.3. Removal of the board.

Set all pushbuttons to the "in" position. Remove $2 \times M2.5$ screws (at each end of the row of pushbuttons) holding the assembly to the front panel. Withdraw the unit, unplugging the connectors.

4.13.4. Fault Diagnosis

The existence of a fault on this board will normally be obvious from the absence of a particular facility. However in the case of Model 1837/2 failure of a switch contact in the mode selection circuit will result in the inability to select this mode, ie another mode may remain selected.

4.13.5. Performance check

The performance of the module is checked by establishing the presence of the various facilities and signal paths controlled by the unit.

4.13.6. Realignment

There are no realignment adjustments to be made on this unit.

4.13.7. Voltage Analysis.

All voltages measured with respect to 0V rail (SKB pin 1) with AVO8 on lowest applicable range. Normal tolerances apply.

a. Module connections.

Conditions: Supply On except (X): not relevant

		Model 1837/1	Model 1837/2	1838 Series	Condition	
SKB pin	1	0∨	0 V	0 V		
•	2	0 V	12V	-		
	3	- 3V-0V	-3V-0V	-3V-0V		
	4	12V	12V	-	CW	
	5	0 V	10V (USB)	-		
	6	0 V	0 V	-		
	7	0 V	0V	-		
	8	0V	0V	~		
	9	0∨	10V (USB)	0 V		
	10	0V	0∨	0 V		
	11	12V	5.8V	-	SSB	
	12	12V	12V	-	-20dB	
	13	12V	12V	12V	-20dB	
b. Transistors						
TRI	Intensity	E	В	С		
	Max	6.8V	6.2V	3 <i>.7</i> V		
	int	8. <i>5</i> V	7.9V	2. IV		
	Low	9.8V	9.2V	1.0V		
	Off	12.0V	12.0V	0V		
TR2 (Model 1837/2 only)						
Mode	USB	11. <i>7</i> V	11.4	0∨		
	LSB	11.7V	11.4	0V		
	AM	11.7V	11.0\	10V		
	CW	11. <i>7</i> V	11.0V	10V		
TR3 (Model 1837/2 only)						
Mode	USB	10.0∨	10.7∨	12V		
	LSB	11.0\	11 <i>.7</i> V	12V		
	AM	0∨	0 V	12V		
	CW	0∨	0 V	12V		
TR4 (Model 1837/2 only)						
Mode	USB	0∨	0 V	12∨		
	LSB	0V	0V	12V 12V		
	AM	10∨	10 <i>.7</i> V	12V 12V		
	CW	117	11.7V	12V 12V		
		•				

c. Integrated Circuits

IC1 IC2	Input -9V Output -5V (Model 1837/2 only)					
	SSB Mode	not SSB Moo	de			
pin 1	11.7V	11.7				
. 2	11.7V	0V				
3	0V	11.7V				
4	11.7	11.7V				
5	0V	0V				
6	0V	10V				
7	0V	0V				
8	5.8V	5.8V	(High Impedance)			
9	0V	5.8V	(")			
10	5.8V	0V	(" ")			
11	5.8V	5.8V	("")			
12	11.4V	0.3V				
13	11.4V	0.3V				
14	11.7V	11.7				

4.13.8. Components List. Module Prefix 13.

Capacitors

Ref	Value	Туре	Voltage	Tolerance
C 1 ***	22µF	Tantalum Electrolytic Tantalum Electrolytic Tantalum Electrolytic Tantalum Electrolytic	16V	20%
C 2 ***	1µF		35V	20%
C 3	0.68µF		35V	20%
C 4	10µF		25V	20%
C 5*	0.1µF	Polycarbonate Polycarbonate Polycarbonate Tantalum Electrolytic Tantalum Electrolytic Tantalum Electrolytic	100V	20%
C 6*	0.1µF		100V	20%
C 7*	0.1µF		100V	20%
C 8*	22µF		16V	20%
C 9*	10µF		25V	20%
C10*	10µF		25V	20%

Resistors

Ref	Value (Ω)
R 1 R 2 R 3 R 4 R 5 R 6 R 7 *** R 8	560 560 18 wirewound 27k 150 150 150 150 150 150 150 (1837/1) * 56 (1837/2 only)
R10 ** R11 *** R12 R13	150 (1837/1) * 56 (1837/2 only) 150 150 120k

Ref	Value (Ω)
Ref R14 * R15 * R16 * R17 * R18 * R19 * R20 * R21 * R22 * R23 *	Value (Ω) 560 10k 470k 100k 100k 100k 100k 100k 270 5.6k
R23 * R24 *	5.6k 5.6k

All resistors except R3 are Mullard CR25, 0.3 Watt 5%.

Diodes

Ref	Туре	
D1 D2 *** D3 D4 *** D5 *** D6 ***	CQY 87 CQY 87 CQY 87 CQY 87 CQY 87 CQY 87	Telefunken Telefunken Telefunken Telefunken Telefunken Telefunken

Transistors

132 214KB 107B 107B

Integrated Circuits

Ref	Туре		
IC1	MC79L05CP		
IC2*	4 MC 14016		

⁴ MOS Device. See appendix for handling instructions.

Switches

Ref Description		Part No.	
S 1	6 pole c/o	9660P	
S2 ***	2 pole c/o	9862P	
S 3	2 pole c/o	9862P	
S4 ***	2 pole c/o	9862P	
S5 ***	2 pole c/o	9862P	
S6 ***	2 pole c/o	9862P	
S7	2 pole c/o	9862P	
	Button for S1-S7	9873P	
	Button for SI-S/	98/3P	

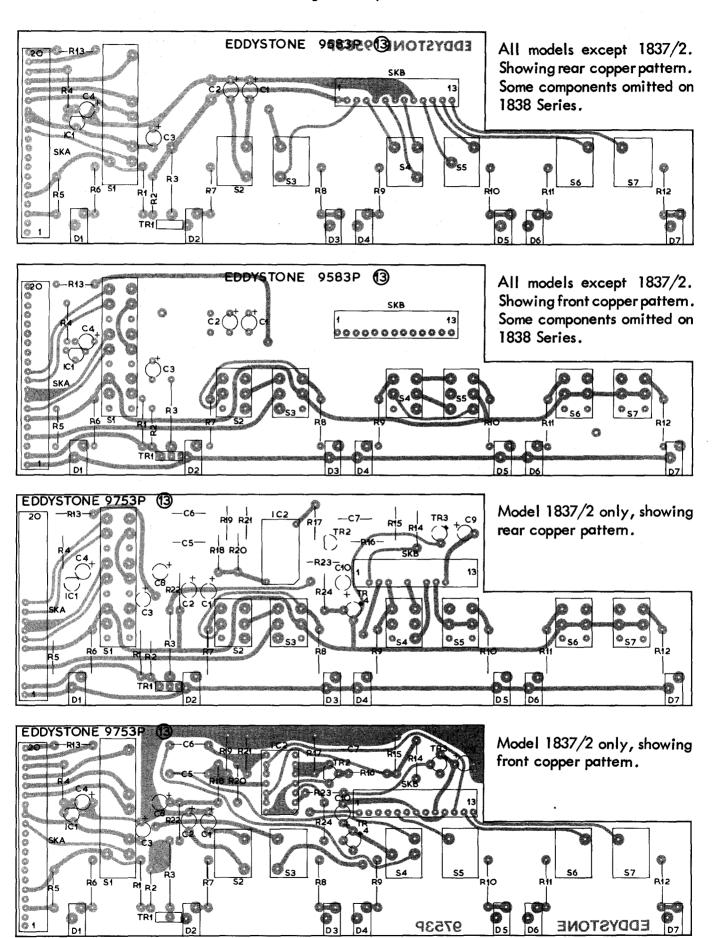
Components marked * are fitted to Model 1837/2, LP3537/2 Components marked ** are fitted to Model 1837/1 LP3537/1

Miscellaneous

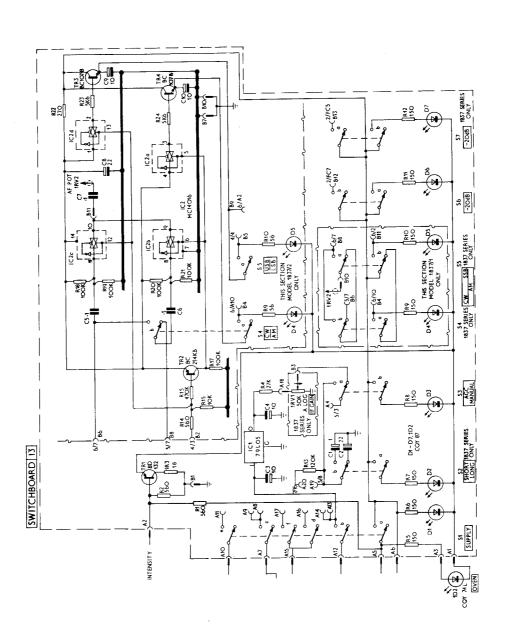
Description	Part No.
SKA Connector 20 way	9867P
PLA Connector 20 way Free (mating for above)	9868P
SKB Connector 13 way	9869P
PLB Connector 13 way Free (mating for above)	9870P
Printed Circuit Board (Except Model 1837/2)	9583P
Printed Circuit Board (Model 1837/2 only)	9753P
Printed Circuit Board Assembled (Model 1837/1)	LP3537/1
Printed Circuit Board Assembled (Model 1837/2)	LP3537/2
Printed Circuit Board Assembled (1838 Series)	LP3537/3
Switchboard Module complete (Model 1837/1)	LP3537/1
(Model 1837/2)	LP3537/2
(1838 Series)	LP3537/3

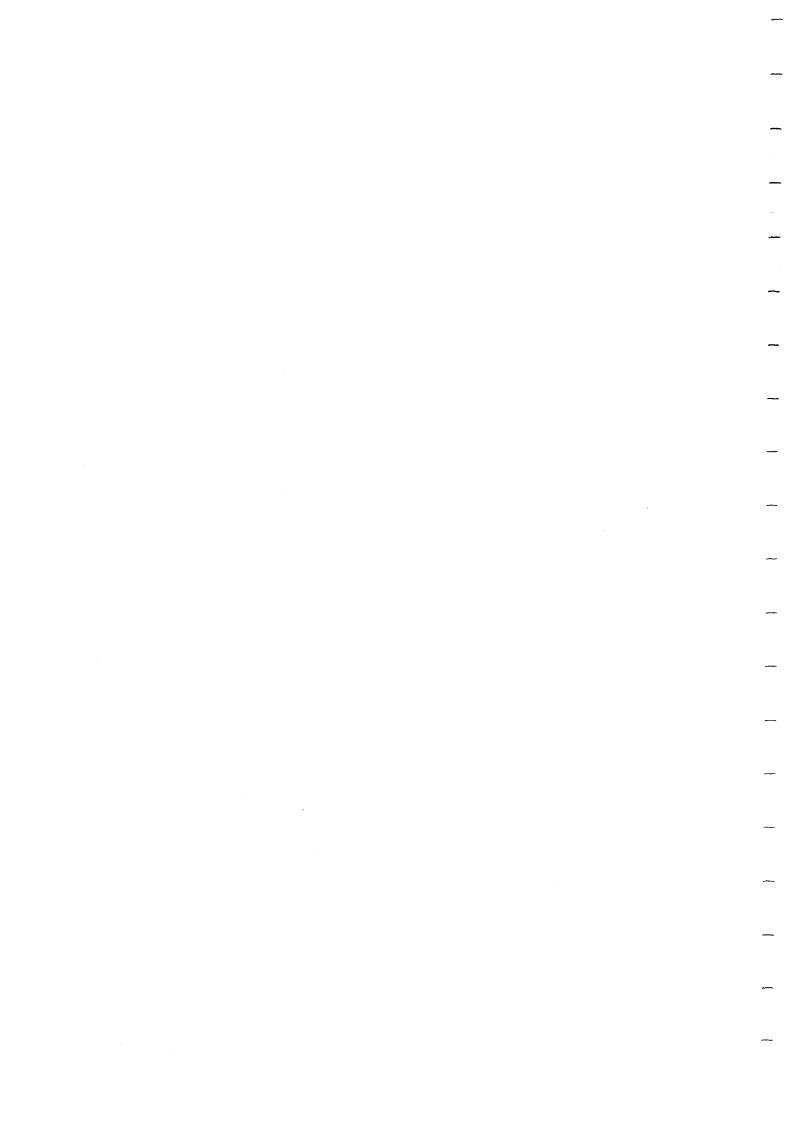
Spares should be ordered by quoting the complete Circuit Reference including the module prefix (where applicable), the description and the part number given in the list. From time to time, components of the type listed may be unavailable and equivalent types may be fitted or supplied as spares. All orders and enquiries should be directed to the address below, quoting the Type and Serial Nos. of the receiver in all communications.

EDDYSTONE RADIO LTD., SALES AND SERVICE DEPT., ALVECHURCH ROAD, BIRMINGHAM B31 3PP ENGLAND.


TELEPHONE: 021-475-2231 TELEX: 337081

CABLES: EDDYST


EDDYSTONE BIRMINGHAM


4.13.9. Printed Circuit Boards.

The boards are shown viewed from the legend side, and are actual size.

Page 4.13.8.

APPENDIX A

Component Handling

<u>Lead bending</u>. Component leads need in general, to be bent to enable the device to be fitted. The bend should be made so that the radius of the bend is not less than the diameter of the lead (or the thickness of the lead in the case of flat leads), and the lead should be supported between the body of the component and the bend. The bend should be at least 2mm (approx 1/16") from the component.

Soldering. A soldering iron having a bit temperature not exceeding 245°C may be used. The soldered joint should be completed within 5 seconds. Overheating may damage the component.

Heat Sinks. Certain devices which are required to dissipate power are fitted with heat sinks. When replacing these devices, the heat sinking arrangement should be carefully reproduced, eg thermal conducting compound may be used. If an insulating washer has been used, this should be replaced and thermal conducting compound applied to both sides.

MOS Devices. These have an exceptionally high input resistance and they are susceptible to damage when exposed to high static electrical charges. To avoid possible damage the following procedures should be followed:

- 1. Devices should be stored and transported in contact with a conductive material.
- 2. Soldering iron, bench surface, tools etc., should all be earthed. The operator should be earthed using a $1M\Omega$ series resistor.
- 3. The equipment should be switched off when devices or boards are inserted or removed.
- 4. Nylon clothing should not be worn.

Anti-static precautions take on added importance in dry weather (relative humidity less than 30%).

			_
			_
			_
			-
			_
			~
			,
			_
			~
			_
			_

APPENDIX B **Device Outlines**

TO 18

BC107B

- 1 Emitter
- 2 Base
- 3 Collector and Case

TO 72

U	C734B
7	C

- 3N128 1 Drain
- 40673 1 Drain

- Source 2 Drain
- 2 Source
- 2 Gate 2

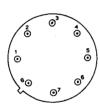
- 3 Gate
- 3 Gate
- 3 Gate 1

- 4 Case
- 4 Substrate
- 4 Substrate,

- & Case
 - Source & Case

TO 92

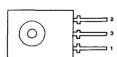
2N4254


- 78L00 Series 1 Input
- 79L00 Series

1 Base

3 Emitter

- 2 Collector
- 2 Output 3 Ground
- 1 Output 2 Input 3 Ground


8-lead TO 5

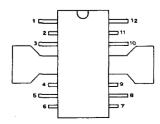
SL641C

7800 Series

7900 Series

7800 Series

- 1 Input
- 1 Ground

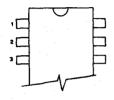

7900 Series

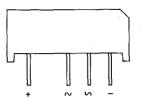
- 2 Output
- 2 Output
- 3 Ground

- 3 Input

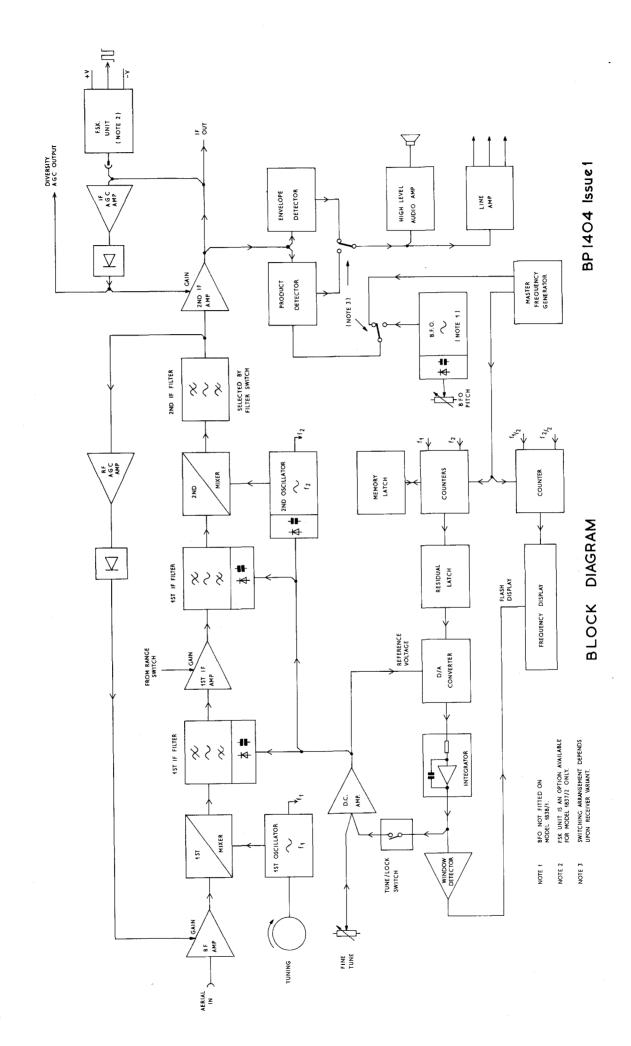
TBA 810 SQ (Viewed from Top)

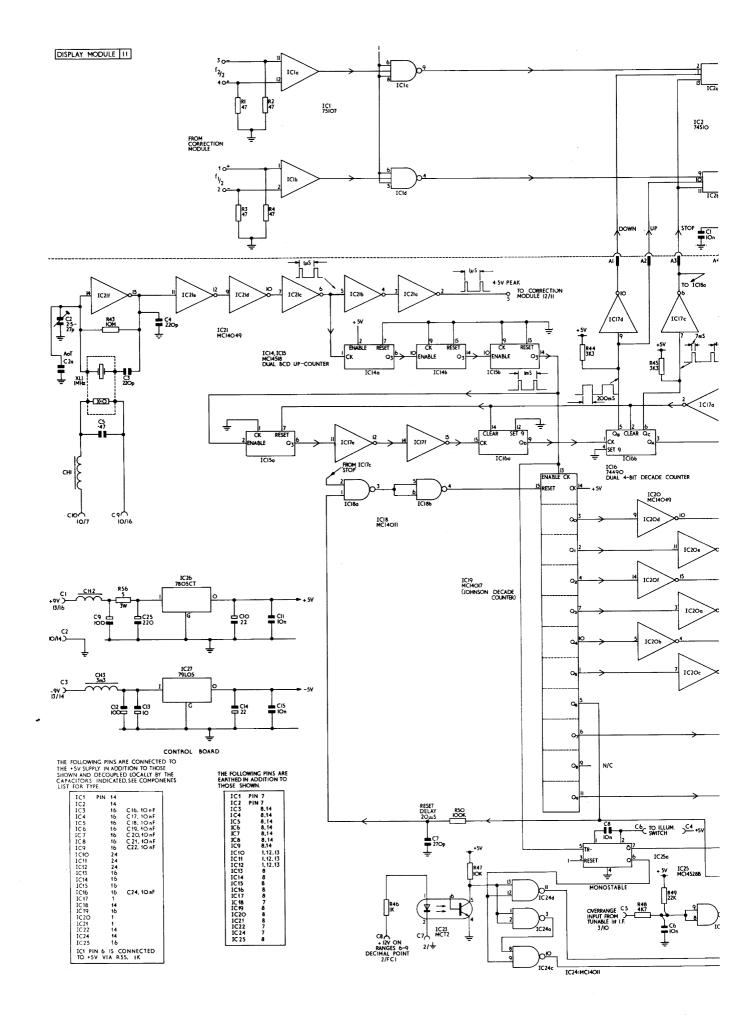
HP5082-7663 (Viewed from Top)

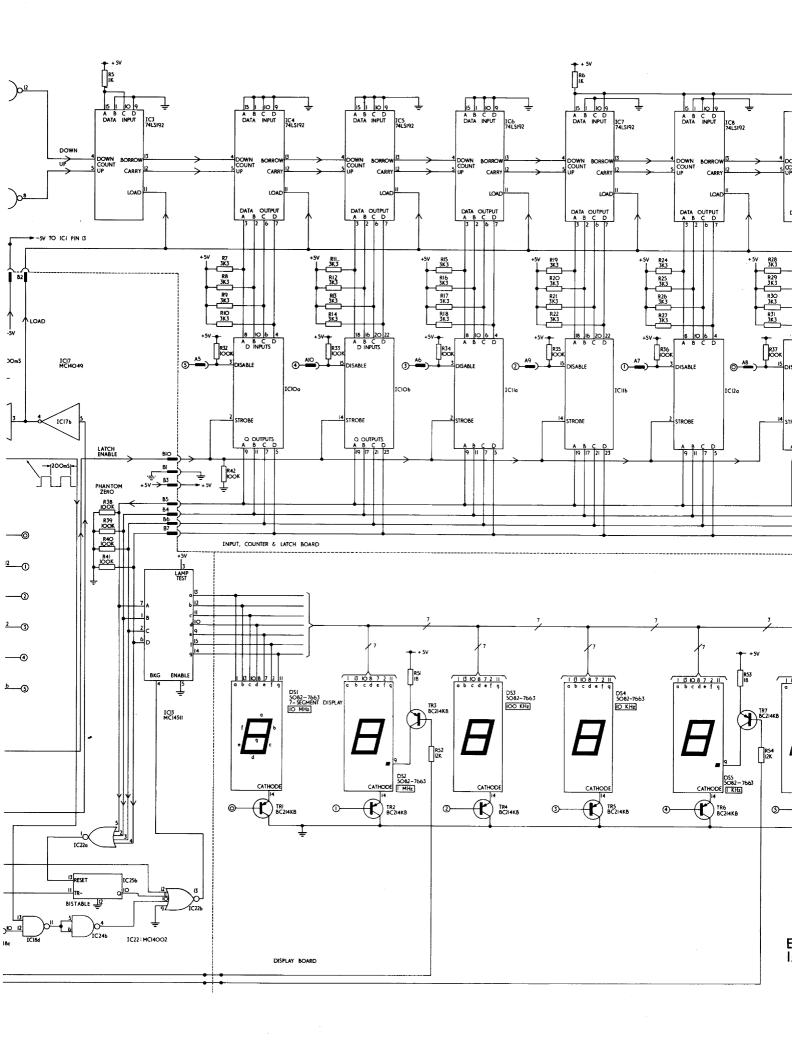


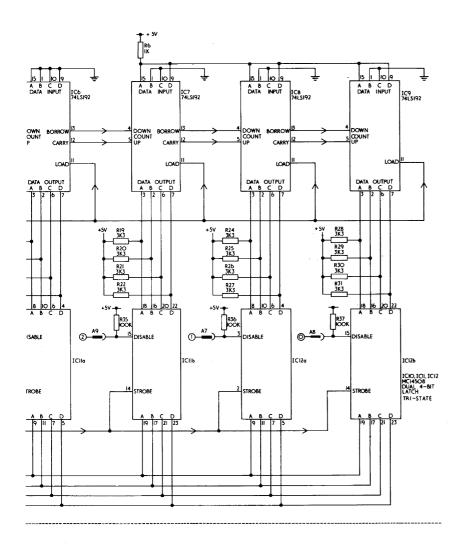

SKB1, 2/01

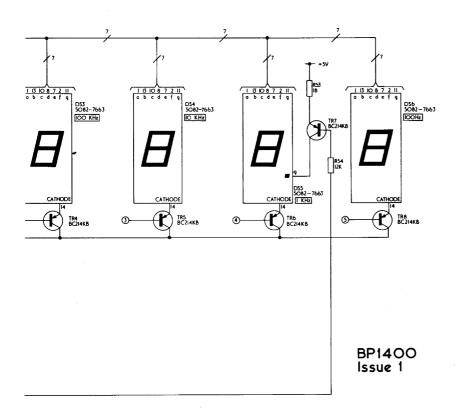
Dual-in-Line

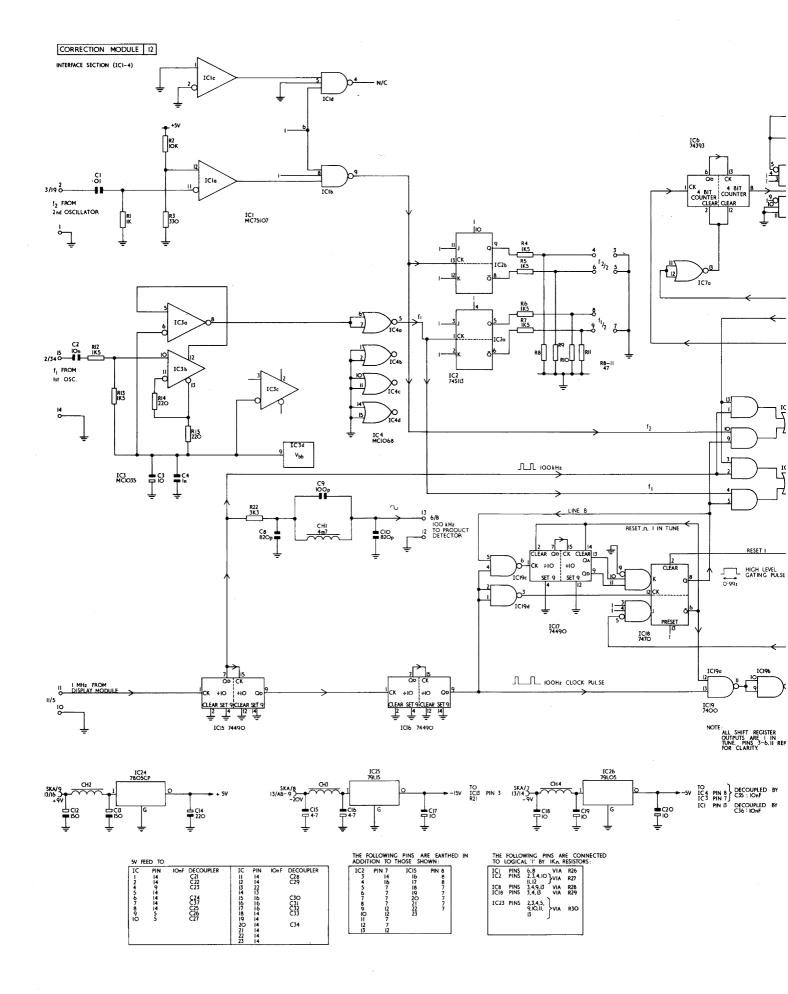


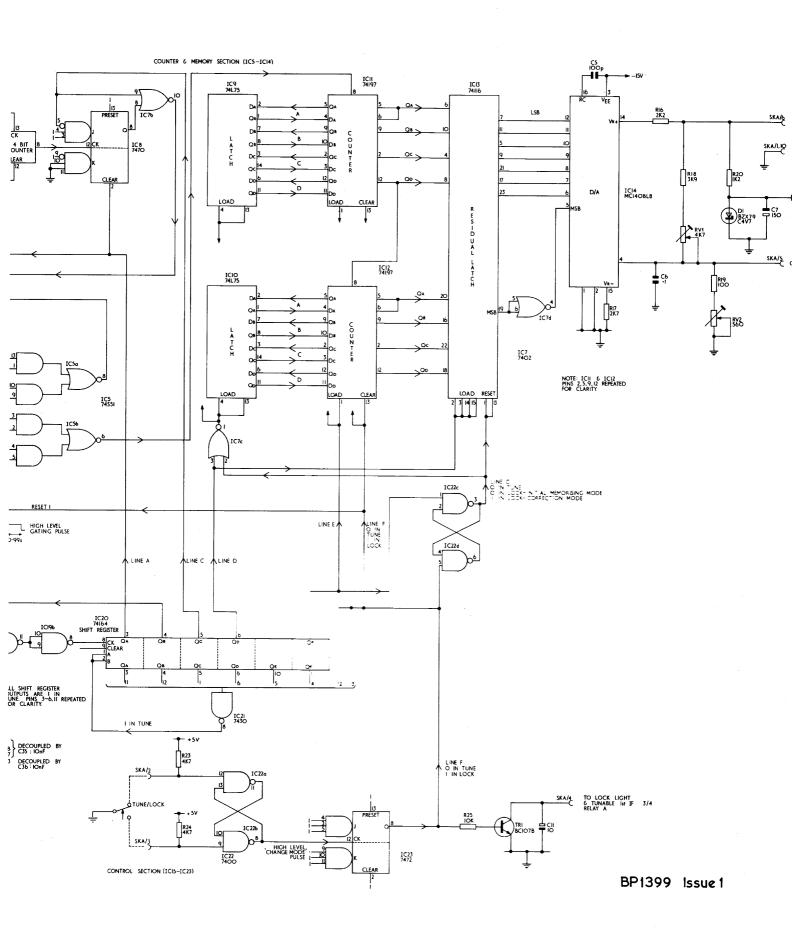

SKB 40C/3200/2200

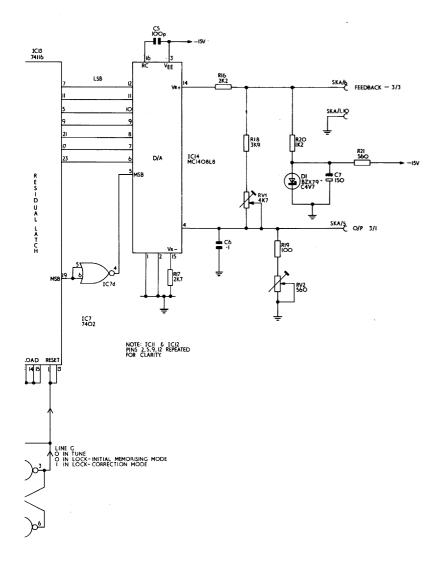


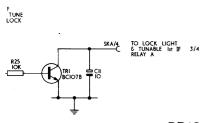

CQY 74L CQY 87

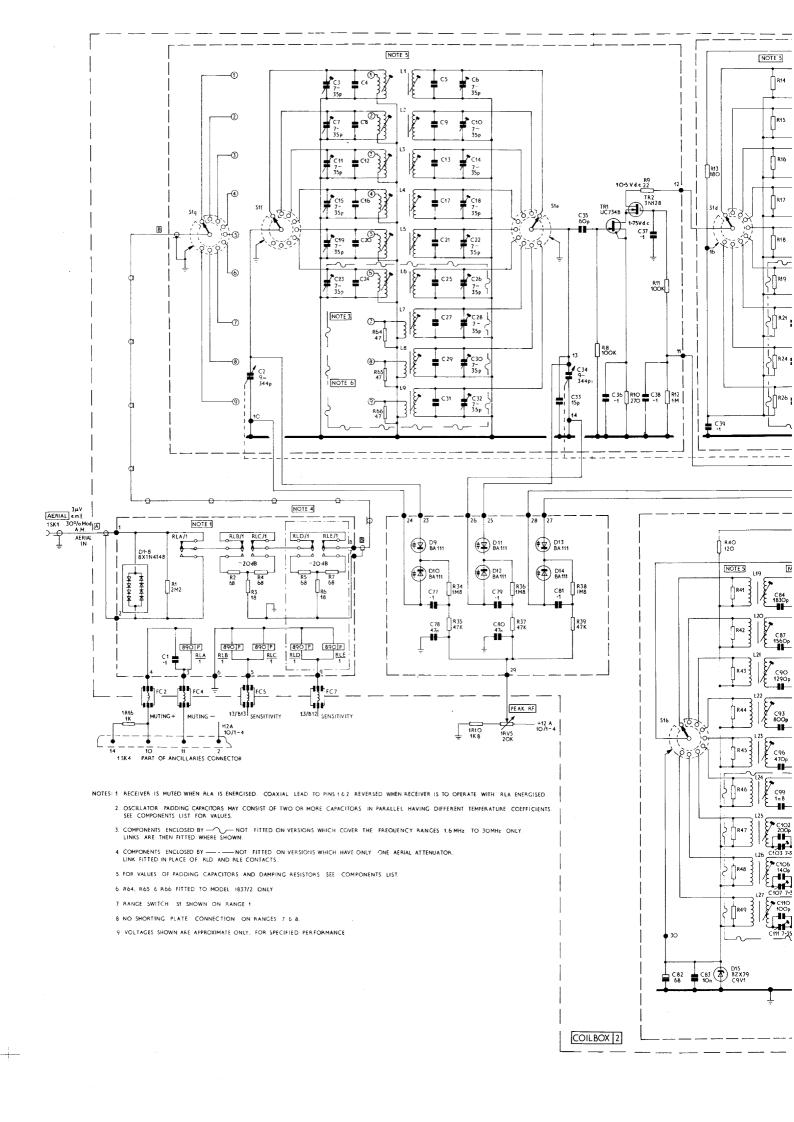


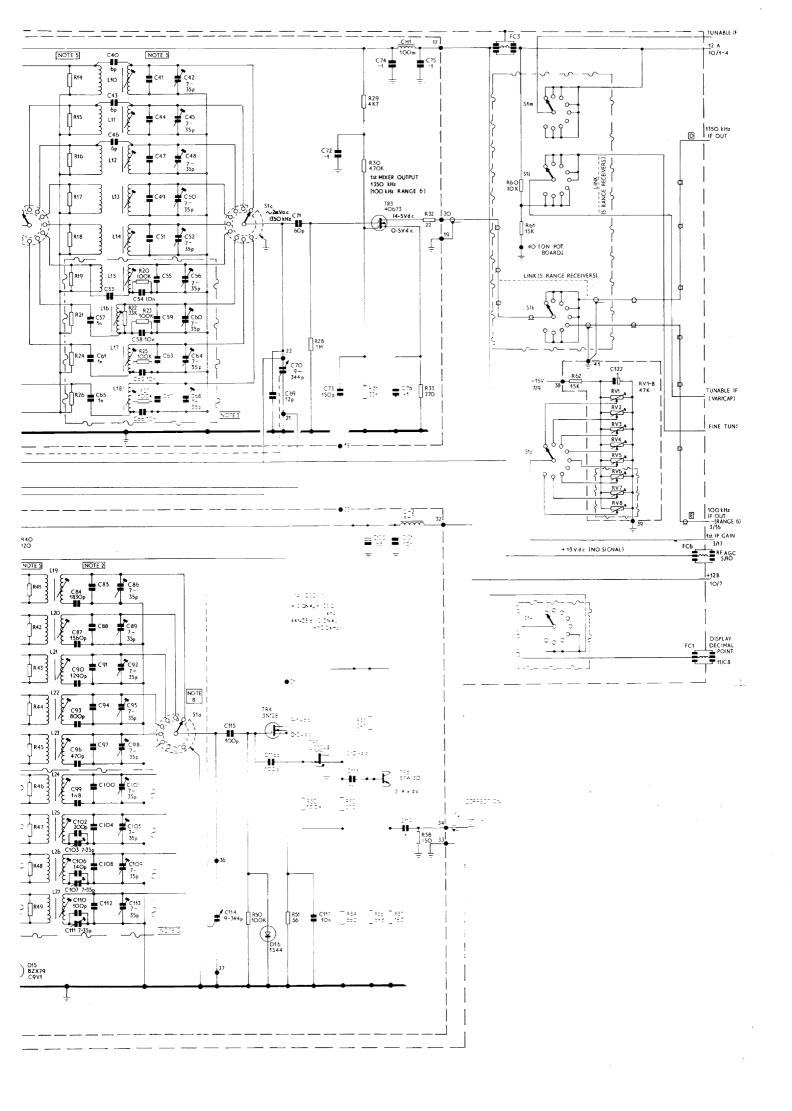


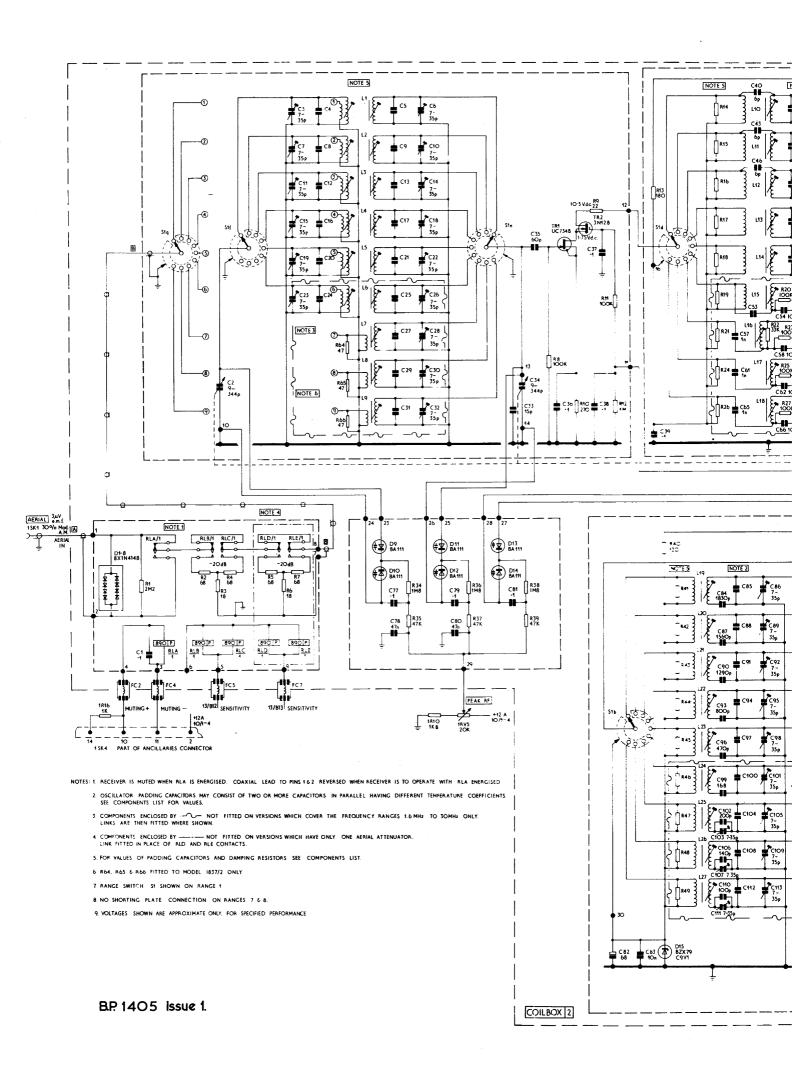


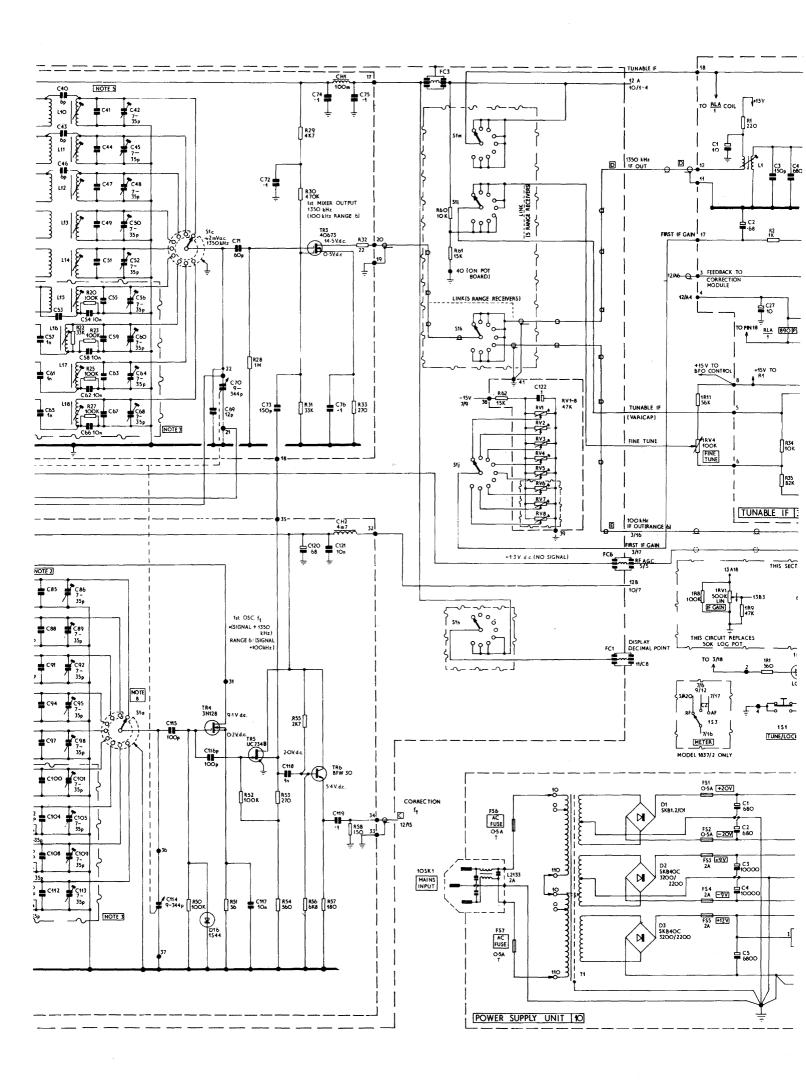


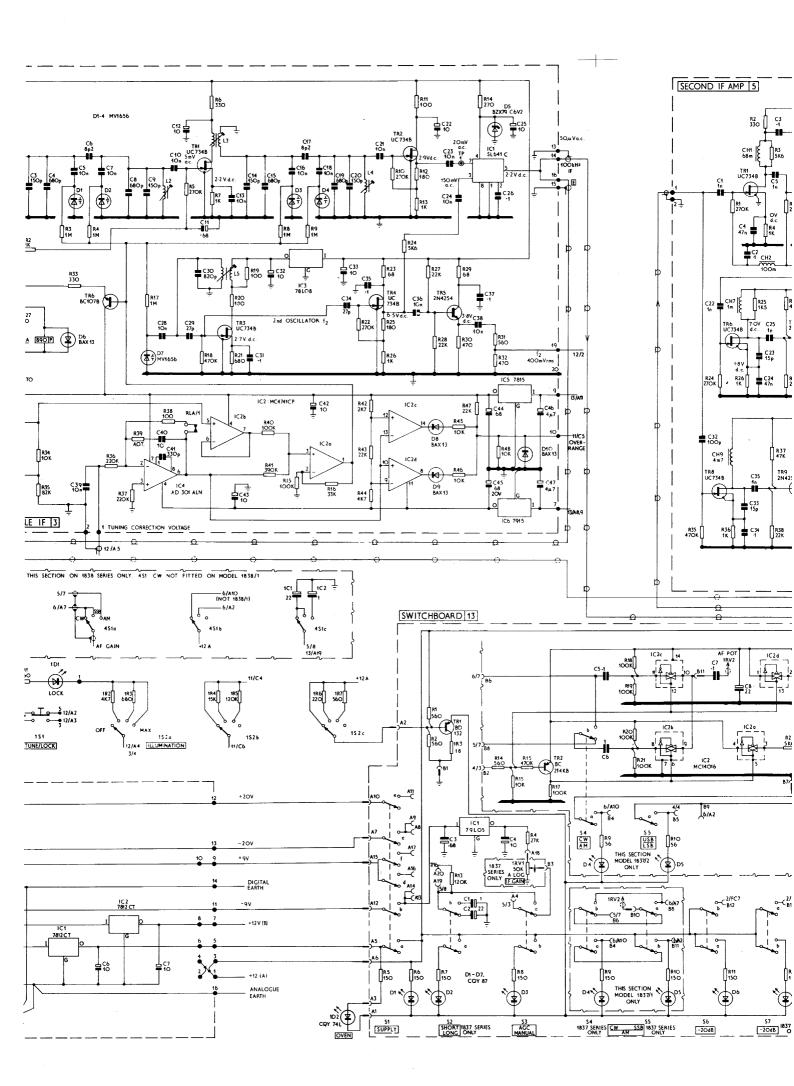











BP1399 Issue 1

